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Summary

Recent developments in robotics, arti�cial intelligence, and machine learning are
further accelerating the introduction of robots in our daily lives and the physical
environment around us. In order for humans and robots to co-habit in a common
space, robots must behave and operate in ways that are similar to or acceptable by
humans. In essence, they also need to be social, as we are.

The design, development and study of these social robotic agents and their
interactions with humans form up the young but growing �eld of social Human-
Robot Interaction (sHRI). The social robotic agents are equipped with social cues
ranging from the use of bodily and facial gestures, natural language and eye gaze
to more unique and robot speci�c methods such as expression through colors,
synthetic sounds and vocalizations.

This thesis introduces the umbrella concept of Semantic-Free Utterances (SFU) and
brings together multiple sets of studies in social HRI that have never been analyzed
jointly before. SFUs are composed of vocalizations and sounds without semantic
content or language dependence that may still facilitate rich communication and
expression during sHRI. Currently they are most commonly utilized in animation
movies (e.g., WALL-E), cartoons (e.g., �Teletubbies,�), and computer games (e.g.,
The Sims) and hold signi�cant potential for applications in sHRI.

In this thesis, a Semantic-Free A�ective Speech (SFAS) Framework, which al-
lows robots to express and communicate through vocalizations of meaningless
strings of speech sounds (also referred to as a�ective gibberish speech), has been
developed. This framework provides a complete set of tools that can be used as a
vocal communication medium for an agent and allows to study diverse aspects of
a�ective human-robot interaction.

As a component of this SFAS framework, a semantic destruction technique
that allows a given intelligent text in a certain language to turn into semantic-free
gibberish text that is still natural sounding has been developed. Using the methods
and techniques outlined, an emotional gibberish speech database (EMOGIB) has
been built and made available to the HRI community for further research.
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vi Summary

SFAS framework was further enhanced with two modi�cation techniques that
are instrumental to utilize the framework across various scenarios in social HRI.
One of them is the voice modi�cation capability which provides the alignment of
the voice characteristics of the gibberish speech voice with the robot morphology.
The second modi�cation, a concatenative synthesis approach which is referred to as
segment swapping, decreases the cost of implementation of the framework in HRI
studies which will hopefully lead to wider and faster adoption of the framework by
the HRI community.

Piloting the implementation of the outlined Semantic-Free A�ective Speech
(SFAS) Framework, sets of experiments that assess the e�ectiveness of using SFAS
across various aspects of a�ective human-robot interaction were performed. The
results of these experiments have shown the expansive applicability of the proposed
framework in social HRI, while outlining certain improvement areas in various
components used in the pilot implementations.
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1 | Introduction

1.1 Motivation

Since the introduction of the Unimate robot into the General Motors assembly line
in the 1950's, robots have gradually undergone numerous changes with respect to
their physical design as well as their utility across various application domains.
In short, the life of a robot is no longer con�ned to the enclosed work cells of an
assembly line. Rather, robots can be found operating in a variety of environments
and applications using di�erent degrees of autonomy as well as coming in all shapes
and sizes. For example, swarms of robots can be found racing on the �oors of
warehouses, collecting and analyzing soil samples on distant planets, examining
shipwrecks in the depths of our oceans, and more recently, driving us between di�er-
ent locations. The general emerging trend is that robotic technology is slowly, but
surely, making its way into our daily lives, and beginning to share the same physical
space with us and as a result coming into direct contact with the general population.

This sharing of the same physical spaces has important implications regarding
the design of robots with respect to their mechanical construction and their pro-
gramming. Concretely, robots need to be designed to cater for safe interactions
with people and they need to understand and be sensitive to how people behave.
Similarly, they need to be designed such that people understand what the internal
state of the robot is through its observable behaviour. Essentially, in order for
humans and robots to co-inhabit a common space, robots must behave and operate
in ways that are similar to humans. In essence, the argument is that they too need
to be social, as we are (Breazeal, 2002).

To be able to address the need to be social, these robotic agents should be
empowered with various a�ective social cues enabling natural and intuitive social
interactions with humans. While from these social cues the �rst ones that come
to mind might be bodily and facial gestures or natural language, which are also
a�ective social cues humans utilize, there are other applicable methods which
are more unique to robots, like expression through colors, synthetic sounds and
vocalizations (Breazeal, 2002; Embgen et al., 2012). Such sounds and vocalizations
may not necessarily involve semantics in natural spoken language and are referred
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to as Semantic-Free Utterances (SFU) (Yilmazyildiz, Read, Belpeame, & Verhelst,
2016).

The design, development and study of these social robotic agents and their
interactions with humans form up the young but growing �eld of social Human-
Robot Interaction (sHRI). Like many technologies that were considered futuristic
at some point in time, entertainment industry and speci�cally science-�ction and
animation movies didn't only imagine and explore how the future could look like
together with these social robots, but also created some expectations and in some
cases even stereotypes about social robots of the future. For example, R2D2 from
the Star Wars movies, and the robots WALL-E and Eve from the Disney-Pixar
movie WALL-E, show us that robots do not need to leverage natural language
in order to be able to communicate e�ectively and they can use SFUs instead.
These robots employ a rich repertoire of beeps, squeaks, whirrs and nonsense
vocal utterances, which are SFUs, to engage in stimulating and entertaining social
interactions with great success, and more importantly, the audience is unfazed by
the use of these alternative methods of communication. Clearly there is inspiration
that may be taken from the world of animation and �lm and how they have brought
their robotic characters to life.

The thesis presented here is concerned with one of such methods that allow
robots to express and communicate through vocalizations of meaningless strings of
speech sounds that may still facilitate rich communication and expression during
HRI - namely Gibberish Speech.

Natural Language Interfaces (NLI) have long been an important horizon goal
of Human-Machine Interfaces and the technologies behind such interfaces (namely
Speech Recognition, Natural Language Understanding, Natural Language Gen-
eration and Speech Synthesis) have been subject to much research, design and
development over the last few decades (Theobalt et al., 2002; Imai, Hiraki,
Miyasato, Nakatsu, & Anzai, 2003; Jung et al., 2005; D'Mello, McCauley, &
Markham, 2005; Mozos, Jensfelt, Zender, Kruij�, & Burgard, 2007; Gorostiza
& Salichs, 2011; Connell, 2014). However, the current state of the art in these
technologies is still far from the spoken language capabilities of an average human
speaker or listener, especially in adverse real-world situations (Moore, 2014). Herein
lies an important problem for the uptake of socially capable robotic systems in the
near future. The rate of development and deployment of social robotic systems that
may interact with people is so rapid that the rate of advances in Natural Language
Interfaces may not be able to catch up. The result of this is that, currently, state of
the art social robots are unable to leverage the full power of natural language.



1.1. Motivation 3

For dealing with situations where NLI might fail during an interaction, a number
of strategies have been explored: constraining and even scripting interactions and
dialogues or narrowing the scope of responses expected from the user (e.g., Lohse,
Rohl�ng, Wrede, & Sagerer, 2008); requesting the user to repeat the input if the
recognition result is inconsistent with the dialog discourse (e.g., Holzapfel & Giesel-
mann, 2004); asking clari�cation questions (e.g., Gabsdil, 2003; Deits et al., 2013);
or even employing a set of general purpose responses to try and catch the failing
interaction (e.g., Lison & Krui�, 2009). Such strategies have the risk of revealing
the limitations of the system to the users (Ros Espinoza et al., 2011) as unrelated,
incorrect or repetitive answers are easily spotted by the users. That is one of the
roadblocks in front of the development of long-term, open-ended HRI which is
the outstanding goal of the �eld (Belpaeme et al., 2012). As such camou�aging
these limitations from the users by reverting to a replacement modality so that the
interaction can continue, even if with some limitations, could be appealing.

Not having any semantic information implies obvious limitations for SFUs when
compared to Natural Language. However, they also have important qualities that
make their implementations quite promising in sHRI. As an example, SFUs are
not bound to a speci�c accent of a speci�c language. Thus the use of SFUs in
multi-lingual and/or multi-cultural environments is advantageous where dealing
with speakers with foreign accents is currently very challenging for NLI (Moore,
2014).

Also the SFUs are less demanding for computing power than NLI systems which
helps addressing the system response time requirements that are important for
human-like sHRI (Shiwa, Kanda, Imai, Ishiguro, & Hagita, 2009). Moreover, SFUs
having less content to be decoded by the user, the interpretation in combination
with the context of the interaction and situation is mostly left to the users.
Especially children do not see robots as mechanical machines, and they readily
anthropomorphise robots and maintain the illusion that they have life-like charac-
teristics (Belpaeme et al., 2013) which creates another advantage for the use of SFUs.

Driven with all these motivations, the objective of this thesis is to provide a
framework that allows to study a�ective human-robot interactions by using vo-
calizations that do not involve semantics in natural spoken language, so-called
A�ective Gibberish Speech or Semantic-Free A�ective Speech (SFAS). The high-
level architecture of the framework is illustrated in Figure 1.1. First, the strategy
of creating this framework will be described along with the evaluations on isolated
audio utterances in the �rst chapters. That will then be followed by utilization of
the framework in pilot implementations to real world social robots and providing
insights on the potential usage while seeking answers to questions related to its



4 Chapter 1. Introduction

Figure 1.1: Semantic-Free A�ective Speech Framework Architecture

deployment in the �nal chapters.

1.2 Contributions

As a result of the research presented in this thesis, a number of important �ndings
have been uncovered, which are listed below as the key scienti�c and technical
contributions made by this work:

• The concept of Semantic-Free Utterances (SFUs) has been intro-

duced: Sounds and vocalizations that do not involve semantics in natural
spoken language such as Gibberish Speech, Non-Linguistic Utterances, Musi-
cal Utterances and Paralinguistic Utterances are brought together under the
umbrella-term, Semantic-Free Utterances. By introducing the concept of SFUs
and bringing together multiple sets of studies in social HRI that have never
been analyzed jointly before, the need for a comprehensive study of the ex-
isting literature for SFUs is addressed, the current grand challenges and open
questions are outlined and guidelines are provided for future researchers.

• A Semantic-Free A�ective Speech (SFAS) Framework has been de-

veloped: This framework provides a complete set of tools that can be used as
a vocal communication medium for an agent that then allows to study diverse
aspects of a�ective human-robot interaction.

• Development of a semantic destruction technique that allows a
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given intelligent text in a certain language to turn into unintelligi-

ble/semantic free text that is still natural sounding: This mechanism,
as a component of the SFAS framework, is based on an intelligent swapping
strategy that replaces vowel nuclei and consonant clusters of a given text
in a language in accordance with the natural probability distribution of the
vowel nuclei and consonant clusters of the original language. This results in
natural sounding gibberish and still resembles the source language when a
good quality synthesis is used.

• An emotional gibberish speech database (EMOGIB) has been built

and made available to the HRI community for further research:With
the methods and techniques in the SFAS framework an expressive database
that is in gibberish form and sounds like a real language was created. The re-
sulting EMOGIB database was also utilized as a component of the SFAS frame-
work in its pilot implementations. Contributions with the database building
also include con�guring a set-up strategy for maintaining constant recording
conditions and steady voice type/quality throughout each emotion category.

• Showcased the direct relation between the physical appearance of

the robots and the appropriate voice pitch: The lower pitched voices
are perceived more related with the high volume (i.e. larger) robots while the
higher pitched voices are found to be more related with the low volume (i.e.
smaller) robots. The feature of voice modi�cation is included in the SFAS
framework, which provides the ability to easily perform the required voice
alignment.

• Improved resolution of the ambiguities and confusions in facial ex-

pressions of a robotic agent by the presentation of semantic-free

gibberish speech: The emotional information exchange with robots takes
place in di�erent layers of multimodal interaction. However, it was not known
whether the e�ect of the speech without semantic meaning on the emotion ex-
pression would be positive or negative. A multi-modal evaluation study showed
that gibberish speech improves the emotion recognition signi�cantly.

• Semantic-Free A�ective Speech can be used as the sole vocal

medium or in combination with a natural language in a�ective

HRI implementations: In the preference rankings between only natural
language, only gibberish and mixtures of natural language and gibberish,
no statistically signi�cant di�erences were found. This result implies that
Gibberish can be used as the sole vocal medium or in combination with a
natural language in sHRI studies.

• Development of a concatenative synthesis approach that further en-
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hances the capabilities of the framework with no signi�cant negative

e�ect on emotion recognition and acceptable levels of drop in nat-

uralness: By swapping the units of an utterance with other units from the
database of the related emotion, this synthesis capability expands the number
of unique semantic-free utterances.

1.3 Outline

This section outlines the structure of this dissertation along with a brief description
of the theme and context for each chapter.

Chapter 2 introduces and de�nes the concept of Semantic-Free Utterances, under
which semantic-free gibberish speech is categorized, and provides a comprehensive
literature overview of the �eld. Finer details of each of the four SFU categories
(Gibberish Speech, Non-Linguistic Utterances, Musical Utterances and Paralin-
guistic Utterances) are given and the developments that have been made in the
state-of-the-art, as applied to HRI, are charted, while at the same time positioning
this thesis in the literature. This is followed by a summary and discussion that
highlights the areas of success and sketches general areas that require more research
as well as the current grand challenges, open questions and future directions, that
this area of research faces.

Chapter 3 describes the approach used in removing the semantic content in a
given text, thus creating semantic-free gibberish text. The chapter concludes by
representing two experiments evaluating the perceived naturalness and emotion
conveying capabilities of the resulting gibberish.

In chapter 4, the design and building procedure of the emotional gibberish
speech database (EMOGIB) that is used in the data-driven method of semantic-free
gibberish speech synthesis is explained. The chapter also presents the assessment of
the quality of the emotions as well as the naturalness of the utterances.

Chapter 5 elaborates on two modi�cation techniques that are instrumental to
further utilize the Semantic-Free A�ective Speech (SFAS) framework in social HRI.
One of them is the voice modi�cation algorithm which provides the alignment of the
voice characteristics of the gibberish speech voice with the robot morphology and
with the voice of the robot's build-in text-to-speech synthesizer. The other modi�ca-
tion, a concatenative synthesis approach which is referred to as segment swapping,
decreases the cost of implementation of the framework in HRI studies which will
hopefully lead to wider and faster adoption of the framework by the HRI community.
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In chapter 6, pilot implementations focusing on the usage of the SFAS frame-
work with the intended robotic embodiments are presented. It is investigated
whether the e�ect of the speech without semantic meaning on the emotion expres-
sion would be positive or negative in multi-modal presentations. The potential use
of semantic-free gibberish speech alongside natural spoken language is also assessed
as a hybrid vocal communication strategy and, �nally, the utilization of gibberish
speech is investigated in real-life interaction scenarios with a co-viewing companion
scenario by using the embodied robot.

Chapter 7 provides a summarizing overview of the work that has been pre-
sented, and concludes the thesis by discussing the results obtained and elaborating
on a collection of topics that are potentially fruitful future research.





2 | Auditory A�ect

Synthesis in HRI

2.1 Introduction

The content of this chapter is based on our publication (Yilmazyildiz et al., 2016).

The chapter provides a comprehensive literature overview of the methods that
allow robots to express and communicate through sounds and vocalizations (which
are referred to as utterances in this thesis) that do not involve semantics in natural
spoken language but may still facilitate rich communication and expression during
HRI. Such utterances can come in four general �avours: Gibberish Speech (GS),
Non-Linguistic Utterances (NLUs), Musical Utterances (MU) and Paralinguis-
tic Utterances (PU), all of which are brought together under the umbrella-term
Semantic-Free Utterances (SFUs).

Research into SFUs, as applied to social HRI, has received very little atten-
tion in comparison to the other modalities of expression (namely a�ective speech
synthesis, facial gestures, gaze cues, and body language). The research e�orts that
have been undertaken have been varied and scattered. Addressing this, in this
chapter, the past developments are charted and a review of the state of the art in
these Semantic-Free Utterances is provided.

2.2 Semantic-Free Utterances

2.2.1 Description and subject area

In broad terms, Semantic-Free Utterances (SFUs) can be described as auditory
communication or interaction means for machines that allow the expression of emo-
tion and intend, composed of vocalizations and sounds without linguistic semantic
content.

Figure 2.1 illustrates the realm of the SFU concept as is dealt with in this
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Figure 2.1: Schematic illustration of Semantic-Free Utterances (adapted from
(Schuller & Batliner, 2014))

thesis. In the �gure, the �science of everything� is narrowed down to the science
of mankind, communication and unimodality, as depicted by Schuller and Batliner
(2014). Then the notion of SFU is introduced as a composition of auditory at-
tributes of uni-modal communication, namely speech and language, vocal factors
and non-vocal sounds and acoustics.

In this graph, the term �language� refers to �natural language�, which is mod-
elled and processed within computational linguistics, and speech refers to �spoken
language� that is the object of speech processing technology (Schuller & Batliner,
2014). Speech and language research, in this context, deals with the various branches
of phonetics and linguistics, such as syntax, semantics, etc.

The �vocal factors� consist of various aspects regarding the human voice. For
example, organic vocal aspects such as the di�erence in the size of the speech
organs that a�ects the pitch of the voice that then characterizes the male/female
or child/adult voice. Other vocal factors such as loudness, rate, pitch contour, voice
quality contribute to expressive aspects of the human voice.

The �eld of acoustics deals with topics such as vibration, sound, ultrasounds
and infrasound. However, in this graph the focus area of acoustics is restricted
to non-vocal sounds in the audible frequency range, which include instrumental
and natural sounds as well as computer generated and re-created sound waves and
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Figure 2.2: Categorization of Semantic-Free Utterances

sound e�ects.

Having described the main terminologies used in the graph, SFUs can easily
be de�ned ex negativo: SFUs comprise everything that is not the focus of linguis-
tical semantics, syntax and morphology in natural language and that does not
include instrumental and natural sounds in acoustics and music.

Depending on the di�erences in the underlying nature and the usage in HRI
studies, SFUs can be categorized under two general types: Gibberish Speech (GS)
and Non-Linguistic Utterances (NLU). Apart from these, there are other SFU types
such as Musical Utterances (MU) and Paralinguistic Utterances (PU) (Figure 2.2).
Although paralinguistic research has been receiving more attention recently in the
speech processing domain, its utilization in HRI studies has been very limited.
Musical Utterances on the other hand, have been employed in more studies than
PU, and stand as being one of the sources of inspiration to NLU research.

There are commonalities between GS and PUs as well as between NLUs and
MUs. GS and PUs are both utterances that resemble vocalizations of human
speech. GS consists of vocalizations of meaningless strings of speech sounds and
thus resembles the timbre and voice quality of human speech, without containing
any semantic content. PUs on the other hand are non-speech vocal events and thus
contain any type of vocal sounds beyond speech (such as laughs, sighs, etc.). In
contrast, NLUs and MUs are both non-vocal recreated sound waves/sound e�ects.
NLUs consist of beeps, squeaks and whirrs, and are the sort of auditory signals that
do not resemble natural language and speech. MUs sound very similar, and are often
synthesized using the same tools as for NLUs. Where the two approaches di�er is in
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the underlying theories used to drive their creation. MUs use musical theory as the
sole source for de�ning the acoustic properties and dynamics of utterances, whereas
NLUs are far less speci�c in this regard. All these di�erent SFU categories will be
elaborated in Section 2.3 along with their underlying theories and techniques.

2.2.2 Utility as a tool in broader HRI

There are already a number of robotic systems, both �ctional and non-�ctional,
that demonstrate how a variety of the qualities of SFUs can be applied to social
robots. However, there are also examples that stem from social HRI research show-
ing that SFUs are not only a useful means of facilitating expressive displays, but
they may also be used in a manner that helps advance research in other areas of HRI.

Kismet (Breazeal, 2002) is a prominent example of GS being used as a means
of vocal expression in a robot, while also serving as a tool to help facilitate research
into other areas of HRI simultaneously. For example, evaluating the in�uence that
a�ective models of the robot's internal states can have on the observable behaviour
of the robot, both visual and vocal.

There have been also e�orts to utilize GS in robotic agents in the form of
language games to understand the evolution of language and language acquisition
(Steels, Kaplan, McIntyre, & Van Looveren, 2002; Steels, 2003). The idea was to
explore how a population of robotic agents would be able to develop their own
communication strategies and their own vocabularies by tackling real-world prob-
lems (such as background noise, shifts in the meanings, new lexicons/words etc.) in
the real environments, all without human intervention or prior speci�cation. Again
related to languages, Mubin et al. (Mubin, Bartneck, & Feijs, 2009) investigated
the feasibility of creating arti�cial languages, speci�cally designed to optimize the
performance of Speech Recognition. With the arti�cial language they developed
(Mubin, Bartneck, & Feijs, 2010), the Robot Interaction Language (ROILA), they
aimed at reaching a high level of speech recognition on the robot side and a minimal
e�ort needed in learning this new language on the user side.

In research focused upon the physical, anthropomorphic design of robots and
how this impacts the perception people have of a robot, Walters et al. (Walters,
Syrdal, Dautenhahn, te Boekhorst, & Koay, 2007) used NLUs to facilitate vocal
animation of a robot that was deemed to be �machine-like�, as opposed to having
a more anthropomorphic design. In this example, NLUs have been used as a tool
in order to be able to study aspects of HRI that fall far beyond only a�ective
expression via sound. Another example of the use of NLUs in research is with the
robot Keepon (Kozima, Michalowski, & Nakagawa, 2009), which is a robotic tool
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designed to be used with young autistic children, many of which are pre-verbal.
Here, as the use of natural language with pre-verbal infants serves little purpose
and as the morphology is very abstract, NLUs provide an adequate compromising
solution. Similarly, Vazquez et al. (Vazquez, Steinfeld, Hudson, & Forlizzi, 2014)
have used NLUs to animate a robot �side-kick�, Blink, while studying the e�ects
of having a robot side-kick during child-robot interaction. It was a design decision
to have a side-kick that did not utilise real natural language as this made the
overall technical design of the robotic systems easier to implement as well as falling
more in line with the morphology of the robot (which was a lamp shade in this case).

In these examples, the bene�t of SFUs is clear. The use of natural language
in robots is currently cumbersome due to the limitations that the technology has,
and if the research does not strictly require natural language, but does require some
form of vocal expression or interaction, SFUs can be seen as an attractive option
that are easy to implement compared with NLP.

2.3 A�ective interaction with SFUs in social HRI:

an overview

Having outlined the motivations and bene�ts of using SFUs in HRI, in this section
the attention is on the �ner details of SFUs. Social robots should communicate and
interact with humans and may become a companion for humans. As described by
Libin and Libin (2004), emotion is one of the major communication layers that make
an arti�cial partner a good companion for humans. This emotional communication
and interaction requires recognition, interpretation, processing, and simulation of
human a�ects by the robot. Depending on the shape and the functionalities of the
arti�cial partner, the a�ective communication can be carried out by means of visual
and auditory coding, which then needs to be decoded by the human users.

Visual coding includes encoding the a�ective information into facial expressions,
body gestures or colours of the robot. There are various di�erences amongst these
modalities. For example Kismet (Breazeal, 2002) uses a fully actuated head with 18
degrees of freedom (DOF) to express facial expressions, while eMuu (Bartneck &
Michio, 2001) uses far fewer DOF. QRIO (Brooks & Arkin, 2007) uses body gestures
while Nao supports its body gestures by also giving meaning to the colours (Haring,
Bee, & André, 2011). The pictures of these robots with di�erent a�ordances can be
seen in Figure 2.3.

In the auditory channel, speech with natural language is the primary commu-
nication strategy utilized for HRI. What is said and how it is said are dual encoded
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Figure 2.3: Examples of robots with di�erent a�ordances for expressive commu-
nication

and transmitted via the same channel in the human voice with speech (Picard,
1997; K. Scherer, 1986, 2003). This makes the study of a�ective communication via
the human voice particularly challenging as disentangling what has been said from
how it has been said is not an easy task.

In theory a�ective expression in the human voice and through music share a
common origin from an evolutionary perspective (K. Scherer, 1995), mainly with
respect to the use of the voice (i.e. singing), but this can also be extended to the
use of musical instruments (Juslin & Laukka, 2003). As such, it makes sense to
touch upon the expression of a�ect through music also. Just like expressive human
speech, musical expression has also been explored for a number of years and as a
result a large body of research has also accumulated. Juslin and Laukka (2003)
found that there are indeed a great number of similarities between the acoustic cues
in music and in the human voice when it comes to conveying a particular a�ective
state. For example, when conveying anger, characteristics of a musical piece are
found to have a fast rate, have a high intensity with a great deal of variability in
this intensity, a high overall pitch with a high variability and fast onsets of notes.
Similar characteristics are also found for the expression of happiness, while sadness
was associated with a slow overall tempo, a lower pitch with less variability and
less overall intensity in the acoustic signal and with less aggressive onset of notes.
This is generally consistent with the �ndings in the human voice. With regard to
the notion of whether the human voice and music share a common origin with
respect to emotional expression, Juslin and Laukka (2003) conclude that expression
of a�ect through music is likely based around the manner through which it is done
in the human voice. As such, the potential use of insights gained from both �elds
can be considered for the application of creating SFUs.

As stated earlier, SFUs are categorized under four general types (see Figure
2.2): Gibberish Speech, Non-Linguistic Utterances, Musical Utterances and Par-
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alinguistic Utterances. In this section, each of the four SFU types will be described,
together with their roots in other �elds of science, such as Psychology, Musicology,
etc. Following this, the main strategies that may be adopted in order to produce
a�ect-laden utterances for social robots will be outlined. However, only the works
that are directly relevant to the use of SFUs as applied to the �eld of social robotics
is reviewed. That is, how SFUs can be utilised by robots as social cues in order to
communicate information to human users.

2.3.1 Gibberish speech

The term gibberish stands for �Unintelligible or meaningless speech or writing�1. In
practical terms, it may stand for a structured encrypted language which may seem
nonsensical to outsiders (Gardner, 1984), or for vocalizations that sound like speech
but have no actual meaning, by masking (K. Scherer, Koivumaki, & Rosenthal,
1972; K. Scherer, 1985; Remez, Rubin, Pisoni, & Carrell, 1981) or manipulating
(Cahn, 1990; Burkhardt & Sendlmeier, 2000) the linguistic cues (K. Scherer, 2003)),
or for speech or writing that is grammatically, syntactically and phonetically correct
but semantically irrational (Chomsky, 1956).

In essence, there is no semantic content in gibberish vocalizations. Several ap-
proaches exist to generate gibberish without the semantic content. Some of them
use text transcriptions and others operate on the speech signal (a summary of
this categorization can be seen in Table 2.1). An early example of the former is
from Chomsky (1956). He destroyed the semantic content at the sentence level by
utilizing words in a nonsensical combination. The well-known Chomsky sentence
�Colorless green ideas sleep furiously� is grammatically correct, but it doesn't
convey an understandable meaning. Although his intention was to demonstrate
the di�erence between syntax and semantics, such semantically-anomalous pseudo
utterances were then used in emotion decoding, vocal a�ect measurement studies
(K. Scherer, 1986; Pell, Paulmann, Dara, Alasseri, & Kotz, 2009; Paulmann & Pell,
2011) and in testing speech intelligibility (Arslan & Talkin, 1998).

In Chomsky's approach the individual words are still intelligible, but the overall
meaning becomes nonsensical once they are specially formed up into phrases with
selected words. Thus the language is still recognizable. In other approaches that op-
erate on the text, the semantic is destroyed already at the word level: Jabberwocky
sentences (Silva-Pereyra, Conboy, Klarman, & Kuhl, 2007) and nonword phrases
(Rastle, Harrington, & Coltheart, 2002) are a few examples which are mainly driven
by neurolinguistic interests while mono/poly-alphabetic substitution, playfair ci-
pher, and transposition cipher techniques are used in cryptography (Van Tassel,

1Oxford online dictionary: http://www.oxforddictionaries.com.

http://www.oxforddictionaries.com
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1969; Gardner, 1984; Bennett, 2004; Vatsa, Mohan, & Vatsa, 2012).

Table 2.1: Categorization of gibberish operators

Text
Sentence
Level

Chomsky sentence �Colorless green ideas sleep
furiously�

Word
Level

Jabber Wocky sentence, pseudo words � nonwords
- logatomes, cryptography, scat singing

Speech
Cue
Masking

Low-pass �ltering, randomized content splicing,
backward speech, sine-wave synthesis,
spearcon synthesis

Cue
Manipulating

Utilization of speech synthesis technologies

The approaches that work directly on the speech signal can be generally categorized
under two main strategies: cue/content masking and cue/content manipulation via

synthesis (Banse & Scherer, 1996; K. Scherer, 2003). The core procedure in both
of these approaches is to systematically manipulate or vary the acoustics cues so
that the e�ect of paralinguistic aspects, such as vocal parameters, on emotions or
on speaker attitudes can be studied (K. Scherer, 2003).

Cue/content masking approaches are usually applied on the speech signal and
the verbal cues are masked, distorted or removed from these vocalizations. Some
examples of this approach include: low-pass �ltering (Friend, 2000; Knoll, Uther,
& Costall, 2009; Snel & Cullen, 2013), randomized content-splicing (K. Scherer,
1971; Teshigawara, Amir, Amir, Wlosko, & Avivi, 2007), reiterant speech (Friend,
2000), backward speech (Johnson, Emde, Scherer, & Klinnert, 1986; K. Scherer
& Ekman, 1982), sinewave synthesis (Remez et al., 1981; Remez & Rubin, 1993;
Barker & Cooke, 1999) and more recently spearcon synthesis (Walker, Nance, &
Lindsay, 2006; Palladino & Walker, 2007). In cue/content masking approaches each
technique removes or distorts di�erent types of acoustic cues from the speech signal
while leaving others unchanged. This way, it is possible to study certain a�ective
information carried by di�erent vocal cues. However, in some of these masking
techniques it is still possible to recognize the lexical content to a degree (Remez
et al., 1981; K. Scherer, 1971; K. Scherer et al., 1972), such as in randomized splicing.

Cue manipulation via synthesis approaches basically utilize speech synthesis
technologies to parameterize speech that then allows for systematic manipulation
of the vocal parameters. As a result, the relative e�ect of these manipulation on
people's a�ect interpretation can be studied (K. Scherer, 2003). An early example
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of this approach is from (K. Scherer & Oshinsky, 1977), who used a MOOG synthe-
sizer to create concatenated tones of sounds that were designed to resemble both
sentence-like utterances as well as musical melodies, by speci�cally manipulating the
pitch, rhythm, amplitude contour, timbre and tempo of tones. More recently, the use
of speech synthesisers has become popular as re�ected by the large number of pub-
lications on the subject (e.g., Cahn, 1990; Murray & Arnott, 1995, 1996; Burkhardt
& Sendlmeier, 2000; Laukka, 2005; Schröder, 2001, 2003b; Schröder, Burkhardt,
& Krstulovic, 2010). Although these techniques are not directly used to eliminate
semantic information, semantically-anomalous pseudo-phrases such as Chomsky
(1956) sentences, semantically neutral sentences (Burkhardt & Sendlmeier, 2000)
or gibberish sentences (Oudeyer, 2003; Yilmazyildiz, 2006; Yilmazyildiz, Latacz,
Mattheyses, & Verhelst, 2010) are synthesized in some studies to study emotion in
speech without being a�ected by the linguistic content.

All these techniques had their places since very early years in the literature.
Together with the advancements on robotic industry, attempts to utilize them in
HRI studies have only been made in the last decade.

One of the earliest examples of gibberish-like speech developed for HRI pur-
poses was from Breazeal (2000, 2002) in the form of babbling vocalizations for the
robot Kismet. She created utterances as strings of various lengths by randomly
combining prede�ned syllable structures, each containing random vowels and con-
sonant phonemes. These strings were then synthesized with a commercial formant
speech synthesizer (DECtalk). The parameters of the synthesizer (only the ones
that have a global in�uence on the speech signal: voice quality, speech rate, pitch
range, average pitch, intensity and the global pitch contour) were altered to convey
a�ect, depending on Cahn's (Cahn, 1990) vocal a�ect parameter mapping. One
single �xed mapping was used per each emotional quality of anger, disgust, fear,
happiness, sadness, surprise and neutral. The system was then evaluated both
by analyzing the acoustic features of the synthesized speech with respect to the
acoustic correlates of emotion and by a perception experiment with human listeners.
The acoustic analysis revealed a distinct pro�le for each emotion. Human listeners
achieved about 60% overall recognition accuracy, with fear having the lowest
recognition rate of 25%. The confusion occurred mostly between the emotion labels
having similar characteristics such as fear and surprise (both share high arousal)
and disgust, anger and sadness (sharing negative valence). These results revealed
that confusions commonly seen with natural language also occurred similarly with
gibberish speech.

Later, Oudeyer (2003) aimed at generating computationally inexpensive, exagger-
ated cartoon-like emotional speech by using simple algorithms and by controlling
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as few parameters as possible. Oudeyer generated utterance strings that were
composed of words with various lengths, but each containing a combination of open
syllables of either CV or CCV type (C = consonant, V = vowel). As opposed to
Breazeal, he synthesized the strings with the MBROLA speech synthesizer (Dutoit
& Leich, 1993) based on a concatenative synthesis method. MBROLA received the
following information: the strings to be synthesized, the duration and mean pitch
of each phoneme and the stressed syllables. By altering mean & max pitch, pitch
variation, mean duration, duration variation, accent probability, last word accent
and contour values, this system was able to convey �ve emotional states: anger,
calmness, comfort, happiness and sadness. The system was evaluated with a set
of two listening experiments with human subjects: unsupervised and supervised
tests (in the supervised test an example of each emotion with their labels was
provided to the listeners prior to the test samples). The total recognition accuracy
was about 57% for the unsupervised test and about 77% for the supervised test.
Much better accuracies were achieved once the calmness/neutral a�ect category
was removed in another experiment set (75% and 89% for unsupervised and super-
vised, respectively). In the unsupervised set, confusion occurred about valence for
aroused emotion labels (between anger and happiness). It can be seen that when
the users are supervised, utilizing examples of each a�ect category, eye catching
improvements on decoding can be achieved.

Yet again, based on concatenative text-to-speech (TTS) solutions, Németh, Olaszy,
and Csapó (2011) developed an auditory emotional and intentional state represen-
tation scheme. In this study they introduced the notion of �spemoticons (speech
based emotions)� as an alternative to earcons (Blattner, Sumikawa, & Greenberg,
1989) and auditory icons (Gaver, 1986) in human-computer user interfaces. Spe-
moticons are obtained by modifying the intensity, pitch, and time structure of the
Pro�vox TTS synthesizer (Olaszy et al., 2000) that uses diphones (CV, VC, VV,
CC) and triphones (CVC) for speech generation. First, basic sound from a text-like
character sequence is synthesized and then the prosodic modi�cation is applied to
have the �nal character of the sound, by the interactive TTS modi�cation tool. The
generated sound samples were evaluated with a perceptual test and the participants
were asked to choose one of the possible 7 emotional categories for each sound
sample: positive emotion, negative action, con�ict, bad mood and its consequence,
warning/anxiety, positive evaluation/commendation. After eliminating the most
confused sounds, 9 samples were shortlisted as representatives of negative and
positive categories. In this study no validation tests were performed that evaluate
the perception of the spemoticons by human subjects.

Di�erently in (Yilmazyildiz, Mattheyses, Patsis, & Verhelst, 2006; Yilmazyildiz,
2006), a concatenative system based on a prosody transplantation technique was



2.3. A�ective interaction with SFUs in social HRI: an overview 19

developed to convey a�ect, in which the speech waveform was directly modi�ed to
to create gibberish speech. To convey the required a�ect, the system �rst selected a
prosodic template from the database of the corresponding emotion. Then a carrier
utterance having the same syllabic structure as the template was created from a
neutral speech database by concatenating speech segments of various lengths. The
pitch and timing structure of the expressive prosodic template was then copied on
the neutral gibberish carrier utterance to produce the required a�ect. The listening
test with human subjects revealed about 45% recognition accuracy for anger, fear,
happiness and sadness. The biggest confusion occurred between anger and neutral,
and also between fear and neutral. The lack of voice quality transplantation,
together with the relatively poor quality of the database from which the prosodic
templates were selected had a negative impact on the synthesized a�ect samples.
When the listener was made familiar with the synthesized GS utterances (by
presenting neutral GS samples), the synthesised emotions were recognised with
more accuracy. This gives indications on a potential improvement in decoding an
agents' emotion gradually with time.

All these studies have implemented and evaluated di�erent methods and tech-
niques of synthesizing a�ective GS, without evaluating how natural the generated
synthetic speech was. Considering the importance of the naturalness of the gener-
ated speech, especially in social HRI, this was a gap. Addressing this, in Chapter 3
of this dissertation, the e�ectiveness of gibberish speech compared to semantically
neutral or multiple levels of semantically charged speech in evoking the intended
emotion was investigated, while also researching how natural the synthetic speech
generated out of gibberish text strings would sound. Gibberish text was created
by removing the semantics of an existing intelligible text in a certain language,
instead of randomly creating it from scratch as did Breazeal and Oudeyer (Breazeal,
2000, 2002; Oudeyer, 2003). The semantics of an existing text in a language was
destroyed by replacing the vowel nuclei of the text using a weighted swapping
mechanism in accordance with their natural distribution in the same language. The
generated gibberish text was then synthesized into speech by using TTS engines,
which resulted in gibberish speech that resembles an unrecognized natural language,
as intended. This result not only highlights the naturalness of the new gibberish
language but also shows the potential of creating language speci�c gibberish. In
the next step, the recognition of emotions from a gibberish language was experi-
mented by synthesizing gibberish text with an open source emotional TTS system,
�EmoSpeak�, of Mary TTS synthesizer (Schröder, 2003b, 2003a) in comparison with
supporting, confusing and neutral semantic samples. This was tested in a listening
test with human subjects by using two emotion categories: happiness and sadness.
It was found that with gibberish speech it is still possible to express emotions as
e�ectively as with semantically neutral speech.
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During these studies, it was highlighted that, once the gibberish text was fed
into a TTS engine, the resulting a�ect strongly depended on the TTS engine
quality. Also the voice quality of the emotions was not fully transmitted to the
synthesized speech. This motivated the study in Chapter 4 of this thesis, to go for
a data-driven method that starts with a high-quality emotion database. For this,
various gibberish texts were created by replacing the vowel nuclei and consonant
clusters of dialogue text scripts in accordance with their natural probability distri-
bution in English and Dutch, respectively, and a voice actor portraying the basic
emotions (anger, disgust, fear, happiness, sadness, surprise) and neutral speech,
while vocalizing these gibberish text scripts, was recorded. Listening tests revealed
about 81% recognition accuracy. This clearly high decoding accuracy, in compar-
ison to earlier results in the �eld, strengthens the argument on the importance
of voice quality and high-quality databases in a�ect expression. For generating
more variations of the recorded gibberish utterances, a concatenative technique for
swapping the units of an utterance with other units from the database of the re-
lated emotion was developedwhich will be described in Chapter 5 of this dissertation.

As with human-human interaction, the emotional information exchange with
robots takes place on di�erent layers of multi-modal interaction, in contrast to
uni-modal interaction. Thus, the quality of the emotion decoding on the user side
can be seen as a combined factor of the success in auditory, facial and gestural
a�ect expression allowed by the a�ordances of the robots.

In respect to this, a multi-modal evaluation study that will be elaborated in
Section 6.3 was performed. Speci�cally, it was investigated whether speech without
semantic meaning can contribute positively or negatively to the emotion expression
of robotic agents. Three layers of modalities are used in this study: auditory, facial
and audio-visual. GS samples (conveying anger, disgust, fear, happiness, sadness
and surprise) were thus either played alone (audio condition), or combined with
facial expressions (audio-visual condition) in the robot Probo (Saldien, Goris,
Yilmazyildiz, Verhelst, & Lefeber, 2008) to children subjects. It was found that
children decoded the emotions of Probo from facial cues only with an accuracy of
42% and the usage of GS in combination with the facial expressions signi�cantly
increased the accuracy to 71%. This shows that GS helped resolving the ambiguities
and confusions in facial expressions signi�cantly. Later, in section 5.3 the relation
between the voice characteristics and the robot morphology is also explored. Start-
ing from the base utterances containing neutral, happiness and sadness gibberish
speech samples, low and high-pitched samples were designed by time-scaling and
resampling techniques that provided global spectral shifts. Subjects then evaluated
the appropriateness of these utterances across two di�erent robot platforms (Probo
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- high volume animal-like green robot with a fur and Nao - low volume human-like
gray robot with a plastic cover). The results show a clear relation between the
robot morphology and the appropriate voice pitch. The high volume robot Probo
was related more with the lower pitched voices while for the low volume Nao it
were the higher pitched voices.

GS in multi-modal settings provides an important contribution to social HRI,
as a step towards bringing the emotional expression much closer to the way it is
seen in real-life. An additional step along the same line is employing GS in more
real-life scenarios, such as in contextual settings, and evaluating whether there
would be perceptual changes in interpreting GS.

In this respect, Chao and Thomaz (2013) utilized GS to evaluate another so-
cial aspect in HRI: turn taking during multi-modal interaction. They generated
gibberish phrases by sampling random strings of phonemes each lasting 1�5 seconds
in duration. The phrases were grouped by the prosodic endings expressing ellipsis,
exclamation, interrogation, and statement. Their evaluation required subjects to
interact with their robot Simon in a natural manner, and so they told the subjects
that their task was to teach the robot about a variety of di�erent objects. In reality,
the robot did not do any learning, however; this request was used to evoke natural
social behaviour from the subjects. In turn, the robot exhibited similar natural
social cues, making both visual gestures and audible vocalisations whose timing and
orchestration was in�uenced by the subject's behaviour. In order to avoid having to
implement an NLP system (which, if it failed, could have had adverse consequences
on interactions), they implemented a GS system in the robot in the same way as
Breazeal (2002).

In Section 6.5 of this dissertation, another example of a real-life scenario de-
sign in a child-robot interaction study will be presented. Each child watched
selected emotionally rich short animation movie clips together with the Nao robot,
sitting next to each other. At the end of the clips, the robot communicated its
emotion to the child in an a�ective gibberish speech and the child had to rate the
recognized emotion on valence and arousal dimensions using the Self-Assessment
Manikin (SAM) measurement tool (Bradley & Lang, 1994). There were two di�erent
robot pro�les: having a congruent or a contradictory emotion with the dominant
emotion in the movie clips and the children could mostly perceive the intended
a�ective information from the gibberish speech generated by the robot.
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2.3.2 Musical utterances

Together with the advancements in sound-producing capability of computing sys-
tems, the �eld of computer music has evolved signi�cantly. The expressive nature
of music has thus started being used as a more structural way of communication.
Music has both simple and complex structures that can be utilized according to
the needs. In the domain of human-computer interaction, there have been studies
using music to debug software programs (Vickers & Alty, 2002) or to communicate
graphical information for blind people (Alty, Rigas, & Vickers, 2005). Expressing
a�ect is already in the nature of music. Music is basically coding the emotions,
feelings and sensations of the composer by means of a musical score to be decoded
by the listeners. Thus by modifying parameters such as pitch, rhythm, dynamics
and timbre, a�ect can be encoded in the musical piece. This has similarities with
expressing emotions with speech as discussed in (Juslin & Laukka, 2003) and it
has even been hypothesized that music and speech has the same psychological
evolutionary root (K. Scherer, 1995; Brown, 2000).

In a similar manner that Text-To-Speech technology has been utilised to cre-
ate GS, some authors have drawn upon insights from musicology and musical
theory to create utterance-like non-speech. Motivations for this come from the
extensive body of research exploring how a�ect can be conveyed through music in
general, as well as from the considerable overlap that exists between music and
a�ective displays through the singing voice (see Juslin and Laukka (2003) for an
extensive review of this).

Johannsen (2001, 2002, 2004) provides what is perhaps the earliest example of
the use of MUs in a service robot to communicate intended directional motion
trajectories (e.g. left, right, forward, backward), functional states (e.g. carrying a
heavy load, waiting, low battery and near an obstacle) as well as the degree of
urgency. The application scenario in this case was the use of a robot moving within
a supermarket setting. Musical theory and notation was used as the basis upon
which the utterances were designed. Subjects were tested for their comprehension
and recall of learned sound/meaning associations. Following this, subjects were
asked to draw out the trajectory of a simulated robot based upon the sounds that
it made. In this example, the utility of the utterances has very much been focused
on the communication of simple and very functional information about the robot
(i.e. the robot is carrying something heavy, or the robot is about to turn left).

Besides using musical theory as a foundation for creating utterances, technologies
developed for the music industry are also commonly used. For example, Jee et al.
(E.-S. Jee, Kim, Park, & Lee, 2007; E.-S. Jee, Park, Kim, & Kobayashi, 2009) have
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used musical notation, theory and computer-synthesisers to hand create a small
collection of utterances that were designed to have a particular a�ective charge
(happy, sad, fear and dislike) through the variation of acoustic features of tempo,
key, pitch, melody, harmony, rhythm and volume. Subjects were then asked to per-
form three tasks to investigate the in�uence of the emotion stimulated by composed
music and compared with the in�uence by robot's facial expression. Firstly, listen
to each of the utterances and rate their emotion stimulated by composed music on
a �ve point scale (very strong, strong, moderate, weak, never). Secondly, they were
shown a cartoon face of a robot with an expression matching each of the labels,
and again were asked to rate their stimulated emotion on a �ve point scale. Finally,
the subjects were presented with both the face and utterance for a given label and
asked to rate their feelings on a �ve point scale. Their results showed that both the
utterances and facial expressions alone 40% - 70% of the subjects reported strong
happy, sad, fear or dislike, while when combined together, the report of the strong
feeling increased to 80% -90%. This shows that by combining the two modalities,
the subjects feel a more intense emotion than when the face and utterances were
presented individually, a �nding that is in agreement with those of the multi-modal
study which will be discussed in Section 6.3.

E. Jee, Jeong, Kim, and Kobayashi (2010) furthered this work by creating �ve
sounds that were designed to convey particular intentions (a�rmation, denial,
encouragement, introduction, question), and three emotions (happy, sad, shy),
again using musical theory and computer synthesisers to change the intonation,
pitch range and timbre of the utterances. Subjects were then presented with each
of the utterances and again asked to rate their feeling on a �ve point scale (very
strong, strong, moderate, weak, never). Their results showed that more than 55% of
the subjects reported that the musical sounds developed were su�cient to express
intended intentions and more than 8O% of the subjects thought that the developed
sounds were su�cient to express intended emotions. That said, what these examples
do demonstrate is that using this music inspired approach also has potential utility.

Ayesh (2006, 2009) took inspiration and insights from the world of musicology
but also from natural language. He developed an algorithm that allows a robot
to create, on the �y, an arti�cial �language� for emotional interaction. He created
a syntactical de�nition of a musical language (Musical Language for Emotional
Interaction between Robots - MLEIR) that is capable of communicating emotions
for animal-like robots. This was implemented on a Lego robot to express urgency,
stress, excitement, calm and fear based on a pet dog's observed behaviours. He
argued that the mixture of these feelings leads to portrayals of di�erent emotional
states (for example, an excited and stressed robot demonstrates the feeling of anger,
or the combination of stress and urgency crystallize into fear). As no human-based
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evaluations were carried out, the system's ability to accurately convey a desired
a�ective colouring is unclear.

Similarly, Esnaola and Smithers (2005) also developed a �language� based upon
musical theory, which can be whistled or played on simple musical instruments.
They chose to use frequencies out of the human speech and singing ranges (between
1046.52 Hz (note C) and 2637 Hz (note E)) to avoid confusion when people are
talking and communicating with the robot. They created an alphabet out of 10
musical notes from which then they created words (noun, verb, adverb and inter-
jections) with pre-de�ned meanings that then constituted phrases. The musical
language requires to learn a melody or to use an interface (PDA, mobile phone) to
generate it, which can be considered as cumbersome. However, they argue that the
learning of a melody can be performed naturally by humans. Furthermore, they
state that with only a little learning, recognition and thus communication is much
more robust than the use of spoken natural languages in noisy environments.

2.3.3 Non-linguistic utterances

Non-speech like sounds have been used as a means of feedback during human-
machine interaction for quite some time now. For example, e�orts in conveying
information through sound dates back to the 19th century with the inventions of
telephone in 1876, phonograph in 1877 and radiotelegraphy in 1895. With these
inventions, transformation of sound waves into electric signals, and vice versa,
came to life (Dombois & Eckel, 2011) which has then driven the techniques and
technologies to register and display sound. Years later the terms that are used
today to describe the information representation started to be introduced one after
another: soni�cation, auditory icons, earcons, and now, Non-Linguistic Utterances.

Soni�cation is the technique of rendering sound in response to data and inter-
actions (Hermann, Hunt, & Neuho�, 2011). This technique makes use of non-speech
sounds/audio to convey information from non-audio mediums into the audio
medium. It is primarily used as a means to perceptualise an input data stream.
A prominent example of this is a Geiger counter, which conveys the level of radio
activity present in an environment through the frequency of clicking.

Auditory Icons (Gaver, 1986) are sounds that are designed to resemble the
sounds associated with real-world objects and actions. Thus, they have a semantic
connection to the physical events that they represent, and as such may be consid-
ered as auditory representations of �visual� icons. They are created by mapping
events that occur in a computer-based world into events occurring in the real world.
Gaver (1986) proposed three categories of auditory icon based on their degree
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of arbitrariness: symbolic, metaphorical and nomic. Symbolic icons draw their
meaning from social conventions (e.g. the siren of an ambulance) and thus can be
di�cult to learn if one is not aware of the social conventions. Metaphoric icons hold
strong similarities with the action of events they represent (e.g. a falling pitch is
associated with a reduction in the size or altitude of an object). Finally, nomic icons
are based upon sounds that are created due to physical causation (e.g. the sound
of a paper being thrown into a rubbish bin when deleting �les on a computer system).

Earcons (Blattner et al., 1989) are brief, structured and abstract synthetic sound
patterns that are used in many modern technologies such as computers, games
consoles and smart-phones to represent a speci�c item, event, meaning, state or
label. For example, the sounds associated with a computer starting up or shutting
down, or when an error occurs. Due to the abstract nature of these sounds, their
relation to their meaning is something that must be learnt by users, which is one
of the drawbacks in comparison to Auditory Icons (Walker et al., 2006; Dingler,
Lindsay, & Walker, 2008).

While these three strategies for acoustic communication are now commonplace
in modern day Human-Computer Interaction, we draw an important distinction
between them and NLUs, with this being their use as social cues.

Similarly to GS, the roots of NLUs are rather old and are certainly not in
the world of robotics. NLUs, like GS, have a small history in the �eld of psychol-
ogy, where they have also been used as a means to explore how a�ect may be
communicated through acoustic signals. For example, K. Scherer et al. (1972) used
tones to produce acoustic utterances to systematically explore what minimal cues
were needed within an acoustic signal to convey a�ect. However, as technological
developments in speech synthesis technologies improved, the use of such NLUs in
this respect has ultimately been limited. On the other hand, the emergence of the
social robot has lead to the desire to display softer elements of social interactions,
such as positive or negative attitudes and a�ect.

For example, Komatsu (2005) explored how utterances can be designed in or-
der to convey either positive or negative attitudes, and agreement or disagreement,
on the robot's part. It was found that utterances with rising frequency modulations
were commonly rated as positive or expressing agreement, while utterances with a
falling frequency modulation conveyed a negative attitude. These can be considered
as very iconic sounds (e.g. earcons) as similar types of sound are commonly used
in everyday technologies such as mobile phones, computer programs and even
computer games, as a means to provide feedback on whether something positive or
negative has happened.
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Read and Belpaeme (2012) investigated how young children interpret NLUs,
which had no musical in�uence or inspiration. In their experiment, children listened
to a broad variety of NLUs and a�ectively rated them using a facial gesture tool,
the A�ectButton (Broekens & Brinkman, 2013). Utterance synthesis was achieved
using the free, open-source real-time computer music synthesizer, SuperCollider
(McCartney, 2002). Similarly to K. Scherer et al. (1972), the goal was to explore if
particular prosodic arrangements were more robust at conveying a�ect than others.
Their results revealed interesting insights, namely that children readily see a�ect
in NLUs made by robots, and that their interpretations are not subtle. In their
own words, the robot is either happy, sad, scared or angry. Moreover, they found
that children were not coherent in their interpretations: children provided di�erent
interpretations when rating the same utterances.

Following on from these �ndings, Read and Belpaeme (2013) have found that
adults' a�ective interpretations of NLUs are subject to Categorical Perception. The
results of their experiment conducted with adults revealed that indeed a�ective
interpretations of NLUs were drawn to basic a�ect prototypes, showing that subtle
changes in acoustic properties of NLU did not result in subtle changes in a�ective
interpretation. While other studies have been focused upon which di�erent a�ective
states SFUs can be portrayed to people, this study was focused upon understanding
what the landscape of the transition between di�erent a�ective interpretations
looks like.

Schwent and Arras (2014) have taken this further with their robot Daryl. They
developed an architecture for sonic human-robot interaction that allows robotic
NLUs to be generated and synthesized in real time as the robot interacts with
the environment. Also using SuperCollider they create complex utterances inspired
by natural language comprised of simple sounds that are concatenated in a hi-
erarchical manner that is analogous to the structure of natural language. With
this architecture they explored how the physical social cues such as head, body
and ear pose may be aligned with the parameters of their utterances in order to
convey a particularly a�ective state convincingly. Furthermore, they show that the
modulation of utterances can be controlled through the robot's perceptual inputs.
Speci�cally they have used information regarding inter-personal distance between
a human and Daryl to produce real-time, reactive sonic feedback on peoples'
proximity to the robot.

Recognising that the acoustic properties of utterances is not the only thing
that can impact how people perceive and interpret robotic utterances, there have
also been e�orts directed at exploring the tri-directional relationship between
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utterances made by a robot, the type of robot embodiment, and peoples' interpre-
tation of these utterances. As robots come in many shapes and sizes it has been
deemed important to understand that there is an important relationship between
the physical appearance of a robot, and the auditory behaviour and characteristics
that it exhibits.

Komatsu and Yamada (2007, 2008, 2011) have investigated how di�erent agent
embodiments would impact how the same utterances were interpreted. Utterances
consisting of simple tones with either increasing or decreasing pitch were embodied
in a PC, an Aibo robot, and a mobile robot made of Lego. In their experiment,
subjects were presented with each of the three embodiments, and asked to rate
how positive or negative they thought the utterances were. Their results showed
that when the utterances were made by the PC, people showed a high degree
of accuracy in interpreting the utterances, while this was not the case when the
utterances were made by the Aibo and Lego robots. More speci�cally, they found
that subjects struggled to correctly identify the positive utterances as positive,
while their identi�cation of the negative utterances remained high.

Read and Belpaeme (2010) investigated whether the morphology of a robot
impacts how appropriate the utterances it makes are. They conducted an experi-
ment where both a humanoid robot and an animal like robot made di�erent types
of utterances (human-like, animal-like and NLUs). Subjects were asked to indicate
whether they thought that the di�erent robot-utterance pairs were appropriate.
They found that people preferred it when a humanoid robot makes human-like
utterances, over animal-like utterances, and visa-versa for the animal-like robot.
Furthermore, they found that NLUs were deemed as an acceptable utterance for
the humanoid robot to make.

Di�erent embodiments a�ord di�erent forms of visual a�ective displays. For
example, humanoid robots are able to make gestural displays with their limbs (e.g.
Beck et al., 2013), robots with actuated (Breazeal, 2002; Ribeiro & Paiva, 2012;
Trovato et al., 2013) or projected (e.g. Delaunay, de Gree�, & Belpaeme, 2010)
faces are able to produce facial gestures with varying degrees of complexity and
even simple wheeled robots can convey a�ect through attached limbs such as tails
(Singh & Young, 2012) and through locomotion alone (Saerbeck & Bartneck, 2010).
Such robots a�ord multi-modal interaction, and as such, this can introduce the
complexity of behaviour synchronization: when to make a�ective displays, and how
to synchronize these across di�erent modalities.

Bramas, Kim, and Kwon (2008) sought to investigate this and developed a
sound system to be used in synchrony with the main behaviour generation in order
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to increase the impact of gestures made by a robot. Their system modi�ed acoustic
properties such as the volume, and prosody of utterances as well as applying e�ects
such as echo and �angers. Rather than gearing their system toward conveying
particular a�ective states, their system focuses upon the problem of when a robot
should make utterances, and how this should be synchronized with other modalities
such as gestures to emphasize emotional and gestural impact.

As with human-human Interaction, social cues used by robots should not be
studied and explored as a single modality or in isolation. There are many factors
that impact how people interpret social cues, such as the context and situation in
which they are used, which in turn can also impact how people behave as a result.
This has also been an emerging aspect of HRI in general that has begun to receive
attention.

Komatsu et al. (Komatsu, Yamada, Kobayashi, Funakoshi, & Nakano, 2010)
explored how NLUs used by a robot can bias how a person performed a task.
More speci�cally, the setup involved having a subject play a treasure hunting game
on a computer. The game showed a strait road, with hills appearing along the
way. Under one of the hills a golden coin was hidden, and subjects had to guess
under which one. Sitting next to the subjects was a Lego robot that told subjects
which hill the coin was under, and then made an utterance with either a �at pitch
contour or a falling pitch contour as a means of indicating how con�dent the robot
was in its predication. Their results showed that when the robot's predication
was accompanied by an utterance with a falling pitch contour, they rejected the
predication signi�cantly more than when an utterance with a �at pitch contour was
used. In essence, the pitch modulation had a direct impact over the perception of
how con�dent the robot was about the information that it gave.

Extending this work into communicating the level of con�dence that an agent
has about information that it presents to people, Komatsu and Kobayashi (2012)
conducted a further experiment to see whether the use of NLUs can mitigate the
potential adverse e�ects that the presentation of incorrect information may have.
Comparing NLUs and natural language, their results show that when the computer
provided completely correct information, natural language was preferred over the
use of NLUs. However, in situations where the agent's con�dence in the information
that it was providing was misjudged, and thus the agent was shown to be con�dent
about information that was ultimately incorrect, NLUs were the preferred method
of expression regarding the agents con�dence. Their argument in this work is that
currently computers and robots are not perfect - they make mistakes, and that when
agents use natural language to communicate, this sets a high expectation level, and
when this expectation is violated, this evokes an adverse reaction in people. This
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is a tangible example of how SFUs may be used to manage the expectations that
people have of robots.

With respect to exploring how situational context impacts the perception of
NLUs, Read and Belpaeme (2014b) conducted a video based experiment where
subjects were shown videos where a robot was subject to an action (slapped, �icked
in the face, having its eyes covered, being stroked on the head, and being kissed on
the head), and the robot either made no utterance, a positive NLU or a negative
NLU. Subjects were asked to view each video and provide a rating as to how they
thought the robot felt based upon what happened in the video. The results showed
that subjects' interpretations were heavily biased by the context in which they were
made. Put plainly, two di�erent NLUs had the same interpretation when made
within a given context, and the same NLU would yield di�erent interpretations
when presented in di�erent contexts. Their results also showed a subtle e�ect
whereby when the perceived valence of the action/context was aligned with the
perceived valence of the NLU, subjects' interpretations were more intense and
extreme than when the NLU and context were misaligned.

2.3.4 Paralinguistic utterances

The �rst use of �paralinguistics� came in the mid last century restricted in
the human-human communication domain. Since then, the de�nition and the
subject area varied among the researchers. In very broad de�nition, �paralinguis-
tic/paralanguage� corresponds to the study of vocal (beyond verbal message or
speech) and non-vocal signals (gestures, postures, etc.) and in a narrow de�nition
the non-vocal signals are excluded (Schuller & Batliner, 2014). The examples of
broad de�nition include body language, gestures, facial expressions and the vocal
factors of speech while the examples of the narrow de�nition include only the vocal
factors of speech. The paralinguistic vocal factors can come as modulated/embedded
onto the linguistic chains (such as pitch and voice quality) or as stand-alone vocal

events (such as �lled pauses and vocal outbursts).

The modulated/embedded form of paralinguistic is already at the core of espe-
cially Gibberish Speech as the major part of a�ect expression is realized with such
aspects of paralinguistic in GS. This also gave inspirations to NLUs and MUs: as
such they all integrate some form of paralinguistic aspects (such as pitch) in their
nature. Thus, modulated/embedded form of paralinguistic is not the subject of
this section as they are already dealt with implicitly (and sometimes explicitly) in
earlier SFU types.

Stand-alone forms on the other hand, have not been covered yet and will be
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the focus of this section as another SFU category in HRI. In essence, Paralinguistic
Utterances (PUs) in this section stands for the stand-alone paralinguistic forms.

In human-robot/agent interaction, the amount of studies regarding PUs in this re-
spect is very limited. The speci�c types of PUs in these studies involve back-channel
signals (Ward, 1996), pause �llers and a�ect bursts (K. R. Scherer, 1994). Schröder
(2003a) provided a detailed experimental study of a�ect bursts and showed that
a�ect bursts are highly recognizable (81% when presented as isolated audio) and
can convey a number of di�erent emotion categories reliably. He envisioned that
in the medium term, the use of PUs in this respect might become interesting for
application in emotion expression in the �eld of conversational agents and indeed it
has been getting more attention recently (Schuller & Batliner, 2014).

For example, Prendinger (Prendinger, Becker, & Ishizuka, 2006) investigated
the impact of a virtual agent's a�ective and empathetic behaviour on the user-side
in a game setup. PUs in the form of grunts and moans were used as the vocal
modality supporting the emotions in the facial expressions. Their results suggested
more general �ndings about a�ective interaction, as they found that the absence of
the agent's display of negative emotions is conceived as arousing or stress-inducing.

Becker-Asano et al. (Becker-Asano & Ishiguro, 2009; Becker-Asano, Kanda, Ishi, &
Ishiguro, 2011) studied one certain type of PUs which is �laughter�. They explored
the naturalness of various laughter for two humanoid robots with and without
situational context. The laughter which seemed to �t both robots in a context (in
response to a joke), was not found to be �tting any of the robots without a context.
This is yet another example on the importance of context in HRI and in SFUs.
Additionally, the morphology of the robots on the perceived naturalness of the
samples didn't show any major e�ect. They speculate that any real di�erences for
morphologies could probably be dominated by the major di�erences in the laughter
samples themselves. Of course laughter is a very speci�c and distinct type of PUs
and as Trouvain and Schröder (2004) suggest it requires a careful design/modelling,
especially on the intensity, for an intended level of social bounding e�ect.

More recently, Schröder et al. (2012) utilized PUs in the form of backchannel
signals on the sensitive arti�cial listener (SAL) system. With SAL the aim was to
build an autonomous social conversational agent that focuses on emotional and
non-verbal behaviour (both gestural and vocal) and thus reduces the need for
spoken language understanding, task modelling, etc. The SAL system analyses
the non-verbal cues of the interaction partner and replies back using back-channel
signals such as �huh, wow�, smiles and head nods along with some prede�ned phrase
scripts. The results revealed that SAL with expressive backchannel cues caused the
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interaction partner to show more behavioural engagement. Similarly, Kobayashi
and Fujie (2013) also implemented a conversation protocol utilizing back-channel
paralinguistic information for human-robot interaction.

It should be noted that studies regarding PUs are in the stage of exploring
their potential and are not (yet) intended to be utilized in vocal/sonic synthesizers
(yet there exists some exceptions such as (Niewiadomski et al., 2013)). Moreover,
their usage with robotic agents is very limited. For these reasons, PU studies will
not be included in the evaluations and analysis in the rest of this chapter.

2.4 Discussion

2.4.1 Summary, evaluations and discussion

Given the above review, it is possible to draw out a number of di�erent observa-
tions and insights regarding the current state of SFU research. This section seeks
to provide a comprehensive summary of the review. To aid in this process, Table
2.4.1 lists all the studies that have been reviewed, outlining a number of di�erent
aspects of the studies that are of interest and hold importance. The studies have
been reviewed in detail and outlined in terms of authors, publication year, SFU
method utilized (GS/MU/NLU), parameters modi�ed, emotions portrayed, and the
evaluation related aspects such as a�ective metric that measured the a�ect recogni-
tion, sample size, participant pro�le (number of subjects, age range, culture), display
medium (isolated audio/robot pictures-videos/embodied robot) and recognition ac-
curacy where applicable.

Display Medium and Embodiment:

While all the studies concern the application domain of social robots, many of the
works reviewed have not employed an actual robotic agent, physical or virtual, as
the display medium during the evaluation process. The issue of whether utterances
are embodied in some agent has important implications on the generality of studies.
Komatsu and Yamada (2007), Read and Belpaeme (2010) as well as the results in
Section 5.3.2 of this thesis, have found that the morphology of a robot's embodiment
has a strong in�uence over peoples' perception of SFUs both with respect to the
inferred a�ective content as well as whether utterances are deemed �appropriate� for
a given morphology. Also, scenarios with embodied robots showed more interaction
(Fridin & Belokopytov, 2014), increased empathy (Seo, Geiskkovitch, Nakane, King,
& Young, 2015) and enjoyment (Leite, Pereira, Martinho, & Paiva, 2008) from
the users. Furthermore, there are important proxemics aspects that need to be
considered also as users are sensitive to these (c.f. Mumm & Mutlu, 2011; Rae,
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Takayama, & Mutlu, 2013; Takayama & Pantofaru, 2009).

The issue of embodiment is essentially a double-edged sword however. While
studies that do not use a real robot as the display medium are able to study
peoples' perception of expressive displays such as SFUs without the bias of em-
bodiment, in the long run, it is unclear whether their �ndings still hold true when
utterances do become embodied. There is a di�culty here however, as robots come
in all shapes and sizes, it is unclear how robots should be characterized and thus
the di�erent embodiments, and the relation to acoustic behaviour be accounted for
and represented quantitatively.

A�ective Portrayals and Parameters Modi�ed:

Concerning the a�ective portrayals, there is no standardization and most of the
time the a�ects studied are driven by the intended applications of the robots
in question. The majority of the studies worked on categorical portrayals (e.g.
happiness, anger, sadness, etc.), while a few of them focused on broader terms such
as positive/negative emotions or used concepts of a�ective dimensions (Cowie &
Cornelius, 2003). The portrayals are achieved through modifying various sound
parameters, which ranges from altering a single parameter to utilizing natural
alterations in human speech production. Among the palette of parameters modi�ed,
pitch and duration were the two most common parameters that were altered almost
in every study to a�ectively charge SFUs. However, when this occurs, an important
assumption is being made: that the utterance is indeed charged in such a manner
that it induces the desired interpretation in the listener.

However, the validity of the method of designing SFUs for particular a�ective
portrayals can be questioned. In some circumstances this is not a valid assumption
to make, as highlighted by Read and Belpaeme (2010). Crucially this requires
prior knowledge and valid information regarding the mapping between the acoustic
features of an utterance and the a�ective interpretation. Where this information
exists, it becomes possible to create an utterance with con�dence that it will induce
a particular interpretation. For example, where already tried and tested technologies
such as TTS are used to create a�ect-laden GS.

In studies in which new synthesizers are evaluated (e.g. Schwent & Arras, 2014)
it is not possible to design utterances with a particular a�ective meaning in
mind as there is no validated a�ective mapping between utterance features and
interpretation. In these cases it is necessary to explore the parameter space of the
synthesizer with the aim to uncover this mapping (such as in Read and Belpaeme
(2012)). However, the drawback is that this requires negotiating an enormously
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large parameter space that is a challenging problem in itself.

A�ective Metrics:

Among the metrics used to evaluate the SFUs, generally either forced choice or a
form of continuous scale measurement tools have been utilized. There are various
advantages and disadvantages on the usage of both metrics.

In most cases when categories are used (in forced choice measurements), sub-
jects are asked to select one of the emotion labels2 that best matches their
interpretation of the utterance. While this selection of labels is simple, intuitive
and relatable to a broad range of subjects from di�erent age groups and cultures,
it does not provide a high resolution with regard to understanding subtle acoustic
di�erences between utterances such as how intense an emotion is.

Continuous scale assessments have been utilized in even more di�erent forms.
These di�erences sometimes occurred in the a�ective dimensions assessed (one or
more a�ective dimensions of valence, arousal, activation used in di�erent studies)
or in the tools that have been employed (some used picture based assessment
such as the Self-Assessment Manikin (SAM) or A�ect Button while some others
utilized numeric Likert Scale). The main advantage of using continuous metrics is
the higher resolution that they a�ord � the data captured is essentially richer in
comparison to nominal data captured from a�ective categories. Moreover, contin-
uous scales also lend themselves to machine learning, which is particularly useful
when attempting to learn a mapping between a desired a�ective interpretation
and the parameters of an utterance. The main drawback however is that a�ective
dimension and continuous scales are often di�cult to explain to naïve subjects,
due to the general abstract nature of the dimensions (Broekens & Brinkman, 2013) .

Apart from these two main evaluation metrics (forced choice and dimensional
measurements), a small number of studies have employed metrics based on observ-

able behavioural change in the subjects. Although this type of assessment is harder
to implement and process (for example, the cumbersome process of video coding
often required to process the data collected), it is encouraged in HRI (and is gaining
more traction as an acceptable method) as it measures the subjects without letting
them being aware of that they are assessed and allows interactions to unfold without
the need to interject interactions in order to perform explicit measurements. This
also provides an experimental setting that is more akin to real-world HRI and thus
increases the ecological validity of the evaluation.

2Usually the �basic emotions� (Ekman & Friesen, 1971) but also varies depending on the appli-
cation intentions of the robots in question.
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Subjects & Stimuli:

The sample size and the number of subjects evaluating these samples also vary
a lot across the studies. Generally, very few utterance samples/stimuli have been
evaluated in subjective tests and sometimes even just one utterance per emotion has
been tested. This partially depends on the number of emotions studied. When the
number increases, the size of the test also increases, which makes the test harder to
complete for the subjects as they have a limited attention span. Thus, the sample
size usually is reduced as a solution. However, the major drawback of this is that it
reduces the degree to which results can be generalized.

The subject sample size used within a study has also been quite varied, rang-
ing from roughly 10 to over 200, with an average of 33. This too leads to issues
surrounding the generalisation of results. Studies that have reported larger subject
sample sizes were online studies that have utilised crowdsourcing methods for HRI
studies (Breazeal, Depalma, Orkin, & Chernova, 2013), but these too come with
their own set of drawbacks.

Recognition Accuracy:

The recognition accuracies, which were mainly derived from the forced choice met-
rics, varied between 45% and 81%. This wide range is mainly due to the techniques
used and parameters modi�ed to produce a�ect-laden utterances of course. How-
ever, the di�erences in utilization of the forced choice metrics in measuring a�ect
also have an in�uence. For example, the inclusion of �I don't know�, �none� or �neu-
tral/calm� option in the choice alternatives has been shown to have a big impact
on the recognition rates (Oudeyer, 2003). The advantage of having this option is
that it reduces the noise in the data in case none of the other answers apply to
the user as well as that it reduces the pressure to give substantive responses felt
by respondents who have no true opinions. However, the pitfall is that no-opinion
options may discourage some respondents from doing the cognitive work necessary
to report the true opinions they do have and thus may prevent the measurement of
some meaningful opinions (Krosnick et al., 2002).

Focus Group & Culture:

It is also noteworthy that the majority of studies have focused on adults for
evaluation and only a select few concerned themselves with child-robot interaction.
Employing children has notable advantages in HRI. Children do not see robots as
mechanical machines, and they readily anthropomorphise robots and maintain the
illusion that they have life-like characteristics (Belpaeme et al., 2013). This has
the advantage that new robots (or �creatures�) with new physical forms and novel
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vocalizations are likely more acceptable in their imaginary world than with adults.
Despite of these potential advantages, the reactions of the children to SFUs are not
fully discovered yet.

Moreover, Child-Robot Interaction is an area that is receiving considerable at-
tention from both academia and industry as it provides an easy entry point for real
world applications for social robotics. As such, there is a very real opportunity to
endow these robots with SFUs and see their use in a wide spectrum of applications.
However, it is vital to understand how the di�erent age groups (and genders)
respond to SFUs in order for their potential to be fully harnessed.

It is also noted that the majority of the studies were performed within cul-
tural settings. Although some of the evaluations were performed with participants
coming from multi-cultural and multi-language backgrounds, no real cross-cultural
analysis (such as in Abelin and Allwood (2000) and Tickle (2000)) have taken place.
As stated before, a potential advantage of SFUs is the fact that they are not bound
to a single language or culture. In natural language, the cultural dependencies
might play an important role in decoding the intentions and emotions (Shochi,
Aubergé, & Rilliard, 2006; Mac, Aubergé, Rilliard, & Castelli, 2010; Burkhardt et
al., 2006). However, it is unknown whether the interpretation of SFUs is similar
across di�erent cultures. Yet Tickle (2000) have investigated common tendencies
in the acoustical correlates of basic emotions across di�erent cultures (American
and Japanese) by using GS samples and found very small di�erences which stands
as �rst indications towards interpretation that GS may indeed not be bounded to
a particular culture in carrying the emotions. However, this is only between two
cultures and needs to be extended. This cross-cultural aspect is an important issue
to address for SFUs, as it will clarify to what degree the already existing research
may be generalized to and utilised in di�erent cultural settings.

2.4.2 Grand challenges, future directions and discussion

In this section, the current �grand challenges� for SFUs are highlighted and dis-
cussed, while some initial approaches are proposed that may be adopted to begin
addressing these challenges. This �eld can be considered to be very much in the
stages of infancy when compared with other areas of HRI. Thus, the motivations
in this section are to outline important aspects that require attention in order for
SFUs to become more integrated with more mainstream HRI research.

Until recently SFU research, recursively went through cycles of the continuous
development of new methods and algorithms for creating and synthesizing utter-
ances, and the need to validate these new methods with respect to their ability to
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convey di�erent a�ective states. The development of new techniques and methods
is certainly bene�cial for the �eld as it keeps in touch with the developments in
the �elds that feed SFU research (e.g. Speech Synthesis). Moreover, it also allows
further exploration to the �sound scape� that SFUs can encompass, as the scope for
di�erent �voices� that SFUs can provide is enormous.

However, a constant cycle of development results in a lack of attention toward
understanding other aspects of SFUs, which are very important for their use in
broader HRI. As such, it can be considered essential that the e�orts into exploring
new methods of synthesizing SFUs go further than just utterance creation, but
also explore their use in scenarios that are more representative of real world HRI.
Essentially, the exploration of the large soundscape holds little value if these
other important aspects of SFUs are not considered. Furthermore, because each
synthesizer is di�erent, it is di�cult to assess whether the results of evaluations
conducted with one synthesizer are general enough to be used to inform the design
of utterances using a di�erent one. Thus, comparison between synthesizers (some-
what similar to Blizzard Challenge3 for speech synthesizers) is required, and as the
number of these grows, this becomes an ever more challenging task.

An extension to the idea of studying SFUs in ways that are representative of
real-world HRI is studying SFUs not as a single modality. Social interaction be-
tween social robots and humans takes place through multi-modal interaction, not
uni-modal interaction. As such, studying SFUs in a uni-modal manner is likely to
produce results and insights that may not hold true when SFUs are used during
multi-modal interaction. Jee et al. (2007) has shown that combining modalities has
important impacts on how people interpret SFUs, which highlights the need to
further study how to use utterances within multi-modal interaction.

Similarly to the need to study SFUs as part of multi-modal interaction, it is
also important to study how people respond to SFUs when used in di�erent
contexts. Real-world social HRI is not context-free. This needs to be highlighted,
as it is something that has generally not been accounted for in the prior research
on SFUs. From Section 2.3 it is clear that many of the previous works have used
an experimental methodology and paradigm within which SFUs were studied
without being embedded into a realistic HRI scenario. While on one hand this
approach allows a baseline metric/value to be obtained, where the utterances
are not biased or confounded by context speci�c elements, the drawback is that
this is not representative of real-world HRI. Thus whether the �ndings from

3Blizzard Challenge has been developed in order to better understand and compare research
techniques in building corpus-based speech synthesizers on the same data. (http://www.synsig
.org/index.php/Blizzard_Challenge)

http://www.synsig.org/index.php/Blizzard_Challenge
http://www.synsig.org/index.php/Blizzard_Challenge
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these experiments would still hold true when SFUs are employed in real-world
HRI needs to be investigated further. For example Komatsu (2012) and Read
(2014b) have both shown that the context in which SFUs are used impacts their
interpretation and the utility that they a�ord. As such, SFU research can ad-
dress this drawback by shifting toward conducting experiments and evaluations in
paradigms and settings that are representative of what real HRI (in the wild) is like.

Another point is that it is unclear how relationships between people and robots
will develop and unfold over time, how robots should be programmed to maintain
engaging interactions with people and how software should be designed to exploit
the opportunities available to adapt to people and learn from these long-term
interactions. With respect to NLUs and GS, one of the main open questions is
whether, through prolonged exposure to SFUs, people will learn to make asso-
ciations between di�erent utterances and their interpreted meanings. In essence,
will coherent understanding of utterances emerge from prolonged exposure to
utterances (will people proclaim that di�erent utterances have clear semantic
meaning associated with them?, i.e. new languages being formed). This is clearly a
question that cannot be answered in the near future as robots are not ubiquitous
enough for the general population to encounter them on a frequent basis in the
real world, and nor does the HRI community understand how to build robots
that remain interesting and engaging enough that people readily desire to interact
with social robots for pro-longed periods of time and over multiple interaction
episodes. Although there are examples, such as Amazon Echo or Google Home,
that are having accelerated adoption in the general population with frequent use,
these current examples are utilizing Natural Language. Whether the results from
the long term interactions with these intelligent personal assistants would hold
true with robotic agents using SFUs is still a question that cannot be answered soon.

Classically, research into a�ective displays through the human voice, as well
as synthetic utterances has adopted an evaluation methodology whereby subjects
are asked to a�ectively rate stimuli using explicit methods (e.g. the SAM, Likert
Scales, The A�ectButton, Categories, etc.) rather than implicit methods (e.g.
physiological responses or behavioural changes). As HRI evaluations become more
complex as representation of real-world HRI scenarios, it is likely that explicit
measurements will no longer be suitable as they demand that subjects attend to
both the interaction that they are part of and at the same time providing a�ective
ratings of what the robot is doing. Komatsu (2012) has provided a very good exam-
ple of this. In order to evaluate whether the NLUs made by their robot were able
to convey di�erent degrees of certainty about whether information provided by the
robot was accurate, they had their subjects play a game where their performance
would depend on how much attention they paid to the utterances made by the
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robot. In this case, the quality of the utterances was not measured through subjects
explicitly reporting whether utterances conveyed con�dence in information, but
rather, through the outcome of the game within which the quality of the utterances
and the subject's interpretation of these played an important implicit role that
impacted the outcome of the game.

2.5 Concluding remarks

In this chapter, research e�orts regarding the �eld of SFU have been reviewed to
present the current state-of-the-art and to provide guidelines for future researchers
considering to utilize SFU in HRI and especially in social HRI. Reviewing the
past research on the �eld, it has been recognized that despite the commonalities
in their objectives regarding social HRI, the auditory interaction modalities other
than natural language were not investigated under a single umbrella. To address
this need, the notion of SFU has been introduced. The studies utilizing various
SFU techniques are grouped under four main categories: Gibberish Speech, Non-
Linguistic Utterances, Musical Utterances and Paralinguistic Utterances.

The review clearly shows that although the underlying methodologies have been
subjects of psychology, linguistics and musicology sciences for a long time, the
SFU research is very young, and especially considering HRI motivated studies, is
established mainly in the last decade. Despite the fact that these HRI motivated
studies are mostly driven by the application intentions of the robots in question, in
many of these studies contextual setting of the HRI is not taken into consideration.
Evaluated within or outside the contextual setting, one of the main value propo-
sitions of SFUs is being language independent. Even though the cross-lingual and
cross-cultural evaluations are rarely performed, the results from these are promising
for language independence.

Just as contextual setting, multimodality is an important but understudied
aspect of HRI. In essence, multimodality is a natural feature of HRI interaction
with gestural, facial, auditory components integrated for a�ective interactions.
The usage of SFUs in multimodal environments is proven to improve the emotion
recognition and thus contribute to better a�ective communication between the
human and robot. Naturally the multimodal expression capability of a robot is
mainly driven by its morphology. In a number of studies, it has been proven that
various morphological characteristics are perceived to have a better �t with certain
SFU types and characteristics. So the selection of the best suited SFU type and
characteristics for a robot's morphology is an important �rst step in successful
multimodal a�ective communication. While there are examples of successful use of
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SFUs in combination with natural language, the alternative approach of combining
multiple SFU types to potentially improve the success of social HRI has not yet
been explored.

Child-robot interaction (CRI) as a subcategory for HRI and the use of SFUs
in CRI is another promising area of research. Children are more familiar with and
more used to a�ective communication using SFUs, because of its frequent use in
cartoons and animation movies, which makes the adaption faster and easier. It is
important to recognize that there has not been signi�cant work done to investigate
how children interpret SFUs, especially when the contextual setting is taken into
consideration.

By introducing the concept of SFUs and bringing together multiple sets of studies
in social HRI which have never been analysed jointly before, this chapter of this
dissertation addresses the need for a comparative study of the existing literature for
SFUs. Considering the short history of this �eld in the context of social HRI, the
already achieved results states a bright future for upcoming research in this space.
With this comparative study, multiple promising but currently understudied areas
of SFUs have been identi�ed as a guideline for future researchers. The highlighted
opportunities for advancements in SFU research may clearly be accelerated further
by the parallel progress in social HRI studies in general.





3 | Semantic-Free Gibberish

Text Generation

3.1 Intoduction

As explained in Section 1.1, this thesis aims at building a framework that allows to
study a�ective human-robot interactions by using vocalizations that do not involve
semantics in natural spoken language, namely semantic-free gibberish speech.

The already built acquaintance of people in a�ective expression through hu-
man voice provides an advantage for gibberish speech versus other SFU types, such
as NLU or MU. The choice of gibberish speech in this thesis rather than other forms
of SFUs is mainly motivated by the assumption that the stronger paralinguistic
cues carried by the gibberish speech (Remez et al., 1981) would help in better
recognition of the intended emotions during the a�ective interaction. This is indeed
also supported by the results of (Zaga, Vries, Spenkelink, Truong, & Evers, 2016)
where they found that children could match the gibberish speech to its intentions
with a better recognition rate than the NLU. Also in the same study, it was seen
that NLUs led to more ambiguity in the interpretation of the intention, which was
also seen in (Read & Belpaeme, 2012).

As a �rst step towards generating semantic-free a�ective gibberish speech, a
semantic destruction strategy is developed. This allows to create semantic-free texts
on which the a�ective charging capabilities and the naturalness evaluations can be
performed.

Several approaches exist to generate gibberish without the semantic content.
As Section 2.3.1 lists out, some of those approaches operate on the text transcrip-
tion and others operate on the speech signal (see Table 2.1). In the HRI domain,
the studies have focused mainly on the cue manipulation via synthesis approaches
operating on the speech signal(Breazeal, 2000, 2002; Oudeyer, 2003; Yilmazyildiz et
al., 2006; Yilmazyildiz, 2006; Németh et al., 2011; Chao & Thomaz, 2013). One of
the earliest examples of gibberish-like language, was from Breazeal (Breazeal, 2000,
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2002) - babbling-like speech for the robot Kismet. She created utterances as strings
of various lengths by randomly combining prede�ned syllable structures, each
containing random vowels and consonant. Similarly, Oudeyer's utterance strings
(Oudeyer, 2003) were composed of words with various lengths, each containing a
combination of open syllables of either CV or CCV type (C = consonant, V = vowel).

Di�erent than the above examples, the approach of constructing semantic-free
utterances described in this chapter, starts with an existing intelligible text in a
given language, instead of randomly creating it from scratch. This approach has the
potential of creating natural language-like gibberish that may evoke the initial lan-
guage. For e�ective use in HRI, the generated speech should be high quality, sound
lively and not repetitive (Oudeyer, 2003). It can be assumed that, the more natural
language-like the resulting semantic-free a�ective speech is the closer it will be to
satisfy being high quality, sounding lively and not being repetitive. At the same
time, considering the limited computational resources robots have, the algorithms
generating the speech should not be computationally heavy. The approach that will
be explained in this chapter aims to serve as a �rst step to achieve these expectations.

As in many implementations of robots, TTS engines are being used for the
auditory output with intelligible speech; the utilization of TTS engines for gen-
erating semantic-free utterances was tested in the experiments outlined in this
chapter.

3.2 Removing the semantic content from the text

Languages consist of ruled combinations of words and words consist of specially
ordered syllables. Syllables are often considered the phonological building blocks of
the words and they usually contain an `onset', a `nucleus' and a `coda'. An example
of a syllable structure is illustrated in Figure 3.1.

`Nucleus' is usually a vowel-like sound where `onset' and `coda' are consonant
clusters. The semantic of a word occurs when these vowel nuclei and consonant
clusters come together in a certain order by following a set of phonotactic rules of a
particular language (e.g. the consonant /q/ is usually followed by the vowel /u/ in
English). When the syllabic constituents are modi�ed, the word and consequently
the sentence looses its meaning.

An obvious modi�cation would consist of randomly interchanging the vowels
and consonants of a word's orthographic representation. However that would
generate strange and hard to pronounce combinations. For example, in English



3.2. Removing the semantic content from the text 47

Figure 3.1: Syllable structure for the �rst syllable of the word "computer".

and Dutch, vowel nuclei are transcribed with one, two and three letters. There are
usually only a few vowel graphemes with one letter transcriptions but they are the
most frequently used ones in the language (see Figure 3.2). Much more vowel nuclei
grapheme sequences exist with two or three letter transcriptions, but these are far
more rarely used. A similar relationship also exists for the frequency distribution of
the consonant clusters. If the word `language' would be transformed into gibberish
by uniform random substitution of vowel nuclei in the orthography of the word, the
result may be something like `lieungeaugie'. Once the consonants are also swapped,
it would likely yield a word like `sphieudweauthrie' which is a very unusual word
(and hard to pronounce).

To avoid such transcriptions, the probabilities of occurrence are calculated for
each graphemic sequence of vowel nuclei and consonant clusters in the original
natural language, which is English or Dutch in this study.

The probability of occurrence of a vowel nucleus vi and a consonant cluster
cj in a given text corpus containing n vowel nuclei V = {v1, v2, ...., vn} and m

consonant clusters C = {c1, c2, ...., cm} can be written as:

P (vi) =
fvi
n∑
i=1

fvi

(3.1)

P (cj) =
fcj
m∑
j=1

fcj

(3.2)
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Figure 3.2: Empirical probability mass distribution of vowel nuclei's grapheme
sequences in English (upper panel) and in Dutch (lower panel).
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in which fvi and fcj represent the number of occurrences, or frequency, of the
vowel nucleus vi and consonant cluster cj , respectively.

For consonant clusters initial, middle and �nal consonant cluster probabilities
are calculated separately. The probability calculations were performed using En-
glish and Dutch texts of approximately 27000 words from a large online text corpus
- Project Gutenberg (Hart, 1971).

The graphemic sequences of vowel nuclei and consonant clusters of English
and Dutch texts are then replaced by using a weighted selection mechanism in
accordance with the calculated natural probability distribution of the graphemic
vowel nuclei and the consonant clusters of English and Dutch, respectively.

For example, given the text input to be transformed into semantic-free version is:
<This is our beautiful tree>.

• First, the orthographic vowel and consonant letters are marked: CCVC VC
VVC CVVVCVCVC CCVV

• Then, the vowel and consonant clusters are identi�ed. VV/VVV/V... type
vowel clusters are all considered as one swappable vowel cluster V, and
CC/CCC/C... type consonant clusters are all considered as one swappable
consonant cluster C, which results in: CVC VC VC CVCVCVC CV

• Next, all the vowel nuclei are substituted with some other vowel nuclei from
Figure 3.2 in accordance with the calculated probability distributions. This is
done by taking weighted samples from the vector of vowel nuclei probabilities.
This turns the input text into: <Thos es ar biti fal tra>

• Finally the consonant clusters are also replaced with some other consonant
clusters again in accordance with the calculated probability distributions,
which �nally transforms the input text into: <Roch ept an siriraf pra>

In the following two sections, two experiments evaluating the perceived natural-
ness and emotion conveying capabilities of the resulting semantic-free gibberish are
described.

3.3 Perceived naturalness

The approach described in Section 3.2 transforms the existing text into gibberish
text. Now one of the questions to be addressed is how natural the synthetic speech
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Figure 3.3: A simpli�ed functional diagram of a TTS system.

generated out of these gibberish text strings would sound.

The gibberish text can easily be transformed into synthetic speech with a TTS
(Text-to-speech) engine. In general terms, a TTS system can be split-up in two
parts as seen in Figure 3.3. . The front-end part contains the Natural Language
Processing module and the back-end part is responsible for speech database search
and the Digital Signal Processing (DSP).

The Natural Language Processing module takes the raw text as input and outputs
a phonetic transcription of the input text together with the desired prosody. This
process includes transforming the numbers, abbreviations and acronyms into full
text (text normalization); identifying the nouns, verbs, adverbs, etc. (part-of-speech
tagging); organizing the text into linguistic units such as clause, phrase, etc.
which more closely relates to its expected prosodic realization (syntactic parsing);
and constructing the target phoneme sequence for each target utterance (lexicon
lookup and letter-to-sound mapping); assigning duration, pitch, accent values and
estimating silences between words (prosody generation). The phonetic transcription
of the input text and the target prosody values are then used by the Digital Signal
Processing module to synthesize the desired physical speech signal.

The Natural Language Processing module of a TTS system is thus language
dependent. As they are not designed to work on meaningless text, a set of
experiments are performed to investigate:

• How natural the synthetic gibberish would sound

• How the native language of the TTS would a�ect the result

3.3.1 Stimuli

Two sets of sentences were created as the stimuli. For the �rst set, the English vowel
nuclei probability distributions were used to modify 6 original English sentences. The
sentences were selected from children stories of Project Gutenberg (Hart, 1971). For
the second set, the Dutch vowel nuclei probability distributions were used to convert
6 sentences that were selected from Dutch children stories of Project Gutenberg. All
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Table 3.1: Initial English and Dutch texts and their gibberish versions

English Gibberish
The king soon married another wife
who was very beautiful

Thu kung son merred enithar wofa whi
wes vory botu�l

In the evening she came to a little cot-
tage

On tho avineng shoa cimo te e lottla
cattogo

The rest came running to him and ev-
ery one cried out

Tha rast cimau rennoung te hom ind
iviry ina crad uit

I will let the old lady in E well lat thi eld ledy en
I need not say how grieved they were E nid net soy houw grovud thiy waru
The strong way drank the day Thi string wey drenk tha diy
Dutch Gibberish
Breng het kind naar buiten in het bos
want ik wil haar niet meer zien

Brong hat kand nar beten en hot bis
wunt iek woel her net mor zan

Zij liep zo lang haar voetjes nog gaan
konden tot het bijna avond was

Zo lep ze leng hir vetjas neg gen kendon
tet hot beno ovend wes

Zij staken hun zeven lichtjes aan en
toen het was het huisje gezellig verlicht

Ze stekaan hen zovaan luchtjes aan on
ten het waas hijt hesjo gezeellug ver-
leecht

Je stiefmoeder zal snel weten dat je
hier bent

Jaa stefmedar zeel snil wotien det jo
her bant

Die was heel mooi om te zien zo met
haar rode wangetjes

Di wis hel me em tee zen zi mit har
ride wangetjes

Het lief kind was dood en bleef dood Hat leef kond wos dad een blief doud

12 gibberish sentences (see Table 3.1) were then synthesized both with the English
and the Dutch versions of VUB's unit selection TTS (Latacz, Kong, Mattheyses, &
Verhelst, 2008). This gave a total of 24 samples categorized in 4 di�erent groups (see
Table 3.2): the �rst group contained 6 gibberish samples created using the Dutch
text and synthesized with the Dutch TTS, the second group had 6 gibberish samples
created from English text and synthesized with the English TTS, the third and the
fourth groups also consisted of 6 gibberish samples each, in which the samples were
created with Dutch gibberish text and English TTS, and with English gibberish
text and Dutch TTS.

3.3.2 Experimental procedure and participants

Ten subjects (7 male and 3 female) with ages ranging between 24 and 37 par-
ticipated in a listening experiment. Four subjects had no prior experience with
synthetic speech (naive subjects).

The subjects were asked to pay attention to the naturalness of the samples.



52 Chapter 3. Semantic-Free Gibberish Text Generation

Table 3.2: The summary of the sample categorization

Sample Group Initial Text Language Synthesizer Language
Group 1 Dutch Dutch
Group 2 English English
Group 3 Dutch English
Group 4 English Dutch

It is assumed that, the more natural language-like the resulting semantic-free
a�ective speech is the closer it will be to achieve e�ective HRI interaction. Based
on this assumption, the subjects were instructed that a sample is to be considered
as natural when it sounds more like an unrecognized real language rather than an

unnatural or random combination of sounds. With this instruction it was intended
to guide the users to re�ect their opinion on how natural or unnatural the utterances
sounded rather than judging the grammar or the content of the sentence. As such
the sound of an unrecognized real language in this case is assumed to be a �uent
string of speech sounds. They were asked to express their judgment using Mean
Opinion Scores (MOS) on a scale of 1 (not natural at all) to 5 (as natural as a real
unknown language). They were also requested to identify if the sample sounded like
a language they knew.

The samples were provided randomly in a single presentation order. There was no
time limit and the participants could replay each sample as much as they wanted.
An example of a plain synthetic speech was provided at the beginning of the test
to minimize the risk that they would rate the quality of the TTS instead of the
naturalness of the gibberish.

3.3.3 Results and discussion

As can be seen in Figure 3.4, the samples created with the Dutch synthesizer
had the highest score for both Dutch and English semantic-free gibberish texts. A
Wilcoxon Signed Ranks Test indicated that the di�erence between the scores of the
samples created with the Dutch synthesizer and the ones created with the English
synthesizer was statistically signi�cant (Z = −2.416, p < 0.016). Mean MOS for
the samples generated with the Dutch synthesizer was 3.8 while for the samples
generated with the English synthesizer it was 3.5. It is likely that subjects were
in�uenced by the synthesizer quality as there is a di�erence in quality between the
Dutch and English versions of the synthesizer. The Dutch synthesis database is
almost four times larger than the English database and that di�erence obviously
a�ects the quality of the synthesized speech. Also almost half of the subjects were
native Dutch speakers, which is another possible explanation.
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Figure 3.4: Means of the MOS scores on naturalness for all the four synthe-
sizer and initial language combinations. SYNTH = The language used for the

synthesis. TEXT = The original language of the input gibberish text

Table 3.3 shows the average MOS scores and Figure 3.5 illustrates the box-
plots of the scores for all the 4 synthesizer and initial language combinations. A
Friedman test did not indicate a statistically signi�cant di�erence between these 4
groups ((χ2(3) = 4.778, p = 0.189).

Further analysis of the test results, using Mann-Whitney U test statistics showed a
signi�cant di�erence between the overall ratings of the naive subjects and speech
processing experts (Z = −4.511, p < 0.001). The overall naturalness ratings of
the naive subjects were signi�cantly lower than the ratings of the speech experts.
According to the feedback given by the naive subjects, it was challenging for them
to evaluate the naturalness of gibberish speech independent from the synthesis
quality. Although a plain synthesized speech was provided at the beginning of the
test to minimize this e�ect, they indicated that the synthetic speech quality may
have negatively in�uenced their scores.

Regarding the open question of similarity of the samples to a known language, the
recognition of the initial language from the synthesized gibberish samples is sum-
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Table 3.3: Mean MOS results on naturalness. TEXT = The original language
of the input gibberish text. SYNTH = The language used for the synthesis.

SYNTH TEXT Mean MOS
Dutch Dutch 3.8
Dutch English 3.7
English Dutch 3.4
English English 3.6
General Mean 3.6

Figure 3.5: Boxplots of the naturalness scores for all 4 experimental groups.
SYNTH = The language used for the synthesis. TEXT = The original language

of the input gibberish text
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marized in Figure 3.6. The recognition rates were highest when both the gibberish
input text language and the synthesizer language were the same for both Dutch and
English. Again while the text language had a little e�ect, the synthesizer language
had a higher impact on the recognition rates. Dutch was easier to recognize with
scores up to 78%. For English the highest recognition rate was about 50%.

A major cause might be driven by phoneme-to-grapheme conversion in Dutch
being rather straightforward while the relationship between phoneme and grapheme
in English being less regular. For example in English the end of the words "sand-
wich" and "language" sound the same but they are spelled completely di�erently.
Such a major variation is nonexistent in Dutch language.

Considering the above, the perceived naturalness of the resulting semantic-free
gibberish text and the recognition of the initial languages could be further im-
proved by using a swapping mechanism in the phonetic transcriptions, which is
closer to the speech than the text. Such a swapping mechanism would �rst convert
the graphemes into phonemes, then would transform the result into semantic-free
utterances using phoneme frequencies and then would convert those back to text,
or would synthesize the speech directly using the phonetic input if the selected
TTS engine would support it. In the context of this framework this topic has been
considered as an interesting possibility for future work.

Also the fact that almost half of the subjects were native Dutch speakers and
the di�erence in the quality of the Dutch and English synthesizers, as explained
before, could have been other in�uencing factors for high recognition rates for the
Dutch language.

3.4 In�uence of semantics on emotion recognition

People naturally use both prosodic meaning and semantic meaning for expressing
a�ect and emotion. In gibberish, there is no semantic information. Furthermore,
the fact that gibberish is semantic-free might interfere with the prosodic strategy of
the synthesizer and result in less expressive speech. These observations lead to two
additional questions to be addressed:

1. How does the semantics of the text in�uence the perception of the emotions
in the synthetic speech?

2. Is gibberish more or less e�ective than plain speech in evoking the intended
emotion?

To investigate these questions, a set of experiments were designed and executed.



56 Chapter 3. Semantic-Free Gibberish Text Generation

Figure 3.6: Percentages of language recognition. Left panel shows the percent-
ages of the correct recognition of English and the right panel shows the percent-
ages of the correct recognition of Dutch. SYNTH = The language used for the

synthesis. TEXT = The original language of the input gibberish text.

3.4.1 Stimuli

Four groups of samples were synthesized for this set of experiments. In the �rst
group, the semantic meanings of the sentences and the acoustic properties of the
synthesized utterances corresponded to the same emotion. In the second group, the
semantic meanings of the sentences implied the opposite emotion of the acoustic
properties. In the third group, the semantic meanings of the sentences were neutral,
and in the fourth group the sentences were gibberish and therefore had no semantic
meaning. The text input used is shown in Table 3.4.

Two emotion categories were used: happiness and sadness. `EmoSpeak', of the
synthesizer Mary (Schröder & Trouvain, 2003; Schröder, 2003b), an open source
emotional TTS synthesis tool, was used to produce the emotional speech, with
the parameter settings for happiness and sadness reported in (Schröder, Cowie,
Douglas-Cowie, Westerdijk, & Gielen, 2001).

3.4.2 Experimental procedure and participants

In this experiment, a forced-choice listening test was performed with nine subjects of
age between 26 and 37. The subjects were instructed to listen to a number of samples
of which they may or may not understand the meaning and were requested to choose
which one of the possible emotions (happiness, sadness or neutral) matched the
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Table 3.4: Text input for happiness, sadness, neutral and gibberish cases

Happiness Tomorrow we are going to celebrate my twentieth birthday
I am so pleased with presents everybody gave me
My sister's newborn baby is so cute
After the long winter the sun is �nally shining
I learned this morning that I passed all my exams

Sadness I didn't do my homework because my dog died yesterday
It is just a pity that Christmas comes only once a year
My boyfriend called me to say that is over between us
This year I didn't get any presents from Santa Claus
You wish a long goodbye to your friend who is leaving forever

Neutral There was a picture of a forest hanging in the corridor
I just read a book about designing listening tests
I saw a white cat crossing the street
The man in the restaurant ate a lot of French fries
In the evening she came to a cottage

Gibberish Thoru was e pactarai ef e ferest hingang on thi correder
On tho avineng shoa cimo te e lottla cattogo
E well lat thi eld ledy en
Tha rast cimau rennoung te hom ind iviry ina crad uit
Thu kung son merred enithar wofa whi wes vory botu�l
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Table 3.5: Confusion matrix for all experimental groups (expressed in %). Rows
correspond to the intended emotions and columns correspond to the recognized

emotions.

Inline Opposite Neutral Gibberish
Hap Sad Neu Hap Sad Neu Hap Sad Neu Hap Sad Neu

Hap 91 0 9 82 2 16 76 0 24 62 9 29
Sad 0 76 24 2 56 42 0 58 42 2 53 44

sample they heard. The emotive samples were distributed randomly across emotions
and a single presentation order was provided to all the subjects. The participants
could replay the samples as much as they wanted and there was no time limit.

3.4.3 Results and discussion

Figure 3.7 shows the emotion recognition results for all 4 experimental groups
and Table 3.5 summarizes the confusion matrix. Group 1 (semantic meaning and
acoustics correspond to the same emotion) had the highest scores among all groups.
A Friedman test showed that there was indeed a statistically signi�cant di�erence
in the recognition rates between the di�erent groups, (χ2(3) = 16.123, p = 0.001).
This showed that semantic meaning helps for recognizing the intended emotion, as
was expected. However, semantics opposite to the intended emotion did not make
the task more di�cult than with neutral semantics or with gibberish speech. At
the time of the experiments, the available emotional TTS engines were not yet
sophisticated enough to reliably mimic human emotional speech. As such Mary
synthesizer simulates happiness with high speaking rate and sadness with low
speaking rate. Therefore the intended emotion could be easily inferred from the
speaking rate, which was also provided as a feedback by the subjects. When better
performing emotional synthesizers become widely available and easily accessible,
these experiments can be performed again to minimize the in�uence of the syn-
thesizer quality on the results. This is also noted down as part of potential future
work.

Importantly, according to a Wilcoxon Signed Ranks Test, there was no signif-
icant di�erence between the samples with an emotionally neutral meaning and
the gibberish samples (Z = −1.333, p = 0.182), showing that the emotions were
conveyed with gibberish speech with a similar performance as with semantically
neutral speech.
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Figure 3.7: Box plot of the emotion recognition results for 4 di�erent experimen-
tal groups. (1 = Semantic meaning and the acoustic properties of the utterances
correspond to the same emotion, 2 = Semantic meaning and the acoustic prop-
erties of the utterances have opposite emotions. 3 = Semantic meaning of the
utterances are neutral, 4 = The utterances are gibberish and therefore have no

semantic meaning)
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3.5 Summary

This chapter has described the approach that allows to create semantic-free gib-
berish text as a component of the Semantic-Free A�ective Speech Framework
and presented the results of two experiments evaluating the naturalness and the
a�ective charging capabilities of the resulting gibberish.

The semantic of an existing text in a language is destroyed by replacing the
vowel nuclei and consonant clusters of the text using a weighted selection mecha-
nism in accordance with their natural distribution in the same language.

In the �rst experiment, the in�uence of input text and language on the syn-
thesized gibberish speech was explored. It was seen that the gibberish speech
created resembles a natural language with a total average MOS of 3.6 out of 5.
That is important since the goal is to create a semantic-free speech that sounds like
a real language and not as an unnatural or random combination of sounds.

At the same time, some subjects reported that the synthesizer quality might
have a�ected their scores. This was also evident in the results as the samples
generated with the Dutch synthesizer, which had a higher quality, had higher scores
than the samples from the English synthesizer.

The experiments also showed that the semantic-free gibberish speech resem-
bles the source language when good quality synthesis is used in combination with
an input text from the same language. This can be easily understood considering,
the synthesizer still uses the phones and intonation model of its target language,
even when synthesizing text without semantic meaning.

From the second set of experiments on the relation between semantic meaning
and the perceived emotion, it was found that semantics help recognizing the
intended emotions when the semantic and the prosodic meaning of the utterances
are both in line with the intended emotion. When they were in line with opposite
emotions, this did confuse the subjects but less so than might have been expected. A
probable cause would be that it was quite clear that the synthesizer used simulates
happiness with a faster speech rate and sadness with a slower speech rate so that the
emotion setting of the synthesized utterance could be easily detected. There was in-
deed feedback from the subjects that they mostly rated according to the speech rate.

When it comes to semantically neutral samples, no statistical di�erence was
found between samples with emotionally neutral meaning and gibberish samples.
Thus, when there is no emotional meaning in the text, it did not make much
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di�erence for the recognition of the intended emotion whether a meaningful or a
gibberish utterance was used to communicate the emotion.

Some of the techniques, experiments and results mentioned in this chapter have
been published in (Yilmazyildiz et al., 2010; Yilmazyildiz, Verhelst, & Sahli, 2015).





4 | Semantic-Free A�ective

Gibberish Speech

4.1 Introduction

The experimental evaluations in the previous chapter showed that gibberish speech
resembles a natural language and that it is as e�ective as semantically neutral speech
in communicating the intended emotions. However, in both of the tests, subjects
reported that the synthesis engine quality a�ected their evaluations. This highlights
some of the problems of using TTS systems to synthesize emotions:

• The �nal expressive speech strongly depends on the TTS engine quality and
the quality of the expressivity models of TTS engines at the time were not yet
mature enough.

• The voice quality is an important factor for communication of emotions
(Murray & Arnott, 1993; Schröder, 2001). However, the voice quality of the
emotions is not fully transmitted to the synthesized speech using the currently
available TTS engines.

To overcome these drawbacks to a large extent in the SFAS framework, a data-
driven method has been developed. The aim of this data-driven method is to
synthesize high quality semantic-free a�ective speech utilizing a limited duration of
recorded gibberish speech.

As can be seen in Figure 4.1, an emotional database is at the core of this
method. The aimed semantic-free a�ective speech can be achieved either by playing
back the utterances in the database or by synthesizing more unique utterances
with segment swapping, which is a concatenative synthesis technique as will be
described in Section 5.2. For both of these options an a�ective speech database
which is already in semantic-free form is required. This database is aimed to achieve
acceptable levels of emotion recognition by recording a�ective gibberish speech that
naturally incorporates the voice quality of the emotions, which also bypasses the
shortcomings of the dependence to the TTS engine quality and the quality of the

63
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Figure 4.1: Data-driven method (highlighted with the dashed line) in the frame-
work

expressivity models of the TTS engines. For an e�ective use, the meta-data informa-
tion, such as emotion labels and various prosodic segment units in di�erent lengths
is also identi�ed in a database labeling step which will be described in Section 5.2.1.

This chapter focuses on the emotional gibberish speech database. The various
steps needed to construct this new emotional gibberish speech database will be de-
scribed and the assessment of the quality of the emotions as well as the naturalness
of the utterances will be presented in the following sections of this chapter.

4.2 Brief outlook on the existing expressive cor-

pora

There has been a considerable amount of work in recent years, on the collection
of auditory, visual and audiovisual emotional data. Researchers in this space have
been constructing expressive databases that answer speci�c research questions. The
focus on answering speci�c research questions leads to challenges in reusing existing
databases for research that focuses on other sets of questions or challenges.

The majority of the available emotional speech databases in the literature are
for emotion recognition purposes. They are usually multi-speaker databases which
contain many samples per emotion but few samples per speaker (Batliner et al.,
2004; Breazeal & Aryananda, 2002; Burkhardt, Paeschke, Rolfes, Sendlmeier, &
Weiss, 2005; Douglas-Cowie et al., 2007; Grimm, Kroschel, & Narayanan, 2008;
Liberman, Davis, Grossman, Martey, & Bell, 2002). Additionally, some of them
contain naturally occurring spontaneous emotions that are collected from television
shows, telephone conversations, etc., where the qualities are not suitable for emotion
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synthesis research (Batliner, Hacker, Steidl, Nöth, & Haas, 2003; Douglas-Cowie,
Cowie, & Schröder, 2000; Hansen, Bou-Ghazale, Sarikaya, & Pellom, 1997). There
are larger good quality emotional speech databases that are available for synthesis
purposes (Ambrus, 2000; Iida & Campbell, 2003; Iriondo, Planet, Socoró, & Alías,
2007; Saratxaga, Navas, Hernáez, & Luengo, 2006), however those ones are not
semantic-free. Few exceptions are GVESS - Geneva Vocal Emotion Expression
Stimulus Set (Banse & Scherer, 1996) and GEMEP-Geneva Multimodal Emotion
Portrayals (Bänziger & Scherer, 2010; Bänziger, Mortillaro, & Scherer, 2012) cor-
pora which contain gibberish utterances. However in these datasets the same text
script was used for each emotion as the purpose was to obtain acoustic pro�les of
vocal parameters for di�erent emotions and that makes it unsuitable for the scope
of this research.

Thus, a new gibberish emotional speech database suited for high quality ex-
pressive semantic-free gibberish speech synthesis was recorded.

Readers are pointed to the extensive reviews of the available expressive cor-
pora from (Cowie, Douglas-Cowie, & Cox, 2005; Douglas-Cowie, Campbell, Cowie,
& Roach, 2003; Ververidis & Kotropoulos, 2003).

4.3 EMOGIB: Emotional gibberish speech database

EMOGIB is an expressive gibberish speech database that contains approximately
15 minutes of speech (∼1800 words) for each of the big six emotions (anger,
disgust, fear, happiness, sadness, surprise) and 25 minutes of speech (∼4100
words) for neutral state. It has 4 di�erent semantic-free gibberish corpora: C1
& C3 - generated by using the whole consonant and vowel space of Dutch and
English, C2 & C4 - generated by using the whole vowel space and voiceless
consonant space of Dutch and English. The reason of generating C2 & C4 comes
from the ease of using voiceless consonants for automatic labeling and manipulation.

The requirements considered in the design of the EMOGIB database are brie�y
described below:

• Controlled variation in the text scripts: To be able to re�ect the varying af-
fective charging capabilities of short and long sentences, the corpus should
include sentences containing di�erent number of words. Also in each emotion
category the proportion of the number of words should be similar.

• Voice type suitability: Considering the aimed primary usage of the resulting
database, the voice type should suit a robotic character.
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• Voice type stability: The voice type should be kept stable during the entire
recording session.

• Stability of the emotion quality: The voice quality of the emotion should be
consistent across the entire recording for each emotion.

• Limited complexity for gibberish framework validation: Not to over-complexify
the framework and the validation process, the initial system should be limited
to the widely used basic emotions (anger, disgust, fear, happiness, sadness,
surprised) and neutral.

Encompassing all of the above, the goal was to create a large expressive database
that is in semantic-free gibberish form and sounds like a real language. To achieve
this goal, the content of the corpus and the speaker were carefully selected and
special attention was paid in the recording procedure to have a good quality across
all the emotions in scope.

4.3.1 Speaker selection

Many of the requirements that e�ect the quality of the �nal database are in�uenced
by the acting qualities of the selected speaker. Even though it is possible to improve
the performance of the speaker by carefully designing the recording conditions
(Busso & Narayanan, 2008), the speaker selection is still a key factor and requires
attention.

A call for speakers was distributed to the theater/drama schools in the coun-
try. Six candidates were invited to a phone interview. The candidates were all
informed before the interview that they would be asked to voice-act in the inter-
view. Four sentences were sent to them (one English, one Dutch and two gibberish
sentences) that might be used as scripts to voice-act.

Each interview started with a friendly talk where their personal information
such as their name, age, study program, languages spoken, experience in voice act-
ing was gathered. The questions in the second part of the interviews were structured
in a way that the candidates could be evaluated on the following criteria: the ability
to easily switch the voice to another type, the ability to act emotions, the ability to
act gibberish sentences, the �exibility of the voice, the capability of maintaining the
voice quality during the recording session and the ability to act as �tting certain
characteristics of an imaginary robot (such as humor, pleasure, funny, stupid, emo-

tional, sympathetic). This was to evaluate their ability to easily switch the voice to
another type as well as their ability to act as �tting the required characteristics. To
judge their ability to act emotions and their ability to act semantic-free sentences,
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they were instructed to act the scripts that were sent prior to the interviews in
six basic emotions (anger, disgust, fear, happiness, sadness and surprise). Finally,
to assess the �exibility/limits of their voice, they were requested to act certain
ages and genders such as male, female, child, old man, old lady. All the inter-
view sessions were conducted through an Alcatel-Lucent 4019 phone in hands-free
mode and the sessions were recorded to be able to listen to them later for evaluation.

Based on the above criteria, a 20 year old female drama student was selected
as the speaker for the actual recordings.

4.3.2 Text corpus

Four corpus sets were created for the recordings, each set containing 7 di�erent
script sets (one for each emotion category and one for the neutral category). The
�rst corpus set was generated by replacing the entire vowel nuclei and consonant
clusters in the selected Dutch texts using the weighted selection mechanism detailed
in Chapter 3 in accordance with the natural probability distribution of the vowel

nuclei and the consonant clusters of Dutch. For generating the second corpus set,
the entire consonant clusters in a Dutch text were replaced in accordance with the
natural probability distribution of voiceless consonant clusters of Dutch while the
vowel nuclei were replaced in accordance with the natural probability distribution
of the vowel nuclei of Dutch. The third and the fourth corpora were created
accordingly but this time using English texts and the corresponding probability
distributions of vowel nuclei, consonant clusters and voiceless consonant clusters of
English. The structure of the four corpus sets are summarized in Table 4.1.

The probabilities of occurrence in English and Dutch were calculated (as de-
scribed in Section 3.2) for each vowel nucleus and for each consonant cluster. For
consonant clusters begin (onset), middle and end (coda) consonant cluster proba-
bilities were calculated separately. Similarly, the same calculations were performed
for the voiceless consonant clusters (begin, middle, end).

Table 4.1: The summary of the corpora structures

Name Language Consonant Distribution Vowel Distribution
C1 Dutch Whole consonant space Whole vowel space
C2 Dutch Voiceless consonant space Whole vowel space
C3 English Whole consonant space Whole vowel space
C4 English Voiceless consonant space Whole vowel space
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The texts were categorized in a way that there would be controlled variation
in the sentences. These sentences contained di�erent number of words, starting
from one word up to ten words. In each emotion category the proportion of the
number of words was the same. The sentences were organized in paragraph structure
to provide a dialogue impression (see Table 4.2).

Table 4.2: An example of script paragraph structure from corpus C1 to provide
dialogue impression, for anger in semantic-free form

- Gocht en bij heep! Deang a h dup. Men iet ge wijechtilutsprajcht! En gaar
doet he? O dons be arkanvae. Deevraen en oingelete stiar. Rer lo
vaaroe beraan! Deen staar vean gee. Kan ing deit. Goors e den eeds?
- Hoeen e gost oos an ve mijm doaj, wahael bienfey? Ga denhijul tieg allieder
en nian blooot sned ien eengee rop. Irieds o dej sprorbecten
zens vian ui d buronkees dej! We bend ist e biaf twue noopo feon vemst geetut
...

4.3.3 Database building

4.3.3.1 Recording setup

The recordings took place in a professional audiovisual studio located at the univer-
sity campus (ETRO Audio-Visual Lab, n.d.) where the proper acoustic absorption
was provided. The speaker was sitting on a stool chair with proper headphones.
The microphone (Neumann U87) was at a �xed position from the mouth of the
speaker. Reading pane was put at a position where the speaker felt comfortable.
Figure 4.2 shows the recording set up.

The control room (Figure 4.3) where the monitoring of the recorded signals
and the controlling of the prompter were done was outside the recording chamber
and there was a window connecting the rooms visually.

4.3.3.2 Recording procedure

The recordings started with voice tuning practices. The voice type should have
suited the robotic character. On the other hand, as the speaker would use the same
type of the voice for a long period of time, it was important to �nd the voice type
that the speaker felt comfortable with. Prior to the actual recordings, the speaker
improvised a few di�erent voice types and they were all recorded. Considering
the above two criteria, one of the voice types was chosen as the base voice in
consultation with the speaker. During the recordings, the recorded sample of the
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Figure 4.2: Overview of the recording setup

Figure 4.3: The control room where the monitoring of the recorded signals and
the controlling of the prompter were done
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voice type was periodically played back to the speaker, in order to keep the voice
type stable during the entire recording session.

The same reference building procedure was repeated before each emotion recording.
Taking the recorded base voice as a reference, the speaker improvised each emotion
with that voice type. Then the �nal sample was kept as a reference for that emotion
and the actress practiced for a while. At the beginning of each script paragraph, the
reference was played and the speaker continued acting in the same voice quality of
the emotion. Also during the recordings, whenever a di�erence in the level/quality
of emotion or voice type was noticed, that part was compared with the reference
and re-recorded if needed.

A stu�ed prototype of the robot Probo (one of the evaluation platforms of
the SFAS framework) was put in the recording room. This helped the speaker to
act as being a robot. The photographic facial expressions of the robot were pinned
on the face of the stu�ed prototype to visualize the robot's emotions. The speaker
found that method helpful for staying in the mood of the intended emotion.

Before the recordings, a short discussion was held with the speaker about how to
get in the mood for the di�erent emotions. The speaker was also a drama trainer for
children. She shared that in their acting trainings, they let the trainees close their
eyes and recall some scenes from their lives that had the particular moods/emotions.
The same method was used to get herself into the mood. Only when she could not
bring any scene from her life, a short story in that particular emotion about Probo
was shared with the actress.

The speaker chose the emotion as well as the text corpus to start with. 5-10
minutes of breaks hourly were planned but the speaker could also take a break
whenever she felt the need.

The recordings were done with Pro-Tools 8 and the pre-ampli�er used was
Earthworks 1021. All the data is recorded with 48 kHz sampling rate and 24 bit.

4.4 Evaluations

4.4.1 Experimental procedure and participants

A series of two experiments were performed; one with adult listeners and one with
children.

While more subjects participated in the children experiment (thirty-�ve subjects
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with ages ranging between 10 and 14), the audio part of the children experiment
was structured as a subset of the adults experiment. Only one database subset (C1)
was used in the children experiment considering the shorter attention span of the
children. Aside from the audio section, the children experiment also included visual
and audiovisual sections. Because of this, the children experiment is analyzed and
discussed in more details in Section 6.3 while this section focuses primarily on the
adult experiment.

Ten subjects participated in the adult experiment. The age of the subjects
varied between 27 and 32.

It would have been ideal to evaluate all the samples in the database. However
due to the large size of the database, random samples were selected from each
database subset (C1, C2, C3, C4) for each emotion category. The length of the
samples had to be long enough so that the subjects could evaluate e�ectively. On the
other hand, the length should not be too long not to lose the attention of the par-
ticipants. Thus, four samples of 10 seconds were selected to be used for each emotion.

The subjects were instructed to listen to a number of samples of which they
might not understand the meaning. The order of the samples were distributed
randomly across emotions and a single presentation order was used for all the
subjects. The subjects were requested to choose which one of the possible emotions
anger, disgust, fear, happiness, sadness, surprise or neutral matched the speech
sample they heard. Subjects could listen to the samples as many times as they
needed.

As the �nal goal is to create a natural sounding semantic-free gibberish speech
that can be used in building expressively interacting computing devices, also the
naturalness of the database had to be evaluated. Thus, in a second question, the
subjects were asked to pay attention to the naturalness of the samples. They were
instructed that the sample was considered as natural when it sounded rather like

an unrecognized real language and not as an unnatural or random combination of

sounds. With this instruction it was intended to guide the users to re�ect their
opinion on how natural or unnatural the utterances sounded rather than judging
the grammar or the content of the sentence. As such the sound of an unrecognized
real language in this case is assumed to be a �uent string of speech sounds. Subjects
were asked to assess their perception of the naturalness of the samples using Mean
Opinion Scores (MOS) in a scale from 1 to 5. They were also asked to write
down the language if the sample sounded like a language they knew. That was to
investigate if it was still possible to recognize the original language of the corpora
after consonant and vowel swapping.
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Figure 4.4: Emotion recognition results for all 4 experimental corpora. x-axis
corresponds to correct-incorrect emotion recognition grouped by each corpus and

y-axis corresponds to the number of samples.

4.4.2 Results

Figure 4.4 shows the emotion recognition results for all 4 experimental corpora (C1,
C2, C3, C4). �Correct" stands for the emotion that was perceived as the intended
emotion and �incorrect" stands for the emotion that was perceived as one of the
other emotions and not the intended one. As can be seen from the graphs, there
is not a big di�erence in the recognition results which was also con�rmed by a
Friedman test (χ2(3) = 1.648, p = 0.648).

Overall intended emotions versus recognized emotions are shown in the confu-
sion matrix of Table 4.3. Sadness was recognized by most of the participants (94%).
The recognition rate of sadness was followed by neutral with 88%, surprise with
87%, happiness with 84%, disgust with 74%, fear with 73% and anger with 66%.
Fear was usually confused with surprise, and anger with neutral or surprise.

In the children experiment, in which only C1 was used, sadness was recog-
nized best (100%). This was followed by surprise with 86%, fear with 71% and
disgust with 57%. Happiness was often confused with anger and vice-versa which
resulted in a lower recognition (29% and 46%, respectively). Much better results
were achieved in the adult experiment for the same samples of corpus C1 (91% and
64% for happiness and anger, respectively). This di�erence can be an indication that
children and adults might have a di�erent interpretation of, especially, happiness.
And further research is needed to check this hypothesis. For the other emotions,
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Table 4.3: Overall confusion matrix of the experiment with adult subjects (ex-
pressed in %). Rows correspond to the intended emotions and the columns cor-

respond to the recognized emotions.

Neutral Anger Disgust Fear Happiness Sadness Surprise

Neutral 88 1 0 0 10 1 1
Anger 13 66 3 1 6 1 10
Disgust 5 8 75 1 2 8 2
Fear 0 6 0 73 1 7 12
Happiness 2 1 1 3 84 6 5
Sadness 1 1 0 4 1 94 0
Surprise 2 3 1 2 1 4 87

Table 4.4: Experimental results on naturalness of the experiment with adult
subjects

Corpus Mean MOS

C1 3.5
C2 3.3
C3 3.4
C4 3.3

General Mean 3.4

the recognition rates for C1 in the adult experiment were: 100% for sadness and
surprise, 91% for fear, and 55% for disgust.

Table 4.4 shows the average MOS scores and Figure 4.5 illustrates the box-
plots on naturalness for each corpus. As can be seen, the overall mean score is 3.4.
The MOS result of corpus C1 was slightly higher than the other corpora but the
di�erence was statistically signi�cant only for C2 (Z = −2.836, p = 0.005) and C4
(Z = −2.824, p = 0.005) based on the Wilcoxon Signed Ranks Test using Bonferroni
correction 1.

Figure 4.6 shows to what extent the subjects were able to identify the origi-
nal language in C1 and C3, where the natural distribution of both vowels and
consonants were used. It was seen that, for most of the subjects both of the corpora
did not sound as any language they knew. For the samples that the subjects thought
they had recognized an existing language, the majority of them suspected these to
be Dutch or English, for C1 and C3 respectively.

1Bonferroni correction is calculated by dividing the signi�cance level initially being used by the
number of tests that were run to gather the new signi�cance level. In this case the new signi�cance
level is: 0.05/6= 0.008
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Figure 4.5: Box plot summarizing the naturalness scores for each corpus.

Figure 4.6: Percentages of language recognition for C1 and C3 corpora.
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Figure 4.7: Categorization of a�ect bursts and interjections (Schröder, 2003a)

4.5 Extensions on EMOGIB

In expressing emotions, humans naturally use various short, a�ectively charged,
non-speech vocal sounds and expressions with some degree of phonemic struc-
ture in addition to the speech. These sounds are referred to as a�ective bursts
(K. R. Scherer, 1994). For example �Yuk!� for disgust, �hiii?� for surprise, or �rrrrrr�
for anger, etc. There also sounds, which might be referred to as verbal 'interjections'
or '�llers', that are short phonemic structures, heavily charged a�ectively. These
interjections are commonly used in combination with a�ective bursts and the
borders between the two expression categories can be blurry (Schröder, 2003a). The
categorization is visually represented in Figure 4.7.

Inclusion of these sounds into the EMOGIB database, may potentially increase the
naturalness of the speech and the perception of the emotions from the Semantic-Free
Speech.

Another extension towards further improved naturalness would be a natural
dialogue impression. A natural dialogue impression can be created by using a
structure similar to dialogues used in theater/�lm scripts which the actors are
familiar with, so that the impression of a monologue would be minimized. This
structure already existed in the �rst set of EMOGIB database to some degree.
The sentences were presented to the speaker in paragraph structure to provide a
dialogue impression. But more intensive dialogue structure would be desirable.

Because of the two main needs explained above, an extension on EMOGIB
was designed and new recording sessions were performed with the same speaker by
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repeating the same recording procedure as outlined in Section 4.3.3.2. New scripts
were created for the recordings. The scripts were taken from original Dutch/English
plays which were already in dialogue form and which included the places of the
paralinguistic sounds on the scripts in brackets. Those original Dutch and English
scripts were then transformed into semantic-free gibberish. The extension provided
additional semantic-free speech of approximately 3 minutes per emotion. However,
evaluation experiments need to be performed before further integrating this a�ective
interjection enriched data set into the EMOGIB database, which is considered as
future work.

Table 4.5: An example of theater script structure from C3 to further improve
dialogue impression for anger in semantic-free form

SWIONAND � O prest ar mos wio pastieri!
ION � Iadumbly ir rarebly di at valy thu tong theuf theeging.
(man o cioncoiwry thaucta) Ee do�r, thuinents oudy an r te� jif e cheory helt
etung thou. Heu mest'h wertevu outty.
SWIONAND � ...

4.6 Summary and discussion

This chapter described the EMOGIB emotional gibberish speech database with its
primary aim of a�ective communication between robots and their users including
children as part of the broader SFAS framework, along with the evaluations on the
recognition of the emotions.

4.6.1 Database design

Special attention has been paid in building the database. Douglas-Cowie et al.
de�ned four main areas that needed to be considered in the design of such a
database: scope (number of speakers, emotional classes, language, etc), naturalness
(acted versus spontaneous), context (in-isolation versus in-context) and descrip-
tors (linguistic and emotional description) (Douglas-Cowie et al., 2003). In this
section, the EMOGIB database is discussed and summarized in terms of these areas.

Scope: As the EMOGIB database was designed for a�ective speech synthesis,
recording only with one actor was suitable to record the required expressions, as
also reported in (Douglas-Cowie et al., 2003). Regarding the emotions covered, the
widely used basic emotions (anger, disgust, fear, happiness, sadness, surprised)



4.6. Summary and discussion 77

and neutral were chosen to be utilized in the initial system. The database could be
extended for other emotions in case required.

Naturalness: As mentioned by Douglas-Cowie et al., the price of control over
the data is the naturalness (Douglas-Cowie et al., 2003). It should be noted that
di�erent from the previous uses in this dissertation, the term "naturalness" in this
current evaluation area corresponds to acted versus spontaneous attributes of the
emotions and not to sounding like a real language versus random combination of
sounds. In the EMOGIB corpus, the tradeo� between the control over the data and
the naturalness was attempted to be balanced by selecting appropriate material
designed as paragraph structure in the �rst edition and as dialogue scripts in the
extension version which were requested from the speaker to be acted as in a play.
With these settings, some natural realizations of emotions that are not observed
either in monologues or in read speech material can be observed. In this sense,
this database might be labelled as semi-natural (Douglas-Cowie et al., 2003) as an
actress was used for the recordings, who might have exaggerated the expression of
the emotions but based on the setting used to elicit emotions, the emotional quality
might include spontaneous emotions as well.

Context: The fact that the text scripts were gibberish, eliminated the bene�t
of semantic context (such as the tendency of vocal cues to follow emotionally
signi�cant words) that might be available in spontaneous speech easing decoding
the emotions. However, gibberish has the advantage of allowing to �ll in the blanks
of the semantics. As also reported by the speaker, it is possible to imagine any
semantic content on gibberish text scripts. In terms of the structural context, vari-
ous characteristic of the utterances (long or short phrases) exist in the text scripts
of the database, allowing to capture variations in emotional tone as suggested by
(Douglas-Cowie et al., 2003).

Descriptors: Anger, disgust, fear, happiness, sadness, surprise and neutral are
basic emotion descriptors also used in the evaluation of the selected samples of the
database by the listeners. The database is segmented at the sentence level and,
in terms of linguistic descriptors, the graphemic transcriptions of the segmented
utterances are available. Also, as part of the data labeling step; the voiced, unvoiced
and pause speech segment boundaries for each utterance are identi�ed automatically
which will be described in more detail in Section 5.2.1.

In summary, the EMOGIB speech database was designed to satisfy the key re-
quirements presented in Section 4.3. As a result, this database contains natural-like
semantic-free gibberish speech that can be used in various a�ective communication
applications as part of the SFAS framework.
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4.6.2 Evaluations

The perception experiments showed high emotion recognition results of up to 81%
overall (and even up to 94% for certain emotions) which were better results than
seen earlier in the �eld (Breazeal, 2000; Oudeyer, 2003; Tickle, 2000).

Across the four unique corpus sets, no statistically signi�cant di�erences were
found in the overall recognition results. This means that the applied methodology
of recording induced emotions of an actor helped achieving stable recognition
results. The main driving reason for this stability can mostly be attributed to the
utilization of the control/reference sentence which was described in Section 4.3.3.2.

This high decoding accuracy, in comparison to earlier results in the �eld, strengthens
the argument on the importance of the voice quality and the high-quality database
in a�ect expression.

It is seen that the semantic-free gibberish speech created resembles a natural
language with an overall mean score of 3.4 on a scale of 1 to 5. That is important
since the goal was to create semantic-free speech that sounded like a real language.
Unlike the emotion recognition, the score cannot be compared easily with the scores
from the literature. Naturalness as a concept in the literature can be considered
underspeci�ed (Dall, Yamagishi, & King, 2014). There is not an exact aligned
de�nition of what naturalness is. As di�ering studies give participants di�ering
instructions, comparison between the naturalness results from various studies or
assuming a certain baseline is not feasible. In this study, a possible baseline could
be the ratings for a real unknown foreign language. The results of the naturalness
scores from this study could then be interpreted more accurately once such a
baseline is available in the literature.

In general, the gibberish speech created does not sound as any other language
known by the subjects. For the corpora where a natural distribution of consonants
and vowels was used (C1 and C3), the gibberish speech still sounded slightly like
the languages of the texts that were used to create the gibberish texts.

No statistically signi�cant di�erences were found between the four di�erent corpora
for emotion recognition results. For the naturalness, C1 was better performing with
a small margin (+/- 0.2 in MOS) compared to C2 and C4. Considering all four
corpora had a MOS of 3.3+ (out of 5) for naturalness, they can all be utilized for
emotional speech communication studies. Combining the results from the adult
experiment that the gibberish speech resembled a natural language with an average
MOS of 3.4 (out of 5) with the results of the children experiment that they liked
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the voice with an average MOS of 7.0 (out of 10), this database can be used in
further studies across subjects with various age groups.

Some of the techniques, experiments and results mentioned in this chapter have
been published in (Yilmazyildiz et al., 2011, 2015).





5 | Speech Modi�cations

5.1 Introduction

The previous chapter has described the construction of Semantic-Free A�ective
Speech (SFAS) as a core component of the SFAS framework that allows to study
a�ective human-robot interactions. Also the design and building of the EMOGIB
database that contains emotions with this new speech have been detailed. The new
semantic-free gibberish speech was shown to resemble natural language.

This chapter focuses on two speech modi�cation techniques that are instru-
mental to further advance the framework in social HRI studies: segment swapping
and voice modi�cation.

The segment swapping section explains the concatenative synthesis mechanisms
to expand the number of unique semantic-free utterances and evaluates whether
these modi�cations would harm the emotion perception and the naturalness of
the resulting speech samples. The voice modi�cation section details the algorithms
that provide the alignment of the voice characteristics of the SFAS with the robot
morphology.

As mentioned before, EMOGIB as an expressive gibberish speech database contains
approximately 15 minutes of speech for each of the big six emotions (anger, disgust,
fear, happiness, sadness, surprise) and 25 minutes of speech for neutral state.
Building such a database requires a signi�cant e�ort, especially during the record-
ing phase. While the segment swapping and voice modi�cation techniques that are
detailed in this chapter primarily focus on further advancing the SFAS framework,
the segment swapping can also provide a guidance on the optimal recorded speech
duration for researchers who would utilize the framework in generating their own
expressive semantic-free speech databases.

These expressive semantic-free speech databases are mostly intended to be
utilized through robotic agents. Like humans, robotic agents also have various
physical attributes that complement their physical morphologies. The e�ects of any
misalignments between these attributes and the robot's physical morphology on

81
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observers' acceptance of the robotic agent is a fairly well studied issue in the HRI
�eld. However voice style, as one of those attributes that require alignment with the
physical morphology of the robot, hasn't taken as much attention as other physical
appearance related attributes. This might be partially due to Mori's widely known
but not fully accepted Uncanny Valley(Mori, 1970) hypothesis focusing mainly on
the physical appearance of the robot. There are a few notable studies focusing on
the vocal attributes. (Mitchell et al., 2011) has explored the human realism of a
character's visual elements and its synthetic or human voice, concluding that they
should match. In (Read & Belpaeme, 2010) observers felt more comfortable with hu-
man like voices for humanoid robots. (Komatsu & Yamada, 2011)'s study expressed
that the robotic agents' appearances may even a�ect people's interpretations of
the agents' expressions, even though these agents express the same information.
What hasn't been explored so far and is the aim of the voice modi�cation section,
is �nding the matching voice style (speci�cally voice spectral shift) for a robotic
agent in alignment with the physical morphology of the robot.

5.2 Segment swapping

The EMOGIB database that was described in detail in Chapter 4 was constructed
as an important component of the framework. It is aimed to be a natural sounding
non-semantic vocal communication medium for robotic agents to convey (simulated)
emotions. However the total duration of the unique semantic-free utterances from
the EMOGIB database is constrained by the total duration of the recorded speech.
Based on the initial experiments, the 15 minutes of speech for each of the emotions
in the EMOGIB database appear to be su�cient for many HRI studies. However
when new semantic-free speech databases are generated using the framework, a
shorter recording time would be desirable. The shorter the recording time the
shorter the duration of the usable semantic-free speech is. Once reaching that
duration limit in the implementations, if the same utterances from the database
are used repetitively in the produced nonsense speech of the robotic agent, the
perception of the naturalness might decrease. Thus, a degree of variation is required
in the produced nonsense speech to achieve an a�ective communication mean for
longer duration of time.

More variations of the semantic-free utterances are possible to be generated
with concatenative synthesizing techniques, as the EMOGIB database is already in
semantic-free form. Basically this would mean swapping the units of an utterance
with other units from the database of the related emotion. These units are referred
to as swappable segment units and they should share the following characteristics:

• They can be replaced by the other segments with fewer artifacts.
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• They are relatively easier to be automatically detected.

• They are language independent.

Even though various phonemic units such as phrases, words, syllables, diphones,
etc. could be considered as potential swappable segments, concatenation at smaller
segment units are prone to more artefacts. The smaller the segments are, the more
iterations of signal processing are required for the concatenation of an utterance.
As each iteration can lead to some artefact, more iterations in most cases result
in more artefacts. Also not all the larger potential swappable segments satisfy
the characteristics lined out above. For example while concatenating two voiced
segments, not only the phonemic alignment but also pitch periodicity should be
assured. Also for all potential swappable segments, co-articulation and prosodic
appropriateness should be considered. Based on the conformance to the above listed
characteristics, the following parts of an utterance have been chosen as swappable
segment units: voiceless phoneme, part between two voiceless phonemes and part

between two pauses.

However, as prosodic and acoustic aspects, such as the pitch declination line,
could be destroyed, it is not known if this kind of swapping in an utterance will
damage the emotion recognition and naturalness perception. Informal experimen-
tation has been performed for identifying potential swappable segment units and
whether the modi�cation would harm the emotion recognition and naturalness
perception. The units have initially been identi�ed as summarized in Table 5.1 and
Figure 5.1 illustrates the swappable segment units with their boundaries on the
same sample utterance for each of the 3 unit types.

Table 5.1: Potential swappable segment units

Unit 1 segment between two pauses
Unit 2 segment between two voiceless phonemes
Unit 3 voiceless phoneme

The preliminary results for Unit 1 and Unit 2 from these informal tests were
promising for both emotion recognition and naturalness, especially once the last
units of an utterance have been kept �xed and not swapped in the ordering. This
created the motivation for a formal experiment, which is detailed in Section 5.2.3.
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Figure 5.1: The swappable segment units with their boundaries on the same
sample utterance for each of the 3 unit types. In the top �gure, the swappable
segments (s1x) are the parts between two pauses (Unit 1 type), in the middle �g-
ure the swappable segments (s2x) are the parts between two voiceless phonemes
(Unit 2 type), and in the bottom �gure all the swappable segments (s3x) belong

to voiceless phonemes (Unit 3 type)
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Regarding Unit 3, voiceless phonemes have similar acoustic characteristics. In
the informal tests, it was observed that the variation generated from swapping the
voiceless segment units in an utterance was not easily recognizable. Thus giving
the feeling of the synthesized utterance being the same as the original one. For this
reason, Unit 3 has not been included in the �nal swappable segment units list for
the performed experiment.

5.2.1 Database labeling

In order to be able to use a speech database for concatenative speech synthesis
purposes, appropriate meta-data describing various aspects of the speech contained
in the database needs to be generated. This includes graphemic and phonetic
transcriptions, phonemic segmentation indicating phoneme boundaries, symbolic
feature information such as part-of-speech, lexical stress, syllable type, etc. for
di�erent phonemic, prosodic and linguistic units, or acoustic feature information
such as energy, MFCCs parameterizing the spectral information and pitch-markers
indicating the pitch period in the voiced segments of the speech. Depending on the
synthesizer requirements, this data is used by the synthesizer to compose the target
synthetic speech. For the purpose of segment swapping by concatenation synthesis
technique, having the segment boundaries (as sample points) of pauses, voiceless
and voiced frames in the meta-data �le is su�cient, considering there is no need for
linguistic or phonemic alignment in the concatenation of gibberish speech segments.

This meta data then will be used by the synthesizer to select the appropriate
original speech segments to be concatenated and compose the unique synthetic
semantic-free utterances as the output.

The pause, voiceless and voiced segmentation in this study is based on energy
and zero crossings. For each windowed signal frame, the root mean square (RMS)

and zero crossing counts were calculated.

RMS is calculated by:

xRMS =

√√√√ 1

N

N∑
n=1

|xn|2 (5.1)

where xn is the windowed speech signal frame of length N .

The zero crossings are determined by a sign-test of consecutive samples:
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xn.xn+1 < 0 (5.2)

the cases matching the above condition (5.2) give the zero crossings of a windowed
signal xn and the number of zero crossings give the zero crossing count per each
frame.

Voiced speech consists of mostly high amplitude damped sinusoids, where un-
voiced speech consists of weak non-periodic, random-like sounds. So when the rms
value is high and the number of zero crossings are low, these indicate a voiced
frame. In adverse, a low rms value and a high number of zero crossings indicate an
unvoiced frame. Then some selection rules were implemented to decide the length
of the voiced/unvoiced segments and to improve on isolated errors. Selection rules
were based on experimentally set thresholds.

5.2.2 Segment concatenation

The semantic-free speech synthesizer has to concatenate the swappable segments
in a new order to construct a new unique semantic-free speech signal. As a pre-
processing step the database is labeled as explained in the previous section.

The segment concatenation can be brie�y described with the following steps:

Let si be the segment space, containing all the k swappable segments of an
emotion category:

si = {s1, s2, ...sn, ....sk}

and let the template utterance Ui be a speech signal, selected from the database
for the desired emotion, composed of a set of n swappable segment units from the
segment space si:

Ui = spsq.....sn

Select a new set of n units from the corresponding emotion to form the new unique
synthesized utterance:

U
′

i = sxsy.....sm

in which, the number of segments of U
′

i is the same as the number of segments of
Ui. The segments in the selected set can come from multiple other utterances of the
corresponding emotion in the database (see Figure 5.2) or they can all come from
the same template utterance in a di�erent order (see Figure 5.3).
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Figure 5.2: Illustration of the segment selection and concatenation for the seg-
ments coming from multiple other utterances of the same emotion database. In
this example the swappable segment units are the segments between two pauses.
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Figure 5.3: Illustration of the segment selection and concatenation for the seg-
ments (segments being the parts between two pauses) coming from the same

template utterance in a di�erent order.

This new set of n units that composes U
′

i is selected as a random n-permutation of
the k total units existing in the given desired emotion category. The number of all
the possible n-permutation of the k units can be calculated as:

P (k, n) =
k!

(k − n)!
(5.3)

Then each pair of consecutive segment waveforms are concatenated at segment joins.
To achieve a �uent speech, the segments have to be concatenated in an appropriate
way. In general this can be realized by the use of pitch markers to assure a maximum
preservation of the periodicity, by pitch-synchronous overlap-add to accomplish the
transition in pitch value and �nally by the window/overlap operation to create the
transition in waveform shapes between both segments (Mattheyses, 2013). However
these steps are essential for concatenating voiced segments, especially to preserve
the pitch synchronicity. In the segment swapping method described above, as one
of the segment boundaries is either a voiceless or a pause, it su�ces that small
section of both segments that are concatenated is faded-in and out, to smooth the
concatenation of two acoustic signals. Hanning window of 20ms was used for the
fade-in/out operations.
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5.2.3 Evaluations

The implementation potential of the two swappable segment units shortlisted in
Section 5.2 (i.e. segments between two pauses and segments between two voiceless
phonemes) were evaluated with an experiment. The core questions this experiment
aimed to address were:

• Whether the concatenation of various segment units in a di�erent order than
their original would have an e�ect on emotion recognition

• How much the naturalness perception would be impacted from the concatena-
tion of segment units and the reordering

• Which types of segment swapping would have the least negative e�ect on the
emotion perception and naturalness

5.2.3.1 Stimuli

Four swapped sample sets were created: for each of the two swappable segment units;
"segments between two pauses" and "segments between two voiceless phonemes",
two di�erent segment ordering schemes were utilized; "random" and "�xed-end".
Summary of the sample structure can be seen in Table 5.2.

In the random ordering scheme, all the segment units of an original utterance
from the EMOGIB database were reordered and concatenated randomly to create
a new utterance. As a variation, the �xed end ordering scheme kept the last
segment unit of an utterance in its original position while randomizing the rest of
the segment units. With segment swapping, various prosodic and acoustic aspects
are altered which might be negatively perceived by humans. By keeping the last
segment �xed during segment swapping, some of these aspects, such as the pitch
declination are less modi�ed. By implementing the �xed end variation, it was
assumed that the modi�cations on the prosodic and acoustic aspects would be less
explicit to the listeners which would achieve a smaller negative e�ect on emotion
recognition and perceived naturalness.

Table 5.2: Summary of the sample structure

Swappable segment unit Ordering scheme
Segment between two pauses random

random with last unit being �xed
Segment between two voiceless phonemes random

random with last unit being �xed
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For each of the two swappable segment units, a di�erent original utterance was
selected. The 2 original utterances plus the 4 swapped samples were all included
in the stimuli. This sample creation procedure was repeated 4 times for each of
the 6 emotions in the EMOGIB database: anger, disgust, fear, happiness, sadness,
surprise. As such the �nal stimuli for this experiment included 144 samples.

5.2.3.2 Experimental procedure and participants

15 subjects (10 male and 5 female) with ages ranging between 26 and 48 partici-
pated in the listening experiment. 10 of the subjects had no prior experience with
synthetic speech (naive subjects).

They were instructed to listen to various speech samples that they may not
understand the meaning of and answer two questions about what they had heard
for each sample.

As the �rst question, the participants were requested to choose which one of
the given emotions matched with the speech sample they had listened to. If none of
the 6 emotions matched their perception, they had the option to choose �other�.

In the second question, the subjects were asked to pay attention to the natu-

ralness of the samples. They were instructed that a sample is considered as natural
when the sample sounds like speech of a human in an unrecognized real language,

rather than sounding like an unnatural combination of vocalizations or sounds.
With this instruction it was intended to guide the users to re�ect their opinion on
how natural or unnatural the utterances sounded rather than judging the grammar
or the content of the sentence. As such the sound of an unrecognized real language
in this case is assumed to be a �uent string of speech sounds. The participants
expressed their judgments using a MOS scale of 1 (Very Unnatural) to 5 (Very
Natural).

The samples were provided randomly in a single presentation order. There was no
time limit and the participants could replay each sample as much as they wanted.
The subjects were asked to use headphones at a volume level that is high enough
so the audio is clearly audible.
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Figure 5.4: Emotion recognition rates (on the left) and the naturalness (on the
right) scores for both swappable segment units and the originals.

5.2.3.3 Results

Results for swappable segment units across all emotions:

Figure 5.4, shows the emotion recognition and naturalness results for both swap-
pable segment units (segments between two pauses � referred to as pause, segments
between two voiceless segments � referred to as voiceless) and their original utter-
ances. Correct stands for the emotion that was perceived was the intended emotion
and incorrect stands for the emotion that was perceived was a di�erent emotion
than the intended one.

Regarding emotion recognition, analysis using Wilcoxon signed-rank tests indi-
cated that there was no statistically signi�cant di�erence between the pause
segments and their originals (Z = −1.645; p = 0.100) or with voiceless segments
and their originals (Z = −0.927; p = 0.354). This means that for both of the swap-
pable segment units implemented in the framework, overall emotion recognition
was not e�ected in a statistically signi�cant way.

For perceived naturalness, an analysis using Wilcoxon signed-rank tests indi-
cated that the naturalness scores were signi�cantly di�erent for each paired group.
Test statistics are summarized in Table 5.3. Unlike emotion recognition, naturalness
was e�ected in a statistically signi�cant way for both of the swappable segment
units with pause performing better than voiceless.

Drilling down to the ordering schemes, Figure 5.5 illustrates the emotion recognition
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Table 5.3: Wilcoxon signed-rank test statistics for perceived naturalness

OriPause - Pause OriVoiceless - Voiceless OriPause - OriVoiceless Pause - Voiceless
Z -7.609 -9.762 -3.695 -6.670
p <0.001 <0.001 <0.001 <0.001

rates and the naturalness scores for the two ordering schemes (random and random
with last unit being �xed - referred to as �xed-end) and their originals for segment
unit pause.

Figure 5.5: Emotion recognition rates and the naturalness MOS scores for the
two ordering schemes (random and random with last unit being �xed - referred

to as �xed-end) and their originals for segment unit pause

Although the Friedman test did not indicate a signi�cant di�erence for emo-

tion recognition (χ2(2) = 4.875, p = 0.087), it indicated a signi�cant di�erence for
the naturalness scores (χ2(2) = 74.194, p < 0.001). An analysis using Wilcoxon
signed-rank tests with Bonferroni correction 1 showed that the naturalness scores
of the swapped utterances were signi�cantly di�erent than the original for both
�xed-end (Z = −6.803, p < 0.001) and random (Z = −8.221, p < 0.001) ordering
schemes. On the other hand, no signi�cant di�erence was found between the two
ordering schemes �xed-end and random (Z = −2.223, p = 0.026).

For segment unit voiceless, the results are summarized in Figure 5.6. Again,
1Bonferroni correction is calculated by dividing the signi�cance level initially being used by the

number of tests that were run to gather the new signi�cance level. In this case the new signi�cance
level is: 0.05/3 = 0.017
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Figure 5.6: Emotion recognition rates and the naturalness MOS scores for the
two ordering schemes (random and �xed-end) and their originals for segment

unit voiceless

similar results were achieved as in the pause case. For emotion recognition results,
the Friedman test did not indicate a signi�cant di�erence (χ2(2) = 3.407, p = 0.182),
while for the naturalness scores it did indicate a signi�cant di�erence (χ2(2) =

88.486, p < 0.001). Wilcoxon signed-rank tests with Bonferroni correction showed
that the naturalness scores of the swapped utterances were again signi�cantly
di�erent from the original for both �xed-end (Z = −7.695, p < 0.001) and random

(Z = −9.404, p < 0.001) ordering schemes. Also the di�erence between the two
ordering schemes �xed-end and random was signi�cant (Z = −2.846, p = 0.004)
with �xed-end performing better than random.

In summary there weren't any statistically signi�cant di�erences in emotion

recognition results between pause or voiceless with their originals, as well as among
any ordering schemes (�xed-end, random) implemented in each. However across
each of those, the perceived naturalness scores were signi�cantly di�erent from
their originals. Detailing the drill down of the results further, in next paragraph the
statistical analysis per each emotion is provided.

Results for swappable segment units emotion by emotion:

Table 5.4 and Table 5.5 show the confusion matrices and Table 5.6 shows the
naturalness scores for the originals of pause and voiceless samples.

Continuing on the detailed analysis, Table 5.7 shows the di�erences in emo-
tion recognition and naturalness for pause or voiceless compared to their originals,
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Table 5.4: Confusion matrix for emotion recognition of original pause samples
(expressed in %). Rows correspond to the intended emotions and the columns

correspond to the recognized emotions.

Original-Pause ANG DSG FEA HAP SAD SRP OTH
ANG 50 7 0 3 2 12 27
DSG 0 92 0 0 2 0 7
FEA 5 2 78 0 0 10 5
HAP 3 0 3 87 2 3 2
SAD 2 0 2 0 95 0 2
SRP 0 0 0 0 0 93 7

Table 5.5: Confusion matrix for emotion recognition of original voiceless sam-
ples (expressed in %). Rows correspond to the intended emotions and the

columns correspond to the recognized emotions.

Original-Voiceless ANG DSG FEA HAP SAD SRP OTH
ANG 58 5 0 0 3 7 27
DSG 5 40 2 0 35 10 8
FEA 0 0 62 2 27 5 5
HAP 0 2 0 83 2 10 3
SAD 0 0 10 0 87 2 2
SRP 0 0 2 0 0 95 3

Table 5.6: Naturalness perception scores for original pause and original voiceless
samples (on a scale of 1 - very unnatural to 5 - very natural)

Naturalness Original-Pause Original-Voiceless
ANG 3.8 3.6
DSG 3.7 3.8
FEA 4.0 3.9
HAP 4.0 4.0
SAD 3.9 3.6
SRP 4.2 3.9
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for each ordering scheme which forms the 4 experimental groups: pause �xed-end,
pause random, voiceless �xed-end, voiceless random. The table also indicates the
statistical signi�cance of each di�erence.

For Anger: Across four experimental groups, there were no statistically signif-
icant di�erences in emotion recognition compared to their originals. In perceived
naturalness scores, only the drop in voiceless �xed-end was not statistically signi�-
cant.

For Disgust: For emotion recognition only the di�erence in pause random was
statistically signi�cant. The di�erence in naturalness for pause �xed-end and pause
random were equal and both statistically insigni�cant.

For Fear: Except voiceless �xed end, none of the di�erences from their origi-
nals in emotion recognition were statistically di�erent. While the drops in all the
naturalness scores were statistically signi�cant, the smallest drop was in pause

�xed-end.

For Happiness: For none of the experimental groups, the di�erences in emo-
tion recognition from their originals were statistically di�erent. For naturalness the
drop in both voiceless groups were statistically signi�cant, while for both pause

�xed-end and pause random, there were no statistically signi�cant di�erences with
their originals.

For Sad: There was no statistical signi�cance in the di�erences for emotion
recognition, while the drop in naturalness was statistically signi�cant in every
group. The smallest drop in naturalness was observed in pause �xed-end.

For Surprise: Only voiceless random had a statistically signi�cant drop in emotion
recognition. All the groups had a statistically signi�cant drop in naturalness. The
least dropping group was pause �xed-end.

Further analysis of the test results, using Mann-Whitney U test statistics
showed a signi�cant di�erence between the overall scores for both the emotion
recognition and naturalness of the naive subjects and speech processing experts
(Z = −3.669, p < 0.001 and Z = −2.952, p < 0.005, respectively). Both the overall
emotion recognition and naturalness scores of the naive subjects were signi�cantly
lower than the ratings of the speech experts.
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Table 5.7: Combined di�erences in emotion recognition and naturalness for
pause or voiceless from their originals for each emotion:

di�erence, Z-value (p-value)

pause_�xedend pause_random voiceless_�xedend voiceless_random
ANG
Emo. Rec. -10%, -1.500 (0.134) -3% -0.447 (0.655) 0%, 0.000 (1.000) 0%, 0.000 (1.000)
Natur. -0.48*, -2.694 (0.007) -0.77* -3.614 (0.000) -0.40, -2.055 (0.040) -0.47*, -2.592 (0.010)
DSG
Emo. Rec. -10%, -2.121 (0.034) -19%*, -3.317 (0.001) 12%, -1.528 (0.127) 13%, -1.461 (0.144)
Natur. -0.28, -1.757 (0.079) -0.28, -2.127 (0.033) -0.72*, -3.768 (0.000) -0.82*, -4.713 (0.000)
FEA
Emo. Rec. 9%, -1.291 (0.197) 2%, -0.229 (0.819) -22%*, -3.153 (0.002) -7%, -1.155 (0.248)
Natur. -0.68*, -4.158 (0.000) -0.77*, -4.229 (0.000) -0.50*, -3.051 (0.002) -0.73*, 3.573 (0.000)
HAP
Emo. Rec. 6%, -1.414 (0.157) 3%, -0.577 (0.564) 5% -0.775 (0.439) 2%, -0.302 (0.763)
Natur. -0.17, -1.287 (0.198) -0.32, -2.248 (0.025) -0.70*, -3.536 (0.000) -1.02*, -4.073 (0.000)
SAD
Emo. Rec. -2%, -0.447 (0.655) 2%, -0.447 (0.655) -14%, -1.886 (0.059) -2%, -0.277 (0.782)
Natur. -0.45*, -2.912 (0.004) -0.52*, -3.098 (0.002) -0.58*, -3.262 (0.001) -0.67*, -3.990 (0.000)
SRP
Emo. Rec. -11%, -1.941 (0.052) -16%, -2.357 (0.018) -10%, -2.121 (0.034) -30%*, -4.025 (0.000)
Natur. -0.62*, -3.678 (0.000) -0.77*, -4.522 (0.000) -0.77*, -3.121 (0.002) -1.08*, -4.167 (0.000)

5.2.4 Discussion

In general, the di�erence in emotion recognition results for both pause and voiceless

swappable segment units compared to the originals were not statistically signi�cant.
The emotion recognition results of the two ordering schemes compared to their
originals, which were �xed-end and random, had no statistically signi�cant di�er-
ence for both pause and voiceless swappable segment units. In other terms, segment
swapping techniques implemented in the framework, didn't result in an overall drop
that is statistically signi�cant for emotion recognition. Although this was a better
overall result than expected for the �rst core question listed in Section 5.2.3, it was
not a big surprise. With the implementation of the segment swapping techniques
described, many of the features, which play a role in emotion recognition, both at
the frame level (e.g. raw pitch, energy) and at the utterance level (e.g. maximum,
minimum, mean, range) as well as voice quality were untouched.

When the emotion recognition results were analyzed emotion by emotion, across 24
experimental groups (6 emotions x 2 swappable segment units x 2 ordering schemes)
there were no statistically signi�cant di�erences in 21 of them compared to their
originals. Pause �xed end was the swappable segment unit and ordering scheme
combination, which did not have any statistically signi�cant di�erence across the
emotions. The 3 statistically signi�cant di�erences were distributed across the
other swappable segment unit and ordering scheme combinations (1 per each pause
random, voiceless random, voiceless �xed-end).

For naturalness scores, the di�erences for both pause and voiceless swappable
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segment units compared to the originals were statistically signi�cant. The nat-
uralness results of the two ordering schemes compared to their originals, which
were �xed-end and random, had statistically signi�cant di�erence for both pause
and voiceless swappable segment units. Comparing the �xed-end to random, while
the di�erence was not statistically signi�cant for pause, for voiceless swappable
segment unit �xed-end ordering scheme performed better. Overall the naturalness
was negatively a�ected by the segment swapping in a statistically signi�cant way.
During the segment swapping, swappable segment units are both reordered and
concatenated. By the reordering performed during segment swapping, prosodic
and acoustic aspects, such as the pitch contour and declination line are altered.
Answering the core questions in Section 5.2.3 being addressed in this experiment
also provided insights in how such an altering would be noticed by the subjects
and if this would be perceived acceptable. Above mentioned results revealed that
for emotion recognition the resulting alteration didn't have a negative impact while
for naturalness the subjects could sense the modi�cation hence giving lower scores.
Also naturalness is prone to segmentation errors in the database labeling process.
The combination of all these factors most likely have accumulated, causing the
negative e�ect on the naturalness perception.

For the �xed-end ordering scheme, it was assumed that the modi�cations on
the prosodic and acoustic aspects would be less explicit to the listeners which
would achieve a smaller negative e�ect on emotion recognition and perceived nat-
uralness. While for overall emotion recognition �xed-end and random had similar
performances, in perceived naturalness in line with the above assumption �xed end
performed better.

The naturalness of the segment swapping can potentially be improved by fur-
ther enhancing the segment selection logic. Currently segment selection is done in a
random order, except for the last segment of the utterance in the �xed-end ordering
scheme. A more sophisticated segment selection logic can be introduced by de�ning
additional rules. Such an example can be de�ning target and join costs which is used
in most unit selection TTS synthesizers, seeking a minimum distance between the
two segments to be concatenated. Considering no linguistic or phonemic alignment
would be needed in the concatenation of gibberish speech segments, the algorithms
in SFAS framework would most likely require fewer cost function de�nitions. Thus
such a segment selection logic can be seen as a simpli�ed version of the ones used
in unit selection TTS synthesizers.

There were only 5 across 24 experimental groups that did not have a statisti-
cally signi�cant di�erence in naturalness scores compared to their originals, when
the results were analyzed emotion by emotion. Pause performed slightly better than
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voiceless (4 vs. 1 groups with no statistically signi�cant di�erence respectively) and
�xed-end performed slightly better than random (3 vs. 2 groups with no statistically
signi�cant di�erence respectively).

The emotion recognition and naturalness results were also evaluated in combi-
nation. Per each emotion to identify the best performing experimental group, �rst
the experimental groups with a statistically signi�cant di�erence, compared to their
originals, in emotion recognition were eliminated. For the remaining experimental
groups for that emotion, if there were any which had no statistically signi�cant
di�erence in naturalness, these were highlighted as the best performers. If the
di�erences in naturalness were statistically signi�cant among all the remaining
experimental groups for that emotion, the one that had the least drop was high-
lighted as the best performer. According to this evaluation logic, except for anger,
pause-�xed end performed best across all the four experimental groups when emo-
tion recognition and naturalness results were combined. While for anger voiceless
�xed-end was the best performer, for happy both pause �xed-end and pause random
were best performers. In Table 5.7 the best performing groups per each emotion are
highlighted in bold.

Pause �xed-end being the overall best performer hasn't been a surprising re-
sult. Pause as a swappable segment unit, is less fragile to concatenation errors as
there's no voice activity closer to the boundaries of the segment unit as long as
the labeling is accurate. In combination with the �xed-end ordering scheme, as the
prosodic ending was not being touched, less disturbance in naturalness was achieved.

The only exception to the pause �xed-end being the top performer in emotion
by emotion analysis was anger. In emotion recognition, statistically both voiceless
ordering schemes were almost one to one matching with the originals. Across all
the four experimental groups, only voiceless �xed-end didn't have a statistically
signi�cant drop in perceived naturalness scores. The di�erence in the results for
anger compared to the other emotions still to be further investigated.

5.3 Voice modi�cation

Frequency code work of (Hinton, Nichols, & Ohala, 1994) has shown the relationship
between the physical volume and the voice pitch for both humans and animals.
Also the entertainment industry has been analyzing preferences of the audience
for certain characters and the combination of actors' voice characteristics with the
physical appearance of the characters. Such a preferred relation is also expected
between robots and their voices. As mentioned in the introduction of this chapter,
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there are a few notable studies focusing on the vocal attributes (Mitchell et al.,
2011; Read & Belpaeme, 2010; Komatsu & Yamada, 2011). What hasn't been
explored so far is �nding the matching voice style for a robotic agent in alignment
with the physical morphology of the robot. This gap forms up the aim of this section.

This alignment need has been explored as a side motivation during the experiment
detailed in Section 6.3. This experiment was performed prior to the integration of
the voice modi�cation capabilities, which are detailed in this section, into the SFAS
framework. The results from that experiment showed that the children subjects
liked the voice of the robot in the experiment. However the question if the voice
belonged to the robot received lower than expected scores. This have further
motivated the investigations in this section on aligning the voice with the robot's
morphology which can be achieved by changing the speaker's voice identity.

5.3.1 Voice modi�cation architecture

When one speaks, two main types of information are encoded in the speech: linguis-
tic information (message or meaning) and non-linguistic information (like speaker
identity and voice quality). To change a speaker's voice identity, voice modi�cation
techniques are used so that the voice sounds like another person rather than the
original speaker.

In this study, to alter the voice identity, the segmental acoustic qualities of
the voice (prosodic qualities are ignored) are modi�ed by applying a global spectral

shift and vocal tract modi�cation.

The global spectral shift is realized by time-scaling and resampling of the speech
waveform. First, the speech signal is time-scaled using WSOLA (Verhelst & Roe-
lands, 1993).

Ideal time-scaling algorithm is expected to produce a synthetic waveform y(n)

that maintains maximal local similarity to the original waveform x(m) in corre-
sponding neighborhoods of related sample indices n = τ(m) (Verhelst & Roelands,
1993). This can be expressed as:

∀(m) : y(n+ τ(m)).w(n)(=)x(n+m).w(n) (5.4)

where w(n) is a windowing function, and (=) stands to de�ne 'maximally similar
to'. Assuming that after Fourier transformation the maximal similarity continues,



100 Chapter 5. Speech Modi�cations

and de�ning the short-time Fourier transform (STFT) X(ω,m) of x(m) as:

X(ω,m) =

+∞∑
n=−∞

x(n+m).w(n).e−jωn (5.5)

then the expression (5.4) can be written as:

Y (ω, τ(m))(=)X(ω,m). (5.6)

Once the e�ective length of w(n) in (5.4) is selected to span at least one pitch
period, the important characteristics of the signal can remain una�ected after the
time-scaling operation(Verhelst & Roelands, 1993). Now, solving the time-scaling
problem based on manipulation of short-time Fourier transform, gives an opera-
tional de�nition for (=) in expression (5.6).

Let X(ω, τ−1(Lk)) represent a down-sampled version of the STFT of the input
signal x(n), and assume a strict equality for (=) by specifying the 2-dimensional
function,

Y β(ω,Lk) = X(ω, τ−1(Lk)). (5.7)

The overlap-add technique in general, as well as WSOLA, proposes to synthesize a
signal y(n) whose STFT Y (ω,Lk) is as close as possible to the desired Y β(ω,Lk). A
tolerance is allowed on the time-warping function. WSOLA uses this timing tolerance
∆k to ensure that the time-scale modi�ed waveform can maintain maximal similarity
to the original waveform across its segment joins in the overlap-add procedure. The
basic synthesis equation, as described in (Verhelst & Roelands, 1993), is:

y(n) =
∑
k

v(n− kL).x(n+ τ−1(kL)− kL+ ∆k) (5.8)

where v(n) = w2(n) is the symmetric windowing function and kL represents
(Lk = k.L) the synthesis instants that are chosen regularly spaced. Fig. 5.7 illus-
trates the operation of a basic WSOLA technique.

After time-scaling the signal with WSOLA, the modi�ed signal is resampled
to its original length. Playing back this signal at its original sampling frequency
results in shifting the original signal's spectrum (Figure 5.8).

Vocal tract modi�cations are based on the residual-excited LPC (Linear Pre-
dictive Coding) analysis/synthesis and re-parameterization of the PLAR (pseudo
log area ratio) parameter curve (Olive & Buchsbaum, 1987; Yang & Stylianou,
1998; Corveleyn, Coose, & Verhelst, 2002).
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Figure 5.7: Operation of a basic WSOLA algorithm (Verhelst & Roelands,
1993). Proceeding in a left-to-right fashion, assuming segment (1) was the last
segment that was excised from the input and added to the output at time instant
Lk−1 = (k − 1).L, i.e. segment(a) = segment(1). WSOLA then needs to �nd
a segment (b) that will overlap-add with (a) in a synchronized way and can be
excised from the input around time instant τ−1(k.L). As (1') would overlap-add
with (1) = (a) in a natural way to form a portion of the original input speech,
WSOLA can select (b) such that it resembles (1') as closely as possible and
is located within the prescribed tolerance interval around τ−1(k.L) in the input
wave. The position of this best segment (2) is found by maximizing a similarity
measure (such as the cross-correlation or the cross-AMDF(Average magnitude
di�erence)) between the sample sequence underlying (1') and the input speech.
After overlap-adding (b) with (a), WSOLA proceeds to the next output segment,

where (2') now plays the same role as (1') in the previous step

Figure 5.8: Global spectral shift is realized by time-scaling and resampling of
the speech waveform. The original speech signal is on the left and the resulted

signal with a spectral shift is on the right.
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PLAR parameters characterize the cross-section of the vocal tract and by simply
stretching or compressing some parts of the PLAR curve, it is possible to simulate
the e�ect of a change in the length of the corresponding parts of the vocal tract
(Corveleyn et al., 2002). In mathematical terms, the PLAR parameters can be
de�ned as:

h0 = 0, hi = hi−1 + log(
1− ki
1 + ki

) (5.9)

where ki represents the ith LPC re�ection coe�cient. These coe�cients, which are
related to the transection of an acoustic tube model of the vocal tract, can be de�ned
as:

ki =
Ai+1 −Ai
Ai+1 +Ai

(5.10)

with Ai the area of the ith transection. Combining (5.9) and (5.10) gives:

hi = log(
A1

Ai+1
) (5.11)

Plotting all the PLAR parameters and drawing a line through them by interpolation
gives a visual representation (Figure 5.9). As mentioned before by simply stretching
or compressing some parts of the PLAR curve, it is possible to simulate the e�ect
of a change in the length of the corresponding parts of the vocal tract2. Once
the warped curve is sampled at the same equidistant places along the horizontal
axis to get the new PLAR parameters, the length of the warped curve may have
been changed. Thus, LPC-order (the number of parameters) needs to change too,
which requires a transformation operation by re-parameterization of the curve as
explained in (Corveleyn et al., 2002).

Let s(xs) be the PLAR curve of the source speaker, with PLAR parameters
at xs = 0, 1, ..., p (p = LPC order). Then perform the warping of the curve by
applying a re-parameterization of the curve, with xs = m(xt), which results in
s(m(xt)). Now, the new PLAR parameters can be found for xt = 0, 1, ..., pm, with
pm the new number of trans-sections, calculated as:

pm = [m−1(p)] (5.12)

2If gender transformation is taken as an example, formants in female speech are higher in
frequency than in male speech. This is due to the shorter vocal tract of female speakers, especially
because the vocal chords are located less deeply than with male speakers. Thus, male-to-female
transformation can be achieved by changing the length of the front (simply compressing such as
in (Corveleyn et al., 2002)) or both front and back (compressing the front, and equally stretching
the back such as in (Yang & Stylianou, 1998)) of the vocal tract.
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Combining the time-scaling and resampling of the speech signal with the vocal tract
conversion in the LPC domain, provides a simple and robust voice modi�cation
architecture which allows to change the initial speaker's voice identity. MATLAB
user interface of the voice modi�cation architecture described above and used in
this study can be seen on Figure 5.10.

Figure 5.9: Similar sounds produced by two di�erent speakers corresponds to
two di�erent PLAR curves (Corveleyn et al., 2002).

Additionally a real-time module that incorporates the spectral shift modi�ca-
tion has been developed. Basically in this module the speech signal is time-scaled
and the modi�ed signal is then resampled to its original length. This module is
intended for the WoZ studies where the robot is operated by and speaks through a
wizard.

5.3.2 Voice alignment with the robot morphology

Various factors would have an impact on the type of voice for a given robot; such
as the role of the robot (companion vs. teacher), action speed of the robot (slow vs.
fast) or the social context of the interaction (partner vs. competitor). This study
is focused on the impact of the physical factors (morphology) and examines the
relation with the voice spectral shift.

The relation between the voice characteristics and the robot morphology was
investigated in an experiment with the EMOGIB database and two robots whose
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Figure 5.10: MATLAB user interface of the voice modi�cation architecture
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morphologies di�er from each other. Robots Probo (Saldien et al., 2008) and Nao
(NAO 2015 - SoftBank Robotics' humaonid robotic platform, n.d.) were utilized in
this experiment. Probo is a high volume animal-like green robot with a fur and
Nao is a low volume human-like gray robot with a plastic cover (Figure 5.11).
These robots are the evaluation platforms used for the SFAS framework in this
dissertation and more details about them will be provided in Section 6.2 of the next
chapter.

Figure 5.11: Probo on the upper-left and Nao on the upper-right with their
morphology summary table below.

5.3.2.1 Stimuli

Two sets of samples were created for this experiment. For the �rst set, one neutral
sample from EMOGIB was selected as the base utterance. From this base utterance,
4 low pitched and 4 high pitched samples were designed empirically and generated
by using the voice modi�cation technique described in Section 5.3.1. Each one of
the 4 low pitched samples was created by spectrally shifting downwards compared
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to the preceding sample which generated an audible gradual downward shift in the
end (global spectral shift factors were: 0.784, 0.703, 0.622, 0.541). Similarly, for the
high pitched samples spectral shifts were made upwards (with the factors: 1.081,
1.162, 1.243, 1.324). Fixed vocal tract conversion factors of 0.796 and 0.915 were
used for the high and low pitched samples, respectively.

For the second set, a base sample composed of neutral, sadness and happiness

utterances was created. This set was intended to provide the subjects an overview
of each voice pro�le in various emotions. Again as in the �rst set, 4 low pitched and
4 high pitched samples were created from this base sample for producing gradual
downward and upward spectrum shifts.

5.3.2.2 Experimental procedure and participants

Eight subjects participated in the experiment (with ages ranging between 28 and
33). The subjects watched a short muted video of each robot at the beginning of
the test. This introduced the robots to the subjects and helped them to get familiar
with their morphologies. There was a human next to the robot in each video to
provide a reference about the robot's size.

The �rst sample set was presented in the �rst and second part of the test.
The participants evaluated how well the voice samples �t Probo and Nao on a scale
of 0 to 5 (0 meaning the voice doesn't suit the appearance of Probo/Nao at all and
5 meaning the voice suits the appearance very well).

In the second part of the test, one of the samples was told to be actually spoken by
Probo/Nao and they were asked to guess which one was this sample.

In the third part, the subjects listened to the samples of the second set in an
order from higher pitch to lower pitch. The subjects were instructed that the
emotions would change during each of the samples. They were again requested to
guess the sample actually spoken by Probo/Nao.

5.3.2.3 Results

As can be seen from the results of the �rst part (Table 5.8 and Figure 5.12), the
higher pitched voice samples were perceived as a better �t for Nao (mean score
of 3.4/5) while the lower pitched samples were perceived as a better �t for Probo
(mean score of 3.5/5). Wilcoxon Signed Ranks Test showed that the di�erence
between MOS of the low pitch samples and high pitch samples were statistically sig-
ni�cant for both Nao and Probo (Z = −5.921, p < 0.001 and Z = −5.919, p < 0.001

respectively).
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Table 5.8: Mean suitability scores for Probo and Nao

Probo Nao
Low pitch samples 3.5 1.2
High pitch samples 1.3 3.4

Figure 5.12: Box plots of the suitability scores of downward and upward shifted
samples for Probo and Nao. The �rst and the second groups correspond to the
suitability scores of the downward and upwards shifted samples for Probo, while
the third and the fourth group show the suitability scores of the downward and

upwards shifted samples for Nao.

In the second part, the voice perceived as being spoken by Nao by 63 % of
the participants was the one with an upward spectral shift of 1.162. The sample
with a downward spectral shift of 0.784 was selected for Probo by 50 % of the
participants. All the remaining scores can be seen in Figure 5.13.
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Figure 5.13: Spectral shift factor preferences for Probo (upper panel) and Nao
(lower panel). Spectral shift factors are on the x-axis and the percentage of the

participants on the y-axis.
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The same spectral factors for both Probo and Nao were also supported by the
results of the third part, but this time with a lower percentage of the participants
(0.784 was selected by 38 % of the participants for Probo and 1.162 was selected
by 50 % of the participants for Nao).

5.3.3 Discussion

This voice style study showed that there is a direct relation between the physical
appearance of the robots and the appropriate voice pitch. As expected, similar to
the �ndings of the Frequency Code study in humans and animals (Hinton et al.,
1994), the lower pitched voices were more related with the high volume (i.e. larger)
robot Probo while the higher pitched voices were more related with the low volume
(i.e. smaller) robot Nao.

When di�erent emotions were present in the voice, still the same spectral shift
factors received the highest preference scores, however with a lower percentage.
The fact that the emotions have also an e�ect on voice acoustic features, might
have a�ected the subjects perception. For example happiness leads to an increase
in pitch and pitch range. This creates an additional modi�cation in the pitch on
top of the spectral shift provided by the voice style modi�cation. This might be the
root cause of the lower percentage in the preference scores.

In the studies where the robot is operated by a wizard in a WoZ setup, this
time the voice acoustics of the wizard will need to be aligned with the robot's
morphology in real time. For example, as mentioned above if the robot being used
in the WoZ set up is a low volume robot (i.e. smaller) the voice of the wizard will
most likely need to be spectrally shifted upwards in real time. While this shift can
be achieved using the real time implementation module described earlier, �nding
the most appropriate spectral shift factor will need to be experimented.

The voice alignment experiment in this study focuses only on spectral shift.
Further experiments can be performed to study the relation between the physical
appearance of the robots and the other parameters of the voice signal. Such a study
could for instance be performed to �nd the most appropriate speaking rate again by
using the WSOLA and re-sampling technique. Another improvement on the voice
style can be achieved by timbre adjustments which can be realized by PLAR curve
re-parameterization.

The motivation for choosing gibberish speech rather than other SFU types
was elaborated in Section 3.1 and the results of the experiment indicate that the
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subjects perceive this choice as appropriate with speci�c spectral shifts for both of
the robots. However how the human voice based SFU would compare to other SFU
types when used in a non-humanoid robotic embodiment (e.g. Probo) would be an
interesting research question to explore further.

By aligning more voice parameters with the robot morphology in respect of
their potential uses, it can be possible to achieve higher scores in user satisfaction
in human robot interaction.

5.4 Summary

In summary, the segment swapping techniques, which are implemented in the overall
framework and tested with the experiment explained above, have further enhanced
the capabilities of the SFAS framework by providing a synthesizing capability with
no signi�cant negative e�ect on emotion recognition and acceptable levels of drop
in naturalness. The major strength of this synthesizing capability is the ability to
signi�cantly increase the amount of usable and unique semantic-free utterances,
without needing to perform additional recording activity. Hence segment swapping
decreases the cost of implementation of the framework in HRI studies, which
will most likely lead to wider and faster adoption of the framework by the HRI
community.

Segment swapping signi�cantly expands the synthesized unique semantic-free
utterances. Even though each of these utterances are unique, depending on the
intensity of the reordering performed, some utterances might be considered as
repetitions or recurrences by the listeners. With a future study, the acceptable level
of repetitions and recurrences should be explored. This will also be an important
parameter in identifying the minimum recording time required to be able to build
a new semantic-free speech database utilizing the SFAS framework.

For the future implementations of the framework, once the semantic-free speech
database is formed, it needs to be adopted to the physical appearance of the robotic
agent as suggested by the voice style study detailed in the Voice Modi�cation
section. This study showed the direct relation between the robotic agent's physical
appearance and the appropriate voice pitch. The lower pitched voices are consid-
ered to be more appropriate for high volume robots while higher pitched voices are
preferred for low volume robots. The voice modi�cation implemented in the overall
framework as described above will allow voice pitch to be adapted to the robot
morphology in respect of their potential uses, which may lead to higher satisfaction
in human robot interaction.
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Some of the techniques, experiments and results mentioned in this chapter have
been published in (Yilmazyildiz et al., 2012; Yilmazyildiz, Athanasopoulos, et al.,
2013; Yilmazyildiz et al., 2015).





6 | HRI utilizing Semantic-

Free A�ective Speech

6.1 Introduction

Until this point in this dissertation, the Semantic-Free A�ective Speech (SFAS)
framework was designed, the core hypotheses behind it were tested and con�rmed,
then the capabilities of the framework were further enhanced in a way that future
implementations would be easier, practical and more cost e�ective.

In this chapter, the SFAS framework is assessed further with pilot implemen-
tations using physical robotic embodiment in multiple a�ective human robot
interaction scenarios. Each of these pilot implementations aimed to assess di�erent
aspects of the a�ective HRI. In the �rst experiment, multi-modality and as an
example the e�ect of using Semantic-Free A�ective Speech in combination with
facial expressions is assessed. The second experiment focused on a hybrid usage
scenario, testing the combined use of Semantic-Free A�ective Speech with Nat-
ural Language, which would further expand the implementable scenarios for the
framework. During the third experiment, children subjects and the robotic agent
shared the same physical space in a real life like interaction scenario, watching
movie clips together. The co-viewing companion robot communicated using only
Semantic-Free A�ective Speech throughout this a�ective interaction, while the
emotional context was altered to test the e�ects on emotion perception of children
and their interaction with the robot.

These experiments aimed to test the utilization opportunity of the framework
for a variety of HRI settings by piloting multi-modality, hybrid implementation and
physical companion interaction cases.
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6.2 The robots Nao and Probo as the evaluation

platforms

Two social robots were utilized as the evaluation platforms of the proposed frame-
work. In this section these two robots; the robot Probo (Saldien, 2009) and the
commercially available robot Nao (version 4.0) (NAO 2015 - SoftBank Robotics'

humaonid robotic platform, n.d.) are described.

The SFAS framework presented in this thesis provides a medium to study hu-
man robot interaction and is implementable to various robotic agents available.
Parts of the work presented in this thesis have been utilized in and contributed to
the EU FP7 funded ALIZ-E (Adaptive Strategies for Sustainable Long-Term Social
Interaction) project, which focuses on the design of long-term, adaptive social
interaction between robots and child users. Nao has been utilized as the research
platform in ALIZ-E project. Another major project this thesis has contributed to
was Project HOA16. This Vrije Universiteit Brussel funded project focused on the
development of natural human/robot communication architecture and implementa-
tion of attention mechanisms, using Probo as the platform. Active participation in
and contributions to these two major projects in the context of this thesis formed
up an opportunity to experiment and further research the framework utilizing these
two robots.

In all the experiments presented in this section, either one of the two robots
were physically present in the room with subjects (Sections 6.4 and 6.5), or video
recordings of one of the robots were presented to the subjects (Section 6.3).

For all of these experiments, both of the robots were programmed to behave
in a manner where they exhibited natural-like behaviors allowed by their a�or-
dances. For example, Nao's LEDs in the eyes blinked and when standing the
robot's weight was shifted from foot to foot; where Probo's eyelids and ears moved
randomly. This was to create an illusion of life to prevent them being perceived as
static entities.

The robot Nao

The Nao robot (Figure 6.1), is a low volume small human-like robot with a rigid
plastic cover. It was designed primarily for, and currently marketed to, researchers
investigating social HRI, as well as areas of science that are impacted by this (such
as Cognitive/Developmental robotics). It is one of the most widely used humanoid
robots for academic purposes worldwide.
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Figure 6.1: The robots Nao (on the left) and Probo (on the right) used as the
evaluation platforms

The height of the robot is 57cm, the weight is 4.3kg and it has 25 degrees of
freedom. The hardware properties include two loudspeakers, four microphones, two
high de�nition cameras, a gyroscope, an accelerometer, and range sensors (2 IR
and 2 sonars). The robot also has an array of Light Emitting Diodes (LEDs) that
serve to represent and animate two eyes.

Nao has an embedded microcomputer (with ATOM Z530 1.6GHz CPU, 1 GB
RAM) that runs a custom Linux distribution. It hosts a pseudo operating system
(NaoQi) which is used to provide both a high and low level interface to the onboard
resources. NaoQi also includes a built in Speech Recognition engine, Text-To-Speech
engine and Computer Vision libraries (which provide onboard face detection and
recognition, and object recognition).

The robot can be programmed using both the Python and C++ languages
utilizing the provided Software Development Kit (SDK). As an other programming
alternative, a graphical Integrated Development Environment (IDE) called Chore-
ograph can also be used which allows programming the behaviors and utilizing
on-board resources with less coding e�ort.
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The robot Probo

The Probo robot (Figure 6.1), is a high volume animal-like robot with a green fur.
It was designed as a research platform to study Cognitive Human-Robot Interaction
and Robot Assisted Therapies with a special focus on children.

The height of the robot is 80cm and it has a fully actuated head, with 20 de-
grees of freedom, capable of showing facial expressions. It has a moving trunk and
a soft huggable jacket. The rest of the hardware includes a camera, a touch screen,
and a range of touch sensors.

The robot can be programmed using C# programming language in the .NET
environment. A 3D model of the robot provides a real time feedback of the results.
Probo is provided with a user-friendly control center which allows an operator to
share control with automated systems. Also an Animation Module allows the user
to assemble and manage sequences of movements/motions.

6.3 Multi-modal emotion expression

In human to human interactions, emotions in many cases are not exchanged in a
unimodal way but through sets of multimodal expressions. Sharing the same social
environment with humans, social robots also interact and exchange emotions with
humans in a multimodal way, allowed by the a�ordances of the robotic agents. As
such, Breazel (Breazeal, 2004) de�nes these various levels of a�ordances as one
of the key di�erentiators between robots and synthetic agents of computer interfaces.

In essence, multimodality is a natural feature of HRI interaction with various
components, such as gestural, postural, facial, auditory, etc., integrated for a�ective
interactions. Decoding of these a�ects by the human users is thus dependent on
the success of the combination of the a�ect expressions on the various levels of
multimodal components.

In respect to this, a multimodal evaluation experiment was designed and per-
formed. The e�ects of the Semantic-Free A�ective Speech on the multimodal
emotion expression of robotic agents were explored. Speci�cally whether the e�ect
of the speech without semantic meaning on the emotion expression would be
positive or negative when combined with another modality. In this experiment,
the focus was on the two major emotion expression components of the robotic
agent; auditory and facial. In a previous study, the e�ect of musical utterances in
combination with facial expressions of an agent was researched (E.-S. Jee et al.,
2007). However a similar study utilizing gibberish speech hasn't been explored.
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Until this point, the emotional quality of the EMOGIB database, which was
also utilized to evaluate the overall framework, was tested by adults only. Expand-
ing the subject group variation for the evaluation of the framework, this experiment
was performed with children. The social robot Probo was used as the robotic
agent in this experiment. Another side motivation regarding this experiment was
to test whether the children would relate the voice in the EMOGIB database to the
appearance of Probo or not.

6.3.1 Stimuli

Three sets of samples were created for this experiment: visual-only sample set (V),
audio-only sample set (A), audiovisual sample set (AV). Each set contained the 6
basic emotion categories, namely anger, disgust, fear, happiness, sadness, surprise.
In the �rst set, video-only samples of each emotion were used without any audio.
The second set consisted of audio-only samples of each emotion category without
any accompanying visual modality. In the third set, audiovisual samples were used
in which the audio and video samples were synchronized.

6.3.1.1 Visual stimuli

To realize a translation from emotions into facial expressions, emotions were param-
eterized. To construct an emotion space for Probo in this regard, two dimensions
were used: valence and arousal (Figure 6.2), which was based on the circumplex
model of a�ect de�ned in (Posner, Russell, & Peterson, 2005). A Cartesian coordi-
nate system was used in the emotion space, where the x-coordinate represents the
valence and the y-coordinate the arousal. Each emotion can then be represented
as a vector with the origin of the coordinate system as initial point and the
corresponding arousal-valence values as the terminal point. The direction of each
vector de�nes the speci�c emotion whereas the magnitude de�nes the intensity of
the emotion. Each basic emotion corresponds to a certain position of the motors
to express the facial expressions (Figure 6.3) on the fully actuated head with 20
degrees of freedom (more details can be found in (Saldien, Goris, Vanderborght,
Vanderfaeillie, & Lefeber, 2010; Saldien, 2009)). Using this method, smooth and
natural transitions between the di�erent emotions were achieved.

For the di�erent visual samples of this experiment, an animation was created
with the desired emotion by using the AnimationModule of Probo. To make the
robot look alive when the robot wasn't performing any speci�c tasks, like expressing
emotions, during the recordings the eyelids and ears moved randomly. The trunk
and neck movements were disabled for these recordings.
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Figure 6.2: Two-dimensional emotion space of Probo, based on the circumplex
model of a�ect de�ned in (Posner et al., 2005)

Figure 6.3: Outer and inner appearance of Probo and the 6 basic facial expres-
sions. Top row from left to right: happiness, surprise and sadness, bottom row

from left to right: anger, fear, disgust.
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6.3.1.2 Audio stimuli

The audio only sample set was created by selecting random samples from EMOGIB
for each emotion. The length of the samples had to be long enough so that the
children could evaluate them e�ectively. On the other hand, the length should not
be too long not to lose the attention of the participating children. Based on informal
evaluations, 10 seconds was selected as the sample duration.

6.3.1.3 Audiovisual stimuli

Audiovisual stimuli were composed of audio and video samples which were syn-
chronized. To have natural lip movements in the audiovisual samples, a lipsync
module was used to match the lip movements with the speech. A commercial soft-
ware package (Annosoft Lipsync Tool 4.1 , n.d.) analysed the di�erent phonemes
from the audio �le. Every phoneme then corresponded to a certain percentage of
mouth opening. For example the |a| opened the mouth completely while the |m| was
a phoneme that pursed the mouth the most. The two other degrees of freedom (the
mouth corners) were not used for lipsync, but only for showing the emotions.

6.3.2 Participants and procedure

Thirty-�ve subjects participated in the test. The age range of the children was
between 10 and 14. The test was performed in 2 groups of children from the same
school, who were all Dutch speaking. In the �rst group there were �fteen children
(5 male, 10 female) and in the second group there were twenty children (7 male, 13
female).

In an introductory story, all 6 basic emotions were associated with simple vi-
sual pictures. For instance the emotion sadness was introduced orally as a part of
the story by saying and illustrating the sentence �Probo is SAD because it RAINS
outside" while the picture of �an umbrella in the rain" was visually presented
(Figure 6.4). During the actual testing, the children could thus associate the stimuli
(i.c. Probo's emotional expressions) with the introductory story and could tick the
associated picture which is presented together with the piece of the story mentioning
the name of the associated emotion in a questionnaire, even if they would not have
the knowledge to semantically understand or name emotional states. This enabled
the scoring of Probo's emotional expressions (auditory, visual, and audiovisual) as
perceived by the children.

The introductory story was told by a speaker who had a soft voice and a clear
Dutch accent and was recorded in the recording studio (ETRO Audio-Visual Lab,
n.d.). The speaker was instructed that he should imagine himself as a teacher telling
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Figure 6.4: English translation of the introductory story and the associated pic-
tures which are also used in the questionnaire
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a short story about Probo, emphasizing the emotions without acting.

All three emotional modality conditions (auditory, visual, and audiovisual) were
presented to the subjects sequentially. The order of the auditory and visual modal-
ities were counterbalanced between both groups of participants. The audiovisual
condition was always presented at the end to avoid that an association between
auditory and visual stimuli would a�ect the participants' judgments in the single
modality conditions. In each modality condition, participants were asked to asso-
ciate 9 stimuli in which Probo expressed an emotional state. All 6 emotional states
were presented at least once. The three additional stimuli were implemented as
�llers and were not taken into consideration in the analysis. The use of �llers aimed
that participants' responses would not be a�ected by the strategy of excluding the
already recognized emotions from the response selection. The emotion represented
by the �ller stimuli were randomly selected for each modality condition in each
group.

At the end of the questionnaire, the participants were provided 2 additional
questions. The �rst question requested a Mean Opinion Score (MOS) for the voice.
The children had to paint a slider of 10 scales up to the point that corresponded
with how much they liked the voice. The second requested a MOS score for if they
thought the voice was the voice of Probo. The question was presented in the same
way with a slider of 10 scales as in the �rst question.

The experimental sessions took around 30 minutes each. The samples were
played once unless the subjects requested a repetition. This repetition occurred
only a few times during the entire experiment. After playing each sample, the
children were given time to �ll in the questionnaire for the corresponding question.
The questionnaire was prepared in a forced multiple choice structure, also including
the option �I don't know".

The experiment was performed in the school's recently installed laboratory.
The stimuli were presented to the subjects with a beamer on a projection screen.
Prior to the actual test, the lighting conditions were adjusted for a better vision
of the projection screen and also the seats were adjusted accordingly so that every
child could see the screen almost equally well. Finally two loudspeakers (Alesis
M1Active 520) were placed at the proper acoustic positions in the room and the
sound was set to a clearly audible level for all the seat positions. The setup and one
of the groups performing the experiment are illustrated on Figure 6.5.
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(a)

(b)

Figure 6.5: Experimental setup (a) and one of the children groups performing
the experiment (b)
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6.3.3 Results

As can be seen in Table 6.1, sadness was always recognized best in all the modal-
ities (60%, 100%, 97% in V, A and AV modalities, respectively). In video-only
condition, it was slightly confused with disgust. This can partly be explained by the
similarities between Probo's facial expressions of these emotions (Figure 6.3) having
sligth di�erences on eye opening and ear movement. In the audio-only condition,
fully accurate recognition was achieved which resulted in 97% accuracy in the
combined modality. The confusion with disgust in the video-only modality was
thus eliminated with the complementary information provided by the audio and a
statistically signi�cant improvement was achieved from the video-only modality to
the combined modality (Wilcoxon Signed Ranks Z = −3.357, p = 0.001).

Table 6.1: Confusion matrix for all the modalities (expressed in %, columns
represent the recognized emotions and rows represent the intended emotions)

Modality ANG DSG FEA HAP SAD SRP Don't know

Visual

ANG 34 9 23 0 20 3 11
DSG 11 23 11 9 23 0 23
FEA 3 9 31 9 6 34 9
HAP 3 0 0 46 23 6 23
SAD 3 11 6 3 60 3 11
SRP 6 0 31 0 0 60 3

Auditory

ANG 46 9 0 14 0 9 23
DSG 11 57 0 6 9 11 6
FEA 6 6 71 0 14 0 3
HAP 34 9 3 29 6 6 14
SAD 0 0 0 0 100 0 0
SRP 0 3 0 11 0 86 0

Audiovisual

ANG 60 6 6 9 0 6 14
DSG 11 60 0 9 11 6 3
FEA 9 6 69 0 6 9 3
HAP 3 9 6 51 11 17 3
SAD 0 0 3 0 97 0 0
SRP 0 3 6 3 0 89 0

Recognition rates for anger were 34%, 46% and 60% in V, A and AV modali-
ties, respectively. In the video-only modality, anger was often confused with fear

and sadness. This can again be explained by similar Probo facial expressions of
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these emotions (Figure 6.3), especially once the trunk is excluded. In the audio-only
modality, anger was slightly confused with happiness, which shares similar acoustic
cues with anger such as increase in pitch and speech rate. While these confusions
did not occur in the combined modality and the recognition accuracy was improved
compared to the single modality, the change was not statistically signi�cant with
the Bonferroni correction (Z = −2.183, p = 0.029).

Similar improvement occurred in the disgust recognition results. Recognition
rates were 23%, 57% and 60% in V, A and AV modalities, respectively. Disgust
was confused mostly with sadness, and slightly with anger and fear in the video-
only modality. When the additional information is provided with audio, in which
disgust was slightly confused with anger and surprise, the confusion with the
other emotions were decreased and the recognition rate was signi�cantly improved
(Z = −2.837, p = 0.005) in the combined modality. The confusion with anger,
which existed to the same degree in both single-modalities, still remained in the
combined modality.

In the video-only modality, fear was highly confused with surprise and vice-
versa. This matches the �ndings from studies on human faces in the literature and
can be partly explained because fear and surprise share similar visual cues like
a wide eye-opening. In the audio-only modality, the recognition rates of fear and
surprise were higher which resulted in a signi�cantly improved recognition once
combined with the video in the combined modality (Z = −3.606, p < 0.001 and
Z = −2.673, p = 0.008, respectively). The recognition rates for fear were 31%, 71%,
69% and for surprise 60%, 86% and 89% in V, A and AV modalities, respectively.

In the video-only modality, the recognition rate of happiness was higher (46%)
than in the audio-only modality (29%). In the audio-only modality, happiness was
very often confused with anger and vice-versa. This can be partly explained as
happiness and anger share similar acoustic characteristics of higher pitch and faster
speech rate. In the combined modality the presentation of audio still improved the
recognition rate (51%) but not signi�cantly. (Z = −0.500, p = 0.617) Additionally,
confusion with anger occurred very rarely while confusion with surprise was in-
creased.

As can be seen from the confusion matrix, overall there was an improvement
in the recognition results once the audio is provided with the video, which was
statistically signi�cant (Z = −5.620, p < 0.001). The AV recognition results were
the best among the di�erent modalities. Audio-only results followed closely the AV
results.
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Between the two groups of participants, a Mann-Whitney test did not show
any signi�cant di�erence (Z = 0.657, p = 0.511). That means the presentation order
of the single modalities (A or V) did not make any di�erence on the combined
modality (AV).

The average MOS score for if the subjects liked the voice was 7.0 (out of 10)
and the average MOS score for if the subjects thought the voice is Probo's voice
was 4.5 (out of 10). The Mann-Withney test did not show any signi�cant di�erence
either between the two groups of participants (for Q1: Z = −1.553, p = 0.131

and for Q2: Z = −1.17, p = 0.254) or between male and female participants (for
Q1: Z = −0.123, p = 0.905 and for Q2: Z = −0.548, p = 0.595) for both of the
questions.

6.3.4 Discussion

Multi-modal recognition test showed that the intended emotions were better
recognized when the visual modality was enhanced with Semantic-Free A�ective
Speech. Speech without semantic information has improved a�ectiveness of the
communication in a multi-modal setting, as it would also be expected from a
natural language (Mower, Mataric, & Narayanan, 2009).

Only for sadness and fear, audio-only modality results were slightly better than
combined modality results, but without a statistically signi�cant di�erence (for
sadness: Z = −1.000, p = 0.3171, for fear: Z = −0.258, p = 0.796).

Similar signi�cant improvement was not seen on the audio-only condition by
the presentation of video (Z = −1.463, p = 0.144 ). This might mainly be due to
low recognition rates on the video-only condition. In the single modality case, the
audio-only modality results were better than video-only modality results. In this
study the trunk movements were excluded from the visual emotional cues, which
might have contributed to the lower video-only results.

Even though audio only recognition results were promising, especially happi-

ness and anger which were mostly confused with each other, can be further
improved. This higher rate of confusion is not unexpected as they share similar
acoustic characteristics like higher pitch and faster speech rate.

In Chapter 4, with the same audio corpus, much better results were achieved
with adults (91% for happiness and 64% for anger). This di�erence can be an indi-
cation that children and adults might have a di�erent interpretation of, especially,
happiness.
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The children thought that the voice/speech belonged to Probo with an aver-
age MOS score of 4.5, which was lower than expected. This can partly be explained
by synchronization errors between the mouth openings and the speech. But it could
also be in�uenced by the formulation of the question. The question was asked
whether the children thought if it was the voice of Probo. They might have said no
because they could have guessed that it was the voice of a human actor. The result
could have been better if the children were asked whether they thought the voice
was suited for Probo. Irregardless of the formulation of the survey question, lower
than expected results for the voice suitability question formed up the motivation for
the further voice alignment experiments and the voice modi�cation module in the
framework as described in Section 5.3.1. These experiments showed that the lower
pitched voices were perceived as more suitable for Probo and a speci�c spectral
shift factor on the EMOGIB voice was found desirable for Probo.

On the other hand, the average MOS score of 7.0 shows that the children liked the
voice in general.

6.4 Hybrid vocal communication

In many cases interactions between people happen in combinations of multiple
modalities. Considering that in their interactions with robotic agents, humans will
also expect a similar multi-modality, the previous section explored the e�ects of
combining Semantic-Free A�ective Speech with facial expressions. While facial
expressions and bodily gestures are most likely the �rst modalities coming to mind
enriching the natural-like interactions in combination with speech, some forms of
variations can also happen within the same modality, such as multilingualism.

Depending on the role of the robot or the social context of the interaction, in
many cases Semantic-Free A�ective Speech may be implemented as the sole vocal
medium of the robotic agent. However, especially in cases where speci�c contextual
information input or output during the social interaction is required, such as
expressive robots as education companions or peers (Saerbeck, Schut, Bartneck, &
Janse, 2010), natural language interaction will still be a vital component. When
the current level of natural language processing(NLP) is considered, despite all the
accelerated progress, the current implementations are still far from a state where
machines are able to engage and partake in open-ended conversations (Moore, 2014;
Mubin et al., 2012). As such, the implementation of Semantic-Free A�ective Speech
in combination with natural language can have a potential in many currently
challenging scenarios in social HRI.
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Another potential implementation scenario is addressing a failure in the speech
recognition, TTS engine or dialog manager during an interaction scenario with
this hybrid approach. In such cases, instead of producing a wrong reply statement
or constraining and scripting interactions and dialogues (e.g., Lohse et al., 2008)
or requesting the same input from the user multiple times (e.g., Holzapfel &
Gieselmann, 2004), a semantic-free gibberish statement can help eliminating an
interruption in an a�ective interaction. In such scenarios, Semantic-Free A�ective
Speech can support, instead of replacing, the natural language.

In this context, the experiment in this section intended to investigate whether
semantic-free gibberish speech can be used in combination with a natural language
in the interaction between a robot and humans, while assessing if such a usage is
perceived as appropriate, natural and preferable or not. While a similar experiment
was performed for non-linguistic utterances (Read & Belpaeme, 2014a), Gibberish
speech hasn't been explored in this context before. This investigation has been
performed as a part of the Social HRI Summer School in Cambridge. The social
robot Nao was used as the robotic agent in this experiment.

6.4.1 Stimuli

For this experiment a game, which provides opportunities for the robot expressing
various vocalisations, that is widely known as "Cups and Balls" was chosen. In
the game a ball is placed under one of the three cups and then the cups are
reshu�ed. Then the robot guesses under which of the cups the ball is hidden. For
this experiment, to ensure that the only controlled variable is the auditory output,
the cups and balls game scenario was implemented in a way that the robot would
always make an incorrect guess (Read & Belpaeme, 2014a).

The cups-and-balls game scenario code (which was developed in collaboration
with the Centre for Robotics and Neural Systems of Plymouth University) was
broken down in a number of modules, in each of which an auditory action might be
performed. There were 12 modules in total (Figure 6.2). Two sets of audio stimuli
were prepared for each module: natural language (English) and semantic-free speech
(Gibberish).

The natural language samples were pre-recorded by using Nao's built in Text-
To-Speech (TTS) engine. They were the same set of samples as in (Read &
Belpaeme, 2014a). The only di�erence was that the voice of natural language
samples were aligned with the EMOGIB database voice pitch which was selected as
the best matching voice for Nao in Section 5.3.2. The inbuilt TTS voice for natural
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language samples was spectrally shifted upwards to match the selected voice for
Nao by using the voice modi�cation technique described in Section 5.3.

For the gibberish samples, each module was mapped to an emotion. Then the
samples were selected from the EMOGIB in accordance with the suited emotion
category for each module. The natural language and gibberish samples were ap-
proximately the same in terms of duration.

The modules of the game, the scripts of the natural language, the mapping to
gibberish emotion category and the durations were all summarized in Table 6.2.

Figure 6.6: Flow of the Cups and Balls game scenario

6.4.2 Participants and procedure

As mentioned before the cups-and-balls game scenario was used to investigate
whether semantic-free gibberish speech can be used in combination with a natural
language in the interaction between a robot and humans, while assessing if such a
usage is perceived as appropriate, natural and preferable or not. To assess if the
combination of SFAS with natural language would be preferred in an interaction
in this exploratory experiment, the participants were requested to create auditory
�ows for the cups-and-balls game scenario. The resulting auditory �ows could be in
natural language only or gibberish only or any mixture of switching between the two.

The cups-and-balls game scenario code was broken down into modules. These
modules were provided to the subjects with a graphical user interface on a com-
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Table 6.2: Overview of the stimuli for Cups and Balls game

Module ID Module name Natural language scripts
Gibberish speech
emotion category

Duration (sec.)

M01 Ball-presented Ah, I know this game Happy 1.6
M02 Watch mixing 1 Where's it going? Surprised 0.8
M03 Watch mixing 2 Whoa, slow down! Surprised 1.4
M04 Look at the user Now then, where did it go? Surprised 1.7
M05 Think about choise 1 Let me see Neutral 1.5
M06 Think about choise 2 I think it's... Neutral 1
M07 Think about choise 3 It's... It's... Happy 0.5
M08 Point left That one! Happy 0.7
M09 Check Choice Am I right? Surprised 0.8
M10 Wrong guess Drats! Sad 0.5
M11 Feel bad Oh that's a shame Sad 1.5

M12 Crouch
I could have sworn
that I was right!

Sad 1.7

puter that controls the robot. The user interface allowed the subjects to have the
robot make its move, simply by pressing the corresponding button. Three options
with di�erent auditory outputs were provided for each move:

• utter natural language sample

• utter gibberish sample

• utter nothing

By going through the scenario step-by-step, each subject group had to decide in
consensus which auditory action will happen after each module: continue with the
same auditory output option or switch to the other one or utter nothing. The
screen-shot of the user interface is illustrated in Figure 6.7.

The experiment started with an introduction in which the cups-and-balls game
scenario and the graphical user interface were explained. Then each group was
asked to build a vocal �ow by choosing their preferred audio options for each of the
12 modules in the game scenario. They were encouraged to have a lively discussion
in reaching their consensus at each choice.

The subjects sat around a table on which Nao was in the middle, with the 3
cups in front of it. The PC that is used to control Nao through the GUI was placed
next to Nao. The setup can be seen in Figure 6.8. In each of the groups the subjects
were divided over the two roles: operator of the robot and interaction partner.
The operator of the robot used the GUI to execute the module options, while the
interaction partner was playing the game with the robot. Figure 6.9 shows the
experiment in action for one of the groups.
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Figure 6.7: Screen-shot of the user interface used in the experiment

Figure 6.8: Experimental setup from frontal and backward views
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Figure 6.9: One of the subject groups performing the experiment

Once the preferences were selected for the entire scenario, each group saved
their �ow. A video of the end to end game scenario, where Nao executed the �ow
of their choices, was also recorded.

The subjects were then asked to �ll out a survey about their experience and
particularly about the usage of gibberish in combination with a natural language.
The questions queried whether the gibberish speech was able to express emotions,
whether it was appropriate for Nao, whether it was natural for Nao, whether switch-
ing between gibberish and natural language (English in this case) was appropriate
and natural for Nao to speak. In the second part of the survey, they were requested
to give their preference ranking among 5 options: Gibberish only, English only,
mixture of gibberish and English with dominantly gibberish, mixture of gibberish
and English with dominantly English, and a balanced mixture. There was also an
open ended question which asked for the subjects' primary strategies in choosing
the auditory options in their preferred �ows.

In total, there were three user groups (Group1: 9 participants, Group2: 6 par-
ticipants, Group3: 10 participants). A total of 25 people attended the experiment
and completed the cups-and-balls game scenario. 20 of the subjects returned their
�lled in survey (11 male and 9 female). It was a multicultural group with 14 unique
mother tongues represented. They were all researchers in human robot interaction
�eld and 12 of them were familiar with synthetic speech in HRI. The age range was
between 23 and 35.
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6.4.3 Results

While each of the auditory �ows that were created by the 3 groups were unique,
all the 3 groups have chosen an auditory �ow that combined natural language and
a�ective gibberish speech.

As explained before, there were 12 modules in the cups-and-balls game sce-
nario. For three of these modules the auditory action has been chosen with a
consensus of all the three groups. For eight of the modules at least two of the groups
have chosen the same auditory action. Only for one of the modules, each of the three
groups have chosen a di�erent auditory action. Cronbach alpha reliability yield a
moderate reliability (α = 0.677) and Krippendorf alpha inter-rater agreement yield
a weak agreement (α = 0.2064). As the objective of the experiment wasn't to �nd
an aligned auditory �ow for the game scenario, these low alpha scores don't provide
any essential statistical information for the conclusions that will be shared in the
discussions in Section 6.4.4.

Table 6.3 and Figure 6.10 summarizes the preference ranking results and the
average MOS scores for the expressiveness, appropriateness and naturalness of the
gibberish and the hybrid usage from the survey can be seen in Table 6.4.

Although some di�erences in the mean values of the preference rankings can be seen
in the table, none of these were statistically signi�cant (χ2(4) = 1.460, p = 0.834).
Also, there were no statistically signi�cant di�erences between the male and female
subjects, synthetic speech experts and non-experts, subjects who worked with Nao
and those who had only seen Nao.

The subjects found the gibberish speech expressive with a mean score of 8.7
out of 10. The mean scores for appropriateness and naturalness of gibberish was 7.6
and 7.1 respectively and Wilcoxon Signed Ranks test didn't show any statistically
signi�cant di�erence between the two (Z = −1.446, p = 0.148). For switching
though, there was statistically signi�cant di�erence between appropriateness (mean
of 7.2) and naturalness (mean of 5.8) scores (Z = −2.149, p = 0.032). There were
no statistically signi�cant di�erences between male and female subjects, as well as
between subjects that worked with Nao vs. the ones who only saw it before, in the
MOS scores for any of the appropriateness or naturalness for both gibberish and
switching. When the statistical signi�cance of the di�erences in the MOS scores of
the subjects who were synthetic speech experts vs. non-experts were analyzed, the
Mann-Whitney tests showed that the only statistically signi�cant di�erence was in
the naturalness of the Gibberish speech for Nao (Z = −2.063, p = 0.047), due to
higher expert scores.
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Figure 6.10: Box plots of the ranking scores for di�erent language modalities

For any of the questions there was no signi�cant di�erence between the three
groups of participants.

Table 6.3: Mean ranking and resulted preference for language modalities. (1:
most preferred option, 5: least preferred option)

Modality
Mean
ranking

Resulted
preference

only TTS English 3.2 4
only Gibberish 3.5 5
balanced mixture of TTS English & Gibberish 2.8 1
mixture of TTS English & Gibberish,
dominantly TTS English

3.1 3

mixture of TTS English & Gibberish,
dominantly Gibberish

3.0 2

6.4.4 Discussion

As mentioned in the Results section, each of the auditory �ows that were created
by the 3 groups was unique. But the result that is important for the conclusion of
this experiment is that all the 3 groups have chosen an auditory �ow which was
switching between natural language and gibberish speech.
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Table 6.4: Expressiveness, appropriateness and naturalness of gibberish and
switching between natural language and gibberish

Mean
Expressiveness of gibberish 8.7
Appropriateness of gibberish 7.6
Naturalness of gibberish 7.1
Appropriateness of switching 7.2
Naturalness of switching 5.8

Based on the feedback collected from the open ended questions in the survey,
mostly the subjects preferred natural language when they felt a form of informa-
tion had to be shared. When the users didn't need to understand what Nao was
saying or they felt the need for expressiveness, their choice was gibberish. Such
examples are Nao's response when he realizes that he made a wrong guess (M10
in Table 6.2), where all the groups have chosen gibberish or M01 when Nao pro-
vides the input that he knew the game, where Natural Language was more preferred.

In the preference rankings between only with natural language, only with gib-
berish, a balanced mix between natural language and gibberish, natural language
dominant mix and gibberish dominant mix, no statistically signi�cant di�erences
were found. Also this result implies that Gibberish can be used as the sole vocal
medium or in combination with a natural language in a�ective HRI implementations.

An interesting �nding was that the MOS score for the appropriateness of the
switching between Natural Language and Gibberish was much higher than the
MOS score for the naturalness of the switching. In other words, the subjects
indicated that even if the switching might not be considered very natural, it was
appropriate for Nao to utilize it in the current interaction scenario.

As such while this experiment provides a positive indication of the appropriateness
of the suggested techniques implemented using the framework, the combination of
Natural Language and Gibberish in a wider variety of interaction scenarios should
be tested further.
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6.5 A�ective interaction in a physical companion

case

Gibberish speech in multimodal and hybrid settings, as explained in previous
sections, aimed to contribute to social HRI, as a step toward bringing the emotional
expression much closer to the way it is seen in real life. An additional step in the
same line is employing Semantic-Free A�ective Speech in more real-life, contextual
scenarios and evaluating whether there would be perceptual changes in interpreting
Gibberish speech.

This section describes a test implementation and an evaluation experiment for
emotional gibberish speech with a robotic agent embodiment that is being used as
one of the evaluation platforms as explained in Section 6.1. Scenarios with embodied
robots in general showed more interaction (Fridin & Belokopytov, 2014), increased
empathy (Seo et al., 2015), and enjoyment (Leite et al., 2008) from the users. In
this scenario the robot Nao plays a co-viewing companion role in watching movie
clips with children, sharing the same physical space.

Aligned with the above, the primary goal of the study described in this sec-
tion was to observe how the a�ective interaction occurred between children and the
embodied robotic agent, who would be communicating using only Semantic-Free
A�ective Speech, sharing the same physical space and contextual setting with the
children. Secondly, measuring the changes in emotion perception of children when
diverging or even confusing contextual information being provided was targeted. For
these objectives, the co-viewing companion role of the robot in a movie watching
scenario, provided a nice setting where the contextual information could be easily
switched between various emotions, simply by the choice of the movie clips being
watched.

6.5.1 Stimuli

Two sets of audio and video stimuli were prepared per emotion category: one for
in-line and one for confusion cases. In the inline cases the robot expressed the
same emotion with the main character in the movie clip. In the confusion cases, the
robot expressed a contradictory emotion which was di�erent than what the main
character's emotion was in the movie clip. Each stimulus contained one of the 6
basic emotion categories: anger, disgust, fear, happiness, sadness and surprise.

For the audio stimuli, 2 utterances from EMOGIB were generated per emo-
tion. The length of the samples had to be long enough so that the children could
evaluate them e�ectively. Thus, the duration of the audio �les were around 7 -10



136 Chapter 6. HRI utilizing Semantic-Free A�ective Speech

seconds. Some additional sentences were produced in a neutral tone, to be used in
greeting the child to familiarize him/her with the gibberish speech. The samples
were played through the robot at prede�ned moments during the interaction
scenario by the wizard in a wizard-of-oz (WoZ) setup.

For the video stimuli, 23 animation movie scenes were shortlisted, covering all
of the emotions. Then the scenes were extracted and rated by 5 adult evaluators.
The evaluators were asked to label the dominant emotion in the scenes and rate the
strength of the emotion on a scale of 1 to 5. Then the scenes that had the highest
ratings for the dominant emotion in the movie clips were used in the experiment.
There were 12 movie clips in the �nal selection which are summarized in the
Table 6.5. As the children attending the experiment were all Dutch speaking, the
Dutch dubbed versions of the original movies were used in producing the movie clips.

Table 6.5: Final selected movie clips

Emotion Movie Scene

Anger
How to Train Your Dragon Merida and Elinor �ght
How to Train Your Dragon Merida does not want to get married

Disgust
How to Train Your Dragon

Character eats the �sh that was
thrown out by the dragon

Simba Simba eats worms

Fear
Lion King Simba is afraid
Lion King Simba is chased by hyenas

Happiness
The Jungle Book Dance
How to Train Your Dragon Merida happily plays with her mom

Sadness
Lion King Simba's father dies
Bambi Bambi's mother dies

Surprise
Ratatouille Gustai learns he has a son
Up House in the movie �ies

Also four confusion cases were designed where the emotion expressed by the
Semantic-Free A�ective Speech of the robot was not the same as the emotion in
the movie clip. A summary of the confusion cases can be found in Table 6.6.

The confusion samples were inserted amongst �ller samples. The �ller samples
were taken from the second set of movie and audio stimuli. These were only used
as �llers and not used in the evaluations.
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Table 6.6: Summary of the emotions in confusion cases

Emotion
label of the movie

Emotion
label of the robot speech

Anger Fear
Fear Anger
Happy Sad
Sad Happy

6.5.2 Participants and procedure

10 children attended the experiment (4 female and 6 male). The age range was
between 6 and 9.

The experiment was performed at a cultural center (Beeldenstorm) as part of
a "Robot Week" for children in their summer activities. All the children already
had met NAO in other sessions of the robot week before they attended the movie
watching experiment. To avoid any confusion with other robots, in an introductory
story, the robot was presented to the children as Selo. It was told that Selo just
arrived from its planet �Naoland� and thus yet only could speak its own language
�Naoish�. It was learning our world and our language. The children were told that
they were going to watch some short movie clips with Selo and asked to help the
instructors understand what he felt about the movie. Selo sometimes could make
mistakes so they should try to help him.

Considering the attention span of the children in the age range of the sub-
jects, the experiment was split into multiple 30 minutes sessions which spanned
across 5 days. As mentioned in the Stimuli section, both inline and confusion
cases were represented in the samples. Two sessions per child spread across the
week were designed and each session was dedicated to experiment either the inline
or the confusion cases. For the confusion cases, �llers were used to ensure that
the confusion samples were spread across the session. While all the children have
completed the inline sessions, due to logistical challenges (e.g. child getting sick, a
network outage) not all the children could complete the session focused on confusion
cases. Hence not all the children rated all the confusion samples. Children could
also take a break during the sessions whenever they deemed necessary.

The physical environment setup for the experiment consisted of a training area in
the play zone in the garden of the Cultural Centrum and a movie chamber (see
Figure 6.11) that was formed up by isolating a space in one of the rooms with black
curtains.
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(a) (b)

(c)

Figure 6.11: Experimental setup in the movie chamber: (a) two chairs were
placed next to each other for the robot and the child, (b) screen was placed 2
meters away from the child and the robot, (c) wizard control of the experiment

was made on a computer outside the chamber
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Before coming to the movie chamber, the children one by one went through a
short training session on rating along the valence and arousal dimensions using
a paper and pencil version of Self Assessment Manikin (SAM) (Bradley & Lang,
1994). The training consisted of a verbal training, joint exercise with the trainer and
exercise alone. In the verbal part, the trainer described the valence and arousal di-
mensions to the child which was followed by rating some a�ective pictures together.
Some of these pictures can be seen in Figure 6.13. The words used to describe the
poles of the valence dimension were: happy/pleased and unhappy/unpleasant. For
the arousal dimension: excited/wide-awake were used for one end and bored/calm

were used for the other end.

The paper and pencil version of SAM represented unlabeled dimensions picto-
rially on a 9-point scale. Figure 6.12 shows the SAM �gures for valence and arousal
dimensions. The valence scale visualized SAM smiling at one extreme and frowning
at the other. A sleepy �gure at the calm end of the scale and a wide-eyed excited
�gure at the other represent arousal.

Figure 6.12: Self assessment manikins for valence (upper panel) and arousal
(lower panel) used in the experiment

After the introductory story, the child was taken to the movie chamber. When
the child entered the chamber, Selo greeted him/her by turning its head to the
child and speaking gibberish, which was its mother tongue according to the
introductory story, in neutral tone. This greeting was to make the child familiar
with the robots' gibberish speech and also to make a natural start to the interaction.
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Figure 6.13: Some examples of the pictures used in the training session

The child watched the movie with the robot, sitting next to each other on
two chairs with an adjusted height (see Figure 6.11). The video clips were displayed
on a screen. A camera was placed at a location allowing to capture frontal body
streams of both the child and the robot. This allowed to record the experiment
while at the same time provided a real-time streaming of the room to the wizard for
monitoring during the experiment. The camera and the microphone were connected
to the computer outside the room where a wizard monitored and controlled the
robot as well as the overall experimental procedure. The schematic illustration
of the setup can be seen in Figure 6.14. The video recordings also provided the
opportunity to create a database of upper body a�ective expressions of the children
during the interaction scenario (Wang et al., 2014).

After watching each movie clip, the robot looked at the child and uttered his
emotion using Gibberish speech. Throughout the interaction scenario, when the
child gazed at the robot or touched it, the robot turned his head and looked at the
child. Once the interaction after watching the movie clip was over, the instructor
went into the chamber with the survey and asked 4 questions to the child. First
question was how happy the robot was after watching the movie clip. The second
question asked how excited the robot was after the movie clip. The third and the
fourth questions were asking the same dimensions but for the main character in the
movie clip.
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Figure 6.14: Schematic illustration of the experimental setup

After �nishing the movie watching session the child had to answer 2 additional
questions. The �rst question queried if the child wanted to watch movies again with
the robot at a later time which aimed to assess the pleasantness of the interaction.
The second question was to check if the child wanted to speak Naoish which could
be used as an indication of the naturalness of the Semantic-Free A�ective Speech
and their willingness to continue to interact using it.

6.5.3 Results

Valence dimension

When the emotion in the movie and in the robot's speech were inline, it was ex-
pected that the valence ratings of the character and the robot would be correlated
with each other. It was seen that indeed the valence ratings of the character and
the robot were positively correlated with each other in the inline cases and this
correlation was statistically signi�cant (rs (58) = 0.375, p = 0.003).

An interesting �nding on the valence degree was that the robot valence rat-
ings were signi�cantly higher than the character valence ratings. All the di�erences
were signi�cant (p < 0.05) according to Wilcoxon Sign test, except for happiness
(see Table 6.7). The a�ective ratings on valence and arousal dimension for both the
character and the robot are shown in Figure 6.15 .
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Figure 6.15: Valence and Arousal scores for the character (the two upper panels)
and for the robot (the two lower panels)

Table 6.7: Test statistics of valence and arousal between character and robot in
the inline case

Valence
Anger Disgust Fear Happiness Sadness Surprise

Mann-Whitney U -2.508 -2.677 -2.333 -0.962 -2.198 -2.205
Exact p-value 0.012 0.004 0.031 0.500 0.039 0.031

Arousal
Anger Disgust Fear Happiness Sadness Surprise

Mann-Whitney U -2.818 -1.703 -2.077 -2.386 -2.494 -2.680
Exact p-value 0.002 0.125 0.035 0.016 0.012 0.004
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In the confusion cases, when the emotion in the robot's speech was not the
same as in the movie, the valence ratings of the character in the movie and the
robot were not correlated with each other (rs(14) = -0.052, p = 0.855). Further-
more, the comparison of the robot valence for each emotion between the inline case
and confusion case didn't give signi�cant di�erence (mean scores can be seen in
Figure 6.16. and the test statistics can be seen in Table 6.8).

Figure 6.16: Valence and arousal scores for the inline and confusion cases

Table 6.8: Test statistics for emotion comparison

Valence
Anger Fear Happiness Saddnes

Mann-Whitney U 10.5 17.0 20.0 12.5
Exact p-value 0.493 0.682 0.534 0.748

Arousal
Anger Fear Happiness Saddnes

Mann-Whitney U 10.5 16.5 13.0 12.0
Exact p-value 0.476 0.665 0.098 0.699
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Arousal dimension

Unlike in the valence dimension, no signi�cant correlation was found between the
arousal ratings of the character and the robot (rs(58) = 0.079, p = 0.547) for the
inline cases. For the robot, the arousal ratings were lower than for the character
ratings across all the emotion labels. These di�erences were signi�cant for all the
emotions except for disgust (see Table 6.7).

In the confusion cases, again no correlation was found between the character
arousal ratings and the robot arousal ratings (rs(14) = 0.346, p= 0.206). Also no
signi�cant di�erence was seen between the inline cases and the confusion cases for
robot arousal ratings (Table 6.8).

When the video recordings were observed, it was seen that the children showed
natural interaction patterns by turning their head and listening to the robot,
showing facial expressions and also talking to the robot. Some of the children even
held the hand of the robot to comfort him when the case emotion was sadness. Some
pictures of childrens' interaction with the robot can be seen in Figure 6.17 and 6.18.

Figure 6.17: The child pets the co-viewing companion robot's head, holds its
hand and speaks to the robot during the "sad" emotion cases across multiple

sessions

The question if the children wanted to learn how to speak Naoish was answered
�yes� by 8 out of 10 children and the question if the children wanted to watch
movies with the robot again was answered as �yes� by all the participating children.

6.5.4 Discussion

When the emotion of the character in the movie and the robot's speech are inline,
it was expected that the valence and arousal ratings of the character and the robot
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Figure 6.18: The child smiles back to the robot when the robot utters happy
Gibberish speech (left panel) and the child re�ects the disgust emotion in the

uttered Gibberish speech with his facial expression (right panel)

would be correlated with each other. This correlation was indeed con�rmed for
valence in the experiments but not for arousal dimension.

An interesting �nding on the valence degree was that the robot valence ratings
were signi�cantly higher than the character valence ratings (except for happiness,
where no statistically signi�cant di�erence was found). This might be due to the
di�erent roles the characters and the robot have in the experiment. The character
is the one experiencing the a�ective situation in real while the robot is not in the
story but just an observer watching the story. This indeed is a known e�ect of
watching movies: enjoyment of watching negative genre movies (Neill & Ridley,
2013; Hanich, 2009; Gaut, 1993). People can enjoy watching movies having negative
emotions such as fear and disgust. Moreover, the co-viewing can increase the level
of enjoyment on negative genre for children. For example, in a study by Wilson and
Weiss, it is found that children who viewed suspenseful movies with an older sibling
liked the movie more than did those who watched alone (Wilson & Weiss, 1993).
This e�ect might also be experienced with a co-viewing companion robot.

When the emotion in the robot's speech was not the same as in the movie,
the valence ratings of the character in the movie and the robot were not correlated
with each other. This suggests that the children didn't simply copy the emotion of
the main character in the movie but interpreted the a�ective information carried
by the gibberish speech, which di�ered from the movie's dominant emotion.

Furthermore, the comparison of the robot valence for each emotion between
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the inline case and confusion case didn't give any signi�cant di�erence. This also
suggests that the children were able to interpret the a�ective information carried
by the gibberish speech even when the confusing context was provided with the
movie.

On the arousal dimension, the children gave lower scores for the robot than
for the character. During the experiment, it was noticed that the children seemed
to link the arousal with the physical �activeness� of the robot. As only one degree
of freedom (head right-left) was used in the experiment and physical activeness was
low, the children might have given a low rating for the arousal dimension for any of
the emotion labels. The di�erences in the arousal ratings for the robot compared
to the main character of the movie clip were signi�cant for all the emotions except
for disgust.

Unlike in the valence dimension, no correlation was found between the arousal
ratings of the character and the robot for the inline cases. It can be argued that the
lack of physical �activeness� of the robot might also have an e�ect in the missing
correlation for the inline cases. In the confusion case, like in the valance dimension,
no correlation was found between the character arousal ratings and the robot
arousal ratings. Also, no signi�cant di�erence was seen between the inline case and
the confusion case for robot arousal ratings.

In summary, it is seen that the children gave higher scores on the valence di-
mension and lower scores on the arousal dimension for the robot than for the
character. When the emotion in the movie and in the robot's speech are inline,
the valence ratings of the character and the robot were correlated with each other
but no such a correlation was found in the confusion case. Thus the results suggest
that, the children didn't simply followed the character's emotion but were able
to distinguish that there was a di�erence between the movie characters emotion
and the emotion expressed by the robot in valence dimension. Most likely due to
the lack of physical �activeness� of the robot, a similar correlation didn't exist in
arousal dimension for the inline cases.

8 out of the 10 children attending the experiment said that they would want
to learn how to speak "Naoish", the language the robot was speaking. This can
be viewed as an indication that the children have found the Semantic-Free Speech,
as the auditory output of the robot, natural in this co-viewing companion case.
Also the fact that they all were willing to watch movies with Nao again in the
future indicates that the co-viewing interaction with the companion robot, who was
speaking Semantic-Free Speech only, was pleasant for the children.
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Overall the results from this co-viewing interaction scenario with Semantic-
Free Speech, which was implemented using the SFAS framework, were encouraging
for future implementations. This was the �rst experiment where the children and
the robotic agent physically shared the same space and interacted through an audio
channel implemented using the framework. Despite the lack of physical �activeness�
of the robot aside from his head movement in the overall interaction scenario, the
children showed natural interaction patterns by turning their head and listening
to the robot, showing facial expressions and also talking to the robot. Some of the
children even held the hand of the robot to comfort him when the emotion of the
case was sadness. Also throughout the interaction scenario, when the child gazed
at the robot or touched it, the robot turned his head and looked at the child. In
these cases when the robot also responded by uttering a short Gibberish expression
in the same emotion as the movie clip, it was observed that the children were even
more expressive.

The children were able to distinguish the di�erences in emotions that were
transferred in semantic-free gibberish by the co-viewing companion robot, even
when the contextual setting was confusing or complicated. They felt the a�ective
interaction with a robot that was speaking only Gibberish in this scenario, was
natural and pleasant. While the communication of the emotions was found to be
quite e�ective in the valence dimension, the lack of correlation between the robot
and the character for the inline cases in the arousal dimension makes it di�cult
to interpret the potential e�ect of various contextual parameters (e.g. the e�ect of
co-viewing in emotion interpretation, the lack of physical �activeness� of the robot,
etc..). It is also uncertain if the children related robot's perceived emotion with the
emotional state they were in themselves after watching the movie clip. Collecting
children's emotions as a data point would have helped in providing more insights,
especially for the arousal dimension and validating the potential e�ect of the lack
of physical �activeness� of the robot.

6.6 Summary

In this chapter, piloting the implementation of the outlined Semantic-Free A�ective
Speech Framework, sets of experiments that assess e�ectiveness of using semantic-
free gibberish speech across various aspects of a�ective human-robot interaction
were performed.

The pilot implementations of the framework with gibberish speech in multi-
modal setting and in hybrid mode along side a natural spoken language, aimed
to bringing the emotional expression closer to the way it is seen in real life. Also



148 Chapter 6. HRI utilizing Semantic-Free A�ective Speech

Semantic-Free A�ective Speech was employed in a real-life like, contextual scenario
interacting with the children to evaluate whether there would be perceptual changes
in interpreting semantic-free Gibberish speech.

In all the experiments presented in this chapter, either one of the two robots
used as the evaluation platforms were physically present in the room with subjects
or video recordings of one of the robots were presented to the subjects.

In the �rst experiment, multi-modal recognition tests performed with children
showed that the intended emotions were better recognized when facial expressions
were enhanced with Semantic-Free A�ective Speech. Speech without semantic
information has improved a�ectiveness of the communication in a multi-modal
setting, as it would be expected also from a natural language.

The second experiment's results implied that Semantic-Free A�ective Speech
can be used as the sole vocal medium or in combination with a Natural Language
in a�ective HRI implementations. This conclusion further expands the applicability
of the SFAS framework in various real-life scenarios where the robotic agents might
be playing di�erent roles. The subjects also indicated that even if the switching
might not be considered very natural, it is considered appropriate when utilized by
the robotic agent in a speci�c interaction scenario.

One of the goals of the study described in the third experiment was to observe
how the a�ective interaction occurred between children and the embodied robotic
agent, who communicated using only Semantic-Free A�ective Speech, sharing the
same physical space and contextual setting with the children. Another goal was
measuring the changes in emotion perception of children when diverging or even
confusing contextual information was provided. The children were able to interpret
the di�erences in emotions, that were transferred with Semantic-Free A�ective
Speech by the co-viewing companion robot, even when the contextual setting was
confusing or complicated, but mainly in valence dimension. The potential e�ect of
the lack of physical �activeness� of the robot in this pilot implementation to the
arousal dimension requires further experimental validation. The children showed
natural interaction patterns with the robot throughout the interaction by touching,
smiling and speaking to the robot. The children felt the a�ective interaction with a
robot that was speaking only Gibberish in this experiment, was natural and pleasant.

The results of these three experiments show the expansive applicability of the
proposed Semantic-Free A�ective Speech Framework in social HRI.

Some of the techniques, experiments and results mentioned in this chapter have
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been published in (Yilmazyildiz, Henderickx, et al., 2013; Yilmazyildiz et al., 2015;
Wang et al., 2014).





7 | Conclusions

7.1 Summary and conclusions

Recent developments in robotics, arti�cial intelligence, and machine learning is
further accelerating the introduction of robots in our daily lives and the physical
environment around us. Increased sharing of the same physical space with humans
in real life has important implications in the design of the robots. These implications
are not only in the physical or mechanical design but also in the behavioral patterns
of the robots. In order for humans and robots to become cohabitants, robots should
behave and operate in ways that are similar to or acceptable by humans. This
means they also need to be social, as humans are.

The �eld of social Human-Robot Interaction (sHRI) focused on the design,
development and study of these socially capable agents, empowering them with a
variety of social cues that allow them to interact and communicate with people
in natural and intuitive ways. These not only include the use of bodily and facial
gestures, natural language, and eye gaze but also more unique and robot speci�c
methods such as expression through colors, synthetic sounds and vocalizations.

Even though the Natural Language Interfaces (NLI) have been one of the ul-
timate ambitions of Human-Machine Interfaces since a long time and this area has
been heavily researched, the current state of the art in these technologies as a whole
is still far from a state where machines are able to actively engage and participate in
open-ended conversations. In parallel the demand for development and deployment
of social robotic systems that should interact with people is increasing so rapidly
that the rate of advances in NLI are not able to catch up yet. Not to hold back
the acceleration of development and deployment of social robotic agents in real life
scenarios, alternative strategies that could complement or in certain implementation
scenarios that could replace NLI might be required.

In addressing this need, a framework that allows to study a�ective human-
robot interactions by using vocalizations that do not involve semantics of a natural
spoken language has been detailed in this thesis. First, the strategy of creating this
Semantic-Free A�ective Speech (SFAS) Framework was described along with the

151



152 Chapter 7. Conclusions

evaluations on isolated audio utterances. That was then followed by pilot implemen-
tations of the framework to real world social robots and providing insights on the
potential usage while seeking answers to questions related to its further deployment.

Semantic-Free A�ective Speech, which is also referred to as Gibberish speech,
is a member of the umbrella concept of Semantic-Free Utterances (SFU) that is in-
troduced in Chapter 2. SFUs are human-like vocalizations and computer-generated
nonvocal sounds and sound e�ects. Despite the commonalities in their objectives
regarding social HRI, until now these auditory interaction modalities other than
natural language were not investigated under a single umbrella. With this com-
parative study, the need for a comprehensive study of the existing literature for
SFUs is addressed, the current grand challenges and open questions are outlined.
Also multiple promising but currently understudied areas of SFUs have been
identi�ed as a guideline for future researchers (e.g. contextual setting of the HRI,
multi-modality).

Contributing to this young �eld in sHRI, the Semantic-Free A�ective Speech
Framework, which allows robots to express and communicate through vocalizations
of meaningless strings of speech, provides a complete set of tools that can be used

as a vocal communication medium for a robotic agent, which also allows to study

diverse aspects of a�ective human-robot interaction.

As the �rst component of the SFAS framework, a semantic destruction strat-
egy was developed in Chapter 3. The semantics of an existing text in a natural
language was destroyed by replacing the vowel nuclei and consonant clusters of
the text using a weighted swapping mechanism in accordance with their natural
probability distribution in the same language. Also the a�ective charging capabil-
ities and the naturalness of the resulting semantic-free text was tested in multiple
experiments utilizing TTS engines. The experimental evaluations showed that
gibberish speech resembled a natural language and it communicated the intended

emotions as e�ectively as semantically neutral speech.

However, in these tests, subjects reported that the synthesis engine quality af-
fected their evaluations. In this regard, the �nal expressive speech strongly depends
on the TTS engine quality. The quality of the expressivity models of TTS engines
at the time were not yet mature enough. Also the voice quality of the emotions was
not fully transmitted to the synthesized speech using the currently available TTS
engines. To overcome these drawbacks in the SFAS framework to a large extent, a
data-driven method was developed. As a �rst step of this data-driven method in
Chapter 4, an emotional gibberish speech database (EMOGIB) was built and also
was made available to the HRI community for further research.
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It was seen that the Semantic-Free Speech created with the data driven method

resembles a natural language. Also the perception experiments showed higher
emotion recognition results for the EMOGIB database in comparison to earlier
results in the �eld. Combining these positive results from the adult and children
experiments, it was also concluded that the EMOGIB database, as a core component

of the SFAS framework, can be used in further studies across subjects with various

age groups.

Once the fundamentals of the SFAS framework were designed and the core
hypothesis behind it were tested and con�rmed, two modi�cation techniques that
are instrumental to the further utility of the SFAS framework in social HRI were
explored in Chapter 5: segment swapping and voice modi�cation.

Segment swapping focused on the concatenative synthesizing mechanisms to
expand the number of unique semantic-free utterances in the EMOGIB database.
This technique was implemented in the SFAS framework, without a signi�cant
negative e�ect on emotion recognition and acceptable levels of drop in naturalness.
The major strength of this capability is the ability to signi�cantly increase the
amount of usable and unique semantic-free utterances, without needing to perform
additional recording activity. Hence segment swapping decreases the cost of imple-

mentation of the framework in HRI studies which will hopefully lead to wider and

faster adoption of the framework by the HRI community. The results of the segment
swapping study in the future can also provide a guidance on the optimal recorded
speech duration for researchers who would prefer to generate their own expressive
Semantic-Free A�ective Speech databases utilizing the SFAS framework.

These expressive Semantic-Free A�ective Speech databases are mostly intended
to be utilized through robotic agents. Robotic agents also have various physical
attributes that complement their physical morphologies. The e�ects of misalign-
ments between these attributes and the robot's physical morphology is fairly well
studied in the �eld. What hasn't been explored in the literature so far and which is
being addressed in the voice modi�cation study is, �nding the matching voice style
(speci�cally voice spectral shift) for a robotic agent in alignment with its physical
morphology.

This study showed the direct relation between the robotic agent's physical ap-
pearance and the appropriate voice pitch. The lower pitched voices are considered
to be more appropriate for high volume robots while higher pitched voices are
preferred for low volume robots. The voice modi�cation implemented into the SFAS

framework, allows the voice pitch to be adapted to the robot's morphology, also in
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real-time. This feature may potentially increase the satisfaction in social human
robot interaction for future implementations of the SFAS framework.

Once the capabilities of the SFAS framework were further enhanced in a way
that future implementations of the framework would be easier, practical and more
cost e�ective, the framework was then assessed further with pilot implementations
using physical robotic embodiment in multiple a�ective human robot interaction
scenarios. Each of the three pilot implementations detailed in Chapter 6 aimed to
assess di�erent aspects.

With various components, such as gestural, postural, facial, auditory, etc. in-
tegrated for a�ective interactions, multimodality is a natural feature of sHRI
interaction. Human interaction partners' ability to decode emotions is dependent
on the success of combining a�ect expressions across utilized multimodal compo-
nents. In the experiment performed in Section 6.3, the e�ect of the speech without
semantic meaning on the emotion expression combined with another modality,
which was facial expressions as a visual modality in this case, was assessed. The
multi-modal recognition tests performed with children showed that the intended
emotions were better recognized when the visual modality was enhanced with
Semantic-Free Speech. Speech without semantic information has improved a�ective-

ness of the communication in a multi-modal setting, like it would also be expected
from a natural language.

Depending on the role of the robot and the social context of the interaction,
in many cases Semantic-Free A�ective Speech may be implemented as the sole
vocal medium of a robotic agent. However, in cases where the social interaction
scenario requires speci�c contextual information input or output, natural language
could still be a vital component. When the current level of natural language
processing (NLP) is considered, despite all the accelerated progress, the current
implementations do not fully satisfy the needs of sHRI. As such, the implementation
of Semantic-Free A�ective Speech in combination with Natural language can have a
potential in many currently challenging scenarios in social HRI. In this context the
hybrid vocal communication study in Section 6.4 implied that A�ective Semantic-

Free Speech can be used as the sole vocal medium or in combination with a Natural

Language in a�ective HRI implementations. This hybrid usage potential further
expands the applicability of the SFAS framework to various real-life scenarios where
the robotic agents might be playing di�erent roles.

SFAS in multimodal and hybrid settings, as summarized above, aimed to con-
tribute to social HRI, as a step toward bringing the emotional expression much
closer to the way it is seen in real life. The �nal experiment in Section 6.5 focused
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on employing Semantic-Free A�ective Speech in a more real-life and contextual
scenario. The primary goal of this experiment was to observe how the a�ective
interaction occurred between children and the embodied robotic agent, who com-
municated using only Semantic-Free A�ective Speech. The robot shared the same
contextual setting and physical space with the children. Secondly, when diverging
or even confusing contextual information was provided, the changes in emotion
perception of children were measured. For these objectives, co-viewing companion
role of the robot in a movie watching scenario was used. This scenario provided
a nice setting where the contextual information could be easily controlled and
switched between various emotions.

Overall results from this co-viewing interaction scenario were encouraging for
future implementations of the SFAS framework. In the valence dimension, the chil-
dren were able to distinguish the di�erences in emotions, that were transferred with
Semantic-Free A�ective Speech by the co-viewing companion robot, even when the
contextual setting was confusing or complicated. According to the children subjects,
the a�ective interaction with a robot that was speaking only SFAS implied to be

natural and pleasant.

The results of these three pilot implementations indicated the expansive ap-
plicability potential of the proposed SFAS framework in social HRI.

7.2 Perspectives for future work

The evaluations of the SFAS framework both on isolated audio utterances and in
pilot implementations utilizing the physical robotic embodiment have shown that
the quality of the overall framework is already at an implementable level. However,
considering that the existence of the SFU research in sHRI is a young �eld, there
are many opportunity areas and aspects to explore to further improve various
components of the framework.

This section outlines a number of potential future directions that are consid-
ered valuable for further improving the Semantic-Free A�ective Speech Framework.
These potential future work are grouped under 3 main categories: language and
cultural aspects, quality enhancements, long-term HRI.

7.2.1 Language and cultural aspects

While there are common tendencies in the way emotions are interchanged across
di�erent cultures (Abelin & Allwood, 2000), it's not certain how strong the role of
the mother tongues and cultures of the people are, especially in social human robot
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interactions.

As outlined in Chapter 2, in the current literature, the majority of the stud-
ies concerning SFUs were performed within cultural settings. Although some of
the evaluations were performed with participants coming from multi-cultural and
multi-language backgrounds, no real cross-cultural analysis have taken place. Also
in this dissertation, most of the experiments performed included subjects from
multiple mother tongues and cultures. But no deep cross-cultural experimentation
and analysis utilizing the SFAS framework was done.

Assessing the acceptability and performance of Semantic-Free Speech in a�ective
human robot interaction scenarios across various cultures could be an important
next step. In the unlikely case of the results of this assessment showing signi�cant
culture/language dependence, a number of potential enhancements to adopt the
SFAS framework to this revised requirement are foreseen.

Current implementation of creating Semantic-Free text in Chapter 3 takes into
account only consonant/vowel distribution. However there is a lack of one to one
mapping between phonemes and graphemes, which might be important for some
languages. For example in English the end of the words "sandwich" and "language"
sound the same but they are spelled completely di�erently.

Considering the above, the perceived naturalness of the resulting gibberish text
and the recognition of the initial languages could be further improved by using a
swapping mechanism in the phonetic transcriptions, which is closer to the speech
than the text. Such a swapping mechanism would �rst convert the graphemes into
phonemes, then would transform the result into semantic-free utterances using
phoneme frequencies and then would convert those back to text to be utilized in
recording enhanced versions for EMOGIB, or could synthesize speech directly using
the phonetic input.

7.2.2 Quality enhancements

The shortcomings of the currently available TTS engines at the time of this study
were e�ectively overcome by the utilization of the data-driven method in SFAS
framework. Considering the attention Natural Language Processing is currently
getting with the recent developments in arti�cial intelligence, machine learning
and deep learning, future TTS engines may potentially satisfy the requirements
for synthesizing the semantic-free a�ective speech. To validate this potential, a
scanning of the state of the art a�ective TTS engines and evaluation of these versus
the requirements of SFAS framework should be evaluated. This validation and
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evaluation can be performed periodically.

At short term, the likelihood of identi�cation of an a�ective TTS engine that
would satisfy all the requirements might still be low. In that case, the synthesizing
quality of the SFAS framework can still be further improved by enhancing the
naturalness of the segment swapping. One of the potential enhancements in this
regard is to improve the segment selection logic. Currently segment selection is done
in a random order, except for the last segment of the utterance in the �xed-end
ordering scheme. Additional rules in segment selection process can be introduced.
Such an example can be de�ning target and join costs in segment unit selection,
which seeks a minimum distance between the two segments to be concatenated.
This type of segment selection logic can be seen as a simpli�ed version of the
segment selection algorithms utilized in most unit selection TTS synthesizers.
Segment selection algorithms in SFAS framework would most likely require fewer
cost function de�nitions as there is no need for linguistic or phonemic alignment in
the concatenation of gibberish speech segments.

Also the precision of the labeling of segment boundaries plays an important
role in the perceived naturalness of the concatenated segments. As such another
improvement opportunity that may have a positive e�ect on the naturalness of
segment swapping is increasing the accuracy of the database labeling.

The main objective of the segment swapping implementation is to expand the
number of synthesized unique semantic-free utterances. While each of these synthe-
sized utterances are di�erent from each other, some utterances might be considered
as repetitions or recurrences by the listeners in case of two utterances having a large
number of common segments in a similar order. Eliminating such repetitions and
recurrences in an algorithmic manner is not a complex task, once the acceptable
level of repetitions and recurrences is a known parameter. Thus the acceptable level
of repetitions and recurrences by the users should be explored in a future study.
This will also be an important parameter in identifying the minimum recording
time required to be able to build a new Semantic-Free A�ective Speech database
utilizing the framework.

While talking in a certain emotion, people don't only use speech to express
emotions but also produce various nonspeech vocal sounds for di�erent emotions.
For example �Yuk!� for disgust, �hiii?� for surprise, or �rrrrrr� for anger, etc. These
sounds, also referred as 'interjections', are short sounds heavily charged a�ectively
that humans use naturally when expressing certain emotions. Thus, inclusion of
these sounds into the EMOGIB database, or even identifying some of the segments
in EMOGIB which match these characteristics and utilizing them accordingly as
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interjections, may potentially increase the naturalness of the speech and the per-
ception of the emotions from the Semantic-Free A�ective Speech. Some exploratory
work was already conducted to investigate this potential improvement.

7.2.3 Long-term social human robot interaction

Robots are making their way into the daily lives of the wider population in an
accelerated speed. As the robots actively engage and take part in more and more
real life scenarios, they interact with humans more frequently. This leads to the
interactions of people with these robots evolving from being instant or one-time
interactions into long-term interactions and even relationships. This paradigm shift
in the social interactions of humans and robots sets new challenges to the �eld of
sHRI. Not many approaches, techniques or implementations in sHRI were tested in
such a long-term social interaction context, which is also true for the outlined pilot
implementations of the SFAS framework in this thesis.

To address this need, both the scenario coverage (e.g. the hybrid use of SFAS
along side natural language in a wider number of contextual scenarios), the scope
(e.g. including other parameters of the voice signal than spectral shift in the
voice alignment) and the experiment duration (e.g. the robots and the subjects
interacting periodically for a longer duration of time) of the pilot implementations
can be extended further.

For example, as (Zaga et al., 2016) suggested, designing robot behaviors with
SFUs investigations should divert from purely focusing on the recognition of the
behaviors or intentions, to also exploring how the recognition of the behaviors will
a�ect the interaction. Such a diversion could also be explored in the context of
long-term sHRI.

One of the �rst obvious questions for Semantic-Free A�ective Speech regard-
ing long-term sHRI is if the interaction partners will continue to perceive Gibberish
speech positively despite the missing semantic. In instant interaction, not un-
derstanding a Gibberish speech, as long as it sounds as if it's a real language,
still gives a natural feeling, which may be like getting exposed to a new foreign
language for the �rst time. But it can be argued that when more interactions occur,
people may have the expectation to start making sense of at least some of the
utterances, especially for the ones that are repeated. As such, it can be speculated
that repetitions of certain utterances in speci�c situational contexts may increase
the feeling of naturalness, getting to know the robot better and attachment to the
robot in long term sHRI for robots utilizing Semantic-Free A�ective Speech.
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As a �rst step a mechanism to achieve this can be implemented in SFAS frame-
work, by tagging the spoken utterances with the situational context indexes in the
EMOGIB database after their �rst use for the speci�c implementation. With such
a mechanism, a robot for example would greet its interaction partner by vocalizing
a speech including the same utterance tagged with the greeting context index every
time. By time and experience through periodic interactions, the interaction partner
may build a sense of vocabulary and grammar for the robot's speci�c language.

Some of this is of course speculative, but if these emerging predictions become a
reality a bright future may exist for the extensive use of Semantic-Free A�ective
Speech in long-term social human robot interactions.
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