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Bos olmayan bir X kiimesi lizerinde bir pseudo-asimetrik, X X X iizerinde her
x,y,Zz€X ic¢in p(x,x) =0 ve p(x,y) <p(x,z)+p(zy) olacak sekilde negatif
olmayan reel degerli bir p fonksiyonudur. Eger p ek olarak p(x,y) = 0 olmas1 x =y
olmasin1 da gerektiriyorsa p ye X iizerinde asimetrik denir. p asimetrik ise her x,y € X
icin q(x,y) =p(y,x) ile tanimlanan ¢ da bir asimetrik olur. Bu asimetrige p nin
eslenigi denir. B¥(x,p,e) ={y € X : p(x,y) <&} kiimesi x merkezli & yarigaph
ileri agik yuvar, B~ (x,p,¢) = {y € X : p(x,y) < €} kimesi de x merkezli & yarigapl
geri acik yuvardir. Bir asimetrik uzayda bir dizinin yakinsakligi ileri topoloji ve geri
topolojiye bagl oldugundan ileri yakinsaklik ve geri yakinsaklik adi verilen iki tiirlii
yakinsaklik tiirii ortaya cikar. Bu tez calismasinda ileri topoloji, geri topoloji, ileri
yakinsaklik, geri yakinsaklik, ileri Cauchy dizisi, geri Cauchy dizisi, ileri kompaktlik,
geri kompaktlik kavramlari ele alinmis ve ilgili teoremler ispatlariyla birlikte verilmistir.

Anahtar Sézciikler: Asimetrik, ileri topoloji, geri topoloji, ileri yakinsak dizi, geri
yakinsak dizi, ileri kompaktlik, geri kompaktlik.
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A pseudo-asymmetric on a non-empty set X is a non-negative real-valued function p on
X X X suchthat for x,y,z € X wehave p(x,x) =0 and p(x,y) <p(x,z) +p(zy).
If p satisfies the additional condition that p(x,y) = 0 implies x =y then p isan
asymmetric on X, sois g where g is defined by q(x,y) = p(y,x) for x,y € X, and
q is called the conjugate of p . The set B*(x,p,e) ={y € X : p(x,y) <&} is the
forward ball with centre x and radius ¢, the set B~ (x,p,e) ={y € X : p(x,y) < €}
is the backward ball with centre x and radius ¢ . The topology generated by the forward
balls is called forward topology, the topology generated by the backward balls is called
backward topology. Convergence of a sequence of points in an asymmetric space depens
on forward topology and backward topology, so there are two kinds of convergence of a
sequence in an asymmetric space, namely forward convergence and backward
convergence.In this thesis we study forward topology, backward topology, forward
convergence, backward convergence, forward Cauchyness, backward Cauchyness,
forward compactness, backward compactness, and give proofs of related theorems.

Keywords: Asymmetric, forward topology, backward topology, forward convergent
sequence, backward convergent sequence, forward compactness, backward compactness,
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KISALTMALAR

: Reel sayilar kiimesi

: Dogal sayilar kiimesi
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. Asimetrik uzay

: X asimetrik uzayinin ileri agik yuvarlar tarafindan olusturulan

: X asimetrik uzayinin geri acgik yuvarlar tarafindan olusturulan

: Tleri agik yuvar

. Geri agik yuvar

: A kiimesinin biitiin ileri y1§1lma noktalarinin kiimesi
: A kiimesinin biitiin geri y1g1lma noktalarinin kiimesi
: A nin ileri kapanisi

: A nm geri kapanist

. (x,) dizisi x, aileri yakinsak

. (x,) dizisi x, a geri yakinsak
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BOLUM 1. GIRiS

Asimetrik uzaklik fonksiyonu ilk kez 1914 yilinda F. Hausdorff tarafindan
tanimlanmistir. Hausdorff, bir metrik uzaym herhangi iki alt kiimesinin birbirine olan
uzakligini ifade eden ve simetri 6zelligi tagimayan bir uzaklik tanimlayarak asimetri
kavramini ortaya atmistir. Asimetrik uzaylar ise ilk olarak 1931 yilinda Wilson (1931)
tarafindan quasi-metrik kavrami tanimlanarak ¢alisilmistir. Daha sonra Albert (1941) ve
Stoltenberg (1969) tarafindan quasi-metrik uzaylar olarak ¢alisilirken, Ribeiro (1943) bu
uzaylari zayif metrikli uzaylar olarak adlandirmustir. Reilly (1982) ve Kiinzi (1983) quasi-
pseudo metrik uzaylarda ¢alismislardir. Ileri Cauchy ve geri Cauchy kavramlari reel say1
dizileri i¢in Cakalli (2018) tarafindan g¢alisilmistir. Ayrica Collins ve Zimmer (2007)
asimetrik uzaylarda yakinsaklik, kompaktlik ve total sinirlilik kavramlarini incelemistir.
Cobzas (2012) quasi-metrik uzaylar konusundaki g¢alismalar1 derlemistir. Dagc1 ve

Cakalli (2022) asimetrik uzaylarda diizgiin yakinsaklik {izerinde ¢alismistir.

Asimetrik uzaylarda, metrik uzaylardan farkli olarak simetri 6zelligi ger¢eklenmek
zorunda olmadigindan, yakinsaklik, tamlik, kompaktlik, total sinirlilik gibi kavramlar

metrik uzayda oldugundan farkl ifade edilmektedir.

Asimetrik uzaylarda simetri 6zelliginin olmamasi bu uzaylarda iki tiirlii topololojinin var
olmasimi ve dolayisiyla yakinsaklik, tamlik, kompaktlik ve total sinirlilik gibi temel

kavramlarin iki tiirlii incelenmesini ortaya ¢ikarmistir.

Bu tez ¢alismasinda bir uzaklik fonksiyonu olan asimetrik kavrami ve asimetrik uzay
kavrami1 ayrintili olarak incelenecek, bir asimetrik uzayin ileri topoloji ve geri topoloji
ad1 verilen topolojileri ve bu topolojilerin 6zellikleri kullanilarak elde edilen temel

kavramlar, teoremler ve sonuglar sunulacaktir.

Bu tez calismasi bes boliimden olusmaktadir. Ikinci béliimde daha sonraki boliimlerde

kullanilacak olan temel tanim, teorem ve sonuglar verilecektir.



Uciincii boliimde bir asimetrik uzay iizerinde taniml1 olan asimetrik tarafindan elde edilen
ileri acik yuvarlar ve geri acik yuvarlar tanimlanarak bu yuvarlar tarafindan iiretilen ileri
topoloji ve geri topoloji kavramlari lizerinde durulacaktir. Ayrica tanimlanan bu ileri ve
geri topolojileriyle bir asimetrik uzayin birinci sayilabilir bir uzay oldugu ayrintili olarak

ifade edilecektir.

Dordiincii boliimde bir asimetrik uzayda ileri ve geri yakinsaklik, ileri ve geri sinirlilik,
ileri ve geri Cauchy dizisi, ileri ve geri tamlik kavramlar1 ele aliacaktir. Metrik
uzaylardan farkli olarak, bir asimetrik uzayda bir ileri yakinsak dizinin ileri limitinin tek
olmak zorunda olmadig1 gosterilecek ve ileri limitin tekligi icin gerek sartin dizinin ileri
yakinsadigi noktaya geri yakinsamasi oldugu ifade edilecektir. Benzer durum geri

yakinsaklik i¢cin de gosterilecektir.

Besinci boliimde ise asimetrik uzaylarda ileri ve geri kompaktlik, ileri ve geri dizisel
kompaktlik kavramlari ele alinacaktir. Ayrica bir asimetrik uzay ileri dizisel kompakt ise
ileri limitin tek oldugu sonucuna varilacaktir. Bu durumun geri dizisel kompaktlik i¢in de

gecerli oldugu ifade edilecektir.

Sonu¢ boliimiinde asimetrik uzaylarda elde edilen teoremlerin ve sonuglarin Gzeti

verilecektir.



BOLUM 2. ON BILGILER

Bu boliimde topolojik uzaylar ve metrik uzaylar ile ilgili temel tanim, teorem ve sonuglar

verilecektir.

2.1. Topolojik Uzaylar

Bu kesimdeki tanim ve teoremler Cakall1 (1997) kaynagi kullanilarak hazirlanmustir.
Tamm 2.1.1. X herhangi bir kiime olsun. X in alt kiimelerinin bir 7 toplulugu eger
(T1) X ve @ 7 ya aittir,

(T2) = nun herhangi iki elemaninin kesigsimi 7 ya aittir,

(T3) 7 nun elemanlarmin herhangi bir ailesinin birlesimi 7 Yya aittir.

Ozelliklerini sagliyorsa T ya X tizerinde bir topoloji denir. T nun her bir elemanina X
de t topolojisine gore agik kiime veya 7 nun soylenmemesi karisiklik ¢ikarmadiginda

X de agik kiime ya da kisaca agik kiime denir.

Tamm 2.1.2. (X,7) birtopolojikuzay, U c X ve u € U olsun.Eger u€e A ve AcU

olacak sekilde bir A € T bulunabiliyorsa U kiimesine u noktasinin bir komsulugu denir.

Tamm 2.1.3. (X,t) bir topolojik uzay olsun. Eger X in her farkl iki elemaninin ayrik
komsuluklar: bulunabiliyorsa yani x;,x, € X ve x; # x, ise UNV = @ olacak sekilde
x; In bir U komsulugu ve x, nin bir ¥V komsulugu bulunabiliyorsa X e Hausdorff

uzay1 (veya T,-uzay1) denir

Tamm 2.1.4. (X,t) birtopolojik uzay ve f < t olsun. Bu takdirde, eger T nun her bir
elemant B nin elemanlarinin bir birlesimine esit oluyorsa f ya t topolojisi icin bir baz

denir.



Teorem 2.1.5. (X,t) bir topolojik uzay ve B da t i¢in bir baz olsun. Bu takdirde

asagidakiler saglanr:
(Bl) X = U{B : B € B} dir,

(B2) B nin herhangi iki elemaninin kesisimi £ nin elemanlarmin bir birlesimine

esittir.

Teorem 2.1.6. X herhangi bir kime ve B da X in alt kiimelerinin Teorem 2.1.5 in

(B1) ve (B2) kosullarini saglayan bir sinifi olsun. Bu takdirde,
t={A: AcX,Akimesi B sinifimin elemanlarimn bir birlesimidir.}

sinift X tizerinde bir topolojidir ve £ simfi T icin bir bazdir. Hatta S yi baz kabul eden

bu topoloji bir tektir.

Yukaridaki tanmimlanan 7 topolojisinin £ smifini baz kabul eden bir tek topoloji oldugu
ise Tt dan baska bir 7; topolojisi igin de S nin bir baz oldugu varsayihip, celiskiye

diistilerek ispatlanir.
Tanmm 2.1.7. (X,7) bir topolojik uzay ve § < t olsun. Eger

B ={B: B,S in sonlu adetteki elemanlarinin kesisimine esittir}
simifi T icin bir baz oluyorsa § sinifina © topolojisi igin bir alt bazdir denir.

Teorem 2.1.8. X herhangi bir kime ve § de X in alt kiimelerinin herhangi bir sinifi

olsun. Bu takdirde,
B ={B: B,S in sonlu adetteki elemanlarinin kesisimine esit veya B = X}
sinift X tizerinde
T ={A: Akimesi B nin elemanlarinin bir birlesimine esittir}

seklinde tanimlanan t topolojisi icin bir bazdir ve § < t dir. Hatta 7 topolojisi § c 7
ozelligine sahip en kiigiik topolojidir. Yani 7;, X iizerinde § < 7, olacak sekilde bir

topoloji ise T < 7, olmak zorundadir.



Tanmm 2.1.9. (X,7) bir topolojik uzay, x € X ve x noktasimn agik komsuluklarindan
olusan X in bir alt kiimeler ailesi B, olsun. Eger x inher U komsulugu i¢in B c U
olacak sekilde bir uw € U B € [, bulunabiliyorsa g, sinifina X noktasinda bir yerel

(veya lokal) baz denir.

Teorem 2.1.10. X birinci sayilabilir bir topolojik uzay olsun. Bu takdirde, X in her x
noktasinda igige agiklar yerel bazi yani her n € N igin A, D A,,, ozelligini saglayan

x noktasinda bir B, = { 4,, : n € N} yerel baz: vardr.
Teorem 2.1.11. X bir Hausdorff uzayi ise X deki her yakinsak dizinin limiti tektir.

Ispat: (X,7) topolojik uzayr Hausdorff uzay1 olsun. X de yakinsak olan bir (x,,)

dizisinin farkl iki limite sahip oldugunu kabul edelim. Diyelim ki lim x, = x ,
n—oo
lim x,, =y ve x #y olsun. X bir Hausdorff uzay1r oldugundan U NV = @ olacak

n—->oo

sekilde x in bir U komsulugu ve y in bir V komsulugu vardir. lim x, = x

n—-oo

oldugundan, yakinsak dizi tanimindan, x noktasimnin U komsulugu i¢in

)(111 = {x“l ;xn1+1 ) ...,an_H' ) ...} C U

Olacak sekilde, U ya baglh bir n; dogal sayis1 vardir ve lim x, =y oldugundan,
n—-oo

yakinsak dizi tanimindan, y noktasinin ¥V komsulugu i¢in

an = {xnz 1 Xn,+1 ...,xn2+i , } cV

Olacak sekilde, V' ye bagli bir n, dogal sayisi vardir. max{n; ,n,} = n, diyelim. Bu
takdirde, X, c U ve X, <V bulunur ki buradan X, < U NV elde edilir. Bu ise

UNV =@ olmasma aykiridir. Celiski, o halde x =y dir. Bu da teoremin ispatini

tamamlar.

Teorem 2.1.12. Birinci sayilabilir bir (X,7) topolojik uzay: igin asagidaki ifadeler
denktir.

@) (X, ) Hausdorff uzayidir.

(b) X deki her yakinsak dizinin limiti tektir.



Ispat: (a) = (b) oldugu yukaridaki teoremden goriilmektedir.

(b) = (@) ispat1 icin (X,7) topolojik uzayr Hausdorff degil ise farkli degerlere
yakinsayan bir (x,,) dizisi elde etmek yeterlidir. (X, ) topolojik uzayr Hausdorff degil
iseher UEN, ve VEN, icin UNV # @ olacak sekilde farkli x,y € X noktalar
vardir. Uzay birinci sayilabilir oldugundan x ve y noktalarinda sirasiyla i¢ ige azalan
sayilabilir g, = {U, : n € IN} ve p, = {V, : n € IN} yerel bazlar1 vardir. O halde her
n€lIN i¢in U, NV, #@ olur. Her bir n€IN igin bir a, € U, NV, segerek

olusturulan (x,) dizisi x ve y noktalarina yakinsar.

2.2. Metrik Uzaylar

1905 yilinda Fransiz matematik¢i Maurice Frechet tarafindan metrik kavrami ilk defa

verilmigtir.

Tamim 2.2.1. (Metrik uzay) X herhangi bir kiime olsun. X X X den R, reel sayilar
kiimesi igine asagidaki (M1), (M2) ve (M3) 6zelliklerini saglayan d fonksiyonuna X

icin bir metrik veya X {izerinde bir metrik denir.
(M1) Vx,y € Xigind(x,y) = 0;ved(x,y) =0 x =1y,
(M2) vx,y € Xi¢ind(x,y) =d(y,x) ,
(M3) Vx,y,z€ Xigind(x,z) <d(x,y) +d(y,z)

Bir d metrigi ile bir X kiimesine bir metrik uzay denir ve (X, d) bir metrik uzay veya

kisaca X bir metrik uzay denir (Dagci, 2019).

Teorem 2.2.10. Eger bir Cauchy dizisinin yakimsak bir alt dizisi varsa kendisi de

yakinsaktir.
Tamm 2.2.11. X bir kiime, A € X olsun. X in alt kiimelerinin bir {U; : i € I} ailesi
A S Uje; U; kosulunu sagliyorsa A i¢in bir ortii adini alir.

Bu gosterimlerle, A igin bir {U; : i € I} ortiistintin bir alt ortiisii, bir /] € I kiimesi i¢in

yine bir Ortii olan {Uj i J € ]} alt ailesidir. Eger J sonlu ise bu sonlu alt ortii adin1 alir.

6



U ={U; : i €1}, bir X topolojik uzayinin bir A alt kiimesi i¢in bir 6rtii ve her bir i € I

icin U; , X de acik ise ‘U ya A i¢in bir agik Ortii denir.

Tamim 2.2.12. Bir X topolojik uzayinin bir A alt kiimesinin her agik ortiisiiniin bir sonlu

alt ortiisti varsa A ya kompakt kiime denir.

Tamim 2.2.13. Bir X metrik uzaymda her dizi X in bir noktasina yakinsayan bir alt diziye

sahipse bu metrik uzaya dizisel kompakt ad1 verilir.

Bir (X, d) metrik uzaymnin bos olmayan bir A alt kiimesi d, metrikli altuzay olarak bu

tanimi1 saglarsa A ya dizisel kompakt denir.

Tamim 2.2.14. Eger bir X metrik uzayinda her Cauchy dizisi yakinsak oluyorsa bu uzaya

tam uzay denir.



BOLUM 3. ASIMETRIK UZAYLAR

Bu boliimde, asimetrik uzay kavrami, asimetrik uzayda ileri topoloji ve geri topoloji

kavramlar1 ayrintili olarak incelenecektir.

3.1. Asimetrik Uzay Kavram

Bu kesimde, metrik uzay tanmimindaki d(x,y) = d(y,x) simetri olma O6zelligini
saglamayan ve metrikte oldugu gibi bazi 6zellikleri saglayan bir uzaklik fonksiyonu

yardimiyla tanimlanan asimetrik uzay kavramini inceleyecegiz.

Tamm 3.1.1. Bir X kiimesi lizerinde asagidaki kosullar1 saglayan d: XxX — R

fonksiyonuna bir asimetrik denir.
(D1) Vx,y € X igin d(x,y) =0,
(D2) Vx,y € X i¢in d(x,y) = 0 olmasi i¢in gerek ve yeter kosul x =y dir.
(D3) Vx,y,z€ X i¢in d(x,z) <d(x,y) +d(y,z)

Uzerinde bir asimetrik tanimlanan X kiimesine asimetrik uzay denir ve (X,d) ile

gosterilir. Ya da kisaca X bir asimetrik metrik uzaydir denir.
Bundan sonra (X, d) ya dakisaca X yazdigimizda asimetrik uzay olacaktir.
Bu tanima gdre her metrigin bir asimetrik oldugu agiktir.

Ornek 3.1.2. «@ > 0 olmak iizere

_ y — X, y=x
W =lot ) y<a

seklinde tanimlanan d: RxR — R¢  fonksiyonu bir asimetriktir. Dolayisiyla (R,d) bir
asimetrik uzaydir. Ciinkii d fonksiyonunun (D1), (D2), (D3) sartlarin1 sagladigi
asagidaki sekilde gosterilebilir.



(D1) d fonksiyonunun tanimindan her x,y € R i¢in d(x,y) =0 oldugu kolayca

goriilebilir.

(D2) d(x,y) =0 @a +#0 ve y <x ikenve a(x —y) # 0 olacagindan y > x iken

y —x = 0 olmak zorundadir.
& y>x iken y =x bulunur.
Dolayisiyla V x,y € R igin d(x,y) = 0 olmasi igin gerek ve yeter kosul x =y dir.
(D3) Vx,y,z € R igin
z <y < x olmak iizere d(x,z) <d(x,y) +d(y,2)
alx—z)<alx—y)+aly —z)
ax —az < ax — az
0<0
y < z < x olmak tizere d(x,z) < d(x,y) +d(y,2z)
alx—z)<alx—y)+z—y
ax—az<ax—(a+1)y+z
(a+1)y<(a+1)z
y=<z
z < x <y olmak tizere d(x,z) <d(x,y) +d(y,z)
ax—z)<y—x+aly—2z)
ax—az<—x+(a+1y—az
(a+Dx<(a+ 1y

X<y



x < z <y olmak iizere d(x,z) < d(x,y) +d(y,2)
z—x<y—-x+taly—z)
z—x<—-x+(a+1)y—az

(a+1D)z<(a+ 1)y
zZ<y

y < x < z olmak tizere d(x,z) < d(x,y) +d(y,z)
z—x<alx—-y)+z—-y
z—x<ax—(a+Dy+z

(a+1Dy<(a+1x
y<x
x <y < zolmak iizere d(x,z) <d(x,y) +d(y,z)
Z—x<y—x+z—y
Z—XxX<—Xx+z
0<0
oldugundan
Vx,v,z€R icin d(x,z) <d(x,y) +d(y,z)
bulunur.

O halde d fonksiyonu (D1), (D2), (D3) sartlarin1 sagladigi i¢in bir asimetriktir.
Dolayisiyla (R, d) bir asimetrik uzaydir.

Bunlara ek olarak
1,2 € R i¢in
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d(1,2)=2-1=1

d(2,1) =a(2—-1) = a oldugundan

d fonksiyonu a # 1 igin metrigin (M2) simetrik olma sartin1 saglamamaktadir.
Yani a # 1i¢in her x,y € R i¢in d(x,y) # d(y,x) dir.

O halde d fonksiyonu (M2) saglamadigi icin R reel sayilar kiimesi i¢in bir metrik
degildir. Dolayisiyla (R, d) bir metrik uzay degildir.

Ornek 3.1.3. (X, d) bir asimetrik uzay olsun. p(x,y) = d(y, x) ile tanimhi p:XxX —» R

fonksiyonu bir asimetriktir. Yani (X, p) bir asimetrik uzaydir.
(D1) d bir asimetrik oldugundan V x,y € X i¢in d(x,y) =0 dir.
Vx,y €X i¢in p(x,y) =d(y,x) =0 olur.

(D2) d bir asimetrik oldugundan V x,y € X igin d(x,y) =0 olmas1 igin gerek ve
yeter kosul x =y dir.

Vx,y €X ig¢in p(x,y) =d(y,x) =0 olmasi igin gerek ve yeter kosul y = x olur.
(D3) d bir asimetrik oldugundan V x,y,z € X i¢in d(x,z) < d(x,y) + d(y,z) dir.
Vx,y,z€X igin d(z,x) <d(z,y)+ d(y,x) olacagindan,

p(x,z) < p(y,2) + p(x,y)

p(x,z) < p(x,y) +p(y,2)
olur.

O halde p fonksiyonu (D1), (D2), (D3) sartlarimi sagladigi igin X kiimesi igin bir

asimetriktir. Dolayisiyla (X, p) bir asimetrik uzaydir.
Ornek 3.1.4. (X, d) bir asimetrik uzay ve p(x,y) = d(y, x) olmak iizere

Amax(x, v) = max{d(x,y), p(x,y)} ile tanimlanan d,,,, bir metriktir.
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(M1) d bir asimetrik oldugundan V x,y € X i¢in d(x,y) =0 dir. Yukaridaki
ornekten p(x,y) = d(y,x) de asimetrik oldugu i¢in

Vx,y €X i¢in p(x,y) =d(y,x) =0 dur.

Ohalde V x,y € X i¢in max{d(x,y),p(x,y)} =0 dir.

Buradan V x,y € X i¢in d,,q,(x,y) = 0 olur.

d bir asimetrik oldugundan V x,y € X igin d(x,y) =0 olmasi i¢in gerek ve yeter
kosul x =y dir.

p(x,y) = d(y,x) de asimetrik oldugu igin,
Vx,y €X i¢in p(x,y) =d(y,x) =0 olmasi igin gerek ve yeter kosul y = x dir.

Buradan V x,y € X igin max{d(x,y),p(x,y)} = 0 olmasi igin gerek ve yeter kosul

x =1y olur.
Ohalde V x,y € X i¢in d,,q(x,¥) =0 olmasi igin gerek ve yeter kosul x =y olur.
(M2) Vx,y € X igin,

Amax(x,y) = max{d(x, y),p(x, y)}

max{d(x,y),d(y, x)}

max{d(y,x),d(x,y)}

max{d(y,x), p(y,x)}
= dmax (¥, %)
Vx,y €Xigin dpey(x,y) = dpmax (¥, x) oOlur.
(M3) d bir asimetrik oldugundan V x,y,z € X i¢in d(x,z) < d(x,y) +d(y,z) dir.

p(x,y) = d(y,x) de asimetrik oldugu igin,
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Vx,y,z€X igin p(x,z) < p(x,y) + p(y,z) dir.

Va,b,c,d€R icin, max{a+ b,c+ d} < max{a,c}+ max{b,d} esitsizligini goz

Oniine alirsak,
Vx,y,z € X igin,
Amax (X, z) = max{d(x, z), p(x,z)}
< max{d(x,y) +d(,2), p(x,y) + p(y,2)}
< max{d(x,y), p(x,y)} + max{d(y, z), p(y,2)}
S dimax (%, Y) + dimax (v, 2)

O halde V x,y,z € X i¢in d 0 (X, 2) < dipax (%, V) + dinax(y,2) oOlur,

d(x,y)

Ornek 3.1.5. (X,d) bir asimetrik uzay olmak iizere d*(x,y) = TrdCiy) ile tanimlanan

d* X ftzerinde bir asimetriktir.
(D1) d bir asimetrik oldugundan V x,y € X igin d(x,y) =0 dur.
Vx,y€X i¢in 1+d(x,y) =0 dir.

d(x,y) >

Vx,y €X i¢in Tty =

0 olacagindan,

dxy) 5 0 olur.

Vxy€X icin d'(xy) = o= 2

(D2) Vx,y € X igin d(x,y) = 0 oldugundan, 1+ d(x,y) # 0 dur.

.. dixy) .. _
Vx,y €X i¢in Trdtey) — 0 olmasi i¢in gerek ve yeter kosul d(x,y) =0 dir.

d bir asimetrik oldugundan V x,y € X i¢cin d(x,y) =0 olmasi i¢in gerek ve yeter

kosul x =y dir.
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d(x,y)

O halde Vx,y €X i¢in d*(x,y) = 1+d(x,y)

= 0 olmasi i¢in gerek ve yeter kosul

x =y Olmasidir.

(D3) d bir asimetrik oldugundan V x,y,z € X icin d(x,z) < d(x,y) + d(y,z) dir.

1 1 o
Buradan o1 dD < ) yazilabilir.

Vx,y,z€X igin

d(x,z) 1
d*(x,z) = =
’ 1+d(x,z 1
( ) 1+ d(x,z)
1
= 1
i d(x,y)+d(y,z)
dx,y) +d(y,z) d(x,y) d(y,z)

" Trdan+d02) 1+dxy)+dm2)  1+dxy) +d.2)

&) d(y,z)
“1+d(x,y) 1+4+d(y,z)

=d'(x,y) +d*(y,2)
elde edilir.
Bu durumda V x,y,z € X i¢in d*(x,z) < d*(x,y) +d*(y,z) olur.

O halde d* fonksiyonu (D1), (D2), (D3) sartlarin1 sagladigi igin X kiimesi i¢in bir

asimetriktir. Dolayisiyla (X, d*) bir asimetrik uzaydir.

Ornek 3.1.6. (X,d) bir asimetrik uzay olmak iizere d**(x,y) = min{1,d(x,y)} ile

tamimlanan d** X {izerinde bir asimetriktir.
(D1) d bir asimetrik oldugundan V x,y € X i¢in d(x,y) = 0 dir.
Bu durumda V x,y € X i¢in min{1,d(x,y)} = 0 dur.

Ohalde V x,y € X i¢in d**(x,y) = min{1,d(x,y)} = 0 olur.
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(D2) Vx,yeX igin d™(x,y)=0 olmasi1 i¢in gerek ve yeter kosul
min{1,d(x,y)} =0 dur.

min{1,d(x,y)} = 0 olmasi i¢in gerek ve yeter kosul d(x,y) =0 dir.

d bir asimetrik oldugundan, V x,y € X i¢in d(x,y) =0 olmasi igin gerek ve yeter
kosul x =y dir.

Ohalde Vx,y € X igin d**(x,y) = 0 olmasi igin gerek ve yeter kosul x =y olur.
(D3) d bir asimetrik oldugundan V x,y,z € X i¢in d(x,z) < d(x,y) + d(y,z) dir.
Vx,y,z€X igin
d*(x,z) = min{l1,d(x, 2)}

< min{l,d(x,y) + d(y,z)}

< min{l,d(x,y)} + min{1,d(y, z)}

<d"(x,y)+d”(y, z)
Budurumda V x,y,z € X i¢in d**(x,z) < d*(x,y) + d**(y,z) olur.

O halde d*™ fonksiyonu (D1), (D2), (D3) sartlarin1 sagladigi i¢in X kiimesi i¢in bir

asimetriktir. Dolayisiyla (X,d**) bir asimetrik uzaydir.

Ornek 3.1.7. (X,d) bir asimetrik uzay olmak iizere k sabit pozitif sayisi icin

d**(x,y) = k.d(x,y) ile tammlanan d*** X fizerinde bir asimetriktir.

(D1) d bir asimetrik oldugundan V x,y € X i¢in d(x,y) = 0 dur.

Bu durumda k pozitif bir say1 oldugu i¢in V x,y € X i¢in k.d(x,y) =0 duir.

O halde V x,y € X igin d*™*(x,y) = 0 olur.

(D2) Vx,y € X i¢in d**(x,y) =0 olmasi igin gerek ve yeter kosul k.d(x,y) =0

dir.
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k # 0 oldugundan k.d(x,y) = 0 olmasi i¢in gerek ve yeter kosul d(x,y) =0 dir.

d bir asimetrik oldugundan, V x,y € X i¢in d(x,y) =0 olmasi i¢in gerek ve yeter
kosul x =y dir.

Ohalde Vx,y € X igin d*™*(x,y) = 0 olmasi i¢in gerek ve yeter kosul x =y olur.
(D3) d bir asimetrik oldugundan V x,y,z € X i¢in d(x,z) < d(x,y) +d(y,z) dir.
Vx,y,z€X igin
d™*(x,z) = k.d(x,z)

< k(d(x, y) +d(y, Z))

< k.d(x,y)+ k.d(y,2z)

<d™(xy)+d™(y,2)
Bu durumda V x,y,z € X i¢in d***(x,z) < d™*(x,y) + d***(y, z) olur.

O halde d*** fonksiyonu (D1), (D2), (D3) sartlarin1 sagladigi i¢in X kiimesi igin bir

asimetriktir. Dolayisiyla (X, d*™) bir asimetrik uzaydir.

3.2. Asimetrik Uzaylarda Topolojiler

Asimetrik taniminda simetri 6zelligi saglanmadigindan dolayr ileri ve geri yuvar
kavramlar1 karsimiza ¢iktigindan bu yuvarlar tarafindan iki tiirlii topoloji tiretilir. Bunlar

ileri topoloji ve geri topoloji adin1 alir.

Tamm 3.2.1. (Ileri ve Geri Topolojiler) Bir d asimetrigi tarafindan elde edilen 7, ileri

topolojisi,
herx € X,e >0icin B*(x, &) ={yeX: d(x,y) < &}
ileri agik yuvarlar tarafindan tiretilen topolojidir.

Benzer sekilde bir d asimetrigi tarafindan elde edilen 7_ geri topolojisi,
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herx € X,e > 0icin B (x,&) ={yeX: d(y,x) < €}

geri agik yuvarlari tarafindan tretilen topolojidir (Collins ve Zimmer, 2007; Mennucci,
2004).

Teorem 3.2.2. (X,d) asimetrik uzay ise (X,t,) birinci sayilabilir topolojik uzaydir
(Dagc1, Misirlioglu, Cakalli ve Cay, 2022).

Ispat. BT (x, %) = {yeX s d(x,y) < %} olmak iizere

B, ={B* (x, %) :n € N} smifi x noktasinda bir yerel bazdir. Gergekten,

x in herhangi bir komsulugu U olsun. B* (x, %) c U olacak sekilde n pozitif tamsayisi

bulmamiz gerekir. x in herhangi bir komsulugu U olsun. ileri topolojinin tanimindan,

d asimetrigi tarafindan elde edilen t, ileri topolojisi,
herx € X,e >0icin B*t(x, &) ={yeX: d(x,y) < &}

ileri a¢ik yuvarlari tarafindan tiretilen topoloji oldugundan dolayr B*(x,8) c U olacak
sekilde bir § > 0 vardur. lim% = 0 oldugundan n > ngs oldugunda % < 6 dolayisiyla
d(x,y) <% oldugunda d(x,y) < & olacak sekilde bir ng pozitif tamsayisi vardir.
Buradan n = ng oldugunda B* (x, %) c B*(x,8) olacak sekilde bir ng pozitif tam

say1st bulunmus oldu. Buda g, = {B* (x, %) :n € N} smifinin x noktasinda bir yerel

baz oldugunu gosterir. Her x € X igin B," smifi sayilabilir oldugundan X asimetrik

uzayinin ileri topolojisi birinci sayilabilir bir topolojik uzay olur.
Teorem 3.2.3. (X,d) asimetrik uzay ise (X,7_) birinci sayilabilir topolojik uzaydir.

Ispat. Bu Teoremin ispat: Teorem 3.2.2 nin ispatina benzer sekilde yapilabilir.
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Ornek 3.2.4.

X, y=Xx
, y<x

d(x,y) = {y 1
seklinde tanimlanan d: RxR — ]Riar asimetriginde,
T, , R iizerindeki alt limit topolojisidir. T_ ise R tiizerindeki iist limit topolojisidir.
Ciinkii her 0 < e <1 iginve her x € X igin
B*(x,e) = {yeX : d(x,y) < &}
Bt (x,e) ={yeX :y <x ve d(x,y) <e}U{yeX:y=x ve d(x,y) < €}
Bt(x,e) ={yeX:y<xve 1<e}U{yeX:y=x ve y—x < &}
Btf(x,e) =0U{yeX:y=>x ve y—x < ¢}
Bf(x,e) ={yeX:y=x ve y<x+¢&}
B*(x,e) =[x,x +¢)
bulunur.
Benzer sekilde her 0 < e <1 iginve her x € X igin
B (x,&) ={yeX : d(y,x) < &}
B (x,e) ={yeX:x <y ve d(y,x) <e}U{yeX:x >y ve d(y,x) < €}
B (x,e)={yeX:x<yve l<e}U{yeX:x=>y ve x —y<¢&}
B (x,e)=0U{yeX : x>y ve x —y < &}
B (x,e)={yeX: x>y ve x —e <y}

B~ (x,&) = (x — &,x]
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bulunur.

Tammm 3.2.5. (X,d) bir asimetrik uzay ve A c X olsun. Eger her &€ >0 i¢in
Bt(x,e)n (A\ {x}) # ® oluyorsa yani x noktasim igeren her ileri agik kiime A
kiimesinin x den baska en az bir elemanini igeriyorsa X inbu x noktasina A kiimesinin
bir ileri y1g1lma noktas1 denir. A kiimesinin biitiin ileri y1g1lma noktalarinin kiimesi AT

ile gosterilir.

Tamim 3.2.6. (X,d) bir asimetrik uzay ve A c X olsun. Eger her € >0 i¢in
B7(x,e) N (A\ {x}) # @ oluyorsa yani x noktasini i¢eren her geri agik kiime A
kiimesinin x den bagka en az bir elemanini igeriyorsa X inbu x noktasina A kiimesinin
bir geri y1gilma noktasi denir. A kiimesinin biitiin geri y1gilma noktalarinin kiimesi A’

ile gosterilir.

Tammm 3.2.7. (X,d) bir asimetrik uzay ve A c X olsun. Eger her ¢ >0 i¢in
B*(x,e) N A #+ @ oluyorsa yani x noktasini igeren her ileri agik kiime A kiimesinin en
az bir elemanini igeriyorsa X in bu x noktasina A kiimesinin bir ileri degme noktasi
denir. A kiimesinin biitlin ileri degme noktalarinin kiimesine A nin ileri kapanisi denir

ve A" ile gosterilir.

Tamim 3.2.8. (X,d) bir asimetrik uzay ve A c X olsun. Eger her € >0 i¢in
B~ (x,e) N A + @ oluyorsa yani x noktasini igeren her geri agik kiime A kiimesinin en
az bir elemanini igeriyorsa X in bu x noktasna A kiimesinin bir geri degme noktasi
denir. A kiimesinin biitiin geri degme noktalarinin kiimesine A nin geri kapanisi denir

ve A~ ile gosterilir.
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BOLUM 4. ASIMETRIK UZAYLARDA DIiZiLER

Bu boliimde, asimetrik uzaylarda ileri ve geri yakinsaklik, asimetrik uzaylarda ileri ve
geri sinirlilik, asimetrik uzaylarda ileri ve geri Cauchy dizi kavramlart ayrintili olarak

incelenecektir.

4.1. Asimetrik Uzaylarda ileri ve Geri Yakinsakhk
Asimetrik uzayda iki tiirlii topoloji oldugundan dizilerinde iki tiirlii yakinsakligi olacaktir.
Bunlar ileri yakinsaklik ve geri yakinsaklik adin1 alacaktir.

Asimetrik uzayda bir dizinin ileri yakinsakligin1 asagidaki sekilde veriyoruz.

Tamm 4.1.1. (fleri Yakinsaklik) Her € >0 ig¢in n >n, oldugunda d(x,x,) <&
olacak sekilde & abagli bir ny sayisi bulunabiliyorsa (x,) dizisi x e ileri yakinsaktir
denir, ya da x noktasina ileri yakinsar denir.

Buradan  (x,) dizisinin x e ileri yakinsamasi igin gerek ve yeter kosul
lim d(x,x, ) =0 oldugu kolayca goriilebilir. Notasyon olarak x, Z) xo seklinde

n—oo

gosterilir.
Asimetrik uzayda bir dizinin geri yakinsakligin1 asagidaki sekilde veriyoruz.

Tamim 4.1.2. (Geri Yakinsaklik) Her € >0 i¢in n>n, oldugunda d(x, x) <e¢

olacak sekilde & abagli bir ny sayist bulunabiliyorsa (x,,) dizisi x e geri yakinsaktir

denir, ya da x noktasina geri yakinsar denir.

Buradan (x,) dizisinin x e geri yakinsamasi i¢in gerek ve yeter kosul
b

lim d(x, ,x) =0 oldugu kolayca goriilebilir. Notasyon olarak x, — x, seklinde

n—>oo

gosterilir.

Teorem 4.1.3. (X, t,) topolojik uzay1 bir Hausdorff uzayi ise X deki ileri yakinsak her
dizinin limiti tektir (Dagci vd., 2022).
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Ispat. (X,7,) topolojik uzay1 Hausdorff uzay1 olsun. X de ileri yakisak olan bir (x,,)

dizisinin farkli iki ileri limite sahip oldugunu kabul edelim. x, I> X, Xn L y ve
x #y olsun. X bir Hausdorff uzay1 oldugundan B*(x,&;) N B*(y,8,) = @ olacak
sekilde x in bir B*(x,8,) komsulugu ve y nin bir B*(y,d,) komsulugu vardur.

f A . . . .
X, — x oldugundan, ileri yakinsak dizi tanimindan, her n > n; i¢in x, € B*(x, ;)

olacak sekilde, B*(x,8;) na bagli bir n; dogal sayisi vardir. x, £> y oldugundan,
ileri yakinsak dizi tanimindan, her n >n, i¢in x, € BT(y,8,) olacak sekilde,
B*(y,&8,) yabaglbir n, dogal sayisi vardir. max{n, ,n,} = n, diyelim. Bu takdirde,
hern > n, ic¢in x,, € B*(x,8,;) N B*(y,8,) bulunurkibu B*(x,6,) N B*(y,8,) =0

olmasina aykiridir. O halde x = y dir. Bu da teoremin ispatini tamamlar.
Teorem 4.1.4. Bir (X,d) asimetrik uzayi i¢in asagidaki ifadeler denktir.

(@ t, Hausdorffuzayidir.
(b) X deki her ileri yakinsak dizinin limiti tektir.

Ispat. (a) = (b) oldugu yukaridaki teoremden goriilmektedir.

(b) = (a) ispat1 igin (X,7,) topolojik uzayr Hausdorff degil ise farkli degerlere ileri
yakinsayan bir (x,,) dizisi elde etmek yeterlidir. (X,7,) topolojik uzayr Hausdorff degil
ise her ¢ i¢in B*(x,&) N B*(y, &) # @ olacak sekilde farkli x,y € X noktalar1 vardir.

(X,d) asimetrik oldugundan x ve y noktalarinda sirasiyla i¢ i¢e azalan sayilabilir

Bt = {B+ (x, %) :n € N} ve ﬁy+ = {B*’ (y, %) ‘n € N} yerel bazlar1 vardir. O halde

her neN i¢in BT (x,%) NnB* (y,%) # @ olur. Her bir neN igin bir
+ 1 + 1 - - -

X, €EB (x, Z) NnB (y, ;) secerek olusturulan (x,) dizisi x ve y noktalarina

yakinsar.

Teorem 4.1.5. (X,7_) topolojik uzayr bir Hausdorff uzay: ise X deki her bir geri

yakinsak dizinin limiti tektir.

Ispat. Bu Teoremin ispat1 Teorem 4.1.3 {in ispatina benzer sekilde yapilabilir.
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Teorem 4.1.6. Bir (X,d) asimetrik uzayi i¢in asagidaki ifadeler denktir.

(@) t_ Hausdorff uzayidir.
(b) X deki her geri yakinsak dizinin limiti tektir.

Ispat. Bu Teoremin ispati Teorem 4.1.4 {in ispatina benzer sekilde yapilabilir.

Teorem 4.1.7. Bir X asimetrik uzaymnda ileri yakinsak dizinin her alt dizisi de ileri

yakinsaktir.

Ispat. Kabul edelim ki (x,,) dizisi x e ileri yakinsak olsun. (x,,) dizisinin herhangi
bir alt dizisi (x,, ) olsun. Herhangi bir & >0 saysi alalim. (x,) dizisi x e ileri

yakinsak oldugundan

n > n, oldugunda d(x,x,) < € olacak sekilde & abagli bir n, sayisi vardir.

Ny = ny, =n, dir. Butakdirde n > ny oldugunda d(x,x,, ) < € olur. O halde (x,,)

dizisi x e ileri yakinsaktir.

Teorem 4.1.8. Bir X asimetrik uzayinda geri yakinsak dizinin her alt dizisi de geri

yakinsaktir.
Ispat. Bu Teoremin ispat: Teorem 4.1.7 nin ispatina benzer sekilde yapilabilir.

Teorem 4.1.9. (x,) X de bir dizi olsun. Eger (x,,) , xo € X e ileri yakinsak ve

Yo € X e geri yakinsak ise o zaman x, = y, dir.

. . . f ..
Ispat. € > 0 olsun. Kabul edelim ki x,, = x, olsun. Bu durumda her n > N; igin
d(xg, xX,) <§ olacak sekilde N; € N wvardir. Diger taraftan kabul edelim ki

b
X, = Yo olsun. Budurumda her n > N, i¢in d(x,, yo) <§ olacak sekilde N, € N

vardir. N = max{N;,N,} diyelim. O zaman her n > N ig¢in

d(XOJyO) < d(xO'xn) + d(xn'yo) <e¢€

olur. & keyfi oldugundan d(xy,y,) =0 elde ederiz. Asimetrigin tanimindaki (D1)

ozelliginden x, = y, elde edilir. Bu da ispat1 tamamlar.
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Teorem 4.1.10. Bir (X,d) asimetrik uzayda ileri yakinsaklik geri yakinsakligi

gerektiriyorsa ileri limit tektir.

Ispat. X asimetrik uzayinda (x,) ileri yakinsak bir dizi olsun. (x,) dizisinin [ # [’

olmak tizere hem [ hem de [’ sayilarma ileri yakinsadigini varsayalim. Bu durumda
d(l,I'y #0 dir. a =d(l,l') alam. a > 0 dir. x, I> [ oldugundan tim n > N; igin

d(l, x,) <% olacak sekilde bir N; € N vardir. x, A ' oldugundan ve ileri

b
yakinsaklik geri yakinsakligi gerektirdiginden x, — [’ olur. Bu durumda tim n > N,

icin d(x,,l") < % olacak sekilde bir N, € N vardir. N = max{N,, N,} alalim.

a

-

a=ﬂUUsd@%)+ﬂ%J0<%+

elde edilir ve bu ¢eligki nedeniyle [ = 1" bulunur.

Sonu¢ 4.1.11. Bir (X,d) asimetrik uzaymnda ileri yakinsak her dizi geri yakinsak

oluyorsa (X,7,) Hausdorff uzayidir.

Teorem 4.1.12. Bir (X,d) asimetrik uzayinda geri yakinsaklik ileri yakinsakligi

gerektiriyorsa geri limit tektir.
Ispat. Bu Teoremin ispat: Teorem 4.1.10 un ispatina benzer sekilde yapilabilir.

Sonu¢ 4.1.13. Bir (X,d) asimetrik uzaymnda geri yakinsak her dizi ileri yakinsak

oluyorsa (X,7_) Hausdorff uzayidir.

Onerme 4.1.14. d: XxX — R{ bir asimetrik olmak iizere her x,y € X i¢in

d(y,x) < c(x,y)d(x,y) olacak sekilde c:XxX — R fonksiyonu varsa
VxeEX 3 >0 3 yeBt(xe) = clx,y) <C(x)

Ozelligini saglayan yalnizca x e bagli bir C fonksiyonu vardir.

Bu durumda ileri limitlerin varligi geri limitlerin varligin1 gerektirir ve bdylece limitler

tektir.

23



Ornek 4.1.15. a > 0 olmak iizere

y— X, y=x

4xy) = {a(x -y),  y<x

seklinde tanimlanan d: RxR - R{ asimetrigi V x,y € R i¢in

C = max {a, i} olmak Uzere

Onerme 4.1.14. deki d(y,x) < C.d(x,y) kisitin saglar.
y<xBeM%@=x—ySCﬂ@—y)d%aﬁn&m@n%<cmMML
y=xise d(y,x) =a(y —x) <C.(y—x) eldeedilir. Buradan a < C bulunur.
Bu iki duruma gére Vx,y € R igin € = max {a,=} dr.

Ornek 4.1.16. a > 0 olmak iizere

y— X, y=x

N =latr v

seklinde tanimlanan d: RxR — R{asimetriginde

(n)nen = (x + %)

seklinde tanimlanan dizi hem ileri hem de geri yakinsaktir.
Gergekten Vx € R ve Vn € N i¢in

1
xX+-=—>x
n

oldugundan

1 1 1
lim d(x,x,,) = lim d(x,x+—) = lim <x+——x> =lim—=0
n—oo n—oo n n

n—oo n—-oon

bulunur. Bu durumda (x;,,) ey = (x + %) dizisi x e ileri yakinsaktir.
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1 1 a
lim d(x,,x) = lim d(x+—,x) = lim a(x+——x) =lim—=0
n—oo n n

n—-oo n—oo n—-oon
1 R .
bulunur. Bu durumda (x;,)neny = (x + ;) dizisi x e geri yakinsaktir.

Ornek 4.1.17. d: RxR - R} icin

X, y=Xx

dmw=f], y

asimetriginde

1
(Xn)nen = (x + E)

seklinde tanimlanan dizi ileri yakinsak olup geri yakinsak olmayan bir dizidir.
Gergekten Vx € X ve Vn €N i¢gin

1

xX+—>x

n

oldugundan

1 1 1
lim d(x,x,;,) = lim d(x,x+—) = lim (x+£—x> =lim—=0
n-—->oo

n—oo n n—-oo n—-oon

bulunur. Bu durumda (x;,)neny = (x + %) dizisi x e ileri yakinsaktir.

1
lim d(x,,x) = lim d(x +— ,X) =liml=1
n—oo n—oo n n—oo
bulunur. Bu durumda (x,,)neny = (x + %) dizisi x e geri yakinsak degildir.

Bu asimetrik uzayda ileri yakinsaklik geri yakinsaklig1 gerektirmez.

Ornek 4.1.18. d:RxR —» R} icin

x—Y, <x
d(x,y)={ 1y’ §>x
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asimetriginde

1
(Xn)nen = (x + E)

seklinde tanimlanan dizi ileri yakinsak olmayip geri yakinsak olan bir dizidir.
Gergekten Vx € X ve Vn €N i¢in

1

xX+—>x

n

oldugundan

1
lim d(x,x,) = lim d(x,x+—> =liml=1
n—oo n—oo n

n—-oo

bulunur. Bu durumda (x;,)neny = (x + %) dizisi x e ileri yakinsak degildir.

1 1 1
lim d(x,,x) = lim d(x+—,x)= lim (x+——x)= lim—=20
n—oo n n

n—oo n-oo n-on

bulunur. Bu durumda (x,,)neny = (x + %) dizisi x e geri yakinsaktir.

Bu asimetrik uzayda geri yakinsaklik ileri yakinsaklig1 gerektirmez.

Ornek 4.1.19. d:RxR - R} igin

_ y—X, y=Xx
) ={or yy yex

asimetriginde

1
(xn)neN = (X - g)
seklinde tanimlanan dizi hem ileri yakinsak hem de geri yakinsaktir.

Gergekten Vx € X ve Vn €N i¢in
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x——<x

oldugundan

1 1 a
lim d(x,x,;,) = lim d(x,x——) = lim a<x— (x——)) =lim—=0
n—-oo n—oo n

n n—-oo n-oon

bulunur. Bu durumda (x;,) ey = (x - %) dizisi x e ileri yakinsaktir.

1 1 1
lim d(x,,x) = lim d(x—— ,x) = lim <x— (x——)) =lim—-—=0
n—oo n—oo n n

n—-oo n-on

bulunur. Bu durumda (x;,,)neny = (x — %) dizisi x e geri yakinsaktir.

Ornek 4.1.20. d:RxR - R} igin

X, y=x

d(x,y)={y_1 , 7o

asimetriginde
1
(xn)neN = (X - E)

seklinde tanimlanan dizi ileri yakinsak olmayip geri yakinsak bir dizidir.
Gergekten Vx € X ve Vn €N i¢in
x——<x
n
oldugundan
lim d(x,x,,) = lim d (x,x ——> =liml=1
n—oo n—-oo n n-—-o

bulunur. Bu durumda (x,,)neny = (x - %) dizisi x e ileri yakinsak degildir.
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) _ 1 _ 1 1
lim d(x,,x) = lim d(x—— ,X) = lim (x— (x——)) =lim—-=0
n—oo n—oo n n

n—oo n—-oon

bulunur. Bu durumda (x,,) ey = (x — %) dizisi x e geri yakinsaktir.

Bu asimetrik uzayda geri yakinsaklik ileri yakinsakligi gerektirmez.

Ornek 4.1.21. d:RxR —» R} icin

xX—Y, <x
d(x,y>={ AN

asimetriginde

1
(xn)neN =X E

seklinde tanimlanan dizi ileri yakinsak olup geri yakinsak olmayan bir dizidir.

Gergekten Vx € X ve Vn €N igin
x——<x
n

oldugundan

1 1 1
lim d(x,x,) = lim d(x,x——) = lim <x—<x——)> =lim—=0
n—oo n—oo n n

n—oo n-oon

bulunur. Bu durumda (x,,)neny = (x — %) dizisi x e ileri yakinsaktir.

1
lim d(x,,x) = lim d(x —— ,X) =liml=1
n-oo n—-oo n n—oo

bulunur. Bu durumda (x;,)nen = (x - %) dizisi x e geri yakinsak degildir.

Bu asimetrik uzayda ileri yakinsaklik geri yakinsakligi gerektirmez.
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Ornek 4.1.22. d:RxR - R} igin

X, y =X

d(x,y)={y_1 ’ Yy <x

asimetriginde

1
(Xn)neny = X (1 + E)
(x € R*) seklinde tanimlanan dizi ileri yakinsak olup geri yakinsak degildir.
Gergekten Vx € X ve Vn €N i¢in
x
X+—>x
n

oldugundan

lim d(x,x,) = lim d (1+1) = lim (x+>~x) = lim > =0
nl_l;l;lo X, Xn _nllrc{o X, X n = 11imix n X )] = llm =

n—oo n—-oon

bulunur. Bu durumda (x;,)ney = X (1 + %) dizisi x e ileri yakinsaktir.

1
lim d(x,,x) = lim d(x (1 +H> ,X) =liml=1

n—oo n—oo n—oo

bulunur. Bu durumda (x;) ey = X (1 + %) dizisi x e geri yakinsak degildir.

Bu asimetrik uzayda ileri yakinsaklik geri yakinsakligi gerektirmez.

4.2. Asimetrik Uzaylarda Ileri ve Geri Stmirhlik

Metrik uzaydaki smirlilik tanimindan hareketle asimetrik uzayda sinirhilik kavramini
diisiindiigiimiizde iki tiirlii sinirlilik tanimi ile karsilasiriz. Bunlar ileri sirlilik ve geri

siirlilik kavramlaridir.
Tamm 4.2.1 (Ileri Siirlilik) Bir S © X kiimesi, eger S € B (x, €) olacak sekilde

x € X ,& > 0 varsa ileri snirhdir.
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Tamim 4.2.2 (Geri Smurlilik) Bir S € X kiimesi, eger S € B~ (x, €) olacak sekilde
x € X ,e > 0 varsa geri sinirhdir.
Tamm 4.2.3. (Dizilerde ileri sinirlilik)
Her n pozitif tamsayist i¢in
d(x,x,) <M

olacak sekilde bir x € X ve bir M pozitif sayisi varsa (x,) dizisine ileri stnirhidir

denir. Buna gore x,, dizisinin ileri sinirli olmasi igin gerek ve yeter kosul
{x, : neN }c BT (x,M)
olacak sekilde bir x € X ve bir M pozitif sayisinin var olmasidir.
Tamm 4.2.4. (Dizilerde Geri smirlilik)
Her bir n pozitif tamsayis1 igin
d(x,x) <M

olacak sekilde bir x € X vebir M pozitif sayisi varsa (x,) dizisine geri sinirlidir

denir. . Buna gore x, dizisinin geri sinirli olmasi i¢in gerek ve yeter kosul
{x, : neN}cB (x,M)
olacak sekilde bir x € X ve bir M pozitif sayisinin var olmasidir.

Ornek 4.2.5. (R,d) uzayinda

y—X, y=x
d(x,y)={ 1 y<Xx

(1 + %) dizisini goz oniine alalim. Her n pozitif tamsayist i¢in

1
d(l,xn) = E <2
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olacak sekilde bir 2 pozitif sayist bulundugundan (1 +%) dizisi ileri sinirlidir.

Ornek 4.2.6. (R,d) uzaymda

- X, =X
d(x,y)={y 1 §<x

(1 — %) dizisini gz oniine alalim. Her n pozitif tamsayist i¢in
1
d(x,,x) =d(x,, 1) = - <1

olacak sekilde bir 1 pozitif sayist bulundugundan (1 y %) dizisi geri sinirlidir.

Teorem 4.2.7. X asimetrik uzayinda ileri yakinsak olan her dizi ileri sinirlidir.
Ispat. Kabul edelim ki (x,,) dizisi ileri yakinsak olsun.

€ =1i¢in n=ny oldugunda d(x,x,) <1 olacak sekilde bir n, pozitif tam sayisi

vardir.
max{d(x, x), d(x, x3), ...d(x, xp,—1), 1} = M diyelim. Bu takdirde
Her bir n pozitif tamsayis1 i¢in

d(x,x,) <M

olacak sekilde bir x € X ve bir M pozitif sayis1 bulunur. Bu da (x,) dizisine ileri

sinirlt olmas1 demektir.

Teorem 4.2.8. X asimetrik uzayinda geri yakinsak olan her dizi geri sinirlidir.

Ispat. Bu Teoremin ispat: Teorem 4.2.7 {in ispatina benzer sekilde yapilabilir.

Teorem 4.2.9. Bir asimetrik uzayda ileri sinirli kiimelerin sonlu birlesimi ileri sinirhdir.

Ispat: (X,d) bir asimetrik uzay ve A;,A4,,...,A, € X kiimeleri ileri sinirli olsun.

i=12,..n i¢in A; € B*(x;,&) olacak sekilde bir x; € X ve bir & >0 vardir.
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Xo €EX herhangi bir nokta olmak iizere M; =max{e; : i =1,2,..n},
M, = max{d(xg,x;) : i =1,2,..n} olsun. M= M; + M, alalim.

™ 1 A; € B*(xg, M) oldugunu gosterelim. x € U~ 4; alalim. Bu durumda 3 i, i¢in
x €4;, olur. A; €B*(x;,&,) oldugundan x € B¥(x;,&;,) olur. Bdylece
d(x;,x) <eg, dir. d(xo,x) < d(xg,x;,) +d(x;,x) <My+e, <M +My;=M
oldugundan x € B*(xy,, M) elde edilir. Buradan U-,A4; € B*(xo, M) dir. Yani

Ui, 4; kimesi ileri smirlt bulunur.
Teorem 4.2.10. Bir asimetrik uzayda geri sinirl kiimelerin sonlu birlesimi geri sinirlidir.

Ispat. Bu Teoremin ispat: Teorem 4.2.9 un ispatina benzer sekilde yapilabilir.

4.3. Asimetrik Uzaylarda ileri ve Geri Cauchy Dizileri

Asimetrik taniminda simetri 6zelligi bulunmadigindan asimetrik uzayda iki tiirlii Cauchy

kavrami olacaktir. Bunlar ileri Cauchy ve geri Cauchy kavramlaridir.
Tanmm 4.3.1. (X,d) bir asimetrik metrik uzay olsun. X deki bir (x,,) dizisi i¢in

eger her e >0 ve her m>n=>N igin d(x,, x,) < & olacak sekilde bir N € N

varsa
(x,,) dizisine ileri Cauchy dizisi denir.

Bir asimetrik uzayda (x,) dizisinin ileri yakinsak olmasi ileri Cauchy dizisi olmasini

gerektirmez.

Ornek 4.3.2. d:RxR — R{ igin

y—X, y=x
d(x,y)={ 1 y<Xx

asimetrigi tarafindan elde edilen asimetrik uzayda sabit herhangi bir x € X i¢in

(n)nen = (x + %)
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seklinde tanimlanan dizi ileri yakinsak olmasina ragmen ileri Cauchy dizisi degildir.

Gergekten,m>n >N  i¢in

mz=2n

1 1

_2_

n m

1 1
X+—-—2=2x+—

n m

oldugundan,

V ¢>0 i¢in V m=>n >N oldugunda

1 1
d(x,, xy) = d(x+5 , X +E) =1
bulundugundan (x,)ney = (x + %) dizisi x e ileri yakinsak olmasina ragmen ileri
Cauchy dizisi degildir.
Tanmm 4.3.3. (X,d) bir asimetrik metrik uzay olsun. X deki bir (x,,) dizisi igin

egerher ¢ >0 ve her m>n >N i¢in d(x,,,x,) <& olacak sekilde bir N € N

varsa
(x,) dizisine geri Cauchy dizisi denir.

Bir asimetrik uzayda (x,) dizisinin geri yakinsak olmasi geri Cauchy dizisi olmasini

gerektirmez.

Teorem4.3.4. (X,d) asimetrik uzayinda ileri Cauchy dizisinin her alt dizisi ileri Cauchy

dizisidir.

Ispat. (x,) dizisi X icinde bir ileri Cauchy dizisi ve (xn,) da (x,) dizisinin herhangi
bir alt dizisi olsun. € > 0 verilsin. Her m > n > N igin d(x,, x,,) < € olacak sekilde

bir N € N vardir. (xy,) dizisi (x,) inbiraltdizisi olduundan m = k = N oldugunda
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n, =n, = N gerceklenir. Bu N €N i¢cin m =k > N oldugunda d(xnk,xnm) <eg

gergeklenir. Buise (x,,) dizisinin ileri Cauchy oldugunu gosterir.

Teorem 4.3.5. (X, d) asimetrik uzayinda geri Cauchy dizisinin her alt dizisi geri Cauchy

dizisidir.
Ispat. Bu Teoremin ispat1 Teorem 4.3.4 {in ispatina benzer sekilde yapilabilir.

Ornek 4.3.6. d:RxR - R} icin

- X, =X
d(x,y)={y 1 §<x

asimetrigi tarafindan elde edilen asimetrik uzayda sabit herhangi bir x € X i¢in

(Xn)nen = (x - %)

seklinde tanimlanan dizi ileri Cauchy dizisidir. Gergekten, m = n >N igin

mz=2n

1 1

_2_

n m

1 1
X——2=2Xx——

m n

oldugundan,

V £>0 icin V m=n >N oldugunda %—%<1< < ¢ olacak sekilde bir N € N

1
n- N
vardir. m = n = N oldugunda
d( )—d( 1 1)_1 1<
Xn, Xm) = X—— X =——— <&

gerceklendiginden (x,)neny = (x - %) dizisi ileri Cauchy dizisidir.
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Ornek 4.3.7. d:RxR - R} igin

- X, =X
d(x,y)={y 1 §<x

asimetrigi tarafindan elde edilen asimetrik uzayda sabit herhangi bir x € X i¢in

(tn)nen = (x + %)

seklinde tanimlanan dizi geri Cauchy dizisidir. Gergekten,m >n > N ig¢in

SR
\Y
e

1
xXt+t—2x+—
n m
oldugundan,

V £€>0 icin V m >n = N oldugunda %—%<%S%<£ olacak sekilde bir N € N
vardir. m =2 n = N oldugunda
1 1 1 1
d(Xpm, Xn) = d(x+a,x+£)=———<s

gerceklendiginden (x,) ey = (x + %) dizisi geri Cauchy dizisidir.

Ornek 4.3.8. d:RxR — R} igin

X, y =X

d(x,y)={y_1 Y <x

asimetrigi tarafindan elde edilen asimetrik uzayda sabit herhangi bir x € X i¢in

(n)nen = (x - %)
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seklinde tanimlanan dizi geri yakinsak olmasina ragmen geri Cauchy dizisi degildir.

Gergekten,m>n >N  i¢in

m>n

1_1

-> —

n-m

1 1
X——2Xx—=

m n

oldugundan,

V ¢>0 i¢in V m=>n >N oldugunda

1 1
d(xm, xp) = d(x—a,x—g) =1

bulundugundan (x,)neny = (x - %) dizisi x e geri yakinsak olmasina ragmen geri

Cauchy dizisi degildir.

Tamm 4.3.9. (X,d) bir asimetrik uzay olmak tizere terimleri S de olan her ileri Cauchy

dizisi ileri yakinsak ise, S € X e ileri tamdir denir.
Terimleri S de olan her geri Cauchy dizisi geri yakinsak ise, S € X e geri tamdir denir.

Teorem 4.3.10. Bir (X, d) asimetrik uzayinda, eger bir ileri Cauchy dizisi ileri yakinsak

bir alt diziye sahipse kendisi de ileri yakinsaktir.

Ispat. (x,) dizisi, (X,d) asimetrik uzayinda bir ileri Cauchy dizisi olsun. (xnk)

altdizisi x € X e ileri yakinsak olsun. & > 0 olsun.

(x,) dizisi ileri Cauchy dizisi oldugu ig¢in her € >0 ve her m>n=>=N igin
d(x,, x,) < & olacak sekilde bir N € N vardir. nj, = N ve d(x, xnk) <§ olacak

sekilde k € N segeriz.

n=>n, >N igin d(x,x,) < d(x, xnk) + d(xnk,xn) < ¢ olur.
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f
O halde x, —» x olur.

Teorem 4.3.11. Bir (X, d) asimetrik uzayimnda , eger bir geri Cauchy dizisi geri yakinsak

bir alt diziye sahipse kendisi de geri yakinsaktir.
Ispat. Bu Teoremin ispat: Teorem 4.3.10 un ispatina benzer sekilde yapilabilir.

Sonu¢ 4.3.12. Bir (X,d) asimetrik uzayinda , eger her ileri Cauchy dizisi ileri yakinsak

bir alt diziye sahipse ileri tamdir.

Sonu¢ 4.3.13. Bir (X,d) asimetrik uzayinda , eger her geri Cauchy dizisi geri yakinsak

bir alt diziye sahipse geri tamdir.
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BOLUM 5. ASIMETRIK UZAYLARDA KOMPAKTLIK
CESITLERI

Bu béliimde, asimetrik uzaylarda ileri ve geri kompaktlik, asimetrik uzaylarda ileri ve

geri dizisel kompaktlik kavramlar1 ayrintili olarak incelenecektir.

5.1. Asimetrik Uzaylarda fleri ve Geri Kompakthk

Asimetrik taniminda simetri 6zelligi saglanmadigindan asimetrik uzaylarda iki tiirlii

kompaktlik tanim1 olusacaktir. Bunlar ileri kompakt ve geri kompakt kavramlaridir.

Tanmim 5.1.1. (X, d) bir asimetrik uzay olmak tizere bir S ¢ X kiimesi, S nin ileri

toplojideki her agik ortiisiiniin sonlu bir alt Ortiisii varsa, ileri kompakttir.

(X, d) birasimetrik uzay olmak tizere bir S c X kiimesi, S nin geri toplojideki her agik

oOrtlistinlin sonlu bir alt ortiisti varsa, geri kompakttir.

Tamm 5.1.2. (X,d) bir asimetrik uzay ve S c X kiimesi olmak {izere terimleri S de
olan her dizinin limiti S de olan ileri yakinsak bir alt dizisi varsa, S Yye ileri dizisel

kompakttir denir.

(X,d) birasimetrik uzay ve S c X kiimesi olmak tizere terimleri S de olan her dizinin

limiti S de olan geri yakinsak bir alt dizisi varsa, S Yye geri dizisel kompakttir denir.

Teorem 5.1.3. d: XxX — R{ bir asimetrik olsun. Eger (X, d) ileri dizisel kompakt ve

b . f .
x, > x ise x, — x dir.

Ispat. Herhangi bir x € X igin x,, » x seklinde bir (x,) dizisi diisiinelim. X ileri

dizisel kompakt oldugundan dolay1, (x,) dizisi bir ileri yakinsak (xnk) alt dizisine

. f .
sahiptir. j - o igin x, — y € X olur. Geri yakinsak dizinin her alt dizisi de geri
]

b
yakinsak oldugundan dolay1 j — oo igin x, — x € X bulunur.
J
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Teorem 4.1.9. dan dolay1 x =y olur. Dolayisiyla j — o igin xp,, Z> x elde edilir.
]

. . f ..
Kabul edelim ki x, — x olmasin. O zaman her k € N i¢in d(x,x,, ) =g, olacak

sekilde (xnk) alt dizisi ve gy, > 0 vardir. Fakat bu alt dizinin x e ileri yakinsayan bir

(xnk,) alt dizisi vardir. Dolayisiyla j € N vardir 6yle ki j = ] i¢in bir d (x, xnkl) <e¢
J J
olur. Bu agikca bir ¢eligkidir. Yani x,, L X .

Sonug olarak, X ileri dizisel kompakt oldugunda, dizinin limiti tek olur ve geri
limit ileri limiti gerektirir.
Teorem 5.1.4. d: XxX - R¢ bir asimetrik olsun. Eger (X, d) geri dizisel kompakt ve

f . b
Xp = x ise x, = x .

Ispat. Bu Teoremin ispat1 Teorem 5.1.3 iin ispatina benzer sekilde yapilabilir.

Teorem 5.1.5. Bir asimetrik uzayin ileri dizisel kompakt olmasi i¢in gerek ve yeter kosul

sonsuz her alt kiimesinin en az bir ileri y1gi1lma noktasinin var olmasidir.

Ispat. (X,d) bir asimetrik uzay olsun. Kabul edelim ki X ileri dizisel kompakt olsun
ve X insonsuz bir A alt kiimesi verilsin. Terimleri A da olan farkli noktalardan olusan
bir (x,) dizisi olustirabiliriz. X ileri dizisel kompakt oldugundan, (x,) dizisinin ileri

yakinsak bir (xnk) alt dizisi vardir. Bu ileri yakinsadigi noktaya x diyelim.

Burada x in A nn ileri yigilma noktasi oldugunu gosterecegiz.

Bir £ > 0 verilsin. x,, L x oldugundan V k = N igin x,, € B*(x, £) olacak sekilde

bir N € N vardir.

Burada (x,) dizisinin terimleri birbirinden farkli oldugundan 3 k = N igin x,, # x
dir. Dolayisiyla k = N igin B*(x,e) A ninx den farkli en az bir Xp, €lemaniniigerir.

Buda x in, A min bir ileri yigilma noktasi oldugunu gosterir.

Boylece X in her sonsuz alt kiimesi, X de bir ileri y1g1lma noktasina sahiptir.
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Kabul edelim ki X in her sonsuz alt kiimesi, X de bir ileri y1gilma noktasina sahip olsun.

(x,) X de herhangi bir dizi olsun.

A, (x,) dizisinin degerler kiimesini gostermek tizere, A ya sonlu kiimedir ya da sonsuz

kiimedir.

A sonlu kiime ise (x,) dizisinin bir tane elemani1 sonsuz kere tekrar edeceginden

terimleri bu elemandan olusan sabit alt dizi ileri yakinsak olur.

A sonsuz kiime olsun. Kabulden A nin en az bir ileri y1gilma noktas1 vardir. Bu ileri
yigilma noktas1 x olsun. Simdi B*(x, 1) ileri agik yuvarini alalim. Bu ileri agik yuvar

A nmn sonsuz c¢oklukta elemanini icerir. Bu elemanlar i¢inden x den fakli bir

Xn

, elemanim segelim. B* (x, 1) ileri agik yuvart A nin sonsuz ¢oklukta elemanini
2

igerir. Bu elemanlar i¢inden n, > n; olmak iizere bir x,, segelim.

Benzer sekildle B™ (x, %) ileri acik yuvart A nin sonsuz ¢oklukta elemanini igerir.
Bu elemanlar iginden ns >n, bir x,, secelim.

Bu sekilde devam ederek (x,,) dizisinin

1
Vk €N igin (xnk) € Bt (x,E)

d ! k
(x,xnk)<z—>0 - o

gercekleyen bir (xnk) alt dizisi bulunmus olur. Bu durumda X deki her dizinin ileri

yakinsak alt dizisi bulundugundan X ileri dizisel kompakttir.

Teorem 5.1.6. Bir asimetrik uzayin geri dizisel kompakt olmasi i¢in gerek ve yeter kosul

sonsuz her alt kiimesinin en az bir geri yi1gilma noktasinin var olmasidir.

Ispat. Bu Teoremin ispat: Teorem 5.1.5 in ispatina benzer sekilde yapilabilir.
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Teorem 5.1.7. Bir asimetrik uzay ileri kompakt ise sonsuz her alt kiimesi en az bir ileri

y1g1lma noktasina sahiptir.

Ispat. (X,d) ileri kompakt asimetrik uzay olsun. X in sonsuz her alt kiimesi en az bir
ileri y1gilma noktasina sahip olmasm. X in bir ileri yigilma noktasina sahip olmayan en

az bir sonsuz A altkimesi vardir.

Herhangi bir x € X alalim. x, A nn bir ileri yigilma noktas1 degildir. Dolayisiyla A
nin x den baska higbir elemanini icermeyen bir B¥(x,&,) ileri agik yuvari vardir.

Boylece

o , xg¢A

B+(x,£x)nA={ o) . xed (D

olacaktir.

® ={B*(x,&,) : x€E€X}

smifi, X in bir agik ortiistidiir. X ileri kompakt oldugundan, ® nin sonlu bir alt ortiisii

vardir. Bu sonlu ortii
{B+(xl-,£xi) : x; €EX 1<i<N}

olsun. Bu durumda

N
X= U B*(x;, sxl.)
i=1

seklinde yazilabilir.

N
A=ANnX=AnN (U B+(xi,exi)>

=1

N N
= U (A N B+(xi,8xi)) c U{xi} (1 den)

l
= {Xl,xZ, ...,.XN}
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bulunur. Yani A , X in sonlu bir alt kiimesi olur. Bu ¢eliskiden dolay1 X in sonsuz her

alt kiimesi en az bir ileri yigilma noktasina sahiptir.

Teorem 5.1.8. Bir asimetrik uzay geri kompakt ise sonsuz her alt kiimesi en az bir geri

yigilma noktasina sahiptir.
Ispat. Bu Teoremin ispati Teorem 5.1.7 nin ispatina benzer sekilde yapilabilir.
Teorem 5.1.9. X ileri kompakt ise ileri dizisel kompakttir.

Ispat. Eger X ileri dizisel kompakt degilse, X de ileri yakinsak alt dizisi olmayan bir
(x,) dizisi vardir. (x,) dizisinin higbir alt dizisi ileri yakinsak olmadigindan, sonsuz

farkli noktalardan olusur.

x € X olsun. X bir asimetrik uzay oldugundan x noktasinda igige azalan bir yerel bazi
vardir. Her bir baz elemani, (x,) dizisinin x den farkli bir elemanini i¢eriyor olsaydi,
bu eleman segilerek olusturulan alt dizi x e yakimsardi. O halde B; (x) (x,) dizisinin

x den farkli hi¢gbir elemanini icermeyecek sekilde bir €, > 0 vardir.
Bu sekilde elde edilen {B;;C (x): xeX } X in bir acik Ortiistidiir.

Ancak bu ileri agik yuvarlarin sonlu sayida birlesimi (x,,) dizisinin sonlu sayida terimini
icereceginden X in bir sonlu agik ortiisii olamaz. O halde X ileri kompakt degildir. Bu

ise bir ¢eligkidir. Yani X ileri dizisel kompakttir.
Teorem 5.1.10. X geri kompakt ise geri dizisel kompakttir.

Ispat. Bu Teoremin ispat: Teorem 5.1.9 un ispatina benzer sekilde yapilabilir.
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BOLUM 6. SONUC

Bu calismada asimetrik uzaylarda ileri ve geri yakinsaklik, ileri ve geri kompaktlik, ileri
ve geri dizisel kompaktlik kavramlari ele alinmis ve su ana kadar yapilmis olan
arastirmalar incelenmekle birlikte daha dnceki aragtirmalarda yer almayan bazi teorem ve
sonuglar da sunulmustur. Metrik uzaylardan farkli olarak, bir asimetrik uzayda bir ileri
(geri) yakinsak dizinin ileri(geri) limitinin tek olmak zorunda olmadig1 gosterilmis ve
ileri(geri) limitin tekligi i¢in gerek sartin dizinin ileri(geri) yakinsadigi noktaya geri (ileri)
yakinsamasi oldugu ifade edilmistir. Yine metrik uzaylardan farkli olarak, ileri(geri)
yakinsak bir dizinin ileri(geri) Cauhcy dizisi olmadigi asimetrik uzay Ornekleri
sunulmustur. Ayrica bir asimetrik uzay ileri(geri) dizisel kompakt ise ileri(geri) limitin

tek oldugu sonucuna varilmaistir.
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