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OZET

COKLU PARCALI LINEER MODEL ALTINDA AGIRLIKLI EN KUCUK
KARELER TAHMIN EDICILERIN BLOK AYRISIMLARI

CEVAT KANAR
ORDU UNIVERSITESI FEN BiLIMLERI ENSTITUSU

MATEMATIK ANABILIM DALI
YUKSEK LISANS TEZI, 46 SAYFA

(TEZ DANISMANI: PROF. DR. SELAHATTIN MADEN)

Bu tez c¢alismasi bes boliim halinde diizenlenmistir. Birinci boélimde
calismanin amacindan bahsedilerek bir giris verilmistir. Ikinci boliimde ¢alismamizda
gerekli olacak temel tanimlar, teoremler ve genel bilgiler ifade edilmistir. Ugiincii
bolimde ele alinan modeller altinda alt parametrelerin alisilmis en kiglk kareler
tahmin edicisi (OLSE) en iyi lineer yansiz tahmin edicisi (BLUE) ve agirlikli en kuiguk
kareler tahmin edicisi (WLSE) ler incelenmistir. Genel model altindaki agirlikli en
kiguk kareler tahmin edicisi (WLSE) nin iki kigik alt model altindaki agirlikli en
kiglk kareler tahmin edici (WLSE)' lerin toplam ayrisimi seklinde olmasi igin gerek
ve yeter sartlar arastirilmistir. D6rdincli bolimde sonug ve oneriler verilmistir.
Besinci boliimde ise tezde yararlanilan kaynaklar listelenmistir.

Anahtar Kelimeler: Matris, Rank, Genellestirilmis Invers, Lineer Model, Parcali
Lineer Model, Alisilmis En Kiigiik Kareler Tahmin Edici, En Iyi
Lineer Yansiz Tahmin Edici, Agirhkli En Kuglik Kareler
Tahmin Edici.



ABSTRACT

BLOCK DECOMPOSITIONS OF WEIGHTED LEAST-SQUARES
ESTIMATORS UNDER MULTIPLE PARTITIONED REGRESSION
MODEL

CEVAT KANAR

ORDU UNIVERSITY INSTITUTE OF NATURAL AND APPLIED
SCIENCES

MATHEMATICS
MASTER THESIS, 46 PAGES

(SUPERVISOR: PROF. DR. SELAHATTIN MADEN)

This thesis is organized in five parts. In the first chapter, an introduction is
given by mentioning the purpose of the study. In the second part, the basic definitions,
theorems and general information that will be required in our study are expressed.
Under the models discussed in the third section, the conventional least squares
estimator (OLSE), the best linear unbiased estimator (BLUE) and the weighted least
squares estimator (WLSE) of the sub-parameters are examined. Necessary and
sufficient conditions are investigated for the weighted least squares estimator (WLSE)
under the general model to be a total decomposition of the weighted least squares
estimator (WLSE) under the two small submodels. In the fourth chapter, conclusions
and recommendations are given. In the fifth chapter, the sources used in the thesis are
listed.

Keywords: Matrix, Rank, Generalized Inverse, Linear Model, Partitioned Linear
Model, Ordinary Least Squares Estimator, Best Linear Unbiased
Estimator, Weighted Least Squares Estimator.
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SIMGELER ve KISALTMALAR LISTESI

C : Kompleks sayilar cismi
R : Reel sayilar cismi
K : K cismi lizerinde tanimli mxn boyutlu tim matrislerin kiimesi

I : nxn boyutlu birim matris

A : A matrsinin tranzpozu

Ek(A) : A matrisinin ek matrisi

|A : A matrisinin determinanti

AR : A matrisinin sag inversi

At : A matrisinin sol inversi

A : A matrisinin inversi

r(A) : A matrisinin ranki

R(A) : A matrisinin ranj (sutun) uzayi

A : A matrisinin genellestirilmis inversi (i¢ inversi)
A" : A matrisinin Moore-Penrose inversi

OLSE : Alisilmis en kiigiik kareler tahmin edicisi
BLUE : En iyi lineer yansiz tahmin edici

WLSE . Agirlikli en kiigiik kareler tahmin edicisi

-1k, : Semi normu

o> : Kovaryant matris

B : B parametresinin alisilmig en kiigiik kareler tahmin edicisi

Cov(A,B) @A ve Bdegiskenleri arasindaki kovaryans

Vi



1. GIRIS

Gunumuzde matrisler yardimiyla insa edilen linecer modeller, teorik matematik,
istatistik, sosyoloji, kimya, fizik egitimi ve elektrik miithendisligi gibi pek ¢ok teknik
alanda oldukga 6nemli hale gelmistir. Matris hesab1 ise 19. yiizyilin ortalarindan beri
bilinmektedir. ingiliz matematik¢i Sylvester, 1850 yilinda matris kavramin ilk kez
kullanmistir. 1853 yilinda Ingiliz bilgini Hamilton ‘Lineer and Vector Functions’
isimli eserinde matrislerin bazi 6zelliklerinden faydalanmus, fakat matris ismini heniiz
kullanmamustir. Yine bir Ingiliz matematikci olan Cayley ise 1858 yilinda o zamanlar
¢ok meshur olan ‘Memorie on the Theory of Matrices’ isimli ¢aligmasinda matris
cebirinin temel esaslarin1 ortaya koymustur. Daha sonra Fransiz Laguerre ve Alman
Frobenius matrislerle ilgili yeni kavramlar ve teoremler iizerinde ¢alismalar

yapmuglardir.

Bir singller matrisin inversi fikri ise ilk defa 1920 yilinda Moore (1920, 1935)
tarafindan ortaya atilmistir. Ancak ta ki 1955 yilina kadar bu konuda herhangi bir
sistematik caligmaya rastlanamamaktadir. 1955 yilinda, 6nceki yapilan ¢alismalardan
tamamen habersiz olarak, Penrose (1955, 1956) biraz farkli bir yoldan Moore
tarafindan verilen invers kavramini tekrar tanimlamistir. Penrose ile hemen hemen
ayni zamanlarda yagayan bilim adamlarindan Rao (1965) tarafindan gelistirilen Pseuda
invers, Moore ve Penrose tarafindan ortaya konulan kisitlamalarin tiimiinii
saglamamaktadir. Bu nedenle bu invers, Moore-Penrose inversten oldukga farklidir.
Rao, daha sonraki ¢calismalarinda lineer denklemlerle ilgili problemlerinin ¢éziimiinde
yeterli olan ve Moore ve Penrose’ un vermis oldugu tanimdan daha zayif bir tanim
ortaya koymustur. Boyle bir invers, bir genellestirilmis invers (g-invers) olarak
adlandirilmig ve bunun ¢esitli uygulamalar1 Rao (1965)’ nun bir¢ok ¢aligmasinda yer
almistir. Genellestirilmis inverslerle ilgili Onemli gelismeler ve bunlarin bazi
uygulamalar1 Generalized Inverse of Matrices and Its Applications (Wiley, 1971)

isimli kitapta verilmistir.

Matris ranki ile ilgili iyi bilinen bir gergek sudur: Ayni mertebeden iki A ve B
matrisinin benzer olmasi, yani UAV = B olacak sekilde iki tersinir U ve V. matrisinin

mevcut olmasi i¢in gerek ve yeter sart r(A): r(B) olmasidir. Bir matrisin

stitunlarinin veya satirlarinin dogrusal bagimsizligini belirlemek igin en basit yontem,



matrisin elementer matris iglemler yardimiyla satir veya siitun eselon formlara
indirgenmesidir. Teorik agidan idempotent matrislerden olusan herhangi bir matris
ifadesi icin, bu ifade ile ilgili baz1 rank esitlikleri kurulabilir. Bu rank esitliklerinden
yararlanarak verilen ifadenin bazi temel Ozellikleri elde edilebilir. Bazi rank
formiilleri, ¢esitli blok matrisler ve elementer blok matris islemleri ile lusturulabilir.

Bunlardan bir kism1 asagida verilmistir:

1, A 1,0 |, -AB 0
r =r =r :

BI,| |01 ,-BA 0 I,
1, 1,-AB]_ M, 0 ]_TJ0 1,-AB
B 0 | |0 B-BAB| |B o |

(A AB|_[A 0 | [A-ABA 0
BA B| [0 B-BAB| 0 B

Son zamanlarda yapilan c¢alismalarda bu yontemle pekgok yeni ve Onemli rank

-

-

esitlikleri elde edilmis ve bu rank esitliklerinden bir¢ok 6nemli sonug tiiretilmistir.

Simdi lineer model kavramindan bahsedilebilir. Y gozlemlerin nx1 mertebeli
vektoril (rasgele vektor), X nxp (n<p) mertebeli bir bilinen katsay: matrisi, 3
p =1 mertebeli bilinmeyen parametre vektorii ve E(&)=0, Cov(&) =2 olmak tizere

€ ise nx1, rasgele degiskenlerin gozlenebilir olmayan bir vektorii olsun. Bu durumda
bunlar arasinda

Y=Xp+¢
bigiminde varsayilan bir bagintiya bir lineer model veya lineer regresyon modeli denir.

Bu model pek cok 6zel durumlara sahiptir. Bu durumlar, ¢ rasgele vektorinln

dagilimina ve kovaryans matrisine ya da X katsay1 matrisinin yapisina ve rankina

baglidir. Aksi belirtilmedikge, r ( X ) = p oldugunu kabul edilecektir, baska bir deyisle

modelimizdeki X katsayr matrisi tam siitun rankli bir matris olacaktir, & hata

vektoriiniin dagilimi hakkinda ise asagidaki ti¢ durum goz oniine alinabilir:
1. Durum: £~N(0,0°1)

2. Durum: ¢ bilinmeyen bir dagilima sahiptir ve E (8) =0 COV(&‘) =c’l dur.



3. Durum: Cov(g) =0V  V bilinen pozitif definit bir matristir.

Birinci durumda her bir & rasgele degiskeni 0 ortalamali, bilinmeyen o* varyansh
normal dagilima sahip olup ¢, ,i=12,3,.....,N, ler bagimsizdir. Ikinci durumda, her

bir & nin beklenen degeri sifir ise, ¢ ler iliskisiz ve & ler bilinmeyen ortak o°

varyansina Sahiptirler. Birinci ve ikinci durumdaki varsayimlar altindaki modellere
Gauss-Markov modeli denir. Ikinci durumdaki modellere ise bazen en kiiciik kareler
modelleri denir. Ayrica hata terimi normal dagilimli oldugunda bu modellere hipotez

modelleri de denilmektedir.

Y = X3 +¢ lineer modelinde X S carpimina modelin deterministik kismi, Y

ve ¢ vektorlerine ise modelin stokastik kismi ad1 verilir. Y vektori bagimli degisken,
tepki degiskeni, agiklanan degisken ad1 verilen bir rastgele degisken ile ilgili gozlemler
vektorudir. X matrisine tasarim matrisi, agiklayici degiskenlerin matrisi, bagimli
degiskenlerin gbzlem matrisi gibi isimler verilmektedir, ¢ vektoriine ise hata vektor
denilmektedir. Gergek diinyadaki olaylarin lineer modeller yardimiyla modellenmesi
ile ilgili ¢aligmalarda Y, X, B ve & degiskenleri bircok degisik sekillerde
anlamlandirilmaktadir. Bazit modellerde Y iiretim miktari, bazilarinda boy uzunlugu,

bazilarinda ise bir ekonomik degisken olabilir.
Dogrusal hareket eden, S, hizi ile hareketine baslayan ve ivmesi £, olan bir

cismin zamana (t’ye) bagh olarak aldig1 yol S =g, + gt formulu ile verilir. Bu

sekilde bir hareket eden bir cismin hizin1 ve ivmesini bilmek ve daha sonra belli bir
zamanda aldig1 yol miktarin1 belirlemek istedigimizi farzedelim. Bu durumda keyfi

olarak sectigimiz belli t ,i=12,..... ,N, zamanlarinda yol uzunluklarini
gozlemlemeye kalkistigimizda olglimlerdeki hatalardan dolayr S; ,i=12,.......... N,
gozlemleri icin S, =/, +ft +& gibi bir model disinmemiz daha uygun

goriinmektedir.

S, t, &
Y = S, CX= 114 e &y ’ ﬂ={ﬂo}
: Do : B .,
SN Nx1 1 tN Nx2 én Nx1



gosterimleri altinda yukarida soylenenler,
Y=XB+¢

seklinde bir lineer model olarak ifade edilmektedir. Bu modelde Y gozlem
vektoriindeki gozlemleri veren agiklayict ya da bagimli degiskeni Y harfi, X
matrisinin ikinci sutunundaki gozlemler ile ilgili bagimsiz degiskeni X harfi ve hatay1

da ¢ harfi ile gosterirsek bu degiskenler arasindaki baginti
Y=08+pX+e

olarak da ifade edilebilir. ikinci bir 6rnek olarak, belli bir tiir elmadaki meyve suyu
miktarini elmanin agirh@ina bagh olarak incelemek isteyelim. Gergekte bir elmadaki
meyve suyu miktart sadece elmanin agirligina bagh degildir, ama agirlik ile meyve
suyu arasinda bir fonksiyonel bagintinin (bilinmeyen parametrelere gore lineer bir
ifade olabilir) varligin1 kabul edip gozlemlerin bunu dogrulayip dogrulamadigini,
gbzlemlerden ¢ikip bir bagintinin bulunmasini ve bunlarin neticesinde agirliga bagh
olarak meyve suyu miktarini belirlemeyi (tahmin etmeyi) diisiinebiliriz. Bu 6rnekteki
aciklayict degisken olan elmanin agirligi ile agiklanan(bagimli) degisken olan
elmadaki meyve suyu miktary birer rasgele degisken olacaktir. Agirhigi X, meyve
suyu miktarint Y ile gosterirsek bu durumda X ve Y degiskenlerinin bir ortak

dagilimi s6z konusu olacaktir.
E(Y[X=x)=g(x)

ifadesine Y nin X iizerindeki regresyon denklemi dendigini ve X ile Y degiskeninin

ortak dagiliminin normal dagilim olmasi durumunda bunun
E(Y[X =x)=g(x) = 5, +BX

seklinde oldugunu hatirlatalim. Bu takdirde (X ,Y) iki boyutlu rastgele degiskeninin

ortak dagilimindan N birimlik 6rneklem, (X;,Y;) ,i=12,.....,N, olmak lizere
Yi=B+BX+&,1=12.....N £~(00°1)

veya



Y 1 1 &
Y = Y, X = 1 2 o= &) ,ﬂ=|:ﬂ0:|
: ﬂl 2x1
Yy 1 X &y

N1 N _INx2
matris gosterimi altinda
Y =Xf+g¢,

modeline bir basit lineer regresyon modeli denir. Lineer regresyon modelleri de Lineer
Modeller gergevesinde diistiniilebilir. X ve Y rasgele degiskenleri arasinda bir ortak

dagilim diistinmeden sadece Y bagimli degisken ile ilgili gozlemlere dayali olarak,

Y =8 +BX +&, i=12.....N,

biciminde bir ifade s6z konusu oldugunda modele basit lineer model denir.

Ote yandan elmanm agirligi olan X degiskeni ile elmadaki meyve suyu miktari
olan Y degiskeninin ortak dagilimi normal olmayabilir. Bizim buradaki amacimiz X
degiskeninin gozlenen degerine bagli olarak Y degiskeninin gdézlenen degerini 6n

gérmek olduguna gore
Y =4+ X +g, 1=12,...,N,

biciminde bir lineer modeli ele almak s6z konusudur. Bu durumda & hata terimi,
birinci 0rnekteki yol uzunlugunun o6lciilmesi sirasindaki hataya benzer bir hatayi
icermekle birlikte, X degiskeninin belli bir degeri i¢in Y degiskenindeki rastgeleligi

ve ayrica model belirlemesindeki hatay1 da igerecektir.

Bir lineer modelde eger agiklayici degisken sayisi birden ¢ok ise bu modele
coklu lineer model (multiple linear model) denir. Bir lineer modelde eger bagiml
degisken sayis1 birden ¢ok ise bu durumda da modele bir¢ok degiskenli model
(multivariate model) adi verilir. Sicaklik ile basincin, sertlik tizerindeki etkisinin
fonksiyon bigiminde bir baginti ile ifade edilip edilemeyecegi, bu bagintinin bigiminin
ne olacagi veya sicaklik ile basing degiskenlerinin sertligi ne derece etkileyip
etkilemedigi gibi sorunlar ilk olarak metaliirji biliminin sorunlart gibi g6ztikmektedir.
Metaliirji biliminin kanunlarina gore sicaklik ile basincin sertlik lizerindeki etkisi tam

olarak belirlenmis olabilir, baginti bicimsel olarak belirlenmis ancak iginde



bilinmeyen katsayillar mevcut ya da aralarinda bir baginti var ama ne oldugu
belirlenmemis olabilir. Ik durumda istatistik¢inin yapacag fazla bir sey kalmamustir.
Belki belirlenmis olan modelin gecerliliginin stnanmasinda yardimet olabilir. Tkinci ve
Uclinct  durumlarda ise istatistik¢iye Onemli goérevler diismektedir. Amag
belirlendikten sonra (Ornegin bu amag hangi sicaklik ve basingta malzemenin sertligi
maksimum olmaktadir seklinde olabilir) gozlemlerin alinacagi en iyi deney
tasariminin Segilmesi ve ardindan da bir istatistiksel sonug¢ ¢ikariminin yapilmasi

istatistik biliminin sorunudur.

Ikinci 6rnek olarak belirli bir misir tiiriiniin verimini incelemek istedigimizi
varsayalim. Stiphesiz verim, toprak ve hava ile ilgili bir¢ok tabiat sart1 yaninda sulama,
giibreleme, topragi isleme gibi bazi etkenlere de baglidir. Bu nedenle modelleme

sirasinda, ¢ok karmasik olan gerg¢ek diinyadaki iliskilerden bazilarini ihmal ederek,

verim miktari (Y) igin, toplam yagis miktari (Xl), sicaklik ortalamasi (bitkinin
yetismesi boyunca her giin bir defa lgiilen sicakliklarin ortalamasi (X, ), gubre

miktari (X3) ve birim metrekaredeki bitki sayisi (X 4) degiskenlerine bagl olarak,

Y =B+ X B+ X B+ X B+ X, B+

gibi bir modelin gegerli oldugunu varsayalim. Bu durumda gerek modelin
gegerliliginin sinanmasi Ve gerekse gegerli olacak bir modelde agiklayic1 degiskenlerin
etkilerinin yani parametrelerin tahmin edilmesi amaciyla yapilacak bir aragtirmada
veri toplama islemi uygulamada pek kolay olmayacaktir. Modeldeki yagis miktari ve
sicaklik ortalamasi ile ilgili agiklayict degiskenler birer rasgele degiskendir, ancak
giibre miktar1 ile ilgili aciklayici degisken bir deterministik degisken olarak
gorilebilir. Bu nedenle agiklayict degiskenlerin birer rasgele degisken olup
olmamasina bakilmaksizin, bundan sonra agiklayict degiskenler ile ilgili X matrisini,
gozlem degerlerinin bir matrisi, yani sabitlerin bir matrisi olarak diisiinmek daha

mantikli olacaktir.



2. TEMEL KAVRAMLAR

Bu bdlimde sonraki boliimlerde kullanilacak olan bazi tanimlar ve teoremler
ispatsiz olarak verilecektir.

Tamm 2.1 K Kkeyfi bir cisim olsun. K cismi tzerinde n bilinmeyenli m tane lineer

denklemden olusan bir lineer denklem sistemi

n
>a;x;=h, 1<i<m
j=1

seklinde tanimlanir. Bu denklem sisteminde, Xj,lﬁan ler bilinmeyenler,

3 I<i<m ler katsayilar ve b; ler ise reel sayilardir. Verilen denklem sistemi daha

acik olarak

A X +a,X, + 85X+ +a,X, =b
Ay X+ A Xy By X F e +a,,X, =b,

veya matris formunda

X +a,X, FasX, +o. +a, X, X, b,
Ay Xy + 8y X+ Ay Xy e +a,,X X, b,

olarak yazilir (Hacisalihoglu,1977).

Tanim 2.2

I. K cisimolsun. m,ne Nve 1<i<m,1< j<nolmak tzere butln (i, j) siral
ikililerin kiimesi A= N x N ile gosterilsin. f — K fonksiyonu (i, j)— f (i,j)=a,
olarak tanimlansin. a; € K olacak sekilde segilen m.n tane elemanin olusturdugu

tabloya K cismi lizerinde tanimli mx n tipinde matris denir. Eger K = R, reel sayilar

kiimesi olarak alinirsa matrise reel matris, K = C, kompleks sayilar kiimesi olarak

alinirsa, matrise kompleks matris denir (Branson R., 1999). Bu durumda



matrisi kisaca A=[a; |  seklinde gosterilir. Burada a; eleman1 A matrisinin i.

satir ve j. sitununa karsilik gelen elemamidir. K cismi (zerinde segilen bdtlin

A=[a; | bicimindeki matrislerin kimesi K™ ile gdsterilir.

ii. A=|a ]mxn ve B=|b, ]mxn ayni boyutlu iki matris olmak iizere herbir (i, j)

icing, =b; ise A ve B matrislerine esit matrisler denir.

iii.  A=[a; ] matrisinin her bir a; elemani sifirise A matrisine bir sifir matris
mxn

denir.

iv.  A=[a ] veB=[b;| boyutlumatrisler olmak tizere A+ B matrisi

a,+ b, a,+b,...... a, + b,

v _ a,+ b, a,+b,..... a,,+b

a.+b

ml
seklinde tanimlanir.

V. K cismi tizerinde s e K bir skaler say1 olmak {izere sA e K™ matrisi

ka,, ka,,.... ka,,
ka,, ka,,.... ka

mn

seklinde tanimlanir.

Vi. A= I:aij:lmxp Ve B = [bij]pxn olmak lizere A ve B matrislerinin ¢arpimi
( a”bll + + alpblp) (allbln + o + alpbpn)
AB=| ...
(amlbll o + ampbpl) e (amlbln o + ampbpn)



bigiminde tanimlanir. Agikca goriilecegi lizere garpimin tanimli olabilmesi i¢in birinci
matrisin slitun sayisi ile ikinci matrisin satir sayist esit olmalidir. Bu sartlar altinda

carpim matrisi A.B veya AB ile gosterilir (Hacisalihoglu H.H., 1977).
Tanim 2.3

i Bir A=[a;] matrisinde eger m=n ise bu durumda A matrisine kare

mxn

matris denir. Bu durumda A matrisindei a;, a ,a,, elemanlarma matrisin

kosegen (esas kosegen) elemanlar1 denir.
ii. Kosegen elemanlari 1 ve diger elemanlari O olan bir kare matrise birim matris

denir ve birim matris 1, seklinde gosterilir.

iii. A= [aij ]mxn matrisinde ayn1 numarali satir ve siitunlarin yer degistirilmesi ile
elde edilen AT =[aji]nxm matrisine A matrisinin transpozu denir. A ve B matrisleri
icin (A+B)" = A" +B" ve (AB) =B"A" esitlikleri saglanr.

iv. A kare matrisinde A" = A ise, Amatrisine simetrik matris denir.

Teorem 2.1 A B ve C matrisleri bir K cismi itizerinde tanimli mxn boyutlu

matrisleri ve k,k, € K skaler sayisi i¢in asagidaki esitlikler saglanir (Hacisalihoglu
H.H., 1977).

I. (A+B)+C=A+(B+C)

ii. A+0=0

iii. A+(-A)=0

iv. A+B=B+A

V.  k(A+B)=kA+k,A

vi.  (k +k,) A=kA+k,A

vii.  (kk,) A=k, (k,)A
viii. 1A=A ve 0A=0
Tamm 2.4 x,x,......... x, € R™ vektorleri icin Zai X; = 0 olacak sekilde hepsi birden
sifir olmayan a,a,,......... a, skaler sayilar1 bulunuyorsa X, X;,......... x, vektorlerine

lineer bagimlidir, aksi halde lineer bagimsizdir denir.



A matrisinin siitunlarinin bir lineer kombinasyonunu gdosterir. Bu durumda A
matrisinin stitunlarimin lineer kombinasyonu olarak ifade edilebilen buttn vektorlerin
kiimesine A matrisinin siitun uzay denir ve R(A) ile gosterilir. )R(A), A matrisinin

stitunlar tarafindan gerilir ve siitun uzayi
R(A) ={y eR™:y=AX,X eRM}
ile ifade edilir.

Tanmim 2.6. A matrisinin a, a,,......... a, satirlari tarafindan iiretilen R™ in alt uzayina

A matrisinin satir uzay denir. A matrisinin satir uzay1 R (A") olarak gosterilir.

Tamim 2.7 Bir A matrisinin siitun uzaymin boyutuna matrisin siitun ranki denir. Bir
A matrisinin satir uzaymin boyutuna ise matrisin satir ranki denir. Bir A matrisinin
satir indirgenmis eselon bigimindeki sifirdan farkli satirlarin sayisina ise matrisin ranki

denir ve r(A) ile gosterilir.

Tamim 2.8. A matrisinin sifir uzay1
N(A)={xeR™:Ax=0} cR™

seklinde tanimlanir.

Tamim 2.9 A matrisi mxn boyutlu ve C matrisi, A matrisinin satir indirgenmis

eselon bigimi olsun. A matrisinin satir uzay1 ile C matrisinin satir uzay aynidir.

Teorem 2.2 A matrisi mxn boyutlu matris olsun. A matrisinin satir ranki, sttun

rankina esittir.
Teorem 2.3 Uygun boyutlu A, B ve C matrisleri igin agsagidaki ifadeler dogrudur.
. R(A:B)=R(A)+R(B),
i R(AB)c=R(A),
. R(AA)=R(A),

iv.  R(C)c=R(A)< C matrisi AB bigimindedir.
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V. boy(ﬂi(A)) =r(A),

Eger )R(A) = R(B) Ve r(A)cr(B) ise :(A)=%(B) dir. Ozellikle %(1,)=R"™
dir.

vi. AeR™"igin r(A)<min{m,n},

vii. Bir matrisin baz1 satir ya da siitunlarinin silinmesiyle elde edilen alt matrisin

ranki, orijinal matrisin rankini gegemez,

viii. AeR™* ve BeR"" ise,r(A)+r(B)—k<r(AB)<min{r(A),r(B)},
iX. r(A)=r(A)=r(AA)=r(AA),

Eger AB =1 ise, B matrisine A matrisinin sag tersi denir ve bu ters B™" ile
gosterilir. A matrisine ise B matrisinin sol tersi denir ve bu ters A" ile gosterilir. A
matrisinin sag tersi, A matrisi tam satir rankli oldugu zaman vardir. Benzer sekilde B
matrisinin sol tersi, B matrisi tam siitun rankli oldugunda vardir. Sag ters veya sol ters
tek olmayabilir. AeR™" liggensel matris olmak {izere, rank sartlari gosterir ki, m > n
oldugunda sag ters olmayabilir ve m < n oldugunda sol ters olmayabilir. Aslinda her
iki tersin olmasi i¢in gerek ve yeter sart A matrisinin kare matris ve tam rankli
olmasidir. Bu durumda matrisin sag tersi ile sol tersi esit olur ve bu matrise,
nonsingiller A matrisinin tersi denir. A™ ile gosterilir. O halde A matrisinin tersi
vardir ve bu ters tektir ancak ve ancak A matrisi nonsinglerdir. AA™ = ATA=|
dir. Eger A ve B matrislerinin her ikisi de nonsingililer ve aymi boyutlu ise

(AB)1=g~1a~1 dir.

Herhangi bir A matrisi icin ABA=A ise, B matrisine Amatrisinin
genellestirilmis inversi denir ve A matrisinin genellestirilmis inversi A~ ile gosterilir.
Eger Ac R™" ise, A~ e R™™ dir. Her matrisin en az bir genellestirilmis tersi vardir.
Her simetrik matrisin en az bir simetrik genellestirilmis tersi vardir. Genel olarak, A~
tek degildir. A~ matrisinin tek olmasi i¢in gerek ve yeter kosul A matrisinin

nonsingiiler olmasidir. Bu durumda A~ = A™ dir. Herhangi bir A matrisi icin,

. ABA=A
ii. BAB=B
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iii. (AB) =AB
iv. (BA) =BA
kosullarini saglayan, B matrisine A matrisinin Moore-Penrose tersi (inversi) denir ve

A" ile gosterilir. Bir matrisin Moore-Penrose inversi tektir. Eger A matrisi tersi

alinabilir bir matris ise bu durumda A* = A™ dir.
Teorem 2.4 A ve A, tersi olan matrisler ise, bu durumda herhangi bir A, matrisi i¢in

A,, AA,, AA ve AAA, matrisleri ayni ranka sahiptir.

Tamim 2.10 Eger P? = P olacak sekilde bir P matrisi varsa P matrisine idempotent

matris denir.

Teorem 2.5 A/BveC uygun boyutlu matrisler olmak iizere asagidaki ifadeler

dogrudur.
i (A) =A
ii. AA’ ve A'A idempotenttir.
iii. r(A)=r(A")=r(AA")=r(A"A),
V. AAA =A=AAN Ve A(AT) A=A =AT(AT) A,
v. A=0<A =0, AB=0<B'A"=0veA'B=0< AB=0,
vi. r(A)=r(AA)=r(AA)<r(A),
vii. BAC, A matrisinin genellestirilmis tersinin segimine gore degismezdir

ancak ve ancak R(B") = R(A') ve R(C)<=R(A) dir.

viii.  A"A ve AA" matrislerinin her biri idempotent matrislerdir. A matrisi simetrik

ve idempotent matris ise | — A matrisi de simetrik ve idempotent matristir.

Tamm 2.11. A=(g;) nxn boyutlu bir kare matris olmak tzere A matrisinin

determinanti |A| ile gosterilir ve asagidaki gibi tanimlanir.
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i. n=1icin |Al=a,,
ii. n=2ig¢in |A|:a11a22_a12a21’

i, n>2igin A= ay | Al -, | Ay + e ()" | AL = D (1) ay A

i=1

dir, burada A;, (1,i). mindrdiir.

Teorem 2.6. A matrisi kdsegen elemanlar1 a;,.......,a,, olan nxn boyutlu matris
olmak tizere, eger A matrisi iist liggensel, alt liggensel veya kdsegen matris ise bu

takdirde |A = a,a,........a,, dir.
Sonug 2.1. | birim matris olmak tzere |I| =1 dir.

Teorem 2.7. A ve B ayni mertebeden kare matrisler olmak tzere |AB|=|Al|B| dir.

Sonug¢ 2.2. Amatrisi tersinir bir matris olmak tizere |A| _ 3 dir.

A7
Tamm 2.12. y=(y,)eR™ vektori ve simetrik A=(a;)eR™ matrisi igin,

Q(y)=yAy= ZZ y;y;; ifadesine, y;elemanlarimin bir kuadratik formu ve A
i1 o1

matrisine de bu kuadratik formun matrisi denir. y’Ay kuadratik formu, simetrik bir A

matrisi tarafindan karakterize edilir ve bu matrise kuadratik formun matrisi denir.
Boyle bir matris i¢in asagidakiler sdylenebilir.

i. Eger Vy=0 icin y’Ay >0 ise A pozitif tanimhdur.
ii. Eger Vy =0 icin y’Ay <0 ise A negatif tanimlidur.

ii. Eger Vy i¢in y'’Ay >0 ise A nonnegatif tanimlidur.

Teorem 2.8. Anonnegatif tanimli ve r rankli bir matristir ancak ve ancak A= RR’

olacak sekilde r rankli bir R matrisi vardir.

Simdi de blok ayrisimlarda kullanilacak olan lineer model ve bu modelin alt modeli

ile tahmin edilebilme kavramlarini kisaca aciklayacagiz.
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Genel olarak bir lineer model y=Xpg+e=X,8+X,5,+¢& biciminde
tanmimlanir. Bu modelin bir diger gosterimi M = {y, Xﬂ,V} = {y, X6+ Xzﬂz,V}
bigimindedir, burada y e R™ gozlenebilir rastgele degiskenler vektorii, X e R™P
bilinenler matrisi, B eRP" bilinmeyen parametrelerin vektorii ve &eR™ ise
go6zlenebilir olmayan hatalarin vektoriidiir,

f parametre vektoriinii tahmin etmenin degisik metotlar1 vardir. Bu
metotlardan en ¢ok kullanilant en kiigiik kareler tahmini metodudur. Bu model
e=(&) olmak uzere, Zgiz ifadesinin g parametresine gore minimumlastirilmasi
islemlerini igerir. E (5) =0 ve D(e) = o” olmak iizere, bu islemler sonucunda elde
edilen XX = XY denklemine normal denklem denir. X tam rankli kabul
edildiginde sistemin tek bir ¢oziimii vardir ve bu ¢oziim £ = (X X )_1 XYy ¢Ozuimudr,
Bu durumda 3 tahminine, alisilmis en kiigiik kareler tahmin edicisi (OLSE) denir. X

matrisinin tam rankli oldugu kabulii altinda bilinen bir V pozitif tanimli matrisi i¢in

E (8) =0ve D (8) =o'V olarak alindiginda elde edilen normal denklemlere karsilik
gelen XV X8 =XV 'y denkleminin tek coziimi 4 =(XV X )71 XV 1ty tahmini
genellestirilmis en kiigiik kareler edicisi olarak bilinir.

Eger BeR™ icin E(Gy)= X/ ise, Gy tahmin edicisi X 8 nin yansiz tahmin

edicisidir. Bu lineer yansiz tahmin edici diger lineer yansiz tiim tahmin ediciler

arasinda en kiiciik kovaryans matrise sahip ise en iyi lineer yansiz tahmin edici

(BLUE) olarak tanimlanir. Yani E( p y) = X[ olacak sekilde her By vektori igin

cov(Gy)<cov(py) dir.
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3. PARCALI LINEER MODELLERDE AGIRLIKLI EN KUCUK KARELER
TAHMIN EDICILERIN BLOK AYRISIMLARI

3.1 Modelin Olusumu

R™" kiumesi, mxn tipindeki tim reel matrislerin kimesini gostersin.
A r(A) ve R(A) sembolleri ise sirasiyla bir A matrisinin transpozunu, rankini, ve
ranj uzaymi (siitun uzayini) gostersin. Eger AVB =0 ise Ac R™ ve B e R™" matris
ciftlerine non-negatiftanimli, V e R™" (V —ortogonal) matrisine gore ortogonaldirler

denir. Bir AeR™" matrisinin Moore-Penrose inversi

i. AXA=A
ii. XAX = X
iii. (AX) =AX
iv. (XA) = XA

seklinde verilen dort Penrose denklemlerinin tek ¢cdziimii olan X e R™" matrisi olarak
tammlanir ve X = A" ile gosterilir. Ote yandan eger X € R™" matrisi sadece AXA = A

sartin1 sagliyorsa A matrisinin bir g—inversi denir ve A" ile gosterilir. Eger

X e R™" matrisi sadece XAX = X sartin1 sagliyorsa bu durumda X matrisine A

matrisinin bir dis inversi adi verilir.

P., E,, F, matrisleri
i. P,=AA
ii. E,=1-P,=1—AA"
iii. F,=1-P. =1-A"A
ortoganel izdiistimlerini gostersin. Kabul edelim ki
y=XB+X,p,+¢, E(¢)=0, Cov(e)=0"X (3.1)
parcali lineer modeli verilmis olsun, burada X, e R™™ ve X, eR™" matrisleri

p,+p,=p keyfi rankli iki matris, yeR"™ o6lctlebilir keyfi bir rasgele vektor,
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B, eR"™ ve B, e RP* tahmin edilecek olan iki bilinmeyen parametreler vektori,

2 e R™ keyfi rankli non-negatif tanimli bir matris ve & ise bir bilinmeyen pozitif
parametredir. Eger 2. singller bir matris ise (3.1) ile verilen denkleme bir singller

lineer model de denir. (3.1) denklemindeki model Gglii olarak siklikla
M = {y,X,B,O'ZZ} = {y'XLBl +X2:82'0-22} (32)

olarak yazilir, burada X =[X,, X,] ve g=[g/ 4] dir.

3.2 Parcali Lineer Model Altinda Agirlikh En Kiiciik Kareler Tahmini

Bir pargali model ile ilgili arastirmalarda 6zel bir ilgi par¢ali model (tam
model) ile bu modelin degisik kiiglik ve indirgenmis modelleri arasindaki iliskinin
arastirtlmasidir. Bu konu literatlirde genis bir sekilde farkli boyutlarda arastirilmustir.
Bunlardan bazilar1 (Bhimasankaram ve Saharay, 1997); (Chu ve ark., 2004); (GroR ve
Puntanen, 2000); (Nurhonen ve Puntanen, 1992); (Werner ve Yapar, 1995, 1996); ve
(Zhang ve ark., 2004) seklindedir. (3.2) denkleminde verilen tam model icin iki kiigik

lineer model

M, = {yl’ XB 522} ve M, :{yv Xobyo (722} (3:3)

ile verilir. X matrisi tam sutun ranka sahip ise bu takdirde (3.2) modeli altinda X B

matrisinin alisilmig en kiguk kareler tahmin edicisi (OLSE)
OLSE,, (Xf)=X(X'X)" XYy

seklinde yazilabilir. Eger X matrisindeki X, ve X, alt matrisleri orthogonal ise yani

X;X, =0 ise bu takdirde X (XX )’l X' ifadesi
-1 ! ! -1 !’ ! -1 !
X(XX) "X =X (X[ X)) X[+ X,(X,X,) " X, (3.4)
toplamu1 seklinde yazilabilir. Bunun sonucu olarak da OLSE,, (X 5)
! -1 ! 4 -1 !
OLSEM (Xﬁ)le(xlxl) X1y+X2(X2X2) Xzy

= OLSE,, (X,4)+OLSE,, (X,4,) (3.5)
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olarak ayrigtirilabilir. Bu esitlik XX, =0 olmak sartiyla M modeli altinda X f
matrisinin OLSE’si (3.3) denklemimindeki iki kiigiik model altindaki iki OLSE’nin

toplam1 olarak yazilabilecegini ifade etmektedir. Bu temel 6zellik bizi M modeli
altindaki tahmin edicinin ayrisimimnin (3.3) deki iki kii¢iik model altindaki bazi diger
tahminlerin toplami olarak yazilabilecegini diisiinmeye sevk etmektedir. Bu kismin
temel amaci (3.2) modeli altinda (X ) matrisinin agirlastirilmis en kiglk kareler

tahminin (3.5) deki esitlige genisletilip genisletilemeyeceginin arastirilmasidir.

V € R™ bir non-negatif taniml1 bir matris olsun. Yani V matrisi, baz1 Z matrisleri

icin V =ZZ'seklinde yazilabilsin. V agirlik matrisi tarafindan indirgenmis bir
1
x € R™ vektoriiniin semi normu ||X||V =(X'VX)5 ile tanimlanir. (3.2) denklemindeKi
M modeli altinda £ nin agirlastirilmis en kiigiik tahmin edicisi WLSE
5 . 2
p=argmin|y X[, (3.6)

olarak tanimlanir. Bu durumda (3.6) daki denkleme karsilik gelen normal matris

denklemi

XVX B = XVy

seklindedir. Bu denklem daima tutarlidir. Bu denklemin ¢6ziimii asagida iyi bilinen

sonucu Verir.

Lemma 3.1 M modeli altinda £ ’nin agirlastirilmis en kiigiik kareler tahmin edicisi

WLSE’ nin genel ifadesi, u € R”" keyfi bir matris olmak tizere
B=(X"VX) X Vy+| 1, —(VX)"(VX) Jv=(X"VX)" X 'Vy +F,u (3.7)
seklinde verilir.

y#0 igin (3.7) ifadesinde ueR”" keyfi bir matris olmak lizere u=Uy

olsun. Bu takdirde (3.7) ifadesi ﬁ:[(X'VXY X 'V+FVXU]y homojen formunda

yeniden yazilabilir. Bunun sonucu olarak da M modeli altinda (X £) nin agirlikli en

kicuk kareler tahmin edicisi
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WLSEM(Xﬂ):XB:[X(X'VX)+X'V+XFVXU]]y (3.8)

ile tammlanir. ayrica P,,, ve P,

=X (X'VX) XV, (3.9
X

(X'VX)" X'V + XRyU =Py, + XR,U

PX v
PX Y

ile gosterilmek Uizere bu ifadelerin her ikisine |||, semi normuna gére X matrisinin

9?()() ranjina (siitun uzayina) gore izdiisimlerdir denilebilir (bkz. Rao ve Mitra,
(1971a. b); Mitra ve Rao, 1974). Bundan sonra M modeli altinda X £ nin agirlikli en
kicuk kareler tanmin edicisi WLSE nin genel ifadesi olarak (3.8) denklemindeki
homojen tahmin edici alinabilir. Ayrica biitin WLSE,, (X ,6’) agirlikli en kiigiik
kareler tahmin edicilerinin kiimesi de {WLSEM (Xﬂ)} ile gosterilecektir. (3.7) ve
(3.8) denklemlerinden kolaylikla goriilebilir ki verilen bir agirlastirilmis V' matrisi

icin 3 ve X,B tahmin edicilerinin M modeli altinda sirasiyla  ve X £ igin yansiz
tahmin ediciler olmas1 gerekmez. Bununla beraber herhangi agirlagtirilmis V' matrisi

icin dyle bir U matrisi bulunabilir ki (3.8) de verilen WLSE,, (Xﬂ)tahmin edicisinin

X B igin yansiz tahmin edici oldugu kolayca gosterilebilmektedir.
(3.8) denklemine parelel olarak (3.3) de verilen iki kiigiik model altinda

(Xl ,Bl) ve (X2 B ) > nin agirlikl en kiigiik kareler tahmin edicileri sirasiyla

WLSE,, (Xlﬂl) =Py ve WLSE,, (Xzﬂz)z Pe,vYs (3.10)
seklinde yazilabilir, burada

Pov =P v + XiFx Ui =X, (X, 'VXi)+ X'V + XiFx Ui, 1=1,2,
olup U, e R™ ve U, e R*™" keyfi matrislerdir. (3.8) ve (3.10) denklemlerinde

g6ziken U, U, ve U, keyfi matrisleri mevcut oldugundan U, U, ve U, matrislerini

WLSE’ler minimum kovaryans, minimum norm ve yansiz tahminlik gibi bazi

oncelikli ozellikleri saglayacak sekilde secmek miimkiindiir. Istatistikle ilgili

uygulamalarda agirlastirilmis V' matrisi ¢ogunlukla V =X~ veya V = (XTX "+ Z)_
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seklinde alinmaktadir. Buradaki T matrisi r(XTX'+2)=r[X,Z] olacak sekilde

lizere non—negatif taniml1 bir matristir. Ozel olarak > pozitif taniml1 ve X tam stitun

rankl1 ise bu takdirde
WLSE,, (X£)=X (X'ZX )" X'z?y (3.11)

ifadesi M modeli altinda X £ parametresinin tek en iyi lineer yansiz tahmin edicisi,
yani BLUE’sudur. Burada Oncelikle (3.8) ve (3.10) da verilen WLSE’lerin tek trli

olmasi gerekmedigini belirtelim. Ote yandan M, M, ve M, modelleri altindaki

WLSE’ler i¢in agagidaki U¢ durum sz konusu olacaktir:
i. Bazi WLSE(X ), WLSE,, (X1 B,) ve WLSE,, (X, 3,) icin

WLSE,, (X,B) =WLSE,, (Xlﬂl)+WLSE,v|2 (XZ,BZ)
esitligi saglanir.

ii. {WLSE,, (X,3)+WLSE,, (X,5,)} <{WLSE, (XA)};

iii. {WLSE,, (X,8,)+WLSE,, (X,5,)}={WLSE, (XB)}.

Bir sonraki kisimda yukarida verilen U¢ iddianin saglanmasi i¢in bir dizi gerek
ve yeter sartlar ortaya konulacaktir. Bunlarin sonuglari olarak (3.11) denkleminde

verilen BLUE nun (3.10) denkleminde M, ve M, modiilleri altinda verieln iki

WLSE nin toplamina esit olmast i¢in bir dizi gerek ve yeter sart verilecektir.

(3.8) ve (3.10) denklemlerindeki WLSE’ler keyfi matrisler ve Moore-Penrose
tersleri igeren matris kalemleri oldugundan WLSE’ler ile ilgili farkli matris islemlerini
basitlestirmek igin pargali matrisler ile ilgili asagidaki rank formallerini kullanmaya

ihtiya¢ vardir (Marsaglia ve Styan, 1974).

Lemma3.2. AcR™", BeR™ ve C eR"" matrisleri verilmis olsun. Bu takdirde

r[AB]=r(A)+r(E,B)=r(B)+(E;A) (3.12)
r@:r(A)+r(CFA):r(c)+(AFC) (3.13)

esitlikleri vardir. Diger taraftan
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r(B—AA'B)2r(B)+r(AA'B)=r(B)-r(A'B)
oldugu kolaylikala gosterilebilir. Bu nedenle (1.12) denkleminden
r[AB]=r(A)+r(B)-r(A'B) (3.14)
esitsizligi yazilabilir. Ustelik (1.12) denklemi yardimiyla
R(B)cR(A)<= AA'B=B<r[AB]=r(A), (3.15)

R(A) =R(A,) ve R(B) =R(B,) = r[A, B ]=T[A,B,]. (3.16)

ifadeleri de yazilabilir.
Lemma3.3. AcR™ olsunve Z,Z,,Z, € R™™ matrisleri de A matrisinin ii¢ dis tersi,
yani Z,AZ =Z,,i=123, olsun. Ayrica ‘R(Zi)giR(Zl) ve iR(Z{)ng(Zl')

icermelerinin saglandigini varsayalim. Bu takdirde
r(2,-2,-2Z,)=r(Z,)-r(Z,)-r(Z,)+r(Z,AZ,)+r(Z,AZ,) (3.17)

esitligi saglanir.

Ispat: elementer blok matris islemleri altinda bir matrisin ranki1 degismedigini daha

once belirtmistik. Bu nedenle kolayca elementer blok matris iglemleri uygulanarak

-z, 0 0 Z -z, 0 0 0
10z 0z, 0 7 0 0
0 0 2, Z,| |0 0 2z 0
z, Z, Z, O 0 0 0 2Z-2,-Z,
=r(Z2,-Z,-Z,)+r(Z,)+r(Z,)+r(Z,) (3.17q)

esitliginin yazilabilecegi kolayca gosterilebilir. ifadesi elde edilir. Ote yandan Lemma

3. 3. de verilen sartlar altinda elementer blok matris islemleri ile

-z, 0 0 2z 0 Zz,AZ, Z,AZ, Z,
|0z oz o gz 0oz
0 0 z, Z 0o 0 z, z,
z, Z, Z, O zZ, 0 0 0
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0 0 0z
_]o 0 -Z,AZ, 0
|0 -z,AZ, 0 0

Z, 0 0 0
=2r(2,)+r(Z,AZ,)+r(Z,AZ,) (3.17b)

esitlikleri yazilabilir. Buradan (3.17a) ve (3.17b) denklemleri birlestirilirse (3.17) deki
ifade elde edilir.

Lemma 3.4. AcR™", Be R™ ve C eR" matrisleri verilmis olsun. Bu takdirde

. A
gngkz(lr(A—BZC):mln{r[A,B],r(Cj}, (3.18)
i A-BZC)=r|AB A o 3.19
erg;krlr( L )=r[A ]+r(C]—r(C Oj (3.19)

esitlikleri saglanir. Ozel olarak
A
BZC = A tutarhdir < I’[A, B] = I‘(B) ve r[cj =r(C) (3.20)

ifadesi gergeklenir.
3.3. Agirhikh En Kiiciik Kareler Tahmin Edicilerilerin Toplam Ayrisimlar:

Bir onceki kisimda tanimlanan WLSE’lerin toplam ayrigimlarini karakterize
etmek igin (3.2) denkleminde M modeli igin verilenlerin dogru oldugunu

varsayacagiz. Bu durumda (3.3) denkleminde M, ve M, iki kiiglik model gergekte

M modelinin yanlis tanimlanmis iki modelidir. Kolayca gorulebilir ki eger (3.2)

denklemindeki M modeli dogruysa bu takdirde

yeR[X 2] (3.21)

ifadesi bir olasilikla gerceklenir [Rao (1971,1973)]. Sonug olarak (3.21) ifadesinin
(3.2) denklemindeki M modeli altinda tahminlerin farkli 6zellikleri arastirildigi
zaman saglanmasi gerekmektedir. Eger bir lineer model igin (3.21) denklemi

saglanirsa bu lineer modelin tutarli oldugu soylenir. Bu durumda eger
(L-L)[X,X]=0 (3.22)
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esitligi saglanirsa, M tutarli modeli altinda Ly ve L,y lineer tahmin ciftlerinin bir

olasilikla esit oldugu sdylenir. Eger (3.2) denlemindeki M modeli dogruysa o ayni
zamanda tutarli da olacaktir. Fakat bu durum bir modelin tutarli oldugunda onun ayn1

zamanda dogru oldugunu gostermez. Gergekten eger . pozitif tanimli ise (3.2) deki

dogru olan M modeli oldugu gibi (3.3) denlemindeki M, ve M, iki kiiglik modelleri
de daima tutarhidir. Ote yandan eger r[X,X]<n ise (3.2) deklemindeki M modelinin
tutarligr (3.3) denklemindeki iki modelin tutarliligini gerektirmez. M, ve M,
modelleri M modelinin iki yanlis tanimli modeli oldugundan ye®R[X,,Z] ve
yeR[X,,X] oldugunu kabul edemeyiz. Bunun yerine WLSE, (X,3) ve
WLSE,, (X,,) tahmin edicilerindeki y vektorunin sadece (3.21) denklemini
sagladigi kabul edilebilir.

WLSE,, (X) nmn toplam ayrisimlart ile ilgili iki temel sonu¢ asagida

verilmigtir.

Teorem 3.1. WLSE,, (X,4), WLSE,, (X,5,) ve WLSE,, (X ) ifadeleri (3.8) ve

(3.10) denklemlerindeki gibi verilmis olsun. Bu takdirde asagidaki ifadeler denktir:

saglanir:

i. Oyle WLSE, (XB), WLSE,, (X,5) ve WLSE,, (X,£,) tahmin edicileri

mevcuttur Ki

WLSE,, (X ) = WLSE,, (X,4)+WLSE,, (X,5,) (3.23)

esitligi bir olasilikla saglanir.

i {WLSEMl(Xl’ﬂ1)+WLSEM2(XZ’ﬂZ)}g{WLSEM (X.8)} kime igermesi

bir olasilikla saglanir.
iii. VP =VR .y +VP , dir.
iv. X,V X,=0dir,yani X, ve X, matrisleri V — ortogonaldir.
Ispat: Kolayca goriilmektedir Ki
R X,Fox,» XoFi, | S R(XFy ), (3.24)

22



r[VX]=r(VX,)+r(VX,)-r(XVX,) (3.25)

ifadeleri gerceklenir. Bu durumda (3.13) denklemini (3.24) denklemindeki matrislere

uygulayarak elemanter blok matris islemleri kullanilirsa

r(xFVX):{Vﬂ_r(vx):r(x)_r(vx)

ve
X X X,
VX 0
r[XFVX,xvaxl,szvxz}zro VX, —r[VX]-r[VX,]-r[VX,]
0 0 VX,
X 0 0
0 -VX, -VX
=1 A vxll . 21=r(VX) =1 (VX,)-r(VX,)
0 0 VX,
X 0 0
0 0 O
=1, VX, 0 —r(VX)-r(VX,)-r(VX,)
0 0 VX,
=r(X)-r(VX)
rank esitlikleri yazilabilir. Bu nedenle
r[ XF, X,Fx, X, X, [= (X ) =r(X)=1(VX) (3.26)

esitligi elde edilir ki bu esitlik (3.15) denklemi dikkate alinirsa (3.24) denkleminin
saglandigini gosterir. Ote yandan eger (3.14) denklemi VX matrisine uygulanirsa
(3.24) ifadesi de dikkate alinarak

r(VX)= r(v%x)zr[v%xl,v%xz}

zr(v%xl)”(v%xz)—r(xlvxz)
=r(VX,)+r(VX,)-r(XVX,)

elde edilir. Burada V}/2 non-negatif taniml1 V matrisinin karekokuddr.
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(3.6) ve (3.10) denklemlerinden

WLSE,, (X 8)-WLSE,, (X,8),~WLSE,, (X,5,)
=Py I:)xl:v y— I:)xz:vy
=(GV +XFU - X,Ry U, = X,R, U, )y

elde edilir, burada G =X (XVX)" X'= X, (XVX,)" X=X, (XVX,)" X} dir. Sonug
olarak (3.22) denkleminden gorebilir ki (3.23) durumunun bir olasilikla gergeklesmesi

icin gerek ve yeter sart her y e R[X,X] icin

(GV +XF,U - X,Fy U, = X,Fy U, )y =0.
olacak sekilde U,U, ve U, matrisleri mevcuttur, yani S €[X,2] olmak uzere

(GV + XRyU = X,Ry U, — X,Ry U, )S =0 (3.27)
olacak sekilde U,U, ve U, matrisleri mevcuttur. Ote yandan (3.27) denklemi

AZS =-GVS (3.28)
olarak yeniden yazilabilir, burada A= [XF\,X X R, XZFVX2] ve Z =[U',-U;,-U;]
dir. (3.20) denkleminden kolayca gortlebilir ki (3.28) denkleminin Z igin ¢ozulebilir
olmasi icin gerek ve yeter sart

[[GVS, A]=r(A) ve r{GZ8}=r(S) (3.29)
rank esitliklerinin saglanmasidir. (3.29) daki ikinci esitlik dogal olarak saglanir.
saglanir. Ote yandan R(G)=R(G') = R(S)yani SS'G =G oldugu agik bir sekilde
gorulmektedir. Bu nedenle %(GVS)2R(GVSS'G)=R(GVG)=R(GV) iliskisi
yazilabilir ki bu da agik bir sekilde

R(GVS))=R(GV) (3.30)

esitligini ifade eder. Ote yandan (3.24) ve (3.30) ifadeleri dikkate alinirsa (3.29)
ifadesindeki birinci esitligin
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r[GV, XRy |=r(XRy)=r(X)-r(VX) (3.31)

esitligine denk oldugu (3.16) ve (3.26) denlemlerinden kolayca gorulebilir. Eger (3.13)
ifadesi (3.31) denklemininin sol tarafina uygulanir ve elemanter blok matris islemleri

yardimiyla sadelestirme yapilirsa

Gv X 0 X
r[GV,XFVX]=r{ }—r(vx)=r{ }—r(vx)
0 VX VGV 0 (3.32)

=r(VGV )+r(X)-r(VX)

denklemi elde edilir. Dolayisiyla (3.31) ifadesi VGV =0 denklemine denktir. Kabul

edelim ki
Z =VX (XVX)" XV,
Z, =VX,(XNX,) XV
ve
Z, =VX,(XNVX,) XV

olsun. Bu takdirde non-negatif tamml Z, Z, ve Z, matrislerinin V" matrisinin dis
inversleri oldugu

R(2)=R(VX), R(Z)=R(VX,),

R(VX ) SR(VX), ZX, =VX, i=12 (3.33)

iligkilerinin saglandigin1 gérmek kolaydir. Bu sartlar altinda (3.17) ifadesi VGV

matrisine uygulanarak
r(VGV)=r(z2-2,-2,)
r(z)-r(z)-r(z,)+2r(zV°Z,)
= ( ) ( )_r(VX2)+2r(X1VX2)
=[r(VX)+r(XNVX,)=r(VX,)=r(VX,)]+r(XVX,)

(3.34)

esitligi elde edilir. Ayrica (3.25) ve (3.34) denklemlerinden VGV =0 ve XVX, =0

esitliklerinin denkligi kolayca gorulebilir.
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Ote yandan (3.27) denkleminden gosterilebilir ki Teorem 3.1.(b) deki kiime

icerme bagintisinin bir olasilikla ger¢eklesmesi icin gerek ve yeter sart S :[X,Z]

olmak tizere herhangi U, ve U, i¢in
minr(GVS + XR,US - X,R, U,S - X,Fx,U,S)=0

esitliginin saglanmasidir. (3.23) ve (3.30) esitlikleri altinda (3.19) ifadesi dikkate
alinirsa
min r(GVS + XR,US — X,F U;S — X, Ry U,S)
=minr [GVS — X, Ry UsS = X, Ry U S, XFy |1 (XFyy)
=minr [GVS = X,F U;S = X, R U S, XFoy =1 (XFiy )
=r[GV, XF ]-r(XFy)
=2r(XVX,)+r(VX)=r(VX,)-r(VX,)

esitligi elde edilir. Boylece Teorem 3.1. deki i. ve iv. siklarinin denk oldugu goriiliir.

Bu da teoremin ispatin1 tamamlar.
Teorem 3.2. WLSE,, (X 8), WLSE,, (X,f,) ve WLSE,, (X,/,) ifadeleri (3.8) ve

(3.10) denklemlerindeki gibi verilmis olsun. Bu takdirde asagidaki durumlar denktir:

. {WLSEM (Xﬁ)} S {VVI—SEM1 (X1ﬂ1)+WLSEM2 (Xzﬁz )} icerme bagntis1 bir

olasilikla saglanir.

Xl X2
ii. r(X)+2I’(X1'VX2) = I‘(N )esitligi saglanir, burada N =| VX, 0 dir.
0 VX,

Ispat: (3.27) den kolayca goriilebilir ki teoremin i. sikkindaki igerme bagintisinin

saglanmasi i¢in gerek ve yeter sart

max min r (GVS + XFxUS - ;R U;S - X,R,, U,S ) =0. (3.35)

olacak sekilde U, U, ve U, matrislerinin mevcut olmasidir. Ote yandan (3.19)

denkleminden
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minr(GVS + XR,US - X, R, U;S — X, R, U,S)

U U,

U
= min r([GVS + XF, US —[XF,, XvaxJ{Ul}S] (3.36)
2

U, U,
=r[GVS + XR,US, X, Ry, X,Fix, |~ 1| X,Fix, X,Fix, |
elde edilir. Ayrica (3.18), (3.24) ve (3.30) denklemlerinden

max r [GVS + XFxUS, X Ry, X R, }

= max r[ GVS, X,y , X,Fy, |+ XRyU [S,0,0]

(3.37)
— min {r [GVS, X, R, XFix,  XFox | 7(S)+ [ X,Fe, X i, ]}
= min{r[GV, XR, ],r(S)+r[ X,Fu,, X;Fi, |}
ve (3.13) denkleminden ise
([ X,Fox XoF, | =T (N) =1 (VX,) = (VX,) (3.38)

esitligi yazilabilir. Buradan da (3.16) ve (3.17) denklemlerinin birlesimyle

mL?X LT{H r(GVS + XF,US — X1Fv><1ulS - XZFVXzUZS)
=min {r[GV, XFx ]— I’[XlFVXl, Xszx2:|' r(S)}
= r[GV, XFVX ]— r[xvaxll XZFVXZ:I

=2r(XVX, Ry )+ 1(X)=r(N)

oldugu elde edilir. Boylece (3.35) denkleminin 2r(XVX,)+r(X)=r(N) ifadesine
denk oldugu gosterimis olur, ve bu da ispat1 tamamlar.

Teorem 3.1. ve Teorem 3.2. ifadelerinin birlestirilmesiyle asagidaki sonug

verilebilir.
Teorem 3.3. WLSE,, (X 3), WLSE,, (X,,) ve WLSE,, (X,/,) ifadeleri (3.8) ve

(3.10) denklemlerindeki gibi verilmis olsun. Bu takdirde asagidaki ifadeler denktir:

I {WLSEM(Xﬂ)}:{WLSEMl(Xlﬂl)"'WLSEMZ(Xzﬂz)} kiime esitligi bir

olasilikla saglanir.
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XV 0 X'
i. XVMX,=0ve R| ! R dir.
0 XV X

2

XX, =0 ifadesi X;X, =0 ortogonal esitliginin bir genellemesi iken Teorem
3.1in i., ii. ve iii. siklaridaki ifadeler (3.4) ve (3.5) denklemlerinin genellemleri

olarak diisiiniilebilir. Onceki teoremlerde belirtilen sartlar altinda toplam ayrisimlar,

WLSE,, (X3)> nin istatistiksel 6zelliklerini elde etmek ve WLSE, (X )’ nin

hesaplamalarini sadelestirmek i¢in kullanilabilmektedir.

(3.2) denkleminde ifade edilen M modeli bir genel lineer model ve > matrisi

(3.23) denkleminde elde edildiginden, Teorem 3.1., Teorem 3.2. ve Teorem 3.3. de

belirtilen WLSE,, (X p ) nin toplam ayrisimi i¢in gerek ve yeter sartlarn V agirhik
matrisi ve X model matrisinden ibaret olmasi oldukga ilgingtir. (3.24) deki esitligin
WLSE,, (X,) ve WLSE, (X,5,) tahmin edicilerinin iliskisiz olduklarm
gOstermeyecegini belirtelim. Gergekten (3.10) denkleminden kolayca soylenebilir ki

WLSE,, (X,,) ve WLSE,, (X, f,) arasindaki korelasyon matrisi

Cov{WLSE,, (X,5,),WLSE,, (X,5,)}=0°P, TP, (3.39)

seklinde elde edilir. Bu ifade P, , ve P, , icinde U, ve U, keyfi matrislerine gore

bir kuadratik formdur. Ayrica o’ kovaryans matrisi (3.39) denkleminden de

bulunmaktadir ve bu nedenle (3.39) denkleminin sifir olmasi igin gerek ve yeter sartlar

vermek zor bir problemdir.
WLSE,, (X ﬂ) tahmininin toplam ayrisimi tek oldugunda (3.8) ve (3.10)

denklemlerindeki tahmin edicilerin de tekligi ile ilgili olarak asagidaki iki teorem

verilebilir.

Teorem 3.4. WLSE,, (X ), WLSE,, (X,4,) ve WLSE,, (X,f,) tahmin edicileri

(3.8) ve (3.10) denklemlerindeki gibi verilmis olsun. Bu takdirde
i.  WLSE,, (X£) nin tek olmast i¢in gerek ve yeter sart r(VX)=r(X), yani

R(XV)=R(X") olmasidir. Bu durumda tek olan
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WLSE,, (X B) =P,y =X (XVX)" XVy
tahmin edicisi X £ igin yansiz tahmin edicidir.
ii. WLSEMl(Xlﬂl) ve WLSEMZ(X2,32) tahmin edicilerinin tek olmasi igin

gerek ve yeter sart sirasiyla r(VX,)=r(X,) ve r(VX,)=r(X,) olmasidir.

Ispat1 (3.8) denkleminden kolayca gorulebilir ki WLSE,, (X 8) nin tek olmas i¢in
gerek ve yeter sart XF, =0 olmasidir. Ote yandan (3.26) ifadesi dikkate alinirsa
XF, =0 esitligi r ( X ) =r (VX ) rank esitligine denktir. Boylece teoremin i. sikkinda
idda edildigi gibi

E[ WLSE,, (X 8) |= X (XVX) XVXB=Xp
ifadesi saglamis olur. Benzer sekilde teoremin ii. deki esitligi gosterilebilir.

Teorem 3.5. (3.8) denklemindeki WLSE,, (Xﬁ) nin tek oldugunu varsayalim. Bu
takdirde

. (3.10) ifadesindeki WLSE,, (X,8,) ve WLSE,, (X,5,) tahmin edicilerinin

her biri tektir.

ii.  Cov{WLSE,, (X,4),WLSE,, (X,5,)}
=X, (XVX,)" XV ZVX, (XX, ) X;.
iii.  Cov{WLSE,, (X,8,), WLSE,, (X,,)}=0< XV VX, =0 du.

iv.  WLSE,, (X)=WLSE,, (Xlﬁl)+WLSEM2 (X,p,) toplam ayrigimi bir
olasilikla saglanmasi i¢in gerek ve yeter sart P, =P, , +P , olmasi veya buna

denk olarak X,VX, =0 olmasidir.

. XV X
Ispat: ER(XV)z‘.R(X') rank esitligi pargali formda SR{XTV} :*ﬁ{xﬁ olarak tekrar
2 2

yazilabilir. Bu ise hem R(XV)=R(X,) esitligini hem de R(XNV)=R(X;)
esitliklerinin saglanmasi demektir. Bu nedenle teoremin i. sikknda ifade edildigi gibi
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WLSE,, (X 8) tekligi hem WLSE,, (X,4) ve WLSE,, (X,8,) nin tekligini ifade
eder. Ote yandan ii. sikkindaki sonug ise (3.39) denkleminden elde edilir. (3.33) den
kolayca gorulebilir Ki

r| X, (XVX,)" XVEVX, (XX, ) X} | =1 (XVEVX,)
rank esitligi elde edilir. iii. sikkindaki sonug bu rank esitliginin basit bir sonucudur. iv.
sikkindaki sonug ise i. sikk1 ve Teorem 3.1 den elde edilir.

Bir dnceki kisimda da bahsedildildigi gibi (3.6) denklemindeki V agirlik matrisi
sik stk V =X veya r(XTX'+X) =r[X,X] olmak iizere V =(XTX'+X) olarak
alinir. Bu durumda 6nceki sonuglar daha da sadelestirilebilir. Ozel olarak Y. pozitif

tanimli, (3.2) denkleminde r(X)=p ve (3.8) ve (3.10) denklemlerinde V agirlik

matrisi V = Y"1  olarak alinrsa bu takdirde asagidaki sonuglar1 elde edilebiliriz.

Lemma 3.5. Y pozitif tanimli, (3.2) denkleminde r(X)=p ve (3.8) ve (3.10)

denklemlerinde V. = Y=1  olsun.
I. M modeli altinda X £ matrisinin tek en iyi lineer yansiz tahmin edicisi
BLUE,, (X£)=X(X'Z*X) " X'Ty (3.40)
seklindedir, burada

E[BLUE,,(X8)] = XB ve Cov[BLUE,(XB)] = a2X(X' %1 X)X’

dir.
ii. M, modeli altinda X, nin agirlikli en kiigiik kareler tahmin edicisi
WLSE,, (X,8)=X,(X/ZX,) X/Z1y. i=12 (3.41)
seklindedir, burada
E[WLSE,, (X,8) = X8+ X, (X 27X, ) X/ 27 X, 5, (3.42)
E[WLSE,, (X,5,)]= X8+ X, (X; 2% X, ) X/ X4, (3.43)
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Cov| WLSE,, (X8)]=0"X;(X,'Z* X, )'l X! i=12. (3.44)

dir.
iii.  WLSE,, (Xlﬂl) ve WLSE,, (Xzﬁz) arasindaki kovaryans matris
Cov{WLSE,, (X,4),WLSE,, (X, 4,)}
=o?X, (X2 X,) X/ ZX, (X2 X,)X] (3.45)
formundadir.

Teorem 3.1 ve Teorem 3.4 de verilen ifadeler (3.40) ve (3.45) esitliklerine

uygulandiginda asagidaki sonuglar elde edilir.

Sonug 3.1. BLUE,, (X 8) ve WLSE,, (X5 ) (3.40) ve (3.41) denlemlerindeki gibi

verilmis olsun. Bu takdirde asagidaki ifadeler denktir:

i.  BLUE, (X 8)=WLSE,, (X,8)+WLSE,, (X,5,).

i E[WLSE, (X,8)]=(X8), i=12

iii. Cov{WLSE,, (X,3)WLSE,_ (X,5,)}=0.
iv.  Cov[BLUEy(XB)] = Cov[WLSEy, (X,5,)] + Cov[WLSEy, (X25,)]-
v. X/X*X,=0.

Ispat: Sonucun i. ve v. siklarmin denkligi Teorem 3.1 den elde edilir. ii. ve v. siklarmin
denkligi ise (3.42) ve (3.43) denklemlerinden gorilebilir. iii. ve v. siklarinin denkligi
ise (3.45) denkleminin bir sonucudur. Ayrica (3.34) denkleminden

r(Cov[BLUE,, (X )]~ Cov[ WLSE,, (X, |-Cov[ WLSE,, (X,4,)])
_ r[x (XE2X) X =X, (XEX, ) X=X, (XX, ) x;}
=2r(X27X,)

oldugu kolayca bulunabilir. Buradan da iv. ve v. siklarinin denk oldugu goriiliir.
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Simdi WLSE,, (X 8) ve WLSE,, (X,B,) tahmin edicileri arasindaki baginti

asagidaki sekilde verilebilir:

Teorem 3.6. WLSE,, (X ) ve WLSEMl(Xlﬂl), (3.8) ve (3.10) denklemlerindeki

gibi verilmis olsun. Bu takdirde asagidaki ifadeler denktir:
i. Oyle WLSE,, (X ) ve WLSE,, (X,/,) vardir ki
WLSE,, (X )= WLSE,, (X,5) (3.46)

esitligi bir olasilikla saglanir.

ii.  {WLSE,, (X,8,)} < {WLSE, (X )} kime igermesi bir olasilikla saglanir.

iii. VR, =VP, dir.

iv.  R(VX,)=R(VX,) dir.
Ispat: (3.6) ve (3.10) denklemlerinden

WLSE,, (X 8)—WLSE,, (X,4)=(GV - XR,U - X,R, U, )Y,

yazilabilir, burada G =X (XVX)" X'=X,(XVX,) X! olup U ve U, matrisleri
keyfi matrislerdir. Bu durumda (3.22) denkleminden kolayca gorulebilir ki (3.11)

denklemi saglanmasi igin gerek ve yeter sart her y ‘.R[X : E] icin
(GV + XRuU - X,Ry U, )y =0

olacak sekilde dir. Yani U ve U, matrislerinin mevcut olmasidir, yani S =[X,X]

olmak Uizere

U
[GV +| XRy, xvaxl]{_UlD S =0, (3.47)
olmasidir. Bu durumda (3.47) esitligi
A=| XFy, XFx, | ve Z=[U",-U]T

olmak Uzere
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AZS =-GVS (3.48)

olarak yeniden yazilabilir. Ote yandan (3.20) denkleminden kolayca gériilebilir Ki

(3.48) denkleminin Z icin ¢ozulebilir olmasi igin gerek ve yeter sart
r[GVS, A]=r(A) (3.49)
olmasidr.

Ayrica R(G) =R(G) < R(S) ve dolayisiyla da ER(GVS) = SR(GV) esitligi
saglanir. Bu durumda daha 6nce verilenler dikkate alinarak (3.49) da verilen rank
esitliginin

r[GV, XFy, |=r(XR, ) =r(X)-r(VX) (3.50)

esitligine denk oldugu gortlur. Ote yandan (3.13) denklemi ve elemanter blok matris

islemleri yardimiyla

r[GV, XFyy] = 7 [GOV V)g(] —r(VX)
— +(VGV) + r(X) = r(VX) (3.51)

esitligi yazilabilir. Boylece (3.50) esitligi VGV =0 esitligine denk olur ki bu da iii.
stkkina denktir. tir. Eger (3.33) denklemindeki sartlar altinda (3.17) denklemi VGV

matrisine uygulanirsa, bu takdirde
r(VGV)=r(Z - Z,)

=r(Z) = (Z1)

=r(VX) — r(VX,) (3.52)
elde edilir. Boylece (3.50) denklemi r(VX)=r(VX,) rank esitligine denktir ki bu da

R(VX,)=R(VX,) icermesine denktir. Buradan teoremin i. ve v. ifadelerinin denk

oldugu goriiliir. (3.47) denkleminden kolayca gorilir ki teoremin ii. sikkindaki kiime

icermesinin saglanmasi igin gerek ve yeter sart herhangi bir U, matrisi igin
minr (GVS + XR,US - X,Fx U;S)=0 (3.53)
olacak sekilde bir U matrisinin mevcut olmasidir. Buradan da
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minr (GVS + X, US - X,R, U;S )

=1 GVS - X,y U,S, XFy |1 (XFy)
r[GV, XFy ]-r[XFRy]
r(vX)-r(vX,)

esitligi yazilabilir. Boylece (3.53) ifadesinin iv. sikkina denk oldugu gosterilmis olur.

Teorem 3.6. nin agik bir sonucu olarak asagidaki sonug verilebilir.
Sonug 3.2. Kabul edelim ki (3.8) denklemindeki WLSE,, (Xﬁ) tahmin edicisi tek
olsun. Bu takdirde WLSE, (X8)=WLSE,, (X,5) esitliginin bir olasilikla

saglanmasi i¢in gerek ve yeter sart SR( XZ) c 9%( Xl) olmasidir.
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4. SONUC ve ONERILER

Bu calismada (3.2) modeli altindaki X /£ nin agirlikli en kiigiik kareler tahmin

edicisinin  (3.3) modeli altindaki agirlikli en kiigiik kareler tahmin edicilerin
toplamlarina esit olmasi icin bir takim gerek ve yeter sartlar verilmistir. Bu sartlar

altinda (3.2) modeli altinda X £ nin en kiigiik kareler ve agirlikli en kiigiik kareler

tahmin edicilerinin bazi istatistiksel 6zelliklerini verebilmek i¢in toplam ayrisimlarin
kullanilabilirligini bekleyebiliriz. Bu ¢aligmada verilen sonuglarin ayrica daha genel
durumlara da uygulanabilirligini bekleriz. Parcali lineer modeler altinda agirlikli en
kiglk kareler tahmin edicilerinin toplam ayrisimlari hakkinda iki arastirma konusu
asagidaki gibi verilebilir:

. M ={y, X B+ XL+ X B, 0° Z} genel parcali lineer model ve onun

WLSE,, (Xo8, + v X B ) = WLSEy, (X) + v WLSE,, (X, 5,)

toplam ayrisiminin saglanmasi ile ilgili gerek ve yeter sartlar arastirilabilir.
i. K=[K,K,]eR¥™*®) verilsin. Kg=K,3 +K,p, ifadesi (3.2) de verilen
M modeli altinda tahmin edilebilir olsun, yani R(K') € R(X") olsun. Bu takdirde

WLSEy (KB) = WLSEy, (KiB1) + WLSEy, (K»B8,)

toplam ayrisiminin saglanmasi igin gerek ve yeter sartlar arastirilabilir.
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