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1. GIRIS

1.1. Arastirmanin Konusu, Amaci ve Onemi

Makine 6grenmesinin gelisimi son yillarda hizla artmis ve bu konuda pek ¢ok
algoritma gelistirilmistir. Simdiye kadar, kiimelenmis verilerde karigik etkili makine
6grenmesi modellerinin performanslarini inceleyen yalnizca bir ¢alismaya rastlanmistir
(Ngufor ve ark., 2019). Ngufor ve ark. (2019) ¢alismasi hari¢ olmak iizere, bu ¢alisma
literatiirde karisik etkili makine Ogrenmesi algoritmasini farkli senaryolar altinda

karsilastiran ilk ¢alisma olacaktir.

Bu tez ¢aligmasinda, kiimelenmis verilerin siniflamasinda kullanilan geleneksel
modellerden dogrusal karisik etkili model (LME), random forest ile yeni bir yaklasim

olan karisik etkili makine 6grenmesi modelinin etkinlikleri karsilastirilacaktir.

1.2. Kanisik Etkili Makine Ogrenmesinin Tarihcesi

Gauss siireci ve karigik etkili modellerin ¢ogunlugu, ortalama fonksiyonunun
dogrusal bir regresyon fonksiyonu oldugunu varsayar. Ancak bu dogrusallik varsayimi
genelde ya saglanamaz ya da varsayim goz ardi edilmek zorunda kalinir. Ortalama
fonksiyonunu dogrusal bir sekilde degil de dogrusal olmayan bir sekilde modelleyen veri
madenciligi yontemlerine literatiirde az rastlanmistir. Agag arttirma veya random forest
gibi modern denetimli makine 6grenimi tekniklerini karisik etkili modellerle ve 6zellikle

Gauss siiregleriyle birlestirme konusunda ¢ok az arastirma yapilmistir.



Hajjem ve ark. (2011), Sela ve Simonoff (2012), Fu ve Simonoff (2015) ortalama
fonksiyon igin regresyon agaglarini kullanmislardir. Hajjem ve ark. (2014) ise boylamsal
verilerde kullanilan kiimelenmis rastgele etki modelleri i¢in random forest kullanarak

parametrik olmayan, makine 6grenimine dayali yaklagimlar 6nermistir.

Hajjem ve ark. (2011, 2014) kanisik etkili modeller i¢in bir beklenti
maksimizasyonu (EM) algoritmasindan (Dempster ve ark. 1977) esinlenen bir yaklagim
onermektedir (Laird ve ark., 1982). Bu yontem agacin boliinme siirecinde farkli zaman
dilimlerinde tekrarli olarak Ol¢iilen ortak degiskenleri kullanir ve bu ortak degiskenlerle

ilgili uygun rastgele etkileri ele alir.

Ayrica, Sela ve Simonoff (2012), Fu ve Simonoff (2015) ilk olarak, aga¢
algoritmasi1 kullanarak bdliinmeyi O6grenen ve ikinci olarak, aga¢ katsayilarini ve
kovaryans parametrelerini tahmin eden geleneksel dogrusal karisik etkiler model
yontemini iceren yinelemeli bir algoritma kullanmistir. Bu yontemlerin ortak o6zelligi,
iteratif olarak (i) bir makine Ogrenimi teknigi kullanarak ortalama fonksiyonu
Ogrenmeleri, (ii) rastgele etkilerin tahminlerini hesaplamalar1 ve (iii) kovaryans

parametrelerini tahmin etmeleridir.

Ozellikle ortalama fonksiyon, tekrar tekrar tahmin edilmesi gereken random
forest gibi karmasik bir modelden olustugunda bu yaklasimlar hesaplama agisindan
zorlu hale gelebilir. Ek olarak, bu algoritmalarin yakinsama garantisi yoktur. Sela ve
Simonoff (2012), Fu ve Simonoff (2015), Hajjem ve ark. (2011), Hajjem ve ark. (2014),
uygun bir E-adim1 i¢ermediklerinden karisik etkili modeller i¢in dogru sekilde belirlenen
EM algoritmalarina karsilik gelmez (Laird ve ark.,, 1982) ve bu nedenle bu
algoritmalarin yakinsayip yakinsamadigi ve hangi degerlere yaklastigi acik degildir
(Sigrist, 2020).



Karigik etkili modeller icin EM algoritmasindaki E-adim, ilk olarak, mevcut
kovaryans parametrelerindeki ¢cok degiskenli normal olabilirligin ortalama fonksiyonu
i¢in bir en ¢oklayic1 (maksimizer) belirleyerek, rastgele etkiler igin tahmin elde eder ve
sonra bu ikisini tiim verinin log-olabilirlik beklentisini hesaplamak i¢in kullanir (Laird
ve ark., 1982).

Bununla birlikte, Hajjem ve ark. (2011), Hajjem ve ark. (2014) sabit kovaryans
parametreleri i¢in ¢ok degiskenli normal olabilirligin en ¢oklayicis1 olarak ortalama
fonksiyonun optimize edicisini bulmaz. Bunun yerine, ilk olarak, ortalama fonksiyonu
tahmin etmek icin rastgele etkilerin tahmin edilen degerlerini yanit degiskeninden
¢ikardiktan sonra elde edilen bagimsiz bir normal olasiligi kullanilir; ikinci olarak,
rastgele etkiler i¢in tahminler elde edilir, ti¢iincli olarak; kovaryans parametrelerinin

tahminleri bulunur (M- adim) ve bu ii¢ adim yakinsama saglanana kadar yinelenir.

Sela ve Simonoff (2012), Fu ve Simonoff (2015) ilk olarak yanit degiskeninden
rastgele etkilerin tahmin degerlerinin ¢ikarilmasindan elde edilen bagimsiz normal
olabilirligi kullanarak aga¢ yapisinin tahminleri ile, ikinci olarak, klasik dogrusal karisik
etkiler modeli kullanarak yaprak degerler ve kovaryans parametreleri arasindaki
tahminleri yinelemislerdir. Aslinda bunun tam bir EM algoritmasi oldugu sdylenemez,

ciinkii log-olabilirlik beklentisini hesaplayan bir E-adim1 igermemektedir (Sigrist, 2020).

Bassetti ve ark. 2015 yilinda siyasal siddetin bazi ekonomik gostergelerle iliskili
oldugunu gostermek igin, Genellestirilmis Karigik Etkili Regresyon Agaci (GMERT)
analizini kullanmiglardir. Bu yontem, boylamsal veriler i¢in rastgele etki model yapisini
bir aga¢ regresyon yonteminin esnekligiyle birlestirmistir. Bu yontem regresyon
fonksiyonunu tahmin etmek i¢in parametrik olmayan bir yontemdir. 2002—2007
doneminde siyasal siddete etki eden faktorler belirlenmis ve bu etkenlerin makine
ogrenmesi yontemi kullanilarak hem siniflama yapisin1 géz oniinde bulundurmus hem

de oldiiriilen ve yaralanan kisilerin tahminleri elde edilmistir. Teror saldirilari, diisiik



egitim endeksli (0,52'den az) ve kisi basina yiiksek gelir (1817 dolarin iizerinde) ile
karakterize edilen iilkelerde yogunluk gosterirken, egitim endeksi 0,52'den yiiksek olan

iilkelerde yilda ortalama 47,33 saldir1 gergeklesmistir.

Natarajan (2019) calismasinda NBA oyuncu se¢imi tahmini i¢in karisik etkili
model olusturmustur. One ¢ikan basketbol oyuncularmin soézlesmelerini etkileyen
faktorler karisik etkili model ile sunulmustur. Natarajan (2019), sut sayisi, top kullanma
orani, art1 eksi istatistigi ve her oyunda alinan puan gibi parametreleri kullanarak en iyi
oyuncular1 tahmin eden modeli sunmustur. Bulgulara gore Karisik Etkili Random Forest
(MERF) modelinin 6rneklem i¢i ve drneklem disi performansi random forest ve gradyan

destekli makine 6grenme yontemlerine gore yiiksek ¢ikmuistir.

Karigik Etkili Random Forest yonteminin ele alindig: bir baska calisma ise 2019
yilinda yayimlanan Galeshchuk ve Qiu’nun (2019) makalesidir. Twitter’ i, fikirlerin
hizli ve net bir sekilde paylasilmasina yardimci olan sosyal bir platform oldugu ve bu
platform, kisa metinler yayinlamak igin esit haklar sunsa da, bu mesajlarin siklikla
cektigi ilginin, kullanicinin gergek diinyadaki durumuna bagli oldugu belirtilmistir.
Dolayisiyla, ger¢ek hayattaki yiiksek profilli fenomenlerin tweet'lerinin, toplumun
ilgisini artirma olasiligi, yapay tabanlardan gelen mesajlara gore daha yiiksek olacaktir.
Makale, bu tir fikir olusturucularimi Twitter'da otomatik olarak algilayan gelismis
siniflandiriciyr ayrintili olarak ele almis olup, yaklasim yontemi olarak Karisik Etkili
Random Forest yontemini kullanir. Onerilen teknigin dogrulugu ve kesinligi ile birlikte,
orneklem dis1 verilerde diger makine 6grenimi siniflandiricilarinin sonuglarindan daha
iyl performans gosterdigi agiklanmistir. Dogruluk orant %80,7 bulunarak, lojistik
regresyon, karar destek makineleri, radyal baz fonksiyonu, random forest ve gradyan

destekli makine modellerini geride birakmustir.

Beltempo ve ark. (2020) makine 6grenimi modellerinden GMERT analizini

kullanarak yeni dogan yogun bakim biriminde nozokomiyal enfeksiyonlarin ve tibbi



kazalarin baslangicini tahmin etmeyi amaclamistir. Model, 6nemli degiskenleri
belirlemede kullanilmistir ve sonug olarak; teshis iligkili gruplar, normal galisma saatleri,
fazla mesai, kabul oranlari, dogum agirligi ve meslek oranlari ana parametreleri

olusturmustur.

Cochrane ve ark. (2021) yayimladiklar1 ¢alismada, geleneksel Dogrusal Karisik
Etkiler modelini, MERF ad1 verilen yar1 parametrik, dogrusal olmayan bir modelle
birlestiren bir Topluluk Karisik Etkiler Modeli sunmaktadir. Bu modeli kullanarak,
laboratuvar deneyleri sirasinda incelenen 44 uyku kaybi1 yasayan katilimcidan
demografik, uyku ve bilissel test verilerini igeren bir veri ile siirekli dikkat testi olan
Psikomotor Vigilance Gorevi (PVT) iizerindeki performansi tahmin edilmek istenmistir.
Bir bireyin uyku kaybi sonrasi biligsel performansinin nasil istesinden gelindigini
tahmin eden bir topluluk modeli gelistirmislerdir. MERF, kiimelenmis veriler icin
karisik modelleme yaklasimlarinin basarisint random forest algoritmasinin  giiglii

yonleriyle birlestirmistir.

Zhou ve ark. (2021) monoton otomatik siiriiste siiriicii yorgunluguna etki eden
degiskenleri tahmin etmek igin GPBoost ve SHAP modellemesini kullanmislardir.
Ayrica; dogrusal regresyon, dogrusal, karesel, gausscu destek vektér makinesi, fine (ince)
agac, random forest, XGBoost ve GPBoost modellerinin uygulamali olarak

karsilastirmasini géstermislerdir.

Levy ve ark. (2021), Nanostring GeoMx iizerinde Dijital Mekansal Profilci
kullanilarak toplanan uzamsal protein belirteclerinin degerlendirilmesi ve kolon
metastaz tahmini icin Karisik Etkili Makine Ogrenmesi yontemlerini karsilastirmali

olarak gostermislerdir.

Fontana ve ark. (2021), Sela ve Simonoff’un (2012) gelistirdigi RE-EM agacini

genellestirmeyi amacglamiglardir.  Ayrica, bu yontem kiimelenmis veri yapisini



geleneksel ¢ok diizeyli modeller gibi ele alir. GMET adim verdikleri bu model, yanit
degiskenini bir Genellesitirlmis Dogrusal Model (GLM) araciligiyla (yanit ailesi
dagilimina bagli olan uygun baglanti fonksiyonlarini kullanarak) tahmin eder. Bagimlh
degisken olarak tahmin edilen yanit degiskenini kullanarak bir regresyon agaci olusturur
ve aga¢ tarafindan tahmin edilen sabit etkiler kismini sapma olarak kullanir ve karigik
etkiler modeli ile rastgele etkiler kismmi tahmin eder. GMET'in performansinin, diger
agac¢ tabanl karisik etkili modellere gore ((GLMM), BiMM (Speisr ve ark., 2020),
GLMERT (Fokkema ve ark., 2018), GMERT (Hajjem ve ark., 2017)) veriler dogrusal
bir yapiya sahip oldugunda daha iyi ve yakinsama siiresinde daha hizli oldugunu

gostermistir.

Tezin karisik etkili makine 6grenimi ile birlesecek olan Gauss siiregleri, son on
yilda makine &grenimi toplulugundan biiyiik ilgi gdrmiistiir. Ik olarak bu terim
1940’larda Robert Winner ve Kolmogrov tarafindan ortaya atilmis ve zaman serileri
¢oziimlemesinde agiklanmistir (Whittle, 1963). Ardindan 1950'lerde Giiney Afrika'daki
Witwatersrand’daki altin yataklarinin modellenmesi {izerinde c¢alisan Danie Krige
tarafindan gelistirilmistir. Formiilasyon, 1963 yilinda Fransiz matematik¢i Georges
Matheron tarafindan resmilestirilmistir (Matheron, 1963). Gelistirilen yontem kriging
olarak biliniyordu ve bu terim istatistik literatiiriinde kullanilmaya devam etmektedir

(Ashcroft, 2021).

1.3. Dogrusal Karisik Etkili Model

Genel olarak, bir dogrusal karigik etkili model asagidaki kosullar1 saglayan
herhangi bir model olabilir.

yi=Xip+ Zib; + ¢,



bi~ N(O, D)I
& ~ N(0,0%1L,,),
Cov(b;, &) =0,

i=12,..N. (Esitlik 1.1)

Modelde y; i. birey i¢in n; boyutlu yanit vektorii, 1 <i <N, N: birey sayisi, X; ve
Z; sirasiyla (n; X p) ve (n; X q) boyutlu bilinen agiklayict degiskenler matrisleri,
sabit etkileri igeren p-boyutlu vektor, b; rastgele etkileri igeren g-boyutlu vektor, €; hata
bilesenlerini iceren n;-boyutlu vektordiir. Son olarak, D, d;; = dj; olmak iizere, ( g X q)
boyutlu genel kovaryans matrisi, ve oI, (m;x n;) boyutlu kovaryans matrisidir
(Verbeke ve Molenbergs, 2000). Rastgele etkilerin sifir ortalama ve varyans kovaryans
matrisi D ile normal dagildigi varsayilir ve ¢ hata terimlerinin bagimsiz oldugu

varsayilir.

B sabit etkilerin yorumu, basit dogrusal regresyon modelindeki gibidir. Ilgili
degiskendeki bir birim artisin y; ortalamadaki degisimi gosterir. b; rastgele etkiler i.
denek i¢in regresyon parametrelerinin bir alt kiimesi olarak popiilasyonda digerlerinden

nasil saptig1 seklinde yorumlanir.

Karigik etkili modellerin avantaji, hem popililasyonda degiskenin ortalama
yanitinin nasil degistigini agiklayan parametreleri hem de zamanla bireysel trendlerin

nasil degistigini tahmin eder (Pinheiro ve Bates, 2000; Verbeke ve Molenberghs, 2000).



1.4. Kansik Etkili Makine Ogrenmesi (MEmI)

1.4.1. Kansik Etkili Makine Ogrenmesi Formiilasyonu

MEmlI, gii¢lii bir makine 6grenme algoritmasi kullanarak Esitlik 1.2’deki sabit
etkiler bilesenini f(x;) ve GLMM (Genellestirilmis Karigik Etkili Model) kullanarak b;

rastgele etkiler degerini tahmin eder.

Mie = f(x) + by z; (Esitlik 1.2)
yi=f(x) + bz + ¢ (Esitlik 1.3)

f: bilinmeyen fonksiyondur.

Esitlik 1.3°de f aga¢ tabanli makine dgrenme algoritmalart kullanilarak tahmin
edilir. Bunlar; random forest (Breiman ve ark., 1984), gradyan destekli makine (GBM)
(Friedman, 2001), model tabanli 6zyinelemeli béliimleme ve kosullu ¢ikarim agaglaridir
(Zeileis ve ark, 2008). Agag tabanli 6grenme algoritmalari kolay yorumlanabilir oldugu
icin daha sik tercih edilmektedir. RF (Random Forest) ve GBM, bir model toplulugu

olusturan ve daha sonra tahminleri birlestiren topluluk makine 6grenme yontemleridir.

RF'de egitim setindeki gozlemlerin rastgele 6rnekleri ortalama (avareging) ve oy
coklugu (majority vote) ile birlestirilen tahminleri, karar agaglar1 tarafindan 6grenilir.
Oy ¢oklugu yontemi ise, bir modelde yanlis tahmin edilen imgenin baska modellerde
dogru tahmin edilmesiyle yanlis tahminin diizeltilebilmesini saglar. Ortalama yontemi

regresyon i¢in, oy ¢oklugu yontemi ise siniflamada kullanilir (Karakas, 2019).



1.5. Kanisik Etkili Regresyon Agaci (MERT)

Hajjem ve ark. 2011 yilinda MERT ile, rastgele etkileri EM algoritmasi
kullanarak elde ettikten sonra, sabit etkileri standart bir regresyon agaci yontemiyle
kestirmistir. Bu yaklagim, yanit degiskeni ile sabit etkiler arasinda dogrusallik
varsayimini gerektirmez, ancak rastgele etkilerle ilgili olarak dogrusal karisik etkili

modellerle ayn1 varsayimlarin saglanmasi gerekir.

Karisik etkili regresyon agact modeli asagidaki gibidir:
yi=f(X) +Z;ib; + &,

b;~N(0,D),

g~ N(O, azlni),

i=12,..N. (Esitlik 1.4)

Sabit kisim hari¢ tiim nicelikler klasik dogrusal karisik etkili modeldeki gibi
gosterilmistir. f(X;), artik X;f dogrusal kisim yerine geger. Bu kisim, aga¢ ya da orman
ile kestirilecektir. Z;b; rastgele etkilerin dogrusallik varsayimini saglamasi gerekir. ML-
tabanli EM-algoritmasi igin akis diyagrami Wu ve Zhang’da (2006) agiklanmistir. Yanit
degiskenini tahmin etmek i¢cin MERT / MERF modelini kestirmede kullanilan i
kiimesine ait yeni bir j gdzleminin ortalama popiilasyon aga¢ / orman tahmini f (xi j) ve
kendi kiimesindeki Z;b; rastgele kismin tahmini kullamlir. Modeli egitmek igin
kullanilan 6rnekte yer almayan bir kiimeye ait yeni bir gozlem i¢in, yalnizca karsilik

gelen f (xi j) ortalama popiilasyon aga¢ / orman) tahmini alinabilir. Bu nedenle,

1. Bilinen bir kiime i¢in tahmin = f (x;;) + Z;b;



2. Yeni kiime igin tahmin = f (xl- j)

seklindedir.

1.6. Kansik Etkili Random Forest (MERF)

Random forest yonteminin kiimelenmis veri i¢in kullanilan bir uzantisi olan
karisik etkili random forest yontemi 2014 yilinda Hajjem ve ark. tarafindan
gelistirilmistir. MERT'in bir uzantis1 olarak ortaya konmustur. Yontem 2017 yilinda
MERF adli bir Python paketinde uygulanmistir (Hajjem ve ark., 2014). MERF
algoritmasi, MERT ile ayn1 sekilde caligir ve rastgele etkiler iizerinde ayn1 varsayimlara
sahiptir. Bununla birlikte, sabit etkileri tahmin etmek i¢in tek bir regresyon agaci
kullanmak yerine random forest kullanilir. Rastgelelestirme yoluyla iligkili hale
getirilmis bir¢ok regresyon agacinin toplanmasi daha dogru tahmin elde edilmesini

saglar.

Esitlik 1.1’de gosterilen LME modelinde oldugu gibi, bu modeldeki terimler
neredeyse aynidir, sadece X;f 'min dogrusal sabit etkisi dogrusal olmayan f( -)
fonksiyonuyla yer degistirir. Dogrusal karisik etkili modelde sabit etkiler, basit
parametrik bir bicimde modellenir. Oysa ¢ok sayida ortak degisken (sabit etki) oldugu
durumda, modele eklenmesi gereken sabit etkilerin sayisi ve birbirleri ile olan
etkilesimleri de artacak ve bu karmagsik yapinin modellenmesi giiglesecektir. Ayrica
sabit etkinin sayica fazla oldugu durumda model se¢imi de zorlagacaktir. Dogrusal
modeller, kayip veri iceren degiskenleri veri madenciligi yontemleri kadar kolay ele
alamamaktadir. Sabit etkiler ile yamit degiskeni arasindaki dogrusal olmayan iliski
random forest yontemi ile 6grenilmektedir. Bu regresyon modeli gradyan destekli agag

veya derin sinir ag1 gibi dogrusal olmayan herhangi bir regresyon modeli olabilir.
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1.7. Topluluk Yontemleri

1.7.1. Bagging (Torbalama)

Bu algoritma, bootstrap ve aggregating (toplama) teriminin kisaltilmis hali olup,
Breiman tarafindan 1996 yilinda ortaya atilmistir (Yangin, 2019). Torbalama
algoritmasinin amaci, egitim veri kiimesi kullanarak rastgele yeni veri kiimeleri
olusturup farkliliklarin olusmasin1 ve bdylece simiflandirma basarisini arttirmaktir.
Ayrica, egitim veri kiimesinden, yerine koyarak rastgele se¢im yontemi ile yeni egitim
kiimeleri tlireterek siniflandirma modelini yeniden egitmeyi amaglamaktadir. Torbalama
yonteminde yapilmasi gereken ilk adim, veri kiimesini egitim kiimesi ve test kiimesi
olarak bdlmektir. N tane orneklem igeren egitim kiimesinden, yerine koyarak rastgele
secim yontemiyle yine n tane drnekleme sahip bir veya birden fazla yeni bir egitim
kiimesi iiretilir. Torbalama yoOntemiyle olusan topluluktaki her bir simiflandirici,
olusturulmus farkl 6rneklemler igeren egitim kiimesi ile egitilir. Her bir siniflandiricinin
sonucu ¢ogunluk oylamasi ile birlestirilir (Yangin, 2019; Yilmaz, 2014; Coskun, 2020;

Demirsoz ve ark., 2021).

1.7.2. Boosting (Arttirma)

Arttirma algoritmasi Schapire tarafindan 1999 yilinda gelistirilmistir. Arttirma
algoritmasi, yavas Ogrenmeye dayali, sirali bir yontemdir ve hatadan Ogrenmeyi
amaclamaktadir. Bu algoritmalar, yiiksek hassasiyetli modeller olusturmak icin diisiik
hassasiyetli birka¢ modeli birlestirmektedir. Amag, her iterasyonda elde edilen modelleri,
belirli kurallar g¢ercevesinde birlestirerek giiclii bir model elde etmeye calismaktir

(Yangin, 2019; Yilmaz, 2019).
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Cizelge 1.1: Bagging ve boosting siirecleri

Bagging Boosting
1. Orjinal egitim setinden N ornek rastgele | 1. Orjinal egitim setinden rastgele yeniden
segilerek yeniden Orneklenmis egitim setleri | drneklendirilmis bir alt egitim seti olusturulur.

olusturulur.

2. Olusturulan her bir egitim seti segilen 6grenim
algoritmasina eklenir.

2. Olusturulan egitim seti 6grenim algoritmasina
sokulur.

3. Tiim smiflandiricilardan elde edilen sonuglarin

3. Tahminlerde hatali olan o6rneklerin agirliklart

ortalamasi alinarak tek bir model elde edilir. daha yiiksek wverilerek ikinci bir yeniden

orneklendirilmis egitim seti olusturulur.

4. 3. adim M kere gerceklestirilerek tim
modellerden elde edilen sonuglarin agirlikh
kombinasyonu alinarak tek bir model elde edilir.

(Y1ldirim, 2017).

1.8. Gauss Siireci

Gauss siiregleri (Williams ve Rasmussen, 2006) son teknoloji tahmin dogruluguna
ulasan ve olasiliksal tahminler yapmaya olanak taniyan esnek parametrik olmayan
fonksiyon modelleridir (Gneiting ve ark, 2007). Olasiliksal gozetimli makine dgrenme
yontemlerinden olan bu siire¢, hem regresyon hem de siniflama problemlerinde

kullanilmaktadir.

Gauss siireci, fonksiyonlar1 yaklastirmak i¢in kullanilan ve parametrik olmayan
Bayesci bir regresyon yaklasimi (Ates, 2020) olan bu Bayesci yaklasim, olasi
fonksiyonlar iizerinden bir olasilik dagilimi belirler (Knagg, 2020). Bu siirecin
algoritmasi, rastgele degisken ciftleri arasindaki dogrusal olmayan iligkileri modellemek
igin gliglii bir algoritmadir. Gergek fonksiyonel iliski konusundaki belirsizligi gostermek
icin uygulanabilecek fonksiyonlar tizerinde bir dagilim tanimlar (Williams ve Rasmussen,
2006).
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Bu yaklasimda parametreler bagimsiz 6zdesce dagitilmis rastgele degiskenler
olarak goriilmektedir. Diger denetimli 6grenme yontemleri de her parametre i¢in kesin
degerleri Ogrenir. Gauss siireci regresyonu verilere uygun tiim kabul edilebilir
fonksiyonlar iizerindeki olasilik dagilimmi hesaplar. Onsel nokta belirlenir, egitim
verileri kullanilarak sonsal nokta hesaplanir ve ilgili noktalardaki tahmini sonsal ile

karsilastirilir. Bu yontemde Y, (y — $)? sonucunun minimum olmasi gerekir (Ates, 2020).

Giris (Ham) verisi ~ Gauss Siireci Sinir Ag1 Random Forest

<)
° ;40....: o. i :
.~° ..:r}. o’o:.
&

Sekil 1.1: Smiflandirict karsilasgtirma giktilar:

Sekil 1.1’de mavi ve kirmizi noktalar1 ayirmak i¢in kullanilan farkli yontemlerle
ogrenilen siiflandirma fonksiyonlar1 gosterilmektedir. Yaygin olarak kullanilan ve giiclii
yontemler olan sinir agi ve random forest, egitim verilerinden uzakta tahminler
tiretmektedir. Gauss siireci, model ¢iktisint daha kesin bir dogrulukla elde eder, bu yap1
Ozellikle kimlik dogrulama ve giivenlik agisindan kritik kullanimlarda 6nemlilik

gostermektedir (Knagg, 2019).

Gauss siireci, parametrik olmayan regresyon, zaman serilerinin modellenmesi
(Shumway ve Stoffer, 2017), uzaysal (Banerjee ve ark., 2014) ve mekan-zamansal
(Cressie ve Wikle, 2015) verileri, bilgisayar deneyleri bayes kalibrasyonu (Kennedy ve
O'Hagan, 2001), pahali kara kutu fonksiyonlarinin optimizasyonu (Jones ve ark., 1998)
ve makine 6grenimi modellerinde parametre ayarlama (Snoek ve ark., 2012) gibi
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alanlarda da kullanilir. Ek olarak robotik alaninda hareket planlama, konum belirleme,
lokalizasyon ve esleme konularinda olduk¢a yaygmn bir sekilde kullanilmaktadir

(Mukadam ve ark., 2016; Yangin, 2016).

Gauss stireci regresyonu, insanlarin tercihleri tizerinden model kurulmasi gereken
alanlarda (kullanici tercihlerinin anlasilmasi gibi) kullanmaktadir. Giiniimiizde insan
yurilylisii, dinozor ylriliyiisii, yangm, patlama gibi dinamik animasyonlarin
modellemesinde kullanilmaktadir. Coziniirligi disiik animasyonlar insanlara izletilerek
puanlandirmalar1 istendikten sonra insanlarin gerceklik algist puanlanarak model
parametreleri son halini almaktadir. Gauss regresyon siireci insanlarin tercihlerini birer
fonksiyon olarak modellemektedir. Siire¢ Bayesci olarak baslatildigi i¢in ilk basta onciil
bilgilerle baslayan model sonugta gergege yakin olmaktadir. Boylece, yiiksek maliyetli

bir is diisiik islemci maliyeti ile ¢6ziilmiis olmaktadir.

Gauss siiregleri sadece regresyon probleminde degil, siniflandirma problemlerinde
de kullanilmaktadir. Ornek olarak Google’mn smiflandirma problemleri verilebilir.
Google’da ‘kedi’ kelimesiyle resim aratildiginda arama motoru kedi oldugunu disiindigii
birgok fotografi sonug¢ olarak vermektedir. Kediye en ¢ok benzeyen tiklandiginda bu
fotograflarin ig¢inden ¢ogunlukla kullanicinin ilk olarak basmayi tercih ettigi fotograf
kediye en ¢ok benzeyen fotograftir diye kabul edilir. En ¢ok tiklanan ytliksek bir oylama
orani ile ‘kedi’ olarak smiflandirir. Daha sonra bu onciil bilgiyi kullanilarak ‘kedi’
siiflandirma probleminde kestirim bagarimini artirarak daha sonraki kullanicilarin kedi

aramasinda arama motoru kediye daha ¢ok benzeyen fotograflar1 6ne ¢ikarmaktadir.
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1.8.1. Gauss Siireci Boosting

Model, GPBoost algoritmasi kullanilarak egitilir. Bu egitim, rastgele etkilerin
kovaryans parametrelerini ve ortalama F(X) fonksiyonunu bir aga¢ toplulugu modeli ile
egiterek gerceklesir. Kullanilan algoritma, kovaryans parametrelerini yinelemeli olarak
Ogrenen ve bir gradyan veya Newton artirma adimi kullanarak agac topluluguna agag
ekleyen bir arttirma algoritmasidir. Kovaryans parametreleri (Nesterov hizlandirilmis)

gradyan inisi veya Fisher skorlamasi kullanilarak 6grenilebilir (Sigrist, 2020).

Sonlu ornekler i¢in, arttirma asir1 uyma egilimindedir ve bunu 6nlemek i¢in,

ozellikle regresyon gorevlerinde erken durdurma uygulanmalidir.

1.8.2. Gauss Siireci ile Karisik Etkili Model

Kiimelenmis veriler asagidaki sekillerdeki gibi modellenebilir;

1. Grup yapis1 goz ardi edilebilir

2. Her grup (6m. her 6grenci ya da miisteri) ayri modellenebilir

3. Modele gruplama degiskeni (6rn. 6grenci veya misteri kimligi) dahil edilir ve
kategorik bir degisken olarak ele alinir. Bu uygulanabilir bir yaklagim olsa da baz1
dezavantajlara sahiptir. Cogu zaman, grup basina dl¢lim sayis1 (6rnegin, 6grenci
basina test sayisi, miisteri basina islem sayis1) kiiciiktiir ve farkli gruplarin sayisi
fazladir (6rnegin, Ogrenci sayisi, miisteri sayisi, vb.). Bu durumda, modelin
ogrenmeyi verimsiz hale getirebilecek daha az veriye dayali birgok parametreyi
(her grup icin bir tane) 6grenmesi gerekir. Ayrica, fazla sayida alinan kategorik

degiskenler agaclar i¢in problem teskil edebilir.
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4. Gruplama degiskeni rastgele etkiler olarak ele alinir ve Gauss siireci ile karisik

etkili model yaklagimi kullanilabilir.

Gauss stireci ile karisik etkili modellerde, ilk momentin genellikle sifir veya
ortak degiskenlerin dogrusal bir fonksiyonu oldugu varsayilir. Yapilandirilmis
varyasyon hatasi (residual structured variation), daha sonra sifir ortalamali Gauss siireci
ve / veya kiimelenmis rastgele etkiler modeli kullanilarak modellenir. Bununla birlikte,
hem sifir ortalama hem de dogrusallik varsayimi genellikle gercekci degildir ve bu
varsayimlar esnetilerek daha yiiksek tahmin dogrulugu elde edilebilir (Sigrist, 2020).
Ayrica, bir Gauss siireci modelinin ortalama fonksiyonu yanlis tanimlanirsa, bdyle bir
yanlig tanimlanmigs modelin kovaryans fonksiyonu, ger¢ek kovaryans fonksiyonu arti
ortalama fonksiyonun hata karesine esit oldugu icin sahte ikinci dereceden duraganlik
meydana gelebilir (Fuglstad ve ark., 2015; Schmidt ve Guttorp, 2020). Bu nedenle,
potansiyel ikinci derece duragan olmayan artigi hesaba katmaya galismadan once, ilk
olarak ortalama fonksiyonu dogru sekilde modellemek onemlidir. En son teknolojiye
sahip denetimli makine 6grenimi algoritmalarinda, 6zellikle arttirma (boosting) ile esnek
ve potansiyel olarak karmagik bir fonksiyonun bir dizi tahmin degiskenini bir yanit
degiskeniyle iligkilendirdigi varsayilir. Tahmin edici degiskenlere bagh olarak, yanit
degiskeninin gozlemler arasinda bagimsiz oldugu varsayilir. Bu, potansiyel artik
korelasyonunun, yani regresyon fonksiyonu tarafindan agiklanmayan korelasyonun goz
ard1 edildigi anlamina gelir. Boyle bir korelasyonu modellemek sadece regresyon
fonksiyonunun daha iyi 6grenilmesini saglamaz, ayni zamanda olasilikli tahminler ve
gruplar iizerinden ortalamalar1 veya toplamlar1 tahmin etmek i¢in de 6nemlidir (Sigrist,

2020).

Kisaca bu yaklasim, ortalama fonksiyonu ve rastgele etkilerin kovaryans
yapisinin ortalama fonksiyon ile birlikte tahmin edilen parametrelerini, arttirma
kullanarak asamal1 bir sekilde 6grenen regresyon agaglart (Breiman ve ark., 1984) gibi

temel 6grenicilerden olusan bir toplulukla modellemeyi 6nermektedir.
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Makine &grenmesi literatiiriinde Gauss siireci ile karigik etkili modellerde
F(X) = 0 oldugu varsayilirken, Gauss siireci ile karisik etkili modellerde 6nsel dagilim

fonksiyonunun Esitlik 1.5’deki gibi oldugu varsayilir.

F(X) = XTB, BeR? ortak degiskenler vektorii (Esitlik 1.5)

Bu yaklasimin amaci dogrusallik varsayimmi ya da sifir onsel ortalama

varsayimini esnetmektir.

Algoritmanin temelinde tim modeller egitim verileri iizerinde egitilir ve test
verileri iizerinde degerlendirilir. Her bir adimda benzetim, kisaca “interpolasyon” ve
“ekstrapolasyon” test setleri olarak gosterilen iki test veri seti asagidaki gibi olusturulur.
Kiimelenmis rastgele etkiler modeli i¢in, “interpolasyon” test veri seti, egitim verilerinde
oldugu gibi aymi gruplar igin rastgele etkilerden olusur. “Ekstrapolasyon” test verisi,
egitim veri setinde yer almayan yeni gruplar i¢in m bagimsiz rastgele etkileri

igcermektedir.

Cizelge 1.2: Dogrusal ve dogrusal olmayan karisik etkili model yontemleri igin 6zet bilgi

Yontem Sabit etkiler/onsel ortalama Rastgele etkiler (Zb)
fonksiyon F(-)

Kiimelenmis rastgele | Dogrusal F(-) Kiimelenmis  rastgele

etkiler modeli etkiler

Gauss siireci modeli Dogrusal F(-) /yok Gauss siireci

Klasik boosting Boosting ile 6grenilmis dogrusal | -
olmayan F(+)

MERT Random tree ile O&grenilmis | Kiimelenmis  rastgele
dogrusal olmayan F(-) etkiler

MERF Random forest ile ogrenilmis | Kiimelenmis  rastgele
dogrusal olmayan F(-) etkiler

GPBoost Boosting ile 6grenilmis dogrusal | Gauss siiregleri ve/veya
olmayan F(-) rastgele etkiler
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2. GEREC VE YONTEM

Bu tez calismasinin amaci kiimelenmis verilerin siniflamasinda kullanilan
geleneksel modellerden dogrusal karisik etkili model ile yeni birer yaklasim olan karisik
etkili makine 6grenmesi modellerinin etkinliklerini incelemektir. Tez kapsaminda; veri
tiiretme O6rneklem biiyiikligi, kiime sayisi, rastgele etki varyansi ve hata varyansina gore

farkli senaryolarda yapilmustir.

Benzetim teknigi i¢in orneklem biiyiikliikleri 5000, 10000 ve 15000; kiime
sayilar1 250, 500, 1000 alinmustir.

2.1. Benzetim Calismasi

Benzetim c¢alismast kapsaminda dogrusal karigik etkili model, MERF ve
GPBoost yontemlerinin RMSE degeri bakimindan karsilastirilmas: iki fonksiyon
tizerinde gerceklestirmistir. Bu fonksiyonlardan ilki dogrusal bir fonksiyondur ve Esitlik
2.1’de gosterilmistir. Ayrica tek bir gruplama degiskeni kullanilmistir. Ancak hiyerarsik
olarak i¢ ice gegmis rastgele etkiler ve caprazlanmis rastgele etkiler kullanilabilir.
Caligmada rastgele etki varyansi 1, hata varyansi 1 ve 4 olarak ayr1 ayr1 alinmistir. Her

senaryo 100 kere tekrarlanarak gerceklestirilmistir.

F(x)=Cy*x+2 (Esitlik 2.1)

Ikinci olarak, dogrusal olmayan bir fonksiyon olan 'Friedman3' fonksiyonu da
benzetim ¢alismasina dahil edilmistir. 'Friedman3' fonksiyonu ilk olarak Friedman'da
(1991) yer almistir ve parametrik olmayan regresyon modellerini karsilagtirmak igin

siklikla kullanilmaktadir (Esitlik 2.2). Bu fonksiyon 4 tahmin edici igeren dogrusal
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olmayan bir fonksiyondur ve ¢ok boyutlu bir yapiya sahip oldugundan dolay: genellikle
makine 6grenmesi kapsaminda bu fonksiyon kullanilarak y yanit degiskenine en yakin

tahmin degeri elde edilmeye ¢alisilmaktadir.

X2X3
F (x) = Cy* arctan | ——=2** (Esitlik 2.2)

X1

C sabitleri, Esitlik 2.1 ve 2.2°de gosterildigi tizere F(X)’in varyans: 1'e esit

olacak, yani F(X) rastgele etkiler ile ayn1 giice sahip olacak sekilde se¢ilmistir.

y=FX)+ Zb+¢& b~ N(0, 6?), &~ N(0,02) (Esitlik 2.3)

2.1.1. Kullanilan Sistem Kapasitesi ve Programlar

Aragtirmanin tim asamalarinda, Intel(R) Xeon(R) Gold 6136 3 GHz 16
cekirdekli islemci Ozelligine ve 256 GB rastgele erisimli bellege (RAM) sahip bir
sunucu kullanilmigtir. Ayrica, ¢alismadaki analizlerde Python Jupyter Notebook 6.4.8

kullanilmastir.

Calisma stiresince olusturulan ve calistirilan kodlar, talep iizerine ilgili yazardan

istenebilir.

19



2.1.2. GPBoost icin Model Parametreleri

Max_Depth: Agacin dallarinin asagi dogru uzamasinin degeridir. Diger bir
deyisle agacin derinligidir. Asir1 O6grenmeden kaginmak ic¢in optimum seviyeye
getirilmelidir. Cok dallanma agir1 6grenmeye, az dallanma eksik Ogrenmeye neden

olmaktadir. Varsayilan parametre -1 olarak alinmistir.

Learning_rate: Agaclar1 6lgeklendirmek igin 0-1 arasinda verilen bir degerdir. Bu
degerin kiicliik olmasi daha iyi tahmin giiciine yardimci olmaktadir. Fakat; 6grenim

sliresini ve asir1 6grenme olasihigimi arttiracaktir. Varsayilan parametre 0,1 olarak

alinmistir.
Iterations: Olusturulacak agac sayisidir. Farkli algoritmalarda
“num_boost_round”, “n_estimators”, “num_trees”’, ‘“num_iterations” isimleri ile de

kullanilir. Az olmas1 eksik Ogrenmeye, fazla olmasi asir1 Ogrenmeye neden
olabilmektedir. Ayrica sayinin artmasi egitim siiresini de arttirmaktadir. Varsayilan

parametre 32 olarak alinmistir.

Early_stopping_rounds: Asir1 6grenmeyi engellemek igin kullanilan parametredir.
En uygun adimi bulduktan sonra ka¢ kez deneme yapilacag: belirtilmelidir. Bu deger
100 alindiginda model en uygun oldugu andan sonra 100 iterasyon daha yapar ve hedef
parametreler yakalanmasa bile model o6grenmeyi durdurur. Ornegin baslangic
parametresinde iterasyon sayist 2000 verilmis olsun, en uygun ana 1000. iterasyonda
ulastiysa model burada duracaktir (Muratlar, 2020). Varsayilan parametre 5 olarak

alinmustir.
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Verbosity: Her iterasyonda ¢ikt1 olarak modelin 6grenim durumu, toplam siire ve
kalan siire bilgisi gelmektedir. Bu ¢ikti ¢ok iterasyonun oldugu durumda ekranda ¢ok

fazla alan kaplamaktadir. Varsayilan parametre 0 olarak alinmistir.

Feature_fraction: 1,0'dan kiiciikse, her yinelemede (agag) rastgele bir Oznitelik
(parametre) alt kiimesi secer. Ornegin, 0,8 olarak alimirsa, algoritma her bir agaci
egitmeden Once parametrelerin %80’ini sececektir. Varsayilan parametre 1,0 olarak

alinmustir.

Subsample: Egitim oOrneginin alt 6rnek oranidir. Agaglara verilen ornekleri
kontrol etmektedir. Ornegin 0,5 degerine ayarlanirsa, algoritmanin agaglar1 bilyiitmeden
once egitim verilerinin yarisini rastgele orneklemesine izin vermek demektir ve bu da

asir1 6grenmeyi Onleyecektir. Varsayilan parametre 1,0 olarak alinmistir.

Kullanilan  karar agaglar1  algoritmast ile arttirma  algoritmalarinin
karsilagtirilmasinin objektif bir sekilde yapilabilmesi amaciyla algoritmalarda kullanilan
temel parametreler her bir algoritma i¢in ayni girilmistir. Ayni degerlere sahip
parametreler sirasiyla; ‘n_estimators’, ‘learning rate’ ve ‘max_depth’ dir. Yiiksek
max_depth degeri daha kompleks bir model yaratir ve asir1 uyum olasilifinmi arttirir

(Coskun, 2020).

2.1.2.1. GPBoost icin Ayarlama Parametreleri

Arttirma algoritmalarindan GPBoost, ayar (tuning) parametreleri, olgiit olarak
RMSE ile egitim verileri lizerinde 4 kat ¢apraz dogrulama kullanilarak ve GPBoost

model tahminleri igin rastgele etkiler goz ard1 edilerek se¢ilmistir.
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Sekil 2.1: Egitim seti i¢in 4 kat ¢apraz dogrulama kullanilarak olusturulan parametre ayar1 (EK,
2020)

2.1.3. MERF i¢in Model Parametreleri

MERF algoritmas1 icin MERF Python paketi (versiyon 0.3) kullanilmistir ve
MERF algoritmasinin yineleme sayist 100 olarak alinmistir. Bununla birlikte, MERF
icin, agag¢ sayisin1 {100, 300, 500}, agaglarin maksimum derinligini € {1, 5, 10} ve
genellestirilmis log-olabilirlik (GLL) Kriterini minimum yapma amaciyla, bolinmeler €
{0,5, 0,75, 1} seklinde ele alinmigtir. Maksimal bir aga¢ derinligi limiti koyulmayip
agac sayist 300'e ayarlanmistir. Bunlar MERF paketinin varsayilan degerleridir (Hajjem
ve ark., 2014).

2.2. Hata Olc¢iim Parametreleri
2.2.1. Hata Kareler Ortalamasimin Karekokii (RMSE)

Hata Kareler Ortalamasinin Karekokii (RMSE), artiklarin (tahmin hatalar)
standart sapmasidir. Artiklar, regresyon ¢izgisi veri noktalarindan ne kadar uzakta

oldugunun bir 6l¢iisiidiir. RMSE, bu artiklarin ne kadar yayildigimin bir Ol¢iisiidiir.
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Baska bir deyisle, verilerin en uygun c¢izgi etrafinda ne kadar yogun oldugunu sdyler.
Ortalama karekok hata, deneysel sonuclari dogrulamak icin klimatoloji, tahmin ve

regresyon analizinde yaygin olarak kullanilir. RMSE asagidaki esitlikle ifade edilir
(Glen, 2021).

RMSE = [y Fim2d® (Esitlik 2.4)

i=1" 5
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3. BULGULAR

Orneklem biiyiikliigiiniin 5000, 10000 ve 15000, kiime sayisinin 250, 500 ve
1000, rastgele etki varyansiin 1 ve hata varyansinin 1 ve 4 oldugu durumlara goére farkl
toplamda 108 senaryo olusturulmustur. Bu  Senaryolar i¢in makine Ogrenmesi
yontemlerine ait sonuglar ¢izelgeler ve sekillerle verilmistir. Tim senaryolar igin
sonuglar RMSE, RMSE’ye ait standart sapma ve zaman (saniye) Kkriterleri ¢izelge olarak,
‘friedman3' modeline ait baslica ozellik se¢imi i¢in 6nemlilik siralamasi SHapley

Additive exPlanations (SHAP) teknigi ile sekil iizerinde yapilmistir.
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Cizelge 3.1°de orneklem sayist 5000, kiime sayisi sirastyla 250, 500, 1000
oldugunda rastgele etkiler varyansi ve hata varyansi 1 olarak alindiginda dogrusal
karisik etkili modelin hata kareler ortalamasinin karekokiinin MERF ve GPBoost
modeline gore daha kiigiik oldugu gézlemlenmistir. Ek olarak, kiime sayis1 sirasiyla 250,
500 oldugunda rastgele etkiler varyansi 1 ve hata varyansi 4 olarak alindiginda dogrusal
karisik etkili modelin hata kareler ortalamasinin karekokiinin MERF ve GPBoost
modeline gore daha kii¢lik oldugu gézlemlenmistir. Kiime sayis1 1000 oldugunda MERF
modelinin hata kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve GPBoost

modeline gore daha kii¢iik oldugu gézlemlenmistir.

Cizelge 3.2’de orneklem sayisi 10000, kiime sayisi sirastyla 250, 500, 1000
oldugunda rastgele etkiler varyansi ve hata varyansit 1 olarak alindiginda dogrusal
karisik etkili modelin hata kareler ortalamasinin karekokiinin MERF ve GPBoost
modeline gore daha kii¢lik oldugu gozlemlenmistir. Ek olarak, kiime sayis1 sirastyla 250,
500, 1000 oldugunda rastgele etkiler varyanst 1 ve hata varyansi 4 olarak alindiginda
dogrusal karisik etkili modelin hata kareler ortalamasinin karekokiinin MERF ve

GPBoost modeline gore daha kiiciik oldugu gézlemlenmistir.

Cizelge 3.3’de orneklem sayisi 15000, kiime sayisi sirastyla 250, 500, 1000
oldugunda rastgele etkiler varyansi ve hata varyansi 1 olarak alindiginda dogrusal
karigik etkili modelin hata kareler ortalamasinin karekokiinin MERF ve GPBoost
modeline gore daha kii¢lik oldugu gézlemlenmistir. Ek olarak, kiime sayis1 sirastyla 250,
500, 1000 oldugunda rastgele etkiler varyans1 1 ve hata varyansi 4 olarak alindiginda
dogrusal karigik etkili modelin hata kareler ortalamasinin karekdkiiniin MERF ve

GPBoost modeline gore daha kiigiik oldugu gézlemlenmistir.

Cizelge 3.4’te 6rneklem sayis1 5000, kiime sayis1 sirastyla 250, 500 oldugunda
rastgele etkiler varyansi ve hata varyansi 1 olarak alindiginda GPBoost modelinin hata

kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve MERF modeline gore daha

28



kiiciik oldugu gozlemlenmistir. Kiime sayis1 1000 oldugunda MERF modelinin hata
kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve GPBoost modeline gore
daha kii¢iik oldugu gozlemlenmistir. Ek olarak, kiime sayisi sirasiyla 250, 500, 1000
oldugunda rastgele etkiler varyans1 1 ve hata varyansi 4 olarak alindiginda MERF
modelinin hata kareler ortalamasiin karekokiiniin dogrusal karisik etkili ve GPBoost

modeline gore daha kiiciik oldugu gozlemlenmistir.

Cizelge 3.5’te orneklem sayisi 10000, kiime sayisi sirasiyla 250, 500, 1000
oldugunda rastgele etkiler varyansi1 ve hata varyansi 1 olarak alindiginda GPBoost
modelinin hata kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve MERF
modeline gore daha kiigiik oldugu goézlemlenmistir. Ek olarak, kiime sayis1 sirasiyla 250,
500, 1000 oldugunda rastgele etkiler varyanst 1 ve hata varyansi 4 olarak alindiginda
MERF modelinin hata kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve

GPBoost modeline gore daha kiiciik oldugu gézlemlenmistir.

Cizelge 3.6’da oOrneklem sayisi 15000, kiime sayisi sirasiyla 250, 500,1000
oldugunda rastgele etkiler varyansi1 ve hata varyansi 1 olarak alindiginda GPBoost
modelinin hata kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve MERF
modeline gore daha kiigiik oldugu gozlemlenmistir. Ek olarak kiime sayis1 sirasiyla 250,
500 oldugunda rastgele etkiler varyansi 1 ve hata varyansi 4 olarak alindiginda MERF
modelinin hata kareler ortalamasinin karekokiiniin dogrusal karisik etkili ve GPBoost
modeline gore daha kiiclik oldugu gozlemlenmistir. Kiime sayist 1000 oldugunda
GPBoost modelinin hata kareler ortalamasinin karekokiiniin dogrusal karigik etkili ve

MERF modeline gore daha kii¢iik oldugu gézlemlenmistir.

Beklenen bir sekilde, dogrusal model GPBoost algoritmasindan daha hizlidir.
Ayrica, GPBoost algoritmasinin 100 benzetim i¢in MERF algoritmasindan 4000 kat
daha hizli ¢alistig1 da goriilmektedir.
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GPBoost algoritmasint RMSE degerlerini diger yaklasimlardan elde edilen
RMSE degerleriyle karsilastiran bagimli gruplarda t-testleri igin p degerleri de
hesaplanmistir. Sonuglar, RMSE agisindan GPBoost ile LME ve GPBoost ile MERF
yontemleri arasindaki farkin istatistiksel olarak 6nemli oldugunu géstermistir (p<0,05)

(Cizelge 3.1 - 3.6).

Cizelgelerde dogrusal model disinda, GPBoost algoritmasinin diger tiim
yaklasimlardan 6nemli dl¢iide iistlin oldugu goriilmektedir.

1,27 kiime sayisi = 250 ot =1 o =
1,265 12
1,26
1,255 —
1,25
1,245 \
1,24
1,235
1,23

RMSE

5000 10000 15000

e | ME e MIERF GPBoost

Sekil 3.1: 'dogrusal' fonksiyon icin RMSE degerlerine gore g, = 1 ve 0,2 = 12 igin yontem
karsilastirmasi (m = 250)

1,256 kiime sayisi = 500 opg=1 o2=12
1,254
1,252

1,25
1,248
1,246
1,244
1,242

1,24

RMSE

5000 10000 15000

e | ME e MIERF GPBoost

Sekil 3.2: 'dogrusal' fonksiyon i¢in RMSE degerlerine goére 0,2 = 1 ve 0,2 = 12 igin yontem
karsilagtirmasi (m = 500)
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1,275 kiime sayisi = 1000 ot=1 oz =12

1,27
1,265
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1,225

RMSE

/

|

5000 10000 15000

e | ME e |ERF === GPBoOSt

Sekil 3.3: 'dogrusal' fonksiyon i¢gin RMSE degerlerine gore 0,2 = 1 ve 6,2 = 12 igin yontem
kargilagtirmasi (m = 1000)

2,17

2,16
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RMSE
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kiime sayisi = 250 (o}

5000 10000 15000

e | ME e |ERF === GPBoOSt

Sekil 3.4: 'dogrusal' fonksiyon i¢in RMSE degerlerine gore g,2 = 1 ve g, = 22 igin yontem

karsilagtirmasi (m = 250)
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RMSE

2,135
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2,125
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Sekil 3.5: 'dogrusal’ fonksiyon i¢in RMSE degerlerine gore 0,2 = 1 ve 0,2 = 22 i¢in ydntem

kargilagtirmast (m = 500)
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Sekil 3.6: 'dogrusal' fonksiyon i¢gin RMSE degerlerine gore 05,2 = 1 ve 6,2 = 22 igin yontem

karsilagtirmasi (m =1000)
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Sekil 3.7: 'friedman3'’ fonksiyonu i¢in RMSE degerlerine gore a;,2 = 1 ve 0,2 = 1?2 i¢in yontem
kargilagtirmast (m = 250)
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Sekil 3.8: 'friedman3’ fonksiyonu i¢in RMSE degerlerine gore a;,2 = 1 ve 0,2 = 12 igin yontem
karsilagtirmasi (m =500)
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Sekil 3.9: 'friedman3' fonksiyonu i¢cin RMSE degerlerine gore 0, = 1 ve 0,2 = 12 igin yontem
karsilagtirmasi (m =1000)
2,26 kiime sayisi = 250 of=1 o2=22
2,24

2,22 — e
2,2

2,18
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2,1
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Sekil 3.10: ‘friedman3' fonksiyonu i¢in RMSE degerlerine gore 0,2 = 1 ve g,2 = 22 igin yontem
karsilastirmasi (m =250)
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Sekil 3.11: 'friedman3' fonksiyonu igin RMSE degerlerine gore ;2 = 1 ve 0,2 = 22 igin yontem
karsilagtirmast (m=500)

2,3 kiime sayisi = 1000 of=1 o2=22
2,25 \
L 22
(%)
2 ——
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Sekil 3.12: 'friedman3’ fonksiyonu icin RMSE degerlerine gore 0,2 = 1 ve g.2 = 22 i¢in yontem
karsilagtirmasi (m = 1000)
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0.0 0.2 0.4 0.6 0.8 1.0

Sekil 3.13: 'dogrusal' fonksiyon igin gercek ve tahmin edilen sabit etkilerin karsilastiriimasi
(0p2 = 1 ve 0.2 = 1, n=5000, kiime m = 250)

Sekil 3.13’te 'dogrusal’ fonksiyon i¢in ger¢cek ve tahmin edilen sabit etkilerin
karsilagtirilmasi (0,2 = 1 ve 6.2 = 1, n=5000, kiime say1s1=250) goriilmektedir.

3.1. SHAP teknigi (SHapley Additive exPlanations)

Yanit degiskeninin tahmin edilmesinde her bir 6zelligin 6nemini degerlendirmek
icin SHAP teknigi kullanilmistir (Lundberg ve Lee, 2017). SHAP tekniginde her
Ozelligin tahmine katkisin1 acgiklayan Shapley degerlerine dayali olarak model
yorumlanabilmektedir (Rodriguez-Pérez ve Bajorath, 2020). Sekil 3.14’¢ gore
“degiskenl” niteliginin y yanit degiskeninin belirlenmesinde tahmin modeline en fazla

katkida bulundugu goriilmektedir.
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Sekil 3.14: 'friedman3' fonksiyonu igin (Esitlik 2.2 i¢in) SHAP degerleri

Hgh
dedisken_3 ]
dedisken_2 ‘ :
dedisken_1 - :
degisken_4 . :
-3 -2 -1 0 1 2

SHAP degeri

oznitelik degeri

Sekil 3.15:friedman3' fonksiyonu (Esitlik 2.2 i¢in) SHAP 6zet grafigi

Bir degiskenin yliksek SHAP degerine (negatif yonde oldugu i¢in) sahip olmasi
tahmini tizerinde yiiksek ve pozitif degerlerle iligkili olmas1 anlami tagimaktadir (Sekil
3.15)
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Sekil 3.15’te 4 degiskenin 6nem siralamasi gosterilmigtir. SHAP 6zet grafigi, en
onemli Ozellikleri ve bunlarin veri kiimesi tlizerindeki etkilerini gostermektedir. Bu
grafik, 'friedman3' fonksiyonu kullanildiginda 'degisken 2' ve ‘degisken 3' ile yanit
degiskeni arasinda pozitif bir iligki oldugunu gostermektedir. 'degisken 1' ile yanit

degiskeni arasinda negatif bir iligski oldugunu gostermektedir.
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| < c
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D oo =05 )l
T 53 0a S

o

-1.0 - 0.3

-0.2

il 0.1

200 400 600 800 1000 1200 1400 1600 1800
degisken_2
Sekil 3.16: ‘friedman3' fonksiyonu (Esitlik 2.2 i¢in) SHAP etkilesim grafigi
Sekil 3.16°de 'degisken 2"nin ‘degisken 3' ile siklikla etkilesime girdigi
gosterilmektedir.
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4. TARTISMA

Karigik etkili modellerde dogrusallik varsayimini esnetmek igin genellestirilmis
karisik etkili modeller kullanilmasi oOnerilmektedir. Bu, modelin hatali kurulmasina
neden olabilir. Bu nedenle kiimelenmis veya boylamsal veriler i¢in gruplandirilmis
rastgele etki modelleri, parametrik olmayan, makine dgrenmesine dayali yaklagimlar
onerilmistir. MERF modeli Manifold Al tarafindan, GPBoost modeli ise Sigrist (2020)
tarafindan kullanilmistir. GPBoost makine dgrenimi algoritmasi, hem Gauss siireci ve
karisik etkiler modellerindeki dogrusallik varsayimini esnetmek i¢in, hem de boosting
konusundaki bagimsizlik varsayimini esnetmek igin etkili bir yontemdir. Karisik etkili
makine 6grenmesi modeli dogrusal bir fonksiyon igeriyorsa ¢ogunlukla hem RMSE
acisindan hem de zaman(s) acisindan LME yonteminin kullanimi GPBoost ve MERF
yontemine gore daha verimli olacaktir, ancak dogrusal olmayan bir fonksiyon iceriyorsa

genellikle GPBoost yonteminin performansi diger modellere kiyasla daha iyidir.

Elde ettigimiz sonuglara bakarsak dogrusal fonksiyon icin hata varyans degeri 4,
orneklem sayisi az ve kiime sayisi fazla oldugunda, dogrusal model yerine MERF
modelinin RMSE degeri daha kiiciik ve bu fark istatistiksel olarak anlamli bulunmustur.
Bunun haricindeki tiim senaryolarda dogrusal modelin RMSE degerinin kiigiik ve bu
farkin istatistiksel olarak anlamli oldugu goriilmiistiir. Sigrist ise 2020 yilinda yaptigi
caligmada kiime sayisinin az ve Orneklem sayisinin diisiik oldugu her benzetim
modelinde LME modelinin RMSE degerini daha kiigiik ve bu fark istatistiksel olarak

anlamli bulmustur.

Dogrusal olmayan fonksiyon icin hata varyans degeri 1, orneklem sayisinin
diisiik ve kiime sayisinin yiiksek oldugu durumlarda, GPBoost model yerine MERF
modelinin RMSE degeri daha kiiciik ve bu fark istatistiksel olarak anlamli bulunmustur.

Bunun haricindeki tiim senaryolarda (hata varyansi 1 iken) GPBoost modelinin RMSE
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degerinin kiiciik, LME ile arasinda farkin istatistiksel olarak anlamli, MERF ile
arasindaki farkin istatistiksel olarak anlamli olmadigi goriilmistiir. Sigrist ise 2020
yilinda yaptig1 calismada kiime sayisinin az ve 6rneklem sayisinin diisiik oldugu her
benzetim modelinde GPBoost modelinin RMSE degerini kiiciik ve bu fark istatistiksel

olarak anlamli bulmustur.

Dogrusal olmayan fonksiyon i¢in hata varyans degeri 4, orneklem ve kiime
sayisinin yiiksek oldugu durumlarda, GPBoost model yerine MERF modelinin RMSE
degeri daha kiigiik ve bu fark istatistiksel olarak anlamli bulunmustur. Bunun haricindeki
tiim senaryolarda (hata varyansi 4 iken) GPBoost modelinin RMSE degeri kiigiik ve bu

fark istatistiksel olarak anlamli bulunmustur.

Gergek hayat verilerie uygulanabilmesi igin benzetim ¢alismasi ile 6rneklem
biyiikliigii, kiime sayis1 ve hata varyans degerlerinin farkli sekillerde ele alinidigi

calismalar yapilmasina alanyazinda ihtiyag vardir.
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5. SONUC VE ONERILER

Gauss siireci ile karisik etkili modellerde, kiimelenmis etkiler igin olasiliksal
modeller olusturulur, boylece tahmindeki belirsizligi agiklayan olasilikli tahminler iiretir

(Sigrist, 2020).

GPBoost algoritmasinit RMSE agisindan diger yaklagimlarla karsilastiran bagimli
gruplar i¢in t-testlerinden p degerleri de hesaplanmistir. Sonuglar, yontemler arasindaki

farkin istatistiksel olarak 6nemli oldugunu gostermistir (p<<0,001).

Zaman agisindan bakildiginda MERF algoritmasinin hizinin digerlerine gore ¢ok
yavas oldugu gozlemlenmektedir, buna, diizgiin tanimlanmis bir EM algoritmasi

olmamasinin neden oldugu disiiniilmektedir (Sigrist, 2020).

Caligmanin benzetim basamaginda dogrusal olmayan bir fonksiyon i¢cin GPBoost,
MERF ve LME yontemine gore RMSE ve zaman agisindan daha iyi bir performans
gostermistir. Ancak dogrusal bir fonksiyon ele alindiginda LME daha iyi bir sonug

vermektedir.

Bu yontem, tip alaninda; gen ve protein belirteglerinin lokalizasyonu, hastalik
patogenezi ve etiyolojisi hakkinda ek ¢oziim, kisaca daha bilgilendirici ve umut verici
tanisal karar vermeye katki saglar. Robotik alaninda; hareket planlama, konum belirleme,
lokalizasyon ve esleme konularinda etkin bir performans gosterebilir. Spor alaninda;
NBA free agency tahmini i¢in ge¢mis yillardaki kullanimi siirdiiriilebilir (Natarajan,
2019).
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OZET

Geleneksel Makine Ogrenmesi ve Karisik Etkili Makine Ogrenmesi Model

Performanslarinin Benzetim Calismasi ile Degerlendirilmesi

Kiimelenmis verilerin analizi i¢in yaygin olarak klasik yaklagim (genellestirilmis) dogrusal
karisik etkili modeller (LME, GLMM) kullanilmaktadir. Bununla birlikte, dogrusal parametrik
modellerin varsayimlarmi saglamak oldukga zordur. Klasik yontemler, boylamsal verilerin alt
grup gozlemlerinin yiiksek derecede korelasyon sergiledigi ¢alismalarda diisiik performansa yol
acmaktadir. Ayrica, bu yontemler, verilerdeki dogal korelasyon yapisini hesaba katmadan

kullanildigindan ¢ikarimlarin yaniltict olmasina yol agar.

Agac tabanli algoritmalar1 kiimelenmis verilere genisletmek icin makine 6grenme ydntemleri
uygulanabilir. Bunlarda biri karisik etkili makine 6grenmesi modelidir. Bu model, iki regresyon
agaci yontemini, dogrusal olmayan karigik etkili modelinin (NLMM) sabit ve rastgele etki
bilesenlerini tahmin etmek i¢in birlestirir. Hajjem (2011) tarafindan onerilen genellestirilmis
karigik etkiler regresyon agaglari (GMERT) yapisi ve Sela (2012) tarafindan 6nerilen rastgele
etkiler beklenti maksimizasyonu (RE-EM) aga¢ yapisi birlikte ele alinir. Tiretilmis veriler
tizerinde geleneksel makine 6grenmesi modelleri ile yeni bir yaklagim olarak makine 6grenmesi
araclarindan karisik etkili makine 6grenmesi modelinin performanslar1 benzetim uygulamasi ile
incelenecektir ve uygulama igin 6rneklem biiyiiklikleri 5000, 10000, 15000 olarak belirlenmistir.
Gergeklestirilecek islemler igin R programindan veya Python programlama dilinden ve var olan

hazir kiitiiphanelerden yararlanilacak, gerekli yerlerde yeni kod yazilacaktir.

Anahtar Kelimeler: Makine Ogrenmesi, Rastgele Etki, Benzetim, Kiimelenmis Veri
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SUMMARY

Assessment of the Performance of Classic Standard Machine Learning Models and

Mixed Effect Machine Learning Models via Simulation Study

Classical (generalized) linear mixed effect models (LME, GLMM) are widely used for the
analysis of grouped data. However, it is quite difficult to provide assumptions of linear
parametric models. Classical methods lead mediocre performance in studies where subgroup
observations of longitudinal data exhibit high degree of correlations. Also, these methods are
used for analysis of longitudinal data without accounting for the inherent correlation structure in

the data often leading to potential for misleading inference.

Machine learning methods can be applied to extend tree-based algorithms to grouped data. One
of them is the Mixed Effect Machine Learning model. This model combines the generalized
mixed-effects regression trees (GMERT) structure for modeling general types of outcomes and
the expectation maximization structure of the random-effects expectation maximization (RE-EM)
tree for estimating the fixed and random-effects components of nonlinear mixed effect model
(NLMM). The performances of the standard machine learning models and the mixed effects
machine learning models will be analyzed by simulation study on the generated data. The
sample sizes for the application were determined as 500, 1000, 15000. The R program and
Python programming language and present libraries will be used for the analysis to be performed,

and new codes will be written where necessary.

Keywords: Machine Learning, Random Effects, Simulation, Grouped Data
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