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1. GİRİŞ 

 

 

1.1. Araştırmanın Konusu, Amacı ve Önemi 

 

 

Makine öğrenmesinin gelişimi son yıllarda hızla artmış ve bu konuda pek çok 

algoritma geliştirilmiştir. Şimdiye kadar, kümelenmiş verilerde karışık etkili makine 

öğrenmesi modellerinin performanslarını inceleyen yalnızca bir çalışmaya rastlanmıştır 

(Ngufor ve ark., 2019). Ngufor ve ark. (2019) çalışması hariç olmak üzere, bu çalışma 

literatürde karışık etkili makine öğrenmesi algoritmasını farklı senaryolar altında 

karşılaştıran ilk çalışma olacaktır. 

 

 

Bu tez çalışmasında, kümelenmiş verilerin sınıflamasında kullanılan geleneksel 

modellerden doğrusal karışık etkili model (LME), random forest ile yeni bir yaklaşım 

olan karışık etkili makine öğrenmesi modelinin etkinlikleri karşılaştırılacaktır.  

 

 

 

1.2. Karışık Etkili Makine Öğrenmesinin Tarihçesi 

 

 

Gauss süreci ve karışık etkili modellerin çoğunluğu, ortalama fonksiyonunun 

doğrusal bir regresyon fonksiyonu olduğunu varsayar. Ancak bu doğrusallık varsayımı 

genelde ya sağlanamaz ya da varsayım göz ardı edilmek zorunda kalınır. Ortalama 

fonksiyonunu doğrusal bir şekilde değil de doğrusal olmayan bir şekilde modelleyen veri 

madenciliği yöntemlerine literatürde az rastlanmıştır. Ağaç arttırma veya random forest 

gibi modern denetimli makine öğrenimi tekniklerini karışık etkili modellerle ve özellikle 

Gauss süreçleriyle birleştirme konusunda çok az araştırma yapılmıştır. 
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Hajjem ve ark. (2011), Sela ve Simonoff (2012), Fu ve Simonoff (2015) ortalama 

fonksiyon için regresyon ağaçlarını kullanmışlardır. Hajjem ve ark. (2014) ise boylamsal 

verilerde kullanılan kümelenmiş rastgele etki modelleri için random forest kullanarak 

parametrik olmayan, makine öğrenimine dayalı yaklaşımlar önermiştir. 

 

 

Hajjem ve ark. (2011, 2014) karışık etkili modeller için bir beklenti 

maksimizasyonu (EM) algoritmasından (Dempster ve ark. 1977) esinlenen bir yaklaşım 

önermektedir (Laird ve ark., 1982). Bu yöntem ağacın bölünme sürecinde farklı zaman 

dilimlerinde tekrarlı olarak ölçülen ortak değişkenleri kullanır ve bu ortak değişkenlerle 

ilgili uygun rastgele etkileri ele alır. 

 

 

Ayrıca, Sela ve Simonoff (2012), Fu ve Simonoff (2015) ilk olarak, ağaç 

algoritması kullanarak bölünmeyi öğrenen ve ikinci olarak, ağaç katsayılarını ve 

kovaryans parametrelerini tahmin eden geleneksel doğrusal karışık etkiler model 

yöntemini içeren yinelemeli bir algoritma kullanmıştır. Bu yöntemlerin ortak özelliği, 

iteratif olarak (i) bir makine öğrenimi tekniği kullanarak ortalama fonksiyonu 

öğrenmeleri, (ii) rastgele etkilerin tahminlerini hesaplamaları ve (iii) kovaryans 

parametrelerini tahmin etmeleridir. 

 

 

Özellikle ortalama fonksiyon, tekrar tekrar tahmin edilmesi gereken random 

forest gibi karmaşık bir modelden oluştuğunda bu yaklaşımlar hesaplama açısından 

zorlu hale gelebilir. Ek olarak, bu algoritmaların yakınsama garantisi yoktur. Sela ve 

Simonoff (2012), Fu ve Simonoff (2015), Hajjem ve ark. (2011), Hajjem ve ark. (2014), 

uygun bir E-adımı içermediklerinden karışık etkili modeller için doğru şekilde belirlenen 

EM algoritmalarına karşılık gelmez (Laird ve ark., 1982) ve bu nedenle bu 

algoritmaların yakınsayıp yakınsamadığı ve hangi değerlere yaklaştığı açık değildir 

(Sigrist, 2020). 
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Karışık etkili modeller için EM algoritmasındaki E-adım, ilk olarak, mevcut 

kovaryans parametrelerindeki çok değişkenli normal olabilirliğin ortalama fonksiyonu 

için bir en çoklayıcı (maksimizer) belirleyerek, rastgele etkiler için tahmin elde eder ve 

sonra bu ikisini tüm verinin log-olabilirlik beklentisini hesaplamak için kullanır (Laird 

ve ark., 1982). 

 

 

Bununla birlikte, Hajjem ve ark. (2011), Hajjem ve ark. (2014) sabit kovaryans 

parametreleri için çok değişkenli normal olabilirliğin en çoklayıcısı olarak ortalama 

fonksiyonun optimize edicisini bulmaz. Bunun yerine, ilk olarak, ortalama fonksiyonu 

tahmin etmek için rastgele etkilerin tahmin edilen değerlerini yanıt değişkeninden 

çıkardıktan sonra elde edilen bağımsız bir normal olasılığı kullanılır; ikinci olarak, 

rastgele etkiler için tahminler elde edilir, üçüncü olarak; kovaryans parametrelerinin 

tahminleri bulunur (M- adım) ve bu üç adım yakınsama sağlanana kadar yinelenir. 

 

 

Sela ve Simonoff (2012), Fu ve Simonoff (2015) ilk olarak yanıt değişkeninden 

rastgele etkilerin tahmin değerlerinin çıkarılmasından elde edilen bağımsız normal 

olabilirliği kullanarak ağaç yapısının tahminleri ile, ikinci olarak, klasik doğrusal karışık 

etkiler modeli kullanarak yaprak değerler ve kovaryans parametreleri arasındaki 

tahminleri yinelemişlerdir. Aslında bunun tam bir EM algoritması olduğu söylenemez, 

çünkü log-olabilirlik beklentisini hesaplayan bir E-adımı içermemektedir (Sigrist, 2020). 

 

 

Bassetti ve ark. 2015 yılında siyasal şiddetin bazı ekonomik göstergelerle ilişkili 

olduğunu göstermek için, Genelleştirilmiş Karışık Etkili Regresyon Ağacı (GMERT) 

analizini kullanmışlardır. Bu yöntem, boylamsal veriler için rastgele etki model yapısını 

bir ağaç regresyon yönteminin esnekliğiyle birleştirmiştir. Bu yöntem regresyon 

fonksiyonunu tahmin etmek için parametrik olmayan bir yöntemdir. 2002–2007 

döneminde siyasal şiddete etki eden faktörler belirlenmiş ve bu etkenlerin makine 

öğrenmesi yöntemi kullanılarak hem sınıflama yapısını göz önünde bulundurmuş hem 

de öldürülen ve yaralanan kişilerin tahminleri elde edilmiştir. Terör saldırıları, düşük 
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eğitim endeksli (0,52'den az) ve kişi başına yüksek gelir (1817 doların üzerinde) ile 

karakterize edilen ülkelerde yoğunluk gösterirken, eğitim endeksi 0,52'den yüksek olan 

ülkelerde yılda ortalama 47,33 saldırı gerçekleşmiştir. 

 

 

Natarajan (2019) çalışmasında NBA oyuncu seçimi tahmini için karışık etkili 

model oluşturmuştur. Öne çıkan basketbol oyuncularının sözleşmelerini etkileyen 

faktörler karışık etkili model ile sunulmuştur. Natarajan (2019), şut sayısı, top kullanma 

oranı, artı eksi istatistiği ve her oyunda alınan puan gibi parametreleri kullanarak en iyi 

oyuncuları tahmin eden modeli sunmuştur. Bulgulara göre Karışık Etkili Random Forest 

(MERF) modelinin örneklem içi ve örneklem dışı performansı random forest ve gradyan 

destekli makine öğrenme yöntemlerine göre yüksek çıkmıştır.  

 

 

Karışık Etkili Random Forest yönteminin ele alındığı bir başka çalışma ise 2019 

yılında yayımlanan Galeshchuk ve Qiu’nun (2019) makalesidir. Twitter’ın, fikirlerin 

hızlı ve net bir şekilde paylaşılmasına yardımcı olan sosyal bir platform olduğu ve bu 

platform, kısa metinler yayınlamak için eşit haklar sunsa da, bu mesajların sıklıkla 

çektiği ilginin, kullanıcının gerçek dünyadaki durumuna bağlı olduğu belirtilmiştir. 

Dolayısıyla, gerçek hayattaki yüksek profilli fenomenlerin tweet'lerinin, toplumun 

ilgisini artırma olasılığı, yapay tabanlardan gelen mesajlara göre daha yüksek olacaktır. 

Makale, bu tür fikir oluşturucularını Twitter'da otomatik olarak algılayan gelişmiş 

sınıflandırıcıyı ayrıntılı olarak ele almış olup, yaklaşım yöntemi olarak Karışık Etkili 

Random Forest yöntemini kullanır. Önerilen tekniğin doğruluğu ve kesinliği ile birlikte, 

örneklem dışı verilerde diğer makine öğrenimi sınıflandırıcılarının sonuçlarından daha 

iyi performans gösterdiği açıklanmıştır. Doğruluk oranı %80,7 bulunarak, lojistik 

regresyon, karar destek makineleri, radyal baz fonksiyonu, random forest ve gradyan 

destekli makine modellerini geride bırakmıştır.  

 

 

Beltempo ve ark. (2020) makine öğrenimi modellerinden GMERT analizini 

kullanarak yeni doğan yoğun bakım biriminde nozokomiyal enfeksiyonların ve tıbbi 
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kazaların başlangıcını tahmin etmeyi amaçlamıştır. Model, önemli değişkenleri 

belirlemede kullanılmıştır ve sonuç olarak; teşhis ilişkili gruplar, normal çalışma saatleri, 

fazla mesai, kabul oranları, doğum ağırlığı ve meslek oranları ana parametreleri 

oluşturmuştur. 

 

 

Cochrane ve ark. (2021) yayımladıkları çalışmada, geleneksel Doğrusal Karışık 

Etkiler modelini, MERF adı verilen yarı parametrik, doğrusal olmayan bir modelle 

birleştiren bir Topluluk Karışık Etkiler Modeli sunmaktadır. Bu modeli kullanarak, 

laboratuvar deneyleri sırasında incelenen 44 uyku kaybı yaşayan katılımcıdan 

demografik, uyku ve bilişsel test verilerini içeren bir veri ile sürekli dikkat testi olan 

Psikomotor Vigilance Görevi (PVT) üzerindeki performansı tahmin edilmek istenmiştir. 

Bir bireyin uyku kaybı sonrası bilişsel performansının nasıl üstesinden gelindiğini 

tahmin eden bir topluluk modeli geliştirmişlerdir. MERF, kümelenmiş veriler için 

karışık modelleme yaklaşımlarının başarısını random forest algoritmasının güçlü 

yönleriyle birleştirmiştir. 

 

 

Zhou ve ark. (2021) monoton otomatik sürüşte sürücü yorgunluğuna etki eden 

değişkenleri tahmin etmek için GPBoost ve SHAP modellemesini kullanmışlardır. 

Ayrıca; doğrusal regresyon, doğrusal, karesel, gaussçu destek vektör makinesi, fine (ince) 

ağaç, random forest, XGBoost ve GPBoost modellerinin uygulamalı olarak 

karşılaştırmasını göstermişlerdir. 

 

 

Levy ve ark. (2021), Nanostring GeoMx üzerinde Dijital Mekansal Profilci 

kullanılarak toplanan uzamsal protein belirteçlerinin değerlendirilmesi ve kolon 

metastaz tahmini için Karışık Etkili Makine Öğrenmesi yöntemlerini karşılaştırmalı 

olarak göstermişlerdir.  

 

 

Fontana ve ark. (2021), Sela ve Simonoff’un (2012) geliştirdiği RE-EM ağacını 

genelleştirmeyi amaçlamışlardır. Ayrıca, bu yöntem kümelenmiş veri yapısını 
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geleneksel çok düzeyli modeller gibi ele alır. GMET adını verdikleri bu model, yanıt 

değişkenini bir Genelleşitirlmiş Doğrusal Model (GLM) aracılığıyla (yanıt ailesi 

dağılımına bağlı olan uygun bağlantı fonksiyonlarını kullanarak) tahmin eder. Bağımlı 

değişken olarak tahmin edilen yanıt değişkenini kullanarak bir regresyon ağacı oluşturur 

ve ağaç tarafından tahmin edilen sabit etkiler kısmını sapma olarak kullanır ve karışık 

etkiler modeli ile rastgele etkiler kısmını tahmin eder. GMET'in performansının, diğer 

ağaç tabanlı karışık etkili modellere göre ((GLMM), BiMM (Speisr ve ark., 2020), 

GLMERT (Fokkema ve ark., 2018), GMERT (Hajjem ve ark., 2017)) veriler doğrusal 

bir yapıya sahip olduğunda daha iyi ve yakınsama süresinde daha hızlı olduğunu 

göstermiştir. 

 

 

Tezin karışık etkili makine öğrenimi ile birleşecek olan Gauss süreçleri, son on 

yılda makine öğrenimi topluluğundan büyük ilgi görmüştür. İlk olarak bu terim 

1940’larda Robert Winner ve Kolmogrov tarafından ortaya atılmış ve zaman serileri 

çözümlemesinde açıklanmıştır (Whittle, 1963). Ardından 1950'lerde Güney Afrika'daki 

Witwatersrand’daki altın yataklarının modellenmesi üzerinde çalışan Danie Krige 

tarafından geliştirilmiştir. Formülasyon, 1963 yılında Fransız matematikçi Georges 

Matheron tarafından resmileştirilmiştir (Matheron, 1963). Geliştirilen yöntem kriging 

olarak biliniyordu ve bu terim istatistik literatüründe kullanılmaya devam etmektedir 

(Ashcroft, 2021). 

 

 

 

1.3. Doğrusal Karışık Etkili Model 

 

 

Genel olarak, bir doğrusal karışık etkili model aşağıdaki koşulları sağlayan 

herhangi bir model olabilir. 

 

 

𝑦𝑖 = 𝑋𝑖𝛽 +  𝑍𝑖𝑏𝑖 + 𝜀𝑖,  
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𝑏𝑖~ 𝑁(0, 𝐷),  

𝜀𝑖 ~ 𝑁(0, 𝜎2𝐼𝑛𝑖
), 

Cov(𝑏𝑖, 𝜀𝑖) = 0, 

𝑖 = 1,2, … , 𝑁.        (Eşitlik 1.1) 

 

 

Modelde 𝑦𝑖 i. birey için 𝑛𝑖 boyutlu yanıt vektörü, 1 ≤i ≤N, N: birey sayısı, 𝑋𝑖 ve 

𝑍𝑖  sırasıyla (𝑛𝑖  ×  𝑝) ve (𝑛𝑖  × 𝑞) boyutlu bilinen açıklayıcı değişkenler matrisleri, 𝛽 

sabit etkileri içeren p-boyutlu vektör, 𝑏𝑖 rastgele etkileri içeren q-boyutlu vektör, 𝜀𝑖 hata 

bileşenlerini içeren 𝑛𝑖-boyutlu vektördür. Son olarak, D, 𝑑𝑖𝑗 =  𝑑𝑗𝑖 olmak üzere, ( 𝑞 × 𝑞) 

boyutlu genel kovaryans matrisi, ve 𝜎2𝐼𝑛1
 ( 𝑛𝑖 × 𝑛𝑖 ) boyutlu kovaryans matrisidir 

(Verbeke ve Molenbergs, 2000). Rastgele etkilerin sıfır ortalama ve varyans kovaryans 

matrisi D ile normal dağıldığı varsayılır ve 𝜀𝑖  hata terimlerinin bağımsız olduğu 

varsayılır. 

 

 

𝛽  sabit etkilerin yorumu, basit doğrusal regresyon modelindeki gibidir. İlgili 

değişkendeki bir birim artışın 𝑦𝑖  ortalamadaki değişimi gösterir. 𝑏𝑖  rastgele etkiler i. 

denek için regresyon parametrelerinin bir alt kümesi olarak popülasyonda diğerlerinden 

nasıl saptığı şeklinde yorumlanır. 

 

 

Karışık etkili modellerin avantajı, hem popülasyonda değişkenin ortalama 

yanıtının nasıl değiştiğini açıklayan parametreleri hem de zamanla bireysel trendlerin 

nasıl değiştiğini tahmin eder (Pinheiro ve Bates, 2000; Verbeke ve Molenberghs, 2000). 
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1.4. Karışık Etkili Makine Öğrenmesi (MEml) 

 

1.4.1. Karışık Etkili Makine Öğrenmesi Formülasyonu 

 

 

MEml, güçlü bir makine öğrenme algoritması kullanarak Eşitlik 1.2’deki sabit 

etkiler bileşenini 𝑓(𝑥𝑖) ve GLMM (Genelleştirilmiş Karışık Etkili Model) kullanarak 𝑏𝑖 

rastgele etkiler değerini tahmin eder. 

𝜂𝑖𝑡 = 𝑓(𝑥𝑖) + 𝑏𝑖
𝑇𝑧𝑖       (Eşitlik 1.2) 

𝑦𝑖
∗ = 𝑓(𝑥𝑖) + 𝑏𝑖

𝑇𝑧𝑖 + 𝜀𝑖
∗      (Eşitlik 1.3) 

f: bilinmeyen fonksiyondur. 

 

 

Eşitlik 1.3’de f ağaç tabanlı makine öğrenme algoritmaları kullanılarak tahmin 

edilir. Bunlar; random forest (Breiman ve ark., 1984), gradyan destekli makine (GBM) 

(Friedman, 2001), model tabanlı özyinelemeli bölümleme ve koşullu çıkarım ağaçlarıdır 

(Zeileis ve ark, 2008). Ağaç tabanlı öğrenme algoritmaları kolay yorumlanabilir olduğu 

için daha sık tercih edilmektedir. RF (Random Forest) ve GBM, bir model topluluğu 

oluşturan ve daha sonra tahminleri birleştiren topluluk makine öğrenme yöntemleridir. 

 

 

RF'de eğitim setindeki gözlemlerin rastgele örnekleri ortalama (avareging) ve oy 

çokluğu (majority vote) ile birleştirilen tahminleri, karar ağaçları tarafından öğrenilir. 

Oy çokluğu yöntemi ise, bir modelde yanlış tahmin edilen imgenin başka modellerde 

doğru tahmin edilmesiyle yanlış tahminin düzeltilebilmesini sağlar. Ortalama yöntemi 

regresyon için, oy çokluğu yöntemi ise sınıflamada kullanılır (Karakaş, 2019). 
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1.5. Karışık Etkili Regresyon Ağacı (MERT) 

 

 

Hajjem ve ark. 2011 yılında MERT ile, rastgele etkileri EM algoritması 

kullanarak elde ettikten sonra, sabit etkileri standart bir regresyon ağacı yöntemiyle 

kestirmiştir. Bu yaklaşım, yanıt değişkeni ile sabit etkiler arasında doğrusallık 

varsayımını gerektirmez, ancak rastgele etkilerle ilgili olarak doğrusal karışık etkili 

modellerle aynı varsayımların sağlanması gerekir.  

 

 

Karışık etkili regresyon ağacı modeli aşağıdaki gibidir:  

𝑦𝑖 = 𝑓(𝑋𝑖) + 𝑍𝑖𝑏𝑖 + 𝜀𝑖𝑡, 

𝑏𝑖~𝑁(0, 𝐷), 

𝜀𝑖~ 𝑁(0, 𝜎2𝐼𝑛𝑖
), 

𝑖 = 1,2, … , 𝑁.        (Eşitlik 1.4) 

 

 

Sabit kısım hariç tüm nicelikler klasik doğrusal karışık etkili modeldeki gibi 

gösterilmiştir. 𝑓(𝑋𝑖), artık 𝑋𝑖𝛽 doğrusal kısım yerine geçer. Bu kısım, ağaç ya da orman 

ile kestirilecektir. 𝑍𝑖𝑏𝑖 rastgele etkilerin doğrusallık varsayımını sağlaması gerekir. ML-

tabanlı EM-algoritması için akış diyagramı Wu ve Zhang’da (2006) açıklanmıştır. Yanıt 

değişkenini tahmin etmek için MERT / MERF modelini kestirmede kullanılan i 

kümesine ait yeni bir j gözleminin ortalama popülasyon ağaç / orman tahmini 𝑓(𝑥𝑖𝑗) ve 

kendi kümesindeki 𝑍𝑖𝑏̂𝑖  rastgele kısmın tahmini kullanılır. Modeli eğitmek için 

kullanılan örnekte yer almayan bir kümeye ait yeni bir gözlem için, yalnızca karşılık 

gelen 𝑓(𝑥𝑖𝑗) ortalama popülasyon ağaç / orman) tahmini alınabilir. Bu nedenle,  

 

 

1. Bilinen bir küme için tahmin = 𝑓(𝑥𝑖𝑗)  + 𝑍𝑖𝑏̂𝑖 
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2. Yeni küme için tahmin = 𝑓(𝑥𝑖𝑗) 

şeklindedir. 

 

 

 

1.6. Karışık Etkili Random Forest (MERF) 

 

 

Random forest yönteminin kümelenmiş veri için kullanılan bir uzantısı olan 

karışık etkili random forest yöntemi 2014 yılında Hajjem ve ark. tarafından 

geliştirilmiştir. MERT'in bir uzantısı olarak ortaya konmuştur. Yöntem 2017 yılında 

MERF adlı bir Python paketinde uygulanmıştır (Hajjem ve ark., 2014). MERF 

algoritması, MERT ile aynı şekilde çalışır ve rastgele etkiler üzerinde aynı varsayımlara 

sahiptir. Bununla birlikte, sabit etkileri tahmin etmek için tek bir regresyon ağacı 

kullanmak yerine random forest kullanılır. Rastgeleleştirme yoluyla ilişkili hale 

getirilmiş birçok regresyon ağacının toplanması daha doğru tahmin elde edilmesini 

sağlar. 

 

 

Eşitlik 1.1’de gösterilen LME modelinde olduğu gibi, bu modeldeki terimler 

neredeyse aynıdır, sadece 𝑋𝑖𝛽  'nın doğrusal sabit etkisi doğrusal olmayan f( ⋅ ) 

fonksiyonuyla yer değiştirir. Doğrusal karışık etkili modelde sabit etkiler, basit 

parametrik bir biçimde modellenir. Oysa çok sayıda ortak değişken (sabit etki) olduğu 

durumda, modele eklenmesi gereken sabit etkilerin sayısı ve birbirleri ile olan 

etkileşimleri de artacak ve bu karmaşık yapının modellenmesi güçleşecektir. Ayrıca 

sabit etkinin sayıca fazla olduğu durumda model seçimi de zorlaşacaktır. Doğrusal 

modeller, kayıp veri içeren değişkenleri veri madenciliği yöntemleri kadar kolay ele 

alamamaktadır. Sabit etkiler ile yanıt değişkeni arasındaki doğrusal olmayan ilişki 

random forest yöntemi ile öğrenilmektedir. Bu regresyon modeli gradyan destekli ağaç 

veya derin sinir ağı gibi doğrusal olmayan herhangi bir regresyon modeli olabilir. 
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1.7. Topluluk Yöntemleri 

 

1.7.1. Bagging (Torbalama) 

 

 

Bu algoritma, bootstrap ve aggregating (toplama) teriminin kısaltılmış hali olup, 

Breiman tarafından 1996 yılında ortaya atılmıştır (Yangın, 2019). Torbalama 

algoritmasının amacı, eğitim veri kümesi kullanarak rastgele yeni veri kümeleri 

oluşturup farklılıkların oluşmasını ve böylece sınıflandırma başarısını arttırmaktır. 

Ayrıca, eğitim veri kümesinden, yerine koyarak rastgele seçim yöntemi ile yeni eğitim 

kümeleri türeterek sınıflandırma modelini yeniden eğitmeyi amaçlamaktadır. Torbalama 

yönteminde yapılması gereken ilk adım, veri kümesini eğitim kümesi ve test kümesi 

olarak bölmektir. N tane örneklem içeren eğitim kümesinden, yerine koyarak rastgele 

seçim yöntemiyle yine n tane örnekleme sahip bir veya birden fazla yeni bir eğitim 

kümesi üretilir. Torbalama yöntemiyle oluşan topluluktaki her bir sınıflandırıcı, 

oluşturulmuş farklı örneklemler içeren eğitim kümesi ile eğitilir. Her bir sınıflandırıcının 

sonucu çoğunluk oylaması ile birleştirilir (Yangın, 2019; Yılmaz, 2014; Çoşkun, 2020; 

Demirsöz ve ark., 2021). 

 

 

 

1.7.2. Boosting (Arttırma) 

 

 

Arttırma algoritması Schapire tarafından 1999 yılında geliştirilmiştir. Arttırma 

algoritması, yavaş öğrenmeye dayalı, sıralı bir yöntemdir ve hatadan öğrenmeyi 

amaçlamaktadır. Bu algoritmalar, yüksek hassasiyetli modeller oluşturmak için düşük 

hassasiyetli birkaç modeli birleştirmektedir. Amaç, her iterasyonda elde edilen modelleri, 

belirli kurallar çerçevesinde birleştirerek güçlü bir model elde etmeye çalışmaktır 

(Yangın, 2019; Yılmaz, 2019). 
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Çizelge 1.1: Bagging ve boosting süreçleri 

Bagging 

 

Boosting 

 
1. Orjinal eğitim setinden N örnek rastgele 

seçilerek yeniden örneklenmiş eğitim setleri 

oluşturulur.  

 

1. Orjinal eğitim setinden rastgele yeniden 

örneklendirilmiş bir alt eğitim seti oluşturulur.  

 

2. Oluşturulan her bir eğitim seti seçilen öğrenim 

algoritmasına eklenir. 

2. Oluşturulan eğitim seti öğrenim algoritmasına 

sokulur. 

 
3. Tüm sınıflandırıcılardan elde edilen sonuçların 

ortalaması alınarak tek bir model elde edilir.  

3. Tahminlerde hatalı olan örneklerin ağırlıkları 

daha yüksek verilerek ikinci bir yeniden 

örneklendirilmiş eğitim seti oluşturulur.  

 

 4. 3. adım M kere gerçekleştirilerek tüm 

modellerden elde edilen sonuçların ağırlıklı 

kombinasyonu alınarak tek bir model elde edilir. 

(Yıldırım, 2017). 

 

 

 

1.8. Gauss Süreci 

 

 

Gauss süreçleri (Williams ve Rasmussen, 2006) son teknoloji tahmin doğruluğuna 

ulaşan ve olasılıksal tahminler yapmaya olanak tanıyan esnek parametrik olmayan 

fonksiyon modelleridir (Gneiting ve ark, 2007). Olasılıksal gözetimli makine öğrenme 

yöntemlerinden olan bu süreç, hem regresyon hem de sınıflama problemlerinde 

kullanılmaktadır. 

 

  

Gauss süreci, fonksiyonları yaklaştırmak için kullanılan ve parametrik olmayan 

Bayesci bir regresyon yaklaşımı (Ateş, 2020) olan bu Bayesci yaklaşım, olası 

fonksiyonlar üzerinden bir olasılık dağılımı belirler (Knagg, 2020). Bu sürecin 

algoritması, rastgele değişken çiftleri arasındaki doğrusal olmayan ilişkileri modellemek 

için güçlü bir algoritmadır. Gerçek fonksiyonel ilişki konusundaki belirsizliği göstermek 

için uygulanabilecek fonksiyonlar üzerinde bir dağılım tanımlar (Williams ve Rasmussen, 

2006). 
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Bu yaklaşımda parametreler bağımsız özdeşçe dağıtılmış rastgele değişkenler 

olarak görülmektedir. Diğer denetimli öğrenme yöntemleri de her parametre için kesin 

değerleri öğrenir. Gauss süreci regresyonu verilere uygun tüm kabul edilebilir 

fonksiyonlar üzerindeki olasılık dağılımını hesaplar. Önsel nokta belirlenir, eğitim 

verileri kullanılarak sonsal nokta hesaplanır ve ilgili noktalardaki tahmini sonsal ile 

karşılaştırılır. Bu yöntemde ∑(𝑦 − 𝑦̂)2 sonucunun minimum olması gerekir (Ateş, 2020). 

 

 

   Giriş (Ham) verisi       Gauss Süreci             Sinir Ağı             Random Forest   

 

Şekil 1.1: Sınıflandırıcı karşılaştırma çıktıları 

 

 

 

Şekil 1.1’de mavi ve kırmızı noktaları ayırmak için kullanılan farklı yöntemlerle 

öğrenilen sınıflandırma fonksiyonları gösterilmektedir. Yaygın olarak kullanılan ve güçlü 

yöntemler olan sinir ağı ve random forest, eğitim verilerinden uzakta tahminler 

üretmektedir. Gauss süreci, model çıktısını daha kesin bir doğrulukla elde eder, bu yapı 

özellikle kimlik doğrulama ve güvenlik açısından kritik kullanımlarda önemlilik 

göstermektedir (Knagg, 2019). 

 

 

Gauss süreci, parametrik olmayan regresyon, zaman serilerinin modellenmesi 

(Shumway ve Stoffer, 2017), uzaysal (Banerjee ve ark., 2014) ve mekan-zamansal 

(Cressie ve Wikle, 2015) verileri, bilgisayar deneyleri bayes kalibrasyonu (Kennedy ve 

O'Hagan, 2001), pahalı kara kutu fonksiyonlarının optimizasyonu (Jones ve ark., 1998) 

ve makine öğrenimi modellerinde parametre ayarlama (Snoek ve ark., 2012) gibi 
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alanlarda da kullanılır. Ek olarak robotik alanında hareket planlama, konum belirleme, 

lokalizasyon ve eşleme konularında oldukça yaygın bir şekilde kullanılmaktadır 

(Mukadam ve ark., 2016; Yangın, 2016). 

 

 

Gauss süreci regresyonu, insanların tercihleri üzerinden model kurulması gereken 

alanlarda (kullanıcı tercihlerinin anlaşılması gibi) kullanmaktadır. Günümüzde insan 

yürüyüşü, dinozor yürüyüşü, yangın, patlama gibi dinamik animasyonların 

modellemesinde kullanılmaktadır. Çözünürlüğü düşük animasyonlar insanlara izletilerek 

puanlandırmaları istendikten sonra insanların gerçeklik algısı puanlanarak model 

parametreleri son halini almaktadır. Gauss regresyon süreci insanların tercihlerini birer 

fonksiyon olarak modellemektedir. Süreç Bayesci olarak başlatıldığı için ilk başta öncül 

bilgilerle başlayan model sonuçta gerçeğe yakın olmaktadır. Böylece, yüksek maliyetli 

bir iş düşük işlemci maliyeti ile çözülmüş olmaktadır. 

 

 

Gauss süreçleri sadece regresyon probleminde değil, sınıflandırma problemlerinde 

de kullanılmaktadır. Örnek olarak Google’ın sınıflandırma problemleri verilebilir. 

Google’da ‘kedi’ kelimesiyle resim aratıldığında arama motoru kedi olduğunu düşündüğü 

birçok fotoğrafı sonuç olarak vermektedir. Kediye en çok benzeyen tıklandığında bu 

fotoğrafların içinden çoğunlukla kullanıcının ilk olarak basmayı tercih ettiği fotoğraf 

kediye en çok benzeyen fotoğraftır diye kabul edilir. En çok tıklanan yüksek bir oylama 

oranı ile ‘kedi’ olarak sınıflandırır. Daha sonra bu öncül bilgiyi kullanılarak ‘kedi’ 

sınıflandırma probleminde kestirim başarımını artırarak daha sonraki kullanıcıların kedi 

aramasında arama motoru kediye daha çok benzeyen fotoğrafları öne çıkarmaktadır. 
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1.8.1. Gauss Süreci Boosting 

 

 

Model, GPBoost algoritması kullanılarak eğitilir. Bu eğitim, rastgele etkilerin 

kovaryans parametrelerini ve ortalama F(X) fonksiyonunu bir ağaç topluluğu modeli ile 

eğiterek gerçekleşir. Kullanılan algoritma, kovaryans parametrelerini yinelemeli olarak 

öğrenen ve bir gradyan veya Newton artırma adımı kullanarak ağaç topluluğuna ağaç 

ekleyen bir arttırma algoritmasıdır. Kovaryans parametreleri (Nesterov hızlandırılmış) 

gradyan inişi veya Fisher skorlaması kullanılarak öğrenilebilir (Sigrist, 2020). 

 

 

Sonlu örnekler için, arttırma aşırı uyma eğilimindedir ve bunu önlemek için, 

özellikle regresyon görevlerinde erken durdurma uygulanmalıdır. 

 

 

 

1.8.2. Gauss Süreci ile Karışık Etkili Model 

 

 

Kümelenmiş veriler aşağıdaki şekillerdeki gibi modellenebilir; 

 

 

1. Grup yapısı göz ardı edilebilir 

2. Her grup (örn. her öğrenci ya da müşteri) ayrı modellenebilir 

3. Modele gruplama değişkeni (örn. öğrenci veya müşteri kimliği) dahil edilir ve 

kategorik bir değişken olarak ele alınır. Bu uygulanabilir bir yaklaşım olsa da bazı 

dezavantajlara sahiptir. Çoğu zaman, grup başına ölçüm sayısı (örneğin, öğrenci 

başına test sayısı, müşteri başına işlem sayısı) küçüktür ve farklı grupların sayısı 

fazladır (örneğin, öğrenci sayısı, müşteri sayısı, vb.). Bu durumda, modelin 

öğrenmeyi verimsiz hale getirebilecek daha az veriye dayalı birçok parametreyi 

(her grup için bir tane) öğrenmesi gerekir. Ayrıca, fazla sayıda alınan kategorik 

değişkenler ağaçlar için problem teşkil edebilir. 
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4. Gruplama değişkeni rastgele etkiler olarak ele alınır ve Gauss süreci ile karışık 

etkili model yaklaşımı kullanılabilir. 

 

 

Gauss süreci ile karışık etkili modellerde, ilk momentin genellikle sıfır veya 

ortak değişkenlerin doğrusal bir fonksiyonu olduğu varsayılır. Yapılandırılmış 

varyasyon hatası (residual structured variation), daha sonra sıfır ortalamalı Gauss süreci 

ve / veya kümelenmiş rastgele etkiler modeli kullanılarak modellenir. Bununla birlikte, 

hem sıfır ortalama hem de doğrusallık varsayımı genellikle gerçekçi değildir ve bu 

varsayımlar esnetilerek daha yüksek tahmin doğruluğu elde edilebilir (Sigrist, 2020). 

Ayrıca, bir Gauss süreci modelinin ortalama fonksiyonu yanlış tanımlanırsa, böyle bir 

yanlış tanımlanmış modelin kovaryans fonksiyonu, gerçek kovaryans fonksiyonu artı 

ortalama fonksiyonun hata karesine eşit olduğu için sahte ikinci dereceden durağanlık 

meydana gelebilir (Fuglstad ve ark., 2015; Schmidt ve Guttorp, 2020). Bu nedenle, 

potansiyel ikinci derece durağan olmayan artığı hesaba katmaya çalışmadan önce, ilk 

olarak ortalama fonksiyonu doğru şekilde modellemek önemlidir. En son teknolojiye 

sahip denetimli makine öğrenimi algoritmalarında, özellikle arttırma (boosting) ile esnek 

ve potansiyel olarak karmaşık bir fonksiyonun bir dizi tahmin değişkenini bir yanıt 

değişkeniyle ilişkilendirdiği varsayılır. Tahmin edici değişkenlere bağlı olarak, yanıt 

değişkeninin gözlemler arasında bağımsız olduğu varsayılır. Bu, potansiyel artık 

korelasyonunun, yani regresyon fonksiyonu tarafından açıklanmayan korelasyonun göz 

ardı edildiği anlamına gelir. Böyle bir korelasyonu modellemek sadece regresyon 

fonksiyonunun daha iyi öğrenilmesini sağlamaz, aynı zamanda olasılıklı tahminler ve 

gruplar üzerinden ortalamaları veya toplamları tahmin etmek için de önemlidir (Sigrist, 

2020). 

 

 

Kısaca bu yaklaşım, ortalama fonksiyonu ve rastgele etkilerin kovaryans 

yapısının ortalama fonksiyon ile birlikte tahmin edilen parametrelerini, arttırma 

kullanarak aşamalı bir şekilde öğrenen regresyon ağaçları (Breiman ve ark., 1984) gibi 

temel öğrenicilerden oluşan bir toplulukla modellemeyi önermektedir. 
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Makine öğrenmesi literatüründe Gauss süreci ile karışık etkili modellerde 

𝐹(𝑋) = 0 olduğu varsayılırken, Gauss süreci ile karışık etkili modellerde önsel dağılım 

fonksiyonunun Eşitlik 1.5’deki gibi olduğu varsayılır. 

 

 

𝐹(𝑋) = 𝑋𝑇𝛽, 𝛽𝜖ℝ𝑃 ortak değişkenler vektörü   (Eşitlik 1.5) 

 

 

Bu yaklaşımın amacı doğrusallık varsayımını ya da sıfır önsel ortalama 

varsayımını esnetmektir. 

 

 

Algoritmanın temelinde tüm modeller eğitim verileri üzerinde eğitilir ve test 

verileri üzerinde değerlendirilir. Her bir adımda benzetim, kısaca “interpolasyon” ve 

“ekstrapolasyon” test setleri olarak gösterilen iki test veri seti aşağıdaki gibi oluşturulur. 

Kümelenmiş rastgele etkiler modeli için, “interpolasyon” test veri seti, eğitim verilerinde 

olduğu gibi aynı gruplar için rastgele etkilerden oluşur. “Ekstrapolasyon” test verisi, 

eğitim veri setinde yer almayan yeni gruplar için m bağımsız rastgele etkileri 

içermektedir. 

 

 
Çizelge 1.2: Doğrusal ve doğrusal olmayan karışık etkili model yöntemleri için özet bilgi 

 

Yöntem Sabit etkiler/önsel ortalama 

fonksiyon F(⋅) 
Rastgele etkiler (Zb) 

Kümelenmiş rastgele 

etkiler modeli 
Doğrusal F(⋅) Kümelenmiş rastgele 

etkiler 

Gauss süreci modeli Doğrusal F(⋅) /yok Gauss süreci 

Klasik boosting Boosting ile öğrenilmiş doğrusal 

olmayan F(⋅) 
- 

MERT Random tree ile öğrenilmiş 

doğrusal olmayan F(⋅) 
Kümelenmiş rastgele 

etkiler 

MERF Random forest ile öğrenilmiş 

doğrusal olmayan F(⋅) 
Kümelenmiş rastgele 

etkiler 

GPBoost Boosting ile öğrenilmiş doğrusal 

olmayan F(⋅) 
Gauss süreçleri ve/veya 

rastgele etkiler 
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2. GEREÇ VE YÖNTEM 

 

 

 Bu tez çalışmasının amacı kümelenmiş verilerin sınıflamasında kullanılan 

geleneksel modellerden doğrusal karışık etkili model ile yeni birer yaklaşım olan karışık 

etkili makine öğrenmesi modellerinin etkinliklerini incelemektir. Tez kapsamında; veri 

türetme örneklem büyüklüğü, küme sayısı, rastgele etki varyansı ve hata varyansına göre 

farklı senaryolarda yapılmıştır. 

 

 

 Benzetim tekniği için örneklem büyüklükleri 5000, 10000 ve 15000; küme 

sayıları 250, 500, 1000 alınmıştır. 

 

2.1. Benzetim Çalışması 

 

 

Benzetim çalışması kapsamında doğrusal karışık etkili model, MERF ve 

GPBoost yöntemlerinin RMSE değeri bakımından karşılaştırılması iki fonksiyon 

üzerinde gerçekleştirmiştir. Bu fonksiyonlardan ilki doğrusal bir fonksiyondur ve Eşitlik 

2.1’de gösterilmiştir. Ayrıca tek bir gruplama değişkeni kullanılmıştır. Ancak hiyerarşik 

olarak iç içe geçmiş rastgele etkiler ve çaprazlanmış rastgele etkiler kullanılabilir. 

Çalışmada rastgele etki varyansı 1, hata varyansı 1 ve 4 olarak ayrı ayrı alınmıştır. Her 

senaryo 100 kere tekrarlanarak gerçekleştirilmiştir. 

 

 

𝐹 (𝑥) = 𝐶1* 𝑥 + 2       (Eşitlik 2.1) 

 

 

İkinci olarak, doğrusal olmayan bir fonksiyon olan 'Friedman3' fonksiyonu da 

benzetim çalışmasına dahil edilmiştir. 'Friedman3' fonksiyonu ilk olarak Friedman'da 

(1991) yer almıştır ve parametrik olmayan regresyon modellerini karşılaştırmak için 

sıklıkla kullanılmaktadır (Eşitlik 2.2). Bu fonksiyon 4 tahmin edici içeren doğrusal 
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olmayan bir fonksiyondur ve çok boyutlu bir yapıya sahip olduğundan dolayı genellikle 

makine öğrenmesi kapsamında bu fonksiyon kullanılarak y yanıt değişkenine en yakın 

tahmin değeri elde edilmeye çalışılmaktadır. 

 

 

𝐹 (𝑥) =  𝐶2* arctan (
𝑥2𝑥3−

1

𝑥2𝑥4

𝑥1
)     (Eşitlik 2.2) 

 

 

C sabitleri, Eşitlik 2.1 ve 2.2’de gösterildiği üzere F(X)’in varyansı 1'e eşit 

olacak, yani F(X) rastgele etkiler ile aynı güce sahip olacak şekilde seçilmiştir. 

 

 

𝑦 = 𝐹(𝑋) +  𝑍𝑏 + 𝜀, 𝑏 ~ 𝑁(0,   𝜎𝑏
2),  𝜀𝑖 ~ 𝑁(0, 𝜎2)  (Eşitlik 2.3) 

 

 

2.1.1. Kullanılan Sistem Kapasitesi ve Programlar 

 

 

Araştırmanın tüm aşamalarında, Intel(R) Xeon(R) Gold 6136 3 GHz 16 

çekirdekli işlemci özelliğine ve 256 GB rastgele erişimli belleğe (RAM) sahip bir 

sunucu kullanılmıştır. Ayrıca, çalışmadaki analizlerde Python Jupyter Notebook 6.4.8 

kullanılmıştır. 

 

 

Çalışma süresince oluşturulan ve çalıştırılan kodlar, talep üzerine ilgili yazardan 

istenebilir. 

 

 

 

 

 

 

 



20 
 

2.1.2. GPBoost için Model Parametreleri 

 

 

Max_Depth: Ağacın dallarının aşağı doğru uzamasının değeridir. Diğer bir 

deyişle ağacın derinliğidir. Aşırı öğrenmeden kaçınmak için optimum seviyeye 

getirilmelidir. Çok dallanma aşırı öğrenmeye, az dallanma eksik öğrenmeye neden 

olmaktadır. Varsayılan parametre -1 olarak alınmıştır. 

 

 

Learning_rate: Ağaçları ölçeklendirmek için 0-1 arasında verilen bir değerdir. Bu 

değerin küçük olması daha iyi tahmin gücüne yardımcı olmaktadır. Fakat; öğrenim 

süresini ve aşırı öğrenme olasılığını arttıracaktır. Varsayılan parametre 0,1 olarak 

alınmıştır. 

 

 

Iterations: Oluşturulacak ağaç sayısıdır. Farklı algoritmalarda 

“num_boost_round”, “n_estimators”, “num_trees”, “num_iterations” isimleri ile de 

kullanılır. Az olması eksik öğrenmeye, fazla olması aşırı öğrenmeye neden 

olabilmektedir. Ayrıca sayının artması eğitim süresini de arttırmaktadır. Varsayılan 

parametre 32 olarak alınmıştır. 

 

 

Early_stopping_rounds: Aşırı öğrenmeyi engellemek için kullanılan parametredir. 

En uygun adımı bulduktan sonra kaç kez deneme yapılacağı belirtilmelidir. Bu değer 

100 alındığında model en uygun olduğu andan sonra 100 iterasyon daha yapar ve hedef 

parametreler yakalanmasa bile model öğrenmeyi durdurur. Örneğin başlangıç 

parametresinde iterasyon sayısı 2000 verilmiş olsun, en uygun ana 1000. iterasyonda 

ulaştıysa model burada duracaktır (Muratlar, 2020). Varsayılan parametre 5 olarak 

alınmıştır. 
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Verbosity: Her iterasyonda çıktı olarak modelin öğrenim durumu, toplam süre ve 

kalan süre bilgisi gelmektedir. Bu çıktı çok iterasyonun olduğu durumda ekranda çok 

fazla alan kaplamaktadır. Varsayılan parametre 0 olarak alınmıştır. 

 

 

Feature_fraction: 1,0'dan küçükse, her yinelemede (ağaç) rastgele bir öznitelik 

(parametre) alt kümesi seçer. Örneğin, 0,8 olarak alınırsa, algoritma her bir ağacı 

eğitmeden önce parametrelerin %80’ini seçecektir. Varsayılan parametre 1,0 olarak 

alınmıştır. 

 

 

Subsample: Eğitim örneğinin alt örnek oranıdır. Ağaçlara verilen örnekleri 

kontrol etmektedir. Örneğin 0,5 değerine ayarlanırsa, algoritmanın ağaçları büyütmeden 

önce eğitim verilerinin yarısını rastgele örneklemesine izin vermek demektir ve bu da 

aşırı öğrenmeyi önleyecektir. Varsayılan parametre 1,0 olarak alınmıştır. 

 

 

Kullanılan karar ağaçları algoritması ile arttırma algoritmalarının 

karşılaştırılmasının objektif bir şekilde yapılabilmesi amacıyla algoritmalarda kullanılan 

temel parametreler her bir algoritma için aynı girilmiştir. Aynı değerlere sahip 

parametreler sırasıyla; ‘n_estimators’, ‘learning_rate’ ve ‘max_depth’ dir. Yüksek 

max_depth değeri daha kompleks bir model yaratır ve aşırı uyum olasılığını arttırır 

(Coşkun, 2020). 

 

 

 

2.1.2.1. GPBoost için Ayarlama Parametreleri 

 

 

Arttırma algoritmalarından GPBoost, ayar (tuning) parametreleri, ölçüt olarak 

RMSE ile eğitim verileri üzerinde 4 kat çapraz doğrulama kullanılarak ve GPBoost 

model tahminleri için rastgele etkiler göz ardı edilerek seçilmiştir. 
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Şekil 2.1: Eğitim seti için 4 kat çapraz doğrulama kullanılarak oluşturulan parametre ayarı (Ek, 

2020) 

 

 

 

2.1.3. MERF için Model Parametreleri 

 

 

MERF algoritması için MERF Python paketi (versiyon 0.3) kullanılmıştır ve 

MERF algoritmasının yineleme sayısı 100 olarak alınmıştır. Bununla birlikte, MERF 

için, ağaç sayısını {100, 300, 500}, ağaçların maksimum derinliğini ∈ {1, 5, 10} ve 

genelleştirilmiş log-olabilirlik (GLL) kriterini minimum yapma amacıyla, bölünmeler ∈ 

{0,5, 0,75, 1} şeklinde ele alınmıştır. Maksimal bir ağaç derinliği limiti koyulmayıp 

ağaç sayısı 300'e ayarlanmıştır. Bunlar MERF paketinin varsayılan değerleridir (Hajjem 

ve ark., 2014). 

 

 

 

2.2. Hata Ölçüm Parametreleri 

 

2.2.1. Hata Kareler Ortalamasının Karekökü (RMSE) 

  

Hata Kareler Ortalamasının Karekökü (RMSE), artıkların (tahmin hataları) 

standart sapmasıdır. Artıklar, regresyon çizgisi veri noktalarından ne kadar uzakta 

olduğunun bir ölçüsüdür. RMSE, bu artıkların ne kadar yayıldığının bir ölçüsüdür. 
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Başka bir deyişle, verilerin en uygun çizgi etrafında ne kadar yoğun olduğunu söyler. 

Ortalama karekök hata, deneysel sonuçları doğrulamak için klimatoloji, tahmin ve 

regresyon analizinde yaygın olarak kullanılır. RMSE aşağıdaki eşitlikle ifade edilir 

(Glen, 2021). 

RMSE =  √∑
(𝑦̂𝑖−𝑦𝑖)2

𝑛
𝑛
𝑖=1       (Eşitlik 2.4) 
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3. BULGULAR 

 

 

Örneklem büyüklüğünün 5000, 10000 ve 15000, küme sayısının 250, 500 ve 

1000, rastgele etki varyansının 1 ve hata varyansının 1 ve 4 olduğu durumlara göre farklı 

toplamda 108 senaryo oluşturulmuştur. Bu senaryolar için makine öğrenmesi 

yöntemlerine ait sonuçlar çizelgeler ve şekillerle verilmiştir. Tüm senaryolar için 

sonuçlar RMSE, RMSE’ye ait standart sapma ve zaman (saniye) kriterleri çizelge olarak, 

'friedman3' modeline ait başlıca özellik seçimi için önemlilik sıralaması SHapley 

Additive exPlanations (SHAP) tekniği ile şekil üzerinde yapılmıştır.  
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Çizelge 3.1’de örneklem sayısı 5000, küme sayısı sırasıyla 250, 500, 1000 

olduğunda rastgele etkiler varyansı ve hata varyansı 1 olarak alındığında doğrusal 

karışık etkili modelin hata kareler ortalamasının karekökünün MERF ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. Ek olarak, küme sayısı sırasıyla 250, 

500 olduğunda rastgele etkiler varyansı 1 ve hata varyansı 4 olarak alındığında doğrusal 

karışık etkili modelin hata kareler ortalamasının karekökünün MERF ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. Küme sayısı 1000 olduğunda MERF 

modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. 

 

 

Çizelge 3.2’de örneklem sayısı 10000, küme sayısı sırasıyla 250, 500, 1000 

olduğunda rastgele etkiler varyansı ve hata varyansı 1 olarak alındığında doğrusal 

karışık etkili modelin hata kareler ortalamasının karekökünün MERF ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. Ek olarak, küme sayısı sırasıyla 250, 

500, 1000 olduğunda rastgele etkiler varyansı 1 ve hata varyansı 4 olarak alındığında 

doğrusal karışık etkili modelin hata kareler ortalamasının karekökünün MERF ve 

GPBoost modeline göre daha küçük olduğu gözlemlenmiştir. 

 

 

Çizelge 3.3’de örneklem sayısı 15000, küme sayısı sırasıyla 250, 500, 1000 

olduğunda rastgele etkiler varyansı ve hata varyansı 1 olarak alındığında doğrusal 

karışık etkili modelin hata kareler ortalamasının karekökünün MERF ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. Ek olarak, küme sayısı sırasıyla 250, 

500, 1000 olduğunda rastgele etkiler varyansı 1 ve hata varyansı 4 olarak alındığında 

doğrusal karışık etkili modelin hata kareler ortalamasının karekökünün MERF ve 

GPBoost modeline göre daha küçük olduğu gözlemlenmiştir. 

 

 

Çizelge 3.4’te örneklem sayısı 5000, küme sayısı sırasıyla 250, 500 olduğunda 

rastgele etkiler varyansı ve hata varyansı 1 olarak alındığında GPBoost modelinin hata 

kareler ortalamasının karekökünün doğrusal karışık etkili ve MERF modeline göre daha 
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küçük olduğu gözlemlenmiştir. Küme sayısı 1000 olduğunda MERF modelinin hata 

kareler ortalamasının karekökünün doğrusal karışık etkili ve GPBoost modeline göre 

daha küçük olduğu gözlemlenmiştir. Ek olarak, küme sayısı sırasıyla 250, 500, 1000 

olduğunda rastgele etkiler varyansı 1 ve hata varyansı 4 olarak alındığında MERF 

modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. 

 

 

Çizelge 3.5’te örneklem sayısı 10000, küme sayısı sırasıyla 250, 500, 1000 

olduğunda rastgele etkiler varyansı ve hata varyansı 1 olarak alındığında GPBoost 

modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve MERF 

modeline göre daha küçük olduğu gözlemlenmiştir. Ek olarak, küme sayısı sırasıyla 250, 

500, 1000 olduğunda rastgele etkiler varyansı 1 ve hata varyansı 4 olarak alındığında 

MERF modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve 

GPBoost modeline göre daha küçük olduğu gözlemlenmiştir. 

 

 

Çizelge 3.6’da örneklem sayısı 15000, küme sayısı sırasıyla 250, 500,1000 

olduğunda rastgele etkiler varyansı ve hata varyansı 1 olarak alındığında GPBoost 

modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve MERF 

modeline göre daha küçük olduğu gözlemlenmiştir. Ek olarak küme sayısı sırasıyla 250, 

500 olduğunda rastgele etkiler varyansı 1 ve hata varyansı 4 olarak alındığında MERF 

modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve GPBoost 

modeline göre daha küçük olduğu gözlemlenmiştir. Küme sayısı 1000 olduğunda 

GPBoost modelinin hata kareler ortalamasının karekökünün doğrusal karışık etkili ve 

MERF modeline göre daha küçük olduğu gözlemlenmiştir. 

 

 

Beklenen bir şekilde, doğrusal model GPBoost algoritmasından daha hızlıdır. 

Ayrıca, GPBoost algoritmasının 100 benzetim için MERF algoritmasından 4000 kat 

daha hızlı çalıştığı da görülmektedir. 
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GPBoost algoritmasını RMSE değerlerini diğer yaklaşımlardan elde edilen 

RMSE değerleriyle karşılaştıran bağımlı gruplarda t-testleri için p değerleri de 

hesaplanmıştır. Sonuçlar, RMSE açısından GPBoost ile LME ve GPBoost ile MERF 

yöntemleri arasındaki farkın istatistiksel olarak önemli olduğunu göstermiştir (p<0,05) 

(Çizelge 3.1 - 3.6). 

 

 

Çizelgelerde doğrusal model dışında, GPBoost algoritmasının diğer tüm 

yaklaşımlardan önemli ölçüde üstün olduğu görülmektedir. 

 

 
 
  Şekil 3.1: 'doğrusal' fonksiyon için RMSE değerlerine göre 𝜎𝑏

2 = 1 ve 𝜎𝜀
2 = 12  için yöntem 

karşılaştırması (m = 250) 

 

 
 

Şekil 3.2: 'doğrusal' fonksiyon için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 12 için yöntem 

karşılaştırması (m = 500) 
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Şekil 3.3: 'doğrusal' fonksiyon için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 12 için yöntem 

karşılaştırması (m = 1000) 

 

 

 

Şekil 3.4: 'doğrusal' fonksiyon için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 22 için yöntem 

karşılaştırması (m = 250) 
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 Şekil 3.5: 'doğrusal' fonksiyon için RMSE değerlerine göre σb
2 = 1 ve σε

2 = 22 için yöntem 

karşılaştırması (m = 500) 
 

 
 

Şekil 3.6: 'doğrusal' fonksiyon için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 22 için yöntem 

karşılaştırması (m =1000) 
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Şekil 3.7: 'friedman3' fonksiyonu için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 12 için yöntem 

karşılaştırması (m = 250) 

 

 
 

Şekil 3.8: 'friedman3' fonksiyonu için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 12 için yöntem 

karşılaştırması (m =500) 
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Şekil 3.9: 'friedman3' fonksiyonu için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 12 için yöntem 

karşılaştırması (m =1000) 

 
 

Şekil 3.10: 'friedman3' fonksiyonu için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 22 için yöntem 

karşılaştırması (m =250) 
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Şekil 3.11: 'friedman3' fonksiyonu için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 22 için yöntem 

karşılaştırması (m=500) 

 

 

 
 

Şekil 3.12: 'friedman3' fonksiyonu için RMSE değerlerine göre 𝜎𝑏
2 = 1 ve 𝜎𝜀

2 = 22 için yöntem 

karşılaştırması (m = 1000) 
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Şekil 3.13: 'doğrusal' fonksiyon için gerçek ve tahmin edilen sabit etkilerin karşılaştırılması 

(σ𝑏
2 = 1 ve σε

2 = 1, n=5000, küme m = 250) 

 

 

 

Şekil 3.13’te 'doğrusal' fonksiyon için gerçek ve tahmin edilen sabit etkilerin 

karşılaştırılması (σb
2 = 1 ve σε

2 = 1, n=5000, küme sayısı=250) görülmektedir. 

 

 

 

3.1. SHAP tekniği (SHapley Additive exPlanations) 

 

 

Yanıt değişkeninin tahmin edilmesinde her bir özelliğin önemini değerlendirmek 

için SHAP tekniği kullanılmıştır (Lundberg ve Lee, 2017). SHAP tekniğinde her 

özelliğin tahmine katkısını açıklayan Shapley değerlerine dayalı olarak model 

yorumlanabilmektedir (Rodríguez-Pérez ve Bajorath, 2020). Şekil 3.14’e göre 

“değişken1” niteliğinin y yanıt değişkeninin belirlenmesinde tahmin modeline en fazla 

katkıda bulunduğu görülmektedir. 
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Şekil 3.14: 'friedman3' fonksiyonu için (Eşitlik 2.2 için) SHAP değerleri 

 

 
Şekil 3.15:'friedman3' fonksiyonu (Eşitlik 2.2 için) SHAP özet grafiği 

 

Bir değişkenin yüksek SHAP değerine (negatif yönde olduğu için) sahip olması 

tahmini üzerinde yüksek ve pozitif değerlerle ilişkili olması anlamı taşımaktadır (Şekil 

3.15) 
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Şekil 3.15’te 4 değişkenin önem sıralaması gösterilmiştir. SHAP özet grafiği, en 

önemli özellikleri ve bunların veri kümesi üzerindeki etkilerini göstermektedir. Bu 

grafik, 'friedman3' fonksiyonu kullanıldığında 'değişken 2' ve 'değişken 3' ile yanıt 

değişkeni arasında pozitif bir ilişki olduğunu göstermektedir. 'değişken 1' ile yanıt 

değişkeni arasında negatif bir ilişki olduğunu göstermektedir. 

 
 

 
Şekil 3.16: 'friedman3' fonksiyonu (Eşitlik 2.2 için) SHAP etkileşim grafiği 

 
 
 

Şekil 3.16’de 'değişken 2'’nin 'değişken 3' ile sıklıkla etkileşime girdiği 

gösterilmektedir. 
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4. TARTIŞMA 
 

 

 

Karışık etkili modellerde doğrusallık varsayımını esnetmek için genelleştirilmiş 

karışık etkili modeller kullanılması önerilmektedir. Bu, modelin hatalı kurulmasına 

neden olabilir. Bu nedenle kümelenmiş veya boylamsal veriler için gruplandırılmış 

rastgele etki modelleri, parametrik olmayan, makine öğrenmesine dayalı yaklaşımlar 

önerilmiştir.  MERF modeli Manifold AI tarafından, GPBoost modeli ise Sigrist (2020) 

tarafından kullanılmıştır. GPBoost makine öğrenimi algoritması, hem Gauss süreci ve 

karışık etkiler modellerindeki doğrusallık varsayımını esnetmek için, hem de boosting 

konusundaki bağımsızlık varsayımını esnetmek için etkili bir yöntemdir. Karışık etkili 

makine öğrenmesi modeli doğrusal bir fonksiyon içeriyorsa çoğunlukla hem RMSE 

açısından hem de zaman(s) açısından LME yönteminin kullanımı GPBoost ve MERF 

yöntemine göre daha verimli olacaktır, ancak doğrusal olmayan bir fonksiyon içeriyorsa 

genellikle GPBoost yönteminin performansı diğer modellere kıyasla daha iyidir.  

 

 

Elde ettiğimiz sonuçlara bakarsak doğrusal fonksiyon için hata varyans değeri 4, 

örneklem sayısı az ve küme sayısı fazla olduğunda, doğrusal model yerine MERF 

modelinin RMSE değeri daha küçük ve bu fark istatistiksel olarak anlamlı bulunmuştur. 

Bunun haricindeki tüm senaryolarda doğrusal modelin RMSE değerinin küçük ve bu 

farkın istatistiksel olarak anlamlı olduğu görülmüştür. Sigrist ise 2020 yılında yaptığı 

çalışmada küme sayısının az ve örneklem sayısının düşük olduğu her benzetim 

modelinde LME modelinin RMSE değerini daha küçük ve bu fark istatistiksel olarak 

anlamlı bulmuştur. 

 

 

Doğrusal olmayan fonksiyon için hata varyans değeri 1, örneklem sayısının 

düşük ve küme sayısının yüksek olduğu durumlarda, GPBoost model yerine MERF 

modelinin RMSE değeri daha küçük ve bu fark istatistiksel olarak anlamlı bulunmuştur. 

Bunun haricindeki tüm senaryolarda (hata varyansı 1 iken) GPBoost modelinin RMSE 
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değerinin küçük, LME ile arasında farkın istatistiksel olarak anlamlı, MERF ile 

arasındaki farkın istatistiksel olarak anlamlı olmadığı görülmüştür. Sigrist ise 2020 

yılında yaptığı çalışmada küme sayısının az ve örneklem sayısının düşük olduğu her 

benzetim modelinde GPBoost modelinin RMSE değerini küçük ve bu fark istatistiksel 

olarak anlamlı bulmuştur. 

 

 

Doğrusal olmayan fonksiyon için hata varyans değeri 4, örneklem ve küme 

sayısının yüksek olduğu durumlarda, GPBoost model yerine MERF modelinin RMSE 

değeri daha küçük ve bu fark istatistiksel olarak anlamlı bulunmuştur. Bunun haricindeki 

tüm senaryolarda (hata varyansı 4 iken) GPBoost modelinin RMSE değeri küçük ve bu 

fark istatistiksel olarak anlamlı bulunmuştur.  

 

 

Gerçek hayat verilerie uygulanabilmesi için benzetim çalışması ile örneklem 

büyüklüğü, küme sayısı ve hata varyans değerlerinin farklı şekillerde ele alınıdığı 

çalışmalar yapılmasına alanyazında ihtiyaç vardır. 
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5. SONUÇ VE ÖNERİLER 
 

 

 

Gauss süreci ile karışık etkili modellerde, kümelenmiş etkiler için olasılıksal 

modeller oluşturulur, böylece tahmindeki belirsizliği açıklayan olasılıklı tahminler üretir 

(Sigrist, 2020). 

 

 

GPBoost algoritmasını RMSE açısından diğer yaklaşımlarla karşılaştıran bağımlı 

gruplar için t-testlerinden p değerleri de hesaplanmıştır. Sonuçlar, yöntemler arasındaki 

farkın istatistiksel olarak önemli olduğunu göstermiştir (p<0,001).  

 

 

Zaman açısından bakıldığında MERF algoritmasının hızının diğerlerine göre çok 

yavaş olduğu gözlemlenmektedir, buna, düzgün tanımlanmış bir EM algoritması 

olmamasının neden olduğu düşünülmektedir (Sigrist, 2020). 

 

 

Çalışmanın benzetim basamağında doğrusal olmayan bir fonksiyon için GPBoost, 

MERF ve LME yöntemine göre RMSE ve zaman açısından daha iyi bir performans 

göstermiştir. Ancak doğrusal bir fonksiyon ele alındığında LME daha iyi bir sonuç 

vermektedir. 

 

 

Bu yöntem, tıp alanında; gen ve protein belirteçlerinin lokalizasyonu, hastalık 

patogenezi ve etiyolojisi hakkında ek çözüm, kısaca daha bilgilendirici ve umut verici 

tanısal karar vermeye katkı sağlar. Robotik alanında; hareket planlama, konum belirleme, 

lokalizasyon ve eşleme konularında etkin bir performans gösterebilir. Spor alanında; 

NBA free agency tahmini için geçmiş yıllardaki kullanımı sürdürülebilir (Natarajan, 

2019). 
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ÖZET 

 

 

Geleneksel Makine Öğrenmesi ve Karışık Etkili Makine Öğrenmesi Model 

Performanslarının Benzetim Çalışması ile Değerlendirilmesi 

 

 

Kümelenmiş verilerin analizi için yaygın olarak klasik yaklaşım (genelleştirilmiş) doğrusal 

karışık etkili modeller (LME, GLMM) kullanılmaktadır. Bununla birlikte, doğrusal parametrik 

modellerin varsayımlarını sağlamak oldukça zordur. Klasik yöntemler, boylamsal verilerin alt 

grup gözlemlerinin yüksek derecede korelasyon sergilediği çalışmalarda düşük performansa yol 

açmaktadır. Ayrıca, bu yöntemler, verilerdeki doğal korelasyon yapısını hesaba katmadan 

kullanıldığından çıkarımların yanıltıcı olmasına yol açar.  

 

 

Ağaç tabanlı algoritmaları kümelenmiş verilere genişletmek için makine öğrenme yöntemleri 

uygulanabilir. Bunlarda biri karışık etkili makine öğrenmesi modelidir. Bu model, iki regresyon 

ağacı yöntemini, doğrusal olmayan karışık etkili modelinin (NLMM) sabit ve rastgele etki 

bileşenlerini tahmin etmek için birleştirir. Hajjem (2011) tarafından önerilen genelleştirilmiş 

karışık etkiler regresyon ağaçları (GMERT) yapısı ve Sela (2012) tarafından önerilen rastgele 

etkiler beklenti maksimizasyonu (RE-EM) ağaç yapısı birlikte ele alınır. Türetilmiş veriler 

üzerinde geleneksel makine öğrenmesi modelleri ile yeni bir yaklaşım olarak makine öğrenmesi 

araçlarından karışık etkili makine öğrenmesi modelinin performansları benzetim uygulaması ile 

incelenecektir ve uygulama için örneklem büyüklükleri 5000, 10000, 15000 olarak belirlenmiştir. 

Gerçekleştirilecek işlemler için R programından veya Python programlama dilinden ve var olan 

hazır kütüphanelerden yararlanılacak, gerekli yerlerde yeni kod yazılacaktır. 

 

Anahtar Kelimeler: Makine Öğrenmesi, Rastgele Etki, Benzetim, Kümelenmiş Veri 
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SUMMARY 

 

 

Assessment of the Performance of Classic Standard Machine Learning Models and 

Mixed Effect Machine Learning Models via Simulation Study 

 

 
Classical (generalized) linear mixed effect models (LME, GLMM) are widely used for the 

analysis of grouped data. However, it is quite difficult to provide assumptions of linear 

parametric models. Classical methods lead mediocre performance in studies where subgroup 

observations of longitudinal data exhibit high degree of correlations. Also, these methods are 

used for analysis of longitudinal data without accounting for the inherent correlation structure in 

the data often leading to potential for misleading inference.  

 

 

Machine learning methods can be applied to extend tree-based algorithms to grouped data. One 

of them is the Mixed Effect Machine Learning model. This model combines the generalized 

mixed-effects regression trees (GMERT) structure for modeling general types of outcomes and 

the expectation maximization structure of the random-effects expectation maximization (RE-EM) 

tree for estimating the fixed and random-effects components of nonlinear mixed effect model 

(NLMM). The performances of the standard machine learning models and the mixed effects 

machine learning models will be analyzed by simulation study on the generated data. The 

sample sizes for the application were determined as 500, 1000, 15000. The R program and 

Python programming language and present libraries will be used for the analysis to be performed, 

and new codes will be written where necessary. 

 

 

 
Keywords: Machine Learning, Random Effects, Simulation, Grouped Data 
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