
SIMILAR QA PAIRS DETECTION SYSTEM TO IMPROVE
CHAT QUALITY IN TURKISH CONVERSATION GROUPS

TÜRKÇE KONUŞMA GRUPLARINDA SOHBET
KALİTESİNİ ARTIRMAK İÇİN BENZER SORU-CEVAP

ÇİFTİ TESPİT SİSTEMİ

İZZET KILIÇ

ASSOC. PROF. DERYA KARAGÖZ

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Statistics

May 2022

ABSTRACT

SIMILAR QA PAIRS DETECTION SYSTEM TO IMPROVE CHAT
QUALITY IN TURKISH CONVERSATION GROUPS

İzzet Kılıç

Master of Science, Statistics

Supervisor: Assoc. Prof. Derya Karagöz

May 2022, 92 pages

Nowadays, social media applications have become one of our essential communication

tools. These applications can be used to communicate individually or in groups. Retrieving

information by processing the text data produced in user groups increases the quality of

the chat. Consequently, creating a system that will prevent the same question from being

asked multiple times in groups with thousands of users will help increase efficiency in

the chat. With the help of the application developed on the Slack platform in this study,

users can search for similar questions in old messages and retrieve their answers. In cases

where there is no similar question in the conversation, a mechanism has been developed to

direct the question that is asked by a user to a user who has knowledge of the subject. The

BERTurk model is fine-tuned for sentence classification and question answering tasks, which

are natural language processing techniques. Since a large amount of training data is needed,

datasets created in other languages are translated to Turkish and open-source datasets are

used.

Keywords: Natural Language Processing, Deep Learning, Question Answering, Question

Detection

i

ÖZET

TÜRKÇE KONUŞMA GRUPLARINDA SOHBET KALİTESİNİ
ARTIRMAK İÇİN BENZER SORU-CEVAP ÇİFTİ TESPİT SİSTEMİ

İzzet Kılıç
Yüksek Lisans, İstatistik Bölümü

Tez Danışman: Doç. Dr. Derya Karagöz

Mayıs 2022, 92 sayfa

Günümüzde sosyal medya uygulamaları temel iletişim araçlarımızdan biri haline gelmiştir.

Bu uygulamalar üzerinden bireysel olarak veya gruplar halinde iletişim kurulabilmektedir.

Kullanıcı gruplarında üretilen metin verisini işleyerek anlamlar çıkarmak, sohbetin kalitesini

arttırmaktadır. Binlerce kullanıcıya sahip gruplarda birden fazla kez aynı sorunun

sorulmasına engel olacak bir sistem oluşturmak, sohbetteki verimliliği artırmaya yardımcı

olacaktır. Bu çalışmada Slack platformu üzerinde geliştirilen uygulama sayesinde,

kullanıcılar eski mesajlarda benzer soruları arayabilmekte ve cevaplarına ulaşabilmektedir.

Sohbette benzer soru bulunmadığı durumlarda sorulan soruyu, konuya hakim kişilere

yönlendirecek mekanizma da geliştirilmiştir. Doğal dil işleme tekniklerinden cümle

sınıflandırma ve soru cevaplama görevleri için BERTurk modeli kullanılarak ince-ayar

yapılmıştır. Yüksek sayıda eğitim verisine ihtiyaç duyulduğundan, Türkçe için eğitim

verisi diğer dillerde oluşturulan veri setlerinden çevrilerek ve açık kaynak olarak paylaşılan

verisetleri düzenlenerek bu ihtiyaç karşılanmıştır.

Keywords: Doğal Dil İşleme, Derin Öğrenme, Soru Cevaplama, Soru Tanıma

ii

ACKNOWLEDGEMENTS

I would like to thank all my loved ones who supported me during this period, especially my

mother, my sister and my friends whom I turned down every plan they made. I would also

like to express my gratitude to my dear advisor Assoc. Prof. Derya Karagöz for always

supporting me and caring about my opinions, to my dear teacher Res. Asst. Mustafa Murat

Arat who introduced me to natural language processing and also to all my professors at Gazi

University, METU and Hacettepe University.

I would also like to thank Assoc. Prof. Savaş Yıldırım from Istanbul Bilgi University who

supported me to fix the algorithm, to Prof. Dr. Banu Diri from Yıldız Tenik University and

Asst. Prof. Zeynep Banu Özger from Kahramanmaraş Sütçü İmam University for providing

data that I could use in my research.

iii

CONTENTS

Page

ABSTRACT . i

ÖZET . ii

ACKNOWLEDGEMENTS . iii

CONTENTS . iv

TABLES . vi

FIGURES . vii

ABBREVIATIONS. ix

1. Introduction . 1

1.1. Background . 2

1.2. Related Work . 3

1.3. Outline of the Thesis . 5

2. Methodology . 6

2.1. Sequence to Sequence Learning . 9

2.2. Transfer Learning . 11

2.3. Transformer Architecture and BERT . 12

2.4. BERTurk . 19

2.5. Downstream NLP Tasks . 20

2.5.1. Sentence Classification . 20

2.5.2. Question Answering . 22

2.5.3. Zero-Shot Classification . 23

2.6. Evaluation Metrics. 24

2.7. Related Technologies . 26

3. Application . 27

3.1. Architecture . 28

3.2. Model Preparation . 29

3.2.1. Data Collection . 29

3.2.2. Fine-Tuning . 37

iv

3.3. Message Pre-Processing . 43

3.4. Production . 47

4. Results . 51

4.1. Text Classification . 51

4.1.1. Dialog Dataset. 51

4.1.2. Quora Dataset . 55

4.1.3. Tweet Dataset . 58

4.2. Question Answering . 61

4.2.1. TQuad Dataset . 61

4.2.2. YTU QA Dataset . 64

5. Conclusion. 67

REFERENCES . 69

CURRICULUM VITAE . 79

v

TABLES

Page

Table 2.1 Confusion Matrix. 24

Table 3.1 Distribution of Dataset Instances for Text Classification 34

Table 3.2 Distribution of Dataset Instances for Question Answering. 36

Table 3.3 Hyper-parameter Setup for NLP Tasks . 39

Table 4.1 Dialog Dataset Fine Tuning Metrics . 55

Table 4.2 Quora Dataset Fine Tuning Metrics . 58

Table 4.3 Tweet Dataset Fine Tuning Metrics . 61

Table 4.4 TQuad Dataset Fine Tuning Metrics . 63

Table 4.5 YTU QA Dataset Fine Tuning Metrics. 66

vi

FIGURES

Page

Figure 2.1 Tokenization . 8

Figure 2.2 Embedding Vector. 9

Figure 2.3 Encoder - Decoder Architecture [56] . 10

Figure 2.4 Recurrent Neural Network Structure [19]. 11

Figure 2.5 Architecture of Transformer . 12

Figure 2.6 Architecture of BERT . 17

Figure 2.7 Pre-training Procedure of BERT . 19

Figure 2.8 Sentence Classification with BERT . 21

Figure 2.9 Question Answering with BERT . 22

Figure 3.1 Architecture of the Application. 28

Figure 3.2 Dialog Dataset Sample . 30

Figure 3.3 Translated Dataset Sample. 31

Figure 3.4 Quora Dataset Sample . 31

Figure 3.5 Wikipedia Turkish Sentence Dataset Sample . 32

Figure 3.6 Quora-Wikipedia Mixed Dataset Sample . 32

Figure 3.7 Raw Tweet Question Dataset Sample . 33

Figure 3.8 Tweet Question Dataset Sample . 34

Figure 3.9 Question Answering Dataset Structure. 35

Figure 3.10 PoS Tagging . 37

Figure 3.11 PoS Tagging without Tokenization . 37

Figure 3.12 PoS Tagging with Tokenization . 37

Figure 3.13 Python Code Snippet for Extracting Encodings . 39

Figure 3.14 Python Code Snippet for Trainer Class in Text Classification 40

Figure 3.15 Python Code Snippet for Compute Metric Function . 41

Figure 3.16 Python Code Snippet for Trainer Class in Question Answering 41

Figure 3.17 Python Code Snippet for Inference in Text Classification 42

vii

Figure 3.18 Python Code Snippet for Inference in Question Answering 43

Figure 3.19 Python Code Snippet of Message Class. 44

Figure 3.20 Message Processing Flow . 45

Figure 3.21 Chat Group Conversation Windows . 46

Figure 3.22 Python Code Snippet of Question Class . 47

Figure 3.23 Python Code Snippet of Answer Class . 47

Figure 3.24 Initializing Bot . 48

Figure 3.25 Asking Question. 48

Figure 3.26 Similar Question Selection . 49

Figure 3.27 Displaying Answers . 50

Figure 4.1 Dailog Dataset Character Count Distribution . 52

Figure 4.2 Dailog Dataset Word Count Distribution . 52

Figure 4.3 Dailog Dataset Pos Tags . 53

Figure 4.4 Dialog Dataset Fine Tune Metrics by Step Charts . 54

Figure 4.5 Quora Dataset Character Count Distribution . 55

Figure 4.6 Quora Dataset Word Count Distribution . 56

Figure 4.7 Quora Dataset Pos Tags . 56

Figure 4.8 Quora Dataset Fine Tune Metrics by Step Charts . 57

Figure 4.9 Tweet Dataset Character Count Distribution. 58

Figure 4.10 Tweet Dataset Word Count Distribution . 59

Figure 4.11 Tweet Dataset Pos Tags . 59

Figure 4.12 Tweet Dataset Fine Tune Metrics by Step Charts . 60

Figure 4.13 TQuad Dataset Character Count Distribution of Answers 62

Figure 4.14 TQuad Dataset Word Count Distribution of Answers 62

Figure 4.15 TQuad Dataset Fine Tune Metrics by Step Charts . 63

Figure 4.16 YTU QA Dataset Character Count Distribution of Answers 64

Figure 4.17 YTU QA Dataset Word Count Distribution of Answers 64

Figure 4.18 YTU QA Dataset Fine Tune Metrics by Step Charts . 65

viii

ABBREVIATIONS

AI : Artificial Intelligence

ANN : Artificial Neural Network

API : Application Programming Interface

BERT : Bidirectional Encoder Representations from Transformers

CRF : Conditional Random Fields

DL : Deep Learning

DNN : Deep Neural Network

ELMo : Embeddings from Language Models

FFNN : Feed-Forward Neural Network

GPT : Generative Pre Training

GPU : Graphics Processing Units

HTTP : Hyper-Text Transfer Protocol

JSON : JavaScript Object from Notation

LSTM : Long-Short Term Memory

ML : Machine Learning

MLM : Masked Language Modeling

NLP : Natural Language Processing

NSP : Next Sentence Predicton

PoS : Part-of-Speech

RNN : Recurrent Neural Network

TPU : Tensor Processing Units

ix

1. Introduction

Communication is the fundamental necessity of our age. With the global spread of the

internet, people can communicate with each other wherever they are in the world. The main

instrument of communication is language, and considering that there are more than 7000

languages in the world [82], it becomes critical to develop technology in this area.

Whereas online forums were extensively used when communicating over the internet,

nowadays, social media applications such as WhatsApp, Slack, Discord, Telegram, etc. are

preferred. People can create conversation groups around any subject using these applications.

In addition, experts and beginners could join these groups, such as ”Deep Learning Group”,

”Machine Learning Techniques”, ”Artificial Intelligence Working Group” etc. Considering

that there are thousands of people in these groups and that new people continue to join,

it is inevitable that the same topics are discussed, and therefore the same questions are

asked over and over again. The reason for this situation is that conversation groups have

a continuous flow, therefore a message about a topic may disappear in minutes, even in

seconds, unlike forums [25]. The fact that machine learning or deep learning techniques are

replacing repetitive tasks directly affects this situation. There are various support systems to

prevent the same questions from being asked repeatedly by different people. For example,

while you are using telephone banking, if you ask ”How much money do I have in my

account?” to the voice response system, it gives the answer itself by checking your account

instead of connecting you to the customer representative. Another example would be tickets

that are opened to the information technology (IT) help desk. Password reset requests can

even be easily carried out without any human interaction.

Although certain conditions could be controlled in some industries, such as banking, telecom,

IT departments, etc., it is difficult to filter messages that are sent randomly in a conversation

groups. The first requirement for such a scenario is an automation system, which is

responsible for processing text inputs. Messages could be filtered or processed with bots

in the social media applications mentioned above [76]. A bot is a software application that

1

is programmed to perform specific tasks. Bots can perform predefined tasks with the help of

commands, as well as send messages to a remote server received from users, allowing them

to be processed. In this way, messages can be processed using Natural Language Processing

(NLP) techniques and the output can be returned as a response. The second requirement is

to analyze these inputs. Since these text inputs are sentences constructed in daily life, they

should be translated into machine language. Understanding human language by machines

requires a lot of subtasks.

This study mainly focuses on preventing the same questions from being asked in conversation

groups, thereby increasing conversation quality. In order to do so, three different NLP

tasks have been carried out; (1) sentence classification for detecting questions, (2) question

answering for pairing appropriate answers with detected questions, and (3) zero-shot

classification for matching the subject of each sentence with users.

1.1. Background

NLP concentrates on how natural language can be understood by machines. It started its

journey in the 1950s with hand-written rules. In the following years, statistical methods,

machine learning, and finally Deep Learning (DL) algorithms made NLP progress and

achieved the state-of-art results.

Computers, unlike humans, can only understand numbers. Therefore, we have to represent

words in a numeric format that is understandable by computers. In order to convert a text

input to a numerical value, it should be broken into pieces. These pieces are called tokens,

and this process is called tokenization. Word embedding comes after this very beginning

process. It is used to represent words with numeric vectors.

In the 2010s, Recurrent Neural Networks (RNN) started to be used to process these

vectorized text inputs. These networks process sentences one at a time in a concept that is

called memory. Since this memory has certain limits, the Long Short-Term Memory (LSTM)

model has been proposed to overcome the short memory problem [13].

2

Another development in NLP is transfer learning. Transfer learning was first published and

used in neural networks in 2008 by Collobert et al. [18]. It is used in pre-trained models

today. Through transfer learning, the information obtained in the first layers of an artificial

neural network can be distributed to be used in different tasks.

By 2015, the attention mechanism had emerged as a groundbreaking technique in NLP,

replacing recurrence. As the name suggests, this mechanism concentrates on some

words/tokens in the sentence/sequence at each step in order to find the most related part.

Thus, the problem of compressing all information into a fixed-size vector in previous models,

has been solved in the encoder-decoder part of this mechanism. BERT [22], RoBERTa

[48], GPT [59], GPT-2 [60] and GPT-3 [12] models have been proposed by using an

attention mechanism, and they continue to work with this architecture, because the attention

mechanism is very powerful in finding relationships between words.

1.2. Related Work

As previously mentioned, this study mainly focuses on three different sub-tasks of NLP

and the methods that are required to solve them. Therefore, this section consists of

previous research conducted on text classification and question answering tasks. Since NLP

techniques need to be language-specific, the literature for both English and Turkish has been

properly reviewed.

Currently, DL techniques are popular to determine whether a sentence is a question, rather

than using rule-based methods. Rule-based systems are concerned with whether or not

the sentence contains wh- questions, a question mark (?), or regex-determined patterns.

Although a rule-based system produces significant results for the dataset it is working on,

it would not work at the same performance for different datasets. For instance, Kwong et al.

[45] compared three different algorithms, which are naive, regex, and S&M [74] in order to

detect questions. In contrast to rule-based methods such as naive and regex, S&M algorithm

uses part-of-speech tags of sentences as a feature set to learn whether a sentence is a question

or not. It has been seen that rule-based methods give superior results on a given dataset in

3

the project. Özger et al. [53] obtained a model that reaches approximately 88% accuracy

by combining rule-based methods in hand-crafted Turkish tweet dataset. They combined

question marks, question affixes, question words, and special words (e.g. acaba, demi, sence)

as features and trained their model with conditional random fields (CRF).

Sentences can be categorized by using classification techniques. LSTM models with roughly

96% accuracy have been proposed, which was popular recently, [38] but models that are

constructed with BERT architecture are more promising due to higher accuracy [84]. In

recent studies, DL techniques have shown better results in question classification. Jiang et

al. [39] searched for a solution to classify double-barreled questions, which contain two

questions in one sentence. In their approach, they showed that DL algorithms such as BERT,

Word2Vec, XLNet gives higher accuracy rather than rule-based systems.

Question-answering, which is considered one of the information retrieval problems in

engineering, is a research area defined as a reading comprehension problem in the NLP

community [20]. Whereas well-defined datasets were used in previous studies such as

Baseball, LUNAR, WOLFIE, TREC-8, today’s models are trained with modern datasets

such as SQuAD, CNN/Daily mail, TriviaQA, MS MARCO [68, 86].

In the question-answering task, there are two different approaches: knowledge-based and

model-based. Knowledge-based systems are utilized in search engines; these systems are

made up of structured or unstructured data that require a lot of engineering and are created

according to a set of rules. The user’s inputs are searched in these knowledge bases, and

the most relevant results are displayed. On the other hand, model-based question-answering

systems have two inputs: a question and a context. Contexts could be a paragraph or a

document, and the question is searched in the context and a short answer is displayed. Since

the model-based systems have limitations, the text is divided into parts and answers are

sought in these parts in order to find an answer to a question in a long text entry [42]. The

improvements in NLP have resulted in the development of models such as LSTM, BERT,

GPT, which provide superior outcomes in the question-answering problem [2].

4

1.3. Outline of the Thesis

The remaining part of this thesis is composed as follows. The evaluation of NLP techniques

and related technologies was introduced in Chapter 2. Data collection, the fine-tuning

process, and the architecture of the application were explained in Chapter 3. The fine-tuning

metrics were given in Chapter 4. Finally, a conclusion was given in Chapter 5.

5

2. Methodology

Language is generally regarded as the distinguishing feature of human intelligence. As a

result, one of the most greatest challenges to the advancement of artificial intelligence is

the creation of systems capable of understanding human language. This goal has guided

artificial intelligence research, particularly in NLP and computational linguistics. Since

language pervades every element of human existence, NLP is required for computers to

fulfill their full potential in improving human intelligence. NLP, which is now one of the

trending artificial intelligence subjects, has a small number of practical applications and a lot

of theoretical research. It is a branch of computer science and linguistics that explores how

natural language texts and/or sounds are processed in a computer system [21].

NLP started to be studied in the 1950s, but it was suspended for a while due to a lack of

resources. It resurfaced with the development of statistical methods in the 1980s. Studies

were based on a set of rules until the 1980s, and with the increase in machine power

and labeled data in the 2000s, unsupervised machine learning methods began to be used

in this field. Deep neural networks (DNNs) which are deep version of artificial neural

networks (ANNs), now provide superior outcomes in many NLP tasks [83]. ANNs are the

main algorithms underlying deep learning (DL) [47]. It’s at the core of a lot of recent AI

applications. DNNs have the ability to handle highly complex and large machine learning

tasks due to the fact that they are powerful and versatile. [27]. In recent years, DNNs has

also been used in computer vision problems [44, 80], NLP, and even in business and finance

applications such as insurance credit scoring [43] and financial market forecasting [26, 34].

Although neural networks were proposed in the 1940s, most of the basic concepts for DL,

such as shallow neural networks, were developed in the 1980s [81]. However, it was difficult,

almost impossible to train the deep layers of a network due to a lack of resources. Therefore,

along with many other factors, the two most important ones play a big role in the deep

learning revolution.

6

The emergence of large volumes of high-quality data sets for training models, as well as the

use of affordable data centers to store these data sets, is the first factor in the DL revolution.

Working with a large data set with many variables (rather than using handcrafted variables

obtained by feature engineering methods) requires large-scale training data because of the

size problem [10]. Whereas it was almost impossible to collect data and especially to store

these data. DL techniques are now widely used as a result of training models by companies

and organizations collecting large amounts of different data. Deep learning technology

has progressed significantly, allowing even end users to access these trained models easily

(e.g. cloud-based systems).

The second factor is the emergence of powerful, massively parallel computing power

with graphics processing units (GPU) [52, 61] and tensor processing units (TPU) [41].

Computation and memory usage increased linearly with the number of observations in the

dataset. Since DNNs are both computationally and financially expensive, the demand for

computer resources has risen dramatically in order to efficiently complete both training and

inference tasks in a reasonable amount of time. Increasing computational power has led to an

increase in the capacity of neural networks, in other words, the number of parameters. Neural

networks become more useful and significant by increasing the capacity, thus the prediction

accuracy has improved [70].

DL is used in many fields such as computer image processing and pattern recognition. With

the experience gained in this field, new DL algorithms have started to emerge for NLP. Many

techniques used in machine learning have also been used to solve NLP problems. In recent

years, dense vector representation neural networks have surpassed classic neural networks in

a range of NLP tasks [85].

Since natural language is such an important aspect of our lives, NLP applications have

extended widely. Some of these applications are sentence classification, information

extraction, semantic parsing, question answering, multi-document summarization,

language-to-language translation, speech and character recognition, etc. [51]. While each

7

of these tasks used to be treated as a different topic of study, they are now covered using

common models.

The lexical or prosodic features of a sentence might be utilized when performing one of the

NLP tasks on it [16]. While prosodic features deal with where the intonation is, structural

features take into account the positions of the elements (subject, predicate, etc.) in the

sentence. Although prosodic features appear to improve model performance, it is not possible

to extract prosodic features for messages in a chat group [49]. Therefore, it is necessary to

create a model using structural features and implement the desired NLP tasks.

The very initial step of any NLP task is to extract tokens from sentences. The tokenization

process is used to split sentences into smaller pieces. The process may vary according to the

selected algorithm. While some algorithms can perform tokenization according to words,

some can do it according to sub-words. BERT, which is used in this study, uses WordPiece

[71] tokenization method. It is a sub-word tokenization method, and it uses likelihood to split

words. For example, if the likelihood of the word ”OT” is higher than the letters ”O” and

”T” separately, the splitting process is not performed. As can be seen in Figure 2.1, words

whose meanings change when adding suffixes such as ”Oduncu” and ”Odunluk” preserve

their semantic meanings by separating their roots with the WordPiece method.

Figure 2.1 Tokenization

8

Before working on a sentence or word, it is necessary to convert it to numerical values. The

word embedding methods are used for creating numerical vectors as can be seen in Figure

2.2 and these vectors are used as the first layer of an ANN.

Figure 2.2 Embedding Vector

The most commonly used technique, named Word2Vec [50], contains general information

about the given sentence in the vector, but it is not able to contain the properties of the

sentence complementation, polysemy, anaphora, harmony, negation, etc. [66]. At this point,

in 2018, which is also seen as the golden age of NLP, a technique called ELMo (Embeddings

From Language Models) was developed in order to solve the polysemy problem [54].

The benefits of the pre-training mechanism have also emerged with this technique based

on the bidirectional LSTM architecture [64]. Pre-training is the technique of using the

parameters (weights) collected from a trained model for a particular task as initial values

for another task.

2.1. Sequence to Sequence Learning

The technique that reads sentences sequentially and maps one sequence to another is

known as ”sequence-to-sequence learning”. There is an encoder-decoder architecture in this

learning technique. The encoder reads the input sequence and creates a vector including

information about the sentence, which is then given to the decoder as an input. Longer

9

sentences would cause a loss of information in the output vector that the encoder produces,

which is known as ”long-term dependency”.

Figure 2.3 Encoder - Decoder Architecture [56]

Figure 2.3 describes the encoder-decoder architecture in sequence-to-sequence models. This

architecture was first introduced by Cho et al. [15] but due to a long-term dependency

problem, Sutskever et al. [78] used an LSTM-based encoder-decoder model. Although

LSTM networks are used to tackle long-term dependency, training of these type of deep

networks is still a problem.

Languages have a sequential structure by their nature. One of the requirements of this

structure is that the information at the beginning of the sequence and another piece of

information at the end can be related to each other. For example, ”I have a black cat.

That’s why I brush its fur every day.” In the sentence, the words ”cat” and ”fur” are related.

RNNs are used in such case because sequential structure cannot be modeled with classical

machine learning techniques. RNNs process one token at a time and have a chain structure

that transfers the obtained information to the next cell. As can be seen in the RNN structure

which is given in Figure 2.4, Ot−1 obtained from Xt−1 is given as input to the next cell

together with Xt.

10

x

h

o

U

V

W
Unfold

xt-1

ht-1

ot-1

U

W

xt

ht

ot

U

W

xt+1

ht+1

ot+1

U

W

VV V V... . . .

Figure 2.4 Recurrent Neural Network Structure [19]

The disadvantage here is that the context cannot be tracked in cases where the gap between

the tokens is too wide. As a result, the information between the words ”cat” and ”fur,”

given in the example sentence above, can be lost. RNNs takes whole sequence and does

not concern whether the given tokens of sequences is important. LSTM cells, on the other

hand, can remember important information with a cell state mechanism. But we face the

same problem here: as the length of the sequence increases, the important information will

be lost. Another problem both network cannot process the sequence in parallel. Therefore

they require huge computational power.

2.2. Transfer Learning

As mentioned above, an NLP project includes more than one task. In the past, it was

necessary to produce different models for each task and train each model from scratch.

The training process is very time-consuming and requires a huge amount of computational

power. Transfer learning also known as domain adaptation, which emerged as a solution to

this situation, allows pre-trained models to be fine-tuned. Fine-tuning is the key process for

adapting the pre-trained model to new tasks.

In 2008, the word embedding layer was shared between different models with the multi-task

learning technique [18, 67]. In 2017s, transfer learning was applied to NLP tasks, which has

already used in computer vision problems [79]. Transfer learning makes it possible to use

the information obtained in the upper layers of a model by transferring it to different models.

11

Instead of creating new models for different NLP tasks, ULMFiT (Universal Language

Model Fine-tuning) uses the transfer learning architecture as its basis, and it is able to use

the main information created in a particular model in other tasks [33].

2.3. Transformer Architecture and BERT

Vaswani et al. [79] introduced a revolutionary work in NLP in 2017. With the ’Attention’

mechanism they suggested, they found solutions to many problems encountered, as well as

speeding up the training process and causing high performance models to emerge.

Figure 2.5 Architecture of Transformer

12

The original transformers, in which the entire network structure is visualized in Figure 2.5,

have an encoder-decoder architecture. In the architecture with 6-layer encoder stack on the

left and 6-layer decoder stack on the right, the data processing starts with the extraction

of the embedding and positional encoding of the sentences. Unlike sequential models,

Transformers are fed with a whole sentence at once, therefore the position information of

the tokens is kept in the positional encoding vector.

The most important feature of this model is the attention mechanism. The attention

mechanism which exists in both the encoder and the decoder, numerically represents the

relationship between the words of the sentences. The idea behind attention is that the network

should figure out which parts (elements) of the input sequence are more relevant to generate

a given element of the output sequence. The multi-head module contains more than one

self-attention layer which is determined as 8 in the original paper. Thus, more information is

obtained by focusing on the different features of the words in each layer. The calculation of

self-attention score is given as follows:

Attention(Q,K,V) = Zi = softmax

(
QKT

√
dk

)
V, for i = 1, ..., 8. (1)

Here, Q, K, and V stand for Query, Key, and Value matrix, respectively. These concepts

work similarly to information retrieval systems [24]. Q can be thought of as an input token,

K is the searched sequence, and V is the corresponding output. dk is a constant which is the

dimension of K and it is specified as 64 in the original paper. i is the index of self-attention

layer. Calculation of the Query, Key, and Value matrix, respectively, is given below:

Q = X×WQ, K = X×WK , V = X×WV (2)

where X is the input matrix and Ws are initial weights which are trainable parameters.

13

Softmax is a function that generates a probability distribution from an input vector [28]. This

function is used in multi-class classification problems. The probability distribution can be

obtained with the following equation:

softmax(z⃗)i =
ezi

K∑
j=1

ezj
, for i = 1, ..., K (3)

where z⃗ = z1, ..., zK is the input vector, zi is the ith element of the input vector, K is the

number of classes e is the standard exponential function. By using Eq. (3), it normalizes the

input sequence and ensures the sum of the output vector is 1.

Encoder Attention Layer

Considering the ”I have a black cat” sequence, the size of the input tokens is 5. The size

of the input embeddings for each token is 512 which is determined in the original paper.

Therefore, input X would be a 5 × 512 dimensional matrix. Matrix dimensions of Eq. (2)

can be found below:

Q5×64 = X5×512 ×WQ
512×64

K5×64 = X5×512 ×WK
512×64

V5×64 = X5×512 ×WV
512×64

(4)

As a result of Eq. (1), Zi
5×64 matrix is obtained for each self-attention layer. As we mentioned

above, there are 8 self-attention layers in the multi-head attention module. The calculation

of output matrix of multi-head attention module is given as follows:

Z5×512 =

[
Z1

5×64 Z2
5×64 ... Z8

5×64

]
5×512

× W512×512 (5)

14

Here, each Zi
5×64 matrix is concatenated and then multiplied with an additional weight

matrix, W512×512.

The information extracted in the encoder layers is sent to the next encoder layer. There could

be more than one encoder layer in order to increase predicting power by extracting different

attention representations. The information from the last encoder layer is transferred to the

decoders together with the embedding and positional encoding information obtained from

the target input.

Decoder Attention Layer

The multi-head attention module in the middle of each decoder layer receives the important

information from the encoder. The input sequence of the decoder layer is ”[START] Benim

siyah bir kedim var” which has 6 tokens with a special [START] token. The [START] token is

added, since the decoder layer is autoregressive. The calculation of Q, K and V, respectively,

for the decoder layer is given as follows:

Q6×64 = X6×512 ×WQ
512×64

K5×64 = Z5×512 ×WK
512×64

V5×64 = Z5×512 ×WV
512×64

(6)

In the Eq. (6), X6×512 matrix is created from the target sequence, which is ”[START] Benim

siyah bir kedim var” and Z5×512 comes from the last encoder layer.

There is a masked multi-head attention module before multi-head attention, and it is special

for the decoder layer. The Attention mechanism processes the words in the given sentence

with each other. This masking process is done in the masked multi-head attention module

in order to prevent a word from being attended to the future word. The structure of masked

matrix can be found below:

15

M =

I have a black cat



I 0 −∞ −∞ −∞ −∞

have 0 0 −∞ −∞ −∞

a 0 0 0 −∞ −∞

black 0 0 0 0 −∞

cat 0 0 0 0 0

(7)

Here, mask matrix M, consist of zeros and negative infinitives. The self-attention formula,

which is given in Eq. (1), combined with the masked matrix, is given below:

MaskedAttention(Q,K,V) = softmax

(
M+

QKT

√
dk

)
V (8)

When the softmax function is applied to the sum of masked matrix M and the multiplication

of query and key matrix, the future words are assigned a value of 0.

In all these matrix operations, there is a normalization layer in front of each module in order

to transfer the information between the layers stably and to decrease the training time [8].

There is also a Feed-Forward Neural Network (FFNN) in every pair of encoder-decoder

layers which adds linearity to the output matrix. In the last step, probabilities are calculated

with the softmax function [6, 55, 65].

By June 2018, a technique called GPT (Generative Pre-Training) emerged, which expands

the techniques used in ELMo and ULMFiT. This technique, developed by OpenAI, enables

both faster training and detection of complex patterns in sentences as a result of the transition

from LSTM-based architecture to a Transformer-based architecture [58, 64]. Following

that, the Bidirectional Encoder Representations from Transformers which is known as

BERT model was developed, which proved to be extremely successful in a variety of

NLP applications. With the help of the ability to handle a sentence from two directions

16

(bidirectional), BERT achieved better results in language modeling compared to previous

models [22, 32].

Figure 2.6 Architecture of BERT

BERT is a device that generates vectors with a length of 768 units for each token. It has

two different versions, one with 12 layers and the other one with 24 layers and it uses only

encoder layer from the Transformer architecture. The overall architecture is visualized in

Figure 2.6.

Firstly, the tokens of the input sequence are created. BERT uses the WordPiece method to

create tokens. There are also three special tokens: [CLS], [SEP], and [PAD]. The [CLS]

token is used for a classification task. The [SEP] token separates two input sequences, and

the [PAD] token adjusts the length of the input vectors.

Padding is basically used to adjust vector lengths. The vectors are made to the same length

by adding the special [PAD] token that can be seen as follows:

17

[CLS] Siyah bir kedim var . [SEP]

[CLS] Beyaz köpek yürüyor [SEP]

 (9)

[CLS] Siyah bir kedim var . [SEP]

[CLS] Beyaz köpek yürüyor [SEP] [PAD] [PAD]

 (10)

The next step is creating an embedding matrix, which consists of token embeddings, segment

embeddings, position embeddings, and attention masks. Token embeddings, or token ids, are

the numerical representation of each token. Segment embeddings are used to show which

sentence the tokens belong to when there is more than one sentence in the input sequence.

Position embeddings indicate the position of each token and attention mask is created to

distinguish which token to use in the calculation of attention scores.

BERT is trained with two different tasks, Masked Language Modeling (MLM) and Next

Sentence Prediction (NSP). In the MLM task, 15% of the input is masked, and the goal

is to predict these tokens in the softmax layer. 80% of this 15% part is replaced with the

[MASK] token, 10% with a random word, 10% remains unchanged. Question answering or

natural language inference tasks are focused on understanding the relationships between two

sentences. In the NSP task that is run in parallel, 50% of the sequences that are complements

to each other in the training set are selected and labeled as IsNext. The remaining part is

labeled NotNext and the training process is completed.

18

Figure 2.7 Pre-training Procedure of BERT

Figure 2.7 explains the training process of BERT. With the use of this pre-trained model,

output vectors can be created for input sequences. These vectors are used as features for

subtasks such as text classification or question answering [7, 22].

2.4. BERTurk

The BERT model can be trained for any language when enough raw data is available. BERT

has also been trained for Turkish with the data that has been provided by Kemal Oflazer and

open source multilingual aggregated data (e.g. Oscar) [72]. Four different models, which

were used in our study, are explained as follows.

19

• BERTurk 128k: It is the base model trained for Turkish with the technique described

in Section 2.3.

• DistilBERTurk: It is a fast and easy-to-use version of the BERT model that is 40%

smaller and maintains the accuracy of 97% [69].

• ConvBERTurk: Self attentions in BERT encoders consider all context. Jiang et al.

[40] proposed a novel method that replaces these attention heads with span based

dynamic convolution in order to consider local context.

• ELECTRA: The MLM technique works by predicting the originals of tokens that

have been replaced by [MASK] tokens. In the method proposed by Clark et al. [17],

the input tokens are replaced with other randomly chosen tokens. Then, instead of

predicting the original state of the tokens, the classification problem of whether the

tokens have been changed or not is examined.

2.5. Downstream NLP Tasks

Transfer learning allows pre-trained models to become widespread, which made it

unnecessary to train the models repeatedly for each NLP task. Pre-trained models are

trained on high-volume corpora; thus, they can be used in named entity recognition, question

answering, sentence classification, etc. only by fine-tuning. Fine-tuning can be defined as

using the weights obtained from these pre-trained models as the starting weights for the target

task. Thus, superior results are obtained for small datasets, and time and resources can be

saved. In this section, how BERT is applied to text classification and question answering

tasks and the mechanism of zero-shot classification were explained.

2.5.1. Sentence Classification

Text classification, as in NSP, deals with whether two inputs (sequences) are similar to each

other or belong to given classes.

20

Figure 2.8 Sentence Classification with BERT

As can be seen in Figure 2.8, the process starts with extracting the input tokens and the

embeddings obtained from them. The embeddings are passed through 12 layers to create

an output vector for each token. All information from the context is collected in the output

vector of the special [CLS] token. This vector, with a size of 768, and class labels are given

to the softmax function, and output probabilities are produced.

21

2.5.2. Question Answering

The goal of this task, also known as extractive question answering, is to extract answers

that are asked about a paragraph. By expanding the task of predicting the similarity of two

sentences to each other, the information about where the answer begins and where it ends is

searched in the paragraph.

Figure 2.9 Question Answering with BERT

The question on the left in the Figure 2.9 and paragraph on the right are separated with the

[SEP] token and the process starts with creating their embeddings. After generating output

vectors with BERT, the following equation is used to calculate the probabilities of the start

and end tokens of the answer to the question.

22

P S
i =

eS·Ti∑
j e

S·Tj
PE
i =

eE·Ti∑
j e

E·Tj
(11)

where P S
i and PE

i denote probability of start and end token, respectively. Ti is the output

vector of ith word obtained from the paragraph tokens, e stands for exponential function, S

and E represent vector of start and end tokens, respectively. Softmax function is applied to

the Eq. (11) to calculate probabilities over the dot product of Ti and the start and end token

vectors S and E. The tokens with the highest probability are chosen as the start and end

tokens.

In the question-answering task the [CLS] token is used to check if the answer is within the

paragraph. In addition, BERT can process sequences with a length of 512 tokens at once

due to its nature. The overlapping window technique is used to overcome this difficulty.

Paragraphs which are exceeding 512 tokens are cut to the appropriate length, and a new

sequence is created so that the end of the cut part and the beginning of the remaining part

overlap, and the processes are repeated [73].

2.5.3. Zero-Shot Classification

Most models today require labeled, high-quality and high-volume data. Zero-Shot learning

aims to eliminate this necessity. Zero-Shot classification, an unsupervised learning method,

has developed models that can achieve superior success in downstream NLP tasks without

the need for labeled data. The GPT-3 model, which uses few-shot classification that works

with very few labeled data, is one of them. However, too many model parameters require

high computational power [12].

Zero-shot classification technique were used in this study to extract sentence categories. The

MoritzLaurer/mDeBERTa-v3-base-mnli-xnli model on the Huggingface model hub

supports 15 languages, including Turkish. Since the model is pre-trained, it can be used

directly without the need for fine-tuning [31].

23

2.6. Evaluation Metrics

It is important to measure the performance of the models during both the training and

fine-tuning stages, to see the progress and to determine the best performing model. Different

NLP tasks require different performance measurement metrics. For example, Accuracy,

Precision, Recall and F1 which are calculated by using the Confusion Matrix given in Table

2.1 are used for sentence classification, while F1 and EM metrics are used for question

answering.

Actual Values

Positive (P) Negative (N)

Pr
ed

ic
te

d
V

al
ue

s

Po
si

tiv
es

True Positive (TP) False Positive (FP)

N
eg

at
iv

es

False Negative (FN) True Negative (TN)

Table 2.1 Confusion Matrix

Accuracy

Accuracy is obtained by dividing correctly classified samples by actual values. It is a

basic metric used to measure model performances. It can be calculated with the following

equation:

ACC =
TP + TN

P + N
(12)

24

where TP stands for true positive, which means the actual value is positive and it is predicted

as positive, TN is true negative, which means the actual value is negative and it is predicted

as negative, P and N denote the total of the actual positive and negative values, respectively.

Precision and Recall

Precision is obtained by dividing correctly classified samples into all positively classified

samples. Recall is a metric obtained by dividing correctly classified samples by actually

positive samples. The calculation of Precision and Recall is given below, respectively:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(13)

Here, TP is true positive, FP is false positive, which means the actual value is negative and

it is predicted as positive, and FN is false negative, which means the actual value is positive

and it is predicted as negative.

F1

F1 is used to measure the performance of both classification and question answering models.

It is obtained as follows:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(14)

In classification problems, although Accuracy gives information about the performance of

the models, the F1 score gives more reliable results for unbalanced datasets. F1 is basically

harmonic mean of precision and recall.

In question answering problems, when calculating the F1 score, it is concerned with how

much the estimated answer and the actual answer cover each other. The F1 formula remains

the same, but the Precision and Recall formulas are calculated as follows:

25

Precision =
Length of Common Tokens
Length of Predicted Tokens

Recall =
Length of Common Tokens

Length of Actual Tokens
(15)

Exact Match

As the name suggests, Exact Match is a metric that deals with whether the estimated response

is the same as the actual response. Takes the value 1 if the predicted answer is exactly equal

to the correct answer, 0 otherwise.

2.7. Related Technologies

Our work is not the first and it is not going to be last. The increase in human interaction

on the internet has made it mandatory for every platform that produces natural language

content to integrate their NLP applications. Some platforms provide the data they produce

to researchers and enable them to work on it [57, 75] while some platforms serves NLP

technology as a service, which they create established with the size of the data they produce

[29].

E-commerce sites that interact with people, online banking systems, human resources

departments of companies, etc. needed to automate their work as the number of users

increases. DeepPavlov [3], which is one of the services that enables this interaction to be

made higher quality, offers a conversation framework. With the help of this open source

system, entity recognition, intent classification, insult detection can be done in English and

Russian. With another service called Talla [1], it is aimed to automate the questions received

from the customers by addressing the applications of the companies that will use the service.

26

3. Application

This chapter consists of four main stages. In the first stage, architecture of the application was

explained, in the next stage data collection and fine-tuning process for the downstream tasks

was given. In the third stage, processing of the messages in the chat group with fine-tuned

models was described. In the last stage, the necessary structures was explained for the bot

that the end user would interact with.

In this study, subtasks of NLP called text classification, question answering, and zero-shot

classification were used. Roles of these task described as follows;

• Text Classification: This task is normally used to categorize sentences. In this study,

it was customized to make binary classification to understand whether a sentence is a

question or not.

• Question Answering: Question answering systems work by extracting short answers

from a document or paragraph. It was used to find the proper answer from conversation

windows, which is described in section 3.2..

• Zero Shot Classification: Apart from other methods, zero-shot classification is based

on hypothesis testing. It constructs hypotheses on user-defined classes and distributes

them over given labels. Since it is an unsupervised classification technique, there is no

need to fine tune it.

The BERT model, which is based on transformer technology, achieved significant results in

these tasks. This model requires large volumes of data, as does every deep learning model,

but, since it is a pre-trained model, it can be customized for the desired NLP tasks only by

fine-tuning. Fine-tuning involves retraining the base model for a specific task. Therefore,

high quality labeled data is needed. It is quite difficult to find labeled data for the Turkish

language. For this reason, the labeled data that is prepared in different languages has been

translated into Turkish with the help of translation APIs, and fine-tuning was applied to the

models. All necessary structures, including architecture, data collection and processing, and

fine-tuning processes, will be covered in the next sections.

27

3.1. Architecture

Almost every social media application has API integration. Slack is one of the social media

application with the most comprehensive API services. Thus, it was used to create a bot

in this study. Also, this application is the key communication tool for the tech industry. It

provides tons of features such as connectors to use third party applications (e.g. Outlook,

Google Drive, Jira), automation, security, etc. By means of these features, it becomes

attractive for use in departments such as human resources, customer relations, marketing,

and sales.

Slack API communicates with applications over HTTP calls. The provided endpoints were

used to read messages, retrieve user and group information, and deliver the necessary answers

to the user. The high-level architecture of the application was given in the Figure 3.1.

Figure 3.1 Architecture of the Application

As the name implies, FastAPI is a fast, easy to use Python web framework. Analyzer and

application module were built on top of this framework. Due to Slack providing a Python

client library, it is easy to consume necessary APIs. The function of modules is explained as

follows:

28

• Model Generator: There are three different NLP tasks, which are sentence

classification, question answering, and zero-shot classification. Data collection and

fine-tuning processes for these tasks were held in this module. This module is

independent of the main application, therefore it was only used to create models.

• Analyzer: This module is responsible for pre-processing messages and analyzing text

inputs retrieved from Application module. It was designed to work independently so

that by just changing the social media adaptor within the Application module, it can

process the text inputs.

• Application: This module is an application that acts as a bridge by communicating

with the endpoints provided by Slack. It is enough to change the adaptor of this

module in order to communicate with other social media applications within the

general architecture.

In addition, MongoDB and Elasticsearch were positioned as databases. MongoDB was used

to store messages, questions, and answers while vector representations of questions were

stored in Elasticsearch.

3.2. Model Preparation

In order to fine-tune the models and perform visual analysis, the datasets must go through

a series of processes. In this section, the process of obtaining, preparing, and extracting the

grammatical features of the datasets is discussed.

3.2.1. Data Collection

One of the most important steps before fine-tuning is to find a labeled dataset. Due to lack

of labeled Turkish datasets, we proposed using datasets in different languages by translating

them. We gathered three different datasets for text classification and two different datasets

for question answering. Dataset structures and contents were explained as follows.

29

Text Classification

The first dataset is the doctor-patient dialog dataset in Chinese published by Jia et al. [37].

Dataset consists of 1000 dialog sessions and is separated into 700 training, 200 test, and 100

validation sets in JSON format.

Figure 3.2 Dialog Dataset Sample

The dataset structure was given in Figure 3.2 and it has three elements:

• sent: Unicode characters of dialog sentences.

• role: The role of the person who wrote the sentence. Patient or doctor.

• label: The type of the sentence. Question, answer, or no label.

In order to translate dataset Google Translate API has used [30]. The API employs its own

translation model, Google Neural Machine Translation (GNMT) [14]. As shown in Figure

3.3, each sentence was translated into Turkish and converted into sentence-based blocks with

their label (Question or Answer).

30

Figure 3.3 Translated Dataset Sample

The second one consists of a combination of Quora [57] and Wikipedia [4] datasets. Quora is

a big and versatile question-answering website. They published this dataset to find a solution

to duplicate questions. The dataset has three main elements, which can be seen in Figure 3.4.

Two columns contain question pairs, and one column indicates whether they are duplicated

or not.

Figure 3.4 Quora Dataset Sample

31

Figure 3.5 Wikipedia Turkish Sentence Dataset Sample

Quora dataset was also translated into Turkish. Since it only contains questions, the

Wikipedia sentence dataset that was given in Figure 3.5, was used in order to create negative

samples. At the end, two datasets were merged and labeled as questions or not, as shown in

Figure 3.6.

Figure 3.6 Quora-Wikipedia Mixed Dataset Sample

32

Özger et al. [53] created a huge tweet question dataset which tweeted within a month in

2013. They also categorized them by their meanings. The dataset structure can be found

below:

• row number: Row number of observations

• text: Tweet content

• id: Tweet id

• date: Tweet sent date

• time: Tweet sent time

• username: Username who tweet the content

• rt username: Username who retweet original tweet

• question type: Category of question

They separated questions into eight categories. Rhetorical questions (RQ) which OP doesn’t

want an answer, factual knowledge (FK) which OP seeks an answer, invitations (IA),

recommendations (RN), questions with an answer (QA), opinions (OP), requests (RT), and

no questions (NQ). Since some of these categories (IA, RN, QA, OP and RT) have relatively

small sample sizes, we merged them as other questions (OQ). Some samples can be found in

Figure 3.7.

Figure 3.7 Raw Tweet Question Dataset Sample

33

Tweet dataset was converted into JSON and unnecessary columns were deleted. Text data

and corresponding labels are put together in a file as shown in the Figure 3.8

Figure 3.8 Tweet Question Dataset Sample

Finally, all three datasets are processed and separated into train, test, and validation sets for

fine tuning with split sizes of 70%, 20%, and 10% respectively. The Table 3.1 summarizes

the number of observations.

Dataset Category Train Size Validation Size Test Size Total

QD-Dialog Q 6.802 1.992 1.000 9.794

NQ 19.092 5.406 2.700 27.198

QD-Quora Q 6.486 1.772 903 9.161

NQ 5.527 1.660 814 8.001

QD-Tweet RQ 16.506 4.663 2.377 23.546

FK 6.597 1.925 899 9.421

OQ 8.436 2.350 1.190 11.976

NQ 22.293 6.443 3.225 31.961

Table 3.1 Distribution of Dataset Instances for Text Classification

34

Question Answering

We obtained two question-answering datasets. Both of them are similar to SQuAD dataset

[62], which is frequently used in question-answering systems. It was also shared as an open

source [9]. The second dataset, which is a Wikipedia-based Turkish dataset, was provided

by Prof. Diri [23]. These two sources were used to fine-tune the question-answering task.

Figure 3.9 Question Answering Dataset Structure

The dataset contains list of paragraphs/contexts and questions that are related to them. A

sample was given in Figure 3.9. Each question could have one or more answers, and

answer start property indicates the starting index of the answer in the context. The Table

3.2 summarizes the number of observations for question-answering datasets.

35

Dataset Type Train Size Validation Size Test Size Total

QA-TQuad Context 7.688 2.197 1.099 10.984

Questions 482.460 136.129 67.250 685.839

QA-YTU Context 3.517 1.005 503 5.025

Questions 181.182 52.400 25.566 259.148

Table 3.2 Distribution of Dataset Instances for Question Answering

Feature Extraction

Visual analysis is a widely used method to provide information about the content of data.

First of all, the features of the data to be visualized should be extracted and shaped according

to the chart types to be used. The character counts, word counts and part-of-speech (PoS)

tags for text classification datasets, and the character and word counts of answers for question

answer datasets were obtained. Afterwards, histograms and scatter plots were drawn with the

help of the matplotlib library in Python.

PoS tagging is a technique used in linguistics to determine the type of a word. The PoS

tags of each sentence were extracted and recorded with the library named Zemberek [5]

developed for Turkish. During this process, it is expected that the sentences would be written

grammatically correct so that the word types can be properly separated. Since the tweet

dataset contains irregular sentences, tokenization was applied before obtaining PoS tags.

Since the datasets we collected are relatively large, the PoS tagging process has been

accelerated by using the API service written on Zemberek [11]. Using the /find_pos

method of the this service, results as in Figure 3.10 were obtained.

36

Figure 3.10 PoS Tagging

As can be seen in Figure 3.11 the library could not determine the adjacent word

”gelecekmisin”.

Figure 3.11 PoS Tagging without Tokenization

After tokenization, PoS tags were successfully obtained and it can be seen in Figure 3.12.

Figure 3.12 PoS Tagging with Tokenization

3.2.2. Fine-Tuning

Training the entire model requires excessive computation power. Thus, pre-trained models

has been proposed. These models are trained with large corpora. For instance, approximately

4.5 billion tokens were used to train the BERTurk model [72]. We used cased versions of four

37

different models from this study which are Bert, DistilBert, ConvBert, Electra respectively.

Since Turkish is accent sensitive, cased version of these models was selected.

Using output weights as initial layer weights in a neural network and adjusting

hyper-parameters is called fine-tuning. Huggingface’s transformers library provides many

useful functionalities and makes the fine-tuning process easy. The process starts with

preparing the dataset by generating encodings with tokenizer. After that, models are trained

with given hyper-parameters, and finally, predictions are made with fine-tuned models.

Data Preparation

The dataset preparation process for training differs from NLP task to task. It is sufficient to

simply pass the sentence that is classified to the tokenizer for the sentence classification task.

This process splits the given sentence into tokens, and as a result, three different pieces of

information are obtained, which are input_id, token_type_id and attention_mask

respectively.

In question answering datasets, the context and questions about the context are passed

to the tokenizer as a list. In addition to sentence classification, start_positions and

end_positions information, which shows at what position the answers starts and ends in

the context, are also included in the dataset to be trained. (see [36]). The description of these

input parameters can be found as follows:

• input ids: Numerical representation of sequence tokens.

• token type ids: Indicator used to separate sequences in models that take two different

sequences. e.g. [CLS] SEQUENCE_A [SEP] SEQUENCE_B.

• attention mask: An index to tell the model which token it should use.

• start positions: Starting index of the answer in the context.

• end positions: End index of the answer in the context.

When truncation option is set True provided in the tokenizer, sentences that exceed the

model’s maximum token limit are truncated. padding=’max_length’ option fills the

sentence’s token vector with a special [PAD] token in order to adjust the encoding vector

38

to maximum size of the model. return_offset_mapping is required for the question

answering model and provides indexes that indicate where each token begins and ends. The

overall process and results were given in Figure 3.13.

Figure 3.13 Python Code Snippet for Extracting Encodings

Training and Evaluation

Text classification and question answering models was fine-tuned with the help of Trainer

class provided by Huggingface’s library. Google Colab Pro, which has an NVIDIA Tesla

P100 GPU processor, was used with the following setup to train these models:

Task Epochs Batch Size Learning Rate

Text Classification 5 16 2e-5

Question Answering 5 16 3e-5

Table 3.3 Hyper-parameter Setup for NLP Tasks

39

The parameters required for the training of the sentence classification task were determined

as in Figure 3.14. Learning rate is a hyper-parameter that controls how frequently the weights

are updated throughout the training phase. Epoch is the number of repetitions of training and

the batch size is number of samples to be fed to the learning algorithm.

The model was trained by creating the Trainer class with the compute_metric function,

along with the training arguments, training and validation sets. The hyper-parameters given

in Table 3.3 were determined in the TrainingArguments class and it was adjusted to

calculate the metrics at each step and to save the model at each epoch. In addition, the

setting that will enable all metrics to be displayed on the tensorboard is determined by the

report_to parameter.

(a) Training Arguments (b) Trainer

Figure 3.14 Python Code Snippet for Trainer Class in Text Classification

The four metrics determined for text classification and they were calculated with

compute_metrics function as can be seen in Figure 3.15.

40

Figure 3.15 Python Code Snippet for Compute Metric Function

Training codes, which were created by Huggingface, were used in order to train

question-answering datasets. The training was done with the hyper-parameters in Table 3.3

from the command line, as can be seen in Figure 3.16. The Exact Match and F1 metrics are

calculated for question answering and the results are given in Section 4.

Figure 3.16 Python Code Snippet for Trainer Class in Question Answering

41

Inference

pipeline function provided by the Huggingface’s transformers library were used for

inference. This function basically takes model, tokenizer, sequence and task type as input

and then it makes prediction and calculates probabilities with softmax function.

Three different data sets were used to fine-tune the text classification model. QD-Dialog and

QD-Quora are datasets prepared for binary classification, while QD-Tweet is a multi-class

classification dataset. As can be seen in Figure 3.17, binary classification datasets also

positively predicted rhetorical questions, the type of question for which a person does not

seek an answer.

Figure 3.17 Python Code Snippet for Inference in Text Classification

Question answering model takes two inputs as context and question. In Figure 3.18, a

paragraph taken from Wikipedia was defined as the context and two questions were asked

and the answers were obtained with the help of the fine-tuned model. The predicted response

from the pipeline result, the starting and ending indexes of the response and the prediction

score can be obtained.

42

Figure 3.18 Python Code Snippet for Inference in Question Answering

3.3. Message Pre-Processing

Before starting to process the messages in any social media applications, it is necessary to

store them in a database. The main reason for this is that social media applications provide

on-demand access with the help of APIs instead of giving access to all messages. Therefore,

conversation_history method that is provided by the Slack API was used to collect

chat messages and then they were stored in MongoDB with a structure that can be found in

Figure 3.19.

43

Figure 3.19 Python Code Snippet of Message Class

While messages being saved into the database, a cron job checks the system, finds messages

after the last processed message, and processes them in batches of 200. Messages were

processed with NLP tasks that is given in Section 2.5. The text classification model was

used in the first step to determine whether each message is a question; in the second step, the

message subject was associated with the sender using zero-shot classification. In the last step,

the answers to the previously found questions were searched by using a question-answering

model. This processing flow was described visually in the Figure 3.20.

44

Figure 3.20 Message Processing Flow

Similar questions from the user can be searched for through the vector search feature in

Elasticsearch. This feature works by calculating the distance between the vectors consisting

of numerical data obtained from the sentences. Semantic properties should be preserved

while extracting numerical data. Reimers et al. claimed that the BERT structure is unsuitable

for this process and proposed the Siamese BERT approach [63]. With this technique, vectors

can be obtained without losing the semantic properties of the sentence. The 384 dimensional

dense vectors were obtained for each question, and they were recorded in Elasticsearch.

The sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 model

which can be found in Huggingface was used to extract these vectors.

45

The questions in chat groups are usually answered right after they have been asked. However,

they could be mixed up with the other messages during regular conversation on a certain

subject. We proposed an algorithm to overcome this difficulty. By taking into consideration

the token limit of the BERT model [77], which is 512, we created a candidate answer pool

from messages that are sent after the detected questions. Then, lists containing 2, 5, and

10 sentences were created from the candidate answer pool. The question-answering model

was used on the contexts created from the sentences in these lists, and the answers with the

highest scores were saved.

Figure 3.21 Chat Group Conversation Windows

Figure 3.22 and 3.23 show the final question and answer data model used within application.

46

Figure 3.22 Python Code Snippet of Question Class

Figure 3.23 Python Code Snippet of Answer Class

3.4. Production

The application module was built on Slack. There are two types of functionalities. The first

one, called /init_bot that is responsible for setting up the channel or group, and it can

only be executed by admins. The other one /ask is for regular users. It takes a text input

that should be a question and initiates a similar question-finding process.

47

Figure 3.24 Initializing Bot

As can be seen in Figure 3.24, after executing init_bot function, a combo-box appears and

the admin selects any group to start pre-processes, which were described in Section 3.3.

Figure 3.25 Asking Question

The usage of /ask function was given in Figure 3.25. Once a user asks a question by using

/ask function, the application displays in a combo-box the 5 most similar questions that are

similarity score ordered, as can be seen in Figure 3.26.

48

Figure 3.26 Similar Question Selection

Similar questions were found by vector search of Elasticsearch. It uses the cosine function

to measure the similarity of two vectors. Cosine similarity can be calculated as follows:

cos(A,B) =
A ·B

∥A∥∥B∥
=

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

(16)

where A and B represent input vectors. The closer the result is to 1, the two vectors are said

to be similar.

49

Figure 3.27 Displaying Answers

Finally, answers to the selected question were displayed to the user as in Figure 3.27. All

of the results were only shown to the user without disturbing the group. In the last stage, if

the desired answer was not found, the user can send the question to the group by tagging the

person most relevant to the topic or send it directly without tagging.

50

4. Results

The only requirement for DL models to work properly is labeled data. Collecting and

creating labeled data is a very expensive and laborious process. In this study, the models

specified in Section 2.4. were fine-tuned by both translating the datasets prepared in other

languages into Turkish and including the previously prepared datasets.

4.1. Text Classification

For the training of the text classification task, the data should be separated into certain classes

and labeled. Since the focus of our study is to understand whether a sentence is a question

or not, three different datasets were prepared within the scope of this focus. These prepared

data were fine tuned with Google Colab Pro service and their codes were shared as open

source [46]. Fine-tuning process was done with a batch size of size 16, and a learning rate of

2e-5 for 5 epochs, which all these are selected through the preliminary experimentation.

4.1.1. Dialog Dataset

Exploratory Analysis

It can be seen in the Figure 4.1 that the average number of characters in the dialog dataset,

which has a total of 36,992 samples of data, is 40. It has been noted that in the the data

labeled as Question has longer character size.

51

Figure 4.1 Dailog Dataset Character Count Distribution

As can be seen in Figure 4.2 that the average word count is 5. In the test and validation data,

the sentences labeled as non-question with shorter sizes are denser, while there is a more

balanced distribution in the training data. All sets have a right skewed distribution.

Figure 4.2 Dailog Dataset Word Count Distribution

In Figure 4.3, which was created by extracting sentence structure, it was observed that verbs

and adjectives were dense in the sentences labeled as not question in the training data. On

the other hand, the number of nouns in the questions is higher.

52

Figure 4.3 Dailog Dataset Pos Tags

Fine Tuning

The fine-tuning process, in which four different models were used, was completed in eight

thousand steps. It was observed that in the Figure 4.4, the accuracy decreases after the

4,000th step (3rd epoch). In the F1 metric, while the base model has high values, other

models produced lower values, and they are similar to each other.

53

0.948

0.949

0.95

0.951

0.952

0.953

0.954

0.955

0.956

0.957

0 1k 2k 3k 4k 5k 6k 7k 8k 9

(a) Accuracy

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

0.96

0 1k 2k 3k 4k 5k 6k 7k 8k 9

(b) Precision

0.85

0.855

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0 1k 2k 3k 4k 5k 6k 7k 8k 9

(c) Recall

0.895
0.9

0.905
0.91

0.915
0.92

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0 1k 2k 3k 4k 5k 6k 7k 8k 9

(d) F1

BERTurk DistilBERTurk ConvBERTurk ELECTRA Base

Figure 4.4 Dialog Dataset Fine Tune Metrics by Step Charts

In the last stage, the BERTTurk base model obtained the highest F1 score on the training

data. The model that achieved the largest F1 score on the test data was ConvBERTurk. The

model that achieved the highest accuracy was again the ConvBERTurk model. It was seen

that in Table 4.1, the accuracy values are very close to each other.

54

Model Phase Accuracy Precision Recall F1

BERTurk Train/Evaluation 0.957015 0.951456 0.885542 0.956515

Test 0.961081 0.950317 0.902610 0.925849

DistilBERTurk Train/Evaluation 0.957556 0.947705 0.891566 0.918779

Test 0.962432 0.952481 0.905622 0.928461

ConvBERTurk Train/Evaluation 0.958773 0.951311 0.892570 0.921005

Test 0.963243 0.956475 0.904618 0.929824

ELECTRA Base Train/Evaluation 0.955123 0.953057 0.876506 0.913180

Test 0.958378 0.942226 0.900602 0.920944

Table 4.1 Dialog Dataset Fine Tuning Metrics

4.1.2. Quora Dataset

Exploratory Analysis

Quora dataset has 17,162 samples. Figure 4.5 shows that all sets are balanced and has an

average of 50 characters on each sequence.

Figure 4.5 Quora Dataset Character Count Distribution

55

If we look at word distribution in Figure 4.6, the sequences that are labeled as ”not in

question” have 9 to 10 words on average. The ”question” sequences have 5 to 6 words

on average. Again, the distribution seems balanced.

Figure 4.6 Quora Dataset Word Count Distribution

The distribution of sentence structure demonstrates that ”question” sequences generally

include adverbs, but ”not question” sentences mostly contain nouns which can be seen in

Figure 4.7.

Figure 4.7 Quora Dataset Pos Tags

56

Fine Tuning

According to Figure 4.8, the process was completed in eight thousand steps for each model.

It is obvious that accuracy and F1 metrics started to decrease after the third epoch. The

performance of the four models is similar to each other.

0.948
0.949
0.95

0.951
0.952
0.953
0.954
0.955
0.956
0.957
0.958
0.959

0 1k 2k 3k 4k 5k 6k 7k 8k

(a) Accuracy

0.915
0.92

0.925
0.93

0.935
0.94

0.945
0.95

0.955
0.96

0 1k 2k 3k 4k 5k 6k 7k 8k

(b) Precision

0.86

0.865

0.87

0.875

0.88

0.885

0.89

0.895

0.9

0.905

0 1k 2k 3k 4k 5k 6k 7k 8k

(c) Recall

0.9
0.902
0.904
0.906
0.908
0.91

0.912
0.914
0.916
0.918
0.92

0 1k 2k 3k 4k 5k 6k 7k 8k

(d) F1

BERTurk DistilBERTurk ConvBERTurk ELECTRA Base

Figure 4.8 Quora Dataset Fine Tune Metrics by Step Charts

The ELECTRA Base model achieved the greatest Accuracy and F1 score on the training data

in the final stage. BERTurk was the model with the highest Accuracy and F1 score on the

test data. The final results can be found in Table 4.2.

57

Model Phase Accuracy Precision Recall F1

BERTurk Train/Evaluation 0.957151 0.939171 0.899096 0.918697

Test 0.994758 0.998883 0.991140 0.994997

DistilBERTurk Train/Evaluation 0.956100 0.956400 0.899100 0.916100

Test 0.980198 0.997709 0.964562 0.980855

ConvBERTurk Train/Evaluation 0.958773 0.959673 0.884036 0.920303

Test 0.983110 .997722 .970099 0.983717

ELECTRA Base Train/Evaluation 0.959178 0.952355 0.893072 0.921762

Test 0.980198 0.997709 0.964562 0.980855

Table 4.2 Quora Dataset Fine Tuning Metrics

4.1.3. Tweet Dataset

Exploratory Analysis

The hand-crafted Tweet dataset has 76,904 samples with four different classes: ”not a

question”, ”rhetoric question”, ”other question” and ”factual knowledge”. The character

count distribution which was given in Figure 4.9, shows that the maximum character length

is 150 and the average is 40 to 50.

Figure 4.9 Tweet Dataset Character Count Distribution

58

Figure 4.10 shows that the average word count is 10. Test, train and validation sets have

similar distributions. The average word count of the sequences with the label ”factual

knowledge” is 5, which is a good indicator that the real questions are made up of short

sentences.

Figure 4.10 Tweet Dataset Word Count Distribution

As in the Figure 4.11, the Pos Tags distribution of Tweet dataset shows that ”not question”

sequences mostly made up of abbreviations. The reason for this could be that the tweet data

consists of random sentences.

Figure 4.11 Tweet Dataset Pos Tags

59

Fine Tuning

For each model, fine-tuning took sixteen thousand steps. DistilBERTurk shows bad

performance on this dataset. The performance of the other models is similar, but the

ELECTRA Base is superior to the others. The fine-tuning metrics by steps can be found

in Figure 4.12.

0.73
0.735
0.74

0.745
0.75

0.755
0.76

0.765
0.77

0.775
0.78

0.785
0.79

-2k 0 2k 4k 6k 8k 10k 12k 14k 16k 18

(a) Accuracy

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

0.79

-2k 0 2k 4k 6k 8k 10k 12k 14k 16k 18

(b) Precision

0.73
0.735
0.74

0.745
0.75

0.755
0.76

0.765
0.77

0.775
0.78

0.785
0.79

-2k 0 2k 4k 6k 8k 10k 12k 14k 16k 18

(c) Recall

0.725
0.73

0.735
0.74

0.745
0.75

0.755
0.76

0.765
0.77

0.775
0.78

0.785
0.79

-2k 0 2k 4k 6k 8k 10k 12k 14k 16k 18

(d) F1

BERTurk DistilBERTurk ConvBERTurk ELECTRA Base

Figure 4.12 Tweet Dataset Fine Tune Metrics by Step Charts

In the final step, the ELECTRA Base model had the highest Accuracy and F1 score on the

training data. On the test data, ConvBERTurk had the greatest Accuracy and F1 score. The

results were given in Table 4.3.

60

Model Phase Accuracy Precision Recall F1

BERTurk Train/Evaluation 0.782134 0.781457 0.782134 0.780599

Test 0.781042 0.782017 0.781042 0.781219

DistilBERTurk Train/Evaluation 0.764300 0.766500 0.764300 0.762900

Test 0.760239 0.761716 0.760239 0.760213

ConvBERTurk Train/Evaluation 0.783800 0.786000 0.782000 0.781900

Test 0.782082 0.784239 0.782082 0.782424

ELECTRA Base Train/Evaluation 0.788375 0.790655 0.788375 0.787725

Test 0.781302 0.783859 0.781302 0.781766

Table 4.3 Tweet Dataset Fine Tuning Metrics

4.2. Question Answering

Question answering is an NLP task that provides answers to questions about a paragraph

by searching within that paragraph. Training data consists of paragraphs, possible questions

that can be asked to the paragraph, and start and end indexes of answers. Fine-tuning was

performed with the help of the sample fine-tuning algorithm shared by Huggingface with a

batch size of size 16, and a learning rate of 3e-5 for 5 epochs [35].

4.2.1. TQuad Dataset

Exploratory Analysis

The average number of characters in the TQuad dataset, which comprises a total of 10,984

paragraph and 68,5839 question, is 30 to 40, as shown in Figure 4.13.

61

Figure 4.13 TQuad Dataset Character Count Distribution of Answers

Figure 4.14 shows that the average word count is 3 to 4. Distributions of all three set are

right skewed.

Figure 4.14 TQuad Dataset Word Count Distribution of Answers

Fine Tuning

Fine-tuning process for each model is completed in three thousand steps which can been in

4.15. On this dataset, DistilBERTurk performs poorly. The performance of the other models

is comparable, but the ELECTRA Base outperforms them all.

62

20

25

30

35

40

45

50

55

60

65

0 500 1k 1.5k 2k 2.5k 3k 3.5

(a) Exact Match

40

45

50

55

60

65

70

75

80

85

0 500 1k 1.5k 2k 2.5k 3k 3.5

(b) F1

BERTurk DistilBERTurk ConvBERTurk ELECTRA Base

Figure 4.15 TQuad Dataset Fine Tune Metrics by Step Charts

Table 4.4 shows the ELECTRA Base model outperforms all other models.

Model Phase Exact Match F1

BERTurk Train/Evaluation 59.7178 79.4480

Test 59.4177 79.6924

DistilBERTurk Train/Evaluation 40.2822 60.5264

Test 39.7634 59.0327

ConvBERTurk Train/Evaluation 60.8102 79.6843

Test 60.6005 79.3676

ELECTRA Base Train/Evaluation 61.5385 80.3351

Test 61.2375 80.7814

Table 4.4 TQuad Dataset Fine Tuning Metrics

63

4.2.2. YTU QA Dataset

Exploratory Analysis

YTU dataset consists of 5,025 paragraph and 259,148 question. Figure 4.16 shows the

average character count of 20 to 30, and Figure 4.17 shows the average word count of 3

to 4.

Figure 4.16 YTU QA Dataset Character Count Distribution of Answers

Figure 4.17 YTU QA Dataset Word Count Distribution of Answers

64

Fine Tuning

Each model’s fine-tuning procedure takes one thousand three hundred steps. Again,

DistilBERTurk is a model with the lowest performance. The performance of the other models

is comparable. The performance metric chart was given in Figure 4.18.

15
20
25
30
35
40
45
50
55
60
65
70

100 200 300 400 500 600 700 800 900 1k 1.1k1.2k1.3k1.4

(a) Exact Match

35

40

45

50

55

60

65

70

75

80

85

100 200 300 400 500 600 700 800 900 1k 1.1k1.2k1.3k1.4

(b) F1

BERTurk DistilBERTurk ConvBERTurk ELECTRA Base

Figure 4.18 YTU QA Dataset Fine Tune Metrics by Step Charts

Final results in the Table 4.5, show that ELECTRA Base has the highest score on the train

dataset. On the other hand, ConvBERTurk model shows the best performance on the test

dataset.

65

Model Phase Exact Match F1

BERTurk Train/Evaluation 62.5871 81.8977

Test 56.2624 76.7202

DistilBERTurk Train/Evaluation 30.1493 51.1165

Test 29.8211 48.2728

ConvBERTurk Train/Evaluation 65.6716 82.4270

Test 62.0278 79.8566

ELECTRA Base Train/Evaluation 65.0746 82.9919

Test 60.0398 77.9323

Table 4.5 YTU QA Dataset Fine Tuning Metrics

66

5. Conclusion

Communication, one of the basic needs of today, has been moved to social media platforms

with the digital revolution. When these platforms, which are used as communication tools,

and people’s searches for information are combined, a large pool of textual data emerges.

NLP is used as a technology that can explain the meaning and summarize the complicated

information in this pool. Natural language models using deep learning methods as their basis

succeed in natural language tasks such as sentence classification, question answering, named

entity recognition, paragraph summarization, etc. The biggest reason for this success is the

discovery of pre-trained models such as BERT. These models are created by training for days

with large-volume datasets, namely corpora, prepared in the target language, and can be used

in downstream tasks by fine-tuning.

Fine-tuning is possible with customized datasets for downstream tasks. Since our study

related to sentence classification and question answering tasks, 5 different Turkish datasets

have been prepared, 3 of which are used in sentence classification and 2 of which are used

in question answering tasks. Preparing a labeled dataset is a laborious task, and it is not easy

to find labeled data for every language. For this reason, the Dialog dataset used in the study

was translated from Chinese and the Quora dataset was translated into Turkish from English

with the help of the Google Translate API. Fine-tuning was done in the Colab environment

by using the prepared datasets and a pre-trained BERTurk model for Turkish.

As a result of fine tuning, ConvBERT model trained with Dialog dataset in sentence

classification task has the highest Accuracy. But it is assumed that this model will also

classify rhetorical questions as real questions. Therefore, it is considered more appropriate to

use the ELECTRA Base model trained with the Tweet dataset for this task. For the question

answering task, the ELECTRA Base model trained using the YTU dataset showed the highest

performance.

In the light of all these developments, an application was created to find similar questions

and answers in a group and to display them to the user. Slack was used as a social media

67

platform due to its superior features. The application, which allows user interaction, consists

of two main parts. The first part analyzes the messages with NLP methods and saves them

in the database. During the analysis process, the questions are separated using sentence

classification, the answers to the questions separated using the question-answering task, and

the interests of the users are categorized with zero-shot classification. The second piece of

the application acts as a bridge that communicates with the Slack API. By changing only this

part, the application can be used on different social media platforms.

The performance of the resulting application is directly proportional to the performance of

the models used. In other words, the better the performance of the models used for the NLP

tasks mentioned above, the better the experience can be offered to the users. The biggest

factor that increases the performance of the models is the preparation of labeled and clean

data. It was seen that adapting it to Turkish by following the studies in other languages is

important in terms of closing the labeled data gap in the literature.

68

REFERENCES

[1] Ai-powered automation for service and support teams. 2021. Accessed April 30,

2022. https://www.talla.com/.

[2] Question answering on squad1.1, 2021. Accessed May 14, 2022. https:

//paperswithcode.com/sota/question-answering-on-squad11.

[3] An open source conversational ai framework. 2022. Accessed April 30, 2022.

https://deeppavlov.ai/.

[4] Aksoy, A. Turkish sentences for word2vec training, 2016. Accessed March 23,

2022. https://www.kaggle.com/datasets/ahmetax/hury-dataset.

[5] Akın, A. A. ahmetaa/zemberek-nlp: Nlp tools for turkish. 2021. Accessed April

10, 2022. https://github.com/ahmetaa/zemberek-nlp.

[6] Alammar, J. The illustrated transformer, 2018. Accessed April 28, 2022. http:

//jalammar.github.io/illustrated-transformer/.

[7] Alammar, J. A visual guide to using bert for the first time, 2019. Accessed

April 29, 2022. https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-

first-time/.

[8] Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. 2016.

doi:10.48550/ARXIV.1607.06450. https://arxiv.org/abs/1607.06450.

[9] Balki, C. Turkish nlp squad repo. 2021. Accessed January 29, 2022. https:

//github.com/cbalkig/Turkish-NLP-SQuAD-Repo.

[10] Bellman, R. Dynamic Programming. Dover Publications, Inc, 2003.

[11] Bilgili, C. cbilgili/zemberek-nlp-server: Zemberek türkçe nlp java kütüphanesi

üzerine rest docker sunucu, 2018. Accessed April 10, 2022. https://github.com/

cbilgili/zemberek-nlp-server.

69

https://www.talla.com/
https://paperswithcode.com/sota/question-answering-on-squad11
https://paperswithcode.com/sota/question-answering-on-squad11
https://deeppavlov.ai/
https://www.kaggle.com/datasets/ahmetax/hury-dataset
https://github.com/ahmetaa/zemberek-nlp
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
https://arxiv.org/abs/1607.06450
https://github.com/cbalkig/Turkish-NLP-SQuAD-Repo
https://github.com/cbalkig/Turkish-NLP-SQuAD-Repo
https://github.com/cbilgili/zemberek-nlp-server
https://github.com/cbilgili/zemberek-nlp-server

[12] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,

Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter,

C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,

Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. Language

models are few-shot learners, 2020. doi:10.48550/ARXIV.2005.14165. https:

//arxiv.org/abs/2005.14165.

[13] Canuma, P. The brief history of nlp - datadriveninvestor. 2019. Accessed

March 02, 2022. https://medium.datadriveninvestor.com/the-brief-history-of-

nlp-c90f331b6ad7.

[14] Caswell, I. and Liang, B. Recent advances in google translate. 2020. Accessed

February 13, 2022. https://ai.googleblog.com/2020/06/recent-advances-in-

google-translate.html.

[15] Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,

Schwenk, H., and Bengio, Y. Learning phrase representations using rnn

encoder-decoder for statistical machine translation. arXiv.org, 2014.

[16] Christensen, H., Gotoh, Y., and Renals, S. Punctuation annotation using statistical

prosody models. University of Sheffield, 2001.

[17] Clark, K., Luong, M.-T., Le, Q. V., and Manning, C. D. Electra: Pre-training

text encoders as discriminators rather than generators. In International

Conference on Learning Representations. 2020. https://openreview.net/

forum?id=r1xMH1BtvB.

[18] Collobert, R. and Weston, J. A unified architecture for natural language

processing. In Proceedings of the 25th International Conference on Machine

Learning, pages 160–167, 2008.

[19] Commons, W. File:recurrent neural network unfold.svg — wikimedia

commons, the free media repository. 2021. Accessed April 23,

70

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://medium.datadriveninvestor.com/the-brief-history-of-nlp-c90f331b6ad7
https://medium.datadriveninvestor.com/the-brief-history-of-nlp-c90f331b6ad7
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB

2022. https://commons.wikimedia.org/w/index.php?title=File:Recurrent neural

network unfold.svg&oldid=605590767.

[20] Da, P. What is the difference between machine comprehension and

question answering in nlp? 2019. Accessed January 29, 2022. https:

//www.quora.com/What-is-the-difference-between-machine-comprehension-

and-question-answering-in-NLP.

[21] Deng, L. and Liu, Y. Deep Learning in Natural Language Processing. Springer

Publishing Company, Incorporated, 1st. ed. edition, 2018.

[22] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep

bidirectional transformers for language understanding. arXiv.org, 2018. https:

//arxiv.org/abs/1810.04805.

[23] Diri, B. Wikipedia based question answering dataset. 2022. Accessed March 26,

2022. https://avesis.yildiz.edu.tr/iletisim.

[24] dontloo (https://stats.stackexchange.com/users/95569/dontloo). What

exactly are keys, queries, and values in attention mechanisms?

Cross Validated, 2019. https://stats.stackexchange.com/q/424127.

URL:https://stats.stackexchange.com/q/424127 (version: 2021-12-31).

[25] EmSa1998. Internet forums are basically dead and that’s a big loss.

2016. Accessed March 7, 2022. https://www.reddit.com/r/SeriousConversation/

comments/fbvivk/internet forums are basically dead and thats a/.

[26] Fischer, T. and Krauss, C. Deep learning with long short-term memory

networks for financial market predictions. European Journal of Operational

Research, 270(2):654–669, 2018. doi:10.1016/j.ejor.2017.11.054. https://

www.sciencedirect.com/science/article/abs/pii/S0377221717310652.

[27] Geron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow. O’Reilly Online Learning, 2nd. ed. edition, 2019. https://

www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/.

71

https://commons.wikimedia.org/w/index.php?title=File:Recurrent_neural_network_unfold.svg&oldid=605590767
https://commons.wikimedia.org/w/index.php?title=File:Recurrent_neural_network_unfold.svg&oldid=605590767
https://www.quora.com/What-is-the-difference-between-machine-comprehension-and-question-answering-in-NLP
https://www.quora.com/What-is-the-difference-between-machine-comprehension-and-question-answering-in-NLP
https://www.quora.com/What-is-the-difference-between-machine-comprehension-and-question-answering-in-NLP
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://avesis.yildiz.edu.tr/iletisim
https://stats.stackexchange.com/q/424127
https://www.reddit.com/r/SeriousConversation/comments/fbvivk/internet_forums_are_basically_dead_and_thats_a/
https://www.reddit.com/r/SeriousConversation/comments/fbvivk/internet_forums_are_basically_dead_and_thats_a/
https://www.sciencedirect.com/science/article/abs/pii/S0377221717310652
https://www.sciencedirect.com/science/article/abs/pii/S0377221717310652
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/
https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

[28] Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016.

http://www.deeplearningbook.org.

[29] Google. Dialogflow documentation, 2022. Accessed April 30, 2022. https:

//cloud.google.com/dialogflow/docs.

[30] Google. Translating text (basic). 2022. Accessed February 13, 2022. https:

//cloud.google.com/translate/docs/basic/quickstart#translate translate text-drest.

[31] He, P., Gao, J., and Chen, W. Debertav3: Improving deberta using electra-style

pre-training with gradient-disentangled embedding sharing. 2021. doi:10.48550/

ARXIV.2111.09543. https://arxiv.org/abs/2111.09543.

[32] Horev, R. Bert explained: State of the art language model for

nlp. Towardsdatascience.com. 2018. Accessed January 29, 2022.

https://towardsdatascience.com/bert-explained-state-of-the-art-language-

model-for-nlp-f8b21a9b6270.

[33] Howard, J. and Ruder, S. Universal language model fine-tuning for text

classification. arXiv.org, 2018. https://arxiv.org/abs/1801.06146.

[34] Hsieh, T.-J., Hsiao, H.-F., and Yeh, W.-C. Forecasting stock markets using

wavelet transforms and recurrent neural networks: An integrated system based

on artificial bee colony algorithm. Applied Soft Computing, 11(2):2510–2525,

2011. doi:10.1016/j.asoc.2010.09.007.

[35] huggingface. Question answering, 2022. Accessed January 29, 2022.

https://github.com/huggingface/transformers/tree/main/examples/pytorch/

question-answering.

[36] huggingface. Question answering example, 2022. Accessed April 17,

2022. https://github.com/huggingface/transformers/tree/main/examples/pytorch/

question-answering.

72

http://www.deeplearningbook.org
https://cloud.google.com/dialogflow/docs
https://cloud.google.com/dialogflow/docs
https://cloud.google.com/translate/docs/basic/quickstart#translate_translate_text-drest
https://cloud.google.com/translate/docs/basic/quickstart#translate_translate_text-drest
https://arxiv.org/abs/2111.09543
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270
https://arxiv.org/abs/1801.06146
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering
https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering

[37] Jia, Q. Qa matching. Github.com. 2020. Accessed January 29, 2022. https:

//github.com/JiaQiSJTU/QAmatching.

[38] Jia, Q., Zhang, M., Zhang, S., and Zhu, K. Q. Matching questions and answers

in dialogues from online forums. arXiv.org, 2020. doi:10.3233/FAIA200326.

https://arxiv.org/abs/2005.09276.

[39] Jiang, P., Muppalla, K. S., Wei, Q., Gopal, C. N., and Wang, C. Double-barreled

question detection at momentive. arXiv.org, 2022. doi:10.48550/

arXiv.2203.03545. https://arxiv.org/abs/2203.03545.

[40] Jiang, Z., Yu, W., Zhou, D., Chen, Y., Feng, J., and Yan, S. Convbert:

Improving bert with span-based dynamic convolution, 2020. doi:10.48550/

ARXIV.2008.02496. https://arxiv.org/abs/2008.02496.

[41] Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates,

S., Bhatia, S., Boden, N., and et. al. In-datacenter performance analysis of a

tensor processing unit. arXiv.org, 2017. https://arxiv.org/abs/1704.04760.

[42] Kleczek, D. Question answering tutorial. Kaggle.com. 2021. Accessed January

29, 2022. https://www.kaggle.com/thedrcat/question-answering-tutorial.

[43] Kraus, M., Feuerriegel, S., and Oztekin, A. Deep learning in business analytics

and operations research: Models, applications and managerial implications.

European Journal of Operational Research, 281(3):628–641, 2020. doi:10.1016/

j.ejor.2019.09.018.

[44] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep

convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L., and

Weinberger, K. Q., editors, Advances in Neural Information Processing Systems,

volume 25. Curran Associates, Inc., 2012. https://proceedings.neurips.cc/paper/

2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

73

https://github.com/JiaQiSJTU/QAmatching
https://github.com/JiaQiSJTU/QAmatching
https://arxiv.org/abs/2005.09276
https://arxiv.org/abs/2203.03545
https://arxiv.org/abs/2008.02496
https://arxiv.org/abs/1704.04760
https://www.kaggle.com/thedrcat/question-answering-tutorial
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[45] Kwong, H. and Yorke-Smith, N. Detection of imperative and declarative

question–answer pairs in email conversations. AI Communications,

25(4):271–283, 2012. doi:10.3233/aic-2012-0516. https://content.iospress.com/

articles/ai-communications/aic516.

[46] Kılıç, I. Berturk performance analysis on text classification and question

answering tasks in turkish datasets. Github.com. 2022. Accessed May 7, 2022.

https://github.com/izzetkalic/botcuk-dataset-analyze.

[47] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. Nature,

521(7553):436–444, 2015. doi:10.1038/nature14539. https://www.nature.com/

articles/nature14539.

[48] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,

M., Zettlemoyer, L., and Stoyanov, V. Roberta: A robustly optimized bert

pretraining approach, 2019. doi:10.48550/ARXIV.1907.11692. https://arxiv.org/

abs/1907.11692.

[49] Margolis, A. and Ostendorf, M. Question detection in spoken conversations

using textual conversations. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Human Language Technologies,

pages 118–124. Association for Computational Linguistics, Portland, Oregon,

USA, 2011. https://aclanthology.org/P11-2021.

[50] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word

representations in vector space, 2013. doi:10.48550/ARXIV.1301.3781. https:

//arxiv.org/abs/1301.3781.

[51] Munnangi, M. A comprehensive guide to nlp. - towards data

science. Towardsdatascience.com. 2019. Accessed January 29, 2022.

https://towardsdatascience.com/nlp-with-spacy-part-1-beginner-guide-to-nlp-

4b9460652994.

74

https://content.iospress.com/articles/ai-communications/aic516
https://content.iospress.com/articles/ai-communications/aic516
https://github.com/izzetkalic/botcuk-dataset-analyze
https://www.nature.com/articles/nature14539
https://www.nature.com/articles/nature14539
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://aclanthology.org/P11-2021
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://towardsdatascience.com/nlp-with-spacy-part-1-beginner-guide-to-nlp-4b9460652994
https://towardsdatascience.com/nlp-with-spacy-part-1-beginner-guide-to-nlp-4b9460652994

[52] Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., and Phillips, J.

Gpu computing. Proceedings of the IEEE, 96:879–899, 2008. doi:10.1109/

JPROC.2008.917757.

[53] Ozger, Z. B., Diri, B., and Girgin, C. Question identification on turkish tweets.

In 2014 IEEE International Symposium on Innovations in Intelligent Systems

and Applications (INISTA) Proceedings, pages 126–130. 2014. doi:10.1109/

INISTA.2014.6873608.

[54] Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and

Zettlemoyer, L. Deep contextualized word representations. arXiv.org, 2018.

https://arxiv.org/abs/1802.05365.

[55] Phi, M. Illustrated guide to transformers- step by step explanation, 2020.

Accessed May 8, 2022. https://towardsdatascience.com/illustrated-guide-to-

transformers-step-by-step-explanation-f74876522bc0.

[56] Prasoon, S. A simple introduction to sequence to sequence models.

analyticsvidhya.com. 2020. Accessed February 19, 2022. https:

//www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-

to-sequence-models/.

[57] Quora. Quora question pairs. 2017. Accessed March 23, 2022. https:

//www.kaggle.com/competitions/quora-question-pairs/submit.

[58] Radford, A. Improving language understanding with unsupervised learning.

2018. https://openai.com/blog/language-unsupervised/.

[59] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language

understanding by generative pre-training. OpenAI, 2018. Accessed May 14,

2022. https://openai.com/blog/language-unsupervised/.

[60] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I.

Language models are unsupervised multitask learners. OpenAI, 2019. Accessed

75

https://arxiv.org/abs/1802.05365
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://towardsdatascience.com/illustrated-guide-to-transformers-step-by-step-explanation-f74876522bc0
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.analyticsvidhya.com/blog/2020/08/a-simple-introduction-to-sequence-to-sequence-models/
https://www.kaggle.com/competitions/quora-question-pairs/submit
https://www.kaggle.com/competitions/quora-question-pairs/submit
https://openai.com/blog/language-unsupervised/
https://openai.com/blog/language-unsupervised/

May 14, 2022. https://d4mucfpksywv.cloudfront.net/better-language-models/

language models are unsupervised multitask learners.pdf.

[61] Raina, R., Madhavan, A., and Ng, A. Y. Large-scale deep unsupervised learning

using graphics processors. In Proceedings of the 26th Annual International

Conference on Machine Learning, ICML ’09, page 873–880. Association for

Computing Machinery, New York, NY, USA, 2009. ISBN 9781605585161.

doi:10.1145/1553374.1553486. https://doi.org/10.1145/1553374.1553486.

[62] Rajpurka, P. The stanford question answering dataset (squad). 2021. Accessed

January 29, 2022. https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/.

[63] Reimers, N. and Gurevych, I. Sentence-bert: Sentence embeddings using siamese

bert-networks. CoRR, abs/1908.10084, 2019. http://arxiv.org/abs/1908.10084.

[64] Rizvi, M. S. Z. Demystifying bert: A comprehensive guide to the

groundbreaking nlp framework, 2019. https://www.analyticsvidhya.com/blog/

2019/09/demystifying-bert-groundbreaking-nlp-framework/.

[65] Rohrer, B. Transformers from scratch. 2021. Accessed April 28, 2022. https:

//e2eml.school/transformers.html.

[66] Ruder, S. NLP’s ImageNet moment has arrived. 2018. Accessed January 29,

2022. https://ruder.io/nlp-imagenet/.

[67] Ruder, S. A review of the recent history of natural language processing, 2018.

https://ruder.io/a-review-of-the-recent-history-of-nlp/index.html.

[68] Ruder, S. QA—how did we get here? , adapting to time , data detectives., 2021.

Accessed January 29, 2022. https://newsletter.ruder.io/issues/qa-how-did-we-

get-here-adapting-to-time-data-detectives-379447.

[69] Sanh, V., Debut, L., Chaumond, J., and Wolf, T. Distilbert, a distilled

version of bert: smaller, faster, cheaper and lighter, 2019. doi:10.48550/

ARXIV.1910.01108. https://arxiv.org/abs/1910.01108.

76

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://doi.org/10.1145/1553374.1553486
https://rajpurkar.github.io/SQuAD-explorer/explore/1.1/dev/
http://arxiv.org/abs/1908.10084
https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
https://www.analyticsvidhya.com/blog/2019/09/demystifying-bert-groundbreaking-nlp-framework/
https://e2eml.school/transformers.html
https://e2eml.school/transformers.html
https://ruder.io/nlp-imagenet/
https://ruder.io/a-review-of-the-recent-history-of-nlp/index.html
https://newsletter.ruder.io/issues/qa-how-did-we-get-here-adapting-to-time-data-detectives-379447
https://newsletter.ruder.io/issues/qa-how-did-we-get-here-adapting-to-time-data-detectives-379447
https://arxiv.org/abs/1910.01108

[70] Schmidhuber, J. Deep learning in neural networks: An overview. Neural

Networks, 61:85–117, 2015. doi:10.1016/j.neunet.2014.09.003. https://arxiv.org/

abs/1404.7828.

[71] Schuster, M. and Nakajima, K. Japanese and korean voice search. In 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 5149–5152. 2012. doi:10.1109/ICASSP.2012.6289079.

[72] Schweter, S. Berturk - bert models for turkish, 2020. Accessed April 28, 2022.

https://github.com/stefan-it/turkish-bert.

[73] Sergey Parakhin, E. S., Oleg Smirnov. How to build question answering

system for online store with bert. 2020. Accessed April 29, 2022. https:

//blog.griddynamics.com/question-answering-system-using-bert/.

[74] Shrestha, L. and McKeown, K. Detection of question-answer pairs in email

conversations. COLING ’04, page 889–es. Association for Computational

Linguistics, USA, 2004. doi:10.3115/1220355.1220483. https://doi.org/10.3115/

1220355.1220483.

[75] Silge, J. Text mining of stack overflow questions, 2017. Accessed April 30, 2022.

https://stackoverflow.blog/2017/07/06/text-mining-stack-overflow-questions/.

[76] Slack. Enabling interactions with bots. Slack.com. 2021. Accessed January 29,

2022. https://api.slack.com/bot-users#bots-overview.

[77] Sun, C., Qiu, X., Xu, Y., and Huang, X. How to fine-tune bert for text

classification? arXiv.org, 2019. https://arxiv.org/abs/1905.05583.

[78] Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to sequence learning with

neural networks. 2014.

[79] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,

Kaiser, L., and Polosukhin, I. Attention is all you need. arXiv.org, 2017. https:

//arxiv.org/abs/1706.03762.

77

https://arxiv.org/abs/1404.7828
https://arxiv.org/abs/1404.7828
https://github.com/stefan-it/turkish-bert
https://blog.griddynamics.com/question-answering-system-using-bert/
https://blog.griddynamics.com/question-answering-system-using-bert/
https://doi.org/10.3115/1220355.1220483
https://doi.org/10.3115/1220355.1220483
https://stackoverflow.blog/2017/07/06/text-mining-stack-overflow-questions/
https://api.slack.com/bot-users#bots-overview.
https://arxiv.org/abs/1905.05583
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

[80] Wang, F., Jiang, M., Qian, C., Yang, S., Li, C., Zhang, H., Wang, X., and Tang,

X. Residual attention network for image classification. arXiv.org, 2017. https:

//arxiv.org/abs/1704.06904.

[81] Wang, H. and Raj, B. On the origin of deep learning. arXiv.org, 2017. https:

//arxiv.org/abs/1702.07800.

[82] Wikipedia. Dil ailesi. Wikipedia.com. 2021. Accessed January 29, 2022. https:

//tr.wikipedia.org/w/index.php?title=Dil ailesi&stable=1.

[83] Wikipedia. Natural language processing. 2022. Accessed January 29, 2022.

https://en.wikipedia.org/wiki/Natural language processing.

[84] Winastwan, R. Text classification with bert in pytorch - towards data science.

Towardsdatascience.com. 2021. Accessed January 29, 2022. https://

towardsdatascience.com/text-classification-with-bert-in-pytorch-887965e5820f.

[85] Young, T., Hazarika, D., Poria, S., and Cambria, E. Recent trends in deep

learning based natural language processing. arXiv.org, 2017. https://arxiv.org/

abs/1708.02709.

[86] Zhang, X., Yang, A., Li, S., and Wang, Y. Machine reading comprehension: a

literature review. arXiv.org, 2019. https://arxiv.org/abs/1907.01686.

78

https://arxiv.org/abs/1704.06904
https://arxiv.org/abs/1704.06904
https://arxiv.org/abs/1702.07800
https://arxiv.org/abs/1702.07800
https://tr.wikipedia.org/w/index.php?title=Dil_ailesi&stable=1
https://tr.wikipedia.org/w/index.php?title=Dil_ailesi&stable=1
https://en.wikipedia.org/wiki/Natural_language_processing
https://towardsdatascience.com/text-classification-with-bert-in-pytorch-887965e5820f
https://towardsdatascience.com/text-classification-with-bert-in-pytorch-887965e5820f
https://arxiv.org/abs/1708.02709
https://arxiv.org/abs/1708.02709
https://arxiv.org/abs/1907.01686

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. Introduction
	1.1. Background
	1.2. Related Work
	1.3. Outline of the Thesis

	2. Methodology
	2.1. Sequence to Sequence Learning
	2.2. Transfer Learning
	2.3. Transformer Architecture and BERT
	2.4. BERTurk
	2.5. Downstream NLP Tasks
	2.5.1. Sentence Classification
	2.5.2. Question Answering
	2.5.3. Zero-Shot Classification

	2.6. Evaluation Metrics
	2.7. Related Technologies

	3. Application
	3.1. Architecture
	3.2. Model Preparation
	3.2.1. Data Collection
	3.2.2. Fine-Tuning

	3.3. Message Pre-Processing
	3.4. Production

	4. Results
	4.1. Text Classification
	4.1.1. Dialog Dataset
	4.1.2. Quora Dataset
	4.1.3. Tweet Dataset

	4.2. Question Answering
	4.2.1. TQuad Dataset
	4.2.2. YTU QA Dataset

	5. Conclusion
	REFERENCES
	CURRICULUM VITAE

