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DESTEK VEKTÖR MAKİNESİ İLE ROBOTİK KOLLARIN UYARLAMALI 

MODEL ÖNGÖRÜLÜ KONTROLÜ 

ÖZET 

Robotik kolların dinamiğinin doğru bir şekilde hesaplanması ve denetleyici 

parametrelerinin uyarlanması için; modelin keskinliği ve hassasiyeti büyük önem 

taşımaktadır. Doğrusal olmayan sistem dinamiklerinin keskin bir şekilde 

tanımlanmasında yapay sinir ağları ve destek vektör makinası algoritmaları sıklıkla 

tercih edilmektedir. Destek vektör makineleri, makine öğrenmesi yöntemleri arasında 

en etkili regresyon tekniklerinden biridir.  

Bu tez çalışması kapsamında, robotik kolların destek vektör makinesi tabanlı 

uyarlamalı model öngörülü kontrolünü sağlayacak yöntem önerilmiştir. İlk olarak, 

örnek alınan bir manipülatörün verileri kullanılarak destek vektör regresyonu ile 

dinamik model tahmini yapılmıştır. Dinamik model tahmini yapılırken eğitilen 

modelin öğrenme parametreleri eğitim verisinin ezberlenmesini bir başka deyişle aşırı 

öğrenmeyi engellemek amacıyla optimize edilmiştir. Kullanılan manipülatör dört 

eksenli hafif yapılı bir robot koldur. Tahmin edilen bu model, uyarlama 

mekanizmasında kullanılarak modelleme hataları ve bozucu etkilerinin minimuma 

indirildiği görülmüştür. Elde edilen kontrol yapısının farklı yörüngeler üzerinde ve 

değişken yük koşullarında başarılı bir yörünge takip performansı gösterdiği 

izlenmiştir. Karmaşık yörüngelerin takibinde de önerilen kontrol yapısının başarılı 

olduğu yapılan benzetim çalışmaları ile gösterilmiştir. Önerilen denetleyici yörünge 

takibi başarısını etkileyen özellikle zamanla değişen yükün baskın olduğu anlarda 

minimum konum hatası ile yörünge takibini sağlanmıştır. Destek vektör regresyonu 

ile kestirilen model ve uyarlamalı kontrol mekanizmasının birlikte kullanımı, 

sistemdeki modellenememiş dinamikler, belirsizlikler, dış bozucular ve parametre 

değişimlerine karşı oldukça etkili olmaktadır. 

 

Anahtar kelimeler: Robot manipülatörler, yörünge takibi, makine öğrenmesi, destek 

vektör makinası, uyarlamalı kontrol, model öngörülü kontrol.
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SUPPORT VECTOR MACHINE BASED MODEL PREDICTIVE ADAPTIVE 

CONTROL OF ROBOTIC ARMS 

SUMMARY 

For the correct calculation of the dynamics of the robotic arms and the adaptation of 

the controller parameters; the accuracy and precision of the model has great 

importance. Artificial neural networks and support vector machine algorithms are 

often preferred for the accurate definition of nonlinear system dynamics. Support 

vector machines are one of the most effective regression techniques among machine 

learning methods. 

Within the scope of this thesis, a method that will provide support vector machine 

based adaptive model predictive control of robotic arms is proposed. First, dynamic 

model estimation was performed with support vector regression using the data of a 

sampled manipulator. While estimating the dynamic model, the learning parameters 

of the trained model are optimized to prevent memorization of the training data, in 

other words, over-learning. The manipulator used is a four-axis lightweight robot arm. 

It has been observed that modeling errors and disruptive effects are minimized by 

using this predicted model in the adaptation mechanism. It was observed that the 

obtained control structure showed a successful trajectory tracking performance on 

different trajectories and under variable load conditions. It has been shown by the 

simulation studies that the proposed control structure is successful in the tracking of 

complex trajectories. Trajectory tracking is provided with minimum position error, 

especially when the time-varying load is dominant, which affects the success of the 

proposed controller trajectory tracking. The combined use of the model predicted by 

support vector regression and adaptive control mechanism is very effective against 

unmodeled dynamics, uncertainties, external disturbances and parameter changes in 

the system. 

 

Keywords: Robot manipulators, trajectory tracking, machine learning, support vector 

machine, adaptive control, model predictive control.
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1.  GİRİŞ 

Veri çiftlerinin birbirleriyle ilişkilerinin olmadığı durumlardaki sınıflandırma 

problemlerinde Destek Vektör Makinesı (DVM)  yöntemi önerilmektedir. Bu 

yöntemin anafikrini oluşturan ve önerilmesi 1909 yıllarına dayanan çekirdek kavramı, 

ilk olarak "COLT" isimli konferansta 1995 yılında Rus Matemeatikçi Vladimir Vapnik 

tarafından sunulmuştur. Optimizasyon probleminde global çözümün garanti edilmesi 

DVM’leri yapay sinir ağlarına göre üstün kılmaktadır. Optimizasyon probleminin 

konveks bir yapıya bürünmesi yöntemiyle yerel minimuma takılma problemi 

çözülmüştür. Bu sayede optimizasyon problemlerinin çözümünde önemli bir gelişme 

elde edilmektedir. 

Birden fazla sınıflandırma probleminde, DVM tabanlı yöntemler tercih edilmektedir. 

Mikrodalga teknolojisi ile çalışan cihazlarda gürültüyü önlemek için kullanılması 

sağlık alanında kullanıma bir örnektir [1]. Özellikle kanserli dokuların tanısı ve 

sınıflandırılması konusunda DVM yöntemine başvurulmaktadır [2]. Doğrusal 

olmayan sistemlerin kara kutu (black-box) modellerinin oluşturulmasında DVM 

yönteminin başarısı etkilidir [3]. Bunun dışında ses tanıma için; iki ayrı çekirdek 

fonksiyonu önerilerek GMM modeli (Gauss Karışım Metodu) ve DVM sınıflandırıcı 

birlikte kullanılır [4]. 

İstatiktiksel öğrenme teorisine dayanan DVM sınıflandırma problemlerinde 

kullanıldığı gibi regresyon analizlerinde de etkilidir. Belirsiz girdi ve çıktılarla 

parametreler hakkında ön bilgi olmadığı durumlarda kulllanılan yöntemde yeni veri 

girişlerini sınıflandırmak için eğitim verilerindeki değerler eşlenerek karar 

fonksiyonları oluşturulur. 

Bir robot koldaki hedef nokta için gerekli kuvvet ve torklar, hareketin ileri ya da ters 

dinamik olarak ifade edilen dinamik denklemleri kullanılarak tanımlanır. İleri 

dinamik; uç işlevcinin ivmesinin eklemin konumu, hızı ve kuvvet/torklarına göre  

bulunmasıdır. Robot kolun gerçek zamanlı kontrolünde dinamik değerlerinin doğru bir 

şekilde hesaplanmada önemli bir noktadır. 
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Kontrol yöntemini belirleyici olmasının en büyük nedeni sistem belirsizlikleridir. 

Sistem belirsizliklerini gidermek için kullanılan lineer kontrol yöntemlerinin çözüm 

olmadığı durumlarda nonlineer yöntemlere başvurulur. Bu yöntemlerden biri olan 

model referans uyarlamalı kontrolde hedef, bilinmeyen sistem çıkışını referans alınan 

modelin sistem çıkışına yakınsatmaktır. Bu yöntemde referans alınan sistem modeli 

önem kazanmaktadır [5]. Gürbüz uyarlamalı kontrolün uygumaları örnekleri mobil 

robotların yörünge takip problemine çözüm olarak karşımıza çıkmaktadır. 

Uyarlamalı kontrol yapısı kullanılırken referans model olarak yapay sinir ağları ile 

oluşturulan tahmini modelin kullanımı yine mobil robotların kinematik kontrolünde 

karşımıza çıkmaktadır. 

Robot manipülatorleri dışında genel olarak çok-giriş çok-çıkışlı nonlineer sistemlerin 

yörünge takip problemi uyarlama yapısı ile çözülmektedir [8].Bu yapı aynı zamanda 

sistem sınırlamalarını da kontrol problemi içinde çözmektedir. Robot 

manipülatörlerinin doğal sınırları olan çalışma uzayında çözüm sunmak uyarlamalı 

kontrol yapısının bir başka üstünlüğüdür. 

Bununla beraber destek vektör makinelerinin kontrol yöntemi araştırmalarında yaygın 

bir kullanımı bulunmaktadır. Uçuş kontrolü [9, 27] ile tank sistemlerinin 

modellenmesi [10] problemlerinde destek vektör makinesinin model öngörülü 

kontrolörlerde model belirleme için kullanılması örnek bir uygulama alanı olarak 

karşımıza çıkmaktadır. 

Karadeniz bölgesindeki söğüt ağacı türlerini izole etmek için DVM tabanlı vektör 

izdüşüm kontrol modeli kullanılmıştır. [11] Ayrıca, farklı yükler altında kazan 

sistemlerinin gürbüz kontrolünde model tanımlaması için en küçük kareler destek 

vektör makinesi regresyonu kullanılmıştır [12]. En küçük kare DVM, doğrusal 

olmayan kontrol valfi modellemesinde de kullanılmıştır [13]. DVM, iç model 

kontrolör [14] ile sabit mıknatıslı senkron motorları kontrol etmek için kullanılır. 

DVM ile araç elektrik kontrol sistemi modellemesi yeni bir otomotiv kontrol yöntemi 

olarak tanıtılmıştır [15]. 

Kinematik hesaplamalar, yol planlaması ve konum kontrolünü içeren robotik 

problemlerine DVR uygulanarak çeşitli çözümler sunulmuştur. Bu çözümlere bir 

örnek, hareketi oldukça karmaşık ve doğrusal olmayan özelliklere sahip paralel 

robotların kinematik modellemesidir [16]. Yedi veya daha fazla eklemi olan robotların 
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ters kinematik  denklemlerinin analiz yöntemleri yine oldukça karmaşıktır. Ayrıca, 

tekil noktalar bir sorun teşkil eder. Kinematik problemini robotu SVM regresyon ile 

modelleyerek çözmek, doğru ve verimli bir çözüm sağlar [17]. Bu yöntem endüstriyel 

robotlar üzerinde de test edilmiş ve diğer yöntemlere kıyasla faydalı olduğu 

belirlenmiştir [18]. 

Yörünge planlamasındaki temel problem olan çalışma alanında engellerden kaçınma, 

bulanık DVM algoritması ile çözülmüştür [19]. Robotik görüntü işleme 

problemlerinin bazı uygulamalarında DVM kullanılmaktadır. Mobil robotların 

konumlandırılmasında, engel tanıma hatalarını ortadan kaldırmak için uygulanmıştır 

[20]. 

Uyarlamalı PID konusundaki örnekler incelendiğinde bu yöntem öncelikle doğrusal 

sistemlere uygulanmıştır. PID kontrolör parametrelerinin belirlenmesinde en küçük 

kareler DVM yöntemi akıllı bir kontrol yöntemi olarak kullanılmıştır [21]. En küçük 

kareler DVM uyarlamalı kontrolün ayrıca yanma odası enerji optimizasyonu 

probleminde uygulaması bulunmaktadır [22]. 

Genelleştirilmiş bir en küçük kareler DVM uyarlamalı kontrol yapısı [23]’te sunulmuş 

ve ayrıca Ph nötralizasyon işleminde uygulanmıştır. Burada kullanılan yöntem çok 

çözünürlüklü dalgacık en küçük destek vektör makinası ağı olarak adlandırılmıştır. 

Önerilen ağ yapısı model öngörmede kullanılmış ve kontrolör yapısı referans 

yörüngeyi takip etmek üzere tasarlanmıştır.  

Şimdiye kadar bahsedilen destek vektör makinası tabanlı uyarlamalı kontrol yapısının 

yörünge izleme problemleri üzerine uygulamaları da görülmektedir. Modeli 

bilinmeyen bir nonlineer sistem için klasik yapay sinir ağı ile birlikte takip kontrolü 

için kullanılmıştır [24]. Bunun yanında bulanık mantık yapısının destek vektör 

makinası ile birlikte kullanımı altı eksenli paralel robot yörünge takip kontrolünde 

kullanılmıştır [25]. Ayrıca iki eksenli bir robot manipülatörü yörünge takip problemi 

için geri adım kontrolü adı verilen yöntemle en küçük kareler destek vektör makinası 

yardımıyla çevrimdışı olarak tahmin edilen parametrelerle bir uyarlama mekanizması 

kurulmuştur [26]. 

Literatürde bulunan çalışmalarda yörünge takip problemine tek başına destek vektör 

makinası veya uyarlama mekanizması kullanılarak çözüm aranmıştır. Her iki 

yöntemin eksik yönleri ve açıkları bulunmaktadır. 
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Analitik yöntemle oluşturulan dinamik modeli baz alarak oluşturulan bir uyarlamalı 

kontrol yapısı, teorik modelin eksikleri ve hatalarını da uyarlama mekanizmasına 

taşımaktadır. Bu iki çözümün beraber kullanılarak önerilen yapı karşılaşılan 

eksiklikleri gidermektedir. Bozucu bastırmada uyarlama mekanizması başarılı 

olurken, baz alınan dinamik model destek vektör regresyonu ile tahmin edilerek 

modelleme hatalarının önüne geçilmiştir. Hassas konumlandırmada önemi artan 

modelleme hataları, robot kolun çalışma uzayı gerekli hassasiyette taranıp eğitim 

verisine eklenerek minimize edilebilir. 

Uyarlamalı yapının bir başka avantajı da; denetleyici parametreleri öğrenilen sistem 

modeline göre güncellendiği için manipülatöre dışardan uygulanan herhangi bir etkiye 

karşı kontrol yapısı hızlı cevap verebilmektedir. Uygulama alanına bağlı olarak 

özellikle ani ya da zamanla değişen yük profillerinin oluşturduğu etki;  kısa sürede 

kompanze edilerek yörünge takip performansı korunmaktadır.  

Tezde, giriş bölümünde tezin çözüm sunduğu problem tanıtılarak literatürdeki mevcut 

çözümler incelenmiştir. İkinci bölümde ise, robot kol dinamik modellemesinde 

kullanılan destek vektör makinası regresyonu yöntemi sınıflandırma özelliğini de 

içerecek şekilde açıklanmıştr. Üçüncü bölümde, dört eksenli robot kol dinamik modeli 

DVR yöntemi ile çıkarılmış ve oluşturulan modelin test verilerine yer verilmiştir. 

Dördüncü bölümde, öngörülen modele dayanan DVM tabanlı uyarlamalı PID kontrol 

yöntemi anlatılmıştır. Beşinci bölümde, önerilen denetleyicinin performansı çeşitli 

senaryolar üzerinde incelenmiştir. Altıncı bölümde ise, tezde ortaya konulan DVM 

tabanlı uyarlamalı PID kontrolcünün faydaları doğrultusunda kullanım alanları ve 

gelecek çalışmalar tartışılmıştır. 
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2.  DESTEK VEKTÖR MAKİNELERİ REGRESYONU 

Bu bölümde; önerilen kontrol yapısında robot kol modellemede kullanılacak olan 

destek vektör makineleri regresyonu, yaygın kullanım alanı olan sınıflandırma 

problemi örneğinden yola çıkılarak tanıtılmıştır. 

2.1. Destek Vektör Makinası Sınıflandırması 

2.1.1 Doğrusal ayrılabilen veriler 

D eğitim verilerini temsil etmektedir. 

𝐷 = {(𝑥1 , 𝑦1),……… . , (𝑥𝑙 , 𝑦𝑙)}  𝑦 𝜖 (−1,1)    𝑙 ∶ ö𝑟𝑛𝑒𝑘 𝑠𝑎𝑦𝚤𝑠𝚤         (2.1) 

DVM sınıflandırmasındaki amaç en iyi sınıflandırıcı düzlemi elde etmektir. Denklem 

2.2 ve Şekil 2.1 de eğitim verilerini doğrusal olarak ayırabilecek optimum hiperdüzlem 

görülmektedir. 

< 𝑤, 𝑥 >  +𝑏 = 0 <>: 𝑛𝑜𝑘𝑡𝑎 ç𝑎𝑟𝑝𝚤𝑚  

𝑤 ∶ 𝑎ğ𝚤𝑟𝑙𝚤𝑘 𝑣𝑒𝑘𝑡ö𝑟ü    𝑏: 𝑏𝑖𝑎𝑠           
(2.2) 

 

 

Şekil 2.1 : Optimal hiperdüzlem. 
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En yakın eğitim verisine olan uzaklığı maksimum olan optimal hiperdüzlem Denklem 

2.3 deki eşitsizlikleri sağlamalıdır. 

< 𝑤 , 𝑥̂𝑖 > +𝑏 ≥ 1     𝑦^𝑖 = 1 < 𝑤 , 𝑥̂𝑖 > +𝑏 ≤ −1    𝑦̂𝑖 = −1  (2.3) 

Optimizasyon probleminin kısıtı bu iki eşitsizlik tek bir eşitsizlikte birleştirilerek 

oluşturulur. 

𝑦̂𝑖 . [ < 𝑤 , 𝑥̂𝑖 > +𝑏 ] ≥ 1       𝑖 = 1,…… , 𝑙 (2.4) 

Ağırlık vektörü ve bias teriminin optimum değerini bulmak problemin temel amacıdır. 

Şekil 2.2 de görüldüğü gibi bir vektörün optimal hiperdüzleme olan uzaklığına marjin 

denir. 

𝑑(𝑤, 𝑏 ∶ 𝑥) = | < 𝑤, 𝑥̂𝑖 > +𝑏|/‖𝑤‖  
(2.5) 

       

 

Şekil 2.2 : Destek vektörleri. 

𝑝(𝑤, 𝑏) = min
𝑥𝑖,𝑦𝑖=−1

𝑑(𝑤, 𝑏 ∶ 𝑥𝑖) + min
𝑥𝑖,𝑦𝑖=1

𝑑(𝑤, 𝑏 ∶ 𝑥𝑖)   ∶ 𝑥̂𝑖

> )𝑝(𝑤, 𝑏) =   2/‖𝑤‖   
(2.6) 

 

Sınıflama hatasının minimum değerini alması için marjin maksimize edilmelidir. Bu 

durum ağırlık vektörü normu minimizasyonu ile sağlanır [27]. 

Φ(𝑤) =  
1

2
  ‖𝑤‖2  (2.7) 
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2.1.1.1 Lagrange çarpanları yöntemi 

Denklem 2.8 de belirtildiği üzere birincil minimizasyon problemi, Lagrange 

fonksiyonu ile oluşturulur. 

Amaç fonksiyonu: Φ(w) =  
1

2
  ‖w‖2 

Kısıt ∶  yi. [ < w , xi > +b ] ≥ 1       i = 1, …… , l  

Lagrange Fonksiyonu: 

 Φ(𝑤, 𝑏, 𝛼) =  
1

2
 ‖𝑤‖2 − ∑𝛼𝑖[𝑦

𝑖 . [ 𝑤, 𝑥𝑖] + 𝑏 ] − 1

𝑙

𝑖=1

  

(2.8) 

 

Eyer noktasında ağırlık vektörü ve bias terimi minimumda, lagrange çarpanları 

maksimumdadır. Eyer noktası, bu problemde sınıflandırma hatasını minimize eden 

noktadır. 

max
𝛼

𝑊(𝛼) = max
𝛼

( min
𝑤,𝑏

Φ(𝑤, 𝑏, 𝛼))  
(2.9) 

Optimizasyon problemi Karush-Kuhn-Tucker (KKT) koşulları yardımıyla çözülür ve 

bu koşullar Denklem 2.10 da görülen türev değerlerinden oluşur. 

𝜕 Φ

𝜕𝑏
= 0           →          ∑𝛼𝑖  𝑦𝑖 = 0

𝑙

𝑖=1

 

𝜕 Φ

𝜕𝑤
= 0           →        𝑤 =   ∑𝛼𝑖 𝑦𝑖  𝑥𝑖

𝑙

𝑖=1

  

(2.10) 

Problemin son hali amaç fonksiyonu ve kısıtları birleştiren Lagrange fonksiyonu 

oluşturularak elde edilir. 

Φ(𝑤, 𝑏, 𝛼) =  
1

2
 ‖𝑤‖2

− ∑𝛼𝑖[𝑦
𝑖. [ 𝑤, 𝑥𝑖] ] − 𝑏.∑𝛼𝑖[𝑦

𝑖]

𝑙

𝑖=1

+ ∑𝛼𝑖

𝑙

𝑖=1

𝑙

𝑖=1

  
(2.11) 
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‖𝑤‖2 = ∑∑𝛼𝑖 𝛼𝑗  𝑦𝑖 𝑦𝑗 < 𝑥𝑖 , 𝑥𝑗 > 

𝑙

𝑗=1

𝑙

𝑖=1

  (2.12) 

 

𝑌𝑒𝑛𝑖 𝑎𝑚𝑎ç 𝑓𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢:  

 𝑄(𝛼) =  ∑𝛼𝑖

𝑙

𝑖=1

− 
1

2
 ∑∑𝛼𝑖  𝛼𝑗  𝑦𝑖 𝑦𝑗 < 𝑥𝑖, 𝑥𝑗 > 

𝑙

𝑗=1

𝑙

𝑖=1

 

𝐾𝚤𝑠𝚤𝑡𝑙𝑎𝑟:  ∑𝛼𝑖 𝑦𝑖 = 0

𝑙

𝑖=1

   𝛼𝑖  ≥ 0   

(2.13) 

Optimum α  değerleri optimal hiperdüzlemi belirler. Destek vektörlerlerini, lagrange 

çarpanları sıfır olmayan eğitim verileri oluşturur. Denklem 2.14 de optimal 

hiperdüzlem, destek vektörler ve Lagrange çarpanları olarak ifade edilmiştir. 

𝑓(𝑥) =   ∑𝛼𝑖 𝑦𝑖  <  𝑥𝑖, 𝑥 > +𝑏

𝑙

𝑖=1

  (2.14) 

Ağırlık vektörü ve bias terimi hesaplamaları destek vektörleri cinsinden Denklem 2.15 

de gösterilmiştir. 

𝑤∗ = ∑𝛼𝑖 𝑦𝑖 𝑥𝑖

𝑙

𝑖=1

  

𝑏∗ = 
−1

2
 <  𝑤∗, 𝑥𝑟 + 𝑥𝑠 >      𝑦𝑟 = −1 , 𝑦𝑠 = 1  

< 𝑥𝑟 , 𝑦𝑟 >,< 𝑥𝑠, 𝑦𝑠 >∶  𝑑𝑒𝑠𝑡𝑒𝑘 𝑣𝑒𝑘𝑡ö𝑟𝑙𝑒𝑟𝑖   

(2.15) 

 

Karar fonksiyonu Denklem 2.16 daki gibi oluşturulur. Oluşturulan fonksiyonun 

signum değeri alınarak verinin hangi sınıfta olduğuna karar verilir. 

𝑓(𝑥) = 𝑠𝑔𝑛(<  𝑤∗ , 𝑥 >  +𝑏)  (2.16) 



9 

 

 

Alternatif bir fonksiyon olarak , Denklem 2.17 deki gibi gerçek değerleri veren 

fonksiyon kullanılır [28].  ℎ(𝑧)  fonksiyonu birden fazla sınıfı içerdiği için uygulamada 

pratiktir. 

𝑓(𝑥) = ℎ (<  𝑤∗ , 𝑥 >  +𝑏) 

ℎ(𝑧) = {
−1                     𝑧 < −1
𝑧             − 1 < 𝑧 < 1
1                           𝑧 > 1

  
(2.17) 

 

2.1.2 Doğrusal olmayan sınıflandırma 

Veri kümesi Şekil 2.3 deki gibi doğrusal olarak fakat ek bir hata ile ayrıldığında, bu 

hatayı minimize etmek amacıyla ikinci bir fonksiyon eklenir [29]. 

 

Şekil 2.3 : Sınıflandırma verisi. 

𝜉 𝑖 ≥ 0  ∶ 𝑠𝚤𝑛𝚤𝑓𝑙𝑎𝑛𝑑𝚤𝑟𝑚𝑎 ℎ𝑎𝑡𝑎𝑠𝚤 

0 ≤ 𝜉 ≤ 1   𝑑𝑢𝑟𝑢𝑚𝑢 𝑣𝑒𝑟𝑖𝑛𝑖𝑛 𝑑𝑜ğ𝑟𝑢 𝑠𝚤𝑛𝚤𝑓𝑡𝑎 𝑜𝑙𝑑𝑢ğ𝑢𝑛𝑢 𝑔ö𝑠𝑡𝑒𝑟𝑖𝑟. 

𝜉 > 1   𝑑𝑢𝑟𝑢𝑚𝑢 𝑣𝑒𝑟𝑖𝑛𝑖𝑛 𝑦𝑎𝑛𝑙𝚤ş 𝑠𝚤𝑛𝚤𝑓𝑡𝑎 𝑜𝑙𝑑𝑢ğ𝑢𝑛𝑢 𝑔ö𝑠𝑡𝑒𝑟𝑖𝑟.  

(2.18) 

Doğrusal problemdeki kısıtlar yeni durumda da kullanılabilir. Doğrusallık hatası 

dışında problem aynıdır. 

 

< 𝑤 , 𝑥𝑖 > +𝑏 ≥ 1 − 𝜉𝑖    𝑦
𝑖 = 1 

< 𝑤 , 𝑥𝑖 > +𝑏 ≤ −1 + 𝜉𝑖    𝑦
𝑖 = −1 

(2.19) 
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𝑦𝑖 . [ < 𝑤 , 𝑥𝑖 > +𝑏 ] ≥ 1 − 𝜉𝑖  

𝐴𝑚𝑎ç 𝑓𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢: Φ(𝑤, 𝜉) =  
1

2
  ‖𝑤‖2 + 𝐶 ∑𝜉𝑖

𝑙

𝑖=1

  

Dual problem Lagrange fonksiyonu ile oluşturulur. Amaç fonksiyonuna destek 

vektörleri doğrusal olmayan bir fonksiyon ile eklenir. 

 

Φ(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) = 

 
1

2
  ‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1

− ∑𝛼𝑖[𝑦
𝑖. [ 𝑤, 𝑥𝑖] + 𝑏 ] − 1

𝑙

𝑖=1

+ 𝜉𝑖] − ∑ 𝛽𝑖𝜉𝑖

𝑙

𝑖=1

 

𝐷𝑢𝑎𝑙 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 ∶  max
𝛼

𝑊(𝛼, 𝛽) =  max
𝛼,𝛽

( min
𝑤,𝑏,𝜉

Φ(𝑤, 𝑏, 𝜉, 𝛼, 𝛽)) 

𝜕 Φ

𝜕𝑏
= 0           →          ∑𝛼𝑖  𝑦𝑖 = 0

𝑙

𝑖=1

 

𝜕 Φ

𝜕𝑤
= 0           →        𝑤 =   ∑𝛼𝑖 𝑦𝑖  𝑥𝑖

𝑙

𝑖=1

 

𝜕 Φ

𝜕𝜉
= 0        →            𝛼𝑖 + 𝛽𝑖 = 𝐶  

(2.20) 

Dual probleme lagrange fonksiyonunda kısıtlar eklendiğinde Denklen 2.21 deki gibi 

oluşturulur. Problem yine sınıflandırma olduğundan kısıtlar aynıdır. 

𝑄(𝛼) =  ∑𝛼𝑖

𝑙

𝑖=1

− 
1

2
 ∑∑𝛼𝑖  𝛼𝑗  𝑦𝑖 𝑦𝑗 < 𝑥𝑖, 𝑥𝑗 > 

𝑙

𝑗=1

𝑙

𝑖=1

 

𝐾𝚤𝑠𝚤𝑡𝑙𝑎𝑟: ∑𝛼𝑖 𝑦𝑖 = 0

𝑙

𝑖=1

  

(2.21) 

Kısıtlarda görünen ve ayrıca tanımlanan 𝐶 parametresi,  lagrange çarpanlarının 

muhtemel değerleri için üst sınırdır. Destek vektörlerinin optimal hiperdüzlemde 

bulunması, 𝐶 paramatresinin Lagrange çarpanları ile aynı değerde olması ile 

mümkündür. 𝐶 değeri ne kadar büyük olursa, test hatası o kadar yüksek olur. Bu değer, 

problemin kapasitesini belirlemek için başka bir kontrol ekler. 
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𝑤∗ = ∑𝛼𝑖 𝑦𝑖 𝑥𝑖

𝑙

𝑖=1

 

𝑏∗ = 
−1

2
 <  𝑤∗, 𝑥𝑟 + 𝑥𝑠 >      𝑦𝑟 = −1 , 𝑦𝑠 = 1 <  𝑥𝑟 , 𝑦𝑟 >,

<  𝑥𝑠, 𝑦𝑠 >∶  destek vektörleri    

(2.22) 

Karar fonksiyonu Denklem 2.23 deki gibi oluşturulur. 

𝑓(𝑥) = 𝑠𝑔𝑛(<  𝑤∗ , 𝑥 >  +𝑏)  (2.23) 

 

2.1.3 Doğrusal olmayan destek vektör makineleri 

Doğrusal olmayan destek vektör makineleri, veri kümesinin doğrusal bir fonksiyon 

tarafından doğrudan veya bazı hatalarla bölünemediği durumlarda kullanılan 

algoritmalardır. Gerçek hayat problemlerinin doğrusal olmayan yönleri olduğundan, 

Şekil 2.4 teki bir veri setini doğrusal hiperdüzlem ile ayrıştırmak çoğu zaman mümkün 

değildir. Bu nedenle sınıflandırma problemi ayırma eğrisi dikkate alınarak çözülebilir. 

Ancak pratikte eğriyi tahmin etmek çok zordur. 

  

Şekil 2.4 : Doğrusal olmayan hiperdüzlem. 

Bu durumda, veriler girdi uzayından doğrusal olmayan bir harita (φ) aracılığıyla 

doğrusal sınıflandırmaya izin veren daha yüksek boyutlu bir özellik uzayına 

dönüştürülür. Doğrusal sınıflandırma formülasyonlarının yardımıyla bu yeni özellik, 

veri setini sınıflandırabilen en iyi hiper düzlemi araştırır. 
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φ(x) geçiş fonksiyonu ile hiperdüzlem bir üst uzaya çıkarılır. 

Optimal hiperdüzlem ∶ ∑𝑤𝑖  𝜑𝑖 (𝑥) + 𝑏 = 0 

𝑙

𝑖=1

 

𝑤 = ∑𝛼𝑖  𝑑𝑖 𝜑𝑖 (𝑥)  

𝑙

𝑖=1

     ∑𝛼𝑖  𝑑𝑖 𝜑𝑖 
𝑇(𝑥) 𝜑𝑖 (𝑥)  + 𝑏 = 0 

𝑙

𝑖=1

 

 

(2.24) 

Haritalama fonksiyonunun özelliği açık değildir ve çözümü bilinse bile üst 

boyutlardaki bir uzayda kompleks hale gelir. Çekirdek fonksiyonları bu karmaşıklığı 

gidermek için sunulmuştur. Bu fonksiyon polinom, radyal veya sigmoid forma dayalı 

olabilir [22]. 

Çekirdek fonksiyonu: 𝐾(𝑥, 𝑥𝑖) =  𝜑 
𝑇(𝑥) 𝜑(𝑥𝑖)  (2.25) 

Çekirdek fonksiyonu simetriktir. Bu yüzden fonksiyon giriş değerleri Denklem 2.26 

daki gibi düzenlenebilir. 

𝐾(𝑥, 𝑥𝑖) = 𝐾( 𝑥𝑖 , 𝑥)  

Optimal hiperdüzlem ∶    ∑𝛼𝑖  𝑑𝑖 𝐾(𝑥, 𝑥𝑖)  = 0 

𝑙

𝑖=1

 
(2.26) 

Çekirdek fonksiyonu ile dual problem Denklem 2.27 deki gibi oluşturulur.Doğrusal 

olmayan fonksiyon yerine çekirdek fonksiyonu gelir. 

𝑄(𝛼) =  ∑𝛼𝑖

𝑙

𝑖=1

− 
1

2
 ∑∑𝛼𝑖 𝛼𝑗  𝑦𝑖 𝑦𝑗 𝐾(𝑥𝑖 , 𝑥𝑗)  

𝑙

𝑗=1

𝑙

𝑖=1

  (2.27) 

Dual problemin kısıtları değişmemektedir. 

𝐾𝚤𝑠𝚤𝑡𝑙𝑎𝑟: ∑𝛼𝑖 𝑦𝑖 = 0

𝑙

𝑖=1

           0 ≤ 𝛼𝑖  ≤ 𝐶  (2.28) 
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< 𝑤∗ 𝑥 >=  ∑𝛼𝑖 𝑦𝑖  𝐾(𝑥, 𝑥𝑖)

𝑙

𝑖=1

 

Sınıflandırma için  karar fonksiyonu çekirdek fonksiyonu ile birlikte Şekil 2.29 daki 

gibi oluşturulur. 

𝑓(𝑥) = 𝑠𝑔𝑛 (∑𝛼𝑖  𝑦𝑖 𝐾(𝑥, 𝑥𝑖)

𝑙

𝑖=1

  + 𝑏) 

 𝑏 =  
−1

2
 ∑𝛼𝑖 𝑦𝑖  [𝐾(𝑥, 𝑥𝑟)

𝑙

𝑖=1

+ 𝐾(𝑥, 𝑥𝑠)]     𝑦𝑟 = −1 , 𝑦𝑠 = 1 

(2.29) 

Karar fonksiyonu; bias terimi de çekirdek fonksiyonuna eklendiğinde Denklem 2.30 

daki hale gelir. 

𝑓(𝑥) = 𝑠𝑔𝑛 (∑𝛼𝑖 𝑦𝑖  𝐾(𝑥, 𝑥𝑖)

𝑙

𝑖=1

  )  (2.30) 

2.2 Destek Vektör Regresyonu 

Destek vektör makinelerinin regresyon problemini çözmesi için kullanılan farklı kayıp 

fonksiyonları Şekil 2.5 te görülmektedir. 

 

Şekil 2.5 : Kayıp fonksiyonları. 
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ϵ-duyarlı kayıp fonksiyonu, DVM yönteminin regresyon ile ilişkilendirilmesine izin 

verir. Kayıp fonksiyon hassasiyet parametresi olmadan uygulandığında tüm veriler  

destek vektörleri şeklinde belirlenir. Bu durumda tüm veriler hesaplamada 

kullanılacağından işlem yükü artar. 

2.2.1  ϵ-Duyarlı kayıp fonksiyonu 

ϵ'ye duyarlı kayıp fonksiyonu, hataların bir ϵ aralığında göz ardı edileceği veri 

kümeleri için uygundur. Mutlak kayıp fonksiyonunun aksine, bu aralıktaki verilerin 

regresyona uygun olduğu ve hata içermediği varsayılır. Böyle bir marjın belirlenmesi, 

kayıp fonksiyonunu ϵ DVM regresyonunda kullanım için mantıklı kılar. 

Kayıp fonksiyonu: 

 𝐿(𝑑, 𝑦) = |𝑑 − 𝑦|   𝑑: 𝑖𝑠𝑡𝑒𝑛𝑒𝑛 𝑑𝑒ğ𝑒𝑟 𝑦: 𝑔𝑒𝑟ç𝑒𝑘 𝑑𝑒ğ𝑒𝑟  

𝜖 − sensitive Kayıp Fonksiyonu ∶  

𝐿𝜖(𝑑, 𝑦) = {
|𝑑 − 𝑦| − 𝜀         | 𝑑 − 𝑦| ≥  𝜖

0                 𝑑𝑖ğ𝑒𝑟
  

(2.31) 

2.2.2 Doğrusal regresyon 

D eğitim verilerini gösterir. 

𝐷 = {(𝑥1 , 𝑦1),……… . , (𝑥𝑙 , 𝑦𝑙)}     𝑙 ∶ ö𝑟𝑛𝑒𝑘 𝑠𝑎𝑦𝚤𝑠𝚤         (2.32) 

Eğitim verileri arasındaki ilişki Denklem 2.33 ve Şekil 2.6 daki optimum doğrusal 

fonksiyon ile ifade edilebilir. Regresyonun amacı bu fonksiyonu tahmin etmektir. 

𝑓(𝑥) =< 𝑤, 𝑥 >  +𝑏 = 0            <>: 𝑛𝑜𝑘𝑡𝑎 ç𝑎𝑟𝑝𝚤𝑚𝚤         
(2.33) 
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Şekil 2.6 : Doğrusal destek vektörleri. 

 

Primer amaç fonksiyonu:Φ(𝑤, 𝜀) =  
1

2
  ‖𝑤‖2 + 𝐶 ∑(𝜀𝑖

− + 𝜀𝑖
+) 

𝑙

𝑖=1

 

𝐾𝚤𝑠𝚤𝑡𝑙𝑎𝑟 ∶ 𝑦𝑖−  < 𝑤 , 𝑥𝑖 > −𝑏 ≤  𝜖 + 𝜀𝑖
+ 𝑦𝑖−  < 𝑤 , 𝑥𝑖 > +𝑏 ≥

𝜖 + 𝜀𝑖
−      𝜀𝑖

−, 𝜀𝑖
+   ≥ 0    

(2.34) 

 

Lagrange çarpanları yöntemi ile oluşturulan Denklem 2.35 deki amaç fonksiyonu ile  

dual problem elde edilir. Amaç fonksiyonuna, sınıflandırma probleminden farklı 

olarak kısıtlar ϵ'ye duyarlı kayıp fonksiyonu ile ifade edilir. 

 

Φ(𝑤, 𝜀, 𝛼+, 𝛼−, 𝜂+, 𝜂−)

=  
1

2
  ‖𝑤‖2 + 𝐶 ∑(𝜀𝑖

− + 𝜀𝑖
+) 

𝑙

𝑖=1

–∑( 𝜂𝑖
+ 𝜀𝑖

+
,
𝜂𝑖

− 𝜀𝑖
−

,

𝑙

𝑖=1

)

−  ∑𝛼𝑖
+

𝑙

𝑖=1

 (𝜖 + 𝜀𝑖
+ − 𝑦𝑖+ < 𝑤 , 𝑥𝑖 > +𝑏)

− ∑𝛼𝑖
−

𝑙

𝑖=1

 (𝜖 + 𝜀𝑖
− − 𝑦𝑖+ < 𝑤 , 𝑥𝑖 > +𝑏           

(2.35) 

Eyer noktası Denklem 2.36 daki koşullar ile belirlenir. Koşullar sınıflandırma ile 

benzerlik gösterir. 
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𝜕 Φ

𝜕𝑏
= 0           →          ∑(𝛼𝑖

+ − 𝛼𝑖
−) = 0

𝑙

𝑖=1

 

𝜕 Φ

𝜕𝑤
= 0           →        𝑤 =   ∑(𝛼𝑖

+ − 𝛼𝑖
−) 𝑥𝑖

𝑙

𝑖=1

 

 
𝜕 Φ

𝜕𝜀
= 0        →            𝛼𝑖 + 𝜂𝑖 = 𝐶         

(2.36) 

Dual problem kısıtlar ile birlikte Denklem 2.37 deki gibi oluşturulur. Kısıtlar 

regresyon hatasını minimize edecek şekilde belirlenir. Bu koşul da sınıflandırma 

probleminde olduğu gibi ağırlık vektörü ve bias terimi minimumda, lagrange 

çarpanları  maksimumda tutacak şekilde belirlenir. 

max
𝛼𝑖

+,𝛼𝑖
−
(𝛼𝑖

+, 𝛼𝑖
−) = max

𝛼𝑖
+,𝛼𝑖

−
−

1

2
 ∑∑(𝛼𝑖

+ − 𝛼𝑖
−) (𝛼𝑗

+ − 𝛼𝑗
−)   <  𝑥𝑖 , 𝑥𝑗

𝑙

𝑗=1

𝑙

𝑖=1

> +  ∑(𝛼𝑖
+ − 𝛼𝑖

−). 𝑦𝑖

𝑙

𝑖=1

   + 𝜀.∑(𝛼𝑖
+ − 𝛼𝑖

−)

𝑙

𝑖=1

 

𝐾𝚤𝑠𝚤𝑡𝑙𝑎𝑟:∑(𝛼𝑖
+ − 𝛼𝑖

−) = 0

𝑙

𝑖=1

            0 ≤ 𝛼𝑖
+, 𝛼𝑖

− ≤ 𝐶  

𝑤∗ = ∑  (𝛼𝑖
+ − 𝛼𝑖

−)𝑥𝑖

𝑙

𝑖=1

    𝑏∗ = 
−1

2
 <  𝑤∗, 𝑥𝑟 + 𝑥𝑠 >  

< 𝑥𝑟 , 𝑦𝑟 >, <  𝑥𝑠 , 𝑦𝑠 > ∶ 𝑑𝑒𝑠𝑡𝑒𝑘 𝑣𝑒𝑘𝑡ö𝑟𝑙𝑒𝑟𝑖 

          

(2.37) 

2.2.3 Doğrusal olmayan regresyon 

Regresyona tabi tutulacak veriler de doğrusal olmayan bir fonksiyon olabilir. Doğrusal 

olmayan haritalama çekirdek fonksiyonu ile gerçekleştirilerek veri seti bir üst uzaya 

haritalanır ve böylece regresyon üst uzayda uygulanır [31]. 

max
𝛼𝑖

+,𝛼𝑖
−
(𝛼𝑖

+, 𝛼𝑖
−) = max

𝛼𝑖
+,𝛼𝑖

−
−

1

2
 ∑ ∑ (𝛼𝑖

+ − 𝛼𝑖
−) (𝛼𝑗

+ −𝑙
𝑗=1

𝑙
𝑖=1

𝛼𝑗
−)  𝐾(𝑥𝑖, 𝑥𝑗) +  ∑ (𝛼𝑖

+ − 𝛼𝑖
−). 𝑦𝑖

𝑙
𝑖=1    + 𝜀. ∑ (𝛼𝑖

+ − 𝛼𝑖
−)𝑙

𝑖=1          
(2.38) 

Doğrusal regresyon ile kısıtlar aynıdır. Çekirdek fonksiyonu kısıtları etkilemez. 
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𝐾𝚤𝑠𝚤𝑡𝑙𝑎𝑟: ∑(𝛼𝑖
+ − 𝛼𝑖

−) = 0   0 ≤ 𝛼𝑖
+, 𝛼𝑖

− ≤ 𝐶

𝑙

𝑖=1

  

< 𝑤∗, 𝑥 > =  ∑  (𝛼𝑖
+ − 𝛼𝑖

−) 𝐾(𝑥, 𝑥𝑖)

𝑙

𝑖=1

 

𝑏∗ = 
−1

2
 ∑  (𝛼𝑖

+ − 𝛼𝑖
−)(𝐾(𝑥𝑖, 𝑥𝑟) + 𝐾(𝑥𝑖 , 𝑥𝑠))

𝑙

𝑖=1

  

𝑅𝑒𝑔𝑟𝑒𝑠𝑦𝑜𝑛 𝑓𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢 ∶  𝑓(𝑥) = ∑ (𝛼𝑖
+ − 𝛼𝑖

−) 𝐾(𝑥, 𝑥𝑖)

𝑙

𝑖=1

 + 𝑏 

              

(2.39) 

Regresyon fonksiyonunun bias terimini içermesi çekirdek fonksiyonuna bağlıdır. 

Çekirdek fonksiyonunun kompleks hale gelmesi , tahmin edilecek sistem modelinin 

karmaşıklığına bağlıdır. 

𝑓(𝑥) = ∑  (𝛼𝑖
+ − 𝛼𝑖

−) 𝐾(𝑥, 𝑥𝑖)
𝑙
𝑖=1         (2.40) 

2.3 En Küçük Kareler Destek Vektör Makinesi 

En küçük kareler DVM yöntemi, doğrusal olmayan veri kümelerinde regresyon 

gerçeklenmesini sağlar. Bu formülasyon kara kutu (black-box) modelleri ve optimal 

kontrol  problemlerine çözüm olarak sunulmuştur [30]. 

2.3.1 En küçük kareler destek vektör sınıflandırması  

En küçük kareler yöntemine göre amaç fonksiyonu Denklem 2.41 deki halini alır. En 

küçük kareler yöntemi ile optimizasyon problemi kolaylaşır. 

Φ(𝑤, 𝑒) =  
1

2
  ‖𝑤‖2 +  𝛾 ∑ 𝑒𝑘

2

𝑙

𝑘=1

  

𝐾𝚤𝑠𝚤𝑡 ∶  𝑦𝑖 . [ < 𝑤 , 𝜑(𝑥𝑖) >  +𝑏 ] ≥ 1 − 𝑒𝑖       𝑖 = 1,…… , 𝑙        

(2.41) 
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Yeni halde optimal hiperdüzlem eşitliği de değişir. Hiperdüzlem denklemine hata 

terimi de eklenir. 

𝑦𝑖. [ < 𝑤 , 𝜑(𝑥𝑖) >  +𝑏 ] = 1 − 𝑒𝑖               (2.42) 

Dual problem en küçük kareler hata terimi ile birlikte Denklem 2.43 deki halini alır. 

Φ(𝑤, 𝑏, 𝑒, 𝛼) =
1

2
  ‖𝑤‖2 +  𝛾 ∑ 𝑒𝑘

2𝑙
𝑘=1  ∑ 𝛼𝑖[𝑦

𝑖. [< 𝑤 , 𝜑(𝑥𝑖) > +𝑏] −𝑙
𝑖=1

1 + 𝑒𝑖          
(2.43) 

Eğer noktası koşulları da optimizasyon problemi değiştiğinden farklılaşır. 

𝜕 Φ

𝜕𝑏
= 0           →          ∑𝛼𝑖  𝑦𝑖 = 0

𝑙

𝑖=1

 

𝜕 Φ

𝜕𝑤
= 0           →          𝑤 =   ∑𝛼𝑖  𝑦𝑖 𝜑(𝑥𝑖)

𝑙

𝑖=1

 

 
𝜕 Φ

𝜕𝜀
= 0        →            𝛼𝑖 =  𝛾 𝑒𝑖 

         

(2.44) 

Problemin son hali Denklem 2.45 teki gibi olur. Denklemde de görüldüğü gibi en 

küçük kareler yöntemi optimizasyon problemini matris formuna indirgeyerek 

kompleks yapıdan uzaklaştırır. 

[0 𝑌𝑇⃗⃗ ⃗⃗  

𝑌 Ω + 𝛾−1 𝐼
] [

𝑏
𝛼
] =  [

0
1
]  

𝛺𝑘𝑙 = 𝑦𝑘 𝑦𝑙 𝜑(𝑥𝑘)
𝑇 𝜑(𝑥𝑙)  =   𝐾(𝑥𝑘, 𝑥𝑙)    𝑘, 𝑙 = 1, …… . , 𝑁            

(2.45) 

2.3.2 En küçük kareler destek vektör regresyonu 

En küçük kareler yöntemi yaklaşımı ile regresyon fonksiyonu da ifade edilebilir. 

Optimal hiperdüzlemin yerini regresyon fonksiyonu alır. 
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[0 𝑌𝑇⃗⃗ ⃗⃗  

𝑌 Ω + 𝛾−1 𝐼
] [

𝑏
𝛼
] =  [

0
𝑦
]  

𝛺𝑘𝑙 = 𝛺𝑘𝑙 =  𝜑(𝑥𝑘)
𝑇 𝜑(𝑥𝑙)   =   𝐾(𝑥𝑘, 𝑥𝑙)    𝑘, 𝑙 = 1, …… . , 𝑁 

𝑓(𝑥) =< 𝑤, 𝜑(𝑥) >  +𝑏 = 0   

𝑓(𝑥) = ∑
 

𝛼𝑖  𝐾(𝑥, 𝑥𝑖)
𝑙
𝑖=1 + 𝑏           

(2.46) 

Amaç fonksiyonuna ağırlıklandırma parametreleri regresyon matrisini robust hale 

getirmek amacıyla  eklenmektedir. Böylece tahmin edilen regresyon fonksiyonun 

kararlı olması sağlanır. 

Φ(𝑤, 𝑒) =  
1

2
  ‖𝑤‖2 +

1

2
 𝛾 ∑  𝑣𝑘𝑒𝑘

2∗𝑙
𝑘=1                (2.47) 

 

Son haliyle optimal regresyon fonksiyonu Denklem 2.48 deki gibi olur. 

𝑦𝑖 = [ < 𝑤∗ , 𝜑(𝑥𝑖) >  +𝑏∗ ] + 𝑒𝑖 
∗   𝑖 = 1,……… , 𝑙                (2.48) 

Ağırlıklandırma katsayısı  𝑣𝑘, hata teriminin (𝑒𝑘)  bir fonksiyonu olarak ele 

alındığında daha robust bir regresyon tahmini yapılmaktadır [32].
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3.  ROBOTİK KOLLAR İÇİN DESTEK VEKTÖR MAKİNASI DİNAMİK 

MODELİ 

Önceki bölümde detayları anlatılan DVR yöntemi kullanılarak, dört eksenli seri bir 

robot kol için öncelikle çalışma uzayı içerisinde eğitim verisi oluşturulmuş, sonrasında 

da bu eğitim verisi ile dinamik model tahmini yapılmıştır. Veri oluşturma ve model 

tahmini Python kullanılarak yapılmıştır. Bu bölümde tahmin edilen dinamik model ve 

test verileri yer almaktadır. 

3.1 Eğitim Verisi Oluşturulması 

DVM regresyonu ile dinamik model oluşturnak için öncelikle manipülatör eklem 

açıları sınır değerleri içinde taranarak, bir çalışma uzayı oluşturulmuştur. Örnek bir 

manipülatör olarak 4 eksenli hafif yapılı robot kol  kullanılmıştır. Toplam ağırlığı 1.2 

kg’dır. Eklem açılarına karşılık tork değerleri Euler-Lagrange yöntemi ile 

hesaplanmıştır. Bu yöntem denge prensibine dayanarak belirli eklem açı, hız ve ivme 

değerlerine karşılık gelen tork değerlerini bulmak için eklemlerin potansiyel ve kinetik 

enerjilerini kullanır [33]. 

 

Dinamik denklemler oluşturulurken Euler-Lagrange metodu uygulanmıştır. Euler-

Lagrange yöntemi enerji dengesi prensibine dayanır. Belirli eklem açıları, hızları ve 

ivmelerine karşılık elde edilen tork değerini bulmak için, eklemlerin potansiyel ve 

kinetik enerjileri kullanılır. 

Bir eklem için Lagrangian terimi: 

 𝐿 = 𝐾 − 𝑃             (3.1) 

Buna karşılık gelen Euler-Lagrange denklemi: 

𝜏 =
𝑑

𝑑𝑡
[
𝑑𝐿

𝑑𝑞̇
 ] −

𝑑𝐿

𝑑𝑞
  𝑞: 𝑒𝑘𝑙𝑒𝑚 𝑘𝑜𝑛𝑢𝑚𝑢   𝑞̇ ∶ 𝑒𝑘𝑙𝑒𝑚 ℎ𝚤𝑧𝚤 

           

(3.2) 
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Eklem kinetik enerjisi eklem konum ve hızına, potansiyel enerji ise sadece eklem 

konumuna bağlıdır. Denklemde L terimi yerine konulduğunda: 

𝐾𝑖𝑛𝑒𝑡𝑖𝑘 𝑒𝑛𝑒𝑟𝑗𝑖: 𝐾(𝑞, (𝑞))̇    𝑃𝑜𝑡𝑎𝑛𝑠𝑖𝑦𝑒𝑙 𝐸𝑛𝑒𝑟𝑗𝑖: 𝑃(𝑞) 

 𝜏 =
𝑑

𝑑𝑡
[
𝑑𝐾(𝑞, 𝑞)̇  

𝑑𝑞̇
− 

𝑑𝑃(𝑞) 

𝑑𝑞̇
] − (

𝑑𝐾(𝑞, 𝑞)̇  

𝑑𝑞
− 

𝑑𝑃(𝑞) 

𝑑𝑞
) 

𝜏 =
𝑑

𝑑𝑡
[
𝑑𝐾(𝑞, 𝑞)̇  

𝑑𝑞̇
] −

𝑑𝐾(𝑞, 𝑞)̇  

𝑑𝑞
+ 

𝑑𝑃(𝑞) 

𝑑𝑞
 

          

(3.3) 

Burada ilk terim ivme, ikinci terim coriolis (yan kuvvet) , üçüncü terim ise yer çekimi 

etkisini ifade etmektedir.  

 

Çizgisel ve rotasyonel hızdan dolayı oluşan kinetik enerji: 

 𝐾 =
1

2
  𝑚 𝑣𝑇 𝑣 + 

1

2
 𝜔𝑡 𝐼 𝜔   I ∶  eylemsizlik tensörü        (3.4) 

 

Kinetik enerjinin 4 serbestlik derecesi için yazılmasında Jacobian matrisi kullanılır. 

𝐾(𝜃, 𝜃̇) = 𝜃̇𝑇 (
1

2
  𝑚 𝐽𝑉(𝜃)𝑇 𝐽𝑣(𝜃)

+ 
1

2
 𝐽𝑤(𝜃)𝑇𝑅(𝜃)𝐼 𝑅(𝜃)𝑇  𝐽𝑤(𝜃)) 𝜃̇ 

𝐽𝑣 ∶ Ç𝑖𝑧𝑔𝑖𝑠𝑒𝑙 ℎ𝚤𝑧𝑙𝑎𝑟 𝑖ç𝑖𝑛 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑠𝑖  

     𝐽𝑤 ∶ 𝑅𝑜𝑡𝑎𝑠𝑦𝑜𝑛𝑒𝑙 ℎ𝚤𝑧𝑙𝑎𝑟 𝑖ç𝑖𝑛 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 𝑚𝑎𝑡𝑟𝑖𝑠𝑖 

𝐼 ∶  𝐸𝑦𝑙𝑒𝑚𝑠𝑖𝑧𝑙𝑖𝑘 𝑡𝑒𝑛𝑠ö𝑟ü  𝑅 ∶ 𝑅𝑜𝑡𝑎𝑠𝑦𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑠𝑖         

(3.5) 

 

Jacobian matrisi, her bir eklem için ayrı olarak eklemin kütle merkezine göre 

hesaplanır. 

Potansiyel enerji denklemi eklem konumuna bağlı olarak yazılır. 

𝑃 = 𝑚. 𝑔. ℎ(𝜃)′        (3.6) 

Euler-Lagrange denkleminde enerji ifadeleri yerine konulduğunda Denklem 3.7 elde 

edlilir. 
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 𝜏 = 𝐷(𝜃). 𝜃̈ + 𝐶(𝜃, 𝜃).̇  𝜃̇ + 𝐺(𝜃)        (3.7) 

 

Denklemde kullanılan matrisler: 

𝐷(𝜃) =
1

2
  𝑚 𝐽𝑉(𝜃)𝑇 𝐽𝑣(𝜃) + 

1

2
 𝐽𝑤(𝜃)𝑇𝑅(𝜃)𝐼 𝑅(𝜃)𝑇  𝐽𝑤(𝜃)        (3.8) 

Eklemler silindir olarak düşünüldüğünde her eklem için eylemsizlik tensörü I 

aşağıdaki gibi elde edilir. 

𝐼 =  

[
 
 
 (

𝑚

12
 ) ∗ (𝑙ℎ

2 + 𝑙2) 0 0

0 (
𝑚

12
 ) ∗ (𝑙ℎ

2 + 𝑙𝑤
2) 0

0 0 (
𝑚

12
 ) ∗ (𝑙2 + 𝑙𝑤

2) ]
 
 
 

        (3.9) 

 

Rotasyon matrisi ilk eklem için: 

 

𝑅 = [
 𝑐𝑜𝑠(𝜃) 0 𝑠𝑖𝑛(𝜃) 
𝑠𝑖𝑛(𝜃) 0 − 𝑐𝑜𝑠(𝜃) 

0 1 0

] (3.10) 

      

Diğer eklemler için: 

𝑅 = [
 𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

] (3.11) 

   

𝐶(𝜃, 𝜃).̇   Coriolis terimi   𝑀(𝜃) matrisinden yola çıkılarak hesaplanmaktadır. 

 

𝑐𝑖𝑗𝑘 =
1

2
 ( 

𝑑 𝐷𝑘𝑗

𝑑 𝜃𝑖
+

𝑑 𝐷𝑘𝑖

𝑑 𝜃𝑗
−

𝑑 𝐷𝑖𝑗

𝑑 𝜃𝑘
)   𝑐𝑘𝑗 = ∑𝑐𝑖𝑗𝑘  𝑞̇𝑖

𝑛

𝑖=1

 

        

(3.12) 

 

𝐺(𝜃) yerçekimi terimi potansiyel enerjinin değişimini ifade eder. 

 

𝐺(𝜃) =
𝑑𝑃(𝜃) 

𝑑𝜃
=

𝑑(𝑚.𝑔.ℎ(𝜃)′) 

𝑑𝜃
        (3.13) 
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Model oluşturulurken uygulama örneği olarak kullanılan uArm Swift Pro robot kol 

Şekil 3.1 de görülmektedir.  

 

Şekil 3.1 : uArm Swift Pro robot kol [34]. 

Benzetimlerde kullanılan robot kol ölçüleri gerçek değerler ile uyumludur. 

Manipülatöre ait Denavit-Hartenbeg parametreleri Çizelge 3.1 deki gibi belirlenmiştir 

[35]. 

Çizelge 3.1 : Denavit-Hartenberg parametreleri. 

 

Dört eklem açısının sınır değerleri Denklem 3.14 teki gibidir. 

−90 ° <  𝜃1 < 90 ° 

0 °   <  𝜃2 < 145 ° 

0 °   <  𝜃3 < 120 ° 

0 °   <  𝜃4 < 150         

(3.14) 

Eklem ai αi di θi 

1 0.0132 m 0 0 θ1 

2 0.142 m 0 0 θ2 

3 0.159 m 0 0 θ3 

4 0 4.71 rad 0.107m θ4 
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Bu sınır açı değerleri taranarak dinamik model ile beraber eğitim verisi olarak 

kullanılmak üzere Şekil 3.2 de gösterilen çalışma uzayı oluşturulmuştur. 

 

Şekil 3.2 : Robot çalışma uzayı – pozisyon (m). 

3.2 Destek Vektör Makinası Modelinin Eğitilmesi  

Destek vektör makinası modeli eğitilirken her eklem için ayrı bir model 

oluşturulmuştur. Bu modellerde giriş değeri eklem açı değerleri, çıkış değeri de ilgili 

eklemin tork değeri olacak şekilde seçilmiştir. 

Çalışma uzayındaki veriler kullanılırken; verilerin %66’sı eğitimde kullanılıp, %33’ü 

test verisi olarak ayrılmıştır. Model başarım oranları test verisi üzerinden denenmiştir. 

Şekil 3.3,3.4,3.5 ve 3.6 da bulunan tahmin ve test verisi grafiklerine ortalama karesel 

hata ve modelin kararlığını ölçen  𝑟2 parametresi eklenmiştir. Hata değerlerinin kabul 

edilebilir düzeyde ve kararlılık faktörünün 1’e yakın olduğu görülmüştür. 
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Şekil 3.3 : DVR model test verisi- eklem açısı 1. 

 

 

Şekil 3.4 : DVR model test verisi- eklem açısı 2. 
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Şekil 3.5 : DVR model test verisi- eklem açısı 3. 

 

 

Şekil 3.6 : DVR model test verisi- eklem açısı 4. 
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Her bir eklem için oluşturulan destek vektör makinası modelinde C çekirdek 

fonksiyonu yarıçapı, epsilon maksimum sınıflandırma hatası değeri ve gama öğrenme 

katsayısı parametreleri farklı değerler içinde çizgi arama metodu ile taranarak; model 

tahminlerdeki ortalama karesel hatayı minimize edecek şekilde optimum değerler 

seçilmiştir [36]. Tarama aralıkları ve optimum değerler aşağıdaki gibidir. 

100 <  𝐶 < 1000 ∶  100 

0,001 <  𝑒𝑝𝑠𝑖𝑙𝑜𝑛 < 0,01 ∶ 0,001 

0,1 <  𝑔𝑎𝑚𝑎 <  1 ∶ 0,001 

𝐸𝑘𝑙𝑒𝑚 1:  𝐶 = 700, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0,009, 𝑔𝑎𝑚𝑎 = 0,28 

𝐸𝑘𝑙𝑒𝑚 2:  𝐶 = 900, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0,009, 𝑔𝑎𝑚𝑎 = 0,28 

𝐸𝑘𝑙𝑒𝑚 3:  𝐶 = 900, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0,009, 𝑔𝑎𝑚𝑎 = 0,54 

𝐸𝑘𝑙𝑒𝑚 4:  𝐶 = 900, 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 = 0,009, 𝑔𝑎𝑚𝑎 = 0,98        

(3.15) 
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4.  DVM TABANLI UYARLAMALI MODEL ÖNGÖRÜLÜ KONTROLÖR 

TASARIMI 

DVM modeli tabanlı kontrolör tasarımında, doğrusal olmayan destek vektör 

regresyonu ile üçüncü bölümde tahmin edilen sistem dinamik modeli kontrolör 

parametrelerinin uyarlanması için kullanılmaktadır. 

Denklemlerde 𝑦(𝑛) sistemin çıkışı, 𝑢(𝑛) kontrol işareti, 𝑟(𝑛) referans işareti, 

𝑒(𝑛) izleme hatası, , 𝑒̌(𝑛) modelleme hatasıdır. Modelleme ve referans izleme hataları 

Denklem 4.1 de belirtilmiştir [37]. 

𝑒(𝑛) = 𝑟(𝑛) − 𝑦(𝑛), 𝑒̌(𝑛) = 𝑦(𝑛) − 𝑦̌(𝑛)              (4.1) 

Uyarlamalı PID kontrolör yapısı  üç ayrı bölümden oluşur. Bu bölümler DVR dinamik 

modeli, PID kontolör ve PID kontrolör parametre uyarlayıcısıdır. Şekil 4.1 de 

denetleyici yapısı görülmektedir. 

 

Şekil 4.1 : Destek vektör regresyonu tabanlı model kestirimli uyarlama mekanizması 

[10]. 

PID kontrolörde [38, 39, 40], 𝐾𝑝 , 𝐾𝑑 𝑣𝑒 𝐾𝑖 sistemin davranışına bağlı olarak 

uyarlanması gereken kontrolör parametrelerdir. 

𝑢𝑛+1 = 𝑢𝑛 + 𝐾𝑝 ( 𝑒𝑛 − 𝑒𝑛−1) + 𝐾𝑖  𝑒𝑛 + 𝐾𝑑  ( 𝑒𝑛 − 2 𝑒𝑛−1 + 𝑒𝑛−2 ) (4.2) 
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PID kontrolörün girişleri aşağıdaki gibi tanımlanabilir. 

𝑥𝑐(1) = 𝑒(𝑛) − 𝑒(𝑛 − 1), 𝑥𝑐(2) = 𝑒(𝑛), 𝑥𝑐(3) = ( 𝑒𝑛 − 2 𝑒𝑛−1 + 𝑒𝑛−2 ) (4.3) 

Kontrolör parametreleri başlangıç anında optimal değerlerde değildir ve optimizasyon 

teorisi kullanılarak uygun bir şekilde uyarlama mekanizması kullanılmaktadır. DVM 

modeli çıkışı ile sistem çıkışı arasındaki hata; parametre uyarlama mekanizmasına 

girişi oluşturur. Kestirilen DVM modelin uyarlama yapısındaki yeri Şekil 4.2 de 

görülmektedir. 

 

Şekil 4.2 : En küçük kareler destek vektör makinası tabanlı uyarlamalı PID yapısı [23]. 

Gradyan iniş metodu kontrol parametrelerini optimal değerlere uyarlamak için 

kullanılır. 

𝐽(𝑛) =
[𝑟(𝑛) − 𝑦(𝑛)]2

2
=  

1

2
 𝑒2(𝑛) (4.4) 

Kontrolör parametrelerini optimize etmek için Denklem 4.5 teki kurallar uygulanır. 

∆𝐾𝑝(𝑛) = −𝜂(𝑛) 
𝜕𝐽(𝑛)

𝜕𝑒(𝑛)

𝜕𝑒(𝑛)

𝜕𝑦(𝑛)

𝜕𝑦(𝑛)

𝜕𝑢(𝑛)

𝜕𝑢(𝑛)

𝜕𝐾𝑝(𝑛)
 

∆𝐾𝑖(𝑛) = −𝜂(𝑛) 
𝜕𝐽(𝑛)

𝜕𝑒(𝑛)

𝜕𝑒(𝑛)

𝜕𝑦(𝑛)

𝜕𝑦(𝑛)

𝜕𝑢(𝑛)

𝜕𝑢(𝑛)

𝜕𝐾𝑖(𝑛)
 

∆𝐾𝑑(𝑛) = −𝜂(𝑛) 
𝜕𝐽(𝑛)

𝜕𝑒(𝑛)

𝜕𝑒(𝑛)

𝜕𝑦(𝑛)

𝜕𝑦(𝑛)

𝜕𝑢(𝑛)

𝜕𝑢(𝑛)

𝜕𝐾𝑑(𝑛)
 

(4.5) 
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Burada −𝜂(𝑛) öğrenme oranıdır. Eklemlerin Jakobiyen bilgileri kontrolör 

parametrelerinin güncellemesinde kullanılır. Sistemin Jakobiyen bilgisi Denklem 4.6 

daki gibi elde edilir. 

𝜕𝑦(𝑛)

𝜕𝑢(𝑛)
 ≅  

𝜕𝑦̌(𝑛)

𝜕𝑢(𝑛)
 

𝜕𝑦̌(𝑛)

𝜕𝑢(𝑛)
=  − ∑

𝛼𝑖(𝑛)(𝑢(𝑛) − 𝑥𝑆𝑉𝑖(1))𝐾 (𝑥𝐶(𝑛), 𝑥𝑆𝑉𝑖(𝑛))

𝜎(𝑛)2

𝐾

𝑖=𝑛−𝐿

  

𝐾: Ç𝑒𝑘𝑖𝑟𝑑𝑒𝑘 𝑓𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢  

𝜎(𝑛)2 =  Ç𝑒𝑘𝑖𝑟𝑑𝑒𝑘 𝑓𝑜𝑛𝑘𝑠𝑖𝑦𝑜𝑛𝑢 𝑦𝑎𝑟𝚤ç𝑎𝑝𝚤 

(4.6) 

Kontrolör parametreleri denklem 4.7 deki gibi uyarlanır. 

𝐾𝑝(𝑛 + 1) = 𝐾𝑝(𝑛) + ∆𝐾𝑝(𝑛),

∆𝐾𝑝(𝑛) = −𝜂(𝑛)𝑒(𝑛)
𝜕𝑦(𝑛)

𝜕𝑢(𝑛)
 𝑥𝑐(1) 

𝐾𝑖(𝑛 + 1) = 𝐾𝑖(𝑛) + ∆𝐾𝑖(𝑛),

∆𝐾𝑑(𝑛) = −𝜂(𝑛)𝑒(𝑛)
𝜕𝑦(𝑛)

𝜕𝑢(𝑛)
 𝑥𝑐(2) 

𝐾𝑑(𝑛 + 1) = 𝐾𝑑(𝑛) + ∆𝐾𝑑(𝑛),

∆𝐾𝑖(𝑛) = −𝜂(𝑛)𝑒(𝑛)
𝜕𝑦(𝑛)

𝜕𝑢(𝑛)
 𝑥𝑐(3) 

  

(4.7) 

𝜎(𝑛)2 ve 𝜂(𝑛)  değerleri destek vektör makinası modelindeki çekirdek fonksiyonu 

yarıçapı ve uyarlama parametresinden alınarak belirlenmiştir. PID kontrolör parametre 

güncelleme algoritması Şekil 4.3 de görülmektedir. 
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Şekil 4.3 : Uyarlama mekanizması parametre güncelleme algoritması. 

Sistemini benzetimini oluşturmak amacıyla kontrol yapısı oluşturulduktan sonra 

sistem olarak dört eksenli robot manipülatörünün ters dinamik modeli kullanılarak 

kontrolör çıkışında uygulanan tork değerlerine göre eklem açısal pozisyonları 

bulunmuştur. İstenen bir tork değerine karşılık eklemlerin ivme değerleri Euler-

Lagrange denklemi yardımıyla bulunabilir [42]. 

𝜏 = 𝐷(𝜃). 𝜃̈ + 𝐶(𝜃, 𝜃).̇ + 𝐺(𝜃) 

𝐷(𝜃). 𝜃̈ = 𝜏 − 𝐶(𝜃, 𝜃).̇ − 𝐺(𝜃) 

𝜃̈ =   𝐷−1(𝜃). (𝜏 − 𝐶(𝜃, 𝜃).̇ − 𝐺(𝜃) 

(4.8) 
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Bir t anında, eklem konum ve hız başlangıç değerleriyle bulunan ivme değeri; 𝑡 + ∆𝑡 

aralığında integre edilirse eklem konum ve hız bilgileri elde edilir. İntegral işlemi için 

sayısal integral trapez yöntemi ile kullanılmıştır. 

(𝑞,̈ 𝑞̇)    
∫
→
̇

   (𝑞̇, 𝑞)𝑡+∆𝑡 (4.4) 

Eklem açı kontrolü sağlandıktan sonra kartezyen koordinatlarda bir yörünge 

oluşturulmuş ve ters kinematik model kullanılarak koordinatlar eklem açı pozisyon 

değerlerine çevrilmiştir. Dört eklem için referans açı değerleri, referans yörüngeden 

yola çıkılarak oluşturulmuştur. Tüm kontrol ve sistem yapısı Şekil 4.4 de görülebilir. 

 

Şekil 4.4 : Yörünge takibi kontrol yapısı. 
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5.  DENETLEYİCİ PERFORMANSININ İNCELENMESİ 

Tasarım süreci önceki bölümlerde anlatılan DVM tabanlı uyarlamalı PID kontrolör 

yapısının performans karşılaştırması için sabit katsayılı klasik PID kontrolör 

kullanılmıştır. PID katsayıları belirlenirken Ziegler-Nichols yöntemi kullanılmıştır 

[43]. Bu yönteme göre her bir eklem için ileri dinamik denklemlerden yola çıkılarak 

sabit bir tork değeri girişi için açı çıkışı hesaplanmış ve basamak cevabı zaman 

sabitleri kullanılarak PID kontrolör katsayıları Denklem 5.1 deki gibi belirlenmiştir.  

𝐾𝑝:𝐾𝑝1
=  0.07; 𝐾𝑝2

=  3.43; 𝐾𝑝3
 =  1.35; 𝐾𝑝4

=  1.35; 

𝐾𝑖: 𝐾𝑖1
=  7.00; 𝐾𝑖2

=  7.00;  𝐾𝑖3
 =  61.00;  𝐾𝑖4

 =  6.35; 

𝐾𝑑: 𝐾𝑑1
 =  18.00; 𝐾𝑑2

=  18.00; 𝐾𝑑3
=  55.86; 𝐾𝑑4

=  0.34; 

(5.1) 

5.1 Yüksüz Durumda Yörünge Takip Kontrolü Performans Karşılaştırması 

5.1.1 Basit yörünge uygulaması 

Destek vektör makinası tabanlı model kestirici uyarlamalı kontrol yapısı ve sabit 

katsayılı PID kontrolör performans karşılaştırması için, dört eksenli robot kolunun 

çalışma uzayı içerisinde kalan noktalardan geçecek şekilde öncelikle yay çizecek 

şekilde basit bir yörünge oluşturulmuştur. Oluşturulan yörüngenin üç boyutlu uzayda 

temsili Şekil 5.1 de görülmektedir. 
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Şekil 5.1 : Basit referans yörünge. 

Referans yörünge koordinatları alınarak, ters kinematik model aracılığı ile referans 

eklem açı değerleri oluşturulmuştur. Çıkış eklem açı değerleri ileri kinematik model 

ile çıkış Kartezyen koordinatlarına çevrilmiştir. Referans ve çıkış kartezyen koordinat 

değerleri Şekil 5.2, 5.3 ve 5.4 de gözükmektedir. 

 

Şekil 5.2 : Basit yörünge için x ekseni referans ve çıkış pozisyon değerleri. 
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Şekil 5.3 : Basit yörünge için y ekseni referans ve çıkış pozisyon değerleri. 

 

Şekil 5.4 : Basit yörünge için z ekseni referans ve çıkış pozisyon değerleri. 

 

DVM tabanlı uyarlamalı PID çıkış ve referansın kartezyen koordinatlarında üç boyutlu 

yörünge gösterimi Şekil 5.5 de görülebilir. X,Y ve Z eksenlerinde yörüge takip 

kontrolü başarımları incelendiğinde DVM Tabanlı uyarlamalı PID kontrolörün sürekli 

halde izleme hatasının daha düşük olduğu görülmektedir. 
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Şekil 5.5 : Basit yörünge için referans ve çıkış yörüngeleri kartezyen koordinat 

gösterimi. 

5.1.2 Karmaşık yörünge uygulaması 

Performans karşılaştırması için, karmaşık bir yörüngede takip konrolünü 

gerçekleştirmek adına yine dört eksenli robot kolunun çalışma uzayı içerisinde kalan 

noktalardan geçecek şekilde sinüs ve kosinüs fonksiyonlarından oluşan bir yörünge 

oluşturulmuştur. Yörüngenin fonksiyonu aşağıdaki gibidir. 

𝑡 <  2 ∗ 𝑝𝑖 𝑜𝑙𝑚𝑎𝑘 ü𝑧𝑒𝑟𝑒;  

 𝑠𝑐𝑎𝑙𝑒 =  2 / (3 −  𝑐𝑜𝑠(2 ∗ 𝑡)); 

  𝑥 =  𝑠𝑐𝑎𝑙𝑒 ∗ 𝑐𝑜𝑠(𝑡)); 

  𝑦 =  (𝑠𝑐𝑎𝑙𝑒 ∗ 𝑠𝑖𝑛(2 ∗ 𝑡) / 2); 

  𝑧 = (𝑠𝑖𝑛(2 ∗ 𝑡)) 

(4.1) 

Belirlenen geçiş noktalarına göre referans yörünge Şekil 5.6 da gösterilmiştir.  
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Şekil 5.6 : Karmaşık referans yörünge. 

Referans ve çıkış kartezyen koordinat değerleri Şekil 5.7, 5.8ve 5.9 da 

gözükmektedir.DVM tabanlı uyarlamalı PID kontrol yapısının üç eksende de klasik 

yapıya göre daha hassas konum takibini sağladığı görülmektedir. 

 

Şekil 5.7 : Karmaşık yörünge için x ekseni referans ve çıkış pozisyon değerleri. 
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Şekil 5.8 : Karmaşık yörünge için y ekseni referans ve çıkış pozisyon değerleri. 

 

Şekil 5.9 : Karmaşık yörünge için z ekseni referans ve çıkış pozisyon değerleri. 

DVM tabanlı uyarlamalı PID çıkış ve referansın kartezyen koordinatlarında üç boyutlu 

yörünge gösterimi Şekil 5.10 da görülebilir. 
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Şekil 5.10 : Karmaşık yörünge için referans ve çıkış yörüngeleri kartezyen koordinat 

gösterimi. 

Basit ve karmaşık yörüngelerde yüksüz durum için yörünge takip performansı Çizelge 

5.1 de gösterilmiştir. Yüksüz durum için yörünge izleme hataları RMS değerleri 

incelendiğinde her iki yörünge için de özellikle hassas yörünge takibi konusunda 

klasik PID yapısına göre DVM Tabanlı uyarlamalı PID kontrolörün başarılı bir 

performans sergilediği görülmektedir. 

Çizelge 5.1 : Yüksüz durum yörünge takip performansları karşılaştırması. 

 Basit Yörünge Karmaşık Yörünge 

 PID 

DVM Tabanlı        

Uyarlamalı PID PID 

DVM Tabanlı       

Uyarlamalı PID 

 RMS X(m) 0,0027 0,0005 0,0037 0,0015 

 RMS Y(m) 0,0065 0,0021 0,0105 0,0039 

 RMS Z(m) 

 
0,0026 0,0011 0,0045 0,0016 



40 

5.2 Yüksüz Durumda Geçici Hal Performansı Karşılaştırması 

Kartezyen koordinatlara etki eden üç eklem için basamak fonksiyonu referans girişine 

göre yüzde aşım miktarı, yükselme ve yerleşme zamanları karşılaştırılmıştır. Değerler 

Çizelge 5.2 de görülebilir. 

Çizelge 5.2 : Yüksüz durum PID performansları karşılaştırması. 

1.Eklem PID 

DVM Tabanlı        

Uyarlamalı PID 

%0S 5,75 4,62 

Tr(sn) 0,30 0,12 

Ts(sn) 6,32 3,00 

2.Eklem PID 

DVM Tabanlı        

Uyarlamalı PID 

%0S 0,0006 0,00 

Tr(sn) 5,58 2,70 

Ts(sn) 12,06 5,80 

3.Eklem PID 

DVM Tabanlı        

Uyarlamalı PID 

%0S 0,006 0,00 

Tr(sn) 8,94 4,34 

Ts(sn) 12,78 6,18 

Referans ve çıkış eklem açıları Şekil 5.11, 5.12 ve 5.13 dedir. Geçici hal performans 

parametreleri açısından iki kontrolör yapısı yüksüz durumda karşılaştırıldığında, DVM 

tabanlı uyarlamalı kontrolün verilen referansa göre yükselme ve yerleşme zamanının 

yeterli seviyede olduğu görülmektedir. 

 

Şekil 5.11 : Yüksüz Durum için 1.eklem referans ve çıkış açı değerleri. 
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Şekil 5.12 : Yüksüz durum için 2.eklem referans ve çıkış açı değerleri. 

 

Şekil 5.13 : Yüksüz durum için 3.eklem referans ve çıkış açı değerleri. 
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5.3 Yük Altında Yörünge Takip Kontrolü Performans Karşılaştırması 

Uç işlevciye uygulanan zamana bağlı ve yerçekimi yönündeki yük etkisi, ileri dinamik 

denklemler aracılığı ile diğer eklemlere aktarılmıştır [40] . Uygulanan maks. 6 N’a 

ulaşan yük profilleri hafif yapılı (1,2 kg) ve 4 eksenli robot kol için anlamlı bir yük 

oluşturmaktadır. Bu yük performansları ile hafif yapılı cerrahi robotlarda uygulanan 

yüke bir örnek teşkil etmektedir [44,45].  

5.3.1 Ani yük değişimi uygulaması 

Bölüm 5.1.2’de belirlenen referans karmaşık yörünge üzerinde Şekil 5.14’de görülen 

anlık değişen yük profili uygulanmıştır [46]. 

 

Şekil 5.14 : Ani yük değişimi için uç işlevciye uygulanan yük. 

Referans ve çıkış Kartezyen koordinat değerleri Şekil 5.15, 5.16 ve 5.17 de 

gözükmektedir. 
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Şekil 5.15 : Ani yük değişimi için için x ekseni referans ve çıkış pozisyon değerleri. 

 

Şekil 5.16 : Ani yük değişimi için için y ekseni referans ve çıkış pozisyon değerleri. 
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Şekil 5.17 : Ani yük değişimi için için z ekseni referans ve çıkış pozisyon değerleri. 

DVM tabanlı uyarlamalı PID çıkış ve referansın kartezyen koordinatlarında üç boyutlu 

yörünge gösterimi Şekil 5.18 de görülebilir. Ani yük değişimi sonrası referans 

yörüngeyi takip etme performansları karşılaştırıldığında önerilen DVM tabanlı 

uyarlamalı PID kontrolör yük etkisini daha kısa sürede komponze etmektedir. 

 

Şekil 5.18 : Ani yük değişimi için referans ve çıkış yörüngeleri kartezyen koordinat 

gösterimi. 
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5.3.2 Anahtarlamalı yük değişimi uygulaması 

Anahtarlamalı yük değişimini simüle etmek için yük alma ve bırakma noktaları 

belirlenerek Şekil 5.19 daki yörünge oluşturulmuştur. Referans yörünge üzerinde Şekil 

5.20 de görülen anahtarlamalı yük değişimi profili uygulanmıştır [47]. 

 

Şekil 5.19 : Anahtarlamalı yük değişimi için referans yörünge. 

 

Şekil 5.20 : Anahtarlamalı yük değişimi için uç işlevciye uygulanan yük. 
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Referans ve çıkış Kartezyen koordinat değerleri Şekil 5.21, 5.22 ve 5.23 de 

gözükmektedir. DVM tabanlı uyarlamalı PID kontrol yapısının üç eksende yük 

değişimi durumlarında da klasik yapıya göre daha hassas konum takibini sağladığı 

görülmektedir. 

 

Şekil 5.21 : Anahtarlamalı yük değişimi için x ekseni referans ve çıkış pozisyon 

değerleri. 

 

 

Şekil 5.22 : Anahtarlamalı yük değişimi için y ekseni referans ve çıkış pozisyon 

değerleri. 
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Şekil 5.23 : anahtarlamalı yük değişimi için z ekseni referans ve çıkış pozisyon 

değerleri. 

DVM tabanlı uyarlamalı PID çıkış ve referansın kartezyen koordinatlarında üç boyutlu 

yörünge gösterimi Şekil 5.24 de görülebilir. Anahtarlamalı yük uygulamasında DVM 

tabanlı uyarlamalı kontrol yönteminin yük değişimlerine karşı hassasiyetinin klasik 

kontrol yöntemine göre daha iyi olduğu görülmektedir. 

 

Şekil 5.24 : Anahtarlamalı yük değişimi için referans ve çıkış yörüngeleri kartezyen 

koordinat gösterimi. 



48 

5.3.3 Zamanla azalan yük uygulaması 

Bölüm 5.1.2 de belirlenen referans karmaşık yörünge üzerinde Şekil 5.25 de görülen 

zamanla azalan yük profili uygulanmıştır. Referans ve çıkış Kartezyen koordinat 

değerleri Şekil 5.26, 5.27 ve 5.28 de gözükmektedir. Üç eksen ayrı ayrı incelendiğinde 

yük etkisinin artmasıyla DVM tabanlı uyarlamalı kontrol yapısının konum takip 

performansındaki etkisinin arttığı görülmketedir. 

 

Şekil 5.25 : Zamanla azalan yük için uç işlevciye uygulanan yük. 

 

Şekil 5.26 : Zamanla azalan yük değişimi için x ekseni referans ve çıkış pozisyon 

değerleri. 
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Şekil 5.27 : Zamanla azalan yük değişimi için y ekseni referans ve çıkış pozisyon 

değerleri. 

 

Şekil 5.28 : Zamanla azalan yük değişimi için z ekseni referans ve çıkış pozisyon 

değerleri. 

DVM tabanlı uyarlamalı PID çıkış ve referansın kartezyen koordinatlarında üç boyutlu 

yörünge gösterimi Şekil 5.29 da görülebilir. Destek Vektör Makinası tabanlı 

uyarlamalı kontrol yönteminin karmaşık bir yörüngede ve zamanla azalan yük 
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karşısında sabit katsayılı klasik PID yapısına göre kartezyen koordinatlarda yörünge 

izleme performansının başarılı olduğu görülmüştür. Yük etkisi arttıkça önerilen 

kontrol yapısının performansı artmaktadır.Üç farklı yük profili altında yörünge takip 

performansı Çizelge 5.3 dedir. 

 

 

Şekil 5.29 : Zamanla azalan yük için referans ve çıkış yörüngeleri kartezyen koordinat 

gösterimi. 

Çizelge 5.3 : Yük altında yörünge takip performansları karşılaştırması. 

 

Ani Değişen Yük 

Profili 

Anahtarlamalı  

Yük Profili 

Zamanla Azalan  

Yük Profili 

 PID 

DVM 

Tabanlı        

Uyarlamalı 

PID PID 

DVM Tabanlı        

Uyarlamalı 

PID PID 

DVM Tabanlı        

Uyarlamalı 

PID 

RMS X(m) 0,0101 0,0014 0,0031 0,0004 0,0103 0,0011 

RMS Y(m) 0,0211 0,0050 0,0052 0,0015 0,0221 0,0035 

RMS Z(m) 

 
0,0133 0,0016 0,0033 0,0005 0,0142 0,0012 
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5.4 Zamanla Azalan Yük Altında Geçici Hal Performansı Karşılaştırması 

Kartezyen koordinatlara etki eden 3 eklem için basamak fonksiyonu referans girişine 

göre yük altında yüzde aşım miktarı, yükselme ve yerleşme zamanları 

karşılaştırılmıştır. Değerler Çizelge 5.4 de görülebilir. Yük profili olarak Bölüm 5.3.2 

deki zamanla azalan yük uygulanmıştır. 

Çizelge 5.4 : Yük altında PID performansları karşılaştırması. 

1.Eklem PID 

DVM Tabanlı        

Uyarlamalı PID 

%0S 4,04 5,48 

Tr(sn) 0,62 0,12 

Ts(sn) 8,6 2,08 

2.Eklem PID 

DVM Tabanlı        

Uyarlamalı PID 

%0S 0,08 0,18 

Tr(sn) 16,56 1,76 

Ts(sn) 31,90 3,76 

3.Eklem PID 

DVM Tabanlı        

Uyarlamalı PID 

%0S 0,24 0,58 

Tr(sn) 22,34 2,60 

Ts(sn) 30,74 3,76 

 

Referans ve çıkış eklem açıları Şekil 5.30, 5.31 ve 5.32 dedir. Yük altında geçici hal 

performans parametreleri açısından iki kontrolör yapısı karşılaştırıldığında, DVM 

tabanlı uyarlamalı kontrolör uygulandığında verilen referansa göre yükselme ve 

yerleşme zamanı ile birlikte sürekli hal hatasının da büyük oranda iyileştiği 

görülmektedir. 
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Şekil 5.30 : Yük altında 1.eklem referans ve çıkış açı değerleri. 

 

Şekil 5.31 : Yük altında 2.eklem referans ve çıkış açı değerleri. 
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©  

Şekil 5.32 : Yük altında 3.eklem referans ve çıkış açı değerleri.
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6.  SONUÇ VE ÖNERİLER 

Bu tez çalışması kapsamında, robotik kolların destek vektör makinesi tabanlı 

uyarlamalı model öngörülü kontrolü sağlanmıştır. Önerilen destek vektör makinası 

tabanlı uyarlamalı kontrol yönteminin basit ve karmaşık farklı yörüngelerde ve 

özellikle zamanla değişen yük karşısında sabit katsayılı klasik PID yapısına göre 

kartezyen koordinatlarda yörünge izleme performansının %10-14 oranında daha 

başarılı olduğu görülmüştür. Yük etkisinin fazla olduğu yerlerde önerilen kontrol 

yönteminin yörünge izleme performansı artmaktadır. Ayrıca geçici hal performans 

parametreleri açısından karşılaştırıldığında, DVM tabanlı uyarlamalı kontrolün verilen 

referansa göre yükselme ve yerleşme zamanının yeterli seviyede olduğu görülmüştür. 

Destek vektör makinası modelindeki hiper parametrelerin eğitim verilerinin 

ezberlenmesinden çok öğrenilmesi doğrultusunda optimize edilmesi, model 

tahminlerindeki doğruluk oranını arttırdığından model tabanlı uyarlamalı PID 

kontrolör performansında büyük oranda iyileşme sağlanmıştır. 

Tezde ilk olarak; DVR yöntemi yardımıyla çevrimdışı uyarlamayı sağlayacak robot 

kol dinamik modeli oluşturulmuştur. Elde edilen bu model, uyarlama yapısının ana 

unsuru olan referans modeli oluşturmaktadır. Bozucu etki altında da konum izleme 

hatasının korunması, bu model tabanlı uyarlama mekanizmasının yüke göre optimum 

kontrol çıkışını vermesi ile sağlanmaktadır. 

Robot kol yörünge takip kontrolünü sağlayan PID denetleyicinin parametreleri; gerçek 

sistem ve DVR modeli cevabı arasındaki hatayı optimize edecek şekilde 

uyarlanmaktadır. Tahmin edilen modelin başarısına göre yörünge izleme perfornanısnı 

artmaktadır. Eğitim verilerinin kapsamı ve uygulanan DVR tahminleyicisinin 

parametreleri model başarısını etkilemekte ve dolaylı yoldan robot kol 

denetleyecisinin performansını oluşturmaktadır. 
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Tezde önerilen DVM ile uyarlamalı model öngörülü kontrol yapısı aşağıdaki 

özellikleri sayesinde robot kollarda pozisyonlama probleminde çözüm sunar. 

 Model tabanlı uyarlama mekanizması farklı profillerdeki yük etkisi gibi 

bozucu etkiler altında, referans konum izleme performanısının aynı başarıda 

devam ettirilmesini sağlar. 

 DVR yöntemi ile modelleme hataları minimize edilerek uyarlama 

mekanizmasının hassas çalışması sağlanır. 

 DVM ile uyarlamalı model öngörülü denetleyici yapısının beraber 

kullanılması, yörünge izlemede keskin ve hassas kontrolü sağlar. 

Öğretilmiş destek vektör makinası modeli ile uyarlanan PID kontrolör yapısı, tıbbi 

uygulamalarda kullanılan hafif yapılı robotların yük altında hassas pozisyonlama 

problemi karşısında iyi bir yörünge izleme performansı oluşturacağı 

değerlendirilmiştir. Eğitim verisinin çeşitli senaryolarda genişletilerek yörünge takip 

performansının artırılması gelecek çalışmaların konusu olacaktır.  Ayrıca çevrimiçi 

uyarlama kullanılarak; öğretilen model dışındaki yörünge noktalarında da hassas 

pozisyon takibi sağlanabilir.
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