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Cold-start problems are one of the most important challenges in recommendation 

systems. In this thesis, we proposed models to develop solutions for the cold-start problem 

from two different perspectives. We aimed for a deterministic and a heuristic study that can 

be used in different scenarios. In the first perspective, we introduced a new heuristic 

framework that optimizes item-based similarity models to provide top-N recommendation 

lists using Continuous Ant Colony Optimization with a non-deterministic approach. Thanks 

to its heuristic structure, we aimed to create specific recommendation lists for users and 

change them according to each session, while at the same time aiming to balance the 

relevance of the user and the item variety in the recommendation lists. In the second 

perspective, we introduced two new Collaborative Filtering techniques deterministically. In 

the first model, we developed an asymmetric similarity matrix among the items based on the 

z-score normalization of the Gram-matrix we obtained using the implicit data, and in the 

second model, we aimed to reduce the sparsity with the item predictions with the assist our 

novel item similarity matrix, thus enabling more accurate decomposition of the latent factors 

in the user-item matrix we provided. We evaluated all of our methods on well-known datasets 

and observed that our methods outperform similar recommendation models in a variety of 

scenarios, including cold-start users, cold-start systems, and providing of unpopular product 

recommendations. 

 

Keywords: Recommender Systems, Collaborative Filtering, Cold Start, Ant Colony 

Optimization, Singular Value Decomposition, PureSVD, z-score, Item Based 

Models, top-N Recommendation  
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ÖZ 

 
DOKTORA TEZİ 

 

ÖNERİ SİSTEMLERİNDE SOĞUK-BAŞLANGIÇ PROBLEMİNE 

YÖNELİK ALGORİTMA GELİŞTİRİMİ 

 
Hakan YILMAZER 

 
ÇUKUROVA ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI  

 
Danışman  : Prof. Dr. Selma Ayşe ÖZEL 

   Yıl: 2022, Sayfa: 131 

Jüri:  : Prof. Dr. Selma Ayşe ÖZEL 

 : Prof. Dr. Umut ORHAN 

 : Dr. Öğr. Üye. Alper Kamil DEMİR 

: Doç. Dr. Mehmet Uğraş CUMA 

  Doç. Dr. İrem ERSÖZ KAYA 

 
Soğuk-başlangıç problemleri, öneri sistemlerindeki en önemli zorluklardan birisidir. 

Bu tez çalışmasında, soğuk-başlangıç problemine 2 farklı yaklaşım ile çözümler geliştirmeyi 

amaçladık. Farklı senaryolarda kullanılabilecek bir deterministik ve bir sezgisel çalışma 

yaptık. İlk perspektifte, deterministtik yaklaşımla, Sürekli Karınca Kolonisi Optimizasyonu 

kullanarak ilk-N öneri listeleri sunmak için ürün tabanlı benzerlik modellerini optimize eden 

yeni sezgisel bir çatı geliştirdik. Sezgisel yapısı sayesinde, kullanıcılar için kendine has ve 

her oturuma göre değişen öneri listeleri üretirken aynı zamanda kullanıcının alakası ile 

listelerdeki ürün çeşitliliği arasında denge kurmayı amaçladık. İkinci perspektifte, 

deterministik olarak iki yeni işbirlikçi filtreleme tekniğini tanıttık. İlk modelde, örtük verileri 

kullanarak elde ettiğimiz gram matrisin z-skor normalizasyonuna dayanan ürünler arasında 

özgün asimetrik bir benzerlik matrisi hesapladık ve ikinci modelde, geliştirdiğimiz ürün 

benzerlik matrisi ile oluşturduğumuz ürün tahminleri ile seyrekliği azaltmayı amaçladık 

böylece kullanıcı-ürün matrisinde gizli faktörlerinin daha başarılı ayrışmasını sağladık. Tüm 

yöntemlerimizi bilinen veri setleri üzerinde test ettik ve yöntemlerimizin, soğuk-başlangıç 

kullanıcılarda, soğuk-başlangıç sistemlerde ve popüler olmayan ürün önerilerinin sağlanması 

da dahil olmak üzere çeşitli senaryolarda benzer tavsiye modellerinden daha iyi performans 

gösterdiğini gözlemledik. 

 

Anahtar Kelimeler: Öneri Sistemleri, İşbirlikçi Filtreleme, Soğuk-Başlangıç, Karınca 

Kolonisi Optimizasyonu, Tekil Değer Ayrışımı, PureSVD, z-Skor, 

Ürün Tabanlı Modeller, ilk-N Tavsiye  



 

III 

EXTENDED ABSTRACT 

 

As is known, cold-start is one of the major problems in recommender 

systems. In the literature, considerable research has been done on this problem. What 

makes this problem important is that it has a relationship with the solution of many 

issues in Recommender Systems. In particular, the varying screens and richness of 

the interaction environments between users and products (Netflix, Spotify, Youtube, 

Twitch, etc.) have also demonstrated many problems identical to the cold start. 

This thesis proposed to develop models for the solution of cold-start 

problems in various scenarios. Today's modern recommendation systems do not 

work only through one algorithm. Depending on the case, they could change the 

models or integrate different models. You may need to follow either a deterministic 

or heuristic method to establish new links between the user and the products. In this 

thesis, we have done 2 different studies, one deterministic and one heuristic, which 

might be used in different scenarios. 

In the first perspective, we introduce a new framework that optimizes item-

based similarity models to offer top-N recommendation lists by Continuous Ant 

Colony Optimization, which is a heuristic algorithm. With our new user-specific 

item-based model, pheromone values are denoted as posterior probabilities of users 

which are constructed from previous clicks. Our novel model regularizes Lp norms 

of the clicked items in the selected input similarity model by amortizing them binary 

cross-entropy and giving stochastic importance to items specific to the user graph 

which are maximized with hyper-parameter search via in continuous domain.  

When comparing the first study with the state-of-art methods in different 

evaluation scenarios using well-known evaluation metrics and popular datasets 

(MovieLens, Yahoo, Pinterest), we observed our algorithm offers diverse but 

relevant and more successful recommendations to the users. The model, which we 

call AcoRec, provides the opportunity to work with low-dimensional data compared 

to traditional Ant Colony Optimization models. Thanks to its random heuristic 



 

IV 

structure, the most important advantage of our method is its ability to balance high 

coverage and high recall while producing diverse and session-variate 

recommendation lists for the users. 

In the second perspective, we introduced two novel collaborative filtering 

techniques for recommendation systems in cases of various cold-start situations and 

incomplete datasets. The first model establishes an asymmetric weight matrix 

between items without using item meta-data and eradicates the disadvantages of 

neighborhood approaches by automatic determination of threshold values. Our first 

model, z-scoREC, is also regarded as a pure deep-learning model because it performs 

like a vanilla auto-encoder in transforming column vectors with Z-Score 

normalization similar to batch normalization. With the second model, ImposeSVD, 

we aimed to enhance the shortcomings of the PureSVD in cases of cold-start and 

incomplete data by preserving its straightforward implementation and non-

parametric form. The ImposeSVD model relies on the z-scoREC and produces 

synthetic new predictions for the users by decomposing the latent factors from the 

imposed matrix.  

We evaluated our models on the well-known datasets and found out that our 

method was outperforming similar approaches in the specific scenarios including 

recommendations for cold-start users, strength in cold-start systems, and 

diversification of long-tail item recommendations in lists. Our z-scoREC model also 

outperformed familiar neighbor-based approaches when operated as a recommender 

system and gave a closer appearance to the decomposition methods despite its simple 

and rigid cost framework. 
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GENİŞLETİLMİŞ ÖZET 

 

Bilindiği gibi, soğuk-başlangıç, öneri sistemlerindeki en büyük sorunlardan 

biridir. Literatürde bu problem üzerine pek çok araştırma yapılmıştır. Bu sorunu 

önemli kılan, Öneri Sistemlerinde birçok sorunun çözümü ile ilişkisi olmasıdır. 

Özellikle kullanıcılar ve ürünler arasındaki etkileşim ortamlarının (Netflix, Spotify, 

Youtube, Twitch vb.) değişen ekranları ve zenginliği de soğuk başlatmaya benzer 

birçok sorunu ortaya çıkarmıştır. 

Bu tez çalışmasında, farklı senaryolarda soğuk-başlangıç problemlerinin 

çözümü için modeller geliştirildi. Günümüzün modern öneri sistemleri sadece tek 

bir algoritma ile çalışmamaktadır. Duruma göre modelleri değiştirebilir veya farklı 

modelleri entegre edebilirler. Kullanıcı ve ürünler arasında yeni bağlantılar kurmak 

için deterministik veya sezgisel bir yöntem izlemeniz gerekebilir. Bu tezde, farklı 

senaryolarda kullanılabilecek bir deterministik ve bir sezgisel olmak üzere 2 farklı 

çalışma yaptık. 

İlk yaklaşımda, sezgisel bir algoritma olan Sürekli Karınca Kolonisi 

Optimizasyonu tarafından ilk N öneri listeleri sunmak için öğe tabanlı benzerlik 

modellerini optimize eden yeni bir çerçeve sunuyoruz. Yeni kullanıcıya özel öğe 

tabanlı modelimiz ile feromon değerleri, kullanıcıların önceki tıklamalardan 

oluşturulan sonsal olasılıkları olarak ifade edilmektedir. Yeni modelimiz, seçilen 

girdi benzerlik modelindeki tıklanan öğelerin ikili çapraz entropisini amorti ederek 

ve sürekli etki alanında hiper parametre araması ile maksimize edilen kullanıcı 

grafiğine özgü öğelere stokastik önem vererek Lp normlarını düzenler. 

İlk çalışmayı, iyi bilinen değerlendirme metrikleri ve popüler veri kümeleri 

(MovieLens, Yahoo, Pinterest) kullanan farklı değerlendirme senaryolarında en 

gelişmiş yöntemlerle karşılaştırırken, algoritmamızın kullanıcılara çeşitli ancak ilgili 

ve daha başarılı öneriler sunduğunu gözlemledik. AcoRec adını verdiğimiz model, 

geleneksel Karınca Kolonisi Optimizasyon modellerine kıyasla düşük boyutlu 

verilerle çalışma imkânı sağlıyor. Rastgele sezgisel yapısı sayesinde, yöntemimizin 
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en önemli avantajı, kullanıcılar için çeşitli ve oturum değişkenli öneri listeleri 

üretirken yüksek kapsam ve yüksek geri çağırmayı dengeleyebilmesidir. 

İkinci perspektifte, çeşitli soğuk-başlangıç durumları ve eksik veri kümeleri 

durumunda öneri sistemleri için iki yeni ortak filtreleme tekniği sunduk. Birinci 

model, madde meta verilerini kullanmadan maddeler arasında asimetrik bir ağırlık 

matrisi oluşturmakta ve eşik değerlerinin otomatik olarak belirlenmesi ile komşuluk 

yaklaşımlarının dezavantajlarını ortadan kaldırmaktadır. İlk modelimiz, z-scoREC, 

aynı zamanda, toplu normalleştirmeye benzer z-skor normalizasyonu ile sütun 

vektörlerini dönüştürmede bir vanilya otomatik kodlayıcı gibi çalıştığından, saf bir 

derin öğrenme modeli olarak kabul edilir. İkinci model olan ImposeSVD ile, basit 

uygulamasını ve parametrik olmayan formunu koruyarak, soğuk başlatma ve eksik 

veri durumlarında PureSVD'nin eksikliklerini iyileştirmeyi amaçladık. ImposeSVD 

modeli, z-scoREC'e dayanır, uygulanan matristen gizli faktörleri ayrıştırarak 

kullanıcılar için sentetik yeni tahminler üretir. Modellerimizi iyi bilinen veri 

kümeleri üzerinde değerlendirdik ve yöntemimizin, soğuk başlatma kullanıcıları için 

öneriler, soğuk başlatma sistemlerinde güç ve listelerdeki uzun kuyruklu öğe 

önerilerinin çeşitlendirilmesi dahil olmak üzere belirli senaryolarda benzer 

yaklaşımlardan daha iyi performans gösterdiğini gördük. z-scoREC modelimiz 

ayrıca bir öneri sistemi olarak çalıştırıldığında tanıdık komşu tabanlı yaklaşımlardan 

daha iyi performans gösterdi ve basit ve katı maliyet çerçevesine rağmen ayrıştırma 

yöntemlerine daha yakın bir görünüm verdi. 
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1. INTRODUCTION 

 

Recommender Systems (RSs) are collection of information retrieval, data 

mining, and machine learning tools aimed at predicting and recommending the 

new users and items (such as movies, books, music, online products, TV shows, 

and websites) to propose a liking from predominantly large data. Initial work on 

recommender systems began in the mid-1990s (Adomavicius & Tuzhilin, 2005). 

With the increasing number of websites, and widespread use of e-commerce and 

social networking sites, RSs have recently become an important field of 

Intelligent Systems that have been dealing with the increasing extent of social 

networks, e-commerce sites (or applications), and entertainment media services.  

 

1.1. An Overview of the Recommender Systems and Taxonomy 

 Recommender Systems (RS) are the unity of studies conducted in the 

field of presenting information to the users/customers via filtering attractive 

information for them. RSs aim to provide the requested information by using 

different filtering methods or combining some of the giant data existing in the 

field of the Internet and the market. RSs can obtain the data either from explicit 

sources such as user ratings, friendships, and relations, or implicit sources such 

as user likes, user logs, habits, or clicks.  

 RSs generally work like as exampled in Figure 1.1.; is to recommend 

similar items to the items that a user attracted, or to find similar users to that user 

and recommend item(s) that those similar people attracted. Here the word 

'attraction' could mean different meanings in different domains.  
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Figure 1.1. An example screen from an item (Amazon, 2022) 

  

For example, in the movie/TV domain, users watch the items. When the 

product is a book, users can read the book, listen to the song when domain is 

music, or some products can be eaten, visited web pages, added to the cart, or 

purchased. In this thesis, we generalize and name all these attractions as 'clicked'. 

Users can give feedback to the system by liking, rating, or commenting on 

products. 

 As explained in Figure 1.2. the recommendation systems convert the 

input from different fields and data sources into output with a function. 

 In the last quarter-century (especially during the COVID-19 pandemic), 

research in the area of Recommender Systems started to gain more importance 

with the inclusion of Youtube, Netflix, Instagram, Twitter, Spotify, and many 

similar web services / social media sharing sites in our lives. 
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Figure 1.2. Recommender System in a function view 

 

These studies include generating high-quality recommendations, 

performing many recommendations for millions of users and items, providing 

high coverage against data sparsity, quickly adapting new users to the system 

with satisfaction, scaling issues, localizations, etc. (Sarwar et.al., 2001).  

Recommendation algorithms can be classified according to various 

conditions. However, the most common classifying found in the literature refers 

to how they use the information of user preferences for items, for which four 

categories are commonly established as shown in Figure 1.3 (Resnick et.al., 1994; 

Adomavicius & Tuzhilin, 2005; Pazzani, 1999). 

 

 Content-based filtering; recommendations are made from similar 

products as content.  

 Demographic filtering; recommendations are presented according to 

clusters of users/items with common characteristics (age, gender, 

location, etc.) 

 Collaborative-based filtering; recommendations are formed from 

users with similar tastes.  

 Hybrid filtering; combines at least two filtering methods explained 

above. 
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Figure 1.3. Recommender Systems categories 

 

1.1.1. Content-Based Filtering (CBF) 

 Content-based methods build user profiles based on the features and 

descriptions of the items rated by the user and do not use other users’ preferences 

for issuing recommendations (e.g., in a movie domain, if the user watched some 

comedy movie in her history, the filtering method will probably recommend a 

recent comedy movie that she has not yet watched). One of the advantages of 

content-based methods is that they can deal seamlessly with the new item 

problem that is they are able to recommend new items for which there is no user 

feedback, as opposed to collaborative filtering algorithms.  

 Content-based algorithms, however, are very dependent on the 

recommendation domain, which contrasts with the generality of collaborative 

filtering methods. Additionally, one of the major problems is that content-based 

approaches may suffer from over-specialization which is, that they have a natural 

tendency to recommend the same items that are before recommended to that user, 

and users may be bored (Resnick et.al., 1994). 

1.1.2. Demographic-Based Filtering (Knowledge-Based Filtering) 

Recommend
er Systems

Content Based
Filtering

Demographic 
Filtering

Collaborative Based 
Filtering

Model 
Based

Memory 
Based

Hybrid 
Filtering
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 In RSs, demographic information is used to group users according to a 

familiar class. The demographic attribute may vary depending on the domain in 

which the recommendation system operates. In general, users can be grouped 

according to features such as age, gender, occupation, location, education, 

budget, mood, and similar recommendations can be offered to users in the 

common group (Pazzani, 1999). 

 

1.1.3. Collaborative Filtering (CF) 

Collaborative Filtering describes the family of algorithms that exploit the 

users’ consumption patterns of the items in the recommendation domain, without 

making use of any domain-specific characteristics of the items, such as their 

content or categorization.  

The main advantage of this type of algorithm is its independence 

concerning the recommendation domain in which they are applied. They have 

been claimed to be more effective than other approaches, such as Content-based 

algorithms. Collaborative Filtering algorithms can be classified into two types: 

 

Memory-based; Memory-based methods are characterized by their 

simplicity since a minimal or no learning phase is involved. This lack of learning 

phase provides several advantages, such as easiness of implementation, 

immediate incorporation of new data, and comprehensibility of results. Memory-

based methods, however, may suffer from scalability issues and a lack of 

sensitivity to sparse data. 

Model-based; The recommendations are based on a model that is 

previously learned from the user data. Model-based methods take a different 

approach to exploiting collaborative filtering data. The algorithms of this family 

depend on a learning phase, in which a descriptive model of user preferences 

based on the observed data is built to make predictions. These methods are 

inspired by machine learning techniques such as Neural Networks, Bayesian 

networks, Clustering, Fuzzy Systems, Genetic Algorithms, Singular Value 
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Decomposition (SVD), Latent Semantic Analysis, Bee Colony, and Ant Colony 

Optimization (ACO) among others (Bobadilla et.al., 2013). 

 

1.1.4. Hybrid Filtering 

Hybrid models are one of the most widely used filtering methods. Hybrid 

methods have been proposed to avoid the limitations of collaborative filtering and 

content-based algorithms when used separately (Balabanović & Shoham, 1997; 

Burke, 2002; Adomavicius & Tuzhilin, 2005). 

Mixed models combine different recommendation models to perform a 

more useful recommendation quality, merging the advantages of models that 

included in hybrid structure. 

There are three basic strategies in hybrid recommendation: The first 

strategy combines the final recommendation results produced by two or more 

recommendation algorithms. The second strategy utilizes a recommendation 

algorithm as a framework and includes other algorithms onto it. The third strategy 

incorporates various models into a cooperative recommendation model and then 

produce recommendations. 

 

1.2. Limitations of Recommender Systems 

 Researchers on Recommender Systems study on many different 

problems. These studies are usually about performance, error and satisfaction 

(Bobadilla et al. 2013). Some problems are related to each other and the solution 

is also a guide for other problems. The followings are the major problems studied 

in the literature. 

 

 

 

1.2.1. Data Sparsity 

 One of the major problems of recommender systems is how they can 

solve the problem of data sparsity. The lack of relationships between users and 
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items in recommendation systems with large quantities of data makes it 

impossible to make sufficient measurements for collaborative filtering 

calculations (Adomavicius & Tuzhilin, 2005).   

 Especially, CF algorithms are inadequate in cases where the data is 

sparse. This problem, which researchers mostly studies on, is one of the reasons 

for other challenges in recommendation systems.  

 

1.2.2. Scalability 

The data are often large and scattered (sparse), with large sites containing 

millions of users and items. It is very important to look for recommendation 

algorithms that facilitate and parallelize (or both) the computational cost 

considerations (Sarwar et.al., 2002). 

 

1.2.3. Cold-start 

 One of the primary limitations that must be overcome in RS is providing 

recommendations in the case of cold-start states where there is no data or only a 

limited amount of data about the user or the item. In such cases, RS cannot 

provide effective recommendations (Sarwar et.al., 2011).  

 There are three observed types of the cold-start problems; ‘new item’, 

‘new user’, or for both ‘new system’. In the ‘new item’ problem, it is hard to 

recommend the new item for a user because the new item has been recently added 

and has a very limited amount of meta-data. In the ‘new user’ problem, where 

there is no data about the user, RS could not draw on relations about newly 

registered users or users who do not have many collaborations on the system; as 

a result, the system could be inadequate for developing the links between users 

and items because the evaluated data cannot provide information about the users 

and the items. In the ‘new system’ case where there is no data about both the users 

and the items, systems could be inadequate for developing the links between users 

and items.  
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1.2.4. Novelty-Diversity 

The ‘diversity’ and ‘novelty’ of the recommendations offered to users are 

the other issues to be dealt with (Adomavicius & Tuzhilin, 2005; Hurley & 

Zhang, 2011; Bobadilla et.al. 2013). For instance, the recommendation of popular 

items may not be valuable to users as these items are already familiar to users and 

they could be bored.  CF methods based on the analysis of cooperative behaviors 

between users might be inadequate to solve this problem because they 

overshadow unpopular connections and cause them to be ignored as a result of 

their tendency to offer collaborations deeper among popular users and favored 

items because of their frequencies. Whereas, the recommendation of unpopular 

items has always been more attractive to the users (Yin et.al., 2012; Anderson 

2006).  

 

1.2.5. Evaluation 

The success of the solution to the problem to which a designed RS model 

is adapted is measured by the correct evaluation strategy. Evaluation is also an 

important tool in choosing the right model for different scenarios in a commercial 

system using many models. Even a very small difference between models makes 

a difference in satisfaction level in systems with millions of users. Evaluation is 

one of the difficult tasks in RSs. Since it is difficult to evaluate very large data, 

sampling methods and choosing the right metrics according to the scenarios are 

important factors.  

 

1.2.6. Real-time recommendations 

 For a recommendation system, offline approaches would be better for 

evaluating new models and posterior predictions for users or when the data do 

not change significantly over time. However, in recommendation systems, data 

is approached in real-time and it is necessary to provide instant recommendations 

to users. Providing recommendations live on such large datasets is a difficult task. 
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1.2.7. Over-Specialization 

 Recommender systems mostly offer recommendation lists for each user 

based on their history on the system, which might turn out to be similar, 

uncompelling, and poor-quality recommendations for the users (Balabanović & 

Shoham, 1997; Ar & Bostanci, 2016; Olaleke et.al., 2021). This challenge forces 

us to solve the problem which is called the over-specialization problem. 

 

1.2.8. Ethic Problems 

RS can obtain this data either from data like user ratings, friendship, 

relations which exist explicitly or from implicit data which is not shown to end 

user like user logs and user habits.  

Users' information in the system is legally private, and some users may 

not allow the recommendation system algorithm to use this information. In this 

case, only legally obtained information can be used and this information may not 

be sufficient in some cases and it may be difficult for the system to give 

personalized recommendations to users. 

 

 
Figure 1.4 Cold-start and other problems in recommender-systems 

 

Cold-Start 
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Sparsity

Real-Time
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ScalabilityDiversity
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1.3. Relation among other challenges and cold-start 

We have described in the previous section that one of the problems 

encountered in recommender systems is the cold-start problem. As shown in 

Figure 1.4, with this thesis, we believe that the answer to most of the mentioned 

problems in recommender systems is the key to the cold-start problem. Therefore, 

the strategies to solve the cold-start problem become a solution for other 

challenges. 

The challenge to ensuring the quality is the presence of cold-start users. 

Although most recommender systems approach the problem with cold-start users 

in offline settings, it is necessary to follow their tastes simultaneously on the 

system. All users should be considered cold-start users because of their ever-

changing and unexpected habits. However, recommender systems mostly offer 

recommendation sets for each user based on their history on the system, which 

might turn out to be similar, uncompelling, and poor-quality recommendations 

for the users (Balabanović & Shoham, 1997; Ar & Bostanci, 2016; Olaleke et.al., 

2021). This challenge forces us to solve another problem with related cold-start 

users which is called the over-specialization problem. 

While most systems approach the cold start problem, they consider the 

data from zero time, whereas for the accuracy of the analysis, it is necessary to 

look from an unknown starting point and see the system in action. In a 

personalized recommendation model, different recommendation lists are created 

for each user base on users’ past tastes. After a particular time, RS resumes to 

recommend the same lists or is biased to popular items (Olaleke et.al., 2021). 

However, most users prefer diverse item recommendations on their screens as 

shown in Figure 1.5. To satisfy such users to keep from over-specialization 

problems, solutions force us to solve cold-start users. 
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Figure 1.5. A screenshot from Netflix Application has a four-row 

recommendation list for a user 
 

Recommendation of unpopular items includes strong diversity and 

novelty since they have not been in contact with many users or related to other 

items. In sparse datasets, it becomes difficult to make accurate recommendations. 

The systems provide recommendations based on heat users; therefore, users who 

have just logged into the system (cold-start users) or have different tastes might 

be omitted. And the solution of this problem also redirect us to cold-start problem. 

In the ethical problem, we mentioned that we might not have information 

about users in some cases. In such a situation, even if the user is a hot user using 

the system actively and does not allow the system to use her information, she 

should be considered a cold-start user. 

We explained the importance of providing live recommendations in 

recommendation systems in the real-time recommendations problem (See 1.2.6). 

In such cases, we need to abstract recommends based on users' current sessions 

or recent-short histories, and it is necessary to look at the instant habits, not their 

past interactions. Such users can also be seen as cold-start users due to the scarcity 

of data. 
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In a real scenario, social media systems have a giant interaction graph 

due to the number of users and items. It takes a long time to perform traditional 

calculations on a large graph. Considering the whole product set on the system 

that attracts the consideration of users does not represent even 1% of the total 

product scale, such users can naturally be seen as a cold-start user for a 

recommender system. 

The vital processes of a recommender system are to increase the 

connected nodes of the user-item graph and produce more accurate predictions 

between users and new items. While doing this; however, the system must find 

user-specific relations, which is considered the quality. Data sparsity and cold 

start essentially point us towards the same solution, enrichment of the user-item 

graph. 

The data sparsity problem (indirectly the cold-start problem) has led 

researchers mainly to two areas of study: dimension reduction and graph-based 

techniques. Latent factors were tried to be extracted from the non-complete user-

product matrix with dimension reduction techniques. Graph-based techniques, on 

the other hand, endeavored to find connections between unconnected users and 

products (Ricci et.al., 2015). 

 

1.4. Purpose of thesis 

Recently, visual media platforms (YouTube, Spotify, Netflix, Twitch, 

etc.) have been increasingly used particularly during the Covid-19 lockdown 

periods. Media services around the world tend to offer recommendation lists to 

the users on their phones, tablets, or television screens according to the item 

groups they have tasted. These groups of recommendations based on the user’s 

previous likes, their history on the platform, trending items, or demographically 

related items are presented in horizontal or vertical forms on the main screens of 

many media platforms (see an example Figure 1.5). As a result of the developing 

and competing recommender system technologies, users expect personalized or 

session-based recommendations on the platforms (Hidasi et.al., 2015). However, 
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generating online recommendations in live recommendation systems is a 

challenging task due to the absence of the initial or accomplished state of the data, 

which requires the evaluation of ongoing and noisy-data systems rather than 

employing data from the scratch. Although the recommender systems tend to use 

traditional deterministic algorithms (CF and CBF) offering the same 

recommendations for all users (Olaleke et.al., 2021), they need to provide 

constant updating and diversification of the home screen recommendations 

because of the changing tastes of the users. As a result, researchers in the field of 

recommendation systems have recently considered Heuristic Methods and Deep 

Learning Methods to offer continuous and variable recommendations (Vargas, 

2015). These methods might be successful as they not only offer 

recommendations to cold-start users but also volatile encouragement to existing 

users. In addition, these methods might be considered as fast, robust, and 

parallelable alternatives as they can deal with the costs of these personalized tasks 

that are performed for a tremendous number of users in the systems.  

This thesis aims to design new algorithms with the solution to the cold-

start problem. The concern of this study is to handle cold-start problem together 

with others by paying attention to mutual solutions in the algorithms designed 

(See Sections 3.1 and 3.2). Since cold-start user and cold-start system (sparsity) 

are considered to be relatively more difficult problems compared to the cold-start 

item problem, these two are particularly emphasized in this thesis. This study 

aims to find out solutions particularly to the cold-start problem while indirectly 

overcoming many recommender system problems. 

The cold-start problem is a field of study that attracts attention, especially 

in the industrial and academic fields. Therefore, this study will add values to the 

literature. 

The contributions of this thesis to the literature could be summarized as 

follows; 
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 This thesis handled more than one problem by associating the cold-start 

problem with other problems. 

 The models were developed in various domains and designed to be 

industrial across the board. 

 These models are designed to be easy to implement, appropriate for 

parallelization, parametrically easy, and forthcoming to evolution for 

researchers. 

 New perspectives were brought to the studies in the field. 

 The designed models keep up with existing and transforming technology. 

 

1.5. Outline of thesis 

The remainder of the thesis is organized as the following:  

Chapter 2 gives a detailed literature survey on the evolution of the 

recommender systems, common solutions about cold-start problem, related 

works about SVD-based and ACO-based studies in recommender systems, top-

N recommendations systems survey. 

Chapter 3 explains our proposed models in two sections. First Section 

introduce AcoRec which is our novel model about cold-start and related 

problems. Section 2 of this chapter introduce z-scoREC and ImposeSVD which 

are our other novel models rely on regression and dimension reduction to solve 

cold-start and other related problems.  

Chapter 4 presents and discusses the experiments in detail all of three 

proposed model; and compares results of our models with state-of-art studies in 

the literature.  

Chapter 5 summarizes our conclusions, primary contributions of this 

thesis; and gives the future purposes and expectations of the work. 
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2. RELATED WORKS 

 

2.1. Evolution 

Research on RSs started to increase during the 1990s. The studies of 

Malone et al. (1987) and Resnick et al. (1994) found out filtering types in the RS 

field, which were determined as Content-Based Filtering (FKA Cognitive 

filtering) and Collaborative Filtering (FKA Social filtering). Collaborative 

Filtering (CF) term was first used in the literature in 1992 in Tapestry’s 

recommendation system (Goldberg et.al., 1992). Later, Shardanand and Maes 

(1995) developed Ringo. CF needs consumption patterns of users or items 

without considering the domain properties. Content-Based Filtering (CBF), on 

the other hand, needs meta-information about users or items, which varies 

depending on the domains. Balabanovic and Shoham (1997) introduced the first 

hybrid application by combining two filtering techniques and gave a new 

direction to research in the RS field. To provide more efficient results for hybrid 

studies, Basu et al. (1998) developed the Ripper algorithm by creating bot users. 

Breese et al. (2013) categorized RS into memory-based and model-based 

algorithms. The review of Herlocker et al. (2004) about how to evaluate RSs is 

one of the most prominent studies in the literature. Adomavicius and Tuzhilin 

(2005) reviewed numerous studies shown until 2005, where they underlined how 

to increase the capabilities of RSs by revealing common limitations including the 

cold-start problem. Bobadilla et al. (2013) published a comprehensive review of 

the RS studies in the literature. 

 

2.2. Cold-Start Studies in Recommender Systems 

When relationships between nodes (i.e., users, items) are missing or 

inadequate in the dataset, establishing new relationships is an important challenge 

for RSs. Therefore, a growing number of studies in the literature have been 

searching out the ways to build new relationships between nodes in the case of 

limited data by applying CBF or CF models.  
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To illustrate, Kim et al. (2010) employed collaborative tagging as an 

approach to collect users’ preferences and tastes. Basilico and Hofmann (2004), 

on the other hand, developed a framework that incorporates all available 

information by using a suitable kernel or similarity function between user-item 

pairs.  

Weng et al. (2008) combined the implicit relations between users’ 

preferences for items with additional taxonomic preferences to make better 

quality recommendations to alleviate the cold-start problem. In addition, Loh et 

al. (2009) represented users’ profiles with information extracted from their 

scientific publications.  

 Other than the sole use of CBF or CF models, hybrid models have been 

employed by others to overcome cold-start problems resulting from the sparsity 

of the dataset or unavailability of data (Basilico & Hoffman, 2004; Kim et.al., 

2010; Pazzani, 1999).  

Pazzani (1999), proposed a hybrid framework that merges different 

algorithms: CF, CBF, and Demographic Based Methods.  

Jamali and Ester (2010) relied on trust between users on a trusted network 

instead of user similarity to deal with data sparsity and the cold-start problem.  

Massa and Avesani (2009) used explicit trust as input, along with a user-

item rating matrix to predict ratings.  

Bobadilla et al. (2010), Chandelier et al. (2008) and Ahn (2008) 

recommended new collaborative filtering metrics that improve RSs.  

Among others, graph-based approaches (Ning et.al., 2015), a 

combination of content and collaborative filtering (Schein et.al., 2002), collection 

of clickstreams from user experiences (Embarak, 2011), and pairwise regression-

based models (Park & Chu, 2009) were utilized to overcome the cold-start 

problem. Fouss et al. (2006) showed uses of the graph-based kernel methods in 

CF. 

Son (2016) has summarized papers based on cold-start and categorized 

the cold-start based studies into four sections. He also evaluated these categorized 
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methods. Guo (2013) formed a new rank profile for the active users by merging 

the ratings of trusted neighbors.  He then assessed this approach through a 

Bayesian similarity measure, which considers both the direction and length of 

rating profiles.  

Regarding the quality of the recommendations, Herlocker et al. (2004) 

has pointed out many criteria according to which diversity and personalized user 

satisfaction are more important factors for the recommendation of unpopular 

items. 

 

2.3. Ant Colony Based Studies in Recommender Systems 

In literature, the studies conducted on the use of agents in 

recommendation systems with cold start problems, Good et al. (1999), Park et al. 

(2006) and Sarwar et al. (2008) tried to produce solutions for Cold-start problems 

by using bot filters.  

Sarwar et al. (2006) created rating bots and these bots rated new 

documents in the newspaper. With this new rating, they qualified and classified 

new documents and represent them to their users. They aimed to decrease gaps 

in the recommendation matrix and spread out the sparsity. They used ‘Usenet 

news Article’ dataset. In their study, they created artificial rating bots, and these 

bots rated recently added documents considering different criteria. With the help 

of these rates given by bots compromised by artificial users, they tried to enable 

the integration of recently added documents to the recommendation system and 

minimize the infrequency in connection.  

Good et al. (1999) produced various bots with different characteristics 

and unified them with both CBF and CF algorithms. They suggested that more 

successful results would be obtained if ratings that bots give for films were 

unified with user ratings and calculated in the user-item matrix.  

Park et al. (2006) also worked on filter-bots for cold start problems. They 

created seven basic filter bots the resolve the problem and used these ratings in 

user-based and item-based estimations in CF.  
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There are many ACO studies based on RS in the literature. Sobecki and 

Tomczak (2010) used real data for recommending student courses based on ACO. 

T-BAR is a probabilistic model on the ACO algorithm, which is considered to 

develop the efficiency and coverage of predictions for users (Bellaachia & 

Alathel, 2012). However, this algorithm suffers from its failure to deal with cold-

start users. The authors proposed an update DT-BAR (Dynamic T-BAR) to 

overcome this problem (Bellaachia & Alathel, 2014). Bellaachia et al. (2016) 

introduced ALT-BAR with averaged localized trust-based ant recommender for 

cold-start recommendations. Massa and Avesani (2009) proposed Mole-Trust is 

a basic CF algorithm that uses the Pearson Similarity and Trust in recommender 

systems.  

Bedi and Sharma (2012) introduced the Trust-based Ant Recommender 

System (TARS) to produce recommendations by merging the assumption of trust 

between users and taking the best similar users based on the ACO. During 

iterations, TARS generates new relationships between users and produces 

predictions with the help of new, updated trusted users.  

Semantic-enhanced Trust-based Ant Recommender System (STARS) 

introduced a more progressive model that tried to eliminate the disadvantages of 

the TARS model and included semantically user similarity with clusters (Gohari 

et.al., 2017).   

TCFACO has also studied trust statements between users and developed 

an ACO-based CF method for effectiveness predictions for users (Parvin et.al., 

2019).   

Tengkiattrakul et al. integrated SVD-based user factors and 

trustworthiness for user-similarity on ACO (Tengkiattrakul et.al., 2016; 

Tengkiattrakul et.al., 2018).  Kaleroun and Batra (2014) upgraded TARS 

with item deviation distance products in the prediction formula and evaluated for 

the Shilling Attack, Cold-start Users, Sparse Matrix, and Grey Sheep Users 

problems.  
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Liao et al. computed user pheromones and item pheromones separately 

and combined them in rating prediction to produce ranking lists (Liao et.al., 

2020a; Liao et.al., 2020b).  

Nadi et al. (2011) used a fuzzy-based ant colony system for website 

recommendation, they used Jaccard-based user similarity and they fuzzified the 

user-item interaction matrix.  

Detailed information about the algorithms that develop the 

recommendation system with the ant colony was given in Appendix C. 

The typical approach in these ACO-based studies is as follows; 

 

• Calculation of user similarities (e.g., Cosine, Jaccard, Pearson, Trust 

measures) 

• Obtaining users as nodes and selection of similar users with ACO 

• Analyzing the new recommendations from similar neighbors (users) 

from Resnick's prediction formula (Resnick et.al., 1994). 

 

Different from the studies above, our ACO algorithm is item-based. In 

our study, the nodes represent the items in the ACO graph structure, and the edge 

values of the items show the importance that reflects the likelihood values of the 

user to the relevant item. The other distinction is that we tried to find a heuristic 

on popular items in the continuous domain with auto hyper-parameter tuning. 

 

2.4. SVD Based Studies in Recommender Systems 

SVD-based methods apply the process of smoothing the rating matrix by 

reducing the original matrix size to the low-ranks. However, incomplete matrices 

cannot be decomposed by SVD-based methods. Therefore, researchers applied 

matrix factorization algorithms over non-null data using Stochastic Gradient 

Descent (SGD) (Robbins & Monro, 1951) or Alternating Least Squares (ALS) 

methods (Zhou et.al., 2008). Funk (2006) used a simple linear regression model 

to calculate user and item factors for estimating rating predictions. Paterek (2007) 
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composed an advanced model by adding user and item biases. Koren has 

contributed with new models such as SVD++, timeSVD++ where he added k-

nearest-neighbor or time factors to earlier developed models using (SGD) or 

(ALS) (Koren, 2008; Koren et.al., 2009; Koren, 2009). But all these methods are 

not real SVD-based methods that use algebraic calculus for decomposition.  

The first example of using the original decomposition method via SVD 

in the CF field is the work of (Sarwar et.al., 2000). Cremonesi et al. (2010) 

introduced the PureSVD, which bases on an estimation of the low-rank latent 

factors from the rating matrix by SVD followed by imputing null values with zero 

on the rating matrix. EigenREC demonstrated that PureSVD's prediction formula 

actually only needs item factors, and this can be calculated more easily with both 

Eigenvalue Decomposition and Golub-Kahan-Lanczos Bidiagonalization 

(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019). In addition to these, 

HybridSVD has claimed that PureSVD can be strengthened with side information 

in cases where the CF is inadequate. They added item features to the rating matrix 

by effectively using Cholesky decomposition, and then this new auxiliary matrix 

was performed for low latent factors in SVD (Frolov & Oseledets, 2019).  

In another study, Ghazanfar et al. Ghazanfar and Prugel (2013)  studied 

how to carefully increment the rating matrix before the SVD process by 

developing a model they call ImputedSVD. In their study, they performed 

improvements on cold-start, long-tail, and sparsity issues by applying the art-of-

state methods in the literature as imputation methods. Although the study of 

Ghazanfar and Prugel (2013) bears some similarities with our study in terms of 

providing improvements on SVD-based models to overcome the most common 

problems in RSs, the methods of our research are different in many aspects. First 

of all,  (a) while the ImputedSVD adopted the well-known methods in the 

literature as the imputation method, we introduced a novel item-similarity matrix 

in our research and generated a less parametric imputation method, which is 

suitable for many domains. (b) Based on the simplicity of the PureSVD, we 

needed item vectors only that are taken from decomposition to estimate 
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prediction scores. ImputedSVD; however, carried user factors of SVD for 

prediction, which is a costly method in terms of handling time. (c) While 

ImputedSVD works on rating prediction, our research is a ranking-based study 

for generating top-N recommendation lists. Finally, (d) the offline cost of our 

method is low and there is no need for calculations for the cold-start users in the 

online process. 

 

2.5. Studies on top-N Recommendation 

RSs methods are divided into the two corresponding models, which are 

‘rating-based’, and ‘ranked-based’ models to measure the prediction scores. 

Rating-based models predict the user scores based on their unrated items by 

normalizing the real rating range that the user would give to the item. On the 

contrary, ranking-based models predict a list of N items (top-N) that the users 

may like. Therefore, ranking-based models do not need to scale real range values 

(e.g. min 1- max 5) to provide flexibility while developing algorithms.  

To our best knowledge, Karypis (2001) did the first study on the ranking-

based model to provide top-N recommendation lists. In another study, Deshpande 

and Karypis (2004) employed the k-nearest-neighbor (k-NN) estimation as a 

ranking-based model to provide top-N recommendation lists to the users. 

Cremonesi et al. (2010), on the other hand, proposed evaluation methods of top-

N recommendation systems and introduced the PureSVD model to measure the 

diversification of long-tail items in recommendations. Hurley and Zhang (2011) 

showed how novelty and diversity values of top-N recommendation lists could be 

improved. Rendle et al. (2012) introduced an optimization approach by learning 

over click pairwise of users on items. Ning and Karypis (2011) developed SLIM 

where he used linear regression to construct a coefficiency matrix with L1-norm 

and L2-norm regularizations and used a coefficiency matrix for offering 

recommendation lists. In a later work, higher-order item relationships for SLIM 

were added by HOSLIM developed by Christakopoulou and Karypis (2014). 

Besides, in another method called LORSLIM, Cheng et al. (2014) performed low-
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rank optimization on the SLIM’s coefficiency matrix. In another study, Kang et 

al. (2016) aimed to complete the rating matrix with a non-convex optimization 

problem. Kabbur et al. (2013) developed FISM to produce the top-N 

recommendation lists by training the two item factors with the help of the loss 

function. Cooper et al. (2014) introduced a simple graph-based algorithm P3α that 

implements three steps random-walk between users and items.  In a later work 

(Christoffel et.al., 2015), the authors upgraded the previous graph-based 

algorithm and created RP3ß by adding an item-popularity parameter to develop 

the success of long-tail item recommendations. Nikolakopoulos and Karypis 

(2019) introduced RecWalk, which use the power of random-walk-based 

methods to capture new rich network interactions. Nikolakopoulos et al. (2019) 

introduced the PerDif as an implementation of diffusions over item-item graphs 

for live personalized user recommendations. Both RecWalk and PerDif 

approaches gave good results with the assist of item-based models such as Cosine 

and SLIM.   

In recent years, auto-encoders models have shown good results on 

recommendations. For example, CDAE developed by Wu et al. (2016) used auto-

encoders with neural networks for an item-based top-N recommendation 

algorithm. Liang et al. (2018) extended CDAE to multinomial likelihood instead 

of Gaussian likelihood and they used variational auto-encoders on implicit 

feedback. Shenbin et al. (2020) introduced a new auto-encoders structure that 

outperformed the previous auto-encoder structured recommendation models. 

Chen et al. (2018) proposed to merge user ratings and side-information by using 

a variational auto-encoder structure to produce recommendation lists. Steck 

(2019) introduced EASER as a simple linear and vanilla auto-encoder model that 

outperforms the state-of-the-art collaborative filtering approaches for huge sparse 

data. 
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3. MATERIALS AND METHODS 

 

In this thesis, three original models have been developed from two different 

perspectives one of which is deterministic and the other one is non-deterministic. All 

models were evaluated over various cold start scenarios on well-known datasets.  

In the first perspective, a new recommendation model with ACO, an intuitive 

method in the category of graph-based techniques was developed. 

From a view of first perspective, we introduce a new framework that 

optimizes item-based similarity models to offer top-N recommendation lists by 

Continuous Ant Colony Optimization, which is a heuristic algorithm. With our new 

user-specific item-based model, pheromone values are denoted as posterior 

probabilities of users which are constructed from previous clicks. Our novel model 

regularizes Lp norms of the users' clicked items in the selected input similarity model 

by amortizing them binary cross-entropy and giving stochastic importance to items 

specific to the user-graph which are maximized with hyper-parameter search via in 

continuous domain.   

In the second perspective, we introduced two novel collaborative filtering 

techniques for recommendation systems in cases of various cold-start situations and 

incomplete datasets. In this perspective, the first model establishes an asymmetric 

weight matrix between items without using item meta-data and eradicates the 

disadvantages of neighborhood approaches by automatic determination of threshold 

values. This model, z-scoREC, is also regarded as a pure deep-learning model 

because it performs like a vanilla auto-encoder in transforming column vectors with 

Z-Score normalization similar to batch normalization. With the second model of this 

perspective, which we called ImposeSVD, we aimed to enhance the shortcomings of 

the PureSVD in cases of cold-start and incomplete data by preserving its 

straightforward implementation and non-parametric form. The ImposeSVD model 

relies on the z-scoREC, produces synthetic new predictions for the users by 

decomposing the latent factors from the imposed matrix.  
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3.1. A Non-deterministic Perspective, AcoRec 

3.1.1. NP-Hard Problems and Deterministic Recommendation Models 

Deterministic recommendation models are robust algorithms despite their 

simple structures. For instance, neighborhood models or regression models can be 

overwhelmed by many algorithms (Sarwar et.al., 2001; Dacrema et.al. 2019). In 

deterministic recommendation models, users are given a set of recommendations {S} 

at time t1, and this set {S} remains the same as long as there is no change in the 

model between time t1 and t2. However, we might not be foolproof that the results 

of an algorithm that produces deterministic solutions with discrete parameters are 

precise and recall results are accurate, but we could acknowledge them as thriving 

or sufficient based on the evaluation results (Olaleke et.al. 2021). Many researchers 

obtain evaluation results in algorithms by averaging all the results of experiments, 

hence these results could vary depending on the selection of dataset, sampling of 

these datasets, selected metrics, and hyper-parameters evaluations (Herlocker et.al. 

2004; Dacrema et.al. 2019).  

In heuristics, the recommendation set {S} can suggest different sets {S} 

without changing the model because of the randomness of its core and this could be 

an attractive situation for users. But there is a challenge in providing various {S} sets 

for a recent user.  We know in recommendation systems that the recommendations 

are given to a user u are never certain, so what is being done in this study is an 

inferential estimate, just like a top-N recommendation list. As recommendation 

systems are based on predicting the items that users would like and do not provide 

definitive results, the recommendation process is an NP-hard problem (Hammar 

et.al., 2013; Vahabi et al., 2015; Nembrini et al., 2021). According to the feedback 

got, the predictions are updated from time to time and this divergence can continue 

in an infinite loop.  To provide multi-variant recommendation lists, new items must 

satisfy the users.  

Ant Colony Optimization is an effective algorithm for dealing with NP-hard 

problems Dorigo and Gamberdella (1997). Because of this vigorous aspect of the 
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algorithm, it has been applied in many recommender models. However, these models 

have investigated pheromone optimization on extensive graphs and tuning with 

complex reciprocal hyper-parameters. To illustrate, α (pheromone pressure) and β 

(heuristic influence) parameters should be tuned in some algorithms to understand 

their substantial effect of them. In most algorithms, the hyperparameter selections 

are chosen for all test users in the experiments, and the maximized parameters are 

determined by the average of the results. However, whether the systems are trained 

with the right hyper-parameters can be seen by waiting for the training result of the 

system. This causes a long evaluation time, especially for researchers operating huge 

datasets or models that require many hyperparameters. 

 

3.1.2. Ant Colony Optimization 

Ant Colony Optimization models are derived from the behavior of real ants 

to solve many optimization problems. Ants can discover the shortest path from a 

food source to the nest. While traveling, each ant deposits a chemical hormone, 

called pheromone on the ground and reflects the deposited pheromones by the other 

ants. Ant algorithm is a sample of algorithm belonging to swarm intelligence 

methods, based on collaboration between independent, distributed bots that can offer 

a new intelligent solution to the system. It is a suitable model for mimicking the 

behavior of users in recommendation systems. The process of obtaining new feature 

subsets from a few input features can be viewed as an optimization problem, and 

unclicked item predictions from clicked items agree with this definition in 

recommendation systems. 
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Algorithm 1: Pseudocode for ACO  

Begin; 
   Initialize pheromone amounts between nodes and set up parameters; 
   Begin Loop     
       Generate a solution for each ant; 
       For each ant, estimate the fitness/cost; 
       Determine the best ant for iteration; 
       Update pheromone trails on nodes according to the best ant solution; 
       If termination condition is true, exit from the loop; 
   End Loop 
End; 

Figure 3.1. Pseudocode for ACO (Socha and Dorigo, 2008) 

 

The ACO algorithm was presented in  Algorithm 1 (Socha and Dorigo, 

2008). The process with the  ACO algorithm initializes nodes in a graph, obtains the 

weight values between the nodes at an unspecified time, and spreads ants randomly 

on these nodes. An ant k at t time, being in node i chooses the next node j with a 

probability given by the random proportional rule defined below Eq. (3.1) 

 

 

where u is set of the feasible routes of i. After each ant walk, feasible routes 

are excluded by the last visited node. Once an ant has visited all nodes, it returns to 

its starting node. After evaluating all ant’s tour costs in the current iteration, the 

pheromone values between nodes are updated as follows,  

 

 

where 𝜌 is the evaporation parameter between [0,1] and ∆𝜏𝑘(𝑖, 𝑗) is defined 

in Eq. (3.3) 

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑖, 𝑗) =

𝜏𝑡(𝑖,𝑗)
∝∗𝜂(𝑖,𝑗)𝛽

∑ 𝜏𝑡(𝑖,𝑘)∝∗𝜂(𝑖,𝑘)𝛽𝑘∈|𝑢|
  (3.1) 

𝜏𝑡+1(𝑖, 𝑗) = (1 − 𝜌) ∗ 𝜏𝑡(𝑖, 𝑗) + ∑∆𝜏𝑘(𝑖, 𝑗)

𝑚

𝑖=1

 (3.2) 
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Cost(k) is the amount of pheromone deposited on the edges of the solution 

visited by ant k and this cost is equal to the reciprocal of the cost of the solution 

constructed by ant k. Q is a constant to regularize the pheromones for the best 

solution. Therefore, a better solution is achieved by the higher amount of pheromone 

deposited by an ant. 

 

3.1.3. Ant Colony Optimization in the Continuous Domain 

Combinatorial optimization such as classic ACO deals with finding optimal 

combinations of available problem components and they attempt to find their optimal 

combination or permutation like in the (Travelling Salesman Problem) TSP problem. 

But some problems may be tackled with a combinatorial optimization that is not 

always convenient, especially if the bounds are wide, and the sensitivity of the 

parameters is high. In such cases, algorithms that optimize on continuous variables 

yield better results. Blum (2005) attempted to extend ACO algorithms for tackling 

discrete and continuous optimization problems. 

There are two options for integrating ACO for continuous optimization 

problems. The first way uses a familiar approach to ant behavior and the second way 

carries the fundamental ACO graph structure to investigate it in the continuous 

domain. This evolution could be flawless by proper discretization or probabilistic 

sampling of a search space (Riadi, 2014). 

Socha and Dorigo (2008), who introduced the continuous field ant colony 

optimization algorithm ACOℝ, used a Gaussian kernel probability density function 

(pdf) expression for the distribution model and presented the ACOℝ as a meta-

heuristic framework. In ACOℝ, given a problem with n decision variables, a vector 

xki = {xi,1 , xi,2 , xi,3 , ... , xi,n } represents probabilities from a probabilistic density 

function as a solution by an ant k, and f(xi) represents the objective function to 

∆𝜏𝑘(𝑖, 𝑗) = {
𝐶𝑜𝑠𝑡(𝑘) ∗ 𝑄, 𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) 𝑖𝑠 𝑎 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 𝑓𝑜𝑟 𝑏𝑒𝑠𝑡 𝑎𝑛𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3.3) 
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minimize (or maximize). In ACOℝ, each ant represents a row of the Solution Archive. 

During the iterations, the candidate parameter in the Solution Archive is ordered 

according to its objective function values. Each solution has an associated weight 

ωk, which keeps the proportion of its solution quality on the whole. The weight of 

the jth solution is defined as: 

 

 

where G(j) is the value of the Gaussian function with argument j, 𝜇 is the 

distribution mean, 𝜎 is the standard deviation and q is the parameter for the deviation 

distance of the algorithm. When q is a small value, the high fit solutions are 

promoted, and with the increase of q, the probability becomes intensified. To 

implement the pheromone motto from the original ACO, after each iteration, the 

algorithm defines new 𝜇 and 𝜎 values to shift the probability distribution. Once the 

initial Solution Archive is constructed, iteration processes follow: Each ant selects a 

distribution from the solution archive with the asset of a fitness proportionate 

selection function such as the Roulette-Wheel algorithm, and the solution 

probabilities of each row are obtained by dividing all sums by themselves, 

 

 

where 𝑝(𝑗) is the probability of the jth row in the Solution Archive set. In the 

iterations, after each ant creates a distribution similar to the Solution Archive, its 

quality is calculated based on the objective function and merged with the Solution 

Archive. After a sorting, the first k best solutions are selected and the others are 

discarded for forthcoming iterations. For example, for a maximization problem, the 

ωj =
1

𝑞𝜎√2𝜋
𝑒

−
(𝐺(𝑗)−𝜇)2

2𝑞2𝜎2  (3.4) 

𝑝(𝑗) =
ω𝑗

∑ ω𝑟
𝑘
𝑟=1

 (3.5) 
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Solution Archive constructed by k ants is ordered as descending. Hence f(x1) ≥ f(x2) 

≥ ⋯ ≥ f(xk) and ω1 ≥ ω2 ≥ ⋯ ≥ ωk . The sample Solution Archive structure is given in 

Fig. 3.2 

 

Figure 3.2 The archive of solutions kept by ants 

 

 In the search process, the purpose of iterations is to find the best solution 

and converge the model.  

After each iteration, the pheromone update strategy (like ACO) is performed 

by adding k newly generated solutions to the Solution Archive. After sorting the 

solutions, the worst k solutions were eliminated so that the total number of solutions 

in the archive remains 𝑘 solutions. This method maintains the better solutions in the 

Solution Archive as a result of the effective guidance of ants in the search process 

for better quality. 

In this study, we studied the RSs problems that we defined in Section 1.2 

and founded on the ACOℝ method, and we made new additions to this method to 

challenge the RSs problems. 

 

3.1.4. AcoRec 

In our model, we handled  the problems related to the recommendations for 

cold-start users, personalized recommendations, over-specialization problems, and 

facilitating time complexity in the recommender systems. We introduced the 

AcoRec framework, which we produced using the ACO method to improve the 

variety of the user-item relations and to diversify the results for the users in the 

system. Based on ACO principles, AcoRec uses any item similarity/proximity model 

[

𝑥11 𝑥12 … 𝑥1n f(𝑥1) 𝑤1

𝑥21 𝑥22 ⋯ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑥k1 𝑥k2 … 𝑥𝑘𝑛 f(𝑥𝑘) 𝑤𝑘

] 
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as input and produces user-specific, probabilistic, and high-diverse 

recommendations for users based on their past purchases. As a meta-heuristic and 

hybrid framework, AcoRec explores diverse recommendations by which it could 

overcome the problems with pertinent recommendations for the cold-start users. 

In our proposed model, 

 

 AcoRec takes an item-based similarity model as input. The item-based 

similarity model could be pre-calculated in the background in an offline 

system.   

 From the input model, AcoRec extracts the clicked (or preferred) item 

rows of the specific user, then combines rows and transforms them into 

an Lp norm vector for a low-dimension ant search. AcoRec verifies 

these norm spaces as the initial pheromone values (τ) and uses the input 

model as the heuristic for the items (η). The initial pheromone vector 

defines the user's current importance values on the items. Therefore, the 

model converges quickly and reduces the iteration counts, daemon 

actions, and the probability of stagnation. 

 AcoRec optimizes the importance values of items for the specific user 

by using auto hyper-parameter tuning in the Continuous Ant Colony 

Optimization domain. 

 After the model converged, AcoRec sorts out the most valuable items 

for the relevant user based on the expected choice of those items. Later, 

our model provided a top-N recommendation list of items that ranks the 

users' estimated predictions. These predictions could variate and differ 

from the previous estimates and this is the core phenomenon of our 

novel algorithm. 
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The evaluation of our novel model was carried out by comparing with 

MovieLens, Pinterest, and Yahoo datasets on different scenarios. We applied the 

near approaches which are popular algorithms in literature for the benchmark. Since 

our model is a heuristic approach, the recommended items are changed during the 

sessions, but we attempted to maintain the relevance and satisfaction of these items 

with the user heightened. The model we suggested needs a one-spatial vector for 

pheromones instead of two-dimensional pheromone graphs so that there become a 

decrease in the number of ants walked. AcoRec is also an algorithm suitable for 

parallelization with row-based user recommendations and ants running on multiple 

processors. 

 

3.1.5. Stochastic Approach of AcoRec 

AcoRec's constructs as a vector pheromone model can be easily adapted to 

a session or ongoing system for a user and try to predict users' interest in items using 

a Bayesian approach based on their previous clicks and adjust the user-based hyper-

parameter to maximize the expectations.  

In AcoRec,  the probabilistic transition rule for the users, selected by ant k 

who mimics user u at t time is given in Eq. (3.6), 

 

 

where, 𝜏(𝑢)𝑡 is equal to the pheromone values at t time on items for user u, 

𝜂 is the heuristic between the items by selected input model, α is the pheromone 

regularization parameter and 𝛽 is the regularization parameter to adjust the heuristic 

model. These parameters determine the priori information of the items for users, and 

it is similar to the prediction of item-based models in general. Item-based models 

predict user scores for items in a primary way like in Eq. (3.7), 

 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢) = 𝜏(𝑢)𝑡

∝
∗ 𝜂𝛽 (3.6) 
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Let S be an m x m item similarity matrix and ru is a set of m items on which 

the user clicked. It is shown as ru = [ru1 , ... , rum]. If we accept the clicked items 

that users taste before by the means of pheromone traced items for users, AcoRec 

denotes ru vector as pheromone vectors and S as heuristic information between the 

by-items for further operations. We can also assume that pheromones could be 

carried by ants from (mimicking users) items to items.  

In this situation, to construct posteriori pheromone vectors, we pick the rows 

of the items that the user clicked before from the item-item similarity model (column 

values will also be the same in symmetric matrices if it is a Hermitian matrix) and 

compose them into a low-rank vector to form the LP-norm from the columns of this 

subset matrix. The norms of the user clicked items means the user’s actions as a 

pheromone vector (prior probabilities), and it is similar to the behavior of social 

networks. This is an initial pheromone interpolation, but we do offer a development 

that does not contradict the intuitive principles of the ACO algorithm. Priori 

pheromone values based on the LP-norm of clicked items gave good results, 

especially for recall values (see Section 4.1). Let xu = [xu1 , ... , xuq] is a subset 

vector of ru which contains all clicked items belonging to user u, and q is the clicked 

item count. The formula for the LP-norm of these clicked items is shown below: 

 

 

where Su is a subset matrix of S that only keeps the xu element rows which 

are clicked items of user u, S item-similarity model, i is the column id in the item 

similarity model, and m is the total item size. In Eq. (3.8), when the p value is 1 this 

predictions(u) = r𝑢 ∗ S (3.7) 

𝐿𝑝(r𝑢) = ||𝑆𝑢𝑞∗𝑚||
𝑝

= ∑∑ 𝑆(𝑗, 𝑖)
𝑞

𝑗=1

𝑝
𝑚

𝑖=1

 (3.8) 
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means L1-norm, and if the p value is equal to 2 it is equal to L2-norm also known as 

Euclidean Space. To amortize the LP-norm vectors with the original clicks to infer 

how the similarity model responds to the user knowledge, we used Binary-Cross-

Entropy (BCE). BCE is generally a utilizer as a loss function in classification tasks, 

but we applied it as a regularization for each value in the norm vector. The 

regularization of user clicked items are proven on-time estimate formula is given in 

Eq. (3.9), 

 

 

where 𝜏(𝑢)𝑡 is the pheromone value of the items for user u at t=0 time, 𝑟𝑢 

is a binary vector with 1s if the user clicked item i and 0 otherwise. From Eq. (9) we 

discarded the unclicked items, to fill pheromone with only clicked items and 

optimized with below Eq. (3.10), 

 

 

where rui is user click information about an item i for user u, if a user clicked 

item i its value is 1, otherwise 0. Clicked item values amortized with Lp-norm values 

and user pheromone vector initialized with clicked item information only. A constant 

parameter initialization for the pheromones might be a marginally worse start for the 

optimal solutions because stagnation could act on more distant solutions. Pheromone 

initialization is useful for preventing stagnation, which is one of the main challenges 

in ACO algorithms (Dorigo & Gamberdella, 1997). 

 In the Ant Colony Optimization, the extremely significant influence 

provoking randomness in the search space is the pheromone model (Dorigo & 

Gambardella, 1997). Initial pheromone values for user clicked items are estimated 

𝜏(𝑢)𝑡 = 𝑟𝑢 ∗ log(𝐿𝑝(r𝑢)) + ((1 − 𝑟𝑢) log(1 − 𝐿𝑝 (r𝑢)) (3.9) 

𝑟𝑢𝑖 = {
1, 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑖𝑡𝑒𝑚 𝑖,
0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.10) 
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by Eq. (3.6), Eq. (3.8), and Eq. (3.9). In Eq. (3.6) the α parameter adjusting the 

tendency of pheromone values in ACO models and the β parameter choice, which 

controls the heuristic knowledge of the model are conditions that affect the profit of 

the model (Stützle et.al., 2011). After initializing the AcoRec pheromone values with 

the previous clicks of the user, we fixed the α parameter with α=1, which determines 

the pheromone bias in our model, and worked on the adjustment of the β parameter. 

We figured out that regulating heuristic knowledge with β and reducing the effect of 

bias increase the pheromone effect, or vice versa, decreasing the pheromone effect 

and increasing the tendency of heuristic knowledge. Parametric scale on heuristic 

knowledge, the overthrow of Euclidean norm data to popularity has been used in 

many algorithms, and successful effects have been seen (Nikolakopoulos et.al., 

2017; Frolov & Oseledets et.al., 2019; Paudel et.al., 2016). The scaling on the 

heuristic S matrix defined with Eq. (3.11) 

 

 

where β is the scaling parameter and {‖𝑠1‖𝐹 , . . . , ‖𝑠𝑚‖𝐹} are Frobenius norm 

(L2-norm) of each column in the S. The scaling parameter is used to reduce and 

increase the effect of high norm values in popular items. If we re-insert the 

pheromone values, we obtained the scaled Heuristic model by Eq.(3.9) and Eq.(3.11) 

in Eq. (3.6) and we got the following formula Eq. (3.12), 

 

 

In our experiments, we observed that (see Section 4.1), the maximized β 

parameter search would reflect the user's personality. When the β parameter has a 

𝑺 = [

𝑠11 𝑠12 … 𝑠1𝑚

𝑠21 𝑠22 ⋯ ⋮
⋮ ⋮ ⋱ ⋮

𝑠𝑚1 𝑠𝑚2 … 𝑠𝑚𝑚

]  ∗  [

‖𝑠1‖𝐹 0 0 0
0 ‖𝑠2‖𝐹 0 0
0 0 ⋱ 0
0 0 0 ‖𝑠𝑚‖𝐹

]

𝛽

  (3.11) 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢) = 𝜏(𝑢)1𝑚

∝
∗ 𝑆𝑚𝑚 ∗  Diag({‖𝑠1‖𝐹, . . . , ‖𝑠𝑚‖𝐹})

𝛽   (3.12) 
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negative value, rare items can also be highlighted for the user. This parameter could 

vary for individual users on the system according to their taste.  

The parameter that had the best fitness value could become a scale factor for 

the users in our study. However, discrete probabilities may not hand over certainty 

while searching a hyper-parameter. That’s why the optimization dilemmas of 

continuous fields have redirected into a new direction for ant colony optimization 

research. In the continuous domain, instead of running a discrete probability 

distribution, a pdf is employed to sample the probabilistic hyper-parameters. One 

can think of a node in a conventional ACO problem as a local parameter in the 

Gaussian Distribution. We discussed finding the maximized value of the β parameter 

in the ACOℝ domain and explained our version of ACOℝ about finding the ideal β 

parameter in Algorithm 2. Sensitively neighboring points in a continuous domain 

offer close results, and we can investigate the maximized β parameter on a 

continuous field in a stochastic way. In our model, each ant samples a pdf in the 

Gaussian Distribution, and these points are seen as candidate β parameters. By using 

the sampling from G(x) = N(μ,σ) in the beginning, we initialize μ=0, σ=1, and each 

ant samples a random point as β. Then each ant's probability values are estimated for 

the current iteration with Eq. (3.12). AcoRec uses a non-linear normalization 

function for each ant's probability vector and ordered descending and trimmed first 

N item scores in each vector. If the validation items are in these trimmed probability 

vectors, we binarized activation scores of them by keeping their position and 

discarding others as zero. As an evaluation for the ant solutions, AcoRec uses R-

Score@100 for evaluating the best β for the validation items in Eq. (3.14), which we 

explained in Section 3.4 and we cloned probability vectors by multiplying the 

position scores of R-Score@100. Now we have two multi-class matrices, denoting 

probability vectors and evaluation metrics' hit values which were synchronized with 

probability. To estimate the likelihood of the ant solutions, we used a similar 

approach in Eq. (3.9) as a fitness function. We used matched values from the metric 
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as labels yk and ant solutions for predicted probability values p(yk)  for ant k in Eq. 

(3.15) for every ant solution.  

 

 

With the fitness function in Eq. (3.16), we sort the ants in descending order 

according to their solution quality. We used this process to initialize the solution 

matrix in ACOℝ. Solution space rows are equal to ant_size in our approach and each 

row has a sampled β value cell and a cell that keeps the fitness value. After 

constructing the solution iteration process, we trained the best hyper-parameter 

search on the user evaluations. At each iteration, according to the current archive of 

the solutions, μ and σ are to be estimated by the current population and with their 

weights. This process shifts the distribution of the best quality μ and β at the same 

time. The core of ACO algorithms depends on pheromone evaporation. These 

phenomena are implemented in our algorithm as the shifting and squeezing 

distribution. In each iteration, the deviation of the distribution is tightened. Each ant 

discovers β from the new N(μ,σ) Gaussian distribution, and these β values are sorted 

𝒎𝒂𝒙(𝑢) = max
1≤𝑖≤𝑁

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢) (3.13) 

 

𝐲𝒌(𝒊) = {

1

2
𝑗−1
𝛼−1

 , 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑠 𝑗 𝑖𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡

0,                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.14) 

  

𝐩(𝐲𝒌) = max
1≤𝑖≤𝑁

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢))        (3.15) 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑘 = ∑𝐲𝒌(𝒊) ∗ log(𝐩(𝐲𝒌(𝒊))) + ((1 − 𝐲𝒌(𝒊)) log(1 − 𝐩(𝐲𝒌(𝒊)))

𝑁

𝑖=1

        (3.16) 
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by their qualities and we construct an iteration solution archive and merge it with the 

main solution archive. Then all solutions are sorted and the best top-N solutions 

according to their weight are chosen for the next iterations. At the end of iterations, 

the best quality β or the mean of solution archive is chosen for the Eq. (3.16) user 

predictions. 

 
Algorithm 2: AcoRec 

Inputs: Item Similarity Model S € Ɍm*m , Click vector of user  ru € Ɍ1*m 

Scale ← Frobenius norm of columns of S, Diag({||s1||F,...,||sm||F) 

μ     ← 0  

σ     ← 1 

tol   ← 1e-4 

as    ← ant size and archive size 

it     ← iteration count 

Output:  Predictionsu  ← Predictions of user u for items 

Compute Lp(ru) from Eq.(8) 
Construct SolutionArchive(1...as)  ←  {} 

for i ← 1,2, …,it do 
   for k ← 1,2, …,as do 
      // random β variable using the Gaussian distribution with mean μ and deviation σ 
      rβ = N(1|μ,σ)               

       // pheromones for each ant, which is given in Eq.(12) 
      Pheromonesk =Lp(ru) * S * Scalerβ                 
      // Fitnessk value for each ant using Eq. (20) 
      if  Fitnessk  > SolutionArchive(as) then  
        SolutionArchive(as) = Fitnessk 

        sort(SolutionArchive) 
     endif 
   endfor 

   //Pheromone update strategy 
   μ  ← μ(SolutionArchive) 
  σ   ← σ(SolutionArchive) 
  if  σ < tol then  
      exit 
  endif 
endfor 
// Best Solution 
β = μ(SolutionArchive(1)) 

return  Lp(ru) * S * Scaleβ 

Figure 3.3. Pseudocode for AcoRec 
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3.1.6. Heuristic Base of AcoRec and Item Based Model Selection 

The distance between nodes is crucial for ants to choose their later positions. 

In the TSP problem, it is beneficial to have a short distance. In the ACO-based 

recommender systems, the distance between nodes is represented by the 

similarity/proximity between items (or users). For this similarity, distance 

measurements in inter-nodular Euclidean space are preferred. We designed our 

model as low-dimensional and determined the user’s interest in items as heuristic 

data rather than considering the distance between nodes. The relation between items 

is controlled in many respects. These relationships could be in various forms such as 

similarity, proximity, dissimilarity, or correlation, and can be shown by specific 

methods. CF Based Similarity Models acknowledge the collaborative benefit of the 

items. CBF Similarity models zoom in on related items dealing with the metadata 

(demography, mood, etc.) of the items. Graph Similarity models are based on the 

relations in the user-item network structure. Time-Based models track the time 

sequences of the purchase for the items. Latent-Factor Based Models extract hidden 

components from low-rank computations. Demographic Models care about 

collaborative behaviors in the same geographic locales. 

In this study, we evaluated three well-known item-based similarity measures 

for computational simplicity and popularity; Let Sm*m be the similarity matrix, i and 

j be the two items, vi and vj be the column vectors of these items. 

Dot Product (Dotp); Dot-product similarity of two items is equal to the inner 

product of these item vectors. 

 

 

Cosine (COS); The Cosine similarity of the two items is the angle between 

their rating vectors. It is estimated by the inner product of these item vectors by 

dividing by vector norms multiplication. 

SDotp = |𝑣𝑖  ∩  𝑣𝑗| = 𝑣𝑖⃑⃑⃑  ∗ 𝑣𝑗⃑⃑⃑    (3.17) 
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Jaccard (JAC); The Jaccard similarity between two items is defined as the 

ratio of the number of users that co-rated items based on the number of users who 

rated at least either i and j items. 

 

 

3.2. A Deterministic Perspective, z-scoREC and ImposeSVD 

To overcome RSs challenges, the CBF or CF methods have been applied to 

the recommendations in sparse datasets in various studies (Adomavicius & Tuzhilin, 

2005). The application of CF method has shown successful results with Singular 

Value Decomposition (Golub & Van Loan, 2013), which is one of the low latent 

factor approximation techniques based on matrix factorization.  

The effectiveness of SVD-based models results from their ability to uncover 

latent factors between users and items, which are hard in traditional nearest-neighbor 

approaches (Sarwar et.al., 2000). But SVD-based models have several limitations 

including high costs for estimations and difficulty with the algebraic calculations 

because of the incomplete matrices. As a result of developing hardware technology 

and optimized linear algebra libraries, the use of algebraic SVD-based models has 

become popular in RS as a result of their successful results in providing 

recommendations.  

One of these SVD-based models incorporated in the RS technologies is the 

PureSVD model developed by Cremonesi et al. (2010). The PureSVD model offers 

low-rank factors estimated with SVD after empty cells in the user-item matrix are 

SCos =
|𝑣𝑖 ∩ 𝑣𝑗|

√|𝑣𝑖|∗|𝑣𝑗|
 = 

𝑣𝑖⃑⃑  ⃑∗𝑣𝑗⃑⃑⃑⃑ 

||𝑣𝑖⃑⃑  ⃑||∗||𝑣𝐽⃑⃑⃑⃑ ||
 (3.18) 

SJac =
|𝑣𝑖 ∩ 𝑣𝑗|

|𝑣𝑖 ∪ 𝑣𝑗|
 = 

𝑣𝑖⃑⃑  ⃑∗𝑣𝑗⃑⃑⃑⃑ 

||𝑣𝑖⃑⃑  ⃑||+||𝑣𝑗⃑⃑⃑⃑ ||−𝑣𝑖⃑⃑  ⃑∗𝑣𝑗⃑⃑⃑⃑  
 (3.19) 
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imputed as ‘zero’ at the outset. One of the advantages of the PureSVD is its easy 

implementation with linear algebra libraries written in many programming 

languages.  

Many researchers have used the PureSVD as a benchmark algorithm 

(Cremonesi et.al., 2010; Kabbur et.al., 2013; Cheng et.al., 2014; Wu et.al., 2016; 

Kang et.al., 2016; Nikolakopoulos et.al., 2017; Christakopoulou et.al., 2018; 

Nikolakopoulos et.al., 2019; Frolov & Oseledets, 2019) and agreed on the fact that 

the PureSVD with its basic structure is a successful non-parametric model to be 

applied to RSs.  

However, the inefficiency of the PureSVD in cold-start situations has led 

researchers to investigate different solutions and improvements in the model 

(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019; Frolov & Oseledets, 

2019).  

With regards to the cold-start problem, EigenREC developed by 

Nikolakopoulos et al. (2017) produced faster and more accurate results in high-

dimensional data by replacing the SVD-based model of the PureSVD with the 

Eigenvalue Decomposition.  

The HybridSVD model (Frolov & Oseledets, 2019) has successfully 

exploited the PureSVD's disadvantages stemming from CF by embedding side-

information to provide better solutions to cold-start and sparsity problems.  

Another research (Christakopoulou et.al., 2018) also shows that the 

PureSVD is also suitable for parallel operations in high-dimensional data with the 

Golub-Kahan-Lanczos Bidiagonalization method (Golub & Van Loan, 2013).  

The main focus of all these studies is to improve the effectiveness of the 

PureSVD model in different problems encountered in RSs without disrupting its 

simple structure. However, as Cremonesi et al. (2010) stated ‘there are still several 

unexpected ways that may improve PureSVD'. One of the ways they suggest is to 

‘optimize the value imputed at the missing entries'  instead of assigning zero as a 

value.  
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Ghazanfar and Prugel (2013) also suggested that a particular amount of 

imputation taken with care could enhance the quality of recommendations.  

Adding to the line of the studies improving the PureSVD model, this study 

aims to suggest novel models for the sparse datasets that will improve the 

recommendations for cold-start users and provide long-tail items in the 

recommendation lists by finding out good-working imputing strategies. 

In these models; 

 

 We propose a novel basic asymmetric item weight matrix based on 

Gram-matrix. Unlike conventional similarity methods, we undermined 

symmetry to catch various relations between the elements. Gram-matrix 

was shifted with L1-norm of items that were propagated from the item 

matrix. The shifting process penalized poor ratings, changed the 

negative entries to zero, and broke the symmetry in the Gram matrix. 

The parameter for shifting could adjust the different relations without 

disrupting the identity of mass data. Later, we employed the Z-Score 

normalization, ignored negative values, and found a disagreement 

between the non-symmetric weight matrix and the regular Gram-matrix. 

The shifting and normalization were element-wise; and thus, were not 

heaped and time-consuming. With the cooperation of this fresh weight 

matrix, we designed a baseline prediction matrix. We called this model 

z-scoREC. The imposed matrix, reproduced from z-scoREC, 

maintained new relationships between the users and the items but yet 

sparse, which makes it computable for the big data. 

 We used z-scoREC predictions toward the imposed matrix. But before 

decomposing this imposed matrix we came up with some normalization 

and regularization processes on these priori predictions. After 

decomposing low-rank latent factors with SVD libraries from this 

imposed matrix, we estimated a new enriched prediction matrix and 
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acquired valuable top-N recommendation lists for users. We called this 

method ImposeSVD. 

 When we evaluated the ImposeSVD and the z-scoREC on common 

popular datasets for the cold-start scenarios and long-tail item 

recommendations using the well-known evaluation metrics, we found 

that our models outperformed similar state-of-art methods. Additionally, 

z-scoREC surprisingly gave closer results to ImposeSVD by using it in 

the basic item-based prediction model. 

 
3.2.1. Notations for z-scoREC and ImposeSVD 

In the rest of this section, vectors and matrices are denoted in bold letters. 

We used bold capital letters for matrices and bold lowercase letters for vectors. In 

addition, u, v represent users and i, j represent items. We denoted the user-item rating 

matrix as R. The dimension of R is n x m, where n is the number of users and m is 

the number of items. The rating is given by user u to item i is denoted with rui in R. 

R̃ represents the rating prediction matrix and rũi denotes the predicted rating score 

of the user u for item i. Ŕ represents the impose matrix used for embedding to the R. 

Ř represents the decomposition matrix of R or Ŕ. Ʀ denotes the final prediction 

matrix that is the union of the original R and Ŕ matrix, ʀu represents the row vector 

of user u in Ʀ. 

Item-based CF models aim to predict users’ ratings for a specific item by the 

dot product of the user selections with item-item weights. For the estimation of the 

R̃, the common formula of the prediction matrix is given in Eq. (3.20) 

 

R̃ = RK (3.20) 

 

where R ∈ Ɍn*m could be a binary purchase (or a ranged scalar rating matrix, 

or a listen to count) matrix, K ∈ Ɍm*m is an item-item weight matrix that defines the 
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proximity of the items between themselves. Establishing an item-item weight matrix 

is essential for the model’s progress and this model must handle the typical 

challenges in RSs. It is also important for this matrix to be satisfying and computable 

with parallel measurements. 

K could be a similarity matrix determined by correlation methods such as 

Dot-Product, Cosine-based, Jaccard, or Pearson-correlation. These correlation 

methods are adopted in many CF, CBF, or Hybrid models (Sarwar et.al., 2001; 

Deshpande & Karypis, 2004; Frolov & Oseledets, 2019). For instance, the itemKNN 

method was used by Deshpande and Karypis (2004) to find out the most similar k 

items for each row in the item-item similarity matrix estimated by Cosine-Similarity 

or Conditional Probability-Based Similarity. The researchers dismissed all items in 

every column except for the k items and constructed a prediction matrix for top-N 

recommendations for each user in the R matrix. The itemKNN method; however, 

suffers in sparse datasets and cold-start situations because it only considers the 

existing collaborations. Also, k represents the number of neighbors or the threshold 

value and its optimal could differ between the items in the same dataset. As a result, 

the same k value along rows and columns can be overfitting or underfitting for 

different users or items (Ning et.al., 2015). Another popular approach, SLIM trained 

K as a coefficient matrix and made predictions with the help of linear regression 

models such as ElasticNet and Lasso (Ning and Karypis, 2011). Kabbur et al. (2013) 

created two item factors with the model they called FISM with help of loss functions 

by sampling the previous clicks users and training this obtained data. Fouss used 

graph relations based on kernel similarity methods to define suitable item-item 

weight matrices (Fouss et.al., 2006). In addition to these, the PureSVD and its 

generalized methods constructed item-item weights from latent factors of items 

based on the use of low-rank item factors estimated by the decomposition algorithms 

(Cremonesi et.al., 2010; Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019; 

Frolov & Oseledets, 2019).  
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3.2.2. z-scoREC Model Definition 

In our model, we proposed: 

 

 A sparse but qualified K weight matrix to generate efficient 

recommendations with a low cost for huge data. 

 An asymmetric K weight matrix to capture individual relations between 

items without needing explicit data. 

 To trivialize meaningless values by naturally, on the contradictory of 

neighborhood approaches. 

 A less parametric model which is trainable and adaptable easily.  

 

The dot product of users and items vectors is the simplest way to obtain an 

item-item similarity matrix. It is also called co-citation, Gram-matrix and in the 

simple form, it is estimated as in Eq. (3.21) 

 

K = RTR (3.21) 

 

where R ∈ Ɍn*m and R>=0, then K is a symmetric, positive, and semi-definite 

matrix. In a real scenario, R is mostly sparse and includes null values, which are 

insufficient for the Gram-matrix.  

 Assume that our R ∈ Ɍn*m matrix has binary values if a user clicked a specific 

item and zero values if not clicked. Then, we compute the item-item similarity matrix 

as in Eq. (3.22), by multiplying RT with the element-wise shifted version of R matrix 

where λ is a real value in the range [-1,1] and e is an m*1 unit column vector having 

1 in all elements to perform element-wise shifting operation.  

 

K = RT(R – λe) (3.22) 
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This shifting (R – λe) subtracts λ from all elements in R and transforms 

values of R so that matrix elements become real-valued, and non-clicked item ratings 

become negative.  

For a given R, if we transpose RTR, then (RTR)T  = RT(RT)T = RTR, thus we 

know that Gram-matrix RTR is symmetric with a primitive rule of equality of its 

transpose. However, in Eq. (3.22) we multiply RT with the shifted version of R, and 

if we apply distribution rule to Eq. (3.22) we obtain Eq. (3.23), and we can say that 

the K matrix cannot guarantee to be symmetric and could be asymmetric if the matrix 

dimensions are not equal (mn). This asymmetry provides the use of new relations 

in the weight matrix. When we shift the R matrix with λ, R – λe grew into a dense 

matrix that leaves null values, and computation of Eq. (3.22) became extremely 

costly. Therefore, we use Eq. (3.23) to estimate K. 

 

K = RTR – RTλe (3.23) 

 

We obtained an improved formula and separate the shift operation from 

Gram-matrix estimation. The diagonal d = Diag(RTe)  yields the column L1-norms 

of R (Fouss et.al., 2016) and we get Eq. (3.24). 

K = RTR – λ*d (3.24) 

 

where vector d is multiplied by λ and subtracted from each column of the 

Gram-matrix. 

 

LEMMA 1. If R ∈ Ɍn*m is a binary interaction matrix consisting of 1s and 

zeros, RT is the transpose of R and e ∈ Ɍm*1 is full of 1s vector with the column size 

of RT, and not for only square matrices also includes non-square matrices then,  

Diag(RTe) = Diag(RTR) 

PROOF. Proof of Lemma 1 is presented in Appendix A. 
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By using Lemma 1, if d = Diag(RTe), then d = Diag(RTR) and we obtain Eq. 

(3.25). 

 

K = RTR – λ*Diag(RTR) (3.25) 

 

Now if we denote RTR as G Eq. (3.25) can be written as in Eq. (3.26) 

 

W = G – λ*Diag(G) (3.26) 

 

In a structure view, the shifting operation on the second matrix (which is the 

same as the matrix for the Gram-matrix estimation) is performed as row-based 

degree shifting on Gram-matrix. The shrinkage ratio is obtained by λ and if λ=0, our 

W matrix is pure Gram-matrix. It is also established that the regularization parameter 

λ between [-1,1] behaves as a penalizing term on neighborhood degrees. With λ=1 

value, W is transformed into an unsigned Laplace Operator Matrix, which is a 

derivative of the Laplacian Matrix (Fouss et.al., 2016, p.18). We should notice a 

revised weighted Laplacian Matrix, as recognizing the Gram-matrix like an 

adjacency matrix of an undirected weighted graph. Laplacian operators, especially 

as a model used in image filtering, prevent noise from becoming dominant in the 

data. After adding noises to our data by shifting it, then we applied the whitening 

process. When we hold our model as a transparent auto-encoder system with non-

hidden layers, we obtained W by including noise to the Gram-matrix in the first 

layer, and we demand to remove the noise from the data in the second layer. For 

kernel normalization, many methods are used, such as vector normalizing, vector 

centering, Z-Score, or Tanh estimators. As pointed out in the EASER article, many 

CF models are vanilla auto-encoder implementations (Steck, 2019). 

Z-Score is an extremely impressive normalization process when handled 

with the real data set. Z-Score precisely eliminates noise from the data and reduces 
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variance, which is preferable in regression analysis. The primary formula of Z-Score 

normalization is given in Eq. (3.27). 

 

K = (W–𝝁) / 𝝈 (3.27) 

 

where 𝝁 is the column means of W and 𝝈 is the column-based standard 

deviations of W. Final step of the estimation produces an asymmetric dense matrix 

with lots of negative values if λ0. One of the reasons we adopt Z-Score 

normalization is that, at the end of the normalization, the values are excluded by 

holding an optimal threshold position, as the values can be observed in the [-∞, +∞] 

range. The dense coefficiency matrix has rich relations but performance issues with 

evaluation costs. Removing these negative values will keep sparsity that eliminates 

insignificant relations according to our model.  

Z-Score performs the whitening process on the weight matrix in our model, 

on autonomous columns, in parallelizable and with a low-cost estimation. In deep-

learning models, a similar technique to Z-Score, which is mentioned Batch-

Normalization, enables faster training time of the network and provides stable results 

for layers.  In addition, we can consider it as a linear regularization model similar to 

SLIM, since we apply operations on Gram-matrix and normalization matrices as 

column-based regression and vector operations independent of each other.  

Contrary to the SLIM (Ning and Karypis, 2011) and EASER (Steck, 2019) 

models, we don’t drop diagonals and we observed that the zero diagonal weight 

matrix does not affect the results for our model in the experiments. The prediction 

model is based on the generalized Eq. (3.20) formula. R̃ is the prediction matrix for 

all users. Fig. 3.4 presents an example that shows how our proposed method 

calculates weight matrix K, which is used for the estimation of the prediction matrix. 
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Figure 3.4 The architecture of the proposed item similarity matrix 

 

As illustrated in the example in Fig. (3.4), R interaction matrix consists of 

1s, and null values are considered as zero. We perform the RTR to create the G item-

item similarity matrix from the R matrix. It can be recognized that each diagonal 

element gii in the G matrix corresponds to the sum of the elements in the associated 

column i in the R matrix. That is, the L1 norm of each column i of the R matrix is 

equal to each diagonal gii element of the G matrix. We obtain the W matrix by 

subtracting λ*gii from each element in row i of G matrix. As an example, let λ be 

equal to 0.5, then 0.5*3 which is equal to 1.5 is subtracted from the elements in the 

1st row, 1 is subtracted from the elements in the second row, etc. The W matrix is 

Gram-matrix at λ=0 and Laplacian-matrix at λ=1. In the W matrix, μ defines the 

column means and σ defines the column standard deviations. The K matrix is 

computed by applying z-score normalization to each column of W matrix. After the 

normalization step, all negative values are converted to 0 in the K matrix as in Fig. 

(3.4). We called this method z-scoREC, and Algorithm 3 given below summarizes 

the steps applied to compute the K matrix, which is then used to estimate the user 

ratings R̃ for the items by employing Eq. (3.20). 
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Algorithm 3 : z-scoREC 

Input: Ratings Matrix R ∈ Ɍn*m, λ shrinkage value 

Output: K ∈ Ɍm*m weight matrix 

// Gram-matrix, O(n*m2)  

1:  G ← RTR 

// subtraction of matrix elements are elementwise,  O(m2)                                       

2:  W ← G – λ*Diag(G)                     

// column-means O(m2), column-std. deviations O(m2) and 

// Z-Score computation for each element, O(m2) 

3:  K ← Z-Score(W) 

// controlling every item because of asymmetric matrix, O(m2)                                                                                 

4:  for i,j ← 1,2, …,m do 

5:       if [K]ij ≤ 0 then [K]ij=0              

6:  end 

7: return K 

Figure 3.5 Pseudocode for z-scoREC 

 

3.2.3. Computational Complexity of z-scoREC 

 As it can be seen from Algorithm 3, the overall time complexity is O(n*m2). 

In Line 1, we estimated RTR which is the matrix product of two m*n and n*m 

matrices that can be computed in O(n*m2) time, and we get the Km*m weight matrix 

between items. Note that the transpose of R matrix can be computed in at most 

O(n*m) time. In Line 2, element-wise multiplication O(m2) and subtraction O(m2) 

are applied for K, which corresponds to the O(m2). In Line 3, we applied Z-Score 

normalization to the W weight matrix. In these processes; if we analyze a column, 

first we find the sum of the column in O(m) time and we divide it into number of 

elements in the column in O(1) time. Computing the mean of each column is done 

in O(m) time, and for the whole matrix, this process takes O(m2) time. In finding the 

standard deviation of a column we subtract each element of the column from the 

column mean value then square the difference and sum all differences with O(m) 

time, dividing it by the element count of the column and getting the root square is in 

O(1) time. Finding standard deviation is applied for all columns and this corresponds 

to the O(m2) time. For Z-Score normalization, we subtract every element from its 
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column mean value and then divide this result by its column standard deviation 

value. Z-Score normalization of all elements in the matrix takes O(m2) time. In line 

5 we removed negative values. This element-wise operation is done in O(m2) time 

complexity. In line 7, we multiply our novel weight matrix K with the original rating 

matrix and we got predictions. This process is made in O(n*m2) complexity for n 

users and m items. 

 

3.2.4. ImposeSVD: Imposing SVD for cold-start recommendations 

ImposeSVD is our proposal to estimate user ratings for items in cold-start 

cases. In this method, we apply SVD to the estimated rating matrix R̃ that is imputed 

by using the weight matrix K computed by our z-scoREC algorithm to make a better 

recommendation for cold-start cases. The details of our proposal are explained in the 

below subsections. 

 

3.2.5. SVD Analysis 

Let R ∈ Ɍn*m be a user-item rating matrix. In SVD based recommender 

models, the main idea is to decompose the R user-item matrix into low-rank matrices 

Pn*f and Qf*m where f<m and f<n.  Let P be a matrix of ‘user-factors’, and Q is a 

matrix of ‘item-factors’. The basic prediction matrix R̃ is formed from user factors 

and item factors and it can be computed as shown in Eq. (3.28);  

 

R̃ = PQT (3.28) 

 

PureSVD imputes null values with zeros in R and decomposes the f 

dimensional latent factors of the R matrix with n users and m items. When we 

decompose R to the singular values and unitary matrices, with the help of advanced 

linear algebra libraries, we get U, Σ, and V matrices from Eq. (3.29), 
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Ř ≌ Un*f Σf*fVT
m*f (3.29) 

 

The matrices U and V are orthonormal matrices and Σ contains f singular 

values. Consider that rows in the R matrix denote users, and columns are items, then 

in the decomposition of the R matrix, U is user factors because of the similar 

dimensions, and V is the item factors matrix. From Eq. (3.28) and Eq. (3.29), we 

have the following equations Eq. (3.30) and Eq. (3.31);  

 

P= UΣ, Q=V 

(3.30) 

 

Ř = UΣVT = PQT (3.31) 

 

where U and V are orthonormal matrices, and then we can easily get Eq. 

(3.32)  

 

P = UΣ = RQ (3.32) 

 

Replacing UΣ in Eq. (3.29) with RQ in Eq. (3.32) gives Eq. (3.33). 

 

R̃ = RQQT (3.33) 

 

where R̃ is a simple prediction matrix for all users. Predictions of user u, 

which is rũ, could be estimated with the user's row vector in R with Eq. (3.34)  

 

rũ = ruQQT (3.34) 
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In Figure 3.6 we show that how the PureSVD makes predictions. PureSVD 

imputes null values as zeros and decomposes this completed matrix with low ranks. 

PureSVD only takes the item factors and there is no need for the U for the 

predictions. That is one of the most persuasive features of the PureSVD algorithm 

because, for new users, there is no need to re-decompose R. 

 

Figure 3.6 Rating prediction example with a simple matrix for PureSVD algorithm 

 

However, analyses about PureSVD show that it's insufficient in cold-start 

and data unavailability situations. EigenREC showed that the efficiency and quality 

of PureSVD depend on the precision of the item factors from the decomposition 

(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019). The authors concluded 

that "the PureSVD algorithm's recommendation model is based on the induction of 

recommending similar items the user previously liked", and meanwhile the 

connections in the QQT matrix, which are the latent component factors of PureSVD, 

could be obtained from the Eigen Decomposition of the RTR matrix. Another 

approach, HybridSVD, has suggested that embedding side-information could 

recover PureSVD in cases where it is inadequate (Frolov & Oseledets, 2019).  
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3.2.6. Motivation behind ImposeSVD 

We figured out how the PureSVD handles and produces recommendations 

when the sparsity decreases in the same dataset. Our evaluation scenario is to 

simulate the evolution of a recommender system with time. Based on this scenario, 

we used a common dataset; namely, MovieLens 1M (Harper & Konstan, 2015) for 

movie recommendations. This dataset has 6040 users, 3952 items, 1M ratings, and 

about 95% sparsity as shown in Table 1. We denoted this dataset as Tr1. Then, we 

randomly selected 66% of the ratings from Tr1 and named this subset Tr2. We 

continued to create subsets by selecting the randomly chosen 66% of the ratings from 

the parent subset until we got four subsets. At the end of the process, we got related 

coherent five training sets named Tr1  Tr2  Tr3  Tr4  Tr5 in which each set 

subsequently subsumes the following sets. Then, we created a test set consisting of 

full ratings for users (maximum rating) from the smallest training set (Tr5) and 

removed this test set from all training sets. We calculated the R̃1,  R̃2,  R̃3,  R̃4, and 

R̃5 prediction matrices from their own training sets by using Eq. (3.33) and adopted 

the evaluation method in (Cremonesi et.al. 2010) to evaluate the quality of the top-

N recommendations (shown as @N in Fig. 3.7) in the prediction matrices. To 

estimate the quality of the lists at different @N values, we used normalized 

Discounted Cumulative Gain (nDCG) (Shani & Gunawardana, 2011). Details about 

evaluation methods and metrics used in this study are explained in Sections 3.4 and 

3.5.  

Following all predictions and tests in different sparsity levels, we observed 

that as sparsity increases, the nDCG value decreases for all @N values as shown in 

Fig. (3.7). For example; in the ML1M dataset, Tr2 was less sparse than its subset, 

Tr3. We could see that the Tr2’s nDCG result is better than the results of its subsets. 

As the length of the top-N recommendation list increases (it is @N in Fig. 3.7), the 

nDCG value rises, but as the sparsity expands, the nDCG values of all @N values 

do not converge successfully and the performance decreases. 
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Figure 3.7. Performance of the PureSVD algorithm in different sparsity percentages 

of MovieLens 1M dataset evaluated with nDCG metric 

 

 In live recommender systems, present states of the user-item interactions 

should become the subspaces of future states. Based on the use of the PureSVD, we 

conclude that the impact of the latent factors of the rating matrix could be enhanced 

with the recent relations that can be created virtually. Therefore, in our new model, 

we aim to decrease sparsity to make better recommendations. 

 

3.2.7. ImposeSVD Model Definition 

In this study, we have developed a model to create new virtual connections 

in the referral system. With the help of the new predicted relations, system sparsity 

could be decreased and the recent success of algorithms may increase. When we 

estimate the impute matrix by using Eq. (3.20) with K created by the z-scoREC 

algorithm, we get the R̃ predictions. Our goal is to impute users' missing ratings in 

the original rating matrix R. So, we removed previously rated items in R by applying 

Eq. (3.35) to obtain Ŕ. All we need was unrated items to scale the real rating values. 
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Ŕ = R̃⊙¬R (3.35) 

 

In Eq. (3.35), ¬R is obtained by swapping all zeros and ones for their 

opposite from the binarized R matrix. Finally, Ŕ represents new predicted values 

that users have not previously interacted with them. Decomposition of the latent 

factors in the Ŕ matrix might have caused the existing real evaluations to worsen. 

Therefore, we did not apply any normalization process when calculating the S 

proximity matrix. The impute values obtained in the Ŕ matrix might have been in a 

different range than the actual rating values. So, we applied row-max normalization 

before imputing the latest Ŕ matrix. Because users could have different rating ranges 

in the impute matrix, we normalized each row by dividing its max value by the Eq. 

(3.36) where L∞ was the norm in their row-vectors. Even small values in the Ŕ were 

valuable, so we applied the exponential scale to make these values meaningful on 

the actual rating scale. The method we applied here is to degrade the difference 

between small and large values, as opposed to the process in Eq. (3.37). In this way, 

we have ensured that unpopular predictions are noticeably impacted.  

 

Ŕ = Ŕ / ||Ŕ||∞ 

(3.36) 

 

Ŕ = exp[-1/ ŔT] (3.37) 

 

With these normalization processes, we compressed the values to be imputed 

into the (0,1) on the same range with the actual data. Then, we could merge our 

impute matrix with the original matrix as shown in Eq. (3.38); 

 

Ʀ = R + Ŕ (3.38) 
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After imputing the R matrix, we got the final impute matrix Ʀ. Singular 

Value Decomposition of the Ʀ was estimated via Eq. (3.39) 

 

Ř ≈ ŪΣǬT (3.39) 

 

As we explained before, Ū is user factors, Ǭ is item factors and Σ is singular 

values of decomposition. 

 

3.2.8. Generating Predictions 

Similar to Eq. (3.33), our prediction formula with Ǭ factors obtained from 

the Ʀ matrix was estimated as in Eq. (3.40) 

 

R̃ ≈ ƦǬǬT (3.40) 

 

The above equation differs from Eq. (3.33) because a row of the imposed 

matrix for the user as ʀu is richer than the original user predictions. Algorithm 4 

shows the basic steps of the proposed ImposeSVD method.  
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Algorithm 4: ImposeSVD 

Input: Ratings Matrix R ∈ Ɍn*m, λ shrinkage value, f low rank size 

Output: R̃ ∈ Ɍn*m final prediction matrix 

// Explained in Algorithm 1, O(n*m2) 
 1:  K ← z-scoREC(R, λ) 
// Multiplying rating matrix with weight matrix, O(n*m2)         
 2:  R̃ ← RK 
// Hadamard product with nonzero elements of R, O(n*m)                                
 3:  Ŕ ← R̃⊙¬R  
// Row-based normalization by infinity-norm of Ŕ, O(n*m)                         

 4:  Ŕ ← Ŕ/||Ŕ||∞   

// Element-wise exponential scaling, O(n*m)                                      
 5:  Ŕ ← exp[-1/Ŕ]      
// Impose Matrix; element-wise sum, O(n*m)                 
 6:  Ʀ ← R+ Ŕ  
// Decomposition of Ʀ with f rank. Also, could be estimated via Golub-Kahan-Lanczos 
Bidiagonalization, O(#nonzero(R) * f)                            
 7:  Ř ← Un*fΣf*fQf*m

T    

// Latent factors product for f rank, O(n*m*f + n*f)                         

 8:  R̃ ← ƦQQT                                            

 9:  return R̃ ← ƦQQT 

Figure 3.8. Pseudocode for ImposeSVD 

 

As it can be seen from Algorithm 4, our method uses the imposed matrix Ʀ, 

which keeps the original relations in the R matrix, but imposes new relationships for 

the null entries in the original R matrix, to make predictions. Although our proposal 

is an SVD-based method, it is quite different from other SVD-based methods that 

are PureSVD, EigenREC, and HybridSVD:  

 

i) PureSVD uses the original R matrix by changing null values to 0, however 

our method uses the imposed matrix Ʀ for predictions.  

ii) EigenREC applies scaling to item similarity matrix obtained from R and 

changes all values in R matrix, however our method keeps non-null values in R but 

imposes new values for null entries in R, therefore we update R matrix differently 

from EigenREC.  

iii) In our model, we use our z-scoREC method to compute the item 

similarity matrix, however EigenREC employs Pearson, Cosine, or Jaccard 
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similarity metrics and chooses the best metric for the dataset at hand to form the item 

similarity matrix. Therefore, we reduce the number of computations to be made with 

respect to EigenREC.  iv) EigenREC uses the same prediction formula with the 

PureSVD that employs the R matrix. Our model, on the other hand, uses the imposed 

matrix Ʀ for making predictions.  

v) Our model considers only user-item rating matrix R and does not require 

additional information about users or items, however HybridSVD incorporates side 

information of users or items in addition to CF. 

 

3.2.9. Computational Complexity of ImposeSVD 

 The algorithm for imposing predicted prior values into the original matrix 

and the final prediction estimate is given in Algorithm 4. In Line 1, we estimated the 

Km*m weight matrix between the items. As it can be seen in Algorithm 3, the overall 

time complexity is O(n*m2). In Line 2, we multiplied our novel weight matrix K 

with the original rating matrix and this process corresponds to the O(n*m2). R̃ is our 

both priori predictions and z-scoREC predictions. With Line 3, we removed user-

rated items from this prediction matrix because we only wanted to normalize the 

user’s unrated predictions. This process is applicable to only nonzero elements of R 

where complexity is at most O(n*m). In Line 4, we scaled the prediction matrix by 

dividing each row values by the row-max value. In Line 5, we normalized the ratings 

in an exponential scale. Both Line 4 and Line 5 correspond to O(n*m). In Line 6, we 

merged the initial R matrix with the imposing matrix in O(n*m) time. Line 7 is the 

decomposition phase of the Ʀ, which is our imposed matrix. Golub and Van Loan 

(2013) showed how to efficiently compute the SVD of a sparse matrix R ∈ Ɍn*m 

(n>m) which could be applied in line 7. This computation method of Golub and 

Kahan (2013) is based on bidiagonal factorization and it is efficient in sparse 

matrices. For a large matrix, SVD could be estimated via Golub-Kahan-Lanczos 

Bidiagonalization with O(#nonzero(R) * f), where #nonzero(R) is the number of 

nonzero elements in R which is less than n*m. In line 8, we estimated R̃ with Ʀ 
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impose matrix and item factor Q from decomposition. This process depends on a 

low f rank value and corresponds to the O(n*m*f + n*f). As f is much smaller than 

n and m, time complexity of the algorithm is O(n*m2). 

 

3.3. Datasets 

 To evaluate the recommendation quality and performance of our algorithms, 

we used six datasets from various domains, which are MovieLens 1M (Harper & 

Konstan, 2015), MovieLens 10M (Harper & Konstan, 2015) and Netflix (Bennett & 

Lannning, 2007) datasets for movie recommendations, R2-Yahoo! Music dataset for 

song recommendations (Yahoo, 2020), BookCrossing for book purchases (Ziegler 

et.al., 2005), and implicit data crawled from an often-cited paper about Pinterest for 

image recommendations (Geng et.al., 2015; He et.al., 2017). User, item, and rating 

counts of the datasets with their sparsity and density values are shown in Table 3.1, 

where sparsity percentage is calculated as (1-density) *100, in which density 

formula is density = #ratings / (#users x #items).  

 

Table 3.1. Evaluation Datasets 

 ORIGINAL DATASETS 

Dataset # User #Item #Rating Sparsity 

MovieLens 1M 6040 3952 1M 95.809 

MovieLens 10M 72 K 10681 10M 98.692 

Netflix 480 K 17770 100M 98.822 

R2 -Yahoo! Music 1.8 M 136 K 717 M 99.707 

BookCrossing 246.7 K 255.7 K 716109 99.995 

Pinterest Image 46 K 882 K 2.6M 99.993 

 

 MovieLens (ML): MovieLens is a popular dataset in the Recommender 

Systems literature which is first released in 1998, describe people’s expressed 
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preferences for movies. This dataset contains movie ratings from the online movie 

recommender service MovieLens. In this thesis we used "1M" and "10M" versions. 

Netflix Prize Dataset: The Netflix Prize competition was held by Netflix in 

2009, and the grand prize of US $1,000,000 was given to the best recommendation 

algorithm.  Netflix released a dataset containing 100 million anonymous movie 

ratings for competitors (researchers) that could beat the accuracy of its 

recommendation system (Cinematch).  

Yahoo Webscope Dataset: R2 -Yahoo! Music dataset represents a 

collection of the Yahoo! Music community's preferences for various musical artists. 

This huge dataset contains over ten million ratings of musical artists given by Yahoo! 

Music users over the course of one month sometime before March 2004.  

BookCrossing: The BookCrossing (BX) dataset was collected by Cai-

Nicolas Ziegler from the BookCrossing community. It contains 255,7k users 

(anonymized but with demographic information) providing 1,149,780 ratings 

(explicit / implicit) about 271,379 books. We used implicit ratings of the BX in this 

thesis. 

Pinterest Image Dataset: He et al. (2017)  constructed this dataset from 

paper data that were constructed by (Geng et.al., 2015) for evaluating content-based 

image recommendation. The original dataset is huge but highly sparse and its details 

are given Table 4.1. He et al. (2017) filtered the dataset that retained only users with 

at least 20 interactions (pins). This dataset contains 55,187 users and 1, 500, 809 

interactions (pins). Each interaction denotes whether the user has pinned the image 

to her own board. 

 

Selected datasets are well-known recommendation datasets that are used in 

most of the previous studies in this field. Attributes of the datasets are given in Table 

3.1. 

Because of the huge size of these datasets, we created particular subsets by 

which we evaluated the benchmarks. In this way, benchmarks and parameter tunings 
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were estimated much faster. We obtained subsets similar to the subset sampling 

methods used in the related studies (Kabbur et.al.,  2013; Ning & Karypis, 2011). 

The sampling methods were run recursively until the specified conditions were met 

for each dataset. With these sampling methods, we aimed to create a subset that is 

close to their original densities. Finally, we normalized the ratings of the non-binary 

datasets by dividing each one by the maximum rating value in the dataset. 

 

3.4. Evaluation Metrics 

In this thesis, we didn't consider the similarity of the estimated ratings with 

actual ratings; instead, we measured the quality of the items, which are 

recommended to the users. To evaluate the top-N recommendation quality of these 

lists, we adopted Cremonesi et al. (2010) method for the benchmark algorithms. 

Following this method, we created a list by randomly choosing 1000 unrated items 

of the active ‘test user’ in addition to the test item. As a result, we obtained 1001 

items that the active test user had not seen before. Later, these 1001 items were sorted 

based on their prediction scores, which were estimated by prediction algorithms. N 

items were obtained out of the 1001-item list as a result of their cut-off higher 

prediction scores. This final list is the top-N item recommendation list for the ‘test 

user’. In our experiments, we used several values for N that are 1, 3, 5, 10, 15, and 

20 items for the length of recommendation lists.  

In AcoRec with a change, instead of selecting 1000 items, we decided to 

calculate the top-N lists by sorting all the items that the user did not click on. This is 

a more difficult challenge but yielded a more consistent result. Because AcoRec is a 

probabilistic model, randomly selected elements here could vary the results 

significantly. Later, all unclicked items were sorted based on their prediction scores, 

which were estimated by prediction algorithms.  

Evaluation of predictions and recommendations is an important progress of 

the Recommender System studies. Recommender Systems require quality measures 

and evaluation metrics to know the quality of the techniques, methods and 
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algorithms. Because of evaluation measures, Recommender System 

recommendations have gradually been tested and improved. 

Herlocker et al. (2004) classifies recommendation accuracy metrics into 

three classes: predictive accuracy metrics, classification accuracy metrics, and rank 

accuracy metrics. 

 

 Predictive accuracy metrics measure how close the recommender 

system’s predicted ratings and rankings are to the true user ratings and 

rankings. (Accuracy of Estimated Rating examples are MAE, NMAE, 

RMSE. Accuracy of Estimated Ranking metrics are Pearson, 

Spearman’s rank, NDMP) 

 Classification metrics measure the frequency with which a 

recommender system makes correct or incorrect decisions about 

whether an item is good. (Precision, Recall, F1 Measures, ROC Curves, 

AUC, Hit-rate are some these metrics) 

 Rank accuracy metrics measure the ability of a recommendation 

algorithm to produce a recommended ordering of items that matches 

how the user would have ordered the same items. (Mean reciprocal rank 

(MMR), Average reciprocal hit rank (ARHR), nDCG, Half-life Utility 

Metric etc. are the example metrics) 

 

We used utility-based metrics including Hit Rank also Recall (Deshpande & 

Karypis, 2004), normalized Discounted Cumulative Gain (Shani & Gunawardana, 

2011), Coverage (Herlocker et.al., 2004) and R-Score (Half-Life) (Shani & 

Gunawardana, 2011) to measure the quality of the items in the lists in terms of their 

relevancy to the user. These metrics are explained below with their formulas. In these 

formulas; T is the count of the test items in ‘test set’, N is the length of the 

recommendation list and i is the position of the recommended item in the list. If the 
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ranked item(i) in the list belongs to the test user from ‘test set’, we called this item a 

‘relevance item’ for the user and set rel(i)=1, if it is not we set rel(i)=0 for the test 

user. 

 

3.4.1. Hit Rank (HR) 

To evaluate the recall score of the algorithm for specific datasets in different 

list lengths, we divide the sum of all ‘relevance items’ by the number of items in the 

test set. The Hit Rank formula is given in Eq. (3.41). 

 

𝐻𝑅(@𝑁) =
1

𝑇
∑𝑟𝑒𝑙(𝑖)

𝑁

𝑖=1

 (3.41) 

 

3.4.2. Normalized Discounted Cumulative Gain (nDCG) 

The position of the ‘relevance item’ in the lists is ignored in the HR. The 

recommendations at the top of the list are more valuable than others. So, we 

measured the importance of the position of the item in the list by the ratio of the 

‘relevance item’ to its position in the list. nDCG gives importance to the gain of the 

position logarithmically while considering the list quality at the same time. In this 

nDCG metric; firstly, Discounted Cumulative Gain (DCG) of the test set was 

estimated as in Eq. (3.42) and then Ideal Discounted Cumulative Gain (IDCG) was 

estimated as in Eq. (3.43) for every test item in the top-N list. And then we 

normalized these gain values with Eq. (3.44) and obtained the nDCG value for a 

benchmark test. 

 

𝐷𝐶𝐺(@𝑁) =
1

𝑇
∑

𝑟𝑒𝑙(𝑖)

𝑙𝑜𝑔2(𝑖 + 2)

𝑁

𝑖=1

 (3.42) 
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𝐼𝐷𝐶𝐺(@𝑁) =
1

𝑇
∑

1

𝑙𝑜𝑔2(𝑖 + 2)

𝑁

𝑖=1

 

 

(3.43) 

 

𝑛𝐷𝐶𝐺(@𝑁) =
𝐷𝐶𝐺(@𝑁)

𝐼𝐷𝐶𝐺(@𝑁)
 (3.44) 

 

3.4.3. R-Score (Rs) 

R-Score considers that the probability of selecting a relevant item in the top-

N list that goes down exponentially (Shani & Gunawardana, 2011). The R-Score 

formula is given in Eq. (3.45). Different from other metrics, the parameter α specifies 

the slope of the decay curve and exhibits scroll or discovery of users for a 

recommendation list. A higher α value indicates patient users. 

 

𝑅𝑠(𝛼) =
1

𝑇
∑

𝑟𝑒𝑙(𝑖)

2
𝑖−1
𝛼−1

𝑇

𝑖=1

 (3.45) 

 

3.4.4. Coverage 

 The coverage metric measures the ability of a recommender system with the 

percentage of different elements in total items in the whole recommendation list. We 

define the coverage of the system as the average of the user’s coverage in Eq. (3.46) 

 

 

where 𝑈𝑢𝑒𝑛𝑖 is the number of different items in the recommended list, and 

|𝐼| is the number of items counted in the system. 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(@𝑁) = ∑
𝑈𝑢𝑒𝑛𝑖

|𝐼|

#𝑈

𝑖=1

 (3.46) 
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3.5. Evaluation Methods 

3.5.1. AcoRec 

 In the AcoRec model, we only used binary rating values. We used three 

datasets for AcoRec which are Movie-Lens 1M (ML-1M), Netflix datasets for movie 

recommendations, and Yahoo! R2-Music dataset about music recommendations. 

Attributes of the datasets are given in Table 3.2. For ML-1M, 4 and 5-star ratings 

were converted to binary one while others were converted to zero. After that process, 

we selected the users who listened to at least one item and selected the movies which 

were rated by at least one user, and in this way,  we got a very sparse dataset than 

the original. Due to its large size, in the R2-Yahoo! Music dataset, 10% of the ratings 

were taken from the first CSV file and 4 and 5-star ratings were converted to binary 

one while others were converted to zero. We selected the users who listened to at 

least 20 and at most 250 songs and selected the songs, which were listened to by 20 

to 250 users. In the Netflix dataset, we selected the small public sample of the 

original from the Cornac1 repository.  

 

Table 3.2. Sampled Datasets for AcoRec 

 SAMPLED SUBSETS FOR AcoRec 

Dataset Domain #User #Item #Ratings Sparsity Density 

ML-1M Movie 6038 3533 575281 97.302 2.698 

Netflix Movie 8324 2679 366432 98.488 1.512 

Yahoo! R-2 Music 5357 5627 202042 99.330 0.670 

 

We adopt the k-fold cross-validation method for splitting raw datasets to 

evaluate the algorithms. We shuffled all datasets randomly and then split them into 

k=5 sampled datasets. For each unique sampled group, we take it as a probe set and 

hold out this ‘probe set’ from the raw dataset. We called raw datasets ‘training set’ 

                                                 
1 https://github.com/CornacAI 
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after removing ‘probe set’ from it sequentially. From these probe sets, we selected 

users and their ratings who met the criteria according to the scenarios that we 

explained in the experiments. These selected users and their ratings in the ‘probe set’ 

are called the ‘test set’. In this way, results for different users and items in each 

experiment completed an average estimate for us.  

 

3.5.2. ImposeSVD and z-scoREC 

 In the z-scoREC and ImposeSVD models, we used both binary and scalar 

rating values. In MovieLens 10M dataset, we selected the users who rated between 

20 and 500 items, and items that were rated by between 20 and 500 users. In the 

Netflix dataset, we selected the users who rated between 10 and 500 items and items, 

which were rated by between 5 and 250 users. Due to its large size, in the R2-Yahoo! 

Music dataset, 10% of the ratings were taken from the first CSV file and 5-star 

ratings were converted to binary one while others were converted to zero. We 

selected the users who listened to at least 10 and at most 200 songs and selected the 

songs, which were listened to by 20 to 200 users. Implicit ratings taken from the BX 

dataset included the users who had at least 10 purchases and books that were bought 

by at least 10 users. In the Pinterest dataset, we transposed the dataset from a 

perspective of board recommendations for images to provide meta-information of 

boards for the HybridSVD method. As a result, we selected the images that were 

pinned at least in 10 boards and boards that had at least 10 images. Attributes of the 

used datasets are given in Table 3.3. 
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Table 3.3. Sampled Datasets for ImposeSVD and z-scoREC 

 
 

SAMPLED SUBSETS FOR ImposeSVD AND z-scoREC 

Dataset Domain #User #Item #Ratings Sparsity Density 

MovieLens 1M Movie 6040 3952 1000209 95.809 4.191 

MovieLens 10M Movie 4101 2931 144453 98.798 1.202 

Netflix Movie 7249 5548 131268 99.673 0.327 

R2 -Yahoo! Music Music 7456 5047 182426  99.515 0.485 

BookCrossing Book 2617 3871 87849 99.132 0.868 

Pinterest Image Image 3862 4996 85805 99.555 0.445 

 

We adopt the holdout method for splitting raw datasets to evaluate the 

algorithms. First, we created the out-of-sample that we called a probe set for each 

dataset. Then, we randomly selected 1.4% of the ratings in the raw datasets and 

removed this ‘probe set’ from the raw datasets. We called raw datasets ‘training set’ 

after removing ‘probe set’ out of it. From these probe sets; we selected random users 

and their ratings that met the criteria according to the scenarios that we explained in 

the experiments. These selected users and their ratings in the ‘probe set’ are called 

‘test set’. Because of the random selections in ‘probe set’, we created at least ten 

repeated holdout evaluations for ‘training set’ and ‘test set’ to evaluate the majority 

of the dataset. In this way, results for different users and items in each experiment 

produced an average estimate for us. 
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4. RESULTS AND DISCUSSION 

 
4.1. AcoRec Evaluation Results 

To evaluate the performance of our meta-heuristic algorithm, we evaluated 

our experiments in two scenarios. The first scenario is built to see how accurate our 

algorithm is in assessing the recommendations for cold-start users, and the second is 

to measure the long-tail item diversity in recommendations. 

 We show the best percentage value for the Coverage value related to the best 

nDCG parameters for each algorithm. We considered it a fairer way of evaluating 

the diversity of items on that list. 

 

4.1.1. Selected Benchmark Algorithms for AcoRec and Parameter Tunings 

For the benchmark tests of AcoRec, we used the three item-based similarity 

models as input of our approach which are Gram-matrix, Cosine Similarity, and 

Jaccard Similarity. 

 

Base-Gram, Base-Jaccard, Base-Cosine: The item-based baseline models 

are estimated by Eq.(3.17), Eq.(3.18), and Eq.(3.19).  

TARS: This is a state-of-the-art ACO model in recommender systems. It 

offers a user-based model that creates a trust-based user relationship graph, detects 

similar users, and makes a rating estimation (Bedi & Sharma, 2012). 

RP3ß: A random walk model that recommends based on the user-item graph 

with extending diversification that eliminates tendency on popular items (Paudel 

et.al., 2016). 

RecWalkᴾᴿ, RecWalkᴷ: Random-walk-based methods to capture new rich 

network interactions for top-N recommendation lists (Nikolakopoulos & Karypis, 

2019). 

SLIM: A well-known item-based CF method building a sparse coefficient 

item model L1-norm and L2-norm on the rating matrix  (Ning & Karypis, 2011). 
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EASER: A robust linear model that shows the closed-form solution of Ridge 

Regression in a manner of vanilla auto-encoders (Steck, 2019). 

UCF: Resnick's user-based CF approach. We used Pearson Similarity for 

obtaining user similarities (Resnick et.al., 2004). 

Random: The baseline method that we evaluate in benchmarks with filling 

empty cells in the user-item matrix with random values between (0,1). 

Popular: A baseline algorithm that evaluates items according to their usage 

frequency. 

 

Parameter Tunings of Algorithms: TARS method is evaluated between [10-

250] values in 10 steps for the (k) user neighbor size and confidence values between 

[0,1] range with 0.1 steps. RP3β algorithms are tested between [0,2] beta and alpha 

(β,α) values with 0.05 steps. SLIM algorithm is tested alpha with {0.01, 0.05, 0.1, 

0.5, 2, 5} values and beta with { 1e-4, 1e-3, 5e-3, 5e-2, 0.1, 0.2, 0.5, 1.0} values. To 

execute SLIM, we took the standard Elastic-Net implementation provided by the sci-

kit learn package for Python.  EASER method is evaluated between [10-100] values 

in 10 steps and [500-20000] values in 500 steps for the (λ) value. For RecWalkᴾᴿ and 

RecWalkᴷ models, we evaluated both Cosine and SLIM as input models like in the 

original paper and chose the best model for every benchmark. Our AcoRec method 

is evaluated between [1...250] values for ant size (archive-size) and [1...100] values 

for iteration count. Due to the random choices, each experiment for AcoRec is 

repeated 10 times, results are averaged and the best parameter results are chosen 

while creating transition probabilities during iterations. In all scenarios, we 

accomplished Grid-Search to find the best parameters working together in each 

algorithm. In the Section 4.1, we have shown the best results obtained by the best 

parameters for each algorithm.  

4.1.2. Cold-start user scenario 

Cold-start users have fewer ratings on the system, so it is more difficult to 

give quality recommendations to them (Son, 2012; Bobadilla et.al., 2016). To 
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evaluate our algorithm for cold-start users, we obtained heat or warm users as 

candidate users from the probe set who was also in the training set. We formed them 

as cold-start users by decreasing their rating counts in the training set and we selected 

randomly 100 users from the probe set who had at least one full rating in the probe 

set and at least twenty ratings in the training set. In the evaluation process, some 

studies put three items in the training set to define cold-start users (Son, 2012), some 

studies received 5% of the user's rates (Nikolakopoulos et.al., 2019), and some other 

studies tested both in numbers ranging from (1...20) or used percentage rates (Ahn, 

2016). For a harder challenge, we kept random ratings that were between 5 and 10 

of the particular users in the training set and other ratings of these users were 

removed from the training set. Consequently, this process transformed candidate 

users into cold-start users, represented by a minimum of 5 and a maximum of 10 

random ratings in the training set. Just like a real scenario, the random ratings of 

these users could be lower ratings or higher ratings in different distributions. 
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Table 4.1. Comparisons of the algorithms in a cold-start user scenario 
 MovieLens 1M Netflix Yahoo! R-2 

@10 HR nDC
G 

Cov. HR nDC
G 

Cov. HR nDC
G 

Cov. 

Popular 0.05
7 

0.025 0.36 0.0
78 

0.037 0.50 0.00
2 

0.001 0.21 

Random 0.00
3 

0.001 25.12 0.0
10 

0.005 31.0
5 

0.00
0 

0.000 20.6
1 

BaseGram 0.08
0 

0.039 1.00 0.1
01 

0.048 0.87 0.07
3 

0.036 10.8
5 

BaseCosine 0.09
2 

0.042 4.30 0.1
07 

0.053 3.98 0.07
1 

0.035 14.2
5 

BaseJaccard 0.08
6 

0.039 6.34 0.1
08 

0.054 6.23 0.07
3 

0.033 14.2
5 

UCFPearson 0.10
0 

0.044 4.36 0.1
27 

0.060 3.28 0.09
0 

0.040 12.7
7 

TARS 0.09
9 

0.047 3.88 0.1
32 

0.065 3.58 0.08
1 

0.037 11.6
9 

RecWalkᴷ 0.10
0 

0.044 8.62 0.1
36 

0.065 3.54 0.08
9 

0.043 12.5
6 

RecWalkᴾᴿ 0.09
4 

0.044 8.75 0.1
29 

0.061 3.67 0.09
2 

0.044 13.6
8 

SLIM 0.10
0 

0.044 8.62 0.1
36 

0.065 3.54 0.08
9 

0.043 12.5
6 

EASER 0.09
9 

0.045 10.09 0.1
38 

0.065 2.81 0.09
0 

0.039 14.5
6 

RP3β 0.10
7 

0.049 3.60 0.1
45 

0.067 6.36 0.08
7 

0.042 14.1
7 

AcoRecGram 0.11
8 

0.054 10.37 0.1
43 

0.066 11.8
7 

0.09
7 

0.048 16.1
8 

AcoRecCosine 0.12
1 

0.057 8.31 0.1
62 

0.076 8.76 0.08
0 

0.039 15.5
2 

AcoRecJaccar

d 
0.10

4 
0.047 10.32 0.1

29 
0.062 9.23 0.07

3 
0.034 15.6

4 

 

Experimental results based on the HR, nDCG, and Coverage metrics are 

summarized in Table 4.1. When we evaluated AcoRec in the cold-start user scenario; 

we observed that our AcoRec outperformed most other algorithms in all datasets.  

In addition to building up the quality list, we observed that AcoRec 

implementations outperformed all other algorithms in the Coverage metric, which 

measures the diversification of the items on the list. The Baseline Method on which 

we base the AcoRec algorithm provided an improvement in Gram Matrix and nDCG 

measurement in all datasets. As stated by Dacrema et al. (2019), an algorithm in 
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which parameters are tuned well can outperform many deep learning algorithms. Our 

study confirms this argument as we fairly evaluated algorithms and obtained 

successful results in different scenarios. 

While the similarity matrices we use as inputs fail against other algorithms 

when used as predictors alone, our model is successful in all models when it was 

integrated with ACO. 

 Another observation is that although the Coverage percentages of the 

Random algorithm are on the top, the HR and NDCG values are close to zero. In 

contrast to this situation, the most notable feature of our algorithm is that not only 

the Coverage percentage is high in the lists recommended to users but also the quality 

of the lists is also high. 

We also observe that whereas the Cosine item-similarity model is more 

successful in MovieLens and Netflix datasets, the Gram matrix is more successful in 

terms of list diversity in cold-start recommendations. The Yahoo dataset is a sparser 

dataset than the other experimental sets used in this study, so the diversity in the lists 

shown to the users in this dataset is greater in all algorithms. The results of the 

analysis revealed that the Gram matrix is quite successful in the Yahoo dataset, too. 

Moreover, we observed that the RP3β algorithm is a very successful algorithm with 

correct parameter tuning. 

AcoRec takes an item-based similarity model as input. If we compare our 

three AcoRec model results with their own input item-based similarity model results 

(Table 4.1), we estimated compared percentage results for each metric. Values on 

Table 4.2 show the improvement percentage of each AcoRec model on its base item-

similarity model. The results show that our AcoRec models produce significantly 

improve  their base input models. In particular, the improvement in Gram-matrix and 

Jaccard similarity models is better than the improvement in the Cosine similarity 

model.   
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Table 4.2. Comparisons of AcoRec with its base algorithms in a cold-start user 

scenario 
 MovieLens 1M Netflix Yahoo! R-2 

@10 HR nDCG Cov. HR nDCG Cov. HR nDCG Cov. 

AcoRe
c 
Gram 

29.3 27.8 90.3 28.9 27.2 92.7 25.1 25.3 28.2 

AcoRe
c 
Cosine 

18.9 19.7 36.5 16.2 12.9 32.5 1.0 2.8 2.7 

AcoRe
c 
Jaccard 

23.8 26.2 48.2 34.0 30.9 54.6 10.7 9.4 8.1 

 

4.1.3. Long-tail items scenario 

Popular items are familiar to users, and thus, recommending these items 

might be boring for users (Anderson, 2006). Therefore, recommending unpopular 

items has always been more attractive. Traditional CF algorithms dealing with 

relations between popular items or popular users overshadow diverse relationships. 

Considering that the quality of models depends on the diversity of recommendations 

they offer, these CF methods might be unable to generate a diverse range of 

suggestions in the datasets especially when the data is inadequate (Yin et.al., 2006). 

The diversity can be achieved when some unpopular items are recommended to the 

users. Based on these arguments, we also evaluated the reaction of our algorithms 

for long-tail item recommendations. To obtain an experiment environment suitable 

for the long-tail scenario, we adopted the method in  (Cremonesi et.al., 2010). As 

observed by the authors in the study (Cremonesi et.al., 2010), the most popular 1.7% 

items represent 33% of the ratings included in the Netflix dataset and they called 

these 1.7% items as short-head items while the remaining items are called long-tail 

items. Following this evaluation method (Cremonesi et.al., 2010), we sorted the 

items in the dataset according to their popularity to evaluate the existence of long-

tail items in the recommendation lists. In doing so, we determined the items’ 

popularity by their rating frequency and sorted them in descending order by the 

number of ratings they had. On the sorted item list according to their frequency, from 
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top to bottom, we marked the items as ‘short-head’ items until the sum of the item 

frequencies equal to or higher than the 33% of the total ratings and marked the 

remaining as ‘long-tail’ items. In the probe set, we kept ‘long-tail’ items and 

removed the others. We created a ‘test set’ out of the probe set by random selection 

of 250 users who gave at least one full rating to ‘long-tail’ items.  As a result, we 

randomly selected users with unpopular tastes for each repeated holdout evaluation.  

According to the results presented in Table 4.3., we observed that our 

algorithm outperforms all algorithms in all datasets. Because of the creation of a 

long-tail scenario, the Popular baseline algorithm validates our dataset as expected, 

counts zero results, and fails against the Random algorithm. The performance 

measure values of our algorithm against other algorithms are better in the long-tail 

scenario than in the cold-start scenario. But our algorithm resulted in a higher 

difference and percentage in outperforming all algorithms in this scenario. 
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Table 4.3. Comparisons of the algorithms in long-tail item recommendation scenario 
 MovieLens 1M Netflix Yahoo! R-2 

@10 HR nDC
G 

Cov. HR nDC
G 

Cov. HR nDC
G 

Cov. 

Popular 0.00
0 

0.000 0.00 0.0
00 

0.000 0.00
0 

0.00
0 

0.000 0.00 

Random 0.00
4 

0.002 51.22 0.0
01 

0.000 60.6
6 

0.00
4 

0.002 35.8
9 

BaseGram 0.00
0 

0.000 0.00 0.0
00 

0.000 1.67 0.05
5 

0.024 15.7
1 

BaseCosine 0.00
9 

0.003 4.29 0.0
14 

0.008 5.60 0.13
0 

0.062 24.4
7 

BaseJaccard 0.01
6 

0.008 6.33 0.0
30 

0.015 7.27 0.14
3 

0.068 24.8
4 

UCFPearson 0.03
8 

0.018 14.94 0.0
37 

0.016 14.9
9 

0.11
2 

0.052 28.5
3 

TARS 0.02
9 

0.013 10.77 0.0
32 

0.015 8.00 0.09
7 

0.046 24.9
5 

RecWalkᴷ 0.07
0 

0.032 13.29 0.0
86 

0.041 11.6
2 

0.13
8 

0.063 26.3
2 

RecWalkᴾᴿ 0.06
7 

0.030 12.90 0.0
78 

0.037 11.1
3 

0.13
6 

0.063 25.5
9 

SLIM 0.07
1 

0.033 13.41 0.0
89 

0.043 11.1
4 

0.13
3 

0.061 27.0
4 

EASER 0.06
4 

0.028 13.89 0.0
92 

0.045 11.9
6 

0.12
4 

0.056 30.1
2 

RP3β 0.11
5 

0.053 16.79 0.1
32 

0.063 27.3
6 

0.19
5 

0.094 27.9
4 

AcoRecGram 0.14
5 

0.068 23.19 0.1
95 

0.095 37.1
2 

0.19
8 

0.095 31.9
2 

AcoRecCosine 0.16
0 

0.075 21.73 0.1
84 

0.089 20.6
6 

0.17
7 

0.085 31.6
6 

AcoRecJaccar

d 
0.17

3 
0.083 25.45 0.1

84 
0.090 17.3

9 
0.16

4 
0.080 29.0

7 

 

As stated before AcoRec takes an item-based similarity model as input. If 

we compare our three AcoRec model results with their own input item-based 

similarity model results (Table 4.3), we estimated compared percentage results for 

each metric. Values on Table 4.4 show the improvement percentage of each AcoRec 

model on its base item-similarity model. The results show that our AcoRec models 

produce significantly improve  their base input models in the long-tail scenario also. 

The improvements here are better than the cold-start users' results, showing that the 

algorithm is particularly successful in highlighting different products.  
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Table 4. 4 Comparisons of AcoRec with its base input algorithms in a long-tail item 

scenario 
 MovieLens 1M Netflix Yahoo! R-2 

@10 HR nDCG Cov. HR nDCG Cov
. 

HR nDCG Cov. 

AcoRec 
Gram 

100.0 100.0 100.0 99.
9 

99.9 95.5 72.4 74.5 50.1 

AcoRec 
Cosine 

91.0 90.8 75.1 83.
9 

83.2 58.2 12.6 14.8 14.5 

AcoRec 
Jaccard 

94.5 95.7 80.3 92.
1 

91.2 72.9 26.5 27.5 23.4 

 
4.1.4. Effect of the ant size & iteration count 

The number of iterations is an important parameter in ACO algorithms, but 

when number of iterations is increased in ACO algorithms, the algorithm is usually 

slow. Figures 4.1 and 4.2 show the heatmaps of our algorithms showing the 

relationship between the number of ants and the number of iterations in different 

input models and different scenarios. In Figures 4.1 and 4.2 the nDCG@10 was used 

as the quality measurement metric. The horizontal x-axis shows the number of 

iterations, and the vertical y-axis shows the number of ants. One of the outstanding 

features of our study is that it has fast convergence and that the cases of stagnation 

are lowly due to the structure of the algorithm. While examining the effect of the 

number of iterations in our experiments, we observed that it reached a high success 

value quickly and after this point, the success of the algorithm did not change with 

the increase in the number of iterations. 
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Figure 4.1. In the cold-start user scenario, the effect of the ant-size and iteration count 

is evaluated with the nDCG metric 

 

In our experiments to investigate the effect of the number of ants on the 

achievement of the algorithm, we found out that the number of ants had a better 

effect than the iteration on the success of the algorithm. Regarding the effect of 

Gaussian Distribution at the time of training, we discovered an equal distribution in 

all localities. As the focus space tightened throughout the iterations, the ants came 
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out to meet at the same distribution position. At this point, when the variance 

decreased below a specified threshold rate, our algorithm completed its training. 

Figure 4.1 and 4.2 indicates the progress of the algorithm conferring to the increase 

in the number of ants.  
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Figure 4.2 In the long-tail item scenario, the effect of the ant-size and iteration count 

is evaluated with the nDCG metric 
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4.1.5. Execution time of AcoRec 

In this experiment, we evaluated the computational performance of our 

method in a hyperthreading test environment. The experiments were performed on 

the TUBITAK ULAKBIM, High Performance and Grid Computing Center 

(TRUBA resources).  TÜBİTAK ULAKBİM High Performance and Grid 

Computing Center is a national center providing high-performance computing and 

data storage for all research institutions and researchers in Turkey. TUBITAK 

ULAKBIM High Performance and Grid Computing Center, which started its 

operations in 2003, is included in TRUBA. Today, TRUBA serves our researchers 

with ~ 17,500 processor cores, 80 GPUs, and a 4PByte Luster distributed file system. 

We implemented AcoRec in GNU Octave (GNU Octave, 2022) and used a parallel 

package that is part of the Octave Forge project. We evaluated the same 100 users in 

every experiment and made multi-threading tests. The results are given in Figure 4.3 

with execution time of core size. As you can see in the experiment results, AcoRec 

computational time decreases with the parallelable architecture. This is one of the 

main advantages of AcoRec against the other ACO-based RS implementations. 

AcoRec uses low-rank vectors and made personalized predictions for every user. 

 

 
Figure 4.3. In the cold-start user scenario the execution time of our algorithm under 

different cores 
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4.2. z-scoREC and ImposeSVD evaluation and results 

To measure the performance of our algorithms, we evaluated our 

experiments in three different scenarios. The first scenario was set to find out how 

accurate our algorithms were when assessing the recommendations for cold-start 

users, the second scenario was to assess the aspect of recommendations when the 

recommender system was fresh, and the third scenario was set to measure the long-

tail item diversity in recommendations. 

 

4.2.1. Selected Benchmark Algorithms for z-scoREC, ImposeSVD and 

Parameter Tunings 

We compared ImposeSVD and z-scoREC against the three similar SVD-

based top-N recommendation algorithms including PureSVD (Cremonesi et.al. 

2010), EigenREC (Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019), and 

HybridSVD (Frolov & Oseledets, 2019), which were explained in the previous 

sections in detail. In addition to these, we compared our algorithm with two popular 

item-based methods (i.e. item k-NN and Item-based collaborative filtering), and two 

other baseline methods (i.e., random and popular), which are explained below: 

ItemKNN: The item-based model developed by Deshpande and Karypis 

(2004) is utilized as a benchmark model by many studies in the literature. In their 

original study, Deshpande et al. estimated item similarities via Cosine Similarity or 

Probability Selection. In the second step, they selected k similar items only by 

ignoring the other items. With this simplified item similarity matrix, they estimated 

the prediction matrix by equitation similar to Eq. (3.20).  

Item-Based Collaborative Filtering (ICF): Sarwar et al.’s (2001) item-

based model is based on calculating the correlation between items and estimating 

scores with item-based prediction rules. In this method similar to the ItemKNN, a 

similarity between items is calculated by Cosine-based, Correlation-based, or 

Adjusted Cosine Similarity. Then the model tries to capture items that are similar to 
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users’ liked items with prediction formulas Sarwar et.al. (2001). We preferred to use 

Adjusted Cosine Similarity for its efficiency in calculating better results. 

Random: In addition to the item-based models, we also compared our 

algorithm with two baseline methods one of which is Random. With the help of the 

Random method, we evaluated the benchmarks by filling empty cells in the user-

item matrix with random values between [0,1]. 

Popular: The second baseline method with which we compared our 

algorithm is Popular, which evaluates the items according to their frequency of use. 

Parameter Tunings of Algorithms: All SVD-based algorithms were tested 

between [1-2000] factors (f) with 10 steps. EigenREC and HybridSVD were scaled 

with (d) parameters in the [-2,2] range with 0.05 steps. ItemKNN and ICF methods 

were evaluated between [10-250] values in 10 steps for the (k) item neighbor size. 

We evaluated our algorithms for lambda λ shrinkage values between [-1,1] range 

with 0.05 steps and tested all algorithms on each data set with the combinations of 

their parameters. Because of the random choices while creating ‘probe sets’, ‘test 

sets’, and ‘random, 1001 items’, we seeded random choices with the same seed 

number at the same stages for every method so that they were fairly evaluated in 

every repeated holdout evaluation.  

 

In all scenarios, we accomplished Grid-Search to find the best parameters 

working together in each algorithm. In the Results section, we have shown the best 

results obtained by the best parameters for each algorithm. We presented the Grid-

Search parameter tuning results in the Appendix B.  

Similar to the implementations on SVD-based models, we also applied a 

method to determine the best f values in the HybridSVD (Frolov & Oseledets, 2019). 

In SVD-based models, in each experiment for an algorithm decomposition was 

calculated once and fmax value as 2000 was obtained for the matrix rank size of latent 

factors. Then we truncated the rank of latent factors with the evaluation steps 

between [1-2000] and evaluated all f values in each experiment. After all repeated 
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holdout evaluations, we averaged the results of all f values and selected the best f 

value result for each metric. This method reduced the search cost for SVD-based 

models, especially in Grid-Search (Frolov & Oseledets, 2019)  

 

4.2.2. Cold-start user scenario 

Cold-start users have fewer ratings on the system, so it is more difficult to 

give quality recommendations to them (Son, 2012; Bobadilla et.al., 2016). To 

evaluate our algorithm for cold-start users, we obtained heat or warm users as 

candidate users from the probe set who was also in the training set. We formed them 

as cold-start users by decreasing their rating counts in the training set and we selected 

randomly 100 users from the probe set who had at least one full rating in the probe 

set and at least twenty ratings in the training set. In the evaluation process, some 

studies put three items in the training set to define cold-start users (Son, 2012), some 

studies received 5% of the user's rates (Nikolakopoulos et.al., 2019), and some other 

studies tested both in numbers ranging from (1...20) or used percentage rates (Ahn, 

2016). For a harder challenge, we kept random ratings that were between 5 and 10 

of the particular users in the training set and other ratings of these users were 

removed from the training set. Consequently, this process transformed candidate 

users into cold-start users, represented by a minimum of 5 and a maximum of 10 

random ratings in the training set. Just like a real scenario, the random ratings of 

these users could be lower ratings or higher ratings in different distributions. 

Experimental results that are based on nDCG are shown in Figure 4.4. When 

we evaluated our algorithms in the cold-start user scenario; we observed that 

ImposeSVD outperformed other algorithms in all datasets and in all top-N variations. 

ImposeSVD is based on enhancing the PureSVD under sparse datasets and we 

observed that our algorithm outperformed the PureSVD in all datasets. For the N=10 

value in MovieLens 1M dataset, results are better than the PureSVD with a 

percentage of 11.70%, 9.32% in BX, 11.03% in Pinterest Image, 13.74% in R2 – 
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Yahoo! Music, 14.55% in Netflix and 10.23% in MovieLens 10M. The success of 

our algorithm in binary datasets also shows that negating the rates in R works well.  

We also noticed a successful result in our z-scoREC method. Despite its 

simplicity, our novel method gave successful results compared to the similar 

ItemKNN and ICF algorithms. In Netflix and MovieLens 10M datasets, the results 

were better than the PureSVD. In R2 – Yahoo! Music and MovieLens 1M datasets, 

our method also outperformed all SVD-based methods. Considering that little N 

values’ success is important for small screen sizes, another important aspect of our 

algorithm was its success in all lengths of lists.    

From the f values in Appendix B.1a and B.1b tables, we can explore that 

SVD-based methods can be most suitable at low f values in the cold-start scenario. 

From here, we can deduce that the initial values in latent factors bring popular items 

to the forefront, and the success of cold-start algorithms depends on the number of 

popular products on their recommendation list. Since SVD-based applications thrive 

with low dimensional f values in cold-start user scenarios, they could be preferred in 

the huge recommender systems. Although our algorithm was more successful than 

other algorithms, it was generally close to each other and was successful at low f 

values. Especially in sparse datasets, it gave more successful results with EigenREC 

at close f values to it. 
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Figure 4.4 In the cold-start user scenario, the performance of the algorithms with 

different @N values for all datasets was evaluated with the nDCG metric 
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4.2.3. Cold-start system scenario 

 In the new systems, when users and items have inadequate ratings causing 

the systems have sparse data and lower density, estimating new recommendations 

could be hard for them. We evaluated our algorithm for new systems and created a 

sparsity scenario similar to denotation in EigenREC (Nikolakopoulos et.al., 2017; 

Nikolakopoulos et.al., 2019). We called every raw dataset the ‘final stage’ of a 

system, and randomly selected 66% of the ratings at the final stage, and called these 

sampled ratings as the ‘previous stage’. Later, we randomly sampled 66% of ratings 

at the ‘previous stage’ and called this subset as the ‘initial stage’. In our scenario 

‘initial stage’ is the subset of the other stages and a cold-start system with lower 

ratings. We created the ‘probe set’ out of the ‘initial stage’ and also removed the 

probe set from other stages. To create ‘test set’ out of ‘probe set’, we selected the 

users who had rated less than 100 items and the items that were selected by at most 

100 users in the ‘initial stage’. We aimed to observe users and items with a few 

ratings and to follow their evolutions as the sparsity decreased. We evaluated all 

stages with the same test set.  

Figure 4.5 reports the nDCG results in different sparsity for all benchmark 

methods for six datasets. In general, the early point where SVD-based and Item-

based methods appeared to produce better results on the same test set as the sparsity 

value declined as expected. On the other hand, Popularity and Random algorithms 

continued almost at the same values at all sparsity levels and these results show that 

our scenario is an acceptable evaluation method. As a result, when we performed 

many remarks on the results via Figure 4.5, we found out that the ImposeSVD was 

more rewarding in all datasets and all sparsity levels than other compared algorithms. 

The ImposeSVD outperformed other algorithms in all results except for MovieLens 

10M’s and  R2 – Yahoo! Music’s final stages. After the rewarding results obtained 

in the cold-start scenario, the achievement of the z-scoREC method here was still 

impressive due to its purity and simplicity. We can conclude that the z-scoREC 
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method had better performances than the PureSVD in all experiments except for the 

MovieLens 10M dataset. 

The most important result in Figure 4.5 is the success of the first stage 

values. Our algorithm outperforms all benchmark methods and the differences from 

other algorithms are bigger than in other stages. In the ‘initial stage’, z-scoREC is 

the second after the ImposeSVD in all datasets except for R2 – Yahoo! Music and 

Pinterest Image datasets. The results show that both our algorithms are more 

successful on sparse datasets. 
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Figure 4.5 In the cold-start system's scenario, the performance of the algorithms in 

the @N=10 value for all datasets was evaluated with the nDCG metric 

 

4.2.4. Long-tail items scenario 

Popular items are familiar to users, and thus, recommending these items may 

be boring for users (Anderson, 2006). Therefore, recommending unpopular items 

has always been more attractive. Traditional CF algorithms dealing with relations 
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between popular items or popular users overshadow diverse relationships. 

Considering that the quality of models depends on the diversity of recommendations 

they offer, these CF methods might be unable to generate a diverse range of 

suggestions in the datasets especially when the data is inadequate (Yin et.al., 2006). 

The diversity can be achieved when some unpopular items are recommended to the 

users. Based on these arguments, we also evaluated the reaction of our algorithms 

for long-tail items recommendations. To obtain an experiment environment suitable 

for the long-tail scenario, we adopted the method in (Cremonesi et.al., 2010). As 

observed by the authors in the study (Cremonesi et.al., 2010), the most popular 1.7% 

items represent 33% of the ratings included in the Netflix dataset and they called 

these 1.7% items as short-head items while the remaining items are called long-tail 

items. Following this method (Cremonesi et.al., 2010), we sorted the items in the 

dataset according to their popularity in order to evaluate the existence of long-tail 

items in the recommendation lists. In doing so, we determined the items’ popularity 

by their rating frequency and sorted them in descending order by the number of 

ratings they had. On the sorted item list according to their frequency, from top to 

bottom, we marked the items as ‘short-head’ items until the sum of the item 

frequencies equal to or higher than the 33% of the total ratings and marked the 

remaining as ‘long-tail’ items. In the probe set, we kept ‘long-tail’ items and 

removed the others. We created a ‘test set’ out of the probe set by random selection 

of 100 users who gave at least one full rating to ‘long-tail’ items.  As a result, we 

randomly selected users with unpopular tastes for each repeated holdout evaluation.  

According to the results presented in Figure 4.6, we observed that our 

algorithms outperformed the PureSVD in all datasets in a long-tail scenario. In the 

long-tail scenario, we aimed to evaluate the distribution of unpopular items in the 

recommendation lists, and as expected, the Popular baseline algorithm failed on all 

datasets, validating the training and test sets we created for this scenario. In the long-

tail scenario, SVD-based algorithms achieved success and produced good results at 

high f values. Particularly in BookCrossing, Netflix, and MovieLens datasets, our 
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ImposeSVD algorithm outperformed other algorithms with a high contradict. In 

contrast, nearest-neighbor-based algorithms failed to find long-tail items. Our basic 

z-scoREC outperformed neighbor-based models with high precision and it produced 

nearby results to the SVD-based models.  

Although long-tail item recommendation is a difficult challenge especially 

for SVD-based applications, as shown in (Cremonesi et.al., 2010) PureSVD can be 

successful at high f values. When we analyze the tables in Appendix B.2a and B.2b, 

our algorithm was successful at increasing f values, similar to PureSVD. In most 

datasets, EigenREC and HybridSVD reached their maximums at a lower f value with 

respect to the ImposeSVD, but ImposeSVD showed a significant difference in the 

quality of recommendation list compared to other algorithms despite the 

higher f value. Another interesting observation was that for some datasets, there is 

no need for shrinkage on Gram-matrix in the recommendation of unpopular items, 

and this process would be neglected in this scenario. 
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Figure 4.6 In the long-tail items scenario, the performance of the algorithms with 

different @N values for all datasets was evaluated with the nDCG metric  

 

4.2.5. Effect of the lambda parameter  

 We evaluated our algorithms for lambda (λ) values between [-1,1] ranges 

with 0.05 steps in all experiments to analyze its effect in the Gram-matrix. We chose 

two baseline algorithms the PureSVD and the ItemKNN to compare our algorithms 
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nonparametric form, and the ItemKNN is very similar to our z-scoREC method. We 

analyzed in which ranges of lambda parameters our algorithm outperformed the 

PureSVD and the ItemKNN. The results of the PureSVD and the ItemKNN were 

stable and we took the best results of each algorithm in Fig. 4.7, Fig. 4.8, and Fig. 

4.9. In addition, we compared the z-scoREC algorithm with the ImposeSVD 

algorithm with the same parametric values to see their performance over each other. 

We observed the success of our algorithms at different parameter values for 

the cold-start scenario in Fig. 4.7, for the long-tail item scenario in Fig. 4.8, and the 

cold-start systems in Fig. 4.9. Black lines represent the ImposeSVD algorithm; pink 

lines represent the z-scoREC algorithm. We chose the green dotted lines for the 

PureSVD and the blue dotted lines for the ItemKNN. The black and pink vertical 

dashed lines show the lambda value corresponding to the best HR value of the related 

algorithm. One of the noticeable observations in these results was that in the cold-

start user scenario the best HR value of (λ) for each dataset differed from zero, which 

shows that the shifting was successful for the cold-start scenario. When the lambda 

value was zero, the success of both algorithms dropped dramatically. When 

comparing our algorithms with each other, we first observed that the ImposeSVD 

algorithm outperformed the z-scoREC algorithm in all parameter ranges. Our second 

observation was that both algorithms gave similar responses at the same parameter 

values. In addition, we found out that the best lambda values of our algorithms were 

close to each other in all data sets, and these values were especially small positive 

values, closer to zero in the [-1,1] ranges. In a conclusion, we inferred that the 

shifting process worked since the best HR points in both of our algorithms were 

different from zero. In the z-scoREC lines, λ=0 values showed the result of the Gram-

matrix where we could see that these points were non-shifted values. Success at non-

zero lambda parameters demonstrated the ability of our algorithm to capture new and 

strong relationships in the weight matrix. The ImposeSVD was revealed as the best 

algorithm for the best HR points in all datasets. The z-scoREC algorithm, on the 
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other hand, was more successful than the PureSVD and the ItemKNN in all datasets 

except for the Pinterest Image. 

 

 
Figure 4.7. In a cold-start user scenario the effect of the lambda (λ) parameter is 

evaluated with the HR metric 
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Figure 4.8. In a long-tail items scenario the effect of the lambda (λ) parameter is 

evaluated with the HR metric 
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conclude that the shifting process had little effect on the long-tail item 

recommendations. However, the results indicated that the ImposeSVD was more 

successful in the long-tail items scenario compared to the results in the cold-start 

users’ scenario. Although the developers of the PureSVD alleged that the PureSVD 

gave successful outcomes for the long-tail items at high-rank values, we found out 

that our ImposeSVD algorithm gave more successful results than PureSVD without 

shifting. In addition, the z-scoREC algorithm performed better than PureSVD in all 

datasets except for MovieLens datasets. In all datasets, both of our algorithms 

outperformed the ItemKNN algorithm. We observed successful results compared to 

the other algorithms at close values to zero for λ parameter in the z-scoREC 

algorithm. We can conclude that z-scoREC is successful without shifting in reducing 

the variance in the rating matrix and converging score means to the zero for item 

columns so that popular items reduce the pressure on other items. In this way, 

unknown items can come to the fore. 
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Figure 4.9. In a cold-start system scenario, the effect of the lambda (λ) parameter is 

evaluated with the HR metric 
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recommendation scenarios. These mixed-scenario situations were a challenging task 

because lambda parameters behaved differently in two scenarios for our algorithms. 

However, in this mixed-scenario, similar to the results of the other scenarios, the 

ImposeSVD outperformed the PureSVD and the ItemKNN in all datasets as shown 

in Fig. 4.9. The z-scoREC outperformed the ItemKNN and the PureSVD in all other 

datasets although it was behind the PureSVD on the ML-10M dataset. Fig. 4.8 and 

Fig. 4.9 show similar trends for the datasets. However, lambda values were revealed 

to be significant because the results indicated that the best lambda values were the 

ones slightly greater than zero. 
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5. CONCLUSION 

As is known, cold-start is one of the major problems in recommender 

systems. In the literature, much research has been done on this problem. What makes 

this problem important is that it has a relationship with the solution of many issues 

in Recommender Systems. In particular, the varying screens and richness of the 

interaction environments between users and products (Netflix, Spotify, Youtube, 

Twitch, etc.) have also demonstrated many problems identical to the cold start. 

This thesis proposed to develop models for the solution of cold-start 

problems in various scenarios. Today's modern recommendation systems do not 

work only through one algorithm. Depending on the case, they could change the 

models or integrate different models. You may need to follow either a deterministic 

or heuristic method to establish new links between the user and the products. In this 

thesis, we have done 2 different studies, one deterministic and one heuristic, which 

might be used in different scenarios. 

Firstly, we studied the heuristic method ACO and developed a model that 

gives variable recommendations to users at different times. We introduced a novel 

approach on how to improve item-based models with AcoRec, which is a heuristic 

model, and how to tune hyper-parameters with Ant Colony Optimization. By 

studying parameter optimization in a continuous domain, we have performed on 

expanding profit by exploring personalized parameters. First, we considered how to 

improve a model based on the specification of producing diversified and expanded 

recommendations to the users in their sessions, considering that common 

deterministic systems are no longer enough in offering recommendations for multi-

line interfaces in varied domains. AcoRec remembers the heuristic approach of the 

ACO model, which is a successful optimization algorithm in NP-Hard problems and 

highlights different and neglected item recommendations. 

We carried out the methods of magnifying item similarity models and how 

to support new ties in cases where they are inadequate. In addition, we established a 

model on how Ant Colony Optimization is implemented in recommendation systems 
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over huge graph structures in a low-dimensional manner by considering user-based 

micro dimensions. In this sense, parameter tuning times were minimized in our 

implementation, which is a big issue in ACO algorithms. To intensify these 

improvements, we evaluated our algorithm for the cold-start user problem and its 

effectiveness to recommend unpopular items. 

While carrying out our experiments, we measured the quality of the 

recommendation lists through nDCG and R-Score, and the variety of items in the 

recommendation lists with the help of Coverage metrics. When we investigated the 

results, we noted that our study outperformed similar algorithms known in the 

literature in all datasets and metrics used in this study. As a result, we concluded that 

heuristic methods such as Ant Colony can offer rewarding results by clarifying 

parameter controls. We can suggest such methods can handle a variety of on-site 

domains. 

In the second study, we focused on dimension reduction and enrichment of 

the rating matrix. Firstly, we introduced two novel methods, namely z-scoREC and 

ImposeSVD, which are more effective in cold-start user problems, cold-start system 

recommendations, and long-tail item recommendations than the previously proposed 

ICF, ItemKNN, and SVD-based methods. The results indicated that the ImposeSVD 

method that we presented strengthened the obvious shortcomings of PureSVD by 

keeping its straightforward structure and original purity in terms of processing time 

and computational difficulty. Evaluations displayed that the ImposeSVD model 

outperformed similar models on the common datasets in all experiment scenarios.  

In addition to ImposeSVD methods, the other z-scoREC method we 

presented performed remarkably effectively as a model in item-based 

recommendations with cold-start users. Another significant finding of both studies 

was that new relationships could be discovered between items without the need for 

meta-information for the user and items. With the implementation of the z-scoREC 

method as an item-similarity in the basic item model, we brought prosperous results.  

According to these analyses, the following conclusions are drawn: 
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1. We observed that the problem causing the cold-start issue is the sparsity 

of data and that the ImposeSVD and z-scoREC algorithms, which we 

built on enriching the data matrix with virtual new connections to 

reduce this sparsity, were successful in the experimental results. 

2. We also observed that decreasing the data unavailability virtually is not 

only successful in cold-start users’ scenario as well as it succeeds in 

recommending cold-start systems and long-tail items scenarios. 

3. We tested our studies in different domains (movie, music, social media) 

and got flourishing results. Experiments exhibited that our models 

could be applied to many areas commercially. 

4. In both studies, we only used implicit data and did not need 

demographic, personal, or track data about users, thus bypassing ethical 

concerns. 

5. Despite its simplicity, the z-scoREC algorithm surprised us with its 

success. With its structure suitable for parallelization, it has shown 

promise that it can be successful against state-of-art research in the 

literature in huge data. 

6. The AcoRec study has shown good results on how to add random items 

to recommendations and still improve the quality of the 

recommendation list. AcoRec showed how we can generate rich and 

variational recommendations and improve the quality of these 

recommendations when deterministic recommendation models are 

outdated. 

7. The parameter search in a continuous distribution in the AcoRec 

algorithm can be used for the hyper-parameter tuning algorithms. For 

example, the EASER method, which uses a single parameter, can be 

tested with the model we developed and can offer user-specific lambda 

parameters. 
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In our future studies, we will focus on the enrichment of z-scoREC. It may 

be considered to evaluate the z-scoREC algorithm with giant datasets due to its 

simplicity, speed, and easy implementation. Secondly, the imposed values while 

injecting the original data matrix could be enhanced and optimized. An algorithm 

that detects and eliminates unsuccessful columns in the latent factors could be 

investigated. In AcoRec, different item similarity matrices (Graph-based, 

Regression-based, EASER) could be evaluated as future works. 
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A  PROOF OF LEMMA 1. 

PROOF. Since RTR is the inner product between the same matrix R and also RTR is 

symmetric. 

For i=j, 

- [RTR]ij = is a diagonal element on the intersection of the ith column and jth 

row. 

- [RTR]ij = number of ones in the product of ith column and jth row of R, which 

is equal to the number of ones in the ith column. 

- [RTe]ij = is a diagonal element on the intersection of the ith column and jth 

element of e. 

- [RTe]ij = number of ones in the product of ith column of the R and jth element 

of e, which is equal to the number of ones in the ith column. 

Therefore, the diagonal of the RTR matrix is the vertex degrees of the RT if it’s 

a binary matrix. 

REMARK Since RTR is a co-citation matrix and also RRT is a co-author matrix, and 

RRT is symmetric too. Therefore, the diagonal of the RRT matrix is the vertex degrees 

of the R if it’s a binary matrix hence:   Diag(ReT) = Diag(RRT) 

 

 

  



 

120 

B BEST PARAMETERS AND BEST RESULTS  FOR Z-SCOREC 

AND IMPOSESVD EVALUATIONS FOR ALL DATASETS AND 

SCENARIOS 
In our experimental evaluation, we applied Grid-Search to find the best 

parameter values for each algorithm. We performed Grid-Search for each dataset 

separately. In the below tables, you can find the best parameter values and their 

associated nDCG results for each scenario when N=10. 

 

Table B.1a Results for cold-start user scenario for MovieLens 1M, BookCrossing, and 

Pinterest Image datasets 

  COLD-START USER SCENARIO 

  MovieLens 1M BookCrossing Pinterest Image 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random     0.005     0.003     0.007 
Popular     0.086     0.016     0.016 

ICF 
20   0.070 

22
0   0.030 10   0.066 

ItemKNN 
10
0   0.101 60   0.036 

16
0   0.081 

PureSVD 
8   0.104 

29
5   0.040 93   0.091 

HybridSV
D 10 

0.
5 

0.9
0 0.106 

17
5 

0.
1 

0.7
5 0.043 

13
5 

0.
1 

0.8
5 0.093 

EigenREC 
10  

0.2
0 0.106 

29
5  

0.8
5 0.042 

12
3  

0.5
5 0.094 

z-scoREC 
  

0.6
5 0.115   

0.1
0 0.039   

0.1
5 0.086 

ImposeSV
D 45   

0.3
5 0.117 

17
5   

0.0
5 0.044 

12
5   

0.1
0 0.101 
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Table B.1b Results for cold-start user scenario for R2-Yahoo! Music, MovieLens 10M, 

and Netflix datasets 
  COLD-START USER SCENARIO 

   R2-Yahoo! Music MovieLens 10M Netflix 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random     0.006    0.008     0.005 
Popular     0.008    0.021     0.027 
ICF 60   0.096 70   0.072 30   0.155 

ItemKNN 
19
0   0.109 

20
0   0.101 

18
0   0.189 

PureSVD 
95   0.100 54   0.120 

12
5   0.188 

HybridSV
D 

11
5 

0.9
9 

0.3
5 0.107 63 

0.
1 

0.5
0 0.130 

10
5 

0.
1 

0.3
5 0.206 

EigenREC 
11
5  

0.4
0 0.105 63  

0.5
0 0.128 

13
0  

0.3
0 0.206 

z-scoREC 
  

0.1
5 0.111   

0.1
0 0.127   

0.0
5 0.205 

ImposeSV
D 

15
5   

0.2
0 0.113 

10
5   

0.0
5 0.133 

14
0   

0.0
5 0.217 

 

 

Table B.2a Results for  long-tail items scenario for MovieLens 1M, BookCrossing, and 

Pinterest Image datasets 
  LONG-TAIL ITEMS SCENARIO 

  MovieLens 1M BookCrossing Pinterest Image 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random     0.007    0.004    0.005 
Popular     0.000    0.000    0.000 
ICF 10   0.006 10   0.054 10   0.107 
ItemKNN 20   0.041 90   0.054 60   0.128 

PureSVD 
20
0   0.217 

57
5   0.052 

62
5   0.124 

HybridSV
D 

18
0 

0.
1 

0.9
5 0.221 

30
0 

0.
1 0.05 0.061 

25
0 

0.9
9 

0.0
0 0.135 

EigenREC 
22
5  

1.3
0 0.231 

22
5  

-
0.25 0.061 

35
0  

0.0
0 0.135 

z-scoREC 
  

0.0
5 0.175   0.00 0.061   

0.0
0 0.149 

ImposeSV
D 

22
0   

0.0
0 0.243 

72
5   0.00 0.065 

70
0   

0.0
0 0.150 
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Table B.2b Results for long-tail items scenario for R2-Yahoo! Music, MovieLens 10M, 

and Netflix datasets 
  LONG-TAIL ITEMS SCENARIO 

   R2-Yahoo! Music MovieLens 10M Netflix 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random 
   

0.00
3     

0.00
4     

0.00
5 

Popular 
   

0.00
0     

0.00
0     

0.00
0 

ICF 
10   

0.13
4 10   

0.09
7 10   

0.24
3 

ItemKNN 
90   

0.16
1 50   

0.15
9 210   

0.26
4 

PureSVD 
120
0   

0.17
7 

50
0   

0.24
3 825   

0.28
4 

HybridSV
D 275 

0.
1 

0.0
0 

0.20
0 

30
0 

0.
1 0.35 

0.25
6 400 

0.
1 0.50 

0.30
1 

EigenREC 
275  

0.0
0 

0.20
0 

30
0  0.35 

0.25
6 425  0.15 

0.30
3 

z-scoREC 
  

0.0
0 

0.19
5   0.05 

0.23
6   0.05 

0.29
9 

ImposeSV
D 

105
0   

0.0
0 

0.20
2 

65
0   

-
0.05 

0.25
9 

135
0   

-
0.05 

0.31
3 

 

 

Table B.3a Results for sparsity final stage scenario for MovieLens 1M, BookCrossing, 

and Pinterest Image datasets 
  SPARSITY %100 

  MovieLens 1M BookCrossing Pinterest Image 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random 
    

0.00
5    

0.00
5    

0.00
4 

Popular 
    

0.00
2    

0.03
1    

0.01
4 

ICF 
10   

0.00
2 10   

0.05
7 10   

0.10
4 

ItemKNN 
20   

0.00
8 

17
0   

0.08
4 

23
0   

0.13
9 

PureSVD 
600   

0.06
5 40   

0.06
8 

27
5   

0.13
9 

HybridSV
D 90 

0.
5 0.05 

0.14
6 

10
0 

0.
1 

0.5
5 

0.07
8 70 

0.9
9 

0.4
5 

0.14
8 

EigenREC 
105
0  1.35 

0.14
1 

12
5  

0.4
5 

0.08
0 70  

0.3
5 

0.14
7 

z-scoREC 
  

-
0.01 

0.17
1   

0.2
0 

0.08
6   

0.0
6 

0.14
5 

ImposeSV
D 

105
0   

-
0.01 

0.17
4 

15
0   

0.0
5 

0.09
0 

15
0   

0.0
3 

0.15
2 
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Table B.3b Results for sparsity final stage scenario for R2-Yahoo! Music, MovieLens 

10M, and Netflix datasets 
  SPARSITY %100 

   R2-Yahoo! Music MovieLens 10M Netflix 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random    0.005    0.006    0.006 
Popular    0.009    0.023    0.029 
ICF 10   0.119 10   0.111 10   0.264 

ItemKNN 
19
0   0.178 

25
0   0.194 

30
0   0.311 

PureSVD 
37
5   0.174 

12
5   0.247 

27
5   0.308 

HybridSV
D 

40
0 

0.
1 

0.2
5 0.193 

20
0 

0.
1 

0.5
5 0.257 

22
5 

0.
1 

0.4
0 0.329 

EigenREC 
40
0  

0.2
0 0.194 

22
5  

0.3
5 0.261 

52
5  

0.1
5 0.338 

z-scoREC 
  

0.0
3 0.184   

0.0
4 0.229   

0.0
2 0.337 

ImposeSV
D 

37
5   

0.0
6 0.193 

17
5   

0.0
5 0.252 

67
5   

0.0
4 0.347 

 

Table B.4a Results for sparsity second stage scenario for MovieLens 1M, 

BookCrossing, and Pinterest Image datasets 
  SPARSITY %66 

  MovieLens 1M BookCrossing Pinterest Image 

  f/k α d/λ nDC
G 

f/
k 

α d/λ nDC
G 

f/k α d/λ nDC
G 

Random     0.006    0.007    0.003 

Popular     0.001    0.030    0.015 

ICF 10   0.004 1
0 

  0.032 10   0.085 

ItemKNN 40   0.004 7
0 

  0.047 20
0 

  0.112 

PureSVD 95
0 

  0.039 7
0 

  0.052 12
5 

  0.115 

HybridSV
D 

20
0 

0.
5 

0.00 0.081 1
0 

0.
1 

0.8
5 

0.053 90 0.
1 

0.5
5 

0.122 

EigenREC 90
0 

 0.95 0.078 6
0 

 0.6
5 

0.052 90  0.5
5 

0.120 

z-scoREC   -
0.01 

0.111   0.0
8 

0.066   0.0
7 

0.121 

ImposeSV
D 

95
0 

  0.00 0.119 6
0 

  0.0
7 

0.066 15
0 

  0.2
0 

0.127 
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Table B.4b Results for sparsity second stage scenario for R2-Yahoo! Music, 

MovieLens 10M, and Netflix datasets 
  SPARSITY %66 

   R2-Yahoo! Music MovieLens 10M Netflix 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random    0.005    0.006    0.006 
Popular    0.009    0.022    0.027 
ICF 10   0.104 10   0.086 10   0.174 

ItemKNN 
90   0.140 

20
0   0.143 

18
0   0.219 

PureSVD 
52
5   0.124 

12
5   0.170 

22
5   0.220 

HybridSV
D 

27
5 

0.
1 

0.5
5 0.139 

12
5 

0.
1 

0.6
0 0.179 

22
5 

0.
5 

0.5
5 0.236 

EigenREC 
27
5  

0.4
5 0.140 

12
5  

0.5
0 0.180 

22
5  

0.5
5 0.238 

z-scoREC 
  

0.0
5 0.144   

0.0
4 0.171   

0.0
6 0.245 

ImposeSV
D 

65
0   

0.0
3 0.148 

17
5   

0.0
3 0.184 

35
0   

0.0
4 0.253 

 

Table B.5a Results for sparsity initial stage scenario for MovieLens 1M, BookCrossing, 

and Pinterest Image datasets 
  SPARSITY %33 

  MovieLens 1M BookCrossing Pinterest Image 

  f/k α d/λ 

nDC

G f/k α d/λ 

nDC

G f/k α d/λ 

nDC

G 

Random      0.006     0.005     0.004 

Popular     0.001    0.029    0.014 

ICF 10   0.007 10   0.018 30   0.063 

ItemKNN 
10   0.005 

22

0   0.023 

25

0   0.083 

PureSVD 
110

0   0.026 

12

5   0.039 

10

0   0.093 

HybridSV

D 800 

0.9

9 0.60 0.049 10 

0.

1 

0.7

5 0.040 

10

0 

0.

1 

0.9

0 0.096 

EigenREC 
115

0  0.95 0.047 10  

0.7

5 0.039 

10

0  

0.9

0 0.095 

z-scoREC 
  

-

0.01 0.073   

0.0

8 0.040   

0.0

9 0.093 

ImposeSV

D 

120

0   

-

0.01 0.082 75   

0.0

9 0.047 90   

0.1

5 0.102 
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Table B.5b Results for sparsity initial stage scenario for R2-Yahoo! Music, MovieLens 

10M, and Netflix datasets 
  SPARSITY %33 

   R2-Yahoo! Music MovieLens 10M Netflix 

  f/k α d/λ 
nDC
G f/k α d/λ 

nDC
G f/k α d/λ 

nDC
G 

Random     0.005     0.006     0.006 
Popular    0.009    0.020    0.025 
ICF 10   0.073 10   0.064 10   0.105 

ItemKNN 
18
0   0.095 

19
0   0.103 

13
0   0.143 

PureSVD 
10
0   0.086 60   0.120 80   0.147 

HybridSV
D 

12
5 

0.
1 

0.4
0 0.103 40 

0.9
9 

0.7
0 0.127 

17
5 

0.
1 

0.5
5 0.156 

EigenREC 
12
5  

0.2
5 0.102 70  

0.4
5 0.126 

17
5  

0.5
5 0.157 

z-scoREC 
  

0.0
9 0.102   

0.0
6 0.129   

0.0
5 0.170 

ImposeSV
D 

22
5   

0.0
2 0.111 

15
0   

0.1
5 0.137 

22
5   

0.0
5 0.183 
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C.  ACO BASED RECOMMENDER SYSTEMS 
Table C.1. Studies About Ant-Colony Based Recommender System  

Research Trust based recommender system using ant colony for trust 
computation. (2012) 

Abbreviation TARS 

Score Ranking Based; TOP_N@(1,2,5) 

Metrics Recall, Precision, F1-Score 

Method Merged Trust Based User Confidences and Pearson as trust values 
between users. In ACO sense, nodes denoted users and edges are trust 
values. Paper finds best neighbors for a user in ACO, and predict new 
rating scores from these neighbors using Resnick's (1994) rating prediction 
formula 

Scenario Cold-start, Sparsity 

Benchmarks UCF (Pearson, k=100)  (Resnick, 1994) 

Datasets Jester, MovieLens 100K 

Evaluation  Precision is increased by approximately 8% and 3% respectively  using 
TARS at time t=0 and approximately by 12% and 8% 

References (Bedi and Sharma, 2012) 

 
Table C.2. Studies About Ant-Colony Based Recommender System 

Research A semantic-enhanced trust-based recommender system using ant 
colony optimization. (2017) 

Abbreviation STARS 

Score Ranking Based; TOP_N@(10) 

Metrics MAE (for Parameter Tuning), Recall, ARHR 

Method Semantically Clustering Items, Trust Based User Similarity Merge (MSD-
Jaccard, Pearson), In ACO sense, nodes denoted users and edges are 
trust values. Paper finds best neighbors for a user in ACO, and predict new 
rating scores from these neighbors using Resnick's (1994) rating prediction 
formula. 

Scenario Cold-start, General Recommends, Sparsity, MMIC problem 

Benchmarks UCF (Resnick,1994), ICF (Sarwar et.al., 2001), TARS (Bedi and Sharma, 
2012), TSF (Shambour & Lu, 2012) 

Datasets MovieLens 100K (ML-100K), MovieLens 1M (ML-1M) 

Evaluation   Against to TARS  

Dataset Scenario Recall ARHR 

ML-100K General 9.33% 14.63% 

ML-1M General 14.24% 12.10% 

ML-100K) Cold-start User 19.30% 18.66% 

ML-1M Cold-start User 47.08% 55.43% 

ML-100K MMIC 15.01% 18.98% 

ML-1M MMIC 13.18% 14.89% 
 

References (Gohari et.al., 2017) 
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Table C.3. Studies About Ant-Colony Based Recommender System 
Research TCFACO: Trust-aware collaborative filtering method based on ant 

colony optimization (2019) 

Abbreviation TCFACO 

Score Rating Prediction 

Metrics MAE, RMSE, Coverage 

Method Trust Based UCF merged with user sim(Tau* and Pearson) 

Scenario Cold-start, Heavy users, Opinion users, Long-tail items, 
Contra(mean(ratings)<1.5), General 

Benchmarks ItemAverages, UserAverages, TARS, TrustSVD, TrustMF, SocialMF, 
SVD++ 

Datasets FilmTrust, Epinions, Ciao 

Evaluation   Against to TARS  

Dataset Scenario MAE 

Epinions Cold-start user 0.837/0.853 

Ciao Cold-start user 0.723/0.701 
 

References (Parvin et.al., 2019) 

 
Table C.4 Studies About Ant-Colony Based Recommender System 

Research Trust-based ant recommender (T-BAR) (2012) 

Abbreviation T-BAR 

Score Rating Prediction 

Metrics MAE, Coverage 

Method Trust Based UCF 

Scenario Cold-start, Heavy users 

Benchmarks UCF (Pearson) (Resnick, 1994), MT (Mole Trust) (Massa & Avesani, 2009) 

Datasets Epinions 

Evaluation  
 Against to Mole Trust  

Dataset MAE Coverage 

T-Bar 1.459 93.% 

Mole Trust 0.673 11% 

DT-Bar 0.714 55% 
 

References (Bellaachia & Alathel, 2012) 
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Table C.5 Studies About Ant-Colony Based Recommender System 
Research DT-BAR: a dynamic ANT recommender to balance the overall 

prediction accuracy for all users (2014) 

Abbreviation DT-BAR 

Score Rating Prediction 

Metrics MAE, Coverage 

Method Trust-Based UCF 

Scenario Cold-start, Heavy users 

Benchmarks T-BAR (Bellaachia & Alathel, 2012), MT (Mole Trust) (Massa & Avesani, 
2009) 

Datasets Epinions 

Evaluation  
 Against to Mole Trust  

Dataset MAE Coverage 

T-BAR 1.459 93.% 

Mole Trust 0.673 11% 

DT-BAR 0.714 55% 
 

References (Bellaachia & Alathel, 2014) 

 
Table C.6 Studies About Ant-Colony Based Recommender System 

Research Student courses recommendation using ant colony optimization. 

Score Rating Prediction 

Metrics MAE, NMSE and other error predictions 

Method Probability based similarity 

Scenario General 

Benchmarks UCF (Pearson) (Resnick, 1994), User-Based CBF 

Datasets Real data from the University of Information System EdukacjaCL 

References (Sobecki & Tomczak, 2010) 

 
Table C.7 Studies About Ant-Colony Based Recommender System 

Research Applying ant-colony concepts to trust-based recommender systems. 
(2016) 

Score Rating Prediction 

Metrics MAE, Coverage 

Method User Similarity (User factors from SVD-U and trustworthiness of among 
them) 

Scenario General 

Benchmarks ALT-BAR 

Datasets Epinions 

Evaluation  Coverage percentage for ALT-BAR %28.8 and for their method %70.8 

References (Tengkiattrakul et.al., 2016) 
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Table C.8 Studies About Ant-Colony Based Recommender System 
Research Integrating the importance levels of friends into trust-based ant-

colony recommender systems. (2018) 

Score Rating Prediction 

Metrics MAE, Coverage 

Method User Similarity (User factors from SVD-U and trustworthiness of among 
them) 

Scenario High Accuracy, Coverage 

Benchmarks ALT-BAR 

Datasets Epinions 

Evaluation  Coverage for ALT-BAR, %28.8, for their method %70.8 

References (Tengkiattrakul et.al., 2018) 

 
Table C.9 Studies About Ant-Colony Based Recommender System 

Research Improving the recommendation accuracy for cold-start users in trust-
based recommender systems. (2016) 

Abbreviation ALT-BAR 

Score Rating Prediction 

Metrics MAE, Coverage 

Method Averaged Localized Trust-Based Ant Recommender 

Scenario Cold-start, Heavy-user 

Benchmarks UCF (Pearson) (Resnick, 1994), MT (Mole Trust) (Massa & Avesani, 
2009), T-BAR (Bellaachia & Alathel, 2012) 

Datasets Epinions 

Evaluation  Cold Start MAE; ALT-BAR: 0.502, T-BAR:1.459, MT:0.674, CF:1.094 
Coverage; ALT-BAR: 56%, T-BAR: 97%, MT: 18%, CF: 3% 

References (Bellaachia & Alathel, 2016) 

 
Table C.10 Studies About Ant-Colony Based Recommender System 

Research 
Collaborating trust and item-prediction with ant colony for 
recommendation (2014) 

Score TOP_N@(10) 

Metrics Recall, Precision, F1-Score 

Method Similar to TARS, only item deviation distance products in prediction formula. 

Scenario General, Shilling Attack, Cold-start Users, Sparse Matrix, Grey Sheep Users 

Benchmarks UCF (Pearson) (Resnick, 1994) 

Datasets MovieLens 100K  

Evaluation  
General scenario using Recall metric; 
UCF: 32.11% 
Original Paper: 33.14% 

References (Kaleroun & Batra, 2014) 
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Table C.11 Studies About Ant-Colony Based Recommender System 

Research 
Ant Collaborative Filtering Addressing Sparsity and Temporal Effects 
(2020) 

Abbreviation ACF 

Score Rating Based and Ranking Based 

Metrics 
Rating Based; RMSE, Evaluation Time 
Ranking Based; Precision, Recall, Accuracy 

Method 
Compute User Pheromones, Item Pheromones, 
Then Compute Predictions for new Rating and Rankings 

Scenario Sparsity, Over Specification 

Benchmarks 
Rating Based; UCF, ICF, NMF, PLSA, RSM 
Ranking Based; UCF, ICF, NBI, RSM, BM25-Item 

Datasets Douban, LastFM 

Evaluation  

Precision Metric Results 

Dataset Douban LastFM 

UCF 0.045 0.045 

ICF 0.006 0.040 

ACF 0.062 0.076 
 

References (Liao et.al., 2020a) 

 
Table C.12 Studies About Ant-Colony Based Recommender System 

Research 
Improving ant collaborative filtering on sparsity via dimension 
reduction. (2020) 

Abbreviation IACF 

Score Rating Based and Ranking Based 

Metrics 
Rating Based; RMSE, Evaluation Time 
Ranking Based; Precision, Recall, Accuracy 

Method Upgrade to ACF, Adding Clusters to ACF 

Scenario Sparsity 

Benchmarks 
Rating Based; UCF, ICF, NMF, PLSA, RSM, ACF 
Ranking Based; UCF, ICF, NBI, RSM, BM25-Item, ACF 

Datasets ML 10M, ML 1M, Douban, NetEase 

Evaluation  

Precision Metric Results 

Dataset Douban NetEase 

ACF 0.057 0.076 

IACF 0.070 0.081 
 

References (Liao et.al., 2020b) 
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Table C.13 Studies About Ant-Colony Based Recommender System 
Research Fars: fuzzy ant-based recommender system for web users. (2011) 

Abbreviation FARS 

Score Rating Based 

Metrics Precision, Recall 

Method Jaccard Similarity between users and Fuzzifying user-item matrix 

Scenario URL Recommendation 

Benchmarks ACO (Ant Based) 

Datasets Web Logs 

Evaluation  

 Recall 

ACO 0.030 

Fars 0.033 
 

References (Nadi et.al., 2011) 

 


