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Summary

Because of the available computational power, processes that manifest complex behavior
can be represented with large-scale and nonlinear models containing differential-algebraic
equations. These models are able to represent the physical phenomena for a wide range of
operating conditions by using the conservation laws and the physical/geometric structure of
the process. Hence, one general goal for current model based applications is to incorporate
these rigorous first principles based models into design and daily operation of processes,
which is in direct conflict with the computational complexity constraints caused by the real-
time operation requirements.

Over the last few decades, model predictive control (MPC) algorithms have become
an accepted control approach in the process industry. In control applications, MPC tech-
nology achieves desired quality specifications on the outputs by making use of the future
predictions of the system evolution. These predictions are generated from a mathemati-
cal model. Although increasingly better models are being developed, the true process be-
havior always differs from the predictions due to disturbances, unmodelled dynamics or
unexpected changes in the upstream. To overcome the detrimental effects, one needs to
incorporate elements from uncertain future into the predictions. With these predictions, by
solving an optimization problem in every decision instant, one can achieve optimal oper-
ation, thus higher savings in costs and less utilization of resources, while adhering to the
physical or economic constraints. By this way, we effectively control processes for some
(or all) possible uncertain elements.

The first part of this dissertation, covered in Chapters 2-3-4-5, addresses the problem
of synthesizing computationally tractable and stochastically robust predictive controllers
based on large-scale models. To achieve a risk-averse controller, centralized moments of
the uncertain predictions are incorporated into the predictive control problem. The disser-
tation first presents analysis results on the effect of various descriptions of moment based
MPC algorithms constructed for different classes of uncertainties. Detailed simulation re-
sults are used to discuss the effect of design parameters on the time and frequency domain
characteristics of the closed-loop system. Furthermore, for risk-aware MPC problems, we
provide explicit reformulation (tightening) of constraints for various classes (bound, affine
or quadratic) of constraints. Our results indicate that, an uncertainty-free predictive control
problem with reformulating several optimization parameters can guarantee robust operation
even if the unknown effects are present in the operation. Furthermore, one should quantify
and model the uncertain effects to the finest detail which reflects in the control law formu-
lation. By this way, one can reduce the unnecessary pessimism induced for guaranteeing
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robust operation.
The second topic that is discussed in this dissertation, Chapters 6-7-8, is on the mod-

elling, scheduling, monitoring and (low level and batch-to-batch) control of a whey protein
separation process. Whey contains high levels of proteins that are extracted via (mem-
brane) separation process apart from other necessary unit operations. A control relevant
model of ultrafiltration (UF) membrane units is proposed and validated with the operation
data gathered from an industrial plant. The presented UF membrane model uses the se-
ries of resistance concept to describe the fouling phenomena, which is the main cause of
performance deterioration in separation processes. Through the use of this model, one can
track the fouling, and therefore improve the operation efficiency by adjusting the inlet vari-
ables accordingly for better operating strategies of UF membranes. We demonstrate that
one needs to distribute the required filtration amount among different membrane stages to
decrease the accumulation of fouling. By using data based techniques, observability and
identifiability analysis of the model is also reported. This allows the practitioners to select
sensors to gather measurements, or saved simulation data, that yield the highest information
content about the system at hand. Another conducted simulation study is the comparison
between the classical and advanced (model-based) control structures. A crucial discus-
sion presented in the dissertation is the learning aspect that has been incorporated into the
model-based controllers, meaning that across the distinct batches of operation, we are able
to improve the control performance, by using the errors observed in the past batches. Lastly,
we provide (high-level) optimal operating schedules of unit operations and the optimal input
trajectories for the whey processes.
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Chapter 1

Prologue

As I laid the book down there was a knock at
the door, and my stranger came in. I gave him a
pipe and a chair, and made him welcome. I also
comforted him with a hot Scotch whisky; gave
him another one; then still another - hoping
always for his story. After a fourth persuader,
he drifted into it himself, in a quite simple and
natural way.

Mark Twain - A Connecticut Yankee in King
Arthur’s Court

This thesis presents the research activities conducted on different methods to improve
the use of rigorous simulation models in robust online model based applications for process
control systems. This chapter initiates the dissertation by motivating the research activities
on the general topic of online model based applications and system theoretic properties of
these applications in closed-loop operation. Moreover, this chapter provides introductory
content on the two structurally separate problems that are commonly faced in many model
based optimization activities. The first problem is on the topic of risk-awareness in model
predictive control routines. Specifically, this research theme addresses the conflict between
the robustness properties of controlled systems versus the computational complexity of the
control algorithms. The second theme is directed towards a specific process, a whey protein
separation process, in which, separation of whey proteins from other organic components
occurs. We demonstrate a number of possible improvements in the operation of this process
by incorporating a complex rigorous dynamical model into the offline and online operation.
The chapter concludes with the outline of the thesis.

1.1 Research Motivation
For humankind, the demand for prosperous life standards is at the core of the daily activi-
ties for many millennium. From clocks for timing the days to the use of robots as dominant
labor force, governed mechanisms are devised and used to improve the life standards of
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Chapter 1. Prologue

people. Process industry, similar to many other engineering fields, is a massive industry
providing products based mainly on the chemical interactions. An essential issue that we
discuss in this thesis is the efficient control of processes concerning diverse physical in-
teractions in process control systems to achieve desired goals as outputs under the adverse
effects of uncertainty. To provide some context, a process is a physical mechanism that
couples some inputs, actuators driving the system called manipulated variables, to some
performance or measurement outputs, called controlled variables. These outputs can be the
eventual end products released to economic market or intermediate outcomes to be used in
another process operation. Furthermore, by control, we mean the rigorous way of analyzing
and designing the manipulated variables so as to achieve desired goals in the controlled vari-
ables. Control goals are achieved generally through regulation (around an operating point)
or servo action (to track a reference), with a satisfactory robust operation against the known
or unknown disturbances or uncertainties. Here robust operation means that the controlled
systems1 are able to reject the disturbances and to compensate inherent modeling biases
for achieving the specifications on the outputs. In this context, process control applica-
tions are desired to be operating in a resilient way against unknown or unconsidered effects
while provide large quantities of products with sustainability concerns. Control synthesis
amounts to constructing the input strategy that meets the operational demands, meaning
that the realized controller performs as desired for a set of specifications or goals on the
outputs ([234]). In general, a feedback controller is designed via models representing the
processes. Here, models are mathematical abstractions of self-reinforced patterns that are
observed from (physical) processes2.

The computational and communication power allocated for monitoring and control of
processes has increased almost exponentially in the recent decades. The inefficient manual
production and also the competitive business environment necessitate a highly efficient op-
eration under tighter specifications. Besides concerns about the effect of human activities
on the environment are rising, which amounts to regulating many operations to achieve cer-
tain safety, reliability and sustainability levels. Traditionally, mathematical models are used
to design controllers for describing the behaviour of processes under consideration. To de-
scribe the processes better, which, generally, leads to better control solutions, it is expected
that more and more complex models will be used in control applications.

Over the last half century, there has been an increased attention on the model-based de-
cision making and operational algorithms. Great achievements in fundamental and applied
sciences lead to a much broader understanding of the optimization theory ([61])3. This
drastic change in theoretical understanding is also assisted by various technological break-
throughs. In this half century, humankind managed to construct increasingly robust and
efficient computing and communication devices. This allowed digitalization and coopera-

1A controlled system is an interconnection of at least two subsystems, generally called as the controller and the
process itself. The interconnection constraints the time evolution of process, thus, with rigorous control design,
allows the closed-loop system to react as desired.

2In here we do not provide an in-depth discussion on the historical trajectory of control theory, however inter-
ested reader may reach to [11, 249, 343] from openly available sources.

3Some examples can be given as the concept of convexity, the KKT theorem for constrained optimization
problems, Pontryagin’s Maximum Principle and Bellman’s Principle of Optimality for dynamical optimization
problems and Simplex and Interior Point methods for the numerical techniques to conduct the optimization.
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tive computing, which are crucial for handling complex problems commonly resulting from
large-scale optimization based algorithms that include multiple decision makers apart from
uncertain factors. A recent and radical example can be given as the successful optimiza-
tion based design of efficient fusion reactors ([56]), see Figure 1.1. Control practitioners

Figure 1.1: Model-based optimization routines are used to locate coils of the magnetic cage
system of Wendelstein 7-X. The image is taken from the website of Max-Planck-Institut für
Plasmaphysik (IPP).

and researchers, commonly acting under business drives, are using these tools to operate
interconnected networks of processes, each of which can be described by complex dynam-
ical behaviour, under tight error margins. It is imperative for control practitioner to make
use of high-fidelity models to develop monitoring routines, the observers, or automatic con-
trollers that are able to reach these tight specifications by diminishing undesired sensitivities
undesired effects.

1.1.1 Online Model-based Applications in Process Control Area

In the process control area, the online model-based applications (OMBAs) include, but are
not limited to, the soft-sensor or advanced process control implementations ([266]). Some
OMBA examples are:

• The model predictive control (MPC) technology (or its predecessors) is used to formulate
a practically elegant solution to the question: “how to practically control processes to
achieve (sub-)optimal operation under actuation saturation or operational limits, such as
computational constraints?" Relying heavily on the predictions generated from the process
model, MPC technology optimizes over future trajectories while explicitly incorporating
the limitations as constraints. Furthermore, MPC technology allows the practitioner to
decide on the problem’s computational complexity, by adjusting the problem size, the
number of prediction stages. MPC based methods have already been applied in many
practical environments, e.g. [288, 289, 290].

• Monitoring of processes, in its general form, amounts to the problem of inferring tra-
jectories of (un)measured variables from the sensory data. Soft-sensor implementations
keep track of various performance indices which are then used for control purposes ([299],
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[154]). The Kalman filter, with only two explicit algebraic update equations, is a highly
effective example of model-based process monitoring tools.

• Tactical decision making routines or schedulers are also examples of OMBAs. The schedul-
ing decisions are commonly used in interconnections of processes to optimize the pro-
duction and further diminish the (raw material, transportation or energy) costs by using
large-scale and static models.

Some OMBA examples relevant to the topic of this dissertation are;

• The use of reservoir models in decision making environments within the oil-extraction
process to maximize the economic gains ([336]) or;

• The batch crystallization processes to minimize the effect of disturbances and mismatches
in the initial conditions ([359]).

Model-based decision making routines are also used in many other practical instances that
are not strictly under the control domain, such as the emergency scheduling ([134]) or port-
folio management ([331]).

One common aspect of the mentioned OMBA activities is the separation of a centralized
and global problem into several different subproblems. Within the control domain applica-
tions, control hierarchy is used to separate the universal problem into multiple problems
associated with different aspects of the plant operation in an efficient way ([226]). These
layers deal with the problems that have different economic incentives, sampling/decision
frequencies or models. Among the same layer, different subprocesses might communicate
and interact with each other to cooperate and improve the process operation. In Figures
1.2a-1.2b we visualize and shortly note some observations on the commonly perceived con-
trol hierarchy in process control implementations.

In all mentioned cases of OMBAs, one common and essential element is the implicit
process model. As the models describing the process are further improved and validated,
we receive and process better predictions of the process. In the current line of reasoning,
the models are distinguished by the model structure selected as our priors. As an ideal case,
models that are described by fundamental laws of physics are referred to as the white or first
principles (based) models (FPMs). On the other hand, if the model is solely relying on the
inherent causal/correlated relations of recorded input and output data, we call these models
black-box models (BBMs). In fact, there are many more successful applications of BBMs,
due to reliable and computationally cheap system identification methods ([216]).

In this dissertation, we design controllers for processes by making use of globally valid
input-output (operating) space, and, if applicable, switch between different specifications
efficiently within the run-time ([266]). The BBMs are describing processes locally which
might lead to problems in controlling systems that demonstrate nonlinear, time-varying,
fast-and-slow (with coupling in between) behaviour. The FPMs, by their construction, is
able to exploit the detailed process knowledge within the OMBA algorithms4. This allows
FPM-based OMBAs to be used in batch type of processes5, which are common in process

4In many cases FPMs rely on different physical variables which are naturally used also in controllers.
5The batch processes, in this dissertation, have a start and a final time for the operation. The design of observers

or controllers for batch processes is known to be notoriously difficult, [224], since the behaviour of the process
varies quite drastically during the operating window.
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(b) An implementation example of control hierarchy.

Figure 1.2: Representation of process control hierarchy depicting the different goals and
resources at each layer. Throughout the control hierarchy, mainly economic benefits but
sometimes also safety or performance requirements pushes the process operation to become
more reliable and reproducible.

control industries. Contrary to the presented reasoning and due to various reasons, extensive
and expensive model development effort, lack of validation tools or computational issues,
FPMs are not preferred in OMBAs frequently. Instead, to overcome these drawbacks grey-
box models are used in practice. These models can effectively incorporate the complex in-
teractions between the physical variables through various number of black-box components,
generally by (nonlinear) regression functions to represent fast or complex phenomena while
containing also (simple) first principle laws. A table highlighting the complexity of model
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versus the regression quality between BBMs, FPMs and grey-box models is provided in
Table 1.1.

Fitting
Accuracy

Computational
Complexity

Modeling
Effort

BBM Low Low Low
Grey-box Low or High Low Low or High

FPM High High High

Table 1.1: Comparison in between the model types.

Then, constructing computationally efficient applications using physics-based models
in real-time operation is a goal of this thesis. We base our discussion on various offline
and online model-based applications for an industrial case study, a whey protein separation
process, as a research theme of this thesis.

1.1.2 Uncertainty in Models and Model-based Applications

The effect of uncertainty is an important aspect in OMBAs and hence the resulting control
performance. In any case, the prediction model will be different from the true process at
hand. This means that the predicted trajectories from the uncertainty-free (nominal) model
will be wrong, i.e., we assume that the uncertainty is inherent to the nature of the process
([71]). In order to take action against the unknown effects, one can model the uncertainty to
reflect it in the predictions6. Once the predictions, incorporating uncertain factors, are gen-
erated, the control action is evaluated according to the risk associated with these predictions.
One way to evaluate the risk is to assume the worst possible outcome out of all scenarios
([115]). The controllers designed with this type of deterministic guarantees against uncer-
tain effects, in general, lead to a heavy loss in performance of the controlled system. Hence
modeling decisions taken on the effective uncertainty and the distribution of its realizations
is an important design step ([253]). The analysis and treatment of uncertain effects in op-
timization problems are open research areas in various domains, see [35] for a technical
introduction to the topic.

We know that the set of possible uncertain effects changes the resulting closed-loop be-
haviour. Incorporating unrealistic uncertainty scenarios into the prediction models cause
the controller to reduce the process sensitivities from inputs to outputs, which is hampering
the performance, and therefore highly undesired in industrial operations7. Operating pro-
cesses more efficiently amounts to steering the operation towards economic or operational
constraints. As the operation approaches the constraint region, the importance of risk-aware
control methods is increasing, see Figure 1.3. This figure visualizes the distribution of pre-
dicted outputs for three different controller scenarios, in case (a) a pessimistic controller
is used, since the distribution of outputs are far away from the constraint; while for case

6The elusive nature of uncertainty is also effective on the modeling and quantification of it in the dynamical
evolution. However, here we do not discuss this problem.

7Since business objectives, in general, do not specify the robustness requirements and there is no incentive from
industry for complicated control design, there is a highly contrasting gap in between the theoretical achievements
and the simplicity of the practical implementations.
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(b) possibly an optimization based linear controller is used which shifts the distribution to-
wards the constraints. The last case, (c), makes use of risk-aware decision making routines,
thus is able to improve the performance of safe8 tail of the distribution while reducing the
possibility of constraint violation for the tail realizations that violate the constraint. One

Figure 1.3: Probability density function of an output variable controlled with three different
controllers. Taken from [226].

can describe these distributions by (reachable) intervals or probability distribution functions
(pdfs). However, high-performance risk-aware control methods are not developed yet for
general risk functions. This is due to pessimistic performances and the high computational
complexity of the current methods. Within this thesis, we address the possible shortcom-
ings of robust predictive control methods and propose a different strategy for evaluating the
uncertain effects in MPC problems.

1.2 The Research Goal, Themes and Questions
Complexity of a model-based optimization problem with uncertain elements depends on the
complexity of the nominal (uncertainty-free) model9, the uncertainty model10 and how the
uncertainty is evaluated in decisions11. Development of computationally simple and reliable
applications based on rigorous models for process control systems determines the research
goal of this thesis;
Research Goal: To improve the use of rigorous models in robust model-based applications
for process control systems.

8Here, safe describes the realizations, or instances, that occur far away from the constraints.
9A rigorous process model which does not incorporate any affect of uncertainties can be already too complex

for OMBAs.
10Once the uncertain effects are incorporated into the model, the optimization problems grows considerably in

size.
11Re-expressing the robust optimization problem depends on the uncertainty measures, called as price of robust-

ness ([44]), which amounts to balancing the reliability against uncertain effects versus the performance.
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In this dissertation we discuss two possible ways to address the research goal. The first
theme of this dissertation is on the risk-aware evaluation of process predictions in MPC
applications. The second theme is aligned with a practical application and addresses the
use of rigorous models in a whey protein separation process. By making use of the control
hierarchy and a master model, Figure 1.2a, we consider scheduling, monitoring, and control
problems to improve the separation operation performance. In the next two subsections,
we discuss these two themes separately and present research questions that are addressed
during the research.

1.2.1 Robust Predictive Control and Risk-aware Operation

In this dissertation, we focus the discussion on the development of practical and risk-aware
model predictive controllers with desired closed-loop performance and computational prop-
erties. MPC is commonly used in process industry for constrained multivariable optimal
control ([21]). The performance of these controllers depends to a large extent on the qual-
ity/validity of process models ([290]). In addition to the inaccurate identification of model
parameters, noise or model simplifications ([164] and references therein) also introduce mis-
match between the process observations and the model predictions. Yet in many cases, MPC
problems derived through the use of nominal dynamics are sufficiently effective. Hence here
we seek to develop efficient methods to include uncertain effects without deteriorating the
control performance. The essential problem within this first research theme is the conflict
between the risk allocation of uncertain predictions and the computational complexity to
describe this risk function12. The risk-awareness concept is the ability of the controller to
assess the detrimental effects of uncertain predictions and incorporate some of these trajec-
tories into the control law formulation.

In the last couple of decades, different MPC algorithms have been introduced to achieve
the desired control objectives while reducing the effect of uncertainty ([133]). We can
broadly classify these algorithms into two classes;
i) The worst case based techniques (WC-MPC) ([185]) where under any effect of predefined
maximum level of uncertainty, the process variables do not violate the desired specifications
or;
ii) The chance based MPC algorithms ([326]), where the specifications are softened depend-
ing on the chance of being off the desired levels. By this way violations are cast to be rare
events.

Both of these formulations have their own drawbacks; the common disadvantage is the
complexity of the robust counterpart problem13. Since the probabilistic interpretation, such
as the chance based MPC, incorporates WC-MPC as a special case, a stochastic approach
towards robustness is preferred in this dissertation.

One major issue with these methods is that the distribution functions of uncertain vari-
ables are difficult to calculate in large-scale systems. Thus we address ways to construct
robust MPC problems that are computationally simple;

12The deterministic problem which already incorporates uncertainty into its formulation is named as robust
counterpart problem.

13Issues such as pessimism in the closed-loop operation are introduced and discussed in Chapter 2
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1st Research question: What type of methods can be used to construct predictive con-
trollers based on rigorous large-scale models with adjustable robustness and desirable com-
putational properties?

We detail more on the research question with some subquestions as follows:

• Incorporating uncertain effects into the control applications is to measure the effect of
uncertain predictions in the outputs by evaluating their risks. This step determines both the
pessimism associated with desired robustness and the computational complexity. Then a
valid question is:

Research Question 1.1: What are the techniques that transform uncertain MPC problems
into robust counterpart MPC problems? What are the computational complexity properties
of these techniques?

We address this question in Chapter 2, in which we classify the methods, and also in Chap-
ters 3, 4 and 5 we address this question for a specific technique, the moment-based MPC
formulation.

• In general, we aggregate various different sources of uncertainties on the outputs. How-
ever, these effects causing the uncertain predictions, such as perturbations in predictions,
lack of sufficient measurements or process-prediction model mismatches cause structurally
different prediction errors. Thus;

Research Question 1.2.1: What are the control theoretic interpretations of the robust MPC
controllers that guarantee robust operation for different types of uncertainty sources?

Closely related to the previous question, analyzing and evaluating the distribution of un-
certain effects requires an extra step in the uncertainty modeling phase. The main reason
is that there are no tools to describe the relatively inconsequential14 uncertain effects;

Research Question 1.2.2: What is the effect of detailed modeling of the uncertainty space
to the control actions in MPC driven closed-loop operation?

We address these questions in Chapters 3 and 4.

• MPC, being an optimization based control strategy, requires a cost function that needs to
be minimized. Many different possibilities exist for selecting the cost function, quadratic
or polytopic (norm based) functions being the control theory oriented ones. We parame-
terize these functions by weighting terms that adjust the relative importance of variables.
Commonly, these weighting terms are selected in an ad-hoc way, heuristic techniques are
used to cross-weight different variables. We expect that selecting weighting terms in an
algorithmic way might lead to increased closed-loop performance at the expense of robust-
ness properties. Furthermore, any technique addressing the cost selection problem should
also be accessible to the operators. In process control applications, operators prefer to use
long-known and reliable MPC routines to control the processes. The experience developed

14In this dissertation we assume that high consequence realizations of uncertainty, uncertain impacts, are not
existent within the operation. Hence, in the context of this thesis, the uncertain effects are not causing harsh or
unrecoverable events, but act as mere perturbations along the dominant and known process dynamics.
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along the MPC implementations also pushes practitioners to rely on basic MPC algorithms
depending on nominal models.

Research Question 1.3: Which cost functions (or optimization parameters) improve the
robustness or disturbance rejection properties in MPC problems? Are there nominal MPC
problems that guarantee desired robustness properties for uncertain dynamical systems?

We address these questions in Chapters 3 and 4.

• One of the most important aspects of MPC based closed-loop operation is the explicit
constraint handling capabilities. However addressing the constraint satisfaction under the
effect of uncertainties necessitates a risk-based re-evaluation.

Research Question 1.4: What are the robust constraint satisfaction properties of MPC
based closed-loop operation by including stochastic models of uncertainty?

We address this question in Chapter 5.

In the light of these questions, this thesis advocates the use of statistics, the finite order
centralized moments, of the state predictions to calculate the MPC control actions. We
present a novel MPC strategy, the so-called moment-based MPC (MMPC), which considers
the expectations and variances of the predicted trajectories. By making use of variance (or
higher order statistics) of the state predictions, one can effectively back-off the operating
conditions as a function of the process dynamics and the uncertainty model. This approach
improves the robustness or disturbance rejection properties of the closed-loop system. Even
if different types of uncertainty models are considered, it is shown that the MMPC has
computationally desirable properties.

1.2.2 Online Model-based Applications in a Practical Case Study: Whey Protein Separa-
tion Process

The second theme of this dissertation is directed to improve the use of rigorous models for
OMBAs by investigating possible issues and drawbacks in whey protein separation process.
This process consists of a network of unit operations (UOs), in general including mem-
branes of different pore sizes, evaporators, and dryers, see Figure 1.4. Our investigation of
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Figure 1.4: The block scheme of whey protein separation process.

using rigorous models for the whey protein separation process mainly deals with the ultrafil-
tration (UF) membrane UO. Specifically, we address the dynamical modelling and optimal

24



1.2. The Research Goal, Themes and Questions

operation of the UF membranes in this process. We also direct attention towards the op-
timal operation of the rest of the UOs, i.e., we consider plant-wide optimization problems
that address the safe operation properties. Next, a short introduction on the process and the
identified research directions are stated.

The whey (protein separation) process consists of the reverse osmosis membranes, UF
membranes, evaporators, and dryers. Among these UOs, the dynamics of evaporators and
dryers are known to be considerably faster than the dynamics of membrane units, hence
static behaviour from inputs to outputs is assumed to be representing their effects. However,
the input-output operating points of membrane units vary harshly during the operation. Due
to this reason, we need to incorporate dynamical effects into the rigorous model of UF
membranes.

The UF membranes are pressure driven separation processes, in which the pressure dif-
ference, the transmembrane pressure (TMP), between the two mediums separated by the
membrane wall causes some particles to freely pass through the wall while the larger parti-
cles in the inlet stream can not move in between these mediums. More precisely, relatively
small molecular size components, such as the water or sugars in whey, are driven from the
feed inlet to the so-called permeate outlet of the membrane, see Figure 1.5. The remain-
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Figure 1.5: The interconnection scheme of two UF membrane stacks.

Figure 1.6: A visual picturing the membrane unit’s physical parts.

ing components are relatively large size components that are not able to pass through the
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membrane wall such as the dairy/cheese proteins in whey. These components leave the
membrane unit from the retentate port. Hence the concentration of large molecular size
components at the retentate port is high while the permeate is rich in small molecule sized
components. Due to the gradual deterioration of separation efficiency of the UF membrane
unit, the process is turned off for cleaning purposes, casting the process to be a batch pro-
cess.

The whey components and their concentrations are effective at the resulting product’s
properties. Furthermore, the deterioration of membrane separation performance, called as
fouling, directly affects the eventual output. Due to these effects on the end product, the
whey protein powder, the OMBAs that we discuss in this dissertation are targeting the mon-
itoring and control of fouling accumulation. For high-efficiency operation of the whey
protein separation process and the UF membranes, we formulate the following research
question;

2nd Research question: What are the potential benefits of using offline and online model-
based applications for the UF membrane units in whey protein separation process to achieve
specified performance goals?

Some research questions and practical goals that are considered in this thesis are stated
as follows;

• The UF membranes have complex, nonlinear and highly coupled fast-and-slow dynamics.
During design models that contain partial differential equations, which express the pressure
distribution along the membrane unit in terms of spatial coordinates, are used. Another
common way of describing membrane units is using the static regression functions for
capturing the nonlinear behaviour. In this thesis, we desire to use a rigorous UF model that
is sufficiently complex to incorporate different membrane operating points. Furthermore,
we need to keep the model complexity at a certain level to allow us to design real-time
model-based controllers.

Research Question 2.1.1.: What are the physical laws that are needed to describe the com-
plex behaviour of UF membranes while keeping the model size and complexity at a mini-
mum which allows the designer to use the model in monitoring or control applications?

Similarly, fouling is the main reason of gradual degradation of process efficiency in UF
membranes. Thus, it is of high importance to keep track of fouling during the operation.
However, membrane fouling is not a physical variable but an aggregate effect that is de-
duced from the performance deterioration. It is difficult to directly describe or measure the
’total’ fouling of a membrane during the operation. Here we make use of the developed
model, the Research Question 2.1.1, to implement soft-sensors monitoring the accumu-
lated fouling during the operation.

Research Question 2.1.2: Which measurable variables should be recorded to correctly
reconstruct the fouling?

• An important aspect of UF membrane operation is the optimal operating trajectories along
the batch time window, the so-called ‘golden batch’. With the rigorous UF membrane
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model, one can analyze the operating input-output trajectories that are able to reach de-
sired specifications for the output products while decreasing the accumulation of fouling
and distributing the required workload of whey separation in between different operating
membrane units. Thus;

Research Question 2.2: What are the best operating strategies with respect to on-off con-
ditions of membranes, the inlet flow and pressure values for each and every membrane unit
in the overall process to achieve the desired goals at the output with reduced fouling?

• In this thesis we desire to implement OMBAs for UF membranes using the rigorous model.
Hence, we address various online applications concerning the UF membrane process, such
as;

Research Question 2.3.1: What are the best monitoring (soft-sensor) strategies that can
be implemented in real time and provide information on variables and parameters of the
model?

Research Question 2.3.2: What type of low-level control structure should be selected for
efficient operation with UF membrane units?

Research Question 2.3.3: Can we improve the operation efficiency and decrease the effects
of plant-model mismatch by incorporating a learning action that considers errors among the
previous (recorded) batches?

• Since the products of whey protein separation process are organic materials, the process
is subject to strict regulations, requiring the processing to reliably dinish quickly. The
whey protein separation process consists of multiple batch units and these UOs can be
independently shut down for various reasons such as cleaning or maintenance. These
aspects lead to using buffer units to accumulate the processed material after each UO,
which is an important cause of increased residence time. Thus the scheduling of the unit
operations in the process has a considerable importance. In this thesis, we approach the
scheduling of UOs in whey process from a safety perspective, meaning that we seek for
operation such that the buffer tanks are not overflowing or depleted and the throughput
is as large as possible. However, many scheduling routines to achieve this goal are quite
computationally demanding to solve since multiple UOs need to be optimized over on-off
actions.

Research Question 2.4: What type of scheduling models can be used to generate computa-
tionally simple scheduling problems which guarantee safe operation for a network of UOs
that show on and off behavior in a cyclic fashion?

1.3 Thesis Outline
This dissertation addresses two distinct phases of model-based control and estimation appli-
cations in the direction of questions formulated in the previous section. For the first theme,
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the risk-aware model predictive control algorithms with desirable computational complex-
ity properties, we dedicate a substantial content of this dissertation to address, first, the
drawbacks in the current robust MPC strategies in the academic literature and then we de-
velop a novel approach, the moment-based MPC formulations, to diminish the associated
pessimism; and lastly we analyse the theoretical properties of these MPC formulations. In
detail:

• In Chapter 2, we present an extensive outlook on the available literature on MPC, compar-
ing the robustness properties of nominal, robust and stochastic MPC formulations. These
different strategies are then implemented in different simulation examples.

• In Chapter 3, building up from the observations stated in the literature review, we present a
computationally efficient robust MPC method by making use of the statistical information
of uncertainties affecting the dynamical system to explicitly reformulate the robust coun-
terpart problems of cost functions15. We first address the case of linear systems that are
perturbed with additive noise, for which we provide the robust counterpart MPC problems
for the first three centralized moments which are computationally equivalent to nominal
MPC problems with different cost functions. In this part we treat the cases with differ-
ent assumptions on the structure of dynamics or uncertainty or different control goals,
such as we consider (a) state regulation and stability problem; (b) state/output tracking
performance evaluation; (c) the output feedback MPC case; (d) rate MPC formulation;
(e) non-Gaussian uncertainty characteristics for the uncertainties. A detailed analysis of
closed-loop properties is also presented.

• In Chapter 4, we direct our attention towards more challenging type of uncertainties, the
plant-model mismatch for linear systems case, which is also called as multiplicative (in
state-space representation) uncertainty. The robust counterpart problem for plant-model
mismatch case is formulated for linear systems with time-varying or time-invariant un-
certain effects. Similar to the previous case a detailed analysis of closed-loop properties
is addressed. Since the resulting nominal MPC problem lacks some desirable numerical
properties, we provide two heuristic MPC formulations, with observed behaviour similar
to the true moment-based MPC formulation.

• In Chapter 5, we expand our discussion on moment-based predictive control approach
towards the robust reformulation of the uncertain constraints. We treat different classes
of constraint functions that are commonly used in MPC applications, such as bound con-
straints on states or control actions, or zone (polytopic) type of constraints on outputs.
We discuss the effect of uncertainties with an unbounded domain on the (probabilistically
satisfied) recursive feasibility property of MPC controlled system.

• The second theme of this dissertation starts with Chapter 6 which is on the development
of a dynamical simulation model to be used in model-based applications for an industrial
whey protein separation plant. We start our discussion on whey protein separation process
by addressing the modelling problem for the UF membrane process. To keep the resulting
model simple enough for real-time operations while providing crucial latent information

15In this chapter, we do not yet consider constrained MPC problems.
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of the process that is not easily accessible, we develop a grey-box model for UF mem-
branes with the help of research group in FrieslandCampina Wageningen and industrial
data provided by FrieslandCampina Workum groups. Furthermore, we make use of this
UF membrane model for offline analysis of the process itself. First, we compare differ-
ent operating strategies to demonstrate that the optimal operation (in the sense of longest
batch time) of membranes is achieved when all of the membranes are kept operational all
throughout the batch, with an even distribution among membranes of filtration to reach
specifications. Secondly, we turn our attention to soft-sensing and sensor configuration
problem, in which we make use of data obtained from numerous simulations to select the
measurement channels to cast the process under investigation observable and/or identifi-
able.

• Chapter 7 addresses the problem of online model-based applications for the UF membrane
process. Using the developed simulation model, we implement observers and controllers
that are crucial for high-efficiency operations. First, we demonstrate the effectiveness of
selected sensor channels and compare different filter design techniques, such as extended
Kalman filter or moving horizon estimation (MHE) based filters. Then we move towards
the low-level control design and construct different control techniques for UF membrane
system. We compare PID based control methods designed in different controller structures
with the MPC based controllers. Since the membrane processes are inherently (semi-
)batch hence dynamic, we show that high-efficiency operation can be achieved by operat-
ing the membranes in different pressure levels. Lastly, we incorporate a learning scheme
into the control loop, in order to further eliminate the possible effects of modeling issues
and persistent disturbances across the batches that deteriorate the closed-loop performance.

• In Chapter 8 we return to the full scale whey protein separation plant by the presenting our
results for safe scheduling of the UOs within the process. We demonstrate an efficient way
of formulating safe indefinite or steering schedules for a generic plant with interconnected
processes.

• We finalize the dissertation with Chapter 9 which contains the reflections on the theoretical
or practical results and future research suggestions on the topics within this thesis.
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Chapter 2

Risk-aware Model Predictive Control in Lit-
erature

To understand the future to the point of being
able to predict it, you need to incorporate
elements from the future itself.

Nassim Nicholas Taleb - Black Swan

We start the technical content of this dissertation with presenting a generic MPC prob-
lem, introducing the common ways of incorporating and quantifying the uncertainty in MPC
problems and stating the different methods to find the robust counterpart problem in Sec-
tion 2.1. Section 2.2.1 discusses the robust MPC methods and contributions that are intro-
duced with deterministic treatment of uncertainty, either worst-case or uncertainty budget
approaches. The stochastic MPC approaches towards uncertain dynamics are discussed in
Section 2.2.2. We present the moment, probabilistic and randomized MPC contributions
and show the possibility of incorporating the theory of risk into the MPC setting. The ef-
fectiveness (closed-loop performance) of the methods from literature are demonstrated by
means of simulation examples in Section 2.2.3.

2.1 A Short Introduction on Risk-aware Model Predictive Control Prob-
lem

Model predictive control (MPC) technology is a mature research field developed over four
decades both in industry and academia addressing the question of (practical) optimal con-
trol of dynamical systems under process constraints and economic incentives. Its popularity
is mainly attributed to two significant properties of MPC algorithms; first one is the (ex-
plicit) constraint handling capabilities while providing (sub-)optimal operation, see, e.g.,
[199, 237, 240]; and the second superiority is the ease of extending the algorithms to multi-

0Substantial content of this chapter is also published or presented in ‘M.B. Saltik, L. Özkan, J.H.A. Ludlage,
S. Weiland and P.M.J. Van den Hof. An Outlook on Robust Model Predictive Control Algorithms: Reflections on
Performance and Computational Aspects.’
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input multi-output (MIMO) systems. Many different approaches were developed, such as;
Model Algorithmic Control in 1978 ([307]), with finite impulse response models, Dynamic
Matrix Control in 1980 ([97]), with step response models, Generalized Predictive Control
in 1987 ([91]), with transfer function models. Lately, MPC methods developed by consider-
ing the state-space models have become the standard way of formulating predictive control
problems. Throughout the different algorithms, however, the essence of predictive control
is the same and can be stated as, [301], optimizing over manipulated inputs to control the
forecasts of future process behaviour. Stated rigorously, [242, 250], MPC is a form of con-
trol in which the current control action is obtained by solving, at each decision instant, a
finite (or infinite) horizon open-loop optimal control problem. In this technique an optimal
control sequence is obtained by using the current state of the plant as the initial state of the
plant and the first control in this sequence is applied to the plant, while at the next decision
instant the whole procedure is repeated.

The process of selecting an optimal control action can be summarized in two distinct
steps ([229, 230]),

i) shaping the beliefs of future output performances (forecasts);

ii) the choice of to-be-applied control action as a function of these forecasts.

A general approach to obtain output forecasts is through dynamic models describing the
process behaviour. During the initial development of MPC, empirical linear input-output
models were utilized. If the operating window is relatively small, such models are proved
to be sufficient. However, if the operating conditions vary drastically, e.g., batch processes,
then nonlinear models should be used, which effects the complexity of the MPC problem1.
In either case the developed models will be far from perfect; leading to mismatch between
the forecasts and the true behaviour. As a result, the commissioned MPC controllers are
kept non-operational frequently due to the model deterioration or lack of maintenance of
the model, ([7]). It is both natural and logical to include the effect of (modeled) uncertainty
into the prediction model, hence into the optimal control action2. However, uncertainty
also radically effects the optimal control actions in closed-loop predictions, casting them to
become pessimistic (or aggressive), hence the resulting performance levels are also effected
([33]).

A well established way to overcome or reduce the effects of uncertainty is by apply-
ing feedback techniques. In many instances, robust control theory ([100]) provides suffi-
cient tools for achieving robust operation. However, this design choice often leads to over-
utilization of the available resources as it might not be necessary to execute a pessimistic
control law at each time instant. For industrial applications, especially in process control
industry where economic concerns are directly effecting the operation decisions, the pes-
simistic control methods are in general rejected and robustness is achieved in an ad-hoc
manner ([236]). In recent years, a huge effort has been put in developing computationally

1Here we do not consider the difficult questions of how and at which complexity level the process model should
be constructed. We refer the interested reader to [101, 102] as introductory discussion on modelling the uncertain
behaviour.

2In different words, selecting a control action on the basis of the nominal forecasts leads to undesired operation
due to definite dispersion from the expectations in the controlled variables.
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efficient (or tractable) and less pessimistic (or adjustable) robust optimization tools that have
parameter ambiguity and stochastic uncertainties within the formulation of the optimization
(equivalently MPC) problems ([128]).

It is important to distinguish three different robustness aspects of MPC algorithms in the
way of treating uncertain effects,

1. robust feasibility,

2. robust stability,

3. robust (closed-loop) performance.

The robust feasibility is about the constraint satisfaction in the face of uncertainty, while
the robust stability is tracked via the cost function through Lyapunov based stability argu-
ments. We have a considerable understanding on robust constraint satisfaction or robust
stability while the interplay between the uncertainty and the closed-loop performance is yet
to be rigorously analyzed. Although there exist some methods to synthesize predictive con-
trollers that operate in a computationally acceptable way ([180]), many of the current robust
MPC methods lead to computationally challenging optimization problems, while causing
unacceptable levels of performance deterioration. The performance deterioration, or even
the total absence of performance, due to overly conservative methods is causing a gap be-
tween academic works and industrial implementations. High performance is achieved if
the uncertain effects are compensated when it is required, while robustness requirements
demand to act in a pre-emptive manner. Hence incorporating only the necessary uncertain
process predictions into the control action by incorporating risk management techniques is
of great interest for predictive control applications.

Combining robust control and predictive control regarding the robust constraint satisfac-
tion, stability and performance aspects with quantitative guarantees is still an open problem.
There are a multitude of techniques, detailed in the next sections, to reshape robust MPC
(RMPC) (or similarly stochastic MPC (SMPC)) problems. The main dilemma is due to the
open-loop nature of predictions, leading to loss of incorporation of future uncertainty into
the control actions. Dynamic programming (DP) techniques provide a way out of this prob-
lem, however the curse of dimensionality, specifically for moderate or large-scale systems
or uncertainty spaces, drastically effects the computational aspects, see [207].

Another important point regarding the industrial acceptance of RMPC algorithms is the
computational aspect. It is a requirement that RMPC problems should be consisting of
relatively simple and reliable algorithms resulting in desired performance levels of industrial
needs ([236]). In the case of industrial implementation, the algorithms should be ([132]);

• easy to interpret and interact by the operator with sufficiently large amount of information
on controlled variables and/or constraint violation risks, ([126]);

• relatively simple to solve computationally in repeated fashion, since the industrial plat-
forms are generally not tailored for highly complex and efficient numerical algorithms.

The RMPC techniques developed within the academic practice are severely lacking both of
these properties, ([235]). Hence, it is no surprising that RMPC has not found applicability
in process industry. Then, we set the goal of this chapter as;
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• a comprehensive review, discussion and classification of the current RMPC formulations
in literature and signify the connections with risk theory and robust optimization research
areas;

• a comparison of these formulations regarding their closed loop performance and computa-
tional load.

2.1.1 Notation for Robust MPC Problems

The field of reals and sets of nonnegative reals, integers and nonnegative integers are de-
noted by R, R≥0, Z, Z≥0, respectively. For a vector x ∈ Rn×1 (or in short x ∈ Rn),
x⊤ denotes the transpose of that vector. A sequence of vectors xi ∈ Rn, until (time) index
k, is defined as x⊤[0,k] :=

[
x⊤0 x⊤1 x⊤2 . . . x⊤k

]
∈ Rn(k+1). For a (time) sequence

of vectors x[0,t], xi|k denotes the (predicted) vector xk+i for i, k, t ∈ Z≥0 and k + i ≤ t.
Furthermore, x[a,b]|k denotes the sequence of vectors x[k+a,k+b].

For normed vector spaces, || · ||p denotes the standard p−norm in Rn. The unit ball in
Rn corresponding to the p−norm is denoted with Bn

p := {x ∈ Rn| ||x||p ≤ 1}. If p is not
explicitly specified then || · || is taken as the Euclidean norm || · ||2, i.e., ∥ · ∥ = ∥ · ∥2.

The spectral radius of a matrix A, i.e., ρ(A), is defined as ρ(A) := maxi |λi(A)|, where
λi is the ith eigenvalue of matrix A. The identity matrix, with dimension n× n, is denoted
by In. The Kronecker product of matrices A ∈ Rm1×n1 and B ∈ Rm2×n2 is defined from
the weighted block matrix concatenation

A⊗B =

 A(1,1)B . . . A(1,n1)B
...

. . .
...

A(m1,1)B . . . A(m1,n1)B

 ,
or element-wise defined as

A⊗B(m2(k1−1)+k2,n2(l1−1)+l2) = A(k1,l1)B(k2,l2),

where (i, j)th element of matrix A is denoted with A(i,j).
Given two sets in a vector space X , Y ⊆ Rn, the Minkowski sum of these sets is defined

by
X ⊕ Y = {x+ y ∈ Rn| x ∈ X , y ∈ Y},

while the Pontryagin difference of these two sets, assuming X ⊂ Y ,

Y ⊖ X = {y ∈ Y| y + x ∈ Y, x ∈ X}.

For stochastic variables, we assume that there is an underlying probability space (Rnζ ,F ,P)
equipped with the event space Rnζ , the σ−algebra F defined over the Borel sets of Rnζ and
well defined probability measure P : PRnζ → [0, 1], where PRnζ is the power set of Rnζ ,
see [42, 267] for rigorous treatment of probability spaces. Here, for brevity of discussion,
we assume that there is no measurability issues with the stochastic variables evolving over
dynamics and used operators. We denote the probability of a random variable w̃ ∈ R to take
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values between
¯
w and w̄ as P{

¯
w ≤ w̃ ≤ w̄}, which is equal to the integral of the probability

density function (pdf), fw̃(w), over the interval [
¯
w, w̄], i.e.,

P{
¯
w ≤ w̃ ≤ w̄} =

w̄∫
¯
w

fw̃(w)dw,

while for the multi-dimensional case, w̃ ∈ Rnζ , nζ ≥ 1, the probability is defined over
multiple integrals over the considered region W̄ . Lastly the mean, the variance, the mo-
ment of order n and the covariance matrix of random variables x̃ and ỹ are denoted with
µx̃, σ

2
x̃, E{x̃n}, Σx̃,ỹ , respectively.

2.1.2 Dynamical Systems and Optimization Based Control

In this work, we detail our discussion on robust MPC for discrete-time linear uncertain
systems, denoted with Σ, together with its nominal counterpart Σnom.

Σ :

{
xk+1 = A(δk)xk +B(δk)uk + Fwk,
yk = C(δk)xk +D(δk)uk + vk,

Σnom :

{
x̄k+1 = A0x̄k +B0uk,
ȳk = C0x̄k +D0uk,

(2.1)

where xk (or x̄k) ∈ Rn, and uk ∈ Rnu , and yk (or ȳk) ∈ Rny are the uncertain (or nom-
inal) state, the control input and the uncertain (or nominal) output at discrete time instant
k ∈ Z≥0, respectively. The plant Σ is subject to three types of uncertainties denoted by
δk ∈ ∆ ⊆ Rnδ , wk ∈ W ⊆ Rnw and vk ∈ V ⊆ Rnv for k ∈ Z≥0. These uncertainties
are either the model uncertainties or the disturbances effecting the state and output equation
and can take values from bounded sets, i.e., wk ∈ W for k ∈ Z≥0, or they can be stochastic
vector sequences with known pdfs, e.g., fw̃k

(wk) : P
Rnw → Ror they can be depending on

the instantaneous values states xk or inputs uk implicitly, e.g., δk(xk, uk), see [292]. The
matrices A(δk), B(δk), C(δk), for all δk realizations, are real matrices with dimensions
Rn×n, Rn×nu , Rny×n, respectively. We assume that the uncertain and the nominal sys-
tems Σ and Σnom are stabilizable and observable, see [160]. We use ζk for all uncertain
variables, i.e., ζ⊤k =

[
δ⊤k w⊤

k v⊤k
]
. The ith-step prediction of the state at the kth time

instant is denoted with xi|k which, by Equation (2.1), depends on the initial point xk, the
system dynamics Σ, the exogenous inputs u[0,i−1]|k, w[0,i−1]|k and the internal uncertainties
δ[0,i−1]|k.

Here we consider that the system is subject to hard or soft state (or output) and hard
input constraints3. The constraints are represented here as inequalities,

cij(xj|k, uj|k, ζj|k, yj|k) ≤0, for j ∈ Z[0,Np−1], for i ∈ Z[1,Nj
c ]
, (2.2)

where Np denotes the prediction horizon of the MPC controller and N j
c is the number of

constraints for the time step j. In general these constraints are much more explicit, such
as set (or zone) membership constraints, i.e., xj|k ∈ Xj|k ⊆ Rn, uj|k ∈ Uk ⊆ Rnu .

3The reason for allowing state (or output) constraints to be soft is that these constraints are in general perfor-
mance requirements while the input constraints are induced from actuator limitations.
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The computational complexity of the MPC problem is highly dependent on the prediction
horizon (Np), the total number of constraintsNc :=

∑
j N

j
c and the convexity properties of

the constraints cij(·), hence each of them effect the resulting closed-loop performance and
computational properties of the MPC algorithm.

We cast two distinct MPC problems for systems Σ and Σnom, denoted with P(k) and
P̄(k), respectively, at time k ∈ Z≥0. The mismatch between the solutions (or the resulting
trajectories) of P(k) and P̄(k) is the price paid for robustness:

P(k) :



min
u[0,Np−1]|k

Rcost(J(xk, u[0,Np−1]|k, ζ[0,Np−1]|k))

s.t. xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,
yj|k = C(δj|k)xj|k +D(δj|k)uj|k + vj|k,
Rconst(cij(xj|k, uj|k, ζj|k, yj|k)) ≤ 0,
j ∈ Z[0,Np−1], i ∈ Z[1,Nj

c ]
, x0|k = xk,

(2.3a)

P̄(k) :



min
u[0,Np−1]|k

J(x̄k, u[0,Np−1]|k, 0)

s.t. x̄j+1|k = A0x̄j|k +B0uj|k,
ȳj|k = C0x̄j|k +D0uj|k,
cij(x̄j|k, uj|k, ȳj|k) ≤ 0,
j ∈ Z[0,Np−1], i ∈ Z[1,Nj

c ]
, x̄0|k = xk,

(2.3b)

where J(·) is assumed to be the standard quadratic cost function for convenience,

J(xk, u[0,Np−1]|k, ζ[0,Np−1]|k) :=
Np−1∑
j=0

Jr(xj|k, uj|k) + Jf (xk+Np),

=
Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k,

(2.3c)
In Equation (2.3c), Jr is named as the running cost or the cost to go and Jf is the terminal
cost, i.e., [240, 241]. In P(k) we introduce a (risk) functional Rcost : J (x, u, ζ) → J̄ (x, u)
(or similarly Rconst(·) : C(x, u, ζ, y) → C̄(x, u, y) ), which is mapping an uncertain func-
tion J to a deterministic function J̄ which is the robust counterpart of the cost function (J )
(equivalently for the constraints (C)). For linear systems, due to possible parametrization,
there are easy ways for expressing the robust counterparts of cost and constraint functions,
i.e., Rcost(J) or Rconst(cij), which is not true for nonlinear system dynamics.

The RMPC problems are dealing with robust stabilization of the system Σ while satis-
fying the constraints cij(·) in a risk-aware manner, by solving P(k). It is expected from
a robust predictive controller to adjust the average performance levels versus the constraint
violation possibility. Consider the hypothetical scenario of operating a process close to a
constrain as depicted in Figure 2.1. Then the distance from the constraint boundary, i.e.,
qc, to operating point 1 (O.P.1) or O.P.2, i.e., d1 and d2 is a nominal performance metric.
Furthermore the inherent standard deviation in operating conditions σOP1 or σOP2 are the
relevant to the robustness of the operation, as the controller suppresses the dispersion from
O.P.2, then the nominal operation can be pushed towards the constraint, such as operating
at O.P.1 on average. Lastly, as also mentioned in [226], nonlinear predictive control tech-
niques can be preferred to control the process, since some uncertainty realizations are not
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σ1
σ2

O.P.1
O.P.2

E{JOP1}
E{JOP2}

d1 d2

J(x, u∗)

−∇uJ(x, u
∗)

State

D
en
si
ty

fx(x
∗
1(u

∗
1, ζ)) fx(x

∗
2(u

∗
2, ζ))

qc

Figure 2.1: Selection of the steady state operating point.
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Figure 2.2: Steering in between two operating points.

necessarily adversary, instead many realizations are pushing the operation to the desired di-
rection in input-state-output space. For the case of transitions between two operating points
as depicted in Figure 2.2, the time window that the servo action to achieve its goals versus
the robust constraint satisfaction is another robustness metric. As the controller becomes
more aggressive, which is expected to decrease the transition time, the spread of possible
trajectories in general grows considerably4, i.e., for r1(t), t ∈ R[0,t1f ]

and r2(t), t ∈ R[0,t2f ]
,

in general one satisfies t1f ≤ t2f only if r1(t′) ≥ r2(t
′), for t′ ∈ t̄, t̄ = min(t1f , t

2
f ).

Regarding the robust stability property, three meta-approaches are used in the literature,
[242], to achieve guaranteed stability. These approaches are;
(i) designing an MPC controller for the nominal system by neglecting uncertainty and
achieving robustness in an ad-hoc manner. This approach has close connections with the
certainty equivalence reasoning where the uncertainty realizations are assumed to be equal
to the mean value over the prediction stages;
(ii) considering some (or all) of the possible realizations in the uncertainty set to generate

4In Section 2.2.3 we implement various robust MPC techniques for a batch reactor and a CSTR system in
simulation environment to compare the closed-loop performance metrics such as the ones mentioned here.
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the possible trajectories and cast the system to be robust with respect to all of these realiza-
tions;
(iii) solving the closed-loop MPC problem through using a dynamic feedback over the pre-
dictions. This case eventually leads to a dynamic programming problem ([23]) which is the
most promising case from the perspective of robustness however the computational demand
to solve the associated problem increases exponentially, so much that, this approach is not
valid for many of the real world examples ([246]).

In the case of the first approach, the uncertain variables are replaced with fixed instances
of them thus we handle a (simpler) nominal MPC problem, however, the effect of other real-
izations are not taken into account, hence no provisions of risk are taken. This leads to pos-
sibly frequent and highly effective constraint violations or instability5. Furthermore one can
make use of the larger MPC problems (with more constraints or scenarios) since nominal
MPC problems are computationally simpler than the cases where uncertainties are present.
To compensate for the effects of the uncertainty, one can incorporate some realizations of
uncertainty into the predictions, case (ii). However, an undesired effect of this choice is
that it leads to poor control actions, hence poor responses, since the optimal input depends
heavily on the selected uncertainty realizations, i.e., u∗k(ζ̄

1
[0,Np−1]|k) ̸= u∗k(ζ̄

2
[0,Np−1]|k),

where u∗k(ζ̄
i
(·)) is the optimal solution of MPC problem P(k) with respect to the uncertain

variables ζ̄i[0,Np−1]|k.

2.1.3 Uncertainty Descriptions and Uncertainty Quantification

The internal model principle states that the uncertainty model should resemble the true
uncertainty effecting the system to counteract adverse effects of it. However, the complexity
to describe the uncertainty is a crucial factor on the feasibility and the practical applicability
of the RMPC algorithms.

Here we group the uncertainties as model-based (internal) uncertainties and environment
based (exogeneous) uncertainties. The mismatch between the process and the mathemati-
cal model (internal uncertainty) can be induced from, [100], unmodeled dynamics, time
varying effect in the process or changing loads, while the external uncertainties, the distur-
bance signals and the output noise, are effecting the control input, the state evolution or the
measurement signals.

Modelling the Internal Uncertainties

We classify the model mismatch possibilities as;

• Multi-model Uncertainty: Equally acceptable class of models, a countable set of models
likely to represent the true system, see [263] as an example,[

A(δ) B(δ)
C(δ) D(δ)

]
∈
{[

A(δi) B(δi)
C(δi) D(δi)

]
|δi ∈ ∆, i = 1, 2, . . . , NMM

}
. (2.4)

• Unknown-but-bounded uncertainty description: By assigning a nominal model with
describing the uncertainty set ∆ in terms of; (i) affine relations on the system matrices,

5In practice these drawbacks are suppressed by improving the prediction model, which shrinks the uncertainty
set.
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such as, for the polytopic affine uncertainties case, which is quite common in control rele-
vant literature[
A(δ) B(δ)
C(δ) D(δ)

]
∈ ∆ :=

{[
A0 B0

C0 D0

]
+

Nv∑
i=1

δi

[
Ai Bi

Ci Di

]
,
Nv∑
i=1

δi = 1, δi ≥ 0

}
,

or for the ellipsoidal affine uncertainty case, which is not commonly preferred in MPC
literature,[
A(δ) B(δ)
C(δ) D(δ)

]
∈ ∆ :=

{[
A0 B0

C0 D0

]
+

Nv∑
i=1

δi

[
Ai Bi

Ci Di

]
, (δ − δc)

⊤Qδ(δ − δc) ≤ 1,

}
,

(ii) parameteric (structured or unstructured, dynamic or static) uncertainty description,
([133]), such as

Σ :


xk+1 = A0xk +B0uk +Bδδk,
yk = C0xk,
qk = Cδxk +Dδuk,
δk = ∆qk,

where ∆ is a(n) (un-)structured, dynamic (or static) operator with norm bounds on the
(possibly time-varying) elements; (iii) uncertainty in impulse response coefficients ([30])
such as ∆h = {hk|hlk ≤ hk ≤ huk}, where yk =

∑k
τ=0 hk−τuτ , or uncertainty in

frequency response values ∆(jω) = {δ(jω) ∈ C(jω), ω ∈ [0,∞)}, where Y (jω) =
G(jω)(I + ∆(jω))U(jω) and G(jω) is the nominal transfer function. In some cases
uncertain systems modelled via the linear fractional representation (LFR) are preferred in
comparison to other uncertainty models, due to the ease of incorporation of a larger set of
possible dynamics, see the discussion in [274, 321] or [100].

• probability distribution functions for uncertainties: by assigning probabilistic infor-
mation to the parameters of uncertain models to describe the internal uncertainties. One
possible benefit of utilizing stochastic descriptions is that the models/parameters identi-
fied from data yield statistical information which is difficult to express in deterministic
uncertainty models such as the previous cases.

Modelling the External Uncertainties

External uncertainties are the unknown signals affecting the system in an exogenous way,
wk and vk vectors in Equation (2.1). We note three distinct approaches for modelling the
external uncertainty while considering only the effect of wk, since a similar reasoning is
valid also for noise vector vk.

• The uncertainties with discrete set of realizations: The uncertainties with an event space
of finite number of realizations can effect the plant exogenously, such as different load
configurations,

Σ :

{
xk+1 = Axk +Buk + Fwk,
yk = Cxk +Duk,

(2.5)

where wk ∈ W := {w1, w2, . . . , wNs}. Since the number of realizations are finite, one
can come up with all of the possible instances, called also as the scenario tree.
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• Unknown-but-bounded disturbances: Uncertainties with bounded support can also be
affecting the processes, the case for Σ in (2.5) with wk ∈ W ⊂ Rnw . In literature, these
uncertainty sets are mainly considered to be either polytopic or ellipsoidal sets, due to
the numerical properties of these set classes, see [54] for an extensive discussion on the
set-theoretic methods.

• Statistical descriptions: The distributional uncertainties can also be used instead of bounded
disturbances. In this case the uncertain state evolution can be modeled as driven by an ex-
ogenous signal that is assuming realizations from its pdf. such as the estimated (initial)
state that is deviating from the true state with a finite covariance value.

Remark 2.1.1 The uncertainty models are in general not equivalent to each other, that is
the uncertain dynamics describe different behaviours (or different processes) for different
uncertainty descriptions. This results in MPC algorithms belonging to different complexity
classes. The MPC literature is very scarce with regard to rigorous uncertainty modeling, in
general the uncertainties are not modeled at all, instead uncertainty descriptions are taken
as a given.

2.1.4 Reformulating the MPC Problem as the Robust Counterpart Problem

One can distinguish three different sources of uncertain predictions in MPC problems; i)
wrong initial condition estimation due to measurement noise or lack of sensors measuring
all of the states; ii) perturbations to the dynamics; iii) plant-prediction model mismatch. In
any source of uncertainty, the state predictions result in a collection of trajectories (with or
without stochastic properties). To incorporate possible prediction errors to the MPC for-
mulation, one needs to apply a risk mapping (Rcost or Rconst in Equation (2.3a)) to the
functions of uncertain state, i.e., the cost and constraint functions. There are five different
common approaches to map an uncertain optimization problem, which are shown in Figure
2.3. The resulting MPC problem, and hence the control law, differs according to the used

Uncertain MPC
Problem

Worst-case
Methods

Moment Probabilistic
Methods

Scenario

Methods
Methods

Certainty
Equivalence

Deterministic
Approaches

Stochastic
Approaches

Uncertainty
Budget Based

Theory
of Risk

Figure 2.3: Commonly used projection techniques for uncertain optimization problems, in
particular RMPC.

risk mapping. These risk mappings re-shape the feasible area of the optimization problem,
in general drastically tightening it, see Figure 2.4 for the worst case, the probabilistic and
the moment-based cases, but also the selected method effects the computational complex-
ity properties of the robust counterpart problem. We summarize the effects of these risk
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Figure 2.4: The operating point space and various forms of mapping the uncertainty to a
deterministic counterpart.

mapping methods in Table 2.1, where the computational complexity of the nominal MPC
problem is denoted with O(P̄), the uncertain constraint (w.l.o.g. the cost) function with
c(xj|k, uj|k, yj|k, ζj|k) ≤ 0 or simply c(ζ) ≤ 0, the functions mapping the uncertain con-
straints to robust counterparts with Ri, where i is the indicator of the respective mapping,
the probability of satisfying the constraint with P{c(ζ) ≤ 0}; ‘coherent’ corresponds to the
risk function Ri being a coherent risk metric, implying a convex, monotonic and closed
mapping, see [10] for the rigorous definition of coherence. All of the techniques result in
a trade-off between various aspects, the constraint satisfaction guarantees, the resulting risk
aversity, the computational complexity and the effort to model the uncertainty set. In the
robust MPC literature, a rigorous discussion encompassing all aspects of the risk mappings
in Table 2.1 is missing, even for the linear systems case.

Some of these techniques are already well studied, such as the worst-case or the scenario
based approach, leading to many survey articles and books available in literature, see Table
2.2. Furthermore, we mention two topics that are closely related to the RMPC research
topic, the contributions from the robust optimization and the (asymmetric) risk metrics re-
search areas.
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Approach
Uncertainty and
Risk Function

Constraint
Guarantees

Risk Aversity
Computational

Complexity
Modelling

Uncertainty

Scenario
Based

Approach

Nominal
PCE

RCE : c(ζ) → c(ζ̄),

ζ̄ = E{ζ}
Coherent

No guarantees
Optimistic
Risk-loving

O(PCE) = O(P̄)
Easy

Calculate E{ζ}

Randomized
Prand

Rrand : c(ζ) → c(ζ̄s),

s = 1, . . . , Ns

Coherent

Probabilistic
guarantees

P{c(ζ) ≤ 0} ≥ β(Ns)

with prob. 1− ϵ(Ns)

Risk Decision
Select Ns

As Ns ≫ 1

Pessimistic

O(Prand) ≈ NiO(P̄)

Parallelizable

Easy

Generate
scenario tree

Worst Case
Based

Approach

Full Set
PWC

RWC : c(ζ) → max
ζ∈∆

c(ζ),

Coherent
P{c(ζ) ≤ 0} = 1

Highly
pessimistic

O(PWC) ≫ O(P̄)

Reformulations
exist

Difficult

All possible
realizations

Uncertainty
Budget Set
PBWC

RBWC : c(ζ) → max
ζ∈∆̄

c(ζ),

Coherent

P{c(ζ) ≤ 0} = αBWC(∆̄)

lim
∆̄→∆

αBWC → 1

Risk Decision
Select ∆̄

As ∆̄ → ∆

Pessimistic

O(PBWC) ≫ O(P̄)

Reformulations
exist

Easy

Select
realizations

Moment
Based

Approach

Mean
PM

RM : c(ζ) → E{c(ζ)},
Coherent

P{c(ζ) ≤ 0} = αM

αM depends on c(·)
Optimistic
Risk-loving

(Online)
O(PM ) = O(P̄)

(Offline)
O(E{c(·)})

Easy

Convergent
with samples

Mean
Variance
PMV

RMV : c(ζ) → fMV (c(·), ζ)
fMV (·) = E{c(ζ)}+ λvD{c(ζ)},

Not coherent
Not monotonic

P{c(ζ) ≤ 0} = αMV

lim
λv→∞

αMV → 1

Risk Decision
Select λv

As λv ≫ 1

Pessimistic

(Online)
O(PMV ) = O(P̄)

(Offline)
O(E{c(·)},D{c(·)})

Easy

Convergent
with samples

Probabilistic
Approach

PCC

RCC : c(ζ) → qαCC (c(ζ)),

Not coherent
Not convex

P{c(ζ) ≤ 0} = αCC

Risk Decision
Select αCC

As αCC → 1

Pessimistic

(Online)
O(PCC) ≫ O(P̄)

(Offline)
Calculate

P{c(ζ) ≤ 0}

Difficult

Calculate
true pdf of ζ,

and propogate ζ

Table 2.1: Common approaches and properties of projecting an uncertain MPC problem to
a robust counterpart MPC problem.

Nominal MPC Robust MPC Stochastic MPC
Practical Aspects

Industrial Applications
Robust Optimization Theory of Risk

Surveys
[132, 235, 242, 250, 301]

[30, 129, 206]

[207, 236, 242, 250, 301]
[30, 129, 132, 133, 235]

[206]
[235, 236, 246] [290], [306], [288], [289] [128], [43] [128], [43], [314], [308], [319]

Books
[226], [123], [69], [145], [197],

[302], [5, 187], [188], [135]
[226], [123], [69], [145], [197],

[302], [5], [188]
[123], [197], [188] [226], [123], [69], [5], [135] [33] [33]

Table 2.2: Surveys and books on MPC with robustness properties.

2.2 Literature Review on Robust Formulations of MPC Problems with
Uncertain Elements

2.2.1 Deterministic Approaches to Uncertain Effects in MPC Problems

In this section, we, first, introduce the worst case (also called as the min-max) MPC ap-
proach, then we discuss the uncertainty budgets and their relation with MPC. Lastly, we
present and classify contributions from MPC with deterministic robustness properties.

The worst-case (WC) optimization approach can be summarized with the following three
distinct statements;

• The control action is calculated either in a “here-and-now" fashion, the uncertainty reveals
itself after the control decisions are made, or “wait-and-see" fashion, the control action is
decided after some of the uncertain variables reveal themselves to the decision maker.

• The decisions are made for, and only for, a known/decided subset of the uncertainty. If
the whole (true) uncertainty set, say ∆, is taken, then we call it the worst case MPC (WC-
MPC), else, if a strict subset is taken into account ∆̄ ⊂ ∆, then we name it the budgeted
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worst case MPC (BWC-MPC).

• Any realization from the uncertainty set can not violate the constraints or destabilize the
closed-loop system.

All of these statements are highly effective on the resulting control action and introduces
the high pessimism in closed-loop response. This is due to the fact that the true trajectories
of the system and predicted, but highly unlikely, set of trajectories deviate from each other,
see Figure 2.5. Allowing the designer to decide on the set of uncertainty realizations, i.e.,
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Figure 2.5: Fan of trajectories and the conservative worst-case bounds on the trajectories,
for the discrete time integrator system effected by additive uncertainty with bounds [−1, 1],
inspired from [46].

∆̄, might eventually improve the closed-loop performance. By actively selecting the set of
uncertainties, one can quantitatively discuss the trade-off of incorporating a larger set of
uncertainty versus adjusting the operating point.

In many cases WC-MPC problems are generally presented with here-and-now strategy
and full uncertainty set case ([22]). The inherent pessimism within the construction is dif-
ficult to avoid, which leads to a tremendous effort in incorporating closed-loop predictions
into the RMPC algorithms and computational problems. To reduce the pessimism, one can
allow the control actions to be parameterized as function of future uncertainties or cast them
as control policies, the wait-and-see formulation. Once the uncertainty set is decided and
the control law structure (sequence or policies) is selected, then the distinction between dif-
ferent min-max MPC techniques depends on how the stability and constraint satisfaction
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are guaranteed. Various methods are proposed in the literature which we group in Figure
2.6.

(B)WC-MPC Methods

BWC-MPCWC-MPC

Constraint satisfaction
Lyapunov (LMIs - Bound max

ζ∈∆
Jk)

Tube/Reachability (Set theory)

Lipschitz bounds


Same

techniqes
apply for
different
set ∆i


Control sequences u∗k

Control laws F ∗k
F.Gains uk = F ∗kxk

Control seq. v∗k, F
∗
k

F. Gain uk = v∗k + F ∗kwk

Optimize over:

Splines u∗k =
Ns∑
i=1

αiφi(xk)

Policies u∗k = π(xk)

Uncertainty Set:
Additive
Polytopic
Parametric
Unstructured (norm)
Estimation Error
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Min-max MPC
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RPI with local controller
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Nominal State

Positive invariance
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Np step Admissible states

Figure 2.6: Diagram visualizing the commonly used techniques for WC-MPC methods,
with the approaches utilized for achieving robust constraint satisfaction or stability.

One example of WC-MPC problems is given as in PWC ,

PWC :



min
u[0,Np−1]|k

max
ζ[0,Np−1]|k

Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k,

s.t. xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,
yj|k = C(δj|k)xj|k +D(δj|k)uj|k + vj|k,
cij(xj|k, uj|k, ζj|k, yj|k) ≤ 0, ∀ζ[0,j]|k ∈ ∆[0,j]|k,

ζ⊤j|k =
[
δ⊤j|k w⊤

j|k v⊤j|k

]
∈ ∆j|k,

i = 1, . . . , N j
c , j = 0, . . . , Np − 1, x0|k = xk,

(2.6)
hence the risk mappings Rcost and Rconst are selected as

Rcost
WC(J) = max

ζ∈∆
J(ζ), Rconst

WC (cij) = max
ζ∈∆

cij(ζ).

46



2.2. Literature Review on Robust Formulations of MPC Problems with Uncertain
Elements

Here two important aspects of risk mappings R(·) are striking, (i) one minimizes the worst
case cost and (ii) the constraints cij(·) should be satisfied for all realizations of ζ[0,j]|k. From
these points and regarding the closed-loop performance, the min-max-MPC formulation is;

• leading to excessive backing-off from the nominally optimal operating point, since the con-
straints are forced to be satisfied for all uncertainty realizations within the prediction hori-
zon. This results in a shrinking feasible set of control actions, see Table 2.1. Furthermore
the min-max MPC algorithms are highly fragile to uncertainties with outlier realizations
or unstable dynamics;

• deteriorating the average control performance. The worst-case cost is not a good represen-
tative of the true performance measure, in general, since

u∗k(argmin
u

max
ζ∈∆

J(ζ)) ̸= u∗k(argmin
u

R(J(ζ))),

where R(·) is a risk mapping other than worst case method with full set of uncertainty, see
Table 2.1.

From the computational point of view, the main difficulty is the inner maximization
step (for the cost function) or the satisfaction of constraints for all realizations, leading to
semi-infinite constraints for uncertainties with continuous domains. For convex problems,
the constraint satisfaction is relatively well discussed in literature ([62]). The tube-based
MPC is introduced into the RMPC (and later to SMPC) area by incorporating reachability
analysis. For guaranteeing robust stability the stability conditions should be assured while
guaranteeing the constraint satisfaction after the prediction horizon and bounded gains from
the uncertain effects. A common technique to establish robust stability is to; 1) use a robust
positively invariant (RPI) set, i.e., a set XRPI satisfying the invariance property over time
iterations;

x ∈ XRPI → f(x, u, ζ) ∈ XRPI , x ∈ XRPI , ∃u ∈ U , ∀ζ ∈ ∆,

where f(x, u, ζ) is the dynamics of the considered system6; 2) construct a (locally contin-
uous) Lyapunov function (inside the RPI set) that is sufficiently decreasing after each step.
This approach is then further investigated within the input-to-state-stability (ISS) reasoning.

Remark 2.2.1 The invariant sets play a crucial role in MPC problems and here we mention
some important contributions on the area of invariant set calculations. In [196], authors
present the construction of minimal invariant sets for linear systems with additive external
uncertainties. A comprehensive treatment on the invariant sets of dynamical systems is also
conducted in [182]. The paper [3] investigates the polytopic invariant set approximations
from the ellipsoidal invariant sets for nonlinear systems effected by parametric uncertainties
and exogenous inputs7. The wrapping effect, the phenomena observed when sets are over-
approximated with simpler (to parametrize) sets, severely affects the invariant sets’ size over

6The set XRPI is computationally difficult to find for large-scale nonlinear processes.
7In here we skip the detailed discussion on the calculation of invariant sets for dynamical systems affected by

additive or multiplicative uncertainties. However the interested reader is referred to [181, 293] and also [54] for
further information on the set-theoretic methods in control theory applications.
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the approximation iterations. One effective treatment of this issue is discussed in [194],
through the use of zonotopes.

For the min-max MPC methods there are well-established approaches and numerical
methods that exist in the literature to overcome known drawbacks. In the next section, we
discuss briefly two approaches that stem from original min-max MPC approach, the input-
to-state MPC and tube based MPC techniques.

Input-to-state stability and RMPC

The notion of input-to-state stability ([337]) is frequently used to establish robust stabil-
ity properties of uncertain (generally nonlinear) systems. One can make use of the ISS-
Lyapunov functions to guarantee robust stability under continuity conditions on dynamics
and/or the cost function. For the case of constrained problems, the constraints should also
be tightened to account for the uncertain effects. Here we present the case by using explicit
(but generally theoretical) Lipschitz bounds on the uncertain trajectories, summarized from
[232]. Consider a nonlinear system with additive uncertainty, expressed with its nominal
counterpart as

Σ :

{
xk+1 = f(xk, uk, ζk),
yk = h(xk, uk, ζk),

Σnom :

{
x̄k+1 = f̄(x̄k, uk),
ȳk = h̄(x̄k, uk),

(2.7)

with ζk ∈ ∆. Now assume that there exists a Lipschitz gain Lf for the nominal system, i.e.,

||f̄(x̄1, κ(x̄1))− f̄(x̄2, κ(x̄2))||p ≤ Lf ||x̄1 − x̄2||p

holds for all x̄1, x̄2 inside the region of interest X and κ(x̄) is an admissible control law. If
the uncertainties are bounded, i.e., ζk ∈ ∆ ⊆ γBp(0), for all k ∈ Z≥0, then the predictions
of the true state xj|k can be encapsulated inside a cone defined through the Lipschitz gain
Lf , γ and x̄0|k = xk which is an overapproximation of the reachable set. We denote the
upper bounds as γjLf ,γ

Bp(0), where γjLf ,γ
is the calculated upper bound. Then, tighten the

constraints with this bound as X̄j|k := X⊖γjLf ,γ
Bp(0). Under some technical properties on

the dynamics and cost function, the optimal solution u∗k of PISS (Equation (2.8)) steers the
state into the XTer, guarantees recursive feasibility, and robustly stabilizes the closed-loop
system,

PISS :


min

u[0,Np−1]|k

Np−1∑
j=0

x̄⊤j|kQx̄j|k + u⊤j|kRuj|k + x̄⊤Np|kQf x̄Np|k,

s.t. x̄j+1|k = f̄(x̄j|k, uj|k),
x̄j|k ∈ X̄j|k, uj|k = κ(x̄j|k) ∈ U, x̄Np|k ∈ XTer

j = 0, . . . , Np − 1, x̄0|k = xk,

(2.8)

Performance wise, by construction, the Lipschitz constant cased bounds, i.e., γjLf
for

j ∈ [1, Np], can be overly conservative, causing over-tightening of the constraints, which
potentially leads to infeasibilities or poor average performances. Computationally it is not
clear whether the computational load is due to the requirements of ISS-MPC (tightening or
Lipschitz bound calculation steps) or naturally induced from the nonlinearities of the plant.
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Tube Based RMPC

The tube-based MPC is another WC-MPC approach based on the reachability analysis. The
interesting observation of tube-based MPC is the separation of the robustness problem from
the MPC problem. Consider the nonlinear system Σ and the nominal counterpart as in
Equation (2.7). The idea is to keep the true state xk close to the nominal state x̄k over time
instants k ∈ Z≥0, while controlling the nominal state x̄k into a RPI set XTer at time k+Np.
For this purpose (although not necessary) with a “low-level" controllerK, the control signal
is constructed as uk = ūk +K(xk − x̄k), where the K(xk − x̄k) term attenuates the effect
of the uncertainties. The tube is then all the possible values of the mismatch xj|k − x̄j|k.
Hence by subtracting the tube from the original constraints, the tightened constraints are
found. Controlling the nominal state (the center of the tube) within the tightened constraint
sets guarantees that the true state trajectory is inside the (true) constraint sets, while with
several technical but common conditions on nominal MPC, the robust stability follows. A
tube-MPC problem can be stated as follows;

Ptube :


min

ū[0,Np−1]|k

Np−1∑
j=0

x̄⊤j|kQx̄j|k + ū⊤j|kRūj|k + x̄⊤Np|kQf x̄Np|k,

s.t. x̄j+1|k = Ax̄j|k +Būj|k,
x̄j|k ∈ X̄j|k, ūj|k ∈ Ūj|k, x̄Np|k ∈ X̄Ter|k,
j = 1, . . . , Np − 1, x̄0|k = xk

(2.9)

with the standard stability conditions on the terminal set X̄Ter|k, the terminal cost Qf and
the terminal controllerKf , which is not necessarily equal to the low-level controllerK. The
tightened constraints X̄j|k, X̄Ter|k, Ūj|k are calculated by following a three-step procedure;

i) Computation of reachable states from the initial state xk with the plant dynamics for
the prediction horizon as

X[1,Np]|k :=
[
X1|k . . . XNp|k

]
, (2.10a)

Xi|k := {x′|x′ = f(x′′, u, ζ), u ∈ U, ζ ∈ ∆, x′′ ∈ Xi−1|k}, (2.10b)

with X0|k := {xk};
ii) Calculation of the tightened constraint sets by

X̄[1,Np−1]|k := X⊖X[1,Np−1]|k, U[1,Np−1]|k := KX[1,Np−1]|k,
X̄Ter|k := XTer ⊖XNp|k, Ū[1,Np−1]|k := U⊖ U[1,Np−1]|k,

(2.10c)

where X and U are the original constraint sets.
iii) Solution of the MPC problem Ptube, from which one applies the first control signal

to the nominal system while applying the control signal uk = ūk + K(xk − x̄k) to the
uncertain plant.

Performance-wise, if no precompensator, K, is used, since the reachable state sets are
equivalent, the tube-MPC is equivalent with the min-max MPC. However a well-defined
feedback structure with K causes the deviations to be suppressed between the nominal and
the true state within the predictions and hence results in a tube diameter which is much
smaller in comparison to the K = 0 case. This is expected to increase the closed-loop
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performance by allowing the MPC controller act on top of the controller K. On the other
hand one important drawback of tube based MPC with controller structure is the shrinking
input constraint set due to the compensation action K(xk − x̄k). If the compensator is
aggressive to suppress the deviation (xk − x̄k), then the input constraints are tightened
substantially, which can be so much that the feasible input set becomes an empty set.

Computationally, if one considers only the MPC problem, then it is simplified since
we solve an nominal MPC problem. However tube-MPC approach contains (i) complex
set-based operations, Minkowski sums (for reachable set calculations) and Pontryagin dif-
ferences (for constraint tightening step), and (ii) calculation of a prestabilizing controller
K for the process. Two major issues are inherent to set-based operations, (a) the memory
requirement for expressing the n-step reachable sets grow quite fast (and approximations
induce further conservativeness), (b) the effect of dimensionality, for medium to large sized
systems (say more than 100 states), for the mentioned set operations are leading to numeri-
cal problems, even in the simplest forms of sets, see [127] for a discussion.

Remark 2.2.2 Affine State or Disturbance Feedback Structures: An important develop-
ment in the RMPC area is using low level controllers K within the optimization step. In
parallel to this observation, one might seek to optimize the state feedback controller K at
each time step on top of optimizing over control actions ū[0,Np−1]|k, i.e.,

uj|k = ūj|k +

j∑
i=0

Kj,i|kxi|k.

However the resulting MPC problem in ūj|k and Kj,i is shown to be non-convex, hence
leads to suboptimality or computational issues. The remarkable extension comes via ad-
justable robust optimization (ARO) approach, leading to convex RMPC problems with affine
disturbance feedback structures, ([139]),

uj|k = ūj|k +

j∑
i=0

Kj,i|kwi.

Price of Robustness, Uncertainty Budgets and RMPC Problems

In recent years, the robust optimization (RO) techniques, e.g., ([33], [128]), highlight one
crucial question relevant also in the robust control area, “what is the corresponding perfor-
mance deterioration with respect to the uncertainty set?". Here we name this aspect as the
uncertainty budgets for robustness. Now consider the approach as in the worst-case MPC
reasoning, but replace the uncertainty set ∆ with a subset of it, say ∆̄. For an uncertain
optimization problem PWC(∆) that is feasible under ∆, then for any subset of the true
uncertainty set, i.e., ∆̄ ⊆ ∆, the problem PBWC(∆̄) remains feasible and the performance
w.r.t. cost function is non-decreasing. Furthermore, since the selected set ∆̄ is directly
effecting the resulting control action, i.e.,

u∗ = argmin
u

max
ζ∈∆̄

(J(xk, u, ζ)) = argmin
u

Rcost
BWC(J(xk, u, ζ)),
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one can actively design an uncertainty set to which a RMPC is synthesized with desired
performance properties, while providing robustness against ∆̄, see Table 2.1. With this
construction one can circumvent the pessimism problems or give quantitative measures on
the robustness to the uncertainty with unbounded distributions, [33], hence increasing the
degree of freedom of the designer.

A generic RMPC example with uncertainty budgets can be stated as follows,

PBWC :



min
ū[0,Np−1]|k

max
ζ[0,Np−1]|k

Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k,

st. xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,
yj|k = C(δj|k)xj|k +D(δj|k)uj|k + vj|k,
cij(xj , uj , ζj , yj|k) ≤ 0, ∀ζj|k ∈ ∆̄j|k,
i = 1, . . . , N j

c , j = 0, . . . , Np − 1, x0|k = xk,
(2.11)

where ∆̄ is adjusting the trade-off between guaranteed robustness versus closed-loop per-
formance (risk-aversion), [44]. The associated risk mappings are defined as

Rcost
BWC(J) = max

ζ∈∆̄
J(ζ), Rconst

BWC(cij) = max
ζ∈∆̄

cij(ζ).

The computational complexity of PBWC problem is still challenging, similar to the PWC

problem, the min-max (saddle) nature of the problem is still effective. For generic convex
uncertain optimization problems, the robust counterparts are in general intractable, while for
some uncertainty classes the robustified problems remain convex, hence tractable ([218],
[43]). For examples from literature, we refer to [34] for the robust convex optimization
problems, [116] for the robust least squares problems, [117] for the robust semidefinite
programming problems, [35] for the robust linear programming problems, [36] for the ro-
bustified quadratic programming or the robust conic programming problems, and lastly [45]
for the approximations of the robust conic programming problems.

Contributions from RMPC Literature

In this section we present and classify various contributions in RMPC literature. One group
of the earliest works done in close association with WC-MPC problems is the ‘pursuit-
evasion problems’, i.e., [41, 131, 282, 368], closely related to the developments in the opti-
mal control theory. However, the first works conducted strictly in receding horizon fashion
was [22, 248, 377] and [209]; where both [248] and [22] elegantly present the WC-MPC
problem for nonlinear and DAE systems, respectively, and [209] focuses on the frequency
domain robust performance measures. The article [327] constructs the robust stability proof
quite similar to the standard stability arguments for the nominal MPC problems. Another
milestone contribution for guaranteeing robust stability property is [185] which uses linear
matrix inequalities (LMIs) in RMPC problems for polytopic or parametric internal uncer-
tainties through overbounding the cost function and using positive invariance arguments for
the constraints on the future trajectory. Later, specifically for nonlinear systems, input-to-
state stability (ISS) arguments are introduced for WC-MPC in [232]. A two-level (some-
times, though incorrectly, called as the closed-loop MPC) controller approach is presented
in [86] which consists of a MPC and an H∞ controller. Constructing a low-level controller
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(precompansator) on top of a MPC lead to WC-MPC with disturbance feedback control
structure [138] and tube based MPC approach, [199]. Lastly we mention the min-max MPC
constructions with cost functions cast as linear norms such as [6, 72, 73] and more recently
[29] while [313] provides a nice discussion on linear programming in MPC domain.

In Table 2.3 we distinguish publications in RMPC area with respect to; underlying sys-
tem class (linearity), type of uncertainties, the high-level approach (min-max, ISS, tube),
control parameterization, how the constraints are robustified and lastly the complexity of
simulation examples provided in these publications. To comment on some observations on

System Dynamics and
Control Implementation

Linear Nonlinear
State Feedback Output Feedback

The majority of the papers

[240], [241], [209], [220], [221],
[222], [367] [363], [311], [361],

[264],

State Feedback Output Feedback
[237], [22], [232], [248], [86],

[233], [203], [277], [292], [200]
[201], [291], [1], [178], [74],

[239], [219], [370], [247], [238]

[370], [340], [81],

Uncertainty types

Additive External Polytopic or Parametric Internal Dynamic Internal
State Estimation

Measurement Noise
Multi-model and

Linearization
[199], [237], [240], [180], [241],
[22], [232], [139], [248], [327],
[138], [29], [361], [233], [203],

[277], [292], [200], [201], [291],
[1], [239], [219], [370], [238],
[340], [81], [137], [28], [217],

[179], [351], [173], [315], [243],
[298], [293], [295], [297], [296],

[190], [355], [136],

[22], [248], [185], [29], [367]
[363], [311], [233], [203], [292],
[200], [201], [291], [1], [219],
[370], [340], [28], [111], [364],

[365], [279], [278], [208], [186],
[107], [265],

[86], [220], [221], [222], [80],
[176],

[240], [241], [209], [247], [340], [263], [264], [74],

High-level Approach

Min-max Cost overbounds ISS Tube Other
[180], [327], [248], [22], [29],

[367], [292], [200], [201], [178],
[28], [217], [173], [111], [208],

[107], [265],

[263], [185], [220], [221], [222],
[363], [311], [264], [291], [1],

[364], [365], [279], [80], [176],
[98]

[232], [139], [203], [277], [292],
[370], [247], [340], [137], [315],

[355], [136], [186],

[199], [237], [240], [241], [361]
[74], [238], [243], [298], [293],

[295], [297], [296], [190], [341],

[209], [86], [219], [351]

Control Parameterization

Control Sequence Stabilizing Feedback Gains Affine Disturbance Feedback Parameterization Control Policy
[199], [237], [22], [232], [248],
[327], [86], [29], [361], [292],

[74], [219], [370], [247], [238],
[340], [28], [351], [173], [315],

[243], [298], [293], [186], [341],

[263], [185], [220], [221], [222],
[367], [363], [311], [264], [364],

[365], [279], [80], [175], [98],

[180], [139], [178], [137], [295],
[297], [296], [190], [136],

[138], [200], [201], [291], [111],
[341]

Robust Constraints

Constraint Tightening
via Tube

Constraint Tightening
via Lipschitz Bound

Positive Invariance and LMIs
Admissible Sets
Explicit Solution

[199], [237], [240], [241], [361],
[74], [238], [243], [298], [293],

[295], [297], [296], [190], [341],

[22], [232], [248], [86], [1]
[178], [355], [186],

[263], [327], [185], [221], [222],
[367], [363], [219], [351], [364],

[279], [176], [98],

[180], [138], [29], [233], [203],
[277], [200], [201], [291], [370],
[247], [340], [137], [28], [173],

[111], [107], [265], [315], [136],

Complexity of simulation example

No example 1-2 State 3-4 State 5 or more states
[22], [138], [233], [203], [200]

[291], [178], [219], [137],
[136], [279],

[199], [240], [180], [241], [263],
[232], [209] [327], [185], [86],
[29], [367], [363], [361], [264],

[277], [292], [201], [1], [74],
[370], [247], [238], [28], [173],

[315], [243], [293], [295], [297],
[296], [190], [355], [111], [279],
[186], [107], [265], [341], [294],

[237], [209], [185], [29], [220],
[221], [222], [367], [363], [311],
[81], [217], [364], [80], [176],

[98],

[264], [74], [340], [81], [351],

Table 2.3: An overview of RMPC approaches, via a group of selected papers.

the Table 2.3, due to the various contributions from output feedback structure and nonlin-
ear systems domains, the current effort is directed towards practical implementations with
various complexity reduction formulations. Similarly in many contributions the attention
has been directed towards disturbance rejection properties (additive external uncertainties),
while the polytopic internal uncertainty case has been treated (mainly) with LMI based
techniques. The dynamic uncertainty and the effect of estimator in the loop (the initial
condition mismatch case) is still lacking a detailed treatment. The ISS and the tube based
RMPC approaches offer various solution strategies by decreasing the complexity back to the
nominal MPC problem (with additional computationally complex operations) and the affine
disturbance feedback parametrization lead to a huge reduction in the pessimism, while the
sub-optimality should be further discussed in comparison to the policy based approaches.
Lastly constraint tightening methods operate in coherence with the ISS and tube based ap-
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proaches, while calculation of these sets (or approximations) is still to be mastered, which
necessitates using highly complex (or realistic) examples to observe the drawbacks of the
proposed techniques and convince the practitioners.

Although not in the RMPC area, but min-max based methods are also used in MPC
design for i) LPV systems, [223, 268], ii) game-theoretic approaches, [94, 95], iii) decen-
tralized or distributed control, [170], iv) (robust) estimation, [169], v) energy-consumption
and smart-communication, [37]. Similarly due to the highly structured construction of MPC
problems, multi-parametric programming approaches ([2]) were utilized for RMPC prob-
lems also. The article [29] constructs the robustly invariant set of an uncertain linear sys-
tem with polytopic uncertainties for explicit RMPC purposes which is then extended by
[173, 186, 315] and [180]. In [340], one of the first applications of explicit RMPC for a
linearized system, solving the estimation and robust control problem for a batch polymer-
ization process, is presented.

2.2.2 Stochastic Approaches to Uncertain Effects in MPC Problems

The second direction in establishing robustness properties of the closed-loop systems is
by considering the uncertainties as stochastic variables, see, e.g., [24] or [40] as two main
contributions.

In the early days of predictive control, within the GPC approach ([90, 91]) the stochas-
tic optimization problem is transformed into a deterministic optimization problem by the
expectation operator on the cost function, E{J(xk, u, ζ)}. Similarly, we distinguish the ap-
proaches to SMPC problems with respect to the treatment of stochastic variables, how the
uncertain functions are mapped to deterministic counterparts. There are three inherently
different methods to reformulate stochastic cost and constraint functions as deterministic
functions;

1. Considering the moments of the functions through the expectation operators.

2. Considering probabilistic (chance) constraints on the functions, utilizing known pdfs,

3. Considering finite number of uncertainty scenarios and casting the RMPC problem w.r.t.
these scenarios.

Throughout this section, we assume that each realization of the uncertain variables is inde-
pendent from another, with known pdf for each variable wk, vk, δk for k ∈ Z≥0.

Moment-based MPC Problems

The moment-based optimization is possibly the most frequently used methodology in op-
timization problems with stochastic elements due to its relatively easy modeling and low
complexity implementation, see Table 2.1. The (centralized) moments provide inherent sta-
tistical information, such as the mean, variance, skewness or kurtosis which indicate the
average magnitude, the spread, the asymmetry or the fat-tailedness of the predicted trajec-
tories, all of which are desired to be controlled.

In the moment-based approach, one maps the uncertain optimization problem by consid-
ering (linear combinations of) the (centralized) moments of the cost and the constraint func-
tions. The expectation of uncertain functions can be easily and analytically expressed for
several classes of random variables, which reduces the computational need, while providing
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a realistic performance measure ([250]). In its simplest form of mean MPC (M-MPC), one
evaluates the mean of the cost and constraints as,

PM :



min
u[0,Np−1]|k

E

{
Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k

}
,

st. xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,
yj|k = C(δj|k)xj|k +D(δj|k)vj|k,
E{cij(xj|k, uj|k, ζj|k, yj|k)} ≤ 0,
i = 1, . . . , N j

c , j = 0, . . . , Np, x0|k = xk,

(2.12)

hence
Rcost

M (J(ζ) := Eζ{J(ζ)}, Rconst
M (cij(ζ)) := Eζ{cij(ζ)}.

Performance-wise one needs to distinguish an aspect of M-MPC, for robust constraint sat-
isfaction, the effect of uncertainty in constraints of PM is disregarded by the expectation
operator. This does not imply any quantitative robustness guarantees for some realizations
of uncertainty, see Table 2.1. To improve the robust constraint satisfaction properties, one
can introduce variance terms, which indicates the spread of the uncertainty realizations and
effectively backs off the operating point such that the constraints are satisfied with a higher
probability. This MPC formulation is called here as the mean-variance MPC (MV-MPC)
and an example is given in Equation (2.13),

PMV :



min
u[0,Np−1]|k

E
{
J(xj|k, uj|k, ζj|k)

}
+ λ0D

{
J(xj|k, uj|k, ζj|k)

}
st. xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,

yj|k = C(δj|k)xj|k +D(δj|k)uj|k + vj|k,
E{cij(xj|k, uj|k, ζj|k) + λi,jD{cij(xj|k, uj|k, ζj|k)} ≤ 0,
i = 1, . . . , Ncji

, j = 0, . . . , Np, x0|k = xk,

(2.13)
where D{·} is the variance operator and λi,j (also λ0) are positive weights, related to the
risk aversion of the designer. This yields the risk mappings

Rcost
MV (J(ζ) := Eζ{J(ζ)}+ λ0Dζ{J(ζ)},

Rconst
MV (cij(ζ)) := Eζ{cij(ζ)}+ λi,jDζ{cij(ζ)}.

Regarding the performance aspects, ([50]), through including the D{·} term into the cost
function, one introduces the effect of uncertainty in the control actions, as λ0 gets larger,
the controller acts to reduce the spread of the cost function. For robust constraint satisfac-
tion, which depends on the weights λi,j , the resulting operating point is backed off, as the
feasible set is tightened by increasing λi,j or D{·}. If λi,j are large then the constraints are
tightened substantially, hence allowing many realizations of ζ to occur without violating the
constraints. However guaranteeing constraint satisfaction with certainty is not possible upto
a large value of λi,j for bounded domain ζ, see Table 2.1.

Yet another aspect is the asymmetry in the distribution functions of the constraints or
cost. The deviation-measure term on the cost or constraint functions (here taken as the vari-
ance) is not necessarily distinguishing the ‘good’ and ‘bad’ realizations of the uncertainty,
see Figure 2.1. Some realizations are steering the operation out of the feasible region, called
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as the ‘bad’ realizations, while some realizations push the operating point further inside the
constrained region, called as the ‘good’ realizations (the good-bad aspect reverses, in gen-
eral, from the performance point of view). If the risk-neutral approach i.e. the symmetric
evaluation of uncertainty realizations, such as the variance, is taken, then the control perfor-
mance might reduce for a longer (skewness) or fatter (kurtosis) ‘good’ realization tail, see
also [10, 88].

Computationally, moment-based MPC problems are divided into two distinct phases.
During the offline phase the moments of the cost and constraint functions are calculated (or
approximated through histograms) and during the online stage an uncertainty-free (compu-
tationally equivalent to the nominal) MPC problem is solved. Expressions of the moments
E{J(·)} (or E{cij(·)}) or D{J(·)} (or D{cij(·)}) are easily obtained for linear systems,
while for nonlinear systems computationally cheap methods exists, see [339, 347] or Table
2.1.

Probabilistic Approaches to MPC Problems

The second approach to transform SMPC problems is using the probabilistic constraints,
also called as the chance constraints, leading to chance-constrained MPC (CC-MPC) for-
mulation. In this setting, one finds the control actions to reduce the frequency of constraint
violations according to predefined probability levels αij , see [82] and also Table 2.1. This
provide quantitative ways of selecting the reliability of constraint satisfaction, an additional
degree of freedom to reduce the conservatism induced by robustness. In the limiting case,
satisfying a constraint with certainty is equivalent to min-max formulation. However if one
allows a sufficiently small margin of not satisfying the constraints (for the infrequent tail
events), this tolerance can improve the closed-loop performance a lot while the system is
robustified against frequently observed realizations. One possible CC-MPC problem can be
provided as

PCC :



min
u[0,Np−1]|k,γ

γ

st. P

{
Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k ≤ γ

}
≥ α0

xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,
yj|k = C(δj|k)xj|k +D(δj|k)vj|k,
P{cij(xj|k, uj|k, ζj|k, yj|k) ≤ 0} ≥ αij ,
i = 1, . . . , Ncji

, j = 0, . . . , Np, x0|k = xk.

(2.14)
In this case the associated risk mappings Rcost

CC and Rconst
CC are defined as

Rcost
CC (J(ζ) := P

{
Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k ≤ γ

}
≥ α0,

Rconst
CC (cij(ζ)) := P{cij(xj|k, uj|k, ζj|k, yj|k) ≤ 0} ≥ αij .

Closed-loop performance aspects of CC-MPC is yet to be established rigorously, though
improvements in closed-loop performance compared to WC-MPC are already reported in
the literature ([8]). Regarding the constraint satisfaction, the violation margins αij deter-
mine exactly the allowed frequency of violations. The correlations between the constraints,
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if the constraints are to be satisfied jointly, i.e.,

P
{
cij(xj|k, uj|k, ζj|k) ≤ 0, i = 1, . . . , N j

c , j = 0, . . . , Np

}
≥ α,

is generally a source of conservatism. For using the individual constraints, the compu-
tationally efficient case, the approximations of the joint constraints are required. These
approximation methods are heuristic and generally highly conservative. See [255] or [383]
for the exactness of these relaxations.

The robust stability aspect is slightly vague in comparison to the WC-MPC formulations.
In literature, researchers se;ect, in general, a moment-based cost function with chance con-
straints. The main problem is establishing the stochastic stability within the MPC context,
while the implications of employing a specific stability approach is still open to discussion8.

The possible reduction in conservatism comes with a price. In general the chance con-
straints are non-convex functions, see Table 2.1, hence computational problems should be
expected. Furthermore it is an inherently difficult task to optimize w.r.t the joint pdfs of un-
certain functions, since the probability levels after propagation of pdf through the dynamics
and the gradients of constraints over these pdfs are required to be calculated. This induces
severe computational problems for nonlinear dynamical systems. Another point is related
to the modeling aspect of the uncertainties. Modeling the exact pdf of the uncertain effect is
an impossible task, while in PCC one necessarily assumes this information. To overcome
this drawback, some methods are introduced to guarantee robustness with respect to a class
of pdfs, [32], instead of only one pdf.

Randomized or Scenario Based MPC

Sampling the uncertainty space and conducting the optimization problem with respect to
the selected realizations is a recently appreciated technique in MPC domain for solving
uncertain optimization problems ([70]), also see the Monte Carlo sampling methods ([303,
329]). Although providing increasingly good approximating solutions to the WC-MPC
problem, due to the requirement of ‘excessive’ number of scenarios, the scenario based
methods were not popular until recently in the MPC community.

Similar to previous methods, the randomized MPC techniques consists of two steps,
constructing (or sampling) the uncertain space and establishing robustness properties of
MPC towards them. By extracting (or generating) a number of scenarios, one samples the
uncertain space. This replaces the uncertainties with deterministic values for which the
MPC problem can be robustified systematically and easily. A great effort has been directed
to a-priori guarantees (for convex problems) and a-posterior guarantees on the probability
levels of constraint satisfaction for all uncertainties through the finitely many generated
scenarios, see Table 2.1.

8For an elegant discussion on various different formulations of stochastic stability, we refer to [191].
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Here we construct the randomized MPC, for the worst case formulation, as

PrWC :



min
u[0,Np−1|k,γ

γ,

st. xsj+1|k = A(δsj|k)x
s
j|k +B(δsj|k)uj|k + Fws

j|k,

ysj|k = C(δsj|k)xj|k +D(δsj|k)v
s
j|k,

Np−1∑
j=0

(xsj|k)
⊤Qxsj|k + u⊤j|kRuj|k + (xsNp|k)

⊤QxsNp|k ≤ γ,

cij(x
s
j|k, uj|k, ζ

s
j|k, y

s
j|k) ≤ 0,

i = 1, . . . , N j
c , j = 0, . . . , Np, s = 1, . . . , Ns, x

s
0|k = xk,

(2.15)
where s ∈ Z[1,Ns] is the index running over the selected samples of uncertainty ζsj|k for
j ∈ Z[0,Np] and Ns is the total number of scenarios. Here the risk mappings are taken as

Rcost
rand(J(ζ)) :=

Np−1∑
j=0

(xsj|k)
⊤Qxsj|k + u⊤j|kRuj|k + (xsNp|k)

⊤QxsNp|k,

Rconst
rand (cij(ζ)) := ci(x

s
j|k, uj|k, ζ

s
j|k, y

s
j|k) ≤ 0, s = 1, . . . , Ns.

This problem both guarantees the robustness w.r.t. Ns selected scenarios and provides a
probabilistic bound on the violation of constraints for unconsidered scenarios, i.e.,

P(PrWC , ϵ) := P{P{ci(xj|k, u∗j|k, ζj|k) ≥ 0, ζ ∈ ∆, i = 0, 1, . . . , Nci , j = 0, . . . , Np} > ϵ}.

The ϵ−constraint violation probability P(PrWC , ϵ) is bounded from above and below as,
[66],

(1− ϵ)Ns ≤ P(PrWC , ϵ) ≤ β(Ns, ϵ), (2.16)

where the upper bound β(Ns, ϵ) is a random variable with the Bernoulli distribution, i.e.;

β(Ns, ϵ) :=

Ns−1∑
j=0

(
Ns

j

)
ϵj(1− ϵ)Ns−j .

In this formulation β(Ns, ϵ) is the design parameter to set the probability of constraint
violation, ϵ. For small values of β(Ns, ϵ), Ns has a logarithmic growth and as Ns gets
larger β(ϵ) tends to zero.

Relatively recently in [71], the scenario based optimization formulation is also discussed
in the context of non-convex problems and also reducing the conservatism in the provided
violation probability bounds β, with similar discussion also reported in [141, 148, 379]. One
remarkable extension that scenario based approach provides is the relatively easy incorpora-
tion of various type of uncertainties effecting the dynamical system. Once the scenarios are
constructed, the problem PrWC in Equation (2.15) becomes a nominal MPC problem, with
a large number of constraints, increasing the applicability with the current solvers, see Table
2.1. Furthermore, similar to the randomized worst case approach ([65]), one can cast the
chance constrained MPC problems in randomized fashion ([323]), where the randomized
MPC problem has a similar structure.
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Risk and Deviation Metrics

The so-called coherent risk measures are raising considerable attention in operations re-
search and in economics communities, while incorporation into SMPC is already reported
in [88]. Following the previous SMPC constructions, one can observe that; (i) in the mo-
ment MPC, the constraints in PM or PMV are formulated from risk-natural metrics, not
considering asymmetries of the pdfs of constraint functions, hence leading to a possible
performance decrease; (ii) the chance constraints are computationally difficult to calculate,
due to the non-convexity properties. The use of various other reformulations being devel-
oped in the risk theory area, such as semi-deviations or conditional expectations, which can
improve both the closed-loop performance and the computational aspects of the resulting
SMPC problem.

In [309], the equivalence between chance constraints and a risk indicator, the notion of
value at risk (VaR), is established. The VaRα(cij(ζ)) is defined, for a risk level of α as

V aRα(cij(ζ)) := min{γ ∈ R|P{cij(ζ) > γ} ≤ 1− α}.

The VaR values consider one side of the (cost or constraint) pdf, so they are not risk-neutral.
Same authors have shown that the conditional VaR (CVaR), also called as integrated chance
constraints, are behaving far better than the VaR constraints in the optimization problems
since; (i) the feasible set is convex, see [39], and (ii) the CVaR values are relatively easy to
calculate through scenarios. The α-level CVaR of an uncertain function cij(ζ) is defined as,

CVaRα(cij(ζ)) :=
1

1− α

1∫
1−α

VaRβ(cij(ζ))dβ.

In [309], the authors provide different algorithms for expressing CVaR. One drawback is
that integrated chance constraints are more conservative than chance constraint formula-
tions, since CVaRα(cij(ζ)) ≥ VaRα(cij(ζ)) for the positive tail of the pdf, see Figure 2.7.
However this implies that the constraint satisfaction guarantees for CVaRα(cij(ζ)) are also
valid for the chance constraints (VaR constraints) with the violation level of α. Similar to
replacing the chance constraints (or moment formulations) with integrated chance (CVaR)
constrains, one can make use of other risk or deviation measures such as a re-formulation
of PMV ,

PRisk :



min
u[0,Np−1]|k

Ẽ
{
J(xj|k, uj|k, ζj|k)

}
+ λ0D̃

{
J(xj|k, uj|k, ζj|k)

}
st. xj+1|k = A(δj|k)xj|k +B(δj|k)uj|k + Fwj|k,

yj|k = C(δj|k)xj|k +D(δj|k)vj|k,

Ẽ{ci(xj|k, uj|k, ζj|k, yj|k) + λi,jD̃{ci(xj|k, uj|k, ζj|k, yj|k)} ≤ 0,
i = 1, . . . , Nci , j = 0, . . . , Np,

(2.17)
where Ẽ{·} and D̃{·} are generalized risk metric and generalized deviation metric, respec-
tively, instead of expectation or variance operators. Rigorous definitions of generalized risk
and deviation metrics are provided in [308, 310], while some examples of these metrics
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Figure 2.7: Various risk and deviation metrics, taken from [319].

from the literature can be given as,

Entropic VaR: EV aRα := min
γ

{
γ ∈ R>0|

ln(
Mζ(γ)

1−α )

γ

}
,

Semideviations: σ2
+ := E

{
max{ζ − E{ζ}, 0}2

}
,

σ2
− := E

{
max{E{ζ} − ζ, 0}2

}
,

Maximum Deviations: ρ+ := max
ζ
ζ − E{ζ},

ρ− := max
ζ

E{ζ} − ζ,

Mean Absolute Deviation: MAD(ζ) :=
∫
Ξ

|ζ − E{ζ}|dζ.

(2.18)

Contributions From SMPC Literature

In this section, we present and classify various relevant entries from the SMPC literature.
Similar to the WC-MPC case and following a similar classification with [246], in Table 2.4
we distinguish the publications with respect to the underlying system class (linearity), type
of uncertainties effecting the dynamics, how uncertainties are treated or integrated, control
parameterization, how the robust counterparts of constraints are expressed and lastly the
complexity of simulation examples provided in these papers.

As mentioned above, the extensions of SMPC methods to nonlinear systems are difficult
to achieve, since moments (for PM or PMV ) and pdf calculations (for PCC) are quite
difficult to evaluate. Scenario based methods dominate the cases where it is difficult to
obtain the pdfs to treat the uncertainty in the optimization problems. Lastly how constraints
should be treated and, similar to the RMPC case, the closed-loop performance aspects to
practical examples are still yet to be investigated further.

Next we point out some specific contributions outside of the SMPC research area. The
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System Dynamics and
Control Implementation

Linear Nonlinear
State Feedback Output Feedback

The majority of the papers [355], [275], [150], [326], [211],
[356], [18], [163]

State Feedback Output Feedback
[369], [53], [93], [134], [31],
[371], [228], [85], [52], [177]

[357],

Uncertainty types

Additive External Multiplicative External Multiplicative Time invariant
[50], [323], [275], [150], [356],
[18], [163], [93], [371], [228],

[52], [177], [357], [184], [162],
[84], [284], [20], [51], [262],

[89], [227], [119], [121], [144],
[76], [183], [380], [378], [324],
[110], [27], [260], [360], [259],

[155], [75]

[88], [369], [93], [134], [31],
[85], [52], [177], [121], [27],

[122], [153], [68], [67], [124],
[287], [38], [108]

[326], [210], [92]

Uncertainty Treatment

Integration/Expectation Scenario Probabilistic Other
[275], [150], [326], [211], [356],

[18], [369], [85], [184], [162],
[84], [284], [51], [262], [89],

[227], [119], [121], [144], [76],
[183], [360], [259], [155], [122],

[287], [92], [120],

[50], [88], [71], [141], [148],
[323], [18], [53], [93], [134],
[31], [52], [177], [357], [380],
[378], [324], [27], [153], [68],

[67], [38], [108],

[228] [371], [20], [260], [19],

Control Parameterization

Control Sequence
Affine Disturbance

Feedback Parameterization
Control Policy

[50], [211], [18], [369], [53],
[93], [31], [371], [228], [52],

[177], [51], [262], [144], [380],
[378], [110], [155], [153], [68],

[67], [38], [108],

[323], [356], [163], [357], [184],
[84], [284], [227], [119], [121],
[76], [183], [380], [378], [27],

[260], [360], [259], [75], [122],
[287], [376], [189], [120], [124],

[275], [150], [18], [163], [134],
[85], [20], [324], [19],

Constraints

Chance Constraints
via Relaxations

Chance Constraints
via Moments

Worst Case Constraints
via Samples

Chance Constraints
via Samples

Other

[323], [184], [89], [227], [119],
[144], [260], [360], [155], [122],

[124], [287], [120],

[326], [211], [369], [53], [357],
[262], [89], [360], [75], [189],

[93], [284], [380], [110], [153],
[67],

[50], [51], [378], [324], [68]
[108],

[88], [275], [150], [356], [18],
[163], [134], [31], [371], [228],

[85], [162], [84], [20], [183],
[27], [38], [92], [19],

Complexity of simulation example

No example 1-2 State 3-4 State 5 or more states
[356], [53], [85], [155] [50], [88], [323], [275], [150],

[369], [228], [177], [184], [84],
[20], [51], [227], [121], [76],

[183], [110], [27], [259], [75],
[122], [153], [68], [67], [124],
[287], [38], [108], [120], [19],

[376], [189],

[163], [93], [371], [262], [119],
[380], [378], [360], [92],

[326], [211], [52], [357], [284],
[89], [144], [324],

Table 2.4: An overview of SMPC approaches, via a group of selected papers.

expectation and/or variance of the cost functions are discussed in [158, 253, 286, 314] with
or without chance constraints. The chance constrained programming (CCP) approach is pri-
marily discussed in [83] and [285]. The CCP algorithms gather attention for optimal design
or operation problems also, see [8, 9, 17] for an elegant discussion and implementation con-
sidering nonlinear chemical systems. One of the large-scale implementations for SMPC is
presented in [144] which, uniquely, considers a linear DAE system with chance constraints.

The randomized algorithms are discussed in depth in [348] or [71, 148]. In order to fur-
ther improve the bounds or decrease the numberNs of scenarios, one can refine the selection
method to sample scenarios, which is not discussed here. One such method is presented in
[281], other than the well known techniques such as Latin hypercube or Metropolis-Hastings
sampling methods ([8]). Furthermore, scenario based MPC is used for linear parameter
varying systems in [324], for a vehicle scheduling study in [134], for finance and econo-
metrics areas in [27, 31, 159], for electricity grids in [152], and lastly for the automotive
industry in [110].

2.2.3 Simulation Examples Comparing Different Robust MPC Formulations

In this section, we implement the robust and stochastic MPC algorithms detailed in previous
sections to compare their closed-loop and computational performances. The examples are
selected mainly from literature, to show the effect of different risk mappings. The first
example considers a batch process, where the moment and worst case based methods show
opposite behaviour. In the second example we consider an operating point change for an
CSTR system. The effect of this change is discussed for different reformulations. Last two
examples, mass-spring system and a MIMO debutanizer system, demonstrate the effect of
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tuning variables in different risk mappings.
For all of the simulation examples, the optimization routines are implemented via YALMIP

([218]), in Matlab 2015b environment on a computer with 32GB of RAM. The (averaged)
computational time, in seconds, are provided in Table 2.5 for the simulation examples. The

Mean MPC Mean-Variance MPC
Chance

Constrained
MPC

Worst-case MPC
Budgetted

Worst-case MPC

Semi-batch
Reaction

9.3904(s) 14.5054(s) - 4345.1(s) 3682.6(s)

van der Vusse
Reaction

10.6251(s) 12.7974(s) 9.6846(s) 2134.2(s) 1482.5(s)

MSD
System

7.3677(s) 7.5501(s) 7.9003(s) 20.3868(s) 19.9146(s)

Debutanizer
System

12.3937(s) 12.9231(s) 1266.6(s) 3950.8(s) 3973.6(s)

Table 2.5: Computational times for different examples

results in Table 2.5 are consistent with the theoretical expectations, see Table 2.1. The
moment-based robustness evaluations (PM and PMV ) yield much simpler optimization
problems that are solved at each iteration in comparison to the chance constrained (due to
non-convexity) and set based techniques, i.e., (budgeted) worst case (due to computational
requirements, caused either by excessive randomization or explicit maximization of cost or
constraints).

Predictive Control of a Simple Batch Reaction

In this example, we consider a simple exothermic chemical reaction, A → P. The reac-
tion is controlled through a cooling action. Cooling the reaction temperature is slowing
down the reaction rate (exothermic reaction) hence increasing the final time of the batch.
Therefore, extensive use of control is not desired. We assume that the reaction dynamics
are not known exactly and the uncertain effects are modelled as additive disturbances, with
i.i.d Gaussian characteristics (N (0, I2)). Since the purpose of this process is to finalize the
reaction as fast as possible, a batch-time minimization problem, while operating within the
allowable temperature levels, the pessimistic nature of deterministic MPC constructions can
be easily observed. We implement the mean (M), mean-variance (MV), worst-case (WC),
and budgeted-robust (BWC) MPC controllers for this example. The reaction dynamics are
taken from [256] as

ċA = −r, ċP = r,

ϱc̄Ṫ = −∆hRr +
UWAW

VR
(TC − T ) + f2w

2,

r = cAk300 exp(
E
R

(
1

300 − 1
T

)
+ f1w

1),

(2.19)

where cA is the reactant concentration, cP is the product concentration, T is the reactor
temperature and the TC is the control input, the cooling temperature. The initial values
of states are taken as x⊤0 =

[
5000 0 40

]
. The parameter values are given in Table

2.6. For the set-based methods, we consider bounded support for the uncertainty wk ⊂
W(·), k ∈ Z≥0. For WC-MPC case, the disturbances assume values from the interval
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VR = 6.28 [m3] AW = 10 [m2]
UW = 500 [W/m2/K] ϱ = 1000 [kg/m3]

c̄ = 2 [kJ/kgK] ∆hR = −105 [kJ/kmol]
E = 40000 [kJ/kmol] R = 8.314 kJ/kmolK

k300 = 0.125 [1/h]

Table 2.6: Semi-batch Reaction Parameters

WWC = [−3, 3] × [−3, 3], which is equal to 6 standard deviations. For the BWC-MPC
case the disturbance set is shrunk to WBWC = [−1, 1]× [−1, 1], since this set incorporates
many of the observed realizations already. Furthermore for the MV-MPC we set λ0 to 2.5,
which is tuned to improve the distinction from mean case, while λij , i = 1, . . . , N j

c , j =
1, . . . Np, values are set to zero, hence no constraint tightening is imposed for MV-MPC
formulation. The prediction model is set as the linearized and discretized (with sampling
time of 5 seconds) dynamics over an operating trajectory, i.e., a high level deterministic
dynamic optimization problem with the nonlinear model is solved to provide the operating
conditions which minimize the cost function

J1 =

0.75∫
0

αaca(t) + αTT
2
C(t)dt,

where ca and TC are state variables, αa = 1 and αT = 0.001 are the state and input
weighting terms in the optimization problem, respectively. The result of the high-level
optimization problem is used as the operating points, hence the linearized dynamics are
known to the MPC controllers. The prediction horizon for the MPC problem is taken as
5 time steps to discard the possible effects of linearization and mismatch in the operating
points. The optimization problem for the MPC algorithm is taken as,

min
u[0,Np−1]|k

Ri{
∑Np−1

j=0 xTj|kQxj|k + uTj|kIuj|k},

s.t. ∆xj+1|k = Aj|k∆xj|k +Bj|k∆uj|k + Fj|kwj|k,[
xk+j

uk+j

]
∈
[
X
U

]
,

where the state constraints are taken as

X := {(x1, x2, x3)| 0 ≤ x1 ≤ 5000, 0 ≤ x2 ≤ 5000,−10 ≤ x3 ≤ 350} ,

the input constraints are taken as U := {u| 0 ≤ u ≤ 100},. Lastly the weighting matrix Q
is taken as diag(1, 0, 104).

In Figure 2.8, we visualize the performance for the RMPC solutions without any distur-
bance effects, i.e., wi(t) = 0 for i = 1, 2 and t ∈ [0, tf ] where tf is the final time of the
reaction. The results indicate the structural differences between the RMPC techniques; the
min-max based techniques resulting in longer batch final times, compared to Mean-MPC
case, due to the control action cooling down the reaction not to exceed the temperature con-
straints. Totally opposite behaviour is observed in the MV-MPC case, which greatly speeds

62



2.2. Literature Review on Robust Formulations of MPC Problems with Uncertain
Elements

up the reaction. This is due to the instability of the system, the variance term dominates
the cost function, hence the controller acts aggressively to compensate the actions induced
from uncertain perturbations in prediction stages. We also provide the results for the case
where disturbances are not set to zero in Figure 2.9, which demonstrates that the reactor
temperature is kept in allowable bounds, in almost all cases. Similar to the uncertainty-
free case, WC-MPC and BWC-MPC react similar to Mean-MPC case at the start of the
simulation, but as the state constraints start to be effective, the controllers slow down the
reaction, which leads to longer total batch time compared to M-MPC case, while the MV-
MPC, again, speeds up the reaction. This behaviour leads to higher temperatures over the
reaction trajectory, in one case a violation of temperature constraint is observed. This is an
expected result since for the moment MPC formulations, the constraints are allowed to be
violated.
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Figure 2.8: The concentration and temperature profiles with RMPC controllers for distur-
bance free case.
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Figure 2.9: The concentration and temperature profiles with RMPC controllers with the
effect of disturbances.

Control of CSTR with Changing Operation Point

As a second example, we consider the van der Vusse reaction, taken from [202],

Ċa = −k1(T )Ca − k2(T )C
2
a + (Cin − Ca)u1,

Ċb = k1(T )(Ca − Cb)− Cbu1,

Ṫ = −freact + α(Tc − T ) + (Tin − T )u1,

Ṫc = β(T − Tc) + γu2,
freact = δ(k1(T )(CaHab + CbHbc) + k2(T )C

2
aHad),

(2.20)

where the states are the concentration of substance A (Ca), the concentration of substance B
(Cb), the temperature of reactor (T ) and temperature of cooling jacket (Tc). The inputs are
the flow rate to the reactor (u1) and the cooling power (u2). The parameter values are given
in Table 2.7. We construct a scenario where the known disturbances, the inflow rate Cin and
the inlet temperature Tin, are assumed to change over to a different operating point after the
first hour of the reaction. Before and after the switching we regulate the state trajectories to
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α = 30.8285 [1/h] β = 86.688 [1/h]
γ = 0.1 [K/kJ] δ = 0.3556 [Kl/kJ]

E1 = 9758.3 [ ] E2 = 8560.03[ ]
k10 = 1.287 ∗ 1012 [l/h] k20 = 9.043 ∗ 109 l/(mol*h)
hAB = 4.2 [kJ/mol] hBC = -11 [kJ/mol]
hAD = -41.85 [kJ/mol]

Table 2.7: Van der Vusse Reaction Parameters

known operating points, ρ1 and ρ2;

ρ⊤1 =
[
Cin(1) Tin(1) ueq1 (1) ueq2 (1) xeq1 (1) xeq2 (1) xeq3 (1) xeq4 (1)

]
,

=
[
5.1 104.9 4.19 −1113.5 1.2639 0.9049 109.2881 108.0037

]
,

ρ⊤2 =
[
1.1 109.9 4.19 −1113.5 0.4216 0.2530 101.6720 100.3875

]
,

(2.21)
We assume i.i.d. Gaussian additive uncertainty effecting the dynamics with covariance
matrix being equal to Σ := diag(.1, .1, 5, 5), 10% error rate for the concentration variables
and 2.5% for the temperature measurements. The cost functional is selected as quadratic
cost function with weighting terms

Q = 10 I4, R =

[
1 0
0 10−6

]
, Qf = 0.

The state and input constraints are selected as polytopes and defined by 0 ≤ x1 ≤ 1.6, 0 ≤
x2 ≤ 1.6, 80 ≤ x3 ≤ 130, 80 ≤ x4 ≤ 130, and 3 ≤ u1 ≤ 35, − 9000 ≤ u2 ≤ 0.

With these information, first we demonstrate the results obtained from the disturbance
free case, where we set the uncertainty equal to zero for all time instants, see Figure 2.10. All
robustness methods yield similar performances, since the constraints allow for a sufficiently
large operating window for the MPC controllers. If one shrinks the constraint set, first the
WC-MPC, then BWC-MPC and CC-MPC turn infeasible. Observe the change of chance
constrained MPC behaviour (green trajectories in Figure 2.10) in unstable equilibrium, op-
erating point ρ1, which leads to slow convergence and in the stable equilibrium, operating
point ρ2, which leads to fast convergence. Similar to the previous case, MV-MPC controlled
system acts slightly faster than the Mean-MPC case, while budgeting (BWC-MPC) leads
to a higher performance in comparison to the WC-MPC. Secondly we present 100 differ-
ent realizations of the trajectories of the states with different disturbance sequences, for the
RMPC controllers in Figure 2.11. Lastly we visualize histograms of state trajectories for
two time instants, the 59th minute of reaction, steady state responses before the switching
occur, and the 75th minute of the reaction demonstrating the transient behaviour after the
switching. From these histograms we observe that two distinct characteristics of different
robustness techniques. Firstly, both before and after the operating point change, the set
based robust MPCs (WC and BWC) cause unnecessarily pessimistic trajectories, while the
chance constrained MPC allows for aggressive control actions, hence drives the trajectories
towards the constraints. Secondly, the moment-based techniques yield comparable trajec-
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(c) Reaction temperature trajectories.
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(d) Cooling temperature trajectories.

Figure 2.10: The state trajectories for CSTR simulation without disturbances

tories in both operating points, indicating necessity for further research on the tuning of λ0
variable. Rigorous analysis for tuning the λ0 variable for MV MPC is left as a future study.

A Two Mass and Spring System

In this example we make use of a mass-spring system, similar to the case in [185], which
consists of two masses connected with a spring. The disturbance corrupted control action
is effective on one of the masses and the control goal is to effectively stabilize the system.
The dynamics of the process is taken as follows;

xk+1 = Axk +B(uk + wk),

A =


1 0 0.1 0
0 1 0 0.1

− K
m1

0.1 K
m1

1 0
K
m2

−0.1 K
m2

0 1

 B =


0
0

0.1 1
m1

0

 , (2.22)

where the parameters, the spring constant K and the masses m1 and m2 are taken as;
K = 1, m1 = 0.5, m2 = 2. We present two sets of solutions, the first case showing

66



2.2. Literature Review on Robust Formulations of MPC Problems with Uncertain
Elements

Time
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
on

ce
nt

ra
tio

n 
A

, x
1

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

M
MV
WC
BS
CC
Set Point

0.05 0.1 0.15 0.2 0.25

1.2
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28

1.15 1.2 1.25 1.3 1.35
0.41
0.42
0.43
0.44
0.45
0.46
0.47
0.48
0.49

(a) Concentration of component A trajecto-
ries.

Time
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
on

ce
nt

ra
tio

n 
B

, x
2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
MV
WC
BS
CC
Set Point

0.05 0.1 0.15 0.2 0.25

0.87

0.88

0.89

0.9

0.91

0.92

(b) Concentration of component B trajecto-
ries.

Time
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
ea

ct
or

 T
em

pe
ra

tu
re

, x
3

101

102

103

104

105

106

107

108

109

110

M
MV
WC
BS
CC
Set Point

(c) Reaction temperature trajectories.

Time
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
oo

lin
g 

T
em

pe
ra

tu
re

, x
4

98

100

102

104

106

108

110

M
MV
WC
BS
CC
Set Point

(d) Cooling temperature trajectories.

Figure 2.11: The state trajectories for CSTR simulation with disturbances

x
1
 Value

1.26 1.265 1.27 1.275

F
re

qu
en

cy

0

5

10

15

20

25

30
Histogram at 59min

M
MV
WC
BS
CC

x
1
 Value

0.43 0.44 0.45 0.46

F
re

qu
en

cy

0

5

10

15

20

25

30

35

40
Histogram at 75min

M
MV
WC
BS
CC

(a) Concentration of component A his-
tograms.

x
3
 Value

109.3 109.35 109.4 109.45 109.5 109.55

F
re

qu
en

cy

0

5

10

15

20

25

30
Histogram at 59min

M
MV
WC
BS
CC

x
3
 Value

101.7 101.8 101.9 102 102.1

F
re

qu
en

cy

0

5

10

15

20

25

30

35

40
Histogram at 75min

M
MV
WC
BS
CC

(b) Reaction temperature histograms.

Figure 2.12: The state (x1 and x3) histograms for CSTR simulation at two different time
instants.
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the differences between the closed-loop responses of different predictive controllers (Mean,
MV, WC and BWC), in which we skipped the CC-MPC, since the results are almost com-
parable with the other moment-based formulations. The second study demonstrates the
aggressiveness of MV-MPC for different λ0 values. In both of the simulations we have used
the same state and input weighting matrices, such as

Q = 5I4, R = I1, Qf = 0.

For the first simulation study, we make use of following state and input constraints,

X1 = {x| − 1 ≤ x1 ≤ 1.5,−1 ≤ x2 ≤ 1.5,−0.5 ≤ x3 ≤ 0.5,−0.5 ≤ x4 ≤ 0.5.} ,
U1 = {u| − 0.5 ≤ u ≤ 0.5} ,

while we initialized the state at x⊤0 =
[
0.5 1 −0.1 0.1

]
. For comparison purposes, we

force the disturbance variables to zero, while the MV-MPC controller assumes that the input
disturbance has a standard deviation of 0.15, the WC-MPC and BWC-MPC robustifies the
closed-loop system for all of the disturbance realizations between wWC

k ∈
[
−0.45 0.45

]
,

and wBWC
k ∈

[
−0.15 0.15

]
, respectively. The simulated trajectories are visualized in

Figure 2.13a. The deterministically robust MPC controllers (WC-MPC and BWC-MPC) are
almost inactive during the whole simulation, hence leading to much larger settling times in
comparison to the Mean-MPC or the MV-MPC. The second simulation study demonstrates
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Figure 2.13: Simulation results for a two mass-spring system.

the effect of tuning parameter λ0 for the MV-MPC construction. For this case we reshape
the constraints as;

X2 = {x| − 1.1 ≤ x1 ≤ 1.1,−1.1 ≤ x2 ≤ 1.1,−0.4 ≤ x3 ≤ 0.4,−0.4 ≤ x4 ≤ 0.4} ,
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U2 = {u| − 0.3 ≤ u ≤ 0.3} ,
while the λ0 value assumes values from the set {0.2, 0.4, 0.6, 0.8}. The constraints are
tightened, via the parameter λij which is set to 1 for all of the constraints. The simulated
trajectories are visualized in Figure 2.13b. For the first three values of λ0, we observe
that the responses are similar to each other, although as the parameter λ0 increases, the
control action is growing in magnitude, and hence causing slight improvements in the state
trajectories. The critical change occurs for the case of λ0 = 0.8. In this case the optimal
input signal differs from the other cases at the initial phase of the simulation, leading to
slightly faster response due to the larger effect of variance term in the MPC problem.

Debutanizer System and Budget for Uncertainty

Lastly we provide a comparison study, comparing the achievable closed-loop performances
for different uncertainty sets, on a debutanizer system. The simulation example, taken from
[311], considers a 2-input 2-output MIMO system, with the transfer function given as

G(s) =

[ −0.2949
64.02s2+61.66s+1

0.1310
854.75s2+88.03s+1

0.1287
168.25s2+15s+1

−0.1434
32s2+17.76s+1

]
, Y (s) = G(s)(U(s) +W (s)).

We first represent this transfer function in state-space from and then apply discretization
with a sampling time of 1.8 minutes. We pose hard input and output constraints on a zero
initial condition such as

Y = {y| − 1 ≤ y1 ≤ 1,−1 ≤ y2 ≤ 1, } ,

U = {u| − 15 ≤ u1 ≤ 15,−15 ≤ u2 ≤ 15} .
The goal of the process is to reach set point yi = 1, i = 1, 2, while due to the constraint,
the RMPC controllers back-off the transient trajectories and the final operating point. The
cost function is taken as a quadratic form of shifted nominal outputs (towards the desired
operating point) and inputs, with the weighting matrices taken as Q = 107I2, R = 0.1I2
and the prediction horizon set to Np = 10. We compare the responses for different selec-
tion of uncertainty sets, such as the disturbance set is set to WWC = {−50, 50}, and for the
BWC cases we scale this set with ten different values, i.e., WαBWC = α · {−50, 50}, α =
0, 1, . . . , 9, as visualized in Figure 2.14. As can be seen from the second output trajecto-
ries, the WC-MPC and BWC-MPC with budget level of 0.9W hit the tightened constraints
during the transition between t ∈ [75, 90], while for the other uncertainty sets, the MPC
controllers never reach to the tightened constraint levels for the second output. Regarding
the first output, we can observe that 0.1-BWC MPC and nominal MPC are acting exactly
same with with each other, hence meaning that Mean MPC is already providing robust oper-
ation for additive uncertainties belonging to the set W0.1BWC = [−5, 5]. Furthermore, one
can clearly observe the pessimistic results of WC or BWC MPCs with a large assumed set of
uncertain effects, since the settling value for the first output deteriorates as the α increases
in α-BWC MPC constructions.

The simulation examples studying the different robust MPC constructions introduced in
previous sections for the debutanizer system have confirmed the fact that the performance
of deterministically robust MPC approaches (WC-MPC and BWC-MPC) is overly conser-
vative and responds cautiously resulting in larger settling times in comparison to SMPC
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Figure 2.14: Differences within the closed-loop responses of Mean, WC and different
BWC-MPC controllers for different ∆̄ sets.

approaches. SPMC methods, on the other hand, have a tendency of providing aggressive
control actions leading to constraint violations in some cases.

2.3 Conclusions on the Robust Predictive Control Problems
In this chapter, we present and compare the methods used in the robust and stochastic MPC
literature. The vast literature and terminological differences between the branches of robust
and stochastic MPC necessitates extensive time and effort for an overall understanding of
the topic. This induces a divergence between industrial and academic perspectives on guar-
anteeing robust operation with MPC controllers. Here, we have discussed various MPC
paradigms from the closed-loop pessimism and required computational power perspectives.
We present the connections between the robust or risk-aware optimization and predictive
control problems, by classifying the contributions from the RMPC and SMPC literature.
Furthermore, we apply some these methods to simulation examples, to compare the com-
putational requirements and resulting closed-loop performance.

We highlight some concluding observations as;

• The nominal prediction model is the dominant factor in the induced computational com-
plexity and also the eventual closed-loop performance.
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• The price paid for robustness depends on how the uncertainty is evolving in the dynamics.
Realistic uncertainty set, distribution or scenario generation is another major factor for
obtaining less pessimistic closed-loop operation.

• To improve the response, one should re-evaluate the allocated uncertainty budget for each
constraint. If constraint violations are practically allowable, one should prefer chance,
moment or scenario constraints rather than the deterministic guarantees.

• Cost functions in MPC problems should incorporate a prediction of operating point/trajectory
and also a metric to evaluate the deviations from this point/trajectory.

71



72



Chapter 3

Moment-based Model Predictive Control Prob-
lem for Linear Systems with Additive Per-
turbations

Between equal rights, force decides.

Karl Marx - Capital: A Critique of Political
Economy

In this chapter, we investigate predictive control of dynamical systems using the statistics
of the state predictions and cost functions. We calculate the (centralized) moments of the
states based on the model dynamics, which are then used in the MPC problem. We make
explicit use of the statistical knowledge of the uncertain state evolution, namely the first,
second and third central moments, to project the uncertain cost to a deterministic function
standing for the robust counterpart problem1. We observe that the resulting cost functions
are defined through the nominal system, hence one needs to solve MPC problems which are
(theoretically) as complex as the nominal MPC problems. Since the central moments of the
disturbances are leading to extra terms in the robust counterpart cost function, the current

0Substantial content of this chapter is also published or presented in:

• M.B. Saltik, L. Özkan, S. Weiland. Moment-based Model Predictive Control for Linear Systems Part 1:
Additive Perturbations Case;

• M.B. Saltik, L. Özkan, J.H.A. Ludlage, S. Weiland, P.M.J. Van den Hof. On the Moment-based Robust
MPC Formulations.

• M.B. Saltik, L. Özkan, S. Weiland, J.H.A. Ludlage. Moment-based Model Predictive Control for Systems
with Additive Uncertainty.

• R. Zhang, M.B. Saltik, L. Özkan, Study of Moment-based MPC formulations and their Connection to
Classical Control.

1The high order moments of the cost function is in many instances much more meaningful indicator of the
resulting (true) MPC cost than the commonly used worst-case cost ([250].
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control action incorporates of the future uncertainties.

3.1 Effect of Disturbances on Moment-based MPC Formulations
We define a nominal system, Σnom as in Equation (3.1a) and a system with additive distur-
bances, Σadd as in Equation (3.1b);

Σnom :

{
x̄k+1 = Ax̄k +Buk,
ȳk = Cx̄k, x̄0 = x̄(0),

(3.1a)

Σadd :

{
xk+1 = Axk +Buk + Fwk,
yk = Cxk + vk, x0 = x(0),

(3.1b)

where xk (or x̄k) ∈ Rn, and uk ∈ Rnu , and yk (or ȳk) ∈ Rny are the disturbance corrupted
(or nominal) state, the control input and the corrupted (or nominal) output at discrete time
instant k ∈ Z≥0, respectively. The uncertain plant is subject to additive disturbances wk ∈
Rnw in the state evolution equation and vk ∈ Rnv in the output equation for k ∈ Z≥0.
Here wk, vk are assumed to be independent and identically distributed (i.i.d.) over time k,
Gaussian vector sequences with zero mean, known and time invariant covariance matrices
Σw ≥ 0 and Σv ≥ 0, respectively.

For the states x[0,Np−1]|k := x[k,k+Np−1], the prediction matrices are defined as:

Θ⊤
Np

=
[
I A⊤ A2⊤ . . . ANp−1⊤

]
∈ Rnx×Npnx ,

T
Np+1,Np

B =



0 0 . . . 0 0
B 0 . . . 0 0
AB B . . . 0 0
A2B AB . . . 0 0

...
...

...
...

...
ANp−1B ANp−2B . . . AB B


,

which yield

x̄[0,Np−1]|k = ΘNp x̄0|k + T
Np

B u[0,Np−1]|k,

x[0,Np−1]|k = ΘNp x̄0|k + T
Np

B u[0,Np−1]|k + T
Np

F w[0,Np−1]|k,

where Np is the prediction horizon and the Toeplitz matrix TNp,Np

B is expressed as TNp

B for
brevity. The identity matrix (of dimension Np) is denoted as INp . For a matrix A, ρ(A)
denotes the spectral radius of the matrix A.

3.1.1 Problem Formulation for Regulation Problem via Moment-based MPC

In this section we consider a quadratic cost function to be minimized for the MPC problem,
which at time instant k is expressed as

J(xk, u[0,Np−1]|k) =

Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k + x⊤Np|kQfxNp|k, (3.2a)
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where Np ∈ Z>0 is the prediction horizon, xj|k ∈ Rnx is the prediction of state at time
instant (k + j) generated with the dynamics Σadd, the initial condition x0|k = xk and
the exogenous inputs u[0,Np−1]|k, w[0,Np−1]|k. The optimization variables are uj|k, j =

0, 1, . . . , Np − 12. The cost function J(xk) can be expressed in matrix form as,

J(ξ̃k) = ξ̃
⊤

k H
Np+1ξ̃k (3.2b)

where

HNp+1 :=

 Θ⊤
(·)Q̄Θ(·) Θ⊤

(·)Q̄T
(·)
B Θ⊤

(·)Q̄T
(·)
F

T
(·)⊤
B Q̄Θ(·) T

(·)⊤
B Q̄T

(·)
B + R̄ T

(·)⊤
B Q̄T

(·)
F

T
(·)⊤
F Q̄Θ(·) T

(·)⊤
F Q̄T

(·)
B T

(·)⊤
F Q̄T

(·)
F

 ,
ξ̃k :=

 x0|k
u[0,Np−1]|k
w[0,Np−1]|k

 , Q̄ :=

[
INp ⊗Q 0

0 Qf

]
, R̄ := INp ⊗R,

in which ΘNp+1, TNp+1,Np

B and TNp+1,Np

F are denoted with Θ(·), T
(·)
B and T (·)

F , respec-
tively.

The cost function in Equation (3.2a) is inherently stochastic, hence it needs to be pro-
jected to a deterministic function before the optimization step. Also a robustification, in
fact a risk allocation, step is needed for the predicted effects of future uncertainty. For this
purpose we use the (centralized) moments of the uncertain cost function J(xk);

JM (ξk) :=E{J(ξ̃k)}, (3.3a)

JMV (ξk) :=E{J(ξ̃k)}+ λvD{J(ξ̃k)}, (3.3b)

JMV S(ξk) :=E{J(ξ̃k)}+ λvD{J(ξ̃k)}+ λsS{J(ξ̃k)}, (3.3c)

where λv, λs ∈ R≥0 are the risk aversion factors ([229]), J(ξ̃k) is the cost function given
in Equation (3.2a) and

ξk :=

[
x0|k

u[0,Np−1]|k

]
.

We use these three cost functions to establish mean-square stability (MS-stability)3 of
closed loop stochastic systems. MS-stability is defined as follows.

Definition 3.1.1 ([191]) A system Σadd is said to be Lyapunov stable in the 2nd moment,
or Mean Square stable (MS-stable), if the mean and the covariance of xk exists for all
k ∈ Z≥0, and if for all ϵ > 0, there exists δ such that

||x0||22 < δ =⇒ E{ sup
k≥k0

||x(k;x0)||22} < ϵ.

2One can also employ convexity preserving disturbance feedback structures, i.e., uj|k = ũj|k +∑j−1
i=0 Mj,iwi|k , if wi|k are available.
3The stability of stochastic systems can be defined from various aspects, such as stability in probabilities or in

moments or in all sample behavior. A discussion on the stability of stochastic systems is given in [191].
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This notion of MS-stability is closely related to Lyapunov theory of stability, see also [38],
as demonstrated next.

Proposition 3.1.1 [38] For a dynamical system Σadd
CL : xk+1 = Ãxk+Fwk and a quadratic

positive definite function V (xk) = x⊤k Pxk, if Ek{V (xk+1)}−V (xk) ≤ 0 then the dynam-
ical system is MS-stable.

Proof. By hypothesis and the definition of conditional expectation,

E{V (xk+1)} = E[0,k−1]{V (xk) + Ek{V (xk+1)} − V (xk)},
≤ Ek−1{V (xk)},

and by induction over the time index k

Ek{V (xk+1)} ≤ V (x0).

Then we make use of the properties of weighted-2 norm

λmin(P )E{x⊤k xk} ≤ E{V (xk)} ≤ V (x0) ≤ λmax(P )x
⊤
0 x0

for all k ∈ Z≥0. This guarantees MS-stable operation.

The contribution of this section is twofold. First, for the three cost functions in Equation
(3.3), we demonstrate that moment-based MPC problems result in cost functions that can
be expressed by nominal system states. This leads to a tremendous reduction in the re-
quired computational power, since one needs to solve an MPC problem equivalent with the
complexity of the nominal MPC problem. Secondly, high order moment MPC problems
provide a natural way of achieving stability without the artificial terminal cost terms, i.e.,
Qf in Equation (3.2a) set to zero.

Mean-MPC (M-MPC)

The mean of a stochastic cost function provides an indication of the cost on average, hence
the spread (for quadratic J(xk)) and the magnitude of the states on average. Here we start
with evaluating the cost function given in Equation (3.3a).

Lemma 3.1.1 For the stochastic dynamical system Σadd in Equation (3.1b), the cost func-
tion for M-MPC problem (Equation (3.3a)) is given by

JM (ξk) = ξ⊤k H
Np+1
M ξk + fM (3.4)

where

ξk :=

[
x0|k

u[0,Np−1]|k

]
, fM := Tr(T

(·)⊤
F Q̄T

(·)
F Σ̄

Np+1
w ),

H
Np+1
M :=

[
Θ⊤

Np+1Q̄ΘNp+1 Θ⊤
Np+1Q̄T

Np+1,Np

B

T
Np+1,N⊤

p

B Q̄ΘNp+1 T
Np+1,N⊤

p

B Q̄T
Np+1,Np

B + R̄

]
,

(3.5)
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where TNp+1,Np

F is denoted with T (·)
F .

Furthermore,

J̄M (ξk) := JM (ξ̃k)− Tr(T
Np+1,N⊤

p

F Q̄T
Np+1,Np

F Σ̄Np
w ), (3.6a)

J̄M (ξk) = ξ⊤k H
Np+1
M ξk,

J̄M (ξk) =
Np−1∑
j=0

x̄⊤j|kQx̄j|k + u⊤j|kRuj|k + x̄⊤Np|kQf x̄Np|k,

where x̄j|k is the prediction at time step j obtained from the nominal system Σnom in Equa-
tion (3.1a).

Proof. The proof directly follows from Equations (3.2a) and (3.3a), and the following prop-
erties of the expectation operator

E{x⊤0 P1x0} = x⊤0 P1x0, E{x⊤0 P2w[0,Np−1]|k} = 0,

E{w⊤
[0,Np−1]|kP3w[0,Np−1]|k} = Tr(P3Σ̄

Np
w ), Σ̄NP

w := INp ⊗ Σw.

So the minimization of JM (ξk) in Equation (3.4) over uj|k is equivalent to the minimization
of the cost function in Equation (3.6) in the sense that

u∗[0,Np−1]|k = arg min
u[0,Np−1]|k

J̄M (ξk),

subject to x̄i+1|k = Ax̄i|k +Bui|k,
x̄0|k = xk, i ∈ Z[0,Np−1],

(3.7)

defines an optimal solution for both problems. Furthermore, this result indicates that the
optimal control that solves the nominal-MPC problem, where uncertainties are not taken
into account, equals the optimal solution that solves M-MPC. In particular the closed loop
trajectories are equivalent for these cases, thus the system Σadd controlled with a nominal-
MPC is robust (performance-wise) with respect to expected cost of a system with additive
disturbances.

We use of the cost function J̄M (ξk) as the candidate Lyapunov function V (xk) and
force a sufficient decrease of V (xk) by satisfying an algebraic condition. For this purpose
we assume specific characteristics on the nature of uncertainty.

Assumption 3.1.1 There exists a scalar δw ∈ R such that, for all k ∈ Z≥0, E{w⊤
k wk} =

Tr(Σw) ≤ δw||x̄k||22.

Theorem 3.1.1 For a stochastic dynamical system Σadd (Equation (3.1b)), if the M-MPC
problem (Equation (3.35)) is feasible at x0 and there exists; i) a stabilizing controller for
the nominal system, Kf , such that ρ(A + BKf ) < 1; ii) the terminal weight Qf is the
positive definite solution of the matrix equation

ϕ⊤Qfϕ−Qf +
(
Q+K⊤

f RKf + δwḡ
M
w

)
= 0, (3.8)
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where ϕ = A+BKf and ḡw =
∑Np

i=0 Tr(F
⊤Ai⊤QiA

iF ), Qi = Qf , for i = Np, and Qi =

Q for i ̸= Np, i ∈ Z[0,Np] then the closed loop system is MS-stable.

Proof. We start with

Ek{V̂ (xk+1)} − V (xk) = −(∥x̄0|k∥2Q + ∥u0|k∥2R) + gMw

+ x̄⊤Np|k[−Qf + ϕ⊤Qfϕ+Q+K⊤
f RKf ]x̄Np|k

where V̂ (xk+1) is the cost function J̄M (ξk+1) evaluated with the suboptimal control u[0,Np−1]|k+1 =[
u∗[1,Np−1|k] Kf x̄Np|k

]
, and gMw =

∑Np

i=0 Tr(F
⊤Ai⊤QiA

iF Σ̄w). The right hand side

of Ek{V̂ (xk+1)} − V (xk) is negative if

x̄⊤Np|k[−Qf + ϕ⊤Qfϕ+Q+K⊤
f RKf ]x̄Np|k + gMw = 0

This is a stability condition to check at each time instant k ∈ Z≥0. To transform this into an
algebraic condition, δw in Assumption 3.1.1 is used to express the stability condition as in
Equation (3.8) via

Tr(F⊤Ai⊤QiA
iFΣw) ≤ δwTr(F

⊤Ai⊤QiA
iF )||x̄k||22, ∀k ∈ Z≥0.

This guarantees Ek{V̂ (xk+1)} − V (xk) ≤ 0, thus the system is MS-stable.

Remark 3.1.1 The Assumption 3.1.1 is a conservative assumption on the nature of uncer-
tainty, since as the state trajectory approaches to the origin, the effect of disturbance wk

vanishes. To incorporate less conservative disturbances, one should employ ISS techniques
or use a sufficiently large terminal constraint set for which an MS-stabilizing controller is
known a-priori, see Section III-C in [119] for further details.

Mean-Variance MPC (MV-MPC)

In this case we reformulate the MPC problem as in Equation (3.3b) hence incorporating the
second moment of the cost function. We consider the case without the terminal cost term,
Qf = 0, namely J(ξk) consists of only running terms. The terms E{J(ξ̃k)} and D{J(ξ̃k)}
in Equation (3.3b) are found as in Lemma 3.1.2.

Lemma 3.1.2 For a stochastic dynamical system Σadd (Equation (3.1b)), the MV-MPC cost
function (Equation (3.3b)) is given by

JMV (ξk) = ξ⊤k H
Np

MV ξk + fM + λvf
V , (3.9)

where fM is given in Equation (3.5),

fV := 2Tr((T
N⊤

p

F Q̄T
Np

F Σ̄w)
2),

H
Np

MV =

[
Θ⊤

Np
Q̄MV ΘNp Θ⊤

Np
Q̄MV T

Np

B

T
N⊤

p

B Q̄MV ΘNp T
N⊤

p

B Q̄MV T
Np

B + R̄

]
.

(3.10)
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Here Q̄MV = Q̄+ 4λvQ̄ῩQ̄ and Ῡ = T
Np

F Σ̄
Np
w T

N⊤
p

F . Furthermore,

J̄MV (ξk) = JMV (ξk)− fM − λvf
V ,

J̄MV (ξk) = ξ⊤k H
Np

MV ξk,

J̄MV (ξk) =
Np−1∑
j=0

x̄
⊤

j|kQ
MV
j x̄j|k + u

⊤

j|kRuj|k

+2
Np−2∑
l=1

Np−1∑
i=l+1

x̄⊤l|kQ
MV
l,i x̄i|k,

(3.11)

where

QMV
j := Q+ 4λvQ

j−1∑
i=0

Aj−1−iFΣwF
⊤Aj−1−i⊤Q,

QMV
0 := Q, j ∈ Z[1,Np−1],

QMV ⊤

i,l = QMV
l,i := 4λvQ

l−1∑
m=0

Al−1−mFΣwF
⊤Ai−1−m⊤

Q,

QMV
0,m = QMV

m,0 := 0n×n, l ∈ Z[1,Np−2], i ∈ Z[l+1,Np−1]

Proof. We start with

J(ξ̃k)− E{J(ξ̃k)} = 2∆J1(x0|k) + 2∆J2(u(·)) + ∆J3(w(·))−∆J4,

∆J1(x0|k) = w⊤
(·)T

N⊤
p

F Q̄ΘNpx0, ∆J2(u(·)) = w⊤
(·)T

N⊤
p

F Q̄T
Np

B u(·),

∆J3(w(·)) = w⊤
(·)T

N⊤
p

F Q̄T
Np

F w(·) ∆J4 = Tr(T
N⊤

p

F Q̄T
Np

F Σ̄w).

Then we use the fact that each term ∆Ji, i = 1, 2, 3, 4 are scalars, ∆Ji = ∆J⊤
i ∈ R, to

rearrange the expression to derive the MV-MPC cost function JMV (ξk), [276];

D{J(ξ̃k)} := E{(J(ξ̃k)− E{J(ξ̃k)})(J(ξ̃k)− E{J(ξ̃k)})⊤},
= 4x⊤0 Θ

⊤
Np
Q̄ῩQ̄ΘNpx0 + 4x⊤0 Θ

⊤
Np
Q̄ῩQ̄T

Np

B u(·) + . . .

4u⊤(·)T
N⊤

p

B Q̄ῩQ̄ΘNpx0 + 4u⊤(·)T
N⊤

p

B Q̄ῩQ̄T
Np

B u(·) + . . .

E{w⊤
(·)T

N⊤
p

F Q̄T
Np

F w(·)w
⊤
(·)T

N⊤
p

F Q̄T
Np

F w(·)} − . . .

T r(T
N⊤

p

F Q̄T
Np

F Σ̄w)
2,

= ξ⊤k H
Np

V ξk + fV

The MV-MPC results in a shifted cost J̄MV (ξk) that only consists of predictions of nominal
system trajectories. This has inherent advantages with regard to computational complexity,
since it has equivalent computational requirements with the nominal-MPC problem. More-
over, the state weighting matrix ‘Q-matrix’ is changing over time, which increases over
the prediction stages (the diagonal terms), i.e., QMV

j ≥ QMV
j−1 and couples the future state

predictions to each other via QMV
l,i . Furthermore, similar to the M-MPC case, the optimal
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solution of unconstrained Mean-Variance MPC problem for system Σadd is given as,

u∗[0,Np−1]|k = arg min
u[0,Np−1]|k

J̄MV (ξk),

subject to x̄i+1|k = Ax̄i|k +Bui|k,
x̄0|k = xk, i ∈ Z[0,Np−1],

(3.12)

is also the minimizer of the MV-MPC cost in Equation (3.3b).
We use deductions similar with the M-MPC to show the closed-loop stability. The fol-

lowing variables are used in the derivation of Theorem 3.1.2,

E{V̂ (xk+1)} − V (xk) = ξkM
MV (λv)ξk + gMV

w ,

M̄MV (λv, δw) = MMV (λv) +

[
δwḡ

MV
w 0
0 0

]
,

(3.13)

while the candidate Lyapunov function V (xk) is taken as the shifted MV-MPC cost J̄MV (xk).

Theorem 3.1.2 For a stochastic dynamical system Σadd in Equation (3.1b), if the MV-MPC
problem is feasible for the initial condition x0 and if (λv, δw) satisfy M̄MV (λv, δw) ≤ 0,

then the controlled system is MS-stable.

Proof. We express the Lyapunov function’s decrease at time step k as

Ek{V̂ (xk+1)} − V (xk) = −(||x̄0|k||2Q + ||u0|k||2R) + gMV
w

+x̄⊤Np|k(Q
MV
Np−1 +K⊤

f RKf )x̄Np|k −
Np−1∑
i=1

x̄⊤i|kQ
v,i
ex x̄i|k

+
Np−2∑
j=1

(
2x̄⊤j+1|kQ

MV
j,Np−1x̄Np−1|k − 2x̄⊤1|kQ

MV
1,j+1x̄j+1|k

)
−

Np−2∑
j=2

Np−1∑
i=j+1

2x̄⊤j|kQ
v,j,i
ex x̄i|k,

where
Qv,i

ex := 4λvQA
i−1FΣwF

⊤Ai−1⊤Q,

Qv,j,i
ex := 4λvQA

j−1FΣwF
⊤Ai−1⊤Q,

gMV
w :=

Np−1∑
j=0

Tr(F⊤Aj⊤QMV
j AjFΣw)

+2
Np−2∑
j=1

Tr(F⊤Aj⊤QMV
j,Np−1A

Np−1FΣw)

+2
Np−3∑
j=1

Np−2∑
i=j+1

Tr(F⊤Aj⊤QMV
j,i AiFΣw).

One can make use of the Σnom dynamics to express

E{V̂ (xk+1)} − V (xk) = ξ⊤k M
MV (λv)ξk + gMV

w ,
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where

MMV (λv) =

[
Θ⊤

Np+1Q̄
v
∆ΘNp+1 Θ⊤

Np+1Q̄
v
∆T

(·)
B

T
(·)⊤
B Q̄v

∆ΘNp+1 T
(·)⊤
B Q̄v

∆T
(·)
B + R̄∆

]
,

in which T (·)
B = T

Np+1,Np

B ,

R∆ :=

[
−R 0

0 0

]
, Q

v,Np
ex := QMV

Np−1 +K⊤
f RKf , N̄ = Np − 1, (3.14a)

Q̄v
∆ := −



Q 0 . . . . . . . . . 0 0

⋆ Qv,1
ex QMV

1,2 . . . . . . QMV
1,N̄

0
...

. . . Qv,2
ex Qv,2,3

ex . . . Qv,2,N̄
ex −QMV

2,N̄
...

. . . . . . . . . . . .
...

...
...

. . . . . . ⋆
. . . Qv,N̄−1,N̄

ex −QMV
N̄−2,N̄

...
. . . . . . . . . . . . Qv,N̄

ex −QMV
N̄−1,N̄

⋆ . . . . . . . . . . . . ⋆ −Qv,Np
ex


. (3.14b)

Lastly, we use the bound δw in Assumption 3.1.1 to express the Lyapunov function condition
as an LMI, i.e.,

ξkM̄
MV (λv, δw)ξk = ξkM

MV ξk + δwx̄
⊤
0|kḡ

MV
w x̄0|k ≤ 0,

M̄MV (λv, δw) =MMV (λv) +

[
δwḡ

MV
w 0

0 0

]
≤ 0,

as in Equation (3.13). If M̄MV (λv, δw) ≤ 0 for a λv , given δw, then the running cost
function for MV-MPC J̄MV (xk) is a Lyapunov function, hence MS-stability follows.

Remark 3.1.2 Due to the ‘excess’ terms Qv,j
ex and Qv,j,i

ex , induced by the increasing state
weight matrices QMV

j and QMV
j,i over the prediction stages, the MV-MPC formulation does

not require the terminal cost Qf for the stability argument.

Third Order Moment MPC

In this case we use the cost function as in Equation (3.3c), with Qf = 0. The moment terms
in Equation (3.3c) are found as follows.

Lemma 3.1.3 For the stochastic dynamical system Σadd in Equation (3.1b), the MVS-MPC
cost function (Equation (3.3c)) is equal to

JMV S(ξk) = ξ⊤k H
Np

MV Sξk + fM + λvf
V + λsf

S , (3.15)
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where

H
Np

MV S = H
Np

MV +H
Np

S , ξk =

[
x0|k

u[0,Np−1]|k

]
,

Q̄S := 2Q̄ῩQ̄ῩQ̄, Ῡ := T
Np

F Σ̄
Np
w T

N⊤
p

F ,

H
Np

S = 12λs

[
Θ⊤

Np
Q̄SΘNp Θ⊤

Np
Q̄ST

Np

B

T
N⊤

p

B Q̄SΘNp
T

N⊤
p

B Q̄ST
Np

B

]
.

(3.16)

Here, fS is a constant term, defined by the 2nd, 4th, and 6th order moments of w[0,Np−1]|k,
i.e.,

fS := E

{(
∥w(·)∥2

T
N⊤

p
F Q̄T

Np
F

− Tr(T
N⊤

p

F Q̄T
Np

F )

)3
}
,

and lastly HNp

MV is given in Equation (3.10). Furthermore,

J̄MV S(ξk) := JMV S(xk)− fM − λvf
V − λsf

S ,

= ξ⊤k H
Np

MV Sξk,

=
Np−1∑
j=0

x̄
⊤

j|kQ
MV S
j x̄j|k + u

⊤

j|kRuj|k

+2
Np−2∑
j=1

Np−1∑
i=j+1

x̄⊤j|kQ
MV S
j,i x̄i|k,

(3.17)

where
QMV S

j = QMV
j + 12λsQ

S
j , Q

MV S
l,i = QMV

l,i + 12λsQ
S
l,i,

Q̄S = 2Q̄ῩQ̄ῩQ̄ =: 2


0 0 0 . . . 0

0 QS
1 QS

1,2 . . . QS
1,Np−1

0 ⋆ QS
2 . . . QS

2,Np−1

...
...

. . .
. . .

...
0 ⋆ . . . . . . QS

Np−1

 .

Proof. Similar to the derivation given in Lemma 3.1.2 for MV-MPC case, we explicitly
evaluate the third order central moment as,

S{J(xk)} = E{(J(xk)− E{J(xk)})3},
= E{(2∆J1(x0) + 2∆J2(u) + ∆J3(w)−∆J4)

3},
= 12E{x⊤0 Θ⊤

Np
Q̄T

Np

F β
Np
w T

N⊤
p

F Q̄ΘNpx0 + . . .

x⊤0 Θ
⊤
Np
Q̄T

Np

F β
Np
w T

N⊤
p

F Q̄T
Np

B u(·) + . . .

u
⊤

(·)T
N⊤

p

B Q̄T
Np

F β
Np
w T

N⊤
p

F Q̄ΘNpx0 + . . .

u⊤(·)T
N⊤

p

B Q̄T
Np

F β
Np
w T

N⊤
p

F Q̄T
Np

B u(·)}+ fS ,

= ξkH
Np

S ξk + fS ,
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where

βNp
w := w(·)w

⊤
(·)T

N⊤
p

F Q̄T
Np

F w(·)w
⊤

(·) − w(·)Tr(T
N⊤

p

F Q̄T
Np

F Σ̄Np
w )w⊤

(·).

This cost is a function of only the nominal system, the nominal predictions of states x̄j|k
and the control actions deriving the system u[0,Np−1]|k. Then the MVS-MPC problem for
system Σadd is given as,

u∗[0,Np−1]|k = arg min
u[0,Np−1]|k

J̄MV S(ξk),

subject to x̄i+1|k = Ax̄i|k +Bui|k,
x̄0|k = xk, i ∈ Z[0,Np−1].

Furthermore, the stability of the Σadd is established with similar deductions given for the
MV-MPC case while incorporating QS

j and QS
ji terms within the derivation. Similar to the

case in MV-MPC, we first provide several variables that are used in the derivation of the
stability result

E{V̂ (xk+1)} − V (xk) = ξkM
MV S(λv, λs)ξk + gMV S

w ,

M̄MV S(λv, λs, δw) = MMV S +

[
δwḡ

MV S
w 0
0 0

]
,

(3.18)

while the candidate Lyapunov function V (xk) is taken as the shifted MVS-MPC cost J̄MV S(ξk).

Theorem 3.1.3 For the stochastic dynamical system Σadd in Equation (3.1b), if the MVS-
MPC problem is feasible for the initial condition x0 and if (λv, λs, δw) triplet satisfy the
condition M̄MV S(λv, λs, δw) ≤ 0, then the controlled system is MS-stable.

Proof. The proof follows a similar reasoning with MV-MPC case (Theorem 3.1.2). First
express at time k, Ek{V̂ (xk+1)} − V (xk) and group the terms as

Ek{V̂ (xk+1)} − V (xk) = −(||x̄0|k||2Q + ||u0|k||2R) + gMV S
w

+x̄⊤Np|k(Q
MV S
Np−1 +K⊤

f RKf )x̄Np|k

−
Np−1∑
i=1

x̄⊤i|kQ
vs,i
ex x̄i|k −

Np−2∑
j=2

Np−1∑
i=j+1

2x̄⊤j|kQ
vs,j,i
ex x̄i|k

+
Np−2∑
j=1

(
2x̄⊤j+1|kQ

MV S
j,Np−1x̄Np|k − 2x̄⊤1|kQ

MV S
1,j+1x̄j+1|k

)
.

where the terms Qvs,i
ex and Qvs,j,i

ex are found as

Qvs,i
ex := QMV S

i −QMV S
i−1 , Qvs,j,i

ex := QMV S
j,i −QMV S

j−1,i−1,

and gMV S
w contains the (trace) terms induced by E{Vk+1}. Then use the Σnom dynamics to

express E{V̂ (xk+1)}−V (xk) = ξ⊤k M
MV S(λv, λs)ξk+g

MV S
w . The matrixMMV S(λv, λs)

83



Chapter 3. Moment-based Model Predictive Control Problem for Linear Systems with
Additive Perturbations

is defined similar to the MMV (λv) while the Q̄v
∆ term is replaced with Q̄vs

∆ . Lastly, we use
the bound δw in Assumption 3.1.1 to express the Lyapunov function condition as an LMI,
i.e., M̄MV S(λv, λs, δw) ≤ 0, as in Equation (3.18). If M̄MV S(λv, λs, δw) ≤ 0 is satisfied
for pair (λv, λs), given δw, then the running cost function for MVS-MPC J̄MV S(ξk) is a
Lyapunov function.

3.1.2 Moment-based MPC for Tracking Problem

In this section, we construct the Mean, MV and MVS-MPC formulations for the uncon-
strained LTI system Σadd for the output reference tracking problem. Here we consider two
possible descriptions for linear systems. We define a nominal system, denoted with Σnom

given in state-space representation as in Equation (3.19a) and a system with additive dis-
turbances effecting the state and output equations, denoted with Σadd as given in Equation
(3.19b)

Σnom :

{
x̄k+1 = Ax̄k +Buk,
ȳk = Cx̄k,

(3.19a)

Σadd :

{
xk+1 = Axk +Buk + Fwk,
yk = Cxk + vk,

(3.19b)

where xk ∈ Rn, and uk ∈ Rnu , and yk ∈ Rny are the state, the control input (or the
decision variable in the MPC problems) and the measured output at discrete time instant
k ∈ Z≥0. The system Σadd is subject to two type of uncertainties, denoted by wk and
vk. These uncertainties are additive disturbances effecting the state and output equations,
which are stochastic vector sequences with known pdfs, fw̃(wk), for the disturbancewk and
fṽ(vk), for the disturbance vk.

Furthermore, the nature (or the characteristics) of uncertainties wk and vk are assumed
to be independent and identically distributed (i.i.d.) random variables. We constrain the
discussion to random variables that have finite moments to limit the technical discussion, as
elaborated in next assumption.

Assumption 3.1.2 The disturbance wk, k ∈ Z≥0 in system Σadd is distributed, for any k,
with zero mean and time invariant covariance matrix Σw ∈ Rnw×nw , i.e.,

E{wk} = 0nw×1, Σw := E{wkw
⊤
k },

where 0nw×1 is the zero vector of size nw. Similarly, the disturbance vk in system Σadd is
distributed with zero mean and time invariant covariance matrix Σv ∈ Rnv×nv . Further-
more, if the perturbations wk or vk are not Gaussian random variables, then

• The covariance matrices are diagonal and time invariant;

Σw = diag(σ2
w1
, . . . , σ2

wnw
),

Σv = diag(σ2
v1 , . . . , σ

2
vnv

),

where σ2
wi

is the variance of ith component of random variable wk and diag(p), p ∈ Rnp

is the matrix of which the diagonal terms correspond to the elements of vector p.
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• E{[wk]
4
i } and E{[vk]4i } are finite, for each component i of random variables wk or vk.

If the random variables wk and vk are distributed with Gaussian distribution function, then
we denote it as wk ∈ N (0,Σw) and vk ∈ N (0,Σv).

Here we present the derivations for two different MPC formulations; case (i) stands for
the cost function constructed directly using the input actions uj , and in the case (ii) the cost
function is constructed with the changes in the input action, i.e., ∆uj := uj − uj−1, to
provide inherent integral action to the controller. For both of the cases we assume that a
reference trajectory rk, k ∈ Z≥0 is given which is desired to be tracked. The cost functions
for case (i) and case (ii) are defined as4

JO,(i)(ξ̃
O
k,(i)) =

Np−1∑
j=0

(yj|k − rj|k)
⊤Q(yj|k − rj|k) + uj|kRuj|k, (3.20a)

JO,(ii)(ξ̃
O
k,(ii)) =

Np−1∑
j=0

(yj|k − rj|k)
⊤Q(yj|k − rj|k) + ∆uj|kR∆uj|k, (3.20b)

where

ξ̃O
⊤

k,(i) =
[
x⊤0|k u⊤[0,Np−1]|k w⊤

[0,Np−1]|k v⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
,

ξ̃O
⊤

k,(i) =
[
x⊤0|k u−1|k ∆u⊤[0,Np−1]|k w⊤

[0,Np−1]|k v⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
.

(3.21)
The predicted output y[0,Np−1]|k can be written as an algebraic function of u[0,Np−1]|k,
w[0,Np−1]|k and v[0,Np−1]|k, for case (i), as

y[0,Np−1]|k = ΘCx0 + TB,Cu[0,Np−1]|k + TF,Cw[0,Np−1]|k + Ī
Np
ny v[0,Np−1]|k,

(3.22a)
and as an algebraic function of input increments, apart from the disturbance variables, for
the case (ii), as

y[0,Np−1]|k = ΘCx0 + TB,C(1Npu−1|k + T∆∆u[0,Np−1]|k)+

. . . TF,Cw[0,Np−1]|k + Ī
Np
ny v[0,Np−1]|k,

(3.22b)

in which the prediction matrices 1Np and T∆ are defined as

1Np :=


Inu

Inu

...
Inu

 , T∆ :=


Inu 0 . . . 0
Inu Inu . . . 0

...
...

...
...

Inu Inu . . . Inu

 . (3.22c)

With these definitions, the cost functions JO,(i) for case (i), and JO,(ii), for case (ii), are
expressed as

JO,(i)(ξ̃
O
k,(i)) = ξ̃O

⊤

k,(i)HO,(i)ξ̃
O,(i)
k ,

JO,(ii)(ξ̃
O
k,(ii)) = ξ̃O

⊤

k,(ii)HO,(ii)ξ̃
O,(ii)
k ,

(3.23)

4Due to its generality, we simplify the notation as ξO
k,(i)

= ξk wherever the control actions are decision
variables and it is obvious that the outputs are used in the cost function.
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whereHO,(i) andHO,(ii) are constructed from ΘC , TB,C , TF,C with corresponding quadratic
terms given in Equation (3.22c), i.e.,

HO,(i) :=


Θ⊤

CQ̄ΘC (⋆) (⋆) (⋆) (⋆)
T⊤
B,CQ̄ΘC T⊤

B,CQ̄TB,C + R̄ (⋆) (⋆) (⋆)

T⊤
F,CQ̄ΘC T⊤

F,CQ̄TB,C T⊤
F,CQ̄TF,C (⋆) (⋆)

Ī
N⊤

p
ny Q̄ΘC Ī

N⊤
p

ny Q̄TB,C Ī
N⊤

p
ny Q̄TF,C Ī

N⊤
p

ny Q̄
Np
ny (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C −ĪN
⊤
p

ny Q̄TF,C −ĪN
⊤
p

ny Q̄Ī
N⊤

p
ny Ī

N⊤
p

ny Q̄Ī
N⊤

p
ny

 ,

HO,(ii) :=



Θ⊤
CQ̄ΘC (⋆) (⋆) (⋆) (⋆) (⋆)

T⊤
B,C,u−1

Q̄ΘC T⊤
B,C,u−1

Q̄TB,C,u−1 (⋆) (⋆) (⋆) (⋆)

T⊤
B,C,∆uQ̄ΘC T⊤

B,C,∆uQ̄TB,C,u−1 T⊤
B,C,∆uQ̄TB,C,∆u + R̄ (⋆) (⋆) (⋆)

T⊤
F,CQ̄ΘC T⊤

F,CQ̄TB,C,u−1 T⊤
F,CQ̄TB,C,∆u T⊤

F,CQ̄TF,C (⋆) (⋆)

Ī
N⊤

p
ny Q̄ΘC Ī

N⊤
p

ny Q̄TB,C,u−1 Ī
N⊤

p
ny Q̄TB,C,∆u Ī

N⊤
p

ny Q̄TF,C Ī
N⊤

p
ny Q̄Ī

Np
ny (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C,u−1 −ĪN
⊤
p

ny Q̄TB,C,∆u −ĪN
⊤
p

ny Q̄TF,C −ĪN
⊤
p

ny Q̄Ī
N⊤

p
ny Ī

N⊤
p

ny Q̄Ī
N⊤

p
ny


,

while
T

Np

B,C,u−1
= T

Np

B,C1Np , T
Np

B,C,∆u = T
Np

B,CT∆u. (3.24)

Next, the Mean, MV and MVS MPC formulations for the output tracking MPC configura-
tion are constructed. Similar to the regulation case, first we define three cost functions from
nominal system dynamics Σnom and then show the relations between these and the robust
counterparts of JO,(i) and JO,(ii) constructed from the centralized moments, i.e.,

J̄M
O,(i)(ξ

O
k,(i)) = ξO

⊤

k,(i)H
M
O,(i)ξ

O
k,(i), (3.25a)

J̄MV
O,(i)(ξ

O
k,(i)) = ξO

⊤

k,(i)H
MV
O,(i)ξ

O
k,(i), (3.25b)

J̄MV S
O,(i) (ξ

O
k,(i)) = ξO

⊤

k,(i)H
MV S
O,(i) ξ

O
k,(i), (3.25c)

J̄M
O,(ii)(ξ

O
k,(ii)) = ξO

⊤

k,(ii)H
M
O,(ii)ξ

O
k,(ii), (3.25d)

J̄MV
O,(ii)(ξ

O
k,(ii)) = ξO

⊤

k,(ii)H
MV
O,(ii)ξ

O
k,(ii), (3.25e)

J̄MV S
O,(ii)(ξ

O
k,(ii)) = ξO

⊤

k,(ii)H
MV S
O,(ii)ξ

O
k,(ii), (3.25f)

where
ξO

⊤

k,(i) =
[
x⊤0|k u⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
,

ξO
⊤

k,(ii) =
[
x⊤0|k u⊤−1|k ∆u⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
,

(3.25g)

HM
O,(i) =

 Θ⊤
CQ̄ΘC (⋆) (⋆)

T⊤
B,CQ̄ΘC T⊤

B,CQ̄TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C Ī
N⊤

p
ny Q̄Ī

Np
ny

 , (3.25h)

HMV
O,(i) =

 Θ⊤
CQ̄

MV
O ΘC (⋆) (⋆)

T⊤
B,CQ̄

MV
O ΘNp,C T⊤

B,CQ̄
MV
O TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV
O ΘC −ĪN

⊤
p

ny Q̄MV
O TB,C Ī

N⊤
p

ny Q̄MV
O Ī

Np
ny

 , (3.25i)
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HMV S
O,(i) =

 Θ⊤
CQ̄

MV S
O ΘC (⋆) (⋆)

T⊤
B,CQ̄

MV S
O ΘC T⊤

B,CQ̄
MV S
O TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV S
O ΘC −ĪN

⊤
p

ny Q̄MV S
O TB,C Ī

N⊤
p

ny Q̄MV S
O Ī

Np
ny

 , (3.25j)

HM
O,(ii) =


Θ⊤

CQ̄ΘC (⋆) (⋆) (⋆)
T⊤
B,C,u−1

Q̄ΘC T⊤
B,C,u−1

Q̄TB,C,u−1 (⋆) (⋆)

T⊤
B,C,∆uQ̄ΘC T⊤

B,C,∆uQ̄TB,C,u−1 T⊤
B,C,∆uQ̄TB,C,∆u + R̄ (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C,u−1 −ĪN
⊤
p

ny Q̄TB,C,∆u Ī
N⊤

p
ny Q̄Ī

Np
ny

 ,
(3.25k)

HMV
O,(ii) =


Θ⊤

CQ̄
MV
O ΘC (⋆) (⋆) (⋆)

T⊤
B,C,u−1

Q̄MV
O ΘC T⊤

B,C,u−1
Q̄MV

O TB,C,u−1
(⋆) (⋆)

T⊤
B,C,∆uQ̄

MV
O ΘC T⊤

B,C,∆uQ̄
MV
O TB,C,u−1 T⊤

B,C,∆uQ̄
MV
O TB,C,∆u + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV
O ΘC −ĪN

⊤
p

ny Q̄MV
O TB,C,u−1 −ĪN

⊤
p

ny Q̄MV
O TB,C,∆u Ī

N⊤
p

ny Q̄MV
O Ī

N⊤
p

ny

 ,
(3.25l)

HMV S
O,(ii) =


Θ⊤

CQ̄
MV S
O ΘC (⋆) (⋆) (⋆)

T⊤
B,C,u−1

Q̄MV S
O ΘC T⊤

B,C,u−1
Q̄MV S

O TB,C,u−1 (⋆) (⋆)

T⊤
B,C,∆uQ̄

MV S
O ΘC T⊤

B,C,∆uQ̄
MV S
O TB,C,u−1 T⊤

B,C,∆uQ̄
MV S
O TB,C,∆u + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV S
O ΘC −ĪN

⊤
p

ny Q̄MV S
O TB,C,u−1

−ĪN
⊤
p

ny Q̄MV S
O TB,C,∆u Ī

N⊤
p

ny Q̄MV S
O Ī

Np
ny

 ,
(3.25m)

Q̄MV
O = Q̄+ 4λvQ̄ῩOQ̄,

Q̄MV S
O = Q̄MV

O + 24λsQ̄ῩOQ̄ῩOQ̄,

ῩO = TF,CΣ̄
Np
w T⊤

F,C + Σ̄
Np
v ,

Σ̄
Np
w = INp ⊗ Σw,

Σ̄
Np
v = INp ⊗ Σv,

(3.25n)

Theorem 3.1.4 Consider an LTI stochastic dynamical system Σadd as in Equation (3.19b)
subject to Assumption 3.1.2 and a reference trajectory rk, k ∈ Z≥0;

• The cost functions for Mean MPC problem with the stochastic cost functions JO,(i) and
JO,(ii) defined in Equation (3.20) satisfy

JM
O,(i)(ξ

O
k,(i)) = E{JO,(i)(ξ̃O,(i))},

= ξO
⊤

k,(i)H
M
O,(i)ξ

O
k,(i) + fMO,(i),

JM
O,(ii)(ξ

O
k,(ii)) = E{JO,(ii)(ξ̃O,(ii))},

= ξO
⊤

k,(ii)H
M
O,(ii)ξ

O
k,(ii) + fMO,(ii),

(3.26a)

Furthermore both fMO,(i) and fMO,(ii) terms are constant and

J̄M
O,(i)(ξ

O
k,(i)) = JM

O,(i)(ξ
O
k,(i))− fMO,(i),

J̄M
O,(ii)(ξ

O
k,(ii)) = JM

O,(ii)(ξ
O
k,(ii))− fMO,(ii),

(3.26b)
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and in particular

min
u[0,Np−1]|k

JM
O,(i)(ξ

O
k,(i)) = min

u[0,Np−1]|k
J̄M
O,(i)(ξ

O
k,(i)) + fMO,(i),

arg min
u[0,Np−1]|k

JM
O,(i)(ξ

O
k,(i)) = arg min

u[0,Np−1]|k
J̄M
O,(i)(ξ

O
k,(i)),

min
u[0,Np−1]|k

JM
O,(ii)(ξ

O
k,(ii)) = min

u[0,Np−1]|k
J̄M
O,(ii)(ξ

O
k,(ii)) + fMO,(ii),

arg min
u[0,Np−1]|k

JM
O,(ii)(ξ

O
k,(ii)) = arg min

u[0,Np−1]|k
J̄M
O,(ii)(ξ

O
k,(ii)),

(3.26c)

• The cost functions for MV MPC problem with the stochastic cost functions JO,(i) and JO,(ii)

in Equation (3.20) are given by

JMV
O,(i)(ξ

O
k,(i)) = E{JO,(i)(ξ̃O,(i))}+ λvD{JO,(i)(ξ̃O,(i))},

= ξO
⊤

k,(i)H
MV
O,(i)ξ

O
k,(i) + fMO,(i) + λvf

V
O,(i),

JMV
O,(ii)(ξ

O
k,(ii)) = E{JO,(ii)(ξ̃O,(ii))}+ λvD{JO,(ii)(ξ̃O,(ii))},

= ξO
⊤

k,(ii)H
MV
O,(ii)ξ

O
k,(ii) + fMO,(ii) + λvf

V
O,(ii),

(3.27a)

Furthermore,

J̄MV
O,(i)(ξ

O
k,(i)) = JMV

O,(i)(ξ
O
k,(i))− fMO,(i) − λvf

V
O,(i),

J̄MV
O,(ii)(ξ

O
k,(ii)) = JMV

O,(ii)(ξ
O
k,(ii))− fMO,(ii) − λvf

V
O,(ii),

(3.27b)

and in particular

min
u[0,Np−1]|k

JMV
O,(i)(ξ

O
k,(i)) = min

u[0,Np−1]|k
J̄MV
O,(i)(ξ

O
k,(i)) + fMO,(i) + λvf

V
O,(i),

arg min
u[0,Np−1]|k

JMV
O,(i)(ξ

O
k,(i)) = arg min

u[0,Np−1]|k
J̄MV
O,(i)(ξ

O
k,(i)),

min
u[0,Np−1]|k

JMV
O,(ii)(ξ

O
k,(ii)) = min

u[0,Np−1]|k
J̄MV
O,(ii)(ξ

O
k,(ii)) + fMO,(ii) + λvf

V
O,(ii),

arg min
u[0,Np−1]|k

JMV
O,(ii)(ξ

O
k,(ii)) = arg min

u[0,Np−1]|k
J̄MV
O,(ii)(ξ

O
k,(ii)).

(3.27c)

• The cost functions for MVS MPC problem with the stochastic cost functions JO,(i) and
JO,(ii) in Equation (3.20) are given by

JMV S
O,(i) (ξ

O
k,(i)) = E{JO,(i)(ξ̃O,(i))}+ λvD{JO,(i)(ξ̃O,(i))}+ λsS{JO,(i)(ξ̃O,(i))},

= ξO
⊤

k,(i)H
MV S
O,(i) ξ

O
k,(i) + fMO,(i) + λvf

V
O,(i) + λsf

S
O,(i),

JMV S
O,(ii)(ξ

O
k,(ii)) = E{JO,(ii)(ξ̃O,(ii))}+ λvD{JO,(ii)(ξ̃O,(ii))}+ λsS{JO,(ii)(ξ̃O,(ii))},

= ξO
⊤

k,(ii)H
MV S
O,(ii)ξ

O
k,(ii) + fMO,(ii) + λvf

V
O,(ii) + λsf

S
O,(ii),

(3.28a)
Furthermore,

J̄MV S
O,(i) (ξ

O
k,(i)) = JMV S

O,(i) (ξ
O
k,(i))− fMO,(i) − λvf

V
O,(i) − λsf

S
O,(i),

J̄MV S
O,(ii)(ξ

O
k,(ii)) = JMV S

O,(ii)(ξ
O
k,(ii))− fMO,(ii) − λvf

V
O,(ii) − λsf

S
O,(ii),

(3.28b)
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and in particular

min
u[0,Np−1]|k

JMV S
O,(i) (ξ

O
k,(i)) = min

u[0,Np−1]|k
J̄MV S
O,(i) (ξ

O
k,(i)) + fMO,(i) + λvf

V
O,(i) + λsf

S
O,(i),

arg min
u[0,Np−1]|k

JMV S
O,(i) (ξ

O
k,(i)) = arg min

u[0,Np−1]|k
J̄MV S
O,(i) (ξ

O
k,(i)),

min
u[0,Np−1]|k

JMV S
O,(ii)(ξ

O
k,(ii)) = min

u[0,Np−1]|k
J̄MV S
O,(ii)(ξ

O
k,(ii)) + fMO,(ii) + λvf

V
O,(ii) + λsf

S
O,(ii),

arg min
u[0,Np−1]|k

JMV S
O,(ii)(ξ

O
k,(ii)) = arg min

u[0,Np−1]|k
J̄MV S
O,(ii)(ξ

O
k,(ii)).

(3.28c)

Proof. The proof follows exactly same steps with the proofs of Lemmas 3.1.1-3.1.2-3.1.3,
hence we refer the reader to the proofs in [317].

We stress the fact that the minimization of JM
O,(i)(ξ

O
k,(i)) or JM

O,(ii)(ξ
O
k,(ii)) over uj|k for mean

MPC formulations5 is equivalent to the minimization of the corresponding cost functions in
Equation (3.25) in the sense that

PM
O,(i) :


u
∗,(i)
[0,Np−1]|k = arg min

u[0,Np−1]|k
J̄M
O,(i)(ξ

O
k,(i)),

subject to x̄i+1|k = Ax̄i|k +Bui|k,
ȳi|k = Cxi|k, x̄0|k = xk, i ∈ Z[0,Np−1].

(3.29a)

PM
O,(ii) :


u
∗,(ii)
[0,Np−1]|k = arg min

∆u[0,Np−1]|k
J̄M
O,(ii)(ξ

O
k,(ii)),

subject to x̄i+1|k = Ax̄i|k +Bui|k,
ȳi|k = Cxi|k, x̄0|k = xk, i ∈ Z[0,Np−1],
∆uj = uj − uj−1.

(3.29b)

define the optimal solutions for the output tracking Mean MPC problems.

Remark 3.1.3 In many cases, processes (with nonlinear behaviour) are operated in various
operating conditions or over an operating trajectory. Once a process is controlled around
multiple operating points (or equivalently around an trajectory) we observe, in general, a
time varying linear dynamical behaviour in the deviation variables as an approximation of
the full dynamics. If we assume access to nominally known time-varying linear dynamics,
say in LTV (Ak, Bk, Ck, Dk) or in LPV (A(p), B(p), C(p), D(p) setting, then the moment-
based MPC formulations can be extended by incorporating time varying effects into the
definitions of ΘC and TB,C .

Moment-based MPC with Affine Disturbance Feedback Control Laws

A crucial observation in [138] is the incorporation of future uncertain perturbations wj|k
into the control law formulation for uj+i|k, i ≥ 1. If one parametrizes the control law as

uj|k = hj|k +
j−1∑
i=0

Ki|k,jwi|k, (3.30)

5The MV or MVS MPC cases, mutadis mutandis, follow with the same reasoning.
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where

Kk =


0 0 . . . 0 0

K0|k,1 0 . . . 0 0
K0|k,2 K1|k,2 . . . 0 0

...
...

. . .
...

...
K0|k,Np−1 K1|k,Np−1 . . . KNp−2|k,Np−1 0

 , (3.31)

then the future realizations of uncertainty are causally incorporated into the future control
actions to correct the state (equivalently output) predictions. Then the control law formu-
lation given in Equation (3.30) leads to a convex optimization problem if one considers the
cost function JM

O,(i) in Equation (3.45a), see [138]. Hence, one might improve the closed-
loop performance by incorporating the precompensator Kk while taking advantage of the
convexity properties of the resulting MPC problem. In the following we extend the moment-
based MPC formulations for affine disturbance feedback control parametrization case.

First, we evaluate the mean of the cost function given in Equation (3.20a) with the con-
trol actions are parameterized as in Equation (3.30). The explicit form of the resulting cost
function, denoted with JM

O,adf (ξ
O
k ), is summarized in Lemma 3.1.4.

Lemma 3.1.4 Consider an LTI stochastic dynamical system Σadd as in Equation (3.19b)
subject to Assumption 3.1.2, a reference trajectory rk, k ∈ Z≥0 and the cost function
JO,(i)(ξ̃

O
k ) in Equation (3.20a). If the control actions in Mean MPC problem are paramter-

ized as in Equation (3.30), then the cost function of Mean-MPC problem is given as

JM
O,adf (ξ

O
k ,Kk) = ξO

⊤

k HM
adfξ

O
k + Tr

(
M⊤

k,adf Q̄Mk,adf Σ̄
Np
w + Q̄Σ̄Np

v

)
, (3.32)

where

HM
adf :=

 Θ⊤
CQ̄ΘC (⋆) (⋆)

T⊤
B,CQ̄ΘC T⊤

B,CQ̄TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C Ī
N⊤

p
ny Q̄Ī

Np
ny


Mk,adf := TB,CKk + TF,C ,

ξO
⊤

k,adf =
[
x⊤0|k h⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
.

(3.33)

Furthermore, by using the linearity properties of the trace operator,

J̄M
O,adf (ξ

O
k,(i),Kk) =

Np−1∑
j=0

x̄⊤j|kQx̄j|k + u⊤j|kRuj|k+

Np−1∑
j=1

Np−1∑
i=j

Tr
(
M⊤

i|k,j−1QMi|k,j−1Σwj−1|k

)
,

J̄M
O,adf (ξ

O
k,(i),Kk) = JM

O,adf (ξ
O
k,(i),Kk)− Tr(Q̄Σ̄

Np
v ),

(3.34)

where x̄j|k is the prediction at time step j obtained from the nominal system Σnom in Equa-
tion (3.19a) with the input actions h[0,j−1]|k.
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Proof. First we express the evolution of Σadd dynamics with the affine disturbance feedback

parametrization of the input signal uj|k = hj|k +
j−1∑
i=0

Ki|k,jwi|k, i.e.,

Σadd
adf :

 xj+1|k = Axj|k +Bhj|k + Fwj|k +B
j−1∑
i=0

Ki|k,jwi|k,

yj|k = Cxk + vk.

Then the output predictions can be expressed as

y[0,Np−1]|k = ΘCx0|k+TB,Ch[0,Np−1]|k+(TB,CKk+TF,C)w[0,Np−1]|k+Ī
N⊤

p
ny v[0,Np−1]|k.

Using the last expression in the cost function JO,(i)(ξ̃
O
k,(i) leads to a function similar to the

cost function JM
O,(i)(ξ

O
k,(i)) in Theorem 3.1.4, with the exception of term fM . In the case of

affine disturbance feedback parameterization, the fM term contains the decision variables
Kk in its definition, i.e.,

fM = Tr
(
(T

Np

B,CKk + T
Np

F,C)
⊤Q̄(T

Np

B,CKk + T
Np

F,C)Σ̄
Np
w + Q̄Σ̄Np

v

)
.

Then the proof follows by straightforward algebraic operations for calculating the cost func-
tion J̄M

O,adf (ξ
O
k,(i),Kk).

So the minimization of JM
O,adf (ξ

O
k,(i),Kk) in Equation (3.32) over (h[0,Np−1]|k,Kk) is equiv-

alent to the minimization of the cost function J̄M
O,adf (ξ

O
k,(i),Kk) in Equation (3.34) in the

sense that

PM
O,adf :


(h∗[0,Np−1]|k,K

∗
k) = arg min

h[0,Np−1]|k,Kk

J̄M
O,adf (k),

subject to x̄i+1|k = Ax̄i|k +Bhi|k,
ȳi|k = Cxi|k, x̄0|k = xk, i ∈ Z[0,Np−1],

(3.35)

defines an optimal solution u∗[0,Np−1]|k = h∗[0,Np−1]|k +K∗
kw[0,Np−1]|k for the mean MPC

problem with affine disturbance feedback structure.

Remark 3.1.4 The moment-based MPC formulations for higher order moment cases, such
as MV or MVS MPC, yield cost functions that are consisting of fourth (or more) order
terms of the decision variables. This increases the complexity of the optimization problem
tremendously and thus we do not report these cases here.

3.1.3 Possible Extensions and Further Discussion on the Moment-based MPC

4th order Moment Case

In this section we consider the fourth order moment case, constructed as the linear combi-
nation of first four (centralized) moments. For this purpose, the cost function JO,(i)(ξ̃

O
k,(i))

given in Equation (3.23) is manipulated6.

JMV SK
O,(i) (ξOk,(i)) = JMV S

O,(i) (ξ
O
k,(i)) + λKK{JO,(i)(ξ̃

O
k,(i))},

6For simplicity we assume that there is no output noise in the dynamics Σadd, i.e., vk = 0, k ∈ Z≥0.

91



Chapter 3. Moment-based Model Predictive Control Problem for Linear Systems with
Additive Perturbations

where K{JO,(i)(ξ̃
O
k,(i))} = E{(JO,(i)(ξ̃

O
k,(i)) − E{JO,(i)(ξ̃

O
k,(i))})

4}. In this case the com-
putational complexity of the resulting optimization problem has undesired properties. To
demonstrate this fact, we explicitly express the fourth order moment MPC. Since we al-
ready have the explicit expressions for the first three terms derived in Theorem 3.1.4, only
K{JO,(i)(ξ̃

O
k,(i))} term is treated here. We express the term K{JO,(i)(ξ̃

O
k,(i))} as

K{JO,(i)(ξ̃
O
k,(i))} =E{(JO,(i)(ξ̃

O
k,(i))− E{JO,(i)(ξ̃

O
k,(i))})

4},

=E{(2∆J1(x0) + 2∆J2(u) + ∆J3(w)−∆J4)
4},

=ξO
⊤

k,(i)HK(xk, u[0,Np−1]|k)ξ
O
k,(i)

(3.36a)

where

HK(x, u) =

 Θ
⊤

CQ̄K(x, u)ΘC (⋆) (⋆)

T
⊤

B,CQ̄K(x, u)ΘC T
⊤

B,CQ̄K(x, u)TB,C (⋆)

−ĪN
⊤
p

ny Q̄K(x, u)ΘC −ĪN
⊤
p

ny Q̄K(x, u)TB,C Ī
N⊤

p
ny Q̄K(x, u)Ī

Np
ny

 ,
(3.36b)

and

Q̄K(x, u) = E
{
Q̄TFw[0,Np−1]|khK (x, u, w)w

⊤

[0,Np−1]|kT
⊤

F Q̄
}
,

∆J1(x0) = x⊤0 Θ
⊤
CQ̄TF,Cw[0,Np−1]|k,

∆J2(u) = u⊤[0,Np−1]|kT
⊤
B,CQ̄TF,Cw[0,Np−1]|k,

∆J3(w) = w⊤
[0,Np−1]|kT

⊤
F,CQ̄TF,Cw[0,Np−1]|k,

∆J4 = Tr
(
T⊤
F,CQ̄TF,CΣ̄w

)
.

(3.36c)

In Equation (3.36c), the term hK(x, u, w) is given by

hK(x, u, w) := 16
(
x

⊤

0|kΘ
⊤

CQ̄TF,Cw[0,Np−1]|k + u
⊤

[0,Np−1]|kT
⊤

B,CQ̄TF,Cw[0,Np−1]|k

)2
+ . . .

24
(
w⊤

[0,Np−1]|kT
⊤
F,CQ̄TF,Cw[0,Np−1]|k − Tr(T⊤

F,CQ̄TF,CΣ̄
Np
w )
)2

+ . . .

8
(
w⊤

[0,Np−1]|kT
⊤
F,CQ̄TF,Cw[0,Np−1]|kTr(T

⊤
F,CQ̄TF,CΣ̄

Np
w )
)
.

(3.36d)
Since the term hK(x, u, w) contains the second order forms depending on the state xk and
the input actions u[0,Np−1]|k, the cost function of 4th-order moment MPC is resulting in a

nonlinear matrix HK(x, u). Then the expression K
{
JO,(i)

(
ξ̃Ok,(i)

)}
contains fourth order

terms of the optimization variables. This leads to an undesired increase in the complexity
of the resulting optimization problem. Further research is required to express high order
centralized moments in convex and compact form.

Observations on the Closed-loop Performance of Moment-based MPC

Here, we do not present stability results for the reference tracking problem via moment-
based MPC. The stability problem for state regulation purposes is tackled in previous sec-
tion, or in [317], which might be extended for the case of output reference tracking case by
using the the mean-square stability (MS-stability) concept ([191]) and guaranteeing observ-
ability property via dynamics and the output weighting matrix.
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One important observation on the moment-based MPC formulation is that for linear
dynamics with additive disturbances, i.e., Σadd, the mean, MV or MVS MPC problems
can be expressed as deterministic optimization problems that are constrained to the nominal
system dynamics, i.e., Σnom. This means that the resulting optimization problem is highly
structured and can be solved with the same computational requirements of the nominal MPC
problem. This structure has momentous advantages in comparison to the other robust MPC
formulations by discarding the explicit maximization step over uncertainties or by elevating
the problem from optimization over quantiles of the cost functions. The scenario based MPC
formulations have similar computational complexity properties with moment-based MPC,
yet these MPC methods are also prone to performance deterioration due to the possibility
of extreme, yet highly unlikely, elements within the uncertainty scenarios set. In this line of
reasoning, moment-based MPC is expected to reflect the aggregated, and on average true,
effect of uncertainties within the dynamical evolution.

One further observation is that within the resulting moment-based MPC problems, the
input weighting matrix R does not change over prediction stages j, j ∈ Z[0,Np−1] for
mean, MV or MVS MPC formulations. On the other hand, the Q matrix, weighting the
outputs (equivalently the states), accumulates the effects of predicted disturbances over the
stages j ≥ 1. At every prediction instant symmetric terms corresponding to the variance
of disturbances upto that prediction stage is added to the QMV

j , or equivalently QMV S
j .

Furthermore, the MV and MVS MPC formulations introduce cross-multiplication of outputs
that are predicted to be corrupted with the same disturbance signals, since these outputs are
cross correlated with each other. Thus the moment-based MPC weights QMV

i,j reflect the
cross-correlation in between the output predictions. Since at the first prediction step, the
current output value is not correlated with predicted outputs at the later stages, the QMV

0,j

terms are equal to zero. We demonstrate the output weighting matrices in Figure 3.1, which
visualizes the changes in mean (hence nominal) MPC, MV MPC and MVS MPC for three
simple systems; we consider a two state system, one of them integrating the other state, and
vary the pole locations for; a stable pair case (pi = 0.9, Figure 3.1a), a marginally stable
case (pi = 1, Figure 3.1b) and an unstable pole pair case (pi = 1.1, i = 1, 2, Figure 3.1c).
In these examples, the system is excited by control input from first (integrated) state and
measured from the second state, while disturbances are acting on both of the states. The
noise covariances are selected as Σw = I2, Σv = 1, the prediction horizon7 is taken as
Np = 100 and risk aversion factors are taken as λv = 1, λs = 1.

The last observation that we mention here is connected to the frequency domain char-
acteristics of the closed-loop systems. Since the controller resulting from an unconstrained
MPC problem is equivalent to a static feedback controller, one can evaluate the changes in
the closed-loop characteristics. Traditionally, the output weighting matrix Q is tuned, while
keeping the R matrix constant, to result in desired closed-loop characteristics. Without any
further analysis, it can be claimed that as the output weighting matrix grows in magnitude,
the controller becomes more and more aggressive. Since in moment-based MPC, the output
weighting matrix grows, the MV and MVS MPC formulations are expected to increase the
bandwidth of the system and introduce lead action to the closed-loop process. We demon-

7In moment-based MPC problems, the prediction horizon can be extended till the nominal problem becomes
intractable with the available computing devices, which is not the case in other RMPC methods.
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(a) The values of Q̄, Q̄MV and Q̄MV S matrices for system with stable poles (pi =

0.9).
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(b) The values of Q̄, Q̄MV and Q̄MV S matrices for a marginally stable system.
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(c) The values of Q̄, Q̄MV and Q̄MV S matrices for a system with unstable poles
(pi = 1.1).

Figure 3.1: Comparison of Q̄(·) matrix for different system structures.

strate this through the simulation example used above. We report the closed-loop sensitivity
functions and the phase response of the closed-loop systems the marginally stable case in
Figure 3.2. As can be observed from the figures, as the output (or state) weighting matrices
for MV and MVS MPC cases, i.e., QMV

j|k or QMV S
j|k , (stage-wise) increases in comparison

94



3.1. Effect of Disturbances on Moment-based MPC Formulations

0 50 100 150 200 250

Time

-1.5

-1

-0.5

0

0.5

1

1.5

O
ut

pu
t

Output Scenarios

(a) The sine wave tracking with different moment-based MPC for-
mulations.

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (

dB
)

From: du  To: u

10 -2 10 -1 100 101
0

45

90

135

180

P
ha

se
 (

de
g)

Sensitivity Function

Frequency  (rad/s)

(b) The sensitivity function of closed-loop system with different
moment-based MPC formulations.

Figure 3.2: The sensitivity function of closed-loop system with different moment-based
MPC formulations.

to the nominal output weighting matrix Q, the resulting controller gain for MV and MVS
MPC cases increases. This leads to an increase in the closed-loop bandwidth. Describing
the change in bandwidth (or phase response) according to the tuning parameter selection of
λv or λs is left as a future research subject.

95



Chapter 3. Moment-based Model Predictive Control Problem for Linear Systems with
Additive Perturbations

Linear Cost Functions

One drawback of moment-based MPC can be observed if one considers cost functions con-
taining only the linear terms of outputs (equivalently the states). Let us consider a (linear)
cost function JL : Rnx × RNpnu → R as

JL(xk, u[0,Np−1]|k) =
Np−1∑
j=0

c⊤y,j(yj|k − rj|k) + c⊤u,juj|k,

=
Np−1∑
j=0

⟨cy,j , yj|k − rj|k⟩+ ⟨cu,j , uj|k⟩,
(3.37)

where cy,i ∈ Rny , cu,i ∈ Rnu , i = 0, . . . , Np − 1.
It is straightforward to show that, by using the reasoning provided in Lemma 3.1.1, the

Mean MPC the cost function JM
L (ξOk,(i)) = E{JL(ξ̃Ok,(i))} is resulting with the nominal

predictions of outputs, i.e.,

JM
L (xk, u[0,Np−1]|k) =

Np−1∑
j=0

⟨cy,j , ȳj|k − rj|k⟩+ ⟨cu,j , uj|k⟩,

and hence resulting in the same optimal control action with the nominal MPC formulation.
To overcome the detrimental effects of perturbations we incorporate high order statistics
and observe that,

E{(JL(ξ̃Ok,(i))− E{JL(ξ̃Ok,(i))})
m} = E

{(
Np−1∑
i=0

⟨
cy,j , C

j−1∑
i=0

Aj−1−iFwi|k + vj|k

⟩)m}
.

(3.38)
These terms are functions of decision variables u[0,Np−1]|k for anym > 1 and thus does not
change the optimal control action.

In order to incorporate the effect of spread into the robust counterpart cost functions for
higher order moments, one can consider polytopic norms, i.e., the infinity norm (∥(·)∥∞)
or the 1-norm (∥(·)∥1). However expectations of uncertain variables with these norms are
far from trivial to express explicitly and generally lead to non-convex functions of initial
condition x0|k and control actions uj|k. Hence it is expected that moment-based MPC
formulations result in undesirable increase in the computational complexity of the MPC
problem. Simplifications and possible relaxations for the mentioned norms are currently an
ongoing research activity.

Costs with Explicit Uncertain Terms

Another common selection for the MPC cost function is the cost functions containing distur-
bance terms explicitly. These type of costs are used to cancel the tail effects of uncertainties
after the prediction horizon, see [235]. Here we demonstrate the effect of the explicit dis-
turbance terms for the moment-based MPC formulations. For this purpose consider the cost
function JW (ξ̃k) which is defined through the outputs, inputs and additive disturbances of
the system Σadd as

JW (ξ̃k) =

Np−1∑
j=0

(yj|k − rj|k)
⊤Q(yj|k − rj|k) + u⊤j|kR1uj|k − w⊤

j|kR2wj|k. (3.39)
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For this cost function we summarize the effect of explicit disturbance terms in Lemma 3.1.5

Lemma 3.1.5 Given a LTI dynamical system Σadd as in Equation (3.1b) and a reference
trajectory to follow rk, k ∈ Z≥0, the cost functions for mean, MV and MVS MPC formula-
tions, for the cost function JW in Equation (3.39), are given as

JM
W (ξk) = ξ⊤k H

M
W ξk + fMW ,

JMV
W (ξk) = ξ⊤k H

MV
W ξk + fMW + λvf

V
W ,

JMV S
W (ξk) = ξ⊤k H

MV S
W ξk + fMW + λvf

V
W + λsf

S
W ,

(3.40a)

where

ξ⊤k =
[
x⊤0 u⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
,

HM
W =

Θ
⊤
Np,C

Q̄ΘNp,C (⋆) (⋆)

T
N⊤

p

B,CQ̄ΘNp,C T
N⊤

p

B,CQ̄T
Np

B,C, + R̄1 (⋆)

−Ī⊤Np
Q̄ΘNp,C −Ī⊤Np

Q̄T
Np

B,C Ī⊤Np
Q̄ĪNp

 ,
HMV

W =

Θ
⊤
Np,C

Q̄MV
W ΘNp,C (⋆) (⋆)

T
N⊤

p

B,CQ̄
MV
W ΘNp,C (T

N⊤
p

B,CQ̄
MV
W T

Np

B,C + R̄1 (⋆)

−Ī⊤Np
Q̄MV

W ΘNp,C −Ī⊤Np
Q̄MV

W T
Np

B,C Ī⊤Np
Q̄MV

W ĪNp

 ,
HMV S

W =

Θ
⊤
Np,C

Q̄MV S
W ΘNp,C (⋆) (⋆)

T
N⊤

p

B,CQ̄
MV S
W ΘNp,C T

N⊤
p

B,CQ̄
MV S
W T

Np

B,C + R̄1 (⋆)

−Ī⊤Np
Q̄MV S

W ΘNp,C −Ī⊤Np
Q̄MV S

W T
Np

B,C Ī⊤Np
Q̄MV S

W ĪNp

 ,
(3.40b)

Q̄MV
W = Q̄+ 4λvQ̄ῩW Q̄,

Q̄MV S
W = Q̄MV

W + 24λsQ̄βW,R2Q̄,

ῩW := T
Np

F,CΣ̄
Np
w T

N⊤
p

F,C + Σ̄
Np
v ,

βW,R2 = T
Np

F,CΣ̄
Np
w (T

N⊤
p

F,C Q̄T
Np

F,C −R2)Σ̄
Np
w T

N⊤
p

F,C .

(3.40c)

3.2 Generalization of Moment-based MPC Formulations for Additive
Perturbations with Even Distribution Functions

In this section, we change the characteristics of additive uncertainties to generalize the re-
sults for the moment-based MPC towards random variables that are not distributed with
Gaussian pdfs. We consider the LTI system with additive disturbances, i.e., Σadd, but in
this case we assume that the perturbations wk and vk are distributed with pdfs that have
even characteristics (symmetric distribution function w.r.t. zero). Similar to the previous
sections, we consider quadratic cost function JO,(i)(ξ̃k) as in Equation (3.20a), but here we
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denote the cost function with JO,E(ξ̃k) to highlight the even pdf characteristics8, i.e.,

JO,E(ξ̃k) =

Np−1∑
j=0

(yj|k − rj|k)
⊤Q(yj|k − rj|k) + uj|kRuj|k, (3.41)

where ξ̃k =
[
x⊤0|k u⊤[0,Np−1]|k w⊤

[0,Np−1]|k v⊤[0,Np−1]|k r⊤[0,Np−1]|k

]⊤
.Under this set-

ting, we formulate the moment-based MPC problems, specifically mean, MV or MVS MPC
problems, for non-Gaussian but even random variables. The deterministic cost functions
projected via moment operators are defined as

JM
O,E(ξk) :=E{JO,E(ξ̃k)}, (3.42a)

JMV
O,E (ξk) :=E{JO,E(ξ̃k)}+ λvD{JO,E(ξ̃k)}, (3.42b)

JMV S
O,E (ξk) :=E{JO,E(ξ̃k)}+ λvD{JO,E(ξ̃k)}+ λsS{JO,E(ξ̃k)}, (3.42c)

where ξk is defined as in Equation (3.21). Before providing the explicit forms of the cost
functions of Mean, MV and MVS MPC, we use the results provided in Lemma 3.2.1 for the
calculation of higher order centralized moments of the quadratic forms in the cost function
JO,E(ξ̃k).

Lemma 3.2.1 Consider an LTI stochastic dynamical system Σadd as in Equation (3.19b), a
reference trajectory rk, k ∈ Z≥0 and disturbances wk and vk in Σadd being non-Gaussian
random variables that are subject to Assumption 3.1.2. Given the quadratic cost function
JO,E(ξ̃k) as in Equation (3.41), then, for any k ∈ Z≥0, p1 ∈ Rnw , P1 ∈ Rnw×nw and
P = P⊤ ∈ Rnw×nw , the following statements are true;

• For JM
O,E(ξk);

E{p⊤1 wk} = 0,

• For JMV
O,E (ξk);

E{p⊤1 wkw
⊤
k P1wk} = 0,

E{p⊤1 wkw
⊤
k p1} = p⊤1 Σ̄

Np
w p1.

• For JMV S
O,E (ξk);

E{p⊤1 wkw
⊤
k Pwkw

⊤
k p1} = p⊤1 βw,1p1,

E{p⊤1 wkw
⊤
k p1Tr(PΣw)} = p⊤1 βw,2p1,

where

βw,1 =


E{[w]41}P1,1 + fβ(1) 2σ2

1σ
2
2P1,2 . . . 2σ2

1σ
2
nw
P1,nw

2σ2
2σ

2
1P2,1 E{[w]42}P2,2 + fβ(2)

. . . 2σ2
2σ

2
nw
Pnw,2

...
. . .

. . .
...

2σ2
1σ

2
nw
Pnw,1 2σ2

2σ
2
nw
Pnw,2 . . . E{[w]4nw

}Pnw,nw + fβ(nw)

 ,
(3.43a)

8We, also, assume that the state xk is correctly and fully measurable at every time instant, for simplicity.
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βw,2 =



σ2
1

nw∑
i=1

Pi,iσ
2
i 0 . . . 0

0 σ2
2

nw∑
i=1

Pi,iσ
2
i

. . . 0

...
. . .

. . .
...

0 0 . . . σ2
nw

nw∑
i=1

Pi,iσ
2
i


, (3.43b)

where fβ(i) =
∑

j∈Ji

Pj,jσ
2
jσ

2
i , Ji = Z[1,nw]\{i}.

Proof.
For the first and the second claims, we show that the odd order centralized moments of
random variables with even pdf are zero. Assuming g(w) is an odd function, and denoting
the pdf of w with fw̃(w),

E{g(w)} =

∞∫
−∞

g(w)fw̃(w)dw = −
∞∫
0

g(w)fw̃(w)dw +

∞∫
0

g(w)fw̃(w)dw = 0.

The third claim is a trivial reformulation of the definition of the covariance matrix. Lastly,
for the terms in MVS-MPC formulations, it is straightforward to see the claim for βw,2. For
βw,1, explicitly evaluating the expectation operation yields the claimed result by using the
properties of expectations of odd order combinations.

With the results stated in Lemma 3.2.1, one can make use of different types of uncertainty
distributions to adjust the perceived affects of uncertainty. Next, we state that the determin-
istic counterparts of moment-based MPC cost functions for the Theorem 3.2.1.

J̄M
O,E(ξk) = ξ⊤k H

M
O,Eξk, (3.44a)

J̄MV
O,E (ξk) = ξ⊤k H

MV
O,E ξk, (3.44b)

J̄MV S
O,E (ξk) = ξ⊤k H

MV S
O,E ξk, (3.44c)

where

HM
O,E =

 Θ⊤
CQ̄ΘC (⋆) (⋆)

T⊤
B,CQ̄ΘC T⊤

B,CQ̄TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C Ī
N⊤

p
ny Q̄Ī

Np
ny

 , (3.44d)

HMV
O,E =

 Θ⊤
CQ̄

MV
O,EΘC (⋆) (⋆)

T⊤
B,CQ̄

MV
O,EΘNp,C T⊤

B,CQ̄
MV
O,ETB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV
O,EΘC −ĪN

⊤
p

ny Q̄MV
O,ETB,C Ī

N⊤
p

ny Q̄MV
O,E Ī

Np
ny

 , (3.44e)

HMV S
O,E =

 Θ⊤
CQ̄

MV S
O,E ΘC (⋆) (⋆)

T⊤
B,CQ̄

MV S
O,E ΘC T⊤

B,CQ̄
MV S
O,E TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV S
O,E ΘC −ĪN

⊤
p

ny Q̄MV S
O,E TB,C Ī

N⊤
p

ny Q̄MV S
O,E Ī

Np
ny

 , (3.44f)
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Q̄MV
O,E = Q̄+ 4λvQ̄ῩO,EQ̄,

Q̄MV S
O,E = Q̄MV

O,E + 24λsQ̄Υ̃O,EQ̄,
(3.44g)

ῩO,E = TF,CΣ̄
Np
w T⊤

F,C + Σ̄
Np
v ,

Υ̃O,E := Γ̄w,E(T
N⊤

p

F,C Q̄T
Np

F,C) + Γ̄v,E(Q̄),
(3.44h)

Γ̄w,E(Q) = Γ̄⊤
w,E(Q) :=

{
(E{[w̃]4i } − σ4

w̃i
)Q(i, i), (i, i)th entry

2σ2
w̃i
σ2
w̃j
Qi,j (i, j)th entry (3.44i)

Σ̄
Np
w = INp ⊗ Σw,

Σ̄
Np
v = INp ⊗ Σv,

(3.44j)

Theorem 3.2.1 Consider an LTI stochastic dynamical system Σadd as in Equation (3.19b)
subject to Assumption 3.1.2 and a reference trajectory rk, k ∈ Z≥0. Then;

• The cost function for Mean MPC problem with the stochastic cost function JO,E(ξ̃k) defined
in Equation (3.41) satisfy

JM
O,E(ξk) = E{JO,E(ξ̃k)},

= ξ⊤k H
M
O,Eξk + fMO,E ,

(3.45a)

Furthermore,
J̄M
O,E(ξk) = JM

O,E(ξk)− fMO,E , (3.45b)

and in particular

min
u[0,Np−1]|k

JM
O,E(ξk) = min

u[0,Np−1]|k
J̄M
O,E(ξk) + fMO,E ,

arg min
u[0,Np−1]|k

JM
O,E(ξk) = arg min

u[0,Np−1]|k
J̄M
O,E(ξk),

(3.45c)

• The cost function for MV MPC problem with the stochastic cost function JO,E(ξ̃k) Equation
(3.41) is given by

JMV
O,E (ξk) = E{JO,E(ξ̃k)}+ λvD{JO,E(ξ̃k)},

= ξ⊤k H
MV
O,E ξk + fMO,E + λvf

V
O,E ,

(3.46a)

Furthermore,
J̄MV
O,E (ξk) = JMV

O,E (ξk)− fMO,E − λvf
V
O,E , (3.46b)

and in particular

min
u[0,Np−1]|k

JMV
O,E (ξk) = min

u[0,Np−1]|k
J̄MV
O,E (ξk) + fMO,E + λvf

V
O,E ,

arg min
u[0,Np−1]|k

JMV
O,E (ξk) = arg min

u[0,Np−1]|k
J̄MV
O,E (ξk).

(3.46c)
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• The cost function for MVS MPC problem with the stochastic cost function JO,E(ξ̃k) in
Equation (3.41) is given by

JMV S
O,E (ξk) = E{JO,E(ξ̃k)}+ λvD{JO,E(ξ̃k)}+ λsS{JO,E(ξ̃k)},

= ξ⊤k H
MV S
O,E ξk + fMO,E + λvf

V
O,E + λsf

S
O,E .

(3.47a)

Furthermore,

J̄MV S
O,E (ξk) = JMV S

O,E (ξk)− fMO,E − λvf
V
O,E − λsf

S
O,E , (3.47b)

and in particular

min
u[0,Np−1]|k

JMV S
O,E (ξk) = min

u[0,Np−1]|k
J̄MV S
O,E (ξk) + fMO,E + λvf

V
O,E + λsf

S
O,E ,

arg min
u[0,Np−1]|k

JMV S
O,E (ξk) = arg min

u[0,Np−1]|k
J̄MV S
O,E (ξk).

(3.47c)

Proof. The proof follows from the results of Lemmas 3.2.1-3.1.1-3.1.2-3.1.3.

To highlight the dependency on the uncertainty model we present Table 3.1, in which the
variance and the fourth order moment values of some standard even pdf random variables
are reported. By selecting the distribution function, the designer is able to adjust the risk-
awareness of the closed-loop system, see Figure 3.3.

Even
Uncertainty

Type

Characteristic
Values

Variance Term 4th Order Term

Uniform
Distribution

w̃ ∈ U(−a, a) 1
12
4a2INp

1
80
16a4INp

Triangular
Distribution

w̃ ∈ T (−a, a, 0) 1
18
3a2INp

1
135

9a4INp

Logistic
Distribution

w̃ ∈ Lo(0, b) 1
3
π2b2INp

7
15
π4b4INp

Laplacian
Distribution

w̃ ∈ La(0, b) 2b2INp 24b4INp

Arcsine
Distribution

w̃ ∈ A(−a, a) 1
8
4a2INp

3
8
a4INp

Table 3.1: An overview of even pdfs and corresponding MV and MVS weighting terms.

3.3 Output Tracking Moment-based MPC with Corrupted Initial Con-
dition

So far, we assumed the current state is fully accessible by the MPC controller to be evaluated
in the optimization routine. In what follows we present the effect of the uncertainties in the
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Figure 3.3: The dependency of moment-based MPC formulations on the uncertainty model.

initialization point of the MPC problem. First we formulate the mean, MV and MVS MPC
problems for the system Σnom with the assumption that the initialized state is known upto
some uncertainty. Later we incorporate the additive perturbations and provide an algorithm
for output feedback MPC running with an state estimator in closed-loop.
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3.3.1 Cost Reformulations for Moment-based MPC With Initial Condition Mismatch

Here, we assume that the initial condition used in the MPC problem, i.e., x0|k, is differing
from the true state xk, but it is known upto some extent that is described by an uncertainty
with known characteristics, i.e.,

xk = x̄0|k + ζk, (3.48)

where we desire that the state that will be used in the moment-based MPC problem is pre-
dicted from the initial condition x̄0|k and with the dynamics Σnom in Equation (3.19a).
Since the distribution characteristics of the random variable ζk is known, one can incorpo-
rate the uncertain effects into the MPC formulation, similar to the additive perturbations.
Here, for simplicity, we assume that the random vector ζk is distributed with Gaussian dis-
tribution function, i.e., ζk ∈ N (0,Σζk). We consider the output reference tracking problem
for Σnom, hence no wk or vk effecting the evolution, thus using the cost function JO,I(ξ̃

O
k ),

JO,I(x̄k, u[0,Np−1]|k, ζk) =

Np−1∑
j=0

(ȳj|k − rj|k)
⊤Q(ȳj|k − rj|k) + u⊤j|kRuj|k, (3.49)

whereQ ⪰ 0, R ≻ 0 and, in contrast to the previous MPC problems, in this case the outputs
ȳj|k, j ∈ Z[0,Np−1]|k are random variables, due to ζk. Next we state the robust counterpart
MPC problems for the mean, MV and MVS MPc problems, where these problems are
defined through the cost functions,

JM
O,I(ξ

O
k ) := E{JO,I(ξ̃

O
k )},

JMV
O,I (ξOk ) := E{JO,I(ξ̃

O
k )}+ λvD{JO,I(ξ̃

O
k )},

JMV S
O,I (ξOk ) := E{JO,I(ξ̃

O
k )}+ λvD{JO,I(ξ̃

O
k )}+ λsS{JO,I(ξ̃

O
k )},

where
ξ̃Ok =

[
x̄⊤0|k u⊤[0,Np−1]|k ζ⊤k r[0,Np−1]|k

]⊤
,

ξOk =
[
x̄⊤0|k u⊤[0,Np−1]|k r[0,Np−1]|k

]⊤
,

We, also, define the following nominal MPC cost functions as,

J̄M
O,I(ξ

O
k ) = ξO

⊤

k HM
O,Iξ

O
k , (3.50a)

J̄MV
O,I (ξOk ) = ξO

⊤

k HMV
O,I ξ

O
k , (3.50b)

J̄MV S
O,I (ξOk ) = ξO

⊤

k HMV S
O,I ξOk , (3.50c)

where

HM
O,I =

 Θ⊤
CQ̄ΘC (⋆) (⋆)

T⊤
B,CQ̄ΘC T⊤

B,CQ̄TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C Ī
N⊤

p
ny Q̄Ī

Np
ny

 , (3.50d)

HMV
O,I =

 Θ⊤
CQ̄

MV
O,I ΘC (⋆) (⋆)

T⊤
B,CQ̄

MV
O,I ΘNp,C T⊤

B,CQ̄
MV
O,I TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV
O,I ΘC −ĪN

⊤
p

ny Q̄MV
O,I TB,C Ī

N⊤
p

ny Q̄MV
O,I Ī

Np
ny

 , (3.50e)
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HMV S
O,I =

Θ
⊤
C

¯Q, IMV S
O ΘC (⋆) (⋆)

T⊤
B,CQ̄

MV S
O,I ΘC T⊤

B,CQ̄
MV S
O,I TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV S
O,I ΘC −ĪN

⊤
p

ny Q̄MV S
O,I TB,C Ī

N⊤
p

ny Q̄MV S
O,I Ī

Np
ny

 , (3.50f)

Q̄MV
O,I = Q̄+ 4λvQ̄ῩO,IQ̄,

Q̄MV S
O,I = Q̄MV

O,I + 24λsQ̄ῩO,IQ̄ῩO,IQ̄,

ῩO,I = ΘCΣζkΘ
⊤
C .

(3.50g)

Theorem 3.3.1 Given an LTI dynamical system Σnom as in Equation (3.19a) and a refer-
ence trajectory rk, k ∈ Z≥0. Consider the moment-based MPC problem with cost function
JO,I(ξ̃

O
k as in Equation (3.49) and assume that there exists an initial condition mismatch

described as in Equation (3.48) with the characteristics given as ζk ∈ N (0,Σζk). Then;

• The cost function for Mean MPC problem with the stochastic cost function JO,I(ξ̃
O
k ), i.e.,

JM
O,I(ξ

O
k ), satisfy

JM
O,I(ξ

O
k ) = E{JO,I(ξ̃

O
k )},

= ξO
⊤

k HM
O,Iξ

O
k + fMO,I ,

(3.51a)

Furthermore the fMO,I term is constant and

J̄M
O,I(ξ

O
k ) = JM

O,I(ξ
O
k )− fMO,I , (3.51b)

and in particular

min
u[0,Np−1]|k

JM
O,I(ξ

O
k ) = min

u[0,Np−1]|k
J̄M
O,I(ξ

O
k ) + fMO,I ,

arg min
u[0,Np−1]|k

JM
O,I(ξ

O
k ) = arg min

u[0,Np−1]|k
J̄M
O,I(ξ

O
k ).

(3.51c)

• The cost function for MV MPC problem with the stochastic cost function JO,I(ξ̃
O
k ), i.e.,

JMV
O,I (ξOk ), satisfy

JMV
O,I (ξOk ) = E{JO,I(ξ̃

O
k )}+ λvD{JO,I(ξ̃

O
k )},

= ξO
⊤

k HMV
O,I ξ

O
k + fMO,I + λvf

V
O,I ,

(3.52a)

Furthermore,
J̄MV
O,I (ξOk ) = JMV

O,I (ξOk )− fMO,I − λvf
V
O,I , (3.52b)

and in particular

min
u[0,Np−1]|k

JMV
O,I (ξOk ) = min

u[0,Np−1]|k
J̄MV
O,I (ξOk ) + fMO,I + λvf

V
O,I ,

arg min
u[0,Np−1]|k

JMV
O,I (ξOk ) = arg min

u[0,Np−1]|k
J̄MV
O,I (ξOk ).

(3.52c)
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• The cost function for MVS MPC problem with the stochastic cost function JO,I , i.e., JMV S
O,I (ξOk ),

satisfy

JMV S
O,I (ξOk ) = E{JO,I(ξ̃O)}+ λvD{JO,I(ξ̃

O
k )}+ λsS{JO,I(ξ̃k)},

= ξO
⊤

k HMV S
O,I ξOk + fMO,I + λvf

V
O,I + λsf

S
O,I ,

(3.53a)

Furthermore,

J̄MV S
O,I (ξOk ) = JMV S

O,I (ξOk )− fMO,I − λvf
V
O,I − λsf

S
O,I , (3.53b)

and in particular

min
u[0,Np−1]|k

JMV S
O,I (ξOk ) = min

u[0,Np−1]|k
J̄MV S
O,I (ξOk ) + fMO,I + λvf

V
O,I + λsf

S
O,I ,

arg min
u[0,Np−1]|k

JMV S
O,I (ξOk ) = arg min

u[0,Np−1]|k
J̄MV S
O,I (ξOk ).

(3.53c)

Proof. The proof follows trivially from the proofs given in Lemmas 3.1.1-3.1.2-3.1.3, with
redefining the ζk as the exogenous signal w0|k which is assuming nonzero value only at
prediction stage j = 0 and setting all other disturbance to zero.

3.3.2 Reference Tracking with Output Feedback Moment-based MPC

In this section we present a complete result which incorporates both of the additive pertur-
bations wk and vk while the MPC controller is not receiving the full state information, i.e.,
ζk ̸= 0. For brevity, we assume that the controller is receiving the state estimates from a
Kalman filter that is designed beforehand. This means that the estimated state of Kalman
filter (x̂k|k) is used as the initialization state of the MPC problem x̄0|k.

Here we assume that Kalman filter is initialized with the initial estimate x̂0|0 ̸= x0, and
the initial state covariance matrix P0|0 := E{(x0 − x̂0|0)(x0 − x̄0|0)

⊤}. Furthermore, we
assume that at every time instant, the Kalman filter outputs an estimate of the true state, i.e.,
x̂k|k with a corresponding state covariance matrix Pk|k via the Kalman update equations
with the time varying gain matrix Lk := Pk|k−1C

⊤(C⊤Pk|k−1C +Σv)
−1, i.e.;

for the prediction step:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1,
Pk|k−1 = APk−1|k−1A

⊤ + FΣwF
⊤;

(3.54a)

and for the correction step:

x̂k|k = x̂k|k−1 + Lk(yk − Cx̂k|k−1),
Pk|k = Pk|k−1 −APk|k−1C

⊤(C⊤Pk|k−1C
⊤ +Σv)

−1CPk|k−1A
⊤.

(3.54b)

Once these estimates are accessible to the MPC controller, we set x̄0|k = x̂k|k and Σζk =
Pk|k and run the moment-based MPC algorithm. Next we construct the cost function
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JO,A(ξ̃
O
k ) from the stochastic output predictions generated via the system dynamics Σadd

similar to the case in Equation (3.2a), i.e.,

JO,A(ξ̃
O
k ) =

Np−1∑
j=0

(yj|k − rj|k)
⊤Q(yj|k − rj|k) + u⊤j|kRuj|k, (3.55)

where Q ⪰ 0, R ≻ 0 and

ξ̃O
⊤

k =
[
x̄⊤0|k u⊤[0,Np−1]|k ζ⊤k w⊤

[0,Np−1]|k v⊤[0,Np−1]|k r⊤[0,Np−1]|k

]
.

Similar to the previous moment-based MPC cases, we show that an MPC problem can be
formulated by using nominal dynamics Σnom which is equivalent9 to the moment-based
robust counterparts of JO,Aξ̃

O
k . We first define the deterministic cost functions as follows;

J̄M
O,A(ξ

O
k ) = ξO

⊤

k HM
O,Aξ

O
k , (3.56a)

J̄MV
O,A (ξOk ) = ξO

⊤

k HMV
O,A ξ

O
k , (3.56b)

J̄MV S
O,A (ξOk ) = ξO

⊤

k HMV S
O,A ξOk , (3.56c)

where
ξOk =

[
x̄0|k u[0,Np−1]|k r[0,Np−1]|k

]
(3.56d)

HM
O,A =

 Θ⊤
CQ̄ΘC (⋆) (⋆)

T⊤
B,CQ̄ΘC T⊤

B,CQ̄TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄ΘC −ĪN
⊤
p

ny Q̄TB,C Ī
N⊤

p
ny Q̄Ī

Np
ny

 , (3.56e)

HMV
O,A =

 Θ⊤
CQ̄

MV
O,AΘC (⋆) (⋆)

T⊤
B,CQ̄

MV
O,AΘNp,C T⊤

B,CQ̄
MV
O,ATB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV
O,AΘC −ĪN

⊤
p

ny Q̄MV
O,ATB,C Ī

N⊤
p

ny Q̄MV
O,AĪ

Np
ny

 , (3.56f)

HMV S
O,A =

Θ
⊤
C

¯Q,AMV S
O ΘC (⋆) (⋆)

T⊤
B,CQ̄

MV S
O,A ΘC T⊤

B,CQ̄
MV S
O,A TB,C + R̄ (⋆)

−ĪN
⊤
p

ny Q̄MV S
O,A ΘC −ĪN

⊤
p

ny Q̄MV S
O,A TB,C Ī

N⊤
p

ny Q̄MV S
O,A Ī

Np
ny

 , (3.56g)

Q̄MV
O,A = Q̄+ 4λvQ̄ῩO,AQ̄,

Q̄MV S
O,A = Q̄MV

O,A + 24λsQ̄ῩO,AQ̄ῩO,AQ̄,

ῩO,A := TF,CΣ̄
Np
w T⊤

F,C + Σ̄
Np
v +ΘCΣζkΘ

⊤
C ,

(3.56h)

The overall effect of the uncertainties wk, vk and the initial condition mismatch ζk, all
of which are independent from each other over time, is incorporated to the moment-based
MPC control structures as in Theorem 3.3.2.

9In the sense that the optimal input actions are equal to each other.
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Theorem 3.3.2 Given an LTI dynamical system Σadd as in Equation (3.19b), a reference
trajectory rk, k ∈ Z≥0, and consider the output feedback moment-based (Mean, MV and
MVS) MPC problems with cost function JO,A(ξ̃

O
k ) as in Equation (3.55). Assume that a

Kalman filter is designed for the system Σadd which results in the update relations as in
Equations (3.54a)-(3.54b). Then;

• The cost function for Mean MPC problem with the stochastic cost function JO,A(ξ̃
O
k ), i.e.,

JM
O,A(ξ

O
k ), satisfy

JM
O,A(ξ

O
k ) = E{JO,A(ξ̃

O
k )},

= ξO
⊤

k HM
O,Aξ

O
k + fMO,A,

(3.57a)

Furthermore the fMO,A term is constant and

J̄M
O,A(ξ

O
k ) = JM

O,A(ξ
O
k )− fMO,A, (3.57b)

and in particular

min
u[0,Np−1]|k

JM
O,A(ξ

O
k ) = min

u[0,Np−1]|k
J̄M
O,A(ξ

O
k ) + fMO,A,

arg min
u[0,Np−1]|k

JM
O,A(ξ

O
k ) = arg min

u[0,Np−1]|k
J̄M
O,A(ξ

O
k ).

(3.57c)

• The cost function for MV MPC problem with the stochastic cost function JO,A(ξ̃
O
k ), i.e.,

JMV
O,A (ξOk ), satisfy

JMV
O,A (ξOk ) = E{JO,A(ξ̃

O
k )}+ λvD{JO,A(ξ̃

O
k )},

= ξO
⊤

k HMV
O,A ξ

O
k + fMO,A + λvf

V
O,A,

(3.58a)

Furthermore,
J̄MV
O,A (ξOk ) = JMV

O,A (ξOk )− fMO,A − λvf
V
O,A, (3.58b)

and in particular

min
u[0,Np−1]|k

JMV
O,A (ξOk ) = min

u[0,Np−1]|k
J̄MV
O,A (ξOk ) + fMO,A + λvf

V
O,A,

arg min
u[0,Np−1]|k

JMV
O,A (ξOk ) = arg min

u[0,Np−1]|k
J̄MV
O,A (ξOk ).

(3.58c)

• The cost function for MVS MPC problem with the stochastic cost function JO,A(ξ̃
O
k ), i.e.,

JMV S
O,A (ξOk ), satisfy

JMV S
O,A (ξOk ) = E{JO,A(ξ̃O)}+ λvD{JO,A(ξ̃

O
k )}+ λsS{JO,A(ξ̃

O
k )},

= ξO
⊤

k HMV S
O,A ξOk + fMO,A + λvf

V
O,A + λsf

S
O,A,

(3.59a)

Furthermore,

J̄MV S
O,A (ξOk ) = JMV S

O,A (ξOk )− fMO,A − λvf
V
O,A − λsf

S
O,A, (3.59b)
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and in particular

min
u[0,Np−1]|k

JMV S
O,A (ξOk ) = min

u[0,Np−1]|k
J̄MV S
O,A (ξOk ) + fMO,A + λvf

V
O,A + λsf

S
O,A,

arg min
u[0,Np−1]|k

JMV S
O,A (ξOk ) = arg min

u[0,Np−1]|k
J̄MV S
O,A (ξOk ).

(3.59c)

Proof. First observe that a Kalman filter operating with outputs of an unconstrained linear
system leads to an observer gain Lk, hence one can make use of separation principle for
observer and controller design. Next, we denote the outputs of the Kalman filter x̂k|k and
Pk|k, in which, by definition, xk = x̂k|k + ζk, leading to initial condition mismatch as
in Equation (3.48) and the initial condition error characteristics given as ζk ∼ N (0,Σζk).
Set x̂k as the initial condition of the MPC routine, i.e., x̄0|k with the system Σnom and
use the results in Lemma 3.1.4 and 3.3.1 with the assumption that the uncertain effects are
independent from each other.

Now we state the full moment-based MPC problem for Mean, MV or MVS MPC cases. We
denote the MPC problem with P(·), where (·) can be any of M , MV or MV S.

P(·)
O,A :


min

u[0,Np−1]|k
J̄
(·)
O,A(ξ

O
k ),

subject to x̄i+1|k = Ax̄i|k +Bui|k,
ȳi|k = Cx̄i|k, i ∈ Z[0,Np−1],
x̄0|k = x̂k|k,Σζk = Pk|k;

(3.60)

where the optimal solution for all of the problems is denoted with u∗[0,Np−1]|k. Furthermore
for these cost functions of moment-based MPC formulations, one can apply Algorithm 1
for the output feedback MPC control law calculation.

Remark 3.3.1 Even though the value of ζk, the deviation of estimated state from the true
state, depends on instantaneous realizations of wj and vj , j ∈ Z[0,k], Assumption 3.1.2
leads to independence of ζk from wj|k over prediction stages j ∈ Z[0,Np−1].

3.4 Simulation Examples for Moment-based MPC with Perturbations
3.4.1 Regulation Problem

We apply the moment MPC technique to an example from [295]. The two state system with
the control action and disturbances effective on both of the states is given as,

xk+1 = Axk +Buk + wk,

A =

[
1 1
0 1

]
, B =

[
1
2
1

]
,

where wk ∼ N (0, 0.5), i.i.d. over the time index k. We present the trajectories initiated
from two different initial conditions for M-,MV- and MVS-MPC, comparing the closed-
loop performances, in the first case the disturbances are set to zero and in the second case
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Algorithm 1 Output Feedback Moment-based MPC Algorithm

Input: A system Σadd with known covariance matrices Σw, Σv together with an initial
state guess x̂0 and initial guess of covariance matrix Σζ0 . Set k = 0, x̄0|0 = x̂0|0 and
P0|0 = Σζ0 .

1: procedure RECEDING HORIZON OUTPUT FEEDBACK MOMENT MPC
2: Solve the corresponding moment-based MPC problem in P(·) in Equations

(3.60)according to the cost functions given in Theorem 3.3.2;
3: Apply the first term in the found optimal control sequence to the plant Σadd, proceed

to time k̂ = k + 1 and measure the new output yk̂;
4: Evaluate the Kalman updates, with the gain matrix Lk̂|k := Pk̂|kC

⊤(C⊤Pk̂|kC +

Σv)
−1;

5: i) Prediction step:
x̂k̂|k = Ax̂k|k +Bu∗k|k,

Pk̂|k = APk|kA
⊤ + FΣwF

⊤;

ii) Correction step:

x̂k̂|k̂ = x̂k̂|k + Lk̂|k(yk̂ − Cx̂k̂|k),

Pk̂|k̂ = Pk̂|k −APk̂|kC
⊤(C⊤Pk̂|kC

⊤ +Σv)
−1CPk̂|kA

⊤;

6: Set x̄0|k̂ = x̂k̂|k̂ and Σζk̂
= Pk̂|k̂.

7: Set k = k̂ and return to Step 1.

non-zero disturbances are assumed in simulation. The prediction horizon is taken as 10
steps, the nominal weights Q and R are taken as

Q =

[
1
70 0
0 1

12

]
, R = 0.5

and for all of the simulations we omit Qf and Kf terms. Lastly the λv and λs values are
taken as 10 and 1000, respectively. Under this construction, the simulation results are vi-
sualized in Figure 3.4. The results are in coherence with the expectations, the trajectories
corresponding to different moment MPC formulations are differing due to the aggressive-
ness of the high moment MPC controllers.

3.4.2 Tracking Problem

We consider a quadruple-tank process ([171]) to demonstrate the effective closed-loop op-
eration of moment-based MPC constructions. The quadruple-tank system consists of four
tanks where liquid is poured into these tanks via two actuators. The first actuator pours
liquid into Tank 1 and Tank 4, while the second actuator is filling the Tank 2 and Tank 3.
Furthermore the tanks are interacting with each other, i.e., the upper tanks (Tank 3 and Tank
4) are pouring liquid into the lower tanks (Tank 1 and Tank 2, respectively). We consider the
states of the process as the liquid levels in the tanks and the liquid levels at Tank 1 and Tank
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Figure 3.4: State trajectories for different formulations of moment-based MPC.

Figure 3.5: The four tank system interconnection scheme.

2 are tracked, see Figure 3.5. Hence the process can be described by four states, two inputs
and two outputs. Furthermore we assume that the process is operating around a linearization

110



3.4. Simulation Examples for Moment-based MPC with Perturbations

point ([350]), which yields the linearized dynamics with the uncertain perturbations;

δẋ(t) =


− 1

T1
0 A4

A1T3
0

0 − 1
T2

0 A4

A2T4

0 0 − 1
T3

0

0 0 0 1
T4

 δx(t) +


γ1k1

A1
0

0 γ2k2

A2

0 (1−γ2)k2

A3
(1−γ1)k1

A4
0

 δu(t) + w(t),

δy(t) =

[
kc 0 0 0
0 kc 0 0

]
δx(t) + v(t).

The parameter and operating point values are provided in Table 3.2 and Table 3.3. Then var-
ious MPC controllers are implemented to compare the resulting trajectories. We compare
mean (hence nominal), MV, MVS MPC formulations, with Gaussian pdf characteristics.
Furthermore, in order to demonstrate the differences between MPC formulations consider-
ing different random variables, we also incorporate the MV MPC with uniform distribution,
MV MPC with triangular distribution and MV MPC in output feedback formulation (with
Kalman filter). The parameters used in the MPC construction are summarized in Table 3.4.

Parameters Values Units
A1, A2, A3, A4 28, 28, 32, 32 [cm2]

a1, a2, a3a4 0.071, 0.071, 0.057, 0.057 [cm2]

k1, k2 3.33, 3.35 [ cm
2

V s ]

kc 0.5 [ V
cm ]

g 981 [ cms2 ]

γ1, γ2 0.25, 0.35 -

Ti =
Ai

ai

√
2x∗

i

g - -

Table 3.2: The parameter values of the quadruple-tank system.

Parameters Values Units
x∗1, x

∗
2 8.2444, 19.0163 [cm]

x∗3, x
∗
4 4.3146, 8.8065 [cm]

u∗1, u
∗
2 3, 3 [V ]

Table 3.3: The selected operating point for the quadruple tank system.

The simulation results are visualized in Figure 3.6 and Figure 3.7. In Figure 3.6 we
visualize the zero disturbance case, where the additive perturbations are set to zero. As
expected, the MVS MPC (Gaussian) has the fastest response compared to MV MPC (Gaus-
sian) and mean MPC. This is due to the extra terms effecting the output weighting matrix
Q̄MV S . Furthermore, in comparison to the uniform and triangular cases, the Gaussian pdf
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Parameters Meaning Value
Np Prediction horizon 50
Q Output error weighting 50I2
R Input weighting 0.1 I2
Σw State covariance matrix 0.01 I4
Σv Output covariance matrix 0.01 I2
λv Variance weight 0.02
λs Skewness weight 0.03
λv,U Variance weight (uniform) 0.01
λv,T Variance weight (triangular) 0.01

Table 3.4: Parameters used in various moment-based MPC formulations.

MV-MPC provides the fastest convergence towards the reference values. In Figure 3.7a
we visualize ten different simulations where the additive perturbations (with Gaussian pdfs)
are present. Again, the MVS MPC has the best results compared to MV MPC and mean
MPC, the variance of the outputs are also suppressed more than the other two cases. How-
ever this observation is not correct for any choice of variance and skewness weights, i.e., λv
and λs. As one increases these weights, the closed-loop trajectories first slow down in con-
vergence towards the reference and then the system becomes unstable. Further analysis on
the selection of the moment weights are left out of this study and will be reported in future
works. In Figure 3.7b we visualize five different simulation scenarios where the MV-MPC
constructions are compared for tracking a sine wave. If one compares the results for the
state feedback MV MPC with the output feedback MV MPC, the effect of not measuring
the states is observable in the trajectories, the overall performance deteriorates, while the
effect of initial condition covariance matrix suppresses this deterioration. Furthermore the
MV MPC constructions that consider triangular or uniform distribution functions on the na-
ture of uncertainties are leading to slight deterioration in the closed-loop performance. This
drawback is due to higher variance (and third central moment) values of the non-Gaussian
pdf characteristics, which penalizes the mean MPC behaviour much more than the MV
MPC constructed for Gaussian disturbances.

3.5 Conclusions on Moment-based MPC Problems for Linear Systems
with Additive Perturbations

In this chapter, we have presented a novel MPC algorithm which is based on the statistics
(centralized moments) of the cost functionals for linear stochastic systems with additive
uncertainty. We introduce and evaluate the mean, mean-variance, mean-variance-skewness
MPC problems for state regulation and output tracking configuration. For the state regula-
tion problem and all three MPC formulations, we provide the algebraic conditions on the
stability of the closed-loop system. We, then, extend the discussion towards non-Gaussian
disturbances and report the mean, MV and MVS MPC problems for even pdfs. Lastly, we
discuss the effects of output feedback MPC configuration, thus assuming that the current
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Figure 3.6: The output reference tracking with different moment-based MPC formulations
for no disturbance case.

state is not fully accessible to the controller, for which we have shown that this stochastic
MPC formulation reduces to the additive moment-based MPC formulations via incorpo-
rating the initial condition uncertainty (mismatch) as a new external additive perturbation
occurring only at the current time instant.

Brief conclusions on the moment-based MPC for linear systems with additive perturba-
tions can be stated as;
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(a) The output reference tracking with different moment-based MPC
formulations with disturbances case.

(b) The sine wave tracking with different MV-MPC formulations.

Figure 3.7: Simulations with disturbances.

• The mean-MPC problem for linear systems with additive uncertainties is equivalent
with nominal MPC, meaning that MPC problems that are formulated without incor-
porating any uncertain effects are on average robust to the perturbations.

• The MV and MVS MPC can be expressed in terms of nominal dynamics, leading
to stage-wise varying state weighting matrices over the prediction horizon. This de-
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creases the computational complexity drastically, in comparison to the other robust
MPC techniques.

• For additive perturbations case, one only needs to design a nominal MPC problem
with varying weights to improve the disturbance rejection properties of the closed-
loop system.

• In MV (or equivalently MVS) MPC formulation, the state (equivalently output) weights
are affected by the noise characteristics, the moments of the random variables, and
their evolution in the dynamical process within the prediction horizon.

• Modelling the distribution function of the random variables affecting the process has
important consequences in moment-based MPC formulations. As the spread of the
realizations gets larger, leading to larger variances, the controller becomes more and
more aggressive to suppress the disturbances.
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Chapter 4

Moment-based Model Predictive Control Prob-
lem with Plant-Prediction Model Mismatch

Think geometrically, prove algebraically.

John Torrence Tate - Rational Points on Elliptic
Curves

In this chapter, we present a model predictive control (MPC) strategy based on the mo-
ments of the state variables and the cost functional constructed from prediction models
described with uncertain parameters. The statistical properties of the state predictions are
calculated through the open loop iteration of uncertain dynamics and used in the formulation
of the MPC cost function. Here we treat the cases where the uncertain model parameters are
unknown and time-invariant or independently varying over time iterations. We show that the
moment-based MPC formulation yields predictive control problems that are described by
nominal dynamics, hence computationally tractable compared to the existing robust MPC
formulations, while providing statistical robustness properties. Due to combinatorial na-
ture of the the robust counterpart cost function, we provide two approximation techniques,
which are also shown to be acting similar to the discussed theoretical results. We apply the
proposed MPC technique to a simple simulation example to demonstrate its effectiveness.

In Section 4.1 we present the uncertain models that are considered in moment-based
MPC formulation and in Section 4.2 we present the moment MPC results for LTI sys-
tems with multiplicative uncertain factors. We provide the requirements for robust stability
property in this section. Then in Section 4.3 we present the results for the moment MPC
problems for dynamical systems with time-invariant multiplicative uncertain effects.

0Substantial content of this chapter is also published or presented in:

• M.B. Saltik, L. Özkan, S. Weiland. Moment-based Model Predictive Control for Linear Systems Part 2:
Multiplicative Perturbations Case.

• R. Zhang, M.B. Saltik, L. Özkan, Study of Moment-based MPC formulations and their Connection to
Classical Control.
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4.1 Introduction on Dynamic and Static Model Mismatch
In this chapter, we consider linear systems under the effect of multiplicative uncertainty.
We define a nominal system, denoted with Σnom given in state-space representation as in
Equation (4.1a), and two systems effected by multiplicative uncertainty, the time-invariant
(TI) uncertainty case and the time-varying (TV) uncertainty case, denoted with Σmul

TI and
Σmul

TV as in Equation (4.1b) and (4.1c), respectively;

Σnom :

{
x̄k+1 = Āx̄k + B̄uk,
ȳk = C̄x̄k,

(4.1a)

Σmul
TI :

{
xk+1 = A(δ)xk +B(γ)uk,
yk = C(δ)xk,

(4.1b)

Σmul
TV :

{
xk+1 = A(δk)xk +B(γk)uk,
yk = C(δk)xk,

(4.1c)

where xk ∈ Rn, and uk ∈ Rnu , and yk ∈ Rny are the state and the control input (or the
decision variable in the MPC problems) and the measured output at discrete time instant k ∈
Z≥0. These plants are subject to two types of uncertainties denoted by, for the case of TV
uncertainties, δk and γk for k ∈ Z≥0. These uncertainties are describing the perturbations in
the system matrices A and B which are stochastic vector sequences with known probability
distribution functions (pdf), denoted with fδ̃(δk), for the random variable δk, and fγ̃(γk),
for the random variable γk. The uncertain effects δ ∈ Rnδ and γ ∈ Rnγ , for the TI case,
are assumed to be effecting the system matrices affinely, i.e.,

A(δ) = Ā+
nδ∑
i=1

Ai[δ]i, B(γ) = B̄ +
nγ∑
i=1

Bi[γ]i, (4.2)

where, for brevity, we express the case for the time-invariant system dynamics ΣM
TI , which

also holds for the case of dynamics ΣM
TV . Here the weighting matrices A[δk]i and B[γk]i

are introduced to scale the uncertainties such that one can obtain standard distributions for
the random variables δk and γk. For the system Σnom the future predictions of state, at any
time k ∈ Z≥0, can be expressed as

x̄j|k = Aj x̄0|k +

j−1∑
i=0

Aj−1−iBui|k, (4.3a)

while the predictions from the uncertain dynamical systems can be expressed as,

x0|k = xk,

xj|k =
j−1∏
i=0

A(δi|k)x0|k +
j−1∑
i=0

j−1∏
l=i+1

A(δl)B(γi)ui|k, j ≥ 1,
(4.3b)

where
l2∏

i=l1

= I if l1 > l2, j ∈ Z[0,Np−1] and xj|k denotes the prediction xk+j parameterized

with current state xk, the exogenous signals ui|k, δi|k and γi|k, i ∈ Z[0,j−1] with respect to
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system dynamics.
For the nominal system Σnom and for both of the multiplicative cases Σmul

(·) , the matrices
(Ā, B̄) are assumed to be a stabilizable pair.

Furthermore, the nature of uncertainties are assumed to be as follows;
(i) For the TI dynamics Σmul

TI case, the uncertain vectors δ and γ are assumed to be time
invariant (such as identification mismatches) where δ ∈ Rnδ and γ ∈ Rnγ are Gaussian
random vectors with zero mean and diagonal covariance matrices Σδ ∈ Rnδ×nδ or Σγ ∈
Rnγ×nγ , with the individual variance elements of the uncertain vectors are denoted as σ2

[δ]i

for the variance of the element [δ]i, and σ2
[γ]i

for the variance of the element [γ]i;
(ii) For the TV dynamics Σmul

TV case, the uncertain vectors δk ∈ Rnδ and γk ∈ Rnγ are
i.i.d. Gaussian vectors with zero mean and diagonal covariance matrices Σδ ∈ Rnδ×nδ or
Σγ ∈ Rnγ×nγ , with the same notation for the individual variance elements of the uncertain
vectors as in the TI case.

Remark 4.1.1 In here we assume that the uncertainties δ and γ which are attached to the
system matricesA(δ) andB(γ) are independent from each other, instead ofA(δ) andB(δ).
Furthermore, we also assumed that there is no covariance in between the elements of these
vectors, i.e., Σδ and Σγ are diagonal covariance matrices. These assumptions are indeed
not realistic in many cases. However the derivations that we present in here can easily be
extended to incorporate these cases with extra, and tedious, algebra.

4.2 Moment-based MPC for Time-Varying Multiplicative Uncertainty
in Dynamics

In this section, we consider perturbations in A and B matrices that are varying indepen-
dently over time, the dynamics represented with Σmul

TV in Equation (4.1c). Here the uncer-
tainty in the model is defined as

A(δk) = Ā+

nδ∑
i=1

Ai[δk]i, B(γk) = B̄ +

nγ∑
i=1

Bi[γk]i.

In MPC problems we consider a cost function which is optimized over to decide on the
control actions to be applied to the process. Assume that the time instant k ∈ Z≥0 is fixed.
Then we set the cost function JM : Rnx × RnuNp × RnδNp × RnγNp → R for a generic
MPC problem as the sum of the quadratic terms running from current time instant k till
k +Np − 1 with a prediction horizon Np > 0, i.e.,

J(ξ̃k) =

Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k, (4.4)

in which the uncertain states are predicted via dynamics Σmul
TV and

ξ̃k =
[
x⊤k u⊤[0,Np−1]|k δ⊤[0,Np−1]|k γ⊤[0,Np−1]|k

]⊤
.
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Using the parametrized state predictions given in Equation (5.2c), it can be easily seen
that the cost function in Equation (4.4) is uncertain, thus a projection step is required to
transform the uncertain cost into a deterministic cost function which is then used in the
optimization procedure. The projection to be used is a design choice, hence highly effective
on the resulting optimal control actions. In this section we analyze the linear combinations
of (centralized) moments of the cost function J(ξ̃k) in Equation (4.4) and provide the closed
form MPC problems with the robust counterpart cost functions. Next we start our discussion
with Mean-MPC case, where the expectation operator is used to transform the uncertain cost
function.

4.2.1 Mean MPC with Time-Varying Multiplicative Uncertainty in Dynamics

We evaluate the mean of the cost function JM (ξ̃k), in Equation (4.4), i.e.,

JM
M,TV (ξk) = E

{
ξ⊤k

[
Θ̃⊤Q̄Θ̃ Θ̃⊤Q̄T̃B
T̃⊤
B Q̄Θ̃ T̃⊤

B Q̄T̃B + R̄

]
ξk

}
,

ξ⊤k =
[
x⊤0|k u⊤[0,Np−1]|k

]
.

(4.5)

where Θ̃, which is the shorthand of Θ̃Np , and T̃B , which is the shorthand of T̃Np×Np

B , are
the prediction matrices given by

Θ̃⊤ =

[
I A⊤(δ0) A⊤(δ0)A

⊤(δ1) . . .
Np−1∏
i=0

A⊤(δi)

]
,

T̃B =



0 0 . . . 0 0
B(γ0) 0 . . . 0 0

A(δ1)B(γ0) B(γ1) . . . 0 0
...

...
. . .

...
...

Np−2∏
i=1

A(δi)B(γ0)
Np−2∏
i=2

A(δi)B(γ1) . . . B(γNp−2) 0


,

(4.6)

and lastly, Q̄ and R̄ are the state and input weighting matrices, respectively, which are
constructed from the Q and R matrices stacked Np times to the diagonal via the Kronecker
product over matrices, i.e., Q̄ = Q ⊗ INp . The prediction matrices in Equation (4.6) are
used to parameterize the state predictions within the prediction horizon as,

x[0,Np−1]|k = Θ̃x0|k + T̃Bu[0,Np−1]|k.

Under this reasoning, we state the cost function corresponding to the mean-MPC for
linear systems affected by TV multiplicative uncertainties, JM

M,TV (ξk). For this purpose we
use the following terms in the derivation of Lemma 4.2.1.

QTV,M
Np−1,M = Q,

QTV,M
Np−1−j,M = Q+

nδ∑
i=1

A⊤
i ΦNp−1−jAiσ

2
[δ]i
,

j = 1, 2, . . . , Np − 1,

(4.7a)
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RTV,M
Np−1,M = R,

RTV,M
Np−1−j,M = R+

nγ∑
i=1

B⊤
i ΦNp−1−jBiσ

2
[γ]i
,

j = 1, 2, . . . , Np − 1,

(4.7b)

where

ΦNp−1−j =
j∑

m=1
ϕm(Ā, A1, . . . , Anδ

), j ≥ 1. (4.8)

The terms ΦNp−1−j are summation of the combinatorial terms in Equation (4.8), i.e.,
ϕm(Ā, A1, . . . , Anδ

), which are defined as the matrix quadratic forms of order 2m consist-
ing of all 2m combinations of Ā and Ai, multiplied with Q and the corresponding variance
terms σ2

i , i.e.,

ϕ1(Ā, A1, . . . , Anδ
) = Q,

ϕ2(Ā, A1, . . . , Anδ
) = Ā⊤QĀ+

nδ∑
l=1

A⊤
l QAlσ

2
[δ]l
,

ϕ3(Ā, A1, . . . , Anδ
) = Ā2⊤QĀ2 +

nδ∑
l=1

(
Ā⊤A⊤

l QAlĀσ
2
[δ]l

+ . . .

A⊤
l Ā

⊤QĀAlσ
2
[δ]l

)
+

(
nδ∑

l1=1

nδ∑
l2=1

A⊤
l1
A⊤

l2
QAl2Al1σ

2
[δ]l1

σ2
[δ]l2

)
,

=
nδ∑

l2=1

nδ∑
l1=1

ρ⊤
Ā,Al,2

Q̃TV
2 ρĀ,Al,2,

(4.9a)
where ρ⊤

Ā,Al,2
:=
[
(ĀĀ)⊤ (ĀAl1)

⊤ (Al2Ā)
⊤ (Al2Al1)

⊤],

Q̃TV
2 =


Q
n2
δ

0 0 0

0
Qσ2

[δ]l1

nδ
0 0

0 0
Qσ2

[δ]l2

nδ
0

0 0 0 Qσ2
[δ]l1

σ2
[δ]l2

 , (4.9b)

and finally,

ϕj+1(Ā, A1, . . . , Anδ
) =

nδ∑
(l1,l2,...,lj)

ρ⊤
Ā,Al,j

Q̃TV
j ρĀ,Al,j , (4.9c)

where ρĀ,Al,j is the block vector of matrices consisting of all combinations of Ā and Al
1,

and Q̃TV
j is a diagonal matrix multiplying the corresponding elements of ρĀ,Al,j with the

1Equation (4.9c) consists of nδ distinct summations over all permutations of li.
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variances values σ2
[δ]l

, i.e.,

ρĀ,Al,j =



Āj

Āj−1Al1

Āj−2Al2Ā
...

j∏
i=1

Ali


, Q̃TV

j =



Q

nj
δ

0 0 · · · 0

0
Qσ2

[δ]l1

nj−1
δ

0 · · · 0

0 0
Qσ2

[δ]l2

nj−1
δ

. . .
...

...
...

. . . . . . 0

0 0 · 0 Q
j∏

i=1

σ2
[δ]li


.

Lemma 4.2.1 Consider an LTI stochastic dynamical system ΣM
TV as in Equation (4.1c) and

a cost function JM (ξ̃k) as in Equation (4.4). Furthermore assume that δk and γk are i.i.d.
with zero mean and diagonal (uncorrelated) variance-covariance matrices. Then the mean
MPC cost function JM

M,TV (ξk) is given as

JM
M,TV (ξk) = E{JM (ξk)},

=
Np−1∑
j=0

x̄⊤j|kQ
TV,M
j,M x̄j|k + u⊤j|kR

TV,M
j,M uj|k.

(4.10)

Proof. For the sake of clarity, we assume that there is only one uncertain element2 in both
A(δk) and B(γk), i.e., A(δk) = Ā+A1δk and B(γk) = B̄ +B1γk, δk, γk ∈ R, k ∈ Z≥0.
We first express the mean of the cost function in quadratic matrix form, without evaluating
the expectation as

E{JM (ξk)} = E
{
ξ⊤k

[
Θ̃⊤Q̄Θ̃ Θ̃⊤Q̄T̃B
(⋆) T̃⊤

B Q̄T̃B + R̄

]
ξk

}
. (4.11)

Since the vector ξ⊤k =
[
x⊤0|k u⊤[0,Np−1]|k

]
is a deterministic variable, one can express the

Equation (4.11) as E{JM (ξk)} = ξ⊤k E{H̃}ξk, hence one only needs to express E{H̃} in
terms of the weights Q and R, the nominal and uncertain system matrices and the variances
of uncertainties. Next we construct a nominal MPC problem3 from the system dynamics
Σnom with stagewise varying weighting matrices Q̄TV,M

M , R̄TV,M
M and equate it to the mean

of the true cost function E{JM (ξ)}, i.e.,

Q̄TV,M
M = diag

(
QTV,M

0,M , QTV,M
1,M , . . . , QTV,M

Np−1,M

)
,

R̄TV,M
M = diag

(
RTV,M

0,M , RTV,M
1,M , . . . , RTV,M

Np−1,M

)
,

JM
M,TV = ξ⊤k

[
Θ⊤Q̄TV,M

M Θ Θ⊤Q̄TV,M
M TB

(⋆) T⊤
B Q̄

TV,M
M TB + R̄TV,M

M

]
ξk.

(4.12)

2The high dimensional random vectors case follows similarly with the arguments presented below under the
assumption of uncorrelated realizations along the time steps.

3Here we note that Θ and TB are constructed from the nominal system dynamics Σnom, hence similar to the
matrices in Equation (4.6) but contains only Ā and B̄.
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Then evaluate the expectation of the uncertain quadratic form in Equation (4.11) and equate
it to the cost function in Equation (4.12) in blocks. We start from Θ̃⊤Q̄Θ̃, i.e.,

Θ⊤Q̄TV,M
M Θ = E{Θ̃⊤Q̄Θ̃}, (4.13a)

where we have

ΘQ̄TV,M
M Θ = QTV,M

0,M + Ā⊤QTV,M
1,M Ā+ · · ·+ ĀNp−1⊤QTV,M

Np−1,M Ā
Np−1. (4.13b)

and we write the uncertain matrix Θ̃ as

Θ̃ :=



I

Ā

Ā2

...
ĀNp−2

ĀNp−1


+



0

A1δ0
A1δ1Ā

...
A1δNp−3Ā

Np−3

A1δNp−2Ā
Np−2


+ · · ·+



0

0
...
0

Np−2∏
i=0

A1δi


,

=: Θ̃0 + Θ̃1 + · · ·+ Θ̃2Np−1−1,

(4.13c)

with obvious definitions of Θ̃i. Then observe that

E{Θ̃⊤Q̄Θ̃} = E

{
2Np−1−1∑

i=0

Θ̃⊤
i Q̄Θ̃i

}
, (4.13d)

since E{Θ̃iQ̄Θ̃j} = 0 for i ̸= j. Thus only even order and symmetric terms remain after
the expectation operator. Next, we observe that

Θ̃⊤
0 Q̄Θ̃0 = Q+ Ā⊤QĀ+ · · ·+ ĀNp−1⊤QĀNp−1, (4.14)

which leads to Q terms in all QTV,M
j,M stage weight matrices, see Equation (4.7a). We evalu-

ate the expectation for the remaining Θ̃i terms, i.e.,

E{Θ̃⊤
1 Q̄Θ̃1} = A⊤

1 QA1σ
2
δ + · · ·+ ĀNp−2⊤A⊤

1 QA1Ā
Np−2σ2

δ , (4.15)

which leads to ϕ1(Ā, A1) terms in QTV,M
j,M weighting matrices. Since there are combina-

torial but finite number of Θ̃i matrices, one can continue computing the expectations of
Θ̃iQ̄Θ̃i to fill the QTV,M

j,M matrices. In general, the expression ϕj(Ā, A1) is obtained4 from
2j−1∑

i=2j−1

E{Θ̃iQ̄Θ̃i}. Now observe that the terms in Equation (4.14) and Equation (4.15) can

be used to fill the QTV,M
j,M in the Equation (4.13b). This results in the backwards recursive

accumulation as in Equation (4.7a).

4The terms remaining after the expectation operations of E{Θ̃⊤
2 Q̄Θ̃2} and E{Θ̃⊤

3 Q̄Θ̃3} construct the
ϕ2(Ā, A1) term, for ϕ3(Ā, A1) we make use of the expectations of the quadratic forms of Θ̃i, i = 4, 5, 6, 7.
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Now consider the block E{T̃⊤
B Q̄T̃B + R̄}, for which we apply a similar reasoning. First

we expand all the terms and evaluate the expectations term by term in E{T̃⊤
B Q̄T̃B + R̄} and

then group the terms induced from QTV,M
j,M , constructed in the previous step, and leave the

rest to be expressed via RTV,M
j,M . Observe that, by definition, T̃B is (column) concatenation

of sums of Θ̃iB matrices. Hence one can evaluate E{T̃⊤
B Q̄T̃B + R̄} in short by

E{B(γ)⊤Θ̃⊤
j Q̄Θ̃iB(γ)} = B̄⊤E{Θ̃⊤

j Q̄Θ̃i}B̄ +B⊤
1 E{Θ̃⊤

j Q̄Θ̃i}B1σ
2
γ ,

while the calculation of E{Θ̃⊤
j Q̄Θ̃i} follows from the E{Θ̃⊤Q̄Θ̃}. Hence similar to the

expression for the stage-wise varying matrix QTV,M
j,M , the accumulation of RTV,M

j,M is ob-
tained as in Equation (4.7b). Lastly one verifies whether the polynomial obtained from
E{Θ̃⊤Q̄T̃B} is equivalent with the polynomial obtained from ΘQ̄TV,M

M TB . By observing
the fact that all the terms induced from B1γk are equal to zero after the expectation op-
eration, there are no terms containing even orders of B1γ in E{Θ̃⊤Q̄T̃B}, thus Q̄TV,M

M

captures all the extra terms.

A direct consequence of Lemma 4.2.1 is stated below.

Theorem 4.2.1 Consider an LTI stochastic dynamical system ΣM
TV as in Equation (4.1c), a

cost function JM (ξ̃k) as in Equation (4.4) subject to uncertain dynamics ΣM
TV and the cost

function JM
M,TV (ξk) as in Equation (4.10) subject to nominal dynamics Σnom. Furthermore

assume that δk and γk are i.i.d. with diagonal (uncorrelated) variance-covariance matrices.
Then

min
u[0,Np−1]|k

E{JM (ξ̃k)} = min
u[0,Np−1]|k

JM
M,TV (ξk),

arg min
u[0,Np−1]|k

E{JM (ξ̃k)} = arg min
u[0,Np−1]|k

JM
M,TV (ξk)

(4.16)

Proof. With the results of Lemma 1, it is trivial to show that the claim is correct.

According to the result of Theorem 1, the control signal u∗[0,Np−1|k] defines an optimal
solution for both of the MPC problems. The robust counterpart MPC problem with the cost
function JM

M,TV (k) in Equation (4.10) and with decision variables uj|k is equivalent to the
following MPC problem

u∗[0,Np−1]|k = arg min
u[0,Np−1]|k

Np−1∑
j=0

x̄⊤j|kQ
TV,M
j,M x̄j|k + u⊤j|kR

TV,M
j,M uj|k,

subject to x̄i+1|k = Āx̄i|k + B̄ui|k,
x̄0|k = xk, i ∈ Z[0,Np−1].

(4.17)

Remark 4.2.1 The most striking property of the moment-based MPC problem in Equation
(4.16) is the reduced computational complexity of the MPC problem. Solving the Mean-
MPC problem is of equivalent complexity as any nominal MPC problem constructed from
the uncertainty-free dynamics Σnom. The cost function JM

M,TV as in Equation (4.10) de-
pends on the nominal system matrices Ā, B̄ but also on the perturbations in the system
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matrices Ai, Bi and the corresponding variance terms of the uncertainties σ2
δ or σ2

γ which
scale the weighting matrices Q̄M,TV

M or R̄M,TV
M .

Remark 4.2.2 The number of terms that accumulate in each of the QM,TV
j,M diminishes as

the prediction step grows. Specifically QM,TV
j,M ≥ QM,TV

j+1,M for all j ≥ 0. This is in direct
contrast to the additive disturbance cases, where the weighting terms (in mean-variance or
MVS MPC) QMV

j are accumulating more and more as the prediction step j grows. Fur-
thermore, in the additive disturbance case the input weighting matrix R̄ does not change
when one incorporates high order moments, whereas in the model mismatch case the diag-
onal elements of the matrix R̄M,TV

M are also effected by the expectation operator and the
uncertainties attached to the model.

Remark 4.2.3 For both of the weighting matricesQM,TV
j,M andRM,TV

j,M , the number of terms
due to the uncertainties in the resulting MPC weights exponentially increases. Denote
the number of terms in the expression for ϕj(Ā, A1, . . . , Anδ

) with |ϕj(Ā, A1, . . . , Anδ
)|,

which is, then, equal to 2j−1nδ . This is due to the fact that we only incorporate the sym-
metric even order combinations resulting from Ai, i = 1, . . . , nδ . If one can approximate
the terms in

E

{
Np−2∏

m=Np−j+1

A(δk)
m⊤

Q̄A(δk)
m

}
,

= E

{
nδ∑
i=1

Np−2∏
m=Np−j+1

(Ā+Ai[δ]i)
m⊤

Q
Np−2∏

m=Np−j+1

(A+Ai[δ]i)
m

}
.

(4.18)

with a linearly growing expression, then the complexity can be kept tractable. Two possi-
ble approximations of the expression in Equation (4.18) are given in Equation (4.19a) and
Equation (4.20a).

The first approximation is given as

QTV,M,Ap1
Np−1,M = Q,

QTV,M,Ap1
Np−1−j,M = Q+

nδ∑
i=1

A⊤
i Φ

Ap1
Np−1−jAiσ

2
[δ]i
,

j = 1, 2, . . . , Np − 1,

(4.19a)

RTV,M,Ap1
Np−1,M = R,

RTV,M,Ap1
Np−1−j,M = R+

nγ∑
i=1

B⊤
i ΦAp1

Np−1−jBiσ
2
γ ,

j = 1, 2, . . . , Np − 1,

(4.19b)

ΦAp1
Np−1−j =

j∑
m=1

ϕAp1
m (Ā, A1, . . . , Anδ

), j ≥ 1. (4.19c)
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ϕAp1
1 (Ā, A1, . . . , Anδ

) = Q,

ϕAp1
2 (Ā, A1, . . . , Anδ

) = Ā⊤ϕAp1
1 (Ā, A1, . . . , Anδ

)Ā+
nδ∑
l=1

A⊤
l QAlσ

2
[δ]l
,

ϕAp1
j (Ā, A1, . . . , Anδ

) = Ā⊤ϕAp1
j−1(Ā, A1, . . . , Anδ

)Ā+
nδ∑
l=1

Aj−1⊤

l QAj−1
l σ2j−2

[δ]l
,

(4.19d)
while the second approximation amounts to replacing the additional terms at each prediction
stage with quadratic forms in Ā instead of quadratic forms in Ai terms is given as,

QTV,M,Ap2
Np−1,M = Q,

QTV,M,Ap2
Np−1−j,M = Q+

nδ∑
i=1

A⊤
i Φ

Ap2
Np−1−jAiσ

2
[δ]i
,

j = 1, 2, . . . , Np − 1,

(4.20a)

RTV,M,Ap2
Np−1,M = R,

RTV,M,Ap2
Np−1−j,M = R+

nγ∑
i=1

B⊤
i ΦAp2

Np−1−jBiσ
2
[γ]i
,

j = 1, 2, . . . , Np − 1,

(4.20b)

ΦAp2
Np−1−j =

j∑
m=1

ϕAp2
m (Ā, A1, . . . , Anδ

), j ≥ 1. (4.20c)

ϕAp2
1 (Ā, A1, . . . , Anδ

) = Q,

ϕAp2
2 (Ā, A1, . . . , Anδ

) =
nδ∑
l=1

A⊤
l ϕ

Ap2
1 (Ā, A1, . . . , Anδ

)Alσ
2
[δ]l

+ Ā⊤QĀ,

ϕAp2
j (Ā, A1, . . . , Anδ

) =
nδ∑
l=1

A⊤
l ϕ

Ap2
j−1(Ā, A1, . . . , Anδ

)Alσ
2
[δ]l

+ Āj−1⊤QĀj−1.

(4.20d)
Both of these approximations have (computationally) much more simple recursive formulas
for calculating the weighting matricesQTV,M,Ap1

Np−j,M andQTV,M,Ap2
Np−j,M (equivalentlyRTV,M,Ap2

Np−j,M

and RTV,M,Ap2
Np−j,M ) in comparison to the true weighting terms from the expectation opera-

tion, i.e., QTV,M
Np−j,M . To select one of the approximations, the operator norms of Ā and

Al, l = 1, 2, . . . , nδ can be compared. If the uncertainties are dominant in the dynamical
model ΣM

TV , i.e., there exists an l ∈ Z[0,nδ] such that ∥Al∥2,2 ≈ ∥Ā∥2,2, where ∥Ā∥2,2
is the induced 2-norm of the matrix Ā, then one might select the first approximation case,
Equations (4.19a)-(4.19b). This case incorporates the highest order term induced from Al

which is, under the above mentioned norm condition, effective in the resulting closed-loop
state trajectories. If the control system designer has considerable confidence on the mod-
eled nominal dynamics, yielding ∥Al∥2,2 ≪ ∥Ā∥2,2 for any l = 1, 2, . . . , nδ , then one can
improve the robustness properties of the close-loop system with the second approximation
given in Equations (4.20a)-(4.20b).

4.2.2 High order Moment MPC for Time-Varying Multiplicative Uncertainty in Dynamics

Similar to the mean MPC formulation, we construct the mean-variance MPC which evalu-
ates cost functions that include the second order central moment. Hence we re-shape our
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cost function as

J̄MV
M,TV (ξk) = E{JM (ξk)}+ λvD{JM (ξk)}, (4.21)

The first term in the right hand side of Equation (4.21) is already calculated, see the expres-
sion for JM

M,TV (ξk) in Equation (4.10). We obtain the D{JM,TV (ξk)} term as,

D{JM,TV (ξ̃k)} = E{(JM (ξk)− E{JM (ξk)})⊤(JM (ξk)− E{JM (ξk)})},

=
Np−1∑
j=0

E{(2x̃⊤j|kQx̄j|k + x̃⊤j|kQx̃j|k − Tr(QMj|k)
2},

= 4x̄⊤j|kQMj|kQx̄j|k + 2Tr
(
QMj|kQMj|k

)
,

(4.22)

where Mj|k = E{x̃j|kx̃⊤j|k} and x̃j|k = xj|k − x̄j|k. Through this calculation it is observed
that D{JM,TV (ξk)} contains 4th order terms of x̄j|k, hence leading to a nonlinear optimiza-
tion problem. This is an undesired increase in the computational complexity for calculating
the MPC control action. Hence we left the construction of MV-MPC for model mismatch
case as a future research topic.

Remark 4.2.4 Similar to the previous reasoning, the cost functions for higher order moment-
based MPC are also including high order polynomial terms of decision variables in their
formulation, i.e., E{(JM,TV − E{JM,TV })m},m ≥ 2. Hence, the nonlinear nature of the
cost function of the moment-based MPC problem is preserved.

4.3 Moment-based MPC for Time-Invariant Multiplicative Uncertainty
in the Dynamics

Here we consider the model used for the predictions as

ΣM
TI :

{
xk+1 = A(δ)xk +B(γ)uk,
yk = Cxk,

(4.23)

where the uncertainty is defined as

A(δ) = Ā+

nδ∑
i=1

Ai[δ]i, B(γ) = B̄ +

nγ∑
i=1

Bi[γ]i.

The difference in the TI case from the TV case is that the random variables δ and γ are not
varying over time, i.e., the δ and γ are independent random vectors, which are distributed
with Gaussian characteristics with diagonal covariance matrices, but over time the realiza-
tions of δ and γ does not change. Similar to the previous case, we set the cost function for
the MPC problem as in Equation (4.4),

JM (ξk) =

Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k,

where xj|k is parameterized from the dynamics ΣM
TI . Next we discuss the mean MPC cost

function for the dynamics affected by the time-invariant uncertainties.
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4.3.1 Mean MPC for Time-Invariant Multiplicative Uncertainty in Dynamics

Similar to the time-varying case discussed in the previous section, we consider the mean of
the cost function as in;

JM
M,TI(ξk) = E

{
ξ⊤k

[
Θ̃⊤Q̄Θ̃ Θ̃⊤Q̄T̃B
T̃⊤
B Q̄Θ̃ T̃⊤

B Q̄T̃B + R̄

]
ξk

}
, (4.24)

where Θ̃ and T̃B are the prediction matrices given by

Θ̃Np
=

[
I A⊤(δ) A2⊤(δ) . . . ANp−1⊤(δ)

]⊤
,

T̃B =


0 0 . . . 0 0

B(γ) 0 . . . 0 0
A(δ)B(γ) B(γ) . . . 0 0

. . . . . . . . . . . . . . .
ANp−2(δ)B(γ) ANp−3(δ)B(γ) . . . B(γ) 0

 ,
(4.25)

These prediction matrices can be used to parameterize the state predictions within the pre-
diction horizon as,

x[0,Np−1]|k = Θ̃x0|k + T̃Bu[0,Np−1]|k.

Similar to the TV case, we first define the matrices that will be used in the construction of
JM
M,TI(ξk) before demonstrating the equivalence between moment-based MPC and nominal

MPC.
QTI,M

Np−1,M = Q,

QTI,M
Np−1−j,M = Q+

nδ∑
i=1

A⊤
i Ψ

Q
Np−1−jAi,

j = 1, . . . Np − 1,

(4.26a)

RTI,M
Np−1,M = R,

RTI,M
Np−1−j,M = R+

nγ∑
i=1

B⊤
i ΨR

Np−1−jBiσ
2
[γ]i
,

j = 1, . . . Np − 1,

(4.26b)

QTI,M
Np−1−j,Np−1−l,M =

nδ∑
i=1

A⊤
i Ψ

Q
Np−1−j,Np−1−lAi,

RTI,M
Np−1−j,Np−1−l,M =

nδ∑
i=1

B⊤
i ΨR

Np−1−j,Np−1−lBi,

1 ≤ i < j ≤ Np − 1,

(4.26c)

where

ΨQ
Np−1−j =

j∑
m=1

ψm(Ā, A1, . . . , Anδ
, Q),

ΨR
Np−1−j =

j∑
m=1

ψm(Ā, A1, . . . , Anδ
, R),

j = 1, . . . Np − 1,

(4.26d)
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ΨQ
Np−1−j,Np−1−l =

l∑
m=1

ψj,m(Ā, A1, . . . , Anδ
, Q),

ΨR
Np−1−j,Np−1−l =

l∑
m=1

ψj,m(Ā, A1, . . . , Anδ
, R),

1 ≤ i < j ≤ Np − 1,

(4.26e)

and lastly the permutation forms of Ā andAi expressed via the variableψm(Ā, A1, . . . , Anδ
)

and ψj,m(Ā, A1, . . . , Anδ
), are defined as the matrix quadratic functions of order 2m (in

matrix variable A(δ)) consisting of all even order permutations of Al, multiplied with Q
and the corresponding raw moment terms E{[δ]mi } where m is the number of Ai terms in
the term under consideration, i.e.,

ψ1(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

Qσ2
[δ]l

= ρ⊤
Ā,Al,0

Q̃TI,Q
0,M ρĀ,Al,0,

ψ1(Ā, A1, . . . , Anδ
, R) = Q = ρ⊤

Ā,Al,0
Q̃TI,R

0,M ρĀ,Al,0,
(4.27a)

ψ2(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

Ā⊤QĀσ2
[δ]l

+A⊤
l QAlE{[δ]4l } = ρ⊤

Ā,Al,1
Q̃TI,Q

1,M ρĀ,Al,1,

ψ2(Ā, A1, . . . , Anδ
, R) =

nδ∑
l=1

Ā⊤QĀ+A⊤
l QAlσ

2
[δ]l

= ρTI⊤

Ā,Al,1
Q̃TI,R

1 ρTI
Ā,Al,1

,

(4.27b)

ψ3(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

(
Ā2⊤QĀ2σ2

[δ]l
+ Ā2⊤QA2

lE{[δ]4l }+ . . .

Ā⊤A⊤
l QĀAlE{[δ]4l }+A⊤

l Ā
⊤QĀAlE{[δ]4l }+ . . .

A⊤
l Ā

⊤QAlĀE{[δ]4l }+ Ā⊤A⊤
l QAlĀE{[δ]4l }+ . . .

A2⊤

l QĀ2E{[δ]4l }+A2⊤

l QA2
lE{[δ]6l },

=
nδ∑
l=1

ρ⊤
Ā,Al,2

Q̃TI,Q
2,M ρĀ,Al,2,

(4.27c)

ψj(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

ρ⊤
Ā,Al,j−1

Q̃TI,Q
j−1,MρĀ,Al,j−1,

ψj(Ā, A1, . . . , Anδ
, R) =

nδ∑
l=1

ρ⊤
Ā,Al,j−1

Q̃TI,R
j−1,MρĀ,Al,j−1,

(4.27d)

and

ψ2,1(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

Ā⊤Qσ2
[δ]l

= ρ⊤
Ā,Al,1

Q̃TI,Q
1,0,MρĀ,Al,0,

ψ2,1(Ā, A1, . . . , Anδ
, R) = Ā⊤Q = ρ⊤

Ā,Al,1
Q̃TI,R

1,0,MρĀ,Al,0,

ψ3,1(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

Ā2⊤Qσ2
[δ]l

+A2⊤

l QE{[δ]4l } = ρ⊤
Ā,Al,2

Q̃TI,Q
2,0,MρĀ,Al,0,

(4.27e)

ψ3,2(Ā, A1, . . . , Anδ
, Q) =

nδ∑
l=1

Ā2⊤QĀσ2
[δ]l

+A2⊤

l QĀE{[δ]4l }+ . . .

Ā⊤A⊤
l QA

⊤
l E{[δ]4l }+A⊤

l Ā
⊤QA⊤

l E{[δ]4l }
= ρ⊤

Ā,Al,2
Q̃TI,Q

2,1,MρĀ,Al,1,

ψj,i(Ā, A1, . . . , Anδ
, Q) = ρ⊤

Ā,Al,j−1
Q̃TI,Q

j−1,i−1,MρĀ,Al,i−1.

(4.27f)
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With these definitions, we state the optimization problem corresponding to the mean-MPC
for TI multiplicative uncertainty case, JM

M,TI(ξk).

Lemma 4.3.1 Consider an LTI stochastic dynamical system ΣM
TI as in Equation (4.1b)

and a cost function JM (ξ̃k) as in Equation (4.4). Furthermore assume that δ and γ are
independent random variables with diagonal (uncorrelated) variance-covariance matrices.
Then the mean MPC cost function JM

M,TI(ξk) is given as

JM
M,TI(ξk) = E {JM (ξk)} = E

{
Np−1∑
j=0

x⊤j|kQxj|k + u⊤j|kRuj|k

}
,

=
Np−1∑
j=0

x̄⊤j|kQ
TI,M
j,M x̄j|k +

Np−2∑
j=0

Np−1∑
i=0

x̄⊤j|kQ
TI,M
j,i,M x̄i|k + . . .

Np−1∑
j=0

u⊤j|kR
TI,M
j,M uj|k +

Np−2∑
j=0

Np−1∑
i=0

u⊤j|kR
TI,M
j,i,M ui|k

(4.28)

where the stage-wise varying weighting matrices QTI,M
j,M , QTI,M

j,i,M , RTI,M
j,M and RTI,M

j,i,M are
found from the backwards recursion defined via permutations of terms over the uncertainty
matricesAi and central moments of random variables δ and γ as in Equations (4.26)-(4.27).

Proof. The proof is structurally the same as the proof given in Lemma 1. The straightfor-
ward way of obtaining the cost terms is explicit evaluation of the expectation operator, since
the true state can be decomposed as

xj|k = x̄j|k +
nδ∑
l=1

j∑
i=1

ρĀ,Al,i−1Al[δ]lx̄j−i|k +
nγ∑
l=1

j∑
i=1

ρĀ,Al,i−1Bl[γ]luj−i|k. (4.29)

The expectation operator vanishes the odd order matrix terms and then we rewrite all the
terms as a nominal MPC problem with the given stage-wise varying state and input weights5.

A direct consequence of Lemma 4.3.1 is stated below.

Theorem 4.3.1 Consider an LTI stochastic dynamical system ΣM
TI as in Equation (4.1b),

a cost function JM (ξ̃k) as in Equation (4.4) subject to uncertain dynamics ΣM
TI and the

cost function JM
M,TI as in Equation (4.28) subject to nominal dynamics Σnom. Furthermore

assume that δ and γ are independent from each other and described by zero mean and
diagonal (uncorrelated) variance-covariance matrices. Then

min
u[0,Np−1]|k

E{JM (ξ̃k)} = min
u[0,Np−1]|k

JM
M,TI(ξk),

arg min
u[0,Np−1]|k

E{JM (ξ̃k)} = arg min
u[0,Np−1]|k

JM
M,TI(ξk)

(4.30)

5Instead of the constructive proof given for Lemma 4.2.1, one can use Equation (4.29) for showing the claimed
result with a reduced number of steps.
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Proof. With the results of Lemma 2, it is trivial to show that the claim is correct.

Hence u∗[0,Np−1|k] defines an optimal solution for both of the MPC problems. The nominal
counterpart MPC problem with the cost function JM

M,TI(ξk) in Equation (4.24) and with
decision variables uj|k is equivalent to the following MPC problem

u∗[0,Np−1]|k = arg min
u[0,Np−1]|k

Np−1∑
j=0

x̄⊤j|kQ
TI,M
j,M x̄j|k +

Np−2∑
j=0

Np−1∑
i=j+1

2x̄⊤j|kQ
TI,M
j,i,M x̄i|k + . . .

Np−1∑
j=0

u⊤j|kR
TI,M
j,M uj|k +

Np−2∑
j=0

Np−1∑
i=j+1

2u⊤j|kR
TI,M
j,i,M ui|k

subject to x̄i+1|k = Āx̄i|k + B̄ui|k,
x̄0|k = xk, i ∈ Z[0,Np−1].

(4.31)

Remark 4.3.1 Deductions similar to the MV MPC for the TV uncertainty case are also
valid for the MV MPC for TI uncertainty case. The nonlinear nature of the resulting MPC
problem is further deteriorating the computational complexity, since the upper bounds on
the evaluation of the optimizers in quadratic programs with uncertain Hessian matrices
are difficult to calculate, see the discussion on the uncertain quadratic programs for (de-
termibnsitic) robust optimization problems in [43]. Future research is directed towards
incorporating the variance information of states, due to multiplicative uncertainties, into
the robust counterpart cost function.

4.4 Closed-loop Analysis of Moment-based MPC Formulations for Mul-
tiplicative Uncertainty in Dynamics

4.4.1 Stability Analysis of Moment-based MPC for Multiplicative Uncertainty in Dynam-
ics

In this section we present the stability conditions for systems controlled with moment-based
MPC. We use the cost functions given in Equation (4.10) and (4.28) to establish mean-
square stability (MS-stability) of closed-loop stochastic systems.

By using the result of Proposition 3.1.1, we state the robust stability conditions on the
closed-loop system controlled via mean MPC. Here we provide the stability conditions for
the TV multiplicative uncertainty case, since the reasoning for the case of the weighting
matrices Q̄TI,M

M and R̄TI,M
M also follows with similar deductions6. The following variables

are used in the derivation of the stability conditions. The MPC cost function JTV,M
M (ξk)

is taken as the candidate Lyapunov function, while for establishing stability, we follow the
standard approach by assuming existence of a stabilizing state feedback controllerK which,
virtually, becomes active after the calculated optimal control actions, i.e., uNp|k = KxNp|k.
We construct a shifted cost function V̂ (ξk+1) which takes

û[0,Np−1]|k+1 =
[
u∗[1,Np−1]|k Kx̄Np|k

]
6The operations in the TI case is much more tedious since we incorporate the cross terms.
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as a feasible solution. Furthermore,

E{V̂ (ξk+1)} − V (ξk) =: ξkM̄
M
M ξk,

M̄TV,M
M :=

[
Θ⊤Q̄∆Θ Θ⊤Q̄∆T

Np

B

(⋆) T
N⊤

p

B Q̄∆T
Np

B + R̄∆

]
,

Q̄TV
∆ := diag

(
QTV,M

ex,M −QTV,M
0,M , QTV,M

0,M −QTV,M
1,M , . . . , QTV,M

Np−1,M +K⊤RTV,M
Np−1,MK

)
,

R̄TV
∆ := diag

(
RTV,M

ex,M −RTV,M
0,M , RTV,M

0,M −RTV,M
1,M , . . . , RTV,M

Np−2,M −RTV,M
Np−1,M

)
,

QTV,M
ex,M =

nδ∑
l=1

A⊤
[δ]l

Np−1∑
i=0

(
Āi⊤QTV,M

i,M Āi + ĀNp−1⊤K⊤RTV,M
Np−1,MKĀ

Np−1
)
A[δ]lσ

2
[δ]l
,

RTV,M
ex,M =

nγ∑
l=1

B⊤
[γ]l

Np−1∑
i=0

(
Āi⊤QTV,M

i,M Āi + ĀNp−1⊤K⊤RTV,M
Np−1,MKĀ

Np−1
)
B[γ]lσ

2
[γ]l
.

(4.32)

Theorem 4.4.1 Consider an uncertain LTI dynamical system ΣM
TV as in Equation (4.1c).

If the mean MPC problem in Equation (4.16) is feasible at time k and M̄TV,M
M ≤ 0, then

the closed-loop system is MS-stable.

Proof. For brevity, we consider the scalar uncertainty case, δk, γk ∈ R, while the proof
follows with same reasoning and tedious algebra for multidimensional uncertainty case.
We start our deduction by evaluating the difference in Lyapunov functions for current time
instant and the next time instant, i.e.,

E{V̂ (ξk+1)} − V (ξk) = −(∥x̄20|k∥QTV,M
0,M

+ ∥u0|k∥2RTV,M
0,M

) + gTV,M
δ,γ +

· · ·
Np−1∑
i=1

x̄⊤i|k(Q
TV,M
i−1,M −QTV,M

i,M )x̄i|k+

u⊤i|k(R
TV,M
i−1,M −RTV,M

i,M )ui|k,

(4.33)

where

gTV,M
δ,γ = x̄⊤0|kQ

TV,M
ex,M x̄0|k + u⊤0|kR

TV,M
ex,M u0|k + x̄⊤Np−1|k(Q

TV,M
Np−1,M +K⊤RTV,M

Np−1,M )x̄Np−1|k.

Then adjust the right hand side of Equation (4.33) in matrix form such that E{V̂ (ξk+1)} −
V (ξk) = ξkM̄

TV,M
M ξk. If this expression is negative for all time instants k, equivalent to

M̄TV,M
M ≤ 0, then the closed-loop system is MS-stable.

4.4.2 Closed-loop Characteristics and Bandwidth Analysis of Moment-based MPC for
Multiplicative Uncertainty in Dynamics

In the mean MPC for model mismatch case, both of the weighting matrices QTI,M
j,M (or

QTV,M
j,M ) and R(·),M

j,M are effected by extra terms induced from the uncertainty effecting the
system predictions, hence the resulting controller gain from the unconstrained MPC prob-
lem is also changing. The accumulation of the state weighting matrix is in general leading
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to higher gain controllers in the classical control sense. However this increase in the weight-
ing term is compensated with the accumulation of the input weighting matrix R(·),M

j,M . The

increase of R(·),M
j,M terms, which is due to the variable γ, decreases the aggressiveness of the

resulting controller. This, in turn, is expected to yield a lower gain controller, thus, improv-
ing, in the classical control sense, the robustness aspect of the closed-loop system against
the plant-model mismatches.

We demonstrate the effects of weighting matrices on the closed-loop behaviour on a
simple simulation example which consists of two integrators, that is defined as

xk+1 = Axk +Buk, A =

[
1 1 + δ
0 1

]
, B =

[
0

1 + γ

]
,

for which we construct four different cases; case (i) and case (ii) considers the TV mean
MPC and TI mean MPC formulations, respectively, with the uncertain variables assumed
as δ ∼ N (0, 0.01), γ ∼ N (0, 0.01), while for the case (iii) we assume that the A matrix
is a deterministic matrix in prediction model, i.e., δ = 0, and for the case (iv) we assume
that the B is deterministic in prediction model, i.e., γ = 0, . The ‘true’ plant contains
uncertain effects, with the mentioned uncertainty levels, for all cases and for both of the
cases (iii) and (iv), we assume the TV mean MPC formulation to calculate the state and
input weighting matrices. Lastly as comparison purposes we also show the nominal MPC
result, which ignores the effect of uncertain elements. We report the closed-loop trajectories
and the sensitivity function which are visualized in Figures 4.1-4.2. As can be observed from
Figure 4.2, for both of the cases (i) and (ii), the bandwidth decreases in comparison to the
nominal case. The case (ii) (TI mean) MPC casts the closed-loop system substantially more
robust (in the classical sense) compared to the TV mean MPC and nominal MPC cases.
As can be observed by comparing the cases (iii) and (iv) with the previous ones, once the
uncertainties are dismissed from the MPC cost function the close-loop responses imitate the
nominal MPC, while the effect of not incorporating input uncertainties, case (iv) (where γ is
set to zero in the prediction model), is deteriorating the closed-loop performance more than
the case (iii), since the random variable δ effects both state and input weighting matrices.

4.4.3 Generalization of Moment-based MPC with Multiplicative Uncertainty in Dynamics
Towards Uncertainties with Even Distribution Functions

Till now we have only considered the case where the random variables are assumed to
be described via Gaussian distribution characteristics. However, one does not necessarily
need this strict assumption. It can be shown that the discussion in this chapter can also
be extended towards different type of distribution characteristics, such as uncertainties that
are distributed with uniform, triangular or Laplacian pdfs. As long as the distribution that
is effecting the system matrices is an even function (symmetric with respect to zero) then
the formulations given for both TV and TI mean MPC cases are similar to each other for
different distribution functions. For this purpose, one needs to change the variance and
higher order moment values in the cost function of mean MPC (TI or TV case) for non-
Gaussian random variables γ and δ, that occurs in the backwards recursions during the
calculation of Q(·),M

j,M or R(·),M
j,M . We visualize the effects of using different distribution

function families in a simulation example which is used in bandwidth analysis section. The
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Figure 4.1: The state trajectories (phase-space) with different moment-based MPC formu-
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MPC formulations.

134



4.5. Simulation Example for Moment-based MPC for Multiplicative Uncertainty in
Dynamics

simulation results are shown in Figures 4.3-4.4.
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Figure 4.3: The state trajectories of moment-based MPC formulations with different even
pdfs.

4.5 Simulation Example for Moment-based MPC for Multiplicative
Uncertainty in Dynamics

In this section, we make use of a mass-spring system, similar to the case in [185], which
consists of two masses connected with a spring. We control this system with various mean
MPC formulations that are formulated in this chapter. The control action is effective on one
of the masses and the control goal is to effectively stabilize the system. The dynamic model
of the process is taken as follows;

xk+1 = A(δk)xk +B(γk)uk,

A =


1 0 1 0
0 1 0 1

−K+δ
m1

K+δ
m1

1 0
K+δ
m2

−K+δ
m2

0 1

 B =


0
0
1

m1
γ
m2

 , (4.34)

where the parameters, the spring constant K and the masses m1 and m2 are taken as, K =
1, m1 = 0.5, m2 = 2 and the random variables’ pdfs are assumed to be given as δ ∈
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Figure 4.4: The sensitivity function of closed-loop systems with moment-based MPC for-
mulations formulations with different even pdfs.

N (0, 0.01) and γ ∈ N (0, 0.01).
We present two sets of simulations, the first simulation example demonstrates the TV

uncertainty case, i.e., the true disturbances are varying over time, while the MPC controllers
are constructed from the cost functions found as the TI mean MPC, the TV mean MPC, the
approximating case 1 and 2 for mean MPC and the nominal MPC. In the second simula-
tion example we consider TI random variables in the true system dynamics and show the
responses for five different MPC controllers mentioned above. In both of the simulation
studies we have used the same (base) state and input weighting matrices, such as

Q = 5I4, R = I1, Qf = 0,

while the prediction horizon is taken as 4. We initialize the state at x⊤0 =
[
0.5 1 −0.1 0.1

]
for both of the simulations.

The resulting closed-loop simulation trajectories are visualized in Figure 4.5a for the
case of TV random variables effecting the true process and Figure 4.5b for the time in-
variant random variables. Most striking aspect about the simulations is that in the TV
uncertainties case, the nominal controller which does not incorporate the information about
the uncertainty can not stabilize the system, while all other MPC controllers improve the
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Figure 4.5: MSD System with moment-based MPC.

controlled system’s behaviour and eventually steer the states to origin.

137



Chapter 4. Moment-based Model Predictive Control Problem with Plant-Prediction Model
Mismatch

4.6 Conclusions on Moment-based MPC Problems for Linear Systems
with Multiplicative Uncertainty

In this chapter, we have investigated the moment-based MPC problems which are based on
the statistics (centralized moments) of the cost functionals for linear stochastic systems with
multiplicative uncertainties. We have evaluated the mean of the MPC cost function for time-
varying and time-invariant uncertainties affecting the system dynamics in an affine fashion.
We present explicit formulae for the reformulation of the state and input weighting matrices
which are different for these two cases. Since computation of the weighting matrices is
tedious for long prediction horizons, we present two different approximation possibilities
for realistic processes or MPC parameters. Lastly, we provide the conditions on the robust
stability of the closed-loop system and presented simulation results and discussions on the
closed-loop performance.

• The moment-based MPC problems can be expressed in terms of nominal dynamics
with stage-wise varying state and input weighting matrices over the prediction hori-
zon.

• The computational complexity of moment-based MPC problems is reduced drasti-
cally, in comparison to the other robust MPC techniques.

• The non-Gaussian random variables case demonstrates the possibility of generaliz-
ing the moment-based MPC towards generic random variables which have finite mo-
ments.

• The structure of uncertain effects within the prediction model changes the reformula-
tion of the predictive control problem, i.e., controllers tend to become

1. More aggressive if the prediction model is assumed to be correct yet the mea-
surements are corrupted.

2. More timid if it is known that the model is leading to wrong predictions.
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Chapter 5

Constraints in Moment-based Model Predic-
tive Control Problems

A method is a trick I use twice.

George Pólya - How to solve it

The goal of this chapter is to present constraint tightening techniques for MPC problems
cast for uncertain dynamical systems by using statistical information (centralized moments)
of the uncertain effects. We make use of expectation and variance operators to describe the
uncertain state’s future spread information. By manipulating the variance, we show that one
can effectively control the constraint violation levels. We start this chapter by first formulat-
ing the constraint tightening techniques for the additive uncertainty case while considering
the mean and mean-variance (MV) formulations for perturbations that are distributed with
Gaussian pdf. We present several independent results to reduce the complexity associated
with the mean variance treatment of the constraint functions. One of the crucial problems
of uncertainties with unbounded domains is the fact that the recursive feasibility (over time)
can not be guaranteed in deterministic sense. We present a method to provide probabilistic
guarantees on recursive feasibility by using the variance of state trajectories. Secondly, we
extend our results for disturbances that are characterized with zero mean even pdfs that are
not Gaussian functions. The even nature of pdf function allows us to formulate explicit con-
straint tightening methods for bounded and even pdf uncertainties. Finally, we consider the
multiplicative uncertainty case, where uncertainties are present in the prediction model. We
present results on constraint treatment for time varying or invariant perturbations effecting
dynamical system parameters.

This chapter is structured as follows. We conclude the introduction section with in-
troducing the notation used in the next sections. In Section 5.2 we present the results for
constrained MPC problems with additive Gaussian pdf uncertainties. We first treat bound
constraints and formulate a non-conservative and a conservative robust counterpart problem.

0Substantial content of this chapter is also published or presented in ‘M.B. Saltik, L. Özkan, S. Weiland.
Constraint Tightening in Moment-based Model Predictive Control.’

139



Chapter 5. Constraints in Moment-based Model Predictive Control Problems

Then we extend the results for polytopic constraints, which are a generalization of bound
constraints. In Section 5.2.4, we extend our deductions to systems which are perturbed with
random variables that are distributed with even and bounded pdfs. We formulate constraint
tightening techniques under the setting of moment-based MPC problems for bounded dis-
tributions. In Section 5.3 we discuss the case where the prediction model contains statistical
information on the uncertain effects on the system dynamics.

5.1 Problem Setting for Robust Counterpart Constraint Formulations
in Moment-based MPC Problems

Similar to the previous two chapters, here we consider several possible descriptions for
linear systems under the effect of uncertainty. We define a nominal system, denoted with
Σnom given in state-space representation as in Equation (5.1a), a system with additive dis-
turbances effecting the state and output equations, denoted with Σadd as given in Equation
(5.1b), and two systems effected by multiplicative uncertainty, for the time-invariant (TI)
and the time-varying (TV) uncertainty cases, denoted with Σmul

TI and Σmul
TV as in Equations

(5.1c) and (5.1d), respectively;

Σnom : x̄k+1 = Ax̄k +Buk, (5.1a)

Σadd : xk+1 = Axk +Buk + Fwk, (5.1b)

Σmul
TI : xk+1 = A(δ)xk +B(γ)uk, (5.1c)

Σmul
TV : xk+1 = A(δk)xk +B(γk)uk, (5.1d)

These plants are subject to three types of uncertainties which are denoted by wk, δk (or
δ) and γk (or γ) for k ∈ Z≥0. For these systems, the future predictions of state x̄j|k :=
x̄k+j(x̄k, u[k,k+j−1]) can be expressed, respectively, as

x̄j|k = Aj x̄0|k +

j−1∑
i=0

Aj−1−iBui|k, (5.2a)

xj|k = Ajx0|k +

j−1∑
i=0

Aj−1−iBui|k +

j−1∑
i=0

Aj−1−iFwi|k, (5.2b)

while for the multiplicative cases the state predictions can be expressed as

x0|k = xk,

xj|k =
j−1∏
i=0

A(δi|k)x0|k +
j−1∑
i=0

j−1∏
l=i+1

A(δl)B(γi)ui|k, j ≥ 1,
(5.2c)

where
l2∏

i=l1

= I if l1 > l2.

The rest of notation used in this chapter and the nature of uncertainties are assumed to be as
in the specifications described in Chapter 3 and Chapter 4.
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5.2 Constraint Reformulation in Moment-based MPC Problems with
Additive Gaussian Perturbations

In this section, we consider the state constraints for the case of moment-based MPC problem
cast on linear systems with additive disturbances, Σadd in Equation (5.1b). Here we do not
work with control laws, i.e., uk = κ(xk), hence satisfying constraints on control actions
is straightforward for the MPC problems discussed here. On the contrary, guaranteeing
(hard) state (equivalently output) constraint satisfaction is impossible, if the disturbances
wk, k ∈ Z≥0, assume values from unbounded domains, such as the Gaussian pdfs and with
a non-trivial F matrix. For this case, confidence bounds on the constraint satisfaction can
be provided. Next, we discuss the bound constraints case cast on the evolution of dynamics
Σadd.

5.2.1 Bound Constraints in Moment-based MPC for Additive Gaussian Uncertainty

We first consider the bound constraints on the entries of inputs and states (equivalently
outputs1), i.e.,

[−bx]i ≤ [xk]i ≤ [bx]i, ∀k ∈ Z≥0,
[−bu]i ≤ [uk]i ≤ [bu]i, ∀k ∈ Z≥0,

(5.3)

where bx and −bx are the constraint vectors, of which the entries are constraining the state
evolution.

First we state a trivial, yet core, observation for linear systems with additive uncertainty.
This result states that the mean of the constraint distribution is equivalent to the constraints
on the nominal predicted state (generated from system Σnom) for system Σadd in Equation
(5.1b).

Theorem 5.2.1 Consider a stochastic LTI dynamical system Σadd in Equation (5.1b) af-
fected by Gaussian perturbations wk, k ∈ Z≥0 and the bound constraints as in Equation
(5.3). Then, for every i ∈ Z[1,n],

[−bx]i ≤ E{[xj|k]i} ≤ [bx]i ⇐⇒ [−bx]i ≤ [x̄j|k]i ≤ [bx]i, (5.4)

where x̄j|k is the jth-step prediction of Σnom with initial condition x̄0|k = xk and inputs
ul|k, l ∈ Z[0,j−1].

Proof. For the true state predictions xj|k given in Equation (5.2b), the disturbances wl|k
are occurring in an affine way. By using the linearity property of the expectation operator,
the disturbance terms

∑j−1
i=0 A

j−1−iFwi|k evaluate to zero thus nominal predictions x̄j|k
represent E{xj|k}.

Theorem 5.2.1 shows that the mean based reformulation of constraints for linear systems
with additive disturbances does not improve the constraint satisfaction properties2. One can
improve the constraint satisfaction probability, which we denote with αj for jth prediction

1Since, in general, the states and outputs are algebraically coupled to each other, i.e. yk = Cxk , all of the
results presented here are valid also for the outputs, with required changes in the constraint functions.

2Yet on average the constraints are expected to be satisfied, under the ergodicity of the uncertain effects.
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stage at time instant k, by incorporating the covariance of the state predictions Σxj|k into
the robust counterparts of the constraint functions as;

[E{xj|k}+ λjD{xj|k}]i ≤ [bx]i,
[E{xj|k} − λjD{xj|k}]i ≥ [−bx]i.

(5.5)

We approximate the MV reformulation of the constraints in Equation (5.5) by using the Ma-
halanobis distance ([109]) and the state covariance matrix Σxj|k which can be parameterized
with the characteristics of disturbances wk. First, observe that the state predictions can be
decomposed into xj|k = x̄j|k + x̃j|k, with xj|k ∈ N (x̄j|k,Σxj|k) and Σxj|k = E{x̃j|kx̃⊤j|k}
while Σx0|k = 0, if there is no initial condition mismatch3. The state (prediction) covariance
matrix, for each prediction stage j ∈ Z[0,Np−1], is calculated as4,

Σxj|k = E{(xj|k − x̄j|k)(xj|k − x̄j|k)
⊤} = E{x̃j|kx̃

⊤

j|k}

=
j−1∑
i=0

Aj−1−iFΣwF
⊤Aj−1−i⊤ , j ≥ 1.

(5.6)

Essentially, the state covariance matrix Σxj|k is used in Equation (5.5) for backing off the
predicted (and nominal) operating point x̄j|k from the (bound) constraints P([−bx], [bx]),
similar to the case in [355] and P([−bx], [bx]) denotes the polytope defined by the ver-
tices [−bx] and [bx] ([54]). We make use of Mahalanobis distance ([109]) to tighten the
constraints, which evaluates the distance of an observation ρ to a Gaussian distribution
x ∈ N (cx,Σx).

Definition 5.2.1 The Mahalanobis distance (M-distance), denoted with d(ρ, x), of a point
ρ ∈ Rnx to a random variable x ∈ N (cx,Σx) is given by

d(ρ, x)2 := (ρ− cx)
⊤Σ−1

x (ρ− cx). (5.7)

The definition of M-distance takes into account the mean cx and the covariance matrix Σx

of random variable x, hence the directions with relatively small variance values are evalu-
ated with larger M-distance for an Euclidean level set (hyper-spheres in the vector space).
Furthermore, for a random realization of x, say ρ, the M-distance d(ρ, x) not only provides
confidence intervals but itself is also a random variable distributed with χ2(nx) distribu-
tion, the χ2 distribution with nx degrees of freedom, [355], where nx is the dimension of
x. Hence if one sets a desired probability level for satisfying the constraint at prediction
stage j as αj ∈ R[0,1] while denoting the cumulative distribution function of χ2(nx) with
Ωχ2 : R → R[0,1], then the minimum M-distance for guaranteeing the probability level
αj is given by D2∗(αj) := Ω−1

χ2(nx)
(αj), where Ω−1

χ2(nx)
: R[0,1] → Rnx is the inverse

3For the case where the initial condition is not known exactly at time instant k, such as the output feedback
MPC configuration, the derivations presented here should also incorporate initial condition mismatch covariance
matrix as an linearly additive term, due to independence of uncertainties and linearity of dynamics. Here, for
brevity, we assume that initial condition of state is known exactly by the MPC controller.

4This matrix can be calculated and stored in MPC algorithm during the offline (design) stage.
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cumulative distribution function of χ2(nx). This claim can be seen from;

P{d(ρ, xj|k)2 ≤ D2∗(αj)} = αj ,

P{(ρ− cxj|k)
⊤Σ−1

xj|k
(ρ− cxj|k) ≤ D2∗(αj)} = αj ,

P{ρ ∈ E(cxj|k ,Σxj|k , D
∗(αj))} = αj ,

(5.8)

where the equation reads as the probability of a random realization of xj|k, i.e., ρ, being
an element of the ellipsoid E defined with the center cxj|k , the shape matrix Σxj|k and the
radius D∗(αj) is αj . With this line of reasoning, we transform the bound constraints on the
states, i.e., Equation (5.5), to chance constraints in Lemma 5.2.1.

Lemma 5.2.1 Consider a linear dynamical system Σadd as in Equation (5.1b) affected with
Gaussian perturbations wk, k ∈ Z≥0 and bound constraints as in Equation (5.3). Given
an initial condition x0|k and instantaneous constraint satisfaction levels αj , j ∈ Z[0,Np−1]

and let Σxj|k = LjL
⊤
j , ||β||22 = 1, β ∈ Rnx . Then

[−bx]i ≤ [x̄j|k +D∗(αj)Ljβ]i ≤ [bx]i, i = 1, . . . , nx, (5.9)

implies
P{[−bx]i ≤ [xj|k]i ≤ [bx]i} ≥ αj , i = 1, . . . , nx. (5.10)

Proof. From Equation (5.8), we know that the ellipsoid defined by x̄j|k,Σxj|k and D∗(αj)

guarantees the probability level

P{xj|k ∈ E(x̄j|k,Σxj|k , D
∗(αj))} = αj .

Then we show that the ellipsoid E(x̄j|k,Σxj|k , D
∗(αj)) is a subset of the constraint region

defined by the bounds, i.e., P(−bx, bx). By Definition 5.2.1 the confidence ellipsoid loci is
given by z = x̄j|k +D∗(αj)Ljβ. With this loci, if Equation (5.9) holds, then the minimum
M-distance between x̄j|k and any point on the constraint set is larger than D∗(αj), hence
E(x̄j|k,Σxj|k , D

∗(αj)) ⊂ P(−bx, bx).

Remark 5.2.1 Checking whether an ellipsoid lies inside a polytope, i.e., E ⊂ P , is a sec-
ond order conic program (SOCP). This increases the complexity class of the MPC problem
from a linearly constrained optimization problem to an optimization problem with conic
constraints.

Ignoring the trivial cases, with system dynamics Σadd one generally ends up with a nondiag-
onal covariance matrix Σxj|k . This matrix can be approximated by a diagonal (uncorrelated)
matrix, such as Tr(Σxj|k)Inx or any other matrix which satisfies Σ̂xj|k ≥ Σxj|k and Σ̂xj|k

diagonal. A diagonal covariance matrix allows the user to treat the state space components
individually, since the tip points of the ellipsoid E(x̄j|k, Σ̂xj|k , D

∗(αj)) are aligned with
the bases of the state space, i.e., the eigenvectors of Σ̂xj|k are parallel to basis directions
of the state space. Then one can use the Gaussian error functions, denoted with erf(·), for
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allocating the uncertainties that exceed the constraint level set. For a random variable with
diagonal covariance matrix with standard deviations σ̂[x]i , ai ∈ R≥0 and i ∈ Z[1,nx] we
have,

P{−ai ≤ [x̂]i ≤ ai} = erf

(
ai

σ[x̂]i
√
2

)
,

This approximation reduces the complexity of conic constraints (Equation (5.9)) back to
linear ones, see Lemma 5.2.2 and also [51].

Theorem 5.2.2 Consider a linear dynamical system Σadd as in Equation (5.1b) affected
with Gaussian perturbations wk, k ∈ Z≥0 and bound constraints as in Equation (5.3).
Given a diagonal over-approximation of the state covariance matrix, Σ̂xj|k ≥ Σxj|k , then
the tightened set of bound constraints guaranteeing probabilistic confidence levels in Equa-
tion (5.10) are given as

[−bx]i + [aj|k]i ≤ [x̄j|k]i ≤ [bx]i − [aj|k]i, (5.11)

where aj|k satisfies
nx∏
i=1

erf

(
[aj|k]i

σ̂[xj|k]i

√
2

)
≥ αj , (5.12)

and Σ̂xj|k = diag(σ̂[xj|k]1 , . . . , σ̂[xj|k]nx
).

Proof. First we make use of the new random variable x̂j|k with x̂j|k ∈ N (0, Σ̂xj|k). Then,
observe that Σ̂xj|k ≥ Σxj|k ,

P{xj|k ∈ P(−bx, bx)} ≥ P{x̄j|k + x̂j|k ∈ P(−bx, bx)}.

Then we guarantee P{x̄j|k + x̂j|k ∈ P(−bx, bx)} ≥ αj . By using the tightening distances
aj|k as design parameters and the diagonal structure of Σ̂xj|k , i.e., for i = 1, . . . , nx,

P{[x̄j|k]i − [aj|k]i ≤ [x̄j|k]i + [x̂j|k]i ≤ [x̄j|k]i + [aj|k]i} =

nx∏
i=1

erf

(
[aj|k]i

σ̂[xj|k]i

√
2

)
,

Then we set the tightened bounds as in Equation (5.11) by selecting each component of aj|k
which satisfies Equation (5.12).

By employing the methods discussed in Theorem 5.2.2 we end up with linear constraints
in the nominal state predictions generated from Σnom in Equation (5.1a) and a new con-
straint of tightening distances ai as in Equation (5.12). However there are two sources
inducing conservatism in this constraint reformulation. The first source is the diagonal
over-approximation of the covariance matrix Σxj|k by Σ̂xj|k . This means that we construct
the (smallest) axis-aligned ellipsoidal region which covers the ellipsoidal region described
by Σxj|k in the M-distance sense. The second source of conservatism is the aj|k values.
We know that erf(ζ) ≤ 1, ζ ∈ R≥0, thus multiplication of error functions quickly dimin-
ishes for large state space dimensions, hence it might be inconvenient to pre-allocate the
tightening distances [aj|k]i without reasonable physical interpretation.
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5.2.2 Polytopic Constraints in Moment-based MPC for Additive Gaussian Uncertainty

In the following part polytopic constraints on the true state xj|k are transformed into conic
constraints on nominal state x̄j|k, where the confidence region depends on the confidence
levels αj and covariance matrix Σxj|k , similar to the case for the bound constraints. In this
case, we define the constraint functions as

Ajxj|k ≤ bj , (5.13)

and provide a statistical approach to satisfy

P{Ajxj|k ≤ bj} ≥ αj

where αj are the chance levels of satisfying the constraints at jth prediction stage. In Lemma
5.2.2 we summarize the probabilistic confidence guarantees on the polytopic constraints.

Lemma 5.2.2 Consider a linear dynamical system Σadd as in Equation (5.1b) affected with
Gaussian perturbations wk, k ∈ Z≥0 and polytopic constraints as in Equation (5.13).
Given an initial condition x0|k and instantaneous constraint satisfaction levels αj , j ∈
Z0,Np−1 and let Ãj := D∗(αj)AjLj , LjL

⊤
j := Σxj|k , ∥β∥2 = 1. Then,

Aj x̄j|k + Ãjβ ≤ bj , (5.14)

implies
P{Ajxj|k ≤ bj} ≥ αj . (5.15)

Proof. First observe the fact that ζj|k = Ajxj|k is a random variable with characteristics
given as ζj|k ∈ N (Aj x̄j|k, AjΣxj|kA

⊤
j ). Then the deductions are essentially same with the

proof given in Lemma 5.2.1.

Similar to the bound constraints case, one can approximate the conic constraints in Equa-
tion (5.14) with linear constraints and over-approximating diagonal covariance matrix Σ̂xj|k .

Theorem 5.2.3 Consider a linear dynamical system Σadd as in Equation (5.1b) affected
with Gaussian perturbations wk, k ∈ Z≥0 and polytopic constraints as in Equation (5.13).
Given an initial condition x0|k, instantaneous constraint satisfaction levelsαj , j ∈ Z[0,Np−1],
and a diagonal over-approximation of the covariance matrix AjΣxj|kA

⊤
j , i.e., Σ̂xj|k ≥

AjΣxj|kA
⊤
j and Σ̂xj|k = diag(σ̂[xj|k]1 , . . . , [σ̂[xj|k]nx). If

Aj x̄j|k + aj|k ≤ bj , (5.16)

where aj|k satisfies Equation (5.12), then

P{Ajxj|k ≤ bj} ≥ αj .
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Proof. First we restate that, if x̂j|k ∈ N (0, Σ̂xj|k) and P{−ai ≤ [x̂]i ≤ ai} = erf
(

ai

σ̂[xj|k]i

√
2

)
,

then P{Aj x̄j|k − aj|k ≤ Aj x̄j|k + x̂j|k ≤ Aj x̄j|k + aj|k} ≥
nx∏
i=1

erf
(

[aj|k]i
σ̂[xj|k]i

√
2

)
, with the

equality satisfied only if Aj has full image rank. Due to hypothesis, Σ̂xj|k ≥ AjΣxj|kA
⊤
j ,

we have P{Ajxj|k ≤ bj} ≥ P{Aj x̄j|k + x̂j|k ≤ bj}. Then if one selects the aj|k vector
such that the condition

nx∏
i=1

erf

(
[aj|k]i

σ̂[xj|k]i
√
2

)
≥ αj

is satisfied, then the confidence bounds are guaranteed.

Remark 5.2.2 Using the reasoning given above, one can also formulate ellipsoidal con-
straints on the true state, such as

x⊤j|kHjxj|k − 2b⊤j xj|k − cj ≤ 0. (5.17)

Since we can decompose the true state as xj|k = x̄j|k + x̃j|k, the constraints in Equation
(5.17) can be expressed as, assuming Hj symmetric,

x̄⊤j|kHj x̄j|k − 2b̃⊤j x̄j|k − c̃j ≤ 0, (5.18)

where b̃j = bj−x̃⊤j|kHj and c̃j = cj−x̃⊤j|kHj x̃j|k+2b̃⊤j x̃j|k. Satisfying this constraint in its
general form with guaranteed probability levels is difficult, see [43]. This is due to the fact
that the coefficients of each term should be bounded by an ellipsoid to cast the constraint
satisfaction problem tractable. For the term b̃j , we can express the uncertainty region with
an ellipsoid, since x̃j|k is Gaussian. However the term c̃j is not distributed with a Gaussian
pdf, due to the quadratic term x̃⊤j|kHj x̃j|k. Here we provide an approximate result which

assumes that the distribution of coefficients b̃j and c̃j are known to be Gaussian beforehand.

Proposition 5.2.1 [43] Consider a linear dynamical system Σnom as in Equation (5.1a)
and quadratic constraints as in Equation (5.18) where

b̃j = b̄j +

nQ∑
i=1

[βj ]ib̃ji, c̃j = c̄j +

nQ∑
i=1

[βj ]ic̃ji,
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where β⊤
j βj = 1. If

c̄j + 2x̄⊤j|k b̄j − τj (⋆) (⋆) . . . (⋆) (⋆) x̄⊤j Hj

1/2c̃j1 + x̄⊤j|k b̃j1 τj 0 . . . 0 0 0

1/2c̃j2 + x̄⊤j|k b̃j2 0 τj
. . .

. . . 0 0
...

...
. . .

. . .
. . .

...
...

1/2c̃jnQ−1 + x̄⊤j|k b̃jnQ−1 0
. . .

. . . τj 0 0

1/2c̃jnQ
+ x̄⊤j|k b̃jnQ

0 0 . . . 0 τj 0

Hj x̄j|k 0 0 . . . 0 0 Inx


≥ 0, (5.19)

then x̄⊤j|kHj x̄j|k − 2b̃j x̄j|k − c̃j ≤ 0 is guaranteed to be satisfied.

5.2.3 Improving the Probability of Recursive Feasibility in Moment-based MPC

In this section we discuss the probabilistic guarantees for recursive feasibility in moment-
based MPC for systems with additive Gaussian perturbations. Here we show an approach
which, for a nominally feasible initial point x0, decreases the chance of having an infeasible
MPC problem over time iterations. For this purpose we pose a terminal constraint set, de-
noted with Xter, and for brevity we define the terminal constraint set from bound constraints
as,

Xter := {x ∈ Rnx |[−bxter]i ≤ [x]i ≤ [bxter]i, i = 1, . . . , nx}. (5.20)

We also define the steady state covariance matrix Σss which is the largest covariance matrix5

and can be found from the solution of the matrix equality

Σss = AΣssA
⊤ + FΣwF

⊤.

Furthermore we make use of a terminal controller Kf , which casts the nominal system
Σnom to be positively invariant inside a set X̂ter, i.e., x̄Np+i := (A+BKf )

ix̄Np|k ∈ X̂ter.
Finally, we define a tightened terminal constraint set X̄ter from the steady state covariance
matrix as,

X̄ter = Xter ⊖ E(0,Σss, D
∗(αter)) = Xter ⊖ {D∗(αter)Lssβter}, (5.21)

where Σss = LssL
⊤
ss, β⊤

terβter = 1 and the Pontryagin difference operation between two
sets X ,Y, assuming Y ⊆ X , is defined as

X ⊖ Y := {x|x+ y ∈ X , ∀y ∈ Y}.

Next we state the statistical recursive feasibility properties of closed-loop systems with
moment-based MPC.

5The monotonic increase of the covariance matrices can be seen from

Σxj|k =

j−1∑
i=0

AiFΣwF⊤Ai⊤ = AΣxj−1|kA
⊤ + FΣwF⊤.
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Lemma 5.2.3 Consider a linear dynamical system Σadd as in Equation (5.1b) with terminal
constraints Xter as in Equation (5.20), given the initial state xk, the chance levels αter

and a terminal controller Kf . If there exists a tightened constraint set X̂ter such that (i)
X̂ter ⊂ X̄ter, (ii) the nominal state x̄Np|k is positively invariant with controller Kf within
the set X̂ter, then satisfying the constraint

x̄Np|k ∈ X̂ter (5.22)

guarantees

P{[−bxter]i ≤ [xNp|k+1]i ≤ [bxter]i} ≥ αter.

Proof. By hypothesis, X̄ter in Equation (5.21) and Lemma 5.2.1, we know that

P{[−bxter]i ≤ [xNp|k|]i ≤ [bxter]i} ≥ αter.

Then, we guarantee probabilistic feasibility at time k+1. Consider the terminal controller as
being active in the subsequent time iterations as the suboptimal but feasible control action.
Due to the positive invariance of nominal states inside X̂ter, i.e., x̄Np+j|k ∈ X̂ter ⊂ X̄ter.
Furthermore, since ΣxNp+j|k ≤ Σss we have P{xNp+j|k ∈ Xter} ≥ αter, for all j ≥ 0.
Assuming the control action with controller Kf is still feasible in the time instant k + 16,
then KfxNp|k is a feasible control action for u[0,Np−1]|k+1 which leads to the recursive
feasibility.

5.2.4 Constraint Reformulations in Moment-based MPC for Additive Perturbations with
Even and Bounded Distributions

In this section, we consider the linear dynamical system Σadd which is affected in the state
dynamics by additive perturbations which are not Gaussians. Instead we assume that the
disturbances are distributed with even (symmetric with respect to zero) and bounded pdf
characteristics. For brevity, we only consider bound type of constraints, while similar ap-
proaches can be derived for polytopic or terminal constraints also.

The difference between the Gaussian disturbances case and non-Gaussian but even and
bounded distribution case is due to the fact that the Mahalanobis distance concept (which
is developed for Gaussian distributions) does not carry for other pdfs. The weighted sum
of Gaussian random variables construct another Gaussian random variable, however this
is not generally true for weighted sums of generic random variables. Consider again the
decomposition of the true state xj|k as xj|k = x̄j|k+x̃j|k. If the distribution of perturbations
wk is not Gaussian, then the uncertain state vector x̃j|k has a distribution which is difficult
to parametrize in terms of system matrices or the statistics of the perturbations. However

6If the uncertainty realization is severe (the tails of Gaussian) then the controller can not guarantee constraint
satisfaction.
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the covariance matrix Σxj|k is easy to express, since

x̃j|k =
j−1∑
i=0

Aj−1−iFwi|k, j ≥ 1, x̃0|k = 0,

Σxj|k = E{
j−1∑
i=0

Aj−1−iFwi|kw
⊤
i|kF

⊤
Aj−1−i

⊤

},

=
j−1∑
i=0

Aj−1−iFΣwi|kF
⊤
Aj−1−i

⊤

,

= NjΣ̄wN
⊤
j ,

(5.23)

whereNj :=
[
Aj−1F . . . AF F

]
and Σ̄w = Σw⊗Ij in which the Kronecker product

is denoted with ⊗. Next, we bound the spread of x̃j|k to provide deterministic guarantees
on the constraint satisfaction properties by using the covariance matrix. For this purpose,
one can still use the approaches discussed in the previous section by using the Mahalanobis
distance, since as j ≫ 1 and by the Central Limit Theorem ([16]), the distribution of x̃j|k
converges to a Gaussian distribution with zero mean and covariance matrix Σxj|k . However
for exact results a covariance dependent distance should be explicitly constructed which
further depends on the pdf characteristics of the random variables and their weighted con-
volutions with each other as the prediction stages increases, such as the uniform or triangu-
lar pdfs which construct Irwin-Hall distribution ([151, 166]). Instead, here we provide an
approximation approach for satisfying the constraints with deterministic guarantees, in the
case of generic even and bounded distributions.

We start with approximating the domain of random vector xj|k. The domain of the
random vector x̃j|k is given by the row absolute sum of the matrix Nj , assuming that the
components of disturbances [wj|k]i are distributed in the domain [−1, 1]7. For the case
where nw = 1, the bounds on the true state are given by

[Bj ]l :=

j−1∑
i=0

|[AiF ]l|.

By using the components of Bj we present two different constraint handling methods for
deterministic guarantees. The first approach, highlighted in Lemma 5.2.4, is using the (vec-
tor) norm equivalence relations, hence prone to high conservatism. The second proposed
approach, presented in Lemma 5.2.5, is bounding the uncertain state trajectories domain
through least squares problems.

Lemma 5.2.4 Consider a stochastic dynamical system Σadd in Equation (5.1b) affected
with random variables wk, k ∈ Z≥0 that are distributed within [−1, 1] and bound con-
straints as in Equation (5.3). If

[−bx]i+

[√
1

σ2
w

jnwdiag(Σxj|k)

]
i

≤ [x̄j|k]i ≤ [bx]i−

[√
1

σ2
w

jnwdiag(Σxj|k)

]
i

, (5.24)

7The domain condition can be satisfied by scaling the components of F matrix.
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is satisfied for i = 1, . . . , nx, then

[−bx]i ≤ [xj|k]i ≤ [bx]i

is guaranteed to be satisfied.

Proof. First we state Σxj|k = NjΣ̄
j
wN

⊤
j . If, for brevity, we assume Σ̄j

w = σ2
wIjnw , then

Σxj|k = σ2
wNjIjnwN

⊤
j . Now denote the row vectors of matrix Nj as n⊤jl, l = 1, . . . , nx,

i.e.,

Nj =
[
nj1 nj2 . . . njnx

]⊤
.

Then the realizations of x̃j|k satisfy x̃j|k ∈ [−Bj ,Bj ], while

[Bj ]l = ||njl||1, l = 1, 2, . . . , nx.

Next observe that ||njl||22 is given by the lth element of the diagonal of the covariance matrix
Σxj|k , i.e.,

||njl||22 =
1

σ2
w

[diag(Σxj|k)]l.

Then we use the (vector) norm equivalence between the 1- and 2-norms, which expresses
the bounds in vector form as

∥njl∥1 ≤
√
jnw∥njl∥2

[Bj ]l ≤
√

1
σ2
w
jnw [diag(Σxj|k)]l.

(5.25)

Using this relation it is easy to show that[
x̄j −

√
1

σ2
w

jnw diag(Σxj )

]
l

≤ [xj ]l ≤

[
x̄j +

√
1

σ2
w

jnw diag(Σxj|k)

]
l

,

which guarantees the constraint satisfaction for any realization ofwk ∈ [−1, 1]nw and linear
in the optimization variables.

Remark 5.2.3 By using Lemma 5.2.4 and different distributions one can guarantee the
constraint satisfaction for bounded disturbances without explicitly calculating the reachable
intervals in the expense of induced conservatism due to norm equivalence relations.

One can make use of the variance values of known even and bounded distributions, such as
the uniform (σ2

w = 1/3) or triangular (σ2
w = 1/18) pdfs. Furthermore one can also apply

the discussed technique to the cases where the pdf is unbounded but in practice it is safe
to assume that there is an upper bound on the realizations, such as the truncated Gaussian
pdfs.

The second technique is structurally similar with the previous approach, whereas the
conservatism is reduced by a least squares (LS) problem.
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Lemma 5.2.5 Consider a stochastic dynamical system Σadd in Equation (5.1b) affected
with random variables wk, k ∈ Z≥0 that are distributed within [−1, 1] and bound con-
straints as in Equation (5.3). Given v∗j as the solution of least squares problem

v∗j = arg min
vj∈Rnx

∥Σxj|kvj − Bj∥2,

subject to [Σxj|kvj ]i ≥ [Bj ]i, i = 1, . . . , nx.
(5.26)

Then,
[−bx]i ≤ [xj|k]i ≤ [bx]i

is guaranteed to be satisfied, if

[−bx]i + [Σxj|kv
∗
j ]i ≤ [x̄j|k]i ≤ [bx]i − [Σxj|kv

∗
j ]i, (5.27)

is satisfied.

Proof. With the feasible solution of the LS problem given in Equation (5.26), we have

[x̄j|k − Σxj|kv
∗
j ]i ≤ [x̄j|k − Bj ]i ≤ [xj|k]i ≤ [x̄j|k + Bj ]i ≤ [x̄j|k +Σxj|kv

∗
j ]i,

which yields the tightened constraints

[−bx]i + [Σxj|kv
∗
j ]i ≤ [x̄j|k]i ≤ [bx]i−]Σxj|kv

∗
j ]i.

5.3 Constraint Reformulation in Moment-based MPC for Linear Sys-
tems with Multiplicative Uncertainty

In this section, we consider the constraint satisfaction properties for the plant-model mis-
match case. Here we assume that the dynamical evolution of the process is modelled as in
Σmul

(·) of Equations (5.1c) and (5.1d). First we present the results for the Σmul
TV case, where

the uncertainties affecting the system dynamics are known to be varying over time.

5.3.1 Time-Varying Multiplicative Uncertainty and Constraint Handling in Moment-based
MPC

We start our discussion with the bound constraints as in Equation (5.3), which is in the form
of

[−bxj ]i ≤ [xj|k]i ≤ [bxj ]i.

Similar to the dynamics with additive perturbations case, i.e., Lemma 5.2.1, first we con-
sider only the mean of the constraint relations for Σmul

TV . If the predicted state vector xj|k
is expressed in terms of x0|k, u[0,j−1]|k, δ[0,j−1]|k, γ[0,j−1]|k as in Equation (5.2c) and the
expectation operator is evaluated, then the resulting predictions are found as

E
{
xj|k

}
= E

{
j−1∏
i=0

(A(δi|k))x0 +

j−1∑
i=0

j−1∏
l=i+1

(A(δl|k))(B(γi|k))ui

}
= x̄j|k,
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assuming that there is no correlation between δj|k and γi|k for all i ∈ Z[0,Np−1] and
j ∈ Z[0,Np−1]. Thus in the case of utilizing only the expectation operator, we end up with
nominal state predictions to be used in the bound constraints. This reasoning is also valid
for the polytopic constraint functions, since the uncertainties occur in affine form. If one
considers quadratic type of constraints, i.e.,

x⊤j|kHjxj|k ≤ 0, (5.28)

then the expectation of the constraint contains extra terms. We express the robust counter-
part of quadratic constraints next.

Lemma 5.3.1 Consider a stochastic dynamical system Σmul
TV in Equation (5.1d) affected

with random variables δk and γk, k ∈ Z≥0. Given the quadratic constraints as in Equation
(5.28). Then

E{x⊤j|kHjxj|k} = x̄⊤j|kHx̄j|k +
j−1∑
i=0

nδ∑
l=1

x̄⊤i|kA
⊤
l H

TV
j,i Alx̄i|kσ

2
[δ]l

+
nγ∑
l=1

u⊤i|kB
⊤
l H

TV
j,i Blui|kσ

2
[γ]l
,

(5.29)
where

HTV
j,j−1 = H,

HTV
j,j−2 =

nδ∑
i=1

(Ā⊤HĀ+A⊤
i HAiσ

2
[δ]i

),

=
nδ∑
i=1

(ρ⊤
Ā,Ai,1

H̃TV
j,1 ρĀ,Ai,1),

HTV
j,j−m =

nδ∑
i=1

ρ⊤
Ā,Ai,m−1

H̃TV
j,m−1ρĀ,Ai,2,

(5.30)

where

ρĀ,Ai,j =
[
Āj⊤ A⊤

i Ā
j−1⊤ . . . Aj⊤

i

]⊤
,

H̃TV
j,m = (I2m ⊗Hj).

Proof. The proof follows from the expressing xj|k in terms of the nominal predictions and
input actions as

xj|k = x̄j|k +

j∑
i=1

nδ∑
l=1

ρ+
Ā,Al,i−1

Al[δ]lx̄j−i|k +

nγ∑
l=1

ρ+
Ā,Al,i−1

Bl[γ]luj−i|k, (5.31)

where

ρ+
Ā,Al,0

= I,

ρ+
Ā,Al,1

= (Ā+Al[δ]l),

ρ+
Ā,Al,2

= (ĀĀ+ ĀAl1 [δk]l1 +Al2 [δk]l2Ā+Al2 [δk]l2Al1 [δk]l1),

ρ+
Ā,Al,j

=
2j∑
i=1

[
ρĀ,Al,j

]
i
δ̄,
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where the summation the last expression is conducted over nx × nx block elements with
obvious definitions [ρĀ,Ali

,j ]i multiplied with [δ]li elements which depends on the number
of Ali terms in the expression that constructs the δ̄ vector. Next, we express the expectation
of the quadratic form, which ends up as in Equation (5.29).

Similar to the additive case (Equation (5.5)), to back-off the predicted true state from the
constraint region, and to include the effects of model uncertainty into the constraint satisfac-
tion guarantees, we incorporate the second order terms of state in the constraint equations
for the affine constraint functions of the state, i.e.,

[x̄j|k + λjD{xj|k}]i ≤ [bxj ]i,
[x̄j|k − λjD{xj|k}]i ≥ [−bxj ]i.

(5.32)

If one expresses the variance of the predicted state as D{xj|k} = E{(xj|k−E{xj|k})(xj|k−
E{xj|k})⊤}, then we observe that the covariance values of different components of x̄j|k,
i.e., [x̄j|k]i, are effecting the magnitude of constraint tightening. Instead here we consider
a conservative approximation of the variances, by incorporating the sum of variances in the
constraint tightening step, i.e.,

[x̄j|k + λjD̃{xj|k}]i ≤ [bxj ]i,

[x̄j|k − λjD̃{xj|k}]i ≥ [−bxj ]i,

where D̃{xj|k} := E{x̃⊤j|kx̃j|k} which transforms the bound constraints in Equation (5.32)

into a tractable form. We provide explicit expression for D̃{xj|k} next.

Lemma 5.3.2 Consider a stochastic dynamical system Σmul
TV in Equation (5.1d) affected

with random variables δk and γk, k ∈ Z≥0. Then

D̃{xj|k} =

j−1∑
i=0

nδ∑
l=1

x̄⊤i|kA
⊤
l I

TV
j,i Alx̄i|kσ

2
[δ]l

+

nγ∑
l=1

u⊤i|kB
⊤
l I

TV
j,i Blui|kσ

2
[γ]l1

, (5.33)

where ITV
j,i are found from Equation (5.30) by replacing Hj with Inx .

Proof. The claim follows from Lemma 5.3.1 as a special instance.

5.3.2 Time-Invariant Multiplicative Uncertainty and Constraint Handling in Moment-based
MPC

In this section, we present the results for the Σmul
TI case, where the uncertainties affecting

the system dynamics are known to be invariant over time. First we present the results for
the polytopic constraints8, which is in the form of

Ajxj|k ≤ bxj . (5.34)

8Here we skip the bound constraints case, since bound constraints are a special case of polytopic constraints
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Similar to the dynamics with additive perturbations case, i.e., Lemma 5.2.2, first we consider
only the mean of the constraints in Equation (5.34) for the dynamics Σmul

TI . In this case the
predicted state vector xj|k is expressed in terms of x0|k, u[0,j−1]|k, δ, γ as in Equation (5.2c)
and we evaluate the expectation operator, which results in

E
{
xj|k

}
= x̄j|k +

j∑
i=2

nδ∑
l=1

ρ+,T I

Ā,Al,i−1
Alx̄j−i,

where ρ+,T I

Ā,Al,i
is constructed from the expression in Equation (5.31), but in this case the

predictions of Σmul
TI are used and the summed terms consist of even multiples of Al, so that

the expectation operation does not vanishes, i.e.,

E
{
xj|k

}
= x̄j|k +

j∑
i=2

nδ∑
l=1

ρ+,T I

Ā,Al,i−1
Alx̄j−i,

= x̄j|k +
nδ∑
l=1

AlAlσ
2
[δ]l
x̄j−2 +

nδ∑
l=1

(
AlĀAl + ĀAlAl

)
σ2
[δ]l
x̄j−3 + . . . ,

Thus in the case of utilizing only the expectation operator, we end up with nominal state
predictions over multiple stages to be used in the polytopic constraints. Then the robust
counterpart of the polytopic constraint in Equation (5.34) is obtained as

E{Ajxj|k} ≤ bxj ,

Aj

(
x̄j|k +

j∑
i=2

nδ∑
l=1

ρ+,T I
Ā,Al,i−1

Alx̄j−i

)
≤ bxj .

(5.35)

Equation (5.35) formulates the mean reformulation of the polytopic constraints9.
Next, we present the robust counterparts of quadratic constraints on the state, i.e.,

E
{
x⊤j|kHjxj|k

}
≤ 0. (5.36)

We provide the explicit form of the mean reformulation of quadratic constraints under TI
uncertainty in Lemma 5.3.3.

Lemma 5.3.3 Consider a stochastic dynamical system Σmul
TI as in Equation (5.1c) affected

with random variables δ and γ. Given the quadratic constraints as in Equation (5.36). Then

E{x⊤j|kHjxj|k} = x̄⊤j|kHj x̄j|k +
j−2∑
i=0

nδ∑
l=1

2x̄⊤j|kH
TI
j,j,iAlx̄i|k+

j−1∑
i=0

nδ∑
l=1

(
x̄⊤i|kA

⊤
l H

TI
j,i Alx̄i|k+

. . .
i−1∑
m=0

2x̄⊤i|kA
⊤
l H

TI
j,i,mAlx̄m|k

)
+

j−1∑
i=0

nγ∑
l1=1

nδ∑
l2=1

(
u⊤i|kB

⊤
l1
HTI

j,i Bl1ui|kσ
2
[γ]l2

+

. . .
i−1∑
m=0

2u⊤i|kB
⊤
l H

TI
j,i,mBlum|kσ

2
[γ]l2

)
,

(5.37)

9By selecting A⊤
j =

[
Inx −Inx

]
, one can express the bound constraints case.
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where
HTI

j,j−1 = Hj ,

HTI
j,j−2 =

nδ∑
l=1

(Ā⊤HjĀ+A⊤
l HjAlσ

2
[δ]i

),

=
nδ∑
l=1

ρ⊤
Ā,Al,1

H̃TI
j,1 ρĀ,Al,1σ

2
[δ]i
,

HTI
j,j−i =

nδ∑
l=1

ρ⊤
Ā,Al,i−1

H̃TI
j,i−1ρĀ,Al,i−1,

(5.38a)

HTI
j,j,j−2 =

nδ∑
l=1

HjAlσ
2
[δ]m

= ρ⊤
Ā,Al,0

H̃TI
j,0,1ρĀ,Al,1,

HTI
j,j,j−3 =

nδ∑
l=1

Hj(ĀAl +AlĀ)σ
2
[δ]i

),

=
nδ∑
i=1

ρ⊤
Ā,Al,0

H̃TI
j,0,2ρĀ,Al,2,

HTI
j,j,j−m =

nδ∑
l=1

ρ⊤
Ā,Al,0

H̃TI
j,0,m−1ρĀ,Al,m−1

(5.38b)

HTI
j,j−1,j−m =

nδ∑
l=1

ρ⊤
Ā,Al,0

H̃TI
j,0,m−1ρĀ,Al,m−1,

HTI
j,j−t,j−m =

nδ∑
l=1

ρ⊤
Ā,Al,t−1

H̃TI
j,t−1,m−1ρĀ,Al,m−1,

(5.38c)

where

ρĀ,Al,i =
[
Āi⊤ A⊤

l Ā
i−1⊤ . . . Ai⊤

l

]⊤
,

and H̃TI
j,i and H̃TI

j,i,k are symmetric matrices constructed from concatenation ofHj and zero
matrices multiplied with the high order moments of the uncertainty [δ]l for the even order
combinations of Al.

Proof. The proof follows from expressing xj|k in terms of the nominal predictions and input
actions as

xj|k = x̄j|k +

j∑
i=1

nδ∑
l=1

ρ+
Ā,Al,i−1

Al[δ]lx̄j−i|k +

nδ∑
l2=1

nγ∑
l1=1

ρ+
Ā,Al2

,i−1
Bl1 [γ]l1uj−i|k,

similar to the proof of Lemma 5.3.1. Then we evaluate the expectation of the quadratic form
which ends up as in Equation (5.37).

For the dynamics Σmul
TI case, the expectation operator introduces extra quadratic elements

for the robust counterpart problem. One can also implement the mean-variance formulation
of constraint function, i.e., assuming the constraint is a bound constraint,

[E{xj|k}+ λjD{xj|k}]i ≤ [bxj ]i,
[E{xj|k} − λjD{xj|k}]i ≥ [−bxj ]i.

(5.39)

155



Chapter 5. Constraints in Moment-based Model Predictive Control Problems

We already have the expected state, which is given as

E{xj|k} = x̄j|k +

j∑
i=2

nδ∑
l=1

ρ+,E
Ā,Al,i−1

Alx̄j−i +

j∑
i=2

nγ∑
l1=1

nδ∑
l2=1

ρ+,E
Ā,Al2

,i−1
Bl1uj−i.

This leads to computational difficulties if one evaluates D̃{xj|k} := E{x̃⊤j|kx̃j|k}. Thus,
here we transform the bound constraints in Equation (5.39) into a tractable form by consid-
ering E{x⊤j|kxj|k} and provide an explicit expression for this term in Lemma 5.3.4.

Lemma 5.3.4 Consider a stochastic dynamical system Σmul
TI in Equation (5.1c) which is

affected with random variables δ and γ. Then

E{x⊤j|kxj|k} = x̄⊤j|kx̄j|k +
j−2∑
i=0

2x̄⊤j|kI
TI
j,j,j−iAlx̄i|k+

j−1∑
i=0

nδ∑
l=1

(
x̄⊤i|kA

⊤
l I

TI
j,i Alx̄i|k + 2

i−1∑
m=0

x̄⊤i|kA
⊤
l I

TI
j,i,lAlx̄m|k

)
+

j−1∑
i=0

nγ∑
l=1

(
u⊤i|kB

⊤
l I

TI
j,i Blui|k + 2

i−1∑
m=0

u⊤i|kB
⊤
l Ij,i,mum|k

)
,

(5.40)

where ITI
j,i and ITI

j,i,m are found from Equations (5.38a), (5.38b), (5.38c) by replacing Hj

with Inx
.

5.4 Conclusions on Robust Reformulation of Constraints in Moment-
based MPC Problems

In this chapter, we have investigated the constraint satisfaction properties of a novel ro-
bust MPC algorithm which is based on the statistics (centralized moments) of the constraint
functionals for linear stochastic systems with additive or multiplicative uncertainties. We
have evaluated the mean and mean-variance of the state constraints in MPC problems. Fur-
thermore, we extend our discussion towards the non-Gaussian disturbances and report two
state covariance matrix based robust counterpart formulation of constraints for the mean
and MV MPC problems for additive disturbances with even and bounded probability den-
sity functions. Lastly, we evaluate the mean of the MPC constraint functions, which are
taken as bound, polytope and quadratic constraint functions, that incorporate time-varying
and time-invariant uncertainties affecting the system dynamics in an affine fashion.

• All of the constraints in moment-based MPC problems can be expressed in terms of
nominal dynamics with stage-wise varying weighting matrices over the prediction
horizon.

• Nominal MPC problem decreases the computational complexity drastically in com-
parison to the other robust MPC techniques where an explicit maximization step or
chance integrals need to be calculated for robust counterpart problem.
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Chapter 6

Model-based Applications on Whey Protein
Separation Process and Ultrafiltration Mem-
branes

The real price of everything is the toil and
trouble of acquiring it.

Adam Smith - The Wealth of Nations

In this chapter, and the rest of the dissertation, we present the research activities con-
ducted on model-based applications towards an industrial whey protein separation process.
First, we discuss the subprocesses, and their operation, in the whey protein separation plant.
The ultrafiltration (UF) membrane unit operation, a subprocess in the separation process,
receives greater emphasis in the discussion, due to the dynamical nature of its operation.
We present a control relevant dynamical model of ultrafiltration membrane unit operation
which contains both the fundamental balance laws and empirical relations among physical
variables. Having such goals for the use of the rigorous model, we choose lumped models
instead of a distributed parameter system formalism. Furthermore, we make use of phys-
ical laws instead of only black box components to model the separation phenomena and
to describe physical variables in the model description explicitly. We test three different
models, of different complexity in describing the membrane fouling, with respect to several
statistical significance tests based on industrial data sets. Furthermore to test the predictive

0Substantial content of this chapter is also published or presented in:

• M.B. Saltik, L. Özkan, M. Jacobs, A. van der Padt. Dynamic modeling of ultrafiltration membranes for
whey separation processes.

• M.B. Saltik, L. Özkan, M. Jacobs, A. van der Padt. Optimal Start-Up and Operation Policy for an Ultrafil-
tration Membrane Unit in Whey Separation.

• M.B. Saltik, L. Özkan, S. Weiland and P.M.J. Van den Hof. Optimal Sensor Selection Problem for Mem-
brane Separation Systems.
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capabilities, we construct various operation scenarios (constant inlet flow or pressure, inclu-
sion of a fresh membrane etc.) and comment on the responses in the flows, concentrations
and resistance development to demonstrate that the developed model has the capability of
mimicking an UF membrane process and therefore can be used in online control applica-
tions. Furthermore, a method to address which signal to measure in a simplified UF mem-
brane process is presented. Lastly operational aspects of UF membranes are considered and
we compare a novel operating strategy with the current way of operation in the industrial
process.

6.1 Whey Protein Separation Process

6.1.1 Motivation for Model-based Operations towards Whey Protein Separation Process

In Chapter 1, recent developments on OMBA strategies such as RTO or MPC have been dis-
cussed. Both of these operation strategies, see Figure 1.2a, have become a standard in the
oil and bulk chemicals process industries ([103]). However food industry is yet to make use
of process models as frequent as these industries. In the light of this observation, incorpo-
ration of economic and process models which are cast as constraints in the decision making
process is expected to lead to improve the operation in various aspects such as efficiency or
reliability. Since model-based applications exploit the nonlinear and/or time-varying struc-
ture of the processes in the plant, better predictions are expected to be generated. These
predictions are then leading to better decisions before or during the operation of plant. If
the predictions match up with the true process in a satisfactory level, then savings and ef-
ficiency can be improved by diverse set of tools, such as monitoring or advanced process
control.

Steady state rigorous models are used in offline or economic applications, but incor-
porating rigorous models into online monitoring and/or control applications remains as a
challenging task. Firstly, dynamic rigorous model development and validation is challeng-
ing and costly, even if the end goal is to use it for offline purposes. Furthermore a modeling
campaign requires many iterations and a cooperative effort across many domains of ‘exper-
tise’ in the case of industrial plants.

The challenge of using dynamic rigorous models in real-time has some other aspects.
One of the important aspects is the computational complexity of the proposed application.
A rigorous model mimics the true process with high resolution power under the condition
that there is enough computational power at hand to simulate or manipulate model vari-
ables. The reason for numerical difficulties is due to the combination of slow and fast
dynamics. The intersection of dynamical (slow) evolution of process variables with al-
gebraic (fast) coupling between these variables lead to models with differential algebraic
equations (DAEs). These type of models are exceptionally difficult to simulate reliably and
quickly. This leads to extra constraints on the possible monitoring or control methods that
can be implemented. With the current tools for model-based operation, many highly effi-
cient methods can only work with small scale linear ordinary differential equation models,
while these simple models can not provide a satisfactory level of realism.

Hence the first step in model development for process industries is to decide on the
end goal of the model. For this purpose, in the next section, we present the whey protein
separation process and the UOs on which it is built.
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6.1.2 Description and Operation of Whey Protein Separation Process

In this dissertation we consider a specific whey protein separation setup. This plant consists
of a series of unit operations (UOs) namely, reverse osmosis membrane units, pasteurization
unit, the ultrafiltration membrane units, evaporator unit and lastly spray drying unit, as vi-
sualized in Figure 6.1. The whey process receives (thin) whey as the inlet. Whey is a water
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Figure 6.1: Block diagrams indicating UO inlet/outlets in whey separation process and a
close look to ultrafilration membranes.

based mixture of organic molecules such as whey proteins, various type of sugars and fats
with residual other components. Although small variations in the component concentrations
of inlet whey are expected over time, these variations are assumed to be small process dis-
turbances instead of high and effective fluctuations. The inlet is first processed in reverse
osmosis (RO) membranes and pasteurizer UOs. RO membranes are membrane (separation)
units with small sized pores and operating with high transmembrane pressures (TMPs), al-
lowing small molecules, mainly only water, to reach to one of the two outlets, the permeate
stream. With RO UO, the protein concentration in thin whey is increased by a factor of two.
The pasteurizer UO gathers the outlet of ROs and buffers the concentrated whey till the
desired levels of pasteurization is reached. No dynamical effect is expected with regard to
whey components within this UO. After the pasteurization of the whey, which now contains
about 10 − 12% protein concentration on dry matter, the outlet is sent to the ultrafiltration
(UF) membrane unit. A series of UF membrane stacks are used to separate whey compo-
nents; the proteins in whey are separated from the sugars, fats, salts. Furthermore, the water
concentration of the whey is also regulated in this unit operation. A schematic of a (spiral)
membrane unit is shown in Figure 6.2. After the organic components are separated in UF
membranes, the percentage of whey protein on the dry matter increases to the levels around
35− 40%.
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Figure 6.2: Membrane composition and product flows, [353].

The whey filtration operation continues with evaporator and dryer UOs. These UOs
are large-scale units which are used to separate only the water to obtain protein powder
products. To decrease the water concentration in the processed whey, the retentate (protein
rich outlet) and permeate (outlet with other organic components) streams of UF membranes
are processed in the evaporator UO. The evaporated permeate, now mainly consists of sugars
of different types, is one of the outputs of the plant, whereas the retentate of UF membrane
is used in both evaporator and spray drier UOs that turn thick whey into protein powder.

6.1.3 Ultrafiltration Membrane Process and Its Operation

Within the whey protein separation process, we focus on the UF membrane unit operation,
since the dominant (at the final product) and dynamical responses are observed in these units
within the protein separation process. Membranes are pressure driven systems consisting
of three ports, the feed stream, also called as the feed inlet, the retentate stream, the per-
formance output, and the permeate stream, the controlled output. In each membrane stack,
consisting of multiple membrane units, the material is circulated with high speed tangential
to membrane surface, where separation between small molecule size and large molecule
size components occur. Due to high circulation speed, the concentrations of components
are assumed to be uniform over the membrane units in a membrane stack. The pressure dif-
ference between the feed and permeate ports creates a mass flow that is mainly consisting of
water (with other small molecule components) while the large molecule components, such
as whey proteins, can not pass through the membrane pores and hence either circulate again
or leave the membrane from the retentate port.

Membrane filtration processes have gained significant popularity in various applications
and industries over the last couple of decades. They operate in mild operating temperatures
leading to energy savings, low heat load and do not require additional chemicals to separate
the desired product. In the food and beverages industry alone, the total membrane market
has been estimated to be worth 1.182 billion $ in 2008 ([344]). In the dairy industry, it
is estimated that 75% of total ultrafiltration membranes are used to fractionate the whey
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proteins ([118, 349]).
The performance requirement of a membrane separation process is controlling the con-

centrations and total mass flow of the retentate port. This is achieved by controlling the mass
flux, or its integral, permeate mass flow. Despite the increasing number of applications,
membrane units have a major bottleneck; the decline of permeate flux due to the membrane
fouling. This phenomenon causes performance drop which is at first instance compensated
by the increase of the baseline transmembrane pressure (TMP) and later by the addition of
fresh (or clean) membranes. Eventually, the operation of membranes are interrupted com-
pletely for chemical cleaning in order to restore the original performance. Huge savings and
high level of productivity are expected if the control and operational policy of these units
are improved. To this end, modeling the dynamic behaviour of the membranes is essential.

The type of dynamic models describing membranes can range from very detailed dis-
tributed parameter models to lumped and data-driven models ([87, 99, 104, 130, 146, 172,
231, 244, 269]) with the former being the preferred choice. Mathematical models in the
form of distributed parameters systems provide detailed knowledge which could be very
useful especially in the design of new membrane processes. On the other hand, data driven
models are easy to develop once the required experimental data is gathered. However, the
validity of these type of models is limited and they lack information on the internal variables
which provide an indication on the process performance.

An important decision in any modeling campaign is the end use of the model. Here, we
are interested in developing a dynamical model for an ultrafiltration (UF) membrane unit
which can be utilised in online model-based applications such as soft sensing and model-
based control. Furthermore this model will allow the possibility to

• track fouling or membrane’s performance deterioration over time that is due to several
difficult-to-measure phenomena, such as the gel layer formation or the dynamic concen-
tration polarization;

• regulate the concentration and mass flow of the retentate stream;

• make decisions when to add a fresh membrane or when to start chemical cleaning.

We classify currently available membrane models in the literature based on i) the end use
and ii) how the fouling phenomenon is described. The first class consists of several model
structures and sizes ranging from static or black box models, such as [269], to medium sized
lumped models, [146], and finally to large-scale models considering the spatial dependency
of pressure distribution in membranes units ([354]). For the case of data driven models
([130, 269]) in which the relations between the internal variables are formulated with re-
gression functions, the model complexity is drastically decreased. At the other end of the
spectrum are the large-scale models represented by partial differential equations, such as
[55, 87, 305, 358]. A comparative study between the black box models and first principle
models is presented in [99].

Membranes are used in various separation processes with different geometric structures
(pore size etc.). This fact leads to quite different membrane models utilised for design or
optimal operation purposes. The reverse osmosis (RO) membranes are used generally, but
not only, for wastewater treatment processes, for which membrane model examples can
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be found in [59, 60, 172]. For slightly larger pore size membranes (nanofiltration (NF))
the number of possible applications and hence the number of reported uses of membrane
models is high. Here, we only mention [57, 58], for nanofiltraton membrane modeling
campaigns. The next class of membranes are called as UF membranes. We observe that
there are many case-specific membrane models as presented in[47, 104, 146, 156, 244],
while only the publication [231] discusses a general purpose modelling approach.

The second classification topic is the fouling and how it is formulated in the model.
There are multiple distinct phenomena such as gel layer formation ([254]) and/or concen-
tration polarization ([48]) contributing to the membrane fouling and, hence, performance
degradation. These phenomena are studied extensively in several publications ([87, 99]),
while these mainly focus on one specific (or leading) phenomenon while leaving the other
contributing factors out. Another fouling modeling approach, the membrane resistance
concept which is lumping the previously mentioned effects, is also discussed in litera-
ture ([146]). In many cases multiple resistances (in series configuration) are modelling
pore cloaking, concentration polarization or cake formation as distinct functions and even-
tually summed up to construct the total membrane resistance to couple the TMP to the
membrane flux. More specifically, for RO membranes the fouling models are provided in
[15, 48, 312] and for the membranes used in dairy product processes fouling is discussed
in [157, 161, 167, 312]. The works [147] or [332] can be given as general surveys on
membrane fouling and its modeling.

Offline operation analysis and optimization based application are also reported in lit-
erature. The closed or open loop performance assessment of membrane process operation
presented in [372, 373, 374] or in [375]. Furthermore, optimal operation for membrane
(batch) processes is studied extensively in [271, 272, 273] but see also [270] for a thorough
discussion on membrane based operations. The cleaning aspect of membrane operation,
occurring after the accumulation of (irreversible) fouling, is investigated in [257, 381]. De-
tailed surveys on membrane operation and the membrane models utilized for fouling can
also be found in [63, 105, 283, 312, 320, 349].

6.2 A Grey-box Model for Ultrafiltration Membrane Processes
The objective of UF membrane modelling is to develop a dynamic model, with smallest
possible complexity with sufficient predictive capabilities, that describes the input-output
behaviour and the evolution of the performance variables. For this purpose, we have identi-
fied the following tasks:

• The input-state-output structure: Each membrane port can be described by the
concentration of components (fats, sugars, proteins and water) in the whey flows, the energy
hold-up and the pressure. Furthermore, we make use of the membrane resistance concept
to model the evolution and the effect of fouling. The input variables of the membrane
system are defined as the mass flow at the feed inlet, the operating pressure and the mass
concentrations of components in the feed inlet, while the measured/measurable outputs are
considered as the mass flow at the permeate port, the concentration and the mass flow of
retentate port.

• Performance variables and efficient control of these variables: The main purpose
of controlling UF membrane separation processes is i) to achieve desired concentration
levels at the retentate port while ii) increasing the time window between two consecutive
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(chemical or mechanical) cleaning actions, that are required to undo the effects of fouling.
For this purpose a regulatory controller should be designed to keep the retentate mass flow
at a constant level through adjusting the permeate mass flow while keeping the membrane
resistance, the indicator of fouling, with a minimum increase over time. This control is
achieved by designing the feed mass flow and pressure profiles.

• Computational complexity: In literature membranes are generally modelled as dis-
tributed parameters systems whose solution can be computationally intensive. The current
control and estimation techniques are, generally, not applicable to this class of models and
in most cases require additional model approximation or model reduction steps. In order
to achieve a considerably simpler model in comparison to the distributed models, a lumped
model structure is selected. On the other hand, for high performance operation the internal
or difficult-to-measure variables should be accessible to the controller, which eliminates the
use of black box models. Thus a physics based modelling approach is taken with several
simplifying assumptions, such as lumping the fouling using the membrane resistance con-
cept. With these motivations in mind, we introduce a mathematical model consisting of the
mass balance relations with the Darcy’s Law, including a variable resistance term indicating
the accumulation of fouling and its effect on the mass flux through the membrane. We use
two membrane resistance variables. One of the variables indicates the membrane’s intrinsic
resistance to permeate flux, while the other one accumulates over operating window. The
proposed model uses (simple) black-box components to distinguish individual component
flows through the retention factors. Some in-depth physical aspects of membranes are left
out of the model, since low level investigation (of polarization or cake formation etc.) is
leading to more complex model, possibly with unidentifiable set of parameters from the
measured data and lacking practical applicability for control purposes. Hence, a grey-box
approach is taken to model the physical aspects dominating the operational (or control-
relevant) behaviour while keeping the required computational complexity at an acceptable
level for monitoring and control purposes.

6.2.1 Ultrafiltration Membrane Model Based on Physical Laws

The physical model consists of conservation laws, constitutive relations and the empirical
relations between permeate mass flow as a function of applied pressure and the protein
concentration at the retentate port.

Assumptions and Constitutive Relations

The pressure values for the ports of jth membrane stack are assumed to be in the form of;

P j
f (t) =P

j(t),

P j
r (t) =P

j
f (t)− Pdrop,

P j
p (t) =P

j
f (t)−

Pdrop

2
− P j

TMP (t) = Patm,

(6.1)

where P j
f is the feed pressure which is equal to applied (base-line) pressure P j , P j

r is the
retentate stream’s pressure where P j

drop is the pressure drop that is occurring over the jth

membrane stack that needs to be compensated over the membrane stacks. The pressure
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drop over a membrane is assumed to be equal in all membranes for brevity. P j
p is the per-

meate pressure and P j
TMP is the TMP which is the driving force of mass flow in membrane

separation systems. We assume that the permeate line has constant (atmospheric) pressure,
Patm. In the rest of the document we skip denoting the subscripts f, r, p with (·) wherever
there is no dependency on the ports.

The densities of each stream, ρj(·) (kg/m
3), are expressed as

ρj(·)(t) =gρ(T
j , P j

(·), x
j,i
(·)), (6.2)

where gρ(T, P, x) is a empirical (regression) function that is determined by the membrane
and the whey properties. This empirical function is parametrized with the temperature, the
operating pressure and the mass fractions of components at each port and can be constructed
from data gathered during the operation.

Lastly, we assume that the temperature values throughout the system are equal to each
other and set to T j

(·) = 300.

Balance Relations

The balance equations are derived from the physical laws, specifically mass balance relation.
In the following we express these relations in the order of, the component mass balance, the
total mass hold up and the coupling between the volume flow relations, respectively

ṁj,i(t) =F j
f (t)x

j,i
f (t)− F j

r (t)x
j,i
r (t)− F j

p (t)x
j,i
p (t),

i ∈ Icomp := {Water, Fat, Protein, . . . },

mj
Total(t) =

∑
i∈Icomp

mj,i(t),

xj,ir (t) =
mj,i(t)

mj
Total(t)

, i ∈ Icomp,

F j
f (t)

ρjf (t)
=
F j
r (t)

ρjr(t)
+
F j
p (t)

ρjp(t)
,

(6.3)

where mj,i(t) (kg) is the mass of component i at the jth membrane stack at time t ∈
R≥0, F j

f , F
j
r , F

j
p (kg/s) are the mass flows of the feed, retentate and permeate ports, and

xj,if , x
j,i
r , x

j,i
p (kg/kg) are the mass fractions of component i at these ports of jth membrane

stack, respectively. The variable mj
Total denotes the total mass holdup in the jth membrane

stack. Last relation couples the volume flows of each port by assuming constant volume of
material inside the membrane units.

Lastly, we define the performance indicator or so-called volume-reduction-factor (V RF )
as,

V RF j =

F j
f (t)

ρj
f (t)

F j
r (t)

ρj
r(t)

= 1 +
F j
p

F j
r

ρjr

ρjp
≈ 1 +

F j
p

F j
r

. (6.4)
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Membrane Flux and Retention Factor Descriptions

An essential part of the membrane modeling is to express the membrane mass flux (to
permeate port) in terms of operating conditions and the fouling development. In the case of
UF, it has been observed that:

• For a wide range of pressure, the mass flux is linearly dependent on the TMP ( ∂J
∂P = c, for

low P and c is constant).

• Protein concentration introduces an asymptotic limiting flux, as a pressure independent
maximum value ( ∂J

∂P → 0, as P grows).

• At low fluxes, or low pressures, the mass flux limits to the clean water flux.

• As the operation time increases, fouling dominates the process, i.e., the mass flux decreases
monotonically, eventually requiring a cleaning action.

Here we make use of the membrane resistance concept to couple the operating TMP to the
membrane mass flux through Darcy’s Law. The total membrane resistance is assumed to
consist of two parts, a(n) static (or empirical) resistance and a dynamic resistance. The static
membrane resistance, which does not refer to static over time but to the static properties of
the membrane unit itself, captures the following points, due to the physical structure of
membranes:

• The flux is initially linear with the TMP and has an initial value of zero for zero pressure.

• The flux approaches a maximum value as the pressure increases and has zero slope at
this value. This maximum flux value is dependent on the operating value of the retentate
protein mass fraction.

A typical relation for static membrane resistance is visualised in Figure 6.3 ([13]).
This behaviour captures the membrane specific flux-TMP-component concentration rela-
tion, which is occurring much faster than the fouling development. In the literature this
relation is modeled via the assumptions on the operating point (either the linear region or
the saturated region), while, to the best of our knowledge, there is not an equation describing
this nonlinear relation in full complexity. In order to include this behaviour we characterize
the flux-TMP-protein concentration relations with nonlinear empirical functions.

Furthermore, the dynamic resistance equation is derived considering the following ob-
servations:

• In order to incorporate concentration polarization effects, as the retentate mass fraction of
proteins increases, the dynamic resistance increases;

• The increased transmembrane flux increases the so-called pore blocking and hence the
fouling resistance increases with the flux;

• Lastly, the transmembrane pressure is also assumed to be increasing the dynamic resistance
over time, due to cake formation phenomenon.
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Figure 6.3: Static membrane resistance and its dependence on the transmembrane pressure
and retentate protein mass fraction.

These items lead to the following construction for permeate mass flow, as a function of
membrane flux, operating pressure and protein mass fraction of retentate stream:

F j
p (t) =

Nj
s∑

s=1

Aj
sJ

j
s (t),

Jj
s =

P j
TMP (t)

Rj(t)
,

Rj(t) =Rj,emp
(·) (t) +Rj,dyn(t),

Rj,emp
(·) (t) =femp(x

j
r(t), P

j
TMP ),

Ṙj,dyn(t) =αjP j
TMP (t)

βJj(t)xj,protr (t),

(6.5)

where N j
s is the number of membranes in the membrane stack j, As is the membrane area

of sth membrane in stack j, Jj
s is the membrane flux of sth membrane in stack j, which is

assumed to be equal over the sth membrane, Rj is the total (or overall) membrane resistance
of jth membrane that is the summation of two resistances, where, Rj,dyn is the dynamic
resistance which is standing for fouling, while theRj,emp is the static membrane resistance,
membrane specific flux-pressure-mass fraction relation of the jth membrane stack. We use
the relations defined in [146] to construct the Rj,dyn with the initial condition for the jth

membrane being Rj
0. The parameters αj , βj are membrane specific parameters that shape

the long-term behaviour of membrane while femp(·) is a function specific to each mem-
brane, mapping the operating conditions to membrane flux.

First we comment on the so-called long term resistance Rj,dyn that is introduced to
model the deterioration of membrane permeate flux over time. The dynamic membrane
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resistance is a function of the TMP, the permeate flux and the retentate protein mass fraction
as indicated in [146]. By the used convention, these variables are always positive, assuming
α positive, hence the fouling resistance is always increasing. However the membranes show
a fast change in the flux behaviour depending on the feed concentration or TMP. This fast
change in flux can not be captured only with Rj,dyn, which necessitates the modeling of
static membrane resistance, through nonlinear empirical functions. If there would be no
fouling effect, one could track static membrane resistance function by applying different
TMP and feed streams with different concentrations.

We have introduced several different functions that are empirically fitted to the theoret-
ically expected membrane flux versus pressure and concentration relation. These different
functions are named as;

1. Polynomial function,

2. Logarithmic-exponential function,

3. Exponential function.

The polynomial empirical resistance term Rj,emp
poly is constructed from a bias term and de-

pends on the mass fraction of retentate and the transmembrane pressure, which is expressed
as;

Rj,emp
poly :=

P j
TMP

aj0 + aj1x
j
r(t) + aj2P

j
TMP (t)

. (6.6)

This function can be also seen as the first order approximation of membrane flux character-
istic function as visualized in Figure 6.3.

The second empirical function is the logarithmic-exponential static resistance function,
which is parameterized as;

Rj,emp
log :=

P j
TMP

J j
, J j(t) = aj

1−
log
(
exp

(
bj−P j

TMP

cj

)
+ 1
)

log
(
exp

(
bj

cj

)
+ 1
)

 , (6.7)

where the parameters aj , bj , cj summarizes the membrane flux characteristics. The param-
eters aj , bj are further decomposed to;

aj :=
1

aj0 + aj1x
j,prot
r

, bj :=
aj

Rj
w

. (6.8)

These parameters are constructed from the physical properties of membranes, i.e.,

• The parameter aj is the maximum permeate flux for a steady state retentate protein mass
fraction, under no fouling assumption.

• The parameter bj is the so-called transition pressure, where the membrane switches from
linear dependence on TMP to saturated flux region.

• The parameter Rj
w is approximately equal to clean water resistance.
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• The parameter cj is the transition width, that is the pressure band where the membrane flux
is switching from linear region (or operating mode) to saturated region (see Figure 6.3).

The last empirical function is the exponential empirical resistance, denoted withRj,emp
exp .

This function is defined as;

Rj,emp
exp :=

P j
TMP

aj − aj exp
(

−P j
TMP

bj

) , (6.9)

where aj and bj are the membrane specific parameters that are defining the saturation level
and the initial slope, respectively. The parameter aj is defined similar to the logarithmic-
exponential case, as in Equation (6.8), hence still standing for the saturated permeate mass
flux. However, the parameter bj does not directly correspond to the transition pressure or
the transition width in comparison to logarithmic-exponential case. Although the physical
connection is lost, the parameter bj still determines the slope (more rigorously decay factor)
of the mass flux versus TMP relation. We remind that in all of the proposed methods the
static resistance, and hence permeate mass flux, depends on TMP and retentate protein mass
fraction.

The second coupling relation is the retention factors. Retention factors, denoted with
Rj,i, are determining what percentage of component i ∈ Icomp passes from feed side to
permeate side. More rigorously, the definition is taken as,

Rj,i := 1−
xj,ip

xj,ir

.

According to the instantaneous operating conditions, the retention factors increase or de-
crease. In this model we make use of a first order linear fit for calculating the retention
factors for each and every component in Icomp set, except water. The retention factors are
expressed as a function of protein mass fraction in the retentate xj,protr (t) and the remaining
two parameters of linear function are component specific constants, i.e.,

Rj,i(t) =aj,iR x
j,prot
r + bj,iR ,

where i ∈ Icomp,
(6.10)

where aj,iR is the (negative) parameter specific to ith-component for the jth membrane stack,
which indicates that as the protein concentration increases in retentate, the retention factor
decreases for all components. The second parameter bj,iR is the ith-component’s infinite
dilution retention factor. Now we are able to express the permeate mass fraction xj,ip as a
function of retention factors, i.e.;

xj,ip (t) =(1−Rj,i(t))xj,ir (t), i ∈ Ĩcomp,

xj,Water
p =1−

∑
i∈Ĩcomp

xj,ip , Ĩcomp := Icomp\{′Water′}, (6.11)

where the retention relation for water is separated from others to satisfy algebraic constraint
regarding the mass fractions.
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6.2.2 Estimation of Parameters in the Ultrafiltration Membrane Model

In this section, we estimate the parameters and validate the model through an industrial data
set, obtained from a whey filtration facility. We first construct the experiment and then state
the parameter estimation problem, and lastly provide the results for three different empirical
resistance functions Rj,emp

(·) .

Experimental Data

The experimental data consists of 2 different data sets of 20 hours of measurements of a
whey separation process. The process contains 8 membrane stages, connected in series.
Six of the membranes are operational at the start of the experiment while the remaining
two membranes are switched on when the performance levels are not maintainable over
the course of operation. The sampling rate of experiments is 0.08 hour per sample. The
feed stream is assumed to be consisting of five components, water, protein, fat, sugar, salt.
Furthermore, we assume that the experiment is conducted at 300◦ Kelvin. The pressure
drop over one membrane and permeate pressure are assumed to be equal to

Pdrop = 1.5 bar, Pp = Patm ≈ 1 bar.

The inputs to the membrane process are the base-line pressure and feed mass flow with
known component concentrations. The measured outputs are the total permeate mass flow
and retentate mass flow of the last membrane of the serially connected membrane stacks.
There is a redundancy in the selection of output, hence we utilize the total permeate mass
flow as the only measured output. Since there is no concentration or mass fraction measure-
ment, the retention factors are not included in the analysis. Thus we assume the retention
factor parameters to be equal to

bR = {0, 1, 1, 0, 0},

for water, protein, fat, sugar, salt, in the respective order, for all membranes. Furthermore,
we assume that the parameter aj,iR is equal to 0 for all components, that is the retention
factors are not effected by the concentration levels of retentate. These assumptions on the
retention factors are required to be compensated through the membrane resistance relations,
lack of introducing aj,iR is compensated with fouling resistance Rj,dyn and bj,iR is compen-
sated with Rj,emp

(·) . Due to the lack of measurement data from individual membranes, we
assume all of the internal parameters of membrane stacks are equal to each other.

Parameter Estimation Problem

The membranes are known to be full of water at the start of the experiment, hence for each
membrane we consider the initial conditions of differential equation (6.3) as;

mj(0) = V jρjwx
j
r(0), j ∈ {1, 2, . . . , 8},

where ρjw denotes the water density, V j is the volume of the membrane and

xjr(0) =
[
1 0 0 0 0

]
, j ∈ {1, 2, . . . , 8}.
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Lastly, we set the initial conditions for membrane resistance. We assume that the mem-
branes are cleaned before the operation, hence at the initial time there is no effective fouling,
i.e.,

Rj,dyn(0) = 0, j ∈ {1, 2, . . . , 8}.
The parameters to be estimated are grouped into two. The first group is the set of pa-

rameters of the empirical resistance functions Rj,emp
(·) . For each of the empirical functions

defined in the previous section, we estimate a different set of parameters, such as;

• For Rj,emp
poly , the estimation variables are aj0, a

j
1, a

j
2.

• For Rj,emp
log , the estimation variables are aj0, a

j
1, R

j
w, c

j .

• For Rj,emp
exp , the estimation variables are aj0, a

j
1, b

j .

The second group of estimation parameters are the ones related to the dynamic resistance.
The dynamic resistance Rj,dyn is parametrized with two important parameters, αj and βj .
However, the structure of the differential equation cast these parameters to be correlated
with each other. Hence, we set βj as 0.5, as in [146], to improve the accuracy of the
optimization problem for all membranes. Thus, we only estimate the parameter αj in the
dynamic membrane resistance equation.

We use gPROMS modeling and optimization software to construct the differential alge-
braic equations model and to solve the parameter estimation problem, see [140]1.The (only)
cost function that we considered is provided as,

(z(θ)) =
N

2
log(2π) +

1

2
min
θ∈Θ


Ne∑
i=1

Nvi∑
i=1

Nmij∑
k=1

log(σ2
i,j,k) +

(z̄i,j,k − zi,j,k)
2

σ2
i,j,k

 ,

where, N is the total number of measurements taken during all the experiments, θ is the set
of model parameters to be estimated and Θ is the set where the parameters can take values.
Furthermore Ne, Nvi, and Nmij denotes the number of experiments, number of variables
measured in the ith experiment and Nmij is the measurement index of the jth variable in
the ith experiment. Lastly, σi,j,k denotes the variance of kth measurement of variable j in
experiment i, zi,j,k is the model prediction of variable j in experiment i and z̄ is the kth

measured value of variable j of experiment i. With this cost function, we present the results
of the parameter estimation algorithm in the next section.

Estimation Results and Statistical Analysis

In this section, we provide the parameter estimation results for three different models. We
start with the so-called polynomial empirical membrane resistance Rj,emp

poly .
For the first type of empirical resistance function we have four different estimation pa-

rameters, three of them are a0, a1, a2 which are describing Rj,emp
poly , given in Equation (6.6)

without the stack dependency over the index j, i.e.,

Rj,emp
poly =

PTMP

a0 + a1x
j
r + a2PTMP

.

1Since the optimization problem is constrained to the developed model, the DAE system needs to be integrated
over time, which is the reason why we selected the mentioned software.
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The remaining estimation parameter is the fouling coefficient, i.e., α. The assumption of
having the same parameter values over membrane stacks is rarely true in practice, however
the measurement data is not informative to distinguish each and every membrane’s parame-
ters. To be able to distinguish the parameters of the membranes one requires measurements
from individual membranes, see also [318]. Hence in the rest of the dissertation, due to the
stated assumption, the index j indicating the dependency on each membrane stack is not
used for the equivalent parameters.

With the above stated construction, the results of the parameter estimation problem are:

α = 5.44 ∗ 10−5, a0 = 3.44 ∗ 10−2, a1 = 3.11 ∗ 102, a2 = 3.17 ∗ 10−2, (6.12)

while the parametric uncertainty is described by the covariance matrix

Cpoly =


1.36 ∗ 10−12 ∗ ∗ ∗
−1.45 ∗ 10−7 1.34 ∗ ∗
−5.95 ∗ 10−6 −5.69 ∗ 101 2.97 ∗ 103 ∗
4.44 ∗ 10−11 −1.79 ∗ 10−4 1.11 ∗ 10−3 1.18 ∗ 10−7

 ,
which yield the results for parameters with 95% confidence interval, α = (5.44 ± 0.23) ∗
10−5, a0 = (3.44± 227.8) ∗ 10−2, a1 = (3.11± 1.07) ∗ 102, a2 = (3.17± 0.067) ∗ 10−2.

In Figures 6.4-6.5 we visualize the experimental data, the feed and permeate mass flow
measurements, and the predicted trajectory with the optimal parameter values for the three
different models. The resulting statistical properties of the parameter estimation problem
are tabulated next. In Equation (6.13) the correlation matrix of estimated parameters is
given as

Cpoly =


1 ∗ ∗ ∗

−0.108 1 ∗ ∗
−0.0938 −0.902 1 ∗
0.111 −0.448 0.0594 1

 , (6.13)

The 95% t-values (with respect to 95% confidence intervals) of parameters are found as
(for a reference t-value of 1.65) {23.74, 0.015, 2.912, 46.99} indicating statistical signifi-
cance problems associated with parameter a0. The parity plot for this parameter estimation
problem is visualized in Figure 6.6a while the lack-of-fit test result (for the optimal param-
eter values and resulting residuals) indicate an acceptable fit, with the weighted residual
and 95%-χ2 values being 447 and 543, respectively, where the weighted residual should
be lower than the 95%-χ2 value for the regression to be acceptable. Lastly the R2 value is
found as

R2
poly = 1− SSR

SST
= 1− 223.5

4259.2
= 0.95.

These statistical results indicate two major problems; i) the available data is not informative
to estimate parameter a0; ii) relatively high variance levels of parameters, mainly the ones
related to Remp

poly . This is expected since the polynomial empirical resistance is a first order
approximation of the membrane flux characteristics.

The second model for which we estimate its parameters is the membrane resistance con-
sisting of Equation (6.7), i.e., the logarithmic-exponential empirical resistance and the dy-
namical membrane resistance. The parameters which need to be estimated are; a0, a1, Rw, c
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for Rj,emp
log and α for Rj,dyn. However, the initial results indicate that there is a strong de-

pendency between Rw and c, see Equation (6.7), hence we set c to be equal to our initial
guess value 0.34, which is selected by making use of its physical interpretation and discus-
sions with available membrane experts from FrieslandCampina. Conducting the parameter
estimation algorithm under this assumption we obtain the following optimal values of pa-
rameters

α = 5.1402 ∗ 10−5, a0 = 2.35769 ∗ 10−3, a1 = 4.92 ∗ 10−1, Rw = 99.96, (6.14)

while the covariance matrix is found as

Clog =


2.02 ∗ 10−12 ∗ ∗ ∗
3.84 ∗ 10−12 1.66 ∗ 10−9 ∗ ∗
−7.93 ∗ 10−8 −6.96 ∗ 10−6 3.59 ∗ 10−2 ∗

3.65 4.92 ∗ 101 −1.04 ∗ 104 2.55 ∗ 1012

 ,
which yield the results for parameters with 95% confidence interval as, α = (5.1402 ±
0.28) ∗ 10−5, a0 = (2.36 ± 0.08) ∗ 10−3, a1 = (4.92 ± 0.37) ∗ 10−1, Rw = (0.0009 ±
9.9) ∗ 106. The predictions generated from the optimal parameters are given in Figure 6.5.
The statistical results of the parameter estimation problem are as follows, the correlation
matrix is given in Equation (6.15), while the lack of fit test results indicate an acceptable
fit, weighted residual and 95%-χ2 values are reported as 262 vs. 543. The 95% t-values are
found as {18.41, 29.42, 13.22, 1 ∗ 10−5} (for the reference t-value of 1.65), which means,
apart from the last parameter, the confidence to estimates is high. The estimate of the last
parameter, Rw, has high variance attached to its optimal estimate, since the input-output
data is gathered in the saturated operating region of membranes, thus not providing infor-
mation about the linear operating region of the flux vs. TMP characteristics, see Figure 6.3.
Lastly, the parity plot is given in Figure 6.6b and the R2 test results are found as

R2
log = 1− 130.9

4166.5
= 0.97.

Clog =


1 ∗ ∗ ∗

0.0663 1 ∗ ∗
−0.295 −0.9 1 ∗
0.508 0.239 −0.108 1

 . (6.15)

Thirdly, we solve the parameter estimation problem for the exponential membrane model
introduced as in Equation (6.9). The optimal estimates are found as

α = 4.58 ∗ 10−5, a0 = 2.70 ∗ 10−3, a1 = 3.50 ∗ 10−1, b = 3.55 ∗ 10−1, (6.16)

while the covariance matrix is found as

Cexp =


1.4 ∗ 10−12 ∗ ∗ ∗
3.66 ∗ 10−11 1.53 ∗ 10−9 ∗ ∗
−5.09 ∗ 10−9 −6.15 ∗ 10−6 3.18 ∗ 10−2 ∗
−1.08 ∗ 10−9 −1.39 ∗ 10−8 1.84 ∗ 10−4 3.51 ∗ 10−5

 . (6.17)
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which yield the results for parameters with 95% confidence interval as, α = (4.58±0.23)∗
10−5, a0 = (2.70 ± 0.08) ∗ 10−3, a1 = (3.50 ± 0.35) ∗ 10−1, b = (3.55 ± 0.37) ∗ 10−1.
Similarly, the predictions are visualized in Figure 6.5, the Equation (6.18) tabulates the
correlation matrix results of the estimation problem, while the lack of fit test results (371 vs.
543) indicate that the predictions fit well to the measurements. The 95% t-values are found
as {19.7, 35.13, 9.988, 9.638} (in comparison to the reference t-value 1.65), the parity plot
is given in Figure 6.6c and the R2 test result is found as

R2
exp = 1− 185.4

4221
= 0.96.

Cexp =


1 ∗ ∗ ∗

0.0791 1 ∗ ∗
−0.241 −0.883 1 ∗
−0.488 −0.19 −0.0551 1

 . (6.18)

In order to compare the results obtained from these three different models, we calculate the
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Figure 6.6: The parity plots visualizing the predicted and measured permeate mass flows
for three different membrane models.
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membrane flux versus the TMP and retentate mass fraction characteristics. These results are
provided in Figure 6.7, where the concentration retentate mass fraction is decreasing from
0.024 to 0 (pure water case) in four equal steps. The curves that have larger flux values stand
for smaller feed mass fractions. Although the flux vs. TMP curves do vary for the different
models, the results indicate that the physical phenomenon is modeled similarly in each of the
empirical resistance case and has close resemblance with Figure 6.3. The statistical results
indicate that the best model out of the three proposed empirical resistance models is the ex-
ponential empirical membrane resistance case. The correlation values (Equation (6.18)) and
the t-values are better than the other two cases, casting the uncertainty attached to the pa-
rameters to be low as presented in Equation (6.17). This result can be explained as both the
polynomial empirical resistance, which does not reflect any physical prior knowledge about
the system, and the logarithmic empirical resistance, which is parameterized according to
the physical aspects of the membranes, has identifiability issues. The first case, polynomial
empirical resistance, is not complex enough to describe the membrane resistance behaviour,
while the highly coupled, complex relation induced from logarithmic empirical resistance
case casts the parameters to be correlated with each other, hence increasing the uncertainty
attached to optimal parameters (Section 6.2.2). However all of the identified models have
high regression statistics, indicating that the input-output mapping is statistically significant.
The exponential empirical resistance model outperforms the other two cases, with less and
uncorrelated parameters and superior statistical properties, hence we make use of the mem-
brane model with exponential empirical membrane resistance in the rest of the dissertation,
unless explicitly stated otherwise.

6.3 Offline Model-based Applications with Ultrafiltration Membrane
Model

In this section we discuss three offline model-based applications cast on the UF membrane
process. The first one is on the offline optimization studies conducted with the UF mem-
brane model. Secondly, we discuss a novel operating strategy and design aspects of the UF
membrane process. Lastly we discuss the sensor selection problem, which signals in UF
membrane process to measure to deduce maximum information on the latent variables.

6.3.1 Optimal Operation and Scheduling of UF Membrane Stacks

We investigate the predictive capabilities of the dynamic model of the UF membrane unit
and calculate optimal operation strategies using this model. To this end, we consider several
fundamental operation scenarios listed as;

1. Addition of a clean membrane stack and the effect of concentration change in the feed
stream;

2. Optimal scheduling and operation of membrane stacks;

3. Introduction of new membranes to the operation;

4. Constant feed mass flow operation;

5. Constant pressure operation;

176



6.3. Offline Model-based Applications with Ultrafiltration Membrane Model

Transmembrane Pressure
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

br
an

e 
F

lu
x

×10-4

0

0.5

1

1.5

2

2.5

3

3.5

xr
p = 0

xr
p = 0.008

xr
p = 0.016

xr
p = 0.024

(a) Flux vs. TMP graph for Rj,emp
poly .

Transmembrane Pressure
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

br
an

e 
F

lu
x

×10-4

0

0.5

1

1.5

2

2.5

3

3.5

4

xr
p = 0

xr
p = 0.008

xr
p = 0.016

xr
p = 0.024

(b) Flux vs. TMP graph for Rj,emp
log .

Transmembrane Pressure
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

br
an

e 
F

lu
x

×10-4

0

0.5

1

1.5

2

2.5

3

3.5

4

xr
p = 0

xr
p = 0.008

xr
p = 0.016

xr
p = 0.024

(c) Flux vs. TMP graph for Rj,emp
exp .

Figure 6.7: Flux versus transmembrane pressure and retentate protein mass fraction graphs.

6. Optimal feed and pressure profile design under accumulated performance specifica-
tions.

For all of the simulation studies, we use the membrane model with the exponential empir-
ical resistance function, with the parameters given as in Equation (6.16). Furthermore, we
assume that for all of the simulation studies, membranes are introduced to the operation
being filled with water and cleaned initially, hence with zero initial condition for dynamic
membrane resistance.

1) Addition of a clean membrane stack, the effect of concentration change in the
feed stream and optimal pressure profiles: We study whether the UF model shows dy-
namic behaviour similar to the observations in practice for the case of concentration changes
in the feed stream. Furthermore addition of a fresh membrane and its effects on the perfor-
mance indicators are also simulated. To this end, we create a test case consisting of two
membrane stacks with the following strategy, where t here stands for time;

• For t < 2h : The 2nd membrane stack is operational, while the 1st membrane stack is left
non-operational.
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• At t = 2h : A step change in dry matter mass fraction of feed stream is introduced,
increasing the mass fraction of water from 0.904 to 0.99.

• At t = 3h : Feed stream is back to its original mass fraction of dry matter and the 1st

membrane is added to the process.

We design the simulation to observe the dependency of the process to the concentration of
feed stream. After we introduce a new membrane to the process, we effectively increase
the concentration of feed entering to the already operational (2nd) membrane. This effect is
tracked with the permeate mass flow values and fouling indicator, the membrane resistance.
Throughout the experiment we set the feed mass flow and pressure to be constant. In Fig-
ure 6.8 we provide the membrane resistance and permeate mass flow (determines the VRF
hence the performance) values over the simulation horizon. We observe that during the time
window between 2 ≤ t ≤ 3, where the protein concentration of feed is dropped, the mem-
brane resistances are not increasing, since almost no fouling occurs for water dominant feed
inlet. This observation can be explained by Equation (6.5) as the effect of lower protein
mass fraction on the membrane resistances and the operating point. Furthermore, the per-
meate mass flow results show that the increased water permeation after the 1st membrane is
turned on, introducing an instantaneous increase in the permeate flow. Next, we present the

Time [h]
0 1 2 3 4 5 6

M
em

b.
 R

es
is

ta
nc

e

4000

4100

4200

4300

4400

4500

4600

4700

4800

4900

1st Membrane
2nd Membrane

(a) The membrane resistance profiles for both
of the membranes, effected by the mass frac-
tion of the input.

Time [h]
0 1 2 3 4 5 6

P
er

m
ea

te
 M

as
s 

F
lo

w
 [k

g/
s]

1500

2000

2500

3000

3500

4000

(b) The total permeate flow, visualizing the
dependence on the composition of the input
and number of operational membranes.

Figure 6.8: The change in the behaviour of membrane with respect to changes in the feed
concentration and including a new membrane to the process.

simulation results where the base-line pressure profiles are optimized, either with linearly
parametrized or step-wise pressure profiles. This simulation study is done to show the effect
of pressure profiles on the performance, the mass flow of permeate, and the fouling perfor-
mance, the membrane resistance. The feed mass flow and concentration is kept constant
over the simulation horizon. The pressure profiles and the results are visualized in Figure
6.9. As can be seen, the piecewise linear pressure case is able to track the desired perme-
ate mass flow profile with a smoother profile, while the optimal step-wise pressure profile
introduces undesired errors before and after the jumps in the pressure.
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2) Optimal scheduling and operation of membrane stacks:
We assume that the UF membrane process consists of Ns = 6 stacks of membranes,

each denoted with the index i. We assume that the performance specifications are provided,
thus the scheduler compares and optimizes over different scheduling strategies over similar
performance levels. This allows us to investigate and slow down the membrane fouling
induced deterioration due to different operation strategies, while guaranteeing satisfactory
performance.

The optimization is conducted over both the on-off conditions of the membrane stacks,
tracked with the scheduling variable σ ∈ RNs

[0,1] and the applied pressure profile under the
scheduling strategy. The σi variable replaces the decision (integer) variable σ̄i ∈ {0, 1} de-
noting the On-Off status of ith membrane. We relax the decision variable in the optimization
routine by replacing the non-smooth 0-1 decision with a smooth approximation, i.e.,

σ̄ =
σ√

σ2 + ϵ2σ
, for σ ∈ RNs

[0,1],

where ϵσ is a small relaxation constant. We assume that the applied pressure is a piecewise
constant input sequence, in order to reduce the associated complexity of the optimization
problem. Furthermore, the feed mass flow and concentration are considered as known dis-
turbances.
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We assume that the desired output values for the protein concentration at the last mem-
brane and the total retentate yield is provided as performance specifications, given in fol-
lowing form of

|xNs,prot
r (σ, t)− xdesr | ≤ ϵxr , t0 ≤ t ≤ tf ,

Ylb ≤ Yret =
tf∫
0

FNs
r (σ, t)dt ≤ Yub,

(6.19)

where x1,Ns
r (σ, t) is the protein concentration at the retentate stream of N th

s (final) mem-
brane, xdesr is the desired protein concentration level, ϵx is the allowed margin of protein
concentration deviation from the desired concentration. Moreover the overall yield is re-
quired to be between the allowed lower and upper bounds, denoted with Ylb and Yub, re-
spectively.

Lastly we construct the cost function of the optimization problem. If the performance
specifications are satisfied, then we claim that the operation can be improved by extending
the operational time window. This can be done by slowing down the membrane fouling
accumulation, which is adjusted by the scheduling strategy and the associated optimal pres-
sure profile. Thus the cost function contains quadratic terms of the applied pressure, to
increase the weight on the high operating pressures, and the membrane resistance, to slow
down the effects of the membrane fouling, i.e.,

J =

tf∫
t0

∆P (σ, t)TQ∆P∆P (σ, t) + λR(σ, t)TQRR(σ, t)dt

where R(σ, t) ∈ RNs
>0 is the vector of membrane resistances and λ ∈ R≥0 is a weighting

parameter.
Hence, the optimal membrane scheduling problem can be read as satisfying the perfor-

mance specifications while decreasing the input energy and the accumulation of membrane
resistance, i.e.,

(σ∗,∆P ∗) = arg min
σ∈RN ,∆P

tf∫
t0

∆P (σ, t)TQ∆P∆P (σ, t) + λR(σ, t)TQRR(σ, t)dt,

s.t. ẋ(t) = fd(x(t), z(t), u(t)), 0 = fa(x(t), z(t), u(t))
y(t) = h(x(t), z(t), u(t)), t ∈ R[t0,tf ],

|xNs,prot
r (σ, t)− xdesr | ≤ ϵx, Ylb ≤

tf∫
0

FNs
r (σ, t)dt ≤ Yub.

(6.20)
The feed trajectory F 1

f (t) is given as in Figure (6.10) and feed protein mass fraction x1,protf

is assumed to be 0.0045. The desired concentration and overall yield constraints’ are taken
as;

xdesr = 4 ∗ x1,protf , ϵxr = 0.1, Ylb =
20

100
Yfeed, Yub =

30

100
Yfeed.

The simulation model and the optimization problem are implemented in gPROMS software
environment. The optimization parameters are taken as

Q∆P = 5, QR = 10−3I6, λ = 1, σϵ = 0.001.
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The results obtained from the the optimization procedure subject to the cost and the con-
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Figure 6.10: The simulation results for the optimal membrane scheduling strategy.

straints given in Equation (6.20) indicate that the best scheduling strategy is obtained by
turning all of the membranes on at the beginning of the operation, i.e.,

σi(t) = 1, i = 1, 2, . . . , 6, t0 ≤ t ≤ tf ,

to distribute the permeate flow over all membrane stacks for the whole operation. Figure
6.10 shows that the optimal pressure profile can be lowered by operating more membranes
to reach the performance specifications.

We also compare the optimal scheduling strategy and pressure profile with heuristic
strategies. For this purpose we solve the optimal control problem for two different heuristic
scheduling strategies:

• 5+1 strategy, one membrane is added to five operating membranes at the 4th time in-
stant, when feed mass flow is increased, which mimics the common practice in the industrial
applications.

• 4+2 strategy, two membranes are added to four membranes at the 4th and 7th time
instants.
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Figure 6.11: The simulation results of optimal scheduling strategy compared with heuristic
strategies.

For both of the cases, we obtain the optimal pressure profiles with given scheduling
strategies. The main differences between these strategies can be seen in Figure (6.11). The
optimal scheduling strategy (solution of Equation (6.20)) decreases the required pressure
levels compared to other strategies which is also beneficial for the membrane fouling. The
membrane fouling is increasing with the increased operating pressure, see Equation (6.5).
Hence decreasing the pressure decreases the fouling accumulation, thus improving the op-
eration. The differences between the membrane resistance trajectories of different strategies
are presented in Figure 6.11c. The excess resistance of heuristic strategies are due to the
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higher applied pressures at the beginning of the simulation. Lastly, the effect of adding a
clean membrane into operation can be seen in Figure 6.11d at the start of the 7th time instant,
where the fresh membrane filled with water disturbs the mass fraction at the outlet.

3) Introduction of new membranes to the operation: Similar to the previous studies,
in this case we observe the effects of introducing membranes during run-time to the retentate
mass flow and protein mass fraction, while the process is driven by the optimal operating
pressure. Similarly we consider a setup consisting of eight membranes and in this case we
introduce the membranes to the operation sequentially with 15 minute break in between
two membranes during the beginning of the simulation. Since membranes are introduced to
the operation filled with only water, i.e., the low protein mass fraction, the permeate mass
flow has relatively large overshoots at each starting moment. It is desirable to suppress the
overshoots at these time instants through control action. We assume that the feed mass flow
trajectory is provided and we solve an optimization problem that minimizes the pressure
values while achieving control specifications. The specifications are imposed as integral
quadratic constraints in the optimization problem, i.e.,

tf∫
0

(F 8
r (t)− F ref

r (t))2dt ≤ c1,

tf∫
0

(x8,protr (t)− xprotref (t))2dt ≤ c2. (6.21)

The resulting (inlet) feed, (outlet) permeate and (outlet) retentate mass flows are visualized
in Figure 6.12a, while the optimal pressure profile is shown in Figure 6.12b. The protein
mass fraction at the outlet, presented in Figure 6.12c, is highly effected during the initial
phase where the fresh membranes are introduced one after another. However, once all the
membranes are operational, the pressure values regulate the retentate flow and the protein
content with high performance.

4) Constant feed mass flow operation: In this case we study the membrane unit op-
eration in which the (inlet) feed mass flow is kept constant and the retentate mass flow and
protein content are regulated. We consider eight membranes, all of which are operational
during the whole simulation, and solve an optimization problem to optimize the pressure
profile with performance constraints as given in Equation (6.21). The results are demon-
strated in Figure 6.13a, which shows the given feed mass flow and resulting permeate and
retentate mass flows; Figure 6.13b which demonstrates the resulting pressure trajectory; and
lastly Figure 6.13c, which visualizes the protein mass fraction of feed and retentate streams.
As expected for constant feed flow case, the regulation is obtained by increasing pressure
values which adjusts the filtration to the permeate line to satisfy the specifications.

5) Constant pressure operation: In this case, we consider a case where the pressure
is kept constant and the mass flows in the outlets are adjusted via the inlet feed mass flow.
Again we consider eight membrane units, but we simulate this case for two different pres-
sure values, a low operating pressure case, where the membranes are operating in the linear
region of the flux-pressure graph (Figure 6.3), and a high operating pressure case, where
membranes are operating in the saturated flux region. For both of the results we solve an
optimization problem minimizing the feed mass flow entering to the process while satisfy-
ing the performance constraints in the form of Equation (6.21). We set the low pressure
value to 0.341 normalized units and high operating pressure value to 4.54 normalized units.
The results are demonstrated in Figure 6.14, in which Figure 6.14a and Figure 6.14b shows
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Figure 6.12: The normalized results of the sequential membrane scheduling strategy.
(6.12a): Mass flows of the feed of first membrane, the retentate and the permeate of fi-
nal membrane; (6.12b): The optimal pressure profile;(6.12c): The protein mass fractions in
feed of first membrane, the retentate of final membrane and the reference value.

the optimal feed mass flow trajectory for low and high pressure case, respectively, while
Figure 6.14c and Figure 6.14d visualizes the retentate protein mass fraction results for low
and high pressure values. It is important to note that both of the optimization problems are
ill-conditioned, resulting in many re-runs to satisfy the performance constraints which are
relaxed (by increasing the c1 and c2 values in Equation (6.21)) after each failure. Since for
constant pressure operation, the permeate flow is predetermined, satisfying both of the per-
formance requirements is difficult, hence leading to poor performance in both cases, which
can be observed in the resulting protein mass fraction profiles.

6) Optimal feed and pressure profile design under accumulated performance spec-
ifications: Lastly we consider a different specification in which the performance is not de-

184



6.3. Offline Model-based Applications with Ultrafiltration Membrane Model

Normalized Time
0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 M
as

s 
F

lo
w

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Feed Flow
Ret. Flow
Perm. Flow
Ret. Ref.

(a) Mass flows.

Normalized Time
0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 P
re

ss
ur

e

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(b) Optimal pressure profile.

Normalized Time
0 2 4 6 8 10 12 14 16 18 20

P
ro

te
in

 M
as

s 
F

ra
ct

io
n(

M
.F

.)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Ret. M.F.
Ret. M.F. Ref.
Feed M.F.

(c) Protein mass fraction trajectories.

Figure 6.13: The normalized results of the constant feed mass flow case. (6.13a): Mass
flows of the feed of first membrane, the retentate (both real and reference) and the perme-
ate of final membrane; (6.13b): The optimal pressure profile; (6.13c): The protein mass
fractions in feed of first membrane, the retentate of final membrane and the reference value.

fined instantaneously but the overall product (yield) should satisfy the given specification.
We let the feed mass flow and pressure be variable to regulate the retentate mass flow while
the protein mass fraction of the accumulated retentate mass flow (overall yield) should be
close to the desired levels at the end of operation. For this case we construct an optimization
problem which minimizes both the feed mass flow and pressure values for the constraints

tf∫
0

(F 8
r (t)− F ref

r (t))2dt ≤ c1,

∣∣∣∣∣
∫ tf
0
x8,protr F 8

r dt∫ tf
0
F 8
r dt

− xprotref

∣∣∣∣∣ ≤ c2. (6.22)

The second constraint is shaped in such a way that the total protein mass fraction of the
yield at the end of the simulation (hence a point-wise constraint) is close to the reference
protein mass fraction, while during the operation there is no constraint to the cast the protein
mass fraction to track the specification instantaneously. The results are visualized in Figure
6.15a, Figure 6.15b and Figure 6.15c which show the mass flows, pressure and protein mass
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(a) Mass flows for low pressure operation.
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(b) Mass flows for high pressure operation.
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(c) Protein mass fractions for low pressure
operation.
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operation.

Figure 6.14: The normalized results of the constant (low and high) pressure case. (6.14a):
Mass flows of the feed, the retentate (both real and reference) and the permeate of final
membrane for low pressure case; (6.14b): Mass flows of the feed, the retentate (both real
and reference) and the permeate of final membrane for high pressure case; (6.14c): The
protein mass fractions in the feed, the retentate of final membrane and the reference value
for low pressure case; (6.14d): The protein mass fractions in the feed, the retentate of final
membrane and the reference value for high pressure case

fractions, respectively. The resulting profiles for the performance variables (retentate mass
flow and protein mass fraction) demonstrate that the specifications are met. However the
optimization problem is highly ill-conditioned, which is due to the dependency of the con-
trolled variables on both of the feed and the pressure values. In order to obtain meaningful
results, we solved multiple optimization problems where we iteratively fixed one of the feed
or pressure values while leaving the other one free to be optimized over.

6.3.2 Exploratory Study on Dynamic Operation of UF Membrane Stacks

The fouling of the membrane is a difficult modelling task due to the multiple phenomena
happening. The fouling is expressed by the membrane resistance concept in the model,
which builds up over time, see Equation (6.5). In the resistance equations, the TMP has a
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(b) Optimal pressure profile.

Normalized Time
0 2 4 6 8 10 12 14 16 18 20

P
ro

te
in

 M
as

s 
F

ra
ct

io
n(

M
.F

.)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Ret. M.F.
Ret. M.F. Ref.
Accumulated M.F.
Feed M.F.

(c) Protein mass fraction trajectories.

Figure 6.15: The normalized results of the constant feed mass flow case. (6.15a): Mass
flows of the feed, the retentate (both real and reference) and the permeate of final membrane;
(6.15b): The optimal pressure profile; (6.15c): The protein mass fractions in the the feed,
the retentate of final membrane and the reference value.

strong influence, which is determined by the pressure before and after the UF membrane
stack. If the TMP values are varied between the loops, then it is possible to manipulate
the development of fouling at each membrane stack separately. In this chapter the possible
gains by variable TMP’s per membrane stack are discussed.

Resistance build-up and Variable Transmembrane Pressure

In the UF process the first membrane stack removes a large quantity of permeate. The
remaining retentate with a higher dry matter content flows to the next membrane stack. This
phenomena repeats between every membrane stack. The feed flow into the second or further
membrane stacks with a higher dry matter content increases the rate at which the membrane
fouls, causing higher resistances compared to the previous membrane at the same time.
This problem is shown in Figure 6.16. The magnitude of the resistance determines how
thoroughly the cleaning process must be, but more importantly the reduction of production
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capacity for each membrane, which eventually results in the maximum time for a single
batch. From Figure 6.16 it is observed that the resistance of the last membrane stacks is
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Figure 6.16: Membrane resistances of ten membrane stacks, where all membranes are
switched on at t = 0. The plots show how the resistance of the last membranes is much
higher than the resistance of the first one. Also the slope of the resistance built-up for the
tenth membrane is steeper than that of the first membrane.

about twice as high as that of the first membrane at the end of the 20h batch.
If one is able to manipulate the TMP for each membrane stack separately, it becomes

possible to influence the resistance accumulation (fouling) of individual membrane stacks.
By decreasing the TMP of the later membrane stacks, the empirical membrane resistance
can be reduced, which however causes a decrease in throughput. This can be compensated
by increasing the TMP of the first membrane at the cost of increase in resistance. By tuning
the TMP’s for every loop in the right way, the UF capacity and output can be kept equal
while reducing the maximal resistance build-ups over all membrane stacks. We construct
a simulation case study to demonstrate the possible effects of a variable TMP strategy. In
the simulation the TMP’s of the individual membrane stacks are tuned, and kept constant
during the batch. The resulting resistances are shown in Figure 6.17a. Furthermore the
actual resistances for this case can be seen in Figure 6.17b.

Figure 6.17b shows that by adjusting the TMPs and mass flows, the membrane stacks
keep a specific resistance gradient (accumulation), so that the resistances can be made ex-
actly equal, which in turn distributes the total permeate flux to each membrane stack evenly.
This could possibly be accomplished by implementing a supervisory controller which can
control the independent TMP’s during a batch.
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Figure 6.17: For the case depicted in (a) the TMP is set to the lowest for loop 10 and to the
highest for loop 1, resulting in the blue trajectories.

In this section, we show that the membrane resistances and the accumulation can be
reduced while rigorously adjusting the operating conditions of each membrane unit. There-
fore the production capacity of the UF is not increased yet. However, with the decrease
of the operating resistance values there is room for further improvements in the ultrafil-
tration process. One option could be to operate the process with a higher feed pressure
leading to higher throughput. This increased pressure would induce an increase in fouling.
Another option could be to extend the batch times. The increased operating time window
would reduce the production to cleaning ratio, and therefore increases the capacity of the
UF membrane unit.

6.4 Observability and Identifiability Analysis of the UF Membrane
System

Some of the recent research on OMBA methods has been in the area of maintaining the
accuracy of the rigorous models since the performance of any model-based application is
affected by the quality of the model ([192]). A research topic which has been investigated to
improve and maintain model accuracy is the area of parameter estimation ([192, 225, 346]).
Parameter estimation problems are concerned with obtaining accurate estimates of unknown
or varying parameters by using the measured input-output data. These works include param-
eter estimation algorithms, observer design techniques and also methods to decide which
parameters to estimate ([212, 225]). Similar to these the quality of the estimation results
depend on what is being measured. In this section, we address the optimal sensor configu-
ration (OSC) problem for state and parameter estimation purposes in order to achieve high
model accuracy and improved maintenance in the whey process.

The problem of state and parameter estimation requires the concepts of observability
and identifiability, which indicate whether the initial state or parameters can be uniquely
distinguished from the input and output measurements. However determining whether the
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system is observable or not, is not enough to decide what to measure. The OSC problem
might require comparison of different measurement channel configurations with respect to
the resulting variance of the estimates or the numerical reliability of the estimates, while all
of the output configurations might render the system to be observable ([342, 352]). To this
end, we use the degree of observability measures to indicate how informative sensors are.
Many of these measures are based on the spectral properties of the observability gramian
([251]). These different measures on the observability gramian may lead to different ‘op-
timal’ sensor configurations (with respect to (w.r.t.) different measures). Thus, a multi-
objective optimization scheme could be utilized to solve the OSC problem ([335]).

In order to use the degree of observability measures for the OSC problem, we need to
construct the observability gramian. This matrix reflects the influence of the states on the
measurements and hence provides a description of the state-output behaviour of a system
([342]). In the literature, many of the studies consider the linear time-invariant (LTI) or
linear time-varying approximations of the complex system for deciding which signals to
measure. This is due to the ease of solving the OSC problem with the observability gramian
([352]), or the observability matrix ([345]), or the Hautus’ test, ([362]). However, all of
these methods are only valid for linear systems. One can make use of the differential-
geometric techniques ([258]) or the tools from lie algebra ([64]) for addressing the ob-
servability property of nonlinear systems. For large-scale systems, these techniques are
almost impossible to apply, since the computational demand required to solve the problem
is tremendous ([322]). Many other algorithms are developed to address the OSC problem
in relation to the estimation quality. For example, metrics on the error covariance matrix of
the implemented Kalman filter are developed in [261] and [195]. Although the connection
between the Fisher information matrix and the gramian is known for a long time, ([25]), the
analytic relations for the bounds on the spectral properties of the state estimation covariance
matrix derived from the observability gramian is missing. A discussion on these bounds can
be found in [165, §4.3].

Recently data-based methods are introduced to approximate the controllability and ob-
servability gramians of nonlinear systems with empirical counterparts ([198]). These (co-
variance) matrices are used for the balanced truncation approach in the model reduction
problems for nonlinear systems ([149]). These type of algorithms suffer from the number
of experiments/simulations that are needed to be done. Generally one needs to conduct
many simulations to include the effect of nonlinear behaviour into the empirical gramian
matrix. However once the data is gathered, the effect of the states (and consequently the pa-
rameters) can be observed in the gramian matrix which is obtained only from the data. As
indicated in [333], combining the computational ease of the calculating output covariance
matrix with the established measures for OSC problem that are valid for linear systems is a
big step for solving the OSC problem for nonlinear systems.

Here we present a procedure to decide upon the output measurement channels of UF
membrane process, represented with unstable nonlinear differential algebraic equations
(DAEs), to estimate the parameters and states effectively. The decision is made by using the
measures cast on the observability gramians of the system. Due to the nonlinearities and in-
stabilities, the conventional observability gramians are not available. Instead, we make use
of the empirical observability gramians. The effectiveness of selected sensor channels are
compared with respect to the degree of observability measures cast on empirical gramians.
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6.4.1 Problem Formulation and Background Information

The OSC problem is connected to the effect of the states and parameters to the output mea-
surements, which can be tracked with the spectral properties of the observability gramian.
One important spectral property of the observability gramian, i.e., its positive definiteness,
is also connected to the observability (and identifiability) concept, from which we start our
discussion. For this purpose we consider a DAE system in the form of Equation (6.23)

Σ :

 ẋ(t) = fd(x(t), z(t), p, u(t)),
0 = fa(x(t), z(t), p, u(t)),

yi(t) = hi(x(t), z(t), p, u(t)),
(6.23)

where x(t) ∈ Rnx (t ∈ R[0,tf ]), is the differential state, z(t) ∈ Rnz is the algebraic
state, p ∈ P ⊆ Rnp is the (unknown) parameter vector associated with the model, u :
[0, tf ] → Rnu is the input and yi(t) ∈ Rnyi is the measured output for the ith possible
output configuration, in which i ∈ I := {1, 2, . . . , ni} and hi is the associated sensor
configuration, being an element of the set of possible measurement channels C. Our task is
to decide the ‘best’ sensor configuration hi to improve the state and parameter estimation
accuracy. The initial condition at t = t0 of Σ is denoted with x0. It is assumed that the
functions fd and fa are analytic, the Jacobian ∂fa/∂z is invertible at all points (x, z, u)
and the differentiation index of DAE model is equal to one, hence there exists a linear
approximation Σlin on the trajectory (x̄(t), z̄(t), ū(t)) with deviation variables δx, δu, i.e.,

Σlin :

{
δẋ(t) = A(t, p)δx(t) +B(t, p)δu(t) + g(t, p),
δyi(t) = Ci(t, p)δx(t) +Di(t, p)δu(t)

The observability and identifiability properties play a crucial role in state and parameter
estimation problems to result in correct estimates. We start with the observability concept.

Definition 6.4.1 ([160]) The model Σ, with known parameters p and input u(t), is observ-
able if the initial state x0 can be uniquely determined from the inputs and outputs u(t), y(t)
for t ∈ R[t0,tf ];

∃u(t), ∃p,∀x10, x20, t ∈ R[t0,tf ] : y
1
i (t) = y2i (t) =⇒ x10 = x20,

where y1i (t) and y2i (t) are the output values obtained from input u(t) and the initial condi-
tions x10 and x20, respectively.

One of the main tools for analyzing observability is the observability gramian, Wo : R≥0 ×
R>0 → Rnx×nx . For the linearized model Σlin and time instants tf > t0 ≥ 0, W i

o(t0, tf )
is defined as

W i
o(t0, tf ) :=

∫ tf

t0

ψT
i (p, τ, t0)ψi(p, τ, t0)dτ. (6.24)

where ψi(p, t1, t0) = Ciϕ(p, t1, t0) and ϕ(p, t1, t0) is the state transition matrix from t0
to t1. Observe that ψi(p, t1, t0) = ∂(δyi(t1))/∂(δx0), hence W i

o(t0, tf ) summarizes the
effects on the deviated output δy by the perturbations on the initial state δx0.
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For linear deterministic systems, the observability gramian is full rank if and only if
the system is observable hence the states are uniquely reconstructible. Furthermore, for
nonlinear systems with differentiable function fd, the nonsingular observability gramian
implies local observability around x0.

Now we define the identifiability concept which relates the effects of parameter varia-
tions to the output measurements.

Definition 6.4.2 ([142]) The parameterized model Σ with a set of parameters p ∈ P is
locally identifiable if the parameters are distinguishable from each other given the initial
state x0, the inputs u(t) and the outputs yi(t) for t ∈ R[0,tf ];

∃x0, ∃u(t), t ∈ R[0,tf ], ∀p1, p2 ∈ P :

y1i (t) = y2i (t) =⇒ p1 = p2.
(6.25)

where y1i (t) and y2i (t) are the output values obtained from input u(t), the initial condition
x0 and the parameters p1 and p2.

The identifiability property guarantees that any deviation in the parameters eventually effect
the outputs on the operating trajectory. One general way of checking identifiability, given
input and initial condition, is by constructing the parameter-to-output sensitivity matrix, i.e.,
Wi

p(t) := ∂yi(t)/∂p. This matrix is connected with the observability gramian of the (new)
system constructed with the parameters, i.e., p in Equation (6.23), augmented as new states,
i.e., ṗ = 0. Then the observability matrix of the augmented system contains the information
deduced from the parameter-to-output sensitivity matrix, i.e.,

W̄ i
o(0, tf ) =

[
W ixx

o W ixp

o

W ipx

o W ipp

o

]
=

∫ tf

t0


(

∂yi

∂x0

)T
∂yi

∂x0

(
∂yi

∂p

)T
∂yi

∂x0(
∂yi

∂x0

)T
∂yi

∂p

(
∂yi

∂p

)T
∂yi

∂p

 dt.
Under this construction the parameter identification problem boils down to the problem

of the observability of states of the augmented system.
Since the observability gramian is utilized for both the state and parameter estimation

problems, we consider methods that construct the gramian for large-scale and nonlinear
models with relatively low computational complexity. For nonlinear systems the construc-
tion of the observability gramian does not follow from the linear case trivially. One can
overcome this problem by the empirical observability gramian. This matrix is constructed
via the output measurements which are obtained from (nominal and perturbed) initial states
(and initial parameters) by calculating the covariance matrix of the output measurements.
The empirical observability covariance matrix for system Σ in Equation (6.23) is calculated
as ([334]);

Ŵ i
o(t0, tf ) :=

r∑
l=1

s∑
m=1

1

r

1

s

1

c2m

tf∫
t0

TlΨ
lm(t, i)TT

l dt, (6.26a)
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where r and s are the cardinalities of the sets of perturbation directions (T r,nx ) and magni-
tudes (M );

T r,nx = {T1, . . . , Tr;Tl ∈ Rnx×nx , TT
l Tl = I, l = 1, . . . , r},

M = {c1, . . . , cs; cs ∈ R, cm > 0,m = 1, . . . , s}, (6.26b)

and the (jk)th element of the matrix Ψlm(t, i) ∈ Rnx×nx is defined as

Ψlm
jk (t, i)(t) = (yjlmi (t)− ȳi(t))

T (yklmi (t)− ȳi(t)),

with yjlmi (t) being the output of the system corresponding to the initial condition xjlm(0) =
cmTlej + x̄0, ej being the jth basis direction in Rnx and ȳi(t) is the nominal-unperturbed
output of the system initiated from the nominal state x̄0. All of the output trajectories,
yjlmi (t) and ȳi(t), are steered with input ū(t), t ∈ [0, tf ]. For stable systems one can use the
steady state values of states and outputs, see, e.g., [333]. However for an unstable system,
since no steady state values exist, we propose that one should take the ȳi values as the nom-
inal (unperturbed) trajectory while calculating the empirical gramian. In this case observe
that yjlmi ≈ ȳi+ δy

jlm
i , hence Ψlm

jk (t, i) = (eTj T
T
l cm)ψT

i (p, t, t0)ψi(p, t, t0)cmTlek (since
δu(t) = 0 for t ∈ [t0, tf ]), which yields to true observability gramian after evaluating the
integral and the sums in Equation (6.26a). Hence if the model equations Equation (6.23) are
sufficiently smooth and the linear approximation for perturbations defined by Tl and cm is
valid, then the empirical observability gramian converges to the true observability gramian.
Thus, from a system theoretical point of view, both the theoretical and computational prob-
lems induced by nonlinearities or instabilities are discarded with the empirical observability
gramian approximation.

The operating region is highly effective on the calculated gramian which should reflect
the nonlinear behavior in the covariance matrix. The approximation quality of the empirical
observability gramian to the real observability gramian of the system is determined by the
selection of sets T r,nx and M . The set of perturbations T r,nx should be selected such
that cmTlej terms excite the nominal initial state x̄0 in all of the directions spanning the
state space, both the positive and negative directions to approximate ∂yi(t)/∂x0; while the
perturbation magnitudes cm should be selected wisely to capture the whole region of interest
by adjusting the magnitudes of the elements of M , see e.g., [333].

In practice, the initial state might be difficult to reconstruct from data, if the observability
gramian is ill-conditioned. To briefly elaborate, consider the gramian based state estimates
δx̂(t) for model Σlin with δu(t) = 0, t ∈ [t0, tf ],

δx̂(τ) =W i−1

o (t0, τ)

∫ τ

t0

ϕT (p, s, t0)C
T
i δyi(s)ds, τ ∈ (t0, tf ].

If the observability gramian is ill-conditioned, this will cause poor results for the estimates.
In this section this issue is taken into account with the degree of observability measures.
These measures are cast on the (true or empirical) observability gramian to compare dif-
ferent output channels with respect to the informativity of the measured signals. Several of
these measures are listed below, for the set of possible output channels C.
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Eigenvalues: The minimum eigenvalue of the observability gramian indicates how close
the system is to becoming unobservable, hence higher values of the smallest eigenvalue
imply a greater degree of observability measure, i.e.,

µ1 := max
hi∈C

argmin
λ

{λ(W i
o(t0, tf )}}.

However the eigenvalue measure does not reflect the effect of perturbations in other direc-
tions than the eigenvector associated with the minimal eigenvalue. Hence in general it is
difficult to assess the overall performance through the eigenvalue measure.

Trace: The second measure compares the trace of the observability gramians w.r.t. dif-
ferent sensor selections, i.e.,

µ2 := max
hi∈C

trace(W i
o(t0, tf )) = max

hi∈C


n∑

j=1

λj(W
i
o(t0, tf ))

 .

The trace is the sum of eigenvalues, hence representing the maximum effect on the output
w.r.t the perturbations in all directions. It is observed that ([333]) for OSC problem with
estimation purposes, the measure µ2 yields better results compared to the other measures
defined here.

Determinant: The third measure is the determinant of the observability gramian. A
larger determinant of W i

o(t0, tf ) shows that at least one eigenvalue is larger compared to
the other sensor configurations. Therefore the largest determinant case of the gramians con-
structed for different sensor selections corresponds to a better output channel configuration,
i.e.,

µ3 := max
hi∈C

det(W i
o(t0, tf ))

1
n .

The determinant measure is numerically problematic and varies with a high dependence on
the elements of the gramian matrix, thus depends heavily on the selection of T r,nx and M
matrices for empirical observability gramian calculation.

Condition number: For state estimation quality, one needs to consider the maximum
and minimum singular values and associated directions of the observability gramian. An-
other method that can be utilized for the OSC problem is the condition number of the
gramian, which is defined as

κ(W i
o(t0, tf )) :=

σmax(W
i
o(t0, tf ))

σmin(W i
o(t0, tf ))

.

This method can be viewed as a tool for analyzing the sensitivity of the observability prop-
erty w.r.t. different measurement channels ([114]). A small valued κ(W i

o(t0, tf )) implies
that the magnitude difference between λmax(W

i
o(t0, tf )) and λmin(W

i
o(t0, tf )) is small,

hence a less ill-conditioned observability gramian. This improves the estimation quality,
hence this measure minimizes the condition number, i.e.,

µ4 := min
hi∈C

κ(W i
o(t0, tf )) = min

hi∈C

{
log

(
σmax(W

i
o(t0, tf ))

σmin(W i
o(t0, tf ))

)}
.

Apart from these, one can make use of the spectral radius or the near singularity measures
as indicated in [333].
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Remark 6.4.1 Since the analytic relations between the spectral properties of observability
gramian and state (or parameter) estimation covariance matrix are missing, there is no
straightforward way to select the OSC minimizing estimation error variance through the
above mentioned measures. These measures are only used as an indicator for the selection
procedure.

6.4.2 Simulation example for Ultrafiltration Membrane System

In this section we implement the sensor selection method via empirical observability grami-
ans to a simplified ultrafiltration membrane process. The membrane set-up consists of two
membrane stages which are connected in series to each other. There are two outlet flowing
streams, hence possible output channels, of each membrane stack, the permeate and the
retentate streams. We provide a simple schematic of a membrane system with two stages
in Figure 6.18. In this simulation study we make use of a simplified UF membrane model

Σ Σ

Membrane 1 Membrane 2
Feed

Permeate Inlet

F
1

p

F
1

r = F
2

f

F
2

p

F
2

r = Fret

Retentate Outlet

F
1

f

Fperm

Figure 6.18: The two membrane stacks system.

which is taken from [146] as

F j
f = F j

r + F j
p , F j

fC
j
f = F j

rC
j
r ,

F j
p = AJj , Jj = ∆P j

Rj ,

∆P j = P j
in − 1

2δP
j − Patm, Ṙj = α(∆P j)βJjCj

r ,
P 2
in = P 1

r = P 1
in − δP 1, j = 1, 2,

(6.27)

where j = 1, 2 is the index over two membrane stacks, the feed, retentate and permeate
mass flows are denoted with F j

f , F
j
r , F

j
p , respectively, Cj

f and Cj
r denote the concentrations

of feed and retentate stream, Jj is the mass flux, and Rj is the membrane resistance. The
state and parameter vectors are defined as

x =
[
R1 R2

]T
, p =

[
α1 α2

]T
.

The parameter values, initial state and operating conditions are tabulated in Table 6.1. The
operating conditions are selected in such a way that the performance outputs, F 2

r , C
2
r , are

kept in acceptable levels with the linear increase of the pressure, the input u. Furthermore,
the initial conditions are determined through the geometry (pore size/density etc.) and oper-
ating conditions of the membranes. Lastly, we assume that the membranes foul at tf = 10h,
thus the process execution is interrupted.
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Area of membrane stack (m2) A 74.0350
Pressure drop over membrane (Pa) δPi 100

Atmospheric pressure (Pa) Patm 101.3
Fouling parameter 1 (-) α 0.0005
Fouling parameter 2 (-) β 0.5

Inlet pressure (Pa) P 1
in(t) 103(1/2 + t/tf )

Inlet mass flow (kg/h) F 1
1 5000

Inlet protein concentration (kg/L) C1
1 5

Initial membrane resistance (-) R1(0) = R2(0) 15

Table 6.1: Nominal parameter values and operating conditions.

Estimation of States with Empirical Observability Gramian

The possible measurement channels are taken as the mass flows at the retentate and permeate
ports. There are seven different output channels which are characterized as

yi = CT
i

Fperm

Fret

F 1
r

 ,
where the output channels Ci are the elements of the set C;

C =


10
0

 ,
01
0

 ,
00
1

 ,
1 0
0 1
0 0

 ,
0 0
1 0
0 1

 ,
1 0
0 0
0 1

 ,
1 0 0
0 1 0
0 0 1

 . (6.28)

The Fperm, Fret and F 1
r are visualized in Figure 6.18 and given as

Fperm = F 1
p + F 2

p + F inlet
perm, F

inlet
perm(t) = 0,

Fret = F 2
r .

(6.29)

For the given set of possible output configurations, we calculate the empirical observability
gramian with Equation (6.26a) to calculate the degree of observability measures µk. We
select the perturbation directions as the positive and negative directions in the state space
and the perturbation magnitudes are less then 10% of the initial conditions (see Table 6.1),
i.e.,

T 2,2 = {I2, − I2} ,

M = {1.5, 1, 0.75, 0.5, 0.25} .

The degree of observability measure results for the membrane system and the empirical
observability gramian are visualized in Figure 6.19. From these results we observe that
output channel cases 3-5-6 and 7 are providing sufficient information regarding the states
of the system, whereas the case 7, measuring the sum of three variables, is the optimal
choice for the state estimation purposes. This is due to the output measurements that contain
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Figure 6.19: Degree of observability measure results obtained for two membrane stack
system for state estimation problem.

the largest amount of information. Case 5 and 6 represent the instances measuring the
sum of retentate mass flow of first membrane with the outlet permeate or retentate streams,
respectively. Observe that all of the degree of observability measures are equal to each other
in these two output configuration cases due to the model equation

F i
f = F i

r + F i
p,

where F 1
f is assumed to be known. Furthermore, measuring the two streams together causes

the system to become unobservable, as seen from the case 4. The optimal sensor selection
results correspond to the industrial implementations, where the mass flows of each mem-
brane stack are tracked.

Estimation of Both the States and Parameters with Empirical Observability Gramian

In this part, we utilize the empirical observability gramians of different sensor configura-
tions for parameter estimation purposes. We model the (empirically determined) fouling
parameters α1 and α2 as constants up to an additive disturbance effecting their initial con-
ditions, i.e.

α̇j = 0, αj(0) = 0.0005 + wj , j = 1, 2.

The Gaussian disturbance terms wj ∼ N (0,Σw) are independent and standard deviations
are equal to 2.5 ∗ 10−5, while the initial conditions for the membrane resistances are set
similar to the previous case. The perturbation directions and magnitudes are taken as;

T 2,4 = {I4, − I4} ,

M = { 2.5, 2, 1.5, 1, 0.5} ,
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where we scaled the perturbations with 10−5 for the cases perturbing the fouling parameters
αi. The results are tabulated in Figure 6.20 for four different degree of observability mea-
sures. The resulting degree of observability measures are similar with the results of Section
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Figure 6.20: Degree of observability measure results obtained for two membrane stack
system for state and parameter estimation problem.

3.2. The cases 5, 6 and 7 are providing the best sensor channels, again, while for the case
3, the information required for estimating the second membrane fouling coefficient is not
present in the measurements. Furthermore the output configuration cases 1, 2 and 4 are
prone to be numerically problematic for estimation purposes which can be observed by the
ill-conditioning of the observability gramian, see the condition number subfigure of Figure
6.20.

Lastly, to check the validity of the implementation and the results, we designed Kalman
filters for the membrane system with the output measurements varying over the measure-
ment channel cases. In Figure 6.21, we visualize the results for the states and the parameters,
including the true values of the states (R1 and R2) and the parameters (α1 and α2) and the
estimation results for the output channel cases 5, 6 and 7. From these results we observe that
the optimal output channels are providing an acceptable estimation performance for both of
the states and the parameters. The estimation errors of parameters αi are relatively high but
convergent to the true value, however the state trajectories are estimated with high precision
for the optimal sensor configurations. For the other sensor configuration cases, which are
not reported here, the results are not satisfactory, either due to poor estimation quality of αi

or the true variables being not observable at all.
As an outlook, different degrees of observability measures are indicating different as-

pects of the model. The eigenvalue measure should be used in all cases, to check whether
the system is observable or not, however the trace measure is the most reliable one about the
informativity of the sensor configuration. The condition number measure indicates whether
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Figure 6.21: Simulation results for the simplified membrane system. The upper figure
visualizes the true and estimated membrane resistance (state) trajectories while the bottom
figure visualizes the true and estimated fouling coefficient (parameter) trajectories for output
channel cases 5, 6 and 7.

the estimation algorithm is prone to be numerically erroneous with quickly varying esti-
mates. Since the empirical gramian is calculated through noisy simulation data, it is not
advised to make use of the determinant measure.

6.5 Conclusions on Modeling of Ultrafiltration Membrane Units and
Model-based Applications

In this chapter, we discussed a complex industrial process, whey protein separation process,
and the dominant unit operation in this process, the ultrafiltration membrane units. A math-
ematical ultrafiltration membrane model for whey separation process is developed. Lastly,
the effect of operating conditions are mapped, through both static and differential relations,
to the membrane flux and retention factor variables. For the constructed model, a parameter
estimation problem is solved, regressing the gathered industrial data to the mathematical
model. The statistical properties indicate that the model describes the process sufficiently
and thus the model can be used for control and estimation purposes. With the validated
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model, we have implemented several simulation studies to stress-test the model. We im-
plement and challenge the model via optimization studies by comparing it with heuristic
operating schedules which shows that the optimization based strategy is preferable since
the fouling accumulation is slowed down with the lower operating pressure levels. Finally,
a section is dedicated to the possible gains in resistance decrease when the TMP’s are tuned
for every membrane loop separately. These simulation studies present the potential use of
the membrane model for optimal operation and scheduling strategies. We have made use
of the developed membrane model in the observability and identifiability analysis. We con-
sider the optimal sensor configuration problem for a simplified UF membrane system, to
extract useful information for tracking the fouling. For this purpose we extend the defini-
tion of the empirical observability gramians for unstable nonlinear systems to decide on the
optimal sensor configuration.

• The UF model incorporates the fouling effect as an additional state, the membrane
resistance, on top of the mass balance relations.

• Comparison between three different static membrane resistance functions is con-
ducted and both the simple (polynomial case) and the complex (logarithmic-exponential)
approaches fail to reach statistical validation compared to the exponential static mem-
brane resistance.

• All the membranes should be turned on at the beginning of the operation, since the
performance improves by distributing the mass flux over all membrane stacks.

• The maximal membrane fouling could be decreased by tuning the TMP’s per mem-
brane loop separately. This, with either increased operating pressure or longer batch
time, could lead to a higher production capacity while providing desired performance
specifications.

• The sensor configuration can be decided based on the empirical observability grami-
ans for estimation purposes.
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Chapter 7

Online Model-based Monitoring and Con-
trol Applications for Ultrafiltration Membrane
Process

Here I opened wide the door;
Darkness there and nothing more.
Deep into that darkness peering,
long I stood there wondering.

Edgar Allan Poe - The Raven

Model-based control and monitoring techniques have been widely accepted and used
in oil and petrochemical industries. The benefits of these methods have been documented
extensively ([288, 289]). A natural step for using the dynamic model of the UF unit is to
show the benefits of model-based technology in the whey protein separation process. To this
end, we have first used two observer design methods, namely EKF and MHE, and compared
their performances for monitoring the protein content in the retentate and the evolution of
fouling phenomena in the membrane stacks. Secondly, model-based control with a learning
feature has been developed for controlling the protein content within the batch operation and
improving it over batch-to-batch iterations. Finally, the performance of such a controller is
compared with the conventional control designs, to demonstrate that with the multivariable
model-based control methods, one can extend the whey protein separation operation while
maintaining the performance goals on the protein concentration in the processed whey.

7.1 Monitoring of Fouling in Ultrafiltration Membrane Stacks
7.1.1 State Estimation Problem for Ultrafiltration Membrane Stacks

A crucial class of OMBAs is online state or/and parameter estimation. In this application
the states or the parameters and more importantly the key performance indicators (KPIs)
are continuously monitored. In addition to the monitoring of the process operation, the
variables which are tracked by soft sensors can be used in model-based controllers which
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require information about the current states or parameters of the process. This necessitates
soft sensor implementations in cases where not all states of the system are measured or mea-
surable. Currently, a noticeable amount of soft sensor implementations (both in simulation
and industrial cases) are reported in the literature ([338]).

Similarly, soft-sensor implementations for the UF membrane unit are expected to im-
prove the whey protein separation process operation. In the current practice, (physical)
sensors to measure protein concentrations in thick whey are costly to install after each and
every membrane unit, and even in the ideal case of large number of installed sensors, the
measurements of the variables are generally sporadic rather than being continuous over
time. The possible delays in the measurements have detrimental effects in the model-based
control implementations. Furthermore cost-efficient sensors, such as the ones measuring
the (mass) flows in the UF streams, are highly inefficient due to the low resolution and low
signal to noise ratio factors. Thus a model-based soft-sensor synthesis has both monitoring
and control benefits.

There are many different types of monitoring routines that are proposed in the literature,
see [299] for a thorough discussion of different observer design techniques. The choice of
the observer type for a certain application varies with several factors such as the dynamics
of the process, existence of constraints, the available computational power and the statistical
nature of the state or parameters. However, an industrial standard for tracking unmeasured
or corrupted states is the Kalman filter [154, 174]. The Kalman filter is proven to be the (L2)
optimal estimator provided that the system dynamics are linear and the covariance levels of
disturbances are known to the practitioner. For practical implementations where incorpo-
ration of nonlinear dynamics is necessary, the extended Kalman filter (EKF) is used which
accounts for nonlinear dynamics of the system to the expense of optimality. Nonlinear dy-
namics are linearized around the operating point to approximate the nonlinear behaviour
of the process, [215], but such techniques result in sub-optimal estimates. EKF provides a
simple and efficient approximate solution for the state and parameter estimation problem,
while guaranteeing several system theoretic properties such as asymptotic convergence and
stability ([215, 304]). EKF based monitoring methods have been successfully implemented
in many industrial cases as reported in [113, 205, 338].

Once the estimation algorithm is required to incorporate constraints, such as the phys-
ical bounds on the states or disturbances, the Kalman filter loses its effectiveness. In its
simplest formulation, the Kalman filter does not incorporate constraints. This might lead to
estimates which are not feasible in physical systems, such as negative concentrations in UF
membrane units. In addition, there are frequently reported problems with robustness associ-
ated with EKF ([300]). To overcome the linearization errors and constraint violations while
achieving guaranteed convergence of estimates, moving horizon estimation (MHE) algo-
rithms are introduced in the academic literature, see [252]. MHE techniques are a member
of optimization based estimators that rely on model predictions in backwards (time) direc-
tion. The corresponding algorithms involve solving an optimization problem constrained
to the process model and constraints as specifications or limitations for a finite number of
output measurements. Depending on the structure of the optimization problem, the result
can be the estimated state, the estimated process parameters or the estimation of exogenous
disturbances ([193]).

In this section, both of the mentioned estimation techniques, EKF and MHE, are ap-
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plied to UF membrane systems in the whey protein separation process. Our goal is to track
the KPIs of the UF unit, but more importantly we want to monitor the fouling accumula-
tion. The fouling phenomenon, being the main bottleneck in the UF operation, impedes
the desired performance of membrane units. One way to effectively cope with the fouling
phenomenon is to track the fouling effects by employing soft sensing algorithms and then
controlling the process such that the fouling accumulation is slowed down and hence the
process efficiency is increased. This line of reasoning has been used in several works re-
ported in the literature e.g. [168, 330]. However, these efforts did not consider large-scale
rigorous models of membranes but rely on simple black box models. Since we desire to
track the fouling, these models are not detailed, or accurate, enough for soft-sensor imple-
mentation. Furthermore, soft-sensor methods for large-scale models require special atten-
tion to issues such as numerical ill conditioning and calculations over large sets of decision
variables. We analyze rigorous soft-sensor design techniques for UF membrane units in this
section due to these considerable problems.

We introduce the estimation problem and present the notation for the next sections.
Here we represent the UF membrane model developed in Chapter 6 with the continuous
time system Σ,

Σ :

 ẋ(t) = fd(x(t), z(t), u(t), w(t)),
0 = fa(x(t), z(t), u(t), w(t)),

y(t) = h(x(t), z(t), u(t), v(t)),
(7.1)

where x(t), z(t), u(t) and y(t) denote the dynamic state, algebraic state, the input and the
output vectors, respectively. Furthermore,w(t) and v(t) represent process and measurement
noise with covariance matrices Qw and Rv, respectively. Finally, fd, fa and h are nonlinear
functions relating states, inputs and noise to states and measurements at {y(τ), τ ≤ t}.
The aim of state estimation then becomes reconstruction of the dynamical state vector x(t)
based on the measurements and the model. Let us denote the estimate of x(t) by x̂(t). The
estimation error then becomes e(t) = x(t)− x̂(t).

Extended Kalman Filter

The first estimator type that we discuss is the Kalman filter. The Kalman filter addresses
the problem of finding x̂(t) by minimizing the error covariance P (t) = E[e(t)e(t)⊤] on
the basis of output measurements {y(τ) : τ ≤ t}. This results in a predictor-corrector
algorithm, which consists of two main steps:

• The predictor step calculates an estimate of the state and output based on the system
dynamics Σ in Equation (7.1) without the disturbance terms corrupting the evolution,
w(t) = 0, v(t) = 0;

• The corrector step updates the estimation by penalizing the resulting model-based output
prediction ŷ = h(x̂(t), ẑ(t), u(t), 0) in comparison to the output measurement.

The predictor step is mainly concerned with iterating the state and covariance estimates
forward in time by using the model. In the correction step the observer gain is calculated,
the a-posteriori estimate of the states and the error covariance are updated.

In this thesis, we implement the estimators in digital devices, so we operate with the
discrete time EKF algorithms, which are explained next. As a starting point, we linearize
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the dynamics of the UF process model in Equation (7.1) around the operating conditions.
Assuming a general case where direct feedthrough terms are also present, linearization of
the DAE model leads to:

Σlin :

{
δẋ(t) = A(t)δx(t) +B(t)δu(t) +Bw(t)w(t),
δy(t) = C(t)δx(t) +D(t)δu(t) +Dw(t)w(t) + v(t),

(7.2)

where δx contains the deviations from dynamical states of the UF model1. These equations
are subsequently discretized, by sampling the system at time instants t = kTs, k ∈ Z≥0

and Ts ∈ R>0 is the sampling time, in order to apply the soft sensing algorithms once new
measurements are conducted. The linearized and discretized model is then represented as

ΣDT
lin :

{
δxk+1 = Akδxk +Bkδuk +Bw

k wk,
δyk = Ckδxk +Dkδuk +Dw

k wk + vk,
(7.3)

These state space system matrices and the initial guesses on the state estimate and the co-
variance matrix (x̂0, P0) are used in the EKF algorithm, which is visualized in Figure 7.1.
The EKF algorithm initializes at the time update with the initial conditions (x̂0, P0) and
Qk = Qw, k ∈ R≥0. With nominal dynamics, we integrate the prior estimated state x̂−(t)
and iterate the prior error covariance matrix P−

k+1. The corrector, also called as measure-
ment, step updates the prior estimates according to the measurement mismatch ỹk+1 and the
variance model of disturbances affecting the Pk and Lk. This update finalizes the Kalman
filter algorithm, by sending the estimated states back to predictor step.

Time Update
Measurement

Update

x̂−k+1 = f (x̂k, uk, 0)

P−k+1 = AkPkAk +Bw
k QkB

w>
k

x̂k+1 = x−k+1 + Lk+1ỹk+1

Pk+1 = (I − Lk+1Ck+1)P
−
k

where

Lk+1 = P−k+1C
>
k+1(Ck+1P

−
k+1C

>
k+1 +Rk+1)

−1

ỹk+1 = yk+1 − Ck+1x̂
−
k+1

x̂−k , P
−
k

x̂k, Pk

Figure 7.1: The EKF algorithm divided into prediction (Time update) and correction (Mea-
surement update) updates.

Choice of Covariance Matrices and the Numerical Properties of EKF The weighting ma-
tricesQk andRk used in the Kalman filter update equations are the tuning parameters of the
EKF. These parameters indicate whether the measurements of outputs or the model-based
predictions are trusted. With a low Rk (compared to the singular values of the Qk matrix),
measurements are trusted more, so that the resulting estimates are aligned more with the

1The algebraic states z(t) vanishes, since the DAE system is an index-1 DAE system, which can be written as
a causal LTI system, see also [77, 78, 79].
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measured outputs, while for the opposite case the model is the trusted more than the mea-
surements. In other words, the observer is tuned not by the individual covariance matrices
but by the ratio between their singular values.

In practice it is rarely the case that the covariance matrices Qk and Rk are known or
accessible. Hence, these weighting matrices are tuned heuristically and independent of k.
The tuning is accepted once the desired estimation results are obtained. In this dissertation,
we compare two different ways of designing the weight matrices. First one is using static,
heuristically tuned Qk = QC1, where C1 stands for case 1, and we detail the second case
next. In a scenario where process noise covariance levels Qw and Rv are known, the Qk

and Rk matrices can be computed as follows:

Qk = Bw
k Q

wBw⊤

k ,

Rk = Dw
k Q

wDw⊤
+Rv

(7.4)

where Bw
k and Dw

k follow from the linearized and discretized dynamics of the membrane
model and Rv is the measurement noise covariance matrix. With this method, the choice of
the covariance matrices becomes adaptive.

A second issue with the EKF based monitoring applications is its numerical implemen-
tation for large-scale rigorous systems. In the implementation of EKF towards the UF
membranes, numerical issues are observed at the measurement update phase. On top of
it large-scale system dynamics leads to difficulties in the inversion operation of EKF cor-
rector step, see Figure 7.1. To be specific, numerical computations in this step yield a Pk

which is not nonnegative. However this is an impossible situation as we analyze the update
equations. To cope with this issue, the square root of the covariance matrix Pk, found by
Cholesky factorization, is proposed to be used, [49]. This method was further improved
by using the UDL decomposition of the covariance matrix instead of Cholesky factoriza-
tion. The algorithm presented in [366] addresses the numerical stability issues in the case of
multiple measurements. Moreover, this algorithm exhibits higher numerical stability com-
pared to other alternatives. In this thesis, we use the UDL decomposition based algorithm
to overcome the numerical problems.

Moving Horizon Estimation

Both the Kalman filter and the EKF do not consider any constraints on the states and dis-
turbances. Including inequality constraints to preserve the physical bounds is, in general,
expected to yield better estimation results. Furthermore, applying the Kalman filter to non-
linear systems by means of the EKF comes at the cost of optimality as a result of lineariza-
tion effects.

To improve the estimation results by taking the constraints on the states and the distur-
bances into account, the estimation problem can be formulated as a series of optimal control
problems ([300]). However, solving optimization problems which take all of the available
measurement data into account has an extremely high computational cost. In fact the size
of the optimization problem increases with every new measurement that is made at every
time instance. Moving horizon estimation (MHE) techniques are used to limit the compu-
tational size of the estimation problem by employing a time window of finite length while
incorporating the constraints. Once new measurements are made, the old measurements
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are discarded and new estimates are found by solving the finite horizon estimation problem
again for which constraints and nonlinear system dynamics are taken into account.

Technically, we make use of linearization dynamics ΣDT
lin in Equation (7.3) to estimate

the state deviation that minimizes the measurement mismatch while satisfying constraints
on the estimated trajectories. Consider a time instant k and given constraints on the dy-
namical states, i.e., cj(x̂k−i) ≤ 0, where j = 1, . . . , Nj , Nj is the number of constraints,
i = 0, 1, . . . , Nw − 1 and Nw is the horizon length of measurement signals. Then the
optimization problem reads as;

PMHE :



δx̂∗k = arg min
δx̂k

k∑
i=k−Nw+1

||ỹi − δyi||2QM
+ ||δx̂k||2RM

,

subject to δx̂i|k−Nw+i = Ai−1δx̂i−1|k−Nw+1 +Bi−1δui−1,
δyi = Ciδx̂i +Diδui,
ỹi = ymeas

i − ŷ−i ,
cj(x̂i) ≤ 0,
i = k −Nw + 1, . . . , k,

(7.5)

where x̂∗k = x̂−k + δx̂∗k is the optimal state estimate at time k ∈ Z≥0, x̂−k is the prior
state estimated obtained from integrating the previous optimal state estimate x̂∗k−1 with the
nonlinear dynamics in Equation (7.1); ỹk is the difference between the measured output
and prior estimate of output, ymeas

k and ŷ−k , respectively; δyk is the deviation at the output
parametrized with δxk; and lastly QM and RM are the weighting matrices in the MHE
problem. Once the MHE problem (Equation (7.5)), is solved, the optimal deviation in the
state estimate δx̂∗ is obtained and estimated states and outputs x̂−k , ŷk are updated with
respect to this deviation variable, i.e.,

x̂k = x̂−k + δx̂∗k,
ŷk = ŷ−k + Ckδx̂

∗
k +Dkδuk.

7.1.2 Implementation of Monitoring Algorithms for Ultrafiltration Membrane Process

Operating Conditions of Ultrafiltration Membrane Stacks

Two different sets of measurements are used in the estimator design for the UF membrane
process. In the first study, an optimal operating strategy is constructed as in [316]. We
refer to the resulting input-output data set as the simulation data set. The simulation data
set and the (virtual) measured outputs are generated from the dynamical model with the
given optimal inputs, which provide the trajectories of the variables in the process. To
mimic realistic operating conditions of the UF process, perturbations and noise are added
to the outputs and inputs. To this end, input and output noise levels are selected as 5% of
the corresponding nominal signals. The uncertainties are taken as; i) for state estimation
purposes, we consider input and output noise levels of 5% of the applied value; ii) we
further introduce varying perturbations (a sine wave) for the fouling parameter α for each
membrane that is equal to the 5% (at maximum) of the nominal value, i.e.,

αi(t) = αi
0 +

αi
0

20
sin(

2πt

10
).
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The input variables, feed mass flow and pressure trajectories, are visualized in Figure 7.2
and Figure 7.3.
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Figure 7.2: True and noisy input feed flow in the simulation data set.
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Figure 7.3: True and noisy input pressure in the simulation data set.

As the second simulation experiment, an industrial data set is gathered from a whey
protein separation plant which is run by operators. The operating strategy used by the
operators is then mimicked by the dynamical model to generate the variables which are
not measured. We refer to this data set as the Industrial data set. This data set consists
of mass flow measurements with the associated operating pressure profile. This operation
depends on the operators’ personal skill and experience level. In this experiment, not all
of the membranes in the plant are operational at all time instants. This is different from
the simulation data set, in which 8 membranes are kept operational during the whole batch
time. After the start of the batch, the operator introduces two membranes to compensate
the performance drop due to the fouling effects, approximately around the t = 3h and
t = 15h. This introduces hybrid behaviour to the monitoring model, which deteriorates the
estimation performance. In the case of the industrial data set, additional disturbances are
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not added to the input and output signals since the collected data from the plant operation is
already noisy. The true and noisy input feed flow and pressure signals used to generate this
data set are presented in Figure 7.4 and 7.5 respectively.
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Figure 7.4: True and noisy input feed flow in the industrial data set.
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Figure 7.5: True and noisy input pressure in the industrial data set.

Parameter Configuration of Estimators

We implement three different monitoring algorithms and calculate the estimates, namely

• EKF with heuristic weight selection;

• EKF with time varying weights;

• MHE.
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For the first case, the EKF weights are tuned with trial and error. In the second case, EKF
with adaptive weight tuning is implemented; as described in Equation 7.4; which we refer
to as the Case 2. The last implementation is the MHE based estimation routine.

• EKF Case 1: In order to overcome the numerical issues encountered during the mea-
surement update phase, we implemented the UDL decomposition based EKF algorithm
presented in [366]. For EKF Case 1, the covariance matrices Qk and Rk are tuned by trial
and error, until the desired estimation error results are obtained. The reported estimation
results are obtained with the (constant) covariance matrices as,

QC1
k = 0.012I104, RC1

k =

[
RF 0
0 Rx

]
,

RF = 1500I9, Rx = 0.012.

The EKF Case 1 algorithm does not take constraints into account. As a result of this, we
observe that some states are estimated in infeasible regions of the state space and cause
the simulations to leave the operation window for which the model is descriptive. More
specifically at the start of the batch operation, several of component concentrations are
estimated to be negative, which is violating the model constraints. To circumvent this
problem, we apply clipping to satisfy the constraints. With this technique, if the estimates
violate physical constraints, they are simply discarded and the prior estimate is used to
continue the simulation.

• EKF Case 2: In this case, the EKF estimator implementation is the same algorithm as
the EKF Case 1, yet the choice of the covariance matrices are different. This leads to a
crucial difference since the choice of covariance matrices significantly affects the resulting
estimates. In EKF Case 2, the linearized dynamics and the time varying input covariance
levels Qw(t) are used in place of the constant guess. However during the error covariance
update step of the EKF, the covariance matrices are taken as

QC2
k = Bw

k Q
w
kB

w⊤

k ,

RC2
k = Dw

k Q
w
kD

w⊤

k +R,

which leads to adjustable covariance levels. This improves the estimation quality of the
EKF. In this case, clipping is used once again for dealing with infeasible estimates during
the start of the batch operation.

• MHE: In the case of MHE with a prediction horizon of Nw = 5, the algorithm presented
in the this section is simulated in UF membrane model. With trial and error, the weighting
matrices QM and RM are set to

QM = 0.012I10, RM = 5002I104.

Simulation Results of Monitoring Algorithms

The resistance tracking results for the simulation data set for EKF case1, EKF case 2 and
MHE are visualized in Figures 7.6a-7.7a-7.8a, respectively. Here we only present the track-
ing for the even numbered membranes for brevity. The results for the rest of the membrane
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units show a similar trajectory. Moreover, the corresponding relative estimation error (mag-
nitude of error divided by the true magnitude of the resistance) is presented in Figures
7.6b-7.7b-7.8b. As it can be seen in these results, the estimation results are highly accu-
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membranes.

0 2 4 6 8 10 12 14 16 18 20

Time(h)

10-3

10-2

10-1

100

101

R
e

la
ti
v
e

 e
rr

o
r

Membrane 2
Membrane 4
Membrane 6
Membrane 8

(b) Relative estimation error.

Figure 7.6: Resistance tracking and relative estimation error trajectories with the EKF algo-
rithm (Case 1 - QC1

K and RC1
K ) for the simulation data set.
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Figure 7.7: Resistance tracking and relative estimation error trajectories with the EKF algo-
rithm (Case 2 - QC2

K and RC2
K ) for the simulation data set.

rate. More specifically, the estimators always keep up with the true fouling trajectories and
the relative magnitude of error is decreasing over time if there is no operating point change.
Furthermore, it is observed that at time instants when there is a transition in the transmem-
brane pressure (TMP), the estimation error have sudden jumps. This can be attributed to
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Figure 7.8: Resistance tracking and relative estimation error trajectories with the MHE
algorithm (QM and RM ) for the simulation data set.

the mismatch between the estimated and the true parameters and the algebraic mappings
inherent to the process model. The key performance indicators (KPIs) which are the out-
let protein mass fraction and the mass flow together with their estimates obtained from the
three soft sensors are presented in Figure 7.9 and Figure 7.10, respectively. These results
indicate that the estimates of the performance indicators are well aligned with the true tra-
jectories. Hence the results support the use of these soft sensors for OMBAs purposes in
UF membrane systems.
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Figure 7.9: True and estimated mass fraction of proteins at the retentate and feed streams
for the simulation data set.

.

For the industrial data set, the resistance tracking results are presented in Figure 7.11a,
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Figure 7.10: True and estimated mass flow rate at the output retentate stream for the simu-
lation data set.

Figure 7.12a and Figure 7.13a for EKF case 1, EKF case 2 and MHE, respectively. Once
again, only resistance tracking for evenly numbered membranes is presented for brevity.
Moreover, the resulting relative estimation errors are visualized in Figure 7.11b, Figure
7.12b and Figure 7.13b, respectively. The observers run by the measurements gathered
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membranes.
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Figure 7.11: Resistance tracking and relative estimation error trajectories with EKF algo-
rithm (Case 1 - QC1

K and RC1
K ) for the industrial data set.

from the industrial plant are all capable of tracking the resistances throughout the batch
operation and the estimation error is bounded throughout the simulations. Furthermore, the
magnitude of estimation error relative to the magnitude of membrane resistances is reduced
over time. Once again, jumps in the estimation error are observed when there are transitions
in the TMP profile and when new membranes are switched on. In addition, the estimation
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(a) Resistance tracking for even numbered
membranes.
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Figure 7.12: Resistance tracking and relative estimation error trajectories with EKF algo-
rithm (Case 2 - QC2

K and RC2
K ) for the industrial data set.
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Figure 7.13: Resistance tracking and relative estimation error trajectories with MHE algo-
rithm for the industrial data set.

results of KPIs are presented in Figures 7.14-7.15.
The estimation results for KPIs deduced from the industrial data set are not as good

as the case of the simulation data set. Specifically, although the estimation of the protein
fraction and mass flow at the retentate output stream are accurate at the first few hours of
operation, once a new membrane is switched on there is an offset in the estimation of the
performance indicators. Nonetheless, the fouling effect is still estimated with high accuracy.
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Figure 7.14: True and estimated mass fraction of proteins at retentate and feed streams for
the industrial data set.
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Figure 7.15: True and estimated mass flow rate at the output retentate stream for the indus-
trial data set.

Comparison of Different Observers

In this section, the results presented in the previous section are analyzed and the perfor-
mance of the estimators is compared.
Although all three estimators perform sufficiently well, by producing comparable results
on the estimation accuracy for both of the data sets, there are differences present in the
results. In case of the simulation data set, investigating the error dynamics portrayed in
Figures 7.6b-7.7b-7.8b reveals that EKF Case 2 (slightly) outperforms the other two esti-
mators. This was expected since adaptive tuning of covariance matrices is implemented,
which dynamically adjusts the reliance to the model or the measurement. The other two
estimators also perform very well as the estimation error has low magnitude compared to
the true value of the resistance and accurate estimates of the performance indicators are
obtained. It should however be mentioned that initially, EKF algorithms were implemented
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without clipping, meaning that the concentration variables are allowed to take negative val-
ues for the EKF based estimation cases. In that case, MHE clearly outperformed both of the
EKF algorithms significantly. This means that without (ad-hoc) clipping of the estimates,
the performance of EKF Cases 1 and 2 deteriorates. Stated otherwise, with clipping the con-
centration estimates by imposing the prior physical (positivity) constraints, performance of
the EKF algorithms are drastically improved. This clearly shows the strength of MHE and
vulnerability of EKF when constraints are present and in fact frequently active.

Furthermore, the fact that EKF algorithms are performing well implies that the lineariza-
tion errors are not very significant and the linearized system dynamics are faithful represen-
tations of the true system at every time instant. It should however be noted that using MHE
algorithms with the nonlinear dynamics of the system is expected to yield better results than
the EKF based methods. However, such an algorithm would have a higher computational
cost since the optimization problem to be solved will have a drastically higher complexity.

In the case of the industrial data set, investigating Figures 7.11b-7.12b-7.13b reveals a
similar behavior of the observers for a significant part of the simulations. Addition of new
(clean) membranes significantly improves the estimation results. One observation which is
actually surprising is that EKF Case 1 outperforms the other two estimators after addition
of the last membrane. All three estimators yield stable and bounded error dynamics and
low magnitude of relative error in the presence of hybrid behavior. Although the fouling
effects are estimated with high accuracy, the estimation of the performance indicators is
biased. In other words, the dynamics of the performance indicators seem to be estimated
very well by the observers but there is an offset between the estimates and the performance
indices. This implies that in this case there is a constant (static) parameter (possibly the
empirical membrane resistance variables) or a slowly varying parameter/state (possibly the
coefficient α for the dynamic membrane resistance) which is not estimated correctly as a
result of the hybrid behavior introduced by switching on a clean membrane. It is expected
that the estimation performance can be improved, either by resolving the offline parameter
estimation problems discussed in previous chapter or by incorporating online parameter
update schemes, as discussed in Section 6.3, to track the estimation error and map it back
to the parameters occurring in empirical membrane resistance functions.
A summary of the results is provided in terms of the L2 norm of the estimation error for
resistance, mass fraction of proteins and mass flow rate at the output retentate stream in
Table 7.1.

7.2 Low-Level Control of Ultrafiltration Membrane Units

7.2.1 Control Problem in UF Membrane Process

The control goal of the UF membrane separation process is to regulate the composition
properties of the final retentate flow, i.e., to achieve the desired protein level at the retentate,
and to increase the throughput. We consider an UF membrane process scenario that contains
ten parallel membrane loops, is shown in Figure 6.2 where the feed, permeate, and retentate
flows are inscribed in. The feed (Ff ), permeate (Fp) and retentate flow Fr in the UF unit
are shown in the simplified instrumentation diagram of the UF installation in Figure 7.16
and in Figure 7.17 we visualize the input and output variables of a single membrane unit.
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Data
Set

Physical
Variable

Metric EKF Case 1 EKF Case 2 MHE

Resistance ∥eR∥2 910.69 668.33 969.24
Simulation

Data
Mass Flow ∥eF ∥2 6.39× 104 6.43× 104 6.32× 104

Mass fraction ∥ex∥2 0.1863 0.1775 0.1679

Resistance ∥eR∥2 353.78 373.94 417.10
Industrial

Data
Mass Flow ∥eF ∥2 6.55× 104 6.55× 104 6.54× 104

Mass Fraction ∥ex∥2 0.1739 0.1735 0.1773

Table 7.1: Error norm results for three algorithms applied to both data sets.
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Figure 7.16: Simplified instrumentation diagram of the UF membrane unit, showing a single
membrane loop (blue) and the product flows.

During the operation, whey is transported by a pump (Pump 1) which carries the main
feed line up to pressure Pf . Then the whey goes through a membrane loop where the pres-
sure is increased by another pump (Pump 2). In a membrane stack, the feed stream is divided
into protein-rich retentate and sugar, salts and water rich permeate. The permeate leaves the
UF and accumulates in a buffer, and the retentate enters the main feed line again in the
direction of the next UF membrane loop. In this way, whey circulates in membrane stacks
and eventually the protein rich "whey-protein-condensate" (WPC) is sent to evaporators and
dryers for further processing.
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Feedmassflow Retentatemassflow

Permeatemassflow

Feedpressure RetentatemassfractionMembrane system

Membrane
wallFeedmassfraction

Figure 7.17: Input and output diagram of a single membrane

7.2.2 Improved Operation via Model-based Control Strategies

The measured variables and multiple actuators acting on the membrane system are indicated
in Figure 7.18.

Fb
BUF I

Ff

Fp

Pf

Fr

BUF II

xr

PID

PID6

Manual

PID2
PID3

On/Off

Figure 7.18: The simplified instrumentation diagram showing the measured variables in red
color. The actuators and their controllers are indicated by the double arrows.

In the current configuration, the UF membrane units are controlled with three proportional-
integral (PI) controllers to manipulate the process outputs. One PI controller (PID3) controls
the feed pressure (Pf ). The other two controllers (PID2 and PID6) together are used to con-
trol the retentate protein concentration (xr), which can be seen in Figure 7.19. Since the
buffer (BUF I) is small and PID6 is tuned to keep the whey level in the buffer at a certain
level, the flows Ff and Fb can be assumed equal.

217



Chapter 7. Online Model-based Monitoring and Control Applications for Ultrafiltration
Membrane Process

Pset

Lset

PID3

PID6
BUF I

Ff

Fb Lb

UF

Pf

PID2
FrRset

÷

Figure 7.19: Control diagram for the UF process at the plant. The black loop shows the feed
pressure control loop. The purple loop shows the buffer level control loop. And the red loop
shows the feed/retentate ratio control loop, where the feed value is the Fb.

In this case the feed flow into the buffer (Fb) is used to determine the ratio between the
feed and retentate flows as described in Equation (6.4). This ratio is an indicator of xr, given
the feed concentration, as the amount of permeate retracted from the feed flow contains dry
matter salts and sugars but almost no protein.

One can improve the control structure by incorporating the instanteneous values of the
protein mass fraction in the retentate flow. The protein mass fraction signal xr is then used
in the control loop instead of the VRF. This control loop is then called as a cascade control
[214], where the primary (slow, master) loop is identified by the (blue) loop controlling the
protein mass fraction of retentate stream. The secondary acting (fast, slave) loop is adjusting
the retentate flow according to the ratio set points as indicated by the (red) connections in
Figure 7.20, which simplifies the controller configurations by measuring the Ff directly.
This excludes the buffer level from the control problem.

Pset
PID3

Ff

UF

Pf

PID2
Fr xrxset

PID1
Rset

÷

Figure 7.20: The simplification of the control diagram, considering that the Ff is measured
and used for the ratio input.

In this section we direct our attention to the closed-loop responses of UF membrane
systems with different controllers implemented similar to the reasoning given above. More
specifically we design controllers that regulate the protein concentration while having sta-
tionary mass flows at the feed and retentate streams. We consider two different PID con-
troller cases as well as two similar MPC controllers with learning feature across the batch
iterations to achieve these goals, i.e.,

218



7.2. Low-Level Control of Ultrafiltration Membrane Units

• PID Case 1 - One PID controller controlling the retentate protein by manipulating retentate
flows;

• PID Case 2 - Two PIDs;

• IL-MPC Case - State measurements are available to the MPC, learning update occurs after
every batch;

• EKF-IL-MPC - Outputs are filtered by an EKF and the estimated states are used in MPC
with learning update that occurs after every batch.

For the PID controllers two separate feedback loops are used. The first feedback loop cou-
ples Fr as the manipulated variable and xr as the controlled variable and the second feed-
back loop has Pf as the manipulated variable and Ff as the controlled variable. The control
scheme used for the PID controllers is shown in Figure 7.21.

PID 2
Pf

UFModel2
Ff

Fr xrxr,set
PID 1

Ff,set

Figure 7.21: PID controllers block scheme, showing two separate control loops.

We first use only the PID 1 feedback loop in Figure 7.21 (Case 1), and then extend the
control implementation to both of the loops (Case 2). For the single PID controller case the
feed pressure Pf is kept constant at 1 bar. For the cases of IL-MPC with or without EKF,
the prediction model inherently considers both controlled variables and decides on Fr and
Pf simultaneously, as shown in Figure 7.22.

Fr, Pf
UFModel2

xr, Ff
Ff,set, xr,set

IL-
MPC

Figure 7.22: IL-MPC controller block scheme, showing one control loop.

During the operation, operators decide to introduce clean membranes based on the in-
stantaneous feed mass flow Ff . The operator switches on another membrane loop when
the feed flow drops below the limit threshold, which we mimic in the simulations with the
threshold of 58000kg/h for the PID controller cases. For the IL-MPC controller case a pre-
defined switching sequence is used, as the learning aspect of the controller is based on the
‘exact’ repetition across the batches of operation. A short discussion can be found in [316]
which also presents the optimal operating conditions.
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7.2.3 Closed-Loop Response of UF Membrane System with Different Controllers

Simulation Results for PID Controllers

To test the performance of the PID controllers, we set a reference set point at 36.8% for the
retentate protein fraction and while keeping the feed flow at a minimum flow of 58000kg/h.
Therefore the PID’s performance is quantified by the maximal error on the xr.

In the simulation studies for the UF membrane unit controlled with PID controllers, the
system starts with 3 loops switched on at the beginning of the operation and a new loop is
added when the Ff drops below a minimum level of Ff,min = 58, 000kg/h. During the
start up phase the control inputs are kept constant for a brief time period of t ∈ [0, 0.3]h
to increase the output protein mass fraction levels xprotr . Then the PID controllers become
active for the rest of the operation. The PID controllers are implemented as a discrete time
systems, with a zero order hold, for a sampling time of ts = 0.001h. The discrete PID
controller is described by the following set of equations,

ep(k) = xr,ref − xr(k),
ei(k) = ei(k − 1) + (ep(k) ∗ ts),
ed(k) =

ep(k)−ep(k−1)
ts

,

Fr = kB +Kp ∗ ep(k) +Ki ∗ ei(k) +Kd ∗ ed(k).

(7.6)

In this set of equations ep, ei and ed are the proportional error, the integral error and the
derivative error from the reference value of retentate protein mass fraction, respectively.
The retentate mass flow Fr is calculated by multiplying these errors with the controller
gains Kp, Ki and Kd respectively and adding a bias term KB to decide on the desired
operating point. The tuning of the PID controller parameters is done manually, by evaluating
the trajectories and adjusting the parameters to improve the closed loop performance. The
tuning parameters of the PID controllers are given in Table 7.2.

The first two single-PID-loop controllers are designed to regulate the deviation from the
reference (xr − xset

r ) back to zero. Here we name these two single loop PID controllers
according to their closed-loop responses, the mild PID for the milder response on the error
and the aggressive PID for more aggressive response. The variable trajectories of the slow
and aggressive controller can be seen in Figure 7.23 and Figure 7.24 respectively.

The mild controller has smoother input and output trajectories, due to the slowly accu-
mulating error signal. The aggressive controller causes fluctuations in the input due to a
stronger integration action and an added derivative action. However, the maximum error
when a clean membrane loop is switched on, is smaller compared to the mild controller
trajectories.

During the operation of the whey filtration process, we prefer to have a steady mass
flow, whereas a constant feed pressure results in the saw-tooth profile as in Figure 7.23.
Therefore the operators regularly adjust the feed pressure manually to flatten the feed mass
flow profile. By manipulating the feed pressure with a second control loop the manual
control action can be replaced. Then the second PI controller loop is implemented to control
the feed flow Ff to a steady flow by manipulating the feed pressure. As the UF membrane
unit has limits on the applied pressure levels, the controller’s output is clipped to the range
Pf ∈ [0.8, 1.5]bar, by using an anti-windup scheme. The tuning parameters for the double
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KB Kp Ki Kd

PID Case 1
Mild Config.

12 · 103 −100 · 103 −2 · 106 0

PID Case 1
Aggresive Config.

12 · 103 −100 · 103 −20 · 106 −10 · 103

Table 7.2: Tuning parameter values for single loop PID controller case.

KB Kp Ki Kd

PID 1 12 · 103 −100 · 103 −2 · 106 0
PID 2 1 5 · 10−5 5 · 10−4 0

Table 7.3: Tuning parameter values for two PID controllers case.

PID case are provided in Table 7.3. The simulation results for the double PID controlled UF
membrane system is visualized in Figure 7.25.

Simulation Results for IL-MPC Case

In this section we combine a model predictive controller (MPC) with an iterative learning
controller (ILC) to control the UF system, for two different cases. In this configuration MPC
is used for tracking the reference signals, while the ILC is used for learning a better operat-
ing trajectory across the batch iterations. We process tracking errors in the previous batches
to adjust the operating trajectory, while MPC reduces to correcting the output tracking er-
rors in the current batch operation, similar to the case in [96]. By combining MPC and ILC
control structures, two IL-MPC is implemented which has enhanced prediction capabilities
by evaluating the tracking errors from the past batches and improving the operating in the
current batch. The controllers are differing from each other according to the accessibility
of the state vector. In the first case, we assume that the states are directly accessible to the
controller, whereas in the second case, we filter the outputs to deduce the state values.

To achieve the proposed control structure, the UF model is linearized along an optimal
operating trajectory similar to the monitoring case study, where the resulting local state
space description is used at the output predictions of the future time instants to predict the
output tracking error. The predicted output deviation from the linearization point of ith

batch, yik, is defined as,

yik = Ci−1
k

(
xik − xi−1

k

)
+Di−1

k ∆uik + yi−1
k . (7.7)

where xik is the state vector at time instant k for the current batch i, ∆uik correction to
the input of the previous batch ui−1

k at time instant k. The measured output variable is
yi−1
k , i.e., [xr, Ff ]

⊤, of the previous batch i − 1. The Ci−1
k and Di−1

k are the state space
representations of the previous batch i − 1 at time instant k. Hence the predicted output
deviation from the linearization point is based on the linearization of the dynamical system,
i.e., Ci−1

k , Di−1
k , and the measured output (yi−1

k ) of the previous batch. We can describe
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Figure 7.23: Manipulated and controlled variable trajectories for the case of the mild PI
controller, with a smooth control behaviour
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Figure 7.24: Manipulated and controlled variable trajectories for the case of the aggressive
PID controller, which shows oscillatory behaviour
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Figure 7.25: Two PID controllers response. The feed mass flow is regulated around a
constant flow, while satisfying at the desired retentate concentration levels, as long as the
pressure input is within the bounds

the evolution of deviation dynamics as

∆xij+1|k = Ai−1
j|k ∆xij|k +Bi−1

j|k ∆uij|k,

where
uij|k = ui−1

j|k +∆uij|k, xij|k = xi−1
j|k +∆xij|k

and j is the index over the prediction horizon. To compute the optimal input actions which
steer the system to the given reference trajectory, which is constant over batch iterations i
rset
k , at every time instant k the following nominal MPC problem is solved;

P IL-MPC :



min
∆Uk

Np−1∑
j=0

(
(ȳij|k − rset

j|k)Q(ȳij|k − rset
j|k) + ∆uij|k

⊤
R∆uij|k

)
subject to ∆xij+1|k = Ai−1

j|k ∆xij|k +Bi−1
j|k ∆uij|k,

ȳij|k = Ci−1
j|k ∆xij|k +Di−1

j|k ∆uij|k + yi−1
j|k .

∆uik,min ≤ ∆u(k) ≤ ∆uik,max,

∆uik,min = umin − ui−1
k , ∆uik,max = umax − ui−1

k ,

uij|k = ui−1
j|k +∆uij|k, xij|k = xi−1

j|k +∆xij|k,

∆U i
k =

[
∆ui

⊤

0|k, ∆u
i⊤

1|k, ..., ∆u
i⊤

Np−1|k

]⊤
j = 0, . . . , Np − 1.

(7.8)
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where the Ai−1
j|k , Bi−1

j|k , Ci−1
j|k and Di−1

j|k are linearization matrices stored from batch number
i−1, and are used to predict the system output from current state xik = xi0|k till the end of the
prediction horizon k+Np−1. The prediction horizon is chosen asNp = 5. We select a short
prediction horizon since we approximate the current linearization with the linearization of
UF membrane dynamics from previous batches, hence long prediction horizons are expected
to yield wrong predicted trajectories as the control input, and hence the state trajectories,
accumulates the learning action after every batch.

Next we present the simulation results for the UF membrane system controlled with
IL-MPC. As the MPC controller requires data from a previous batch operation to base the
predictions on, an initial run is performed in which the feed pressure and retentate mass
flows (inputs to the system) are kept constant. To keep the simulation times practical for
this simulation study, the sampling time for MPC controller is chosen as ts = 0.25h which
results in approximately 20min of simulation for a single batch (20h) of operation for the
10 membrane stacks. This is due to the large state space dimension around the linearization
point. The local behaviour of each membrane is described by 13 states, which then yields a
2 input, 2 output and 130 state UF membrane system. The second batch is started with the
cost weighting matrices as in Equation (7.9).

Q =

[
10−3 0
0 1010

]
, R =

[
0 0
0 10−2

]
, (7.9)

where the parameter Q1,1 = 10−3 is the cost on the Ff error and the Q2,2 = 1010 is the
cost on the xr mismatch. The matrix R contains the cost on the input change rate from the
last batch, in which a higher cost would decrease the abrupt changes in the inputs across
batches.

The simulation results for the IL-MPC implementation with the mentioned parameters
are shown in Figure 7.26. In this figure the initial batch with constant inputs is shown
together with the six next batches, showing the learning aspect of the controller as the tra-
jectory converges to the reference. The trajectories of controlled and manipulated variables
are visualized in Figure 7.26. The error values, the mismatch between the reference and the
instantaneous value of the controlled variable, can be minimized by the predictive controller.
By using MPC one can obtain lower maximum errors compared to the PID controlled UF
membrane process case.

As an extension of the IL-MPC control strategy, we also consider the case where the
states are not accessible to the controller. In many cases, state measurements are not fully
available to the controller directly, but deduced from a set of measured variables. In this case
we reconstruct the states by incorporating an estimator into the loop. For this purpose an
EKF is added into the control loop to reconstruct and send the states to the MPC controller.
To compute the state estimates during run time, we run a second UF membrane model as
soft-sensor in parallel to the true process. Within the simulation environment to mimic the
actual plant conditions, we perturbed the optimal inputs calculated from MPC with distur-
bance signals. However the observer model does not have access to the perturbed values
steering the true process. Under this setting the simulation results for the IL-MPC controller
with EKF state estimator is visualized in Figure 7.27. The simulation results indicate that
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the process trajectories for the output feedback IL-MPC case are similar to the trajectories
induced from state feedback IL-MPC case. The estimation routine introduces small per-
turbations in the closed-loop system trajectories, however these undesired effects are sup-
pressed with MPC controller. One possible drawback of the fluctuations can be observed
if the learning controller has not smoothing (low-pass) effects and hence carries the noisy
behaviour to the next batch iterations. However, we overcome this issue by filtering the
errors with a unit gain (at DC) low pass filter which removes the fluctuations. Furthermore
the closed-loop performance of both of the IL-MPC controllers can be increased, either by
reducing the sampling time as the computation time only needs approximately 0.014h and
the current sample time is 0.25h, or by extending the prediction horizon in the expense of
the computation time, or, finally, by incorporating high order learning techniques instead of
incorporating the learning action as keeping the input signal from the previous batch.

Comparison of the PID, IL-MPC and Kalman IL-MPC Controllers

All controllers show similar closed-loop behaviours and performance results. To highlight
the differences in closed-loop performances, the manipulated and controlled variables of the
controllers are plotted in Figure 7.28. Due to the learning action, the IL-MPC and EKF-IL-
MPC controller schemes improves the error rejection after every batch iteration, hence as
the batch iteration number increases, the input-output trajectories improves. For comparison
purposes the fourth iteration of both IL-MPC controller input-outputs and the PID controller
input-outputs are shown in the Figure 7.28. In summary, we note that

• The mild PID shows the largest retentate protein mass fraction xr error when switching on
a clean membrane;

• The aggressive PID decreases the maximal error on the desired protein fraction xr, but
introduces larger and longer fluctuations during the operation;

• The double PID ends up with a similar level of maximal error on the desired protein frac-
tion xr as the case with aggressive PID, however in the double PID case, the trajectories
converge to the references with less fluctuations, since the necessary action to control the
retentate protein mass fraction is distributed among mass flow and pressure levels. This
controller also yields a constant feed and retentate mass flow by increasing the pressure
which overcomes the performance deterioration due to fouling;

• The IL-MPC shows similar behaviour as the double PID, since the MPC acts as a controller
that is manipulating both of the input actions according to the outputs. Moreover IL-
MPC controller is able to yield a smaller maximum xr error and this error is decreasing
monotonically over the batch operations;

• The realistic case for IL-MPC, the IL-MPC with EKF, leads to process trajectories that are
similar to that of the IL-MPC while the input actions, and hence the output trajectories,
are corrupted. However, the corrupted inputs are not leading to undesired responses in
UF membrane operation, possibly due to the low learning rate. This keeps the operation
around similar operating trajectories across batches.
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7.3 Conclusions on Online Model-based Applications for Ultrafiltra-
tion Membrane Processes

In this chapter, we have discussed the online monitoring and (low-level and batch-to-batch)
control of UF membrane processes. For the monitoring problem, we compare three soft-
sensor implementations for the membrane process. Observer design for membrane opera-
tion is required to track the accumulating fouling effects. We implement extended Kalman
filter (with two different choices of Kalman weights) and moving horizon estimation based
soft-sensors for two data sets for the whey process, one set of data generated within the
simulation environment and one set of measurements are gathered from an industrial plant.
All three soft sensors are providing comparable estimates, while the implementation time
and tuning (of weights) experience becomes increasingly important. The least effort con-
suming case (EKF-Case 2) yields the best results for the simulation data set case, while for
the industrial data set case, this EKF case shows the worst estimation results out of three
soft sensors.

The second part of this chapter presents the results on the control aspects of the UF
membrane unit. We, first, present a brief discussion on the (manual) control strategies of
the operators and controllers in the UF process. We have designed two types of controllers
and tested them in simulation environment using the dynamical model. The first type of
controllers are consisting of classical (PID) controllers, where the double PID configura-
tion demonstrated the best results. Next, a model predictive controller with learning action
across batches of operation is presented, which is both capable of estimating the future
outputs and also learning from the errors based on the previous batch data.

• In all of the estimator cases, converging and reliable estimates for the states are
achieved. The soft sensors are, also, able track the key performance indicators re-
markably while hybrid changes are happening during the operation (such as switching
on of membranes).

• To increase the monitoring performance and decrease the control structure complex-
ity, the feed mass flow and its concentration should be measured.

• The feed pressure should be controlled(via as simple as a PID) to operate with a
steady feed mass flow.

• An IL-MPC could be used to gain a lower maximal protein concentration in the re-
tentate errors when a membrane is switched on.

• The IL-MPC performance could be increased by implementing an integral action
reducing the steady state errors.
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Chapter 8

Scheduling of Unit Operations in a Whey
Separation Process

The Way never acts, yet nothing is left undone.

Dao De Jing 37

As a high-level model-based application, the scheduling of unit operations within the
whey protein separation process is discussed in this chapter. We consider the whey plant
with its subprocesses to discuss the safe scheduling problem in operating large and multi-
unit plants. Safe operation means that the operational constraints, based on either the timing
or physical limitations of the subprocesses are explicitly taken into account while construct-
ing the operating schedule. A graph theory based approach is taken to guarantee temporal
constraints on each of the unit operations, while reachability analysis is used to keep the
plant operation continuing without any limitation violations. We make use of simulation
examples to show the computational benefits of the graph based scheduling approach.

8.1 Introduction to Plant-wide Scheduling
In many of the manufacturing industries, it is common that the process, or enterprise, con-
sists of several consecutive unit operations (UOs) that are subprocesses with complex dy-
namics. Furthermore, these UOs are turned on or off due to various planned activities,
such as cleaning or maintenance. To achieve an efficient operation the schedules should be
optimized in such a way that while the profits are maximized, the safety and performance
constraints are guaranteed to be satisfied. Within these scheduling problems there exist (i)

0Substantial content of this chapter is also published or presented in:

• M.B. Saltik, N. Athanasopoulos, L. Özkan and S. Weiland. Safety Analysis for a Class of Graph Con-
strained Scheduling Problems.

• M.B. Saltik, N. Athanasopoulos, L. Özkan. Enterprise-wide Optimization.

• S. van Gameren, M.B. Saltik, L. Özkan, S. Weiland. Recovery scheduling for industrial processes using
graph constraints.
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logical rules for the decision variables (constraints on the schedules) over time and, (ii) a
highly structured dynamics of the UOs. This is also the case in the whey protein separation
plant. The whey process plant consists of a series of unit operations (UOs) as visualized
in Figure 6.1. These UOs are turned on or off to cycle between operational and nonop-
erational phases during the process, see Figure 8.1 for an indication of operation times.

Cheese

Reversed Osmose

Max 20 hours

Reversed Osmose

Max 20 hours

Pasteur

Max 6 hours
Cleaning 1 hour

Ultrafiltration

Max 20 hours
Cleaning 4 hour

Evaporator Evaporator

Retentate Permeate

Thin Cheese Whey

Dry

Tower

Whey protein concentrate

Figure 8.1: Schematic diagram of whey
protein separation line.

The on-off status of an UO results in opera-
tional time window constraints and introduces
integer valued actions, since an UO can be ei-
ther operational or not for some amount of time
but no other option exists. Furthermore, not
all UOs operate (or, equivalently, be nonoper-
ational) on the same time windows. The evapo-
rator UO operates with time constants that differ
from the time constants that one observes with
membrane stacks. Similar differences between
operating windows necessitates buffer tanks to
accumulate outlets of UOs, before the opera-
tion starts in subsequent UOs. Furthermore, it
is desired that the thin whey enters and leaves
the process as quickly as possible. The neces-
sity of a high processing rate is due to possi-
ble contamination of the eventual product, the
whey powder. One of the important aspects
of whey filtration process is to schedule the
UOs without overflowing (or equivalently de-
pleting) the buffer tanks. In the next section we
present a scheduling technique that makes use
of graphs as constraints and establishes links be-
tween buffer tank levels over time instances and
the constraints on the on-off status of UOs. An
optimization problem that takes the schedules
as the decision variables is, in general, a mixed
integer linear programming (MILP) problem,
due to the integer valued actions in the sched-
ules, which we optimize over. Formulating the
scheduling problem as an MILP problem intro-
duces computational challenges, see [325]. In-
deed, many production planning problems have
been shown to be NP-complete ([125]). Stan-
dard approaches concern either relaxing the bi-
nary optimization variables of the MILP problem into real ones [14], or constructing a
decision tree which is expanding at each time instant, hence, affected by the curse of di-
mensionality ([26]). In general, the number of variables severely affects the solvability of
scheduling problems. In industry, heuristic methods are applied that can end up far from
optimality [280]. Moreover, these methods may not explicitly take the state and scheduling
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constraints into account. Hence, one of the core directions in the scheduling area is the low
complexity modeling of the problem. Such examples can be given as [204, 328]1.

In this chapter we present a safe scheduling algorithm which is based on a recently intro-
duced switching based modeling approach by using directed graphs. Motivated by the work
of [12], which considered the stability problem of switched linear systems under constrained
switching, we express the operational constraints on the scheduling variables via weighted
directed graphs. This approach allows to express scheduling constraints in a time-invariant
setting, which simplifies the subsequent analysis. In these graphs, each vertex corresponds
to an “on" or “off" status condition of subprocess while carrying the memory information,
that is, we explicitly use the temporal constraints to construct a digraph which represents
only the allowed transitions of the considered UO. The edges stand for logical rules in-
herent to the system, which models the switching between on-off conditions or staying in
either condition. For example one can consider the logical rules such as maximal opera-
tional time, minimum offline time span, which shapes the graph of the considered UO. For
safe operation guarantees, in particular, we utilize forward and inverse mappings of the dy-
namics applied on sets in order to find a sequence of safe sets. These sets are associated
with scheduling paths generated from directed graphs, accounting for admissible values for
operation and on-off configurations of UOs, respectively. Additionally, the structure of the
dynamic process and of the state constraints allow us to use set-theoretic operations effi-
ciently to simultaneously compute feasible scheduling profiles and the related safe initial
condition sets on the state space. Furthermore, these sets are cast to be periodic over the
scheduling path, by selecting the schedules as cycles of the constructed graphs. Similar
operations can also be used to re-schedule the UOs in the face of undesired variations in the
operation

Here, we solve a series of simple MILP problems in order to identify cycles in the
directed graphs describing the process for which the sum of the labels over the cyclic paths
is equal to zero. Next, we compute the sequence of admissible sets in the state space,
for which the periodic scheduling profile can be implemented without violating the state
constraints. Finally, using backward reachability operations with respect to the dynamics
and the directed graph, we develop an iterative algorithmic procedure for enlargement of
the safe set. Under this setting, the conventional decision making algorithms are reduced
both in size and complexity. This allows the user to extend the predictions of the schedules
up to infinitely long horizons for periodic schedules.

In the next subsection, 8.2, we describe the modeling of the overall process and the
scheduling constraints, and then formulate the safe scheduling and steering problems. In
Section 8.3 we present the proposed algorithms that construct safe schedules and show the
theoretical properties of these safe sets. We apply the proposed approach to a simplified
separation process in Section 8.4.

8.2 Modelling of Graph Constrained Scheduling Problems
Here we consider processes consisting of several connected UOs. Since the UOs in the
production line are turned on and off in an asynchronous way, buffers are placed between

1A comprehensive study of MILP problems in process system engineering area can be found in [4], while
works such as [112, 213] consider specifically scheduling problems. Scheduling problems are also common in
operations research area, such as in supply-chain management [106] and in enterprise-wide optimization [143].
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UOs. These buffers accumulate the outlet of previous UO until the next UO becomes oper-
ational again, as shown in Figure 6.1. Although more general connection schemes (parallel
or feedback connections) of UOs and buffers can be modeled in the formalism introduced
here, we consider only serial connections, because this connection scheme is the closest ti
the case in whey process.

8.2.1 System Dynamics in Scheduling Problem

For the process visualized in Figure 6.1 we assume that the steady-state operation condi-
tions are dominant in the behavior of the process. This means that deviations from the
known optimal operating conditions are undesired and suppressed. This is the case in many
industrial processes, e.g., see [382]. Hence, we model the process as a linear time-invariant
system, in which the input vector takes its values from the discrete set {0, 1}. Next, we
consider discrete time dynamics by applying mass balances for the buffer tanks. The inlet
and outlet of each UO is denoted by ϕik, ϕ̄

i
k, respectively, where k ∈ Z≥0 is the time index

and i ∈ Z[1,n] is the index of the ith UO in the process loop. The external input flow to
the process is denoted as ϕink , k ∈ Z≥0. In this work, we assume that the inlets and the
outlets ϕik, ϕ̄

i
k are constant for all k ∈ Z≥0. Then, the following linear difference equations

describe the (mass) levels in the buffer tanks,

xik+1 = xik + αi−1
k ϕ̄i−1

k − αi
kϕ

i
k, (8.1)

where i ∈ Z[1,n] is the index of each buffer tank, xik ∈ Rn is the quantity accumulated in
buffer tank i at time sample k, e.g., the mass hold up in a buffer tank and n is the number
of buffer tanks. The scheduling variable αi

k denotes the mode of the ith unit operation at kth

time instant. If the ith UO is operational (On) at time sample k then αi
k := 1, otherwise it is

not operational (Off) abd we define αi
k := 0. We denote the decision vector as

αT
k =

[
α0
k α1

k . . . αn
k

]T
, αk ∈ Zn+1

[1,n], k ∈ Z≥0.

We introduce an integer state, denoted by σk, that is standing for all different On-Off con-
figurations of UOs including the memory effects, i.e., all possible αk vectors that satisfy
the known operating windows. Hence σ is utilized to realize satisfaction of the (timed)
constraints on α variables (On-Off). The modeling formalism results in the following state
space model.

xk+1 = Axk + bσk
, (8.2a)

where
A = In

bσk
:= Bkαk,

=


ϕ0k −ϕ1k 0 . . . 0
0 ϕ̄1k −ϕ2k . . . 0
...

. . . . . . . . .
...

0 . . . . . . ϕ̄n−1
k −ϕnk

αk,

(8.2b)
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Here, the (i − 1)th row of Bk matrix is constructed from the values of ϕ̄i−1
k and ϕik with i

standing for the corresponding UO2. Furthermore, the vector bσk
indicates both the On-Off

configurations and the inlet-outlet parameters of the system such as the ϕjk and ϕ̄jk values,
which can be time-varying.

8.2.2 Time and Buffer Constraints in Scheduling Problem

We consider two different types of constraints, namely, the state and the scheduling con-
straints. The constraints on states represent the physical limitations of the buffers between
the UOs. In general, these constraints are expressed by linear inequalities in the state space,
forming polyhedral sets. The state variables are decoupled, since buffers are not effecting
each other, we consider constraints expressed by hyper-rectangles, i.e.,

xk ∈ X := {x ∈ Rn : xmin ≤ x ≤ xmax}, ∀k ∈ Z≥0. (8.3)

where inequalities are understood entry-wise.
The second type of constraints that we consider are the temporal constraints on the

scheduling variableαk. The a-priori knowledge of the operational structure casts the schedul-
ing variable to evolve with regard to these scheduling constraints. To give an example, for
each UO we consider an admissible scheduling pattern as described in the left part of Figure
8.2. These valid transitions model the mode of UO in the next time instant. Hence the On-
Off configurations of each time instant k ∈ Z≥0, i.e., αk, can be represented as a sequence
of introduced graph state σk ∈ V, k ∈ Z≥0 which takes values of nodes and evolves over
a deterministic graph. Hence, we introduce more nodes, see right hand side of Figure 8.2,
which allows us to have temporal constraints explicitly taken into account. Furthermore,
we assign labels w(i, j) on each edge (i, j) ∈ E of the graph, corresponding to the admis-
sible values the scheduling variable bk ∈ Rn might attain. Consequently, the scheduling
constraints can be expressed as bσk

∈ Wσk−1
where

Wσk−1
:= {b : ∃(σk−1, j) ∈ E : b = w(σk−1, j)}. (8.4)

We proceed with modeling all the allowed mode transitions in a graph composed from all
UO graphs, which is called the enterprise graph. To this end, we define the Kronecker
product between two directed graphs.

Definition 8.2.1 [245] The Kronecker product of two graphs G1(V1, E1) and G2(V2, E2),
denoted by G(V, E) = G1 ⊗ G2, is defined as

V := {(p, q)|p ∈ V1 and q ∈ V2},

E := {(p1, q1) → (p2, q2)|(p1 → p2) ∈ E1 and (q1 → q2) ∈ E2}.

Now we construct the so-called enterprise graph. Given the graphs Gi(Vi, Ei), i = 0, . . . , n
with vertex sets Vi, i ∈ Z0:n, and directed edge sets Ei, i ∈ Z0:n, then the enterprise graph

2We stress the fact that the serial connection of the unit operations is not a necessity. In fact, the balance
equations lead to a specific structure in matrix A, which is equal to identity matrix In, and matrix B summarizes
the inlets and outlets of serial, parallel or feedback connections of UOs that are not state dependent.
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ON

OFF

At most once

At most once

1

4

2

3

w(1,2)

w(1,3)
w(2,3)

w(3,4)

w(4,1)
w(3,1)

Figure 8.2: Temporal constraints to graph constraints. On the left the possible transitions
and on the right the allowed transitions extracted from the a-priori information.

G(V, E) is constructed by the Kronecker product of the given graphs, i.e., G = G0 ⊗ G1 ⊗
· · · ⊗ Gn. The vertex set of enterprise graph V is constructed by Cartesian product of all
vertex sets, i.e.,

V := V0 × V1 × · · · × Vn,

and the edge set is constructed by the Kronecker product of all the adjacency matrices, i.e.,

A(G) := A(G0)⊗A(G1)⊗ · · · ⊗A(Gn).

8.3 Problem Formulation and Theoretical Results for Graph Constrained
Scheduling

8.3.1 Research Problems for Graph Constrained Scheduling

In this section we formulate the safe scheduling problem for indefinite operation and steer-
ing. As a first step, we pose a verification problem. That is, from some initial points in the
state space that lie inside the state constraint set, the verification problem amounts to decid-
ing whether a scheduling sequence exists such that the constraint satisfaction is assured or
not. By using the enterprise graph GEnt, which represents all possible On/Off combinations
of the process as its nodes, the safe schedule and set can be defined as follows.

Definition 8.3.1 A schedule is a sequence of admissible nodes σ[i,j] = {σi, σi+1, . . . , σj},
i < j. A cycle is a schedule (a sequence of admissible nodes σ) in which the starting and
finishing nodes are same. A zero-sum cycle is a cycle in which the sum of the weights of
transitions is equal to zero,

∑N−1
i=0 bσi,i+1 = 0, where N is the length of the cycle.

Next, we define the forward path reachable set, the backward path reachable set and the safe
set.
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Definition 8.3.2 For the system dynamics as in Equation (8.2) and the scheduling con-
straints as in Equation (8.4), the one-step forward path reachable set from S with one step
path σ1:2 is

F(S, σ1:2) := {x ∈ Rn|∃y ∈ S : x = y + w(σ1, σ2)}.

Likewise, the m-step, m ∈ Z≥0, forward path reachable set from set S with path (or sched-
ule) σ0:m is denoted by Fm(S, σ0:m) and is defined as

Fm(S, σ0:m) =


S, m = 0,

F(S, σ0:1), m = 1,

Fm−1(F(S, σ0:1), σ1:m), m ≥ 2.

The one-step and m-step backward path reachable sets from S with path σ−m:0 are defined
as follows.

Definition 8.3.3 For the system dynamics as in Equation (8.2), the constraints on the state
variable X as in Equation (8.3) and the scheduling constraints as in Equation (8.4), one-step
and m-step backwards path reachable set are defined, respectively, as,

C(S, σ−1:0) :={x ∈ X|∃y ∈ S : y = x+ w(σ−1, σ0)},

Cm(S, σ−m:0) :=


S, m = 0,

C(S, σ−1:0) m = 1,

Cm−1(C(S, σ−1:0), σ−m:−1) m ≥ 2.

Lemma 8.3.1 The m−step forward and backward path reachability sets with paths σ0:m
and σ−m:0, respectively, are equal to

Fm(S, σ0:m)= S ⊕ {
m∑
i=1

w(σi−1, σi)},

Cm(S, σ−m:0)= S ⊕ {−
m∑
i=1

w(σ−m−1+i, σ−m+i)}.
(8.5)

Proof: Expand Fm(S, σ0:m) as a vector summation. Re-express the iterated values of
w(σi−1, σi) as a sum which shows the claim. Same deduction is valid for backwards reach-
ability case. □

Definition 8.3.4 A set S is called a safe set with respect to the process model as in Equation
(8.2), the state and scheduling constraints as in Equation (8.3) and as in Equation (8.4),
respectively, if for any initial condition x0 ∈ S there exists an initial node σ−1 and a
scheduling sequence {bσk

}k∈Z≥0
such that

bσk
∈ Wσk−1

, x(x0, σ0:k) ∈ X, ∀k ∈ Z≥0, (8.6)

where x(x0, σ0:k) := x0 +
∑k−1

i=0 w(σi, σi+1).
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Figure 8.3: Partitioned safe set, from the example in Section 8.4.

We explain the concept of safe set through a visual example in Figure 8.3. We consider
three different admissible schedules which are denoted as σi

0:ki
, i ∈ {1, 2, 3} which cast the

corresponding sets Si
0 to be safe, respectively. This means that while applying the schedules

σi
0:ki

, the corresponding set, i.e., Si
0, i ∈ {1, 2, 3} remains inside of the constraint set, i.e.,

X. With the definition of safe set, the research problem of this scheduling problem can be
stated as:

Problem 8.3.1 Consider the system (8.2), the state and the scheduling constraints (8.3) and
(8.4), respectively. Compute a safe set S and corresponding admissible scheduling strategy
σ0:k for each x0 ∈ S .

Verifying the existence of a safe set and computing it assures that the scheduling problem
remains to be feasible for the safe set over time iterations of the attached schedule to the
safe set.

Once the system model and the safe set are constructed, we can pose the steering
scheduling problem as follows.

Problem 8.3.2 Given a process described as in the form of Equation (8.2) with n ∈ Z≥1

UOs that operate on a safe cycle σ̂[0,Ncyc−1] with state constraints X and scheduling con-
straints Gi. Compute an admissible recovery schedule σ[0,Nr] for the current state (x0, σ0)

such that the recovery schedule executes safely, i.e., xk(x0, σ[0,Nr]) ∈ X for k ∈ Z[0,Nr],
and the operation is connected back to the desired safe cycle (σNr ∈ σ̂[0,Ncyc−1])), while
steering the buffer tank levels (states) as desired.

We visualize the Problem 8.3.2 and an admissible solution in Figure 8.4.
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Figure 8.4: The research problem and a solution strategy visualized on GEnt. The green
edges denote a safe cycle, the red schedule show the perturbation, and the blue schedule
visualizes the recovery schedule.

8.3.2 Theoretical Results on Graph Constrained Schedulling

To solve Problem 8.3.1, we propose a three step approach. First, we construct the cyclic
paths over the enterprise graph for which the sum of weights of the edges is equal to zero
over the cycle. Second, we find the subsets of the state constraint set that generate the
admissible trajectories of the system for the zero-sum cyclic schedules. In the last step we
make use of inverse reachability arguments in order to recursively enlarge the safe set. In
specific, at each iteration, we identify the sets of nodes and admissible states that reach the
safe set in one step. In this way, the cyclic schedules yield periodic trajectories (both in
state and graph spaces) for the partitions of constraint set that do not violate over forward
trajectories and we expand the safe sets through backward paths. We provide Algorithm
8.3.1 to find and construct the safe set and the corresponding set of schedules that respect
the state constraints.

Algorithm 8.3.1 Input: System as in Equation (8.2), the state constraints X as in Equation
(8.3), the scheduling constraints as in Equation (8.4), maximum cycle circumference Np,
maximum backwards iterations Nb.

1) Initialization: Construct the enterprise graph, and generate all the possible paths of
length Np from all nodes. We denote the total number of cycles that start from node σ0 and
are of maximum length Np with Mσ0 and the sum of the corresponding weights over each
such cycle with dσ0

m , m ∈ Z1:Mσ0 . Finally, generate all the admissible backwards paths
with length up to and including Nb. Denote each such path of length p with σq

−p:0 where q
is the counter over paths with same length p starting from σ0.

2) Zero-sum Cycles: For each and every node σ0 ∈ V , solve the integer linear program-
ming problem P.1, which retrieves the combinations of cycles whose corresponding weights
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sum up to zero:

P.1: min
ησ0

||ησ0 ||∞,

s.t.
Mσ0∑
m=1

ησ0
m dσ0

m = 0, ησ0 ∈ Z≥0,

Mσ0∑
m=1

ησ0
m ≥ 1,

where ησ0
m is the number of times the cycle dσ0

m is taken in the constructed zero-sum cycle.
Denote such cycles as σj

0:nj
, where j is the counter over the schedules that are found as the

solution of P.1 with length nj starting from σ0. We denote the total number of such zero-sum
cycles with Nc.

3) Safety: For each of the found schedules σj
0:nj

and for each node σ0 ∈ V , solve the
optimization problem P.2,

P.2: max V(S0),

s.t. xi(x0, σ
j
0:i) ∈ X, ∀i ∈ Z0:nj , ∀x0 ∈ S0.

Furthermore, calculate and store the (forward path reachable) sets Sj,i
0 = F i(S0, σ

j
0:i), for

i = 0, . . . , nj . See Remark 8.3.2 for further discussion on the maximization of V(S0).
4) Enlargement: Compute the backward reachability sets

Sj,i,l,q
0 = Cl(F i(S0, σ

j
0:i), σ

q
i−l:i),

where l ∈ Z0:Nb
, i ∈ Z0:nj , σj

0:i is the ith forward iteration of jth solution of Problem
P.1 and σq

i−l,i is the qth admissible path initiated from σi with l backwards reachability
iterations.

Remark 8.3.1 The order of the cyclic paths that generate zero-sum cycles is important for
the construction of different safe sets. Thus, one should check all the permutations of zero-
sum cycles and solve Problem P.2 accordingly.

Remark 8.3.2 The maximization of volume of the set S0 is, in general, a nonconvex prob-
lem. However, due to the structure of the system dynamics, i.e., A being equal to identity,
not introducing any rotation or dilation to the trajectories and the constraint set X being
hyperrectangle, maximization can be done by finding two vertices of set S0 that are on the
space diagonal. This leads to a significant simplification of Problem P.2 which is equivalent
to solving two linear programming problems for t = t, t, expressed as follows,

P.2: min
xt∈Rn

||xt − x̃t||∞,

s.t. xmin ≤ xt +
nj∑
i=1

w(σi, σi+1) ≤ xmax,

x(xt, σ
j
0:i) ∈ X, ∀i ∈ {0, 1, . . . , nj},

(8.7)
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where x̃
¯
t and x̃t̄ are extreme elements of any space diagonal of the constraint set X. The

values of xmin and xmax are obtained from X, which are constructing the faces of the
hyperrectangle3.

Theorem 8.3.1 Consider the dynamical system as in Equation (8.1), which is subject to
constraints as in Equation (8.3) and as in Equation (8.4). Suppose that P.1 has Nc ∈ Z≥1

different solutions, resulting in σj
0:nj

, j ∈ Z1:Nc distinct schedules. Then, for any l ∈ Z≥0,
the set

S(Np, Nb,G) =
Nc∪
j=1

Nj−1∪
i=0

l∪
p=0

∪
σq∈Ip

σ
j
i

Cp(F i(Sj
0 , σ

j
0:i), σ

q
i−p:i),

is safe. Here Ip

σj
i

is the set of schedules that are generated for backwards paths initiating

from node σj
i of length p and indexed with q, i.e.,

Ip

σj
i

= {{σr}r∈Z1:p ∈ Vp : (σr, σr+1) ∈ E ,
∀r ∈ Z1:p−1, (σp, σ

j
i ) ∈ E},

(8.9)

Proof: For any triplet

(x0, i, j) ∈ (F i(Sj
0 , σ

j
0:i)× Z0:nj × Z1:Nc),

by solution of P.1, there exists a scheduling sequence σj
i:nj

such that x̄ := x(x0, σ
j
i:nj

) ∈
Sj
0 . Consider the periodic scheduling sequence σ̂ generated by repeating σj

0:nj
, i.e., σ̂ =

{σj
0:nj

, σj
0:nj

, . . .}. Then, from P.2, it follows that

x(x̄, σ̂) ∈
nj∪
i=0

F i(Sj
0 , σ

j
0:i) ⊆ X.

Finally, for all triplets

(x0, p, q) ∈ (Cp(F i(Sj
0 , σ

j
0:i), σ

q
i−p:i)× Z0:l × Iσp

i−p:i
),

by definition of the backward path reachability mapping and its iterations, there exists a
schedule σ⋆ of length p such that

x(x0, σ
⋆) ∈ F i(Sj

0 , σ
j
0:i).

This concludes the proof. 2

3The validity of this argument can be seen through the volume of the constructed safe set, i.e.

maxV(S0) = max
x
¯
t,xt̄

n∏
i=1

|[xt̄]
i − [x

¯
t]i|,

= min
v1,v2

n∏
i=1

|[x̃t̄ + v1]i − [x̃
¯
t + v2]i|,

(8.8)

where [x]i is the ith component of vector x, vt denote the vectors from x̃t to xt. Lastly, the set S0 has the points
x
¯
t and xt̄ as the extreme elements of its space diagonal.
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Remark 8.3.3 For all l1 ≤ l2, the constructed safe sets Sj,i,l1 ⊆ Sj,i,l2 . Thus the sequence
of safe sets is ordered and monotonically non-shrinking.

Next, we propose an solution technique to Problem 8.3.2 in Algorithm 8.3.2, which uses
the reachability operations for establishing safe steering while using admissible schedules.

Algorithm 8.3.2
Admissible Recovery Schedules: Construct all admissible schedules that can reach to

the target cycle within N̄r steps, i.e.,

σq
[0,p−1] ∈ ∆p :=

{
σ[0,p−1]|σ[i,i+1] ∈ EEnt, i ∈ Z[0,p−2], σp−1 = σ̂j , j ∈ Z[0,Ncyc−1]

}
,

where ∆p is the set of admissible schedules of size p that reach to safe cycle σ̂[0,Ncyc−1], q
is the index over the schedules of length p and EEnt is the edge set of enterprise graph.

Safe Steering: Solve the feasibility problem P1 for the admissible schedules σ[0,p],
where p = 1, . . . , N̄r and X∗ is a desired subset of state space inside constraints,

P1:
{

min
σq
[0,p−1]

p, s.t. xj(x0, σ
q
[0,j−1]) ∈ X, xp(x0, σq

[0,p−1]) = X∗, j = 1, . . . , p,

Remark 8.3.4 Due to the problem structure, one can speed up the calculations by;
• searching paths over the (powers of) adjacency matrix of the enterprise graph to find

a connection of the starting node and a node on the desired safe cycle. If there is an nr step
path (admissible schedule) from σ0 to σ̂j ∈ VEnt then Anr

Ent(σ̂j , σ0) = 1;
• using the Equation (8.5) to check the set membership constraint, i.e.,

x(x0, σ[0,j]) ∈ X, =⇒ xmin ≤ x0 +
j−1∑
i=0

bσi,i+1 ≤ xmax

=⇒ xmin − x0 ≤
j−1∑
i=0

bσi,i+1 ≤ xmax − x0.

Before providing simulation results, we discuss the reduction in the computational com-
plexity of the scheduling problem. By employing the graph based modeling framework, one
can drastically decrease the number of decision variables. Indeed, as an example, consider
a case with 3 decision variables. In the conventional modeling case, one needs to optimize
over a decision tree of (23)k different schedules, where k is the prediction horizon. How-
ever using the graphs, the number of possible schedules are reduced to almost 11000 for a
prediction horizon of k = 10 instead of 230 ≈ 109.

8.4 Simulation Study on Scheduling of Whey Protein Seperation Unit
Operations

8.4.1 Safe Cyclic Operation

We consider the scheduling problem of cleaning times of a simplified separation plant, see
[146] for details. The separation process has 2 UOs, which induces 3 binary decision vari-
ables αj and 2 continuous states denoted as xi which stands for the mass hold ups in the
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Figure 8.5: Different On-Off structures of UOs for the case study.

tanks between the UOs. The model of the process is constructed as

x1k+1 =x1k + ϕ0α0
k − ϕ1α1

k,

x2k+1 =x2k + ϕ̄1α1
k − ϕ2α2

k,
(8.10)

where xk =
[
x1k x2k

]⊤
. The parameter values are equal to each other which is set as

ϕ = 50. The constraint set is defined as xk ∈ X = [300, 800] × [300, 700], for all time
instants k ∈ Z≥0. We consider two different cases for the graphs that stand for the temporal
constraints. For the first case, the decision variables αj , j ∈ {0, 1, 2}, are constrained to 3
directed graphs, all of them with 4 nodes, see the Figure 8.5a.

For this example, we construct the enterprise graph which consists of 64 vertices. We
name these nodes from the numbers on graphs in base 4, i.e.,

σ := (a− 1, b− 1, c− 1)4→10 + 1,

where a, b, c corresponding to the numbers on the individual UO graphs and (·)4→10 denotes
the conversion of the considered number from base 4 to base 10. Then we apply Algorithm
8.3.1 to construct the safe set S. A horizon of 8 prediction steps yields 121 different cycles
in the enterprise graph. In Figure 8.3, we visualize the partitions of safe set with respect
to three different schedules that can be generated from the graphs in Figure 8.5a. These
(cyclic) schedules are;

σ1
0:4 =

[
1 22 43 64

]
,

σ2
0:7 =

[
1 26 35 60 26 35 60

]
,

σ3
0:8 =

[
20 41 50 11 20 37 58 15

]
,
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Figure 8.6: Safe set from forward and backward iterations.

where all these schedules satisfy the zero-sum condition, which introduce different safe
sets visualized in Figure 8.3. To demonstrate the trajectories in the state space, we select
two different initial points for schedule σ2

0:7. The first initial point is selected outside of
the safe set S2

0 , thus violating the constraints, whereas the second trajectory stays inside
X as visualized in Figure 8.6a. Lastly, we apply backwards path reachability mapping for
two steps for safe set S3

0 with backwards path selected as σb
−2:0 =

[
50 11 20

]
. The

obtained set S20,0,2 is visualized in Figure 8.6b. In the second example we consider a
different switching rule as presented in Figure 8.5b. Similar to previous example we take
the maximal cycle length as 8. We start by constructing the enterprise graph, by using
Kronecker product over graphs which is visualized in Figure 8.7. Then we have identified
198 cycles, including the permutations of cycles. However, due to the graphs corresponding
to the inlet and UO2, there does not exist cycles longer than 2 steps which sum up to the
zero vector. Thus the only cycles that yield infinitely long feasible schedules are:

σ1
0:1 =

[
2 18

]
, σ3

0:1 =
[
3 17

]
,

σ5
0:1 =

[
5 15

]
, σ7

0:1 =
[
6 14

]
,

and their permuted counterparts. All of these schedules have the zero-sum property over
the cycle. Then, we proceed with the calculation of the safe set for each of the schedules in
Equation (8.11). The safe sets generated for these schedules are equal to the constraint set
X. Thus, the safe set is equal to the constraint set and no further enlargement is possible via
the backward reachability procedure.

8.4.2 Safe Reactive Scheduling after Disruptions

For steering purposes, we consider the same number of UOs for describing the whey pro-
cess. For each UO same graph constraints are assumed as in Figure 8.2, leading to an
enterprise graph consisting of 125 vertices. The constraints on the two buffer tanks are
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given as 0 ≤ xik ≤ 200, i = 1, 2, k ∈ Z≥0. The values of the flow parameters are equal to
each other and set to ϕ = 50.

We consider two different simulation studies; i) the recovery case where both the state
xk and the mode σk are perturbed, ii) the steering case, no disturbances occur but the mode
leaves the safe cycle to steer the process as desired. The operating zero sum cycle is selected
as σ̂{56,87,18,29}.

Then a recovery schedule is generated towards the zero-sum cycle σ̂{56,87,18,29} after
applying different perturbations on the state and the mode. The results are shown graphi-
cally in Figures 8.8a-8.8b. On Figure 8.8a the first case study is visualized, the operation on
the safe cycle, i.e., the red trajectory, is perturbed which transforms the states to origin and
sets σ0 = 1. We apply the safe recovery algorithm to steer the system back to the safe cycle
and acceptable states through the recovery schedule σ[0,Nr] = {1, 82, 113, 19, 76, 107, 18},
i.e., the pink trajectory. In the second case study the safe steering aspect is demonstrated.
We initialize the process in a safe cycle (red trajectory), where the buffer tank values are ini-
tialized close to the constraints. Then by applying Algorithm 8.3.2, we find a safe schedule,
that steers the buffer tank states to desired locations, i.e., pink trajectory, while returning
back to the zero-sum cycle at the end of the recovery, i.e., the green periodic trajectory.

Results indicate that it is much harder for the buffer tanks to be filled in comparison to
the case of draining, since there are more On nodes than Off nodes, thus more safe schedules
to fill the tanks. As discussed above, the computational complexity is decreased since the
recovery schedules are found by matrix multiplications and interval arithmetic.
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Figure 8.8: Buffer hold up trajectories in two different steering cases.

8.5 Conclusions on Graph Constrained Scheduling for Whey Separa-
tion Processes

In this chapter, we have considered a type of scheduling problems which are difficult to
solve directly due to the integer nature of the decision variables. In many scheduling prob-
lems there exist both (i) logical rules for the decision variables (constraints on schedules)
over time; (ii) a highly structured system dynamics. We include both properties by intro-
ducing directed graphs that represent the temporal constraints on scheduling variables and
by considering the process as a discrete-time LTI system. While the exposition is performed
only for subprocesses connected in series, the results are applicable to any other intercon-
nection scheme. We implemented a simulation example from an industrial process that is in
line with the theoretical outcomes.

• One can extract all the admissible and safe schedules, with a significant reduction in
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the number of schedules by using graphs as constraints on the evolution of enterprise.

• By computing a safe set, we guarantee existence of at least one admissible schedule
for all initial conditions in the safe set.

• By using structure of the mass balance equations, the optimization problems boils
down to interval arithmetic operations.
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Chapter 9

Epilogue

Being a realist does not mean seeing the truth
for what it is. It is a question of determining
our relationship with the truth in the way that is
most beneficial for us.

Ahmet Hamdi Tanpınar - The Time Regulation
Institute

This chapter presents the concluding remarks on the research carried out in the topics of
risk-aware model predictive control (MPC) and online model-based application for ultrafil-
tration (UF) membrane units and discusses future research directions on these topics.

Online model-based applications and their performance depend on the quality of the
model. It is inevitable that uncertainties and unmodelled dynamical phenomena will be
present in any model in comparison to the true trajectories. Therefore, the first part of
this thesis has been directed towards incorporating these effects into the model predictive
control technology. We base our discussion on an extensive classification of the robust
MPC methods used in the literature according to the typical ways of treating the uncertain
effects. In the course of achieving this objective, we have noticed that there is a fundamental
conflict between the robust versus high performance operation. In short, the practitioner
trades off the performance versus the pessimistic operation necessary for robustness. We
show that weighting, through adjustable parameters, the predicted uncertainty into control
actions with statistical (moment-based) reasoning allows us to design robustly operating
closed-loop systems with desirable computational properties. The resulting robust MPC
problem is constrained to the nominal model which is a beneficial aspect for using large-
scale rigorous models in MPC problems. Furthermore, control theoretic properties, such
as disturbance sensitivity, are improved in a systematic and intuitive way. Specifically, the
Chapters 2-3-4-5 discuss the effect of various type of uncertainties in (un)constrained MPC
problems and present the moment-based MPC techniques.

In the second part of this dissertation, we have directed our attention to (online) model-
based control strategies applied to a whey protein separation process. Within this process,
the UF membrane units lead to separation of whey proteins from the other components such
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as sugars or salts. Substantial effort is directed towards the steps in rigorous model devel-
opment. Furthermore this model is used to demonstrate the extended capabilities that can
be achieved by offline model-based activities, such as optimal operation and sensor selec-
tion strategies. In the online stage, we use this model in monitoring (estimation) or control
applications to improve the efficiency of the separation. Another research direction that is
covered in this thesis regarding the process is on the scheduling of the subprocesses within
the whole plant. We have used a novel modeling approach that is based on directed graphs
to mimic the plant operation and through these graphs we deduce safe operating schedules.
Specifically, Chapters 6-7-8 discuss offline or online use of model-based strategies towards
a whey protein separation process.

In the next two sections, we detail our observations to address the research goal and
questions identified in Chapter 1 and provide future research suggestions for the research
themes respectively.

9.1 Conclusions and Future Directions for Risk-aware MPC

9.1.1 Conclusions on the Risk-aware MPC

In Chapters 2, 3, 4 and 5, we have considered a novel risk-aware MPC problem formu-
lation to overcome high computational load and pessimistic closed-loop operation. These
disadvantages are commonly observed in many of the robust MPC problem strategies as
identified by the 1st Research Question in Chapter 1. In Chapter 2, we reflect on the ro-
bust MPC based closed-loop operation and identify that the practitioner decides on several
important design questions that are directly affecting the resulting closed-loop operation:

• "Does the nominal model generate acceptable predictions?": The nominal prediction
model radically affects the MPC actions through the future predictions. By using rigorous
models, one expects to use (complex) nominal models with relatively insignificant uncer-
tainty descriptions. This is expected to lead to an increase in the performance since the
resulting control actions reduces the pessimism due to uncertain effects. There is no clear
guideline to trade off the increase in the nominal model complexity against the uncertainty
model that the practitioner is incorporating into the predictions in terms of the controlled
system’s performance.

• "Do the modeled uncertainties mimic realistic scenarios?": The performance loss due
to robustness depends on how the uncertainty is evolving in the dynamics and whether the
practitioner is evaluating the uncertain trajectories as risky or not. Current deterministic
robust MPC methods lead to highly pessimistic operation, since all uncertain trajectories
are deemed to be equally important. The stochastic robust MPC methods are based on the
distribution of the predictions, hence some trajectories with low realization probability are
not incorporated into the MPC problem. This leads to an improvement in the operation.
However the optimization methods that operate on distributions are numerically tedious
and always prone to wrong pdf models, especially evaluating the tails of distributions.
Predictions based on scenarios is a key, and recent, approach, since one can effectively
incorporate only the realistic uncertainty scenarios. Thus, the closed-loop operation is
expected to bypass the unnecessary conservatism. Yet, the number of scenarios in MPC
problems for operation with guaranteed properties is still too large for rigorous large-scale
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models to handle.

The observations in Chapter 2 motivate the control theoretic analysis of moment-based MPC
formulations. The moment-based MPC algorithms are based on the statistics of the cost
and constraint functions for uncertain dynamical systems. To improve the response, we
statistically re-evaluate the allocated uncertainty budget for each constraint and cost function
to adjust the robustness levels1. We have evaluated the mean, mean-variance and higher
order statistics of MPC cost and constraint functions for various control (regulation/tracking
or state/output) and uncertainty configurations. By doing so, we have shown that:

• The moment-based MPC problems can be expressed in terms of nominal dynamics with
stage-wise varying cost functions over the prediction horizon. This decreases the compu-
tational complexity drastically in comparison to the other robust MPC techniques since
moment-based MPC does not use the pdfs or reachable intervals explicitly. Hence for
processes with medium to large-scale representation of their dynamics, the moment-based
MPC formulations remain computationally tractable.

• The ability to actively adjust the effect of overall spread of predictions also leads to ad-
justable performance versus robustness specifications. This allows the practitioners to im-
plement nominal MPC schemes for process control systems with robustness guarantees.

• Explicit formulae exist for the reformulation of the weighting terms in MPC problems.
These weights are depending on how the uncertainty is incorporated into the prediction
model, their evolution and their statistical properties.

These observations provide a solid reasoning for research activities in moment-based MPC
topic in the first research theme. Next, we have reformulated the robust counterpart MPC
problems for systems under the effect of;

1. the additive perturbations, in which the uncertainty is accumulating in the future pre-
dictions. Thus, the optimization weights are also affected in an accumulative manner
as the prediction stage increases.

2. the initial condition mismatches, in which the uncertain effect is only due to the lack
of information at the current time instant. There is no accumulation of uncertain
effects since there is no other source of uncertainty.

3. the plant-prediction model mismatch (or the multiplicative uncertainty), in which the
predictions become more and more affected by the control decisions and states in the
earlier prediction steps, which results in an increase in the weights of initial prediction
stages in comparison to later ones.

These effects span a large section of uncertainty descriptions that are used in control liter-
ature. The effect of having a detailed uncertainty model on the closed-loop operation and
performance, the second subquestion on the moment-based MPC topic has also important
consequences:

1We remind that the stochastic MPC approaches are only valid for the cases where the constraint violations are
practically allowable but undesired.
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• For the additive perturbations and initial condition mismatch cases, we explicitly provide
the effect of high-order statistics and hence the added value of detailed modeling of uncer-
tain effects. In these cases, the MPC routine is suppressing the uncertainties by increasing
the state/output weights in the optimization problems, as a function of the high order mo-
ments of the uncertainties.

• The high order moment-based MPC problems for the plant-model mismatch case are not
completely formulated in this thesis, due to the associated increase in the MPC problems’
complexity. However, due to the dependence of state trajectories to each other over time,
cross-correlation (or higher order moment) terms are occurring in the robust counterpart
formulation, which incorporates the uncertainty.

• We generalize the moment-based MPC towards non-Gaussian disturbances and report the
mean, mean-variance and MVS MPC problems for these cases. We show the changes in
the closed-loop operation by actively modeling the pdf, and hence demonstrate its effect
on the control decisions.

The third research question of the first theme, addressing the cost functions and the
selection of optimization parameters’ values for incorporating the uncertain effects, have
been addressed in the technical results given for the uncertainty types listed above. In each
of these uncertainty families, we have established equivalence results on the optimization
parameters of an MPC problem constrained to the nominal dynamics to let the closed-loop
operation become aware of the uncertain effects predicted in the dynamics. Furthermore
the effect of the robust counterpart formulations on the bandwidth or other closed-loop
performance aspects is similar to the traditional robust control methods which are based on
frequency domain performance filters designed in top of the nominal model.

As the fourth research question on this research area, we have formulated the constraint
handling problem for the moment-based MPC formulations. We use different tools to
achieve constraint satisfaction, such as distance concepts using distributions, overbound-
ing the spread through variance operator or approximations of the predicted spread. Using
the Mahalanobis distance and the nominal system dynamics, we provide the robust coun-
terparts of constraints in moment-based MPC problems with additive perturbations. We
observe that for the most frequently used constraint functions, i.e., affine functions of states
and inputs, the variance based constraint handling technique increases the complexity class
of the problem. Some conservative reformulations of constraints are reported which reduce
the computational complexity of the robust counterparts of the constraints obtained after the
applications of centralized moments.

9.1.2 Future Directions on the Risk-aware MPC

Our suggestions on future research towards a reliable operation with MPC based technology
is presented next.

• First, we point out the process control hierarchy, Figure 1.2a, and a research direction along
the line of decentralized control problems. The multi-layer strategies in process control
hierarchy are resulting in separate optimization problems for each layer, generally due to
different time scales, dynamics, uncertain effects and cost functions. The communication
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of data and decisions in between these layers have a substantial effect on the resulting
performance2. For this purpose;

1. Recourse based algorithms which incorporate lower or upper layers in their own
formulation is expected to improve the operating performance.

2. The event (or self) triggering based update schemes can be used to achieve equivalent
performance with less computational resources.

Thus, a rigorous approach on how to construct the hierarchy and the flow of information
is still missing in the multi-step, multi-agent dynamical decision making research area.

• Secondly, it is evident that the MPC cost and constraint functions should be tailored to
incorporate deviation and integral terms3 of states or inputs based on the risk-aware pre-
dictions. Using previously calculated optimal actions and predictions in the current MPC
problem to weight out the unpredicted mismatches is expected to provide the desired ro-
bustness properties without explicitly modeling or handling the uncertainties. In this way
the MPC problem only depends on the nominal model of the process and the previous
optimal solutions are expected to result in computational benefits, such as warm-starts.

• One positive aspect of the moment-based MPC formulations is the computational prop-
erties of the resulting problems. Using higher order moments is desirable since the true
distribution of states can be approximated better with higher order moments, in the case of
infinitely many moments, one can deduce deterministic (worst-case or others) properties
for closed-loop operation. However the high order moment-based MPC problem becomes
intractable. Yet, formulating approximation algorithms for the higher order moments of
costs and constraints by polynomial optimization methods is expected to end up with func-
tions that can be optimized over in a tractable way. This approach is also useful for the
cases where the dynamics are described by nonlinear equations.

9.2 Conclusions and Future Directions for Model-based Operation of
Whey Protein Separation and Ultrafiltration Membrane Processes

9.2.1 Conclusions on Model-based Operation of Whey Protein Separation and UF Mem-
brane Processes

In Chapters 6, 7 and 8 we have considered a whey protein separation process and discussed
the benefits of model-based applications for this process. Specifically, we have presented a
rigorous large-scale model and facilitate it in offline and online optimization studies.

The first research question on this theme is on the modeling of ultrafiltration mem-
brane units. A mathematical model consisting of differential and algebraic relations among
the physics based variables describing the process through balance laws for ultrafiltration
membranes is developed. We have estimated the parameters of three proposed models by
measurements gathered from an industrial plant and we validate these models via statistical
techniques. The statistical analysis allows us to select one of these models.

2The effect of solving one but larger problem by ignoring the layered structure is demonstrated in this thesis
for scheduling and offline optimization of UF membrane operation.

3In the classical robust control theory, low and high pass filtering of the performance or input variables.
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For the second research question, modelling and tracking the fouling, which is the ma-
jor physical phenomena leading to performance loss in membrane based processes, we have
incorporated via the membrane resistance concept. Hence monitoring and if possible con-
trolling it during the operation can be achieved via the developed model. The dynamic
membrane resistance is always accumulating and the empirical membrane resistance re-
flects the dependency on the operating conditions.

With the constructed model we implement several simulation studies in order to de-
duce useful operating strategies for the UF membrane processes, for the Research Question
2.2. The simulation studies on the optimal operation and scheduling strategies highlight
the potential use and benefits of the developed model. We stress the conclusions in various
optimization based studies such as;

• For extended (batch) operation of UF membranes satisfying desired goals, the total perme-
ate flow needs to be distributed to all of the membranes to reduce the fouling accumulation.
This can be achieved by operating all membranes in the subprocess from the start of the
batch.

• The model can be used for monitoring and for selecting what to measure for the UF mem-
branes. The spectral analysis of the observability gramian is used to deduce comparative
results between different sensor configurations, yet it is often not enough to consider only
one of these indices. We observe that the conclusions drawn from the data based (em-
pirical) observability gramian correlate with the conclusions drawn by the experienced
operators of the process.

In Chapter 7, we present the results of two crucial online model-based applications for
UF membrane processes, the soft-sensor and the low-level control implementations address-
ing the Research Question 2.3;

• The first simulation study presents two soft sensing methods, Kalman filter and moving
horizon estimation scheme, and their implementations on the UF membrane units. The
online monitoring of the fouling in UF membranes helps with other online model-based
activities such as improving the operator decisions, preventing disruptions and synthesis of
model-based controllers. All of the constructed estimators produce acceptable and com-
parable results in terms of tracking the fouling effects even after some hybrid changes
(switching on a new UF membrane, large changes in the operating conditions) observed.
However, monitoring the key performance variables yield wrong estimates, possibly due
to the mismatch in the operating conditions based on algebraic regression techniques.

• The controller implementation studies towards UF membrane process demonstrate that for
desirable membrane operation both of the inlet variables, the mass flow and the operating
transmembrane pressure, should be manipulated together. We have designed and tested
four different controller structures using the UF membrane model: Two PID based control
structures; a combined Iterative Learning Model Predictive Controller; and an extension
of the latter with an Extended Kalman Filter. Both learning controllers and the double PID
controller manipulate the applied pressure, which leads to smoother mass flow trajectories.
Here, the IL-MPC controllers are capable of predicting the future outputs based on the past
batch trajectories and learning from the errors provoked in the previous batches.

254



9.2. Conclusions and Future Directions for Model-based Operation of Whey Protein
Separation and Ultrafiltration Membrane Processes

The final research topic discussed in this thesis addresses the safe and reliable scheduling
of various subprocesses that construct the whey processing plant. In this separation process,
many subprocesses operate in batches asynchronous to each other, thus scheduling problems
are inherent to the operation. For this reason;

• We construct a type of scheduling problems that make use of directed graphs to model the
subprocesses and temporal constraints (the operational or offline time windows) on them.
This allows us to model the plant operation as a discrete-time LTI system with integer
control actions.

• We use the graphs related to unit operations to extract all admissible schedules which is
resulting in a significant reduction in the number of schedules to be analyzed.

• We compute safe sets and associated cyclic schedules, which guarantee the existence of at
least one admissible schedule to continue the operation indefinitely. Furthermore, under
this setting the optimization problems boil down to interval arithmetic operations.

9.2.2 Future Directions on the Model-based Operation for Whey Protein Separation and
UF Membrane Processes

We list several recommendations on future research activities relevant to UF membranes in
below:

• Regarding the proposed UF membrane model, the parameters in empirical membrane re-
sistance terms are highly effective in the predicted flows. During start up procedures, the
membrane process starts with high permeate flux conditions (due to thin whey) but the
process quickly moves towards high fouling (due to thick whey) conditions. In the data
used for the current parameter estimation results, we did not have access to sufficiently
detailed/sampled data for the start up period, hence these procedures should be repeated
once these data are available.

• The empirical observability and controlability gramians offer incredible computational
benefits for approximating the true ones only from simulation data for nonlinear or un-
stable systems. These gramians can be used instead of the conventional ones in open loop
analysis. We stress that maximal membrane fouling can be decreased by tuning the TMP’s
per membrane loop separately. This ends up with either increased operating pressure or
longer batch time, which could lead to a higher production capacity while providing de-
sired performance specifications. To achieve this, extracting more permeate mass flux at
the initial membranes, in which thin whey (small protein concentration) circulates, is ben-
eficial since thicker whey causes the later membranes to foul faster due to high protein
concentration.

• We suggest expanding the monitoring routines by incorporating parameter and/or distur-
bance estimation aspects. The fouling parameters or the composition of inlet whey are
affecting the performance of the operation, thus monitoring these parameters is an im-
portant step towards better operation. Similarly, we propose that incorporating learning
action (across batches) into Advanced Process Control layer is crucial for high efficiency
operation. Rigorous comparison between automatic model update mechanisms and incor-
poration of learning action into the controllers is a topic for further study.
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