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SUMMARY 

 

The preliminary materials providing the requisite tools and substantial 

background to study the set differential equations in metric spaces were collected since 

the metric space concerned consists of all nonempty compact convex sets in finite 

dimensional space. The requisite theorems and definitions in set differential equations 

are given to study the monotone iterative technique for set differential equations in 

metric spaces utilizing the method of upper and lower solutions. It is well known that 

the method of upper and lower solutions with the monotone iterative technique offers 

abstract as well as deductive existence result in a closed set that is generated by upper 

and lower solutions. The natural question is whether it is possible to extend the 

monotone method when the given function is the difference of two or three functions. 

So that we can obtain some known results as special cases and some new results. The 

answer is positive, this offers a new look into the monotone method results developed 

so far and also combine all the results in a single set up. The results took into account 

here are so public that they include several special cases of interest, and this leads to 

the possibility of having four or eight types of upper and lower solutions. In this thesis 

we consider coupled lower and upper solutions were considered and two sequences 

which converge to coupled minimal and maximal solutions respectively were 

developed.  

 

 

 

 

 

 

 

Keywords: Set Valued Differential Equation, Monotone Iterative Technique, 

Upper and Lower Solutions. 
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ÖZET 

 

Metrik uzaylarda verilmiş küme diferansiyel denklemleri incelemek için öncelikle 

gerekli araçları ve önemli koşulları sağlayan bazı  öncelikli materyalleri veriyoruz, 

çünkü ilgili metrik uzay sonlu boyutlu uzayda tüm boşolmayan kompakt konveks 

kümelerden oluşur, bu yüzden küme diferansiyel denklemlerdeki gerekli teoremler ve 

tanımlara ihtiyacımız var. Metrik uzaylarda küme diferansiyel denklemler için 

monoton iterasyon tekniğin incelenmesi, karşılaştırma sonuçlarının, alt ve üst çözüm 

yöntemlerinin kullanılması, monoton iterasyon yöntemin üst ve alt çözüm 

yöntemlerinin bir sonucu olarak ortayı çıktığı bilinmektedir. Üst ve alt çözümlerin 

oluşturduğu kapalı ve sınırlı bir kümede verilen sürekli fonksiyonlar yani doğal 

denklemler, bu verilen fonksiyon iki veya üç farklı fonksiyonun kombinasyonu olarak 

verildiğinde bu monoton iterasyon tekniğinin bu tip denklemlere uygulanıp 

uygulanamayacağı ilğinç bir açık problem ola gelmiştir. Bu problem çözüldüğünde 

böylece özel durumlar olarak bilinen bazı sonuçları ve bazı yeni sonuçlar elde 

edebiliriz. Bu problemin çözümü mümkün olup ve cevabı da olumludur. Bu fikir 

monotone iterasyon yöntemine yeni bir bakış kazandırıyor ve yeni bir perspektif 

sunmuştur. Şimdiye kadar elde edilen sonuçları genelleştirip ve literatürde ki tek bir 

fonkosiyon için tüm sonuçları elde ettik. Elde edilen tüm sonuçlar burada göz önünde 

bulundurulduğunda çok özel ilgi alanları içerdiğini ve bu sayede dört ve sekiz tip üst 

ve alt çözümleri kullanılmıştır.  Bu tezde, eşleşmiş alt ve üst çözümleri ele almakta ve 

eşleşmiş minimum ve maksimum çözümlere düzgün yakınsayan monoton fonksiyon 

dizi çiftleri elde edilmiştir. 

 

 

 

 

 

Anahtar kelimeler: Küme Differansiyel Denklemler, Monotone Iterasyon 

Teknikler, Alt ve Üst Çözümler. 
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1. INTRODUCTION 

Multivalued differential equations (now known as set differential equations 

(SDEs) generated by multivalued differential inclusions) have been introduced in a 

semi-linear metric space, consisting of all nonempty, compact, convex subsets of an 

initial finite or infinite dimensional space[1]. The basic existence and uniqueness 

results of such (SDEs) have been investigated and their solutions have compact, 

convex values. Also, these generated (SDEs) have been employed as a material to 

prove the existence of solutions in a united method, of multivalued differential 

inclusions [1, 2, 3, 4]. The third chapter is devoted to the basic theory of set differential 

equations (SDEs). We begin with the formulation of the initial value problem of 

(SDEs) in the metric space (𝐾𝐶(𝑅𝑛), 𝐷). Utilizing the properties of the Hausdorff 

metric 𝐷[·,·] and employing the known theory of differential and integral inequalities, 

we establish a variety of comparison results, that are required for later 

discussion[1, 5]. The monotone iterative technique is considered for SDE in the fourth 

chapter, employing the method of upper and lower solutions. The results considered 

are so general that they contain several special cases of interest [1, 6, 7, 8, 9, 10]. In the 

fifth chapter, comparison results with initial time difference are given, we will study 

the monotone iterative technique for one (single), two and three functions with initial 

time difference [11, 12, 13]. 
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2. PRELIMINARIES 

Definition 2.1: We will define three spaces of non-empty subsets of  𝑅𝑛, namely,  

• 𝐾𝐶(𝑅𝑛) consisting of all nonempty compact convex subsets of 𝑅𝑛, 

• 𝐾(𝑅𝑛) consisting of all nonempty compact subsets of 𝑅𝑛, 

• 𝐶(𝑅𝑛) consisting of all nonempty closed subsets of 𝑅𝑛, 

recall that a nonempty subset 𝐴 of 𝑅𝑛, is convex if for all 𝑎1, 𝑎2 ∈ 𝐴 and all λ ∈[0 , 1], 

the point: 

                                             𝑎 =  𝜆𝑎1 + (1 − 𝜆)𝑎 2  (2.1) 

 

belongs to 𝐴. For any nonempty subset 𝐴 of 𝑅𝑛, we denote by 𝑐𝑜𝐴 Its convex hull. 

That is the totality of points 𝑎 of the form (2.1) or, equivalently, the smallest Convex 

subset containing 𝐴, clearly: 

                                                  𝐴 ⊆ 𝑐𝑜𝐴 = 𝑐𝑜(𝑐𝑜𝐴) (2.2) 

with 𝐴 = 𝑐𝑜𝐴 if 𝐴 is convex. 

Let 𝐴 and 𝐵 be two nonempty subsets of 𝑅𝑛. And let λ ∈ 𝑅, we define the following 

Makowski addition and scalar multiplication by: 

𝐴 + 𝐵 = {𝑎 + 𝑏, 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (2.3) 

and                                                  

𝜆𝐴 = {𝜆𝑎 , 𝑎 ∈ 𝐴} (2.4) 

 

then we have some useful known examples in literature about the convex sets as 

follows: 

Example 2.1: An interval [𝑎 , 𝑏] ⊂ 𝑅  is a convex set. To see this let 𝑐 , 𝑑 ∈ [𝑎 , 𝑏 ] 

and assume, without loss of generality that 𝑐 < 𝑑, let 𝜆 ∈ (0 1), then  

𝑎 ≤ (1 − 𝜆)𝑐 + 𝜆𝑐 <   

(1 − 𝜆)𝑐 + 𝜆𝑑 <  

(1 − 𝜆)𝑑 + 𝜆𝑑 = 𝑑 ≤ 𝑏. (2.5) 
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Example 2.2: A disk with center (0,0) and raduis c is a convex subset of 𝑅2. We can 

easily show that by using the usual distance formula in 𝑅2, namely: 

‖𝑥 − 𝑦‖ = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 (2.6) 

and the triangle inequality: 

‖𝑢 + 𝑣‖ ≤ ‖𝑢‖ + ‖𝑣‖ (2.7) 

if the disc’s center is the origin and its radius c, then 𝑥  belong to the disc if and only 

if ‖𝑥‖2 ≤ 𝑐2. Let 𝑢 and 𝑣 belong to the disc. And let 0 ≤ 𝜆 ≤ 1. Then: 

‖𝜆𝑢 + (1 − 𝜆)𝑣‖2 = 𝜆2‖𝑢‖2 + 2𝜆(1 − 𝜆)‖𝑢‖‖𝑣‖ +  (1 − 𝜆)2‖𝑣‖2 (2.8) 

since, ‖𝑢‖2 ≤ 𝑐2 and  ‖𝑣‖2 ≤ 𝑐2 

‖𝜆𝑢 + (1 − 𝜆)𝑣‖2 ≤  𝜆2𝑐2 + 2𝜆(1 − 𝜆)𝑐2 + (1 − 𝜆)2𝑐2 (2.9) 

So, we arrive at: 

‖𝜆𝑢 + (1 − 𝜆)𝑣‖2 ≤ 𝑐2. (2.10) 

 

Example 2.3: In 𝑅𝑛 the set 𝐻 ≔ {𝑥 ∈ 𝑅𝑛 ∶ 𝑎1 𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑐} is a 

convex set. For any choice of constants 𝑎𝑖 in 𝑅𝑛. It is defining equation is a 

generalization of the usual equation of a plane in 𝑅3, namely the equation: 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 (2.11) 

We will show that 𝐻 is a convex set. To do that Let 𝑥1, 𝑥2 ∈ 𝐻 and define 𝑧 ∈ 𝑅3 by  

𝑍 = ∑ 𝑎𝑖

𝑛

𝑖=1

[(1 − 𝜆)𝑥𝑖
1 + 𝜆𝑥𝑖

2] = ∑[(1 − 𝜆)𝑎𝑖𝑥𝑖
1 + 𝜆𝑎𝑖𝑥𝑖

2]

𝑛

𝑖=1

 

= (1 − 𝜆) ∑ 𝑎𝑖 𝑥𝑖
1

𝑛

𝑖=1

+ 𝜆 ∑ 𝑎𝑖

𝑛

𝑖=1

𝑥𝑖
2 = (1 − 𝜆)𝑐 + 𝜆𝑐 = 𝑐 

 

 

 

(2.12) 

Hence 𝑍 ∈ 𝐻. 
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Example 2.4: As a generalization of the previous example, let 𝐴 be an 𝑚 × 𝑛 matrix, 

𝑏 ∈ 𝑅𝑚 and let  𝑆 ≔ {𝑥 ∈ 𝑅𝑛 ∶ 𝐴𝑥 = 𝑏} (the set 𝑆 is just the set of all solutions of the 

linear equation 𝐴𝑥 = 𝑏) then the set 𝑆 is a convex subset of 𝑅𝑛. Let 𝑥1, 𝑥2 ∈ 𝑆 then: 

𝐴((1 − 𝜆)𝑥1 + 𝜆𝑥2) = (1 − 𝜆)𝐴 𝑥1 + 𝜆𝐴 𝑥2 

                                                                 = (1 − 𝜆)𝑏 + 𝜆𝑏 = 𝑏. 

(2.13) 

 

Note 2.1: There are always two. So, called trivial examples. These are the empty set 𝜙, 

and the entire space 𝑅𝑛, note also that a singleton {𝑥} is convex, in this latter case as 

in the case of empty set, the definition is satisfied. 

 

Then we have the following propositions: 

Propositions: The spaces 𝐶(𝑅𝑛), 𝐾(𝑅𝑛) and 𝐾𝐶(𝑅𝑛) are closed under the operations 

of additions and scalar multiplication. In fact, the following properties hold: 

• 𝐴 + 𝜃 = 𝜃 + 𝐴 = 𝐴, where θ ∈ 𝑅𝑛 is the zero element of  𝑅𝑛 

• (𝐴 + 𝐵 ) + 𝐶 = 𝐴 + (𝐵 + 𝐶) 

• 𝐴 + 𝐶 = 𝐵 + 𝐶 ⇒ 𝐴 = 𝐵  

• 1. 𝐴 = 𝐴 

• 𝜆(𝐴 + 𝐵) = 𝜆𝐴 + 𝜆𝐵 

• (𝜆 + 𝜇)𝐴 = 𝜆𝐴 + 𝜇𝐴 

where 𝐴, 𝐵, 𝐶 ∈  𝐾𝐶(𝑅𝑛), 𝜆, 𝜇 ∈ 𝑅+. 

 

The Hausdorff metric: 

Let 𝑥 be a point in 𝑅𝑛 and  𝐴 a nonempty subset of 𝑅𝑛 the distance 𝑑(𝑥, 𝐴) from 𝑥 to 𝐴 

is defined by: 

𝑑(𝑥, 𝐴) = inf{‖𝑥 − 𝑎‖: 𝑎 ∈ 𝐴} (2.14) 

thus 𝑑(𝑥, 𝐴) = 𝑑(𝑥, 𝐴̅) ≥ 0 and 𝑑(𝑥, 𝐴) = 0, if and only if 𝑥 ∈ 𝐴̅, where 𝐴̅ is the 

closure of 𝐴 ⊆ 𝑅𝑛. We shall call the subset: 
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𝑆𝜀(𝐴) = {𝑥 ∈ 𝑅𝑛 ∶ 𝑑(𝑥, 𝐴) < 𝜀} (2.15) 

an 𝜀_neighborhood of 𝐴, and its closure is the subset: 

𝑆𝜀̅(𝐴) = {𝑥 ∈ 𝑅𝑛 ∶ 𝑑(𝑥, 𝐴) ≤ 𝜀} (2.16) 

we shall denote by: 

𝑆1̅
𝑛 = 𝑆1̅ (𝜃) (2.17) 

which is clearly a compact subset of 𝑅𝑛. Note also that: 

𝑆𝜀̅(𝐴) = 𝐴 + 𝜀𝑆1̅
𝑛 (2.18) 

for any 𝜀 > 0 and any nonempty subset 𝐴 of  𝑅𝑛. We shall for convenience sometimes 

write 𝑆(𝐴, 𝜀) and 𝑆𝜀̅(𝐴). Now let 𝐴 and 𝐵 be nonempty subsets of 𝑅𝑛. We define the 

Hausdorff separation of 𝐵 from 𝐴 by: 

𝑑𝐻(𝐵, 𝐴) = 𝑠𝑢𝑝{𝑑(𝑏, 𝐴): 𝑏 ∈ 𝐵} (2.19) 

or, equivalently: 

𝑑𝐻(𝐵, 𝐴) = 𝑖𝑛𝑓{𝜀 > 0  ∶ 𝐵 ⊆ 𝐴 + 𝜀𝑆1̅
𝑛} (2.20) 

we have 𝑑𝐻(𝐵, 𝐴) ≥ 0 with 𝑑𝐻(𝐵, 𝐴) = 0 iff 𝐵 ⊆ 𝐴̅, also the triangle inequality: 

𝑑𝐻(𝐵, 𝐴) ≤ 𝑑𝐻(𝐵, 𝐶) + 𝑑𝐻(𝐶, 𝐴) (2.21) 

holds, for all nonempty subsets 𝐴, 𝐵 and 𝐶 of 𝑅𝑛, in general however: 

𝑑𝐻(𝐴, 𝐵) ≠ 𝑑𝐻(𝐵, 𝐴) (2.22) 

we define the Hausdorff distance between nonempty subsets 𝐴 and 𝐵 of 𝑅𝑛 by: 

𝐷(𝐴, 𝐵) = 𝑚𝑎𝑥{𝑑𝐻(𝐴, 𝐵), 𝑑𝐻(𝐵, 𝐴) } (2.23) 

which is symmetric in 𝐴 and 𝐵. Consequently: 

• 𝐷(𝐴, 𝐵) ≥ 0 with 𝐷(𝐴, 𝐵) = 0 iff  𝐴̅ = 𝐵̅ 

• 𝐷(𝐴, 𝐵) = 𝐷(𝐵, 𝐴) 

• 𝐷(𝐴, 𝐵) ≤ 𝐷(𝐴, 𝐶) + 𝐷(𝐶, 𝐵) 

for any nonempty subsets 𝐴, 𝐵 and 𝐶 of 𝑅𝑛. 



6 
 

If we restrict our attention to nonempty closed subsets of 𝑅𝑛, we find that the 

Hausdorff distance is a metric known as the Hausdorff metric. Thus (𝐶(𝑅𝑛), 𝐷) is a 

metric space. 

And so, we have the following properties: 

Proposition 2.1: (𝐶(𝑅𝑛), 𝐷) is a complete separable metric space in which 𝐾(𝑅𝑛) and 

𝐾𝐶(𝑅𝑛) are closed subsets. Hence (𝐾(𝑅𝑛), 𝐷) and (𝐾𝐶(𝑅𝑛), 𝐷) are also complete 

separable metric spaces. 

 

We need the following result which deals with the law of cancellation to proceed 

further. 

Lemma 2.1: Let 𝐴 and 𝐵 ∈ 𝐾𝐶(𝑅𝑛) and 𝐶 ∈ 𝐶(𝑅𝑛) then, If 𝐴 + 𝐶 ⊆ 𝐵 + 𝐶 then 𝐴 ⊆

𝐵. 

Proof 2.1: Let 𝑎 be any element of 𝐴, we need to show that 𝑎 ∈ 𝐵. For any 𝑐1 ∈ 𝐶, we 

have 𝑎 + 𝑐1 ∈ 𝐵 + 𝐶, that is there exist 𝑏1 ∈ 𝐵 and 𝑐2 ∈ 𝐶 with 𝑎 + 𝑐1 = 𝑏1 + 𝑐2 for 

the same reason, 𝑏2 ∈ 𝐵 and 𝑐3 ∈ 𝐶, with 𝑎 + 𝑐2 = 𝑏2 + 𝑐3 it will be exist. Iterate the 

steps indefinitely and sum the first 𝑛 of the equations we get: 

𝑛𝑎 + ∑ 𝑐𝑖 =

𝑛

𝑖=1

∑ 𝑏𝑖

𝑛

𝑖=1

+ ∑ 𝑐𝑖

𝑛+1

𝑖=2

 

 

(2.24) 

which implies: 

𝑛𝑎 + 𝑐1 + 𝑐2 + ⋯ + 𝑐𝑛 = (∑ 𝑏𝑖

𝑛

𝑖=1

) + 𝑐2 + 𝑐3 + ⋯ + 𝑐𝑛 + 𝑐𝑛+1 (2.25) 

𝑛𝑎 + 𝑐1 = (∑ 𝑏𝑖

𝑛

𝑖=1

) + 𝑐𝑛+1 (2.26) 

then: 

𝑎 =  
1

𝑛
(∑ 𝑏𝑖

𝑛

𝑖=1

) +  
𝑐𝑛+1

𝑛
−

𝑐1

𝑛
 (2.27) 

we will set: 
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𝑥𝑛 =
1

𝑛
∑ 𝑏𝑖

𝑛

𝑖=1

 (2.28) 

consequently,  

𝑎 = 𝑥𝑛 +
𝑐𝑛+1

𝑛
−

𝑐1

𝑛
 (2.29) 

we observe that 𝑥𝑛 ∈ 𝐵. For all 𝑛, as 𝑛 → ∞ 

𝑐𝑛+1

𝑛
−

𝑐1

𝑛
→ 0 (2.30) 

this shows that 𝑥𝑛 converges to 𝑎. And since 𝐵 is compact 𝑎 ∈ 𝐵. 

Proposition 2.2: If 𝐴, 𝐵 ∈ 𝐾𝑐(𝑅𝑛) and 𝐶 ∈ 𝐾(𝑅𝑛 ) then: 

𝐷(𝐴 + 𝐶, 𝐵 + 𝐶) = 𝐷(𝐴, 𝐵) (2.31) 

Proof 2.2: Let 𝜆 ≥ 0 and 𝑆 denote the closed unit sphere of the space. Consider the 

following inequalities: 

i) 𝐴 + 𝜆𝑆 ⊃ 𝐵 

ii) 𝐵 +  𝜆𝑆 ⊃ 𝐴 

iii) 𝐴 + 𝐶 +  𝜆𝑆 ⊃ 𝐵 + 𝐶 

iv) 𝐵 + 𝐶 +  𝜆𝑆 ⊃ 𝐴 + 𝐶 

Put 𝑑1 = 𝐷(𝐴, 𝐵) and 𝑑2 = 𝐷(𝐴 + 𝐶, 𝐵 + 𝐶), then 𝑑1 is the infimum of the positive 

numbers 𝜆 for which (i) and (ii) hold. Similarly, 𝑑2 is the infimum of the positive 

numbers 𝜆 for which (iii) and (iv) hold. Since (iii) and (iv) follow from (i) and (ii) by 

adding 𝐶 we have 𝑑1 ≥ 𝑑2. conversely since by Lemma (2.1) cancelling 𝐶 is allowed 

in (iii) and (iv). We obtain 𝑑1 ≤ 𝑑2, which proves the proposition. 

 

Proposition 2.3: If 𝐴, 𝐵 ∈ 𝐾(𝑅𝑛): 

• 𝐷(𝑐𝑜𝐴 , 𝑐𝑜 𝐵) ≤ 𝐷(𝐴, 𝐵) (2.32) 

• If 𝐴, 𝐴′, 𝐵, 𝐵′ ∈ 𝐾𝐶(𝑅𝑛) then: 

  𝐷(𝐴 + 𝐴′, 𝐵 + 𝐵′) ≤ 𝐷(𝐴, 𝐵) + 𝐷(𝐴′, 𝐵′)  (2.33) 

                𝐷(𝐴 − 𝐴′, 𝐵 − 𝐵′) ≤ 𝐷(𝐴, 𝐵) + 𝐷(𝐴′, 𝐵′) (2.34) 
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provided the difference 𝐴 − 𝐴′, 𝐵 − 𝐵′ exist. 

• furthermore with 𝛽 = 𝑚𝑎𝑥{𝜆 , 𝜇}, we have:  

𝐷(𝜆𝐴, 𝜇𝐵) ≤ 𝛽𝐷(𝐴, 𝐵) + |𝜆 − 𝜇|[𝐷(𝐴, 𝜃) + 𝐷(𝐵, 𝜃)] (2.35) 

and if 𝐴 − 𝐵 exist:  

𝐷(𝜆𝐴, 𝜆𝐵) = 𝜆𝐷(𝐴 − 𝐵, 𝜃) 

• 𝐷(𝑡𝐴, 𝑡𝐵 ) = 𝑡𝐷(𝐴, 𝐵), for all 𝑡 ≥ 0 . 

(2.36) 

(2.37) 

 

In general, 𝐴 + (−𝐴) ≠ {𝜃}, this is illustrated by the following example. 

 

Example 2.5: Let 𝐵 = [0, 5], so that (−1)𝐵 = [−5, 0], and therefore  

 𝐵 + (−1)𝐵 = [0,5] + [−5,0] = [−5, 5] 

thus, adding (-1) times a set does not constitute a natural operation of subtraction. 

 

 Definition 2.2: For a fixed 𝐴 and 𝐵 in 𝐾𝐶(𝑅𝑛), if there exists an element 𝐶 ∈ 𝐾𝐶(𝑅𝑛) 

such that 𝐴 = 𝐵 + 𝐶, then we say that the Hukuhara difference of 𝐴 and 𝐵 exists and 

is denoted by 𝐴 − 𝐵. 

When the Hukuhara difference exists, it is unique. This follows from this property: 

𝐴 + 𝐶 = 𝐵 + 𝐶 ⇒ 𝐴 = 𝐵 (2.38) 

suppose for a fixed 𝐴 and 𝐵 in 𝐾𝐶(𝑅𝑛) there exists an element 𝐶 ∈ 𝐾𝐶(𝑅𝑛), such that:  

𝐴 = 𝐵 + 𝐶 (2.39) 

and for an element 𝐺 ∈ 𝐾𝐶(𝑅𝑛) such that: 

𝐴 = 𝐵 + 𝐺 (2.40) 

then according to the property (2.38)  

𝐵 + 𝐶 =  𝐵 + 𝐺 ⇒ 𝐶 = 𝐺. (2.41) 
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The following example explains the Definition (2.2). 

Example 2.6: We get from the previous example that: 

[−5, 5] − [−5,0] = [0,1] and [−5,5] − [0,5] = [−5,0] 

note that the Hukuhara difference 𝐴 − 𝐵 is different from the set: 

𝐴 + (−𝐵) = {𝑎 + (−𝑏);    𝑎 ∈ 𝐴 , 𝑏 ∈ 𝐵} 

from the previous example, we can set: 

𝐵 = [0,5]         𝐴 = [−5,5] 

then we can note that: 

𝐴 − 𝐵 = [−5,5] − [0,5] = [−5,0] 

𝐴 + (−𝐵) = [−5,5] + [−5,0] = [−5,5]. 

 

The next proposition provides the necessary and sufficient condition for the existence 

of the Hukuhara difference 𝐴 − 𝐵. 

Proposition 2.4: Let 𝐴, 𝐵 ∈ 𝐾𝐶(𝑅𝑛) for the difference 𝐴 − 𝐵 to exist. It is necessary 

and sufficient to have the following condition. If 𝑎 ∈ 𝛿𝐴, there exists at least a point 𝑐 

such that: 

𝑎 ∈ 𝐵 + 𝑐 ⊂ 𝐴 (2.42) 

Proof 2.4:  Necessity: suppose the difference 𝐴 − 𝐵 exists. Let 𝐶 =  𝐴 − 𝐵, then.  𝐴 =

 𝐵 +  𝐶. If 𝑎 ∈ 𝛿𝐴, then  

𝑎 ∈ 𝐵 + 𝐶 (2.43) 

that is 

                                                    𝑎 = 𝑏 + 𝑐  , 𝑏 ∈ 𝐵 , 𝑐 ∈ 𝐶  (2.44) 

also, if 𝑧 ∈ 𝐵 then: 

𝑧 + 𝑐 ∈ 𝐴 (2.45) 

and therefore 

𝑎 ∈ 𝐵 + 𝑐 ⊂ 𝐴 (2.46) 
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Sufficiency: 

Suppose 𝑎 ∈ 𝐵 + 𝑐 ⊂ 𝐴 holds, consider the set 𝐶 = {𝑥 ∶ 𝐵 + 𝑥 ⊆ 𝐴} clearly 𝐶 is 

compact and we have 𝐵 + 𝐶 ⊆ 𝐴. Now if 𝑑 and 𝑑′ ∈ 𝐶, then we have 𝐵 + 𝑑 ⊆ 𝐴  and  

𝐵 + 𝑑′ ⊆ 𝐴  from which we obtain: 

(1 − 𝜆)(𝐵 + 𝑑) + 𝜆(𝐵 + 𝑑′) ⊂ 𝐴       for   0 ≤ 𝜆 ≤ 1 (2.47) 

that since 𝐴 is convex. We can write the L.H.S as 𝐵 + 𝑧 where 𝑧 = (1 − 𝜆)𝑑 + 𝑑′ 

hence 𝑧 ∈ 𝐶  and 𝐶 is convex. 

Now let 𝑢 ∈ 𝐴. A straight line through 𝑢 meets 𝛿𝐴 at two points 𝑎 , 𝑎′. By hypothesis 

there exist elements 𝑑 , 𝑑′ ∈ 𝐶. Such that: 

𝑎 ∈ 𝐵 + 𝑑  and 𝑎′ ∈ 𝐵 + 𝑑′ (2.48) 

we can write: 

𝑢 = (1 − 𝜆)𝑎 + 𝜆𝑎′  with  0 < 𝜆 < 1 (2.49) 

then: 

𝑢 ∈ 𝐵 + 𝑧 (2.50) 

where 𝑧 = (1 − 𝜆)𝑑 + 𝜆𝑑′ ∈ 𝐶,  hence 𝐴 ⊆ 𝐵 + 𝐶, thus  𝐴 = 𝐵 + 𝐶. And the proof 

is complete.∎ 

We note that an indispensable condition for the Hukuhara difference 𝐴 − 𝐵 to exist is 

that some translate of 𝐵 is a subset of 𝐴, however, in general the Hukuhara difference 

need not exist as is seen from the next example. 

Example 2.7: {0} − [0,2] does not exist, since no translate of [0,2] can ever belong to 

the singleton set {0}. 

 

Definition 2.3: Let 𝐼 be an interval of real numbers. Let 𝑈 a multifunction: 

𝑈: 𝐼 ⟶ 𝐾𝐶(𝑅𝑛) (2.51) 

be given, 𝑈 is Hukuhara differentiable at a point 𝑡0 ∈ 𝐼, if there exists 𝐷𝐻𝑈(𝑡0) ∈

𝐾𝐶(𝑅𝑛) such that the limits: 
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𝑙𝑖𝑚∆𝑡→0+

𝑈(𝑡0 + ∆𝑡) − 𝑈(𝑡0)

∆𝑡
 

(2.52) 

and  

𝑙𝑖𝑚∆𝑡→0+

𝑈(𝑡0) − 𝑈(𝑡0 − ∆𝑡)

∆𝑡
  

(2.53) 

both exist and are equal to 𝐷𝐻𝑈(𝑡0). 

 

clearly, implicit in the definition of 𝐷𝐻𝑈(𝑡0) is the existence of the differences 

𝑈(𝑡0) − 𝑈(𝑡0 − ∆𝑡) and 𝑈(𝑡0 + ∆𝑡) − 𝑈(𝑡0), for all  ∆𝑡 > 0 sufficiently small. 

 

Definition 2.4: We shall say that 𝐹: [0,1] → 𝐾𝑐(ℝ𝑛) is integrally bounded on [0,1] if 

there exists an integrable function 𝑔: [0,1] → ℝ such that 

‖𝐹(𝑡)‖ ≤ 𝑔(𝑡), ∀𝑡 ∈ [0,1]. (2.54) 

 

Theorem 2.1: 𝐹: 𝑇 →  𝐾𝑐(ℝ𝑛) is measurable if and only if there exists a sequence {𝑓𝑖} 

of measurable selectors of 𝐹 such that: 

𝐹(𝑡) = ⋃{𝑓𝑖(𝑡): 𝑖 = 1,2, ⋯ }
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

,  for each 𝑡 ∈ 𝑇 
(2.55) 

 

Theorem 2.2: Let 𝐹: [0,1] ⟶ 𝐾𝐶(𝑅𝑛) be measurable and integrally bounded. Then 

𝐴: [0,1] ⟶ 𝐾𝐶(𝑅𝑛) defined by: 

𝐴(𝑡) = ∫ 𝐹(𝑠)𝑑𝑠
𝑡

0

 
(2.56) 

for all 𝑡 ∈ [0,1] is Hukuhara differentiable for almost all 𝑡0 ∈ (0,1), with the 

Hukuhara derivative 𝐷𝐻𝐴(𝑡0) = 𝐹(𝑡0). 
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Definition 2.5: We consider mappings 𝐹 from a domain 𝑇 in 𝑅𝑛 into the metric space 

(𝐾𝑐(𝑅𝑛) , 𝐷). Thus,  𝐹: 𝑇 → 𝐾𝑐(𝑅𝑛) or equivalently 

𝐹(𝑡) ∈ 𝐾𝑐(𝑅𝑛), for all 𝑡 ∈ 𝑇 (2.57) 

we shall call such a mapping 𝐹 is a (compact convex) set valued mapping from 𝑇 to 

𝑅𝑛. 

Definition 2.6: We shall say that a set valued mapping 𝐹 satisfying (2.57) is continuous 

at 𝑡0 ∈ 𝑇 if  ∀𝜖 > 0 there exists a 𝛿 = 𝛿(𝜖, 𝑡0) > 0, such that 

𝐷[𝐹(𝑡), 𝐹(𝑡0)] < 𝜀, ∀𝑡 ∈ 𝑇 with ∥ 𝑡 − 𝑡0 ∥< 𝛿 (2.58) 

alternatively, we can write (2.7) in terms of the convergence of sequences, that is 

𝑙𝑖𝑚
𝑡𝑛→𝑡0

𝐷[𝐹(𝑡𝑛), 𝐹(𝑡0)] = 0, ∀𝑡𝑛 ∈ 𝑇 with 𝑡𝑛 → 𝑡0 ∈ 𝑇 (2.59) 

using the Hausdorff separation 𝑑𝐻 and neighborhoods, we see that (2.7) is 

combination of 

𝑑𝐻(𝐹(𝑡), 𝐹(𝑡0)) < 𝜀 (2.60) 

that is  

𝐹(𝑡) ⊂ 𝑆𝜖(𝐹(𝑡0)) ≡ 𝐹(𝑡0) + 𝜖𝑆1
𝑛 (2.61) 

and  

𝑑𝐻(𝐹(𝑡0), 𝐹(𝑡)) < 𝜀 (2.62) 

that is  

𝐹(𝑡0) ⊂ 𝑆𝜖(𝐹(𝑡)) ≡ 𝐹(𝑡) + 𝜖𝑆1
𝑛 (2.63) 

For all 𝑡 ∈ 𝑇 with ∥ 𝑡 − 𝑡0 ∥< 𝛿. As before, 𝑆1
𝑛 = {𝑥 ∈ ℝ𝑛: ∥ 𝑥 ∥< 1} is the open unit 

ball in ℝ𝑛. If the mapping 𝐹 satisfies (2.60), (2.61), then we say that is upper 

semicontinuous at 𝑡0, or that is lower semicontinuous at 𝑡0, if it satisfies (2.62), (2.63). 

Thus 𝐹 is continuous at 𝑡0 if and only if it is both lower semicontinuous and upper 

semicontinuous at 𝑡0. 
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3. BASIC THEORY 

3.1. Basic Definitions and Theorems:  

Let us consider the initial value problem (IVP) for the set differential equation: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈), 𝑈(𝑡0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛), 𝑡0 ≥ 0 (3.1.1) 

where 𝐹 ∈ 𝐶[𝑅+ × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)] and 𝐷𝐻𝑈 is the Hukuhara derivative of 𝑈.The 

mapping 𝑈 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] where 𝐽 = [𝑡0, 𝑡0 + 𝑎], 𝑎 > 0, is said to be a solution of 

(3.1.1) on 𝐽, if it satisfies (3.1.1) on 𝐽. Since 𝑈(𝑡) is continuously differentiable, we 

have: 

𝑈(𝑡) = 𝑈0 + ∫ 𝐷𝐻𝑈(𝑠)𝑑𝑠, 𝑡 ∈ 𝐽
𝑡

𝑡0

 
 

(3.1.2) 

we therefore associate with the IVP (3.1.1), the following integral equation: 

𝑈(𝑡) = 𝑈0 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠
𝑡

𝑡0

, 𝑡 ∈ 𝐽     (3.1.3) 

where the integral in (3.1.3) is the Hukuhara integral observe also that 𝑈(𝑡) is a 

solution of (3.1.1) if and only if it satisfies (3.1.3) on 𝐽. Since 𝐹 is continuously 

differentiable in 𝑅+, then any solution of (3.1.1) is also a solution of (3.1.3) and 

conversely. 

Proof: 

Any solution of the differential equation (3.1.1) converts it into an identity in 𝑈 i.e.: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈), an integration of this equality with 𝑈(𝑡0) = 𝑈0 gives (3.1.3) 

conversely, if 𝑈(𝑡) is any solution of (3.1.3) then the substitution 𝑡 = 𝑡0 in (3.1.3) 

gives 𝑈(𝑡0) = 𝑈0, further, since 𝐹(𝑡, 𝑈) is continuous, by differentiating (3.1.3) we 

find that 𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈).∎ 

 

Definition 3.1.1: Let 𝑟(𝑡) be the solution of (3.1.1) on 𝐽, then 𝑟(𝑡) is said to be a 

maximal solution of (3.1.1) if for every solution 𝑈(𝑡) of (3.1.1) on 𝐽. The inequality: 

𝑈(𝑡) ≤  𝑟(𝑡),     𝑡 ∈ 𝐽   (3.1.4) 

holds. 
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Definition 3.1.2: Let 𝜌(𝑡) be a solution of (3.1.1) on 𝐽, then 𝜌(𝑡) is said to be a minimal 

solution of (3.1.1). If for every solution 𝑈(𝑡) of (3.1.1) on 𝐽. The inequality: 

𝑈(𝑡) ≥ 𝜌(𝑡),     𝑡 ∈ 𝐽      (3.1.5) 

holds. 

 

Definition 3.1.3: A function 𝑊(𝑡) ∈ 𝐶1[𝑅+, 𝐾𝐶(𝑅𝑛)], is said to be upper solution of 

(3.1.1) if: 

𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊), 𝑊(𝑡0) ≥ 𝑈0    𝑜𝑛  𝐽       (3.1.6) 

holds. 

 

Definition 3.1.4: A function 𝑉(𝑡) ∈ 𝐶1[𝑅+, 𝐾𝐶(𝑅𝑛)], is said to be lower solution of 

(3.1.1) if: 

𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉), 𝑉(𝑡0) ≤ 𝑈0    𝑜𝑛  𝐽    (3.1.7) 

holds. 

 

Definition 3.1.5: A family of functions 𝐹 = {𝑓𝛼(𝑡)}𝛼∈𝐴 defined on real interval 𝐽 is said 

to be equicontinuous on 𝐽 if  for any given 𝜀 > 0, there exists 𝛿 = 𝛿(𝜀) independent 

of 𝑓𝛼 ∈ 𝐹  and also of  𝑡1 , 𝑡2 in 𝐽  in such that: 

|𝑓𝛼(𝑡1) − 𝑓𝛼(𝑡2) | < 𝜀   whenever        |𝑡1 − 𝑡2| < 𝛿 (3.1.8) 

 

Lemma (Ascoli’s Lemma) 3.1.1: Let 𝐹 = {𝑓𝛼(𝑡)}𝛼∈𝐴 be a family of functions which is 

uniformly bounded and equicontinuous on an interval 𝐽. Then every sequence of 

functions  {𝑓𝑛(𝑡)} in 𝐹 contains a subsequence {𝑓𝑛𝑘
(𝑡)}, k = 0, 1, 2, … which is 

uniformly convergent on every compact sub-interval of  𝐽. 

 

Lemma (Grownwall’s Lemma) 3.1.2: Assume that 𝑓, 𝑔 ∈ 𝐶[𝑅+ × 𝑅𝑛, 𝑅𝑛], non-

negative functions, for 𝑡 ≥ 𝑡0, and 𝑐 > 0, be a constant. Then the inequality: 
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𝑓(𝑡) ≤ 𝑐 + ∫ 𝑓(𝑠)𝑔(𝑠)𝑑𝑠, 𝑡 ≥ 𝑡0

𝑡

𝑡0

 (3.1.9) 

implies the inequality: 

𝑓(𝑡) ≤ 𝑐 𝑒𝑥𝑝 [∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

] (3.1.10) 

Proof 3.1.2: We have: 

𝑓(𝑡) ≤ 𝑐 + ∫ 𝑔(𝑠)𝑓(𝑠)𝑑𝑠, 𝑐 > 0
𝑡

𝑡0

 (3.1.11) 

then we can write: 

𝑓(𝑡)𝑔(𝑡)

𝑐 + ∫ 𝑓(𝑠)𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

≤ 𝑔(𝑡) 
(3.1.12) 

Let 

𝑟(𝑡) = 𝑐 + ∫ 𝑔(𝑠)𝑓(𝑠)𝑑𝑠,   𝑡 ≥ 𝑡0

𝑡

𝑡0

 (3.1.13) 

then: 

                                  𝑟′(𝑡) = 𝑓(𝑡)𝑔(𝑡), 𝑟(𝑡0) = 𝑐 (3.1.14) 

𝑟′(𝑡) = 𝑓(𝑡)𝑔(𝑡) ≤ 𝑟(𝑡)𝑔(𝑡) (3.1.15) 

which leads to: 

∫
𝑟′(𝑠)

𝑟(𝑠)

𝑡

𝑡0

𝑑𝑠 ≤ ∫ 𝑔(𝑠)𝑑𝑠 
𝑡

𝑡0

 (3.1.16) 

𝑙𝑛[𝑟(𝑡)] − 𝑙𝑛[𝑟(𝑡0)] ≤ ∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

 (3.1.17) 

𝑙𝑛[𝑟(𝑡)] − 𝑙𝑛[𝑐] ≤ ∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

 (3.1.18) 

𝑙𝑛 [
𝑟(𝑡)

𝑐
] ≤ ∫ 𝑔(𝑠)𝑑𝑠 

𝑡

𝑡0

 (3.1.19) 

𝑟(𝑡)

𝑐
≤ 𝑒𝑥𝑝 [∫ 𝑔(𝑠)𝑑𝑠

𝑡

𝑡0

] (3.1.29) 

𝑟(𝑡) ≤ 𝑐 𝑒𝑥𝑝 [∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

] (3.1.30) 

then we arrive at: 𝑓(𝑡) ≤ 𝑟(𝑡) ≤ 𝑐 𝑒𝑥𝑝 [∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0
]. And the proof is complete.∎  
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Remark: 

In the previous lemma if we have 𝑐 = 0 then, 𝑓(𝑡) ≡ 0. 

Proof: 

For any 𝑡 ≥ 𝑡0, we define 𝑟(𝑡) as follows: 

𝑟(𝑡) = ∫ 𝑓(𝑠)𝑔(𝑠)𝑑𝑠,
𝑡

𝑡0

 (3.1.30) 

so that  𝑟(𝑡0) ≡ 0. And so: 

𝑟′(𝑡) = 𝑓(𝑡)𝑔(𝑡) (3.1.31) 

thus, we have: 𝑓(𝑡) ≤ 𝑟(𝑡) then: 

𝑟′(𝑡) = 𝑓(𝑡)𝑔(𝑡) ≤ 𝑟(𝑡)𝑔(𝑡) (3.1.32) 

𝑟(𝑡) − (𝑟(𝑡)𝑔(𝑡)) ≤ 0 (3.1.33) 

multiplying both sides of this inequality by: 

𝑒𝑥𝑝 (− ∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

) (3.1.34) 

we arrive at: 

(𝑒𝑥𝑝 (− ∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0

) 𝑟(𝑠))

′

≤ 0 (3.1.35) 

thus: 

𝑒𝑥𝑝 (− ∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝑡0
) 𝑟(𝑠) is nonincreasing. Since 𝑟(𝑡0) = 0, it follows that: 

                                                     𝑟(𝑡) ≤ 0 

and hence: 

        𝑓(𝑡) ≤ 𝑟(𝑡) ≤ 0 (3.1.36) 

however, since the function 𝑓(𝑡) is nonnegative, we find that 𝑓(𝑡) ≡ 0.  

 

Definition 3.1.6: Let 𝐹 ∈ 𝐶[𝑅+ × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)] is said to satisfy the uniform 

lipschitz condition in 𝑅+ if: 
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𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝐹(𝑡, 𝑉(𝑡))] ≤ 𝐿𝐷[𝑈(𝑡), 𝑉(𝑡)] (3.1.37) 

for all 𝑡 ∈ 𝑅+ and 𝑈, 𝑉 ∈ 𝐾𝐶(𝑅𝑛). Having the same 𝑡 and the nonnegative constant 𝐿 

is called the Lipchitz constant. 

 

Theorem (Lipschitz uniqueness theorem) 3.1.3: Assume that  𝐹 ∈ 𝐶[𝑅+ ×

𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], and satisfies the uniform lipschitz condition  

𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝐹(𝑡, 𝑉(𝑡))] ≤ 𝐿𝐷[𝑈(𝑡), 𝑉(𝑡)] (3.1.38) 

for all 𝑡 ∈ 𝑅+ and 𝑈, 𝑉 ∈ 𝐾𝐶(𝑅𝑛), then the IVP (3.1.1) has a unique solution in 𝑅+ 

Proof 3.1.3: Suppose that  𝑉(𝑡) and  𝑈(𝑡) are two solutions of (3.1.1) on 𝐽, where 

𝑉, 𝑈 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] then the equivelant Volterra integral equations are: 

𝑉(𝑡) = 𝑉(𝑡0) + ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠 
𝑡

𝑡0

 (3.1.39) 

𝑈(𝑡) =  𝑈(𝑡0) + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 
𝑡

𝑡0

 (3.1.40) 

since 𝑉(𝑡0) = 𝑈(𝑡0) = 𝑈0 and by using Hausdorff metric properties and (3.1.7) we 

obtain: 

𝐷[𝑈(𝑡), 𝑉(𝑡)] = 𝐷 [𝑈0 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 
𝑡

𝑡0

, 𝑈0 + ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠 
𝑡

𝑡0

]

= 𝐷 [∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 
𝑡

𝑡0

, ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠 
𝑡

𝑡0

]

= 𝐷 [∫ [𝐹(𝑠, 𝑈(𝑠)), 𝐹(𝑠, 𝑉(𝑠))]𝑑𝑠
𝑡

𝑡0

]

≤  ∫ 𝐷[𝐹(𝑠, 𝑈(𝑠), 𝐹(𝑠, 𝑉(𝑠))]
𝑡

𝑡0

𝑑𝑠 

≤  𝐿 ∫ 𝐷[𝑈(𝑠), 𝑉(𝑠)]𝑑𝑠
𝑡

𝑡0

 

 

 

 

 

 

(3.1.41) 

now by applying Grownwall’s lemma, where 𝑐 = 0 . We arrive at: 

𝐷[𝑉(𝑡), 𝑈(𝑡)] = 0 (3.1.42) 

as a consequently: 
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𝑉(𝑡) = 𝑈(𝑡). (3.1.43) 

And the proof is complete.∎ 

 

Theorem 3.1.4: Assume that: 

i) 𝑉, 𝑊 ∈ 𝐶1[𝑅+, 𝐾𝐶(𝑅𝑛)], and 𝐹 ∈ 𝐶[𝑅+ × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is 

monotone nondecreasing in 𝑋 for each 𝑡 ∈ 𝑅+: 

𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉), 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊), 𝑡 ∈ 𝑅+ (3.1.44) 

ii) For any  𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛) such that 𝑋 ≥ 𝑌, 𝑡 ∈ 𝑅+: 

                       𝐹(𝑡, 𝑋) ≤ 𝐹(𝑡, 𝑌) + 𝐿(𝑋 − 𝑌)     for some     𝐿 > 0      (3.1.45) 

then: 

                          𝑉(𝑡0) ≤ 𝑊(𝑡0)  implies that  𝑉(𝑡) ≤ 𝑊(𝑡), 𝑡 ≥ 𝑡0 

Proof 3.1.4: Let 𝜀 = (𝜀1, 𝜀2, ⋯ , 𝜀𝑛) > 0, and define 𝑊̌(𝑡) = 𝑊(𝑡) + 𝜀𝑒2𝐿𝑡. Since 

𝑉(𝑡0) ≤ 𝑊(𝑡0) < 𝑊̌(𝑡0), it is enough to prove that: 

𝑉(𝑡) < 𝑊̌(𝑡), 𝑡 ≥ 𝑡0 (3.1.45) 

to arrive to our conclusion, in view of the fact 𝜀 > 0. Is arbitrary, let 𝑡1 > 0 be the 

supremum of all positive numbers 𝛿 > 0, such that: 

𝑉(𝑡0) < 𝑊̌(𝑡0) implies 𝑉(𝑡) < 𝑊̌(𝑡) on [𝑡0, 𝛿]. 

It is clear that 𝑡1 > 𝑡0, and 𝑉(𝑡1) ≤ 𝑊̌(𝑡1), this follows, using the nondecreasing 

nature of 𝐹 and condition (3.1.45) that: 

                   𝐷𝐻𝑉(𝑡1) ≤ 𝐹(𝑡1, 𝑉(𝑡1)) ≤ 𝐹 (𝑡1, 𝑊̌(𝑡1))  

≤ 𝐹(𝑡1, 𝑊(𝑡1)) + 𝐿(𝑊̌ − 𝑊) 

                                  ≤ 𝐷𝐻𝑊(𝑡1) + 𝐿𝜀𝑒2𝐿𝑡1 

 

                                  < 𝐷𝐻𝑊(𝑡1) + 2𝐿𝜀𝑒2𝐿𝑡1 = 𝐷𝐻𝑊̌(𝑡1) (3.1.46) 

consequently, it follows that there exists an 𝜂 > 0 satisfying: 

𝑉(𝑡) − 𝑊̌(𝑡) > 𝑉(𝑡1) − 𝑊̌(𝑡1), 𝑡1 − 𝜂 < 𝑡 < 𝑡1 (3.1.47) 



19 
 

this implies that 𝑡1 > 𝑡0 cannot be the supremum in view of the continuity of the 

functions involved and therefore the relation  

𝑉(𝑡) < 𝑊̌(𝑡), 𝑡 ≥ 𝑡0 (3.1.48) 

is true, and then we can write   

𝑉(𝑡) <  𝑊̌(𝑡) = 𝑊(𝑡) +  𝜀𝑒2𝐿𝑡 (3.1.49) 

and then: 

𝑙𝑖𝑚𝜀→0 𝑉(𝑡) ≤ 𝑙𝑖𝑚𝜀→0[𝑊(𝑡) + 𝜀𝑒2𝐿𝑡] (3.1.50) 

𝑉(𝑡) ≤ 𝑊(𝑡). (3.1.51) 

And the proof is complete.∎ 

 

Theorem 3.1.5: Let 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)] and 𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝜃] ≤ 𝑀, then there 

exists a solution of the IVP (3.1.1) on 𝐽 . 

 

Existence via Upper and Lower Solutions: 

If we know the existence of lower and upper solutions 𝑉, 𝑊 such that, 𝑉 ≤ 𝑊, we can 

prove the existence of solutions in closed set: 

Ω = {(𝑡, 𝑈) ∈ 𝐽 × 𝐾𝐶(𝑅𝑛), 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑎, 𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡)} 

this is what we will prove in the next theorem. 

 

Theorem 3.1.6: Let 𝐽 = [𝑡0, 𝑡0 + 𝑎], 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)], be lower and upper 

solutions of (3.1.1) Such that 𝑉(𝑡) ≤ 𝑊(𝑡) on 𝐽, and  𝐹 ∈ 𝐶[𝛺, 𝐾𝐶(𝑅𝑛)], then, there 

exists a solution 𝑈(𝑡) of (3.1.1), Such that: 

𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡) (3.1.52) 

Proof 3.1.6: Let 𝑃: 𝐽 × 𝐾𝐶(𝑅𝑛) → 𝐾𝐶(𝑅𝑛) defined by: 

𝑃(𝑡, 𝑈) = 𝑚𝑎𝑥{𝑉(𝑡), 𝑚𝑖𝑛{𝑈(𝑡), 𝑊(𝑡)}} (3.1.53) 
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then 𝐹(𝑡, 𝑃(𝑡, 𝑈(𝑡)) defines a continuous extension of 𝐹 to 𝐽 × 𝐾𝐶(𝑅𝑛) which is also 

bounded since 𝐹 is bounded on 𝛺. Therefore, the solution of (3.1.1) Exists on 𝐽. For 

𝜀 > 0 consider, 

𝑊𝜀(𝑡) = 𝑊(𝑡) + 𝜀(1 + 𝑡) (3.1.54) 

𝑉𝜀(𝑡) = 𝑉(𝑡) − 𝜀(1 + 𝑡) (3.1.55) 

clearly, 

𝑊𝜀(𝑡0) = 𝑊(𝑡0) + 𝜀(1 + 𝑡0) = 𝑈0 + 𝜀(1 + 𝑡0) (3.1.56) 

𝑉𝜀(𝑡0) = 𝑉(𝑡0) − 𝜀(1 + 𝑡0) = 𝑈0 − 𝜀(1 + 𝑡0) (3.1.57) 

as a result, 𝑉𝜀(𝑡0) < 𝑈0 < 𝑊𝜀(𝑡0), we wish to show that 𝑉𝜀(𝑡) < 𝑈(𝑡) < 𝑊𝜀(𝑡) on 𝐽. 

Suppose that 𝑡1 ∈ (𝑡0, 𝑡0 + 𝑎) is such, 𝑉𝜀(𝑡) < 𝑈(𝑡) < 𝑊𝜀(𝑡) on [𝑡0,  𝑡1), and  

𝑈(𝑡1) = 𝑊𝜀(𝑡1) (3.1.58) 

then  

𝑈(𝑡1) = 𝑊𝜀(𝑡1) = 𝑊(𝑡1) + 𝜀(1 + 𝑡1) (3.1.59) 

this means 

𝑈(𝑡1) > 𝑊(𝑡1) (3.1.60) 

and so: 

𝑃(𝑡1, 𝑈(𝑡1)) = 𝑚𝑎𝑥[𝑉(𝑡1), 𝑚𝑖𝑛[𝑈(𝑡1), 𝑊(𝑡1)]] = 𝑚𝑎𝑥[𝑉(𝑡1), 𝑊(𝑡1)] =  𝑊(𝑡1) 

also  

𝑉(𝑡1) ≤ 𝑃(𝑡1, 𝑈(𝑡1)) ≤ 𝑊(𝑡1) (3.1.61) 

hence  

𝐷𝐻𝑊(𝑡1) ≥ 𝐹(𝑡1, 𝑊(𝑡1)) ≥ 𝐹(𝑡1, 𝑃(𝑡1, 𝑈(𝑡1)) = 𝐷𝐻𝑈(𝑡1) 

𝐷𝐻𝑊(𝑡1) ≥ 𝐷𝐻𝑈(𝑡1) (3.1.71) 

we have: 

𝑊(𝑡1) = 𝑊𝜀(𝑡1) − 𝜀(1 + 𝑡1) (3.1.72) 

𝐷𝐻𝑊(𝑡1) = 𝐷𝐻𝑊𝜀(𝑡1) − 𝜀 (3.1.73) 

𝐷𝐻𝑊𝜀(𝑡1) = 𝐷𝐻𝑊(𝑡1) + 𝜀 (3.1.74) 

then we can arrive at the relation  
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𝐷𝐻𝑊𝜀(𝑡1) > 𝐷𝐻𝑊(𝑡1) (3.1.75) 

from (3.1.71) and (3.1.75) we obtain  

𝐷𝐻𝑊𝜀(𝑡1) > 𝐷𝐻𝑈(𝑡1) (3.1.76) 

this contradicts  

𝑊𝜀(𝑡) > 𝑈(𝑡) for  𝑡 ∈ [𝑡0,  𝑡1) (3.1.77) 

consequently  

𝑉𝜀(𝑡) < 𝑈(𝑡) < 𝑊𝜀(𝑡) on 𝐽 (3.1.78) 

letting 𝜀 → ∞ we get, 𝑉(𝑡) < 𝑈(𝑡) < 𝑊(𝑡) on 𝐽. Completing the proof.∎ 

 

Theorem (Peano uniqueness theorem) 3.1.7: Let 𝐹 ∈ 𝐶[𝐽 × 𝐾𝑐(𝑅𝑛), 𝐾𝑐(𝑅𝑛)], and 

𝐹(𝑡, 𝑈) is nonincreasing in 𝑈 for each fixed 𝑡 in 𝐽 = [𝑡0, 𝑡0 + 𝑎 ]. then, the initial value 

problem (3.1.1) has at most one solution in [𝑡0, 𝑡0 + 𝑎 ]. 

Proof 3.1.7: Suppose 𝑈(𝑡) and 𝑉(𝑡) are two solutions of (3.1.1) which differ 

somewhere in [𝑡0, 𝑡0 + 𝑎 ]. we assume that 𝑉(𝑡) > 𝑈(𝑡) for 𝑡1 < 𝑡 < 𝑡1 + 𝜀 ≤ 𝑡0 +

𝑎, and 𝑉(𝑡) = 𝑈(𝑡) for 𝑡0 < 𝑡 ≤ 𝑡1. Thus, for all 𝑡 ∈ (𝑡1, 𝑡1 + 𝜀], since the function 𝐹 

is nonincreasing we have 𝐹(𝑡, 𝑈(𝑡)) ≥ 𝐹(𝑡, 𝑉(𝑡)), and hence 𝐷𝐻𝑈(𝑡) ≥ 𝐷𝐻𝑉(𝑡). 

This implies that the function 𝜑(𝑡) = 𝑉(𝑡) − 𝑈(𝑡) is nonincreasing. Further, since 

𝜑(𝑡1) = 0, we have 𝜑(𝑡) ≤ 0 in [𝑡1, 𝑡1 + 𝜀]. This contradiction proves that 𝑉(𝑡) =

𝑈(𝑡) in [𝑡0, 𝑡0 + 𝑎 ].∎ 

 

Lemma 3.1.3: Suppose that 𝐹(𝑡, 𝑈(𝑡)) is nonincreasing in 𝑈, then: 

i) There exist lower and upper solutions 𝑉0, 𝑊0 of IVP,  

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈(𝑡)), 𝑈(𝑡0) = 𝑈0 (3.1.79) 

  such that 𝑉0 ≤ 𝑊0 on 𝐽 = [𝑡0, 𝑡0 + 𝑎]. 

ii) There exists a unique solution 𝑈 of IVP on 𝐽, such that 𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0. 

Proof 3.1.3: Let 𝑉0(𝑡) = −𝑅0 + 𝜑(𝑡), 𝑊0(𝑡) = 𝑅0 + 𝜑(𝑡), where 𝜑(𝑡) is the 

solution of: 
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𝐷𝐻𝜑(𝑡) = 𝐹(𝑡, 0), 𝜑(𝑡0) = 𝑈0 (3.1.80) 

choose 𝑅0 > 0 sufficiently large so that: 

𝑉0 ≤ 0 ≤ 𝑊0 

since 𝐹 is non-increasing this implies that: 

                            𝐷𝐻𝑉0 = 𝐷𝐻𝜑(𝑡) = 𝐹(𝑡, 0) ≤ 𝐹(𝑡, 𝑉0) (3.1.81) 

                            𝐷𝐻𝑊0 = 𝐷𝐻𝜑(𝑡) = 𝐹(𝑡, 0) ≥ 𝐹(𝑡, 𝑊0) (3.1.82) 

and we can write  

       𝑉0(𝑡0) = −𝑅0 + 𝜑(𝑡0) = −𝑅0 + 𝑈0 ≤ 𝑈0 (3.1.83) 

𝑊0(𝑡0) = 𝑅0 + 𝜑(𝑡0) = 𝑅0 + 𝑈0 ≥ 𝑈0 (3.1.84) 

𝐷𝐻𝑉0 ≤ 𝐹(𝑡, 𝑉0), 𝑉(𝑡0) ≤ 𝑈0, which means that 𝑉0 is lower solution 

    𝐷𝐻𝑊0 ≤ 𝐹(𝑡, 𝑊0), 𝑊(𝑡0) ≥ 𝑈0, which means that 𝑊0 is upper solution 

now, according to the theorem (existence via upper and lower solutions) there exists 

a solution 𝑈(𝑡) of IVP, such that 𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 on 𝐽, and since 𝐹 is non-increasing, 

uniqueness is obvious. And the proof is complete.∎ 

3.2 Dini Derivatives and Comparison Principles  

Definition 3.2.1: We adopt the following notation for Dini derivatives: 

𝐷+𝑈(𝑡) = 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝
1

ℎ
[𝑈(𝑡 + ℎ) − 𝑈(𝑡)], (3.2.1) 

𝐷+𝑈(𝑡) = 𝑙𝑖𝑚ℎ→0+𝑖𝑛𝑓
1

ℎ
[𝑈(𝑡 + ℎ) − 𝑈(𝑡)], (3.2.2) 

𝐷−𝑈(𝑡) = 𝑙𝑖𝑚ℎ→0−𝑠𝑢𝑝
1

ℎ
[𝑈(𝑡 + ℎ) − 𝑈(𝑡)], (3.2.3) 

𝐷−𝑈(𝑡) = 𝑙𝑖𝑚ℎ→0−𝑖𝑛𝑓
1

ℎ
[𝑈(𝑡 + ℎ) − 𝑈(𝑡)], (3.2.4) 

where 𝑈 ∈ 𝐶[𝐽, 𝑅]. When 𝐷+𝑈(𝑡) = 𝐷+𝑈(𝑡), the right derivative will be denoted 

by 𝑈+
′ (𝑡). Similarly  𝑈−

′ (𝑡) denotes the left derivative. We have the following results 

concerning the Dini derivative. 

Theorem 3.2.1: Let 𝑚 ∈ 𝐶[𝐽, 𝑅+], and 𝑔 ∈ 𝐶[𝐽 × 𝑅+ , 𝑅+] and: 

𝐷𝑚
+ (𝑡) ≤ 𝑔(𝑡, 𝑚(𝑡)), 𝑡 ∈ 𝐽 (3.2.5) 



23 
 

then 𝑚(𝑡0) ≤ 𝑤0 implies: 

𝑚(𝑡) ≤ 𝑟(𝑡), 𝑡 ∈ 𝐽 (3.2.6) 

where, 𝑟(𝑡) is the maximal solution of the scalar differential equation. 

                                     𝑤′ = 𝑔(𝑡, 𝑤),     𝑤(𝑡0) = 𝑤0 ≥ 0          (3.2.7) 

existing on 𝐽, where 𝐽 = [𝑡0, 𝑡0 + 𝑎]. 

Proof 3.2.1: Let 𝐺 be such that: 

𝐺(𝑡, 𝑤) = {
𝑔(𝑡, 𝑤(𝑡))    𝑤 ≥ 𝑚(𝑡)

𝑔(𝑡, 𝑚(𝑡))     𝑤 < 𝑚(𝑡) 
 

 

(3.2.8) 

let 𝑤(𝑡) be the solution of the scalar differential equation (3.2.7), Suppose that 𝑤(𝑡) <

𝑚(𝑡) for some 𝑡, then there exists a 𝑡1 > 𝑡0 such that: 

𝑤(𝑡1) ≤ 𝑚(𝑡1) (3.2.9) 

and  

𝑤′(𝑡1) < 𝐷+𝑚(𝑡1) (3.2.10) 

and so: 

𝐷+𝑚(𝑡1) ≤ 𝑔(𝑡1, 𝑚(𝑡1)) = 𝐺(𝑡, 𝑤(𝑡1)) = 𝑤′(𝑡1) (3.2.11) 

which is a contradiction with: 

𝐷+𝑚(𝑡1) > 𝑤′(𝑡1) (3.2.12) 

it therefore, follows that: 

𝑤(𝑡) ≥ 𝑚(𝑡) (3.2.13) 

which implies that 𝑤(𝑡) is the solution of the (3.2.7) in view of the definition of 𝐺(𝑡, 𝑤). 

since 𝑟(𝑡) is the maximal solution of (3.2.7), we have 𝑤(𝑡) ≤ 𝑟(𝑡) from which it 

follows that  

𝑚(𝑡) ≤ 𝑟(𝑡), 𝑡 ∈ 𝐽. (3.2.14) 

And the proof is complete.∎ 
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Theorem 3.2.2: Let 𝑔 ∈ 𝐶[𝐽 × 𝑅+, 𝑅+] and that 𝑔(𝑡, 𝑤) is monotone nondecreasing in 

𝑤 for each 𝑡, let 𝑚 ∈ 𝐶[𝐽, 𝑅+], 𝑡 ∈ 𝐽 and  𝑚(𝑡0) ≤ 𝑤0, and: 

𝑚(𝑡) ≤ 𝑚(𝑡0) + ∫ 𝑔(𝑠, 𝑚(𝑠))𝑑𝑠    𝑡 ∈ 𝐽
𝑡

𝑡0

 

 

(3.2.15) 

then: 

𝑚(𝑡) ≤ 𝑟(𝑡), 𝑡 ∈ 𝐽 (3.2.16) 

where, 𝑟(𝑡) is the maximal solution of (3.2.7) existing on 𝐽. 

Proof 3.2.2: Define 

𝑣(𝑡) = 𝑚(𝑡0) + ∫ 𝑔(𝑠, 𝑚(𝑠))𝑑𝑠
𝑡

𝑡0

 

 

(3.2.17) 

so that: 

𝑚(𝑡) ≤ 𝑣(𝑡) (3.2.18) 

and: 

                                           𝑣′(𝑡) = 𝑔(𝑡, 𝑚(𝑡)) (3.2.19) 

since 𝑔 is monotone, using (3.2.18) we obtain the differential inequality: 

𝑣′(𝑡) = 𝑔(𝑡, 𝑚(𝑡)) ≤ 𝑔(𝑡, 𝑣(𝑡)), 𝑡 ∈ 𝐽 (3.2.20) 

from the application of Theorem (3.2.1) we obtain: 

𝑣(𝑡) ≤ 𝑟(𝑡), 𝑡 ∈ 𝐽 (3.2.21) 

proving the theorem.∎ 

 

Theorem 3.2.3: Assume that 𝐹 ∈ 𝐶[𝐽 × 𝐾𝑐(𝑅𝑛), 𝐾𝐶(𝑅𝑛)] and 𝑡 ∈ 𝐽, 𝑈, 𝑉 ∈ 𝐾𝐶(𝑅𝑛) 

𝐷[𝐹(𝑡, 𝑈), 𝐹(𝑡, 𝑉)] ≤ 𝑔(𝑡, 𝐷[𝑈, 𝑉]) (3.2.22) 

where  𝑔 ∈ 𝐶[𝐽 × 𝑅+ , 𝑅+] and 𝑔(𝑡, 𝑤) is monotone nondecreasing in 𝑤 for each 𝑡 ∈

𝐽. Suppose further that the maximal solution 𝑟(𝑡, 𝑡0, 𝑤0) of the scalar differential 
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equation (3.2.7) exists on 𝐽. Then if 𝑈(𝑡), 𝑉(𝑡) are any two solutions 

through (𝑡0, 𝑈0), (𝑡0, 𝑉0) respectively on 𝐽. It follows that: 

𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤ 𝑟(𝑡, 𝑡0, 𝑤0), 𝑡 ∈ 𝐽 (3.2.23) 

provided that [𝑈0, 𝑉0] ≤ 𝑤0. 

Proof 3.2.3: Set 𝑚(𝑡) = 𝐷[𝑈(𝑡), 𝑉(𝑡)], so that 𝑚(𝑡0) = 𝐷[𝑈0, 𝑉0] ≤ 𝑤0 then. In view 

of the properties of the metric 𝐷, we get: 

𝑚(𝑡) = 𝐷 [𝑈0 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠, 𝑉0 + ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠  
𝑡

𝑡0

𝑡

𝑡0

]

≤  𝐷 [𝑈0 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠, 𝑈0 + ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠  
𝑡

𝑡0

𝑡

𝑡0

] + 

                             +𝐷 [𝑈0 + ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠, 𝑉0 + ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠  
𝑡

𝑡0

𝑡

𝑡0

]

= 𝐷 [∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠, ∫ 𝐹(𝑠, 𝑉(𝑠))𝑑𝑠  
𝑡

𝑡0

𝑡

𝑡0

] + 𝐷[𝑈0 , 𝑉0] 

 

 

 

 

 

 

(3.2.24) 

now using the properties of integral and (3.2.22) we observe that: 

𝑚(𝑡) ≤ 𝑚(𝑡0) +  ∫ [𝐷[𝐹(𝑠, 𝑈(𝑠)), 𝐹(𝑠, 𝑉(𝑠)]]
𝑡

𝑡0

𝑑𝑠 

≤  𝑚(𝑡0) +  ∫ 𝑔(𝑠, 𝐷[𝑈(𝑠), 𝑉(𝑠)])
𝑡

𝑡0

 𝑑𝑠 

=  𝑚(𝑡0) +  ∫ 𝑔(𝑠, 𝐷[𝑈(𝑠), 𝑉(𝑠)])
𝑡

𝑡0

   𝑡 ∈ 𝐽 

 

 

 

 

(3.2.25) 

now applying Theorem (3.2.2), we conclude that: 

𝑚(𝑡) ≤ 𝑟(𝑡, 𝑡0, 𝑤0), 𝑡 ∈ 𝐽. (3.2.26) 

And the proof is complete.∎ 
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Remark: 

If we employ the theory of differential inequalities instead of integral inequalities, we 

can dispense with the monotone character of 𝑔(𝑡, 𝑤) assumed in Theorem (3.2.3). This 

is the content of the next comparison principle. 

 

Theorem 3.2.4: Let the assumptions of Theorem (3.2.3) hold except the nondecreasing 

property of 𝑔(𝑡, 𝑤) in 𝑤, then the conclusion (3.2.23) is valid.  

Proof 3.2.4: For small ℎ > 0, the Hukuhara differences 𝑈(𝑡 + ℎ) − 𝑈(𝑡), 𝑉(𝑡 +

ℎ) − 𝑉(𝑡) exist. And we have for 𝑡 ∈ 𝐽. Set 𝑚(𝑡) = 𝐷[𝑈(𝑡), 𝑉(𝑡)] and then: 

𝑚(𝑡 + ℎ) − 𝑚(𝑡) = 𝐷[ 𝑈(𝑡 + ℎ) , 𝑉(𝑡 + ℎ)  ] − 𝐷[𝑈(𝑡) , 𝑉(𝑡)] (3.2.27) 

using Hausdorff metric properties, we get: 

𝐷[ 𝑈(𝑡 + ℎ) , 𝑉(𝑡 + ℎ)  ]  ≤ 𝐷[𝑈(𝑡 + ℎ), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))] 

+𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉(𝑡 + ℎ)] 

 

(3.2.28) 

and: 

𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉(𝑡 + ℎ)]

≤ 𝐷[𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡), 𝑉(𝑡 + ℎ)]

+ 𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡))] 

 

 

 

(3.2.29) 

 

also, we observe that: 

𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡))]

≤ 𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡))]

+ 𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡)), 𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡))]  

=  𝐷[ℎ𝐹(𝑡, 𝑈(𝑡)), ℎ𝐹(𝑡, 𝑉(𝑡))] +  𝐷[𝑈(𝑡), 𝑉(𝑡)]  

 

 

 

 

(3.2.30) 

 

hence, it follows that:  
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𝑚(𝑡 + ℎ) − 𝑚(𝑡) = 𝐷[ 𝑈(𝑡 + ℎ) , 𝑉(𝑡 + ℎ)  ] − 𝐷[𝑈(𝑡) , 𝑉(𝑡)]

≤  𝐷[𝑈(𝑡 + ℎ), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))]

+  𝐷[𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡), 𝑉(𝑡 + ℎ)]

+  𝐷[ℎ𝐹(𝑡, 𝑈(𝑡)), ℎ𝐹(𝑡, 𝑉(𝑡))] +  𝐷[𝑈(𝑡), 𝑉(𝑡)]

− 𝐷[𝑈(𝑡), 𝑉(𝑡)] 

 

 

 

 

 

(3.2.31) 

 and then we can write the estimate: 

𝑚(𝑡 + ℎ) − 𝑚(𝑡)

ℎ
  ≤

≤  
1

ℎ
𝐷[𝑈(𝑡 + ℎ), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))]

+
1

ℎ
𝐷[𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡), 𝑉(𝑡 + ℎ)]

+ 
1

ℎ
𝐷[ℎ𝐹(𝑡, 𝑈(𝑡)), ℎ𝐹(𝑡, 𝑉(𝑡))]  

 

 

 

 

 

 

(3.2.32) 

and consequently, in view of the properties of 𝐷 and the fact 𝑈(𝑡), 𝑉(𝑡) are solutions 

of (3.1.1), we find that: 

𝐷𝑚
+ (𝑡) = 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝

1

ℎ
[𝑚(𝑡 + ℎ) − 𝑚(𝑡)]

≤ 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝𝐷 [
𝑈(𝑡 + ℎ) − 𝑈(𝑡)

ℎ
, 𝐹(𝑡, 𝑈(𝑡))]

+ 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝𝐷 [𝐹(𝑡, 𝑉(𝑡),
𝑉(𝑡 + ℎ) − 𝑉(𝑡)

ℎ
]

+ 𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝐹(𝑡, 𝑉(𝑡))] 

 

 

 

 

 

(3.2.33) 

here, we have used the fact that: 

𝐷[𝑈(𝑡 + ℎ), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))]

= 𝐷[𝑈(𝑡) + 𝑍(𝑡, ℎ), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))]

= 𝐷[𝑍(𝑡, ℎ) + 𝑈(𝑡), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))]

= 𝐷[𝑍(𝑡, ℎ), ℎ𝐹(𝑡, 𝑈(𝑡))]

= 𝐷[𝑈(𝑡 + ℎ) − 𝑈(𝑡), ℎ𝐹(𝑡, 𝑈(𝑡))] 

 

 

 

 

 

 

 

(3.2.34) 

where, 𝑍(𝑡, ℎ) = 𝑈(𝑡 + ℎ) + 𝑈(𝑡). And so, the conclusion (3.2.23) follows from 

Theorem (3.2.1).∎ 
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The next comparison result provides an estimate under weaker assumptions: 

Theorem 3.2.5: Assume that 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)  ] and: 

𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝
1

ℎ
[𝐷[𝑈 + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉 + ℎ𝐹(𝑡, 𝑉)] − 𝐷[𝑈(𝑡), 𝑉(𝑡)]] 

≤ 𝑔(𝑡, 𝐷[𝑈(𝑡), 𝑉(𝑡)]), 𝑡 ∈ 𝐽 

 

(3.2.35) 

where, 𝑈(𝑡), 𝑉(𝑡) ∈ 𝐾𝐶(𝑅𝑛), 𝑔 ∈ 𝐶[𝐽 × 𝑅+, 𝑅+], the maximal solution 𝑟(𝑡, 𝑡0, 𝑤0) of 

(3.2.7) exists on 𝐽, then the conclusion (3.2.23) is valid. 

Proof 3.2.5: Proceeding as in the proof of Theorem (3.2.4) we see that: 

𝑚(𝑡 + ℎ) − 𝑚(𝑡) = 𝐷[ 𝑈(𝑡 + ℎ) , 𝑉(𝑡 + ℎ)  ] − 𝐷[𝑈(𝑡) , 𝑉(𝑡)]

≤  𝐷[𝑈(𝑡 + ℎ), 𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡))]

+  𝐷[𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡), 𝑉(𝑡 + ℎ)]

+  𝐷[𝑈(𝑡) + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉(𝑡) + ℎ𝐹(𝑡, 𝑉(𝑡))]

− 𝐷[𝑈(𝑡), 𝑉(𝑡)]  

 

 

 

(3.2.36) 

and so: 

𝐷𝑚
+ (𝑡) = 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝

1

ℎ
[𝑚(𝑡 + ℎ) − 𝑚(𝑡)] ≤ 

𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝
1

ℎ
[𝐷[𝑈 + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝑉 + ℎ𝐹(𝑡, 𝑉)] − 𝐷[𝑈(𝑡), 𝑉(𝑡)]]  

+𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝𝐷 [
𝑈(𝑡 + ℎ) − 𝑈(𝑡)

ℎ
, 𝐹(𝑡, 𝑈(𝑡))] 

+ 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝𝐷 [𝐹(𝑡, 𝑉(𝑡)),
𝑉(𝑡 + ℎ) − 𝑉(𝑡)

ℎ
] ≤ 𝑔(𝑡, 𝐷[𝑈(𝑡), 𝑉(𝑡)]

= 𝑔(𝑡, 𝑚(𝑡)) , 𝑡 ∈ 𝐽 

 

 

 

 

 

 

 

(3.2.37) 

the conclusion follows as before by Theorem (3.2.1). And so, the proof is complete.∎ 

 

Remark: 

We wish to remark that in Theorem (3.2.5), 𝑔(𝑡, 𝑤) need not be nonnegative and 

therefore the estimate in Theorem (3.2.5) would be finer than the estimate in Theorem 

(3.2.3) and (3.2.4). 
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Corollary 3.2.1: Assume that 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)  ] and either: 

• 𝐷[𝐹(𝑡, 𝑈), 𝜃] ≤ 𝑔(𝑡, 𝐷[𝑈, 𝜃]) or  

• 𝑙𝑖𝑚ℎ→0+𝑠𝑢𝑝
1

ℎ
[𝐷[𝑈 + ℎ𝐹(𝑡, 𝑈(𝑡)), 𝜃] − 𝐷[𝑈(𝑡), 𝜃]] ≤ 𝑔(𝑡, 𝐷[𝑈(𝑡), 𝜃]) ; 𝑡 ∈ 𝐽 

where 𝑔 ∈ 𝐶[𝐽 × 𝑅+, 𝑅+], then if 𝐷[𝑈0, 𝜃] ≤ 𝑤0 , we have: 

𝐷[𝑈(𝑡), 𝜃] ≤ 𝑟(𝑡, 𝑡0, 𝑤0), 𝑡 ∈ 𝐽 (3.2.38) 

where 𝑟(𝑡, 𝑡0, 𝑤0) is the maximal solution of (3.2.7) on 𝐽. 

 

Corollary 3.2.2: The function 𝑔(𝑡, 𝑤) = 𝜆(𝑡)𝑤, 𝜆(𝑡) ≥ 0, and continuous is 

admissible in Theorem (3.2.3) to give: 

𝑚(𝑡) ≤ 𝑚(𝑡0) + ∫ 𝜆(𝑠)𝑚(𝑠)𝑑𝑠 ; 𝑡 ∈ 𝐽
𝑡

𝑡0

 
 

(3.2.39) 

then the Grownwall’s inequality implies: 

𝑚(𝑡) ≤ 𝑚(𝑡0)𝑒𝑥𝑝 [∫ 𝜆(𝑠)𝑑𝑠  
𝑡

𝑡0

] , 𝑡 ∈ 𝐽 (3.2.40) 

wich shows that (3.2.23) reduces to: 

𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤ 𝐷[𝑈0 , 𝑉0]𝑒𝑥𝑝 [∫ 𝜆(𝑠)𝑑𝑠
𝑡

𝑡0

] , 𝑡 ∈ 𝐽 
 

(3.2.41) 

 

 

Corollary 3.2.3: The function 𝑔(𝑡, 𝑤) = −𝜆(𝑡)𝑤, 𝜆(𝑡) ≥ 0, is also admissible in 

Theorem (3.2.5) to give: 

𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤ 𝐷[𝑈0 , 𝑉0]𝑒𝑥𝑝 [− ∫ 𝜆(𝑠)𝑑𝑠
𝑡

𝑡0

] , 𝑡 ∈ 𝐽 
 

(3.2.42) 

if 𝜆(𝑡) > 0, we find that: 

𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤ 𝐷[𝑈0 , 𝑉0]𝑒−𝜆(𝑡−𝑡0), 𝑡 ∈ 𝐽 (3.2.43) 

if  𝐽 = [𝑡0 , ∞], we see that: 

𝑙𝑖𝑚𝑡→∞𝐷[𝑈(𝑡), 𝑉(𝑡)] = 0 (3.2.44) 

showing the advantage of Theorem (3.2.5).  
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3.3 Local Existence and Uniqueness  

We shall begin by proving the existence and uniqueness result under assumptions more 

general than the Lipchitz type condition, which exhibits the idea of the comparison 

principles. 

Theorem 3.3.1: Assume that: 

i) 𝐹 ∈ 𝐶[𝑅0 , 𝐾𝐶(𝑅𝑛)] and 𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝜃] ≤ 𝑀0 where: 

 𝑅0 = 𝐽 × 𝐵(𝑈0, 𝑏), 𝐵(𝑈0, 𝑏) = [𝑈 ∈ 𝐾𝐶(𝑅𝑛) ∶  𝐷[𝑈, 𝑈0] ≤ 𝑏] on 𝑅0. 

ii) 𝑔 ∈ 𝐶[𝐽 × [0,2𝑏] , 𝑅+] , 𝐺(𝑡, 𝑤) ≤ 𝑀1  on   𝐽 × [0 , 2𝑏 ], 𝐺(𝑡, 0) ≡ 0 and 

𝐺(𝑡, 𝑤) is nondecreasing in 𝑤 for each 𝑡 ∈ 𝐽. And 𝑤(𝑡) ≡ 0 is the only solution 

of: 

𝑤′ = 𝐺(𝑡, 𝑤), 𝑤(𝑡0) = 0   on  𝐽 (3.3.1) 

iii) 𝐷[𝐹(𝑡, 𝑈), 𝐹(𝑡, 𝑉)] ≤ 𝑔(𝑡, 𝐷[𝑈, 𝑉]) on 𝑅0. 

Then the successive approximation defined by: 

𝑈𝑛+1(𝑡) = 𝑈0 + ∫ 𝐹(𝑠, 𝑈𝑛(𝑠))𝑑𝑠, 𝑛 = 0,1, 2, ⋯    
𝑡

𝑡0

 

 

(3.3.2) 

exists on  𝐽0 = [𝑡0 , 𝑡 + 𝜂], where 𝜂 = 𝑚𝑖𝑛 {𝑎,
𝑏

𝑀
} , 𝑀 = 𝑚𝑎𝑥{𝑀0, 𝑀1} as continuous 

function and converge uniformly to the unique solution 𝑈(𝑡) of the IVP (3.1.1) on 𝐽0. 

Proof 3.3.1: using the properties of Hausdorff metric, we get by induction: 

𝐷[𝑈𝑛+1 , 𝑈0] = 𝐷 [𝑈0 + ∫ 𝐹(𝑠, 𝑈𝑛(𝑠))𝑑𝑠  , 𝑈0

𝑡

𝑡0

]

= 𝐷 [∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 , 𝜃
𝑡

𝑡0

]

≤ ∫ 𝐷[𝐹(𝑠, 𝑈𝑛(𝑠)), 𝜃 ] ≤ 𝑀0

𝑡

𝑡0

(𝑡 − 𝑡0) ≤ 𝑀0𝑎 ≤ 𝑏 

 

 

 

(3.3.3) 

and as a consequently, the successive approximations {𝑈𝑛(𝑡)} are well defined on  𝐽0. 

we shall next define the successive approximations of (3.1.1) as follows: 
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𝑤0 = 𝑀(𝑡 − 𝑡0) 

𝑤𝑛+1(𝑡) = ∫ 𝑔(𝑠, 𝑤𝑛(𝑠))𝑑𝑠
𝑡

𝑡0

, 𝑡 ∈ 𝐽0   , 𝑛 = 0, 1, 2, ⋯ 

 

 

(3.3.4) 

an easy induction, in view of the monotone character of 𝑔(𝑡, 𝑤) in 𝑤, proves that 

{𝑤𝑛(𝑡)} are well defined and: 

0 ≤ 𝑤𝑛+1(𝑡) ≤ 𝑤𝑛(𝑡), 𝑡 ∈ 𝐽0 (3.3.5) 

since |𝑤′
𝑛(𝑡)| ≤ 𝑔(𝑡, 𝑤𝑛−1(𝑡)) ≤ 𝑀1, clearly the sequence {𝑤𝑛} is nonincreasing 

and uniformly bounded, lets prove that it is equicontinuous: 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁, ∀ 𝑡1, 𝑡2 ∈ 𝐽0, 𝑡2 > 𝑡1 

|𝑡1 − 𝑡2| ≤ 𝑎 = 𝛿 =
𝜀

𝑀
 

|𝑤𝑛(𝑡1) − 𝑤𝑛(𝑡2)| = |∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠 − ∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠
𝑡2

𝑡0

𝑡1

𝑡0

|

= |∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠
𝑡2

𝑡0

− ∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠
𝑡1

𝑡0

|

=  |∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠
𝑡2

𝑡0

+ ∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠
𝑡0

𝑡1

|

=  |∫ 𝑔(𝑠, 𝑤𝑛−1(𝑠))𝑑𝑠
𝑡2

𝑡1

| ≤ (𝑡2 − 𝑡1)𝑀1 ≤ 𝑎𝑀 = 𝜀 

 

 

 

 

 

(3.3.6) 

we conclude by Ascoli-arzela theorem that {𝑤𝑛(𝑡)} has a subsequence {𝑤𝑛𝑘
(𝑡)}  that 

converges uniformly to 𝑤(𝑡), and monotonicity of the sequence {𝑤𝑛(𝑡)}  shows that: 

𝑙𝑖𝑚𝑛→∞ 𝑤𝑛(𝑡) = 𝑤(𝑡) (3.3.7) 

uniformly on  𝐽0.We have 𝑤′ = 𝑔(𝑡, 𝑤)  and then: 

∫ 𝑤′(𝑠)𝑑𝑠 =
𝑡

𝑡0

  ∫ 𝑔(𝑠, 𝑤(𝑠))
𝑡

𝑡0

𝑑𝑠 
 

(3.3.8) 

𝑤(𝑡) = 𝑤0 + ∫ 𝑔(𝑠, 𝑤(𝑠))
𝑡

𝑡0

𝑑𝑠 
 

(3.3.9) 

and since 𝑤(𝑡) satisfies the equivalent Volterra integral equation of (3.3.1) then it is 

a solution of (3.3.1), then by condition (ii)  

𝑤(𝑡) ≡ 0  on 𝐽0  
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we observe that: 

𝐷[𝑈1(𝑡), 𝑈0(𝑡)] ≤ ∫ 𝐷[𝐹(𝑠, 𝑈0(𝑠))]
𝑡

𝑡0

≤ 𝑀(𝑡 − 𝑡0) ≡ 𝑤0(𝑡) 
 

(3.3.10) 

assume that for some 𝐾 > 1, we have: 

𝐷[𝑈𝑘(𝑡), 𝑈𝑘−1(𝑡)] ≤ 𝑤𝑘−1(𝑡)   on 𝐽0 (3.3.11) 

Since 

𝐷[𝑈𝑘+1(𝑡), 𝑈𝑘(𝑡)] ≤ ∫ 𝐷[𝐹(𝑠, 𝑈𝑘(𝑠)), 𝐹(𝑠, 𝑈𝑘−1(𝑠))]𝑑𝑠
𝑡

𝑡0

 (3.3.11) 

using condition (iii) and the monotone character of 𝑔(𝑡, 𝑤), we get: 

𝐷[𝑈𝑘+1(𝑡), 𝑈𝑘(𝑡)] ≤ ∫ 𝑔(𝑠, 𝐷[𝑈𝑘(𝑠), 𝑈𝑘−1(𝑠)]
𝑡

𝑡0

)𝑑𝑠 ≤ 

≤ ∫ 𝑔(𝑠, 𝑤𝑘−1(𝑠))𝑑𝑠 = 𝑤𝑘(𝑡)
𝑡

𝑡0

 

 

 

(3.3.12) 

thus, by induction, the estimate: 

𝐷[𝑈𝑛+1(𝑡), 𝑈𝑛(𝑡)] ≤ 𝑤𝑛(𝑡), 𝑡 ∈ 𝐽0 (3.3.13) 

is true for all 𝑛. 

Letting 𝑢(𝑡) = 𝐷[𝑈𝑛+1(𝑡), 𝑈𝑛(𝑡)], 𝑡 ∈ 𝐽0, the proof of Theorem (3.2.4) shows that: 

𝐷+𝑢(𝑡) ≤ 𝑔(𝑡, 𝐷[𝑈𝑛(𝑡), 𝑈𝑛−1(𝑡)]) ≤ 𝑔(𝑡, 𝑤𝑛−1(𝑡))  ; 𝑡 ∈ 𝐽0 (3.3.14) 

now let 𝑛 ≤ 𝑚, setting 𝑣(𝑡) = 𝐷[𝑈𝑛(𝑡), 𝑈𝑚(𝑡)] we obtain from (3.2.4): 

𝐷+𝑣(𝑡) ≤ 𝐷[𝐷𝐻𝑈𝑛(𝑡), 𝐷𝐻𝑈𝑚(𝑡)] = 𝐷[𝐹(𝑡, 𝑈𝑛−1(𝑡)), 𝐹(𝑡, 𝑈𝑚−1(𝑡)]

≤  𝐷[𝐹(𝑡, 𝑈𝑛(𝑡)), 𝐹(𝑡, 𝑈𝑛−1(𝑡))]

+ 𝐷[𝐹(𝑡, 𝑈𝑛(𝑡), 𝐹(𝑡, 𝑈𝑚(𝑡)]

+ 𝐷[𝐹(𝑡, 𝑈𝑚(𝑡)) , 𝐹(𝑡, 𝑈𝑚−1(𝑡))]  

≤  𝑔(𝑡, 𝑤𝑛−1(𝑡)) +  𝑔(𝑡, 𝑤𝑚−1(𝑡))

+ 𝑔(𝑡, 𝐷[𝑈𝑛(𝑡), 𝑈𝑚(𝑡)])

≤ 𝑔(𝑡, 𝑣(𝑡)) + 2𝑔(𝑡, 𝑤𝑛−1(𝑡)),    𝑡 ∈ 𝐽0 

 

 

 

 

 

(3.3.15) 
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here we have used the argument of the proof of the Theorem (3.2.4) the monotone 

character of 𝑔(𝑡, 𝑤) and the fact that 𝑤𝑚−1 ≤ 𝑤𝑛−1 since 𝑛 ≤ 𝑚 and 𝑤𝑛(𝑡) is a 

decreasing sequence. The comparison Theorem (3.2.1) yields the estimate: 

𝑣(𝑡) ≤ 𝑟𝑛(𝑡), 𝑡 ∈ 𝐽0 (3.3.16) 

where, 𝑟𝑛(𝑡) is the maximal solution of the equation: 

𝑟𝑛
′ = 𝑔(𝑡, 𝑟𝑛(𝑡)) + 2𝑔(𝑡, 𝑤𝑛−1(𝑡)), 𝑟𝑛(𝑡0) = 0 (3.3.17) 

for each 𝑛, and since as  𝑛 → ∞, 2𝑔(𝑡, 𝑤𝑛−1(𝑡)) → 0 uniformly on 𝐽0, it follows by 

lemma that 𝑟𝑛(𝑡) → 0  as 𝑛 → ∞ uniformly, on 𝐽0. This implies from (3.3.1) and the 

definition of 𝑣(𝑡) that  𝑈𝑛(𝑡) converges uniformly to 𝑈(𝑡), according to Cauchy’s 

criterion and clearly 𝑈(𝑡) is a solution of (3.1.1). To show uniqueness, let 𝑉(𝑡) be 

another solution of (3.1.1), on 𝐽0  Then setting 𝑚(𝑡) = 𝐷[𝑈(𝑡), 𝑉(𝑡)] and noting 

that 𝑚(𝑡0) = 0, we get, as before 𝐷+𝑚(𝑡) ≤ 𝑔(𝑡, 𝑚(𝑡))  𝑡 ∈ 𝐽0, and 𝑚(𝑡) ≤

𝑟(𝑡, 𝑡0, 0), 𝑡 ∈ 𝐽0, by Theorem (3.2.3). By assumption  𝑟(𝑡, 𝑡0, 0) ≡ 0, we get 𝑈(𝑡) ≡

𝑉(𝑡) on 𝐽0. Proving the theorem.∎ 

 

We shall discuss, in the next result, the continuous dependence of solutions with initial 

values. we need the following lemma before we proceed. 

 

Lemma 3.3.1: Let 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)] and let: 

𝐺(𝑡, 𝑟) = 𝑚𝑎𝑥{𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝜃] ∶ 𝐷[𝑈(𝑡), 𝑈0(𝑡)] ≤ 𝑟} (3.3.18) 

assume that  𝑟∗(𝑡, 𝑡0, 0) is the maximal solution of  

𝑤′ = 𝐺(𝑡, 𝑤), 𝑤(𝑡0) = 0  𝑜𝑛 𝐽 (3.3.19) 

let 𝑈(𝑡) = 𝑈(𝑡, 𝑡0, 𝑈0) be the solution of (3.1.1) then: 

𝐷[𝑈(𝑡), 𝑈0] ≤ 𝑟∗(𝑡, 𝑡0, 0) (3.3.20) 

Proof 3.3.1: Define 𝑚(𝑡) = 𝐷[𝑈(𝑡), 𝑈0], 𝑡 ∈ 𝐽. Then Theorem (3.2.4) shows that: 

𝐷+𝑚(𝑡) ≤ 𝐷[𝐷𝐻𝑈(𝑡), 𝜃] = 𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝜃]  
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≤ 𝑚𝑎𝑥𝐷[𝑈,𝑈0]≤𝑚(𝑡)𝐷[𝐹(𝑡, 𝑈(𝑡)), 𝜃] = 𝐺(𝑡, 𝑚(𝑡)) (3.3.21) 

this implies by Theorem (3.2.1) that: 

𝐷[𝑈(𝑡), 𝑈0] ≤ 𝑟∗(𝑡, 𝑡0, 0), 𝑡 ∈ 𝐽 (3.3.22) 

proving the lemma.∎ 

 

Theorem 3.3.2: Under the same assumptions of Theorem (3.3.1), Assume further that 

the solution 𝑤(𝑡, 𝑡0, 𝑤0) of (3.3.1) through every point (𝑡0, 𝑤0) are continuous with 

respect to (𝑡0, 𝑤0). Then the solutions 𝑈(𝑡) = 𝑈(𝑡, 𝑡0, 𝑈0) of (3.1.1) are continuous 

relative to (𝑡0, 𝑈0). 

Proof 3.3.2: Let 𝑈(𝑡) = 𝑈(𝑡, 𝑡0, 𝑈0) and  𝑉(𝑡) = 𝑉(𝑡, 𝑡0, 𝑉0) be two solutions of 

(3.1.1). then defining  𝑚(𝑡) = 𝐷[𝑈(𝑡), 𝑉(𝑡)] , we get from Theorem (3.2.3) the 

estimate: 

𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤ 𝑟(𝑡, 𝑡0, 𝐷[𝑈0, 𝑉0] ), 𝑡 ∈ 𝐽 (3.3.23) 

since  

𝑙𝑖𝑚𝑈0→𝑉0
 𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤  𝑙𝑖𝑚𝑈0→𝑉0

𝑟(𝑡, 𝑡0, 𝑑[𝑈0, 𝑉0]) (3.3.24) 

uniformly on 𝐽 and by hypothesis 𝑟(𝑡, 𝑡0, 0) ≡ 0, it follows that: 

0 ≤ 𝑙𝑖𝑚𝑈0→𝑉0
𝐷[𝑈(𝑡), 𝑉(𝑡)] ≤ 0 (3.3.25) 

and then we can write: 

𝑙𝑖𝑚𝑈0→𝑉0
𝑈(𝑡, 𝑡0, 𝑈0) = 𝑉(𝑡, 𝑡0, 𝑉0) (3.3.26) 

uniformly, and hence the continuity of 𝑈(𝑡, 𝑡0, 𝑈0) relative to 𝑈0 is valid. To prove the 

continuity relative to 𝑡0, we let 𝑈(𝑡) = 𝑈(𝑡, 𝑡0, 𝑈0) and 𝑉(𝑡) = 𝑉(𝑡, 𝜏0, 𝑈0) be two 

solutions of (3.1.1). And let 𝜏0 > 𝑡0, as before setting: 

𝑚(𝑡0) = 𝑑[𝑈(𝑡0), 𝑉(𝑡0)], we obtain from lemma (3.3.1) that: 

𝑚(𝜏0) ≤ 𝑟∗(𝜏0, 𝑡0, 0) (3.3.27) 

and consequently, by Theorem (3.2.3) we arrive at: 
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𝑚(𝑡) ≤ 𝑟̌(𝑡), 𝑡 ≥ 𝜏0  (3.3.28) 

where 𝑟̌(𝑡) = 𝑟̌(𝑡, 𝜏0, 𝑟∗(𝜏0, 𝑡0, 0)) is the maximal solution of (3.3.1) through 

(𝜏0, 𝑟∗(𝜏0, 𝑡0, 0)),  since 𝑟∗(𝑡0, 𝑡0, 0) ≡ 0, we have : 

𝑙𝑖𝑚𝜏0→𝑡0
𝑟̌(𝑡, 𝜏0, 𝑟∗(𝜏0, 𝑡0, 0)) = 𝑟̌(𝑡, 𝑡0, 0) (3.3.29) 

uniformly on 𝐽, by hypothesis 𝑟̌(𝑡, 𝑡0, 0) = 0, which proves the continuity of 

𝑈(𝑡, 𝑡0, 𝑈0) with respect to 𝑡0 and so the proof is complete.∎ 

3.4 Global existence:  

We consider the set differential equation: 

𝐷𝐻𝑈(𝑡) = 𝐹(𝑡, 𝑈(𝑡)), 𝑈(𝑡0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛) (3.4.1) 

where 𝐹 ∈ 𝐶[𝑅+ × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], in this section, we shall investigate the existence 

of solutions for 𝑡 ≥ 𝑡0, assuming local existence, we shall prove the following global 

existence result. 

 

Theorem 3.4.1: Assume that 𝐹 ∈ 𝐶[𝑅+ × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)]  and: 

𝐷[𝐹(𝑡, 𝑈), 𝜃 ] ≤ 𝐺(𝑡, 𝐷[𝑈, 𝜃]), (𝑡, 𝑈) ∈ 𝑅+ × 𝐾𝐶(𝑅𝑛) (3.4.2) 

where 𝑔 ∈ 𝐶[𝑅+
2 , 𝑅+],  𝑔(𝑡, 𝑤)  is nondecreasing in 𝑤 for each 𝑡 ∈ 𝑅+and the maximal  

solution  𝑟(𝑡, 𝑡0, 𝑤0) of (3.3.1) exists on [𝑡0, ∞) suppose further that 𝐹 is smooth 

enough to guarantee local existence of solutions of (3.4.1), for any (𝑡0, 𝑈0) ∈

𝑅+ × 𝐾𝐶(𝑅𝑛), then the largest interval of existence of any solution 𝑈(𝑡, 𝑡0, 𝑈0) of 

(3.4.1) such that 𝐷[𝑈0, 𝜃] ≤ 𝑈0 is [𝑡0, ∞). 

Proof 3.4.1: Let 𝑈(𝑡) = 𝑈(𝑡, 𝑡0, 𝑈0) be any solution of (3.4.1) with [𝑈0, 𝜃] ≤ 𝑤0, 

which exists on [𝑡0, 𝛽] ,𝑡0 < 𝛽 < ∞ and the value of 𝛽 cannot be increased. 

Define: 

𝑚(𝑡) =  𝐷[𝑈0, 𝜃] (3.4.3) 

then the Corollary (3.2.1) shows that: 
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𝑚(𝑡) ≤ 𝑟(𝑡, 𝑡0, 𝐷[𝑈 , 𝜃]), 𝑡0 ≤ 𝑡 ≤ 𝛽   (3.4.4) 

for any 𝑡1, 𝑡2  such that 𝑡0 < 𝑡1 < 𝑡2 < 𝛽, we have: 

𝐷[𝑈(𝑡1), 𝑈(𝑡2)] = 𝐷 [𝑈0 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 ,
𝑡1

𝑡0

𝑈0 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠
𝑡2

𝑡0

]

= 𝐷 [𝜃, − ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 + ∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠
𝑡2

𝑡0

𝑡1

𝑡0

]

= 𝐷 [∫ 𝐹(𝑠, 𝑈(𝑠))𝑑𝑠 ,
𝑡2

𝑡1

𝜃]

≤ ∫ 𝐷[𝐹(𝑠, 𝑈(𝑠)), 𝜃]𝑑𝑠 ≤ ∫ 𝑔(𝑠, 𝐷[𝑈(𝑠), 𝜃])𝑑𝑠
𝑡2

𝑡1

𝑡2

𝑡1

 

 

 

 

 

 

 

(3.4.5) 

the relation (3.4.4) and the nondecreasing nature of 𝑔(𝑡, 𝑤) yields: 

𝐷[𝑈(𝑡1), 𝑈(𝑡2)] ≤ ∫ 𝑔(𝑠, 𝑟(𝑡, 𝑡0, 𝑤0)𝑑𝑠
𝑡2

𝑡1

= 𝑟(𝑡2, 𝑡0, 𝑤0) − 𝑟(𝑡1, 𝑡0, 𝑤0)        

 

 

(3.4.6) 

since 𝑙𝑖𝑚 𝑡→𝛽 𝑟(𝑡, 𝑡0, 𝑤0) exists and finite by hypothesis, taking the limit as 𝑡1, 𝑡2 → 𝛽, 

and using the Cauchy criterion for convergence, it follows from (3.4.6) 

that 𝑙𝑖𝑚 𝑡→𝛽 𝑈(𝑡, 𝑡0, 𝑈0) exists. We define:  

𝑈(𝛽, 𝑡0, 𝑈0) = 𝑙𝑖𝑚 𝑡→𝛽− 𝑈(𝑡, 𝑡0, 𝑈0) (3.4.7) 

and consider the initial value problem 

𝐷𝐻𝑈(𝑡) = 𝐹(𝑡, 𝑈(𝑡)),    𝑈(𝛽) = 𝑈(𝛽, 𝑡0, 𝑈0). (3.4.8) 

by the assumed local existence, we see that 𝑈(𝑡, 𝑡0, 𝑈0) can be continued beyond  𝛽, 

contradicting our assumption that 𝛽 cannot be continued, hence every solution 

𝑈(𝑡, 𝑡0, 𝑈0) of (3.4.1) such that 𝐷[𝑈0, 𝜃] ≤ 𝑤0 exists globally on [𝑡0, ∞), and the proof 

is complete.∎ 
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4. Monotone Iterative Technique 

4.1. Monotone Iterative Technique for Single Function 

Theorem 4.1.1: Let 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], and 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] be lower 

and upper solutions of 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈), 𝑈(0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛) 
(4.1.1) 

such that 𝑉 ≤ 𝑊 on 𝐽. Where 𝐽 = [0, 𝑇] Suppose furthermore that: 

𝐹(𝑡, 𝑋) − 𝐹(𝑡, 𝑌) ≥ −𝑀(𝑋 − 𝑌) (4.1.2) 

for 𝑉 ≤ 𝑌 ≤ 𝑋 ≤ 𝑊 and 𝑀 ≥ 0. Then, there exist monotone sequences {𝑊𝑛}, {𝑉𝑛} in 

𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

 as 𝑛 → ∞, and (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.1.1) 

respectively. 

Proof 4.1.1: We set 𝑉0 = 𝑉, 𝑊0 = 𝑊, for any 𝜂 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] such that 𝑉0 ≤ 𝜂 ≤

 𝑊0 and consider the linear differential equation: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝜂) − 𝑀(𝑈 − 𝜂), 𝑈(0) = 𝑈0 (4.1.3) 

from (4.1.2) we obtain: 

𝐹(𝑡, 𝑋) ≥ 𝐹(𝑡, 𝑌) − 𝑀(𝑋 − 𝑌). (4.1.4) 

Choose 𝑌 = 𝜂 and 𝑋 = 𝑈,  

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝜂) − 𝑀(𝑈 − 𝜂) (4.1.5) 

it is clear that for every such 𝜂, there exists a unique solution 𝑈 of the equation (4.1.3) 

on 𝐽. Define a mapping 𝐴 by 𝐴𝜂 = 𝑈, this mapping will be used to define sequences 

{𝑊𝑛} , {𝑉𝑛}, lets prove that: 

i) 𝑉0 ≤ 𝐴𝑉0 

ii) 𝐴 is monotone operator on the segment: 

[𝑉0, 𝑊0 ] = {𝑈 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)],  𝑉0 ≤ 𝑈 ≤  𝑊0; 𝑡 ∈ 𝐽 } 
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to prove (i), set 𝐴𝑉0 = 𝑉1 where 𝑉1 is the unique solution of (4.1.3) with 𝜂 = 𝑉0 

in (4.1.3) set 𝜂 = 𝑉0, 𝑈 = 𝑉1  

𝐷𝐻𝑉1 = 𝐹(𝑡, 𝑉0) − 𝑀( 𝑉1 − 𝑉0), 𝑉1(0) = 𝑈0  
(4.1.6) 

setting: 𝜑 = 𝑉0 − 𝑉1, we see that: 

𝐷𝐻𝜑 = 𝐷𝐻𝑉0 − 𝐷𝐻𝑉1 = 𝐷𝐻𝑉0 − 𝐹(𝑡, 𝑉0) + 𝑀(𝑉1 − 𝑉0) (4.1.7) 

so, we can obtain: 

𝐷𝐻𝜑 ≤ 𝐹(𝑡, 𝑉0) − 𝐹(𝑡, 𝑉0) + 𝑀(𝑉1 − 𝑉0) = 𝑀(𝑉1 − 𝑉0) = −𝑀𝜑 (4.1.8) 

and we have 𝜑(0) = 𝑉0(0) − 𝑉1(0) ≤ 𝑈0 − 𝑈0 = 0, since 𝑉0(0) ≤ 𝑈0, we obtain the 

differential inequality: 

𝐷𝐻𝜑 ≤ −𝑀𝜑, 𝜑(0) ≤ 0 (4.1.9) 

and so, we obtain that 𝑉0 ≤ 𝐴𝑉0. Similarly, we can prove  𝑊0 ≥ 𝐴𝑊0. To prove (ii), 

let  𝜂1, 𝜂2 ∈ [𝑉0, 𝑊0] such that 𝜂1 ≤ 𝜂2, suppose that: 𝑈1 =  𝐴𝜂1, 𝑈2 =  𝐴𝜂2 . We shall 

show that  𝐴𝜂1 ≤ 𝐴𝜂2, set  𝜑 = 𝑈1 − 𝑈2 ⇒  𝐷𝐻𝜑 = 𝐷𝐻𝑈1 − 𝐷𝐻𝑈2 from (4.1.3) we 

can write: 

𝑈1 =  𝐴𝜂1  ⟹  𝐷𝐻𝑈1 = 𝐹(𝑡, 𝜂1) − 𝑀(𝑈1 − 𝜂1), 𝑈1(0) = 𝑈0 (4.1.10) 

𝑈2 =  𝐴𝜂2  ⟹  𝐷𝐻𝑈2 = 𝐹(𝑡, 𝜂2) − 𝑀(𝑈2 − 𝜂2), 𝑈2(0) = 𝑈0 (4.1.11) 

      

  𝐷𝐻𝜑 = 𝐷𝐻𝑈1 − 𝐷𝐻𝑈2 = 

                 = 𝐹(𝑡, 𝜂1) − 𝑀(𝑈1 − 𝜂1) −  𝐹(𝑡, 𝜂2) + 𝑀(𝑈2 − 𝜂2) 

                 ≤ 𝑀(𝜂2 − 𝜂1) − 𝑀(𝑈1 − 𝜂1) + 𝑀(𝑈2 − 𝜂2) 

𝐷𝐻𝜑 ≤ −𝑀(𝑈1 − 𝑈2) = −𝑀𝜑 

 

 

 

 

(4.1.12) 

With 𝜑(0) = 𝑈2(0) − 𝑈1(0) = 𝑈0 − 𝑈0 = 0, we obtain the differential inequality: 

𝐷𝐻𝜑 ≤ −𝑀𝜑, 𝜑(0) = 0 (4.1.13) 

we arrive at 𝜑 ≤ 0 ⇒ 𝑈1 ≤ 𝑈2 ⇒  𝐴𝜂1 ≤ 𝐴𝜂2 whenever 𝜂1 ≤ 𝜂2, this complete the 

proof of (ii). We can now define the sequences 𝑉𝑛, 𝑊𝑛 as follows: 

𝑉𝑛 = 𝐴𝑉𝑛−1, 𝑊𝑛 = 𝐴𝑊𝑛−1   (4.1.14) 

and we conclude from the previous arguments that: 
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𝑉0 ≤ 𝐴𝑉0 = 𝑉1 ≤ 𝐴𝑉1 = 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ ⋯ ≤ 𝑊𝑛 = 𝐴𝑊𝑛−1 ≤ 𝑊𝑛−1

= 𝐴𝑊𝑛−2 ≤ 𝑊𝑛−2 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊1 ≤ 𝑊0. 

 

(4.1.15) 

on 𝐽. It’s easy to show that 𝜌, 𝑅 are solutions of the (4.1.1) on 𝐽, since {𝑊𝑛} , {𝑉𝑛} are 

solutions of (4.1.1) where  

                       𝐷𝐻𝑉𝑛 = 𝐹(𝑡, 𝑉𝑛−1) − 𝑀(𝑉𝑛 − 𝑉𝑛−1),               𝑉𝑛(0) = 𝑈0 (4.1.16) 

                      𝐷𝐻𝑊𝑛 = 𝐹(𝑡, 𝑊𝑛−1) − 𝑀(𝑊𝑛 − 𝑊𝑛−1),        𝑊𝑛(0) = 𝑈0 (4.1.17) 

by integrating both sides with respect to 𝑡 on the interval [0, 𝑇], 

∫ 𝐷𝐻

𝑡

0

𝑉𝑛𝑑𝑠 = ∫ 𝐹(𝑠, 𝑉𝑛−1)
𝑡

0

𝑑𝑠 − 𝑀 ∫ (𝑉𝑛(𝑠) − 𝑉𝑛−1(𝑠))𝑑𝑠
𝑡

0

 (4.1.18) 

𝑉𝑛(𝑡) − 𝑉𝑛(0) = ∫ 𝐹(𝑠, 𝑉𝑛−1)
𝑡

0

𝑑𝑠 − 𝑀 ∫ (𝑉𝑛(𝑠) − 𝑉𝑛−1(𝑠))𝑑𝑠
𝑡

0

 (4.1.19) 

𝑉𝑛(𝑡) = 𝑈0 + ∫ 𝐹(𝑠, 𝑉𝑛−1)
𝑡

0

𝑑𝑠 − 𝑀 ∫ (𝑉𝑛(𝑠) − 𝑉𝑛−1(𝑠))𝑑𝑠
𝑡

0

 (4.1.20) 

taking the limit as 𝑛 → ∞ 

𝜌(𝑡) = 𝑈0 + ∫ 𝐹(𝑠, 𝜌(𝑠))
𝑡

0
𝑑𝑠 

(4.1.21) 

if 𝜌(𝑡) is the solution of equivalently Volterra integral equation, it is also the solution 

of the corresponding IVP. In the same way we can prove that 𝑅 is a solution of the 

IVP. To prove that 𝜌, 𝑅 are respectively minimal and maximal solutions of (4.1.1), we 

must show that if 𝑈 any solution of (4.1.1) such that 𝑉0 ≤ 𝑈 ≤ 𝑊0 then, 𝑉0 ≤ 𝜌 ≤ 𝑈 ≤

𝑅 ≤ 𝑊0, to do this, suppose that for some 𝑛 

𝑉𝑛 ≤ 𝑈 ≤ 𝑊𝑛  on 𝐽 (4.1.22) 

and set 𝜑 = 𝑉𝑛+1 − 𝑈 so that: 

  𝐷𝐻𝜑 = 𝐷𝐻𝑉𝑛+1 − 𝐷𝐻𝑈 = 

                      = 𝐹(𝑡, 𝑉𝑛) − 𝑀(𝑉𝑛+1 − 𝑉𝑛) − 𝐹(𝑡, 𝑈) ≤ 

                      ≤ 𝑀(𝑈 − 𝑉𝑛) − 𝑀(𝑉𝑛+1 − 𝑉𝑛) = −𝑀𝜑 

 

 

(4.1.23) 
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with 𝜑(0) = 0, using the comparison results we arrive at 𝜑 ≤ 0, 𝑈 ≥ 𝑉𝑛+1, in the 

same way, we can show that 𝑈 ≥ 𝑊𝑛+1, and as a result  𝑉𝑛+1 ≤ 𝑈 ≤ 𝑊𝑛+1 on 𝐽, since 

𝑉0 ≤ 𝑈 ≤ 𝑊0, on 𝐽 and this prove by mathematical induction that : 

𝑉𝑛 ≤ 𝑈 ≤ 𝑊𝑛 on 𝐽,   for all 𝑛  

taking the limit as 𝑛 → ∞, we conclude that 𝜌 ≤ 𝑈 ≤ 𝑅, and the proof is complete.∎ 

 

Corollary 4.1.1: In addition to the assumptions of Theorem (4.1.1), we assume:  

𝐹(𝑡, 𝑋) − 𝐹(𝑡, 𝑌) ≤ 𝑀(𝑋 − 𝑌) (4.1.24) 

where 𝑉(𝑡) ≤ 𝑌 ≤ 𝑋 ≤ 𝑊(𝑡), and 𝑀 > 0, then we have unique solution of (4.1.1) 

such that 𝑅 = 𝑈 = 𝜌. 

Proof 4.1.1: If we set 𝜑 = 𝑅 − 𝜌, then 

𝐷𝐻𝜑 = 𝐷𝐻𝑅 − 𝐷𝐻𝜌 = 𝐹(𝑡, 𝑅) − 𝐹(𝑡, 𝜌) ≤ 𝑀(𝑅 − 𝜌), 

which gives 

𝐷𝐻𝜑 ≤ 𝑀𝜑,   𝜑(0) = 0 (4.1.25) 

hence, we get 𝜑(𝑡) ≤ 0 on 𝐽 which implies that 𝑅 ≤ 𝜌, we have already that 𝜌 ≤ 𝑅, 

so we obtain that, so we obtain that 𝑅 = 𝑈 = 𝜌, is the unique solution of (4.1.1). And 

the proof is complete.∎ 

4.2. Monotone Iterative Technique for Sum Two Functions: 

To develop the monotone iterative technique, we shall consider the following set 

differential equation: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈), 𝑈(0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛) (4.2.1) 

where 𝐹, 𝐺 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛),  𝐾𝐶(𝑅𝑛)], and  𝐽 = [0, 𝑇]. 

 

Definition 4.2.1: Let 𝑉, 𝑊 ∈ 𝐶1[𝑅+, 𝐾𝐶(𝑅𝑛)], then 𝑉, 𝑊 are said to be: 

i) Natural lower and upper solutions of (4.2.1) if: 
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       𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑉), 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑊), 𝑡 ∈ 𝐽   (4.2.2) 

ii) Coupled lower and upper solutions of type 𝐼 of (4.2.1) if: 

            𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑊), 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑉), 𝑡 ∈ 𝐽   (4.2.3) 

iii) Coupled lower and upper solutions of type 𝐼𝐼 of (4.2.1) if: 

            𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑉), 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑊), 𝑡 ∈ 𝐽     (4.2.4) 

iv) Coupled lower and upper solutions of type 𝐼𝐼𝐼 of (4.2.1) if: 

            𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑊), 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑉), 𝑡 ∈ 𝐽    (4.2.5) 

we observe that whenever we have 𝑉(𝑡) ≤ 𝑊(𝑡), 𝑡 ∈ 𝐽. 

 

Theorem 4.2.1: Assume that: 

1. 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] are coupled lower and upper solutions of type 𝐼 relative 

to (4.2.1) with  𝑉(𝑡) ≤ 𝑊(𝑡),    𝑡 ∈ 𝐽. 

2. 𝐹, 𝐺 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is nondecreasing in 𝑋, and 𝐺(𝑡, 𝑌) is 

nonincreasing in 𝑌, for each 𝑡 ∈ 𝐽. 

3. 𝐹, 𝐺 map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then there exist monotone sequences {𝑊𝑛} , {𝑉𝑛} in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.2.1) respectively, that is 

they satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅), 𝜌(0) = 𝑈0   on 𝐽 (4.2.6) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌), 𝑅(0) = 𝑈0  on 𝐽 (4.2.7) 

Proof:  

For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊𝑛+1(𝑡) by: 

            𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛),    𝑉𝑛+1(0) = 𝑈0   on 𝐽 (4.2.8) 

            𝐷𝐻𝑊𝑛+1(𝑡) = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑉𝑛),  𝑊𝑛+1(0) = 𝑈0  on 𝐽 (4.2.9) 

where 𝑉(0) ≤ 𝑈0 ≤ 𝑊(0), we set 𝑉0 = 𝑉, 𝑊0 = 𝑊, our aim to prove: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊𝑛 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊1 ≤ 𝑊0 (4.2.10) 
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we have using the fact that 𝑉0 ≤ 𝑊0, and the nondecreasing character of 𝐹: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) (4.2.11) 

and, we have: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) (4.2.12) 

we can obtain that: 

𝐷𝐻𝑉0(𝑡)  ≤ 𝐷𝐻𝑉1(𝑡) (4.2.13) 

consequently, according to Theorem (3.1.4) we arrive at  𝑉0(𝑡) ≤ 𝑉1(𝑡). A similar 

argument shows that 𝑊1(𝑡) ≤ 𝑊0(𝑡). We next prove that 𝑉1 ≤ 𝑊1 on 𝐽. For this 

purpose, consider: 

                                           𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) (4.2.14) 

                                           𝐷𝐻𝑊1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0) (4.2.15) 

And  

𝑉1(0) = 𝑊1(0) = 𝑈0 

since 𝑉0(𝑡) ≤ 𝑊0(𝑡), then: 

𝐹(𝑡, 𝑉0) ≤ 𝐹(𝑡, 𝑊0),        𝐹(𝑡, 𝑋) is monotone nondecreasing in 𝑋. 

𝐺(𝑡, 𝑉0) ≥ 𝐺(𝑡, 𝑊0), 𝐺(𝑡, 𝑌) is monotone nonincreasing in 𝑌. 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) on 𝐽 (4.2.16) 

𝐷𝐻𝑊1(𝑡) ≥ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) on 𝐽 (4.2.17) 

consequently, we arrive at: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐷𝐻𝑊1(𝑡) (4.2.18) 

and then according to Theorem (3.1.4), we arrive at: 

𝑉1(𝑡) ≤ 𝑊1(𝑡) on 𝐽 (4.2.19) 

and as a result, we obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊1 ≤ 𝑊0 (4.2.20) 

assume that for some 𝑗 > 1, we have: 
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                                         𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊𝑗 ≤ 𝑊𝑗−1      on 𝐽 (4.2.21) 

then we show that: 

                                         𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊𝑗+1 ≤ 𝑊𝑗      on 𝐽 (4.2.22) 

to do this, we have  

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡, 𝑊𝑗−1), 𝑉𝑗(0) = 𝑈0   on 𝐽 (4.2.23) 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.2.24) 

so, we can write: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡, 𝑊𝑗−1) ≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) (4.2.25) 

consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on 𝐽, in the same way we arrive at 𝑊𝑗+1 ≤ 𝑊𝑗  on 𝐽. 

Next, we show that 𝑉𝑗+1 ≤ 𝑊𝑗+1,  𝑡 ∈ 𝐽, we have: 

             𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗),        𝑉𝑗+1(0) = 𝑈0  on 𝐽 (4.2.26) 

              𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗),      𝑊𝑗+1(0) = 𝑈0  on 𝐽 (4.2.27) 

then we can write: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗) ≤ 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗) (4.2.28) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗) ≥ 𝐹(𝑡, 𝑊𝑗) +  𝐺(𝑡, 𝑊𝑗) (4.2.29) 

and as a result: 

𝑉𝑗+1(𝑡) ≤ 𝑊𝑗+1(𝑡)       on 𝐽 (4.2.30) 

hence (4.2.22) follows and consequently, by induction (4.2.10) is valid for all 𝑛. 

Clearly sequences {𝑊𝑛} , {𝑉𝑛}  are uniformly bounded on. To Show that they are 

equicontinuous, consider for any 𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽. 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁, |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
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𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)] =  

= 𝐷 [𝑈0 + ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))}𝑑𝑠,
𝑡2

0

𝑈0

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))}𝑑𝑠
𝑡1

0

]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))}, 𝜃]𝑑𝑠
𝑡2

𝑡1

≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

(4.2.31) 

we used here the properties of  integral and the metric 𝐷, together with the fact that 

𝐹 + 𝐺 are bounded since {𝑊𝑛}, {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is 

equicontinuous on 𝐽, Ascoli’s theorem gives a subsequence {𝑉𝑛𝑘
} which converges 

uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone nondecreasing sequence, the 

entire sequence {𝑉𝑛} converges uniformly to 𝜌(𝑡) on 𝐽. By the same way we can show 

that the sequence {𝑊𝑛} converges uniformly to R(𝑡) on 𝐽, it therefore follows, using 

the integral representation of (4.2.8) and (4.2.9) that 𝜌(𝑡) and 𝑅(𝑡) satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅), 𝜌(0) = 𝑈0   on 𝐽 (4.2.32) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌), 𝑅(0) = 𝑈0  on 𝐽 (4.2.33) 

and that 

𝑉0 ≤ 𝜌 ≤ 𝑅 ≤ 𝑊0 (4.2.34) 

we next claim that (𝜌, 𝑅)are coupled minimal and maximal solutions of (4.2.1), that 

is, if 𝑈(𝑡) is any solution of (4.2.1) such that: 

𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 (4.2.35) 

then  

                                      𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅 ≤ 𝑊0         𝑡 ∈ 𝐽   (4.2.36) 

suppose that for some 𝑛, 

                                              𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊𝑛        𝑡 ∈ 𝐽     (4.2.37) 

then we have using the monotone nature of 𝐹 and 𝐺 and (4.2.37): 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛), 𝑈(0) = 𝑈0 (4.2.38) 



45 
 

𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛),                                     𝑉𝑛+1(0) = 𝑈0 (4.2.39) 

consequently, we arrive at: 

𝐷𝐻𝑈 ≥ 𝐷𝐻𝑉𝑛+1 (4.2.40) 

according to Theorem (3.1.4), we arrive at: 

𝑉𝑛+1 ≤ 𝑈      on 𝐽 (4.2.41) 

in the same way,  

𝑊𝑛+1 ≥ 𝑈      on 𝐽 (4.2.42) 

hence by induction the relation (4.2.37) is true for all 𝑛 ≥ 1, taking the limit 𝑛 → ∞, 

we obtain (4.2.36) proving the claim. The proof is complete.∎ 

 

Corollary 4.2.1: If, in addition to the assumptions of Theorem (4.2.1),𝐹 and 𝐺 satisfy 

whenever 𝑋 ≥ 𝑌, 𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛)  

𝐹(𝑡, 𝑋) ≤ 𝐹(𝑡, 𝑌) + 𝑁1(𝑋 − 𝑌) (4.2.43) 

𝐺(𝑡, 𝑋) + 𝑁2(𝑋 − 𝑌) ≥ 𝐺(𝑡, 𝑌) (4.2.44) 

where 𝑁1  , 𝑁2 > 0 then 𝜌 = 𝑅 = 𝑈 is the unique solution of (4.2.1). 

Proof 4.2.1: Since 𝜌 ≤ 𝑅, and then 𝑅 = 𝜌 + 𝑚 or 𝑚 = 𝑅 − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅 = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌)

≤ 𝐹(𝑡, 𝜌) + 𝑁1(𝑅 − 𝜌) + 𝐺(𝑡 , 𝑅) + 𝑁2(𝑅 − 𝜌)

= 𝐷𝐻𝜌 + (𝑁1 + 𝑁2)𝑚 

 

 

(4.2.45) 

which means, 

𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2)𝑚, 𝑚(0) = 0 (4.2.46) 

which leads by using the comparison results to 𝑅 ≤ 𝜌  on 𝐽, proving the uniqueness 

of 𝜌 = 𝑅 = 𝑈. And the proof is complete.∎ 
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Theorem 4.2.2: Assume that (i) and (ii) of the Theorem (4.2.1) hold, then for any 

solution of (4.2.1) 𝑈(𝑡) with 𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 on 𝐽, we have the iterates {𝑉𝑛}, {𝑊𝑛} 

satisfying  

𝑉0 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉2𝑛 ≤ 𝑈(𝑡) ≤ 𝑉2𝑛+1 ≤ ⋯ ≤ 𝑉3 ≤ 𝑉1 on 𝐽 (4.2.47) 

𝑊1 ≤ 𝑊3 ≤ ⋯ ≤ 𝑊2𝑛+1 ≤ 𝑈(𝑡) ≤ 𝑊2𝑛 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊0 on 𝐽 (4.2.48) 

provided that 𝑉0 ≤ 𝑉2, 𝑊2 ≤ 𝑊0 on 𝐽, where the iterative schemes are given by: 

𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑉𝑛), 𝑉𝑛+1(0) = 𝑈0 (4.2.49) 

                   𝐷𝐻𝑊𝑛+1 = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛),        𝑊𝑛+1(0) = 𝑈0 (4.2.50) 

furthermore, the monotone sequences {𝑉2𝑛}, {𝑉2𝑛+1}, {𝑊2𝑛}, {𝑊2𝑛+1} in 𝐾𝐶(𝑅𝑛) 

converge to 𝜌, 𝑅, 𝑅∗, 𝜌∗in 𝐾𝐶(𝑅𝑛) respectively and verify  

𝐷𝐻𝑅 = 𝐹(𝑡, 𝑅∗) + 𝐺(𝑡, 𝜌), 𝑅(0) = 𝑈0 (4.2.51) 

𝐷𝐻𝜌 = 𝐹(𝑡, 𝜌∗) + 𝐺(𝑡, 𝑅), 𝜌(0) = 𝑈0 (4.2.52) 

𝐷𝐻𝑅∗ = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅∗),      𝑅∗(0) = 𝑈0 (4.2.53) 

        𝐷𝐻𝜌∗ = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌∗),       𝜌∗(0) = 𝑈0  on 𝐽 (4.2.54) 

Proof 4.2.2: We shall first show that 𝑉0, 𝑊0are coupled lower and upper solutions 

𝑉0, 𝑊0 of the Type 𝐼𝐼 of (4.2.1) exist on 𝐽, satisfying 𝑉0 ≤ 𝑊0 on 𝐽, for this purpose, 

consider the IVP  

𝐷𝐻𝑍 = 𝐹(𝑡, 𝜃) + 𝐺(𝑡, 𝜃), 𝑍(0) = 𝑈0 (4.2.55) 

let 𝑍(𝑡) be the solution of (4.2.55) which exists on 𝐽, define 𝑉0, 𝑊0 by  

𝑅0 + 𝑉0 = 𝑍 and  𝑊0 = 𝑍 + 𝑅0 

where the positive vector 𝑅0 = (𝑅01, 𝑅02, … , 𝑅0𝑛) is chosen sufficiently large so that 

we have 𝑉0 ≤ 𝜃 ≤ 𝑊0 on 𝐽, after that using the monotone character of 𝐹 and 𝐺, we 

can write 

𝐷𝐻𝑉0 = 𝐷𝐻𝑍 = 𝐹(𝑡, 𝜃) + 𝐺(𝑡, 𝜃) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0), (4.2.56) 

 With 𝑉0(0) = 𝑍(0) − 𝑅0 ≤ 𝑍(0) = 𝑈0. In the same way, 𝐷𝐻𝑊0 ≥ 𝐹(𝑡, 𝑉0) +

𝐺(𝑡, 𝑊0),  𝑊0(0) ≥ 𝑈0. And as a result, 𝑉0, 𝑊0 are the coupled lower and upper 

solutions of type 𝐼𝐼 of (4.2.1). 
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Let 𝑈(𝑡) be any solution of (4.2.1) such that 𝑉0 ≤ 𝑈(𝑡) ≤  𝑊0 on 𝐽, we shall show that  

                                     𝑉0 ≤ 𝑉2 ≤ 𝑈 ≤ 𝑉3 ≤ 𝑉1  

𝑊1 ≤ 𝑊3 ≤ 𝑈 ≤ 𝑊2 ≤ 𝑊0 (4.2.57) 

on 𝐽, since 𝑈(𝑡) is a solution of (4.2.1), we have, using the monotone character of 

𝐹 and 𝐺, and the fact 𝑉0 ≤ 𝑈(𝑡) ≤  𝑊0, 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0), 𝑈(0) = 𝑈0 (4.2.58) 

and 𝑉1 satisfies 

𝐷𝐻𝑉1 = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0),    𝑉1(0) = 𝑈0 on 𝐽 (4.2.60) 

which yields that 𝑈(𝑡) ≤  𝑉1 on 𝐽, in the same way, 𝑊1 ≤ 𝑈(𝑡). After that, we show 

that 𝑉2 ≤ 𝑈(𝑡) on 𝐽, note that  

𝐷𝐻𝑉2 = 𝐹(𝑡, 𝑊1) + 𝐺(𝑡, 𝑉1), 𝑉2(0) = 𝑈0 (4.2.59) 

and then because of the monotonicity of 𝐹 and 𝐺, we get  

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝑊1) + 𝐺(𝑡, 𝑉1), 𝑈(0) = 𝑈0 on 𝐽 (4.2.60) 

we can write: 

𝐷𝐻𝑉2 ≤ 𝐷𝐻𝑈 (4.2.61) 

consequently, according to Theorem (3.1.4), we arrive at 𝑉2 ≤ 𝑈(𝑡), on 𝐽. A similar 

argument shows that 𝑈 ≤ 𝑊2 on 𝐽, next we find utilizing the assumption  𝑉0 ≤ 𝑉2, 

𝑊2 ≤ 𝑊0 on 𝐽 and the monotonicity of 𝐹 and 𝐺, we have: 

  𝐷𝐻𝑉1 = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0),    𝑉1(0) = 𝑈0 on 𝐽 (4.2.62) 

                      𝐷𝐻𝑉3 = 𝐹(𝑡, 𝑊2) + 𝐺(𝑡, 𝑉2) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0), (4.2.63) 

With 𝑉3(0) = 𝑈0 on 𝐽, we arrive at: 

𝐷𝐻𝑉3 ≤ 𝐷𝐻𝑉1 (4.2.64) 

which follows that 𝑉3(𝑡) ≤ 𝑉1(𝑡) on 𝐽, in the same way one can show that 𝑊1 ≤ 𝑊3 

on 𝐽, also, employing similar reasoning, one can prove that 𝑈(𝑡) ≤ 𝑉3 and 𝑊3 ≤ 𝑈(𝑡) 

on 𝐽, proving the relations (4.2.27). Now assuming for some 𝑛 > 2, the inequalities  
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𝑉2𝑛−4 ≤ 𝑉2𝑛−2 ≤ 𝑈 ≤ 𝑉2𝑛−1 ≤ 𝑉2𝑛−3, 

          𝑊2𝑛−3 ≤ 𝑊2𝑛−1 ≤ 𝑈 ≤ 𝑊2𝑛−2 ≤ 𝑊2𝑛−4, on 𝐽 

 

(4.2.65) 

hold, it can be shown, employing similar arguments that  

𝑉2𝑛−2 ≤ 𝑉2𝑛 ≤ 𝑈 ≤ 𝑉2𝑛+1 ≤ 𝑉2𝑛−1, 

          𝑊2𝑛−1 ≤ 𝑊2𝑛+1 ≤ 𝑈 ≤ 𝑊2𝑛 ≤ 𝑊2𝑛−2, on 𝐽 (4.2.66) 

thus, by induction (4.2.47) and (4.2.48) are valid for all 𝑛 = 0, 1, 2, ⋯, Since 

{𝑉𝑛}, {𝑊𝑛} ∈ 𝐾𝐶(𝑅𝑛) for some 𝑛, employing a similar reasoning as in (4.2.1) we 

conclude: 

𝑙𝑖𝑚𝑛→∞𝑉2𝑛 = 𝜌,    𝑙𝑖𝑚𝑛→∞𝑉2𝑛+1 = 𝑅 

𝑙𝑖𝑚𝑛→∞𝑊𝑛+1 = 𝜌∗,    𝑙𝑖𝑚𝑛→∞𝑊2𝑛 = 𝑅∗ 

 

(4.2.67) 

exist, in 𝐾𝐶(𝑅𝑛), uniformly on 𝐽, it therefore follows by suitable use of the integral 

representation (4.2.49) and (4.2.50) that 𝜌, 𝑅,  𝑅∗, 𝜌∗ satisfy that corresponding set 

differential equation in (4.2.1) on 𝐽, also from (4.2.47) and (4.2.48), we obtain: 

𝜌 ≤ 𝑈 ≤ 𝑅,  𝜌∗ ≤ 𝑈 ≤ 𝑅∗on 𝐽. (4.2.68) 

The proof therefore is complete.∎ 

 

Corollary 4.2.2: Under the assumptions of Theorem (4.2.2), if 𝐹 and 𝐺 satisfy the 

assumptions of Corollary (4.2.1) then,  𝜌 = 𝜌∗ = 𝑅 = 𝑅∗ = 𝑈, is the unique solution 

of (4.2.1) 

Proof 4.2.2: Let 𝑞1 + 𝜌 = 𝑅, 𝑞2 + 𝜌∗ = 𝑅∗ where 𝑞1, 𝑞2 ≥ 0 on 𝐽, since 𝜌 ≤ 𝑅 and 

𝜌∗ ≤ 𝑅∗ on 𝐽, then using the assumptions, we can write: 

𝐷𝐻(𝑞1 +  𝑞2) ≤ (𝑁1 + 𝑁2)(𝑞1 +  𝑞2),  𝑞1(0) + 𝑞2(0) = 0 on 𝐽 (4.2.69) 

So, using Theorem (3.1.4) implies that 𝑞1 +  𝑞2 ≤ 0 on 𝐽, and as a result, we get 𝜌 =

𝑅 = 𝑈 and 𝜌∗ = 𝑅∗ = 𝑈 on 𝐽. And this proves the corollary.∎  
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4.3 Monotone Iterative Technique with the other Types of 

Coupled Lower and Upper Solutions 

We used in the Theorem (4.2.1) the first type of coupled lower and upper solutions, 

now we can study monotone iterative technique for the other types, by making some 

changes. 

 

Theorem 4.3.1: Suppose that: 

i) 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] are coupled lower and upper solutions of natural type 

relative to (4.2.1) with 𝑉(𝑡) ≤ 𝑊(𝑡), 𝑡 ∈ 𝐽 

ii) 𝐹, 𝐺 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is nondecreasing in 𝑋, and 𝐺(𝑡, 𝑌) is 

nondecreasing in 𝑌, for each 𝑡 ∈ 𝐽. 

iii) 𝐹, 𝐺 map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then we have two monotone sequences {𝑊𝑛}, {𝑉𝑛} in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.2.1) respectively, and 

they are satisfying 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝜌), 𝜌(0) = 𝑈0   on 𝐽 (4.3.1) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝑅), 𝑅(0) = 𝑈0  on 𝐽 (4.3.2) 

Proof 4.3.1: For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊𝑛+1(𝑡) by the 

relations: 

 𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑉𝑛),         𝑉𝑛+1(0) = 𝑈0   on 𝐽 (4.3.3) 

             𝐷𝐻𝑊𝑛+1(𝑡) = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑊𝑛),    𝑊𝑛+1(0) = 𝑈0  on 𝐽 (4.3.4) 

where 𝑉(0) ≤ 𝑈0 ≤ 𝑊(0), we set 𝑉0 = 𝑉, 𝑊0 = 𝑊, our aim to prove: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊𝑛 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊1 ≤ 𝑊0 (4.3.5) 

we have using the fact that 𝑉0 ≤ 𝑊0 and the nondecreasing character of  𝐹 : 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑉0) (4.3.6) 

and we can write from (4.3.3) by substituting 𝑛 = 0 
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𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑉0) (4.3.7) 

we can obtain that: 

𝐷𝐻𝑉0(𝑡)  ≤ 𝐷𝐻𝑉1(𝑡) (4.3.8) 

consequently, according to Theorem (3.1.4) we arrive at 𝑉0(𝑡)  ≤ 𝑉1(𝑡). A similar 

argument shows that 𝑊1(𝑡) ≤ 𝑊0(𝑡). We next prove that 𝑉1 ≤ 𝑊1 on 𝐽. For this 

purpose, consider: 

   𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑉0) (4.3.9) 

     𝐷𝐻𝑊1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) (4.3.10) 

And 𝑉1(0) = 𝑊1(0) = 𝑈0. since 𝑉0(𝑡) ≤ 𝑊0(𝑡) then: 

𝐹(𝑡, 𝑉0) ≤ 𝐹(𝑡, 𝑊0),         𝐹(𝑡, 𝑋) is monotone nondecreasing in 𝑋. 

𝐺(𝑡, 𝑉0) ≤ 𝐺(𝑡, 𝑊0), 𝐺(𝑡, 𝑌)  is monotone nondecreasing in 𝑌. 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) on 𝐽 

 𝐷𝐻𝑊1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) on 𝐽 

(4.3.11) 

(4.3.12) 

consequently, we arrive at: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐷𝐻𝑊1(𝑡) (4.3.13) 

consequently, according to Theorem (3.1.4) 

𝑉1(𝑡) ≤ 𝑊1(𝑡) on 𝐽  (4.3.14) 

and as a result, we obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊1 ≤ 𝑊0 (4.3.15) 

assume that for some 𝑗 > 1, we have: 

                                    𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊𝑗 ≤ 𝑊𝑗−1      on 𝐽 (4.3.16) 

then we show that: 

                                    𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊𝑗+1 ≤ 𝑊𝑗      on 𝐽 (4.3.17) 

to do this, consider: 
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                𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡, 𝑉𝑗−1),       𝑉𝑗(0) = 𝑈0   on 𝐽 

               𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗),         𝑉𝑗+1(0) = 𝑈0   on 𝐽 

(4.3.18) 

(4.3.19) 

so, we can write: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡, 𝑉𝑗−1) ≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) (4.3.20) 

consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on  𝐽, similarly we can get  𝑊𝑗+1 ≤ 𝑊𝑗 on 𝐽. Next, we 

show that 𝑉𝑗+1 ≤ 𝑊𝑗+1, 𝑡 ∈ 𝐽, we have: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.3.21) 

             𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗),     𝑊𝑗+1(0) = 𝑈0  on 𝐽 (4.3.22) 

then we can write: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗) ≤ 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗) (4.3.23) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗) (4.3.24) 

and as a result: 

𝐷𝐻𝑉𝑗+1(𝑡) ≤ 𝐷𝐻𝑊𝑗+1(𝑡)       on 𝐽 (4.3.25) 

consequently, utilizing Theorem (3.1.4) we arrive at: 

𝑉𝑗+1(𝑡) ≤ 𝑊𝑗+1(𝑡)       on 𝐽 (4.3.26) 

hence the relation (4.3.17) follows, and consequently by induction the relation (4.3.5) 

is valid for all 𝑛. Clearly sequences {𝑊𝑛} , {𝑉𝑛}  are uniformly bounded on. To Show 

that they are equicontinuous, consider for any  𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁, |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
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𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)] =  

= 𝐷 [𝑈0 + ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑉𝑛−1(𝑠))}𝑑𝑠,
𝑡2

0

𝑈0

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑉𝑛−1(𝑠))}𝑑𝑠
𝑡1

0

]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑉𝑛−1(𝑠))}, 𝜃]𝑑𝑠
𝑡2

𝑡1

≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

(4.3.27) 

here we utilized the properties of integral and the metric 𝐷, together with the fact that 

𝐹 + 𝐺 are bounded since {𝑊𝑛}, {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is 

equicontinuous on 𝐽, the corresponding Ascoli’s theorem gives a subsequence {𝑉𝑛𝑘} 

which converges uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone 

nondecreasing sequence, the entire sequence {𝑉𝑛} converges uniformly to 𝜌(𝑡) on 𝐽. 

The same arguments apply to the sequence {𝑊𝑛} and 𝑊𝑛 → 𝑅 uniformly on 𝐽, it 

therefore follows, using the integral representation of (4.3.3) and (4.3.4) that 𝜌(𝑡) and 

𝑅(𝑡) satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝜌), 𝜌(0) = 𝑈0   on 𝐽 (4.3.28) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝑅), 𝑅(0) = 𝑈0  on 𝐽 (4.3.29) 

and that  

𝑉0 ≤ 𝜌 ≤ 𝑅 ≤ 𝑊0 (4.3.30) 

we next claim that (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.2.1), that 

is, if 𝑈(𝑡) is any solution of (4.2.1) such that: 

𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 (4.3.31) 

then  

𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅 ≤ 𝑊0         𝑡 ∈ 𝐽   (4.3.32) 

suppose that for some 𝑛, 

𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊𝑛, 𝑡 ∈ 𝐽     (4.3.33) 

then we have using the monotone nature of 𝐹 and 𝐺 and (4.3.33): 
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𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑉𝑛), 𝑈(0) = 𝑈0 (4.3.34) 

                        𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑉𝑛),    𝑉𝑛+1(0) = 𝑈0 (4.3.35) 

hence  

𝐷𝐻𝑈 ≥ 𝐷𝐻𝑉𝑛+1 (4.3.36) 

consequently, utilizing Theorem (3.1.4) we arrive at: 

𝑉𝑛+1 ≤ 𝑈      on  𝐽 (4.3.37) 

in the same way we can show that,  

𝑊𝑛+1 ≥ 𝑈      on  𝐽 (4.3.38) 

hence by induction the relation (4.3.33) is true for all 𝑛 ≥ 1, taking the limit 𝑛 → ∞, 

we get (4.3.32) proving the claim. The proof is complete.∎ 

 

Corollary 4.3.1: If, in addition to the assumptions of Theorem (4.3.1), 

𝐹 and 𝐺 satisfy whenever 𝑋 ≥ 𝑌, 𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛). 

𝐹(𝑡, 𝑋) ≤ 𝐹(𝑡, 𝑌) + 𝑁1(𝑋 − 𝑌) (4.3.39) 

𝐺(𝑡, 𝑋) ≤ 𝐺(𝑡, 𝑌) + 𝑁2(𝑋 − 𝑌) (4.3.40) 

where 𝑁1  , 𝑁2 > 0 then 𝜌 = 𝑅 = 𝑈 is the unique solution of (4.2.1). 

Proof 4.3.1: Since  𝜌 < 𝑅, and then 𝑅 = 𝜌 + 𝑚 or  𝑚 = 𝑅 − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅 = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝑅)

≤ 𝐹(𝑡, 𝜌) + 𝑁1(𝑅 − 𝜌) + 𝐺(𝑡 , 𝜌) + 𝑁2(𝑅 − 𝜌)

= 𝐷𝐻𝜌 + (𝑁1 + 𝑁2)𝑚 

 

 

(4.3.41) 

which means, 

𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2)𝑚, 𝑚(0) = 0 (4.3.42) 

using comparison results leads to 𝑅 ≤ 𝜌  on  𝐽, proving the uniqueness of 𝜌 = 𝑅 = 𝑈. 

Complete the proof.∎ 
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Theorem 4.3.2: Assume that: 

i) 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] are coupled lower and upper solutions of type 𝐼𝐼 

relative to (4.2.1) with  𝑉(𝑡) ≤ 𝑊(𝑡), 𝑡 ∈ 𝐽 

ii) 𝐹, 𝐺 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is nonincreasing in 𝑋, and 𝐺(𝑡, 𝑌) is 

nondecreasing in 𝑌, for each 𝑡 ∈ 𝐽. 

iii) 𝐹 , 𝐺  map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then there exist monotone sequences {𝑊𝑛}, {𝑉𝑛} in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.2.1) respectively, that is 

they satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌), 𝜌(0) = 𝑈0   on 𝐽 (4.3.43) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅), 𝑅(0) = 𝑈0  on 𝐽 (4.3.44) 

Proof 4.3.2: For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊𝑛+1(𝑡) by: 

           𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑉𝑛),           𝑉𝑛+1(0) = 𝑈0   on 𝐽 (4.3.45) 

 𝐷𝐻𝑊𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛), 𝑊𝑛+1(0) = 𝑈0  on 𝐽 (4.3.46) 

where 𝑉(0) ≤ 𝑈0 ≤ 𝑊(0), we set 𝑉0 = 𝑉, 𝑊0 = 𝑊. our aim to prove: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊𝑛 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊1 ≤ 𝑊0. (4.3.47) 

we have using the fact that: 𝑉0 ≤ 𝑊0 and the nondecreasing character of: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0) (4.3.48) 

and, we have: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0) (4.3.50) 

we can obtain that: 

𝐷𝐻𝑉0(𝑡)  ≤ 𝐷𝐻𝑉1(𝑡) (4.3.51) 

consequently, using Theorem (3.1.4), we arrive at 𝑉0(𝑡)  ≤ 𝑉1(𝑡). A similar argument 

shows that 𝑊1(𝑡) ≤ 𝑊0(𝑡),we next prove that 𝑉1 ≤ 𝑊1 on 𝐽. For this purpose, 

consider: 
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𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0) 

𝐷𝐻𝑊1(𝑡)  = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) 

(4.3.52) 

(4.3.53) 

 With 𝑉1(0) = 𝑊1(0) = 𝑈0. since 𝑉0(𝑡) ≤ 𝑊0(𝑡) then: 

𝐹(𝑡, 𝑊0) ≤ 𝐹(𝑡, 𝑉0),         𝐹(𝑡, 𝑋) is monotone nonincreasing in 𝑋. 

𝐺(𝑡, 𝑉0) ≤ 𝐺(𝑡, 𝑊0), 𝐺(𝑡, 𝑌) is monotone nondecreasing in 𝑌. 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) on 𝐽 (4.3.55) 

𝐷𝐻𝑊1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) on 𝐽 (4.3.56) 

consequently, we arrive at: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐷𝐻𝑊1(𝑡) (4.3.57) 

consequently, 

𝑉1(𝑡) ≤ 𝑊1(𝑡) on 𝐽  (4.3.58) 

and as a result, we obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊1 ≤ 𝑊0 (4.3.59) 

assume that for some 𝑗 > 1, we have: 

                                             𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊𝑗 ≤ 𝑊𝑗−1      on 𝐽 (4.3.60) 

then we show that: 

                                             𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊𝑗+1 ≤ 𝑊𝑗      on 𝐽 (4.3.61) 

to do this, consider: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑊𝑗−1) + 𝐺(𝑡, 𝑉𝑗−1), 𝑉𝑗(0) = 𝑈0   on 𝐽 (4.3.62) 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.3.63) 

so, we can write: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑊𝑗−1) + 𝐺(𝑡, 𝑉𝑗−1) ≤ 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) (4.3.64) 
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consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on 𝐽, similarly we can get 𝑊𝑗+1 ≤ 𝑊𝑗 on 𝐽. Next, we 

show that 𝑉𝑗+1 ≤ 𝑊𝑗+1; 𝑡 ∈ 𝐽 we have: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.3.65) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗), 𝑊𝑗+1(0) = 𝑈0  on 𝐽 (4.3.66) 

then we can write: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗) ≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗) 

 

(4.3.67) 

and as a result: 

𝑉𝑗+1(𝑡) ≤ 𝑊𝑗+1(𝑡)       on 𝐽 (4.3.68) 

hence (4.3.61) follows and consequently by induction (4.3.47) is valid for all 𝑛. Clearly 

sequences {𝑊𝑛}, {𝑉𝑛}  are uniformly bounded on 𝐽. To show that they are 

equicontinuous, consider for any 𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁,     |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
 

𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)] =  

= 𝐷 [𝑈0 + ∫ {𝐹(𝑠, 𝑊𝑛−1(𝑠)) + 𝐺(𝑠, 𝑉𝑛−1(𝑠))}𝑑𝑠,
𝑡2

0

𝑈0

+ ∫ {𝐹(𝑠, 𝑊𝑛−1(𝑠)) + 𝐺(𝑠, 𝑉𝑛−1(𝑠))}𝑑𝑠
𝑡1

0

]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑊𝑛−1(𝑠)) + 𝐺(𝑠, 𝑉𝑛−1(𝑠))}, 𝜃]𝑑𝑠
𝑡2

𝑡1

≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

(4.3.69) 

here we utilized the properties of integral and the metric 𝐷, together with the fact that 

𝐹 + 𝐺 are bounded since {𝑊𝑛} , {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is 

equicontinuous on 𝐽, the corresponding Ascoli’s theorem gives a subsequence {𝑉𝑛𝑘
} 

which converges uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone 

nondecreasing sequence, the entire sequence {𝑉𝑛} converges uniformly to 𝜌(𝑡) on 𝐽. 

Similar arguments apply to the sequence  {𝑊𝑛} and 𝑊𝑛 → 𝑅 uniformly on 𝐽, it 
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therefore follows, using the integral representation of (4.3.45) and (4.3.46) that 𝜌(𝑡) 

and 𝑅(𝑡) satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌), 𝜌(0) = 𝑈0   on 𝐽 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅), 𝑅(0) = 𝑈0  on 𝐽 

(4.3.70) 

(4.3.71) 

and that  

𝑉0 ≤ 𝜌 ≤ 𝑅 ≤ 𝑊0 (4.3.72) 

we next claim that (𝜌, 𝑅)are coupled minimal and maximal solutions of (4.2.1), that 

is, if 𝑈(𝑡) is any solution of (4.2.1) such that: 

𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 (4.3.73) 

then  

                                       𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅 ≤ 𝑊0         𝑡 ∈ 𝐽   (4.3.74) 

suppose that for some 𝑛, 

                                              𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊𝑛        𝑡 ∈ 𝐽     (4.3.75) 

then we have using the monotone nature of 𝐹 and 𝐺 and (4.3.75): 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑉𝑛), 𝑈(0) = 𝑈0 (4.3.76) 

𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑉𝑛),           𝑉𝑛+1(0) = 𝑈0 (4.3.77) 

hence,  

𝐷𝐻𝑈 ≥ 𝐷𝐻𝑉𝑛+1 (4.3.78) 

consequently, according to Theorem (3.1.4) we arrive at: 

𝑉𝑛+1 ≤ 𝑈      on  𝐽 (4.3.79) 

similarly,  

𝑊𝑛+1 ≥ 𝑈      on  𝐽 (4.3.80) 

hence by induction the relation (4.3.75) is true for all 𝑛 ≥ 1, taking the limit 𝑛 → ∞ 

we get (4.3.74) proving the claim. The proof is complete.∎ 

 

Corollary 4.3.2: If, in addition to the assumptions of Theorem (4.3.2) 𝐹 and 𝐺 satisfy 

whenever 𝑋 ≥ 𝑌, 𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛)  
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𝐹(𝑡, 𝑋) + 𝑁1(𝑋 − 𝑌) ≥ 𝐹(𝑡, 𝑌) (4.3.81) 

𝐺(𝑡, 𝑋) ≤ 𝐺(𝑡, 𝑌) + 𝑁2(𝑋 − 𝑌) (4.3.82) 

where 𝑁1  , 𝑁2 > 0, then 𝜌 = 𝑅 = 𝑈 is the unique solution of (4.2.1). 

Proof 4.3.2: Since 𝜌 < 𝑅, and then 𝑅 = 𝜌 + 𝑚 or  𝑚 = 𝑅 − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅 = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅)

≤ 𝐹(𝑡, 𝑅) + 𝑁1(𝑅 − 𝜌) + 𝐺(𝑡 , 𝜌) + 𝑁2(𝑅 − 𝜌)

= 𝐷𝐻𝜌 + (𝑁1 + 𝑁2)𝑚 

 

 

(4.3.83) 

which means, 

𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2)𝑚, 𝑚(0) = 0 (4.3.84) 

utilizing Theorem (3.1.4) we arrive at 𝑅 ≤ 𝜌  on  𝐽, proving the uniqueness of 𝜌 =

𝑅 = 𝑈, completeing the proof.∎ 

 

Theorem 4.3.3: Assume that: 

i) 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] are coupled lower and upper solutions of Type 𝐼𝐼𝐼 

relative to (4.2.1) with  𝑉(𝑡) ≤ 𝑊(𝑡),   𝑡 ∈ 𝐽 

ii) 𝐹, 𝐺 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is nonincreasing in 𝑋, and 𝐺(𝑡, 𝑌) is 

nonincreasing in 𝑌, for each 𝑡 ∈ 𝐽. 

iii) 𝐹, 𝐺 map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then there exist monotone sequences {𝑊𝑛}, {𝑉𝑛} in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.2.1) respectively, that is 

they satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝑅), 𝜌(0) = 𝑈0   on 𝐽 (4.3.85) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝜌), 𝑅(0) = 𝑈0  on 𝐽 (4.3.86) 

Proof 4.3.3: For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊𝑛+1(𝑡) by: 

            𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑊𝑛),       𝑉𝑛+1(0) = 𝑈0  on 𝐽 (4.3.87) 

             𝐷𝐻𝑊𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑉𝑛),        𝑊𝑛+1(0) = 𝑈0  on 𝐽 (4.3.88) 
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where 𝑉(0) ≤ 𝑈0 ≤ 𝑊(0), we set 𝑉0 = 𝑉, 𝑊0 = 𝑊. our aim to prove: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊𝑛 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊1 ≤ 𝑊0. (4.3.89) 

we have using the fact that: 𝑉0 ≤ 𝑊0 and the nondecreasing character of 𝐹: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) (4.3.90) 

and, we have: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) (4.3.91) 

we can obtain that: 

𝐷𝐻𝑉0(𝑡)  ≤ 𝐷𝐻𝑉1(𝑡) (4.3.92) 

consequently, utilizing Theorem (3.1.4) we arrive at 𝑉0(𝑡)  ≤ 𝑉1(𝑡). A similar 

argument shows that 𝑊1(𝑡) ≤ 𝑊0(𝑡).We next prove that 𝑉1 ≤ 𝑊1 on 𝐽. For this 

purpose, consider: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) (4.3.93) 

𝐷𝐻𝑊1(𝑡)  = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑉0) (4.3.94) 

With  𝑉1(0) = 𝑊1(0) = 𝑈0. since 𝑉0(𝑡) ≤ 𝑊0(𝑡) then: 

𝐹(𝑡, 𝑉0) ≤ 𝐹(𝑡, 𝑊0),         𝐹(𝑡, 𝑋) is monotone nonincreasing in 𝑋. 

 𝐺(𝑡, 𝑉0) ≤ 𝐺(𝑡, 𝑊0), 𝐺(𝑡, 𝑌)  is monotone nonincreasing in 𝑌. 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑉0) on 𝐽 (4.3.95) 

𝐷𝐻𝑊1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑉0) on 𝐽 (4.3.96) 

hence,  

𝐷𝐻𝑉1(𝑡) ≤ 𝐷𝐻𝑊1(𝑡) (4.3.97) 

consequently, according to Theorem (3.1.4) we arrive at: 

𝑉1(𝑡) ≤ 𝑊1(𝑡) on 𝐽  (4.3.98) 

and as a result, we obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊1 ≤ 𝑊0 (4.3.99) 

assume that for some 𝑗 > 1, we have: 
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                                       𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊𝑗 ≤ 𝑊𝑗−1      on 𝐽 (4.3.100) 

then we show that: 

                                       𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊𝑗+1 ≤ 𝑊𝑗      on 𝐽 (4.3.101) 

to do this, consider: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑊𝑗−1) + 𝐺(𝑡, 𝑊𝑗−1), 𝑉𝑗(0) = 𝑈0   on 𝐽 (4.3.102) 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.3.103) 

so, we can write: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑊𝑗−1) + 𝐺(𝑡, 𝑊𝑗−1) ≤ 

≤ 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) 

 

(4.3.104) 

consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on 𝐽, in the same way we can obtain 𝑊𝑗+1 ≤ 𝑊𝑗 on 𝐽. 

Next, we show that 𝑉𝑗+1 ≤ 𝑊𝑗+1 , 𝑡 ∈ 𝐽, then we have: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.3.105) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗), 𝑊𝑗+1(0) = 𝑈0  on 𝐽 (4.3.106) 

then we can write: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗) ≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗) (4.3.107) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑉𝑗) (4.3.108) 

and as a result: 

                                      𝑉𝑗+1(𝑡) ≤ 𝑊𝑗+1(𝑡)       on 𝐽 (4.3.109) 

consequently (4.3.101) follows and by induction (4.3.89) is valid for all 𝑛. Clearly 

sequences {𝑊𝑛}, {𝑉𝑛} are uniformly bounded on 𝐽. To show that they are 

equicontinuous, consider for any 𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁, |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
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𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)] =  

= 𝐷 [𝑈0 + ∫ {𝐹(𝑠, 𝑊𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))}𝑑𝑠,
𝑡2

0

𝑈0

+ ∫ {𝐹(𝑠, 𝑊𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))}𝑑𝑠
𝑡1

0

]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑊𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))}, 𝜃]𝑑𝑠
𝑡2

𝑡1

≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

 

(4.3.110) 

here we utilized the properties of integral and the metric 𝐷, together with the fact that 

𝐹 + 𝐺 are bounded since {𝑊𝑛} , {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is 

equicontinuous on 𝐽, the corresponding Ascoli’s Theorem gives a subsequence {𝑉𝑛𝑘
} 

which converges uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone 

nondecreasing sequence of functions, the entire sequence {𝑉𝑛} converges uniformly to 

𝜌(𝑡) on 𝐽. Similar arguments apply to the sequence  {𝑊𝑛} and 𝑊𝑛 → 𝑅 uniformly on 𝐽, 

it therefore follows, using the integral representation of (4.3.87) and (4.3.88) that 𝜌(𝑡) 

and 𝑅(𝑡) satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝑅), 𝜌(0) = 𝑈0   on 𝐽 (4.3.111) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝜌), 𝑅(0) = 𝑈0  on 𝐽 (4.3.112) 

and that  

𝑉0 ≤ 𝜌 ≤ 𝑅 ≤ 𝑊0. (4.3.113) 

we next claim that (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.2.1), that 

is, if 𝑈(𝑡) is any solution of (4.2.1) such that: 

𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 (4.3.114) 

then,  

                                    𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅 ≤ 𝑊0 ,    𝑡 ∈ 𝐽   (4.3.115) 

suppose that for some 𝑛, 

        𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊𝑛, 𝑡 ∈ 𝐽 (4.3.116) 

then, we have using the monotone nature of 𝐹 and 𝐺 and (4.3.116): 
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             𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑊𝑛), 𝑈(0) = 𝑈0 (4.3.117) 

𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑊𝑛), 𝑉𝑛+1(0) = 𝑈0 (4.3.118) 

Hence,  

𝐷𝐻𝑉𝑛+1 ≤ 𝐷𝐻𝑈 (4.3.119) 

consequently, utilizing the Theorem (3.1.4) we arrive at: 

𝑉𝑛+1 ≤ 𝑈      on  𝐽 (4.3.120) 

similarly,  

𝑊𝑛+1 ≥ 𝑈      on  𝐽. (4.3.121) 

hence by induction the relation (4.3.116) is true for all 𝑛 ≥ 1, taking the limit 𝑛 →

∞, we get (4.3.115) proving the claim. The proof is complete.∎ 

 

Corollary 4.3.3: If, in addition to the assumptions of Theorem (4.3.3) 𝐹 and 𝐺 satisfy 

whenever 𝑋 ≥ 𝑌, 𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛)  

𝐹(𝑡, 𝑋) + 𝑁1(𝑋 − 𝑌) ≥ 𝐹(𝑡, 𝑌) (4.3.122) 

𝐺(𝑡, 𝑋) + 𝑁2(𝑋 − 𝑌) ≥ 𝐺(𝑡, 𝑌) (4.3.123) 

where 𝑁1, 𝑁2 > 0, then 𝜌 = 𝑅 = 𝑈 is the unique solution of (4.2.1). 

Proof 4.3.3: Since 𝜌 < 𝑅, and then 𝑅 = 𝜌 + 𝑚 or 𝑚 = 𝑅 − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅 = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝜌)

≤ 𝐹(𝑡, 𝑅) + 𝑁1(𝑅 − 𝜌) + 𝐺(𝑡 , 𝑅) + 𝑁2(𝑅 − 𝜌)

= 𝐷𝐻𝜌 + (𝑁1 + 𝑁2)𝑚 

 

 

(4.3.124) 

which means, 

𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2)𝑚, 𝑚(0) = 0 (4.3.125) 

which leads to 𝑅 ≤ 𝜌  on  𝐽, proving the uniqueness of 𝜌 = 𝑅 = 𝑈. Completes the 

proof.∎ 
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4.4. Monotone Iterative Technique for Sum of Three 

Functions:  

To develop the monotone iterative technique and arrive at a generalization, we shall 

consider the IVP: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) + 𝐻(𝑡, 𝑈), 𝑈(𝑡0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛)        (4.4.1) 

where 𝐹, 𝐺 and 𝐻 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝑈 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)]. 

we need the following definitions which various possible notions of lower and upper 

solutions relative to (4.4.1). 

 

Definition 4.4.1: Let 𝑉, 𝑊 ∈ 𝐶1[𝑅+, 𝐾𝐶(𝑅𝑛)], then 𝑉, 𝑊 are said to be: 

i) Natural lower and upper solutions of (4.4.1) if: 

 𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑉),  

 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑊), 𝑡 ∈ 𝐽 

 

(4.4.2) 

ii) Coupled lower and upper solutions of type 𝐼 of (4.4.1) if: 

 𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑊),     

 𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑉), 𝑡 ∈ 𝐽     

 

(4.4.3) 

iii) Coupled lower and upper solutions of type 𝐼𝐼 of (4.4.1) if: 

  𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑊),       

                     𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑉), 𝑡 ∈ 𝐽     

 

(4.4.4) 

iv) Coupled lower and upper solutions of type 𝐼𝐼𝐼 of (4.4.1) if: 

   𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑉), 

  𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑊), 𝑡 ∈ 𝐽 

 

(4.4.5) 

v) Coupled lower and upper solutions of type 𝐼𝑉 of (4.4.1) if: 

  𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑊) 

  𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑉), 𝑡 ∈ 𝐽 

 

(4.4.6) 



64 
 

vi) Coupled lower and upper solutions of type 𝑉 of (4.4.1) if: 

  𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑉) 

  𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑊), 𝑡 ∈ 𝐽 

    

(4.4.7) 

vii) Coupled lower and upper solutions of type 𝑉𝐼 of (4.4.1) if: 

   𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑉) 

                       𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑊), 𝑡 ∈ 𝐽 

      

(4.4.8) 

viii) Coupled lower and upper solutions of type 𝑉𝐼𝐼 of (4.4.1) if: 

    𝐷𝐻𝑉 ≤ 𝐹(𝑡, 𝑊) + 𝐺(𝑡, 𝑊) + 𝐻(𝑡, 𝑊),     

    𝐷𝐻𝑊 ≥ 𝐹(𝑡, 𝑉) + 𝐺(𝑡, 𝑉) + 𝐻(𝑡, 𝑉), 𝑡 ∈ 𝐽 

    

(4.4.9) 

we observe that whenever we have 𝑉(𝑡) ≤ 𝑊(𝑡), 𝑡 ∈ 𝐽. 

 

Theorem 4.4.1: Assume that: 

i) 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] are coupled lower and upper solutions of type 𝐼, relative 

to (4.4.1) with 𝑉(𝑡) ≤ 𝑊(𝑡); 𝑡 ∈ 𝐽 

ii) 𝐹, 𝐺 and 𝐻 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is nondecreasing in 𝑋 and 

𝐺(𝑡, 𝑌), 𝐻(𝑡, 𝑍) are nonincreasing in Y and Z respectively, for each 𝑡 ∈ 𝐽. 

iii) 𝐹, 𝐺 and 𝐻  map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then there exist monotone sequences {𝑊𝑛}, {𝑉𝑛} in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅) are coupled minimal and maximal solutions of (4.4.1) respectively, that is 

they satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅) + 𝐻(𝑡, 𝑅), 𝜌(0) = 𝑈0   on 𝐽 (4.4.10) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌) + 𝐻(𝑡, 𝜌), 𝑅(0) = 𝑈0  on 𝐽 (4.4.11) 

Proof 4.4.1: For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊𝑛+1(𝑡) by: 

𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛) + 𝐻(𝑡, 𝑊𝑛), 𝑉𝑛+1(0) = 𝑈0   on 𝐽 (4.4.12) 

  𝐷𝐻𝑊𝑛+1(𝑡) = 𝐹(𝑡, 𝑊𝑛) + 𝐺(𝑡, 𝑉𝑛) + 𝐻(𝑡, 𝑉𝑛),        𝑊𝑛+1(0) = 𝑈0  on 𝐽 (4.4.13) 
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where 𝑉(0) ≤ 𝑈0 ≤ 𝑊(0), we set 𝑉0 = 𝑉, 𝑊0 = 𝑊, our aim to prove: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊𝑛 ≤ ⋯ ≤ 𝑊2 ≤ 𝑊1 ≤ 𝑊0 (4.4.14) 

we have using the fact that 𝑉0 ≤ 𝑊0 and the nondecreasing character of 𝐹: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) + 𝐻(𝑡, 𝑊0) (4.4.15) 

and, we have from (4.4.10) for 𝑛 = 0  

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) + 𝐻(𝑡, 𝑊0) (4.4.16) 

Hence, we obtain: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐷𝐻𝑉1(𝑡) (4.4.17) 

consequently, according to Theorem (3.1.4) we obtain 𝑉0(𝑡)  ≤ 𝑉1(𝑡). A similar 

argument shows that 𝑊1(𝑡) ≤ 𝑊0(𝑡). We next prove that 𝑉1 ≤ 𝑊1 on 𝐽. For this 

purpose, consider: 

                       𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡, 𝑊0) + 𝐻(𝑡, 𝑊0) (4.4.18) 

𝐷𝐻𝑊1(𝑡)  = 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑉0) + 𝐻(𝑡, 𝑉0) (4.4.19) 

 With 𝑉1(0) = 𝑊1(0) = 𝑈0. Since 𝑉0(𝑡) ≤ 𝑊0(𝑡) then: 

 𝐹(𝑡, 𝑉0) ≤ 𝐹(𝑡, 𝑊0),    𝐹(𝑡, 𝑋) is monotone nondecreasing in 𝑋. 

 𝐺(𝑡, 𝑉0) ≥ 𝐺(𝑡, 𝑊0),    𝐺(𝑡, 𝑌)  is monotone nonincreasing in 𝑌. 

  𝐻(𝑡, 𝑉0) ≥ 𝐻(𝑡, 𝑊0),    𝐻(𝑡, 𝑍)  is monotone nonincreasing in 𝑍. 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) + 𝐻(𝑡, 𝑊0) on  𝐽 (4.4.20) 

𝐷𝐻𝑊1(𝑡) ≥ 𝐹(𝑡, 𝑊0) + 𝐺(𝑡, 𝑊0) + 𝐻(𝑡, 𝑊0) on 𝐽 (4.4.21) 

consequently, 

𝑉1(𝑡) ≤ 𝑊1(𝑡) on 𝐽  (4.4.22) 

and as a result, we obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊1 ≤ 𝑊0 (4.4.23) 

assume that for some 𝑗 > 1, we have: 
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                                       𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊𝑗 ≤ 𝑊𝑗−1      on 𝐽 (4.4.24) 

then, we show that: 

                                      𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊𝑗+1 ≤ 𝑊𝑗      on 𝐽  
 

(4.4.25) 

to do this, consider: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡, 𝑊𝑗−1), 𝑉𝑗(0) = 𝑈0   on 𝐽 (4.4.26) 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.4.27) 

so that we can write: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡, 𝑊𝑗−1) + 𝐻(𝑡, 𝑊𝑗−1) ≤ 

≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗) + 𝐻(𝑡, 𝑊𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) 

 

 

(4.4.28) 

consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on 𝐽, similarly we can get 𝑊𝑗+1 ≤ 𝑊𝑗 on 𝐽. Next, we 

show that 𝑉𝑗+1 ≤ 𝑊𝑗+1, 𝑡 ∈ 𝐽, we have: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗)  + 𝐻(𝑡, 𝑊𝑗), 𝑉𝑗+1(0) = 𝑈0   on 𝐽 (4.4.29) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗)  + 𝐻(𝑡, 𝑉𝑗), 𝑊𝑗+1(0) = 𝑈0  on 𝐽 (4.4.30) 

then, we can write: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡, 𝑊𝑗) + 𝐻(𝑡, 𝑊𝑗) ≤ 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑊𝑗) + 𝐻(𝑡, 𝑊𝑗) 

𝐷𝐻𝑊𝑗+1(𝑡) = 𝐹(𝑡, 𝑊𝑗) + 𝐺(𝑡, 𝑉𝑗) + 𝐻(𝑡, 𝑉𝑗) ≥ 𝐹(𝑡, 𝑊𝑗) +  𝐺(𝑡, 𝑊𝑗) + 𝐻(𝑡, 𝑉𝑗) 

                                                                                                                        (4.4.31) 

and as a result: 

𝑉𝑗+1(𝑡) ≤ 𝑊𝑗+1(𝑡)       on 𝐽 (4.4.32) 

hence (4.4.25) follows, and consequently the relation (4.4.14) is valid for all 𝑛, 

Clearly, sequences {𝑊𝑛}, {𝑉𝑛}  are uniformly bounded on 𝐽. To show that they are 

equicontinuous, consider for any 𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽 : 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁,    |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
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𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)]  

=  𝐷 [𝑈0

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))
𝑡2

0

+ 𝐻(𝑠, 𝑊𝑛−1(𝑠))}𝑑𝑠, 𝑈0

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))
𝑡1

0

+ 𝐻(𝑠, 𝑊𝑛−1(𝑠))}𝑑𝑠]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠, 𝑊𝑛−1(𝑠))
𝑡2

𝑡1

+ 𝐻(𝑠, 𝑊𝑛−1(𝑠))}, 𝜃]𝑑𝑠 ≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

 

 

 

 

(4.4.33) 

 here we utilized the properties of integral and the metric 𝐷, together with the fact that 

𝐹 + 𝐺 + 𝐻 are bounded since {𝑊𝑛}, {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is 

equicontinuous on 𝐽, the corresponding Ascoli’s theorem gives a subsequence {𝑉𝑛𝑘
} 

which converges uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone 

nondecreasing sequence, the entire sequence {𝑉𝑛} converges uniformly to 𝜌(𝑡) on 𝐽. 

Similar arguments apply to the sequence {𝑊𝑛} and 𝑊𝑛 → 𝑅 uniformly on 𝐽,  it 

therefore follows, using the integral representation of (4.4.12) and (4.4.13) that 𝜌(𝑡) 

and 𝑅(𝑡) satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡, 𝑅)  + 𝐻(𝑡, 𝑅), 𝜌(0) = 𝑈0   on 𝐽 (4.4.34) 

𝐷𝐻𝑅(𝑡) = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌)  + 𝐻(𝑡, 𝜌), 𝑅(0) = 𝑈0  on 𝐽 (4.4.35) 

and that  

𝑉0 ≤ 𝜌 ≤ 𝑅 ≤ 𝑊0 (4.4.36) 

we next claim that (𝜌, 𝑅)are coupled minimal and maximal solutions of (4.4.1), that 

is, if 𝑈(𝑡) is any solution of (4.4.1) such that: 

𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊0 (4.4.37) 

then: 
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                                      𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅 ≤ 𝑊0, 𝑡 ∈ 𝐽 (4.4.38) 

suppose that for some 𝑛, 

                                              𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊𝑛,    𝑡 ∈ 𝐽     (4.4.39) 

then we have using the monotone nature of 𝐹 and 𝐺 and (4.4.39): 

       𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) + 𝐻(𝑡, 𝑈) ≥ 

                                ≥ 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛) + 𝐻(𝑡, 𝑊𝑛),   𝑈(0) = 𝑈0 

 

(4.4.40) 

𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡, 𝑊𝑛) + 𝐻(𝑡, 𝑊𝑛), 𝑉𝑛+1(0) = 𝑈0 (4.4.41) 

Hence,  

𝐷𝐻𝑈 ≥ 𝐷𝐻𝑉𝑛+1 (4.4.42) 

consequently, according to Theorem (3.1.4) we arrive at: 

𝑉𝑛+1 ≤ 𝑈      on  𝐽 (4.4.43) 

similarly,  

𝑊𝑛+1 ≥ 𝑈      on  𝐽 (4.4.44) 

hence by induction the relation (4.4.39) is true for all 𝑛 ≥ 1, taking the limit 𝑛 → ∞, 

we get (4.4.38) proving the claim. The proof is complete.∎ 

 

Corollary 4.4.1: If, in addition to the assumptions of Theorem (4.4.1) 

𝐹, 𝐺 and 𝐻 satisfy whenever 𝑋 ≥ 𝑌, 𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛)  

𝐹(𝑡, 𝑋) ≤ 𝐹(𝑡, 𝑌) + 𝑁1(𝑋 − 𝑌) (4.4.45) 

𝐺(𝑡, 𝑋) + 𝑁2(𝑋 − 𝑌) ≥ 𝐺(𝑡, 𝑌) (4.4.46) 

𝐻(𝑡, 𝑋) + 𝑁3(𝑋 − 𝑌) ≥ 𝐻(𝑡, 𝑌) (4.4.47) 

where 𝑁1  , 𝑁2 , 𝑁3 > 0, then 𝜌 = 𝑅 = 𝑈 is the unique solution of (4.4.1). 

Proof 4.4.1: Since 𝜌 ≤ 𝑅, and then 𝑅 = 𝜌 + 𝑚 or  𝑚 = 𝑅 − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅 = 𝐹(𝑡, 𝑅) + 𝐺(𝑡, 𝜌) + 𝐻(𝑡, 𝜌)

≤ 𝐹(𝑡, 𝜌) + 𝑁1(𝑅 − 𝜌) + 𝐺(𝑡, 𝑅) + 𝑁2(𝑅 − 𝜌)

+ 𝐻(𝑡, 𝑅) + 𝑁2(𝑅 − 𝜌) = 𝐷𝐻𝜌 + (𝑁1 + 𝑁2 + 𝑁3)𝑚 

 

 

(4.4.48) 

which means, 
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𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2 + 𝑁3)𝑚, 𝑚(0) = 0 (4.4.49) 

which leads to 𝑅 ≤ 𝜌 on  𝐽, proving the uniqueness of 𝜌 = 𝑅 = 𝑈. Completing the 

proof.∎ 

 

So, if the sum of two nondecreasing (nonincreasing) functions is nondecreasing 

(nonincreasing) function then the monotone iterative technique for three monotone 

functions will reduce to the monotone iterative technique for two monotone functions. 

4.5. Monotone Iterative Technique for Finite Systems: 

In this section we shall attempt to study the set differential system, given by  

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈), 𝑈(0) = 𝑈0 , 𝑡 ∈ 𝐽 (4.5.1) 

where 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛)𝑁,  𝐾𝐶(𝑅𝑛)𝑁], 𝑈 ∈ 𝐾𝐶(𝑅𝑛)𝑁, 𝐾𝐶(𝑅𝑛)𝑁 = (𝐾𝐶(𝑅𝑛) ×

𝐾𝐶(𝑅𝑛) × … × 𝐾𝐶(𝑅𝑛), 𝑁 times ), 𝑈 = (𝑈1, 𝑈2, ⋯ , 𝑈𝑁) such that for each 𝑖, 1 ≤ 𝑖 ≤

𝑁, 𝑈𝑖 ∈ 𝐾𝐶(𝑅𝑛). Note also that 𝑈0 ∈ 𝐾𝐶(𝑅𝑛)𝑁. 

we have the following two possibilities to measure the new variables 𝑈, 𝑈0, 𝐹. 

1. Define 𝐷0[𝑈, 𝑉] = ∑ 𝐷[𝑈𝑖, 𝑉𝑖]
𝑁
𝑖=1 , where 𝑈, 𝑉 ∈ 𝐾𝐶(𝑅𝑛)𝑁 and employ the 

metric space (𝐾𝐶(𝑅𝑛)𝑁, 𝐷0). 

2. Define 𝐷̃ ∶  𝐾𝐶(𝑅𝑛)𝑁 × 𝐾𝐶(𝑅𝑛)𝑁 → 𝑅+
𝑁 such that  

𝐷̃[𝑈, 𝑉] = (𝐷[𝑈1, 𝑉1], 𝐷[𝑈2, 𝑉2], ⋯ 𝐷[𝑈𝑁 , 𝑉𝑁]) 

And employ the generalized metric space (𝐾𝐶(𝑅𝑛)𝑁, 𝐷̃). 

 

Method of lower and upper solutions: finite systems. 

Many of results considered so far for a single equation will now be extended to finite 

systems, to avoid repetition, let us agree that the subscripts 𝑖, 𝑗 range over the integers 

1, 2, …, n and the vectoral in equalities mean that the same inequalities hold between 

their corresponding components. It is well known that a certain monotone property is 

needed when we deal with systems of inequalities, and we shall now define this 

property. 
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Definition 4.5.1: A function 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛)𝑁,   𝐾𝐶(𝑅𝑛)𝑁] is said to be 

quasimonotone nondecreasing if, for some 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛 , 𝑈 ≤ 𝑉 and 𝑈𝑖 =  𝑉𝑖,  

𝐹𝑖(𝑡, 𝑈) ≤ 𝐹𝑖(𝑡, 𝑉). 

 

Definition 4.5.2: A function 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛)𝑁,   𝐾𝐶(𝑅𝑛)𝑁] is said to be 

quasimonotone nonincreasing if, for some 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛 , 𝑈 ≤ 𝑉 and 𝑈𝑖 =  𝑉𝑖,  

𝐹𝑖(𝑡, 𝑈) ≥ 𝐹𝑖(𝑡, 𝑉). 

 

Theorem 4.5.1: Let 𝑉, 𝑊 ∈ 𝐶1[𝐽 × 𝐾𝐶(𝑅𝑛)𝑁] be lower and upper solutions of (4.5.1) 

respectively, suppose that the function 𝐹 is quasimonotone nondecreasing function, 

and for each 𝑖  

𝐹𝑖(𝑡, 𝑋1, 𝑋2, ⋯ , 𝑋𝑛) − 𝐹𝑖(𝑡, 𝑌1, 𝑌2, ⋯ , 𝑌𝑛) ≤ 𝐿𝑖 ∑(𝑋𝑖 − 𝑌𝑖

𝑛

𝑖=1

) (4.5.2) 

whenever 𝑋 ≥ 𝑌, then 𝑉(0) ≤ 𝑊(0), implies that 𝑉(𝑡) ≤ 𝑊(𝑡). 

Proof 4.5.1: Let 𝜀 = (𝜀1, 𝜀2, ⋯ , 𝜀𝑛) > 0, then we will define 𝑊̃𝑖(𝑡) = 𝑊𝑖(𝑡) +

𝜀𝑒(𝑛+1)𝐿𝑖𝑡. Since 𝑉𝑖(𝑡0) ≤ 𝑊𝑖(𝑡0) < 𝑊̃𝑖(𝑡0), it is enough to prove that: 

𝑉𝑖(𝑡) < 𝑊̃𝑖(𝑡), 𝑡 ≥ 𝑡0 (4.5.3) 

to arrive to our conclusion, in view of the fact 𝜀 > 0 is arbitrary small, let 𝑡1 > 0 be 

the supremum of all positive numbers 𝛿 > 0, such that: 

𝑉𝑖(𝑡0) < 𝑊̃𝑖(𝑡0) implies 𝑉𝑖(𝑡) < 𝑊̃𝑖(𝑡)on [𝑡0, 𝛿]. 

Moreover 𝑉𝑗(𝑡) ≥ 𝑊̃𝑗(𝑡), for 𝑖 ≠ 𝑗 

it is clear that 𝑉𝑖(𝑡1) = 𝑊̃𝑖(𝑡1) and for 𝑡1 > 𝑡0, and 𝑉𝑖(𝑡1) < 𝑊̃𝑖(𝑡1), this follows, 

using the nondecreasing nature of 𝐹 and condition (4.5.2) that: 



71 
 

𝐷𝐻𝑉𝑖(𝑡1) ≤ 𝐹𝑖(𝑡1, 𝑉1(𝑡1), ⋯ , 𝑉𝑛(𝑡1)) ≤ 𝐹 (𝑡1, 𝑊̃1(𝑡1), ⋯ , 𝑊̃𝑛(𝑡1))

≤ 𝐹(𝑡1, 𝑊1(𝑡1), ⋯ , 𝑊𝑛(𝑡1)) + 𝐿𝑖(𝑊̃𝑖 − 𝑊𝑖)

≤ 𝐷𝐻𝑊𝑖(𝑡1) + 𝑛𝐿𝑖𝜀𝑒(𝑛+1)𝐿𝑖𝑡1

< 𝐷𝐻𝑊𝑖(𝑡1) + (𝑛 + 1)𝐿𝑖𝜀𝑒(𝑛+1)𝐿𝑖𝑡1 = 𝐷𝐻𝑊̃𝑖(𝑡1) 

 

 

 

(4.5.4) 

consequently, it follows that there exists an 𝜂 > 0 satisfying: 

𝑉𝑖(𝑡) − 𝑊̃𝑖(𝑡) > 𝑉𝑖(𝑡1) − 𝑊̃𝑖(𝑡1), 𝑡1 − 𝜂 < 𝑡 < 𝑡1 (4.5.5) 

this implies that 𝑡1 > 𝑡0 cannot be the supremum in view of the continuity of the 

functions involved and therefore the relation  

𝑉𝑖(𝑡) < 𝑊̃𝑖(𝑡), 𝑡 ≥ 𝑡0 (4.5.6) 

is true, and then we can write   

𝑉𝑖(𝑡) <  𝑊̃𝑖(𝑡) = 𝑊𝑖(𝑡) +  𝜀𝑒(𝑛+1)𝐿𝑖𝑡 (4.5.7) 

and then: 

𝑙𝑖𝑚𝜀→0 𝑉𝑖(𝑡) ≤ 𝑙𝑖𝑚𝜀→0[𝑊𝑖(𝑡) +  𝜀𝑒(𝑛+1)𝐿𝑖𝑡] 

𝑉𝑖(𝑡) ≤ 𝑊𝑖(𝑡) 

 

(4.5.8) 

and the proof is complete.∎ 

 

Theorem 4.5.2: Under the assumption of Theorem (4.5.1), every solution of (4.5.1) 

such that 𝑉(0) ≤ 𝑈(0) ≤ 𝑊(0) satisfies 𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡) on 𝐽. 

 

Theorem 4.5.3: Let 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)𝑁] be lower and upper solutions of (4.5.1) 

such that 𝑉(𝑡) ≤ 𝑊(𝑡) on 𝐽 and let 𝐹 ∈ 𝐶[Ω, (𝑅𝑛)𝑁], where 

Ω = [(𝑡, 𝑈) ∈ 𝐽 × (𝑅𝑛)𝑁: 𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡), 𝑡 ∈ 𝐽]. 

If 𝐹 is quasimonotone nondecreasing in U, then there exists a solution 𝑈(𝑡) of (4.5.1) 

such that 𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡) on 𝐽, provided 𝑉(0) ≤ 𝑈(0) ≤ 𝑊(0). 

In fact, the conclusion of Theorem (4.5.3) is true without demanding 𝐹 to be 

quasimonotone nondecreasing, which is restrictive. However, in this case, we need to 
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strengthen the notion of upper and lower solutions of (4.5.1). We list below such lower 

and upper solutions as an assumption: 

for each 𝑖, 

𝐷𝐻𝑉𝑖 ≤ 𝐹𝑖(𝑡, 𝜎)  for all σ such that  𝑉(𝑡) ≤ 𝜎 ≤ 𝑊(𝑡)   and  𝑉𝑖(𝑡) = 𝜎𝑖 

𝐷𝐻𝑊𝑖 ≥ 𝐹𝑖(𝑡, 𝜎)  for all σ such that  𝑉(𝑡) ≤ 𝜎 ≤ 𝑊(𝑡)   and  𝑊𝑖(𝑡) = 𝜎𝑖 

 

(4.5.9) 

 

Theorem 4.5.4: let 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)𝑁] with 𝑉(𝑡) ≤ 𝑊(𝑡) on 𝐽 satisfying (4.5.9) 

and let 𝐹 ∈ 𝐶[Ω, (𝑅𝑛)𝑁], then there exists a solution 𝑈(𝑡) of (4.5.1) such that  

𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡) on 𝐽, provided 𝑉(0) ≤ 𝑈(0) ≤ 𝑊(0). 

Since the assumptions of  Theorem 4.5.3 imply that the assumptions of Theorem 

(4.5.4), it is enough to prove Theorem (4.5.4). 

Proof of Theorem 4.5.4.  

Consider 𝑃: 𝐽 × 𝐾𝐶(𝑅𝑛)𝑁 →  𝐾𝐶(𝑅𝑛)𝑁 defined by  

𝑃𝑖(𝑡, 𝑈) = 𝑚𝑎𝑥{𝑉𝑖(𝑡), 𝑚𝑖𝑛[𝑈𝑖 , 𝑊𝑖(𝑡)]} ,  for each 𝑖. 

Then 𝐹(𝑡, 𝑃(𝑡, 𝑈)) defines a continuous extension of 𝐹 to 𝐽 × 𝐾𝐶(𝑅𝑛)𝑁 which is also 

bounded since 𝐹 is bounded on Ω. Therefore,  𝐷𝐻𝑈 = 𝐹(𝑡, 𝑃(𝑡, 𝑈)) has a solution 𝑈 

on 𝐽 with 𝑈(0) = 𝑈0 by theorem 3.1.5 let us show that 𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡) and 

therefore a solution of (4.5.1). For 𝜀 > 0 and 𝑒 = (1, … ,1), consider 𝑊𝜀(𝑡) = 𝑊(𝑡) +

𝜀(1 + 𝑡)𝑒 and 𝑉𝜀(𝑡) = 𝑉(𝑡) − 𝜀(1 + 𝑡)𝑒. Clearly, we have 𝑉𝜀(0) ≤ 𝑈0 ≤ 𝑊𝜀(0). 

Suppose that 𝑡1 ∈ 𝐽 is such that 𝑉𝜀(𝑡) < 𝑈(𝑡) < 𝑊𝜀(𝑡) in [0, 𝑡1) but 𝑈𝑗(𝑡1) = 𝑊𝜀𝑗(𝑡1). 

Then, we have 𝑉(𝑡1) ≤ 𝑝(𝑡1, 𝑈(𝑉)) ≤ 𝑊(𝑡1) and 𝑃𝑗(𝑡1, 𝑈(𝑡1)) =  𝑊𝑗(𝑡1), hence  

𝐷𝐻𝑊𝑗(𝑡1) ≥ 𝐹𝑗(𝑡1, 𝑈(𝑡1)) =  𝐷𝐻𝑈𝑗(𝑡1), (4.5.10) 

which implies 𝐷𝐻𝑈𝑗(𝑡1) < 𝐷𝐻𝑊𝜀𝑗(𝑡1), contradicting 𝑈𝑗(𝑡) < 𝑊𝜀𝑗(𝑡) for 𝑡 < 𝑡1. 

Therefore, 𝑉𝜀(𝑡) < 𝑈(𝑡) < 𝑊𝜀(𝑡) in 𝐽. Now,  𝜀 → 0 yields 𝑉(𝑡) ≤ 𝑈(𝑡) ≤ 𝑊(𝑡). And 

the proof is complete. ∎ 
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Monotone Iterative Technique for Finite Systems  

In order to develop a monotone iterative method for the system (4.5.1) so as to include 

several possibilities, we need to begin with some new notions. For each fixed 𝑖, 1 ≤

𝑖 ≤ 𝑛 let 𝑝𝑖, 𝑞𝑖 be two nonnegative integers such that 𝑝𝑖 +  𝑞𝑖 = 𝑛 − 1 so that we can 

split the vector 𝑈 into 𝑈 = (𝑈𝑖, [𝑈]𝑝𝑖
, [𝑈]𝑞𝑖

). Then, the system (4.5.1) can be written 

as 

𝐷𝐻𝑈𝑖 = 𝐹𝑖(𝑡, 𝑈𝑖, [𝑈]𝑝𝑖
, [𝑈]𝑞𝑖

), 𝑈(0) = 𝑈0 (4.5.11) 

 

Definition 4.5.3:Let 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)𝑁]. Then 𝑉, 𝑊 are said to be coupled lower 

and upper quasi solutions of (4.5.4) if 

                       𝐷𝐻𝑉𝑖 ≤ 𝐹𝑖(𝑡, 𝑉𝑖, [𝑉]𝑝𝑖
, [𝑊]𝑞𝑖

),        𝑉(0) ≤ 𝑈0 

                       𝐷𝐻𝑊𝑖 ≥ 𝐹𝑖(𝑡, 𝑊𝑖, [𝑊]𝑝𝑖
, [𝑉]𝑞𝑖

),    𝑊(0) ≥ 𝑈0     

 

(4.5.12) 

 

Definition 4.5.4: Let 𝑉, 𝑊 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)𝑁]. Then 𝑉, 𝑊 are said to be coupled 

quasisolutions of (4.5.4) if  

                        𝐷𝐻𝑉𝑖 = 𝐹𝑖(𝑡, 𝑉𝑖, [𝑉]𝑝𝑖
, [𝑊]𝑞𝑖

),        𝑉(0) = 𝑈0 

                           𝐷𝐻𝑊𝑖 = 𝐹𝑖(𝑡, 𝑊𝑖, [𝑊]𝑝𝑖
, [𝑉]𝑞𝑖

),    𝑊(0) = 𝑈0     

 

(4.5.13) 

 

Definition 4.5.5: A function 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛)𝑁, 𝐾𝐶(𝑅𝑛)𝑁 ] is said to possess a mixed 

quasimonotone property (mqmp for short ) if for each 𝑖, 𝐹𝑖(𝑡, 𝑈𝑖, [𝑈]𝑝𝑖
, [𝑈]𝑞𝑖

) is 

monotone nondecreasing in [𝑈]𝑝𝑖
 and monotone nonincreasing in [𝑈]𝑞𝑖

. 

 

Theorem 4.5.5: Let 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛)𝑁, 𝐾𝐶(𝑅𝑛)𝑁 ] possess mixed quasimonotone 

property and let 𝑉0, 𝑊0 be coupled lower and upper quasi-solutions of system (4.5.4) 

such that 𝑉0 ≤ 𝑊0 on 𝐽. Suppose further that 

𝐹𝑖(𝑡, 𝑈𝑖 , [𝑈]𝑝𝑖
, [𝑈]𝑞𝑖

) − 𝐹𝑖(𝑡, 𝑈̃𝑖 , [𝑈]𝑝𝑖
, [𝑈]𝑞𝑖

) ≥ −𝑀𝑖(𝑈𝑖 − 𝑈̃𝑖) (4.5.14) 
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whenever 𝑉0 ≤ 𝑈 ≤ 𝑊0, and 𝑉0,𝑖 ≤ 𝑈̃𝑖 ≤ 𝑈𝑖 ≤ 𝑊0,𝑖 and 𝑀𝑖 ≥ 0. Then there exist 

monotone sequences {𝑉𝑛}, {𝑊𝑛} such that 𝑉𝑛 → 𝜌, 𝑊𝑛 → 𝑅 as  𝑛 → ∞ uniformly and 

monotonically to coupled minimal and maximal quasisolutions of (4.5.4) on 𝐽, 

provided 𝑉0(0) ≤ 𝑈0 ≤ 𝑊0(0). Further, if 𝑈 is any solution of (4.5.11) such that 𝑉0 ≤

𝑈 ≤ 𝑊0 then 𝜌 ≤ 𝑈 ≤ 𝑅 on 𝐽 . 

Proof 4.5.5: For any 𝜂, 𝜇 ∈ 𝐶[𝐽, 𝐾𝐶(𝑅𝑛)𝑁)] such that 𝑉0 ≤ 𝜂, 𝜇 ≤ 𝑊0 on 𝐽, we define  

𝐹𝑖(𝑡, 𝑈) = 𝐹𝑖(𝑡,  𝜂𝑖, [ 𝜂]𝑝𝑖
, [𝜇]𝑞𝑖

) −  𝑀𝑖(𝑈𝑖 − 𝜂𝑖),     (4.5.15) 

And consider the uncoupled linear differential system  

𝐷𝐻𝑈𝑖 = 𝐹𝑖(𝑡, 𝑈) = 𝐹𝑖(𝑡,  𝜂𝑖 , [ 𝜂]𝑝𝑖
, [𝜇]𝑞𝑖

) − 𝑀𝑖(𝑈𝑖 − 𝜂𝑖),

𝑈(0) = 𝑈0 

(4.5.16) 

Clearly, for a given 𝜂, 𝜇 the system (4.5.15) possess a unique solution 𝑈(𝑡) defined on 

𝐽. For each 𝜂, 𝜇 ∈ 𝐶[𝐽, 𝐾𝐶(𝑅𝑛)𝑁], such that 𝑉0 ≤ 𝜂, 𝜇 ≤ 𝑊0 on 𝐽, we define the 

mapping 𝐴 by:  

𝐴[𝜂, 𝜇] = 𝑈 

Where 𝑈 is the unique solution of (4.5.15). This mapping defines the sequences 

{𝑉𝑛}, {𝑊𝑛}. First we prove that 

• 𝑉0 ≤ 𝐴[𝑉0, 𝑊0],   𝑊0 ≥ 𝐴[𝑊0, 𝑉0] 

• 𝐴 possess the mixed quasi monotone property on the segment [𝑉0, 𝑊0] where  

the segment [𝑉0, 𝑊0] = {𝑈 ∈ 𝐶[𝐽, 𝐾𝐶(𝑅𝑛)𝑁]: 𝑉0 ≤ 𝑈 ≤ 𝑊0} 

to prove (i), set 𝐴[𝑉0, 𝑊0] = 𝑉1 where 𝑉1 is the unique solution of (4.5.15) with 𝜂 =

𝑉0,  𝜇 = 𝑊0. Setting 𝑃𝑖 = 𝑉1,𝑖 − 𝑉0,𝑖, then we can write like this  

𝐷𝐻𝑃𝑖 = 𝐷𝐻𝑉1,𝑖 − 𝐷𝐻𝑉0,𝑖 ≥

≥ 𝐹𝑖(𝑡, 𝑉0,𝑖, [𝑉0]𝑝𝑖
, [𝑊0]𝑞𝑖

) − 𝐹𝑖(𝑡, 𝑉0,𝑖, [𝑉0]𝑝𝑖
, [𝑊0]𝑞𝑖

)

− 𝑀𝑖(𝑉1,𝑖 − 𝑉0,𝑖) = −𝑀𝑖𝑃𝑖 

 

 

(4.5.17) 

and we obtain the differential inequality 𝑃𝑖(𝑡) ≥ 𝑃𝑖(0) ≥ 0 on 𝐽, then  𝑉0,𝑖 ≤ 𝑉1,𝑖, in 

the same way we can show that 𝑊0,𝑖 ≥ 𝑊1,𝑖. Setting 𝐴[𝑊0, 𝑉0 ] = 𝑊1, where 𝑊1 is the 

unique solution of (4.5.15) with 𝜂 = 𝑊0,   𝜇 = 𝑉0. Setting 𝑃𝑖 = 𝑊1,𝑖 − 𝑊0,𝑖, it easily 

follows that 
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𝐷𝐻𝑃𝑖 = 𝐷𝐻𝑊1,𝑖 − 𝐷𝐻𝑊0,𝑖

≤ 𝐹𝑖(𝑡, 𝑊0,𝑖, [𝑊0]𝑝𝑖
, [𝑉0]𝑞𝑖

)

− 𝐹𝑖(𝑡, 𝑊0,𝑖, [𝑊0]𝑝𝑖
, [𝑉0]𝑞𝑖

) − 𝑀𝑖(𝑊1,𝑖 − 𝑊0,𝑖)

= −𝑀𝑖𝑃𝑖 

 

 

 

(4.5.18) 

It thus follows that 𝑃𝑖(𝑡) ≤ 𝑃𝑖(0)𝑒−𝑀𝑖𝑡 ≤ 0 on 𝐽, and hence 𝑊0,𝑖 ≥ 𝑊1,𝑖, which proves 

(i). To prove (ii), let 𝜂1, 𝜂2, 𝜇 ∈ [𝑉0, 𝑊0] be such that  𝜂1 ≤  𝜂2. Suppose 𝐴[𝜂1, 𝜇] = 𝑈1 

and 𝐴[𝜂2, 𝜇] = 𝑈2. then setting 𝑃𝑖 = 𝑈1,𝑖 − 𝑈2,𝑖, we find, using the mqmp of 𝐹 and 

(4.5.14), that: 

𝐷𝐻𝑃𝑖 = 𝐹𝑖(𝑡, 𝜂1,𝑖, [𝜂1]𝑝𝑖
, [𝜇]𝑞𝑖

) − 𝑀𝑖(𝑈1,𝑖 − 𝜂1,𝑖) −

𝐹𝑖(𝑡, 𝜂2,𝑖, [𝜂2]𝑝𝑖
, [𝜇]𝑞𝑖

) + 𝑀𝑖(𝑈2,𝑖 − 𝜂2,𝑖) ≤ 𝐹𝑖(𝑡, 𝜂1,𝑖, [𝜂2]𝑝𝑖
, [𝜇]𝑞𝑖

) −

𝑀𝑖(𝑈1,𝑖 − 𝜂1,𝑖) − 𝐹𝑖(𝑡, 𝜂2,𝑖, [𝜂2]𝑝𝑖
, [𝜇]𝑞𝑖

) + 𝑀𝑖(𝑈2,𝑖 − 𝜂2,𝑖) ≤

𝑀𝑖(𝜂2,𝑖 − 𝜂1,𝑖) − 𝑀𝑖(𝑈1,𝑖 − 𝜂1,𝑖) + 𝑀𝑖(𝑈2,𝑖 − 𝜂2,𝑖) = −𝑀𝑖𝑃𝑖. 

 

 

(4.5.19) 

also, since 𝑃𝑖(0) = 0, we get 𝑈1,𝑖 ≤ 𝑈2,𝑖, 𝐴[𝜂1, 𝜇] ≤ 𝐴[𝜂2, 𝜇]. In the same way if 

𝜂, 𝜇1, 𝜇2 ∈ [𝑉0, 𝑊0] such tha 𝜇1 ≤ 𝜇2, suppose 𝐴[𝜂, 𝜇1] = 𝑈1 and 𝐴[𝜂, 𝜇2] = 𝑈2, then 

setting 𝑃𝑖 = 𝑈1,𝑖 − 𝑈2,𝑖, we find, using the mqmp of 𝐹 and (4.5.14) that:  

𝐷𝐻𝑃𝑖 = 𝐹𝑖(𝑡, 𝜂, [𝜂]𝑝𝑖
, [𝜇1]𝑞𝑖

) − 𝐹𝑖(𝑡, 𝜂, [𝜂]𝑝𝑖
, [𝜇2]𝑞𝑖

) − 𝑀𝑖(𝑈1,𝑖 − 𝜇1,𝑖) +

𝑀𝑖(𝑈2,𝑖 − 𝜇2,𝑖) ≥ 𝐹𝑖(𝑡, 𝜂, [𝜂]𝑝𝑖
, [𝜇2]𝑞𝑖

) − 𝐹𝑖(𝑡, 𝜂, [𝜂]𝑝𝑖
, [𝜇2]𝑞𝑖

) −

𝑀𝑖(𝑈1,𝑖 − 𝜇1,𝑖) + 𝑀𝑖(𝑈2,𝑖 − 𝜇2,𝑖) = −𝑀𝑖(𝑈1,𝑖 − 𝜂) + 𝑀𝑖(𝑈2,𝑖 − 𝜂) =

−𝑀𝑃𝑖. 

 

 

 

(4.5.20) 

and since 𝑃𝑖(0) = 0, we get 𝑈1,𝑖 ≥ 𝑈2,𝑖, 𝐴[𝜂, 𝜇1] ≥ 𝐴[𝜂, 𝜇2]. It therefore follows that 

the mapping 𝐴 satisfies (ii), consequently this implies 𝐴[𝜂, 𝜇] ≤ 𝐴[𝜇, 𝜂] whenever 𝜂 ≤

𝜇 and 𝜂, 𝜇 ∈ [𝑉0, 𝑊0]. In view of (i) and (ii) above, we can define the sequences 

𝑉𝑛 = 𝐴[𝑉𝑛−1, 𝑊𝑛−1],   𝑊𝑛 = 𝐴[𝑊𝑛−1, 𝑉𝑛−1] (4.5.21) 

satisfying  

𝑉0 ≤ 𝑉1 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊𝑛 ≤ ⋯ ≤ 𝑊1 ≤ 𝑊0 (4.5.22) 

It is easy to prove that the sequences {𝑉𝑛}, {𝑊𝑛} are monotone and converge uniformly 

and monotonically to coupled quasisolutions (𝜌, 𝑅) of (4.5.11). Letting 
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𝜌 = 𝑙𝑖𝑚𝑛→∞𝑉𝑛,    𝑅 = 𝑙𝑖𝑚𝑛→∞𝑊𝑛,  (4.5.23) 

we find 

𝐷𝐻𝜌𝑖 = 𝐹𝑖(𝑡, 𝜌𝑖, [𝜌]𝑝𝑖
, [𝑅]𝑞𝑖

), 𝑉(0) = 𝑈0 (4.5.24) 

𝐷𝐻𝑅𝑖 = 𝐹𝑖(𝑡, 𝑅𝑖 , [𝑅]𝑝𝑖
, [𝜌]𝑞𝑖

), 𝑊(0) = 𝑈0 (4.5.25) 

we shall show that (𝜌, 𝑅) are coupled minimal and maximal quasi solutions 

respectively. Let (𝑈1, 𝑈2) be any coupled quasi solutions of (4.5.11) such that 𝑈1, 𝑈2 ∈

[𝑉0, 𝑊0]. Let us assume that for some integer 𝑘 > 0, 𝑉𝑘−1 ≤ 𝑈1, 𝑈2 ≤ 𝑊𝑘−1 on 𝐽, then 

setting 𝑃𝑖 = 𝑉𝑘,𝑖 − 𝑈1,𝑖, employing the mqmp property of 𝐹 and (4.5.14) we arrive at: 

𝐷𝐻𝑃𝑖 = 𝐷𝐻𝑉𝑘,𝑖 − 𝐷𝐻𝑈1,𝑖 = 

= 𝐹𝑖(𝑡, 𝑉𝑘−1,𝑖, [𝑉𝑘−1]𝑝𝑖
, [𝑈2]𝑞𝑖

) − 𝑀𝑖(𝑉𝑘,𝑖 − 𝑉𝑘−1,𝑖)

− 𝐹𝑖(𝑡, 𝑈1,𝑖, [𝑈1]𝑝𝑖
, [𝑈2]𝑞𝑖

)

≤ 𝐹𝑖(𝑡, 𝑉𝑘−1,𝑖, [𝑈1]𝑝𝑖
, [𝑈2]𝑞𝑖

) − 𝑀𝑖(𝑉𝑘,𝑖 − 𝑉𝑘−1,𝑖)

− 𝐹𝑖(𝑡, 𝑈1,𝑖, [𝑈1]𝑝𝑖
, [𝑈2]𝑞𝑖

)

≤ 𝑀𝑖(𝑈1,𝑖 − 𝑉𝑘−1,𝑖) − 𝑀𝑖(𝑉𝑘,𝑖 − 𝑉𝑘−1,𝑖) ≤ −𝑀𝑖𝑃𝑖 

 

 

 

 

 

 

(4.5.26) 

since 𝑃𝑖(0) = 0, this implies that 𝑉𝑘 ≤ 𝑈1, in the same way we can show that 𝑈2 ≤

𝑊𝑘 on 𝐽. it follows by induction that 𝑉𝑘 ≤ 𝑈1, 𝑈2 ≤ 𝑊𝑘 on 𝐽 for all 𝑘, since 𝑉0 ≤

𝑈1,  𝑈2 ≤ 𝑊0 on 𝐽. hence, we have 𝜌 ≤ 𝑈1, 𝑈2 ≤ 𝑅 on 𝐽 proving (𝜌, 𝑅) are coupled 

minimal and maximal quasi solutions of (4.5.11). Since any solution 𝑈 of (4.5.11) such 

that 𝑈 ∈ [𝑊0, 𝑉0] can be considered as (𝑈, 𝑈) coupled quasi solutions of (4.5.11) wee 

also have 𝜌 ≤ 𝑈 ≤ 𝑅 on 𝐽, this complete the proof. ∎ 
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5. Monotone Iterative Technique with Initial Time 

Difference 
 

5.1. Comparison Theorems and Existence Results Relative 

to Initial Time Difference 

In this section, we will give some basic comparison theorems and existence results 

relative to initial time difference. 

Theorem 5.1.1: Suppose that: 

• 𝑉 ∈  𝐶1[[𝜏0, 𝜏0 + 𝑇], 𝐾𝐶(𝑅𝑛)],  𝑊 ∈ 𝐶1[[𝜁0, 𝜁0 + 𝑇], 𝐾𝐶(𝑅𝑛)] and, 𝐹 ∈

𝐶[𝑅+ × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛], for each 𝑡 ∈ 𝑅+: 

                𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)),           𝑉(𝜏0) ≤ 𝑈0 

𝐷𝐻𝑊(𝑡) ≥ 𝐹(𝑡, 𝑊(𝑡)), 𝑊(𝜁0) ≥ 𝑈0    

 

(5.1.1) 

• For any 𝑋, 𝑌 ∈ 𝐾𝐶(𝑅𝑛) such that 𝑋 ≥ 𝑌,  𝑡 ∈ 𝑅+ 

 

 𝐹(𝑡, 𝑋) ≤ 𝐹(𝑡, 𝑌) + 𝐿(𝑋 − 𝑌),  for some 𝐿 > 0 

 

(5.1.2) 

• 𝜏0 < 𝜁0 and 𝐹(𝑡, 𝑋) is nondecreasing in 𝑡 and 𝑋, then 𝑉(𝜏0) ≤  𝑊(𝜁0) 

implies: 

i) 𝑉(𝑡) ≤ 𝑊(𝑡 + 𝜉), 𝑡 ≥ 𝜏0  (ii) 𝑉(𝑡 − 𝜉) ≤ 𝑊(𝑡), 𝑡 ≥ 𝜁0 Where, 𝜉 = 𝜁0 − 𝜏0. 

Proof 5.1.1: Let 𝑊(𝑡 + 𝜉) = 𝑊̃(𝑡), and let 𝜀 = (𝜀1, 𝜀2, … , 𝜀𝑛) > 0, and define 

𝑊̌(𝑡) = 𝑊̃(𝑡) + 𝜀𝑒2𝐿𝑡. Since 𝑉(𝑡0) ≤ 𝑊̃(𝑡0) < 𝑊̌(𝑡0), it is enough to prove that: 

𝑉(𝑡) < 𝑊̌(𝑡), 𝑡 ≥ 𝑡0 (5.1.3) 

to arrive to our conclusion, in view of the fact 𝜀 > 0 is arbitrary small, let 𝑡1 > 0 be 

the supremum of all positive numbers 𝛿 > 0, such that: 

𝑉(𝑡0) < 𝑊̌(𝑡0) implies 𝑉(𝑡) < 𝑊̌(𝑡) on [𝑡0, 𝛿]. 

It is clear that 𝑡1 > 𝑡0, and 𝑉(𝑡1) ≤ 𝑊̌(𝑡1), this follows, using the nondecreasing 

nature of 𝐹 and condition (5.1.2) that: 
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𝐷𝐻𝑉(𝑡1) ≤ 𝐹(𝑡1, 𝑉(𝑡1)) ≤ 𝐹 (𝑡1, 𝑊̌(𝑡1)) ≤ 𝐹 (𝑡1, 𝑊̃(𝑡1)) + 𝐿(𝑊̌ − 𝑊̃)

≤ 𝐹 (𝑡1 + 𝜉, 𝑊̃(𝑡1)) + 𝐿(𝑊̌ − 𝑊̃) ≤ 𝐷𝐻𝑊̃(𝑡1) + 𝐿𝜀𝑒2𝐿𝑡1

< 𝐷𝐻𝑊̃(𝑡1) + 2𝐿𝜀𝑒2𝐿𝑡1 = 𝐷𝐻𝑊̌(𝑡1) 

 

 

(5.1.4) 

consequently, it follows that there exists an 𝜂 > 0 satisfying: 

𝑉(𝑡) − 𝑊̌(𝑡) > 𝑉(𝑡1) − 𝑊̌(𝑡1), 𝑡1 − 𝜂 < 𝑡 < 𝑡1 (5.1.5) 

this implies that 𝑡1 > 𝑡0 cannot be the supremum in view of the continuity of the 

functions involved and therefore the relation  

𝑉(𝑡) < 𝑊̌(𝑡), 𝑡 ≥ 𝑡0 (5.1.6) 

is true, and then we can write   

𝑉(𝑡) <  𝑊̌(𝑡) = 𝑊̃(𝑡) +  𝜀𝑒2𝐿𝑡 (5.1.7) 

making 𝜀 → 0, we conclude that 𝑉(𝑡) ≤ 𝑊(𝑡 +  𝜉)    𝑡 ≥ 𝜏0, which proves (i), To 

prove (ii), we set 𝑉̃(𝑡) = 𝑉(𝑡 −  𝜉),   𝑡 ≥ 𝜁0, and note that: 

𝑉̃(𝜁0) = 𝑉(𝜁0 − 𝜉) = 𝑉(𝜏0) ≤ 𝑊(𝜁0) (5.1.8) 

and letting: 𝑉̃0(𝑡) = 𝑉̃(𝑡) − 𝜀𝑒2𝐿𝑡 for small 𝜀 > 0, and proceeding similarly, we 

derive the estimate: 

𝑉(𝑡 −  𝜉) ≤ 𝑊(𝑡), 𝑡 ≥ 𝜁0 (5.1.9) 

and the proof therefore is complete. ∎ 

5.2. Monotone Iterative Technique for Single Function with 

Initial Time Difference 

In order to develop the monotone iterative technique with initial time difference, we 

shall consider the IVP: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈(𝑡)),       𝑈(𝜏0) = 𝑈0 (5.2.1) 

where 𝐹 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)  ], 𝑈 ∈ 𝐶1[𝐽 × 𝐾𝐶(𝑅𝑛)], where 𝐽 = [𝜏0, 𝜁0 + 𝑇]. 
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Theorem 5.2.1: Let 𝐹 ∈ 𝐶[[𝜏0, 𝜁0 + 𝑇] × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)] be nondecreasing function 

in 𝑡, and  𝑉 ∈ 𝐶1[[𝜏0, 𝜏0 + 𝑇], 𝐾𝐶(𝑅𝑛)], 𝑊 ∈ 𝐶1[[𝜁0, 𝜁0 + 𝑇], 𝐾𝐶(𝑅𝑛)] are lower and 

upper solutions of the initial value problem (5.2.1) such that  𝑉(𝑡) ≤ 𝑊(𝑡 + 𝜉) on 𝐽 =

[𝜏0, 𝜁0 + 𝑇], 𝜁0 > 𝜏0 , and 𝜉 = 𝜁0 − 𝜏0, Suppose further that: 

𝐹(𝑡, 𝑋) − 𝐹(𝑡, 𝑌) ≥ −𝑀(𝑋 − 𝑌) (5.2.2) 

for  𝑉(𝑡) ≤ 𝑌 ≤ 𝑋 ≤ 𝑊(𝑡 + 𝜉) and 𝑀 ≥ 0, then  there exists monotone sequences 

{𝑉𝑛}, {𝑊̃𝑛}, such that 𝑉𝑛 → 𝜌 and 𝑊̃𝑛 → 𝑅̃, as 𝑛 → ∞ uniformly, and monotonically 

on 𝐽, and that 𝜌, 𝑅̃ are minimal and maximal solutions of (5.2.1) respectively, where 

𝑊̃(𝑡) = 𝑊(𝑡 +  𝜉). 

Proof 5.2.1: Since 𝑊̃(𝜏0) = 𝑊(𝜏0 +  𝜉) = 𝑊(𝜏0 + 𝜁0 − 𝜏0) = 𝑊(𝜁0),  and 𝑉(𝜏0) ≤

𝑈0 ≤ 𝑊(𝜁0) also 𝐷𝐻𝑊̃(𝑡) = 𝐷𝐻𝑊(𝑡 + 𝜉) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) , 𝑡 ≥ 𝜏0,  Let’s set  𝑉 =

𝑉0, 𝑊̃ = 𝑊̃0 For any 𝜂 ∈ 𝐶1[𝐽, 𝐾𝐶(𝑅𝑛)] such that 𝑉0 ≤ 𝜂 ≤ 𝑊0, we consider the 

linear differential equation: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝜂) − 𝑀(𝑈 − 𝜂), 𝑈(𝜏0) = 𝑈0 (5.2.3) 

It is clear that for every such 𝜂, there exists a unique solution of (5.2.3) on 𝐽. Define a 

mapping 𝐴 by 𝐴𝜂 = 𝑈. This mapping will be used to define the sequences {𝑉𝑛}, {𝑊̃𝑛} 

and let’s prove that: 

i) 𝑉0 ≤ 𝐴𝑉0,   𝑊̃0 ≥ 𝐴𝑊̃0 

ii) 𝐴 is monotone operator on the segment: 

[𝑉0, 𝑊̃0] = {𝑈 ∈ 𝐶1[𝐽 × 𝐾𝐶(𝑅𝑛) ], 𝑉0 ≤ 𝑈 ≤ 𝑊̃0 ; 𝑡 ∈ 𝐽} 

we now prove (i), set 𝐴𝑉0 = 𝑉1 where 𝑉1 is the unique solution of (5.2.3) with 𝜂 = 𝑉0,  

setting  𝜑 = 𝑉0 − 𝑉1, so we obtain: 

𝐷𝐻𝜑 = 𝐷𝐻𝑉0 − 𝐷𝐻𝑉1 ≤ 𝐹(𝑡, 𝑉0) − 𝐹(𝑡, 𝑉0) + 𝑀(𝑉1 − 𝑉0) = −𝑀𝜑, 

 𝜑(𝜏0) = 𝑉0 − 𝑈0 ≤ 𝑈0 − 𝑈0 = 0 

 

(5.2.4) 

since 𝑉0 ≤ 𝑈0, This shows that: 

𝜑(𝑡) ≤ 0 
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hence 𝑉0 ≤ 𝑉1 on 𝐽, or equivalently 𝑉0 ≤ 𝐴𝑉0. In the same way, we can prove 

that 𝑊̃0 ≥ 𝐴𝑊̃0. Setting  𝜑 = 𝑊̃0 − 𝑊̃1, we can write: 

𝐷𝑯𝜑 = 𝐷𝐻𝑊̃0 − 𝐷𝐻𝑊̃1 ≥ 𝐹(𝑡 + 𝜉, 𝑊̃0) − 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝑀(𝑊̃1 − 𝑊̃0)

= −𝑀𝜑, 𝜑(𝜏0) = 𝑊̃0 − 𝑈0  ≥ 𝑈0 − 𝑈0 = 0 

 

(5.2.5) 

hence 𝑊̃0 ≥ 𝑊̃1 on 𝐽, or equivalently 𝑊̃0 ≤ 𝐴𝑊̃0. In order to prove (ii), let 𝜂1 , 𝜂2 ∈

[𝑉0, 𝑊̃0] such that 𝜂1 ≤ 𝜂2, assume that 𝑈1 = 𝐴𝜂1,  𝑈2 = 𝐴𝜂2, setting 𝜑 = 𝑈1 − 𝑈2 

so that: 

𝐷𝐻𝜑 = 𝐷𝐻𝑈1 − 𝐷𝐻𝑈2 = 

= 𝐹(𝑡, 𝜂1) − 𝑀(𝑈1 − 𝜂1) − 𝐹(𝑡, 𝜂2) + 𝑀(𝑈2 − 𝜂2) ≤

≤ 𝑀(𝜂2 − 𝜂1) + 𝑀(𝑈2 − 𝜂2) − 𝑀(𝑈1 − 𝜂1) = −𝑀𝜑,   

 

 

(5.2.6) 

With 𝜑(𝜏0 ) = 0, as before, this implies that 𝐴𝜂1 ≤ 𝐴𝜂2 which is proving (ii). We can 

now define the sequences:  

𝑉𝑛 = 𝐴𝑉𝑛−1, 𝑊̃𝑛 = 𝐴𝑊̃𝑛−1 (5.2.7) 

and the following conclusion is true: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ ⋯ ≤ 𝑊̃𝑛 ≤ ⋯ ≤ 𝑊̃2 ≤ 𝑊̃1 ≤ 𝑊̃0,      on 𝐽 (5.2.8) 

consequently  

𝑙𝑖𝑚 𝑛→∞ 𝑉𝑛 = 𝜌         and      𝑙𝑖𝑚 𝑛→∞ 𝑊̃𝑛 = 𝑅̃    on 𝐽 (5.2.9) 

It is easy to show that 𝜌, 𝑅̃ are solutions of (5.2.1) in view of the fact that 𝑉𝑛, 𝑊̃𝑛 satisfy: 

𝐷𝐻𝑉𝑛 = 𝐹(𝑡, 𝑉𝑛−1) − 𝑀(𝑉𝑛 − 𝑉𝑛−1),                         𝑉𝑛(𝜏0) = 𝑈0  

𝐷𝐻𝑊̃𝑛 = 𝐹(𝑡 + 𝜉, 𝑊̃𝑛−1) − 𝑀(𝑊̃𝑛 − 𝑊̃𝑛−1), 𝑊̃𝑛(𝜏0) = 𝑈0  

(5.2.10) 

(5.2.11) 

to prove that 𝜌, 𝑅̃ are respectively minimal and maximal solutions of (5.2.1) we must 

show that if 𝑈 is any solution of (5.2.1) such that 𝑉0 ≤ 𝑈 ≤ 𝑊̃0 on 𝐽, then: 

𝑉0 ≤ 𝜌 ≤ 𝑈 ≤ 𝑅̃ ≤ 𝑊̃0 on 𝐽 (5.2.12) 

to do that, assume that for some 𝑛, 𝑉𝑛 ≤ 𝑈 ≤ 𝑊̃𝑛 on 𝐽, and set: 

𝜑 = 𝑉𝑛+1 − 𝑈  (5.2.13) 
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so that: 

𝐷𝐻𝜑 = 𝐹(𝑡, 𝑉𝑛) − 𝑀(𝑉𝑛+1 − 𝑉𝑛) − 𝐹(𝑡, 𝑈) ≤ 

≤ 𝑀(𝑈 − 𝑉𝑛) − 𝑀(𝑉𝑛+1 − 𝑉𝑛) = −𝑀𝜑, 𝜑(𝜏0 ) = 0  

 

(5.2.14) 

hence, it follows that: 𝑉𝑛+1 ≤ 𝑈 on 𝐽, in the same way we can show that 𝑈 ≤

𝑊̃𝑛+1 on 𝐽, setting:  

𝜑 = 𝑊̃𝑛+1 − 𝑈 (5.2.15) 

hence: 𝑉𝑛+1 ≤ 𝑈 ≤ 𝑊̃𝑛+1 𝑜𝑛  𝐽. This proves by induction that: 

𝑉𝑛 ≤ 𝑈 ≤ 𝑊̃𝑛, 𝑜𝑛 𝐽   (5.2.16) 

for all 𝑛, taking the limit as 𝑛 → ∞, we conclude that 𝜌 ≤ 𝑈 ≤ 𝑅̃ on 𝐽. And the proof 

is complete.∎ 

5.3. Monotone Iterative Technique for the Sum of Two 

Functions with Initial Time Difference: 

to improve the monotone iterative technique, we shall consider the following IVP: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈), 𝑈(𝜏0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛) (5.3.1) 

where 𝐹, 𝐺 ∈ [𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], and 𝐽 = [𝜏0, 𝜁0 + 𝑇] . 

The following given definition various possible notions of lower and upper solutions 

relative to (5.3.1) with initial time difference. 

 

Definition 5.3.1: Let 𝑉 ∈  𝐶1[[𝜏0, 𝜏0 + 𝑇], 𝐾𝐶(𝑅𝑛)], 𝑊 ∈ 𝐶1[[𝜁0, 𝜁0 + 𝑇], 𝐾𝐶(𝑅𝑛)] 

and 𝑉(𝑡) ≤ 𝑊(𝑡 + 𝜉) =  𝑊̃(𝑡), 𝑡 ≥ 𝜏0 Where 𝜉 = 𝜁0 − 𝜏0 for  𝜁0 > 𝜏0, then 𝑉, 𝑊 are 

said to be : 

i) Natural lower and upper solutions of (5.3.1) if: 

       𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)), 

       𝐷𝐻𝑊̃(𝑡) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) ,   𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.3.2) 

ii) Coupled lower and upper solutions of type 𝐼 of (5.3.1) if: 
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  𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

       𝐷𝐻𝑊̃(𝑡) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)),             𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.3.3) 

iii) Coupled lower and upper solutions of type 𝐼𝐼 of (5.3.1) if: 

        𝐷𝐻𝑉(𝑡) ≤ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)), 

        𝐷𝐻𝑊̃(𝑡) ≥ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) ,           𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.3.4) 

iv) Coupled lower and upper solutions of type 𝐼𝐼𝐼 of (5.3.1) if: 

          𝐷𝐻𝑉(𝑡) ≤ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

         𝐷𝐻𝑊̃(𝑡) ≥ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)),                    𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.3.5) 

 

Theorem 5.3.1: Suppose that: 

1. Let 𝑉 ∈ 𝐶1[[𝜏0, 𝜏0 + 𝑇], 𝐾𝐶(𝑅𝑛)], 𝑊 ∈ 𝐶1[[𝜁0, 𝜁0 + 𝑇], 𝐾𝐶(𝑅𝑛)] are coupled 

lower and upper solutions of  type 𝐼  relative to (5.3.1), with 𝑉(𝑡) ≤

𝑊(𝑡 + 𝜉) =  𝑊̃(𝑡) where 𝜉 = 𝜁0 − 𝜏0.  

2. 𝐹, 𝐺 ∈ 𝐶[[𝜏0, 𝜁0 + 𝑇] × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)],  𝐹(𝑡, 𝑋) is nondecreasing function 

in  𝑡 and 𝑋, 𝐺(𝑡, 𝑌) is nonincreasing in 𝑡 and 𝑌, for each 𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

3. 𝐹, 𝐺 map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then there exist monotone sequences {𝑊̃𝑛}, {𝑉𝑛} in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊̃𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅̃) are coupled minimal and maximal solutions of (5.3.1) respectively, that is 

they satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡 + 𝜉, 𝑅̃), 𝜌(𝜏0) = 𝑈0   on 𝐽 (5.3.6) 

𝐷𝐻𝑅̃(𝑡) = 𝐹(𝑡 + 𝜉, 𝑅̃) + 𝐺(𝑡, 𝜌),         𝑅̃(𝜏0) = 𝑈0  on 𝐽. (5.3.7) 

Proof: 

For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊̃𝑛+1(𝑡) by: 

       𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑛),           𝑉𝑛+1(𝜏0) = 𝑈0   on 𝐽   (5.3.8) 
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       𝐷𝐻𝑊̃𝑛+1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃𝑛) + 𝐺(𝑡, 𝑉𝑛),        𝑊̃𝑛+1(𝜏0) = 𝑈0  on 𝐽    (5.3.9) 

where 𝑉(𝜏0) ≤ 𝑈0 ≤ 𝑊̃(𝜏0), we set 𝑉0 = 𝑉, 𝑊̃0 = 𝑊̃. Then we want to show that: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊̃𝑛 ≤ ⋯ ≤ 𝑊̃2 ≤ 𝑊̃1 ≤ 𝑊̃0 (5.3.10) 

we have using the fact that 𝑉0 ≤ 𝑊̃0 and the nondecreasing character of 𝐹: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) (5.3.11) 

and  

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) (5.3.12) 

hence, 

𝐷𝐻𝑉0(𝑡) ≤ 𝐷𝐻𝑉1(𝑡) (5.3.13) 

consequently, according to the Theorem (3.1.4), we arrive at 𝑉0(𝑡)  ≤ 𝑉1(𝑡) in the 

same method we can show that 𝑊̃1(𝑡) ≤ 𝑊̃0(𝑡). Now, we will show  𝑉1 ≤

𝑊̃1 on 𝐽  from the relations (5.3.8) and (5.3.9) with 𝑛 = 0 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) 

𝐷𝐻𝑊̃1(𝑡)  = 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝐺(𝑡, 𝑉0) 

 

(5.3.14) 

 With 𝑉1(𝜏0) = 𝑊̃1(𝜏0) = 𝑈0, since 𝑉0(𝑡) ≤ 𝑊̃0(𝑡) then: 

𝐹(𝑡, 𝑉0) ≤ 𝐹(𝑡 + 𝜉, 𝑊̃0), 𝐹(𝑡, 𝑋) is monotone nondecreasing in 𝑋, 𝑡 

𝐺(𝑡, 𝑉0) ≥ 𝐺(𝑡 + 𝜉, 𝑊̃0), 𝐺(𝑡, 𝑌)  is monotone nonincreasing in 𝑌, 𝑡 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝐺(𝑡 + 𝜉, 𝑊̃0),       on 𝐽 

𝐷𝐻𝑊̃1(𝑡) ≥ 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝐺(𝑡 + 𝜉, 𝑊̃0),    on 𝐽 

(5.3.15) 

(5.3.16) 

consequently, we arrive at: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐷𝐻𝑊̃1(𝑡) (5.3.17) 

by using the Theorem (3.1.4), we arrive at: 
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𝑉1(𝑡) ≤ 𝑊̃1(𝑡)   on  𝐽  (5.3.18) 

and as a result, we obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊̃1 ≤ 𝑊̃0      on  𝐽 (5.3.19) 

assume that for some 𝑗 > 1, we have: 

𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊̃𝑗 ≤ 𝑊̃𝑗−1      on 𝐽 (5.3.20) 

then we show that: 

𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊̃𝑗+1 ≤ 𝑊̃𝑗      on  𝐽 (5.3.21) 

So, we can obtain from (5.3.8) by substituting 𝑛 = 𝑗 − 1, and 𝑛 = 𝑗 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗−1), 𝑉𝑗(𝜏0) = 𝑈0   on 𝐽 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗), 𝑉𝑗+1(𝜏0) = 𝑈0   on 𝐽 

(5.3.22) 

(5.3.23) 

and then, 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗−1) ≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) 

consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on 𝐽, in the same way we can show  𝑊̃𝑗+1 ≤ 𝑊̃𝑗 on 𝐽. 

Next, we show that  𝑉𝑗+1 ≤ 𝑊̃𝑗+1, 𝑡 ∈ 𝐽 we have: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗), 𝑉𝑗+1(𝜏0) = 𝑈0   on 𝐽 

       𝐷𝐻𝑊̃𝑗+1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐺(𝑡, 𝑉𝑗),       𝑊̃𝑗+1(𝜏0) = 𝑈0  on 𝐽 

(5.3.24) 

(5.3.25) 

then we can write: 

 𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) ≤ 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗)                   

 𝐷𝐻𝑊̃𝑗+1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐺(𝑡, 𝑉𝑗) ≥ 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) +  𝐺(𝑡 + 𝜉, 𝑊̃𝑗) 

(5.3.26) 

(5.3.27) 

and as a result: 

𝑉𝑗+1(𝑡) ≤ 𝑊̃𝑗+1(𝑡)       on  𝐽 (5.3.28) 

hence the relation: 

𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊̃𝑗+1 ≤ 𝑊̃𝑗  on 𝐽 (5.3.29) 
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follows and consequently, by induction the relation (5.3.10) is valid for all 𝑛. Clearly 

sequences {𝑊̃𝑛}, {𝑉𝑛} are uniformly bounded on 𝐽. Then, we will show that they are 

equicontinuous on 𝐽, consider for any 𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀) > 0, ∀𝑛 ∈ 𝑁, |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
 

𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)] =  

= 𝐷 [𝑈0

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))}𝑑𝑠,
𝑡2

𝜏0

𝑈0

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))}𝑑𝑠
𝑡1

𝜏0

]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))}, 𝜃]𝑑𝑠
𝑡2

𝑡1

≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

 

 

 

(5.3.30) 

we used the properties of integral and the metric 𝐷, together with the fact that 𝐹 + 𝐺 

are bounded since {𝑊̃𝑛}, {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is equicontinuous on 

𝐽, the corresponding Ascoli’s Theorem gives a subsequence {𝑉𝑛𝑘
} which converges 

uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone nondecreasing sequence, the 

entire sequence {𝑉𝑛} converges uniformly to 𝜌(𝑡) on 𝐽. The same arguments apply to 

the sequence {𝑊̃𝑛} and 𝑊̃𝑛 → 𝑅̃ uniformly on 𝐽, it therefore follows, using the integral 

representation of (5.3.8) and (5.3.9) that 𝜌(𝑡) and 𝑅̃(𝑡) satisfy: 

𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡 + 𝜉, 𝑅̃), 𝜌(𝜏0) = 𝑈0   on 𝐽 (5.3.31) 

𝐷𝐻𝑅̃(𝑡) = 𝐹(𝑡 + 𝜉, 𝑅̃) + 𝐺(𝑡, 𝜌), 𝑅̃(𝜏0) = 𝑈0  on 𝐽 (5.3.32) 

and that  

𝑉0 ≤ 𝜌 ≤ 𝑅̃ ≤ 𝑊̃0. (5.3.33) 

we next claim that (𝜌, 𝑅̃) are coupled minimal and maximal solutions of (5.3.1), that 

is, if 𝑈(𝑡) is any solution of (5.3.1) such that: 

𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊̃0 (5.3.34) 

then  
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                                       𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅̃ ≤ 𝑊̃0 , 𝑡 ∈ 𝐽   (5.3.35) 

suppose that for some 𝑛, 

                                                 𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊̃𝑛, 𝑡 ∈ 𝐽     (5.3.36) 

then we have using the monotone nature of 𝐹 and 𝐺 and (5.3.36): 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) ≥ 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑛), 𝑈(𝜏0) = 𝑈0 (5.3.37) 

  𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑛),       𝑉𝑛+1(𝜏0) = 𝑈0 (5.3.38) 

hence, 

𝐷𝐻𝑈 ≥ 𝐷𝐻𝑉𝑛+1 (5.3.39) 

consequently, according to Theorem (3.1.4) that: 

𝑉𝑛+1 ≤ 𝑈      on  𝐽 (5.3.40) 

in the same way,  

𝑊̃𝑛+1 ≥ 𝑈      on  𝐽 (5.3.41) 

hence, by induction the relation (5.3.36) is true for all 𝑛 ≥ 1, taking the limit as 𝑛 →

∞, we get (5.3.35) proving the claim. The proof is complete.∎ 

 

Corollary 5.3.1: If, in addition to the assumptions of Theorem (5.3.1) 𝐹 and 𝐺 satisfy 

whenever 𝑋̃ ≥ 𝑌, 𝑋̃, 𝑌 ∈ 𝐾𝐶(𝑅𝑛)  

𝐹(𝑡 + 𝜉, 𝑋̃) ≤ 𝐹(𝑡, 𝑌) + 𝑁1(𝑋̃ − 𝑌) (5.3.42) 

𝐺(𝑡 + 𝜉, 𝑋̃) + 𝑁2(𝑋̃ − 𝑌) ≥ 𝐺(𝑡, 𝑌) (5.3.43) 

where 𝑁1, 𝑁2 > 0 then 𝜌 = 𝑅̃ = 𝑈 is the unique solution of (5.3.1). 

Proof 5.3.1: Since 𝜌 < 𝑅̃, and then  𝑅̃ = 𝜌 + 𝑚  or  𝑚 = 𝑅̃ − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅̃ = 𝐹(𝑡 + 𝜉, 𝑅̃) + 𝐺(𝑡, 𝜌)

≤ 𝐹(𝑡, 𝑌) + 𝑁1(𝑋̃ − 𝑌) + 𝐺(𝑡 + 𝜉, 𝑋̃) + 𝑁2(𝑋̃ − 𝑌)

= 𝐷𝐻𝜌 + (𝑁1 + 𝑁2)𝑚 

 

 

(5.3.44) 

it means that, 
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𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2)𝑚, 𝑚(𝜏0) = 0 (5.3.45) 

using the comparison results, we can obtain that 𝑅̃ ≤ 𝜌  on  𝐽, proving the uniqueness 

of 𝜌 = 𝑅̃ = 𝑈. Completing the proof.∎ 

 

5.4. Monotone Iterative Technique for Sum of Three 

Functions with Initial Time Difference 

To extend the monotone iterative technique, we will take the IVP: 

𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) + 𝐻(𝑡, 𝑈), 𝑈(𝜏0) = 𝑈0 ∈ 𝐾𝐶(𝑅𝑛) (5.4.1) 

where 𝐹, 𝐺, 𝐻 ∈ 𝐶[𝐽 × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], and 𝐽 = [𝜏0, 𝜏0 + 𝑇]. 

We need the following definitions which various possible notions of lower and upper 

solutions relative to (5.4.1) with initial time difference. 

 

Definition 5.4.1: Let 𝑉 ∈ 𝐶1[[𝜏0, 𝜏0 + 𝑇], 𝐾𝐶(𝑅𝑛)], 𝑊 ∈ 𝐶1[[𝜁0, 𝜁0 + 𝑇], 𝐾𝐶(𝑅𝑛)]and 

𝑉(𝑡) ≤ 𝑊(𝑡 + 𝜉) =  𝑊̃(𝑡), 𝑡 ≥ 𝜏0 Where,  𝜉 = 𝜁0 − 𝜏0   for  𝜁0 > 𝜏0. Then 𝑉, 𝑊 are 

said to be: 

i) Natural lower and upper solutions of (5.4.1) if: 

  𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)),                 

  𝐷𝐻𝑊̃(𝑡) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

 𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.2) 

ii) Coupled lower and upper solutions of type 𝐼 of (5.4.1) if: 

          𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

          𝐷𝐻𝑊̃(𝑡) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)),  

𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.3) 

iii) Coupled lower and upper solutions of type 𝐼𝐼 of (5.4.1) if: 

𝐷𝐻𝑉(𝑡) ≤ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡))  
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          𝐷𝐻𝑊̃(𝑡) ≥ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)), 

  𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

(5.4.4) 

iv) Coupled lower and upper solutions of type 𝐼𝐼𝐼 of (5.4.1) if: 

𝐷𝐻𝑉(𝑡) ≤ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)),  

         𝐷𝐻𝑊̃(𝑡) ≥ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)),    

𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.5) 

v) Coupled lower and upper solutions o type 𝐼𝑉 of (5.4.1) if: 

          𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

          𝐷𝐻𝑊̃(𝑡) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)), 

  𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.6) 

vi) Coupled lower and upper solutions of type 𝑉 of (5.4.1) if: 

        𝐷𝐻𝑉(𝑡) ≤ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)),   

  𝐷𝐻𝑊̃(𝑡) ≥ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

  𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.7) 

vii) Coupled lower and upper solutions of type 𝑉𝐼 of (5.4.1) if: 

      𝐷𝐻𝑉(𝑡) ≤ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)) 

       𝐷𝐻𝑊̃(𝑡) ≥ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)), 

  𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.8) 

viii) Coupled lower and upper solutions of type 𝑉𝐼𝐼 of (5.4.1) if  

        𝐷𝐻𝑉(𝑡) ≤ 𝐹 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐺 (𝑡 + 𝜉, 𝑊̃(𝑡)) + 𝐻 (𝑡 + 𝜉, 𝑊̃(𝑡)) 

        𝐷𝐻𝑊̃(𝑡) ≥ 𝐹(𝑡, 𝑉(𝑡)) + 𝐺(𝑡, 𝑉(𝑡)) + 𝐻(𝑡, 𝑉(𝑡)), 𝑡 ∈ [𝜏0, 𝜁0 + 𝑇] 

 

(5.4.9) 
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Theorem 5.4.1: Assume that: 

• Let 𝑉 ∈  𝐶1[[𝜏0, 𝜏0 + 𝑇], 𝐾𝐶(𝑅𝑛)], 𝑊 ∈ 𝐶1[[𝜁0, 𝜁0 + 𝑇], 𝐾𝐶(𝑅𝑛)] are coupled 

lower and upper solutions of  Type 𝐼  relative to (5.4.1) with 𝑉(𝑡) ≤

𝑊(𝑡 + 𝜉) =  𝑊̃(𝑡) where 𝜉 = 𝜁0 − 𝜏0.  

• 𝐹, 𝐺 and 𝐻 ∈ 𝐶[[𝜏0, 𝜁0 + 𝑇] × 𝐾𝐶(𝑅𝑛), 𝐾𝐶(𝑅𝑛)], 𝐹(𝑡, 𝑋) is nondecreasing 

function in  𝑡 and 𝑋 , 𝐺(𝑡, 𝑌) , 𝐻(𝑡, 𝑍) are nonincreasing functions in 𝑌 and 𝑍, 

respectively and nonincreasing functions in 𝑡. 

• 𝐹, 𝐺 and 𝐻 map bounded sets into bounded sets in 𝐾𝐶(𝑅𝑛). 

Then there exist monotone sequences{𝑉𝑛} , {𝑊̃𝑛}  in 𝐾𝐶(𝑅𝑛) such that: 

𝑉𝑛 → 𝜌(𝑡), 𝑊̃𝑛 → 𝑅(𝑡)  𝑖𝑛   𝐾𝐶(𝑅𝑛)       

and (𝜌, 𝑅̃) are Type 𝐼 coupled minimal and maximal solutions of (5.4.1) respectively, 

that is they satisfy: 

 𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡 + 𝜉, 𝑅̃) + 𝐻(𝑡 + 𝜉, 𝑅̃),   𝜌(𝜏0) = 𝑈0   on 𝐽 (5.4.10) 

𝐷𝐻𝑅̃(𝑡) = 𝐹(𝑡 + 𝜉, 𝑅̃) + 𝐺(𝑡, 𝜌) + 𝐻(𝑡, 𝜌),           𝑅̃(𝜏0) = 𝑈0  on 𝐽 (5.4.11) 

Proof 5.4.1: For each 𝑛 ≥ 0, define the unique solutions 𝑉𝑛+1(𝑡), 𝑊̃𝑛+1(𝑡) by: 

𝐷𝐻𝑉𝑛+1(𝑡) = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑛) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑛), 

𝑉𝑛+1(𝜏0) = 𝑈0 on  𝐽   

(5.4.12) 

  

                   𝐷𝐻𝑊̃𝑛+1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃𝑛) + 𝐺(𝑡, 𝑉𝑛) + 𝐻(𝑡, 𝑉𝑛), 

 𝑊̃𝑛+1(𝜏0) = 𝑈0   on  𝐽 

 

(5.4.13) 

where 𝑉(𝜏0) ≤ 𝑈0 ≤ 𝑊̃(𝜏0), we set 𝑉0 = 𝑉, 𝑊̃0 = 𝑊̃, our aim to prove: 

𝑉0 ≤ 𝑉1 ≤ 𝑉2 ≤ ⋯ ≤ 𝑉𝑛 ≤ 𝑊̃𝑛 ≤ ⋯ ≤ 𝑊̃2 ≤ 𝑊̃1 ≤ 𝑊̃0 (5.4.14) 

we have using the fact that  𝑉0 ≤ 𝑊̃0 and the nondecreasing character of 𝐹, 𝐺 and 𝐻: 

𝐷𝐻𝑉0(𝑡) ≤ 𝐹(𝑡, 𝑉0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) + 𝐻(𝑡 + 𝜉, 𝑊̃0)   (5.4.15) 

and, we have: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) + 𝐻(𝑡 + 𝜉, 𝑊̃0)   (5.4.16) 

hence,  
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𝐷𝐻𝑉0(𝑡) ≤ 𝐷𝐻𝑉1(𝑡) (5.4.17) 

consequently, utilizing Theorem (3.1.4) we arrive at 𝑉0(𝑡) ≤ 𝑉1(𝑡). A similar 

argument shows that  𝑊̃1(𝑡) ≤ 𝑊̃0(𝑡). We next prove that 𝑉1 ≤ 𝑊̃1 on 𝐽. To do this, 

consider: 

𝐷𝐻𝑉1(𝑡) = 𝐹(𝑡, 𝑉0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) + 𝐻(𝑡 + 𝜉, 𝑊̃0) (5.4.18) 

               𝐷𝐻𝑊̃1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝐺(𝑡, 𝑉0) + 𝐻(𝑡, 𝑉0) (5.4.19) 

With 𝑉1(𝜏0) = 𝑊̃1(𝜏0) = 𝑈0, since  𝑉0(𝑡) ≤ 𝑊̃0(𝑡) then: 

𝐹(𝑡, 𝑉0) ≤ 𝐹(𝑡 + 𝜉, 𝑊̃0), 𝐹(𝑡, 𝑋) is monotone nondecreasing in 𝑋, 𝑡 

𝐺(𝑡, 𝑉0) ≥ 𝐺(𝑡 + 𝜉, 𝑊̃0), 𝐺(𝑡, 𝑌)  is monotone nonincreasing in 𝑌, 𝑡 

𝐻(𝑡, 𝑉0) ≥ 𝐻(𝑡 + 𝜉, 𝑊̃0), 𝐻(𝑡, 𝑍) is monotone nondecreasing in 𝑍, 𝑡 

so, we obtain: 

𝐷𝐻𝑉1(𝑡) ≤ 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) + 𝐻(𝑡 + 𝜉, 𝑊̃0)  on 𝐽 (5.4.20) 

𝐷𝐻𝑊̃1(𝑡) ≥ 𝐹(𝑡 + 𝜉, 𝑊̃0) + 𝐺(𝑡 + 𝜉, 𝑊̃0) + 𝐻(𝑡 + 𝜉, 𝑊̃0)  on 𝐽 (5.4.21) 

hence,  

𝐷𝐻𝑉1(𝑡) ≤ 𝐷𝐻𝑊̃1(𝑡) (5.4.22) 

consequently, by Theorem (3.1.4) we arrive at 𝑉1(𝑡) ≤ 𝑊̃1(𝑡), and as a result, we 

obtain: 

𝑉0 ≤ 𝑉1 ≤ 𝑊̃1 ≤ 𝑊̃0      on 𝐽 (5.4.23) 

assume that for some  𝑗 > 1, we have: 

𝑉𝑗−1 ≤ 𝑉𝑗 ≤ 𝑊̃𝑗 ≤ 𝑊̃𝑗−1      on 𝐽 (5.4.24) 

then, we show that: 

𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊̃𝑗+1 ≤ 𝑊̃𝑗     on 𝐽 (5.4.25) 

to do this, consider: 

𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗−1) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗−1),   

𝑉𝑗(𝜏0) = 𝑈0   on 𝐽 

(5.4.26) 
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      𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗),            

  𝑉𝑗+1(𝜏0) = 𝑈0   on 𝐽 

 

(5.4.27) 

 so, we can write: 

         𝐷𝐻𝑉𝑗(𝑡) = 𝐹(𝑡, 𝑉𝑗−1) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗−1) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗−1) 

                        ≤ 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗) = 𝐷𝐻𝑉𝑗+1(𝑡) 

 

(5.4.28) 

consequently, 𝑉𝑗(𝑡) ≤ 𝑉𝑗+1(𝑡) on 𝐽, similarly we can get 𝑊̃𝑗+1 ≤ 𝑊̃𝑗 on 𝐽. Next, we 

show that  𝑉𝑗+1 ≤ 𝑊̃𝑗+1, 𝑡 ∈ 𝐽, we have: 

𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗),  

  𝑉𝑗+1(𝜏0) = 𝑈0  on 𝐽 

 

(5.4.29) 

              𝐷𝐻𝑊̃𝑗+1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐺(𝑡, 𝑉𝑗) + 𝐻(𝑡, 𝑉𝑗), 

  𝑊̃𝑗+1(𝜏0) = 𝑈0  on 𝐽 

(5.4.30) 

then, we can write: 

              𝐷𝐻𝑉𝑗+1(𝑡) = 𝐹(𝑡, 𝑉𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗) ≤ 

≤ 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗) 

 

(5.4.31) 

           

   𝐷𝐻𝑊̃𝑗+1(𝑡) = 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐺(𝑡, 𝑉𝑗) + 𝐻(𝑡, 𝑉𝑗) ≥ 

≥ 𝐹(𝑡 + 𝜉, 𝑊̃𝑗) +  𝐺(𝑡 + 𝜉, 𝑊̃𝑗) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑗) 

 

 

(5.4.32) 

and as a result: 

𝑉𝑗+1(𝑡) ≤ 𝑊̃𝑗+1(𝑡)       on 𝐽 (5.4.33) 

hence: 

𝑉𝑗 ≤ 𝑉𝑗+1 ≤ 𝑊̃𝑗+1 ≤ 𝑊̃𝑗     on 𝐽 (5.4.34) 

follows, and consequently by induction (5.4.14) is valid for all 𝑛. Clearly sequences 

{𝑊̃𝑛}, {𝑉𝑛} are uniformly bounded on. To show that they are equicontinuous, consider 

for any  𝑡1 < 𝑡2 where 𝑡1, 𝑡2 ∈ 𝐽 

∀𝜀 > 0, ∃𝛿 = 𝛿(𝜀), ∀𝑛 ∈ 𝑁, |𝑡2 − 𝑡1| < 𝑇 = 𝛿 =
𝜀

𝑀
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𝐷[𝑉𝑛(𝑡2), 𝑉𝑛(𝑡1)] = 

  = 𝐷 [𝑈0 + ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺 (𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))
𝑡2

𝜏0

+ 𝐻 (𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))} 𝑑𝑠, 𝑈0    

+ ∫ {𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))
𝑡1

𝜏0

+ 𝐻(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))}𝑑𝑠]

≤  ∫ 𝐷[{𝐹(𝑠, 𝑉𝑛−1(𝑠)) + 𝐺(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))
𝑡2

𝑡1

+ 𝐻(𝑠 + 𝜉, 𝑊̃𝑛−1(𝑠))}, 𝜃]𝑑𝑠 ≤ 𝑀|𝑡2 − 𝑡1| < 𝑀𝑇 = 𝜀 

 

 

 

 

 

 

 

 

 

 

(5.4.35) 

Since we used the properties of integral and the metric 𝐷, together with the fact that 

𝐹 + 𝐺 + 𝐻 are bounded since {𝑊̃𝑛}, {𝑉𝑛} are uniformly bounded, hence {𝑉𝑛} is 

equicontinuous on 𝐽, the corresponding Ascoli’s theorem gives a subsequence {𝑉𝑛𝑘
} 

which converges uniformly to 𝜌(𝑡) ∈ 𝐾𝐶(𝑅𝑛), and since {𝑉𝑛} is monotone 

nondecreasing sequence,  the entire sequence {𝑉𝑛} converges uniformly to 𝜌(𝑡) on 𝐽. 

In the same way we can show that the sequence {𝑊̃𝑛} and 𝑊̃𝑛 → 𝑅̃ uniformly on 𝐽, it 

therefore follows, using the integral representation of (5.4.12) and (5.4.13) that 𝜌(𝑡) 

and 𝑅̃(𝑡) satisfy the relations: 

  𝐷𝐻𝜌(𝑡) = 𝐹(𝑡, 𝜌) + 𝐺(𝑡 + 𝜉, 𝑅̃) + 𝐻(𝑡 + 𝜉, 𝑅̃), 𝜌(𝜏0) = 𝑈0   on 𝐽 (5.4.36) 

  𝐷𝐻𝑅̃(𝑡) = 𝐹(𝑡 + 𝜉, 𝑅̃) + 𝐺(𝑡, 𝜌) + 𝐻(𝑡, 𝜌),           𝑅̃(𝜏0) = 𝑈0  on 𝐽 (5.4.37) 

as a result, 

𝑉0 ≤ 𝜌 ≤ 𝑅̃ ≤ 𝑊̃0 (5.4.38) 

we next claim that (𝜌, 𝑅̃) are coupled minimal and maximal solutions of (5.4.1), that 

is, if  𝑈(𝑡) is any solution of (5.4.1) such that: 

                                                     𝑉0 ≤ 𝑈(𝑡) ≤ 𝑊̃0 (5.4.39) 

then: 

                   𝑉0 ≤ 𝜌 ≤ 𝑈(𝑡) ≤ 𝑅̃ ≤ 𝑊̃0 ,   𝑡 ∈ 𝐽 (5.4.40) 

suppose that for some 𝑛, 
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                      𝑉𝑛 ≤ 𝑈(𝑡) ≤ 𝑊̃𝑛, 𝑡 ∈ 𝐽 (5.4.41) 

then we have using the monotone nature of 𝐹, 𝐺 and  𝐻 and (5.4.41): 

  𝐷𝐻𝑈 = 𝐹(𝑡, 𝑈) + 𝐺(𝑡, 𝑈) + 𝐻(𝑡, 𝑈) ≥ 

            ≥ 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑛) + 𝐻(𝑡 + 𝜉, 𝑊̃𝑛),              𝑈(𝜏0) = 𝑈0 

 

(4.5.42) 

  

   𝐷𝐻𝑉𝑛+1 = 𝐹(𝑡, 𝑉𝑛) + 𝐺(𝑡 + 𝜉, 𝑊̃𝑛)  + 𝐻(𝑡 + 𝜉, 𝑊̃𝑛), 𝑉𝑛+1(𝜏0) = 𝑈0 

 

(4.5.43) 

hence,  

𝐷𝐻𝑈 ≥ 𝐷𝐻𝑉𝑛+1 (4.5.44) 

consequently, 

𝑉𝑛+1 ≤ 𝑈      on  𝐽 (5.4.45) 

similarly, 

𝑊̃𝑛+1 ≥ 𝑈      on  𝐽 (5.4.46) 

hence, the relation (5.4.41) is true for all 𝑛 ≥ 1 by induction, taking the limit  𝑛 → ∞ 

we get (5.4.40) proving the claim. Therefore, this completes the proof of the theorem.∎ 

 

Corollary 5.4.1: If, in addition to the assumptions of Theorem (5.4.1) 𝐹 and 𝐺 satisfy 

whenever 𝑋̃ ≥ 𝑌, 𝑋̃, 𝑌 ∈ 𝐾𝐶(𝑅𝑛)  

𝐹(𝑡 + 𝜉, 𝑋̃) ≤ 𝐹(𝑡, 𝑌) + 𝑁1(𝑋̃ − 𝑌) (5.4.47) 

𝐺(𝑡 + 𝜉, 𝑋̃) + 𝑁2(𝑋̃ − 𝑌) ≥ 𝐺(𝑡, 𝑌) (5.4.48) 

𝐻(𝑡 + 𝜉, 𝑋̃) + 𝑁3(𝑋̃ − 𝑌) ≥ 𝐺(𝑡, 𝑌) (5.4.49) 

where 𝑁1 , 𝑁3, 𝑁2 > 0, then 𝜌 = 𝑅̃ = 𝑈 is the unique solution of (5.4.1). 

Proof 5.4.1: Since  𝜌 < 𝑅̃, and then  𝑅̃ = 𝜌 + 𝑚 or 𝑚 = 𝑅̃ − 𝜌, now  

𝐷𝐻𝜌 +  𝐷𝐻𝑚 = 𝐷𝐻𝑅̃ = 𝐹(𝑡 + 𝜉, 𝑅̃) + 𝐺(𝑡, 𝜌) + 𝐻(𝑡, 𝜌)

≤ 𝐹(𝑡, 𝜌) + 𝑁1(𝑅̃ − 𝜌) + 𝐺(𝑡 + 𝜉, 𝑅̃) + 𝑁2(𝑅̃ − 𝜌)

+ 𝐻(𝑡 + 𝜉, 𝑅̃) + 𝑁2(𝑅̃ − 𝜌) = 𝐷𝐻𝜌 + (𝑁1 + 𝑁2 + 𝑁3)𝑚 

 

 

(5.4.50) 

which means, 
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𝐷𝐻𝑚 ≤ (𝑁1 + 𝑁2 + 𝑁3)𝑚, 𝑚(𝜏0) = 0 (5.4.51) 

which leads to 𝑅̃ ≤ 𝜌 on 𝐽, proving the uniqueness of 𝜌 = 𝑅̃ = 𝑈. Completing the 

proof.∎ 
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6. CONCLUSION 

 

We have studied the monotone iterative technique for set valued differential 

equations to generalization to study this technique. First, we study it for single 

function, and then we have also studied them for two and three functions which paved 

the way to study it for four and five functions that lead us to genralize this method the 

more. Hence, we have also worked on the monotonte iterative technique with initial 

time difference for single function, and also for two and three functions which in turn 

could be generalized again for finite systems in future studies. 
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