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DESTEK VEKTOR MAKINESI iLE ROBOTiK KOLLARIN UYARLAMALI
MODEL ONGORULU KONTROLU

OZET

Robotik kollarin dinamiginin dogru bir sekilde hesaplanmasi ve denetleyici
parametrelerinin uyarlanmasi i¢in; modelin keskinligi ve hassasiyeti biliylik 6nem
tagimaktadir. Dogrusal olmayan sistem dinamiklerinin keskin bir sekilde
tanimlanmasinda yapay sinir aglar1 ve destek vektor makinasi algoritmalart siklikla
tercih edilmektedir. Destek vektor makineleri, makine 6grenmesi yontemleri arasinda
en etkili regresyon tekniklerinden biridir.

Bu tez caligmasi kapsaminda, robotik kollarin destek vektor makinesi tabanl
uyarlamali model 6ngériilii kontroliinii saglayacak yontem onerilmistir. Ilk olarak,
ornek alman bir manipiilatoriin verileri kullanilarak destek vektor regresyonu ile
dinamik model tahmini yapilmistir. Dinamik model tahmini yapilirken egitilen
modelin 6grenme parametreleri egitim verisinin ezberlenmesini bir baska deyisle agiri
O0grenmeyi engellemek amaciyla optimize edilmistir. Kullanilan manipiilatér dort
eksenli hafif yapili bir robot koldur. Tahmin edilen bu model, uyarlama
mekanizmasinda kullanilarak modelleme hatalar1 ve bozucu etkilerinin minimuma
indirildigi goriilmistiir. Elde edilen kontrol yapisinin farkli yoriingeler iizerinde ve
degisken yiikk kosullarinda basarili bir yoriinge takip performansi gosterdigi
izlenmistir. Karmasik yoriingelerin takibinde de Onerilen kontrol yapisinin basarili
oldugu yapilan benzetim galigmalari ile gosterilmistir. Onerilen denetleyici ydriinge
takibi basarisini etkileyen ozellikle zamanla degisen yiikiin baskin oldugu anlarda
minimum konum hatasi ile yoriinge takibini saglanmistir. Destek vektor regresyonu
ile kestirilen model ve uyarlamali kontrol mekanizmasinin birlikte kullanima,
sistemdeki modellenememis dinamikler, belirsizlikler, dig bozucular ve parametre
degisimlerine kars1 oldukga etkili olmaktadir.

Anahtar kelimeler: Robot manipiilatorler, yoriinge takibi, makine 6grenmesi, destek
vektor makinasi, uyarlamali kontrol, model 6ngoriilii kontrol.
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SUPPORT VECTOR MACHINE BASED MODEL PREDICTIVE ADAPTIVE
CONTROL OF ROBOTIC ARMS

SUMMARY

For the correct calculation of the dynamics of the robotic arms and the adaptation of
the controller parameters; the accuracy and precision of the model has great
importance. Artificial neural networks and support vector machine algorithms are
often preferred for the accurate definition of nonlinear system dynamics. Support
vector machines are one of the most effective regression techniques among machine
learning methods.

Within the scope of this thesis, a method that will provide support vector machine
based adaptive model predictive control of robotic arms is proposed. First, dynamic
model estimation was performed with support vector regression using the data of a
sampled manipulator. While estimating the dynamic model, the learning parameters
of the trained model are optimized to prevent memorization of the training data, in
other words, over-learning. The manipulator used is a four-axis lightweight robot arm.
It has been observed that modeling errors and disruptive effects are minimized by
using this predicted model in the adaptation mechanism. It was observed that the
obtained control structure showed a successful trajectory tracking performance on
different trajectories and under variable load conditions. It has been shown by the
simulation studies that the proposed control structure is successful in the tracking of
complex trajectories. Trajectory tracking is provided with minimum position error,
especially when the time-varying load is dominant, which affects the success of the
proposed controller trajectory tracking. The combined use of the model predicted by
support vector regression and adaptive control mechanism is very effective against
unmodeled dynamics, uncertainties, external disturbances and parameter changes in
the system.

Keywords: Robot manipulators, trajectory tracking, machine learning, support vector
machine, adaptive control, model predictive control.
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1. GIRIS

Veri ¢iftlerinin Dbirbirleriyle iliskilerinin olmadigi durumlardaki siniflandirma
problemlerinde Destek Vektér Makinest (DVM)  yontemi Onerilmektedir. Bu
yontemin anafikrini olusturan ve onerilmesi 1909 yillarina dayanan ¢ekirdek kavramu,
ilk olarak "COLT" isimli konferansta 1995 yilinda Rus Matemeatikg¢i Vladimir Vapnik
tarafindan sunulmustur. Optimizasyon probleminde global ¢6ziimiin garanti edilmesi
DVM’leri yapay sinir aglarina gore stiin kilmaktadir. Optimizasyon probleminin
konveks bir yapiya biirlinmesi yoOntemiyle yerel minimuma takilma problemi
¢oziilmiistlir. Bu sayede optimizasyon problemlerinin ¢oziimiinde 6nemli bir gelisme

elde edilmektedir.

Birden fazla siniflandirma probleminde, DVM tabanli yontemler tercih edilmektedir.
Mikrodalga teknolojisi ile calisan cihazlarda giiriiltiiyii 6nlemek igin kullanilmasi
saglik alaninda kullanima bir drnektir [1]. Ozellikle kanserli dokularin tanis1 ve
siiflandirilmast  konusunda DVM  yontemine basvurulmaktadir [2]. Dogrusal
olmayan sistemlerin kara kutu (black-box) modellerinin olusturulmasinda DVM
yonteminin basaris1 etkilidir [3]. Bunun disinda ses tanima i¢in; iki ayr1 ¢ekirdek
fonksiyonu 6nerilerek GMM modeli (Gauss Karisim Metodu) ve DVM smiflandirici
birlikte kullanilir [4].

[statiktiksel ©grenme teorisine dayanan DVM simiflandirma problemlerinde
kullanildig1 gibi regresyon analizlerinde de etkilidir. Belirsiz girdi ve ¢iktilarla
parametreler hakkinda 6n bilgi olmadig1 durumlarda kulllanilan yontemde yeni veri
girislerini  siniflandirmak i¢in egitim verilerindeki degerler eslenerek karar

fonksiyonlar1 olusturulur.

Bir robot koldaki hedef nokta i¢in gerekli kuvvet ve torklar, hareketin ileri ya da ters
dinamik olarak ifade edilen dinamik denklemleri kullanilarak tanimlanir. Ileri
dinamik; ug¢ islevcinin ivmesinin eklemin konumu, hizi ve kuvvet/torklarina gore
bulunmasidir. Robot kolun ger¢ek zamanli kontroliinde dinamik degerlerinin dogru bir

sekilde hesaplanmada 6nemli bir noktadir.



Kontrol yontemini belirleyici olmasmin en bilyiilk nedeni sistem belirsizlikleridir.
Sistem belirsizliklerini gidermek i¢in kullanilan lineer kontrol yontemlerinin ¢6ziim
olmadig1r durumlarda nonlineer yontemlere basvurulur. Bu yontemlerden biri olan
model referans uyarlamali kontrolde hedef, bilinmeyen sistem ¢ikisini referans alinan
modelin sistem ¢ikigina yakinsatmaktir. Bu yontemde referans alinan sistem modeli
onem kazanmaktadir [5]. Giirbiiz uyarlamali kontroliin uygumalar1 drnekleri mobil

robotlarin yoriinge takip problemine ¢6ziim olarak karsimiza ¢ikmaktadir.

Uyarlamal1 kontrol yapist kullanilirken referans model olarak yapay sinir aglar ile
olusturulan tahmini modelin kullanim1 yine mobil robotlarin kinematik kontroliinde

karsimiza ¢ikmaktadir.

Robot manipiilatorleri disinda genel olarak g¢ok-giris ¢ok-¢ikisl nonlineer sistemlerin
yoriinge takip problemi uyarlama yapisi ile ¢oziilmektedir [8].Bu yap1 ayn1 zamanda
sistem simirlamalarint  da  kontrol problemi iginde ¢6zmektedir. Robot
manipilatorlerinin dogal sinirlar1 olan ¢alisma uzayinda ¢oziim sunmak uyarlamali

kontrol yapisinin bir bagka tistlinliigidiir.

Bununla beraber destek vektor makinelerinin kontrol yontemi arastirmalarinda yaygin
bir kullanimi bulunmaktadir. Ucus kontroli [9, 27] ile tank sistemlerinin
modellenmesi [10] problemlerinde destek vektor makinesinin model ©Ongoriili
kontrolorlerde model belirleme i¢in kullanilmasi 6rnek bir uygulama alani olarak

karsimiza ¢ikmaktadir.

Karadeniz bolgesindeki sogiit agaci tiirlerini izole etmek icin DVM tabanlh vektor
izdliisim kontrol modeli kullanilmistir. [11] Ayrica, farkli yiikler altinda kazan
sistemlerinin giirbiiz kontroliinde model tanimlamasi i¢in en kiigiik kareler destek
vektor makinesi regresyonu kullanilmistir [12]. En kiigiik kare DVM, dogrusal
olmayan kontrol valfi modellemesinde de kullanilmigtir [13]. DVM, i¢ model
kontrolor [14] ile sabit miknatisli senkron motorlar1 kontrol etmek i¢in kullanilir.
DVM ile arag elektrik kontrol sistemi modellemesi yeni bir otomotiv kontrol yontemi

olarak tanitilmigtir [15].

Kinematik hesaplamalar, yol planlamasi ve konum kontroliinii igeren robotik
problemlerine DVR uygulanarak ¢esitli ¢oziimler sunulmustur. Bu ¢6ziimlere bir
ornek, hareketi oldukca karmasik ve dogrusal olmayan ozelliklere sahip paralel

robotlarin kinematik modellemesidir [16]. Yedi veya daha fazla eklemi olan robotlarin



ters kinematik denklemlerinin analiz yontemleri yine oldukca karmasiktir. Ayrica,
tekil noktalar bir sorun teskil eder. Kinematik problemini robotu SVM regresyon ile
modelleyerek ¢6zmek, dogru ve verimli bir ¢6ziim saglar [17]. Bu yontem endiistriyel
robotlar tizerinde de test edilmis ve diger yontemlere kiyasla faydali oldugu

belirlenmistir [18].

Yoriinge planlamasindaki temel problem olan ¢alisma alaninda engellerden kaginma,
bulanikk DVM algoritmast ile ¢Oziilmiistir [19]. Robotik goriintii isleme
problemlerinin bazi uygulamalarinda DVM kullanilmaktadir. Mobil robotlarin
konumlandirilmasinda, engel tanima hatalarin1 ortadan kaldirmak i¢in uygulanmistir
[20].

Uyarlamali1 PID konusundaki 6rnekler incelendiginde bu yontem oncelikle dogrusal
sistemlere uygulanmistir. PID kontrolor parametrelerinin belirlenmesinde en kiigiik
kareler DVM yontemi akilli bir kontrol yontemi olarak kullanilmistir [21]. En kiigiik
kareler DVM uyarlamali kontroliin ayrica yanma odasi enerji optimizasyonu

probleminde uygulamasi bulunmaktadir [22].

Genellestirilmis bir en kiiclik kareler DVM uyarlamali kontrol yapis1 [23]’te sunulmus
ve ayrica Ph nétralizasyon isleminde uygulanmistir. Burada kullanilan yontem g¢ok
¢Oziiniirliikli dalgacik en kiiglik destek vektor makinasi ag1 olarak adlandirilmstir.
Onerilen ag yapist model 6ngérmede kullanilmis ve kontroldr yapisi referans

yoriingeyi takip etmek {izere tasarlanmistir.

Simdiye kadar bahsedilen destek vektor makinasi tabanli uyarlamali kontrol yapisinin
yorlinge izleme problemleri lizerine uygulamalar1 da goriilmektedir. Modeli
bilinmeyen bir nonlineer sistem igin klasik yapay sinir ag1 ile birlikte takip kontroli
icin kullanilmistir [24]. Bunun yaninda bulamik mantik yapisinin destek vektor
makinasi ile birlikte kullanimi1 alt1 eksenli paralel robot ydriinge takip kontroliinde
kullanilmistir [25]. Ayrica iki eksenli bir robot manipiilatorii yoriinge takip problemi
i¢cin geri adim kontrolii ad1 verilen yontemle en kiiciik kareler destek vektdr makinasi
yardimiyla ¢evrimdis1 olarak tahmin edilen parametrelerle bir uyarlama mekanizmasi

kurulmustur [26].

Literatiirde bulunan caligmalarda yoriinge takip problemine tek basina destek vektor
makinasi veya uyarlama mekanizmasi kullanilarak ¢6ziim aranmistir. Her iki

yontemin eksik yonleri ve agiklart bulunmaktadir.



Analitik yontemle olusturulan dinamik modeli baz alarak olusturulan bir uyarlamal
kontrol yapisi, teorik modelin eksikleri ve hatalarin1 da uyarlama mekanizmasina
tasimaktadir. Bu iki ¢Oziimiin beraber kullanilarak Onerilen yap1 karsilasilan
eksiklikleri gidermektedir. Bozucu bastirmada uyarlama mekanizmasi basarili
olurken, baz alinan dinamik model destek vektor regresyonu ile tahmin edilerek
modelleme hatalarinin Oniline gecilmistir. Hassas konumlandirmada 6nemi artan
modelleme hatalari, robot kolun ¢alisma uzay1 gerekli hassasiyette taranip egitim

verisine eklenerek minimize edilebilir.

Uyarlamal1 yapinin bir bagka avantaji da; denetleyici parametreleri 6grenilen sistem
modeline gore giincellendigi i¢cin manipiilatore disardan uygulanan herhangi bir etkiye
kars1 kontrol yapis1 hizli cevap verebilmektedir. Uygulama alanina bagl olarak
ozellikle ani ya da zamanla degisen yiik profillerinin olusturdugu etki; kisa siirede

kompanze edilerek yoriinge takip performansi korunmaktadir.

Tezde, giris boliimiinde tezin ¢oziim sundugu problem tanitilarak literatiirdeki mevcut
¢oziimler incelenmistir. ikinci bolimde ise, robot kol dinamik modellemesinde
kullanilan destek vektdr makinasi regresyonu yontemi siniflandirma 6zelligini de
icerecek sekilde aciklanmustr. Uciincii boliimde, dort eksenli robot kol dinamik modeli
DVR yontemi ile ¢ikarilmig ve olusturulan modelin test verilerine yer verilmistir.
Dérdiincii boliimde, dngoriilen modele dayanan DVM tabanli uyarlamali PID kontrol
yontemi anlatilmistir. Besinci boliimde, Onerilen denetleyicinin performanst gesitli
senaryolar lizerinde incelenmistir. Altinci1 boliimde ise, tezde ortaya konulan DVM
tabanli uyarlamali PID kontrolciiniin faydalar1 dogrultusunda kullanim alanlar1 ve

gelecek calismalar tartisilmistir.



2. DESTEK VEKTOR MAKINELERI REGRESYONU

Bu béliimde; onerilen kontrol yapisinda robot kol modellemede kullanilacak olan
destek vektor makineleri regresyonu, yaygin kullanim alani olan siniflandirma

problemi 6rneginden yola ¢ikilarak tanitilmistir.

2.1. Destek Vektor Makinasi Siniflandirmasi
2.1.1 Dogrusal ayrilabilen veriler
D egitim verilerini temsil etmektedir.
D={(*yY), v, (x4, YD} ye(=1,1) [: 6rnek sayist (2.1)

DVM siiflandirmasindaki amag en iyi siniflandirict diizlemi elde etmektir. Denklem
2.2 ve Sekil 2.1 de egitim verilerini dogrusal olarak ayirabilecek optimum hiperdiizlem

goriilmektedir.
<w,x > +b =0 <>:nokta carpim

(22)
w : agirlik vektori  b: bias

Sekil 2.1 : Optimal hiperdiizlem.



En yakin egitim verisine olan uzakligi maksimum olan optimal hiperdiizlem Denklem

2.3 deki esitsizlikleri saglamalidir.

Optimizasyon probleminin kisitt bu iki esitsizlik tek bir esitsizlikte birlestirilerek

olusturulur.
yi.[<W,fi> +b]21 l:1, ...... ,l (24)

Agirlik vektorii ve bias teriminin optimum degerini bulmak problemin temel amacidir.
Sekil 2.2 de goriildiigii gibi bir vektoriin optimal hiperdiizleme olan uzakligina marjin

denir.

dw,b:x)=|<w,X; > +b|/|w]| (2.5)

*

Destek | XG0
Vektorleri —-T{ /

3
o
g -

Sekil 2.2 : Destek vektorleri.

pw,b) = min d(w,b:x')+ min d(w,b:x!) :%
xtLyl=—1 xtLyl=1
(2.6)
>)p(w,b) = 2/|lw]|

Siniflama hatasinin minimum degerini almasi i¢in marjin maksimize edilmelidir. Bu

durum agirlik vektorii normu minimizasyonu ile saglanir [27].

) = = Iwl’? @7)



2.1.1.1 Lagrange carpanlari yontemi

Denklem 2.8 de belirtildigi {izere birincil minimizasyon problemi, Lagrange

fonksiyonu ile olusturulur.

1
Amag fonksiyonu: ®(w) = > llw|?

Ksit: yl.[<w,xI> +b]>1 i=1,.... )1

Lagrange Fonksiyonu: (2.8)

!
1 ) .
d(w,b,a) = > lw]|? — Z a[y. [wx]+b] -1
i=1

Eyer noktasinda agirlik vektorii ve bias terimi minimumda, lagrange c¢arpanlari

maksimumdadir. Eyer noktasi, bu problemde smiflandirma hatasini minimize eden

noktadir.

max W(a) = mC?X( %lgl @(w, b, a)) (2.9)

Optimizasyon problemi Karush-Kuhn-Tucker (KKT) kosullar1 yardimiyla ¢oziiliir ve

bu kosullar Denklem 2.10 da goriilen tiirev degerlerinden olusur.

0@ l
FI - Z“iyl'=0

i=1

l (2.10)

do
——=0 - W= Z“i}’ixi

ow
i=1

Problemin son hali amag¢ fonksiyonu ve kisitlart birlestiren Lagrange fonksiyonu

olusturularak elde edilir.

1
P(w,b,a) = 5 ||W||2

l o (2.11)



Lo
lwll? = Zzai @ yiy; < Xi,Xxj > (2.12)

i=1j=1

Yeni amag fonksiyonu:

i=1 i=1j=1 (2.13)

Kisitlar: Z a;yi=0 a =20
i=i
Optimum a degerleri optimal hiperdiizlemi belirler. Destek vektorlerlerini, lagrange
carpanlar1 sifir olmayan egitim verileri olusturur. Denklem 2.14 de optimal

hiperdiizlem, destek vektorler ve Lagrange ¢arpanlari olarak ifade edilmistir.

l
FO)= ) @y < xmx>+b (2.14)

i=1

Agirlik vektorii ve bias terimi hesaplamalari destek vektorleri cinsinden Denklem 2.15

de gosterilmistir.

-1 (2.15)

b*=7<w*1xr+x5> yr=-1,5=1

< Xp, Y >, < X5, Vs > destek vektorleri

Karar fonksiyonu Denklem 2.16 daki gibi olusturulur. Olusturulan fonksiyonun

signum degeri alinarak verinin hangi sinifta olduguna karar verilir.

f(x) =sgn(< w*,x > +b) (2.16)



Alternatif bir fonksiyon olarak , Denklem 2.17 deki gibi gercek degerleri veren
fonksiyon kullanilir [28]. 4(z) fonksiyonu birden fazla sinifi igerdigi i¢in uygulamada

pratiktir.

f(x)=h(< w", x> +b)

-1 z< -1 (2.17)
h(z) =14z -1<z<1
1 z>1

2.1.2 Dogrusal olmayan siniflandirma

Veri kiimesi Sekil 2.3 deki gibi dogrusal olarak fakat ek bir hata ile ayrildiginda, bu

hatayr minimize etmek amaciyla ikinci bir fonksiyon eklenir [29].

4 - L / i
4 +4 4
- ,//
P £ t /P’ -
e (@ ,,/; (=
$_.. . < / & -
£l /P’f > '.:-r -
- - L]
il -
,-"/ i |

Sekil 2.3 : Siniflandirma verisi.
¢, =0 :siniflandirma hatast
0 < ¢ <1 durumuverinin dogru simnifta oldugunu gosterir. (2.18)
& > 1 durumu verinin yanlis sinifta oldugunu gosterir.

Dogrusal problemdeki kisitlar yeni durumda da kullanilabilir. Dogrusallik hatasi

disinda problem aynidir.

<w,x!>+b=>1-§ yi=1

, , (2.19)
<w,x*>+b<-1+4+¢& y'=-1



yil<w,xi> +b]|=1- §

1
Amag fonksiyonu: ®(w,§) = > lwl|?> + C 2&

i=1

Dual problem Lagrange fonksiyonu ile olusturulur. Amag¢ fonksiyonuna destek

vektorleri dogrusal olmayan bir fonksiyon ile eklenir.

d(w,b, ¢, a,B) =

l

—||W||2+CZ€l Zaly[wx]+b]—1+fl Z,Blfl

i=1
Dual Problem : maxW (a, ) = max( min ®(w, b, ¢, a,B))
a a,f "~ wbé

l

9 @ (2.20)
55 =0 - Zaiyi=0

i=1

d @ l
——=0 - w= Zaiyixi

ow ,
=1
0P
¥:0 - ai+ﬁi=C

Dual probleme lagrange fonksiyonunda kisitlar eklendiginde Denklen 2.21 deki gibi

olusturulur. Problem yine siiflandirma oldugundan kisitlar aynidir.

l

l l
1
0= Ya- § 3 S < >

i=1 i=1 j=1

l (2.21)

Kisitlar: Z a;y; =0

i=1
Kisitlarda goriinen ve ayrica tanimlanan C parametresi, lagrange carpanlarinin
muhtemel degerleri igin {ist sinirdir. Destek vektorlerinin optimal hiperdiizlemde
bulunmasi, C paramatresinin Lagrange carpanlar1 ile ayni degerde olmasi ile
miimkiindiir. C degeri ne kadar biiyiik olursa, test hatasi o kadar yiiksek olur. Bu deger,
problemin kapasitesini belirlemek i¢in bagka bir kontrol ekler.
10



— (2.22)
b*=7<w*,xr+ x5 > Ve=—1,y,=1< x,,9 >,
< x5, Y5 >: destek vektorleri
Karar fonksiyonu Denklem 2.23 deki gibi olusturulur.
f(x) =sgn(< w*,x > +b) (2.23)

2.1.3 Dogrusal olmayan destek vektor makineleri

Dogrusal olmayan destek vektér makineleri, veri kiimesinin dogrusal bir fonksiyon
tarafindan dogrudan veya bazi hatalarla bdliinemedigi durumlarda kullanilan
algoritmalardir. Gergek hayat problemlerinin dogrusal olmayan yonleri oldugundan,
Sekil 2.4 teki bir veri setini dogrusal hiperdiizlem ile ayristirmak ¢ogu zaman miimkiin
degildir. Bu nedenle siniflandirma problemi ayirma egrisi dikkate alinarak ¢oziilebilir.

Ancak pratikte egriyi tahmin etmek ¢ok zordur.

%
3
-
-
h

» -

Sekil 2.4 : Dogrusal olmayan hiperdiizlem.

Bu durumda, veriler girdi uzayindan dogrusal olmayan bir harita (¢) araciligiyla
dogrusal smiflandirmaya izin veren daha yiiksek boyutlu bir 6zellik uzayina
dontstiirtiliir. Dogrusal siniflandirma formiilasyonlarinin yardimiyla bu yeni 6zellik,

veri setini siniflandirabilen en iyi hiper diizlemi arastirir.

11



¢(x) gecis fonksiyonu ile hiperdiizlem bir {ist uzaya ¢ikarilir.

Optimal hiperdiizlem : Z w; o;(x)+b=0

i=1
l

l
szaidi(pi(x) zaidi(piT(x)(pi(x)‘l'b:O
i=1

i=1

(2.24)

Haritalama fonksiyonunun o6zelligi a¢ik degildir ve c¢oziimii bilinse bile {ist
boyutlardaki bir uzayda kompleks hale gelir. Cekirdek fonksiyonlar: bu karmasiklig
gidermek i¢in sunulmustur. Bu fonksiyon polinom, radyal veya sigmoid forma dayal
olabilir [22].

Cekirdek fonksiyonu: K (x,x;) = ¢ T(x) @(x;) (2.25)

Cekirdek fonksiyonu simetriktir. Bu yiizden fonksiyon giris degerleri Denklem 2.26
daki gibi diizenlenebilir.

K(x' xi) = K( xiix)

l
Optimal hiperdiizlem : Z a;d; K(x,x;)) =0

i=1

(2.26)

Cekirdek fonksiyonu ile dual problem Denklem 2.27 deki gibi olusturulur.Dogrusal

olmayan fonksiyon yerine ¢ekirdek fonksiyonu gelir.

l l l
Qa) = Z %Zz a; @ y; y; K (x;,x;) (2.27)
= — =

Dual problemin kisitlar1 degismemektedir.

l
Kisitlar: Z a;y;=0 0<a <C (2.28)

i=1

12



l
<w'x >= Zai y; K(x, x;)
i=1
Siniflandirma i¢in Kkarar fonksiyonu ¢ekirdek fonksiyonu ile birlikte Sekil 2.29 daki

gibi olusturulur.

l
f(x) = sgn (Z @i yi KGx) + b)

- (2.29)

-1
b=— 2 o; Y [K(xxr)‘l'K(xxs)] »w=-1y=1

i=1

Karar fonksiyonu; bias terimi de gekirdek fonksiyonuna eklendiginde Denklem 2.30
daki hale gelir.

!
f(x) = sgn <z a; y; K(x, x;) ) (2.30)

i=1

2.2 Destek Vektor Regresyonu

Destek vektor makinelerinin regresyon problemini ¢6zmesi i¢in kullanilan farkli kayip

fonksiyonlart Sekil 2.5 te goriilmektedir.

YAV

() Cuar ib) Laplace

\ | /\ /’

\/ \/

&) Hubor d) c-insensitive

Sekil 2.5 : Kayip fonksiyonlari.
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e-duyarl kayip fonksiyonu, DVM yonteminin regresyon ile iliskilendirilmesine izin
verir. Kayip fonksiyon hassasiyet parametresi olmadan uygulandiginda tiim veriler
destek vektorleri seklinde belirlenir. Bu durumda tiim veriler hesaplamada

kullanilacagindan islem yiikii artar.

2.2.1 e-Duyarh kayip fonksiyonu

€'ye duyarli kayip fonksiyonu, hatalarin bir € araliginda g6z ardi edilecegi veri
kiimeleri i¢in uygundur. Mutlak kayip fonksiyonunun aksine, bu araliktaki verilerin
regresyona uygun oldugu ve hata icermedigi varsayilir. Boyle bir marjin belirlenmesi,

kayip fonksiyonunu € DVM regresyonunda kullanim i¢in mantikli kilar.
Kayip fonksiyonu:
L(d,y) = |d —y| d:istenen deger y: gercek deger
€ — sensitive Kayip Fonksiyonu : (2.31)

d—y|—c¢ d—y|l= €
L =4E 1y

diger
2.2.2 Dogrusal regresyon
D egitim verilerini gosterir.
D={(x',yY), ., (x,yD} 1: 6rnek sayist (2.32)

Egitim verileri arasindaki iliski Denklem 2.33 ve Sekil 2.6 daki optimum dogrusal

fonksiyon ile ifade edilebilir. Regresyonun amaci bu fonksiyonu tahmin etmektir.

f(x)=<w,x> +b =0 <>:nokta carpimi (2.33)

14



[T

—£ +E

L

Sekil 2.6 : Dogrusal destek vektorleri.

!
1
Primer amag fonksiyonu: ®(w, ) = > Iwl||? + C Z(e{ +&h)
i=1

' _ _ _ (2.34)
Kisitlar : y'— <w,x*> —b < 6+£i+yl— <w,x'"> +b >

e+e g, =0

Lagrange carpanlar1 yontemi ile olusturulan Denklem 2.35 deki amag fonksiyonu ile
dual problem elde edilir. Amag¢ fonksiyonuna, siniflandirma probleminden farkli

olarak kisitlar €'ye duyarli kayip fonksiyonu ile ifade edilir.

d(w,g,at,a”,n*,n7)

l l
1 _ -
= S W2 +C Y (e +20) - ) (nf i &)
i=1 i=1

!

— Za;r (e+¢& —y'+<w,x! > +b)
i=1
!

—Zai‘ (e+& —y+<w,x'> +b
i=1

(2.35)

Eyer noktas1 Denklem 2.36 daki kosullar ile belirlenir. Kosullar siniflandirma ile

benzerlik gosterir.

15



J 0 é + - 0
—_— - S — A =
b '_l(al a;)

l

do

Fv - w= Z(a;r —a;) X (2.30)
i=1

oK

3;': 0 - ai+'7h =C

Dual problem kisitlar ile birlikte Denklem 2.37 deki gibi olusturulur. Kisitlar
regresyon hatasini minimize edecek sekilde belirlenir. Bu kosul da smiflandirma
probleminde oldugu gibi agirlik vektorii ve bias terimi minimumda, lagrange

carpanlar1 maksimumda tutacak sekilde belirlenir.

=1 j=1
l l
>+ ) (@ —a)y +e ) (@ —a)
=1 i=1
l
I{ls;ltlar:z:(a;r —a;)=0 0 <af,af <C (2.37)
i=1
l
wh = Z (af —a])x; b*= - < whx, + x5 >
i=1
< Xp Yy >, < X5, Y5 > destek vektorleri

2.2.3 Dogrusal olmayan regresyon

Regresyona tabi tutulacak veriler de dogrusal olmayan bir fonksiyon olabilir. Dogrusal
olmayan haritalama ¢ekirdek fonksiyonu ile gergeklestirilerek veri seti bir {ist uzaya

haritalanir ve bdylece regresyon iist uzayda uygulanir [31].

m
a;

ax (e, a;7) = m
a al

1 @y l -
pax =3 i1 2j=1(af —ap) (af —

y

l l (2.38)
a;) K(xj,x) + Yicg(af —ai).y; +eXio(af —ai)

Dogrusal regresyon ile kisitlar aynidir. Cekirdek fonksiyonu kisitlar: etkilemez.

16



!
Kistitlar: Z(a;’ —a;)=0 0 <af,af <C
i=1

l

<whHx>= Z (af —aj) K(x,x;)

i=1
(2.39)

L

!
-1
b* = - (af — a7 )(K(x;,x,) + K(xi,%5))
=1

l
Regresyon fonksiyonu : f(x) = Z (af —a)K(x,x;) +b

=1

Regresyon fonksiyonunun bias terimini i¢ermesi g¢ekirdek fonksiyonuna baghdir.
Cekirdek fonksiyonunun kompleks hale gelmesi , tahmin edilecek sistem modelinin

karmasikligina baglidir.

f(x) =2k (af —a7) K(x,x) (2.40)

2.3 En Kiiciik Kareler Destek Vektor Makinesi

En kiigiik kareler DVM yo6ntemi, dogrusal olmayan veri kiimelerinde regresyon
gergeklenmesini saglar. Bu formiilasyon kara kutu (black-box) modelleri ve optimal
kontrol problemlerine ¢6ziim olarak sunulmustur [30].

2.3.1 En kiiciik kareler destek vektor simiflandirmasi

En kiictlik kareler yontemine gore amac fonksiyonu Denklem 2.41 deki halini alir. En

kiigiik kareler yontemi ile optimizasyon problemi kolaylasir.

l
1 2 2
ow,e) =5 Iwlz+y ) ef
=1 (2.41)

Kisit: yi[<w,o(x)> +b]=1—¢ i=1,....,1
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Yeni halde optimal hiperdiizlem esitligi de degisir. Hiperdiizlem denklemine hata

terimi de eklenir.
yil<w,o(x)> +b]=1-¢ (2.42)
Dual problem en kiigiik kareler hata terimi ile birlikte Denklem 2.43 deki halini alir.

1 .
®(w,b,e,a) =7 IWl* + v Thoref Ticqaiy'.[<w, () > +b] -

(2.43)
1+ e;
Eger noktas1 kosullar1 da optimizasyon problemi degistiginden farklilasir.
!
0o
I - Z a;y; =0
i=1
o0 _ zl: y
-—= - w = a; y; o(x;
aW £ l yl gp l (2.44)
0P
. -0 - a = ye;

Problemin son hali Denklem 2.45 teki gibi olur. Denklemde de goriildiigii gibi en
kiigiik kareler yontemi optimizasyon problemini matris formuna indirgeyerek

kompleks yapidan uzaklastirir.

o | B= 1)

D =YW <P(xk)T ox) = K(xp,x) kl=1,.....,N

(2.45)

2.3.2 En kiiciik kareler destek vektor regresyonu

En kiigiik kareler yontemi yaklasimi ile regresyon fonksiyonu da ifade edilebilir.

Optimal hiperdiizlemin yerini regresyon fonksiyonu alir.
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Ig Q+T;‘1 1] [Z] - [2]

=0 =o0ox) o(x) = K(xi,x) kil=1,.....,N
kl kl o) @(x;) (s x1) (2.46)

fG) =<w,0(x) > +b =0
fo) =Xica; K(xx)+b

Amag fonksiyonuna agirliklandirma parametreleri regresyon matrisini robust hale
getirmek amaciyla eklenmektedir. Boylece tahmin edilen regresyon fonksiyonun

kararli olmas1 saglanir.

1 1 *
d(w,e) = - Iwll* +5 ¥ Th=1 viei (2.47)

Son haliyle optimal regresyon fonksiyonu Denklem 2.48 deki gibi olur.
yi=[<w*,0(x)> +b*]+e” i=1, ... N (2.48)

Agirliklandirma katsayist vy, hata teriminin (e;) bir fonksiyonu olarak ele

alindiginda daha robust bir regresyon tahmini yapilmaktadir [32].
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3. ROBOTIK KOLLAR iCIN DESTEK VEKTOR MAKINASI DINAMIK
MODELI

Onceki boliimde detaylar1 anlatilan DVR yontemi kullanilarak, dort eksenli seri bir
robot kol i¢in dncelikle ¢alisma uzayi igerisinde egitim verisi olusturulmus, sonrasinda
da bu egitim verisi ile dinamik model tahmini yapilmistir. Veri olusturma ve model
tahmini Python kullanilarak yapilmistir. Bu bolimde tahmin edilen dinamik model ve

test verileri yer almaktadir.

3.1 Egitim Verisi Olusturulmasi

DVM regresyonu ile dinamik model olusturnak i¢in dncelikle manipiilator eklem
acilar1 sinir degerleri iginde taranarak, bir calisma uzay1 olusturulmustur. Ornek bir
manipiilator olarak 4 eksenli hafif yapili robot kol kullanilmistir. Toplam agirligi 1.2
kg’dir. Eklem acilarina karsilik tork degerleri Euler-Lagrange yontemi ile
hesaplanmistir. Bu yontem denge prensibine dayanarak belirli eklem a1, hiz ve ivme
degerlerine karsilik gelen tork degerlerini bulmak i¢in eklemlerin potansiyel ve kinetik

enerjilerini kullanir [33].

Dinamik denklemler olusturulurken Euler-Lagrange metodu uygulanmistir. Euler-
Lagrange yontemi enerji dengesi prensibine dayanir. Belirli eklem agilari, hizlart ve
ivmelerine karsilik elde edilen tork degerini bulmak i¢in, eklemlerin potansiyel ve
kinetik enerjileri kullanilir.

Bir eklem igin Lagrangian terimi:
L=K-P (3.1)
Buna karsilik gelen Euler-Lagrange denklemi:

—ddL] dL'kl k ]: eklemh
T= aa 7 q: eklem konumu q : eklem hizi

(3.2)
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Eklem kinetik enerjisi eklem konum ve hizina, potansiyel enerji ise sadece eklem

konumuna baglidir. Denklemde L terimi yerine konuldugunda:

Kinetik enerji: K(q, (q)) Potansiyel Enerji: P(q)

_d|dK(q,q9) dP(q) dK(q,q)  dP(q)
Tdt| dg dg l‘( dg dq)
(3.3)
dK (q, Q) _dK (q, Q) dP(q)
dt dq

Burada ilk terim ivme, ikinci terim coriolis (yan kuvvet) , ti¢lincii terim ise yer ¢ekimi

etkisini ifade etmektedir.

Cizgisel ve rotasyonel hizdan dolay1 olusan kinetik enerji:

_u T 1 ¢ ) i .
K = S mv vt Cw I w 1: eylemsizlik tensori (3.4)

Kinetik enerjinin 4 serbestlik derecesi i¢gin yazilmasinda Jacobian matrisi kullanilir.

K(6,0) = eT(— m Jy(0)" J,(6)

1 .
+ 5 Jw(O)R(OI R()" ]w(9)> o

(3.5)
J, ¢ Cizgisel hizlar icin Jacobian matrisi

Jw : Rotasyonel hizlar igin Jacobian matrisi

I : Eylemsizlik tensériu R : Rotasyon matrisi

Jacobian matrisi, her bir eklem i¢in ayr1 olarak eklemin kiitle merkezine gore
hesaplanir.

Potansiyel enerji denklemi eklem konumuna bagli olarak yazilir.

P =m.g.h(6)' (3.6)

Euler-Lagrange denkleminde enerji ifadeleri yerine konuldugunda Denklem 3.7 elde
edlilir.
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T=D(6).6+C(6,0). 6 +G(6) (3.7)

Denklemde kullanilan matrisler:

D(9) =5 mJy(0)" J,(0) + 5 Jw(OITR(OII R(O)T J, (6) (3.8)

Eklemler silindir olarak disiiniildiigiinde her eklem i¢in eylemsizlik tensori I

asagidaki gibi elde edilir.

[G)* (t® +1%) 0 0 |
I= 0 G)* W + 1,5 0 | (3.9)
[ 0 0 (£>*<12+1W2)J

Rotasyon matrisi ilk eklem igin:

cos() 0 sin(8)
R=|sin(6) 0 -— cos(@)] (3.10)
0 1 0
Diger eklemler i¢in:
cos(8) -—sin(8) O
R = [sin(@) cos(6) O] (3.11)
0 0 1
C(6,0). Coriolis terimi M (6) matrisinden yola ¢ikilarak hesaplanmaktadir.
n
1<dej+dei dDij>
Cijk =5 ) - Ckj =/ Cijk 4
2\ do; a6, doy - (3.12)
G (0) yercekimi terimi potansiyel enerjinin degisimini ifade eder.
__dp(®) _ d(m.g.h(8)")
GO)=—F—=—_; (3.13)
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Model olusturulurken uygulama 6rnegi olarak kullanilan uArm Swift Pro robot kol

Sekil 3.1 de goriilmektedir.

Sekil 3.1 : uArm Swift Pro robot kol [34].

Benzetimlerde kullanilan robot kol dlgiileri gergek degerler ile uyumludur.

Manipiilatore ait Denavit-Hartenbeg parametreleri Cizelge 3.1 deki gibi belirlenmistir

[35].
Cizelge 3.1 : Denavit-Hartenberg parametreleri.
Eklem a a d; 0,
1 0.0132m 0 0 0.
2 0.142m 0 0 0.
3 0.159 m 0 0 0
4 0 4.71 rad 0.107m 0.
Dort eklem agisinin sinir degerleri Denklem 3.14 teki gibidir.
-90°< 61<90°
0° < 02<145°
(3.14)

0° < 03<120°

0° < 64<150
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Bu sinir ag1 degerleri taranarak dinamik model ile beraber egitim verisi olarak

kullanilmak tizere Sekil 3.2 de gosterilen ¢alisma uzayi olusturulmustur.

Sekil 3.2 : Robot ¢alisma uzay1 — pozisyon (m).

3.2 Destek Vektor Makinas1i Modelinin Egitilmesi

Destek vektor makinast modeli egitilirken her eklem icin ayri bir model
olusturulmustur. Bu modellerde giris degeri eklem ag1 degerleri, ¢ikis degeri de ilgili

eklemin tork degeri olacak sekilde segilmistir.

Caligsma uzayindaki veriler kullanilirken; verilerin %66°s1 egitimde kullanilip, %33’
test verisi olarak ayrilmistir. Model basarim oranlari test verisi iizerinden denenmistir.
Sekil 3.3,3.4,3.5 ve 3.6 da bulunan tahmin ve test verisi grafiklerine ortalama karesel
hata ve modelin kararligin1 6lgen 72 parametresi eklenmistir. Hata degerlerinin kabul

edilebilir diizeyde ve kararlilik faktoriiniin 1’e yakin oldugu goriilmiistiir.
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Ortalama Karesel Hata=9.913980774703327e-05
R”2 Skoru : 0.999999980893701

20 ~ o
e o
-
)
€ 10 1
%
$
@ 27
>
[
[ ]
0 - -~ Tahmin
—a— st
5 » & ® ® 100
Ornek

Sekil 3.3 : DVR model test verisi- eklem agis1 1.

Ortalama Karesel Hata=7.02659718987578e-05
R~ 2 Skoru : 0.9999999875596226

DVR Modeli Tork 2 (N)

0 2 o &
Ornek

: *fb ik
|

Sekil 3.4 : DVR model test verisi- eklem agis1 2.
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DVR Modeli Tork 3 (N)

DVR Modeli Tork 4 (N)

Ortalama Karesel Hata=4.590897353979071e-05
R”2 Skoru : 0.9999999779839613

MIF

{ == Tehmin

-4~ Test

i

I

b i

‘

Iy

T

40 60 80

Ornek

100

Sekil 3.5 : DVR model test verisi- eklem agis1 3.

Ortalama Karesel Hata=3.602990316607251e-05
R”2 Skoru : 0.9999998716836749

v
i

=

w
i

,u-

[t

- 'mam
—a— Test

Sekil 3.6 : DVR model test verisi- eklem agis1 4.
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Her bir eklem igin olusturulan destek vektor makinasi modelinde C ¢ekirdek
fonksiyonu yarigapi, epsilon maksimum siniflandirma hatasi degeri ve gama 6grenme
katsayis1 parametreleri farkli degerler icinde ¢izgi arama metodu ile taranarak; model
tahminlerdeki ortalama karesel hatayr minimize edecek sekilde optimum degerler

secilmigtir [36]. Tarama araliklar1 ve optimum degerler agsagidaki gibidir.
100 < C <1000 : 100
0,001 < epsilon < 0,01:0,001
0,1 < gama < 1:0,001
Eklem 1: C = 700, epsilon = 0,009, gama = 0,28 (3.15)
Eklem 2: C =900, epsilon = 0,009, gama = 0,28
Eklem 3: C = 900, epsilon = 0,009, gama = 0,54

Eklem 4: C = 900, epsilon = 0,009, gama = 0,98
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4. DVM TABANLI UYARLAMALI MODEL ONGORULU KONTROLOR
TASARIMI

DVM modeli tabanli kontrolor tasariminda, dogrusal olmayan destek vektor
regresyonu ile tgilincii boliimde tahmin edilen sistem dinamik modeli kontrolor

parametrelerinin uyarlanmasi i¢in kullanilmaktadir.

Denklemlerde y(n) sistemin ¢ikisi, u(n) kontrol isareti, r(n) referans isareti,
e(n) izleme hatasi, , €(n) modelleme hatasidir. Modelleme ve referans izleme hatalari
Denklem 4.1 de belirtilmistir [37].

e(n) =r(n) —y(m), én) =ym) —ym) (4.1)

Uyarlamali PID Kontroldr yapisi ii¢ ayr1 boliimden olusur. Bu boliimler DVR dinamik
modeli, PID kontolér ve PID kontrolér parametre uyarlayicisidir. Sekil 4.1 de

denetleyici yapisi goriillmektedir.

Gergek Sistem

r— Kontrolor S

!

,l
—> | §=d% 0 (0)+b
;

£ pwr ISflodeIi

.----)

y

cssscscsscad

Sekil 4.1 : Destek vektor regresyonu tabanli model kestirimli uyarlama mekanizmasi
[10].

PID kontrolorde [38, 39, 40], K, ,K, ve K; sistemin davranismna bagli olarak

uyarlanmasi gereken kontrolor parametrelerdir.

Uptp = Up t Kp (en—en—1)+ Kien+ Ky (en—2ep_ 1+ ep_3) (42)

28



PID kontroloriin girisleri asagidaki gibi tanimlanabilir.
xc(1) =e(n) —e(n—1),xc(2) =e(n),xc3) =(e,—2ep_1+ €p_z) (4.3)

Kontrol6r parametreleri baslangi¢ aninda optimal degerlerde degildir ve optimizasyon
teorisi kullanilarak uygun bir sekilde uyarlama mekanizmasi kullanilmaktadir. DVM
modeli ¢ikist ile sistem ¢ikisi arasindaki hata; parametre uyarlama mekanizmasina
girisi olusturur. Kestirilen DVM modelin uyarlama yapisindaki yeri Sekil 4.2 de

gorilmektedir.

+ —

TN

Uyarlayici u(t) (1) —

km* ¥
rt) e(1) u(1) _ y() ()
- PID Sistem . 4 o
:?_

Sekil 4.2 : En kiigiik kareler destek vektor makinasi tabanli uyarlamali PID yapisi [23].

Gradyan inis metodu kontrol parametrelerini optimal degerlere uyarlamak igin

kullanilir.

_ 2
[r(n) 2y(n)] _ %ez(n) (4.4)

J(n) =
Kontroldr parametrelerini optimize etmek i¢in Denklem 4.5 teki kurallar uygulanir.

dJ(n) de(n) dy(n) du(n)
de(n) dy(n) du(n) 0K, (n)

AK,(n) = —n(n)
dJ(n) de(n) dy(n) du(n)
de(n) dy(n) du(n) 9K;(n) (4.5)

dJ(n) de(n) dy(n) du(n)
de(n) dy(n) du(n) dK ;(n)

AK;(n) = —n(n)

AKq(n) = —n(n)

29



Burada —n(n) 6grenme oramidir. EKlemlerin  Jakobiyen bilgileri kontrolor
parametrelerinin giincellemesinde kullanilir. Sistemin Jakobiyen bilgisi Denklem 4.6
daki gibi elde edilir.

oy _ ay(n)
ou(n) — ou(n)

oy(n) i a; () (u(n) — xsvi (D)K (xc(n), xov:(n))
ou(n) . o(n)? (4.6)

K: Cekirdek fonksiyonu

o(n)? = Cekirdek fonksiyonu yaricapt
Kontrolor parametreleri denklem 4.7 deki gibi uyarlanir.

K,(n+1) = K,(n) + AK,(n),

dy(n)
ou(n)

AK,(n) = —n(n)e(n) xc(1)

Ki(n+ 1) = K;(n) + AK;(n),

dy(n)
e xc(2) (4.7)

AKy(n) = —n(n)e(n)

K;(n+ 1) = K;(n) + AK;(n),

dy(n)
du(n)

AK;(n) = —n(n)e(n) xc(3)

ag(n)? ve n(n) degerleri destek vektdr makinas1 modelindeki gekirdek fonksiyonu
yarigap1 ve uyarlama parametresinden alinarak belirlenmistir. PID Kontrolor parametre

giincelleme algoritmasi Sekil 4.3 de goriilmektedir.
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Modeli egit ve model parametrelerini kaydet.

mekanizmasinda kullan.
|

A 4
R Yeni sistem gikistarini olustur

?

Y

DVM Modeli gikis degerlerini hesapla.

ém) >0 Em)=0

PAD FaramaetySlexint PID Parametreleri sabit.

Sekil 4.3 : Uyarlama mekanizmasi1 parametre glincelleme algoritmasi.

Sistemini benzetimini olusturmak amaciyla kontrol yapisi olusturulduktan sonra
sistem olarak dort eksenli robot manipiilatoriiniin ters dinamik modeli kullanilarak
kontrolor c¢ikisinda uygulanan tork degerlerine gore eklem agisal pozisyonlar
bulunmustur. Istenen bir tork degerine karsilik eklemlerin ivme degerleri Euler-
Lagrange denklemi yardimiyla bulunabilir [42].

7=D(6).6 +C(6,0).+ G(6)

D(6).6 =t —C(6,0).— G(H) (4.8)

6= D~1(0).(t—C(6,0).—G(O)
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Bir t aninda, eklem konum ve hiz baslangi¢ degerleriyle bulunan ivme degeri; t + At

araliginda integre edilirse eklem konum ve hiz bilgileri elde edilir. Integral islemi igin

sayisal integral trapez yontemi ile kullanilmigtir.

L
G,q) = (@Drene

(4.4)

Eklem ac¢1 kontrolii saglandiktan sonra kartezyen koordinatlarda bir yoriinge

olusturulmus ve ters kinematik model kullanilarak koordinatlar eklem a¢1 pozisyon

degerlerine ¢evrilmistir. Dort eklem igin referans aci1 degerleri, referans yoriingeden

yola ¢ikilarak olusturulmustur. Tiim kontrol ve sistem yapisi Sekil 4.4 de goriilebilir.

Referans Yoriinge
Xa!v Yd! Zd
—>|

;

Ters
Kinematik

Sistem a

(Dinamik Model)

'—'OL” Uyarlamal
57 PID
Ga o
KPHKirKd
Model Tabanli
Uyarlama

Mekanizmasi

DVM - +
Modeli
é

Sekil 4.4 : Yoriinge takibi kontrol yapist.
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5. DENETLEYiCi PERFORMANSININ INCELENMESI

Tasarim siireci 6nceki bolimlerde anlatilan DVM tabanli uyarlamali PID kontrolor
yapisinin performans karsilastirmasi i¢in sabit katsayili klasik PID kontrolor
kullanilmistir. PID katsayilar1 belirlenirken Ziegler-Nichols yontemi kullanilmistir
[43]. Bu yonteme gore her bir eklem igin ileri dinamik denklemlerden yola ¢ikilarak
sabit bir tork degeri girisi i¢in ag1 ¢ikisi hesaplanmig ve basamak cevabi zaman

sabitleri kullanilarak PID kontrolor katsayilart Denklem 5.1 deki gibi belirlenmistir.

Kp: K

p, = 007;K, = 343 K, = 135K, = 135;

Ki:K;, = 7.00; K;, = 7.00; K;, = 61.00; K;, = 6.35; (5.1)

i1

Kd: Ky, = 18.00;Ky, = 18.00; K4, = 55.86; K;, = 0.34;

5.1 Yiiksiiz Durumda Yériinge Takip Kontrolii Performans Karsilastirmasi

5.1.1 Basit yoriinge uygulamasi

Destek vektor makinasi tabanli model kestirici uyarlamali kontrol yapisi ve sabit
katsayil1 PID kontrolor performans karsilastirmast icin, dort eksenli robot kolunun
calisma uzay1 igerisinde kalan noktalardan gegecek sekilde oncelikle yay cizecek
sekilde basit bir yoriinge olusturulmustur. Olusturulan yoriingenin ii¢ boyutlu uzayda

temsili Sekil 5.1 de goriilmektedir.
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Referans Yorunge

—&— Yoringe Noktalan
Enterpolasyoniu B-Spline Yoringe

Sekil 5.1 : Basit referans yoriinge.

Referans yoriinge koordinatlar1 alinarak, ters kinematik model aracilig: ile referans
eklem ag1 degerleri olusturulmustur. Cikis eklem ag1 degerleri ileri kinematik model
ile ¢1kis Kartezyen koordinatlarina ¢evrilmistir. Referans ve ¢ikis kartezyen koordinat

degerleri Sekil 5.2, 5.3 ve 5.4 de goziikkmektedir.

Konum X
0.200 - _ - Referans
- DVM Tabanh Uyarlamali PID cikis!
= Klasik PID cikis!

0.195 -
E 0.190 1
<

0.185 -

0.180 -

Zaman(s)

Sekil 5.2 : Basit yoriinge icin x ekseni referans ve ¢ikis pozisyon degerleri.
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Konum Y

0.020 -
0.015 -
0.010 -
~ 0.005 -
g 0.000 -
-0.005 -
E = ng;r'?::anll Uyarlamali PID cikisi
-0.015 { — Kiasik PID cikisi
0 5 10 15 20 25 30 % =

Zaman(s)

Sekil 5.3 : Basit yoriinge i¢in y ekseni referans ve ¢ikis pozisyon degerleri.

Konum Z
0.12 -
0.10
0.08 -
E
N 0.06 4
0.04 1
- Referans
0.02 — DVM Tabanl Uyarlamali PID cikisi
' —— Klasik PID cikist
0 5 10 15 20 25 30 35 40
Zaman(s)

Sekil 5.4 : Basit yoriinge i¢in z ekseni referans ve ¢ikis pozisyon degerleri.

DVM tabanli uyarlamali PID ¢ikis ve referansin kartezyen koordinatlarinda ii¢ boyutlu
yoriinge gosterimi Sekil 5.5 de goriilebilir. X,Y ve Z eksenlerinde yoriige takip
kontrolii basarimlari incelendiginde DVM Tabanli uyarlamali PID kontroloriin siirekli

halde izleme hatasinin daha diisiik oldugu goriilmektedir.
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Yoriinge

—— Referans
DVM Tabanii Uyarlamali PID cikist
— Klasik PID cikist

0.000Y(m)

-0.005
0.190
X(m)

0200 001

Sekil 5.5 : Basit yoriinge i¢in referans ve ¢ikis yoriingeleri kartezyen koordinat
gdsterimi.

5.1.2 Karmasik yoriinge uygulamasi

Performans karsilagtirmas1 icin, karmasik bir yoriingede takip konroliinii
gerceklestirmek adina yine dort eksenli robot kolunun ¢alisma uzay1 igerisinde kalan

noktalardan gececek sekilde siniis ve kosiniis fonksiyonlarindan olusan bir yoriinge

olusturulmustur. Yoriingenin fonksiyonu asagidaki gibidir.

t < 2 *piolmak lzere;
scale = 2 /(3 — cos(2 *t));
x = scale * cos(t)); (4.1)
y = (scale *sin(2*t) /2);

z = (sin(2 xt))

Belirlenen gegis noktalarina gore referans yoriinge Sekil 5.6 da gosterilmistir.
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Referans Yorunge

—a— Yorunge Noktalan
Enterpolasyoniu B-Spline Yortinge

0.24

Sekil 5.6 : Karmagik referans yoriinge.

Referans ve ¢ikis Kartezyen koordinat degerleri Sekil 5.7, 5.8ve 5.9 da
goziikmektedir.DVM tabanli uyarlamali PID kontrol yapisinin {i¢ eksende de klasik

yaptya gore daha hassas konum takibini sagladigi goriilmektedir.

Konum X
- Referans
0.26 - ~— DVM Tabanl Uyarlamali PID cikisi
—— Klasik PID cikis!
0.24 4
Eooo |
= 0.22
0.20 1
0.18 -

Zaman(s)

Sekil 5.7 : Karmagik yoriinge i¢in x ekseni referans ve ¢ikis pozisyon degerleri.
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Konum Y

0.02 -
0.01 -
:E: 0.00 -
>
-0.01 -
- Referans
-0.02 e DVM Tabanli Uyarlamali PID cikist
- Klasik PID cikist

20 25 30 35 40
Zaman(s)

(=]
v
=)
B

Sekil 5.8 : Karmasik yoriinge i¢in y ekseni referans ve ¢ikis pozisyon degerleri.

Konum Z
0.115 - - Referans
' ~— DVM Tabanl Uyarlamali PID cikist
- Klasik PID cikisi

0.110 -

0.105 -
,:E,f 0.100 -

0.095 -

0.090 -

0.085 -

4
-
-
~
—
-4

Zaman(s)

Sekil 5.9 : Karmasik yoriinge i¢in z ekseni referans ve ¢ikis pozisyon degerleri.

DVM tabanli uyarlamali PID ¢ikis ve referansin kartezyen koordinatlarinda ii¢ boyutlu

yorlinge gosterimi Sekil 5.10 da goriilebilir.
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Yoriinge

- Referans
DVM Tabanl Uyarlamali PID cikist
~ Klasik PID cikist

Sekil 5.10 : Karmasik yoriinge i¢in referans ve ¢ikis yoriingeleri kartezyen koordinat
gosterimi.

Basit ve karmasgik yoriingelerde yiiksiiz durum i¢in yoriinge takip performansi Cizelge
5.1 de gosterilmistir. Yiiksliiz durum igin yoriinge izleme hatalar1 RMS degerleri
incelendiginde her iki yoriinge i¢in de Ozellikle hassas yoriinge takibi konusunda
klasik PID yapisina gére DVM Tabanli uyarlamali PID kontrolériin basarili bir

performans sergiledigi goriilmektedir.

Cizelge 5.1 : Yiiksiiz durum yoriinge takip performanslari karsilagtirmasi.

Basit Yoriinge Karmagik Yoriinge
DVM Tabanh DVM Tabanh
PID Uyarlamali PID PID Uyarlamal1 PID
RMS X(m)  0,0027 0,0005 0,0037 0,0015
RMSY(m) 0,0065 0,0021 0,0105 0,0039
RMS Z(m)
0,0026 0,0011 0,0045 0,0016
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5.2 Yiiksiiz Durumda Gegici Hal Performansi Karsilastirmasi

Kartezyen koordinatlara etki eden ii¢ eklem igin basamak fonksiyonu referans girigine
gore yiizde asim miktari, yiikselme ve yerlesme zamanlar1 karsilastirilmistir. Degerler

Cizelge 5.2 de goriilebilir.

Cizelge 5.2 : Yiiksiiz durum PID performanslari karsilastirmasi.

DVM Tabanh
1.Eklem PID Uyarlamali PID
%0S 5,75 4,62
Tr(sn) 0,30 0,12
Ts(sn) 6,32 3,00
DVM Tabanh
2.Eklem PID Uyarlamal1 PID
%0S 0,0006 0,00
Tr(sn) 5,58 2,70
Ts(sn) 12,06 5,80
DVM Tabanh
3.Eklem PID Uyarlamali PID
%0S 0,006 0,00
Tr(sn) 8,94 4,34
Ts(sn) 12,78 6,18

Referans ve ¢ikis eklem agilar1 Sekil 5.11, 5.12 ve 5.13 dedir. Gegici hal performans
parametreleri agisindan iki kontrolor yapist yiiksiiz durumda karsilastirildiginda, DVM
tabanli uyarlamal1 kontroliin verilen referansa gore yiikselme ve yerlesme zamaninin

yeterli seviyede oldugu goriilmektedir.

Eklem 1
P —— -
05
0.4 -
©
o
=~ 03
c
@
L
w
0.2
- Referans
0.1 DVM Tabani Uyarlamali PID gikist
e Klasik PID cikist

0 5 10 15 20 25 30 35 40
Zaman (s}

Sekil 5.11 : Yiiksiiz Durum i¢in 1.eklem referans ve ¢ikis ac1 degerleri.
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Eklem 2(rad)

Eklem 3(rad)

Eklem 2

0.5

0.4 4

03

0.2
- Referans

0.1 - ~ DVM Tabanl Uyarlamali PID cikist
e Klasik PID cikist

0 5 10 15 20 25 30 35 40
Zaman (s}

Sekil 5.12 : Yiiksiiz durum i¢in 2.eklem referans ve ¢ikis a¢1 degerleri.

Eklem 3

0.25 1

0.20 -

0.15 -

0.10 1

- Referans
0.05 - e DVM Tabanh Uyarlamali PID cikisi
e Klasik PID cikist

0 5 10 15 20 25 30 35 40
Zaman (s}

Sekil 5.13 : Yiiksiiz durum igin 3.eklem referans ve ¢ikis ag1 degerleri.
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5.3 Yiik Altinda Yoriinge Takip Kontrolii Performans Karsilastirmasi

Ug isleveiye uygulanan zamana bagli ve yergekimi yoniindeki yiik etkisi, ileri dinamik
denklemler aracilig1 ile diger eklemlere aktarilmistir [40] . Uygulanan maks. 6 N’a
ulasan yiik profilleri hafif yapili (1,2 kg) ve 4 eksenli robot kol i¢in anlaml1 bir yiik
olusturmaktadir. Bu yiik performanslari ile hafif yapili cerrahi robotlarda uygulanan

yiike bir ornek teskil etmektedir [44,45].

5.3.1 Ani yiik degisimi uygulamasi

Boliim 5.1.2°de belirlenen referans karmasik yoriinge tizerinde Sekil 5.14°de goriilen

anlik degisen yiik profili uygulanmistir [46].

Yuk

6.0 -

5.5 1

5.0 -

45

Yuk(N)

4.0 A

35 -

3.0 -

0 1 2 3 4 5 6
Zaman(s)

Sekil 5.14 : Ani yiik degisimi i¢in ug islevciye uygulanan yiik.

Referans ve ¢ikis Kartezyen koordinat degerleri Sekil 5.15, 5.16 ve 5.17 de
goziikmektedir.
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Konum X

0.28 4 - Referans
~— DVM Tabanl Uyarlamali PID cikisi

0.26 - ——Klasik PID cikisi

0.24 -
E
x 022

0.20 4

0.18 4

0 1 2 3 4 5 £
Zaman(s)

Sekil 5.15 : Ani yiik degisimi i¢in i¢in x ekseni referans ve ¢ikis pozisyon degerleri.

Konum Y
0.02 -
0.00 -
o k Degisim Noktasi
E -0.02
>
-0.04
- Referans
~  DVM Tabanl Uyarlamali PID cikist
—0.06 —  Klasik PID cikis!
0 1 2 3 4 5 £
Zaman(s)

Sekil 5.16 : Ani yiik degisimi i¢in i¢in y ekseni referans ve ¢ikis pozisyon degerleri.
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Konum Z

0.14 4 - Referans
DVM Tabanl Uyarlamali PID cikist
0.13 - = Klasik PID cikis!
012
E
i 0.11 -
0.10 -
0.09 -
e i X ! T T T T
Zaman(s)

Sekil 5.17 : Ani yiik degisimi i¢in i¢in z ekseni referans ve ¢ikis pozisyon degerleri.

DVM tabanli uyarlamali PID ¢ikis ve referansin kartezyen koordinatlarinda ti¢ boyutlu
yoriinge gosterimi Sekil 5.18 de goriilebilir. Ani yiikk degisimi sonrasi referans
yoriingeyi takip etme performanslar1 karsilastirildiginda onerilen DVM tabanl

uyarlamali PID kontrolor yiik etkisini daha kisa siirede komponze etmektedir.

Yorunge

- Referans
DVM Tabanli Uyarlamali PID gikist
—— Klasik PID cikist

Sekil 5.18 : Ani yiik degisimi i¢in referans ve ¢ikis yoriingeleri kartezyen koordinat
gosterimi.
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5.3.2 Anahtarlamah yiik degisimi uygulamasi

Anahtarlamali yiik degisimini simiile etmek icin yiikk alma ve birakma noktalari
belirlenerek Sekil 5.19 daki yoriinge olusturulmustur. Referans yoriinge tizerinde Sekil

5.20 de goriilen anahtarlamali yiik degisimi profili uygulanmistir [47].

Referans Yorunge

- Yorunge Noktalan
Enterpolasyeniu B-Spline Yorunge

1200
1175
1150
1125
21106™
1075
1050
1025

1000

Sekil 5.19 : Anahtarlamal1 yiik degisimi i¢in referans yoriinge.

Yok

Yuk(N)

0 1 2 3 4 5 6
Zaman(s)

Sekil 5.20 : Anahtarlamali yiik degisimi i¢in ug iglevciye uygulanan yuk.
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Referans ve ¢ikis Kartezyen koordinat degerleri Sekil 5.21, 5.22 ve 5.23 de
goziikmektedir. DVM tabanli uyarlamali PID kontrol yapisinin {i¢ eksende yiik

degisimi durumlarinda da klasik yapiya gore daha hassas konum takibini sagladigi

goriilmektedir.
Konum X
021 - Referans
' ~ DVM Tabanh Uyarlamali PID cikisi
0.20 - - Klasik PID cikisi
' Yik Alma Noktasi
0.19 4
E
5z 018
Yuk Birakma Nokkasi
0.17
0.16
0.15
0 1 2 3 3 5 6

Zaman(s)

Sekil 5.21 : Anahtarlamali yiikk degisimi i¢in x ekseni referans ve ¢ikis pozisyon
degerleri.

Konum Y
0.01 -
0.00 -
Lasi
—-0.01 -
€
> -0.02 4
-0.03 -
47 - Referans
z ~  DVM Tabanii Uyarlamali PID cikist
— Klasik PID cikisi
-0.05 -
0 1 2 3 - 5 6
Zaman(s)

Sekil 5.22 : Anahtarlamali yiik degisimi i¢in y ekseni referans ve ¢ikis pozisyon
degerleri.
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Konum Z

- Referans
— DVM Tabanh Uyarlamal PID cikis
—  Klasik PID cikisi
0.125 -
0.120 1 oYl Birakma Nokfasi
E ;
] 0.115 - Yuk Alma Noktasi
0.110 -
0.105 -
0.100 -
Zaman(s)

Sekil 5.23 : anahtarlamali yiik degisimi i¢in z ekseni referans ve ¢ikis pozisyon
degerleri.

DVM tabanli uyarlamali PID ¢ikis ve referansin kartezyen koordinatlarinda ti¢ boyutlu
yoriinge gosterimi Sekil 5.24 de goriilebilir. Anahtarlamali yiik uygulamasinda DVM
tabanli uyarlamali kontrol yonteminin yiik degisimlerine karsi hassasiyetinin klasik

kontrol yontemine gore daha iyi oldugu goriilmektedir.

Yoringe
—— Referans

DVM Tabanl Uyarlamali PID cikisi
—— Klasik PID gikist

0.20 -0.015

Sekil 5.24 : Anahtarlamal1 ylik degisimi i¢in referans ve ¢ikis yoriingeleri kartezyen
koordinat gosterimi.
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5.3.3 Zamanla azalan yiik uygulamasi

Boliim 5.1.2 de belirlenen referans karmasik yoriinge lizerinde Sekil 5.25 de goriilen
zamanla azalan ylk profili uygulanmistir. Referans ve ¢ikis Kartezyen koordinat
degerleri Sekil 5.26, 5.27 ve 5.28 de goziikmektedir. Ug eksen ayr1 ayr1 incelendiginde
yiik etkisinin artmasiyla DVM tabanli uyarlamali kontrol yapisinin konum takip

performansindaki etkisinin arttig1 gériilmketedir.

Yok

6.0

5.5 1

5.0 1

Yak(N)

45 A

4.0 1

35 1

Zaman(s)

Sekil 5.25 : Zamanla azalan yiik i¢in ug islevciye uygulanan yiik.

Konum X
0.28 1 —— Referans
DVM Tabanl Uyarlamali PID cikisi
0.26 —— Klasik PID cikisi
0.24 4
E
x 0.22
0.20 -
0.18 1

~
-
-
-
-

Zaman(s)

Sekil 5.26 : Zamanla azalan yiik degisimi i¢in x ekseni referans ve ¢ikis pozisyon
degerleri.
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0.02 1

0.01 -

0.00 -

—-0.01 A

Y(m)

—-0.02

—-0.03

-0.04 4

-0.05 A

|
- Referans
e DVM Tabanl Uyarlamali PID cikisi
—  Klasik PID cikisi

L ' ' Ll L

0 5 10 15 20 25 30 35 40
Zaman(s)

Sekil 5.27 : Zamanla azalan yiik degisimi i¢in y ekseni referans ve ¢ikis pozisyon

degerleri.
Konum Z
014 - - Referans
~ DVM Tabanh Uyarlamali PID cikis!
013 A —— Klasik PID cikisi
0.12 A
€ 011 -
S 011
0.10 -
0.09 -
0.08 -
0 5 10 15 20 25 30 3 40
Zaman(s)
Sekil 5.28 : Zamanla azalan yiik degisimi i¢in z ekseni referans ve ¢ikis pozisyon
degerleri.

DVM tabanli uyarlamali PID ¢ikis ve referansin kartezyen koordinatlarinda ii¢ boyutlu

yoriinge gosterimi Sekil 5.29 da goriilebilir. Destek Vektor Makinast tabanlt

uyarlamali kontrol yonteminin karmagik bir yoriingede ve zamanla azalan yiik
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karsisinda sabit katsayili klasik PID yapisina gore kartezyen koordinatlarda yoriinge
izleme performansinin basarili oldugu gorilmistiir. Yik etkisi arttikga Onerilen

kontrol yapisinin performans: artmaktadir.Ug farkli yiik profili altinda yoriinge takip

performansi Cizelge 5.3 dedir.

Yoriinge
— Referans
DVM Tabanl Uyarlamali PID gikist
— Klasik PID cikis!

0.120
0.115
0.110

0105
10f™

028 -0.04

Sekil 5.29 : Zamanla azalan yiik igin referans ve ¢ikis yoriingeleri kartezyen koordinat
gosterimi.

Cizelge 5.3 : Yiik altinda ydriinge takip performanslar1 karsilagtirmasi.

Ani Degisen Yiik Anahtarlamali Zamanla Azalan
Profili Yiik Profili Yiik Profili
DVM
Tabanlh DVM Tabanh DVM Tabanh
Uyarlamali Uyarlamal1 Uyarlamali
PID PID PID PID PID PID
RMS X(m) 0,0101 0,0014  0,0031 0,0004 0,0103 0,0011

RMS Y(m) 0,0211  0,0050  0,0052 0,0015 0,0221 0,0035

RMSZ(M) 00133 00016 00033 00005 00142 0,002
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5.4 Zamanla Azalan Yiik Altinda Geg¢ici Hal Performansi Karsilastirmasi

Kartezyen koordinatlara etki eden 3 eklem i¢in basamak fonksiyonu referans girisine
gore yik altinda yilizde asim miktari, yilikselme ve yerlesme zamanlari
karsilastirilmistir. Degerler Cizelge 5.4 de goriilebilir. Yk profili olarak Bolim 5.3.2

deki zamanla azalan yiik uygulanmistir.

Cizelge 5.4 : Yiik altinda PID performanslar1 karsilagtirmasi.

DVM Tabanh
1.Eklem PID Uyarlamal1 PID
%0S 4,04 5,48
Tr(sn) 0,62 0,12
Ts(sn) 8,6 2,08
DVM Tabanl
2.Eklem PID Uyarlamali PID
%0S 0,08 0,18
Tr(sn) 16,56 1,76
Ts(sn) 31,90 3,76
DVM Tabanh
3.Eklem PID Uyarlamali PID
%0S 0,24 0,58
Tr(sn) 22,34 2,60
Ts(sn) 30,74 3,76

Referans ve ¢ikis eklem agilar1 Sekil 5.30, 5.31 ve 5.32 dedir. Yiik altinda gegici hal
performans parametreleri agisindan iki kontrolor yapisi karsilastirildiginda, DVM
tabanli uyarlamali kontrolor uygulandiginda verilen referansa gore yiikselme ve
yerlesme zamani ile birlikte siirekli hal hatasinin da biiyiik oranda iyilestigi

gorilmektedir.
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Eklem 2(rad)

Eklem 1

Eklem 1(rad)
(=] (=] [=]
w o+ w

o
N

01 - Referans
~  DVM Tabanli Uyarlamal PID gikist
— Klasik PID cikist

0.0 : . . . . : : . .

0 5 10 15 20 25 30 35 40
Zaman (s}

Sekil 5.30 : Yiik altinda 1.eklem referans ve ¢ikis ag1 degerleri.

Eklem 2
——

0.5 -

0.4 -

0.3 4

0.2 -

T - Referans

~ DVM Tabanli Uyarlamali PID cikis!

0.0 A — Klasik PID cikisi

0 5 10 15 20 25 30 35 40
Zaman (s}

Sekil 5.31 : Yiik altinda 2.eklem referans ve ¢ikis ac1 degerleri.
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Eklem 3(rad)

Eklem 3

0.25 4

0.20 -

0.15 -

0.10 4 - Referans
~  DVM Tabanlt Uyarlamali PID cikisi
—  Klasik PID cikist

0 5 10 15 20 25 30 35 40
Zaman (s}

Sekil 5.32 : Yiik altinda 3.eklem referans ve ¢ikis ag1 degerleri.
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6. SONUC VE ONERILER

Bu tez caligmasi kapsaminda, robotik kollarin destek vektor makinesi tabanli
uyarlamali model 6ngoriilii kontrolii saglanmistir. Onerilen destek vektdr makinasi
tabanli uyarlamali kontrol yonteminin basit ve karmasik farkli yoriingelerde ve
Ozellikle zamanla degisen yiik karsisinda sabit katsayili klasik PID yapisina gore
kartezyen koordinatlarda yoriinge izleme performansinin %10-14 oraninda daha
basarili oldugu goriilmistiir. Yiik etkisinin fazla oldugu yerlerde onerilen kontrol
yonteminin yoriinge izleme performansi artmaktadir. Ayrica gegici hal performans
parametreleri agisindan karsilastirildiginda, DVM tabanli uyarlamali kontroliin verilen
referansa gore yiikselme ve yerlesme zamaninin yeterli seviyede oldugu goriilmiistiir.
Destek vektér makinast modelindeki hiper parametrelerin egitim verilerinin
ezberlenmesinden ¢ok Ogrenilmesi dogrultusunda optimize edilmesi, model
tahminlerindeki dogruluk oranini arttirdigindan model tabanli uyarlamali PID

kontroldr performansinda biiyiik oranda iyilesme saglanmustir.

Tezde ilk olarak; DVR yontemi yardimiyla ¢evrimdisi uyarlamay1 saglayacak robot
kol dinamik modeli olusturulmustur. Elde edilen bu model, uyarlama yapisinin ana
unsuru olan referans modeli olusturmaktadir. Bozucu etki altinda da konum izleme
hatasinin korunmasi, bu model tabanli uyarlama mekanizmasinin yiike gére optimum

kontrol ¢ikisini vermesi ile saglanmaktadir.

Robot kol yoriinge takip kontroliinii saglayan PID denetleyicinin parametreleri; gergek
sistem ve DVR modeli cevabi arasindaki hatayr optimize edecek sekilde
uyarlanmaktadir. Tahmin edilen modelin bagarisina gore yoriinge izleme perfornanisni
artmaktadir. Egitim verilerinin kapsami ve uygulanan DVR tahminleyicisinin
parametreleri model basarisin1  etkilemekte ve dolayli yoldan robot kol

denetleyecisinin performansini olugturmaktadir.
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Tezde oOnerilen DVM ile uyarlamali model ©ongoriilii kontrol yapisi asagidaki

ozellikleri sayesinde robot kollarda pozisyonlama probleminde ¢6ziim sunar.

e Model tabanli uyarlama mekanizmasi farkli profillerdeki yiik etkisi gibi
bozucu etkiler altinda, referans konum izleme performanisinin ayni basarida
devam ettirilmesini saglar.

e DVR yontemi ile modelleme hatalar1 minimize edilerek uyarlama
mekanizmasinin hassas ¢aligmasi saglanir.

e DVM ile uyarlamali model Ongoriilii denetleyici yapisinin beraber

kullanilmasi, yoriinge izlemede keskin ve hassas kontrolii saglar.

Ogretilmis destek vektdr makinasi modeli ile uyarlanan PID kontroldr yapisi, tibbi
uygulamalarda kullanilan hafif yapili robotlarin yiik altinda hassas pozisyonlama
problemi karsisinda iyi bir ydOriinge izleme performansi olusturacagi
degerlendirilmistir. Egitim verisinin ¢esitli senaryolarda genisletilerek yoriinge takip
performansinin artirilmasit gelecek calismalarin konusu olacaktir. Ayrica ¢evrimici
uyarlama kullanilarak; &gretilen model disindaki yoriinge noktalarinda da hassas

pozisyon takibi saglanabilir.
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