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ABSTRACT
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: Asst. Prof. Dr. Alper Kamil DEMIR
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: Assoc. Prof. Dr. irem ERSOZ KAYA

Cold-start problems are one of the most important challenges in recommendation
systems. In this thesis, we proposed models to develop solutions for the cold-start problem
from two different perspectives. We aimed for a deterministic and a heuristic study that can
be used in different scenarios. In the first perspective, we introduced a new heuristic
framework that optimizes item-based similarity models to provide top-N recommendation
lists using Continuous Ant Colony Optimization with a non-deterministic approach. Thanks
to its heuristic structure, we aimed to create specific recommendation lists for users and
change them according to each session, while at the same time aiming to balance the
relevance of the user and the item variety in the recommendation lists. In the second
perspective, we introduced two new Collaborative Filtering techniques deterministically. In
the first model, we developed an asymmetric similarity matrix among the items based on the
z-score normalization of the Gram-matrix we obtained using the implicit data, and in the
second model, we aimed to reduce the sparsity with the item predictions with the assist our
novel item similarity matrix, thus enabling more accurate decomposition of the latent factors
in the user-item matrix we provided. We evaluated all of our methods on well-known datasets
and observed that our methods outperform similar recommendation models in a variety of
scenarios, including cold-start users, cold-start systems, and providing of unpopular product
recommendations.

Keywords: Recommender Systems, Collaborative Filtering, Cold Start, Ant Colony
Optimization, Singular Value Decomposition, PureSVD, z-score, Item Based
Models, top-N Recommendation
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DOKTORA TEZi

ONERI SISTEMLERINDE SOGUK-BASLANGIC PROBLEMINE
YONELIK ALGORITMA GELISTiRiMi

Hakan YILMAZER

CUKUROVA fJNiVERSiT}ZSI
FEN BiLIMLERIi ENSTiTUSU
BILGISAYAR MUHENDISLiGi ANABILiM DALI

Danisman : Prof. Dr. Selma Ayse OZEL
Yil: 2022, Sayfa: 131
Jiiri: : Prof. Dr. Selma Ayse OZEL

: Prof. Dr. Umut ORHAN

: Dr. Ogr. Uye. Alper Kamil DEMIR
: Dog. Dr. Mehmet Ugras CUMA
Dog. Dr. frem ERSOZ KAYA

Soguk-baslangi¢ problemleri, neri sistemlerindeki en 6nemli zorluklardan birisidir.
Bu tez ¢alismasinda, soguk-baslangi¢ problemine 2 farkli yaklagim ile ¢6ziimler gelistirmeyi
amagladik. Farkli senaryolarda kullanilabilecek bir deterministik ve bir sezgisel ¢alisma
yaptik. Tlk perspektifte, deterministtik yaklasimla, Siirekli Karinca Kolonisi Optimizasyonu
kullanarak ilk-N 6neri listeleri sunmak igin {iriin tabanl benzerlik modellerini optimize eden
yeni sezgisel bir cat1 gelistirdik. Sezgisel yapis1 sayesinde, kullanicilar igin kendine has ve
her oturuma gore degisen Oneri listeleri iiretirken ayni zamanda kullanicinin alakasi ile
listelerdeki {iriin gesitliligi arasinda denge kurmayr amacladik. iIkinci perspektifte,
deterministik olarak iki yeni isbirlik¢i filtreleme teknigini tanittik. ik modelde, ortiik verileri
kullanarak elde ettigimiz gram matrisin z-skor normalizasyonuna dayanan tiriinler arasinda
0zgilin asimetrik bir benzerlik matrisi hesapladik ve ikinci modelde, gelistirdigimiz iiriin
benzerlik matrisi ile olusturdugumuz iiriin tahminleri ile seyrekligi azaltmayi amagladik
boylece kullanici-iiriin matrisinde gizli faktorlerinin daha bagarili ayrigmasini sagladik. Tiim
yontemlerimizi bilinen veri setleri iizerinde test ettik ve yontemlerimizin, soguk-baglangig
kullanicilarda, soguk-baglangi¢ sistemlerde ve popiiler olmayan iiriin 6nerilerinin saglanmasi
da dahil olmak {izere gesitli senaryolarda benzer tavsiye modellerinden daha iyi performans
gosterdigini gozlemledik.

Anahtar Kelimeler: Oneri Sistemleri, Isbirlik¢i Filtreleme, Soguk-Baslangic, Karinca
Kolonisi Optimizasyonu, Tekil Deger Ayrisimi, PureSVD, z-Skor,
Uriin Tabanli Modeller, ilk-N Tavsiye



EXTENDED ABSTRACT

As is known, cold-start is one of the major problems in recommender
systems. In the literature, considerable research has been done on this problem. What
makes this problem important is that it has a relationship with the solution of many
issues in Recommender Systems. In particular, the varying screens and richness of
the interaction environments between users and products (Netflix, Spotify, Youtube,
Twitch, etc.) have also demonstrated many problems identical to the cold start.

This thesis proposed to develop models for the solution of cold-start
problems in various scenarios. Today's modern recommendation systems do not
work only through one algorithm. Depending on the case, they could change the
models or integrate different models. You may need to follow either a deterministic
or heuristic method to establish new links between the user and the products. In this
thesis, we have done 2 different studies, one deterministic and one heuristic, which
might be used in different scenarios.

In the first perspective, we introduce a new framework that optimizes item-
based similarity models to offer top-N recommendation lists by Continuous Ant
Colony Optimization, which is a heuristic algorithm. With our new user-specific
item-based model, pheromone values are denoted as posterior probabilities of users
which are constructed from previous clicks. Our novel model regularizes Lp norms
of the clicked items in the selected input similarity model by amortizing them binary
cross-entropy and giving stochastic importance to items specific to the user graph
which are maximized with hyper-parameter search via in continuous domain.

When comparing the first study with the state-of-art methods in different
evaluation scenarios using well-known evaluation metrics and popular datasets
(MovieLens, Yahoo, Pinterest), we observed our algorithm offers diverse but
relevant and more successful recommendations to the users. The model, which we
call AcoRec, provides the opportunity to work with low-dimensional data compared

to traditional Ant Colony Optimization models. Thanks to its random heuristic
i



structure, the most important advantage of our method is its ability to balance high
coverage and high recall while producing diverse and session-variate
recommendation lists for the users.

In the second perspective, we introduced two novel collaborative filtering
techniques for recommendation systems in cases of various cold-start situations and
incomplete datasets. The first model establishes an asymmetric weight matrix
between items without using item meta-data and eradicates the disadvantages of
neighborhood approaches by automatic determination of threshold values. Our first
model, z-scoREC, is also regarded as a pure deep-learning model because it performs
like a vanilla auto-encoder in transforming column vectors with Z-Score
normalization similar to batch normalization. With the second model, ImposeSVD,
we aimed to enhance the shortcomings of the PureSVD in cases of cold-start and
incomplete data by preserving its straightforward implementation and non-
parametric form. The ImposeSVD model relies on the z-scoREC and produces
synthetic new predictions for the users by decomposing the latent factors from the
imposed matrix.

We evaluated our models on the well-known datasets and found out that our
method was outperforming similar approaches in the specific scenarios including
recommendations for cold-start users, strength in cold-start systems, and
diversification of long-tail item recommendations in lists. Our z-scoREC model also
outperformed familiar neighbor-based approaches when operated as a recommender
system and gave a closer appearance to the decomposition methods despite its simple

and rigid cost framework.



GENISLETILMIS OZET

Bilindigi gibi, soguk-baslangig, dneri sistemlerindeki en biiyiik sorunlardan
biridir. Literatiirde bu problem iizerine pek ¢ok arastirma yapilmistir. Bu sorunu
onemli kilan, Oneri Sistemlerinde birgok sorunun ¢dziimii ile iliskisi olmasidir.
Ozellikle kullanicilar ve iiriinler arasindaki etkilesim ortamlarinin (Netflix, Spotify,
Youtube, Twitch vb.) degisen ekranlar1 ve zenginligi de soguk baslatmaya benzer
bir¢ok sorunu ortaya ¢ikarmistir.

Bu tez caligmasinda, farkli senaryolarda soguk-baslangic problemlerinin
¢Oziimil i¢cin modeller gelistirildi. Giinliimiiziin modern Oneri sistemleri sadece tek
bir algoritma ile ¢aligmamaktadir. Duruma gore modelleri degistirebilir veya farkli
modelleri entegre edebilirler. Kullanici ve tiriinler arasinda yeni baglantilar kurmak
icin deterministik veya sezgisel bir yontem izlemeniz gerekebilir. Bu tezde, farkli
senaryolarda kullanilabilecek bir deterministik ve bir sezgisel olmak tizere 2 farkli
calisma yaptik.

Ik yaklasimda, sezgisel bir algoritma olan Siirekli Karinca Kolonisi
Optimizasyonu tarafindan ilk N oneri listeleri sunmak igin 6ge tabanli benzerlik
modellerini optimize eden yeni bir ¢ergeve sunuyoruz. Yeni kullaniciya 6zel 6ge
tabanli modelimiz ile feromon degerleri, kullanicilarin 6nceki tiklamalardan
olusturulan sonsal olasiliklar1 olarak ifade edilmektedir. Yeni modelimiz, segilen
girdi benzerlik modelindeki tiklanan 6gelerin ikili ¢apraz entropisini amorti ederek
ve siirekli etki alaninda hiper parametre aramasi ile maksimize edilen kullanici
grafigine 6zgii 6gelere stokastik 6nem vererek Lp normlarini diizenler.

[k galismayn, iyi bilinen degerlendirme metrikleri ve popiiler veri kiimeleri
(MovieLens, Yahoo, Pinterest) kullanan farkli degerlendirme senaryolarinda en
geligsmis yontemlerle karsilastirirken, algoritmamizin kullanicilara gesitli ancak ilgili
ve daha basarili 6neriler sundugunu gézlemledik. AcoRec adimi verdigimiz model,
geleneksel Karinca Kolonisi Optimizasyon modellerine kiyasla diisiikk boyutlu

verilerle calisma imkan1 sagliyor. Rastgele sezgisel yapisi sayesinde, yontemimizin
\Y



en Onemli avantaji, kullanicilar i¢in gesitli ve oturum degiskenli Oneri listeleri
iiretirken yiiksek kapsam ve yliksek geri ¢agirmay1 dengeleyebilmesidir.

Ikinci perspektifte, gesitli soguk-baslangic durumlari ve eksik veri kiimeleri
durumunda oneri sistemleri i¢in iki yeni ortak filtreleme teknigi sunduk. Birinci
model, madde meta verilerini kullanmadan maddeler arasinda asimetrik bir agirlik
matrisi olusturmakta ve esik degerlerinin otomatik olarak belirlenmesi ile komguluk
yaklasimlariin dezavantajlarim ortadan kaldirmaktadir. Ik modelimiz, z-scOREC,
ayni zamanda, toplu normallestirmeye benzer z-skor normalizasyonu ile siitun
vektorlerini doniistiirmede bir vanilya otomatik kodlayici gibi ¢alistigindan, saf bir
derin 6grenme modeli olarak kabul edilir. Ikinci model olan ImposeSVD ile, basit
uygulamasini ve parametrik olmayan formunu koruyarak, soguk baglatma ve eksik
veri durumlarinda PureSVD'nin eksikliklerini iyilestirmeyi amacladik. ImposeSVD
modeli, z-scoREC'e dayanir, uygulanan matristen gizli faktorleri ayrigtirarak
kullanicilar igin sentetik yeni tahminler dretir. Modellerimizi iyi bilinen veri
kiimeleri {izerinde degerlendirdik ve yontemimizin, soguk baslatma kullanicilari igin
Oneriler, soguk baslatma sistemlerinde giic ve listelerdeki uzun kuyruklu 6ge
Onerilerinin ¢esitlendirilmesi dahil olmak iizere belirli senaryolarda benzer
yaklagimlardan daha iyi performans gosterdigini gordiik. z-SCOREC modelimiz
ayrica bir Oneri sistemi olarak ¢alistirildiginda tanidik komsu tabanli yaklagimlardan
daha iyi performans gosterdi ve basit ve kati maliyet ¢er¢evesine ragmen ayristirma

yontemlerine daha yakin bir gériiniim verdi.
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1. INTRODUCTION

Recommender Systems (RSs) are collection of information retrieval, data
mining, and machine learning tools aimed at predicting and recommending the
new users and items (such as movies, books, music, online products, TV shows,
and websites) to propose a liking from predominantly large data. Initial work on
recommender systems began in the mid-1990s (Adomavicius & Tuzhilin, 2005).
With the increasing number of websites, and widespread use of e-commerce and
social networking sites, RSs have recently become an important field of
Intelligent Systems that have been dealing with the increasing extent of social

networks, e-commerce sites (or applications), and entertainment media services.

1.1. An Overview of the Recommender Systems and Taxonomy

Recommender Systems (RS) are the unity of studies conducted in the
field of presenting information to the users/customers via filtering attractive
information for them. RSs aim to provide the requested information by using
different filtering methods or combining some of the giant data existing in the
field of the Internet and the market. RSs can obtain the data either from explicit
sources such as user ratings, friendships, and relations, or implicit sources such
as user likes, user logs, habits, or clicks.

RSs generally work like as exampled in Figure 1.1.; is to recommend
similar items to the items that a user attracted, or to find similar users to that user
and recommend item(s) that those similar people attracted. Here the word

attraction’ could mean different meanings in different domains.
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Figure 1.1. An example screen from an item (Amazon, 2022)

For example, in the movie/TV domain, users watch the items. When the
product is a book, users can read the book, listen to the song when domain is
music, or some products can be eaten, visited web pages, added to the cart, or
purchased. In this thesis, we generalize and name all these attractions as ‘clicked'.
Users can give feedback to the system by liking, rating, or commenting on
products.

As explained in Figure 1.2. the recommendation systems convert the
input from different fields and data sources into output with a function.

In the last quarter-century (especially during the COVID-19 pandemic),
research in the area of Recommender Systems started to gain more importance
with the inclusion of Youtube, Netflix, Instagram, Twitter, Spotify, and many

similar web services / social media sharing sites in our lives.
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Figure 1.2. Recommender System in a function view

These studies include generating high-quality recommendations,
performing many recommendations for millions of users and items, providing
high coverage against data sparsity, quickly adapting new users to the system
with satisfaction, scaling issues, localizations, etc. (Sarwar et.al., 2001).

Recommendation algorithms can be classified according to various
conditions. However, the most common classifying found in the literature refers
to how they use the information of user preferences for items, for which four
categories are commonly established as shown in Figure 1.3 (Resnick et.al., 1994;
Adomavicius & Tuzhilin, 2005; Pazzani, 1999).

e Content-based filtering; recommendations are made from similar
products as content.

e Demographic filtering; recommendations are presented according to
clusters of users/items with common characteristics (age, gender,
location, etc.)

e Collaborative-based filtering; recommendations are formed from
users with similar tastes.

e Hybrid filtering; combines at least two filtering methods explained

above.
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Figure 1.3. Recommender Systems categories

1.1.1. Content-Based Filtering (CBF)

Content-based methods build user profiles based on the features and
descriptions of the items rated by the user and do not use other users’ preferences
for issuing recommendations (e.g., in a movie domain, if the user watched some
comedy movie in her history, the filtering method will probably recommend a
recent comedy movie that she has not yet watched). One of the advantages of
content-based methods is that they can deal seamlessly with the new item
problem that is they are able to recommend new items for which there is no user
feedback, as opposed to collaborative filtering algorithms.

Content-based algorithms, however, are very dependent on the
recommendation domain, which contrasts with the generality of collaborative
filtering methods. Additionally, one of the major problems is that content-based
approaches may suffer from over-specialization which is, that they have a natural
tendency to recommend the same items that are before recommended to that user,
and users may be bored (Resnick et.al., 1994).

1.1.2. Demographic-Based Filtering (Knowledge-Based Filtering)
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In RSs, demographic information is used to group users according to a

familiar class. The demographic attribute may vary depending on the domain in
which the recommendation system operates. In general, users can be grouped
according to features such as age, gender, occupation, location, education,
budget, mood, and similar recommendations can be offered to users in the

common group (Pazzani, 1999).

1.1.3. Collaborative Filtering (CF)

Collaborative Filtering describes the family of algorithms that exploit the
users’ consumption patterns of the items in the recommendation domain, without
making use of any domain-specific characteristics of the items, such as their
content or categorization.

The main advantage of this type of algorithm is its independence
concerning the recommendation domain in which they are applied. They have
been claimed to be more effective than other approaches, such as Content-based

algorithms. Collaborative Filtering algorithms can be classified into two types:

Memory-based; Memory-based methods are characterized by their
simplicity since a minimal or no learning phase is involved. This lack of learning
phase provides several advantages, such as easiness of implementation,
immediate incorporation of new data, and comprehensibility of results. Memory-
based methods, however, may suffer from scalability issues and a lack of
sensitivity to sparse data.

Model-based; The recommendations are based on a model that is
previously learned from the user data. Model-based methods take a different
approach to exploiting collaborative filtering data. The algorithms of this family
depend on a learning phase, in which a descriptive model of user preferences
based on the observed data is built to make predictions. These methods are
inspired by machine learning techniques such as Neural Networks, Bayesian

networks, Clustering, Fuzzy Systems, Genetic Algorithms, Singular Value
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Decomposition (SVD), Latent Semantic Analysis, Bee Colony, and Ant Colony
Optimization (ACO) among others (Bobadilla et.al., 2013).

1.1.4. Hybrid Filtering

Hybrid models are one of the most widely used filtering methods. Hybrid
methods have been proposed to avoid the limitations of collaborative filtering and
content-based algorithms when used separately (Balabanovi¢ & Shoham, 1997;
Burke, 2002; Adomavicius & Tuzhilin, 2005).

Mixed models combine different recommendation models to perform a
more useful recommendation quality, merging the advantages of models that
included in hybrid structure.

There are three basic strategies in hybrid recommendation: The first
strategy combines the final recommendation results produced by two or more
recommendation algorithms. The second strategy utilizes a recommendation
algorithm as a framework and includes other algorithms onto it. The third strategy
incorporates various models into a cooperative recommendation model and then

produce recommendations.

1.2. Limitations of Recommender Systems

Researchers on Recommender Systems study on many different
problems. These studies are usually about performance, error and satisfaction
(Bobadilla et al. 2013). Some problems are related to each other and the solution
is also a guide for other problems. The followings are the major problems studied

in the literature.

1.2.1. Data Sparsity
One of the major problems of recommender systems is how they can

solve the problem of data sparsity. The lack of relationships between users and
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items in recommendation systems with large quantities of data makes it
impossible to make sufficient measurements for collaborative filtering
calculations (Adomavicius & Tuzhilin, 2005).

Especially, CF algorithms are inadequate in cases where the data is
sparse. This problem, which researchers mostly studies on, is one of the reasons

for other challenges in recommendation systems.

1.2.2. Scalability

The data are often large and scattered (sparse), with large sites containing
millions of users and items. It is very important to look for recommendation
algorithms that facilitate and parallelize (or both) the computational cost

considerations (Sarwar et.al., 2002).

1.2.3. Cold-start

One of the primary limitations that must be overcome in RS is providing
recommendations in the case of cold-start states where there is no data or only a
limited amount of data about the user or the item. In such cases, RS cannot
provide effective recommendations (Sarwar et.al., 2011).

There are three observed types of the cold-start problems; ‘new item’,
‘new user’, or for both ‘new system’. In the ‘new item’ problem, it is hard to
recommend the new item for a user because the new item has been recently added
and has a very limited amount of meta-data. In the ‘new user’ problem, where
there is no data about the user, RS could not draw on relations about newly
registered users or users who do not have many collaborations on the system; as
a result, the system could be inadequate for developing the links between users
and items because the evaluated data cannot provide information about the users
and the items. In the ‘new system’ case where there is no data about both the users
and the items, systems could be inadequate for developing the links between users

and items.
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1.2.4. Novelty-Diversity

The “diversity’ and ‘novelty’ of the recommendations offered to users are
the other issues to be dealt with (Adomavicius & Tuzhilin, 2005; Hurley &
Zhang, 2011; Bobadilla et.al. 2013). For instance, the recommendation of popular
items may not be valuable to users as these items are already familiar to users and
they could be bored. CF methods based on the analysis of cooperative behaviors
between users might be inadequate to solve this problem because they
overshadow unpopular connections and cause them to be ignored as a result of
their tendency to offer collaborations deeper among popular users and favored
items because of their frequencies. Whereas, the recommendation of unpopular
items has always been more attractive to the users (Yin et.al., 2012; Anderson
2006).

1.2.5. Evaluation

The success of the solution to the problem to which a designed RS model
is adapted is measured by the correct evaluation strategy. Evaluation is also an
important tool in choosing the right model for different scenarios in a commercial
system using many models. Even a very small difference between models makes
a difference in satisfaction level in systems with millions of users. Evaluation is
one of the difficult tasks in RSs. Since it is difficult to evaluate very large data,
sampling methods and choosing the right metrics according to the scenarios are

important factors.

1.2.6. Real-time recommendations

For a recommendation system, offline approaches would be better for
evaluating new models and posterior predictions for users or when the data do
not change significantly over time. However, in recommendation systems, data
is approached in real-time and it is necessary to provide instant recommendations

to users. Providing recommendations live on such large datasets is a difficult task.
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1.2.7. Over-Specialization

Recommender systems mostly offer recommendation lists for each user
based on their history on the system, which might turn out to be similar,
uncompelling, and poor-quality recommendations for the users (Balabanovi¢ &
Shoham, 1997; Ar & Bostanci, 2016; Olaleke et.al., 2021). This challenge forces

us to solve the problem which is called the over-specialization problem.

1.2.8. Ethic Problems

RS can obtain this data either from data like user ratings, friendship,
relations which exist explicitly or from implicit data which is not shown to end
user like user logs and user habits.

Users' information in the system is legally private, and some users may
not allow the recommendation system algorithm to use this information. In this
case, only legally obtained information can be used and this information may not
be sufficient in some cases and it may be difficult for the system to give

personalized recommendations to users.
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Figure 1.4 Cold-start and other problems in recommender-systems
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1.3. Relation among other challenges and cold-start

We have described in the previous section that one of the problems
encountered in recommender systems is the cold-start problem. As shown in
Figure 1.4, with this thesis, we believe that the answer to most of the mentioned
problems in recommender systems is the key to the cold-start problem. Therefore,
the strategies to solve the cold-start problem become a solution for other
challenges.

The challenge to ensuring the quality is the presence of cold-start users.
Although most recommender systems approach the problem with cold-start users
in offline settings, it is necessary to follow their tastes simultaneously on the
system. All users should be considered cold-start users because of their ever-
changing and unexpected habits. However, recommender systems mostly offer
recommendation sets for each user based on their history on the system, which
might turn out to be similar, uncompelling, and poor-quality recommendations
for the users (Balabanovi¢ & Shoham, 1997; Ar & Bostanci, 2016; Olaleke et.al.,
2021). This challenge forces us to solve another problem with related cold-start
users which is called the over-specialization problem.

While most systems approach the cold start problem, they consider the
data from zero time, whereas for the accuracy of the analysis, it is necessary to
look from an unknown starting point and see the system in action. In a
personalized recommendation model, different recommendation lists are created
for each user base on users’ past tastes. After a particular time, RS resumes to
recommend the same lists or is biased to popular items (Olaleke et.al., 2021).
However, most users prefer diverse item recommendations on their screens as
shown in Figure 1.5. To satisfy such users to keep from over-specialization

problems, solutions force us to solve cold-start users.

10
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Figure 1.5. A screenshot from Netflix Application has a four-row
recommendation list for a user

Recommendation of unpopular items includes strong diversity and
novelty since they have not been in contact with many users or related to other
items. In sparse datasets, it becomes difficult to make accurate recommendations.
The systems provide recommendations based on heat users; therefore, users who
have just logged into the system (cold-start users) or have different tastes might
be omitted. And the solution of this problem also redirect us to cold-start problem.

In the ethical problem, we mentioned that we might not have information
about users in some cases. In such a situation, even if the user is a hot user using
the system actively and does not allow the system to use her information, she
should be considered a cold-start user.

We explained the importance of providing live recommendations in
recommendation systems in the real-time recommendations problem (See 1.2.6).
In such cases, we need to abstract recommends based on users' current sessions
or recent-short histories, and it is necessary to look at the instant habits, not their
past interactions. Such users can also be seen as cold-start users due to the scarcity
of data.

11
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In a real scenario, social media systems have a giant interaction graph
due to the number of users and items. It takes a long time to perform traditional
calculations on a large graph. Considering the whole product set on the system
that attracts the consideration of users does not represent even 1% of the total
product scale, such users can naturally be seen as a cold-start user for a
recommender system.

The vital processes of a recommender system are to increase the
connected nodes of the user-item graph and produce more accurate predictions
between users and new items. While doing this; however, the system must find
user-specific relations, which is considered the quality. Data sparsity and cold
start essentially point us towards the same solution, enrichment of the user-item
graph.

The data sparsity problem (indirectly the cold-start problem) has led
researchers mainly to two areas of study: dimension reduction and graph-based
techniques. Latent factors were tried to be extracted from the non-complete user-
product matrix with dimension reduction techniques. Graph-based techniques, on
the other hand, endeavored to find connections between unconnected users and
products (Ricci et.al., 2015).

1.4. Purpose of thesis

Recently, visual media platforms (YouTube, Spotify, Netflix, Twitch,
etc.) have been increasingly used particularly during the Covid-19 lockdown
periods. Media services around the world tend to offer recommendation lists to
the users on their phones, tablets, or television screens according to the item
groups they have tasted. These groups of recommendations based on the user’s
previous likes, their history on the platform, trending items, or demographically
related items are presented in horizontal or vertical forms on the main screens of
many media platforms (see an example Figure 1.5). As a result of the developing
and competing recommender system technologies, users expect personalized or

session-based recommendations on the platforms (Hidasi et.al., 2015). However,

12
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generating online recommendations in live recommendation systems is a
challenging task due to the absence of the initial or accomplished state of the data,
which requires the evaluation of ongoing and noisy-data systems rather than
employing data from the scratch. Although the recommender systems tend to use
traditional deterministic algorithms (CF and CBF) offering the same
recommendations for all users (Olaleke et.al., 2021), they need to provide
constant updating and diversification of the home screen recommendations
because of the changing tastes of the users. As a result, researchers in the field of
recommendation systems have recently considered Heuristic Methods and Deep
Learning Methods to offer continuous and variable recommendations (Vargas,
2015). These methods might be successful as they not only offer
recommendations to cold-start users but also volatile encouragement to existing
users. In addition, these methods might be considered as fast, robust, and
parallelable alternatives as they can deal with the costs of these personalized tasks
that are performed for a tremendous number of users in the systems.

This thesis aims to design new algorithms with the solution to the cold-
start problem. The concern of this study is to handle cold-start problem together
with others by paying attention to mutual solutions in the algorithms designed
(See Sections 3.1 and 3.2). Since cold-start user and cold-start system (sparsity)
are considered to be relatively more difficult problems compared to the cold-start
item problem, these two are particularly emphasized in this thesis. This study
aims to find out solutions particularly to the cold-start problem while indirectly
overcoming many recommender system problems.

The cold-start problem is a field of study that attracts attention, especially
in the industrial and academic fields. Therefore, this study will add values to the
literature.

The contributions of this thesis to the literature could be summarized as

follows;

13
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e This thesis handled more than one problem by associating the cold-start
problem with other problems.

e The models were developed in various domains and designed to be
industrial across the board.

e These models are designed to be easy to implement, appropriate for
parallelization, parametrically easy, and forthcoming to evolution for
researchers.

o New perspectives were brought to the studies in the field.

e The designed models keep up with existing and transforming technology.

1.5. Outline of thesis

The remainder of the thesis is organized as the following:

Chapter 2 gives a detailed literature survey on the evolution of the
recommender systems, common solutions about cold-start problem, related
works about SVD-based and ACO-based studies in recommender systems, top-
N recommendations systems survey.

Chapter 3 explains our proposed models in two sections. First Section
introduce AcoRec which is our novel model about cold-start and related
problems. Section 2 of this chapter introduce z-scoREC and ImposeSVD which
are our other novel models rely on regression and dimension reduction to solve
cold-start and other related problems.

Chapter 4 presents and discusses the experiments in detail all of three
proposed model; and compares results of our models with state-of-art studies in
the literature.

Chapter 5 summarizes our conclusions, primary contributions of this

thesis; and gives the future purposes and expectations of the work.
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2. RELATED WORKS

2.1. Evolution

Research on RSs started to increase during the 1990s. The studies of
Malone et al. (1987) and Resnick et al. (1994) found out filtering types in the RS
field, which were determined as Content-Based Filtering (FKA Cognitive
filtering) and Collaborative Filtering (FKA Social filtering). Collaborative
Filtering (CF) term was first used in the literature in 1992 in Tapestry’s
recommendation system (Goldberg et.al., 1992). Later, Shardanand and Maes
(1995) developed Ringo. CF needs consumption patterns of users or items
without considering the domain properties. Content-Based Filtering (CBF), on
the other hand, needs meta-information about users or items, which varies
depending on the domains. Balabanovic and Shoham (1997) introduced the first
hybrid application by combining two filtering techniques and gave a new
direction to research in the RS field. To provide more efficient results for hybrid
studies, Basu et al. (1998) developed the Ripper algorithm by creating bot users.
Breese et al. (2013) categorized RS into memory-based and model-based
algorithms. The review of Herlocker et al. (2004) about how to evaluate RSs is
one of the most prominent studies in the literature. Adomavicius and Tuzhilin
(2005) reviewed numerous studies shown until 2005, where they underlined how
to increase the capabilities of RSs by revealing common limitations including the
cold-start problem. Bobadilla et al. (2013) published a comprehensive review of

the RS studies in the literature.

2.2. Cold-Start Studies in Recommender Systems

When relationships between nodes (i.e., users, items) are missing or
inadequate in the dataset, establishing new relationships is an important challenge
for RSs. Therefore, a growing number of studies in the literature have been
searching out the ways to build new relationships between nodes in the case of

limited data by applying CBF or CF models.
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To illustrate, Kim et al. (2010) employed collaborative tagging as an

approach to collect users’ preferences and tastes. Basilico and Hofmann (2004),
on the other hand, developed a framework that incorporates all available
information by using a suitable kernel or similarity function between user-item
pairs.

Weng et al. (2008) combined the implicit relations between users’
preferences for items with additional taxonomic preferences to make better
guality recommendations to alleviate the cold-start problem. In addition, Loh et
al. (2009) represented users’ profiles with information extracted from their
scientific publications.

Other than the sole use of CBF or CF models, hybrid models have been
employed by others to overcome cold-start problems resulting from the sparsity
of the dataset or unavailability of data (Basilico & Hoffman, 2004; Kim et.al.,
2010; Pazzani, 1999).

Pazzani (1999), proposed a hybrid framework that merges different
algorithms: CF, CBF, and Demographic Based Methods.

Jamali and Ester (2010) relied on trust between users on a trusted network
instead of user similarity to deal with data sparsity and the cold-start problem.

Massa and Avesani (2009) used explicit trust as input, along with a user-
item rating matrix to predict ratings.

Bobadilla et al. (2010), Chandelier et al. (2008) and Ahn (2008)
recommended new collaborative filtering metrics that improve RSs.

Among others, graph-based approaches (Ning etal., 2015), a
combination of content and collaborative filtering (Schein et.al., 2002), collection
of clickstreams from user experiences (Embarak, 2011), and pairwise regression-
based models (Park & Chu, 2009) were utilized to overcome the cold-start
problem. Fouss et al. (2006) showed uses of the graph-based kernel methods in
CF.

Son (2016) has summarized papers based on cold-start and categorized

the cold-start based studies into four sections. He also evaluated these categorized
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methods. Guo (2013) formed a new rank profile for the active users by merging
the ratings of trusted neighbors. He then assessed this approach through a
Bayesian similarity measure, which considers both the direction and length of
rating profiles.

Regarding the quality of the recommendations, Herlocker et al. (2004)
has pointed out many criteria according to which diversity and personalized user
satisfaction are more important factors for the recommendation of unpopular

items.

2.3. Ant Colony Based Studies in Recommender Systems

In literature, the studies conducted on the use of agents in
recommendation systems with cold start problems, Good et al. (1999), Park et al.
(2006) and Sarwar et al. (2008) tried to produce solutions for Cold-start problems
by using bot filters.

Sarwar et al. (2006) created rating bots and these bots rated new
documents in the newspaper. With this new rating, they qualified and classified
new documents and represent them to their users. They aimed to decrease gaps
in the recommendation matrix and spread out the sparsity. They used ‘Usenet
news Article’ dataset. In their study, they created artificial rating bots, and these
bots rated recently added documents considering different criteria. With the help
of these rates given by bots compromised by artificial users, they tried to enable
the integration of recently added documents to the recommendation system and
minimize the infrequency in connection.

Good et al. (1999) produced various bots with different characteristics
and unified them with both CBF and CF algorithms. They suggested that more
successful results would be obtained if ratings that bots give for films were
unified with user ratings and calculated in the user-item matrix.

Park et al. (2006) also worked on filter-bots for cold start problems. They
created seven basic filter bots the resolve the problem and used these ratings in

user-based and item-based estimations in CF.
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There are many ACO studies based on RS in the literature. Sobecki and
Tomczak (2010) used real data for recommending student courses based on ACO.
T-BAR is a probabilistic model on the ACO algorithm, which is considered to
develop the efficiency and coverage of predictions for users (Bellaachia &
Alathel, 2012). However, this algorithm suffers from its failure to deal with cold-
start users. The authors proposed an update DT-BAR (Dynamic T-BAR) to
overcome this problem (Bellaachia & Alathel, 2014). Bellaachia et al. (2016)
introduced ALT-BAR with averaged localized trust-based ant recommender for
cold-start recommendations. Massa and Avesani (2009) proposed Mole-Trust is
a basic CF algorithm that uses the Pearson Similarity and Trust in recommender
systems.

Bedi and Sharma (2012) introduced the Trust-based Ant Recommender
System (TARS) to produce recommendations by merging the assumption of trust
between users and taking the best similar users based on the ACO. During
iterations, TARS generates new relationships between users and produces
predictions with the help of new, updated trusted users.

Semantic-enhanced Trust-based Ant Recommender System (STARS)
introduced a more progressive model that tried to eliminate the disadvantages of
the TARS model and included semantically user similarity with clusters (Gohari
et.al., 2017).

TCFACO has also studied trust statements between users and developed
an ACO-based CF method for effectiveness predictions for users (Parvin et.al.,
2019).

Tengkiattrakul et al. integrated SVD-based user factors and
trustworthiness for user-similarity on ACO (Tengkiattrakul et.al., 2016;
Tengkiattrakul et.al., 2018). Kaleroun and Batra (2014) upgraded TARS
with item deviation distance products in the prediction formula and evaluated for
the Shilling Attack, Cold-start Users, Sparse Matrix, and Grey Sheep Users

problems.
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Liao et al. computed user pheromones and item pheromones separately
and combined them in rating prediction to produce ranking lists (Liao et.al.,
2020a; Liao et.al., 2020b).

Nadi et al. (2011) used a fuzzy-based ant colony system for website
recommendation, they used Jaccard-based user similarity and they fuzzified the
user-item interaction matrix.

Detailed information about the algorithms that develop the
recommendation system with the ant colony was given in Appendix C.

The typical approach in these ACO-based studies is as follows;

» Calculation of user similarities (e.g., Cosine, Jaccard, Pearson, Trust
measures)

* Obtaining users as nodes and selection of similar users with ACO

* Analyzing the new recommendations from similar neighbors (users)

from Resnick's prediction formula (Resnick et.al., 1994).

Different from the studies above, our ACO algorithm is item-based. In
our study, the nodes represent the items in the ACO graph structure, and the edge
values of the items show the importance that reflects the likelihood values of the
user to the relevant item. The other distinction is that we tried to find a heuristic

on popular items in the continuous domain with auto hyper-parameter tuning.

2.4. SVD Based Studies in Recommender Systems

SVD-based methods apply the process of smoothing the rating matrix by
reducing the original matrix size to the low-ranks. However, incomplete matrices
cannot be decomposed by SVD-based methods. Therefore, researchers applied
matrix factorization algorithms over non-null data using Stochastic Gradient
Descent (SGD) (Robbins & Monro, 1951) or Alternating Least Squares (ALS)
methods (Zhou et.al., 2008). Funk (2006) used a simple linear regression model

to calculate user and item factors for estimating rating predictions. Paterek (2007)
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composed an advanced model by adding user and item biases. Koren has

contributed with new models such as SVD++, timeSVD++ where he added k-
nearest-neighbor or time factors to earlier developed models using (SGD) or
(ALS) (Koren, 2008; Koren et.al., 2009; Koren, 2009). But all these methods are
not real SVD-based methods that use algebraic calculus for decomposition.

The first example of using the original decomposition method via SVD
in the CF field is the work of (Sarwar et.al., 2000). Cremonesi et al. (2010)
introduced the PureSVD, which bases on an estimation of the low-rank latent
factors from the rating matrix by SVD followed by imputing null values with zero
on the rating matrix. EigenREC demonstrated that PureSVD's prediction formula
actually only needs item factors, and this can be calculated more easily with both
Eigenvalue Decomposition and Golub-Kahan-Lanczos Bidiagonalization
(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019). In addition to these,
HybridSVD has claimed that PureSVD can be strengthened with side information
in cases where the CF is inadequate. They added item features to the rating matrix
by effectively using Cholesky decomposition, and then this new auxiliary matrix
was performed for low latent factors in SVD (Frolov & Oseledets, 2019).

In another study, Ghazanfar et al. Ghazanfar and Prugel (2013) studied
how to carefully increment the rating matrix before the SVD process by
developing a model they call ImputedSVD. In their study, they performed
improvements on cold-start, long-tail, and sparsity issues by applying the art-of-
state methods in the literature as imputation methods. Although the study of
Ghazanfar and Prugel (2013) bears some similarities with our study in terms of
providing improvements on SVD-based models to overcome the most common
problems in RSs, the methods of our research are different in many aspects. First
of all, (a) while the ImputedSVD adopted the well-known methods in the
literature as the imputation method, we introduced a novel item-similarity matrix
in our research and generated a less parametric imputation method, which is
suitable for many domains. (b) Based on the simplicity of the PureSVD, we

needed item vectors only that are taken from decomposition to estimate
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prediction scores. ImputedSVD; however, carried user factors of SVD for
prediction, which is a costly method in terms of handling time. (c) While
ImputedSVD works on rating prediction, our research is a ranking-based study
for generating top-N recommendation lists. Finally, (d) the offline cost of our
method is low and there is no need for calculations for the cold-start users in the

online process.

2.5. Studies on top-N Recommendation

RSs methods are divided into the two corresponding models, which are
‘rating-based’, and ‘ranked-based’ models to measure the prediction scores.
Rating-based models predict the user scores based on their unrated items by
normalizing the real rating range that the user would give to the item. On the
contrary, ranking-based models predict a list of N items (top-N) that the users
may like. Therefore, ranking-based models do not need to scale real range values
(e.g. min 1- max 5) to provide flexibility while developing algorithms.

To our best knowledge, Karypis (2001) did the first study on the ranking-
based model to provide top-N recommendation lists. In another study, Deshpande
and Karypis (2004) employed the k-nearest-neighbor (k-NN) estimation as a
ranking-based model to provide top-N recommendation lists to the users.
Cremonesi et al. (2010), on the other hand, proposed evaluation methods of top-
N recommendation systems and introduced the PureSVD model to measure the
diversification of long-tail items in recommendations. Hurley and Zhang (2011)
showed how novelty and diversity values of top-N recommendation lists could be
improved. Rendle et al. (2012) introduced an optimization approach by learning
over click pairwise of users on items. Ning and Karypis (2011) developed SLIM
where he used linear regression to construct a coefficiency matrix with Li;-norm
and L.-norm regularizations and used a coefficiency matrix for offering
recommendation lists. In a later work, higher-order item relationships for SLIM
were added by HOSLIM developed by Christakopoulou and Karypis (2014).
Besides, in another method called LORSLIM, Cheng et al. (2014) performed low-
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rank optimization on the SLIM’s coefficiency matrix. In another study, Kang et
al. (2016) aimed to complete the rating matrix with a non-convex optimization
problem. Kabbur et al. (2013) developed FISM to produce the top-N
recommendation lists by training the two item factors with the help of the loss
function. Cooper et al. (2014) introduced a simple graph-based algorithm P3o, that
implements three steps random-walk between users and items. In a later work
(Christoffel et.al., 2015), the authors upgraded the previous graph-based
algorithm and created RP®3 by adding an item-popularity parameter to develop
the success of long-tail item recommendations. Nikolakopoulos and Karypis
(2019) introduced RecWalk, which use the power of random-walk-based
methods to capture new rich network interactions. Nikolakopoulos et al. (2019)
introduced the PerDif as an implementation of diffusions over item-item graphs
for live personalized user recommendations. Both RecWalk and PerDif
approaches gave good results with the assist of item-based models such as Cosine
and SLIM.

In recent years, auto-encoders models have shown good results on
recommendations. For example, CDAE developed by Wu et al. (2016) used auto-
encoders with neural networks for an item-based top-N recommendation
algorithm. Liang et al. (2018) extended CDAE to multinomial likelihood instead
of Gaussian likelihood and they used variational auto-encoders on implicit
feedback. Shenbin et al. (2020) introduced a new auto-encoders structure that
outperformed the previous auto-encoder structured recommendation models.
Chen et al. (2018) proposed to merge user ratings and side-information by using
a variational auto-encoder structure to produce recommendation lists. Steck
(2019) introduced EASER as a simple linear and vanilla auto-encoder model that
outperforms the state-of-the-art collaborative filtering approaches for huge sparse
data.
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3. MATERIALS AND METHODS

In this thesis, three original models have been developed from two different
perspectives one of which is deterministic and the other one is hon-deterministic. All
models were evaluated over various cold start scenarios on well-known datasets.

In the first perspective, a new recommendation model with ACO, an intuitive
method in the category of graph-based techniques was developed.

From a view of first perspective, we introduce a new framework that
optimizes item-based similarity models to offer top-N recommendation lists by
Continuous Ant Colony Optimization, which is a heuristic algorithm. With our new
user-specific item-based model, pheromone values are denoted as posterior
probabilities of users which are constructed from previous clicks. Our novel model
regularizes Lp norms of the users' clicked items in the selected input similarity model
by amortizing them binary cross-entropy and giving stochastic importance to items
specific to the user-graph which are maximized with hyper-parameter search via in
continuous domain.

In the second perspective, we introduced two novel collaborative filtering
techniques for recommendation systems in cases of various cold-start situations and
incomplete datasets. In this perspective, the first model establishes an asymmetric
weight matrix between items without using item meta-data and eradicates the
disadvantages of neighborhood approaches by automatic determination of threshold
values. This model, z-scoREC, is also regarded as a pure deep-learning model
because it performs like a vanilla auto-encoder in transforming column vectors with
Z-Score normalization similar to batch normalization. With the second model of this
perspective, which we called ImposeSVD, we aimed to enhance the shortcomings of
the PureSVD in cases of cold-start and incomplete data by preserving its
straightforward implementation and non-parametric form. The ImposeSVD model
relies on the z-scoREC, produces synthetic new predictions for the users by

decomposing the latent factors from the imposed matrix.
23



3. MATERIALS AND METHODS Hakan YILMAZER

3.1. A Non-deterministic Perspective, AcoRec
3.1.1. NP-Hard Problems and Deterministic Recommendation Models

Deterministic recommendation models are robust algorithms despite their
simple structures. For instance, neighborhood models or regression models can be
overwhelmed by many algorithms (Sarwar et.al., 2001; Dacrema et.al. 2019). In
deterministic recommendation models, users are given a set of recommendations {S}
at time t1, and this set {S} remains the same as long as there is no change in the
model between time t1 and t2. However, we might not be foolproof that the results
of an algorithm that produces deterministic solutions with discrete parameters are
precise and recall results are accurate, but we could acknowledge them as thriving
or sufficient based on the evaluation results (Olaleke et.al. 2021). Many researchers
obtain evaluation results in algorithms by averaging all the results of experiments,
hence these results could vary depending on the selection of dataset, sampling of
these datasets, selected metrics, and hyper-parameters evaluations (Herlocker et.al.
2004; Dacrema et.al. 2019).

In heuristics, the recommendation set {S} can suggest different sets {S}
without changing the model because of the randomness of its core and this could be
an attractive situation for users. But there is a challenge in providing various {S} sets
for a recent user. We know in recommendation systems that the recommendations
are given to a user u are never certain, so what is being done in this study is an
inferential estimate, just like a top-N recommendation list. As recommendation
systems are based on predicting the items that users would like and do not provide
definitive results, the recommendation process is an NP-hard problem (Hammar
et.al., 2013; Vahabi et al., 2015; Nembrini et al., 2021). According to the feedback
got, the predictions are updated from time to time and this divergence can continue
in an infinite loop. To provide multi-variant recommendation lists, new items must
satisfy the users.

Ant Colony Optimization is an effective algorithm for dealing with NP-hard

problems Dorigo and Gamberdella (1997). Because of this vigorous aspect of the
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algorithm, it has been applied in many recommender models. However, these models
have investigated pheromone optimization on extensive graphs and tuning with
complex reciprocal hyper-parameters. To illustrate, o (pheromone pressure) and 3
(heuristic influence) parameters should be tuned in some algorithms to understand
their substantial effect of them. In most algorithms, the hyperparameter selections
are chosen for all test users in the experiments, and the maximized parameters are
determined by the average of the results. However, whether the systems are trained
with the right hyper-parameters can be seen by waiting for the training result of the
system. This causes a long evaluation time, especially for researchers operating huge

datasets or models that require many hyperparameters.

3.1.2. Ant Colony Optimization

Ant Colony Optimization models are derived from the behavior of real ants
to solve many optimization problems. Ants can discover the shortest path from a
food source to the nest. While traveling, each ant deposits a chemical hormone,
called pheromone on the ground and reflects the deposited pheromones by the other
ants. Ant algorithm is a sample of algorithm belonging to swarm intelligence
methods, based on collaboration between independent, distributed bots that can offer
a new intelligent solution to the system. It is a suitable model for mimicking the
behavior of users in recommendation systems. The process of obtaining new feature
subsets from a few input features can be viewed as an optimization problem, and
unclicked item predictions from clicked items agree with this definition in

recommendation systems.
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Algorithm 1: Pseudocode for ACO
Begin;
Initialize pheromone amounts between nodes and set up parameters;
Begin Loop
Generate a solution for each ant;
For each ant, estimate the fitness/cost;
Determine the best ant for iteration;
Update pheromone trails on nodes according to the best ant solution;
If termination condition is true, exit from the loop;
End Loop
End;
Figure 3.1. Pseudocode for ACO (Socha and Dorigo, 2008)

The ACO algorithm was presented in Algorithm 1 (Socha and Dorigo,
2008). The process with the ACO algorithm initializes nodes in a graph, obtains the
weight values between the nodes at an unspecified time, and spreads ants randomly
on these nodes. An ant k at t time, being in node i chooses the next node j with a

probability given by the random proportional rule defined below Eq. (3.1)

AN
Tt(l.]) 77(1']) (31)

aye k PR —
probability(i,j) = e Te IO (LIOP

where u is set of the feasible routes of i. After each ant walk, feasible routes
are excluded by the last visited node. Once an ant has visited all nodes, it returns to
its starting node. After evaluating all ant’s tour costs in the current iteration, the

pheromone values between nodes are updated as follows,
m
T () = (L= p) <1 (i)) + ) A7) (32)
i=1

where p is the evaporation parameter between [0,1] and At (i, j) is defined
in Eq. (3.3)
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.~ _ [Cost(k) *Q, if edge (i,j) is a visited node for best ant, 3.3
A ()) _{ 0, otherwise, (3:3)

Cost(k) is the amount of pheromone deposited on the edges of the solution
visited by ant k and this cost is equal to the reciprocal of the cost of the solution
constructed by ant k. Q is a constant to regularize the pheromones for the best
solution. Therefore, a better solution is achieved by the higher amount of pheromone

deposited by an ant.

3.1.3. Ant Colony Optimization in the Continuous Domain

Combinatorial optimization such as classic ACO deals with finding optimal
combinations of available problem components and they attempt to find their optimal
combination or permutation like in the (Travelling Salesman Problem) TSP problem.
But some problems may be tackled with a combinatorial optimization that is not
always convenient, especially if the bounds are wide, and the sensitivity of the
parameters is high. In such cases, algorithms that optimize on continuous variables
yield better results. Blum (2005) attempted to extend ACO algorithms for tackling
discrete and continuous optimization problems.

There are two options for integrating ACO for continuous optimization
problems. The first way uses a familiar approach to ant behavior and the second way
carries the fundamental ACO graph structure to investigate it in the continuous
domain. This evolution could be flawless by proper discretization or probabilistic
sampling of a search space (Riadi, 2014).

Socha and Dorigo (2008), who introduced the continuous field ant colony
optimization algorithm ACOg, used a Gaussian kernel probability density function
(pdf) expression for the distribution model and presented the ACOg as a meta-
heuristic framework. In ACOg, given a problem with n decision variables, a vector
Xi = {Xi1, Xi2, Xiz, ... , Xin } represents probabilities from a probabilistic density
function as a solution by an ant k, and f(xi) represents the objective function to
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minimize (or maximize). In ACOg, each ant represents a row of the Solution Archive.
During the iterations, the candidate parameter in the Solution Archive is ordered
according to its objective function values. Each solution has an associated weight
k, Which keeps the proportion of its solution quality on the whole. The weight of
the jth solution is defined as:

_GH)-w?
2q2%02 (3.4)

Wi =
! qov 21

where G(j) is the value of the Gaussian function with argument j, u is the
distribution mean, o is the standard deviation and q is the parameter for the deviation
distance of the algorithm. When g is a small value, the high fit solutions are
promoted, and with the increase of g, the probability becomes intensified. To
implement the pheromone motto from the original ACO, after each iteration, the
algorithm defines new u and o values to shift the probability distribution. Once the
initial Solution Archive is constructed, iteration processes follow: Each ant selects a
distribution from the solution archive with the asset of a fitness proportionate
selection function such as the Roulette-Wheel algorithm, and the solution

probabilities of each row are obtained by dividing all sums by themselves,

. Wj
r() =gr—— (3.5)

r=1Wr

where p(j) is the probability of the jth row in the Solution Archive set. In the
iterations, after each ant creates a distribution similar to the Solution Archive, its
quality is calculated based on the objective function and merged with the Solution
Archive. After a sorting, the first k best solutions are selected and the others are

discarded for forthcoming iterations. For example, for a maximization problem, the
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Solution Archive constructed by k ants is ordered as descending. Hence f(x1) > f(x2)
> .- >f(x) and o1 > w2 > -+ > wk. The sample Solution Archive structure is given in
Fig. 3.2

X11 X132 - Xin f(x1) wyq
X21 X22 : :
Xk1 Xz o Xgn (X)) wi

Figure 3.2 The archive of solutions kept by ants

In the search process, the purpose of iterations is to find the best solution
and converge the model.

After each iteration, the pheromone update strategy (like ACO) is performed
by adding k newly generated solutions to the Solution Archive. After sorting the
solutions, the worst k solutions were eliminated so that the total number of solutions
in the archive remains k solutions. This method maintains the better solutions in the
Solution Archive as a result of the effective guidance of ants in the search process
for better quality.

In this study, we studied the RSs problems that we defined in Section 1.2
and founded on the ACOgr method, and we made new additions to this method to

challenge the RSs problems.

3.1.4. AcoRec

In our model, we handled the problems related to the recommendations for
cold-start users, personalized recommendations, over-specialization problems, and
facilitating time complexity in the recommender systems. We introduced the
AcoRec framework, which we produced using the ACO method to improve the
variety of the user-item relations and to diversify the results for the users in the

system. Based on ACO principles, AcoRec uses any item similarity/proximity model
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as input and produces user-specific, probabilistic,c and high-diverse
recommendations for users based on their past purchases. As a meta-heuristic and
hybrid framework, AcoRec explores diverse recommendations by which it could
overcome the problems with pertinent recommendations for the cold-start users.

In our proposed model,

e AcoRec takes an item-based similarity model as input. The item-based
similarity model could be pre-calculated in the background in an offline
system.

e From the input model, AcoRec extracts the clicked (or preferred) item
rows of the specific user, then combines rows and transforms them into
an Lp norm vector for a low-dimension ant search. AcoRec verifies
these norm spaces as the initial pheromone values (t) and uses the input
model as the heuristic for the items (). The initial pheromone vector
defines the user's current importance values on the items. Therefore, the
model converges quickly and reduces the iteration counts, daemon
actions, and the probability of stagnation.

e AcoRec optimizes the importance values of items for the specific user
by using auto hyper-parameter tuning in the Continuous Ant Colony
Optimization domain.

o After the model converged, AcoRec sorts out the most valuable items
for the relevant user based on the expected choice of those items. Later,
our model provided a top-N recommendation list of items that ranks the
users' estimated predictions. These predictions could variate and differ
from the previous estimates and this is the core phenomenon of our

novel algorithm.
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The evaluation of our novel model was carried out by comparing with
MovieLens, Pinterest, and Yahoo datasets on different scenarios. We applied the
near approaches which are popular algorithms in literature for the benchmark. Since
our model is a heuristic approach, the recommended items are changed during the
sessions, but we attempted to maintain the relevance and satisfaction of these items
with the user heightened. The model we suggested needs a one-spatial vector for
pheromones instead of two-dimensional pheromone graphs so that there become a
decrease in the number of ants walked. AcoRec is also an algorithm suitable for
parallelization with row-based user recommendations and ants running on multiple

processors.

3.1.5. Stochastic Approach of AcoRec

AcoRec's constructs as a vector pheromone model can be easily adapted to
a session or ongoing system for a user and try to predict users' interest in items using
a Bayesian approach based on their previous clicks and adjust the user-based hyper-
parameter to maximize the expectations.

In AcoRec, the probabilistic transition rule for the users, selected by ant k

who mimics user u at t time is given in Eq. (3.6),

probabilityk(u) = t(u),” * n¥f (3.6)

where, T(u), is equal to the pheromone values at t time on items for user u,
n is the heuristic between the items by selected input model, o is the pheromone
regularization parameter and S is the regularization parameter to adjust the heuristic
model. These parameters determine the priori information of the items for users, and
it is similar to the prediction of item-based models in general. Item-based models

predict user scores for items in a primary way like in Eq. (3.7),
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predictions(u) = ru * S (3.7)

Let S be an m x m item similarity matrix and ru is a set of m items on which
the user clicked. It is shown as ru = [rus, ..., rum]. If we accept the clicked items
that users taste before by the means of pheromone traced items for users, AcoRec
denotes ru vector as pheromone vectors and S as heuristic information between the
by-items for further operations. We can also assume that pheromones could be
carried by ants from (mimicking users) items to items.

In this situation, to construct posteriori pheromone vectors, we pick the rows
of the items that the user clicked before from the item-item similarity model (column
values will also be the same in symmetric matrices if it is a Hermitian matrix) and
compose them into a low-rank vector to form the Le-norm from the columns of this
subset matrix. The norms of the user clicked items means the user’s actions as a
pheromone vector (prior probabilities), and it is similar to the behavior of social
networks. This is an initial pheromone interpolation, but we do offer a development
that does not contradict the intuitive principles of the ACO algorithm. Priori
pheromone values based on the Lp-norm of clicked items gave good results,
especially for recall values (see Section 4.1). Let xu = [Xu1, ... , XUg] is a subset
vector of ru which contains all clicked items belonging to user u, and q is the clicked

item count. The formula for the Lp-norm of these clicked items is shown below:

p
Lp(ru) = ||Suq*m||p = Zz:j:ls(j, i) (3.8)
i=1

where Su is a subset matrix of S that only keeps the xu element rows which
are clicked items of user u, S item-similarity model, i is the column id in the item

similarity model, and m is the total item size. In Eq. (3.8), when the p value is 1 this
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means Li-norm, and if the p value is equal to 2 it is equal to L>-norm also known as
Euclidean Space. To amortize the Le-norm vectors with the original clicks to infer
how the similarity model responds to the user knowledge, we used Binary-Cross-
Entropy (BCE). BCE is generally a utilizer as a loss function in classification tasks,
but we applied it as a regularization for each value in the norm vector. The
regularization of user clicked items are proven on-time estimate formula is given in
Eqg. (3.9),

t(w); = ru xlog(Lp(ru)) + ((1 — ru) log(1 — Lp (ru)) (3.9)

where t(u); is the pheromone value of the items for user u at t=0 time, ru
is a binary vector with 1s if the user clicked item i and 0 otherwise. From Eq. (9) we
discarded the unclicked items, to fill pheromone with only clicked items and
optimized with below Eg. (3.10),

{1, if user clicked item i,
ru; =

0, otherwise (3.10)

where rui; is user click information about an item i for user u, if a user clicked
item i its value is 1, otherwise 0. Clicked item values amortized with Lp,-norm values
and user pheromone vector initialized with clicked item information only. A constant
parameter initialization for the pheromones might be a marginally worse start for the
optimal solutions because stagnation could act on more distant solutions. Pheromone
initialization is useful for preventing stagnation, which is one of the main challenges
in ACO algorithms (Dorigo & Gamberdella, 1997).

In the Ant Colony Optimization, the extremely significant influence
provoking randomness in the search space is the pheromone model (Dorigo &

Gambardella, 1997). Initial pheromone values for user clicked items are estimated
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by Eg. (3.6), Eq. (3.8), and Eqg. (3.9). In Eg. (3.6) the o parameter adjusting the
tendency of pheromone values in ACO models and the  parameter choice, which
controls the heuristic knowledge of the model are conditions that affect the profit of
the model (Stiitzle et.al., 2011). After initializing the AcoRec pheromone values with
the previous clicks of the user, we fixed the o parameter with a=1, which determines
the pheromone bias in our model, and worked on the adjustment of the B parameter.
We figured out that regulating heuristic knowledge with B and reducing the effect of
bias increase the pheromone effect, or vice versa, decreasing the pheromone effect
and increasing the tendency of heuristic knowledge. Parametric scale on heuristic
knowledge, the overthrow of Euclidean norm data to popularity has been used in
many algorithms, and successful effects have been seen (Nikolakopoulos et.al.,
2017; Frolov & Oseledets et.al., 2019; Paudel et.al., 2016). The scaling on the
heuristic S matrix defined with Eqg. (3.11)

S11 S12 -+ Sim lIs1 |7 0 0 0o 1°

| S21 S22 : 0 szl O 0 311
Smi Sm2 -+ Smm 0 0 0 lIsmlls
where f is the scaling parameter and {||s1 ||, ..., || || 7} are Frobenius norm

(L2-norm) of each column in the S. The scaling parameter is used to reduce and
increase the effect of high norm values in popular items. If we re-insert the
pheromone values, we obtained the scaled Heuristic model by Eq.(3.9) and Eq.(3.11)
in Eq. (3.6) and we got the following formula Eq. (3.12),

probabilityf (W) = 1(W1m™ * Spm * Diag({llsallr.... Ismll-DF  (312)

In our experiments, we observed that (see Section 4.1), the maximized f

parameter search would reflect the user's personality. When the B parameter has a
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negative value, rare items can also be highlighted for the user. This parameter could
vary for individual users on the system according to their taste.

The parameter that had the best fitness value could become a scale factor for
the users in our study. However, discrete probabilities may not hand over certainty
while searching a hyper-parameter. That’s why the optimization dilemmas of
continuous fields have redirected into a new direction for ant colony optimization
research. In the continuous domain, instead of running a discrete probability
distribution, a pdf is employed to sample the probabilistic hyper-parameters. One
can think of a node in a conventional ACO problem as a local parameter in the
Gaussian Distribution. We discussed finding the maximized value of the 3 parameter
in the ACOgr domain and explained our version of ACOr about finding the ideal
parameter in Algorithm 2. Sensitively neighboring points in a continuous domain
offer close results, and we can investigate the maximized [ parameter on a
continuous field in a stochastic way. In our model, each ant samples a pdf in the
Gaussian Distribution, and these points are seen as candidate  parameters. By using
the sampling from G(x) = N(,0) in the beginning, we initialize x=0, c=1, and each
ant samples a random point as . Then each ant's probability values are estimated for
the current iteration with Eg. (3.12). AcoRec uses a non-linear normalization
function for each ant's probability vector and ordered descending and trimmed first
N item scores in each vector. If the validation items are in these trimmed probability
vectors, we binarized activation scores of them by keeping their position and
discarding others as zero. As an evaluation for the ant solutions, AcoRec uses R-
Score@100 for evaluating the best £ for the validation items in Eq. (3.14), which we
explained in Section 3.4 and we cloned probability vectors by multiplying the
position scores of R-Score@100. Now we have two multi-class matrices, denoting
probability vectors and evaluation metrics' hit values which were synchronized with
probability. To estimate the likelihood of the ant solutions, we used a similar

approach in Eq. (3.9) as a fitness function. We used matched values from the metric
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as labels yk and ant solutions for predicted probability values p(yk) for ant k in Eq.
(3.15) for every ant solution.

max(u) = max probabilityf (u) (3.13)

—- ,if itemi at the pos j is in validation list

yk() =1, (3.14)
0, otherwise
pyk) = max normalization(probabilityf (u)) (3.15)
<i<
N
Fitness, = ) yk(i)  log(p(yk(i))) + ((1 — yk(i)) log(1 — p(yk(i))) (3.16)
i=1

With the fitness function in Eq. (3.16), we sort the ants in descending order
according to their solution quality. We used this process to initialize the solution
matrix in ACOg. Solution space rows are equal to ant_size in our approach and each
row has a sampled g value cell and a cell that keeps the fitness value. After
constructing the solution iteration process, we trained the best hyper-parameter
search on the user evaluations. At each iteration, according to the current archive of
the solutions, x« and o are to be estimated by the current population and with their
weights. This process shifts the distribution of the best quality x« and g at the same
time. The core of ACO algorithms depends on pheromone evaporation. These
phenomena are implemented in our algorithm as the shifting and squeezing
distribution. In each iteration, the deviation of the distribution is tightened. Each ant

discovers 3 from the new N(u,0) Gaussian distribution, and these B values are sorted
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by their qualities and we construct an iteration solution archive and merge it with the
main solution archive. Then all solutions are sorted and the best top-N solutions
according to their weight are chosen for the next iterations. At the end of iterations,
the best quality B or the mean of solution archive is chosen for the Eq. (3.16) user

predictions.

Algorithm 2: AcoRec

Inputs: Item Similarity Model S € R™™ , Click vector of user ru € RY'™
Scale « Frobenius norm of columns of S, Diag({||s1||F,...,||Sm||F)

v <0

o <1

tol «— 1e-4

as « antsize and archive size

it <« iteration count

Output: Predictionsy < Predictions of user u for items

Compute Lp(ru) from Eq.(8)
Construct SolutionArchive(1...as) « {}
fori«— 1,2, ...,itdo

fork < 1,2, ...,asdo

B = N(1|u,0)
Pheromonesk =Lp(ru) * S * Scale™

if Fitnessk > SolutionArchive(as) then
SolutionArchive(as) = Fitnessk
sort(SolutionArchive)
endif
endfor

U« p(SolutionArchive)
o <« o(SolutionArchive)
if o<tolthen
exit
endif
endfor

B = u(SolutionArchive(1))

return Lp(ru)* S * ScaleP
Figure 3.3. Pseudocode for AcoRec
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3.1.6. Heuristic Base of AcoRec and Item Based Model Selection

The distance between nodes is crucial for ants to choose their later positions.
In the TSP problem, it is beneficial to have a short distance. In the ACO-based
recommender systems, the distance between nodes is represented by the
similarity/proximity between items (or users). For this similarity, distance
measurements in inter-nodular Euclidean space are preferred. We designed our
model as low-dimensional and determined the user’s interest in items as heuristic
data rather than considering the distance between nodes. The relation between items
is controlled in many respects. These relationships could be in various forms such as
similarity, proximity, dissimilarity, or correlation, and can be shown by specific
methods. CF Based Similarity Models acknowledge the collaborative benefit of the
items. CBF Similarity models zoom in on related items dealing with the metadata
(demography, mood, etc.) of the items. Graph Similarity models are based on the
relations in the user-item network structure. Time-Based models track the time
sequences of the purchase for the items. Latent-Factor Based Models extract hidden
components from low-rank computations. Demographic Models care about
collaborative behaviors in the same geographic locales.

In this study, we evaluated three well-known item-based similarity measures
for computational simplicity and popularity; Let S™™ be the similarity matrix, i and
j be the two items, vi and v; be the column vectors of these items.

Dot Product (Dotp); Dot-product similarity of two items is equal to the inner

product of these item vectors.

Soop = |v; N vj| =7, %7 (3.17)

Cosine (COS); The Cosine similarity of the two items is the angle between
their rating vectors. It is estimated by the inner product of these item vectors by

dividing by vector norms multiplication.
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_lvinvjl _ vy

FRRIEIRICA (3.18)

Jaccard (JAC); The Jaccard similarity between two items is defined as the
ratio of the number of users that co-rated items based on the number of users who
rated at least either i and j items.

_lvinv;| _ VU

Siac =

(3.19)

lvivvsl  |wl|+1-vv;

3.2. A Deterministic Perspective, z-scoREC and ImposeSVD

To overcome RSs challenges, the CBF or CF methods have been applied to
the recommendations in sparse datasets in various studies (Adomavicius & Tuzhilin,
2005). The application of CF method has shown successful results with Singular
Value Decomposition (Golub & Van Loan, 2013), which is one of the low latent
factor approximation techniques based on matrix factorization.

The effectiveness of SVD-based models results from their ability to uncover
latent factors between users and items, which are hard in traditional nearest-neighbor
approaches (Sarwar et.al., 2000). But SVD-based models have several limitations
including high costs for estimations and difficulty with the algebraic calculations
because of the incomplete matrices. As a result of developing hardware technology
and optimized linear algebra libraries, the use of algebraic SVD-based models has
become popular in RS as a result of their successful results in providing
recommendations.

One of these SVD-based models incorporated in the RS technologies is the
PureSVD model developed by Cremonesi et al. (2010). The PureSVD model offers

low-rank factors estimated with SVD after empty cells in the user-item matrix are
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imputed as ‘zero’ at the outset. One of the advantages of the PureSVD is its easy
implementation with linear algebra libraries written in many programming
languages.

Many researchers have used the PureSVD as a benchmark algorithm
(Cremonesi et.al., 2010; Kabbur et.al., 2013; Cheng et.al., 2014; Wu et.al., 2016;
Kang et.al., 2016; Nikolakopoulos et.al., 2017; Christakopoulou et.al., 2018;
Nikolakopoulos et.al., 2019; Frolov & Oseledets, 2019) and agreed on the fact that
the PureSVD with its basic structure is a successful non-parametric model to be
applied to RSs.

However, the inefficiency of the PureSVD in cold-start situations has led
researchers to investigate different solutions and improvements in the model
(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019; Frolov & Oseledets,
2019).

With regards to the cold-start problem, EigenREC developed by
Nikolakopoulos et al. (2017) produced faster and more accurate results in high-
dimensional data by replacing the SVD-based model of the PureSVD with the
Eigenvalue Decomposition.

The HybridSVD model (Frolov & Oseledets, 2019) has successfully
exploited the PureSVD's disadvantages stemming from CF by embedding side-
information to provide better solutions to cold-start and sparsity problems.

Another research (Christakopoulou et.al., 2018) also shows that the
PureSVD is also suitable for parallel operations in high-dimensional data with the
Golub-Kahan-Lanczos Bidiagonalization method (Golub & Van Loan, 2013).

The main focus of all these studies is to improve the effectiveness of the
PureSVD model in different problems encountered in RSs without disrupting its
simple structure. However, as Cremonesi et al. (2010) stated ‘there are still several
unexpected ways that may improve PureSVD'. One of the ways they suggest is to
‘optimize the value imputed at the missing entries' instead of assigning zero as a

value.
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Ghazanfar and Prugel (2013) also suggested that a particular amount of
imputation taken with care could enhance the quality of recommendations.

Adding to the line of the studies improving the PureSVD model, this study
aims to suggest novel models for the sparse datasets that will improve the
recommendations for cold-start users and provide long-tail items in the
recommendation lists by finding out good-working imputing strategies.

In these models;

e We propose a novel basic asymmetric item weight matrix based on
Gram-matrix. Unlike conventional similarity methods, we undermined
symmetry to catch various relations between the elements. Gram-matrix
was shifted with Li-norm of items that were propagated from the item
matrix. The shifting process penalized poor ratings, changed the
negative entries to zero, and broke the symmetry in the Gram matrix.
The parameter for shifting could adjust the different relations without
disrupting the identity of mass data. Later, we employed the Z-Score
normalization, ignored negative values, and found a disagreement
between the non-symmetric weight matrix and the regular Gram-matrix.
The shifting and normalization were element-wise; and thus, were not
heaped and time-consuming. With the cooperation of this fresh weight
matrix, we designed a baseline prediction matrix. We called this model
z-scoREC. The imposed matrix, reproduced from z-scoREC,
maintained new relationships between the users and the items but yet
sparse, which makes it computable for the big data.

e We used z-scoREC predictions toward the imposed matrix. But before
decomposing this imposed matrix we came up with some normalization
and regularization processes on these priori predictions. After
decomposing low-rank latent factors with SVD libraries from this

imposed matrix, we estimated a new enriched prediction matrix and
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acquired valuable top-N recommendation lists for users. We called this
method ImposeSVD.

e When we evaluated the ImposeSVD and the z-scoREC on common
popular datasets for the cold-start scenarios and long-tail item
recommendations using the well-known evaluation metrics, we found
that our models outperformed similar state-of-art methods. Additionally,
z-scoREC surprisingly gave closer results to ImposeSVD by using it in

the basic item-based prediction model.

3.2.1. Notations for z-scoREC and ImposeSVD

In the rest of this section, vectors and matrices are denoted in bold letters.
We used bold capital letters for matrices and bold lowercase letters for vectors. In
addition, u, v represent users and i, j represent items. We denoted the user-item rating
matrix as R. The dimension of R is n x m, where n is the number of users and m is
the number of items. The rating is given by user u to item i is denoted with ryiin R.
R represents the rating prediction matrix and fy; denotes the predicted rating score
of the user u for item i. R represents the impose matrix used for embedding to the R.
R represents the decomposition matrix of R or R. R denotes the final prediction
matrix that is the union of the original R and R matrix, r, represents the row vector
of useruinR.

Item-based CF models aim to predict users’ ratings for a specific item by the
dot product of the user selections with item-item weights. For the estimation of the
R, the common formula of the prediction matrix is given in Eq. (3.20)

~

R=RK (3.20)

where R € R™™ could be a binary purchase (or a ranged scalar rating matrix,

or a listen to count) matrix, K € R™™ is an item-item weight matrix that defines the
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proximity of the items between themselves. Establishing an item-item weight matrix
is essential for the model’s progress and this model must handle the typical
challenges in RSs. It is also important for this matrix to be satisfying and computable
with parallel measurements.

K could be a similarity matrix determined by correlation methods such as
Dot-Product, Cosine-based, Jaccard, or Pearson-correlation. These correlation
methods are adopted in many CF, CBF, or Hybrid models (Sarwar et.al., 2001;
Deshpande & Karypis, 2004; Frolov & Oseledets, 2019). For instance, the itemKNN
method was used by Deshpande and Karypis (2004) to find out the most similar k
items for each row in the item-item similarity matrix estimated by Cosine-Similarity
or Conditional Probability-Based Similarity. The researchers dismissed all items in
every column except for the k items and constructed a prediction matrix for top-N
recommendations for each user in the R matrix. The itemKNN method; however,
suffers in sparse datasets and cold-start situations because it only considers the
existing collaborations. Also, k represents the number of neighbors or the threshold
value and its optimal could differ between the items in the same dataset. As a result,
the same k value along rows and columns can be overfitting or underfitting for
different users or items (Ning et.al., 2015). Another popular approach, SLIM trained
K as a coefficient matrix and made predictions with the help of linear regression
models such as ElasticNet and Lasso (Ning and Karypis, 2011). Kabbur et al. (2013)
created two item factors with the model they called FISM with help of loss functions
by sampling the previous clicks users and training this obtained data. Fouss used
graph relations based on kernel similarity methods to define suitable item-item
weight matrices (Fouss et.al., 2006). In addition to these, the PureSVD and its
generalized methods constructed item-item weights from latent factors of items
based on the use of low-rank item factors estimated by the decomposition algorithms
(Cremonesi et.al., 2010; Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019;
Frolov & Oseledets, 2019).
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3.2.2. z-scoREC Model Definition
In our model, we proposed:

A sparse but qualified K weight matrix to generate efficient

recommendations with a low cost for huge data.

e Anasymmetric K weight matrix to capture individual relations between
items without needing explicit data.

e To trivialize meaningless values by naturally, on the contradictory of

neighborhood approaches.

o A less parametric model which is trainable and adaptable easily.

The dot product of users and items vectors is the simplest way to obtain an
item-item similarity matrix. It is also called co-citation, Gram-matrix and in the

simple form, it is estimated as in Eq. (3.21)

K =R'R (3.21)

where R € R™™ and R>=0, then K is a symmetric, positive, and semi-definite
matrix. In a real scenario, R is mostly sparse and includes null values, which are
insufficient for the Gram-matrix.

Assume that our R € R™™ matrix has binary values if a user clicked a specific
item and zero values if not clicked. Then, we compute the item-item similarity matrix
as in Eq. (3.22), by multiplying RT with the element-wise shifted version of R matrix
where A is a real value in the range [-1,1] and e is an m*1 unit column vector having

1 in all elements to perform element-wise shifting operation.

K = RT(R - Ae) (3.22)
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This shifting (R — Ae) subtracts A from all elements in R and transforms
values of R so that matrix elements become real-valued, and non-clicked item ratings
become negative.

For a given R, if we transpose R'R, then (R'TR)" = RT(R")T=R'R, thus we
know that Gram-matrix RTR is symmetric with a primitive rule of equality of its
transpose. However, in Eq. (3.22) we multiply R™ with the shifted version of R, and
if we apply distribution rule to Eg. (3.22) we obtain Eqg. (3.23), and we can say that
the K matrix cannot guarantee to be symmetric and could be asymmetric if the matrix
dimensions are not equal (m=n). This asymmetry provides the use of new relations
in the weight matrix. When we shift the R matrix with A, R — \e grew into a dense
matrix that leaves null values, and computation of Eq. (3.22) became extremely
costly. Therefore, we use Eq. (3.23) to estimate K.

K =RTR-RT\e (3.23)

We obtained an improved formula and separate the shift operation from
Gram-matrix estimation. The diagonal d = Diag(R"e) vyields the column L;-norms
of R (Fouss et.al., 2016) and we get Eq. (3.24).

K=RTR-A*d (3.24)

where vector d is multiplied by A and subtracted from each column of the

Gram-matrix.

LEMMA 1. If R € R™™ is a binary interaction matrix consisting of 1s and
zeros, RT is the transpose of R and e € R™ is full of 1s vector with the column size
of RT, and not for only square matrices also includes non-square matrices then,

Diag(R"e) = Diag(R'R)

PROOF. Proof of Lemma 1 is presented in Appendix A.
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By using Lemma 1, if d = Diag(R"e), then d = Diag(R"R) and we obtain Eq.

(3.25).
K = R'R — A*Diag(R'R) (3.25)
Now if we denote R™R as G Eq. (3.25) can be written as in Eq. (3.26)
W = G — A*Diag(G) (3.26)

In a structure view, the shifting operation on the second matrix (which is the
same as the matrix for the Gram-matrix estimation) is performed as row-based
degree shifting on Gram-matrix. The shrinkage ratio is obtained by A and if A=0, our
W matrix is pure Gram-matrix. It is also established that the regularization parameter
A between [-1,1] behaves as a penalizing term on neighborhood degrees. With A=1
value, W is transformed into an unsigned Laplace Operator Matrix, which is a
derivative of the Laplacian Matrix (Fouss et.al., 2016, p.18). We should notice a
revised weighted Laplacian Matrix, as recognizing the Gram-matrix like an
adjacency matrix of an undirected weighted graph. Laplacian operators, especially
as a model used in image filtering, prevent noise from becoming dominant in the
data. After adding noises to our data by shifting it, then we applied the whitening
process. When we hold our model as a transparent auto-encoder system with non-
hidden layers, we obtained W by including noise to the Gram-matrix in the first
layer, and we demand to remove the noise from the data in the second layer. For
kernel normalization, many methods are used, such as vector normalizing, vector
centering, Z-Score, or Tanh estimators. As pointed out in the EASER article, many
CF models are vanilla auto-encoder implementations (Steck, 2019).

Z-Score is an extremely impressive normalization process when handled

with the real data set. Z-Score precisely eliminates noise from the data and reduces
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variance, which is preferable in regression analysis. The primary formula of Z-Score
normalization is given in Eq. (3.27).

K=(W-w) /o (3.27)

where p is the column means of W and o is the column-based standard
deviations of W. Final step of the estimation produces an asymmetric dense matrix
with lots of negative values if A#0. One of the reasons we adopt Z-Score
normalization is that, at the end of the normalization, the values are excluded by
holding an optimal threshold position, as the values can be observed in the [-co, +oo]
range. The dense coefficiency matrix has rich relations but performance issues with
evaluation costs. Removing these negative values will keep sparsity that eliminates
insignificant relations according to our model.

Z-Score performs the whitening process on the weight matrix in our model,
on autonomous columns, in parallelizable and with a low-cost estimation. In deep-
learning models, a similar technique to Z-Score, which is mentioned Batch-
Normalization, enables faster training time of the network and provides stable results
for layers. In addition, we can consider it as a linear regularization model similar to
SLIM, since we apply operations on Gram-matrix and normalization matrices as
column-based regression and vector operations independent of each other.

Contrary to the SLIM (Ning and Karypis, 2011) and EASER (Steck, 2019)
models, we don’t drop diagonals and we observed that the zero diagonal weight
matrix does not affect the results for our model in the experiments. The prediction
model is based on the generalized Eq. (3.20) formula. R is the prediction matrix for
all users. Fig. 3.4 presents an example that shows how our proposed method

calculates weight matrix K, which is used for the estimation of the prediction matrix.
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Figure 3.4 The architecture of the proposed item similarity matrix

As illustrated in the example in Fig. (3.4), R interaction matrix consists of
1s, and null values are considered as zero. We perform the R™R to create the G item-
item similarity matrix from the R matrix. It can be recognized that each diagonal
element gii in the G matrix corresponds to the sum of the elements in the associated
column i in the R matrix. That is, the Ly norm of each column i of the R matrix is
equal to each diagonal gii element of the G matrix. We obtain the W matrix by
subtracting A*gii from each element in row i of G matrix. As an example, let A be
equal to 0.5, then 0.5*3 which is equal to 1.5 is subtracted from the elements in the
1%t row, 1 is subtracted from the elements in the second row, etc. The W matrix is
Gram-matrix at A=0 and Laplacian-matrix at A=1. In the W matrix, p defines the
column means and ¢ defines the column standard deviations. The K matrix is
computed by applying z-score normalization to each column of W matrix. After the
normalization step, all negative values are converted to 0 in the K matrix as in Fig.
(3.4). We called this method z-scoREC, and Algorithm 3 given below summarizes
the steps applied to compute the K matrix, which is then used to estimate the user

ratings R for the items by employing Eq. (3.20).
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Algorithm 3 : z-scoREC

Input: Ratings Matrix R € R™™, A shrinkage value

Output: K € R™™ weight matrix
1: G—R™R

2: W «— G - A*Diag(G)

3: K« Z-Score(W)

4: forij«1,2,....,mdo
5: if [K]ij< 0 then [K];=0
6: end
7:return K
Figure 3.5 Pseudocode for z-scoREC

3.2.3. Computational Complexity of z-scoOREC

As it can be seen from Algorithm 3, the overall time complexity is O(n*m?).
In Line 1, we estimated R'R which is the matrix product of two m*n and n*m
matrices that can be computed in O(n*m?) time, and we get the K™™ weight matrix
between items. Note that the transpose of R matrix can be computed in at most
O(n*m) time. In Line 2, element-wise multiplication O(m?) and subtraction O(m?)
are applied for K, which corresponds to the O(m?). In Line 3, we applied Z-Score
normalization to the W weight matrix. In these processes; if we analyze a column,
first we find the sum of the column in O(m) time and we divide it into number of
elements in the column in O(1) time. Computing the mean of each column is done
in O(m) time, and for the whole matrix, this process takes O(m?) time. In finding the
standard deviation of a column we subtract each element of the column from the
column mean value then square the difference and sum all differences with O(m)
time, dividing it by the element count of the column and getting the root square is in
O(1) time. Finding standard deviation is applied for all columns and this corresponds
to the O(m?) time. For Z-Score normalization, we subtract every element from its
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column mean value and then divide this result by its column standard deviation
value. Z-Score normalization of all elements in the matrix takes O(m?) time. In line
5 we removed negative values. This element-wise operation is done in O(m?) time
complexity. In line 7, we multiply our novel weight matrix K with the original rating
matrix and we got predictions. This process is made in O(n*m?) complexity for n

users and m items.

3.2.4. ImposeSVD: Imposing SVD for cold-start recommendations

ImposeSVD is our proposal to estimate user ratings for items in cold-start
cases. In this method, we apply SVD to the estimated rating matrix R that is imputed
by using the weight matrix K computed by our z-scoREC algorithm to make a better
recommendation for cold-start cases. The details of our proposal are explained in the

below subsections.

3.2.5. SVD Analysis

Let R € R™™ be a user-item rating matrix. In SVD based recommender
models, the main idea is to decompose the R user-item matrix into low-rank matrices
P™and Q"™ where f<m and f<n. Let P be a matrix of ‘user-factors’, and Q is a
matrix of ‘item-factors’. The basic prediction matrix R is formed from user factors

and item factors and it can be computed as shown in Eq. (3.28);

R=PQT (3.28)

PureSVD imputes null values with zeros in R and decomposes the f
dimensional latent factors of the R matrix with n users and m items. When we
decompose R to the singular values and unitary matrices, with the help of advanced

linear algebra libraries, we get U, X, and V matrices from Eq. (3.29),
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R = Upst ZerV s (3.29)

The matrices U and V are orthonormal matrices and X contains f singular
values. Consider that rows in the R matrix denote users, and columns are items, then
in the decomposition of the R matrix, U is user factors because of the similar
dimensions, and V is the item factors matrix. From Eq. (3.28) and Eq. (3.29), we
have the following equations Eg. (3.30) and Eqg. (3.31);

(3.30)
P=UZ, Q=V

R=UZV'=PQT (3.31)

where U and V are orthonormal matrices, and then we can easily get Eqg.

(3.32)
P=UX=RQ (3.32)
Replacing UX in Eq. (3.29) with RQ in Eq. (3.32) gives Eq. (3.33).
R =RQQ" (3.33)

where R is a simple prediction matrix for all users. Predictions of user u,

which is F, could be estimated with the user's row vector in R with Eq. (3.34)

Fu=rQQ" (3.34)
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In Figure 3.6 we show that how the PureSVD makes predictions. PureSVD
imputes null values as zeros and decomposes this completed matrix with low ranks.
PureSVD only takes the item factors and there is no need for the U for the
predictions. That is one of the most persuasive features of the PureSVD algorithm

because, for new users, there is no need to re-decompose R.

Singular Value Decomposition of R
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Figure 3.6 Rating prediction example with a simple matrix for PureSVD algorithm

However, analyses about PureSVD show that it's insufficient in cold-start
and data unavailability situations. EigenREC showed that the efficiency and quality
of PureSVD depend on the precision of the item factors from the decomposition
(Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019). The authors concluded
that "the PureSVD algorithm's recommendation model is based on the induction of
recommending similar items the user previously liked", and meanwhile the
connections in the QQT matrix, which are the latent component factors of PureSVD,
could be obtained from the Eigen Decomposition of the RTR matrix. Another
approach, HybridSVD, has suggested that embedding side-information could

recover PureSVD in cases where it is inadequate (Frolov & Oseledets, 2019).
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3.2.6. Motivation behind ImposeSVD

We figured out how the PureSVD handles and produces recommendations
when the sparsity decreases in the same dataset. Our evaluation scenario is to
simulate the evolution of a recommender system with time. Based on this scenario,
we used a common dataset; namely, MovieLens 1M (Harper & Konstan, 2015) for
movie recommendations. This dataset has 6040 users, 3952 items, 1M ratings, and
about 95% sparsity as shown in Table 1. We denoted this dataset as Tri. Then, we
randomly selected 66% of the ratings from Tri and named this subset Tr,. We
continued to create subsets by selecting the randomly chosen 66% of the ratings from
the parent subset until we got four subsets. At the end of the process, we got related
coherent five training sets named Tri > Tro> Tr3> Trs > Trs in which each set
subsequently subsumes the following sets. Then, we created a test set consisting of
full ratings for users (maximum rating) from the smallest training set (Trs) and
removed this test set from all training sets. We calculated the R;, Rz, Rs, Ry and
Rs prediction matrices from their own training sets by using Eq. (3.33) and adopted
the evaluation method in (Cremonesi et.al. 2010) to evaluate the quality of the top-
N recommendations (shown as @N in Fig. 3.7) in the prediction matrices. To
estimate the quality of the lists at different @N values, we used normalized
Discounted Cumulative Gain (nDCG) (Shani & Gunawardana, 2011). Details about
evaluation methods and metrics used in this study are explained in Sections 3.4 and
3.5.

Following all predictions and tests in different sparsity levels, we observed
that as sparsity increases, the nDCG value decreases for all @N values as shown in
Fig. (3.7). For example; in the ML1M dataset, Tr, was less sparse than its subset,
Trs. We could see that the Tr2’s nDCG result is better than the results of its subsets.
As the length of the top-N recommendation list increases (it is @N in Fig. 3.7), the
nDCG value rises, but as the sparsity expands, the nDCG values of all @N values

do not converge successfully and the performance decreases.
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MovieLens 1M

Trl Tr2 Tr3 Tr4d Tr5
95.53% 96.97% 97.96% 98.62% 99.06%

Sparsity

Figure 3.7. Performance of the PureSVD algorithm in different sparsity percentages
of MovieLens 1M dataset evaluated with nDCG metric

In live recommender systems, present states of the user-item interactions
should become the subspaces of future states. Based on the use of the PureSVD, we
conclude that the impact of the latent factors of the rating matrix could be enhanced
with the recent relations that can be created virtually. Therefore, in our new model,

we aim to decrease sparsity to make better recommendations.

3.2.7. ImposeSVYD Model Definition

In this study, we have developed a model to create new virtual connections
in the referral system. With the help of the new predicted relations, system sparsity
could be decreased and the recent success of algorithms may increase. When we
estimate the impute matrix by using Eg. (3.20) with K created by the z-scoREC
algorithm, we get the R predictions. Our goal is to impute users' missing ratings in
the original rating matrix R. So, we removed previously rated items in R by applying

Eq. (3.35) to obtain R. All we need was unrated items to scale the real rating values.
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R=RO-R (3.35)

In Eg. (3.35), —R is obtained by swapping all zeros and ones for their
opposite from the binarized R matrix. Finally, R represents new predicted values
that users have not previously interacted with them. Decomposition of the latent
factors in the R matrix might have caused the existing real evaluations to worsen.
Therefore, we did not apply any normalization process when calculating the S
proximity matrix. The impute values obtained in the R matrix might have been in a
different range than the actual rating values. So, we applied row-max normalization
before imputing the latest R matrix. Because users could have different rating ranges
in the impute matrix, we normalized each row by dividing its max value by the Eq.
(3.36) where L., was the norm in their row-vectors. Even small values in the R were
valuable, so we applied the exponential scale to make these values meaningful on
the actual rating scale. The method we applied here is to degrade the difference
between small and large values, as opposed to the process in Eq. (3.37). In this way,

we have ensured that unpopular predictions are noticeably impacted.

- (3.36)
R=R/|R|.

R = exp[-1/ R"] (3.37)

With these normalization processes, we compressed the values to be imputed
into the (0,1) on the same range with the actual data. Then, we could merge our

impute matrix with the original matrix as shown in Eq. (3.38);

R=R+R (3.38)
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After imputing the R matrix, we got the final impute matrix R. Singular
Value Decomposition of the R was estimated via Eqg. (3.39)

R~ 0z0" (3.39)

As we explained before, U is user factors, Q is item factors and X is singular

values of decomposition.

3.2.8. Generating Predictions
Similar to Eq. (3.33), our prediction formula with Q factors obtained from
the R matrix was estimated as in Eq. (3.40)

~ -

R=RQQ" (3.40)

The above equation differs from Eqg. (3.33) because a row of the imposed
matrix for the user as ry is richer than the original user predictions. Algorithm 4

shows the basic steps of the proposed ImposeSVD method.
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Algorithm 4: ImposeSVD

Input: Ratings Matrix R € R™™, A shrinkage value, f low rank size
Output: R € R™™ final prediction matrix

1. K+« z-scoREC(R, A)
2. R<RK

3: R—ROR

4: R —R/||R||»

5. R — exp[-1/R]

6: R—R+R

7: R« UntZpiQpm!

8: R—RQQT
9: return R — RQQT
Figure 3.8. Pseudocode for ImposeSVD

As it can be seen from Algorithm 4, our method uses the imposed matrix R,
which keeps the original relations in the R matrix, but imposes new relationships for
the null entries in the original R matrix, to make predictions. Although our proposal
is an SVD-based method, it is quite different from other SVD-based methods that
are PureSVD, EigenREC, and HybridSVD:

i) PureSVD uses the original R matrix by changing null values to 0, however
our method uses the imposed matrix R for predictions.

ii) EigenREC applies scaling to item similarity matrix obtained from R and
changes all values in R matrix, however our method keeps non-null values in R but
imposes new values for null entries in R, therefore we update R matrix differently
from EigenREC.

iii) In our model, we use our z-scoREC method to compute the item

similarity matrix, however EigenREC employs Pearson, Cosine, or Jaccard
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similarity metrics and chooses the best metric for the dataset at hand to form the item
similarity matrix. Therefore, we reduce the number of computations to be made with
respect to EigenREC. iv) EigenREC uses the same prediction formula with the
PureSVD that employs the R matrix. Our model, on the other hand, uses the imposed
matrix R for making predictions.

v) Our model considers only user-item rating matrix R and does not require
additional information about users or items, however HybridSVD incorporates side

information of users or items in addition to CF.

3.2.9. Computational Complexity of ImposeSVD

The algorithm for imposing predicted prior values into the original matrix
and the final prediction estimate is given in Algorithm 4. In Line 1, we estimated the
K™™ weight matrix between the items. As it can be seen in Algorithm 3, the overall
time complexity is O(n*m?). In Line 2, we multiplied our novel weight matrix K
with the original rating matrix and this process corresponds to the O(n*m?). R is our
both priori predictions and z-scoREC predictions. With Line 3, we removed user-
rated items from this prediction matrix because we only wanted to normalize the
user’s unrated predictions. This process is applicable to only nonzero elements of R
where complexity is at most O(n*m). In Line 4, we scaled the prediction matrix by
dividing each row values by the row-max value. In Line 5, we normalized the ratings
in an exponential scale. Both Line 4 and Line 5 correspond to O(n*m). In Line 6, we
merged the initial R matrix with the imposing matrix in O(n*m) time. Line 7 is the
decomposition phase of the R, which is our imposed matrix. Golub and Van Loan
(2013) showed how to efficiently compute the SVD of a sparse matrix R € R™™
(n>m) which could be applied in line 7. This computation method of Golub and
Kahan (2013) is based on bidiagonal factorization and it is efficient in sparse
matrices. For a large matrix, SVD could be estimated via Golub-Kahan-Lanczos
Bidiagonalization with O(#nonzero(R) * f), where #nonzero(R) is the number of

nonzero elements in R which is less than n*m. In line 8, we estimated R with R
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impose matrix and item factor Q from decomposition. This process depends on a
low f rank value and corresponds to the O(n*m*f + n*f). As f is much smaller than
n and m, time complexity of the algorithm is O(n*m?).

3.3. Datasets

To evaluate the recommendation quality and performance of our algorithms,
we used six datasets from various domains, which are MovieLens 1M (Harper &
Konstan, 2015), MovieLens 10M (Harper & Konstan, 2015) and Netflix (Bennett &
Lannning, 2007) datasets for movie recommendations, R2-Yahoo! Music dataset for
song recommendations (Yahoo, 2020), BookCrossing for book purchases (Ziegler
et.al., 2005), and implicit data crawled from an often-cited paper about Pinterest for
image recommendations (Geng et.al., 2015; He et.al., 2017). User, item, and rating
counts of the datasets with their sparsity and density values are shown in Table 3.1,
where sparsity percentage is calculated as (1-density) *100, in which density

formula is density = #ratings / (#users X #items).

Table 3.1. Evaluation Datasets
‘ ORIGINAL DATASETS

Dataset # User #ltem #Rating Sparsity
MovieLens 1M 6040 3952 M 95.809
MovieLens 10M 72K 10681 10M 98.692
Netflix 480 K 17770 100M 98.822
R2 -Yahoo! Music 1.8M 136 K 717 M 99.707
BookCrossing 246.7 K 255.7K 716109 99.995
Pinterest Image 46 K 882 K 2.6M 99.993

MovieLens (ML): MovieLens is a popular dataset in the Recommender

Systems literature which is first released in 1998, describe people’s expressed
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preferences for movies. This dataset contains movie ratings from the online movie
recommender service MovieLens. In this thesis we used "1M" and "10M" versions.

Netflix Prize Dataset: The Netflix Prize competition was held by Netflix in
2009, and the grand prize of US $1,000,000 was given to the best recommendation
algorithm. Netflix released a dataset containing 100 million anonymous movie
ratings for competitors (researchers) that could beat the accuracy of its
recommendation system (Cinematch).

Yahoo Webscope Dataset: R2 -Yahoo! Music dataset represents a
collection of the Yahoo! Music community's preferences for various musical artists.
This huge dataset contains over ten million ratings of musical artists given by Yahoo!
Music users over the course of one month sometime before March 2004.

BookCrossing: The BookCrossing (BX) dataset was collected by Cai-
Nicolas Ziegler from the BookCrossing community. It contains 255,7k users
(anonymized but with demographic information) providing 1,149,780 ratings
(explicit / implicit) about 271,379 books. We used implicit ratings of the BX in this
thesis.

Pinterest Image Dataset: He et al. (2017) constructed this dataset from
paper data that were constructed by (Geng et.al., 2015) for evaluating content-based
image recommendation. The original dataset is huge but highly sparse and its details
are given Table 4.1. He et al. (2017) filtered the dataset that retained only users with
at least 20 interactions (pins). This dataset contains 55,187 users and 1, 500, 809
interactions (pins). Each interaction denotes whether the user has pinned the image

to her own board.

Selected datasets are well-known recommendation datasets that are used in
most of the previous studies in this field. Attributes of the datasets are given in Table
3.1

Because of the huge size of these datasets, we created particular subsets by

which we evaluated the benchmarks. In this way, benchmarks and parameter tunings
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were estimated much faster. We obtained subsets similar to the subset sampling
methods used in the related studies (Kabbur et.al., 2013; Ning & Karypis, 2011).
The sampling methods were run recursively until the specified conditions were met
for each dataset. With these sampling methods, we aimed to create a subset that is
close to their original densities. Finally, we normalized the ratings of the non-binary

datasets by dividing each one by the maximum rating value in the dataset.

3.4. Evaluation Metrics

In this thesis, we didn't consider the similarity of the estimated ratings with
actual ratings; instead, we measured the quality of the items, which are
recommended to the users. To evaluate the top-N recommendation quality of these
lists, we adopted Cremonesi et al. (2010) method for the benchmark algorithms.
Following this method, we created a list by randomly choosing 1000 unrated items
of the active ‘test user’ in addition to the test item. As a result, we obtained 1001
items that the active test user had not seen before. Later, these 1001 items were sorted
based on their prediction scores, which were estimated by prediction algorithms. N
items were obtained out of the 1001-item list as a result of their cut-off higher
prediction scores. This final list is the top-N item recommendation list for the ‘test
user’. In our experiments, we used several values for N that are 1, 3, 5, 10, 15, and
20 items for the length of recommendation lists.

In AcoRec with a change, instead of selecting 1000 items, we decided to
calculate the top-N lists by sorting all the items that the user did not click on. This is
a more difficult challenge but yielded a more consistent result. Because AcoRec is a
probabilistic model, randomly selected elements here could vary the results
significantly. Later, all unclicked items were sorted based on their prediction scores,
which were estimated by prediction algorithms.

Evaluation of predictions and recommendations is an important progress of
the Recommender System studies. Recommender Systems require quality measures

and evaluation metrics to know the quality of the techniques, methods and
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algorithms.  Because of evaluation measures, Recommender System
recommendations have gradually been tested and improved.

Herlocker et al. (2004) classifies recommendation accuracy metrics into
three classes: predictive accuracy metrics, classification accuracy metrics, and rank

accuracy metrics.

e  Predictive accuracy metrics measure how close the recommender
system’s predicted ratings and rankings are to the true user ratings and
rankings. (Accuracy of Estimated Rating examples are MAE, NMAE,
RMSE. Accuracy of Estimated Ranking metrics are Pearson,
Spearman’s rank, NDMP)

o C(lassification metrics measure the frequency with which a
recommender system makes correct or incorrect decisions about
whether an item is good. (Precision, Recall, F1 Measures, ROC Curves,
AUC, Hit-rate are some these metrics)

e Rank accuracy metrics measure the ability of a recommendation
algorithm to produce a recommended ordering of items that matches
how the user would have ordered the same items. (Mean reciprocal rank
(MMR), Average reciprocal hit rank (ARHR), nDCG, Half-life Utility

Metric etc. are the example metrics)

We used utility-based metrics including Hit Rank also Recall (Deshpande &
Karypis, 2004), normalized Discounted Cumulative Gain (Shani & Gunawardana,
2011), Coverage (Herlocker et.al., 2004) and R-Score (Half-Life) (Shani &
Gunawardana, 2011) to measure the quality of the items in the lists in terms of their
relevancy to the user. These metrics are explained below with their formulas. In these
formulas; T is the count of the test items in ‘test set’, N is the length of the

recommendation list and i is the position of the recommended item in the list. If the
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ranked item(i) in the list belongs to the test user from ‘test set’, we called this item a
‘relevance item’ for the user and set rel(i)=1, if it is not we set rel(i)=0 for the test

user.

3.4.1. Hit Rank (HR)
To evaluate the recall score of the algorithm for specific datasets in different
list lengths, we divide the sum of all ‘relevance items’ by the number of items in the

test set. The Hit Rank formula is given in Eq. (3.41).

N

HR(@N) = %Z rel(i) (3.41)

i=1

3.4.2. Normalized Discounted Cumulative Gain (nDCG)

The position of the ‘relevance item’ in the lists is ignored in the HR. The
recommendations at the top of the list are more valuable than others. So, we
measured the importance of the position of the item in the list by the ratio of the
‘relevance item’ t0 its position in the list. nNDCG gives importance to the gain of the
position logarithmically while considering the list quality at the same time. In this
nDCG metric; firstly, Discounted Cumulative Gain (DCG) of the test set was
estimated as in Eq. (3.42) and then Ideal Discounted Cumulative Gain (IDCG) was
estimated as in Eq. (3.43) for every test item in the top-N list. And then we
normalized these gain values with Eq. (3.44) and obtained the nDCG value for a

benchmark test.

N
1 rel(i)
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N
1 1
DCG(@N
nDCG(ON) = % (3.4

3.4.3. R-Score (Rs)

R-Score considers that the probability of selecting a relevant item in the top-
N list that goes down exponentially (Shani & Gunawardana, 2011). The R-Score
formulais given in Eq. (3.45). Different from other metrics, the parameter o specifies
the slope of the decay curve and exhibits scroll or discovery of users for a

recommendation list. A higher a value indicates patient users.

T .
Rs(a) = %Z Tel.l_(? (3.45)

i=1 2a-1

3.4.4. Coverage
The coverage metric measures the ability of a recommender system with the
percentage of different elements in total items in the whole recommendation list. We

define the coverage of the system as the average of the user’s coverage in Eq. (3.46)

#U
Uueni
Coverage(@N) = (3.46)

where Ui is the number of different items in the recommended list, and

|1] is the number of items counted in the system.
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3.5. Evaluation Methods
3.5.1. AcoRec

In the AcoRec model, we only used binary rating values. We used three
datasets for AcoRec which are Movie-Lens 1M (ML-1M), Netflix datasets for movie
recommendations, and Yahoo! R2-Music dataset about music recommendations.
Attributes of the datasets are given in Table 3.2. For ML-1M, 4 and 5-star ratings
were converted to binary one while others were converted to zero. After that process,
we selected the users who listened to at least one item and selected the movies which
were rated by at least one user, and in this way, we got a very sparse dataset than
the original. Due to its large size, in the R2-Yahoo! Music dataset, 10% of the ratings
were taken from the first CSV file and 4 and 5-star ratings were converted to binary
one while others were converted to zero. We selected the users who listened to at
least 20 and at most 250 songs and selected the songs, which were listened to by 20
to 250 users. In the Netflix dataset, we selected the small public sample of the

original from the Cornac? repository.

Table 3.2. Sampled Datasets for AcoRec
SAMPLED SUBSETS FOR AcoRec
Dataset Domain #User #ltem  #Ratings Sparsity Density
ML-1M Movie 6038 3533 575281 97.302 2.698
Netflix Movie 8324 2679 366432 98.488 1512
Yahoo! R-2 Music 5357 5627 202042 99.330 0.670

We adopt the k-fold cross-validation method for splitting raw datasets to
evaluate the algorithms. We shuffled all datasets randomly and then split them into
k=5 sampled datasets. For each unique sampled group, we take it as a probe set and

hold out this ‘probe set’ from the raw dataset. We called raw datasets ‘training set’

L https://github.com/CornacAl
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after removing ‘probe set’ from it sequentially. From these probe sets, we selected
users and their ratings who met the criteria according to the scenarios that we
explained in the experiments. These selected users and their ratings in the ‘probe set’
are called the ‘test set’. In this way, results for different users and items in each

experiment completed an average estimate for us.

3.5.2. ImposeSVD and z-scoREC

In the z-scoREC and ImposeSVD models, we used both binary and scalar
rating values. In MovieLens 10M dataset, we selected the users who rated between
20 and 500 items, and items that were rated by between 20 and 500 users. In the
Netflix dataset, we selected the users who rated between 10 and 500 items and items,
which were rated by between 5 and 250 users. Due to its large size, in the R2-Yahoo!
Music dataset, 10% of the ratings were taken from the first CSV file and 5-star
ratings were converted to binary one while others were converted to zero. We
selected the users who listened to at least 10 and at most 200 songs and selected the
songs, which were listened to by 20 to 200 users. Implicit ratings taken from the BX
dataset included the users who had at least 10 purchases and books that were bought
by at least 10 users. In the Pinterest dataset, we transposed the dataset from a
perspective of board recommendations for images to provide meta-information of
boards for the HybridSVD method. As a result, we selected the images that were
pinned at least in 10 boards and boards that had at least 10 images. Attributes of the

used datasets are given in Table 3.3.
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Table 3.3. Sampled Datasets for ImposeSVD and z-scoREC

SAMPLED SUBSETS FOR ImposeSVD AND z-scoREC
Dataset Domain #User #ltem  #Ratings Sparsity Density
MovieLens 1M Movie 6040 3952 1000209 95.809 4.191
MovieLens 10M Movie 4101 2931 144453 98.798 1.202
Netflix Movie 7249 5548 131268 99.673 0.327
R2 -Yahoo! Music Music 7456 5047 182426 99.515 0.485
BookCrossing Book 2617 3871 87849 99.132 0.868
Pinterest Image Image 3862 4996 85805 99.555 0.445

We adopt the holdout method for splitting raw datasets to evaluate the
algorithms. First, we created the out-of-sample that we called a probe set for each
dataset. Then, we randomly selected 1.4% of the ratings in the raw datasets and
removed this ‘probe set’ from the raw datasets. We called raw datasets ‘training set’
after removing ‘probe set’ out of it. From these probe sets; we selected random users
and their ratings that met the criteria according to the scenarios that we explained in
the experiments. These selected users and their ratings in the ‘probe set’ are called
‘test set’. Because of the random selections in ‘probe set’, we created at least ten
repeated holdout evaluations for ‘training set” and ‘test set’ to evaluate the majority
of the dataset. In this way, results for different users and items in each experiment

produced an average estimate for us.
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4. RESULTS AND DISCUSSION

4.1. AcoRec Evaluation Results

To evaluate the performance of our meta-heuristic algorithm, we evaluated
our experiments in two scenarios. The first scenario is built to see how accurate our
algorithm is in assessing the recommendations for cold-start users, and the second is
to measure the long-tail item diversity in recommendations.

We show the best percentage value for the Coverage value related to the best
nDCG parameters for each algorithm. We considered it a fairer way of evaluating
the diversity of items on that list.

4.1.1. Selected Benchmark Algorithms for AcoRec and Parameter Tunings
For the benchmark tests of AcoRec, we used the three item-based similarity
models as input of our approach which are Gram-matrix, Cosine Similarity, and

Jaccard Similarity.

Base-Gram, Base-Jaccard, Base-Cosine: The item-based baseline models
are estimated by Eq.(3.17), Eq.(3.18), and Eq.(3.19).

TARS: This is a state-of-the-art ACO model in recommender systems. It
offers a user-based model that creates a trust-based user relationship graph, detects
similar users, and makes a rating estimation (Bedi & Sharma, 2012).

RP3B: A random walk model that recommends based on the user-item graph
with extending diversification that eliminates tendency on popular items (Paudel
et.al., 2016).

RecWalkPR, RecWalkX: Random-walk-based methods to capture new rich
network interactions for top-N recommendation lists (Nikolakopoulos & Karypis,
2019).

SLIM: A well-known item-based CF method building a sparse coefficient
item model Li-norm and Lo-norm on the rating matrix (Ning & Karypis, 2011).
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EASER: A robust linear model that shows the closed-form solution of Ridge
Regression in a manner of vanilla auto-encoders (Steck, 2019).

UCF: Resnick's user-based CF approach. We used Pearson Similarity for
obtaining user similarities (Resnick et.al., 2004).

Random: The baseline method that we evaluate in benchmarks with filling
empty cells in the user-item matrix with random values between (0,1).

Popular: A baseline algorithm that evaluates items according to their usage

frequency.

Parameter Tunings of Algorithms: TARS method is evaluated between [10-
250] values in 10 steps for the (k) user neighbor size and confidence values between
[0,1] range with 0.1 steps. RP3p algorithms are tested between [0,2] beta and alpha
(B,a) values with 0.05 steps. SLIM algorithm is tested alpha with {0.01, 0.05, 0.1,
0.5, 2, 5} values and beta with { 1e-4, 1e-3, 5e-3, 5e-2, 0.1, 0.2, 0.5, 1.0} values. To
execute SLIM, we took the standard Elastic-Net implementation provided by the sci-
kit learn package for Python. EASER method is evaluated between [10-100] values
in 10 steps and [500-20000] values in 500 steps for the () value. For RecWalk™® and
RecWalk* models, we evaluated both Cosine and SLIM as input models like in the
original paper and chose the best model for every benchmark. Our AcoRec method
is evaluated between [1...250] values for ant size (archive-size) and [1...100] values
for iteration count. Due to the random choices, each experiment for AcoRec is
repeated 10 times, results are averaged and the best parameter results are chosen
while creating transition probabilities during iterations. In all scenarios, we
accomplished Grid-Search to find the best parameters working together in each
algorithm. In the Section 4.1, we have shown the best results obtained by the best
parameters for each algorithm.
4.1.2. Cold-start user scenario

Cold-start users have fewer ratings on the system, so it is more difficult to

give quality recommendations to them (Son, 2012; Bobadilla et.al., 2016). To
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evaluate our algorithm for cold-start users, we obtained heat or warm users as
candidate users from the probe set who was also in the training set. We formed them
as cold-start users by decreasing their rating counts in the training set and we selected
randomly 100 users from the probe set who had at least one full rating in the probe
set and at least twenty ratings in the training set. In the evaluation process, some
studies put three items in the training set to define cold-start users (Son, 2012), some
studies received 5% of the user's rates (Nikolakopoulos et.al., 2019), and some other
studies tested both in numbers ranging from (1...20) or used percentage rates (Ahn,
2016). For a harder challenge, we kept random ratings that were between 5 and 10
of the particular users in the training set and other ratings of these users were
removed from the training set. Consequently, this process transformed candidate
users into cold-start users, represented by a minimum of 5 and a maximum of 10
random ratings in the training set. Just like a real scenario, the random ratings of

these users could be lower ratings or higher ratings in different distributions.
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Table 4.1. Comparisons of the algorithms in a cold-start user scenario

MovieLens 1M Netflix Yahoo! R-2
@10 HR nDC Cov. | HR nDC Cov. HR nDC Cov.
G G G
Popular 0.05 0.025 036 | 0.0 0.037 050 | 0.00 0.001 0.21
7 78 2
Random 0.00 0.001 2512 | 0.0 0.005 31.0| 0.00 0.000 20.6
3 10 5 0 1
Base®ram 0.08 0.039 1.00 | 0.1 0.048 0.87 | 0.07 0.036 10.8
0 01 3 5
BasgCosine 0.09 0.042 430 | 0.1 0.053 398 | 0.07 0.035 14.2
2 07 1 5
BasgJaccard 0.08 0.039 6.34 | 0.1 0.054 6.23| 0.07 0.033 14.2
6 08 3 5
UCFPearson 0.10 0.044 436 | 0.1 0.060 3.28| 0.09 0.040 12.7
0 27 0 7
TARS 0.09 0.047 3.88| 0.1 0.065 358 | 0.08 0.037 11.6
9 32 1 9
RecWalkK 0.10 0.044 8.62 | 0.1 0.065 3.54 | 0.08 0.043 12.5
0 36 9 6
RecWalkPR 0.09 0.044 8.75| 0.1 0.061 367 | 0.09 0.044 136
4 29 2 8
SLIM 0.10 0.044 8.62 | 0.1 0.065 354 | 0.08 0.043 12.5
0 36 9 6
EASER 0.09 0.045 10.09 | 0.1 0.065 2.81 | 0.09 0.039 14.5
9 38 0 6
RP3# 0.10 0.049 3.60 | 0.1 0.067 6.36 | 0.08 0.042 14.1
7 45 7 7
AcoRec®ram 0.11 0.054 10.37 | 0.1 0.066 11.8 | 0.09 0.048 16.1
8 43 7 7 8
AcoRecCosine 0.12 0.057 831 | 0.1 0.076 8.76 | 0.08 0.039 15.5
1 62 0 2
AcoRec’acear 0.10 0.047 10.32 | 0.1 0.062 9.23| 0.07 0.034 15.6
d 4 29 3 4

Experimental results based on the HR, nDCG, and Coverage metrics are
summarized in Table 4.1. When we evaluated AcoRec in the cold-start user scenario;
we observed that our AcoRec outperformed most other algorithms in all datasets.

In addition to building up the quality list, we observed that AcoRec
implementations outperformed all other algorithms in the Coverage metric, which
measures the diversification of the items on the list. The Baseline Method on which
we base the AcoRec algorithm provided an improvement in Gram Matrix and nDCG

measurement in all datasets. As stated by Dacrema et al. (2019), an algorithm in
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which parameters are tuned well can outperform many deep learning algorithms. Our
study confirms this argument as we fairly evaluated algorithms and obtained
successful results in different scenarios.

While the similarity matrices we use as inputs fail against other algorithms
when used as predictors alone, our model is successful in all models when it was
integrated with ACO.

Another observation is that although the Coverage percentages of the
Random algorithm are on the top, the HR and NDCG values are close to zero. In
contrast to this situation, the most notable feature of our algorithm is that not only
the Coverage percentage is high in the lists recommended to users but also the quality
of the lists is also high.

We also observe that whereas the Cosine item-similarity model is more
successful in MovieLens and Netflix datasets, the Gram matrix is more successful in
terms of list diversity in cold-start recommendations. The Yahoo dataset is a sparser
dataset than the other experimental sets used in this study, so the diversity in the lists
shown to the users in this dataset is greater in all algorithms. The results of the
analysis revealed that the Gram matrix is quite successful in the Yahoo dataset, too.
Moreover, we observed that the RP3? algorithm is a very successful algorithm with
correct parameter tuning.

AcoRec takes an item-based similarity model as input. If we compare our
three AcoRec model results with their own input item-based similarity model results
(Table 4.1), we estimated compared percentage results for each metric. Values on
Table 4.2 show the improvement percentage of each AcoRec model on its base item-
similarity model. The results show that our AcoRec models produce significantly
improve their base input models. In particular, the improvement in Gram-matrix and
Jaccard similarity models is better than the improvement in the Cosine similarity

model.

73



4. RESULTS AND DISCUSSION Hakan YILMAZER

Table 4.2. Comparisons of AcoRec with its base algorithms in a cold-start user
scenario
MovieLens 1M Netflix Yahoo! R-2
@10 HR nDCG Cov. HR nDCG Cov. HR nDCG Cov.

AcoRe 293 27.8 90.3 28.9 27.2 927 25.1 25.3 28.2
Cc
Gram
AcoRe 18.9 19.7 365 16.2 12.9 325 1.0 2.8 2.7
c
Cosine
AcoRe 23.8 26.2 48.2 34.0 30.9 546 10.7 9.4 8.1

Cc
Jaccard

4.1.3. Long-tail items scenario

Popular items are familiar to users, and thus, recommending these items
might be boring for users (Anderson, 2006). Therefore, recommending unpopular
items has always been more attractive. Traditional CF algorithms dealing with
relations between popular items or popular users overshadow diverse relationships.
Considering that the quality of models depends on the diversity of recommendations
they offer, these CF methods might be unable to generate a diverse range of
suggestions in the datasets especially when the data is inadequate (Yin et.al., 2006).
The diversity can be achieved when some unpopular items are recommended to the
users. Based on these arguments, we also evaluated the reaction of our algorithms
for long-tail item recommendations. To obtain an experiment environment suitable
for the long-tail scenario, we adopted the method in (Cremonesi et.al., 2010). As
observed by the authors in the study (Cremonesi et.al., 2010), the most popular 1.7%
items represent 33% of the ratings included in the Netflix dataset and they called
these 1.7% items as short-head items while the remaining items are called long-tail
items. Following this evaluation method (Cremonesi et.al., 2010), we sorted the
items in the dataset according to their popularity to evaluate the existence of long-
tail items in the recommendation lists. In doing so, we determined the items’
popularity by their rating frequency and sorted them in descending order by the
number of ratings they had. On the sorted item list according to their frequency, from
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top to bottom, we marked the items as ‘short-head’ items until the sum of the item
frequencies equal to or higher than the 33% of the total ratings and marked the
remaining as ‘long-tail’ items. In the probe set, we kept ‘long-tail’ items and
removed the others. We created a ‘test set” out of the probe set by random selection
of 250 users who gave at least one full rating to ‘long-tail’ items. As a result, we
randomly selected users with unpopular tastes for each repeated holdout evaluation.

According to the results presented in Table 4.3., we observed that our
algorithm outperforms all algorithms in all datasets. Because of the creation of a
long-tail scenario, the Popular baseline algorithm validates our dataset as expected,
counts zero results, and fails against the Random algorithm. The performance
measure values of our algorithm against other algorithms are better in the long-tail
scenario than in the cold-start scenario. But our algorithm resulted in a higher

difference and percentage in outperforming all algorithms in this scenario.
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Table 4.3. Comparisons of the algorithms in long-tail item recommendation scenario

MovieLens 1M Netflix Yahoo! R-2
@10 HR nDC Cov. | HR nDC Cov. HR nDC Cov.
G G G
Popular 0.00 0.000 0.00| 0.0 0.000 0.00| 0.00 0.000 o0.00
0 00 0 0
Random 0.00 0.002 5122 | 0.0 0.000 606 /| 0.00 0.002 358
4 01 6 4 9
Base®ram 0.00 0.000 0.00 | 0.0 0.000 167 | 0.05 0.024 157
0 00 5 1
BasgCosine 0.00 0.003 429 | 0.0 0.008 560 | 0.13 0.062 244
9 14 0 7
BasgJaccard 0.01 0.008 6.33 | 0.0 0.015 7.27 | 0.14 0.068 24.8
6 30 3 4
UCFPearson 0.03 0.018 1494 | 0.0 0.016 149 | 0.11 0.052 285
8 37 9 2 3
TARS 0.02 0.013 10.77 | 0.0 0.015 8.00| 0.09 0.046 24.9
9 32 7 5
RecWalkK 0.07 0.032 13.29 | 0.0 0.041 116 | 0.13 0.063 26.3
0 86 2 8 2
RecWalkPR 0.06 0.030 1290 | 0.0 0.037 11.1| 0.13 0.063 255
7 78 3 6 9
SLIM 0.07 0.033 1341 | 0.0 0.043 11.1 | 0.13 0.061 27.0
1 89 4 3 4
EASER 0.06 0.028 13.89 | 0.0 0.045 119 | 0.12 0.056 30.1
4 92 6 4 2
RP3# 0.11 0.053 16.79 | 0.1 0.063 27.3 | 0.19 0.094 279
5 32 6 5 4
AcoRecCram 0.14 0.068 2319 | 0.1 0.095 37.1| 019 0.095 319
5 95 2 8 2
AcoRecCosine 0.16 0.075 21.73 | 0.1 0.089 206 | 0.17 0.085 31.6
0 84 6 7 6
AcoRec’acear 0.17 0.083 2545 | 0.1 0.090 17.3| 0.16 0.080 29.0
d 3 84 9 4 7

As stated before AcoRec takes an item-based similarity model as input. If
we compare our three AcoRec model results with their own input item-based
similarity model results (Table 4.3), we estimated compared percentage results for
each metric. Values on Table 4.4 show the improvement percentage of each AcoRec
model on its base item-similarity model. The results show that our AcoRec models
produce significantly improve their base input models in the long-tail scenario also.
The improvements here are better than the cold-start users' results, showing that the

algorithm is particularly successful in highlighting different products.
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Table 4. 4 Comparisons of AcoRec with its base input algorithms in a long-tail item

scenario
MovielLens 1M Netflix Yahoo! R-2
@10 HR nDCG Cov. HR nDCG Cov HR nDCG Cov.
AcoRec 100.0 100.0 100.0 99. 99.9 955 72.4 745 50.1
Gram 9
AcoRec 91.0 90.8 75.1 83. 83.2 58.2 12.6 14.8 145
Cosine 9
AcoRec 945 95.7 80.3 92. 91.2 729 26.5 275 234
Jaccard 1

4.1.4. Effect of the ant size & iteration count

The number of iterations is an important parameter in ACO algorithms, but
when number of iterations is increased in ACO algorithms, the algorithm is usually
slow. Figures 4.1 and 4.2 show the heatmaps of our algorithms showing the
relationship between the number of ants and the number of iterations in different
input models and different scenarios. In Figures 4.1 and 4.2 the nDCG@10 was used
as the quality measurement metric. The horizontal x-axis shows the number of
iterations, and the vertical y-axis shows the number of ants. One of the outstanding
features of our study is that it has fast convergence and that the cases of stagnation
are lowly due to the structure of the algorithm. While examining the effect of the
number of iterations in our experiments, we observed that it reached a high success
value quickly and after this point, the success of the algorithm did not change with

the increase in the number of iterations.
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Figure 4.1. In the cold-start user scenario, the effect of the ant-size and iteration count
is evaluated with the nDCG metric

In our experiments to investigate the effect of the number of ants on the
achievement of the algorithm, we found out that the number of ants had a better
effect than the iteration on the success of the algorithm. Regarding the effect of
Gaussian Distribution at the time of training, we discovered an equal distribution in

all localities. As the focus space tightened throughout the iterations, the ants came
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out to meet at the same distribution position. At this point, when the variance
decreased below a specified threshold rate, our algorithm completed its training.
Figure 4.1 and 4.2 indicates the progress of the algorithm conferring to the increase
in the number of ants.
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Figure 4.2 In the long-tail item scenario, the effect of the ant-size and iteration count
is evaluated with the nDCG metric
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4.1.5. Execution time of AcoRec

In this experiment, we evaluated the computational performance of our
method in a hyperthreading test environment. The experiments were performed on
the TUBITAK ULAKBIM, High Performance and Grid Computing Center
(TRUBA resources). TUBITAK ULAKBIM High Performance and Grid
Computing Center is a national center providing high-performance computing and
data storage for all research institutions and researchers in Turkey. TUBITAK
ULAKBIM High Performance and Grid Computing Center, which started its
operations in 2003, is included in TRUBA. Today, TRUBA serves our researchers
with ~ 17,500 processor cores, 80 GPUs, and a 4PByte Luster distributed file system.
We implemented AcoRec in GNU Octave (GNU Octave, 2022) and used a parallel
package that is part of the Octave Forge project. We evaluated the same 100 users in
every experiment and made multi-threading tests. The results are given in Figure 4.3
with execution time of core size. As you can see in the experiment results, AcoRec
computational time decreases with the parallelable architecture. This is one of the
main advantages of AcoRec against the other ACO-based RS implementations.

AcoRec uses low-rank vectors and made personalized predictions for every user.

MovieLens 1M - (Gram, Cold-start)

100

(o]
o

Execution Time (ms)
(=)}
o

Y
o

20
0 20 40 60 80 100 120
Core

Figure 4.3. In the cold-start user scenario the execution time of our algorithm under
different cores
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4.2. z-scoREC and ImposeSVD evaluation and results

To measure the performance of our algorithms, we evaluated our
experiments in three different scenarios. The first scenario was set to find out how
accurate our algorithms were when assessing the recommendations for cold-start
users, the second scenario was to assess the aspect of recommendations when the
recommender system was fresh, and the third scenario was set to measure the long-

tail item diversity in recommendations.

4.2.1. Selected Benchmark Algorithms for z-scoREC, ImposeSVD and
Parameter Tunings

We compared ImposeSVD and z-scoREC against the three similar SVD-
based top-N recommendation algorithms including PureSVD (Cremonesi et.al.
2010), EigenREC (Nikolakopoulos et.al., 2017; Nikolakopoulos et.al., 2019), and
HybridSVD (Frolov & Oseledets, 2019), which were explained in the previous
sections in detail. In addition to these, we compared our algorithm with two popular
item-based methods (i.e. item k-NN and Item-based collaborative filtering), and two
other baseline methods (i.e., random and popular), which are explained below:

ItemKNN: The item-based model developed by Deshpande and Karypis
(2004) is utilized as a benchmark model by many studies in the literature. In their
original study, Deshpande et al. estimated item similarities via Cosine Similarity or
Probability Selection. In the second step, they selected k similar items only by
ignoring the other items. With this simplified item similarity matrix, they estimated
the prediction matrix by equitation similar to Eqg. (3.20).

Item-Based Collaborative Filtering (ICF): Sarwar et al.’s (2001) item-
based model is based on calculating the correlation between items and estimating
scores with item-based prediction rules. In this method similar to the ltemKNN, a
similarity between items is calculated by Cosine-based, Correlation-based, or

Adjusted Cosine Similarity. Then the model tries to capture items that are similar to
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users’ liked items with prediction formulas Sarwar et.al. (2001). We preferred to use
Adjusted Cosine Similarity for its efficiency in calculating better results.

Random: In addition to the item-based models, we also compared our
algorithm with two baseline methods one of which is Random. With the help of the
Random method, we evaluated the benchmarks by filling empty cells in the user-
item matrix with random values between [0,1].

Popular: The second baseline method with which we compared our
algorithm is Popular, which evaluates the items according to their frequency of use.

Parameter Tunings of Algorithms: All SVD-based algorithms were tested
between [1-2000] factors (f) with 10 steps. EigenREC and HybridSVD were scaled
with (d) parameters in the [-2,2] range with 0.05 steps. ItemKNN and ICF methods
were evaluated between [10-250] values in 10 steps for the (k) item neighbor size.
We evaluated our algorithms for lambda A shrinkage values between [-1,1] range
with 0.05 steps and tested all algorithms on each data set with the combinations of
their parameters. Because of the random choices while creating ‘probe sets’, ‘test
sets’, and ‘random, 1001 items’, we seeded random choices with the same seed
number at the same stages for every method so that they were fairly evaluated in

every repeated holdout evaluation.

In all scenarios, we accomplished Grid-Search to find the best parameters
working together in each algorithm. In the Results section, we have shown the best
results obtained by the best parameters for each algorithm. We presented the Grid-
Search parameter tuning results in the Appendix B.

Similar to the implementations on SVD-based models, we also applied a
method to determine the best f values in the HybridSVD (Frolov & Oseledets, 2019).
In SVD-based models, in each experiment for an algorithm decomposition was
calculated once and fmax Value as 2000 was obtained for the matrix rank size of latent
factors. Then we truncated the rank of latent factors with the evaluation steps

between [1-2000] and evaluated all f values in each experiment. After all repeated
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holdout evaluations, we averaged the results of all f values and selected the best f
value result for each metric. This method reduced the search cost for SVD-based
models, especially in Grid-Search (Frolov & Oseledets, 2019)

4.2.2. Cold-start user scenario

Cold-start users have fewer ratings on the system, so it is more difficult to
give quality recommendations to them (Son, 2012; Bobadilla et.al., 2016). To
evaluate our algorithm for cold-start users, we obtained heat or warm users as
candidate users from the probe set who was also in the training set. We formed them
as cold-start users by decreasing their rating counts in the training set and we selected
randomly 100 users from the probe set who had at least one full rating in the probe
set and at least twenty ratings in the training set. In the evaluation process, some
studies put three items in the training set to define cold-start users (Son, 2012), some
studies received 5% of the user's rates (Nikolakopoulos et.al., 2019), and some other
studies tested both in numbers ranging from (1...20) or used percentage rates (Ahn,
2016). For a harder challenge, we kept random ratings that were between 5 and 10
of the particular users in the training set and other ratings of these users were
removed from the training set. Consequently, this process transformed candidate
users into cold-start users, represented by a minimum of 5 and a maximum of 10
random ratings in the training set. Just like a real scenario, the random ratings of
these users could be lower ratings or higher ratings in different distributions.

Experimental results that are based on nDCG are shown in Figure 4.4. When
we evaluated our algorithms in the cold-start user scenario; we observed that
ImposeSVD outperformed other algorithms in all datasets and in all top-N variations.
ImposeSVD is based on enhancing the PureSVD under sparse datasets and we
observed that our algorithm outperformed the PureSVD in all datasets. For the N=10
value in MovieLens 1M dataset, results are better than the PureSVD with a
percentage of 11.70%, 9.32% in BX, 11.03% in Pinterest Image, 13.74% in R2 —
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Yahoo! Music, 14.55% in Netflix and 10.23% in MovieLens 10M. The success of
our algorithm in binary datasets also shows that negating the rates in R works well.

We also noticed a successful result in our z-scoREC method. Despite its
simplicity, our novel method gave successful results compared to the similar
ItemKNN and ICF algorithms. In Netflix and MovieLens 10M datasets, the results
were better than the PureSVD. In R2 — Yahoo! Music and MovieLens 1M datasets,
our method also outperformed all SVD-based methods. Considering that little N
values’ success is important for small screen sizes, another important aspect of our
algorithm was its success in all lengths of lists.

From the f values in Appendix B.1la and B.1b tables, we can explore that
SVD-based methods can be most suitable at low f values in the cold-start scenario.
From here, we can deduce that the initial values in latent factors bring popular items
to the forefront, and the success of cold-start algorithms depends on the number of
popular products on their recommendation list. Since SVD-based applications thrive
with low dimensional f values in cold-start user scenarios, they could be preferred in
the huge recommender systems. Although our algorithm was more successful than
other algorithms, it was generally close to each other and was successful at low f
values. Especially in sparse datasets, it gave more successful results with EigenREC

at close f values to it.
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Cold-start User Recommendations
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Figure 4.4 In the cold-start user scenario, the performance of the algorithms with

different @N values for all datasets was evaluated with the nDCG metric
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4.2.3. Cold-start system scenario

In the new systems, when users and items have inadequate ratings causing
the systems have sparse data and lower density, estimating new recommendations
could be hard for them. We evaluated our algorithm for new systems and created a
sparsity scenario similar to denotation in EigenREC (Nikolakopoulos et.al., 2017;
Nikolakopoulos et.al., 2019). We called every raw dataset the ‘final stage’ of a
system, and randomly selected 66% of the ratings at the final stage, and called these
sampled ratings as the ‘previous stage’. Later, we randomly sampled 66% of ratings
at the ‘previous stage’ and called this subset as the ‘initial stage’. In our scenario
‘initial stage’ is the subset of the other stages and a cold-start system with lower
ratings. We created the ‘probe set’ out of the ‘initial stage’ and also removed the
probe set from other stages. To create ‘test set’ out of ‘probe set’, we selected the
users who had rated less than 100 items and the items that were selected by at most
100 users in the ‘initial stage’. We aimed to observe users and items with a few
ratings and to follow their evolutions as the sparsity decreased. We evaluated all
stages with the same test set.

Figure 4.5 reports the nDCG results in different sparsity for all benchmark
methods for six datasets. In general, the early point where SVD-based and Item-
based methods appeared to produce better results on the same test set as the sparsity
value declined as expected. On the other hand, Popularity and Random algorithms
continued almost at the same values at all sparsity levels and these results show that
our scenario is an acceptable evaluation method. As a result, when we performed
many remarks on the results via Figure 4.5, we found out that the ImposeSVD was
more rewarding in all datasets and all sparsity levels than other compared algorithms.
The ImposeSVD outperformed other algorithms in all results except for MovieLens
10M’s and R2 — Yahoo! Music’s final stages. After the rewarding results obtained
in the cold-start scenario, the achievement of the z-scoREC method here was still

impressive due to its purity and simplicity. We can conclude that the z-scoREC
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method had better performances than the PureSVD in all experiments except for the
MovieLens 10M dataset.

The most important result in Figure 4.5 is the success of the first stage
values. Our algorithm outperforms all benchmark methods and the differences from
other algorithms are bigger than in other stages. In the ‘initial stage’, z-SCOREC is
the second after the ImposeSVD in all datasets except for R2 — Yahoo! Music and
Pinterest Image datasets. The results show that both our algorithms are more

successful on sparse datasets.

88



4. RESULTS AND DISCUSSION Hakan YILMAZER

Cold-Start System Recommendations at @N=10
BookCrossing
0.1
0.08
3 0.06
2 0.04
0.02
0
43% 66% 100%
Pinterest Image
0.2
ks 0.15
R 01
< 0.05
0
43% 66% 100%
R2-Yahoo! Music
0.2
ks 0.15
R o1
< 0.05
0
43% 66% 100%
Netflix
0.4
@ 0.3
Qo2
Z 01
0
43% 66% 100%
MovieLens 10M
o.osg
ko 0.25
B 001'§
Z 0.1
0.05
0
43% 66% 100%
MovieLens 1M
0.2
ks 0.15
R o1
< 0.05
0
43% 66% 100%
Sparsity

Random Popular ICF temkNN_ [ PuresvD [l HybridsvD [ EigerREC [ z-scorec [l ImposesvD
Figure 4.5 In the cold-start system's scenario, the performance of the algorithms in

the @N=10 value for all datasets was evaluated with the nDCG metric

4.2.4. Long-tail items scenario
Popular items are familiar to users, and thus, recommending these items may
be boring for users (Anderson, 2006). Therefore, recommending unpopular items

has always been more attractive. Traditional CF algorithms dealing with relations
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between popular items or popular users overshadow diverse relationships.
Considering that the quality of models depends on the diversity of recommendations
they offer, these CF methods might be unable to generate a diverse range of
suggestions in the datasets especially when the data is inadequate (Yin et.al., 2006).
The diversity can be achieved when some unpopular items are recommended to the
users. Based on these arguments, we also evaluated the reaction of our algorithms
for long-tail items recommendations. To obtain an experiment environment suitable
for the long-tail scenario, we adopted the method in (Cremonesi et.al., 2010). As
observed by the authors in the study (Cremonesi et.al., 2010), the most popular 1.7%
items represent 33% of the ratings included in the Netflix dataset and they called
these 1.7% items as short-head items while the remaining items are called long-tail
items. Following this method (Cremonesi et.al., 2010), we sorted the items in the
dataset according to their popularity in order to evaluate the existence of long-tail
items in the recommendation lists. In doing so, we determined the items’ popularity
by their rating frequency and sorted them in descending order by the number of
ratings they had. On the sorted item list according to their frequency, from top to
bottom, we marked the items as ‘short-head’ items until the sum of the item
frequencies equal to or higher than the 33% of the total ratings and marked the
remaining as ‘long-tail’ items. In the probe set, we kept ‘long-tail’ items and
removed the others. We created a ‘test set’ out of the probe set by random selection
of 100 users who gave at least one full rating to ‘long-tail’ items. As a result, we
randomly selected users with unpopular tastes for each repeated holdout evaluation.

According to the results presented in Figure 4.6, we observed that our
algorithms outperformed the PureSVD in all datasets in a long-tail scenario. In the
long-tail scenario, we aimed to evaluate the distribution of unpopular items in the
recommendation lists, and as expected, the Popular baseline algorithm failed on all
datasets, validating the training and test sets we created for this scenario. In the long-
tail scenario, SVD-based algorithms achieved success and produced good results at

high f values. Particularly in BookCrossing, Netflix, and MovieLens datasets, our
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ImposeSVD algorithm outperformed other algorithms with a high contradict. In
contrast, nearest-neighbor-based algorithms failed to find long-tail items. Our basic
z-scoREC outperformed neighbor-based models with high precision and it produced
nearby results to the SVD-based models.

Although long-tail item recommendation is a difficult challenge especially
for SVD-based applications, as shown in (Cremonesi et.al., 2010) PureSVD can be
successful at high f values. When we analyze the tables in Appendix B.2a and B.2b,
our algorithm was successful at increasing f values, similar to PureSVD. In most
datasets, EigenREC and HybridSVD reached their maximums at a lower f value with
respect to the ImposeSVD, but ImposeSVD showed a significant difference in the
quality of recommendation list compared to other algorithms despite the
higher f value. Another interesting observation was that for some datasets, there is
no need for shrinkage on Gram-matrix in the recommendation of unpopular items,

and this process would be neglected in this scenario.
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Long-tail Item Recommendations
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Figure 4.6 In the long-tail items scenario, the performance of the algorithms with
different @N values for all datasets was evaluated with the nDCG metric

4.2.5. Effect of the lambda parameter

We evaluated our algorithms for lambda (L) values between [-1,1] ranges
with 0.05 steps in all experiments to analyze its effect in the Gram-matrix. We chose
two baseline algorithms the PureSVD and the ItemKNN to compare our algorithms

with because the PureSVD is the basic form of our algorithm and it has a
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nonparametric form, and the ItemKNN is very similar to our z-scoREC method. We
analyzed in which ranges of lambda parameters our algorithm outperformed the
PureSVD and the ItemKNN. The results of the PureSVD and the ItemKNN were
stable and we took the best results of each algorithm in Fig. 4.7, Fig. 4.8, and Fig.
4.9. In addition, we compared the z-scoREC algorithm with the ImposeSVD
algorithm with the same parametric values to see their performance over each other.

We observed the success of our algorithms at different parameter values for
the cold-start scenario in Fig. 4.7, for the long-tail item scenario in Fig. 4.8, and the
cold-start systems in Fig. 4.9. Black lines represent the ImposeSVD algorithm; pink
lines represent the z-scoREC algorithm. We chose the green dotted lines for the
PureSVD and the blue dotted lines for the ItemKNN. The black and pink vertical
dashed lines show the lambda value corresponding to the best HR value of the related
algorithm. One of the noticeable observations in these results was that in the cold-
start user scenario the best HR value of (A) for each dataset differed from zero, which
shows that the shifting was successful for the cold-start scenario. When the lambda
value was zero, the success of both algorithms dropped dramatically. When
comparing our algorithms with each other, we first observed that the ImposeSVD
algorithm outperformed the z-scoREC algorithm in all parameter ranges. Our second
observation was that both algorithms gave similar responses at the same parameter
values. In addition, we found out that the best lambda values of our algorithms were
close to each other in all data sets, and these values were especially small positive
values, closer to zero in the [-1,1] ranges. In a conclusion, we inferred that the
shifting process worked since the best HR points in both of our algorithms were
different from zero. In the z-scoREC lines, A=0 values showed the result of the Gram-
matrix where we could see that these points were non-shifted values. Success at non-
zero lambda parameters demonstrated the ability of our algorithm to capture new and
strong relationships in the weight matrix. The ImposeSVD was revealed as the best

algorithm for the best HR points in all datasets. The z-scoREC algorithm, on the
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other hand, was more successful than the PureSVD and the ItemKNN in all datasets
except for the Pinterest Image.

Cold-start users scenario, effect of parameter
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Figure 4.7. In a cold-start user scenario the effect of the lambda (A) parameter is
evaluated with the HR metric
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Long-tail items scenario, effect of parameter
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Figure 4.8. In a long-tail items scenario the effect of the lambda () parameter is
evaluated with the HR metric

The results of the experiments on the long-tail scenario (in Fig. 4.8) revealed
that our algorithms outperformed all algorithms when A is at zero or very close to
zero in the long-tail item scenario in Fig. 4.8 while they were not successful when

the A=0 value in the cold-start user scenario as in Fig. 4.7. Therefore, we can
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conclude that the shifting process had little effect on the long-tail item
recommendations. However, the results indicated that the ImposeSVD was more
successful in the long-tail items scenario compared to the results in the cold-start
users’ scenario. Although the developers of the PureSVD alleged that the PureSVD
gave successful outcomes for the long-tail items at high-rank values, we found out
that our ImposeSVD algorithm gave more successful results than PureSVD without
shifting. In addition, the z-scoREC algorithm performed better than PureSVD in all
datasets except for MovieLens datasets. In all datasets, both of our algorithms
outperformed the ItemKNN algorithm. We observed successful results compared to
the other algorithms at close values to zero for A parameter in the z-SCOREC
algorithm. We can conclude that z-scoREC is successful without shifting in reducing
the variance in the rating matrix and converging score means to the zero for item
columns so that popular items reduce the pressure on other items. In this way,

unknown items can come to the fore.
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Cold-start systems scenario, effect of parameter
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Figure 4.9. In a cold-start system scenario, the effect of the lambda (L) parameter is
evaluated with the HR metric

In the cold-start system scenario, we took the ‘final stage' sampling results.
This stage of the dataset performed the general recommendations for warm users
who had rated less than 100 items and test items that were selected by at most 100

users. It was like a combination of cold-start user scenarios and long-tail item
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recommendation scenarios. These mixed-scenario situations were a challenging task
because lambda parameters behaved differently in two scenarios for our algorithms.
However, in this mixed-scenario, similar to the results of the other scenarios, the
ImposeSVD outperformed the PureSVD and the ItemKNN in all datasets as shown
in Fig. 4.9. The z-scoREC outperformed the ltemKNN and the PureSVD in all other
datasets although it was behind the PureSVD on the ML-10M dataset. Fig. 4.8 and
Fig. 4.9 show similar trends for the datasets. However, lambda values were revealed
to be significant because the results indicated that the best lambda values were the

ones slightly greater than zero.
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5. CONCLUSION

As is known, cold-start is one of the major problems in recommender
systems. In the literature, much research has been done on this problem. What makes
this problem important is that it has a relationship with the solution of many issues
in Recommender Systems. In particular, the varying screens and richness of the
interaction environments between users and products (Netflix, Spotify, Youtube,
Twitch, etc.) have also demonstrated many problems identical to the cold start.

This thesis proposed to develop models for the solution of cold-start
problems in various scenarios. Today's modern recommendation systems do not
work only through one algorithm. Depending on the case, they could change the
models or integrate different models. You may need to follow either a deterministic
or heuristic method to establish new links between the user and the products. In this
thesis, we have done 2 different studies, one deterministic and one heuristic, which
might be used in different scenarios.

Firstly, we studied the heuristic method ACO and developed a model that
gives variable recommendations to users at different times. We introduced a novel
approach on how to improve item-based models with AcoRec, which is a heuristic
model, and how to tune hyper-parameters with Ant Colony Optimization. By
studying parameter optimization in a continuous domain, we have performed on
expanding profit by exploring personalized parameters. First, we considered how to
improve a model based on the specification of producing diversified and expanded
recommendations to the users in their sessions, considering that common
deterministic systems are no longer enough in offering recommendations for multi-
line interfaces in varied domains. AcoRec remembers the heuristic approach of the
ACO model, which is a successful optimization algorithm in NP-Hard problems and
highlights different and neglected item recommendations.

We carried out the methods of magnifying item similarity models and how
to support new ties in cases where they are inadequate. In addition, we established a

model on how Ant Colony Optimization is implemented in recommendation systems
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over huge graph structures in a low-dimensional manner by considering user-based
micro dimensions. In this sense, parameter tuning times were minimized in our
implementation, which is a big issue in ACO algorithms. To intensify these
improvements, we evaluated our algorithm for the cold-start user problem and its
effectiveness to recommend unpopular items.

While carrying out our experiments, we measured the quality of the
recommendation lists through nDCG and R-Score, and the variety of items in the
recommendation lists with the help of Coverage metrics. When we investigated the
results, we noted that our study outperformed similar algorithms known in the
literature in all datasets and metrics used in this study. As a result, we concluded that
heuristic methods such as Ant Colony can offer rewarding results by clarifying
parameter controls. We can suggest such methods can handle a variety of on-site
domains.

In the second study, we focused on dimension reduction and enrichment of
the rating matrix. Firstly, we introduced two novel methods, namely z-scoREC and
ImposeSVD, which are more effective in cold-start user problems, cold-start system
recommendations, and long-tail item recommendations than the previously proposed
ICF, ItemKNN, and SVD-based methods. The results indicated that the ImposeSVD
method that we presented strengthened the obvious shortcomings of PureSVD by
keeping its straightforward structure and original purity in terms of processing time
and computational difficulty. Evaluations displayed that the ImposeSVD model
outperformed similar models on the common datasets in all experiment scenarios.

In addition to ImposeSVD methods, the other z-scoREC method we
presented performed remarkably effectively as a model in item-based
recommendations with cold-start users. Another significant finding of both studies
was that new relationships could be discovered between items without the need for
meta-information for the user and items. With the implementation of the z-scoREC
method as an item-similarity in the basic item model, we brought prosperous results.

According to these analyses, the following conclusions are drawn:
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1.  We observed that the problem causing the cold-start issue is the sparsity
of data and that the ImposeSVD and z-scoREC algorithms, which we
built on enriching the data matrix with virtual new connections to
reduce this sparsity, were successful in the experimental results.

2. We also observed that decreasing the data unavailability virtually is not
only successful in cold-start users’ scenario as well as it succeeds in
recommending cold-start systems and long-tail items scenarios.

3. We tested our studies in different domains (movie, music, social media)
and got flourishing results. Experiments exhibited that our models
could be applied to many areas commercially.

4. In both studies, we only used implicit data and did not need
demographic, personal, or track data about users, thus bypassing ethical
concerns.

5. Despite its simplicity, the z-scoREC algorithm surprised us with its
success. With its structure suitable for parallelization, it has shown
promise that it can be successful against state-of-art research in the
literature in huge data.

6. The AcoRec study has shown good results on how to add random items
to recommendations and still improve the quality of the
recommendation list. AcoRec showed how we can generate rich and
variational recommendations and improve the quality of these
recommendations when deterministic recommendation models are
outdated.

7. The parameter search in a continuous distribution in the AcoRec
algorithm can be used for the hyper-parameter tuning algorithms. For
example, the EASER method, which uses a single parameter, can be
tested with the model we developed and can offer user-specific lambda

parameters.
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In our future studies, we will focus on the enrichment of z-scoREC. It may
be considered to evaluate the z-scoREC algorithm with giant datasets due to its
simplicity, speed, and easy implementation. Secondly, the imposed values while
injecting the original data matrix could be enhanced and optimized. An algorithm
that detects and eliminates unsuccessful columns in the latent factors could be
investigated. In AcoRec, different item similarity matrices (Graph-based,

Regression-based, EASER) could be evaluated as future works.
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A PROOF OF LEMMA 1.
PROOF. Since R'R is the inner product between the same matrix R and also R'R is

symmetric.
For i=j,
- [R'R]; = is a diagonal element on the intersection of the ith column and jth
row.
- [R™R];j = number of ones in the product of ith column and jth row of R, which

is equal to the number of ones in the ith column.
- [RTe]j = is a diagonal element on the intersection of the ith column and jth
element of e.
- [RTe]j =number of ones in the product of ith column of the R and jth element
of e, which is equal to the number of ones in the ith column.
Therefore, the diagonal of the RTR matrix is the vertex degrees of the RTif it’s
a binary matrix.
REMARK Since RR is a co-citation matrix and also RRT is a co-author matrix, and
RRT is symmetric too. Therefore, the diagonal of the RRT matrix is the vertex degrees

of the R if it’s a binary matrix hence: Diag(Re") = Diag(RRT)

119



B BEST PARAMETERS AND BEST RESULTS FOR Z-SCOREC

AND IMPOSESVD EVALUATIONS FOR ALL DATASETS AND

SCENARIQOS
In our experimental evaluation, we applied Grid-Search to find the best

parameter values for each algorithm. We performed Grid-Search for each dataset

separately. In the below tables, you can find the best parameter values and their

associated nDCG results for each scenario when N=10.

Table B.1a Results for cold-start user scenario for MovieLens 1M, BookCrossing, and

Pinterest Image datasets

COLD-START USER SCENARIO

Random
Popular

ICF
ltemKNN

PureSVD

HybridSV
D

EigenREC

Zz-scoREC

ImposeSV
D

MovieLens 1M

BookCrossing

Pinterest Image

nDC nDC nDC
flk «a dA G flk « dA G flk « dA G
0.005 0.003 0.007
0.086 0.016 0.016
22
20 0.070 | O 0.030 | 10 0.066
10 16
0 0.101 | 60 0.036 | 0 0.081
29
8 0.104 | 5 0.040 | 93 0.091
0. 09 17 0. 0.7 13 0. 0.8
10 5 0 0.106 | 5 1 5 0.043 | 5 1 5 0.093
0.2 29 0.8 12 0.5
10 0 0.106 | 5 5 0.042 | 3 5 0.094
0.6 0.1 0.1
5 0.115 0 0.039 5 0.086
0.3 17 0.0 12 0.1
45 5 0.117 | 5 5 0.044 | 5 0 0.101
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Table B.1b Results for cold-start user scenario for R2-Yahoo! Music, MovieLens 10M,
and Netflix datasets

COLD-START USER SCENARIO
R2-Yahoo! Music MovieLens 10M Netflix
nDC nDC nDC
fk o« dIA G fk o dIA G fk o dIA G
Random 0.006 0.008 0.005
Popular 0.008 0.021 0.027
ICF 60 0.096 | 70 0.072 | 30 0.155
19 20 18
ItemKNN 1 5 0.109 | 0 0101 | 0 0.189
12
PureSVD | o5 0.100 | 54 0.120 | 5 0.188
HybridsV |11 09 03 0. 05 10 0. 03
D 5 9 5 0107|63 1 0 0130|5 1 5  0.206
. 11 0.4 0.5 13 0.3
SaenRECNEE 0 0105 |63 0 0128 |0 0  0.206
0.1 0.1 0.0
2-50ggEC 5 0111 0 0127 5 0205
ImposeSV | 15 0.2 10 0.0 14 0.0
D 5 o [EEEEN s 5 0133 |0 5 0217

Table B.2a Results for long-tail items scenario for MovieLens 1M, BookCrossing, and
Pinterest Image datasets

LONG-TAIL ITEMS SCENARIO
MovieLens 1M BookCrossing Pinterest Image
nDC nDC nDC
flk o dA G flk o dIN G flk o dA G
Random 0.007 0.004 0.005
Popular 0.000 0.000 0.000
ICF 10 0.006 | 10 0.054 | 10 0.107
ltemKNN | 20 0.041 | 90 0.054 | 60 0.128
20 57 62
PureSVD | 0217 | 5 0.052 | 5 0.124
HybridSV |18 0. 09 30 0. 25 09 00
D O 1 5 0222]/0 1 005 0061|0 9 0O 0135
. 22 1.3 22 ) 35 0.0
EigenREC | ¢ 0 02315 0.25 0.061 | 0 0 0135
0.0 0.0
2-SCOREC 5 0175 0.00 0.061 0 0149
ImposeSV | 22 0.0 72 70 0.0
D 0 0 02435 0.00 0.065 | 0 0  0.150
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Table B.2b Results for long-tail items scenario for R2-Yahoo! Music, MovieLens 10M,
and Netflix datasets

LONG-TAIL ITEMS SCENARIO

R2-Yahoo! Music MovieLens 10M Netflix

nDC nDC nDC

fik o dA G fik o dIA G fik o dIA G
0.00 0.00 0.00

Random 3 4 5
0.00 0.00 0.00

Popular 0 0 0
0.13 0.09 0.24

ICF 10 4 10 7 10 3
0.16 0.15 0.26

ItemKNN 1 99 1 50 9 210 4
120 0.17 | 50 0.24 0.28

PureSVD | 7 0 3 825 4
HybridSV 0. 00 020 |30 0 0.25 0. 0.30

D 27 1 0 0 O 1 035 6 400 1 050 1
. 00 020 |30 0.25 0.30

EigenREC | 5 0 0 0 035 6 425 015 3
0.0 0.19 0.23 0.29

2-SCOREC 0o 5 0.05 6 0.05 9
ImposeSV | 105 00 020 |65 ) 025 | 135 ) 0.31

D 0 0o 2 0 0.05 9 0 0.05 3

Table B.3a Results for sparsity final stage scenario for MovieLens 1M, BookCrossing,
and Pinterest Image datasets

SPARSITY %100

MovielLens 1M

BookCrossing

Pinterest Image

nDC nDC nDC

fik o dAN G fik o dIN G flk a dN G
0.00 0.00 0.00

Random 5 5 4
0.00 0.03 0.01

Popular > 1 4
0.00 0.05 0.10

ICF 10 2 10 7 10 4
0.00 |17 0.08 |23 0.13

ItemKNN 20 8 0 4 0 9
0.06 0.06 |27 0.13

PureSVD | ¢4 5 40 8 5 9
HybridSV 0. 014 |10 0. 05 007 09 04 014

D 90 5 005 6 o 1 5 8 70 9 5 8
. 105 014 |12 0.4 008 03 0.14

EigenREC | 135 1 5 5 0 70 5 7
- 0.17 0.2 008 00 0.14

2-SCOREC 001 1 0o 6 6 5
ImposeSV | 105 - 017 | 15 00 009 |15 0.0 0.15

D 0 001 4 0 5 0 0 3 2
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Table B.3b Results for sparsity final stage scenario for R2-Yahoo! Music, MovieLens
10M, and Netflix datasets

SPARSITY %100
R2-Yahoo! Music MovieLens 10M Netflix
nDC nDC nDC
fik o dIA G flk o dIA G flk o dIN G
Random 0.005 0.006 0.006
Popular 0.009 0.023 0.029
ICF 10 0.119 | 10 0.111 | 10 0.264
19 25 30
ItemkKNN 0178 | 0 0194 |0 0311
37 12 27
PureSVD | g 0.174 | 5 0.247 | 5 0.308
HybridSsV |40 0. 0.2 20 0. 05 22 0. 04
D o 1 5 0193|0 1 5 0257|5 1 0 0329
. 40 0.2 22 0.3 52 0.1
EigenREC | 0 019 |5 5 02615 5  0.338
0.0 0.0 0.0
2-SOERC 3 0184 4 0229 2 0337
ImposeSV | 37 0.0 17 0.0 67 0.0
D 5 6 0193 |5 5 02525 4 0347

Table B.4a Results for sparsity second stage scenario for MovieLens 1M,
BookCrossing, and Pinterest Image datasets

SPARSITY %66

MovieLens 1M BookCrossing Pinterest Image

flk «a d/A nDC | f/ a dA nDC |flk « d/A nDC

G k G G
Random 0.006 0.007 0.003
Popular 0.001 0.030 0.015
ICF 10 0.004 | 1 0.032 | 10 0.085
0
ItemKNN 40 0.004 | 7 0.047 | 20 0.112
0 0

PureSVvD 95 0.039 | 7 0.052 | 12 0.115

0 0 5
HybridSV 20 O. 0.00 0.081 |1 0. 0.8 0.053 |90 O. 0.5 0.122
D 0 5 0 1 5 1 5
EigenREC | 90 0.95 0.078 | 6 0.6 0.052 | 90 0.5 0.120

0 0 5 5
z-scoREC - 0.111 0.0 0.066 0.0 0.121

0.01 8 7

ImposeSV | 95 0.00 0.119 | 6 0.0 0.066 | 15 0.2 0.127
D 0 0 7 0 0
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Table B.4b Results for sparsity second stage scenario for R2-Yahoo! Music,
MovieLens 10M, and Netflix datasets
SPARSITY %66
R2-Yahoo! Music MovieLens 10M Netflix
nDC nDC nDC
flk a dA G flk a dA G filk a dIN G
Random 0.005 0.006 0.006
Popular 0.009 0.022 0.027
ICF 10 0.104 | 10 0.086 | 10 0.174
20 18
ItemKNN 1 9 0.140 | 0 0.143 | 0 0.219
52 12 22
PureSVD | g 0.124 | 5 0.170 | 5 0.220
HybridSV |27 0. 05 12 0. 06 22 0. 05
D 5 1 5 0.139 | 5 1 0 0.179 | 5 5 5 0.236
. 27 0.4 12 0.5 22 0.5
L "RECYE 5 0140 | 5 0 0180 |5 5  0.238
0.0 0.0 0.0
2-SOERC 5 0144 4 0171 6 0245
ImposeSV | 65 0.0 17 0.0 35 0.0
D 0 3 0.148 | 5 3 0.184 | 0 4 0.253

Table B.5a Results for sparsity initial stage scenario for MovielLens 1M, BookCrossing,
and Pinterest Image datasets

SPARSITY %33

Random
Popular
ICF

IltemKNN

PureSVD

HybridSV
D

EigenREC

Z-sScOREC

ImposeSV
D

Moviel ens 1M

BookCrossing

Pinterest Image

nDC nDC nDC
flk o d/A G flk «a dhn G flk «a dh G
0.006 0.005 0.004
0.001 0.029 0.014
10 0.007 | 10 0.018 | 30 0.063
22 25
10 0.005 | O 0.023 |0 0.083
110 12 10
0 0.026 |5 0.039 |0 0.093
0.9 0 0.7 10 O. 0.9
800 9 060 0.049 |10 1 5 0.040 | O 1 0 0.096
115 0.7 10 0.9
0 0.95 0.047 | 10 5 0.039 |0 0 0.095
- 0.0 0.0
0.01 0.073 8 0.040 9 0.093
120 - 0.0 0.1
0 0.01 0.082 | 75 9 0.047 | 90 5 0.102
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Table B.5b Results for sparsity initial stage scenario for R2-Yahoo! Music, MovieLens
10M, and Netflix datasets

SPARSITY %33
R2-Yahoo! Music MovieLens 10M Netflix
nDC nDC nDC
fik o dIA G fik o dIA G fik o dIA G
Random 0.005 0.006 0.006
Popular 0.009 0.020 0.025
ICF 10 0.073 | 10 0.064 | 10 0.105
18 19 13
ItemKNN 1 5 0.095 | 0 0.103 | 0 0.143
10
PureSVD | 0.086 | 60 0.120 | 80 0.147
HybridsV |12 0. 04 09 07 17 0. 05
D 5 1 0 010340 9 0 0127|5 1 5  0.156
' 12 0.2 0.4 17 0.5
SaenRECNEE 5 0102 |70 5 0126 |5 5  0.157
0.0 0.0 0.0
2-SOERC 9 0102 6  0.129 5 0170
ImposeSV | 22 0.0 5 0.1 22 0.0
D 5 2  BOHEE o 5 0137 |5 5  0.183
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C. ACO BASED RECOMMENDER SYSTEMS
Table C.1. Studies About Ant-Colony Based Recommender System

Research

Trust based recommender system using ant colony for trust
computation. (2012)

Abbreviation

TARS

Score Ranking Based; TOP_N@(1,2,5)

Metrics Recall, Precision, F1-Score

Method Merged Trust Based User Confidences and Pearson as trust values
between users. In ACO sense, nodes denoted users and edges are trust
values. Paper finds best neighbors for a user in ACO, and predict new
rating scores from these neighbors using Resnick's (1994) rating prediction
formula

Scenario Cold-start, Sparsity

Benchmarks UCF (Pearson, k=100) (Resnick, 1994)

Datasets Jester, MovieLens 100K

Evaluation Precision is increased by approximately 8% and 3% respectively using
TARS at time t=0 and approximately by 12% and 8%

References (Bedi and Sharma, 2012)

Table C.2. Studies About Ant-Colony Based Recommender System

Research

A semantic-enhanced trust-based recommender system using ant
colony optimization. (2017)

Abbreviation

STARS

Score Ranking Based; TOP_N@(10)
Metrics MAE (for Parameter Tuning), Recall, ARHR
Method Semantically Clustering Items, Trust Based User Similarity Merge (MSD-
Jaccard, Pearson), In ACO sense, nodes denoted users and edges are
trust values. Paper finds best neighbors for a user in ACO, and predict new
rating scores from these neighbors using Resnick's (1994) rating prediction
formula.
Scenario Cold-start, General Recommends, Sparsity, MMIC problem
Benchmarks UCF (Resnick,1994), ICF (Sarwar et.al., 2001), TARS (Bedi and Sharma,
2012), TSF (Shambour & Lu, 2012)
Datasets MovieLens 100K (ML-100K), MovieLens 1M (ML-1M)
Evaluation Against to TARS
Dataset Scenario Recall ARHR
ML-100K  General 9.33% 14.63%
ML-1M General 14.24% 12.10%
ML-100K) Cold-start User 19.30% 18.66%
ML-1M Cold-start User  47.08% 55.43%
ML-100K  MMIC 15.01% 18.98%
ML-1M MMIC 13.18% 14.89%
References (Gohari et.al., 2017)
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Table C.3. Studies About Ant-Colony Based Recommender System

Research TCFACO: Trust-aware collaborative filtering method based on ant
colony optimization (2019)

Abbreviation TCFACO

Score Rating Prediction

Metrics MAE, RMSE, Coverage

Method Trust Based UCF merged with user sim(Tau* and Pearson)
Scenario Cold-start, Heavy users, Opinion users, Long-tail items,

Contra(mean(ratings)<1.5), General

Benchmarks ItemAverages, UserAverages, TARS, TrustSVD, TrustMF, SocialMF,

SVD++
Datasets FilmTrust, Epinions, Ciao
Evaluation Against to TARS
Dataset  Scenario MAE
Epinions Cold-start user 0.837/0.853
Ciao Cold-start user  0.723/0.701
References (Parvin et.al., 2019)

Table C.4 Studies About Ant-Colony Based Recommender System

Research Trust-based ant recommender (T-BAR) (2012)
Abbreviation T-BAR
Score Rating Prediction
Metrics MAE, Coverage
Method Trust Based UCF
Scenario Cold-start, Heavy users
Benchmarks UCF (Pearson) (Resnick, 1994), MT (Mole Trust) (Massa & Avesani, 2009)
Datasets Epinions
Evaluation Against to Mole Trust
Dataset MAE Coverage
T-Bar 1.459 93.%
Mole Trust 0.673 11%
DT-Bar 0.714 55%
References (Bellaachia & Alathel, 2012)
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Table C.5 Studies About Ant-Colony Based Recommender System

Research DT-BAR: a dynamic ANT recommender to balance the overall
prediction accuracy for all users (2014)

Abbreviation DT-BAR

Score Rating Prediction

Metrics MAE, Coverage

Method Trust-Based UCF

Scenario Cold-start, Heavy users

Benchmarks T-BAR (Bellaachia & Alathel, 2012), MT (Mole Trust) (Massa & Avesani,

2009)

Datasets Epinions

Evaluation Against to Mole Trust
Dataset MAE Coverage
T-BAR 1.459 93.%
Mole Trust 0.673 11%
DT-BAR 0.714 55%

References (Bellaachia & Alathel, 2014)

Table C.6 Studies About Ant-Colony Based Recommender System

Research Student courses recommendation using ant colony optimization.
Score Rating Prediction

Metrics MAE, NMSE and other error predictions

Method Probability based similarity

Scenario General

Benchmarks UCF (Pearson) (Resnick, 1994), User-Based CBF

Datasets Real data from the University of Information System EdukacjaCL
References (Sobecki & Tomczak, 2010)

Table C.7 Studies About Ant-Colony Based Recommender System

Research Applying ant-colony concepts to trust-based recommender systems.
(2016)

Score Rating Prediction

Metrics MAE, Coverage

Method User Similarity (User factors from SVD-U and trustworthiness of among
them)

Scenario General

Benchmarks ALT-BAR

Datasets Epinions

Evaluation Coverage percentage for ALT-BAR %28.8 and for their method %70.8

References (Tengkiattrakul et.al., 2016)
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Table C.8 Studies About Ant-Colony Based Recommender System

Research Integrating the importance levels of friends into trust-based ant-
colony recommender systems. (2018)

Score Rating Prediction

Metrics MAE, Coverage

Method User Similarity (User factors from SVD-U and trustworthiness of among
them)

Scenario High Accuracy, Coverage

Benchmarks ALT-BAR

Datasets Epinions

Evaluation Coverage for ALT-BAR, %28.8, for their method %70.8

References (Tengkiattrakul et.al., 2018)

Table C.9 Studies About Ant-Colony Based Recommender System

Research Improving the recommendation accuracy for cold-start users in trust-
based recommender systems. (2016)

Abbreviation ALT-BAR

Score Rating Prediction

Metrics MAE, Coverage

Method Averaged Localized Trust-Based Ant Recommender
Scenario Cold-start, Heavy-user

Benchmarks UCF (Pearson) (Resnick, 1994), MT (Mole Trust) (Massa & Avesani,
2009), T-BAR (Bellaachia & Alathel, 2012)

Datasets Epinions

Evaluation Cold Start MAE; ALT-BAR: 0.502, T-BAR:1.459, MT:0.674, CF:1.094
Coverage; ALT-BAR: 56%, T-BAR: 97%, MT: 18%, CF: 3%

References (Bellaachia & Alathel, 2016)

Table C.10 Studies About Ant-Colony Based Recommender System

Collaborating trust and item-prediction with ant colony for

Research recommendation (2014)

Score TOP_N@(10)

Metrics Recall, Precision, F1-Score

Method Similar to TARS, only item deviation distance products in prediction formula.
Scenario General, Shilling Attack, Cold-start Users, Sparse Matrix, Grey Sheep Users
Benchmarks UCF (Pearson) (Resnick, 1994)

Datasets MovieLens 100K

General scenario using Recall metric;
Evaluation UCF: 32.11%
Original Paper: 33.14%

References (Kaleroun & Batra, 2014)
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Table C.11 Studies About Ant-Colony Based Recommender System

Research Ant Collaborative Filtering Addressing Sparsity and Temporal Effects

(2020)
Abbreviation ACF
Score Rating Based and Ranking Based
Metrics Rating Based; RMSE_, I_Evaluation Time
Ranking Based; Precision, Recall, Accuracy
Method Compute User Pheromones, Item Pheromones,

Then Compute Predictions for new Rating and Rankings

Scenario Sparsity, Over Specification

Rating Based; UCF, ICF, NMF, PLSA, RSM

Benchmarks - nking Based; UCF, ICF, NBI, RSM, BM25-ltem
Datasets Douban, LastFM

Precision Metric Results

Dataset Douban  LastFM
Evaluation UCF 0.045 0.045

ICF 0.006 0.040

ACF 0.062 0.076
References (Liao et.al., 2020a)

Table C.12 Studies About Ant-Colony Based Recommender System

Improving ant collaborative filtering on sparsity via dimension

Research reduction. (2020)

Abbreviation IACF

Score Rating Based and Ranking Based

Rating Based; RMSE, Evaluation Time

Metrigl Ranking Based; Precision, Recall, Accuracy
Method Upgrade to ACF, Adding Clusters to ACF
Scenario Sparsity
Rating Based; UCF, ICF, NMF, PLSA, RSM, ACF

Benchmarks o hking Based; UCF, ICF, NBI, RSM. BM25-ltem, ACF
Datasets ML 10M, ML 1M, Douban, NetEase

Precision Metric Results
Evaluation Dataset Douban  NetEase

ACF 0.057 0.076

IACF 0.070 0.081
References (Liao et.al., 2020b)
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Table C.13 Studies About Ant-Colony Based Recommender System

Research Fars: fuzzy ant-based recommender system for web users. (2011)
Abbreviation FARS
Score Rating Based
Metrics Precision, Recall
Method Jaccard Similarity between users and Fuzzifying user-item matrix
Scenario URL Recommendation
Benchmarks ACO (Ant Based)
Datasets Web Logs
Recall

Evaluation ACO 0.030

Fars 0.033
References (Nadi et.al., 2011)
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