

T.C.
İSTANBUL AYDIN ÜNİVERSİTESİ
LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

ROBOT KOLLARININ CİSİMLERİN TUTULABİLİRLİĞİNİ

FEDERE DERİN PEKİŞTİRMELİ ÖĞRENME YÖNTEMİYLE

ÖĞRENMESİ

YÜKSEK LİSANS TEZİ

Murat Uğur GÜLLE

Bilgisayar Mühendisliği Ana Bilim Dalı

Bilgisayar Mühendisliği Programı

AĞUSTOS, 2022

T.C.
İSTANBUL AYDIN ÜNİVERSİTESİ
LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

ROBOT KOLLARININ CİSİMLERİN TUTULABİLİRLİĞİNİ

FEDERE DERİN PEKİŞTİRMELİ ÖĞRENME YÖNTEMİYLE

ÖĞRENMESİ

YÜKSEK LİSANS TEZİ

Murat Uğur GÜLLE

(Y1813.010007)

Bilgisayar Mühendisliği Ana Bilim Dalı

Bilgisayar Mühendisliği Programı

Tez Danışmanı: Dr. Öğr. Üyesi Peri GÜNEŞ

AĞUSTOS, 2022

ONAY FORMU

ONUR SÖZÜ

Yüksek Lisans Tezi olarak sunduğum “Robot Kollarının Cisimlerin Tutulabilirliğini

Federe Derin Pekiştirmeli Öğrenme Yöntemiyle Öğrenmesi” adlı çalışmanın, tezin

proje safhasından sonuçlanmasına kadarki bütün süreçlerde bilimsel ahlak ve

geleneklere aykırı düşecek bir yardıma başvurulmaksızın yazıldığını ve

yararlandığım eserlerin Bibliyografya’da gösterilenlerden oluştuğunu, bunlara atıf

yapılarak yararlanılmış olduğunu belirtir ve onurumla beyan ederim. (04/08/2022)

Murat Uğur GÜLLE

iii

iv

ÖNSÖZ

Yapay zekâ algoritmalarına ve bu algoritmalar uygulanılarak kontrol edilebilen

mobil robotlara farklı alanlarda olan gereksinim son yıllarda en popüler konuların

arasında yer almaktadır. Daha önce yapmış olduğum yüksek lisans çalışmalarında

robotlar ve onların yazılımı ile ilgili yaptığım araştırmalar ve çalışmaların sayesinde

de “Robot Kollarının Cisimlerin Tutulabilirliğini Federe Derin Pekiştirmeli Öğrenme

Yöntemiyle Öğrenmesi” başlıklı tez konusunu seçtim. Bu çalışmanın

gerçekleştirilmesindeki destek ve katkılarından dolayı tez danışmanım Dr. Öğr.

Üyesi Peri GÜNEŞ’e teşekkürlerimi sunarım. Tez çalışma süresinde her zaman

yanımda olan aileme ve eşime teşekkürü bir borç bilirim.

Ağustos 2022 Murat Uğur GÜLLE

v

vi

ROBOT KOLLARININ CİSİMLERİN TUTULABİLİRLİĞİNİ FEDERE

DERİN PEKİŞTİRMELİ ÖĞRENME YÖNTEMİYLE ÖĞRENMESİ

ÖZET

Robot kollar son yıllarda endüstride en çok kullanılan robotik sistemlerden birisi

haline gelmiştir. Bu sayede üretim hatları gelişmiş, hızlanmış ve otomatik hale

getirilmiştir. Robotların belirlenen cisimleri belirli yerlerden alıp tekrar belirlenen

yere taşınması, robotların belirli cisimleri tanıması ve ona göre hareket etmesi, robot

kolların eklem bölgelerinin hareket performansları, robot kollarının tork kontrolleri

araştırmacıların çalıştığı konuların başında gelmektedir. Robot kolların otomatik hale

getirmedeki en büyük problemlerden birisi kullanım yerine göre eğitilmesidir.

Geçtiğimiz yıllarda bu eğitim uzun sürmekteyken son yıllarda yöntemlerin ve eğitim

algoritmalarının gelişmesiyle birlikte oldukça hızlı gerçekleşmektedir. Önerilen ve

geliştirilen algoritmalar bahsedilen problemleri çözmektedir. Son yıllarda çeşitli

araştırmacıların önerdiği federe öğrenme yöntemi ile derin pekiştirmeli öğrenme

yaklaşımı birleştirilmiştir. Federe öğrenme yaklaşımı alt sistemlerin yani robot

kolların aynı anda eğitilmesini sağlamaktadır. Bu eğitim gerçekleştirilirken alt

sistemler hatalarını ve sinir ağlarının parametrelerini sunucuya gönderir ve sunucuda

tekrar hesaplanan bu ağırlıklar ve hatalar güncellenmiş bir şekilde tekrar alt

sistemlere gönderilir. Federe öğrenmenin bir faydası da veri güvenliği olarak

karşımıza çıkar. Federe öğrenmede alt sistemler kendi aralarında haberleşmez ve

sunucuya herhangi bir veri göndermezler. Tüm transferler sadece alt sistemlerin sinir

ağlarının hataları ve ağırlıkları üzerinden gerçekleştirilir. Sunulan eğitim

algoritmasının testi federe derin öğrenme yaklaşımıyla eğitilen bir robot kolun eğitim

performansı ile karşılaştırılmıştır. Geliştirilen federe derin öğrenme yaklaşımı

yaklaşık 6 saat eğitimden sonra %90 seviyesinde öğrenme gerçekleştirmiştir. Ancak

sunulan federe derin pekiştirmeli öğrenme algoritması aynı eğitim düzeyine yaklaşık

5 saatte ulaşmıştır. Sunulan eğitim algoritması standart federe derin öğrenme

algoritmasından daha iyi performans göstermiş ve daha hızlı sonuç vermiştir. Aynı

vii

zamanda sunulan bu algoritma herhangi bir veriye ihtiyaç duymadan öğrenmeyi

sağlar.

Anahtar kelimeler: Robot Kollar, Federe Öğrenme, Federe Derin Öğrenme,

Pekiştirmeli Öğrenme, Federe Pekiştirmeli öğrenme

viii

LEARNİNG THE GRİP OF OBJECTS BY THE FEDERATED DEEP

REİNFORCEMENT LEARNİNG METHOD OF ROBOT ARMS

ABSTRACT

Robotic arms have become one of the most used electronic systems in the industry in

recent years. In this way, production lines have been developed, accelerated and

automated.Precise objects identification and moving, the motion performances of the

joint areas of the robot arms, and torque controls of the robot arms are some of the

favorite subjects that researchers are working on. One of the biggest problems in

automating robot arms is they are being trained for needs in certain fields. While this

training took a long time in the past years, it has been taking place very quickly with

the development of methods and training algorithms in recent years. Suggested and

developed algorithms are able to solve the mentioned problems. In recent years, the

federated learning method recommended by various researchers has been combined

with a deep reinforcement learning approach. Federated learning method enables

training of multiple robot arms at the same time. While performing this training,

subsystems send their errors and neural network parameters to the server, and these

recalculated and updated weights and errors are sent back to the

subsystems. Another benefit of federated learning is data security. In federated

learning, subsystems do not communicate with each other and do not send any data

to the server. All transfers are performed only on the faults and weights of the

subsystems of neural networks.The testing of the developed training algorithm is

compared with the training performance of a robot arm trained with a federated deep

learning approach. The developed federated deep learning approach achieved 90% of

learning after approximately 6 hours of training. However, the presented federated

deep reinforcement learning algorithm reached the same education level in

approximately 5 hours. The presented training algorithm outperformed the standard

federated deep learning algorithm and provided faster results. At the same time, this

algorithm provides learning without the need for any data.

ix

Keywords: Robot arms, federated learning, federated deep learning, reinforcement

learning, federated reinforcement learning

x

İÇİNDEKİLER

ONUR SÖZÜ ... iii

ÖNSÖZ .. v

ÖZET ... vii

ABSTRACT ... ix

İÇİNDEKİLER ... xi

KISALTMALAR LİSTESİ .. xiii

ÇİZELGELER LİSTESİ ... xv

ŞEKİLLER LİSTESİ ... xvii

I. GİRİŞ .. 1

A. Robot Kolların Tarihçesi ... 1

B. Endüstriyel Robot Kollar ... 3

1. Kartezyen Robot Kolu ... 3

2. Silindirik Robot Kolları ... 4

3. Küresel Robot Kolları .. 4

4. Scara Robot Kol ... 5

5. Mafsallı Robot Kollar .. 5

6. Tutucular .. 6

II. ÖĞRENME ALGORİTMALARI ... 9

A. Yapay Sinir Ağları .. 9

1. Lineer Olmayan Kısıtsız Optimizasyon ... 10

2. Optimallik İçin Gerekli Koşullar ... 12

3. Gradyan Yöntemler .. 14

4. Gradyan Azalan Algoritması ... 15

5. Tek Katmanlı Yapay Sinir Ağları .. 16

6. Tek Katmanlı Yapar Sinir Ağı Eğitimi .. 16

7. Çok Katmanlı Yapay Sinir Ağları .. 18

8. Çok Katmanlı Yapay Sinir Ağının İleri Modeli ... 18

B. Pekiştirmeli Öğrenme .. 20

xi

1. Rastgele Süreçler ve Markov Süreci .. 22

2. Markov Karar Süreci .. 24

3. Markov Karar Süreci Çözüm ... 28

4. Dinamik Programlama ... 29

5. Bellman Denklemi.. 31

6. Pekiştirmeli Öğrenmede Politika Tabanlı Çözümler 32

7. Pekiştirmeli Öğrenmede Değer Tabanlı Çözümler .. 34

8. Q-öğrenme Algoritması.. 36

9. Sarsa Algoritması ... 38

10. Derin Pekiştirmeli Q-öğrenme Algoritması ... 39

11. Derin Deterministik Politika Gradyan Algoritması 42

C. Federe Öğrenme .. 44

III. ROBOTLARDA PEKİŞTİRMELİ ÖĞRENME .. 51

A. Öğrenen Robotlar .. 52

B. Robotlarda Eylem Seçim Metodları .. 54

IV. İLGİLİ ÇALIŞMALAR .. 57

V. YÖNTEM ... 63

A. V-REP (Coppelia Robotics Virtual Robotic Experiment Platform) 68

B. Eğitim Öncesi .. 69

C. Mimari ... 70

D. Ödül İşlevi ... 70

E. Keşif ... 71

F. Ajan .. 72

G. Konum ... 73

H. Kavrama .. 74

I. Tensorflow .. 75

İ. Hiper parametre Optimizasyonu ... 75

VI. SİMÜLASYON SONUÇLARI VE DEĞERLENDİRMESİ 79

A. Simülasyon Sonuçları ve Kavrama Deneyleri ... 79

VII. SONUÇ VE GELECEK ÇALIŞMALAR .. 87

VIII. KAYNAKÇA ... 89

ÖZGEÇMİŞ .. 99

xii

KISALTMALAR LİSTESİ

ADP : Uyarlamalı Dinamik Programlama

MDP : Nörodinamik Programlama

ZM : Zamansal Fark

MC : Monte Carlo

DP : Dinamik Programlama

PDF : Rastgele Sürece İlişkin Ortak Olasılık Yoğunluk Fonksiyonu

JPDF : Rastgele Sürece İlişkin Basit Olasılık Yoğunluk Fonksiyonu

IID : Bağımsız ve Özdeş Dağıtılmış Rastgele Değişken

ADHDP : Eyleme Bağlı Buluşsal Dinamik Programlama

FedRL : Federe Pekiştirmeli Öğrenme

MLP : Çok Katmanlı Algılayıcı

MEC : Mobil Uç Bulutu

NAF : Normalleştirilmiş Avantaj Fonksiyonu

NAC : Doğal Aktör Kritik

İHA : İnsansız Hava Aracı

CNN : Evrişimsel Sinir Ağı

SGD : Olasılıksal Dereceli Azalma

FEDAVG : Federe Ortalama

API : Uygulama Programlama Arayüzü

GPU : Grafik İşlem Birimi

CPU : Merkezi İşlem Birimi

SAC : Yumuşak Aktör Kritik

VRAM : Video Rastgele Erişimli Bellek

RAM : Rastgele Erişimli Bellek

DFQN : Derin Federe Q Ağı

FDRL : Derin Federe Pekiştirmeli Öğrenme

RL : Pekiştirmeli Öğrenme

DRL : Derin Pekiştirmeli Öğrenme

xiii

DL : Derin Öğrenme

V-REP : Araç Hazırlık Geliştirme Programı

xiv

ÇİZELGELER LİSTESİ

Çizelge 1 Hessian Tablosu ... 14

Çizelge 2 Örnek Veri Seti .. 17

Çizelge 3 rexp = 7 ayarlandığı ve her bölümün en fazla 100 zaman adımına sahip

olduğu kavrama görevi için bu çalışmada kullanılan ödül fonksiyonuna

genel bakış. ... 71

Çizelge 4 Robotik Kol İçin Verilen D-H Parametreleri ... 71

Çizelge 5 Oluşturulan Sinir Ağı İçin Hiper Parametreleri ... 77

Çizelge 6 Hedef pozisyonuna göre nihai pozisyonun standart sapması ile ortalama

başarı oranı ve ortalama mesafe. 700 denemelik ön eğitim kullanılarak

ortalama 10 deneme ve toplu öğrenme için bir arabellek ve iki aracı

kullanılarak 300 deneme için fizik simülatörü kullanılarak eğitilmiştir. 6

eklem ve 3 parmak kullanılmıştır. .. 82

Çizelge 7 Hedef Pozisyonuna göre nihai pozisyonun standart sapması ile ortalama

başarı oranı ve ortalama mesafe. Ortalama 10 deneme, 1500 deneme

için fizik simülatörü kullanılarak eğitilmiş, toplu öğrenme için bir

arabellek ve iki aracı; 6 eklem ve 3 parmak kullanılmıştır. 82

Çizelge 8 Aynı türden birden çok robot kol cihazının dinamikleri için homojenlik

testinin sonuçları. .. 84

xv

xvi

ŞEKİLLER LİSTESİ

Şekil 1 Von Kempelen’in Turk satranç oyuncu robotu ... 2

Şekil 2 Unimate robot kolu .. 3

Şekil 3 Kartezyen robot kolu ... 4

Şekil 4 Silindirik Robot Kolu ... 4

Şekil 5 Küresel Robot Kolu ... 5

Şekil 6 Scara Robot Kol ... 5

Şekil 7 Mafsallı Robot Kolları ... 6

Şekil 8 Elektrikli Tutucu .. 7

Şekil 9 Pünomatik Tutucu .. 7

Şekil 10 Makine Öğrenmesi Algoritma Ağacı ... 9

Şekil 11 Tam Bağımlı Yapay Sinir Ağı ... 10

Şekil 12 Konveks Olmayan 𝑓𝑓(𝒙𝒙) fonksiyonu .. 12

Şekil 13 Gradyan Azalan Algoritması ... 15

Şekil 14 Gradyan Azalan Algoritması Grafiği ... 15

Şekil 15 Tek Katmanlı Yapay Sinir Ağı .. 16

Şekil 16 Yapay Sinir Ağlarının Gradyan Azalan Algoritmasıyla Eğitimi Algoritması

 .. 18

Şekil 17 Çok Katmanlı Yapay Sinir Ağı .. 18

Şekil 18 Çok Katmanlı Çok Girişli Çok Çıkışlı Yapay Sinir Ağı 19

Şekil 19 Adam Algoritması .. 20

Şekil 20 Çeşitli Pekiştirmeli Öğrenme Algoritmaları Grafiği.................................... 21

Şekil 21 Markov Süreci İçin Örnek Bir Akış ... 23

Şekil 22 Optimal Yol Problemi Örnek Grafik ... 29

Şekil 23 Optimal Yol Problemi Çelişkisi ... 30

Şekil 24 Dinamik Programlama Modeli Genel Çalışma Prensibi 31

Şekil 25 Basit Politika Arama Algoritması .. 33

Şekil 26 Politika Gradyanı ve Takviye Algoritması .. 34

Şekil 27 Zamansal Fark Algoritması ... 35

xvii

Şekil 28 Q-Öğrenme Algoritması .. 38

Şekil 29 Sarsa Algoritması ... 39

Şekil 30 Derin Q-Öğrenme Algoritması Akış Diyagramı .. 40

Şekil 31 Derin Q-Öğrenme Algoritması .. 42

Şekil 32 Derin Deterministik Politika Gradyanı Algoritması 44

Şekil 33 Kullanılacak Federe Derin Öğrenme Algoritmasının Sözde Kodu (Yerel) . 49

Şekil 34 Kullanılacak Federe Derin Öğrenme Algoritması Sözde Kodu (Sunucu) ... 48

Şekil 35 Akıllı Robot Ortam İlişkisi .. 52

Şekil 36 Akıllı Robot Öğrenme Süreci .. 53

Şekil 37 Ödülün Ortamdan Durum-Eylem İkilisi Sonrası Nasıl Geldiğinin İlişkisi .. 54

Şekil 38 Örnek Bir Robot Kol .. 63

Şekil 39 Kullanılacak Federe Derin Öğrenme Algoritması Sözde Kodu (Sunucu) ... 64

Şekil 40 Kullanılacak Federe Derin Öğrenme Algoritmasının Sözde Kodu (Yerel) . 65

Şekil 41 Kullanılacak Federe Derin Pekiştirmeli Öğrenme Algoritması (İşçi) 66

Şekil 42 Kullanılacak Federe Derin Pekiştirmeli Öğrenme Algoritması (Sunucu) ... 67

Şekil 43 Robot Kollarının Tutucularının Kullanabileceği Katezyen Uzay 68

Şekil 44 Robot Kol 1’in derin pekiştirmeli öğrenme sonuçları 79

Şekil 45 Robot Kol 2’nin derin pekiştirmeli öğrenme sonuçları 80

Şekil 46 Robot Kol 3’ün derin pekiştirmeli öğrenme sonuçları 80

Şekil 47 Federe derin öğrenme yöntemi ile öğrenme .. 80

Şekil 48 Federe derin pekiştirmeli öğrenme yöntemi ile öğrenme 81

Şekil 49 Federe derin pekiştirmeli öğrenme 2 ve 3 robot kolu ile öğrenme sonucunun

karşılaştırması ... 81

xviii

I. GİRİŞ

Son yıllarda gelişmiş ve gelişmekte olan ülkelerin üretim bantlarına bakıldığında

otomasyon sistemlerinin önemli ölçüde kullanıldığı göze çarpmaktadır. Üretim

sistemlerindeki otomasyon süreci önem kazandıkça endüstriyel robot kolların

kullanımı ve geliştirilmesi önemli bir konu haline gelmektedir.

Günümüzde insanlar fiziksel yapılarının getirdiği zafiyetlerden dolayı, gücünün

yetmediği koşullarda kullanmak üzere çeşitli makineler geliştirmiştir. İlk çağlarda

yeterince gelişmiş ve kullanım alanları çok sınırlı olan bu makineler, gelişen

teknoloji ile birlikte insanlar tarafından geliştirilmiş ve insanların fiziksel yapılarına

erişebilecek seviyede makineler ortaya çıkmıştır. Orta çağlarda geliştirilen ilk

makineler insan yardımı ile çalışmaktaydı, ancak zaman içerisinde geliştirilerek

herhangi bir insan müdahalesine gerek kalmayacak şekilde çalışır hale getirilmiştir.

Sanayide kullanılmak için geliştirilen birçok robot ve robot kol bulunmaktadır. Bu

robotlar ile birlikte genel itibariyle, üretim maliyetini düşürerek ve insan gücünü

ortadan kaldırarak daha hızlı ve daha kaliteli üretim yapılabilmektedir. Ayrıca insan

sağlığının el vermediği (afetler, nükleer enerji, yüksek ısı, dar alanlar vb.)

durumlarda kullanılmaktadır.

A. Robot Kolların Tarihçesi

Robot fikrini ilk olarak Da Vinci 1495’te dört serbestlik dereceli, güç ve

programlanabilirlik sağlan, analog yerleşik kontrolörlü bir robot kol tasarlayarak

ortaya koymuştur (Rosheim, 2022). Bu robot iki bağımsız sistemden oluşmaktadır.

Alt eklemler üç serbestlik derecesine sahiptir: Kalçalar, dizler, ayak bilekleri ve

bacaklar. Üst eklemler ise dört serbestlik derecesine sahiptir: Kollar, dirsekler,

bilekler ve omuzlar (Rosheim, 2022).

Uzun yıllar sonra Wolfgang Von Kempelen’in Türk olarak adlandırılan satranç

oyuncusu robotu ortaya çıkmıştır (Şekil 1) (Standage, 2002). Robot 1769 yılında

Kraliçe Maria Threse için üretilmiştir. Türk, satranç tahtasının altındaki dolabın

içerisinde gizlenmiş bir insan tarafından kullanılmaktadır. Otomat, satranç

1

oyuncusunun kolunu otomatik hale getiren bir mekanizmaya sahiptir. Satranç

oyuncusu, Türk-Osmanlı kıyafeti gitmiş ahşap bir sandığın arkasına oturan bir

kukladır. Bu kuklanın başı, gözleri ve kolları hareket edebilmektedir. Aynı zamanda

kuklanın sol kolu ve eli muhteşem bir şekilde düzenlenmiştir. Kol mekaniği,

oyunların insan kontrollü olduğunu bilenlerin verdiği isim olan “yönetici” tarafından

kontrol edilmektedir. Uzuv önce kaldırılır, ardından sol el, hareket ettirilmesi istenen

satranç taşının üzerine ortalanır. Kol taşa doğru indirildikten sonra çark çevrildiğinde

Türk’ün elindeki kaldıracın satranç taşını kaldırılması sağlanır. Otomatın kolları

tahtadan oluşmaktadır ve satranç karşılaşması sırasında taşların daha kolay

kavranması için el bir eldivenin içerisine yerleştirilmiştir.

Şekil 1 Von Kempelen’in Turk satranç oyuncu robotu

İlk “konum kontrol aparatı” 1938’de Williard Pollard tarafından geliştirildi ve

patentlendi (ABD Patent No. 2,286,571, 1942).

Bu beş serbestlik derecesine ve bir elektrik kontrol sistemine sahip sprey cilalama

robot koludur (ABD Patent No. 2,286,571, 1942). Harold A. Roselund başka bir

sprey cilalama robot kolu geliştirdi (ABD Patent No. 4,344,108, 1944). Her iki kol

da kendi zamanları için çok karmaşıktır ve elektronik kontrol sistemleri, onları

kullanılabilir hale getirmek için yeterince geçişmiş değildir. Modern robotik çağı,

1930’ların sonlarında geliştirilen, az bilinen bu iki robot kolun ortaya çıkmasıyla

başlamıştır.

2

Unimate şirketi, ilk robot kolunu 1962 geliştirdi (Şekil 2) (Ellis, 2000). Kol George

Devol tarafından icat edilmiştir. Geliştirilen bu robot kol ilk endüstriyel kol olarak

kabul edilmektedir.

Şekil 2 Unimate robot kolu

ISO 8373 tarafından tanımlanan sanayi robotu tanımı şu şekildedir: Üç veya daha

fazla programlanabilir ekseni olan, otomatik kontrollü, çok amaçlı, bir yerde sabit

duran veya tekerlekleri olan endüstriyel uygulamalarda kullanılan manipülatördür

(Yücel, 1991).

B. Endüstriyel Robot Kollar

1. Kartezyen Robot Kolu

Kartezyen Robotların sadece tutma ve taşıma yetenekleri bulunmaktadır ve 3

eksende hareket etme kabiliyetlerine sahiptirler. Basit bir yapıya sahip olduklarından

dolayı hareketlerinin ve kontrollerinin planlanması yeterince kolaydır. Kartezyen

robotlarda; pozisyonların hesaplamaları, robotun bulunduğu pozisyon ve mafsalların

aynı yerde bulunmasından dolayı kolaydır (Şekil 3).

Kartezyen robotlar, eğilme ve bükülme işlemlerini gerçekleştiremez. Yük taşıma

işlemleri için kullanılmakta ve genellikle insan gücünü aşan yüklerin taşınmasında

kullanılmaktadır. Bu nedenden dolayı genellikle fabrikalarda yükleme ve boşaltma

işlemlerinde kullanıldığından fabrikaların tavan bölümlerine monte edilmektedir.

3

Şekil 3 Kartezyen robot kolu

2. Silindirik Robot Kolları

Silindirik robot kolları kendi etrafında dönebilecek şekilde geliştirilmiş ve aynı

kartezyen robot kolunda olduğu gibi 3 eksende hareket etme kabiliyetine sahiptirler.

Şekil 4’te görüldüğü üzere esnek yapıda değil ve aynı zamanda Kartezyen robot

kollarından daha fazla alana hareket edebilmektedirler. Robot kolunun çalışabileceği

alan silindirik koordinat sisteminde hareket edecek kolların uzunluğuna göre

değişmektedir.

Şekil 4 Silindirik Robot Kolu

3. Küresel Robot Kolları

Küresel robot kolları omuz, dirsek ve gövdeden oluşmaktadır. Gövde ve omuz kendi

etrafında dönebilir, kol ise dirsek bölümünden uzayıp kısalabilir. Hareket çerçevesi

şekil 5’te gösterilmiştir. Küresel robot kolları silindirik bir dönme sistemine sahiptir.

Yapıları genel itibariyle kartezyen ve silindirik robot kollarına göre daha karmaşıktır.

Çalışma alanı kolların dirseklerden uzayıp kısalma boyutuna göre değişmektedir.

Küresel robot kolları sarkaç robot kol olarak da isimlendirilebilmektedir. Genel

itibariyle endüstriye kaynak yapımları ve yapıştırma işlemlerinde kullanılmaktadır.

4

Şekil 5 Küresel Robot Kolu

4. Scara Robot Kol

Scara robot kol diğer robot kollardan farklı olarak eklem bölgesi yerine elektrik

motoru, yukarı ve aşağı hareket edebilen bir koldan oluşmaktadır. Eklemler elektrik

motorlarından destek alarak kendi etrafında dönebilirler. Tutucu ağız sadece z

ekseninde yani yukarı ve aşağı yönde hareket edebildiğinden yeterinde hız ve

performans sağlamaktadır. Scara robot kol da aynı silindirik robot kolunda olduğu

gibi orta eksende kendi etrafında dönebilmektedir (Şekil 6). Kolun programlanması

kolay ve hızlı hareket kabiliyeti olmasından dolayı endüstride elektronik sanayinde,

elektronik kartlara yapılacak olan ekleme ve lehim işlemlerinde kullanılmaktadır.

Scara robot kol hali hazırda endüstride en çok kullanılan robot konumundadır.

Şekil 6 Scara Robot Kol

5. Mafsallı Robot Kollar

Mafsallı robot kollar insan koluna en yakın şekilde hareket edebilen robot koldur.

Öncesinde açıklanan robot kollarının hareket yeteneklerinin yeterince iyi

olmamasından dolayı endüstride kullanmak amacıyla eklem sayısı 7’e kadar

çıkabilecek mafsallı robot kollar geliştirilmiştir.

5

Hareket kabiliyeti en iyi olan robot koldur. Kol belirli bir alana monte edildikten

sonra, kol X,Y ve Z ekseninde üç boyutlu hareket yapılabilmektedir. Ancak

öncesinde bahsedilen robotlardan daha karmaşık olduğundan dolayı programlanması

da diğer robot kollardan daha zordur.

Her eklem bölgesi şekil 7’de gösterildiği gibi programlandığı şekilde rahat hareket

edebilmektedir. Bu da robotun istenen noktaya daha hızlı ve güvenli bir şekilde

ulaşmasını sağlar. Yapılacak olan uygulamanın şekline göre robot kolunun eklem ve

eksen sayısının tercihi yapılmalıdır.

Hali hazırdaki çalışmada mafsallı robot kollar üzerinde bir eğitim çalışması

gerçekleştirilmiştir.

Şekil 7 Mafsallı Robot Kolları

6. Tutucular

Tutucular robotun bir nesneyi tutması amacıyla çeşitli büyüklükte ve biçimlerde

tasarlanmış eklem bölgesidir. Tutma işlemi robotun üzerine işlem gerçekleştireceği

nesneye bağlı olacak şekilde geliştirilmiştir. Şekil 8’de elektrikli tutucu ve şekil 9’da

pünomatik tutucunun şekli görülmektedir. Çalışmada elektrikli tutucu kullanılacaktır.

6

Şekil 8 Elektrikli Tutucu Şekil 9 Pünomatik Tutucu

7

8

II. ÖĞRENME ALGORİTMALARI

Bu bölümde robotların çeşitli yapay zeka yöntemleriyle eğitilmesi, bu yapay zeka

yöntemlerinin içerikleri ve çalışma mekanizmalarındaki farklardan bahsedilecektir.

Sonrasında çeşitli federe öğrenme yaklaşımlarından bahsedilecektir.

Son yıllarda makine öğrenimi yöntemleri gerçek ya da simülasyon ortamlarında

çeşitli problemleri çözmek için yaygın bir biçimde kullanılmaktadır (El-Ghazali,

2020). Makine öğrenimi algoritmaları şekil 10’da da görüldüğü üzere 3 farklı bölüme

ayrılmıştır. Bu bölümler; Denetimli Öğrenme, Denetimsiz Öğrenme ve Pekiştirmeli

Öğrenme olarak adlandırılmıştır.

Şekil 10 Makine Öğrenmesi Algoritma Ağacı

A. Yapay Sinir Ağları

Makine öğrenimi yöntemleri yapay zekanın alt kolu olarak karşımıza çıkmaktadır.

Araştırmacılar son yıllarda yaptıkları geliştirmelerle makine öğreniminin alt kolu

olan yapay sinir ağlarını ortaya koymuşlardır. Yapay sinir ağları insan beynindeki

nöronların matematiksel bir karşılığı olarak tasarlanmıştır. Klasik bir tam bağımlı

yapay sinir ağının şekli şekil 11’de görüldüğü gibidir (Hagan, 2014).

Makine Öğrenmesi

Denetimli Öğrenme Pekiştirmeli Öğrenme

Model Olmadan Çalışan
Algoritmalar

Poliçe Tabanlı Algoritmalar Değer Tabanlı Algoritmalar

Model Tabanlı Algoritmalar

Öğrenme Modelli
Algoritmalar

Model Önceden
Tanımlanan Algoritmalar

Denetimsiz Öğrenme

9

Şekil 11 Tam Bağımlı Yapay Sinir Ağı

Şekil 11’den de görüldüğü üzere klasik bir yapay sinir ağında 3 katman

bulunmaktadır. Giriş katmanı girdi verilerini alan ve sonraki katmana taşıyan katman

olarak nitelendirilebilir. Giriş katmandaki nöronların sayısı verilerin sınıf sayısına

göre belirlenir. Veriler giriş katmanına eklendikten sonra matematiksel bir fonksiyon

ile hesaplaması yapıldıktan sonra gizli katmanlara iletilir. Bir yapay sinir ağında

birden fazla gizli katman varsa derin (deep) yapay sinir ağı olarak isimlendirilir.

Çalışmada çok katmanlı yapay sinir ağı ortaya konan pekiştirmeli öğrenme

yönteminde kullanılacaktır.

Yapay sinir ağında herhangi bir modelin eğitilebilmesi için bir optimizasyon

algoritması kullanılmak zorundadır. Optimizasyon kısaca yapılan işlemin

eniyilenmesi olarak da adlandırılabilir. Çalışma kapsamında yapay sinir ağını

oluştururken lineer olmayan kısıtsız sayısal optimizasyon kullanılacaktır.

1. Lineer Olmayan Kısıtsız Optimizasyon

Optimizasyon teknikleri günümüz makine öğrenmesi yöntemlerinde oldukça sık

kullanılmaktadır. Optimizasyon yöntemleri; matematiksel programlama, sezgisel

optimizasyon ve sayısal optimizasyon şeklinde alt dallara ayrılabilir. En sade haliyle

optimizasyon problemi denklem 1’de belirtilmiştir (İplikçi, 2017).

min
𝑥
𝑓𝑓 (𝑥)

𝑔𝑔𝑖(𝑥) = 0𝑖𝑖 𝜖 𝐸𝐸
𝑔𝑔𝑖(𝑥) ≤ 0𝑖𝑖 𝜖 𝐽𝐽

(1)

10

Denklem 1’de 𝑓𝑓(𝒙𝒙) optimize edilmek istenen amaç fonksiyonunu temsil etmektedir.

𝒙𝒙 tasarım değişkenlerini gösterir. Aynı zamanda 𝒙𝒙 ∈ R𝑛𝑛 olmak üzere 𝑓𝑓(𝒙𝒙): R𝑛𝑛 → R

tanımlıdır. 𝑔𝑔𝑖𝑖(𝒙𝒙) = 0 değişkenlerin eşitlik kısıtını 𝑔𝑔𝑖𝑖(𝒙𝒙) ≤ 0 ise değişkenin eşitsizlik

kısıtını temsil etmektedir. E ve J sırasıyla eşitlik kısıtları kümesini ve eşitsizlik

kısıtları kümesini temsil etmektedirler.

Denklem 1’de ifade edilen optimizasyon problemi, parametrelerine göre doğrusal

olmayan bir fonksiyon olduğundan dolayı lineer olmayan kısıtlı optimizasyon

problemi olarak adlandırılmıştır.

Kısıtsız lineer olmayan optimizasyon problemleri için denklem 2’de ki fonksiyon

kullanılmaktadır.

min
𝑥
𝑓𝑓 (𝑥)

(2)

Denklem 2’de 𝑓𝑓(𝒙𝒙): R𝑛𝑛 → R koşuluyla birlikte sürekli ve türevlenebilir olmak

zorundadır. 𝑓𝑓(𝒙𝒙) fonksiyonu için optimal değer her bir 𝒙𝒙∗ değeri için 𝑒𝑒 > 0

olduğunda denklem 3 sağlanıyorsa bu durumda 𝒙𝒙∗ yerel minimumu ifade etmektedir.

𝑓𝑓(𝑥∗) ≤ 𝑓𝑓(𝑥) ∀𝑥 ∥ 𝑥 − 𝑥∗ ∥< 𝑒𝑒 (3)

Eğer 𝒙𝒙∗ parametresi için denklem 4 sağlanıyorsa, nokta global minimum noktasını

ifade etmektedir.

 𝑓𝑓(𝑥∗) ≤ 𝑓𝑓(𝑥) ∀𝑥 𝜖 ℜ𝑛 (4)

Denklem 3 ve 4’te ki ifadelerdeki eşitsizlik değeri (≤ → <) kaldırıldığında kesin

yerel ve kesin global minimum noktaları ortaya çıkmaktadır. Optimize edilmek

istenen 𝑓𝑓(𝒙𝒙) fonksiyonu konveks olmayan bir biçimde karşımıza çıkabilir ve

fonksiyonda birden fazla yerel minimum ve maksimum noktaları bulunabilir.

Konveks olmayan 𝑓𝑓(𝒙𝒙) fonksiyonunun grafiği aşağıdaki gibidir (Şekil 12).

11

Şekil 12 Konveks Olmayan 𝑓𝑓(𝒙𝒙) fonksiyonu

2. Optimallik İçin Gerekli Koşullar

Denklem 2’nin optimum noktasını bulabilmek için 𝑓𝑓(𝒙𝒙) fonksiyonunun Δ𝒙𝒙

değişimiyle azalma sürecinin incelenmesi ve fonksiyonun davranışlarının analiz

edilmesi gerekmektedir. Denklem 2’de 𝑓𝑓(𝒙𝒙) fonksiyonu 𝒙𝒙∗ noktasında 𝑓𝑓(𝒙𝒙∗)

değerini alıyorken 𝒙𝒙∗ + Δ𝒙𝒙∗ noktasında hangi değeri aldığının Taylor açılımı ile

incelenmelidir. Denklem 2’nin birinci dereceden Taylor açılımı denklem 5’te ki

gibidir

𝑓𝑓(𝑥∗ + ∆𝑥) = 𝑓𝑓(𝑥∗) + ∇𝑓𝑓(𝑥∗) ′∆𝑥 𝐻𝐻𝑂𝑂𝑇𝑇 (5)

Denklem 5’te 𝐻𝐻𝑂𝑂𝑇𝑇 Taylor açılımında yüksek dereceden terimleri ifade eder. Eğer

Denklem 5’te 𝐻𝐻𝑂𝑂𝑇𝑇 = 0 alınırsa denklem 6 elde edilmektedir.

𝑓𝑓(𝑥∗ + ∆𝑥) − 𝑓𝑓(𝑥∗) ≈ ∇𝑓𝑓(𝑥∗)′∆𝑥

(6)

Denklem 6’ya eğer ikinci dereceden taylor açılımı uygulanırsa Denklem 7 elde

edilecektir

 𝑓𝑓(𝑥∗ + ∆𝑥) − 𝑓𝑓(𝑥∗) ≈ ∇𝑓𝑓(𝑥∗) ∆0′ 𝑥 + 1

2
 ∆𝑥′∆2 𝑓𝑓(𝑥∗) ∆𝑥

(7)

12

Eğer 𝒙𝒙∗ kısıtsız yerel minimum noktası ise Taylor açılımının birinci türevindeki Δ𝒙𝒙

noktasının pozitif olması gerekmektedir. Bu durum denklem 8’de gösterilmiştir

 ∇𝑓𝑓(𝑥∗)′∆𝑥 = Σ𝑖=1𝑛 𝜕𝑓(𝑥∗)
𝜕𝑥𝑖

 ∆𝑥𝑖 ≥ 0

(8)

Denklem 8’in optimallik için birinci şartı, denklem 9’daki gibidir.

∇𝑓𝑓(𝑥∗) = 0

 (9)

Benzer şekilde optimallik için ikinci dereceden koşul için denklem 7 incelenerek

denklem 10 elde edilir.

∇𝑓𝑓(𝑥∗)′∆𝑥 +
1
2

 ∆𝑥′∇2 𝑓𝑓(𝑥∗) ∆𝑥 ≥ 0

(10)

Denklem 9 ve denklem 10 birleştirilerek denklem 11 elde edilir.

∆𝑥′∇2𝑓𝑓(𝑥∗)∆𝑥 ≥ 0

(11)

Denklem 11’de ∀𝒙𝒙 değeri için eşitlik sağlanacağından dolayı, eşitliğin oluşması için

ikinci dereceden koşul denklem 12’deki şekilde elde edilir

∇2𝑓𝑓(𝑥∗) ≥ 0

(12)

Denklem 12’de 𝛻𝛻2 ifadesi amaç fonksiyonunun hessian matrisini oluşturmaktadır.

𝑓𝑓(.): R𝑛𝑛 → R olmak üzere amaç fonksiyonunun hessian ve gradyan matrisi denklem

13’deki gibi hesaplanır.

13

(13)

Denklem 9’da bulunan 𝒙𝒙∗ kritik noktanın yorumu denklem 11 ile yapılmalıdır.

Böylece uygun hessian matrisinin durumuna göre 𝒙𝒙∗ noktasının durumu

değişmektedir. Bu durum çizelge 1’de görüldüğü gibidir.

Çizelge 1 Hessian Tablosu

Olasılık x* Noktasının Durumu Açıklama
1 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) ≥ 0 𝒙𝒙∗ noktası yerel minimum
2 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) > 0 𝒙𝒙∗ noktası kesin yerel minimum
3 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) ≤ 0 𝒙𝒙∗ noktası yerel maksimum
4 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) < 0 𝒙𝒙∗noktası kesin yerel maksimum
5 𝛻𝛻2𝑓𝑓(𝒙𝒙∗) = 0 𝒙𝒙∗semer noktası

3. Gradyan Yöntemler

Denklem 3 amaç fonksiyonunu minimum yapan 𝒙𝒙∗ parametresinin değerini bulmak

için 𝑓𝑓(𝒙𝒙) fonksiyonunun birinci türevini 𝛻𝛻𝑓𝑓(𝒙𝒙) gradyan vektörü ve ikinci türevi olan

𝛻𝛻2𝑓𝑓(𝒙𝒙) hessian matrisini kullanmaktadır. Belirlenen bir 𝒙𝒙0 başlangıç noktasından 𝒙𝒙∗

noktasının bulunması için arttırılabilir bir şekilde parametrelerin güncellenmesi

gerekmektedir. Bu yöntem denklem 14’te gösterilmiştir.

𝑥𝑖+1 = 𝑥𝑖 + 𝑠𝑠𝑖𝑝𝑝𝑖

(14)

Denklemde 𝒑𝒑𝑖𝑖 iniş yönünü ifade etmekte ve birinci dereceden yöntemler için

fonksiyonun gradyan vektörünün tersine eşittir ve Denklem 15’te gösterilmiştir.

𝑝𝑝𝑖 = − ∇𝑓𝑓(𝑥𝑖)

(15)

14

Denklem 14’te 𝑠𝑠𝑖𝑖 adım aralığını belirtmektedir. Bu şekilde denklem 14’te ki

güncelleme ile denklem 2’yi minimum yapan noktalar belirlenir. Denklem 14’teki

ifadede ise 𝒑𝒑𝑖𝑖 amaç fonksiyonunun, birinci dereceden türevini ya da ikinci dereceden

türevini temsil etmektedir (İplikçi, 2017).

4. Gradyan Azalan Algoritması

Gradyan azalan algoritması 𝒙𝒙∗ parametre değerini bulmak için amaç fonksiyonunun

gradyan vektörünü kullanmaktadır (Nocedal and Wright, 2006).

Gradyan azalan algoritmasının sözde kodu şekil 13’te gösterilmiştir.

Şekil 13 Gradyan Azalan Algoritması

Örnek gradyan azalan algoritmasının grafiği şekil 14’te gösterilmiştir.

Şekil 14 Gradyan Azalan Algoritması Grafiği

15

5. Tek Katmanlı Yapay Sinir Ağları

Tek katmanlı yapay sinir ağları bir gizli katmanı olan ağlardır ve şekil 15’te

görülmektedir (Goodfellow et al., 2017).

Tek katmanlı sinir ağlarının ileri modeli denklem 16’da gösterilmiştir.

𝑦�𝑗 = 𝑊ç 𝐻𝐻�𝑊𝑔𝑥𝑖 + 𝑏𝑏𝑔� + 𝑏𝑏ç 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑗 = 1,2, … ,𝑀𝑀 (16)

Denklem 16’da 𝐻𝐻(.) aktivasyon fonksiyonu olarak adlandırılır. Örnek bir aktivasyon

fonksiyonu denklem 17’da gösterilmiştir.

𝐻𝐻(𝑥) =
𝑒𝑒𝑥 − 𝑒𝑒−𝑥

𝑒𝑒𝑥 + 𝑒𝑒−𝑥

(17)

Araştırmacılar birçok aktivasyon fonksiyonu önermişlerdir ancak bu çalışma

kapsamında denklem 17’de ki aktivasyon fonksiyonu kullanılacaktır.

Şekil 15 Tek Katmanlı Yapay Sinir Ağı

6. Tek Katmanlı Yapar Sinir Ağı Eğitimi

Denklem 16’de belirtilen 𝑾𝑾𝑔𝑔,𝒃𝒃𝑔𝑔,𝑾𝑾ç,𝒃𝒃ç sinir ağının parametrelerini temsil ederler.

Yapay sinir ağlarında modelin parametreleri rastgele bir değerden başlanarak döngü

boyunca güncellenir. Bu döngü sinir ağları en iyi modeli elde edene kadar devam

eder. Güncelleme işlemi şekil 13’te önerilen gradyan azalan algoritması ile

16

yapılmaktadır. Örnek olarak elimizde 𝑇𝑇 , 𝑌𝑌 𝑖𝑖 = 1,2,3, . . . , 𝑁𝑁 şeklinde Çizelge 2’de

gösterilen şekilde bir veri seti olsun.

Çizelge 2 Örnek Veri Seti

MIMO Giriş Verisi Çıkış Verisi Model Çıkışı
i Ti ∈ RR Yi ∈ RM yi ∈ RM

1 X11 X12 … X1R Y11 Y12 … Y1M y11 y12 … y1M
2 X21 X22 … X2R Y21 Y22 … Y2M y21 y22 … y2M
3 X31 X32 … X3R Y31 Y32 … Y3M y31 y32 … y3M
… … … …
N XN1 XN2 … XNR YN1 YN2 … YNM yN1 yN2 … yNM

Hali hazırdaki veriler 𝑇𝑇 , 𝑌𝑌 𝑖𝑖 = 1,2,3, . . . , 𝑁𝑁 olduğunda, çıkış verileri de 𝑌𝑌 ∈ {−1,1}

ise sınıflandırma problemi olarak isimlendirilir. Ancak çıktı verileri 𝑌𝑌 ∈ R𝑀𝑀

olduğunda regresyon problemi olacaktır. Mevcut veri setini eğitim ve test olarak iki

parçaya bölmemiz gerekmektedir. Örnek olarak %80 eğitim %20 test şeklinde

verimizi rassal olarak bölebiliriz. Ayrılan eğitim verileriyle sinir ağı eğitilecektir.

Eğitim işlemi daha öncesinde de bahsedildiği üzere 𝑾𝑾𝑔𝑔, 𝒃𝒃𝑔𝑔, 𝑾𝑾ç, 𝒃𝒃ç

parametrelerinin en hatasız halini bulmaktır. Çizelge 2’de bahsedilen gradyan azalan

algoritması ile, parametrelerin değerleri amaç fonksiyonunu minimum yapana dek

hesaplanacaktır. Hesaplama tamamlandıktan sonra daha öncesinde ayrılan test

verileri ile model test edilecek ve sonuçlar karşılaştırılacaktır. Sinir ağının maliyet

fonksiyonu denklem 18’de gösterilmektedir.
1
𝑛𝑛
∑𝑖=1
𝑁 (𝑌𝑌𝑖 − 𝑌𝑌�𝑖)2

(18)

Şekil 16’da sinir ağlarının eğitimi için gradyan azalan algoritması gösterilmektedir

(Goodfellow et al., 2017).

17

Şekil 16 Yapay Sinir Ağlarının Gradyan Azalan Algoritmasıyla Eğitimi Algoritması

7. Çok Katmanlı Yapay Sinir Ağları

Çok katmanlı yapay sinir ağları, tek katmanlı yapay sinir ağlarının genişletilmiş

halidir. Tek katmanlı yapay sinir ağlarından farklı olarak problemin zorluluğuna ve

farklılığına göre mimariye istenildiği kadar gizli katman eklenebilmektedir. Şekil

17’de çok katmanlı yapay sinir ağları gösterilmektedir.

Şekil 17 Çok Katmanlı Yapay Sinir Ağı

8. Çok Katmanlı Yapay Sinir Ağının İleri Modeli

Çok katmanlı ve çok girişli çok çıkışlı sinir ağının modeli şekil 18’de gösterilmiştir

(Goodfellow et al., 2017).

18

Şekil 18 Çok Katmanlı Çok Girişli Çok Çıkışlı Yapay Sinir Ağı

Çok katmanlı yapay sinir ağının matematiksel olarak ifadesi denklem 19’da

gösterilmiştir.

𝑌𝑌�𝑗 = 𝑊ç𝐻𝐻�𝑊𝑔𝑘 …𝐻𝐻�𝑊𝑔2𝐻𝐻�𝑊𝑔1𝑋𝑋𝑖 + 𝑏𝑏𝑔1� + 𝑏𝑏𝑔2�… + 𝑏𝑏𝑔𝑘� + 𝑏𝑏ç

 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑗 = 1,2, … ,𝑀𝑀𝑘𝑘 = 1,2, … ,𝐾

(19)

Denklem 19’da K adet gizli katman ve 𝑋𝑋 ∈ R𝑁𝑁 ve 𝑌𝑌 ∈ R𝑀𝑀 olmalıdır. Aynı şekilde

çok katmanlı yapay sinir ağının optimizasyon problemi şekil 19’da gösterilen

algoritma ile çözülebilmektedir.

Adam algoritması stokastik tanımlanan amaç fonksiyonu ve fonksiyonun gradyanı

üzerinden geliştirilen bir algoritmadır (Goodfellow et al., 2017). Algoritma adını

adaptif moment tahmininden almaktadır. Bu çalışmada pekiştirmeli öğrenme

algoritmaları için oluşturulan çok katmanlı yapay sinir ağlarının eğitimi için

kullanılmıştır (Kingma and Ba, 2015). Şekil 19’da Adam algoritmasının sözde kodu

gösterilmiştir.

19

Şekil 19 Adam Algoritması

B. Pekiştirmeli Öğrenme

Pekiştirmeli öğrenme algoritmasında yapay zeka ajanları belirlenen bir alana dağılır

ve ceza-ödül mekanizmasına göre optimal sonuçları bulmaları beklenir. Ajan

öğrenme sırasında doğru kararlar verdiğinde ödüllendirilir, yanlış kararlar verdiğinde

ise cezalandırılırlar. Pekiştirmeli öğrenmede ajanlar biyo-ilhamlıdır ve aynı

canlılarda olduğu içi hayatta kalma ve büyüme için ödül ve ceza deneyiminden

öğrenirler. Pekiştirmeli öğrenmede ajanlardan ödüllerini maksimize etmeleri beklenir

(Khan et al., 2012). Bu şekilde yapay zeka ajanları optimal bir politika geliştirir.

Pekiştirmeli öğrenme araştırması kırk yıldır devam etmektedir ve kökeni bilgisayar

bilimlerine dayanmaktadır, ancak uyarlamalı dinamik programlama (ADP) ve

nörodinamik programlama (NDP) gibi benzer yöntemler Werbos, Bertsekas ve diğer

birçok araştırmacı tarafından paralel olarak geliştirilmektedir. Williams’a göre,

modern pekiştirmeli öğrenme, yapay zekadan gelen zaman fark yöntemlerinin,

optimal ve kontrol ve hayvan çalışmalarından öğrenme teorilerinin bir karışımıdır

(2009) Werbos’un son çalışmaları (2004; 2007; 2008; 2009) sınırları daha da aşmış

20

ve beynin nasıl çalıştığın anlamak ve geliştirerek daha iyi hale getirmek için

pekiştirmeli öğrenmeyi kullanmıştır.

Şekil 10’a göre pekiştirmeli öğrenme algoritması da kendi içinde 2 alt gruba ayrılır.

Bu gruplardan ilki model tabanlı algoritmalardır, diğeri ise model tabanlı olmayan

algoritmalardır. Model tabanlı olmayan algoritmalar günümüzde daha yaygın olarak

kullanılmaktadır (Richard and Andrew, 2015; Yu, 2020). Model tabanlı olmayan

algoritmalar da kendi içlerinde iki gruba ayrılabilir: politika tabanlı algoritmalar ve

değer tabanlı algoritmalar.

Politika, bir yapay zeka ajanının belirli bir zamanda davranışı olarak tanımlanır.

Politika, pekiştirmeli öğrenme şemalarının çok önemli bir parçasıdır ve bir arama

tablosu veya bir fonksiyon ile temsil edilebilir. Politika stokastik veya deterministik

olabilir. Bazı pekiştirmeli öğrenme şemalarında, politikanın hesaplamasında

karmaşık bir arama süreci kullanılır. Bu süreç içerisinde değer fonksiyonunun en aza

indirilmesi üzerinde çalışılır (Sutton and Barto, 1998).

Değer işlevi, gelecekteki ödülün tahmini ve aracın daha yüksek ödüller üretecek bir

eylemde bulunmayı beklediği temeldir. Normalde iki tür değer işlevi kullanılır, yani

genel olarak V(s) ile temsil edilen durum değeri işlevi ve Q(s,a) ile temsil edilen

eylem değer işlevi. Burada s durumu, a ise eylemi temsil eder. Garcia’a göre, ortamın

modeli bilindiğinde, dinamik programlama yöntemlerinde olduğu gibi bir durum

değeri fonksiyonu kullanılır. Ancak ortamın modeli bilinmiyorsa, o zaman bir eylem

değeri işlevi tercih edilir (2005).

Çalışmada yazar pekiştirmeli öğrenme problemlerini çözmek için üç ana yöntem

sıralamıştır; dinamik programlama (DP), monte carlo (MC) yöntemleri ve zamansal

fark yöntemleri (ZM). Bu yöntemler şekil 20’de gösterilmiştir (Garcia, 2005).

Şekil 20 Çeşitli Pekiştirmeli Öğrenme Algoritmaları Grafiği

21

1. Rastgele Süreçler ve Markov Süreci

Fiziksel sistemlerin matematiksel modelleri lineer olmayan diferansiyel denklem

20’de açıklanmıştır.

𝑥̇(𝑡𝑡) = 𝑓𝑓(𝑡𝑡, 𝑥,𝑢𝑢,𝑤𝑤)
 𝑦(𝑡𝑡) = 𝑔𝑔(𝑡𝑡, 𝑥,𝑢𝑢, 𝑣𝑣)

(20)

Denklem 20’de t zamanı, 𝒙𝒙 durum vektörünü, 𝒖𝒖 kontrol işaretini, 𝑤𝑤 proses

gürültüsünü, 𝑣𝑣 ölçüm gürültüsünü, 𝑓𝑓 (.) sistem modelini oluşturulan lineer olmayan

diferansiyel denklemleri, 𝑔𝑔(.)çıkış̧ denklemini temsil etmektedir. Fiziksel

sistemlerde, eğer sistemin matematiksel modeli biliniyorsa, belirlenen durum geçiş

matrisi üzerinden elde edilebilir. Ancak genel itibariyle fiziksel sistemlerdeki

belirsizlik, gürüldü ve herhangi bir şekilde model elde edilememesi dinamikleri

yüzünden çözülememektedir. Rastgele süreçlerde var olan sistemin modelini

oluşturmak için durumu temsil eden 𝒙𝒙’ler rastgele değişken olarak temsil

edilmektedir. 𝒙𝒙’ler rastgele olarak kabul edildiğinde sistem stokastik bir biçimde

modellenmiş olur. Pekiştirmeli öğrenmede fiziksel sistemler ve durumlar arasındaki

geçişler Markov karar süreci ile modellenmektedir. Rastgele süreç matematiksel

olarak 𝑿𝑿(𝑡𝑡), 𝑿𝑿(𝑛𝑛) ile ifade edilir. Olasılık uzayındaki tüm fonksiyonların birleşimi

rastgele ya da stokastik süreç olarak adlandırılır. Bu fonksiyonların birleşiminde basit

(PDF) veya ortak olasılık yoğunluk fonksiyonları (JPDF), zamanla değişmiyorsa bu

süreç durağan olarak adlandırılmaktadır. Durağan süreçlerde, modeller ve

parametreler zamandan bağımsız olarak nitelendirilir. Bazı durumlarda tüm bu

rastgele süreç aynı istatistiksel özellikleri sergilemektedir. Bu gibi durumlarda tek bir

rastgele sürecin örnek fonksiyonlarının bilinmesiyle birlikte tüm sürecin istatistiksel

özellikleri modellenebilir. Rastgele süreçler ayrık değerli ayrık zamanlı rastgele

süreç, ayrık değerli sürekli zamanlı rastgele süreç, sürekli değerli ayrık zamanlı

rastgele süreç ve son olarak sürekli değerli zamanlı süreç olarak dört sınıfta

incelenmektedir. Markov süreci denklem 21’de gösterilmiştir.

 𝑃𝑃[𝑋𝑋(𝑡𝑡𝑘+1) = 𝑥𝑘+1|𝑋𝑋(𝑡𝑡𝑘) = 𝑥𝑘, … ,𝑋𝑋(𝑡𝑡1) = 𝑥1]
= 𝑃𝑃[𝑋𝑋(𝑡𝑡𝑘+1) = 𝑥𝑘+1|𝑋𝑋(𝑡𝑡𝑘) = 𝑥𝑘]

(21)

Denklem 21’de gösterildiği gibi 𝑋𝑋(𝑡𝑡) rastgele sürecinin, 𝑋𝑋(𝑡𝑡𝑘𝑘+1) değeri bir geçmiş

değer olan 𝑋𝑋(𝑡𝑡) ’ye bağlıdır. Bu özellik Markov özelliği olarak adlandırılır. Rastgele

sürece ilişkin ortak olasılık yoğunluk fonksiyonunun (JPDF) bilinmesi durumunda

22

Markov süreci durum geniş matrisiyle ifade edilmektedir ve Denklem 22’de

gösterilmiştir.

𝑃𝑃[𝑋𝑋𝑛+1 = 𝑗|𝑋𝑋𝑛 = 𝑖𝑖] = 𝑃𝑃𝑖𝑗

(22)

Denklem 22’te 𝑋𝑋𝑛𝑛 homojen geçiş olasılıkları olarak adlandırılmaktadır. 𝑋𝑋𝑛𝑛, . . ., 𝑋𝑋0

ortak olasılık yoğunluk fonksiyonunun verilmesiyle denklem 23 ortaya çıkar.

𝑃𝑃�𝑋𝑋𝑛 = 𝑖𝑖𝑛,…,𝑋𝑋0 = 𝑖𝑖0� = 𝑝𝑝𝑖𝑛−1,𝑖𝑖𝑛 …𝑝𝑝𝑖0𝑖1𝑝𝑝𝑖0(0)

(23)

Buradan geçiş olasılıkları matrisini 𝑃𝑃 , elde etmek için başlangıç değerlerine 𝑝𝑝𝑖𝑖(0)

Verildiğinde denklem 24 elde edilir.

(24)

Denklem 24’ün sütunları toplandığında denklem 25 ortaya çıkacaktır.

∑𝑗𝑃𝑃[𝑋𝑋𝑛+1 = 𝑗|𝑋𝑋𝑛 = 𝑖𝑖] = ∑𝑗𝑝𝑝𝑖𝑖𝑗 = 1

(25)

Şekil 21’de İki durumlu Markov süreci için örnek bir akış gösterilmiştir.

Şekil 21 Markov Süreci İçin Örnek Bir Akış

Şekil 21’de ifade edilen iki durumlu Markov zincirinin akış matrisi denklem 26’de

gösterilmiştir.

𝑃𝑃 = �1 − 𝑎𝑎 𝑎𝑎
𝛽 1 − 𝛽�

(26)

23

Denklem 26’nin kuvvetleri alındığında Markov zincirinin zamana bağlı hesaplaması

gerçekleştirilir. Denklem 27’de gösterilmiştir.

𝑃𝑃𝑛 = �1 − 𝑎𝑎 𝑎𝑎
𝛽 1 − 𝛽� �1 − 𝑎𝑎 𝑎𝑎

𝛽 1 − 𝛽�⋯ �1 − 𝑎𝑎 𝑎𝑎
𝛽 1 − 𝛽�

(27)

Denklem 8 ile n durumlu geçiş olasılıkları, P durum geçiş matrisinin bilinmesiyle

hesaplanabilir. Bir 𝑋𝑋𝑘𝑘 rastgele süreci bağımsız ve aynı olasılık dağılımıyla ifade

edilmiş ise bu süreç IID olarak ifade edilmiştir ve denklem 28’da gösterilmiştir.

𝐹𝑥1,𝑥2,...,𝑥𝑘(𝑥1,𝑥2, . . . , 𝑥𝑘) = 𝑃𝑃�𝑋𝑋1 ≤ 𝑥1,𝑋𝑋2 ≤ 𝑥2, . . . ,𝑋𝑋𝑘 ≤ 𝑥𝑘 �

𝐹𝑥1,𝑥2,...,𝑥𝑘 (𝑥1,𝑥2, . . . , 𝑥𝑘) = 𝐹𝑥(𝑥1)𝐹𝑥(𝑥2). . .𝐹𝑥(𝑥𝑘)

(28)

Denklem 28’da 𝑋𝑋𝑘𝑘 rastgele değişkenlerin istatistiksel bağımsızlığını ifade eder.

Ancak bu bölümde pekiştirmeli öğrenme algoritmalarındaki ajanların ortamlardan

elde ettikleri veriler IID olmamalıdır. Bu şekilde elde edilen verilerden beslenen

modeller eğitim sürecinde lokal noktaya takılmaktadır (Garcia, 2005).

2. Markov Karar Süreci

Markov karar süreci, ödül sürecinin 𝑎𝑎 ∈ 𝐴𝐴 olduğu aksiyon kümesiyle genişletilmiş

versiyonudur. Burada S Markov sürecini sağlayan sonlu ve ayrık durum kümesidir.

A aksiyon kümesi olarak tanımlanır. 𝑃𝑃𝑎𝑎 = 𝑃𝑃[𝑆𝑆 = 𝑠𝑠′|𝑆𝑆 = 𝑠𝑠, 𝐴𝐴 = 𝑎𝑎] denklemi koşullu

geçiş durumunu ve 𝑅𝑅𝑎𝑎 = 𝐸𝐸[𝑅𝑅 |𝑆𝑆 = 𝑠𝑠, 𝐴𝐴 = 𝑎𝑎] ödül fonksiyonunu tanımlar. 𝛾𝛾 ∈ [0,1]

İse azaltma faktörü olarak adlandırılabilir. Markov karar sürecinde iki önemli faktör

vardır. Bunlar politika ve değer fonksiyonu olarak isimlendirilir. Politika 𝜋𝜋 şeklinde

gösterilir. Denklem 29’da tanımlanmıştır.

𝜋𝜋(𝛼|𝑠𝑠) = 𝑃𝑃[𝐴𝐴𝑡 = 𝛼|𝑆𝑆𝑡 = 𝑠𝑠]

(29)

Denklemde 𝑠𝑠 ajanının durumunu ve 𝑎𝑎 alacağı aksiyonu belirtir. Markov sürecinde

politika 𝑠𝑠𝑡𝑡 olarak gösterilen ajanın t zamanındaki durumunu belirtir. Politika ise

zamandan bağımsız olarak tanımlanır ve denklem 30’da açıklanmıştır.

𝐴𝐴𝑡~𝜋𝜋(. |𝑆𝑆𝑡)∀𝑡𝑡 > 0

(30)

24

Denklem 18’de ve Markov karar sürecinde 𝑀𝑀 = (𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑅𝑅, 𝛾𝛾) olarak tanımlanır ve

politika olarak ödül verildiğinde durumlar Markov özelliği olan (𝑆𝑆,𝑃𝑃𝜋𝜋) fonksiyonunu

sağlamalıdır. Denklem 31’de 𝑃𝑃𝜋𝜋, 𝑅𝑅𝜋𝜋 formülleri tanımlanmıştır.

𝑃𝑃𝑠𝑠′𝜋 = ∑𝛼𝜖𝐴𝜋𝜋(𝛼|𝑠𝑠)𝑃𝑃𝑠𝑠′𝛼
 𝑅𝑅𝑠𝜋 = ∑𝛼𝜖𝐴𝜋𝜋(𝛼|𝑠𝑠)𝑅𝑅𝑠𝛼

(31)

Markov sürecindeki değer fonksiyonu denklem 32’de tanımlanmıştır.

𝑉𝑉𝜋(𝑠𝑠) = 𝐸𝐸𝜋[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠]

(32)

Denklem 33’te durum-değer fonksiyonu görülmektedir. Yapay zeka ajanları Markov

süreçleri ile 𝑠𝑠 durumundan başlayıp sonuca kadar 𝜋𝜋 politikasını takip ederek ödüllere

ulaşmaya çalışır. Markov süreçlerindeki aksiyon-değer fonksiyonu denklem 33’te

tanımlanmıştır.

𝑞𝑞𝜋(𝑠𝑠,𝛼) = 𝐸𝐸𝜋[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠,𝐴𝐴𝑡 = 𝛼]

(33)

Denklem 33’teki aksiyon-değer formülü daha öncesinde modellenmiş belirli bir

çevrede 𝑠𝑠 durumundan başlayarak ve belirlenen politikayı takip ederek formülde 𝑎𝑎

olarak tanımlanmış aksiyonu alması sonucunda ödüllere ulaşmaya çalışır. Daha

öncesinde belirtildiği üzere Markov sürecinde iki farklı çözüm uygulaması

bulunmaktadır. Durum-değer ve aksiyon-değer formülleri iteratif hale getirildiğinde

sırasıyla denklem 34 ve denklem 35 ortaya çıkar.

𝑉𝑉𝜋(𝑠𝑠) = 𝐸𝐸𝜋[𝑅𝑅𝑡+1 + 𝛾𝛾𝑉𝑉𝜋(𝑆𝑆𝑡+1)|𝑆𝑆𝑡 = 𝑠𝑠]

(34)

Denklem 34 durum-değer fonksiyonunun Bellman denklemi ile harmanlanmış

halidir. Bu durumda durum-değer fonksiyonu belirli bir 𝑆𝑆𝑡𝑡 = 𝑠𝑠 durumunda

belirlenmiş bir 𝜋𝜋 politikasını takip eder ve sonuç olarak 𝑉𝑉𝜋𝜋 (𝑠𝑠) değerini hesaplar.

𝑞𝑞𝜋(𝑠𝑠,𝛼) = 𝐸𝐸𝜋[𝑅𝑅𝑡+1 + 𝛾𝛾𝑞𝑞𝜋(𝑆𝑆𝑡+1,𝐴𝐴𝑡+1)|𝑆𝑆𝑡 = 𝑠𝑠,𝐴𝐴𝑡 = 𝛼]

(35)

Denklem 34’te aksiyon-değer fonksiyonu tanımlanmıştır. Bu denklemi kullanarak

yapay zeka ajanı Markov süreci ile modellenmiş ve belirli bir politikayı takip ederek

25

𝑆𝑆𝑡𝑡 = 𝑠𝑠 𝐴𝐴𝑡𝑡 = 𝑎𝑎 durumunda 𝑞𝑞𝜋𝜋(𝑠𝑠, 𝑎𝑎) fonksiyonunu hesaplar. Denklem 34’ün ve

denklem 35’in lineer sistemde çözümlenmiş hali denklem 36’te tanımlanmıştır.

𝑉𝑉𝜋 = 𝑅𝑅𝜋 + 𝛾𝛾𝑃𝑃𝜋𝑉𝑉𝜋

𝑉𝑉𝜋 = (1 − 𝑦𝑃𝑃𝜋)−1𝑅𝑅𝜋

(36)

Markov ödül sürecinde, denklem 34’te tanımlanmış formülizasyon çözümlendiğinde

aynı denklem 35’te tanımlanan Markov karar sürecinin de bir çözümü

bulunmaktadır. Denklem 36 uygulanması sonlu sayıda durum için, sonlu sayıda geçiş

olasılıkları matrisinin bilindiği durumda mümkündür. Eğer geçiş olasılığı bilinmezse

farklı Markov karar süreçleri uygulanmaktadır. Bunlar: yaklaşık dinamik

programlama, zamansal fark ve monte carlo metodu olarak adlandırılır. Markov

sürecinin optimal çözümü denklem 37’de tanımlanmıştır.

𝑉𝑉∗(𝑠𝑠) = max

𝜋
𝑉𝑉𝜋(𝑠𝑠)

(37)

Denklem 37’de 𝑉𝑉∗(𝑠𝑠) optimal değer fonksiyonu olarak adlandırılır ve tüm

politikaların değerlerinin maksimum olarak seçilmesiyle hesaplanır. Denklem 38’de

ise optimal aksiyon değer fonksiyonu tanımlanmıştır.

𝑞𝑞∗(𝑠𝑠,𝛼) = max

𝜋
𝑞𝑞𝜋(𝑠𝑠,𝛼)

(38)

Optimal durum-değer fonksiyonu aynı zamanda Markov karar sürecinin çözümünü

oluşturur. Aynı şekilde Markov aksiyon-değer fonksiyonunun belirlenmesiyle de

çözülebilir. Kısaca açıklamak gerekirse Markov sürecinin iki farklı çözüm metodu

mevcuttur. Bunlar durum-değer ve aksiyon-değer olarak daha öncesinde

tanımlanmıştır. Optimal durum-değer fonksiyonu belirlenmiş politikalar üzerinde

hareket ederken denklem 39’u sağlamalıdır.

𝜋𝜋 ≥ 𝜋𝜋′ 𝑉𝑉𝜋(𝑆𝑆) ≥ 𝑉𝑉𝜋′(𝑠𝑠) ∀𝑠𝑠

(39)

Denklem 39’u genel itibariyle açıklamak gerekirse politika değeri, bir sonraki

adımdaki politika değerinden büyük ve eşit ise bundan sonraki tüm durum-değer

fonksiyonları da aynı şekilde politika değerinden büyük ve eşit olmalıdır.

26

Ancak Markov karar sürecinde, optimal bir politika 𝜋𝜋∗ vardır ve bu 𝜋𝜋∗ değeri

𝜋𝜋∗ ≥ 𝜋𝜋∀𝜋𝜋 koşulunu sağlamak zorundadır. Aynı zamanda optimal olarak hesaplanan

politika değeri, optimal olarak hesaplanan durum-değer fonksiyonunu sağlamak

zorundadır. Bu durum denklem 40’ta gösterilmiştir.

𝑉𝑉𝜋, (𝑠𝑠) = 𝑉𝑉∗(𝑠𝑠) (40)

Denklem 40’ta gösterildiği üzere hesaplanan tüm optimal politika değerleri de

aksiyon-değer fonksiyonunu sağlamak zorundadır.

 𝑞𝑞𝜋𝜋∗ (𝑠𝑠, 𝑎𝑎) = 𝑞𝑞∗(𝑠𝑠, 𝑎𝑎)

(41)

İki durumun da sağlandığı formülizasyon denklem 42’de tanımlanmıştır.

𝜋𝜋∗(𝛼|𝑠𝑠) = �
1 a = arg max

 𝛼𝜖∀
𝑞𝑞∗(𝑠𝑠,𝛼)

0 𝑑𝑖𝑖ğ𝑒𝑒𝑟 𝑑𝑢𝑢𝑟𝑢𝑢𝑚𝑙𝑎𝑎𝑟

(42)

Daha öncesinde de bahsedildiği üzere politika, yapay zekâ ajanının belirlenen

durumda 𝑎𝑎 ∈ 𝐴𝐴 aksiyonunu nasıl seçeceğini belirtmektedir. Denklem 42’de sürecin

optimal politika seçimi tanımlanmıştır. Bellman’ın öz yinelemeli olarak hesaplama

formülü denklem 43’de tanımlanmıştır.

𝑉𝑉∗(𝑠𝑠) = max
𝛼

𝑞𝑞∗(𝑠𝑠,𝛼)

(43)

Denklem 43’deki durum-değer formülüne, Bellman denklemi eklendiğinde Denklem

44’e ulaşılır.

𝑉𝑉∗(𝑠𝑠) = max

𝛼
𝑅𝑅𝑠𝛼 + 𝑦∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝛼 𝑉𝑉∗(𝑠𝑠′)

(44)

Denklem 43 ve denklem 44’de tanımlanan formülasyona benzer şekilde aksiyon-

değer fonksiyonu optimal olarak hesaplanmış durum-değer fonksiyonu ile

birleştirildiğinde denklem 45 ortaya çıkmaktadır.

𝑞𝑞∗(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝑦∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝛼 𝑉𝑉∗(𝑠𝑠′)

(45)

27

Eğer denklem 45 ve denklem 44 birleştirilirse optimal aksiyon-değer fonksiyonu

denklem 46’daki gibi olacaktır.

𝑞𝑞∗(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝑦∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝑎 max

𝛼′
𝑞𝑞∗(𝑠𝑠′,𝛼′)

(46)

Denklem 45 ve denklem 46’da Markov karar sürecinin iteratif versiyonları

gösterilmiştir. Ancak Bellman’ın optimal denkleminin çözümü lineer değildir ve

analitik çözümleri ne yazık ki bulunmamaktadır. Standart Markov karar süreci

denkleminde 𝑃𝑃𝑠𝑠𝑎 bilinmediğinden dolayı denklem 44 ve denklem 43 kullanılmak

zorundadır. Bir sonraki bölümde ise Markov süreçlerinin iteratif çözümlü

versiyonları olan değer tabanlı ve politika tabanlı yaklaşımlar incelenecektir (Silver,

2015).

3. Markov Karar Süreci Çözüm

Markov karar süreci 𝑀𝑀 = (𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑅𝑅, 𝛾𝛾) fonksiyonu ile ifade edilir. Daha öncesinde

de bahsedildiği üzere fonksiyon içerisinde durumlar, aksiyonlar, geçiş olasılığı

matrisi, ödül fonksiyonu ve azaltma faktörünü barındırmaktadır. Açıkça söylemek

gerekir ki Markov sürecinde yapay zeka ajanının alacağı karar ve uygulayacağı

politika matematiksel olarak tanımlıdır. Stokastik olarak tanımlanan politika [0,1]

arasında tanımlanmakta ve yine aynı aralık içerisindeki bir olasılık değerine karşılık

gelmektedir. Markov karar sürecindeki değer fonksiyonu Bellman denklemi ile

genişletilirse denklem 47 ortaya çıkar.

𝑉𝑉�∗(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾max

𝛼𝜖𝐴
∑𝑠′∈𝑆𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼)𝑉𝑉�∗(𝑠𝑠′)

(47)

Optimal durum değer fonksiyonu ise denklem 48’de tanımlanmıştır.

𝑉𝑉�∗(𝑠𝑠) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾max
𝛼𝜖𝐴

∑𝑠′∈𝑆𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼)𝑉𝑉�∗(𝑠𝑠′)

(48)

Markov karar sürecinde denklem 47 ve denklem 48 iteratif olarak hesaplandığında

optimal çözüme ulaşılır. Denklem 47’de de fark edileceği üzere değer tabanlı

yaklaşımda aç gözlü bir politika benimsenmektedir. Eğer Markov karar sürecinde R

ve P bilinmiyor ise bu durumda yaklaşık çözümler oluşturulur.

Markov sürecinin robotik sistemlerde pek sık kullanılmamasının nedeni durum geçiş

matrisinin tam olarak bilinmemesinden kaynaklanmaktadır. Bundan dolayı robotik

28

sistemlerde Markov süreçleri yerine zamansal fark ve monte carlo metodu

kullanılmaktadır (Silver, 2015).

4. Dinamik Programlama

Optimizasyon problemleri ve karar verme problemlerinde dinamik programlama

sistemi çokça kullanılmaktadır. Alt dallara ayrılabilen büyük ve yeterince karmaşık

problemler dinamik programlama yöntemiyle ayrıştırılır. Sonrasında bu dallar tek tek

çözülerek belleğe alınır ve sonrasında bellekte toplanan verilerle optimal çözüm

bulunur. Dinamik programlama sisteminde her problem için ayrı bir çözüm tekniği

oluşturulmalı ve tüm çözümler optimal değere ulaşmak zorundadır.

Hesaplamadaki verimlilik, dinamik programlamanın odaklandığı nokta olmuştur. Söz

konusu model, kompleks problemleri basit parçalar halinde değerlendirdiğinden

dolayı hızlı çalışır. Uyarlanabilir dinamik programlama söz konusu olduğunda,

pekiştirmeli öğrenme de çalışma alanlarından biri haline gelir (Kulkarni, 2012).

Şekil 22’de örnek bir optimal yol probleminin grafiği mevcuttur.

Şekil 22 Optimal Yol Problemi Örnek Grafik

Şekilde a noktasından b noktasına gitmenin maliyeti 𝐽𝐽𝑎𝑎𝑏𝑏 olarak belirlenmiş, b

noktasından e noktasına gitmenin maliyeti ise 𝐽𝐽𝑏𝑏𝑒𝑒 olarak tanımlanmıştır. Optimal

maliyet denklemi aşağıdaki gibi olacaktır.

𝐽𝐽 ∗𝛼𝑒= 𝐽𝐽𝛼𝑏 + 𝐽𝐽𝑏𝑒

(49)

Denklem 49’da 𝐽𝐽𝑎𝑒∗ olarak tanımlanan parametre a noktasından e noktasına olan

maliyeti temsil etmektedir. Eğer 𝐽𝐽𝑎𝑒∗ optimal ise denklemdeki tüm noktalar optimal

olmak zorundadır aksi halde bir ikilem oluşur. Bu durum denklem 50’de

gösterilmiştir.

𝐽𝐽𝑏𝑐𝑒 < 𝐽𝐽𝑏𝑒 (50)

29

Eğer denklem 49 ve denklem 50 birleştirilirse denklem 51 ortaya çıkar.

𝐽𝐽𝛼𝑏 + 𝐽𝐽𝑏𝑐𝑒 < 𝐽𝐽𝛼𝑏 + 𝐽𝐽𝑏𝑒 = 𝐽𝐽 ∗𝛼𝑒

(51)

Optimal yol problemi çelişkisi şekil 23’te gösterilmiştir.

Şekil 23 Optimal Yol Problemi Çelişkisi

Doğrusal programlamada optimallik prensibi dağınık sistemler için

 fonksiyonuna tanımlanabilir. Tüm 𝑆𝑆𝑡𝑡 durumları erişilebilir ise

zamana bağlı olarak alt dallardaki problemlerin aktarım maliyetleri minimum olarak

belirlenmelidir. Böylelikle alt dallardaki optimallik prensibi farklı farklı

hesaplandıktan sonra birleştirilerek en optimal çözüm elde edilir. Dinamik

programlamada iki farklı çözüm tekniği bulunmaktadır. Bunlar: ileri yönlü ve geri

yönlü olarak tanımlanabilir. Dinamik programlamada, zamanlar ve durumlar arası

geçişler rastgele olarak belirlenmişse buna stokastik dinamik programlama denir.

Eğer zamanlar ve durumlar arasındaki geçişler deterministik ise buna da

deterministik dinamik programlama denmektedir. Dinamik programlama model

tabanlı pekiştirmeli öğrenme sınıfına girmektedir ve aynı zamanda Markov karar

süreçlerinin bu yöntemle çözülebilmesi için daha öncesinde de söylenildiği gibi

durum geçiş matrislerinin bilinmesi ve modellerinin oluşturulması gerekmektedir

(Sutton and Barto, 2018).

Uyarlanabilir dinamik programlama modeli her hareketin ve/veya her ödülle cezanın

sonucunda hesaplamaları tekrarlar ve en doğru yöntemi arar. Genel çalışma prensibi

şekil 24’te gösterilmiştir.

30

Şekil 24 Dinamik Programlama Modeli Genel Çalışma Prensibi

5. Bellman Denklemi

Yapay zeka ajanının modelden bağımsız olan pekiştirmeli öğrenme sisteminde

optimal değeri hesaplaması gerekmektedir. Bu formül denklem 52’da belirtilmiştir.

𝑉𝑉(𝑠𝑠) = 𝐸𝐸[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠]

(52)

Denklem 52’de G parametresi modelde belirlenen zaman içerisinde ajanın

alabileceği ödül değerini ifade etmektedir. G parametresi denklem 52’deki

() yerine eklenecek olursa Denklem 53’e
ulaşılır.

𝑉𝑉(𝑠𝑠) = 𝐸𝐸[𝐺𝑡|𝑆𝑆𝑡 = 𝑠𝑠]
 = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾𝑅𝑅𝑡+2 + 𝛾𝛾2𝑅𝑅𝑡+3+. . . |𝑆𝑆𝑡 = 𝑠𝑠]
 = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾(𝑅𝑅𝑡+2 + 𝛾𝛾𝑅𝑅𝑡+3+. . .)|𝑆𝑆𝑡 = 𝑠𝑠]

 = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾𝐺𝑡+1|𝑆𝑆𝑡 = 𝑠𝑠]
 = 𝐸𝐸[𝑅𝑅𝑡+1 + 𝛾𝛾𝑉𝑉(𝑆𝑆𝑡+1)|𝑆𝑆𝑡 =𝑠𝑠]

(53)

31

Denklem 53’te durum değer fonksiyonu tanımlanmıştır ve E parametresi beklenen

değer anlamına gelmektedir ve bir sonraki durumu temsil eder (𝐸𝐸[𝑅𝑅𝑡𝑡+1] → 𝑅𝑅𝑡𝑡+1).

Denklem 53’teki tanımlama eğer iteratif hale gelirse Denklem 54’deki Bellman

denklemi elde edilir.

𝑉𝑉(𝑠𝑠) = 𝑅𝑅𝑠 + 𝛾𝛾∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝑉𝑉(𝑠𝑠)

(54)

Eğer Bellman denklemi aksiyon-değer fonksiyonu şeklinde yazılacak olursa denklem

55 ortaya çıkmaktadır.

𝑞𝑞(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝛾𝛾∑𝑠′∈𝑆𝑃𝑃𝑠𝑠′𝑎 𝑞𝑞(𝑠𝑠,𝛼)

(55)

Denklem 54 ve denklem 55 kullanılarak Markov süreciyle modellenen değer tabanlı

pekiştirme öğrenme yaklaşımı hesaplanabilir (Silver, 2015).

6. Pekiştirmeli Öğrenmede Politika Tabanlı Çözümler

Önceki bölümlerde Markov süreçlerinin optimal çözümü için durum-değer ve

aksiyon-değer fonksiyonları tanımlanmıştır. Ancak yapay zeka ajanının arama

yaparken oluşturulacağı politikaya değinilmemiştir. Eğer ajanın davranışı

deterministik ise denklem 55, ajanın davranışı stokastik ise denklem 56 kullanılarak

bir politika oluşturulabilir.

𝜋𝜋𝜃(𝑠𝑠) = max

𝛼𝜖𝐴
𝜃𝜃 (𝑠𝑠,𝛼)

𝜋𝜋𝜃(𝛼|𝑠𝑠) =
𝑒𝑒𝑥𝑝𝑝𝜃𝜃(𝑠𝑠,𝛼)

∑𝛼′𝜖𝐴𝑒𝑒𝑥𝑝𝑝𝜃𝜃(𝑠𝑠,𝛼′)

(56)

Denklem 55 ve denklem 56 da tanımlanan politika, Markov karar sürecinde

bahsedilen denklem 45’den farklıdır. Burada ajanın kullanılacağı politika aşama

aşama hesaplanmalıdır. Bu sebepten dolayı denklem 57 oluşturulmuştur.

𝑉𝑉𝜋(𝑠𝑠) = 𝐸𝐸𝜋[𝑅𝑅𝑡+1 + 𝛾𝛾𝑉𝑉𝜋(𝑆𝑆𝑡+1)|𝑆𝑆𝑡 = 𝑠𝑠]

(57)

Basit bir politika arama algoritması şekil 25’te açıklanmıştır.

32

Şekil 25 Basit Politika Arama Algoritması

Şekil 25’te açıklanan basit politika arama algoritması haricinde başka politika arama

algoritmaları da bulunmaktadır. Bunlardan ilki takviye-pekiştirme (reinforce) metodu

olarak adlandırılır ve pekiştirmeli öğrenmenin ilk adımıdır. Değer t zamanında ajanın

izlediği politika belirlenmek istenirse denklem 58 kullanılabilir.

𝑉𝑉𝜃(𝑠𝑠) = 𝐸𝐸[𝑅𝑅(𝜏);𝜃𝜃] = �𝑝𝑝(𝜏;𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝑟
(58)

Pekiştirmeli öğrenme algoritmasının tamamen oluşturulması için denkleme gradyan

hesabı da eklenerek denklem 59’a ulaşılır.

∇𝜃𝑉𝑉𝜃(𝑠𝑠) = ∇𝜃 �𝑝𝑝(𝜏; 𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝜏

= �∇𝜃𝑝𝑝(𝜏;𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝜏

 = �
𝑝𝑝(𝜏;𝜃𝜃)
𝑝𝑝(𝜏;𝜃𝜃)∇𝜃𝑝𝑝

(𝜏;𝜃𝜃)𝑅𝑅(𝜏)𝑑𝜏

 = �𝑝𝑝(𝜏;𝜃𝜃)∇𝜃 log 𝑝𝑝(𝜏;𝜃𝜃) 𝑅𝑅(𝜏)𝑑𝜏

 = 𝐸𝐸[∇𝜃 log 𝑝𝑝(𝜏;𝜃𝜃)𝑅𝑅(𝜏)]

(59)

Denklemde belirlenen 𝑉𝑉𝜃𝜃(𝑠𝑠) parametresinin gradyan hesabı 𝛻𝛻𝜃𝜃𝑉𝑉𝜃𝜃(𝑠𝑠) şeklinde

tanımlanabilir. Eğer denklem 59 tekrar düzenlenirse denklem 60’a ulaşılır.

∇𝜃 log 𝑝𝑝(𝜏;𝜃𝜃) = ∇𝜃 log(�𝑝𝑝(𝑆𝑆𝑡+1|𝑆𝑆𝑡,𝛼𝑡)𝜋𝜋𝜃(𝛼𝑡|𝑠𝑠𝑡))
𝑇

𝑡=1

= ∇𝜃�(log 𝑝𝑝(𝑠𝑠𝑡+1|𝑠𝑠𝑡,𝛼𝑡)) + ∇𝜃 log 𝜋𝜋𝜃(𝛼𝑡|𝑠𝑠𝑡)
𝑇

𝑡=1

= �∇𝜃 log 𝜋𝜋𝜃(𝛼𝑡|𝑠𝑠𝑡)
𝑇

𝑡=1

(60)

33

Şekil 26’da denklem 60 kullanılarak politika gradyanı ve pekiştirme algoritması
oluşturulmuştur.

Şekil 26 Politika Gradyanı ve Takviye Algoritması

Şekil 26’da açıklanan algoritma, gradyanın belirli bir örneklem ile hesaplanmış halini

açıklamaktadır, gerçek gradyan değeri hesaplanamamıştır. Modelin belirlenmediği

pekiştirmeli öğrenme yaklaşımlarında ortam üzerinde daha öncesinde herhangi bir

bilgi olmadığından dolayı ajanın ilk olarak ortamı keşfetmesi ve keşiflerden topladığı

bilgileri kullanması gerekir. Ajanın izleyeceği yol denklem 61’de tanımlanmıştır

(Kolter, 2016).

𝜋𝜋(𝑠𝑠) = �
max 𝒬�

 𝛼𝜖𝐴
(𝑠𝑠,𝛼) 1 − 𝜀

𝑟𝑎𝑎𝑠𝑠𝑡𝑡𝑔𝑔𝑒𝑒𝑙𝑒𝑒 𝑎𝑎𝑘𝑘𝑠𝑠𝑖𝑖𝑦𝑜𝑛𝑛 𝑑𝑖𝑖ğ𝑒𝑒𝑟 𝑑𝑢𝑢𝑟𝑢𝑢𝑚𝑙𝑎𝑎𝑟

(61)

7. Pekiştirmeli Öğrenmede Değer Tabanlı Çözümler

Markov sürecinden daha önceki bölümlerde detaylıca bahsedilmiştir. Markov karar

sürecinin çözülmesi optimal olarak hesaplanan durum-değer ve aksiyon-değer

fonksiyonlarının birlikte çözülmesiyle sağlanır. İki denklem de denklem 62’de

gösterilmiştir.

𝑉𝑉∗(𝑠𝑠) = max

𝛼
𝑅𝑅𝑠𝛼 + 𝛾𝛾�𝑃𝑃𝑠𝑠′𝛼 𝑉𝑉∗(𝑠𝑠)

𝑠′𝜖𝑆

𝑞𝑞∗(𝑠𝑠,𝛼) = 𝑅𝑅𝑠𝛼 + 𝛾𝛾 � 𝑃𝑃𝑠𝑠′𝛼 max

𝛼
𝑞𝑞∗(𝑠𝑠,𝛼)

𝑠′𝜖𝑆

(62)

Denklem 62’de 𝑉𝑉*(𝑠𝑠) durum-değeri, 𝑞𝑞∗(𝑠𝑠, 𝑎𝑎) aksiyon-değeri ifade eder. Bu

fonksiyonlar birlikte hesaplandığında Markov sürecinin optimal çözümü elde edilir.

Daha önceki bölümlerde de bahsedildiği gibi durum geçiş matrisi ve ödül fonksiyonu

bilinmediğinden dolayı Markov sürecinin kapalı formda herhangi bir çözümü

34

bulunmamaktadır. Ancak yapay zeka ajanı bulunduğu ortamdan bilgiler elde ederek

t+1 durumunu 𝑃𝑃(𝑠𝑠′|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) dağılım fonksiyonunda örneklemiş olur. Yapay zekâ

ajanının ortamdan topladığı bilgiler ile belirlenen ödül fonksiyonu üzerine yaklaşık

olarak hesaplama yapılabilmektedir. Denklem 63’te açıklanmıştır

𝑉𝑉�𝜋(𝑠𝑠𝑡) = 𝑟𝑡 + 𝛾𝛾𝑉𝑉�𝜋(𝑠𝑠𝑡+1)

(63)

Denklem 63’te durum, belirlenen zaman anındaki ödül ve bir sonraki durumu

 ile günceller. Eğer denklem 63’e zamansal fark da eklenirse denklem
64 elde edilebilir.

𝑉𝑉�𝜋(𝑠𝑠𝑡) = (1 − 𝛼)𝑉𝑉�𝜋(𝑠𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝛾𝑉𝑉�𝜋(𝑠𝑠𝑡+1))
𝑉𝑉�𝜋(𝑠𝑠𝑡) = 𝑉𝑉�𝜋(𝑠𝑠𝑡) + 𝛼(𝑟𝑡 + 𝛾𝛾𝑉𝑉�𝜋(𝑠𝑠𝑡+1) − 𝑉𝑉�𝜋(𝑠𝑠𝑡))���������������

𝑍𝑎𝑚𝑎𝑛𝑠𝑎𝑙 𝐹𝑎𝑟𝑘

𝛼 < 1

(64)

Dikkat edilmelidir ki belirlenen zamandaki 𝑉𝑉 (𝑠𝑠𝑡𝑡) değerinin güncellenmesi, bu

parametreye zamansal fark eklendiğinde sağlanacaktır. Yine aynı şekilde ödül

değerindeki güncelleme 𝑉𝑉 (𝑠𝑠𝑡𝑡) parametresinin zamansal fark eklenmiş haliyle

sağlanabilir. Zamansal fark denklem 64’te zamanlar arasında bağlantı kurmaktadır.

Zamansal fark fonksiyonu düzgün bir şekilde anlaşıldığında tahmin edilen değer ve

gelecekte tahmin edilecek değerler arasında ilişki kurulabilir. Denklem 64’te ki

hesaplama ile ödül değeri denklem 63’ten daha optimal bir şekilde hesaplanabilir.

Bunun nedeni bahsedildiği gibi Zamansal fark fonksiyonunun formülizasyona

eklenmesiyle sağlanmaktadır. Zamansal fark algoritması şekil 27’de gösterilmiştir.

Şekil 27 Zamansal Fark Algoritması

35

Zamansal fark algoritması ile herhangi bir Markov süreci oluşturmadan ödül ve

durum değerini yaklaşık olarak hesaplamamızı sağlar. Bundan dolayı bu çalışmada

da kullanılan Q-öğrenme algoritması ortaya çıkmıştır (Kolter, 2016).

8. Q-öğrenme Algoritması

Q-öğrenme fikri ilk olarak Watkins tarafından ortaya atılmıştır (1989). Sonrasında

matematiksel modeli ve kanıtı Watkins ve Dayan tarafından sunulmuştur (1992). Q-

öğrenme politika dışı bir yöntemdir ve Werbos un 1992’de yayınladığı

çalışmasındaki (1992) ADHDP’sine (Eyleme bağlı buluşsal dinamik programlama)

benzer. Öncesinde de söylendiği gibi Q-öğrenme politika dışı bir yöntemdir ve Q(s,a)

fonksiyonu mevcut değerlendirilen politikadan bağımsız olarak tahmin edilir.

Markov sürecinde optimal hesaplamanın bulunması için adımların sonuna kadar

beklenmesi gerekirken, Q-öğrenmede değer işlevi her zaman iterasyonunda

güncellenir. Geçiş olasılıklarının ve ödüllerin başlangıçta bilinmediği durumlarda Q-

değeri yineleme algoritmasının uyarlanmasını sağlar (Geron, 2017). Bir Q-öğrenme

işlevi uygulamalarının ana yararı mevcut politikanın dışındaki eylemlerden de

öğrenmesine izin vermesidir ve kesin bir tahmine ya da kesin bir çevresel modelin

kullanımına gerek duymamaktadır. Bu nedenle modelden bağımsız pekiştirmeli

öğrenme sınıfına girer (Glascher et al., 2010; Luo et al., 2016). Ancak Q-öğrenme,

aksiyon-değer fonksiyonu için istenen deneyimi elde etmek için yüksek miktarda

gürültülü araştırma gerektirir bundan dolayı eğitim süresi Markov sürecinden daha

uzun sürmektedir (Todorov et al., 2012).

Genel itibariyle Q öğrenmesi, durumların ve eylemlerin arasındaki ilişkiyi gerçekçi

değerlerle tahmin etmeye dayanır. Q(s,a), s durumunda a hareketi yapılırsa ne kadar

ödül kazanılacağını belirtir. Verimli olarak değerlendirilirse robotun s durumuna

geçişte a hareketini hayata geçirmesi beklenir. Bu öğrenme modelinin özellikleri

şöyle sıralanabilir:

• Bu öğrenme türüne göre, her hareketin sonucunda Q değerleri

farklılaşacaktır.

• Belirli sayıda durum ve hareket ikilisi varsa, denklem çalıştırıldıkça değerler

birbirlerine yakınlaşacaktır (Sutton and Barto, 1998)

• Öğrenme sağlanması için herhangi bir sırayla durum ve hareket denklemleri

uygulanabilir, bir sıraya ihtiyaç duyulmaz.

36

Bu öğrenmenin özelliklerine dayanarak, ödüllerin kaybedilmeyeceği söylenebilir.

Aksine elde edilen değerler her zaman saklanır.

Daha önceki başlıklarda bahsedildiği gibi değer tabanlı yaklaşıma alternatif olarak

ortaya koyulan Q-öğrenme yönteminde aksiyon ve durumlar denklemi aşağıdaki

gibidir.

𝑄𝑄𝜋(𝑠𝑠,𝛼) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼)𝑄𝑄𝜋(𝑠𝑠′,𝜋𝜋(𝑠𝑠′))

𝑠′𝜖𝑆
 (65)

Denklem 65’te yapay zekâ ajanının politikası 𝜋𝜋(𝑠𝑠′) şeklinde gösterilir ve denklem

65’in optimal olarak çözümü denklem 66’da gösterilmiştir.

𝑄𝑄∗(𝑠𝑠,𝛼) = 𝑅𝑅(𝑠𝑠) + 𝛾𝛾� 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝛼) max

𝛼′𝜖𝐴
𝑄𝑄∗(𝑠𝑠′,𝛼′)

𝑠′𝜖𝑆
 (66)

Denklem 66 Q-öğrenme yönteminin temeli olarak kabul edilmektedir ancak

𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎),𝑅𝑅(𝑠𝑠) ‘nin bilinmediği durumlarda 𝑄𝑄∗(𝑠𝑠,𝑎𝑎) fonksiyonunun çözümünün

bulunması için denklem 66’ya zamansal fark fonksiyonunun eklenmesi

gerekmektedir.

𝑄𝑄�∗(𝑠𝑠,𝛼) = (1 − 𝛼)𝑄𝑄�∗(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾max

𝛼′𝜖𝐴
𝑄𝑄�∗(𝑠𝑠′,𝛼′))

𝑄𝑄�∗(𝑠𝑠,𝛼) = 𝑄𝑄�∗(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾max
𝛼′𝜖𝐴

𝑄𝑄�∗(𝑠𝑠′,𝛼′) − 𝑄𝑄�∗(𝑠𝑠,𝛼))�������������������
𝑍𝑎𝑚𝑎𝑛𝑠𝑎𝑙 𝐹𝑎𝑟𝑘

(67)

Denklemde γ gelecekteki ödülleri, R anlık ödülleri, α öğrenme katsayısını

belirtmektedir. Yani Q öğrenmesinin tahminleri, Q değerlerine göre belirlenir. Bu

sayede kompleks hesaplamalardan kaçınarak, uzun vadeli durum ve hareketlerin Q

değerlerine göre öğrenilmesini mümkün kılar. Daha verimli olduğu için bu öğrenme

şekli tercih edilir.

37

Denklem 67’nin algoritma olarak tasarlanmış hali Şekil 28’de gösterilmiştir.

Şekil 28 Q-Öğrenme Algoritması

Şekil 28 aynı zamanda Q-öğrenmenin temel yöntemlerini de açıklamaktadır (Kolter,
2016).

9. Sarsa Algoritması

Sarsa algoritması durum-eylem-durum-eylem yöntemini tekrar eder. Genel itibariyle

Q-öğrenmeye benzer ancak politikaya dayalı bir zaman fark yöntemidir. Eylem değer

fonksiyonu 𝑄𝑄(𝑠𝑠′,𝑎𝑎′) ile mevcut politika ve durum-eylem çifti için tahmin edilir. Q-

öğrenmesinden farklı olarak keşfi hesaba katmaktadır. Sarsa algoritmasının

matematiksel modeli denklem 68’da gösterilmiştir

𝑄𝑄�𝜋(𝑠𝑠,𝛼) = (1 − 𝛼)𝑄𝑄�𝜋(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾𝑄𝑄�𝜋(𝑠𝑠′,𝜋𝜋(𝑠𝑠′)))

𝑄𝑄�𝜋(𝑠𝑠,𝛼) = 𝑄𝑄�𝜋(𝑠𝑠,𝛼) + 𝛼(𝑟 + 𝛾𝛾𝑄𝑄�𝜋(𝑠𝑠′,𝜋𝜋(𝑠𝑠′))− 𝑄𝑄�𝜋(𝑠𝑠,𝛼))�����������������
𝑍𝑎𝑚𝑎𝑛𝑠𝑎𝑙 𝐹𝑎𝑟𝑘

(68)

Denklem. 68’a bakıldığı taktirde belirli Q değerleri mevcut bir politika üzerinden

güncellendiği fark edilecektir. Ancak Q-öğrenmesinde sabit olan politika, Sarsa

yönteminde parametrik olarak değişmektedir. Bundan dolayı Sarsa algoritması açık

bir politikaya bağlı bir yöntem olarak karşımıza çıkmaktadır. Sarsa yönteminde her

iterasyonda Q değerinden bir politika üretilip o politika üzerinden tekrar hesaplama

38

yapılır ve buna göre güncelleme sağlanır. Sarsa algoritması genel itibariyle aç gözlü

bir şekilde hesaplanır. Sarsa yöntemi şekil 29’da algoritma olarak açıklanmıştır.

Şekil 29 Sarsa Algoritması

Algoritmadan da anlaşılacağı üzere Q-öğrenme yaklaşımı sadece optimal yolu

hesaplarken, Sarsa yöntemi bu optimal yolu en güvenli şekilde hesaplamaya çalışır.

Bundan dolayı Q-öğrenme yöntemi sadece maksimum ödüller üzerinde hareket

ederken, Sarsa yöntemi bu maksimum ödülleri gelecekteki durumları ve aksiyonları

da hesaba katarak hareket eder. Q-öğrenme yaklaşımı ile Sarsa yönteminin bir diğer

farklı da Sarsa yöntemi iterasyonda güncel politikaya göre ilerlerken, Q-öğrenme

kararını sadece maksimum ödül ve değer üzerinden hesaplar (Sutton ve Barto, 2018).

10. Derin Pekiştirmeli Q-öğrenme Algoritması

Daha önceki bölümlerde bahsedilen Q-öğrenme ve Sarsa yöntemleri tablo metotları

olarak adlandırılmaktadır. Gerçek hayatta bu algoritmaların kullanımı kontrol

problemleri ve durum uzayının karmaşıklığı nedeniyle yetersiz kalmaktadır. Bundan

dolayı pekiştirmeli öğrenme ve derin öğrenme yaklaşımlarının birleşimiyle derin

pekiştirmeli öğrenme yaklaşımı ortaya çıkmıştır.

Pekiştirmeli öğrenmede standart olarak her adımda durum ve aksiyonlar ayrıştırılarak

her adıma Q-öğrenme yöntemi uygulanabilir ancak gerçek dünya problemlerinde her

adımın ayrıştırılması karmaşık ve maliyetli olacaktır. Yapay sinir ağlarının fonksiyon

yaklaştırıcı özelliği (Watkins and Dayan, 1992; Sutton, 1999; Riedmiller, 2005) ile

39

Q-öğrenme yaklaşımı birleştirildiğinde sürekli durumların bulunduğu kontrol

problemleri daha kolay bir şekilde çözülebilmektedir (Levine et al., 2016; Williams,

1992; Peters, 2008; Deisenroth, 2013; Mnih, 2015; Kiumarsi et al., 2018; Xu et al.,

2017; Tsurumine et al., 2019).

Ancak derin pekiştirmeli öğrenme algoritmasının dezavantajlı yönleri de mevcuttur.

Bunlardan ilki kontrol problemlerinde karşımıza çıkan 𝑢𝑢(𝑡𝑡), zamanın sürekli bir

fonksiyonudur. Ancak bunun pekiştirmeli öğrenmede karşılığı 𝑎𝑎(𝑡𝑡) parametresidir.

Pekiştirmeli öğrenmede aksiyonlar birbirlerinden ayrık değerde olmasından dolayı,

pekiştirmeli öğrenme ile kontrol problemleri çözülmeye çalışıldığında derin Q-

öğrenme algoritması yeterli bir çözüm üretemeyebilir (Kohl and Stone, 2004; Pastor

et al., 2009).

Derin Q-öğrenme algoritmasının akış diyagramı şekil 30’da görüldüğü gibidir.

Şekil 30 Derin Q-Öğrenme Algoritması Akış Diyagramı

Derin pekiştirmeli öğrenme algoritması ilk olarak 2015 yılında önerilmiştir (Levine

et al., 2016). Denklem 69’da Q-öğrenme formülüne bakıldığında

𝑄𝑄(𝑠𝑠,𝛼) = 𝑄𝑄(𝑠𝑠,𝛼) + 𝛼(𝑟𝑠 + 𝛾𝛾max

𝛼𝜖𝐴
𝑄𝑄(𝑠𝑠′,𝛼) −𝑄𝑄(𝑠𝑠′,𝛼))

(69)

İteratif olarak güncellendiği görülmektedir. Ancak sürekli durum değerlerin herhangi

bir iteratif çözümü bulunmamaktadır. Derin Q-öğrenme algoritmasının temelinde

40

fonksiyon yakınlaştırma kullanıldığından denkleme fonksiyon yaklaştırma tekniği

uygulanmalıdır. Bu fonksiyon denklem 70’de gösterilmektedir.

𝑄𝑄(𝑠𝑠,𝛼:𝜃𝜃) ≈ 𝑄𝑄∗(𝑠𝑠,𝛼)

(70)

Denklem 70’de 𝜃𝜃 parametresi derin sinir ağlarının parametrelerini temsil etmektedir.

Denklem 69 Denklem 70’deki gibi tekrar oluşturulduğunda aşağıdaki denklem ortaya

çıkar.

𝑄𝑄(𝑠𝑠,𝛼) = 𝑄𝑄(𝑠𝑠,𝛼) + 𝛼(𝑟𝑠 + 𝛾𝛾max
𝛼𝜖𝐴

𝑄𝑄(𝑠𝑠′𝛼′)�������������
𝐻𝑒𝑑𝑒𝑓

 − 𝑄𝑄(𝑠𝑠,𝛼))�����
𝑇𝑎ℎ𝑚𝑖𝑛�������������������

𝑀𝑎𝑙𝑖𝑦𝑒𝑡

(71)

Eğer denklem 71 iki farklı parçaya ayrılırsa denklem 72’teki denklem grubu ortaya

çıkar.

𝛾𝛾� = 𝑟𝑠 + 𝛾𝛾max

𝛼𝜖𝐴
𝑄𝑄(𝑠𝑠′𝛼′:𝜃𝜃)

𝛾𝛾� = 𝑄𝑄(𝑠𝑠,𝛼:𝜃𝜃)

(72)

Denklem 72’de ilk parça hedefi, ikinci parça tahmin edilen değeri açıklar. Denklem

72 baz alınarak maliyet fonksiyonu oluşturulmak istendiğinde denklem 73 elde edilir.

𝐿𝑖(𝜃𝜃𝑖) = 𝐸𝐸𝑠,𝛼,𝑟[(𝛾𝛾� − 𝑄𝑄(𝑠𝑠,𝛼,𝜃𝜃𝑖))2]

(73)

Denklem 64’e maliyet fonksiyonunun gradyanı eklendiğinde denklem 74 elde edilir.

∇𝜃𝑖𝐿(𝜃𝜃𝑖) = 𝐸𝐸𝑠,𝛼,𝑟,𝑠′ �(𝑟 + 𝛾𝛾max

𝛼𝜖𝐴
𝑄𝑄(𝑠𝑠′,𝛼′:𝜃𝜃𝑖−1) − 𝑄𝑄(𝑠𝑠,𝛼: 𝜃𝜃𝑖))∇𝜃𝑖𝑄𝑄(𝑠𝑠,𝛼:𝜃𝜃𝑖)�

(74)

Sırasıyla denklem 73 ve denklem 74 kullanılarak derin Q-öğrenmenin algoritması

oluşturulabilir (Mnih et al, 2015).

Derin pekiştirmeli öğrenmenin algoritması şekil 31’de verilmiştir.

41

Şekil 31 Derin Q-Öğrenme Algoritması

11. Derin Deterministik Politika Gradyan Algoritması

Derin deterministik politika gradyan algoritması, derin politika gradyan ve derin Q-

öğrenme yönteminin birleştirilmesiyle oluşturulmuş bir algoritmadır. Derin Q-

öğrenme algoritması sürekli durum ve birbirinden ayrık aksiyon kümeleri üzerinde

çalıştığından dolayı sürekli aksiyon uzayına uygulanamaz. Örneğin 7 eklem bölgeli

bir robot kol ele alındığında, robot kolun eklemlerinin uygulayacağı her bir aksiyon 3

boyutlu bir çalışma uzayınca 37=2187 olacaktır. Aksiyon alanındaki yapay zeka

ajanlarının atacağı her adımda aksiyon üstel olarak büyüyecektir. Bundan dolayı da

aksiyon uzayı çok fazla büyüyecek ve yapay zeka ajanlarının ortamı keşfetmesi

imkansız hale gelecektir. Ayrıca yapay zeka ajanlarının öğrenme gerçekleştireceği

uzayı ayrıklaştırdığımızda bu durum bilgi kaybına sebep olacaktır. Bu sebepten

dolayı derin deterministik politika gradyan algoritması ortaya çıkmıştır. Derin

deterministik politika gradyan algoritması politika tabanlı bir algoritmadır ve yapay

zeka ajanlarının aksiyon alacakları ortamda derin öğrenmeden gelen fonksiyon

yaklaştırıcı yöntemi sayesinde ayrık uzay problemini çözmektedir.

42

Robot kol uygulamalarında, robot kolun eklemleri ve kolun hareket edeceği alan

değişkeni parametreleri Derin deterministik politika algoritmasına giriş verisi olarak

eklenecek ve sonuç olarak uygun politika değerleri elde edilecektir (Lillicrap et al.,

2015).

Standart pekiştirmeli öğrenme fonksiyonu denklem 75’te gösterilmiştir.

𝑄𝑄𝜋(𝑠𝑠𝑡,𝛼𝑡) = 𝐸𝐸[𝑟(𝑠𝑠𝑡,𝛼𝑡) + 𝛾𝛾𝑄𝑄𝜋(𝑠𝑠𝑡+1,𝛼𝑡+1)]

(75)

Eğer denklem 75’e deterministik politika yöntemi de eklenirse denklem 76 elde

edilecektir.

𝐿(𝜃𝜃𝑄) = 𝐸𝐸[(𝑄𝑄(𝑠𝑠𝑡,𝛼𝑡:𝜃𝜃𝑄) − 𝛾𝛾𝑡)2]

𝛾𝛾𝑡 = 𝑟(𝑠𝑠𝑡,𝛼𝑡) + 𝛾𝛾𝑄𝑄(𝑠𝑠𝑡+1,𝜋𝜋(𝑠𝑠𝑡+1):𝜃𝜃𝑄)

(76)

Denklem 76’a gradyan tabanlı bir güncelleme eklenirse denklem 77’e ulaşılır

∇𝜃𝜋𝐽𝐽 = 𝐸𝐸[∇𝜃𝜋𝑄𝑄(𝑠𝑠,𝛼|𝜃𝜃𝑄)|𝑠𝑠 = 𝑠𝑠𝑡,𝛼 = 𝜋𝜋(𝑠𝑠𝑡|𝜃𝜃𝜋)]
∇𝜃𝜋𝐽𝐽 = 𝐸𝐸�∇𝜃𝜋𝑄𝑄(𝑠𝑠,𝛼�𝜃𝜃𝑄)|𝑠𝑠 = 𝑠𝑠𝑡,𝛼 = 𝜋𝜋(𝑠𝑠𝑡)∇𝜃𝜋𝜋𝜋(𝑠𝑠𝑡|𝜃𝜃𝜋)|𝑠𝑠 = 𝑠𝑠𝑡�

(77)

Denklem 77’ aynı zamanda deterministik politika gradyanı algoritmasının

fonksiyonudur.

Pekiştirmeli öğrenmeye derin yapay sinir ağları eklendiğinde model oluşturmak ve

algoritmanın performansını arttırmak için veriler arasındaki korelasyonu en aza

indirmek gereklidir. Ancak pekiştirmeli öğrenmede yapay zeka ajanlarının topladığı

veriler arasında yüksek bir korelasyon bulunmaktadır. Bundan dolayı derin Q-

öğrenme yönteminde her iterasyonda oluşturulan bellek alanı aynı şekilde derin

deterministik politika gradyanı yönteminde de oluşturulmalı ve bu belleklere

toplanan veriler birbirlerinden bağımsız şekilde seçilip buna göre eğitim

gerçekleştirilmelidir.

Derin deterministik politika gradyan algoritması şekil 32’de gösterilmiştir.

43

Şekil 32 Derin Deterministik Politika Gradyanı Algoritması

C. Federe Öğrenme

Derin pekiştirmeli öğrenmede, durum özellik alanı küçük ve eğitim verileri sınırlı

olduğunda yüksek kaliteli politikalar oluşturmak zordur. Derin pekiştirmeli

öğrenmede önceki transfer öğrenme yaklaşımlarının başarısına rağmen, veri ve/veya

modellerin gizliliği nedeniyle veri ya da modellerin bir ajandan diğerine doğrudan

transferine genellikle mahremiyet bilincine sahip birçok uygulamada izin verilmez.

Bundan dolayı Federe Öğrenme yöntemi ortaya çıkmıştır.

Bu yöntemde aracılar arasında sınırlı bilgi (yani Q-ağı çıktısı) paylaşarak her aracı

için özel bir Q-ağ politikası öğrenmeyi amaçlar. Bilgi, başkalarına gönderildiğinde

“kodlanır” ve başkaları tarafından alındığında “kod çözülür”. Bazı ajanların

durumlara ve eylemlere karşılık gelen ödülleri olduğunu, diğer ajanların ise ödülleri

olmadan durumları gözlemlendiği bu yöntemde kabul edilebilir. Ceza olmadan, bu

44

temsilciler kendi bilgilerine dayalı olarak karar yönergeleri oluşturamazlar. Politika

kararları alırken tüm temsilcilerin bir koalisyona takılmalarından fayda sağlanır.

Birleşik pekiştirmeli öğrenmenin birçok uygulaması mevcuttur. Örneğin imalatta, bir

ürünün imalatı, ürünün farklı bileşenlerini üreten farklı fabrikaları içerebilir.

Fabrikanın karar verme politikası özeldir ve paylaşılmaz. Öte yandan, sınırlı işleri ve

(bazı fabrikalar için) ücret eksikliği nedeniyle, bireyler için yüksek kaliteli karar

verme yönergelerini bağımsız olarak geliştirmek genellikle zordur. Bu nedenle

kişisel verilerin açıklanmaması durumunda karar alma politikalarını federe bir

şekilde gözden geçirmelerinde fayda vardır. Başka bir örnek, hastaneler için hasta

bakım politikaları geliştirmektir. Hastalar bazı hastanelerde tedavi edilebiliyor ve

tedavi hakkında hiçbir zaman geri bildirimde bulunmuyor olabilir, bu da bu

hastanelerin hastaları tedavi etmek ve hastalar için tedavi kararları vermek için

ödüllendirilmediğini düşündürür. Ayrıca hasta kayıtları özeldir ve hastane ile

paylaşılmaz. Bu nedenle, federe düzeyde hastane tedavi politikalarının gözden

geçirilmesine ihtiyaç vardır.

Federe derin öğrenme algoritması, küresel bir durumu (veya doğrudan “küresel” bir

durum oluşturmak için kullanılan alt durumları) gözlemleyen, bireysel eylemleri

seçen ve ekip ödülleri (veya her ajan, diğer ajanlarla paylaşılan bireysel ödül alır)

(Mnih et al., 2013). FedRL, acentelere bazı gördüklerini paylaşmamalarını ve bazı

acentelere ödül almamalarını tavsiye eder. FedRL çerçevesi genel itibariyle,

gözlemlerin birbirleriyle paylaşılması şartıyla (Cao, 2019), ilgili ancak farklı

görevlerin veya aracıların öğrenme performansını iyileştirmek için öğrenme

deneyimini görevlere aktarmayı amaçlayan pekiştirmeli öğrenmede transfer

öğrenmeden de farklıdır (Liu et al., 2019). FedRL algoritması politikanın aracılar

arasında paylaşılamayacağını öne sürmektedir.

Dağıtılmış öğrenme modellerinin amacı, özellikle bilgi işlem gücünün

paralelleştirilmesi iken, federe öğrenme modellerinin amacı, öncelikle heterojen veri

kümeleri üzerinde eğitim yapmaktır. Hem dağıtılmış öğrenme modelleri hem de

federe öğrenme modelleri, modelleri birden çok sunucuda eğitir. Bununla birlikte,

öğrenme modellerinde genel bir varsayım, yerel veri kümesinin düzgün dağıldığı ve

sınıfların kabaca aynı büyüklükte olduğudur (Mnih et al., 2015; Duan et al., 2016).

Buna karşılık, birleşik bir öğrenme modelinde, veri kümesi heterojen olabilir ve

sınıflar dengesiz olabilir. Bu nedenle, dağıtılmış bir öğrenme modeli durumunda,

merkezi sunucu tipik olarak yerel istemcilerden toplanan ortalama gradyan

45

güncellemelerinin ortalamasını alır ve daha sonra bunun yerine güncellenmiş modeli

merkezi sunucudan indirebilir.

Aktörlerin kendi ağ parametreleri vardır θ. Çalışanlar, çevresel gözlemler göz önüne

alındığında yapılacak öğrenme görevlerini ve eylemleri gerçekleştirmek için

katılımcı ağları kullanır. İşçiler, katılımcı ağı tarafından tanımlanan eylemleri

gönderir ve ortamın bir sonraki durumunu gözlemler. Eylemler sonucunda çalışanlar

olumlu veya olumsuz ödüller alırlar. Eleştirmenler, eylem ödüllerini ağ parametreleri

olarak görüyor. Eleştirmen, işçilerle birlikte, aktör tanımlı eylemlerin ortamı daha

olumlu hale getirip getirmediğini değerlendirmeyi öğrenir ve eleştirmenin geri

bildirimi, oyuncuyu optimize etmek için kullanılır.

FedRL çerçevesi üç aşamada çalışmaktadır. İlk olarak, her ajan Gauss farklılaşması

kullanılarak “karşılaştırılan” diğer ajanlardan Q ağlarının çıktı değerlerini toplar.

Ayrıca, Q ağının global çıktısını hesaplamak için yerel Q ağı çıkışını ve şifrelenmiş

değerleri girdi olarak alan MLP (multilayer perceptron) gibi paylaşılan bir değer ağı

oluşturur. Son olarak, global Q-ağının çıktısına dayalı olarak paylaşılan değer ağını

ve kendi Q-ağını günceller. MLP’nin aracı tarafından paylaşıldığını ve aracının kendi

Q-ağının başkaları tarafından bilinmediğini ve eğitim sırasında paylaşılan şifreli Q-

ağının çıktısından türetilmemesi gerekmektedir.

Markov karar süreci daha önceki maddelerde de bahsedildiği gibi (S,A,T,r) şeklinde

tanımlanabilir. Burada S durum uzayını, A aksiyon uzayını, T ise geçiş fonksiyonunu

temsil etmektedir. S x A → S, i.e., T(s,a, s’) = P (s’ | s, a), durum uzayı için geçerli

olan, sonraki durum olasılığını belirtir, s’∈ S mevcut durumunu belirtir. r, ödül

fonksiyonu ve S → R, burada R gerçek sayıların alanıdır. π eldeki politikayı temsil

eder. Ve V π (s) fonksiyonu ve t + 1 adımındaki Q-fonksiyonu aşağıdaki denklemler

ile güncellenebilir:

𝑉𝑉𝑡+1𝜋 (𝑠𝑠) = 𝑟(𝑠𝑠) + �𝑇𝑇(𝑠𝑠,𝜋𝜋(𝑠𝑠), 𝑠𝑠′)𝑉𝑉𝑡𝜋(𝑠𝑠′)
𝑠′∈𝑆

,

(78)

Ve
𝑄𝑄𝑡+1𝜋 (𝑠𝑠,𝑎𝑎) = 𝑟(𝑠𝑠) + �𝑇𝑇(𝑠𝑠,𝑎𝑎, 𝑠𝑠′)𝑉𝑉𝑡𝜋(𝑠𝑠′),

𝑠′∈𝑆

 (79)

Burada t ∈ {0,...,K − 1} koşulu sağlanmalıdır. Markov sürecinin çözümü π∗ en iyi

politika ile V π* (s) = maxπ V π(s) ya da Qπ*(s, π*(s)) = maxπ Qπ(s, π(s)) şeklinde

olacaktır. Ancak derin öğrenmede geçiş türevi T bilinmediğinden dolayı Q-ağı

46

Q(s, a; θ) fonksiyonu ile güncellenir ve burada θ parametresi ağın parametresini

temsil etmektedir. Aşağıdaki denklem ile güncellenir:

𝑄𝑄𝑡+1(𝑠𝑠,𝑎𝑎;𝜃𝜃) = 𝐸𝐸𝑠′ �𝛾𝛾 max𝑎′∈𝐴

𝑄𝑄𝑡(𝑠𝑠′,𝑎𝑎′;𝜃𝜃)|𝑠𝑠, 𝑎𝑎�

(80)

Çalışmada araştırmacılar tarafından yapıldığı gibi, θ parametrelerini öğrenmenin

bir yolu (s,a, s’, r) geçişlerini yeniden yürütme belleklerinde Ω depolamak ve θ’yı

tekrar tekrar güncellemek için bir toplu örneklemden yararlanmaktır (Smart ve

Kaelbling, 2002). Θ bir kez öğrenildiğinde π∗ ilkesi Q(s, a; θ) ‘ den çıkarılabilir.

𝜋𝜋∗(𝑠𝑠) = 𝑎𝑎𝑟𝑔𝑔max

𝑎∈𝐴
𝑄𝑄 (𝑠𝑠,𝑎𝑎;𝜃𝜃)

(81)

Federe derin pekiştirmeli öğrenme problemi şu şekilde tanımlanır:

Dα = {(sα , aα , s′α , rα)} ajan a tarafından toplanan durum ve eylem çiftleri Dβ =

{(sβ,aβ)} ajan β tarafından toplanan durum ve eylem çiftleri. πα* ve πβ*

politikalarının federatif olarak oluşturulmasını amaçlıyoruz.

Birleşik derin pekiştirmeli öğrenme probleminde aşağıdaki maddeler

varsayılmaktadır.

A1: sα ve sβ durumlarının özellik uzayları, α ve β ajanları arasında farklıdır.

Örneğin, bir sα durumu, bir hastanın α hastanesindeki kardiyogramını belirtirken,

başka bir sβ durumu, aynı hastanın β hastanesindeki elektroensefalogramını

belirtir ve sα ve sβ ‘nin özellik uzaylarının farklı olduğunu gösterir.

A2: Dα ve Dβ geçişleri, kendi modellerini öğrenirken α ve β arasında doğrudan

paylaşılamaz. Bununla birlikte, Dα ve Dβ geçişler arasındaki yazışmalar birbirleri

tarafından bilinmektedir. Başka bir deyişle ajan α, ajan β’a bir geçişin ID’sini

gönderebilir ve ajan β, Dβ‘de karşılık gelen geçişi bulmak için bu ID’i kullanabilir.

Örneğin, hastanede ID belirli bir hastaya karşılık gelebilir.

A3: Qα ve Qβ işlevlerinin çıktıları, bazı gizlilik koruma mekanizmaları tarafından

korunmaları koşuluyla birbirleriyle paylaşılabilir

A1,2,3 maddelerine dayanarak, veri ve modellerin gizliliğini koruyarak tüm ajanlar

için yüksek kaliteli politikaları öğretme amaçlanmaktadır.

MLP ile birleştirilmiş federe Q-ağının fonksiyonu aşağıdaki gibidir.

47

𝑄𝑄𝑓𝑎�. ,𝐶𝛽;𝜃𝜃𝑎 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝑄𝑄�𝑎(. ;𝜃𝜃𝑎)�𝐶𝛽�;𝜃𝜃𝑔)
𝑄𝑄𝑓
𝛽�. ,𝐶𝑎;𝜃𝜃𝛽 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝐶𝑎�𝑄𝑄�𝛽�. ;𝜃𝜃𝛽��;𝜃𝜃𝑔)

(82)

Burada θg MLP’nin parametreleridir ve [.|.] birleştirme işlemini gösterir. Bir

MLP’nin parametreleri aracılar arasında paylaştırılabilir. MLP güncellendiğinde

güncellenen parametreler diğer aracılarla paylaştırılır.

Ajanlar ile ilgili olarak, aşağıda gösterildiği gibi, kendi temel Q-ağını güncellerken

diğer ajanın temel Q-ağını (Gauss gürültüsü ile) sabit olarak görüntüleyerek her

ajanın birleşik Q ağları tanımlanır.

𝑄𝑄𝑓𝑎�. ,𝐶𝛽;𝜃𝜃𝑎 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝑄𝑄�𝑎(. ;𝜃𝜃𝑎)�𝐶𝛽�;𝜃𝜃𝑔)
𝑄𝑄𝑓
𝛽�. ,𝐶𝑎;𝜃𝜃𝛽 ,𝜃𝜃𝑔� = 𝑀𝑀𝐿𝑃𝑃(�𝐶𝑎�𝑄𝑄�𝛽�. ;𝜃𝜃𝛽��;𝜃𝜃𝑔)

(83)

Burada Cα = Qˆα(sα,aα;θα) ve Cβ = Qˆβ(sβ,aβ;θβ) fonksiyonları sırasıyla ajan β’

nin Q-ağı ve ajan α’nın Q-ağı güncellerken sabittir.

Ajan α ve ajan β nin Q-ağlarının kare hata kaybı Ljα(θα,θg) ve Lj
β(θβ,θg)

fonksiyonları minimize edilerek eğitilir. Ve son olarak aşağıdaki denklemlere

ulaşılır

𝐿𝑎
𝑗 �𝜃𝜃𝑎 ,𝜃𝜃𝑔� = 𝐸𝐸�(𝑌𝑌𝑗 − 𝑄𝑄𝑗𝑎(𝑠𝑠𝑎

𝑗,𝑎𝑎𝑎
𝑗 ,𝐶𝛽;𝜃𝜃𝑎 ,𝜃𝜃𝑔))2�

𝐿𝛽
𝑗 �𝜃𝜃𝛽 ,𝜃𝜃𝑔� = 𝐸𝐸 �(𝑌𝑌𝑗 − 𝑄𝑄𝑓

𝛽(𝑠𝑠𝛽
𝑗 ,𝑎𝑎𝛽

𝑗 ,𝐶𝑎;𝜃𝜃𝛽 ,𝜃𝜃𝑔))2�

(84)

Federe öğrenmenin basit bir algoritması şekil 33 ve 34’te gösterilmiştir.

ALGORİTMA: Federe Derin Öğrenme Algoritması [Sunucu]
1 : Başla w0
2 : for her t = 0,1,.. do
3 : M ← max ([C . K], 1)
4 : St = rastgele m katılımcı ayarla
5 : for katılımcı için k ∈ St in parallel do
6 : 𝑤𝑤𝑡+1

𝑘 = Yerel Güncelle (k, wt)
7 : wt+1 = ∑ 𝑛𝑘

𝑛𝜎𝑘∈𝑆𝑡 𝑤𝑤𝑡+1
𝑘 , 𝑛𝑛𝜎 = ∑ 𝑛𝑛𝑘𝑘𝑘 ∈𝑆𝑡

Şekil 34 Kullanılacak Federe Derin Öğrenme Algoritması Sözde Kodu (Sunucu)

48

ALGORİTMA: Federe Derin Öğrenme Algoritması [Yerel]
1
2
3
4
5

:
:
:
:
:

B = yerel minibatch boyutu
m = yerel katılımcı sayısı
E = eğitim turu
n = öğrenme oranı
Başla

6
7
8

:
:
:

w0 ← rastgele başlatma
{iletişim boyunca}
for t = 1,..,T,… do

9
10
11

:
:
:

 St ← (rastgele alt küme – max (C x K,1) katılımcı)
{her katılımcı için yerel optimizasyon}
for katılımcı k ∈ St do

12
13

:
:

 yerel ağırlıkları başlat: wt,k ← wt-1
for epoch e ∈ [1,E] do

14

15

:

:

 Yerel verileri böl, B(𝐵
𝑛𝑘

 B yığınları)
for yığın b ∈ B do

16 : wt,k ← wt-k – nlocal ∆l (wt-k ; b)
17 : end for
18 : end for
19 : end for
20 : {Merkezi Ortalama}
21 : wt ∑

𝑛𝑘
𝑛𝑘∈𝑆𝑡 wt,k

22 : end for

Şekil 33 Kullanılacak Federe Derin Öğrenme Algoritmasının Sözde Kodu (Yerel)

49

50

III. ROBOTLARDA PEKİŞTİRMELİ ÖĞRENME

Pekiştirmeli öğrenmeye göre, gelişen ve öğrenen robot sistemi, harekete geçerken ve

karar alırken her zaman ortam ile etkileşim içerisindedir. Öğrenme yeteneği olan

robot etkenleri anlayıp analiz ederek, en iyi eylemi seçmek için çalışır. Bu robotun

analiz yeteneğine örnek olarak düşünülebilir. Bu işlemleri gerçekleştirirken her

seferinde bulunduğu ortamdan deneme yanılma adı verilen iyi ve kötü dönüşler alır.

Bu şekilde robot, en iyi sonuca ulaşmış olur. Bununla birlikte gerçek dünyadaki

pekiştirmeli öğrenmenin uygulamaları, genellikle öğrenme yönteminin kendisinin

ötesinde önemli teknik gelişmeler gerektirmektedir: fiziksel donanım için pratik olan

öğrenme sürelerini de elde etmek için politika ya da değer işlevi için uygun bir temsil

seçilmelidir (Bicchi, 1995; Platt, 2007). Ancak gerçek dünyadaki robotik

çalışmalarına derin pekiştirmeli öğrenme yöntemlerinin uygulanmasındaki temel

zorluklardan birisi de yüksek örnek karmaşıklığı olmuştur (Bicchi, 1995; Stulp et al.,

2011)

Bu öğrenme yönteminde ortamın özellikleri robota tanımlanmalıdır. Deneme

yanılmadan alınan sonuçlar performansı ölçümlemek için kullanılır. Bu ölçümleri

etkileyen tüm değişkenler ortam olarak düşünülebilir (Russel and Norvig, 1995).

Bu robotlar her seferinde yeni şeyler öğrenmeyebilir. Bunun yerine geçmiş bilgilerini

de kullanabilir. Bunlar kompleks olabileceği gibi basit şeyler de olabilir. Öğrenebilen

robotun hedefe giderken geçmiş tecrübelerinden faydalanıp faydalanmayacağını ya

da yeni olasılıklar bulup bulamayacağını yapılan plan belirler. Ortam ile öğrenebilen

robot arasında yaygın kabul edilen ilişkiler şekilde gösterilmiştir (Kulkarni, 2012).

Bir robotun öğrenebilen rasyonel robot sayılabilmesi için, ortamdaki karmaşık

problemleri tespit edip onları çözebilmesi gerekmektedir. Bu robotların sahip olması

gereken özellikler de şöyle sıralanabilir:

1. Sürekli veya belirli aralıklarla ortamlardan veri toplamalı

2. Tek başına karar almalı ve bu kararları uygulayabilmeli

3. Farklı bilgileri bir araya getirerek, tekil bilgilerle daha geniş bir bilgi havuzu

oluşturabilmeli.

51

4. Sürekli öğrenme yeteneği olmalı

5. Daha önce edindiği tecrübelerle yeni bilgiler edinebilmeli.

Eğer ortamda sürekli bir değişim varsa, sensörlerden alınan veriler yeterli değilse ya

da yeterli olsa bile temiz ve anlaşılabilir değilse, robot için durum karmaşıklaşabilir.

Bu durumlarda robot inisiyatif almalı ve geçmiş tecrübelerinden de yola çıkarak

gerekirse bulunduğu eylemleri ödül ve ceza deneyimlerinin arasına katabilmelidir.

Bu şekilde esnek hareketlerde bulunmak için robotta şu özellikler olmalıdır:

1. Responsive olmalıdır. Elde ettiği datalara göre olaylara zamanında cevap

verebilmelidir.

2. Proactive, yani önsezili olmalıdır. Ansızın gerçekleşen çevresel konulardaki

fırsatları görebilmeli ve uygun eylemi seçmelidir.

3. Bulunduğu ortamdaki diğer robotlarla ve kişilerle etki tepki ilişkilerine

girebilmeli, yani sosyal olmalıdır.

Şekil 35 Akıllı Robot Ortam İlişkisi

A. Öğrenen Robotlar

Daha önce de anlatıldığı gibi bir robotun akıllı olarak sınıflandırabilmesi için, tek

başına değişken ortamlarda eyleme geçilmesi ve karar verebilmesi gerekliliği

bulunur. Robotun geçmiş tecrübelerinden edindiği veriler, çıkarım yapmaya ve doğru

hedefe ulaşmasına yeterli olmayabilir. Yani robotlar her karardan sonra kendini

geliştirmelidir ve bu değişken ortamlarda mantıklı karar alması sağlanmalıdır.

52

Bizim dünyamızdaki öğretmen eşliğindeki öğrenme, robotlar için gözetimli

öğrenmeye karşılık gelmektedir. Bu sebeple robotlar tahmini modeller

geliştirebilmelidir. Bu tahminler çıktıların eylemlerle olan ilişkilerine, rakiplerin

verebileceği tepkilerin tahminlerine dayanır. Öğrenebilen bu robotlar bazen de

rastgele hareketler yapmak durumunda kalır. Ancak bu eylemler rastgele olsa da

sonucuna göre ödül ve ceza datalarının incelenebilir olması gerekir.

Şekil 36 Akıllı Robot Öğrenme Süreci

Robotların dünyasında da tıpkı bizim dünyamızda olduğu gibi ödül ve ceza eylem

tamamlandıktan sonra gelmektedir. Ve yine tıpkı bizde olduğu gibi kararın

haklılığını ölçmek için çok önemlidirler. Çünkü bu sayede robot verilen kararlarda

değişim gerekip gerekmediğini değerlendirir ve eylemlerine bu şekilde devam eder.

Robotun toplam ödülünün en yüksek seviyeye ulaşabilmesi için periyodik ödüller

önemlidir. Süreç içerisinde ödül gelmezse, robot tahminlere dayalı bir şekilde

maksimum ödüle ulaşmaya çalışacaktır.

53

Şekil 37 Ödülün Ortamdan Durum-Eylem İkilisi Sonrası Nasıl Geldiğinin İlişkisi

Öğrenebilen robotlar, her zaman maksimum ödülü hedefler. Ödülleri bazen belirli

periyodlarla bazen de asıl hedefe ulaştığında elde eder. Ödülü belirten denklem

85’deki gibidir.

RT = rt−1 +rt−2 +rt−3 +...+rT

(85)

Ortam ile robot arasında bulunan ilişkiyi incelersek, ödül ve eylemlerden sonra elde

edilen sonuçlar farklı olacaktır. Sürekli görevlerde kısımlara ayırmak zor olabilir ama

periyodik görevlerde bu çok daha kolay olacaktır. Toplam ödül de bu süreçte alınmış

ödüllerin hepsinin bir araya gelmesinden oluşacaktır.

B. Robotlarda Eylem Seçim Metodları

Pekiştirmeli öğrenme türünün diğer türlerden en büyük ayrıştığı nokta, ödül ve

cezaların talimat olması değil de yorumlanabilmesi ve geçmişteki, gelecekteki

pozisyonlara göre şekillenmesidir. Bu şekilde tutarlı bir araştırma mümkün

olmaktadır (Sutton ve Barto, 2018). Sadece iyi ve kötü davranış olarak

tanımlanmaktan ziyade bu değerlendirmenin sonucunda optimizasyon temelli veriler

elde edilir. Başka bir yandan da gözetimli öğrenme türü çok önemli bir yöntemdir.

Bu yöntemde ödüller değil de hareketler ve onların sonuçları belirlenir ve aralarında

ilişki kurulur.

54

Durum ve eylem arasındaki ilişkiyi anlamak için, araştırma ve faydalanma iyi

dengelenmelidir. Bunu dengelemek için de seçim metodu ve değişkenler iyi

belirlenmelidir. Eğer robot sürekli faydalanmaya çalışırsa, yani sürekli aynı yolu

seçmeye başlarsa daha hedef için iyi bir yol olsa da robot bunu görmezden gelecektir

ya da ödüller düşükse robot bu yola girmez ve hiçbir zaman istenilen sonuç

alınamayabilir. Ancak robot sürekli gelişir ve tek bir yola sadık kalmazsa, ilerleme

ve öğrenme mümkün olmaz. İşte bu sebeple araştırma ve faydalanma iyi

dengelenmelidir.

55

56

IV. İLGİLİ ÇALIŞMALAR

Bu bölümde pekiştirmeli öğrenme, federe öğrenme, robot kollarının cisimlerin

tutulabilirliğini öğrenmesi konusunda sunulan farklı çalışmalar incelenecektir.

Çalışmada araştırmacılar, bir robot kolunun hareket planlama ve hareket kontrolü, iki

robot kol arasındaki iş birliği ve bir robot kolunun uzaktan kontrolü gibi hizmetler

için Mobil Uç Bulutu (MEC) algoritmasını önermişlerdir (Tsokalo et al., 2019). İki

robot kolunun iş birliği kullanım durumu, üretim hattındaki karşılıklı çalışma

konusunda birden fazla robot kolu arasındaki iş birliğine ilişkin bir tahminde

bulunmuşlardır. Çalışmada araştırmacılar otomobil endüstrisinde algılama, kontrol

ve üretim için yeni mi al ve yerleştir robotu önermişlerdir (Smys and Ranganathan,

2019). Alma ve yerleştirme robotları, çeşitli endüstrilerde montaj, paketleme, kutu

paketleme ve denetimde kullanılmaktadır.

Robotik öğrenmede, dinamik sistemlere dayalı motor ilkeleri (Schaal et al., 2007;

Ijspeert et al., 2002) hem taklit hem de pekiştirmeli öğrenme yoluyla yeni

davranışların hızlı ve güvenilir bir şekilde kazanmasına izin vermektedir. Örnekler

etkileyici olsa da görevi yeniden öğrenmeden bir motor ilkelinin deneme yanılma

yoluyla farklı bir davranışa nasıl genelleştirilebileceğini ele almamışlardır. Örneğin

bir fincanda top (Kober and Peters, 2011) hareketinde ip uzunluğu değiştirilmişse,

hareket parametreleri de değiştirilecek ve davranış yeniden öğrenilmelidir. Birkaç

santimetrelik bir dizi uzunluğu varyasyonları nedeniyle davranışın büyük miktarda

değişmeyeceği göz önüne alındığında, öğrenilen davranışı değiştirilmiş göreve

genellemek daha iyi olacaktır. Davranışların bu tür genelleştirilmesi, hareket

temsilinin meta-parametrelerinin uyarlanmasıyla başarılabilir.

Takviyeli öğrenmede, görevler arasında genelleme yapmak için meta-parametreleri

kullanmaya yönelik birçok girişimde bulunulmuştur (Caruana, 1997). Özellikle,

şebeke dünyası etki alanlarında, politikaların meta-parametrelerini değiştirerek ve

ayarlayarak önemli bir hızlanma elde edilebilir (McGovern and Barto, 2001).

Robotikte, bu tür meta-parametre öğrenimi, yüksek boyutlu durumlar ve eylenmeler

karmaşık motor beceriler için pekiştirmeli öğrenmenin karmaşıklığı nedeniyle yararlı

olabilir.

57

Araştırmacılar bu (Gu et al, 2017) çalışmada, politika dışı derin Q-öğrenme

ölçeklerine dayanan yeni bir derin pekiştirmeli öğrenme algoritmasının karmaşık 3B

manipülasyon problemlerine ölçeklendiğini ve derin sinir ağı stratejilerinin öğrenme

için çok etkili bir şekilde kullanıldığını ve gerçek fiziksel dünya üzerinde

geliştirilebileceğini göstermektedirler. İlke güncellemelerini eş zamansız olarak

toplayan birden çok robotta algılamayı paralel hale getirmişler ve bu sayede eğitim

süresini de azaltılabileceğini vadetmişlerdir. Çalışmada araştırmacılar yöntemlerinin

simülasyonda çeşitli 3B manipülasyon yeteneklerinin yanı sıra gerçek robotlarda ön

izleme ve elle oluşturma olmadan kapı açma yeteneği kazandırılabileceğini

gösterdiğini iddia etmektedirler. Bu makalenin ana katkısı, bir robotik küme üzerinde

paralel NAF algoritmalarını kullanarak asenkron derin pekiştirmeli öğrenmeyi

göstermektir. Araştırmacıların gerçekleştirdiği önceki çalışmada (Levine et al., 2016)

model tabanlı pekiştirmeli öğrenme ve model tabanlı olmayan pekiştirmeli öğrenme

yaklaşımlarını incelemişlerdir. Model tabanlı algoritmalar, Gauss süreçleri

(Deisenroth and Rasmussen, 2011), karışım modelleri (Moldovan et al., 2015) ve

yerel doğrusal öğrenme algoritmalarını (Lioutikov et al., 2014) incelemişlerdir. Derin

sinir ağı stratejileri, model tabanlı yöntemler tarafından derin ağ stratejilerini

öğrenmek için kullanılan yönetimli politika arama algoritması (Levine et al., 2016)

bağlamında model tabanlı öğrenme ile birleştirilir. Bu tür yöntemlerin bir dizi gerçek

dünya probleminde başarılı olduğu ve yüksek öğrenme verimliliği sağladığı

gösterilmiştir. Derin pekiştirmeli öğrenmede simülasyon deneylerini hızlandırmak

için paralel öğrenme yöntemi de önerilmiştir (Mnih et al., 2016). Birden fazla

robotun deneyimlerini birleştirerek robotik öğrenmeyi hızlandırmak için de çeşitli

araştırmacılar çalışmalarını sunmuşlardır (Inaba et al., 2000; Kuffner, 2010; Kehoe et

al., 2013; Kehoe et al., 2015). Ters kinematik problemleri çözmek için uyarlamalı

öğrenme algoritmalarının kullanıldığı bir çalışma yapılmıştır (Hasan et al., 2006). Bu

çalışmada uçakta kullanılabilecek ve konum kontrolü yapabilen bir manipülatör

geliştirilmiştir. Başka bir çalışmada 6 eklem bölgeli çift kollu mobil robot H20’nin

konum kontrolü ve farklı özelliklere sahip kavrayıcı uçlarının tasarımını

gerçekleştirmişlerdir (Mohammed et al., 2016). Bulanık mantık tabanlı kontrol

algoritmalarını destekleyen bir çalışmada, bir robotik kola bulanık mantık

tahminlerine dayalı genelleştirilmiş bir kontrol yapısı uygulamışlardır (Cronin et al,

2014). Benzer bir çalışma da 2 eklem bölgeli robot kol için bulanık mantık tabanlı bir

58

kontrol yapısı geliştirilmiş olsa, bu yapının kayma ve PID kontrol yapısını araştırmak

amacıyla karşılaştırmalı bir makale de sunulmuştur (Lochan and Roy, 2014).

Son on yılda, robotikte pekiştirmeli öğrenme uygulaması istikrarlı bir şekilde

artmıştır. Schaal (1997) bir robotu ters kinematik polarite dengesi görevinde

(göstererek öğrenme) eğitmek için pekiştirmeli öğrenmeyi kullanmıştır. Daha yakın

zamanlarda Bhatnagar, Sutton, Gavamzade ve Lee (2009) bu çalışmanın devamını

sunmuşlardır. Theodorou, Peters ve Schaal (2007), el hareketlerinin kontrolünü

optimize etmek için pekiştirmeli öğrenmeyi kullanmışlar. Peters ve Schaal (2008),

robotikte Doğal Aktör Kritik (NAC) algoritmasını sunmuşlardır. Buchli, Thedorou,

Stulp ve Schaal (2010), değişken empedans kontrol döngüleri için bir yol

entegrasyon yöntemi kullanarak politika tabanlı bir pekiştirme öğrenme yaklaşımını

önermişlerdir. Ancak önerilen şemanın etkinliği sadece simülasyonlarda

gösterilmektedir. Aktör ve eleştirmen tabanlı robotlar için pekiştirmeli öğrenme

hakkında daha fazla bilgi grubun diğer çalışmalarında da bulunabilir (Atkeson and

Schaal, 1997; Hoffmann et al., 2012). Daha yakın zamanda, Theodorou, Buchli ve

Schaal (2010) yol integrallerini kullanarak kılavuz tabanlı pekiştirmeli öğrenmeyi

robot bir köpek üzerinde test etmişlerdir (Kappen, 2005). Digney ve June (1996),

robot-çevre etkileşimi için iç içe bir Q-öğrenme algoritması önermişlerdir. Kuan ve

diğerleri (1998), sağlam kayan mod empedans kontrolü ile uyumluluk sorunlarını ele

almak için bir pekiştirmeli öğrenme mekanizması önermişlerdir ve bu yaklaşımı

simülasyonda test etmişlerdir. Çalışmaları, farklı adaptasyon görevlerindeki

farklılıkları hesaba katmak için pekiştirmeli öğrenme algoritmalarını kullanmaktadır.

Bucak ve Zohdy (1999; 2001), tek bağlantılı ve çift bağlantılı robotlar için bir

pekiştirmeli öğrenme yaklaşımı kontrol şeması önermişlerdir. Gaskett (2002) robot

kontrolü için Q-öğrenme üzerine çalışmıştır. Smart ve Kaelbling (2002), mobil

robotlarda gezinme görevleri için pekiştirmeli öğrenmeyi kullanmıştır. Izawa, Kondo

ve Ito (2004), robotik bir kolun iki eklemli ve altı paketli kas-iskelet kolunu en iyi

şekilde kontrol etmek için bir pekiştirmeli öğrenme yaklaşımı olan aktör kritik

metodu uygulamışlardır. Shah ve Gopal (2009), güvenli olmayan koşullar altında

robotik kolların pekiştirmeli öğrenme kontrolünü önermişlerdir. Kim, Park ve Kang

(2008; 2010) çevre ile etkileşime girerek farklı durumlara uygun çözümler bulmak

için pekiştirmeli öğrenme yöntemlerini kullanmışlardır. Riedmiller, Gabel, Hafner ve

Lange (2009), robotik futbol oynamak için toplu pekiştirmeli öğrenmeyi

kullanmışlardır. Bu çalışmada değer fonksiyonuna yaklaşmak için bir patlama modu

59

yapısı kullanarak çok katmanlı bir algılayıcı kullanmışlardır. Adam, Busoniou ve

Babushka (2012) tarafından yapılan çalışmada Q-öğrenme yöntemlerinin deneysel

uygulamasını ve Sarsa örnek tekrarını robotik kaleci ve ters sarkaç örneklerine

uygulamışlardır. Stingu ve Lewis (2011), bir quadcopter kullanarak insansız hava

aracı (İHA) kullanarak rotayı simüle etmişlerdir. Q-fonksiyonu ve kontrol

politikasını modellemek için Sarangapani’nin (2006) çalışmasına dayanan radyal

tabanlı fonksiyon sinir ağlarını kullanmışlardır. Araştırmacılar, yararlı öğrenme

sonuçları elde etmek için konvolüsyonel sinir ağları (CNN’ler) kullanarak ham piksel

girişlerinden kontrol politikalarını öğrenmek için model tabanlı olmayan bir

algoritma olan Q-öğrenme yöntemini kullanan bir algoritma göstermişlerdir (Mnih et

al., 2013). Çalışmada yeni farklı atari 2600 oyunuyla ortaya koydukları algoritmayı

test etmişler ve çalışmaları altı oyunda insan oyuncuyu geçmiştir. Daha yakın

zamanlarda araştırmacılar kavram kanıtlamada yakın politika optimizasyonundan

daha iyi performans gösteren hiyerarşik eleştiri adlı bir algoritma önermişlerdir (Cao,

2019). Son zamanlarda, hassas kontrol ve doğru sonuçlar gerektiren oyunlara,

robotlara ve otonom sürüşe pekiştirmeli öğrenme uygulanmıştır (Sutton and Barto,

1998; Silver et al., 2016; Mnih, 2015; Duan ve diğerleri, 2016; Li ve diğerleri, 2018).

Araştırmacılar etkileşimi araştırmak ve ajanlar arasındaki öğrenmeyi paylaşmak için

pek çok etmenli ortamda pekiştirmeli öğrenme uygulamışlardır (Tampuu et al, 2017).

Çalışmada araştırmacılar, verileri veya bilgileri doğrudan aktarmadan, diğer ajanların

yardımıyla her ajan için bir Q-öğrenme ağı oluşturularak veri ve modellerin gizlilik

gereksinimleri göz önünde bulundurularak federe bir pekiştirmeli öğrenme yaklaşımı

önerilmiştir (Zhuo et al., 2019). Bir ajandan başka bir ajana geçiş çalışmada (Liu et

al., 2019) bulut robotlarının navigasyon yardımı için bulutta konuşlandırılmış

paylaşılan bir modeli geliştirmek için evrimsel transfer öğrenmeli bir bilgi füzyon

algoritması olarak yaşam boyu birleşik pekiştirmeli öğrenme algoritması

önermişlerdir. Bonawitz ve ark. (2019) federasyon sürecini tanımladı ve 2019 yılında

federasyon politikası için bir federasyon sistemi protokolü tasarladı. Federasyon

politikası, her dağıtılmış cihazdaki yerel verileri kullanarak eğitimi gerçekleştirir ve

hesaplanan gradyan veya eğitim modelini merkezi sunucuya gönderir. Zhuo ve ark.

(2019), bir federasyon politikası kullanarak her ajan için bir Q-öğrenme ağını

kullanarak yeni bir pekiştirmeli öğrenme algoritması önermişlerdir. Her aracı, yerel

verileri kullanarak kendi Q-öğrenme ağını kullanarak optimal bir Q değeri hesaplar.

Çalışmada araştırmacılar federe öğrenmeyi denetimli makine öğrenimi teknikleri

60

üzerinden gerçekleştirmişlerdir (McMahan et al., 2016). Çalışmada birleşik öğrenme,

temel kullanıcı verilerine doğrudan erişim olmaksızın sanal klavye arama öneri

kalitesini iyileştirmek için bir modeli eğitmek, değerlendirmek ve dağıtmak için

ticari, küresel ölçekli bir ortamda kullanmışlardır (Yang et al., 2018). Denetlenen

sınıflandırma görevleri için birleştirilmiş öğrenmenin daha fazla uygulaması (Khan et

al., 2012; Chen et al., 2018; Zhou et al., 2018; Smith et al., 2017)’de bulunabilir.

Stokastik gradyan iniş (SGD) algoritmasının çeşitli dağıtılmış versiyonu çalışmada

önerilmiştir (De and Goldstein, 2016; Chen et al., 2016). Çalışmada yazarlar, istemci

modellerinin yanı sıra paylaşılan modeli tek bir büyük Q-öğrenme ağı olarak ele

almışlar ve Bellman denklemini kullanarak optimize etmişlerdir (Zhuo et al., 2019).

Ancak bu çalışmada, istemcilerin her birine ayrı Q-öğrenmesi vardır ve paylaşılan

model parametrelerine bir federasyon politikası karar verir. Çalışmada yazarlar,

mevcut çalışmada bir federasyon politikası model birleştirme yöntemi belirlerken,

üretici ağlara dayalı bilgi birleştirme algoritmasını kullanmışlardır (Liu et al., 2019).

McMahan ve ark. (2016), geleneksel gradyan iniş güncellemelerini uygulamak

yerine istemci cihazlardan model ağırlıklarının ortalamasını almak için gereken

iletişim turlarının sayısını azaltmayı amaçlayan birleşik ortalama (FEDAVG)

algoritmasını sunmuşlardır. FEDAVG, etkinliğini test etmek için büyük ölçekli bir

sistemde (Bonawitz et al., 2019) çalışmasında kullanılmıştır.

61

62

V. YÖNTEM

Çalışmanın bu bölümünde ortaya konulan algoritmalar ve bu algoritmanın

uygulanabilirliği ve uygulama sonuçlarının analizi ve değerlendirilmesi hakkında

bilgiler verilecektir.

Söz konusu çalışma daha öncesinde çok fazla odaklanılmamış bir alan ve yeni ortaya

çıkmış bir alanı birleştirecektir. Hali hazırdaki bu çalışmada robot kollarının (Şekil

38) federe derin öğrenme ve federe derin pekiştirmeli öğrenme algoritmalarıyla

belirli cisimleri tutmaya çalışması üzerinedir. Federe derin öğrenme ile robot

kollarının belirli cisimleri tutabilirliğinin ölçümü sadece federe derin pekiştirmeli

öğrenme yönteminin sonuçlarının tutarlı olup olmadığı konusunda test merci olarak

bulunmaktadır. Buradaki amaç elde tutma verileri olmadığı durumlarda yapılacak

olan çalışmalara öncü olmaktır. Federe derin öğrenme ile yapılan çalışmada veriler

Kaggle.com (https://www.kaggle.com/datasets/ugocupcic/grasping-dataset) adlı

siteden alınmıştır. Eldeki veride 3 kol eklem bölgeli ve 3 parmaklı tutma ucu olan ve

bu tutma ucundaki parmakların da 3 eklem bölgesi bulunmaktadır. Algoritma Python

dilinde yazılmıştır ve Intel(R) Xeon (R) Gold 5218R CPU ile Windows Server

üzerinden gerçekleştirilmiştir.

Şekil 38 Örnek Bir Robot Kol

63

Çalışmanın kaynak kodları çalışmanın geçerli olması durumunda açık kaynak olarak

Github.com adlı sitede çalışma ismi ile yayınlanacaktır.

Bilindiği üzere federe öğrenme birden fazla sistemin aynı anda öğrenmesini

amaçlamaktadır. Bu sebeple çalışma 3 robot kolun birlikte eğitilmesi üzerine

odaklanmıştır. Robotların tutabilirliğini federe derin öğrenme ile öğrenmesi

algoritması yukarıda daha önce açıklanan sistemde en iyi öğrenme yönteminin ve en

iyi ağın bulunması konusunda çalıştırılmıştır. Yapılan değerlendirmeler sonucunda

en iyi ağın 18 girdi nöronlu (18 hareket noktası olduğundan dolayı), ve 3 tane 18x18

nöronlu gizli katman ve 1 tane 18 nöronlu gizli katman ve çıktı katmanı olarak da 1

nöronlu bir katman olduğu görülmüştür. Çıktı katmanının aktivasyon fonksiyonu

‘sigmoid’, kayıp fonksiyonu ‘binary crossentropy’ (tek bir çıktı olduğundan),

optimizer olarak ‘adam’ fonksiyonu seçilmiştir. Oluşturulan model toplam 10 döngü

yapacaktır. Aynı şekilde robotların kendi içlerinde yapacağı öğrenme döngüsü de 10

olarak belirlenmiştir.

Federe derin pekiştirmeli öğrenme yönteminde ise modelden bağımsız bir Q-

öğrenme algoritması kullanılmıştır ve federe derin öğrenme algoritması yaklaşık

%90 öğrenme gerçekleştirmiştir. Bundan dolayı federe derin pekiştirmeli öğrenme

yöntemi de yaklaşık %90 öğrenme düzeyine erişene kadar kaç döngü yapacağı

hesaplanacak ve gereken döngü öğrenildikten sonra iki algoritma aynı anda

çalıştırılacak ve sonuçlar test edilecektir.

Test konusu olarak kullanılacak federe derin öğrenme algoritmasının sözde kodu

şekil 39 ve şekil 40’da gösterilmiştir.

ALGORİTMA: Federe Derin Öğrenme Algoritması [Sunucu]
1 : Başla w0
2 : for her t = 0,1,.. do
3 : M ← max ([C . K], 1)
4 : St = rastgele m katılımcı ayarla
5 : for katılımcı için k ∈ St in parallel do
6 : 𝑤𝑤𝑡+1

𝑘 = Yerel Güncelle (k, wt)
7 : wt+1 = ∑ 𝑛𝑘

𝑛𝜎𝑘∈𝑆𝑡 𝑤𝑤𝑡+1
𝑘 , 𝑛𝑛𝜎 = ∑ 𝑛𝑛𝑘𝑘𝑘 ∈𝑆𝑡

Şekil 39 Kullanılacak Federe Derin Öğrenme Algoritması Sözde Kodu (Sunucu)

64

ALGORİTMA: Federe Derin Öğrenme Algoritması [Yerel]
1
2
3
4
5

:
:
:
:
:

B = yerel minibatch boyutu
m = yerel katılımcı sayısı
E = eğitim turu
n = öğrenme oranı
Başla

6
7
8

:
:
:

w0 ← rastgele başlatma
{iletişim boyunca}
for t = 1,..,T,… do

9
10
11

:
:
:

 St ← (rastgele alt küme – max (C x K,1) katılımcı)
{her katılımcı için yerel optimizasyon}
for katılımcı k ∈ St do

12
13

:
:

 yerel ağırlıkları başlat: wt,k ← wt-1
for epoch e ∈ [1,E] do

14

15

:

:

 Yerel verileri böl, B(𝐵
𝑛𝑘

 B yığınları)
for yığın b ∈ B do

16 : wt,k ← wt-k – nlocal ∆l (wt-k ; b)
17 : end for
18 : end for
19 : end for
20 : {Merkezi Ortalama}
21 : wt ∑

𝑛𝑘
𝑛𝑘∈𝑆𝑡 wt,k

22 : end for

Şekil 40 Kullanılacak Federe Derin Öğrenme Algoritmasının Sözde Kodu (Yerel)

Algoritmada asıl odaklanılan ve sunulan federe derin pekiştirmeli öğrenme

algoritmasının sözde kodu aşağıdadır (Şekil 41, Şekil 42).

65

ALGORİTMA: Federe Derin Pekiştirmeli Öğrenme (İşçi)
1 : for i = 1,2,3,..., M do
2 : for her bölümün t admında do
3 : Her st durumu için πθ aktör modelini çalıştır ve do aksiyon at

Ortamdan rt+1, st+1 alın
<st, at, rt+1, st+1> yörünge belleğine kaydedin

4 :
5 :
6 : End
7 : if öğrenme süreci biterse then
8 : Θw aktör modelin parametresini dahil ederek mw mesajını sunucuya

gönderin
Break

9 :
10 :
11 : Else
12 : Güncelle πθold ←πθ
13 : for j = 1,2,3,…, K do
14 : Yörünge belleğinden bir mini-batch B alın (B’nin boyutu U’dur)
15 : for t = 1,2,… U do
16 : Vμ ve denklem kritik modelini kullanarak Ât ‘yi hesaplayın

Vμ(st) ve 𝑉𝑉𝜇
𝑡𝑎𝑟𝑔𝑒𝑡 değerlerini alın

LVt (μ) değerini hesaplayın
𝜋𝜋𝜃 Aktör modeli kullanarak 𝐿𝑡𝐶𝐿𝐼𝑃(𝜃𝜃) değerini hesaplayın

17 :
18 :

19

:

20 : End
21 : Gradyanı gμ =∇LV(μ) ortalama(L1V(μ),...,LUV(μ)) ‘a göre hesapla

Vμ parametresini SGD aracılığıyla gμ ile güncelleyin
g = ∇LCLIP(θ) gradyanı, ortalama(LCLIP(θ), ..., LCLIP(θ)) ve aktör
model parametresi π a göre güncelleyin
 πθ parametresini gθ ‘e göre SGD ile güncelleyin

22 :
23 :
24 :

25

:

26 : End
27 : Sunucuya gθ içeren mw mesajını gönderin
28 : End
29 : Müsait değilse sunucudan mc mesajını bekleyin
30 : if mc aktör model parametresine θ ̄ sahipse then
31 : Mevcut aktör modeli parametresini alınan θ ̄ ile değiştirin
32 : else if mc ortalama g ̄ gradyanına sahipse
33 : SGD aracılığıyla alınan g ̄ ile πθ güncelleyin
34 : End

Şekil 41 Kullanılacak Federe Derin Pekiştirmeli Öğrenme Algoritması (İşçi)

66

ALGORİTMA: Federe Derin Pekiştirmeli Öğrenme (Sunucu)
1 : for i = 1,2,3,..., M do
2 : P = []
3 : for w ∈ W do
4 : w işçisinden mw mesajını al
5 : mw ‘yi P’ye böl
6 : End
7 : if bir mesaj varsa mw ∈ P ve mw w işçisi aktör model parametresi

θw then
8 : θ ̄ = θ w
9 : W − {w} içerisindeki işçilere θ ̄ model parametresini de

ekleyerek mc mesajını gönder
10 : W = W – {w}
11 : Else
12 : Tüm mw ∈ P gradyanlarını topla
13 : g ̄ = ortalama()
14 : Ortalama gradyan g ̄ dahil olmak üzere W ‘daki tüm işçilere mc

mesajını gönder
15 : End
16 : if W boş ise then
17 : Break
18 : End
19 : End

Şekil 42 Kullanılacak Federe Derin Pekiştirmeli Öğrenme Algoritması (Sunucu)

Çalışmada, uçtan uca robotik kavrama için eylem alanı, kartezyen uzayda sürekli

eylemlerden oluşmaktadır. Eklem alanı yerine kartezyen uzaydaki eylemleri

kullanarak, eylem alanı bir robotun belirli kinematik konfigürasyonuna göre

değişmez. Ayrıca, kartezyen eylemler, kendi kendine çarpışmalardan kaçınırken

düşük seviyeli eylem kontrolörlerine güvenilir bir şekilde komutlar da sağlamak için

geleneksel yöntemler ve hareket planlama yaklaşımlarının kullanılabildiği yerlerde

daha iyi güvenilirlik sağlamaktadır. Kolların tutucularının kullanabileceği kartezyen

uzay şekil 43’te gösterilmiştir. Tutucu pozisyonu için eylemler, her ikisi de robot

taban koordinat çerçevesine göre ifade edilen öteleme yer değiştirmesi için (dx,dy,dx)

ve z ekseni dφ etrafında nispi rotasyonlardan oluşmaktadır.

67

Şekil 43 Robot Kollarının Tutucularının Kullanabileceği Katezyen Uzay

Şekil 43’te (dx,dy,dx)’nin bir öteleme yer değiştirmesini dφ’nin bir nispi sapma

dönüşünü ve kıskaç kapanması ve açılmasının g ile gösterilmektedir. Bu eylemler

[-1,1] aralığında normalleştirilir ve ardından uygulanmadan önce metrik ve açısal

birimlere yeniden ölçeklendirilir. Kıskaç eylemi g ayrıca sürekli bir aralıktadır.

Burada pozitif değerler tutucuyu açar ve negatif değerler tutucunun kapanmasını

sağlar. Bu nedenle, RL aracısının bir tanımlama grubu (dx,dy,dx, dφ, g) için karşılık

gelen değerleri sürekli eylemlerin herhangi bir kombinasyonunu yapmasına izin

verir.

A. V-REP (Coppelia Robotics Virtual Robotic Experiment Platform)

Bu projede V-REP kullanılmıştır. V-REP Coppelia Robotics firmasının sanal

ortamda robotik çalışmalar yapılması amacıyla geliştirilen bir simülasyon ortamıdır.

V-REP’in eğitim amaçlı kullanımı ücretsizdir. Python dahil olmak üzere birden çok

programlama dilini destekler ve bir uzak API aracılığıyla erişilebilir. Simülatör,

Mico kolu da dahil olmak üzere birden fazla robotik platform modeline sahiptir.

Simülasyon modeli çok doğru ve gerçek kolu çok iyi temsil ederken, parmakların

kontrolü farklıdır. Az çalıştırılan parmakların simülasyonda uygulanması daha zor

olduğundan, bir parmağın her biri bir segmenti kontrol eden iki aktüatörüdür. Gerçek

kol bir lineer aktüatör kullanırken, simülasyondaki iki aktüatör döner aktüatördür. V-

REP sadece kavramak için değil, daha çok genel simülasyonlar için üretildiğinden,

nesneleri fiziğe dayalı olarak kavramaya çalışmak oldukça zordur. Çünkü V-REP

68

sürtünmeyi o kadar doğru bir şekilde modellenemez. Ancak simülasyonda

çarpışmayı oldukça kolay bir şekilde tespit edebiliriz, bu nedenle parmaklar bir

nesneyi kavramaya çalışırken çarpıştığında fiziğe güvenmek yerine nesneyi bir

kavrama simüle ederek uç efektöre bağlanabilir. V-REP farklı modlarda çalışabilir;

asenkron ve senkron. Asenkron modun yaygın olarak kullanılır, simülasyonu

duraklatmadan olabildiğince hızlı çalıştırır. Ancak senkron mod için simülasyonu bir

adım ilerletmek için bir tetikleme sinyaline ihtiyaç vardır. Kolun mevcut durumuna

ihtiyaç olduğundan dolayı senkron modu kullanmak gerekmektedir. Her adımda bir

işlem gerçekleştirilir ve delta süresini (∆t) aynı tutarken kolun yeni durumu alınır. Bu

aynı zamanda ödül değerini hesaplamaya, veriyi tren arabelleğinde göndermeye ve

yeni eylemi, kol önceki eylemini gerçekleştirmeden farklı bir duruma getirerek

hesaplamaya izin verir.

Senkron modunu kullanmanın en büyük dezavantajı, simülatöre bir kamera

eklendiğinde, güncelleme hızının normalde yaklaşık 40Hz-60Hz’de çalışmaya

kıyasla yaklaşık 4Hz-6Hz’e düşmesidir. Bu, eğitim için görsel girdiyi kullanmayı

imkânsız hale getirmektedir, çünkü eğitimin uzun sürmesi gerekir. Bu proje için

görsel girdi olmadığından dolayı üzerinde doku olmayan bir küre cisim kavranmaya

çalışılacaktır. Küre cismin yarıçapı 3cm olarak belirlenmiştir. V-REP, noktalar

arasındaki minimum mesafeyi hesaplayabilir ve görselleştirebilir, bizim

durumumuzda, ödül işlevi için kullanılacak olan uç efektör ile kürenin ortası

arasındaki minimum mesafeyi almaktadır. V-REP çarpışma testini yapar, ancak

yapabileceği tüm çarpışmaları kaydetmek istenmez, çoğunlukla son efektörle

ilgilenilmektedir. Bu nedenle, yalnızca uç efektörün kolla değil, zeminle veya

nesneyle çarpışıp çarpışmadığı kontrol edilir. Simülasyonda parmakların nesneyi

kavrayıp kavramadığı kontrol edilmek için her bir parçanın nesneyle çarpışıp

çarpışmadığı kontrol edilmektedir.

B. Eğitim Öncesi

Eğitim veya daha iyisi eğitim örnekleri oluşturmak, V-REP gibi bir fizik simülatörü

kullanılarak nispeten yavaş olabilir. Ancak simülatörü sadece ileri kinematik

kullanarak basitleştirebiliriz. Her bir eklemin mevcut konumunu takip ederek, ileri

kinematiği hesaplayarak son efektör konumunu hesaplayabiliriz. Actor ağındaki

eylemi ve keşif süresinin 50ms’lik bir delta süresiyle ekleyerek, kolun hareketini

69

simüle edebiliriz. Bir denemenin çalışması yaklaşık 12,5 saniye sürdüğünden dolayı

birçok deneme yapılabilecektir. Ancak bu yöntemin dezavantajı, nesneleri

kavrayamamak ve herhangi bir çarpışma kontrolü olmamasıdır. Bu nedenle, fizik

simülatörü kullanırken eğitim süresini azaltıp azaltamayacağımızı görmek için bu

yöntemi yalnızca eğitim öncesi bir aşama olarak kullanılacaktır.

C. Mimari

Kolu kontrol etmek için bir sinir ağının kullanmanın yanı sıra, kolu kontrol etmek

için mimariyi optimize etmenin mümkün olup olmadığı araştırılmak istenmektedir.

Bir mimari, bir dizi eklemi kontrol eden ağların miktarıdır. Bir sinir ağının, hepsi

aynı ödül işlevine bağlı olarak 6 eklemi ve parmağı kontrol edeceği yerde, her birinin

mevcut aktüatörlerin bir alt kümesini kontrol ettiği ve kendi ödül işlevine sahip

olduğu iki sinir ağına sahip olmak mümkün olabilir. Örneğin, alt eklemler ve uç

efektörün nerede biteceği üzerinde büyük bir etkiye sahipken, yüksek eklemler, uç

efektörün son konumunun ince ayarını yapmak için kullanılır. Bu nedenle, bu ağlara

farklı ödül işlevleri vermek, eğitim performansını iyileştirebilir. Birden fazla ağ

kullanırken ince ayarlanabilen farklı hiper parametrelerin miktarını azaltmak için

mimarideki her ağ için gizli nöronların miktarını aynı tutuyoruz. Ancak ağlar için

farklı ödül işlevleri denenmektedir.

D. Ödül İşlevi

Bir nesneyi başarılı bir şekilde kavradıktan ve kaldırdıktan sonra, temsilciye yalnızca

çok seyrek bir ödül verilmesi arzu edilirse de, bu tür bir yaklaşım, rastgele keşif

yoluyla bir başarıya ulaşmanın seyrekliği nedeniyle eğitimi uzatacaktır. Bu nedenle,

bu çalışma, üç farklı aşamadan oluşmaktadır. Bunlar; ulaşma, dokunma ve kavrama

gibi seyrek ödülleri bir araya getiren bileşik bir ödül işlevinden yararlanır. Bu

aşamalar, ajanın önce bir nesneye yaklaşması, ardından dokunması, kavraması

gereken hiyerarşik bir akışı takip eder. Her bölüm boyunca, temsilcinin, son aşamada

istenen bir hedefe yol açmayacak herhangi bir ödüllendirici davranıştan vazgeçirmek

için bu aşamaların her birinden yalnızca bir kez ödül almasına izin verilir, örneğin

sürekli olarak biriktirmek için bir nesneyi tekrar tekrar itmek gibi. Dokunmanın

ödülü, ödül işlevindeki her bileşenin oranı ve ölçeği, aracının optimize etmeyi

amaçladığı ilkeyi doğrudan etkilediği için ayarlanabilir bir ortam hiper parametresi

70

olarak ele alınabilir. Genel olarak, son aşamadı ödül, ilk aşamada verilen ödülden

çok daha yüksek olmalıdır; bu, yalnızca temsilcinin eğitimine rehberlik etmesi

anlamına gelir bu nedenle, her i aşaması için bireysel ödülü belirlemek için üstel bir

işlev ri-1
exp kullanılır. Temel rexp ∈ [1, ∞) ayarlanabilir, burada rexp = 7, uygulanan

kavrama görevi için ampirik olarak tatmin edici sonuçlar vermektedir. Ve teorik

olarak elde edilebilir maksimum ödül rmax = 400 ile bulunur. Görevi başarmak için

pozitif ödüle ek olarak, aracıya ayrıca istenmeyen çarpışmaların sayısından

caydırmak için robotun yer düzlemi ile çarpışmada olduğu her zaman adımı için -1

negatif ödül verilir. Ayrıca, aracıyı görevi mümkün olduğunca hızlı gerçekleştirmeye

teşvik etmek için sonlandırılana kadar her adımında -0.005’lik küçük bir ödül

çıkarılmaktadır. Tüm ödüller çizelge 3’te özetlenmiştir.

Çizelge 3 rexp = 7 ayarlandığı ve her bölümün en fazla 100 zaman adımına sahip
olduğu kavrama görevi için bu çalışmada kullanılan ödül fonksiyonuna genel bakış.

Hareketler Ödüller
Ulaşmak
Dokunmak
Kavramak

r0
exp = 1

r1
exp = 7 (bölüm başına bir kez)

r2
exp = 49

Çarpışma
Çabuk Hareket Etme

-1 (her adımda)
-0.005

E. Keşif

Keşif pekiştirmeli öğrenmenin bir parçasıdır, onsuz ajan herhangi bir öğrenme

gerçekleştiremez. Bu çalışmada iki Gauss keşif yöntemi kullanılmaktadır. Bu

yöntemin yanı sıra, bir aktüatörün keşfedeceği bir olasılık belirleyerek keşif miktarı

da sınırlanmaktadır. 7 aktüatör, 6 eklem ve bir kavrayıcı bulunduğundan dolayı 3

boyutlu uzayda hareket ederek bir hedefe ulaşmak ve kavrama görevi yapmak,

hedefe ulaşmak için tek başına keşif yapmak çok zor olacaktır. Bir aktüatörün bazen

öğrenilmiş hareketini gerçekleştirmesine izin vererek, kol hedefine daha yakın

hareket edecek ve hedefin etrafını keşfedebilmesi sağlanabilir.

Çalışmada kullanılacak olan robot kolunun D-H (Denavit-Hartenberg) değişkenleri

çizelgede gösterilmiştir.

Çizelge 4 Robotik Kol İçin Verilen D-H Parametreleri

i a(i - 1) a(i - 1) di theta
1 0 0 0.2755 q1

71

2 -π / 2 0 0 q2
3 0 0.2900 0.0070 q3
4 -π / 2 0 0.1661 q4
5 1.0472 0 0.0856 q5
6 1.0472 0 0.2028 q6

Çizelge 4’teki eklem sayısı i olarak temsil edilir. a x ekseni etrafında ölçülen z

eksenleri arasındaki açıdır, a x ekseni etrafında ölçülen z eksenleri arasındaki

mesafedir, di z ekseni etrafında ölçülen x eksenleri arasındaki mesafedir, theta ise

eklemin açısıdır.

Denavit-Hartenberg yöntemini biraz açıklamak gerekirse; robotların kinematik

modelini çıkarırken en çok kullanılan yöntemlerden bir tanesidir. D-H yöntemi bir

nevi homojen dönüşüm sağlamaktadır. Bu yöntemde dört ana değişken kullanılır ve

robot kinematiği çıkarılır. Yukarıda açıklanan değişkenler hesaplanırken öncelikle

robot kolunun eklem bölgeleri belirlenir ve dönme eksenleri bağlardan bir fazla

olacak şekilde numaralandırılır. Bu aşamadan sonra bu eksenlerin her birine

koordinat çerçevesi yerleştirilir ve bağ dönme ekseni koordinat çerçevesinin Z ekseni

kabul edilir.

F. Ajan

Bir ajan, simülasyon ve sinir ağları ile olan bağlantıyı yönetmektedir. Aracı bir

çalıştırma ile başlamadan önce en son aktör ağını alır ve simülasyon dünyasını

sıfırlar. Daha sonra maksimum 250 adım gerçekleştirilir, burada bir adım

simülasyonda ∆t'lik 50ms ile gerçekleştirilen tek bir eylemdir ve maksimum çalışma

süresi her adımda 12,5 saniyedir. Aracı her adım için durumu alır, durumu aktör ağı

için girdi olarak kullanılır. Eylem, bir eklemin gerçekleştirilmesi gereken radyan

cinsinden hızıdır. Eğitim sırasında aracı, simülasyonda gerçekleştirmeden önce

eyleme keşif de ekleyecektir. Simülasyon bir zaman adımı atıldıktan sonra yeni

durum toplanır ve ödül belirlenir. Başlangıç durumu, ödül gerçekleştirilen eylem ve

yeni durum tekrar arabelleğe kaydedilir. Durum, kullanılan tüm eklemlerin radyan

cinsinden konumu, uç efektör bağlantısının metre cinsinden x,y,z konumu ve

kullanıldığında, radyan cinsinden parmakların açısı ve son olarak metre cinsinden

hedef konumu (x,y,z). Eklemlerin açı girdileri, açının 2π (bir eklemin tam dönüşü)

ile bölünmesiyle 0 ile 1 arasında bir değere normalize edilir. Parmak eklemleri,

açabilecekleri maksimum aralık olduğu için 1.0472 radyana (60 derece) bölünerek

normalleştirilir. Pozisyon değerleri için, kolun erişimi 1 metrenin altında olduğu için

72

girişleri normalleştirmemiz gerekmez. Bu bilgiler simülasyondan elde edilebilir.

Aracının yanı sıra, arabelleğinden mini bir toplu iş almaktadır. Eğitim dizisi yaklaşık

100Hz’de çalışmaktadır.

G. Konum

İlk önce kolun uç efektörü belirli bir konuma hareket ettirmeyi öğrenmesine izin

vererek başlanacaktır, bu algoritmanın doğru çalıştığını gösterecek ve ayrıca

parametre ayarına daha iyi fikir verecektir. Deneyler sadece bir eklem kullanılarak

başlayacak, bu uç efektörün yalnızca bir düzlemde hareket edeceği, daha fazla eklem

eklendiğinde uç efektörün 3B uzayda hareket edeceği ve hedefini bulmasını

zorlaştıracağı anlamına gelmektedir. İlk eklem kullanılarak başlanmıştır ve

karmaşıklığı artırmak için daha fazla eklem bölgesi eklenecektir. İlk aşamalarda

farklı öğrenme oranlarını ve gizli katman boyutları test edilecektir. Test edilecek

parametre miktarını azaltmak için en iyi öğrenme oranını ve gizli katman boyutlarını

belirlemek için erken sonuçlar kullanılacaktır. Algoritmanın ne kadar sağlam olduğu

da test edilecek ve birden fazla hedefi öğrenmenin üstesinden gelip gelemeyeceği

görülecektir. Ajan, uç efektörü hedefin 4cm yakınına yerleştirilebildiğinde, en az bir

zaman boyunca orada tuttuğunda ve eylem vektörünün uzunluğu 0.001’den küçük

olduğunda başarılı olmuştur. Bu hedefe ulaştığında kolun biraz hareket etmesine izin

verir, ancak kolun tam konumunda durmayı öğrenmesi çok daha fazla eğitim süresi

gerektirmektedir. Bu şekilde, kaleye yakın olduğunda kol hala yavaşlamak zorunda

kalır, ancak tam bir durma noktasına gelmek için kalenin çevresinde çok fazla zaman

harcamak zorunda kalmaz. Ödül fonksiyonu için, negatif uzaklık çarpı a sabit, c1 ve

eylemlerin negatif nokta çarpımı çarpı a sabit, c2 alınır. İlk deneyler, c1 için 1 ve c2

için 0.2 değerinin iyi sonuçlar verdiğini, yani mesafe faktörünün eylem çıktısından

daha önemli olduğunu gösterdi. Bu ödül işleviyle, hedef konumuna hareket edilerek

en yüksek ödül elde edilebilir ve her eylem için sıfır çıktı değerine sahip

olunduğunda, hedef konumundan uzaklaşmak daha düşük bir ödül verir. Kol zemine

çarptığında, koşu başarısız olur ve sona erer, son eylemini yaparken hesaplanan

mevcut ödüle ekstra bir negatif ödül -1 eklenir. Kol kendine çarpıyorsa koşu devam

eder. Kendi kendine çarpışmada başarısız olmamasının nedeni, simülasyonu

yavaşlatan ekstra hesaplamalar gerektirmesi ve aynı zamanda erken deneyler

73

sırasında hiçbir zaman bir soruna neden olmadığının gösterilmesidir, çünkü nadiren

gerçekleşir ve olmadığı için yalnızca daha büyük negatif ödül alır.

H. Kavrama

Kavrama için sadece tek bir nesne, bir küre cisim kavranmaya çalışılacaktır.

Kavrama ile, parmakların nesneyi kavradığı kastedilmektedir, ancak nesneyi

kaldırması gerekmemektedir. Simülasyonun fiziğini kullanarak bir nesneyi kavramak

ve kaldırmak doğru bir şekilde yapılması çok zor olabilir ve simülatörde çok sayıda

ince ayar yapılmasını gerektirir. Ayrıca son efektörden yani tutucudan çok net bir

biçimde geri bildirim almayı gerektirir. Bu çalışmada tüm eklemler kullanılır ve

deneylerde her zaman parmaklar da eklenir. Parmaklar tek bir hamle ile kontrol

edilmez, her biri için ayrı ayrı öğrenme gerçekleştirilir. Bu aynı zamanda daha iyi bir

kavrama hareketi yaratacaktır. Nesnenin nasıl kavranacağını belirlemek için oldukça

basit bir yöntem kullanılmaktadır. Nesnenin orta nokta konumuna yaklaşması için

ona çoklu açılar verilecektir. Planlayıcı da bu koleksiyondan en iyisini

belirleyecektir. Aracı, tüm parmak segmentleri nesneye dokunduğunda başarılı

olmuş sayılacaktır. Bu, parmakların nesneyi kavradığı anlamına gelmektedir, ancak

kavramanın çok doğru olmadığı durumlar da olabilir. Son efektör, nesneyi,

parmakların nesneyi tam olarak değil, yalnızca küçük bir yüzeyle kavramasına neden

olacak bir açıyla kavranabilir. Gerçek hayatta nesne daha sonra hareket eder ve

büyük olasılıkla kavrayan parmaklara daha iyi oturur, ancak simülasyonda bu,

nesnenin garip çarpışma davranışı oluşturmasına neden olabilir. Bu nedenle cismin

ağır olması ve kolla hareket ettirilemeyecek olması seçilmiştir. Bu şekilde cismin

garip hareket etmesi konusunda endişelenmemize gerek kalmaz, ancak kavramanın

her zaman optimal bir kavrama olmadığı da göz önünde bulundurulur. Ödül işlevi

için, nesneden 5 cm’den fazla uzaktayken kavrama olmadığın göz önünde

bulundurulur. Ödül işlevi için, nesneden 5 cm’den fazla uzaktayken parmakların

negatif mesafe çarpı sabit, c2, nesnenin 5 cm yakınında parmakların pozitif açısı

çarpı c2 olduğunda, negatif mesafe çarpı sabit, c1 alınır. Ve eylemlerin negatif nokta

ürünü çarpı a sabit, c3. İlk deneyler, c1, c2 için 0,5 ve c3 için 0,2 için 1 değerinin iyi

sonuçlar verdiğini göstermektedir. Uç efektör yere değdiğinde çalışma durur, ödüle -

74

1 eklenir, ancak kendi kendine çarpışma olmaz. Mesafe ölçümü, uç efektör noktası

ile nesnenin merkezi arasındaki mesafedir.

I. Tensorflow

Bu çalışmada sinir ağlarını programlamak için Tensorflow [Kaynak] kullanılmıştır.

Tensorflow, simülasyonu sinir ağlarına bağlamayı epey kolaylaştıran Python’da

programlanabilir. Tensorflow ayrıca, sinir ağlarını eğitmek için bir GPU

kullanılabilir, ağ boyutları GPU’ların sağladığı paralellikten tam olarak yararlanacak

kadar büyük olmadığından dolayı CPU üzerinde çalıştırılmıştır. Tensorflow,

karmaşık ağlar oluşturmayı kolaylaştırır, ancak bu çalışmada tamamen bağlı sinir

ağları kullanılmaktadır. Tam bağlantılı bir sinir ağı, matrix çarpımları ile kolayca

oluşturulabilir. Tensorflow ayrıca birçok farklı etkinleştirme işlevine sahiptir.

Tensorflow, ağırlıkları güncellemek için gereken türevleri otomatik olarak

hesaplayacaktır. Bu, türevi hesaplama konusunda endişelenmeye gerek kalmadan

derin ağlar oluşturulmasına olanak tanır. Hata fonksiyonu ve eğitim algoritması da

belirtilebilir. Ayrıca eğitim için toplu işlerden yararlanmak kolaydır ve girdisine göre

bir ağın çıktısı da kolaylıkla alınabilir. Farklı parametreleri kullanmak için, belirtilen

giriş ve çıkış sayısına, gizli nöron ve katman sayısına ve öğrenme oranlarına dayalı

olarak doğru bir Tensorflow modeli oluşturmaya izin veren bir yapılandırma dosyası

oluşturulmuş ve çalışmalar bunun üzerinden yürütülmüştür.

İ. Hiper parametre Optimizasyonu

Hiper parametrelerin seçimi, öğrenilen bir ilkenin nihai performansının yanı sıra

öğrenme eğrisi de önemli ölçüde etkilenebilir. DRL’nin hiper parametrelere karşı bu

kırılganlığı, bu nedenle optimizasyonların büyük önem taşıdığı ve her ortam için

gerçekleştirilmesi gerektiği anlamına gelir. Bu çalışmada, oluşturulan ortam,

gözlemler ve kullanılan RL algoritmaları için politikanın sağlam bir şekilde

öğrenilmesini sağlayacak bir dizi hiper parametre elde etmek amacıyla hem otomatik

optimizasyon hem de manuel ince ayar gerçekleştirilir. İlk olarak, Optuna adında bir

hiper parametre optimizasyon çerçevesi kullanılarak otomatik bir hiper parametre

75

optimizasyonu uygulanır. Optuna ve diğer benzer çerçeveler, hiper parametre uzayını

yinelemeli olarak aramak ve bazı metriklere göre en iyi sonuçları sağlayan bir

kombinasyon bulmak için kullanılan bir dizi farklı deneme gerçekleştirerek DL için

uygun bir hiper parametre kombinasyonu seçme sorununu ele alır. RL açısından bu

metrik, bir aracının belirli bir değerlendirme dönemi boyunca biriktirebildiği bir

ödüldür. Optuna, örnekleyici ve budayıcı olmak üzere iki bölümden oluşur.

Örnekleyici, bir sonraki deneme için hiper parametre arama alanından bir dizi hiper

parametre seçer. Bu tür bir seçim tamamen rastgele olabilir. Örneğin bir deneyin

başında veya önceki tüm denemelerden istatistiksel analiz yapan algoritmalar

uygulayarak. Bu bağlamda Pruner, boşa harcanan kaynakların miktarını sınırlamak

amacıyla umut verici olmayan denemelerin erken durdurulmasına izin veren bir

stratejidir. Budama, her denemenin değerlendirme bölümlerinin düzenli aralıklarla

çalıştırılmasını gerektirir; burada her yeni deneme, önceki tüm denemelerin

performansıyla karşılaştırılır ve ödül karşılaştırılabilir şekilde çok düşükse budanır.

Kavrama ortamı için, güvenilir bir performans sağlayan bir taban çizgisi elde etmek

için ilk olarak hiper parametreleri optimize etmek için Optuna uygulanır. Bu

optimizasyon, arama alanının, özellik çıkarıcının boyutu ve aktör-eleştirmen ağları

dahil olmak üzere çoğu hiper parametreden oluşturduğu SAC kullanılarak

gerçekleştirilmiştir. Yeniden oynatma arabelleğinin boyutu, toplu iş boyutu ve ilk

entropi otomatik olarak optimize edilmedi. Yeniden yürütme arabelleği ve toplu iş

boyutu, sırasıyla maksimum RAM ve VRAM kullanımı açısından kullanılan sistem

için yeterince büyük olacak şekilde seçilmiştir. İlk etropi tutarlı tutulur çünkü büyük

ilk entropinin istenmeyen budama ile sonuçlanabileceği her denemenin ilk

aşamalarında performansı doğrudan etkiler. Maksimum deneme süresi 1500 zaman

adımı olan toplam 70 deneme kullanılmıştır. Budamayı tetikleyebilecek her 125

zaman adımında bir 20 değerlendirme bölümü seti gerçekleştirilmiştir. Sonunda,

sonraki manuel ayarlama için en iyi performans gösteren hiper parametre seti

kullanılmıştır. Optuna ile otomatik optimizasyon, bu çalışmada oluşturulan gibi

karmaşık ortamlar için çok fazla hesaplama süresi gerektirdiğinden manuel ayar

uygulanır. Bu aynı zamanda, maksimum deneme süresi 1500 zaman adımı olan 70

denemenin kullanılmasının da nedenidir. Ve bu halihazırda 1 haftalık bir deneme

süresi almıştır. Bu nedenle, hedeflenen hiper parametrelerin manuel olarak

ayarlanması, manuel olarak başlatılan ve durdurulan birkaç denemeyle daha yapıldı.

76

Bu sürecin odak noktası çoğunlukla uygulanan ortamın hiper parametreleridir. Tüm

aktör-eleştirmen algoritmaları için ortaya çıkan parametreler çizelge 5’te görülebilir.

Çizelge 5 Oluşturulan Sinir Ağı İçin Hiper Parametreleri

Değişken Değer
Hiperparametre DFQN
Optimizasyon Algoritması Adam

Öğrenme Oranı Lineer, 1.5 . 10-4 → 0
Mini-Batch Boyutu 32
Güncelleme Frekansı Her bölümden sonra
Her Güncellemedeki Gradyan Adımı 100

Tekrar Arabellek Boyutu 40000

Discount Faktörü 0.999
Hedef Güncelleme Oranı 5 . 10-5

Eleştirmen Sayısı 1
Aktivasyon Fonksiyonu Binary Crossentropy

Keşif Eylemi Gürültüsü N(0, 0.25)

Hedef Politika Gürültüsü N(0, 0.25)

İlk Entropi Katsayısı 0.1
Entropi Katsayısı -dim(A) = -5
Atom Numarası 25

Kesilmiş Atom Sayısı 3

77

78

VI. SİMÜLASYON SONUÇLARI VE DEĞERLENDİRMESİ

A. Simülasyon Sonuçları ve Kavrama Deneyleri

Çalışmada 3 farklı robot kolunun federe derin öğrenme ve federe derin pekiştirmeli

öğrenme teknikleri ile cisimlerin tutulabilirliğinin öğrenilmesi üzerinde çalışılmıştır.

Sekil 6.1,6.2 ve 6.3’te Robot kolların tek başlarına öğrenme sonuçları gösterilmiştir.

Şekillerde sonuçlar 2500 score üzerinden değerlendirilmiş ve 2500 score federe derin

öğrenme modelindeki %90’lik eğitim doğruluğuna karşılık gelmektedir. Şekillerdeki

1200 döngü federe derin öğrenme yaklaşımında 300 döngüye karşılık gelmektedir.

Aşağıdaki şekillerden anlaşıldığı gibi robot kollar tek başlarına yaklaşık olarak 900

döngüde 2500 puana ulaşmışlardır. Federe derin öğrenme yöntemi ile federe derin

pekiştirmeli öğrenme yöntemlerinin karşılaştırılması şekil 47 ve şekil 48’de

gösterilmiştir. Şekillerden de anlaşılacağı üzere federe derin pekiştirmeli öğrenme

yönteminde robot kollar herhangi bir yerel optimaya takılmadan 1000 döngüde %90

düzeylerinde öğrenme gerçekleştirmişlerdir. Ancak şekil 44’te görüleceği üzere

federe derin öğrenme yönteminde robot kol 2’nin çalışma performansı ancak 1200

döngüde %90 düzeylerine erişmiştir. Federe derin öğrenme yöntemi yaklaşık olarak

6 saat sürmekte iken, federe derin pekiştirmeli öğrenme yöntemi 5 saat sürmektedir.

Yani federe derin pekiştirme yöntemi ile öğrenme hedeflenen başarı düzeyine federe

derin öğrenmeden daha hızlı ulaşmıştır.

Şekil 44 Robot Kol 1’in derin pekiştirmeli öğrenme sonuçları

79

Şekil 45 Robot Kol 2’nin derin pekiştirmeli öğrenme sonuçları

Şekil 46 Robot Kol 3’ün derin pekiştirmeli öğrenme sonuçları

Şekil 47 Federe derin öğrenme yöntemi ile öğrenme

80

Şekil 48 Federe derin pekiştirmeli öğrenme yöntemi ile öğrenme

Şekil 49 Federe derin pekiştirmeli öğrenme 2 ve 3 robot kolu ile öğrenme sonucunun
karşılaştırması

Federe derin pekiştirmeli öğrenme algoritmasında sunucuya bağlı alt sistemlerin

sayısı ne kadar arttırılırsa öğrenme o kadar hızlı ve düzenli gerçekleşir. Şekil 49’da

robot sayısı 2’den 3’e çıkarıldığında öğrenme düzeyinin ne kadar hızlandığı

görülmektedir.

Her 10 denemeden sonra bir test çalıştırması gerçekleştirilen, her deney sırasında,

keşif eklemeden ve her adımda ağları eğitmeden bir test çalıştırması yapıldı. Actor ve

Critic ağları, her 324 nörondan oluşan 2 gizli katmana sahiptir ve arabellek yöntemi

kullanılarak eğitilmiştir. Kavramak için hep aynı nesneleri kullanılmıştır ve nesne

81

hep aynı pozisyondadır. Çizelge 6 fizik simülatörünce 700 ön eğitim denemesi ve

300 öğrenme denemesi kullanmanın sonuçlarını göstermektedir. Sonuçların da

gösterdiği gibi, ağ nesneyi kavramayı yeterince öğrenmemiştir. Ortalama mesafe,

nesneye yaklaştığını gösterse de, cismi gerçekten kavrayamamıştır. Test çalışması

sırasında bazı denemelerde kavramaya çok yaklaşırken, nesneyi yatay yerine dikey

olarak kavramaya çalışırken çoğunlukla yanlış bir yönelime sahiptir. Bu durum

büyük olasılıkla eğitim öncesi aşamada aşırı eğitilmesinden kaynaklandığı

düşünülmektedir. Bu aşamanın fiziği olmadığı ve dolayısıyla kavramaya bile

kalkışamadığından dolayı, yolunda tutması gereken bir nesne olduğunu bilmeden

sadece bir konuma gitmeyi öğrenmiştir. Kavrama, bir noktaya gitmekten çok daha

zor olduğundan dolayı koşu sayısı 1500’e çıkarılmıştır ve ön eğitim aşaması

kullanılmamıştır. Çizelge 7 sonuçları göstermektedir. %90 başarı oranı ile

algoritmanın bir nesneyi kavramayı öğrenebildiği gösterilmiştir. Dezavantajı ise, ön

eğitim yöntemini kullanmadan genel eğitim 5 saatten fazla sürmektedir. 3,94 cm’lik

ortalama mesafe, ağların uç efektörünü son konumuna yaklaştırabildiğini, ancak

bazen oryantasyonun doğru olmadığını gösteriyor. Bazen son efektör ve parmaklar

nesnenin etrafındadır ancak başarılı olamamıştır. Bu büyük olasılıkla, parmakların

tüm bölümlerinin nesneyle doğru şekilde temas etmediği anlamına gelmektedir.

Çizelge 6 Hedef pozisyonuna göre nihai pozisyonun standart sapması ile ortalama
başarı oranı ve ortalama mesafe. 700 denemelik ön eğitim kullanılarak ortalama 10
deneme ve toplu öğrenme için bir arabellek ve iki aracı kullanılarak 300 deneme için
fizik simülatörü kullanılarak eğitilmiştir. 6 eklem ve 3 parmak kullanılmıştır.

 Gaussian

Doğruluk Oranı %60

Ortalama Mesafe 6.11cm

Ortalama Hata 4.12cm

Çizelge 7 Hedef Pozisyonuna göre nihai pozisyonun standart sapması ile ortalama
başarı oranı ve ortalama mesafe. Ortalama 10 deneme, 1500 deneme için fizik
simülatörü kullanılarak eğitilmiş, toplu öğrenme için bir arabellek ve iki aracı; 6
eklem ve 3 parmak kullanılmıştır.

 OUP

Doğruluk Oranı %90

Ortalama Mesafe 3.94cm

Ortalama Hata 1.93cm

82

Bir dizi deneyde robot kolunun cisimlerin tutulabilirliğinin öğrenilmesi

gösterilmiştir. 1 ile 3 eklem bölgesi kullanarak çevrimiçi öğrenme mümkün olsa da

çalışmada kullanılacak 7 eklem bölgeli robot kol kullanıldığında performans

düşmektedir. Çözümlerden birisi 1200’den fazla deneme yapılmasına izin vermek

olsa da bu nispeten basit görevi öğrenmek de çok fazla zaman alacaktır. Bir eğitim

dizisinin ağları mini gruplarda eğitebileceği bir arabellek kullanarak, aynı miktarda

deneme kullanıldığında sonuçların çok daha iyi olduğu, ancak henüz mükemmel

olmadığı gösterilmiştir. Deneme sayısı iki katına çıkarıldığında başarı oranı her bir

keşif yöntemi için %80 ve %90 başarı oranları ile kabul edilebilir hale gelir. Ancak

eğitim süresi de iki katına çıkmaktadır. Bir aracın eğitim örnekleri oluşturmak için

yapabileceği yinelemelerin miktarını artırmak için FDRL algoritması sunulmuştur.

Nispeten büyük miktarda ön eğitim denenesi ve fizik simülatörü kullanılarak daha az

miktarda eğitim kullanıldığında, ağları eğitmek için gereken toplam süreyi azaltırken

performans artırılmış oldu. 1200 çalıştırma üzerinden %85 ve %90 başarı oranları ile

kolun uç efektörü belirli bir konuma hareket ettirmeyi sağlamak için algoritma

yeterince sağlam görünmektedir. Bazı durumlarda Gauss keşif yöntemi daha iyi

performans gösterirken, diğer durumlarda OUP keşif yöntemi daha iyi performans

göstermektedir. Ancak başarı oranı, ortalama mesafe ve standart sapmadaki fark

nispeten küçüktür.

Pearson korelasyonu yaygın olarak iki rastgele değişken arasındaki ilişkiyi bulmak

için kullanılır. Pearson korelasyon katsayısı, X ve Y değişkenleri tamamen aynıysa

+1, tamamen farklıysa 0 ve zıt yönde tamamen aynıysa -1 değerine sahiptir. Çizelge

8 aynı tipteki üç robot kolun dinamikleri için homojenlik testinin sonuçlarını

göstermektedir. İki tablodan da bilindiği gibi, farklı yönlere uygulanan kuvvetler 100

defa sabit olmasına rağmen motor ve sarkaç açıları farklı şekilde değişmektedir. Her

bir robot kolun özellikle motor açısındaki değişiklik, sarkaç açısındaki değişiklikten

daha çeşitlidir. Aynı tipte birden fazla robot kolun sonuç olarak, aynı üretim hattında

üretilmelerine rağmen dinamikleri birbirinden biraz farklıdır. Bu, robot kol 2’nin

olgun modelini aldıktan sonra bile İşçi 1 ve 3’te ki ek öğrenime hala ihtiyaç

duyulduğu anlamına gelir.

83

Çizelge 8 Aynı türden birden çok robot kol cihazının dinamikleri için homojenlik
testinin sonuçları.

(a) Motor açı değişikliklerinin bir
pearson korelasyon matrisi

(b) Sarkaç açısı değişikliklerinin
pearson korelasyon matrisi

Motor Açısı Kol 1 Kol 2 Kol 3 Sarkaç Açısı Kol 1 Kol 2 Kol 3

Kol 1 1 0.77 0.86 Kol 1 1 0.98 0.96

Kol 2 - 1 0.75 Kol 2 - 1 0.98

Kol 3 - - 1 Kol 3 - - 1

Nicel olarak, cismin yer değiştirilmemesi ajana her bölüm sırasında bir nesneyi daha

iyi kavrama şansı verir bu nedenle biriken ödülü en üst düzeye çıkarır. Daha uzun

epizot süreleri göz önüne alındığında, başarı oranı yapay olarak arttırılabilir. Bununla

birlikte, bu tür bir politikanın niteliksel analizinin aşırı derecede kaotik ve güvensiz

olduğu düşünülmektedir. Robotik manipülasyonun gerçek dünyadaki uygulamaları,

güvenlik standartlarını karşılamayı ve çevre ile daha yapılandırılmış bir etkileşim

kullanmayı gerektirir. Bu işte eğitilmiş araçlar, bu tür garantileri sağlamak için

mücadele eder ve gerçek robotlarda denetimsiz kullanımları, kazara hasar riskini

azaltan uyumlu nesnelerle sınırlıdır. Bunu akılda tutarak, ayrık eylem alanları

örneğin önceden tanımlanmamış eylem temelleri ve güvenlik sınırlarına sahip piksel

bazında eylem alanı, görev çözme yeteneklerini geliştirecek daha karmaşık ilkeleri

öğrenme yeteneğinin azalmasına rağmen, daha belirleyici davranışları nedeniyle şu

anda gerçek dünya uygulamaları için daha uygun olabilir. Bu nedenle, sürekli uçtan

uca kontrol ile gerçek dünyadaki robotik manipülasyon görevlerini çözmek için

uygulanabilir olmadan önce RL için bir güvenlik teorisinin geliştirilmesi gerektiğine

inanılmaktadır. Ablasyon çalışmaları bazı beklenmedik sonuçları getirmiştir.

Özellikle gösterimlerin kullanılması, erken aşamalarda daha hızlı öğrenmeye

rağmen, yeni sahnelerde ulaşılabilir başarı oranını %7 oranında azaltmıştır.

Performanstaki bu önemli düşüşün, en sonunda yerel bir optimal politikaya

yakınsamaya yol açan alt-optimal kodlanmış politika tarafından getirilen bir

önyargıdan kaynaklandığı tartışılabilir. Tamamen sıfırdan keşfetmesi gereken ajanın,

küresel olarak optimal olan ve bu tür önyargılardan etkilenmeyen bir politikaya

yaklaşma şansı daha yüksektir. Bu nedenle, deneysel sonuçlar, mümkünse RL için

gösterilerin kullanılmasından vazgeçilmesi gerektiğini ve bunun yerine müfredat

öğrenimi gibi daha iyi garantileri olan diğer yöntemlerin uygulanması gerektiğini

göstermektedir.

84

Proprioseptif gözlemlerin eklenmesi, başarı oranında %2’lik küçük bir artış sağlar.

Bu gözlemler kolaylıkla elde edilebildiği için kullanımların faydalı olduğu

düşünülmektedir. Benzer şekilde görsel gözlemlerde renk özniteliklerin kullanılması

başarı oranını %10,5 oranında artırmaktadır ki bu çok önemli kabul edilmektedir. Bu

nedenle eğitim için kullanılan bir ortam gerçekçi oluşturmayı destekliyorsa, bunların

eklenmesi yararlıdır. Öznitelik çıkarıcı parametrelerin paylaşımı için yapılan

analizler bazı ilginç sonuçları da ortaya çıkarmıştır. Her gözlem yığını için ayrı

öznitelik çıkarıcılar kullanıldığında, ilk öğrenme, tek bir paylaşılan öznitelik

çıkarıcının kullanımından çok daha hızlıdır. Bu mevcut olana kıyasla geçmiş

gözlemler için farklı öznitelik çıkarıcılar çok daha fazla sayıda birleşik öğrenilebilir

parametreye sahiptir. Bununla birlikte, her iki yaklaşım da çok benzer bir nihai başarı

oranına ulaşabilir. Son yıllarda RL’nin büyük potansiyeline ve önemli ilerlemelerine

rağmen, gerçek dünyadaki robotik manipülasyon görevleri için uygulanabilirliği hala

sınırlıdır. DRL tarafından öğrenilen uçtan uca politikaların gerçek robotik sistemlere

sağlam bir şekilde entegre edilebilmesi için ele alınması gereken birkaç zorluk

vardır. Modelden bağımsız RL algoritmalarının örnek verimliliğini artırma

girişimleri olmasına rağmen, deneyim tekrarına sahip politika dışı algoritmalar bile

en uygun politikayı öğrenmek için binlerce kez geçiş gerektirir. Hiperparametrelere

duyarlılık, RL’nin büyük ölçekli kullanımını sağlamak için ele alınması gereken bir

diğer önemli sorundur. Hiperparametrelerin her görev için optimizasyonu, her

denemenin uzun eğitim süresi nedeniyle çok zaman alan bir prosedürdür. Benzer

şekilde, RL’de tekrar üretilebilirlik, birçok robotun çalıştığı ortamların yüksek

stokastikliği nedeniyle sürekli görevler için çok zordur. Yüksek doğruluklu fizik ve

işleme ile ucuz paralel simülasyonlar, yakın gelecekte bu sorunların bazılarını

hafifletebilir. Bu nedenle, DRL’nin robotik manipülasyon alanında umut verici bir

geleceğe sahip olacağına inanılmaktadır.

85

86

VII. SONUÇ VE GELECEK ÇALIŞMALAR

Bu çalışmada federe derin öğrenme ve federe derin pekiştirmeli öğrenme

yaklaşımları kullanılarak robot kolların cisimleri tutabilirliğini öğretmeye

çalışılmıştır. Federe öğrenme bilindiği üzere birden fazla alt sistemin sunucu

üzerinde aynı anda eğitilme olanağı sağlamaktadır. Aynı zamanda eğitim

gerçekleştirilirken alt sistemlerin verileri sunucuya gönderilmez bu da öğreticiye veri

güvenliğini sağlar. Aynı zamanda alt sistemler aynı anda öğrendiklerinden

birbirleriyle sinir ağlarının hatalarını ve ağırlıklarını paylaştıkları için öğrenme süreci

daha hızlı gerçekleşmektedir. Görülmüştür ki federe derin pekiştirmeli öğrenme

yaklaşımı standart federe derin öğrenme yaklaşımından daha iyi performans

göstermiş ve daha hızlı çalışmıştır. Federe derin pekiştirmeli öğrenme yaklaşımının

bir önemli yönü de başlangıçta ve eğitim gerçekleşirken herhangi bir veriye ihtiyaç

duymadan öğrenmesidir. Bundan dolayı gelecekte İnsansız Hava Araçlarında federe

pekiştirmeli öğrenme yaklaşımları kullanılabilir ve araçların daha önce hiç

görmedikleri alanlarda hızlıca eğitilmesi sağlanabilir. Ağın algıdan öğrenebilmesi

için öncelikle kuruluma bir kamera eklenebilir. İlk kullanım fikri bu olsa da,

güncelleme oranları açısından V-REP simülasyonunda bir sınıra ulaşılmıştır. Algı

eklemek öğrenmeyi iyileştirilebilir çünkü daha bilgilendirici bir durum sağlar.

Deneysel kuruluma bir kamera eklemek kurulum için sonuçları iyileştirilebilse de,

sahneye birden fazla nesne ekleyerek deneyin zorluğunu arttırmak, ağa nesnelerden

hangisi olduğunu söyleyen daha üst düzey bir karar verme sürecinin eklenmesi

gerekir. Toplu normalleştirme ve bırakma gibi düzenlileştirme teknikleri eklenerek

başka bir iyileştirme yapılabilir. Bu çalışmada sunulmamasına rağmen, kısa süre

içerisinde bunlarla ilgili deneyler yapılmasına rağmen, önemli bir gelişme

görülmemiştir. Ancak sadece iki teknik denenmiştir ve sadece Tensorflow çerçevesi

tarafından sağlanan standart değerler kullanılmıştır. Farklı parametrelerle

iyileştirmeler olabilir. Ancak bu, çok fazla zaman harcanması gereken daha fazla

deney gerektirmektedir. Farklı bir robotik kol kullanılarak da iyileştirmeler

yapılabilir. Çalışmada Mico kolunun seçilmesinin tek nedeni, o zamanlar robotik

87

laboratuvarlarda mevcut olan bir robot kol olması ve gerçek dünyada da çok fazla

kullanılmasıdır. Ancak bu projenin son aşamasında simülasyonda kullanılmak üzere

yeni bir robotik kol, Panda robotik kol kullanıma sunulmuştur. Panda, lineer olarak

hareket ettirilen iki parmaklı bir kavrayıcıya sahip 7 serbestlik dereceli bir robotik

koldur. Bu robotik kolun ana avantajı, kuvvet algılamaya sahip olmasıdır, yani bir

cisimle çarpışırsa bir nesneye ne kadar kuvvetle ittiğini algılayabilir ve ayrıca bir

nesneyi tutarken kuvvet algılama özelliğine sahiptir. Bu geri bildirim, ödül işlevi için

değerli bilgiler sağlayabilir. Diğer ilginç kısım ise 7 serbestlik dereceli olmasıdır. Bu

7. Eklem bölgesi kolun geri kalanı hala hareket edebilirken uç efektörün aynı

pozisyonda kalmasına izin vermektedir. Bu ilave karmaşıklık, son efektörün nihai

konumuna ulaşmasını kolaylaştırmalı, ancak aynı zamanda keşif sırasında

karmaşıklığı artıracak ve muhtemelen aktör ve eleştirmen için öğrenmesini

zorlaştıracaktır. Bu araştırma manipülasyon alanında yalnızca nispeten basit bir

senaryoya odaklanmıştır.

88

VIII. KAYNAKÇA

KİTAPLAR

ELLİS, J. (2000). Founding brothers: the revolutionary generation, Vintage

Books.

GARCİA, A. L. (2005). Probability, Statistics, and Random Processes for

Electrical Engineering, Pearson Prentice Hall.

GERON, A. (2017). Hands-on machine learning with Scikit-Learn and

TensorFlow: Concepts, tools, and techniques to build intelligent systems.

O'Reilly Media Inc.

GOODFELLOW, I., BENGİO, Y., COURVİLLE, A. (2017). Deep Learning, MIT

Press.

HAGAN, M. T. (2014). Neural Network Design Second Edition, Stillwater.

İPLİKÇİ, S. (2017). Optimizasyon Teknikleri, Pamukkale Üniversitesi.

KOLTER, J. Z. (2016). Reinforcement Learning, Carnegie Mellon University.

KULKARNİ, P. (2012). Reinforcement and systemic machine learning for

decision making, John Wiley & Sons.

NOCEDAL, J. and WRİGHT, S. J. (2006). Numerical Optimization, Springer.

RİCHARD, S. and ANDREW, G. (2015). Introduction to reinforcement learning

(Second Edition), MIT Press.

RUSSEL, S. and NORVİG, P. (1995). Artificial Intelligence A Modern Approach,

Prentice Hall.

SARANGAPANİ, J. (2006). Neural Network Control of Nonlinear Discrete-Time

Systems, Taylor & Francis Group. https://doi.org/10.1201/9781420015454

SİLVER, D. (2015). Reinforcement Learning Markov Decision Processes,

University College London.

STANDAGE, T. (2002). The turk. The life and times of the famous eighteenth-

century chess-playing machine, Berkeley Books.

SUTTON, R. S. and BARTO, A. G. (1998). Reinforcement learning: An

introduction, MIT Press.

89

SUTTON, R. S. and BARTO, A. G. (2018). Reinforcement Learning An

Introduction, Second Edition, MIT Press.

WATKİNS, C. and DAYAN, P. (1992). Technical Note: Q-Learning, Springer.

WERBOS, P. (1992). Approximate dynamic programming for real-time control

and neural modeling, Van Nostrand Reinhold.

WERBOS, P., Sİ, J., BARTO, A. G., POWELL, W. B., WUNSCH, D. (2004).

Handbook of learning and approximate dynamic programming, Wiley-

IEEE Press.

WİLLİAMS, J. K., HAUPT, S. E., PASİNİ, A., MARZBAN, C. (2009). Artificial

intelligence methods in the environmental sciences, Springer.

YU, H. Z. (2020). Taxonomy of Reinforcement Learning Algorithms, Springer.

YÜCEL, İ. H. (1991). Sanayide robot teknolojisi, uygulaması ve önemi, T.C.

Başbakanlık Devlet Planlama Teşkilatı.

MAKALELER

ADAM, S., BUSONİU, L., BABUSKA, R. (2012). "Experience Replay for Real-

Time Reinforcement Learning Control", IEEE Transactions on Systems,

Man, and Cybernetics, Part C: Applications and Reviews (99), ss. 1-12.

https://doi.org/10.1109/TSMCC.2011.2106494

ATKESON, C. G. and SCHAAL, S. (1997). "Learning tasks from a single

demonstration", IEEE International Conference on Robotics and

Automation sayı 2, ss. 1706-1712.

BHATNAGAR, S., SUTTON, R. S., GHAVAMZADEH, M., LEE, M. (2009).

"Natural actor–critic algorithms", Automatica sayı 45, ss. 2471-2482.

https://doi.org/10.1016/j.automatica.2009.07.008

BİCCHİ, A. (1995). "On the Closure Properties of Robotic Grasping", The

International Journal of Robotics Research sayı 14, ss. 319-334.

https://doi.org/doi.org/10.1177/027836499501400402

BONAWİTZ, K., EİCHNER, H., GRİESKAMP, W., HUBA, D. (2019). "Towards

federated learning at scale: System design", arXiv:1902.01046.

BUCAK, I. and ZOHDY, M. (1999). "Application of reinforcement learning control

to a nonlinear bouncing cart", 1999 American Control Conference, ss.

5108-5113. https://doi.org/10.1109/ACC.1999.783230

90

BUCAK, O. and ZOHDY, M. (2001). "Reinforcement learning control of nonlinear

multi-link system", Engineering Applications of Artificial Intelligence, ss.

563-575. https://doi.org/10.1016/S0952-1976(01)00031-8

BUCHLİ, J., THEODOROU, E., STULP, F., SCHAAL, S. (2010). "Variable

Impedance Control A Reinforcement Learning Approach", Conference:

Robotics: Science and Systems VI.

https://doi.org/10.15607/RSS.2010.VI.020

CARUANA, R. (1997). "Multitask Learning", Machine Learning sayı 28, ss. 41-75.

https://doi.org/doi.org/10.1023/A:1007379606734

CHEN, J., PAN, X., MONGA, R., BENGİO, S., JOZEFOWİCZ, R. (2016).

"Revisiting Distributed Synchronous SGD", arXiv:1604.00981.

https://doi.org/10.48550/arXiv.1604.00981

CHEN, T., GİANNAKİS, G. B., SUN, T., YİN, W. (2018). "LAG: Lazily aggregated

gradient for communication-efficient distributed learning", Advances in

Neural Information Processing Systems.

CRONİN, J., ESCANO, J. M., ROSHANY-YAMCHİ, S., CANTY, N. (2014).

"Fuzzy-Based Generalized Predictive Control of a Robotic Arm", 25th IET

Irish Signals & Systems Conference 2014.

https://doi.org/10.1049/cp.2014.0676

DE, S. and GOLDSTEİN, T. (2016). "Efficient Distributed SGD with Variance

Reduction", IEEE 16th International Conference on Data Mining

(ICDM). https://doi.org/10.1109/ICDM.2016.0022

DEİSENROTH, M. and RASMUSSEN, C. (2011). "PILCO: A Model-Based and

Data Efficient Approach to Policy Search", International Conference on

Machine Learning, ss. 465-472.

DİGNEY, B. (1996). "Nested Q-learning of hierarchical control structures", IEEE

international conference on neural networks sayı 1, ss. 161-166.

DUAN, Y., CHEN, X., HOUTHOFT, R., SCHULMAN, J., ABBEEL, P. (2016).

"Benchmarking Deep Reinforcement Learning for Continuous Control",

International Conference of Machine Learning.

https://doi.org/10.48550/arXiv.1604.06778

EL-GHAZALİ, T. (2020). "Machine learning into metaheuristics: A survey and

taxonomy of data-driven metaheuristics", ACM Computing Surveys, ss. 1-

30.

91

GLASCHER, J., DAW, N., DAYAN, P., O'DOHERTY, J. P. (2010). "States versus

rewards: dissociable neural prediction error signals underlying model-based

and model-free reinforcement learning", Neuron, ss. 585-595.

https://doi.org/10.1016/j.neuron.2010.04.016

GU, S., HOLLY, E., LİLLİCRAP, T., LEVİNE, S. (2017). "Deep Reinforcement

Learning for Robotic Manipulation with Asynchronous Off-Policy Updates",

IEEE International Conference on Robotics and Automation.

https://doi.org/10.48550/arXiv.1610.00633

HASAN, A. T., HAMOUDA, A. S., ISMAİL, N., AL-ASSADİ, H. A. (2006). "An

Adaptive- Learning Algorithm to Solve The Inverse Kinematics Problem of

A 6 D.O.F Serial Robot Manipulator", Advances in Engineering Software,

sayı 37, no 7, ss. 432-438.

HOFFMANN, H., THEODOROU, E., SCHAAL, S. (2012). "Behavioral

experiments on reinforcement learning in human motor control. In Abstracts

of the eighteenth annual meeting of neural control of movement", IEEE

Transactions on Robotics, ss. 1360-

1370.https://doi.org/10.1109/TRO.2012.2210294

IJSPEERT, A., NAKANİSHİ, J., SCHAAL, S. (2002). "Learning Attractor

Landscapes for Learning Motor Primitives", Advances in Neural

Information Processing Systems sayı 15.

INABA, M., KAGAMİ, S., KANEHİRO, F., HOSHİNO, Y. (2000). "A Platform for

Robotics Research Based on the Remote-Brained Robot Approach",

International Journal of Robotics Research, sayı 19, no 10.

https://doi.org/10.1177/02783640022067878

IZAWA, J., KONDO, T., ITO, K. (2004). "Biological arm motion through

reinforcement learning", 41st SICE annual conference vol. 1, ss. 413-418.

https://doi.org/10.1007/s00422-004-0485-3

JAN PETERS, S. S. (2008). "Reinforcement learning of motor skills with policy

gradients". Neural Networks, ss. 682-697.

https://doi.org/10.1016/j.neunet.2008.02.003

KAPPEN, H. (2005). "Path integrals and symmetry breaking for optimal control

theory", Journal of Statistical Mechanics: Theory and Experiment.

https://doi.org/10.1088/1742-5468/2005/11/P11011

92

KEHOE, B., MATSUKAWA, A., CANDİDO, S., KUFFNER, J., K. GOLDBERG.

(2013). "Cloud-based robot grasping with the google object recognition

engine", IEEE International Conference on Robotics and Automation.

https://doi.org/10.1109/ICRA.2013.6631180

KEHOE, B., PATİL, S., ABBEEL, P., GOLDBERG, K. (2015). "A survey of

research on cloud robotics and automation", IEEE Transactions on

Automation Science and Engineering, sayı 12, no 2, ss. 398-409.

https://doi.org/10.1109/TASE.2014.2376492

KHAN, S. G., HERRMANN, G., LEWİS, F. L., PİPE, T., MELHUİSH, C. (2012).

"Reinforcement Learning and Optimal Adaptive Control: An Overview and

Implementation Examples", Annual Reviews in Control 36, ss. 42-59.

KİM, B., KANG, B., PARK, S., KANG, S. (2008). "Learning robot stiffness for

contact tasks using the natural actor-critic", IEEE international conference

on robotics and automation, ss. 3832-3837.

https://doi.org/doi.org/10.1109/ROBOT.2008.4543799

KİM, B., PARK, J., PARK, S., KANG, S. (2010). "Impedance Learning for Robotic

Contact Tasks Using Natural Actor-Critic Algorithm", IEEE Transaction on

System, Man and Cybernetics, part B: Cybernetics, sayı 4, ss. 433-443.

https://doi.org/10.1109/TSMCB.2009.2026289

KİNGMA, D. P. and BA, J. L. (2015). "Adam: A Method For Stochastıc

Optimization", International Conference on Learning Representations

(ICLR). https://doi.org/10.48550/arXiv.1412.6980

KİUMARSİ, B., VAMVOUDAKİS, K., MODARES, H., LEWİS, F. L. (2018).

“Optimal and Autonomous Control Using Reinforcement Learning: A

Survey", Neural Networks and Learning Systems sayı 29, no 6, ss. 2042-

2062. https://doi.org/10.1109/TNNLS.2017.2773458

KOBER, J. and PETERS, J. (2011). "Policy search for motor primitives in robotics",

Machine Learning, ss. 171-203. https://doi.org/10.1007/s10994-010-5223-6

KOHL, N. and STONE, P. (2004). “Policy gradient reinforcement learning for fast

quadrupedal locomotion", International Conference on Robotics and

Automation .

KUAN, C. and YOUNG, K. (1998). "Reinforcement Learning and Robust Control

for Robot Compliance Tasks", Journal of Intelligent and Robotic Systems,

ss. 165-182. https://doi.org/10.1023/A:1008083631190

93

KUFFNER, J. (2010). "Cloud-enabled humanoid robots", IEEE-RAS International

Conference on Humanoid Robotics.

LEVİNE, S., FİNN, C., DARRELL, T., ABBEEL, P. (2016). "End-to-end training of

deep visuomotor policies", Journal of Machine Learning Research, ss.

1334-1373. HTTPS://DOİ.ORG/10.7746/JKROS.2019.14.1.040

Lİ, D., ZHAO, D., ZHANG, Q., CHEN, Y. (2018). "Reinforcement Learning and

Deep Learning based Lateral Control for Autonomous Driving", IEEE

Computational Intelligence Magazine.

https://doi.org/10.48550/arXiv.1810.12778

LİLLİCRAP, T. P., HUNT, J. J. (2015). "Continuous control with deep

reinforcement learning", International Conference on Learning

Representations . https://doi.org/10.48550/arXiv.1509.02971

LİOUTİKOV, R., PARASCHOS, A., NEUMANN, G., PETERS, J. (2014).

"Sample-based informationl-theoretic stochastic optimal control", IEEE

International Conference on Robotics and Automation (ICRA).

https://doi.org/10.1109/ICRA.2014.6907424

LİU, B., WANG, L., LİU, M. (2019). "Lifelong Federated Reinforcement Learning:

A Learning Architecture for Navigation in Cloud Robotic Systems", IEEE

Robotics and Automation Letters, ss. 4555-4562.

https://doi.org/10.1109/LRA.2019.2931179

LOCHAN, K. and ROY, B. K. (2014). "Control of Two-link 2-DOF Robot

Manipulator Using Fuzzy Logic Techniques: A Review", Advances in

Intelligent Systems and Computing. https://doi.org/10.1007/978-81-322-

2217-0_41

LUO, B., D. LİU, T. H., WANG, D. (2016). “Model-free optimal tracking control

via critic-only Q-learning", IEEE Trans. neural networks and learning

systems, sayı 27, no 10, ss. 2134-2144.

https://doi.org/10.1109/TNNLS.2016.2585520

M. P. DEİSENROTH, (2013). "A survey on policy search for robotics",

Foundations and Trends in Robotics sayı 2. no 1-2, ss. 1-142.

https://doi.org/10.1561/2300000021

MACMAHAN, H., MOORE, E., RAMAGE, D. (2016). "Communication-Efficient

Learning of Deep Networks from Decentralized Data", Artificial

Intelligence and Statistics Conference .

94

MCGOVERN, A. and BARTO, A. G. (2001). "Automatic Discovery of Subgoals in

Reinforcement Learning using Diverse Density", Proceedings of the

International Conference on Machine Learning , ss. 147-163.

MCMAHAN, H. and MOORE, E. (2016). "Communication-Efficient Learning of

Deep Networks from Decentralized Data", arXiv:1602.05629.

MNİH, V. (2015). “Human-level control through deep reinforcement learning",

Nature sayı 518, no 7540, ss. 529-533.

MNİH, V., BADİA, A. P., MİRZA, M. (2016). "Asynchronous Methods for Deep

Reinforcement Learning", International Conference of Machine Learning,

ss. 1928-1937. https://doi.org/10.48550/arXiv.1602.01783

MNİH, V., KAVUKCUOGLU, K., SİLVER, D. (2015). "Human-level control

through deep reinforcement learning", Nature sayı 518, ss. 529-533.

https://doi.org/https://doi.org/10.1038/nature14236

MNİH, V., KAVUKCUOGLU, K., SİLVER, D. (2013). "Playing Atari with Deep

Reinforcement Learning", Deep Learning Workshop NIPS 2013.

https://doi.org/10.48550/arXiv.1312.5602

MOHAMMED, M. A., HUİ, L., NORBERT, S., KERSTİN, T. (2016). "Multiple

Lab Ware Manipulation in Life Science Laboratories using Mobile Robots",

17th International Conference on Mechatronics- Mechatronika (ME).

MOLDOVAN, T., LEVİNE, S., JORDAN, M., ABBEEL, P. (2015). "Optimism-

driven exploration for nonlinear systems", IEEE International Conference

on Robotics and Automation, ss. 3239-3246.

https://doi.org/10.1109/ICRA.2015.7139645

PASTOR, P., HOFFMAN, H., ASFOUR, T., SCHAAL, S. (2009). "Learning and

Generalization of Motor Skills by Learning from Demonstration", IEEE

International Conference on Robotics and Automation.

https://doi.org/10.1109/ROBOT.2009.5152385

PETERS, J. and SCHAAL, S. (2008). "Natural Actor-Critic", Neurocomputing sayı

71, ss. 1180-1190. https://doi.org/10.1016/j.neucom.2007.11.026

PLATT, R. (2007). "Learning grasp strategies composed of contact relative

motions", 7th IEEE-RAS International Conference on, IEEE, ss. 49-56.

https://doi.org/10.1109/ICHR.2007.4813848

RİEDMİLLER, M. (2005). "Neural fitted q iteration–first experiences with a data

efficient neural reinforcement learning method", European Conference on

95

Machine Learning, ss. 317-328.

https://doi.org/https://doi.org/10.1007/11564096_32

RİEDMİLLER, M., GABEL, T., HAFNER, R., LANGE, S. (2009). "Reinforcement

learning for robot soccer", Autonomous Robots, sayı 27(1), ss. 55-73.

https://doi.org/10.1007/s10514-009-9120-4

SCHAAL, S. (1997). "Learning from demonstration", Advances in Neural

Information Processing Systems 9, ss. 1040-1046.

SCHAAL, S., MOHAJERİAN, P., IJSPEERT, A. (2007). "Dynamics systems vs.

optimal control--a unifying view", Progress in Brain Research sayı 165, ss.

425-445. https://doi.org/10.1016/S0079-6123(06)65027-9

SHAH, H. and GOPAL, M. (2009). "Reinforcement learning control of robot

manipulators in uncertain environments", IEEE international conference on

industrial technology, ss. 1-6. https://doi.org/10.1109/ICIT.2009.4939504

SİLVER, D., HUANG, A., MADDİSON, C., GUEZ, A. (2016). "Mastering the

game of Go with deep neural networks and tree search", Nature, sayı 529, no

7587, ss. 484-489. https://doi.org/10.1038/nature16961

SMART, W. D. and KAELBLİNG, L. P. (2002). "Effective Reinforcement Learning

for Mobile Robots", IEEE International Conference on Robotics and

Automation, ss. 3404-3410.

SMART, W. and KAELBLİNG, L. (2002). "Reinforcement Learning for Robot

Control", The International Society for Optical Engineering sayı 4573, ss.

92-103. https://doi.org/10.1117/12.457434

SMİTH, V., CHİANG, C. K., SANJABİ, M., TALWALKAR, A. S. (2017).

"Federated Multi-Task Learning", Advances in Neural Information

Processing Systems 30 (NIPS 2017), ss. 4424-4434.

SMYS, S. and RANGANATHAN, G. (2019). "Robot Assisted Sensing, Control and

Manufacture in Automobile Industry", Inventive Research Organization,

ss. 180-187. https://doi.org/10.36548/jismac.2019.3.005

STİNGU, P. and LEWİS, F. (2011). "Adaptive dynamic programming applied to a

6DoF quadrotor", IGI Global. https://doi.org/10.4018/978-1-60960-551-

3.CH005

STULP, F., THEODOROU, E., KALAKRİSHNAN, M. (2011). "Learning motion

primitive goals for robust manipulation", 2011 IEEE/RSJ International

96

Conference on Intelligent Robots and Systems, ss. 325–331.

https://doi.org/10.1109/IROS.2011.6094877

SUTTON, R. (1999). "Policy gradient methods for reinforcement learning with

function approximation", Advances in Neural Information Processing

Systems.

TAMPUU, A., MATİİSEN, T., D.KODELJA, KUZOVKİN, I. (2017). "Multiagent

cooperation and competition with deep reinforcement learning", PLoS ONE

sayı 12, no 4, ss. 1-15. https://doi.org/10.1371/journal.pone.0172395

THEODOROU, E., BUCHLİ, J., SCHAAL, S. (2010). "Reinforcement learning of

motor skills in high dimensions: A path integral approach", IEEE

international conference on robotics and automation, s. 2397-2403.

THEODOROU, E., PETERS, J., SCHAAL, S. (2007). "Reinforcement learning for

optimal control of arm movements", Abstracts of the 37st Meeting of the

Society of Neuroscience.

TODOROV, E., EREZ, T., TASSA, Y. (2012). "Mujoco: A physics engine for

modelbased control", IEEE/RSJ International Conference on Intelligent

Robots and Systems, ss. 5026-5033.

https://doi.org/10.1109/IROS.2012.6386109

TSOKALO, I. A., WU, H. (2019). "Mobile Edge Cloud for Robot Control Services

in Industry Automation", 2019 16th IEEE Annual Consumer

Communications & Networking Conference (CCNC).

https://doi.org/10.1109/CCNC.2019.8651759

TSURUMİNE, Y., CUİ, Y., ECHİBE, E., MATSUBARA, T. (2019). "Deep

reinforcement learning with smooth policy update: Application to robotic

cloth manipulation", Robotics and Autonomous Systems sayı 112, ss. 72-

83. https://doi.org/10.1016/j.robot.2018.11.004

WATKİNS, C. (1989). "Learning from Delayed Rewards", King's College.

WERBOS, P. (2009). "Intelligence in the brain: A theory of how it works and how to

build it", Neural Networks, ss. 200-212.

WERBOS, P. J. (2008). "ADP: The key direction for future research in intelligent

control and understanding brain intelligence", IEEE Transactions on

Systems, Man, and Cybernetics, ss. 898-900.

WERBOS, P., PERLOVSKY, L., KOZMA, R. (2007). "Neurodynamics of cognition

and consciousness. Understanding complex systems", Springer.

97

WİLLİAMS, R. (1992). "Simple statistical gradient-following algorithms for

connectionist reinforcement learning", Machine Learning sayı 8, no 3-4, ss.

229-256.

XU, H., GAO, Y., YU, F., DARRELL, T. (2017). "End-to-end Learning of Driving

Models from Large-scale Video Datasets", Computer Vision and Pattern

Recognition, ss. 2174-2182. https://doi.org/10.48550/arXiv.1612.01079

YANG, T., ANDREW, G. (2018). "Applied Federated Learning: Improving Google

Keyboard Query Suggestions", arXiv:1812.02903.

ZEHONG CAO (2019). "Reinforcement Learning from Hierarchical Critics", IEEE

Transactions on Neural Networks and Learning Systems.

https://doi.org/10.48550/arXiv.1902.03079

ZHOU, W., Lİ, Y., CHEN, S., DİNG, B. (2018). "Real-Time Data Processing

Architecture for Multi-Robots Based on Differential Federated Learning",

IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &

Trusted Computing, Scalable Computing & Communications, Cloud &

Big Data Computing, Internet of People and Smart City Innovation.

https://doi.org/10.1109/SmartWorld.2018.00106

ZHUO, H. H., FENG, W., XU, Q., YANG, Q., LİN, Y. (2019). "Federated

Reinforcement Learning", arXiv, 1901.08277.

ELEKTRONİK KAYNAKLAR

ROSHEİM, M. E. “Leonardo’s programmable automaton. A reconstruction.

Anthrobot”, http://www.anthrobot.com/press/article_leo_programmable.html,

(Erişim Tarihi: 2022, 05 21).

TEZLER

GASKETT, C. (2002). “Q-Learning for Robot Control”. (Doktora Tezi), The

Australian National University, https://doi.org/10.25911/5d7a2a09a7dfd

DİĞER KAYNAKLAR

POLLARD, W. (1942). ABD Patent No. 2,286,571

RORESLUND, H. (1944). ABD Patent No. 4,344,108.

98

ÖZGEÇMİŞ

Adı-Soyadı : MURAT UĞUR GÜLLE

ÖĞRENİM DURUMU:

Lisans: 2017, Gazi Üniversitesi, İktisadi ve İdari Bilimler Fakültesi, Ekonometri

Bölümü

Yüksek Lisans: İstanbul Aydın Üniversitesi, Bilgisayar Mühendisliği Fakültesi,

Bilgisayar Mühendisliği Bölümü

MESLEKİ DENEYİM:

Veribilim Yazılım Bilgisayar San. Tic. Ltd, Yapay Zeka Uzmanı, Ocak 2021-

Günümüz

YAYINLAR:

Kiani, F., Seyyedabbasi, A., Aliyev, R., Gülle, M. U., Shah, M. A. (2021). “Adapted-

RRT: novel hybrid method to solve three-dimensional path planning problem

using sampling and metaheuristic-based algorithms”. Neural Computing and

Applications vol 33. ss. 15569-15599

Seyyedabbasi, A., Aliyev, R., Gülle, M. U., Kiani, F. (2021). “Hybrid algorithms

based on combining reinforcement learning and metaheuristic methods to solve

global optimization problems”. Knowledge-Based Systems vol 223

Kiani, F., Seyyedabbasi, A., Aliyev, R., Gülle, M. U., Shah, M. A. (2021). “3D path

planning method for multi-UAVs inspired by grey wolf algorithms”. Journal

of Internet Technology vol 22, ss. 743-755

99

100

	ONUR SÖZÜ
	ÖNSÖZ
	ROBOT KOLLARININ CİSİMLERİN TUTULABİLİRLİĞİNİ FEDERE DERİN PEKİŞTİRMELİ ÖĞRENME YÖNTEMİYLE ÖĞRENMESİ
	ÖZET
	LEARNİNG THE GRİP OF OBJECTS BY THE FEDERATED DEEP REİNFORCEMENT LEARNİNG METHOD OF ROBOT ARMS
	ABSTRACT
	İÇİNDEKİLER
	KISALTMALAR LİSTESİ
	ÇİZELGELER LİSTESİ
	ŞEKİLLER LİSTESİ
	I. GİRİŞ
	II. ÖĞRENME ALGORİTMALARI
	III. ROBOTLARDA PEKİŞTİRMELİ ÖĞRENME
	IV. İLGİLİ ÇALIŞMALAR
	V. YÖNTEM
	VI. SİMÜLASYON SONUÇLARI VE DEĞERLENDİRMESİ
	VII. SONUÇ VE GELECEK ÇALIŞMALAR
	VIII. KAYNAKÇA
	ÖZGEÇMİŞ

