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Boş olmayan bir  𝑋  kümesi üzerinde bir pseudo-asimetrik,  𝑋 × 𝑋  üzerinde her         

𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑝(𝑥, 𝑥) = 0  ve  𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦)  olacak şekilde negatif 

olmayan reel değerli bir  𝑝  fonksiyonudur. Eğer  𝑝  ek olarak  𝑝(𝑥, 𝑦) = 0  olması  𝑥 = 𝑦  

olmasını da gerektiriyorsa  𝑝  ye  𝑋 üzerinde asimetrik denir.  𝑝 asimetrik ise her 𝑥, 𝑦 ∈ 𝑋  

için  𝑞(𝑥, 𝑦) = 𝑝(𝑦, 𝑥)  ile tanımlanan  𝑞  da bir asimetrik olur. Bu asimetriğe  𝑝  nin 

eşleniği denir.  𝐵+(𝑥, 𝑝, 𝜀) = {𝑦 ∈ 𝑋 ∶  𝑝(𝑥, 𝑦) < 𝜀}  kümesi  𝑥  merkezli  𝜀  yarıçaplı 

ileri açık yuvar,  𝐵−(𝑥, 𝑝, 𝜀) = {𝑦 ∈ 𝑋 ∶  𝑝(𝑥, 𝑦) < 𝜀}  kümesi de  𝑥  merkezli  𝜀  yarıçaplı 

geri açık yuvardır. Bir asimetrik uzayda bir dizinin yakınsaklığı ileri topoloji ve geri 

topolojiye bağlı olduğundan ileri yakınsaklık ve geri yakınsaklık adı verilen iki türlü 

yakınsaklık türü ortaya çıkar. Bu tez çalışmasında ileri topoloji, geri topoloji, ileri 

yakınsaklık, geri yakınsaklık, ileri Cauchy dizisi, geri Cauchy dizisi, ileri kompaktlık, 

geri kompaktlık kavramları ele alınmış ve ilgili teoremler ispatlarıyla birlikte verilmiştir. 

 

 

Anahtar Sözcükler: Asimetrik, ileri topoloji, geri topoloji, ileri yakınsak dizi, geri 

yakınsak dizi, ileri kompaktlık, geri kompaktlık. 
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A pseudo-asymmetric on a non-empty set 𝑋 is a non-negative real-valued function 𝑝 on 

𝑋 × 𝑋  such that for  𝑥, 𝑦, 𝑧 ∈ 𝑋  we have  𝑝(𝑥, 𝑥) = 0  and  𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦).  

If  𝑝  satisfies the additional condition that  𝑝(𝑥, 𝑦) = 0  implies  𝑥 = 𝑦  then  𝑝  is an 

asymmetric on  𝑋, so is  𝑞  where  𝑞  is defined by  𝑞(𝑥, 𝑦) = 𝑝(𝑦, 𝑥)  for  𝑥, 𝑦 ∈ 𝑋, and  

𝑞 is called the conjugate of  𝑝 .  The set  𝐵+(𝑥, 𝑝, 𝜀) = {𝑦 ∈ 𝑋 ∶  𝑝(𝑥, 𝑦) < 𝜀}  is the 

forward ball with centre  𝑥  and radius  𝜀 ,  the set  𝐵−(𝑥, 𝑝, 𝜀) = {𝑦 ∈ 𝑋 ∶  𝑝(𝑥, 𝑦) < 𝜀}  

is the backward ball with centre  𝑥  and radius  𝜀 . The topology generated by the forward 

balls is called forward topology, the topology generated by the backward balls is called 

backward topology. Convergence of a sequence of points in an asymmetric space depens 

on forward topology and backward topology, so there are two kinds of convergence of a 

sequence in an asymmetric space, namely forward convergence and backward 

convergence.In this thesis we study forward topology, backward topology, forward 

convergence, backward convergence, forward Cauchyness, backward Cauchyness, 

forward compactness, backward compactness, and give proofs of related theorems.  

 

 

Keywords: Asymmetric, forward topology, backward topology, forward convergent 

sequence, backward convergent sequence, forward compactness, backward compactness,  
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KISALTMALAR 

ℝ  : Reel sayılar kümesi 

ℕ  : Doğal sayılar kümesi 

ℤ  : Tam sayılar kümesi 

ℝ𝟎
+    : Negatif olmayan reel sayılar kümesi 

       (𝑿, 𝒅)  : Asimetrik uzay 

       𝝉+  : 𝑋  asimetrik uzayının ileri açık yuvarları tarafından oluşturulan 

ileri topoloji 

       𝝉−  : 𝑋  asimetrik uzayının geri açık yuvarları tarafından oluşturulan 

geri topoloji 

𝑩+(𝒙, 𝜺) : İleri açık yuvar 

𝑩−(𝒙, 𝜺) : Geri açık yuvar 

𝑨′+
    : 𝐴  kümesinin bütün ileri yığılma noktalarının kümesi   

𝑨′−
    : 𝐴  kümesinin bütün geri yığılma noktalarının kümesi   

𝑨̅+  : 𝐴  nın ileri kapanışı 

𝑨̅−  : 𝐴  nın geri kapanışı 

𝒙𝒏  
𝒇
→  𝒙𝟎 : (𝑥𝑛)  dizisi  𝑥0  a ileri yakınsak 

𝒙𝒏  
𝒃
→  𝒙𝟎 : (𝑥𝑛)  dizisi  𝑥0  a geri yakınsak 
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BÖLÜM 1. GİRİŞ 

Asimetrik uzaklık fonksiyonu ilk kez 1914 yılında F. Hausdorff tarafından 

tanımlanmıştır. Hausdorff, bir metrik uzayın herhangi iki alt kümesinin birbirine olan 

uzaklığını ifade eden ve simetri özelliği taşımayan bir uzaklık tanımlayarak asimetri 

kavramını ortaya atmıştır. Asimetrik uzaylar ise ilk olarak 1931 yılında Wilson (1931) 

tarafından quasi-metrik kavramı tanımlanarak çalışılmıştır. Daha sonra Albert (1941) ve 

Stoltenberg (1969) tarafından quasi-metrik uzaylar olarak çalışılırken, Ribeiro (1943) bu 

uzayları zayıf metrikli uzaylar olarak adlandırmıştır. Reilly (1982) ve Künzi (1983) quasi-

pseudo metrik uzaylarda çalışmışlardır. İleri Cauchy ve geri Cauchy kavramları reel sayı 

dizileri için Çakallı (2018) tarafından çalışılmıştır. Ayrıca Collins ve Zimmer (2007) 

asimetrik uzaylarda yakınsaklık, kompaktlık ve total sınırlılık kavramlarını incelemiştir. 

Cobzaş (2012) quasi-metrik uzaylar konusundaki çalışmaları derlemiştir. Dağcı ve 

Çakallı (2022) asimetrik uzaylarda düzgün yakınsaklık üzerinde çalışmıştır. 

Asimetrik uzaylarda, metrik uzaylardan farklı olarak simetri özelliği gerçeklenmek 

zorunda olmadığından, yakınsaklık, tamlık, kompaktlık, total sınırlılık gibi kavramlar 

metrik uzayda olduğundan farklı ifade edilmektedir. 

Asimetrik uzaylarda simetri özelliğinin olmaması bu uzaylarda iki türlü topololojinin var 

olmasını ve dolayısıyla yakınsaklık, tamlık, kompaktlık ve total sınırlılık gibi temel 

kavramların iki türlü incelenmesini ortaya çıkarmıştır. 

Bu tez çalışmasında bir uzaklık fonksiyonu olan asimetrik kavramı ve asimetrik uzay 

kavramı ayrıntılı olarak incelenecek, bir asimetrik uzayın ileri topoloji ve geri topoloji 

adı verilen topolojileri ve bu topolojilerin özellikleri kullanılarak elde edilen temel 

kavramlar, teoremler ve sonuçlar sunulacaktır. 

Bu tez çalışması beş bölümden oluşmaktadır. İkinci bölümde daha sonraki bölümlerde 

kullanılacak olan temel tanım, teorem ve sonuçlar verilecektir. 
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Üçüncü bölümde bir asimetrik uzay üzerinde tanımlı olan asimetrik tarafından elde edilen 

ileri açık yuvarlar ve geri açık yuvarlar tanımlanarak bu yuvarlar tarafından üretilen ileri 

topoloji ve geri topoloji kavramları üzerinde durulacaktır. Ayrıca tanımlanan bu ileri ve 

geri topolojileriyle bir asimetrik uzayın birinci sayılabilir bir uzay olduğu ayrıntılı olarak 

ifade edilecektir.  

Dördüncü bölümde bir asimetrik uzayda ileri ve geri yakınsaklık, ileri ve geri sınırlılık, 

ileri ve geri Cauchy dizisi, ileri ve geri tamlık kavramları ele alınacaktır. Metrik 

uzaylardan farklı olarak, bir asimetrik uzayda bir ileri yakınsak dizinin ileri limitinin tek 

olmak zorunda olmadığı gösterilecek ve ileri limitin tekliği için gerek şartın dizinin ileri 

yakınsadığı noktaya geri yakınsaması olduğu ifade edilecektir. Benzer durum geri 

yakınsaklık için de gösterilecektir. 

Beşinci bölümde ise asimetrik uzaylarda ileri ve geri kompaktlık, ileri ve geri dizisel 

kompaktlık kavramları ele alınacaktır. Ayrıca bir asimetrik uzay ileri dizisel kompakt ise 

ileri limitin tek olduğu sonucuna varılacaktır. Bu durumun geri dizisel kompaktlık için de 

geçerli olduğu ifade edilecektir. 

Sonuç bölümünde asimetrik uzaylarda elde edilen teoremlerin ve sonuçların özeti 

verilecektir. 
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BÖLÜM 2. ÖN BİLGİLER 

Bu bölümde topolojik uzaylar ve metrik uzaylar ile ilgili temel tanım, teorem ve sonuçlar 

verilecektir. 

2.1. Topolojik Uzaylar 

Bu kesimdeki tanım ve teoremler Çakallı (1997) kaynağı kullanılarak hazırlanmıştır. 

Tanım 2.1.1.  𝑋  herhangi bir küme olsun.  𝑋  in alt kümelerinin bir  𝜏  topluluğu eğer 

(T1)  𝑋  ve  ∅  𝜏  ya aittir, 

(T2)  𝜏  nun herhangi iki elemanının kesişimi  𝜏  ya aittir, 

(T3)  𝜏  nun elemanlarının herhangi bir ailesinin birleşimi  𝜏  ya aittir. 

özelliklerini sağlıyorsa  𝜏  ya  𝑋  üzerinde bir topoloji denir.  𝜏  nun her bir elemanına  𝑋  

de  𝜏  topolojisine göre açık küme veya  𝜏  nun söylenmemesi karışıklık çıkarmadığında  

𝑋  de açık küme ya da kısaca açık küme denir. 

 Tanım 2.1.2.  (𝑋, 𝜏)  bir topolojik uzay,  𝑈 ⊂ 𝑋  ve  𝑢 ∈ 𝑈  olsun. Eğer  𝑢 ∈ 𝐴  ve  𝐴 ⊂ 𝑈  

olacak şekilde bir  𝐴 ∈ 𝜏   bulunabiliyorsa  𝑈  kümesine  𝑢  noktasının bir komşuluğu  denir. 

Tanım 2.1.3.  (𝑋, 𝜏)  bir topolojik uzay olsun.  Eğer  𝑋  in  her farklı iki elemanının ayrık 

komşulukları bulunabiliyorsa yani  𝑥1, 𝑥2 ∈ 𝑋  ve  𝑥1 ≠ 𝑥2   ise  𝑈 ∩ 𝑉 = ∅   olacak şekilde  

𝑥1  in  bir  𝑈  komşuluğu ve  𝑥2  nin  bir   𝑉   komşuluğu bulunabiliyorsa  𝑋  e Hausdorff 

uzayı (veya 𝑇2-uzayı) denir 

Tanım 2.1.4.  (𝑋, 𝜏)  bir topolojik uzay ve  𝛽 ⊂ 𝜏  olsun.   Bu takdirde, eğer  𝜏  nun her bir 

elemanı  𝛽  nin  elemanlarının bir birleşimine eşit oluyorsa  𝛽  ya  𝜏  topolojisi icin bir baz 

denir. 
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Teorem 2.1.5.  (𝑋, 𝜏)  bir topolojik uzay ve  𝛽  da  𝜏  için  bir baz olsun. Bu takdirde 

aşağıdakiler sağlanır: 

(B1)  𝑋 = ⋃{𝐵 ∶ 𝐵 ∈ 𝛽}  dir, 

(B2)  𝛽  nin   herhangi   iki   elemanının   kesişimi  𝛽  nin elemanlarının bir birleşimine 

eşittir. 

Teorem 2.1.6.  𝑋  herhangi bir küme  ve  𝛽  da  𝑋  in  alt kümelerinin Teorem 2.1.5  in  

(B1)  ve  (B2)  koşullarını sağlayan bir sınıfı olsun. Bu takdirde, 

𝜏 = {𝐴 ∶  𝐴 ⊂ 𝑋 , 𝐴 𝑘ü𝑚𝑒𝑠𝑖  𝛽 𝑠𝚤𝑛𝚤𝑓𝚤𝑛𝚤𝑛 𝑒𝑙𝑒𝑚𝑎𝑛𝑙𝑎𝑟𝚤𝑛𝚤𝑛 𝑏𝑖𝑟 𝑏𝑖𝑟𝑙𝑒ş𝑖𝑚𝑖𝑑𝑖𝑟. } 

sınıfı  𝑋  üzerinde bir topolojidir ve  𝛽  sınıfı  𝜏  icin  bir bazdır. Hatta  𝛽  yi baz kabul eden 

bu topoloji bir tektir. 

Yukarıdaki tanımlanan  𝜏  topolojisinin  𝛽  sınıfını baz kabul eden bir tek topoloji olduğu 

ise  𝜏  dan başka bir  𝜏1  topolojisi için de  𝛽  nin bir baz olduğu  varsayılıp,  celişkiye  

düşülerek ispatlanır.  

Tanım 2.1.7.  (𝑋, 𝜏)  bir topolojik uzay ve  𝒮 ⊂ 𝜏  olsun. Eğer 

𝐵 = {𝐵 ∶  𝐵 , 𝒮 𝑖𝑛 𝑠𝑜𝑛𝑙𝑢 𝑎𝑑𝑒𝑡𝑡𝑒𝑘𝑖 𝑒𝑙𝑒𝑚𝑎𝑛𝑙𝑎𝑟𝚤𝑛𝚤𝑛 𝑘𝑒𝑠𝑖ş𝑖𝑚𝑖𝑛𝑒 𝑒ş𝑖𝑡𝑡𝑖𝑟} 

sınıfı  𝜏  icin bir baz oluyorsa  𝒮  sınıfına  𝜏  topolojisi  için bir alt bazdır denir. 

Teorem 2.1.8.  𝑋  herhangi bir küme ve  𝒮   de  𝑋  in   alt kümelerinin herhangi bir sınıfı 

olsun. Bu takdirde, 

𝛽 = {𝐵 ∶  𝐵 , 𝒮 𝑖𝑛 𝑠𝑜𝑛𝑙𝑢 𝑎𝑑𝑒𝑡𝑡𝑒𝑘𝑖 𝑒𝑙𝑒𝑚𝑎𝑛𝑙𝑎𝑟𝚤𝑛𝚤𝑛 𝑘𝑒𝑠𝑖ş𝑖𝑚𝑖𝑛𝑒 𝑒ş𝑖𝑡 𝑣𝑒𝑦𝑎 𝐵 = 𝑋} 

sınıfı  𝑋  üzerinde 

𝜏 = {𝐴 ∶  𝐴 𝑘ü𝑚𝑒𝑠𝑖  𝛽 𝑛𝑖𝑛 𝑒𝑙𝑒𝑚𝑎𝑛𝑙𝑎𝑟𝚤𝑛𝚤𝑛 𝑏𝑖𝑟 𝑏𝑖𝑟𝑙𝑒ş𝑖𝑚𝑖𝑛𝑒 𝑒ş𝑖𝑡𝑡𝑖𝑟} 

şeklinde tanımlanan  𝜏  topolojisi için bir bazdır ve  𝒮 ⊂ 𝜏  dir. Hatta  𝜏  topolojisi  𝒮 ⊂ 𝜏  

özelliğine sahip  en  küçük  topolojidir. Yani  𝜏1,  𝑋  üzerinde  𝒮 ⊂ 𝜏1  olacak şekilde bir 

topoloji ise  𝜏 ⊂ 𝜏1 olmak zorundadır. 
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Tanım 2.1.9.  (𝑋, 𝜏)  bir topolojik uzay,  𝑥 ∈ 𝑋  ve  𝑥  noktasının açık komşuluklarından 

oluşan  𝑋  in  bir alt kümeler ailesi  𝛽𝑥  olsun. Eğer  𝑥  in her  𝑈  komşuluğu için  𝐵 ⊂ 𝑈  

olacak şekilde bir  𝑢 ∈ 𝑈  𝐵 ∈ 𝛽𝑥 bulunabiliyorsa  𝛽𝑥  sınıfına  𝑋  noktasında bir yerel 

(veya lokal) baz denir. 

Teorem 2.1.10.  𝑋  birinci sayılabilir bir topolojik uzay olsun. Bu takdirde,  𝑋  in  her  𝑥   

noktasında içiçe açıklar yerel bazı yani her  𝑛 ∈ 𝑁  için  𝐴𝑛 ⊃ 𝐴𝑛+1  özelliğini  sağlayan   

𝑥  noktasında bir  𝛽𝑥 = { 𝐴𝑛 ∶ 𝑛 ∈ 𝑁}  yerel bazı vardır. 

Teorem 2.1.11.  𝑋  bir Hausdorff uzayı ise  𝑋  deki her yakınsak dizinin limiti tektir. 

İspat:  (𝑋, 𝜏)  topolojik uzayı Hausdorff uzayı olsun.  𝑋  de yakınsak olan bir  (𝑥𝑛)  

dizisinin  farklı iki limite sahip olduğunu kabul edelim. Diyelim ki  lim
𝑛→∞

𝑥𝑛 = 𝑥 ,  

lim
𝑛→∞

𝑥𝑛 = 𝑦  ve  𝑥 ≠ 𝑦  olsun.  𝑋  bir Hausdorff uzayı  olduğundan  𝑈 ∩ 𝑉 = ∅  olacak 

şekilde  𝑥  in bir  𝑈  komşuluğu ve  𝑦  in bir  𝑉  komşuluğu vardır.  lim
𝑛→∞

𝑥𝑛 = 𝑥  

olduğundan, yakınsak dizi tanımından, 𝑥  noktasının  𝑈  komşuluğu için 

𝑋𝑛1
= {𝑥𝑛1

 , 𝑥𝑛1+1 , … , 𝑥𝑛1+𝑖 , … } ⊂ 𝑈 

Olacak şekilde,  𝑈  ya bağlı bir  𝑛1  doğal sayısı vardır ve  lim
𝑛→∞

𝑥𝑛 = 𝑦  olduğundan, 

yakınsak dizi tanımından, 𝑦  noktasının  𝑉  komşuluğu için 

𝑋𝑛2
= {𝑥𝑛2

 , 𝑥𝑛2+1 , … , 𝑥𝑛2+𝑖 , … } ⊂ 𝑉 

Olacak şekilde,  𝑉  ye bağlı bir  𝑛2  doğal sayısı vardır.  𝑚𝑎𝑥{𝑛1 , 𝑛2} = 𝑛0  diyelim. Bu 

takdirde,  𝑋𝑛0
⊂ 𝑈  ve  𝑋𝑛0

⊂ 𝑉  bulunur ki buradan  𝑋𝑛0
⊂ 𝑈 ∩ 𝑉  elde edilir. Bu ise  

𝑈 ∩ 𝑉 = ∅  olmasına aykırıdır. Çelişki, o halde  𝑥 = 𝑦  dir. Bu da teoremin ispatını 

tamamlar. 

Teorem 2.1.12. Birinci sayılabilir bir  (𝑋, 𝜏)  topolojik uzayı için aşağıdaki ifadeler 

denktir. 

(a)  (𝑋, 𝜏)  Hausdorff uzayıdır. 

(b)  𝑋  deki her yakınsak dizinin limiti tektir. 
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İspat:  (a) ⇒ (b)  olduğu yukarıdaki teoremden görülmektedir. 

(b) ⇒ (a)  ispatı için  (𝑋, 𝜏)  topolojik uzayı Hausdorff değil ise farklı değerlere 

yakınsayan bir  (𝑥𝑛)    dizisi elde etmek yeterlidir.  (𝑋, 𝜏)  topolojik uzayı Hausdorff değil 

ise her  𝑈 ∈ 𝑁𝑥  ve  𝑉 ∈ 𝑁𝑦  için  𝑈 ∩ 𝑉 ≠ ∅  olacak şekilde farklı  𝑥, 𝑦 ∈ 𝑋  noktaları 

vardır. Uzay birinci sayılabilir olduğundan  𝑥  ve  𝑦  noktalarında sırasıyla iç içe azalan 

sayılabilir  𝛽𝑥 = {𝑈𝑛 ∶  𝑛 ∈ 𝐼𝑁}  ve  𝛽𝑦 = {𝑉𝑛 ∶  𝑛 ∈ 𝐼𝑁}  yerel bazları vardır. O halde her  

𝑛 ∈ 𝐼𝑁  için  𝑈𝑛 ∩ 𝑉𝑛 ≠ ∅  olur. Her bir  𝑛 ∈ 𝐼𝑁  için bir  𝑎𝑛 ∈ 𝑈𝑛 ∩ 𝑉𝑛  seçerek 

oluşturulan  (𝑥𝑛)  dizisi  𝑥  ve  𝑦  noktalarına yakınsar. 

2.2. Metrik Uzaylar 

1905 yılında Fransız matematikçi Maurice Frechet tarafından metrik kavramı ilk defa 

verilmiştir. 

Tanım 2.2.1. (Metrik uzay)  𝑋  herhangi bir küme olsun.  𝑋 × 𝑋  den ℝ,  reel sayılar 

kümesi içine aşağıdaki  (M1), (M2) ve (M3) özelliklerini sağlayan  𝑑  fonksiyonuna  𝑋   

için bir metrik veya  𝑋  üzerinde bir metrik denir. 

(M1)  ∀𝑥, 𝑦 ∈ 𝑋 için 𝑑(𝑥, 𝑦) ≥ 0; ve 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 , 

(M2)  ∀𝑥, 𝑦 ∈ 𝑋 için 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) , 

(M3)  ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 için 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  

Bir  𝑑  metriği ile bir  𝑋  kümesine bir metrik uzay denir ve  (𝑋, 𝑑)  bir metrik uzay veya 

kısaca  𝑋  bir metrik uzay denir (Dağcı, 2019). 

Teorem 2.2.10. Eğer bir Cauchy dizisinin yakınsak bir alt dizisi varsa kendisi de 

yakınsaktır. 

Tanım 2.2.11. 𝑋 bir küme, 𝐴 ⊆ 𝑋 olsun. 𝑋 in alt kümelerinin bir {𝑈𝑖 ∶  𝑖 ∈ 𝐼} ailesi  

 𝐴 ⊆ ⋃ 𝑈𝑖𝑖∈𝐼  koşulunu sağlıyorsa 𝐴 için bir örtü adını alır.      

Bu gösterimlerle,  𝐴 için bir {𝑈𝑖 ∶  𝑖 ∈ 𝐼} örtüsünün bir alt örtüsü, bir 𝐽 ⊆ 𝐼 kümesi için 

yine bir örtü olan {𝑈𝑗 ∶  𝑗 ∈ 𝐽} alt ailesidir. Eğer  𝐽 sonlu ise bu sonlu alt örtü adını alır. 
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𝒰 = {𝑈𝑖 ∶  𝑖 ∈ 𝐼} , bir 𝑋 topolojik uzayının bir 𝐴 alt kümesi için bir örtü ve her bir 𝑖 ∈ 𝐼 

için 𝑈𝑖 , 𝑋 de açık ise 𝒰 ya 𝐴 için bir açık örtü denir. 

Tanım 2.2.12. Bir 𝑋 topolojik uzayının bir 𝐴 alt kümesinin her açık örtüsünün bir sonlu 

alt örtüsü varsa 𝐴 ya kompakt küme denir. 

Tanım 2.2.13. Bir 𝑋 metrik uzayında her dizi 𝑋 in bir noktasına yakınsayan bir alt diziye 

sahipse bu metrik uzaya dizisel kompakt adı verilir. 

Bir (𝑋, 𝑑) metrik uzayının boş olmayan bir 𝐴 alt kümesi  𝑑𝐴  metrikli altuzay olarak bu 

tanımı sağlarsa 𝐴 ya dizisel kompakt denir. 

Tanım 2.2.14. Eğer bir  𝑋  metrik uzayında her Cauchy dizisi yakınsak oluyorsa bu uzaya 

tam uzay denir.  
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BÖLÜM 3. ASİMETRİK UZAYLAR 

Bu bölümde, asimetrik uzay kavramı, asimetrik uzayda ileri topoloji ve geri topoloji 

kavramları ayrıntılı olarak incelenecektir. 

3.1. Asimetrik Uzay Kavramı 

Bu kesimde, metrik uzay tanımındaki  𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  simetri olma özelliğini 

sağlamayan ve metrikte olduğu gibi bazı özellikleri sağlayan bir uzaklık fonksiyonu 

yardımıyla tanımlanan asimetrik uzay kavramını inceleyeceğiz. 

Tanım 3.1.1. Bir  𝑋  kümesi üzerinde aşağıdaki koşulları sağlayan  𝑑: 𝑋𝑋 → ℝ 

fonksiyonuna bir asimetrik denir. 

(D1)  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0 , 

(D2)  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑥 = 𝑦  dir. 

(D3)  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

Üzerinde bir asimetrik tanımlanan  𝑋  kümesine asimetrik uzay denir ve  (𝑋, 𝑑)  ile 

gösterilir. Ya da kısaca  𝑋  bir asimetrik metrik uzaydır denir. 

Bundan sonra  (𝑋, 𝑑) ya da kısaca  𝑋  yazdığımızda  asimetrik uzay olacaktır. 

Bu tanıma göre her metriğin bir asimetrik olduğu açıktır. 

Örnek 3.1.2.  𝛼 > 0  olmak üzere 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

𝛼(𝑥 − 𝑦), 𝑦 < 𝑥
 

şeklinde tanımlanan  𝑑: ℝℝ → ℝ0
+    fonksiyonu bir asimetriktir. Dolayısıyla  (ℝ, 𝑑)  bir 

asimetrik uzaydır. Çünkü  𝑑  fonksiyonunun (D1), (D2), (D3) şartlarını sağladığı 

aşağıdaki şekilde gösterilebilir. 
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(D1)  𝑑  fonksiyonunun tanımından her 𝑥, 𝑦 ∈ ℝ  için  𝑑(𝑥, 𝑦) ≥ 0   olduğu kolayca 

görülebilir. 

(D2)  𝑑(𝑥, 𝑦) = 0  ⇔ 𝛼 ≠ 0  ve  𝑦 < 𝑥  iken ve  𝛼(𝑥 − 𝑦) ≠ 0  olacağından   𝑦 ≥ 𝑥 iken  

𝑦 − 𝑥 = 0  olmak zorundadır. 

                                  ⇔  𝑦 ≥ 𝑥  iken  𝑦 = 𝑥  bulunur. 

Dolayısıyla  ∀ 𝑥, 𝑦 ∈ ℝ  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑥 = 𝑦  dir. 

(D3)  ∀ 𝑥, 𝑦, 𝑧 ∈ ℝ  için  

𝑧 ≤ 𝑦 ≤ 𝑥  olmak üzere  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                                      𝛼(𝑥 − 𝑧) ≤ 𝛼(𝑥 − 𝑦) + 𝛼(𝑦 − 𝑧) 

                                       𝛼𝑥 − 𝛼𝑧 ≤ 𝛼𝑥 − 𝛼𝑧 

                                                  0 ≤ 0 

𝑦 ≤ 𝑧 ≤ 𝑥  olmak üzere  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                                      𝛼(𝑥 − 𝑧) ≤ 𝛼(𝑥 − 𝑦) + 𝑧 − 𝑦 

                                       𝛼𝑥 − 𝛼𝑧 ≤ 𝛼𝑥 − (𝛼 + 1)𝑦 + 𝑧 

                                     (𝛼 + 1)𝑦 ≤ (𝛼 + 1)𝑧 

                                                        𝑦 ≤ 𝑧 

𝑧 ≤ 𝑥 ≤ 𝑦  olmak üzere  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                                     𝛼(𝑥 − 𝑧) ≤ 𝑦 − 𝑥 + 𝛼(𝑦 − 𝑧) 

                                      𝛼𝑥 − 𝛼𝑧 ≤ −𝑥 + (𝛼 + 1)𝑦 − 𝛼𝑧 

                                     (𝛼 + 1)𝑥 ≤ (𝛼 + 1)𝑦 

                                                        𝑥 ≤ 𝑦 
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𝑥 ≤ 𝑧 ≤ 𝑦  olmak üzere  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                                           𝑧 − 𝑥 ≤ 𝑦 − 𝑥 + 𝛼(𝑦 − 𝑧) 

                                           𝑧 − 𝑥 ≤ −𝑥 + (𝛼 + 1)𝑦 − 𝛼𝑧 

                                     (𝛼 + 1)𝑧 ≤ (𝛼 + 1)𝑦 

                                                        𝑧 ≤ 𝑦 

𝑦 ≤ 𝑥 ≤ 𝑧 olmak üzere  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                                          𝑧 − 𝑥 ≤ 𝛼(𝑥 − 𝑦) + 𝑧 − 𝑦 

                                          𝑧 − 𝑥 ≤ 𝛼𝑥 − (𝛼 + 1)𝑦 + 𝑧 

                                    (𝛼 + 1)𝑦 ≤ (𝛼 + 1)𝑥 

                                                       𝑦 ≤ 𝑥 

𝑥 ≤ 𝑦 ≤ 𝑧 olmak üzere  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) 

                                          𝑧 − 𝑥 ≤ 𝑦 − 𝑥 + 𝑧 − 𝑦 

                                          𝑧 − 𝑥 ≤ −𝑥 + 𝑧 

                                                 0 ≤ 0 

olduğundan   

∀ 𝑥, 𝑦, 𝑧 ∈ ℝ  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  

bulunur.  

O halde  𝑑  fonksiyonu (D1), (D2), (D3) şartlarını sağladığı için bir asimetriktir. 

Dolayısıyla  (ℝ, 𝑑)  bir asimetrik uzaydır. 

Bunlara ek olarak 

1, 2 ∈ ℝ  için 
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 𝑑( 1 , 2 ) = 2 − 1 = 1 

 𝑑( 2 , 1 ) = 𝛼(2 − 1) = 𝛼  olduğundan   

𝑑  fonksiyonu  𝛼 ≠ 1 için metriğin (M2) simetrik olma şartını sağlamamaktadır.  

Yani 𝛼 ≠ 1 için her 𝑥, 𝑦 ∈ ℝ  için  𝑑(𝑥, 𝑦) ≠ 𝑑(𝑦, 𝑥)  dir. 

O halde  𝑑  fonksiyonu (M2) sağlamadığı için  ℝ  reel sayılar kümesi için bir metrik 

değildir. Dolayısıyla  (ℝ, 𝑑)  bir metrik uzay değildir. 

Örnek 3.1.3.  (𝑋, 𝑑) bir asimetrik uzay olsun. 𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) ile tanımlı  𝜌:𝑋𝑋 → ℝ 

fonksiyonu bir asimetriktir. Yani  (𝑋, 𝜌)  bir asimetrik uzaydır. 

(D1)  𝑑 bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0  dır.  

∀ 𝑥, 𝑦 ∈ 𝑋  için  𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) ≥ 0  olur. 

(D2)  𝑑 bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve 

yeter koşul   𝑥 = 𝑦  dir. 

∀ 𝑥, 𝑦 ∈ 𝑋  için  𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0   olması için gerek ve yeter koşul   𝑦 = 𝑥  olur. 

(D3)  𝑑 bir asimetrik olduğundan  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  dir. 

∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑧, 𝑥) ≤ 𝑑(𝑧, 𝑦) + 𝑑(𝑦, 𝑥)  olacağından, 

                              𝜌(𝑥, 𝑧) ≤ 𝜌(𝑦, 𝑧) + 𝜌(𝑥, 𝑦) 

                              𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧) 

olur. 

O halde  𝜌  fonksiyonu  (D1), (D2), (D3)  şartlarını sağladığı için  𝑋  kümesi için bir 

asimetriktir. Dolayısıyla  (𝑋, 𝜌)  bir asimetrik uzaydır. 

Örnek 3.1.4.  (𝑋, 𝑑) bir asimetrik uzay ve  𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) olmak üzere 

  𝑑𝑚𝑎𝑥(𝑥, 𝑦) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝜌(𝑥, 𝑦)}  ile tanımlanan  𝑑𝑚𝑎𝑥  bir metriktir. 
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(M1)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0  dır.  Yukarıdaki 

örnekten  𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  de  asimetrik olduğu için 

∀ 𝑥, 𝑦 ∈ 𝑋  için  𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) ≥ 0  dır. 

O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝜌(𝑥, 𝑦)} ≥ 0  dır. 

Buradan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑𝑚𝑎𝑥(𝑥, 𝑦) ≥ 0  olur. 

𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter 

koşul   𝑥 = 𝑦  dir. 

𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  de asimetrik olduğu için, 

∀ 𝑥, 𝑦 ∈ 𝑋  için  𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = 0   olması için gerek ve yeter koşul   𝑦 = 𝑥  dir. 

Buradan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝜌(𝑥, 𝑦)} = 0   olması için gerek ve yeter koşul   

𝑥 = 𝑦  olur. 

O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑𝑚𝑎𝑥(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑥 = 𝑦  olur. 

(M2)  ∀ 𝑥, 𝑦 ∈ 𝑋  için, 

𝑑𝑚𝑎𝑥(𝑥, 𝑦) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝜌(𝑥, 𝑦)} 

                                                            = 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑥)} 

                                                            = 𝑚𝑎𝑥{𝑑(𝑦, 𝑥), 𝑑(𝑥, 𝑦)} 

                                                            = 𝑚𝑎𝑥{𝑑(𝑦, 𝑥), 𝜌(𝑦, 𝑥)} 

                                                            = 𝑑𝑚𝑎𝑥(𝑦, 𝑥) 

∀ 𝑥, 𝑦 ∈ 𝑋 için  𝑑𝑚𝑎𝑥(𝑥, 𝑦) = 𝑑𝑚𝑎𝑥(𝑦, 𝑥)  olur. 

(M3)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  dir. 

𝜌(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  de asimetrik olduğu için, 
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∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝜌(𝑥, 𝑧) ≤ 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧)  dir. 

∀ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ  için,  𝑚𝑎𝑥{𝑎 + 𝑏, 𝑐 + 𝑑} ≤ 𝑚𝑎𝑥{𝑎, 𝑐} + 𝑚𝑎𝑥{𝑏, 𝑑} eşitsizliğini göz 

önüne alırsak, 

 ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için, 

𝑑𝑚𝑎𝑥(𝑥, 𝑧) = 𝑚𝑎𝑥{𝑑(𝑥, 𝑧), 𝜌(𝑥, 𝑧)} 

                                                            ≤ 𝑚𝑎𝑥{𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧), 𝜌(𝑥, 𝑦) + 𝜌(𝑦, 𝑧)} 

                                                            ≤ 𝑚𝑎𝑥{𝑑(𝑥, 𝑦), 𝜌(𝑥, 𝑦)} + 𝑚𝑎𝑥{𝑑(𝑦, 𝑧), 𝜌(𝑦, 𝑧)} 

                                                      ≤ 𝑑𝑚𝑎𝑥(𝑥, 𝑦) + 𝑑𝑚𝑎𝑥(𝑦, 𝑧) 

O halde  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 için 𝑑𝑚𝑎𝑥(𝑥, 𝑧) ≤ 𝑑𝑚𝑎𝑥(𝑥, 𝑦) + 𝑑𝑚𝑎𝑥(𝑦, 𝑧)  olur. 

Örnek 3.1.5. (𝑋, 𝑑)  bir asimetrik uzay olmak üzere  𝑑∗(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
  ile tanımlanan  

𝑑∗  𝑋  üzerinde bir asimetriktir. 

(D1)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0  dır.  

∀ 𝑥, 𝑦 ∈ 𝑋  için  1 + 𝑑(𝑥, 𝑦) ≥ 0  dır. 

∀ 𝑥, 𝑦 ∈ 𝑋  için  
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
≥ 0  olacağından, 

∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
  ≥ 0  olur. 

(D2)  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0  olduğundan,  1 + 𝑑(𝑥, 𝑦) ≠ 0  dır. 

∀ 𝑥, 𝑦 ∈ 𝑋  için  
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
= 0   olması için gerek ve yeter koşul   𝑑(𝑥, 𝑦) = 0  dır. 

𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter 

koşul   𝑥 = 𝑦  dir. 
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O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗(𝑥, 𝑦) =
𝑑(𝑥,𝑦)

1+𝑑(𝑥,𝑦)
= 0  olması için gerek ve yeter koşul         

𝑥 = 𝑦  olmasıdır. 

(D3) 𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  dir. 

Buradan  
1

𝑑(𝑥,𝑦)+𝑑(𝑦,𝑧)
≤

1

𝑑(𝑥,𝑧)
  yazılabilir. 

∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için   

𝑑∗(𝑥, 𝑧) =
𝑑(𝑥, 𝑧)

1 + 𝑑(𝑥, 𝑧)
=

1

1 +
1

𝑑(𝑥,𝑧)

 

≤
1

1 +
1

𝑑(𝑥,𝑦)+𝑑(𝑦,𝑧)

 

=
𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
=

𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
+

𝑑(𝑦, 𝑧)

1 + 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)
 

≤
𝑑(𝑥, 𝑦)

1 + 𝑑(𝑥, 𝑦)
+

𝑑(𝑦, 𝑧)

1 + 𝑑(𝑦, 𝑧)
 

= 𝑑∗(𝑥, 𝑦) + 𝑑∗(𝑦, 𝑧) 

elde edilir. 

Bu durumda  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 için  𝑑∗(𝑥, 𝑧) ≤ 𝑑∗(𝑥, 𝑦) + 𝑑∗(𝑦, 𝑧)  olur. 

O halde  𝑑∗  fonksiyonu (D1), (D2), (D3) şartlarını sağladığı için  𝑋  kümesi için bir 

asimetriktir. Dolayısıyla  (𝑋, 𝑑∗)  bir asimetrik uzaydır. 

Örnek 3.1.6.  (𝑋, 𝑑)  bir asimetrik uzay olmak üzere  𝑑∗∗(𝑥, 𝑦) = 𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)}  ile 

tanımlanan  𝑑∗∗  𝑋  üzerinde bir asimetriktir. 

(D1)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0  dır.  

Bu durumda  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)} ≥ 0  dır. 

O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗∗(𝑥, 𝑦) = 𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)} ≥ 0  olur. 
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(D2)  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗∗(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul     

𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)} = 0  dır. 

𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)} = 0   olması için gerek ve yeter koşul   𝑑(𝑥, 𝑦) = 0  dır. 

𝑑  bir asimetrik olduğundan,  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter 

koşul   𝑥 = 𝑦  dir. 

O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗∗(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑥 = 𝑦  olur. 

(D3)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  dir. 

∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için 

𝑑∗∗(𝑥, 𝑧) = 𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑧)} 

                                                                ≤ 𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)} 

                                                                ≤ 𝑚𝑖𝑛{1, 𝑑(𝑥, 𝑦)} + 𝑚𝑖𝑛{1, 𝑑(𝑦, 𝑧)} 

                                                                ≤ 𝑑∗∗(𝑥, 𝑦) + 𝑑∗∗(𝑦, 𝑧) 

Bu durumda  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 için  𝑑∗∗(𝑥, 𝑧) ≤ 𝑑∗∗(𝑥, 𝑦) + 𝑑∗∗(𝑦, 𝑧)  olur. 

O halde  𝑑∗∗  fonksiyonu (D1), (D2), (D3) şartlarını sağladığı için  𝑋  kümesi için bir 

asimetriktir. Dolayısıyla  (𝑋, 𝑑∗∗)  bir asimetrik uzaydır. 

Örnek 3.1.7. (𝑋, 𝑑)  bir asimetrik uzay olmak üzere  𝑘 sabit pozitif sayısı için                 

𝑑∗∗∗(𝑥, 𝑦) = 𝑘. 𝑑(𝑥, 𝑦)  ile tanımlanan  𝑑∗∗∗  𝑋  üzerinde bir asimetriktir. 

(D1)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) ≥ 0  dır.  

Bu durumda  𝑘  pozitif bir sayı olduğu için  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑘. 𝑑(𝑥, 𝑦) ≥ 0  dır. 

O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗∗∗(𝑥, 𝑦) ≥ 0  olur. 

(D2)  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗∗∗(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑘. 𝑑(𝑥, 𝑦) = 0  

dır. 
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𝑘 ≠ 0  olduğundan  𝑘. 𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑑(𝑥, 𝑦) = 0  dır. 

𝑑  bir asimetrik olduğundan,  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑(𝑥, 𝑦) = 0   olması için gerek ve yeter 

koşul   𝑥 = 𝑦  dir. 

O halde  ∀ 𝑥, 𝑦 ∈ 𝑋  için  𝑑∗∗∗(𝑥, 𝑦) = 0   olması için gerek ve yeter koşul   𝑥 = 𝑦  olur. 

(D3)  𝑑  bir asimetrik olduğundan  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için  𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)  dir. 

∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋  için 

𝑑∗∗∗(𝑥, 𝑧) = 𝑘. 𝑑(𝑥, 𝑧) 

                                                                     ≤ 𝑘(𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧)) 

                                                                     ≤ 𝑘. 𝑑(𝑥, 𝑦) + 𝑘. 𝑑(𝑦, 𝑧) 

                                                                     ≤ 𝑑∗∗∗(𝑥, 𝑦) + 𝑑∗∗∗(𝑦, 𝑧) 

Bu durumda  ∀ 𝑥, 𝑦, 𝑧 ∈ 𝑋 için  𝑑∗∗∗(𝑥, 𝑧) ≤ 𝑑∗∗∗(𝑥, 𝑦) + 𝑑∗∗∗(𝑦, 𝑧)  olur. 

O halde  𝑑∗∗∗  fonksiyonu (D1), (D2), (D3) şartlarını sağladığı için  𝑋  kümesi için bir 

asimetriktir. Dolayısıyla  (𝑋, 𝑑∗∗∗)  bir asimetrik uzaydır. 

3.2. Asimetrik Uzaylarda Topolojiler 

Asimetrik tanımında simetri özelliği sağlanmadığından dolayı ileri ve geri yuvar 

kavramları karşımıza çıktığından bu yuvarlar tarafından iki türlü topoloji üretilir. Bunlar 

ileri topoloji ve geri topoloji adını alır. 

Tanım 3.2.1. (İleri ve Geri Topolojiler) Bir  𝑑  asimetriği tarafından elde edilen  𝜏+  ileri 

topolojisi, 

ℎ𝑒𝑟 𝑥 ∈ 𝑋 , 𝜀 > 0 𝑖ç𝑖𝑛    𝐵+(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶  𝑑(𝑥, 𝑦) < 𝜀} 

ileri açık yuvarları tarafından üretilen topolojidir. 

Benzer şekilde bir  𝑑  asimetriği tarafından elde edilen  𝜏−   geri topolojisi, 
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ℎ𝑒𝑟 𝑥 ∈ 𝑋 , 𝜀 > 0 𝑖ç𝑖𝑛   𝐵−(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶  𝑑(𝑦, 𝑥) < 𝜀} 

geri açık yuvarları tarafından üretilen topolojidir (Collins ve Zimmer, 2007; Mennucci, 

2004). 

Teorem 3.2.2. (𝑋, 𝑑)  asimetrik uzay ise  (𝑋, 𝜏+)  birinci sayılabilir topolojik uzaydır 

(Dağcı, Mısırlıoğlu, Çakallı ve Çay, 2022). 

İspat.  𝐵+ (𝑥,
1

𝑛
) = {𝑦𝜖𝑋 ∶  𝑑(𝑥, 𝑦) <

1

𝑛
}  olmak üzere 

 𝛽𝑥
+ = {𝐵+ (𝑥,

1

𝑛
) : 𝑛 ∈ ℕ}  sınıfı x noktasında bir yerel bazdır. Gerçekten, 

𝑥  in herhangi bir komşuluğu  𝑈  olsun.  𝐵+ (𝑥,
1

𝑛
) ⊂ 𝑈  olacak şekilde  𝑛  pozitif tamsayısı 

bulmamız gerekir.  𝑥  in herhangi bir komşuluğu  𝑈  olsun. İleri topolojinin tanımından,  

𝑑  asimetriği tarafından elde edilen  𝜏+  ileri topolojisi, 

ℎ𝑒𝑟 𝑥 ∈ 𝑋 , 𝜀 > 0 𝑖ç𝑖𝑛    𝐵+(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶  𝑑(𝑥, 𝑦) < 𝜀} 

ileri açık yuvarları tarafından üretilen topoloji olduğundan dolayı  𝐵+(𝑥, 𝛿) ⊂ 𝑈  olacak 

şekilde bir  𝛿 > 0  vardır.  lim 
1

𝑛
= 0  olduğundan  𝑛 ≥ 𝑛𝛿   olduğunda  

1

𝑛
< 𝛿  dolayısıyla  

𝑑(𝑥, 𝑦) <
1

𝑛
   olduğunda  𝑑(𝑥, 𝑦) < 𝛿  olacak şekilde  bir  𝑛𝛿   pozitif tamsayısı vardır.  

Buradan  𝑛 ≥ 𝑛𝛿   olduğunda  𝐵+ (𝑥,
1

𝑛
)   ⊂ 𝐵+(𝑥, 𝛿)  olacak şekilde bir  𝑛𝛿   pozitif tam 

sayısı bulunmuş oldu.  Bu da  𝛽𝑥
+ = {𝐵+ (𝑥,

1

𝑛
) : 𝑛 ∈ ℕ}  sınıfının  𝑥  noktasında bir yerel 

baz olduğunu gösterir. Her  𝑥 ∈ 𝑋  için  𝛽𝑥
+

  sınıfı sayılabilir olduğundan  𝑋  asimetrik 

uzayının ileri topolojisi birinci sayılabilir bir topolojik uzay olur. 

Teorem 3.2.3. (𝑋, 𝑑)  asimetrik uzay ise  (𝑋, 𝜏−)  birinci sayılabilir topolojik uzaydır. 

İspat.  Bu Teoremin ispatı Teorem 3.2.2 nin ispatına benzer şekilde yapılabilir. 

 

 

 



 

18 

 

 

Örnek 3.2.4.  

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

şeklinde tanımlanan  𝑑: ℝℝ → ℝ0
+  asimetriğinde, 

𝜏+ ,  ℝ  üzerindeki alt limit topolojisidir.  𝜏−  ise  ℝ  üzerindeki üst limit topolojisidir.  

Çünkü her  0 < 𝜀 ≤ 1  için ve her 𝑥 ∈ 𝑋  için 

𝐵+(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶  𝑑(𝑥, 𝑦) < 𝜀} 

𝐵+(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶ 𝑦 < 𝑥  𝑣𝑒  𝑑(𝑥, 𝑦) < 𝜀} ∪ {𝑦𝜖𝑋 ∶ 𝑦 ≥ 𝑥  𝑣𝑒  𝑑(𝑥, 𝑦) < 𝜀} 

𝐵+(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶ 𝑦 < 𝑥  𝑣𝑒  1 < 𝜀} ∪ {𝑦𝜖𝑋 ∶ 𝑦 ≥ 𝑥  𝑣𝑒  𝑦 − 𝑥 < 𝜀} 

𝐵+(𝑥, 𝜀) = ∅ ∪ {𝑦𝜖𝑋 ∶ 𝑦 ≥ 𝑥  𝑣𝑒  𝑦 − 𝑥 < 𝜀} 

𝐵+(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶ 𝑦 ≥ 𝑥  𝑣𝑒  𝑦 < 𝑥 + 𝜀} 

𝐵+(𝑥, 𝜀) = [𝑥, 𝑥 + 𝜀) 

bulunur. 

Benzer şekilde her  0 < 𝜀 ≤ 1  için ve her  𝑥 ∈ 𝑋  için 

𝐵−(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶  𝑑(𝑦, 𝑥) < 𝜀} 

𝐵−(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶ 𝑥 < 𝑦  𝑣𝑒  𝑑(𝑦, 𝑥) < 𝜀} ∪ {𝑦𝜖𝑋 ∶ 𝑥 ≥ 𝑦  𝑣𝑒  𝑑(𝑦, 𝑥) < 𝜀} 

𝐵−(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶ 𝑥 < 𝑦  𝑣𝑒  1 < 𝜀} ∪ {𝑦𝜖𝑋 ∶ 𝑥 ≥ 𝑦  𝑣𝑒  𝑥 − 𝑦 < 𝜀} 

𝐵−(𝑥, 𝜀) = ∅ ∪ {𝑦𝜖𝑋 ∶ 𝑥 ≥ 𝑦  𝑣𝑒  𝑥 − 𝑦 < 𝜀} 

𝐵−(𝑥, 𝜀) = {𝑦𝜖𝑋 ∶ 𝑥 ≥ 𝑦  𝑣𝑒  𝑥 − 𝜀 < 𝑦} 

𝐵−(𝑥, 𝜀) = (𝑥 − 𝜀, 𝑥] 
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bulunur.  

Tanım 3.2.5. (𝑋, 𝑑)  bir asimetrik uzay ve  𝐴 ⊂ 𝑋  olsun. Eğer her  𝜀 > 0  için    

𝐵+(𝑥, 𝜀) ∩ (𝐴 ∖ {𝑥}) ≠ ∅  oluyorsa yani  𝑥  noktasını içeren her ileri açık küme  𝐴  

kümesinin  𝑥  den başka en az bir elemanını içeriyorsa  𝑋  in bu  𝑥  noktasına  𝐴  kümesinin 

bir ileri yığılma noktası denir.  𝐴  kümesinin bütün ileri yığılma noktalarının kümesi  𝐴′+
  

ile gösterilir. 

Tanım 3.2.6. (𝑋, 𝑑)  bir asimetrik uzay ve  𝐴 ⊂ 𝑋  olsun. Eğer her  𝜀 > 0  için    

𝐵−(𝑥, 𝜀) ∩ (𝐴 ∖ {𝑥}) ≠ ∅  oluyorsa yani  𝑥  noktasını içeren her geri açık küme  𝐴  

kümesinin  𝑥  den başka en az bir elemanını içeriyorsa  𝑋  in bu  𝑥  noktasına  𝐴  kümesinin 

bir geri yığılma noktası denir.  𝐴  kümesinin bütün geri yığılma noktalarının kümesi  𝐴′−
  

ile gösterilir. 

Tanım 3.2.7. (𝑋, 𝑑)  bir asimetrik uzay ve  𝐴 ⊂ 𝑋  olsun. Eğer her  𝜀 > 0  için    

𝐵+(𝑥, 𝜀) ∩ 𝐴 ≠ ∅  oluyorsa yani  𝑥  noktasını içeren her ileri açık küme  𝐴  kümesinin en 

az bir elemanını içeriyorsa  𝑋  in bu  𝑥  noktasına  𝐴  kümesinin bir ileri değme noktası 

denir.  𝐴  kümesinin bütün ileri değme noktalarının kümesine  𝐴  nın ileri kapanışı denir 

ve  𝐴̅+  ile gösterilir.  

Tanım 3.2.8. (𝑋, 𝑑)  bir asimetrik uzay ve  𝐴 ⊂ 𝑋  olsun. Eğer her  𝜀 > 0  için    

𝐵−(𝑥, 𝜀) ∩ 𝐴 ≠ ∅  oluyorsa yani  𝑥  noktasını içeren her geri açık küme  𝐴  kümesinin en 

az bir elemanını içeriyorsa  𝑋  in bu  𝑥  noktasına  𝐴  kümesinin bir geri değme noktası 

denir.  𝐴  kümesinin bütün geri değme noktalarının kümesine  𝐴  nın geri kapanışı denir 

ve  𝐴̅−  ile gösterilir.  
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BÖLÜM 4. ASİMETRİK UZAYLARDA DİZİLER 

Bu bölümde, asimetrik uzaylarda ileri ve geri yakınsaklık, asimetrik uzaylarda ileri ve 

geri sınırlılık, asimetrik uzaylarda ileri ve geri Cauchy dizi kavramları ayrıntılı olarak 

incelenecektir. 

4.1. Asimetrik Uzaylarda İleri ve Geri Yakınsaklık 

Asimetrik uzayda iki türlü topoloji olduğundan dizilerinde iki türlü yakınsaklığı olacaktır. 

Bunlar ileri yakınsaklık ve geri yakınsaklık adını alacaktır. 

Asimetrik uzayda bir dizinin ileri yakınsaklığını aşağıdaki şekilde veriyoruz.  

Tanım 4.1.1. (İleri Yakınsaklık) Her  𝜀 > 0  için  𝑛 ≥ 𝑛0  olduğunda  𝑑(𝑥, 𝑥𝑛) < 𝜀  

olacak şekilde  𝜀  a bağlı bir  𝑛0  sayısı bulunabiliyorsa  (𝑥𝑛)  dizisi  𝑥  e ileri yakınsaktır 

denir, ya da  𝑥  noktasına ileri yakınsar denir.  

Buradan  (𝑥𝑛)  dizisinin  𝑥  e ileri yakınsaması için gerek ve yeter koşul    

lim 
𝑛→∞

 𝑑(x , xn  ) = 0  olduğu kolayca görülebilir. Notasyon olarak  𝑥𝑛  
𝑓
→  𝑥0  şeklinde 

gösterilir. 

Asimetrik uzayda bir dizinin geri yakınsaklığını aşağıdaki şekilde veriyoruz.  

Tanım 4.1.2. (Geri Yakınsaklık) Her  𝜀 > 0  için  𝑛 ≥ 𝑛0  olduğunda  𝑑(𝑥𝑛, 𝑥) < 𝜀 

olacak şekilde  𝜀  a bağlı bir  𝑛0  sayısı bulunabiliyorsa  (𝑥𝑛)  dizisi  𝑥  e geri yakınsaktır 

denir, ya da  𝑥  noktasına geri yakınsar denir.   

Buradan  (𝑥𝑛)  dizisinin  𝑥  e geri yakınsaması için gerek ve yeter koşul      

lim 
𝑛→∞

 𝑑(xn  , x) = 0 olduğu kolayca görülebilir. Notasyon olarak  𝑥𝑛  
𝑏
→ 𝑥0  şeklinde 

gösterilir. 

Teorem 4.1.3.  (𝑋, 𝜏+)  topolojik uzayı bir Hausdorff uzayı ise  𝑋  deki ileri yakınsak her 

dizinin limiti tektir (Dağcı vd., 2022). 
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İspat.  (𝑋, 𝜏+)  topolojik uzayı Hausdorff uzayı olsun.  𝑋  de ileri yakınsak olan bir  (𝑥𝑛)  

dizisinin farklı iki ileri limite sahip olduğunu kabul edelim.  𝑥𝑛  
𝑓
→  𝑥,  𝑥𝑛  

𝑓
→  𝑦  ve         

𝑥 ≠ 𝑦  olsun.  𝑋  bir Hausdorff uzayı  olduğundan  𝐵+(𝑥, 𝛿1) ∩ 𝐵+(𝑦, 𝛿2) = ∅  olacak 

şekilde  𝑥  in bir  𝐵+(𝑥, 𝛿1)  komşuluğu ve  𝑦  nin bir  𝐵+(𝑦, 𝛿2)  komşuluğu vardır.           

𝑥𝑛  
𝑓
→  𝑥  olduğundan, ileri yakınsak dizi tanımından, her 𝑛 ≥ 𝑛1  için  𝑥𝑛 ∈ 𝐵+(𝑥, 𝛿1)  

olacak şekilde,  𝐵+(𝑥, 𝛿1)  na bağlı bir  𝑛1  doğal sayısı vardır.  𝑥𝑛  
𝑓
→  𝑦  olduğundan, 

ileri yakınsak dizi tanımından, her 𝑛 ≥ 𝑛2  için  𝑥𝑛 ∈ 𝐵+(𝑦, 𝛿2)  olacak şekilde,  

𝐵+(𝑦, 𝛿2)  ya bağlı bir  𝑛2  doğal sayısı vardır.  𝑚𝑎𝑥{𝑛1 , 𝑛2} = 𝑛0  diyelim. Bu takdirde, 

her 𝑛 ≥ 𝑛0  için  𝑥𝑛 ∈ 𝐵+(𝑥, 𝛿1) ∩ 𝐵+(𝑦, 𝛿2)  bulunur ki bu  𝐵+(𝑥, 𝛿1) ∩ 𝐵+(𝑦, 𝛿2) = ∅  

olmasına aykırıdır. O halde  𝑥 = 𝑦  dir. Bu da teoremin ispatını tamamlar. 

Teorem 4.1.4. Bir  (𝑋, 𝑑)  asimetrik uzayı için aşağıdaki ifadeler denktir. 

(a)   𝜏+  Hausdorff uzayıdır. 

(b)   𝑋  deki her ileri yakınsak dizinin limiti tektir. 

İspat.  (a) ⇒ (b)  olduğu yukarıdaki teoremden görülmektedir. 

(b) ⇒ (a)  ispatı için  (𝑋, 𝜏+)  topolojik uzayı Hausdorff değil ise farklı değerlere ileri  

yakınsayan bir  (𝑥𝑛)  dizisi elde etmek yeterlidir.  (𝑋, 𝜏+)  topolojik uzayı Hausdorff değil 

ise her  𝜀  için   𝐵+(𝑥, 𝜀) ∩ 𝐵+(𝑦, 𝜀) ≠ ∅  olacak şekilde farklı  𝑥, 𝑦 ∈ 𝑋  noktaları vardır.  

(𝑋, 𝑑)  asimetrik olduğundan  𝑥  ve  𝑦  noktalarında sırasıyla iç içe azalan sayılabilir       

𝛽𝑥
+ = {𝐵+ (𝑥,

1

𝑛
) : 𝑛 ∈ ℕ}  ve  𝛽𝑦

+ = {𝐵+ (𝑦,
1

𝑛
) : 𝑛 ∈ ℕ}  yerel bazları vardır. O halde 

her  𝑛 ∈ ℕ  için  𝐵+ (𝑥,
1

𝑛
) ∩ 𝐵+ (𝑦,

1

𝑛
) ≠ ∅  olur. Her bir  𝑛 ∈ ℕ  için bir                            

𝑥𝑛 ∈ 𝐵+ (𝑥,
1

𝑛
) ∩ 𝐵+ (𝑦,

1

𝑛
)  seçerek oluşturulan  (𝑥𝑛)  dizisi  𝑥  ve  𝑦  noktalarına 

yakınsar. 

Teorem 4.1.5.  (𝑋, 𝜏−)  topolojik uzayı  bir Hausdorff uzayı ise  𝑋  deki her bir geri 

yakınsak dizinin limiti tektir. 

İspat.  Bu Teoremin ispatı Teorem 4.1.3 ün ispatına benzer şekilde yapılabilir. 
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Teorem 4.1.6. Bir  (𝑋, 𝑑)  asimetrik uzayı için aşağıdaki ifadeler denktir. 

(a)   𝜏−  Hausdorff uzayıdır. 

(b)   𝑋  deki her geri yakınsak dizinin limiti tektir. 

İspat.  Bu Teoremin ispatı Teorem 4.1.4 ün ispatına benzer şekilde yapılabilir. 

Teorem 4.1.7.   Bir 𝑋  asimetrik uzayında  ileri yakınsak dizinin her alt dizisi de ileri 

yakınsaktır. 

İspat. Kabul edelim ki  (𝑥𝑛)  dizisi  𝑥  e  ileri yakınsak olsun.  (𝑥𝑛)  dizisinin  herhangi 

bir alt dizisi  (𝑥𝑛𝑘
)  olsun.  Herhangi bir  𝜀 > 0  sayısı alalım.  (𝑥𝑛)  dizisi  𝑥  e ileri 

yakınsak olduğundan   

𝑛 ≥ 𝑛0  olduğunda   𝑑(𝑥, 𝑥𝑛) < 𝜀 olacak şekilde  𝜀  a bağlı bir  𝑛0  sayısı vardır.    

𝑛𝑘 ≥ 𝑛𝑘0
≥ 𝑛0  dır.   Bu takdirde  𝑛 ≥ 𝑛0  olduğunda  𝑑(𝑥, 𝑥𝑛𝑘

) < 𝜀  olur. O halde  (𝑥𝑛𝑘
)  

dizisi  𝑥  e ileri yakınsaktır. 

Teorem 4.1.8. Bir  𝑋  asimetrik uzayında  geri yakınsak dizinin her alt dizisi de geri 

yakınsaktır. 

İspat.  Bu Teoremin ispatı Teorem 4.1.7 nin ispatına benzer şekilde yapılabilir. 

Teorem 4.1.9.  (𝑥𝑛)  𝑋  de bir dizi olsun.  Eğer  (𝑥𝑛)  ,   𝑥0 ∈ 𝑋  e  ileri yakınsak ve  

𝑦0 ∈ 𝑋  e  geri yakınsak ise o zaman   𝑥0 = 𝑦0  dır. 

İspat.  𝜀 > 0  olsun.  Kabul edelim ki  𝑥𝑛  
𝑓
→  𝑥0  olsun. Bu durumda  her  𝑛 ≥ 𝑁1  için 

𝑑(𝑥0, 𝑥𝑛) <
𝜀

2
    olacak şekilde  𝑁1 ∈ ℕ  vardır.  Diğer taraftan kabul edelim ki                    

𝑥𝑛  
𝑏
→  𝑦0  olsun. Bu durumda her  𝑛 ≥ 𝑁2  için 𝑑(𝑥𝑛, 𝑦0) <

𝜀

2
    olacak şekilde  𝑁2 ∈ ℕ   

vardır.  𝑁 = 𝑚𝑎𝑥{𝑁1, 𝑁2}  diyelim. O zaman her  𝑛 ≥ 𝑁  için  

𝑑(𝑥0, 𝑦0) ≤ 𝑑(𝑥0, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦0) <  𝜀 

olur.  𝜀  keyfi olduğundan  𝑑(𝑥0, 𝑦0) = 0  elde ederiz. Asimetriğin tanımındaki (D1) 

özelliğinden   𝑥0 = 𝑦0  elde edilir. Bu da ispatı tamamlar. 
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Teorem 4.1.10. Bir (𝑋, 𝑑) asimetrik uzayda ileri yakınsaklık geri yakınsaklığı 

gerektiriyorsa ileri limit tektir. 

İspat. 𝑋  asimetrik uzayında (𝑥𝑛)  ileri yakınsak bir dizi olsun.  (𝑥𝑛)  dizisinin  𝑙 ≠ 𝑙′  

olmak üzere hem  𝑙  hem de  𝑙′  sayılarına ileri yakınsadığını varsayalım. Bu durumda  

𝑑(𝑙, 𝑙′) ≠ 0  dır.  𝛼 = 𝑑(𝑙, 𝑙′)  alalım.  𝛼 > 0  dır.  𝑥𝑛  
𝑓
→  𝑙  olduğundan tüm  𝑛 ≥ 𝑁1  için  

𝑑(𝑙, 𝑥𝑛 ) <
𝛼

2
  olacak şekilde bir  𝑁1 ∈ ℕ  vardır.  𝑥𝑛  

𝑓
→  𝑙′  olduğundan ve ileri 

yakınsaklık geri yakınsaklığı gerektirdiğinden  𝑥𝑛  
𝑏
→  𝑙′  olur. Bu durumda tüm  𝑛 ≥ 𝑁2  

için  𝑑(𝑥𝑛 , 𝑙′) <
𝛼

2
  olacak şekilde bir  𝑁2 ∈ ℕ  vardır.  𝑁 = 𝑚𝑎𝑥{𝑁1, 𝑁2}  alalım. 

𝛼 = 𝑑(𝑙, 𝑙′) ≤ 𝑑(𝑙, 𝑥𝑛 ) + 𝑑(𝑥𝑛 , 𝑙′) <
𝛼

2
+

𝛼

2
= 𝛼 

elde edilir ve bu çelişki nedeniyle  𝑙 = 𝑙′  bulunur. 

Sonuç 4.1.11. Bir  (𝑋, 𝑑)  asimetrik uzayında ileri yakınsak her dizi geri yakınsak 

oluyorsa  (𝑋, 𝜏+)  Hausdorff uzayıdır. 

Teorem 4.1.12. Bir  (𝑋, 𝑑)  asimetrik uzayında geri yakınsaklık ileri yakınsaklığı 

gerektiriyorsa geri limit tektir. 

İspat.  Bu Teoremin ispatı Teorem 4.1.10 un ispatına benzer şekilde yapılabilir. 

Sonuç 4.1.13. Bir  (𝑋, 𝑑)  asimetrik uzayında geri yakınsak her dizi ileri yakınsak 

oluyorsa  (𝑋, 𝜏−)  Hausdorff uzayıdır. 

Önerme 4.1.14.  𝑑: 𝑋𝑋 → ℝ0
+  bir asimetrik olmak üzere her  𝑥, 𝑦 ∈ 𝑋  için  

𝑑(𝑦, 𝑥) ≤ 𝑐(𝑥, 𝑦)𝑑(𝑥, 𝑦)  olacak şekilde  𝑐: XX → ℝ  fonksiyonu varsa 

∀ 𝑥 ∈ 𝑋   ∃   𝜀 > 0   ∋    𝑦 ∈ 𝐵+(𝑥, 𝜀)  ⇒  𝑐(𝑥, 𝑦) ≤ 𝐶(𝑥)  

özelliğini sağlayan yalnızca  𝑥  e bağlı bir  C  fonksiyonu vardır. 

Bu durumda ileri limitlerin varlığı geri limitlerin varlığını gerektirir ve böylece limitler 

tektir. 
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Örnek 4.1.15.   𝛼 > 0  olmak üzere  

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

𝛼(𝑥 − 𝑦), 𝑦 < 𝑥
 

şeklinde tanımlanan  𝑑: ℝℝ → ℝ0
+  asimetriği  ∀  𝑥, 𝑦 ∈ ℝ  için 

𝐶 = 𝑚𝑎𝑥 {𝛼,
1

𝛼
}  olmak üzere 

Önerme 4.1.14. deki  𝑑(𝑦, 𝑥) ≤ 𝐶. 𝑑(𝑥, 𝑦)  kısıtını sağlar. 

𝑦 < 𝑥  ise  𝑑(𝑦, 𝑥) = 𝑥 − 𝑦 ≤ 𝐶. 𝛼(𝑥 − 𝑦)   elde edilir. Buradan  
1

𝛼
< 𝐶  bulunur. 

𝑦 ≥ 𝑥  ise  𝑑(𝑦, 𝑥) = 𝛼(𝑦 − 𝑥) ≤ 𝐶. (𝑦 − 𝑥)    elde edilir. Buradan  𝛼 ≤ 𝐶  bulunur. 

Bu iki duruma göre  ∀ 𝑥, 𝑦 ∈ ℝ  için  𝐶 = 𝑚𝑎𝑥 {𝛼,
1

𝛼
}  dır. 

Örnek 4.1.16.  𝛼 > 0  olmak üzere 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

𝛼(𝑥 − 𝑦), 𝑦 < 𝑥
 

şeklinde tanımlanan  𝑑: ℝℝ → ℝ0
+asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
) 

şeklinde tanımlanan dizi hem ileri hem de geri yakınsaktır.  

Gerçekten  ∀ 𝑥 ∈ ℝ  ve  ∀ 𝑛 ∈ ℕ  için 

𝑥 +
1

𝑛
> 𝑥 

olduğundan  

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥, 𝑥 +
1

𝑛
) = lim

𝑛→∞
(𝑥 +

1

𝑛
− 𝑥) = lim

𝑛→∞

1

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)  dizisi  𝑥  e  ileri yakınsaktır. 
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lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 +
1

𝑛
 , x) = lim

𝑛→∞
𝛼 (𝑥 +

1

𝑛
− 𝑥) = lim

𝑛→∞

𝛼

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)    dizisi  𝑥  e  geri yakınsaktır. 

Örnek 4.1.17.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
) 

şeklinde tanımlanan dizi ileri yakınsak olup geri yakınsak olmayan bir dizidir. 

Gerçekten  ∀ 𝑥 ∈ 𝑋  ve  ∀ 𝑛 ∈ ℕ  için 

𝑥 +
1

𝑛
> 𝑥 

olduğundan 

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥, 𝑥 +
1

𝑛
) = lim

𝑛→∞
(𝑥 +

1

𝑛
− 𝑥) = lim

𝑛→∞

1

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)  dizisi  𝑥  e  ileri yakınsaktır. 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 +
1

𝑛
 , x) = lim

𝑛→∞
1 = 1 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)  dizisi  𝑥  e  geri yakınsak değildir. 

Bu asimetrik uzayda ileri yakınsaklık geri yakınsaklığı gerektirmez. 

Örnek 4.1.18.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑥 − 𝑦, 𝑦 ≤ 𝑥

1   , 𝑦 > 𝑥
 



 

26 

 

asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
) 

şeklinde tanımlanan dizi ileri yakınsak olmayıp geri yakınsak olan bir dizidir. 

Gerçekten  ∀ 𝑥 ∈ 𝑋  ve  ∀ 𝑛 ∈ ℕ  için 

𝑥 +
1

𝑛
> 𝑥 

olduğundan 

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥 , 𝑥 +
1

𝑛
 ) = lim

𝑛→∞
1 = 1 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)  dizisi  𝑥  e  ileri yakınsak değildir. 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 +
1

𝑛
 , x) = lim

𝑛→∞
(𝑥 +

1

𝑛
− 𝑥) = lim

𝑛→∞

1

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)  dizisi  𝑥  e  geri yakınsaktır. 

Bu asimetrik uzayda geri yakınsaklık ileri yakınsaklığı gerektirmez. 

Örnek 4.1.19.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

𝛼(𝑥 − 𝑦), 𝑦 < 𝑥
 

asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
) 

şeklinde tanımlanan dizi hem ileri yakınsak hem de geri yakınsaktır. 

Gerçekten  ∀ 𝑥 ∈ 𝑋  ve  ∀ 𝑛 ∈ ℕ  için 
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𝑥 −
1

𝑛
< 𝑥 

olduğundan 

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥, 𝑥 −
1

𝑛
) = lim

𝑛→∞
𝛼 (𝑥 − (𝑥 −

1

𝑛
 )) = lim

𝑛→∞

𝛼

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)  dizisi  𝑥  e  ileri yakınsaktır. 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 −
1

𝑛
 , x) = lim

𝑛→∞
(𝑥 − (𝑥 −

1

𝑛
 )) = lim

𝑛→∞

1

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)  dizisi  𝑥  e  geri yakınsaktır. 

Örnek 4.1.20.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
) 

şeklinde tanımlanan dizi ileri yakınsak olmayıp geri yakınsak bir dizidir. 

Gerçekten  ∀ 𝑥 ∈ 𝑋  ve  ∀ 𝑛 ∈ ℕ  için 

𝑥 −
1

𝑛
< 𝑥 

olduğundan 

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥, 𝑥 −
1

𝑛
) = lim

𝑛→∞
1 = 1 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)  dizisi  𝑥  e  ileri yakınsak değildir. 



 

28 

 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 −
1

𝑛
 , x) = lim

𝑛→∞
(𝑥 − (𝑥 −

1

𝑛
 )) = lim

𝑛→∞

1

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)  dizisi  𝑥  e  geri yakınsaktır. 

Bu asimetrik uzayda geri yakınsaklık ileri yakınsaklığı gerektirmez. 

Örnek 4.1.21.  𝑑: ℝℝ → ℝ0
+  için   

𝑑(𝑥, 𝑦) = {
𝑥 − 𝑦, 𝑦 ≤ 𝑥

1   , 𝑦 > 𝑥
 

asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = 𝑥 −
1

𝑛
 

şeklinde tanımlanan dizi ileri yakınsak olup geri yakınsak olmayan bir dizidir. 

Gerçekten  ∀ 𝑥 ∈ 𝑋  ve  ∀ 𝑛 ∈ ℕ  için 

𝑥 −
1

𝑛
< 𝑥 

olduğundan 

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥 , 𝑥 −
1

𝑛
 ) = lim

𝑛→∞
(𝑥 − (𝑥 −

1

𝑛
 )) = lim

𝑛→∞

1

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)  dizisi  𝑥  e  ileri yakınsaktır. 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 −
1

𝑛
 , x) = lim

𝑛→∞
1 = 1 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)  dizisi  𝑥  e  geri yakınsak değildir. 

Bu asimetrik uzayda ileri yakınsaklık geri yakınsaklığı gerektirmez. 
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Örnek 4.1.22.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriğinde 

(𝑥𝑛)𝑛∈ℕ = 𝑥 (1 +
1

𝑛
) 

(𝑥 ∈ ℝ+)  şeklinde tanımlanan dizi ileri yakınsak olup geri yakınsak değildir.  

Gerçekten  ∀ 𝑥 ∈ 𝑋  ve  ∀ 𝑛 ∈ ℕ  için 

𝑥 +
𝑥

𝑛
> 𝑥 

olduğundan 

lim
𝑛→∞

𝑑(𝑥, 𝑥𝑛) = lim 
𝑛→∞

 𝑑 (𝑥, 𝑥 (1 +
1

𝑛
)) = lim

𝑛→∞
(𝑥 +

𝑥

𝑛
− 𝑥) = lim

𝑛→∞

𝑥

𝑛
= 0 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = 𝑥 (1 +
1

𝑛
)  dizisi  𝑥  e  ileri yakınsaktır. 

lim
𝑛→∞

𝑑(𝑥𝑛, 𝑥) = lim 
𝑛→∞

 𝑑 (𝑥 (1 +
1

𝑛
) , x) = lim

𝑛→∞
1 = 1 

bulunur. Bu durumda  (𝑥𝑛)𝑛∈ℕ = 𝑥 (1 +
1

𝑛
)  dizisi  𝑥  e  geri yakınsak değildir. 

Bu asimetrik uzayda ileri yakınsaklık geri yakınsaklığı gerektirmez. 

4.2. Asimetrik Uzaylarda İleri ve Geri Sınırlılık 

Metrik uzaydaki sınırlılık tanımından hareketle asimetrik uzayda sınırlılık kavramını 

düşündüğümüzde iki türlü sınırlılık tanımı ile karşılaşırız. Bunlar ileri sınırlılık ve geri 

sınırlılık kavramlarıdır. 

Tanım 4.2.1 (İleri Sınırlılık) Bir  𝑆 ⊂ 𝑋  kümesi, eğer  𝑆 ⊂ 𝐵+(𝑥, 𝜀)  olacak şekilde   

𝑥 ∈ 𝑋 , 𝜀 > 0  varsa ileri sınırlıdır. 
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Tanım 4.2.2 (Geri Sınırlılık) Bir  𝑆 ⊂ 𝑋  kümesi, eğer  𝑆 ⊂ 𝐵−(𝑥, 𝜀)  olacak şekilde   

𝑥 ∈ 𝑋 , 𝜀 > 0  varsa geri sınırlıdır. 

Tanım 4.2.3. (Dizilerde İleri sınırlılık) 

Her  𝑛  pozitif tamsayısı  için     

𝑑(𝑥, 𝑥𝑛) < 𝑀 

olacak şekilde   bir  𝑥 ∈ 𝑋   ve bir  𝑀  pozitif sayısı varsa  (𝑥𝑛)  dizisine ileri sınırlıdır 

denir. Buna göre  𝑥𝑛  dizisinin ileri sınırlı olması için gerek ve yeter koşul 

{𝑥𝑛  ∶   𝑛 ∈ ℕ  } ⊂ 𝐵+(𝑥, 𝑀) 

olacak şekilde bir  𝑥 ∈ 𝑋  ve bir  𝑀  pozitif sayısının var olmasıdır.  

Tanım 4.2.4.  (Dizilerde Geri sınırlılık) 

Her bir n pozitif tamsayısı  için     

𝑑(𝑥𝑛, 𝑥) < 𝑀 

olacak şekilde   bir  𝑥 ∈ 𝑋     ve bir  𝑀  pozitif sayısı varsa  (𝑥𝑛)  dizisine geri sınırlıdır 

denir. . Buna göre  𝑥𝑛  dizisinin geri sınırlı olması için gerek ve yeter koşul 

{𝑥𝑛  ∶   𝑛 ∈ ℕ  } ⊂ 𝐵−(𝑥, 𝑀) 

olacak şekilde bir  𝑥 ∈ 𝑋  ve bir  𝑀  pozitif sayısının var olmasıdır.  

Örnek 4.2.5.  (ℝ, 𝑑)  uzayında 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

(1 +
1

𝑛
)  dizisini göz önüne alalım.  Her  𝑛  pozitif tamsayısı  için     

𝑑(1, 𝑥𝑛) =
1

𝑛
< 2 
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olacak şekilde  bir  2  pozitif sayısı bulunduğundan  (1 +
1

𝑛
)  dizisi ileri sınırlıdır. 

Örnek 4.2.6.  (ℝ, 𝑑)  uzayında 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

(1 −
1

𝑛
)  dizisini göz önüne alalım.  Her  𝑛  pozitif tamsayısı  için     

𝑑(𝑥𝑛, 𝑥) = 𝑑(𝑥𝑛, 1) =
1

𝑛
< 1 

olacak şekilde  bir  1  pozitif sayısı bulunduğundan  (1 −
1

𝑛
)  dizisi geri sınırlıdır. 

Teorem 4.2.7.  𝑋  asimetrik uzayında ileri yakınsak olan her dizi ileri sınırlıdır. 

İspat. Kabul edelim ki  (𝑥𝑛)  dizisi ileri yakınsak olsun. 

𝜀 = 1 için   𝑛 ≥ 𝑛0  olduğunda   𝑑(𝑥, 𝑥𝑛) < 1 olacak şekilde bir  n0  pozitif tam sayısı 

vardır. 

max{𝑑(𝑥, 𝑥1), 𝑑(𝑥, 𝑥2), … 𝑑(𝑥, 𝑥𝑛0−1), 1} = 𝑀  diyelim. Bu takdirde   

Her bir n pozitif tamsayısı  için     

𝑑(𝑥, 𝑥𝑛) < 𝑀 

olacak şekilde   bir  𝑥 ∈ 𝑋     ve bir  𝑀  pozitif sayısı bulunur. Bu da  (𝑥𝑛)  dizisine ileri 

sınırlı olması demektir. 

Teorem 4.2.8.   𝑋  asimetrik uzayında geri yakınsak olan her dizi geri sınırlıdır. 

İspat.  Bu Teoremin ispatı Teorem 4.2.7 ün ispatına benzer şekilde yapılabilir. 

Teorem 4.2.9. Bir asimetrik uzayda ileri sınırlı kümelerin sonlu birleşimi ileri sınırlıdır. 

İspat:  (𝑋, 𝑑)  bir asimetrik uzay ve  𝐴1, 𝐴2, … , 𝐴𝑛 ⊆ 𝑋  kümeleri ileri sınırlı olsun.            

𝑖 = 1,2, … 𝑛  için  𝐴𝑖 ⊆ 𝐵+(𝑥𝑖, 𝜀𝑖)  olacak şekilde bir  𝑥𝑖 ∈ 𝑋  ve bir  𝜀𝑖 > 0  vardır.      
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𝑥0 ∈ 𝑋  herhangi bir nokta olmak üzere  𝑀1 = 𝑚𝑎𝑥{𝜀𝑖 ∶  𝑖 = 1,2, … 𝑛} ,                            

𝑀2 = 𝑚𝑎𝑥{𝑑(𝑥0, 𝑥𝑖) ∶  𝑖 = 1,2, … 𝑛}  olsun.  𝑀 = 𝑀1 + 𝑀2  alalım.                        

⋃ 𝐴𝑖
𝑛
𝑖=1 ⊆ 𝐵+(𝑥0, 𝑀)  olduğunu gösterelim.  𝑥 ∈ ⋃ 𝐴𝑖

𝑛
𝑖=1   alalım.  Bu durumda  ∃ 𝑖0  için  

𝑥 ∈ 𝐴𝑖0
  olur.  𝐴𝑖0

⊆ 𝐵+(𝑥𝑖0
, 𝜀𝑖0

)  olduğundan  𝑥 ∈ 𝐵+(𝑥𝑖0
, 𝜀𝑖0

)  olur. Böylece  

𝑑(𝑥𝑖0
, 𝑥) < 𝜀𝑖0

  dır.  𝑑(𝑥0, 𝑥) ≤  𝑑(𝑥0, 𝑥𝑖0
) + 𝑑(𝑥𝑖0

, 𝑥) < 𝑀2 + 𝜀𝑖0
≤ 𝑀1 + 𝑀2 = 𝑀  

olduğundan  𝑥 ∈ 𝐵+(𝑥0, 𝑀)  elde edilir. Buradan  ⋃ 𝐴𝑖
𝑛
𝑖=1 ⊆ 𝐵+(𝑥0, 𝑀) dir. Yani  

⋃ 𝐴𝑖
𝑛
𝑖=1   kümesi ileri sınırlı bulunur. 

Teorem 4.2.10.  Bir asimetrik uzayda geri sınırlı kümelerin sonlu birleşimi geri sınırlıdır. 

İspat.  Bu Teoremin ispatı Teorem 4.2.9 un ispatına benzer şekilde yapılabilir. 

4.3. Asimetrik Uzaylarda İleri ve Geri Cauchy Dizileri 

Asimetrik tanımında simetri özelliği bulunmadığından asimetrik uzayda iki türlü Cauchy 

kavramı olacaktır. Bunlar ileri Cauchy ve geri Cauchy kavramlarıdır. 

Tanım 4.3.1.  (𝑋, 𝑑)  bir asimetrik metrik uzay olsun.  𝑋  deki bir  (𝑥𝑛) dizisi için  

eğer  her  𝜀 > 0  ve  her  𝑚 ≥ 𝑛 ≥ 𝑁  için  𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀  olacak şekilde bir  𝑁 ∈ ℕ  

varsa  

(𝑥𝑛)  dizisine ileri Cauchy dizisi denir. 

Bir asimetrik uzayda  (𝑥𝑛)  dizisinin ileri yakınsak olması ileri Cauchy dizisi olmasını 

gerektirmez. 

Örnek 4.3.2.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriği tarafından elde edilen asimetrik uzayda sabit herhangi bir  𝑥 ∈ 𝑋  için  

(𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
) 
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şeklinde tanımlanan dizi ileri yakınsak olmasına rağmen ileri Cauchy dizisi değildir. 

Gerçekten, 𝑚 ≥ 𝑛 ≥ 𝑁     için  

𝑚 ≥ 𝑛 

1

𝑛
≥

1

𝑚
 

𝑥 +
1

𝑛
≥ 𝑥 +

1

𝑚
 

olduğundan, 

∀  𝜀 > 0  için  ∀  𝑚 ≥ 𝑛 ≥ 𝑁  olduğunda 

𝑑(𝑥𝑛, 𝑥𝑚) =  𝑑 (x +
1

𝑛
 , 𝑥 +

1

𝑚
) = 1 

bulunduğundan  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)   dizisi  𝑥  e  ileri yakınsak olmasına rağmen ileri 

Cauchy dizisi değildir. 

Tanım 4.3.3.  (𝑋, 𝑑)  bir asimetrik metrik uzay olsun.  𝑋  deki bir  (𝑥𝑛) dizisi için  

eğer her  𝜀 > 0  ve  her  𝑚 ≥ 𝑛 ≥ 𝑁  için  𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀   olacak şekilde bir  𝑁 ∈ ℕ  

varsa  

(𝑥𝑛)  dizisine geri Cauchy dizisi denir. 

Bir asimetrik uzayda  (𝑥𝑛)  dizisinin geri yakınsak olması geri Cauchy dizisi olmasını 

gerektirmez. 

Teorem 4.3.4.  (𝑋, 𝑑)  asimetrik uzayında ileri Cauchy dizisinin her alt dizisi ileri Cauchy 

dizisidir. 

İspat.  (𝑥𝑛)  dizisi  𝑋  içinde bir ileri Cauchy dizisi ve  (𝑥𝑛𝑘
)  da  (𝑥𝑛)  dizisinin herhangi 

bir alt dizisi olsun.  𝜀 > 0  verilsin. Her  𝑚 ≥ 𝑛 ≥ 𝑁  için  𝑑(𝑥𝑛, 𝑥𝑚) < 𝜀  olacak şekilde 

bir  𝑁 ∈ ℕ  vardır.  (𝑥𝑛𝑘
)  dizisi  (𝑥𝑛)  in bir alt dizisi olduğundan  𝑚 ≥ 𝑘 ≥ 𝑁  olduğunda  
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𝑛𝑚 ≥ 𝑛𝑘 ≥ 𝑁  gerçeklenir. Bu  𝑁 ∈ ℕ  için  𝑚 ≥ 𝑘 ≥ 𝑁  olduğunda  𝑑(𝑥𝑛𝑘
, 𝑥𝑛𝑚

) < 𝜀  

gerçeklenir. Bu ise  (𝑥𝑛𝑘
)  dizisinin ileri Cauchy olduğunu gösterir.  

Teorem 4.3.5.  (𝑋, 𝑑)  asimetrik uzayında geri Cauchy dizisinin her alt dizisi geri Cauchy 

dizisidir. 

İspat.  Bu Teoremin ispatı Teorem 4.3.4 ün ispatına benzer şekilde yapılabilir. 

Örnek 4.3.6.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriği tarafından elde edilen asimetrik uzayda sabit herhangi bir  𝑥 ∈ 𝑋  için  

(𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
) 

şeklinde tanımlanan dizi ileri Cauchy dizisidir. Gerçekten, 𝑚 ≥ 𝑛 ≥ 𝑁     için  

𝑚 ≥ 𝑛 

1

𝑛
≥

1

𝑚
 

𝑥 −
1

𝑚
≥ 𝑥 −

1

𝑛
 

olduğundan,  

∀  𝜀 > 0  için  ∀  𝑚 ≥ 𝑛 ≥ 𝑁  olduğunda  
1

𝑛
−

1

𝑚
<

1

𝑛
≤

1

𝑁
< 𝜀  olacak şekilde bir  𝑁 ∈ ℕ  

vardır.  𝑚 ≥ 𝑛 ≥ 𝑁  olduğunda 

𝑑(𝑥𝑛, 𝑥𝑚) =  𝑑 (𝑥 −
1

𝑛
 , 𝑥 −

1

𝑚
) =

1

𝑛
−

1

𝑚
< 𝜀 

gerçeklendiğinden  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)   dizisi ileri Cauchy dizisidir. 
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Örnek 4.3.7.  𝑑: ℝℝ → ℝ0
+  için  

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriği tarafından elde edilen asimetrik uzayda sabit herhangi bir  𝑥 ∈ 𝑋  için  

(𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
) 

şeklinde tanımlanan dizi geri Cauchy dizisidir. Gerçekten, 𝑚 ≥ 𝑛 ≥ 𝑁     için  

𝑚 ≥ 𝑛 

1

𝑛
≥

1

𝑚
 

𝑥 +
1

𝑛
≥ 𝑥 +

1

𝑚
 

olduğundan,  

∀  𝜀 > 0  için  ∀  𝑚 ≥ 𝑛 ≥ 𝑁  olduğunda  
1

𝑛
−

1

𝑚
<

1

𝑛
≤

1

𝑁
< 𝜀  olacak şekilde bir  𝑁 ∈ ℕ  

vardır.  𝑚 ≥ 𝑛 ≥ 𝑁  olduğunda 

𝑑(𝑥𝑚, 𝑥𝑛) =  𝑑 (𝑥 +
1

𝑚
 , 𝑥 +

1

𝑛
) =

1

𝑛
−

1

𝑚
< 𝜀 

gerçeklendiğinden  (𝑥𝑛)𝑛∈ℕ = (𝑥 +
1

𝑛
)   dizisi geri Cauchy dizisidir. 

Örnek 4.3.8.  𝑑: ℝℝ → ℝ0
+  için 

𝑑(𝑥, 𝑦) = {
𝑦 − 𝑥, 𝑦 ≥ 𝑥

1   , 𝑦 < 𝑥
 

asimetriği tarafından elde edilen asimetrik uzayda sabit herhangi bir  𝑥 ∈ 𝑋  için  

(𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
) 
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şeklinde tanımlanan dizi geri yakınsak olmasına rağmen geri Cauchy dizisi değildir. 

Gerçekten, 𝑚 ≥ 𝑛 ≥ 𝑁     için  

𝑚 > 𝑛 

1

𝑛
≥

1

𝑚
 

𝑥 −
1

𝑚
≥ 𝑥 −

1

𝑛
 

olduğundan, 

∀  𝜀 > 0  için  ∀  𝑚 ≥ 𝑛 ≥ 𝑁  olduğunda 

𝑑(𝑥𝑚, 𝑥𝑛) =  𝑑 (𝑥 −
1

𝑚
 , 𝑥 −

1

𝑛
) = 1 

bulunduğundan  (𝑥𝑛)𝑛∈ℕ = (𝑥 −
1

𝑛
)   dizisi  𝑥  e  geri yakınsak olmasına rağmen geri 

Cauchy dizisi değildir. 

Tanım 4.3.9.  (𝑋, 𝑑)  bir asimetrik uzay olmak üzere terimleri  𝑆  de olan her ileri Cauchy 

dizisi ileri yakınsak ise,  𝑆 ⊂ 𝑋  e ileri tamdır denir. 

Terimleri  𝑆  de olan her geri Cauchy dizisi geri yakınsak ise, 𝑆 ⊂ 𝑋  e geri tamdır denir. 

Teorem 4.3.10.  Bir  (𝑋, 𝑑)  asimetrik uzayında , eğer bir ileri Cauchy dizisi ileri yakınsak 

bir alt diziye sahipse kendisi de ileri yakınsaktır. 

İspat.  (𝑥𝑛)  dizisi,  (𝑋, 𝑑)  asimetrik uzayında bir  ileri Cauchy dizisi olsun.  (𝑥𝑛𝑘
)  

altdizisi  𝑥 ∈ 𝑋  e ileri yakınsak olsun.  𝜀 > 0  olsun.   

(𝑥𝑛)  dizisi ileri Cauchy dizisi olduğu için her  𝜀 > 0  ve  her  𝑚 ≥ 𝑛 ≥ 𝑁  için   

d(𝑥𝑛, 𝑥𝑚) < 𝜀   olacak şekilde bir  𝑁 ∈ ℕ  vardır.  𝑛𝑘 ≥ 𝑁  ve  𝑑(𝑥, 𝑥𝑛𝑘
) <

𝜀

2
    olacak 

şekilde  𝑘 ∈ ℕ  seçeriz. 

𝑛 ≥ 𝑛𝑘 ≥ 𝑁     için   𝑑(𝑥, 𝑥𝑛) ≤ 𝑑(𝑥, 𝑥𝑛𝑘
) + 𝑑(𝑥𝑛𝑘

, 𝑥𝑛) < 𝜀   olur. 
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O halde  𝑥𝑛  
𝑓
→  𝑥     olur. 

Teorem 4.3.11.  Bir   (𝑋, 𝑑)  asimetrik uzayında , eğer bir geri Cauchy dizisi geri yakınsak 

bir alt diziye sahipse kendisi de geri yakınsaktır. 

İspat.  Bu Teoremin ispatı Teorem 4.3.10 un ispatına benzer şekilde yapılabilir. 

Sonuç 4.3.12.  Bir  (𝑋, 𝑑)  asimetrik uzayında , eğer her ileri Cauchy dizisi ileri yakınsak 

bir alt diziye sahipse ileri tamdır. 

Sonuç 4.3.13.  Bir  (𝑋, 𝑑)  asimetrik uzayında , eğer her geri Cauchy dizisi geri yakınsak 

bir alt diziye sahipse geri tamdır. 
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BÖLÜM 5. ASİMETRİK UZAYLARDA KOMPAKTLIK 

ÇEŞİTLERİ  

Bu bölümde, asimetrik uzaylarda ileri ve geri kompaktlık, asimetrik uzaylarda ileri ve 

geri dizisel kompaktlık kavramları ayrıntılı olarak incelenecektir. 

5.1. Asimetrik Uzaylarda İleri ve Geri Kompaktlık 

Asimetrik tanımında simetri özelliği sağlanmadığından asimetrik uzaylarda iki türlü 

kompaktlık tanımı oluşacaktır. Bunlar ileri kompakt ve geri kompakt kavramlarıdır. 

Tanım 5.1.1.  (𝑋, 𝑑)  bir asimetrik uzay olmak üzere bir  𝑆 ⊂ 𝑋  kümesi,  𝑆  nin ileri 

toplojideki her açık örtüsünün sonlu bir alt örtüsü varsa, ileri kompakttır.   

(𝑋, 𝑑)  bir asimetrik uzay olmak üzere bir  𝑆 ⊂ 𝑋  kümesi,  𝑆  nin geri toplojideki her açık 

örtüsünün sonlu bir alt örtüsü varsa, geri kompakttır.  

Tanım 5.1.2.  (𝑋, 𝑑)  bir asimetrik uzay ve  𝑆 ⊂ 𝑋  kümesi olmak üzere terimleri  𝑆  de 

olan her dizinin limiti  𝑆  de olan ileri yakınsak bir alt dizisi varsa,  𝑆  ye ileri dizisel 

kompakttır denir. 

(𝑋, 𝑑)  bir asimetrik uzay ve  𝑆 ⊂ 𝑋  kümesi olmak üzere terimleri  𝑆  de olan her dizinin 

limiti  𝑆  de olan geri yakınsak bir alt dizisi varsa,  𝑆  ye geri dizisel kompakttır denir. 

Teorem 5.1.3.  𝑑: 𝑋𝑋 → ℝ0
+  bir asimetrik olsun. Eğer  (𝑋, 𝑑)  ileri dizisel kompakt ve  

𝑥𝑛  
𝑏
→  𝑥     ise    𝑥𝑛  

𝑓
→  𝑥  dir. 

İspat.  Herhangi bir  𝑥 ∈ 𝑋  için  𝑥𝑛  
𝑏
→  𝑥  şeklinde bir  (𝑥𝑛)  dizisi düşünelim.  𝑋  ileri 

dizisel kompakt olduğundan dolayı,  (𝑥𝑛)  dizisi bir ileri yakınsak  (𝑥𝑛𝑘
)  alt dizisine 

sahiptir.  𝑗 → ∞  için  𝑥𝑛𝑘𝑗
 

𝑓
→  𝑦 ∈ 𝑋  olur.  Geri yakınsak dizinin her alt dizisi de geri 

yakınsak olduğundan dolayı  𝑗 → ∞  için  𝑥𝑛𝑘𝑗
 

𝑏
→  𝑥 ∈ 𝑋  bulunur.  



 

39 

 

 Teorem 4.1.9. dan dolayı  𝑥 = 𝑦  olur.  Dolayısıyla  𝑗 → ∞  için  𝑥𝑛𝑘𝑗
 

𝑓
→  𝑥  elde edilir.   

Kabul edelim ki  𝑥𝑛  
𝑓
→  𝑥  olmasın. O zaman her  𝑘 ∈ ℕ  için  𝑑(𝑥, 𝑥𝑛𝑘

) ≥ 𝜀0  olacak 

şekilde  (𝑥𝑛𝑘
)  alt dizisi ve  𝜀0 > 0  vardır. Fakat bu alt dizinin  𝑥  e ileri yakınsayan bir  

(𝑥𝑛𝑘𝑗
)  alt dizisi vardır. Dolayısıyla  𝑗 ∈ ℕ  vardır öyle ki  𝑗 ≥ 𝐽  için bir  𝑑 (𝑥, 𝑥𝑛𝑘𝑗

) < 𝜀  

olur. Bu açıkça bir çelişkidir. Yani  𝑥𝑛  
𝑓
→  𝑥  . 

Sonuç olarak,  𝑋  ileri dizisel kompakt olduğunda, dizinin limiti tek olur ve geri 

limit ileri limiti gerektirir. 

Teorem 5.1.4.  𝑑: 𝑋𝑋 → ℝ0
+  bir asimetrik olsun. Eğer  (𝑋, 𝑑)  geri dizisel kompakt ve  

𝑥𝑛  
𝑓
→  𝑥     ise    𝑥𝑛  

𝑏
→  𝑥  . 

İspat.  Bu Teoremin ispatı Teorem 5.1.3 ün ispatına benzer şekilde yapılabilir. 

Teorem 5.1.5.  Bir asimetrik uzayın ileri dizisel kompakt olması için gerek ve yeter koşul 

sonsuz her alt kümesinin en az bir ileri yığılma noktasının var olmasıdır. 

İspat.  (𝑋, 𝑑)  bir asimetrik uzay olsun. Kabul edelim ki  𝑋  ileri dizisel kompakt olsun 

ve  𝑋  in sonsuz bir  𝐴  alt kümesi verilsin.  Terimleri  𝐴  da olan farklı noktalardan oluşan 

bir  (𝑥𝑛)  dizisi oluştırabiliriz.  𝑋  ileri dizisel kompakt olduğundan,  (𝑥𝑛)  dizisinin ileri 

yakınsak bir  (𝑥𝑛𝑘
)  alt dizisi vardır. Bu ileri yakınsadığı noktaya  𝑥  diyelim. 

Burada  𝑥  in  𝐴  nın ileri yığılma noktası olduğunu göstereceğiz. 

Bir  𝜀 > 0  verilsin.  𝑥𝑛𝑘
 

𝑓
→  𝑥  olduğundan  ∀  𝑘 ≥ 𝑁  için  𝑥𝑛𝑘

∈ 𝐵+(𝑥, 𝜀)  olacak şekilde 

bir  𝑁 ∈ ℕ  vardır. 

Burada  (𝑥𝑛)  dizisinin terimleri birbirinden farklı olduğundan  ∃  𝑘 ≥ 𝑁  için  𝑥𝑛𝑘
≠ 𝑥  

dir. Dolayısıyla  𝑘 ≥ 𝑁  için  𝐵+(𝑥, 𝜀)  𝐴  nın 𝑥  den farklı en az bir  𝑥𝑛𝑘
  elemanını içerir. 

Bu da  𝑥  in,  𝐴  nın bir ileri yığılma noktası olduğunu gösterir. 

Böylece 𝑋  in her sonsuz alt kümesi,  𝑋  de bir ileri yığılma noktasına sahiptir. 
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Kabul edelim ki  𝑋  in her sonsuz alt kümesi,  𝑋  de bir ileri yığılma noktasına sahip olsun.  

(𝑥𝑛)  𝑋  de herhangi bir dizi olsun.  

𝐴,  (𝑥𝑛)  dizisinin değerler kümesini göstermek üzere,  𝐴  ya sonlu kümedir ya da  sonsuz 

kümedir. 

𝐴  sonlu küme ise  (𝑥𝑛)  dizisinin bir tane elemanı sonsuz kere tekrar edeceğinden 

terimleri bu elemandan oluşan sabit alt dizi ileri yakınsak olur. 

𝐴  sonsuz küme olsun. Kabulden  𝐴  nın en az bir ileri yığılma noktası vardır. Bu ileri 

yığılma noktası  𝑥  olsun. Şimdi  𝐵+(𝑥, 1)  ileri açık yuvarını alalım. Bu ileri açık yuvar  

𝐴  nın  sonsuz çoklukta elemanını içerir. Bu elemanlar içinden  𝑥 den faklı bir  

𝑥𝑛1
  elemanını seçelim.  𝐵+ (𝑥,

1

2
)  ileri açık yuvarı  𝐴  nın  sonsuz çoklukta elemanını 

içerir. Bu elemanlar içinden  𝑛2 > 𝑛1  olmak üzere bir  𝑥𝑛2
 seçelim. 

    Benzer şekilde     𝐵+ (𝑥,
1

3
)  ileri açık yuvarı 𝐴  nın  sonsuz çoklukta elemanını içerir.  

Bu elemanlar içinden  𝑛3 > 𝑛2   bir  𝑥𝑛3
 seçelim. 

 Bu şekilde devam ederek  (𝑥𝑛)  dizisinin   

∀ 𝑘 ∈ ℕ  𝑖ç𝑖𝑛  (𝑥𝑛𝑘
) ∈ 𝐵+ (𝑥,

1

𝑘
)    

𝑑(𝑥, 𝑥𝑛𝑘
) <

1

𝑘
→ 0      𝑘 → ∞ 

𝑥𝑛𝑘
 

𝑓
→  𝑥 

gerçekleyen bir  (𝑥𝑛𝑘
)  alt dizisi bulunmuş olur. Bu durumda  𝑋  deki her dizinin ileri 

yakınsak alt dizisi bulunduğundan  𝑋  ileri dizisel kompakttır. 

Teorem 5.1.6.  Bir asimetrik uzayın geri dizisel kompakt olması için gerek ve yeter koşul 

sonsuz her alt kümesinin en az bir geri yığılma noktasının var olmasıdır. 

İspat.  Bu Teoremin ispatı Teorem 5.1.5 in ispatına benzer şekilde yapılabilir. 
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Teorem 5.1.7. Bir asimetrik uzay ileri kompakt ise sonsuz her alt kümesi en az bir ileri 

yığılma noktasına sahiptir. 

İspat.  (𝑋, 𝑑)  ileri kompakt asimetrik uzay olsun.  𝑋  in sonsuz her alt kümesi en az bir 

ileri yığılma noktasına sahip olmasın.  𝑋  in bir ileri yığılma noktasına sahip olmayan en 

az bir sonsuz  𝐴  altkümesi  vardır. 

Herhangi bir  𝑥 ∈ 𝑋  alalım. 𝑥,  𝐴  nın bir ileri yığılma noktası değildir. Dolayısıyla  𝐴  

nın  𝑥  den başka hiçbir elemanını içermeyen bir  𝐵+(𝑥, 𝜀𝑥)  ileri açık yuvarı vardır. 

Böylece  

𝐵+(𝑥, 𝜀𝑥) ∩ 𝐴 = {
∅       ,       𝑥 ∉ 𝐴

     {𝑥}     ,       𝑥 ∈ 𝐴      
     (1) 

olacaktır. 

𝔊 = {𝐵+(𝑥, 𝜀𝑥)  ∶   𝑥 ∈ 𝑋} 

sınıfı,  𝑋  in bir açık örtüsüdür.  𝑋  ileri kompakt olduğundan,  𝔊  nin sonlu bir alt örtüsü 

vardır. Bu sonlu örtü 

{𝐵+(𝑥𝑖, 𝜀𝑥𝑖
)  ∶   𝑥𝑖 ∈ 𝑋    1 ≤ 𝑖 ≤ 𝑁} 

olsun. Bu durumda  

𝑋 = ⋃ 𝐵+(𝑥𝑖, 𝜀𝑥𝑖
)

𝑁

𝑖=1

 

şeklinde yazılabilir. 

𝐴 = 𝐴 ∩ 𝑋 = 𝐴 ∩ (⋃ 𝐵+(𝑥𝑖, 𝜀𝑥𝑖
)

𝑁

𝑖=1

) 

= ⋃ (𝐴 ∩ 𝐵+(𝑥𝑖, 𝜀𝑥𝑖
)) ⊂

𝑁

𝑖=1

⋃{𝑥𝑖}

𝑁

𝑖=1

       (1  𝑑𝑒𝑛) 

= {𝑥1, 𝑥2, … , 𝑥𝑁} 
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bulunur. Yani  𝐴  ,  𝑋  in sonlu bir alt kümesi olur. Bu çelişkiden dolayı  𝑋  in sonsuz her 

alt kümesi en az bir ileri yığılma noktasına sahiptir. 

Teorem 5.1.8. Bir asimetrik uzay geri kompakt ise sonsuz her alt kümesi en az bir geri 

yığılma noktasına sahiptir. 

İspat.  Bu Teoremin ispatı Teorem 5.1.7 nin ispatına benzer şekilde yapılabilir. 

Teorem 5.1.9.  𝑋  ileri kompakt ise ileri dizisel kompakttır. 

İspat. Eğer  𝑋  ileri dizisel kompakt değilse,  𝑋  de ileri yakınsak alt dizisi olmayan bir  

(𝑥𝑛)  dizisi vardır.  (𝑥𝑛)  dizisinin  hiçbir alt dizisi ileri yakınsak olmadığından, sonsuz 

farklı noktalardan oluşur. 

𝑥 ∈ 𝑋  olsun.  𝑋  bir asimetrik uzay olduğundan  𝑥  noktasında içiçe azalan bir yerel bazı 

vardır. Her bir baz elemanı,  (𝑥𝑛)  dizisinin  𝑥  den farklı  bir elemanını içeriyor olsaydı, 

bu eleman seçilerek oluşturulan alt dizi  𝑥  e yakınsardı. O halde  𝐵𝜀𝑥
+ (𝑥)  (𝑥𝑛)  dizisinin  

𝑥  den farklı hiçbir elemanını içermeyecek şekilde bir  𝜀𝑥 > 0  vardır. 

Bu şekilde elde edilen  {𝐵𝜀𝑥
+ (𝑥)  ∶   𝑥 ∈ 𝑋}  𝑋  in bir açık örtüsüdür. 

Ancak bu ileri açık yuvarların sonlu sayıda birleşimi  (𝑥𝑛)  dizisinin sonlu sayıda terimini 

içereceğinden  𝑋  in bir sonlu açık örtüsü olamaz. O halde  𝑋  ileri kompakt değildir. Bu 

ise bir çelişkidir. Yani 𝑋  ileri dizisel kompakttır. 

Teorem 5.1.10.  𝑋  geri kompakt ise geri dizisel kompakttır. 

İspat.  Bu Teoremin ispatı Teorem 5.1.9 un ispatına benzer şekilde yapılabilir. 
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BÖLÜM 6. SONUÇ 

Bu çalışmada asimetrik uzaylarda ileri ve geri yakınsaklık, ileri ve geri kompaktlık, ileri 

ve geri dizisel kompaktlık kavramları ele alınmış ve şu ana kadar yapılmış olan 

araştırmalar incelenmekle birlikte daha önceki araştırmalarda yer almayan bazı teorem ve 

sonuçlar da sunulmuştur. Metrik uzaylardan farklı olarak, bir asimetrik uzayda bir ileri 

(geri) yakınsak dizinin ileri(geri) limitinin tek olmak zorunda olmadığı gösterilmiş ve 

ileri(geri) limitin tekliği için gerek şartın dizinin ileri(geri) yakınsadığı noktaya geri (ileri) 

yakınsaması olduğu ifade edilmiştir. Yine metrik uzaylardan farklı olarak, ileri(geri) 

yakınsak bir dizinin ileri(geri) Cauhcy dizisi olmadığı asimetrik uzay örnekleri 

sunulmuştur. Ayrıca bir asimetrik uzay ileri(geri) dizisel kompakt ise ileri(geri) limitin 

tek olduğu sonucuna varılmıştır. 

 

 

  



 

44 

 

 

KAYNAKÇA 

Albert, G.E. 1941. A note on quasi metric spaces. Bull. Amer. Math. Soc. 47, 479- 482.  

Cobzaş, Ş. 2012. Functional Analysis in Asymmetric Normed Spaces, Frontiers in 

Mathematics, Springer, Basel. 

Collins, J., Zimmer, J. 2007. An asymmetric Arzelà-Ascoli theorem. Topology and its 

Applications 154, 2312-2322. 

Çakallı, H. 1997. Genel Topolojiye Giriş. İstanbul Üniversitesi Fen Fakültesi Yayınları, 

İstanbul Türkiye. 

Çakalli, H., Mucuk, O. 2016. Lacunary Statistically Upward and Downward Half Quasi-

Cauchy Sequences. Journal of Mathematical Analysis, Volume 7 Issue 2(2016), 

Pages 12-23. 

Çakalli, H. 2018. Beyond Cauchy and Quasi-Cauchy Sequences. Faculty of Sciences and 

Mathematics, University of Nis, Serbia, Filomat 32:3 (2018), 1035–1042. 

Çakallı, H. 2018. On λ Statistical Upward Compactness and Continuity. Faculty of 

Sciences and Mathematics, University of Nis, Serbia, Filomat 32:12 (2018), 

4435–4443. 

Çakallı, H. 2015. Upward and Downward Statistical Continuities. Faculty of Sciences 

and Mathematics, University of Nis, Serbia, Filomat 29:10 (2015), 2265–2273. 

Dağcı, F. İ., Mısırlıoğlu, T., Çakallı, H., Çay M. 2022. On Asymmetric Spaces. 

International Conference of Mathematical Sciences, ICMS 2022, Maltepe 

University İstanbul Turkey. 

Dağcı, F. İ., Çakallı, H. 2022. On Some Results in Asymmetric Spaces. International 

Conference of Mathematical Sciences, ICMS 2022, Maltepe University İstanbul 

Turkey. 



 

45 

 

Dağcı, F. İ., Mısırlıoğlu, T., Çakallı, H., Kocinac, Lj.D.R. 2022. On Some Results in 

Asymmetric Spaces. American Institute of Physics of  Conference Proceedings of 

International Mathematical Sciences, ICMS 2022. 

Dağcı, F. İ. 2019. Quasi Cauchy Dizileri. Yüksek Lisans Tezi, Maltepe Üniversitesi Fen 

Bilimleri Enstitüsü, İstanbul 

Künzi, H.P.A. 1983. A note on sequentially compact quasipseudometric spaces. Monatsh. 

Math. 95 (3) (1983) 219–220. 

Mennucci, A. 2004. On asymmetric distances. Tecnical report, Scuola Normale 

Superiore, Pisa. 

Reilly, I.L., Subrahmanyam, P.V., Vamanamurthy, M.K. 1982. Cauchy sequences in 

quasipseudometric spaces, Monatsh. Math. 93 (2), 127– 140. 

Ribeiro, H. 1943. Sur les espaces a metrique faible (French). Portug. Math. 4, 21- 40, 

[correction, the same issue, pp. 65-68]. 

Stoltenberg, R.A. 1969. On quasi metric spaces. Duke Math. J. 36, 65-71. 

Wilson, W.A. 1931. On quasi-metric spaces. Amer. J. Math. 53(3), 675-684. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

46 

 

 

 

ÖZGEÇMİŞ 

Merve ÇAY 

Matematik Anabilim Dalı 

 

Eğitim 

Derece  Yıl Üniversite, Enstitü, Anabilim Dalı  

Lisans  2018 Maltepe Üniversitesi, Eğitim Fakültesi 

   İlköğretim Matematik Öğretmenliği Anabilim Dalı 

Lisans  2011 Pamukkale Üniversitesi, Fen Edebiyat Fakültesi 

   Matematik Bölümü 

Lise  2006 Amasya Anadolu Lisesi 

 

İş/İstihdam 

Yıl  Görev 

2019 - Matematik Öğretmeni, Köseler Ortaokulu, MEB 

 

 

Alınan Burs ve Ödüller 

Yıl  Burs/Ödül 

2021  Tübitak Bursu 

 

Yayınlar ve Diğer Bilimsel/Sanatsal Faaliyetler 

Dağcı, F. İ., Mısırlıoğlu, T., Çakallı, H., Çay M. 2022. On Asymmetric Spaces.  

International Conference of Mathematical Sciences, ICMS 2022, Maltepe University, 

İstanbul Turkey. 

 

  

 

 

 

  



 

47 

 

 

 


