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1. G�R��

17. yüzy�lda Isaac Newton ve Gottfried Wilhelm Leibnitz diferansiyel ve integral

kalkülüsün temelini att�. Bu kalkülüs Newtonyan kalkülüsü olarak adland�r�l�r. 20.

yüzy�la kadar süreklili§i olmayan yöntemler vard� ve türev olmadan büyük ba³ar�lar

sa§lanamad�.

Türev çok uzun süredir matematiksel analizin merkezindedir. Di§er yandan,

beklenmedik bir ³ekilde türev sayesinde ekonomik büyüme modelinde yer alan daha

gerçekçi büyüme olgusunu aç�klayan bir yakla³�m geli³tirilebilmi³tir. Bu

paradigman�n de§i³mesiyle yani farklar yerine oranlar yoluyla ölçüm yap�ld�§�nda,

sapmalar�n ve do§al olarak varyasyonlar�n da hesaplanabilece§ini dü³ündürdü.

Galileo k�saca bunu dü³ünmü³ olsa da 1972 y�l�nda Grossman ve Katz Newtonyan

olmayan kalkülüsü hayal edene kadar bu gerçekle³medi. Grossman ve Katz'�n birlikte

yazd�§� Non-Newtonian Calculus isimli kalkülüs ve aritmetik sistemleri geni³ bir

³ekilde incelenmi³tir [1]. Newtonyan olmayan kalkülüs Newton ve Leibniz kalkülüsüne

bir alternatiftir. Klasik operatörlerin yerine Newtonyan olmayan operatörleri temel

alarak farkl�la³t�rma araçlar� sa§lan�r. Klasik kalkülüsteki her özellik Newtonyan

olmayan kalkülüs için bir örnektir. Ayr�ca kalkülüs yoluyla ara³t�r�labilen problemlere

farkl� bir bak�³ aç�s� ile bakabilmeye izin verir. Grossman ve Katz ayn� zamanda

Newtonyan olmayan kalkülüsü kullanarak bigeometrik kalkülüsü olu³turmu³tur ve

Grossmann ölçeksiz türev sistemi olan bigeometrik kalkülüs üzerine bir kitap

yazm�³t�r [10]. Agamirza Bashirov, Emine Kurp�nar M�s�rl� ve Ali Özyap�c�

Newtonyan olmayan kalkülüsten yararlanarak çarp�msal kalkülüs ve uygulamalar�

üzerine çal�³malar yapm�³lard�r [2]. Yücel Tando§du'nun da kat�lmas�yla 2011 y�l�nda

yay�mlad�klar� makalede i³lemler tan�mlayarak üstel aritmeti§i kurmu³lar ve

çarp�msal diferensiyel e³itlikler ve bunlarla ilgili baz� teoremler vermi³lerdir [3].

Ahmet Faruk Çakmak ve Feyzi Ba³ar 2012 y�l�nda yay�mlad�klar� makalede

Newtonyan olmayan kalkülüse göre dizi uzaylar�nda baz� sonuçlar göstermi³lerdir [4].

2014 y�l�nda yay�mlad�klar� makalede ise kompleks say�lar� Newtonyan olmayan

kalkülüse göre de§erlendirmi³lerdir [5]. Benzer ³ekilde birçok matematikçi Newtonyan

olmayan kalkülüs alan�nda çal�³malar yapm�³t�r [6] - [9].

Newtonyan kalkülüsün temel kavramlar� olan integralleme ve diferansiyelleme,

toplama ve ç�karma i³lemlerinin sonsuz küçükler hesab�na dayan�r. Bu yüzden bu

kalkülüse toplaman�n temel i³lemlerini gösteren toplamsal kalkülüs de denir.

Toplamsal kalkülüs, toplamsal özelliklerin uzunluk kavram�ndaki bir boyutlu

uygulamalar�n tamam�na uygundur. Bu durum �çok boyutlu durumlarda önemli
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olmayan kar�³�kl�klar getirebilir: x = (x1, x2, ..., xn) vektörünün boyu

‖x‖ =
√
x21 + x22...+ x2n

olarak tan�mlan�rken yeni bir i³lemle kök toplam�

a⊕kök b =
√
a2 + b2

³eklinde yaz�labilir. Hatta basit olarak bu i³lem

‖x‖ = x1 ⊕kök x2 ⊕kök ...⊕kök xn

veya

‖x‖ = x1
α
+ x2

α
+ ...

α
+ xn

³eklinde ifade edilebilir. Bu da bize bir α-toplam operatörü tan�mlat�r. Bu toplam

operatörünü temel alarak bir α-aritmetik geli³tirilebilir [3].

Aritmetik, matemati§in say�lar aras�ndaki ili³kileri ve say�lar�n problemleri çözmede

kullan�m� ile ilgilenen alan�d�r. Bütün aritmetikler yap�sal olarak özde³ olmas�na

ra§men, Newtonyan olmayan kalkülüsün tümünü kurmak için uygun araçlar

yard�m�yla onlar� farkl�la³t�r�r�z. Ama aritmetiklerin kullan�l�³l�§� kalkülüsün yap�s�n�

s�n�rland�rmaz. Basit �zik olaylar� ve yeni ölçü sistemleri gibi temel olgular�

anlayabilmek ve geli³tirebilmek için farkl� aritmetikler üretmek önemlidir. Tan�m

kümesi reel say�lar ve görüntü kümesi reel say�lar�n bir alt kümesi olan α : R → Rα

birebir e³lemesine üreteç ad� verilir. Üreteçler yard�m�yla klasik aritmetikten farkl�

birçok aritmetik kurulabilir. Kullan�lacak olan α üretecine göre Rα kümesi ve

üzerindeki aritmetik de§i³ecektir. Bu tezde kullan�lan α-aritmetik, normlu uzaylar� ve

normlu uzaylar üstünde tan�mlanan tüm i³lemleri ve operatörleri α-üreteci ile

ba§da³t�ran bir aritmetiktir.

�lk olarak baz� α-aritmetikler tan�t�lacakt�r. α üreteci ile tan�mlanan temel i³lemler

olan α-toplama ve α-çarpma i³lemleri, bu i³lemlere göre birim elemanlar, α-s�ralama

ba§�nt�s� kurularak α-aritmetik olu³turulmu³tur. Kullan�lan üretece göre ortaya ç�kan

farkl� aritmetik örnekleri verilmi³tir. Fonksiyonel analiz alan�ndaki baz� kavram ve

teoremlerden yararlan�lm�³t�r [11�14]. Daha sonra bu tezin as�l amac� olan üretilen

vektör uzaylar ve üretilen normlu uzaylar incelenmi³tir. α-vektör uzay� tan�mlanarak
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vektör uzaylar� için verilen baz� teoremler, ispatlar ve örnekler üretece göre yeniden

yorumlanm�³t�r. Böylece α-normlu uzay� tan�mlanacak, C [a, b], c, l∞ ve lp normlu

uzaylar� α-üreteci yard�m�yla yeniden olu³turulmu³tur. α-lineerlik ve α-s�n�rl�l�k

tan�mlanarak α-lineer dönü³ümler üzerinde baz� teoremler verilmi³tir. Sonras�nda

α-süreklilik kavram� üzerinde durularak ilgili teoremler ispatlanm�³ ve baz� örneklere

yer verilmi³tir. Di§er yandan, α-norm ve operatörler için α-norm kavramlar�

tan�mlanm�³t�r. X reel veya kompleks bir α-vektör uzay� ve Kα, Rα veya Cα olmak

üzere f : X → Kα dönü³ümü tan�mlanarak bir α-fonksiyonel olu³turulmu³tur. Çe³itli

α-uzaylar üzerinde tan�mlanan dönü³ümlerle α-fonksiyonel örnekleri verilmi³tir.

Ayr�ca fonksiyonellere ba§l� ifadelere α-fonksiyoneller aç�s�ndan bak�lm�³t�r. Herhangi

bir α-aritmetik yard�m�yla tan�mlanan dönü³ümlerin terslerinin varl�klar� ve baz�

özellikleri gösterilmi³tir. X ve Y α-vektör uzaylar, T : X → Y α-lineer dönü³üm ve T

dönü³ümünün α-tersi T−1 olmak üzere T−1 dönü³ümünün α-lineer oldu§u; X ve Y

α-normlu vektör uzaylar, T : X → Y dönü³ümü örten ve α-lineer olmak üzere T−1

dönü³ümünün var ve α-s�n�rl� olmas� için gerekli ve yeterli ³artlar verilmi³tir.
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2. TEMEL TANIM VE KAVRAMLAR

2.1. α-Aritmetik

Aritmetik, R'nin bir alt kümesinde s�ral� cisim ³artlar�n�n tamam�n� sa§layan bir

sistemdir. Birbirine izomorf, yani yap�sal olarak birbirine denk olan sonsuz say�da

aritmetik vard�r. Her ne kadar iki aritmetik birbirine izomorf olsa da kullan�m olarak

farkl�l�klar� vard�r. Bir α üreteci, tan�m kümesi R ve görüntü kümesi R'nin (Rα ile

gösterilen) bir alt kümesi olan birebir bir fonksiyondur. Her üreteçten bir tek

aritmetik elde edilir, tersine her aritmetik bir tek üreteç taraf�ndan üretilir. Üretecin

temel görevi R üzerinde tan�mlanm�³ olan ba³ta ikili i³lemler ve s�ralama olmak üzere

kavramlar� farkl�la³t�rmakt�r. Rα üzerinde α üreteci yard�m�yla tan�mlanan temel

olarak dört çe³it ikili i³lemden bahsedilebilir. Bunlardan ikisi olan α-toplama ve

α-çarpma i³lemleri her x, y ∈ Rα için

x
α
+ y = α(α−1(x) + α−1(y))

x
α· y = α(α−1(x).α−1(y))

(2.1)

biçiminde tan�mlan�r. Bu i³lemler göz önüne al�n�nca, 0α = α(0) say�s� α-toplamaya

göre, 1α = α(1) say�s� ise α-çarpmaya göre etkisiz elemanlard�r. Ayr�ca herhangi bir

x ∈ Rα için

α
−x = α(−1) α· x = α(−α−1(x)) (2.2)

say�s�na x say�s�n�n α-negati� veya α-toplama i³lemine göre tersi; herhangi bir

x ∈ Rα\{α(0)} için

x−1α = 1
α

/x = α(1/α−1(x)) (2.3)

say�s�na ise x say�s�n�n α-çarpma i³lemine göre tersi denir. Yukar�da tan�mlanan

i³lemler vas�tas�yla Rα üzerindeki α-ç�karma ve α-bölme i³lemleri her x, y ∈ Rα için

x
α
− y = x

α
+ (

α
−y) = α(α−1(x)− α−1(y))

x
α

/ y = x
α·
(
1
α

/ y

)
= α (α−1(x)/α−1(y)) (y 6= α(0))

(2.4)

biçiminde tan�mlan�r. Rα kümesi üzerinde α üreteci yard�m�yla farkl� s�ralamalar da

tan�mlanabilir. Burada üretecin artanl�§�, azalanl�§� ve monotonlu§u önemli bir rol
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oynar. Elde edilen s�ralama bilinen s�ralama ile farkl�l�k gösterebilece§i gibi

çak�³adabilir. Bilhassa α üreteci monoton iken her x, y ∈ Rα için α-s�ralama

x
α

6 y ⇔

 α−1(x) 6 α−1(y) , α artan

α−1(x) > α−1(y) , α azalan
(2.5)

biçiminde tan�mlan�r. Yukar�da bahsedilen i³lemler ve α-s�ralama ile Rα görüntü

kümesi tam s�ral� bir cisim olur. α üretecinin monoton olmad�§� durumlarda da

α-s�ralama tan�m� yap�labilir. Ancak bu tan�mlama Rα kümesinin uygun alt

kümelerine parçalan�³� ile elde edilir (Bu alt kümelere α üretecinin k�s�tlan�³�n�n

monoton olmas� halinde yukar�dakine benzer bir s�ralama olu³turulur). Bu durumda

ise Rα k�smî s�ral� bir cisim olur.

Rα üzerinde α üreteci vas�tas�yla tan�mlad�§�m�z i³lemler ve s�ralama ile

olu³turdu§umuz bu s�ral� cisimlere α-aritmetik ad� verilir. �imdi birkaç adet

α-aritmetik örne§i inceleyelim.

Örnek

(a) I Birim fonksiyonu RI = R üzerinde klasik aritmeti§i üretir.

(b) Üstel fonksiyon exp ise Rexp = R+ üzerinde geometrik aritmeti§i üretir. Her x, y ∈
R+ için

x
exp
+ y = xy

x
exp
· y = xln y = ylnx

³eklinde tan�mlanan ikili i³lemler ve

x
exp

6 y ⇔ lnx 6 ln y

ile verilen s�ralama ba§�nt�s�yla R+ tam s�ral� bir cisimdir.

(c) Üreteç

α(x) =


√
x , x > 0

0 , x = 0

−
√

(−x) , x < 0
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olarak al�n�rsa elde edilen aritmeti§e kuadratik aritmetik ad� verilir.

(d) R üzerinde q-aritmetik denilen sonsuz say�da aritmetik tan�mlayabiliriz. S�f�rdan

farkl� herhangi bir q reel say�s� için R'den R'ye

α(x) =


x1/q , x > 0

0 , x = 0

−(−x)1/q , x < 0

biçiminde tan�ml� α üreteci ele al�ns�n. Bu üretecin tersinin

α−1(x) =


xq , x > 0

0 , x = 0

−(−x)q , x < 0

oldu§u kolayca görülebilir. Burada q farkl� de§erler ald�kça birbirinden farkl� sonsuz

say�da α-aritmetik tan�mlanabilir. Örne§in q = 1 ise α-aritmetik bildi§imiz klasik

aritmetik ile çak�³�rken, q = 2 iken ise kuadratik aritmetik denilen aritmetik elde

edilir. Ayr�ca q = −1 oldu§u durumda ise harmonik aritmetik üretilmi³ olur. Tüm

durumlarda

x
α
+ y =

√
x2 + y2

x
α· y = xy

ikili i³lemleri ve

x
α

6 y ⇔ x 6 y

s�ralama ba§�nt�s� ile Rα tam s�ral� bir cisimdir.

Herhangi bir α-aritmeti§in (veya herhangi bir Rα s�ral� cisminin) s�f�r� 0α oldu§undan,

α-aritmetikte pozitif ve negatif say�lar�n kümeleri bilinenden farkl� olabilir. Ba³ka bir

deyi³le,

R+
α =

{
x | 0α

α

6 x ve x ∈ Rα

}
ve R−α =

{
x | x

α

6 0α ve x ∈ Rα

}
(2.6)

biçimindeki R+
α ve R−α kümeleri α üretecine göre farkl�l�k gösterebilir. Meselâ

yukar�daki örnekte (b) için R+
exp = (1,∞) ve R−exp = (0, 1) iken (d)'de R+

q = (0,∞) ve
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R−q = (−∞, 0) olur. Herhangi bir x ∈ R+
α say�s�na α-pozitif say� ve herhangi bir

x ∈ R−α say�s�na ise α-negatif say� denir. Sadece poziti�ik veya negati�ik kavram�

de§i³mekle kalmay�p bütün koordinat sistemi farkl�la³abilir. Dolay�s�yla α-aritmeti§e

göre `sonsuz' kavram� da de§i³ebilir. Bu yüzden ∞α yani `α-sonsuz' ve −∞α yani

`eksi α-sonsuz' tan�mlamalar�na ihtiyaç vard�r. Meselâ yukar�daki örnekte (b) için

−∞exp = 0 ve ∞exp =∞ iken (c) için −∞q = −∞ ve ∞q =∞ olur.

Reel say�lar için verilen üreteç tan�m� kompleks say�lara geni³letilebilir. Bunun için

herhangi bir α : R→ Rα üretecine kar³�l�k bir β : C→ Cβ birebir ve örten dönü³ümü

tan�mlamak gerekir. Burada Cβ, C'nin bir alt kümesidir. z = x + iy ∈ C, xα = α(x),

yα = α(y), iα =
α√
−1 = α(

√
−1) = α(i) olmak üzere,

β(z) = xα
α
+ iα

α· yα (2.7)

biçiminde tan�mlanan β 'ya kompleks α-üreteci denir. Cβ'y� cisim yapan i³lemler

a, b, c, d ∈ Rα ve

z = a
α
+ iα

α· b ∈ Cβ

w = c
α
+ iα

α· d ∈ Cβ

olmak üzere

z
β
+ w = (a

α
+ c)

α
+ iα

α· (b
α
+ d)

= α(α−1(a) + α−1(c) + i [α−1(b) + α−1(d)])

z
β
· w = (a

α· d
α
− b α· c)

α
+ iα

α· (a α· c
α
+ b

α· d)

= α([α−1(a) · α−1(d)− α−1(b) + α−1(c)] + i [α−1(a) · α−1(c) + α−1(b) · α−1(d)])

biçimde tan�mlan�r. Cβ üzerindeki
β

≤ s�ralamas� ise

z
β

≤ w ⇔


α−1(a) ≤ α−1(c) ve α−1(b) ≤ α−1(d) , α artan

α−1(a) ≥ α−1(c) ve α−1(b) ≥ α−1(d) , α azalan

(2.8)

ile verilir. Yukar�da tan�mlanan iki i³lem ve bu s�ralama ile Cβ tam s�ral� cisimdir. Bu

durumda Cβ'n�n s�f�r� ve biri s�ras�yla 0β = β(0 + i0) ve 1β = β(1 + i0) olur. β ve

α aras�ndaki farkl�l�klar sakl� tutularak β'y� da α ile belirletip Rα ve Cα cisimlerinin
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ortak gösterimi olarak Kα'y� kullanaca§�z.

�kili i³lemlerin de§i³mesine ba§l� olarak say�lar�n kuvvetleri ve kökleri de farkl�la³abilir.

Rα 'daki bir x say�s�n�n α-karesi

x2α = x
α· x = α

([
α−1(x)

]2)
(2.9)

olur. Tümevar�m yöntemi yard�m�yla herhangi bir m do§al say�s� için bir x say�s�n�n

m. dereceden α-kuvveti

xmα = α
([
α−1(x)

]m)
(2.10)

olarak tan�mlan�r. Benzer bir ³ekilde herhangi bir x ∈ Rα\{0α} say�s� için

x−2α = 1
α

/ x2α

= 1
α

/
(
x
α· x
)

= 1
α

/ α
(
[α−1(x)]

2
)

= α
(
[α−1(x)]

−2
)

olur. Ayr�ca herhangi bir x ∈ R+
α ∪ {0α} say�s�n�n α-karekökü

α√
x = α

(√
α−1(x)

)
(2.11)

biçiminde tan�mlan�r. Genelle³tirmek gerekirse, Rα kümesindeki bir x eleman�n�n

herhangi bir n > 2 tamsay� için n. dereceden α-kökü (e§er mevcutsa);

α
n
√
x = x(1/n)α = x1/nα = α

(
n
√
α−1(x)

)
(2.12)

say�s�d�r.

Poziti�ik ve negati�ik kavram�n�n de§i³imine ba§l� olarak mutlak deger kavram�nda da

de§i³iklik görülebilir. Rα kümesinin bir x eleman�n�n α-mutlak de§eri ³u ³ekilde ifade
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edilebilir:

|x|α =
α√
x2α = α(|α−1(x)|) =


x , x

α
> 0α

0α , x = 0α
α
−x , x

α
< 0α

. (2.13)

S�ralamaya ba§l� olarak Rα kümesindeki aral�klar R kümesindekilerden farkl� olabilir.

Bu durumda aral�k tan�m�n� yapmakta fayda vard�r. Rα kümesinden a ve b elemanlar�

alal�m. O halde Rα kümesinin bir aç�k aral�§�

(a, b)α =

 (α−1(a), α−1(b)) , α artan

(α−1(b), α−1(a)) , α azalan
(2.14)

biçiminde tan�mlan�r. Benzer bir ³ekilde bir yar� aç�k aral�§� da ³u ³ekilde

tan�mlayabiliriz:

(a, b]α =

 (α−1(a), α−1(b)] , α artan

[α−1(b), α−1(a)) , α azalan
(2.15)

�imdi (1, 2)α aç�k aral�§�n�n üretece göre nas�l de§i³ti§ine bakal�m. Bu aral�k üreteç

olarak α = I al�n�rsa (1, 2)α = (1, 2), α = exp al�n�rsa (1, 2)α = (ln 1, ln 2) , α kuadratik

aritmeti§i üreten fonksiyon olarak al�n�rsa (1, 2)α =
(√

1,
√
2
)
, α harmonik aritmeti§i

üreten fonksiyon olarak al�n�rsa (1, 2)α =
(
1
2
, 1
)
haline gelir.

Teorimizde önemli bir yere sahip olan limit kavram�ndaki de§i³ime de göz atmak

gerekir.

2.1. Tan�m

Rα kümesinden bir {an} dizisi al�ns�n ve a ∈ Rα olsun. Her ε
α
> 0α için n > nε iken∣∣∣an α

− a
∣∣∣
α

α
< ε olacak biçimde bir nε say�s� varsa {an} dizisi a say�s�na α-yak�nsar denir

ve α-lim an = a veya an
α→ a yaz�l�r. Her ε

α
> 0α için n > nε iken an

α
> ε (veya an

α
<

α
−ε)

olacak biçimde bir nε say�s� varsa, {an} dizisi α-sonsuza (veya eksi α -sonsuza) yakla³�r

denir ve α-lim an =∞α (veya α-lim an = −∞α ) yaz�l�r.
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Üreteç sürekli iken herhangi bir {an} reel say� dizisi için

lim an = a ⇒ α- limα(an) = α(a)

lim an =∞ ⇒ α- limα(an) =∞α

lim an = −∞ ⇒ α- limα(an) = −∞α

elde edilir.

Özel olarak, limα(n) = α-limα(n) =∞α ve limα(−n) = α-limα(−n) = −∞α olur.

2.2. Tan�m

Rα içinde verilen bir {an} dizisi için

α-
∞∑
n=1

an = a1
α
+ a2

α
+ · · ·

α
+ an

α
+ · · ·

ifadesine sonsuz α-seri denir. Genel terimi

sn = α-
n∑
i=1

ai = a1
α
+ a2

α
+ · · ·

α
+ an = α

(
n∑
i=1

α−1(ai)

)

olan {sn} dizisine ise k�smî α-toplamlar dizisi denir. Bu dizi bir L ∈ Rα say�s�na

α-yak�nsak ise α-
∞∑
n=1

an serisi L α-toplam�na sahiptir ve bu durumda α-
∞∑
n=1

an = α-

lim sn = L biçiminde yaz�l�r.

2.3. Tan�m

Rα kümesinden bir {an} dizisi al�ns�n. E§er her ε
α
> 0α içinm,n > N iken

∣∣∣an α
− am

∣∣∣ α< ε

olacak ³ekilde bir N = N(ε) say�s� bulunabiliyorsa bu durumda {an} dizisine α-Cauchy
dizisi denir.

2.4. Tan�m

X bo³ olmayan bir küme olmak üzere dα : X × X → Rα dönü³ümü her x, y, z ∈ X

için



12

1) dα(x, y) = 0α ⇔ x = y

2) dα(x, y) = dα(y, x)

3) dα(x, y)
α

≤ dα(x, z)
α
+ dα(z, y)

aksiyomlar�n� sa§l�yorsa dα fonksiyonuna üretilen metrik veya α-metrik, (X, dα) ikilisine

de üretilen metrik uzay ya da α-metrik uzay denir.

2.2. Üretilen Vektör Uzaylar� ve Üretilen Normlu Uzaylar

2.5. Tan�m

X bo³ olmayan bir küme olsun. X içinde toplama

4
+ : X ×X → X

(x, y) → x
4
+ y

dönü³ümü ile X içinde skaler ile çarpma ad� verilen

4
· : Kα ×X → X

(k, x)→ k
4
· x

dönü³ümü tan�mlayal�m. E§er bu dönü³ümler her x, y, z ∈ X ve her k, l ∈ Kα için

1) x
4
+ y = y

4
+ x

2) x
4
+ (y

4
+ z) = (x

4
+ y)

4
+ z

3) Her x ∈ X için x
4
+ θ = x olacak biçimde bir θ ∈ X var,

4) Her x ∈ X için x
4
+ x′ = θ olacak biçimde bir x′ ∈ X var,

5) k
4
· (x

4
+ y) = (k

4
· x)

4
+ (k

4
· y)

6) (k
α
+ l)

4
· x = (k

4
· x)

4
+ (l

4
· x)

7) (k
α· l)

4
+ x = k

4
· (l

4
· x)

8) 1α
4
· x = x

ko³ullar�n� sa§l�yorsa X kümesine Kα üzerinde bir üretilen vektör uzay (veya α-vektör

uzay�) ad� verilir.
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Örnek

xi, yi ∈ Kα olmak üzere x = (x1, x2, ..., xn) ∈ Kn
α, y = (y1, y2, ..., yn) ∈ Kn

α ve a ∈ Kα

olsun.

x
4
+ y = (x1

α
+ y1, ..., xn

α
+ yn)

a
4
· x = (a

α· x1, ..., a
α· xn)

tan�mlar� alt�nda Kn
α kümesi reel bir α-vektör uzay olur.

2.6. Tan�m

α ve β iki üreteç olmak üzere x0 ∈ Rα ve f : Rα → Rβ olsun. ε
β
> 0β için

∣∣∣x α
− x0

∣∣∣
α

α
< δ

iken

∣∣∣∣f(x) β
− f(x0)

∣∣∣∣
β

β
< ε olacak biçimde δ

α
> 0α varsa f 'ye x0 noktas�nda (α, β)-

süreklidir denir. α = β iken f , x0 noktas�nda α-süreklidir. f , Rα'n�n bir A altkümesinin

tüm noktalar�nda (α, β)-sürekli ise f 'ye A üzerinde (α, β)-süreklidir denir.

Örnek

f bir fonksiyon olmak üzere k ∈ Rα ve [a, b]α ⊆ Rα aral�§� için

Cα [a, b] = {f | f : [a, b]α → Rα, f α-sürekli fonksiyon }

uzay�

(x
4
+ y)(t) = x(t)

α
+ y(t)

(k
4
· x)(t) = k

α· x(t)

tan�mlar� alt�nda bir α-vektör uzay�d�r.

2.7. Tan�m

Rα veya Cα uzay�nda |·|α α-mutlak de§erine göre bir {xn} dizisi için |xn|α
α

≤Mα olacak

biçimde M ∈ R+
α varsa {xn} dizisine α-s�n�rl�d�r denir.
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Örnek

Reel ya da kompleks terimli ve α-s�n�rl� bütün x = {xn} dizileri için

`∞α =

{
x = {xn} ⊆ Kα :

α
sup
n
|xn|

α

≤ ∞α

}

kümesi

x
4
+ y =

{
xn

α
+ yn

}
k
4
· x =

{
k
α· xn

}
tan�mlar� alt�nda bir α-vektör uzay�d�r.

Örnek

Bütün α-yak�nsak dizilerin kümesi

cα =

{
x = {xn} ⊆ Kα :

α

lim
n→∞

xn mevcut

}

bir önceki örnekte verilen i³lemlerle α-vektör uzay�d�r.

Örnek

1 ≤ p <∞ olmak üzere

` pα =

{
x = {xn} ⊆ Kα :

α
sup
n
|xn|

α

≤ ∞α

}

kümesi

x
4
+ y =

{
xn

α
+ yn

}
k
4
· x =

{
k
α· xn

}
i³lemleri ile bir α-vektör uzay�d�r.
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2.8. Tan�m

X, Kα üzerinde bir α-vektör uzay� olmak üzere ‖·‖α : X → Rα dönü³ümü her x, y ∈ X
ve her k ∈ Kα için

1) ‖x‖α = 0α ⇐⇒ x = θ4

2)
∥∥∥k 4· x∥∥∥

α
= |k|α

α· ‖x‖α

3)

∥∥∥∥x 4+ y

∥∥∥∥
α

α

≤ ‖x‖α
α
+ ‖y‖α

özelliklerini sa§l�yorsa bu dönü³üme üretilen norm veya α-norm, (X, ‖·‖α) ikilisine de
üretilen normlu uzay veya α-normlu uzay denir.

Örnek

Kn
α vektör uzay� x = (x1, x2, ..., xn) ∈ Kn

α için

‖x‖α =

α√√√√α-
n∑
k=1

|xk|2α = α

√√√√ n∑
k=1

|α−1(xk)|2


ile tan�ml� α-norm ile bir α-normlu uzayd�r. Bu norm Kn
α uzay�n�n do§al normudur. Bu

uzay üzerinde tan�mlanabilecek di§er norm

‖x‖α =
α

max
1≤k≤n

|xk|α = α

(
max
1≤k≤n

∣∣α−1(xk)∣∣)

olur.

Örnek

`α2 α-vektör uzay� her x = {xn} eleman� için

‖x‖2α =

α√√√√α-
∞∑
k=1

|xk|2α
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ile tan�ml� norm ile α-normlu uzayd�r. Her x ∈ `α2 için `α2 uzay�n�n tan�m�ndan

‖x‖2αnormu sonludur.

Örnek

C([a, b]α) α-vektör uzay� ve x ∈ C([a, b]α) olmak üzere

‖x‖α =
α

max
a≤t≤b

|x(t)|α

ile tan�ml� norm ile α-normlu uzayd�r ve bu norm C([a, b]α) uzay�n�n düzgün normudur.

Ayn� uzay

‖x‖α = α-

b∫
a

|x(t)|α dt = α

 α−1(b)∫
α−1(a)

∣∣α−1(x(t))∣∣ dt


ve

‖x‖α =

α√√√√√ b∫
a

(x(t))2αdt

α-normlar�yla verilebilir.
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3. ÜRET�LEN NORMLU UZAY ÜSTÜNDE DÖNÜ�ÜMLER

3.1. α-S�n�rl� α-Lineer Dönü³ümler

Bu bölümde α-normlu uzaylar aras�ndaki dönü³ümler ile ilgilenece§iz.

3.1. Tan�m

X = (X,
4
+,
4
· ) ve Y = (Y,

♦
+,
♦·) ayn� Kα cismi üzerinde iki α-vektör uzay�, T : X → Y

bir dönü³üm olmak üzere, her x1,x2 ∈ X ve her a1, a2 ∈ Kα için

T (a1
4
· x1

4
+ a2

4
· x2) = a1

♦· T (x1)
♦
+ a2

♦· T (x2)

oluyorsa T dönü³ümüne α-lineerdir denir.

Burada X ve Y nin α-normlu uzay olmas� gerekli de§ildir.

3.2. Tan�m

X ve Y α-normlu uzaylar, T : X → Y bir dönü³üm olmak üzere her x ∈ X için

‖T (x)‖α
α

≤ K
α· ‖x‖α

olacak ³ekilde K ∈ R+
α varsa T dönü³ümü α-s�n�rl�d�r denir.

α-normlu vektör uzaylar� aras�ndaki α-s�n�rl� ve α-lineer dönü³üme α-operatör denir.

Bu yüzden α-operatör denildi§inde α-s�n�rl� ve α-lineer dönü³üm kastedilecektir.

Operatörler daima α-sürekli dönü³ümlerdir. Bunu göstermek için a³a§�daki teoreme

bakal�m.

3.3. Teorem

T α-lineer dönü³ümü, X α-normlu vektör uzay�n�n bir noktas�nda α-sürekli ise X

üzerinde α-süreklidir.
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�spat

T dönü³ümü bir x0 ∈ X noktas�nda α-sürekli olsun. T dönü³ümünün her x ∈ X için

α-sürekli oldu§unu gösterelim. X içinde xn
α→ x olacak biçimde bir {xn} dizisini alal�m.

xn
4
− x

4
+ x0 → x0 ve T, x0'da α-sürekli oldu§undan dolay� T (xn

4
− x

4
+ x0)→ T (x0) ve

bu yüzden T (xn)→ T (x) dir. Bu da T 'nin X üzerinde α-sürekli oldu§unu gösterir.

3.4. Teorem

T , X α-normlu uzay� üzerinde bir α-lineer dönü³üm olsun. T 'nin X üzerinde α-sürekli

olmas� için gerek ve yeter ³art X üzerinde α-s�n�rl� olmas�d�r.

�spat

T α-s�n�rl� olsun. Her x ∈ X için ‖T (x)‖α
α

≤ K
α· ‖x‖α olacak ³ekilde K ∈ R+

α vard�r.

ε
α
> 0, x ∈ X ve {xn} , X içinde bir dizi olmak üzere α-limxn = x olsun. Yeterince

büyük n'ler için

∥∥∥∥xn 4− x∥∥∥∥
α

α
< ε

α

/K sa§lan�r. T 'nin α-lineerli§i ve α-s�n�rl�l�§�ndan

∥∥∥∥T (xn) ♦− T (x)∥∥∥∥
α

=

∥∥∥∥T (xn 4− x)∥∥∥∥
α

α

≤ K
α·
∥∥∥∥xn 4− x∥∥∥∥

α

α
< ε

sa§lan�r. Böylece T , x noktas�nda α-sürekli olup önceki teorem gere§ince T, X üzerinde

α-süreklidir.

Tersine T , X üzerinde α-sürekli olsun, fakat T α-s�n�rl� olmas�n. T α-s�n�rl�

olmad�§�ndan her nα > 0α için

‖T (xn)‖α
α
> nα

α· ‖xn‖α

olacak biçimde xn ∈ X vard�r. xn = θ4 için T (θ4) = θ♦ oldu§undan teorem gerçeklenir.

Bu yüzden her n için ‖xn‖α 6= 0α olsun. X içinde genel terimi

yn = 1α
α

/
(
nα

α· ‖xn‖α
) 4
· xn

olan {yn} dizisi tan�mlans�n. Her n için,
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‖T (yn)‖α =

∥∥∥∥T (1αα/(nα α· ‖xn‖α
) 4
· xn

)∥∥∥∥
α

=

∥∥∥∥1αα/(nα α· ‖xn‖α
)
♦· T (xn)

∥∥∥∥
α

=

(
1α

α

/
(
nα

α· ‖xn‖α
))

α· ‖T (xn)‖α
α
> 1α

elde edilir. Di§er yandan

‖yn‖α =

(
1α

α

/
(
nα

α· ‖xn‖α
))

α· ‖xn‖α = 1α
α

/nα

oldu§undan her ε
α
> 0α ve yeterince büyük n'ler için ‖yn‖α

α
< ε gerçeklenir. Böylece

{yn} dizisi X içinde s�f�r vektörü θ4'ya yak�nsar. T, X üzerinde α-sürekli oldu§undan

dolay� T (yn) → T (θ4) = θ♦ olur. Bu ise her n için ‖T (yn)‖
α
> 1α olmas�yla çeli³ir.

Bundan dolay� T α-s�n�rl� olmal�d�r.

Bu teoremin sonucu olarak normlu uzaylarda α-süreklilik ve α-s�n�rl�l�k kavramlar�

denktir.

Örnek

Sabit b ∈ Kα skaleri için X α-normlu uzay� üzerinde bir T α-operatörü her x ∈ X için

T (x) = b
4
· x

³eklinde tan�mlans�n. Her x1, x2 ∈ X ve her a1, a2 ∈ Kα için

T (a1
4
· x1

4
+ a2

4
· x2) = b

4
· (a1

4
· x1

4
+ a2

4
· x2)

= a1
4
· (b

4
· x1)

4
+ a2

4
· (b

4
· x2)

= a1
4
· T (x1)

4
+ a2

4
· T (x2)

oldu§undan T α-lineerdir. T 'n�n α-s�n�rl�l�§�ndan,

‖T (x)‖α =
∥∥∥b 4· x∥∥∥

α
= |b|α

α· ‖x‖α

olup ‖T (x)‖α
α

≤ K
α· ‖x‖α ³art�n� sa§layan K = |b|α sabiti vard�r. E§er b = 1α ise T 'ye
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X üzerinde α-birim (özde³) operatör denir ve Iα ile gösterilir. Iα operatörü X'in her

eleman�n� kendisine dönü³türür. E§er b = 0α ise T α-operatörüne X üzerinde α-s�f�r

operatörü denir ve X'in her eleman�n� θ4'ya dönü³türür.

Örnek

T (x) = y olacak ³ekilde T : C([a, b]α)→ (C [a, b]α) dönü³ümü tan�mlans�n ve

y(s) = λ
α· α-

∫ b

a

k(s, t)x(t)dt, x ∈ C([a, b]α), a ≤ s ≤ b

olsun. Burada k, [a, b]α × [a, b]α karesi içinde α-sürekli olan iki de§i³kenli bir

fonksiyonudur ve λ ∈ Rα\{0α} d�r. Her x1, x2 ∈ C([a, b]α) ve her α1, α2 ∈ Kα için

s ∈ [a, b]α iken

(T (α1

4
· x1

4
+ α2

4
· x2))(s) = λ

α· α-
∫ b
a
k(s, t)(α1x1(t) + α2x2(t))dt

= α1
α· λ α· α-

∫ b
a
k(s, t)x1(t)dt

α
+ α2

α· λ α· α-
∫ b
a
k(s, t)x2(t)dt

= (α1
♦· Tx1)(s)

♦
+ (α2

♦· Tx2)(s)

oldu§undan T α-lineerdir. Ayr�ca T α-s�n�rl�d�r. Bunu göstermek için bir M
α
> 0α ve

kare içindeki her (s, t) için |k(s, t)| ≤M olsun. Bu durumda

‖T (x)‖α = ‖y‖α

=
α

max
a≤s≤b

|y(s)|α

=
α

max
a≤s≤b

∣∣∣λ α· α-
∫ b
a
k(s, t)x(t)dt

∣∣∣
α

≤ |λ|α
α· α

max
a≤s≤b

α-
∫ b
a
|k(s, t)|α |x(t)|α dt

≤ |λ|α
α· M α· α

max
a≤s≤b

|x(t)|α
α· (b− a)α

= |λ|α
α· M α· (b− a)α

α· ‖x‖α

olur. Böylece K = |λ|α
α·M α· (b−a)α al�n�rsa, her x ∈ C([a, b]α) için ‖T (x)‖α

α

≤ K ‖x‖α
oldu§undan T α-s�n�rl�d�r. Bu ise T 'nin bir α-operatör oldu§unu gösterir.
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3.5. Tan�m

Rα kümesinden bir {an} dizisi al�ns�n. Her n ∈ N için an
α

≤ Mα olacak ³ekilde bir Mα

reel say�s� varsa {an} dizisi üstten α-s�n�rl�d�r denir. E§er her n ∈ N için an
α

≥ mα

olacak biçimde bir mα say�s� varsa {an} alttan α-s�n�rl�d�r denir. Bir dizi üstten α-

s�n�rl� ise üst s�n�rlar�n�n en küçü§üne dizinin en küçük α-üst s�n�r� veya α-supremumu,

bir dizi alttan α-s�n�rl� ise alt s�n�rlar�n�n en büyü§üne dizinin en büyük α-üst s�n�r�

vaya α-infumumu ad� verilir. A ⊆ Rα lineer nokta kümesi olsun. Mα ∈ A olmak üzere

Mα =
α

supA biçimdeki Mα eleman�na A kümesinin α-maksimumu denir ve
α

maxA ile

gösterilir. mα ∈ A olmak üzere mα =
α

infA biçimindeki mα eleman�na A kümesinin

α-minimumu denir ve
α

minA ile gösterilir

α
supxn =

{
supxn , α artan

inf xn , α azalan
ve

α

infxn =

{
inf xn , α artan

supxn , α azalan

3.2. Bir Operatörün Normu

T , X α-normlu uzay�ndan di§er α-normlu uzaylara giden bir α-operatör ise her x ∈ X
için ‖T (x)‖α

α
< K

α· ‖x‖α olacak ³ekilde bir K sabiti vard�r. Bu e³itsizli§i sa§layan K'n�n

en küçük de§eri T 'nin α-normu olarak adland�r�l�r ve ‖T‖α ile gösterilir.

3.6. Teorem

T, X α-normlu vektör uzay� üzerinde bir α-operatör olsun.

a =
α

inf
{
K ∈ R+

α : ‖T (x)‖α
α

≤ K
α· ‖x‖α , x ∈ X

}
,

b =
α

sup

{
‖T (x)‖α

α

/ ‖x‖α : x ∈ X, x 6= θ4

}
,

c =
α

sup {‖T (x)‖α : x ∈ X, ‖x‖α = 1α} ,

d =
α

sup
{
‖T (x)‖α : x ∈ X, ‖x‖α

α

≤ 1α

}
alal�m. Bu durumda

(a) Her x ∈ X için ‖T (x)‖α
α

≤ a
α· ‖x‖α

(b) a = b = c = d
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gerçeklenir. Burada a say�s� daha sonra T α-operatörünün α-normu olarak

tan�mlanacakt�r.

�spat

(a) En büyük α-üst s�n�r(α-in�mum) tan�m�ndan her ε
α
> 0α ve her x ∈ X için

‖T (x)‖α
α
< (a+ ε)

α· ‖x‖α bulunur. Bu e³itsizlik bütün key� ε say�s� için sa§lan�r.

(b) �spatlamak için a
α

≤ b
α

≤ c
α

≤ d
α

≤ a oldu§unu gösterelim.S�f�rdan farkl� her x ∈ X
için b

α

≥ ‖Tx‖α / ‖x‖α olur. Ayr�ca x = θ4 için de bu e³itsizlik gerçeklenir. Böylece b

{
K : ‖T (x)‖α

α

≤ K
α· ‖x‖α , x ∈ X

}

kümesine aittir. a, bu kümenin alt s�n�rlar�n�n en büyü§ü oldu§undan a
α

≤ b bulunur.

Her x 6= θ4 olmak üzere her x ∈ X için

‖T (x)‖α
α

/ ‖x‖α =

∥∥∥∥(1α/ ‖x‖α) ♦· T (x)∥∥∥∥
α

=

∥∥∥∥T ((1α/ ‖x‖α) 4· x)∥∥∥∥
α

α

≤ c

olup T α-lineer ve (1
α

/ ‖x‖α)
4
· x ifadesinin normu 1α'dir. Bu yüzden b

α

≤ c bulunur.

Ayr�ca {x : x ∈ X, ‖x‖α = 1α} kümesi {x : x ∈ X, ‖x‖α ≤ 1α} kümesinin

altkümesidir. Dolay�s�yla c
α

≤ d olur. Son olarak her x ∈ X için ‖x‖α
α

≤ 1α olsun. (a)

'dan ‖T (x)‖α
α

≤ a olup d
α

≤ a bulunur. Bu da ispat� tamamlar.

X ve Y α-normlu uzaylar olsun. α-lineer ve α-s�n�rl� dönü³ümlerin kümesini

Bα(X, Y ) : X → Y ile gösterece§iz.

Bα(X, Y ) kümesinin α-vektör uzay oldu§u ve hatta α-normlu uzay olabilece§i

gösterilebilir. T, T1 ve T2, Bα(X, Y ) içinde key� operatörler, bir k skaleri ve x ∈ X

için T1
�
+ T2 ve k

�· T dönü³ümleri

(T1
�
+ T2)(x) = T1(x)

♦
+ T2(x)

(k
�· T )(x) = k

♦· T (x)

³eklinde tan�mlan�r. T1
�
+ T2 ve k

�· T dönü³ümlerinin Bα(X, Y ) içinde α-operatör

olduklar�n� ve α-vektör uzay� aksiyomlar�n� sa§lad�klar�n� gösterelim.
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Y bir α-vektör uzay� oldu§undan T1
�
+T2 ve k

�· T , X'den Y 'ye bir dönü³ümdür. Ayr�ca

T1
�
+ T2 ve k

�· T 'n�n α-lineer dönü³üm oldu§u uygulama olarak yap�labilir. T1 ve T2
α-s�n�rl� oldu§undan her x ∈ X için ‖T1(x)‖α

α

≤ K1 ‖x‖α ve ‖T2(x)‖α
α

≤ K2 ‖x‖α olacak
³ekilde K1, K2 sabitleri vard�r. Her x ∈ X için

∥∥∥∥(T1 �+ T2)(x)

∥∥∥∥
α

=

∥∥∥∥T1(x) ♦+ T2(x)

∥∥∥∥
α

α

≤ ‖T1(x)‖α
α
+ ‖T2(x)‖α

α

≤ K1
α· ‖x‖α

α
+K2

α· ‖x‖α

= (K1

α
+K2)

α· ‖x‖α

olup T1
�
+ T2 s�n�rl�d�r. Benzer ³ekilde her x ∈ X için

∥∥∥(k �· T )(x)∥∥∥
α
=
∥∥∥k ♦· T (x)∥∥∥

α
= |k|α

α· ‖T (x)‖α
α

≤ (|k|α
α· K)

α· ‖x‖α

olacak ³ekilde K sabiti vard�r. T α-s�n�rl� oldu§undan k
�· T de α-s�n�rl�d�r. Böylece

T1
�
+ T2 ∈ Bα(X, Y ) ve k

�· T ∈ Bα(X, Y ) bulunur.

Bα(X, Y )'nin α-vektör uzay� aksiyomlar�n� sa§lad�§� kolayca gösterilebilir.

T ∈ Bα(X, Y ) olmak üzere T 'nin negatif operatörü −T = (−1)α
�· T olur. Ayr�ca

Bα(X, Y ) içindeki s�f�r vektörü X içindeki her noktay� Y içinde s�f�r vektörüne

dönü³türen operatördür. Her T1, T2 ∈ Bα(X, Y ) için T1
�
+ T2 = T2

�
+ T1, her

T ∈ Bα(X, Y ) ve her α, β ∈ Rα skaleri için (α
α· β) �· T = α

�· (β �· T ) oldu§unu

gösterece§iz. x ∈ X iken,

(T1
�
+ T2)(x) = T1(x)

♦
+ T2(x) = T2(x)

♦
+ T1(x) = (T2

�
+ T1)(x)

ve

((α
α· β) �· T )(x) = (α

α· β) ♦· T (x)

= α
♦· (β ♦· T (x))

= α
♦· ((β �· T )(x))

= (α
�· (β �· T ))(x)



24

olur. Böylece a³a§�daki sonucu verebiliriz.

3.7. Teorem

X'den Y 'ye bütün α-operatörlerin kümesi Bα(X, Y ) bir α-vektör uzay�d�r.

Ayr�ca Bα(X, Y )'nin nas�l α-normlu uzay olabilece§ini ilerde gösterece§iz.

3.8. Tan�m

Her T ∈ Bα(X, Y ) operatörü için ‖T‖α ile gösterilen T 'nin α-normu

‖T‖α =
α

inf
{
K : ‖T (x)‖α

α

≤ K
α· ‖x‖α , x ∈ X

}
say�s�d�r.

Bir önceki teoremde verilen ifadeler ‖T‖α için alternatiftir ve bu da her x ∈ X için

‖T (x)‖α
α

≤ ‖T‖α
α· ‖x‖α

e³itsizli§ini kan�tlar.

Bir operatörün α-normunu bulmak için önceki teoremde verilen ifadelerden herhangi

birinin kullan�lmas� uygundur. Tx = β
4
· x biçiminde tan�mlanan T : X → X α-

operatörü için

‖T (x)‖α =
α

sup {‖T (x)‖α : x ∈ X, ‖x‖α = 1α}

=
α

sup {|β|α ‖x‖α : x ∈ X, ‖x‖α = 1α}

= |β|α

bulunur. Özel olarak α-birim operatör I için

‖I‖α = 1α

olur.
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�imdi Bα(X, Y )'nin α-normlu uzay oldu§unu gösterebiliriz.

3.9. Teorem

Bα(X, Y ) yukar�da verilen operatör normuyla α-normlu uzayd�r.

�spat

�spat� için (N1),(N2) ve (N3) özelliklerinin sa§land�§� gösterilmelidir. (N1) kolayca

gösterilebilir. (N2)'yi göstermek için T ∈ Bα(X, Y ) olsun. Her k skaleri ve x ∈ X için

∥∥∥(k �· T )(x)∥∥∥
α
=
∥∥∥k ♦· T (x)∥∥∥

α
= |k|α

α· ‖T (x)‖α
α

≤ |k|α
α· ‖T‖α

α· ‖x‖α

olup
∥∥∥k �· T∥∥∥

α

α

≤ |k|α
α· ‖T‖α bulunur. Ayr�ca

∥∥∥k �· T∥∥∥
α

α

≥ |k|α
α· ‖T‖αoldu§unu gösterelim.

k = 0 iken durum aç�kt�r. k 6= 0 olsun. Bu durumda

‖T (x)‖α =
∥∥∥(k−1 α· k) ♦· T (x)∥∥∥

α

=
∥∥∥k−1 ♦· (k �· T )(x)∥∥∥

α

= |k|−1α
α·
∥∥∥(k �· T )(x)∥∥∥

α

≤ |k|−1α
α·
∥∥∥k �· T∥∥∥

α

α· ‖x‖α

olup ‖T‖α
α

≤ |k|−1α
α·
∥∥∥k �· T∥∥∥

α
veya

∥∥∥k �· T∥∥∥
α

α

≥ |k|α
α· ‖T‖α bulunur. Böylece (N2) ³art�

sa§lan�r. (N3)'ü göstermek için T1, T2 ∈ Bα(X, Y ) ve x ∈ X iken

∥∥∥∥(T1 �+ T2)(x)

∥∥∥∥
α

=

∥∥∥∥T1(x) ♦+ T2(x)

∥∥∥∥
α

α

≤ ‖T1(x)‖α
α
+ ‖T (x)‖α

α

≤ ‖T1‖α
α· ‖x‖α

α
+ ‖T2‖α

α· ‖x‖α

= (‖T1‖α
α
+ ‖T2‖α)

α· ‖x‖α

olup

∥∥∥∥T1 �+ T2

∥∥∥∥
α

α

≤ ‖T1‖α
α
+ ‖T2‖α bulunur. Dolay�s�yla (N3) sa§lan�r. Bu da ispat�

tamamlar.
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3.10. Tan�m

Bir α-normlu uzay�ndaki her α-Cauchy dizisi α-yak�nsak oluyorsa bu uzaya α-Banach

uzay� denir.

Bα(X, Y ) α-normlu vektör uzayd�r ve özellikleri a§�rl�kl� olarak Y uzay�na ba§l�d�r. Bu

bilgi �³�§�nda fonksiyonel analiz için önemli bir sonuç verelim.

3.11. Teorem

E§er Y α-Banach uzay� ise Bα(X, Y ) α-Banach uzay�d�r.

�spat

Bu teorem X uzay�n�n α-Banach uzay� olmas�na bak�lmaks�z�n gerçeklenir. Teoremin

ispat� için Bα(X, Y )'deki her bir mutlak yak�nsak serinin yak�nsak oldu§unu

göstermeliyiz.

Kabul edelim ki α-
∞∑
k=1

Tk serisi, elemanlar� Bα(X, Y )'den olan mutlak yak�nsak bir seri

olsun. α-
∞∑
k=1

‖Tk‖α reel de§erli serisi yak�nsakt�r.X uzay�n�n sabitlenmi³ bir x elemanlar�

için yn = α-
n∑
k=1

Tk(x) olsun. Her n ∈ N için yn ∈ Y olur. n > m olmak üzere her ε > 0

ve yeterince büyük m'ler için

‖yn − ym‖α =

∥∥∥∥α- n∑
k=m+1

Tk(x)

∥∥∥∥
α

α

≤ α-
n∑

k=m+1

‖Tk(x)‖α

α

≤ α-
n∑

k=m+1

‖Tk‖α
α· ‖x‖α

α

≤ ε
α· ‖x‖α

bulunur. Bu ise {yn} dizisinin Y içinde α-Cauchy dizisi oldu§unu gösterir ve Y α-

Banach uzay oldu§undan bu dizi α-yak�nsakt�r. Her x ∈ X için T : X → Y dönü³ümü

T (x) =
α

limyn = α-
∞∑
k=1

Tkx
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biçiminde tan�mlans�n. T dönü³ümünün α-lineer oldu§u kolayca gösterilebilir. Ayr�ca

her x ∈ X ve her n ∈ N için

α-
n∑
k=1

‖Tk(x)‖α
α

≤ α-
n∑
k=1

‖Tk‖α
α· ‖x‖α

α

≤ α-
∞∑
k=1

‖Tk‖α
α· ‖x‖α

olup α-
∞∑
k=1

‖Tk(x)‖α α-yak�nsakt�r. Normun α-süreklili§inden

‖T (x)‖α =

∥∥∥∥ α

limα-
n∑
k=1

Tk(x)

∥∥∥∥
α

=
α

lim

∥∥∥∥α- n∑
k=1

Tk(x)

∥∥∥∥
α

α

≤
α

limα-
n∑
k=1

‖Tk(x)‖α

α

≤ α-
∞∑
k=1

‖Tk‖α
α· ‖x‖α

olup T α-s�n�rl�d�r. Böylece T ∈ Bα(X, Y ) bulunur. Son olarak her x ∈ X ve yeterince

büyük K ∈ R+
α için α-

∑
Tk mutlak yak�nsak oldu§undan

∥∥∥∥(T �
− α-

n∑
k=1

Tk

)
(x)

∥∥∥∥
α

=

∥∥∥∥α- ∞∑
k=n+1

Tk(x)

∥∥∥∥
α

α

≤ α-
∞∑

k=n+1

‖Tk(x)‖α

α

≤ α-
∞∑

k=n+1

‖Tk‖α
α· ‖x‖α

α
< K

α· ‖x‖α

bulunur. Dolay�s�yla

∥∥∥∥∥T �
− α-

n∑
k=1

Tk

∥∥∥∥∥
α

α
< K

gerçeklenir, yani α-
n∑
k=1

Tk
α→ T olur. Yani α-

∞∑
k=1

Tk serisi α-yak�nsakt�r. Bu ise ispat�

tamamlar.

E§er {Tn}, Bα(X, Y ) içinde bir dizi ve α-
∑
Tk α-yak�nsak ise üçgen e³itsizli§ini sonsuz
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serilere genelleyerek ‖α-
∑
Tk‖α

α

≤ α-
∑
‖Tk‖α e³itsizli§ini elde ederiz.

3.3. α-Fonksiyoneller

"Fonksiyonel" kavram� dönü³ümlerin belli bir türünü ifade eder. Bu yüzden

α-dönü³ümler için verilen tan�mlar α-fonksiyonellere de uygulan�r.

3.12. Tan�m

X reel veya kompleks α-vektör uzay� olsun. Kα, Rα veya Cα olmak üzere f : X → Kα

dönü³ümüne X üzerinde bir α-fonksiyonel denir.

Örnek

f : Rn
α → Rα, x = (x1, ..., xn) ∈ Rn

α ve (a1, ..., an) ∈ Rn
α sabiti için f(x) =

n∑
k=1

ak
α· xk bir

α-fonksiyoneldir.

Örnek

Her x ∈ C([a, b]α) için f(x) = α-
b∫
a

x(t) biçiminde tan�ml� f : C([a, b]α)→ Rα bir

α-fonksiyoneldir.

Örnek

Her x = (x1, ..., xn) ∈ `2 ve j ∈ N sabiti için f(x) = xj biçiminde tan�mlanan

f : `2 → Cα α-fonksiyoneldir.

Örnek

X α-normlu uzay ise f(x) = ‖x‖α biçiminde tan�mlanan f : X → Rα α-fonksiyoneldir.

Her x1, x2 ∈ X ve her α1, α2 skalerleri için

f(α1
α· x1

4
+ α2

α· x2) = α1
α· f(x1)

α
+ α2

α· f(x2)

³art� sa§lan�yorsa f α-fonksiyoneli α-lineerdir. Yukar�da verilen ilk üç örnekte f α-lineer

fonksiyoneldir, fakat son örnekte α-lineerlik ³art� sa§lanmaz.
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α-normlu uzaylar aras�ndaki dönü³ümler için daha önce verilen tan�mlar ve özellikler

X α-normlu uzay ise f α-fonksiyoneli için de geçerlidir. Bu özellikleri k�saca tekrar

edelim.

{xn} dizisi X içinde x'e α-yak�nsak bir dizi iken {f(xn)}, f(x)'e yak�nsayan

skalerlerin dizisi ise f α-fonksiyoneli x ∈ X noktas�nda α-süreklidir. E§er f , X'in her

özel noktas�nda α-lineer ve α-sürekli ise X'in tüm noktalar�nda α-süreklidir. E§er her

x ∈ X için |f(x)|α
α

≤ M
α· ‖x‖α olacak ³ekilde M > 0α varsa f α-s�n�rl�d�r. Bu ³art�

sa§layan en küçük M say�s�na f 'nin α-normu denir ve ‖f‖α ile gösterilir. Her x ∈ X
için

|f(x)|α
α

≤ ‖f‖α
α· ‖x‖α

sa§lan�r. Üretilen normlu uzaylar üzerindeki α-lineer fonksiyoneller için α-s�n�rl�l�k ve

α-süreklilik kavramlar� denktir.

Kα,reel veya kompleks α-vektör uzay olsun. Bα(X,Kα), X üzerinde tüm α-s�n�rl�

α-lineer fonksiyonellerin uzay� olsun. Kα'n�n taml�§�ndan B(X,Kα) α-Banach

uzayd�r. Burada X uzay�n�n tam olup olmamas�n�n önemi yoktur. α-fonksiyonellerin

uzay� B(X,Kα), X'in dual uzay� olarak adland�r�l�r ve X ′ ile gösterilir. Yukar�da

belirtildi§i gibi bir α-normlu uzay�n�n duali daima α-Banach uzayd�r. Daha önce

söylenildi§i gibi bir α-lineer fonksiyonelin α-sürekli olmas� için gerek ve yeter ³art

α-s�n�rl� olmas�d�r. Bunun için daha kullan�³l� ve etkili bir durum vard�r ve genel

dönü³ümlerden ziyade α-fonksiyoneller için kullan�l�r.

3.13. Teorem

X α-normlu vektör uzay� üzerindeki f α-lineer fonksiyonelinin X üzerinde α-sürekli

olmas� için gerek ve yeter ³art

N(f) = {x : x ∈ X, f(x) = 0α}

kümesinin kapal� olmas�d�r.

N(f) kümesi X'in altkümesidir ve X'in altuzay� oldu§u kolayca gösterilebilir. N(f)

kümesine f 'nin s�f�r uzay� denir. X uzay�n�n f alt�nda görüntüleri 0α olan bütün

noktalar�n�n kümesidir (X ve Y α-vektör uzaylar olmak üzere T : X → Y

dönü³ümünün s�f�r uzay� N(T ) = {x : x ∈ X, T (x) = θ♦} kümesidir.)
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�spat

Teoremi ispatlamak için kabul edelim ki f , X üzerinde α-sürekli ve xn → x olacak

³ekilde {xn}, N(f) içinde bir dizi olsun. N(f) kümesinin kapal� oldu§unu göstermek

için x ∈ N(f) oldu§unu göstermeliyiz. Her n için f(xn) = 0α olup
α

limf(xn) = 0α d�r. f ,

X üzerinde α-sürekli oldu§undan f(x) =
α

limf(xn) = 0α bulunur. Dolay�s�yla x ∈ N(f)

olup istenilen elde edilir.

�spat�n� tersini göstermek kolay de§ildir. N(f) kümesi kapal� olsun. f 'nin X üzerinde

α-sürekli oldu§unu gösterece§iz. X'in θ4 s�f�r vektöründe f 'nin α-sürekli oldu§unu,

yani

f(θ4) = 0α oldu§undan X içindeki bir {xn} dizisi için xn → θ4 iken f(xn) → 0α

oldu§unu göstermeliyiz.

�lk olarak, her n > M için xn ∈ N(f) olacak ³ekilde M pozitif sabitinin var oldu§unu

kabul edelim. n > M iken f(xn) = 0α oldu§undan f(xn)
α→ 0α olmal�d�r. �kinci olarak,

{xn} dizisinin sonsuz terimleri için xn /∈ N(f) olsun. {yn}, {xn}'nin N(f)'de olmayan

bütün terimlerinden olu³an alt dizisi olsun. Her n için f(yn) 6= 0α ve yn
α→ θ4 olur.

Her n ∈ N için

tn =

(
1α

α

/f(yn)

)
4
· yn

al�n�rsa, her n için f(tn) = 1α bulunur.

�imdi her n için |f(yn)|α
α

≥ 0α olmak üzere
α

lim |f(yn)|α = 0α oldu§u gösterilebilirse
α

lim |f(yn)|α = 0α olacakt�r. �spat çeli³kiye dü³ülerek yap�lacakt�r. Kabul edelim ki
α

lim |f(yn)| 6= 0α olsun. Sonsuz baz� n'ler için |f(yn)|α
α
> δ olacak ³ekilde δ

α
> 0α vard�r.

Bu yüzden {yn} dizisinin her k ∈ N için |f(ynk)|α
α
> δ özelli§ini sa§layan {ynk} alt

dizisini seçelim. Her k için

‖tnk‖α = 1α
α

/ |f(ynk)|α
α· ‖ynk‖α

α
<

1

δ

α· ‖ynk‖α

olur. ynk → θ4 oldu§undan tnk → θ4 bulunur. Her k için f α-lineer oldu§undan

f(tn1

4
− tnk) = f(tn1)

α
− f(tnk) = 1α − 1α = 0α
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olup tn1

4
− tnk ∈ N(f) bulunur. Fakat N(f)'ye ait tüm terimler için {tn1

4
− tnk}∞k=1 ,

X içinde α-yak�nsak bir dizidir ve N(f) kapal�d�r. Böylece

α

lim
k→∞

(tn1

4
− tnk) = tn1

4
− θ = tn1 ∈ N(f)

olur. Bu ise f(tn1) = 1α olmas�yla çeli³ir. Bu yüzden
α

lim |f(yn)|α = 0α bulunur.

Böylece her m için xn 6= ym iken f(xn) = 0α oldu§undan f(yn)
α→ 0α ve f(xn)

α→ 0α

elde edilir. Bu da ispat� tamamlar.

Örnek

f : C([a, b]α)→ Rα lineer fonksiyoneli için

f(x) = α-
∫ b

a

x(t)dt , x ∈ C[a, b]α

‖f‖α = b
α
− a olur.

Çözüm

C([a, b]α) üstünde α-düzgün normunu ele alal�m. Her x ∈ C([a, b]α) için

|f(x)|α =

∣∣∣∣α-∫ b

a

x(t)dt

∣∣∣∣
α

α

≤ α-
∫ b

a

|x(t)|α dt
α

≤ α
max
a≤t≤b

|x(t)|α
α· α-

∫ b

a

dt = (b− a) α· ‖x‖α

olup f α-s�n�rl�d�r ve ‖f‖α
α

≤ b
α
− a bulunur. Fonksiyonu a

α

≤ t
α

≤ b için x0(t) = 1α

verilen x0 ∈ C[a, b]α ile dü³ünelim. f(x0) = b
α
− a

α
> 0α ve ‖x0‖α = 1α oldu§u kolayca

görülebilir. E§er ‖f‖α
α
< b

α
− a ise

b
α
− a = |f(x0)|α

α

≤ ‖f‖α
α· ‖x0‖α

α
< (b

α
− a) α· ‖x0‖α = b

α
− a

olur. Bu ise mümkün de§ildir. Bu yüzden ‖f‖α = b
α
− a olup istenilen elde edilir.
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3.4. Ters Dönü³ümler

X ve Y herhangi iki küme olmak üzere T : X → Y dönü³ümü birebir ise T−1 : Y → X

ters dönü³ümü vard�r ve x ∈ X, y ∈ Y için T (x) = y iken T−1(y) = x olur. Y

içinde bir y noktas� verildi§inde T (x) = y denklemi normal yollarla çözülebilir. Çözüm

x = T−1(y) olup tektir. Özel uygulamalar içinde bu problem y verildi§inde T (x) = y

çözümü kolayca sunulmas�na ra§men, birebir T dönü³ümünü belirlemek kolay de§ildir.

Bu dönü³üm olsa bile uygulmalar aç�s�ndan tersini ortaya ç�karmak zor olabilir. Bu

bölümde dönü³ümlerin terslerinin varl�klar�n� ve durumlar�n� gösterece§iz.

3.14. Teorem

X ve Y α-vektör uzaylar, T : X → Y birebir ve örten α-lineer dönü³üm ve T

dönü³ümünün tersi T−1 olsun. Bu durumda T−1 ters dönü³ümü de α-lineerdir.

�spat

�spat� yapmak için her y1, y2 ∈ Y ve α1, α2 skalerleri için

T−1(α1
♦· y1

♦
+ α2

♦· y2) = α1

4
· T−1(y)1

4
+ α2

4
· T−1(y2)

oldu§unu göstermeliyiz. x1, x2 ∈ X için T−1(y1) = x1 ve T−1(y2) = x2 olsun. Buradan

T (x1) = y1 ve T (x2) = y2 olur. T 'nin α-lineerli§inden

T (α1

4
· x1

4
+ α2

4
· x2) = α1

♦· T (x1)
♦
+ α2

♦· T (x2) = α1
♦· y1

♦
+ α2

♦· y2

bulunur. Bu ise

T−1(α1
♦· y1

♦
+ α2

♦· y2) = α1

4
· x1

4
+ α2

4
· x2 = α1

4
· T−1(y1)

4
+ α2

4
· T−1(y2)

oldu§unu gösterir, böylece ispat biter.

X ve Y α-vektör uzaylar, T : X → Y α-lineer dönü³üm olmak üzere x ∈ X için

T (x) = θ♦ denkleminin tek çözümünün x = θ4 oldu§unu kabul edelim. Bu durumda

X'in x1 ve x2 noktalar için T (x1) = T (x2) ise T (x1
4
− x2) = θ♦ olup x1

4
− x2 = θ4

yani x1 = x2 bulunur. Bu ise T 'nin birebirli§ini gösterir. Ayr�ca T örten ise T−1 ters

dönü³ümün varl�§� garantilenir. Bu sonucun tersi de ispatlanabilir.
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T : X → Y α-lineer dönü³ümünün ters dönü³ümü T−1 olsun ve x ∈ X için T (x) = θ♦

olsun. T−1'in α-lineerli§inden x = T−1(θ♦) = θ4 olur.

3.15. Teorem

X ve Y α-vektör uzaylar aras�ndaki T : X → Y örten α-lineer dönü³ümünün tersi

T−1'in var olmas� için gerek ve yeter ³art x ∈ X için T (x) = θ♦ denkleminin tek

çözümünün x = θ4 olmas�d�r.

Bu teorem bize T dönü³ümün s�f�r uzay� N(T )'n�n {θ4} oldu§unu ifade eder. X α-

normlu uzay� üzerinde f α-lineer fonksiyonelinin tersi varsa f 'nin X üzerinde α-sürekli

oldu§unu biliyoruz. Bu durum X'in {θ4} altkümesinin kapal� olmas�ndan kaynaklan�r.

3.16. Teorem

X ve Y α-normlu uzaylar olmak üzere T : X → Y dönü³ümü örten ve α-lineer olsun.

T−1 ters dönü³ümünün var ve α-s�n�rl� olmas� için gerek ve yeter ³art her x ∈ X için

‖T (x)‖α
α

≥ m
α· ‖x‖α e³itsizli§ini sa§layan bir m

α
> 0α sabitinin var olmas�d�r.

�spat

Her x ∈ X ve bir m
α
> 0α sabiti için e³itsizli§in sa§land�§�n� kabul edelim. E§er

T (x) = θ♦ ise ‖x‖α = 0α olup x = θ4 bulunur. Bu yüzden T−1 vard�r. Her y ∈ Y için

T−1(y) = x olsun. ‖T (x)‖α
α

≥ m
α· ‖x‖α e³itsizli§i

∥∥T−1(y)∥∥
α

α

≤ (1α
α

/m)
α· ‖y‖α

e³itsizli§ine denktir. Bu da gösterir ki T−1 α-s�n�rl�d�r (üstelik ‖T−1‖α
α

≤ 1α
α

/m olur).

Tersi için e§er T−1 var ve α-s�n�rl� ise her y ∈ Y için ‖T−1(y)‖α
α

≤ ‖T−1‖α
α· ‖y‖α olur.

Yani x = T−1(y) olmak üzere ‖x‖α
α

≤ ‖T−1‖α
α· ‖T (x)‖α bulunur. E§er y, Y içinde

s�f�r vektörü yani y = θ� ise x = T−1(y) = θ4 olup x, X'in s�f�r vektörüdür. Üçgen

e³itsizli§inden herm
α
> 0 için ‖T (x)‖α

α

≥ m ‖x‖α bulunur. Di§er yandan ‖y‖α
α
> 0α olup

T−1y 6= θ4 ve 0α
α
< ‖x‖α

α

≤ ‖T−1‖α
α· ‖T (x)‖α olur. Bu yüzden ‖T−1‖α

α
> 0α ve s�f�rdan

farkl� x ∈ X vektörleri için burada m = 1α
α

/ ‖T−1‖α seçilirse ‖T (x)‖α
α

≥ m
α· ‖x‖α

bulunur.



34

3.17. Teorem

X α-normlu uzay ve T : X → X α-operatörü için ‖T‖α
α

≤ 1α olsun. Ayr�ca I
�
− T

α-operatörü örten olsun. Bu durumda (I
�
− T )−1 vard�r ve

∥∥∥∥(I �− T )−1∥∥∥∥
α

α

≤ 1α
α

/
(
1α

α
− ‖T‖α

)

sa§lan�r.

�spat

Bu teoremin ispat� önceki teoremin basit bir sonucudur. Üçgen e³itsizli§i kullan�larak

her x ∈ X için

‖x‖α
α

≤
∥∥∥∥x 4− T (x)∥∥∥∥

α

α
+ ‖T (x)‖α

α

≤
∥∥∥∥x 4− T (x)∥∥∥∥

α

α
+ ‖T‖α

α· ‖x‖α

bulunur. Böylece

∥∥∥∥(I �− T )(x)∥∥∥∥
α

=

∥∥∥∥I(x) 4− T (x)∥∥∥∥
α

=

∥∥∥∥x 4− T (x)∥∥∥∥
α

α

≥ (1
α
− ‖T‖α)

α· ‖x‖α

olur. Önceki teoremin ispat�n�n I
�
− T operatörüne uygulanmas�yla m = 1α

α
− ‖T‖α

al�narak sonuca ula³�l�r.

Bu teorem için e§er X'in α-Banach uzay� oldu§unu kabul edersek I
�
− T örten olur.

Bunu göstermek için X içinde al�nan her y noktas� için (I
�
− T )x = y olacak ³ekilde

x ∈ X noktalar�n�n var oldu§unu göstermeliyiz. Bu yüzden y ∈ X noktalar� key� olsun.

B : X → X dönü³ümü x ∈ X olmak üzere

B(x) = T (x)
4
+ y

biçiminde tan�mlans�n. (E§er y 6= θ ise B α-lineer de§ildir. T α-lineer oldu§unda

buradaki gibi bir B dönü³ümü a�n olarak adland�r�l�r.) Her x′, x′′ ∈ X noktalar� için

∥∥∥∥B(x)′
4
−B(x′′)

∥∥∥∥
α

=

∥∥∥∥T (x′) 4− T (x′′)∥∥∥∥
α

=

∥∥∥∥T (x′ 4− x′′)∥∥∥∥
α

α

≤ ‖T‖α
α·
∥∥∥∥x′ 4− x′′∥∥∥∥

α
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olur. 0α
α
< ‖T‖α

α
< 1α al�nd�§�nda B,X üzerinde büzülme operatörü olur. �imdi X α-

Banach uzay� kabul edildi§inde sabit nokta teoremine göre B dönü³ümü bir tek sabit

noktaya sahiptir. Yani B(x) = x olacak ³ekilde bir tek x ∈ X vard�r. Buradan

T (x)
4
+ y = x ya da y = (I

�
− T )(x) olur.

Sabit nokta teoremi y = (I
�
− T )(x) denkleminin çözümünü ard�³�k uygulamalar ile

bulunabilece§ini ispatlar. x0, x1, x2, ... ard�³�k yinelemeler olsun ve x0 = y alal�m.

x1 = B(x0) = T (x0)
4
+ y = T (y)

4
+ y

x2 = B(x1) = T (x1)
4
+ y = T (T (y)

4
+ y)

4
+ y

= T 2(y)
4
+ T (y)

4
+ y

x3 = B(x2) = T (x2)
4
+ y = T (T 2(y)

4
+ T (y)

4
+ y)

4
+ y

= T 3(y)
4
+ T 2(y)

4
+ T (y)

4
+ y

³eklinde devam edildi§inde genel terim

xn = T n(y)
4
+ T n−1(y)

4
+ ...

4
+ T 2(y)

4
+ T (y)

4
+ y

bulunur. {xn} dizisi 4-
∑∞

k=0 T
k(y) serisinin k�smi α-toplamlar dizisidir ( T 0 özde³lik

operatörü I anlam�na gelir). {xn} dizisi B'nin sabit x noktas�na α-yak�nsad�§�nda 4-∑∞
k=0 T

k(y) serisi de x'e α-yak�nsar. Fakat di§er yandan x = (I
�
− T )−1(y) olur. �imdi

bütün bunlar� özetleyelim.

3.18. Teorem

X α-Banach uzay�, T : X → X bir α-operatör ve ‖T‖α
α
< 1α olsun. I

�
− T örtendir,

tersi (I
�
− T )−1 vard�r ve her y ∈ X için

(I
�
− T )−1(y) = 4-

∞∑
k=0

T k(y)

olur.

Son sonuçta yaln�z T α-operatörüne bakarsak e§er ‖T‖α
α
< 1α ise

(I
�
− T )−1(y) = �-

∞∑
k=0

T k
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olur. Bu ise geometrik serilerdeki çözümlerin |t|α
α
< 1α iken

(1
α
− t)−1 = α-

∞∑
k=0

tk

olan genel sonucuna benzer.
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4. SONUÇ VE ÖNER�LER

Bu tezde, reel say�lar cismine e³de§er olan s�ral� cisimlerde de§er alan normlar ile elde

edilen uzaylar aras�ndaki operatörlerin seçilen üreteçlere göre lineerlikleri, s�n�rl�l�klar�

ve normlar� tan�mland� ve bu kavramlar üzerine birtak�m sonuçlar verildi. �ki vektör

uzay� aras�ndaki operatörlerin cebirsel ve topolojik kavramlar� seçilen üreteçlere göre

bu uzaylar�n üretilen normlar� ile do§rudan ili³kilendirildi. Üretilen normlar�n yap�s�

operatörlerin karakteristik özelliklerini belirledi. Elde edilenlerlerden yararlan�larak

çal�³malara devam edilip normlu uzaylar ve üzerlerinde tan�ml� operatörlerin bu tezde

verilen geni³leletilmi³ yorumuna katk� sa§lanabilir.
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