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Yapay zekâ algoritmalarına ve bu algoritmalar uygulanılarak kontrol edilebilen 

mobil robotlara farklı alanlarda olan gereksinim son yıllarda en popüler konuların 
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ROBOT KOLLARININ CİSİMLERİN TUTULABİLİRLİĞİNİ FEDERE 

DERİN PEKİŞTİRMELİ ÖĞRENME YÖNTEMİYLE ÖĞRENMESİ 

ÖZET 

Robot kollar son yıllarda endüstride en çok kullanılan robotik sistemlerden birisi 

haline gelmiştir. Bu sayede üretim hatları gelişmiş, hızlanmış ve otomatik hale 

getirilmiştir. Robotların belirlenen cisimleri belirli yerlerden alıp tekrar belirlenen 

yere taşınması, robotların belirli cisimleri tanıması ve ona göre hareket etmesi, robot 

kolların eklem bölgelerinin hareket performansları, robot kollarının tork kontrolleri 

araştırmacıların çalıştığı konuların başında gelmektedir. Robot kolların otomatik hale 

getirmedeki en büyük problemlerden birisi kullanım yerine göre eğitilmesidir. 

Geçtiğimiz yıllarda bu eğitim uzun sürmekteyken son yıllarda yöntemlerin ve eğitim 

algoritmalarının gelişmesiyle birlikte oldukça hızlı gerçekleşmektedir. Önerilen ve 

geliştirilen algoritmalar bahsedilen problemleri çözmektedir. Son yıllarda çeşitli 

araştırmacıların önerdiği federe öğrenme yöntemi ile derin pekiştirmeli öğrenme 

yaklaşımı birleştirilmiştir. Federe öğrenme yaklaşımı alt sistemlerin yani robot 

kolların aynı anda eğitilmesini sağlamaktadır. Bu eğitim gerçekleştirilirken alt 

sistemler hatalarını ve sinir ağlarının parametrelerini sunucuya gönderir ve sunucuda 

tekrar hesaplanan bu ağırlıklar ve hatalar güncellenmiş bir şekilde tekrar alt 

sistemlere gönderilir. Federe öğrenmenin bir faydası da veri güvenliği olarak 

karşımıza çıkar. Federe öğrenmede alt sistemler kendi aralarında haberleşmez ve 

sunucuya herhangi bir veri göndermezler. Tüm transferler sadece alt sistemlerin sinir 

ağlarının hataları ve ağırlıkları üzerinden gerçekleştirilir. Sunulan eğitim 

algoritmasının testi federe derin öğrenme yaklaşımıyla eğitilen bir robot kolun eğitim 

performansı ile karşılaştırılmıştır. Geliştirilen federe derin öğrenme yaklaşımı 

yaklaşık 6 saat eğitimden sonra %90 seviyesinde öğrenme gerçekleştirmiştir. Ancak 

sunulan federe derin pekiştirmeli öğrenme algoritması aynı eğitim düzeyine yaklaşık 

5 saatte ulaşmıştır. Sunulan eğitim algoritması standart federe derin öğrenme 

algoritmasından daha iyi performans göstermiş ve daha hızlı sonuç vermiştir. Aynı 
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zamanda sunulan bu algoritma herhangi bir veriye ihtiyaç duymadan öğrenmeyi 

sağlar. 

Anahtar kelimeler: Robot Kollar, Federe Öğrenme, Federe Derin Öğrenme, 

Pekiştirmeli Öğrenme, Federe Pekiştirmeli öğrenme    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

viii 
 



 
 

LEARNİNG THE GRİP OF OBJECTS BY THE FEDERATED DEEP 

REİNFORCEMENT LEARNİNG METHOD OF ROBOT ARMS 

ABSTRACT 

Robotic arms have become one of the most used electronic systems in the industry in 

recent years. In this way, production lines have been developed, accelerated and 

automated.Precise objects identification and moving, the motion performances of the 

joint areas of the robot arms,  and torque controls of the robot arms are some of the 

favorite subjects that researchers are working on. One of the biggest problems in 

automating robot arms is they are being trained for needs in certain fields. While this 

training took a long time in the past years, it has been taking place very quickly with 

the development of methods and training algorithms in recent years. Suggested and 

developed algorithms are able to solve the mentioned problems.  In recent years, the 

federated learning method recommended by various researchers has been combined 

with a deep reinforcement learning approach. Federated learning method enables 

training of multiple robot arms at the same time. While performing this training, 

subsystems send their errors and neural network parameters to the server, and these 

recalculated and updated weights and errors are sent back to the 

subsystems.  Another benefit of federated learning is data security. In federated 

learning, subsystems do not communicate with each other and do not send any data 

to the server. All transfers are performed only on the faults and weights of the 

subsystems of neural networks.The testing of the developed training algorithm is 

compared with the training performance of a robot arm trained with a federated deep 

learning approach. The developed federated deep learning approach achieved 90% of 

learning after approximately 6 hours of training. However, the presented federated 

deep reinforcement learning algorithm reached the same education level in 

approximately 5 hours. The presented training algorithm outperformed the standard 

federated deep learning algorithm and provided faster results. At the same time, this 

algorithm provides learning without the need for any data. 
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Keywords: Robot arms, federated learning, federated deep learning, reinforcement 

learning, federated reinforcement learning 
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I.  GİRİŞ 

Son yıllarda gelişmiş ve gelişmekte olan ülkelerin üretim bantlarına bakıldığında 

otomasyon sistemlerinin önemli ölçüde kullanıldığı göze çarpmaktadır. Üretim 

sistemlerindeki otomasyon süreci önem kazandıkça endüstriyel robot kolların 

kullanımı ve geliştirilmesi önemli bir konu haline gelmektedir. 

Günümüzde insanlar fiziksel yapılarının getirdiği zafiyetlerden dolayı, gücünün 

yetmediği koşullarda kullanmak üzere çeşitli makineler geliştirmiştir. İlk çağlarda 

yeterince gelişmiş ve kullanım alanları çok sınırlı olan bu makineler, gelişen 

teknoloji ile birlikte insanlar tarafından geliştirilmiş ve insanların fiziksel yapılarına 

erişebilecek seviyede makineler ortaya çıkmıştır. Orta çağlarda geliştirilen ilk 

makineler insan yardımı ile çalışmaktaydı, ancak zaman içerisinde geliştirilerek 

herhangi bir insan müdahalesine gerek kalmayacak şekilde çalışır hale getirilmiştir. 

Sanayide kullanılmak için geliştirilen birçok robot ve robot kol bulunmaktadır. Bu 

robotlar ile birlikte genel itibariyle, üretim maliyetini düşürerek ve insan gücünü 

ortadan kaldırarak daha hızlı ve daha kaliteli üretim yapılabilmektedir. Ayrıca insan 

sağlığının el vermediği (afetler, nükleer enerji, yüksek ısı, dar alanlar vb.) 

durumlarda kullanılmaktadır. 

A. Robot Kolların Tarihçesi 

Robot fikrini ilk olarak Da Vinci 1495’te dört serbestlik dereceli, güç ve 

programlanabilirlik sağlan, analog yerleşik kontrolörlü bir robot kol tasarlayarak 

ortaya koymuştur (Rosheim, 2022). Bu robot iki bağımsız sistemden oluşmaktadır. 

Alt eklemler üç serbestlik derecesine sahiptir: Kalçalar, dizler, ayak bilekleri ve 

bacaklar. Üst eklemler ise dört serbestlik derecesine sahiptir: Kollar, dirsekler, 

bilekler ve omuzlar (Rosheim, 2022). 

Uzun yıllar sonra Wolfgang Von Kempelen’in Türk olarak adlandırılan satranç 

oyuncusu robotu ortaya çıkmıştır (Şekil 1) (Standage, 2002). Robot 1769 yılında 

Kraliçe Maria Threse için üretilmiştir. Türk, satranç tahtasının altındaki dolabın 

içerisinde gizlenmiş bir insan tarafından kullanılmaktadır. Otomat, satranç 

1 
 



 
 

oyuncusunun kolunu otomatik hale getiren bir mekanizmaya sahiptir. Satranç 

oyuncusu, Türk-Osmanlı kıyafeti gitmiş ahşap bir sandığın arkasına oturan bir 

kukladır. Bu kuklanın başı, gözleri ve kolları hareket edebilmektedir. Aynı zamanda 

kuklanın sol kolu ve eli muhteşem bir şekilde düzenlenmiştir. Kol mekaniği, 

oyunların insan kontrollü olduğunu bilenlerin verdiği isim olan “yönetici” tarafından 

kontrol edilmektedir. Uzuv önce kaldırılır, ardından sol el, hareket ettirilmesi istenen 

satranç taşının üzerine ortalanır. Kol taşa doğru indirildikten sonra çark çevrildiğinde 

Türk’ün elindeki kaldıracın satranç taşını kaldırılması sağlanır. Otomatın kolları 

tahtadan oluşmaktadır ve satranç karşılaşması sırasında taşların daha kolay 

kavranması için el bir eldivenin içerisine yerleştirilmiştir. 

 
Şekil 1 Von Kempelen’in Turk satranç oyuncu robotu 

 

İlk “konum kontrol aparatı” 1938’de Williard Pollard tarafından geliştirildi ve 

patentlendi (ABD Patent No. 2,286,571, 1942).  

Bu beş serbestlik derecesine ve bir elektrik kontrol sistemine sahip sprey cilalama 

robot koludur (ABD Patent No. 2,286,571, 1942). Harold A. Roselund başka bir 

sprey cilalama robot kolu geliştirdi (ABD Patent No. 4,344,108, 1944). Her iki kol 

da kendi zamanları için çok karmaşıktır ve elektronik kontrol sistemleri, onları 

kullanılabilir hale getirmek için yeterince geçişmiş değildir. Modern robotik çağı, 

1930’ların sonlarında geliştirilen, az bilinen bu iki robot kolun ortaya çıkmasıyla 

başlamıştır. 
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Unimate şirketi, ilk robot kolunu 1962 geliştirdi (Şekil 2) (Ellis, 2000). Kol George 

Devol tarafından icat edilmiştir. Geliştirilen bu robot kol ilk endüstriyel kol olarak 

kabul edilmektedir. 

 
Şekil 2 Unimate robot kolu 

ISO 8373 tarafından tanımlanan sanayi robotu tanımı şu şekildedir: Üç veya daha 

fazla programlanabilir ekseni olan, otomatik kontrollü, çok amaçlı, bir yerde sabit 

duran veya tekerlekleri olan endüstriyel uygulamalarda kullanılan manipülatördür 

(Yücel, 1991). 

B. Endüstriyel Robot Kollar 

1. Kartezyen Robot Kolu 

Kartezyen Robotların sadece tutma ve taşıma yetenekleri bulunmaktadır ve 3 

eksende hareket etme kabiliyetlerine sahiptirler. Basit bir yapıya sahip olduklarından 

dolayı hareketlerinin ve kontrollerinin planlanması yeterince kolaydır. Kartezyen 

robotlarda; pozisyonların hesaplamaları, robotun bulunduğu pozisyon ve mafsalların 

aynı yerde bulunmasından dolayı kolaydır (Şekil 3).  

Kartezyen robotlar, eğilme ve bükülme işlemlerini gerçekleştiremez. Yük taşıma 

işlemleri için kullanılmakta ve genellikle insan gücünü aşan yüklerin taşınmasında 

kullanılmaktadır. Bu nedenden dolayı genellikle fabrikalarda yükleme ve boşaltma 

işlemlerinde kullanıldığından fabrikaların tavan bölümlerine monte edilmektedir.  
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Şekil 3 Kartezyen robot kolu 

2. Silindirik Robot Kolları 

Silindirik robot kolları kendi etrafında dönebilecek şekilde geliştirilmiş ve aynı 

kartezyen robot kolunda olduğu gibi 3 eksende hareket etme kabiliyetine sahiptirler. 

Şekil 4’te görüldüğü üzere esnek yapıda değil ve aynı zamanda Kartezyen robot 

kollarından daha fazla alana hareket edebilmektedirler. Robot kolunun çalışabileceği 

alan silindirik koordinat sisteminde hareket edecek kolların uzunluğuna göre 

değişmektedir.  

 

Şekil 4 Silindirik Robot Kolu 

3. Küresel Robot Kolları 

Küresel robot kolları omuz, dirsek ve gövdeden oluşmaktadır. Gövde ve omuz kendi 

etrafında dönebilir, kol ise dirsek bölümünden uzayıp kısalabilir. Hareket çerçevesi 

şekil 5’te gösterilmiştir. Küresel robot kolları silindirik bir dönme sistemine sahiptir. 

Yapıları genel itibariyle kartezyen ve silindirik robot kollarına göre daha karmaşıktır. 

Çalışma alanı kolların dirseklerden uzayıp kısalma boyutuna göre değişmektedir. 

Küresel robot kolları sarkaç robot kol olarak da isimlendirilebilmektedir. Genel 

itibariyle endüstriye kaynak yapımları ve yapıştırma işlemlerinde kullanılmaktadır. 
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Şekil 5 Küresel Robot Kolu 

4. Scara Robot Kol 

Scara robot kol diğer robot kollardan farklı olarak eklem bölgesi yerine elektrik 

motoru, yukarı ve aşağı hareket edebilen bir koldan oluşmaktadır. Eklemler elektrik 

motorlarından destek alarak kendi etrafında dönebilirler. Tutucu ağız sadece z 

ekseninde yani yukarı ve aşağı yönde hareket edebildiğinden yeterinde hız ve 

performans sağlamaktadır. Scara robot kol da aynı silindirik robot kolunda olduğu 

gibi orta eksende kendi etrafında dönebilmektedir (Şekil 6). Kolun programlanması 

kolay ve hızlı hareket kabiliyeti olmasından dolayı endüstride elektronik sanayinde, 

elektronik kartlara yapılacak olan ekleme ve lehim işlemlerinde kullanılmaktadır. 

Scara robot kol hali hazırda endüstride en çok kullanılan robot konumundadır.  

 

Şekil 6 Scara Robot Kol 

5. Mafsallı Robot Kollar 

Mafsallı robot kollar insan koluna en yakın şekilde hareket edebilen robot koldur. 

Öncesinde açıklanan robot kollarının hareket yeteneklerinin yeterince iyi 

olmamasından dolayı endüstride kullanmak amacıyla eklem sayısı 7’e kadar 

çıkabilecek mafsallı robot kollar geliştirilmiştir. 
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Hareket kabiliyeti en iyi olan robot koldur. Kol belirli bir alana monte edildikten 

sonra, kol X,Y ve Z ekseninde üç boyutlu hareket yapılabilmektedir. Ancak 

öncesinde bahsedilen robotlardan daha karmaşık olduğundan dolayı programlanması 

da diğer robot kollardan daha zordur. 

Her eklem bölgesi şekil 7’de gösterildiği gibi programlandığı şekilde rahat hareket 

edebilmektedir. Bu da robotun istenen noktaya daha hızlı ve güvenli bir şekilde 

ulaşmasını sağlar. Yapılacak olan uygulamanın şekline göre robot kolunun eklem ve 

eksen sayısının tercihi yapılmalıdır.  

Hali hazırdaki çalışmada mafsallı robot kollar üzerinde bir eğitim çalışması 

gerçekleştirilmiştir. 

 

Şekil 7 Mafsallı Robot Kolları 

6. Tutucular 

Tutucular robotun bir nesneyi tutması amacıyla çeşitli büyüklükte ve biçimlerde 

tasarlanmış eklem bölgesidir. Tutma işlemi robotun üzerine işlem gerçekleştireceği 

nesneye bağlı olacak şekilde geliştirilmiştir. Şekil 8’de elektrikli tutucu ve şekil 9’da 

pünomatik tutucunun şekli görülmektedir. Çalışmada elektrikli tutucu kullanılacaktır. 
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Şekil 8 Elektrikli Tutucu Şekil 9 Pünomatik Tutucu 
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II. ÖĞRENME ALGORİTMALARI 

Bu bölümde robotların çeşitli yapay zeka yöntemleriyle eğitilmesi, bu yapay zeka 

yöntemlerinin içerikleri ve çalışma mekanizmalarındaki farklardan bahsedilecektir. 

Sonrasında çeşitli federe öğrenme yaklaşımlarından bahsedilecektir. 

Son yıllarda makine öğrenimi yöntemleri gerçek ya da simülasyon ortamlarında 

çeşitli problemleri çözmek için yaygın bir biçimde kullanılmaktadır (El-Ghazali, 

2020). Makine öğrenimi algoritmaları şekil 10’da da görüldüğü üzere 3 farklı bölüme 

ayrılmıştır. Bu bölümler; Denetimli Öğrenme, Denetimsiz Öğrenme ve Pekiştirmeli 

Öğrenme olarak adlandırılmıştır.  

Şekil 10 Makine Öğrenmesi Algoritma Ağacı 

A. Yapay Sinir Ağları 

Makine öğrenimi yöntemleri yapay zekanın alt kolu olarak karşımıza çıkmaktadır. 

Araştırmacılar son yıllarda yaptıkları geliştirmelerle makine öğreniminin alt kolu 

olan yapay sinir ağlarını ortaya koymuşlardır. Yapay sinir ağları insan beynindeki 

nöronların matematiksel bir karşılığı olarak tasarlanmıştır. Klasik bir tam bağımlı 

yapay sinir ağının şekli şekil 11’de görüldüğü gibidir (Hagan, 2014). 

 

Makine Öğrenmesi 

Denetimli Öğrenme Pekiştirmeli Öğrenme 

Model Olmadan Çalışan 
Algoritmalar 

Poliçe Tabanlı Algoritmalar Değer Tabanlı Algoritmalar 

Model Tabanlı Algoritmalar 

Öğrenme Modelli 
Algoritmalar  

Model Önceden 
Tanımlanan Algoritmalar 

Denetimsiz Öğrenme 
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Şekil 11 Tam Bağımlı Yapay Sinir Ağı 

 

Şekil 11’den de görüldüğü üzere klasik bir yapay sinir ağında 3 katman 

bulunmaktadır. Giriş katmanı girdi verilerini alan ve sonraki katmana taşıyan katman 

olarak nitelendirilebilir. Giriş katmandaki nöronların sayısı verilerin sınıf sayısına 

göre belirlenir. Veriler giriş katmanına eklendikten sonra matematiksel bir fonksiyon 

ile hesaplaması yapıldıktan sonra gizli katmanlara iletilir. Bir yapay sinir ağında 

birden fazla gizli katman varsa derin (deep) yapay sinir ağı olarak isimlendirilir. 

Çalışmada çok katmanlı yapay sinir ağı ortaya konan pekiştirmeli öğrenme 

yönteminde kullanılacaktır. 

Yapay sinir ağında herhangi bir modelin eğitilebilmesi için bir optimizasyon 

algoritması kullanılmak zorundadır. Optimizasyon kısaca yapılan işlemin 

eniyilenmesi olarak da adlandırılabilir. Çalışma kapsamında yapay sinir ağını 

oluştururken lineer olmayan kısıtsız sayısal optimizasyon kullanılacaktır. 

1. Lineer Olmayan Kısıtsız Optimizasyon 

Optimizasyon teknikleri günümüz makine öğrenmesi yöntemlerinde oldukça sık 

kullanılmaktadır. Optimizasyon yöntemleri; matematiksel programlama, sezgisel 

optimizasyon ve sayısal optimizasyon şeklinde alt dallara ayrılabilir. En sade haliyle 

optimizasyon problemi denklem 1’de belirtilmiştir (İplikçi, 2017). 

 
min
𝑥
𝑓𝑓 (𝑥) 

𝑔𝑔𝑖(𝑥) = 0𝑖𝑖 𝜖 𝐸𝐸   
𝑔𝑔𝑖(𝑥) ≤ 0𝑖𝑖 𝜖 𝐽𝐽 

 
(1) 
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Denklem 1’de 𝑓𝑓(𝒙𝒙) optimize edilmek istenen amaç fonksiyonunu temsil etmektedir. 

𝒙𝒙 tasarım değişkenlerini gösterir. Aynı zamanda 𝒙𝒙 ∈ R𝑛𝑛 olmak üzere 𝑓𝑓(𝒙𝒙): R𝑛𝑛 → R 

tanımlıdır. 𝑔𝑔𝑖𝑖(𝒙𝒙) = 0 değişkenlerin eşitlik kısıtını 𝑔𝑔𝑖𝑖(𝒙𝒙) ≤ 0 ise değişkenin eşitsizlik 

kısıtını temsil etmektedir. E ve J sırasıyla eşitlik kısıtları kümesini ve eşitsizlik 

kısıtları kümesini temsil etmektedirler.  

Denklem 1’de ifade edilen optimizasyon problemi, parametrelerine göre doğrusal 

olmayan bir fonksiyon olduğundan dolayı lineer olmayan kısıtlı optimizasyon 

problemi olarak adlandırılmıştır. 

Kısıtsız lineer olmayan optimizasyon problemleri için denklem 2’de ki fonksiyon 

kullanılmaktadır.  

 
min
𝑥
𝑓𝑓 (𝑥) 

 
(2) 

 

Denklem 2’de 𝑓𝑓(𝒙𝒙): R𝑛𝑛 → R koşuluyla birlikte sürekli ve türevlenebilir olmak 

zorundadır. 𝑓𝑓(𝒙𝒙) fonksiyonu için optimal değer her bir 𝒙𝒙∗ değeri için 𝑒𝑒 > 0 

olduğunda denklem 3 sağlanıyorsa bu durumda 𝒙𝒙∗ yerel minimumu ifade etmektedir. 

 
                                       

𝑓𝑓(𝑥∗) ≤ 𝑓𝑓(𝑥)            ∀𝑥 ∥ 𝑥 − 𝑥∗ ∥< 𝑒𝑒 (3) 

 

Eğer 𝒙𝒙∗ parametresi için denklem 4 sağlanıyorsa, nokta global minimum noktasını 

ifade etmektedir. 

 
                                           𝑓𝑓(𝑥∗) ≤ 𝑓𝑓(𝑥)             ∀𝑥 𝜖 ℜ𝑛                                           (4) 
 
Denklem 3 ve 4’te ki ifadelerdeki eşitsizlik değeri (≤ → <) kaldırıldığında kesin 

yerel ve kesin global minimum noktaları ortaya çıkmaktadır. Optimize edilmek 

istenen 𝑓𝑓(𝒙𝒙) fonksiyonu konveks olmayan bir biçimde karşımıza çıkabilir ve 

fonksiyonda birden fazla yerel minimum ve maksimum noktaları bulunabilir. 

Konveks olmayan 𝑓𝑓(𝒙𝒙) fonksiyonunun grafiği aşağıdaki gibidir (Şekil 12). 
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Şekil 12 Konveks Olmayan 𝑓𝑓(𝒙𝒙) fonksiyonu 

2. Optimallik İçin Gerekli Koşullar 

Denklem 2’nin optimum noktasını bulabilmek için 𝑓𝑓(𝒙𝒙) fonksiyonunun Δ𝒙𝒙 

değişimiyle azalma sürecinin incelenmesi ve fonksiyonun davranışlarının analiz 

edilmesi gerekmektedir. Denklem 2’de 𝑓𝑓(𝒙𝒙) fonksiyonu 𝒙𝒙∗ noktasında 𝑓𝑓(𝒙𝒙∗) 

değerini alıyorken 𝒙𝒙∗ + Δ𝒙𝒙∗ noktasında hangi değeri aldığının Taylor açılımı ile 

incelenmelidir. Denklem 2’nin birinci dereceden Taylor açılımı denklem 5’te ki 

gibidir 

                                 
𝑓𝑓(𝑥∗ +  ∆𝑥) = 𝑓𝑓(𝑥∗) + ∇𝑓𝑓(𝑥∗) ′∆𝑥 𝐻𝐻𝑂𝑂𝑇𝑇 (5) 

Denklem 5’te 𝐻𝐻𝑂𝑂𝑇𝑇 Taylor açılımında yüksek dereceden terimleri ifade eder. Eğer 

Denklem 5’te 𝐻𝐻𝑂𝑂𝑇𝑇 = 0 alınırsa denklem 6 elde edilmektedir. 

 
𝑓𝑓(𝑥∗ + ∆𝑥) − 𝑓𝑓(𝑥∗) ≈  ∇𝑓𝑓(𝑥∗)′∆𝑥 

 
(6) 

 
Denklem 6’ya eğer ikinci dereceden taylor açılımı uygulanırsa Denklem 7 elde 

edilecektir 

 
                          𝑓𝑓(𝑥∗ +  ∆𝑥) − 𝑓𝑓(𝑥∗) ≈  ∇𝑓𝑓(𝑥∗) ∆0′ 𝑥 + 1

2
 ∆𝑥′∆2 𝑓𝑓(𝑥∗) ∆𝑥 

 

(7) 
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Eğer 𝒙𝒙∗ kısıtsız yerel minimum noktası ise Taylor açılımının birinci türevindeki Δ𝒙𝒙 

noktasının pozitif olması gerekmektedir. Bu durum denklem 8’de gösterilmiştir 

 

                                     ∇𝑓𝑓(𝑥∗)′∆𝑥 =  Σ𝑖=1𝑛  𝜕𝑓(𝑥∗)
𝜕𝑥𝑖

 ∆𝑥𝑖 ≥ 0 
 

(8) 

Denklem 8’in optimallik için birinci şartı, denklem 9’daki gibidir. 

 
∇𝑓𝑓(𝑥∗) = 0 

 
    (9) 

 

 

Benzer şekilde optimallik için ikinci dereceden koşul için denklem 7 incelenerek 

denklem 10 elde edilir. 

 

∇𝑓𝑓(𝑥∗)′∆𝑥 +  
1
2

 ∆𝑥′∇2 𝑓𝑓(𝑥∗) ∆𝑥 ≥ 0 

 

(10) 

Denklem 9 ve denklem 10 birleştirilerek denklem 11 elde edilir. 

 
∆𝑥′∇2𝑓𝑓(𝑥∗)∆𝑥 ≥ 0 

 

(11) 

Denklem 11’de ∀𝒙𝒙  değeri için eşitlik sağlanacağından dolayı, eşitliğin oluşması için 

ikinci dereceden koşul denklem 12’deki şekilde elde edilir 

 
∇2𝑓𝑓(𝑥∗) ≥ 0 

 
(12) 

 
Denklem 12’de 𝛻𝛻2  ifadesi amaç fonksiyonunun hessian matrisini oluşturmaktadır.   

𝑓𝑓(. ): R𝑛𝑛 → R olmak üzere amaç fonksiyonunun hessian ve gradyan matrisi denklem 

13’deki gibi hesaplanır. 
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(13) 

Denklem 9’da bulunan 𝒙𝒙∗ kritik noktanın yorumu denklem 11 ile yapılmalıdır. 

Böylece uygun hessian matrisinin durumuna göre 𝒙𝒙∗ noktasının durumu 

değişmektedir. Bu durum çizelge 1’de görüldüğü gibidir. 

Çizelge 1 Hessian Tablosu 

Olasılık x* Noktasının Durumu Açıklama 
1 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) ≥ 0  𝒙𝒙∗ noktası yerel minimum 
2 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) > 0  𝒙𝒙∗ noktası kesin yerel minimum  
3 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) ≤ 0  𝒙𝒙∗ noktası yerel maksimum  
4 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) < 0  𝒙𝒙∗noktası kesin yerel maksimum  
5 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) = 0  𝒙𝒙∗semer noktası  

3. Gradyan Yöntemler 

Denklem 3 amaç fonksiyonunu minimum yapan 𝒙𝒙∗ parametresinin değerini bulmak 

için 𝑓𝑓(𝒙𝒙) fonksiyonunun birinci türevini 𝛻𝛻𝑓𝑓(𝒙𝒙) gradyan vektörü ve ikinci türevi olan 

𝛻𝛻2𝑓𝑓(𝒙𝒙) hessian matrisini kullanmaktadır. Belirlenen bir 𝒙𝒙0 başlangıç noktasından 𝒙𝒙∗ 

noktasının bulunması için arttırılabilir bir şekilde parametrelerin güncellenmesi 

gerekmektedir. Bu yöntem denklem 14’te gösterilmiştir. 

 

𝑥𝑖+1 = 𝑥𝑖 +  𝑠𝑠𝑖𝑝𝑝𝑖 
 

(14) 

Denklemde 𝒑𝒑𝑖𝑖 iniş yönünü ifade etmekte ve birinci dereceden yöntemler için 

fonksiyonun gradyan vektörünün tersine eşittir ve Denklem 15’te gösterilmiştir. 

 

𝑝𝑝𝑖 = − ∇𝑓𝑓(𝑥𝑖) 
 

(15) 
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Denklem 14’te 𝑠𝑠𝑖𝑖  adım aralığını belirtmektedir. Bu şekilde denklem 14’te ki 

güncelleme ile denklem 2’yi minimum yapan noktalar belirlenir. Denklem 14’teki 

ifadede ise 𝒑𝒑𝑖𝑖 amaç fonksiyonunun, birinci dereceden türevini ya da ikinci dereceden 

türevini temsil etmektedir (İplikçi, 2017). 

4. Gradyan Azalan Algoritması 

Gradyan azalan algoritması 𝒙𝒙∗ parametre değerini bulmak için amaç fonksiyonunun 

gradyan vektörünü kullanmaktadır (Nocedal and Wright, 2006). 

Gradyan azalan algoritmasının sözde kodu şekil 13’te gösterilmiştir. 

 

 
Şekil 13 Gradyan Azalan Algoritması 

 
Örnek gradyan azalan algoritmasının grafiği şekil 14’te gösterilmiştir. 
 

 
Şekil 14 Gradyan Azalan Algoritması Grafiği 
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5. Tek Katmanlı Yapay Sinir Ağları 

Tek katmanlı yapay sinir ağları bir gizli katmanı olan ağlardır ve şekil 15’te 

görülmektedir (Goodfellow et al., 2017). 

Tek katmanlı sinir ağlarının ileri modeli denklem 16’da gösterilmiştir. 

 
𝑦�𝑗 = 𝑊ç 𝐻𝐻�𝑊𝑔𝑥𝑖 +  𝑏𝑏𝑔� +  𝑏𝑏ç             𝑖𝑖 = 1,2, … ,𝑁𝑁𝑗 = 1,2, … ,𝑀𝑀 (16) 

 
 

Denklem 16’da 𝐻𝐻(. ) aktivasyon fonksiyonu olarak adlandırılır. Örnek bir aktivasyon 

fonksiyonu denklem 17’da gösterilmiştir. 

 

𝐻𝐻(𝑥) =
𝑒𝑒𝑥 − 𝑒𝑒−𝑥

𝑒𝑒𝑥 + 𝑒𝑒−𝑥
 

 

(17) 

Araştırmacılar birçok aktivasyon fonksiyonu önermişlerdir ancak bu çalışma 

kapsamında denklem 17’de ki aktivasyon fonksiyonu kullanılacaktır.  

 

 

Şekil 15 Tek Katmanlı Yapay Sinir Ağı 

6. Tek Katmanlı Yapar Sinir Ağı Eğitimi 

Denklem 16’de belirtilen 𝑾𝑾𝑔𝑔,𝒃𝒃𝑔𝑔,𝑾𝑾ç,𝒃𝒃ç   sinir ağının parametrelerini temsil ederler. 

Yapay sinir ağlarında modelin parametreleri rastgele bir değerden başlanarak döngü 

boyunca güncellenir. Bu döngü sinir ağları en iyi modeli elde edene kadar devam 

eder. Güncelleme işlemi şekil 13’te önerilen gradyan azalan algoritması ile 
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yapılmaktadır. Örnek olarak elimizde 𝑇𝑇 , 𝑌𝑌 𝑖𝑖 = 1,2,3, . . . , 𝑁𝑁 şeklinde Çizelge 2’de 

gösterilen şekilde bir veri seti olsun. 

Çizelge 2 Örnek Veri Seti 

MIMO Giriş Verisi Çıkış Verisi Model Çıkışı 
i Ti ∈ RR Yi ∈ RM yi ∈ RM 

1 X11 X12 … X1R Y11 Y12 … Y1M y11 y12 … y1M 
2 X21 X22 … X2R Y21 Y22 … Y2M y21 y22 … y2M 
3 X31 X32 … X3R Y31 Y32 … Y3M y31 y32 … y3M 
… … … … 
N XN1 XN2 … XNR YN1 YN2 … YNM yN1 yN2 … yNM 

 

Hali hazırdaki veriler 𝑇𝑇 , 𝑌𝑌 𝑖𝑖 = 1,2,3, . . . , 𝑁𝑁 olduğunda, çıkış verileri de 𝑌𝑌 ∈ {−1,1} 

ise sınıflandırma problemi olarak isimlendirilir. Ancak çıktı verileri 𝑌𝑌 ∈ R𝑀𝑀 

olduğunda regresyon problemi olacaktır. Mevcut veri setini eğitim ve test olarak iki 

parçaya bölmemiz gerekmektedir. Örnek olarak %80 eğitim %20 test şeklinde 

verimizi rassal olarak bölebiliriz. Ayrılan eğitim verileriyle sinir ağı eğitilecektir. 

Eğitim işlemi daha öncesinde de bahsedildiği üzere 𝑾𝑾𝑔𝑔, 𝒃𝒃𝑔𝑔, 𝑾𝑾ç, 𝒃𝒃ç 

parametrelerinin en hatasız halini bulmaktır. Çizelge 2’de bahsedilen gradyan azalan 

algoritması ile, parametrelerin değerleri amaç fonksiyonunu minimum yapana dek 

hesaplanacaktır. Hesaplama tamamlandıktan sonra daha öncesinde ayrılan test 

verileri ile model test edilecek ve sonuçlar karşılaştırılacaktır. Sinir ağının maliyet 

fonksiyonu denklem 18’de gösterilmektedir. 
1
𝑛𝑛
∑𝑖=1
𝑁 (𝑌𝑌𝑖 −  𝑌𝑌�𝑖)2 

 

(18) 

Şekil 16’da sinir ağlarının eğitimi için gradyan azalan algoritması gösterilmektedir 

(Goodfellow et al., 2017). 
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Şekil 16 Yapay Sinir Ağlarının Gradyan Azalan Algoritmasıyla Eğitimi Algoritması 

7. Çok Katmanlı Yapay Sinir Ağları 

Çok katmanlı yapay sinir ağları, tek katmanlı yapay sinir ağlarının genişletilmiş 

halidir. Tek katmanlı yapay sinir ağlarından farklı olarak problemin zorluluğuna ve 

farklılığına göre mimariye istenildiği kadar gizli katman eklenebilmektedir. Şekil 

17’de çok katmanlı yapay sinir ağları gösterilmektedir. 

 

 
 

Şekil 17 Çok Katmanlı Yapay Sinir Ağı 

8. Çok Katmanlı Yapay Sinir Ağının İleri Modeli 

Çok katmanlı ve çok girişli çok çıkışlı sinir ağının modeli şekil 18’de gösterilmiştir 

(Goodfellow et al., 2017). 
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Şekil 18 Çok Katmanlı Çok Girişli Çok Çıkışlı Yapay Sinir Ağı 

Çok katmanlı yapay sinir ağının matematiksel olarak ifadesi denklem 19’da 

gösterilmiştir.  

 
𝑌𝑌�𝑗 = 𝑊ç𝐻𝐻�𝑊𝑔𝑘 …𝐻𝐻�𝑊𝑔2𝐻𝐻�𝑊𝑔1𝑋𝑋𝑖 + 𝑏𝑏𝑔1� + 𝑏𝑏𝑔2�… + 𝑏𝑏𝑔𝑘� + 𝑏𝑏ç 

                                                 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑗 = 1,2, … ,𝑀𝑀𝑘𝑘 = 1,2, … ,𝐾 
 

(19) 

 

Denklem 19’da K adet gizli katman ve 𝑋𝑋 ∈ R𝑁𝑁 ve 𝑌𝑌 ∈ R𝑀𝑀 olmalıdır. Aynı şekilde 

çok katmanlı yapay sinir ağının optimizasyon problemi şekil 19’da gösterilen 

algoritma ile çözülebilmektedir.  

Adam algoritması stokastik tanımlanan amaç fonksiyonu ve fonksiyonun gradyanı 

üzerinden geliştirilen bir algoritmadır (Goodfellow et al., 2017). Algoritma adını 

adaptif moment tahmininden almaktadır. Bu çalışmada pekiştirmeli öğrenme 

algoritmaları için oluşturulan çok katmanlı yapay sinir ağlarının eğitimi için 

kullanılmıştır (Kingma and Ba, 2015). Şekil 19’da Adam algoritmasının sözde kodu 

gösterilmiştir. 
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Şekil 19 Adam Algoritması 

B. Pekiştirmeli Öğrenme 

Pekiştirmeli öğrenme algoritmasında yapay zeka ajanları belirlenen bir alana dağılır 

ve ceza-ödül mekanizmasına göre optimal sonuçları bulmaları beklenir. Ajan 

öğrenme sırasında doğru kararlar verdiğinde ödüllendirilir, yanlış kararlar verdiğinde 

ise cezalandırılırlar. Pekiştirmeli öğrenmede ajanlar biyo-ilhamlıdır ve aynı 

canlılarda olduğu içi hayatta kalma ve büyüme için ödül ve ceza deneyiminden 

öğrenirler. Pekiştirmeli öğrenmede ajanlardan ödüllerini maksimize etmeleri beklenir 

(Khan et al., 2012). Bu şekilde yapay zeka ajanları optimal bir politika geliştirir.  

Pekiştirmeli öğrenme araştırması kırk yıldır devam etmektedir ve kökeni bilgisayar 

bilimlerine dayanmaktadır, ancak uyarlamalı dinamik programlama (ADP) ve 

nörodinamik programlama (NDP) gibi benzer yöntemler Werbos, Bertsekas ve diğer 

birçok araştırmacı tarafından paralel olarak geliştirilmektedir. Williams’a göre, 

modern pekiştirmeli öğrenme, yapay zekadan gelen zaman fark yöntemlerinin, 

optimal ve kontrol ve hayvan çalışmalarından öğrenme teorilerinin bir karışımıdır 

(2009) Werbos’un son çalışmaları (2004; 2007; 2008; 2009) sınırları daha da aşmış 
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ve beynin nasıl çalıştığın anlamak ve geliştirerek daha iyi hale getirmek için 

pekiştirmeli öğrenmeyi kullanmıştır.  

Şekil 10’a göre pekiştirmeli öğrenme algoritması da kendi içinde 2 alt gruba ayrılır.  

Bu gruplardan ilki model tabanlı algoritmalardır, diğeri ise model tabanlı olmayan 

algoritmalardır. Model tabanlı olmayan algoritmalar günümüzde daha yaygın olarak 

kullanılmaktadır (Richard and Andrew, 2015; Yu, 2020). Model tabanlı olmayan 

algoritmalar da kendi içlerinde iki gruba ayrılabilir: politika tabanlı algoritmalar ve 

değer tabanlı algoritmalar.  

Politika, bir yapay zeka ajanının belirli bir zamanda davranışı olarak tanımlanır. 

Politika, pekiştirmeli öğrenme şemalarının çok önemli bir parçasıdır ve bir arama 

tablosu veya bir fonksiyon ile temsil edilebilir. Politika stokastik veya deterministik 

olabilir. Bazı pekiştirmeli öğrenme şemalarında, politikanın hesaplamasında 

karmaşık bir arama süreci kullanılır. Bu süreç içerisinde değer fonksiyonunun en aza 

indirilmesi üzerinde çalışılır  (Sutton and Barto, 1998).  

Değer işlevi, gelecekteki ödülün tahmini ve aracın daha yüksek ödüller üretecek bir 

eylemde bulunmayı beklediği temeldir. Normalde iki tür değer işlevi kullanılır, yani 

genel olarak V(s) ile temsil edilen durum değeri işlevi ve Q(s,a) ile temsil edilen 

eylem değer işlevi. Burada s durumu, a ise eylemi temsil eder. Garcia’a göre, ortamın 

modeli bilindiğinde, dinamik programlama yöntemlerinde olduğu gibi bir durum 

değeri fonksiyonu kullanılır. Ancak ortamın modeli bilinmiyorsa, o zaman bir eylem 

değeri işlevi tercih edilir (2005). 

Çalışmada yazar pekiştirmeli öğrenme problemlerini çözmek için üç ana yöntem 

sıralamıştır; dinamik programlama (DP), monte carlo (MC) yöntemleri ve zamansal 

fark yöntemleri (ZM). Bu yöntemler şekil 20’de gösterilmiştir (Garcia, 2005). 

Şekil 20 Çeşitli Pekiştirmeli Öğrenme Algoritmaları Grafiği 
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1. Rastgele Süreçler ve Markov Süreci 

Fiziksel sistemlerin matematiksel modelleri lineer olmayan diferansiyel denklem 

20’de açıklanmıştır. 

𝑥̇(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥,𝑢𝑢,𝑤𝑤) 
                                              𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡, 𝑥,𝑢𝑢, 𝑣𝑣) 
 

(20) 

Denklem 20’de t zamanı, 𝒙𝒙 durum vektörünü, 𝒖𝒖 kontrol işaretini, 𝑤𝑤 proses 

gürültüsünü, 𝑣𝑣 ölçüm gürültüsünü, 𝑓𝑓 (.) sistem modelini oluşturulan lineer olmayan 

diferansiyel denklemleri, 𝑔𝑔(.)çıkış̧ denklemini temsil etmektedir. Fiziksel 

sistemlerde, eğer sistemin matematiksel modeli biliniyorsa, belirlenen durum geçiş 

matrisi üzerinden elde edilebilir. Ancak genel itibariyle fiziksel sistemlerdeki 

belirsizlik, gürüldü ve herhangi bir şekilde model elde edilememesi dinamikleri 

yüzünden çözülememektedir. Rastgele süreçlerde var olan sistemin modelini 

oluşturmak için durumu temsil eden 𝒙𝒙’ler rastgele değişken olarak temsil 

edilmektedir. 𝒙𝒙’ler rastgele olarak kabul edildiğinde sistem stokastik bir biçimde 

modellenmiş olur. Pekiştirmeli öğrenmede fiziksel sistemler ve durumlar arasındaki 

geçişler Markov karar süreci ile modellenmektedir. Rastgele süreç matematiksel 

olarak 𝑿𝑿(𝑡𝑡), 𝑿𝑿(𝑛𝑛) ile ifade edilir. Olasılık uzayındaki tüm fonksiyonların birleşimi 

rastgele ya da stokastik süreç olarak adlandırılır. Bu fonksiyonların birleşiminde basit 

(PDF) veya ortak olasılık yoğunluk fonksiyonları (JPDF), zamanla değişmiyorsa bu 

süreç durağan olarak adlandırılmaktadır. Durağan süreçlerde, modeller ve 

parametreler zamandan bağımsız olarak nitelendirilir. Bazı durumlarda tüm bu 

rastgele süreç aynı istatistiksel özellikleri sergilemektedir. Bu gibi durumlarda tek bir 

rastgele sürecin örnek fonksiyonlarının bilinmesiyle birlikte tüm sürecin istatistiksel 

özellikleri modellenebilir. Rastgele süreçler ayrık değerli ayrık zamanlı rastgele 

süreç, ayrık değerli sürekli zamanlı rastgele süreç, sürekli değerli ayrık zamanlı 

rastgele süreç ve son olarak sürekli değerli zamanlı süreç olarak dört sınıfta 

incelenmektedir. Markov süreci denklem 21’de gösterilmiştir. 

       𝑃𝑃[𝑋𝑋(𝑡𝑡𝑘+1) = 𝑥𝑘+1|𝑋𝑋(𝑡𝑡𝑘) = 𝑥𝑘, … ,𝑋𝑋(𝑡𝑡1) = 𝑥1]
= 𝑃𝑃[𝑋𝑋(𝑡𝑡𝑘+1) = 𝑥𝑘+1|𝑋𝑋(𝑡𝑡𝑘) = 𝑥𝑘] 

 

(21) 

Denklem 21’de gösterildiği gibi 𝑋𝑋(𝑡𝑡) rastgele sürecinin, 𝑋𝑋(𝑡𝑡𝑘𝑘+1) değeri bir geçmiş 

değer olan 𝑋𝑋(𝑡𝑡) ’ye bağlıdır. Bu özellik Markov özelliği olarak adlandırılır. Rastgele 

sürece ilişkin ortak olasılık yoğunluk fonksiyonunun (JPDF) bilinmesi durumunda 
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Markov süreci durum geniş matrisiyle ifade edilmektedir ve Denklem 22’de 

gösterilmiştir. 

𝑃𝑃[𝑋𝑋𝑛+1 = 𝑗|𝑋𝑋𝑛 = 𝑖𝑖] = 𝑃𝑃𝑖𝑗 
 

(22) 

Denklem 22’te 𝑋𝑋𝑛𝑛 homojen geçiş olasılıkları olarak adlandırılmaktadır. 𝑋𝑋𝑛𝑛, . . ., 𝑋𝑋0 

ortak olasılık yoğunluk fonksiyonunun verilmesiyle denklem 23 ortaya çıkar. 

 
𝑃𝑃�𝑋𝑋𝑛 = 𝑖𝑖𝑛,…,𝑋𝑋0 =  𝑖𝑖0� = 𝑝𝑝𝑖𝑛−1,𝑖𝑖𝑛 …𝑝𝑝𝑖0𝑖1𝑝𝑝𝑖0(0) 

 

(23) 

Buradan geçiş olasılıkları matrisini 𝑃𝑃 , elde etmek için başlangıç değerlerine 𝑝𝑝𝑖𝑖(0)  

Verildiğinde denklem 24 elde edilir. 

 

(24) 

 
Denklem 24’ün sütunları toplandığında denklem 25 ortaya çıkacaktır. 
 

∑𝑗𝑃𝑃[𝑋𝑋𝑛+1 = 𝑗|𝑋𝑋𝑛 = 𝑖𝑖] =  ∑𝑗𝑝𝑝𝑖𝑖𝑗 = 1 
 

(25) 

 
Şekil 21’de İki durumlu Markov süreci için örnek bir akış gösterilmiştir.  
 

 
Şekil 21 Markov Süreci İçin Örnek Bir Akış 

 

Şekil 21’de ifade edilen iki durumlu Markov zincirinin akış matrisi denklem 26’de 

gösterilmiştir. 

𝑃𝑃 =  �1 − 𝑎𝑎 𝑎𝑎
𝛽 1 − 𝛽� 

 

(26) 
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Denklem 26’nin kuvvetleri alındığında Markov zincirinin zamana bağlı hesaplaması 

gerçekleştirilir. Denklem 27’de gösterilmiştir. 

 

𝑃𝑃𝑛 = �1 − 𝑎𝑎 𝑎𝑎
𝛽 1 − 𝛽�  �1 − 𝑎𝑎 𝑎𝑎

𝛽 1 − 𝛽�⋯  �1 − 𝑎𝑎 𝑎𝑎
𝛽 1 − 𝛽� 

 

(27) 

 
Denklem 8 ile n durumlu geçiş olasılıkları, P durum geçiş matrisinin bilinmesiyle 

hesaplanabilir. Bir 𝑋𝑋𝑘𝑘 rastgele süreci bağımsız ve aynı olasılık dağılımıyla ifade 

edilmiş ise bu süreç IID olarak ifade edilmiştir ve denklem 28’da gösterilmiştir. 

 
𝐹𝑥1,𝑥2,...,𝑥𝑘(𝑥1,𝑥2, . . . , 𝑥𝑘) = 𝑃𝑃�𝑋𝑋1 ≤  𝑥1,𝑋𝑋2 ≤  𝑥2, . . . ,𝑋𝑋𝑘 ≤  𝑥𝑘 �             

𝐹𝑥1,𝑥2,...,𝑥𝑘 (𝑥1,𝑥2, . . . , 𝑥𝑘) =  𝐹𝑥(𝑥1)𝐹𝑥(𝑥2). . .𝐹𝑥(𝑥𝑘) 
 

(28) 

Denklem 28’da 𝑋𝑋𝑘𝑘  rastgele değişkenlerin istatistiksel bağımsızlığını ifade eder. 

Ancak bu bölümde pekiştirmeli öğrenme algoritmalarındaki ajanların ortamlardan 

elde ettikleri veriler IID olmamalıdır. Bu şekilde elde edilen verilerden beslenen 

modeller eğitim sürecinde lokal noktaya takılmaktadır (Garcia, 2005). 

2. Markov Karar Süreci     

Markov karar süreci, ödül sürecinin 𝑎𝑎 ∈ 𝐴𝐴 olduğu aksiyon kümesiyle genişletilmiş 

versiyonudur. Burada S Markov sürecini sağlayan sonlu ve ayrık durum kümesidir. 

A aksiyon kümesi olarak tanımlanır. 𝑃𝑃𝑎𝑎 = 𝑃𝑃[𝑆𝑆 = 𝑠𝑠′|𝑆𝑆 = 𝑠𝑠, 𝐴𝐴 = 𝑎𝑎] denklemi koşullu 

geçiş durumunu ve 𝑅𝑅𝑎𝑎 = 𝐸𝐸[𝑅𝑅 |𝑆𝑆 = 𝑠𝑠, 𝐴𝐴 = 𝑎𝑎] ödül fonksiyonunu tanımlar. 𝛾𝛾 ∈ [0,1]  

İse azaltma faktörü olarak adlandırılabilir. Markov karar sürecinde iki önemli faktör 

vardır. Bunlar politika ve değer fonksiyonu olarak isimlendirilir. Politika 𝜋𝜋 şeklinde 

gösterilir. Denklem 29’da tanımlanmıştır. 

 

𝜋𝜋(𝛼|𝑠𝑠) =  𝑃𝑃[𝐴𝐴𝑡 = 𝛼|𝑆𝑆𝑡 = 𝑠𝑠] 
 

(29) 

Denklemde 𝑠𝑠 ajanının durumunu ve 𝑎𝑎 alacağı aksiyonu belirtir. Markov sürecinde 

politika 𝑠𝑠𝑡𝑡 olarak gösterilen ajanın t zamanındaki durumunu belirtir. Politika ise 

zamandan bağımsız olarak tanımlanır ve denklem 30’da açıklanmıştır. 

 

𝐴𝐴𝑡~𝜋𝜋(. |𝑆𝑆𝑡)∀𝑡𝑡 > 0 
 

(30) 
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Denklem 18’de ve Markov karar sürecinde 𝑀𝑀 = (𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑅𝑅, 𝛾𝛾) olarak tanımlanır ve 

politika olarak ödül verildiğinde durumlar Markov özelliği olan (𝑆𝑆,𝑃𝑃𝜋𝜋) fonksiyonunu 

sağlamalıdır. Denklem 31’de 𝑃𝑃𝜋𝜋, 𝑅𝑅𝜋𝜋  formülleri tanımlanmıştır. 

 

𝑃𝑃𝑠𝑠′𝜋 = ∑𝛼𝜖𝐴𝜋𝜋(𝛼|𝑠𝑠)𝑃𝑃𝑠𝑠′𝛼  
                                           𝑅𝑅𝑠𝜋 =  ∑𝛼𝜖𝐴𝜋𝜋(𝛼|𝑠𝑠)𝑅𝑅𝑠𝛼 
 

(31) 

Markov sürecindeki değer fonksiyonu denklem 32’de tanımlanmıştır. 
 

𝑉𝑉𝜋(𝑠𝑠) = 𝐸𝐸𝜋[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠] 
 
 

 
(32) 

Denklem 33’te durum-değer fonksiyonu görülmektedir. Yapay zeka ajanları Markov 

süreçleri ile 𝑠𝑠 durumundan başlayıp sonuca kadar 𝜋𝜋 politikasını takip ederek ödüllere 

ulaşmaya çalışır. Markov süreçlerindeki aksiyon-değer fonksiyonu denklem 33’te 

tanımlanmıştır. 

𝑞𝑞𝜋(𝑠𝑠,𝛼) = 𝐸𝐸𝜋[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠,𝐴𝐴𝑡 = 𝛼] 
 

(33) 

 

Denklem 33’teki aksiyon-değer formülü daha öncesinde modellenmiş belirli bir 

çevrede 𝑠𝑠 durumundan başlayarak ve belirlenen politikayı takip ederek formülde 𝑎𝑎 

olarak tanımlanmış aksiyonu alması sonucunda ödüllere ulaşmaya çalışır. Daha 

öncesinde belirtildiği üzere Markov sürecinde iki farklı çözüm uygulaması 

bulunmaktadır. Durum-değer ve aksiyon-değer formülleri iteratif hale getirildiğinde 

sırasıyla denklem 34 ve denklem 35 ortaya çıkar.  

 
𝑉𝑉𝜋(𝑠𝑠) = 𝐸𝐸𝜋[𝑅𝑅𝑡+1 + 𝛾𝛾𝑉𝑉𝜋(𝑆𝑆𝑡+1)|𝑆𝑆𝑡 = 𝑠𝑠] 

 
(34) 

 
Denklem 34 durum-değer fonksiyonunun Bellman denklemi ile harmanlanmış 

halidir. Bu durumda durum-değer fonksiyonu belirli bir 𝑆𝑆𝑡𝑡 = 𝑠𝑠 durumunda 

belirlenmiş bir 𝜋𝜋 politikasını takip eder ve sonuç olarak 𝑉𝑉𝜋𝜋 (𝑠𝑠) değerini hesaplar. 

 
𝑞𝑞𝜋(𝑠𝑠,𝛼) = 𝐸𝐸𝜋[𝑅𝑅𝑡+1 + 𝛾𝛾𝑞𝑞𝜋(𝑆𝑆𝑡+1,𝐴𝐴𝑡+1)|𝑆𝑆𝑡 = 𝑠𝑠,𝐴𝐴𝑡 = 𝛼] 

 

 
 
(35) 

 
Denklem 34’te aksiyon-değer fonksiyonu tanımlanmıştır. Bu denklemi kullanarak 

yapay zeka ajanı Markov süreci ile modellenmiş ve belirli bir politikayı takip ederek 
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𝑆𝑆𝑡𝑡 = 𝑠𝑠 𝐴𝐴𝑡𝑡 = 𝑎𝑎 durumunda 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) fonksiyonunu hesaplar. Denklem 34’ün ve 

denklem 35’in lineer sistemde çözümlenmiş hali denklem 36’te tanımlanmıştır. 

 
𝑉𝑉𝜋 = 𝑅𝑅𝜋 + 𝛾𝛾𝑃𝑃𝜋𝑉𝑉𝜋 

 
𝑉𝑉𝜋 = (1 − 𝑦𝑃𝑃𝜋)−1𝑅𝑅𝜋 

 

(36) 

 
Markov ödül sürecinde, denklem 34’te tanımlanmış formülizasyon çözümlendiğinde 

aynı denklem 35’te tanımlanan Markov karar sürecinin de bir çözümü 

bulunmaktadır. Denklem 36 uygulanması sonlu sayıda durum için, sonlu sayıda geçiş 

olasılıkları matrisinin bilindiği durumda mümkündür. Eğer geçiş olasılığı bilinmezse 

farklı Markov karar süreçleri uygulanmaktadır. Bunlar: yaklaşık dinamik 

programlama, zamansal fark ve monte carlo metodu olarak adlandırılır. Markov 

sürecinin optimal çözümü denklem 37’de tanımlanmıştır. 

 
𝑉𝑉∗(𝑠𝑠) = max

𝜋
𝑉𝑉𝜋(𝑠𝑠) 

 
(37) 

Denklem 37’de 𝑉𝑉∗(𝑠𝑠) optimal değer fonksiyonu olarak adlandırılır ve tüm 

politikaların değerlerinin maksimum olarak seçilmesiyle hesaplanır. Denklem 38’de 

ise optimal aksiyon değer fonksiyonu tanımlanmıştır. 

 
𝑞𝑞∗(𝑠𝑠,𝛼) = max

𝜋
𝑞𝑞𝜋(𝑠𝑠,𝛼) 

 

 
 
(38) 

Optimal durum-değer fonksiyonu aynı zamanda Markov karar sürecinin çözümünü 

oluşturur. Aynı şekilde Markov aksiyon-değer fonksiyonunun belirlenmesiyle de 

çözülebilir. Kısaca açıklamak gerekirse Markov sürecinin iki farklı çözüm metodu 

mevcuttur. Bunlar durum-değer ve aksiyon-değer olarak daha öncesinde 

tanımlanmıştır. Optimal durum-değer fonksiyonu belirlenmiş politikalar üzerinde 

hareket ederken denklem 39’u sağlamalıdır. 

𝜋𝜋 ≥ 𝜋𝜋′              𝑉𝑉𝜋(𝑆𝑆) ≥ 𝑉𝑉𝜋′(𝑠𝑠)        ∀𝑠𝑠 

 

(39) 

Denklem 39’u genel itibariyle açıklamak gerekirse politika değeri, bir sonraki 

adımdaki politika değerinden büyük ve eşit ise bundan sonraki tüm durum-değer 

fonksiyonları da aynı şekilde politika değerinden büyük ve eşit olmalıdır. 

26 
 



 
 

Ancak Markov karar sürecinde, optimal bir politika 𝜋𝜋∗ vardır ve bu 𝜋𝜋∗ değeri   

𝜋𝜋∗ ≥ 𝜋𝜋∀𝜋𝜋 koşulunu sağlamak zorundadır. Aynı zamanda optimal olarak hesaplanan 

politika değeri, optimal olarak hesaplanan durum-değer fonksiyonunu sağlamak 

zorundadır. Bu durum denklem 40’ta gösterilmiştir.  

 

𝑉𝑉𝜋, (𝑠𝑠) = 𝑉𝑉∗(𝑠𝑠) (40) 

Denklem 40’ta gösterildiği üzere hesaplanan tüm optimal politika değerleri de 

aksiyon-değer fonksiyonunu sağlamak zorundadır. 

 

                                                   𝑞𝑞𝜋𝜋∗ (𝑠𝑠, 𝑎𝑎) = 𝑞𝑞∗(𝑠𝑠, 𝑎𝑎)  

 

(41) 

İki durumun da sağlandığı formülizasyon denklem 42’de tanımlanmıştır. 
 

𝜋𝜋∗(𝛼|𝑠𝑠) = �
1 a = arg max

                              𝛼𝜖∀
𝑞𝑞∗(𝑠𝑠,𝛼)

0 𝑑𝑖𝑖ğ𝑒𝑒𝑟 𝑑𝑢𝑢𝑟𝑢𝑢𝑚𝑙𝑎𝑎𝑟
 

 

(42) 

 
Daha öncesinde de bahsedildiği üzere politika, yapay zekâ ajanının belirlenen 

durumda 𝑎𝑎 ∈ 𝐴𝐴 aksiyonunu nasıl seçeceğini belirtmektedir. Denklem 42’de sürecin 

optimal politika seçimi tanımlanmıştır. Bellman’ın öz yinelemeli olarak hesaplama 

formülü denklem 43’de tanımlanmıştır. 

 

𝑉𝑉∗(𝑠𝑠) = max
𝛼

𝑞𝑞∗(𝑠𝑠,𝛼) 
 
 

(43) 

Denklem 43’deki durum-değer formülüne, Bellman denklemi eklendiğinde Denklem 

44’e ulaşılır.  

 
𝑉𝑉∗(𝑠𝑠) = max

𝛼
𝑅𝑅𝑠𝛼 + 𝑦∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝛼 𝑉𝑉∗(𝑠𝑠′) 

 
(44) 

 
Denklem 43 ve denklem 44’de tanımlanan formülasyona benzer şekilde aksiyon-

değer fonksiyonu optimal olarak hesaplanmış durum-değer fonksiyonu ile 

birleştirildiğinde denklem 45 ortaya çıkmaktadır. 

 
𝑞𝑞∗(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝑦∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝛼 𝑉𝑉∗(𝑠𝑠′) 

 
(45) 
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Eğer denklem 45 ve denklem 44 birleştirilirse optimal aksiyon-değer fonksiyonu 

denklem 46’daki gibi olacaktır. 

 
𝑞𝑞∗(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝑦∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝑎 max

𝛼′
𝑞𝑞∗(𝑠𝑠′,𝛼′) 

 
(46) 

 
Denklem 45 ve denklem 46’da Markov karar sürecinin iteratif versiyonları 

gösterilmiştir. Ancak Bellman’ın optimal denkleminin çözümü lineer değildir ve 

analitik çözümleri ne yazık ki bulunmamaktadır. Standart Markov karar süreci 

denkleminde 𝑃𝑃𝑠𝑠𝑎  bilinmediğinden dolayı denklem 44 ve denklem 43 kullanılmak 

zorundadır. Bir sonraki bölümde ise Markov süreçlerinin iteratif çözümlü 

versiyonları olan değer tabanlı ve politika tabanlı yaklaşımlar incelenecektir (Silver, 

2015). 

3. Markov Karar Süreci Çözüm 

Markov karar süreci 𝑀𝑀 = (𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑅𝑅, 𝛾𝛾) fonksiyonu ile ifade edilir. Daha öncesinde 

de bahsedildiği üzere fonksiyon içerisinde durumlar, aksiyonlar, geçiş olasılığı 

matrisi, ödül fonksiyonu ve azaltma faktörünü barındırmaktadır. Açıkça söylemek 

gerekir ki Markov sürecinde yapay zeka ajanının alacağı karar ve uygulayacağı 

politika matematiksel olarak tanımlıdır. Stokastik olarak tanımlanan politika [0,1] 

arasında tanımlanmakta ve yine aynı aralık içerisindeki bir olasılık değerine karşılık 

gelmektedir. Markov karar sürecindeki değer fonksiyonu Bellman denklemi ile 

genişletilirse denklem 47 ortaya çıkar.  

 
𝑉𝑉�∗(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾max

𝛼𝜖𝐴
∑𝑠′∈𝑆𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼)𝑉𝑉�∗(𝑠𝑠′) 

 
(47) 

Optimal durum değer fonksiyonu ise denklem 48’de tanımlanmıştır.  
 

𝑉𝑉�∗(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾max
𝛼𝜖𝐴

∑𝑠′∈𝑆𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼)𝑉𝑉�∗(𝑠𝑠′) 
 

 
(48) 

 
Markov karar sürecinde denklem 47 ve denklem 48 iteratif olarak hesaplandığında 

optimal çözüme ulaşılır. Denklem 47’de de fark edileceği üzere değer tabanlı 

yaklaşımda aç gözlü bir politika benimsenmektedir. Eğer Markov karar sürecinde R 

ve P bilinmiyor ise bu durumda yaklaşık çözümler oluşturulur. 

Markov sürecinin robotik sistemlerde pek sık kullanılmamasının nedeni durum geçiş 

matrisinin tam olarak bilinmemesinden kaynaklanmaktadır. Bundan dolayı robotik 
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sistemlerde Markov süreçleri yerine zamansal fark ve monte carlo metodu 

kullanılmaktadır (Silver, 2015). 

4. Dinamik Programlama 

Optimizasyon problemleri ve karar verme problemlerinde dinamik programlama 

sistemi çokça kullanılmaktadır. Alt dallara ayrılabilen büyük ve yeterince karmaşık 

problemler dinamik programlama yöntemiyle ayrıştırılır. Sonrasında bu dallar tek tek 

çözülerek belleğe alınır ve sonrasında bellekte toplanan verilerle optimal çözüm 

bulunur. Dinamik programlama sisteminde her problem için ayrı bir çözüm tekniği 

oluşturulmalı ve tüm çözümler optimal değere ulaşmak zorundadır.  

Hesaplamadaki verimlilik, dinamik programlamanın odaklandığı nokta olmuştur. Söz 

konusu model, kompleks problemleri basit parçalar halinde değerlendirdiğinden 

dolayı hızlı çalışır. Uyarlanabilir dinamik programlama söz konusu olduğunda, 

pekiştirmeli öğrenme de çalışma alanlarından biri haline gelir (Kulkarni, 2012). 

Şekil 22’de örnek bir optimal yol probleminin grafiği mevcuttur. 

 

 
Şekil 22 Optimal Yol Problemi Örnek Grafik 

 

Şekilde a noktasından b noktasına gitmenin maliyeti 𝐽𝐽𝑎𝑎𝑏𝑏 olarak belirlenmiş, b 

noktasından e noktasına gitmenin maliyeti ise 𝐽𝐽𝑏𝑏𝑒𝑒 olarak tanımlanmıştır. Optimal 

maliyet denklemi aşağıdaki gibi olacaktır. 

  

𝐽𝐽 ∗𝛼𝑒= 𝐽𝐽𝛼𝑏 + 𝐽𝐽𝑏𝑒 
 

(49) 

Denklem 49’da 𝐽𝐽𝑎𝑒∗  olarak tanımlanan parametre a noktasından e noktasına olan 

maliyeti temsil etmektedir. Eğer 𝐽𝐽𝑎𝑒∗  optimal ise denklemdeki tüm noktalar optimal 

olmak zorundadır aksi halde bir ikilem oluşur. Bu durum denklem 50’de 

gösterilmiştir.  

𝐽𝐽𝑏𝑐𝑒 <  𝐽𝐽𝑏𝑒 (50) 
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Eğer denklem 49 ve denklem 50 birleştirilirse denklem 51 ortaya çıkar. 

𝐽𝐽𝛼𝑏 + 𝐽𝐽𝑏𝑐𝑒 <  𝐽𝐽𝛼𝑏 + 𝐽𝐽𝑏𝑒 = 𝐽𝐽 ∗𝛼𝑒 

 

(51) 

Optimal yol problemi çelişkisi şekil 23’te gösterilmiştir.  
 

 
Şekil 23 Optimal Yol Problemi Çelişkisi 

 

Doğrusal programlamada optimallik prensibi dağınık sistemler için 

 fonksiyonuna tanımlanabilir. Tüm 𝑆𝑆𝑡𝑡 durumları erişilebilir ise 

zamana bağlı olarak alt dallardaki problemlerin aktarım maliyetleri minimum olarak 

belirlenmelidir. Böylelikle alt dallardaki optimallik prensibi farklı farklı 

hesaplandıktan sonra birleştirilerek en optimal çözüm elde edilir. Dinamik 

programlamada iki farklı çözüm tekniği bulunmaktadır. Bunlar: ileri yönlü ve geri 

yönlü olarak tanımlanabilir. Dinamik programlamada, zamanlar ve durumlar arası 

geçişler rastgele olarak belirlenmişse buna stokastik dinamik programlama denir. 

Eğer zamanlar ve durumlar arasındaki geçişler deterministik ise buna da 

deterministik dinamik programlama denmektedir. Dinamik programlama model 

tabanlı pekiştirmeli öğrenme sınıfına girmektedir ve aynı zamanda Markov karar 

süreçlerinin bu yöntemle çözülebilmesi için daha öncesinde de söylenildiği gibi 

durum geçiş matrislerinin bilinmesi ve modellerinin oluşturulması gerekmektedir 

(Sutton and Barto, 2018). 

Uyarlanabilir dinamik programlama modeli her hareketin ve/veya her ödülle cezanın 

sonucunda hesaplamaları tekrarlar ve en doğru yöntemi arar. Genel çalışma prensibi 

şekil 24’te gösterilmiştir. 
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Şekil 24 Dinamik Programlama Modeli Genel Çalışma Prensibi 

5. Bellman Denklemi 

Yapay zeka ajanının modelden bağımsız olan pekiştirmeli öğrenme sisteminde 

optimal değeri hesaplaması gerekmektedir. Bu formül denklem 52’da belirtilmiştir. 

 

𝑉𝑉(𝑠𝑠) = 𝐸𝐸[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠] 
 

(52) 

 
Denklem 52’de G parametresi modelde belirlenen zaman içerisinde ajanın 

alabileceği ödül değerini ifade etmektedir. G parametresi denklem 52’deki  

( )  yerine eklenecek olursa Denklem 53’e 
ulaşılır. 
 

𝑉𝑉(𝑠𝑠) = 𝐸𝐸[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠] 
                                                     = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾𝑅𝑅𝑡+2 + 𝛾𝛾2𝑅𝑅𝑡+3+. . . |𝑆𝑆𝑡 = 𝑠𝑠] 
                                                            = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾(𝑅𝑅𝑡+2 + 𝛾𝛾𝑅𝑅𝑡+3+. . . )|𝑆𝑆𝑡 = 𝑠𝑠] 

                               = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾𝐺𝑡+1|𝑆𝑆𝑡 = 𝑠𝑠] 
                                    = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾𝑉𝑉(𝑆𝑆𝑡+1)|𝑆𝑆𝑡 =𝑠𝑠] 

 
 

(53) 
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Denklem 53’te durum değer fonksiyonu tanımlanmıştır ve E parametresi beklenen 

değer anlamına gelmektedir ve bir sonraki durumu temsil eder (𝐸𝐸[𝑅𝑅𝑡𝑡+1] → 𝑅𝑅𝑡𝑡+1). 

Denklem 53’teki tanımlama eğer iteratif hale gelirse Denklem 54’deki Bellman 

denklemi elde edilir. 

𝑉𝑉(𝑠𝑠) = 𝑅𝑅𝑠 + 𝛾𝛾∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝑉𝑉(𝑠𝑠) 
 

(54) 

Eğer Bellman denklemi aksiyon-değer fonksiyonu şeklinde yazılacak olursa denklem 

55 ortaya çıkmaktadır. 

𝑞𝑞(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝛾𝛾∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝑎 𝑞𝑞(𝑠𝑠,𝛼) 
 
 

(55) 

Denklem 54 ve denklem 55 kullanılarak Markov süreciyle modellenen değer tabanlı 

pekiştirme öğrenme yaklaşımı hesaplanabilir (Silver, 2015). 

6. Pekiştirmeli Öğrenmede Politika Tabanlı Çözümler 

Önceki bölümlerde Markov süreçlerinin optimal çözümü için durum-değer ve 

aksiyon-değer fonksiyonları tanımlanmıştır. Ancak yapay zeka ajanının arama 

yaparken oluşturulacağı politikaya değinilmemiştir. Eğer ajanın davranışı 

deterministik ise denklem 55, ajanın davranışı stokastik ise denklem 56 kullanılarak 

bir politika oluşturulabilir. 

  
𝜋𝜋𝜃(𝑠𝑠) = max

𝛼𝜖𝐴
𝜃𝜃 (𝑠𝑠,𝛼) 

 

𝜋𝜋𝜃(𝛼|𝑠𝑠) =
𝑒𝑒𝑥𝑝𝑝𝜃𝜃(𝑠𝑠,𝛼)

∑𝛼′𝜖𝐴𝑒𝑒𝑥𝑝𝑝𝜃𝜃(𝑠𝑠,𝛼′)
 

 

(56) 

 
Denklem 55 ve denklem 56 da tanımlanan politika, Markov karar sürecinde 

bahsedilen denklem 45’den farklıdır. Burada ajanın kullanılacağı politika aşama 

aşama hesaplanmalıdır. Bu sebepten dolayı denklem 57 oluşturulmuştur.  

 

𝑉𝑉𝜋(𝑠𝑠) = 𝐸𝐸𝜋[𝑅𝑅𝑡+1 + 𝛾𝛾𝑉𝑉𝜋(𝑆𝑆𝑡+1)|𝑆𝑆𝑡 = 𝑠𝑠] 
 

(57) 

Basit bir politika arama algoritması şekil 25’te açıklanmıştır. 
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Şekil 25 Basit Politika Arama Algoritması 

 
Şekil 25’te açıklanan basit politika arama algoritması haricinde başka politika arama 

algoritmaları da bulunmaktadır. Bunlardan ilki takviye-pekiştirme (reinforce) metodu 

olarak adlandırılır ve pekiştirmeli öğrenmenin ilk adımıdır. Değer t zamanında ajanın 

izlediği politika belirlenmek istenirse denklem 58 kullanılabilir. 

𝑉𝑉𝜃(𝑠𝑠) = 𝐸𝐸[𝑅𝑅(𝜏);𝜃𝜃] = �𝑝𝑝(𝜏;𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝑟 
(58) 

Pekiştirmeli öğrenme algoritmasının tamamen oluşturulması için denkleme gradyan 

hesabı da eklenerek denklem 59’a ulaşılır. 

∇𝜃𝑉𝑉𝜃(𝑠𝑠) = ∇𝜃 �𝑝𝑝(𝜏; 𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝜏 

= �∇𝜃𝑝𝑝(𝜏;𝜃𝜃)  𝑅𝑅(𝜏)𝑑𝜏 

             = �
𝑝𝑝(𝜏;𝜃𝜃)
𝑝𝑝(𝜏;𝜃𝜃)∇𝜃𝑝𝑝

(𝜏;𝜃𝜃)𝑅𝑅(𝜏)𝑑𝜏 

                     = �𝑝𝑝(𝜏;𝜃𝜃)∇𝜃 log 𝑝𝑝(𝜏;𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝜏 

    = 𝐸𝐸[∇𝜃 log 𝑝𝑝(𝜏;𝜃𝜃)𝑅𝑅(𝜏)] 
 
 

(59) 

Denklemde belirlenen 𝑉𝑉𝜃𝜃(𝑠𝑠) parametresinin gradyan hesabı 𝛻𝛻𝜃𝜃𝑉𝑉𝜃𝜃(𝑠𝑠) şeklinde 

tanımlanabilir. Eğer denklem 59 tekrar düzenlenirse denklem 60’a ulaşılır. 

∇𝜃 log 𝑝𝑝(𝜏;𝜃𝜃) = ∇𝜃 log(�𝑝𝑝(𝑆𝑆𝑡+1|𝑆𝑆𝑡,𝛼𝑡)𝜋𝜋𝜃(𝛼𝑡|𝑠𝑠𝑡))
𝑇

𝑡=1

 

                                            

= ∇𝜃�(log 𝑝𝑝(𝑠𝑠𝑡+1|𝑠𝑠𝑡,𝛼𝑡)) + ∇𝜃 log 𝜋𝜋𝜃(𝛼𝑡|𝑠𝑠𝑡)
𝑇

𝑡=1

 

 

= �∇𝜃 log 𝜋𝜋𝜃(𝛼𝑡|𝑠𝑠𝑡)
𝑇

𝑡=1

 

 

 
 
 

(60) 
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Şekil 26’da denklem 60 kullanılarak politika gradyanı ve pekiştirme algoritması 
oluşturulmuştur.  
 

 
Şekil 26 Politika Gradyanı ve Takviye Algoritması 

 
Şekil 26’da açıklanan algoritma, gradyanın belirli bir örneklem ile hesaplanmış halini 

açıklamaktadır, gerçek gradyan değeri hesaplanamamıştır. Modelin belirlenmediği 

pekiştirmeli öğrenme yaklaşımlarında ortam üzerinde daha öncesinde herhangi bir 

bilgi olmadığından dolayı ajanın ilk olarak ortamı keşfetmesi ve keşiflerden topladığı 

bilgileri kullanması gerekir. Ajanın izleyeceği yol denklem 61’de tanımlanmıştır 

(Kolter, 2016). 

 

𝜋𝜋(𝑠𝑠) =  �
max 𝒬�

               𝛼𝜖𝐴
(𝑠𝑠,𝛼) 1 − 𝜀

𝑟𝑎𝑎𝑠𝑠𝑡𝑡𝑔𝑔𝑒𝑒𝑙𝑒𝑒 𝑎𝑎𝑘𝑘𝑠𝑠𝑖𝑖𝑦𝑜𝑛𝑛 𝑑𝑖𝑖ğ𝑒𝑒𝑟 𝑑𝑢𝑢𝑟𝑢𝑢𝑚𝑙𝑎𝑎𝑟
 

 

 

 

(61) 

7. Pekiştirmeli Öğrenmede Değer Tabanlı Çözümler 

Markov sürecinden daha önceki bölümlerde detaylıca bahsedilmiştir. Markov karar 

sürecinin çözülmesi optimal olarak hesaplanan durum-değer ve aksiyon-değer 

fonksiyonlarının birlikte çözülmesiyle sağlanır. İki denklem de denklem 62’de 

gösterilmiştir. 

 
𝑉𝑉∗(𝑠𝑠) = max

𝛼
𝑅𝑅𝑠𝛼 + 𝛾𝛾�𝑃𝑃𝑠𝑠′𝛼 𝑉𝑉∗(𝑠𝑠)

𝑠′𝜖𝑆

 

 
𝑞𝑞∗(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝛾𝛾 � 𝑃𝑃𝑠𝑠′𝛼 max

𝛼
𝑞𝑞∗(𝑠𝑠,𝛼)

𝑠′𝜖𝑆
 

 

(62) 

Denklem 62’de 𝑉𝑉*(𝑠𝑠) durum-değeri, 𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) aksiyon-değeri ifade eder. Bu 

fonksiyonlar birlikte hesaplandığında Markov sürecinin optimal çözümü elde edilir. 

Daha önceki bölümlerde de bahsedildiği gibi durum geçiş matrisi ve ödül fonksiyonu 

bilinmediğinden dolayı Markov sürecinin kapalı formda herhangi bir çözümü 
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bulunmamaktadır. Ancak yapay zeka ajanı bulunduğu ortamdan bilgiler elde ederek  

t+1 durumunu 𝑃𝑃(𝑠𝑠′|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) dağılım fonksiyonunda örneklemiş olur. Yapay zekâ 

ajanının ortamdan topladığı bilgiler ile belirlenen ödül fonksiyonu üzerine yaklaşık 

olarak hesaplama yapılabilmektedir. Denklem 63’te açıklanmıştır 

 
𝑉𝑉�𝜋(𝑠𝑠𝑡) = 𝑟𝑡  + 𝛾𝛾𝑉𝑉�𝜋(𝑠𝑠𝑡+1) 

 

(63) 

 
Denklem 63’te durum, belirlenen zaman anındaki ödül ve bir sonraki durumu 

 ile günceller. Eğer denklem 63’e zamansal fark da eklenirse denklem 
64 elde edilebilir.  

 
 

𝑉𝑉�𝜋(𝑠𝑠𝑡) = (1 − 𝛼)𝑉𝑉�𝜋(𝑠𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝛾𝑉𝑉�𝜋(𝑠𝑠𝑡+1)) 
𝑉𝑉�𝜋(𝑠𝑠𝑡) = 𝑉𝑉�𝜋(𝑠𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝛾𝑉𝑉�𝜋(𝑠𝑠𝑡+1) −  𝑉𝑉�𝜋(𝑠𝑠𝑡))���������������

𝑍𝑎𝑚𝑎𝑛𝑠𝑎𝑙 𝐹𝑎𝑟𝑘

 

𝛼 < 1 
 

 
 
(64) 

Dikkat edilmelidir ki belirlenen zamandaki 𝑉𝑉 (𝑠𝑠𝑡𝑡) değerinin güncellenmesi, bu 

parametreye zamansal fark eklendiğinde sağlanacaktır. Yine aynı şekilde ödül 

değerindeki güncelleme 𝑉𝑉 (𝑠𝑠𝑡𝑡) parametresinin zamansal fark eklenmiş haliyle 

sağlanabilir. Zamansal fark denklem 64’te zamanlar arasında bağlantı kurmaktadır. 

Zamansal fark fonksiyonu düzgün bir şekilde anlaşıldığında tahmin edilen değer ve 

gelecekte tahmin edilecek değerler arasında ilişki kurulabilir. Denklem 64’te ki 

hesaplama ile ödül değeri denklem 63’ten daha optimal bir şekilde hesaplanabilir. 

Bunun nedeni bahsedildiği gibi Zamansal fark fonksiyonunun formülizasyona 

eklenmesiyle sağlanmaktadır. Zamansal fark algoritması şekil 27’de gösterilmiştir. 

 
Şekil 27 Zamansal Fark Algoritması 
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Zamansal fark algoritması ile herhangi bir Markov süreci oluşturmadan ödül ve 

durum değerini yaklaşık olarak hesaplamamızı sağlar. Bundan dolayı bu çalışmada 

da kullanılan Q-öğrenme algoritması ortaya çıkmıştır (Kolter, 2016). 

8. Q-öğrenme Algoritması 

Q-öğrenme fikri ilk olarak Watkins tarafından ortaya atılmıştır (1989). Sonrasında 

matematiksel modeli ve kanıtı Watkins ve Dayan tarafından sunulmuştur (1992). Q-

öğrenme politika dışı bir yöntemdir ve Werbos un 1992’de yayınladığı 

çalışmasındaki (1992) ADHDP’sine (Eyleme bağlı buluşsal dinamik programlama) 

benzer. Öncesinde de söylendiği gibi Q-öğrenme politika dışı bir yöntemdir ve Q(s,a) 

fonksiyonu mevcut değerlendirilen politikadan bağımsız olarak tahmin edilir. 

Markov sürecinde optimal hesaplamanın bulunması için adımların sonuna kadar 

beklenmesi gerekirken, Q-öğrenmede değer işlevi her zaman iterasyonunda 

güncellenir. Geçiş olasılıklarının ve ödüllerin başlangıçta bilinmediği durumlarda Q-

değeri yineleme algoritmasının uyarlanmasını sağlar (Geron, 2017). Bir Q-öğrenme 

işlevi uygulamalarının ana yararı mevcut politikanın dışındaki eylemlerden de 

öğrenmesine izin vermesidir ve kesin bir tahmine ya da kesin bir çevresel modelin 

kullanımına gerek duymamaktadır. Bu nedenle modelden bağımsız pekiştirmeli 

öğrenme sınıfına girer (Glascher et al., 2010; Luo et al., 2016). Ancak Q-öğrenme, 

aksiyon-değer fonksiyonu için istenen deneyimi elde etmek için yüksek miktarda 

gürültülü araştırma gerektirir bundan dolayı eğitim süresi Markov sürecinden daha 

uzun sürmektedir (Todorov et al., 2012). 

Genel itibariyle Q öğrenmesi, durumların ve eylemlerin arasındaki ilişkiyi gerçekçi 

değerlerle tahmin etmeye dayanır. Q(s,a), s durumunda a hareketi yapılırsa ne kadar 

ödül kazanılacağını belirtir. Verimli olarak değerlendirilirse robotun s durumuna 

geçişte a hareketini hayata geçirmesi beklenir. Bu öğrenme modelinin özellikleri 

şöyle sıralanabilir: 

• Bu öğrenme türüne göre, her hareketin sonucunda Q değerleri 

farklılaşacaktır. 

• Belirli sayıda durum ve hareket ikilisi varsa, denklem çalıştırıldıkça değerler 

birbirlerine yakınlaşacaktır (Sutton and Barto, 1998) 

• Öğrenme sağlanması için herhangi bir sırayla durum ve hareket denklemleri 

uygulanabilir, bir sıraya ihtiyaç duyulmaz. 
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Bu öğrenmenin özelliklerine dayanarak, ödüllerin kaybedilmeyeceği söylenebilir. 

Aksine elde edilen değerler her zaman saklanır. 

Daha önceki başlıklarda bahsedildiği gibi değer tabanlı yaklaşıma alternatif olarak 

ortaya koyulan Q-öğrenme yönteminde aksiyon ve durumlar denklemi aşağıdaki 

gibidir. 

 
𝑄𝑄𝜋(𝑠𝑠,𝛼) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼)𝑄𝑄𝜋(𝑠𝑠′,𝜋𝜋(𝑠𝑠′))

𝑠′𝜖𝑆
 (65) 

 
Denklem 65’te yapay zekâ ajanının politikası 𝜋𝜋(𝑠𝑠′) şeklinde gösterilir ve denklem 

65’in optimal olarak çözümü denklem 66’da gösterilmiştir. 

  
𝑄𝑄∗(𝑠𝑠,𝛼) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼) max

𝛼′𝜖𝐴
𝑄𝑄∗(𝑠𝑠′,𝛼′)

𝑠′𝜖𝑆
 (66) 

 
Denklem 66 Q-öğrenme yönteminin temeli olarak kabul edilmektedir ancak 

𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎),𝑅𝑅(𝑠𝑠) ‘nin bilinmediği durumlarda 𝑄𝑄∗(𝑠𝑠,𝑎𝑎) fonksiyonunun çözümünün 

bulunması için denklem 66’ya zamansal fark fonksiyonunun eklenmesi 

gerekmektedir. 

 
𝑄𝑄�∗(𝑠𝑠,𝛼) = (1 − 𝛼)𝑄𝑄�∗(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾max

𝛼′𝜖𝐴
𝑄𝑄�∗(𝑠𝑠′,𝛼′)) 

𝑄𝑄�∗(𝑠𝑠,𝛼) = 𝑄𝑄�∗(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾max
𝛼′𝜖𝐴

𝑄𝑄�∗(𝑠𝑠′,𝛼′) − 𝑄𝑄�∗(𝑠𝑠,𝛼))�������������������
𝑍𝑎𝑚𝑎𝑛𝑠𝑎𝑙 𝐹𝑎𝑟𝑘

 

 

 

(67) 

Denklemde γ gelecekteki ödülleri, R anlık ödülleri, α öğrenme katsayısını 

belirtmektedir. Yani Q öğrenmesinin tahminleri, Q değerlerine göre belirlenir. Bu 

sayede kompleks hesaplamalardan kaçınarak, uzun vadeli durum ve hareketlerin Q 

değerlerine göre öğrenilmesini mümkün kılar. Daha verimli olduğu için bu öğrenme 

şekli tercih edilir. 
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Denklem 67’nin algoritma olarak tasarlanmış hali Şekil 28’de gösterilmiştir.

 

Şekil 28 Q-Öğrenme Algoritması 

 
Şekil 28 aynı zamanda Q-öğrenmenin temel yöntemlerini de açıklamaktadır (Kolter, 
2016). 

9. Sarsa Algoritması 

Sarsa algoritması durum-eylem-durum-eylem yöntemini tekrar eder. Genel itibariyle 

Q-öğrenmeye benzer ancak politikaya dayalı bir zaman fark yöntemidir. Eylem değer 

fonksiyonu 𝑄𝑄(𝑠𝑠′,𝑎𝑎′) ile mevcut politika ve durum-eylem çifti için tahmin edilir. Q-

öğrenmesinden farklı olarak keşfi hesaba katmaktadır. Sarsa algoritmasının 

matematiksel modeli denklem 68’da gösterilmiştir  

 
𝑄𝑄�𝜋(𝑠𝑠,𝛼) = (1 − 𝛼)𝑄𝑄�𝜋(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾𝑄𝑄�𝜋(𝑠𝑠′,𝜋𝜋(𝑠𝑠′))) 

𝑄𝑄�𝜋(𝑠𝑠,𝛼) = 𝑄𝑄�𝜋(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾𝑄𝑄�𝜋(𝑠𝑠′,𝜋𝜋(𝑠𝑠′))− 𝑄𝑄�𝜋(𝑠𝑠,𝛼))�����������������
𝑍𝑎𝑚𝑎𝑛𝑠𝑎𝑙 𝐹𝑎𝑟𝑘

 

 

(68) 

 

Denklem. 68’a bakıldığı taktirde belirli Q değerleri mevcut bir politika üzerinden 

güncellendiği fark edilecektir. Ancak Q-öğrenmesinde sabit olan politika, Sarsa 

yönteminde parametrik olarak değişmektedir. Bundan dolayı Sarsa algoritması açık 

bir politikaya bağlı bir yöntem olarak karşımıza çıkmaktadır. Sarsa yönteminde her 

iterasyonda Q değerinden bir politika üretilip o politika üzerinden tekrar hesaplama 
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yapılır ve buna göre güncelleme sağlanır. Sarsa algoritması genel itibariyle aç gözlü 

bir şekilde hesaplanır. Sarsa yöntemi şekil 29’da algoritma olarak açıklanmıştır. 

 
Şekil 29 Sarsa Algoritması 

Algoritmadan da anlaşılacağı üzere Q-öğrenme yaklaşımı sadece optimal yolu 

hesaplarken, Sarsa yöntemi bu optimal yolu en güvenli şekilde hesaplamaya çalışır. 

Bundan dolayı Q-öğrenme yöntemi sadece maksimum ödüller üzerinde hareket 

ederken, Sarsa yöntemi bu maksimum ödülleri gelecekteki durumları ve aksiyonları 

da hesaba katarak hareket eder. Q-öğrenme yaklaşımı ile Sarsa yönteminin bir diğer 

farklı da Sarsa yöntemi iterasyonda güncel politikaya göre ilerlerken, Q-öğrenme 

kararını sadece maksimum ödül ve değer üzerinden hesaplar (Sutton ve Barto, 2018). 

10. Derin Pekiştirmeli Q-öğrenme Algoritması 

Daha önceki bölümlerde bahsedilen Q-öğrenme ve Sarsa yöntemleri tablo metotları 

olarak adlandırılmaktadır. Gerçek hayatta bu algoritmaların kullanımı kontrol 

problemleri ve durum uzayının karmaşıklığı nedeniyle yetersiz kalmaktadır. Bundan 

dolayı pekiştirmeli öğrenme ve derin öğrenme yaklaşımlarının birleşimiyle derin 

pekiştirmeli öğrenme yaklaşımı ortaya çıkmıştır.  

Pekiştirmeli öğrenmede standart olarak her adımda durum ve aksiyonlar ayrıştırılarak 

her adıma Q-öğrenme yöntemi uygulanabilir ancak gerçek dünya problemlerinde her 

adımın ayrıştırılması karmaşık ve maliyetli olacaktır. Yapay sinir ağlarının fonksiyon 

yaklaştırıcı özelliği (Watkins and Dayan, 1992; Sutton, 1999; Riedmiller, 2005) ile 
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Q-öğrenme yaklaşımı birleştirildiğinde sürekli durumların bulunduğu kontrol 

problemleri daha kolay bir şekilde çözülebilmektedir (Levine et al., 2016; Williams, 

1992; Peters, 2008; Deisenroth, 2013; Mnih, 2015; Kiumarsi et al., 2018; Xu et al., 

2017; Tsurumine et al., 2019). 

Ancak derin pekiştirmeli öğrenme algoritmasının dezavantajlı yönleri de mevcuttur. 

Bunlardan ilki kontrol problemlerinde karşımıza çıkan 𝑢𝑢(𝑡𝑡), zamanın sürekli bir 

fonksiyonudur. Ancak bunun pekiştirmeli öğrenmede karşılığı 𝑎𝑎(𝑡𝑡) parametresidir. 

Pekiştirmeli öğrenmede aksiyonlar birbirlerinden ayrık değerde olmasından dolayı, 

pekiştirmeli öğrenme ile kontrol problemleri çözülmeye çalışıldığında derin Q-

öğrenme algoritması yeterli bir çözüm üretemeyebilir (Kohl and Stone, 2004; Pastor 

et al., 2009). 

Derin Q-öğrenme algoritmasının akış diyagramı şekil 30’da görüldüğü gibidir. 
 

 
Şekil 30 Derin Q-Öğrenme Algoritması Akış Diyagramı 

 
 

Derin pekiştirmeli öğrenme algoritması ilk olarak 2015 yılında önerilmiştir (Levine 

et al., 2016). Denklem 69’da Q-öğrenme formülüne bakıldığında 

 
𝑄𝑄(𝑠𝑠,𝛼) = 𝑄𝑄(𝑠𝑠,𝛼) + 𝛼(𝑟𝑠 + 𝛾𝛾max

𝛼𝜖𝐴
𝑄𝑄(𝑠𝑠′,𝛼) −𝑄𝑄(𝑠𝑠′,𝛼)) 

 

 
(69) 

 
İteratif olarak güncellendiği görülmektedir. Ancak sürekli durum değerlerin herhangi 

bir iteratif çözümü bulunmamaktadır. Derin Q-öğrenme algoritmasının temelinde 
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fonksiyon yakınlaştırma kullanıldığından denkleme fonksiyon yaklaştırma tekniği 

uygulanmalıdır. Bu fonksiyon denklem 70’de gösterilmektedir. 

 
𝑄𝑄(𝑠𝑠,𝛼:𝜃𝜃) ≈ 𝑄𝑄∗(𝑠𝑠,𝛼) 

 

 
(70) 

Denklem 70’de 𝜃𝜃 parametresi derin sinir ağlarının parametrelerini temsil etmektedir. 

Denklem 69 Denklem 70’deki gibi tekrar oluşturulduğunda aşağıdaki denklem ortaya 

çıkar. 

𝑄𝑄(𝑠𝑠,𝛼) = 𝑄𝑄(𝑠𝑠,𝛼) + 𝛼(𝑟𝑠 + 𝛾𝛾max
𝛼𝜖𝐴

𝑄𝑄(𝑠𝑠′𝛼′)�������������
𝐻𝑒𝑑𝑒𝑓

 − 𝑄𝑄(𝑠𝑠,𝛼))�����
𝑇𝑎ℎ𝑚𝑖𝑛�������������������

𝑀𝑎𝑙𝑖𝑦𝑒𝑡

 

 

(71) 

Eğer denklem 71 iki farklı parçaya ayrılırsa denklem 72’teki denklem grubu ortaya 

çıkar. 

 
𝛾𝛾� = 𝑟𝑠 + 𝛾𝛾max

𝛼𝜖𝐴
𝑄𝑄(𝑠𝑠′𝛼′:𝜃𝜃) 

𝛾𝛾� = 𝑄𝑄(𝑠𝑠,𝛼:𝜃𝜃) 
 

(72) 

Denklem 72’de ilk parça hedefi, ikinci parça tahmin edilen değeri açıklar. Denklem 

72 baz alınarak maliyet fonksiyonu oluşturulmak istendiğinde denklem 73 elde edilir. 

 
𝐿𝑖(𝜃𝜃𝑖) = 𝐸𝐸𝑠,𝛼,𝑟[(𝛾𝛾� − 𝑄𝑄(𝑠𝑠,𝛼,𝜃𝜃𝑖))2] 

 

(73) 

Denklem 64’e maliyet fonksiyonunun gradyanı eklendiğinde denklem 74 elde edilir. 
 
∇𝜃𝑖𝐿(𝜃𝜃𝑖) = 𝐸𝐸𝑠,𝛼,𝑟,𝑠′ �(𝑟 + 𝛾𝛾max

𝛼𝜖𝐴
𝑄𝑄(𝑠𝑠′,𝛼′:𝜃𝜃𝑖−1) − 𝑄𝑄(𝑠𝑠,𝛼: 𝜃𝜃𝑖))∇𝜃𝑖𝑄𝑄(𝑠𝑠,𝛼:𝜃𝜃𝑖)� 

 
 
(74) 

 
Sırasıyla denklem 73 ve denklem 74 kullanılarak derin Q-öğrenmenin algoritması 

oluşturulabilir (Mnih et al, 2015). 

Derin pekiştirmeli öğrenmenin algoritması şekil 31’de verilmiştir. 
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Şekil 31 Derin Q-Öğrenme Algoritması 

11. Derin Deterministik Politika Gradyan Algoritması 

Derin deterministik politika gradyan algoritması, derin politika gradyan ve derin Q-

öğrenme yönteminin birleştirilmesiyle oluşturulmuş bir algoritmadır. Derin Q-

öğrenme algoritması sürekli durum ve birbirinden ayrık aksiyon kümeleri üzerinde 

çalıştığından dolayı sürekli aksiyon uzayına uygulanamaz. Örneğin 7 eklem bölgeli 

bir robot kol ele alındığında, robot kolun eklemlerinin uygulayacağı her bir aksiyon 3 

boyutlu bir çalışma uzayınca 37=2187 olacaktır. Aksiyon alanındaki yapay zeka 

ajanlarının atacağı her adımda aksiyon üstel olarak büyüyecektir. Bundan dolayı da 

aksiyon uzayı çok fazla büyüyecek ve yapay zeka ajanlarının ortamı keşfetmesi 

imkansız hale gelecektir. Ayrıca yapay zeka ajanlarının öğrenme gerçekleştireceği 

uzayı ayrıklaştırdığımızda bu durum bilgi kaybına sebep olacaktır. Bu sebepten 

dolayı derin deterministik politika gradyan algoritması ortaya çıkmıştır. Derin 

deterministik politika gradyan algoritması politika tabanlı bir algoritmadır ve yapay 

zeka ajanlarının aksiyon alacakları ortamda derin öğrenmeden gelen fonksiyon 

yaklaştırıcı yöntemi sayesinde ayrık uzay problemini çözmektedir.  
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Robot kol uygulamalarında, robot kolun eklemleri ve kolun hareket edeceği alan 

değişkeni parametreleri Derin deterministik politika algoritmasına giriş verisi olarak 

eklenecek ve sonuç olarak uygun politika değerleri elde edilecektir (Lillicrap et al., 

2015). 

Standart pekiştirmeli öğrenme fonksiyonu denklem 75’te gösterilmiştir. 
   

𝑄𝑄𝜋(𝑠𝑠𝑡,𝛼𝑡) = 𝐸𝐸[𝑟(𝑠𝑠𝑡,𝛼𝑡) + 𝛾𝛾𝑄𝑄𝜋(𝑠𝑠𝑡+1,𝛼𝑡+1)] 
 

(75) 

Eğer denklem 75’e deterministik politika yöntemi de eklenirse denklem 76 elde 

edilecektir. 

  
𝐿(𝜃𝜃𝑄) = 𝐸𝐸[(𝑄𝑄(𝑠𝑠𝑡,𝛼𝑡:𝜃𝜃𝑄) − 𝛾𝛾𝑡)2] 

𝛾𝛾𝑡 = 𝑟(𝑠𝑠𝑡,𝛼𝑡) + 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡+1,𝜋𝜋(𝑠𝑠𝑡+1):𝜃𝜃𝑄) 
 

(76) 

Denklem 76’a gradyan tabanlı bir güncelleme eklenirse denklem 77’e ulaşılır 
 

∇𝜃𝜋𝐽𝐽 = 𝐸𝐸[∇𝜃𝜋𝑄𝑄(𝑠𝑠,𝛼|𝜃𝜃𝑄)|𝑠𝑠 = 𝑠𝑠𝑡,𝛼 = 𝜋𝜋(𝑠𝑠𝑡|𝜃𝜃𝜋)] 
∇𝜃𝜋𝐽𝐽 = 𝐸𝐸�∇𝜃𝜋𝑄𝑄(𝑠𝑠,𝛼�𝜃𝜃𝑄)|𝑠𝑠 = 𝑠𝑠𝑡,𝛼 = 𝜋𝜋(𝑠𝑠𝑡)∇𝜃𝜋𝜋𝜋(𝑠𝑠𝑡|𝜃𝜃𝜋)|𝑠𝑠 = 𝑠𝑠𝑡� 

 

(77) 

Denklem 77’ aynı zamanda deterministik politika gradyanı algoritmasının 

fonksiyonudur. 

Pekiştirmeli öğrenmeye derin yapay sinir ağları eklendiğinde model oluşturmak ve 

algoritmanın performansını arttırmak için veriler arasındaki korelasyonu en aza 

indirmek gereklidir. Ancak pekiştirmeli öğrenmede yapay zeka ajanlarının topladığı 

veriler arasında yüksek bir korelasyon bulunmaktadır. Bundan dolayı derin Q-

öğrenme yönteminde her iterasyonda oluşturulan bellek alanı aynı şekilde derin 

deterministik politika gradyanı yönteminde de oluşturulmalı ve bu belleklere 

toplanan veriler birbirlerinden bağımsız şekilde seçilip buna göre eğitim 

gerçekleştirilmelidir. 

Derin deterministik politika gradyan algoritması şekil 32’de gösterilmiştir. 
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Şekil 32 Derin Deterministik Politika Gradyanı Algoritması 

C. Federe Öğrenme 

Derin pekiştirmeli öğrenmede, durum özellik alanı küçük ve eğitim verileri sınırlı 

olduğunda yüksek kaliteli politikalar oluşturmak zordur. Derin pekiştirmeli 

öğrenmede önceki transfer öğrenme yaklaşımlarının başarısına rağmen, veri ve/veya 

modellerin gizliliği nedeniyle veri ya da modellerin bir ajandan diğerine doğrudan 

transferine genellikle mahremiyet bilincine sahip birçok uygulamada izin verilmez. 

Bundan dolayı Federe Öğrenme yöntemi ortaya çıkmıştır.  

Bu yöntemde aracılar arasında sınırlı bilgi (yani Q-ağı çıktısı) paylaşarak her aracı 

için özel bir Q-ağ politikası öğrenmeyi amaçlar. Bilgi, başkalarına gönderildiğinde 

“kodlanır” ve başkaları tarafından alındığında “kod çözülür”. Bazı ajanların 

durumlara ve eylemlere karşılık gelen ödülleri olduğunu, diğer ajanların ise ödülleri 

olmadan durumları gözlemlendiği bu yöntemde kabul edilebilir. Ceza olmadan, bu 
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temsilciler kendi bilgilerine dayalı olarak karar yönergeleri oluşturamazlar. Politika 

kararları alırken tüm temsilcilerin bir koalisyona takılmalarından fayda sağlanır.  

Birleşik pekiştirmeli öğrenmenin birçok uygulaması mevcuttur. Örneğin imalatta, bir 

ürünün imalatı, ürünün farklı bileşenlerini üreten farklı fabrikaları içerebilir. 

Fabrikanın karar verme politikası özeldir ve paylaşılmaz. Öte yandan, sınırlı işleri ve 

(bazı fabrikalar için) ücret eksikliği nedeniyle, bireyler için yüksek kaliteli karar 

verme yönergelerini bağımsız olarak geliştirmek genellikle zordur. Bu nedenle 

kişisel verilerin açıklanmaması durumunda karar alma politikalarını federe bir 

şekilde gözden geçirmelerinde fayda vardır. Başka bir örnek, hastaneler için hasta 

bakım politikaları geliştirmektir. Hastalar bazı hastanelerde tedavi edilebiliyor ve 

tedavi hakkında hiçbir zaman geri bildirimde bulunmuyor olabilir, bu da bu 

hastanelerin hastaları tedavi etmek ve hastalar için tedavi kararları vermek için 

ödüllendirilmediğini düşündürür. Ayrıca hasta kayıtları özeldir ve hastane ile 

paylaşılmaz. Bu nedenle, federe düzeyde hastane tedavi politikalarının gözden 

geçirilmesine ihtiyaç vardır. 

Federe derin öğrenme algoritması, küresel bir durumu (veya doğrudan “küresel” bir 

durum oluşturmak için kullanılan alt durumları) gözlemleyen, bireysel eylemleri 

seçen ve ekip ödülleri (veya her ajan, diğer ajanlarla paylaşılan bireysel ödül alır) 

(Mnih et al., 2013). FedRL, acentelere bazı gördüklerini paylaşmamalarını ve bazı 

acentelere ödül almamalarını tavsiye eder. FedRL çerçevesi genel itibariyle, 

gözlemlerin birbirleriyle paylaşılması şartıyla (Cao, 2019), ilgili ancak farklı 

görevlerin veya aracıların öğrenme performansını iyileştirmek için öğrenme 

deneyimini görevlere aktarmayı amaçlayan pekiştirmeli öğrenmede transfer 

öğrenmeden de farklıdır (Liu et al., 2019). FedRL algoritması politikanın aracılar 

arasında paylaşılamayacağını öne sürmektedir. 

Dağıtılmış öğrenme modellerinin amacı, özellikle bilgi işlem gücünün 

paralelleştirilmesi iken, federe öğrenme modellerinin amacı, öncelikle heterojen veri 

kümeleri üzerinde eğitim yapmaktır. Hem dağıtılmış öğrenme modelleri hem de 

federe öğrenme modelleri, modelleri birden çok sunucuda eğitir. Bununla birlikte, 

öğrenme modellerinde genel bir varsayım, yerel veri kümesinin düzgün dağıldığı ve 

sınıfların kabaca aynı büyüklükte olduğudur (Mnih et al., 2015; Duan et al., 2016). 

Buna karşılık, birleşik bir öğrenme modelinde, veri kümesi heterojen olabilir ve 

sınıflar dengesiz olabilir. Bu nedenle, dağıtılmış bir öğrenme modeli durumunda, 

merkezi sunucu tipik olarak yerel istemcilerden toplanan ortalama gradyan 
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güncellemelerinin ortalamasını alır ve daha sonra bunun yerine güncellenmiş modeli 

merkezi sunucudan indirebilir. 

Aktörlerin kendi ağ parametreleri vardır θ. Çalışanlar, çevresel gözlemler göz önüne 

alındığında yapılacak öğrenme görevlerini ve eylemleri gerçekleştirmek için 

katılımcı ağları kullanır. İşçiler, katılımcı ağı tarafından tanımlanan eylemleri 

gönderir ve ortamın bir sonraki durumunu gözlemler. Eylemler sonucunda çalışanlar 

olumlu veya olumsuz ödüller alırlar. Eleştirmenler, eylem ödüllerini ağ parametreleri 

olarak görüyor. Eleştirmen, işçilerle birlikte, aktör tanımlı eylemlerin ortamı daha 

olumlu hale getirip getirmediğini değerlendirmeyi öğrenir ve eleştirmenin geri 

bildirimi, oyuncuyu optimize etmek için kullanılır. 

FedRL çerçevesi üç aşamada çalışmaktadır. İlk olarak, her ajan Gauss farklılaşması 

kullanılarak “karşılaştırılan” diğer ajanlardan Q ağlarının çıktı değerlerini toplar. 

Ayrıca, Q ağının global çıktısını hesaplamak için yerel Q ağı çıkışını ve şifrelenmiş 

değerleri girdi olarak alan MLP (multilayer perceptron) gibi paylaşılan bir değer ağı 

oluşturur. Son olarak, global Q-ağının çıktısına dayalı olarak paylaşılan değer ağını 

ve kendi Q-ağını günceller. MLP’nin aracı tarafından paylaşıldığını ve aracının kendi 

Q-ağının başkaları tarafından bilinmediğini ve eğitim sırasında paylaşılan şifreli Q-

ağının çıktısından türetilmemesi gerekmektedir. 

Markov karar süreci daha önceki maddelerde de bahsedildiği gibi (S,A,T,r) şeklinde 

tanımlanabilir. Burada S durum uzayını, A aksiyon uzayını, T ise geçiş fonksiyonunu 

temsil etmektedir.  S x A →  S, i.e., T(s,a, s’) = P (s’ | s, a), durum uzayı için geçerli 

olan, sonraki durum olasılığını belirtir, s’∈ S mevcut durumunu belirtir. r, ödül 

fonksiyonu ve S  → R, burada R gerçek sayıların alanıdır. π eldeki politikayı temsil 

eder. Ve V π (s) fonksiyonu ve t + 1 adımındaki Q-fonksiyonu aşağıdaki denklemler 

ile güncellenebilir: 

𝑉𝑉𝑡+1𝜋 (𝑠𝑠) = 𝑟(𝑠𝑠) + �𝑇𝑇(𝑠𝑠,𝜋𝜋(𝑠𝑠), 𝑠𝑠′)𝑉𝑉𝑡𝜋(𝑠𝑠′)
𝑠′∈𝑆

, 

 

(78) 

Ve  
𝑄𝑄𝑡+1𝜋 (𝑠𝑠,𝑎𝑎) = 𝑟(𝑠𝑠) + �𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)𝑉𝑉𝑡𝜋(𝑠𝑠′),

𝑠′∈𝑆

 (79) 

Burada t ∈ {0,...,K − 1} koşulu sağlanmalıdır. Markov sürecinin çözümü π∗ en iyi 

politika ile V π* (s) = maxπ V π(s)  ya da Qπ*(s, π*(s)) = maxπ Qπ(s, π(s)) şeklinde 

olacaktır. Ancak derin öğrenmede geçiş türevi T bilinmediğinden dolayı Q-ağı 
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Q(s, a; θ)  fonksiyonu ile güncellenir ve burada θ parametresi ağın parametresini 

temsil etmektedir. Aşağıdaki denklem ile güncellenir:  

 
𝑄𝑄𝑡+1(𝑠𝑠,𝑎𝑎;𝜃𝜃) = 𝐸𝐸𝑠′ �𝛾𝛾 max𝑎′∈𝐴

𝑄𝑄𝑡(𝑠𝑠′,𝑎𝑎′;𝜃𝜃)|𝑠𝑠, 𝑎𝑎� 
 

(80) 

 
Çalışmada araştırmacılar tarafından yapıldığı gibi, θ parametrelerini öğrenmenin 

bir yolu (s,a, s’, r) geçişlerini yeniden yürütme belleklerinde Ω depolamak ve θ’yı 

tekrar tekrar güncellemek için bir toplu örneklemden yararlanmaktır (Smart ve 

Kaelbling, 2002). Θ bir kez öğrenildiğinde π∗ ilkesi Q(s, a; θ) ‘ den çıkarılabilir.  

 
𝜋𝜋∗(𝑠𝑠) = 𝑎𝑎𝑟𝑔𝑔max

𝑎∈𝐴
𝑄𝑄 (𝑠𝑠,𝑎𝑎;𝜃𝜃) 

 
(81) 

 
Federe derin pekiştirmeli öğrenme problemi şu şekilde tanımlanır:  

Dα  = {( sα , aα , s′α , rα )} ajan a tarafından toplanan durum ve eylem çiftleri Dβ = 

{( sβ,aβ )} ajan β tarafından toplanan durum ve eylem çiftleri. πα* ve πβ*  

politikalarının federatif olarak oluşturulmasını amaçlıyoruz.  

Birleşik derin pekiştirmeli öğrenme probleminde aşağıdaki maddeler 

varsayılmaktadır. 

A1: sα  ve sβ  durumlarının özellik uzayları, α ve β ajanları arasında farklıdır. 

Örneğin, bir sα durumu, bir hastanın α hastanesindeki kardiyogramını belirtirken, 

başka bir  sβ durumu, aynı hastanın β hastanesindeki elektroensefalogramını 

belirtir ve sα  ve sβ  ‘nin özellik uzaylarının farklı olduğunu gösterir. 

A2: Dα  ve Dβ  geçişleri, kendi modellerini öğrenirken α ve β arasında doğrudan 

paylaşılamaz. Bununla birlikte, Dα  ve Dβ  geçişler arasındaki yazışmalar birbirleri 

tarafından bilinmektedir. Başka bir deyişle ajan α, ajan β’a bir geçişin ID’sini 

gönderebilir ve ajan β, Dβ‘de karşılık gelen geçişi bulmak için bu ID’i kullanabilir. 

Örneğin, hastanede ID belirli bir hastaya karşılık gelebilir. 

A3: Qα ve Qβ  işlevlerinin çıktıları, bazı gizlilik koruma mekanizmaları tarafından 

korunmaları koşuluyla birbirleriyle paylaşılabilir 

A1,2,3 maddelerine dayanarak, veri ve modellerin gizliliğini koruyarak tüm ajanlar 

için yüksek kaliteli politikaları öğretme amaçlanmaktadır. 

MLP ile birleştirilmiş federe Q-ağının fonksiyonu aşağıdaki gibidir. 
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𝑄𝑄𝑓𝑎�. ,𝐶𝛽;𝜃𝜃𝑎 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝑄𝑄�𝑎(. ;𝜃𝜃𝑎)�𝐶𝛽�;𝜃𝜃𝑔) 
𝑄𝑄𝑓
𝛽�. ,𝐶𝑎;𝜃𝜃𝛽 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝐶𝑎�𝑄𝑄�𝛽�. ;𝜃𝜃𝛽��;𝜃𝜃𝑔) 

 

(82) 

Burada θg MLP’nin parametreleridir ve [.|.] birleştirme işlemini gösterir. Bir 

MLP’nin parametreleri aracılar arasında paylaştırılabilir. MLP güncellendiğinde 

güncellenen parametreler diğer aracılarla paylaştırılır. 

Ajanlar ile ilgili olarak, aşağıda gösterildiği gibi, kendi temel Q-ağını güncellerken 

diğer ajanın temel Q-ağını (Gauss gürültüsü ile) sabit olarak görüntüleyerek her 

ajanın birleşik Q ağları tanımlanır.  

 
𝑄𝑄𝑓𝑎�. ,𝐶𝛽;𝜃𝜃𝑎 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝑄𝑄�𝑎(. ;𝜃𝜃𝑎)�𝐶𝛽�;𝜃𝜃𝑔) 
𝑄𝑄𝑓
𝛽�. ,𝐶𝑎;𝜃𝜃𝛽 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝐶𝑎�𝑄𝑄�𝛽�. ;𝜃𝜃𝛽��;𝜃𝜃𝑔) 

 

(83) 

Burada Cα = Qˆα(sα,aα;θα) ve Cβ = Qˆβ(sβ,aβ;θβ)  fonksiyonları sırasıyla ajan β’ 

nin Q-ağı ve ajan α’nın Q-ağı güncellerken sabittir. 

Ajan α ve ajan β nin Q-ağlarının kare hata kaybı Ljα(θα,θg)  ve Lj
β(θβ,θg) 

fonksiyonları minimize edilerek eğitilir. Ve son olarak aşağıdaki denklemlere 

ulaşılır  

𝐿𝑎
𝑗 �𝜃𝜃𝑎 ,𝜃𝜃𝑔� = 𝐸𝐸�(𝑌𝑌𝑗 − 𝑄𝑄𝑗𝑎(𝑠𝑠𝑎

𝑗,𝑎𝑎𝑎
𝑗 ,𝐶𝛽;𝜃𝜃𝑎 ,𝜃𝜃𝑔))2� 

𝐿𝛽
𝑗 �𝜃𝜃𝛽 ,𝜃𝜃𝑔� = 𝐸𝐸 �(𝑌𝑌𝑗 − 𝑄𝑄𝑓

𝛽(𝑠𝑠𝛽
𝑗 ,𝑎𝑎𝛽

𝑗 ,𝐶𝑎;𝜃𝜃𝛽 ,𝜃𝜃𝑔))2� 
 

(84) 

Federe öğrenmenin basit bir algoritması şekil 33 ve 34’te gösterilmiştir. 
 
ALGORİTMA: Federe Derin Öğrenme Algoritması [Sunucu] 
1 : Başla w0 
2 : for her t = 0,1,.. do 
3 :  M ← max ( [C . K], 1) 
4 :  St = rastgele m katılımcı ayarla 
5 :  for katılımcı için k ∈ St in parallel do 
6 :   𝑤𝑤𝑡+1

𝑘  = Yerel Güncelle (k, wt) 
7 :  wt+1 = ∑ 𝑛𝑘

𝑛𝜎𝑘∈𝑆𝑡  𝑤𝑤𝑡+1
𝑘 ,     𝑛𝑛𝜎 =  ∑ 𝑛𝑛𝑘𝑘𝑘 ∈𝑆𝑡      

Şekil 34 Kullanılacak Federe Derin Öğrenme Algoritması Sözde Kodu (Sunucu) 
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ALGORİTMA: Federe Derin Öğrenme Algoritması [Yerel] 
1 
2 
3 
4 
5 

: 
: 
: 
: 
: 

B = yerel minibatch boyutu 
m = yerel katılımcı sayısı 
E = eğitim turu 
n = öğrenme oranı 
Başla 

6 
7 
8 

: 
: 
: 

w0 ← rastgele başlatma 
{iletişim boyunca} 
for t = 1,..,T,… do 

9 
10 
11 

: 
: 
: 

 St ← (rastgele alt küme – max (C x K,1) katılımcı) 
{her katılımcı için yerel optimizasyon} 
for katılımcı k ∈ St do 

 

12 
13 

: 
: 

  yerel ağırlıkları başlat: wt,k ← wt-1 
for epoch e ∈ [1,E] do 

14 
 
15 

: 
 
: 

   Yerel verileri böl, B( 𝐵
𝑛𝑘

 B yığınları) 
for yığın b ∈ B do 

  

16 :     wt,k ← wt-k – nlocal ∆l (wt-k ; b)   
17 :    end for  
18 :   end for   
19 :  end for   
20 :  {Merkezi Ortalama}   
21 :  wt ∑

𝑛𝑘
𝑛𝑘∈𝑆𝑡  wt,k   

22 : end for     

Şekil 33 Kullanılacak Federe Derin Öğrenme Algoritmasının Sözde Kodu (Yerel) 
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III. ROBOTLARDA PEKİŞTİRMELİ ÖĞRENME 

Pekiştirmeli öğrenmeye göre, gelişen ve öğrenen robot sistemi, harekete geçerken ve 

karar alırken her zaman ortam ile etkileşim içerisindedir. Öğrenme yeteneği olan 

robot etkenleri anlayıp analiz ederek, en iyi eylemi seçmek için çalışır. Bu robotun 

analiz yeteneğine örnek olarak düşünülebilir. Bu işlemleri gerçekleştirirken her 

seferinde bulunduğu ortamdan deneme yanılma adı verilen iyi ve kötü dönüşler alır. 

Bu şekilde robot, en iyi sonuca ulaşmış olur. Bununla birlikte gerçek dünyadaki 

pekiştirmeli öğrenmenin uygulamaları, genellikle öğrenme yönteminin kendisinin 

ötesinde önemli teknik gelişmeler gerektirmektedir: fiziksel donanım için pratik olan 

öğrenme sürelerini de elde etmek için politika ya da değer işlevi için uygun bir temsil 

seçilmelidir (Bicchi, 1995; Platt, 2007). Ancak gerçek dünyadaki robotik 

çalışmalarına derin pekiştirmeli öğrenme yöntemlerinin uygulanmasındaki temel 

zorluklardan birisi de yüksek örnek karmaşıklığı olmuştur (Bicchi, 1995; Stulp et al., 

2011) 

Bu öğrenme yönteminde ortamın özellikleri robota tanımlanmalıdır. Deneme 

yanılmadan alınan sonuçlar performansı ölçümlemek için kullanılır. Bu ölçümleri 

etkileyen tüm değişkenler ortam olarak düşünülebilir (Russel and Norvig, 1995). 

Bu robotlar her seferinde yeni şeyler öğrenmeyebilir. Bunun yerine geçmiş bilgilerini 

de kullanabilir. Bunlar kompleks olabileceği gibi basit şeyler de olabilir. Öğrenebilen 

robotun hedefe giderken geçmiş tecrübelerinden faydalanıp faydalanmayacağını ya 

da yeni olasılıklar bulup bulamayacağını yapılan plan belirler. Ortam ile öğrenebilen 

robot arasında yaygın kabul edilen ilişkiler şekilde gösterilmiştir (Kulkarni, 2012). 

Bir robotun öğrenebilen rasyonel robot sayılabilmesi için, ortamdaki karmaşık 

problemleri tespit edip onları çözebilmesi gerekmektedir. Bu robotların sahip olması 

gereken özellikler de şöyle sıralanabilir: 

1. Sürekli veya belirli aralıklarla ortamlardan veri toplamalı 

2. Tek başına karar almalı ve bu kararları uygulayabilmeli 

3. Farklı bilgileri bir araya getirerek, tekil bilgilerle daha geniş bir bilgi havuzu 

oluşturabilmeli. 
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4. Sürekli öğrenme yeteneği olmalı 

5. Daha önce edindiği tecrübelerle yeni bilgiler edinebilmeli. 

Eğer ortamda sürekli bir değişim varsa, sensörlerden alınan veriler yeterli değilse ya 

da yeterli olsa bile temiz ve anlaşılabilir değilse, robot için durum karmaşıklaşabilir. 

Bu durumlarda robot inisiyatif almalı ve geçmiş tecrübelerinden de yola çıkarak 

gerekirse bulunduğu eylemleri ödül ve ceza deneyimlerinin arasına katabilmelidir. 

Bu şekilde esnek hareketlerde bulunmak için robotta şu özellikler olmalıdır: 

1. Responsive olmalıdır. Elde ettiği datalara göre olaylara zamanında cevap 

verebilmelidir. 

2. Proactive, yani önsezili olmalıdır. Ansızın gerçekleşen çevresel konulardaki 

fırsatları görebilmeli ve uygun eylemi seçmelidir. 

3. Bulunduğu ortamdaki diğer robotlarla ve kişilerle etki tepki ilişkilerine 

girebilmeli, yani sosyal olmalıdır. 

 

Şekil 35 Akıllı Robot Ortam İlişkisi 

A. Öğrenen Robotlar 

Daha önce de anlatıldığı gibi bir robotun akıllı olarak sınıflandırabilmesi için, tek 

başına değişken ortamlarda eyleme geçilmesi ve karar verebilmesi gerekliliği 

bulunur. Robotun geçmiş tecrübelerinden edindiği veriler, çıkarım yapmaya ve doğru 

hedefe ulaşmasına yeterli olmayabilir. Yani robotlar her karardan sonra kendini 

geliştirmelidir ve bu değişken ortamlarda mantıklı karar alması sağlanmalıdır.  
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Bizim dünyamızdaki öğretmen eşliğindeki öğrenme, robotlar için gözetimli 

öğrenmeye karşılık gelmektedir. Bu sebeple robotlar tahmini modeller 

geliştirebilmelidir. Bu tahminler çıktıların eylemlerle olan ilişkilerine, rakiplerin 

verebileceği tepkilerin tahminlerine dayanır. Öğrenebilen bu robotlar bazen de 

rastgele hareketler yapmak durumunda kalır. Ancak bu eylemler rastgele olsa da 

sonucuna göre ödül ve ceza datalarının incelenebilir olması gerekir.  

 

Şekil 36 Akıllı Robot Öğrenme Süreci 

 

Robotların dünyasında da tıpkı bizim dünyamızda olduğu gibi ödül ve ceza eylem 

tamamlandıktan sonra gelmektedir. Ve yine tıpkı bizde olduğu gibi kararın 

haklılığını ölçmek için çok önemlidirler. Çünkü bu sayede robot verilen kararlarda 

değişim gerekip gerekmediğini değerlendirir ve eylemlerine bu şekilde devam eder. 

Robotun toplam ödülünün en yüksek seviyeye ulaşabilmesi için periyodik ödüller 

önemlidir. Süreç içerisinde ödül gelmezse, robot tahminlere dayalı bir şekilde 

maksimum ödüle ulaşmaya çalışacaktır. 
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Şekil 37 Ödülün Ortamdan Durum-Eylem İkilisi Sonrası Nasıl Geldiğinin İlişkisi 

 

Öğrenebilen robotlar, her zaman maksimum ödülü hedefler. Ödülleri bazen belirli 

periyodlarla bazen de asıl hedefe ulaştığında elde eder. Ödülü belirten denklem 

85’deki gibidir. 

 

RT = rt−1 +rt−2 +rt−3 +...+rT  

 

 

(85) 

Ortam ile robot arasında bulunan ilişkiyi incelersek, ödül ve eylemlerden sonra elde 

edilen sonuçlar farklı olacaktır. Sürekli görevlerde kısımlara ayırmak zor olabilir ama 

periyodik görevlerde bu çok daha kolay olacaktır. Toplam ödül de bu süreçte alınmış 

ödüllerin hepsinin bir araya gelmesinden oluşacaktır. 

B. Robotlarda Eylem Seçim Metodları 

Pekiştirmeli öğrenme türünün diğer türlerden en büyük ayrıştığı nokta, ödül ve 

cezaların talimat olması değil de yorumlanabilmesi ve geçmişteki, gelecekteki 

pozisyonlara göre şekillenmesidir. Bu şekilde tutarlı bir araştırma mümkün 

olmaktadır (Sutton ve Barto, 2018). Sadece iyi ve kötü davranış olarak 

tanımlanmaktan ziyade bu değerlendirmenin sonucunda optimizasyon temelli veriler 

elde edilir. Başka bir yandan da gözetimli öğrenme türü çok önemli bir yöntemdir. 

Bu yöntemde ödüller değil de hareketler ve onların sonuçları belirlenir ve aralarında 

ilişki kurulur. 
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Durum ve eylem arasındaki ilişkiyi anlamak için, araştırma ve faydalanma iyi 

dengelenmelidir. Bunu dengelemek için de seçim metodu ve değişkenler iyi 

belirlenmelidir. Eğer robot sürekli faydalanmaya çalışırsa, yani sürekli aynı yolu 

seçmeye başlarsa daha hedef için iyi bir yol olsa da robot bunu görmezden gelecektir 

ya da ödüller düşükse robot bu yola girmez ve hiçbir zaman istenilen sonuç 

alınamayabilir. Ancak robot sürekli gelişir ve tek bir yola sadık kalmazsa, ilerleme 

ve öğrenme mümkün olmaz. İşte bu sebeple araştırma ve faydalanma iyi 

dengelenmelidir. 
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IV. İLGİLİ ÇALIŞMALAR 

Bu bölümde pekiştirmeli öğrenme, federe öğrenme, robot kollarının cisimlerin 

tutulabilirliğini öğrenmesi konusunda sunulan farklı çalışmalar incelenecektir. 

Çalışmada araştırmacılar, bir robot kolunun hareket planlama ve hareket kontrolü, iki 

robot kol arasındaki iş birliği ve bir robot kolunun uzaktan kontrolü gibi hizmetler 

için Mobil Uç Bulutu (MEC) algoritmasını önermişlerdir (Tsokalo et al., 2019). İki 

robot kolunun iş birliği kullanım durumu, üretim hattındaki karşılıklı çalışma 

konusunda birden fazla robot kolu arasındaki iş birliğine ilişkin bir tahminde 

bulunmuşlardır. Çalışmada araştırmacılar otomobil endüstrisinde algılama, kontrol 

ve üretim için yeni mi al ve yerleştir robotu önermişlerdir (Smys and Ranganathan, 

2019). Alma ve yerleştirme robotları, çeşitli endüstrilerde montaj, paketleme, kutu 

paketleme ve denetimde kullanılmaktadır.  

Robotik öğrenmede, dinamik sistemlere dayalı motor ilkeleri (Schaal et al., 2007; 

Ijspeert et al., 2002) hem taklit hem de pekiştirmeli öğrenme yoluyla yeni 

davranışların hızlı ve güvenilir bir şekilde kazanmasına izin vermektedir. Örnekler 

etkileyici olsa da görevi yeniden öğrenmeden bir motor ilkelinin deneme yanılma 

yoluyla farklı bir davranışa nasıl genelleştirilebileceğini ele almamışlardır. Örneğin 

bir fincanda top (Kober and Peters, 2011) hareketinde ip uzunluğu değiştirilmişse, 

hareket parametreleri de değiştirilecek ve davranış yeniden öğrenilmelidir. Birkaç 

santimetrelik bir dizi uzunluğu varyasyonları nedeniyle davranışın büyük miktarda 

değişmeyeceği göz önüne alındığında, öğrenilen davranışı değiştirilmiş göreve 

genellemek daha iyi olacaktır. Davranışların bu tür genelleştirilmesi, hareket 

temsilinin meta-parametrelerinin uyarlanmasıyla başarılabilir. 

Takviyeli öğrenmede, görevler arasında genelleme yapmak için meta-parametreleri 

kullanmaya yönelik birçok girişimde bulunulmuştur (Caruana, 1997). Özellikle, 

şebeke dünyası etki alanlarında, politikaların meta-parametrelerini değiştirerek ve 

ayarlayarak önemli bir hızlanma elde edilebilir (McGovern and Barto, 2001). 

Robotikte, bu tür meta-parametre öğrenimi, yüksek boyutlu durumlar ve eylenmeler 

karmaşık motor beceriler için pekiştirmeli öğrenmenin karmaşıklığı nedeniyle yararlı 

olabilir.  
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Araştırmacılar bu (Gu et al, 2017) çalışmada, politika dışı derin Q-öğrenme 

ölçeklerine dayanan yeni bir derin pekiştirmeli öğrenme algoritmasının karmaşık 3B 

manipülasyon problemlerine ölçeklendiğini ve derin sinir ağı stratejilerinin öğrenme 

için çok etkili bir şekilde kullanıldığını ve gerçek fiziksel dünya üzerinde 

geliştirilebileceğini göstermektedirler. İlke güncellemelerini eş zamansız olarak 

toplayan birden çok robotta algılamayı paralel hale getirmişler ve bu sayede eğitim 

süresini de azaltılabileceğini vadetmişlerdir. Çalışmada araştırmacılar yöntemlerinin 

simülasyonda çeşitli 3B manipülasyon yeteneklerinin yanı sıra gerçek robotlarda ön 

izleme ve elle oluşturma olmadan kapı açma yeteneği kazandırılabileceğini 

gösterdiğini iddia etmektedirler. Bu makalenin ana katkısı, bir robotik küme üzerinde 

paralel NAF algoritmalarını kullanarak asenkron derin pekiştirmeli öğrenmeyi 

göstermektir. Araştırmacıların gerçekleştirdiği önceki çalışmada (Levine et al., 2016) 

model tabanlı pekiştirmeli öğrenme ve model tabanlı olmayan pekiştirmeli öğrenme 

yaklaşımlarını incelemişlerdir. Model tabanlı algoritmalar, Gauss süreçleri 

(Deisenroth and Rasmussen, 2011), karışım modelleri (Moldovan et al., 2015) ve 

yerel doğrusal öğrenme algoritmalarını (Lioutikov et al., 2014) incelemişlerdir. Derin 

sinir ağı stratejileri, model tabanlı yöntemler tarafından derin ağ stratejilerini 

öğrenmek için kullanılan yönetimli politika arama algoritması (Levine et al., 2016) 

bağlamında model tabanlı öğrenme ile birleştirilir. Bu tür yöntemlerin bir dizi gerçek 

dünya probleminde başarılı olduğu ve yüksek öğrenme verimliliği sağladığı 

gösterilmiştir. Derin pekiştirmeli öğrenmede simülasyon deneylerini hızlandırmak 

için paralel öğrenme yöntemi de önerilmiştir (Mnih et al., 2016). Birden fazla 

robotun deneyimlerini birleştirerek robotik öğrenmeyi hızlandırmak için de çeşitli 

araştırmacılar çalışmalarını sunmuşlardır (Inaba et al., 2000; Kuffner, 2010; Kehoe et 

al., 2013; Kehoe et al., 2015). Ters kinematik problemleri çözmek için uyarlamalı 

öğrenme algoritmalarının kullanıldığı bir çalışma yapılmıştır (Hasan et al., 2006). Bu 

çalışmada uçakta kullanılabilecek ve konum kontrolü yapabilen bir manipülatör 

geliştirilmiştir. Başka bir çalışmada 6 eklem bölgeli çift kollu mobil robot H20’nin 

konum kontrolü ve farklı özelliklere sahip kavrayıcı uçlarının tasarımını 

gerçekleştirmişlerdir (Mohammed et al., 2016). Bulanık mantık tabanlı kontrol 

algoritmalarını destekleyen bir çalışmada, bir robotik kola bulanık mantık 

tahminlerine dayalı genelleştirilmiş bir kontrol yapısı uygulamışlardır (Cronin et al, 

2014). Benzer bir çalışma da 2 eklem bölgeli robot kol için bulanık mantık tabanlı bir 
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kontrol yapısı geliştirilmiş olsa, bu yapının kayma ve PID kontrol yapısını araştırmak 

amacıyla karşılaştırmalı bir makale de sunulmuştur (Lochan and Roy, 2014). 

Son on yılda, robotikte pekiştirmeli öğrenme uygulaması istikrarlı bir şekilde 

artmıştır. Schaal (1997) bir robotu ters kinematik polarite dengesi görevinde 

(göstererek öğrenme) eğitmek için pekiştirmeli öğrenmeyi kullanmıştır. Daha yakın 

zamanlarda Bhatnagar, Sutton, Gavamzade ve Lee (2009) bu çalışmanın devamını 

sunmuşlardır. Theodorou, Peters ve Schaal (2007), el hareketlerinin kontrolünü 

optimize etmek için pekiştirmeli öğrenmeyi kullanmışlar. Peters ve Schaal (2008), 

robotikte Doğal Aktör Kritik (NAC) algoritmasını sunmuşlardır. Buchli, Thedorou, 

Stulp ve Schaal (2010), değişken empedans kontrol döngüleri için bir yol 

entegrasyon yöntemi kullanarak politika tabanlı bir pekiştirme öğrenme yaklaşımını 

önermişlerdir. Ancak önerilen şemanın etkinliği sadece simülasyonlarda 

gösterilmektedir. Aktör ve eleştirmen tabanlı robotlar için pekiştirmeli öğrenme 

hakkında daha fazla bilgi grubun diğer çalışmalarında da bulunabilir (Atkeson and 

Schaal, 1997; Hoffmann et al., 2012). Daha yakın zamanda, Theodorou, Buchli ve 

Schaal (2010) yol integrallerini kullanarak kılavuz tabanlı pekiştirmeli öğrenmeyi 

robot bir köpek üzerinde test etmişlerdir (Kappen, 2005). Digney ve June (1996), 

robot-çevre etkileşimi için iç içe bir Q-öğrenme algoritması önermişlerdir. Kuan ve 

diğerleri (1998), sağlam kayan mod empedans kontrolü ile uyumluluk sorunlarını ele 

almak için bir pekiştirmeli öğrenme mekanizması önermişlerdir ve bu yaklaşımı 

simülasyonda test etmişlerdir. Çalışmaları, farklı adaptasyon görevlerindeki 

farklılıkları hesaba katmak için pekiştirmeli öğrenme algoritmalarını kullanmaktadır. 

Bucak ve Zohdy (1999; 2001), tek bağlantılı ve çift bağlantılı robotlar için bir 

pekiştirmeli öğrenme yaklaşımı kontrol şeması önermişlerdir. Gaskett (2002) robot 

kontrolü için Q-öğrenme üzerine çalışmıştır. Smart ve Kaelbling (2002), mobil 

robotlarda gezinme görevleri için pekiştirmeli öğrenmeyi kullanmıştır. Izawa, Kondo 

ve Ito (2004), robotik bir kolun iki eklemli ve altı paketli kas-iskelet kolunu en iyi 

şekilde kontrol etmek için bir pekiştirmeli öğrenme yaklaşımı olan aktör kritik 

metodu uygulamışlardır. Shah ve Gopal (2009), güvenli olmayan koşullar altında 

robotik kolların pekiştirmeli öğrenme kontrolünü önermişlerdir. Kim, Park ve Kang 

(2008; 2010) çevre ile etkileşime girerek farklı durumlara uygun çözümler bulmak 

için pekiştirmeli öğrenme yöntemlerini kullanmışlardır. Riedmiller, Gabel, Hafner ve 

Lange (2009), robotik futbol oynamak için toplu pekiştirmeli öğrenmeyi 

kullanmışlardır. Bu çalışmada değer fonksiyonuna yaklaşmak için bir patlama modu 
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yapısı kullanarak çok katmanlı bir algılayıcı kullanmışlardır. Adam, Busoniou ve 

Babushka (2012) tarafından yapılan çalışmada Q-öğrenme yöntemlerinin deneysel 

uygulamasını ve Sarsa örnek tekrarını robotik kaleci ve ters sarkaç örneklerine 

uygulamışlardır. Stingu ve Lewis (2011), bir quadcopter kullanarak insansız hava 

aracı (İHA) kullanarak rotayı simüle etmişlerdir. Q-fonksiyonu ve kontrol 

politikasını modellemek için Sarangapani’nin (2006) çalışmasına dayanan radyal 

tabanlı fonksiyon sinir ağlarını kullanmışlardır. Araştırmacılar, yararlı öğrenme 

sonuçları elde etmek için konvolüsyonel sinir ağları (CNN’ler) kullanarak ham piksel 

girişlerinden kontrol politikalarını öğrenmek için model tabanlı olmayan bir 

algoritma olan Q-öğrenme yöntemini kullanan bir algoritma göstermişlerdir (Mnih et 

al., 2013). Çalışmada yeni farklı atari 2600 oyunuyla ortaya koydukları algoritmayı 

test etmişler ve çalışmaları altı oyunda insan oyuncuyu geçmiştir. Daha yakın 

zamanlarda araştırmacılar kavram kanıtlamada yakın politika optimizasyonundan 

daha iyi performans gösteren hiyerarşik eleştiri adlı bir algoritma önermişlerdir (Cao, 

2019). Son zamanlarda, hassas kontrol ve doğru sonuçlar gerektiren oyunlara, 

robotlara ve otonom sürüşe pekiştirmeli öğrenme uygulanmıştır (Sutton and Barto, 

1998; Silver et al., 2016; Mnih, 2015; Duan ve diğerleri, 2016; Li ve diğerleri, 2018). 

Araştırmacılar etkileşimi araştırmak ve ajanlar arasındaki öğrenmeyi paylaşmak için 

pek çok etmenli ortamda pekiştirmeli öğrenme uygulamışlardır (Tampuu et al, 2017). 

Çalışmada araştırmacılar, verileri veya bilgileri doğrudan aktarmadan, diğer ajanların 

yardımıyla her ajan için bir Q-öğrenme ağı oluşturularak veri ve modellerin gizlilik 

gereksinimleri göz önünde bulundurularak federe bir pekiştirmeli öğrenme yaklaşımı 

önerilmiştir (Zhuo et al., 2019). Bir ajandan başka bir ajana geçiş çalışmada (Liu et 

al., 2019) bulut robotlarının navigasyon yardımı için bulutta konuşlandırılmış 

paylaşılan bir modeli geliştirmek için evrimsel transfer öğrenmeli bir bilgi füzyon 

algoritması olarak yaşam boyu birleşik pekiştirmeli öğrenme algoritması 

önermişlerdir. Bonawitz ve ark. (2019) federasyon sürecini tanımladı ve 2019 yılında 

federasyon politikası için bir federasyon sistemi protokolü tasarladı. Federasyon 

politikası, her dağıtılmış cihazdaki yerel verileri kullanarak eğitimi gerçekleştirir ve 

hesaplanan gradyan veya eğitim modelini merkezi sunucuya gönderir. Zhuo ve ark. 

(2019), bir federasyon politikası kullanarak her ajan için bir Q-öğrenme ağını 

kullanarak yeni bir pekiştirmeli öğrenme algoritması önermişlerdir. Her aracı, yerel 

verileri kullanarak kendi Q-öğrenme ağını kullanarak optimal bir Q değeri hesaplar. 

Çalışmada araştırmacılar federe öğrenmeyi denetimli makine öğrenimi teknikleri 
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üzerinden gerçekleştirmişlerdir (McMahan et al., 2016). Çalışmada birleşik öğrenme, 

temel kullanıcı verilerine doğrudan erişim olmaksızın sanal klavye arama öneri 

kalitesini iyileştirmek için bir modeli eğitmek, değerlendirmek ve dağıtmak için 

ticari, küresel ölçekli bir ortamda kullanmışlardır (Yang et al., 2018). Denetlenen 

sınıflandırma görevleri için birleştirilmiş öğrenmenin daha fazla uygulaması (Khan et 

al., 2012; Chen et al., 2018; Zhou et al., 2018; Smith et al., 2017)’de bulunabilir. 

Stokastik gradyan iniş (SGD) algoritmasının çeşitli dağıtılmış versiyonu çalışmada 

önerilmiştir (De and Goldstein, 2016; Chen et al., 2016). Çalışmada yazarlar, istemci 

modellerinin yanı sıra paylaşılan modeli tek bir büyük Q-öğrenme ağı olarak ele 

almışlar ve Bellman denklemini kullanarak optimize etmişlerdir (Zhuo et al., 2019). 

Ancak bu çalışmada, istemcilerin her birine ayrı Q-öğrenmesi vardır ve paylaşılan 

model parametrelerine bir federasyon politikası karar verir. Çalışmada yazarlar, 

mevcut çalışmada bir federasyon politikası model birleştirme yöntemi belirlerken, 

üretici ağlara dayalı bilgi birleştirme algoritmasını kullanmışlardır (Liu et al., 2019). 

McMahan ve ark. (2016), geleneksel gradyan iniş güncellemelerini uygulamak 

yerine istemci cihazlardan model ağırlıklarının ortalamasını almak için gereken 

iletişim turlarının sayısını azaltmayı amaçlayan birleşik ortalama (FEDAVG) 

algoritmasını sunmuşlardır. FEDAVG, etkinliğini test etmek için büyük ölçekli bir 

sistemde (Bonawitz et al., 2019) çalışmasında kullanılmıştır.  
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V. YÖNTEM 

Çalışmanın bu bölümünde ortaya konulan algoritmalar ve bu algoritmanın 

uygulanabilirliği ve uygulama sonuçlarının analizi ve değerlendirilmesi hakkında 

bilgiler verilecektir. 

Söz konusu çalışma daha öncesinde çok fazla odaklanılmamış bir alan ve yeni ortaya 

çıkmış bir alanı birleştirecektir. Hali hazırdaki bu çalışmada robot kollarının (Şekil 

38) federe derin öğrenme ve federe derin pekiştirmeli öğrenme algoritmalarıyla 

belirli cisimleri tutmaya çalışması üzerinedir. Federe derin öğrenme ile robot 

kollarının belirli cisimleri tutabilirliğinin ölçümü sadece federe derin pekiştirmeli 

öğrenme yönteminin sonuçlarının tutarlı olup olmadığı konusunda test merci olarak 

bulunmaktadır. Buradaki amaç elde tutma verileri olmadığı durumlarda yapılacak 

olan çalışmalara öncü olmaktır. Federe derin öğrenme ile yapılan çalışmada veriler 

Kaggle.com (https://www.kaggle.com/datasets/ugocupcic/grasping-dataset) adlı 

siteden alınmıştır. Eldeki veride 3 kol eklem bölgeli ve 3 parmaklı tutma ucu olan ve 

bu tutma ucundaki parmakların da 3 eklem bölgesi bulunmaktadır. Algoritma Python 

dilinde yazılmıştır ve Intel(R) Xeon (R) Gold 5218R CPU ile Windows Server 

üzerinden gerçekleştirilmiştir.  

 
Şekil 38 Örnek Bir Robot Kol 
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Çalışmanın kaynak kodları çalışmanın geçerli olması durumunda açık kaynak olarak 

Github.com adlı sitede çalışma ismi ile yayınlanacaktır. 

Bilindiği üzere federe öğrenme birden fazla sistemin aynı anda öğrenmesini 

amaçlamaktadır. Bu sebeple çalışma 3 robot kolun birlikte eğitilmesi üzerine 

odaklanmıştır. Robotların tutabilirliğini federe derin öğrenme ile öğrenmesi 

algoritması yukarıda daha önce açıklanan sistemde en iyi öğrenme yönteminin ve en 

iyi ağın bulunması konusunda çalıştırılmıştır. Yapılan değerlendirmeler sonucunda 

en iyi ağın 18 girdi nöronlu (18 hareket noktası olduğundan dolayı), ve 3 tane 18x18 

nöronlu gizli katman ve 1 tane 18 nöronlu gizli katman ve çıktı katmanı olarak da 1 

nöronlu bir katman olduğu görülmüştür. Çıktı katmanının aktivasyon fonksiyonu 

‘sigmoid’, kayıp fonksiyonu ‘binary crossentropy’ (tek bir çıktı olduğundan), 

optimizer olarak ‘adam’ fonksiyonu seçilmiştir. Oluşturulan model toplam 10 döngü 

yapacaktır. Aynı şekilde robotların kendi içlerinde yapacağı öğrenme döngüsü de 10 

olarak belirlenmiştir.  

Federe derin pekiştirmeli öğrenme yönteminde ise modelden bağımsız bir Q-

öğrenme algoritması kullanılmıştır ve federe derin öğrenme algoritması yaklaşık 

%90 öğrenme gerçekleştirmiştir. Bundan dolayı federe derin pekiştirmeli öğrenme 

yöntemi de yaklaşık %90 öğrenme düzeyine erişene kadar kaç döngü yapacağı 

hesaplanacak ve gereken döngü öğrenildikten sonra iki algoritma aynı anda 

çalıştırılacak ve sonuçlar test edilecektir. 

Test konusu olarak kullanılacak federe derin öğrenme algoritmasının sözde kodu 

şekil 39 ve şekil 40’da gösterilmiştir.  

 
ALGORİTMA: Federe Derin Öğrenme Algoritması [Sunucu] 
1 : Başla w0 
2 : for her t = 0,1,.. do 
3 :  M ← max ( [C . K], 1) 
4 :  St = rastgele m katılımcı ayarla 
5 :  for katılımcı için k ∈ St in parallel do 
6 :   𝑤𝑤𝑡+1

𝑘  = Yerel Güncelle (k, wt) 
7 :  wt+1 = ∑ 𝑛𝑘

𝑛𝜎𝑘∈𝑆𝑡  𝑤𝑤𝑡+1
𝑘 ,     𝑛𝑛𝜎 =  ∑ 𝑛𝑛𝑘𝑘𝑘 ∈𝑆𝑡      

Şekil 39 Kullanılacak Federe Derin Öğrenme Algoritması Sözde Kodu (Sunucu) 

 

 

 

 

64 
 



 
 

 
ALGORİTMA: Federe Derin Öğrenme Algoritması [Yerel] 
1 
2 
3 
4 
5 

: 
: 
: 
: 
: 

B = yerel minibatch boyutu 
m = yerel katılımcı sayısı 
E = eğitim turu 
n = öğrenme oranı 
Başla 

6 
7 
8 

: 
: 
: 

w0 ← rastgele başlatma 
{iletişim boyunca} 
for t = 1,..,T,… do 

9 
10 
11 

: 
: 
: 

 St ← (rastgele alt küme – max (C x K,1) katılımcı) 
{her katılımcı için yerel optimizasyon} 
for katılımcı k ∈ St do 

 

12 
13 

: 
: 

  yerel ağırlıkları başlat: wt,k ← wt-1 
for epoch e ∈ [1,E] do 

14 
 
15 

: 
 
: 

   Yerel verileri böl, B( 𝐵
𝑛𝑘

 B yığınları) 
for yığın b ∈ B do 

  

16 :     wt,k ← wt-k – nlocal ∆l (wt-k ; b)   
17 :    end for  
18 :   end for   
19 :  end for   
20 :  {Merkezi Ortalama}   
21 :  wt ∑

𝑛𝑘
𝑛𝑘∈𝑆𝑡  wt,k   

22 : end for     

Şekil 40 Kullanılacak Federe Derin Öğrenme Algoritmasının Sözde Kodu (Yerel) 

Algoritmada asıl odaklanılan ve sunulan federe derin pekiştirmeli öğrenme 

algoritmasının sözde kodu aşağıdadır (Şekil 41, Şekil 42). 
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ALGORİTMA: Federe Derin Pekiştirmeli Öğrenme (İşçi) 
1 : for i = 1,2,3,..., M do 
2 :  for her bölümün t admında do 
3 :  Her st durumu için πθ aktör modelini çalıştır ve do aksiyon at 

Ortamdan rt+1, st+1 alın 
<st, at, rt+1, st+1> yörünge belleğine kaydedin 

4 : 
5 : 
6 :  End 
7 :  if öğrenme süreci biterse then 
8 :  Θw aktör modelin parametresini dahil ederek mw mesajını sunucuya 

gönderin 
Break 

9 : 
10 : 
11 :  Else 
12 :  Güncelle πθold ←πθ 
13 :  for j = 1,2,3,…, K do 
14 :  Yörünge belleğinden bir mini-batch B alın (B’nin boyutu U’dur) 
15 :  for t = 1,2,… U do 
16 :  Vμ ve denklem kritik modelini kullanarak Ât   ‘yi hesaplayın 

Vμ(st) ve 𝑉𝑉𝜇
𝑡𝑎𝑟𝑔𝑒𝑡 değerlerini alın 

LVt (μ) değerini hesaplayın 
𝜋𝜋𝜃 Aktör modeli kullanarak 𝐿𝑡𝐶𝐿𝐼𝑃(𝜃𝜃) değerini hesaplayın 

17 : 
18 : 
 
19 

 
: 

20 :  End 
21 :  Gradyanı gμ =∇LV(μ) ortalama(L1V(μ),...,LUV(μ)) ‘a göre hesapla 

Vμ parametresini SGD aracılığıyla gμ ile güncelleyin 
g = ∇LCLIP(θ) gradyanı,  ortalama(LCLIP(θ), ..., LCLIP(θ)) ve aktör 
model parametresi π a göre güncelleyin 
 πθ parametresini gθ ‘e göre SGD ile güncelleyin 

22 : 
23 : 
24 : 
 
25 

 
: 

26 :  End 
27 :  Sunucuya gθ içeren mw mesajını gönderin 
28 :  End 
29 :  Müsait değilse sunucudan mc mesajını bekleyin 
30 :  if mc  aktör model parametresine θ ̄ sahipse then 
31 :  Mevcut aktör modeli parametresini alınan θ ̄ ile değiştirin 
32 :  else if mc ortalama g ̄ gradyanına sahipse 
33 :  SGD aracılığıyla alınan g ̄ ile πθ güncelleyin 
34 : End 

Şekil 41 Kullanılacak Federe Derin Pekiştirmeli Öğrenme Algoritması (İşçi) 
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ALGORİTMA: Federe Derin Pekiştirmeli Öğrenme (Sunucu) 
1 : for i = 1,2,3,..., M do 
2 :  P = [] 
3 :  for w ∈ W do 
4 :  w işçisinden mw mesajını al 
5 :  mw ‘yi P’ye böl 
6 :  End 
7 :  if bir mesaj varsa  mw ∈ P ve mw w  işçisi aktör model parametresi 

θw then 
8 :  θ ̄ = θ w 
9 :  W − {w} içerisindeki işçilere θ ̄ model parametresini de 

ekleyerek mc mesajını gönder 
10 :  W = W – {w} 
11 :  Else 
12 :  Tüm mw ∈ P   gradyanlarını topla 
13 :  g ̄ = ortalama( ) 
14 :  Ortalama gradyan g ̄ dahil olmak üzere W ‘daki tüm işçilere mc 

mesajını gönder 
15 :  End 
16 :  if W boş ise then 
17 :  Break 
18 :  End 
19 : End 

Şekil 42 Kullanılacak Federe Derin Pekiştirmeli Öğrenme Algoritması (Sunucu) 

 

Çalışmada, uçtan uca robotik kavrama için eylem alanı, kartezyen uzayda sürekli 

eylemlerden oluşmaktadır. Eklem alanı yerine kartezyen uzaydaki eylemleri 

kullanarak, eylem alanı bir robotun belirli kinematik konfigürasyonuna göre 

değişmez. Ayrıca, kartezyen eylemler, kendi kendine çarpışmalardan kaçınırken 

düşük seviyeli eylem kontrolörlerine güvenilir bir şekilde komutlar da sağlamak için 

geleneksel yöntemler ve hareket planlama yaklaşımlarının kullanılabildiği yerlerde 

daha iyi güvenilirlik sağlamaktadır. Kolların tutucularının kullanabileceği kartezyen 

uzay şekil 43’te gösterilmiştir. Tutucu pozisyonu için eylemler, her ikisi de robot 

taban koordinat çerçevesine göre ifade edilen öteleme yer değiştirmesi için (dx,dy,dx) 

ve z ekseni dφ etrafında nispi rotasyonlardan oluşmaktadır. 
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Şekil 43 Robot Kollarının Tutucularının Kullanabileceği Katezyen Uzay 

 

Şekil 43’te (dx,dy,dx)’nin bir öteleme yer değiştirmesini dφ’nin bir nispi sapma 

dönüşünü ve kıskaç kapanması ve açılmasının g ile gösterilmektedir. Bu eylemler  

[-1,1] aralığında normalleştirilir ve ardından uygulanmadan önce metrik ve açısal 

birimlere yeniden ölçeklendirilir. Kıskaç eylemi g ayrıca sürekli bir aralıktadır. 

Burada pozitif değerler tutucuyu açar ve negatif değerler tutucunun kapanmasını 

sağlar. Bu nedenle, RL aracısının bir tanımlama grubu (dx,dy,dx, dφ, g) için karşılık 

gelen değerleri sürekli eylemlerin herhangi bir kombinasyonunu yapmasına izin 

verir. 

A. V-REP (Coppelia Robotics Virtual Robotic Experiment Platform) 

Bu projede V-REP kullanılmıştır. V-REP Coppelia Robotics firmasının sanal 

ortamda robotik çalışmalar yapılması amacıyla geliştirilen bir simülasyon ortamıdır. 

V-REP’in eğitim amaçlı kullanımı ücretsizdir. Python dahil olmak üzere birden çok 

programlama dilini destekler ve bir uzak API aracılığıyla erişilebilir. Simülatör, 

Mico kolu da dahil olmak üzere birden fazla robotik platform modeline sahiptir. 

Simülasyon modeli çok doğru ve gerçek kolu çok iyi temsil ederken, parmakların 

kontrolü farklıdır. Az çalıştırılan parmakların simülasyonda uygulanması daha zor 

olduğundan, bir parmağın her biri bir segmenti kontrol eden iki aktüatörüdür. Gerçek 

kol bir lineer aktüatör kullanırken, simülasyondaki iki aktüatör döner aktüatördür. V-

REP sadece kavramak için değil, daha çok genel simülasyonlar için üretildiğinden, 

nesneleri fiziğe dayalı olarak kavramaya çalışmak oldukça zordur. Çünkü V-REP 
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sürtünmeyi o kadar doğru bir şekilde modellenemez. Ancak simülasyonda 

çarpışmayı oldukça kolay bir şekilde tespit edebiliriz, bu nedenle parmaklar bir 

nesneyi kavramaya çalışırken çarpıştığında fiziğe güvenmek yerine nesneyi bir 

kavrama simüle ederek uç efektöre bağlanabilir. V-REP farklı modlarda çalışabilir; 

asenkron ve senkron. Asenkron modun yaygın olarak kullanılır, simülasyonu 

duraklatmadan olabildiğince hızlı çalıştırır. Ancak senkron mod için simülasyonu bir 

adım ilerletmek için bir tetikleme sinyaline ihtiyaç vardır. Kolun mevcut durumuna 

ihtiyaç olduğundan dolayı senkron modu kullanmak gerekmektedir. Her adımda bir 

işlem gerçekleştirilir ve delta süresini (∆t) aynı tutarken kolun yeni durumu alınır. Bu 

aynı zamanda ödül değerini hesaplamaya, veriyi tren arabelleğinde göndermeye ve 

yeni eylemi, kol önceki eylemini gerçekleştirmeden farklı bir duruma getirerek 

hesaplamaya izin verir. 

Senkron modunu kullanmanın en büyük dezavantajı, simülatöre bir kamera 

eklendiğinde, güncelleme hızının normalde yaklaşık 40Hz-60Hz’de çalışmaya 

kıyasla yaklaşık 4Hz-6Hz’e düşmesidir. Bu, eğitim için görsel girdiyi kullanmayı 

imkânsız hale getirmektedir, çünkü eğitimin uzun sürmesi gerekir. Bu proje için 

görsel girdi olmadığından dolayı üzerinde doku olmayan bir küre cisim kavranmaya 

çalışılacaktır. Küre cismin yarıçapı 3cm olarak belirlenmiştir. V-REP, noktalar 

arasındaki minimum mesafeyi hesaplayabilir ve görselleştirebilir, bizim 

durumumuzda, ödül işlevi için kullanılacak olan uç efektör ile kürenin ortası 

arasındaki minimum mesafeyi almaktadır. V-REP çarpışma testini yapar, ancak 

yapabileceği tüm çarpışmaları kaydetmek istenmez, çoğunlukla son efektörle 

ilgilenilmektedir. Bu nedenle, yalnızca uç efektörün kolla değil, zeminle veya 

nesneyle çarpışıp çarpışmadığı kontrol edilir. Simülasyonda parmakların nesneyi 

kavrayıp kavramadığı kontrol edilmek için her bir parçanın nesneyle çarpışıp 

çarpışmadığı kontrol edilmektedir.  

B. Eğitim Öncesi 

Eğitim veya daha iyisi eğitim örnekleri oluşturmak, V-REP gibi bir fizik simülatörü 

kullanılarak nispeten yavaş olabilir. Ancak simülatörü sadece ileri kinematik 

kullanarak basitleştirebiliriz. Her bir eklemin mevcut konumunu takip ederek, ileri 

kinematiği hesaplayarak son efektör konumunu hesaplayabiliriz. Actor ağındaki 

eylemi ve keşif süresinin 50ms’lik bir delta süresiyle ekleyerek, kolun hareketini 
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simüle edebiliriz. Bir denemenin çalışması yaklaşık 12,5 saniye sürdüğünden dolayı 

birçok deneme yapılabilecektir. Ancak bu yöntemin dezavantajı, nesneleri 

kavrayamamak ve herhangi bir çarpışma kontrolü olmamasıdır. Bu nedenle, fizik 

simülatörü kullanırken eğitim süresini azaltıp azaltamayacağımızı görmek için bu 

yöntemi yalnızca eğitim öncesi bir aşama olarak kullanılacaktır. 

C. Mimari 

Kolu kontrol etmek için bir sinir ağının kullanmanın yanı sıra, kolu kontrol etmek 

için mimariyi optimize etmenin mümkün olup olmadığı araştırılmak istenmektedir. 

Bir mimari, bir dizi eklemi kontrol eden ağların miktarıdır. Bir sinir ağının, hepsi 

aynı ödül işlevine bağlı olarak 6 eklemi ve parmağı kontrol edeceği yerde, her birinin 

mevcut aktüatörlerin bir alt kümesini kontrol ettiği ve kendi ödül işlevine sahip 

olduğu iki sinir ağına sahip olmak mümkün olabilir. Örneğin, alt eklemler ve uç 

efektörün nerede biteceği üzerinde büyük bir etkiye sahipken, yüksek eklemler, uç 

efektörün son konumunun ince ayarını yapmak için kullanılır. Bu nedenle, bu ağlara 

farklı ödül işlevleri vermek, eğitim performansını iyileştirebilir. Birden fazla ağ 

kullanırken ince ayarlanabilen farklı hiper parametrelerin miktarını azaltmak için 

mimarideki her ağ için gizli nöronların miktarını aynı tutuyoruz. Ancak ağlar için 

farklı ödül işlevleri denenmektedir. 

D. Ödül İşlevi 

Bir nesneyi başarılı bir şekilde kavradıktan ve kaldırdıktan sonra, temsilciye yalnızca 

çok seyrek bir ödül verilmesi arzu edilirse de, bu tür bir yaklaşım, rastgele keşif 

yoluyla bir başarıya ulaşmanın seyrekliği nedeniyle eğitimi uzatacaktır. Bu nedenle, 

bu çalışma, üç farklı aşamadan oluşmaktadır. Bunlar; ulaşma, dokunma ve kavrama 

gibi seyrek ödülleri bir araya getiren bileşik bir ödül işlevinden yararlanır. Bu 

aşamalar, ajanın önce bir nesneye yaklaşması, ardından dokunması, kavraması 

gereken hiyerarşik bir akışı takip eder. Her bölüm boyunca, temsilcinin, son aşamada 

istenen bir hedefe yol açmayacak herhangi bir ödüllendirici davranıştan vazgeçirmek 

için bu aşamaların her birinden yalnızca bir kez ödül almasına izin verilir, örneğin 

sürekli olarak biriktirmek için bir nesneyi tekrar tekrar itmek gibi. Dokunmanın 

ödülü, ödül işlevindeki her bileşenin oranı ve ölçeği, aracının optimize etmeyi 

amaçladığı ilkeyi doğrudan etkilediği için ayarlanabilir bir ortam hiper parametresi 
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olarak ele alınabilir. Genel olarak, son aşamadı ödül, ilk aşamada verilen ödülden 

çok daha yüksek olmalıdır; bu, yalnızca temsilcinin eğitimine rehberlik etmesi 

anlamına gelir bu nedenle, her i aşaması için bireysel ödülü belirlemek için üstel bir 

işlev ri-1
exp kullanılır. Temel rexp ∈ [1, ∞) ayarlanabilir, burada rexp = 7, uygulanan 

kavrama görevi için ampirik olarak tatmin edici sonuçlar vermektedir. Ve teorik 

olarak elde edilebilir maksimum ödül rmax = 400 ile bulunur. Görevi başarmak için 

pozitif ödüle ek olarak, aracıya ayrıca istenmeyen çarpışmaların sayısından 

caydırmak için robotun yer düzlemi ile çarpışmada olduğu her zaman adımı için -1 

negatif ödül verilir. Ayrıca, aracıyı görevi mümkün olduğunca hızlı gerçekleştirmeye 

teşvik etmek için sonlandırılana kadar her adımında -0.005’lik küçük bir ödül 

çıkarılmaktadır. Tüm ödüller çizelge 3’te özetlenmiştir. 

Çizelge 3 rexp = 7 ayarlandığı ve her bölümün en fazla 100 zaman adımına sahip 
olduğu kavrama görevi için bu çalışmada kullanılan ödül fonksiyonuna genel bakış. 

Hareketler Ödüller 
Ulaşmak 
Dokunmak 
Kavramak 

r0
exp = 1 

r1
exp = 7       (bölüm başına bir kez) 

r2
exp = 49 

Çarpışma 
Çabuk Hareket Etme 

-1                 (her adımda) 
-0.005 

E. Keşif 

Keşif pekiştirmeli öğrenmenin bir parçasıdır, onsuz ajan herhangi bir öğrenme 

gerçekleştiremez. Bu çalışmada iki Gauss keşif yöntemi kullanılmaktadır. Bu 

yöntemin yanı sıra, bir aktüatörün keşfedeceği bir olasılık belirleyerek keşif miktarı 

da sınırlanmaktadır. 7 aktüatör, 6 eklem ve bir kavrayıcı bulunduğundan dolayı 3 

boyutlu uzayda hareket ederek bir hedefe ulaşmak ve kavrama görevi yapmak, 

hedefe ulaşmak için tek başına keşif yapmak çok zor olacaktır. Bir aktüatörün bazen 

öğrenilmiş hareketini gerçekleştirmesine izin vererek, kol hedefine daha yakın 

hareket edecek ve hedefin etrafını keşfedebilmesi sağlanabilir. 

Çalışmada kullanılacak olan robot kolunun D-H (Denavit-Hartenberg) değişkenleri 

çizelgede gösterilmiştir. 

Çizelge 4 Robotik Kol İçin Verilen D-H Parametreleri 

i a(i - 1) a(i - 1) di theta 
1 0 0 0.2755 q1 
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2 -π / 2 0 0 q2 
3 0 0.2900 0.0070 q3 
4 -π / 2 0 0.1661 q4 
5 1.0472 0 0.0856 q5 
6 1.0472 0 0.2028 q6 

Çizelge 4’teki eklem sayısı i olarak temsil edilir. a x ekseni etrafında ölçülen z 

eksenleri arasındaki açıdır, a x ekseni etrafında ölçülen z eksenleri arasındaki 

mesafedir, di  z ekseni etrafında ölçülen x eksenleri arasındaki mesafedir, theta ise 

eklemin açısıdır. 

Denavit-Hartenberg yöntemini biraz açıklamak gerekirse; robotların kinematik 

modelini çıkarırken en çok kullanılan yöntemlerden bir tanesidir. D-H yöntemi bir 

nevi homojen dönüşüm sağlamaktadır. Bu yöntemde dört ana değişken kullanılır ve 

robot kinematiği çıkarılır. Yukarıda açıklanan değişkenler hesaplanırken öncelikle 

robot kolunun eklem bölgeleri belirlenir ve dönme eksenleri bağlardan bir fazla 

olacak şekilde numaralandırılır. Bu aşamadan sonra bu eksenlerin her birine 

koordinat çerçevesi yerleştirilir ve bağ dönme ekseni koordinat çerçevesinin Z ekseni 

kabul edilir. 

F. Ajan 

Bir ajan, simülasyon ve sinir ağları ile olan bağlantıyı yönetmektedir. Aracı bir 

çalıştırma ile başlamadan önce en son aktör ağını alır ve simülasyon dünyasını 

sıfırlar. Daha sonra maksimum 250 adım gerçekleştirilir, burada bir adım 

simülasyonda ∆t'lik 50ms ile gerçekleştirilen tek bir eylemdir ve maksimum çalışma 

süresi her adımda 12,5 saniyedir. Aracı her adım için durumu alır, durumu aktör ağı 

için girdi olarak kullanılır. Eylem, bir eklemin gerçekleştirilmesi gereken radyan 

cinsinden hızıdır. Eğitim sırasında aracı, simülasyonda gerçekleştirmeden önce 

eyleme keşif de ekleyecektir. Simülasyon bir zaman adımı atıldıktan sonra yeni 

durum toplanır ve ödül belirlenir. Başlangıç durumu, ödül gerçekleştirilen eylem ve 

yeni durum tekrar arabelleğe kaydedilir. Durum, kullanılan tüm eklemlerin radyan 

cinsinden konumu, uç efektör bağlantısının metre cinsinden x,y,z konumu ve 

kullanıldığında, radyan cinsinden parmakların açısı ve son olarak metre cinsinden 

hedef konumu (x,y,z). Eklemlerin açı girdileri, açının 2π (bir eklemin tam dönüşü) 

ile bölünmesiyle 0 ile 1 arasında bir değere normalize edilir. Parmak eklemleri, 

açabilecekleri maksimum aralık olduğu için 1.0472 radyana (60 derece) bölünerek 

normalleştirilir. Pozisyon değerleri için, kolun erişimi 1 metrenin altında olduğu için 
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girişleri normalleştirmemiz gerekmez. Bu bilgiler simülasyondan elde edilebilir. 

Aracının yanı sıra, arabelleğinden mini bir toplu iş almaktadır. Eğitim dizisi yaklaşık 

100Hz’de çalışmaktadır. 

G. Konum 

İlk önce kolun uç efektörü belirli bir konuma hareket ettirmeyi öğrenmesine izin 

vererek başlanacaktır, bu algoritmanın doğru çalıştığını gösterecek ve ayrıca 

parametre ayarına daha iyi fikir verecektir. Deneyler sadece bir eklem kullanılarak 

başlayacak, bu uç efektörün yalnızca bir düzlemde hareket edeceği, daha fazla eklem 

eklendiğinde uç efektörün 3B uzayda hareket edeceği ve hedefini bulmasını 

zorlaştıracağı anlamına gelmektedir. İlk eklem kullanılarak başlanmıştır ve 

karmaşıklığı artırmak için daha fazla eklem bölgesi eklenecektir. İlk aşamalarda 

farklı öğrenme oranlarını ve gizli katman boyutları test edilecektir. Test edilecek 

parametre miktarını azaltmak için en iyi öğrenme oranını ve gizli katman boyutlarını 

belirlemek için erken sonuçlar kullanılacaktır. Algoritmanın ne kadar sağlam olduğu 

da test edilecek ve birden fazla hedefi öğrenmenin üstesinden gelip gelemeyeceği 

görülecektir. Ajan, uç efektörü hedefin 4cm yakınına yerleştirilebildiğinde, en az bir 

zaman boyunca orada tuttuğunda ve eylem vektörünün uzunluğu 0.001’den küçük 

olduğunda başarılı olmuştur. Bu hedefe ulaştığında kolun biraz hareket etmesine izin 

verir, ancak kolun tam konumunda durmayı öğrenmesi çok daha fazla eğitim süresi 

gerektirmektedir. Bu şekilde, kaleye yakın olduğunda kol hala yavaşlamak zorunda 

kalır, ancak tam bir durma noktasına gelmek için kalenin çevresinde çok fazla zaman 

harcamak zorunda kalmaz. Ödül fonksiyonu için, negatif uzaklık çarpı a sabit, c1 ve 

eylemlerin negatif nokta çarpımı çarpı a sabit, c2 alınır. İlk deneyler, c1 için 1 ve c2 

için 0.2 değerinin iyi sonuçlar verdiğini, yani mesafe faktörünün eylem çıktısından 

daha önemli olduğunu gösterdi. Bu ödül işleviyle, hedef konumuna hareket edilerek 

en yüksek ödül elde edilebilir ve her eylem için sıfır çıktı değerine sahip 

olunduğunda, hedef konumundan uzaklaşmak daha düşük bir ödül verir. Kol zemine 

çarptığında, koşu başarısız olur ve sona erer, son eylemini yaparken hesaplanan 

mevcut ödüle ekstra bir negatif ödül -1 eklenir. Kol kendine çarpıyorsa koşu devam 

eder. Kendi kendine çarpışmada başarısız olmamasının nedeni, simülasyonu 

yavaşlatan ekstra hesaplamalar gerektirmesi ve aynı zamanda erken deneyler 
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sırasında hiçbir zaman bir soruna neden olmadığının gösterilmesidir, çünkü nadiren 

gerçekleşir ve olmadığı için yalnızca daha büyük negatif ödül alır. 

 

 

H. Kavrama 

Kavrama için sadece tek bir nesne, bir küre cisim kavranmaya çalışılacaktır. 

Kavrama ile, parmakların nesneyi kavradığı kastedilmektedir, ancak nesneyi 

kaldırması gerekmemektedir. Simülasyonun fiziğini kullanarak bir nesneyi kavramak 

ve kaldırmak doğru bir şekilde yapılması çok zor olabilir ve simülatörde çok sayıda 

ince ayar yapılmasını gerektirir. Ayrıca son efektörden yani tutucudan çok net bir 

biçimde geri bildirim almayı gerektirir. Bu çalışmada tüm eklemler kullanılır ve 

deneylerde her zaman parmaklar da eklenir. Parmaklar tek bir hamle ile kontrol 

edilmez, her biri için ayrı ayrı öğrenme gerçekleştirilir. Bu aynı zamanda daha iyi bir 

kavrama hareketi yaratacaktır. Nesnenin nasıl kavranacağını belirlemek için oldukça 

basit bir yöntem kullanılmaktadır. Nesnenin orta nokta konumuna yaklaşması için 

ona çoklu açılar verilecektir. Planlayıcı da bu koleksiyondan en iyisini 

belirleyecektir. Aracı, tüm parmak segmentleri nesneye dokunduğunda başarılı 

olmuş sayılacaktır. Bu, parmakların nesneyi kavradığı anlamına gelmektedir, ancak 

kavramanın çok doğru olmadığı durumlar da olabilir. Son efektör, nesneyi, 

parmakların nesneyi tam olarak değil, yalnızca küçük bir yüzeyle kavramasına neden 

olacak bir açıyla kavranabilir. Gerçek hayatta nesne daha sonra hareket eder ve 

büyük olasılıkla kavrayan parmaklara daha iyi oturur, ancak simülasyonda bu, 

nesnenin garip çarpışma davranışı oluşturmasına neden olabilir. Bu nedenle cismin 

ağır olması ve kolla hareket ettirilemeyecek olması seçilmiştir. Bu şekilde cismin 

garip hareket etmesi konusunda endişelenmemize gerek kalmaz, ancak kavramanın 

her zaman optimal bir kavrama olmadığı da göz önünde bulundurulur. Ödül işlevi 

için, nesneden 5 cm’den fazla uzaktayken kavrama olmadığın göz önünde 

bulundurulur. Ödül işlevi için, nesneden 5 cm’den fazla uzaktayken parmakların 

negatif mesafe çarpı sabit, c2, nesnenin 5 cm yakınında parmakların pozitif açısı 

çarpı c2 olduğunda, negatif mesafe çarpı sabit, c1 alınır. Ve eylemlerin negatif nokta 

ürünü çarpı a sabit, c3. İlk deneyler, c1, c2 için 0,5 ve c3 için 0,2 için 1 değerinin iyi 

sonuçlar verdiğini göstermektedir. Uç efektör yere değdiğinde çalışma durur, ödüle -
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1 eklenir, ancak kendi kendine çarpışma olmaz. Mesafe ölçümü, uç efektör noktası 

ile nesnenin merkezi arasındaki mesafedir. 

 

 

 

I. Tensorflow 

Bu çalışmada sinir ağlarını programlamak için Tensorflow [Kaynak] kullanılmıştır. 

Tensorflow, simülasyonu sinir ağlarına bağlamayı epey kolaylaştıran Python’da 

programlanabilir. Tensorflow ayrıca, sinir ağlarını eğitmek için bir GPU 

kullanılabilir, ağ boyutları GPU’ların sağladığı paralellikten tam olarak yararlanacak 

kadar büyük olmadığından dolayı CPU üzerinde çalıştırılmıştır. Tensorflow, 

karmaşık ağlar oluşturmayı kolaylaştırır, ancak bu çalışmada tamamen bağlı sinir 

ağları kullanılmaktadır. Tam bağlantılı bir sinir ağı, matrix çarpımları ile kolayca 

oluşturulabilir. Tensorflow ayrıca birçok farklı etkinleştirme işlevine sahiptir. 

Tensorflow, ağırlıkları güncellemek için gereken türevleri otomatik olarak 

hesaplayacaktır. Bu, türevi hesaplama konusunda endişelenmeye gerek kalmadan 

derin ağlar oluşturulmasına olanak tanır. Hata fonksiyonu ve eğitim algoritması da 

belirtilebilir. Ayrıca eğitim için toplu işlerden yararlanmak kolaydır ve girdisine göre 

bir ağın çıktısı da kolaylıkla alınabilir. Farklı parametreleri kullanmak için, belirtilen 

giriş ve çıkış sayısına, gizli nöron ve katman sayısına ve öğrenme oranlarına dayalı 

olarak doğru bir Tensorflow modeli oluşturmaya izin veren bir yapılandırma dosyası 

oluşturulmuş ve çalışmalar bunun üzerinden yürütülmüştür. 

İ. Hiper parametre Optimizasyonu 

Hiper parametrelerin seçimi, öğrenilen bir ilkenin nihai performansının yanı sıra 

öğrenme eğrisi de önemli ölçüde etkilenebilir. DRL’nin hiper parametrelere karşı bu 

kırılganlığı, bu nedenle optimizasyonların büyük önem taşıdığı ve her ortam için 

gerçekleştirilmesi gerektiği anlamına gelir. Bu çalışmada, oluşturulan ortam, 

gözlemler ve kullanılan RL algoritmaları için politikanın sağlam bir şekilde 

öğrenilmesini sağlayacak bir dizi hiper parametre elde etmek amacıyla hem otomatik 

optimizasyon hem de manuel ince ayar gerçekleştirilir. İlk olarak, Optuna adında bir 

hiper parametre optimizasyon çerçevesi kullanılarak otomatik bir hiper parametre 
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optimizasyonu uygulanır. Optuna ve diğer benzer çerçeveler, hiper parametre uzayını 

yinelemeli olarak aramak ve bazı metriklere göre en iyi sonuçları sağlayan bir 

kombinasyon bulmak için kullanılan bir dizi farklı deneme gerçekleştirerek DL için 

uygun bir hiper parametre kombinasyonu seçme sorununu ele alır. RL açısından bu 

metrik, bir aracının belirli bir değerlendirme dönemi boyunca biriktirebildiği bir 

ödüldür. Optuna, örnekleyici ve budayıcı olmak üzere iki bölümden oluşur. 

Örnekleyici, bir sonraki deneme için hiper parametre arama alanından bir dizi hiper 

parametre seçer. Bu tür bir seçim tamamen rastgele olabilir. Örneğin bir deneyin 

başında veya önceki tüm denemelerden istatistiksel analiz yapan algoritmalar 

uygulayarak. Bu bağlamda Pruner, boşa harcanan kaynakların miktarını sınırlamak 

amacıyla umut verici olmayan denemelerin erken durdurulmasına izin veren bir 

stratejidir. Budama, her denemenin değerlendirme bölümlerinin düzenli aralıklarla 

çalıştırılmasını gerektirir; burada her yeni deneme, önceki tüm denemelerin 

performansıyla karşılaştırılır ve ödül karşılaştırılabilir şekilde çok düşükse budanır. 

Kavrama ortamı için, güvenilir bir performans sağlayan bir taban çizgisi elde etmek 

için ilk olarak hiper parametreleri optimize etmek için Optuna uygulanır. Bu 

optimizasyon, arama alanının, özellik çıkarıcının boyutu ve aktör-eleştirmen ağları 

dahil olmak üzere çoğu hiper parametreden oluşturduğu SAC kullanılarak 

gerçekleştirilmiştir. Yeniden oynatma arabelleğinin boyutu, toplu iş boyutu ve ilk 

entropi otomatik olarak optimize edilmedi. Yeniden yürütme arabelleği ve toplu iş 

boyutu, sırasıyla maksimum RAM ve VRAM kullanımı açısından kullanılan sistem 

için yeterince büyük olacak şekilde seçilmiştir. İlk etropi tutarlı tutulur çünkü büyük 

ilk entropinin istenmeyen budama ile sonuçlanabileceği her denemenin ilk 

aşamalarında performansı doğrudan etkiler. Maksimum deneme süresi 1500 zaman 

adımı olan toplam 70 deneme kullanılmıştır. Budamayı tetikleyebilecek her 125 

zaman adımında bir 20 değerlendirme bölümü seti gerçekleştirilmiştir. Sonunda, 

sonraki manuel ayarlama için en iyi performans gösteren hiper parametre seti 

kullanılmıştır. Optuna ile otomatik optimizasyon, bu çalışmada oluşturulan gibi 

karmaşık ortamlar için çok fazla hesaplama süresi gerektirdiğinden manuel ayar 

uygulanır. Bu aynı zamanda, maksimum deneme süresi 1500 zaman adımı olan 70 

denemenin kullanılmasının da nedenidir. Ve bu halihazırda 1 haftalık bir deneme 

süresi almıştır. Bu nedenle, hedeflenen hiper parametrelerin manuel olarak 

ayarlanması, manuel olarak başlatılan ve durdurulan birkaç denemeyle daha yapıldı. 
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Bu sürecin odak noktası çoğunlukla uygulanan ortamın hiper parametreleridir. Tüm 

aktör-eleştirmen algoritmaları için ortaya çıkan parametreler çizelge 5’te görülebilir. 

 

 

 

 

 

Çizelge 5 Oluşturulan Sinir Ağı İçin Hiper Parametreleri 

Değişken Değer 
Hiperparametre DFQN 
Optimizasyon Algoritması Adam 

Öğrenme Oranı Lineer, 1.5 . 10-4 → 0 
Mini-Batch Boyutu 32 
Güncelleme Frekansı Her bölümden sonra 
Her Güncellemedeki Gradyan Adımı 100 

Tekrar Arabellek Boyutu 40000 

Discount Faktörü 0.999 
Hedef Güncelleme Oranı 5 . 10-5 

Eleştirmen Sayısı 1 
Aktivasyon Fonksiyonu Binary Crossentropy 

Keşif Eylemi Gürültüsü N(0, 0.25) 

Hedef Politika Gürültüsü N(0, 0.25) 

İlk Entropi Katsayısı 0.1 
Entropi Katsayısı -dim(A) = -5 
Atom Numarası 25 

Kesilmiş Atom Sayısı 3 
 

 

 

  

77 
 



 
 

 

 

 

 

 

 

78 
 



 
 

VI. SİMÜLASYON SONUÇLARI VE DEĞERLENDİRMESİ 

A. Simülasyon Sonuçları ve Kavrama Deneyleri 

Çalışmada 3 farklı robot kolunun federe derin öğrenme ve federe derin pekiştirmeli 

öğrenme teknikleri ile cisimlerin tutulabilirliğinin öğrenilmesi üzerinde çalışılmıştır. 

Sekil 6.1,6.2 ve 6.3’te Robot kolların tek başlarına öğrenme sonuçları gösterilmiştir. 

Şekillerde sonuçlar 2500 score üzerinden değerlendirilmiş ve 2500 score federe derin 

öğrenme modelindeki %90’lik eğitim doğruluğuna karşılık gelmektedir. Şekillerdeki 

1200 döngü federe derin öğrenme yaklaşımında 300 döngüye karşılık gelmektedir. 

Aşağıdaki şekillerden anlaşıldığı gibi robot kollar tek başlarına yaklaşık olarak 900 

döngüde 2500 puana ulaşmışlardır. Federe derin öğrenme yöntemi ile federe derin 

pekiştirmeli öğrenme yöntemlerinin karşılaştırılması şekil 47 ve şekil 48’de 

gösterilmiştir. Şekillerden de anlaşılacağı üzere federe derin pekiştirmeli öğrenme 

yönteminde robot kollar herhangi bir yerel optimaya takılmadan 1000 döngüde %90 

düzeylerinde öğrenme gerçekleştirmişlerdir. Ancak şekil 44’te görüleceği üzere 

federe derin öğrenme yönteminde robot kol 2’nin çalışma performansı ancak 1200 

döngüde %90 düzeylerine erişmiştir. Federe derin öğrenme yöntemi yaklaşık olarak 

6 saat sürmekte iken, federe derin pekiştirmeli öğrenme yöntemi 5 saat sürmektedir. 

Yani federe derin pekiştirme yöntemi ile öğrenme hedeflenen başarı düzeyine federe 

derin öğrenmeden daha hızlı ulaşmıştır.  

 

Şekil 44 Robot Kol 1’in derin pekiştirmeli öğrenme sonuçları 
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Şekil 45 Robot Kol 2’nin derin pekiştirmeli öğrenme sonuçları 

 

Şekil 46 Robot Kol 3’ün derin pekiştirmeli öğrenme sonuçları 

 

Şekil 47 Federe derin öğrenme yöntemi ile öğrenme 
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Şekil 48 Federe derin pekiştirmeli öğrenme yöntemi ile öğrenme 

 

 

Şekil 49 Federe derin pekiştirmeli öğrenme 2 ve 3 robot kolu ile öğrenme sonucunun 
karşılaştırması 

 

Federe derin pekiştirmeli öğrenme algoritmasında sunucuya bağlı alt sistemlerin 

sayısı ne kadar arttırılırsa öğrenme o kadar hızlı ve düzenli gerçekleşir. Şekil 49’da 

robot sayısı 2’den 3’e çıkarıldığında öğrenme düzeyinin ne kadar hızlandığı 

görülmektedir. 

Her 10 denemeden sonra bir test çalıştırması gerçekleştirilen, her deney sırasında, 

keşif eklemeden ve her adımda ağları eğitmeden bir test çalıştırması yapıldı. Actor ve 

Critic ağları, her 324 nörondan oluşan 2 gizli katmana sahiptir ve arabellek yöntemi 

kullanılarak eğitilmiştir. Kavramak için hep aynı nesneleri kullanılmıştır ve nesne 
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hep aynı pozisyondadır. Çizelge 6 fizik simülatörünce 700 ön eğitim denemesi ve 

300 öğrenme denemesi kullanmanın sonuçlarını göstermektedir. Sonuçların da 

gösterdiği gibi, ağ nesneyi kavramayı yeterince öğrenmemiştir. Ortalama mesafe, 

nesneye yaklaştığını gösterse de, cismi gerçekten kavrayamamıştır. Test çalışması 

sırasında bazı denemelerde kavramaya çok yaklaşırken, nesneyi yatay yerine dikey 

olarak kavramaya çalışırken çoğunlukla yanlış bir yönelime sahiptir. Bu durum 

büyük olasılıkla eğitim öncesi aşamada aşırı eğitilmesinden kaynaklandığı 

düşünülmektedir. Bu aşamanın fiziği olmadığı ve dolayısıyla kavramaya bile 

kalkışamadığından dolayı, yolunda tutması gereken bir nesne olduğunu bilmeden 

sadece bir konuma gitmeyi öğrenmiştir. Kavrama, bir noktaya gitmekten çok daha 

zor olduğundan dolayı koşu sayısı 1500’e çıkarılmıştır ve ön eğitim aşaması 

kullanılmamıştır. Çizelge 7 sonuçları göstermektedir. %90 başarı oranı ile 

algoritmanın bir nesneyi kavramayı öğrenebildiği gösterilmiştir. Dezavantajı ise, ön 

eğitim yöntemini kullanmadan genel eğitim 5 saatten fazla sürmektedir. 3,94 cm’lik 

ortalama mesafe, ağların uç efektörünü son konumuna yaklaştırabildiğini, ancak 

bazen oryantasyonun doğru olmadığını gösteriyor. Bazen son efektör ve parmaklar 

nesnenin etrafındadır ancak başarılı olamamıştır. Bu büyük olasılıkla, parmakların 

tüm bölümlerinin nesneyle doğru şekilde temas etmediği anlamına gelmektedir. 

Çizelge 6 Hedef pozisyonuna göre nihai pozisyonun standart sapması ile ortalama 
başarı oranı ve ortalama mesafe. 700 denemelik ön eğitim kullanılarak ortalama 10 
deneme ve toplu öğrenme için bir arabellek ve iki aracı kullanılarak 300 deneme için 
fizik simülatörü kullanılarak eğitilmiştir. 6 eklem ve 3 parmak kullanılmıştır. 

 Gaussian 

Doğruluk Oranı %60 

Ortalama Mesafe 6.11cm 

Ortalama Hata 4.12cm 

Çizelge 7 Hedef Pozisyonuna göre nihai pozisyonun standart sapması ile ortalama 
başarı oranı ve ortalama mesafe. Ortalama 10 deneme, 1500 deneme için fizik 
simülatörü kullanılarak eğitilmiş, toplu öğrenme için bir arabellek ve iki aracı; 6 
eklem ve 3 parmak kullanılmıştır. 

 OUP 

Doğruluk Oranı %90 

Ortalama Mesafe 3.94cm 

Ortalama Hata 1.93cm 

 

82 
 



 
 

Bir dizi deneyde robot kolunun cisimlerin tutulabilirliğinin öğrenilmesi 

gösterilmiştir. 1 ile 3 eklem bölgesi kullanarak çevrimiçi öğrenme mümkün olsa da 

çalışmada kullanılacak 7 eklem bölgeli robot kol kullanıldığında performans 

düşmektedir. Çözümlerden birisi 1200’den fazla deneme yapılmasına izin vermek 

olsa da bu nispeten basit görevi öğrenmek de çok fazla zaman alacaktır. Bir eğitim 

dizisinin ağları mini gruplarda eğitebileceği bir arabellek kullanarak, aynı miktarda 

deneme kullanıldığında sonuçların çok daha iyi olduğu, ancak henüz mükemmel 

olmadığı gösterilmiştir. Deneme sayısı iki katına çıkarıldığında başarı oranı her bir 

keşif yöntemi için %80 ve %90 başarı oranları ile kabul edilebilir hale gelir. Ancak 

eğitim süresi de iki katına çıkmaktadır. Bir aracın eğitim örnekleri oluşturmak için 

yapabileceği yinelemelerin miktarını artırmak için FDRL algoritması sunulmuştur. 

Nispeten büyük miktarda ön eğitim denenesi ve fizik simülatörü kullanılarak daha az 

miktarda eğitim kullanıldığında, ağları eğitmek için gereken toplam süreyi azaltırken 

performans artırılmış oldu. 1200 çalıştırma üzerinden %85 ve %90 başarı oranları ile 

kolun uç efektörü belirli bir konuma hareket ettirmeyi sağlamak için algoritma 

yeterince sağlam görünmektedir. Bazı durumlarda Gauss keşif yöntemi daha iyi 

performans gösterirken, diğer durumlarda OUP keşif yöntemi daha iyi performans 

göstermektedir. Ancak başarı oranı, ortalama mesafe ve standart sapmadaki fark 

nispeten küçüktür. 

Pearson korelasyonu yaygın olarak iki rastgele değişken arasındaki ilişkiyi bulmak 

için kullanılır. Pearson korelasyon katsayısı, X ve Y değişkenleri tamamen aynıysa 

+1, tamamen farklıysa 0 ve zıt yönde tamamen aynıysa -1 değerine sahiptir. Çizelge 

8 aynı tipteki üç robot kolun dinamikleri için homojenlik testinin sonuçlarını 

göstermektedir. İki tablodan da bilindiği gibi, farklı yönlere uygulanan kuvvetler 100 

defa sabit olmasına rağmen motor ve sarkaç açıları farklı şekilde değişmektedir. Her 

bir robot kolun özellikle motor açısındaki değişiklik, sarkaç açısındaki değişiklikten 

daha çeşitlidir. Aynı tipte birden fazla robot kolun sonuç olarak, aynı üretim hattında 

üretilmelerine rağmen dinamikleri birbirinden biraz farklıdır. Bu, robot kol 2’nin 

olgun modelini aldıktan sonra bile İşçi 1 ve 3’te ki ek öğrenime hala ihtiyaç 

duyulduğu anlamına gelir. 

 
 

 

83 
 



 
 

Çizelge 8 Aynı türden birden çok robot kol cihazının dinamikleri için homojenlik 
testinin sonuçları. 

(a) Motor açı değişikliklerinin bir 
pearson korelasyon matrisi 

(b) Sarkaç açısı değişikliklerinin 
pearson korelasyon matrisi 

Motor Açısı Kol 1 Kol 2 Kol 3 Sarkaç Açısı Kol 1 Kol 2 Kol 3 

Kol 1 1 0.77 0.86 Kol 1 1 0.98 0.96 

Kol 2 - 1 0.75 Kol 2 - 1 0.98 

Kol 3 - - 1 Kol 3 - - 1 

 

Nicel olarak, cismin yer değiştirilmemesi ajana her bölüm sırasında bir nesneyi daha 

iyi kavrama şansı verir bu nedenle biriken ödülü en üst düzeye çıkarır. Daha uzun 

epizot süreleri göz önüne alındığında, başarı oranı yapay olarak arttırılabilir. Bununla 

birlikte, bu tür bir politikanın niteliksel analizinin aşırı derecede kaotik ve güvensiz 

olduğu düşünülmektedir. Robotik manipülasyonun gerçek dünyadaki uygulamaları, 

güvenlik standartlarını karşılamayı ve çevre ile daha yapılandırılmış bir etkileşim 

kullanmayı gerektirir. Bu işte eğitilmiş araçlar, bu tür garantileri sağlamak için 

mücadele eder ve gerçek robotlarda denetimsiz kullanımları, kazara hasar riskini 

azaltan uyumlu nesnelerle sınırlıdır. Bunu akılda tutarak, ayrık eylem alanları 

örneğin önceden tanımlanmamış eylem temelleri ve güvenlik sınırlarına sahip piksel 

bazında eylem alanı, görev çözme yeteneklerini geliştirecek daha karmaşık ilkeleri 

öğrenme yeteneğinin azalmasına rağmen, daha belirleyici davranışları nedeniyle şu 

anda gerçek dünya uygulamaları için daha uygun olabilir. Bu nedenle, sürekli uçtan 

uca kontrol ile gerçek dünyadaki robotik manipülasyon görevlerini çözmek için 

uygulanabilir olmadan önce RL için bir güvenlik teorisinin geliştirilmesi gerektiğine 

inanılmaktadır. Ablasyon çalışmaları bazı beklenmedik sonuçları getirmiştir. 

Özellikle gösterimlerin kullanılması, erken aşamalarda daha hızlı öğrenmeye 

rağmen, yeni sahnelerde ulaşılabilir başarı oranını %7 oranında azaltmıştır. 

Performanstaki bu önemli düşüşün, en sonunda yerel bir optimal politikaya 

yakınsamaya yol açan alt-optimal kodlanmış politika tarafından getirilen bir 

önyargıdan kaynaklandığı tartışılabilir. Tamamen sıfırdan keşfetmesi gereken ajanın, 

küresel olarak optimal olan ve bu tür önyargılardan etkilenmeyen bir politikaya 

yaklaşma şansı daha yüksektir. Bu nedenle, deneysel sonuçlar, mümkünse RL için 

gösterilerin kullanılmasından vazgeçilmesi gerektiğini ve bunun yerine müfredat 

öğrenimi gibi daha iyi garantileri olan diğer yöntemlerin uygulanması gerektiğini 

göstermektedir. 
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Proprioseptif gözlemlerin eklenmesi, başarı oranında %2’lik küçük bir artış sağlar. 

Bu gözlemler kolaylıkla elde edilebildiği için kullanımların faydalı olduğu 

düşünülmektedir. Benzer şekilde görsel gözlemlerde renk özniteliklerin kullanılması 

başarı oranını %10,5 oranında artırmaktadır ki bu çok önemli kabul edilmektedir. Bu 

nedenle eğitim için kullanılan bir ortam gerçekçi oluşturmayı destekliyorsa, bunların 

eklenmesi yararlıdır. Öznitelik çıkarıcı parametrelerin paylaşımı için yapılan 

analizler bazı ilginç sonuçları da ortaya çıkarmıştır. Her gözlem yığını için ayrı 

öznitelik çıkarıcılar kullanıldığında, ilk öğrenme, tek bir paylaşılan öznitelik 

çıkarıcının kullanımından çok daha hızlıdır. Bu mevcut olana kıyasla geçmiş 

gözlemler için farklı öznitelik çıkarıcılar çok daha fazla sayıda birleşik öğrenilebilir 

parametreye sahiptir. Bununla birlikte, her iki yaklaşım da çok benzer bir nihai başarı 

oranına ulaşabilir. Son yıllarda RL’nin büyük potansiyeline ve önemli ilerlemelerine 

rağmen, gerçek dünyadaki robotik manipülasyon görevleri için uygulanabilirliği hala 

sınırlıdır. DRL tarafından öğrenilen uçtan uca politikaların gerçek robotik sistemlere 

sağlam bir şekilde entegre edilebilmesi için ele alınması gereken birkaç zorluk 

vardır. Modelden bağımsız RL algoritmalarının örnek verimliliğini artırma 

girişimleri olmasına rağmen, deneyim tekrarına sahip politika dışı algoritmalar bile 

en uygun politikayı öğrenmek için binlerce kez geçiş gerektirir. Hiperparametrelere 

duyarlılık, RL’nin büyük ölçekli kullanımını sağlamak için ele alınması gereken bir 

diğer önemli sorundur. Hiperparametrelerin her görev için optimizasyonu, her 

denemenin uzun eğitim süresi nedeniyle çok zaman alan bir prosedürdür. Benzer 

şekilde, RL’de tekrar üretilebilirlik, birçok robotun çalıştığı ortamların yüksek 

stokastikliği nedeniyle sürekli görevler için çok zordur. Yüksek doğruluklu fizik ve 

işleme ile ucuz paralel simülasyonlar, yakın gelecekte bu sorunların bazılarını 

hafifletebilir. Bu nedenle, DRL’nin robotik manipülasyon alanında umut verici bir 

geleceğe sahip olacağına inanılmaktadır. 
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VII. SONUÇ VE GELECEK ÇALIŞMALAR 

Bu çalışmada federe derin öğrenme ve federe derin pekiştirmeli öğrenme 

yaklaşımları kullanılarak robot kolların cisimleri tutabilirliğini öğretmeye 

çalışılmıştır. Federe öğrenme bilindiği üzere birden fazla alt sistemin sunucu 

üzerinde aynı anda eğitilme olanağı sağlamaktadır. Aynı zamanda eğitim 

gerçekleştirilirken alt sistemlerin verileri sunucuya gönderilmez bu da öğreticiye veri 

güvenliğini sağlar. Aynı zamanda alt sistemler aynı anda öğrendiklerinden 

birbirleriyle sinir ağlarının hatalarını ve ağırlıklarını paylaştıkları için öğrenme süreci 

daha hızlı gerçekleşmektedir. Görülmüştür ki federe derin pekiştirmeli öğrenme 

yaklaşımı standart federe derin öğrenme yaklaşımından daha iyi performans 

göstermiş ve daha hızlı çalışmıştır. Federe derin pekiştirmeli öğrenme yaklaşımının 

bir önemli yönü de başlangıçta ve eğitim gerçekleşirken herhangi bir veriye ihtiyaç 

duymadan öğrenmesidir. Bundan dolayı gelecekte İnsansız Hava Araçlarında federe 

pekiştirmeli öğrenme yaklaşımları kullanılabilir ve araçların daha önce hiç 

görmedikleri alanlarda hızlıca eğitilmesi sağlanabilir. Ağın algıdan öğrenebilmesi 

için öncelikle kuruluma bir kamera eklenebilir. İlk kullanım fikri bu olsa da, 

güncelleme oranları açısından V-REP simülasyonunda bir sınıra ulaşılmıştır. Algı 

eklemek öğrenmeyi iyileştirilebilir çünkü daha bilgilendirici bir durum sağlar. 

Deneysel kuruluma bir kamera eklemek kurulum için sonuçları iyileştirilebilse de, 

sahneye birden fazla nesne ekleyerek deneyin zorluğunu arttırmak, ağa nesnelerden 

hangisi olduğunu söyleyen daha üst düzey bir karar verme sürecinin eklenmesi 

gerekir. Toplu normalleştirme ve bırakma gibi düzenlileştirme teknikleri eklenerek 

başka bir iyileştirme yapılabilir. Bu çalışmada sunulmamasına rağmen, kısa süre 

içerisinde bunlarla ilgili deneyler yapılmasına rağmen, önemli bir gelişme 

görülmemiştir. Ancak sadece iki teknik denenmiştir ve sadece Tensorflow çerçevesi 

tarafından sağlanan standart değerler kullanılmıştır. Farklı parametrelerle 

iyileştirmeler olabilir. Ancak bu, çok fazla zaman harcanması gereken daha fazla 

deney gerektirmektedir. Farklı bir robotik kol kullanılarak da iyileştirmeler 

yapılabilir. Çalışmada Mico kolunun seçilmesinin tek nedeni, o zamanlar robotik 
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laboratuvarlarda mevcut olan bir robot kol olması ve gerçek dünyada da çok fazla 

kullanılmasıdır. Ancak bu projenin son aşamasında simülasyonda kullanılmak üzere 

yeni bir robotik kol, Panda robotik kol kullanıma sunulmuştur. Panda, lineer olarak 

hareket ettirilen iki parmaklı bir kavrayıcıya sahip 7 serbestlik dereceli bir robotik 

koldur. Bu robotik kolun ana avantajı, kuvvet algılamaya sahip olmasıdır, yani bir 

cisimle çarpışırsa bir nesneye ne kadar kuvvetle ittiğini algılayabilir ve ayrıca bir 

nesneyi tutarken kuvvet algılama özelliğine sahiptir. Bu geri bildirim, ödül işlevi için 

değerli bilgiler sağlayabilir. Diğer ilginç kısım ise 7 serbestlik dereceli olmasıdır. Bu 

7. Eklem bölgesi kolun geri kalanı hala hareket edebilirken uç efektörün aynı 

pozisyonda kalmasına izin vermektedir. Bu ilave karmaşıklık, son efektörün nihai 

konumuna ulaşmasını kolaylaştırmalı, ancak aynı zamanda keşif sırasında 

karmaşıklığı artıracak ve muhtemelen aktör ve eleştirmen için öğrenmesini 

zorlaştıracaktır. Bu araştırma manipülasyon alanında yalnızca nispeten basit bir 

senaryoya odaklanmıştır. 
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