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ABSTRACT 

 
FORECASTING AND REINFORCEMENT LEARNING STRATEGIES FOR 

EFFICIENT ENERGY EXCHANGE IN PEER-TO-PEER ENERGY TRADING 
GAME AMONG NANO/MICROGRIDS: EMPIRICAL ANALYSIS 

 

 
Güneş, Rabia Şeyma 

MSc., Department of Information Systems 
Supervisor: Prof. Dr. Sevgi Özkan Yıldırım 

 
September 2023, 88 pages 

 
New technologies included in distributed energy systems have created solutions that allow 
the management of demand and generation variability in the electricity grid and the costs 
arising from this variability. Trade between these small grids has enabled the sale of excess 
energy between each other and the purchase of needed energy, thus reducing costs and 
system constraints. The purpose of this trade is modeled as a game of agents mentioned 
in reinforcement learning, enabling the creation of the market that offers those benefits 
from each peer. Each peer provides its electricity demand with both internal resources and 
other peers. The aim of this thesis is to comply with system constraints while providing 
the demand of each peer in this game aiming at maximum benefit. A novel Multi-Agent 
Reinforcement Learning model to facilitate very short-term energy trading among peers 
is suggested in this thesis. The key contributions of this thesis lie in incorporating very 
short-term load, generation, and price forecasts into the framework to enable more 
accurate decision-making by individual agents. To evaluate the performance of the 
proposed model, it is conducted extensive simulations using real-world data collected 
from various peers. The results compared with rule-based working agents. The experiment 
shows incorporating very short-term forecasts significantly enhances the ability of agents 
to adapt to rapidly changing conditions, thereby leading to more efficient and stable 
energy trading decisions. The use of very short-term forecasts empowers prosumers to 
make informed decisions in response to dynamic energy market conditions, ultimately 
contributing to increased grid reliability, energy efficiency, and sustainability. 
 
Keywords: Energy Trading, Multi-Agent, Reinforcement Learning, Peer-to-Peer Trading, 
Very Short-Term Forecasts   
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ÖZ 

 
NANO/MİKRO ŞEBEKELERDE EŞLER ARASI ENERJİ TİCARET 

OYUNUNDAKİ ETKİLİ ENERJİ TİCARETİ İÇİN TAHMİN VE 
PEKİŞTİRMELİ ÖĞRENME STRATEJİLERİ: AMPİRİK ANALİZ 

 

 
Güneş, Rabia Şeyma 

Yüksek Lisans, Bilişim Sistemleri Bölümü 
Tez Yöneticisi: Prof. Dr. Sevgi Özkan Yıldırım 

 
Eylül 2023, 88 sayfa 

 
Dağıtık enerji sistemlerine dahil olan yeni teknolojiler şebekedeki talep ile üretim 
değişkenliğinin ve bu değişkenlikten doğan maliyetlerin yönetilmesine fırsat veren 
çözümler oluşturmuştur. Bu küçük şebekeler arasında üreten tüketicileri içeren ticaret, 
artık enerjinin birbirleri arasında satılmasına ve ihtiyaç duyulan enerjinin alınmasına 
olanak tanıyarak maliyetleri ve sistem kısıtlamalarını azaltmıştır. Bu ticaretin amacı, pek 
çok oyuncunun fayda sağlayacak şekilde, pekiştirmeli öğrenme yöntemlerinde bahsedilen 
ajanların oyunu olarak modellenmiştir. Her oyuncu, kendi elektrik talebini hem kendi iç 
kaynaklarından hem de diğer oyunculardan sağlamaktadır. Bu tezin amacı, bu oyunda her 
oyuncunun talebini maksimum fayda ile karşılayarak sistem kısıtlamalarına uymaktır. Bu 
çalışmada, oyuncular arasında çok kısa vadeli enerji ticaretini kolaylaştırmak için yeni bir 
Çoklu Ajan Pekiştirmeli Öğrenme modeli önerilmektedir. Tezin ana katkıları, çok kısa 
vadeli yük, üretim ve fiyat tahminlerini çerçeveye dahil ederek bireysel ajanların daha 
doğru kararlar almasını sağlamaktır. Önerilen modelin performansını değerlendirmek için 
çeşitli oyunculardan toplanan gerçek sistem verileri kullanılarak kapsamlı simülasyonlar 
yapılmıştır. Sonuçlar, çok kısa vadeli tahminlerin ajanların hızlı değişen koşullara uyum 
sağlama yeteneğini önemli ölçüde artırdığını, daha verimli ve istikrarlı enerji ticareti 
kararları alınmasını sağladığını göstermektedir. Çok kısa vadeli tahminlerin kullanımı, 
üreten tüketicilerin dinamik enerji piyasası koşullarına karşı bilinçli kararlar almasına 
olanak tanırken, aynı zamanda artan şebeke güvenilirliği, enerji verimliliği ve 
sürdürülebilirliğe katkıda bulunmaktadır.  
Anahtar Sözcükler: Enerji Ticareti, Çoklu Ajan, Pekiştirmeli Öğrenme, Eşler Arası 
Ticaret, Çok Kısa Süreli Tahminler 
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CHAPTER 1 
CHAPTER 

INTRODUCTION 

1.1. Problem Statement 
 
The global energy demand is rising at a rapid pace, with electrical energy being the fastest-
growing energy source among all (International Energy Agency, 2018). According to 
International Energy Agency's (IEA) report dated 2018, electricity consumption will 
double of current demand by 2040. Countries worldwide are confronted with energy-
related challenges, including decrease in fossil fuel reserves, the need for sustainable 
energy provision, and escalating impacts of global warming (Mackay, 2008). IEA predicts 
that electricity will surpass usage of other energy sources within the next 25 years, and as 
a result, it places significant emphasis on development and utilization of electricity 
(International Energy Agency, 2018). Renewable energy is critical in addressing these 
energy-related issues. The modern electricity grid is embracing growing presence of green 
energy sources such as solar, wind, and hydro, enabling integration of innovative and 
intelligent solutions throughout grid infrastructure. By adopting these solutions, 
renewable energy systems have been able to keep pace with advancements, effectively 
handling fluctuations in demand through time-varying generation, and concurrently 
decreasing expenses and reliance on main grid. 
 
The most important of these solutions are nano/microgrids that are part of smart grid. 
Nano/microgrids are the parts that contain dynamics of the real grid, which makes small-
scale energy supply that consists of consumers with electricity demand, solar or wind 
sources that produce renewable energy, and battery systems that store energy (Figure 1). 
Microgrids are larger and more complex, operating autonomously with mix of energy 
sources, while nano grids are smaller, usually connected to main grid, and rely on a limited 
number of energy sources. In other words, microgrids are networks of nanogrids 
(Nordman & Christensen, 2015). Each microgrid is obliged to main grid when it is 
insufficient while trying to meet its energy demand with its energy sources. Besides, it 
wants to benefit from this energy when it cannot store the excess energy it has. By trading 
with other nano/microgrids like itself, it can reduce its dependency on the grid, sell its 
excess energy, and buy energy for times in need of energy. In this way, it can also manage 
the time-dependent variability of renewable energy sources and electricity demand. The 
fact that it is trading with nearby nano/micro grids reduces the energy transmission loss 
caused by the distance from the main grid. 
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Figure 1: Components of Nano/Micro Grid (Stadler & Nasle, 2019) 

It is known as peer-to-peer (P2P) energy trading concept that microgrids, which are many 
consumers, some of which are prosumers, buy and sell energy between each other. P2P 
energy trading system allows neighboring producers and consumers to exchange energy 
directly with each other without the need for a main grid. However, when doing this trade, 
each microgrid should create bids and offers according to the current battery level, 
expected renewable energy generation, and energy demand (Zahraoui, et al., 2021). 
 
While each nano/microgrid tries to meet its local energy demand, it maximizes its profit 
from the market, while the market finds electricity prices and matches according to the 
offers according to the clearing mechanism. There is not only energy distribution and 
pricing in the market. Buyers’ prioritization, physical constraints, and costs arising from 
the network also play an active role in optimizing the market. In establishing this 
optimization problem, the aim may be to minimize production, demand, transmission, and 
other costs or to maximize total profit. 

1.2. Scope of the Thesis 
 
The purpose of this thesis is to make each nano/microgrid self-sufficient and maximize 
profit while meeting the electricity demand of each nano/microgrid. In doing so, attention 
is paid to the following.  

• The stochastic situation due to time-dependent changes in electricity demand, 
renewable energy generation, and electricity price is prioritized.  
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• The dependence of nano/microgrids on production sites is reduced by battery and 
trading.  

• Energy losses from transmission are reduced by exchanging neighboring peers.  

• Energy balance equations and system constraints are provided. 

 
In this thesis, a reinforcement learning model is generated to optimize P2P energy trading 
system while achieving goals of each nano/microgrid. The aims of this thesis are: 

• Formulating both the energy trading game of each peer and whole system in terms 
of local energy demands, battery levels, generations from renewables, and system 
constraints. 

• Maximizing profit of each participant of P2P energy market with consideration of 
traded energy, battery charge/discharge, and generated energy. 

 
In this study, it is presented pioneering simulation of P2P energy trading approach, using 
data specific to Turkey. The study is the first simulation of peer-to-peer energy trading 
approach using data specific to Turkey. Through this simulation, it is explored the 
feasibility and potential benefits of implementing such a system within Turkish energy 
landscape. 

1.3. Research Questions 
 
In this thesis study, the solutions to some questions were searched. The first is how to 
transfer energy among participants including maximizing their resources and utilities. The 
most appropriate solution to this problem is to enable the peers to use energy generation 
and storage resources in the most efficient way.  
Another research was done to look for the answer to how to affect electricity prices, 
renewable energy generation, local power demand, and battery levels from energy trading 
policy.  
One of the most critical concerns of peers entering this market is meeting the local energy 
demand. Peers can become participants in this market if they can meet their demands with 
the energy market that does P2P trading without the need for main grid. Therefore, another 
research question is related to the market confidence of nano/microgrids in meeting their 
energy demands. 
While searching for answers to the questions mentioned in this thesis study, an algorithm 
based on forecasting and reinforcement learning was developed to provide a solution. 
With this algorithm, while resource allocation was performed, information is transmitted 
between prosumers, and profit is maximized while maintaining network and system 
constraints. 
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1.4. Outline of the Thesis 
 
The rest of this thesis study is organized as follows: Chapter 2 explains literature review 
of machine learning approaches, energy forecasting, and reinforcement learning 
techniques for P2P energy trading systems. Chapter 3 gives the methodology of this thesis 
study. It covers forecasting and reinforcement learning strategies for efficient energy 
exchange in P2P energy trading game. In Chapter 4, the simulation of an experiment is 
explained consisting of P2P energy trading game among 8 prosumers. Lastly, Chapter 5 
concludes this thesis study with a summary and future work on P2P energy trading game. 
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CHAPTER 2 

 

LITERATURE REVIEW 

In this chapter, various aspects of the machine learning discipline and its application to 
energy trading and forecasting are presented. The literature review is divided into three 
sections, each focusing on a distinct topic. 
 
The first section is an overview of the discipline of machine learning, highlighting 
different learning paradigms commonly utilized in the literature. These paradigms contain 
supervised learning, unsupervised learning, and reinforcement learning. Moving on to the 
second section, the concept of energy trading and models employed in this domain are 
explained. Existing literature on energy trading, exploring various market structures, 
pricing mechanisms, and trading strategies are examined. Because of usage of supervised 
machine learning approaches applied in energy trading, such as demand, generation, and 
price forecasting, energy forecasting models are examined in the third section to identify 
the most effective and relevant techniques for energy trading applications. 

2.1. Discipline of Machine Learning 
 
The field of machine learning has emerged as a distinct discipline, encompassing 
algorithms, methodologies, and techniques that enable computers to learn from data and 
make predictions or decisions (Conway & White, 2012). 
Machine learning can be categorized into various types based on different dimensions and 
approaches (Perez C. , 2019). The common types are supervised learning, unsupervised 
learning, semi-supervised learning, and reinforcement learning. There are often overlaps 
and hybrid approaches, and researchers continue to develop new algorithms and 
techniques that push the boundaries of these categories. For instance, ensemble learning 
technique combines multiple models or learning algorithms to make predictions or 
classifications. By aggregating the predictions of individual models, ensemble methods 
can often achieve better performance and robustness compared to using a single model. 
Understanding the main types of machine learning is crucial as it enables tackling a broad 
range of problems and datasets effectively. Hence, the following subsections provide a 
concise overview of these types. 
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2.1.1. Supervised Learning 
 
In supervised learning, the algorithm learns from labeled training data, where each data 
instance is associated with a known target or label (Perez C. , 2019). The algorithm learns 
to make predictions or classify new, unseen data based on this labeled training set. 
Supervised learning plays an integral role in applications across various industries, 
including predictive analysis in finance, medical diagnostics, spam filtering in email 
services, sentiment analysis, customer churn prediction in marketing, credit scoring in 
banking, recommendation systems in entertainment platforms, and social network 
filtering in social media platforms. Regression and classification are two primary types of 
supervised learning and associated some common algorithms with these types are below. 
 

a) Logistic Regression (classification) 
 
Logistic regression models the relationship between the input variables and the probability 
of belonging to a certain class. It uses a logistic function to estimate the probabilities and 
makes predictions based on a threshold. 
 

b) Support Vector Machines 
 
SVM constructs a hyperplane or set of hyperplanes to separate data points for different 
classes in classification or within a certain margin or tolerance in regression. It aims to 
maximize the margin between the classes and can handle both linear and non-linear tasks. 
 

c) k-Nearest Neighbors 
 
KNN classifies new instances based on their proximity to labeled instances in the training 
data. It assigns the class label based on the majority vote of its k nearest neighbors in the 
feature space. 
 

d) Decision Trees 
 
Decision trees create a tree-like model of decisions and their potential consequences. Each 
internal node represents a feature or attribute, and each leaf node represents a class label. 
Decision trees can handle both classification and regression tasks. 
 

e) Random Forests 
 
Random forests are bagging-based ensemble learning method that combines multiple 
decision trees. Each tree is trained on a random subset of training data, and predictions are 
made by aggregating the results from individual trees. Random forests improve prediction 
accuracy and reduce overfitting. 
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f) Linear Regression (regression) 
 
Linear regression models the relationship between input variables and continuous output 
by fitting linear equations. It estimates the coefficients that best-fit input data using the 
method of least squares. 
 

g) Neural Networks 
 
Neural networks, such as multilayer perceptron (MLP), are powerful models composed of 
interconnected nodes or neurons on la. They learn complex relationships in the data 
through hidden layers of neurons and can handle both classification and regression tasks. 
 
These explanations provide a brief overview of the algorithms and their characteristics. 
Each algorithm has its own underlying principles and specific use cases. It's important to 
consider the nature of the data, the complexity of the problem, and the requirements of the 
task when selecting the most suitable algorithm for the supervised learning problem. 
 
2.1.2. Unsupervised Learning 
 
Unsupervised learning involves learning patterns and structures in unlabeled data 
(Conway & White, 2012). The algorithm discovers hidden patterns, clusters, or 
relationships within the data without any specific target or label. Clustering algorithms, 
dimensionality reduction techniques (e.g., Principal Component Analysis), and generative 
models (e.g., Gaussian Mixture Models) are primary algorithms of unsupervised learning 
methods. 
 
2.1.3. Reinforcement Learning 
 
Reinforcement learning (RL) focuses on how an agent can learn to make sequential 
decisions through interaction with an environment to maximize a cumulative reward 
signal (Sutton & Barto, 2018). The agent learns through trial and error, exploring the 
environment, and receiving returns as rewards or punishments. It draws inspiration from 
the way humans and animals learn through trial and error. In RL, an agent interacts with 
an environment, takes actions based on its current state, and receives feedback in the form 
of rewards or punishments. The agent's objective is to learn a strategy that guides its 
decision-making process to maximize the long-term rewards it receives from the 
environment. To understand better, the key components of RL framework are shown in 
Figure 2 and explained as follows: 

• Agent: The learner or decision-making entity that interacts with the environment. 
The agent takes actions based on its current state and receives rewards from the 
environment. 
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• Environment: The external system or world in which the agent operates. The agent 
explores the environment, makes decisions, and aims to improve its performance 
over time. 

• State: Current condition of the environment at a given time. 

• Action: The choices or decisions made by the agent in response to its current state. 
Actions affect the subsequent state and the rewards received. 

• Reward: A scalar value that quantifies the desirability or quality of the agent's 
actions. The agent's goal is to maximize the cumulative reward over time. 

• Policy: A strategy or mapping from states to actions, which guides the agent's 
decision-making process. The policy guides the agent in choosing actions based 
on its current state. The agent's goal is to learn an optimal policy that maximizes 
its cumulative reward in the long run.  

 
Figure 2: Reinforcement Learning Framework 

The agent learns to improve its decision-making capabilities by employing various 
learning algorithms and optimization techniques. Popular RL algorithms include Q-
learning, Deep Q-Networks (DQN), Policy Gradient methods, and Actor-Critic methods. 
RL has been successfully applied to a wide range of domains, including robotics, game 
playing, driving, and resource management. It enables agents to learn complex behaviors, 
adapt to dynamic environments, and make decisions in situations where explicit 
supervision or labeled training data is not available. 
 
RL can be categorized into different groups based on the components used in the learning 
process, including value function, policy, and model. Main categories are explained in the 
following sections: 
 

a) Value-Based RL 
 
Value-based RL methods focus on estimating and optimizing the value function, which 
represents the expected long-term cumulative reward for an agent in a given state or state-
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action pair. These model-free methods aim to find the optimal value function or value 
function approximation without explicitly learning a policy. In value-based RL, Bellman 
equation plays a crucial role in updating and estimating value function. Bellman equation 
expresses the relationship between the value of a state or state-action pair and the values 
of its successor states. It is a recursive equation that consists of the immediate reward and 
the discounted value of the next state(s). Popular algorithms in value-based RL are Q-
learning, Deep Q-Networks (DQN), and SARSA(State-Action-Reward-State-Action). 
 

b) Policy-Based RL 
 
Policy-based methods directly learn the optimal policy without estimating a value 
function. The policy represents the mapping from states to actions, leading the agent's 
decision-making process. These model-free methods optimize the policy by searching for 
policy parameters that maximize the expected cumulative reward. REINFORCE (Monte-
Carlo Policy Gradient) is the most popular policy-based RL method. 
 

c) Critic RL 
 
Actor-critic RL methods combine value-based and policy-based approaches and are also 
in model-free category. They operate both a value function (critic) and a policy (actor) to 
learn and improve agent's behavior. Algorithms such as Soft Actor-Critic (SAC) and 
Advantage Actor-Critic (A2C) are model-free actor-critic methods. 
 

d) Model-Based RL 
 
Model-based RL algorithms explicitly learn a model of the environment. These algorithms 
aim to estimate the transition probabilities and rewards based on observed interactions 
with the environment. Model-based methods combine model learning with planning 
algorithms to optimize agent's behavior. Examples are Monte-Carlo Tree Search (MCTS), 
Model Predictive Control (MPC), and Dyna-Q. 
 

e) Multi-Agent RL 
 
Multi-agent reinforcement learning (MARL) is an area of research that focuses on learning 
in environments where multiple agents interact and learn simultaneously (Zhang, Yang, 
& Başar, 2021). MARL’s goal is for each agent to learn its optimal policy while taking 
into account presence and actions of other agents in the environment. 
 
MARL involves extending traditional RL framework to accommodate multiple learning 
agents. Each agent has its state, action space, and policy, and they interact with the 
environment concurrently. The agents' actions can affect each other and overall system 
dynamics, introducing the challenge of coordination, competition, or cooperation between 
the agents. MARL has applications in diverse domains, including robotics, multi-robot 
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systems, traffic control, and social networks, where interactions between multiple agents 
play a crucial role. Moreover, this research area is used in energy trading games and each 
market participant acts as an agent. 

2.2. Peer-to-Peer Energy Trading 
 
Peer-to-peer (P2P) energy trading refers to the direct exchange of energy between 
producers and consumers within a local energy system. The term "peer" refers to 
individuals or entities within a local energy system who participate in trading of energy. 
These peers can include energy producers, consumers, or both and be interconnected 
distributed energy resources, and microgrids. 
 
The objective of P2P energy trading game algorithms is to investigate a solution for 
meeting energy demand of peers while maximizing the profit of each. One of the review 
studies on peer-to-peer energy trading examined investigated studies in six different 
approaches (Soto, Bosman, Wollega, & Leon-Salas, 2021). These approaches are listed 
as algorithms, optimization, trading platforms, blockchain, simulation, and game theory. 
The review said that the study often covers multiple approaches. All of the studies either 
have optimization or algorithm approaches. In this thesis, research is conducted based on 
these approaches. 
 
One of the early researches on this topic, that is in the recent past, proposes a distributed 
algorithm that considers grid-connected microgrid with PV and storage system and 
optimizes battery scheduling according to dynamic load and solar power (Raju, Sankar, 
& Milton, 2015). In this model, each agent uses Q-learning algorithm for this optimization 
of itself. For optimization of multiple agents, Multi Agent RL algorithm, namely 
Coordinated Q-Learning is proposed to improve on utility of battery and solar in the grid. 
This proposed system runs in a strategic manner for different operational scenarios to 
achieve the possible minimum cost. Markov Decision Process is used for the sequential 
decision-making strategy. All in all, this proposed Coordinated Q-Learning algorithm can 
handle stochastic patterns of demand and generation and reduce dependency on electricity 
grid. In the same year, another study proposes an optimization model whose aim is 
different (Guan, Wang, Lin, Nazarian, & Pedram, 2015). This study proposes a 
reinforcement learning technique for optimal control of the storage system of households. 
Optimization of energy storage systems is critical for uncertain nature of PV generation 
and load. To take higher performance from the method, TD(λ)-learning algorithm is used 
and electric bill minimization for residential households is determined as the goal in the 
objective function. More recently, another paper introduces peer-to-peer energy trading 
framework based on repeated game which gives chance randomly selection of strategy for 
microgrids individually for trading energy in independent market (Wang H. , Huang, Liao, 
Abu-Rub, & Chen, 2016). The purpose of these markets is to maximize the total revenue. 
To establish Nash equilibrium handling different scenarios learning automation-based 
algorithms were developed. This paper contributes a finite action learning automation 
(FALA) based model to update each participant’s probability distribution for seeking the 
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best action for each in discrete strategy space. For continuous strategy space, continuous 
action learning automation (CALA) base model was proposed. 
 
Some research focuses on solutions to balance energy load and generation including grid 
constraints in a microgrid instead of microgrids. Three different strategies for reducing 
costs and increasing income for producers in small-scale distributed energy resources 
were proposed, namely mid-market rate, auction-based pricing, and bill-sharing strategy 
research (Long, et al., 2017). Each of them was evaluated on a residential microgrid with 
solar systems. According to the results presented in the paper, moderate level of solar 
penetration reduces energy costs by 30%. The reason for this reduction is diversity of 
demands of households in the community microgrid. This study shows that flexible 
demand response can be added, and these strategies can be applied to larger-scale 
community microgrids. Because of this study, research focused on trading in a microgrid 
was checked. 
 
One of the oldest studies proposes an algorithm that plans battery charging - discharging 
schedule and utilization from wind turbines with two steps ahead of reinforcement 
learning (Kuznetsova, et al., 2013). There is a microgrid case that has demand from local 
consumers, renewable energy generators from wind and battery storage systems. This 
system is also connected to the electricity grid. The proposed approach gives opportunity 
for optimal actions for battery scheduling in different seasonal and weather conditions to 
prosumers. In other words, prosumers can learn how to handle stochastic environment of 
the energy management system with this method. Reinforcement learning based 
algorithms used in the solution of this problem are increasing according to the latest 
researches. To understand local energy trading behavior in a grid, motivation of recent 
research is modeling energy trading behavior of prosumers, that have energy storage 
systems, in local energy market. In other words, this paper tries to explain how prosumers 
choose their trading strategy considering their energy resources on hand (Chen & Su, 
2018). The deep reinforcement model based on Q-learning solves Markov decision 
process with multiple continuous variables. This helps decision making processes in the 
smart energy system and increases participation of prosumers in local energy market. This 
paper shows how deep Q-learning local energy trading algorithm outperforms rule-based 
and dummy random strategies in terms of daily economic benefit of prosumers. In another 
study, there is an introduction of a deep reinforcement learning model for decision making 
problem of microgrids using peer-to-peer energy trading model in local energy market 
(Chen & Bu, 2019). The introduced deep model uses Q-learning approach for an hour-
ahead peer-to-peer energy trading model satisfying physical constraints like utilization of 
energy resources, charging and discharging limits of batteries. Also, this model includes 
virtual penalty cost in objective function for giving power plant schedules to microgrid 
participants. Another energy trading game model autonomous peer-to-peer energy trading 
method which maximizes the prosumers’ profit (Kim & Lee, 2020). It is the modification 
of deep Q-network based algorithm and considers electricity bill, electric energy stored, 
trading energy, and virtual loss. The proposed methodology is based on a long-term 
delayed reward that enables monthly effective learning of patterns. This paper concludes 
that peer-to-peer reinforcement learning based energy trading model through long-short 
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term delayed reward gives higher profits and reduces over generation of electric energy 
loss. Moreover, it maximizes each prosumer’s profit on noncooperative game theory. 
 
Some approaches combine different models with reinforcement learning based 
algorithms. One of the recent papers deals with challenging nature of microgrids with 
combination of deep learning and reinforcement learning approaches (Chandrasekaran, 
Kandasamy, & Ramanathan, 2020). This nature consists of high penetration of solar and 
wind and uncertainty of customer load. For demand forecasting side, the problem gets the 
help of deep learning reinforcement learning model. In this study, different components 
of microgrids including decision-making, power and demand forecasting, prediction, and 
analysis have served.  For each component, different deep learning-based models were 
compared. It is stated that reinforcement learning models are preventive and take 
advantage of the control of generation. 
 
Game theory methods are also used with reinforcement learning in a dissertation (Hu, 
2020). This dissertation aims to introduce autonomous distributed control system for 
microgrids by performing demand response and energy management systems. To satisfy 
this aim, three different approaches were considered. In the first approach, multi-player 
game, different solutions were generated according to setting of game. When the number 
of players increases in the game, performance of the game decreases. For the second 
attempt, Q-learning and Linear Reward-Inaction based reinforcement learning algorithms 
were tried. Q-learning algorithm failed in multi-agent environment scenario while training 
time of Linear Reward-Inaction algorithm was too long. The last approach was based on 
load-ratio learning game algorithm which solves performance deterioration of the game. 
According to the dissertation, this algorithm gave the best result and showed the greatest 
potential to satisfy the requirements of microgrid energy management system in terms of 
communication. 
 
An Optimized Reinforcement Learning with Decision Tree method was proposed for 
energy management and economic dispatch m to select the best policy in every situation 
in microgrid environment without using any forecasting module (Levent, et al., 2019). 
The proposed model is presented as learning phase of past data in microgrid and the 
execution of data with dynamic decision tree model. The model in this study does not 
require forecasting model to solve economic dispatch problem. However, it is stated that 
there is a need for an approximation method to generalize behaviors of participants in the 
market. 
 
Apart from the algorithm for peer-to-peer energy trading problems in a microgrid, some 
papers concentrated on different problems. Peer-to-peer energy trading problems among 
houses in a microgrid is new concept and it brings some concerns. Security of the platform 
exposes trading environment is critical. The recent research introduces deep learning 
model with blockchain based framework for smart microgrids is proposed as DeepCoin 
(Ferrag & Maglaras, 2019). This model gives an opportunity to exchange surplus energy 
between neighboring agents. Also, this protects the smart grids from security deficiencies 
and cyber-attacks. For these, short signatures, hash functions and bilinear pairing methods 
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are used. This peer-to-peer energy trading model is based on practical Byzantine fault 
tolerance algorithm. With this algorithm, consensus between agents can be satisfied. The 
novel deep learning scheme uses recurrent neural networks with truncated 
backpropagation through time algorithm. In this study, blockchain strategy and deep 
learning using backpropagation through time algorithm are used together first. For 
evaluating the proposed model, three different datasets were used, and the results were 
compared with support vector machines, random forest, and naïve bayes algorithms. The 
results overperformed these algorithms in terms of false alarm rate. 
 
In addition to security, grid-based constraints were investigated further in recent research. 
The financial and electrical perspectives of energy transactions were taken into account in 
a platform for peer-to-peer energy trading process (Elliott, Shanklin, Zehtabian, Zhou, & 
Turgut, 2020). Furthermore, how number of users in the smart grid affect the grid from 
sustainability and reliability side. This platform checks the considerations of prosumers 
such as distributed energy sources of them and connectivity of main grid for possible 
participants of peer-to-peer energy systems. In the algorithm used in the platform, physical 
constraints including voltage regulator tap change, voltage limit, capacitor bank capacity, 
and branch current capacity are checked before matching. The main algorithm is based on 
the first in first out rule for incoming orders. The simulation results of the proposed 
platform show that increase in number of users provides more sustainable network.  
 
The other paper proposes a fully decentralized approach for market clearing in peer-to-
peer energy market (Paudel, Sampath, Yang, & Gooi, 2020). This proposed approach 
considers power losses and network utilization fees throughout peer-to-peer energy 
trading. For network utilization fees, electrical distance between consumers and producers 
is calculated and then the fees are given to the model proportional to these distances. In 
this proposed approach, the aim is to maximize social welfare by considering network 
usage. Also, the model includes transformed constraints by relaxing nonconvex 
constraints. According to this model, electricity prices and generation/demand amounts 
can be calculated by satisfying all the constraints and without sharing preferences of the 
agents.  
 
Instead of maximizing the total profit, an approach focuses on the total cost of consumers 
(Alam, St-Hilaire, & Kunz, 2019). This paper proposes an approach for minimizing total 
cost of energy trading among smart houses in microgrids. There is Energy Cost 
Optimization via Trade which is the first near optimal cost optimization model for 
Demand Side Management. This model considers unfair cost distribution problem with 
Pareto optimality. Also, the paper evaluated effects of renewables and storage concerning 
households. According to the study, if households have renewables and storage, energy 
trading for this house is necessary to minimize the costs. Also, this paper shows that 
storage capacity does not increase cost savings linearly. Until saturation point, if there is 
a renewable, cost savings can increase when storage capacity increases. In this consumer-
oriented approach, the households are protected when the grid fees are too high. One 
research covers all different aspects of smart grids in their paper (Mengelkamp, et al., 
2018). In this paper, trades between consumers and prosumers in peer-to-peer energy 
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fashion on microgrid market were explained. With this fashion, consumers and prosumers 
can arrange their costs and profits within their energy community. For this purpose, seven 
components of microgrid energy markets with blockchain were introduced. Microgrid 
setup must be defined so that a sufficient number of agents, in other words, producers and 
consumers, should be in the market, and market access should be only on market 
participants. Grid connection, high-performing information system, market mechanism 
for day-ahead and intraday markets, pricing mechanism, trading system, and regulation 
should be in market structure. 
 
The energy trading mechanism among microgrids was investigated further after checking 
trading in a microgrid. One paper introduces a formulation for the energy trading game 
using Nash equilibrium of the game according to predicted renewable energy production 
and energy demand, battery level, and energy trading history (Xiao, et al., 2018). Also, 
there is a proposition of one reinforcement learning based model that applies deep Q-
network for reducing dependency on power plants and improving utility of microgrids. 
This paper also shows that long-distance power transmission loss is reduced in dynamic 
energy trading games. In another paper, direct energy trading is formulated between 
multiple microgrids and also utility by using generalized Nash bargaining (GNB) problem 
method (Kim H. , Lee, Bahrami, & Wong, 2019). This proposed GNB problem considers 
maximizing social welfare and distributing the income between microgrids based on their 
market power. The paper proposes solving the optimal power flow problem to determine 
amount of energy trading and to determine the market clearing price and mutual payments 
of the microgrids. The generalized Nash bargaining problem has been attributed to three 
key contributions Direct Trading Framework, Distributed Optimization Methods, and 
Significant Cost Reduction. While GNB minimizes the total cost and maximizes social 
welfare, Direct Trading Framework maximize the profit of each microgrid. Distribution 
optimization methods in this paper guarantee amount of energy exchange of each grid is 
proportional to its profit. 
 
To understand different models based on different logic, some review papers were 
checked. One paper searches peer-to-peer energy trading projects in terms of their main 
focuses, outcomes and then compares these projects’ similarities and differences (Zhang, 
Wu, Long, & Cheng, 2017). According to the paper, some projects only focus on the 
development of their business models and ignore application of these models to smaller 
local energy markets. However, some of these provide connections between producers 
and consumers and the electricity price can vary in these projects while some give 
importance to shortage systems. This paper concludes that the design of communication 
and control systems on these networks is important for enabling energy trading in a 
microgrid or among microgrids. The other article is a comprehensive review and analysis 
of peer-to-peer energy trading concept based on prominent academic papers, projects in 
literature, and industrial applications (Zhou, Wu, Long, & Ming, 2020). This review 
examines the previous studies in terms of energy trilemma which covers three critical 
objectives: energy security, energy equity, and environmental sustainability. In other 
words, what problems came and what problems were solved with peer-to-peer trading and 
distributed energy resources, that can share and trade energy. This paper covers journal 
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papers published in the last five years. According to total number of papers published in 
a year, peer-to-peer energy trading has become popular for two years. This paper states 
that majority of papers in this area focused on market design, trading platforms, physical 
and information technology infrastructure of peer-to-peer energy trading. Also, it says that 
policy issues are the problem of deploying these platforms on large-scale markets. This 
review paper mentions papers that utilize blockchain technology to facilitate peer-to-peer 
energy trading solutions at different levels. Market design models such as centralization 
level, differentiation of products, game theoretic perspective, and market stability are 
included in this paper. These are very important to understand concepts in this problem 
and determining starting point for new study. 
 
In recent years, studies conducted have shifted towards multi-agent reinforcement 
learning. One of the studies proposes agent-based transactive energy trading platform 
integrating energy storage systems, utilizing reinforcement learning for bidding strategies, 
and addressing losses with simulations in multi-microgrid systems (Nunna, Sesetti, 
Rathore, & Doolla, 2020). Another multi-agent based model introduced in a paper that 
novel P2P transactive energy trading scheme using multi-actor algorithm, including 
scalability and privacy challenges in efficient local energy trading while minimizing cost 
and peak demand reduction compared to existing methods (Ye, Tang, Wang, Zhang, & 
Strbac, 2021). These multi-agent approaches are needed to create economic benefits. 
Markov decision process bases multi-agent reinforcement learning model was presented 
with achieving maximum income and ensuring privacy (Qiu, Wang, Dong, Wang, & 
Strbac, 2022). The advantages of multi-agent reinforcement learning in terms of cost, 
scalability, and applicability demonstrate the feasibility of this method. Therefore, this 
thesis study adopts focus on multi-agent reinforcement learning for these reasons. 

2.3. Energy Forecasting 
 
Energy forecasting is a crucial task in energy systems planning, operation, management, 
and optimization. It involves predicting future energy consumption, generation, prices, or 
other relevant variables to support decision-making processes. Energy forecasting can be 
classified into different categories based on various factors. According to forecasting 
horizons category shown in Figure 3 with their usage purposes, temporal granularity is 
categorized as follows (Zor, Timur, Çelik, Yıldırım, & Teke, 2018): 

• Very Short-Term Forecasting: Very short-term forecasting focuses on predicting 
energy variables in the very near future for energy purchasing activities, typically 
up to a few hours (Mir, et al., 2021). 

• Short-Term Forecasting: This type of forecasting focuses on predicting energy 
variables in the near future, typically up to a few days or weeks. 

• Medium-Term Forecasting: Medium-term forecasting involves predicting energy 
variables for a longer time horizon, ranging from a few weeks to a few months. 
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• Long-Term Forecasting: Long-term forecasting extends the prediction horizon to 
several months, years, or even decades. It aims to provide insights into future 
energy trends and planning scenarios. 

 
 

Figure 3: Forecasts’ Purposes for Different Horizons 

Energy forecasting can be classified according to modeling approaches as follows (Hong, 
et al., 2020): 

• Statistical Methods: Statistical methods use historical data patterns and 
mathematical models to create forecasts. Some algorithms are time series analysis, 
regression, and exponential smoothing. 

• Machine Learning: Machine learning methods, such as neural networks, random 
forests, support vector machines, or gradient boosting, learn patterns from 
historical data to create forecasts. 

• Hybrid Models: Hybrid model approaches combine statistical and machine 
learning techniques to consolidate their respective strengths and improve 
forecasting accuracy. 

 
In terms of spatial forecasting approaches, there are two different solutions in the 
literature: 

• Point Forecasting: It provides a single predicted value for a specific energy 
variable at a given point in time. 

• Probabilistic Forecasting: It provides a range of possible outcomes along with their 
associated probabilities. It quantifies the uncertainty in the forecasts and helps 
decision-making. 

 
Energy forecasting techniques are also classified according to output energy variable 
(Hong, et al., 2020): 
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• Load Forecasting: Load forecasting focuses on predicting future electricity 
demand or consumption patterns. It helps utilities and grid operators optimize their 
generation and distribution plans. 

• Generation Forecasting: Generation forecasting predicts the future output of 
energy sources, such as wind, solar, or hydro power plants. It assists in optimal 
resource allocation and energy trading decisions. 

• Price Forecasting: Price forecasting involves predicting future energy market 
prices, such as electricity or natural gas prices. It helps market participants in 
making informed trading and investment decisions. 

 
All in all, the classification of energy forecasting depends on the specific context, 
requirements, and variables of interest. Different forecasting methods and models are 
applied based on the classification criteria to fit certain forecasting tasks and time frames. 
 
2.3.1. Load Forecasting 

Since electricity load forecasting is important for both the management of power systems 
and trading in energy market, models using different approaches have been published in 
the last decades. One of the most basic models is autoregressive integrated moving 
average model (ARIMA) which is based on time series. This model was used both by 
giving exogenous input (ARIMAX) and adding seasonal factors (SARIMA - SARIMAX) 
(Mohamed, Ahmad, Suhartono, & Ismail, 2011; Nengbao, Babushkin, & Afshari, 2014). 
Random forest structure, which is one of the ensemble methods based on decision trees, 
has been preferred in some studies because it creates a large number of trees and reduces 
the effect of weak classifiers (Dudek, 2014). In another approach that shows the effect of 
ensemble methods on error reduction, gradient boosted trees were used (Taieb & 
Hyndman, 2014). After exploration of neural network and deep learning approaches in 
time series modeling and taking better results, recurrent neural networks were used with 
long short-term layers (Muzaffar & Afshari, 2019). Especially RNNs have become very 
popular in time series modeling (Connor, Martin, & Atlas, 1994). These networks are 
special cases of autoregressive moving average models nonlinearly. The different RNN 
approaches were applied with clustering similar days by Mandal (Mandal, Senjyu, 
Urasaki, & Funabashi, 2006). In another approach, LSTM architecture was used first time 
in power demand forecasting by adding weather, calendar, and time series features 
(Cheng, Xu, Mashima, Thing, & Wu, 2017). 

Another neural network architecture used in this problem is convolutional neural 
networks. For this project, I checked especially two papers. I took help from them 
intuitively. One of them is based on CNN with transfer learning. It focuses on capturing 
intraday, daily, and weekly seasonal patterns using limited training data with 
convolutional neural network approach (Hooshmand & Sharma, 2019). In this paper, the 
problem is having less imbalance using an insufficient amount of training data for load 
forecasting. To overcome this problem, publicly available datasets are used for training 
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the first CNN-based predictive model. In this model, there 5 convolutional layers with 32 
filters of size. After each convolutional layer, batch normalization and max-pooling layers 
come. ReLU is the activation function of the model. There are dense and dropout layers 
(0.5) before the output layer. Before training the model, the normalization step comes to 
correct scaling differences between target and public datasets. CNN model is trained with 
public datasets and finetuned with available limited data of the target. This approach was 
tested on publicly available customers' datasets. Results were compared with SARIMA 
and CNN model without using transfer learning (fresh CNN). The normalized mean 
absolute error of the final model is 0.7 when SARIMA is 0.87 and fresh CNN is 0.84 for 
a month period. The approach in the paper is so meaningful because load forecasting of 
customers who are in a similar group like utility, house, etc. can show similar patterns. 

Another paper does not use deep learning approaches. However, there is a transfer 
learning approach that uses the load of some cities for forecasting load of target city (Zeng, 
Sheng, & Jin, 2019). In this paper, TrAdaBoost algorithm was applied. The main purpose 
of the paper is to decrease errors in holidays. First, the source cities are selected according 
to the distance to target city in China. The model was compared with support vector 
regression model which is also applied to load forecasting problems. The mean absolute 
percentage error of the proposed algorithm is 2.88, while support vector machine's is 3.16. 
Another tree-base boosting algorithm LightGBM has been used in multiple works (Yao, 
Fu, & Zong, 2022; Zhou, Lin, & Xiao, 2022). They showed robust and applicable 
performances in regional and customer-based load forecasting. 

 
2.3.2. Generation Forecasting 
 
Certainly, while there are various renewable energy sources available such as wind, hydro, 
and geothermal, this thesis study primarily focuses on solar energy for a few key reasons. 
Solar power has a wide range of applications and scalability, from small rooftop 
installations to large-scale solar farms, making it a viable option for different energy needs 
(Gueymard, 2009). In Turkey, the share of solar energy production in energy generation 
is increasing day by day with both licensed and unlicensed solar energy investments. Due 
to its inherent uncertainty, accurate solar power generation forecasting is of critical 
importance for both the system operators and solar plant owners. Expected generation 
forecasts made a certain period in advance are communicated to system operator, enabling 
them to perform necessary planning. Additionally, solar plant owners require generation 
forecasts to optimize their post-production trading. The literature on solar power 
generation forecasting can be categorized into two modeling approaches: physical models 
and data-driven models that learn from historical data. 
 
Physical models are based on calculating the radiation value on an inclined surface and 
determining the amount of energy that will be produced by the solar panel in the future in 
a deterministic manner (Hay, 1979; Gueymard, 2009; Hooshmand & Sharma, 2019). The 
basic equations and variables that form the basis of physical modeling are given below. 
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𝐺𝑇𝐼 = 𝐷𝑁𝐼 ∗ 𝑐𝑜𝑠𝜃 + 𝑅! ∗ 𝐷𝐻𝐼 + 𝑓" ∗ 𝜌 ∗ 𝑅# ∗ 𝐺𝐻𝐼          (1) 
where 𝜃 is beam angle on tilted plane, 𝑅!  is diffuse transposition factor, 𝑓"  is shading 
factor, 𝜌 is ground albedo, and 𝑅# is ground reflection transposition factor.  
 
Different models in the literature model different components of 𝑅! ∗ 𝐷𝐻𝐼. The formula 
of Hay Model (Hay, 1979) is shown below: 
 
𝐷𝐻𝐼[𝐹 ∗ 𝑅$ +
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∗ (1 − 𝐹)            (2) 
 
The formula of Gueymard Model (Gueymard, 2009) is shown below: 
 
𝐷𝐻𝐼781 − 𝑁+,9 ∗ 𝑟!- + 𝑁+, ∗ 𝑟!%;            (3) 
 
The formula of Perez Model (Perez, Ineichen, Seals, Michalsky, & Stewart, 1990) is 
shown below: 
 
𝐷𝐻𝐼 <.!/
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Data-driven methods generally utilize radiation and temperature weather variables as 
inputs and rely on a mathematical function between historical plant productions and 
predicted values for future estimations using a linear or nonlinear model (Trapero, 
Kourentzes, & Martin, 2015). Statistical methods are primarily class that models the input 
and output space using a linear function. Mathematically, in the function 𝑦	= 𝑓(𝑥), the 𝑓 
function is linear. The 𝑥 variables representing the input space consist of variables from 
the equations (1) and lagged values of solar production. Linear regression, ARIMA(X), 
and SARIMA(X) models are found in the literature (Trapero, Kourentzes, & Martin, 2015; 
Yang, Thatte, & Xie, 2006). Machine learning regression models such as SVM, tree-based 
bagging/boosting models including random forest, gradient boosting, LightGBM, 
catboost, and artificial neural networks (Persson, Bacher, Shiga, & Madsen, 2017; Mellit 
& Pavan, 2010; Sobri, Koohi-Kamali, & Rahim, 2018) associate input and output space 
with nonlinear function. Mathematically, 𝑓 function is nonlinear in function 𝑦	= 𝑓(𝑥). 
Hybrid methods are models that combine linear and nonlinear models. 
 
2.3.3. Price Forecasting 
 
The need for accurate electricity price forecasting is fundamental in the energy market 
landscape. It serves various stakeholders, including power producers, consumers, and 
traders, by informing strategic bidding, investment planning, contract formulation, and 
risk management. With increasing investment in renewable energy sources and their 
variability, accurate price forecasting has become more crucial and complex (Grossi & 
Nan, 2019). 
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Over recent years, several sophisticated algorithms have been used to improve the 
accuracy of electricity price forecasting. Machine learning algorithms including Support 
Vector Machines (SVM), Gradient Boosted Trees, Artificial Neural Networks (ANN), and 
Random Forests have gained popularity in this domain due to their ability to capture 
complex nonlinear relationships and adapt to changing market dynamics (Lago, Marcjasz, 
Schutter, & Weron, 2021; Zhou, Wang, Wang, Wang, & Yang, 2018). LightGBM model 
is also used in some papers (Park, Jung, Jung, RHo, & Hwang, 2021). Additionally, time-
series forecasting models such as ARIMA and GARCH have been widely used due to 
their ability to handle volatility in price series (Zhang, Zhang, Li, Tan, & Ji, 2019). Hybrid 
models combining different approaches are also emerging as a robust way to capture the 
best of different forecasting techniques (Yang, Ce, & Lian, 2017). 
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CHAPTER 3 

 

MULTI-AGENT REINFORCEMENT LEARNING FOR PEER-TO-PEER 
ENERGY TRADING 

3.1. Problem Statement 
 
The new technologies that come with renewable energy solutions have enabled varying 
structures in demand and production depending on time, avoiding the costly architecture 
of main grid and providing demand with different solutions. In recent years, there has been 
significant accretion in small-sized distributed energy resources, such as solar panels, 
wind turbines, and home energy storage systems. This growth has allowed consumers to 
become producers of energy, giving rise to the concept of prosumers. Prosumers are 
individuals or entities, like homeowners or businesses, who both generate and consume 
energy. They are called also nano grids. On the other hand, a microgrid refers to localized 
energy system that operates independently or in conjunction with main power grid 
(Nordman & Christensen, 2015). It integrates various distributed energy resources, such 
as renewable generation, energy storage, and controllable loads, to supply power to a 
specific area. The combination of prosumers and microgrids represents a symbiotic 
relationship, where prosumers contribute to the resilience and sustainability of microgrids, 
while microgrids provide a platform for prosumers that are actively involved in energy 
market and maximize value of their renewable energy investments. Therefore, although 
the term "microgrid" is predominantly used in the thesis, the concept of "prosumer" will 
occasionally take its place.  
 
Microgrids install renewable energy systems on their properties, benefiting from reduced 
reliance on traditional energy sources and the potential to save money and earn revenue 
by selling surplus energy. Thus, the transformation of renewable energy systems by 
microgrids fosters a more resilient, cost-effective, and environmentally friendly energy 
future. Furthermore, it helps the next generation energy management technique called 
peer-to-peer (P2P) energy trading has shown up.  

3.2. P2P Energy Trading Platform 
 
Peer-to-peer energy trading refers to energy producers and consumers can directly trade 
electricity with each other through a platform, without the involvement of intermediaries 
or traditional energy providers. P2P trading enables prosumers/microgrids to be actively 
involved in energy market by selling their surplus energy, contributing to a more resilient 
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and decentralized energy system. Although microgrids create energy balance within 
themselves, they can gain more profit by entering the market. In markets where more than 
one microgrid can trade with each other, participants can buy, sell, and share energy with 
each other. In doing so, constraints such as energy needs, prices, distance of energy 
resources, or social preferences are provided.  
 
However, trading in P2P energy market has challenges because it expects prosumers to 
trade their energy with little or no control from a central authority, making P2P platforms 
untrustworthy systems. Encouraging prosumers to work together in such an untrustworthy 
environment is difficult, especially in large energy systems where it is hard to understand 
how different factors affect energy trading decisions due to potential conflicts of interest 
among prosumers in the market. Managing P2P energy markets to address issues related 
to price and technical constraints is a complex problem requiring careful adjustment. 
 
P2P energy trading offers several advantages. Firstly, it allows for greater efficiency and 
flexibility in energy market by enabling direct transactions between prosumers, bypassing 
intermediaries. Secondly, P2P trading promotes utilization of distributed energy 
resources, such as rooftop solar panels, by enabling prosumers to monetize their excess 
energy and sell it to other consumers in the network. This fosters a more sustainable 
energy ecosystem. Additionally, P2P trading enhances grid resilience as it allows for 
localized energy sharing, enabling communities to maintain electricity supply during grid 
disruptions. Lastly, through P2P trading, prosumers can sell their excess energy directly 
to other consumers, earning revenue that can offset their energy costs and reduce their 
bills. By participating in P2P trading, consumers can take greater control of their energy 
expenses and potentially lower their overall electricity bills. 
 
3.2.1. Layers of P2P Energy Trading Platform 
 
There are mainly two layers of P2P energy trading platform, including virtual and physical 
layers. The flow between these layers is shown in Figure 4 (Tushar, Saha, Yuen, Smith, 
& Poor, 2020).  
 
Virtual Layer: The virtual layer provides an environment which is secured for deciding 
energy trading decisions to the platform’s participants. It includes software platforms, 
communication protocols, and marketplaces that enable participants to connect, trade, and 
interact in a virtual environment. This layer facilitates the matching of energy supply and 
demand, price discovery, and transaction settlement. It also incorporates features such as 
smart contracts, blockchain technology, and data analytics to ensure efficient energy 
trading. 
 
Physical Layer: The physical layer refers to the tangible components of the P2P energy 
trading system. It includes the physical infrastructure and assets involved in energy 
production, distribution, and consumption. This layer encompasses distributed energy 
resources (DERs) like solar panels, wind turbines, and energy storage systems, as well as 
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the physical transmission and distribution networks that connect them. The physical layer 
also includes the measurement devices, meters, and sensors used to monitor energy flows 
and ensure accurate measurement of energy transactions. 
 

 
Figure 4: Layers of Peer-to-Peer Energy Trading Framework 

The virtual layer and the physical layer work together to create a seamless P2P energy 
trading ecosystem. The virtual layer provides the digital infrastructure and tools necessary 
for participants to engage in energy trading, while the physical layer represents the actual 
generation, storage, and consumption assets that produce and consume the energy being 
traded. The integration of these two layers enables efficient and transparent peer-to-peer 
energy transactions, empowering participants and promoting the adoption of renewable 
energy sources. 
 
In virtual layer, there should be some key elements: 

• Information system: A well-functioning information system is vital to success of 
P2P energy trading platform. It serves as central component of the platform, 
connecting market participants, offering a suitable structure for trading, providing 
access to the market, and monitoring all operations. Equal access to market 
information, without any bias or interference, is crucial. One example of such an 
information system is smart contracts based on blockchain technology (Kang, Yu, 
Maharjan, Zhang, & Hossain, 2017).  

• Energy management system: During engaging in P2P trading using a specific 
bidding structure, energy management system of prosumer ensures continuous 
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supply of energy. To achieve this, EMS accesses real-time supply and demand 
data through smart meter of the prosumer. Using this information, EMS develops 
a generation and load plan for prosumers and makes bidding decisions on their 
behalf in the trading market. 

• Market operation: P2P platform’s information system plays a key role in enabling 
market operations, which cover market allocation, billing rules, and structured 
bidding. The primary objective of market operations is to facilitate an influential 
energy trading process by effectively matching orders and bids in real time. It is 
crucial to establish various market time horizons that can consistently provide 
adequate energy allocation throughout the entire market operation. 

• Pricing mechanism: Pricing mechanisms play a crucial role in P2P trading by 
efficiently balancing energy supply and demand. Unlike traditional electricity 
markets, P2P pricing is not burdened by surcharges and taxes, allowing prosumers 
to set prices for their energy and maximize profits. These structures need to 
represent energy state within market network, with greater energy excess leading 
to lower prices and vice versa. 

 
The elements in the physical layer are listed below: 

• Grid connection: In P2P energy trading architecture, well-defined connection 
points with main grid are crucial for balancing energy generation and 
consumption. Smart meters can be installed at these points to evaluate network 
performance and energy savings. If a physical microgrid-distribution network 
exists, it can separate from main grid during emergencies.  

• Metering: For involvement in P2P trading, each prosumer requires appropriate 
metering infrastructure, including a smart meter additively classical electricity 
meter.  

• Communication infrastructure: Effective communication is vital in P2P 
trading for information exchange within the network. The communication 
structure should fit to requirements of performance, including considerations 
of latency, throughput, reliability, and security. 

 
Moreover to these, market participants in P2P energy trading infrastructure are an 
important element. P2P energy trading requires an adequate number of market 
participants, and a subset of these participants should have the capability to generate 
energy. The purpose of P2P energy trading, such as promoting renewable energy usage or 
reducing reliance on main grid, has an impact on the design of pricing and market 
mechanisms (Tushar, et al., 2018). Additionally, it is necessary to define the specific form 
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of energy being traded, whether it is electricity, heat, or a combination of both. For this 
thesis study, only electricity is considered. 
 
3.2.2. Energy Models of P2P Energy Trading Platform Elements 
 
A microgrid or prosumer, comprised of energy generation system, energy storage system, 
controlled electrical loads, electrical vehicle, and diesel generator, brings together various 
components to ensure a dependable power supply and maintain balance between 
generated and consumed electricity (Zahraoui, et al., 2021; Jiayi, Chuanwen, & Rong, 
2008).  
 

a) Loads 
 
The electricity consumption of a building or microgrid is typically composed of various 
elements, including lightning, HVAC, appliances, and plugs. These elements collectively 
contribute to overall electricity consumption within a building or microgrid. Monitoring 
and managing these consumption elements are crucial for energy efficiency, load 
balancing, and optimizing overall energy usage. The local climate and weather conditions 
influence the demand for heating or cooling. Extreme temperatures may lead to higher 
energy consumption for maintaining comfortable indoor conditions. To overcome the 
effects of variability of energy consumption in P2P energy trading, robust load forecasting 
models should be used. The models used in the thesis study are elaborated in the following 
sections. 
 

b) Solar Panels 
 
There are different types of energy generation resources, including wind, solar, and hydro 
plants as renewable energy resources and natural gas, and coal plants as nonrenewable 
energy resources. In this study, peers are using solar panels as renewable energy resources. 
Using past generation characteristics of the panels, generation forecast models are 
implemented. The structure of these models is explained below sections. 
 

c) Battery 
 
Prosumers may utilize energy storage systems, such as batteries or pumped hydro storage, 
to store excess energy generated during periods of high production (Sarda, Lee, Patel, 
Patel, & Patel, 2022). This stored energy can be used when energy demand exceeds 
generation. Battery capacity is defined in kWh and shown with 𝐶. The unit of nominal 
power of the battery is kW. 
 
𝐶 ≥ 0                (5) 
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Another parameter of the battery is capacity loss coefficient (𝑐0(""). It refers to the rate at 
which battery's capacity decreases over time. It is a measure of battery's ability to store 
and deliver energy relative to its original capacity. This coefficient is influenced by 
various factors, including battery chemistry, usage patterns, operating conditions, and 
aging effects. The capacity loss coefficient provides insights into battery's performance 
degradation and is used in battery modeling and simulations to estimate its remaining 
capacity and overall efficiency. The new capacity of the battery after completion of each 
cycle and, complete discharge and recharge process of the battery, can be calculated by 
the number of finished cycles according to the below formula. 
 
𝐶1&% =	𝑐0("" ∗ #	of	cycles	(n) ∗ 	𝐶-	            (6) 
 
Capacity power curve is another key parameter of battery and represents the relationship 
between battery's capacity and its power output (rate of energy delivery) over a given 
period of time. The curve illustrates the maximum power (𝑃,2/3  where t is time, P is 
power) that the battery can provide at different levels of its remaining capacity. As the 
battery's capacity decreases, the available power output may also decrease due to internal 
resistance and other factors. This relationship is important in determining the battery's 
performance and its suitability for various applications. 
 
State of charge (SoC), the amount of energy stored in a battery relative to its maximum 
capacity, of a battery typically has upper and lower limits to ensure its safe and efficient 
operation. 
 
𝐷𝑜𝐷 ≤ 𝑆𝑜𝐶 ≤ 	𝑆𝑜𝐶2/3             (7) 
where 𝐷𝑜𝐷 is deep of discharge level of a battery. 
 
Round trip efficiency (𝜂455) is another measure used to evaluate the energy efficiency of 
a battery. It can be function depending on charging and discharging power of the battery. 
The relation between this power and efficiency is shown below figure.  

 
Figure 5: Power Efficiency Curve of Battery 
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SoC of a battery is influenced by the amount of energy charged into or discharged from 
the battery. When energy is added to the battery during charging, SoC increases, and when 
energy is withdrawn during discharging, SoC decreases (Sarda, Lee, Patel, Patel, & Patel, 
2022). The relationship between charging/discharging amount and the resulting change 
by time t in SoC can be described by the following equation: 
 
𝑆𝑜𝐶,&% =	𝑆𝑜𝐶, +	

6"
78#$$

−	𝐸9 ∗ U𝜂455           (8) 

where 𝐸:  is charging amount, 𝐸9 is discharging amount. 

3.3. Methodology 
 
Implementation of reinforcement learning based P2P energy trading solution for 
composed of multiple peers that have different capacities of load, generation, and battery, 
is presented in Figure 6. In this solution, each peer is equipped with its reinforcement 
learning agent. The primary goal is to train these agents to effectively cooperate and 
coordinate with one another, even when they initially start with random policies and lack 
knowledge about the system dynamics. The focus is on optimizing energy consumption 
of each within the grid by monitoring the overall load profile. 
 
The performance evaluation of the agents centers around several key energy-related 
metrics. These include minimizing yearly peak demand, reducing daily peak demand and 
total load, and the details of them are in the following sections. By achieving 
improvements in these metrics, the agents demonstrate their ability to efficiently manage 
energy consumption in the grid and enhance overall energy efficiency and stability of the 
grid. 
 
Through the implementation and evaluation of agents based on these metrics, the aim is 
to develop effective coordination strategies that enable the peers to collectively optimize 
their energy usage. This approach holds the potential to contribute to development of 
intelligent energy management systems and enhancing sustainability. 
 
The algorithms behind load, generation, price forecasts, and reinforcement learning parts 
are examined separately in the coming parts of the thesis study. This approach ensures 
that each algorithm's impact and influence on overall energy management system can be 
thoroughly explored, providing valuable insights for future improvements and 
optimizations. 
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Figure 6: Framework for P2P Energy Trading Algorithm 

 
3.3.1. Forecasting Approach 
 
Load, generation, and price forecasting often share similar model structures due to their 
inherent dependencies. While each forecasting task focuses on different aspects of energy 
market, they often rely on similar data sources and utilize comparable techniques for 
modeling and prediction (Hong, et al., 2020). 
 
One key reason for the similarity in model structure is shared reliance on historical data 
(Hong, Energy forecasting: Past, present, and future, 2014). Load, generation, and price 
forecasting models all benefit from historical data that captures past trends, seasonality, 
and patterns in energy consumption, generation, and market dynamics. The use of 
historical data allows for the identification of recurring patterns and helps in making 
informed predictions about future behavior. Another reason for the similarity in model 
structure is the common utilization of statistical and machine learning techniques. These 



29 
 

techniques allow for the identification of correlations, trends, and dependencies between 
various factors affecting load, generation, and price. 
The dataset and feature engineering techniques for these datasets are explained firstly for 
each energy variable. 
 

a) Load Forecasting 
 
The main characteristics of electricity load depend on industry, weather, and holidays. 
The effects are analyzed using Turkey's total load dataset. Workdays and weekends show 
different patterns due to industry and commercial activities. Over a day, the load is the 
lowest level in the middle of the night (3 am - 5 am) and the highest level at noon (1 pm -
3 pm) depending on the season. The general daily trend can be understood from Figure 7. 
Also, by looking at this graph, the effect of air conditioning or temperature on demand 
can be understood. Especially in the summer months, the air conditioning effect causes 
the demand to increase between 15% and 20% compared to the spring months. Similar 
situation is observed in winter with an increase of about 10% due to the decrease in 
temperature. 

 
Figure 7: Daily Trend of Turkey by Hour 

Within a week, the load is changing according to day type. Tuesday, Wednesday, and 
Thursday show the same pattern at all hours. On Mondays, the midnight load is less than 
on weekdays because of the activity recovery effect of industry. On Friday afternoons, the 
load decreases when it is compared with other weekdays because of the weekend effect. 
On Saturdays, not all companies and industries work. Because of that, the load changes 
between weekdays and Sundays. Sundays are like a holiday because of that the load is the 
lowest daily level in a whole week. All these patterns are shown in Figure 8.  
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Figure 8: Daily Trend of Turkey according to Day Type 

Apart from normal typical days, there are different kinds of days in each country called 
holidays. These atypical days are nonworking days, but they have their features separated 
from each other like national or religious days. Generally, national days are on fixed dates 
but not fixed on weekdays. In other words, day type can be changed year by year for 1 
January New Year. This causes problems when generating forecasts. The habit of people 
changes when the holiday coincides with Friday or Monday. They can combine weekends 
and holidays. Moreover, if the holiday happens on Tuesday or Thursday, people do not 
work also on Monday or Friday. Also, the days before the holidays are announced as arefe 
in some holiday types such as Victory Day or Ramadan Eid. These days, people work half 
of the day. The eids in Turkey take a longer period. If Ramadan or Sacrifice Eid starts on 
Monday or Tuesday, people combine two weekends before and after eid, and this means 
nine days of holiday. All these different types are summarized and given to the models in 
Table 1. 
 
Table 1: Holiday Types in Turkey 

Holiday ID Holiday Name 
1 New Year 
2 National Sovereignty and Children's Day 
3 1 May Work and Solidarity Day 
4 Atatürk Commemoration Youth and Sports Day 
5 Arefe of Ramadan Eid 
6 Ramadan Eid 
7 Arefe of Eid Al-Adha 
8 Eid Al-Adha 
9 Arefe of Republic Day 
10 Republic Day 
11 15 July Democracy and National Union Day 
14 Victory Day 
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The pattern of typical days and the pattern of holidays, atypical days, in Turkey, are 
compared in Figure 9. As can be understood from the figure, the pattern of the holidays is 
like a typical Sunday. 
 

 
Figure 9: Daily Trend of Turkey at Holidays 

In load forecasting problems, independent variables are selected according to the effects 
on the demand. Calendar features like weekdays, hours, and seasons; numerical weather 
parameters like temperature, and humidity; and holidays such as national, and religious 
holidays or extreme days such as lockdown affect the load. The details of all datasets can 
be found in Table 2.  
 
Table 2: Summary Table of Datasets Used in Load Forecasting 

Dataset Name Detail Type Description 
Load   Time Series-Quantitative Hourly total load 
Temperature Santigrat Time Series-Quantitative Hourly temperature 
Cloud Cover Percentage(0-1) Time Series-Quantitative Hourly cloud cover percentage 
Humidity Percentage(0-1) Time Series-Quantitative Hourly humidity percentage 
DataYear 2016,…2020 Categorical Year of a data point 
DataMonth 1,2,…,12 Categorical Month of a data point 
DataDay 1,2,…,31 Categorical Day of a data point 
DataHour 0,1,…,23 Categorical Hour of a data point 
DataWeekDay 1,2,..,7 Categorical Weekday of a data point 
DataSeason 1,2,3,4 Categorical Season of a data point 
IsHoliday 0,1 Binary Shows the day is a holiday or not 

 
Effective load forecasts rely on feature engineering to capture fundamental patterns of 
electricity demand. Including lagged values of historical load data as additional features 
allow model to capture autocorrelations and dependencies in electricity demand over time. 
Moreover, giving binary features for holidays and special days’ marks is important. In 
load forecasts, weather data plays a significant role in understanding how external 
conditions influence electricity demand. Heating and cooling degree days, represent the 
difference between average outdoor temperatures and comfort temperature that is between 
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18-20 in most of the places. These values reflect heating or cooling requirements and 
correlate with electricity demand for heating or cooling purposes. Creating new interaction 
features by combining different weather variables such as temperature multiplied by 
humidity to represent the joint effect of weather conditions. 
 

b) Solar Generation Forecasting 
 
Solar generation forecasting is challenging due to the inherent variability and 
intermittency of solar energy production, which depends on factors like cloud cover, 
atmospheric conditions, and the position of the sun. Continuous improvements in weather 
data collection, advanced modeling techniques, and machine learning algorithms have 
significantly enhanced the accuracy of solar generation forecasts, contributing to the 
increased integration of solar power into the grid and better overall energy management. 
When developing machine learning models for solar generation forecasting, the input set 
typically consists of various features that influence solar energy production. The choice 
of input features depends on the forecast horizon (short-term, medium-term, long-term), 
data availability, and specific characteristics of the solar power system being modeled 
(Rahimi, et al., 2023). Because P2P energy trading needs short-term forecasts, the 
necessary features are examined according to that. 
The geographical location of solar plants can affect solar irradiance levels and, 
consequently, power generation. This information is vital for accurate regional 
forecasting. The location has a significant impact on solar generation due to variations in 
solar irradiance and other related environmental factors. Solar irradiance is the amount of 
sunlight received at a particular location that varies with latitude, longitude, altitude, and 
local climate. Also, geographical location affects daylight hours throughout year, sun 
angle at which sunlight strikes the Earth's surface varies and local climate, weather 
patterns impact the amount of cloud cover, atmospheric conditions, and potential shading 
from natural features. These effects can be seen in Figure 10 shows total solar generation 
in Turkey for consecutive days. Solar irradiation, cloud cover, and sun angle change the 
amount of generated solar energy. For instance, day 2 is more cloudy and rainy day in the 
whole of Turkey and the amount of generated energy is low according to the installed 
power of solar.  
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Figure 10: Solar Generation for Turkey on Consecutive Days 

Because the effects of climate are radical, meteorological data and numerical weather 
predictions are necessary to forecast solar generation. Common meteorological features 
include solar irradiance with its components including direct and diffuse irradiance, 
ambient temperature, wind speed, relative humidity, cloud cover, and atmospheric 
pressure (Rahimi, et al., 2023). For short-term solar generation forecasting, incorporating 
real-time or near-future forecasted weather data can improve prediction accuracy. 
 
Apart from weather data, information about the duration of daylight in a day, which varies 
with season and location, can be useful for understanding when solar generation will 
occur. Because of that, season, month, and hour features help capture temporal patterns 
and seasonal variations in solar energy generation.  
 
Feature engineering plays a crucial role in improving the accuracy and performance of 
machine learning models for solar generation forecasts (Wu, Huang, Phan, & Li, 2022). 
By carefully selecting and transforming relevant features, the models can better capture 
the underlying patterns and relationships within the data. Calculating moving averages of 
solar power generation over a certain window of time can help smooth out noise and 
highlight underlying trends in generation. Moreover, for capturing periodic patterns in 
solar generation data, Fourier transforms can be used to identify dominant frequencies, 
which helps model daily and seasonal variations. Aggregating weather-related data, such 
as daily mean or maximum temperature, total precipitation, or average cloud cover, can 
provide a concise representation of weather conditions over specific periods. Creating 
interaction features between different meteorological variables, such as solar irradiance 
and temperature, can help capture nonlinear relationships that affect solar energy. For 
instance, multiplying or taking the product of temperature and solar irradiance values can 
improve model accuracy. The effectiveness of these feature engineering techniques 
depends on the dataset and machine learning algorithm being used. It's essential to 
experiment with different combinations of features and transformations to find the best 
configuration for each forecasting task. The used features and the trials are explained in 
the experiment section of the thesis study. 
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c) Price Forecasting 
 
Electricity price forecasting is the process of predicting future electricity prices in energy 
markets. It is a critical aspect of energy market analysis, helping market participants, 
energy companies, grid operators, and consumers make informed decisions related to 
electricity purchasing, generation, and consumption (Weron, 2014). The input set for 
electricity price forecasting using machine learning models typically consists of historical 
price, demand, weather, and generation data. Time-lagged features utilize past price data 
as inputs to anticipate future price trends. By including lagged features, model can 
recognize correlations within time series data, which are fundamental for comprehending 
price fluctuations and patterns (Lago, Marcjasz, Schutter, & Weron, 2021). Extracting 
various time-related features such as weekday, month, hour, and seasonal indicators can 
help the model capture recurring patterns in electricity prices. Price curve with similar 
trends according to hours is visible in Figure 11, while variations based on weekdays are 
also apparent. 

 
Figure 11: Daily Day Ahead Market Prices Averages of Turkey according to Day Type 

Electricity demand is a significant driver of prices. Historical electricity demand data, both 
aggregated and at the individual consumer level, can be valuable in understanding 
demand-price relationship. Figure 12 shows the relationship between price and 
consumption. For instance, while consumption is decreasing on Sundays because of 
nonworking days, price is decreasing. 
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Figure 12: Day Ahead Market Prices vs. Consumption Averages of Turkey 

Information about generation mix and output from various power plants including coal, 
natural gas, and renewables can be relevant for understanding price dynamics, especially 
in markets with competitive electricity generation. Renewable energy sources, like solar 
and wind, can suppress electricity prices during periods of high generation due to their 
low marginal costs. Non-renewable sources, such as natural gas and coal, are subject to 
fuel price fluctuations, directly increasing electricity generation costs.  These effects can 
be seen in Figure 13. 
 

 
Figure 13: Day Ahead Market Prices vs. Renewables and Non-Renewables Generation Averages of 
Turkey 
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Actually, weather conditions can influence electricity consumption patterns and 
generation from renewable sources. Because of that, weather is directly affecting 
electricity prices. Including weather variables such as temperature, humidity, wind speed, 
and solar irradiance can help machine learning models account for weather related 
changes in demand and supply (Yang, Ce, & Lian, 2017). 
In addition to direct features, feature engineering techniques should be applied to input 
datasets to improve machine learning models’ accuracies. Calculating metrics such as 
price volatility and standard deviation can provide insights into price fluctuations. 
Moreover, including price differences between peak and off-peak periods can be 
informative for price forecasts. 
 

d) Forecasting Algorithm 
 
Energy forecasting using machine learning techniques involves predicting future energy 
consumption, demand, or generation based on historical data and relevant features. Solar 
generation, load, and electricity price forecasts can share the same machine learning 
approach because they are all related to energy domain and have similar underlying 
patterns and dependencies. While specific features like related weather parameters and 
data sources may vary for each type of forecast, fundamental principles of forecasting are 
consistent across them. The forecasting approach is shown in Figure 6. According to that, 
energy dataset should be applied to data preprocessing step to be ready for the machine 
learning model. Checking for missing values in the dataset and deciding on how to handle 
them are important to train the model with correct data. Removal of rows with missing 
data is preferred in the proposed approach instead of imputation because filling the 
missing should consider climate and holiday effects. After handling missing data, 
automated feature engineering techniques are applied as mentioned in previous sections 
to create new relevant features from raw data. If the final dataset has a large number of 
features, Principal Component Analysis, which is one of the dimension reduction 
techniques, is used to reduce the number of features while retaining important information.  
 
The dataset is divided into training and testing sets. Training set is used to train the model 
while testing set is used to evaluate the model's performance on unseen data. LightGBM 
model is selected as a machine learning model for forecasting model (Park, Jung, Jung, 
RHo, & Hwang, 2021; Ju, et al., 2019; Deng, et al., 2021). It is a gradient boosting 
framework that utilizes decision trees as its base learners to progressively enhance model 
accuracy. The algorithm constructs decision trees in a top-down, greedy manner, selecting 
features that provide the most information gain at each node for data splitting. This 
recursive process continues until a stopping criterion, such as maximum tree depth or 
minimum samples in a leaf node, is met. By combining multiple decision trees through 
gradient boosting, LightGBM creates a powerful learner that achieves high accuracy. 
Because LightGBM is fast, scalable, robust to overfit, and needs low memory, it is 
preferred. For P2P energy trading model, there is a need for fast and usable model for all 
types of energy variables’ forecasts. Hyperparameter tuning is essential for getting the 
best possible performance out of a LightGBM model. Built-in tuning function 
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LightGBMTuner is an automatic hyperparameter tuning method and a combination of 
random and grid search is applied. After the training process, the model is validated using 
a testing dataset. The state-of-art special performance metrics are calculated for each 
energy variable to assess its accuracy in predicting future energy values. After the model 
is trained and validated, it is used to make energy forecasts for future market periods.  
 
Energy forecasting is a dynamic process that involves iterating through these steps and 
continually improving the model to make more accurate and reliable predictions, so the 
models are continuously trained for each peer.  
 
3.3.2. Reinforcement Learning Approach 
 
Reinforcement learning is an agent-based algorithm that learns by interacting with its 
environment to maximize cumulative rewards over time. The agent explores the 
environment, takes actions, and receives feedback in rewards (Sutton & Andrew). The 
goal is to find an optimal policy that maps states to actions for maximizing long-term 
rewards. RL can be model-free, making it suitable for unknown or complex environments. 
It involves estimating values of state-action pairs or learning a value function to guide 
decision-making. Mathematically, these problems are defined using Markov Decision 
Process (MDP). MDP consists of sets of states 𝑆 and set of actions 𝐴, reward function 𝑅(𝑠, 
𝑎,	 𝑠') that maps states and actions to rewards, and transition probabilities 𝑃(𝑠, 𝑎,	 𝑠') 
between states. The policy 𝜋 maps states to actions, 𝜋: 𝑆 → 𝐴, and value function 𝑉;(𝑠) 
represents the expected reward for the agent beginning in state 𝑠 and pursuing policy 𝜋 
thereafter. The value function provides an estimate of long-term rewards agent can expect 
to accumulate from a given state. The policy maps states to actions, and the value function 
estimates the expected return for the agent beginning in a specific state and pursuing 
policy thereafter. 
 
𝑉;(𝑠) = 	∑ 𝑝(𝑠<	|𝑠, 𝜋(𝑠, 𝑎)[𝑅(𝑠, 𝜋(𝑠, 𝑎), s<) 	+ 	𝛾𝑉;(s<)]		"%∈	? 	∀𝑠 ∈ 𝑆	 	 						(9) 
where the reward taken after the following action 𝑎 in state 𝑠, going to the next state 𝑠' is 
shown as 𝑅(𝑠, 𝜋(𝑠, 𝑎), s<).  
 
The reward represents immediate feedback or desirability of state-action pair. The 
discount factor 𝛾 (where 𝛾 ∈ [0, 1]) is used to balance the importance of immediate 
rewards versus future rewards. When 𝛾 = 1, the agent considers future rewards to be just 
as important as immediate rewards. On the other hand, when 𝛾 = 0, greater emphasis is 
placed on immediate rewards, and the agent focuses less on future rewards. 
 
Because there are no available environments’ dynamics and transition probabilities, a 
model-free RL approach is used (Pong, Gu, Dalal, & Levine, 2020). Model-free RL 
approach learns directly from interactions with the environment, without assuming prior 
knowledge of transition probabilities. The agent explores the environment, takes actions, 
and receives feedback from rewards. It uses this experience to estimate the values of state-
action pairs or learn a policy that maximizes expected cumulative rewards. 
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a) Q-learning 
 
Q-learning is a widely recognized model-free RL technique in most of applications 
(Clifton & Laber, 2020). For environments with a small number of states, transitions can 
be denoted using a table which keeps state and action values known as Q-values. Each 
record in Q-table corresponds to state-action pair (𝑠, 𝑎), and Q-values are updated using 
the following formula: 
 
𝑄(𝑠, 𝑎) 	← 	𝑄(𝑠, 𝑎) + 	𝛼[𝑟(𝑠, 𝑎) + 	γmax

/
𝑄(𝑠′, 𝑎) − 	𝑄(𝑠, 𝑎)]      (10) 

where, 𝑠' represents the next state, 𝑟(𝑠, 𝑎) is the reward taken by the following action 𝑎 in 
state 𝑠, 𝛼 is the learning rate that determines how much new knowledge overrides old 
knowledge, and 𝛾 is discount factor that balances the importance of immediate and future 
rewards.  
 
After following action in a particular state, Q-values estimate the cumulative expected 
sum of discounted rewards, taking greedy policy from thereon. Q-learning is an off-policy 
method, meaning it updates its policy using historical experiences collected from different 
policies. These experiences, stored as state-action-reward values, are saved in the memory 
replay buffer. During the learning process, the buffer is sampled to iteratively update the 
Q-values using the Q-learning equation. By continuously updating the Q-values based on 
observed rewards and selecting actions that maximize the Q-values, Q-learning aims to 
learn an optimal policy that maximizes long-term cumulative rewards. 
 

b) Actor-Critic Algorithm 
 
In environments with continuous states and actions like energy trading problems, tabular 
Q-learning is impractical due to curse of dimensionality. The state and action spaces 
become too large, making it infeasible to store and update Q-values for each state-action 
pair individually. Actor-critic RL techniques tackle this challenge by employing neural 
networks to extend among state and action combinations. Neural network of actor 
translates states into optimal actions, whereas critic neural network reaches actions by 
associating them with their respective states and deriving Q-values. By leveraging neural 
networks, actor-critic methods efficiently handle continuous environments, enabling 
effective exploration and exploitation. Actor-critic methods learn three functions, 
including actor, critic, and value function. 
 
Actor learns policy, which maps states to actions. Policy is typically represented by neural 
network that takes the state as input and outputs the parameters of a probability 
distribution over actions. Actor aims to maximize expected cumulative reward by 
selecting actions that yield high expected returns. Critic estimates soft Q-function, which 
measures the expected cumulative reward for a given state-action pair. Unlike traditional 
Q-learning, the selected Actor-Critic structure has soft Q-function that incorporates an 
entropy term, encouraging exploration (Haarnoja, et al., 2019). This architecture is called 
Soft Actor Critic (SAC), and its objective of it is not only to maximize lifetime rewards 
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but also to maximize the entropy of policy. Entropy measures the unpredictability of a 
random variable. A policy with high entropy encourages exploration by assigning equal 
probabilities to actions with similar Q-values. It prevents the policy from repeatedly 
selecting a specific action that exploits inaccuracies in Q-function approximation.  
 
SAC also learns the value function 𝑉, which estimates the expected cumulative reward 
starting from a given state. The value function is used to approximate state value and guide 
the learning process. The formula for updating the value function 𝑉(s) can be written as: 
 
𝑉(𝑠,) = 	𝐸	/&	~	;'[𝑄(𝑠, , 𝑎,)] + 	𝛼𝐻	          (11) 
where 𝐻 is the entropy of action distribution of policy 𝜋A 	in which state 𝑠,	and 𝛼 ∈ (0, 1) 
is the temperature term that controls the importance of entropy.  
 
If it is 1, then the entropy has maximum stochasticity, if it is 0 then entropy is ignored. 
Zero entropy gives deterministic policy and policies which have nonzero entropies are 
more random selections of actions. The main objective is based on a maximum entropy 
reinforcement learning model that tries to find optimal policy maximizing expected long-
term return and entropy. The objective function is: 
 
𝐽(𝜋A) = 	𝐸	;'[∑ 𝛾,𝑅(𝑠, , 𝑎,) 	+ 	𝛼𝐻(𝜋(. |𝑠,)BC%

,D- )]	         (12) 
 
According to the given objective function, the optimal policy can be found below the 
equation which seeks the highest long-term reward and entropy. 
 
𝜋∗ =	𝑎𝑟𝑔𝑚𝑎𝑥;'𝐸	;'[∑ 𝛾,𝑅(𝑠, , 𝑎,) 	+ 	𝛼𝐻(𝜋(. |𝑠,)BC%

,D- )]	       (13) 
 
The critic networks are updated according to the minimization of expected error which is 
calculated by differencing prediction of value network and the expected value of Q 
function (Haarnoja, et al., 2019). 
 
𝐽F =	𝐸	("&,/&)	~	9 <

%
*
(𝑄A(𝑠, , 𝑎,) − (𝑅(𝑠, , 𝑎,) +	𝛾𝐸"&(![(𝑉A(𝑠,&%)]))

*@     (14) 
where D is the replay buffer. 
 
By simultaneously updating actor, critic, and value functions, SAC learns a policy that 
maximizes expected cumulative rewards while also considering exploration through 
entropy maximization term. This combination of actor-critic architecture, maximization 
of entropy, and off-policy updates allows SAC to efficiently explore and learn in 
continuous state and action spaces. 
 

c) Multi-Agent RL 
 
The P2P energy trading problem involves buildings/microgrids making independent 
decisions regarding energy trading and load scheduling in a dynamic and uncertain 
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environment. To address this problem, the proposed solution involves using a multi agent 
deep reinforcement learning method. This method enables agents to coordinate through 
reward sharing and mutual information sharing. Moreover, each peer can make decisions 
based on local observations and learn through trial and error. In this problem, a separate 
RL agent is assigned to each peer. The objective of these agents is to learn, starting from 
random policies and without prior knowledge of the system dynamics (Vazquez-Canteli, 
Henze, & Nagy, 2020; Wang, Li, & Zhang, 2022). The agents aim to minimize the overall 
load of the market, and their performance is evaluated based on cost metrics such as 
minimizing yearly peak demand, daily peak, and ramping rate while maximizing the 
average daily load factor of entire peers. 
 
State: 
 
The state vector 𝑠,1	of peer 𝑛 at time 𝑡 consists of various variables including: 

• Solar panel generation: 𝐸,,JK1  represents the amount of solar energy generated by 
peer 𝑛 at time 𝑡. 

• Consumption: 𝐸,,L1  represents the amount of consumed energy by peer 𝑛 at time 𝑡. 

• SoC level of Battery: 𝑆𝑜𝐶,,M1  represents the state of charge level of the battery 
belonging to peer 𝑛 at time 𝑡. 

• Buying and selling prices: 𝑝,M represents the buying price of electricity at time 𝑡, 
while 𝑝,?  represents the selling price of electricity at time 𝑡. 

Therefore, the state vector can be expressed as: 
 
𝑠,1 =	[𝐸,,JK1 , 𝐸,,L1 , 𝑆𝑜𝐶,,M1 , 𝑝,M , 𝑝,?]          (15) 
 
This vector captures relevant information for peer 𝑛 at time 𝑡, enabling it to make decisions 
regarding energy trading and load scheduling in the given dynamic and ambiguous 
environment. In the thesis study, buying and selling prices of the market are assumed to 
same. 
 
Action: 
 
The action vector 𝑎,1 for peer 𝑛 at time 𝑡 consists of various variables including		

• Buying energy: 𝑎,,M1  represents estimated energy amount to buy from other peers. 

• Selling energy: 𝑎,,?1  represents estimated energy amount to sell to other peers. 

• Charging: 𝑎,,:1  represents estimated energy amount to charge the battery. 
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• Discharging: 𝑎,,91  represents estimated energy amount to discharge the battery. 
 
Therefore, the action vector can be expressed as: 

𝑎,1 = [𝑎,,M1 , 𝑎,,?1 , 𝑎,,:1 , 𝑎,,91 ]                  (16) 

 
These components of the action vector 𝑎,1  capture the different decision variables 
involved in energy trading and load scheduling for household 𝑛 at time 𝑡. 
 
Reward: 
 
Reward function 𝑟,1 represents immediate benefit obtained by peer 𝑛 at time 𝑡 when taking 
action 𝑎,1	based on state 𝑠,1. It can be expressed as: 
 
𝑟,1(𝑠,1, 𝑎,1) = −	𝐸,1                  (17) 
where 𝐸,1 is the net electricity consumption of peer n at time t.  
 
The negative sign indicates that the reward function is typically designed to be minimized 
or reduced, implying that each peer aims to minimize cost or maximize utility. 
 
Algorithm: 
 
To overcome the challenges of P2P energy trading problem, a novel multi-agent deep 
reinforcement learning method is introduced. In this approach, the policy is trained by 
utilizing past shared state-action, which is taken and stored in replay buffer. The proposed 
approach is based on an actor-critic architecture. Following the policy training, peers have 
ability to read output values obtained from their critic networks. Based on the outputs and 
their individual state vectors, each peer can then make deterministic actions using their 
actor networks. In the algorithm, training takes place in the critic network, while execution 
is employed in the actor network. The agent of each peer employs its actor network to 
make deterministic actions based on local states. Replay buffer is used to store experiences 
including state, action, reward, and next state. 
 
The collected joint state and action data from all peers are denoted as 𝑠, =
	{𝑠,%, 𝑠,*, … , 𝑠,1}	and 𝑎, =	 {𝑎,%, 𝑎,*, … , 𝑎,1}, respectively. By utilizing this multi-agent RL 
approach, optimal strategies can be computed for P2P energy trading, enabling efficient 
coordination among peers. Step-by-step algorithm is explained below: 
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Algorithm 1: Multi Agent Deep Reinforcement Learning Algorithm for P2P 
Energy Trading 
1 for peer i in (1, 2, …, n) do 
2  initialize actor and critic networks 
3  initialize target network 
4  initialize replay buffer 𝐷N 
5 end for 
6 for episodes e in (1, 2, …, m) do 
8  initialize random process for action 
9  observe initial state for each peer  
10  for time t in (1, 2, …, k) do 
11   for peer i in (1, 2, …, n) do 
12    observe current state 𝑠,N 
13    select action based on current state 𝑠,N 
14    execute 𝑎,N  
15    observe reward 𝑟,N 
16    observe next state 𝑠,&%N  
17    store in 𝐷N 
18    take sample mini-batch from	𝐷N 
19   end for 
20   for peer i in (1, 2, …, n) do 
21    update actor and critic networks 
22   end for 
23   update target network 
24  end for 
25 end for 
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CHAPTER 4 

 

EXPERIMENT 

4.1. Experimental Setup 
 
To simulate this peer-to-peer energy trading game, data was collected from 8 prosumers 
who participate in peer-to-peer energy trading network. The data was obtained from the 
real-time monitoring system of Inavitas1, covering a period of one year. The prosumers 
comprise three commercial buildings, including shop and supermarket, and five 
households with different numbers of households living there. Each prosumer has solar 
generation installed on their rooftops, contributing to their energy production capacity. 
PV generation data is analyzed to understand the solar energy generation profiles of each 
prosumer and to identify any seasonal variations in solar generation throughout the year. 
Additionally, energy consumption patterns of both commercial buildings and households 
are studied to determine their energy demands. To facilitate the peer-to-peer energy 
trading process, a demand-supply matching mechanism is devised. This matching process 
aims to align the energy demand of households and commercial buildings with the 
available solar generation from their solar panels. The surplus energy generated by 
prosumers can then be traded with others within the network. In addition, the experimental 
setup includes information about battery storage systems for all 8 prosumers. Each 
prosumer has a battery installed, which allows them to store excess energy generated by 
their solar systems or store energy during off-peak hours for later use. 
 
The experimental setup includes a realistic simulation scenario that closely mirrors the 
real-world peer-to-peer energy trading environment. Factors such as geographical 
locations, weather conditions, and real-time energy prices are incorporated into the 
simulation model to create a dynamic and authentic market platform. 
 
To evaluate the performance of P2P energy trading system, various metrics are defined 
following sections for forecasting models and reinforcement learning approach separately. 
The experimental results are validated against real-world scenarios wherever possible. 
Sensitivity testing is conducted to understand how a system's performance changes with 
variations in energy demand, solar generation, and market conditions. 
 
 

 
1 www.inavitas.com 
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4.1.1. Dataset 
The real time data of 8 prosumers were collected for P2P energy trading problem. The 
general features of these prosumer are shown in Table 3. Because of the physical 
constraints of the grid, geographically near prosumers were selected. The data was 
collected from the region of Urla in İzmir, Turkey. The dataset contains hourly load and 
generation data of each prosumer between 2022-01-01 and 2023-05-31. The expected 
number of data points for this period is 12384. However, some data points are missing. 
Table 3: Prosumer Data Details 

Name Type Demand(kW) Solar Installed 
Power(kW) 

Battery 
Capacity(kWh) 

Charge/Discharge 
Efficiency of 
Battery(%) 

commercial_1 grocery 10.4 7 9.8 95% 
commercial_2 shop 13.1 9 12.6 95% 

commercial_3 grocery 6.8 3 4.2 95% 
house_1 house 1.1 0.3 0.4 90% 
house_2 house 0.8 0.3 0.4 90% 

house_3 house 0.9 0.3 0.4 90% 
house_4 house 0.9 0.3 0.4 90% 

house_5 house 1.2 0.3 0.4 90% 

 
To use this dataset for forecasting load and generation, weather data was collected from 
Meteomatics API2. This weather data includes weather parameters listed below table. 
Table 4: Weather parameters in Dataset 

Parameter Unit Description 

Temperature °C Measure of heat or coldness in atmosphere 

Cloud Cover % Fraction of  sky covered by clouds 

Global Radiation W/m² Total solar radiation received on earth's surface 

Diffuse Radiation W/m² Solar radiation reaching earth's surface indirectly 

Direct Radiation W/m² Solar radiation reaching darth's surface in straight line from sun 

Relative Humidity % Amount of water vapor in air relative to the maximum possible at the 
same temperature 

Wind Speed m/s Total solar radiation received on earth's surface 

Precipitation 
Probability 

% Likelihood of precipitation occurring at a given location 

Apparent 
Temperature 

°C Perceived temperature that accounts for combined effects of 
temperature, humidity, and wind 

Sun Elevation ° Angle between horizon and center of sun 

 
2 https://www.meteomatics.com/en/weather-api/ 
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a) Data Preprocessing 
 
After the dataset collection procedure was completed, data preprocessing was done. The 
data was put outlier detection to identify and remove any extreme values that may 
significantly deviate from the typical pattern. Outliers could be due to measurement errors 
or unusual events. Z-score outlier detection method was used to detect problematics data 
in load. It is a statistical technique used to identify extreme values in a dataset (Rousseuw, 
2011). It measures how many standard deviations the data point is away from the mean of 
the dataset. Z-score is calculated using the below formula: 
 
𝑧 = 	 3C	O

P
             (18) 

where 𝑥 is the value of the data point, 𝜇 is the mean of the dataset and 𝜎 is the standard 
deviation of the dataset. 
 
Typically, Z-score greater than the threshold is considered an outlier. The threshold value 
is usually set to 3, depending on the level of strictness desired in identifying outliers (Abdi, 
2007). In this study, 3 was used as a threshold. Z-score method is widely used for 
identifying outliers as it is simple to implement and can be applied to various types of 
data. For the dataset of this study, Z-score method was applied, and the number of data 
points shown in the below table were detected for each peer’s load. These detected outlier 
data points were converted to missing values. 
 
Table 5: Number of Detected Outliers in Load Data 

Name Number of Outliers 
commercial_1 5 
commercial_2 25 
commercial_3 121 

house_1 333 
house_2 406 
house_3 389 
house_4 224 
house_5 449 

 
Any missing values in the load and generation data were identified and addressed. Missing 
data points could be the result of various reasons such as communication issues, or data 
recording errors. Moreover, the detected outliers were converted to missing values. To fill 
these missing values, different approaches were used for the load and generation data. 
 
For filling missing data in load series, data points at same hour and day of type for last 
two weeks of each missing data point were used. The averages of these data points were 
used to fill missing places. It is an approach that leverages temporal patterns of load data 
to estimate missing values in meaningful way. Actually, this method is useful to capture 
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seasonality and periodicity inherent in load data. Limited time window, last two weeks of 
data for imputation balances need to capture recent patterns without using too distant data, 
which might not be representative of the current behavior of the data. The number of 
missing data points is shown in below table for each peer’s load. 
 
Table 6: Number of Missing in Load Data 

Name Number of Missings 
commercial_1 136 

commercial_2 216 
commercial_3 546 

house_1 792 

house_2 359 
house_3 927 

house_4 325 
house_5 365 

 
Using realized global radiation data from weather observations for filling missing values 
in generation data was used for imputing missing generation values. It is based on the 
assumption that the amount of solar radiation received on earth's directly influences the 
electricity generation from solar panels. Solar generation is directly correlated with the 
amount of solar radiation available. On sunny days with higher global radiation, solar 
panels can generate more electricity, and vice versa on cloudy days with lower global 
radiation. The gathered global radiation has more than 0.9 correlation with each peer’s 
generation data. A scaling factor based on the relationship between solar generation and 
global radiation was calculated. These factors were multiplied with related global 
radiation values which is at missing data’s datetimes. This gives an approximation of the 
missing generation. The number of missing data points is shown in below table for each 
peer’s generation. 
 
Table 7: Number of Missing in Generation Data 

Name Number of Missings 
commercial_1 2652 
commercial_2 3563 
commercial_3 2644 

house_1 2640 
house_2 2658 
house_3 2641 
house_4 2638 
house_5 3582 
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b) Data Exploration 

 
For analyzing characteristics of peers’ load data, descriptive statistics were prepared in 
Table 8. According to the mean of each peer’s load, commercial peers’ consumptions are 
higher than houses. Houses have similar consumption levels according to percentiles, 
minimum and maximum values. 
 
Table 8: Descriptive Statistics of Load Data 

 
commercial

_1 
commercial

_2 
commercial

_3 
house

_1 
house

_2 
house

_3 
house

_4 
house

_5 
count 12384 12384 12384 12384 12384 12384 12384 12384 
mean 3.80 3.39 1.10 0.10 0.13 0.05 0.09 0.07 

std 1.79 2.88 0.61 0.08 0.07 0.04 0.05 0.07 
min 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
25% 2.35 0.47 0.57 0.05 0.09 0.02 0.06 0.03 
50% 3.35 3.06 1.06 0.06 0.11 0.04 0.08 0.04 
75% 5.18 5.09 1.48 0.10 0.14 0.06 0.11 0.07 
max 10.43 13.11 6.87 0.42 0.40 0.25 0.30 0.39 

 
To understand deeper underlying patterns of load data, monthly total values were plotted 
in Figure 14. However, monthly total load data is not sufficiently intuitive. Since seasonal 
climate effects could not be observed in this dataset. Other factors including holidays, and 
human attitudes can influence electricity consumption patterns.  
 

 
Figure 14: Monthly Total Load of Peers 
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Day of week and hour averages of whole load data of each peer shows weekly and daily 
seasonality (Figure 15).  Commercial peers consume similar every day of week to provide 
comfortable shopping environment. Some houses consume more on weekends than on 
weekdays. 

 
Figure 15: Average Day of Week Load of Peers 

Total monthly generation was calculated and plotted in Figure 16. The generation amount 
increases in summer season and decreases in winter. Because peers are close to each other, 
patterns are similar. 
 

 
Figure 16: Monthly Total Generation of Peers 
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Hourly average generation of each peer’s solar is shown in Figure 17. Typical solar 
generation can be seen in this figure for each peer’s solar. 

 
Figure 17: Average Hourly Generation of Peers 

4.2. Evaluation Metrics 
4.2.1. Forecasting Metrics 

a) Load Forecast 
Performance metrics are essential to evaluate the accuracy and effectiveness of load 
forecasts generated using machine learning models. The most used performance error 
metrics in the order of prevalence are listed below. The lowest value is better when 
evaluating models using these metrics. 240 academic papers are reviewed to extract this 
result (Nassif, Soudan, Azzeh, Attilli, & AlMulla, 2021). In the formulas, 𝑦N shows the 
actual, 𝑦N< shows the forecasted value for sample 𝑖, and 𝑛 is the total number of samples.  

• Mean Absolute Percentage Error (MAPE) calculates the percentage difference 
between forecasted load values and actual load values. It measures relative 
forecasting error, making it useful for comparing accuracy across different datasets 
or time periods (Mir, et al., 2021). When dealing with datasets that contain zero or 
very low actual values, it makes MAPE calculation invalid for those instances. 

%
1
	∑ QR)C	R)

%Q
R)

1
ND%             (19) 

• Mean Squared Error (MSE) calculates the average squared difference between 
forecasted load values and actual load values. It penalizes larger errors more than 
MAE, making it sensitive to outliers. 
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%
1
	∑ (𝑦N −	𝑦N<)*1

ND%            (20) 

 

• Root Mean Squared Error (RMSE) is square root of MSE and provides a measure 
of average magnitude of forecast errors. It is widely used and easy to interpret. 

u%
1
	∑ (𝑦N −	𝑦N<)*1

ND%            (21) 

• Mean Absolute Error (MAE) measures the average absolute difference between 
forecasted load values and actual load values. It provides a simple and 
interpretable metric for forecasting accuracy. 

%
1
	∑ |𝑦N −	𝑦N<|1

ND%            (22) 
 
When evaluating load forecasts, it is essential to consider multiple metrics to gain a 
comprehensive understanding of the model's performance (Mamun, et al., 2020). 
Additionally, visualizations, such as time series plots comparing predicted and actual 
loads, can also aid in understanding the model's strengths and weaknesses in capturing 
load patterns and trends. However, to automize the structure of P2P energy trading, MAPE 
is used for selecting the best model for each peer. 
 

b) Solar Generation Forecast 
 
Evaluation metrics play a critical role in assessing the accuracy and efficacy of solar 
generation forecasts generated by machine learning models (Sobri, Koohi-Kamali, & 
Rahim, 2018). Similar to load forecasts, various performance error metrics are commonly 
employed to gauge the quality of solar generation forecasts. The following metrics are 
widely used to evaluate the performance of solar generation forecast models (Rahimi, et 
al., 2023): 

• Normalized Mean Absolute Error (NMAE) is a variation of Mean Absolute Error 
that normalizes absolute errors with respect to the magnitude of installed power, 
allowing for relative comparison of forecast accuracy across different datasets or 
time periods.  
%
1
	∑ QR)C	R)

%Q
+

1
ND%             (23) 

where 𝑝 is the installed power of the solar plant. 

• Mean Squared Error (MSE) 

• Root Mean Squared Error (RMSE) 

• Mean Absolute Error (MAE) 
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Like with load forecasts, considering multiple metrics is essential when evaluating solar 
generation forecasts to gain a comprehensive understanding of the model's performance. 
Additionally, visualizations, such as time series plots comparing predicted and actual solar 
generation can aid in understanding the model's strengths and weaknesses in capturing 
solar generation patterns and trends. 
 
For automating the structure of P2P energy trading, NMAE is used for selecting the best 
model for each peer. This metric enables comparison of forecast accuracy and facilitates 
the selection of the most suitable forecasting model for P2P energy trading purposes (Wu, 
Huang, Phan, & Li, 2022). 
 

c) Electricity Price Forecast 
 
In the field of electric price forecasting, the most commonly used metrics to assess the 
accuracy of point forecasts are Mean Absolute Error, Root Mean Square Error, and Mean 
Absolute Percentage Error. These metrics are defined above sections. 
 
While MAE and RMSE are widely used, they may not always provide informative 
comparisons between different datasets due to their reliance on absolute errors (Lago, 
Marcjasz, Schutter, & Weron, 2021). Since electricity costs and profits are often linearly 
dependent on electricity prices, metrics based on quadratic errors such as RMSE can be 
challenging to interpret and may not accurately represent underlying forecasting problems 
for most market participants. 
 
In most electricity trade applications, inherent risk, profits, and costs depend linearly on 
price and forecasting errors. Hence, linear metrics represent the risks of forecasting errors 
more effectively than quadratic metrics. Similarly, MAPE values become very large when 
prices are close to zero, regardless of the actual absolute errors, making MAPE less 
informative, especially during periods of low prices. However, when automating P2P 
energy trading, MAPE was used for selecting the best model. This is because MAPE, 
being an absolute percentage error metric, offers a direct measure of the accuracy of price 
forecasts relative to actual prices, which is particularly relevant in energy trading scenarios 
where forecasting errors directly impact the profits, costs, and risks associated with 
electricity price fluctuations (Weron, 2014). 
 
4.2.2. Cost Functions for P2P Energy Trading Game 
 
The cost functions are important in P2P energy trading, and they play a critical role in 
optimizing and guiding trading decisions between peers. P2P energy trading allows peers 
with renewable energy resources, such as solar panels or wind turbines, to directly 
exchange excess energy with one another. The cost function is an essential component 
that determines how much each peer’s agent strategy works (Zahraoui, et al., 2021). The 
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most popular cost functions used in literature are listed below. These are also applied in 
comparison of results. 
 
 
 
a) Net Electricity Consumption 

 
Net electricity consumption is calculated for a peer or whole market. It represents the 
portion of a peer's load that is not met by their own solar generation and battery storage. 
This value indicates the energy requirement that a peer cannot fulfill internally. A lower 
value for net consumption indicates that a peer is less dependent on external sources and 
is more self-sufficient, meeting a larger portion of its energy needs through its resources. 
It is calculated using the below formula for each peer. 
 
𝐸14,1 = ∑ 𝑚𝑎𝑥(𝐸,,L1, −	𝐸,,JK1 +	𝐸,,:1 , 0)						𝑓𝑜𝑟	𝑝𝑒𝑒𝑟	𝑛       (24) 
 
It is calculated using the below formula for the market. 
 
𝐸14, = ∑ ∑ 𝑚𝑎𝑥(𝐸,,L1, −	𝐸,,JK1 +	𝐸,,:1 , 0)1          (25) 
 
 

b) Net Electricity Consumption with Negatives 
 
Net electricity consumption with negative consumption values is calculated for a peer or 
whole market. It is the summation of net electricity consumption including self-generated 
renewable energy resources. It is calculated using the below formula for each peer. 
 
𝐸14,1 = ∑ (𝐸,,L1, −	𝐸,,JK1 +	𝐸,,:1 )						𝑓𝑜𝑟	𝑝𝑒𝑒𝑟	𝑛        (26) 
 
It is calculated using the below formula for the market. 
 
𝐸14, = ∑ ∑ (𝐸,,L1, −	𝐸,,JK1 +	𝐸,,:1 )1           (27) 
 
c) Electricity Cost 

 
Electricity cost is calculated for a peer or whole market. This is the monetary cost of 
electricity and is calculated by the multiplication of price and net electricity consumption. 
It is calculated using the below formula for each peer. 
 
𝐶𝑜𝑠𝑡14,1 = ∑ 𝑚𝑎𝑥(𝐸,,L1, −	𝐸,,JK1 +	𝐸,,:1 , 0) ∗ 𝑝,M 						𝑓𝑜𝑟	𝑝𝑒𝑒𝑟	𝑛      (28) 
 
It is calculated using the below formula for the market. 
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𝐶𝑜𝑠𝑡14, = ∑ ∑ 𝑚𝑎𝑥(𝐸,,L1, −	𝐸,,JK1 +	𝐸,,:1 , 0) ∗ 𝑝,M1         (29) 
 

d) Peak Demand 
 
Simultaneous increases in demand of all peers in the market can make it challenging to 
meet demand. Reducing peak demand in the market during P2P energy trading is essential 
in this regard. This value is calculated by taking a maximum of summation of all net 
consumptions of peers in the market. It is calculated using the below formula for the 
market. 
 
𝐸+4/S = 𝑚𝑎𝑥(∑ 𝑚𝑎𝑥(𝐸,,L1 −	𝐸,,JK1 +	𝐸,,:1 , 0))	∀𝑡1         (30) 
 

e) Daily Peak Demand 
 
In addition to measuring peak demand throughout all simulation horizons, it is also 
essential to evaluate peak demands in a daily manner. To assess this, daily peak demands 
are calculated. The average of these values is included in the cost function.  
 

f) Load Factor 
 
Stabilizing peak demand at all times is crucial for the reliability and efficiency of the 
system. To measure the system's stability, load factor is used. This value is calculated by 
subtracting the ratio of average net consumption to peak demand from 1. It is calculated 
using the below formula for the market. 
 
𝐸0(/!5/',(# = 1 −	 (∑ ∑ 2/3(6&,+

,
& C	6&,-.

, &	6&,/
, ,-)), ,⁄

2/3(∑ 2/3(6&,+
, C	6&,-.

, &	6&,/
, ,-))	∀,,

	        (31) 

 
g) Ramp Cost 

 
The increase or decrease in energy demand within a unit of time is measured by the ramp 
rate. Achieving sudden increases or decreases reliably is challenging. Therefore, the 
system's ramp cost is calculated. This value is obtained by summing differences between 
consecutive net electricity consumption values. 
 
In summary, cost functions in P2P energy trading are crucial for creating a balanced, 
efficient, and sustainable energy marketplace (Nguyen, Peng, Sokolowski, & Alahakoon, 
2018).  

4.3. Results and Discussion 
 
The simulation environment created for P2P energy trading game model based on 
reinforcement learning, which involves multiple agents, was evaluated separately at two 
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main subproblems: forecasting and energy trading. The simulation data for this game 
belongs to 8 prosumers covering approximately 1.5 years. Recursive forecasts have been 
generated for the last 3 months of data, and these forecasts are used as input for energy 
trading game. The results of generation, load, and price forecasts were individually 
evaluated for each peer, and energy trading results were examined based on different cost 
functions. 
 
4.3.1. Forecasting Results 
 

a) Load Forecasts 
Load forecasting is a critical input required for P2P energy trading. Before conducting 
very short-term load forecasts, comprehensive data exploration and preprocessing stages 
were completed, as outlined in previous sections. During the feature engineering phase, 
the focus was on creating impactful features. Calendar variables including hour, day of 
week, month, and season were incorporated to capture seasonality, and after applying 
One-hot encoding, they were transformed into binary variables (Okada, Ohzeki, & 
Taguchi, 2019). Moreover, holiday information was added to the input set as a binary 
variable to catch trend changes in load. To enhance the model's ability to capture load 
behavior within a very short-term forecasting horizon, lagged values were introduced. 
These are the most important feature sets in load forecasting problems. The same hour of 
last week’s each day and all hours of the previous 24 hours were taken as lagged features. 
Additionally, beyond considering weather parameters as significant factors affecting load, 
new features derived from them were integrated into the input set. These features, such as 
relative humidity-to-temperature ratio, and apparent temperature-to-temperature ratio, 
were deemed valuable for improving the accuracy of load forecasting in P2P energy 
trading. Lastly, heating and cooling degree days were calculated. Heating Degree Days 
(HDD) and Cooling Degree Days (CDD) are measures used to estimate heating and 
cooling energy requirements for consumers based on outdoor temperatures. HDD 
indicates how much heating is needed when it's colder than the comfort temperature 
(nearly 18.15 °C in Turkey), while CDD shows cooling requirements when it's hotter than 
the comfort temperature (nearly 22.15 °C in Turkey). The squares of these metrics were 
also added to the input dataset. These features are summarized in the below table. 
 
After dividing approximately 1.5 years of load data into two parts for each peer separately 
as training and test set, the test data was split into weekly intervals for generating very 
short-term load forecasts. For each week in the test set, a forecast was generated, and 
forecasted values were then incorporated into a training set for subsequent rounds of 
forecasting. This iterative training approach allowed the model to progressively learn from 
recent data, leading to improved forecast accuracy over time. 
 
For load forecasting of 8 peers, LightGBM model was chosen as machine learning model 
approach due to its outstanding performance in various aspects. Its hyperparameters, 
including the number of estimators, feature fraction, learning rate, maximum depth, and 
number of leaves, were meticulously tuned to achieve optimal performance. The fine-
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tuning process ensured that LightGBM model was optimized to produce highly accurate 
load forecasts for each peer, accounting for their individual power consumption needs and 
diverse load profiles arising from different installed power capacities. 
 

Table 9: Feature Space of Electricity Load Forecasting 

Variable Name Variable Type 

Temperature Meteorological 

Apparent Temperature Meteorological 

Relative Humidity Meteorological 

Global Radiation Meteorological 

Cloud Cover Meteorological 

Wind Speed Meteorological 

Precipitation Probability Meteorological 

Is Holiday Calendar 

Month Calendar 

Day of Week Calendar 

Hour Calendar 

Season Calendar 

Relative Humidity over Temperature  Meteorological 

Temperature cross Relative Humidity Meteorological 

Apparent Temperature over Temperature  Meteorological 

Temperature cross Apparent Temperature Meteorological 

Heating Degree Days Meteorological 

Cooling Degree Days Meteorological 

HDD Square Meteorological 

CDD Square Meteorological 

Lag of previous week's whole days of same hour Lagged 

Lag of previous day's whole hours Lagged 

 
In addition to LightGBM model, benchmarking models were employed for comparison, 
namely ANN with 2 hidden layers, Random Forest, and Ridge Regression. These models 
were chosen as benchmarking models due to their widespread use and applicability in 
forecasting tasks. By comparing the performance of these benchmarking models against 
LightGBM model, a comprehensive assessment of the forecasting approaches was 
conducted to determine the most effective and accurate method for load forecasting in the 
context of P2P energy trading. 
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The below graph represents actual load values and load forecasts of all models for March 
2023. 
 

 
 

Figure 18: Electricity Load Forecasts vs. Actual Values for March 2023 

April 2023 values are shown in the below graph. 
 

 
 
Figure 19: Electricity Load Forecasts vs. Actual Values for April 2023 

The below graph shows forecasted load values for the period of May 2023 including all 
benchmarking models. 
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Figure 20: Electricity Load Forecasts vs. Actual Values for May 2023 

 
In the following tables, a comparison of LightGBM model with benchmarked ANN, 
Random Forest, and Ridge Regression models are shown in terms of MAE and MSE. 
LightGBM model demonstrates better performance not only in terms of computational 
speed but also in accuracy compared to other models for commercial peers. MAPE values 
were not selected for load forecasting. The real load of the selected dataset is very small. 
Since MAPE involves dividing absolute error by actual value, it makes metrics sensitive 
to the magnitude of actual values. Therefore, MAPE provides a percentage error that is 
relative to the scale of realized data and is often used to understand the forecasting model's 
accuracy in terms of relative errors. 
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Table 10: Electricity Load Forecast MAE Values 

Month Peer LightGBM ANN 
Random 
Forest 

Ridge 
Regression 

3 commercial_1 0.15 0.36 0.18 0.17 

3 commercial_2 0.30 0.62 0.40 0.33 

3 commercial_3 0.43 0.57 0.43 0.43 

3 house_1 0.04 0.06 0.04 0.05 

3 house_2 0.04 0.06 0.04 0.04 

3 house_3 0.02 0.04 0.02 0.03 

3 house_4 0.03 0.04 0.03 0.04 

3 house_5 0.03 0.06 0.04 0.05 

4 commercial_1 0.19 0.42 0.20 0.20 

4 commercial_2 0.32 0.66 0.42 0.34 

4 commercial_3 0.38 0.56 0.40 0.38 

4 house_1 0.03 0.05 0.03 0.04 

4 house_2 0.04 0.06 0.04 0.04 

4 house_3 0.02 0.03 0.02 0.03 

4 house_4 0.03 0.04 0.03 0.04 

4 house_5 0.03 0.05 0.04 0.04 

5 commercial_1 0.26 0.44 0.23 0.25 

5 commercial_2 0.28 0.52 0.37 0.30 

5 commercial_3 0.16 0.24 0.16 0.16 

5 house_1 0.03 0.04 0.03 0.04 

5 house_2 0.04 0.05 0.04 0.04 

5 house_3 0.02 0.03 0.02 0.03 

5 house_4 0.03 0.04 0.03 0.03 

5 house_5 0.02 0.04 0.03 0.04 

Total commercial_1 0.20 0.41 0.20 0.21 

Total commercial_2 0.30 0.60 0.40 0.32 

Total commercial_3 0.32 0.45 0.33 0.32 

Total house_1 0.03 0.05 0.03 0.04 

Total house_2 0.04 0.06 0.04 0.04 

Total house_3 0.02 0.04 0.02 0.03 

Total house_4 0.03 0.04 0.03 0.04 

Total house_5 0.03 0.05 0.03 0.04 
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Table 11: Electricity Load Forecast MSE Values 

Month Peer LightGBM ANN 
Random 
Forest 

Ridge 
Regression 

3 commercial_1 0.043 0.220 0.061 0.049 
3 commercial_2 0.338 0.799 0.424 0.361 
3 commercial_3 0.493 0.680 0.473 0.488 
3 house_1 0.004 0.007 0.004 0.004 
3 house_2 0.004 0.007 0.004 0.005 
3 house_3 0.001 0.003 0.001 0.002 
3 house_4 0.002 0.003 0.002 0.003 
3 house_5 0.003 0.006 0.003 0.004 

4 commercial_1 0.068 0.315 0.075 0.073 
4 commercial_2 0.387 0.863 0.460 0.362 
4 commercial_3 0.398 0.645 0.407 0.394 
4 house_1 0.003 0.005 0.003 0.003 
4 house_2 0.003 0.006 0.003 0.004 
4 house_3 0.001 0.002 0.001 0.001 
4 house_4 0.002 0.003 0.002 0.003 
4 house_5 0.003 0.006 0.004 0.004 
5 commercial_1 0.121 0.348 0.097 0.115 
5 commercial_2 0.247 0.598 0.299 0.260 
5 commercial_3 0.054 0.102 0.051 0.052 
5 house_1 0.002 0.003 0.002 0.003 
5 house_2 0.003 0.005 0.004 0.004 
5 house_3 0.001 0.002 0.001 0.002 
5 house_4 0.001 0.003 0.001 0.002 
5 house_5 0.002 0.003 0.002 0.003 

Total commercial_1 0.077 0.294 0.078 0.079 
Total commercial_2 0.323 0.752 0.394 0.327 
Total commercial_3 0.314 0.474 0.309 0.311 
Total house_1 0.003 0.005 0.003 0.003 
Total house_2 0.004 0.006 0.004 0.004 
Total house_3 0.001 0.003 0.001 0.002 
Total house_4 0.002 0.003 0.002 0.003 
Total house_5 0.003 0.005 0.003 0.004 
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All in all, every peer has access to special their load forecasts to make logical decisions in 
trading. A precise load forecast is essential for effective energy trading decisions, as it 
allows peers to optimize their energy load and generation strategies based on forecasted 
load patterns. 
 

b) Solar Generation Forecasts 
 
Another input required for P2P energy trading is solar generation forecasting. Before 
conducting very short-term solar generation forecasts, data exploration and data 
preprocessing stages as described in previous sections were completed. During the feature 
engineering stage for solar generation forecasting, creating effective features is important. 
Calendar variables such as hour, month, and season were added to capture seasonality, 
and after applying One-hot encoding, they were used as binary variables. Given a very 
short-term forecasting horizon, the model's ability to capture generation behavior within 
a day was improved by adding lagged values. Additionally, apart from weather 
parameters, which are significant factors affecting generation, new features derived from 
them were also added to the input set. These features, as summarized in the feature space 
table below, include the radiation-to-temperature ratio, square of radiation, radiation 
multiplied by temperature, and others. 
 
Table 12: Feature Space of Electricity Generation Forecasting 

Variable Name Variable Type 

Temperature Meteorological 

Apparent Temperature Meteorological 

Relative Humidity Meteorological 

Global Radiation Meteorological 

Cloud Cover Meteorological 

Direct Radiation Meteorological 

Precipitation Probability Meteorological 

Diffuse Radiation Meteorological 

Sun Elevation Meteorological 

Month Calendar 

Hour Calendar 

Season Calendar 

Radiation over Temperature  Meteorological 

Radiation Sqaure Meteorological 

Temperature cross Radiation Meteorological 

Apparent Temperature over Temperature  Meteorological 

Lag of previous day's whole hours Lagged 
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After dividing solar generation data into two parts for each peer separately, approximately 
1.5 years were used for training, while the remaining data was split into weekly intervals 
to serve as a test set for generating very short-term solar generation forecasts. For each 
week in the test set, a forecast was made, and the predicted values were included in the 
training set for the next round of forecasting. This iterative training approach allowed the 
model to progressively learn from recent data and improve the accuracy of the forecasts 
over time. 
To forecast solar generation of 8 peers, LightGBM model was selected as the preferred 
algorithm. The model's hyperparameters, such as the number of estimators, feature 
fraction, learning rate, maximum depth, and number of leaves, were tuned to achieve 
optimal performance. By fine-tuning these parameters, LightGBM model was optimized 
to produce precise forecasts for solar generation data of 8 peers including different solar 
plants that have different installed power. 
The graph below presents forecasted solar generation values for the period of March 2023, 
alongside actual solar generation values for each peer. Additionally, the graph compares 
the results of LightGBM model with benchmarking models, which include ANN with 2 
hidden layers, Random Forest, and Ridge Regression. 
 

 
 

Figure 21: Electricity Generation Forecasts vs. Actual Values for March 2023 

The below graph shows forecasted solar generation values for the period of April 2023 
including all benchmarking models. 
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Figure 22: Electricity Generation Forecasts vs. Actual Values for April 2023 

 
The graph depicted below displays forecasted solar generation values for the month of 
May 2023, encompassing all benchmarking models. 
 

 
Figure 23: Electricity Generation Forecasts vs. Actual Values for May 2023 

 
The tables below present a comparison of LightGBM model with benchmarked ANN with 
2 hidden layers, Random Forest, and Ridge Regression models. LightGBM model 
demonstrates better performance not only in terms of computational speed but also in 
accuracy compared to other models for commercial peers. Because the values are so close 
to house peers, LightGBM model was selected for them also. 
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Table 13: Electricity Generation Forecast MAE Values 

Month Peer LightGBM ANN 
Random 
Forest 

Ridge 
Regression 

3 commercial_1 0.195 0.324 0.246 0.228 
3 commercial_2 0.259 0.429 0.314 0.299 
3 commercial_3 0.076 0.120 0.089 0.084 
3 house_1 0.013 0.019 0.012 0.011 
3 house_2 0.012 0.019 0.011 0.010 
3 house_3 0.012 0.020 0.011 0.010 
3 house_4 0.011 0.018 0.010 0.010 
3 house_5 0.012 0.018 0.010 0.010 

4 commercial_1 0.248 0.356 0.313 0.308 
4 commercial_2 0.290 0.428 0.381 0.367 
4 commercial_3 0.109 0.140 0.113 0.104 
4 house_1 0.014 0.021 0.014 0.013 
4 house_2 0.014 0.019 0.013 0.013 
4 house_3 0.013 0.019 0.013 0.012 
4 house_4 0.014 0.020 0.013 0.013 
4 house_5 0.013 0.019 0.012 0.012 
5 commercial_1 0.231 0.357 0.290 0.277 
5 commercial_2 0.294 0.446 0.370 0.353 
5 commercial_3 0.118 0.116 0.101 0.092 
5 house_1 0.013 0.019 0.013 0.012 
5 house_2 0.013 0.019 0.012 0.012 
5 house_3 0.012 0.018 0.011 0.011 
5 house_4 0.013 0.018 0.013 0.012 
5 house_5 0.012 0.017 0.009 0.009 

Total commercial_1 0.224 0.345 0.282 0.271 
Total commercial_2 0.281 0.434 0.355 0.339 
Total commercial_3 0.101 0.125 0.101 0.093 
Total house_1 0.013 0.020 0.013 0.012 
Total house_2 0.013 0.019 0.012 0.012 
Total house_3 0.012 0.019 0.012 0.011 
Total house_4 0.013 0.019 0.012 0.012 
Total house_5 0.012 0.018 0.011 0.010 
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Table 14: Electricity Generation Forecast RMSE Values 

Month Peer LightGBM ANN 
Random 
Forest 

Ridge 
Regression 

3 commercial_1 0.422 0.652 0.489 0.456 
3 commercial_2 0.560 0.911 0.633 0.605 
3 commercial_3 0.168 0.261 0.183 0.176 
3 house_1 0.024 0.036 0.023 0.022 
3 house_2 0.023 0.035 0.022 0.020 
3 house_3 0.022 0.037 0.021 0.020 
3 house_4 0.022 0.035 0.021 0.020 
3 house_5 0.022 0.034 0.021 0.020 
4 commercial_1 0.514 0.690 0.575 0.572 
4 commercial_2 0.590 0.849 0.674 0.658 
4 commercial_3 0.224 0.272 0.219 0.212 
4 house_1 0.026 0.039 0.026 0.026 
4 house_2 0.025 0.036 0.025 0.025 
4 house_3 0.024 0.036 0.024 0.023 
4 house_4 0.025 0.036 0.025 0.024 
4 house_5 0.024 0.036 0.024 0.024 

5 commercial_1 0.465 0.663 0.532 0.502 
5 commercial_2 0.558 0.814 0.649 0.610 
5 commercial_3 0.213 0.218 0.196 0.186 
5 house_1 0.023 0.037 0.024 0.022 
5 house_2 0.023 0.036 0.023 0.022 
5 house_3 0.021 0.034 0.021 0.020 
5 house_4 0.023 0.034 0.023 0.022 
5 house_5 0.022 0.033 0.018 0.017 

Total commercial_1 0.468 0.668 0.533 0.511 
Total commercial_2 0.569 0.859 0.652 0.624 
Total commercial_3 0.203 0.251 0.200 0.191 
Total house_1 0.024 0.037 0.024 0.023 
Total house_2 0.024 0.036 0.023 0.022 
Total house_3 0.022 0.035 0.022 0.021 
Total house_4 0.023 0.035 0.023 0.022 
Total house_5 0.023 0.034 0.021 0.021 
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Each peer's solar generation data was forecasted separately, considering their unique 
installed power capacities. Solar generation forecasts were tailored to each peer, taking 
into account their specific solar energy generation capabilities. As a result, every peer has 
access to personalized their production forecasts. This approach ensures that each peer 
can make informed decisions based on forecasted electricity solar generation. 
 

c) Electricity Price Forecasts 
 
Electricity price forecasting follows a similar trend as shown in Figure 6, for load and 
solar generation forecasts. Electricity price data was obtained from day-ahead market 
prices of Turkey’s energy exchange, known as "Enerji Piyasaları İşletme A.Ş.(EPİAŞ)". 
The data was sourced from their transparency platform3 . Its unit is TL/MWh. Since 
generation and load data in this study are scaled at a kilowatt level, the price values are 
divided by 1000 to obtain prices in TL/kWh. 
 
Since electricity price data used for forecasting is verified and cleaned, it requires no 
further preprocessing. Additionally, feature data used for electricity price prediction 
includes periodically varying maximum limit value of price. The graph of price and 
maximum limit is shown below. 
 

 
Figure 24: Electricity Prices and Maximum Price Limit 

One of most significant factors influencing electricity prices is generated energy, a critical 
portion of which is dependent on natural gas, affected by USD exchange rate. Therefore, 
USD exchange rates were included in the feature set for electricity price forecasting. 

 
3 https://seffaflik.epias.com.tr/transparency/piyasalar/gop/ptf.xhtml 
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However, it is important to note that when adding this data to the dataset, the most recently 
disclosed USD exchange rate was considered as the basis for inclusion. Weather variables 
were added to the model's input set because they are significant factors affecting electricity 
prices, primarily through their impact on energy generation and consumption. Features 
like temperature, relative humidity, and radiation were put into feature engineering to 
generate new relevant features. Additionally, calendar variables were added to the model 
to capture daily, weekly, and monthly seasonal patterns present in price data. Categorical 
variables were converted to binary variables using one-hot encoding technique during the 
feature engineering process. Considering high autocorrelation in price data, lagged values 
were incorporated into the model, taking into account daily and weekly seasonality. This 
was done to better account for time dependencies present in the price data. The resulting 
features after the feature engineering process are listed in the table below: 
 
Table 15: Feature Space of Electricity Price Forecasting 

Variable Name Variable Type 

Maximum Price Limit Price 

USD Price 

Temperature Meteorological 

Apparent Temperature Meteorological 

Relative Humidity Meteorological 

Global Radiation Meteorological 

Is Holiday Calendar 

Month Calendar 

Day of Week Calendar 

Hour Calendar 

Season Calendar 

Relative Humidity over Temperature  Meteorological 

Temperature cross Relative Humidity Meteorological 

Apparent Temperature over Temperature  Meteorological 

Temperature cross Apparent Temperature Meteorological 

Heating Degree Days Meteorological 

Cooling Degree Days Meteorological 

HDD Square Meteorological 

CDD Square Meteorological 

Lag of previous week's whole days of same hour Lagged 

Lag of previous day's whole hours Lagged 
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After splitting approximately 1.5 years of electricity price data, the first 12 months were 
used as the training set, and the remaining data was divided into weekly intervals to create 
the test set for creating short-term forecasts. Each week from the test set was used for 
forecasting, and the forecasted values for that week were then included in the training set. 
This approach allowed for a recursive training process, progressively expanding the 
training set closer to the current time to advance the forecasting process. 
 
LightGBM model was chosen for price forecasting, and hyperparameter tuning was 
performed to optimize its performance. The hyperparameters were tuned for number of 
estimators, feature fraction, learning rate, maximum depth, and number of leaves 
parameters. The graph below depicts forecasted price values for the period of March 2023 
to May 2023 alongside the actual price values. The graph shows benchmarking models 
with LightGBM model including ANN with 2 hidden layers, Random Forest, and Ridge 
Regression. 
 

 
Figure 25: Electricity Price Forecasts vs. Actual Values 

 
The results of benchmarking the developed LightGBM model against ANN with 2 hidden 
layers, Random Forest, and Ridge Regression models are shown in the table below. 
LightGBM model stands out not only in terms of computational speed but also in accuracy 
compared to the other models. 
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The results of this model are assumed to be shared across all peers, and price forecasts are 
considered to be publicly available in the market. This assumption means that all peers 
use the same model and have access to the same price forecasts when making their energy 
trading decisions. It allows for a fair and consistent comparison of the model's 
performance across all peers in the P2P energy trading game. With publicly available price 
predictions, each peer can make informed decisions based on the forecasted electricity 
prices for their production and consumption strategies. 
 
Table 16: Electricity Price Forecast Results 

Month 

  3 4 5 Total 

MAE 
(kWh/TL) 

LightGBM 0.26 0.25 0.20 0.24 
ANN 0.32 0.29 0.27 0.29 
Random Forest 0.29 0.23 0.21 0.24 
Ridge Regression 0.30 0.27 0.26 0.28 

RMSE 
(kWh/TL) 

LightGBM 0.12 0.11 0.07 0.10 
ANN 0.17 0.15 0.13 0.15 
Random Forest 0.14 0.10 0.08 0.11 
Ridge Regression 0.15 0.12 0.11 0.13 

 
4.3.2. P2P Energy Trading Game Results 
 
The results of multi-agent reinforcement learning model established to simulate the 
trading game of P2P energy trading network, consisting of 8 peers, were evaluated in this 
section. After modeling solar generation, consumption, and price data in a continuous 
learning framework, the created forecasts are utilized as inputs for the energy trading 
game. 
The model established in the thesis study operates in a model-free approach, meaning it 
works without any prior knowledge. Therefore, the model was trained for a considerable 
number of episodes to compare the model's results. An episode refers to a run where 
interactions occur between an agent and its environment. With each increasing episode, 
the agent learns from interactions and can develop better strategies. Replay buffer stores 
past states and rewards, allowing for improved exploration. However, increasing number 
of episodes also leads to longer computation times, and beyond certain limits, it may cause 
delays in real-world trading in the market. 
 
The cost function values of the proposed multi-agent reinforcement learning model's 
trading, using very short-term load, solar generation, and price forecasts between March 
2023 and May 2023 in a system consisting of 8 peers, are presented in the following tables. 
The net electricity consumption of each peer, including the values during times when net 
electricity consumption exceeds solar generation, and total electricity cost are evaluated 
here. The results of multi-agent RL model were analyzed based on the actions of agents 
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who explored the environment during the first two months of 3-month data period. These 
actions were analyzed during May 2023. 
 
Multi-agent RL (MARL) model results were taken for 10, 20, 50 and 100 episodes. Table 
17 presents calculated electricity cost, net electricity consumption, and net electricity 
consumption with negatives for models trained with different numbers of episodes. When 
examining electricity cost values, it can be observed that peer-based behaviors vary as 
number of episodes increases. Similarly, there are changes in net electricity consumption 
values corresponding to these variations. Therefore, an increase in number of episodes 
allowed each agent to undergo more training, leading to the development of more 
competitive behaviors. 
 
Table 17: Peer-based Cost Function Values of Proposed Approach for Different Number of Episodes 

  
Episode 

Cost Function Peer 10 20 50 100 

Electricity Cost 

commercial_1 1.010 1.004 1.001 1.008 
commercial_2 1.031 0.989 0.991 1.000 
commercial_3 1.068 1.043 1.026 1.040 

house_1 1.036 1.042 1.079 1.059 
house_2 1.025 1.030 1.026 1.024 
house_3 1.088 1.066 1.106 1.116 
house_4 1.038 1.025 1.036 1.040 
house_5 1.074 1.106 1.099 1.099 

Net Electricity 
Consumption 

commercial_1 1.016 1.010 1.016 1.009 
commercial_2 1.043 0.998 0.997 1.012 
commercial_3 1.076 1.052 1.036 1.046 

house_1 1.042 1.052 1.089 1.065 
house_2 1.026 1.030 1.026 1.025 
house_3 1.101 1.083 1.108 1.119 
house_4 1.042 1.031 1.039 1.038 
house_5 1.072 1.107 1.099 1.102 

Net Electricity 
Consumption with 

Negatives 

commercial_1 1.010 1.009 1.014 1.008 
commercial_2 1.018 1.013 1.014 1.023 
commercial_3 1.025 1.021 1.016 1.017 

house_1 1.040 1.049 1.060 1.058 
house_2 1.014 1.017 1.016 1.016 
house_3 0.809 0.805 0.821 0.791 
house_4 1.018 1.020 1.025 1.023 
house_5 1.077 1.101 1.110 1.105 
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The impact of an increasing number of episodes is similar in individual peers and the 
entire system. As net electricity consumption increases, the market’s electricity cost also 
rises. Analyzing load factor values, it is observed that in the case of 50 episodes, average 
consumption is less than peak demand, which indicates a more reliable state for the entire 
system. This effect is also reflected in peak demand and daily peak demand values. 
Consequently, a decreasing ramp cost value indicates that the system's sensitivity to rapid 
changes in electricity consumption is reduced. However, exceeding the certain threshold 
for a number of episodes has a negative effect on the system. Another cost associated with 
the number of episodes is time. In a real-time trading game, it was observed that working 
with 10 episodes is the most optimal in terms of time efficiency. 
 
Table 18: Cost Function Values of Market for Different Number of Episodes in Proposed Approach 

 Episode 

Cost Function 10 20 50 100 

Electricity Cost 1.046 1.038 1.046 1.048 
Ramp Cost 1.174 1.105 1.090 1.129 

Net Electricity Consumption 1.052 1.045 1.051 1.052 
Net Consumption with Negatives 1.002 1.005 1.010 1.005 

Peak Demand 14.271 13.809 11.022 16.492 
Daily Peak Demand 1.043 1.002 0.978 1.033 

Load Factor 1.029 1.008 0.996 1.045 
 
In addition to values in the above tables, a comparison of net electricity consumption for 
each peer and the market at hourly resolution with respect to episodes is presented in the 
graph below. According to this graph, when solar generation is limited and used solely for 
internal consumption on days with low generation (cloudy days), increasing number of 
episodes does not significantly impact net electricity consumption. This is because all 
agents most probably utilize solar generation energy for their internal needs, resulting in 
reduced trading activities. Conversely, on days with high solar generation, an increasing 
number of episodes leads to increased learning among agents, creating a more competitive 
market. As a result, the curves compared on an episode basis start to diverge. 
 
Figure 27 depicts solar generation curve in net consumption, including battery 
consumption (amount of energy used to charge the battery) and total consumption. In this 
graph, the effect of solar generation on total consumption can be observed during the 
periods when battery consumption is zero. If this system were established in a 
geographically dispersed structure, where solar power plants' behaviors are not similar, 
the likelihood of identifying instances with zero battery consumption in the market would 
be significantly lower. House 5's consumption from May 25th to May 28th, where it 
almost reaches zero due to its consumption being mainly base load (refrigerator, freezer, 
etc.), is seen to have an impact on net consumption curve. Almost all of the solar 
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generation was utilized for trading. Having such an automated P2P energy trading system 
would increase prosumers' chances of continuous gains. 

 
 

Figure 26: Net Electricity Consumption for Different Number of Episodes 
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Figure 27: Net, Total, and Battery Consumption for MARL with 10 Episodes 
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Figure 28: Hourly Averages of Net, Total, and Battery Consumption for MARL with 10 Episodes 
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The graph above provides hourly averages of net energy consumption, total energy 
consumption, and battery energy over May 2023. Typical behavior of total consumption 
can be observed here. The behavior of the battery also shows a tendency to charge during 
daytime and discharge during the night.  
 
To compare the performance of the proposed model, rule-based model (RBRL) was 
constructed. In this model, agents adjust charging and discharging times and their amounts 
based on time of day. If the hour is between 9 AM and 8 PM, during solar generation 
times, the battery is charged. If the hour is before 9 AM or after 8 PM, the battery is 
discharged to meet consumption needs or engage in trading with the market. The charging 
and discharging rates are determined based on percentage ratios of battery capacity. 
Through tuning, it has been found that discharging a battery at a rate of 10% of its capacity 
and charging it at a rate of 7% of its capacity are the best options for rule-based agents. 
RBRL model was selected because of multiple reasons. Rule-based models are easy to 
understand and interpret. This makes them a useful tool for taking insights how different 
factors affect the agents’ behaviors. They represent basic level of decision making, and 
this baseline helps to evaluate the added value of machine learning methods. Another 
important and the main reason for selecting benchmarking is people's habits. They play a 
significant role in energy consumption and trading decisions. Rule-based models can 
capture these human-like behaviors effectively. 
 
Table 19 presents values of peer-based cost functions for both the proposed approach and 
RBRL. According to these values, the proposed approach has enabled agents to act in a 
way that preserves the interests of all peers compared to rule-based agents. The decrease 
in energy costs highlights the need for peers to adopt such an approach, as it benefits them 
collectively. 
 
Table 19: Peer-based Cost Function Values for Proposed Approach and RBRL 

 

 Electricity Cost 
Net Electricity 
Consumption 

Net Electricity Cons. 
with Negatives 

Peer MARL RBRL MARL RBRL MARL RBRL 
commercial_1 1.010 1.102 1.016 1.121 1.010 1.044 
commercial_2 1.031 1.152 1.043 1.202 1.018 1.079 
commercial_3 1.068 1.098 1.076 1.124 1.025 1.047 

house_1 1.036 1.220 1.042 1.257 1.040 1.121 
house_2 1.025 1.080 1.026 1.097 1.014 1.035 
house_3 1.088 1.469 1.101 1.522 0.809 0.525 
house_4 1.038 1.134 1.042 1.160 1.018 1.052 
house_5 1.074 1.298 1.072 1.334 1.077 1.216 

 
Similarly, when considering the costs of the entire system shown below figure, it is 
observed that total energy consumption in the market decreases, and market players share 
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their energy needs with each other. While both models yield similar results in peak 
demand, ramp cost is higher in the proposed approach. This suggests that the model may 
require further testing and improvements in terms of system reliability. 
 
Table 20: Cost Function Values of Market for Proposed Approach and RBRL 

 
Cost Function MARL RBRL 

Electricity Cost 1.046 1.194 
Ramp Cost 1.174 1.077 

Net Electricity Consumption 1.052 1.227 
Net Consumption with Negatives 1.002 1.015 

Peak Demand 14.271 14.828 
Daily Peak Demand 1.043 1.083 

Load Factor 1.029 1.035 
 
Finally, when comparing net electricity consumption for both peers and the entire market 
in the two models, it is evident that the proposed approach results in lower net electricity 
consumption on an hourly basis Figure 30. Solar energy was better utilized with the 
proposed method, leading to more efficient utilization of energy generated from solar 
sources.  
Additionally, the distribution of net electricity consumption can be observed in histograms 
shown in Figure 29. The proposed approach exhibits net electricity consumption average 
closer to zero, and distribution appears to be more closely following normal distribution. 
However, rule-based reinforcement model shows distribution with higher net 
consumption, as evident in the histogram. The less skewed distribution of the proposed 
approach indicates a more consistent learning method. 
 
 

 
Figure 29: Histogram of Net Electricity Consumption for Proposed Approach and RBRL 
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Figure 30: Net Electricity Consumption for Proposed Approach and RBRL 
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CHAPTER 5 

 

CONCLUSION 

5.1. Summary 
 
The thesis study focuses on challenges posed by increasing energy demand and 
dependency on electrical energy in today's world. It addresses the importance of 
renewable energy in resolving energy-related issues and introduces peer-to-peer energy 
trading as a solution for local markets.  
 
The concept of peer-to-peer (P2P) energy trading was introduced, allowing 
nano/microgrids to trade energy directly with each other without the need to involve main 
grid. The thesis aims to bring P2P energy trading system to a self-sufficient prosumer for 
each peer while maximizing the profit of each peer. It considers stochastic situations due 
to varying electricity demand and renewable energy generation, seeks to reduce 
prosumers’ dependency on external sources, and minimizes energy losses through the 
management of energy sources. 
 
Multi-agent reinforcement learning model was employed to optimize P2P energy trading 
game for each peer's goals. The thesis explores various research questions related to 
energy transfer among participants, determining electricity prices, renewable energy 
generation, local power load, and battery levels in trading policy. The thesis analyzes the 
pioneering simulation of P2P energy trading approach, utilizing data specific to Turkey. 
It examines the feasibility and potential benefits of implementing such a system within 
Turkish energy landscape. 
 
The second chapter is a comprehensive exploration of machine learning discipline and its 
application in the context of energy trading and forecasting. Literature review was 
presented in three main sections, each addressing specific topics related to the subject 
matter. The first section of Chapter 2 provides an overview of machine learning, focusing 
on different learning paradigms commonly employed in literature. These paradigms 
included supervised learning, unsupervised learning, and reinforcement learning, which 
are essential in understanding machine learning techniques applied in energy trading. In 
the next section, the concept of energy trading was thoroughly explained, along with the 
models frequently utilized in this domain. The existing literature on energy trading was 
reviewed, including various market structures, pricing mechanisms, and trading strategies, 
providing valuable insights for energy market analysis. In the last section of Chapter 2, 
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energy forecasting models, particularly those using supervised machine learning 
approaches for demand, generation, and price forecasting were searched. By examining 
the relevance of different techniques, this section aimed to identify the most suitable 
models for energy trading applications. 
 
Chapter 3 delves into the methodology of P2P energy trading game among 
nano/microgrids. Before explaining the proposed approaches for forecasting and 
reinforcement learning, the problem was stated once more. Then, P2P energy trading 
platform description, enabling direct energy trading between producers and consumers 
without intermediaries, promoting efficiency, sustainability, and grid resilience was 
explained. It consists of two layers, a virtual layer facilitating energy trading decisions 
and a physical layer comprising tangible components like solar panels and batteries, 
which, along with market participants, form a seamless ecosystem. Additionally, energy 
models for loads, solar panels, and batteries were explained, considering load forecasting 
and generation forecast models. 
 
The proposed methodology was presented in Chapter 3, it is the implementation of multi-
agent reinforcement learning P2P energy trading solution for multiple peers with different 
capacities in terms of load, generation, and battery. Each peer is equipped with its 
reinforcement learning agent, aiming to optimize energy consumption and enable 
effective cooperation among peers, even when starting with random policies and limited 
knowledge about system dynamics. Before starting trading, load, generation, and price 
forecasts are prepared according to the proposed forecasting approach because they play 
crucial role in energy trading decisions. By examining load, generation, price forecasts, 
and reinforcement learning algorithms separately, this study aims to a provide valuable 
insights for future improvements and the development of intelligent energy management 
systems to enhance sustainability. 
 
Chapter 4 explains the experiment conducted to evaluate P2P energy trading system 
including forecasting and reinforcement learning parts. Generation and load data was 
collected from 8 prosumers, including commercial buildings and households, over one 
and a half year. The experiment analyzes solar energy generation, energy consumption 
patterns, prices and incorporates real-world factors to create the market. The performance 
of models was evaluated using defined metrics and sensitivity testing. 
 
After evaluating energy forecasts, multi-agent reinforcement learning (MARL) model and 
rule-based reinforcement learning (RBRL) model presented in Chapter 3 were trained and 
tested for the last month of data. The results were assessed based on defined cost functions 
such as net electricity consumption, ramping cost, and peak demand. As a result, it was 
demonstrated that agents who learn from their state, actions, and environment and engage 
in P2P trading with each other were more successful in terms of peer-based costs, system 
cost, and stability. 
 
 



79 
 

5.2. Future Work 
 
In this thesis, presented forecasting and reinforcement learning-based efficient energy 
exchange strategies in peer-to-peer trading are intended to be further developed in the 
future. Future work can be expanded by introducing new constraints and considerations 
to improve P2P energy trading strategies. 
 
Incorporating physical distance between nano/microgrids as a constraint can add realism 
to a trading system. Prosumers in closer proximity may have more favorable trading 
opportunities due to lower transmission losses and reduced transportation costs. 
Implementing distance-based constraints could optimize energy trading by promoting 
local energy exchange and reducing dependency on long-distance energy transfers. 
 
Secondly, developing a buyer selection mechanism can enhance the efficiency and 
reliability of energy transactions. Prosumers could have the option to prioritize their 
buyers based on factors like reliability, reputation, or trading history. Implementing a 
robust buyer selection process would ensure that prosumers can find suitable and 
trustworthy partners for energy trading. 
 
Apart from the trading side, expanding forecasting models to include wind power 
generation can further diversify renewable energy sources in the trading network. 
Accurate wind plant forecasts would allow prosumers to anticipate fluctuations in wind 
power generation and adapt their trading strategies accordingly.  
 
The purpose of participating in such a market can vary for each prosumer. Indeed, 
prosumers may want to engage in trading for multiple purposes. Implementing multi-
objective optimization techniques can enable prosumers to consider multiple criteria 
simultaneously, such as maximizing profit, minimizing environmental impact, and 
optimizing grid stability. Introducing multi-objective approaches would provide a more 
comprehensive analysis of tradeoffs and enable prosumers to make conscious decisions. 
 
By incorporating these new constraints, objectives, and features, future research can 
advance P2P energy trading platform, making it more efficient, resilient, and sustainable. 
Addressing these aspects would contribute to the broader goal of fostering a decentralized 
and environmentally friendly energy ecosystem. 
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