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ÖZET 

RİEMANN VE RİEMANN OLMAYAN GEOMETRİLER ÜZERİNDE 

JEODEZİK DÖNÜŞÜMLER 

‘’Riemann ve Riemann olmayan geometriler üzerinde jeodezik dönüşümler’’ 

adlı çalışma üç bölüm halinde tamamlanmıştır. Bu çalışmanın birinci bölümünde giriş 

kısmı yer almaktadır. Giriş bölümünde Riemann geometrinin çıkış noktası, manifold 

teorisi ve Weyl geometrisi verilerek, jeodezik dönüşümler hakkında genel bilgiler 

sunulmuştur. İkinci bölümde temel kavramlar ve tanımlar yer almaktadır. Bu bölümde 

eğik uzay, eğik çatı, eğik koordinat, Öklid uzayı, Öklid çatısı, Öklid koordinatı 

tanımlarına yer verilmiştir. Yüzey üzerinde diferansiyellenebilir fonksiyon ve eğriler 

incelenmiştir. Sonrasında Riemann uzayında koneksiyonlar incelenmiş olup Riemann 

eğrilik tensörü, konform eğrilik tensörü gibi temel tanım ve teoremler, Riemann eğrilik 

tensörü için birinci ve ikinci tip Bianchi özdeşlikleri ve Einstein uzayının tanımına yer 

verilmiştir. Benzer şekilde Weyl uzayı üzerinde  analoji kurularak; Weyl uzayının 

eğrilik tensörleri ve ilgili özdeşlikleri sunulmuştur. Weyl uzayına dair konformal 

dönüşümlerden bahsedilmiştir. Üçüncü bölümde ise jeodezik, jeodezik yol, jeodezik 

ışın ve jeodezik uzayın tanımlarına yer verilmiştir. Son olarak seçilen bir örneğin 

jeodezik denklemleri ve bu denklemlerin çözümleri hem Riemann hem de Weyl uzayı 

altında incelenerek karşılaştırılmıştır. Tezin son bölümünde ise elde edilen sonuçlara 

dair genel bir değerlendirme verilerek, yeni çalışmalara yönelik önerilerde 

bulunulmuştur. 

Anahtar Kelimeler: Riemann uzayı, Jeodezik dönüşümler, Weyl uzayı. 
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ABSTRACT 

In this thesis Geodesics transformations on Riemann and non-Riemann 

geometries has been studied in three parts. The first part of this study includes the 

introduction. In the introduction, the starting point of Riemann geometry, manifold 

theory and Weyl geometry are given and general information about geodesic 

transformation is given. The second part includes basic concepts and definitions. In 

this section, the definitions of curved space, curved frame, curved coordinate, 

Euclidean space, Euclidean frame and Euclidean coordinate are given. Differentiable 

functions and curves on surfaces are studied. Then, by examining the connections on 

Riemannian space, basic definitions and theorems such as Riemannian curvature 

tensor, conformal curvature tensor, first and second type Bianchi identities for 

Riemannian curvature tensor, and Einstein space; definition are given. Similarly, 

curvature tensors of Weyl space and their corresponding identities are presented by 

making an analogy on the Weyl space. Conformal transformations related to Weyl 

space are mentioned. In the third chapter, definitions of geodesic, geodesic path, 

geodesic beam and geodesic space are given. Finally, geodesic equations and their 

solutions for an example are analyzed and compared under both Riemannian and Weyl 

spaces. In the last chapter of the thesis, the results obtained and suggestions for further 

studies are presented. 

Keywords : Geodesic transforms, Riemannian space, Weyl space. 
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1. GİRİŞ

Diferansiyel geometrinin matematiğin bir alt dalı olarak oluşumu Carl 

Friedrich Gauss ve Bernhard Riemann ile temellendirilmiştir. Riemann 1854’te 

Göttingen’de bir açılış konuşmasında ilk olarak manifold kavramını tanımlamıştır. 

Carl Friedrich Gauss, “Theorema Egregium” teoremi ile yüzeyin eğriliğinin intristik 

bir özellik olduğunu kanıtlamıştır. Manifold teorisi de bu intristik özelliklere 

dayanmaktadır. Burada bir diferansiyellenebilir manifold yerel olarak Öklid uzayına 

benzeyen bir topolojik uzaydır. (Folland, 1970; Türkoğlu ve Özdemir, 2019). 

Hermann Weyl 1918 yılında fizikteki birleştirilmiş alan teorisini formüle 

etmek için Riemann geometrisini genelleştirerek konform metrik ve simetrik 

koneksiyona sahip Weyl manifoldlarını tanımlamıştır. (Weyl, 1921).  

İlk olarak kütleçekimi ve elektromanyetik teorilerini birleştirerek bir teori 

yazmıştır. Weyl’in teorisi fizikte çok ilgi görmemesine rağmen matematikçilerin 

ilgisini çekmiştir. Ve diferansiyel geometri de bazı önemli özellikleri ortaya 

çıkarmıştır. Fiziksel olarak kabul görmeyen bu teori, metriği bir katına götüren 

(konformal) dönüşümler altında elde edilen yeni koneksiyonun Riemann 

koneksiyonları cinsinden ifade edildiğinde, metrik olmayan simetrik bir koneksiyonla 

ifade edilebildiği gösterilmiştir. Uygun bir ω 1-formu, burulmasız D koneksiyonu ve 

konform metrikler sınıfından alınan herhangi bir g Riemann metrigi için Dg = 2ω ⊗ 

g uygunluk koşulunu sağlayan manifolda Weyl manifoldu denir. W(n,g,ω) ile verilen 

manifold için, Friedmann ve Schouten, 1924 yılında diferansiyellenebilir 

manifoldlarda yarı-simetrik koneksiyon kavramını tanımlamışlardır. Daha sonra 

Hayden, 1932 yılında Riemann manifoldlarında burulmalı metrik konneksiyon 

kavramını incelemiştir (Ünal ve Uysal, 2005; Suhendro, 2007). 

1970 yılında, Yano yarı-simetrik metrik konneksiyonlu Riemann 

manifoldlarını incelemiş ve bu konneksiyona göre eğrilik tensörü ile ilgili önemli 

sonuçlar elde etmiştir. Çalışılan bu uzaylar üzerinde büyüklükleri koruyan farklı 
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dönüşümler literatürde çalışılmış olup halen çalışılarak güncelleğini korumaktadır. 

Bunlar arasında ilgi çekici bir yere sahip olan jeodezik dönüşümler, fiziksel 

dünyamızda da geniş çaplı bir uygulamaya sahiptir. Üzerinde bulunan iki nokta 

arasındaki uzaklık, iki noktayı birleştiren yollardan herhangi birine ait olan yol 

uzunluğuna eşit olan metrik uzaya Jeodezik uzay denir. (Çoban, 2011) Kısaca, 

uzaydaki iki nokta arasındaki en kısa mesafe olarak tanımlanan bu denklem, farklı 

metrik ve yapılar arasında kimi zaman invaryant kalmakla beraber değişime de 

uğramaktadır. Metrik uzaylarda jeodezik yol uzunluğu, uç noktalar arasındaki yolun 

uzunluğuna eşit olur.  Genel olarak, jeodezik denklemi literatürde,  

𝑑2𝑥𝑖

𝑑𝑡2
+ Γ𝑖𝑗

𝑘(𝑐(𝑡))
𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
= 0 

ifadesi ile verilir. ( Bridson & Haefliger, 1999). 

 Bu denklemin çözümlerinin kurulan geometriye uygulanmasıyla beraber, var olan 

geometrimizin zamansal, uzaysal veya ışınsal olarak jeodezik anlamda tam olup, 

olmadığı araştırılmaktadır. 
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2. LİTERATÜR 

 Bu bölümde Afin uzay, Öklid uzayı, Öklid uzayında eğrilik ,Riemann uzayı, 

Weyl uzayı, üzerinde tanım ve teoremler verilecek olup jeodezikler incelenecektir. 

2.1. Temel Tanım ve Teoremler 

Tanım A kümesi; A ≠ ∅  ve V, ℝ  cismi üzerinde n- boyutlu bir vektör uzayı olmak 

üzere;  

i) f: A x A → V; (P, Q) → f (P, Q) = 𝑃𝑄⃗⃗⃗⃗  ⃗                         (2.1) 

fonksiyonu ; 

ii)  ∀  P, Q, R ∈  A için   f (P,Q)  + f(Q,R) = f(P,R) [ya da 𝑃𝑄⃗⃗⃗⃗  ⃗ + 𝑄𝑅⃗⃗⃗⃗  ⃗ = 𝑃𝑅⃗⃗⃗⃗  ⃗]      (2.2) 

iii)  ∀  P ∈  A için,    her α  ∈ V için  𝑃𝑄⃗⃗⃗⃗  ⃗ = α eşitliğini sağlayacak  şekilde tek bir    Q 

∈ A vardır. 

Yukarıdaki verilen özellikler sağlanırsa A kümesine V vektör uzayıyla birleşen n – 

boyutlu bir eğik (afin) uzay denir. i ve ii şıkları afin (eğik) aksiyomları olarak ifade 

edilir. 

Tanım V  n- boyutlu bir vektör uzayı ve A, V vektör uzayı ile birleşen bir afin  uzay 

olmak üzere, 𝑝0  , 𝑝1 , 𝑝2…𝑝𝑛  noktaları A nın elemanı için { 𝑝0𝑝1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑝0𝑝2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  …𝑝0𝑝𝑛 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  } 

vektör sistemi V vektör sisteminin bir bazı ise { 𝑝0 , 𝑝1, 𝑝2…𝑝𝑛} kümesine A afin 

uzayının, afin çatısı denir. Afin çatısının başlangıç noktası ′′𝑝0
′′  dır.  𝑝1 , 𝑝2 …𝑝𝑛 

noktaları ise afin çatısının uç noktaları denir (Yüce,2006). 

Tanım   V, 𝛏 = (ℝ, ℂ) kümesi üzerinde vektör uzayı ; A, V vektör uzayı ile birleşen 

n- boyutlu afin uzay ve K= {𝑝0 , 𝑝1, 𝑝2…𝑝𝑛}, A afin uzayında  

afin çatısı olsun. 

𝑥𝑖 ∶  𝐴 →  𝜉 (𝑖 = 1,2,3. . 𝑛 ) ⟺ 𝑃0𝑃 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = ∑𝑎𝑖

  𝑛

𝑖=1

𝑃0𝑃1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗,   𝑎𝑖 ∈  𝜉                 (𝟐. 𝟑) 
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p→ 𝑥𝑖(P) = 𝑎𝑖   olmak üzere  𝑥𝑖(P)  (i=1,2…n) sıralı n-lisine  P noktasının K= {𝑝0 ,

𝑝1, 𝑝2…𝑝𝑛} afin çatısına göre afin koordinatları ve her bir  𝑥𝑖(P)  ye P noktasının i- 

inci afin koordinatı,  𝑥𝑖 fonksiyonuna da A afin uzayında K afin çatısına göre i-inci

afin koordinat fonksiyonu denir. Sonuç olarak ifade ettiğimiz tanım gereği, A afin 

uzayında 𝜉𝑛 uzayında bir sıralı n-li ve her bir sıralı n-li için de A afin uzayında bir

nokta karşılık gelir.  Karşılık gelen bu sıralı n-liye P ∈ A noktasının afin koordinatları, 

 𝑥𝑖  afin koordinat fonksiyonlarının { 𝑥1,   𝑥2 , …,  𝑥𝑛} sistemine de afin  koordinat

sistemi denir. 

Tanım A ∈ ℝ𝑛  ve A , V vektör uzayı ile birleşen n boyutlu afin uzayı olsun. V vektör

uzayı iç çarpım uzayı ise A afin uzayına Öklid uzayı denir (Yüce,2006; Hacısalihoğlu, 

2006). 

Tanım   𝑃𝑖  ∈ 𝐸𝑛   , {𝑃1, 𝑃2, … , 𝑃𝑛  } için { 𝑃0𝑃1 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, 𝑃0𝑃2 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ …𝑃0𝑃𝑛 ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗}  sistemi n-lisine

karşılık gelen  ℝ𝑛 vektör uzayının otonormal bazı ise 𝑃𝑖,{𝑃1, 𝑃2, … , 𝑃𝑛  } sistemine 𝐸𝑛

uzayında bir Öklid Çatısı denir. (Yüce,2006; Hacısalihoğlu, 2006) 

Tanım  𝐸𝑛   n-boyutlu  Öklid uzayında { 𝐸0, 𝐸1, 𝐸2 …,  𝐸𝑛} çatısı ve K={ 𝑝0 , 𝑝1,

𝑝2…𝑝𝑛} afin çatısı verilsin. {𝑝0𝑝İ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| i=1, …, n} sistemi ℝ𝑛 vektör uzayında otonormal

bazı ise K afin çatısına bir Öklid çatı ve karşılık gelen afin koordinat sistemine Öklid 

koordinat sistemi denir. Bu sistemin fonksiyonlarına da Öklid koordinat fonksiyonları 

denir (Yüce, 2006).  

Tanım X ≠  ∅  olmak üzere; d: X × X  → ℝ (x,y) → d(x,y) fonksiyonu 

i) d(x,y) ≥ 0, ∀ x,y ∈ X  (2.4) 

ii) d(x,y) = 0 ⟺ x = y    (2.5) 

iii) d(x,y) ⟺ d(y,x)  (2.6) 

iv) d(x,y) ≤ d(x,y) + d(y,z)  (2.7) 

 özellikleri sağlanıyorsa d fonksiyonuna X üzerinde bir metrik ve  (X, d) ikilisine de 

bir metrik uzay  denir.  

Tanım ℝ𝑛 uzayında;

𝑈: 𝐸𝑛𝑥𝐸𝑛 → ℝ+

(𝑋, 𝑌) → 𝑈(𝑋, 𝑌) = ‖ 𝑋𝑌 ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ‖    (2.8) 
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fonksiyonu 𝐸𝑛  uzayında uzaklık fonksiyonudur. Ve bu uzaklık 𝐸𝑛 uzayında metriktir. 

Bu  metriğe Öklid metriği denir (Yüce,2006). 

Öklid uzayında U ⊂ 𝐸3 alt kümesi olsun. ∀ P = (𝑃1, 𝑃2, 𝑃3) ∈ S noktası için  ‖𝑋 − 𝑃‖ 

< ℇ olacak şekilde X ∈ U için ℇ > 0 sayısı varsa 𝐸3 Öklid uzayında U kümesine bir 

açık küme denir (Yüce, 2006). 

Tanım ∀ x ∈ ℕ için; f fonksiyonu f ∈ 𝐶𝑥 ise o fonksiyona 𝐶∞ sınıfındadır denir. 𝐶∞ 

sınıfına ait olan fonksiyonların kümesi          𝐶∞ (U, ℝ) ile de gösterilir. ve 𝐶∞(U, ℝ ) 

= {𝑓| 𝑈 ⊂  𝐸𝑛 →  ℝ, 𝑓 ∈ 𝐶𝑥, 𝑥 ∈ ℕ) (Yüce, 2006). 

Tanım  ℴ : U ⊂ 𝐸𝑛 →  𝐸𝑚 fonksiyonunda P ∈ U ise  ℴ(P) ∈  𝐸𝑚 olur. Ve ℴ(P) sıralı 

bir m-lidir. Dolayısıyla; ℴ(P) = (𝑓1(𝑃),  𝑓2(𝑃),…, 𝑓𝑚(𝑃)) biçimde ifade edilir. 𝑓𝑖 

fonksiyonlarına ℴ fonksiyonunun koordinat fonksiyonları denir (Yüce,2006). 

ℴ fonksiyonunun 𝑓𝑖  Öklid koordinat fonksiyonları ve Öklid koordinat sisteminin 

diyagramını {𝑥1,  𝑥2, … , 𝑥𝑚} kümesi oluşturabilir. 

𝑓𝑖  ∈ 𝐶𝑥 ( 𝐸𝑛 , ℝ ) , 1 ≤ i ≤ m ise  ℴ: U ⊂ 𝐸𝑛  →  𝐸𝑚  fonksiyonuna  𝐶𝑥  sınıfından 

diferansiyellenebilir denir. ve  ℴ ∈ 𝐶𝑥( 𝐸𝑛,  𝐸𝑚 ) şeklinde gösterilir. 

Tanım  𝐸𝑛 uzayında U ve T iki açık alt küme olsun.  𝜑 : U → T dönüşümü için; 

i) 𝜑 ∈ 𝐶𝑘 (U,T)                                                       (2.9) 

ii) 𝜑−1 vardır ve 𝜑−1 ∈ 𝐶𝑘 (T,U)                         (2.10) 

ise 𝜑 fonksiyonu U ile T arasında bir diffeomorfizm denir.  U ve T  açık kümelerine 

diffeomorfiktirler denir (Sabuncuoğlu,2016). 

Tanım I, ℝ nın açık bir aralığı olmak üzere α: I → ℝ𝑛  biçiminde  𝐶∞ sınıfından bir 

α dönüşümüne ℝ𝑛  uzayında eğri denir. (Sabuncuoğlu, 2016) 

Tanım α: I → 𝐸𝑛   , α(t) = (α1(t), α2(t), …, α𝑛(t)) differansiyellenebilir dönüşüm 

olmak üzere α(I) ⊂ 𝐸𝑛  alt kümesine 𝐸𝑛  uzayında parametrik eğri denir. 

𝑑α

𝑑𝑡
 = α′(t) = (

𝑑α1

𝑑𝑡
 , … ,

𝑑α𝑛

𝑑𝑡
  )|

α(t)
  vektörüne α eğrisinin α(t) noktasındaki hız vektörü 

denir (Yüce, 2006). 

Tanım                                                       

𝑊 = (𝑓1, 𝑓2, … , 𝑓𝑛) = ∑𝑓𝑖

𝑛

𝑖=1

𝜕

𝜕𝑉𝑖
∈ 𝑉(𝐸𝑛)                             (𝟐. 𝟏𝟏)   
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verilsin.  𝑓𝑖 : 𝐸𝑛  → ℝ  fonksiyonları 𝐶∞  sınıfına dahil ise W ∈  𝑉(𝐸𝑛)  vektör

alanına  𝐶∞- sınıfındadır denir.

Tanım W diferansiyellenebilir vektör alanın 𝑉𝑝 tanjant vektörü doğrultusundaki türevi

𝑊(P + tV)′(0) = lim
𝑡→0

W(P+tV)−W(P)

𝑡
= 

𝑑

𝑑𝑡
𝑊(P + tV))|𝑡=0           (2.12) 

şeklinde ifade edilir. D𝑉𝑝
W ya da 𝛻𝑉𝑝

𝑊  olarak gösterilir. (Yüce, 2006)

𝐸𝑛 Öklid uzayının U açığının üzerinde ki W diferansiyellenebilir bir vektör alanının

X vektör alanı doğrultusunda ki 𝐷𝑋𝑊   kovaryant türevi noktaya karşılık nokta

prensibiyle ; 

(𝐷𝑋𝑊)(P)= 𝐷𝑋𝑝
𝑊  , ∈ 𝐸𝑛 (2.13) 

olarak tanımlanır. Dolayısıyla 𝐷 fonksiyonu alınarak;        

𝐷 : 𝑋(𝐸𝑛) x 𝑋(𝐸𝑛) → 𝑋(𝐸𝑛)  (2.14) 

(𝑋,𝑊) → 𝐷𝑋𝑊:𝐸𝑛 → ⋃ 𝑇𝐸𝑛(𝑃)𝑝∈𝐸𝑛 (2.15) 

P →  (𝐷𝑋𝑊)𝑃 = 𝐷𝑋𝑃
𝑊  şeklinde olur. 𝐷𝑋𝑊|𝑝 = 𝐷𝑋𝑃

𝑊 = (X[𝑓1], X[𝑓2],…, X[𝑓𝑛])

demektedir. 

Buradan; 

 𝑊 = ∑ 𝑓𝑖
𝑛
𝑖=1

𝜕

𝜕𝑋𝑖
 (2.16) 

olmak üzere 

 𝐷𝑋𝑊 = ∑X[𝑓1]

𝑛

𝑖=1

𝜕

𝜕𝑋𝑖
 (𝟐. 𝟏𝟕) 

şeklinde ifade edilebilir.Buradan 𝐷  operatörüne 𝑋(𝐸𝑛)  vektör alanları uzayında bir

koneksiyondur denir (Yüce, 2006). 

Teorem 𝐸𝑛 uzayında X,T ∈ 𝑋(𝐸𝑛) iki vektör alanı ve W,Z∈ 𝑋(𝐸𝑛) ise 𝐶∞ sınıfından

iki vektör alanı olsun; 

Dolayısıyla; 

𝐷𝑋(𝑊 + 𝑍) = 𝐷𝑋𝑊 + 𝐷𝑋𝑍 (2.18) 

𝐷𝑋+𝑇𝑤  = 𝐷𝑋𝑤 + 𝐷𝑇𝑊  (2.19) 
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 𝐷𝑓(𝑝)𝑋W = 𝑓(𝑝)𝐷𝑋𝑊, 𝑓: 𝐸𝑛 → ℝ,P ∈ 𝐸𝑛                       (2.20) 

𝐷𝑋(𝑓𝑤) = X(𝑓)W + 𝑓𝐷𝑋W, 𝑓 ∈ C(𝐸𝑛, ℝ)                        (2.21) 

eşitlikleri ifade edilebilir. 

Tanım  α: I ⊂ ℝ → 𝐸𝑛 fonksiyonu ; 𝐶∞ eğrisi ve α eğrisine kısıtlanmış 𝐶∞ vektör 

alanı W ∈ 𝑋(𝐸𝑛) verilsin. Eğrinin hız vektör alanı da K olmak üzere α eğrisi boyunca 

DK𝑊= 0 ise W vektör alanına paralel vektör alanı denir. 

DK𝐾=0 ise α eğrisine jeodezik eğri denir. Buradan; 

𝐷𝐾𝐾 için α(t) = (α1(t), α2(t),…, α𝑛(t)) , 𝐾𝑝 = 
𝑑α

𝑑𝑡
 |

p
 =(

𝑑α1

𝑑𝑡
 |

p
, … ,

𝑑α𝑛

𝑑𝑡
 |

p
 )    olmak üzere; 

𝐷𝐾𝐾|p = (𝐾𝑝 [
𝑑α1

𝑑𝑡
] , … , 𝐾𝑝 [

𝑑α𝑛

𝑑𝑡
] )= (

𝑑α1
2

𝑑𝑡
, … ,

𝑑α𝑛
2

𝑑𝑡
)|

p

=
𝑑α1

2

𝑑𝑡2
 |

p

  = 𝛼 ,,(t)|p=     (𝟐. 𝟐𝟐)  

elde edilir ( Yüce ,2006). 

Tanım  α: I ⊂ ℝ → 𝐸𝑛 fonksiyonu ve α(t) = ((α1(t), α2(t),…, α𝑛(t)) eğrisi olsun. X ∈ 

𝑋(𝐸𝑛) olmak üzere 
𝑑α

𝑑𝑡
 = X (α(t)) = Xα(t)  eşit ise α(t) eğrisine X vektör alanının  bir 

integral eğrisi denir( Yüce, 2006). 

Tanım  D, 𝐸𝑛  Öklid uzayında kovaryant türev operatörü olsun. Ve [,] ise 

𝑋(𝐸𝑛)üzerinde Lie opreatörü olsun. ∀ X, W, Z ∈ 𝑋(𝐸𝑛)diferansiyellenebilir vektör 

alanları için; { 𝑢1, 𝑢2, … , 𝑢𝑛  } Öklid uzayında,Öklid koordinat sistemi ve, 

𝑋 = ∑𝑋𝑖

𝑛

𝑖=1

𝜕

𝜕𝑢𝑖
,𝑊 =  ∑𝑤𝑖

𝑛

𝑖=1

𝜕

𝜕𝑢𝑖
 ∈  𝑋(𝐸𝑛)                 𝑜𝑙𝑚𝑎𝑘 ü𝑧𝑒𝑟𝑒, 

 𝑖      [X,W] = ∑ (𝑋𝑖

𝜕𝑤𝑖

𝜕𝑢𝑖
 
𝜕

𝜕𝑢𝑗
− 𝑊𝑖

𝜕𝑣𝑖

𝜕𝑢𝑖
 
𝜕

𝜕𝑢𝑗
)

𝑛

𝑖.𝑗=1

                        (𝟐. 𝟐𝟒) 

ii    𝐷𝑋𝑊 – 𝐷𝑊𝑋 = [X,W]                                        (2.25) 

iii   𝑋𝑃[〈X,W〉] = 〈𝐷𝑋𝑃
𝑊,𝑍〉|

p
+ 〈𝑊,𝐷𝑋𝑃

𝑍〉|
p
                  (2.26) 

eşitlikleri sağlanır. 

Tanım  𝐸𝑛 Öklid uzayında D: 𝑋(𝐸𝑛) x 𝑋(𝐸𝑛) → 𝑋(𝐸𝑛) kovaryant türev operatörüne, 

(2.18), (2.19), (2.20) (2.21) ‘denklemlerini sağlandığından dolayı afin koneksiyonu 
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denir. (2.25) ve (2.26) denklemleri sağlandığından dolayı Riemann koneksiyonu  denir 

(Yüce, 2016). 

Tanım   I ⊆ ℝ, I = (x,y) bir açık aralık olmak üzere; α: I→ 𝐸𝑛 t → α(t) = (α1(t),

α2 (t),…, α𝑛 (t)) diferansiyellenebilir bir fonksiyon olmak üzere; α(I) ⊂ 𝐸𝑛  alt

kümesine 𝐸𝑛 uzayında diferansiyellenebilir eğri (veya parametrik eğri) denir. (I, α)

ikilisine eğrinin koordinat komşuluğu denir. I alt kümesi parametre aralığıdır. t ∈ I reel 

sayısına eğrinin parametresi denir. 𝐸𝑛 uzayında eğri M = α(I) ⊂ 𝐸𝑛 şeklinde gösterilir.

α: I → 𝐸𝑛  , 𝐶k  sınıfına dahil ise α eğrisine 𝐶k  sınıfından eğri denir. α(t) = (α1(t),

α2(t),…, α𝑛(t)) olmak üzere  α𝑖= I→ ℝ   t → α𝑖(t),   1 ≤ i ≤ n fonksiyonlarına  α

eğrisinin koordinat fonksiyonları denir (Yüce, 2016). 

Tanım  U, 𝐸3  Öklid uzayında açık alt küme olmak üzere , {x1 , x2 , x3 } Öklid

koordinat sistemi ile tanımlanan   

ℳ = {𝑋 = {x1, x2, x3} ∈  𝐸3 }|,     𝑓: 𝑈 ⊂ 𝐸3  → ℝ , ∀ P ∈ ℳ, 𝛻⃗  f  |𝑝 ≠ 0⃗ , 

 X →  f (x1, x2, x𝑛) = c , (c = sabit)  (2.27) 

Kümesi 𝐸3 uzayında 2-boyutlu yüzey veya sadece yüzey denir.(Yüce,2016).

Tanım  ℳ , 𝐸3 Öklid uzayında bir yüzey olmak üzere, vektör vektör alanıX ∈ X( 𝐸3)

verildiğinde ∀ P ∈ ℳ için 𝑋𝑝
⃗⃗ ⃗⃗   ∈ 𝑇𝑝(𝑃)  oluyorsa X ∈ 𝑥(𝐸3) vektör alanına ℳ üzerine

tanımlanan bir teğet vektör alanı denir. Tüm teğet vektörlerinin kümesi X(ℳ) ile 

gösterilir. (Yüce, 2016). 

Tanım  𝐸3 Öklid uzayında ki bir ℳ yüzeyi üzerinde tanımlı 𝑓: ℳ  → ℝ fonksiyonu

verilmiş olsun, ℳ yüzeyi üzerinde bir 𝜙 : U → ℳ gerçek yaması için 𝑓 ∘ 𝜙 = 𝑓(𝜙) 

bileşke fonksiyonuna 𝑓 için koordinat yaması gösterimi denir. Eğer  P ∈ 𝜙(𝑈) için  𝑓 

∘ 𝜙 : U → ℝ fonksiyonu 𝜙−1(P) noktasında diferansiyellenebilir ise 𝑓 fonksiyonuna P

noktasında diferansiyellenebilir denir. Eğer 𝑓 bütün koordinat gösterimlerinde , Öklid 

anlamında ∀ P ∈  ℳ  türevlenebilirse 𝑓  fonksiyonuna ℳ  yüzeyi üzerinde 

diferansiyellenebilir denir. (Yüce, 2016). 

Tanım  ℳ, 𝐸3 Öklid uzayında bir yüzey olsun,

𝐷̅ : X(ℳ) x  X(ℳ) → X(ℳ),  (X,Y) → 𝐷̅ 𝑋𝑌   dönüşümü         (2.28) 

1) 𝐷̅ 𝑓𝑋+𝑔𝑌Z =  𝑓𝐷̅ 𝑋𝑍  + 𝑔𝐷̅ 𝑌𝑍  (2.29) 

2) 𝐷̅ 𝑋(𝑓𝑌) =( 𝐷̅ 𝑋𝑓) Y + 𝑓𝐷̅ 𝑋𝑌
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1. ve 2. Özellikleri sağlanıyorsa 𝐷̅  dönüşümüne  ℳ  yüzeyinde afin koneksiyonu 

denir. Ayrıca, 

3) 𝐷̅ 𝑋𝑌  − 𝐷̅ 𝑌𝑋   = [X,Y] (2.30) 

4) X[< 𝑌, 𝑍 >] = < 𝐷̅ 𝑋𝑌 ,Z> + < 𝐷̅ 𝑋𝑍 ,Y>  (2.31) 

özellikleri sağlanıyorsa 𝐷̅  operatörüne ℳ  yüzeyinde Riemann koneksiyonu denir 

(Yüce, 2016).  

Tanım: M bir topolojik uzay olsun. M için verilen önermeler doğru ise M bir n-

boyutlu topolojik manifold  ya da kısaca n-manifold denir. 

i M bir Haussdorff uzayıdır. 

ii M, n-boyutlu lokal öklidyendir. 

iii M sayılabilir çoklukta açık kümelerle örtülebilirdir (Boothyby, 1986). 

Tanım: M bir 𝑙- manifold ve ve M̅ de bir n-manifold olsun. 𝑙≤n ve M⊆ M̅ olmak üzere 

M ve M̅ manifoldları 𝐶∞ manifoldlar olsun,  i: M→ M̅ olacak şekilde tanımlı bir i, 𝐶∞

dönüşümü ∀ m ∈ M için; i(m) = m ∈ M̅  şeklinde tanımlanırsa i özdeşlik dönüşümüne 

‘inclusion’ fonksiyonu adı verilir.(Hacısalihoğlu, 1998) 

Tanım  M bir 𝐶∞ manifold olsun. P ∈ M noktasındaki tanjant uzay T𝑀(𝑃)  olmak

üzere 

G𝑝 : T𝑀(𝑃)  x T𝑀(𝑃)→ ℝ, (X𝑃, Y𝑃) →g𝑝(X𝑃, Y𝑃) (2.32) 

şeklinde tanımlı  indeksli, simetrik , bilineer  (0,2) tipindeki tensör alanına M üzerinde 

metrik tensör denir. (O’Neill, 1983) 

2.2. Riemann Uzayları 

n-boyutlu bir Riemann uzayında verilen herhangi bir 𝑥𝑖( i=1,2, … ,n) için, birbirine 

minimum yakın olan 𝑥𝑖 ve 𝑥𝑖+ 𝑑𝑥𝑖 noktaları arasındaki sonsuz küçük mesafe

d𝑠2 = 𝑔𝑖𝑗𝑑𝑥𝑖𝑑𝑥𝑗 (i,j =1, 2, …, n) (2.33) 

ile verilir. 

(2.33) denkleminde  𝑔𝑖𝑗  katsayısı 𝑥𝑖  nin koordinat fonksiyonudur, Riemann metrik

tensörü olarak ifade edilir. Böyle bir metrik ile karakterize edilmiş olan uzaya Riemann 

uzayı denir (Norden,1976; Jones ve Tod,1985; Bothby, 2003). 
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Bir A vektörü, 𝑥𝑖, d𝑥𝑖 gibi iki yakın nokta arasında bir eğri boyunca paralel taşınırsa,

bu vektörün bileşenleri ;   

D𝐴𝑖 = −𝛤 𝑗𝑘
𝑖 𝐴𝑖d𝑥𝑘 (2.34) 

şeklini alır. 𝛤 𝑗𝑘
𝑖  koneksiyonun katsayısını ifade eder. 

Tanım  𝑀𝑛 , 𝑔𝑖𝑗 “bir metrik tensörüne sahip bir Riemann uzayı olsun. 𝑀𝑛, 𝑔𝑖𝑗 metrik

tensörleri ile uyumlu  tek bir koneksiyonu vardır (Riemann, 1921; Türkoğlu ve 

Özdemir, 2019). 

𝛤 𝑗𝑘
𝑖 , x ve 𝛤 𝛼𝛽

′𝑌 𝑑𝑒 𝑥′  sırasıyla x ve 𝑥′  ‘na ait koordinat fonksiyonları olsunlar. Bu

durumda aşağıdaki ifade sağlanır. (Einsenhart, 1927) 

𝛤 𝛼𝛽
′𝑌

𝜕𝑥𝑖

𝜕𝑥′𝑌

=
𝜕2𝑥𝑖

𝜕𝑥′𝛼𝜕𝑥′𝛽
+ 𝛤 𝑗𝑘

  𝑖 𝜕𝑥𝑗

𝜕𝑥′𝛼

𝜕𝑥𝑘

𝜕𝑥′𝛽
 (𝟐. 𝟑𝟓) 

Burada 𝛤 𝑗𝑘
𝑖  ifadesi tensör değildir. (Türkoğlu, Özdemir, 2019) 

𝛤 𝑗𝑘
𝑖  konneksiyonu Riemann uzayına ait ise, 

𝑔𝑖ℎ𝑔𝑗ℎ = 𝛿ℎ
𝑖 , 𝛿ℎ

𝑖 = {
1, 𝑖 = ℎ
0, 𝑖 ≠ ℎ

 (2.36) 

eşitliklerinden, 

𝛤 𝑗𝑘
  𝑖  = {

𝑖
𝑗𝑘

} = 𝑔𝑖𝑗[𝑗𝑘, ℎ]  (2.37) 

[𝑗𝑘, ℎ] =   
1

2
( 

𝜕𝑔𝑗ℎ

𝜕𝑥𝑘  + 
𝜕𝑔𝑘ℎ

𝜕𝑥𝑗  −
𝜕𝑔𝑗𝑘

𝜕𝑥ℎ  )    (2.38) 

(2.37) ve (2.38) denklemlerinde [𝑗𝑘, ℎ] 𝑣𝑒 {
𝑖
𝑗𝑘

} sembolleri sırasıyla 1. tip ve 2. tip 

Christoffel sembolleri olarak isimlendirir. Bu sembollerin alt iki indise göre simetrik 

olduğu görülmektedir. (Carmo,1992) 

Koneksiyon Levi-Civita’dan farklıysa, konneksiyon katsayısı 𝛤 𝑗𝑘
𝑖 , n-boyutlu 𝑀𝑛

Riemann uzayı üzerinde simetrik ve anti-simetrik kısımlarından oluşur. 𝛤 𝑗𝑘
𝑖

konneksiyon katsayısının simetrik ve anti-simetrik kısımları sırasıyla, 

𝛤 (𝑗𝑘)
    𝑖 =  

1

2
( 𝛤 𝑗𝑘

  𝑖 + 𝛤 𝑘𝑗
   𝑖) (2.39) 
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𝛤[𝑗𝑘]
   𝑖 =  

1

2
( 𝛤 𝑗𝑘

  𝑖 – 𝛤 𝑘𝑗
   𝑖 )      (2.40) 

verilir. 

𝛤 [𝑗𝑘]
    𝑖  konneksiyonun burulma tensörü adını alır. (2.39) ve (2.40) denklemlerinden 

yola çıkarak, 

𝛤 𝑗𝑘
  𝑖 =   𝛤 (𝑗𝑘)

   𝑖 + 𝛤 [𝑘𝑗]
   𝑖  (2.41)   

denklemi elde edilir. Riemann uzayında 𝛤 𝑗𝑘
  𝑖 simetrik bir tensördür; bu uzay 

burulmasızdır. yani 𝛤 [𝑘𝑗]
𝑖 = 0 dır. 𝑣𝑖  , 𝑣𝑖  ve 𝑇𝑗𝑖

 ℎ  ,  sırasıyla bir kontravaryant, bir

kovaryant vektör alanlarının ve bir tensör alanlarının bileşenleri olsunlar. 𝛻 Riemann 

koneksiyonuna göre bu büyüklüklerin kovaryant türevleri sırasıyla aşağıdaki gibi 

tanımlanır (Einsenhart, 1927). 

𝛻𝑘𝑇𝑗𝑖
 ℎ =

𝜕𝑇𝑗𝑖
 𝑎

𝜕𝑥𝑘 + 𝑇𝑖𝑗
 𝑎𝛤 𝑘𝑎

ℎ  − 𝑇𝑎𝑖
 ℎ𝛤 𝑘𝑗

  𝑎 – 𝑇𝑗𝑎
 ℎ𝛤 𝑘𝑖

  𝑎 (2.42) 

𝑔𝑖𝑗  metrik tensörünün Levi- Civita konneksiyonun kovaryant türevi   aşağıdaki gibi

ifade edilir; 

𝛻𝑘𝑔𝑖𝑗  = 
𝜕𝑔𝑖𝑗

𝜕𝑥𝑘 – {
𝑎
𝑘𝑗} 𝑔𝑎𝑖 – {

𝑎
𝑘𝑖

} 𝑔𝑎𝑗 =0  (2.43) 

Genel olarak 𝑀𝑛 uzayına ait eğrilik tensörü;

𝑅𝑘𝑗𝑖
    ℎ = 𝜕𝑘 𝛤𝑗𝑖

 ℎ  −  𝜕𝑗 𝛤𝑘𝑖
 ℎ + 𝛤𝑘𝑡

 ℎ𝛤𝑗𝑖
 𝑡 − 𝛤𝑗𝑡

 ℎ𝛤𝑘𝑖
 𝑡,   ( 𝜕𝑘 =

𝜕

𝜕𝑥𝑘  )  (2.44) 

olarak ifade edilir. 𝛤𝑗𝑖
ℎ katsayıları 2. tip Christoffel sembolleri cinsinden alınırsa, 𝑔𝑖𝑗

metrik tensörünü sahip Riemann uzayının eğrilik tensörü, 

𝑅𝑘𝑗𝑖
    ℎ = 𝜕𝑘 {

ℎ
𝑗𝑖
} – 𝜕𝑗 {

ℎ
𝑘𝑖

} + {
ℎ
𝑘𝑎

} {
𝑎
𝑗𝑖} − {

ℎ
𝑗𝑎

} {
𝑎
𝑘𝑖

}      (2.45) 

ile elde edilir. 

𝑀𝑛, üzerinde 𝑣𝑖 , 𝑓, 𝑇𝑙𝑖
 ℎ , 𝑆 𝑘𝑗

   𝑡  bunlar sırasıyla bir kontrovaryant, bir kovaryant vektör

alanları, bir skaler fonksiyonu, (1, 2) tip tensör alanın ve burulma tensörünün 

bileşenleri olsun. 𝑅𝑘𝑗𝑖
   ℎ kovaryant tensörünün Ricci  özdeşlikleri şu şekildedir; 
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∇𝑘∇𝑗𝑣
𝑖 −∇𝑗  ∇𝑘𝑣

𝑖 = 𝑅𝑘𝑗ℎ
   𝑖  𝑣ℎ

  − 2𝑆𝑘𝑗
   𝑡∇𝑡𝑣

𝑖 , (2.46) 

∇𝑘∇𝑗𝑣
𝑖 −∇𝑗  ∇𝑘𝑣

𝑖 = −𝑅𝑘𝑗𝑖
   ℎ𝑣ℎ  − 2𝑆𝑘𝑗

   𝑡∇𝑡𝑣𝑖  (2.47) 

∇𝑘∇𝑗𝑓 −∇𝑗  ∇𝑘𝑓 = − 2𝑆𝑘𝑗
   𝑡∇𝑡𝑓  (2.48) 

∇𝑘∇𝑗𝑇𝑙𝑖
 ℎ − ∇𝑗∇𝑘𝑇𝑙𝑖

 ℎ =𝑅𝑘𝑗𝑖
    ℎ𝑇𝑙𝑖

 𝑡 − 𝑅𝑘𝑗𝑙
    𝑡𝑇𝑡𝑖

 ℎ − 𝑅𝑘𝑗𝑖
    𝑡𝑇𝑙𝑡

 ℎ − 2𝑆𝑘𝑗
   𝑡∇𝑡𝑇𝑙𝑖

 ℎ (2.49) 

ile ifade edilir.𝑀𝑛 uzay Riemann uzayı ise, burulma tensörü 𝑆𝑘𝑗
   𝑡 = 0 dır. (Schouten,

1954). 

Kovaryant eğrilik tensörü, 

𝑅𝑘𝑗𝑖ℎ =  𝑅𝑘𝑗𝑖
      𝑎𝑔𝑎ℎ  (2.50)    

olarak tanımlanır. 

(2.45) denkleminden yola çıkarak, aşağıda Riemann eğriliğinin özellikleri 

𝑅𝑘𝑗𝑖ℎ + 𝑅𝑗𝑖𝑘ℎ + 𝑅𝑖𝑘𝑗ℎ =0  (2.51) 

𝑅𝑘𝑗𝑖ℎ  = −𝑅𝑗𝑘ℎ𝑖  (2.52) 

𝑅𝑘𝑗𝑖ℎ  = −𝑅𝑘𝑗ℎ𝑖  (2.53) 

𝑅𝑘𝑗𝑖ℎ  = 𝑅𝑖ℎ𝑘𝑗  (2.54) 

𝑅𝑘𝑘𝑖ℎ  = − 𝑅𝑘𝑗ℎℎ = 0  (2.55) 

verilmiştir.(2.51) denklemine Birinci Bianchi Özdeşliği denir. Ek olarak bu denklemin 

kovaryant türevi alınırsa; 

𝛻𝑙𝑅𝑘𝑗𝑖
     ℎ + 𝛻𝑘𝑅𝑗𝑙𝑖

    ℎ + 𝛻𝑗𝑅𝑙𝑘𝑖
    ℎ = 0  (2.56)

(2.56) denklemine ikinci Bianchi Özdeşliği denir. (2.45) denkleminde, h ve k indisleri 

üzerinde daraltma yapılarak, 

𝑅𝑗𝑖 = 𝑅𝑎𝑗𝑖
     𝑎  (2.57) 

Ricci eğrilik tensörü elde edilir. 

𝑅𝑗𝑖 = 𝑅𝑎𝑗𝑖
     𝑎 =𝑔𝑎𝑏𝑅𝑎𝑗𝑖𝑏 = 𝑔𝑏𝑎𝑅𝑖𝑏𝑎𝑗 =  𝑔𝑏𝑎𝑅𝑏𝑖𝑗𝑎= 𝑅𝑖𝑗  (2.58) 
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Eşitlikleri Ricci eğrilik tensörünün simetrik olduğunu ifade edilir. Ricci eğrilik tensörü 

ile  metrik tensör işleme alınırsa Riemann uzayının skaler eğriliği , 

R = 𝑔 𝑗𝑖𝑅𝑗𝑖  (2.59)  

elde edilir. 

2.3. Weyl Uzayları 

𝒈  ve 𝒈̅  iki Riemann metriği olmak üzere, bu iki arasında  𝒈̅=𝑒2𝜆 𝑔  ; 𝜆 > 𝟎  olma

koşulu sağlanırsa, bu iki metriğe ‘’birbirine konformaldir’’ denir. Bu yapıya sahip olan 

n-boyutlu manifolda Weyl manifoldu denir. 𝑾𝒏 (𝒈,𝒘) olarak gösterilir. n-boyutlu

Weyl manifoldu için, konformal yapıyı koruyan ve burulmasız tek bir ∇ koneksiyon 

vardır (Eisenhart, 1927; Özdemir ve Türkoğlu, 2013). 

 Lokal koordinatlarda metrik tensörünün kovaryant tüveri, 

∇𝑘 𝑔̅𝑖𝑗 = 2𝑤̅𝑘𝑔̅𝑖𝑗 ,   (2.60) 

formuna dönüşür.  Burada w 1- formdur (Hlavaty, 1949). 

∇ Weyl konneksiyonu ve  ∇𝑔 Riemann konneksiyonu arasında

 ∇𝑥Y = ∇𝑋
𝑔
𝑌 − 𝑤(𝑋) + 𝑔(X,Y)𝜓  (2.61) 

ilişkisi vardır. X ve Y ifadeleri W𝑛uzayı üzerinde vektör alanları, 𝜓 ise 𝑤(X) = 𝑔(X,𝜓)

eşitliğini sağlayan 𝑤  dual vektördür. (2.61) denkleminin yerel koordinatlardaki 

ifadesi, 

𝛤 𝑗𝑖
  𝑙 = {

 𝑙
𝑗𝑖
} − (w𝑗 𝛿 𝑖

𝑙 + w𝑖𝛿 𝑗
𝑙  – 𝑤𝑙𝑔𝑖𝑗) (2.62) 

Weyl uzayının katsayısı  𝛤 𝑗𝑖
𝑙 ile gösterilir. 𝛻𝑔 Levi-Civita konneksiyonun katsayısı;

{
 𝑙
𝑗𝑖
} = 

1

2
𝑔𝑙𝑚(∂𝑗𝑔𝑚𝑖  + 𝜕𝑖𝑔𝑚𝑗 – 𝜕𝑚𝑔𝑖𝑗  )        (2.63) 

 olarak hesaplanır  (Eisenhart,1927 ; Norden,1976).   

𝑊𝑛 eğrilik tensörü yerel koordinatlarda

(𝛻𝑖𝛻𝑗 – 𝛻𝑖𝛻𝑗 ) 𝑣𝑘 = − 𝑊𝑘𝑗𝑖
    𝑡𝑣𝑡 , (2.64)   

ifadesinden yararlanılarak; 
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𝑊𝑘𝑗𝑖
    𝑙 = 𝜕𝑘 𝛤𝑗𝑖

 𝑙 – 𝜕𝑗 𝛤𝑘𝑖
 𝑙 − 𝛤𝑘𝑖

 𝑡𝛤𝑗𝑡
𝑙 − 𝛤𝑗𝑖

 𝑡𝛤𝑘𝑡
 𝑙  , (2.65)

elde edilir. (2.62) ve (2.63) denklemde yerine yazılırsa, 

𝑊𝑘𝑗𝑖
    𝑙=𝜕𝑘 [{

𝑙
𝑗𝑖
} – (w𝑗  𝛿𝑖

𝑙  +  w𝑖  𝛿 𝑗
𝑙  – 𝑔𝑖𝑗𝑤

𝑙)] − 𝜕𝑗 [{
𝑙
𝑘𝑖

} – (w𝑘𝛿𝑖
𝑙 + w𝑖𝛿𝑘

𝑙  – 𝑔𝑘𝑖𝑤
𝑙)]

+ [{
𝑡
𝑗𝑖} – (w𝑖  𝛿𝑗

𝑡  + w𝑗  𝛿 𝑖
𝑡  – 𝑔𝑗𝑖𝑤

𝑡)] [{
𝑙
𝑘𝑡

} – (w𝑘 𝛿𝑡
𝑙 + w𝑡𝛿𝑘

𝑙  – 𝑔𝑘𝑡𝑤
𝑙)]

− [{
𝑡
𝑘𝑖

} – (w𝑘  𝛿𝑖
𝑡 + w𝑖  𝛿𝑘

𝑡  – 𝑔𝑘𝑖𝑤
𝑡)] [{

𝑙
𝑗𝑡

} – (w𝑗  𝛿𝑡
𝑙 + w𝑡  𝛿𝑗

𝑙  – 𝑔𝑗𝑡𝑤
𝑙)]

 (2.66) 

ifadesine ulaşılır. Belirli işlemlerden sonra 

𝑊𝑘𝑗𝑖
     𝑙 = 𝑅𝑘𝑗𝑖

      𝑙 – 𝛿 𝑗
𝑙 w𝑘𝑖 + 𝛿 𝑘

𝑙 w𝑗𝑖 + 𝛿 𝑖
𝑙 (𝑤𝑗𝑘 − w𝑘𝑗) + 𝑔𝑙𝑠( 𝑔𝑗𝑖w𝑘𝑠 – 𝑔𝑘𝑖w𝑗𝑠) ,    (2.67)

𝑤𝑗𝑘  = 𝛻𝑗𝑤𝑘  + 𝑤𝑗𝑤𝑘  − 
1

2
𝑔𝑗𝑘w𝑡 𝑤

𝑡  (2.68)  

Riemann eğrilik tensörü 𝑅𝑘𝑗𝑖
    𝜄 cinsinden hesaplanmış olunur.          

Eğrilik tensörü, kovaryant eğrilik tensörü, Ricci tensörü, skaler eğrilik sırayla 

𝑊𝑘𝑗𝑖
    ℎ = 𝑊𝑘𝑗𝑖𝑙𝑔

𝑙ℎ   (2.69) 

𝑊𝑘𝑗𝑖𝑙 =  𝑊𝑘𝑗𝑖
    𝑚𝑔𝑚𝑙   (2.70)   

𝑊𝑗𝑖   = 𝑔𝑘𝜄𝑤𝑘𝑗𝑖𝑙 = 𝑊𝑘𝑗𝑖
    𝑘  (2.71)  

W = 𝑔𝑗𝑖𝑊𝑗𝑖   (2.72)  

verilir (Einsenhart, 1927).  

(2.67) ifadesi 𝑔𝑖𝑗 ile işleme alınırsa,

𝑊𝑘𝑗𝑖𝑚
 = 𝑅𝑘𝑗𝑖

    𝑙 𝑔𝑙𝑚 − 𝛿𝑗
𝑙w𝑘𝑖 𝑔𝑙𝑚 + 𝛿𝑘

𝑙w𝑗𝑖 𝑔𝑙𝑚 + 𝛿𝑖
𝑙(𝑤𝑗𝑘 − w𝑘𝑗)𝑔𝑙𝑚 + 𝑔𝑙𝑠(𝑔𝑗𝑖w𝑘𝑠 −

𝑔𝑘𝑖w𝑗𝑠)𝑔𝑙𝑚                                                     (2.73)

(2.36) ve (2.48)  özellikleri (2.73) denkleminde uygulanılırsa, 𝑊𝑛
   kovaryant eğrilik

tensörü  
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𝑊𝑘𝑗𝑖𝑚
 =𝑅𝑘𝑗𝑖𝑚

 −𝑔𝑗𝑚w𝑘𝑗 + 𝑔𝑚𝑘w𝑗𝑖+𝑔𝑖𝑚(𝑤𝑗𝑘 − w𝑘𝑗)+(𝑔𝑗𝑖w𝑘𝑚 −𝑔𝑘𝑖w𝑗𝑚)        (2.74)                                                                                                                         

olarak elde edilir (Eisenhart,1927). 

𝑊𝑛 uzayının kovaryant eğrilik tensörünün simetrik özellikleri aşağıda verilen ifadeleri 

sağlar, 

𝑊𝑘𝑗𝑖𝑚
  = −𝑊𝑗𝑘𝑖𝑚

 , 𝑊𝑘𝑗𝑖𝑚
  + 𝑊𝑘𝑗𝑚𝑖

  = 2𝑔𝑖𝑚(∇𝑗 w𝑘 − ∇𝑘w𝑗) = 4𝑔𝑖𝑚𝛻[𝑗 𝑊𝑘]         (2.75)                                                                                                                              

(2.74) denkleminde k ve j indislerini üzerinde simetri uygulanıp, Riemann tensörünün  

kovaryant eğriliğinin simetri özelliği kullanılarak 

𝑊𝑘𝑗𝑖𝑚
 +𝑊𝑘𝑗𝑚𝑖

 =2𝑔𝑖𝑚( w𝑗𝑘 − w𝑘𝑗),                            (2.76) 

 özdeşliği elde edilir. Burada w𝑗𝑘 büyüklüğü (2.68) denkleminde tanımlanmıştır. 

𝑊𝑛
  uzayının Ricci eğrilik tensörünün 𝑅𝑗𝑖

  Riemann uzayının Ricci eğriliği  cinsinden 

ifadesi,                       

𝑊𝑗𝑖
  =𝑅𝑗𝑖

  + (𝑛 − 2)w𝑗𝑖 + (𝑤𝑗𝑖 − w𝑖𝑗) + 𝑔𝑗𝑖 𝑔
𝑘𝑚w𝑘𝑚 ,                (2.77)    

 şeklinde ifade edilir. ∇ Weyl koneksiyonu metrik olmadığından, 𝑊𝑛
  uzayında (2.77) 

denkleminde verilen  𝑊𝑗𝑖
  Ricci eğrilik tensörü, simetrik ve anti-simetrik olmak üzere 

kısımlara ayrılır, 

 𝑊𝑗𝑖
  =  𝑊(𝑗𝑖)

  + 𝑊[𝑗𝑖]
                                             (2.78) 

Ayrıca (2.77) denklemini 𝑔𝑗𝑖 ile daraltılarak , (2.56) ifadesini kullanarak, 𝑊𝑛
  uzayının 

W skaler eğriliği ; R Riemann skaler  eğriliği ve w cinsinden ifadesi şu şekilde  

gösterilir; 

W = R + 2(n – 1) 𝛻𝑗𝑤
𝑗 – (n – 1)( n – 2) 𝑤𝑗𝑤𝑗                      (2.84)    
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3. JEODEZİKLER

Tanım X metrik uzay olmak üzere, ∀ 𝑡1, 𝑡2 ∈ [𝑥1,𝑥2] için |𝛾(𝑡1) − 𝛾(𝑡2)| = |𝑡1 − 𝑡2|

şartını sağlayan ve 𝛾: [𝑥1,𝑥2] → X yoluna jeodezik yol denir.

𝛾: [0,∞) → x uzaklığını değiştirmeyen dönüşüme jeodezik ışın olarak ifade edilir. 𝛾: 

R → x uzaklığını değiştirmeyen dönüşüme de jeodezik çizgi olarak ifade edilir. 

Jeodezik yol, jeodezik ışın, jeodezik çizgi dönüşümleri bire-bir dönüşümlerdir te 

(Çoban, 2011). 

Tanım  γ : [𝑥1,𝑥2] → X yol olsun. 𝑥1 ≤ u ≤ v ≤𝑥2  koşulunu sağlayan ∀ u, v ∈ [𝑥1,𝑥2]

için, 

v − u = L(γ[u, v]) oluyorsa γ' ya yol uzunluğu ile parametrize edilmiş yol denir. 

Özel olarak γ : [𝑥1,𝑥2] → X yol uzunluğu ile parametrize edilmiş yol olduğundan

L(γ) =𝑥2 − 𝑥1  yazılabilir. (Çoban, 2011).

Tanım γ : [𝑥1,𝑥2] → X,  𝑥1< 𝑥2, yol olsun. γ sabit yol veya öyle bir γ’: [𝑥3,𝑥4] → X

yol uzunluğu ile parametrize edilmiş yol vardr ki ψ : [𝑥1,𝑥2] → [𝑥3,𝑥4],

ψ(x) = (𝑥4 − 𝑥3)x + 
𝑥2𝑥3−𝑥1𝑥4

𝑥2−𝑥1
  şeklinde bu iki aralık arasnda afin homeomorfizm 

olmak üzere γ = γ’ ∘ ψ bulunabilsin. Bu durumda γ' ya afin yolla parametrize edilmiş 

yol denir (Çoban, 2011). 

Tanım X metrik uzay ve 𝛾: [𝑥1,𝑥2] → X,  bu metrik uzay üzerinde 𝛾 sabit yol  olmak

üzere, bir 𝛾′ : [𝑥3,𝑥4] → X  jeodezik yol vardır ki ψ : [𝑥1,𝑥2] → [𝑥3,𝑥4] ve ψ(x) =

(𝑥4 − 𝑥3)x + 
𝑥2𝑥3−𝑥1𝑥4

𝑥2−𝑥1
 ifadesi şeklinde iki aralık arasında tek afin homeomorfizm 

olarak 𝛾  = 𝛾′ ∘ ψ bulunabilir. 𝛾  ifadesine afin yolla parametrik edilmiş bölgesel

jeodezik denir (Papadopoulos, 2005). 

Tanım X metrik uzay olmak üzere, X’ e ait bir jeodezik yolun görüntüsüne bir 

jeodezik parça denir (Çoban,2011). 
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Tanım X metrik uzayında seçilen iki noktayı birleştiren jeodezik yola sahip geometrik 

uzayına jeodezik uzay denir (Çoban, 2011). 

Jeodezik uzaylara bir kaç örnek vericek olursak ; 

∀ n ≥ 1 , 𝐸𝑛 Öklid uzayı için, ∀ x,y ∈ 𝐸𝑛 ayrıca t ∈ [0,1]  𝛾: [0,1] →  𝐸𝑛,

  𝛾(t) = (1- t)x + ty şeklinde tanımlanan afin yol eş zamanda  𝐸𝑛 Öklid uzayında x ve

y ‘yi birleştiren jeodezik yol olmasından dolayı 𝐸𝑛 uzayı jeodezik uzaydır.

𝐸𝑛 ‘nin herhangi bir konveks alt kümesi yine jeodezik uzaydır. Örnek olarak;  𝐸2 nin

alt kümesi olan herhangi bir çember jeodezik uzay değildir. Ancak 𝐸2 ‘nin alt kümesi

olan herhangi bir disk konveks olduğundan jeodezik uzaydır. 

Tanım X bir metrik uzay ve ∀ x,y ∈ X için  𝛾: [𝑥1,𝑥2] → X,  ve 𝛾(𝑥1) = x ile 𝛾(𝑥2) =

y ifadesi için γ düzeltilebilir yolu var ise X metrik uzayına düzeltilebilir yollar ile 

bağlantılı uzay denir (Bridson &  Haefliger, 1999). 

Tanım X bir metrik uzay ve ∀ x,y ∈ X için  |𝑥 − 𝑦| = lim
𝛾

𝐿(𝛾) burada infimum x ve 

y yi birleştiren yollar  kümesi üzerinden alınarak tanımlanır. Bu koşulu sağlayan 

metrik uzaya uzunluk uzayı denir. Bu uzay üzerinde tanımlanan metriğe uzunluk 

metriği denir (Papadopoulos, 2005). 

Tanım ∀ n ≥ 2 için  𝐸𝑛 Öklid uzayının bir elemanı olan t noktasının eksiltilmesi ile

oluşan 
𝐸𝑛

𝑡
uzayı uzunluk uzayıdır. Fakat jeodezik uzay değildir. u ve w, 𝐸𝑛 uzayındaki

noktalar olsun. [u, w], t noktasını içeren bir aralık olsun, bundan dolayı 
𝐸𝑛

𝑡
 uzayı 

uzunluk uzayıdır ancak jeodezik uzay değildir. Ayrıca   
𝐸𝑛

𝑡
  uzayında u ve v ‘yi 

birleştiren bir jeodezik yol bulunamaz. (Bridson & Haelfiger, 1999). 

Teorem X bölgesel kompakt uzunluk uzayı olmak üzere, u ∈ X olsun. 

u ‘nun öyle bir G = G(u) komşuluğu vardır ki  ∀ v, t ∈ G için bu noktaları birleştiren,

jeodezik yol vardır (Papadopoulos, 2005). 

Tanım G metrik uzay ve γ: [u, v] → G bir yol olmak üzere ∀ k ∈ [u, v] için öyle bir 

t ‘yi içeren bir kapalı aralık I(k) vardır ki γ ‘nın I(k) ∩ [u, v] ‘ye sınırlandırılmışı 

jeodezik olsun, bu durumda γ ‘ya lokal jeodezik denir (Mercan, 2021). 

γ: [u, v] → G lokal jeodezik olsun. γ yolu yol uzunluğu ile parametrize edilmiş yol 

olarak ifade edilir (Papadopoulos, 2005). 
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Tanım γ: [u, v] → G yol olsun. γ sabit dönüşüm  ¥ : [u, v] → [y, z] bu iki aralık 

arasında tek bir afin homeomorfizm olmak üzere γ = 𝛾′∘ ¥  ifadesi olacak şekilde  

 𝛾′: [y, z] → G lokal jeodeziği varsa γ' ya afin yolla parametrize edilmiş olan lokal 

jeodezik denir (Papadopoulos, 2005). 

Tanım X metrik uzay olsun. ∀ u, v ∈ X için noktaları birleştiren tek bir jeodezik var 

ise X metrik uzayına ‘tek jeodezik uzay’ denir (Bridson & Haefiger, 1999). 

Lokal koordinat sisteminde  P = 𝛻 − ∇  dönüşümünün olduğunu varsayalım ve bu 

dönüşüm aşağıdaki gibi tanımlansın, 

𝑃𝑖𝑗
ℎ(x) = 𝛤𝑖𝑗

𝜄  (x) – 𝛤𝑖𝑗
ℎ(x)                                         (3.1) 

Burada 𝛤𝑖𝑗
𝜄  (x) ve 𝛤𝑖𝑗

ℎ (x), ortak koordinat sistemi x'e göre ifade edilen 𝐴𝑛   ve 𝐴̅𝑛  

uzaylarının sırasıyla ∇ ve 𝛻  afin bağlantılarının bileşenleridir. Bir uzayda 𝑙 : x = x(t) 

eğrisi afin bağlantısı ∇ olan bir 𝐴𝑛 uzayının teğet vektörü denklemi  

𝛻𝑡𝜆  = ρ(t). 𝜆                                                  (3.2) 

sağlanırsa bu ifadeye jeodeziktir denir. Burada ∇𝑡,  𝑙  boyunca kovaryant türevi belirtir 

ve ρ(t) bir fonksiyondur. Bir 𝐴𝑛uzayının f'nin bir 𝐴̅𝑛 uzayına eşlenmesinin jeodezik 

olduğunu bilinir, ancak ve ancak bir ortak koordinat sistemi x tensörü şu şekildedir. 

𝑃𝑖𝑗
ℎ(x) =𝜓𝑖(𝑥) 𝛿𝑗

ℎ + 𝜓𝑗(𝑥) 𝛿𝑖
ℎ,                                     (3.3)            

Burada 𝛿𝑖
ℎ, Kronecker deltasıdır ve 𝜓𝑖  bir kovektördür (Levi-Civita,1896). 

Riemann uzayında X= X(t) eğrisi üzerinde 𝑡1, 𝑡2 noktaları arasındaki uzaklık olsun,                                                                                        

𝑆 = ∫ √𝑎𝑖𝑗
𝑑𝑥𝑖

𝑑𝑡

𝑑𝑥𝑗

𝑑𝑡
𝑑𝑡

𝑡2
𝑡1

                                              (𝟑. 𝟒) 

şeklinde ifade edilir. 𝑡1, 𝑡2 nokta arasında minimum uzaklığa sahip olan eğriye uzayın 

bir jeodeziği denir.  

Jeodezikler,                                                                                             

  
𝑑2𝑥𝑘

𝑑𝑠2 
+ {

𝑘
𝑖𝑗
}
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0                                      (𝟑. 𝟓) 

 tensörel diferansiyel denklemin çözümleri olarak bulunurlar. 
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Aşağıda verilen örnek metrik ile oluşturulmuş Riemann ve Weyl uzaylarının  eodezik 

denklemlerinin çözümleri incelenecektir. 

Örnek  𝑑𝑠2 = 𝑓(𝑥)𝑑𝑥2 + 𝑑𝑦2, 𝑓(𝑥)= 𝑒𝑥 olmak üzere ; (3.6) 

𝑑𝑠2  = 𝑒𝑥𝑑𝑥2  + 𝑑𝑦2   metriği verilsin. bu metrik ile verilen 1. ve 2. temel metrik

formları sırasıyla  

𝑔𝑖𝑗 = [
𝑒𝑥 0
0 1

]  ve 𝑔𝑖𝑗 = [
𝑒−𝑥 0
0 1

]     (3.7) 

ile verilir. Bu metriğin konneksiyon katsayısı 

𝛤𝑖𝑗
𝑘 = {

𝑘
𝑖𝑗
} = 𝑔𝑘𝑚[𝑖𝑗,𝑚] =

1

2
𝑔𝑘𝑚 (

𝜕𝑔𝑖𝑚

𝜕𝑥𝑗  +  
𝜕𝑔𝑗𝑚

𝜕𝑥𝑖  −
𝜕𝑔𝑖𝑗

𝜕𝑥𝑚 )     (3.8) 

formülü ile hesaplanır. 

 Öncelikli olarak (3.8) denkleminde indisler üzerinde hesaplamalar yapılırsa 

k=m=1 için ;     

𝛤𝑖𝑗
1 =

1

2
𝑔11 (

𝜕𝑔𝑖1

𝜕𝑥𝑗  +  
𝜕𝑔𝑗1

𝜕𝑥𝑖  −
𝜕𝑔𝑖𝑗

𝜕𝑥1  )  (𝟑. 𝟗)

ifadesi elde edilir. 

 (3.9) denkleminde  i=j= 1 indisleri için gösterirsek, 

𝛤11
1 =

1

2
𝑒−𝑥 (

𝜕𝑔11

𝜕𝑥1
 +

𝜕𝑔11

𝜕𝑥1
 −

𝜕𝑔11

𝜕𝑥1
) =

1

2
𝑒𝑥 (

𝜕𝑒𝑥

𝜕𝑥
)  =  

1

2
𝑒−𝑥𝑒𝑥 = 

1

2
(3.10) 

sonucu elde edilir. 

Benzer şekilde  i= 1,  j=2 için koneksiyon katsayısını hesaplarsak, 

𝛤12
1 =

1

2
𝑒−𝑥 (

𝜕𝑔11

𝜕𝑥2
 +  

𝜕𝑔21

𝜕𝑥1
 −

𝜕𝑔12

𝜕𝑥1
 )  =  

1

2
𝑒−𝑥 (

𝜕𝑒𝑥

𝜕𝑦
+ 0 −  0)  = 0  (𝟑. 𝟏𝟏) 

sonucu elde edilir. 

devirsel olarak i, j, k indisleri benzer şekilde aşağıdaki gibi elde edilir. 

  i=2,  j=1 için , 

𝛤21
1 =

1

2
𝑒−𝑥 (

𝜕𝑔21

𝜕𝑥1
 +  

𝜕𝑔11

𝜕𝑥2
 −

𝜕𝑔21

𝜕𝑥1
 )  =  

1

2
𝑒−𝑥 (0 +

𝜕𝑒𝑥

𝜕𝑦
− 0)  =  0  (𝟑. 𝟏𝟐) 

  i=2,  j=2 için koneksiyon katsayıları benzer şekilde hesaplanırsa, 

𝛤22
1 =

1

2
𝑒−𝑥 (

𝜕𝑔21

𝜕𝑥2
 +  

𝜕𝑔21

𝜕𝑥2
 −

𝜕𝑔22

𝜕𝑥1
 )  =  

1

2
𝑒−𝑥(0 + 0 −  0) = 0  (𝟑. 𝟏𝟑) 
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Şimdi, (3.8) denkleminde k= m=2 için konneksiyon katsayısı çözümü , 

𝛤𝑖𝑗
2 =

1

2
𝑔22 (

𝜕𝑔𝑖2

𝜕𝑥𝑗
 +  

𝜕𝑔𝑗2

𝜕𝑥𝑖
 −

𝜕𝑔𝑖𝑗

𝜕𝑥2
 )                           (𝟑. 𝟏𝟒) 

bulunur. 

(3.14) denkleminde indis değerleri  i= 1,  j=1 yerine konulursa, 

𝛤11
2 =

1

2
. 1 (

𝜕𝑔12

𝜕𝑥1  +  
𝜕𝑔12

𝜕𝑥1  −
𝜕𝑔11

𝜕𝑥2  )  =  
1

2
(0 + 0 −

𝜕𝑒𝑥

𝜕𝑦
 )  =  0              (𝟑. 𝟏𝟓)                

elde edilir. 

aynı şekilde (3.14) denkleminde i=1 ,j=2  indis değerleri için, 

𝛤12
2 =

1

2
. 1 (

𝜕𝑔12

𝜕𝑥2
 +  

𝜕𝑔22

𝜕𝑥1
 −

𝜕𝑔12

𝜕𝑥2
 )  =  

1

2
(0 +

𝜕1

𝜕𝑥
 −  0)  = 0              (𝟑. 𝟏𝟔) 

Sonucu elde edilir. 

 Benzer şekilde i=2 ,j=1 için hesaplanırsa, 

𝛤21
2 =

1

2
. 1 (

𝜕𝑔22

𝜕𝑥1
 +  

𝜕𝑔12

𝜕𝑥2
 −

𝜕𝑔22

𝜕𝑥2
 )  =  

1

2
(
𝜕1

𝜕𝑥
 + 0 −  0)  =  0           (𝟑. 𝟏𝟕)  

indis değerleri i=2, j=2 için koneksiyon katsayıları hesaplanırsa, 

𝛤22
2 =

1

2
. 1 (

𝜕𝑔22

2
 + 

𝜕𝑔22

𝜕𝑥2
 −

𝜕𝑔22

𝜕𝑥2
 )  =  

1

2
(
𝜕1

𝜕𝑦
 )  =  0                 (𝟑. 𝟏𝟖) 

Lokal koordinatlarda jeodezik dönüşüm   

     
𝑑2𝑥𝑘

𝑑𝑠2 
+ 𝛤𝑖𝑗

𝑘 𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 0  ,                                      (𝟑. 𝟏𝟗) 

denklemiyle hesaplanır. 

 (3.7) örneğinde hesaplamış olduğumuz 𝛤𝑖𝑗
𝑘 koneksiyon katsayılarından  

𝛤12
1 =𝛤21

1 = 𝛤22
1 =𝛤11

2 =𝛤12
2 =𝛤21

2 =𝛤22
2 = 0 dır; 

 Böylece (3.18) denklemi, 

    
𝑑2𝑥𝑘

𝑑𝑠2 
= 0                                               (𝟑. 𝟐𝟎) 

formuna dönüşür. 

(3.19) denkleminde  𝑘 = 1 𝑖ç𝑖𝑛, 
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𝑑2𝑥1

𝑑𝑠2 
=

𝑑2𝑥

𝑑𝑠2 
= 0,                                          (𝟑. 𝟐𝟏)  

 diferansiyel denklemin çözümü, 

    x(s) = cs +  d, (c, d ∈  ℝ)                             (3.22) 

doğru denklemleri ailesidir. 

i = j = k = 1 için  ve   𝛤11
1 =

1

2
    için jeodezik denklemleri  

𝑑2𝑥1

𝑑𝑠2 
+

1

2

𝑑𝑥1

𝑑𝑠 
 
𝑑𝑥1

𝑑𝑠 
= 0                                     (3.23) 

𝑑2𝑥

𝑑𝑠2 
+

1

2

𝑑𝑥

𝑑𝑠 
 
𝑑𝑥

𝑑𝑠 
= 0                                       (3.24)               

olarak hesaplanır. İkinci dereceden  

𝑥′′ +
1

2
 (𝑥′)2  =  0 ,                                           (𝟑. 𝟐𝟓) 

diferansiyel denklemin çözümü  

 x(s)  =  2log(𝑐1 +  𝑠)  + 𝑐2    ,   (𝑐1, 𝑐2 ∈  ℝ )                      (3.26) 

olarak hesaplanır. 

Benzer şekilde bu metrik ile verilen Weyl uzayının gama koneksiyon katsayıları ve 

jeodezik denklemleri sırasıyla aşağıdaki gibi , 

i= j = 𝑙 = 1 için  , 

𝛤 11
1  = {

1
11

} − (w1 𝛿1
1 + w1 𝛿1

1 – 𝑤1𝑔11),                         (3.27) 

𝛤 11
1 =

1

2
− (2 w1 – 𝑤1𝑒𝑥)                                                     

𝑑2𝑥

𝑑𝑠2 
+ (

1

2
−  2𝑤1 + 𝑤1𝑒𝑥 )

𝑑𝑥

𝑑𝑠 
 
𝑑𝑥

𝑑𝑠 
= 0                         (𝟑. 𝟐𝟖) 

bulunur.      

Özel olarak 𝑤𝑖  , 𝑤𝑖  1-formları sıfır  seçilirse Riemann ve Weyl uzaylarının 

jeodeziklerinin aynı olduğu görülmektedir.      
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Şekil 3.1. 𝑑𝑠2 = 𝑒𝑥𝑑𝑥2 + 𝑑𝑦2  Metriğinin Jeodeziğik Grafiği
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4. SONUÇ VE ÖNERİLER 

 Bu tez çalışmasının birinci bölümünde Öklid uzayı, Öklid çatısı, afin uzay ve 

bu uzayda eğrilerin tanımı, diferansiyellenebilir eğrilerin tanımlarına yer verilmiştir. 

Öklid uzayında kovaryant türev operatörü tanıtılmıştır.. İkinci bölümünde Riemann 

uzayında temel tanım ve teoremler yer verilmiştir. Bu uzayda Riemann metriği 

açıklandı. Riemann manifoldları üzerinde koneksiyon tanımlanmıştır. Bu 

koneksiyonlardan yola çıkılarak 1. ve 2. tip Christoffel sembolleri elde edildi. Yine bu 

uzayda eğrilik tensörü, Ricci tensörü ve Riemann uzayının eğrilik tensörünün 

özellikleri; 1. ve 2. Bianchi özdeşlikleri ele alınarak, simetri özelliklerinden 

bahsedilmiştir. Sonrasında, benzer analoji üzerinden Weyl uzayı üzerinde bu 

büyüklükler verilerek, yapıların sahip olduğu bileşenler vurgulanmıştır. Üçüncü 

bölümde ise jeodezik uzay tanımı, ilgili teorem ve bu teoremlere dayalı tanımlar 

verilerek, Riemann uzayında jeodezik denklemin tanımı sunulmuştur. Bu bağlamda 

ele alınan problemi  Riemann ve Weyl uzayındaki çözümleri karşılaştırılarak aradaki 

değişim sunulmuştur. Ortaya çıkan çalışmada yeni koneksiyonlara sahip olan uzaylar 

için eğriliklerinin ayrımlı dönüşümlerin altındaki değişimi ve yüksek boyutlu Öklid 

uzaylarında incelenebilir.  
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