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ÖZET 

ÇOKLU PARÇALI LİNEER MODEL ALTINDA AĞIRLIKLI EN KÜÇÜK 
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(TEZ DANIŞMANI: PROF. DR. SELAHATTİN MADEN) 

 

Bu tez çalışması beş bölüm halinde düzenlenmiştir. Birinci bölümde 

çalışmanın amacından bahsedilerek bir giriş verilmiştir. İkinci bölümde çalışmamızda 

gerekli olacak temel tanımlar, teoremler ve genel bilgiler ifade edilmiştir. Üçüncü 

bölümde ele alınan modeller altında alt parametrelerin alışılmış en küçük kareler 

tahmin edicisi (OLSE) en iyi lineer yansız tahmin edicisi (BLUE) ve ağırlıklı en küçük 

kareler tahmin edicisi (WLSE) ler incelenmistir. Genel model altındaki ağırlıklı en 

küçük kareler tahmin edicisi (WLSE) nin iki küçük alt model altındaki ağırlıklı en 

küçük kareler tahmin edici (WLSE)' lerin toplam ayrışımı şeklinde olması için gerek 

ve yeter şartlar araştırılmıştır. Dördüncü bölümde sonuç ve öneriler verilmistir. 

Beşinci bölümde ise tezde yararlanılan kaynaklar listelenmiştir. 

Anahtar Kelimeler: Matris, Rank, Genelleştirilmiş İnvers, Lineer Model, Parçalı 

Lineer Model, Alışılmış En Küçük Kareler Tahmin Edici, En Iyi 

Lineer Yansız Tahmin Edici, Ağırlıklı En Küçük Kareler 

Tahmin Edici. 
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ABSTRACT 

BLOCK DECOMPOSITIONS OF WEIGHTED LEAST-SQUARES 
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MASTER THESIS, 46 PAGES 

(SUPERVISOR: PROF. DR. SELAHATTİN MADEN) 

This thesis is organized in five parts. In the first chapter, an introduction is 

given by mentioning the purpose of the study. In the second part, the basic definitions, 

theorems and general information that will be required in our study are expressed. 

Under the models discussed in the third section, the conventional least squares 

estimator (OLSE), the best linear unbiased estimator (BLUE) and the weighted least 

squares estimator (WLSE) of the sub-parameters are examined. Necessary and 

sufficient conditions are investigated for the weighted least squares estimator (WLSE) 

under the general model to be a total decomposition of the weighted least squares 

estimator (WLSE) under the two small submodels. In the fourth chapter, conclusions 

and recommendations are given. In the fifth chapter, the sources used in the thesis are 

listed. 

Keywords: Matrix, Rank, Generalized Inverse, Linear Model, Partitioned Linear 

Model, Ordinary Least Squares Estimator, Best Linear Unbiased 

Estimator, Weighted Least Squares Estimator. 
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n
K  : K cismi üzerinde tanımlı m n  boyutlu tüm matrislerin kümesi 

n
I  : n n  boyutlu birim matris 
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A
−  : A  matrisinin sağ inversi 

L
A

−  : A  matrisinin sol inversi 
1

A
−  : A  matrisinin inversi 

( )r A  : A  matrisinin rankı 

( )A  : A  matrisinin ranj (sütun) uzayı 

A
−  : A matrisinin genelleştirilmiş inversi (iç inversi) 

A
+  : A  matrisinin Moore-Penrose inversi 

OLSE : Alışılmış en küçük kareler tahmin edicisi 

BLUE : En iyi lineer yansız tahmin edici 

WLSE : Ağırlıklı en küçük kareler tahmin edicisi 

.
V

 : Semi normu 

2   : Kovaryant matris 

  :   parametresinin alışılmış en küçük kareler tahmin edicisi 

( ),Cov A B  : A  ve B değişkenleri arasındaki kovaryans 
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1. GİRİŞ 

Günümüzde matrisler yardımıyla inşa edilen lineer modeller, teorik matematik, 

istatistik, sosyoloji, kimya, fizik eğitimi ve elektrik mühendisliği gibi pek çok teknik 

alanda oldukça önemli hale gelmiştir. Matris hesabı ise 19. yüzyılın ortalarından beri 

bilinmektedir. İngiliz matematikçi Sylvester, 1850 yılında matris kavramını ilk kez 

kullanmıştır. 1853 yılında İngiliz bilgini Hamilton ‘Lineer and Vector Functions’ 

isimli eserinde matrislerin bazı özelliklerinden faydalanmış, fakat matris ismini henüz 

kullanmamıştır. Yine bir İngiliz matematikçi olan Cayley ise 1858 yılında o zamanlar 

çok meşhur olan ‘Memorie on the Theory of Matrices’ isimli çalışmasında matris 

cebirinin temel esaslarını ortaya koymuştur. Daha sonra Fransız Laguerre ve Alman 

Frobenius matrislerle ilgili yeni kavramlar ve teoremler üzerinde çalışmalar 

yapmışlardır.  

Bir singüler matrisin inversi fikri ise ilk defa 1920 yılında Moore (1920, 1935) 

tarafından ortaya atılmıştır. Ancak ta ki 1955 yılına kadar bu konuda herhangi bir 

sistematik çalışmaya rastlanamamaktadır. 1955 yılında, önceki yapılan çalışmalardan 

tamamen habersiz olarak, Penrose (1955, 1956) biraz farklı bir yoldan Moore 

tarafından verilen invers kavramını tekrar tanımlamıştır. Penrose ile hemen hemen 

aynı zamanlarda yaşayan bilim adamlarından Rao (1965) tarafından geliştirilen Pseuda 

invers, Moore ve Penrose tarafından ortaya konulan kısıtlamaların tümünü 

sağlamamaktadır. Bu nedenle bu invers, Moore-Penrose inversten oldukça farklıdır. 

Rao, daha sonraki çalışmalarında lineer denklemlerle ilgili problemlerinin çözümünde 

yeterli olan ve Moore ve Penrose’ un vermiş olduğu tanımdan daha zayıf bir tanım 

ortaya koymuştur. Böyle bir invers, bir genelleştirilmiş invers (g-invers) olarak 

adlandırılmış ve bunun çeşitli uygulamaları Rao (1965)’ nun birçok çalışmasında yer 

almıştır. Genelleştirilmiş inverslerle ilgili önemli gelişmeler ve bunların bazı 

uygulamaları Generalized Inverse of Matrices and Its Applications (Wiley, 1971) 

isimli kitapta verilmiştir.  

Matris rankı ile ilgili iyi bilinen bir gerçek şudur: Aynı mertebeden iki A  ve B  

matrisinin benzer olması, yani UAV B=  olacak şekilde iki tersinir U  ve V  matrisinin 

mevcut olması için gerek ve yeter şart ( ) ( )r A r B=  olmasıdır. Bir matrisin 

sütunlarının veya satırlarının doğrusal bağımsızlığını belirlemek için en basit yöntem, 
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matrisin elementer matris işlemler yardımıyla satır veya sütun eşelon formlara 

indirgenmesidir. Teorik açıdan idempotent matrislerden oluşan herhangi bir matris 

ifadesi için, bu ifade ile ilgili bazı rank eşitlikleri kurulabilir. Bu rank eşitliklerinden 

yararlanarak verilen ifadenin bazı temel özellikleri elde edilebilir. Bazı rank 

formülleri, çeşitli blok matrisler ve elementer blok matris işlemleri ile luşturulabilir. 

Bunlardan bir kısmı aşağıda verilmiştir: 
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,
  0       0          

m m m

n n n

I A I I AB
r r r

B I I BA I
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Son zamanlarda yapılan çalışmalarda bu yöntemle pekçok yeni ve önemli rank 

eşitlikleri elde edilmiş ve bu rank eşitliklerinden birçok önemli sonuç türetilmiştir. 

Şimdi lineer model kavramından bahsedilebilir. Y  gözlemlerin 1n  mertebeli 

vektörü (rasgele vektör), X  n p  ( )n p  mertebeli bir bilinen katsayı matrisi,   

1p  mertebeli bilinmeyen parametre vektörü ve ( ) 0E  = , ( )Cov  =   olmak üzere 

  ise 1n , rasgele değişkenlerin gözlenebilir olmayan bir vektörü olsun. Bu durumda 

bunlar arasında 

Y X = +  

biçiminde varsayılan bir bağıntıya bir lineer model veya lineer regresyon modeli denir. 

Bu model pek çok özel durumlara sahiptir. Bu durumlar,   rasgele vektörünün 

dağılımına ve kovaryans matrisine ya da X  katsayı matrisinin yapısına ve rankına 

bağlıdır. Aksi belirtilmedikçe, ( )r X p=  olduğunu kabul edilecektir, başka bir deyişle 

modelimizdeki X  katsayı matrisi tam sütun ranklı bir matris olacaktır,   hata 

vektörünün dağılımı hakkında ise aşağıdaki üç durum göz önüne alınabilir: 

1. Durum: ( )20,N I   

2. Durum:   bilinmeyen bir dağılıma sahiptir ve ( )E  =0 ( ) 2Cov I =  dır. 
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3. Durum: ( ) 2Cov V = , V bilinen pozitif definit bir matristir. 

Birinci durumda her bir 
i  rasgele değişkeni 0 ortalamalı, bilinmeyen 2  varyanslı 

normal dağılıma sahip olup  , 1,2,3,......, Ni i = , ler bağımsızdır. İkinci durumda, her 

bir i  nin beklenen değeri sıfır ise, i  ler ilişkisiz ve i  ler bilinmeyen ortak 2  

varyansına sahiptirler. Birinci ve ikinci durumdaki varsayımlar altındaki modellere 

Gauss-Markov modeli denir. İkinci durumdaki modellere ise bazen en küçük kareler 

modelleri denir. Ayrıca hata terimi normal dağılımlı olduğunda bu modellere hipotez 

modelleri de denilmektedir. 

Y X = +  lineer modelinde X  çarpımına modelin deterministik kısmı, Y

ve  vektörlerine ise modelin stokastik kısmı adı verilir. Y vektörü bağımlı değişken, 

tepki değişkeni, açıklanan değişken adı verilen bir rastgele değişken ile ilgili gözlemler 

vektörüdür. X  matrisine tasarım matrisi, açıklayıcı değişkenlerin matrisi, bağımlı 

değişkenlerin gözlem matrisi gibi isimler verilmektedir,   vektörüne ise hata vektörü 

denilmektedir. Gerçek dünyadaki olayların lineer modeller yardımıyla modellenmesi 

ile ilgili çalışmalarda ,  Y X ,   ve   değişkenleri birçok değişik şekillerde 

anlamlandırılmaktadır. Bazı modellerde Y üretim miktarı, bazılarında boy uzunluğu, 

bazılarında ise bir ekonomik değişken olabilir. 

Doğrusal hareket eden, 0  hızı ile hareketine başlayan ve ivmesi 1  olan bir 

cismin zamana ( t ’ye) bağlı olarak aldığı yol 0 1S t = +  formülü ile verilir. Bu 

şekilde bir hareket eden bir cismin hızını ve ivmesini bilmek ve daha sonra belli bir 

zamanda aldığı yol miktarını belirlemek istediğimizi farzedelim. Bu durumda keyfi 

olarak seçtiğimiz belli  , 1,2,.........., ,it i N=  zamanlarında yol uzunluklarını 

gözlemlemeye kalkıştığımızda ölçümlerdeki hatalardan dolayı  , 1,2,.......... ,iS i N=

gözlemleri için 0 1i i iS t  = + +  gibi bir model düşünmemiz daha uygun 

görünmektedir.  

1 1 1

02 2 2

1 2 1

1 2 1

1    t

1    t
,   X ,   ,   

      

1    tN N NN N N

S

S
Y

S




 






  

     
     

      = = = =         
     
     
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gösterimleri altında yukarıda söylenenler,  

Y X = +  

şeklinde bir lineer model olarak ifade edilmektedir. Bu modelde Y gözlem 

vektöründeki gözlemleri veren açıklayıcı ya da bağımlı değişkeni Y  harfi, X  

matrisinin ikinci sütunundaki gözlemler ile ilgili bağımsız değişkeni X  harfi ve hatayı 

da   harfi ile gösterirsek bu değişkenler arasındaki bağıntı 

           0 1Y X  = + +  

olarak da ifade edilebilir. İkinci bir örnek olarak, belli bir tür elmadaki meyve suyu 

miktarını elmanın ağırlığına bağlı olarak incelemek isteyelim. Gerçekte bir elmadaki 

meyve suyu miktarı sadece elmanın ağırlığına bağlı değildir, ama ağırlık ile meyve 

suyu arasında bir fonksiyonel bağıntının (bilinmeyen parametrelere göre lineer bir 

ifade olabilir) varlığını kabul edip gözlemlerin bunu doğrulayıp doğrulamadığını, 

gözlemlerden çıkıp bir bağıntının bulunmasını ve bunların neticesinde ağırlığa bağlı 

olarak meyve suyu miktarını belirlemeyi (tahmin etmeyi) düşünebiliriz. Bu örnekteki 

açıklayıcı değişken olan elmanın ağırlığı ile açıklanan(bağımlı) değişken olan 

elmadaki meyve suyu miktarı birer rasgele değişken olacaktır. Ağırlığı X , meyve 

suyu miktarını Y  ile gösterirsek bu durumda X  ve Y  değişkenlerinin bir ortak 

dağılımı söz konusu olacaktır. 

( ) ( )E Y X x g x= =  

ifadesine Y  nin X  üzerindeki regresyon denklemi dendiğini ve X  ile Y değişkeninin 

ortak dağılımının normal dağılım olması durumunda bunun 

( ) 0 1( )E Y X x g x x = = = +  

şeklinde olduğunu hatırlatalım. Bu takdirde ( ),X Y  iki boyutlu rastgele değişkeninin 

ortak dağılımından N  birimlik örneklem, ( ),  , 1,2,......, ,i iX Y i N=  olmak üzere 

0 1 ,  1,2,......,i i iY X i N  = + + = ,  ( )20,  i I   

veya 
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matris gösterimi altında 

,  Y X = +  

modeline bir basit lineer regresyon modeli denir. Lineer regresyon modelleri de Lineer 

Modeller çerçevesinde düşünülebilir. X  ve Y  rasgele değişkenleri arasında bir ortak 

dağılım düşünmeden sadece Y  bağımlı değişken ile ilgili gözlemlere dayalı olarak, 

0 1 ,  1,2,......, ,i i iY X i N  = + + =  

biçiminde bir ifade söz konusu olduğunda modele basit lineer model denir. 

Öte yandan elmanın ağırlığı olan X  değişkeni ile elmadaki meyve suyu miktarı 

olan Y  değişkeninin ortak dağılımı normal olmayabilir. Bizim buradaki amacımız X  

değişkeninin gözlenen değerine bağlı olarak Y  değişkeninin gözlenen değerini ön 

görmek olduğuna göre 

0 1 ,  1,2,......, ,i i iY X i N  = + + =  

biçiminde bir lineer modeli ele almak söz konusudur. Bu durumda   hata terimi, 

birinci örnekteki yol uzunluğunun ölçülmesi sırasındaki hataya benzer bir hatayı 

içermekle birlikte, X  değişkeninin belli bir değeri için Y  değişkenindeki rastgeleliği 

ve ayrıca model belirlemesindeki hatayı da içerecektir. 

Bir lineer modelde eğer açıklayıcı değişken sayısı birden çok ise bu modele 

çoklu lineer model (multiple linear model) denir. Bir lineer modelde eğer bağımlı 

değişken sayısı birden çok ise bu durumda da modele birçok değişkenli model 

(multivariate model) adı verilir. Sıcaklık ile basıncın, sertlik üzerindeki etkisinin 

fonksiyon biçiminde bir bağıntı ile ifade edilip edilemeyeceği, bu bağıntının biçiminin 

ne olacağı veya sıcaklık ile basınç değişkenlerinin sertliği ne derece etkileyip 

etkilemediği gibi sorunlar ilk olarak metalürji biliminin sorunları gibi gözükmektedir. 

Metalürji biliminin kanunlarına göre sıcaklık ile basıncın sertlik üzerindeki etkisi tam 

olarak belirlenmiş olabilir, bağıntı biçimsel olarak belirlenmiş ancak içinde 
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bilinmeyen katsayılar mevcut ya da aralarında bir bağıntı var ama ne olduğu 

belirlenmemiş olabilir. İlk durumda istatistikçinin yapacağı fazla bir şey kalmamıştır. 

Belki belirlenmiş olan modelin geçerliliğinin sınanmasında yardımcı olabilir. İkinci ve 

üçüncü durumlarda ise istatistikçiye önemli görevler düşmektedir. Amaç 

belirlendikten sonra (Örneğin bu amaç hangi sıcaklık ve basınçta malzemenin sertliği 

maksimum olmaktadır şeklinde olabilir) gözlemlerin alınacağı en iyi deney 

tasarımının seçilmesi ve ardından da bir istatistiksel sonuç çıkarımının yapılması 

istatistik biliminin sorunudur. 

İkinci örnek olarak belirli bir mısır türünün verimini incelemek istediğimizi 

varsayalım. Şüphesiz verim, toprak ve hava ile ilgili birçok tabiat şartı yanında sulama, 

gübreleme, toprağı işleme gibi bazı etkenlere de bağlıdır. Bu nedenle modelleme 

sırasında, çok karmaşık olan gerçek dünyadaki ilişkilerden bazılarını ihmal ederek, 

verim miktarı ( )Y  için, toplam yağış miktarı ( )1X , sıcaklık ortalaması (bitkinin 

yetişmesi boyunca her gün bir defa ölçülen sıcaklıkların ortalaması ( )2X , gübre 

miktarı ( )3X  ve birim metrekaredeki bitki sayısı ( )4X  değişkenlerine bağlı olarak,  

0 1 1 2 2 3 3 4 4Y X X X X     = + + + + +  

gibi bir modelin geçerli olduğunu varsayalım. Bu durumda gerek modelin 

geçerliliğinin sınanması ve gerekse geçerli olacak bir modelde açıklayıcı değişkenlerin 

etkilerinin yani parametrelerin tahmin edilmesi amacıyla yapılacak bir araştırmada 

veri toplama işlemi uygulamada pek kolay olmayacaktır. Modeldeki yağış miktarı ve 

sıcaklık ortalaması ile ilgili açıklayıcı değişkenler birer rasgele değişkendir, ancak 

gübre miktarı ile ilgili açıklayıcı değişken bir deterministik değişken olarak 

görülebilir. Bu nedenle açıklayıcı değişkenlerin birer rasgele değişken olup 

olmamasına bakılmaksızın, bundan sonra açıklayıcı değişkenler ile ilgili X  matrisini, 

gözlem değerlerinin bir matrisi, yani sabitlerin bir matrisi olarak düşünmek daha 

mantıklı olacaktır. 
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2. TEMEL KAVRAMLAR 

Bu bölümde sonraki bölümlerde kullanılacak olan bazı tanımlar ve teoremler 

ispatsız olarak verilecektir. 

Tanım 2.1 K  keyfi bir cisim olsun. K  cismi üzerinde n bilinmeyenli m tane lineer 

denklemden oluşan bir lineer denklem sistemi  

 
1

,  1
n

ij j i

j

a x b i m
=

=    

şeklinde tanımlanır. Bu denklem sisteminde, x j
,1 j n   ler bilinmeyenler, 

, 1a i mij    ler katsayılar ve bi  ler ise reel sayılardır. Verilen denklem sistemi daha 

açık olarak 

            

11 1 12 2 13 3 1 1

21 1 22 1 23 3 2 2

1 1 2 1

........

........

..........................................................

..........................................................

n n

n n

m m m

a x a x a x a x b

a x a x a x a x b

a x a x a

+ + + + =

+ + + + =

+ + 3 3 ........ mn n nx a x b+ + =

 

veya matris formunda  

            

11 1 12 2 13 3 1 1 1

21 1 22 1 23 3 2 2 1

1 1 2 1 3 3

........

........

......................................................

........

n n

n n

m nm m m mn n

a x a x a x a x x b

a x a x a x a x x b

x ba x a x a x a x

+ + + +     
     

+ + + +
     =
     
    

+ + + +     


  

olarak yazılır (Hacısalihoğlu,1977). 

Tanım 2.2 

i. K  cisim olsun. ,m n N ve 1 i m  ,1 j n  olmak üzere bütün ( , )i j  sıralı 

ikililerin kümesi A N N=   ile gösterilsin. f K→  fonksiyonu ( ) ( ), , iji j f i j a→ =  

olarak tanımlansın. 
ija K  olacak şekilde seçilen .nm  tane elemanın oluşturduğu 

tabloya K  cismi üzerinde tanımlı m n  tipinde matris denir. Eğer 𝐾 = ℝ, reel sayılar 

kümesi olarak alınırsa matrise reel matris, ,K = kompleks sayılar kümesi olarak 

alınırsa, matrise kompleks matris denir (Branson R., 1999). Bu durumda 
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11 12 1

21 22 2

1 2

  ....  

  ....  

    

  ...  

n

n

m m mn

a a a

a a a
A

a a a

 
 
 =
 
 
 

                                                                                   (2.1) 

matrisi kısaca 
ij m n

A a


 =  
 şeklinde gösterilir. Burada 

ija  elemanı A  matrisinin .i

satır ve .j  sütununa karşılık gelen elemanıdır. K cismi üzerinde seçilen bütün 

ij m n
A a


 =  

biçimindeki matrislerin kümesi m nK   ile gösterilir. 

ii.  
ij m n

A a


 =    ve 
ij m n

B b


 =   aynı boyutlu iki matris olmak üzere herbir ( ),i j  

için
ij ija b=  ise A  ve B  matrislerine eşit matrisler denir. 

iii. 
ij m n

A a


 =  
 matrisinin her bir 

ija  elemanı sıfır ise A  matrisine bir sıfır matris 

denir. 

iv. 
ij m n

A a


 =  
 ve 

ij m n
B b


 =  

 boyutlu matrisler olmak üzere A B+  matrisi  

         

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

     .........  

     ........  

               

    .......  

n n

n n

m m m m mn mn

a b a b a b

a b a b a b
A B

a b a b a b

+ + + 
 

+ + +
 + =
 
 

+ + + 

  

şeklinde tanımlanır. 

v. K  cismi üzerinde s K bir skaler sayı olmak üzere m

nsA K  matrisi  

           

11 12 1

21 22 2

1 2

 .... 

 .... 

...     ...    ..... ....

 .... 

n

n

m m mn

ka ka ka

ka ka ka
kA

ka ka ka

 
 
 =
 
 
 

  

şeklinde tanımlanır. 

vi. 
ij m p

A a


 =  
 ve 

ij p n
B b


 =  

 olmak üzere A  ve B  matrislerinin çarpımı  

𝐴. 𝐵 = [
( a

11
b11 + … …    + a1p𝑏1𝑝)  …   (a11b1n + … …    + a1p𝑏𝑝𝑛) 

… …                                      …                                      … … . .
(am1b11 +. . . . . .   + amp𝑏𝑝1)  . . .    (am1b1n +. . . . . .   + amp𝑏𝑝𝑛)

]  
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biçiminde tanımlanır. Açıkca görüleceği üzere çarpımın tanımlı olabilmesi için birinci 

matrisin sütun sayısı ile ikinci matrisin satır sayısı eşit olmalıdır. Bu şartlar altında 

çarpım matrisi .A B  veya AB  ile gösterilir (Hacısalihoğlu H.H., 1977). 

Tanım 2.3  

i. Bir 
ij m n

A a


 =  
 matrisinde eğer  m n=  ise bu durumda  A  matrisine kare 

matris denir. Bu durumda A  matrisindei  
11 22,  ,.........., nna a a  elemanlarına matrisin 

köşegen (esas köşegen) elemanları denir. 

ii. Köşegen elemanları 1 ve diğer elemanları 0 olan bir kare matrise birim matris 

denir ve birim matris 
nI  şeklinde gösterilir. 

iii.  
ij m n

A a


 =  
matrisinde aynı numaralı satır ve sütunların yer değiştirilmesi ile 

elde edilen T

ji n m
A a


 =  

 matrisine A  matrisinin transpozu denir. A  ve B  matrisleri 

için ( )
T T TA B A B+ = +  ve ( ).

T T TA B B A=  eşitlikleri sağlanır. 

iv. A  kare matrisinde TA A=  ise, A matrisine simetrik matris denir. 

Teorem 2.1 ,A B  ve C  matrisleri bir K  cismi üzerinde tanımlı m n  boyutlu 

matrisleri ve 
1 2,k k K  skaler sayısı için aşağıdaki eşitlikler sağlanır (Hacısalihoğlu 

H.H., 1977). 

i. ( ) ( )A B C A B C+ + = + +  

ii. 0 0A+ =  

iii. ( ) 0A A+ − =  

iv. A B B A+ = +  

v. ( )1 1 2k A B k A k A+ = +  

vi. ( )1 2 1 2k k A k A k A+ = +  

vii. ( ) ( )1 2 1 2k k A k k A=  

viii. 1A A=  ve 0 0A =   

Tanım 2.4 1

1 1 1, ,......... nx x x   vektörleri için 0i ia x =  olacak şekilde hepsi birden 

sıfır olmayan 
1 2, ,......... na a a  skaler sayıları bulunuyorsa 

1 1 1, ,.........x x x vektörlerine 

lineer bağımlıdır, aksi halde lineer bağımsızdır denir. 
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Tanım 2.5 A  matrisi m n  boyutlu ve 𝑎1, 𝑎2, . . . . . . . . . 𝑎𝑛 sütunlarına sahip olan bir 

matris olsun. ( )1 1 1, ,.........x x x x =  vektörü için 
1 1 2 2 ....... n nAx x a x a x a= + + +  ifadesi 

A  matrisinin sütunlarının bir lineer kombinasyonunu gösterir. Bu durumda A  

matrisinin sütunlarının lineer kombinasyonu olarak ifade edilebilen bütün vektörlerin 

kümesine A  matrisinin sütun uzayı denir ve ( )A  ile gösterilir. ( )A , A  matrisinin 

sütunları tarafından gerilir ve sütun uzayı  

            ( )  1 1: ,m nA y y Ax x  =  =    

ile ifade edilir. 

Tanım 2.6. A  matrisinin 
1 2, ,......... na a a  satırları tarafından üretilen 1n  in alt uzayına 

A  matrisinin satır uzayı denir. A  matrisinin satır uzayı ( )A  olarak gösterilir. 

Tanım 2.7 Bir A  matrisinin sütun uzayının boyutuna matrisin sütun rankı denir. Bir 

A  matrisinin satır uzayının boyutuna ise matrisin satır rankı denir. Bir  A matrisinin 

satır indirgenmiş eşelon biçimindeki sıfırdan farklı satırların sayısına ise matrisin rankı 

denir ve ( )r A  ile gösterilir. 

Tanım 2.8. A  matrisinin sıfır uzayı 

           ( )  1 1: 0n nN A x Ax =  =   

şeklinde tanımlanır. 

Tanım 2.9 A  matrisi m n  boyutlu ve C  matrisi, A  matrisinin satır indirgenmiş 

eşelon biçimi olsun. A  matrisinin satır uzayı ile C  matrisinin satır uzayı aynıdır. 

Teorem 2.2 A  matrisi m n  boyutlu matris olsun. A  matrisinin satır rankı, sütun 

rankına eşittir. 

Teorem 2.3 Uygun boyutlu ,A B  ve C  matrisleri için aşağıdaki ifadeler doğrudur. 

i. ( ) ( ) ( ): ,A B A B = +  

ii. ( ) ( ) ,AB A   

iii. ( ) ( ) ,AA A =  

iv. ( ) ( )C A C    matrisi AB  biçimindedir. 
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v. ( )( ) ( ) ,boy A r A =  

Eğer ( ) ( )A B   ve ( ) ( )r A r B  ise ( ) ( )A B =  dir. Özellikle ( ) 1n

nI  =  

dir. 

vi. m nA   için ( )  min , ,r A m n  

vii. Bir matrisin bazı satır ya da sütunlarının silinmesiyle elde edilen alt matrisin 

rankı, orijinal matrisin rankını geçemez, 

viii. m kA   ve k nB   ise, ( ) ( ) ( ) ( ) ( ) min , ,r A r B k r AB r A r B+ −    

ix. ( ) ( ) ( ) ( ) ,r A r A r A A r AA  = = =  

Eğer AB I=  ise, B matrisine A  matrisinin sağ tersi denir ve bu ters RB−  ile 

gösterilir. A  matrisine ise B matrisinin sol tersi denir ve bu ters LA−  ile gösterilir. A  

matrisinin sağ tersi, A  matrisi tam satır ranklı olduğu zaman vardır. Benzer şekilde B  

matrisinin sol tersi, B  matrisi tam sütun ranklı olduğunda vardır. Sağ ters veya sol ters 

tek olmayabilir. m nA   üçgensel matris olmak üzere, rank şartları gösterir ki, m n  

olduğunda sağ ters olmayabilir ve m n  olduğunda sol ters olmayabilir. Aslında her 

iki tersin olması için gerek ve yeter şart A  matrisinin kare matris ve tam ranklı 

olmasıdır. Bu durumda matrisin sağ tersi ile sol tersi eşit olur ve bu matrise, 

nonsingüler A  matrisinin tersi denir. 1A−  ile gösterilir. O halde A matrisinin tersi 

vardır ve bu ters tektir ancak ve ancak A  matrisi nonsingülerdir. 1 1AA A A I− −= =  

dır. Eğer A  ve B  matrislerinin her ikisi de nonsingüler ve aynı boyutlu ise 

( ) 1 1 1AB B A
− − −=  dir. 

Herhangi bir A  matrisi için ABA A=  ise, B  matrisine A matrisinin 

genelleştirilmiş inversi denir ve A  matrisinin genelleştirilmiş inversi A−  ile gösterilir. 

Eğer m nA   ise, n mA−   dir. Her matrisin en az bir genelleştirilmiş tersi vardır. 

Her simetrik matrisin en az bir simetrik genelleştirilmiş tersi vardır. Genel olarak, A−  

tek değildir. A−  matrisinin tek olması için gerek ve yeter koşul A  matrisinin 

nonsingüler olmasıdır. Bu durumda 1A A− −=  dir. Herhangi bir A  matrisi için, 

i. ABA A=  

ii. BAB B=  
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iii. ( )AB AB =  

iv. ( )BA BA =  

koşullarını sağlayan, B  matrisine A  matrisinin Moore-Penrose tersi (inversi) denir ve 

A+  ile gösterilir. Bir matrisin Moore-Penrose inversi tektir. Eğer A matrisi tersi 

alınabilir bir matris ise bu durumda 1A A+ −=  dir. 

Teorem 2.4 
1A  ve 2A  tersi olan matrisler ise, bu durumda herhangi bir 

3A  matrisi için 

3A , 1 3A A  , 3 2A A  ve 1 3 2A A A  matrisleri aynı ranka sahiptir. 

Tanım 2.10 Eğer 2P P=  olacak şekilde bir P  matrisi varsa P  matrisine idempotent 

matris denir. 

Teorem 2.5 ,  ve A B C  uygun boyutlu matrisler olmak üzere aşağıdaki ifadeler 

doğrudur. 

i. ( )A A
+

+ =   

ii. AA+  ve A A+  idempotenttir. 

iii. ( ) ( ) ( ) ( ),r A r A r AA r A A+ + += = =  

iv. ( ) ( ) ve ,A AA A A AA A A A A A A A+ + + + + + +     = = = =  

v. 0 0,  0 0 ve 0 0,A A AB B A A B A B+ + + + =  = =  = =  =  

vi. ( ) ( ) ( ) ( ) ,r A r A A r AA r A− − −= =   

vii. ,BA C−  A  matrisinin genelleştirilmiş tersinin seçimine göre değişmezdir 

ancak ve ancak ( ) ( )B A    ve ( ) ( )C A   dır. 

viii. A A−  ve AA−  matrislerinin her biri idempotent matrislerdir. A  matrisi simetrik 

ve idempotent matris ise I A−  matrisi de simetrik ve idempotent matristir. 

Tanım 2.11. ( )ijA a=  n n  boyutlu bir kare matris olmak üzere A  matrisinin 

determinantı A  ile gösterilir ve aşağıdaki gibi tanımlanır. 
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i. 1n =  için 11,A a=  

ii. 2n =  için 11 22 12 21,A a a a a= −  

iii. 2n   için   ( )
11

11 11 12 12 1 1 1 1

1

............+(-1) 1
n

in

n n i i

i

A a A a A a A a A
++

=

= − + = −

dir, burada 1 ,iA ( )1, .i  minördür. 

Teorem 2.6. A  matrisi köşegen elemanları 11,......., nna a  olan n n  boyutlu matris 

olmak üzere, eğer A  matrisi üst üçgensel, alt üçgensel veya köşegen matris ise bu 

takdirde 11 12........ nnA a a a=  dir. 

Sonuç 2.1. I  birim matris olmak üzere 1I =  dir. 

Teorem 2.7. A  ve B  aynı mertebeden kare matrisler olmak üzere AB A B=  dir. 

Sonuç 2.2. A matrisi tersinir bir matris olmak üzere 
1

1
A

A−
=  dir. 

Tanım 2.12. ( ) 1n

iy y =   vektörü ve simetrik ( ) n n

ijA a =   matrisi için, 

( )
1 1

n n

i j ij

i j

Q y y Ay y y a
= =

= =  ifadesine, iy elemanlarının bir kuadratik formu ve A

matrisine de bu kuadratik formun matrisi denir. y Ay  kuadratik formu, simetrik bir A  

matrisi tarafından karakterize edilir ve bu matrise kuadratik formun matrisi denir. 

Böyle bir matris için aşağıdakiler söylenebilir. 

i. Eğer 0y   için 0y Ay   ise A  pozitif tanımlıdır. 

ii. Eğer 0y   için 0y Ay   ise A  negatif tanımlıdır. 

iii. Eğer y  için 0y Ay   ise A  nonnegatif tanımlıdır. 

Teorem 2.8. A nonnegatif tanımlı ve r  ranklı bir matristir ancak ve ancak A RR=

olacak şekilde r ranklı bir R  matrisi vardır. 

Şimdi de blok ayrışımlarda kullanılacak olan lineer model ve bu modelin alt modeli 

ile tahmin edilebilme kavramlarını kısaca açıklayacağız. 
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Genel olarak bir lineer model 
1 1 2 2y X X X    = + = + +  biçiminde 

tanımlanır. Bu modelin bir diğer gösterimi    1 1 2 2, , , ,M y X V y X X V  = = +  

biçimindedir, burada 1ny   gözlenebilir rastgele değişkenler vektörü, n pX   

bilinenler matrisi, 1p   bilinmeyen parametrelerin vektörü ve 1n   ise 

gözlenebilir olmayan hataların vektörüdür. 

  parametre vektörünü tahmin etmenin değişik metotları vardır. Bu 

metotlardan en çok kullanılanı en küçük kareler tahmini metodudur. Bu model 

( )i =  olmak üzere, 
2

i  ifadesinin   parametresine göre minimumlaştırılması 

işlemlerini içerir. ( ) 0E  =  ve ( ) 2D I = olmak üzere, bu işlemler sonucunda elde 

edilen X X X Y = denklemine normal denklem denir. X  tam ranklı kabul 

edildiğinde sistemin tek bir çözümü vardır ve bu çözüm ( )
1

X X X y
−

 =  çözümüdür. 

Bu durumda   tahminine, alışılmış en küçük kareler tahmin edicisi (OLSE) denir. X  

matrisinin tam ranklı olduğu kabulü altında bilinen bir V  pozitif tanımlı matrisi için 

( ) 0E  =  ve ( ) 2D V = olarak alındığında elde edilen normal denklemlere karşılık 

gelen 1 1X V X X V y− − =  denkleminin tek çözümü ( )
1

1 1X V X X V y
−

− − =  tahmini 

genelleştirilmiş en küçük kareler edicisi olarak bilinir. 

Eğer 1p   için ( )E Gy X=  ise, Gy  tahmin edicisi X  nın yansız tahmin 

edicisidir. Bu lineer yansız tahmin edici diğer lineer yansız tüm tahmin ediciler 

arasında en küçük kovaryans matrise sahip ise en iyi lineer yansız tahmin edici 

(BLUE) olarak tanımlanır. Yani ( )E y X =  olacak şekilde her y  vektörü için

( ) ( )cov covGy y  dir. 
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3. PARÇALI LİNEER MODELLERDE AĞIRLIKLI EN KÜÇÜK KARELER 

TAHMİN EDİCİLERİN BLOK AYRIŞIMLARI 

3.1 Modelin Oluşumu 

m n
 kümesi, m n  tipindeki tüm reel matrislerin kümesini göstersin. 

, ( )  ve  ( )A r A A   sembolleri ise sırasıyla bir A  matrisinin transpozunu, rankını, ve 

ranj uzayını (sütun uzayını) göstersin. Eğer 0A VB =  ise m nA   ve m pB   matris 

çiftlerine non-negatif tanımlı, m mV  (V −ortogonal) matrisine göre ortogonaldirler 

denir. Bir m nA   matrisinin Moore-Penrose inversi  

i. AXA A=  

ii. XAX X=  

iii. ( )AX AX =  

iv. ( )XA XA =  

şeklinde verilen dört Penrose denklemlerinin tek çözümü olan m nX   matrisi olarak 

tanımlanır ve X A+=  ile gösterilir. Öte yandan eğer m nX   matrisi sadece AXA A=  

şartını sağlıyorsa A  matrisinin bir g − inversi denir ve A−  ile gösterilir. Eğer 

m nX   matrisi sadece XAX X=  şartını sağlıyorsa bu durumda X  matrisine A  

matrisinin bir dış inversi adı verilir. 

AP , AE , AF  matrisleri  

i. 
AP AA+=  

ii. 
A AE I P I AA+= − = −  

iii. 'A A
F I P I A A+= − = −   

ortoganel izdüşümlerini göstersin. Kabul edelim ki  

            1 1 2 2y X X  = + + , ( ) 0E  = , ( ) 2Cov  =                                       (3.1) 

parçalı lineer modeli verilmiş olsun, burada 1

1

n pX 
  ve 2

2

n p
X


  matrisleri 

1 2p p p+ =  keyfi ranklı iki matris, 1ny   ölçülebilir keyfi bir rasgele vektör, 
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1
1

1

p



  ve 2 1

2

p 
  tahmin edilecek olan iki bilinmeyen parametreler  vektörü, 

n nR   keyfi ranklı non-negatif tanımlı bir matris ve 2  ise bir bilinmeyen pozitif 

parametredir. Eğer   singüler bir matris ise (3.1) ile verilen denkleme bir singüler 

lineer model de denir. (3.1) denklemindeki model üçlü olarak sıklıkla  

𝛭 = {𝑦, 𝑋𝛽, 𝜎2𝛴} = {𝑦, 𝑋1𝛽1 + 𝑋2𝛽2, 𝜎2𝛴}                                               (3.2) 

olarak yazılır, burada  1 2,X X X=  ve  1 2,   =  dir. 

3.2 Parçalı Lineer Model Altında Ağırlıklı En Küçük Kareler Tahmini  

Bir parçalı model ile ilgili araştırmalarda özel bir ilgi parçalı model (tam 

model) ile bu modelin değişik küçük ve indirgenmiş modelleri arasındaki ilişkinin 

araştırılmasıdır. Bu konu literatürde geniş bir şekilde farklı boyutlarda araştırılmıştır. 

Bunlardan bazıları (Bhimasankaram ve Saharay, 1997); (Chu ve ark., 2004); (Groß ve 

Puntanen, 2000); (Nurhonen ve Puntanen, 1992); (Werner ve Yapar, 1995, 1996); ve 

(Zhang ve ark., 2004) şeklindedir. (3.2) denkleminde verilen tam model için iki küçük 

lineer model   

  2

1 1 1 1, ,y X   =   ve  2

2 1 2 2, ,y X   =                                             (3.3) 

ile verilir. X  matrisi tam sütun ranka sahip ise bu takdirde (3.2) modeli altında X  

matrisinin alışılmış en küçük kareler tahmin edicisi (OLSE) 

 ( ) ( )
1

OLSEM y
−

  =      

şeklinde yazılabilir. Eğer X matrisindeki 1X  ve 
2X  alt matrisleri orthogonal ise yani 

1 2 0X X =  ise bu takdirde ( )
1

X X X X
−

   ifadesi 

 ( ) ( ) ( )
1 1 1

1 1 1 1 2 2 2 2X X X X X X X X X X X X
− − −

     = +                                     (3.4) 

toplamı şeklinde yazılabilir. Bunun sonucu olarak da OLSE ( )M X   

 ( ) ( )
1 1

1 1 1 1 2 2 2 2OLSE ( )M X X X X X y X X X X y
− −

   = +  

                        ( ) ( )
1 21 1 2 2OLSE OLSEM MX X = +                                    (3.5) 
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olarak ayrıştırılabilir. Bu eşitlik 1 2 0X X =  olmak şartıyla M  modeli altında X  

matrisinin OLSE’si (3.3) denklemimindeki iki küçük model altındaki iki OLSE’nin 

toplamı olarak yazılabileceğini ifade etmektedir. Bu temel özellik bizi M  modeli 

altındaki tahmin edicinin ayrışımının (3.3) deki iki küçük model altındaki bazı diğer 

tahminlerin toplamı olarak yazılabileceğini düşünmeye sevk etmektedir. Bu kısmın 

temel amacı (3.2) modeli altında (X )  matrisinin ağırlaştırılmış en küçük kareler 

tahminin (3.5) deki eşitliğe genişletilip genişletilemeyeceğinin araştırılmasıdır.  

n nV R   bir non–negatif tanımlı bir matris olsun. Yani V  matrisi, bazı Z  matrisleri 

için V ZZ= şeklinde yazılabilsin. V  ağırlık matrisi tarafından indirgenmiş bir 

1nx R   vektörünün semi normu ( )
1

2'
V

x x Vx=  ile tanımlanır. (3.2) denklemindeki

M  modeli altında   nın ağırlaştırılmış en küçük tahmin edicisi WLSE 

2
arg min

V
y X = −                                                                                   (3.6) 

olarak tanımlanır. Bu durumda (3.6) daki denkleme karşılık gelen normal matris 

denklemi  

X VX X Vy =   

şeklindedir. Bu denklem daima tutarlıdır. Bu denklemin çözümü aşağıda iyi bilinen 

sonucu verir. 

Lemma 3.1 M  modeli altında  ’nın ağırlaştırılmış en küçük kareler tahmin edicisi 

WLSE’ nin genel ifadesi, 
p nu   keyfi bir matris olmak üzere 

( ) ( )' ' ( ) ( ) ' 'p VXX VX X Vy I VX VX v X VX X Vy F u
+ ++ = + − = +            (3.7) 

şeklinde verilir.  

0y   için (3.7) ifadesinde  
p nu   keyfi bir matris olmak üzere u Uy=  

olsun. Bu takdirde (3.7) ifadesi ( )X'VX ' VXX V F U y
+ = +

 
 homojen formunda 

yeniden yazılabilir. Bunun sonucu olarak da M  modeli altında ( )X  nın ağırlıklı en 

küçük kareler tahmin edicisi  
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( ) ( )WLSE ' ' ]M VXX X X X VX X V XF U y 
+ = = +

 
                             (3.8) 

ile tanımlanır. ayrıca :X VP  ve :X VP  

( )

( )

;

: ;

' ' ,

' '

X V

X V VX X V VX

P X X VX X V

P X X VX X V XF U P XF U

+

+

=

= + = +
                                       (3.9) 

ile gösterilmek üzere bu ifadelerin her ikisine .
V

 semi normuna göre X  matrisinin 

( )X  ranjına (sütun uzayına) göre izdüşümlerdir denilebilir (bkz. Rao ve Mitra, 

(1971a. b); Mitra ve Rao, 1974). Bundan sonra M  modeli altında X  nın ağırlıklı en 

küçük kareler tahmin edicisi WLSE nin genel ifadesi olarak (3.8) denklemindeki 

homojen tahmin edici alınabilir. Ayrıca bütün ( )WLSEM X  ağırlıklı en küçük 

kareler tahmin edicilerinin kümesi de ( ) WLSEM X  ile gösterilecektir. (3.7) ve 

(3.8) denklemlerinden  kolaylıkla görülebilir ki verilen bir ağırlaştırılmış V  matrisi 

için   ve X   tahmin edicilerinin M  modeli altında sırasıyla   ve X  için yansız 

tahmin ediciler olması gerekmez. Bununla beraber herhangi ağırlaştırılmış V  matrisi 

için öyle bir U  matrisi bulunabilir ki (3.8) de verilen ( )WLSE X tahmin edicisinin 

X  için yansız tahmin edici olduğu kolayca gösterilebilmektedir.  

(3.8) denklemine parelel olarak (3.3) de verilen iki küçük model altında 

( )1 1X   ve ( )2 2X  ’ nin ağırlıklı en küçük kareler tahmin edicileri sırasıyla  

( )
1 11 1 :WLSE X vX P y =  ve ( )

2 22 2 : ,X vWLSE X P y =                             (3.10) 

şeklinde yazılabilir, burada 

( ): ; ' ' ,  1,2
i i i iX V X V i VX i i i i i i VX iP P X F U X X VX X V X F U i

+
= + = + = , 

olup 1

1

p n
U


  ve 2

2

p nU 
  keyfi matrislerdir. (3.8) ve (3.10) denklemlerinde 

gözüken 1,  U U  ve 2U  keyfi matrisleri mevcut olduğundan 1,  U U  ve 2U  matrislerini 

WLSE’ler minimum kovaryans, minimum norm ve yansız tahminlik gibi bazı 

öncelikli özellikleri sağlayacak şekilde seçmek mümkündür. İstatistikle ilgili 

uygulamalarda ağırlaştırılmış V  matrisi çoğunlukla  V
−=   veya ( )'V XTX

−
= +  
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şeklinde alınmaktadır. Buradaki T  matrisi  ( )  ' ,r XTX r X+ =   olacak şekilde 

üzere non–negatif tanımlı bir matristir. Özel olarak   pozitif tanımlı ve X  tam sütun 

ranklı ise bu takdirde 

( ) ( )
1

1 1WLSE ' 'M X X X X X y
−

− −=                                                    (3.11) 

ifadesi M  modeli altında X  parametresinin tek en iyi lineer yansız tahmin edicisi, 

yani BLUE’sudur. Burada öncelikle (3.8) ve (3.10) da verilen WLSE’lerin tek türlü 

olması gerekmediğini belirtelim. Öte yandan 1,  M M  ve 2M
 
modelleri altındaki 

WLSE’ler için aşağıdaki üç durum söz konusu olacaktır: 

i. Bazı WLSE(X ) , ( )
1 1 1WLSE XM   ve ( )

2 2 2WLSE XM   için 

       ( ) ( ) ( )
1 21 1 2 2WLSE WLSE WLSEM M MX X X  = +   

eşitliği sağlanır. 

ii.  ( ) ( )  ( ) 
1 21 1 2 2 ;W   WLSELSE WLSEM M MX XX   +   

iii.  ( ) ( )  ( ) 
1 21 1 2 2   WLSW E .LSE WLSEM M MX X X  + =  

Bir sonraki kısımda yukarıda verilen üç iddianın sağlanması için bir dizi gerek 

ve yeter şartlar ortaya konulacaktır. Bunların sonuçları olarak (3.11) denkleminde 

verilen BLUE nun (3.10) denkleminde 1M  ve 2M  modülleri altında verieln iki 

WLSE’nin toplamına eşit olması için bir dizi gerek ve yeter şart verilecektir.  

(3.8) ve (3.10) denklemlerindeki WLSE’ler keyfi matrisler ve Moore-Penrose 

tersleri içeren matris kalemleri olduğundan WLSE’ler ile ilgili farklı matris işlemlerini 

basitleştirmek için parçalı matrisler ile ilgili aşağıdaki rank formüllerini kullanmaya 

ihtiyaç vardır (Marsaglia ve Styan, 1974). 

Lemma 3.2. m nA  , m kB   ve 
1 nC   matrisleri verilmiş olsun. Bu takdirde 

  ( ) ( ) ( ) ( ), A Br A B r A r E B r B E A= + = +                                                  (3.12)

( ) ( ) ( ) ( )A C

A
r r A r CF r C AF

C

 
= + = + 

 
                                                   (3.13) 

eşitlikleri vardır. Diğer taraftan  
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( ) ( ) ( ) ( ) ( )'r B AA B r B r AA B r B r A B+ +−  + = −  

olduğu kolaylıkala gösterilebilir. Bu nedenle (1.12) denkleminden 

  ( ) ( ) ( ), 'r A B r A r B r A B + −                                                                (3.14) 

eşitsizliği yazılabilir. Üstelik (1.12) denklemi yardımıyla  

( ) ( )   ( ), ,B A AA B B r A B r A+   =  =                                       (3.15)

1 2( ) ( )A A =
 
ve 1 2 1 1 2 2( ) ( ) [ , ] [ , ].B B r A B r A B =  =                        (3.16) 

ifadeleri de yazılabilir. 

Lemma 3.3. m nA   olsun ve 1 2, , n mZ Z Z   matrisleri de A  matrisinin üç dış tersi, 

yani , 1,2,3i i iZ AZ Z i= = , olsun. Ayrıca ( ) ( )1iZ Z   ve ( ) ( )1iZ Z    

içermelerinin sağlandığını varsayalım. Bu takdirde 

( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 2 3 3 2r Z Z Z r Z r Z r Z r Z AZ r Z AZ− − = − − + +            (3.17) 

eşitliği sağlanır. 

İspat: elementer blok matris işlemleri altında bir matrisin rankı değişmediğini daha 

önce belirtmiştik. Bu nedenle kolayca elementer blok matris işlemleri uygulanarak 

1 1 1

2 2 2

3 3 3

1 2 3 1 2 3

0 0 0 0 0

0 0 0 0 0
   

0 0 0 0 0

0 0 0 0

Z Z Z

Z Z Z
r r

Z Z Z

Z Z Z Z Z Z

− −   
   
   =
   
   

− −   

                                                      

( ) ( ) ( ) ( )1 2 3 1 2 3r Z Z Z r Z r Z r Z= − − + + +            (3.17a) 

eşitliğinin yazılabileceği kolayca gösterilebilir. ifadesi elde edilir. Öte yandan Lemma 

3. 3. de verilen şartlar altında elementer blok matris işlemleri ile  

1 1 1 2 1 3 1

2 2 2 2

3 3 3 3

1 2 3 1

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

                                 

Z Z Z AZ Z AZ Z

Z Z Z Z
r r

Z Z Z Z

Z Z Z Z

−   
   
   =
   
   

  
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1

2 3

3 2

1

0 0 0

0 0 0
 

0 0 0

0 0 0

 

Z

Z AZ
r

Z AZ

Z

 
 

−
 =
 −
 
 

 

                                 ( ) ( ) ( )1 2 3 3 2 2r Z r Z AZ r Z AZ= + +                         (3.17b) 

eşitlikleri yazılabilir. Buradan (3.17a) ve (3.17b) denklemleri birleştirilirse (3.17) deki 

ifade elde edilir. 

Lemma 3.4. m nA  , m kB   ve 
1 nC   matrisleri verilmiş olsun. Bu takdirde 

( )  
1

max min , , ,
kZ R

A
r A BZC r A B r

C

  
− =   

  
                                               (3.18)

( )  
1

min ,
0kZ R

A A B
r A BZC r A B r r

C C

   
− = + −   

   
                                       (3.19) 

eşitlikleri sağlanır. Özel olarak  

BZC A=  tutarlıdır   ( ),r A B r B =  ve ( )
A

r r C
C

 
= 

 
                       (3.20) 

ifadesi gerçeklenir. 

3.3. Ağırlıklı En Küçük Kareler Tahmin Edicilerilerin Toplam Ayrışımları 

Bir önceki kısımda tanımlanan WLSE’lerin toplam ayrışımlarını karakterize 

etmek için (3.2) denkleminde M  modeli için verilenlerin doğru olduğunu 

varsayacağız. Bu durumda (3.3) denkleminde 1M  ve 2M  iki küçük model gerçekte 

M  modelinin yanlış tanımlanmış iki modelidir. Kolayca görülebilir ki eğer (3.2) 

denklemindeki M  modeli doğruysa bu takdirde 

 X,y                                                                                                 (3.21) 

ifadesi bir olasılıkla gerçeklenir [Rao (1971,1973)]. Sonuç olarak (3.21) ifadesinin 

(3.2) denklemindeki M  modeli altında tahminlerin farklı özellikleri araştırıldığı 

zaman sağlanması gerekmektedir. Eğer bir lineer model için (3.21) denklemi 

sağlanırsa bu lineer modelin tutarlı olduğu söylenir. Bu durumda eğer  

( ) 1 2 , 0L L X−  =                                                                                    (3.22) 
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eşitliği sağlanırsa, M  tutarlı modeli altında 
1L y  ve 

2L y  lineer tahmin çiftlerinin bir 

olasılıkla eşit olduğu söylenir. Eğer (3.2) denlemindeki M  modeli doğruysa o aynı 

zamanda tutarlı da olacaktır. Fakat bu durum bir modelin tutarlı olduğunda onun aynı 

zamanda doğru olduğunu göstermez. Gerçekten eğer   pozitif tanımlı ise (3.2) deki 

doğru olan M  modeli olduğu gibi (3.3) denlemindeki 1M  ve 2M  iki küçük modelleri 

de daima tutarlıdır. Öte yandan eğer [ , ]r X n   ise (3.2) deklemindeki M  modelinin 

tutarlığı (3.3) denklemindeki iki modelin tutarlılığını gerektirmez. 1M  ve 2M  

modelleri M  modelinin iki yanlış tanımlı modeli olduğundan 1[ , ]y X   ve 

2[ , ]y X   olduğunu kabul edemeyiz. Bunun yerine 
1 1 1WLSE ( )M X   ve 

2 2 2WLSE ( )M X   tahmin edicilerindeki y  vektörünün sadece (3.21) denklemini 

sağladığı kabul edilebilir.  

WLSE ( )M X  nın toplam ayrışımları ile ilgili iki temel sonuç aşağıda 

verilmiştir. 

Teorem 3.1. 
1 1 1WLSE ( )M X  , ( )

2 2 2WLSEM X   ve WLSE ( )M X
 
ifadeleri (3.8) ve 

(3.10) denklemlerindeki gibi verilmiş olsun. Bu takdirde aşağıdaki ifadeler denktir: 

sağlanır: 

i. Öyle  ( )WLSEM X , 
1 1 1WLSE ( )M X   ve ( )

2 2 2WLSEM X   tahmin edicileri 

mevcuttur ki  

1 21 1 2 2WLSE ( ) WLSE ( ) WLSE ( )M M MX X X  = +                                 (3.23) 

eşitliği bir olasılıkla sağlanır. 

ii. ( ) ( )  ( ) 
1 21 1 2 2WLSE , WLSE , WLSE X,M M MX X  +   küme içermesi 

bir olasılıkla sağlanır. 

iii. 
1 2; ; ;X V X V X VVP VP VP= +  dir. 

iv. 1 2X 0X V =  dir, yani 1X  ve 2X  matrisleri V − ortogonaldir. 

İspat: Kolayca görülmektedir ki 

( )
1 21 2, ,VX VX VXX F X F XF                                                                   (3.24) 
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  ( ) ( ) ( )1 2 1 2r VX r VX r VX r X VX + −                                                       (3.25) 

ifadeleri gerçeklenir. Bu durumda (3.13) denklemini (3.24) denklemindeki matrislere 

uygulayarak elemanter blok matris işlemleri kullanılırsa 

( ) ( ) ( ) ( )VX

X
r XF r r VX r X r VX

VX

 
= − = − 

 
 

ve 

     

( ) ( ) ( )

1

1 2

1 2 2 1 2

1

2

1 2

1 2

1

2

0 0
, ,

0 0

0 0

0 0

0
                                        

0 0

0 0

                                        

VX VX V

X XX

VX
r XF X F X F X r r VX r VX r VX

VX

VX

X

VX VX
r r VX r VX r VX

VX

VX

 
 
   = − − −   
 
 

 
 

− −
 = − − −
 
 
 

( ) ( ) ( )

( ) ( )

1 2

1

2

0 0

0 00

00

0 0

                                        

X

r r VX r VX r VX
VX

VX

r X r VX

 
 
 = − − −
 
 
 

= −

 

rank eşitlikleri yazılabilir. Bu nedenle 

( ) ( ) ( )
11 2 2, ,VX VX V VXr XF X F X F X r XF r X r VX  = = −                               (3.26) 

eşitliği elde edilir ki bu eşitlik (3.15) denklemi dikkate alınırsa (3.24) denkleminin 

sağlandığını gösterir. Öte yandan eğer (3.14) denklemi VX  matrisine uygulanırsa 

(3.24) ifadesi de dikkate alınarak 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1
2 2 2

1 2

1 1
2 2

1 2 1 2

1 2 1 2

,

                            

                            

r VX r V X r V X V X

r V X r V X r X VX

r VX r VX r X VX

 = =
  

 + −

= + −

 

elde edilir. Burada 
1

2V  non-negatif tanımlı V matrisinin kareköküdür.  
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(3.6) ve (3.10) denklemlerinden 

( ) ( ) ( )

( )

1 2

1 2

1 2

1 2 21

: : :V

1 1 2 2

WLSE WLSE WLSE

    

    

M M M

X V X V X

VX VX VX

X X X

P y P y P y

GV XF U X F U X F U y

  − −

= − −

= + − −

 

elde edilir, burada ( ) ( ) ( )1 1 1 1 2 2 2 2G X X VX X X X VX X X X VX X
+ + +

     = − −  dir. Sonuç 

olarak (3.22) denkleminden görebilir ki (3.23) durumunun bir olasılıkla gerçekleşmesi 

için gerek ve yeter şart her  ,y X   için 

( )
1 21 1 2 2 0VX VX VXGV XF U X F U X F U y+ − − = . 

olacak şekilde 1,U U  ve 2U  matrisleri mevcuttur, yani [ , ]S X   olmak üzere   

( )
1 21 1 2 2 0VX VX VXGV XF U X F U X F U S+ − − =                                              (3.27) 

olacak şekilde 1,U U  ve 2U  matrisleri mevcuttur. Öte yandan (3.27) denklemi  

AZS GVS= −                                                                                              (3.28) 

olarak yeniden yazılabilir, burada 
1 21 2, ,VX VX VXA XF X F X F =    ve  1 2, ,Z U U U  = − −  

dir. (3.20) denkleminden kolayca görülebilir ki (3.28) denkleminin Z için çözülebilir 

olması için gerek ve yeter şart   

  ( ),r GVS A r A=  ve ( )
GVS

r r S
S

 
= 

 
                                                   (3.29) 

rank eşitliklerinin sağlanmasıdır. (3.29) daki ikinci eşitlik doğal olarak sağlanır. 

sağlanır. Öte yandan ( ) ( ) ( )G G S =  yani SS G G+ =  olduğu açık bir şekilde 

görülmektedir. Bu nedenle ( ) ( ) ( ) ( )GVS GVSS G GVG GV+  = =  ilişkisi 

yazılabilir ki bu da açık bir şekilde 

( ) ( ))GVS GV =                                                                                   (3.30) 

eşitliğini ifade eder. Öte yandan (3.24) ve (3.30) ifadeleri dikkate alınırsa (3.29) 

ifadesindeki birinci eşitliğin 
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  ( ) ( ) ( ), VX VXr GV XF r XF r X r VX= = −                                                  (3.31) 

eşitliğine denk olduğu (3.16) ve (3.26) denlemlerinden kolayca görülebilir. Eğer (3.13) 

ifadesi (3.31) denklemininin sol tarafına uygulanır ve elemanter blok matris işlemleri 

yardımıyla sadeleştirme yapılırsa 

  ( ) ( )

( ) ( ) ( )

0
,

0 0

                   

VX

GV X X
r GV XF r r VX r r VX

VX VGV

r VGV r X r VX

   
= − = −   

−   

= + −

             (3.32) 

denklemi elde edilir. Dolayısıyla (3.31) ifadesi 0VGV =  denklemine denktir. Kabul 

edelim ki  

( )Z VX X VX X V
+

 = ,  

( )1 1 1 1 1Z VX X VX X V
+

 =  

ve 

( )2 2 2 2 2Z VX X VX X V
+

 =  

olsun. Bu takdirde non-negatif tanımlı 1,  Z Z  ve 2Z  matrislerinin V +
 matrisinin dış 

inversleri olduğu  

( ) ( ) ( ) ( )

( ) ( )

,   ,  

,   ,  1,2

i i

i i i i

Z VX Z VX

VX VX Z X VX i

 =  =

  = =
                                                   (3.33)  

ilişkilerinin sağlandığını görmek kolaydır. Bu şartlar altında (3.17) ifadesi VGV  

matrisine uygulanarak 

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2

2 1 2

1 2 1 2

1 2 1 2 1 2

            2

            2

            

r VGV r Z Z Z

r Z r Z r Z r Z V Z

r VX r VX r VX r X VX

r VX r X VX r VX r VX r X VX

+

= − −

= − − +

= − − +

 = + − − +  

              (3.34) 

eşitliği elde edilir. Ayrıca (3.25) ve (3.34) denklemlerinden 0VGV =  ve 1 2 0X VX  =  

eşitliklerinin denkliği kolayca görülebilir. 
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Öte yandan (3.27) denkleminden gösterilebilir ki Teorem 3.1.(b) deki küme 

içerme bağıntısının bir olasılıkla gerçekleşmesi için gerek ve yeter şart  ,S X=   

olmak üzere herhangi 1U  ve 2U  için 

( )
1 21 1 2 2min 0VX VX VX

U
r GVS XF US X F U S X F U S+ − − =  

eşitliğinin sağlanmasıdır. (3.23) ve (3.30) eşitlikleri altında (3.19) ifadesi dikkate 

alınırsa 

( )

( )

( )

  ( )

( ) ( ) ( ) ( )

1 2

1 2

1 2

1 1 2 2

1 1 2 2

1 1 2 2

1 2 1 2

min

        min ,

        min ,

        ,

        2

VX VX VX
U

VX VX VX VX
U

VX VX VX VX
U

VX VX

r GVS XF US X F U S X F U S

r GVS X F U S X F U S XF r XF

r GVS X F U S X F U S XF r XF

r GV XF r XF

r X VX r VX r VX r VX

+ − −

 = − − − 

 = − − − 

= −

= + − −

 

eşitliği elde edilir. Böylece Teorem 3.1. deki  i. ve iv. şıklarının denk olduğu görülür. 

Bu da teoremin ispatını tamamlar. 

Teorem 3.2. ( )WLSEM X , ( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   
 
ifadeleri (3.8) ve 

(3.10) denklemlerindeki gibi verilmiş olsun. Bu takdirde aşağıdaki durumlar denktir: 

i. ( )  ( ) ( ) 
1 21 1 2 2WLSE X WLSE WLSEM M MX X   +  içerme bağıntısı bir 

olasılıkla sağlanır. 

ii. ( ) ( ) ( )1 22r X r X VX r N+ = eşitliği sağlanır, burada 

1 2

1

2

0

0

X X

N VX

VX

 
 

=
 
 
 

 dir. 

İspat: (3.27) den kolayca görülebilir ki teoremin i. şıkkındaki içerme bağıntısının 

sağlanması için gerek ve yeter şart   

( )
1 2

1 2
1 1 2 2

,
max min - - 0.VX VX VX

U UU
r GVS XF US X F U S X F U S+ =                          (3.35) 

olacak şekilde 1,  U U  ve 2U  matrislerinin mevcut olmasıdır. Öte yandan (3.19) 

denkleminden 



27 

 

( )
1 2

1 2

1
1 2

1 2 1 2

1 1 2 2
,

1

1
,

2

1 2 1 2

min

        min [ ,

        , , ,

VX VX VX
U U

VX VX VX
U U

VX VX VX VX VX

r GVS XF US X F U S X F U S

U
r GVS XF US XF X F S

U

r GVS XF US X F X F r X F X F

+ − −

  
 = + −   

  

   = + −   

              (3.36) 

elde edilir. Ayrıca (3.18), (3.24) ve (3.30) denklemlerinden 

 

( ) 

  ( ) 

1 2

1 2

1 2 1 2

1 2

1 2

1 2

1 2 1 2

1 2

max , ,

      max , , ,0,0

      min GVS,X F ,X F ,XF , r S r X F ,X F

      min , , ,

VX VX VX
U

VX VX VX
U

VX VX VX VX VX

VX VX VX

r GVS XF US X F X F

r GVS X F X F XF U S

r

r GV XF r S r X F X F

 + 

 = + 

   = +   

 = +  

       (3.37) 

ve (3.13) denkleminden ise 

( ) ( ) ( )
1 21 2 1 2,VX VXr X F X F r N r VX r VX  = − −                                            (3.38) 

eşitliği yazılabilir. Buradan da (3.16) ve (3.17) denklemlerinin birleşimyle  

( )

  ( ) 
 

( ) ( ) ( )

1 2
1 2

1 2

1 2

2

1 1 2 2
,

1 2

1 2

1 2

max min

     min , , ,

     , ,

     2

VX VX VX
U UU

VX VX VX

VX VX VX

VX

r GVS XF US X F U S X F U S

r GV XF r X F X F r S

r GV XF r X F X F

r X VX F r X r N

+ − −

 = −  

 = −  

= + −

 

olduğu elde edilir. Böylece (3.35) denkleminin ( ) ( ) ( )1 22r X VX r X r N + =  ifadesine 

denk olduğu gösterimiş olur, ve bu da ispatı tamamlar. 

Teorem 3.1. ve Teorem 3.2. ifadelerinin birleştirilmesiyle aşağıdaki sonuç 

verilebilir. 

Teorem 3.3. ( )WLSEM X , ( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   
 
ifadeleri (3.8) ve 

(3.10) denklemlerindeki gibi verilmiş olsun. Bu takdirde aşağıdaki ifadeler denktir: 

i. ( )  ( ) ( ) 
1 21 1 2 2WLSE WLSE WLSEM M MX X X  = +  küme eşitliği bir 

olasılıkla sağlanır.   
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ii. 1 2 0X VX =  ve  
1

2 2

V 0

0

X X

X V X

    
        

 dir. 

1 2 0X VX =  ifadesi 1 2 0X X =  ortogonal eşitliğinin bir genellemesi iken Teorem 

3.1 in .i , .ii  ve .iii  şıklarıdaki ifadeler (3.4) ve (3.5) denklemlerinin genellemleri 

olarak düşünülebilir. Önceki teoremlerde belirtilen şartlar altında toplam ayrışımlar, 

( )WLSEM X ’ nin istatistiksel özelliklerini elde etmek ve ( )WLSEM X ’ nin 

hesaplamalarını sadeleştirmek için kullanılabilmektedir. 

(3.2) denkleminde ifade edilen M  modeli bir genel lineer model ve   matrisi 

(3.23) denkleminde elde edildiğinden, Teorem 3.1., Teorem 3.2. ve Teorem 3.3. de 

belirtilen ( )WLSEM X  nın toplam ayrışımı için gerek ve yeter şartların V ağırlık 

matrisi ve X  model matrisinden ibaret olması oldukça ilginçtir.  (3.24) deki eşitliğin 

( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   tahmin edicilerinin ilişkisiz olduklarını 

göstermeyeceğini belirtelim. Gerçekten (3.10) denkleminden kolayca söylenebilir ki 

( )
1 1 1WLSEM X   ve ( )

2 2 2WLSE XM   arasındaki korelasyon matrisi 

( ) ( ) 
1 2 1 2:

2

1 1 2 2 : :WLSE ,WLSEM M X V X VCov X X P P   =                         (3.39) 

şeklinde elde edilir. Bu ifade 
1:X VP  ve 

2:X VP  içinde 1U  ve 2U  keyfi matrislerine göre 

bir kuadratik formdur. Ayrıca 
2   kovaryans matrisi (3.39) denkleminden de 

bulunmaktadır ve bu nedenle (3.39) denkleminin sıfır olması için gerek ve yeter şartlar 

vermek zor bir problemdir. 

( )WLSE XM   tahmininin toplam ayrışımı tek olduğunda (3.8) ve (3.10) 

denklemlerindeki tahmin edicilerin de tekliği ile ilgili olarak aşağıdaki iki teorem 

verilebilir.  

Teorem 3.4. ( )WLSEM X , ( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   tahmin edicileri 

(3.8) ve (3.10) denklemlerindeki gibi verilmiş olsun. Bu takdirde 

i. ( )WLSEM X  nın tek olması için gerek ve yeter şart ( ) ( )r VX r X= , yani 

( ) ( )X V X  =  olmasıdır.  Bu durumda tek olan  
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       ( ) ( );WLSEM X VX P y X X VX X Vy
+

 = =   

tahmin edicisi X  için yansız tahmin edicidir. 

ii. ( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   tahmin edicilerinin tek olması için 

gerek ve yeter şart sırasıyla ( ) ( )1 1r VX r X=  ve ( ) ( )2 2r VX r X=  olmasıdır. 

İspatı (3.8) denkleminden kolayca görülebilir ki ( )WLSEM X  nın tek olması için 

gerek ve yeter şart 0VXXF =  olmasıdır. Öte yandan (3.26) ifadesi dikkate alınırsa 

0VXXF =  eşitliği ( ) ( )r X r VX=  rank eşitliğine denktir. Böylece teoremin i. şıkkında 

idda edildiği gibi 

( ) ( )WLSE XME X X VX X VX X  
+

 = =     

ifadesi sağlamış olur. Benzer şekilde teoremin ii. deki eşitliği gösterilebilir. 

Teorem 3.5. (3.8) denklemindeki ( )WLSEM X  nın tek olduğunu varsayalım. Bu 

takdirde 

i. (3.10) ifadesindeki ( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   tahmin edicilerinin 

her biri tektir. 

ii. ( ) ( ) 
1 21 1 2 2WLSE ,WLSEM MCov X X   

                                      ( ) ( )2

1 1 1 1 2 2 2 2X X VX X V VX X VX X
+ +

   =  . 

iii. ( ) 
1 21 1 2 2WLSE ( ),WLSE 0M MCov X X  =  1 2 0X V VX  =  dır. 

iv. ( ) ( )
1 21 1 2 2WLSE ( ) WLSE WLSEM M MX X X  = +  toplam ayrışımı bir 

olasılıkla sağlanması için gerek ve yeter şart 
1 2: ; ;X V X V X VP P P= +  olması veya buna 

denk olarak 1 2 0X VX =  olmasıdır. 

İspat: ( ) ( )X V X  =  rank eşitliği parçalı formda 
1 1

2 2

X V X

X V X

    
 =       

 olarak tekrar 

yazılabilir. Bu ise hem ( ) ( )1 1X V X  =  eşitliğini hem de ( ) ( )2 2X V X  =  

eşitliklerinin sağlanması demektir. Bu nedenle teoremin i. şıkknda ifade edildiği gibi 
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( )WLSEM X  tekliği hem 
1 1 1WLSE ( )M X   ve ( )

2 2 2WLSEM X   nin tekliğini ifade 

eder. Öte yandan ii. şıkkındaki sonuç ise (3.39) denkleminden elde edilir. (3.33) den 

kolayca görülebilir ki  

( ) ( ) ( )1 1 1 1 2 2 2 2 1 2r X X VX X V VX X VX X r X V VX
+ +      = 

 
  

rank eşitliği elde edilir. iii. şıkkındaki sonuç bu rank eşitliğinin basit bir sonucudur. iv. 

şıkkındaki sonuç ise i. şıkkı ve Teorem 3.1 den elde edilir. 

Bir önceki kısımda da bahsedildildiği gibi (3.6) denklemindeki V ağırlık matrisi 

sık sık V −=   veya ( )  ,r XTX r X
−

 +  =   olmak üzere ( )V XTX
−

= +   olarak 

alınır. Bu durumda önceki sonuçlar daha da sadeleştirilebilir. Özel olarak   pozitif 

tanımlı, (3.2) denkleminde ( )r X p=  ve (3.8) ve (3.10) denklemlerinde V ağırlık 

matrisi 𝑉 = ∑−1  olarak alınrsa bu takdirde aşağıdaki sonuçları elde edilebiliriz. 

Lemma 3.5.   pozitif tanımlı, (3.2) denkleminde ( )r X p=  ve (3.8) ve (3.10) 

denklemlerinde 𝑉 = ∑−1 olsun. 

i. M  modeli altında X  matrisinin tek en iyi lineer yansız tahmin edicisi  

( ) ( )
1

1 1BLUEM X X X X X y
−

− − =                                                     (3.40) 

şeklindedir, burada 

𝐸[BLUE𝑀(𝑋𝛽)] = 𝑋𝛽  ve 𝐶𝑜𝑣[BLUE𝑀(𝑋𝛽)] = 𝜎2𝑋(𝑋′ ∑ 𝑋−1 )−1𝑋′ 

dir. 

ii. iM  modeli altında i iX   nin ağırlıklı en küçük kareler tahmin edicisi  

( ) ( )
1

1 1WLSE . 1,2
iM i i i i i iX X X X X y i

−
− − =   =                                 (3.41) 

şeklindedir, burada 

( )
1

1
1 1

1 1 1 1 1 1 1 1 2 2WLSE ( ) X X ,ME X X X X X  
−

− −   = +                        (3.42) 

( ) ( )
2

1
1 1

2 2 2 2 2 2 2 1 1 1WLSE ,ME X X X X X X X  
−

− −   = +                     (3.43) 
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( ) ( )
1

2 1WLSE ' , 1,2.
iM i i i i i iCov X X X X X i 

−
−  =  =                         (3.44) 

dir. 

iii. ( )
1 1 1WLSEM X   ve ( )

2 2 2WLSEM X   arasındaki kovaryans matris 

( ) ( ) 
1 21 1 2 2

WLSE , WLSE X
M M

Cov X     

                  ( ) ( )
1

2 1 1 1

1 1 1 1 2 2 2 2
X X X X X X X X

−
− − −   =                              (3.45) 

formundadır. 

Teorem 3.1 ve Teorem 3.4 de verilen ifadeler (3.40) ve (3.45) eşitliklerine 

uygulandığında aşağıdaki sonuçlar elde edilir. 

Sonuç 3.1. ( )BLUEM X  ve ( )
1

WLSEM i iX   (3.40) ve (3.41) denlemlerindeki gibi 

verilmiş olsun. Bu takdirde aşağıdaki ifadeler denktir: 

i. ( ) ( ) ( )
1 21 1 2 2BLUE =WLSE +WLSE .M M MX X X    

ii. ( ) ( )WLSE , 1,2.
iM i i i iE X X i   = =   

iii. ( ) ( ) 
1 21 1 2 2Cov WLSE , 0.M MX WLSE X  =  

iv. 𝐶𝑜𝑣[𝐵𝐿𝑈𝐸𝑀(𝑋𝛽)] = 𝐶𝑜𝑣[WLSE𝑀1
(𝑋1𝛽1)] + 𝐶𝑜𝑣[WLSE𝑀2

(𝑋2𝛽2)]. 

v. 
1

1 2 0.X X− =  

İspat: Sonucun i. ve v. şıklarının denkliği Teorem 3.1 den elde edilir. ii. ve v. şıklarının 

denkliği ise (3.42) ve (3.43) denklemlerinden görülebilir. iii. ve v. şıklarının denkliği 

ise (3.45) denkleminin bir sonucudur. Ayrıca (3.34) denkleminden  

( ) ( ) ( )( )

( ) ( ) ( )

( )

1 21 1 2 2

1 1 1
1 1 1

1 1 1 1 2 2 2 2

1

1 2

BLUE WLSE WLSE

    

    2

M M Mr Cov X Cov X Cov X

r X X X X X X X X X X X X

r X X

  

− − −
− − −

−

   − −      

      =  −  − 
  

= 

 

olduğu kolayca bulunabilir. Buradan da iv. ve v. şıklarının denk olduğu görülür. 
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Şimdi ( )WLSEM X  ve ( )
1 1 1WLSEM X   tahmin edicileri arasındaki bağıntı 

aşağıdaki şekilde verilebilir: 

Teorem 3.6. ( )WLSEM X  ve ( )
1 1 1WLSEM X  ,  (3.8) ve (3.10) denklemlerindeki 

gibi verilmiş olsun. Bu takdirde aşağıdaki ifadeler denktir: 

i. Öyle ( )WLSEM X  ve ( )
1 1 1WLSEM X   vardır ki 

 ( ) ( )
1 1 1WLSE WLSEM MX X =                                                             (3.46) 

eşitliği bir olasılıkla sağlanır. 

ii. ( )  ( ) 
1 1 1WLSE WLSEM MX X   küme içermesi bir olasılıkla sağlanır. 

iii. 
1; ;X V X VVP VP=  dir. 

iv. ( ) ( )2 1VX VX   dir. 

İspat: (3.6) ve (3.10) denklemlerinden  

( ) ( ) ( )
1 11 1 1 1WLSE WLSE ,M M VX VXX X GV XF U X F U y − = − −  

yazılabilir, burada ( ) ( )1 1 1 1G X X VX X X X VX X
+ +

   = −  olup 1 ve  U U  matrisleri 

keyfi matrislerdir. Bu durumda (3.22) denkleminden kolayca görülebilir ki (3.11) 

denklemi sağlanması için gerek ve yeter şart her  ,y X   için   

( )
11 1 0VX VXGV XF U X F U y+ − =   

olacak şekilde dir. Yani 1 ve  U U   matrislerinin mevcut olmasıdır, yani   ,S X= 

olmak üzere 

11

1

, 0,VX VX

U
GV XF X F S

U

  
 + =    −  

                                                         (3.47) 

olmasıdır. Bu durumda (3.47) eşitliği 

           
11,VX VXA XF X F =    ve 1[ , ]Z U U  = −   

olmak üzere 
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AZS GVS= −                                                                                             (3.48) 

olarak yeniden yazılabilir. Öte yandan (3.20) denkleminden kolayca görülebilir ki 

(3.48) denkleminin Z  için çözülebilir olması için gerek ve yeter şart  

  ( ),r GVS A r A=                                                                                      (3.49) 

olmasıdır.  

Ayrıca (G) (G') R(S) =   ve dolayısıyla da ( ) ( )GVS GV =  eşitliği 

sağlanır. Bu durumda daha önce verilenler dikkate alınarak (3.49) da verilen rank 

eşitliğinin 

  ( ) ( ) ( ), XV VXr GV XF r XF r X r VX= = −                                                  (3.50) 

 eşitliğine denk olduğu görülür.  Öte yandan (3.13) denklemi ve elemanter blok matris 

işlemleri yardımıyla 

𝑟[𝐺𝑉, 𝑋𝐹𝑉𝑋] = 𝑟 [
𝐺𝑉 𝑋
0 𝑉𝑋

] − 𝑟(𝑉𝑋)  

                     = 𝑟(𝑉𝐺𝑉) + 𝑟(𝑋) − 𝑟(𝑉𝑋)                                                 (3.51) 

eşitliği yazılabilir. Böylece (3.50) eşitliği 0VGV =  eşitliğine denk olur ki bu da iii. 

şıkkına denktir. tir. Eğer (3.33) denklemindeki şartlar altında (3.17) denklemi VGV  

matrisine uygulanırsa, bu takdirde 

𝑟(𝑉𝐺𝑉) = 𝑟(𝑍 − 𝑍1)  

              = 𝑟(𝑍) − (𝑍1)  

              = 𝑟(𝑉𝑋) − 𝑟(𝑉𝑋1)               (3.52) 

elde edilir. Böylece (3.50) denklemi ( ) ( )1r VX r VX=  rank eşitliğine denktir ki bu da 

( ) ( )2 1VX VX   içermesine denktir. Buradan teoremin i. ve v. ifadelerinin denk 

olduğu görülür. (3.47) denkleminden kolayca görülür ki teoremin ii. şıkkındaki küme 

içermesinin sağlanması için gerek ve yeter şart herhangi bir 1U  matrisi için 

( )
11 1min 0VX VX

U
r GVS XF US X F U S+ − =             (3.53) 

olacak şekilde bir U  matrisinin mevcut olmasıdır. Buradan da 
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( )

( )

   

( ) ( )

1

1

1 1

1 1

1

min

      ,

      ,

      

VX VX
U

VX VX VX

VX VX

r GVS XF US X F U S

r GVS X F U S XF r XF

r GV XF r XF

r VX r VX

+ −

 = − − 

= −

= −

 

eşitliği yazılabilir. Böylece (3.53) ifadesinin iv. şıkkına denk olduğu gösterilmiş olur. 

Teorem 3.6. nın açık bir sonucu olarak aşağıdaki sonuç verilebilir. 

Sonuç 3.2. Kabul edelim ki (3.8) denklemindeki ( )WLSEM X  tahmin edicisi tek 

olsun. Bu takdirde ( ) ( )
1 1 1WLSE WLSEM MX X =  eşitliğinin bir olasılıkla 

sağlanması için gerek ve yeter şart ( ) ( )2 1X X   olmasıdır. 
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4. SONUÇ ve ÖNERİLER 

Bu çalışmada (3.2) modeli altındaki X  nin ağırlıklı en küçük kareler tahmin 

edicisinin (3.3) modeli altındaki ağırlıklı en küçük kareler tahmin edicilerin 

toplamlarına eşit olması için bir takım gerek ve yeter şartlar verilmiştir. Bu şartlar 

altında (3.2) modeli altında X  nin en küçük kareler ve ağırlıklı en küçük kareler 

tahmin edicilerinin bazı istatistiksel özelliklerini verebilmek için toplam ayrışımların 

kullanılabilirliğini bekleyebiliriz. Bu çalışmada verilen sonuçların ayrıca daha genel 

durumlara da uygulanabilirliğini bekleriz. Parçalı lineer modeler altında ağırlıklı en 

küçük kareler tahmin edicilerinin toplam ayrışımları hakkında iki araştırma konusu 

aşağıdaki gibi verilebilir: 

i.  2

1 1 2 2, ......... ,k kM y X X X   = + +   genel parçalı lineer model ve onun 

 2, , ,  1,2,..... ,i i iM y X i k =  = şeklinde verilen k  tane küçük alt modelleri için  

( ) ( ) ( )
11 1 1 1WLSE .......... WLSE ...........WLSE

kM k k M M k kX X X X   + = +  

toplam ayrışımının sağlanması ile ilgili gerek ve yeter şartlar araştırılabilir. 

ii.   1 2( )

1 2,
q p pK K K R  +

=   verilsin. 1 1 2 2K K K  = +  ifadesi (3.2) de verilen 

M  modeli altında tahmin edilebilir olsun, yani ℜ(𝐾′) ⊆ ℜ(𝑋′) olsun. Bu takdirde   

𝑊𝐿𝑆𝐸𝑀(𝐾𝛽) = 𝑊𝐿𝑆𝐸𝑀1
(𝐾1𝛽1) + 𝑊𝐿𝑆𝐸𝑀1

(𝐾2𝛽2) 

toplam ayrışımının sağlanması için gerek ve yeter şartlar araştırılabilir. 
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