

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

PhD THESIS

Hakan YILMAZER

DEVELOPMENT OF RECOMMENDER SYSTEM

ALGORITHMS FOR COLD-START PROBLEM

DEPARTMENT OF COMPUTER ENGINEERING

ADANA, 2022

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

DEVELOPMENT OF RECOMMENDER SYSTEM ALGORITHMS FOR

COLD-START PROBLEM

HAKAN YILMAZER

PhD THESIS

DEPARTMENT OF COMPUTER ENGINEERING

We certify that the thesis titled above was reviewed and approved for the award of

the degree of the Philosophy of Doctorate by the board of jury on 19/07/2022.

…………………................ ………………………... ………………….………........

Prof. Dr. Selma Ayşe ÖZEL Prof. Dr. Umut ORHAN Asst.Prof. Dr. Alper Kamil DEMİR

SUPERVISOR MEMBER MEMBER

………………………… ……………………….

Assoc.Prof. Dr. Mehmet Uğraş CUMA Assoc.Prof. Dr. İrem ERSÖZ KAYA

MEMBER MEMBER

PhD Thesis is written at the Department of Computer Engineering of Institute of

Natural and Applied Sciences of Çukurova University

Registration Number:

Prof. Dr. Sadık DİNÇER

Director

Institute of Natural and Applied Sciences

Note: The usage of the presented specific declarations, tables, figures, and

photographs either in this thesis or in any other reference without citation is

subject to “The law of Arts and Intellectual Products” number of 5846 of

Turkish Republic.

I

ABSTRACT

PhD THESIS

DEVELOPMENT OF RECOMMENDER SYSTEM ALGORITHMS FOR

COLD-START PROBLEM

Hakan YILMAZER

ÇUKUROVA UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

Supervisor : Prof. Dr. Selma Ayşe ÖZEL

 Year: 2022, Pages: 131

Jury: : Prof. Dr. Selma Ayşe ÖZEL

 : Prof. Dr. Umut ORHAN

 : Asst. Prof. Dr. Alper Kamil DEMİR

 : Assoc. Prof. Dr. Mehmet Uğraş CUMA

 : Assoc. Prof. Dr. İrem ERSÖZ KAYA

Cold-start problems are one of the most important challenges in recommendation

systems. In this thesis, we proposed models to develop solutions for the cold-start problem

from two different perspectives. We aimed for a deterministic and a heuristic study that can

be used in different scenarios. In the first perspective, we introduced a new heuristic

framework that optimizes item-based similarity models to provide top-N recommendation

lists using Continuous Ant Colony Optimization with a non-deterministic approach. Thanks

to its heuristic structure, we aimed to create specific recommendation lists for users and

change them according to each session, while at the same time aiming to balance the

relevance of the user and the item variety in the recommendation lists. In the second

perspective, we introduced two new Collaborative Filtering techniques deterministically. In

the first model, we developed an asymmetric similarity matrix among the items based on the

z-score normalization of the Gram-matrix we obtained using the implicit data, and in the

second model, we aimed to reduce the sparsity with the item predictions with the assist our

novel item similarity matrix, thus enabling more accurate decomposition of the latent factors

in the user-item matrix we provided. We evaluated all of our methods on well-known datasets

and observed that our methods outperform similar recommendation models in a variety of

scenarios, including cold-start users, cold-start systems, and providing of unpopular product

recommendations.

Keywords: Recommender Systems, Collaborative Filtering, Cold Start, Ant Colony

Optimization, Singular Value Decomposition, PureSVD, z-score, Item Based

Models, top-N Recommendation

II

ÖZ

DOKTORA TEZİ

ÖNERİ SİSTEMLERİNDE SOĞUK-BAŞLANGIÇ PROBLEMİNE

YÖNELİK ALGORİTMA GELİŞTİRİMİ

Hakan YILMAZER

ÇUKUROVA ÜNİVERSİTESİ

FEN BİLİMLERİ ENSTİTÜSÜ

BİLGİSAYAR MÜHENDİSLİĞİ ANABİLİM DALI

Danışman : Prof. Dr. Selma Ayşe ÖZEL

 Yıl: 2022, Sayfa: 131

Jüri: : Prof. Dr. Selma Ayşe ÖZEL

 : Prof. Dr. Umut ORHAN

 : Dr. Öğr. Üye. Alper Kamil DEMİR

: Doç. Dr. Mehmet Uğraş CUMA

 Doç. Dr. İrem ERSÖZ KAYA

Soğuk-başlangıç problemleri, öneri sistemlerindeki en önemli zorluklardan birisidir.

Bu tez çalışmasında, soğuk-başlangıç problemine 2 farklı yaklaşım ile çözümler geliştirmeyi

amaçladık. Farklı senaryolarda kullanılabilecek bir deterministik ve bir sezgisel çalışma

yaptık. İlk perspektifte, deterministtik yaklaşımla, Sürekli Karınca Kolonisi Optimizasyonu

kullanarak ilk-N öneri listeleri sunmak için ürün tabanlı benzerlik modellerini optimize eden

yeni sezgisel bir çatı geliştirdik. Sezgisel yapısı sayesinde, kullanıcılar için kendine has ve

her oturuma göre değişen öneri listeleri üretirken aynı zamanda kullanıcının alakası ile

listelerdeki ürün çeşitliliği arasında denge kurmayı amaçladık. İkinci perspektifte,

deterministik olarak iki yeni işbirlikçi filtreleme tekniğini tanıttık. İlk modelde, örtük verileri

kullanarak elde ettiğimiz gram matrisin z-skor normalizasyonuna dayanan ürünler arasında

özgün asimetrik bir benzerlik matrisi hesapladık ve ikinci modelde, geliştirdiğimiz ürün

benzerlik matrisi ile oluşturduğumuz ürün tahminleri ile seyrekliği azaltmayı amaçladık

böylece kullanıcı-ürün matrisinde gizli faktörlerinin daha başarılı ayrışmasını sağladık. Tüm

yöntemlerimizi bilinen veri setleri üzerinde test ettik ve yöntemlerimizin, soğuk-başlangıç

kullanıcılarda, soğuk-başlangıç sistemlerde ve popüler olmayan ürün önerilerinin sağlanması

da dahil olmak üzere çeşitli senaryolarda benzer tavsiye modellerinden daha iyi performans

gösterdiğini gözlemledik.

Anahtar Kelimeler: Öneri Sistemleri, İşbirlikçi Filtreleme, Soğuk-Başlangıç, Karınca

Kolonisi Optimizasyonu, Tekil Değer Ayrışımı, PureSVD, z-Skor,

Ürün Tabanlı Modeller, ilk-N Tavsiye

III

EXTENDED ABSTRACT

As is known, cold-start is one of the major problems in recommender

systems. In the literature, considerable research has been done on this problem. What

makes this problem important is that it has a relationship with the solution of many

issues in Recommender Systems. In particular, the varying screens and richness of

the interaction environments between users and products (Netflix, Spotify, Youtube,

Twitch, etc.) have also demonstrated many problems identical to the cold start.

This thesis proposed to develop models for the solution of cold-start

problems in various scenarios. Today's modern recommendation systems do not

work only through one algorithm. Depending on the case, they could change the

models or integrate different models. You may need to follow either a deterministic

or heuristic method to establish new links between the user and the products. In this

thesis, we have done 2 different studies, one deterministic and one heuristic, which

might be used in different scenarios.

In the first perspective, we introduce a new framework that optimizes item-

based similarity models to offer top-N recommendation lists by Continuous Ant

Colony Optimization, which is a heuristic algorithm. With our new user-specific

item-based model, pheromone values are denoted as posterior probabilities of users

which are constructed from previous clicks. Our novel model regularizes Lp norms

of the clicked items in the selected input similarity model by amortizing them binary

cross-entropy and giving stochastic importance to items specific to the user graph

which are maximized with hyper-parameter search via in continuous domain.

When comparing the first study with the state-of-art methods in different

evaluation scenarios using well-known evaluation metrics and popular datasets

(MovieLens, Yahoo, Pinterest), we observed our algorithm offers diverse but

relevant and more successful recommendations to the users. The model, which we

call AcoRec, provides the opportunity to work with low-dimensional data compared

to traditional Ant Colony Optimization models. Thanks to its random heuristic

IV

structure, the most important advantage of our method is its ability to balance high

coverage and high recall while producing diverse and session-variate

recommendation lists for the users.

In the second perspective, we introduced two novel collaborative filtering

techniques for recommendation systems in cases of various cold-start situations and

incomplete datasets. The first model establishes an asymmetric weight matrix

between items without using item meta-data and eradicates the disadvantages of

neighborhood approaches by automatic determination of threshold values. Our first

model, z-scoREC, is also regarded as a pure deep-learning model because it performs

like a vanilla auto-encoder in transforming column vectors with Z-Score

normalization similar to batch normalization. With the second model, ImposeSVD,

we aimed to enhance the shortcomings of the PureSVD in cases of cold-start and

incomplete data by preserving its straightforward implementation and non-

parametric form. The ImposeSVD model relies on the z-scoREC and produces

synthetic new predictions for the users by decomposing the latent factors from the

imposed matrix.

We evaluated our models on the well-known datasets and found out that our

method was outperforming similar approaches in the specific scenarios including

recommendations for cold-start users, strength in cold-start systems, and

diversification of long-tail item recommendations in lists. Our z-scoREC model also

outperformed familiar neighbor-based approaches when operated as a recommender

system and gave a closer appearance to the decomposition methods despite its simple

and rigid cost framework.

V

GENİŞLETİLMİŞ ÖZET

Bilindiği gibi, soğuk-başlangıç, öneri sistemlerindeki en büyük sorunlardan

biridir. Literatürde bu problem üzerine pek çok araştırma yapılmıştır. Bu sorunu

önemli kılan, Öneri Sistemlerinde birçok sorunun çözümü ile ilişkisi olmasıdır.

Özellikle kullanıcılar ve ürünler arasındaki etkileşim ortamlarının (Netflix, Spotify,

Youtube, Twitch vb.) değişen ekranları ve zenginliği de soğuk başlatmaya benzer

birçok sorunu ortaya çıkarmıştır.

Bu tez çalışmasında, farklı senaryolarda soğuk-başlangıç problemlerinin

çözümü için modeller geliştirildi. Günümüzün modern öneri sistemleri sadece tek

bir algoritma ile çalışmamaktadır. Duruma göre modelleri değiştirebilir veya farklı

modelleri entegre edebilirler. Kullanıcı ve ürünler arasında yeni bağlantılar kurmak

için deterministik veya sezgisel bir yöntem izlemeniz gerekebilir. Bu tezde, farklı

senaryolarda kullanılabilecek bir deterministik ve bir sezgisel olmak üzere 2 farklı

çalışma yaptık.

İlk yaklaşımda, sezgisel bir algoritma olan Sürekli Karınca Kolonisi

Optimizasyonu tarafından ilk N öneri listeleri sunmak için öğe tabanlı benzerlik

modellerini optimize eden yeni bir çerçeve sunuyoruz. Yeni kullanıcıya özel öğe

tabanlı modelimiz ile feromon değerleri, kullanıcıların önceki tıklamalardan

oluşturulan sonsal olasılıkları olarak ifade edilmektedir. Yeni modelimiz, seçilen

girdi benzerlik modelindeki tıklanan öğelerin ikili çapraz entropisini amorti ederek

ve sürekli etki alanında hiper parametre araması ile maksimize edilen kullanıcı

grafiğine özgü öğelere stokastik önem vererek Lp normlarını düzenler.

İlk çalışmayı, iyi bilinen değerlendirme metrikleri ve popüler veri kümeleri

(MovieLens, Yahoo, Pinterest) kullanan farklı değerlendirme senaryolarında en

gelişmiş yöntemlerle karşılaştırırken, algoritmamızın kullanıcılara çeşitli ancak ilgili

ve daha başarılı öneriler sunduğunu gözlemledik. AcoRec adını verdiğimiz model,

geleneksel Karınca Kolonisi Optimizasyon modellerine kıyasla düşük boyutlu

verilerle çalışma imkânı sağlıyor. Rastgele sezgisel yapısı sayesinde, yöntemimizin

VI

en önemli avantajı, kullanıcılar için çeşitli ve oturum değişkenli öneri listeleri

üretirken yüksek kapsam ve yüksek geri çağırmayı dengeleyebilmesidir.

İkinci perspektifte, çeşitli soğuk-başlangıç durumları ve eksik veri kümeleri

durumunda öneri sistemleri için iki yeni ortak filtreleme tekniği sunduk. Birinci

model, madde meta verilerini kullanmadan maddeler arasında asimetrik bir ağırlık

matrisi oluşturmakta ve eşik değerlerinin otomatik olarak belirlenmesi ile komşuluk

yaklaşımlarının dezavantajlarını ortadan kaldırmaktadır. İlk modelimiz, z-scoREC,

aynı zamanda, toplu normalleştirmeye benzer z-skor normalizasyonu ile sütun

vektörlerini dönüştürmede bir vanilya otomatik kodlayıcı gibi çalıştığından, saf bir

derin öğrenme modeli olarak kabul edilir. İkinci model olan ImposeSVD ile, basit

uygulamasını ve parametrik olmayan formunu koruyarak, soğuk başlatma ve eksik

veri durumlarında PureSVD'nin eksikliklerini iyileştirmeyi amaçladık. ImposeSVD

modeli, z-scoREC'e dayanır, uygulanan matristen gizli faktörleri ayrıştırarak

kullanıcılar için sentetik yeni tahminler üretir. Modellerimizi iyi bilinen veri

kümeleri üzerinde değerlendirdik ve yöntemimizin, soğuk başlatma kullanıcıları için

öneriler, soğuk başlatma sistemlerinde güç ve listelerdeki uzun kuyruklu öğe

önerilerinin çeşitlendirilmesi dahil olmak üzere belirli senaryolarda benzer

yaklaşımlardan daha iyi performans gösterdiğini gördük. z-scoREC modelimiz

ayrıca bir öneri sistemi olarak çalıştırıldığında tanıdık komşu tabanlı yaklaşımlardan

daha iyi performans gösterdi ve basit ve katı maliyet çerçevesine rağmen ayrıştırma

yöntemlerine daha yakın bir görünüm verdi.

VII

ACKNOWLEDGEMENTS

I am grateful to many people for the cooperation, help, and contributions

they gave me while preparing this thesis.

First of all, I would like to express my sincere thanks to my supervisor, Prof.

Dr. Selma Ayşe ÖZEL, for her support, guidance, and patience throughout my thesis

and research. For me, she is an exemplary person and a scientist to be inspired.

I would like to thank my thesis committee members, Prof. Dr. Umut

ORHAN, Asst. Prof. Dr. Alper Kamil DEMİR, Assoc. Prof. Dr. İrem ERSÖZ

KAYA, and Assoc. Prof. Dr. Mehmet Uğraş CUMA for their contributions and

suggestions.

I would like to thank precious people, Prof. Dr. Sera Yeşim AKSAN, Prof.

Dr. Mustafa AKSAN, and Asst. Prof. Dr. Umut Ufuk DEMİRHAN who helped me

get used to the scholarly knowledge as a result of our research under their guidance

as a part of the Turkish National Corpus (TNC) team.

I would like to thank to my dear friends Özgül Berber YAĞDIRAN, Uğur

YAĞDIRAN, Asst. Prof. Dr. Jale BEKTAŞ, and my colleague Yasin BEKTAŞ

whose support I have always felt during my Ph.D.

I would like to express my heartfelt thanks to my mother Şenel YILMAZER,

who always wanted me to be a 'Doctor', for her eternal love and support. I would

also like to express my heartfelt respect and thanks to my father Yusuf YILMAZER

who, even at the age of 43, always saw me as a 10-year-old pupil and always asked

when my Ph.D. would be finished. The sacrifices he made for my education are

special and they guide me in my daughter's education life today.

I would also like to thank my brothers and sister, father-in-law, and mother-

in-law.

I would like to thank my sweet daughter Ekin YILMAZER for her great

patience and love. During my thesis, she always understood the times that we could

not be together, and she became my biggest source of motivation. She was a baby

VIII

when I started my Ph.D. and she turned out to be a lady who combed my hair and

encouraged me on the day of my defense.

Last but by no means least, I would like to express my deepest love to my

dear wife Dr. Meryem ÖZDEMİR YILMAZER. Her presence always guided and

empowered me during my thesis. She was my source of motivation even when the

times I was most depressed. She was always patient on this long road. She also

contributed a lot with her knowledge and experience in every stage of my Ph.D.

studies.

IX

TABLE OF CONTENTS PAGE

ABSTRACT ... I

ÖZ .. II

EXTENDED ABSTRACT ... III

GENİŞLETİLMİŞ ÖZET .. V

ACKNOWLEDGEMENTS .. VII

TABLE OF CONTENTS .. IX

LIST OF TABLES ... XIII

LIST OF FIGURES .. XV

ABBREVIATIONS .. XVII

1. INTRODUCTION .. 1

1.1. An Overview of the Recommender Systems and Taxonomy 1

1.1.1. Content-Based Filtering (CBF) ... 4

1.1.2. Demographic-Based Filtering (Knowledge-Based Filtering) 4

1.1.3. Collaborative Filtering (CF).. 5

1.1.4. Hybrid Filtering .. 6

1.2. Limitations of Recommender Systems .. 6

1.2.1. Data Sparsity ... 6

1.2.2. Scalability ... 7

1.2.3. Cold-start... 7

1.2.4. Novelty-Diversity ... 8

1.2.5. Evaluation ... 8

1.2.6. Real-time recommendations ... 8

1.2.7. Over-Specialization ... 9

1.2.8. Ethic Problems .. 9

1.3. Relation among other challenges and cold-start .. 10

1.4. Purpose of thesis .. 12

X

1.5. Outline of thesis ... 14

2. RELATED WORKS ... 15

2.1. Evolution .. 15

2.2. Cold-Start Studies in Recommender Systems ... 15

2.3. Ant Colony Based Studies in Recommender Systems 17

2.4. SVD Based Studies in Recommender Systems ... 19

2.5. Studies on top-N Recommendation ... 21

3. MATERIALS AND METHODS .. 23

3.1. A Non-deterministic Perspective, AcoRec .. 24

3.1.1. NP-Hard Problems and Deterministic Recommendation Models......... 24

3.1.2. Ant Colony Optimization .. 25

3.1.3. Ant Colony Optimization in the Continuous Domain 27

3.1.4. AcoRec .. 29

3.1.5. Stochastic Approach of AcoRec ... 31

3.1.6. Heuristic Base of AcoRec and Item Based Model Selection 38

3.2. A Deterministic Perspective, z-scoREC and ImposeSVD 39

3.2.1. Notations for z-scoREC and ImposeSVD ... 42

3.2.2. z-scoREC Model Definition .. 44

3.2.3. Computational Complexity of z-scoREC ... 49

3.2.4. ImposeSVD: Imposing SVD for cold-start recommendations 50

3.2.5. SVD Analysis .. 50

3.2.6. Motivation behind ImposeSVD .. 53

3.2.7. ImposeSVD Model Definition .. 54

3.2.8. Generating Predictions .. 56

3.2.9. Computational Complexity of ImposeSVD .. 58

3.3. Datasets .. 59

3.4. Evaluation Metrics ... 61

XI

3.4.1. Hit Rank (HR) ... 63

3.4.2. Normalized Discounted Cumulative Gain (nDCG) 63

3.4.3. R-Score (Rs) .. 64

3.4.4. Coverage ... 64

3.5. Evaluation Methods ... 65

3.5.1. AcoRec .. 65

3.5.2. ImposeSVD and z-scoREC ... 66

4. RESULTS AND DISCUSSION ... 69

4.1. AcoRec Evaluation Results .. 69

4.1.1. Selected Benchmark Algorithms for AcoRec and Parameter Tunings . 69

4.1.2. Cold-start user scenario ... 70

4.1.3. Long-tail items scenario .. 74

4.1.4. Effect of the ant size & iteration count ... 77

4.1.5. Execution time of AcoRec .. 81

4.2. z-scoREC and ImposeSVD evaluation and results 82

4.2.1. Selected Benchmark Algorithms for z-scoREC, ImposeSVD and

Parameter Tunings .. 82

4.2.2. Cold-start user scenario ... 84

4.2.3. Cold-start system scenario .. 87

4.2.4. Long-tail items scenario .. 89

4.2.5. Effect of the lambda parameter ... 92

5. CONCLUSION ... 99

REFERENCES ... 103

BIOGRAPHY ... 115

APPENDICES .. 117

XII

XIII

LIST OF TABLES

Table 3.1. Evaluation Datasets .. 59

Table 3.2. Sampled Datasets for AcoRec ... 65

Table 3.3. Sampled Datasets for ImposeSVD and z-scoREC 67

Table 4.1. Comparisons of the algorithms in a cold-start user scenario 72

Table 4.2. Comparisons of AcoRec with its base algorithms in a cold-start user

scenario .. 74

Table 4.3. Comparisons of the algorithms in long-tail item recommendation

scenario .. 76

Table 4. 4 Comparisons of AcoRec with its base input algorithms in a long-tail

item scenario .. 77

XIV

XV

LIST OF FIGURES

Figure 1.1. An example screen from an item (Amazon, 2022) 2

Figure 1.2. Recommender System in a function view .. 3

Figure 1.3. Recommender Systems categories ... 4

Figure 1.4. Cold-start and other problems in recommender-systems 9

Figure 1.5. A screenshot from Netflix Application has a four-row recommendation

list for a user ... 11

Figure 3.1. Pseudocode for ACO (Socha and Dorigo, 2008) 26

Figure 3.2 The archive of solutions kept by ants .. 29

Figure 3.3. Pseudocode for AcoRec .. 37

Figure 3.4 The architecture of the proposed item similarity matrix 48

Figure 3.5 Pseudocode for z-scoREC ... 49

Figure 3.6 Rating prediction example with a simple matrix for PureSVD

algorithm .. 52

Figure 3.7. Performance of the PureSVD algorithm in different sparsity

percentages of MovieLens 1M dataset evaluated with nDCG metric .. 54

Figure 3.8. Pseudocode for ImposeSVD ... 57

Figure 4.1. In the cold-start user scenario, the effect of the ant-size and

iteration count is evaluated with the nDCG metric 78

Figure 4.2 In the long-tail item scenario, the effect of the ant-size and

iteration count is evaluated with the nDCG metric 80

Figure 4.3. In the cold-start user scenario the execution time of our algorithm

under different cores ... 81

Figure 4.4 In the cold-start user scenario, the performance of the algorithms

with different @N values for all datasets was evaluated with the

nDCG metric .. 86

XVI

Figure 4.5 In the cold-start system's scenario, the performance of the

algorithms in the @N=10 value for all datasets was evaluated

with the nDCG metric .. 89

Figure 4.6 In the long-tail items scenario, the performance of the algorithms

with different @N values for all datasets was evaluated with the

nDCG metric .. 92

Figure 4.7. In a cold-start user scenario the effect of the lambda (λ) parameter

is evaluated with the HR metric ... 94

Figure 4.8. In a long-tail items scenario the effect of the lambda (λ) parameter

is evaluated with the HR metric ... 95

Figure 4.9. In a cold-start system scenario, the effect of the lambda (λ)

parameter is evaluated with the HR metric .. 97

XVII

ABBREVIATIONS

ACO : Ant Colony Optimization

ACOℝ : Continuous Ant Colony Optimization

ALS : Alternating Least Squares

BCE : Binary-Cross-Entropy

BX : The BookCrossing

CBF : Content-Based Filtering

CDAE : Collaborative Denoising Auto Encoder

CF : Collaborative Filtering Computing Center

COS : Cosine

CSV : Comma Separated Value(s)

DCG : Discounted Cumulative Gain

Diag : Diagonal

Dotp : Dot Product

DT-BAR : Dynamic T-BAR

EASER : Embarrassingly Shallow Auto Encoder

FISM : Factored Item Similarity Model

FKA : Formally Known As

HOSLIM : Higher-order Sparse Linear Method

HR : Hit Rank / Recall

ICF : Item-Based Collaborative Filtering

IDCG : Ideal Discounted Cumulative Gain

JAC : Jaccard

k-NN : k-nearest-neighbor

L1-norm : Sum of the magnitudes of the vector

L2-norm : Sum of the magnitudes of the vector

LORSLIM : Low-rank Sparse Linear Method

LP-norm : p valued norm of the vector

XVIII

ML-10M : MovieLens-10M

ML-1M : MovieLens-1M

nDCG : normalized Discounted Cumulative Gain

NP-hard : Non-deterministic polynomial-time hard

pdf : Probability Density Function

RS : Recommender System

SGD : Stochastic Gradient Descent

SLIM : Sparse Linear Method

STARS : Semantic-enhanced Trust-based Ant Recommender System

SVD : Singular Value Decomposition

TARS : Trust-based Ant Recommender System

TCFACO : Trust-aware collaborative filtering method based on ant colony

optimization

top-N : a list of N items

TRUBA : TUBITAK ULAKBIM, High Performance and Grid

TSP : Travelling Salesman Problem

1. INTRODUCTION Hakan YILMAZER

1

1. INTRODUCTION

Recommender Systems (RSs) are collection of information retrieval, data

mining, and machine learning tools aimed at predicting and recommending the

new users and items (such as movies, books, music, online products, TV shows,

and websites) to propose a liking from predominantly large data. Initial work on

recommender systems began in the mid-1990s (Adomavicius & Tuzhilin, 2005).

With the increasing number of websites, and widespread use of e-commerce and

social networking sites, RSs have recently become an important field of

Intelligent Systems that have been dealing with the increasing extent of social

networks, e-commerce sites (or applications), and entertainment media services.

1.1. An Overview of the Recommender Systems and Taxonomy

 Recommender Systems (RS) are the unity of studies conducted in the

field of presenting information to the users/customers via filtering attractive

information for them. RSs aim to provide the requested information by using

different filtering methods or combining some of the giant data existing in the

field of the Internet and the market. RSs can obtain the data either from explicit

sources such as user ratings, friendships, and relations, or implicit sources such

as user likes, user logs, habits, or clicks.

 RSs generally work like as exampled in Figure 1.1.; is to recommend

similar items to the items that a user attracted, or to find similar users to that user

and recommend item(s) that those similar people attracted. Here the word

'attraction' could mean different meanings in different domains.

1. INTRODUCTION Hakan YILMAZER

2

Figure 1.1. An example screen from an item (Amazon, 2022)

For example, in the movie/TV domain, users watch the items. When the

product is a book, users can read the book, listen to the song when domain is

music, or some products can be eaten, visited web pages, added to the cart, or

purchased. In this thesis, we generalize and name all these attractions as 'clicked'.

Users can give feedback to the system by liking, rating, or commenting on

products.

 As explained in Figure 1.2. the recommendation systems convert the

input from different fields and data sources into output with a function.

 In the last quarter-century (especially during the COVID-19 pandemic),

research in the area of Recommender Systems started to gain more importance

with the inclusion of Youtube, Netflix, Instagram, Twitter, Spotify, and many

similar web services / social media sharing sites in our lives.

1. INTRODUCTION Hakan YILMAZER

3

Figure 1.2. Recommender System in a function view

These studies include generating high-quality recommendations,

performing many recommendations for millions of users and items, providing

high coverage against data sparsity, quickly adapting new users to the system

with satisfaction, scaling issues, localizations, etc. (Sarwar et.al., 2001).

Recommendation algorithms can be classified according to various

conditions. However, the most common classifying found in the literature refers

to how they use the information of user preferences for items, for which four

categories are commonly established as shown in Figure 1.3 (Resnick et.al., 1994;

Adomavicius & Tuzhilin, 2005; Pazzani, 1999).

 Content-based filtering; recommendations are made from similar

products as content.

 Demographic filtering; recommendations are presented according to

clusters of users/items with common characteristics (age, gender,

location, etc.)

 Collaborative-based filtering; recommendations are formed from

users with similar tastes.

 Hybrid filtering; combines at least two filtering methods explained

above.

User / Item

Attributes

• Clicks

• Watch

• Read

• Buy

• Add basket

• Taste

Recommender
Systems

• Content

• Collaborative

• Demographic

• Hybrid

Results

• Prediction
Scores

• Recommend
Lists

1. INTRODUCTION Hakan YILMAZER

4

Figure 1.3. Recommender Systems categories

1.1.1. Content-Based Filtering (CBF)

 Content-based methods build user profiles based on the features and

descriptions of the items rated by the user and do not use other users’ preferences

for issuing recommendations (e.g., in a movie domain, if the user watched some

comedy movie in her history, the filtering method will probably recommend a

recent comedy movie that she has not yet watched). One of the advantages of

content-based methods is that they can deal seamlessly with the new item

problem that is they are able to recommend new items for which there is no user

feedback, as opposed to collaborative filtering algorithms.

 Content-based algorithms, however, are very dependent on the

recommendation domain, which contrasts with the generality of collaborative

filtering methods. Additionally, one of the major problems is that content-based

approaches may suffer from over-specialization which is, that they have a natural

tendency to recommend the same items that are before recommended to that user,

and users may be bored (Resnick et.al., 1994).

1.1.2. Demographic-Based Filtering (Knowledge-Based Filtering)

Recommend
er Systems

Content Based
Filtering

Demographic
Filtering

Collaborative Based
Filtering

Model
Based

Memory
Based

Hybrid
Filtering

1. INTRODUCTION Hakan YILMAZER

5

 In RSs, demographic information is used to group users according to a

familiar class. The demographic attribute may vary depending on the domain in

which the recommendation system operates. In general, users can be grouped

according to features such as age, gender, occupation, location, education,

budget, mood, and similar recommendations can be offered to users in the

common group (Pazzani, 1999).

1.1.3. Collaborative Filtering (CF)

Collaborative Filtering describes the family of algorithms that exploit the

users’ consumption patterns of the items in the recommendation domain, without

making use of any domain-specific characteristics of the items, such as their

content or categorization.

The main advantage of this type of algorithm is its independence

concerning the recommendation domain in which they are applied. They have

been claimed to be more effective than other approaches, such as Content-based

algorithms. Collaborative Filtering algorithms can be classified into two types:

Memory-based; Memory-based methods are characterized by their

simplicity since a minimal or no learning phase is involved. This lack of learning

phase provides several advantages, such as easiness of implementation,

immediate incorporation of new data, and comprehensibility of results. Memory-

based methods, however, may suffer from scalability issues and a lack of

sensitivity to sparse data.

Model-based; The recommendations are based on a model that is

previously learned from the user data. Model-based methods take a different

approach to exploiting collaborative filtering data. The algorithms of this family

depend on a learning phase, in which a descriptive model of user preferences

based on the observed data is built to make predictions. These methods are

inspired by machine learning techniques such as Neural Networks, Bayesian

networks, Clustering, Fuzzy Systems, Genetic Algorithms, Singular Value

1. INTRODUCTION Hakan YILMAZER

6

Decomposition (SVD), Latent Semantic Analysis, Bee Colony, and Ant Colony

Optimization (ACO) among others (Bobadilla et.al., 2013).

1.1.4. Hybrid Filtering

Hybrid models are one of the most widely used filtering methods. Hybrid

methods have been proposed to avoid the limitations of collaborative filtering and

content-based algorithms when used separately (Balabanović & Shoham, 1997;

Burke, 2002; Adomavicius & Tuzhilin, 2005).

Mixed models combine different recommendation models to perform a

more useful recommendation quality, merging the advantages of models that

included in hybrid structure.

There are three basic strategies in hybrid recommendation: The first

strategy combines the final recommendation results produced by two or more

recommendation algorithms. The second strategy utilizes a recommendation

algorithm as a framework and includes other algorithms onto it. The third strategy

incorporates various models into a cooperative recommendation model and then

produce recommendations.

1.2. Limitations of Recommender Systems

 Researchers on Recommender Systems study on many different

problems. These studies are usually about performance, error and satisfaction

(Bobadilla et al. 2013). Some problems are related to each other and the solution

is also a guide for other problems. The followings are the major problems studied

in the literature.

1.2.1. Data Sparsity

 One of the major problems of recommender systems is how they can

solve the problem of data sparsity. The lack of relationships between users and

1. INTRODUCTION Hakan YILMAZER

7

items in recommendation systems with large quantities of data makes it

impossible to make sufficient measurements for collaborative filtering

calculations (Adomavicius & Tuzhilin, 2005).

 Especially, CF algorithms are inadequate in cases where the data is

sparse. This problem, which researchers mostly studies on, is one of the reasons

for other challenges in recommendation systems.

1.2.2. Scalability

The data are often large and scattered (sparse), with large sites containing

millions of users and items. It is very important to look for recommendation

algorithms that facilitate and parallelize (or both) the computational cost

considerations (Sarwar et.al., 2002).

1.2.3. Cold-start

 One of the primary limitations that must be overcome in RS is providing

recommendations in the case of cold-start states where there is no data or only a

limited amount of data about the user or the item. In such cases, RS cannot

provide effective recommendations (Sarwar et.al., 2011).

 There are three observed types of the cold-start problems; ‘new item’,

‘new user’, or for both ‘new system’. In the ‘new item’ problem, it is hard to

recommend the new item for a user because the new item has been recently added

and has a very limited amount of meta-data. In the ‘new user’ problem, where

there is no data about the user, RS could not draw on relations about newly

registered users or users who do not have many collaborations on the system; as

a result, the system could be inadequate for developing the links between users

and items because the evaluated data cannot provide information about the users

and the items. In the ‘new system’ case where there is no data about both the users

and the items, systems could be inadequate for developing the links between users

and items.

1. INTRODUCTION Hakan YILMAZER

8

1.2.4. Novelty-Diversity

The ‘diversity’ and ‘novelty’ of the recommendations offered to users are

the other issues to be dealt with (Adomavicius & Tuzhilin, 2005; Hurley &

Zhang, 2011; Bobadilla et.al. 2013). For instance, the recommendation of popular

items may not be valuable to users as these items are already familiar to users and

they could be bored. CF methods based on the analysis of cooperative behaviors

between users might be inadequate to solve this problem because they

overshadow unpopular connections and cause them to be ignored as a result of

their tendency to offer collaborations deeper among popular users and favored

items because of their frequencies. Whereas, the recommendation of unpopular

items has always been more attractive to the users (Yin et.al., 2012; Anderson

2006).

1.2.5. Evaluation

The success of the solution to the problem to which a designed RS model

is adapted is measured by the correct evaluation strategy. Evaluation is also an

important tool in choosing the right model for different scenarios in a commercial

system using many models. Even a very small difference between models makes

a difference in satisfaction level in systems with millions of users. Evaluation is

one of the difficult tasks in RSs. Since it is difficult to evaluate very large data,

sampling methods and choosing the right metrics according to the scenarios are

important factors.

1.2.6. Real-time recommendations

 For a recommendation system, offline approaches would be better for

evaluating new models and posterior predictions for users or when the data do

not change significantly over time. However, in recommendation systems, data

is approached in real-time and it is necessary to provide instant recommendations

to users. Providing recommendations live on such large datasets is a difficult task.

1. INTRODUCTION Hakan YILMAZER

9

1.2.7. Over-Specialization

 Recommender systems mostly offer recommendation lists for each user

based on their history on the system, which might turn out to be similar,

uncompelling, and poor-quality recommendations for the users (Balabanović &

Shoham, 1997; Ar & Bostanci, 2016; Olaleke et.al., 2021). This challenge forces

us to solve the problem which is called the over-specialization problem.

1.2.8. Ethic Problems

RS can obtain this data either from data like user ratings, friendship,

relations which exist explicitly or from implicit data which is not shown to end

user like user logs and user habits.

Users' information in the system is legally private, and some users may

not allow the recommendation system algorithm to use this information. In this

case, only legally obtained information can be used and this information may not

be sufficient in some cases and it may be difficult for the system to give

personalized recommendations to users.

Figure 1.4 Cold-start and other problems in recommender-systems

Cold-Start
Problem

Sparsity

Real-Time

Novelty

ScalabilityDiversity

Over-
Specializa
tion

Ethic

1. INTRODUCTION Hakan YILMAZER

10

1.3. Relation among other challenges and cold-start

We have described in the previous section that one of the problems

encountered in recommender systems is the cold-start problem. As shown in

Figure 1.4, with this thesis, we believe that the answer to most of the mentioned

problems in recommender systems is the key to the cold-start problem. Therefore,

the strategies to solve the cold-start problem become a solution for other

challenges.

The challenge to ensuring the quality is the presence of cold-start users.

Although most recommender systems approach the problem with cold-start users

in offline settings, it is necessary to follow their tastes simultaneously on the

system. All users should be considered cold-start users because of their ever-

changing and unexpected habits. However, recommender systems mostly offer

recommendation sets for each user based on their history on the system, which

might turn out to be similar, uncompelling, and poor-quality recommendations

for the users (Balabanović & Shoham, 1997; Ar & Bostanci, 2016; Olaleke et.al.,

2021). This challenge forces us to solve another problem with related cold-start

users which is called the over-specialization problem.

While most systems approach the cold start problem, they consider the

data from zero time, whereas for the accuracy of the analysis, it is necessary to

look from an unknown starting point and see the system in action. In a

personalized recommendation model, different recommendation lists are created

for each user base on users’ past tastes. After a particular time, RS resumes to

recommend the same lists or is biased to popular items (Olaleke et.al., 2021).

However, most users prefer diverse item recommendations on their screens as

shown in Figure 1.5. To satisfy such users to keep from over-specialization

problems, solutions force us to solve cold-start users.

1. INTRODUCTION Hakan YILMAZER

11

Figure 1.5. A screenshot from Netflix Application has a four-row

recommendation list for a user

Recommendation of unpopular items includes strong diversity and

novelty since they have not been in contact with many users or related to other

items. In sparse datasets, it becomes difficult to make accurate recommendations.

The systems provide recommendations based on heat users; therefore, users who

have just logged into the system (cold-start users) or have different tastes might

be omitted. And the solution of this problem also redirect us to cold-start problem.

In the ethical problem, we mentioned that we might not have information

about users in some cases. In such a situation, even if the user is a hot user using

the system actively and does not allow the system to use her information, she

should be considered a cold-start user.

We explained the importance of providing live recommendations in

recommendation systems in the real-time recommendations problem (See 1.2.6).

In such cases, we need to abstract recommends based on users' current sessions

or recent-short histories, and it is necessary to look at the instant habits, not their

past interactions. Such users can also be seen as cold-start users due to the scarcity

of data.

1. INTRODUCTION Hakan YILMAZER

12

In a real scenario, social media systems have a giant interaction graph

due to the number of users and items. It takes a long time to perform traditional

calculations on a large graph. Considering the whole product set on the system

that attracts the consideration of users does not represent even 1% of the total

product scale, such users can naturally be seen as a cold-start user for a

recommender system.

The vital processes of a recommender system are to increase the

connected nodes of the user-item graph and produce more accurate predictions

between users and new items. While doing this; however, the system must find

user-specific relations, which is considered the quality. Data sparsity and cold

start essentially point us towards the same solution, enrichment of the user-item

graph.

The data sparsity problem (indirectly the cold-start problem) has led

researchers mainly to two areas of study: dimension reduction and graph-based

techniques. Latent factors were tried to be extracted from the non-complete user-

product matrix with dimension reduction techniques. Graph-based techniques, on

the other hand, endeavored to find connections between unconnected users and

products (Ricci et.al., 2015).

1.4. Purpose of thesis

Recently, visual media platforms (YouTube, Spotify, Netflix, Twitch,

etc.) have been increasingly used particularly during the Covid-19 lockdown

periods. Media services around the world tend to offer recommendation lists to

the users on their phones, tablets, or television screens according to the item

groups they have tasted. These groups of recommendations based on the user’s

previous likes, their history on the platform, trending items, or demographically

related items are presented in horizontal or vertical forms on the main screens of

many media platforms (see an example Figure 1.5). As a result of the developing

and competing recommender system technologies, users expect personalized or

session-based recommendations on the platforms (Hidasi et.al., 2015). However,

1. INTRODUCTION Hakan YILMAZER

13

generating online recommendations in live recommendation systems is a

challenging task due to the absence of the initial or accomplished state of the data,

which requires the evaluation of ongoing and noisy-data systems rather than

employing data from the scratch. Although the recommender systems tend to use

traditional deterministic algorithms (CF and CBF) offering the same

recommendations for all users (Olaleke et.al., 2021), they need to provide

constant updating and diversification of the home screen recommendations

because of the changing tastes of the users. As a result, researchers in the field of

recommendation systems have recently considered Heuristic Methods and Deep

Learning Methods to offer continuous and variable recommendations (Vargas,

2015). These methods might be successful as they not only offer

recommendations to cold-start users but also volatile encouragement to existing

users. In addition, these methods might be considered as fast, robust, and

parallelable alternatives as they can deal with the costs of these personalized tasks

that are performed for a tremendous number of users in the systems.

This thesis aims to design new algorithms with the solution to the cold-

start problem. The concern of this study is to handle cold-start problem together

with others by paying attention to mutual solutions in the algorithms designed

(See Sections 3.1 and 3.2). Since cold-start user and cold-start system (sparsity)

are considered to be relatively more difficult problems compared to the cold-start

item problem, these two are particularly emphasized in this thesis. This study

aims to find out solutions particularly to the cold-start problem while indirectly

overcoming many recommender system problems.

The cold-start problem is a field of study that attracts attention, especially

in the industrial and academic fields. Therefore, this study will add values to the

literature.

The contributions of this thesis to the literature could be summarized as

follows;

1. INTRODUCTION Hakan YILMAZER

14

 This thesis handled more than one problem by associating the cold-start

problem with other problems.

 The models were developed in various domains and designed to be

industrial across the board.

 These models are designed to be easy to implement, appropriate for

parallelization, parametrically easy, and forthcoming to evolution for

researchers.

 New perspectives were brought to the studies in the field.

 The designed models keep up with existing and transforming technology.

1.5. Outline of thesis

The remainder of the thesis is organized as the following:

Chapter 2 gives a detailed literature survey on the evolution of the

recommender systems, common solutions about cold-start problem, related

works about SVD-based and ACO-based studies in recommender systems, top-

N recommendations systems survey.

Chapter 3 explains our proposed models in two sections. First Section

introduce AcoRec which is our novel model about cold-start and related

problems. Section 2 of this chapter introduce z-scoREC and ImposeSVD which

are our other novel models rely on regression and dimension reduction to solve

cold-start and other related problems.

Chapter 4 presents and discusses the experiments in detail all of three

proposed model; and compares results of our models with state-of-art studies in

the literature.

Chapter 5 summarizes our conclusions, primary contributions of this

thesis; and gives the future purposes and expectations of the work.

2. RELATED WORKS Hakan YILMAZER

15

2. RELATED WORKS

2.1. Evolution

Research on RSs started to increase during the 1990s. The studies of

Malone et al. (1987) and Resnick et al. (1994) found out filtering types in the RS

field, which were determined as Content-Based Filtering (FKA Cognitive

filtering) and Collaborative Filtering (FKA Social filtering). Collaborative

Filtering (CF) term was first used in the literature in 1992 in Tapestry’s

recommendation system (Goldberg et.al., 1992). Later, Shardanand and Maes

(1995) developed Ringo. CF needs consumption patterns of users or items

without considering the domain properties. Content-Based Filtering (CBF), on

the other hand, needs meta-information about users or items, which varies

depending on the domains. Balabanovic and Shoham (1997) introduced the first

hybrid application by combining two filtering techniques and gave a new

direction to research in the RS field. To provide more efficient results for hybrid

studies, Basu et al. (1998) developed the Ripper algorithm by creating bot users.

Breese et al. (2013) categorized RS into memory-based and model-based

algorithms. The review of Herlocker et al. (2004) about how to evaluate RSs is

one of the most prominent studies in the literature. Adomavicius and Tuzhilin

(2005) reviewed numerous studies shown until 2005, where they underlined how

to increase the capabilities of RSs by revealing common limitations including the

cold-start problem. Bobadilla et al. (2013) published a comprehensive review of

the RS studies in the literature.

2.2. Cold-Start Studies in Recommender Systems

When relationships between nodes (i.e., users, items) are missing or

inadequate in the dataset, establishing new relationships is an important challenge

for RSs. Therefore, a growing number of studies in the literature have been

searching out the ways to build new relationships between nodes in the case of

limited data by applying CBF or CF models.

2. RELATED WORKS Hakan YILMAZER

16

To illustrate, Kim et al. (2010) employed collaborative tagging as an

approach to collect users’ preferences and tastes. Basilico and Hofmann (2004),

on the other hand, developed a framework that incorporates all available

information by using a suitable kernel or similarity function between user-item

pairs.

Weng et al. (2008) combined the implicit relations between users’

preferences for items with additional taxonomic preferences to make better

quality recommendations to alleviate the cold-start problem. In addition, Loh et

al. (2009) represented users’ profiles with information extracted from their

scientific publications.

 Other than the sole use of CBF or CF models, hybrid models have been

employed by others to overcome cold-start problems resulting from the sparsity

of the dataset or unavailability of data (Basilico & Hoffman, 2004; Kim et.al.,

2010; Pazzani, 1999).

Pazzani (1999), proposed a hybrid framework that merges different

algorithms: CF, CBF, and Demographic Based Methods.

Jamali and Ester (2010) relied on trust between users on a trusted network

instead of user similarity to deal with data sparsity and the cold-start problem.

Massa and Avesani (2009) used explicit trust as input, along with a user-

item rating matrix to predict ratings.

Bobadilla et al. (2010), Chandelier et al. (2008) and Ahn (2008)

recommended new collaborative filtering metrics that improve RSs.

Among others, graph-based approaches (Ning et.al., 2015), a

combination of content and collaborative filtering (Schein et.al., 2002), collection

of clickstreams from user experiences (Embarak, 2011), and pairwise regression-

based models (Park & Chu, 2009) were utilized to overcome the cold-start

problem. Fouss et al. (2006) showed uses of the graph-based kernel methods in

CF.

Son (2016) has summarized papers based on cold-start and categorized

the cold-start based studies into four sections. He also evaluated these categorized

2. RELATED WORKS Hakan YILMAZER

17

methods. Guo (2013) formed a new rank profile for the active users by merging

the ratings of trusted neighbors. He then assessed this approach through a

Bayesian similarity measure, which considers both the direction and length of

rating profiles.

Regarding the quality of the recommendations, Herlocker et al. (2004)

has pointed out many criteria according to which diversity and personalized user

satisfaction are more important factors for the recommendation of unpopular

items.

2.3. Ant Colony Based Studies in Recommender Systems

In literature, the studies conducted on the use of agents in

recommendation systems with cold start problems, Good et al. (1999), Park et al.

(2006) and Sarwar et al. (2008) tried to produce solutions for Cold-start problems

by using bot filters.

Sarwar et al. (2006) created rating bots and these bots rated new

documents in the newspaper. With this new rating, they qualified and classified

new documents and represent them to their users. They aimed to decrease gaps

in the recommendation matrix and spread out the sparsity. They used ‘Usenet

news Article’ dataset. In their study, they created artificial rating bots, and these

bots rated recently added documents considering different criteria. With the help

of these rates given by bots compromised by artificial users, they tried to enable

the integration of recently added documents to the recommendation system and

minimize the infrequency in connection.

Good et al. (1999) produced various bots with different characteristics

and unified them with both CBF and CF algorithms. They suggested that more

successful results would be obtained if ratings that bots give for films were

unified with user ratings and calculated in the user-item matrix.

Park et al. (2006) also worked on filter-bots for cold start problems. They

created seven basic filter bots the resolve the problem and used these ratings in

user-based and item-based estimations in CF.

2. RELATED WORKS Hakan YILMAZER

18

There are many ACO studies based on RS in the literature. Sobecki and

Tomczak (2010) used real data for recommending student courses based on ACO.

T-BAR is a probabilistic model on the ACO algorithm, which is considered to

develop the efficiency and coverage of predictions for users (Bellaachia &

Alathel, 2012). However, this algorithm suffers from its failure to deal with cold-

start users. The authors proposed an update DT-BAR (Dynamic T-BAR) to

overcome this problem (Bellaachia & Alathel, 2014). Bellaachia et al. (2016)

introduced ALT-BAR with averaged localized trust-based ant recommender for

cold-start recommendations. Massa and Avesani (2009) proposed Mole-Trust is

a basic CF algorithm that uses the Pearson Similarity and Trust in recommender

systems.

Bedi and Sharma (2012) introduced the Trust-based Ant Recommender

System (TARS) to produce recommendations by merging the assumption of trust

between users and taking the best similar users based on the ACO. During

iterations, TARS generates new relationships between users and produces

predictions with the help of new, updated trusted users.

Semantic-enhanced Trust-based Ant Recommender System (STARS)

introduced a more progressive model that tried to eliminate the disadvantages of

the TARS model and included semantically user similarity with clusters (Gohari

et.al., 2017).

TCFACO has also studied trust statements between users and developed

an ACO-based CF method for effectiveness predictions for users (Parvin et.al.,

2019).

Tengkiattrakul et al. integrated SVD-based user factors and

trustworthiness for user-similarity on ACO (Tengkiattrakul et.al., 2016;

Tengkiattrakul et.al., 2018). Kaleroun and Batra (2014) upgraded TARS

with item deviation distance products in the prediction formula and evaluated for

the Shilling Attack, Cold-start Users, Sparse Matrix, and Grey Sheep Users

problems.

2. RELATED WORKS Hakan YILMAZER

19

Liao et al. computed user pheromones and item pheromones separately

and combined them in rating prediction to produce ranking lists (Liao et.al.,

2020a; Liao et.al., 2020b).

Nadi et al. (2011) used a fuzzy-based ant colony system for website

recommendation, they used Jaccard-based user similarity and they fuzzified the

user-item interaction matrix.

Detailed information about the algorithms that develop the

recommendation system with the ant colony was given in Appendix C.

The typical approach in these ACO-based studies is as follows;

• Calculation of user similarities (e.g., Cosine, Jaccard, Pearson, Trust

measures)

• Obtaining users as nodes and selection of similar users with ACO

• Analyzing the new recommendations from similar neighbors (users)

from Resnick's prediction formula (Resnick et.al., 1994).

Different from the studies above, our ACO algorithm is item-based. In

our study, the nodes represent the items in the ACO graph structure, and the edge

values of the items show the importance that reflects the likelihood values of the

user to the relevant item. The other distinction is that we tried to find a heuristic

on popular items in the continuous domain with auto hyper-parameter tuning.

2.4. SVD Based Studies in Recommender Systems

SVD-based methods apply the process of smoothing the rating matrix by

reducing the original matrix size to the low-ranks. However, incomplete matrices

cannot be decomposed by SVD-based methods. Therefore, researchers applied

matrix factorization algorithms over non-null data using Stochastic Gradient

Descent (SGD) (Robbins & Monro, 1951) or Alternating Least Squares (ALS)

methods (Zhou et.al., 2008). Funk (2006) used a simple linear regression model

to calculate user and item factors for estimating rating predictions. Paterek (2007)

2. RELATED WORKS Hakan YILMAZER

20

composed an advanced model by adding user and item biases. Koren has

contributed with new models such as SVD++, timeSVD++ where he added k-

nearest-neighbor or time factors to earlier developed models using (SGD) or

(ALS) (Koren, 2008; Koren et.al., 2009; Koren, 2009). But all these methods are

not real SVD-based methods that use algebraic calculus for decomposition.

The first example of using the original decomposition method via SVD

in the CF field is the work of (Sarwar et.al., 2000). Cremonesi et al. (2010)

introduced the PureSVD, which bases on an estimation of the low-rank latent

factors from the rating matrix by SVD followed by imputing null values with zero

on the rating matrix. EigenREC demonstrated that PureSVD's prediction formula

actually only needs item factors, and this can be calculated more easily with both

Eigenvalue Decomposition and Golub-Kahan-Lanczos Bidiagonalization

(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019). In addition to these,

HybridSVD has claimed that PureSVD can be strengthened with side information

in cases where the CF is inadequate. They added item features to the rating matrix

by effectively using Cholesky decomposition, and then this new auxiliary matrix

was performed for low latent factors in SVD (Frolov & Oseledets, 2019).

In another study, Ghazanfar et al. Ghazanfar and Prugel (2013) studied

how to carefully increment the rating matrix before the SVD process by

developing a model they call ImputedSVD. In their study, they performed

improvements on cold-start, long-tail, and sparsity issues by applying the art-of-

state methods in the literature as imputation methods. Although the study of

Ghazanfar and Prugel (2013) bears some similarities with our study in terms of

providing improvements on SVD-based models to overcome the most common

problems in RSs, the methods of our research are different in many aspects. First

of all, (a) while the ImputedSVD adopted the well-known methods in the

literature as the imputation method, we introduced a novel item-similarity matrix

in our research and generated a less parametric imputation method, which is

suitable for many domains. (b) Based on the simplicity of the PureSVD, we

needed item vectors only that are taken from decomposition to estimate

2. RELATED WORKS Hakan YILMAZER

21

prediction scores. ImputedSVD; however, carried user factors of SVD for

prediction, which is a costly method in terms of handling time. (c) While

ImputedSVD works on rating prediction, our research is a ranking-based study

for generating top-N recommendation lists. Finally, (d) the offline cost of our

method is low and there is no need for calculations for the cold-start users in the

online process.

2.5. Studies on top-N Recommendation

RSs methods are divided into the two corresponding models, which are

‘rating-based’, and ‘ranked-based’ models to measure the prediction scores.

Rating-based models predict the user scores based on their unrated items by

normalizing the real rating range that the user would give to the item. On the

contrary, ranking-based models predict a list of N items (top-N) that the users

may like. Therefore, ranking-based models do not need to scale real range values

(e.g. min 1- max 5) to provide flexibility while developing algorithms.

To our best knowledge, Karypis (2001) did the first study on the ranking-

based model to provide top-N recommendation lists. In another study, Deshpande

and Karypis (2004) employed the k-nearest-neighbor (k-NN) estimation as a

ranking-based model to provide top-N recommendation lists to the users.

Cremonesi et al. (2010), on the other hand, proposed evaluation methods of top-

N recommendation systems and introduced the PureSVD model to measure the

diversification of long-tail items in recommendations. Hurley and Zhang (2011)

showed how novelty and diversity values of top-N recommendation lists could be

improved. Rendle et al. (2012) introduced an optimization approach by learning

over click pairwise of users on items. Ning and Karypis (2011) developed SLIM

where he used linear regression to construct a coefficiency matrix with L1-norm

and L2-norm regularizations and used a coefficiency matrix for offering

recommendation lists. In a later work, higher-order item relationships for SLIM

were added by HOSLIM developed by Christakopoulou and Karypis (2014).

Besides, in another method called LORSLIM, Cheng et al. (2014) performed low-

2. RELATED WORKS Hakan YILMAZER

22

rank optimization on the SLIM’s coefficiency matrix. In another study, Kang et

al. (2016) aimed to complete the rating matrix with a non-convex optimization

problem. Kabbur et al. (2013) developed FISM to produce the top-N

recommendation lists by training the two item factors with the help of the loss

function. Cooper et al. (2014) introduced a simple graph-based algorithm P3α that

implements three steps random-walk between users and items. In a later work

(Christoffel et.al., 2015), the authors upgraded the previous graph-based

algorithm and created RP3ß by adding an item-popularity parameter to develop

the success of long-tail item recommendations. Nikolakopoulos and Karypis

(2019) introduced RecWalk, which use the power of random-walk-based

methods to capture new rich network interactions. Nikolakopoulos et al. (2019)

introduced the PerDif as an implementation of diffusions over item-item graphs

for live personalized user recommendations. Both RecWalk and PerDif

approaches gave good results with the assist of item-based models such as Cosine

and SLIM.

In recent years, auto-encoders models have shown good results on

recommendations. For example, CDAE developed by Wu et al. (2016) used auto-

encoders with neural networks for an item-based top-N recommendation

algorithm. Liang et al. (2018) extended CDAE to multinomial likelihood instead

of Gaussian likelihood and they used variational auto-encoders on implicit

feedback. Shenbin et al. (2020) introduced a new auto-encoders structure that

outperformed the previous auto-encoder structured recommendation models.

Chen et al. (2018) proposed to merge user ratings and side-information by using

a variational auto-encoder structure to produce recommendation lists. Steck

(2019) introduced EASER as a simple linear and vanilla auto-encoder model that

outperforms the state-of-the-art collaborative filtering approaches for huge sparse

data.

3. MATERIALS AND METHODS Hakan YILMAZER

23

3. MATERIALS AND METHODS

In this thesis, three original models have been developed from two different

perspectives one of which is deterministic and the other one is non-deterministic. All

models were evaluated over various cold start scenarios on well-known datasets.

In the first perspective, a new recommendation model with ACO, an intuitive

method in the category of graph-based techniques was developed.

From a view of first perspective, we introduce a new framework that

optimizes item-based similarity models to offer top-N recommendation lists by

Continuous Ant Colony Optimization, which is a heuristic algorithm. With our new

user-specific item-based model, pheromone values are denoted as posterior

probabilities of users which are constructed from previous clicks. Our novel model

regularizes Lp norms of the users' clicked items in the selected input similarity model

by amortizing them binary cross-entropy and giving stochastic importance to items

specific to the user-graph which are maximized with hyper-parameter search via in

continuous domain.

In the second perspective, we introduced two novel collaborative filtering

techniques for recommendation systems in cases of various cold-start situations and

incomplete datasets. In this perspective, the first model establishes an asymmetric

weight matrix between items without using item meta-data and eradicates the

disadvantages of neighborhood approaches by automatic determination of threshold

values. This model, z-scoREC, is also regarded as a pure deep-learning model

because it performs like a vanilla auto-encoder in transforming column vectors with

Z-Score normalization similar to batch normalization. With the second model of this

perspective, which we called ImposeSVD, we aimed to enhance the shortcomings of

the PureSVD in cases of cold-start and incomplete data by preserving its

straightforward implementation and non-parametric form. The ImposeSVD model

relies on the z-scoREC, produces synthetic new predictions for the users by

decomposing the latent factors from the imposed matrix.

3. MATERIALS AND METHODS Hakan YILMAZER

24

3.1. A Non-deterministic Perspective, AcoRec

3.1.1. NP-Hard Problems and Deterministic Recommendation Models

Deterministic recommendation models are robust algorithms despite their

simple structures. For instance, neighborhood models or regression models can be

overwhelmed by many algorithms (Sarwar et.al., 2001; Dacrema et.al. 2019). In

deterministic recommendation models, users are given a set of recommendations {S}

at time t1, and this set {S} remains the same as long as there is no change in the

model between time t1 and t2. However, we might not be foolproof that the results

of an algorithm that produces deterministic solutions with discrete parameters are

precise and recall results are accurate, but we could acknowledge them as thriving

or sufficient based on the evaluation results (Olaleke et.al. 2021). Many researchers

obtain evaluation results in algorithms by averaging all the results of experiments,

hence these results could vary depending on the selection of dataset, sampling of

these datasets, selected metrics, and hyper-parameters evaluations (Herlocker et.al.

2004; Dacrema et.al. 2019).

In heuristics, the recommendation set {S} can suggest different sets {S}

without changing the model because of the randomness of its core and this could be

an attractive situation for users. But there is a challenge in providing various {S} sets

for a recent user. We know in recommendation systems that the recommendations

are given to a user u are never certain, so what is being done in this study is an

inferential estimate, just like a top-N recommendation list. As recommendation

systems are based on predicting the items that users would like and do not provide

definitive results, the recommendation process is an NP-hard problem (Hammar

et.al., 2013; Vahabi et al., 2015; Nembrini et al., 2021). According to the feedback

got, the predictions are updated from time to time and this divergence can continue

in an infinite loop. To provide multi-variant recommendation lists, new items must

satisfy the users.

Ant Colony Optimization is an effective algorithm for dealing with NP-hard

problems Dorigo and Gamberdella (1997). Because of this vigorous aspect of the

3. MATERIALS AND METHODS Hakan YILMAZER

25

algorithm, it has been applied in many recommender models. However, these models

have investigated pheromone optimization on extensive graphs and tuning with

complex reciprocal hyper-parameters. To illustrate, α (pheromone pressure) and β

(heuristic influence) parameters should be tuned in some algorithms to understand

their substantial effect of them. In most algorithms, the hyperparameter selections

are chosen for all test users in the experiments, and the maximized parameters are

determined by the average of the results. However, whether the systems are trained

with the right hyper-parameters can be seen by waiting for the training result of the

system. This causes a long evaluation time, especially for researchers operating huge

datasets or models that require many hyperparameters.

3.1.2. Ant Colony Optimization

Ant Colony Optimization models are derived from the behavior of real ants

to solve many optimization problems. Ants can discover the shortest path from a

food source to the nest. While traveling, each ant deposits a chemical hormone,

called pheromone on the ground and reflects the deposited pheromones by the other

ants. Ant algorithm is a sample of algorithm belonging to swarm intelligence

methods, based on collaboration between independent, distributed bots that can offer

a new intelligent solution to the system. It is a suitable model for mimicking the

behavior of users in recommendation systems. The process of obtaining new feature

subsets from a few input features can be viewed as an optimization problem, and

unclicked item predictions from clicked items agree with this definition in

recommendation systems.

3. MATERIALS AND METHODS Hakan YILMAZER

26

Algorithm 1: Pseudocode for ACO

Begin;
 Initialize pheromone amounts between nodes and set up parameters;
 Begin Loop
 Generate a solution for each ant;
 For each ant, estimate the fitness/cost;
 Determine the best ant for iteration;
 Update pheromone trails on nodes according to the best ant solution;
 If termination condition is true, exit from the loop;
 End Loop
End;

Figure 3.1. Pseudocode for ACO (Socha and Dorigo, 2008)

The ACO algorithm was presented in Algorithm 1 (Socha and Dorigo,

2008). The process with the ACO algorithm initializes nodes in a graph, obtains the

weight values between the nodes at an unspecified time, and spreads ants randomly

on these nodes. An ant k at t time, being in node i chooses the next node j with a

probability given by the random proportional rule defined below Eq. (3.1)

where u is set of the feasible routes of i. After each ant walk, feasible routes

are excluded by the last visited node. Once an ant has visited all nodes, it returns to

its starting node. After evaluating all ant’s tour costs in the current iteration, the

pheromone values between nodes are updated as follows,

where 𝜌 is the evaporation parameter between [0,1] and ∆𝜏𝑘(𝑖, 𝑗) is defined

in Eq. (3.3)

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑖, 𝑗) =

𝜏𝑡(𝑖,𝑗)
∝∗𝜂(𝑖,𝑗)𝛽

∑ 𝜏𝑡(𝑖,𝑘)∝∗𝜂(𝑖,𝑘)𝛽𝑘∈|𝑢|
 (3.1)

𝜏𝑡+1(𝑖, 𝑗) = (1 − 𝜌) ∗ 𝜏𝑡(𝑖, 𝑗) + ∑∆𝜏𝑘(𝑖, 𝑗)

𝑚

𝑖=1

 (3.2)

3. MATERIALS AND METHODS Hakan YILMAZER

27

Cost(k) is the amount of pheromone deposited on the edges of the solution

visited by ant k and this cost is equal to the reciprocal of the cost of the solution

constructed by ant k. Q is a constant to regularize the pheromones for the best

solution. Therefore, a better solution is achieved by the higher amount of pheromone

deposited by an ant.

3.1.3. Ant Colony Optimization in the Continuous Domain

Combinatorial optimization such as classic ACO deals with finding optimal

combinations of available problem components and they attempt to find their optimal

combination or permutation like in the (Travelling Salesman Problem) TSP problem.

But some problems may be tackled with a combinatorial optimization that is not

always convenient, especially if the bounds are wide, and the sensitivity of the

parameters is high. In such cases, algorithms that optimize on continuous variables

yield better results. Blum (2005) attempted to extend ACO algorithms for tackling

discrete and continuous optimization problems.

There are two options for integrating ACO for continuous optimization

problems. The first way uses a familiar approach to ant behavior and the second way

carries the fundamental ACO graph structure to investigate it in the continuous

domain. This evolution could be flawless by proper discretization or probabilistic

sampling of a search space (Riadi, 2014).

Socha and Dorigo (2008), who introduced the continuous field ant colony

optimization algorithm ACOℝ, used a Gaussian kernel probability density function

(pdf) expression for the distribution model and presented the ACOℝ as a meta-

heuristic framework. In ACOℝ, given a problem with n decision variables, a vector

xki = {xi,1 , xi,2 , xi,3 , ... , xi,n } represents probabilities from a probabilistic density

function as a solution by an ant k, and f(xi) represents the objective function to

∆𝜏𝑘(𝑖, 𝑗) = {
𝐶𝑜𝑠𝑡(𝑘) ∗ 𝑄, 𝑖𝑓 𝑒𝑑𝑔𝑒 (𝑖, 𝑗) 𝑖𝑠 𝑎 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑛𝑜𝑑𝑒 𝑓𝑜𝑟 𝑏𝑒𝑠𝑡 𝑎𝑛𝑡,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (3.3)

3. MATERIALS AND METHODS Hakan YILMAZER

28

minimize (or maximize). In ACOℝ, each ant represents a row of the Solution Archive.

During the iterations, the candidate parameter in the Solution Archive is ordered

according to its objective function values. Each solution has an associated weight

ωk, which keeps the proportion of its solution quality on the whole. The weight of

the jth solution is defined as:

where G(j) is the value of the Gaussian function with argument j, 𝜇 is the

distribution mean, 𝜎 is the standard deviation and q is the parameter for the deviation

distance of the algorithm. When q is a small value, the high fit solutions are

promoted, and with the increase of q, the probability becomes intensified. To

implement the pheromone motto from the original ACO, after each iteration, the

algorithm defines new 𝜇 and 𝜎 values to shift the probability distribution. Once the

initial Solution Archive is constructed, iteration processes follow: Each ant selects a

distribution from the solution archive with the asset of a fitness proportionate

selection function such as the Roulette-Wheel algorithm, and the solution

probabilities of each row are obtained by dividing all sums by themselves,

where 𝑝(𝑗) is the probability of the jth row in the Solution Archive set. In the

iterations, after each ant creates a distribution similar to the Solution Archive, its

quality is calculated based on the objective function and merged with the Solution

Archive. After a sorting, the first k best solutions are selected and the others are

discarded for forthcoming iterations. For example, for a maximization problem, the

ωj =
1

𝑞𝜎√2𝜋
𝑒

−
(𝐺(𝑗)−𝜇)2

2𝑞2𝜎2 (3.4)

𝑝(𝑗) =
ω𝑗

∑ ω𝑟
𝑘
𝑟=1

 (3.5)

3. MATERIALS AND METHODS Hakan YILMAZER

29

Solution Archive constructed by k ants is ordered as descending. Hence f(x1) ≥ f(x2)

≥ ⋯ ≥ f(xk) and ω1 ≥ ω2 ≥ ⋯ ≥ ωk . The sample Solution Archive structure is given in

Fig. 3.2

Figure 3.2 The archive of solutions kept by ants

 In the search process, the purpose of iterations is to find the best solution

and converge the model.

After each iteration, the pheromone update strategy (like ACO) is performed

by adding k newly generated solutions to the Solution Archive. After sorting the

solutions, the worst k solutions were eliminated so that the total number of solutions

in the archive remains 𝑘 solutions. This method maintains the better solutions in the

Solution Archive as a result of the effective guidance of ants in the search process

for better quality.

In this study, we studied the RSs problems that we defined in Section 1.2

and founded on the ACOℝ method, and we made new additions to this method to

challenge the RSs problems.

3.1.4. AcoRec

In our model, we handled the problems related to the recommendations for

cold-start users, personalized recommendations, over-specialization problems, and

facilitating time complexity in the recommender systems. We introduced the

AcoRec framework, which we produced using the ACO method to improve the

variety of the user-item relations and to diversify the results for the users in the

system. Based on ACO principles, AcoRec uses any item similarity/proximity model

[

𝑥11 𝑥12 … 𝑥1n f(𝑥1) 𝑤1

𝑥21 𝑥22 ⋯ ⋮ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮ ⋮

𝑥k1 𝑥k2 … 𝑥𝑘𝑛 f(𝑥𝑘) 𝑤𝑘

]

3. MATERIALS AND METHODS Hakan YILMAZER

30

as input and produces user-specific, probabilistic, and high-diverse

recommendations for users based on their past purchases. As a meta-heuristic and

hybrid framework, AcoRec explores diverse recommendations by which it could

overcome the problems with pertinent recommendations for the cold-start users.

In our proposed model,

 AcoRec takes an item-based similarity model as input. The item-based

similarity model could be pre-calculated in the background in an offline

system.

 From the input model, AcoRec extracts the clicked (or preferred) item

rows of the specific user, then combines rows and transforms them into

an Lp norm vector for a low-dimension ant search. AcoRec verifies

these norm spaces as the initial pheromone values (τ) and uses the input

model as the heuristic for the items (η). The initial pheromone vector

defines the user's current importance values on the items. Therefore, the

model converges quickly and reduces the iteration counts, daemon

actions, and the probability of stagnation.

 AcoRec optimizes the importance values of items for the specific user

by using auto hyper-parameter tuning in the Continuous Ant Colony

Optimization domain.

 After the model converged, AcoRec sorts out the most valuable items

for the relevant user based on the expected choice of those items. Later,

our model provided a top-N recommendation list of items that ranks the

users' estimated predictions. These predictions could variate and differ

from the previous estimates and this is the core phenomenon of our

novel algorithm.

3. MATERIALS AND METHODS Hakan YILMAZER

31

The evaluation of our novel model was carried out by comparing with

MovieLens, Pinterest, and Yahoo datasets on different scenarios. We applied the

near approaches which are popular algorithms in literature for the benchmark. Since

our model is a heuristic approach, the recommended items are changed during the

sessions, but we attempted to maintain the relevance and satisfaction of these items

with the user heightened. The model we suggested needs a one-spatial vector for

pheromones instead of two-dimensional pheromone graphs so that there become a

decrease in the number of ants walked. AcoRec is also an algorithm suitable for

parallelization with row-based user recommendations and ants running on multiple

processors.

3.1.5. Stochastic Approach of AcoRec

AcoRec's constructs as a vector pheromone model can be easily adapted to

a session or ongoing system for a user and try to predict users' interest in items using

a Bayesian approach based on their previous clicks and adjust the user-based hyper-

parameter to maximize the expectations.

In AcoRec, the probabilistic transition rule for the users, selected by ant k

who mimics user u at t time is given in Eq. (3.6),

where, 𝜏(𝑢)𝑡 is equal to the pheromone values at t time on items for user u,

𝜂 is the heuristic between the items by selected input model, α is the pheromone

regularization parameter and 𝛽 is the regularization parameter to adjust the heuristic

model. These parameters determine the priori information of the items for users, and

it is similar to the prediction of item-based models in general. Item-based models

predict user scores for items in a primary way like in Eq. (3.7),

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢) = 𝜏(𝑢)𝑡

∝
∗ 𝜂𝛽 (3.6)

3. MATERIALS AND METHODS Hakan YILMAZER

32

Let S be an m x m item similarity matrix and ru is a set of m items on which

the user clicked. It is shown as ru = [ru1 , ... , rum]. If we accept the clicked items

that users taste before by the means of pheromone traced items for users, AcoRec

denotes ru vector as pheromone vectors and S as heuristic information between the

by-items for further operations. We can also assume that pheromones could be

carried by ants from (mimicking users) items to items.

In this situation, to construct posteriori pheromone vectors, we pick the rows

of the items that the user clicked before from the item-item similarity model (column

values will also be the same in symmetric matrices if it is a Hermitian matrix) and

compose them into a low-rank vector to form the LP-norm from the columns of this

subset matrix. The norms of the user clicked items means the user’s actions as a

pheromone vector (prior probabilities), and it is similar to the behavior of social

networks. This is an initial pheromone interpolation, but we do offer a development

that does not contradict the intuitive principles of the ACO algorithm. Priori

pheromone values based on the LP-norm of clicked items gave good results,

especially for recall values (see Section 4.1). Let xu = [xu1 , ... , xuq] is a subset

vector of ru which contains all clicked items belonging to user u, and q is the clicked

item count. The formula for the LP-norm of these clicked items is shown below:

where Su is a subset matrix of S that only keeps the xu element rows which

are clicked items of user u, S item-similarity model, i is the column id in the item

similarity model, and m is the total item size. In Eq. (3.8), when the p value is 1 this

predictions(u) = r𝑢 ∗ S (3.7)

𝐿𝑝(r𝑢) = ||𝑆𝑢𝑞∗𝑚||
𝑝

= ∑∑ 𝑆(𝑗, 𝑖)
𝑞

𝑗=1

𝑝
𝑚

𝑖=1

 (3.8)

3. MATERIALS AND METHODS Hakan YILMAZER

33

means L1-norm, and if the p value is equal to 2 it is equal to L2-norm also known as

Euclidean Space. To amortize the LP-norm vectors with the original clicks to infer

how the similarity model responds to the user knowledge, we used Binary-Cross-

Entropy (BCE). BCE is generally a utilizer as a loss function in classification tasks,

but we applied it as a regularization for each value in the norm vector. The

regularization of user clicked items are proven on-time estimate formula is given in

Eq. (3.9),

where 𝜏(𝑢)𝑡 is the pheromone value of the items for user u at t=0 time, 𝑟𝑢

is a binary vector with 1s if the user clicked item i and 0 otherwise. From Eq. (9) we

discarded the unclicked items, to fill pheromone with only clicked items and

optimized with below Eq. (3.10),

where rui is user click information about an item i for user u, if a user clicked

item i its value is 1, otherwise 0. Clicked item values amortized with Lp-norm values

and user pheromone vector initialized with clicked item information only. A constant

parameter initialization for the pheromones might be a marginally worse start for the

optimal solutions because stagnation could act on more distant solutions. Pheromone

initialization is useful for preventing stagnation, which is one of the main challenges

in ACO algorithms (Dorigo & Gamberdella, 1997).

 In the Ant Colony Optimization, the extremely significant influence

provoking randomness in the search space is the pheromone model (Dorigo &

Gambardella, 1997). Initial pheromone values for user clicked items are estimated

𝜏(𝑢)𝑡 = 𝑟𝑢 ∗ log(𝐿𝑝(r𝑢)) + ((1 − 𝑟𝑢) log(1 − 𝐿𝑝 (r𝑢)) (3.9)

𝑟𝑢𝑖 = {
1, 𝑖𝑓 𝑢𝑠𝑒𝑟 𝑐𝑙𝑖𝑐𝑘𝑒𝑑 𝑖𝑡𝑒𝑚 𝑖,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.10)

3. MATERIALS AND METHODS Hakan YILMAZER

34

by Eq. (3.6), Eq. (3.8), and Eq. (3.9). In Eq. (3.6) the α parameter adjusting the

tendency of pheromone values in ACO models and the β parameter choice, which

controls the heuristic knowledge of the model are conditions that affect the profit of

the model (Stützle et.al., 2011). After initializing the AcoRec pheromone values with

the previous clicks of the user, we fixed the α parameter with α=1, which determines

the pheromone bias in our model, and worked on the adjustment of the β parameter.

We figured out that regulating heuristic knowledge with β and reducing the effect of

bias increase the pheromone effect, or vice versa, decreasing the pheromone effect

and increasing the tendency of heuristic knowledge. Parametric scale on heuristic

knowledge, the overthrow of Euclidean norm data to popularity has been used in

many algorithms, and successful effects have been seen (Nikolakopoulos et.al.,

2017; Frolov & Oseledets et.al., 2019; Paudel et.al., 2016). The scaling on the

heuristic S matrix defined with Eq. (3.11)

where β is the scaling parameter and {‖𝑠1‖𝐹 , . . . , ‖𝑠𝑚‖𝐹} are Frobenius norm

(L2-norm) of each column in the S. The scaling parameter is used to reduce and

increase the effect of high norm values in popular items. If we re-insert the

pheromone values, we obtained the scaled Heuristic model by Eq.(3.9) and Eq.(3.11)

in Eq. (3.6) and we got the following formula Eq. (3.12),

In our experiments, we observed that (see Section 4.1), the maximized β

parameter search would reflect the user's personality. When the β parameter has a

𝑺 = [

𝑠11 𝑠12 … 𝑠1𝑚

𝑠21 𝑠22 ⋯ ⋮
⋮ ⋮ ⋱ ⋮

𝑠𝑚1 𝑠𝑚2 … 𝑠𝑚𝑚

] ∗ [

‖𝑠1‖𝐹 0 0 0
0 ‖𝑠2‖𝐹 0 0
0 0 ⋱ 0
0 0 0 ‖𝑠𝑚‖𝐹

]

𝛽

 (3.11)

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢) = 𝜏(𝑢)1𝑚

∝
∗ 𝑆𝑚𝑚 ∗ Diag({‖𝑠1‖𝐹, . . . , ‖𝑠𝑚‖𝐹})

𝛽 (3.12)

3. MATERIALS AND METHODS Hakan YILMAZER

35

negative value, rare items can also be highlighted for the user. This parameter could

vary for individual users on the system according to their taste.

The parameter that had the best fitness value could become a scale factor for

the users in our study. However, discrete probabilities may not hand over certainty

while searching a hyper-parameter. That’s why the optimization dilemmas of

continuous fields have redirected into a new direction for ant colony optimization

research. In the continuous domain, instead of running a discrete probability

distribution, a pdf is employed to sample the probabilistic hyper-parameters. One

can think of a node in a conventional ACO problem as a local parameter in the

Gaussian Distribution. We discussed finding the maximized value of the β parameter

in the ACOℝ domain and explained our version of ACOℝ about finding the ideal β

parameter in Algorithm 2. Sensitively neighboring points in a continuous domain

offer close results, and we can investigate the maximized β parameter on a

continuous field in a stochastic way. In our model, each ant samples a pdf in the

Gaussian Distribution, and these points are seen as candidate β parameters. By using

the sampling from G(x) = N(μ,σ) in the beginning, we initialize μ=0, σ=1, and each

ant samples a random point as β. Then each ant's probability values are estimated for

the current iteration with Eq. (3.12). AcoRec uses a non-linear normalization

function for each ant's probability vector and ordered descending and trimmed first

N item scores in each vector. If the validation items are in these trimmed probability

vectors, we binarized activation scores of them by keeping their position and

discarding others as zero. As an evaluation for the ant solutions, AcoRec uses R-

Score@100 for evaluating the best β for the validation items in Eq. (3.14), which we

explained in Section 3.4 and we cloned probability vectors by multiplying the

position scores of R-Score@100. Now we have two multi-class matrices, denoting

probability vectors and evaluation metrics' hit values which were synchronized with

probability. To estimate the likelihood of the ant solutions, we used a similar

approach in Eq. (3.9) as a fitness function. We used matched values from the metric

3. MATERIALS AND METHODS Hakan YILMAZER

36

as labels yk and ant solutions for predicted probability values p(yk) for ant k in Eq.

(3.15) for every ant solution.

With the fitness function in Eq. (3.16), we sort the ants in descending order

according to their solution quality. We used this process to initialize the solution

matrix in ACOℝ. Solution space rows are equal to ant_size in our approach and each

row has a sampled β value cell and a cell that keeps the fitness value. After

constructing the solution iteration process, we trained the best hyper-parameter

search on the user evaluations. At each iteration, according to the current archive of

the solutions, μ and σ are to be estimated by the current population and with their

weights. This process shifts the distribution of the best quality μ and β at the same

time. The core of ACO algorithms depends on pheromone evaporation. These

phenomena are implemented in our algorithm as the shifting and squeezing

distribution. In each iteration, the deviation of the distribution is tightened. Each ant

discovers β from the new N(μ,σ) Gaussian distribution, and these β values are sorted

𝒎𝒂𝒙(𝑢) = max
1≤𝑖≤𝑁

 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢) (3.13)

𝐲𝒌(𝒊) = {

1

2
𝑗−1
𝛼−1

 , 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑖 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑠 𝑗 𝑖𝑠 𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑙𝑖𝑠𝑡

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.14)

𝐩(𝐲𝒌) = max
1≤𝑖≤𝑁

 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑡
𝑘(𝑢)) (3.15)

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑘 = ∑𝐲𝒌(𝒊) ∗ log(𝐩(𝐲𝒌(𝒊))) + ((1 − 𝐲𝒌(𝒊)) log(1 − 𝐩(𝐲𝒌(𝒊)))

𝑁

𝑖=1

 (3.16)

3. MATERIALS AND METHODS Hakan YILMAZER

37

by their qualities and we construct an iteration solution archive and merge it with the

main solution archive. Then all solutions are sorted and the best top-N solutions

according to their weight are chosen for the next iterations. At the end of iterations,

the best quality β or the mean of solution archive is chosen for the Eq. (3.16) user

predictions.

Algorithm 2: AcoRec

Inputs: Item Similarity Model S € Ɍm*m , Click vector of user ru € Ɍ1*m

Scale ← Frobenius norm of columns of S, Diag({||s1||F,...,||sm||F)

μ ← 0

σ ← 1

tol ← 1e-4

as ← ant size and archive size

it ← iteration count

Output: Predictionsu ← Predictions of user u for items

Compute Lp(ru) from Eq.(8)
Construct SolutionArchive(1...as) ← {}

for i ← 1,2, …,it do
 for k ← 1,2, …,as do
 // random β variable using the Gaussian distribution with mean μ and deviation σ
 rβ = N(1|μ,σ)

 // pheromones for each ant, which is given in Eq.(12)
 Pheromonesk =Lp(ru) * S * Scalerβ
 // Fitnessk value for each ant using Eq. (20)
 if Fitnessk > SolutionArchive(as) then
 SolutionArchive(as) = Fitnessk

 sort(SolutionArchive)
 endif
 endfor

 //Pheromone update strategy
 μ ← μ(SolutionArchive)
 σ ← σ(SolutionArchive)
 if σ < tol then
 exit
 endif
endfor
// Best Solution
β = μ(SolutionArchive(1))

return Lp(ru) * S * Scaleβ

Figure 3.3. Pseudocode for AcoRec

3. MATERIALS AND METHODS Hakan YILMAZER

38

3.1.6. Heuristic Base of AcoRec and Item Based Model Selection

The distance between nodes is crucial for ants to choose their later positions.

In the TSP problem, it is beneficial to have a short distance. In the ACO-based

recommender systems, the distance between nodes is represented by the

similarity/proximity between items (or users). For this similarity, distance

measurements in inter-nodular Euclidean space are preferred. We designed our

model as low-dimensional and determined the user’s interest in items as heuristic

data rather than considering the distance between nodes. The relation between items

is controlled in many respects. These relationships could be in various forms such as

similarity, proximity, dissimilarity, or correlation, and can be shown by specific

methods. CF Based Similarity Models acknowledge the collaborative benefit of the

items. CBF Similarity models zoom in on related items dealing with the metadata

(demography, mood, etc.) of the items. Graph Similarity models are based on the

relations in the user-item network structure. Time-Based models track the time

sequences of the purchase for the items. Latent-Factor Based Models extract hidden

components from low-rank computations. Demographic Models care about

collaborative behaviors in the same geographic locales.

In this study, we evaluated three well-known item-based similarity measures

for computational simplicity and popularity; Let Sm*m be the similarity matrix, i and

j be the two items, vi and vj be the column vectors of these items.

Dot Product (Dotp); Dot-product similarity of two items is equal to the inner

product of these item vectors.

Cosine (COS); The Cosine similarity of the two items is the angle between

their rating vectors. It is estimated by the inner product of these item vectors by

dividing by vector norms multiplication.

SDotp = |𝑣𝑖 ∩ 𝑣𝑗| = 𝑣𝑖⃑⃑⃑ ∗ 𝑣𝑗⃑⃑⃑ (3.17)

3. MATERIALS AND METHODS Hakan YILMAZER

39

Jaccard (JAC); The Jaccard similarity between two items is defined as the

ratio of the number of users that co-rated items based on the number of users who

rated at least either i and j items.

3.2. A Deterministic Perspective, z-scoREC and ImposeSVD

To overcome RSs challenges, the CBF or CF methods have been applied to

the recommendations in sparse datasets in various studies (Adomavicius & Tuzhilin,

2005). The application of CF method has shown successful results with Singular

Value Decomposition (Golub & Van Loan, 2013), which is one of the low latent

factor approximation techniques based on matrix factorization.

The effectiveness of SVD-based models results from their ability to uncover

latent factors between users and items, which are hard in traditional nearest-neighbor

approaches (Sarwar et.al., 2000). But SVD-based models have several limitations

including high costs for estimations and difficulty with the algebraic calculations

because of the incomplete matrices. As a result of developing hardware technology

and optimized linear algebra libraries, the use of algebraic SVD-based models has

become popular in RS as a result of their successful results in providing

recommendations.

One of these SVD-based models incorporated in the RS technologies is the

PureSVD model developed by Cremonesi et al. (2010). The PureSVD model offers

low-rank factors estimated with SVD after empty cells in the user-item matrix are

SCos =
|𝑣𝑖 ∩ 𝑣𝑗|

√|𝑣𝑖|∗|𝑣𝑗|
 =

𝑣𝑖⃑⃑ ⃑∗𝑣𝑗⃑⃑⃑⃑

||𝑣𝑖⃑⃑ ⃑||∗||𝑣𝐽⃑⃑⃑⃑ ||
 (3.18)

SJac =
|𝑣𝑖 ∩ 𝑣𝑗|

|𝑣𝑖 ∪ 𝑣𝑗|
 =

𝑣𝑖⃑⃑ ⃑∗𝑣𝑗⃑⃑⃑⃑

||𝑣𝑖⃑⃑ ⃑||+||𝑣𝑗⃑⃑⃑⃑ ||−𝑣𝑖⃑⃑ ⃑∗𝑣𝑗⃑⃑⃑⃑
 (3.19)

3. MATERIALS AND METHODS Hakan YILMAZER

40

imputed as ‘zero’ at the outset. One of the advantages of the PureSVD is its easy

implementation with linear algebra libraries written in many programming

languages.

Many researchers have used the PureSVD as a benchmark algorithm

(Cremonesi et.al., 2010; Kabbur et.al., 2013; Cheng et.al., 2014; Wu et.al., 2016;

Kang et.al., 2016; Nikolakopoulos et.al., 2017; Christakopoulou et.al., 2018;

Nikolakopoulos et.al., 2019; Frolov & Oseledets, 2019) and agreed on the fact that

the PureSVD with its basic structure is a successful non-parametric model to be

applied to RSs.

However, the inefficiency of the PureSVD in cold-start situations has led

researchers to investigate different solutions and improvements in the model

(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019; Frolov & Oseledets,

2019).

With regards to the cold-start problem, EigenREC developed by

Nikolakopoulos et al. (2017) produced faster and more accurate results in high-

dimensional data by replacing the SVD-based model of the PureSVD with the

Eigenvalue Decomposition.

The HybridSVD model (Frolov & Oseledets, 2019) has successfully

exploited the PureSVD's disadvantages stemming from CF by embedding side-

information to provide better solutions to cold-start and sparsity problems.

Another research (Christakopoulou et.al., 2018) also shows that the

PureSVD is also suitable for parallel operations in high-dimensional data with the

Golub-Kahan-Lanczos Bidiagonalization method (Golub & Van Loan, 2013).

The main focus of all these studies is to improve the effectiveness of the

PureSVD model in different problems encountered in RSs without disrupting its

simple structure. However, as Cremonesi et al. (2010) stated ‘there are still several

unexpected ways that may improve PureSVD'. One of the ways they suggest is to

‘optimize the value imputed at the missing entries' instead of assigning zero as a

value.

3. MATERIALS AND METHODS Hakan YILMAZER

41

Ghazanfar and Prugel (2013) also suggested that a particular amount of

imputation taken with care could enhance the quality of recommendations.

Adding to the line of the studies improving the PureSVD model, this study

aims to suggest novel models for the sparse datasets that will improve the

recommendations for cold-start users and provide long-tail items in the

recommendation lists by finding out good-working imputing strategies.

In these models;

 We propose a novel basic asymmetric item weight matrix based on

Gram-matrix. Unlike conventional similarity methods, we undermined

symmetry to catch various relations between the elements. Gram-matrix

was shifted with L1-norm of items that were propagated from the item

matrix. The shifting process penalized poor ratings, changed the

negative entries to zero, and broke the symmetry in the Gram matrix.

The parameter for shifting could adjust the different relations without

disrupting the identity of mass data. Later, we employed the Z-Score

normalization, ignored negative values, and found a disagreement

between the non-symmetric weight matrix and the regular Gram-matrix.

The shifting and normalization were element-wise; and thus, were not

heaped and time-consuming. With the cooperation of this fresh weight

matrix, we designed a baseline prediction matrix. We called this model

z-scoREC. The imposed matrix, reproduced from z-scoREC,

maintained new relationships between the users and the items but yet

sparse, which makes it computable for the big data.

 We used z-scoREC predictions toward the imposed matrix. But before

decomposing this imposed matrix we came up with some normalization

and regularization processes on these priori predictions. After

decomposing low-rank latent factors with SVD libraries from this

imposed matrix, we estimated a new enriched prediction matrix and

3. MATERIALS AND METHODS Hakan YILMAZER

42

acquired valuable top-N recommendation lists for users. We called this

method ImposeSVD.

 When we evaluated the ImposeSVD and the z-scoREC on common

popular datasets for the cold-start scenarios and long-tail item

recommendations using the well-known evaluation metrics, we found

that our models outperformed similar state-of-art methods. Additionally,

z-scoREC surprisingly gave closer results to ImposeSVD by using it in

the basic item-based prediction model.

3.2.1. Notations for z-scoREC and ImposeSVD

In the rest of this section, vectors and matrices are denoted in bold letters.

We used bold capital letters for matrices and bold lowercase letters for vectors. In

addition, u, v represent users and i, j represent items. We denoted the user-item rating

matrix as R. The dimension of R is n x m, where n is the number of users and m is

the number of items. The rating is given by user u to item i is denoted with rui in R.

R̃ represents the rating prediction matrix and rũi denotes the predicted rating score

of the user u for item i. Ŕ represents the impose matrix used for embedding to the R.

Ř represents the decomposition matrix of R or Ŕ. Ʀ denotes the final prediction

matrix that is the union of the original R and Ŕ matrix, ʀu represents the row vector

of user u in Ʀ.

Item-based CF models aim to predict users’ ratings for a specific item by the

dot product of the user selections with item-item weights. For the estimation of the

R̃, the common formula of the prediction matrix is given in Eq. (3.20)

R̃ = RK (3.20)

where R ∈ Ɍn*m could be a binary purchase (or a ranged scalar rating matrix,

or a listen to count) matrix, K ∈ Ɍm*m is an item-item weight matrix that defines the

3. MATERIALS AND METHODS Hakan YILMAZER

43

proximity of the items between themselves. Establishing an item-item weight matrix

is essential for the model’s progress and this model must handle the typical

challenges in RSs. It is also important for this matrix to be satisfying and computable

with parallel measurements.

K could be a similarity matrix determined by correlation methods such as

Dot-Product, Cosine-based, Jaccard, or Pearson-correlation. These correlation

methods are adopted in many CF, CBF, or Hybrid models (Sarwar et.al., 2001;

Deshpande & Karypis, 2004; Frolov & Oseledets, 2019). For instance, the itemKNN

method was used by Deshpande and Karypis (2004) to find out the most similar k

items for each row in the item-item similarity matrix estimated by Cosine-Similarity

or Conditional Probability-Based Similarity. The researchers dismissed all items in

every column except for the k items and constructed a prediction matrix for top-N

recommendations for each user in the R matrix. The itemKNN method; however,

suffers in sparse datasets and cold-start situations because it only considers the

existing collaborations. Also, k represents the number of neighbors or the threshold

value and its optimal could differ between the items in the same dataset. As a result,

the same k value along rows and columns can be overfitting or underfitting for

different users or items (Ning et.al., 2015). Another popular approach, SLIM trained

K as a coefficient matrix and made predictions with the help of linear regression

models such as ElasticNet and Lasso (Ning and Karypis, 2011). Kabbur et al. (2013)

created two item factors with the model they called FISM with help of loss functions

by sampling the previous clicks users and training this obtained data. Fouss used

graph relations based on kernel similarity methods to define suitable item-item

weight matrices (Fouss et.al., 2006). In addition to these, the PureSVD and its

generalized methods constructed item-item weights from latent factors of items

based on the use of low-rank item factors estimated by the decomposition algorithms

(Cremonesi et.al., 2010; Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019;

Frolov & Oseledets, 2019).

3. MATERIALS AND METHODS Hakan YILMAZER

44

3.2.2. z-scoREC Model Definition

In our model, we proposed:

 A sparse but qualified K weight matrix to generate efficient

recommendations with a low cost for huge data.

 An asymmetric K weight matrix to capture individual relations between

items without needing explicit data.

 To trivialize meaningless values by naturally, on the contradictory of

neighborhood approaches.

 A less parametric model which is trainable and adaptable easily.

The dot product of users and items vectors is the simplest way to obtain an

item-item similarity matrix. It is also called co-citation, Gram-matrix and in the

simple form, it is estimated as in Eq. (3.21)

K = RTR (3.21)

where R ∈ Ɍn*m and R>=0, then K is a symmetric, positive, and semi-definite

matrix. In a real scenario, R is mostly sparse and includes null values, which are

insufficient for the Gram-matrix.

 Assume that our R ∈ Ɍn*m matrix has binary values if a user clicked a specific

item and zero values if not clicked. Then, we compute the item-item similarity matrix

as in Eq. (3.22), by multiplying RT with the element-wise shifted version of R matrix

where λ is a real value in the range [-1,1] and e is an m*1 unit column vector having

1 in all elements to perform element-wise shifting operation.

K = RT(R – λe) (3.22)

3. MATERIALS AND METHODS Hakan YILMAZER

45

This shifting (R – λe) subtracts λ from all elements in R and transforms

values of R so that matrix elements become real-valued, and non-clicked item ratings

become negative.

For a given R, if we transpose RTR, then (RTR)T = RT(RT)T = RTR, thus we

know that Gram-matrix RTR is symmetric with a primitive rule of equality of its

transpose. However, in Eq. (3.22) we multiply RT with the shifted version of R, and

if we apply distribution rule to Eq. (3.22) we obtain Eq. (3.23), and we can say that

the K matrix cannot guarantee to be symmetric and could be asymmetric if the matrix

dimensions are not equal (mn). This asymmetry provides the use of new relations

in the weight matrix. When we shift the R matrix with λ, R – λe grew into a dense

matrix that leaves null values, and computation of Eq. (3.22) became extremely

costly. Therefore, we use Eq. (3.23) to estimate K.

K = RTR – RTλe (3.23)

We obtained an improved formula and separate the shift operation from

Gram-matrix estimation. The diagonal d = Diag(RTe) yields the column L1-norms

of R (Fouss et.al., 2016) and we get Eq. (3.24).

K = RTR – λ*d (3.24)

where vector d is multiplied by λ and subtracted from each column of the

Gram-matrix.

LEMMA 1. If R ∈ Ɍn*m is a binary interaction matrix consisting of 1s and

zeros, RT is the transpose of R and e ∈ Ɍm*1 is full of 1s vector with the column size

of RT, and not for only square matrices also includes non-square matrices then,

Diag(RTe) = Diag(RTR)

PROOF. Proof of Lemma 1 is presented in Appendix A.

3. MATERIALS AND METHODS Hakan YILMAZER

46

By using Lemma 1, if d = Diag(RTe), then d = Diag(RTR) and we obtain Eq.

(3.25).

K = RTR – λ*Diag(RTR) (3.25)

Now if we denote RTR as G Eq. (3.25) can be written as in Eq. (3.26)

W = G – λ*Diag(G) (3.26)

In a structure view, the shifting operation on the second matrix (which is the

same as the matrix for the Gram-matrix estimation) is performed as row-based

degree shifting on Gram-matrix. The shrinkage ratio is obtained by λ and if λ=0, our

W matrix is pure Gram-matrix. It is also established that the regularization parameter

λ between [-1,1] behaves as a penalizing term on neighborhood degrees. With λ=1

value, W is transformed into an unsigned Laplace Operator Matrix, which is a

derivative of the Laplacian Matrix (Fouss et.al., 2016, p.18). We should notice a

revised weighted Laplacian Matrix, as recognizing the Gram-matrix like an

adjacency matrix of an undirected weighted graph. Laplacian operators, especially

as a model used in image filtering, prevent noise from becoming dominant in the

data. After adding noises to our data by shifting it, then we applied the whitening

process. When we hold our model as a transparent auto-encoder system with non-

hidden layers, we obtained W by including noise to the Gram-matrix in the first

layer, and we demand to remove the noise from the data in the second layer. For

kernel normalization, many methods are used, such as vector normalizing, vector

centering, Z-Score, or Tanh estimators. As pointed out in the EASER article, many

CF models are vanilla auto-encoder implementations (Steck, 2019).

Z-Score is an extremely impressive normalization process when handled

with the real data set. Z-Score precisely eliminates noise from the data and reduces

3. MATERIALS AND METHODS Hakan YILMAZER

47

variance, which is preferable in regression analysis. The primary formula of Z-Score

normalization is given in Eq. (3.27).

K = (W–𝝁) / 𝝈 (3.27)

where 𝝁 is the column means of W and 𝝈 is the column-based standard

deviations of W. Final step of the estimation produces an asymmetric dense matrix

with lots of negative values if λ0. One of the reasons we adopt Z-Score

normalization is that, at the end of the normalization, the values are excluded by

holding an optimal threshold position, as the values can be observed in the [-∞, +∞]

range. The dense coefficiency matrix has rich relations but performance issues with

evaluation costs. Removing these negative values will keep sparsity that eliminates

insignificant relations according to our model.

Z-Score performs the whitening process on the weight matrix in our model,

on autonomous columns, in parallelizable and with a low-cost estimation. In deep-

learning models, a similar technique to Z-Score, which is mentioned Batch-

Normalization, enables faster training time of the network and provides stable results

for layers. In addition, we can consider it as a linear regularization model similar to

SLIM, since we apply operations on Gram-matrix and normalization matrices as

column-based regression and vector operations independent of each other.

Contrary to the SLIM (Ning and Karypis, 2011) and EASER (Steck, 2019)

models, we don’t drop diagonals and we observed that the zero diagonal weight

matrix does not affect the results for our model in the experiments. The prediction

model is based on the generalized Eq. (3.20) formula. R̃ is the prediction matrix for

all users. Fig. 3.4 presents an example that shows how our proposed method

calculates weight matrix K, which is used for the estimation of the prediction matrix.

3. MATERIALS AND METHODS Hakan YILMAZER

48

Figure 3.4 The architecture of the proposed item similarity matrix

As illustrated in the example in Fig. (3.4), R interaction matrix consists of

1s, and null values are considered as zero. We perform the RTR to create the G item-

item similarity matrix from the R matrix. It can be recognized that each diagonal

element gii in the G matrix corresponds to the sum of the elements in the associated

column i in the R matrix. That is, the L1 norm of each column i of the R matrix is

equal to each diagonal gii element of the G matrix. We obtain the W matrix by

subtracting λ*gii from each element in row i of G matrix. As an example, let λ be

equal to 0.5, then 0.5*3 which is equal to 1.5 is subtracted from the elements in the

1st row, 1 is subtracted from the elements in the second row, etc. The W matrix is

Gram-matrix at λ=0 and Laplacian-matrix at λ=1. In the W matrix, μ defines the

column means and σ defines the column standard deviations. The K matrix is

computed by applying z-score normalization to each column of W matrix. After the

normalization step, all negative values are converted to 0 in the K matrix as in Fig.

(3.4). We called this method z-scoREC, and Algorithm 3 given below summarizes

the steps applied to compute the K matrix, which is then used to estimate the user

ratings R̃ for the items by employing Eq. (3.20).

3. MATERIALS AND METHODS Hakan YILMAZER

49

Algorithm 3 : z-scoREC

Input: Ratings Matrix R ∈ Ɍn*m, λ shrinkage value

Output: K ∈ Ɍm*m weight matrix

// Gram-matrix, O(n*m2)

1: G ← RTR

// subtraction of matrix elements are elementwise, O(m2)

2: W ← G – λ*Diag(G)

// column-means O(m2), column-std. deviations O(m2) and

// Z-Score computation for each element, O(m2)

3: K ← Z-Score(W)

// controlling every item because of asymmetric matrix, O(m2)

4: for i,j ← 1,2, …,m do

5: if [K]ij ≤ 0 then [K]ij=0

6: end

7: return K

Figure 3.5 Pseudocode for z-scoREC

3.2.3. Computational Complexity of z-scoREC

 As it can be seen from Algorithm 3, the overall time complexity is O(n*m2).

In Line 1, we estimated RTR which is the matrix product of two m*n and n*m

matrices that can be computed in O(n*m2) time, and we get the Km*m weight matrix

between items. Note that the transpose of R matrix can be computed in at most

O(n*m) time. In Line 2, element-wise multiplication O(m2) and subtraction O(m2)

are applied for K, which corresponds to the O(m2). In Line 3, we applied Z-Score

normalization to the W weight matrix. In these processes; if we analyze a column,

first we find the sum of the column in O(m) time and we divide it into number of

elements in the column in O(1) time. Computing the mean of each column is done

in O(m) time, and for the whole matrix, this process takes O(m2) time. In finding the

standard deviation of a column we subtract each element of the column from the

column mean value then square the difference and sum all differences with O(m)

time, dividing it by the element count of the column and getting the root square is in

O(1) time. Finding standard deviation is applied for all columns and this corresponds

to the O(m2) time. For Z-Score normalization, we subtract every element from its

3. MATERIALS AND METHODS Hakan YILMAZER

50

column mean value and then divide this result by its column standard deviation

value. Z-Score normalization of all elements in the matrix takes O(m2) time. In line

5 we removed negative values. This element-wise operation is done in O(m2) time

complexity. In line 7, we multiply our novel weight matrix K with the original rating

matrix and we got predictions. This process is made in O(n*m2) complexity for n

users and m items.

3.2.4. ImposeSVD: Imposing SVD for cold-start recommendations

ImposeSVD is our proposal to estimate user ratings for items in cold-start

cases. In this method, we apply SVD to the estimated rating matrix R̃ that is imputed

by using the weight matrix K computed by our z-scoREC algorithm to make a better

recommendation for cold-start cases. The details of our proposal are explained in the

below subsections.

3.2.5. SVD Analysis

Let R ∈ Ɍn*m be a user-item rating matrix. In SVD based recommender

models, the main idea is to decompose the R user-item matrix into low-rank matrices

Pn*f and Qf*m where f<m and f<n. Let P be a matrix of ‘user-factors’, and Q is a

matrix of ‘item-factors’. The basic prediction matrix R̃ is formed from user factors

and item factors and it can be computed as shown in Eq. (3.28);

R̃ = PQT (3.28)

PureSVD imputes null values with zeros in R and decomposes the f

dimensional latent factors of the R matrix with n users and m items. When we

decompose R to the singular values and unitary matrices, with the help of advanced

linear algebra libraries, we get U, Σ, and V matrices from Eq. (3.29),

3. MATERIALS AND METHODS Hakan YILMAZER

51

Ř ≌ Un*f Σf*fVT
m*f (3.29)

The matrices U and V are orthonormal matrices and Σ contains f singular

values. Consider that rows in the R matrix denote users, and columns are items, then

in the decomposition of the R matrix, U is user factors because of the similar

dimensions, and V is the item factors matrix. From Eq. (3.28) and Eq. (3.29), we

have the following equations Eq. (3.30) and Eq. (3.31);

P= UΣ, Q=V

(3.30)

Ř = UΣVT = PQT (3.31)

where U and V are orthonormal matrices, and then we can easily get Eq.

(3.32)

P = UΣ = RQ (3.32)

Replacing UΣ in Eq. (3.29) with RQ in Eq. (3.32) gives Eq. (3.33).

R̃ = RQQT (3.33)

where R̃ is a simple prediction matrix for all users. Predictions of user u,

which is rũ, could be estimated with the user's row vector in R with Eq. (3.34)

rũ = ruQQT (3.34)

3. MATERIALS AND METHODS Hakan YILMAZER

52

In Figure 3.6 we show that how the PureSVD makes predictions. PureSVD

imputes null values as zeros and decomposes this completed matrix with low ranks.

PureSVD only takes the item factors and there is no need for the U for the

predictions. That is one of the most persuasive features of the PureSVD algorithm

because, for new users, there is no need to re-decompose R.

Figure 3.6 Rating prediction example with a simple matrix for PureSVD algorithm

However, analyses about PureSVD show that it's insufficient in cold-start

and data unavailability situations. EigenREC showed that the efficiency and quality

of PureSVD depend on the precision of the item factors from the decomposition

(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019). The authors concluded

that "the PureSVD algorithm's recommendation model is based on the induction of

recommending similar items the user previously liked", and meanwhile the

connections in the QQT matrix, which are the latent component factors of PureSVD,

could be obtained from the Eigen Decomposition of the RTR matrix. Another

approach, HybridSVD, has suggested that embedding side-information could

recover PureSVD in cases where it is inadequate (Frolov & Oseledets, 2019).

3. MATERIALS AND METHODS Hakan YILMAZER

53

3.2.6. Motivation behind ImposeSVD

We figured out how the PureSVD handles and produces recommendations

when the sparsity decreases in the same dataset. Our evaluation scenario is to

simulate the evolution of a recommender system with time. Based on this scenario,

we used a common dataset; namely, MovieLens 1M (Harper & Konstan, 2015) for

movie recommendations. This dataset has 6040 users, 3952 items, 1M ratings, and

about 95% sparsity as shown in Table 1. We denoted this dataset as Tr1. Then, we

randomly selected 66% of the ratings from Tr1 and named this subset Tr2. We

continued to create subsets by selecting the randomly chosen 66% of the ratings from

the parent subset until we got four subsets. At the end of the process, we got related

coherent five training sets named Tr1 Tr2 Tr3 Tr4 Tr5 in which each set

subsequently subsumes the following sets. Then, we created a test set consisting of

full ratings for users (maximum rating) from the smallest training set (Tr5) and

removed this test set from all training sets. We calculated the R̃1, R̃2, R̃3, R̃4, and

R̃5 prediction matrices from their own training sets by using Eq. (3.33) and adopted

the evaluation method in (Cremonesi et.al. 2010) to evaluate the quality of the top-

N recommendations (shown as @N in Fig. 3.7) in the prediction matrices. To

estimate the quality of the lists at different @N values, we used normalized

Discounted Cumulative Gain (nDCG) (Shani & Gunawardana, 2011). Details about

evaluation methods and metrics used in this study are explained in Sections 3.4 and

3.5.

Following all predictions and tests in different sparsity levels, we observed

that as sparsity increases, the nDCG value decreases for all @N values as shown in

Fig. (3.7). For example; in the ML1M dataset, Tr2 was less sparse than its subset,

Tr3. We could see that the Tr2’s nDCG result is better than the results of its subsets.

As the length of the top-N recommendation list increases (it is @N in Fig. 3.7), the

nDCG value rises, but as the sparsity expands, the nDCG values of all @N values

do not converge successfully and the performance decreases.

3. MATERIALS AND METHODS Hakan YILMAZER

54

Figure 3.7. Performance of the PureSVD algorithm in different sparsity percentages

of MovieLens 1M dataset evaluated with nDCG metric

 In live recommender systems, present states of the user-item interactions

should become the subspaces of future states. Based on the use of the PureSVD, we

conclude that the impact of the latent factors of the rating matrix could be enhanced

with the recent relations that can be created virtually. Therefore, in our new model,

we aim to decrease sparsity to make better recommendations.

3.2.7. ImposeSVD Model Definition

In this study, we have developed a model to create new virtual connections

in the referral system. With the help of the new predicted relations, system sparsity

could be decreased and the recent success of algorithms may increase. When we

estimate the impute matrix by using Eq. (3.20) with K created by the z-scoREC

algorithm, we get the R̃ predictions. Our goal is to impute users' missing ratings in

the original rating matrix R. So, we removed previously rated items in R by applying

Eq. (3.35) to obtain Ŕ. All we need was unrated items to scale the real rating values.

Tr1

95.53%

Tr2

96.97%

Tr3

97.96%

Tr4

98.62%

Tr5

99.06%

0

0.1

0.2

0.3

0.4

Sparsity

n
D

C
G

MovieLens 1M

@20

@15

@10

@5

@3

@1

3. MATERIALS AND METHODS Hakan YILMAZER

55

Ŕ = R̃⊙¬R (3.35)

In Eq. (3.35), ¬R is obtained by swapping all zeros and ones for their

opposite from the binarized R matrix. Finally, Ŕ represents new predicted values

that users have not previously interacted with them. Decomposition of the latent

factors in the Ŕ matrix might have caused the existing real evaluations to worsen.

Therefore, we did not apply any normalization process when calculating the S

proximity matrix. The impute values obtained in the Ŕ matrix might have been in a

different range than the actual rating values. So, we applied row-max normalization

before imputing the latest Ŕ matrix. Because users could have different rating ranges

in the impute matrix, we normalized each row by dividing its max value by the Eq.

(3.36) where L∞ was the norm in their row-vectors. Even small values in the Ŕ were

valuable, so we applied the exponential scale to make these values meaningful on

the actual rating scale. The method we applied here is to degrade the difference

between small and large values, as opposed to the process in Eq. (3.37). In this way,

we have ensured that unpopular predictions are noticeably impacted.

Ŕ = Ŕ / ||Ŕ||∞

(3.36)

Ŕ = exp[-1/ ŔT] (3.37)

With these normalization processes, we compressed the values to be imputed

into the (0,1) on the same range with the actual data. Then, we could merge our

impute matrix with the original matrix as shown in Eq. (3.38);

Ʀ = R + Ŕ (3.38)

3. MATERIALS AND METHODS Hakan YILMAZER

56

After imputing the R matrix, we got the final impute matrix Ʀ. Singular

Value Decomposition of the Ʀ was estimated via Eq. (3.39)

Ř ≈ ŪΣǬT (3.39)

As we explained before, Ū is user factors, Ǭ is item factors and Σ is singular

values of decomposition.

3.2.8. Generating Predictions

Similar to Eq. (3.33), our prediction formula with Ǭ factors obtained from

the Ʀ matrix was estimated as in Eq. (3.40)

R̃ ≈ ƦǬǬT (3.40)

The above equation differs from Eq. (3.33) because a row of the imposed

matrix for the user as ʀu is richer than the original user predictions. Algorithm 4

shows the basic steps of the proposed ImposeSVD method.

3. MATERIALS AND METHODS Hakan YILMAZER

57

Algorithm 4: ImposeSVD

Input: Ratings Matrix R ∈ Ɍn*m, λ shrinkage value, f low rank size

Output: R̃ ∈ Ɍn*m final prediction matrix

// Explained in Algorithm 1, O(n*m2)
 1: K ← z-scoREC(R, λ)
// Multiplying rating matrix with weight matrix, O(n*m2)
 2: R̃ ← RK
// Hadamard product with nonzero elements of R, O(n*m)
 3: Ŕ ← R̃⊙¬R
// Row-based normalization by infinity-norm of Ŕ, O(n*m)

 4: Ŕ ← Ŕ/||Ŕ||∞

// Element-wise exponential scaling, O(n*m)
 5: Ŕ ← exp[-1/Ŕ]
// Impose Matrix; element-wise sum, O(n*m)
 6: Ʀ ← R+ Ŕ
// Decomposition of Ʀ with f rank. Also, could be estimated via Golub-Kahan-Lanczos
Bidiagonalization, O(#nonzero(R) * f)
 7: Ř ← Un*fΣf*fQf*m

T

// Latent factors product for f rank, O(n*m*f + n*f)

 8: R̃ ← ƦQQT

 9: return R̃ ← ƦQQT

Figure 3.8. Pseudocode for ImposeSVD

As it can be seen from Algorithm 4, our method uses the imposed matrix Ʀ,

which keeps the original relations in the R matrix, but imposes new relationships for

the null entries in the original R matrix, to make predictions. Although our proposal

is an SVD-based method, it is quite different from other SVD-based methods that

are PureSVD, EigenREC, and HybridSVD:

i) PureSVD uses the original R matrix by changing null values to 0, however

our method uses the imposed matrix Ʀ for predictions.

ii) EigenREC applies scaling to item similarity matrix obtained from R and

changes all values in R matrix, however our method keeps non-null values in R but

imposes new values for null entries in R, therefore we update R matrix differently

from EigenREC.

iii) In our model, we use our z-scoREC method to compute the item

similarity matrix, however EigenREC employs Pearson, Cosine, or Jaccard

3. MATERIALS AND METHODS Hakan YILMAZER

58

similarity metrics and chooses the best metric for the dataset at hand to form the item

similarity matrix. Therefore, we reduce the number of computations to be made with

respect to EigenREC. iv) EigenREC uses the same prediction formula with the

PureSVD that employs the R matrix. Our model, on the other hand, uses the imposed

matrix Ʀ for making predictions.

v) Our model considers only user-item rating matrix R and does not require

additional information about users or items, however HybridSVD incorporates side

information of users or items in addition to CF.

3.2.9. Computational Complexity of ImposeSVD

 The algorithm for imposing predicted prior values into the original matrix

and the final prediction estimate is given in Algorithm 4. In Line 1, we estimated the

Km*m weight matrix between the items. As it can be seen in Algorithm 3, the overall

time complexity is O(n*m2). In Line 2, we multiplied our novel weight matrix K

with the original rating matrix and this process corresponds to the O(n*m2). R̃ is our

both priori predictions and z-scoREC predictions. With Line 3, we removed user-

rated items from this prediction matrix because we only wanted to normalize the

user’s unrated predictions. This process is applicable to only nonzero elements of R

where complexity is at most O(n*m). In Line 4, we scaled the prediction matrix by

dividing each row values by the row-max value. In Line 5, we normalized the ratings

in an exponential scale. Both Line 4 and Line 5 correspond to O(n*m). In Line 6, we

merged the initial R matrix with the imposing matrix in O(n*m) time. Line 7 is the

decomposition phase of the Ʀ, which is our imposed matrix. Golub and Van Loan

(2013) showed how to efficiently compute the SVD of a sparse matrix R ∈ Ɍn*m

(n>m) which could be applied in line 7. This computation method of Golub and

Kahan (2013) is based on bidiagonal factorization and it is efficient in sparse

matrices. For a large matrix, SVD could be estimated via Golub-Kahan-Lanczos

Bidiagonalization with O(#nonzero(R) * f), where #nonzero(R) is the number of

nonzero elements in R which is less than n*m. In line 8, we estimated R̃ with Ʀ

3. MATERIALS AND METHODS Hakan YILMAZER

59

impose matrix and item factor Q from decomposition. This process depends on a

low f rank value and corresponds to the O(n*m*f + n*f). As f is much smaller than

n and m, time complexity of the algorithm is O(n*m2).

3.3. Datasets

 To evaluate the recommendation quality and performance of our algorithms,

we used six datasets from various domains, which are MovieLens 1M (Harper &

Konstan, 2015), MovieLens 10M (Harper & Konstan, 2015) and Netflix (Bennett &

Lannning, 2007) datasets for movie recommendations, R2-Yahoo! Music dataset for

song recommendations (Yahoo, 2020), BookCrossing for book purchases (Ziegler

et.al., 2005), and implicit data crawled from an often-cited paper about Pinterest for

image recommendations (Geng et.al., 2015; He et.al., 2017). User, item, and rating

counts of the datasets with their sparsity and density values are shown in Table 3.1,

where sparsity percentage is calculated as (1-density) *100, in which density

formula is density = #ratings / (#users x #items).

Table 3.1. Evaluation Datasets

 ORIGINAL DATASETS

Dataset # User #Item #Rating Sparsity

MovieLens 1M 6040 3952 1M 95.809

MovieLens 10M 72 K 10681 10M 98.692

Netflix 480 K 17770 100M 98.822

R2 -Yahoo! Music 1.8 M 136 K 717 M 99.707

BookCrossing 246.7 K 255.7 K 716109 99.995

Pinterest Image 46 K 882 K 2.6M 99.993

 MovieLens (ML): MovieLens is a popular dataset in the Recommender

Systems literature which is first released in 1998, describe people’s expressed

3. MATERIALS AND METHODS Hakan YILMAZER

60

preferences for movies. This dataset contains movie ratings from the online movie

recommender service MovieLens. In this thesis we used "1M" and "10M" versions.

Netflix Prize Dataset: The Netflix Prize competition was held by Netflix in

2009, and the grand prize of US $1,000,000 was given to the best recommendation

algorithm. Netflix released a dataset containing 100 million anonymous movie

ratings for competitors (researchers) that could beat the accuracy of its

recommendation system (Cinematch).

Yahoo Webscope Dataset: R2 -Yahoo! Music dataset represents a

collection of the Yahoo! Music community's preferences for various musical artists.

This huge dataset contains over ten million ratings of musical artists given by Yahoo!

Music users over the course of one month sometime before March 2004.

BookCrossing: The BookCrossing (BX) dataset was collected by Cai-

Nicolas Ziegler from the BookCrossing community. It contains 255,7k users

(anonymized but with demographic information) providing 1,149,780 ratings

(explicit / implicit) about 271,379 books. We used implicit ratings of the BX in this

thesis.

Pinterest Image Dataset: He et al. (2017) constructed this dataset from

paper data that were constructed by (Geng et.al., 2015) for evaluating content-based

image recommendation. The original dataset is huge but highly sparse and its details

are given Table 4.1. He et al. (2017) filtered the dataset that retained only users with

at least 20 interactions (pins). This dataset contains 55,187 users and 1, 500, 809

interactions (pins). Each interaction denotes whether the user has pinned the image

to her own board.

Selected datasets are well-known recommendation datasets that are used in

most of the previous studies in this field. Attributes of the datasets are given in Table

3.1.

Because of the huge size of these datasets, we created particular subsets by

which we evaluated the benchmarks. In this way, benchmarks and parameter tunings

3. MATERIALS AND METHODS Hakan YILMAZER

61

were estimated much faster. We obtained subsets similar to the subset sampling

methods used in the related studies (Kabbur et.al., 2013; Ning & Karypis, 2011).

The sampling methods were run recursively until the specified conditions were met

for each dataset. With these sampling methods, we aimed to create a subset that is

close to their original densities. Finally, we normalized the ratings of the non-binary

datasets by dividing each one by the maximum rating value in the dataset.

3.4. Evaluation Metrics

In this thesis, we didn't consider the similarity of the estimated ratings with

actual ratings; instead, we measured the quality of the items, which are

recommended to the users. To evaluate the top-N recommendation quality of these

lists, we adopted Cremonesi et al. (2010) method for the benchmark algorithms.

Following this method, we created a list by randomly choosing 1000 unrated items

of the active ‘test user’ in addition to the test item. As a result, we obtained 1001

items that the active test user had not seen before. Later, these 1001 items were sorted

based on their prediction scores, which were estimated by prediction algorithms. N

items were obtained out of the 1001-item list as a result of their cut-off higher

prediction scores. This final list is the top-N item recommendation list for the ‘test

user’. In our experiments, we used several values for N that are 1, 3, 5, 10, 15, and

20 items for the length of recommendation lists.

In AcoRec with a change, instead of selecting 1000 items, we decided to

calculate the top-N lists by sorting all the items that the user did not click on. This is

a more difficult challenge but yielded a more consistent result. Because AcoRec is a

probabilistic model, randomly selected elements here could vary the results

significantly. Later, all unclicked items were sorted based on their prediction scores,

which were estimated by prediction algorithms.

Evaluation of predictions and recommendations is an important progress of

the Recommender System studies. Recommender Systems require quality measures

and evaluation metrics to know the quality of the techniques, methods and

3. MATERIALS AND METHODS Hakan YILMAZER

62

algorithms. Because of evaluation measures, Recommender System

recommendations have gradually been tested and improved.

Herlocker et al. (2004) classifies recommendation accuracy metrics into

three classes: predictive accuracy metrics, classification accuracy metrics, and rank

accuracy metrics.

 Predictive accuracy metrics measure how close the recommender

system’s predicted ratings and rankings are to the true user ratings and

rankings. (Accuracy of Estimated Rating examples are MAE, NMAE,

RMSE. Accuracy of Estimated Ranking metrics are Pearson,

Spearman’s rank, NDMP)

 Classification metrics measure the frequency with which a

recommender system makes correct or incorrect decisions about

whether an item is good. (Precision, Recall, F1 Measures, ROC Curves,

AUC, Hit-rate are some these metrics)

 Rank accuracy metrics measure the ability of a recommendation

algorithm to produce a recommended ordering of items that matches

how the user would have ordered the same items. (Mean reciprocal rank

(MMR), Average reciprocal hit rank (ARHR), nDCG, Half-life Utility

Metric etc. are the example metrics)

We used utility-based metrics including Hit Rank also Recall (Deshpande &

Karypis, 2004), normalized Discounted Cumulative Gain (Shani & Gunawardana,

2011), Coverage (Herlocker et.al., 2004) and R-Score (Half-Life) (Shani &

Gunawardana, 2011) to measure the quality of the items in the lists in terms of their

relevancy to the user. These metrics are explained below with their formulas. In these

formulas; T is the count of the test items in ‘test set’, N is the length of the

recommendation list and i is the position of the recommended item in the list. If the

3. MATERIALS AND METHODS Hakan YILMAZER

63

ranked item(i) in the list belongs to the test user from ‘test set’, we called this item a

‘relevance item’ for the user and set rel(i)=1, if it is not we set rel(i)=0 for the test

user.

3.4.1. Hit Rank (HR)

To evaluate the recall score of the algorithm for specific datasets in different

list lengths, we divide the sum of all ‘relevance items’ by the number of items in the

test set. The Hit Rank formula is given in Eq. (3.41).

𝐻𝑅(@𝑁) =
1

𝑇
∑𝑟𝑒𝑙(𝑖)

𝑁

𝑖=1

 (3.41)

3.4.2. Normalized Discounted Cumulative Gain (nDCG)

The position of the ‘relevance item’ in the lists is ignored in the HR. The

recommendations at the top of the list are more valuable than others. So, we

measured the importance of the position of the item in the list by the ratio of the

‘relevance item’ to its position in the list. nDCG gives importance to the gain of the

position logarithmically while considering the list quality at the same time. In this

nDCG metric; firstly, Discounted Cumulative Gain (DCG) of the test set was

estimated as in Eq. (3.42) and then Ideal Discounted Cumulative Gain (IDCG) was

estimated as in Eq. (3.43) for every test item in the top-N list. And then we

normalized these gain values with Eq. (3.44) and obtained the nDCG value for a

benchmark test.

𝐷𝐶𝐺(@𝑁) =
1

𝑇
∑

𝑟𝑒𝑙(𝑖)

𝑙𝑜𝑔2(𝑖 + 2)

𝑁

𝑖=1

 (3.42)

3. MATERIALS AND METHODS Hakan YILMAZER

64

𝐼𝐷𝐶𝐺(@𝑁) =
1

𝑇
∑

1

𝑙𝑜𝑔2(𝑖 + 2)

𝑁

𝑖=1

(3.43)

𝑛𝐷𝐶𝐺(@𝑁) =
𝐷𝐶𝐺(@𝑁)

𝐼𝐷𝐶𝐺(@𝑁)
 (3.44)

3.4.3. R-Score (Rs)

R-Score considers that the probability of selecting a relevant item in the top-

N list that goes down exponentially (Shani & Gunawardana, 2011). The R-Score

formula is given in Eq. (3.45). Different from other metrics, the parameter α specifies

the slope of the decay curve and exhibits scroll or discovery of users for a

recommendation list. A higher α value indicates patient users.

𝑅𝑠(𝛼) =
1

𝑇
∑

𝑟𝑒𝑙(𝑖)

2
𝑖−1
𝛼−1

𝑇

𝑖=1

 (3.45)

3.4.4. Coverage

 The coverage metric measures the ability of a recommender system with the

percentage of different elements in total items in the whole recommendation list. We

define the coverage of the system as the average of the user’s coverage in Eq. (3.46)

where 𝑈𝑢𝑒𝑛𝑖 is the number of different items in the recommended list, and

|𝐼| is the number of items counted in the system.

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(@𝑁) = ∑
𝑈𝑢𝑒𝑛𝑖

|𝐼|

#𝑈

𝑖=1

 (3.46)

3. MATERIALS AND METHODS Hakan YILMAZER

65

3.5. Evaluation Methods

3.5.1. AcoRec

 In the AcoRec model, we only used binary rating values. We used three

datasets for AcoRec which are Movie-Lens 1M (ML-1M), Netflix datasets for movie

recommendations, and Yahoo! R2-Music dataset about music recommendations.

Attributes of the datasets are given in Table 3.2. For ML-1M, 4 and 5-star ratings

were converted to binary one while others were converted to zero. After that process,

we selected the users who listened to at least one item and selected the movies which

were rated by at least one user, and in this way, we got a very sparse dataset than

the original. Due to its large size, in the R2-Yahoo! Music dataset, 10% of the ratings

were taken from the first CSV file and 4 and 5-star ratings were converted to binary

one while others were converted to zero. We selected the users who listened to at

least 20 and at most 250 songs and selected the songs, which were listened to by 20

to 250 users. In the Netflix dataset, we selected the small public sample of the

original from the Cornac1 repository.

Table 3.2. Sampled Datasets for AcoRec

 SAMPLED SUBSETS FOR AcoRec

Dataset Domain #User #Item #Ratings Sparsity Density

ML-1M Movie 6038 3533 575281 97.302 2.698

Netflix Movie 8324 2679 366432 98.488 1.512

Yahoo! R-2 Music 5357 5627 202042 99.330 0.670

We adopt the k-fold cross-validation method for splitting raw datasets to

evaluate the algorithms. We shuffled all datasets randomly and then split them into

k=5 sampled datasets. For each unique sampled group, we take it as a probe set and

hold out this ‘probe set’ from the raw dataset. We called raw datasets ‘training set’

1 https://github.com/CornacAI

3. MATERIALS AND METHODS Hakan YILMAZER

66

after removing ‘probe set’ from it sequentially. From these probe sets, we selected

users and their ratings who met the criteria according to the scenarios that we

explained in the experiments. These selected users and their ratings in the ‘probe set’

are called the ‘test set’. In this way, results for different users and items in each

experiment completed an average estimate for us.

3.5.2. ImposeSVD and z-scoREC

 In the z-scoREC and ImposeSVD models, we used both binary and scalar

rating values. In MovieLens 10M dataset, we selected the users who rated between

20 and 500 items, and items that were rated by between 20 and 500 users. In the

Netflix dataset, we selected the users who rated between 10 and 500 items and items,

which were rated by between 5 and 250 users. Due to its large size, in the R2-Yahoo!

Music dataset, 10% of the ratings were taken from the first CSV file and 5-star

ratings were converted to binary one while others were converted to zero. We

selected the users who listened to at least 10 and at most 200 songs and selected the

songs, which were listened to by 20 to 200 users. Implicit ratings taken from the BX

dataset included the users who had at least 10 purchases and books that were bought

by at least 10 users. In the Pinterest dataset, we transposed the dataset from a

perspective of board recommendations for images to provide meta-information of

boards for the HybridSVD method. As a result, we selected the images that were

pinned at least in 10 boards and boards that had at least 10 images. Attributes of the

used datasets are given in Table 3.3.

3. MATERIALS AND METHODS Hakan YILMAZER

67

Table 3.3. Sampled Datasets for ImposeSVD and z-scoREC

SAMPLED SUBSETS FOR ImposeSVD AND z-scoREC

Dataset Domain #User #Item #Ratings Sparsity Density

MovieLens 1M Movie 6040 3952 1000209 95.809 4.191

MovieLens 10M Movie 4101 2931 144453 98.798 1.202

Netflix Movie 7249 5548 131268 99.673 0.327

R2 -Yahoo! Music Music 7456 5047 182426 99.515 0.485

BookCrossing Book 2617 3871 87849 99.132 0.868

Pinterest Image Image 3862 4996 85805 99.555 0.445

We adopt the holdout method for splitting raw datasets to evaluate the

algorithms. First, we created the out-of-sample that we called a probe set for each

dataset. Then, we randomly selected 1.4% of the ratings in the raw datasets and

removed this ‘probe set’ from the raw datasets. We called raw datasets ‘training set’

after removing ‘probe set’ out of it. From these probe sets; we selected random users

and their ratings that met the criteria according to the scenarios that we explained in

the experiments. These selected users and their ratings in the ‘probe set’ are called

‘test set’. Because of the random selections in ‘probe set’, we created at least ten

repeated holdout evaluations for ‘training set’ and ‘test set’ to evaluate the majority

of the dataset. In this way, results for different users and items in each experiment

produced an average estimate for us.

3. MATERIALS AND METHODS Hakan YILMAZER

68

4. RESULTS AND DISCUSSION Hakan YILMAZER

69

4. RESULTS AND DISCUSSION

4.1. AcoRec Evaluation Results

To evaluate the performance of our meta-heuristic algorithm, we evaluated

our experiments in two scenarios. The first scenario is built to see how accurate our

algorithm is in assessing the recommendations for cold-start users, and the second is

to measure the long-tail item diversity in recommendations.

 We show the best percentage value for the Coverage value related to the best

nDCG parameters for each algorithm. We considered it a fairer way of evaluating

the diversity of items on that list.

4.1.1. Selected Benchmark Algorithms for AcoRec and Parameter Tunings

For the benchmark tests of AcoRec, we used the three item-based similarity

models as input of our approach which are Gram-matrix, Cosine Similarity, and

Jaccard Similarity.

Base-Gram, Base-Jaccard, Base-Cosine: The item-based baseline models

are estimated by Eq.(3.17), Eq.(3.18), and Eq.(3.19).

TARS: This is a state-of-the-art ACO model in recommender systems. It

offers a user-based model that creates a trust-based user relationship graph, detects

similar users, and makes a rating estimation (Bedi & Sharma, 2012).

RP3ß: A random walk model that recommends based on the user-item graph

with extending diversification that eliminates tendency on popular items (Paudel

et.al., 2016).

RecWalkᴾᴿ, RecWalkᴷ: Random-walk-based methods to capture new rich

network interactions for top-N recommendation lists (Nikolakopoulos & Karypis,

2019).

SLIM: A well-known item-based CF method building a sparse coefficient

item model L1-norm and L2-norm on the rating matrix (Ning & Karypis, 2011).

4. RESULTS AND DISCUSSION Hakan YILMAZER

70

EASER: A robust linear model that shows the closed-form solution of Ridge

Regression in a manner of vanilla auto-encoders (Steck, 2019).

UCF: Resnick's user-based CF approach. We used Pearson Similarity for

obtaining user similarities (Resnick et.al., 2004).

Random: The baseline method that we evaluate in benchmarks with filling

empty cells in the user-item matrix with random values between (0,1).

Popular: A baseline algorithm that evaluates items according to their usage

frequency.

Parameter Tunings of Algorithms: TARS method is evaluated between [10-

250] values in 10 steps for the (k) user neighbor size and confidence values between

[0,1] range with 0.1 steps. RP3β algorithms are tested between [0,2] beta and alpha

(β,α) values with 0.05 steps. SLIM algorithm is tested alpha with {0.01, 0.05, 0.1,

0.5, 2, 5} values and beta with { 1e-4, 1e-3, 5e-3, 5e-2, 0.1, 0.2, 0.5, 1.0} values. To

execute SLIM, we took the standard Elastic-Net implementation provided by the sci-

kit learn package for Python. EASER method is evaluated between [10-100] values

in 10 steps and [500-20000] values in 500 steps for the (λ) value. For RecWalkᴾᴿ and

RecWalkᴷ models, we evaluated both Cosine and SLIM as input models like in the

original paper and chose the best model for every benchmark. Our AcoRec method

is evaluated between [1...250] values for ant size (archive-size) and [1...100] values

for iteration count. Due to the random choices, each experiment for AcoRec is

repeated 10 times, results are averaged and the best parameter results are chosen

while creating transition probabilities during iterations. In all scenarios, we

accomplished Grid-Search to find the best parameters working together in each

algorithm. In the Section 4.1, we have shown the best results obtained by the best

parameters for each algorithm.

4.1.2. Cold-start user scenario

Cold-start users have fewer ratings on the system, so it is more difficult to

give quality recommendations to them (Son, 2012; Bobadilla et.al., 2016). To

4. RESULTS AND DISCUSSION Hakan YILMAZER

71

evaluate our algorithm for cold-start users, we obtained heat or warm users as

candidate users from the probe set who was also in the training set. We formed them

as cold-start users by decreasing their rating counts in the training set and we selected

randomly 100 users from the probe set who had at least one full rating in the probe

set and at least twenty ratings in the training set. In the evaluation process, some

studies put three items in the training set to define cold-start users (Son, 2012), some

studies received 5% of the user's rates (Nikolakopoulos et.al., 2019), and some other

studies tested both in numbers ranging from (1...20) or used percentage rates (Ahn,

2016). For a harder challenge, we kept random ratings that were between 5 and 10

of the particular users in the training set and other ratings of these users were

removed from the training set. Consequently, this process transformed candidate

users into cold-start users, represented by a minimum of 5 and a maximum of 10

random ratings in the training set. Just like a real scenario, the random ratings of

these users could be lower ratings or higher ratings in different distributions.

4. RESULTS AND DISCUSSION Hakan YILMAZER

72

Table 4.1. Comparisons of the algorithms in a cold-start user scenario
 MovieLens 1M Netflix Yahoo! R-2

@10 HR nDC
G

Cov. HR nDC
G

Cov. HR nDC
G

Cov.

Popular 0.05
7

0.025 0.36 0.0
78

0.037 0.50 0.00
2

0.001 0.21

Random 0.00
3

0.001 25.12 0.0
10

0.005 31.0
5

0.00
0

0.000 20.6
1

BaseGram 0.08
0

0.039 1.00 0.1
01

0.048 0.87 0.07
3

0.036 10.8
5

BaseCosine 0.09
2

0.042 4.30 0.1
07

0.053 3.98 0.07
1

0.035 14.2
5

BaseJaccard 0.08
6

0.039 6.34 0.1
08

0.054 6.23 0.07
3

0.033 14.2
5

UCFPearson 0.10
0

0.044 4.36 0.1
27

0.060 3.28 0.09
0

0.040 12.7
7

TARS 0.09
9

0.047 3.88 0.1
32

0.065 3.58 0.08
1

0.037 11.6
9

RecWalkᴷ 0.10
0

0.044 8.62 0.1
36

0.065 3.54 0.08
9

0.043 12.5
6

RecWalkᴾᴿ 0.09
4

0.044 8.75 0.1
29

0.061 3.67 0.09
2

0.044 13.6
8

SLIM 0.10
0

0.044 8.62 0.1
36

0.065 3.54 0.08
9

0.043 12.5
6

EASER 0.09
9

0.045 10.09 0.1
38

0.065 2.81 0.09
0

0.039 14.5
6

RP3β 0.10
7

0.049 3.60 0.1
45

0.067 6.36 0.08
7

0.042 14.1
7

AcoRecGram 0.11
8

0.054 10.37 0.1
43

0.066 11.8
7

0.09
7

0.048 16.1
8

AcoRecCosine 0.12
1

0.057 8.31 0.1
62

0.076 8.76 0.08
0

0.039 15.5
2

AcoRecJaccar

d
0.10

4
0.047 10.32 0.1

29
0.062 9.23 0.07

3
0.034 15.6

4

Experimental results based on the HR, nDCG, and Coverage metrics are

summarized in Table 4.1. When we evaluated AcoRec in the cold-start user scenario;

we observed that our AcoRec outperformed most other algorithms in all datasets.

In addition to building up the quality list, we observed that AcoRec

implementations outperformed all other algorithms in the Coverage metric, which

measures the diversification of the items on the list. The Baseline Method on which

we base the AcoRec algorithm provided an improvement in Gram Matrix and nDCG

measurement in all datasets. As stated by Dacrema et al. (2019), an algorithm in

4. RESULTS AND DISCUSSION Hakan YILMAZER

73

which parameters are tuned well can outperform many deep learning algorithms. Our

study confirms this argument as we fairly evaluated algorithms and obtained

successful results in different scenarios.

While the similarity matrices we use as inputs fail against other algorithms

when used as predictors alone, our model is successful in all models when it was

integrated with ACO.

 Another observation is that although the Coverage percentages of the

Random algorithm are on the top, the HR and NDCG values are close to zero. In

contrast to this situation, the most notable feature of our algorithm is that not only

the Coverage percentage is high in the lists recommended to users but also the quality

of the lists is also high.

We also observe that whereas the Cosine item-similarity model is more

successful in MovieLens and Netflix datasets, the Gram matrix is more successful in

terms of list diversity in cold-start recommendations. The Yahoo dataset is a sparser

dataset than the other experimental sets used in this study, so the diversity in the lists

shown to the users in this dataset is greater in all algorithms. The results of the

analysis revealed that the Gram matrix is quite successful in the Yahoo dataset, too.

Moreover, we observed that the RP3β algorithm is a very successful algorithm with

correct parameter tuning.

AcoRec takes an item-based similarity model as input. If we compare our

three AcoRec model results with their own input item-based similarity model results

(Table 4.1), we estimated compared percentage results for each metric. Values on

Table 4.2 show the improvement percentage of each AcoRec model on its base item-

similarity model. The results show that our AcoRec models produce significantly

improve their base input models. In particular, the improvement in Gram-matrix and

Jaccard similarity models is better than the improvement in the Cosine similarity

model.

4. RESULTS AND DISCUSSION Hakan YILMAZER

74

Table 4.2. Comparisons of AcoRec with its base algorithms in a cold-start user

scenario
 MovieLens 1M Netflix Yahoo! R-2

@10 HR nDCG Cov. HR nDCG Cov. HR nDCG Cov.

AcoRe
c
Gram

29.3 27.8 90.3 28.9 27.2 92.7 25.1 25.3 28.2

AcoRe
c
Cosine

18.9 19.7 36.5 16.2 12.9 32.5 1.0 2.8 2.7

AcoRe
c
Jaccard

23.8 26.2 48.2 34.0 30.9 54.6 10.7 9.4 8.1

4.1.3. Long-tail items scenario

Popular items are familiar to users, and thus, recommending these items

might be boring for users (Anderson, 2006). Therefore, recommending unpopular

items has always been more attractive. Traditional CF algorithms dealing with

relations between popular items or popular users overshadow diverse relationships.

Considering that the quality of models depends on the diversity of recommendations

they offer, these CF methods might be unable to generate a diverse range of

suggestions in the datasets especially when the data is inadequate (Yin et.al., 2006).

The diversity can be achieved when some unpopular items are recommended to the

users. Based on these arguments, we also evaluated the reaction of our algorithms

for long-tail item recommendations. To obtain an experiment environment suitable

for the long-tail scenario, we adopted the method in (Cremonesi et.al., 2010). As

observed by the authors in the study (Cremonesi et.al., 2010), the most popular 1.7%

items represent 33% of the ratings included in the Netflix dataset and they called

these 1.7% items as short-head items while the remaining items are called long-tail

items. Following this evaluation method (Cremonesi et.al., 2010), we sorted the

items in the dataset according to their popularity to evaluate the existence of long-

tail items in the recommendation lists. In doing so, we determined the items’

popularity by their rating frequency and sorted them in descending order by the

number of ratings they had. On the sorted item list according to their frequency, from

4. RESULTS AND DISCUSSION Hakan YILMAZER

75

top to bottom, we marked the items as ‘short-head’ items until the sum of the item

frequencies equal to or higher than the 33% of the total ratings and marked the

remaining as ‘long-tail’ items. In the probe set, we kept ‘long-tail’ items and

removed the others. We created a ‘test set’ out of the probe set by random selection

of 250 users who gave at least one full rating to ‘long-tail’ items. As a result, we

randomly selected users with unpopular tastes for each repeated holdout evaluation.

According to the results presented in Table 4.3., we observed that our

algorithm outperforms all algorithms in all datasets. Because of the creation of a

long-tail scenario, the Popular baseline algorithm validates our dataset as expected,

counts zero results, and fails against the Random algorithm. The performance

measure values of our algorithm against other algorithms are better in the long-tail

scenario than in the cold-start scenario. But our algorithm resulted in a higher

difference and percentage in outperforming all algorithms in this scenario.

4. RESULTS AND DISCUSSION Hakan YILMAZER

76

Table 4.3. Comparisons of the algorithms in long-tail item recommendation scenario
 MovieLens 1M Netflix Yahoo! R-2

@10 HR nDC
G

Cov. HR nDC
G

Cov. HR nDC
G

Cov.

Popular 0.00
0

0.000 0.00 0.0
00

0.000 0.00
0

0.00
0

0.000 0.00

Random 0.00
4

0.002 51.22 0.0
01

0.000 60.6
6

0.00
4

0.002 35.8
9

BaseGram 0.00
0

0.000 0.00 0.0
00

0.000 1.67 0.05
5

0.024 15.7
1

BaseCosine 0.00
9

0.003 4.29 0.0
14

0.008 5.60 0.13
0

0.062 24.4
7

BaseJaccard 0.01
6

0.008 6.33 0.0
30

0.015 7.27 0.14
3

0.068 24.8
4

UCFPearson 0.03
8

0.018 14.94 0.0
37

0.016 14.9
9

0.11
2

0.052 28.5
3

TARS 0.02
9

0.013 10.77 0.0
32

0.015 8.00 0.09
7

0.046 24.9
5

RecWalkᴷ 0.07
0

0.032 13.29 0.0
86

0.041 11.6
2

0.13
8

0.063 26.3
2

RecWalkᴾᴿ 0.06
7

0.030 12.90 0.0
78

0.037 11.1
3

0.13
6

0.063 25.5
9

SLIM 0.07
1

0.033 13.41 0.0
89

0.043 11.1
4

0.13
3

0.061 27.0
4

EASER 0.06
4

0.028 13.89 0.0
92

0.045 11.9
6

0.12
4

0.056 30.1
2

RP3β 0.11
5

0.053 16.79 0.1
32

0.063 27.3
6

0.19
5

0.094 27.9
4

AcoRecGram 0.14
5

0.068 23.19 0.1
95

0.095 37.1
2

0.19
8

0.095 31.9
2

AcoRecCosine 0.16
0

0.075 21.73 0.1
84

0.089 20.6
6

0.17
7

0.085 31.6
6

AcoRecJaccar

d
0.17

3
0.083 25.45 0.1

84
0.090 17.3

9
0.16

4
0.080 29.0

7

As stated before AcoRec takes an item-based similarity model as input. If

we compare our three AcoRec model results with their own input item-based

similarity model results (Table 4.3), we estimated compared percentage results for

each metric. Values on Table 4.4 show the improvement percentage of each AcoRec

model on its base item-similarity model. The results show that our AcoRec models

produce significantly improve their base input models in the long-tail scenario also.

The improvements here are better than the cold-start users' results, showing that the

algorithm is particularly successful in highlighting different products.

4. RESULTS AND DISCUSSION Hakan YILMAZER

77

Table 4. 4 Comparisons of AcoRec with its base input algorithms in a long-tail item

scenario
 MovieLens 1M Netflix Yahoo! R-2

@10 HR nDCG Cov. HR nDCG Cov
.

HR nDCG Cov.

AcoRec
Gram

100.0 100.0 100.0 99.
9

99.9 95.5 72.4 74.5 50.1

AcoRec
Cosine

91.0 90.8 75.1 83.
9

83.2 58.2 12.6 14.8 14.5

AcoRec
Jaccard

94.5 95.7 80.3 92.
1

91.2 72.9 26.5 27.5 23.4

4.1.4. Effect of the ant size & iteration count

The number of iterations is an important parameter in ACO algorithms, but

when number of iterations is increased in ACO algorithms, the algorithm is usually

slow. Figures 4.1 and 4.2 show the heatmaps of our algorithms showing the

relationship between the number of ants and the number of iterations in different

input models and different scenarios. In Figures 4.1 and 4.2 the nDCG@10 was used

as the quality measurement metric. The horizontal x-axis shows the number of

iterations, and the vertical y-axis shows the number of ants. One of the outstanding

features of our study is that it has fast convergence and that the cases of stagnation

are lowly due to the structure of the algorithm. While examining the effect of the

number of iterations in our experiments, we observed that it reached a high success

value quickly and after this point, the success of the algorithm did not change with

the increase in the number of iterations.

4. RESULTS AND DISCUSSION Hakan YILMAZER

78

Figure 4.1. In the cold-start user scenario, the effect of the ant-size and iteration count

is evaluated with the nDCG metric

In our experiments to investigate the effect of the number of ants on the

achievement of the algorithm, we found out that the number of ants had a better

effect than the iteration on the success of the algorithm. Regarding the effect of

Gaussian Distribution at the time of training, we discovered an equal distribution in

all localities. As the focus space tightened throughout the iterations, the ants came

4. RESULTS AND DISCUSSION Hakan YILMAZER

79

out to meet at the same distribution position. At this point, when the variance

decreased below a specified threshold rate, our algorithm completed its training.

Figure 4.1 and 4.2 indicates the progress of the algorithm conferring to the increase

in the number of ants.

4. RESULTS AND DISCUSSION Hakan YILMAZER

80

Figure 4.2 In the long-tail item scenario, the effect of the ant-size and iteration count

is evaluated with the nDCG metric

4. RESULTS AND DISCUSSION Hakan YILMAZER

81

4.1.5. Execution time of AcoRec

In this experiment, we evaluated the computational performance of our

method in a hyperthreading test environment. The experiments were performed on

the TUBITAK ULAKBIM, High Performance and Grid Computing Center

(TRUBA resources). TÜBİTAK ULAKBİM High Performance and Grid

Computing Center is a national center providing high-performance computing and

data storage for all research institutions and researchers in Turkey. TUBITAK

ULAKBIM High Performance and Grid Computing Center, which started its

operations in 2003, is included in TRUBA. Today, TRUBA serves our researchers

with ~ 17,500 processor cores, 80 GPUs, and a 4PByte Luster distributed file system.

We implemented AcoRec in GNU Octave (GNU Octave, 2022) and used a parallel

package that is part of the Octave Forge project. We evaluated the same 100 users in

every experiment and made multi-threading tests. The results are given in Figure 4.3

with execution time of core size. As you can see in the experiment results, AcoRec

computational time decreases with the parallelable architecture. This is one of the

main advantages of AcoRec against the other ACO-based RS implementations.

AcoRec uses low-rank vectors and made personalized predictions for every user.

Figure 4.3. In the cold-start user scenario the execution time of our algorithm under

different cores

4. RESULTS AND DISCUSSION Hakan YILMAZER

82

4.2. z-scoREC and ImposeSVD evaluation and results

To measure the performance of our algorithms, we evaluated our

experiments in three different scenarios. The first scenario was set to find out how

accurate our algorithms were when assessing the recommendations for cold-start

users, the second scenario was to assess the aspect of recommendations when the

recommender system was fresh, and the third scenario was set to measure the long-

tail item diversity in recommendations.

4.2.1. Selected Benchmark Algorithms for z-scoREC, ImposeSVD and

Parameter Tunings

We compared ImposeSVD and z-scoREC against the three similar SVD-

based top-N recommendation algorithms including PureSVD (Cremonesi et.al.

2010), EigenREC (Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019), and

HybridSVD (Frolov & Oseledets, 2019), which were explained in the previous

sections in detail. In addition to these, we compared our algorithm with two popular

item-based methods (i.e. item k-NN and Item-based collaborative filtering), and two

other baseline methods (i.e., random and popular), which are explained below:

ItemKNN: The item-based model developed by Deshpande and Karypis

(2004) is utilized as a benchmark model by many studies in the literature. In their

original study, Deshpande et al. estimated item similarities via Cosine Similarity or

Probability Selection. In the second step, they selected k similar items only by

ignoring the other items. With this simplified item similarity matrix, they estimated

the prediction matrix by equitation similar to Eq. (3.20).

Item-Based Collaborative Filtering (ICF): Sarwar et al.’s (2001) item-

based model is based on calculating the correlation between items and estimating

scores with item-based prediction rules. In this method similar to the ItemKNN, a

similarity between items is calculated by Cosine-based, Correlation-based, or

Adjusted Cosine Similarity. Then the model tries to capture items that are similar to

4. RESULTS AND DISCUSSION Hakan YILMAZER

83

users’ liked items with prediction formulas Sarwar et.al. (2001). We preferred to use

Adjusted Cosine Similarity for its efficiency in calculating better results.

Random: In addition to the item-based models, we also compared our

algorithm with two baseline methods one of which is Random. With the help of the

Random method, we evaluated the benchmarks by filling empty cells in the user-

item matrix with random values between [0,1].

Popular: The second baseline method with which we compared our

algorithm is Popular, which evaluates the items according to their frequency of use.

Parameter Tunings of Algorithms: All SVD-based algorithms were tested

between [1-2000] factors (f) with 10 steps. EigenREC and HybridSVD were scaled

with (d) parameters in the [-2,2] range with 0.05 steps. ItemKNN and ICF methods

were evaluated between [10-250] values in 10 steps for the (k) item neighbor size.

We evaluated our algorithms for lambda λ shrinkage values between [-1,1] range

with 0.05 steps and tested all algorithms on each data set with the combinations of

their parameters. Because of the random choices while creating ‘probe sets’, ‘test

sets’, and ‘random, 1001 items’, we seeded random choices with the same seed

number at the same stages for every method so that they were fairly evaluated in

every repeated holdout evaluation.

In all scenarios, we accomplished Grid-Search to find the best parameters

working together in each algorithm. In the Results section, we have shown the best

results obtained by the best parameters for each algorithm. We presented the Grid-

Search parameter tuning results in the Appendix B.

Similar to the implementations on SVD-based models, we also applied a

method to determine the best f values in the HybridSVD (Frolov & Oseledets, 2019).

In SVD-based models, in each experiment for an algorithm decomposition was

calculated once and fmax value as 2000 was obtained for the matrix rank size of latent

factors. Then we truncated the rank of latent factors with the evaluation steps

between [1-2000] and evaluated all f values in each experiment. After all repeated

4. RESULTS AND DISCUSSION Hakan YILMAZER

84

holdout evaluations, we averaged the results of all f values and selected the best f

value result for each metric. This method reduced the search cost for SVD-based

models, especially in Grid-Search (Frolov & Oseledets, 2019)

4.2.2. Cold-start user scenario

Cold-start users have fewer ratings on the system, so it is more difficult to

give quality recommendations to them (Son, 2012; Bobadilla et.al., 2016). To

evaluate our algorithm for cold-start users, we obtained heat or warm users as

candidate users from the probe set who was also in the training set. We formed them

as cold-start users by decreasing their rating counts in the training set and we selected

randomly 100 users from the probe set who had at least one full rating in the probe

set and at least twenty ratings in the training set. In the evaluation process, some

studies put three items in the training set to define cold-start users (Son, 2012), some

studies received 5% of the user's rates (Nikolakopoulos et.al., 2019), and some other

studies tested both in numbers ranging from (1...20) or used percentage rates (Ahn,

2016). For a harder challenge, we kept random ratings that were between 5 and 10

of the particular users in the training set and other ratings of these users were

removed from the training set. Consequently, this process transformed candidate

users into cold-start users, represented by a minimum of 5 and a maximum of 10

random ratings in the training set. Just like a real scenario, the random ratings of

these users could be lower ratings or higher ratings in different distributions.

Experimental results that are based on nDCG are shown in Figure 4.4. When

we evaluated our algorithms in the cold-start user scenario; we observed that

ImposeSVD outperformed other algorithms in all datasets and in all top-N variations.

ImposeSVD is based on enhancing the PureSVD under sparse datasets and we

observed that our algorithm outperformed the PureSVD in all datasets. For the N=10

value in MovieLens 1M dataset, results are better than the PureSVD with a

percentage of 11.70%, 9.32% in BX, 11.03% in Pinterest Image, 13.74% in R2 –

4. RESULTS AND DISCUSSION Hakan YILMAZER

85

Yahoo! Music, 14.55% in Netflix and 10.23% in MovieLens 10M. The success of

our algorithm in binary datasets also shows that negating the rates in R works well.

We also noticed a successful result in our z-scoREC method. Despite its

simplicity, our novel method gave successful results compared to the similar

ItemKNN and ICF algorithms. In Netflix and MovieLens 10M datasets, the results

were better than the PureSVD. In R2 – Yahoo! Music and MovieLens 1M datasets,

our method also outperformed all SVD-based methods. Considering that little N

values’ success is important for small screen sizes, another important aspect of our

algorithm was its success in all lengths of lists.

From the f values in Appendix B.1a and B.1b tables, we can explore that

SVD-based methods can be most suitable at low f values in the cold-start scenario.

From here, we can deduce that the initial values in latent factors bring popular items

to the forefront, and the success of cold-start algorithms depends on the number of

popular products on their recommendation list. Since SVD-based applications thrive

with low dimensional f values in cold-start user scenarios, they could be preferred in

the huge recommender systems. Although our algorithm was more successful than

other algorithms, it was generally close to each other and was successful at low f

values. Especially in sparse datasets, it gave more successful results with EigenREC

at close f values to it.

4. RESULTS AND DISCUSSION Hakan YILMAZER

86

Figure 4.4 In the cold-start user scenario, the performance of the algorithms with

different @N values for all datasets was evaluated with the nDCG metric

BookCrossing

N
D

C
G

@1 @3 @5 @10 @15 @20

0
0.01
0.02
0.03
0.04
0.05
0.06

Pinterest Image

N
D

C
G

@1 @3 @5 @10 @15 @20

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

R2-Yahoo! Music

N
D

C
G

@1 @3 @5 @10 @15 @20

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Netflix

N
D

C
G

@1 @3 @5 @10 @15 @20

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

MovieLens 10M

N
D

C
G

@1 @3 @5 @10 @15 @20

0

0.05

0.1

0.15

0.2

MovieLens 1M

N
D

C
G

TOP@N

@1 @3 @5 @10 @15 @20

0

0.05

0.1

0.15

0.2

Random Popular ICF ItemKNN PureSVD HybridSVD EigenREC z-scoREC ImposeSVD

Cold-start User Recommendations

4. RESULTS AND DISCUSSION Hakan YILMAZER

87

4.2.3. Cold-start system scenario

 In the new systems, when users and items have inadequate ratings causing

the systems have sparse data and lower density, estimating new recommendations

could be hard for them. We evaluated our algorithm for new systems and created a

sparsity scenario similar to denotation in EigenREC (Nikolakopoulos et.al., 2017;

Nikolakopoulos et.al., 2019). We called every raw dataset the ‘final stage’ of a

system, and randomly selected 66% of the ratings at the final stage, and called these

sampled ratings as the ‘previous stage’. Later, we randomly sampled 66% of ratings

at the ‘previous stage’ and called this subset as the ‘initial stage’. In our scenario

‘initial stage’ is the subset of the other stages and a cold-start system with lower

ratings. We created the ‘probe set’ out of the ‘initial stage’ and also removed the

probe set from other stages. To create ‘test set’ out of ‘probe set’, we selected the

users who had rated less than 100 items and the items that were selected by at most

100 users in the ‘initial stage’. We aimed to observe users and items with a few

ratings and to follow their evolutions as the sparsity decreased. We evaluated all

stages with the same test set.

Figure 4.5 reports the nDCG results in different sparsity for all benchmark

methods for six datasets. In general, the early point where SVD-based and Item-

based methods appeared to produce better results on the same test set as the sparsity

value declined as expected. On the other hand, Popularity and Random algorithms

continued almost at the same values at all sparsity levels and these results show that

our scenario is an acceptable evaluation method. As a result, when we performed

many remarks on the results via Figure 4.5, we found out that the ImposeSVD was

more rewarding in all datasets and all sparsity levels than other compared algorithms.

The ImposeSVD outperformed other algorithms in all results except for MovieLens

10M’s and R2 – Yahoo! Music’s final stages. After the rewarding results obtained

in the cold-start scenario, the achievement of the z-scoREC method here was still

impressive due to its purity and simplicity. We can conclude that the z-scoREC

4. RESULTS AND DISCUSSION Hakan YILMAZER

88

method had better performances than the PureSVD in all experiments except for the

MovieLens 10M dataset.

The most important result in Figure 4.5 is the success of the first stage

values. Our algorithm outperforms all benchmark methods and the differences from

other algorithms are bigger than in other stages. In the ‘initial stage’, z-scoREC is

the second after the ImposeSVD in all datasets except for R2 – Yahoo! Music and

Pinterest Image datasets. The results show that both our algorithms are more

successful on sparse datasets.

4. RESULTS AND DISCUSSION Hakan YILMAZER

89

Figure 4.5 In the cold-start system's scenario, the performance of the algorithms in

the @N=10 value for all datasets was evaluated with the nDCG metric

4.2.4. Long-tail items scenario

Popular items are familiar to users, and thus, recommending these items may

be boring for users (Anderson, 2006). Therefore, recommending unpopular items

has always been more attractive. Traditional CF algorithms dealing with relations

4. RESULTS AND DISCUSSION Hakan YILMAZER

90

between popular items or popular users overshadow diverse relationships.

Considering that the quality of models depends on the diversity of recommendations

they offer, these CF methods might be unable to generate a diverse range of

suggestions in the datasets especially when the data is inadequate (Yin et.al., 2006).

The diversity can be achieved when some unpopular items are recommended to the

users. Based on these arguments, we also evaluated the reaction of our algorithms

for long-tail items recommendations. To obtain an experiment environment suitable

for the long-tail scenario, we adopted the method in (Cremonesi et.al., 2010). As

observed by the authors in the study (Cremonesi et.al., 2010), the most popular 1.7%

items represent 33% of the ratings included in the Netflix dataset and they called

these 1.7% items as short-head items while the remaining items are called long-tail

items. Following this method (Cremonesi et.al., 2010), we sorted the items in the

dataset according to their popularity in order to evaluate the existence of long-tail

items in the recommendation lists. In doing so, we determined the items’ popularity

by their rating frequency and sorted them in descending order by the number of

ratings they had. On the sorted item list according to their frequency, from top to

bottom, we marked the items as ‘short-head’ items until the sum of the item

frequencies equal to or higher than the 33% of the total ratings and marked the

remaining as ‘long-tail’ items. In the probe set, we kept ‘long-tail’ items and

removed the others. We created a ‘test set’ out of the probe set by random selection

of 100 users who gave at least one full rating to ‘long-tail’ items. As a result, we

randomly selected users with unpopular tastes for each repeated holdout evaluation.

According to the results presented in Figure 4.6, we observed that our

algorithms outperformed the PureSVD in all datasets in a long-tail scenario. In the

long-tail scenario, we aimed to evaluate the distribution of unpopular items in the

recommendation lists, and as expected, the Popular baseline algorithm failed on all

datasets, validating the training and test sets we created for this scenario. In the long-

tail scenario, SVD-based algorithms achieved success and produced good results at

high f values. Particularly in BookCrossing, Netflix, and MovieLens datasets, our

4. RESULTS AND DISCUSSION Hakan YILMAZER

91

ImposeSVD algorithm outperformed other algorithms with a high contradict. In

contrast, nearest-neighbor-based algorithms failed to find long-tail items. Our basic

z-scoREC outperformed neighbor-based models with high precision and it produced

nearby results to the SVD-based models.

Although long-tail item recommendation is a difficult challenge especially

for SVD-based applications, as shown in (Cremonesi et.al., 2010) PureSVD can be

successful at high f values. When we analyze the tables in Appendix B.2a and B.2b,

our algorithm was successful at increasing f values, similar to PureSVD. In most

datasets, EigenREC and HybridSVD reached their maximums at a lower f value with

respect to the ImposeSVD, but ImposeSVD showed a significant difference in the

quality of recommendation list compared to other algorithms despite the

higher f value. Another interesting observation was that for some datasets, there is

no need for shrinkage on Gram-matrix in the recommendation of unpopular items,

and this process would be neglected in this scenario.

4. RESULTS AND DISCUSSION Hakan YILMAZER

92

Figure 4.6 In the long-tail items scenario, the performance of the algorithms with

different @N values for all datasets was evaluated with the nDCG metric

4.2.5. Effect of the lambda parameter

 We evaluated our algorithms for lambda (λ) values between [-1,1] ranges

with 0.05 steps in all experiments to analyze its effect in the Gram-matrix. We chose

two baseline algorithms the PureSVD and the ItemKNN to compare our algorithms

with because the PureSVD is the basic form of our algorithm and it has a

BookCrossing

N
D

C
G

@1 @3 @5 @10 @15 @20

0

0.02

0.04

0.06

0.08

Pinterest Image

N
D

C
G

@1 @3 @5 @10 @15 @20

0

0.05

0.1

0.15

0.2

R2-Yahoo! Music

N
D

C
G

@1 @3 @5 @10 @15 @20

0

0.05

0.1

0.15

0.2

0.25

Netflix

N
D

C
G

@1 @3 @5 @10 @15 @20

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

MovieLens 10M

N
D

C
G

@1 @3 @5 @10 @15 @20

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

MovieLens 1M

N
D

C
G

TOP@N

@1 @3 @5 @10 @15 @20

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

Random Popular ICF ItemKNN PureSVD HybridSVD EigenREC z-scoREC ImposeSVD

Long-tail Item Recommendations

4. RESULTS AND DISCUSSION Hakan YILMAZER

93

nonparametric form, and the ItemKNN is very similar to our z-scoREC method. We

analyzed in which ranges of lambda parameters our algorithm outperformed the

PureSVD and the ItemKNN. The results of the PureSVD and the ItemKNN were

stable and we took the best results of each algorithm in Fig. 4.7, Fig. 4.8, and Fig.

4.9. In addition, we compared the z-scoREC algorithm with the ImposeSVD

algorithm with the same parametric values to see their performance over each other.

We observed the success of our algorithms at different parameter values for

the cold-start scenario in Fig. 4.7, for the long-tail item scenario in Fig. 4.8, and the

cold-start systems in Fig. 4.9. Black lines represent the ImposeSVD algorithm; pink

lines represent the z-scoREC algorithm. We chose the green dotted lines for the

PureSVD and the blue dotted lines for the ItemKNN. The black and pink vertical

dashed lines show the lambda value corresponding to the best HR value of the related

algorithm. One of the noticeable observations in these results was that in the cold-

start user scenario the best HR value of (λ) for each dataset differed from zero, which

shows that the shifting was successful for the cold-start scenario. When the lambda

value was zero, the success of both algorithms dropped dramatically. When

comparing our algorithms with each other, we first observed that the ImposeSVD

algorithm outperformed the z-scoREC algorithm in all parameter ranges. Our second

observation was that both algorithms gave similar responses at the same parameter

values. In addition, we found out that the best lambda values of our algorithms were

close to each other in all data sets, and these values were especially small positive

values, closer to zero in the [-1,1] ranges. In a conclusion, we inferred that the

shifting process worked since the best HR points in both of our algorithms were

different from zero. In the z-scoREC lines, λ=0 values showed the result of the Gram-

matrix where we could see that these points were non-shifted values. Success at non-

zero lambda parameters demonstrated the ability of our algorithm to capture new and

strong relationships in the weight matrix. The ImposeSVD was revealed as the best

algorithm for the best HR points in all datasets. The z-scoREC algorithm, on the

4. RESULTS AND DISCUSSION Hakan YILMAZER

94

other hand, was more successful than the PureSVD and the ItemKNN in all datasets

except for the Pinterest Image.

Figure 4.7. In a cold-start user scenario the effect of the lambda (λ) parameter is

evaluated with the HR metric

-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

MovieLens 1M

H
R

l

-1 -0.5 0 0.5 1
0.16

0.18

0.2

0.22

0.24

0.26

MovieLens 10M

H
R

l

-1 -0.5 0 0.5 1
0.18

0.19

0.2

0.21

0.22

0.23

R2-Yahoo! Music

H
R

l

-1 -0.5 0 0.5 1
0.2

0.25

0.3

0.35

0.4

Netflix

H
R

l

-1 -0.5 0 0.5 1
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

BookCrossing

H
R

l

-1 -0.5 0 0.5 1
0.1

0.12

0.14

0.16

0.18

0.2

Pinterest Image

H
R

l

ImposeSVD z-scoREC PureSVD ItemKNN

Cold-start users scenario, effect of parameter

4. RESULTS AND DISCUSSION Hakan YILMAZER

95

Figure 4.8. In a long-tail items scenario the effect of the lambda (λ) parameter is

evaluated with the HR metric

The results of the experiments on the long-tail scenario (in Fig. 4.8) revealed

that our algorithms outperformed all algorithms when λ is at zero or very close to

zero in the long-tail item scenario in Fig. 4.8 while they were not successful when

the λ=0 value in the cold-start user scenario as in Fig. 4.7. Therefore, we can

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

MovieLens 1M

H
R

l

-1 -0.5 0 0.5 1
0.25

0.3

0.35

0.4

0.45

MovieLens 10M

H
R

l

-1 -0.5 0 0.5 1
0.2

0.25

0.3

0.35

0.4

R2-Yahoo! Music

H
R

l

-1 -0.5 0 0.5 1
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Netflix

H
R

l

-1 -0.5 0 0.5 1
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

BookCrossing

H
R

l

-1 -0.5 0 0.5 1
0.16

0.18

0.2

0.22

0.24

0.26

Pinterest Image

H
R

l

ImposeSVD z-scoREC PureSVD ItemKNN

Long-tail items scenario, effect of parameter

4. RESULTS AND DISCUSSION Hakan YILMAZER

96

conclude that the shifting process had little effect on the long-tail item

recommendations. However, the results indicated that the ImposeSVD was more

successful in the long-tail items scenario compared to the results in the cold-start

users’ scenario. Although the developers of the PureSVD alleged that the PureSVD

gave successful outcomes for the long-tail items at high-rank values, we found out

that our ImposeSVD algorithm gave more successful results than PureSVD without

shifting. In addition, the z-scoREC algorithm performed better than PureSVD in all

datasets except for MovieLens datasets. In all datasets, both of our algorithms

outperformed the ItemKNN algorithm. We observed successful results compared to

the other algorithms at close values to zero for λ parameter in the z-scoREC

algorithm. We can conclude that z-scoREC is successful without shifting in reducing

the variance in the rating matrix and converging score means to the zero for item

columns so that popular items reduce the pressure on other items. In this way,

unknown items can come to the fore.

4. RESULTS AND DISCUSSION Hakan YILMAZER

97

Figure 4.9. In a cold-start system scenario, the effect of the lambda (λ) parameter is

evaluated with the HR metric

In the cold-start system scenario, we took the 'final stage' sampling results.

This stage of the dataset performed the general recommendations for warm users

who had rated less than 100 items and test items that were selected by at most 100

users. It was like a combination of cold-start user scenarios and long-tail item

-1 -0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MovieLens 1M

H
R

l

-1 -0.5 0 0.5 1
0.32

0.34

0.36

0.38

0.4

0.42

MovieLens 10M

H
R

l

-1 -0.5 0 0.5 1
0.26

0.28

0.3

0.32

0.34

0.36

R2-Yahoo! Music

H
R

l

-1 -0.5 0 0.5 1
0.35

0.4

0.45

0.5

0.55

Netflix

H
R

l

-1 -0.5 0 0.5 1
0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

BookCrossing

H
R

l

-1 -0.5 0 0.5 1
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

Pinterest Image

H
R

l

ImposeSVD z-scoREC PureSVD ItemKNN

Cold-start systems scenario, effect of parameter

4. RESULTS AND DISCUSSION Hakan YILMAZER

98

recommendation scenarios. These mixed-scenario situations were a challenging task

because lambda parameters behaved differently in two scenarios for our algorithms.

However, in this mixed-scenario, similar to the results of the other scenarios, the

ImposeSVD outperformed the PureSVD and the ItemKNN in all datasets as shown

in Fig. 4.9. The z-scoREC outperformed the ItemKNN and the PureSVD in all other

datasets although it was behind the PureSVD on the ML-10M dataset. Fig. 4.8 and

Fig. 4.9 show similar trends for the datasets. However, lambda values were revealed

to be significant because the results indicated that the best lambda values were the

ones slightly greater than zero.

5. CONCLUSION Hakan YILMAZER

99

5. CONCLUSION

As is known, cold-start is one of the major problems in recommender

systems. In the literature, much research has been done on this problem. What makes

this problem important is that it has a relationship with the solution of many issues

in Recommender Systems. In particular, the varying screens and richness of the

interaction environments between users and products (Netflix, Spotify, Youtube,

Twitch, etc.) have also demonstrated many problems identical to the cold start.

This thesis proposed to develop models for the solution of cold-start

problems in various scenarios. Today's modern recommendation systems do not

work only through one algorithm. Depending on the case, they could change the

models or integrate different models. You may need to follow either a deterministic

or heuristic method to establish new links between the user and the products. In this

thesis, we have done 2 different studies, one deterministic and one heuristic, which

might be used in different scenarios.

Firstly, we studied the heuristic method ACO and developed a model that

gives variable recommendations to users at different times. We introduced a novel

approach on how to improve item-based models with AcoRec, which is a heuristic

model, and how to tune hyper-parameters with Ant Colony Optimization. By

studying parameter optimization in a continuous domain, we have performed on

expanding profit by exploring personalized parameters. First, we considered how to

improve a model based on the specification of producing diversified and expanded

recommendations to the users in their sessions, considering that common

deterministic systems are no longer enough in offering recommendations for multi-

line interfaces in varied domains. AcoRec remembers the heuristic approach of the

ACO model, which is a successful optimization algorithm in NP-Hard problems and

highlights different and neglected item recommendations.

We carried out the methods of magnifying item similarity models and how

to support new ties in cases where they are inadequate. In addition, we established a

model on how Ant Colony Optimization is implemented in recommendation systems

5. CONCLUSION Hakan YILMAZER

100

over huge graph structures in a low-dimensional manner by considering user-based

micro dimensions. In this sense, parameter tuning times were minimized in our

implementation, which is a big issue in ACO algorithms. To intensify these

improvements, we evaluated our algorithm for the cold-start user problem and its

effectiveness to recommend unpopular items.

While carrying out our experiments, we measured the quality of the

recommendation lists through nDCG and R-Score, and the variety of items in the

recommendation lists with the help of Coverage metrics. When we investigated the

results, we noted that our study outperformed similar algorithms known in the

literature in all datasets and metrics used in this study. As a result, we concluded that

heuristic methods such as Ant Colony can offer rewarding results by clarifying

parameter controls. We can suggest such methods can handle a variety of on-site

domains.

In the second study, we focused on dimension reduction and enrichment of

the rating matrix. Firstly, we introduced two novel methods, namely z-scoREC and

ImposeSVD, which are more effective in cold-start user problems, cold-start system

recommendations, and long-tail item recommendations than the previously proposed

ICF, ItemKNN, and SVD-based methods. The results indicated that the ImposeSVD

method that we presented strengthened the obvious shortcomings of PureSVD by

keeping its straightforward structure and original purity in terms of processing time

and computational difficulty. Evaluations displayed that the ImposeSVD model

outperformed similar models on the common datasets in all experiment scenarios.

In addition to ImposeSVD methods, the other z-scoREC method we

presented performed remarkably effectively as a model in item-based

recommendations with cold-start users. Another significant finding of both studies

was that new relationships could be discovered between items without the need for

meta-information for the user and items. With the implementation of the z-scoREC

method as an item-similarity in the basic item model, we brought prosperous results.

According to these analyses, the following conclusions are drawn:

5. CONCLUSION Hakan YILMAZER

101

1. We observed that the problem causing the cold-start issue is the sparsity

of data and that the ImposeSVD and z-scoREC algorithms, which we

built on enriching the data matrix with virtual new connections to

reduce this sparsity, were successful in the experimental results.

2. We also observed that decreasing the data unavailability virtually is not

only successful in cold-start users’ scenario as well as it succeeds in

recommending cold-start systems and long-tail items scenarios.

3. We tested our studies in different domains (movie, music, social media)

and got flourishing results. Experiments exhibited that our models

could be applied to many areas commercially.

4. In both studies, we only used implicit data and did not need

demographic, personal, or track data about users, thus bypassing ethical

concerns.

5. Despite its simplicity, the z-scoREC algorithm surprised us with its

success. With its structure suitable for parallelization, it has shown

promise that it can be successful against state-of-art research in the

literature in huge data.

6. The AcoRec study has shown good results on how to add random items

to recommendations and still improve the quality of the

recommendation list. AcoRec showed how we can generate rich and

variational recommendations and improve the quality of these

recommendations when deterministic recommendation models are

outdated.

7. The parameter search in a continuous distribution in the AcoRec

algorithm can be used for the hyper-parameter tuning algorithms. For

example, the EASER method, which uses a single parameter, can be

tested with the model we developed and can offer user-specific lambda

parameters.

5. CONCLUSION Hakan YILMAZER

102

In our future studies, we will focus on the enrichment of z-scoREC. It may

be considered to evaluate the z-scoREC algorithm with giant datasets due to its

simplicity, speed, and easy implementation. Secondly, the imposed values while

injecting the original data matrix could be enhanced and optimized. An algorithm

that detects and eliminates unsuccessful columns in the latent factors could be

investigated. In AcoRec, different item similarity matrices (Graph-based,

Regression-based, EASER) could be evaluated as future works.

 103

REFERENCES

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE

transactions on knowledge and data engineering, 17(6), 734-749.

Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the

new user cold-starting problem. Information Sciences, 178(1), 37-51.

Anderson, C. (2006). The long tail: Why the future of business is selling less of more.

Hachette Books.

Ar, Y., & Bostanci, E. (2016). A genetic algorithm solution to the collaborative filtering

problem. Expert Systems with Applications, 61, 122-128.

Balabanović, M., & Shoham, Y. (1997). Fab: content-based, collaborative

recommendation. Communications of the ACM, 40(3), 66-72.

Basilico, J., & Hofmann, T. (2004, July). A joint framework for collaborative and

content filtering. In Proceedings of the 27th annual international ACM SIGIR

conference on Research and development in information retrieval, pp.550-551.

Basu, C., Hirsh, H., & Cohen, W. (1998). Recommendation as classification: Using

social and content-based information in recommendation. In Aaai/iaai, pp.714-

720.

Bedi, P., & Sharma, R. (2012). Trust based recommender system using ant colony for

trust computation. Expert Systems with Applications, 39(1), 1183-1190.

Bellaachia, A., & Alathel, D. (2012, September). Trust-based ant recommender (T-

BAR). In 2012 6th IEEE International Conference Intelligent Systems (pp. 130-

135). IEEE.

Bellaachia, A., & Alathel, D. (2014, December). DT-BAR: a dynamic ANT

recommender to balance the overall prediction accuracy for all users. In CS &

IT Conference Proceedings(Vol. 4, No. 13). CS & IT Conference Proceedings.

Bellaachia, A., & Alathel, D. (2016). Improving the recommendation accuracy for cold-

start users in trust-based recommender systems. International Journal of

Computer and Communication Engineering, 5(3), 206.

104

Bennett, J., & Lanning, S. (2007). The netflix prize. In Proceedings of KDD cup and

workshop 2007, 35.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of

Life reviews, 2(4), 353-373.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems

survey. Knowledge-based systems, 46, 109-132.

Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A. (2013). Recommender systems

survey. Knowledge-based systems, 46, 109-132.

Bobadilla, J., Serradilla, F., & Bernal, J. (2010). A new collaborative filtering metric

that improves the behavior of recommender systems. Knowledge-Based

Systems, 23(6), 520-528.

Breese, J. S., Heckerman, D., & Kadie, C. (2013). Empirical analysis of predictive

algorithms for collaborative filtering. arXiv preprint arXiv:1301.7363.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User

modeling and user-adapted interaction, 12(4), 331-370.

Candillier, L., Meyer, F., & Fessant, F. (2008). Designing specific weighted similarity

measures to improve collaborative filtering systems. In Industrial Conference

on Data Mining, pp.242-255. Springer, Berlin, Heidelberg.

Chen, Y., & de Rijke, M. (2018, October). A collective variational autoencoder for top-

n recommendation with side information. In Proceedings of the 3rd workshop

on deep learning for recommender systems (pp. 3-9).

Cheng, Y., Yin, L., & Yu, Y. (2014). LorSLIM: low rank sparse linear methods for top-

n recommendations. In 2014 IEEE International Conference on Data Mining,

pp.90-99.

Cheng, Y., Yin, L., & Yu, Y. (2014). LorSLIM: low rank sparse linear methods for top-

n recommendations. In 2014 IEEE International Conference on Data Mining,

pp.90-99.

Christakopoulou, E., & Karypis, G. (2014, May). Hoslim: Higher-order sparse linear

method for top-n recommender systems. In Pacific-Asia Conference on

Knowledge Discovery and Data Mining pp.38-49. Springer, Cham.

105

Christakopoulou, E., Smith, S., Sharma, M., Richards, A., Anastasiu, D. C., & Karypis,

G. (2018). Scalability and Distribution of Collaborative Recommenders.

Christoffel, F., Paudel, B., Newell, C., & Bernstein, A. (2015, September). Blockbusters

and wallflowers: Accurate, diverse, and scalable recommendations with random

walks. In Proceedings of the 9th ACM Conference on Recommender Systems

(pp. 163-170).

Cooper, C., Lee, S. H., Radzik, T., & Siantos, Y. (2014, April). Random walks in

recommender systems: exact computation and simulations. In Proceedings of

the 23rd international conference on world wide web (pp. 811-816).

Cremonesi, P., Koren, Y., & Turrin, R. (2010, September). Performance of

recommender algorithms on top-n recommendation tasks. In Proceedings of the

fourth ACM conference on Recommender systems, pp.39-46.

Dacrema, M. F., Cremonesi, P., & Jannach, D. (2019, September). Are we really making

much progress? A worrying analysis of recent neural recommendation

approaches. In Proceedings of the 13th ACM Conference on Recommender

Systems (pp. 101-109).

Deshpande, M., & Karypis, G. (2004). Item-based top-n recommendation algorithms.

ACM Transactions on Information Systems (TOIS), 22(1), 143-177.

Dorigo, M., & Gambardella, L. M. (1997). Ant colonies for the travelling salesman

problem. biosystems, 43(2), 73-81.

Embarak, O. H. (2011, April). A method for solving the cold-start problem in

recommendation systems. In 2011 International Conference on Innovations in

Information Technology, pp.238-243. IEEE.

Fouss, F., Saerens, M., & Shimbo, M. (2016). Algorithms and models for network data

and link analysis. Cambridge University Press.

Fouss, F., Yen, L., Pirotte, A., & Saerens, M. (2006, December). An experimental

investigation of graph kernels on a collaborative recommendation task. In Sixth

International Conference on Data Mining (ICDM'06), pp.863-868. IEEE.

Frolov, E., & Oseledets, I. (2019). HybridSVD: when collaborative information is not

enough. In Proceedings of the 13th ACM Conference on Recommender Systems,

106

pp.331-339.

Funk, S. (2006). Netflix update: Try this at home.

Geng, X., Zhang, H., Bian, J., & Chua, T. S. (2015). Learning image and user features

for recommendation in social networks. In Proceedings of the IEEE

international conference on computer vision (pp. 4274-4282).

Ghazanfar, M. A., & Prugel, A. (2013). The advantage of careful imputation sources in

sparse data-environment of recommender systems: Generating improved svd-

based recommendations. Informatica, 37(1).

GNU Octave, https://www.gnu.org/software/octave/about

Gohari, F. S., Haghighi, H., & Aliee, F. S. (2017). A semantic-enhanced trust based

recommender system using ant colony optimization. Applied

Intelligence, 46(2), 328-364.

Goldberg, D., Nichols, D., Oki, B. M., & Terry, D. (1992). Using collaborative filtering

to weave an information tapestry. Communications of the ACM, 35(12), 61-70.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations. The Johns Hopkins

University Press

Good, N., Schafer, J. B., Konstan, J. A., Borchers, A., Sarwar, B., Herlocker, J., & Riedl,

J. (1999). Combining collaborative filtering with personal agents for better

recommendations. Aaai/iaai, 439, 1-8.

Guo, G. (2013, October). Integrating trust and similarity to ameliorate the data sparsity

and cold-start for recommender systems. In Proceedings of the 7th ACM

conference on Recommender systems, pp.451-454.

Hammar, M., Karlsson, R., & Nilsson, B. J. (2013, October). Using maximum coverage

to optimize recommendation systems in e-commerce. In Proceedings of the 7th

ACM conference on Recommender systems (pp. 265-272).

Harper, F. M., & Konstan, J. A. (2015). The movielens datasets: History and context.

Acm transactions on interactive intelligent systems (tiis), 5(4), 1-19.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural

collaborative filtering. In Proceedings of the 26th international conference on

world wide web (pp. 173-182).

107

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

collaborative filtering recommender systems. ACM Transactions on

Information Systems (TOIS), 22(1), 5-53.

Hurley, N., & Zhang, M. (2011). Novelty and diversity in top-n recommendation--

analysis and evaluation. ACM Transactions on Internet Technology (TOIT),

10(4), 1-30.

Jamali, M., & Ester, M. (2010). A matrix factorization technique with trust propagation

for recommendation in social networks. In Proceedings of the fourth ACM

conference on Recommender systems, pp.135-142.

Kabbur, S., Ning, X., & Karypis, G. (2013). Fism: factored item similarity models for

top-n recommender systems. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp.659-

667.

Kabbur, S., Ning, X., & Karypis, G. (2013). Fism: factored item similarity models for

top-n recommender systems. In Proceedings of the 19th ACM SIGKDD

international conference on Knowledge discovery and data mining, pp.659-

667.

Kaleroun, A., & Batra, S. (2014, August). Collaborating trust and item prediction with

ant colony for recommendation. In 2014 Seventh International Conference on

Contemporary Computing (IC3) (pp. 334-339). IEEE.

Kang, Z., Peng, C., & Cheng, Q. (2016, February). Top-n recommender system via

matrix completion. In Proceedings of the AAAI Conference on Artificial

Intelligence, 30(1).

Kang, Z., Peng, C., & Cheng, Q. (2016, February). Top-n recommender system via

matrix completion. In Proceedings of the AAAI Conference on Artificial

Intelligence, 30(1).

Karypis, G. (2001, October). Evaluation of item-based top-n recommendation

algorithms. In Proceedings of the tenth international conference on Information

and knowledge management pp.247-254.

Kim, H. N., Ji, A. T., Ha, I., & Jo, G. S. (2010). Collaborative filtering based on

108

collaborative tagging for enhancing the quality of recommendation. Electronic

Commerce Research and Applications, 9(1), 73-83.

Koren, Y. (2008, August). Factorization meets the neighborhood: a multifaceted

collaborative filtering model. In Proceedings of the 14th ACM SIGKDD

international conference on Knowledge discovery and data mining pp.426-434.

Koren, Y. (2009, June). Collaborative filtering with temporal dynamics. In Proceedings

of the 15th ACM SIGKDD international conference on Knowledge discovery

and data mining pp.447-456.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer, 42(8), 30-37.

Liang, D., Krishnan, R. G., Hoffman, M. D., & Jebara, T. (2018, April). Variational

autoencoders for collaborative filtering. In Proceedings of the 2018 world wide

web conference (pp. 689-698).

Liao, X., Li, X., Xu, Q., Wu, H., & Wang, Y. (2020). Improving ant collaborative

filtering on sparsity via dimension reduction. Applied Sciences, 10(20), 7245.

Liao, X.; Hu, W.; Yongji, W. Ant Collaborative Filtering Addressing Sparsity and

Temporal Effects. IEEE Access 2020, 8, 32783–32791.

Loh, S., Lorenzi, F., Granada, R., Lichtnow, D., Wives, L. K., & de Oliveira, J. P. M.

(2009, March). Identifying Similar Users by their Scientific Publications to

Reduce Cold Start in Recommender Systems. In WEBIST, 9, 593-600.

Malone, T. W., Grant, K. R., Turbak, F. A., Brobst, S. A., & Cohen, M. D. (1987).

Intelligent information-sharing systems. Communications of the ACM, 30(5),

390-402.

Massa, P., & Avesani, P. (2009). Trust metrics in recommender systems. In Computing

with social trust, pp.259-285. Springer, London

Massa, P., & Avesani, P. (2009). Trust metrics in recommender systems. In Computing

with social trust (pp. 259-285). Springer, London.

Nembrini, R., Ferrari Dacrema, M., & Cremonesi, P. (2021). Feature selection for

recommender systems with quantum computing. Entropy, 23(8), 970.

Nikolakopoulos, A. N., & Karypis, G. (2019, January). Recwalk: Nearly uncoupled

109

random walks for top-n recommendation. In Proceedings of the twelfth ACM

international conference on web search and data mining (pp. 150-158).

Nikolakopoulos, A. N., Berberidis, D., Karypis, G., & Giannakis, G. B. (2019,

September). Personalized diffusions for top-n recommendation. In Proceedings

of the 13th ACM Conference on Recommender Systems (pp. 260-268).

Nikolakopoulos, A. N., Kalantzis, V., Gallopoulos, E., & Garofalakis, J. D. (2019).

EigenRec: generalizing PureSVD for effective and efficient top-N

recommendations. Knowledge and Information Systems, 58(1), 59-81.

Nikolakopoulos, A. N., Kalantzis, V., Gallopoulos, E., & Garofalakis, J. D. (2017,

August). Factored proximity models for top-n recommendations. In 2017 IEEE

international conference on big knowledge (ICBK) (pp. 80-87). IEEE

Ning, X., & Karypis, G. (2011, December). Slim: Sparse linear methods for top-n

recommender systems. In 2011 IEEE 11th International Conference on Data

Mining pp.497-506. IEEE.

Ning, X., Desrosiers, C., & Karypis, G. (2015). A comprehensive survey of

neighborhood-based recommendation methods. Recommender systems

handbook, 37-76.

Olaleke, O., Oseledets, I., & Frolov, E. (2021, June). Dynamic modeling of user

preferences for stable recommendations. In Proceedings of the 29th ACM

Conference on User Modeling, Adaptation and Personalization (pp. 262-266).

Park, S. T., & Chu, W. (2009, October). Pairwise preference regression for cold-start

recommendation. In Proceedings of the third ACM conference on

Recommender systems (pp. 21-28).

Park, S. T., Pennock, D., Madani, O., Good, N., & DeCoste, D. (2006, August). Naïve

filterbots for robust cold-start recommendations. In Proceedings of the 12th

ACM SIGKDD international conference on Knowledge discovery and data

mining (pp. 699-705).

Parvin, H., Moradi, P., & Esmaeili, S. (2019). TCFACO: Trust-aware collaborative

filtering method based on ant colony optimization. Expert Systems with

Applications, 118, 152-168.

110

Paterek, A. (2007, August). Improving regularized singular value decomposition for

collaborative filtering. In Proceedings of KDD cup and workshop, 2007, 5-8.

Paudel, B., Christoffel, F., Newell, C., & Bernstein, A. (2016). Updatable, accurate,

diverse, and scalable recommendations for interactive applications. ACM

Transactions on Interactive Intelligent Systems (TiiS), 7(1), 1-34.

Pazzani, M. J. (1999). A framework for collaborative, content-based, and demographic

filtering. Artificial intelligence review, 13(5-6), 393-408.

Rendle, S., Freudenthaler, C., Gantner, Z., & Schmidt-Thieme, L. (2012). BPR:

Bayesian personalized ranking from implicit feedback. arXiv preprint

arXiv:1205.2618.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., & Riedl, J. (1994). GroupLens: an

open architecture for collaborative filtering of netnews. In Proceedings of the

1994 ACM conference on Computer supported cooperative work, pp.175-186.

Riadi, I. C. J. (2014). Cognitive Ant colony optimization: A new framework in swarm

intelligence. University of Salford (United Kingdom).

Ricci, F., Rokach, L., & Shapira, B. (2015). Recommender systems: introduction and

challenges. In Recommender systems handbook (pp. 1-34). Springer, Boston,

MA

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The annals of

mathematical statistics, 400-407.

S. Nadi, M.H. Saraee, M.D. Jazi, A. Bagheri Fars: fuzzy ant based recommender system

for web usersIJCSI Int. J. Comput. Sci. Issues, 8 (1) (2011), pp. 203-209

Sarwar, B. M., Karypis, G., Konstan, J., & Riedl, J. (2002, December). Recommender

systems for large-scale e-commerce: Scalable neighborhood formation using

clustering. In Proceedings of the fifth international conference on computer and

information technology (Vol. 1, pp. 291-324).

Sarwar, B. M., Konstan, J. A., Borchers, A., Herlocker, J., Miller, B., & Riedl, J. (1998,

November). Using filtering agents to improve prediction quality in the

grouplens research collaborative filtering system. In Proceedings of the 1998

ACM conference on Computer supported cooperative work (pp. 345-354).

111

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality

reduction in recommender system-a case study. Minnesota Univ Minneapolis

Dept of Computer Science.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th international

conference on World Wide Web (pp. 285-295).

Schein, A. I., Popescul, A., Ungar, L. H., & Pennock, D. M. (2002, August). Methods

and metrics for cold-start recommendations. In Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in

information retrieval, pp.253-260.

Shambour, Q., & Lu, J. (2012). A trust-semantic fusion-based recommendation

approach for e-business applications. Decision Support Systems, 54(1), 768-

780.

Shani, G., & Gunawardana, A. (2011). Evaluating recommendation systems. In

Recommender systems handbook, pp.257-297. Springer, Boston, MA.

Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for

automating “word of mouth”. In Proceedings of the SIGCHI conference on

Human factors in computing systems, pp.210-217.

Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., & Nikolenko, S. I. (2020,

January). Recvae: A new variational autoencoder for top-n recommendations

with implicit feedback. In Proceedings of the 13th International Conference on

Web Search and Data Mining (pp. 528-536).

Sobecki, J., & Tomczak, J. M. (2010, March). Student courses recommendation using

ant colony optimization. In Asian Conference on Intelligent Information and

Database Systems(pp. 124-133). Springer, Berlin, Heidelberg.

Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous

domains. European journal of operational research, 185(3), 1155-1173.

Son, L. H. (2016). Dealing with the new user cold-start problem in recommender

systems: A comparative review. Information Systems, 58, 87-104.

Steck, H. (2019, May). Embarrassingly shallow autoencoders for sparse data. In The

112

World Wide Web Conference, pp.3251-3257.

Stützle, T., López-Ibánez, M., Pellegrini, P., Maur, M., De Oca, M. M., Birattari, M., &

Dorigo, M. (2011). Parameter adaptation in ant colony

optimization. Autonomous search, 191-215.

Tengkiattrakul, P., Maneeroj, S., & Takasu, A. (2016, November). Applying ant-colony

concepts to trust-based recommender systems. In Proceedings of the 18th

International Conference on Information Integration and Web-based

Applications and Services (pp. 34-41).

Tengkiattrakul, P., Maneeroj, S., & Takasu, A. (2018). Integrating the importance levels

of friends into trust-based ant-colony recommender systems. International

Journal of Web Information Systems.

Vahabi, H., Koutsopoulos, I., Gullo, F., & Halkidi, M. (2015, October). Difrec: A social-

diffusion-aware recommender system. In Proceedings of the 24th ACM

International on Conference on Information and Knowledge Management (pp.

1481-1490).

Vargas, S. (2015). Novelty and diversity enhancement and evaluation in Recommender

Systems.

Weng, L. T., Xu, Y., Li, Y., & Nayak, R. (2008). Exploiting item taxonomy for solving

cold-start problem in recommendation making. In 2008 20th IEEE

International Conference on Tools with Artificial Intelligence, 2, pp.113-120.

IEEE.

Wu, Y., DuBois, C., Zheng, A. X., & Ester, M. (2016). Collaborative denoising auto-

encoders for top-n recommender systems. In Proceedings of the Ninth ACM

International Conference on Web Search and Data Mining, pp.153-162.

Yahoo Labs Webscope 2014. R2 - Yahoo! Music. Retrieved 07-04-2020 from

https://webscope.sandbox.yahoo.com/

Yin, H., Cui, B., Li, J., Yao, J., & Chen, C. (2012). Challenging the long tail

recommendation. arXiv preprint arXiv:1205.6700.

Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. (2008, June). Large-scale parallel

collaborative filtering for the netflix prize. In International conference on

https://webscope.sandbox.yahoo.com/

113

algorithmic applications in management pp.337-348. Springer, Berlin,

Heidelberg.

Ziegler, C. N., McNee, S. M., Konstan, J. A., & Lausen, G. (2005). Improving

recommendation lists through topic diversification. In Proceedings of the 14th

international conference on World Wide Web, pp.22-32.

114

115

BIOGRAPHY

Hakan YILMAZER. He received a BSc degree from Mersin University, Mersin

in 2003 and an MSc degree from Mersin University, Mersin in 2013. Since 2017, he has

been working as a software engineer for Çukurova University and living in

Budapest/Hungary.

Publications from thesis

Yilmazer, H., & Özel, S. A. (2022). ImposeSVD: Incrementing PureSVD For

Top-N Recommendations for Cold-Start Problems and Sparse Datasets. The Computer

Journal.

116

117

APPENDICES

118

119

A PROOF OF LEMMA 1.

PROOF. Since RTR is the inner product between the same matrix R and also RTR is

symmetric.

For i=j,

- [RTR]ij = is a diagonal element on the intersection of the ith column and jth

row.

- [RTR]ij = number of ones in the product of ith column and jth row of R, which

is equal to the number of ones in the ith column.

- [RTe]ij = is a diagonal element on the intersection of the ith column and jth

element of e.

- [RTe]ij = number of ones in the product of ith column of the R and jth element

of e, which is equal to the number of ones in the ith column.

Therefore, the diagonal of the RTR matrix is the vertex degrees of the RT if it’s

a binary matrix.

REMARK Since RTR is a co-citation matrix and also RRT is a co-author matrix, and

RRT is symmetric too. Therefore, the diagonal of the RRT matrix is the vertex degrees

of the R if it’s a binary matrix hence: Diag(ReT) = Diag(RRT)

120

B BEST PARAMETERS AND BEST RESULTS FOR Z-SCOREC

AND IMPOSESVD EVALUATIONS FOR ALL DATASETS AND

SCENARIOS
In our experimental evaluation, we applied Grid-Search to find the best

parameter values for each algorithm. We performed Grid-Search for each dataset

separately. In the below tables, you can find the best parameter values and their

associated nDCG results for each scenario when N=10.

Table B.1a Results for cold-start user scenario for MovieLens 1M, BookCrossing, and

Pinterest Image datasets

 COLD-START USER SCENARIO

 MovieLens 1M BookCrossing Pinterest Image

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random 0.005 0.003 0.007
Popular 0.086 0.016 0.016

ICF
20 0.070

22
0 0.030 10 0.066

ItemKNN
10
0 0.101 60 0.036

16
0 0.081

PureSVD
8 0.104

29
5 0.040 93 0.091

HybridSV
D 10

0.
5

0.9
0 0.106

17
5

0.
1

0.7
5 0.043

13
5

0.
1

0.8
5 0.093

EigenREC
10

0.2
0 0.106

29
5

0.8
5 0.042

12
3

0.5
5 0.094

z-scoREC

0.6
5 0.115

0.1
0 0.039

0.1
5 0.086

ImposeSV
D 45

0.3
5 0.117

17
5

0.0
5 0.044

12
5

0.1
0 0.101

121

Table B.1b Results for cold-start user scenario for R2-Yahoo! Music, MovieLens 10M,

and Netflix datasets
 COLD-START USER SCENARIO

 R2-Yahoo! Music MovieLens 10M Netflix

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random 0.006 0.008 0.005
Popular 0.008 0.021 0.027
ICF 60 0.096 70 0.072 30 0.155

ItemKNN
19
0 0.109

20
0 0.101

18
0 0.189

PureSVD
95 0.100 54 0.120

12
5 0.188

HybridSV
D

11
5

0.9
9

0.3
5 0.107 63

0.
1

0.5
0 0.130

10
5

0.
1

0.3
5 0.206

EigenREC
11
5

0.4
0 0.105 63

0.5
0 0.128

13
0

0.3
0 0.206

z-scoREC

0.1
5 0.111

0.1
0 0.127

0.0
5 0.205

ImposeSV
D

15
5

0.2
0 0.113

10
5

0.0
5 0.133

14
0

0.0
5 0.217

Table B.2a Results for long-tail items scenario for MovieLens 1M, BookCrossing, and

Pinterest Image datasets
 LONG-TAIL ITEMS SCENARIO

 MovieLens 1M BookCrossing Pinterest Image

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random 0.007 0.004 0.005
Popular 0.000 0.000 0.000
ICF 10 0.006 10 0.054 10 0.107
ItemKNN 20 0.041 90 0.054 60 0.128

PureSVD
20
0 0.217

57
5 0.052

62
5 0.124

HybridSV
D

18
0

0.
1

0.9
5 0.221

30
0

0.
1 0.05 0.061

25
0

0.9
9

0.0
0 0.135

EigenREC
22
5

1.3
0 0.231

22
5

-
0.25 0.061

35
0

0.0
0 0.135

z-scoREC

0.0
5 0.175 0.00 0.061

0.0
0 0.149

ImposeSV
D

22
0

0.0
0 0.243

72
5 0.00 0.065

70
0

0.0
0 0.150

122

Table B.2b Results for long-tail items scenario for R2-Yahoo! Music, MovieLens 10M,

and Netflix datasets
 LONG-TAIL ITEMS SCENARIO

 R2-Yahoo! Music MovieLens 10M Netflix

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random

0.00
3

0.00
4

0.00
5

Popular

0.00
0

0.00
0

0.00
0

ICF
10

0.13
4 10

0.09
7 10

0.24
3

ItemKNN
90

0.16
1 50

0.15
9 210

0.26
4

PureSVD
120
0

0.17
7

50
0

0.24
3 825

0.28
4

HybridSV
D 275

0.
1

0.0
0

0.20
0

30
0

0.
1 0.35

0.25
6 400

0.
1 0.50

0.30
1

EigenREC
275

0.0
0

0.20
0

30
0 0.35

0.25
6 425 0.15

0.30
3

z-scoREC

0.0
0

0.19
5 0.05

0.23
6 0.05

0.29
9

ImposeSV
D

105
0

0.0
0

0.20
2

65
0

-
0.05

0.25
9

135
0

-
0.05

0.31
3

Table B.3a Results for sparsity final stage scenario for MovieLens 1M, BookCrossing,

and Pinterest Image datasets
 SPARSITY %100

 MovieLens 1M BookCrossing Pinterest Image

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random

0.00
5

0.00
5

0.00
4

Popular

0.00
2

0.03
1

0.01
4

ICF
10

0.00
2 10

0.05
7 10

0.10
4

ItemKNN
20

0.00
8

17
0

0.08
4

23
0

0.13
9

PureSVD
600

0.06
5 40

0.06
8

27
5

0.13
9

HybridSV
D 90

0.
5 0.05

0.14
6

10
0

0.
1

0.5
5

0.07
8 70

0.9
9

0.4
5

0.14
8

EigenREC
105
0 1.35

0.14
1

12
5

0.4
5

0.08
0 70

0.3
5

0.14
7

z-scoREC

-
0.01

0.17
1

0.2
0

0.08
6

0.0
6

0.14
5

ImposeSV
D

105
0

-
0.01

0.17
4

15
0

0.0
5

0.09
0

15
0

0.0
3

0.15
2

123

Table B.3b Results for sparsity final stage scenario for R2-Yahoo! Music, MovieLens

10M, and Netflix datasets
 SPARSITY %100

 R2-Yahoo! Music MovieLens 10M Netflix

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random 0.005 0.006 0.006
Popular 0.009 0.023 0.029
ICF 10 0.119 10 0.111 10 0.264

ItemKNN
19
0 0.178

25
0 0.194

30
0 0.311

PureSVD
37
5 0.174

12
5 0.247

27
5 0.308

HybridSV
D

40
0

0.
1

0.2
5 0.193

20
0

0.
1

0.5
5 0.257

22
5

0.
1

0.4
0 0.329

EigenREC
40
0

0.2
0 0.194

22
5

0.3
5 0.261

52
5

0.1
5 0.338

z-scoREC

0.0
3 0.184

0.0
4 0.229

0.0
2 0.337

ImposeSV
D

37
5

0.0
6 0.193

17
5

0.0
5 0.252

67
5

0.0
4 0.347

Table B.4a Results for sparsity second stage scenario for MovieLens 1M,

BookCrossing, and Pinterest Image datasets
 SPARSITY %66

 MovieLens 1M BookCrossing Pinterest Image

 f/k α d/λ nDC
G

f/
k

α d/λ nDC
G

f/k α d/λ nDC
G

Random 0.006 0.007 0.003

Popular 0.001 0.030 0.015

ICF 10 0.004 1
0

 0.032 10 0.085

ItemKNN 40 0.004 7
0

 0.047 20
0

 0.112

PureSVD 95
0

 0.039 7
0

 0.052 12
5

 0.115

HybridSV
D

20
0

0.
5

0.00 0.081 1
0

0.
1

0.8
5

0.053 90 0.
1

0.5
5

0.122

EigenREC 90
0

 0.95 0.078 6
0

 0.6
5

0.052 90 0.5
5

0.120

z-scoREC -
0.01

0.111 0.0
8

0.066 0.0
7

0.121

ImposeSV
D

95
0

 0.00 0.119 6
0

 0.0
7

0.066 15
0

 0.2
0

0.127

124

Table B.4b Results for sparsity second stage scenario for R2-Yahoo! Music,

MovieLens 10M, and Netflix datasets
 SPARSITY %66

 R2-Yahoo! Music MovieLens 10M Netflix

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random 0.005 0.006 0.006
Popular 0.009 0.022 0.027
ICF 10 0.104 10 0.086 10 0.174

ItemKNN
90 0.140

20
0 0.143

18
0 0.219

PureSVD
52
5 0.124

12
5 0.170

22
5 0.220

HybridSV
D

27
5

0.
1

0.5
5 0.139

12
5

0.
1

0.6
0 0.179

22
5

0.
5

0.5
5 0.236

EigenREC
27
5

0.4
5 0.140

12
5

0.5
0 0.180

22
5

0.5
5 0.238

z-scoREC

0.0
5 0.144

0.0
4 0.171

0.0
6 0.245

ImposeSV
D

65
0

0.0
3 0.148

17
5

0.0
3 0.184

35
0

0.0
4 0.253

Table B.5a Results for sparsity initial stage scenario for MovieLens 1M, BookCrossing,

and Pinterest Image datasets
 SPARSITY %33

 MovieLens 1M BookCrossing Pinterest Image

 f/k α d/λ

nDC

G f/k α d/λ

nDC

G f/k α d/λ

nDC

G

Random 0.006 0.005 0.004

Popular 0.001 0.029 0.014

ICF 10 0.007 10 0.018 30 0.063

ItemKNN
10 0.005

22

0 0.023

25

0 0.083

PureSVD
110

0 0.026

12

5 0.039

10

0 0.093

HybridSV

D 800

0.9

9 0.60 0.049 10

0.

1

0.7

5 0.040

10

0

0.

1

0.9

0 0.096

EigenREC
115

0 0.95 0.047 10

0.7

5 0.039

10

0

0.9

0 0.095

z-scoREC

-

0.01 0.073

0.0

8 0.040

0.0

9 0.093

ImposeSV

D

120

0

-

0.01 0.082 75

0.0

9 0.047 90

0.1

5 0.102

125

Table B.5b Results for sparsity initial stage scenario for R2-Yahoo! Music, MovieLens

10M, and Netflix datasets
 SPARSITY %33

 R2-Yahoo! Music MovieLens 10M Netflix

 f/k α d/λ
nDC
G f/k α d/λ

nDC
G f/k α d/λ

nDC
G

Random 0.005 0.006 0.006
Popular 0.009 0.020 0.025
ICF 10 0.073 10 0.064 10 0.105

ItemKNN
18
0 0.095

19
0 0.103

13
0 0.143

PureSVD
10
0 0.086 60 0.120 80 0.147

HybridSV
D

12
5

0.
1

0.4
0 0.103 40

0.9
9

0.7
0 0.127

17
5

0.
1

0.5
5 0.156

EigenREC
12
5

0.2
5 0.102 70

0.4
5 0.126

17
5

0.5
5 0.157

z-scoREC

0.0
9 0.102

0.0
6 0.129

0.0
5 0.170

ImposeSV
D

22
5

0.0
2 0.111

15
0

0.1
5 0.137

22
5

0.0
5 0.183

126

C. ACO BASED RECOMMENDER SYSTEMS
Table C.1. Studies About Ant-Colony Based Recommender System

Research Trust based recommender system using ant colony for trust
computation. (2012)

Abbreviation TARS

Score Ranking Based; TOP_N@(1,2,5)

Metrics Recall, Precision, F1-Score

Method Merged Trust Based User Confidences and Pearson as trust values
between users. In ACO sense, nodes denoted users and edges are trust
values. Paper finds best neighbors for a user in ACO, and predict new
rating scores from these neighbors using Resnick's (1994) rating prediction
formula

Scenario Cold-start, Sparsity

Benchmarks UCF (Pearson, k=100) (Resnick, 1994)

Datasets Jester, MovieLens 100K

Evaluation Precision is increased by approximately 8% and 3% respectively using
TARS at time t=0 and approximately by 12% and 8%

References (Bedi and Sharma, 2012)

Table C.2. Studies About Ant-Colony Based Recommender System

Research A semantic-enhanced trust-based recommender system using ant
colony optimization. (2017)

Abbreviation STARS

Score Ranking Based; TOP_N@(10)

Metrics MAE (for Parameter Tuning), Recall, ARHR

Method Semantically Clustering Items, Trust Based User Similarity Merge (MSD-
Jaccard, Pearson), In ACO sense, nodes denoted users and edges are
trust values. Paper finds best neighbors for a user in ACO, and predict new
rating scores from these neighbors using Resnick's (1994) rating prediction
formula.

Scenario Cold-start, General Recommends, Sparsity, MMIC problem

Benchmarks UCF (Resnick,1994), ICF (Sarwar et.al., 2001), TARS (Bedi and Sharma,
2012), TSF (Shambour & Lu, 2012)

Datasets MovieLens 100K (ML-100K), MovieLens 1M (ML-1M)

Evaluation Against to TARS

Dataset Scenario Recall ARHR

ML-100K General 9.33% 14.63%

ML-1M General 14.24% 12.10%

ML-100K) Cold-start User 19.30% 18.66%

ML-1M Cold-start User 47.08% 55.43%

ML-100K MMIC 15.01% 18.98%

ML-1M MMIC 13.18% 14.89%

References (Gohari et.al., 2017)

127

Table C.3. Studies About Ant-Colony Based Recommender System
Research TCFACO: Trust-aware collaborative filtering method based on ant

colony optimization (2019)

Abbreviation TCFACO

Score Rating Prediction

Metrics MAE, RMSE, Coverage

Method Trust Based UCF merged with user sim(Tau* and Pearson)

Scenario Cold-start, Heavy users, Opinion users, Long-tail items,
Contra(mean(ratings)<1.5), General

Benchmarks ItemAverages, UserAverages, TARS, TrustSVD, TrustMF, SocialMF,
SVD++

Datasets FilmTrust, Epinions, Ciao

Evaluation Against to TARS

Dataset Scenario MAE

Epinions Cold-start user 0.837/0.853

Ciao Cold-start user 0.723/0.701

References (Parvin et.al., 2019)

Table C.4 Studies About Ant-Colony Based Recommender System

Research Trust-based ant recommender (T-BAR) (2012)

Abbreviation T-BAR

Score Rating Prediction

Metrics MAE, Coverage

Method Trust Based UCF

Scenario Cold-start, Heavy users

Benchmarks UCF (Pearson) (Resnick, 1994), MT (Mole Trust) (Massa & Avesani, 2009)

Datasets Epinions

Evaluation
 Against to Mole Trust

Dataset MAE Coverage

T-Bar 1.459 93.%

Mole Trust 0.673 11%

DT-Bar 0.714 55%

References (Bellaachia & Alathel, 2012)

128

Table C.5 Studies About Ant-Colony Based Recommender System
Research DT-BAR: a dynamic ANT recommender to balance the overall

prediction accuracy for all users (2014)

Abbreviation DT-BAR

Score Rating Prediction

Metrics MAE, Coverage

Method Trust-Based UCF

Scenario Cold-start, Heavy users

Benchmarks T-BAR (Bellaachia & Alathel, 2012), MT (Mole Trust) (Massa & Avesani,
2009)

Datasets Epinions

Evaluation
 Against to Mole Trust

Dataset MAE Coverage

T-BAR 1.459 93.%

Mole Trust 0.673 11%

DT-BAR 0.714 55%

References (Bellaachia & Alathel, 2014)

Table C.6 Studies About Ant-Colony Based Recommender System

Research Student courses recommendation using ant colony optimization.

Score Rating Prediction

Metrics MAE, NMSE and other error predictions

Method Probability based similarity

Scenario General

Benchmarks UCF (Pearson) (Resnick, 1994), User-Based CBF

Datasets Real data from the University of Information System EdukacjaCL

References (Sobecki & Tomczak, 2010)

Table C.7 Studies About Ant-Colony Based Recommender System

Research Applying ant-colony concepts to trust-based recommender systems.
(2016)

Score Rating Prediction

Metrics MAE, Coverage

Method User Similarity (User factors from SVD-U and trustworthiness of among
them)

Scenario General

Benchmarks ALT-BAR

Datasets Epinions

Evaluation Coverage percentage for ALT-BAR %28.8 and for their method %70.8

References (Tengkiattrakul et.al., 2016)

129

Table C.8 Studies About Ant-Colony Based Recommender System
Research Integrating the importance levels of friends into trust-based ant-

colony recommender systems. (2018)

Score Rating Prediction

Metrics MAE, Coverage

Method User Similarity (User factors from SVD-U and trustworthiness of among
them)

Scenario High Accuracy, Coverage

Benchmarks ALT-BAR

Datasets Epinions

Evaluation Coverage for ALT-BAR, %28.8, for their method %70.8

References (Tengkiattrakul et.al., 2018)

Table C.9 Studies About Ant-Colony Based Recommender System

Research Improving the recommendation accuracy for cold-start users in trust-
based recommender systems. (2016)

Abbreviation ALT-BAR

Score Rating Prediction

Metrics MAE, Coverage

Method Averaged Localized Trust-Based Ant Recommender

Scenario Cold-start, Heavy-user

Benchmarks UCF (Pearson) (Resnick, 1994), MT (Mole Trust) (Massa & Avesani,
2009), T-BAR (Bellaachia & Alathel, 2012)

Datasets Epinions

Evaluation Cold Start MAE; ALT-BAR: 0.502, T-BAR:1.459, MT:0.674, CF:1.094
Coverage; ALT-BAR: 56%, T-BAR: 97%, MT: 18%, CF: 3%

References (Bellaachia & Alathel, 2016)

Table C.10 Studies About Ant-Colony Based Recommender System

Research
Collaborating trust and item-prediction with ant colony for
recommendation (2014)

Score TOP_N@(10)

Metrics Recall, Precision, F1-Score

Method Similar to TARS, only item deviation distance products in prediction formula.

Scenario General, Shilling Attack, Cold-start Users, Sparse Matrix, Grey Sheep Users

Benchmarks UCF (Pearson) (Resnick, 1994)

Datasets MovieLens 100K

Evaluation
General scenario using Recall metric;
UCF: 32.11%
Original Paper: 33.14%

References (Kaleroun & Batra, 2014)

130

Table C.11 Studies About Ant-Colony Based Recommender System

Research
Ant Collaborative Filtering Addressing Sparsity and Temporal Effects
(2020)

Abbreviation ACF

Score Rating Based and Ranking Based

Metrics
Rating Based; RMSE, Evaluation Time
Ranking Based; Precision, Recall, Accuracy

Method
Compute User Pheromones, Item Pheromones,
Then Compute Predictions for new Rating and Rankings

Scenario Sparsity, Over Specification

Benchmarks
Rating Based; UCF, ICF, NMF, PLSA, RSM
Ranking Based; UCF, ICF, NBI, RSM, BM25-Item

Datasets Douban, LastFM

Evaluation

Precision Metric Results

Dataset Douban LastFM

UCF 0.045 0.045

ICF 0.006 0.040

ACF 0.062 0.076

References (Liao et.al., 2020a)

Table C.12 Studies About Ant-Colony Based Recommender System

Research
Improving ant collaborative filtering on sparsity via dimension
reduction. (2020)

Abbreviation IACF

Score Rating Based and Ranking Based

Metrics
Rating Based; RMSE, Evaluation Time
Ranking Based; Precision, Recall, Accuracy

Method Upgrade to ACF, Adding Clusters to ACF

Scenario Sparsity

Benchmarks
Rating Based; UCF, ICF, NMF, PLSA, RSM, ACF
Ranking Based; UCF, ICF, NBI, RSM, BM25-Item, ACF

Datasets ML 10M, ML 1M, Douban, NetEase

Evaluation

Precision Metric Results

Dataset Douban NetEase

ACF 0.057 0.076

IACF 0.070 0.081

References (Liao et.al., 2020b)

131

Table C.13 Studies About Ant-Colony Based Recommender System
Research Fars: fuzzy ant-based recommender system for web users. (2011)

Abbreviation FARS

Score Rating Based

Metrics Precision, Recall

Method Jaccard Similarity between users and Fuzzifying user-item matrix

Scenario URL Recommendation

Benchmarks ACO (Ant Based)

Datasets Web Logs

Evaluation

 Recall

ACO 0.030

Fars 0.033

References (Nadi et.al., 2011)

