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ABSTRACT

DEVELOPMENT OF A NOVEL GALERKIN TRANSFORMED
DIFFERENTIAL QUADRATURE METHOD AND ITS APPLICATION TO

SIZE DEPENDENT NONLINEAR VIBRATION ANALYSIS OF FLUID
CONVEYING CARBON NANOTUBES

Kılıçarslan, Doğuhan Nuri

M.S., Department of Mechanical Engineering

Supervisor: Prof. Dr. Ender Ciğeroğlu

September 2023, 133 pages

In this thesis, nonlinear vibration characteristics of fluid conveying carbon nanotubes

(CNT) are examined using nonlocal strain gradient theory (NSGT) to capture the

small-scale effects. CNT is modeled with Euler-Bernoulli beam assumptions with

large deflection nonlinearity using von-Karman assumptions and the effect of the

nonlinearity on the instabilities caused by the fluid flow is considered. Spatial dis-

cretization is performed with the novel approach of Galerkin transformed differen-

tial quadrature method (GtDQM) which can apply different higher-order boundary

conditions and obtain symmetric system matrices. The spatially discretized nonlin-

ear equation of motion is then converted to nonlinear algebraic equations using the

harmonic balance method (HBM) to be solved by Newton’s method with pseudo-

arc-length continuation. Critical flow velocities that cause instabilities are found and

limit cycle oscillation (LCO) characteristics due to nonlinearity are obtained in the

frequency domain instead of using time domain simulations. Finally, the effects of

changing nonlocal and length-scale parameters on the LCO characteristics for differ-

ent vibration amplitudes are examined.
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ÖZ

GALERKİN DÖNÜŞÜMLÜ DİFERANSİYEL TÜMLEV METODUNUN
GELİŞTİRİLMESİ VE AKIŞKAN TAŞIYAN KARBON NANOTÜPLERİN

BOYUTA BAĞLI DOĞRUSAL OLMAYAN TİTREŞİMLERİNİN
İNCELENMESİNDE KULLANIMI

Kılıçarslan, Doğuhan Nuri

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu

Eylül 2023 , 133 sayfa

Bu çalışmada, akışkan taşıyan karbon nanotüplerin (KNT) doğrusal olmayan titre-

şim özellikleri, küçük ölçekli etkileri yakalamak için yerel olmayan gerinim gradyan

teorisi kullanılarak incelenmiştir. KNT, Euler-Bernoulli kiriş varsayımları ve von-

Karman varsayımları kullanılarak yüksek deformasyon doğrusalsızlığı ile modellen-

miştir ve doğrusalsızlığın akışkan akışının neden olduğu kararsızlıklar üzerindeki et-

kisi dikkate alınmıştır. Uzaysal ayrıklaştırma, farklı üst düzey sınır koşullarını uygula-

yabilen ve simetrik sistem matrisleri elde edebilen yeni geliştirilmiş Galerkin dönüş-

türülmüş diferansiyel tümlev metodu (GdDTM) ile gerçekleştirilmiştir. Mekansal ola-

rak ayrıklaştırılmış doğrusal olmayan hareket denklemi daha sonra harmonik denge

yöntemi kullanılarak doğrusal olmayan cebirsel denklemlere dönüştürülür ve sözde

yay uzunluğu sürekliliği kullanan Newton yöntemiyle çözülmüştür. Zaman simülas-

yonu yerine frekans alanında kararsızlıklara neden olan kritik akış hızları bulunmuş

ve doğrusal olmama nedeniyle oluşan sınır döngü salınımı özellikleri elde edilmiş-

tir. Son olarak, yerel olmayan ve uzunluk ölçeği parametrelerinin değiştirilmesinin
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farklı titreşim büyüklüklerindeki sınır döngü salınımı özellikleri üzerindeki etkileri

incelenmiştir.

Anahtar Kelimeler: Doğrusal olmayan titreşimler, Karbon Nanotüpler, Diferansiyel

Kareleme Metodu, Akış-Yapı Etkileşimleri, Harmonik Denge Metodu
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CHAPTER 1

INTRODUCTION

1.1 Linear and Nonlinear Vibration Analysis

Vibration analysis is one of the most important steps of any product design that re-

quires structural parts. Even if a design may withstand static loads applied by the

working environment, it may fail to endure excessive loads occurring during oscil-

latory motion, especially if the excitation is around the resonance of the system.

Furthermore, cyclic repetitive loads applied may also cause fatigue damage to the

structure and cause failure even if the amplitude of the load is well within a tolerable

range. Hence, vibration analysis is a well-investigated area of structural analysis and

has developed very significantly over the decades.

While early into the 20th century, solution methods ranged from analytical solutions

to basic perturbation techniques. Around the middle of the century importance of vi-

bration analysis became much more clear and different analytical methods have been

developed, as well as numerical methods have emerged that can employ upcoming

computational tools. This era of vibration research focused on the model size reduc-

tion by different methods such as modal reductions or condensations due to lack of

computational power, or incorporation of time-dependent effects into the frequency

domain analysis.

As the computational power became more abundant and easier to use more efficient

and advanced designs could be made such that linear analysis was becoming insuffi-

cient. Hence, the focus of vibration research started to turn towards nonlinear anal-

ysis, especially in the frequency domain, which is still researched up to date as the

state of the art. This increased effort led to truer vibration analysis and smart ways
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of using nonlinear structures for much more efficient designs. For example, introduc-

ing frictional losses to systems not only moves the resonance region further away but

also lowers the peak amplitude along with it or the design of considerably smaller

parts with snap-through configurations of small beams. Alongside the effective and

advanced design nonlinear vibration analysis also led to the predictions of possible

catastrophic failures such as flutter instabilities.

1.2 Applications of Carbon Nanotube

After Iijima produced the first carbon nanotubes (CNT) [1] world was very interested

in this unusually small stable structure. Considering impressive structural strength,

and very high thermal and electrical conductivity (in some cases it may be semi-

conducting), the interest of many researchers focused on determining efficient pro-

duction, determination, and prediction of material properties [2].

To obtain material or geometric properties of CNTs experiments may be conducted

[3], since conducting experiments at the nanoscale is a challenge and costly endeavor,

those properties instead be obtained by molecular dynamic simulations [4], even

molecular dynamic simulations might be computationally expensive, such that con-

tinuum mechanics may also be used to predict the properties [5]. Note that, as the

cost/effort gets lower accuracy also gets worse.

Even though CNTs have yet to deliver on the premise they were initially marketed as

they are finding new areas of application such as mass sensing sensors at nanoscales

[6] and its control algorithm that incorporates the geometric nonlinearity effect [7] or

CNT is used as a reinforcement agent which increases the capacitance of a battery.

Moreover, CNTs are also being applied for medical use such as biosensors [8] or even

as a part of targeted cancer treatment methods.
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1.3 Objectives and Outline

As will be summarized in the literature review chapter of this thesis, instabilities or

structural property changes caused by fluid flow inside a tube (such as CNT) is an

important problem in the analysis of CNTs. Considering time domain integration is

a very slow method for nonlinear analysis, which is needed to explain behavior near

instability of fluid conveying CNTs, frequency domain solution of such nonlinear

structures becomes important.

Hence, the need for developing an efficient analysis method that should be able to

produce results and predict instabilities in the frequency domain for geometrically

nonlinear CNTs conveying a fluid flow has arisen and the objective of this thesis is to

satisfy those needs.

While achieving the aforementioned objectives, there were several novel contribu-

tions to the literature such as:

• Modification of GDQM [9] to increase its stability, convergence rate, and areas

of use for spatial discretization of the problem

• A new method of finding critical instability speed without solving the state

space eigenvalue problem

• A new method of prediction for nonlinear post-buckling and post-flutter critical

speeds in the frequency domain without the need for a time domain simulation

• A new method of obtaining the stable regime for a given maximum allowed

deflection while changing a design parameter

In chapter two, a literature review will be given focusing on numerical solution meth-

ods, and small-scale elasticity theories that are needed to model CNTs and fluid-

structure interaction.

Following that in chapter three, mathematical derivations will be completed which

include the mathematical background for GDQM, novel parts added to the GDQM

framework, nonlinear solution methods that will be utilized, and equation of motion

for fluid conveying small-scale tubes.
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In chapters four and five, obtained results will be presented; where chapter four fo-

cuses on the verification of newly proposed additions to the GDQM will be done with

different basic case studies and chapter five focuses on results obtained for the critical

speeds for instabilities, response-dependent evolution of critical speed, and effects of

different parameters on critical speeds.

Finally, in the sixth chapter, a general summary will be given and the results obtained

will be discussed, more importantly, possible directions for future work to take will

be explained in great detail.
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CHAPTER 2

LITERATURE REVIEW

In this section, brief reviews will be given for the respective topics that will be covered

in this thesis. Since summarizing all the previous work for all the topics covered

would be considerably wrong and is not generally in the scope of a master of science

program. Hence, only relative information that will get the reader up to date will be

summarized and most repetition studies or some tangent topics will not be included.

Although the sections of this chapter can include information that is relevant to either

topic, most information can be divided up into three general topics which are numeri-

cal methods, size-dependent elasticity theories, and fluid conveying micro/nanotubes.

2.1 Numerical Methods

Many numerical solution techniques have emerged to handle nontraditional boundary

conditions of varying types of differential equations that are used in many differ-

ent fields of study. One such technique is Differential Quadrature Method (DQM).

First proposed by Bellman and Casti [10], DQM aims to approximate derivatives of a

function on a discretized domain using weighted function values inside that domain.

However, due to problems while obtaining the weighting coefficients [11], DQM was

not used until Shu and Richards [9, 12] formulated DQM into a much more stable

form using Lagrange interpolating polynomials which is called Generalized Differ-

ential Quadrature Method (GDQM).

With this form, GDQM is used to solve problems that cannot be handled with the con-

tinuous solution approach due to nontraditional boundary conditions, non-uniform
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system properties, and/or complex nonlinear differential equations from different do-

mains including structural mechanics [13–16], fluid mechanics [9, 17, 18], and even

theoretical physics [19–21]. Since Lagrange interpolating polynomials do not neces-

sarily satisfy boundary conditions, problem-specific boundary conditions need to be

implemented in the formulation.

Implementation of boundary conditions can range from changing the final weighting

coefficients [22] to cleverly manipulating the intermediate weighting coefficients [23,

24], however, the most general use case is to express points at the boundary in terms

of points at the internal points by using boundary condition equations [25]. The

latter method makes the GDQM very flexible in terms of problems it can be used

on, and one of the easiest methods for general use. Yet, this formulation suffers by

just solving the boundary condition equations at the points that are at the boundaries,

instead of solving both boundary conditions and equations of motion. Moreover,

higher-order differential equations need closely spaced grid points separated by δ,

which can cause instabilities and convergence problems. Implementing higher-order

boundary conditions without using the δ technique saw many attempts, from trying

to use imaginary grid points outside the domain [26] to using extra imaginary grid

points compromised of derivatives of boundaries [27, 28]. A more recent boundary

condition application that tries to amend this problem proposes not using Dirichlet-

type boundary conditions [29] or reformulation of a higher-order differential equation

into several second-order differential equations [30].

In this thesis, it will be shown that the first problem is caused by the wrongful applica-

tion of static condensation [22] and can be mended with a correct application of static

condensation, in which boundary condition equations can be used as a coordinate

transformation from internal points to the whole domain. By solving the first prob-

lem, the need for the δ technique becomes obsolete and the second of those problem

is also solved. Moreover, using this transformation approach to applying boundary

conditions allows us to use Galerkin weighted residual method [31] to make the final

system matrices symmetric without determining a trial function. Galerkin method in-

creases the stability and convergence rate of the solution compared to the collocation

method which is analogous to the GDQM [27].
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2.2 Size-Dependent Elasticity Theories

For micro/nano-sized structural components, theoretical analysis using classical elas-

ticity theory fails to predict behavior observed with experiments[32] or ab inito molec-

ular dynamic simulations[33–35]. This problem can be mended with different theo-

retical methods, in which two main techniques will be used in this thesis.

One such technique is to employ higher-order strain gradients in the strain energy

formulation, such that strain energy is still linear but also has more material param-

eters than the two used in classical elasticity (Young’s modulus and Poisson ratio or

Lame’s parameters). The other technique that will be discussed is to incorporate the

stresses applied to a point originating from finitely separated points instead of only

using the stresses originating from infinitesimally separated points.

2.2.1 Strain Gradient Theories

Formulating an elasticity theory that also has higher-order derivatives, analogous to

increasing the order of approximation in Taylor series expansion, is first done by

Mindlin and Tiersten[36], and Toupin [37] in 1962 using couple forces created by

classical stresses. The idea is then further expanded by Mindlin [38] to obtain a more

general expression containing all necessary derivatives in 1964. In 1965 Mindlin [39]

simplified the theory to only employ second-order gradients at most such that only

five independent new material length scale parameters are introduced to classical two

which was named strain gradient theory (SGT).

Due to a lack of interest in micro/nanostructures at the time and the infeasible re-

quirement of determining 7 material parameters experimentally before predicting any

result, strain gradient theory was not used until three decades later when Fleck and

Hutchinson used the strain gradient theory to obtain strain gradient plasticity theory

in 1997 [40] and further refined it in 2001 to use less material parameters in 2001

[41].

Using similar simplifications modified couple stress theory (MCST) is developed by

Yang et al. in 2002 [42] where the couple stresses are used as the reason for the
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higher-order gradient. By eliminating the strains that do not affect the strain energy

they were able to obtain only a single material length scale parameter on top of the two

classical ones. Lam et al. in 2003 [32] proposed the modified strain gradient theory

(mSGT) where all necessary derivatives of the higher-order displacement gradient are

used but refined to only include strain gradients that contribute to the strain energy, in

which only three extra independent length scale parameters exist.

Those two theories are still being used without much change over the past two decades;

from beams that employ linear Euler-Bernoulli kinematic assumptions [43,44] to non-

linear Euler-Bernoulli kinematic assumptions [45, 46]. Furthermore, to consider the

rotational motion of beams, Timoshenko or Reddy-Levinson kinematic assumptions

are solved for linear [13, 47–51] and nonlinear [14, 52] cases. mSGT and MCST are

also used for plates [53–56], yet are not delved much deeper since the focus of the

thesis is on the beams.

If the higher-order strain theory is used, whether it be MCST or mSGT, the resulting

equation of motion has higher derivative orders and accordingly has more bound-

ary conditions[57]. Due to these higher-order equilibrium equations and respective

boundary conditions, analytical solutions as well as approximate results that employ

numerical methods that use trial functions (such as Galerkin or Ritz [31]) are much

harder to obtain, thus, more flexible numerical methods such as DQM is prevalent.

For all physical applications of MCST or mSGT with different kinematic assump-

tions, the only effect is to increase the overall stiffness and produce a hardening effect

for shortening length [58].

2.2.2 Nonlocal Theories

Another approach to considering length-scale effects for elasticity is to model the

structure as a nonlocal one, where stresses not only affect the local region but also

influence the regions that are relatively distant in the domain. This can be achieved

using molecular dynamics by adding all of the intermolecular forces affecting a sin-

gle atom and considering the motion of each atom one by one [59]. However, this

method is very computationally expensive and virtually impossible to apply to rela-

tively larger domains.
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One can change the summation to an integration by assuming the domain is big

enough to consider the intermolecular forces as a continuous function instead of em-

anating from discrete atoms. With this assumption, intermolecular forces can be ap-

proximated by pairwise force functions, and the integration of this force over the

volume produces a continuous force field on every point in the domain. This theory

is called the peridynamic theory [60, 61], which is most generally used to study the

effects of cracks or discontinuities in the domain such as grain boundaries.

One further simplifying assumption is approximating intermolecular forces as stresses

of classical elasticity that are caused by strains over some range of values. This was

first formulated by Eringen in 1972 [62] and verified by obtaining dispersion solu-

tions that can also be obtained by lattice dynamics at the length scale of atoms. It is

further refined in 1983 by Eringen [63] by defining a nonlocal stress constructed by

integrating local (classical) stresses over the domain of the body with a kernel func-

tion defined with specific properties and a nonlocal parameter such that a differential

form can be attained using Green’s function.

Similar to SGT, nonlocal elasticity theory (NET) had not seen widespread use until

two decades earlier when it was popularized by Peddieson et al. [64] and Reddy[65].

Nearly unchanged over four decades NET is still being used to analyze beams [64–70]

and plates [71, 72]

Although NET has excellent prediction power for wave solutions, dispersion, and at-

tenuation curves; when used for static or free vibration solutions there were some

problems with this theory where it might predict softening effects which is not seen

in micro length scale but may present itself on macro scales[57]. Moreover, there are

paradoxical solutions where nonlocality does not affect some boundary conditions

[73], or obtaining opposite effects (softening/hardening) with different formulations

(integral or differential) on some boundary conditions[74]. Even though these prob-

lems can be mended with different techniques [73, 75], it is an indication that this

theory may not be a ’final’ theory.
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2.2.3 Nonlocal Strain Gradient Theory

Failure to predict correct dispersion relations of mSGT and failure to capture the hard-

ening at micro scales can be mended by combining both of the theories to obtain a

nonlocal strain gradient theory (NSGT). Unification of both theories with mathemat-

ical rigor has not been done until this point, yet in 2015 Lim et al. [76] combined

the general effect of both theories with some simplifying assumptions. Such as using

a single material length scale instead of three for mSGT, also using the same ker-

nel function with the same parameters for both classical and higher-order stresses,

moreover only expanding the terms up to linear dependence on nonlocal parameter.

In light of those simplifying assumptions, NSGT is still very effective in both of

the shortcomings of these theories. Compared with molecular dynamic simulations,

NSGT results have a good match for free vibration [77], wave propagation [76, 78],

and static deflections [79]. NSGT is also used to analyze linear [80,81] and nonlinear

[82–84] beams as well as plates [85, 86].

NSGT solves the problem of extra boundary conditions needed for a higher-order

theory obtained from strain gradients as well as the hardening effect for bending and

natural frequencies which needed an aspect ratio dependent variable nonlocal param-

eter to be able to explain molecular dynamic simulations for NET[68]. Moreover, it

predicts an asymptotic phase velocity [78] which can only be done with NSGT, how-

ever, this needs to be verified since available molecular dynamic data [87] does not

cover the range needed to observe the effect.

Another advantage of NSGT is when the length scale parameter is taken to be zero

NET is directly recovered while some simplified version of mSGT can be obtained

by taking the nonlocal parameter as zero.

2.3 Fluid Conveying Carbon Nanotubes

While a tube is carrying a flowing fluid, whether it be a gas or a liquid, it is prone to

instabilities due to fluid motion, caused by structural motion, increasing the structural

motion further in a feedback loop [88].
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According to Païdoussis[89] fluid-structure interaction for such a flow can be modeled

by including the kinetic energy of the flowing fluid into the equation of motion of

the structural part since the fluid itself can be assumed to have no potential energy

storage capabilities but only viscous energy dissipation to an approximation. While

considering this assumption, the flow’s velocity field is assumed to be an equivalent

uniform one which is not realistic and can be addressed by the correction made to the

centrifugal term by Guo et al. [90].

Another correction to flow can be done by considering the no-slip boundary condition

may not be applicable in micro and nano-sized channel flows as given by Beskos &

Karniadakis [91] and flow velocity for nanotubes must be scaled accordingly [91,92].

There are also trying to model the fluid flow using simplified Navier-Stokes equa-

tions[93, 94], however, those studies are lacking the sources of equations or assump-

tions made to achieve those.

Following different elasticity theories and kinematic assumptions with different fluid-

structure interaction modeling, many researchers obtained results for the case of fluid

conveying micro/nanotubes. These researchers showed their findings using different

methods such as; instability diagrams obtained by solving the eigenvalue problem

(EVP) in state space form, bifurcation or phase diagrams obtained by time domain

simulations, dispersion curves obtained by analytical manipulations, and frequency

response functions (FRFs) using varying methods.

Initially, the problem of fluid conveying CNTs were being studied with CET, for

example, Yoon et al. [88] examined instabilities of equivalent beam models using

Galerkin method to discretize the spatial domain and assuming harmonic time re-

sponse or Ni et. al. [95] used solved the same problem using DQM, Wang et al.

[96] examined the temperature effects on instabilities of equivalent beam model with

DQM to discretize spatial domain and assuming harmonic time response, Ghavanloo

et al. [97] examined the instabilities of equivalent beam models using finite ele-

ment methods (FEM) to discretize the spatial domain and assuming harmonic time

response.

Further studies were conducted by NET, for example, Lee and Chang [98] examined

instabilities of equivalent beam model with an analytical spatial solution assuming
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harmonic time response, Dai et al, [99] examined instabilities of the geometrically

nonlinear equivalent beam with a post-buckling response by discretizing the spatial

domain with Galerkin method and assuming harmonic time response, Askari and Es-

mailzadeh [100] studied instabilities and obtained FRFs of equivalent beam model on

a foundation with quadratic and cubic nonlinearity by discretizing the spatial domain

with Galerkin method and using the method of multiple scales (MMS) [101],

On the other side, MCST studies were conducted by Wang [102] to examine insta-

bilities of an equivalent beam model with DQM spatial discretization and assuming

harmonic time response and Aghazadeh [103], to study instabilities of axially func-

tionally graded equivalent beam model by using DQM to discretize and assuming

harmonic solutions. Moreover, Ansari et al. [104] used mSGT to study the instabil-

ities of an equivalent beam model with geometric nonlinearity by discretizing using

DQM and using the harmonic balance method (HBM) for temporal the solution.

After the combined theory of NSGT emerged, researchers mostly used NSGT to an-

alyze the fluid conveying CNT problem. Li and Hu [78], studied wave dispersion of

equivalent beam model by using analytical methods;

Mohammadi et al. [105] examined instabilities of shell model with DQM for spatial

discretization and assuming harmonic time response, Li et al. [106], examined insta-

bilities of equivalent beam model by using Galerkin method to discretize spatial part

and using analytical solution for temporal part; Zhen and Zhou [107], studied wave

dispersion relation under magnetic field effects of equivalent beam model by ana-

lytically solving it; Farajpour et al. [108], obtained FRF of equivalent beam model

with geometric nonlinearity used Galerkin method to discretize the spatial domain

and left out time temporal solution method with a mention of frequency continu-

ation; Bahaadini et al. [109], examined instabilities of equivalent beam model by

using Galerkin method to discretize and assuming temporal solution; Farajpour et al.

[110], examined bifurcation and phase diagrams of geometrically nonlinear equiv-

alent beam model by discretizing it with Galerkin method and using time domain

integration; Ghane et al. [111], examined instabilities under magnetic field effects

of equivalent beam model by using DQM to discretize and assuming harmonic time

response;Atashafrooz et. al. [112] studied examined instabilities including surface
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effects of equivalent beam model by using Galerkin to discretize and assuming har-

monic time response; Jin and Ren [113], examined bifurcation diagrams and obtained

FRF of pre- and post- buckled configurations of equivalent beam models with geo-

metric nonlinearity using Galerkin method for spatial discretization and the modified

Lindstedt–Poincaré (MLP)[114] for temporal solution.

A summary of the fluid conveying CNT literature is given in table 2.1. The lack of

nonlinear solutions that employ the pseudo-arc-length continuation method or HBM

in obtaining solutions can easily be seen, which is one of the motivations of the current

study.

2.3.1 Validity of Water Flow Inside a Carbon Nanotube

Considering the smallest length scales defining the fluid motion as a flow becomes

questionable. Theories and results from experiments for fluid conveying micro and

nano channels are extensively investigated by Karniadakis and Beskok [115], while

the focus is more on the micro channels, results for nano channels are also included.

Even though collected literature at the time agrees that the gaseous fluid flow can be

predicted by current theories, aqueous flows does not obey the respective theories.

For that, molecular dynamic simulations or experimental investigations needs to be

carried out to fully explain the water flow through a CNT, especially for a smaller di-

ameter ones. Earliest experimental results comes from the Israelachvili in 1992 [116],

where the change between bulk continuum motion to a quantized plug-like motion is

investigated. For the water confined between two layers continuum mechanics starts

to fail around 2 nm separation which approximately corresponds to 10 molecular

length. It is noted that beyond that length scale, motion may be approximated as a

continuum but there would be plug-like motion caused by the intermolecular interac-

tions. These findings are later extended to water flow confined by CNTs of varying

diameter by Thomas and McGaughey in 2009 [117] using molecular dynamic simula-

tions. Since motion of each water molecule can be simulated and tracked, separation

from bulk motion to the plug-like motion are reported to be occurring for the smaller

diameters then 1.39 nm which corresponds to the (10,10) CNT. Simulations are car-

ried below that diameter up to 0.83 nm diameter of (6,6) CNT. Even at the smallest
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scale pressure-driven flow can be observed even thought correction factors becomes

unpredictable by continuum theories.

Similarly 0.81 nm diameter (6,6) armchair CNT is examined using molecular dy-

namic simulations by Hummer et al. [118]. Motion is noted to be chain-like without

detail, however main focus was on the flow rate of the water where much higher

intermolecular forces between water molecules are noted to cause hydrophobic prop-

erties to the CNTs without any special treatments. Due to higher flow rates caused

by hydrophobic property of CNTs, it was theorized that it can be used as an efficient

diffusion membrane. This theoretical prediction was later proved by Majumder et al.

[119] for 7 nm pores and by Holt et al. [120] for 2 nm pores in a membrane, where

the pores are constructed from CNTs. Predicted higher flow rate compared to bigger

pore sizes are observed which increases as the CNT diameter gets smaller. Those

experimental work are also modeled in detail by Thomas et al. [121] using molecular

dynamic simulations where the motion characteristics are examined which have not

yet been achieved in experimental setups.

For more information in water flowing through carbon nanotubes, a small review like

article of Kannam et al. [122] may be used where the results validates the ability of

water to flow through CNTs as small as (6,6) CNTs both with molecular dynamic

simulations and experiments. Even though properties to be used in this thesis, (5,5)

armchair CNT with 0.7 nm inner diameter, is not actually verified using experimental

methods, flow is validated using molecular dynamic simulations while examining it

in the use of diffusion membranes or syringes [123, 124]. More recently in 2021 ab-

inito molecular dynamic simulations are used to simulate the desalination of water

inside the CNT [125] to be used in desalination membranes.

Evidence to the validity of the water to flow through (5,5) CNT is shared with varying

degrees of confidence, even if the fluid motion corresponding to a pressure gradient

may need special methods to handle, since in this work CNT and water are taken to be

not interacting (as is discovered by experiments) characteristics of the fluid-structure

interaction should not change. If in the future, the experiments are done for the (5,5)

CNT, fluid-structure interaction model can also be improved with the experimental

results, likely without changing the logic behind the proposed method.
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Table 2.1: Literature Review Summary

Reference Year Elasticity Results Spatial Temporal Nonlinearity

[88] 2005 CET Instability Galerkin EVP Linear

[96] 2008 CET Instability DQM EVP Linear

[98] 2008 NET Instability Analytical EVP Linear

[97] 2010 CET Instability FEM EVP Linear

[102] 2010 MCST Instability DQM EVP Linear

[95] 2011 CET Instability DQM EVP Linear

[104] 2014 mSGT Instability DQM HBM Geometric

[99] 2015 NET Instability Galerkin EVP Geometric

[78] 2016 NSGT Dispersion Analytical Analytical Linear

[106] 2016 NSGT Instability Galerkin Analytical Linear

[100] 2017 NET Instability&FRF Galerkin MMS Foundation

[107] 2017 NSGT Dispersion Analytical Analytical Linear

[105] 2018 NSGT Instability DQM EVP Linear

[108] 2018 NSGT FRF Galerkin - Geometric

[110] 2019 NSGT Bifurcation Galerkin Integration Geometric

[109] 2019 NSGT Instability Galerkin EVP Linear

[111] 2020 NSGT Instability DQM EVP Linear

[112] 2020 NSGT Instability Galerkin EVP Linear

[103] 2022 MCST Instability DQM EVP Linear

[113] 2022 NSGT Bifurcation&FRF Galerkin MLP Geometric
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CHAPTER 3

MATHEMATICAL DERIVATIONS

In this section detailed mathematical derivations will be given for the novel method

used for discretizing the equations of motion and also the equations of motion for the

given problem. Since different topics are presented from structural mechanics, fluid

mechanics, and numerical methods, great detail is given in each step of the derivation

for the ease of following with different backgrounds in mathematics.

First, the summary of DQM will be given, followed by the novel additions to the

method. Next, the methods used to solve nonlinear equations of motion will be sum-

marized. Finally, fluid conveying tube equations will be derived and the implementa-

tion of earlier numerical methods will be summarized.

3.1 Generalized Differential Quadrature Method

To derive and differentiate the new methods presented in this paper in a self-consistent

manner, a description of the GDQM formulation as well as common ways of applying

boundary conditions is presented.

3.1.1 Differential Quadrature Coefficients

The DQM uses the premise that a derivative of a function at a point can be approx-

imated in terms of the superposition of values of the function at a domain of points

including the original point [10]. Which can be shown for the mth derivative of a
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continuous function f(x) at a discrete point xi as

∂mf

∂xm

∣∣∣∣
x=xi

= f (m)(xi) =
N∑
j=1

A
(m)
ij f(xj), (3.1)

where A(m)
ij are predetermined weighting coefficients that relate function values in the

domain to the value of mth order derivative at a point in the same domain, f (m)(xi) is

the shorthand notation that is mth order derivative of the function f(x) at the x = xi

point, and N is the number of points sampled in the x-direction. It can be observed

that this equation is a matrix-vector multiplication using index notation, so if all the

values of the mth order derivative need to be obtained in the given domain with N

sample points a vector of derivative values can be acquired from a vector of function

values at specified domain points by a matrix multiplication, which can be shown as

f (m) + ξ = A(m)f (3.2)

Notation of bold capital letters denoting matrix and bold lower case letters denot-

ing vector, regular capital letters with two indices denoting entries of a given matrix,

and regular lower case letters with a single index denoting entries of a given vec-

tor are used hereafter. The problem then becomes how to determine the weighting

coefficient matrix and possible grid point applications. If the function f(x) can be

expressed with good accuracy using test functions in the given domain, the weight-

ing coefficient matrix A(m) can be calculated beforehand irrespective of the used

function. The popularity of the DQM method increased with the usage of Lagrange

interpolation polynomials as test functions since it had a closed-form expression de-

rived by Shu and Richards [9, 12] that is called Generalized DQM (GDQM), whose

weighting coefficients for the first derivative is expressed as

A
(1)
ij =


M (xi)

(xi − xj)M(xj)
, for i ̸= j, i, j = 1, 2, . . . , N

−
N∑

k=1,k ̸=i

A
(1)
ik , for i = j, i, j = 1, 2, . . . , N

, (3.3)

where the Lagrange interpolating polynomial is L(xi) =
M(xi)
M(xj)

and M (xi) is defined

as

M (xi) =
N∏

k=1,k ̸=i

(xi − xk) (3.4)
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The higher-order derivative weighting coefficient matrix can be obtained either as

a matrix multiplication of the first-order derivative matrix with the one lower-order

derivative matrix as

A(m) = A(1)A(m−1) (3.5)

or with a recurrence relation given by

A
(m)
ij =m

(
A

(m−1)
ii A

(1)
ij −

A
(m−1)
ij

xi − xj

)
for i, j = 1, 2, . . . , N

and i ̸= j and m = 2, 3, . . . , N − 1

(3.6)

where diagonal terms can be calculated like done in equation (3.3).

Equally spaced grid points to define the domain is a natural and easy-to-implement

method, however, while solving equations of motion, more points are needed near

boundaries. Hence a more stable and more accurate [126] choice of grid points is to

use Gauss-Lobatto-Chebyshev points that are given by

xi =
1

2

(
1− cos

(i− 1) π

N − 1

)
i = 1, 2, . . . , N (3.7)

For the rest of the thesis weighting coefficients obtained by the GDQM method will

be employed, however, in principle other weighting coefficients [127] can similarly be

manipulated to obtain similar results. For example, an Euler-Bernoulli beam equation

and its discretized GDQM partner can be written as

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= q, EI

N∑
j=1

A
(4)
ij w(xj, t)+ρAẅ(xi, t) = q (xi, t)

i = 1, 2, . . . , N

(3.8)

where EI , ρ, A, w, ẅ and q are flexural rigidity, density, cross-sectional area, trans-

verse deflection, transverse acceleration of the beam and distributed transverse load,

respectively. Equivalently the GDQM equation can be shown in matrix form as

EIA(4)w + ρAIẅ = q (3.9)

where I is the identity matrix with adequate size. Since matrix form is cleaner and

easier to interpret for certain cases, mostly matrix form will be used while using

GDQM unless a new definition is being done. Using the matrix definition static de-

flection, buckling, free vibration, or forced vibration analysis can be done as if any

other discretization method is used. Note that, this example of the Euler-Bernoulli

beam will be used while explaining the method at hand.
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3.1.2 Implementation of Boundary Conditions

To solve differential equations with this method, boundary conditions that define the

boundaries of the problem domain need to be applied. These boundary conditions

can be written in terms of weighting coefficient matrices in the most general form as

Bij

(
A

(1)
ij , A

(2)
ij , . . . , A

(N−1)
ij

)
= gi i = 1, 2, . . . ,M, j = 1, 2, . . . , N (3.10)

where BM×N is the matrix that gives boundary conditions, M is the number of

boundary conditions, and g is the vector for a general equated factor of the boundaries

which generally take the value 0.

It should be noted that for problems that have more than one boundary equation

at a single point, δ-point technique is generally employed which changes the grid

point distribution such that there is more than one point very near to the boundary

which is separated by δ amount (generally in the order of ∼ 10−5). For example, to

describe two boundary points that can be used for four boundary conditions of the

Euler-Bernoulli beam equation, the grid points can be selected as

xi =
1

2

(
1− cos

(i− 2) π

N − 3

)
i = 1, 3, 4, . . . , (N − 2) , N

and x2 = x1 + δ, xN−1 = xN − δ

(3.11)

At this point, it should be noted that usage of δ-point technique generally causes

stability and convergence problems since the numerical scale of distance between

two boundary points is very different from the distance between two inner nodes.

Finally, to make matrices easier to work with boundary points can be reordered to

appear at the top part of the matrices, such as

EI

A(4)
bb A

(4)
bd

A
(4)
db A

(4)
dd

wb

wd

+ ρA

I 0

0 I

ẅb

ẅd

 =

qbqd
 (3.12)

where 0 is the matrix, whose elements are zero with adequate size and subscript b,

d donate to grid points that represent boundary points and internal domain points,

respectively.

Current methods of boundary condition applications can be divided into three parts,

each having its own pros and cons.
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Method 1: Direct Replacement

The most basic method of applying boundary conditions is to replace the equation of

motion with boundary condition equations that correspond to boundary points. For

the example of both ends simply supported Euler-Bernoulli beam problem boundary

conditions can be written in a discretized form as

w1 = 0,
N∑
j=1

A
(2)
1j wj = 0,

N∑
j=1

A
(2)
Njwj = 0, wN = 0 (3.13)

and using the boundary conditions instead of the equation of motion the modified

equation of motion with boundary conditions is written as

EI

Bbb Bbd

A
(4)
db A

(4)
dd

wb

wd

+ ρA

0 0

0 I

ẅb

ẅd

 =

 0

qd

 , (3.14)

where the boundary condition sub-matrices can be written as

Bbb =


1 0 0

A
(2)
11 A

(2)
12 A

(2)
1(N−1)

A
(2)
N1 A

(2)
N2 A

(2)
N(N−1)

0 0 0

 Bbd =


0 · · · 0

A
(2)
13 · · · A

(2)
1(N−2)

A
(2)
N3 · · · A

(2)
N(N−2)

0 · · · 0

 (3.15)

As it can be seen using equation (3.7) not only i = 1, N points are used as boundaries

but also i = 2, N − 1 are used as boundary points and written on the top side of the

matrix for convenience.

Method 2: Indirect Replacement (Modifying weighting coefficient matrices)

Another way of implementing boundary condition which gives better accuracy and

stability is to implement the boundary conditions into the lower order weighting co-

efficients before writing the equation of motion [23, 24]. So that both the boundary

condition equation and the equation of motion can be solved simultaneously on the

boundary points, which is actually what is needed.

To illustrate simply supported end conditions for the Euler-Bernoulli beam are built

into the second-order matrix. For both boundaries, displacement boundary condition

(w1 = wN = 0) is written as
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Ā(1)w =



w
(1)
1

w
(1)
2

...

w
(1)
(N−1)

w
(1)
N


=



0 A
(1)
12 · · · A

(1)
1(N−1) 0

0 A
(1)
22 · · · A

(1)
2(N−1) 0

...
... · · · ...

...

0 A
(1)
(N−1)2 · · · A

(1)
(N−1)(N−1) 0

0 A
(1)
N2 · · · A

(1)
N(N−1) 0





w1

w2

...

w(N−1)

wN


(3.16)

so that w1 and wN coordinates do not affect higher-order derivatives and act as if they

are zero. Following that, the second derivative can be written as

Ā(2) = A(1)Ā(1) (3.17)

which still carries the column of zeros property of the first-order matrix.

To apply the zero-moment boundary condition (i.e., w(2)
1 = w

(2)
N = 0) the fourth-order

derivative matrix can be directly written from a second-order derivative values as

w(4) = Ã(2)w(2) = Ã(2)Ā(2)w = Ā(2)Ā(2)w (3.18)

where Ã(2) turns out to be same as Ā(2) for this case of boundary conditions.

Notice that although it is very hard to write more general boundary conditions and

changes should be made on a problem basis, this method does not require δ-point

technique which should increase stability and convergence.

Method 3: Elimination (Directly coupling the boundary conditions)

The earlier two methods might be easy to implement and effective for simple bound-

ary conditions, but they both have drawbacks when being applied to a more general

boundary condition problem. However, these rather simple boundary condition prob-

lems may be solved more efficiently using continuous methods such as Galerkin or

Rayleigh-Ritz method [31]. To be able to apply more general boundary conditions,

boundary conditions can be written using weighting coefficient matrices where each

row is the boundary equation. For example, for a simply supported end condition,

each equation can be written as

Bw =
[
Bbb Bbd

]wb

wd

 =

0

0

 (3.19)
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where the boundary condition sub matrices Bbb and Bbd are as same as in equation

(3.15).

Expanding the sub-matrix multiplication for a more general case as given in equation

(3.10)

[
Bbb Bbd

]wb

wd

 = BbbM×M
wbM×1

+BbdM×(N−M)
wd(N−M)×1

= g (3.20)

Here sizes of each dimension are given for easier following. Boundary points can be

written in terms of domain points by solving the equation (3.20) for boundary point

vector

wb = −Bbb
−1Bbdwd +Bbb

−1g (3.21)

The generic equation of motion can also be written as given below whereA represents

a general stiffness matrix whileD represents a general inertia matrix:Abb Abd

Adb Add

wb

wd

+

Dbb Dbd

Ddb Ddd

ẅb

ẅd

 =

qbqd
 (3.22)

Substituting equation (3.21) into equation (3.22) and expanding it according to the

sub-matrix multiplication,−AbbB
−1
bb Bbd +Abd

−AdbB
−1
bb Bbd +Add

wd +

−DbbB
−1
bb Bbd +Dbd

−DdbB
−1
bb Bbd +Ddd

wd =

qbqd
−

AbbB
−1
bb g +DbbB

−1
bb g̈

AdbB
−1
bb g +DdbB

−1
bb g̈


(3.23)

noticing that this form of stiffness and inertia matrices are not square matrices but of

matrix size N × (N −M), the upper portion corresponding to boundary nodes’ equa-

tion of motion is ignored as is done in [25] and system matrices of size (N −M) ×
(N −M) are obtained as:

K =
[
−AdbB

−1
bb Bbd +Add

]
, M =

[
−DdbB

−1
bb Bbd +Ddd

]
(3.24)

Even though this method still suffers from δ-point techniques’ drawbacks, easy im-

plementation and flexibility to apply general boundary conditions make this method

much more popular than the earlier two methods. To the knowledge of the author,

this method is not applied while retaining the upper part of equation (3.23), which
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results in the boundary nodes not obeying the equation of motion but only boundary

conditions. This unnoticed shortcoming of the GDQM for nearly three decades is

addressed in the following section and will be further improved.

3.2 Galerkin Transformed Differential Quadrature Method

In this section how coordinate transformation works and how the Galerkin method

can be implemented in the currently used GDQM formulation is shown.

3.2.1 Implementation of Boundary Conditions

If the elimination process is thought as a coordinate transformation, the equation

(3.21) could be rewritten in the matrix form as

w =

wb

wd

 =

−B−1
bb Bbd

I

wd +

B−1
bb g

0

 = Twd + gT (3.25)

Then substituting the transformation matrixT into equation (3.22) without sub-matrix

expansion as

ATwd +DTẅd = q −AgT −Dg̈T (3.26)

this is equivalent to the equation (3.23) but if the equation is pre-multiplied with T T ,

equations reduce to a square matrix with size (N −M)× (N −M). Hence, the final

form of equations can be obtained as

Kwd +Mẅd = f + ḡT + ¯̈gT (3.27)

where K, M , F , ḡT and ¯̈gT are the stiffness matrix, inertia matrix, forcing vector,

static boundary effect vector and dynamic boundary effect vector for the differential

equation that also satisfies the boundary conditions, respectively. Each matrix can be

written in sub-matrix expanded form for completeness as
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K = T TAT = BT
bd(B

−1
bb )

T
AbbB

−1
bb Bbd −BT

bd(B
−1
bb )

T
Abd

−AdbB
−1
bb Bbd +Add

M = T TDT = BT
bd(B

−1
bb )

T
DbbB

−1
bb Bbd −BT

bd(B
−1
bb )

T
Dbd

−DdbB
−1
bb Bbd +Ddd

f = T Tq = −BT
bd(B

−1
bb )

T
qb + qd

ḡT = −T TAgT = BT
bd(B

−1
bb )

T
AbbB

−1
bb g −AdbB

−1
bb g

¨̄gT = −T TDgT = BT
bd(B

−1
bb )

T
DbbB

−1
bb g̈ −DdbB

−1
bb g̈

(3.28)

Red terms are correction terms that incorporate the boundary points into the equation

of motion and solve the differential equations without truncation. Note that these

correction terms are mostly very large in numerical greatness if checked element by

element, yet they affect all the matrices nearly at the same scale so that change in the

solution is not obvious.

As far as the author can conclude by examining the 30 years old literature, the main

oversight happens while trying to apply a static condensation type of transforma-

tion while the boundary condition matrix is not a part of the initial stiffness matrix.

Considering boundary matrix equations as the part of the initial stiffness matrix (i.e.,

Bbb = Abb,Bbd = Abd), it can be seen that red terms in equation (3.28) cancel each

other.

By using this method to implement boundary conditions, the equation of motion can

be solved for all points while also solving boundary conditions in boundary points.

However, this does not provide any advantage compared with the elimination method

explicitly. The main advantage comes from not needing to use δ-point technique

which increases stability and convergence as it will be shown in the verification sec-

tion. Since the elimination method does not solve the equation of motion for the

points that are denoted as boundaries, extra boundary points need to be very close

to the boundaries. This is needed because when they are ignored while solving the

equation of motion, and loss of information is low since their function values are very

similar to the actual boundaries. However, if they were taken to be normally sepa-

rated points, they are different in function value, and the equation of motion needs to

be solved for those extra boundary points. On the other hand, in the transformation
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method, the boundary nodes are expressed in terms of domain nodes, but the bound-

ary does not need to be very close to the boundary but any point that does not make

Bbb sub-matrix singular since what has been done is a coordinate transformation us-

ing the extra information of boundary equations. Even though, this point of changing

the boundary points to any domain node does not change the results significantly, to

stick to historical conventions and to have higher stability boundary nodes are chosen

as the closest nodes to the actual boundaries.

3.2.2 Imposing Symmetry to the System Matrices

Weighted residual methods are a class of numerical solution methods that are used to

solve eigenvalue problems [31, 128]. In general terms, the eigenfunction is approxi-

mated by a trial function that satisfies the boundary conditions and then a residual is

defined which should be equal to zero if the approximation is exact as,

A[W ] = λD[W ], W (x) ∼= ϕ̄ (x) , → R
(
ϕ̄, x
)
= A[ϕ̄]− λD[ϕ̄] ∼= 0 (3.29)

where A[ ] and D[ ] are linear operators that may include differentiation or integra-

tion, λ and W (x) are eigenvalue and eigenvector, respectively. To obtain the residual,

R
(
ϕ̄, x
)
, eigenfunction W (x) is replaced with an approximating function ϕ̄ (x). The

approximating function ϕ̄ (x) is chosen so that the residual is close to zero as possible.

A condition that the residual is nearly zero on every point in the domain is achieved

by multiplying the residual with a weighting function g(x) and integrating it over the

domain and equating it to zero as,∫
g(x)R

(
ϕ̄, x
)
dx = 0 (3.30)

The definition of the weighting function and method of obtaining the approximation

changes the name of the method under the family of methods called weighted residual

methods. Both Galerkin and Collocation method uses trial function expansion while

calculating the approximation function as

W (x) ∼= ϕ̄ (x) =
n∑

i=1

ciϕi(x) (3.31)

where ci is the weighting coefficient, n is the number of terms that will be used

in the expansion, and ϕi(x) is the trial function that satisfies some or all boundary
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conditions depending on the application. Galerkin and collocation methods differ

from each other while defining the weighting function. Collocation method uses a

Dirac delta (δ(x)) weighting function that is sampled at n points in the domain as,∫
δ (x− xi)R

(
ϕ̄, x
)
dx = R

(
ϕ̄ (xi) , xi

)
= A

[
n∑

j=1

cjϕj (xi)

]
− λD

[
n∑

j=1

cjϕj (xi)

]
= 0, i = 1, 2, . . . , n

(3.32)

With this definition of the weighting function, the procedure of calculating the integral

is avoided and the residual is equated to zero at grid points, which in turn makes the

solution exact at grid points and may have error between those grid points.

Galerkin method uses the trial functions themselves as weighting function which ne-

cessitates the calculation of the integral as∫
ϕiR

(
ϕ̄, x
)
dx =

n∑
j=1

cj

∫
A [ϕi (x)]ϕj (x) dx− λ

n∑
j=1

cj

∫
D [ϕi (x)]ϕj (x) dx = 0,

i = 1, 2, . . . , n

(3.33)

With this definition of the weighting function, if trial functions are chosen to be

orthogonal then the resulting system matrices will be symmetric. Both methods

transform the continuous eigenvalue problem with eigenvectors W (x) into a discrete

eigenvalue problem with weighting coefficients cj replacing the eigenvectors as

(kij − λmij) cj = 0, i, j = 1, 2, 3, . . . , n, (3.34)

where kij and mij are elements of stiffness and mass matrix, respectively, and can be

defined as

Kcollocation : kij = A [ϕj (xi)] , KGalerkin : kij =

∫
A [ϕi (x)]ϕj (x) dx

Mcollocation : mij = D [ϕj (xi)] , MGalerkin : mij =

∫
D [ϕi (x)]ϕj (x) dx

(3.35)

If A[ ] and D[ ] were to be considered as operators that are formed with matrices

for the collocation method, then GDQM formulation can be retrieved. In that regard,

GDQM can be thought of as a special case of the collocation method where the trial
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function is Lagrange interpolating polynomial and boundary conditions are satisfied

while solving the eigenvalue problem.

Due to this analogy, GDQM suffers from similar drawbacks to the collocation method

where matrices are not symmetric and prone to ill-conditioning. On the other hand,

the Galerkin method does not suffer from these problems if orthogonal trial functions

are used. For that matter, Lagrange interpolating polynomials are orthogonal and can

take derivatives or integrals as simple as matrix/vector multiplication such that both

drawbacks, which are the calculation of the integral and determining an orthogonal

trial function that also satisfies boundary conditions, of the Galerkin method can also

be handled by GDQM if it can be formulated.

Integral of Products in GDQM

Following the procedure explained by Yagci et. al. [129] due to the similarity of the

goal, starting by approximating a definite integral over a domain as a matrix-vector

multiplication as, ∫ xb

xa

f(x)dx =
N∑
k=1

ckf (xk) (3.36)

From the Ph.D. dissertation of Shu [12] integration coefficient can directly be defined,

cabk = wI
ak − wI

bk, (3.37)

where a and b refer to discretized grid points that coincide with the integral boundaries

xa and xb, moreover, wI
ak are the elements of a matrix that is defined as the inverse of

specially defined derivation matrix Ã. Elements of this matrix Ã are defined as,

Ãij =
xi + δ

xj + δ
A

(1)
ij for i ̸= j and Ãii = A

(1)
ii +

1

xi + δ
(3.38)

here A
(1)
ij are the elements of the first-order derivation matrix as defined in equation

(3.3) and δ is a small shifting constant that ensures any grid point will be sufficiently

away from zero as it would cause a singularity (∼ δ = 10−3 are observed to be

satisfactory).

Now that the formal definition of an integrating vector is done, a way of integrating

two multiplied functions is needed. Assume h(x) and g(x) are smooth and continuous

functions over the domain [xa, xb] and can be constructed with a polynomial of degree

28



at most N . Then, function f(x) that is obtained by multiplying h(x) and g(x) should

be smooth, continuous, and can be constructed with a polynomial of degree at most

2N .

To be able to accommodate the degree of a polynomial of the function f(x), 2N

sampling points are necessary, such that Lagrange interpolating polynomial can be a

polynomial of the degree 2N . A matrix that changes the grid points used can easily

be defined as,

Tij =
N∏

k=1,k ̸=j

x′
i − xk

xj − xk

, (3.39)

where Tij are the elements of the coordinate up-scaling matrix T that when it pre-

multiplies a vector of values, it changes the values obtained at grid points xj into

values that correspond to new grid points x′
i. Technically any type of grid points can

be used to up-scale the number of grind points and they should produce the same

results for low N , however after a certain number of grid points uniform grid points

cause problems and Gauss-Lobatto-Chebyshev sampling should be preferred while

up-scaling.

Writing g(x) and h(x) in the up-scaled discretized domain as,

g′2N×1 = T2N×NgN×1, h′
2N×1 = T2N×NhN×1 (3.40)

so that Integral can be written as∫ xb

xa

g (x)h (x) dx =
2N∑
k

cabk g (xk)h (xk) = c
T (g′ ⊙ h′) , (3.41)

where ⊙ is the element-wise (Hadamard) product of two vectors. For convenience

that will be clear later, the matrix-Hadamard multiplication [130] can be rearranged

as

cT (g′ ⊙ h′) = (g′)
T
(c⊙ h′) = (g′)

T
Dch

′ (3.42)

where Dc is the diagonal matrix where diagonal entries are formed by entries of c

vector. Next, the up-scaling of grid points is incorporated into the integral matrix

itself as∫ xb

xa

g (x)h (x) dx = (g′)
T
Dch

′ = (g′)
T T TDcT h′ = gTPh (3.43)

where, P = T TDcT is the integral of products matrix between two vectors.
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Galerkin Formulation

All the tools needed are derived up to now; the next step is to formulate a classical

eigenvalue problem in terms of the Galerkin method. Writing the residual equation

(3.33) using derivative weighting coefficient matrices∫
wiR (wj, x) dx =

∫ n∑
j=1

Ajkwk (x)wi (x) dx− λ

∫ n∑
j=1

Djkwk (x)wi (x) dx = 0

(3.44)

Here Ajk and Djk are the elements of operator matrices that are obtained by writing

them using derivative weighting coefficients. Thus, system matrices obtained using

Galerkin weighted residual method can be written as

k′
ij =

∫ xb

xa

n∑
j=1

Ajkwk (x)wi (x) dx = wTP (Aw) = wT
dT

TPATwd

m′
ij =

∫ xb

xa

n∑
j=1

Djkwk (x)wi (x) dx = wTP (Dw) = wT
dT

TPDTwd

(3.45)

Here, notice that the function values at grid points are not available, and these system

matrices cannot be written before solving the problem. Thus, the residual equation

can be reformulated and written in the parentheses of wT
d as,

wT
d

(
T TPATwd

)
−wT

d

(
T TPDTwd

)
= 0 (3.46)

Assuming wd ̸= 0 for a non-trivial solution, the inside of the parenthesis needs to

be solved and respective system matrices can be written as the matrices that pre-

multiplies the eigenvectors

K = T TPAT , M = T TPDT (3.47)

Similarly, without a loss of generality, if the equation (3.26) is pre-multiplied with

T TP , the equation of motion for the time domain can be obtained as,

T TPATwd + T
TPDTẅd = T TPq − T TPAgT − T TPDg̈T (3.48)

which can be obtained from defining a residual to a solution of the time domain

equation if more rigor of derivation is needed. Re-defining the final system matrices

for completeness as,
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Kwd +Mẅd = f + ḡT + ¯̈gT

where K = T TPAT M = T TPDT

f = T TPq ḡT = −T TPAgT ¯̈gT = −T TPDg̈T

(3.49)

Symmetry of System Matrices

For any self-adjoint operator A[ ], and two arbitrary functions that satisfy the bound-

ary conditions in the domain [xa, xb], g(x) and h(x); the condition of symmetry can

be written, that is by definition satisfied for self-adjoint operators, as

∫ xb

xa

g (x)A[h (x)]dx =

∫ xb

xa

h (x)A[g (x)]dx (3.50)

Assuming functions g(x) and h(x) can be expanded exactly using (N − 1)th order

polynomial, equation (3.50) can be written using the GDQM discretization methods

similar to the equation (3.44),

gTdT
TPAThd = hT

dT
TPATgd → gTdKhd = hT

dKgd (3.51)

where gd and hd are function values at the domain points. Since both sides of the

equality are actually matrix with 1× 1 dimensions (i.e., scalar), the transpose of one

side without changing the equality can be taken as,

gTdKhd = gTdKhd (3.52)

which would only hold true if and only if KT = K. Since an explicit formula for

the operator is not defined, this symmetry proof can be used for any problem that

can be encountered as long as the functions and the operated functions can be exactly

expressed with (N − 1)th order polynomial.

Hence, by applying a coordinate transformation to incorporate boundary conditions

followed by a Galerkin weighted residual technique to the already existing GDQM

formulation, a superior method without any drawbacks are obtained which is named

as Galerkin transformed Differential Quadrature Method (GtDQM).
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3.3 Nonlinear Numerical Methods

Most of the structural problems can be modeled with linear differential equations

using different assumptions or linearizations. However, in real life, models are only

applicable to a certain degree, and generally, nonlinear corrections are necessary to

increase the limits of the model. Hence a need for different nonlinear techniques has

evolved, one that will be described in this section utilizes periodic solutions to obtain

nonlinear algebraic equations from nonlinear differential equations. These equations

can be solved with numerical solution methods such as Newton’s method and solution

paths can be followed by the likes of pseudo arc-length continuation.

3.3.1 Harmonic Balance Method

The harmonic balance method uses the assumption of harmonic response, generally

with an included phase which is needed if nonlinearity creates damping-type effects.

Even though this phase difference can be shown with complex numbers or phase

angles, it is more likely to assume a separate sine and cosine with different coefficients

as,

x(t) = xs sin θ + xc cos θ (3.53)

where xs and xs are sine and cosine coefficients of harmonic expansion and θ is the

angle between 0 and 2π for a representative period and also defined as θ = ωt where

ω is the vibration frequency.

When this form of assumed response is substituted into the differential equation of

motion, the algebraic equation of motion can be obtained by balancing the sine and

cosine coefficients to the one coming from the forcing. This procedure doubles the

size of the equation of motion since each coefficient of sine or cosine needs to be

balanced separately. If the complex response was assumed, similarly, the solution

would need to double the size of the original equation of motion since there are two

real components to each complex coefficient.

This procedure may also be assumed as finding the Fourier coefficients of the nonlin-

ear force corresponding to the assumed harmonic motion. Even though an expansion
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may lead to coefficients of integer multiples of the original frequency (nθ) they can-

not be balanced since our original harmonic expansion only has a single frequency in

it. To accommodate this fact multiple harmonics may be used in the assumption of

the response which can generally be written as,

x(t) = x0 +
N∑

n=1

xsn sinnθ + xcn cosnθ (3.54)

where x0 is the bias term and may be important in nonlinearities that do not produce

a symmetric forcing compared to the motion. Note that this expansion can exactly

express the possible response and the respective nonlinear forcing in the frequency

domain, it needs an infinite number of components which is not feasible and is gen-

erally cut off when the necessary accuracy is reached.

At the multiple harmonic level, it is easier to define Fourier integrals for coeffi-

cient determination since the trigonometric manipulations needed gets much trick-

ier. Moreover, with integral definitions higher harmonic contributions coming from

expansion are not calculated. Integral for each term can be defined as,

fnl
0 =

1

2π

∫ 2π

0

fnl(x)dθ

fnl
sn =

1

π

∫ 2π

0

fnl(x) sin (nθ)dθ

fnl
cn =

1

π

∫ 2π

0

fnl(x) cos (nθ)dθ

(3.55)

where fnl(x) is the nonlinear forcing, fnl
0 is the bias coefficient, fnl

sn and fnl
cn are the

sine and cosine coefficients of nth harmonic. The resulting nonlinear forcing vector

may also sometimes be defined as a response-dependent nonlinearity matrix.

Equivalently describing function method [131] can also be used especially if the goal

is to obtain a nonlinearity matrix. Yet, in this work, the harmonic balance method is

preferred.

3.3.2 Pseudo Arc-length Continuation with Newton’s Method

While solving nonlinear algebraic equations an iterative procedure is needed if an

analytical solution method is not applicable, since the nonlinear effect may depend
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on the response amplitude. One such method is Newton’s method which is relatively

simple to apply and has a relatively high convergence rate [132]. The main premise

of Newton’s method is to linearly approximate the zero point for a residual function

using the ’slope’ of the current solution point to predict the next solution point, which

may be illustrated by the figure 3.1.

For a one-dimensional case, the next iteration for the root may mathematically be

calculated from the earlier prediction as,

xi+1 = xi −
f(xi)

f ′(xi)
(3.56)

where the prime denotes the first derivative of the residual concerning the variable

in question and i is the current iteration step. To change the method to a higher

dimensional case is to change the division by a derivative to an inverse multiplication

by a Jacobian (J ). Where the Jacobian is the matrix formed by the partial derivatives

of a function that outputs a vector of values. Mathematically Newton’s next iteration

step and definition of Jacobian can be written as,

xi+1 = xi − J(xi)
−1
R(xi) where Jjk =

∂Rj(x
i)

∂xi
k

(3.57)

where superscript denotes the value of the variable at the given iteration step and

subscripts j, k denote the elements of the given matrix or vector.

Figure 3.1: Illustration of Newton’s method in one dimensions, taken from [132]
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This method can be used to find the response of a nonlinear system to harmonic

forcing at a single specified frequency, to cover a frequency range of interest (i.e., to

obtain a frequency response function (FRF)) excitation frequency may be increased

after each solution step and a new solution at the new frequency can be obtained. This

is the basics of a Homotopy continuation algorithm, where the parameter that needs

to cover a range (such as excitation frequency) is directly followed. With this method

unstable solution branches cannot be obtained and instead seen as a discontinuity in

the FRF.

To mend such a problem and apply it to other problems pseudo arc-length continua-

tion can be used, which adds another parameter to be followed. This change makes

the extra parameter an unknown, increasing the number of unknowns by one, and

to match the number of equations to the number of unknowns, the method adds a

hyper-sphere equation. The added equation makes the next solution step to be on the

intersection of the hyper-sphere surface and the solution curve. This allows the solu-

tion of multiple points at a single frequency while also being able to change directions

and show unstable branches.

For an example vibration problem that produces a residual of the form R(x, ω) =

K − ω2M + fNL − fext at N discrete coordinate points, initial prediction for the

next solution point can be calculated by

qk+1 = qk − J ′(qk)
−1
R′(qk) where q =

xω
 (3.58)

where augmented Jacobian J ′(qk) is calculated using the augmented residualR′(qk)

which can be obtained by adding a hyper-sphere (or an ellipse for that matter) of the

form,

R′(qk) =

 R(xk, ωk)(
qk − qk−1

)T (
qk − qk−1

)
−∆s2

 (3.59)

where s is the total arc length covered so far and ∆s = sk − sk−1 is the radius of the

hyper-sphere defined around the earlier solution point of qk−1. When the prediction

for the next iteration step qk+1 is found, then this initial prediction can be used in

Newton’s method of equation (3.57) until a convergence criterion is met. Conver-

gence criteria are generally taken as the maximum of absolute differences between

residuals and zero.
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This explanation of arc-length continuation is the basics and the method can be made

much faster and more robust by slight modifications such as the addition of sophis-

ticated initial guess methods than Jacobian, or determination of step-size to adapt

according to the difficulty of solution at a point.

3.3.3 Time Integration

Even though time domain integration is a computationally very expensive tool, it may

be necessary to correctly determine the response of the system such that verification

can be conducted. The simplest time integration method is the Euler’s method where

the velocity (ẏ) of the next time step is found by a state space form using the displace-

ment (y) of the current time step and increasing the next time step displacement value

by multiplying the time step and velocity (ynew = yold + ẏolddt). A more general

method is the Runge-Kutta family of methods where the velocity of the next time

step is calculated by dividing the interval by several sub-steps and the number of sub-

steps determines the order of the method, where 4th order Runge-Kutta is generally

preferred, determined by the optimization of lower computation time and the bigger

possible step size in time.

Since the main focus is not on the time domain simulations a commercially available

ordinary differential equation solver is used such that sophisticated improvements

needed are not employed. For that purpose ode45() or ode23s() commands of Matlab

[133] is used to obtain time domain response depending on the characteristics. To

obtain convergence faster, either linear or closest (amplitude vise) last known nonlin-

ear mode shape is given as deflection shape which also minimizes the effects of other

modes while examining the free vibration characteristics.

To extract natural frequency, the most common method is to convert the time domain

response to frequency response by the fast Fourier transformation (FFT) method. By

looking at the spectral response, additional effects of higher harmonics or other modes

can be seen, however, it is another layer of relatively computationally expensive step

and to increase the accuracy of the natural frequency estimation, time domain simu-

lations need to increase in length.
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Alternatively, the frequency might also be calculated from each half period of each

cycle by looking at the velocity response and determining the times at which the ve-

locity becomes zero by linear interpolation. However, the obtained frequencies are

generally dominated by higher frequency effects even though they are small in ampli-

tude they are very frequent by definition. This problem can be mended to some degree

by smoothing the time domain velocity response with an averaging window that is of

appropriate length to eliminate higher frequencies. During the smoothing process,

higher frequency components affect the resulting natural frequency estimation as a

random error, such that a single frequency can be estimated with an approximate nor-

mally distributed error. Moreover, a change in natural frequency can also be obtained

if it changes with time.

Details of the method shown here are not cited to a source, since it is not found in the

literature even though it must have been used somewhere due to the simplicity of the

method. More detail is given in the Appendix A.1.

3.4 Fluid Conveying Beam Theory with Nonlocal Strain Gradient Elasticity

In this section, equations of motion that can be used to examine fluid flow in small-

scale tubes will be derived using Hamilton’s principle. First, the potential and kinetic

energy of the tube will be derived using an equivalent beam with Euler-Bernoulli

kinematic assumptions, then fluid-structure interaction will be incorporated into the

equation of motion with different corrections. Finally, spatial discretization will be

applied, and other solution methods will be shown considering the case at hand.

Figure 3.2 is given to represent the geometry of the model graphically, where rin, rout,

t, L, and U are inner radius, outer radius, thickness of the wall, length of the tube and

the fluid flow speed.
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Figure 3.2: Schematic of the clamped-clamped fluid conveying tube with fluid flow

3.4.1 Euler Bernoulli Beam Theory with Large Deflection Nonlinearity

By using Euler-Bernoulli beam kinematic assumptions the displacement fields can be

defined as u1, u2, u3 along x, y, z, respectively as the following,

u1(x, z, t) = u(x, t)− z
∂w

∂x

u2(x, z, t) = 0

u3(x, z, t) = w(x, t)

(3.60)

where ∂w
∂x

is the neutral surface rotation, u and w are the displacement of the neutral

surface, which corresponds to the middle surface for uniform beams, along the x and

z directions, respectively. Following that, Cauchy (infinitesimal) strain tensor, Green-

Lagrange (finite) strain tensor, and second-order deformation gradient tensor (ηijk)

can be defined as,

εijCauchy =
1

2

(
∂ui

∂xj

+
∂uj

∂xj

)
εijGreen−Lagrange =

1

2

(
∂ui

∂xj

+
∂uj

∂xj

+
∂uk

∂xi

∂uk

∂xj

)
ηijk =

∂2uk

∂xj∂xi

(3.61)

where indices i, j, k = 1, 2, 3 defines the corresponding displacement and coordinate

for the given direction (i.e., x1 = x, x2 = y, x3 = z), moreover repeated indices

imply summation over the range.

38



From there the work conjugate stresses corresponding to the given strain measures of

equation (3.61) can be defined as,

σij =
∂W

∂εij
, τijk =

∂W

∂ηijk
, (3.62)

where W is the strain energy density, σij , and τijk are Cauchy stress tensor, and double

stress tensor, respectively.

second-order deformation gradient tensor can be split down into three independent

parts that contribute to the strain energy as is done by Lam et al. [32], however, to

introduce non-locality to the higher-order theory approach done by Lim et al. [76] will

be used for simplification. Hence, only explicitly calculating the first-order strains are

necessary.

Substituting displacements of equation (3.60) into Green-Lagrange strain definition

given in equation (3.61),

εxx =
1

2

(
∂u

∂x

)2

+
∂u

∂x
+

z2

2

(
∂2w

∂x2

)2

− z
∂2w

∂x2
+

1

2

(
∂w

∂x

)2

− z
∂u

∂x

∂2w

∂x2
(3.63)

By applying von-Karman nonlinear assumptions of considering the case for moderate

rotations and small strains (i.e., only considering multiplication terms coming from

mid-plane rotation ∂w
∂x

and neglecting terms coming from mid-plane stretching ∂u
∂x

),

simplified strain relation can be obtained,

εxx =
∂u

∂x
− z

∂2w

∂x2
+

1

2

(
∂w

∂x

)2

(3.64)

Only considering the axial normal stress, the strain energy of the beam can be written

as,

U =
1

2

∫
V

(σxxεxx + τxxxηxxx) dV =
1

2

∫
V

(
σxxεxx + σ(1)

xx

∂εxx
∂x

)
dV (3.65)

where the second form is given since it is used in the derivation of Lim et al. [76],

similarly using the same naming convention, σ(1)
xx is the higher-order stress and σxx is

the classical stress. Stresses are then defined in the framework of nonlocal elasticity

theory by the given constitutive relations,

σxx =

∫ L

0

Eα0(x, x
′, e0a)ε

′
xxdx

′

σ(1)
xx = l2

∫ L

0

Eα1(x, x
′, e1a)

∂ε′xx
∂x

dx′
(3.66)
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where L is the length of the domain, l is the length scale material parameter, e0a

and e1a are the nonlocal parameters, and α0 and α1 are the nonlocal kernels that ac-

count for the distribution of the nonlocal effect for classical and higher-order theories,

respectively.

Note that, this formulation method is somewhat in line with nonlocal elasticity theory,

however, strain gradient theory is not fully accounted for with this formulation and

contains lots of simplifications without any rigorous proof. Even though the presented

formulation is not complete, considering this is the only formulation that couples

nonlocal and higher-order effects together and the aim of this thesis is not to develop

a new theory of elasticity, the formulation is used without modification.

To combine classical and higher-order stresses the variation of the potential energy

of equation (3.65) can be modified to obtain higher-order boundary conditions as is

done by Mindlin [39], or by Lam et al. [32] as,

δU =
1

2

∫
V

(
σxxδεxx + σ(1)

xx

∂δεxx
∂x

)
dV

=
1

2

∫
V

(
σxxδεxx −

∂σ
(1)
xx

∂x
δεxx

)
dV +

1

2

[∫
A

σ(1)
xx δεxxdA

]∣∣∣∣L
0

=
1

2

∫
V

(txxδεxx) dV +
1

2

[∫
A

σ(1)
xx δεxxdA

]∣∣∣∣L
0

(3.67)

where the second part will be used to obtain the higher-order boundary conditions, A

is the cross-sectional area, and txx is the total axial stress and is defined as,

txx = σxx −
∂σ

(1)
xx

∂x
(3.68)

Since total stress does not have an explicit formula in terms of displacements, equa-

tion (3.67) can be alternatively written by the use of stress resultants and substituting

the axial strain from equation (3.64) as,

δUdt =

∫ L

0

(
N
∂w

∂x

∂δw

∂x
+N

∂δu

∂x
−M

∂2δw

∂x2

)
dx+[

N (1)∂w

∂x

∂δw

∂x
+N (1)∂δu

∂x
−M (1)∂

2δw

∂x2

]∣∣∣∣L
0

(3.69)

where M , N , M (1), and N (1) are resultant total moment, total normal force, higher-

order moment, and higher-order normal force, respectively; and they are defined as,

{M,N,M (1), N (1)} =

∫
A

{
ztxx, txx, zσ

(1)
xx , σ

(1)
xx

}
dA (3.70)

40



To be able to write the stress resultants in terms of displacement to be used further

in the derivation, an easier form for the constitutive relations needs to be derived.

By assuming kernel function given in equation (3.66) are the same for both classical

and higher-order stresses and are defined by Eringen [63], a linear differential oper-

ator that works as the inverse of the convolution integral can be found using Green’s

function,

Li = 1− (eia)
2∇2 (3.71)

where ∇2 is the Laplacian operator and is ∂2

∂x2 for one dimensional case. By applying

the linear differential operator of equation (3.71) twice (once per type of stress) on

the total stress defined by equation (3.68) and substituting the constitutive relations

given by equation (3.66),[
1− (e0a)

2∇2
] [

1− (e1a)
2∇2

]
txx =

E
[
1− (e1a)

2∇2
]
εxx − El2

[
1− (e0a)

2∇2
] ∂

∂x

∂εxx
∂x

(3.72)

Further expanding the expression by explicitly writing the Laplacian,[
1− (e0a)

2 ∂2

∂x2
− (e1a)

2 ∂2

∂x2
− (e0a)

2(e1a)
2 ∂4

∂x4

]
txx =

Eεxx − E(e0a)
2∂

2εxx
∂x2

− El2
∂2εxx
∂x2

− El2(e1a)
2∂

4εxx
∂x4

=

E

[
1− (e0a)

2 ∂2

∂x2
− l2

∂2

∂x2
− l2(e1a)

2 ∂4

∂x4

]
εxx

(3.73)

Following Lim et al. [76] derivation, by assuming there is a single nonlocal parameter

for both classical and higher-order stresses (i.e., e0a = e1a = ea) and neglecting

the terms higher derivative order than two (i.e., retaining the terms of order ∂2

∂x2 ),

simplified form can be found as[
1− 2(ea)2

∂2

∂x2

]
txx = E

[
1− (ea)2

∂2

∂x2
− l2

∂2

∂x2

]
εxx (3.74)

which is not the one that is presented and is used in the literature. Taking the simpli-

fied constitutive relation directly from Lim et al. [76] it can be written as,[
1− (ea)2

∂2

∂x2

]
txx = E

[
1− l2

∂2

∂x2

]
εxx (3.75)

which can only be obtained if and only if equality of nonlocal parameters are assumed

equal before expanding, and then the extra linear differential operators are simplified

using convolution integral.
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A much easier and mathematically applicable method is to assume equality of non-

local parameters for the linear differential operator defined in equation (3.71) and

multiply both sides of equation (3.68) once and substitute the constitutive relations

given by equation (3.66)[
1− (ea)2

∂2

∂x2

]
txx = Eεxx − El2

∂

∂x

∂εxx
∂x

= E

[
1− l2

∂2

∂x2

]
εxx (3.76)

Without further corrections or modifications to the NSGT formulation, multiplying

both sides of the equation (3.70) by the linear differential operator defined in equa-

tion (3.71) stress resultants can be turned into a form that can utilize the constitutive

relations, [
1− (ea)2∇2

]
{M,N,M (1), N (1)} =[

1− (ea)2∇2
] ∫

A

{
ztxx, txx, zσ

(1)
xx , σ

(1)
xx

}
dA

(3.77)

Since the area integral does not contain any x dependence, L can be moved inside of

the integral and can directly be applied to the total and higher-order stresses, at which

equation (3.76) can be substituted as,[
1− (ea)2∇2

]
{M,N,M (1), N (1)} =

E

∫
A

{
z

[
1− l2

∂2

∂x2

]
εxx,

[
1− l2

∂2

∂x2

]
εxx, zl

2 ∂2

∂x2
εxx, l

2 ∂2

∂x2
εxx

}
dA

(3.78)

Note that, strains can be expanded in terms of displacements using equation (3.64),

however, it is left as it is for clarity.

With the variation of potential energy expression taken care of, kinetic energy and

distributed external transverse load can be written as is done in the classical elasticity

theory,

Tt =
1

2

∫
V

ρt

[(
∂u1

∂t

)2

+

(
∂u3

∂t

)2
]
dV

W =

∫ L

0

(qw) dx

(3.79)

where Tt is the kinetic energy of the tube, W is the non-conservative external work

done on the system, and q is the force per unit area applied vertically to the system.

Substituting the displacements of equation (3.60) into the equation (3.79), kinetic

energy expression can be written as,

Tt = ρt

∫ L

0

[
I

(
∂2w

∂x ∂t

)2

+ A

(
∂u

∂t

)2

+ A

(
∂w

∂t

)2
]
dx (3.80)
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where I is the second moment of area and ρt is the density of the tube. For Euler-

Beronulli beam theory rotary part is neglected as is done here, however, when it is

not neglected beam theory becomes Rayleigh beam theory. Combining all terms of

the total energy coming from equations (3.69)(3.79)(3.80) and equating its variation

to zero as Hamilton’s principle dictates as,

∫ t2

t1

δ (Tt − U +W ) dt = 0 (3.81)

Using integration by parts on equation (3.81), collecting coefficients of each indi-

vidual displacement’s variation and equating them to zero, the equation of motion

without flow can be obtained,

δw :
∂2M

∂x2
+

∂N

∂x

∂w

∂x
+N

∂2w

∂x2
− ρtA

∂2w

∂t2
= q

δu :
∂N

∂x
− ρtA

∂2u

∂t2
= 0

(3.82)

and corresponding boundary conditions are

N = 0 or u = 0 at x = 0, L

N (1) = 0 or
∂u

∂x
= 0 at x = 0, L

∂M

∂x
+

∂w

∂x
N = 0 or w = 0 at x = 0, L

M − ∂w

∂x
N (1) = 0 or

∂w

∂x
= 0 at x = 0, L

M (1) = 0 or
∂2w

∂x2
= 0 at x = 0, L

(3.83)

Writing the equation of motion can still be done at this step, however, it will be done

for the final equation of motion where the fluid flow is also incorporated.

Instead by multiplying the axial part of the equation (3.82) by L and assuming the

axial inertia is negligible, the equation can be simplified as the normal force becomes

constant (C) after integrating. Integration constant C can be found following the

procedure explained by Şimşek [83], first, the normal force resultant is written in

terms of displacements using equation (3.78) and substituting equation (3.64),
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N = E

∫
A

[
1− l2

∂2

∂x2

][
∂u

∂x
− z

∂2w

∂x2
+

1

2

(
∂w

∂x

)2
]
dA = C

EA

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]
− EAl2

[
∂3u

∂x3
+

∂3w

∂x3

∂w

∂x
+

(
∂w2

∂x2

)2
]
= C

Alternatively : N = EA

[
∂u

∂x
+

1

2

(
∂w

∂x

)2
]
− EAN (1) = C

(3.84)

Note that for mathematical rigor, the same manipulation can be made by first differ-

entiating the axial part of the equation (3.82) and substituting the second derivative

into the definition of total normal force definition of equation (3.78). To apply the

boundary conditions of immovable ends which are

u(0, t) = 0, u(L, t) = 0,

∂u

∂x

∣∣∣∣
x=0

= 0,
∂u

∂x

∣∣∣∣
x=L

= 0 or N (1)(0, t) = 0, N (1)(L, t) = 0
(3.85)

where the first set is the classical conditions which has a physical meaning while

the second set is the higher-order boundary conditions and does not have a physical

analog. Hence, the choice between the two is ambiguous and the literature chooses

the geometric one yet MD simulation calibration suggests that the natural one might

be better [77].

Interestingly, Şimşek [83] does not use either of the higher-order boundary conditions,

but equates the second-order derivative of axial displacement to zero with referencing

to an article by Aifantis [134] in which the used boundary condition is not mentioned

but only the higher order boundary condition for transverse direction is mentioned as

is derived in equation (3.83). For completeness, and to not separate too far from the

generally used methods, two derivations will be carried out, one using the ∂2u
∂x2 and the

other one is the natural boundary condition coming from equation (3.85). Note that,

the geometric one of equation (3.85) was not used because it produced a non-trivial

solution for the displacement and at that point, it is not very far from solving two

equations.

First, utilizing Şimşek’s boundary condition; by integrating both sides of the equation

(3.84) between 0 and L produces

44



[
u(L, t)− u(0, t)− l2

∂2u

∂x2

∣∣∣∣
x=L

+ l2
∂2u

∂x2

∣∣∣∣
x=0

]
︸ ︷︷ ︸

=0

+
1

2

∫ L

0

{(
∂w

∂x

)2

− 2l2

[
∂3w

∂x3

∂w

∂x
+

(
∂w2

∂x2

)2
]}

dx =
CL

EA

→ C =
EA

2L

∫ L

0

{(
∂w

∂x

)2

− 2l2

[
∂3w

∂x3

∂w

∂x
+

(
∂w2

∂x2

)2
]}

dx

(3.86)

Now, utilizing the natural boundary condition of equation (3.85); by integrating both

sides of the alternative form of the equation (3.84) between 0 and L produces,[
u(L, t)− u(0, t) +N (1)(0, t)−N (1)(L, t)

]︸ ︷︷ ︸
=0

+
1

2

∫ L

0

(
∂w

∂x

)2

dx =
CL

EA

→ C =
EA

2L

∫ L

0

(
∂w

∂x

)2

dx

(3.87)

where the integration constant becomes the one obtained with CET. Another fact

that is noticed later in the study is that if the extra part of the integrand in equation

(3.86) is examined, it can be written as the derivative of a function of x and t. Since

the separation of variables will be assumed in any method of solution, under that

assumption, integral can also be written in terms of the first derivative x as,∫ x

0

[
∂3w

∂x′3
∂w

∂x′ +

(
∂w2

∂x′2

)2
]
dx′ =

∫ x

0

∂

∂x′

[
∂2w

∂x′2
∂w

∂x′

]
dx′ (3.88)

such that the fundamental theorem of calculus can be utilized (skipping the separa-

tion of variables and recombination) to obtain the solution analytically in terms of

derivatives of w as,

F (x) =

∫ x

0

∂

∂x′

[
∂2w

∂x′2
∂w

∂x′

]
dx′ =

∂2w

∂x2

∂w

∂x
(3.89)

For x = L or x = 0, either the first derivative or the second becomes zero for any

boundary condition possible that can be written with equation (3.83), hence the extra

part introduced does not contribute to nonlinearity at all. This is also the observation

that is made using the GtDQM matrix form during the solution, such that only the

form in equation (3.87) will be used.

The reduced form can now be obtained if equation (3.87) is used while defining the

integration constant. Substituting the definition of N(x, t) = C into equation (3.82),

∂2M

∂x2
+ C

∂2w

∂x2
− ρtA

∂2w

∂t2
= q (3.90)
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3.4.2 Fluid-Structure interaction of Fluid Flow

Fluid-structure interaction terms can now be added to the nonlinear beam equation of

motion separately. The most common way of including the effects of fluid flow is to

model it as if an equivalent uniform flow is moving through the beam, in which fluid

acts as a solid [89]. Furthermore, interaction terms can easily be obtained by writing

the kinetic energy of the flowing fluid, since potential energy storage is limited.

Considering Euler-Bernoulli assumptions states that the slope at a point is directly

the first derivative of the transverse deflection (i.e., ∂w
∂x

, and fluid is following the

deformed beam the fluid kinetic energy can be written as,

Tf = ρf

∫
V

∂u1

∂t
+ U

√
1−

(
∂w

∂x

)2
2

+

(
∂u3

∂t
+ U

∂w

∂x

)2
 dV (3.91)

where ρf is fluid density, U is the flow velocity. Alternatively, Païdoussis [89] and

other current literature [108, 113] uses the kinetic energy term derived without con-

sidering the motion difference along the z direction and uses mid-plane deflections to

reflect the motion of the whole body. Using the inextensibility condition of clamped-

clamped beams and using binomial approximation Païdoussis [89] derives the given

kinetic energy definition for nonlinear (i.e., large deflection) beams,

Tf = ρfAf

∫ L

0

[(
∂u

∂t
+ U

(
1 +

∂u

∂x

))2

+

(
∂w

∂t
+ U

∂w

∂x

)2
]
dx (3.92)

where Af is the area where fluid can flow. Since, the scope of the thesis is to show the

solution concept rather than correctly model the fluid-structure interaction, one used

in the literature will be used.

Applying Hamilton’s principle so that the fluid kinetic energy is the same as the rest

of the equation of motion, its effect can be calculated as,

δw :
∂2w

∂x2
AfρfU

2 + 2
∂2w

∂x ∂t
AfρfU +

∂2w

∂t2
Afρf

δu :
∂2u

∂x2
AfρfU

2 + 2
∂2u

∂x ∂t
AfρfU +

∂2u

∂t2
Afρf

(3.93)

At this stage, there are two corrections to the formula that is frequently used in litera-

ture. One is to multiply the centrifugal term (i.e., the term with U2) with a correction

factor that takes care of the actual non-uniformity of the flow profile while taking
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the cross-section integral between equations (3.91) and (3.92). For a fully developed

and laminar flow parabolic flow profile gives a correction factor of 4/3 while a turbu-

lent flow generally produces a correction factor between 1 and 4/3 depending on the

turbulent characteristics of the flow [90].

Another, possibly more important, correction is to the changing mechanics of the flow

in the nanoscale. Since the Knudsen number (Kn) is comparable to unity in very small

length scales, which is the ratio of the molecular free path to the representative length

of the flow, continuum flow assumptions may fail. One such assumption is the no-

slip boundary condition at the fluid-structure interface fails and there becomes a non-

zero slip velocity at the interface. This problem is somewhat mended by Beskok &

Karniadakis [91] such that an effective flow speed is used which is a correction factor

multiple of the expected flow speed of no-slip boundary condition. This correction

factor may range from 1 to 5 for gaseous flows while it is very close to unity for nano-

liquid flows [92], while experimental verification for the correction factor is needed,

generally used correction factor is around 1.4 for comparison in the literature[108].

Since these correction factors do not modify the characteristics of interaction and are

just a scale factor for the velocity, the main formula stays the same such that the

method developed can be used with any correction that does not change the polyno-

mial degree of the flow speed. Similar methods can also be applied to interaction

models that rely on simplified Navier-Stokes equation solutions since nonlinear so-

lution already needs iterations. However, in this work, no correction will be applied

since the methods are still applicable with the only change being the scale of velocity.

Following the same derivation that is done to reduce the dependency of axial displace-

ment, axial inertia terms are neglected and equation (3.93) is added to the equation

(3.90)

∂2M

∂x2
+ C

∂2w

∂x2
−m

∂2w

∂t2
−Mf

(
∂2w

∂x2
U2 + 2U

∂2w

∂x ∂t
+

∂2w

∂t2

)
= q (3.94)

where m, and Mf are the mass per unit length of the tube (ρtA), and mass per unit

length of the fluid (ρfAf ), respectively.

To be able to use the constitutive relations, multiply both sides of equation (3.94)

with L. From the resulting equation, using the definitions of the total moment from
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equation (3.78) and strain definitions of equation (3.64) equation of motion in terms

of mid-plane displacement can be obtained,

U2
(
1− (ea)2∇2

)
Mf

∂2w

∂x2
+ 2U

(
1− (ea)2∇2

)
Mf

∂2w

∂x ∂t

+ EI
(
1− l2∇2

) ∂4w

∂x4
− C

(
1− (ea)2∇2

) ∂2w

∂x2

+ (Mf +m)
(
1− (ea)2∇2

) ∂2w

∂t2
= q

(3.95)

Since the order of magnitudes of different variables normalizing is necessary for sta-

ble solutions. Using the following non-dimensional parameters,

x∗ =
x

L
, w∗ =

w

h
, α =

ea

L
, ξ =

l

L
, S =

d20A

I
, t∗ =

t

L2

√
EI

(Mf +m)

q̄ =
qL4

EIh
, U∗ =

√
MfL2

EI
U, M =

Mf

Mf +m
, ω∗ = ωL2

√
(Mf +m)

EI

(3.96)

and applying ∇2 = ∂2

∂x2 , non-dimensional equation of motion can be written as,

U∗2
(
∂2w∗

∂x∗2 − α2∂
4w∗

∂x∗4

)
+ 2
√

MU∗
(

∂2w∗

∂x∗∂t∗
− α2 ∂4w∗

∂x∗3∂t∗

)
+

∂4w∗

∂x∗4 − ξ2
∂6w∗

∂x∗6 − C

(
∂2w∗

∂x∗2 − α2∂
4w∗

∂x∗4

)
+

∂2w∗

∂t∗2
− α2 ∂4w∗

∂x∗2∂t∗2
= q̄

(3.97)

where the integration constant C is defined by the equation (3.87),

C =
1

2
S

∫ 1

0

(
∂w∗

∂x∗

)2

dx∗ (3.98)

3.4.3 Applying GtDQM

Using the GtDQM definitions of equation (3.49), equation (3.97) can be discretized

in spatial domain as,

[K +Kf +KNL(w)]w + [C +Cf +CNL(w)] ẇ +Mẅ = f (3.99)

where K, Kf , KNL(w), C, Cf , CNL(w), and M are the stiffness, stiffness

of fluid flow, response-dependent nonlinear stiffness, proportional viscous damping,

damping of fluid flow, nonlinear viscous damping, and mass matrices, respectively
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and defined as,

K = T TP
[
A(4) − ξ2A(6)

]
T Kf = U∗2T TP

[
A(2) − α2A(4)

]
T

KNL =
1

2
S
[
β11
]
T TP

[
A(2) − α2A(4)

]
T

M = T TP
[
I − α2A(2)

]
T f = T TP q̄

C = ηK CNL = ηKNL Cf = 2
√

MU∗T TP
[
A(1) − α2A(3)

]
T

(3.100)

where βnm is the scalar-valued integral of product between nth and mth component

of w∗ which can be written as,

βnm =
1

2
S
(
A(1)Twdn

)T
P
(
A(1)Twdm

)
(3.101)

For the time domain equation, n and m are not necessary however for the harmonic

balance they can be attributed to the sine or cosine parts.

Note that, the proportional viscous damping matrix is defined by utilizing Kelvin-

Voigt viscoelastic model, where Young’s Modulus (E) can alternatively be written as

[78],

E∗ = E

(
1 + η

∂

∂t

)
→ η∗ =

η

E

√
EI

(Mf +m)L4
(3.102)

to introduce some damping to the system, where E∗ is the viscoelastic modulus and

η is the damping ratio and η∗ is the normalized damping ratio.

Furthermore, for the clamped-clamped (CC) case, elements of the boundary condition

matrix (B) can be written as,

B1j = I1j and B2j = INj

B3j = A
(1)
1j and B4j = A

(1)
Nj

B5j = EIl2A
(4)
1j and B6j = EIl2A

(4)
Nj

or B5j = A
(2)
1j and B6j = A

(2)
Nj

(3.103)

where the first option for the higher order boundary condition can be obtained by sub-

stituting boundary condition equation (3.83) into the higher order moment definition

of equation (3.78). Note that, since there is no physical interpretation of higher-order

stress, both boundary conditions can be applied to the problem.

Moreover, for the hinged-hinged (HH) case, which is simply supported with immov-

able endpoints, elements of the boundary condition will mostly be the same with
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equation (3.103), the only difference being the third row changing to other boundary

condition option as,

B3j = A
(2)
1j − ξ2A

(4)
1j and B4j = A

(2)
Nj − ξ2A

(4)
Nj (3.104)

which again can be derived by substitution and the earlier higher-order natural bound-

ary condition of equation (3.85).

3.4.4 Frequency Domain Solution Methods

Stability analysis can be done by utilizing a state space form without forcing by

adding an identity equation to equation (3.99) as,

 0 M

M C +Cf +CNL

 ẏ +

−M 0

0 K +Kf +KNL

y = 0 (3.105)

where y =
{
ẇT wT

}T and if assumed a harmonic solution of the form y = ỹeλt,

non-trivial solution of this problem would produce complex eigenvectors ỹn and com-

plex eigenvalues λn of the state space eigenvalue problem. The imaginary part of the

eigenvalue Im [λn] is the damped natural frequency (i.e., free vibration oscillation

frequency), and the real part of the eigenvalue Re [λn] is the decay rate.

When the decay rate becomes zero or positive instead of exponential decay, the sys-

tem responds with an exponential increase in which catastrophic failure may occur.

At the point of zero decay rate, if the damped natural frequency is zero, instability is

of the divergence type; and if the natural frequency is not zero but a positive value,

then the instability is fluttering instability. Instability graphs can be obtained by the

solution of the state space eigenvalue problem coming from equation (3.105) at dif-

ferent flow speeds with the lowest few modes such that point of instability and mode

of instability can be seen clearly.

Noting that directly solving the nonlinear equation is not applicable since the resulting

eigenvectors change the stiffness matrix they are created, hence an iterative algorithm

is needed such as Newton’s method that needs to iteratively solve the problem at each
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iteration step. Alongside long solution times, this solution method may also create

convergence problems [104].

Alternatively, the nonlinear problem can be solved with time domain integration

methods at which time domain simulation can be done step-by-step with lots of dif-

ferent initial conditions to obtain, phase-plane diagrams or bifurcation diagrams to

capture the characteristics of nonlinearity [110]. These computationally very expen-

sive methods not only lack in some problems but also may fail to capture the post-

instability regions.

The newly proposed method by Kösterit and Cigeroglu [135] uses Newton’s method

with pseudo-arc-length continuation after applying the harmonic balance method (HBM)

to predict the critical flutter speed and post-flutter characteristics, in which it will be

expanded to be used in fluid conveying carbon nanotubes.

Assuming a forcing of the form q = q0 sinωtsolution of the formwd = wds sinωt+

wdc cosωt where, wds and wdc are the sine and cosine coefficients of the harmonic

solution and applying harmonic balance to the equation (3.99), the approximate peri-

odic solution can be written as,K +Kf − ω2M −ω (C +Cf )

ω (C +Cf ) K +Kf − ω2M

wds

wdc

+fNL+f
′
NL =

f00
 (3.106)

details of the derivation will be given in the Appendix B. In this form, a forced re-

sponse of the system can be obtained and response-dependent FRFs can be drawn. In

this form number of unknowns are in total 2N + 1, since there are each N unknowns

for cosine and sine parts and there is also the unknown frequency variable. If ω is

taken to be a predetermined value, then the solution to the 2N nonlinear algebraic

equations can be obtained by the use of Newton’s method. Furthermore, introducing

an equation for a 2N + 1 dimensional hyper-sphere, then the solution to the 2N + 1

nonlinear algebraic equations can be obtained by the use of Newton’s method with

pseudo-arc-length continuation. With this change of variables, ω becomes an un-

known, and the arc length becomes the predetermined value or known variable value

in the case of adaptive step size.

If instead the free vibration natural frequency of the system was wanted, ω becomes

unknown without including the path following, so that number of unknowns becomes
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2N+1 with 2N equations. Hence one extra equation is needed to be able to solve the

system, which is generally taken to be the amplitude of vibration of a specific point.

This makes it so that the eigenvectors become scaled to reach a specific amplitude at

a specific point, where the specific point is taken to be the maximum deflection point

which is the mid-point of the beam for clamped-clamped beams. If any other specific

point wants to be utilized, a specific row of the coordinate up-scaling matrix T can

be used where the up-scaled grid includes the specific point in need.

Now, the system can be solved non-trivially with 2N + 2 unknowns and 2N + 1

equations by defining the vibration amplitude to a predetermined value. Similarly,

the pseudo-arc-length continuation can be utilized by adding a 2N + 2 hyper sphere

equation and making amplitude a variable. With this solution method backbone curve

of the structure can be obtained where the natural frequency of the system is obtained

for different vibration amplitudes.

With similar logic, if the flow speed U∗ is not a prescribed value but taken to be an

unknown value, the critical speed at which instability occurs U∗
cr can be found. The

number of unknowns is 2N +4, where 2N comes from the sine and cosine deflection

values, 2 comes from the real and imaginary parts of the eigenvalue λ, 1 comes from

the amplitude of vibration, and 1 comes from the critical flow speed U∗
cr. Similarly,

the number of equations needs to be increased by two from the backbone method to

accommodate the new unknowns. Knowing the mode shapes of damped structures

are complex and should have phase differences between each point in the domain,

by fixing the phase of a specific point to zero a new equation is found where 0 does

not contribute to the number of unknowns. Furthermore, at the point of instability,

the complex part of the eigenvalue becomes zero by definition of instability, hence a

new equation can also be written or else the complex part of the frequency may not

even be used since it will be zero. Using the latter method, the number of unknowns

is 2N + 3 and the total number of equations is 2N + 2 hence the solution can be

obtained by determining a vibration amplitude.

By utilizing the pseudo-arc-length continuation by adding a 2N + 3 hyper sphere

equation and making amplitude a variable, critical flow velocity can be obtained with

variable amplitude. This would show the maximum deflection possible at a specific

52



flow velocity even after experiencing instability. Such knowledge might be very im-

portant because large deflections that are comparable with the thickness of the beam

but far from the failure may result in favorable properties such as quasi-zero stiff-

ness[113].

Furthermore, this method can also be expanded to obtain the critical flow velocity

for changing problem parameters, whether it be the nonlocal parameter, length-scale

parameter, or any other geometric or material parameter. This can be achieved by

taking the predetermined vibration amplitude to be fixed throughout the analysis but

keeping the equation that equates the deflection of a point to the prescribed value.

While the unknown number decreases by one since it is a user-defined parameter, the

equation number stays the same; and if solved would produce a quasi-linear system

with a prescribed deflection value. Instead, this extra equation can be used to path

follow through the given parameter between some range and hence a graph for the

solution can be obtained for changing variable that achieves the defined deflection

value.

Different analysis methodologies given here are summarized in the table 3.1 to be able

to keep easier track of added equations or variables. A mathematical manner of telling

was not preferred since it would not add any new information but only complicate the

articulation of ideas since most of the equations or unknowns are named with words.
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Table 3.1: Summary for the number of unknowns and equations coming from an

equation or a variable for different analysis

Analysis Type Equation or variable Number of unknown Number of equation

Forced Response

Equation of motion 2N 2N

Frequency (ω) 1 0

Hyper-sphere equation 0 1

Total 2N + 1 2N + 1

Free Vibration

Equation of motion 2N 2N

Frequency (ω) 1 0

Hyper-sphere equation 0 1

Prescribed deflection 1 1

Total 2N + 2 2N + 2

Critical Flow Speed

Equation of motion 2N 2N

Frequency (ω) 1 0

Hyper-sphere equation 0 1

Prescribed deflection amplitude 1 1

Flow Speed 1 0

Prescribed deflection phase 0 1

Total 2N + 3 2N + 3

Changing Parameter

Equation of motion 2N 2N

Frequency (ω) 1 0

Hyper-sphere equation 0 1

Problem parameter 1 0

Prescribed deflection amplitude 0 1

Flow Speed 1 0

Prescribed deflection phase 0 1

Total 2N + 3 2N + 3
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CHAPTER 4

VERIFICATION AND COMPARISON OF NUMERICAL METHODS

Finally, validation and comparison of our novel method to other common GDQM for-

mulations are performed on the examples of Euler-Bernoulli beam and Timoshenko

beam problems with different boundary conditions as well as a nonlinear beam ex-

ample with cubic nonlinearity. In all cases, our method Galerkin transformed DQM

(GtDQM) has better accuracy, convergence rate, and stability compared to commonly

used GDQM formulations without any significant computational cost.

4.1 Verification of Symmetry

First, the up-scaling matrix for which the resolution of sampling can be increased is

verified whit a trivial example. For an arbitrary 5th order polynomial

f (x) = x− 4x2 + 3x3 − 2x4 + x5 (4.1)

actual function value and up-scaled function value obtained from N number of dis-

crete points are compared using integral square error defined by∫ xb

xa

f(x)− T f(xi)dx. (4.2)

To approximate a continuous function, 10000-point sampled actual function values

and 10000-point up-scaled function values are used in the numerical integral calcula-

tion in the domain of [0, 0.5] and the resulting integral error for different number of

discrete points N is given in figure 4.1a. Moreover, in the figure 4.1b the actual curve,

the curve obtained by up-scaling the N = 6 representation, and the curve obtained by

shifting the N = 6 representation to domain [0.5, 1.5] can be seen. As expected, after

reaching the number of sampling points of polynomial order, the error is numerically
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zero and the function can be represented exactly in the domain as well as outside of

the domain (considering the function is defined and at the same order).
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Figure 4.1: Integral square error for different number of sampling points (a), values

of the function with different methods (b)

Next, it will be shown that the stiffness matrices are symmetric for different boundary

conditions of a uniform Euler-Bernoulli beam. For that, the stiffness operator/matrix

can be written as

A[ ] =
∂4

∂x4
, A = A(4), K = T TPA(4)T (4.3)

where transformation matrix T is obtained as explained in equation (3.25) from

boundary condition matrix that can be constructed from the boundary condition in-

formation given as

Clamped end (C) : w (Xb, t) = 0 and
dw

dx

∣∣∣∣
(x=Xb,t)

= 0

Free end (F) :
d2w

dx2

∣∣∣∣
(x=Xb,t)

= 0 and
d3w

dx3

∣∣∣∣
(x=Xb,t)

= 0

Simply-Supported end (S) : w (Xb, t) = 0 and
d2w

dx2

∣∣∣∣
(x=Xb,t)

= 0

(4.4)

Here Xb refers to the boundary point, which is generally 0 or L and the naming

convention will be to use capital letters for each end point’s boundary for example

‘CF ’ for a cantilevered (clamped free) beam.
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To measure how symmetric a matrix is, numerically, the skew-symmetric part can be

element-wise divided into symmetric part and the absolute maximum element of the

division can be taken; shown mathematically as

S = max
(∣∣(K −KT

)
⊘
(
K +KT

)∣∣) (4.5)

Symmetry ratio calculated from equation (4.5) is shown in figure 4.2 for different

number of Gauss-Lobatto-Chebyshev sampled points for different boundary condi-

tions and different methods of application explained in the earlier section. This shows

that the stiffness matrix obtained by using GtDQM can be safely considered symmet-

ric for numerical applications. Even though just using the transformation method is

still better than the traditional elimination method, it cannot be considered symmet-

ric. Similar results can also be obtained for a uniform grid which produces a steeper

increase with the increasing number of sampled points and can be considered sym-

metric may be up to 50 sampled points

To verify the method further and assess its ability to obtain correct numerical results,

different types of boundary condition applications with different case studies will be

concentrated on.
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Figure 4.2: Skew-Symmetric to Symmetric ratio for different number of sampled

points for a uniform Euler-Bernoulli beam subject to (a) SS, (b) CC, (c) FF, (d) CS

boundary conditions
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4.2 Case Study 1: Free Vibration of Uniform Euler-Bernoulli Beams

A uniform beam theory with Euler-Bernoulli assumptions can be written as

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
= f(x, t) (4.6)

where E is the Young’s modulus, I is the moment of inertia about the bending axis,

ρ is the density and A is the cross-sectional area of the beam. Which can be subject

to different boundary conditions from each end. Different boundary conditions that

are used are expressed in equation (4.4) and can also be used directly for this case as

well.

In free vibration analysis, by assuming deflections are harmonic in time (i.e., w (x, t) =

W (x) sinωt) and forcing is zero, the equation is converted into an eigenvalue prob-

lem.

EI
d4W

dx4
− ω2ρAW (x) = 0 (4.7)

where ω is the natural frequency and can be found from the zeroes of characteristic

equations shown in table 4.1 for different boundary conditions [128], with the defini-

tion of

ω = β2
n

√
EI

ρA
(4.8)

Then, the equations can be written in the matrix form for any boundary condition

using the GtDQM as,

K = EIT TPA(4)T , M = ρAT TPIT (4.9)

and natural frequencies are obtained by the eigenvalue solver of MATLAB’s eig()

[133] command.

After obtaining the natural frequencies, they are compared with the exact natural

frequencies obtained by solving the transcendental equations given in the table using

an absolute relative error given as

εrelative,absolute =

∣∣∣∣ωapproximate
n − ωexact

n

ωexact
n

∣∣∣∣ (4.10)
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Table 4.1: Characteristic equation and mathematical expressions for different bound-

ary conditions of uniform Euler-Bernoulli beam theory

Boundary Condition Name Boundary Condition Characteristic Equation

Both ends simply supported (SS)

W (0) = 0,
d2W

dx2

∣∣∣∣
x=0

= 0

sinh βnL ∗ sin βnL = 0

W (L) = 0,
d2W

dx2

∣∣∣∣
x=L

= 0

Both ends clamped (CC)

W (0) = 0,
dW

dx

∣∣∣∣
x=0

= 0,

cosh βnL ∗ cos βnL− 1 = 0

W (L) = 0,
dW

dx

∣∣∣∣
x=L

= 0

Both ends free (FF)

d2W

dx2

∣∣∣∣
x=0

= 0,
d3W

dx3

∣∣∣∣
x=0

= 0

cosh βnL ∗ cos βnL− 1 = 0
d2W

dx2

∣∣∣∣
x=0

= 0,
d3W

dx3

∣∣∣∣
x=0

= 0

One end clamped and the other end

simply supported (CS)

W (0) = 0,
dW

dx

∣∣∣∣
x=0

= 0,

tanh βnL− tan βnL = 0

W (L) = 0,
d2W

dx2

∣∣∣∣
x=L

= 0

In figure 4.3 absolute relative error of the first natural frequency is shown as a con-

vergence analysis for the material and geometric parameters of E = 70 GPa, ρ =

2700 kg/m3, L = 1 m, h = 0.1 m, b = 0.2 m; where L, h, b refers to length, height,

depth of the beam. Looking at the figure 4.3 GtDQM, GtDQM without applying the

Galerkin method (Transformation method), and indirect replacement method have

much smaller lowest error value compared to methods that utilize δ technique. Even

though the convergence rate is about the same for all methods, GtDQM has a much

lower starting point which makes it desirable for faster convergence.

Moreover, the ratio of real eigenvalues to all eigenvalues is given in the figure 4.4,

where zero natural frequency that should be obtained from rigid body modes for the

FF beam is not considered since they are usually found as complex numbers that are

very close to zero. It can be clearly seen that not using the δ technique to imple-

ment boundary conditions increases the stability the of eigenvalue problem, either

by using our transformation method or by using matrix manipulations. However, for
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general boundary conditions matrix manipulation may not be applicable, for example,

the cantilevered (CF) beam solution could not be reliably achieved by using matrix

manipulations by the author.

Finally, the convergence rate for the first four natural frequencies as the absolute rela-

tive error is given using GtDQM in figure 4.5. Choosing 0.1% (10−3) absolute relative

error as our desired error value, it can be observed that each natural frequency obtains

desired error value rather fast. Considering the four boundary condition equation re-

duces the size of the system matrices by 4, the actual size of the system matrix needed

to obtain the desired error is around twice the number of the natural frequency, some-

what, is in line with the rule of thumb that states only around half of the obtained total

eigenvalues are satisfactory.
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Figure 4.3: Absolute relative error of the first natural frequency for a uniform Euler-

Bernoulli beam subject to (a) SS, (b) CC, (c) FF, (d) CS boundary conditions using

different boundary condition implementations
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Figure 4.4: Percent ratio of real eigenvalues to total eigenvalues for a uniform Euler-

Bernoulli beam subject to (a) SS, (b) CC, (c) FF, (d) CS boundary conditions

63



6 8 10 12 14 16 18 20 22 24 26

N

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100
A

b
s
o

lu
te

 R
e

la
ti
v
e

 E
rr

o
r

1
st

 Natural Frequency

2
nd

 Natural Frequency

3
rd

 Natural Frequency

4
th

 Natural Frequency

Desired Error

(a) SS

6 8 10 12 14 16 18 20 22 24 26

N

10-15

10-10

10-5

100

A
b

s
o

lu
te

 R
e

la
ti
v
e

 E
rr

o
r 1

st
 Natural Frequency

2
nd

 Natural Frequency

3
rd

 Natural Frequency

4
th

 Natural Frequency

Desired Error

(b) CC

8 10 12 14 16 18 20 22 24 26 28

N

10-12

10-10

10-8

10-6

10-4

10-2

100

A
b

s
o

lu
te

 R
e

la
ti
v
e

 E
rr

o
r

1
st

 Natural Frequency

2
nd

 Natural Frequency

3
rd

 Natural Frequency

4
th

 Natural Frequency

Desired Error

(c) FF

6 8 10 12 14 16 18 20 22 24 26

N

10-15

10-10

10-5

100

A
b

s
o

lu
te

 R
e

la
ti
v
e

 E
rr

o
r 1

st
 Natural Frequency

2
nd

 Natural Frequency

3
rd

 Natural Frequency

4
th

 Natural Frequency

Desired Error

(d) CS

Figure 4.5: Absolute relative error of the first four natural frequency for a uniform

Euler-Bernoulli beam subject to (a) SS, (b) CC, (c) FF, (d) CS boundary conditions

using GtDQM
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4.3 Case Study 2: Free Vibration of Uniform Timoshenko Beams

The equation of motion of a uniform beam can be written using Timoshenko beam

theory [136] as

κAG

(
∂2w

∂x2
− ∂ϕ

∂x

)
= ρA

∂2w

∂t2
− f(x, t)

EI
∂2ϕ

∂x2
+ κAG

(
∂w

∂x
− ϕ

)
= ρI

∂2ϕ

∂t2

(4.11)

which κ and G refers to shear correction factor and shear modulus respectively while

ϕ refers to mid-plane rotation coordinate. In this form effects of rotatory inertia and

shear forces are also included in the equation of motion. Similarly, by assuming

harmonic time response natural frequencies ω can be obtained as the zeroes of char-

acteristic equations shown in table 4.2 for different boundary conditions which need

to be solved numerically since equations are implicit [137]. The equations can be

written in the matrix form for any boundary condition using GtDQM as

K = T T

P 0

0 P

κAGA(2) −κAGA(1)

κAGA(1) EIA(2) − κAGI

T
M = T T

P 0

0 P

ρAI 0

0 ρII

T
(4.12)

The displacement vector is constructed as
{
wT ϕT

}T

and natural frequencies are

obtained by the MATLAB’s eig() eigenvalue solver.

As the case study, the Timoshenko beam model reduces the fourth-order differential

equation into a system of second-order differential equations in which δ technique is

not needed while implementing boundary conditions. Therefore, the only difference

between δ technique and the transformation method becomes solving the equation of

motion at the boundary nodes which creates a minuscule difference between the two

methods. This is observable in the figure 4.6 where natural frequencies are compared

with analytical ones using absolute relative error defined in equation (4.10) for the

parameters of E = 70 GPa, G = 26 GPa, ρ = 2700 kg/m3, L = 1 m, h = 0.1 m,

b = 0.2m, and κ = 5
6
.

65



Table 4.2: Characteristic equation and mathematical expressions for different bound-

ary conditions of uniform Timoshenko beam theory

Boundary Condition Name Boundary Condition Characteristic Equation

Both ends simply supported (SS)

WW (0) = 0,
dϕ

dx

∣∣∣∣
x=0

= 0

sin s2 = 0
WW (L) = 0,

dϕ

dx

∣∣∣∣
x=L

= 0

Both ends clamped (CC)

WW (0) = 0, ϕ(0) = 0 0 = c1 (cosh s1 − cos s2)
2 −

(c1 sinh s1 − c2 sin s2)

(
sinh s1 +

c1
c2

sin s2

)
WW (L) = 0, ϕ(L) = 0

Both ends free (FF)

dϕ

dx

∣∣∣∣
x=0

= 0,
1

L

dW

dx

∣∣∣∣
x=0

− ϕ(0) = 0 0 = c1s1

(s1
L

− c1

)
(cosh s1 − cos s2)

2

−
(
c1s1 sinh s1 −

s1
L

− c1
s2
L

+ c2
c2s2 sin s2

)
×((s1

L
− c1

)
sinh s1 +

c1s1
c2s2

(s2
L

+ c2

)
sin s2

)dϕ

dx

∣∣∣∣
x=L

= 0,
1

L

dW

dx

∣∣∣∣
x=L

− ϕ(L) = 0

One end clamped and the

other end simply supported

(CS)

W (0) = 0, ϕ(0) = 0 c1 (cosh s1 − cos s2) (s1 sinh s1 + s2 sin s2)−(
sinh s1 +

c1
c2

sin s2

)
× (c1s1 cosh s1 −

s2c2 cos s2) = 0
W (L) = 0,

dϕ

dx

∣∣∣∣
x=L

= 0

*where a =
EI

ρAL4
, b =

I

AL2

(
1 +

E

κG

)
ω2
n, c =

ρI

κAG
ω4
n − ω2

n

Only the case for
√
b2 − 4ac > b is given since the other case corresponds to high-frequency excitation those frequencies are not reached.

s1 =
√

−b+
√
b2−4ac
2a

, s2 =
√

b+
√
b2−4ac
2a

, c1 =
1
s1

(
ρL
κG

ω2
n +

1
L
s21
)
, c2 =

1
s2

(
ρL
κG

ω2
n − 1

L
s22
)
,

In this case study, it can be seen that applying the Galerkin method slightly increases

the convergence rate, in which a smaller number of internal nodes are needed to

achieve the same convergence if the Galerkin method is implemented on top of the

transformation method. This increase in convergence rate could not be solely at-

tributed to the Galerkin method for Euler- Bernoulli beam since not using the δ tech-

nique also contributes to the convergence rate.

Note that direct or indirect replacement methods were not shown for this case since

direct replacement was unstable and indirect replacement was not trivial to imple-

ment, which in turn shows the disadvantages of the methods. Furthermore, stability

analysis is not shown here for brevity since there were not many stability problems

except for one or two values for the number of internal nodes, and GtDQM was not

affected by instabilities at all.
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Figure 4.6: Absolute relative error of the first natural frequency for a uniform Tim-

oshenko beam subject to (a) SS, (b) CC, (c) FF, (d) CS boundary conditions using

different boundary condition implementations
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4.4 Case Study 3: Forced Vibration of Uniform Euler-Bernoulli Beams with

large deflection nonlinearity

To show the GtDQM nonlinear capabilities, an Euler-Bernoulli beam with large de-

flection nonlinearity will be solved. This case is chosen because in the literature there

are two articles that formulate the same problem by using GDQM [16] and by using

Galerkin method [138], moreover the equation of motion can be reduced to our case

so that further explanations about derivation or methods can be obtained from those

articles.

The equation of motion of an Euler-Bernoulli beam with large deflection nonlinearity

with structural damping can be written as

EI (1 + iγ)
∂4w

∂x4
+ ρA

∂2w

∂t2
=

EA

L

∫ L

0

1

2

(
∂w

∂x

)2

dx + f(x, t) (4.13)

where i =
√
−1 is the imaginary number. Structural damping is assigned so that

forced response can be achieved without divergence problems. By assuming har-

monic deflection and forcing in complex form (w (x, t) = W̃ (x) eiωt and f (x, t) =

Re
[
q (x) eiωt

]
) in line with Harmonic Balance Method (HBM), 2 × N set of equa-

tions can be derived that will be solved to obtain the forced response of the beam. For

the GtDQM framework, this set of residual equations (R) can be written as

R =

[
EIK∗

L − ω2ρAM +
EA

2L
KNL

]wdR

wdI

− T TP

qR0
 = 0 (4.14)

Where subscripts R and I refer to real and imaginary parts of the complex deflection;

KL andKNL are linear and nonlinear stiffness matrices which can be written as

K∗
L =

 T TPA(4)T −γT TPA(4)T

γT TPA(4)T T TPA(4)T

 ,

M =

T TPIT 0

0 T TPIT

 ,KNL =

3
4
βRR + 1

4
βII

1
2
βRI

1
2
βRI

1
4
βRR + 3

4
βII


where βjk = −

(
A(1)Twdj

)T
P
(
A(1)Twdk

)
T TPA(2)T

(4.15)

Here βjk is used to denote real and imaginary parts of the displacement vector, where

changing indices j and k to R and I can be used to denote real and imaginary parts
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respectively. While taking the integral, the integral of products method shown earlier

is used. More detailed derivation can be found in Appendix B. Moreover, transfor-

mation matrix T is constructed considering simply supported boundary conditions at

both ends.

Using the Galerkin method with trial functions from the linear system with simply

supported boundary conditions at both ends as

φr (x) = sin
(rπx

L

)
, r = 1, 2, . . . , n (4.16)

Then, the residual vector can be obtained for a uniform excitation with magnitude F

as

R =

KL −γKL

γKL KL

− ω2ρAI +

KNL 0

0 KNL

wR

wI

− Fq (4.17)

where system matrices are

KL =


EIπ4

L4 14 0
. . .

0 EIπ4

L4 n4

 , q =




2L
1π

(1− cos 1π)
...

2L
nπ

(1− cosnπ)


0


KNL =

3EAπ4

16L4

n∑
s=1


s214

√
wR

2
s + wI

2
s 0

. . .

0 s2n4
√

wR
2
s + wI

2
s


(4.18)

The residual vectors obtained need to be solved numerically for each solution step,

the solver uses Newton’s method with arc-length continuation as explained earlier.

In the figure 4.7 the response-dependent frequency response functions (FRF) of the

nonlinear system to a harmonic uniform forcing for the parameters of E = 70 GPa,

ρ = 2700 kg/m3, L = 1 m, h = 0.1 m, b = 0.2 m, γ = 0.1 and F = 400 kN/m,

with simply supported at both end boundary conditions, using Galerkin method, Gt-

DQM, transformation method and elimination method. Frequency is normalized ac-

cording to ωnormalized = ω
√

ρAL4

π4EI
, however, displacement is plotted without normal-

ization at the final figures using a linear axis.
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Note that for this figure N is used to denote the final matrix size after applying the

boundary conditions since the real size used for computation is lower due to this

boundary condition application.

The effect of an increased convergence rate is obvious since more points are needed

to obtain very similar FRF curves as methods with slower convergence rates are used.

If our method of choosing N is to stop when change does not produce any noticeable

difference for the scale used in the zoom in the figure 4.7, it can be chosen N = 3,

N = 5, N = 7, N = 9 for Galerkin method, GtDQM, transformation method, and

elimination method, respectively. However, the N = 1 solution is also usable for the

Galerkin method and GtDQM by looking at the original figure.

Moreover, the computational cost of extra matrix multiplications for transformation

and the inner product does not produce a significant increase in run time on a single-

threaded CPU usage for the increasing number of nodes N shown in the figure 4.8.

This would indicate, at least for this particular case, GtDQM halves the needed time

compared to the traditional elimination method to achieve similar or better conver-

gence. Considering adaptive step-size is not used to achieve a similar number of

solution points per method for each N any possible increase in speed coming from

symmetric system matrices of GtDQM may not be represented here.
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Figure 4.7: Frequency response functions obtained using (a) Galerkin method, (b)

GtDQM, (c) Transformation method, and (d) Elimination method for different prob-

lem sizes
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Another obvious take about both of these graphs is that the Galerkin method is much

more efficient since trial functions are exact solutions to the linear system and orthog-

onal to each other, the nonlinear matrix becomes orthogonal which increases con-

vergence rate and lowers the run-time immensely. However, this is only applicable

to simple boundary conditions where the trial function can be obtained analytically,

which limits its usage significantly.
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Figure 4.8: Total run-time of the solver averaged from 10 runs for each method
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CHAPTER 5

FLUID CONVEYING CARBON NANOTUBES

In this section, results obtained for nonlinear fluid conveying carbon nanotubes using

small-scale theories will be shown and commented upon.

Firstly, verification and convergence will be done and after being sure the method

is capable of solving the problem at hand, new results will be shared that handle

the nonlinearity at the frequency domain. Time domain verification will be given if

applicable.

5.1 Verification

Since convergence for flow-free natural frequencies for classical elasticity theory

(CET) is conducted in the earlier section in the figure 4.5 only the convergence anal-

ysis with the flow will be conducted. Since flow speed produces lots of eigenvalues

and nearly no analytical data to compare, the comparison is done at the first instabil-

ity speed given analytically by Païdoussis [89] as U∗
cr = 2π for the non-dimensional

mass ratio (M ) of 0.5. At that speed expected analytical eigenvalue is 0+0i such that

the comparison can directly be done with the eigenvalue itself. Table 5.1 shows the

real and imaginary parts as well as the amplitude of the eigenvalue and it can clearly

be seen that N = 15 has the lowest absolute value which also has an exact zero decay

rate, furthermore absolute value slightly increases as the N increase after that point

on.
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Table 5.1: Real, imaginary, and absolute value of eigenvalue for different domain

sizes at the U∗ = 2π for M = 0.5

Total Domain Size (N ) Real part of λ Imaginary part of λ Absolute value of λ

5 5.501 −5.039× 10−15 5.501

6 4.658 −2.57× 10−14 4.658

7 0.4572 −2.637× 10−15 0.4572

8 0.4505 3.019× 10−13 0.4505

9 0.02213 −2.637× 10−13 0.02213

10 0.02212 1.103× 10−12 0.02212

11 0.0006461 3.769× 10−13 0.0006461

15 0 −6.263× 10−6 6.263× 10−6

17 0 −3.171× 10−6 3.171× 10−6

21 1.208× 10−5 9.294× 10−10 1.208× 10−5

25 2.302× 10−5 9.093× 10−10 2.302× 10−5

Similar convergence analysis can be conducted with nonlocal strain gradient theory

(NSGT) with non-dimensional parameters of M = 05, length scale parameter (ξ) and

nonlocal parameter (α) are taken as 0.1. Since no exact data for a particular speed

is missing, self-convergence will be done and further comparisons will be conducted

for verification. At that speed of U∗ = 5 each part of the eigenvalue is compared with

the absolute percent relative error of the earlier domain size as given by the equation

(4.10).

Table 5.2 shows the absolute percent relative change of real and imaginary parts as

well as the amplitude of the eigenvalue and it can be seen that N = 15 still changing

considerably and may not be taken as converged convincingly. N = 17 has much

lower relative change and is better suited to be taken as converged, which is the logical

continuation of the table 5.1 since NSGT has two more boundary points (due to two

more boundary conditions) compared to CET, such that N = 15 of CET has the same

system matrix size as N = 17 of NSGT. Henceforth, N = 17 will be used unless

otherwise stated.
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Table 5.2: Percent relative changes of real, imaginary, and absolute value of eigen-

value for different domain sizes at the U∗ = 2π for M = 0.5, α = ξ = 0.1

Total Domain Size (N ) Real part of λ Imaginary part of λ Absolute value of λ

8 0.1257 0.1758 0.1257

9 0.1648 0.06774 0.1648

10 0.008392 0.007286 0.008392

11 0.004202 0.003356 0.004202

15 0.001407 0.0002897 0.001407

17 4.708× 10−6 3.702× 10−6 4.708× 10−6

21 1.535× 10−7 1.942× 10−6 1.535× 10−7

25 7.553× 10−10 4.413× 10−6 7.553× 10−10

The first verification is to obtain the stability diagram for the first three modes with

CET using clamped-clamped (CC) boundary conditions. Since only one non-dimensional

parameter appears in CET which is M , a stability diagram can be obtained with a sin-

gle unknown. Using the data by Ni et. al. [95] where M = 0.5 results can be

compared and verified for CET in the figure 5.1. As expected, the first instability

which is divergence (buckling) instability can be seen at around 2π, second instabil-

ity which is seen around ∼ 9.3 is flutter instability where the first two modes become

one with the same natural frequency and same motion.

Note that, there are normally two eigenvalues for each mode with positive and nega-

tive imaginary parts, with the same real part, where only the positive imaginary part

is shown. Moreover, while the system is unstable two eigenvalues appear for each

imaginary value, where divergence has one imaginary part hence two real values,

while flutter has two imaginary values (one positive and one negative) with accom-

panying four real parts, where each real part is bifurcated from the same line. Since

no special solver is used such as path-following, mode numbers are ordered by, in the

order of importance, looking at the closest imaginary part, looking at the closest real

part, and then smallest to largest instead of the motion they are exhibiting, instead,

the motion will be examined in detail in the following section.
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Figure 5.1: Imaginary (a) and real (b) parts of eigenvalue for changing flow speed for

M = 0.5 using CET compared to [95]
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The second method to verify is the small-scale theories, hence stability diagram of

the first mode is verified only using the data produced by Atashafrooz et. al. [112]

due to lack of clamped-clamped beam solution for small-scale theories. For nonlocal

elasticity theory (NET) ξ is taken as zero and α is taken as 0.1, for strain gradient

theory (SGT) ξ = 0.1 and α = 0 is used, and for NSGT ξ = 0.1 and α = 0.1 is used

for comparison, in all cases classical boundary condition is CC while higher-order

boundary condition is Natural boundary condition. Comparison is given in figure 5.2

again for the mass ratio of M = 0.5.

As expected, there is a close match in trend especially visible for NET, however, SGT

and NSGT results divert slightly from the verified solution. This can be attributed

to Atashafrooz et. al. [112] using the Galerkin method to discretize the domain,

even though they do not express the exact trial functions it might be assumed they

are using classical Euler-Bernoulli beam mode shapes in which case fourth order

boundary condition introduced by choosing natural higher-order boundary condition

is not satisfied exactly but only approximately since the equation of motion has the

fourth order derivative in it. It might also be due to the low quality of the given image

as the figure, or misrepresentation in figures (since real and imaginary part instability

points do not match when measured with a plot digitizer). In any case, results are

close enough to assume correctly solved with generally used methods. Note modes

are directly ordered from smallest to largest to match with the reference.

Next, the nonlinear model needs to be verified for NSGT such that after the non-

linear equation of motion and solution method is verified, it can be used to obtain

new results, and those results can be somewhat verified with a time domain solution.

Hence, Şimşek’s [83] is used for different non-dimensional nonlocal and length-scale

parameters without flow, normalized natural frequencies for different response lev-

els are given in table 5.3 for simply-supported classical conditions for a rectangular

cross-section beam (both higher-order conditions produce the same result with our

assumptions). Note that the normalization is used as is used in the reference [83].

Nearly all values agree up to the five significant figures presented, considering linear

interpolation is used to obtain values in between each solution point of arc-length

solver, it might be considered exact. Which verifies our nonlinear method with very

high precision.
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Table 5.3: Nonlinear normalized natural frequency (ω
∗√2
π2 ) for different ξ values at

α = 0.5

Arc-length results Results from [83]

Vibration Amplitude

(a = w∗
√
S)

ξ = 0.25 ξ = 0.5 ξ = 1 ξ = 0.25 ξ = 0.5 ξ = 1

1 1.1435 1.5411 2.5777 1.1435 1.5411 2.5777

2 1.5597 1.8708 2.7874 1.5596 1.8708 2.7873

3 2.0755 2.3184 3.1056 2.0754 2.3184 3.1055

4 2.6330 2.8284 3.5028 2.6329 2.8284 3.5027

5 3.2105 3.3727 3.9553 3.2105 3.3726 3.9553

5.2 Response Dependent Stability and Natural Frequency

There are a lot of parameters to be able to be used for CNTs and there seems to be

a disagreement depending on the molecular dynamics simulation method used or the

production method used. For this subsection, parameters reported in [87] for single-

walled CNT of armchair (5,5) configuration and given in table 5.4 will be used unless

otherwise stated. Moreover, non-dimensional length scale parameters will be taken

unrealistically large compared to optimization studies [78] as α = 0.4 and ξ = 0.2 to

be able to show the effects clearly.

Parameter Value

Inner diameter (din) 0.34 nm

Outer diameter (dout or h) 1.02 nm

Thickness (t) 0.34 nm

Young’s Modulus (E) 0.39 TPa

Length (L) 13.6 nm (20 dout)

Tube density (ρt) 2237 kg/m3

Fluid density (ρf ) 1000 kg/m3

Table 5.4: Material and geometric properties of CNT from [87]
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Firstly, the mode shapes of the CNT and modal assurance criteria (MAC) numbers

will be examined to make sense of the motion of the body while vibrating or going

through instability. MAC number is defined as,

MAC =
|ψT

1ψ2|2

|ψT
1ψ1||ψT

2ψ2|
(5.1)

which measures the correlation between two vectors where the MAC number of 1

means exactly the same and 0 means they are orthogonal. Examining the MAC num-

ber change over the flow speed range can give insightful results.

For CC beams linear mode shapes that are normalized to have a maximum point at 1

are shown in figure 5.3 for CET, for NSGT with different high-order boundary con-

ditions. As can be seen, the natural higher-order boundary condition produces mode

shapes much closer to CET which is due to CET equation of motion approximately

satisfying the natural higher-order boundary condition by equating it to mass. How-

ever, closeness does not signify physicality, on the other hand in GtDQM sixth order

derivative does not become symmetric under the natural boundary condition but only

for the geometric one, again physicality is questionable but it is significant to mention

here.
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Figure 5.3: First three (a-c) mode shapes of clamped-clamped beam for CET, natural

NSGT, geometric NSGT

For HH beams linear mode shapes that are normalized to have a maximum point

at 1 are shown in figure 5.4 for CET, for NSGT with different high-order boundary

conditions. As can be seen, all higher-order boundary condition produces the same
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mode shapes with CET, which is due to the fact that all order derivatives appearing

in higher-order boundary conditions are satisfied with classical boundary conditions

or equation of motion. On the contrary to CC boundary condition, all derivative

matrices produced by all boundary conditions become symmetric under the GtDQM

framework.
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Figure 5.4: First three (a-c) mode shapes of hinged-hinged beam for CET, natural

NSGT, geometric NSGT

Now, the motion exhibited by the tube as the tube gets more unstable as the flow

speed increases can be visualized by looking at the MAC number change for each

mode in the instability diagram. First, without considering the motion, real and imag-

inary parts of the eigenvalue can be shown in figure 5.5 for geometric higher-order

boundary condition, and then the imaginary part of the accurately colored instability

diagram can be shown in figure 5.6. Note that the characteristics of the diagram are

very different compared to figure 5.1 since the mass ratio is more realistic which is

around M ∼ 0.05. Such as a combination of the first two modes while the buckling

is still happening and then combined motion is experiencing flutter instability.

Moreover, by looking at the figure 5.6 motion turns to the first mode shape, even in

the flutter instability after a small section at the start of the flutter motion. Even after

reaching and passing the third mode’s frequency first vibration motion continues to

dominate the flutter effect until much later, as well as the third mode turns into the

first mode shape motion before experiencing its own instability of buckling. Which

indicates the beam is weakest in the first mode shape.

81



0 1 2 3 4 5 6 7 8 9

U
*

0

10

20

30

40

50

60

70

80

90

100
Im

(
* )

First Mode

Second Mode

Third Mode

(a) First mode shape

0 1 2 3 4 5 6 7 8 9

U
*

-60

-40

-20

0

20

40

60

R
e

(
* )

First Mode

Second Mode

Third Mode

(b) Second mode shape

Figure 5.5: Imaginary (a) and real (b) parts of eigenvalue for changing flow speed

using NSGT for CC beam with geometric higher-order boundary condition

Figure 5.6: Motion characterized eigenvalues for changing flow speed using NSGT

for CC beam with geometric higher-order boundary condition

Behavior can be better understood if individual MAC vectors are examined for each

operating mode shape as given in the figure 5.7. The most important realization is

that the first and the third mode shapes are substantially mixed with each other which
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might have a physical meaning concerning the higher-order boundary condition used,

but could not be explained here.

0 1 2 3 4 5 6 7 8 9

U
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

C

First Mode Shape Contribution

Second Mode Shape Contribution

Third Mode Shape Contribution

Critical Flow Velocities

(a) First mode shape

0 1 2 3 4 5 6 7 8 9

U
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

C

First Mode Shape Contribution

Second Mode Shape Contribution

Third Mode Shape Contribution

Critical Flow Velocities

(b) Second mode shape

0 1 2 3 4 5 6 7 8 9

U
*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
A

C

First Mode Shape Contribution

Second Mode Shape Contribution

Third Mode Shape Contribution

Critical Flow Velocities

(c) Third mode shape

Figure 5.7: MAC number for the first three (a-c) for CC beam with geometric higher-

order boundary condition mode shapes with flow compared to no flow mode shapes

Changing the higher-order boundary condition from geometric to natural changes the

whole characteristics of instabilities which is seen in the figure 5.8. Where instead

of experiencing flutter instability shortly after the second mode divergence, it occurs

after the divergence of the third mode and even then coupling is between the second

and the third modes. This indicates that the choice of higher-order boundary condition

is a vital part of an instability analysis which increases the importance of the topic.

By further looking at the MAC vectors in figure 5.9 change of motion with changing

flow speed can be seen, as the first two modes are getting closer starting after the first

divergence instability third mode also changes so much so that both second and third

modes couple and go through flutter in the first mode while the divergence configu-

ration is also in the first mode shape. This again shows the importance of examining

the motion characteristics instead of mode numbers. Another observation is that for

this case linear mode shapes are much more orthogonal to each other compared to the

geometric high-order boundary condition case.
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Figure 5.8: Imaginary (a) and real (b) parts of eigenvalue for changing flow speed

using NSGT for CC beam with natural higher-order boundary condition
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Figure 5.9: MAC number for the first three (a-c) mode shapes for CC beam with

natural higher-order boundary condition with flow compared to no flow mode shapes

Similar results can also be shown for HH beam with either of the higher-order bound-

ary condition since they produce the same result, however, it would not add any new

observation; hence it is omitted. Instead, the effect of damping on the instabilities is

shown on the HH beam with the damping ratio of η = 0.01 (or η∗ = 4.8 ∗ 10−4).

Real and imaginary parts of the eigenvalue are shown in figure 5.10 and motion char-
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acteristics are shown in the figure 5.11. Motion characteristics are very similar to CC

beam with geometric boundary conditions which might be attributed to the fact that

second-order derivative boundary conditions are the same for both.
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Figure 5.10: Imaginary (a) and real (b) parts of eigenvalue for changing flow speed

using NSGT for HH beam

Figure 5.11: Motion characterized eigenvalues for changing flow speed using NSGT

for HH beam
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More importantly, the effect of damping mixes the arrangement of modes to a tangled

state, it is nearly indistinguishable even by manually looking at the mode shapes and

eigenvalues. For example, at the point where mode coupling occurs real parts become

coupled and follow the same curves on the other hand imaginary parts are separated

from each other. Or at the point where the third mode crosses coupled first and second

modes, the third mode never follows the obvious trajectory downwards. These results

show that a manual eigenvalue solver which follows the path of a given initial mode

shape is needed for the analysis of a damped system for a better understanding of

physicality.

5.3 Nonlinear results

While linear analysis is a good starting point for an instability analysis, consider-

ing instabilities are important sources of large deflections, analysis cannot be made

whole without examining the nonlinear behavior. Time domain analysis is generally

preferred in the literature due to ease of application, however, time constraints make

it near impossible to conduct on realistic structures, hence it is very important to use

a frequency domain solution.

To clearly show the effect of increasing amplitude on the system characteristics, a

backbone curve can be constructed such that a change of natural frequency can be

observed. Figure 5.12 shows the change of natural frequency per midpoint vibration

amplitude for CC beam with both boundary conditions, which clearly shows harden-

ing behavior for both higher-order boundary conditions. Compared to the geometric

boundary condition, the increase of natural frequency is almost double for the natural

boundary condition which again shows the importance of the higher-order bound-

ary condition choice. Moreover, curves represent another important fact that even

a moderate vibration of the amplitude of one height noticeably affects the vibration

characteristics and must be taken into account in any stability analysis. Similarly for

the HH beam, the backbone curve is shown in figure 5.13 which again shows the clear

hardening behavior with higher change than both options of CC beams.

Note that, even though frequency response can easily be constructed for the natural
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boundary conditions, any of the ode() alternatives of Matlab could not find a solution

even for relatively small time spans. Hence alternatively size of the matrices is made

smaller by lowering the number of total points to N = 11 which only then solution

achieved convergence and time domain simulation can be conducted. The exact cause

of this is unknown, but likely result is that the problem with the natural boundary

condition is not a self-adjoint problem even without applying GtDQM, which can

be shown simply following from the equation (3.50). This might reveal insight into

either higher-order boundary condition choice.
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Figure 5.12: Variation of natural frequency with changing vibration amplitude for CC

beam with geometric (a) and natural (b) boundary conditions

To further analyze the nonlinear characteristics of the system time domain solution

data for the last point in the figure 5.13 is used to obtain a frequency response diagram

using FFT which can be seen in the figure 5.14 around the first resonance point where

points at which integer multiples of the first resonance frequency are marked on the

graph. This clearly shows that the even number of harmonics has no contribution,

which is expected from a cubic nonlinearity introduced by the von Karman large

deflection nonlinearity. Moreover, the odd harmonics die out after the third harmonic,

and the third harmonic is around 1/20 of the first, such that, it is not really a concern

around the amplitude region the graph is obtained which supports the single harmonic

assumption.
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Figure 5.13: Variation of natural frequency with changing vibration amplitude for HH

beam
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nance showing higher harmonic contributions

Hardening behavior means that even for an ideal undamped system, vibration ampli-

tude does not reach catastrophic failure level and stays bounded on a limit at around

88



resonance frequency. This limiting behavior can also be called limit cycle oscilla-

tion (LCO), where different starting conditions on the phase plane may converge on

the same LCO line and the line determines the LCO amplitude and frequency. For

fluid conveying instabilities natural consequence of the instability is to obtain a much

higher vibration response which forces the system to obtain a LCO behavior and

makes the instability response bounded.

To be able to obtain or approximate LCO information without using long, and expen-

sive time domain simulations, the method explained that incorporates the pseudo-arc

length continuation algorithm can be used to directly measure the critical instability

speed with changing vibration amplitude. LCO amplitude variation for flow speed is

shown in figure 5.15a for CC beam with geometric higher-order boundary condition

obtained by the pseudo-arc-length continuation and time domain verification. For the

time domain simulation, speed is increased linearly up to the specified value, and

steady-state amplitude is taken afterward, and on the figure 5.15b while the curve is

the same time domain simulation is done by directly using specified flow speed value

from the start. Flow profiles and time domain response is examined in more detail in

Appendix A.2.

Comparing the two, one can easily see that linearly increasing the speed causes diver-

gence (buckling) type instability since the mean amplitude is similar to the maximum;

while constant flow speed creates flutter instability since the mean amplitude is much

smaller than the maximum amplitude, even though expected instability was diver-

gence from looking at the figure 5.5. Such a drastic motion change can be attributed

to the system experiencing instability without even getting closer to the steady-state,

and sudden changes most likely creating a marginally stable orbit around the flutter

instability, however, this comment needs to be taken with a grain of salt since needed

elaborate time domain analysis is not conducted some amount of elaboration can be

found in Appendix A.2.

Interestingly, for both cases expected LCO amplitude can be somewhat approximated

by the curve obtained by the arc-length continuation. Considering the time domain

verification curve for 15 points took around ∼ 20 minutes while the semi-continuous

curve took around ∼ 5 seconds, the improvement is massive. On the other hand, an
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exact comparison is avoided since a much more capable and optimized time domain

simulation can reduce the time substantially.
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Figure 5.15: Variation of LCO amplitude with flow speeds for CC beam with geo-

metric higher-order boundary condition with (a) linearly increasing and constant (b)

flow speed simulations

Results for CC beam with geometric higher-order boundary condition is omitted since

time domain analysis is unstable and much longer to obtain while it is not adding any

new information. Instead same graphs can be seen in the figure 5.16 for the HH beam,

where all observations are the same. It should be noted at this point that all of these

graphs use very a small amount of damping on the order of η∗ ∼ 10−5 such that

numerical derivatives can be calculated with more accuracy and stability.

Similarly, other instability points and their motion can be analyzed by choosing the

correct initial guesses for the path-following method, however, since they are not the

first instability they can only be utilized just to check if they could create marginally

stable solutions earlier than the first instability. Considering the hardening effects of

the nonlinearity, they pose no problem and are not given here for brevity.
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Figure 5.16: Variation of LCO amplitude with flow speeds for HH beam with (a)

linearly increasing and constant (b) flow speed simulations

Finally, response-dependent FRFs under harmonic uniform forcing with low damping

of η∗ = 0.001 (η = 0.0209) can be examined. In figure 5.17 receptance for the mid-

point is shown for different levels of non-dimensional uniform forcing for CC beam

with geometric higher-order boundary conditions without flow. This is verified for

two forcing values in figure 5.18 using time domain simulations with initial conditions

taken from the earlier solution point’s mode shape. Even though, all time simulation

points lie on the curve, since points are well separated on the solution curve, the

solution experienced jump phenomena earlier than expected, and if a better initial

deflection shape were given higher points of the FRF could be reached.

Note that, for time simulation amplitude is taken as the difference between the max

and the mean after reaching steady-state, unlike earlier, since when the flow FRF is

depicted buckling may occur and vibrations characteristics are captured more cor-

rectly by using the difference.
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Figure 5.17: Variation of vibration amplitude for different uniform forcing for CC

beam with geometric higher-order boundary condition without flow
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Figure 5.18: Variation of vibration amplitude for CC beam with geometric higher-

order boundary condition without flow for F ∗ = 30 (a) and F ∗ = 100 (b) uniform

force
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Now, FRFs for CNTs conveying fluids can be examined at F ∗ = 70 for different flow

speeds as given in the figure 5.19. The right-sided bend is there due to the hardening

effect and as the flow speed increases the natural frequency decreases as expected

while that is happening bending to the right increases substantially especially if com-

pared with the linear frequency for that flow speed. On the other hand, peak response

amplitude does not change much considering the solution gets closer to instability

(even experiences it) which is interesting.

Time domain verification is given in the figure (5.20) for two different flow speeds

where low flow speed verification is almost the same, higher speed starts to deviate

especially for the lower frequencies. Moreover, higher peaks only fit onto the solution

line after using the difference between the mean and the maximum deflection, where

the mean deflection is caused by the buckling. Taking this difference does not change

the results obtained earlier but corrects these results to have a good agreement with

the curve, hence is used for the whole FRF analysis.
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Figure 5.19: Variation of vibration amplitude for different flow speeds for CC beam

with geometric higher-order boundary condition for F ∗ = 70
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Figure 5.20: Variation of vibration amplitude for CC beam with geometric higher-

order boundary condition without flow for U∗ = 0.3U∗
cr (a) and U∗ = U∗

cr (b)

To explain earlier frequencies, considering there is an obvious earlier peak before the

first resonance, it points to the effect of higher harmonic contributions which can be

inspected near the first peak of the time simulation using Fourier analysis. FRF of

a time solution point near the first resonance obtained by FFT is given in the figure

5.21 which shows contributions of odd higher harmonics that are around ∼ 1/5 of

the first harmonic. Expected decay as the harmonic index increase is not seen much

and requires the usage of many harmonics to correctly capture the motion in the time

domain which is not touched upon in this thesis and the result is left as it is, consid-

ering it is satisfactory to some degree.
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Figure 5.21: Fast Fourier Transform of the time domain data around the first reso-

nance showing higher harmonic contributions normalized to first natural frequency

of the FFT

5.4 Effect of Extra Material Parameters

In this section, results for different nonlocal and length-scale parameters are shown

for completeness, since time domain verification was done earlier it is not done here.

Moreover, since there were no other interesting results, only CC beam with geometric

higher-order boundary conditions is used. First, the change of natural frequency with

vibration amplitude (backbone curve) is shown in figure 5.22 for different nonlocal

parameters with a constant length-scale parameter (ξ = 0.2). Softening behavior

where natural frequency decreases as the nonlocal parameter increases can be clearly

seen, moreover for the same deflection amplitude nonlinearity bends the backbone

curve farther for the higher nonlocal parameter.

On the other hand, increasing the length-scale parameter while the nonlocal param-

eter is kept constant (α = 0.4) has the opposite (hardening) effect on the natural

frequency as shown in the figure (5.23), additionally lowering of the bending is not

as apparent as in the nonlocal parameter. This indicates that the nonlocal parameter

is more effective while examining the nonlinear effects, and can be used to better

differentiate between the effect of the nonlocal parameter and length-scale parameter.
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Figure 5.22: Variation of natural frequency of CC beam with geometric higher-order

boundary condition for different nonlocal parameters with constant ξ = 0.2
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Figure 5.23: Variation of natural frequency of CC beam with geometric higher-order

boundary condition for different length-scale parameters with constant α = 0.4
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The analogous effect can also be seen in the critical flow speed at different LCO

amplitudes by examining the changing nonlocal parameter (ξ = 0.2) in the figure

5.24 where softening can be deduced from the decrease of the critical flow speed.

Unlike the natural frequency changes, the change of bending is more moderate for the

critical flow speed. This can be explained by regular stiffness terms of the equation

of motion not being affected by the nonlocal parameter but only the mass terms, on

the other hand for the critical flow speed computation stiffness terms coming from

the fluid flow have a considerable effect on the total stiffness of the system, which is

affected by the nonlocal parameter, hence somewhat balancing out the effects.

The same graph for different length-scale parameters with a constant nonlocal pa-

rameter (α = 0.4) is given in the figure (5.25) where hardening behavior is almost

identical to the natural frequency results. Which can again be explained by the ef-

fect of the length-scale parameter only being on the regular stiffness terms which

contribute somewhat equally to the natural frequency of critical flow speed.
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Figure 5.24: Variation of LCO amplitude with flow speeds of CC beam with geomet-

ric higher-order boundary condition for different nonlocal parameters with constant

ξ = 0.2
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Figure 5.25: Variation of LCO amplitude with flow speeds of CC beam with ge-

ometric higher-order boundary condition for different length-scale parameters with

constant α = 0.4

Considering the path-following of the pseudo-arc-length continuation method can be

used to follow the critical flow velocity for different vibration amplitudes, a similar

method can be employed to follow a defined parameter (such as the nonlocal parame-

ter) between two values. This can be achieved by predetermining the parameter such

as vibration amplitude as if it is a constant force amplitude for the case of FRFs, and

an extra equation can be used to fix the small-length parameter. Which increases the

speed at which the critical speed against changing material parameters considerably.

The approximate procedure for such a graph is to solve the state space eigenvalue

problem with increasing flow speeds until the real part becomes positive, this is re-

peated for each discrete point of the parameter and stored to be plotted later. However,

with this method only the state space eigenvalue is solved for the initial guess, and

then the length-scale parameter is automatically changed with the explained proce-

dure such that it obtains a curve that solves the problem at hand for different values.

The first procedure has not been tried due to low accuracy and long computation time

but only the second procedure is done.

98



The figure 5.26a shows the linear critical flow velocity change for changing the non-

local parameter for multiple length-scale parameters, while the figure 5.26b shows the

linear critical flow velocity change for changing length-scale parameters for multiple

nonlocal parameters. Effects of both parameters can somewhat be seen simultane-

ously as if it is a projection of the surface composed of two length scale parameters

and critical flow velocity.

This can also be expanded by changing the prescribed deflection as if changing the

forcing while constructing the FRF such that not only the linear case can be handled

but the nonlinear result for a vibration amplitude can also be obtained. Which can

be used to determine the actual critical flow speed if the prescribed deflection is the

maximum allowable deflection of the design.
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Figure 5.26: Variation of linear critical flow speed of CC beam with geometric higher-

order boundary condition for changing nonlocal parameters with different constant ξ

(a) and changing length-scale parameters with different constant α (b)

The figure 5.27a show the effect of nonlocal parameter change for constant ξ = 0.2

value for different vibration amplitudes and similarly the figure 5.27b shows the effect

of length-scale parameter change for constant α = 0.4 value for different vibration

amplitudes.

Note that, this method can be used to create an approximate surface to better deter-

mine the initial conditions for an optimization algorithm. Or even can be used to

include geometric parameters and can be used as a reference figure for faster design.
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Figure 5.27: Variation of critical flow speed of CC beam with geometric higher-

order boundary condition for changing nonlocal parameters with constant ξ = 0.2 (a)
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CHAPTER 6

CONCLUSIONS

6.1 Summary and Discussion

In this thesis, nonlinear vibrations of the fluid conveying carbon nanotubes are exam-

ined including the small-scale effects. The equation of motion of the tube is obtained

as an equivalent beam model with Euler-Bernoulli kinematic assumptions, and large

deflection effects are taken into account by using Green-Lagrange strain tensor with

von-Karman assumptions. Fluid-structure interaction is modeled as an equivalent uni-

form flow with the same mass flow rate, even though several corrections to the model

are mentioned, non is applied since they do not change the main characteristics of the

interaction.

The novel method of Galerkin transformed DQM (GtDQM) is used for spatial dis-

cretization of the equation of motion. Unlike Generalized DQM, GtDQM uses coordi-

nate transformation with the information coming from the boundary condition equa-

tions to incorporate general boundary conditions into the equation of motion. The

method is then further enhanced by applying the Galerkin procedure which makes

the resulting system matrices symmetric, which substantially increases the stability

and convergence rate of the method. Claims of higher convergence rate, more stable

solutions, and faster results are shown with different types of boundary conditions

and kinematic beam assumptions.

After spatial discretization, instabilities are examined in the linear regime using the

state space eigenvalue problem. Motion of the tube before, during, and after instabil-

ities are determined with modal assurance criteria comparison, hence motion during

the instability is presented. Further nonlinear instability analysis is conducted us-
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ing the harmonic balance method for temporal discretization. Resulting nonlinear

algebraic equations are solved with pseudo-arc-length continuation with Newton’s

method by adding different additional equations to incorporate other unknowns like

critical flow speed, or material parameters. These frequency domain solutions are

somewhat verified with time domain simulations.

Using frequency domain analysis response amplitude-dependent nonlinear natural

frequencies, nonlinear critical speeds, and frequency response functions are obtained

for different boundary conditions or small-scale parameters. Those results suggest

that nonlinear analysis is essential while examining the instabilities of the fluid con-

veying carbon nanotube which can theoretically be extended to other type of instabil-

ities. Due to speed, accuracy, and much lower computational cost frequency domain

analysis is also strongly suggested.

Finally, the effect of changing small-scale parameters on the vibration and/or insta-

bility characteristics is examined. As expected, the obvious softening effect of the

nonlocal parameter and hardening effect of the length-scale parameter is observed

and the relative importance of the nonlocal parameter compared to the length-scale

parameter on nonlinear analysis is noted.

6.2 Future Work

Possible future work is abundant since the numerical discretization method and the

nonlinear solution methodology is new. Even the small-scale elasticity theories can

be considered relatively new since classical elasticity theory has existed for centuries.

Hence, future work will be mentioned for different methods or theories one by one.

First, future work for elasticity theories is examined starting from strain gradient the-

ory:

• The mass terms are corrected by the effects of micro velocity (velocity gradi-

ent) as given by Mindlin [38], however, the same correction is missing from

the modified strain gradient theory since Lam et. al. [32] derived it for static

analysis and the kinetic energy is written as the classical kinetic energy after-
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ward. The origin of the classical kinetic energy usage is not found, however,

the most likely scenario is that it is used since it is easier without much thought.

The importance of this missing correction can be better understood if the wave

dispersion equation of motion can be directly written from [38] as,

(1− l1∇2)∇2∇ · u = (1− h1∇2)∇ü (6.1)

where u is the displacement, and ∇ is the divergence operator. This equation

is of the same form as the NSGT which can be obtained without considering

nonlocal effects and a more rigorous mathematical background. It may be that

this mass correction is not being used because it might have been disproved,

however, it still is an important improvement to the current theories.

• In the strain gradient theory, one of the most important unsolved problem is

which higher-order boundary condition to be used, and as shown in this thesis it

does change the answer substantially. Hence it can be studied in different ways,

such as by mathematical proof (as encountered in the thesis some higher-order

boundary conditions do not make the derivative matrix symmetric even though

they should), or by taking the choice of boundary condition as an extra param-

eter while fitting the results of molecular dynamic simulations or experimental

measurements to the elasticity theory to determine small-scale parameters as is

done in [77].

• Another direction that can be researched is the viability of negative small-scale

parameter and their physical meaning. Even though, those parameters are taken

to be positive to ensure positive definiteness of the strain energy in [32, 40],

Mindlin’s original work [36, 38, 39] clearly shows only a combination of pa-

rameters needs to be positive to ensure the positive definiteness of the strain

energy.

For the nonlocal elasticity theory, the main problem is that the kernel and the linear

differential operator forms produce different solutions, which is not surprising con-

sidering the given linear differential operator is only Green’s function for specific

two-dimensional kernel as given by Eringen [63]. Hence extension of the kernel to

the one or three-dimensional problems would naturally produce results not conferring
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to each other. However, since integral formulation needs iterative solutions and lacks

explicit formulation it is not preferred. This problem can in possibility be mended

either by iteratively using the found analytical solution in the integral calculation and

finding an analytical form that approximates integral starting from the easier differen-

tial form or by using an approximate assumed displacement form that can be directly

used to obtain approximate constitutive relation. Considering if the correction for

strain gradient theory is realized, nonlocal effects are not needed to explain behavior,

this future work direction may not be optional.

If the given strain gradient correction cannot be realized, currently only choice of

combining the effects of strain gradients and nonlocal constitutive relations is the

nonlocal strain gradient theory (NSGT). If NSGT must be used, then there must be

some strengthening of the mathematical foundation is needed as listed below,

• Considering only some parts of the second-order deformation tensor with a

single length scale parameter is a gross simplification since at least three in-

dependent parameters are needed mathematically. At the very least, modified

couple stress theory can be used to capture strain derivative effects with a single

length scale parameter that is more mathematically sound.

• A better method would be to include all three extra parameters of SGT and by

using the similar assumptions of the same kernel and the same nonlocal pa-

rameter for all stress components similar derivation can be followed. Which

formulates a total of 4 extra small-scale parameters that can account for differ-

ent results from experiments or simulations.

• Even if the kernel function and nonlocal parameter can be assumed to be the

same, still NSGT uses a one-dimensional formulation that is yet to be extended

to higher dimensions and the used kernel is not applicable as explained earlier,

hence the convolution integral needs to be better accounted for.

Secondly, improvements can be made to the assumptions, which are:

• Axial inertia is neglected completely to reduce two displacement unknowns to

one, however, this assumption that is generally made for large deflection beams
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may not be applicable since axial inertia also includes much more dominant

fluid flow. By using two displacement unknowns differences can be better seen

and if needed can be preferred.

• As noted in the last FRF result, even if the critical flow speed change can be

captured with a single harmonic solution, to determine the forcing response

more accurately near the critical flow regime the multi-harmonic balance needs

to be used. This is necessary if the unstable region needs to be utilized in the

design process such as quasi-zero stiffness.

• Similarly, kinematic assumptions might fail for the large rotations encountered

for the buckled configuration, as well as the general shape needs to be ac-

counted for if the buckled configuration will be used as a design point.

• If the flow speed is not normalized and critical flow speed is obtained in SI units

it roughly corresponds to be around ∼ 7km/s (for U∗
cr = 2π), which compared

with the speed of sound of the water (density chosen) that is around ∼ 1.5km/s

either critical flow speed cannot be reached without going supercritical or much

more sophisticated transonic flow theories needs to be used. This is not con-

sidered in the literature as far as the author can conclude which is an important

oversight.

• Since the method developed already requires iterative solutions, a simplified

Navier-Stokes equation can also be incorporated to have a much more represen-

tative fluid-structure interaction. These methods are somewhat tried in [93,94],

however, nonlinearity is not handled correctly.

Finally, improvements and research directions for the novel method of GtDQM and

examined,

• Extension of the given method to two dimensions is not straightforward and

needs to be handled as a special case even though it is not very complicated.

Hence two or three dimension extension of the given method is needed for

general use in those areas.

• Even though it is used to solve a mostly structural problem it can also be used
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to obtain possible better results for the original usage case of fluid dynamics

problems and such can be used in those areas as well.

• A generalized boundary matching algorithm can be devised to include concen-

trated forces and more complicated domains. With the algorithm at hand, it can

also be extended as a finite element analysis procedure either on its own or to

be used to obtain a beam or a brick elements.

• Not directly the GtDQM, but the up-scaling matrix and integral matrix if com-

puted once at the initialization phase can easily be used to compute integrals of

multi harmonic balance method much faster. Similarly can be used as the pre-

dictor it can be used as the predictor that approximates the Jacobian prediction

without high computational costs.

• Extension of the one-dimensional method can also be used as a time domain

integration procedure.

Some of those improvements and future work are currently being researched by the

author, due to the wide range of topics from theoretical to numerical methods, or

structural to fluid dynamic fields it is impossible to cover all the areas mentioned.

Hence, collaborative work needs to be done to touch upon all the mentioned possible

future work.
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APPENDIX A

TIME DOMAIN RESPONSE INVESTIGATION

A.1 Natural Frequency Estimation Method

Assuming response can be simplify modeled to includes two harmonic functions with

two different frequencies where one is more dominant in amplitude as,

x(t) = sin 10.8t+ 0.2 sin 40t, ẋ(t) = 10.8 cos 10.8t+ 8 cos 40t (A.1)

where 10.8 rad/s is chosen such that it does not coincide with the FFT sampling

frequency since that would be a more general case. Velocity response and smoothed

version as well as the zoomed in view can be seen for 20 seconds of measurement

with 10000 sampling points to ensure smoothness in the figure A.1.
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Figure A.1: Total (a) and a zoomed portion (b) of the velocity

By comparing the points that crosses zero with linear interpolation between two clos-

est points, peak to peak period and hence peak to peak frequency of the response can
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be found. If each frequency point is plotted for the corresponding peak points, change

of frequency can be seen through the time as in the figure A.2.

Even though, obvious harmonic spread can be seen, if instead it is assumed as to be

distributed normally, a mean and a standard deviation to the estimate can be found

and for the given smoothing it is found as 10.82 ± 0.02 rad/s. If instead frequency

component analysis using FFT is conducted, point of the first peak corresponds to

10.67 rad/s while the next closest frequency data is 10.98 rad/s, if instead a Nyquist

fit is performed and peak frequency is calculated that way it would improve the guess.

However, similar improvement can be done by repeating the estimation analysis for

several smoothing ranges and increasing the data size with still taking less time then

FFT. As it is important for the accuracy, different smoothing ranges might produce

different estimates with better or worse uncertainties attached with it.
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Figure A.2: Frequency estimation in time

Even though not used for the analysis at hand to capture the correct values at all times,

proposed method can also be used to capture the change of frequency over time. If

the response frequency is modified to increase linearly until 13.4 rad/s, frequency

estimation change in time can be seen in the figure A.3. Increase in time is obvious

however, due to smoothing, there is an overshoot until the increase of the frequency

stops, which could not be fixed and occurs irrespective of the type of smoothing used.

In any case, it can capture moving natural frequencies and can differentiate the final

frequency while FFT has no such capabilities but only smears the peak.
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Figure A.3: Frequency estimation in time while the vibration frequency is changing

A.2 Different Flow Profiles and the Response

There are two flow profiles that are used to obtain time domain verification and one

flow profile to be used in this appendix to be used to approximate a real-life case.

Linear increase and constant speed profiles refers to a linear increase and a direct

jump to the higher velocity which can be shown for a representative speed as in the

figure A.4. Time domain response to both of these flow profiles is shown in the figure

A.5. By looking at each response, it is apparent that one vibrates around the buckled

state while the other is chaotically vibrating, where even the motion characteristic

itself is changing from flutter to buckling on its own.

Motion of the two profile can better be shown if some sample of the total beam motion

can be taken and plotted for some time values as given in the figure A.6. Traveling

wave like solution is apparent by looking at the consecutive time slices, while on the

other hand, vibration around the buckled configuration that assumes the first mode

shape is clear.
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Figure A.4: Change of speed for constant discontinuous (a) and linearly increasing

(b) speed profiles
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Figure A.5: Response of the midpoint for constant discontinuous (a) and linearly

increasing (b) speed profiles
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Figure A.6: Total motion of the beam for constant discontinuous (a) and linearly

increasing (b) speed profiles

Moreover phase plane portrait of the two motion is shown in the figure A.7 for the to-

tal simulation time and over shooting of the constant profile to a semi-stable fluttering

orbit can be seen while the linear profile buckles with lower vibration amplitude.

(a) Constant Speed Profile (b) Linear Speed Profile

Figure A.7: Phase plane portrait for constant discontinuous (a) and linearly increasing

(b) speed profiles

Finally, characteristics of motion can be better understood if the operating MAC num-

ber is plotted against time as in figure A.8, with heavy smoothing, since amplitude

of oscillation determines the strength of each MAC number in a cycle. Even with
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heavy smoothing after experiencing flutter, MAC number wildly changes even get-

ting closer to buckled MAC number distribution at some points. Most importantly it

contains the effects of the second mode while the buckled state nearly have none.
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Figure A.8: MAC number for constant discontinuous (a) and linearly increasing (b)

speed profiles

More realistic of the situation can be found by examining a more realistic flow profile

where a sudden increase with the approximate shape of a normal distribution reaches

the same speed and returns to normal as given in the figure A.9. With this profile,

tendency to flutter or buckle is better understood since critical motion is not kept and

transient part can give enough information.
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Figure A.9: Change of speed for a normally distributed peak
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Response is as given in the figure A.10, and clear buckling behaviour is visible before

returning to normal but with bigger vibration amplitude. Since buckling is favored

more realistic test profile is deemed as linearly increasing one not only due to the

more realistic velocity change but also having a higher tendency to buckle.
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Figure A.10: Response of the midpoint of the beam for a normally distributed peak

Change of speed needed to change the regime from buckling to flutter needs to be

examined, for that assume an accelerating velocity profile capping at a prescribed

speed as,

U(t) =

 at if at < Umax

Umax if at ≥ Umax

(A.2)

where a is the acceleration and Umax is the maximum reached speed. In the figure

A.11 maximum and mean values of the time simulation results are given where for

a = 2 response changes from buckling to flutter. Considering non normalized accel-

eration would be around a ∼ 4∗1013m/s2, taking the normal linearly increasing case

to be the realistic result is again verified.
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Figure A.11: Response of the midpoint of the beam for different acceleration values

of the linearly increasing speed profile
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APPENDIX B

DERIVATION OF HARMONIC BALANCE METHOD

Starting with the form of the response dependent constant integral as,

C =
1

2
S

∫ 1

0

(
∂w∗

∂x∗

)2

dx∗ =
1

2
S

∫ 1

0

(
∂w∗

∂x∗

)(
∂w∗

∂x∗

)
dx∗ (B.1)

Using GtDQM framework and employing integral of products rule of equation (3.43),

equation (B.1) can be written as,

C =
1

2
S

∫ 1

0

(
∂w∗

∂x∗

)(
∂w∗

∂x∗

)
dx∗ =

(
A(1)w

)T
P
(
A(1)w

)
(B.2)

Where the deflection w can be spatially discretized and utilizing separation of vari-

ables it can be written as,

w(x, t) → w = ws sinωt+wc cosωt = Twds sinωt+ Twdc cosωt (B.3)

Substituting equation (B.3) in to the equation (B.2) it can be written as

(
A(1)Twds sinωt+ Twdc cosωt

)T
P
(
A(1)Twds sinωt+ Twdc cosωt

)
(B.4)

which multiplication can be expended as,

C =wT
ds
T TA(1)TPA(1)Twds sin

2 ωt+

wT
ds
T TA(1)TPA(1)Twdc sinωt cosωt+

wT
dc
T TA(1)TPA(1)Twdc cos

2 ωt+

wT
dc
T TA(1)TPA(1)Twds cosωt sinωt

(B.5)

This equation can be simplified by defining a βij as,

βij =
1

2
S
(
A(1)Twdi

)T
P
(
A(1)Twdj

)
(B.6)
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where i, j refers to sine, or cosine coefficients and can also be used as nth sine or

cosine coefficient if multi HBM is used. Substituting the definition in to the equation

(B.5),

C = βss sin2 ωt+ (βsc + βcs) sinωt cosωt+ βcc cos2 ωt (B.7)

Substituting this result into the normalized equation of motion of equation (3.97) and

multiplying with T T

CT T
(
A(2) − α2A(4)

)
(Twds sinωt+ Twdc cosωt) (B.8)

This multiplication can be done with any other order derivative as long as there is no

time derivative involved, and if it is involved it can be written as,

CT T
(
A(2) − α2A(4)

)
ωη∗ (Twds cosωt− Twdc sinωt) (B.9)

expanding equation (B.8)

T T
(
A(2) − α2A(4)

)
T[(

βss sin3 ωt+ 2βsc sin2 ωt cosωt+ βcc cos2 ωt sinωt
)
wds+(

βss sin2 ωt cosωt+ 2βsc sinωt cos2 ωt+ βcc cos3 ωt
)
wdc

] (B.10)

Using the trigonometric identities,

sin3 ωt =
1

4
(3 sinωt− sin 3ωt)

sin2 ωt cosωt =
1

4
(cosωt− cos 3ωt)

sinωt cos2 ωt =
1

4
(sinωt+ sin 3ωt)

cos3 ωt =
1

4
(3 cosωt+ sin 3ωt)

(B.11)

Since, only single harmonic balance is used higher order harmonics (i.e., 3ωt) are

ignored and substituted back into the equation (B.10) to obtain the single harmonic

approximation of the nonlinearity at hand which directly produces nonlinear forcing

term,

fNL =T T
(
A(2) − α2A(4)

)
T[(

βss3

4
sinωt+ 2βsc1

4
cosωt+ βcc1

4
sinωt

)
wds+(

βss1

4
cosωt+ 2βsc1

4
sinωt+ βcc3

4
cosωt

)
wdc

] (B.12)
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which can equivalently can be written in terms of matrix form by separately consid-

ering sine coefficients and cosine coefficients,

fNL =

(34βss + 1
4
βcc
)
G 1

2
βscG

1
2
βscG

(
3
4
βcc + 1

4
βss
)
G

wds

wdc

 (B.13)

whereG is the respective derivatives defined as,

G = T T
(
A(2) − α2A(4)

)
T (B.14)

Same can be calculated for equation (B.9)

f ′
NL = ωη∗

 1
2
βscG −

(
3
4
βss + 1

4
βcc
)
G(

3
4
βcc + 1

4
βss
)
G −1

2
βscG

wds

wdc

 (B.15)

133


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	Introduction
	Linear and Nonlinear Vibration Analysis
	Applications of Carbon Nanotube
	Objectives and Outline

	Literature Review
	Numerical Methods
	Size-Dependent Elasticity Theories
	Strain Gradient Theories
	Nonlocal Theories
	Nonlocal Strain Gradient Theory

	Fluid Conveying Carbon Nanotubes
	Validity of Water Flow Inside a Carbon Nanotube


	Mathematical Derivations
	Generalized Differential Quadrature Method
	Differential Quadrature Coefficients
	Implementation of Boundary Conditions

	Galerkin Transformed Differential Quadrature Method
	Implementation of Boundary Conditions
	Imposing Symmetry to the System Matrices

	Nonlinear Numerical Methods
	Harmonic Balance Method
	Pseudo Arc-length Continuation with Newton's Method
	Time Integration

	Fluid Conveying Beam Theory with Nonlocal Strain Gradient Elasticity
	Euler Bernoulli Beam Theory with Large Deflection Nonlinearity
	Fluid-Structure interaction of Fluid Flow
	Applying GtDQM
	Frequency Domain Solution Methods


	Verification and Comparison of Numerical Methods
	Verification of Symmetry
	Case Study 1: Free Vibration of Uniform Euler-Bernoulli Beams
	 Case Study 2: Free Vibration of Uniform Timoshenko Beams
	Case Study 3: Forced Vibration of Uniform Euler-Bernoulli Beams with large deflection nonlinearity

	Fluid Conveying Carbon Nanotubes
	Verification
	Response Dependent Stability and Natural Frequency
	Nonlinear results
	Effect of Extra Material Parameters

	Conclusions
	Summary and Discussion
	Future Work

	REFERENCES
	Time Domain Response Investigation
	Natural Frequency Estimation Method
	Different Flow Profiles and the Response

	Derivation of Harmonic Balance Method

