T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIDED SCIENCES

MONOTONE ITERATIVE TECHNIQUES FOR SET VALUED
DIFFERENTIAL EQUATIONS IN METRIC SPACES

BATOUL BALLOUT
A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE
DEPARTMENT OF MATHEMATICS

GEBZE
2019



T.R.
GEBZE TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MONOTONE ITERATIVE TECHNIQUES
FOR SET VALUED DIFFERENTIAL
EQUATIONS IN METRIC SPACES

BATOUL BALLOUT
A THESIS SUBMITTED FOR THE DEGREE OF
MASTER OF SCIENCE
DEPARTMENT OF MATHEMATICS

THESIS SUPERVISOR
PROF. DR. COSKUN YAKAR

GEBZE
2019



T.C.
GEBZE TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

METRIK UZAYLARDA
KUME DIFERANSIYEL DENKLEMLER
ICIN MONOTON ITERASYON TEKNIKLER

BATOUL BALLOUT
YUKSEK LiSANS TEZi
MATEMATIK ANABILIM DALLI

DANISMANI
PROF. DR. COSKUN YAKAR

GEBZE
2019



GEBZENS

TEKNIK OnjversiTesi

YUKSEK LISANS JURi ONAY FORMU

GTU Fen Bilimleri Enstitiisti Yonetim Kurulu’nun 12/ 12 /2018 tarih ve 2018/60 sayili
karariyla olusturulan jiiri tarafindan 03/01/2019 tarihinde tez savunma sinavi yapilan Batoul
BALLOUT un tez ¢alismasi Matematik Anabilim Dalinda YUKSEK LISANS tezi olarak
kabul edilmistir.

JURI
UYE
(TEZ DANISMANI) : PROF. DR. COSKUN YAKAR
UYE : PROF. DR. FATIH TASCI
4,
UYE : DR. OGR. UYESI YUCEL ENGI
ONAY

Gebze Teknik Universitesi Fen Bilimleri Enstitiisii Yonetim Kurulu’nun

................. tarih ve ........ say1li karar1.



SUMMARY

The preliminary materials providing the requisite tools and substantial
background to study the set differential equations in metric spaces were collected since
the metric space concerned consists of all nonempty compact convex sets in finite
dimensional space. The requisite theorems and definitions in set differential equations
are given to study the monotone iterative technique for set differential equations in
metric spaces utilizing the method of upper and lower solutions. It is well known that
the method of upper and lower solutions with the monotone iterative technique offers
abstract as well as deductive existence result in a closed set that is generated by upper
and lower solutions. The natural question is whether it is possible to extend the
monotone method when the given function is the difference of two or three functions.
So that we can obtain some known results as special cases and some new results. The
answer is positive, this offers a new look into the monotone method results developed
so far and also combine all the results in a single set up. The results took into account
here are so public that they include several special cases of interest, and this leads to
the possibility of having four or eight types of upper and lower solutions. In this thesis
we consider coupled lower and upper solutions were considered and two sequences
which converge to coupled minimal and maximal solutions respectively were

developed.

Keywords: Set Valued Differential Equation, Monotone Iterative Technique,

Upper and Lower Solutions.



OZET

Metrik uzaylarda verilmis kiime diferansiyel denklemleri incelemek i¢in Oncelikle
gerekli araglar1 ve 6nemli kosullar1 saglayan bazi Oncelikli materyalleri veriyoruz,
clinkii ilgili metrik uzay sonlu boyutlu uzayda tiim bosolmayan kompakt konveks
kiimelerden olusur, bu ylizden kiime diferansiyel denklemlerdeki gerekli teoremler ve
tanimlara ihtiyacimiz var. Metrik uzaylarda kiime diferansiyel denklemler igin
monoton iterasyon teknigin incelenmesi, karsilastirma sonuglarinin, alt ve iist ¢6ziim
yontemlerinin - kullanilmasi, monoton iterasyon yontemin ist ve alt ¢oziim
yontemlerinin bir sonucu olarak ortay1 ¢iktig1 bilinmektedir. Ust ve alt ¢oziimlerin
olusturdugu kapali ve simirli bir kiimede verilen siirekli fonksiyonlar yani dogal
denklemler, bu verilen fonksiyon iki veya ti¢ farkli fonksiyonun kombinasyonu olarak
verildiginde bu monoton iterasyon tekniginin bu tip denklemlere uygulanip
uygulanamayacagi ilging bir agik problem ola gelmistir. Bu problem ¢oziildiigiinde
boylece 6zel durumlar olarak bilinen bazi1 sonuglar1 ve bazi yeni sonuglar elde
edebiliriz. Bu problemin ¢6ziimii miimkiin olup ve cevabi da olumludur. Bu fikir
monotone iterasyon yontemine yeni bir bakis kazandiriyor ve yeni bir perspektif
sunmustur. Simdiye kadar elde edilen sonuglar1 genellestirip ve literatiirde ki tek bir
fonkosiyon i¢in tiim sonuglar1 elde ettik. Elde edilen tiim sonuglar burada goz 6niinde
bulunduruldugunda ¢ok 6zel ilgi alanlar1 igerdigini ve bu sayede dort ve sekiz tip list
ve alt ¢oziimleri kullanilmistir. Bu tezde, eslesmis alt ve {ist ¢oziimleri ele almakta ve
eslesmis minimum ve maksimum ¢oziimlere diizgiin yakinsayan monoton fonksiyon

dizi giftleri elde edilmistir.

Anahtar kelimeler: Kiime Differansiyel Denklemler, Monotone Iterasyon

Teknikler, Alt ve Ust Coziimler.
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1. INTRODUCTION

Multivalued differential equations (now known as set differential equations
(SDEs) generated by multivalued differential inclusions) have been introduced in a
semi-linear metric space, consisting of all nonempty, compact, convex subsets of an
initial finite or infinite dimensional space[1]. The basic existence and uniqueness
results of such (SDEs) have been investigated and their solutions have compact,
convex values. Also, these generated (SDEs) have been employed as a material to
prove the existence of solutions in a united method, of multivalued differential
inclusions [1, 2, 3, 4]. The third chapter is devoted to the basic theory of set differential
equations (SDEs). We begin with the formulation of the initial value problem of
(SDEs) in the metric space (K-(R™),D). Utilizing the properties of the Hausdorff
metric D[-,-] and employing the known theory of differential and integral inequalities,
we establish a variety of comparison results, that are required for later
discussion[1, 5]. The monotone iterative technique is considered for SDE in the fourth
chapter, employing the method of upper and lower solutions. The results considered
are so general that they contain several special cases of interest [1, 6,7, 8,9, 10]. In the
fifth chapter, comparison results with initial time difference are given, we will study
the monotone iterative technique for one (single), two and three functions with initial
time difference [11,12,13].



2. PRELIMINARIES

Definition 2.1: We will define three spaces of non-empty subsets of R™, namely,

e K-(R™) consisting of all nonempty compact convex subsets of R",
e K(R™) consisting of all nonempty compact subsets of R™,

e C(R™) consisting of all nonempty closed subsets of R™,

recall that a nonempty subset A of R™, is convex if for all a;, a, € Aandall 1 €/0,1),

the point:

a= Aa; +(1-Na, (2.1)

belongs to A. For any nonempty subset A of R™, we denote by coA Its convex hull.
That is the totality of points a of the form (2.1) or, equivalently, the smallest Convex

subset containing A, clearly:

A € coA = co(coA) (2.2)
with A = coA if A is convex.
Let A and B be two nonempty subsets of R™. And let A € R, we define the following

Makowski addition and scalar multiplication by:

A+B={a+b, a €A DbeEB} (2.3)
and

AA = {Aa,a € A} (2.4)

then we have some useful known examples in literature about the convex sets as

follows:

Example 2.1: Aninterval [a,b] c R is a convex set. To see thisletc,d € [a,b ]

and assume, without loss of generality that c < d, let 2 € (0 1), then

a<(1-ADc+ A <
(1—Dc+Ad <
(1-A)d+Ad=d <b. (2.5)



Example 2.2: A disk with center (0,0) and raduis ¢ is a convex subset of R2. We can

easily show that by using the usual distance formula in R2, namely:

Ix = yll = v/(er = y1)? + (2 = y2)? (2.6)
and the triangle inequality:

llu + vl < llull + (vl 2.7)

if the disc’s center is the origin and its radius c, then x belong to the disc if and only

if ||x]|? < c?. Let u and v belong to the disc. And let 0 < A < 1. Then:
1w+ (1 = Dll? = 2|lull? + 2201 = Dllulliivl + (1 - D] (2.8)
since, ||[ul|? < c? and ||v]|? < ¢?
Au+ (1 = Dv||? < 22¢? + 241 — Dc? + (1 — 2)?c? (2.9)

So, we arrive at:

[Au + (1 — Dv||? < 2. (2.10)

Example 2.3: In R™the set H:={x € R" : a; x; + a,x, + -+ apx, =c} is a
convex set. For any choice of constants a; in R™. It is defining equation is a

generalization of the usual equation of a plane in R3, namely the equation:

ax+by+cz+d=0 (2.11)

We will show that H is a convex set. To do that Let x1,x? € H and define z € R3 by

n n
7 = Z a; [(1 = Dx} + Ax?] = Z[(l — Dagx}! + da;x?]
i=1 i=1
n n
=(1—A)Zaix3+12aix?=(1—/1)c+lc=c (2.12)
i=1 i=1

Hence Z € H.



Example 2.4: As a generalization of the previous example, let A be an m X n matrix,
be R™andlet S:={x € R™: Ax = b} (the set S is just the set of all solutions of the

linear equation Ax = b) then the set S is a convex subset of R™. Let x1,x2 € S then:

A1 = Dxt + x2) = (1 = DAx* + 1A x? (2.13)
=(1—A)b+2b=b.

Note 2.1: There are always two. So, called trivial examples. These are the empty set ¢,
and the entire space R™, note also that a singleton {x} is convex, in this latter case as

in the case of empty set, the definition is satisfied.

Then we have the following propositions:

Propositions: The spaces C(R™), K(R™) and K.(R™) are closed under the operations

of additions and scalar multiplication. In fact, the following properties hold:

o A+60=06+A=A where €R"is the zero element of R"
e (A+B)+C=A+(B+0)

o A+(C=B+C =>A=B

e 1.A=A

o MA+B)=1A+IB

e (A+wA=21A+puA

where A,B,C € K-(R™), A, u € R,.

The Hausdorff metric:

Let x be apointin R™ and A a nonempty subset of R™ the distance d(x, A) from x to A
is defined by:

d(x,A) = inf{]|x — a||: a € A} (2.14)

thus d(x,A) = d(x,A) >0 and d(x,A) = 0, if and only if x € A, where 4 is the

closure of A € R™. We shall call the subset:



S;(A) ={x €ER™:d(x,A) < &} (2.15)

an e_neighborhood of 4, and its closure is the subset:

S.(A) ={x € R" : d(x,A) < &} (2.16)

we shall denote by:

Sr =35 (0) (2.17)

which is clearly a compact subset of R™. Note also that:
S.(A) = A+ &St (2.18)
for any € > 0 and any nonempty subset A of R™. We shall for convenience sometimes

write S(4, €) and S.(4). Now let A and B be nonempty subsets of R™. We define the
Hausdorff separation of B from A by:

dy(B,A) = sup{d(b,A):b € B} (2.19)

or, equivalently:

dy(B,A) =inf{e >0 :BCS A+ &S} (2.20)

we have dy (B, A) = 0 with d,(B,A) = 0 iff B € A, also the triangle inequality:

dy(B,A) < dy(B,C) + dy(C,A) (2.21)

holds, for all nonempty subsets A, B and C of R™, in general however:

dy (A, B) # dy(B, A) (2.22)

we define the Hausdorff distance between nonempty subsets A and B of R™ by:

D(4, B) = max{dy (A, B),dy(B,A) } (2.23)

which is symmetric in A and B. Consequently:

e D(A,B) > 0with D(4,B) = 0iff A =B
e D(4,B) = D(B,A)
e D(4,B) <D(AC) +D(C,B)

for any nonempty subsets A, B and C of R™.



If we restrict our attention to nonempty closed subsets of R™, we find that the
Hausdorff distance is a metric known as the Hausdorff metric. Thus (C(R™),D) is a

metric space.
And so, we have the following properties:

Proposition 2.1: (C(R™), D) is a complete separable metric space in which K(R™) and
K:(R™) are closed subsets. Hence (K(R™),D) and (K-(R™),D) are also complete

separable metric spaces.

We need the following result which deals with the law of cancellation to proceed

further.

Lemma 2.1: Let Aand B € K-(R™) and C € C(R") then,If A+ C S B+ CthenA C
B.

Proof 2.1: Let a be any element of A, we need to show that a € B. For any c; € C, we
have a + c; € B + C, that is there exist b, € B and c, € C with a + ¢; = b; + ¢, for
the same reason, b, € B and c3 € C, with a + ¢, = b, + c5 it will be exist. Iterate the

steps indefinitely and sum the first n of the equations we get:

n n n+1
na+Zci=Zbi+Zci (2.24)
i=1 i=1 i=2

which implies:

n
na+c, = <Z bi) + Cpy1 (2.26)

n
na+c+c,+ o +c, = < bi> +cp ezttt Copyq (2.25)
=1

then:

n
1
o _<Z bi) I (2.27)
n\ 4 n n

we will set:



n
1
Xy = ;Z b, (2.28)

consequently,

a=x,+ - — (2.29)

we observe that x,, € B. For all n,asn - o«

C C
250 (2.30)
n n

this shows that x,, converges to a. And since B is compact a € B.
Proposition 2.2: If A,B € K.(R™) and C € K(R™) then:

D(A+C,B+C)=D(AB) (2.31)

Proof 2.2: Let A = 0 and S denote the closed unit sphere of the space. Consider the

following inequalities:

) A+ASoB
i) B+ ASoA
i) A+C+ ASDB+C
iV) B+C+ ASDA+C

Putd, = D(A,B) and d, = D(A+ C,B + (), then d; is the infimum of the positive
numbers A for which (i) and (ii) hold. Similarly, d, is the infimum of the positive
numbers A for which (iii) and (iv) hold. Since (iii) and (iv) follow from (i) and (ii) by
adding C we have d; > d,. conversely since by Lemma (2.1) cancelling C is allowed

in (iii) and (iv). We obtain d; < d,, which proves the proposition.

Proposition 2.3: If A,B € K(R"):

e D(coA,coB)<D(A,B) (2.32)
e [fA,A',B,B' € K;(R™) then:

D(A+A',B+B') <D(A,B)+D(4,B") (2.33)
D(A—A',B—B')<D(A,B)+D(4,B") (2.34)



provided the difference A — A’, B — B’ exist.

e furthermore with 8 = max{A, u}, we have:
D(AA,uB) < BD(4,B) + |2 — ul[D(4,6) + D(B,6)]  (2.35)
and if A — B exist:

D(14,AB) = AD(A — B, 6) (2.36)

e D(tA,tB) =tD(A,B),forallt > 0. (2.37)

In general, A + (—A) # {6}, this is illustrated by the following example.

Example 2.5: Let B = [0, 5], so that (—1)B = [-5, 0], and therefore
B+ (-1)B =[0,5] + [-5,0] = [-5,5]

thus, adding (-1) times a set does not constitute a natural operation of subtraction.

Definition 2.2: For a fixed A and B in K;(R™), if there exists an element C € K-(R™)
such that A = B + C, then we say that the Hukuhara difference of A and B exists and
is denoted by A — B.

When the Hukuhara difference exists, it is unique. This follows from this property:

A+C=B+C >A=8B (2.38)

suppose for a fixed A and B in K. (R™) there exists an element C € K-(R™), such that:
A=B+C (2.39)
and for an element G € K-(R™) such that:
A=B+G (2.40)

then according to the property (2.38)

B+C=B+G=>C=6. (2.41)



The following example explains the Definition (2.2).
Example 2.6: We get from the previous example that:
[-5,5] — [-5,0] = [0,1] and [-5,5] — [0,5] = [-5,0]
note that the Hukuhara difference A — B is different from the set:
A+ (—B)={a+(-b); a€A,beB}
from the previous example, we can set:
B =[0,5] A =[-5,5]
then we can note that:
A—B =[-5,5] —[0,5] = [-5,0]

A+ (—B) = [-5,5] + [-5,0] = [-5,5].

The next proposition provides the necessary and sufficient condition for the existence
of the Hukuhara difference A — B.

Proposition 2.4: Let A, B € K.(R™) for the difference A — B to exist. It is necessary

and sufficient to have the following condition. If a € §A, there exists at least a point ¢

such that:

a€EB+ccA (2.42)

Proof 2.4: Necessity: suppose the difference A — B exists. Let C = A — B, then. A =
B + C.Ifa € 54, then

a€B+C (2.43)
that is
a=b+c ,beEB,ceC (2.44)
also, if z € B then:
z4+c€EA (2.45)
and therefore
a€EB+ccA (2.46)



Sufficiency:

Suppose a € B + ¢ < A holds, consider the set C ={x : B+ x < A} clearly C is
compact and we have B + C € A.Now ifd and d' € C,thenwe have B+d < A and

B +d' < A from which we obtain:

1-DB+d)+AB+d)cA for 0<A<1 (2.47)

that since A is convex. We can write the L.H.S as B + z where z = (1 —1)d + d’

hence z € € and C is convex.

Now let u € A. A straight line through u meets 64 at two points a , a’. By hypothesis

there exist elements d ,d’ € C. Such that:

a€B+danda € B+d’ (2.48)
we can write:
u=>0-VDa+1a" with 0<A1<1 (2.49)
then:
UEB+z (2.50)

wherez = (1—-A)d+ Ad' € C, hence A € B + C, thus A = B + C. And the proof

is complete.m

We note that an indispensable condition for the Hukuhara difference A — B to exist is
that some translate of B is a subset of A, however, in general the Hukuhara difference

need not exist as is seen from the next example.

Example 2.7: {0} — [0,2] does not exist, since no translate of [0,2] can ever belong to

the singleton set {0}.

Definition 2.3: Let I be an interval of real numbers. Let U a multifunction:

U:1 — Ko(R™) (2.51)

be given, U is Hukuhara differentiable at a pointt, € I, if there exists Dy U(t,) €
K-(R™) such that the limits:

10



U(ty + At) — U(ty) (2.52)

limpg o+ At
and
] U(ty) — U(ty — At) (2.53)
llmAt_)0+ At

both exist and are equal to Dy U (t,).

clearly, implicit in the definition of D, U(t,) is the existence of the differences
U(ty) — U(ty, — At) and U(t, + At) — U(t,), forall At > 0 sufficiently small.

Definition 2.4: We shall say that F:[0,1] - K.(R"™) is integrally bounded on [0,1] if

there exists an integrable function g: [0,1] — R such that

IF®I < g,  vte[01]. (2.54)

Theorem 2.1: F: T — K.(R™) is measurable if and only if there exists a sequence {f;}

of measurable selectors of F such that:

F@® = U{ﬁ(t):l =12}, foreacht €T (2.55)

Theorem 2.2: Let F:[0,1] — K;(R™) be measurable and integrally bounded. Then
A:[0,1] — K-(R™) defined by:

A(t) = JtF(s)ds (2.56)
0

for all t €[0,1] is Hukuhara differentiable for almost all t, € (0,1), with the
Hukuhara derivative Dy A(t,) = F(t,).

11



Definition 2.5: We consider mappings F from a domain T in R™ into the metric space
(K.(R™),D).Thus, F:T — K.(R™) or equivalently

F(t) € K.(R™), forallt e T (2.57)

we shall call such a mapping F is a (compact convex) set valued mapping from T to
R™.
Definition 2.6: We shall say that a set valued mapping F satisfying (2.57) is continuous

att, € T if Ve > 0thereexistsa d = 6(¢,t,) > 0, such that

DI[F(t),F(ty)] < e, VteT with lt—ty, I< 6 (2.58)

alternatively, we can write (2.7) in terms of the convergence of sequences, that is
tlin;t D[F(t,),F(ty)] =0, Vt, € T witht, >ty €T (2.59)
n—lo

using the Hausdorff separation dy and neighborhoods, we see that (2.7) is

combination of

dy(F(t),F(ty)) <e (2.60)
that is
F(t) © S(F(ty)) = F(to) + €SP (2.61)
and
dy(F(ty),F(t)) <e (2.62)
that is
F(to) € Se(F(t)) = F(t) + €SP (2.63)

Forallt € T with || t — t, I< 6. As before, STt = {x € R™: || x [I< 1} is the open unit
ball in R™. If the mapping F satisfies (2.60), (2.61), then we say that is upper
semicontinuous at t,, or that is lower semicontinuous at t,, if it satisfies (2.62), (2.63).
Thus F is continuous at t, if and only if it is both lower semicontinuous and upper

semicontinuous at t.

12



3. BASIC THEORY

3.1. Basic Definitions and Theorems:

Let us consider the initial value problem (I\VP) for the set differential equation:

DHU = F(t, U), U(to) = UO € Kc(Rn), tO = 0 (311)

where F € C[R, X K-(R™),K.(R™)] and DU is the Hukuhara derivative of U.The
mapping U € C1[], K.(R™)] where ] = [to, to + a], a > 0, is said to be a solution of
(3.1.1) on J, if it satisfies (3.1.1) on J. Since U(t) is continuously differentiable, we

have:

t
U = U +f DyU(s)ds, te€] (3.1.2)

to

we therefore associate with the IVP (3.1.1), the following integral equation:

U(t) = U, +f F(s,U(s))ds, te€] (3.1.3)

to
where the integral in (3.1.3) is the Hukuhara integral observe also that U(t) is a
solution of (3.1.1) if and only if it satisfies (3.1.3) onJ. Since F is continuously
differentiable in R, then any solution of (3.1.1) is also a solution of (3.1.3) and

conversely.
Proof:

Any solution of the differential equation (3.1.1) converts it into an identity in U i.e.:
DyU = F(t,U), an integration of this equality with U(t,) = U, gives (3.1.3)
conversely, if U(t) is any solution of (3.1.3) then the substitution t = t, in (3.1.3)
gives U(t,y) = U,, further, since F(t,U) is continuous, by differentiating (3.1.3) we
findthat DU = F(t,U).m

Definition 3.1.1: Let r(t) be the solution of (3.1.1) onJ, then r(t) is said to be a
maximal solution of (3.1.1) if for every solution U(t) of (3.1.1) on J. The inequality:

Uui)< r(), te] (3.1.4)
holds.
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Definition 3.1.2: Let p(t) be a solution of (3.1.1) on J, then p(t) is said to be a minimal
solution of (3.1.1). If for every solution U(t) of (3.1.1) on J. The inequality:

Uit)=p(), te] (3.1.5)
holds.

Definition 3.1.3: A function W (t) € C*[R,, K-(R™)], is said to be upper solution of
(3.1.1) if:

DyW = F(t,W), W(ty) =2U, on ] (3.1.6)
holds.

Definition 3.1.4: A function V(t) € C*[R,, K- (R™)], is said to be lower solution of
(3.1.2) if:

DyV <F(tV), V(t,) <U, on] (3.1.7)
holds.

Definition 3.1.5: A family of functions F = {f, (t)},ec4 defined on real interval J is said
to be equicontinuous on J if for any given € > 0, there exists § = §(¢) independent

of f, € F and also of t;,t, in] insuch that:

|fo(t) — fo(t5) | < € whenever [t; —t,]| <6 (3.1.8)

Lemma (4scoli’s Lemma) 3.1.1: Let F = {f, (t)},eca be a family of functions which is
uniformly bounded and equicontinuous on an interval J. Then every sequence of
functions  {f,(©)}in F contains a subsequence {f,, ()}, k=0, 1, 2, ... which is

uniformly convergent on every compact sub-interval of J.

Lemma (Grownwall’s Lemma) 3.1.2: Assume thatf,g € C[R, X R™, R"], non-

negative functions, for t > t,, and ¢ > 0, be a constant. Then the inequality:
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f(t)<c +f f(s)g(s)ds, t=>t,

implies the inequality:

f(t) <cexp Utg(s)dsl

Proof 3.1.2: We have:

t
f)<c+ f g(s)f(s)ds, c>0
to
then we can write:

f(©g(®
¢+ [ f()g(s)ds

<g()

Let

t
r(t) =c +j gs)f(s)ds, t=t,
then:

r'@®) =f®g®), rty) =c
r'(t) = f(Dg(t) <r()g®)

which leads to:

t..r t
LOZ((SS)) ds < Jtog(s)ds

t
inlr ()] = Il (el < [ g(s)ds

t
Inlr(6)] - Inlc] < j g(s)ds

In [ ] fto g(s)ds
— < exp U (s)dsl

r(t) < cexp U g(s)dsl

(3.1.9)

(3.1.10)

(3.1.11)

(3.1.12)

(3.1.13)

(3.1.14)

(3.1.15)

(3.1.16)

(3.1.17)

(3.1.18)

(3.1.19)

(3.1.29)

(3.1.30)

then we arrive at: f(t) < r(t) < cexp [ftto g(s)ds]. And the proof is complete.m
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Remark:
In the previous lemma if we have ¢ = 0 then, f(t) = 0.
Proof:

For any t > t,, we define r(t) as follows:

r(t) = ttf (s)g(s)ds, (3.1.30)
so that r(t,) = 0. And so: 0
r'(©) = f(®)g(®) (3.1.31)
thus, we have: f(t) < r(t) then:

r'@®) =f)g@®) =rg®) (3.1.32)
r(®) — (r(Hg®)) <0 (3.1.33)

multiplying both sides of this inequality by:

t
exp (— f g(S)dS> (3.1.34)

0

we arrive at:

(exp (— g(s)ds) r(s)) <0 (3.1.35)

to

thus:
exp (— ftto g(s)ds) r(s) is nonincreasing. Since r(t,) = 0, it follows that:

rt) <0
and hence:

fO=r@® =<0 (3.1.36)

however, since the function f(t) is nonnegative, we find that f(t) = 0.

Definition 3.1.6: LetF € C[R, X K-(R™),K:(R™)] is said to satisfy the uniform

lipschitz condition in R, if:
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D[F(t,U(®)),F(t, V()] < LD[U(L),V (D)] (3.1.37)

forallt € R, and U,V € K-(R™). Having the same t and the nonnegative constant L

is called the Lipchitz constant.

Theorem (Lipschitz uniqueness theorem) 3.1.3: Assume that F € C[R, X

K-(R™),K:(R™)], and satisfies the uniform lipschitz condition

D[F(t,U(®)),F(t, V()] < LD[U(®), V(D)] (3.1.38)

forallt € R, and U,V € K-(R™), then the IVP (3.1.1) has a unique solution in R,
Proof 3.1.3: Suppose that V(t) and U(t) are two solutions of (3.1.1) on J, where
V,U € C[J, K- (R™)] then the equivelant Volterra integral equations are:

t
V(D) = V(L) + f F(s,V(s))ds (3.1.39)

to
t
U = UG+ [ F(s,U)ds (3.0.40)
to
since V(t,) = U(ty) = U, and by using Hausdorff metric properties and (3.1.7) we

obtain:

D[U(t), V()] =D -UO +f F(s,U(s))ds , U, +f
L t

0 t

tF(s, V(s))ds l

=D f F(s,U(s))ds ,j;OF(s,V(S))dsl

|ty

=D -ft[F(s, U(s)),F(s, V(s))]dsl
[,

< ftD [F(s,U(s),F(s,V(s))]lds

0

< Lf D[U(s),V(s)lds (3.1.41)

0

now by applying Grownwall ’s lemma, where ¢ = 0. We arrive at:

D[V(t),U(t)] =0 (3.1.42)

as a consequently:
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V(t) = U(t). (3.1.43)
And the proof is complete.m

Theorem 3.1.4: Assume that:

i) V,W € C[R,,K-(R™)], andF € C[R, X K-(R™),K-(R™)], F(t,X) is

monotone nondecreasing in X for each t € R, :

D,V <F(t,V), DyW >F(t,W), ¢tER, (3.1.44)

i) Forany X,Y € Kc(R")suchthatX >Y, t ER,:

F(t,X) <F(t,Y)+L(X—-Y) forsome L>0 (3.1.45)
then:

V(ty) < W(ty) implies that V(t) < W(t), t = t,

Proof 3.1.4: Let &€ = (g1,&,+,&,) > 0, and define W(t) = W(t) + ee?-t. Since
V(ty) < W(ty) < W(ty), it is enough to prove that:

V(t) < W(b), t>t, (3.1.45)

to arrive to our conclusion, in view of the fact € > 0. Is arbitrary, let t; > 0 be the

supremum of all positive numbers § > 0, such that:

V(ty) < W(ty) implies V(t) < W(t) on [t,, 5].

It is clear that t; > ty, and V(t;) < W(t,), this follows, using the nondecreasing

nature of F and condition (3.1.45) that:

DyV(t)) < F(t,V(t1)) < F (tl, W(tl))
< F(t, W(ty)) + L(W —w)
< DyW(t,) + Lee?lta
< DyW (t,) + 2Lee? s = DLW (t,) (3.1.46)

consequently, it follows that there exists an n > 0 satisfying:

V) —W@) >V(t)—-W(ty), t—-n<t<t (3.1.47)
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this implies that t; > t, cannot be the supremum in view of the continuity of the

functions involved and therefore the relation

V() < W(b), t>t, (3.1.48)

is true, and then we can write

V() < W(t) =W(t) + ee?!t (3.1.49)

and then:
limg_o V(t) < lima_o[W(t) + ce?Lt] (3.1.50)
V(t) < W(t). (3.1.51)

And the proof is complete.m

Theorem 3.1.5: Let F € C[J x Kc(R™), K.(R™)] and D[F(t, U(¢)), 0] < M, thenthere
exists a solution of the IVP (3.1.1) on J .

Existence via Upper and Lower Solutions:

If we know the existence of lower and upper solutions V, W such that, V < W, we can

prove the existence of solutions in closed set:
Q={(tU) €] xK:(RY), to <t<ty,+a, V() SU() < W ()}

this is what we will prove in the next theorem.

Theorem 3.1.6: Let] = [ty to +al,V,W € C[],K-(R™)], be lower and upper
solutions of (3.1.1) Such that V(t) < W(t) onJ, and F € C[2,K (R™)], then, there
exists a solution U(t) of (3.1.1), Such that:

V(t) <U®) <W(t) (3.1.52)
Proof 3.1.6: Let P: ] X K-(R™) = K-(R™) defined by:

P(t,U) = max{V (t), min{U(t), W (£)}} (3.1.53)
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then F(¢t, P(¢, U(t)) defines a continuous extension of F o] x K-(R™) which is also
bounded since F is bounded on 2. Therefore, the solution of (3.1.1) Exists on J. For

& > 0 consider,

W,(t) =W(t)+e(1+1) (3.1.54)
V.(t) =V(t)—e(1+1) (3.1.55)
clearly,
We(ty) =W(ty) +e(1+ty) =Up+e(1+ty) (3.1.56)
V.(ty) =V(ty) —e(1+ty)) =Uy—e(1+ty) (3.1.57)

as a result, V,(t,) < U, < W,(t,), we wish to show that V.(t) < U(t) < W,(t) on J.
Suppose that t; € (to,to + @) is such, Vo(t) < U(t) < W,(t) on [t,, t;), and

U(ty) = We(ty) (3.1.58)
then
U(ty) = W(t,) =W(t) +e(1+¢t)) (3.1.59)
this means
U(ty) > W(ty) (3.1.60)
and so:

P(t1' U(t1)) = max[V(t,), min[U(t,), W (t)]] = max[V(t), W(t)] = W(ty)

also
V(ty) < P(t, U(ty)) S W(ty) (3.1.61)
hence
DyW(ty) = F(t;, W(ty)) = F(ty, P(t1, U(t1)) = DyU(ty)
DyW (t,) = DyU(t;) (3.1.71)
we have:
W(t) = W.(t) —e(1+t)) (3.1.72)
DyW(ty) = DyW.(t,) — ¢ (3.1.73)
DyW.(ty) = DyW(t)) + ¢ (3.1.74)

then we can arrive at the relation
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DyW,(t,) > DyW (t1) (3.1.75)

from (3.1.71) and (3.1.75) we obtain

DyW,(ty) > DyU(t;) (3.1.76)
this contradicts
W, (t) > U(t) for t € [ty, t;) (3.1.77)
consequently
V.(t) <U(t) < W (t)on] (3.1.78)

letting € — oo we get, V(t) < U(t) < W(t) onJ. Completing the proof.m

Theorem (Peano uniqueness theorem) 3.1.7: Let F € C[] X K.(R™),K.(R™)], and
F(t, U) is nonincreasing in U for each fixed t in] = [t,, t, + a ]. then, the initial value

problem (3.1.1) has at most one solution in [ty, t, + a |.

Proof 3.1.7: Suppose U(t) and V(t) are two solutions of (3.1.1) which differ
somewhere in [ty to + a ]. we assume that V(t) > U(t) fort; <t <t; +e <ty +
a,andV(t) = U(t) fort, <t < t,.Thus, forall t € (t;,t; + €], since the function F
is nonincreasing we have F(t,U(t)) = F(t,V(t)), and hence DyU(t) = DV (t).
This implies that the function ¢(t) = V(t) — U(t) is nonincreasing. Further, since
@(t;) =0, we have ¢(t) < 0 in [ty t; + €]. This contradiction proves that V(t) =
U(t)in[ty,to+al.m

Lemma 3.1.3: Suppose that F(t, U(t)) is nonincreasing in U, then:

i) There exist lower and upper solutions V,, W, of IVP,
DyU =F(t,U(D),  U(ty) = U, (3.1.79)

such that Vy < Wy onJ = [to, to + al.
i)  There exists a unique solution U of IVP on J, such that VV, < U(t) < W,.

Proof 3.1.3: Let Vo (t) = =Ry + @(t), Wy(t) = Ry + ¢(t), where ¢(t) is the

solution of:
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Dyp(t) = F(t,0),  @(ty) = U, (3.1.80)

choose R, > 0 sufficiently large so that:
Vo <0< W,
since F is non-increasing this implies that:

DyVy = Dyoe(t) = F(t,0) < F(t,V,) (3.1.81)
DyWy = Dyo(t) = F(t,0) = F(t,W,) (3.1.82)

and we can write

Vo(to) = _RO + (p(to) = _Ro + UO < UO (3183)
Wo(to) = RO + qp(to) = Ro + UO 2 UO (3184)

DyVy, < F(t,Vy), V(ty) < Uy, which means that V; is lower solution
DyW, < F(t, W), W(ty) = Uy, which means that W, is upper solution

now, according to the theorem (existence via upper and lower solutions) there exists
asolution U(t) of IVP, such that V, < U(t) < W, onJ, and since F is non-increasing,

uniqueness is obvious. And the proof is complete.m
3.2 Dini Derivatives and Comparison Principles

Definition 3.2.1: We adopt the following notation for Dini derivatives:

D¥U(E) = limyg+sup+ [U(t + h) — U(D)], (3.2.1)
D.U(t) = limy_g+inf = [U(t + h) = U(D)], 3.2.2)
D=U(L) = limyg-sup+ [U(t + h) — U(®)], (32.3)
D_U(t) = limh_)o—inf% [U(t +h) — U(t)], (3.2.4)

where U € C[J,R]. When D*U(t) = D, U(t), the right derivative will be denoted
by UL (t). Similarly U’(t) denotes the left derivative. We have the following results

concerning the Dini derivative.
Theorem 3.2.1: Letm € C[J,R,],and g € C[] X R, ,R.] and:

Dx(®) < g(t,m(D), tej (3.2.5)
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then m(ty) < w, implies:

m(t) < r(t), tej (3.2.6)

where, r(t) is the maximal solution of the scalar differential equation.

w' =g(tw), w(ty) =wy,=0 (3.2.7)

existing on J, where | = [t,, t, + al.
Proof 3.2.1: Let G be such that:

g(t,w() w=m(t)

Glow) = {g(t:m(t)) w <m(t) (3.2.8)

let w(t) be the solution of the scalar differential equation (3.2.7), Suppose that w(t) <

m(t) for some t, then there exists a t; > t, such that:

w(ty) < m(ty) (3.2.9)
and
w'(t;) < Dtm(t;) (3.2.10)
and so:
D*m(ty) < g(t, m(t) = G(t,w(ty)) = w'(ty) (3.2.11)

which is a contradiction with:

Drm(t,) > w'(ty) (3.2.12)

it therefore, follows that:

w(t) = m(t) (3.2.13)

which implies that w(t) is the solution of the (3.2.7) in view of the definition of G (t, w).
since r(t) is the maximal solution of (3.2.7), we have w(t) < r(t) from which it

follows that

m(t) <r(t), te€]. (3.2.14)

And the proof is complete.m
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Theorem 3.2.2: Let g € C[J X R,, R, ] and that g(t, w) is monotone nondecreasing in

w foreach t,letm € C[J,R,],t € J and m(t,) < wy, and:

t
m(t) < m(ty) +f g(s,m(s))ds tej (3.2.15)
to
then:

m(t) < r(t), tej (3.2.16)

where, r(t) is the maximal solution of (3.2.7) existing on .

Proof 3.2.2: Define

v(t) = m(ty) + ft :g(s,m(s))ds (3.2.17)
50 that:
m(t) < v(t) (3.2.18)
and:
v' (1) = g(t,m(D)) (3.2.19)

since g is monotone, using (3.2.18) we obtain the differential inequality:
v'(t) = g(tm®)) < g(tv®), te] (3.2.20)

from the application of Theorem (3.2.1) we obtain:

v(t) <r(t), tej (3.2.21)

proving the theorem.m

Theorem 3.2.3: Assume that F € C[J X K.(R™),K;(R™)]andt € ], U,V € K.(R™)

D[F(t,U),F(t,V)] < g(t,D[U,V]) (3.2.22)

where g € C[] X R, ,R,] and g(t, w) is monotone nondecreasing in w for each t €

J. Suppose further that the maximal solution r(t,t,, wy) of the scalar differential

24



equation (3.2.7) exists onJ. Then if U(t), V(t) are any two solutions
through (t,, Uy), (to, V) respectively on J. It follows that:

D[U(), V()] < r(t, tg, wp), te] (3.2.23)
provided that [U,, V,] < wy.

Proof 3.2.3: Set m(t) = D[U(t),V (t)], so that m(t,) = D[Uy, V5] < wy then. In view

of the properties of the metric D, we get:
t t
m(t) =D lUO + f F(s,U(s))ds, Vo + f F(s,V(s))ds l
t to

0 t
F(s,U(s))ds, Uy + f

< DlU0+j
to t
+DlU0+]
t

t t
=D U F(s,U(s))ds,j F(s,V(s))ds ]+D[U0.Vo] (3.2.24)

tF(s,V(s))ds l +

t
F(s,V(s))ds, Vo + j

0 t

tF(s, V(s))ds l

now using the properties of integral and (3.2.22) we observe that:

m(t) < m(t,) + ft [D [F(s, U(s)),F(s, V(s)]] ds
to

< m(ty) + | g(s,D[U(s),V(s)]) ds

to
t

= m(ty) + | g(s,D[U(s),V(s)]) teE] (3.2.25)

to
now applying Theorem (3.2.2), we conclude that:
m(t) < r(t,ty,wy), t E€J. (3.2.26)

And the proof is complete.m
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Remark:

If we employ the theory of differential inequalities instead of integral inequalities, we
can dispense with the monotone character of g(t, w) assumed in Theorem (3.2.3). This

is the content of the next comparison principle.

Theorem 3.2.4: Let the assumptions of Theorem (3.2.3) hold except the nondecreasing

property of g(t, w) in w, then the conclusion (3.2.23) is valid.

Proof 3.2.4: For small h > 0, the Hukuhara differences U(t + h) — U(t), V(t +
h) — V(t) exist. And we have for t € J. Set m(t) = D[U(t),V(t)] and then:

m(t+h) —m(t)=D[U(+h),V(t+h) |-D[U(),V()] (3.2.27)
using Hausdorff metric properties, we get:
D[U(t+h),V(t+h) ] <D[U(t+h),U()+hF(t,U®))]
+D[U(L) + hF (£, U()), V(t + h)] (3.2.28)
and:

D[U(t) + hF(t, U(1)),V(t + h)]
< D[V(t) + hF(t,V(t),V(t + h)]
+D[U®) + hF(t, U()),V(t) + hF(t, V()] (3.2.29)

also, we observe that:

D[U() + hF (£, U()),V(t) + hF (L, V(0))]
< D[U(®) + hF(t, U)),U(t) + hF(t,V(D))]
+D[U®) + hF(t,V(D)), V() + hF (£, V(D))]
= D[hF(t,U®)),hF(t, V(D)) + DIU®), V()] (3.2.30)

hence, it follows that:
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m(t+h)—m(t) =D[U(t+h),V(t+h) |-D[U(),V()]
< DUt +h), U@ +hF(t, U®))]
+ D[V(t) + hF(t,V(t),V(t + h)]
+ D[hF(t, U(D)), hF(t, V()] + DIU(E), V(8)]
—D[U®), V(D] (3.2.31)

and then we can write the estimate:

m(t + h) —m(t)
h

IA

Sk SR sk

D[U(t + h), U(t) + hF(t, U(D))]

+—D[V(t) + hF(t,V(t),V(t + h)]

+ —D[hF(t, U)), RF(t,V(D))] (3.2.32)

and consequently, in view of the properties of D and the fact U(t), V(t) are solutions
of (3.1.1), we find that:

Dt (t) = limh_,0+sup% [m(t+ h) —m(t)]

< limy,_,o+supD IU(t al h})l lO) JE (¢, U(t))l

+ lim;,_,g+supD IF(t, V(t), v+ - V(t)l

h
+D[F(t, U®)), F(t,V(®)] (3.2.33)

here, we have used the fact that:

D[U(t + h), U(t) + hF(t, UL))]
=D[U(t) + Z(t,h),U(t) + hF(t, U(D))]
=D[Z(t,h) + U(t),U(t) + hF(t, U(D))]
=D[Z(t, h),hF(t, U®D))]
=D[U(t +h) — U(t), hF(t,U(1))] (3.2.34)

where, Z(t,h) = U(t + h) + U(t). And so, the conclusion (3.2.23) follows from
Theorem (3.2.1).m
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The next comparison result provides an estimate under weaker assumptions:

Theorem 3.2.5: Assume that F € C[J X K-(R™), K;(R™) ] and:

1
limy+sup [D[U + hF (£, U(®),V + hF (£, V)] - DU,V ()]

< g, D[U®),V(®)D, tej (3.2.35)

where, U(t),V(t) € K:(R™),g € C[] X R,, R,], the maximal solution r(t, t,, w,) of
(3.2.7) exists on J, then the conclusion (3.2.23) is valid.

Proof 3.2.5: Proceeding as in the proof of Theorem (3.2.4) we see that:
m(t+h) —m() =D[U({t+h),V(t+h) ]-D[U(t),V(t)]
< DUt +h),U®) +hF(t,U®))]
+ D[V (t) + hE(t,V(t),V(t + h)]
+ D[U®) + hF (£, U()),V(e) + hF(t,V(D))]
— D[U(®),V(D)] (3.2.36)

and so:

DL (t) = limh_,0+sup% [m(t+ h) —m(t)] <

limy, g+ sup+ [D[U +hF(t,U(E)),V + hF(t,V)] - D[U(D), V(t)]]

+limy,_, o+ supD lU(t al h})l iO) , F(t, U(t))l

V(t+h)—V(t)
h

+ limy,_,o+SupD lF(t, V(D) < g(t, D[U(L), V()]

= g(tm(),te] (3.2.37)

the conclusion follows as before by Theorem (3.2.1). And so, the proof is complete. m

Remark:

We wish to remark that in Theorem (3.2.5), g(t,w) need not be nonnegative and
therefore the estimate in Theorem (3.2.5) would be finer than the estimate in Theorem
(3.2.3) and (3.2.4).
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Corollary 3.2.1: Assume that F € C[J X K.(R™),K.(R™) ] and either:

e D[F(t,U),0] < g(t,D[U,0]) or

. limh_,0+sup%[D[U +hF(t,U()),0] — DU, 9]] < g DU®, 0D ;te]
where g € C[] X R, R,], then if D[U,, 8] < w,, we have:

D[U(t), 0] < r(t,ty, wy), tej (3.2.38)

where r(t, ty, wy) is the maximal solution of (3.2.7) on J.

Corollary 3.2.2: The function g(t,w) = A(t)w,A(t) =0, and continuous is

admissible in Theorem (3.2.3) to give:

m(t) < m(ty) + | A(s)m(s)ds;t €] (3.2.39)

to

then the Grownwall s inequality implies:

m(t) < m(to)exp[ A(s)ds l te] (3.2.40)

to

wich shows that (3.2.23) reduces to:

t
D[U(t),V(t)] < D[U,,V,lexp [ l(s)dsl , tej (3.2.41)

to

Corollary 3.2.3: The function g(t,w) = —A(t)w, A(t) =0, is also admissible in
Theorem (3.2.5) to give:
t
D[U(t),V(t)] < D[U,,V,]lexp l— l(s)dsl, tej (3.2.42)
to
if A(t) > 0, we find that:
DIU(L),V(t)] € D[U,,Vole ™t tej (3.2.43)
if ] =[ty, o], we see that:
lim,_,D[U(),V(t)] =0 (3.2.44)

showing the advantage of Theorem (3.2.5).
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3.3 Local Existence and Uniqueness

We shall begin by proving the existence and uniqueness result under assumptions more
general than the Lipchitz type condition, which exhibits the idea of the comparison

principles.
Theorem 3.3.1: Assume that:
i) F€C[Ry,Kc(RM)]and D[F(t,U(D)), 6] < M, where:
Ry =] x B(Uy, b), B(Uy, b) = [U € K:(R™) : D[U,U,] < b] onR,.

i) gecC[]x[0,2b],R,],G(t,w)<M;on Jx[0,2b], G(t,0)=0 and
G (t,w) is nondecreasing in w for each t € J. And w(t) = 0 is the only solution

of:
w' =G(t,w), w(ty) =0 on | (3.3.1)
i) D[F(t,U),F(t,V)] < g(t,D[U,V]) onR,.
Then the successive approximation defined by:

t
Unye1(t) = Uy +f F(s,Un(s))ds, n=01,2,-- (3.3.2)

to

exists on J, = [ty ,t + n], wheren = min {a, %} M = max{M,, M.} as continuous
function and converge uniformly to the unique solution U(t) of the IVP (3.1.1) on J,.

Proof 3.3.1: using the properties of Hausdorff metric, we get by induction:

t
D[Up1,Usl =D IUO +j F(s,Upn(s))ds ,Uol

0

=D UtF(s,U(s))ds,Hl

< f D[F(s,Upn(s)), 0| <My (t—tp) <Mpa<b  (3.3.3)

0

and as a consequently, the successive approximations {U,,(t)} are well defined on J,.

we shall next define the successive approximations of (3.1.1) as follows:
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Wo =M(t_t0)

t
Wn+1(t) = f g(S, Wn(S))dS, t E]O yn= 0' 1' 2' (334)

to

an easy induction, in view of the monotone character of g(t,w) inw, proves that

{wy, (t)} are well defined and:

0 < wyy1(t) < wy,(t), t€j, (3.3.5)

since [w', ()] < g(&, wy_1(t)) < My, clearly the sequence {w,} is nonincreasing

and uniformly bounded, lets prove that it is equicontinuous:

Ve >0, 36 = §(¢), vn € N, YV ty,t; € Jo, t, >t

&
ti—tl<a=6=—
|t — ta] M

lwy (1) = wy(t2)] =

ty ty
[ gmna®)ds = [ “glswna(s))ds

0 to

[ o wns®)as - [ glswass))as
t t

0 0

t2 to
fg(S,Wn_l(S))dS‘l'j g(S'Wn—l(s))dS

0 1

<(t—t)M; <aM =¢ (3.3.6)

| gt wn)as
t

1

we conclude by Ascoli-arzela theorem that {w,,(t)} has a subsequence {Wnk (t)} that

converges uniformly to w(t), and monotonicity of the sequence {w,,(t)} shows that:

limy, e wy(t) = w(t) (3.3.7)

uniformly on J,.We have w' = g(t,w) and then:

t t
J w'(s)ds = j g(s,w(s)) ds (338)

0

w(t) = wy + f g(s,w(s))ds (3.3.9)

and since w(t) satisfies the equivalent Volterra integral equation of (3.3.1) then it is

a solution of (3.3.1), then by condition (ii)
w(t) =0 onJ,

31



we observe that:
DIV, Us()] < | DIF(5,Uo(s)] < Mt = t0) = wo(®)

assume that for some K > 1, we have:
DU, (), Up—1 ()] < wy—1(t) on ]y
Since
t
D[Ups1(0),Up(D)] < f D[F(s,Uy(s)),F(s, Uy_1(s))]ds
to

using condition (iii) and the monotone character of g(t,w), we get:

t
D[Upsr (D, Un (8] < f (5, DIUL(5), U (s)])dls <

to

t
< [ 95 wir(5))ds = wi®

to
thus, by induction, the estimate:
D[Un+1(t): UTL (t)] S Wn(t); t € ]0

is true for all n.

(3.3.10)

(3.3.11)

(3.3.11)

(3.3.12)

(3.3.13)

Letting u(t) = D[Up41(t), Un(t)], t € Jo, the proof of Theorem (3.2.4) shows that:

D*u(t) < g(t, D[Up(t), Up_1 (O] < g(t, wp1 (D)) 5t € Jo
now letn < m, setting v(t) = D[U, (t), U,,(t)] we obtain from (3.2.4):

D*v(t) < D[DyUn(t), DyUnm(£)] = D[F(t, Up—_1 (1)), F (£, U1 ()]

< D[F(t,U,(®)),F(t, Up_1(®))]

+ D[F(t, Uy, (t), F(t, Upn(t)]

+ D[F(t,Up(£)),F(t, Up_1(D))]

< g(ewu 1 (®) + g6, w1 (D)

+ gt D[Un (), Un(O)])

< g(t,v(®) +29(t, w1 (1)), t€],

(3.3.14)

(3.3.15)
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here we have used the argument of the proof of the Theorem (3.2.4) the monotone
character of g(t,w) and the fact that w,,_; < w,_; since n < mand w,(t) is a

decreasing sequence. The comparison Theorem (3.2.1) yields the estimate:

v(t) < n,(0), t €, (3.3.16)

where, 1, (t) is the maximal solution of the equation:
= g(tm®) +2g(twn1(8)),  1(to) =0 (3.3.17)

for each n, and since as n — oo, 2g(t, w,_1(t)) — 0 uniformly on Jo, it follows by
lemma that r,(t) = 0 as n — oo uniformly, on J,. This implies from (3.3.1) and the
definition of v(t) that U,(t) converges uniformly to U(t), according to Cauchy’s
criterion and clearly U(t) is a solution of (3.1.1). To show uniqueness, let V(t) be
another solution of (3.1.1), onJ, Then setting m(t) = D[U(t),V(t)] and noting
thatm(t,) =0, we get, as before D¥m(t) < g(t,m(t)) t € J,, andm(t) <
r(t, ty, 0),t € Jy, by Theorem (3.2.3). By assumption r(t,ty, 0) = 0, we get U(t) =

V(t) on J,. Proving the theorem.m

We shall discuss, in the next result, the continuous dependence of solutions with initial

values. we need the following lemma before we proceed.

Lemma 3.3.1: Let F € C[] X K-(R™),K-(R™)] and let:

G(t,r) = max{D[F(t,U(1)),0] : D[U(L), Up(t)] < 7} (3.3.18)

assume that r*(t, t,, 0) is the maximal solution of

w' =G(t,w), w(ty) =0 onJ (3.3.19)

let U(t) = U(t,t,y, Uy) be the solution of (3.1.1) then:

D[U(t),Uy] < r*(t, ty,0) (3.3.20)

Proof 3.3.1: Define m(t) = D[U(t), U], t € J. Then Theorem (3.2.4) shows that:
D*m(t) < D[DyU(t), 0] = D[F(¢t,U(¢)), 0]
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< maxppy,u,1smeyP[F(6, U®), 8] = G(t, m(®)) (3.3.21)

this implies by Theorem (3.2.1) that:

D[U(t),Uy] < 7r*(t,ty,0), tej (3.3.22)

proving the lemma. m

Theorem 3.3.2: Under the same assumptions of Theorem (3.3.1), Assume further that
the solution w(t, ty, wy) of (3.3.1) through every point (t,, w,) are continuous with
respect to (t,, wy). Then the solutions U(t) = U(t, t,, U,) of (3.1.1) are continuous

relative to (t,, Uy).

Proof 3.3.2: Let U(t) = U(t, ty, Uy) and V(t) = V(t,ty Vy) be two solutions of
(3.1.1). then defining m(t) = D[U(t),V(t)] , we get from Theorem (3.2.3) the

estimate:

D[U(),V(t)] < r(t, ty, D[Uy, Vo), tej (3.3.23)

since

limy, Ly, D[U), V()] < limy, Ly, 7 (t, to, d[Ug, Vo) (3.3.24)

uniformly on J and by hypothesis (¢, ty, 0) = 0, it follows that:

0 < limy, Ly, DIU), V()] <0 (3.3.25)

and then we can write:

limU0_>V0 U(t, to, Uo) = V(t, to, Vo) (3326)

uniformly, and hence the continuity of U(t, t,, U,) relative to U, is valid. To prove the
continuity relative to t,, we let U(t) = U(t, ty, Uy) and V(t) = V(t, 14, Uy) be two
solutions of (3.1.1). And let 7, > t,, as before setting:

m(ty,) = d[U(ty),V (ty)], we obtain from lemma (3.3.1) that:

m(ty) < (7, t, 0) (3.3.27)

and consequently, by Theorem (3.2.3) we arrive at:
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m(t) < r(t), t>1, (3.3.28)
where ¥(t) = ¥(¢,7o, 7" (To, t0,0)) is the maximal solution of (3.3.1) through
(1o, 7" (10, ty, 0)), since r*(ty, ty, 0) = 0, we have :

limg ¢, f(t, To, 7" (T, to, 0)) = 1(t, ty, 0) (3.3.29)

uniformly on J, by hypothesis 7(t,t, 0) = 0, which proves the continuity of

U(t, ty, Uy) with respect to t, and so the proof is complete.m

3.4 Global existence:

We consider the set differential equation:
DyUt) =F(t,U®),  U(ty) = Uy € Kc(R™) (3.4.1)
where F € C[R; X K-(R™), K-(R™)], in this section, we shall investigate the existence

of solutions for t > t,, assuming local existence, we shall prove the following global

existence result.

Theorem 3.4.1: Assume that F € C[R, X K;(R™),K-(R™)] and:

D[F(t,U),0 ] < G(t,D[U,8)), (t,U) € R, X K:(R™) (3.4.2)
where g € C[R2,R.], g(t,w) isnondecreasing inw for each t € R, and the maximal
solution r(t,ty, wy) of (3.3.1) exists on [t,, ) suppose further that F is smooth
enough to guarantee local existence of solutions of (3.4.1), for any (ty, Up) €

R, X K-(R™), then the largest interval of existence of any solution U(t,t,, U,) of
(3.4.1) such that D[U,, 8] < U is [tg, ).

Proof 3.4.1: Let U(t) = U(t,t,, Uy) be any solution of (3.4.1) with [U,, 8] < wy,

which exists on [t, B] ,t, < B < o and the value of # cannot be increased.
Define:

m(t) = D[Uy, 0] (3.4.3)

then the Corollary (3.2.1) shows that:
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m(t) < r(t, t,,D[U,0)), to<t<p (3.4.4)

forany t;,t, suchthatt, < t; < t, < 8, we have:

D[U(t),U(ty))] =D on + f tlF(s, U(s))ds, U, + f tzF(s, U(s))dsl

0 to

=D [9, — ftl F(s, U(s))ds + ftzF(s, U(s))dsl

to

=D [ftzF(s, U(s))ds,@l

< f ZD[F(S,U(S)),H]dSS j Zg(s,D[U(s),H])ds (3.4.5)

1 1

the relation (3.4.4) and the nondecreasing nature of g(t, w) yields:

ty
DIV, U < [ g(s.r(t,to,wo)ds
= 1r(t,, to, Wo) — r(t1, to, Wo) (3.4.6)

since lim;_,5 7(t, to, Wy ) exists and finite by hypothesis, taking the limitas t,, t, — B,
and using the Cauchy criterion for convergence, it follows from (3.4.6)

that lim,_, 5 U(t, to, Uy) exists. We define:
U(B, to, Uo) = lim;_g- U(t, to, Uo) (3.4.7)
and consider the initial value problem
DyU®) = F(t,U(D), UB) = U(B,ty, Up). (3.4.8)

by the assumed local existence, we see that U(t, t,, U,) can be continued beyond g,
contradicting our assumption that g cannot be continued, hence every solution
U(t, ty, Uy) of (3.4.1) such that D[U,, 8] < wy exists globally on [t,, o), and the proof

is complete.m
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4. Monotone lterative Technique

4.1. Monotone lterative Technique for Single Function

Theorem 4.1.1: Let F € C[] X Kc(R™),Kc(R™)], and V,W € C*[],K-(R™)] be lower

and upper solutions of

(4.1.1)
DyU =F(t,U), U(0) = U, € K.(R"™)
such that V < W on J. Where J = [0, T] Suppose furthermore that:
F(t,X)-F(tY)=-MX-Y) (4.1.2)

forV <Y <X <WandM = 0. Then, there exist monotone sequences {W,}, {V,,} in

K-(R™) such that:
Vo = p(),  W,-R() in Kc(R")

as n— oo, and (p,R) are coupled minimal and maximal solutions of (4.1.1)
respectively.
Proof 4.1.1: We set V, = V, W, = W, forany n € C[J,K.(R™)] such thatV, < n <

W, and consider the linear differential equation:
DyU =F(tn) —-MU-mn), UWO) ="U, (4.1.3)
from (4.1.2) we obtain:

F(t,X) = F(t,Y)—MX-Y). (4.1.4)

Choose Y =nandX = U,

DyU = F(t,U) = F(t,n) — M(U — 1) (4.1.5)

it is clear that for every such n, there exists a unique solution U of the equation (4.1.3)
on J. Define a mapping A by An = U, this mapping will be used to define sequences
W,},{V,}, lets prove that:

i)V, <AV,

i) A is monotone operator on the segment:

Vo, Wo 1 ={U € C'[],Kc(RM], Vo U < Wyt €]}

37



to prove (i), set AV, = V; where V; is the unique solution of (4.1.3) withn =V,
in(4.1.3)setn =V,, U=V,

(4.1.6)
DyVy = F(t, Vo) — M(V; = V), V1(0) = U,
setting: @ =V, — V;, we see that:
DH(p = DHVO - DHV1 = DHVO - F(t, Vo) + M(Vl - Vo) (417)

S0, we can obtain:

Dyp < F(t,Vo) —F(t, Vo) + M(Vy — Vo) = M(V, — Vp) = —Mg (4.1.8)
and we have ¢(0) = V,(0) —V,(0) < U, — U, = 0, since V,(0) < U,, we obtain the
differential inequality:

Dyp < —-Mp, 9(0)<0 (4.1.9)
and so, we obtain that V; < AV,. Similarly, we can prove W, > AW,. To prove (ii),
let n,,n, € [Vy, W] suchthatn, <n,, supposethat: U; = An,, U, = An, . Weshall

show that An, < An,, set ¢ =U; — U, = Dy = DyU; — DyU, from (4.1.3) we

can write:

U= Any, = DyU, = F(t,n) — MU, — 1), U1(0) = U, (4.1.10)
U, = An, = DyU, = F(t,1n2) — MUy — 1), U,(0) = U, (4.1.11)

Dy = DyU; — DyU, =
=F(t,n) — MUy —ny) — F(&,n2) + M(U; —12)
<M, —n1) — MUy —n1) + MU, —132)
Dy < —M(Uy — Uy) = —Me (4.1.12)

With ¢ (0) = U,(0) — U,(0) = U, — U, = 0, we obtain the differential inequality:
Dyp < —Mp,  @(0)=0 (4.1.13)

we arriveatp <0 = U, < U, = An,; < An, whenever n; < 1,, this complete the
proof of (ii). We can now define the sequences V;,, W, as follows:

V, = AV,_4, W, = AW, _4 (4.1.14)
and we conclude from the previous arguments that:
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V()SAVO=V1SAV1=V2S"'SI/TLS'“SWn:AWn_ISWn_l
= AWTL—Z S Wn_z S S WZ S W1 S Wo. (4115)

on J. It’s easy to show that p, R are solutions of the (4.1.1) on J, since {W, },{V, } are

solutions of (4.1.1) where

DyVy = F(t, V1) = M(Vy = V1), n(0) = U, (4.1.16)
DyW, = F(t» Wn—l) - M(Wn - Wn—l)’ Wn(O) = Uy (4-1-17)

by integrating both sides with respect to t on the interval [0, T],
t t t
[ Duvads = [ Fes.Vadds =M [ () =Va(Dds @19
0 0 0

Vo(t) = V(0) = f F(s, Vo) ds — M f V() = Vs (D5 (4.1.19)
0 0

t

V() = Uy + f

F(s,Vy_1)ds — M f t(vn<s) — Vs (s))ds (4.1.20)
0 0

taking the limitasn — oo

t 4.1.21
p(O) = Ug + fo F(s,p(s)) ds (4.1.21)

if p(t) is the solution of equivalently Volterra integral equation, it is also the solution
of the corresponding IVP. In the same way we can prove that R is a solution of the
IVP. To prove that p, R are respectively minimal and maximal solutions of (4.1.1), we
must show that if U any solution of (4.1.1) suchthatV, < U < W,then,V, < p < U <

R < W,, to do this, suppose that for some n

V,<U<W, onJ (4.1.22)

and set ¢ = V,,,; — U so that:

Dyo = DyVypy1 — DpU =
=F(t, V) =MWy — V) —F(t,U) <
< M(U = V) = M(Vysy — V) = —Mg (4.1.23)
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with ¢@(0) = 0, using the comparison results we arrive at ¢ <0, U =V, 4, in the
same way, we can show that U > W,,,,,andasaresult V,,,; < U < W, 4, onJ, since

Vo < U < W,, on] and this prove by mathematical induction that :

V, <U < W, on], foralln

taking the limit as n — oo, we conclude that p < U < R, and the proof is complete.m

Corollary 4.1.1: In addition to the assumptions of Theorem (4.1.1), we assume:

F(t,X)-F(t,Y)<MX-Y) (4.1.24)

where V(t) <Y <X < W(t), and M > 0, then we have unique solution of (4.1.1)
suchthat R = U = p.

Proof 4.1.1: If we set ¢ = R — p, then

which gives
Dyp < Mo, ¢(0)=0 (4.1.25)

hence, we get ¢ (t) < 0 onJ which implies that R < p, we have already that p < R,
SO we obtain that, so we obtain that R = U = p, is the unique solution of (4.1.1). And

the proof is complete.m

4.2. Monotone lterative Technique for Sum Two Functions:

To develop the monotone iterative technique, we shall consider the following set

differential equation:
DyU =F(t,U)+G(t,U), U(0)=U,€K.(R™) (4.2.1)

where F,G € C[] X K-(R™), K-(R™)],and J =[0,T].

Definition 4.2.1: Let V,W € C![R,, K. (R™)], then V, W are said to be:

i) Natural lower and upper solutions of (4.2.1) if:
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DyV < F(t, V) +G(t,V), DyW = F(t, W) + G(t, W), t €] (4.2.2)
i)  Coupled lower and upper solutions of type I of (4.2.1) if:

DV < F(t,V)+ G(t, W), DyW = F(t,W) + G(t,V), t €] (4.2.3)
iii)  Coupled lower and upper solutions of type 11 of (4.2.1) if:

DV < F(t, W)+ G(t,V), DyW = F(t,V) + G(t, W), t €] (4.2.4)
iv)  Coupled lower and upper solutions of type 111 of (4.2.1) if:

D,V < F(t,W)+ G(t,W), DyW = F(t,V)+G(t, V), t €] (4.2.5)

we observe that whenever we have V(t) < W (t),t € ].

Theorem 4.2.1: Assume that:

1. V,W € C[],K-.(R™)] are coupled lower and upper solutions of type I relative
to (4.2.1) with V(t) < W(t), te€].

2. F,G€C[] XxK:(R™),K:(R™)], F(t,X) is nondecreasing in X, and G(t,Y) is
nonincreasing in Y, foreach t € J.

3. F, G map bounded sets into bounded sets in K-(R™).

Then there exist monotone sequences {W,}, {V;,} in K-(R™) such that:
Vo = p(), W, - R() in Kc(R")

and (p, R) are coupled minimal and maximal solutions of (4.2.1) respectively, that is
they satisfy:

Dyp(t) = F(t,p) + G(t,R), p(0)=U, on] (4.2.6)
DyR(t) = F(t,R) + G(t, p), R(0) =U, on] (4.2.7)
Proof:

For each n > 0, define the unique solutions V,,, 1 (t), W,41(t) by:

DHVn+1(t) = F(t' Vn) + G(t, Wn)ﬂ Vn+1(0) = UO OI’Z] (428)
DyWni1(t) = F(t, Wo) + G(t, V), Wiyt (0) = Up on] (4.2.9)

where V(0) < Uy, < W(0), we set V, =V, W, = W, our aim to prove:
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we have using the fact that I/, < W,, and the nondecreasing character of F':

DyVo(t) < F(t,Vy) + G(t, Wy) (4.2.11)
and, we have:
we can obtain that:
DyVo(t) < DyVi(t) (4.2.13)

consequently, according to Theorem (3.1.4) we arrive at V,(t) < V;(t). A similar
argument shows that W, (t) < W,(t). We next prove that V; < W, onJ. For this

purpose, consider:

DyuVi(t) = F(t,Vy) + G(t, W) (4.2.14)
DyW, () = F(t, W,) + G(t,V;) (4.2.15)
And
V1(0) = W1(0) = U,

since Vy(t) < Wy(t), then:
F(t,Vy) < F(t,W,), F(t,X) is monotone nondecreasing in X.
G(t,Vy) = G(t, W), G(t,Y) is monotone nonincreasing in Y.
so, we obtain:

Dy V4 (t) < F(t,Wp) + G(t, W,) on ] (4.2.16)
DyW,(t) = F(t,W,) + G(t,W,) on] (4.2.17)

consequently, we arrive at:

DyVi(t) < DyWy(t) (4.2.18)
and then according to Theorem (3.1.4), we arrive at:

Vi(t) < Wi (t) on] (4.2.19)
and as a result, we obtain:

VoS Vi<W, < W, (4.2.20)

assume that for some j > 1, we have:
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Vi SVisW,<W;_y on] (4.2.21)

then we show that:

to do this, we have
DyVi(©) = F(t,Vi—1) + G(t,W;—y),  V;(0)=U, on] (4.2.23)
DyVi (0) = F(t,V;) + G(6, W),  Vj11(0) =Uy on] (4.2.24)

S0, we can write:

DyVi(t) = F(t, Vi) + G(6, Wj_) < F(t,V;) + G(t, W;) = DyVj4,(t)  (4.2.25)

consequently, V;(t) < V;,41(¢t) on J, in the same way we arrive at W;.; < W; on .
Next, we show that V;,; < W;,4, t € ], we have:
DyVip1(0) = F(t,V;) + G(6, W),  Vjy1(0) = Ug on] (4.2.26)
DyWr () = F(t,W;) + G(t,V;),  Wj11(0) = Uy on] (4.2.27)
then we can write:
DyVjs1(0) = F(t,V;) + G(e, W) < F(t, W;) + G(¢, W) (4.2.28)
DyWi () = F(t, W) + G(t,V;) = F(t,W;) + G(t, W) (4.2.29)
and as a result:

Viga(®) S Wj (8)  on] (4.2.30)

hence (4.2.22) follows and consequently, by induction (4.2.10) is valid for all n.
Clearly sequences {W,},{V,} are uniformly bounded on. To Show that they are

equicontinuous, consider for any t; < t, where t;,t, € .

€
Ve >0, 36 = 6(e), vn € N, |t2—t1|<T:5=M
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DV, (t2), Va(t1)] =

=D lUO + {F(s,Vp_1(5)) + G(s,Wy,_1(s))}ds, U
0

ty

+ | {F(s,Vno1(5)) + G(s,Wy,_1(5))}ds
0

< f DIF (5, Vo (5)) + G (s, Wy_y (5))), 61ds

1

<M|t, —t;| <MT =¢ (4.2.31)

we used here the properties of integral and the metric D, together with the fact that
F + G are bounded since {W,},{V,} are uniformly bounded, hence {V,} is
equicontinuous on J, Ascoli’s theorem gives a subsequence {V,, } which converges
uniformly to p(t) € K-(R™), and since {I},} is monotone nondecreasing sequence, the
entire sequence {V},} converges uniformly to p(t) on J. By the same way we can show
that the sequence {I,,} converges uniformly to R(t) on ], it therefore follows, using
the integral representation of (4.2.8) and (4.2.9) that p(t) and R(t) satisfy:

Dyp(t) = F(t,p) + G(t,R), p(0)=U, on] (4.2.32)
DyR(t) = F(t,R) + G(t,p), R(0)=U, on] (4.2.33)

and that
Vo<p<R<W, (4.2.34)

we next claim that (p, R)are coupled minimal and maximal solutions of (4.2.1), that

is, if U(t) is any solution of (4.2.1) such that:

Vo < U(t) < W, (4.2.35)
then
Vo<p<Ut)<R<W, te] (4.2.36)
suppose that for some n,
V,<U@)<W, tej (4.2.37)

then we have using the monotone nature of F and G and (4.2.37):

DyU =F(t,U)+G(t,U) = F(t, V) +G(t,W,), U(0) = U, (4.2.38)
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DyVps1 = F(t, V) + G(t, W), Vo:1(0) = U, (4.2.39)

consequently, we arrive at:

DyU = DyVpis (4.2.40)

according to Theorem (3.1.4), we arrive at:

Vazi <U  on] (4.2.41)

in the same way,

Wpya=U  onj (4.2.42)

hence by induction the relation (4.2.37) is true for all n > 1, taking the limitn — oo,

we obtain (4.2.36) proving the claim. The proof is complete.m

Corollary 4.2.1: If, in addition to the assumptions of Theorem (4.2.1),F and G satisfy
whenever X > Y,X,Y € K-(R™)

F(t,X)<F({tY)+N(X-Y) (4.2.43)
Gt,X)+N,(X-Y)=G(t,Y) (4.2.44)
where N; , N, > 0then p = R = U is the unique solution of (4.2.1).
Proof 4.2.1: Since p < R,andthenR = p+ morm = R — p, now

Dyp + Dym = DyR = F(t,R) + G(t, p)
<F(p)+N(R—p)+G(t,R)+ Nr(R—p)

which means,

which leads by using the comparison results to R < p on J, proving the uniqueness

of p = R = U. And the proof is complete.m
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Theorem 4.2.2: Assume that (i) and (ii) of the Theorem (4.2.1) hold, then for any
solution of (4.2.1) U(t) with V, < U(t) < W, on ], we have the iterates {V},}, {W,,}

satisfying
VO < VZ <. < VZn < U(t) < V2n+1 <--< V3 < Vl 011] (4247)
W1 < W3 <--< W2n+1 < U(t) < WZn <--< WZ < WO 011] (4248)

provided that V, < V,, W, < W, on ], where the iterative schemes are given by:
DHVTl+1 = F(t, Wn) + G(t, Vn), Vn+1(0) = UO (4249)

DHWn+1 = F(t, Vn) + G(t, Wn)' Wn+1(0) = UO (4250)

furthermore, the monotone sequences {Vo,}, {Vons1d (Waont, (Wons1} in Ko(R™)

converge to p, R, R*, p*in K- (R™) respectively and verify

DyR =F(t,R*) + G(t, p), R(0) = U, (4.2.51)
Dyp =F(t,p*) + G(t,R), p(0) = U, (4.2.52)
DyR* =F(t,p) + G(t,R*), R*(0) =1U, (4.2.53)
Dyp* =F(t,R)+G(t,p*), p(0)=U,onJ (4.2.54)

Proof 4.2.2: We shall first show that V,,, W,are coupled lower and upper solutions
Vo, W, of the Type II of (4.2.1) exist on J, satisfying V, < W, on J, for this purpose,
consider the IVP

DyZ =F(t,0) +G(t,0), Z(0)=U, (4.2.55)

let Z(t) be the solution of (4.2.55) which exists on J, define V,, W, by
RO+V0=Zand WO:Z+RO

where the positive vector Ry = (Ry1, Ro2, ---,» Ron) 1S chosen sufficiently large so that
we have IV, < 68 < W, on J, after that using the monotone character of F and G, we

can write

With 17,(0) = Z(0) — Ry < Z(0) = U,. In the same way, DyW, = F(t,V,) +
G(t,W,), Wy(0) = U,. And as a result, V,, W, are the coupled lower and upper
solutions of type 11 of (4.2.1).
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Let U(t) be any solution of (4.2.1) such that V, < U(t) < W, onJ, we shall show that

Vo<V, <U<V, <V,

Wy <W,<U<W,<W, (4.2.57)

on J, since U(t) is a solution of (4.2.1), we have, using the monotone character of
F andG,and the factV, < U(t) < W,,

DyU=F(t,U)+G(t,U) < F(t,Wy) +G(t, V), U(0) =U, (4.2.58)

and V; satisfies

DHV1 = F(t, Wo) + G(t; VO)I VI(O) = UO On] (4260)

which yields that U(t) < V; on J, in the same way, W; < U(t). After that, we show
that V, < U(t) on J, note that

DyV, =F@t, W) +G(t, V),  V,(0) =U, (4.2.59)

and then because of the monotonicity of F and G, we get

DyU = F(t,U) + G(t,U) = F(t, W) + G(t,V,),U(0) = Uy on]  (4.2.60)

we can write:

DyV, < DyU (4.2.61)

consequently, according to Theorem (3.1.4), we arrive at V, < U(t), on J. A similar
argument shows that U < W, on J, next we find utilizing the assumption V, < V5,

W, < W, on J and the monotonicity of F and G, we have:

DyVy = F(t,Wy) + G(t,Vp), V1(0) =UyonJ (4.2.62)
DyVs = F(t,W,) + G(t,V;) < F(t,Wp) + G(t, V), (4.2.63)

With V5(0) = U, on J, we arrive at:

DyVs < DyVy (4.2.64)

which follows that V5(t) < V;(t) on J, in the same way one can show that W; < W,
on /, also, employing similar reasoning, one can prove that U(t) < Vs and W5 < U(t)

on J, proving the relations (4.2.27). Now assuming for some n > 2, the inequalities
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Von—a S Vo2 S U < Vg < Vo3,
Won3 Wy 1 SUS Wy y S Wyy,0n] (4.2.65)
hold, it can be shown, employing similar arguments that
Von—2 < Vo S U < Vopyr < Vopg,

Won-1 = Wany1 S U S Wy < Woppp,0n ) (4.2.66)

thus, by induction (4.2.47) and (4.2.48) are valid for all n=0,1,2,--, Since
{V.},{W,.} € K-(R™) for some n, employing a similar reasoning as in (4.2.1) we

conclude:

limpswVon = p, liMyseVone1r =R

limy oWy =p*, limp,oW,, =R" (4.2.67)

exist, in K-(R™), uniformly on J, it therefore follows by suitable use of the integral
representation (4.2.49) and (4.2.50) that p, R, R*, p* satisfy that corresponding set
differential equation in (4.2.1) on J, also from (4.2.47) and (4.2.48), we obtain:

p<U<R, pP<U<R*n]J. (4.2.68)

The proof therefore is complete. m

Corollary 4.2.2: Under the assumptions of Theorem (4.2.2), if F and G satisfy the
assumptions of Corollary (4.2.1) then, p = p* = R = R* = U, is the unique solution
of (4.2.1)

Proof 4.2.2: Letq; + p =R, q, + p* = R* where gq;,q, = 00on/, since p < R and

p* < R* on J, then using the assumptions, we can write:
Dy(q: + q2) < (Ny + N2)(g1 + q2), q1(0) +q,(0) =00n]j (4.2.69)

So, using Theorem (3.1.4) implies that g, + g, < 0 onJ, and as a result, we get p =

R =Uand p* = R* = U onJ. And this proves the corollary.m
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4.3 Monotone Iterative Technique with the other Types of
Coupled Lower and Upper Solutions

We used in the Theorem (4.2.1) the first type of coupled lower and upper solutions,
now we can study monotone iterative technique for the other types, by making some

changes.

Theorem 4.3.1: Suppose that:

i) V,WeC],K.(R")] are coupled lower and upper solutions of natural type
relative to (4.2.1) with V(t) < W(t),t €]

i) F,GeC[] xK:(R"),K:(R™)], F(t,X) is nondecreasing in X, and G(t,Y) is
nondecreasing in Y, foreach t € J.

iii)  F, G map bounded sets into bounded sets in K-(R™).
Then we have two monotone sequences {W, }, {V;,} in K-(R™) such that:
o= p(), W, —>R() in Kc(R")

and (p, R) are coupled minimal and maximal solutions of (4.2.1) respectively, and

they are satisfying

Dyp(t) = F(t,p) +G(t,p),  p(0)=U, on] (4.3.1)
DyR(t) = F(t,R) + G(t,R),  R(0) = Uy on] (4.3.2)

Proof 4.3.1: For each n = 0, define the unique solutions V,,,.,(t), W, (t) by the

relations:

DyVnia(6) = F(£, V) + G(6, V), Vnya(0) = Up on] (4.3.3)
DyWii1(8) = F(t,Wo) + G(t, Wy,), Winiq(0) = Uy on] (4.3.4)

where V(0) < U, < W(0), we setVy, =V, W, = W, our aim to prove:
VoSViSV, < SV SW, < <W,<W, <W, (4.3.5)
we have using the fact that V, < W, and the nondecreasing character of F :
DyVo(t) < F(t,Vp) + G(t,Vy) (4.3.6)
and we can write from (4.3.3) by substitutingn = 0
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DyVi(t) = F(t, V) + G(t,Vp) (4.3.7)

we can obtain that:

DyVo(t) < DyVy(t) (4.3.8)

consequently, according to Theorem (3.1.4) we arrive at V,(t) < V;(t). A similar
argument shows that W, (t) < W,(t). We next prove that V; < W; on]. For this

purpose, consider:

DyVi(t) = F(t, V) + G(t,Vy) (4.3.9)
DyWi(t) = F(t, W) + G(t, W,) (4.3.10)

And V; (0) = W,(0) = U,. since V,(t) < Wy(t) then:
F(t,Vy) < F(t,Wy), F(t, X) is monotone nondecreasing in X.
G(t,Vy) < G(t, W), G(t,Y) is monotone nondecreasing inY.
so, we obtain:

DyVy(t) < F(t, W) + G(t, W,) on ] (4.3.11)
DyW,(t) = F(t,Wy) + G(t,W,) onJ (4.3.12)

consequently, we arrive at:
DV (t) < DyW,(t) (4.3.13)

consequently, according to Theorem (3.1.4)

V() <W.(t) on] (4.3.14)

and as a result, we obtain:

Vo<Vy <W, <W, (4.3.15)

assume that for some j > 1, we have:

ViasVisW,<sW;_y on] (4.3.16)
then we show that:
VisVijga SWjp i =W, on] (4.3.17)

to do this, consider:
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DyVi(t) = F(t,Vi—1) + G(t,Vi—y), V;(0) =U, on] (4.3.18)
DyVi () = F(t,V;)) +G(t,V;),  Vj41(0) = Uy on] (4.3.19)

S0, we can write:
DyVi(t) = F(t,Vj—1) + G(t,Vj—1) < F(,V;) + G(t,V;) = DyVj1(8)  (4.3.20)

consequently, V;(t) < V;,4(¢t) on J, similarly we can get W;,; < W, onJ. Next, we

show that Vj,; < Wj,4, t € ], we have:
DyVie (0) = F(t,V;) + G(t,V;),  Vj41(0) =U, on] (4.3.21)
DpWj1(8) = F(t,W;) + G(t,W;), W;11(0) = Uy on] (4.3.22)
then we can write:

DyVi1(0) = F(t,V;) + G(¢,V;) < F(e, W) + G(t, W) (4.3.23)
DyW;y1(6) = F(t, W) + G(t, W)) (4.3.24)

and as a result:

DyVii1(t) < DyWjp,(t)  on] (4.3.25)

consequently, utilizing Theorem (3.1.4) we arrive at:

Vi (®) S Wa(®)  onJ (4.3.26)

hence the relation (4.3.17) follows, and consequently by induction the relation (4.3.5)
is valid for all n. Clearly sequences {W,},{V;,} are uniformly bounded on. To Show

that they are equicontinuous, consider for any t; < t, where t;,t, € J

€
Ve >0, 36 = 6(e), vn € N, |t2—t1|<T=6=M
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D[V, (t2), V()] =

=D lUO + {F(s,Vp—1(5)) + G(s,Vn_1(5))}ds, Uy
0

ty

+ | {F(s,Vno1(5)) + G(s,Vy_1(s))}ds
0

< f DI (S, Voo (5)) + G (s, Vi (5))}, 61dis

1

<M|t, —t;| <MT =¢ (4.3.27)

here we utilized the properties of integral and the metric D, together with the fact that
F + G are bounded since {W,},{V,} are uniformly bounded, hence {V,} is
equicontinuous on J, the corresponding Ascoli’s theorem gives a subsequence {Vy;}
which converges uniformly to p(t) € K-(R™), and since {I;} is monotone
nondecreasing sequence, the entire sequence {V},} converges uniformly to p(t) on J.
The same arguments apply to the sequence {W,} and W, — R uniformlyon], it
therefore follows, using the integral representation of (4.3.3) and (4.3.4) that p(t) and
R(t) satisfy:

Dyp(t) = F(t,p) +G(t,p),  p(0)=U, on] (4.3.28)
DyR(t) = F(t, R) + G(t,R),  R(0) = U, on] (4.3.29)

and that
Vo<p<R<W, (4.3.30)

we next claim that (p, R) are coupled minimal and maximal solutions of (4.2.1), that

is, if U(t) is any solution of (4.2.1) such that:

Vo < U(t) < W, (4.3.31)
then
Vo<p<UX)<R<W, te€] (4.3.32)
suppose that for some n,
V,<U@®) <W, te] (4.3.33)

then we have using the monotone nature of F and G and (4.3.33):
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DyU =F(t,U) +G(t,U) = F(t,V,) + G(t,V,),  U(0) = U, (4.3.34)
DyVns1 = F(&, V) + G(t, V), Vny1(0) = Uy (4.3.35)

hence

DyU = DyVipss (4.3.36)

consequently, utilizing Theorem (3.1.4) we arrive at:

Voe1 <U on] (4.3.37)

in the same way we can show that,

Wy 2=2U on] (4.3.38)

hence by induction the relation (4.3.33) is true for alln > 1, taking the limit n — oo,

we get (4.3.32) proving the claim. The proof is complete. m

Corollary 4.3.1: If, in addition to the assumptions of Theorem (4.3.1),
F and G satisfy whenever X > Y, X,Y € K:.(R™).

F(t,X)<F({tY)+N(X-Y) (4.3.39)
Gt,X)<GtY)+N,(X-Y) (4.3.40)
where N; ,N, > 0 then p = R = U is the unique solution of (4.2.1).
Proof 4.3.1: Since p < R,andthenR = p+mor m =R — p, now

Dyp + Dym = DyR = F(t,R) + G(t,R)
<F(t,p)+Ni(R—p)+G(t,p) +Nao(R—p)

which means,

using comparison results leadsto R < p on J, proving the uniquenessof p = R = U.

Complete the proof.m
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Theorem 4.3.2: Assume that:

i) V,W eCJ,K:-(R™)] are coupled lower and upper solutions of type II
relative to (4.2.1) with V(t) < W (t),t €]

i) F,GeC[] xXK:(R™),K:(R™)],F(t,X) isnonincreasingin X, and G(¢t,Y) is
nondecreasing in Y, foreach t € J.

iii)  F,G map bounded sets into bounded sets in K-(R™).
Then there exist monotone sequences {W,}, {V,.} in K;(R™) such that:
Vo= p),  W,-R() in Kc(R")

and (p, R) are coupled minimal and maximal solutions of (4.2.1) respectively, that is
they satisfy:

Dyp(t) = F(t,R) + G(t,p), p(0)=U, on] (4.3.43)
DyR(t) = F(t,p) + G(t,R), R(0) =U, on] (4.3.44)

Proof 4.3.2: For each n > 0, define the unique solutions V,,, ; (t), W, .1 (t) by:

DyVny1(6) = F(t, Wy) + G (¢, V), Vie1(0) = Uy on] (4.3.45)
DyWys1(8) = F(t, V) + G(&, W),  Wpya(0) =Ug on] (4.3.46)

where V(0) < U, < W(0), we set V, =V, W, = W. our aim to prove:

we have using the fact that: V; < W, and the nondecreasing character of:

Dy Vo (t) < F(t,Wy) + G(¢t, V) (4.3.48)
and, we have:
we can obtain that:
DyVo(t) < DyVi(t) (4.3.51)

consequently, using Theorem (3.1.4), we arrive at V,(t) < V;(t). A similar argument
shows that W, (t) < Wy(t),we next prove that V; < W, onJ. For this purpose,

consider:

54



DyVi(t) = F(t,W,) + G(t, Vy)
DyWi(t) = F(t,Vy) + G(t, Wy)

With V; (0) = W;(0) = U,. since V,(t) < W,(t) then:

F(t,W,) < F(t,V,), F(t, X) is monotone nonincreasing in X.

G(t, V) < G(t,Wy), G(t,Y) is monotone nondecreasing in'Y.

S0, we obtain:

DyVi(t) < F(t,Vy) + G(t,W,) on]
DyW,(t) = F(t,Vy) + G(t, W) on ]

consequently, we arrive at:

Dy Vi (t) < DyW, (1)

consequently,

Vi(t) S Wi (t) on]

and as a result, we obtain:

Vo < Vi S W, < W,

assume that for some j > 1, we have:

then we show that:

to do this, consider:

DyVi(©) = F(t,W;_,) + G(t,V;_,), Vi(0) =Uy on]
DyVir () =F(t, W) +G(t,V;),  Vj41(0) =Uy on]

S0, we can write:

DyV;(t) = F(t,Wj_1) + G(t,Vj_1) < F(6,W;) + G(t,V}) = DyVj41 ()

on ]

on]J

(4.3.52)
(4.3.53)

(4.3.55)
(4.3.56)

(4.3.57)

(4.3.58)

(4.3.59)

(4.3.60)

(4.3.61)

(4.3.62)
(4.3.63)

(4.3.64)
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consequently, V;(t) < V;,1(¢t) on J, similarly we can get W;.; < W; on J. Next, we
show that V;,.; < Wj,4; t € ] we have:

DyVi 1 (8) = F(t,W;) + G(t,V;),  Vj41(0) =U, on] (4.3.65)
DyWj 1 () =F(t,V;) + G(t,W;),  W;41(0) = Uy on] (4.3.66)

then we can write:

DyVi1(0) = F(t,W;) + G(t,V;) < F(6,V;) + G (e, W)
DyWjs(8) = F(t,V;) + G(t, W) (4.3.67)

and as a result:

Viga(®) S Wjy (8)  on] (4.3.68)

hence (4.3.61) follows and consequently by induction (4.3.47) is valid for all n. Clearly
sequences {W,},{V,} are uniformly bounded on J. To show that they are

equicontinuous, consider for any t; < t, where t,t, € ]
&
Ve >0, 36 = 6(e), vn €N, |t2—t1|<T=6=M

D [%(tz)' V;1(t1)] =

=D IUO + ftz{F(s, Wn_l(s)) + G(s, Vn_l(s))}ds, Uy
0
+ ftl{F(s, Wn_l(s)) + G(s, Vn_l(s))}ds
0

< [ DIF (s Wna(9) + G (5. Vaa 52)), 0]
t

1

here we utilized the properties of integral and the metric D, together with the fact that
F + G are bounded since {W,},{V,} are uniformly bounded, hence {V,} is
equicontinuous on J, the corresponding Ascoli’s theorem gives a subsequence {Vnk}
which converges uniformly to p(t) € K-(R™), and since {I}} is monotone
nondecreasing sequence, the entire sequence {V},} converges uniformly to p(t) on J.

Similar arguments apply to the sequence {W,} and W, — R uniformlyon], it
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therefore follows, using the integral representation of (4.3.45) and (4.3.46) that p(t)
and R(t) satisfy:

Dyp(t) =F(t,R) +G(t,p), p(0)=U, on] (4.3.70)
DyR(t) = F(t,p) + G(t,R),  R(0) =U, onJ (4.3.71)

and that
Vo<p<R<W, (4.3.72)

we next claim that (p, R)are coupled minimal and maximal solutions of (4.2.1), that

is, if U(t) is any solution of (4.2.1) such that:

Vo < U(t) < W, (4.3.73)
then
Vo<p<Ut)SR<W, te€] (4.3.74)
suppose that for some n,
V, <UD <W, te] (4.3.75)

then we have using the monotone nature of F and G and (4.3.75):

DU = F(t,U) + G(t, U) = F(t, W) + G(t,V,), U0)=U,  (4.3.76)
DyVnir = F(t, W) + G(t, V), Vn41(0) = Uy (4.3.77)

hence,

DyU = DyVpis (4.3.78)

consequently, according to Theorem (3.1.4) we arrive at:

Vozi1 <U  on ] (4.3.79)

similarly,

Wpiy=2U on] (4.3.80)

hence by induction the relation (4.3.75) is true for all n > 1, taking the limit n — o

we get (4.3.74) proving the claim. The proof is complete.m

Corollary 4.3.2: If, in addition to the assumptions of Theorem (4.3.2) F and G satisfy
whenever X > Y,X,Y € K-(R™)
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F(t,X) + N, (X =Y) > F(t, V) (4.3.81)
G(t,X) <Gt Y) + Ny(X —Y) (4.3.82)

where N; ,N, > 0, then p = R = U is the unique solution of (4.2.1).

Proof 4.3.2: Since p < R,andthenR = p+mor m =R — p, now

Dyp + Dym = DyR = F(t,p) + G(t,R)
<F(t,R)+ N;(R—p)+G(t,p) + N,(R—p)

which means,
Dym < (N; + N,)m, m(0) =0 (4.3.84)

utilizing Theorem (3.1.4) we arrive at R < p on J, proving the uniqueness of p =

R = U, completeing the proof. m

Theorem 4.3.3: Assume that:

i) V,W € CJ,K:.(R™)] are coupled lower and upper solutions of Type I11
relative to (4.2.1) with V(t) < W (t), t€]

i) F,GeC[] xXK:(R™),K:.(R™)],F(t,X) is nonincreasing in X, and G(t,Y) is
nonincreasing in Y, foreach t € J.

iii)  F, G map bounded sets into bounded sets in K-(R™).
Then there exist monotone sequences {W,}, {V,,} in K;(R™) such that:
o = p(), W, > R() in Kc(R™)

and (p, R) are coupled minimal and maximal solutions of (4.2.1) respectively, that is
they satisfy:

Dyp(t) = F(t,R) + G(t,R),  p(0) =U, on] (4.3.85)
DyR(t) = F(t,p) + G(t,p),  R(0) = U, onJ (4.3.86)

Proof 4.3.3: For each n > 0, define the unique solutions V,,, 1 (t), W,,,+1(t) by:

DyVipsr (6) = F(&, W) + G(6, W), V,o1(0) = Uy on ] (4.3.87)
DyWp1(t) = F(t, V) + G(t, V),  Wyyq1(0) = Ug on] (4.3.88)
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where V(0) < U, < W(0), we setVy, =V, W, = W. our aim to prove:

we have using the fact that: I/, < W, and the nondecreasing character of F:

DyVo(t) < F(t,W,) + G(t,W,) (4.3.90)
and, we have:
we can obtain that:
DyVo(t) < DyVi(t) (4.3.92)

consequently, utilizing Theorem (3.1.4) we arrive atV,(t) <V,(t). A similar
argument shows that W;(t) < W,(t).We next prove thatV; < W, onJ. For this

purpose, consider:

DyVi(t) = F(t, W) + G(t, Wy) (4.3.93)
DyWi(t) = F(t,Vy) + G(t,Vy) (4.3.94)

F(t,Vy) < F(t,Wy), F(t, X) is monotone nonincreasingin X.

G(t,Vy) < G(t, W), G(t,Y) is monotone nonincreasingin .

so, we obtain:
DyVi(t) = F(t, Wy) + G(t, W) < F(t,V,) +G(t,V,) on] (4.3.95)
DHW1(t) = F(t, Vo) + G(t, Vo) On] (4396)
hence,
DV (t) < DyW,(t) (4.3.97)

consequently, according to Theorem (3.1.4) we arrive at:

V() <Wi(t) on] (4.3.98)

and as a result, we obtain:

Vo<V, <W, <W, (4.3.99)

assume that for some j > 1, we have:
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then we show that:

to do this, consider:
DyVi(t) = F(t,Wj_,) + G(t,W,—;),  V;(0)=U, on]
DyVip 1 (0) = F(t,W;) + G(t, W;),  Vj41(0) = Uy on]
S0, we can write:

DyVi(t) = F(t,Wj_,) + G(t, W;_,) <
< F(t,W)) + G(tW)) = DyVjsa (D)

(4.3.100)

(4.3.101)

(4.3.102)
(4.3.103)

(4.3.104)

consequently, V;(t) < V;4,(¢) on J, in the same way we can obtain W;,; < W; on]J.

Next, we show that V;; < W, , t € ], then we have:

DyVi () =F(t,W;) +G(c,W;),  Viy1(0) =U,y on]
DyWj () = F(t,V;) +G(t,V;),  W;41(0) = Uq on]

then we can write:

DyVi () = F(t,W;) + G(e,W;) < F(t,V;) + G(t, V))
DyWi1 () = F(t,V;) + G(t, V)

and as a result:

Vigr(0) S Wy (8)  on]

(4.3.105)
(4.3.106)

(4.3.107)
(4.3.108)

(4.3.109)

consequently (4.3.101) follows and by induction (4.3.89) is valid for all n. Clearly

sequences {W,},{V,} are uniformly bounded on J. To show that they are

equicontinuous, consider for any t; < t, where t,,t, € ]

&
Ve >0, 36 = 6(¢), vn € N, |t2—t1|<T=6=M
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DV, (t2), Va(t1)] =

=D lUO + f Z{F(S» Wn_1(8)) + G(s,Wy_1(5))}ds, Uy
0

ty

+ | {F(s,Wn_1(5)) + G(s,Wp,_1(5))}ds
0

< f DIF (5, W1 (5)) + G (5, Wy_1(5))), 61ds

1

SMlt; —t;| <MT =¢ (4.3.110)

here we utilized the properties of integral and the metric D, together with the fact that
F + G are bounded since {W,},{V,} are uniformly bounded, hence {V,} is
equicontinuous on J, the corresponding Ascoli’s Theorem gives a subsequence {Vnk}
which converges uniformly to p(t) € K-(R™), and since {V},} is monotone
nondecreasing sequence of functions, the entire sequence {V;,} converges uniformly to
p(t) onJ. Similar arguments apply to the sequence {W, }and W,, = R uniformly on ],
it therefore follows, using the integral representation of (4.3.87) and (4.3.88) that p(t)
and R(t) satisfy:

Dyp(t) = F(t,R) + G(t,R), p(0) =U, on] (4.3.111)
DyR(t) = F(t,p) +G(t,p), R(0) =U, onJ (4.3.112)

and that
Vo<p<R<SW,. (4.3.113)

we next claim that (p, R) are coupled minimal and maximal solutions of (4.2.1), that
is, if U(t) is any solution of (4.2.1) such that:

Vo < U(t) < W, (4.3.114)
then,
Vo<p<Ut)<SR<W,, t€] (4.3.115)
suppose that for some n,
V,<U@)<W, te] (4.3.116)

then, we have using the monotone nature of F and G and (4.3.116):

61



DyU = F(t,U) + G(t,U) = F(t,W,) + G(t, W,), U(0) = U,

DyVui1 = F(t, W) + G(t, Wy), Vn41(0) = Uy

Hence,

DyVpsq1 < DyU

consequently, utilizing the Theorem (3.1.4) we arrive at:

Vee1 <U on]

similarly,

Wpea=U  on J.

(4.3.117)
(4.3.118)

(4.3.119)

(4.3.120)

(4.3.121)

hence by induction the relation (4.3.116) is true for all n > 1, taking the limit n —

oo, We get (4.3.115) proving the claim. The proof is complete. m

Corollary 4.3.3: If, in addition to the assumptions of Theorem (4.3.3) F and G satisfy

whenever X > Y,X,Y € K-(R™)
F(t,X)+ Ny(X —=Y) = F(t,Y)
Gt,X)+N,(X-Y)=G(tY)
where N;, N, > 0, then p = R = U is the unique solution of (4.2.1).
Proof 4.3.3: Since p < R,andthenR = p+ morm = R — p, now

Dyp + Dym = DyR = F(t,p) + G(t, p)
<F({tR)+N,(R—p)+G(t,R)+N,(R—p)
= DHp + (Nl + Nz)m

which means,

Dym < (N; + N,)m, m(0) =0

(4.3.122)
(4.3.123)

(4.3.124)

(4.3.125)

which leads to R < p on J, proving the uniqueness of p = R = U. Completes the

proof.m
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4.4. Monotone lterative Technique for Sum of Three

Functions:

To develop the monotone iterative technique and arrive at a generalization, we shall
consider the IVP:

DyU =F(t,U) + G(t,U) + H(t,U),  U(ty) = Uy € K-(R™) (4.4.1)

where F, G and H € C[] x K-(R™), K.(R™)], U € C*[J, K-(R™)].

we need the following definitions which various possible notions of lower and upper

solutions relative to (4.4.1).

Definition 4.4.1: LetV,W € C*[R,, Kc(R™)], then V, W are said to be:
i) Natural lower and upper solutions of (4.4.1) if:

DyV < F(t,V)+ G(t,V)+ H(t,V),
DyW Z>Ft, W)+ Gt W)+ H({tW), te] (4.4.2)

i)  Coupled lower and upper solutions of type I of (4.4.1) if:

DyV < F(t,V)+ G(t, W)+ H(t,W),
DyW = F({t,W)+G(t,V)+H(t,V), te] (4.4.3)

iii)  Coupled lower and upper solutions of type 11 of (4.4.1) if:

DyV < F(t,W)+G(t,V)+ H(t,W),
DyW = F(t,V)+G(t, W)+ H(t,V), t€] (4.4.49)

iv)  Coupled lower and upper solutions of type 111 of (4.4.1) if:

DyV < F(t, W)+ G(t,W) + H(t, V),
DyW > F(t,V) +G(t,V) + H{t, W), t €] (4.4.5)

v) Coupled lower and upper solutions of type IV of (4.4.1) if:

DyV < F(t,V) + G(t, V) + H(t, W)
DyW > F(t, W) + G(t, W) + H(t,V), t €] (4.4.6)
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vi) Coupled lower and upper solutions of type V of (4.4.1) if:
DyV <F(tV)+G(@tW)+H(V)
DyW = F({t,W)+G({t,V)+H({t W), te] (4.4.7)
vii) Coupled lower and upper solutions of type VI of (4.4.1) if:
DV < F({t,W)+G(t,V)+H(V)
DyW =F(t,V)+G({t,W)+H(t, W), te] (4.4.8)
viii)  Coupled lower and upper solutions of type VII of (4.4.1) if:

DyV <F(t, W)+ G(t, W)+ H(t, W),
DyW = F(t,V)+G(t,V)+H(t, V), te] (4.4.9)

we observe that whenever we have V(t) < W(t),t €.

Theorem 4.4.1: Assume that:

i) V,W € CJ,K-(R™)] are coupled lower and upper solutions of type I, relative
to (4.4.0)withV(t) < W(t);t €]
i) F,GandH € C[] X K-(R™),K.(R™)], F(t,X) is nondecreasing in X and
G(t,Y),H(t, Z) are nonincreasing in Y and Z respectively, for each t € J.
iii)  F,G and H map bounded sets into bounded sets in K-(R™).

Then there exist monotone sequences {W,}, {V,.} in K.(R™) such that:
Vo = p(), W, - R() in Kc(R")

and (p, R) are coupled minimal and maximal solutions of (4.4.1) respectively, that is
they satisfy:

Dyp(t) =F(t,p) + G(t,R) + H(t,R), p(0) =U, on] (4.4.10)
DyR(t) = F(t,R) + G(t,p) + H(t,p), R(0) =U, onJ (4.4.11)

Proof 4.4.1: For each n > 0, define the unique solutions V,,,., (t), W, (t) by:

DHVn+1(t) = F(t’ Vn) + G(t, Wn) + H(t' Wn)' V1’l+1(0) = UO OI’l] (4412)
DHWn+1(t) = F(t, Wn) + G(t, Vn) + H(t’ Vn)’ W1’l+1(0) = UO OI’l] (4413)
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where V(0) < U, < W(0), we setV, =V, W, = W, our aim to prove:

VoSV, SV <<V, <W, < <W,<W, <W, (4.4.14)

we have using the fact that V, < W, and the nondecreasing character of F:

DyVo(t) < F(t,Vy) + G(t,Wy) + H(t, W,) (4.4.15)

and, we have from (4.4.10) forn =0

DyVi(t) = F(t,Vy) + G(t, W) + H(t, W,) (4.4.16)

Hence, we obtain:

Dy Vo () < DyVy(t) (4.4.17)

consequently, according to Theorem (3.1.4) we obtain Vy(t) < V,(t). A similar
argument shows that W, (t) < Wy(t). We next prove that V; < W, on]. For this

purpose, consider:
With V; (0) = W;(0) = U,. Since V,(t) < Wy(t) then:

F(t,Vy) < F(t,W,), F(t,X) is monotone nondecreasing in X.
G(t,Vy) = G(t,Wy), G(t,Y) is monotone nonincreasing in'Y.
H(t,Vy) = H({t,W,), H(t,Z) is monotone nonincreasing in Z.

so, we obtain:
DHW1 (t) = F(t, Wo) + G(t, Wo) + H(t, Wo) On] (4421)

consequently,

Vi(t) < Wi (t) on] (4.4.22)

and as a result, we obtain:

VoSV <W W, (4.4.23)
assume that for some j > 1, we have:
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Vi SVisW,<W;_y on] (4.4.24)

then, we show that:

Vi<Viyt SWy W, on] (4.4.25)

to do this, consider:
DuVi(®) = F(t,Vi1) + G(t, Wj—y),  V;(0) = U, on] (4.4.26)
DyVi (0) = F(t,V;) + G(6, W),  Vj11(0) =Uy on] (4.4.27)

so that we can write:
DyVi(t) = F(t,Vj—1) + G(t, Wj_,) + H(t, Wj_q) <
<F(t,V;)+G(c,W;) + H(t, W;) = DyVjy1(2) (4.4.28)

consequently, V;(t) < V;,,(¢t) on /, similarly we can get W, ; < W, on J. Next, we

show that V;,; < Wj,4, t € ], we have:

DyVis (0) = F(t,V;) + G(e,W;) + H(t,W;),  Vj41(0) = Uy on] (4.4.29)
DyWj () = F(e, W) + G(t,V;) + H(t,V;),  Wj11(0) = Uy on]  (4.4.30)

then, we can write:

DuVi (©) = F(t,V;) + G(e, W) + H(t, W;) < F(e, ;) + G(¢,W;) + H(t, W)
DyWi 1 () = F(t, W)) + G(t,V;) + H(t,V;) = F(t,W;) + G(t, W;) + H(t, V})
(4.4.31)

and as a result:

Vi (®) S Wa(®)  onJ (4.4.32)

hence (4.4.25) follows, and consequently the relation (4.4.14) is valid for all n,
Clearly, sequences {W, },{V;,,} are uniformly bounded on /. To show that they are

equicontinuous, consider for any t; < t, where t;,t, €] :

&
Ve >0, 36 = 6(¢e), vn € N, |t2—t1|<T=5=M
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D[V, (t2), V(1]

= DlUO

4 f (F (5, Voos () + G5, W_r (5))
0

+ H(s, Wyn_1(s))}ds, Uy

+ f 1{F(s, Vn-1(8)) + G (s, Wy_1(5))
0
+ H(S, Wn—1(s))}dsl

< f DI{F (s, Vaor(5)) + G5, W1 ()
t

1

+H(s,Wy_1())},0]ds < M|t —t;| <MT =¢  (4.4.33)

here we utilized the properties of integral and the metric D, together with the fact that

F + G+ H are bounded since {I#,},{V,} are uniformly bounded, hence {V,} is
equicontinuous on J, the corresponding Ascoli’s theorem gives a subsequence {Vnk}
which converges uniformly to p(t) € K-(R™), and since {I}} is monotone
nondecreasing sequence, the entire sequence {V},,} converges uniformly to p(t) on J.
Similar arguments apply to the sequence {W,} and W, — R uniformlyon], it
therefore follows, using the integral representation of (4.4.12) and (4.4.13) that p(t)
and R(t) satisfy:

Dyp(t) = F(t,p) + G(t,R) + H(t,R), p(0)=U, on] (4.4.34)
DyR(t) = F(t,R) + G(t,p) + H(t, p), R(0) =U, on] (4.4.35)

and that
Vo<p<R<W, (4.4.36)

we next claim that (p, R)are coupled minimal and maximal solutions of (4.4.1), that
is, if U(t) is any solution of (4.4.1) such that:

Vo SU() < W, (4.4.37)
then:

67



Vo<p<UGX)<R<W, t€] (4.4.38)

suppose that for some n,

L <UWR)<W, te] (4.4.39)

then we have using the monotone nature of F and G and (4.4.39):

DyU=F(tU)+ Gt U)+H(U) =

> F(6V,) + G W) + H(E, W), U(0) = U (4.4.40)

DHVTL+1 = F(t, Vn) + G(t, WTL) + H(t, WTI.)’ Vn+1(0) = UO (4441)
Hence,

DyU = DyVyyq (4.4.42)

consequently, according to Theorem (3.1.4) we arrive at:
Vozi <U  on ] (4.4.43)

similarly,

Winy12U on] (4.4.44)

hence by induction the relation (4.4.39) is true for alln > 1, taking the limit n — oo,

we get (4.4.38) proving the claim. The proof is complete. m

Corollary 4.4.1: If, in addition to the assumptions of Theorem (4.4.1)
F, G and H satisfy whenever X > Y, X,Y € K;(R™)

F(6,X) <F(t,Y) + Ny (X —Y) (4.4.45)
G(t,X) + Ny(X — V) > G(t,Y) (4.4.46)
H(t,X)+Ns(X —Y) = H(t,Y) (4.4.47)

where N; , N, ,N; > 0, then p = R = U is the unique solution of (4.4.1).
Proof 4.4.1: Since p < R,andthenR = p+mor m = R — p, now

Dyp + Dym = DyR = F(t,R) + G(t,p) + H(t, p)
<F(tp)+N,(R—p)+G(tR)+ Ny,(R—p)
+ H(t,R) + N;(R —p) = Dyp + (N; + N, + Ny)m  (4.4.48)

which means,
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which leads to R < p on ], proving the uniqueness of p = R = U. Completing the

proof.m

So, if the sum of two nondecreasing (nonincreasing) functions is nondecreasing
(nonincreasing) function then the monotone iterative technique for three monotone

functions will reduce to the monotone iterative technique for two monotone functions.
4.5. Monotone lterative Technique for Finite Systems:

In this section we shall attempt to study the set differential system, given by

DyU =F(t,U), UW0)=Uy,te] (4.5.1)

Where F € CU X Kc(Rn)N, Kc(Rn)N], U € Kc(Rn)N, Kc(Rn)N = (Kc(Rn) X
K:(R™) X .. X K:(R™), N times ), U = (U;,U,, -+, Uy) such that for each i,1 < i <
N, U; € K-(R™). Note also that U, € K.(R™)N.

we have the following two possibilities to measure the new variables U, Uy, F.

1. Define Dy[U,V] = XN, D[U;, V;], where U,V € K;(R™)" and employ the
metric space (K-(R™", D).

2. Define D : Ko.(RMN x K.(R™)N — RY such that
E[U, V] = (D [Ulﬂ V1]: D[UZ' VZ]' D[UN: VN])
And employ the generalized metric space (K.(R™", D).

Method of lower and upper solutions: finite systems.

Many of results considered so far for a single equation will now be extended to finite
systems, to avoid repetition, let us agree that the subscripts i, j range over the integers
1,2, ..., n and the vectoral in equalities mean that the same inequalities hold between
their corresponding components. It is well known that a certain monotone property is

needed when we deal with systems of inequalities, and we shall now define this

property.
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Definition 4.5.1: A function F € C[J x K.(RM)N, K.(R™N] is said to be
quasimonotone nondecreasing if, for some i suchthat1 <i <n,U <Vand U; = V;,
Fi(t,U) < Fi(t, V).

Definition 4.5.2: A function F € C[J X K.(RM)N, K. (RMN] is said to be
quasimonotone nonincreasing if, forsome i suchthat1 <i <n,U <Vand U; = V,,
F(t,U) = Fi(t,V).

Theorem 4.5.1: Let V,W € C[J x K-(R™)™] be lower and upper solutions of (4.5.1)
respectively, suppose that the function F is quasimonotone nondecreasing function,

and for each i
n
Fi(teriXZI'”an) a Fi(ti Yli Y2i "'rYn) < LLE(XL - Yl) (452)
i=1

whenever X > Y, then V(0) < W (0), implies that V(t) < W (¢).

Proof 4.5.1: Let & = (g,&,,,&,) > 0, then we will define W;(t) = W;(t) +

geM+DLL Since V;(t,) < Wi(ty) < Wi(t,), it is enough to prove that:

Vi(t) < W;(b), t>t, (4.5.3)

to arrive to our conclusion, in view of the fact € > 0 is arbitrary small, let t; > 0 be

the supremum of all positive numbers § > 0, such that:

Vi(to) < W;(to) implies V;(t) < W;(t)on [to, 5].

Moreover V;(t) = W;(t), for i # j
it is clear that V;(t;) = W;(t,) and for t; > t,, and V;(t;) < W;(t,), this follows,

using the nondecreasing nature of F and condition (4.5.2) that:
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DiVi(ts) < Fy(t, Va(tr), -+, Va(82)) < F (b0, Wa(tr), -+, Wi (81))
< F(tll Wl(tl)l Tty Wn(tl)) + Li(Wi - Wl)
< DyW;(t;) + nL;ge+Dlita
< DyWi(t)) + (n + 1)L;ee™DLits = D, Wi(t,) (4.5.4)
consequently, it follows that there exists an n > 0 satisfying:
Vi) = W) > Vi(t) —Wi(t), t—-n<t<t (4.5.5)

this implies that t; > t, cannot be the supremum in view of the continuity of the

functions involved and therefore the relation
Vi(t) < Wi(t), t=>t, (4.5.6)

is true, and then we can write

Vi(6) < Wi(t) = Wi(t) + eetDLit (4.5.7)

and then:

lime_o Vi (£) < lim_o[Wi(6) + ge™+DLit]
Vi(t) = Wi (0) (4.5.8)

and the proof is complete.m

Theorem 4.5.2: Under the assumption of Theorem (4.5.1), every solution of (4.5.1)
such that V(0) < U(0) < W(0) satisfies V(t) < U(t) < W (t)on].

Theorem 4.5.3: Let V,W € C*[], K. (R™™"] be lower and upper solutions of (4.5.1)
such that V(t) < W(t) onJ and let F € C[Q, (R™)N], where
Q=[tU)e]x (RHN: V(@) <U®) <W(),te]].

If F is quasimonotone nondecreasing in U, then there exists a solution U(t) of (4.5.1)
suchthat V(t) < U(t) < W(t) onJ, provided V(0) < U(0) < W (0).

In fact, the conclusion of Theorem (4.5.3) is true without demanding F to be

guasimonotone nondecreasing, which is restrictive. However, in this case, we need to
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strengthen the notion of upper and lower solutions of (4.5.1). We list below such lower

and upper solutions as an assumption:
for each i,

D,V; < F;(t,0) forall osuchthat V(t) <o <W(t) and V,(t) = o;
DyW; = F,(t,0) forall o such that V(t) <o < W(t) and W;(t) =0; (4.5.9)

Theorem 4.5.4: let V,W € C[J, K.(R™N] with V() < W(t) on ] satisfying (4.5.9)
and let F € C[Q, (R™™"], then there exists a solution U(t) of (4.5.1) such that
V(t) <U() <W(t)on],provided V(0) < U(0) < W(0).

Since the assumptions of Theorem 4.5.3 imply that the assumptions of Theorem
(4.5.4), it is enough to prove Theorem (4.5.4).

Proof of Theorem 4.5.4.
Consider P:J X Kc(R™N —» K.(R™" defined by

P;(t,U) = max{V;(t), min[U;, W;(t)]}, foreachi.
Then F(t, P(t, U)) defines a continuous extension of F to J X K.(R™)" which is also
bounded since F is bounded on Q. Therefore, DyU = F(t, P(t,U)) has a solution U
on J with U(0) = U, by theorem 3.1.5 let us show that V(t) < U(t) < W(t) and
therefore a solution of (4.5.1). Fore > 0and e = (1, ...,1), consider W,(t) = W (t) +
e(1+t)e and V.(t) =V (t) —e(1+t)e. Clearly, we have V.(0) < U, < W,(0).
Suppose that t; € J issuchthat V,(t) < U(t) < W(¢)in[0,t,) but U;(t;) = We;(ty).
Then, we have V(t,) < p(t;, U(V)) < W(t,) and Pi(t;, U(t;)) = W;(ty), hence

DyW;(t,) = Fi(t,,U(t,)) = DyU;(ty), (4.5.10)

which implies DyU;(t;) < DyW,;(t;), contradicting U;(t) < W,;(t) for t <t,.
Therefore, V,(t) < U(t) < W (t) in].Now, £ = 0yields V(t) < U(t) < W(t). And

the proof is complete. m
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Monotone Iterative Technique for Finite Systems

In order to develop a monotone iterative method for the system (4.5.1) so as to include
several possibilities, we need to begin with some new notions. For each fixed i,1 <
i < n let p;, q; be two nonnegative integers such that p; + g; = n — 1 so that we can
split the vector U into U = (U;, [U]p,, [U]g,). Then, the system (4.5.1) can be written

as

DyU; = Fi(t,U;, [U],, [Ulg,),  U(0) = U, (4.5.11)

Definition 4.5.3:Let V,W € C[], K.(R™N]. Then V, W are said to be coupled lower
and upper quasi solutions of (4.5.4) if

DHVi < Fi(tl Vil [V]pi; [W]qi)l V(O) < Uo

DyW; = Fi(t, W, W1, [V1,,), W(0)= U, (4.5.12)

Definition 4.5.4: Let V,W € C*[J,K-(R™)N]. Then V,W are said to be coupled

quasisolutions of (4.5.4) if

DyV; = F(t, Vi, V1, W1g,),  V(0) = Ug
DHWi = Fi(tl Wil [W]pil [V]qi)r W(O) = UO (4513)

Definition 4.5.5: A function F € C[J x K-(R™)Y,K.(R™" ] is said to possess a mixed
quasimonotone property (mgmp for short ) if for each i, F;(t, U, [Ulp, [U]ql.) is

monotone nondecreasing in [U],, and monotone nonincreasing in [U],..

Theorem 4.5.5: Let F € C[] X K- (RMN,K-(R™" ] possess mixed quasimonotone
property and let V,, W, be coupled lower and upper quasi-solutions of system (4.5.4)

such that V, < W, on J. Suppose further that

Fi(t' Ul" [U]pi' [U]ql) - Fi(tﬁ Ui, [U]pi; [U]QL) 2 _Mi(Ui - Ul) (4514)
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whenever Vo < U <W,, and V,; < U; < U; < W,; and M; > 0. Then there exist
monotone sequences {V,}, {W,} such that Vj, - p,W,, > R as n — oo uniformly and
monotonically to coupled minimal and maximal quasisolutions of (4.5.4) on J,
provided V,(0) < Uy < Wy(0). Further, if U is any solution of (4.5.11) such that I/, <
U<W,thenp <U <Ronj.

Proof 4.5.5: Forany n, u € C[J, Kc(R™)V)] suchthat V, <n, u < W, onJ, we define
Fi(t,U) = Fy(t, ni, [nlp, [ulg,) — My(U; = 7)), (4.5.15)
And consider the uncoupled linear differential system

DyU; = Fi(t,U) = Fy(t, ni, [nlp, [ulg,) — Mi(U; —my), (4.5.16)
U(0) = U,

Clearly, for a given n, u the system (4.5.15) possess a unique solution U(t) defined on
J. For each n,u € C[J,Kc(R™)M], such that V, <n, u < W,on J, we define the
mapping A by:

Aln,pul =U

Where U is the unique solution of (4.5.15). This mapping defines the sequences
{V,,}, {W, }. First we prove that

o Vo < AV, Wol, Wy = AW, Vo]
e A possess the mixed quasi monotone property on the segment [V,,, W,] where
the segment [V, W,] = {U € C[J, Kc(RMN]: Vy, < U < Wy}
to prove (i), set A[V,, W,] = V; where V] is the unique solution of (4.5.15) withn =
Vo, u = Wy. Setting P; = V;; — Vy ;, then we can write like this

DyP; = DyVy; — DyVy; 2
= Fi(t’ Vo,i [VO]Pi' [WO]qi) - Fi(t' Vo,is [VO]pi' [WO]qi)
— M (Vy; — Vo) = —M;P; (4.5.17)

and we obtain the differential inequality P;(t) = P;(0) = 0 onJ, then V,; < V;;, in
the same way we can show that W, ; > W, ;. Setting A[W,, V, ] = Wy, where W, is the
unique solution of (4.5.15) with n = W,, u =V,. Setting P; = Wy ; — Wy ;, it easily
follows that
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DyP; = DHW1,i - DHWO,i
< Fi(t, Wi, (Wolp, [Volg,)
— Fi(t, Wo i, Wolp, Volg,) — Mi(Wh — Wo,)
— —M,P, (4.5.18)

It thus follows that P;(t) < P;(0)e~™i* < 0 onJ, and hence W, ; = W, ;, which proves

(). To prove (ii), let ny, n,, 1 € [V, Wp] be such that n; < n,. Suppose A[n,, 1] = Uy
and A[n,, u] = U,. then setting P; = Uy ; — U,;, we find, using the mgmp of F and
(4.5.14), that:

DyP: = Fi(t,n10 [mlp, [1]g,) — Mi(Us; — 11) —
Fi(tm20 M2lpy [1)q,) + Mi(Uzi — n2:) < Fi(tm1,0 21y, [1lg,) —
M;(Uy; — n1) — Fi(6 120 21, [1g,) + M;(Uyy — 1) <
M;(n2, = M,i) = Mi(Uyi = 110) + MUz — 125) = —M;P;. (4.5.19)

also, since P;(0) = 0, we get Uy; < Uy, A[ny, ul < Alny, u]. In the same way if
M b1, Uz € [Vo, Wo] such tha py < p,, suppose A[n, uy] = Uy and A[n, u,] = Uy, then
setting P; = Uy; — U, ;, we find, using the mgmp of F and (4.5.14) that:

DyP; = Fi(t,n, [Nl [11]g,) — Fi(t.m, ]y, [2]q,) — Mi(Uyi — pay) +
Mi(UZ,i - :u2,i) = Fi(ti n, [U]pi: [MZ]qi) - Fi(t' n, [r]]pir [:uZ]qi) -

M;(Uy; — 1) + Mi(Uyy — pi) = —Mi(Uy; — 1) + M (U — 1) =
—MP,. (4.5.20)

and since P;(0) = 0, we get Uy ; = U, ;, A[n, uy1] = Aln, u;]. It therefore follows that
the mapping A satisfies (ii), consequently this implies A[n, u] < A[u, n] whenever n <
wandn, u € [Vy, W,]. Inview of (i) and (ii) above, we can define the sequences

Vo = A[Vn—lf Wn—l]' W, = A[Wn—l' Vn—l] (4.5.21)
satisfying

It is easy to prove that the sequences {V, }, {W;,} are monotone and converge uniformly

and monotonically to coupled quasisolutions (p, R) of (4.5.11). Letting
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p =lim,oV,, R =Ilim,,W,, (4.5.23)
we find
, V() =U, (4.5.24)
) w() = U, (4.5.25)

DHpi = Fi(tl Pi, [p]pi; [R]ql)
DuR; = Fi(t, R, [R1p, [plg,)
we shall show that (p,R) are coupled minimal and maximal quasi solutions
respectively. Let (U;, U,) be any coupled quasi solutions of (4.5.11) such that U, U, €
[V, Wy ]. Let us assume that for some integer k > 0, V,_; < Uy, U, < Wy,_, onJ, then

setting P; = Vj; — Uy ;, employing the mgmp property of F and (4.5.14) we arrive at:

DyP; = DyVy; — DyU,; =
= Fi(t, Vi1, Vi-1lp,» [Uzlg,) — Mi(Viei — Vie—1,0)
— F(t, Uy, [U1lp, [Uz]qi)
< Fi(t, Vi1s [Ui]p, [Uz]qi) = M;(Vii = Vie—10)
— F(t, Uy, [Uslp, [U2]g,)

< MUy = Vier,)) = Mi(Viei = Vi-r,i) < —MiP; (4.5.26)

since P;(0) = 0, this implies that V,, < U, in the same way we can show that U, <
W, on J. it follows by induction that V, < U;, U, < W, on J for all k, since V; <
Uy, U, < W, on J. hence, we have p < U;,U, < Ron ] proving (p,R) are coupled
minimal and maximal quasi solutions of (4.5.11). Since any solution U of (4.5.11) such
that U € [W,, V] can be considered as (U, U) coupled quasi solutions of (4.5.11) wee

also have p < U < R on J, this complete the proof. m
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5. Monotone Iterative Technique with Initial Time
Difference

5.1. Comparison Theorems and Existence Results Relative
to Initial Time Difference

In this section, we will give some basic comparison theorems and existence results

relative to initial time difference.

Theorem 5.1.1: Suppose that:

o Ve CYlro 10+ TLK(RY)], W e CY[o, o+ T1, Kc(R™)] and, F €
C[R; X Kc(R™),K-(R"], foreacht € R,:

DyV() < F(t,V (D), V(o) < Uy
DyW(©) = F(t, W(D),  W({) = U, (5.1.1)

e ForanyX,Y € K.(R")suchthatX > Y, t €R,

F(t,X) <F(tY)+L(X-Y), forsomeL >0 (5.1.2)

e 7, < {yand F(t,X) is nondecreasing in t and X, then V(z,) < W({,)
implies:
) VO SWE+8),t=1 (VK=& <W(t), t =, Where, § =y — 1.

Proof 5.1.1: Let W(t+ &) =W(t), and let & = (&,&,...,&,) >0, and define
W(t) = W(t) + ee?t. Since V(t,) < W(ty) < W(t,), it is enough to prove that:

V) <W(t), t=t, (5.1.3)

to arrive to our conclusion, in view of the fact € > 0 is arbitrary small, let t; > 0 be

the supremum of all positive numbers § > 0, such that:

V(to) < W(ty) implies V() < W(t) on [t, 5].

It is clear that t; > to, and V(t;) < W(t,), this follows, using the nondecreasing

nature of F and condition (5.1.2) that:
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DyV(t,) < F(t,,V(t))) <F (tl, W(tl)) <F (tl, W(tl)) +L(W —-W)
<F (t1 + ¢, W(tl)) + L(W —W) < DyW(t,) + Lee?tta
< DyW(t,) + 2Lee? s = D, W (t;) (5.1.4)
consequently, it follows that there exists an n > 0 satisfying:
V) -W@) >V(t) —-W(t), t—-n<t<t (5.1.5)

this implies that t; > t, cannot be the supremum in view of the continuity of the

functions involved and therefore the relation
V() < W(b), t>t, (5.1.6)
is true, and then we can write
V() < W(t) = W(t) + ee?lt (5.1.7)

making ¢ — 0, we conclude that V(t) < W(t+ &) t =1, which proves (i), To
prove (i), we set V(t) = V(t — &), t = (o, and note that:

V(o) =V({o— &) =V (te) W () (5.1.8)

and letting: V,(t) = V(t) — ee?*t for smalle > 0, and proceeding similarly, we

derive the estimate:

Vit— &) <W(), t >, (5.1.9)
and the proof therefore is complete. m

5.2. Monotone Iterative Technique for Single Function with
Initial Time Difference

In order to develop the monotone iterative technique with initial time difference, we
shall consider the IVP:

DyU=F(t,U®), U(zry) ="U, (5.2.1)

where F € C[] X Kc(R™),K-(R™) ], U € C*[] X K.(R™)], where | = [to,{, + T].
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Theorem 5.2.1: Let F € C[[TO,{O + T] % KC(R"),KC(R")] be nondecreasing function
int,and V € CY|[to, 7o + T, Kc(RM], W € C[[{o, {o + T1, K- (R™)] are lower and
upper solutions of the initial value problem (5.2.1) suchthat V(t) < W(t+¢&)on] =
[T0,{o + T1, ¢y > 19 ,and & = ¢, — 1y, Suppose further that:

FtX)—FtY)=>-M(X-Y) (5.2.2)
for V) Y <X <W(t+¢&) and M > 0, then there exists monotone sequences
{V.}, {W,}, such that V;, - p and W, - R, as n — oo uniformly, and monotonically
on J, and that p, R are minimal and maximal solutions of (5.2.1) respectively, where
W) =w(+ §).

Proof 5.2.1: Since W (1y) = W(tg+ &) = W(tg + {o — 7o) = W({p), and V(z,) <
Uy < W (o) also Dy W (t) = DyW(t +&) = F (t + 5,VT/(t)),t > 14, Let’s set V =

Vo, W =W, For any n € C'[J,K.(R™)] such that V, <n < W,, we consider the

linear differential equation:
DyU =F(t,n) — MU —n), U(ty) = U, (5.2.3)
It is clear that for every such n, there exists a unique solution of (5.2.3) on J. Define a

mapping A by An = U. This mapping will be used to define the sequences {V;,}, {W,}

and let’s prove that:

i)V, <AV, W,=> AW,

i) A is monotone operator on the segment:
[Vo, Wo| = {U € CL[J x Kc(RV], Vo <U<W,;tej}

we now prove (i), set AV, = V; where V; is the unique solution of (5.2.3) with n = 1,

setting ¢ =V, — I/, so we obtain:

Dy = DyVy — DyVy < F(t, Vo) — F(t, Vo) + M(V, = V) = —Me,
@(tg) =Vo—Uy<Uy—Uy =0 (5.2.4)

since V,, < Uy, This shows that:

p() =<0
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hence V, <V; onJ, or equivalently Vy < AV,. In the same way, we can prove

that W, > AW,. Setting ¢ = W, — W,, we can write:
DH(p = DHWO _DHW1 = F(t""f,Wo) _F(t‘l‘E,Wo) +M(W1 _Wo)

=—-Mp, @) =Wy—Uy 2Uy—Uy=0 (5.2.5)

hence W, = W, on], or equivalently W, < AW,. In order to prove (ii), let n, ,n, €
[Vo, Wo| such that ny < n,, assume that U, = An,, U, = Any, setting ¢ = U; — U,

so that:

Dy = DyU; — DyU,; =
=F(t,n) —MWU; —n) —F(t,n) + MU, — 1) <
<MmM,—n) +MWU, —ny) —MWU; —n,) = —Me, (5.2.6)

With ¢(z, ) = 0, as before, this implies that An; < An, which is proving (ii). We can

now define the sequences:
Vo= AV, 4, Wn = AWn—l (5.2.7)
and the following conclusion is true:

VosViSVo<SVh<sWy<-sW, W W, on] (528)

consequently
limyoV,=p and lim,,oW,=R on] (5.2.9)

It is easy to show that p, R are solutions of (5.2.1) in view of the fact that V,, W, satisfy:

D = F(t, Vn—l) - M(Vn - V‘l’l—l)' I/Tl(TO) = UO (5210)

HVn
DyWy = F(t + & Wy_1) = M(Wp = W_y),  Wn(zo) = Uy (5.2.11)
to prove that p, R are respectively minimal and maximal solutions of (5.2.1) we must

show that if U is any solution of (5.2.1) such that V, < U < W, on J, then:

{

o]}
IA

Vh<p=sU=< oonj (5.2.12)

to do that, assume that for some n, V,, < U < W, onJ, and set:

9=Vyy—U (5.2.13)
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so that:
Dy =F(t, V) =MWV, —V,) —F(tU) <

S MU = V) = M(Vyyy — V) = Mo, ¢(t) = 0 (5.2.14)

hence, it follows that: V,,; < U on], in the same way we can show that U <

W, ., on], setting:

@ =Wpy1 —U (5.2.15)

hence: V,,,, < U < W, on J. This proves by induction that:

V,<U<W, on] (5.2.16)

for all n, taking the limit as n — oo, we conclude that p < U < R onJ. And the proof

is complete.m

5.3. Monotone Iterative Technique for the Sum of Two
Functions with Initial Time Difference:

to improve the monotone iterative technique, we shall consider the following IVP:
DHU = F(t, U) + G(t, U), U(To) = UO € Kc(Rn) (531)
where F,G € [ X Kc(R™),K.(R™M)],and ] = [15,{y + T] .

The following given definition various possible notions of lower and upper solutions

relative to (5.3.1) with initial time difference.

Definition 5.3.1: Let V € CY|[to, 7o + T1, Kc(RM], W € C[[{o, o + T1, Kc(RM)]
andV(t) S W(t+&) = W(t),t =1y Where & =, — 1, for ¢, > 7, thenV, W are

said to be :
i) Natural lower and upper solutions of (5.3.1) if:
DyV() < F(t, V(D) + G(t,V (D)),

DyW(t) > F (t + ¢, I/T/(t)) +G (t + ¢, VT/(t)), t € [19,{o + T] (5.3.2)

i)  Coupled lower and upper solutions of type I of (5.3.1) if:
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DyV() < F(t, V(D) +G (t + &, VT/(t)),

DyW(t) > F (t + &, I/T/(t)) +G(t, V() t € [to,qo + T] (5.3.3)

iii)  Coupled lower and upper solutions of type 11 of (5.3.1) if:
DyV(t) < F (t + &, VT/(t)) +6(t, V(1))

DyW(®) 2 F(tV(D) +G(t+E WD),  telrgo+T]  (534)

iv)  Coupled lower and upper solutions of type 111 of (5.3.1) if:

DyV(t) < F (t + E,W(t)) +G (t + E,VT/(t)),

DyW(t) = F(t, V(1)) + G(t,V(1)), t € [t0, 4o +T1] (5.3.5)

Theorem 5.3.1: Suppose that:

1. LetV € CY|[ro, 7o + T1, Kc(R™], W € C*|[o, {o + T1, K- (R™)] are coupled
lower and upper solutions of type I relative to (5.3.1), with V(t) <
W(t+§&) = W(t)where & = {, — 1.

2. F,Ge C[[TO, (o + T] X KC(R”),KC(R”)], F(t, X) is nondecreasing function

in tand X, G(t,Y) is nonincreasing in t and Y, for each t € [1y,{, + T|]
3. F, G map bounded sets into bounded sets in K.(R™).

Then there exist monotone sequences {7}, {V;,} in K-(R™) such that:
Vo> p®),  Wp—R(®) in Kc(R™)

and (p, ﬁ) are coupled minimal and maximal solutions of (5.3.1) respectively, that is
they satisfy:

Dup(t) = F(t,p) + G(t +ER),  p(zo) = Uy on] (5.3.6)

DyR(t) =F(t+&R)+G(t,p),  R(xo) = Uy on]. (5.3.7)
Proof:

For each n > 0, define the unique solutions V,,,; (t), W, (t) by:

DyVni1(t) = F(t, V) + G(t + &, W,), Vi (To) = Uy on ] (5.3.8)
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DyWyar(t) = F(t + &, W,) + G(t, V), Wiy (7o) = Uy on] (5.3.9)

where V() < Uy < W (t,), We set Vy = V, W, = W. Then we want to show that:

Vo<V SV, < SV W, < <W, <W, <W, (5.3.10)

we have using the fact that V, < W, and the nondecreasing character of F:

DyVo(t) S F(t,Vy) + G(t + &, W) (5.3.11)
and
DyVi(t) = F(t, V) + G(t + &, W) (5.3.12)
hence,
DyVy(t) < DyVy(t) (5.3.13)

consequently, according to the Theorem (3.1.4), we arrive at V,(t) < V;(t) in the
same method we can show that W, (t) < Wy(t). Now, we will show V; <
W, on] from the relations (5.3.8) and (5.3.9) withn = 0

DV, () = F(t, Vo) + G(t + §, W)
DyWy(t) = F(t+¢& W) + G(t,Vp) (5.3.14)
With V; (74) = W, (1) = Uy, since Vo (t) < Wy (t) then:
F(t,Vy) < F(t + ¢, VT/O), F(t, X) is monotone nondecreasing in X, t

G(t,Vy) = G(t + ¢, WO), G(t,Y) is monotone nonincreasing in'Y,t

S0, we obtain:
DyVi(t) S F(t+ & Wo) +G(t + & W,), on] (5.3.15)
DyWy(t) = F(t + & Wo) + G(t + &, W,), on) (5.3.16)

consequently, we arrive at:
Dy Vi (t) < DyW,(t) (5.3.17)

by using the Theorem (3.1.4), we arrive at:
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Vi(t) < W (t) on ]

and as a result, we obtain:

{
{

IA

VOSV1 1S 0 On]

assume that for some j > 1, we have:

{

i1 on]

IA
IA

~.

ViasVisW s

then we show that:

l
l

IA

Vi < Vi +1=W; on]

~
~

So, we can obtain from (5.3.8) by substitutingn =j —1,andn =j

DHI/](t) = F(t, I/j—l) + G(t + f, V’Vj—l)l I/j(To) = UO On]
DyVi1 () = F(t, V) + G(c + & W),  Viyi(zo) = Uy on]

and then,

(5.3.18)

(5.3.19)

(5.3.20)

(5.3.21)

(5.3.22)
(5.3.23)

DuVi(©) = F(t,Vi_1) + G(t + EWi_y) < F(t,V;) + G(t + & W;) = DyV;1 ()

consequently, V;(t) < V;,41(¢) on J, in the same way we can show Wj,, < W; on J.

Next, we show that V;,; < W, t € J we have:

DuVira () = F(,V}) + G(t + &, W), Vjsa(zo) = Uy on]
DHVT/j+1(t) = F(t + SZJWJ) + G(t» V')' I/T/'j+1(To) =Uy on]

then we can write:

DyVip 1 (6) = F(t,V;) + G(¢ + & W) < F(t + & W) + G(t + &, W)
DyWip () = F(c +EW) + G(6,V;) =2 F(t + &, W) + G(c + & W)

and as a result:

Vip (D) < Wj+1(t) on J
hence the relation:

{
{

~
IA
\_<
+
[
IA
"
N
IA
Q
S
~

(5.3.24)

(5.3.25)

(5.3.26)

(5.3.27)

(5.3.28)

(5.3.29)
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follows and consequently, by induction the relation (5.3.10) is valid for all n. Clearly
sequences {I/T/n}, {V,} are uniformly bounded on J. Then, we will show that they are

equicontinuous on J, consider for any t; < t, where t;,t, € J
&
Ve > 0, 36 =6(e) >0, vn € N, |t2—t1|<T=6=M

D [Vn(tz): Vn(tl)] =

=D [UO

+ f (F (s, Vs () + G (s + & Wo_1(5))}dls, U
)

+ f (F(5,Var()) + G (s + & Wr_s(s)) }ds

[
< f D[{F(5, Vao1(s)) + G(s + & W_1(s))}, 8]ds

1

<Mlt, —t;| <MT =¢ (5.3.30)

we used the properties of integral and the metric D, together with the fact that F + G
are bounded since {},}, {V,,} are uniformly bounded, hence {;,} is equicontinuous on
J, the corresponding Ascoli’s Theorem gives a subsequence {Vnk} which converges
uniformly to p(t) € K-(R™), and since {I},} is monotone nondecreasing sequence, the
entire sequence {V},,} converges uniformly to p(t) on J. The same arguments apply to
the sequence {W,} and W;, - R uniformly on ], it therefore follows, using the integral

representation of (5.3.8) and (5.3.9) that p(t) and R(t) satisfy:

Dup(t) =F(t,p) +G(t +&R),  p(ry) =Uy on] (5.3.31)
DyR() = F(t +&R) +G(t,p),  R(to) = Uy on] (5.3.32)

and that
Vo<p<R<W,. (5.3.33)

we next claim that (p, R) are coupled minimal and maximal solutions of (5.3.1), that
is, if U(t) is any solution of (5.3.1) such that:

Vo < U(t) < W, (5.3.34)
then
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suppose that for some n,

then we have using the monotone nature of F and G and (5.3.36):
DyU=F(t,U)+G(tU) = F(t V) +G(t+&EW,), Ul =U,
DyVier = F(t,Vp) + G(t +¢, Wn)' Vnt1(t0) = U

hence,

DyU = DyViia

consequently, according to Theorem (3.1.4) that:

Visr U on ]
in the same way,

Wpe1=U on ]

(5.3.35)

(5.3.36)

(5.3.37)
(5.3.38)

(5.3.39)

(5.3.40)

(5.3.41)

hence, by induction the relation (5.3.36) is true for all n > 1, taking the limitas n —

oo, we get (5.3.35) proving the claim. The proof is complete.m

Corollary 5.3.1: If, in addition to the assumptions of Theorem (5.3.1) F and G satisfy

whenever X > Y,X,Y € K.(R™)
F(t+&X)<FEY)+NEX-Y)
G(t+&EX)+N,(X-Y)=G(Y)

where Ny, N, > 0 then p = R = U is the unique solution of (5.3.1).

Proof 5.3.1: Since p < R,and then R = p+m or m = R — p, now

Dyp+ Dym =DyR =F(t+&R) +G(¢t,p)
SFEV+NE-Y)+6(t+EX)+N,(X-Y)
= DHp+ (N1+N2)m

it means that,

(5.3.42)
(5.3.43)

(5.3.44)
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DHm < (N1 + Nz)m, m(To) =0 (5345)

using the comparison results, we can obtain that R < p on J, proving the uniqueness

of p = R = U. Completing the proof.m

5.4. Monotone Iterative Technique for Sum of Three
Functions with Initial Time Difference

To extend the monotone iterative technique, we will take the I\VP:

DyU = F(t,U) + G(t, U) + H(t, U),  U(zy) = Uy € Ko (R™) (5.4.1)

where F,G,H € C[] X Kc(R™),K:(R™)], and | = [y, Ty + T].

We need the following definitions which various possible notions of lower and upper
solutions relative to (5.4.1) with initial time difference.

Definition 5.4.1: LetV € C*[[to, 7o + T1, Kc(R™)]|, W € C*[[{0, {o + T1, K- (R™)]and
V) S W(t+§&) = W(t), t =1, Where, § =, —1, for {, > 1, ThenV, W are
said to be:

i) Natural lower and upper solutions of (5.4.1) if:

DyV () < F(e, V(D)) +G(t, V() + H(t,V(D)),
DyW(t) = F (t + ¢, VT/(t)) +G (t +E VT/(t)) +H (t +¢, VT/(t)), (5.4.2)

t € [19, (o + T]
i)  Coupled lower and upper solutions of type I of (5.4.1) if:

DyV() < F(t, V(1) +G (t + &, VT/(t)) +H (t + &, VT/(t)),

DyW(t) = F (t +¢, W(t)) +6(e, V() + H(t, V(D) (5.4.3)

t €1y, o+ T]
iii)  Coupled lower and upper solutions of type 11 of (5.4.1) if:

DyV(t) <F (t + &, I/T/(t)) +G(e, V() +H (t + ¢, I/T/(t))
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DyW(©) = F(t, V(D)) +G (t + &, W(t)) +H(t, V(D)

(5.4.4)
t €19, (o +T]

iv)  Coupled lower and upper solutions of type 111 of (5.4.1) if:

DyV(t) < F (t + &, VT/(t)) +G (t + ¢, W(t)) +H(t,V (D),
DyW() = F(t,V(®)) +G(t, V(1)) + H (t + ¢, W(t)),

t €19, (o +T]

(5.4.5)

v) Coupled lower and upper solutions o type IV of (5.4.1) if:

DyV() <F(t, V(D)) +G(e, V() + H (t + ¢, VT/(t)),

DyW(t) > F (t +¢, VT/(t)) +G (t +¢, VT/(t)) +H(t, V(D)

t €1y, ¢y +T]

(5.4.6)

vi) Coupled lower and upper solutions of type V of (5.4.1) if:

DyV(t) < F(t, V(D) +G (t + ¢, I/T/(t)) +H(t, V(@)

DyW(t) > F (t + &, VT/(t)) +G(t V() +H (t + ¢, VT/(t)),

t €1y, o+ T]

(5.4.7)

vii)  Coupled lower and upper solutions of type VI of (5.4.1) if:

DyV(t) < F (t + ¢, I/T/(t)) +G(t, V() +H(t, V(D)

DyW () = F(t,V()) + G (t + f,I/T/(t)) +H (t + f,VT/(t)),

t €1y, ¢+ T]

(5.4.8)

viii)  Coupled lower and upper solutions of type VII of (5.4.1) if

DyV(t) £ F (t + E,I/T/(t)) +G (t + f,VT/(t)) +H (t + f,VT/(t))

DyW(&) 2 F(t, V() +G(t, V() + H(t,V()), t € [1o, {0 +T]  (5.4.9)
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Theorem 5.4.1: Assume that:

o LetV e CY[ry, 7o + T K (RM], W € C[[¢o, o + T1, Kc(R™)] are coupled
lower and upper solutions of Type I relative to (5.4.1) with V(t) <
W(t+§&) = W(t)where & =, — 1.

e F,G andH € C|[ty,{o + T] X Kc(R™), Kc.(R™)], F (¢, X) is nondecreasing
functionin tand X , G(t,Y),H(t,Z) are nonincreasing functions in Y and Z,
respectively and nonincreasing functions in t.

e F,G and H map bounded sets into bounded sets in K-(R™).

Then there exist monotone sequences{V;,}, {W,} in K-(R™) such that:
Vo> p(®),  Wp—R(®) in Kc(R™)

and (p, [?) are Type I coupled minimal and maximal solutions of (5.4.1) respectively,

that is they satisfy:
Dup(®) =F(t,p) + G(t + & R) + H(t + & R), p(to) =Uy on]  (54.10)
DyR(t) = F(t + & R) + G(t,p) + H(t, p), R(zp) =Uy on]  (54.11)
Proof 5.4.1: For each n > 0, define the unique solutions V, .1 (t), W, (t) by:

DV (6) = F(6, V) + G(t + EW,) + H(t + &, W), (5.4.12)
Vns1(to) = Ugon |

DyWyi(8) = F(t + & W,) + G(t, V) + H(t, V), (5.4.13)
Whi1(t9) = Uy on ]

where V(ty) < Uy < W (1,), we set V, = V, W, = W, our aim to prove:

Vo sV SV < SV SW < SW,<W, <W, (5.4.14)

we have using the fact that V, < W, and the nondecreasing character of F, G andH:

DyVo(t) S F(t, Vo) + G(t + & W,) + H(t + & W) (5.4.15)
and, we have:
DyVi(t) = F(t, Vo) + G(t + & W) + H(t + &, W) (5.4.16)

hence,
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Dy Vy(t) < DyV;(t) (5.4.17)
consequently, utilizing Theorem (3.1.4) we arrive at V,(t) < V;(t). A similar

argument shows that W, (t) < W,(t). We next prove that V; < W, onJ. To do this,
consider:

DyVi(t) = F(t, Vo) + G(t + & Wy) + H(t + &, W)

(5.4.18)
DyWy(t) = F(t + & W,) + G(t, Vo) + H(t, V) (5.4.19)

W'th Vl(TO) - Wl(TO) - Uo, SInCE Vo(t) S Wo(t) then

F(t,V,) < F(t + ¢, VT/O), F(t, X) is monotone nondecreasing in X, t
G(t, V) = G(t + ¢, VT/O), G(t,Y) is monotone nonincreasing in'Y,t
H(t, Vo) = H(t + &, W),

H(t,Z) is monotone nondecreasing inZ,t
so, we obtain:

DyVi(t) S F(t+&Wy) + G(t + & W) + H(t + € W,) on]

(5.4.20)
DyWy () = F(t+ & W) + G(t + & W,) + H(t + &, W,) on] (5.4.21)
hence,
Dy Vi (t) < DyW,(t) (5.4.22)

consequently, by Theorem (3.1.4) we arrive at V;(t) < W,(¢t), and as a result, we
obtain:

Vo<Vi<W, <W, on] (5.4.23)
assume that for some j > 1, we have:
ViiaSV,SW,<W;y  on] (5.4.24)
then, we show that:
Vj < Vj+1 < Vppj+1 < ~j OI’l] (5425)
to do this, consider:
DyVi(t) = F(t,Vi1) + G(t + & Wi_y) + H(t + &, W;_q), (5.4.26)
Vj(To) =Uy on]
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DyVi () = F(t,V;) + G(¢ + & W) + H(t + &, W), (5.4.27)
V}'+1(T0) =Uy on]
SO, we can write:
DyVi(®) = F(t,Vi—1) + G(t + & W;_y) + H(t + &, W;_,)
SF(tV)+G(t+&W,)+H(t+&EW,) =DyVi () (5.4.28)

consequently, V;(t) < V;4,(¢) on J, similarly we can get W;,, < WW; on J. Next, we
show that Vj,; < W4, t € ], we have:
DyVip1(6) = F(t,V;) + G(¢ + & W) + H(t + &, W), (5.4.29)

V}'+1(To) = Uy on]

DyWi (6) = F(c + E W) + G(t,V;) + H(L, V), (5.4.30)
Wj+1(To) =Uy on]
then, we can write:
DyVip (0) = F(t,V;) + G(¢ + & W) + H(t + &, W) <
SF(t+&W)+G(t+EW) +H(t +& W) (5.4.31)

DyWjs1(8) = F(t + & W) +G(¢t,V) + H(t,V}) =
>F(t+&W)+ G(t+& W) +H(t +& W) (5.4.32)

and as a result:

Vie (0 < VT/}'+1(t) on] (5.4.33)

hence:

l
l

Vy < Vs S W W) on) (5.4.34)

~.
.

follows, and consequently by induction (5.4.14) is valid for all n. Clearly sequences
{Wn}, {V,,} are uniformly bounded on. To show that they are equicontinuous, consider

forany t; <t,wheret,,t, €]
&
Ve >0, 36 = 6(e), vn € N, |t2—t1|<T=5=M
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D[V, (t2), V(8] =
=D lUO + ftz {F(s, Vae1()) + G (s + &, Wn_l(s))

+H (s + ¢, I/T/n_l(s))} ds, U,
t1

+ | {FGs,Vue1()) +G(s+ & Wy_yi(s))

To

+ H(s + ¢, Wn_l(s))}dsl

< f ZD[{F(S, Vae1(8)) + G(s + & Wy_1(s))

1

+H(s+&W,_1(5))},0lds < M|t, —t,| <MT =¢  (5.4.35)

Since we used the properties of integral and the metric D, together with the fact that
F+ G+ H are bounded since {W,},{V,} are uniformly bounded, hence {V;} is
equicontinuous on J, the corresponding Ascoli’s theorem gives a subsequence {Vnk}
which converges uniformly to p(t) € K-(R™), and since {l;,} is monotone
nondecreasing sequence, the entire sequence {V;,} converges uniformly to p(t) on J.
In the same way we can show that the sequence {WW;,} and W, - R uniformly on ], it
therefore follows, using the integral representation of (5.4.12) and (5.4.13) that p(t)
and R(t) satisfy the relations:

Dyp(t) = F(t,p) + G(t + & R) + H(t + &, R), p(zo) = Uy on] (5.4.36)
DyR(t) = F(t + & R) + G(t,p) + H(t,p),  R(zo) = Uy on]J (5.4.37)

as a result,
Vo<p<R<W, (5.4.38)

we next claim that (p, R) are coupled minimal and maximal solutions of (5.4.1), that
is, if U(t) is any solution of (5.4.1) such that:

Vo < U(t) < W, (5.4.39)
then:

Vo<p<UQL<R<W,, te] (5.4.40)

suppose that for some n,
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V, <U@)<W, te] (5.4.41)

then we have using the monotone nature of F, G and H and (5.4.41):

DyU=F(tU)+ Gt U)+H(tU) =
>F(t, V) +G(c+&EW,) + H(t + & W), U(ty) = U, (45.42)

DyVp1 = F(t, V) + G(t + & Wy) + H(t + & Wn), Vosa (o) = Uy (4.543)

hence,

DyU = DyVysq (4.5.44)
consequently,

Vosr <U  on ] (5.4.45)
similarly,

Wper =U  on] (5.4.46)

hence, the relation (5.4.41) is true for all n > 1 by induction, taking the limit n - oo

we get (5.4.40) proving the claim. Therefore, this completes the proof of the theorem. m

Corollary 5.4.1: If, in addition to the assumptions of Theorem (5.4.1) F and G satisfy
whenever X > Y,X,Y € K.(R™)

F(t+&EX)<SFEY)+N,X-Y) (5.4.47)
G(t+&EX)+N,(X-Y)=G(Y) (5.4.48)
H(t+&X)+N;(X—Y) =Gt Y) (5.4.49)

where N;, N3, N, > 0, then p = R = U is the unique solution of (5.4.1).
Proof 5.4.1: Since p < R, andthen R=p+morm = R — p, now

Dyp + Dym =DyR = F(t + & R) 4+ G(t,p) + H(t, p)
<Ftp)+N(R—p)+6G(t+&R)+N,(R—p)
+ H(t +&R)+ Ny(R—p) =Dyp + (N; + N, + N;)m  (5.4.50)
which means,
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DHm < (Nl + Nz + N3)m, m(To) =0 (5451)
which leads to R < p on ], proving the uniqueness of p = R = U. Completing the

proof.m
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6. CONCLUSION

We have studied the monotone iterative technique for set valued differential
equations to generalization to study this technique. First, we study it for single
function, and then we have also studied them for two and three functions which paved
the way to study it for four and five functions that lead us to genralize this method the
more. Hence, we have also worked on the monotonte iterative technique with initial
time difference for single function, and also for two and three functions which in turn

could be generalized again for finite systems in future studies.
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