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ONUR SOzU

Yiiksek Lisans Tezi olarak sundugum “Robot Kollariin Cisimlerin Tutulabilirligini
Federe Derin Pekistirmeli Ogrenme Yéntemiyle Ogrenmesi” adli ¢aligmanin, tezin
proje sathasindan sonuc¢lanmasina kadarki biitiin siireclerde bilimsel ahlak ve
geleneklere aykirt  diisecek bir yardima bagvurulmaksizin  yazildigini  ve
yararlandigim eserlerin Bibliyografya’da gosterilenlerden olustugunu, bunlara atif
yapilarak yararlanilmis oldugunu belirtir ve onurumla beyan ederim. (04/08/2022)
Murat Ugur GULLE






ONSOZ

Yapay zeka algoritmalarina ve bu algoritmalar uygulanilarak kontrol edilebilen
mobil robotlara farkli alanlarda olan gereksinim son yillarda en popiiler konularin
arasinda yer almaktadir. Daha once yapmis oldugum yiiksek lisans ¢aligsmalarinda
robotlar ve onlarin yazilimu ile ilgili yaptigim arastirmalar ve ¢alismalarin sayesinde
de “Robot Kollarmin Cisimlerin Tutulabilirligini Federe Derin Pekistirmeli Ogrenme
Yoéntemiyle Ogrenmesi” bashikli tez konusunu segtim. Bu calismanin
gerceklestirilmesindeki destek ve katkilarindan dolay1 tez damismanim Dr. Ogr.
Uyesi Peri GUNES’e tesekkiirlerimi sunarim. Tez calisma siiresinde her zaman

yanimda olan aileme ve esime tesekkiirii bir borg bilirim.

Agustos 2022 Murat Ugur GULLE






ROBOT KOLLARININ CiSIMLERIN TUTULABILIRLiGINi FEDERE
DERIN PEKiSTIRMELI OGRENME YONTEMiYLE OGRENMESIi

OZET

Robot kollar son yillarda endiistride en ¢ok kullanilan robotik sistemlerden birisi
haline gelmistir. Bu sayede tretim hatlar1 gelismis, hizlanmis ve otomatik hale
getirilmistir. Robotlarin belirlenen cisimleri belirli yerlerden alip tekrar belirlenen
yere tasinmasi, robotlarin belirli cisimleri tanimasi ve ona gore hareket etmesi, robot
kollarin eklem bdlgelerinin hareket performanslari, robot kollarin tork kontrolleri
arastirmacilarin ¢alistigi konularin basinda gelmektedir. Robot kollarin otomatik hale
getirmedeki en biiylik problemlerden birisi kullanim yerine gore egitilmesidir.
Gegtigimiz yillarda bu egitim uzun stirmekteyken son yillarda yontemlerin ve egitim
algoritmalarmin gelismesiyle birlikte oldukga hizli gerceklesmektedir. Onerilen ve
gelistirilen algoritmalar bahsedilen problemleri ¢ozmektedir. Son yillarda cesitli
arastirmacilarin onerdigi federe 6grenme yontemi ile derin pekistirmeli 6grenme
yaklasimi birlestirilmistir. Federe Ogrenme yaklasimi alt sistemlerin yani robot
kollarin aym1 anda egitilmesini saglamaktadir. Bu egitim gerceklestirilirken alt
sistemler hatalarin1 ve sinir aglarinin parametrelerini sunucuya gonderir ve sunucuda
tekrar hesaplanan bu agirliklar ve hatalar giincellenmis bir sekilde tekrar alt
sistemlere gonderilir. Federe O6grenmenin bir faydasi da veri giivenligi olarak
karsimiza c¢ikar. Federe 0grenmede alt sistemler kendi aralarinda haberlesmez ve
sunucuya herhangi bir veri gondermezler. Tim transferler sadece alt sistemlerin sinir
aglarimin  hatalar1 ve agirhiklart iizerinden gergeklestirilir.  Sunulan egitim
algoritmasinin testi federe derin 6grenme yaklasimiyla egitilen bir robot kolun egitim
performanst ile karsilastirilmistir. Gelistirilen federe derin O0grenme yaklasimi
yaklasik 6 saat egitimden sonra %90 seviyesinde 6grenme gerceklestirmistir. Ancak
sunulan federe derin pekistirmeli 6grenme algoritmasi ayni egitim diizeyine yaklagik
5 saatte ulagsmistir. Sunulan egitim algoritmasi standart federe derin Ogrenme

algoritmasindan daha iyi performans gostermis ve daha hizli sonu¢ vermistir. Aynm

Vil



zamanda sunulan bu algoritma herhangi bir veriye ihtiya¢ duymadan Ogrenmeyi
saglar.
Anahtar kelimeler: Robot Kollar, Federe Ogrenme, Federe Derin Ogrenme,

Pekistirmeli Ogrenme, Federe Pekistirmeli grenme
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LEARNING THE GRiP OF OBJECTS BY THE FEDERATED DEEP
REINFORCEMENT LEARNING METHOD OF ROBOT ARMS

ABSTRACT

Robotic arms have become one of the most used electronic systems in the industry in
recent years. In this way, production lines have been developed, accelerated and
automated.Precise objects identification and moving, the motion performances of the
joint areas of the robot arms, and torque controls of the robot arms are some of the
favorite subjects that researchers are working on. One of the biggest problems in
automating robot arms is they are being trained for needs in certain fields. While this
training took a long time in the past years, it has been taking place very quickly with
the development of methods and training algorithms in recent years. Suggested and
developed algorithms are able to solve the mentioned problems. In recent years, the
federated learning method recommended by various researchers has been combined
with a deep reinforcement learning approach. Federated learning method enables
training of multiple robot arms at the same time. While performing this training,
subsystems send their errors and neural network parameters to the server, and these
recalculated and updated weights and errors are sent back to the
subsystems. Another benefit of federated learning is data security. In federated
learning, subsystems do not communicate with each other and do not send any data
to the server. All transfers are performed only on the faults and weights of the
subsystems of neural networks.The testing of the developed training algorithm is
compared with the training performance of a robot arm trained with a federated deep
learning approach. The developed federated deep learning approach achieved 90% of
learning after approximately 6 hours of training. However, the presented federated
deep reinforcement learning algorithm reached the same education level in
approximately 5 hours. The presented training algorithm outperformed the standard
federated deep learning algorithm and provided faster results. At the same time, this

algorithm provides learning without the need for any data.



Keywords: Robot arms, federated learning, federated deep learning, reinforcement

learning, federated reinforcement learning
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I. GIRIS

Son yillarda gelismis ve gelismekte olan {ilkelerin iiretim bantlarina bakildiginda
otomasyon sistemlerinin nemli 6lciide kullanildifi gdze carpmaktadir. Uretim
sistemlerindeki otomasyon siireci 6nem kazandik¢a endiistriyel robot kollarin
kullanimi1 ve gelistirilmesi 6nemli bir konu haline gelmektedir.

Giliniimiizde insanlar fiziksel yapilarinin getirdigi zafiyetlerden dolayi, giicliniin
yetmedigi kosullarda kullanmak {izere cesitli makineler gelistirmistir. ilk ¢aglarda
yeterince gelismis ve kullanim alanlari ¢ok smirli olan bu makineler, gelisen
teknoloji ile birlikte insanlar tarafindan gelistirilmis ve insanlarin fiziksel yapilarina
erisebilecek seviyede makineler ortaya c¢ikmistir. Orta caglarda gelistirilen ilk
makineler insan yardimi ile ¢alismaktaydi, ancak zaman igerisinde gelistirilerek
herhangi bir insan miidahalesine gerek kalmayacak sekilde ¢alisir hale getirilmistir.
Sanayide kullanilmak icin gelistirilen bir¢cok robot ve robot kol bulunmaktadir. Bu
robotlar ile birlikte genel itibariyle, iiretim maliyetini diislirerek ve insan giiclinii
ortadan kaldirarak daha hizli ve daha kaliteli iiretim yapilabilmektedir. Ayrica insan
saglhiginin el vermedigi (afetler, niikleer enerji, yiiksek 1s1, dar alanlar vb.)

durumlarda kullanilmaktadir.

A. Robot Kollarin Tarihgesi

Robot fikrini ilk olarak Da Vinci 1495°te dort serbestlik dereceli, gi¢ ve
programlanabilirlik saglan, analog yerlesik kontrolorlu bir robot kol tasarlayarak
ortaya koymustur (Rosheim, 2022). Bu robot iki bagimsiz sistemden olusmaktadir.
Alt eklemler Uc¢ serbestlik derecesine sahiptir: Kalcalar, dizler, ayak bilekleri ve
bacaklar. Ust eklemler ise dort serbestlik derecesine sahiptir: Kollar, dirsekler,
bilekler ve omuzlar (Rosheim, 2022).

Uzun yillar sonra Wolfgang Von Kempelen’in Tiirk olarak adlandirilan satrang
oyuncusu robotu ortaya ¢ikmustir (Sekil 1) (Standage, 2002). Robot 1769 yilinda
Kralice Maria Threse icin tiiretilmistir. Tirk, satran¢ tahtasinin altindaki dolabin

icerisinde gizlenmis bir insan tarafindan kullanilmaktadir. Otomat, satrang



oyuncusunun kolunu otomatik hale getiren bir mekanizmaya sahiptir. Satranc
oyuncusu, Turk-Osmanli kiyafeti gitmis ahsap bir sandigin arkasina oturan bir
kukladir. Bu kuklanin basi, gozleri ve kollar1 hareket edebilmektedir. Ayn1 zamanda
kuklanin sol kolu ve eli muhtesem bir sekilde diizenlenmistir. Kol mekanigi,
oyunlarin insan kontrollii oldugunu bilenlerin verdigi isim olan “yonetici” tarafindan
kontrol edilmektedir. Uzuv 6nce kaldirilir, ardindan sol el, hareket ettirilmesi istenen
satrang tasinin lizerine ortalanir. Kol tasa dogru indirildikten sonra ¢ark ¢evrildiginde
Tirk’tin elindeki kaldiracin satrang tasii kaldirilmasi saglanir. Otomatin kollari
tahtadan olusmaktadir ve satran¢ karsilasmasi sirasinda taslarin daha kolay

kavranmasi i¢in el bir eldivenin igerisine yerlestirilmistir.

Ik “konum kontrol aparati” 1938°de Williard Pollard tarafindan gelistirildi ve
patentlendi (ABD Patent No. 2,286,571, 1942).

Bu bes serbestlik derecesine ve bir elektrik kontrol sistemine sahip sprey cilalama
robot koludur (ABD Patent No. 2,286,571, 1942). Harold A. Roselund baska bir
sprey cilalama robot kolu gelistirdi (ABD Patent No. 4,344,108, 1944). Her iki kol
da kendi zamanlar1 i¢in ¢ok karmasiktir ve elektronik kontrol sistemleri, onlari
kullanilabilir hale getirmek i¢in yeterince gegismis degildir. Modern robotik ¢agi,
1930’larin sonlarinda gelistirilen, az bilinen bu iki robot kolun ortaya ¢ikmasiyla

baglamistir.



Unimate sirketi, ilk robot kolunu 1962 gelistirdi (Sekil 2) (Ellis, 2000). Kol George
Devol tarafindan icat edilmistir. Gelistirilen bu robot kol ilk endiistriyel kol olarak

kabul edilmektedir.

June 13, 1961 G. C. DEVOL, JR 2,988,237
FROGRAMMED ARTICLE TRANSFER
Filed Dec. 10. 195% 3 Skoots—Sheet 1

Sekil 2 Unimate robot kolu

ISO 8373 tarafindan tanimlanan sanayi robotu tanimi su sekildedir: U¢ veya daha
fazla programlanabilir ekseni olan, otomatik kontrollii, gok amagli, bir yerde sabit
duran veya tekerlekleri olan endiistriyel uygulamalarda kullanilan manipiilatérdiir

(Yicel, 1991).

B. Endustriyel Robot Kollar

1. Kartezyen Robot Kolu

Kartezyen Robotlarin sadece tutma ve tasima yetenekleri bulunmaktadir ve 3
eksende hareket etme kabiliyetlerine sahiptirler. Basit bir yapiya sahip olduklarindan
dolayr hareketlerinin ve kontrollerinin planlanmasi yeterince kolaydir. Kartezyen
robotlarda; pozisyonlarin hesaplamalari, robotun bulundugu pozisyon ve mafsallarin
ayni yerde bulunmasindan dolay1 kolaydir (Sekil 3).

Kartezyen robotlar, egilme ve biikiilme islemlerini gergeklestiremez. Yiik tasima
islemleri i¢in kullanilmakta ve genellikle insan giiciinii asan yiiklerin taginmasinda
kullanilmaktadir. Bu nedenden dolay1 genellikle fabrikalarda yiikleme ve bosaltma

islemlerinde kullanildigindan fabrikalarin tavan boliimlerine monte edilmektedir.



Sekil 3 Kartezyen robot kolu

2. Silindirik Robot Kollari

Silindirik robot kollar1 kendi etrafinda donebilecek sekilde gelistirilmis ve ayni
kartezyen robot kolunda oldugu gibi 3 eksende hareket etme kabiliyetine sahiptirler.
Sekil 4’te goriildiigii tizere esnek yapida degil ve ayni zamanda Kartezyen robot
kollarindan daha fazla alana hareket edebilmektedirler. Robot kolunun ¢alisabilecegi
alan silindirik koordinat sisteminde hareket edecek kollarin uzunluguna gore

degismektedir.

Sekil 4 Silindirik Robot Kolu
3. Kiiresel Robot Kollar1

Kiiresel robot kollar1 omuz, dirsek ve gévdeden olugsmaktadir. Govde ve omuz kendi
etrafinda donebilir, kol ise dirsek bdliimiinden uzayip kisalabilir. Hareket c¢ercevesi
sekil 5’te gosterilmistir. Kiiresel robot kollart silindirik bir donme sistemine sahiptir.
Yapilar1 genel itibariyle kartezyen ve silindirik robot kollarina gére daha karmasiktir.
Calisma alan1 kollarin dirseklerden uzayip kisalma boyutuna gore degismektedir.
Kiiresel robot kollar1 sarka¢ robot kol olarak da isimlendirilebilmektedir. Genel

itibariyle endiistriye kaynak yapimlari ve yapistirma islemlerinde kullaniimaktadir.



Sekil 5 Kiiresel Robot Kolu
4, Scara Robot Kol

Scara robot kol diger robot kollardan farkli olarak eklem bdlgesi yerine elektrik
motoru, yukar1 ve asag1 hareket edebilen bir koldan olugmaktadir. Eklemler elektrik
motorlarindan destek alarak kendi etrafinda donebilirler. Tutucu agiz sadece z
ekseninde yani yukari ve asagr yonde hareket edebildiginden yeterinde hiz ve
performans saglamaktadir. Scara robot kol da ayni silindirik robot kolunda oldugu
gibi orta eksende kendi etrafinda dénebilmektedir (Sekil 6). Kolun programlanmasi
kolay ve hizli hareket kabiliyeti olmasindan dolay1 endiistride elektronik sanayinde,
elektronik kartlara yapilacak olan ekleme ve lehim islemlerinde kullanilmaktadir.

Scara robot kol hali hazirda endiistride en ¢ok kullanilan robot konumundadir.

Sekil 6 Scara Robot Kol
5. Mafsalli Robot Kollar

Mafsalli robot kollar insan koluna en yakin sekilde hareket edebilen robot koldur.
Oncesinde agiklanan robot kollarmin hareket yeteneklerinin yeterince iyi
olmamasindan dolay1 endiistride kullanmak amaciyla eklem sayisi 7’e kadar

cikabilecek mafsalli robot kollar gelistirilmistir.



Hareket kabiliyeti en iyi olan robot koldur. Kol belirli bir alana monte edildikten
sonra, kol X,Y ve Z ekseninde ii¢c boyutlu hareket yapilabilmektedir. Ancak
oncesinde bahsedilen robotlardan daha karmasik oldugundan dolay1 programlanmasi
da diger robot kollardan daha zordur.

Her eklem bolgesi sekil 7°de gosterildigi gibi programlandigi sekilde rahat hareket
edebilmektedir. Bu da robotun istenen noktaya daha hizli ve giivenli bir sekilde
ulagmasini saglar. Yapilacak olan uygulamanin sekline gore robot kolunun eklem ve
eksen sayisinin tercihi yapilmalidir.

Hali hazirdaki caligmada mafsalli robot kollar {izerinde bir egitim ¢alismasi

gerceklestirilmistir.

Sekil 7 Mafsall1 Robot Kollar
6. Tutucular

Tutucular robotun bir nesneyi tutmasi amaciyla g¢esitli biiyiikliikkte ve bi¢imlerde
tasarlanmis eklem bdlgesidir. Tutma islemi robotun iizerine islem gerceklestirecegi
nesneye bagli olacak sekilde gelistirilmistir. Sekil 8’de elektrikli tutucu ve sekil 9’da

plinomatik tutucunun sekli goriilmektedir. Calismada elektrikli tutucu kullanilacaktir.



Sekil 8 Elektrikli Tutucu Sekil 9 Plinomatik Tutucu






1. OGRENME ALGORITMALARI

Bu béliimde robotlarin ¢esitli yapay zeka yontemleriyle egitilmesi, bu yapay zeka
yontemlerinin igerikleri ve calisma mekanizmalarindaki farklardan bahsedilecektir.
Sonrasinda ¢esitli federe 6grenme yaklagimlarindan bahsedilecektir.

Son yillarda makine O6grenimi yontemleri gercek ya da simiilasyon ortamlarinda
cesitli problemleri ¢ozmek igin yaygin bir bigimde kullanilmaktadir (El-Ghazali,
2020). Makine 6grenimi algoritmalart sekil 10°da da goriildiigii tizere 3 farkli boliime
ayrilmistir. Bu béliimler; Denetimli Ogrenme, Denetimsiz Ogrenme ve Pekistirmeli

Ogrenme olarak adlandirilmistir.

Makine Ogrenmesi

Denetimli Ogrenme Pekistirmeli Ogrenme Denetimsiz Ogrenme
Model Olmgdan Galigan Model Tabanl Algoritmalar
Algoritmalar
Ogrenme Modelli Model Onceden
Polige Tabanli Algoritmalar Deger Tabanl Algoritmalar Algoritmalar Tanimlanan Algoritmalar

Sekil 10 Makine Ogrenmesi Algoritma Agac1
A. Yapay Sinir Aglan

Makine 6grenimi yontemleri yapay zekanin alt kolu olarak karsimiza ¢ikmaktadir.
Aragtirmacilar son yillarda yaptiklar1 gelistirmelerle makine 6greniminin alt kolu
olan yapay sinir aglarii ortaya koymuslardir. Yapay sinir aglar1 insan beynindeki
ndronlarin matematiksel bir karsilig1 olarak tasarlanmistir. Klasik bir tam bagimlh

yapay sinir agmnin sekli sekil 11’de goriildiigii gibidir (Hagan, 2014).



GIRiS GizZLi GizZLi CIKIS
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Sekil 11 Tam Bagimli Yapay Sinir Ag1

Sekil 11’den de gorildiigli lizere klasik bir yapay sinir agmmda 3 katman
bulunmaktadir. Giris katmani girdi verilerini alan ve sonraki katmana tasiyan katman
olarak nitelendirilebilir. Giris katmandaki néronlarin sayisi verilerin sinif sayisina
gore belirlenir. Veriler giris katmanina eklendikten sonra matematiksel bir fonksiyon
ile hesaplamas: yapildiktan sonra gizli katmanlara iletilir. Bir yapay sinir aginda
birden fazla gizli katman varsa derin (deep) yapay sinir ag1 olarak isimlendirilir.
Calismada c¢ok katmanli yapay sinir agi ortaya konan pekistirmeli 0grenme
yonteminde kullanilacaktir.

Yapay sinir aginda herhangi bir modelin egitilebilmesi i¢in bir optimizasyon
algoritmas1 kullanilmak zorundadir. Optimizasyon kisaca yapilan islemin
eniyilenmesi olarak da adlandirilabilir. Calisma kapsaminda yapay sinir agini

olustururken lineer olmayan kisitsiz sayisal optimizasyon kullanilacaktir.

1. Lineer Olmayan Kisitsiz Optimizasyon

Optimizasyon teknikleri giiniimiiz makine 6grenmesi yontemlerinde oldukc¢a sik
kullanilmaktadir. Optimizasyon yoOntemleri; matematiksel programlama, sezgisel
optimizasyon ve sayisal optimizasyon seklinde alt dallara ayrilabilir. En sade haliyle

optimizasyon problemi denklem 1°de belirtilmistir (Iplik¢i, 2017).
min f (x)
X

gi(x) =0i€eE (1)
gi(x) <0ie]

10



Denklem 1’de f(x) optimize edilmek istenen amag fonksiyonunu temsil etmektedir.

x tasarim degiskenlerini gosterir. Ayni zamanda x € R" olmak tizere f(x): R™ — R
tanimlhidir. gj(x) = 0 degiskenlerin esitlik kisitin1 gi(x) < 0 ise degiskenin esitsizlik
kisitin1 temsil etmektedir. E ve J sirasiyla esitlik kisitlart kiimesini ve esitsizlik
kisitlart kiimesini temsil etmektedirler.

Denklem 1°’de ifade edilen optimizasyon problemi, parametrelerine gére dogrusal
olmayan bir fonksiyon oldugundan dolay1 lineer olmayan kisitli optimizasyon
problemi olarak adlandirilmistir.

Kisitsiz lineer olmayan optimizasyon problemleri i¢in denklem 2’de ki fonksiyon

kullanilmaktadir.

min f (x) @

Denklem 2’de f(x): R" > R kosuluyla birlikte siirekli ve tiirevlenebilir olmak
zorundadir. f(x) fonksiyonu icin optimal deger her bir x* degeri icin e > 0

oldugunda denklem 3 saglaniyorsa bu durumda x™* yerel minimumu ifade etmektedir.

fx®) < fx) vllx—x"lI<e (3)

Eger x* parametresi i¢in denklem 4 saglaniyorsa, nokta global minimum noktasini

ifade etmektedir.

f&™) < fx) Vx e R" (4)

Denklem 3 ve 4’te ki ifadelerdeki esitsizlik degeri (< — <) kaldirildiginda kesin
yerel ve kesin global minimum noktalar1 ortaya g¢ikmaktadir. Optimize edilmek
istenen f(x) fonksiyonu konveks olmayan bir bigimde karsimiza g¢ikabilir ve
fonksiyonda birden fazla yerel minimum ve maksimum noktalar1 bulunabilir.

Konveks olmayan f(x) fonksiyonunun grafigi asagidaki gibidir (Sekil 12).

11



Biikiim/Semer

Giiclii Lokal
Minimum

Zayif Lokal
Minimum

Global
Minimum

Sekil 12 Konveks Olmayan f(x) fonksiyonu
2. Optimallik I¢in Gerekli Kosullar

Denklem 2’nin optimum noktasini bulabilmek ig¢in f(x) fonksiyonunun Ax

degisimiyle azalma siirecinin incelenmesi ve fonksiyonun davraniglarinin analiz
edilmesi gerekmektedir. Denklem 2’de f(x) fonksiyonu x* noktasinda f(x*)

degerini aliyorken x* + Ax™ noktasinda hangi degeri aldiginin Taylor acilimi ile
incelenmelidir. Denklem 2’nin birinci dereceden Taylor a¢ilimi denklem 5’te Ki

gibidir
flx*+ Ax) = f(x*) + Vf(x*) 'Ax HOT (5)

Denklem 5’te HOT Taylor agiliminda yiiksek dereceden terimleri ifade eder. Eger
Denklem 5’te HOT = 0 alinirsa denklem 6 elde edilmektedir.

fO&x™ +Ax) — f(x") = Vf(x") Ax (6)

Denklem 6’ya eger ikinci dereceden taylor agilimi uygulanirsa Denklem 7 elde

edilecektir

f(x*+ Ax) — f(x*) = Vf(x*) 'Ax +§ Ax'A% f(x*) Ax (7

12



Eger x* kisitsiz yerel minimum noktasi ise Taylor agiliminin birinci tiirevindeki Ax

noktasinin pozitif olmasi gerekmektedir. Bu durum denklem 8’de gosterilmistir

of (x7)
6xl-

VF(x*)'Ax = XL, Ax; >0 (8)

Denklem 8’in optimallik i¢in birinci sart1, denklem 9’daki gibidir.
Vi(x) =0 (9)

Benzer sekilde optimallik igin ikinci dereceden kosul i¢in denklem 7 incelenerek
denklem 10 elde edilir.

1
VF(x*) Ax + > Ax'V? f(x*) Ax =0 (10)
Denklem 9 ve denklem 10 birlestirilerek denklem 11 elde edilir.
Ax'V2f(x*)Ax = 0 (11)

Denklem 11°de Vx degeri i¢in esitlik saglanacagindan dolayi, esitligin olusmasi i¢in
ikinci dereceden kosul denklem 12°deki sekilde elde edilir

Vif(x*) =0 (12)
Denklem 12°de V2 ifadesi amag fonksiyonunun hessian matrisini olusturmaktadir.

f(): R™ - R olmak uizere amag fonksiyonunun hessian ve gradyan matrisi denklem

13’deki gibi hesaplanir.

13



- azf azf aér
dx,2 dxdxs T Axqdx,
A U A U
V2f(x) = H =|8x,0x,  8x,2 Bx23n
A S U} (13)
Ldxndx, Oxpdxs axnzj
_i—l
axll
a5
Vf(x) = G = |ax,
El.f
Loy

Denklem 9’da bulunan x* kritik noktanin yorumu denklem 11 ile yapilmalidir.
Boylece uygun hessian matrisinin  durumuna gore x* noktasinin durumu

degismektedir. Bu durum ¢izelge 1’de gortildiigi gibidir.

Cizelge 1 Hessian Tablosu

Olasilik X Noktasmm Durumu Aciklama

1 V2f(x*)>0 x* noktas1 yerel minimum

2 V2f(x*) >0 x* noktasi kesin yerel minimum
3 V2f(x*) <0 x* noktas1 yerel maksimum

4 V2f(x*) <0 x*noktasi kesin yerel maksimum
5 V2f(x*) =0 x*semer noktasi

3. Gradyan Yontemler

Denklem 3 amag fonksiyonunu minimum yapan x* parametresinin degerini bulmak

icin f(x) fonksiyonunun birinci tirevini Vf(x) gradyan vektori ve ikinci tirevi olan

r2 f(x) hessian matrisini kullanmaktadir. Belirlenen bir x(Q baslangi¢ noktasindan x*

noktasinin bulunmasi i¢in arttirilabilir bir sekilde parametrelerin giincellenmesi

gerekmektedir. Bu yontem denklem 14’te gésterilmistir.

Xix1 = X; + S;ip; (14)

Denklemde p; inis yoOniinii ifade etmekte ve birinci dereceden yontemler igin

fonksiyonun gradyan vektoriiniin tersine esittir ve Denklem 15’te gosterilmistir.
pi = — Vf(x) (15)

14



Denklem 14’te s; adim araligim1 belirtmektedir. Bu sekilde denklem 14’te Ki

guncelleme ile denklem 2’yi minimum yapan noktalar belirlenir. Denklem 14’teki

ifadede ise p; amag fonksiyonunun, birinci dereceden turevini ya da ikinci dereceden

tirevini temsil etmektedir (iplik¢i, 2017).

4. Gradyan Azalan Algoritmasi

Gradyan azalan algoritmasi x* parametre degerini bulmak i¢in amag fonksiyonunun

gradyan vektoriinii kullanmaktadir (Nocedal and Wright, 2006).

Gradyan azalan algoritmasinin sézde kodu sekil 13’te gosterilmistir.

ALGORITMA : Gradyan Azalan Algoritmasi

1 X, S Parametrelerin baslangi¢ noktasini belirle
2 i<0

3 x; noktasinda Vf(x;) hesapla

4 pi = =-Vf(x;) Ilerleme yénii belirle

5 Xiy1 = X; + Sp; Parametreleri giincelle

6 iei+1

7 Eger | Vf(x;) I< 1e — 6 Algoritmayr sonlandir

8 Degilse 3. adima geri don

Sekil 13 Gradyan Azalan Algoritmasi

Ornek gradyan azalan algoritmasinin grafigi sekil 14’te gosterilmistir.

(X, -2)%+ (X, - (3 X,)2)% + 3

5 . : r

Sekil 14 Gradyan Azalan Algoritmasi Grafigi

15



5. Tek Katmanh Yapay Sinir Aglar

Tek katmanli yapay sinir aglar1 bir gizli katmani olan aglardir ve sekil 15’te
gortlmektedir (Goodfellow et al., 2017).

Tek katmanli sinir aglarinin ileri modeli denklem 16’da gosterilmistir.

9; =W, H(Wyx; + by) + b, i=12,..,Nj=12,...M (16)

Denklem 16’da H(. ) aktivasyon fonksiyonu olarak adlandirilir. Ornek bir aktivasyon

fonksiyonu denklem 17°da gosterilmistir.

—e* (17)

Aragtirmacilar bir¢cok aktivasyon fonksiyonu oOnermislerdir ancak bu c¢alisma

kapsaminda denklem 17°de ki aktivasyon fonksiyonu kullanilacaktir.

GIiRIS GizLi CIKIS
KATMANI KATMAN KATMANI

Sekil 15 Tek Katmanli Yapay Sinir Ag1
6. Tek Katmanh Yapar Sinir Ag1 Egitimi

Denklem 16°de belirtilen Wg,bg,Wg,bg sinir aginin parametrelerini temsil ederler.

Yapay sinir aglarinda modelin parametreleri rastgele bir degerden baslanarak dongii
boyunca giincellenir. Bu dongii sinir aglar1 en iyi modeli elde edene kadar devam

eder. Giincelleme islemi sekil 13’te Onerilen gradyan azalan algoritmasi ile

16



yapilmaktadir. Ornek olarak elimizde T , Y i =1,2,3, . .., N seklinde Cizelge 2’de

gosterilen sekilde bir veri seti olsun.

Cizelge 2 Ornek Veri Seti

MIMO Giris Verisi Cikis Verisi Model Cikisi
i T, eR" Y; eRM yi ERV
1 X1 X2 oo Xr Yo Yo oo Ymm Y1 Y2 ... Yim
2 Xog Xz oo Xr Yo Yo oo Yom Yo Y22 ... Yom
3 Xst Xz2 .. X Yar Y2 ... Yau Va1 Y2 ... Yam
N Xt Xn2 oo XnR Ynz Yne oo Yam YN VN2 ... YNM
Hali hazirdaki veriler T , Y i = 1,2,3, ..., N oldugunda, ¢ikis verileri de Y € {—1,1}

ise smiflandirma problemi olarak isimlendirilir. Ancak c¢ikti verileri Y € RM

oldugunda regresyon problemi olacaktir. Mevcut veri setini egitim ve test olarak iki
parcaya bolmemiz gerekmektedir. Ornek olarak %80 egitim %20 test seklinde
verimizi rassal olarak boélebiliriz. Ayrilan egitim verileriyle sinir ag1 egitilecektir.
Egitim islemi daha Oncesinde de bahsedildigi iizere Wg, b g Wg, bg
parametrelerinin en hatasiz halini bulmaktir. Cizelge 2’de bahsedilen gradyan azalan
algoritmasi ile, parametrelerin degerleri amag¢ fonksiyonunu minimum yapana dek
hesaplanacaktir. Hesaplama tamamlandiktan sonra daha Oncesinde ayrilan test
verileri ile model test edilecek ve sonuglar karsilastirilacaktir. Sinir aginin maliyet
fonksiyonu denklem 18’de gosterilmektedir.

L 7 a8)
Sekil 16°da sinir aglarinin egitimi i¢in gradyan azalan algoritmasi gosterilmektedir
(Goodfellow et al., 2017).

17



ALGORITMA : Yapay Sinir Aglarinin Gradyan Azalan Algoritmasiyla Egitimi

1

2
3
4

7]

7

8
9

W, by, W, b,s Parametrelerin baslangi¢ degerlerini belirle
T, Yi=123,..., N Verisetini ii¢ par¢aya bol
i<0
)'f; =W HW,T; + by) + b, Yapay sinir aginin egitim verisiyle ¢ikisini

hesapla

e; = iz‘?;l(l’i - ¥)? Yapilan hatay: hesapla

P = —V?(Wg, by, W.b,) Parametrelere gore gradyan vektoriinii
hesapla

Wy, by W, b (i+1) =Wy, by, W,b(i) + p;e; Parametreleri giincelle
Egerlle;lI<le—6 Algoritmay sonlandir

Degilse 3. adima geri don

Sekil 16 Yapay Sinir Aglarinin Gradyan Azalan Algoritmastyla Egitimi Algoritmasi

7. Cok Katmanh Yapay Sinir Aglar

Cok katmanli yapay sinir aglari, tek katmanli yapay sinir aglarinin genisletilmis

halidir. Tek katmanli yapay sinir aglarindan farkli olarak problemin zorluluguna ve

farkliligina gore mimariye istenildigi kadar gizli katman eklenebilmektedir. Sekil

17°de ¢ok katmanli yapay sinir aglari1 gosterilmektedir.

GIRis GiZLI GizLi CIKIS
KATMANI KATMAN KATMAN KATMANI

Sekil 17 Cok Katmanli Yapay Sinir Ag1

8. Cok Katmanh Yapay Sinir Aginin Ileri Modeli

Cok katmanli ve ¢ok girisli ¢ok ¢ikisl sinir aginin modeli sekil 18’de gosterilmistir
(Goodfellow et al., 2017).

18



GIRIS GizLi GizLi CIKIS

KATMANI KATMAN KATMAN KATMANI
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Sekil 18 Cok Katmanli Cok Girisli Cok Cikish Yapay Sinir A

Cok katmanli yapay sinir agmin matematiksel olarak ifadesi denklem 19°da

gosterilmistir.
Y, = WH(Wyy, ... HWy2H(Wy1 X; + bg1) + byz) ... + bgi) + b, (19)

i=12.,Nj=12, ... Mk=12,...K

Denklem 19°da K adet gizli katman ve X € RN veY € RM

olmalidir. Ayni1 sekilde
¢ok katmanli yapay sinir aginin optimizasyon problemi sekil 19’da gosterilen
algoritma ile ¢cozllebilmektedir.

Adam algoritmasi stokastik tanimlanan amag fonksiyonu ve fonksiyonun gradyani
tizerinden gelistirilen bir algoritmadir (Goodfellow et al., 2017). Algoritma adini
adaptif moment tahmininden almaktadir. Bu calismada pekistirmeli O0grenme
algoritmalar1 i¢in olusturulan c¢ok katmanli yapay sinir aglarinin egitimi igin
kullanilmistir (Kingma and Ba, 2015). Sekil 19’da Adam algoritmasinin sézde kodu

gosterilmistir.
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ALGORITMA : ADAM Algoritmasi

1 a Adim araligim belirle (0.001) onerilen

2 B1,P2 € [0,1)  Moment degerinin iistel ¢iiriime parametresi

3 f(8) Stokastik amag fonksiyonu

4 6, Parametrelerin baslangi¢ degeri

5 m, Birinci dereceden moment vektorii

6 v, Ikinci dereceden moment vektorii

7 t<0

8 te<t+1

9 g: < Voft(0,._1) Stokastik amag fonksiyonunun gradyan
vektortii

10 : m, « Bymy_ + (1 = B,)g: Birinci moment tahminin giincellenmesi

11 : v, < Boveq+ (1= PBr)g? Ikinci moment tahmini giincellemesi

12 @ f, « UT—ED Birinci momentin gergek degeri

13 : P, « (11’—:35) Tkinci momentin gergek degeri

14 0, <0,_,—q E;E Parametrelerin giincellenmesi € = le — 8

15 : Egerll0,—6,_,1<1le—6
16 : Algoritmay: sonlandir

Sekil 19 Adam Algoritmasi
B. Pekistirmeli Ogrenme

Pekistirmeli 6grenme algoritmasinda yapay zeka ajanlar1 belirlenen bir alana dagilir
ve ceza-6dil mekanizmasima gore optimal sonuclart bulmalari beklenir. Ajan
ogrenme sirasinda dogru kararlar verdiginde ddiillendirilir, yanlis kararlar verdiginde
ise cezalandirilirlar. Pekistirmeli O0grenmede ajanlar biyo-ilhamhidir ve aym
canlilarda oldugu i¢i hayatta kalma ve biiylime igin 6dul ve ceza deneyiminden
ogrenirler. Pekistirmeli 6grenmede ajanlardan ddiillerini maksimize etmeleri beklenir
(Khan et al., 2012). Bu sekilde yapay zeka ajanlar1 optimal bir politika gelistirir.

Pekistirmeli 6grenme arastirmasi kirk yildir devam etmektedir ve kékeni bilgisayar
bilimlerine dayanmaktadir, ancak uyarlamali dinamik programlama (ADP) ve
ndrodinamik programlama (NDP) gibi benzer yontemler Werbos, Bertsekas ve diger
bircok arastirmaci tarafindan paralel olarak gelistirilmektedir. Williams’a gore,
modern pekistirmeli 6grenme, yapay zekadan gelen zaman fark yoOntemlerinin,
optimal ve kontrol ve hayvan caligmalarindan 6grenme teorilerinin bir karigimidir

(2009) Werbos’un son g¢alismalar1 (2004; 2007; 2008; 2009) sinirlar1 daha da asmis
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ve beynin nasil calistigin anlamak ve gelistirerek daha iyi hale getirmek ig¢in
pekistirmeli 6grenmeyi kullanmustir.

Sekil 10’a gore pekistirmeli 6grenme algoritmasi da kendi iginde 2 alt gruba ayrilir.
Bu gruplardan ilki model tabanli algoritmalardir, digeri ise model tabanli olmayan
algoritmalardir. Model tabanli olmayan algoritmalar giinlimiizde daha yaygin olarak
kullanilmaktadir (Richard and Andrew, 2015; Yu, 2020). Model tabanli olmayan
algoritmalar da kendi i¢lerinde iki gruba ayrilabilir: politika tabanli algoritmalar ve
deger tabanli algoritmalar.

Politika, bir yapay zeka ajaninin belirli bir zamanda davranigi olarak tanimlanir.
Politika, pekistirmeli 6grenme semalarinin ¢ok dnemli bir pargasidir ve bir arama
tablosu veya bir fonksiyon ile temsil edilebilir. Politika stokastik veya deterministik
olabilir. Bazi pekistirmeli O6grenme semalarinda, politikanin hesaplamasinda
karmagik bir arama siireci kullanilir. Bu siire¢ icerisinde deger fonksiyonunun en aza
indirilmesi lizerinde galisilir (Sutton and Barto, 1998).

Deger islevi, gelecekteki 6diiliin tahmini ve aracin daha yiiksek dduller Uretecek bir
eylemde bulunmay1 bekledigi temeldir. Normalde iki tiir deger islevi kullanilir, yani
genel olarak V(s) ile temsil edilen durum degeri islevi ve Q(s,a) ile temsil edilen
eylem deger islevi. Burada s durumu, a ise eylemi temsil eder. Garcia’a gore, ortamin
modeli bilindiginde, dinamik programlama yontemlerinde oldugu gibi bir durum
degeri fonksiyonu kullanilir. Ancak ortamin modeli bilinmiyorsa, o zaman bir eylem
degeri islevi tercih edilir (2005).

Calismada yazar pekistirmeli 6grenme problemlerini ¢ézmek icin ¢ ana yontem
siralamistir; dinamik programlama (DP), monte carlo (MC) yontemleri ve zamansal

fark yontemleri (ZM). Bu yontemler sekil 20°de gosterilmistir (Garcia, 2005).

MONTE CARLO ZAMANSAL FARK DINAMIK PROGRAMLAMA
V(S:) = V(S:) +a (6 — V(S)) V(8:) « V(5) + (R +V(See) — V(SL)) V(S:) + Ex [Reg1 +7V(5e41)]

Sekil 20 Cesitli Pekistirmeli Ogrenme Algoritmalar1 Grafigi
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1. Rastgele Suregler ve Markov Sureci

Fiziksel sistemlerin matematiksel modelleri lineer olmayan diferansiyel denklem

20’de agiklanmustir.

x(t) = f(t,x,u,w) (20)
y() =gt x,u,v)

Denklem 20’de t zamanmi, x durum vektorind, u kontrol isaretini, w pProses
guraltisund, v 6lcim guraltisind, f (.) sistem modelini olusturulan lineer olmayan
diferansiyel denklemleri, g(.)¢ikis, denklemini temsil etmektedir. Fiziksel
sistemlerde, eger sistemin matematiksel modeli biliniyorsa, belirlenen durum gecis
matrisi (zerinden elde edilebilir. Ancak genel itibariyle fiziksel sistemlerdeki
belirsizlik, giiriildii ve herhangi bir sekilde model elde edilememesi dinamikleri
yuziinden c¢ozlilememektedir. Rastgele streclerde var olan sistemin modelini
olusturmak i¢in durumu temsil eden x’ler rastgele degisken olarak temsil
edilmektedir. x’ler rastgele olarak kabul edildiginde sistem stokastik bir bigimde
modellenmis olur. Pekistirmeli 6grenmede fiziksel sistemler ve durumlar arasindaki
gecisler Markov karar siireci ile modellenmektedir. Rastgele siire¢ matematiksel
olarak X(t), X(n) ile ifade edilir. Olasilik uzayindaki tiim fonksiyonlarin birlesimi
rastgele ya da stokastik siire¢ olarak adlandirilir. Bu fonksiyonlarin birlesiminde basit
(PDF) veya ortak olasilik yogunluk fonksiyonlar1 (JPDF), zamanla degismiyorsa bu
sire¢c duragan olarak adlandirilmaktadir. Duragan siireglerde, modeller ve
parametreler zamandan bagimsiz olarak nitelendirilir. Bazi durumlarda tiim bu
rastgele slire¢ ayni istatistiksel 6zellikleri sergilemektedir. Bu gibi durumlarda tek bir
rastgele siirecin 6rnek fonksiyonlarmin bilinmesiyle birlikte tim sdrecin istatistiksel
Ozellikleri modellenebilir. Rastgele siirecler ayrik degerli ayrik zamanli rastgele
stireg, ayrik degerli siirekli zamanli rastgele siireg, siirekli degerli ayrik zamanh
rastgele slire¢ ve son olarak siirekli degerli zamanli siire¢ olarak dort sinifta

incelenmektedir. Markov sureci denklem 21’de gosterilmistir.

P[X(tks1) = Xp411X (&) = x4, .o, X (1) = x4] (21)
= P[X(tx+1) = X1l X (tx) = xi]

Denklem 21’de gosterildigi gibi X(t) rastgele sirecinin, X(tk+1) degeri bir gegmis
deger olan X(t) "ye baglidir. Bu 6zellik Markov 6zelligi olarak adlandirilir. Rastgele

stirece iligkin ortak olasilik yogunluk fonksiyonunun (JPDF) bilinmesi durumunda
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Markov siireci durum genis matrisiyle ifade edilmektedir ve Denklem 22’de
gosterilmistir.

P Xpi1 =jlXn =] = Pij (22)

Denklem 22’te X3, homojen gegis olasiliklart olarak adlandirilmaktadir. Xy, . . ., X0

ortak olasilik yogunluk fonksiyonunun verilmesiyle denklem 23 ortaya ¢ikar.
P[Xn = in..Xo = io] = Piy_yin - Pigi, Piy (0) (23)

Buradan gegcis olasiliklar1 matrisini P , elde etmek igin baslangi¢ degerlerine p;(0)

Verildiginde denklem 24 elde edilir.

P90 Po1r P2 (24)
Pio Pia
Denklem 24’n siitunlar1 toplandiginda denklem 25 ortaya ¢ikacaktir.
LiPXnw = jIXn =il = Xjpij =1 (25)

Sekil 21°de Iki durumlu Markov siireci igin drnek bir akis gdsterilmistir.

- C D

(84

Sekil 21 Markov Siireci I¢in Ornek Bir Akis

Sekil 21°de ifade edilen iki durumlu Markov zincirinin akis matrisi denklem 26’de
gosterilmistir.

St
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Denklem 26’nin kuvvetleri alindiginda Markov zincirinin zamana bagli hesaplamasi

gerceklestirilir. Denklem 27°de gdsterilmistir.

Al VR | PR B R "

Denklem 8 ile n durumlu geg¢is olasiliklari, P durum gec¢is matrisinin bilinmesiyle
hesaplanabilir. Bir X}, rastgele siireci bagimsiz ve ayni olasilik dagilimiyla ifade

edilmis ise bu siire¢ I1ID olarak ifade edilmistir ve denklem 28’da gosterilmistir.

Feiny (X1, %2, %) = P[Xy < X5 < xe, Xpe < x| (28)

.....

Fxl_xz_m,xk 1y X2,y Xg) = Fe(x)Fe(2)- .« B ()

Denklem 28’da X} rastgele degiskenlerin istatistiksel bagimsizligini ifade eder.

Ancak bu boliimde pekistirmeli 6grenme algoritmalarindaki ajanlarin ortamlardan
elde ettikleri veriler IID olmamalidir. Bu sekilde elde edilen verilerden beslenen

modeller egitim siirecinde lokal noktaya takilmaktadir (Garcia, 2005).

2. Markov Karar Sureci

Markov karar sureci, 6dul strecinin a € A oldugu aksiyon kiimesiyle genisletilmis

versiyonudur. Burada S Markov siirecini saglayan sonlu ve ayrik durum kiimesidir.
A aksiyon kiimesi olarak tanimlamir. P4 = P[S = s'lS = s, A = a] denklemi kosullu

gecis durumunu ve R4 = E[R |S = s, A = a] 6diil fonksiyonunu tanimlar. y € [0,1]
Ise azaltma faktorii olarak adlandirilabilir. Markov karar siirecinde iki énemli faktor
vardir. Bunlar politika ve deger fonksiyonu olarak isimlendirilir. Politika 7 seklinde

gosterilir. Denklem 29’da tanimlanmustir.

n(als) = P[A; = a|S; = s] (29)

Denklemde s ajaninin durumunu ve a alacagi aksiyonu belirtir. Markov siirecinde

politika s¢ olarak gosterilen ajanin t zamanindaki durumunu belirtir. Politika ise

zamandan bagimsiz olarak tanimlanir ve denklem 30’da agiklanmustir.
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Denklem 18’de ve Markov karar strecinde M = (S, A, P, R, y) olarak tanimlanir ve
politika olarak 6diil verildiginde durumlar Markov 6zelligi olan (S,P™) fonksiyonunu

saglamalidir. Denklem 31’de P™, R™ formiilleri tanimlanmigtir.

PsTs[I = ZaeAT[(als)Ps%r (31)
R¢ = ZaeAT[(als)Rg

Markov siirecindeki deger fonksiyonu denklem 32’de tanimlanmustir.

Ve (s) = Ex[GelSe = s]
(32)
Denklem 33’te durum-deger fonksiyonu goériilmektedir. Yapay zeka ajanlar1 Markov
sirecleri ile s durumundan baslayip sonuca kadar 7 politikasini takip ederek 6diillere
ulagsmaya caligir. Markov siireglerindeki aksiyon-deger fonksiyonu denklem 33’te
tanimlanmaistir.

QTL'(SI a) = ETL'[th'St — SlAt = a] (33)

Denklem 33’teki aksiyon-deger formiilii daha 6ncesinde modellenmis belirli bir
cevrede s durumundan baslayarak ve belirlenen politikay1 takip ederek formiilde a
olarak tanimlanmig aksiyonu almasi sonucunda Odiillere ulagsmaya calisir. Daha
oncesinde belirtildigi lizere Markov siirecinde iki farkli ¢o6ziim uygulamasi
bulunmaktadir. Durum-deger ve aksiyon-deger formiilleri iteratif hale getirildiginde

sirasiyla denklem 34 ve denklem 35 ortaya ¢ikar.

Vi(8) = Ex[Rep1 + ¥V (Se+1)1S: = 5] (34)

Denklem 34 durum-deger fonksiyonunun Bellman denklemi ile harmanlanmig

halidir. Bu durumda durum-deger fonksiyonu belirli bir St = s durumunda

belirlenmis bir 7 politikasini takip eder ve sonug olarak V' (s) degerini hesaplar.

qn(S, @) = Ex[Res1 + Vqr(Se41, Aes1)|Se = 5, Ar = a (35)
5

Denklem 34’te aksiyon-deger fonksiyonu tanimlanmistir. Bu denklemi kullanarak

yapay zeka ajan1 Markov siireci ile modellenmis ve belirli bir politikay takip ederek
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St = s At = a durumunda qx(s, a) fonksiyonunu hesaplar. Denklem 34’0n ve

denklem 35’in lineer sistemde ¢6ziimlenmis hali denklem 36’te tanimlanmustir.

V. = R™ + yP7V, (36)

Ve=(01- yPT[)_lRT[

Markov 6dul strecinde, denklem 34’te tanimlanmis formiilizasyon ¢éziimlendiginde
aynt denklem 35’te tanimlanan Markov karar siirecinin de bir ¢ozliimii
bulunmaktadir. Denklem 36 uygulanmasi sonlu sayida durum i¢in, sonlu sayida ge¢is
olasiliklar1 matrisinin bilindigi durumda miimkiindiir. Eger gecis olasilig1 bilinmezse
farkli Markov karar siiregleri uygulanmaktadir. Bunlar: yaklasik dinamik
programlama, zamansal fark ve monte carlo metodu olarak adlandirilir. Markov

stirecinin optimal ¢6zimu denklem 37°de tanimlanmustir.
V.(s) = max V. (s) (37)
s

Denklem 37’de Vx(s) optimal deger fonksiyonu olarak adlandirilir ve tim
politikalarin degerlerinin maksimum olarak sec¢ilmesiyle hesaplanir. Denklem 38’de

ise optimal aksiyon deger fonksiyonu tanimlanmistir.

q.(s, @) = max q,(s, a)
i (38)
Optimal durum-deger fonksiyonu ayni zamanda Markov karar siirecinin ¢oziimiinii
olusturur. Ayn1 sekilde Markov aksiyon-deger fonksiyonunun belirlenmesiyle de
coziilebilir. Kisaca acgiklamak gerekirse Markov siirecinin iki farkli ¢6ziim metodu
mevcuttur. Bunlar durum-deger ve aksiyon-deger olarak daha Oncesinde
tanimlanmistir. Optimal durum-deger fonksiyonu belirlenmis politikalar {izerinde

hareket ederken denklem 39’u saglamalidir.

> V.(S)=V,(s) Vs (39)

Denklem 39’u genel itibariyle agiklamak gerekirse politika degeri, bir sonraki
adimdaki politika degerinden biiyiik ve esit ise bundan sonraki tiim durum-deger

fonksiyonlar1 da ayn1 sekilde politika degerinden biiyiik ve esit olmalidir.
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Ancak Markov karar siirecinde, optimal bir politika 7« vardir ve bu « degeri
tx > V1 kosulunu saglamak zorundadir. Ayn1 zamanda optimal olarak hesaplanan

politika degeri, optimal olarak hesaplanan durum-deger fonksiyonunu saglamak

zorundadir. Bu durum denklem 40°ta gdsterilmistir.

VTL’r (S) = I/*(S) (40)
Denklem 40’ta gosterildigi iizere hesaplanan tiim optimal politika degerleri de

aksiyon-deger fonksiyonunu saglamak zorundadir.

qmx (s, @) = qx(s, a) (41)

Iki durumun da saglandig1 formiilizasyon denklem 42’de tanimlanmustir.

1 a=argmax q.(s,a) (42)
T, (als) = { aev
0 diger durumlar

Daha oncesinde de bahsedildigi iizere politika, yapay zekd ajanimnin belirlenen
durumda a € A aksiyonunu nasil segecegini belirtmektedir. Denklem 42’de siirecin
optimal politika secimi tanimlanmigtir. Bellman’in 6z yinelemeli olarak hesaplama

formalu denklem 43°de tanimlanmustir.

V.(s) = max q.(s, ) (43)

Denklem 43’deki durum-deger formiiliine, Bellman denklemi eklendiginde Denklem
44°¢ ulasilir.
Vi(s) = max R§ + yXsesPis V() (44)
a
Denklem 43 ve denklem 44’de tanimlanan formiilasyona benzer sekilde aksiyon-

deger fonksiyonu optimal olarak hesaplanmis durum-deger fonksiyonu ile

birlestirildiginde denklem 45 ortaya ¢ikmaktadir.

q.(s,a) = RS + yYses P Vi(s) (45)
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Eger denklem 45 ve denklem 44 birlestirilirse optimal aksiyon-deger fonksiyonu
denklem 46°daki gibi olacaktir.

9.(s,@) = R{ + yYsesPs max q.(s', @) (46)

Denklem 45 ve denklem 46’da Markov karar siirecinin iteratif versiyonlari
gosterilmistir. Ancak Bellman’in optimal denkleminin ¢6ziimii lineer degildir ve
analitik c¢oziimleri ne yazik ki bulunmamaktadir. Standart Markov karar siireci
denkleminde P& bilinmediginden dolayr denklem 44 ve denklem 43 kullanilmak
zorundadir. Bir sonraki boliimde ise Markov siireclerinin iteratif ¢oziimlii
versiyonlar1 olan deger tabanli ve politika tabanli yaklagimlar incelenecektir (Silver,
2015).

3. Markov Karar Sureci Cozim

Markov karar siireci M = (S, A, P, R, y) fonksiyonu ile ifade edilir. Daha 6ncesinde
de bahsedildigi lizere fonksiyon igerisinde durumlar, aksiyonlar, gecis olasilig
matrisi, 6diil fonksiyonu ve azaltma faktoriinii barindirmaktadir. Agikca sdylemek
gerekir ki Markov siirecinde yapay zeka ajaninin alacagi karar ve uygulayacagi
politika matematiksel olarak tanimlidir. Stokastik olarak tanimlanan politika [0,1]
arasinda tanimlanmakta ve yine ayni aralik igerisindeki bir olasilik degerine karsilik
gelmektedir. Markov karar siirecindeki deger fonksiyonu Bellman denklemi ile

genisletilirse denklem 47 ortaya ¢ikar.

V.(s) =R(s) +v max ¥s,esP (s'ls, @) P.(s" (47)
ae
Optimal durum deger fonksiyonu ise denklem 48’de tanimlanmustir.

7.(s) = R(s) + ¥ max o esP(s'ls, @) V.(s) (48)

Markov karar surecinde denklem 47 ve denklem 48 iteratif olarak hesaplandiginda
optimal ¢oziime ulagilir. Denklem 47°de de fark edilecegi lizere deger tabanl
yaklasimda a¢ gozlii bir politika benimsenmektedir. Eger Markov karar siirecinde R
ve P bilinmiyor ise bu durumda yaklasik ¢éziimler olusturulur.

Markov siirecinin robotik sistemlerde pek sik kullanilmamasinin nedeni durum gegis

matrisinin tam olarak bilinmemesinden kaynaklanmaktadir. Bundan dolay1 robotik
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sistemlerde Markov slrecleri yerine zamansal fark ve monte carlo metodu
kullanilmaktadir (Silver, 2015).

4. Dinamik Programlama

Optimizasyon problemleri ve karar verme problemlerinde dinamik programlama
sistemi ¢okga kullanilmaktadir. Alt dallara ayrilabilen biiyilik ve yeterince karmagsik
problemler dinamik programlama yontemiyle ayristirilir. Sonrasinda bu dallar tek tek
coziilerek bellege alinir ve sonrasinda bellekte toplanan verilerle optimal ¢oziim
bulunur. Dinamik programlama sisteminde her problem i¢in ayr1 bir ¢6ziim teknigi
olusturulmali ve tiim ¢ézlimler optimal degere ulasmak zorundadar.

Hesaplamadaki verimlilik, dinamik programlamanin odaklandig1 nokta olmustur. S6z
konusu model, kompleks problemleri basit parcalar halinde degerlendirdiginden
dolayr hizli c¢alisir. Uyarlanabilir dinamik programlama séz konusu oldugunda,
pekistirmeli 6grenme de ¢alisma alanlarindan biri haline gelir (Kulkarni, 2012).

Sekil 22°de 6rnek bir optimal yol probleminin grafigi mevcuttur.

Sekil 22 Optimal Yol Problemi Ornek Grafik

Sekilde a noktasindan b noktasina gitmenin maliyeti Jgp olarak belirlenmis, b
noktasindan e noktasina gitmenin maliyeti ise Jpe olarak tanimlanmigtir. Optimal

maliyet denklemi asagidaki gibi olacaktir.

] *ae=Jab T Jve (49)

Denklem 49’da J;. olarak tanimlanan parametre a noktasindan e noktasina olan
maliyeti temsil etmektedir. Eger J;, optimal ise denklemdeki tim noktalar optimal
olmak zorundadir aksi halde bir ikilem olusur. Bu durum denklem 50’de

gosterilmistir.

]bce < ]be (50)
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Eger denklem 49 ve denklem 50 birlestirilirse denklem 51 ortaya ¢ikar.

Jab + Ivce < Jab + Jpe =J *ae (51)

Optimal yol problemi celiskisi sekil 23’te gosterilmistir.

Sekil 23 Optimal Yol Problemi Celiskisi

Dogrusal  programlamada  optimallik  prensibi  dagmik  sistemler igin

My-1} fonksiyonuna tanimlanabilir. Tiim S¢ durumlan erisilebilir ise

zamana bagl olarak alt dallardaki problemlerin aktarim maliyetleri minimum olarak
belirlenmelidir. Boylelikle alt dallardaki optimallik prensibi farkli  farkl
hesaplandiktan sonra birlestirilerek en optimal ¢oziim elde edilir. Dinamik
programlamada iki farkli ¢6zlim teknigi bulunmaktadir. Bunlar: ileri yonlii ve geri
yonlii olarak tanimlanabilir. Dinamik programlamada, zamanlar ve durumlar arasi
gecisler rastgele olarak belirlenmigse buna stokastik dinamik programlama denir.
Eger zamanlar ve durumlar arasindaki gecisler deterministik ise buna da
deterministik dinamik programlama denmektedir. Dinamik programlama model
tabanl pekistirmeli 6grenme sinifina girmektedir ve ayni zamanda Markov karar
stireclerinin bu yontemle ¢oziilebilmesi i¢in daha Oncesinde de sdylenildigi gibi
durum gegis matrislerinin bilinmesi ve modellerinin olusturulmasi gerekmektedir
(Sutton and Barto, 2018).

Uyarlanabilir dinamik programlama modeli her hareketin ve/veya her ddiille cezanin
sonucunda hesaplamalari tekrarlar ve en dogru yontemi arar. Genel ¢aligma prensibi

sekil 24’te gosterilmistir.
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Sekil 24 Dinamik Programlama Modeli Genel Calisma Prensibi
5. Bellman Denklemi

Yapay zeka ajaninin modelden bagimsiz olan pekistirmeli 6grenme sisteminde

optimal degeri hesaplamasi gerekmektedir. Bu formiil denklem 52°da belirtilmistir.
V(s) = E[G¢|S; = 5] (52)

Denklem 52°de G parametresi modelde belirlenen zaman igerisinde ajanin

alabilecegi 6diil degerini ifade etmektedir. G parametresi denklem 52’deki
—_ — e k

( Gc = Resn +YRuzt..= Timo¥ “Resks1 ) yerine eklenecek olursa Denklem 53’e

ulaglir.

V(s) = E[G¢|S; = 5] (53)
= E[Rts1 + YRes2 + V?Reys+... IS, = 5]
= E[Rt41 + Y(Re4z + YRii3+..)|Se = 5]
= E[Re41 + ¥G11|S; = 5]
= E[Rey1 + YV (Se+ ISt =5]
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Denklem 53’te durum deger fonksiyonu tanimlanmistir ve E parametresi beklenen
deger anlamina gelmektedir ve bir sonraki durumu temsil eder (E[R¢+1] — Re+1).

Denklem 53’teki tanimlama eger iteratif hale gelirse Denklem 54’deki Bellman

denklemi elde edilir.
V(S) =R + VZSIESPSS’V(S) (54)

Eger Bellman denklemi aksiyon-deger fonksiyonu seklinde yazilacak olursa denklem

55 ortaya ¢ikmaktadir.
q(s, @) = Rs + ¥ XsiesPssiq(s, @) (55)

Denklem 54 ve denklem 55 kullanilarak Markov siireciyle modellenen deger tabanli

pekistirme 6grenme yaklasimi hesaplanabilir (Silver, 2015).

6. Pekistirmeli Ogrenmede Politika Tabanh Céziimler

Onceki bolumlerde Markov sireglerinin optimal ¢6zimi icin durum-deger ve
aksiyon-deger fonksiyonlart tanimlanmistir. Ancak yapay zeka ajaninin arama
yaparken olusturulacagi politikaya deginilmemistir. Eger ajanin davranisi
deterministik ise denklem 55, ajanin davranigi stokastik ise denklem 56 kullanilarak

bir politika olusturulabilir.
e (s) = maxé (s,a) (56)
aeA

expl(s,a)
ZareA expe (S' 0{’)

mg(als) =

Denklem 55 ve denklem 56 da tanimlanan politika, Markov karar siirecinde
bahsedilen denklem 45’den farklidir. Burada ajanin kullanilacagi politika asama

asama hesaplanmalidir. Bu sebepten dolay1 denklem 57 olusturulmustur.

Ve(s) = Ex[Resq + ¥V (Ses1)1Se = 5] (57)

Basit bir politika arama algoritmasi sekil 25’te ag¢iklanmustir.
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ALGORITMA : Basit Politika Arama Algoritmas:

1 : gWe@ g M deneme icin parametrelere rastgele giiriiltii ekle ve
ampirik olarak diil toplamim V) = ¥T_, ytr, hesapla.
2 VO s a0 herhangi bir parametrik makine dgrenmesi modelini

daniymanit dgrenme modeline gore egit.

3 : 8<0+aVyf(8) parametreleri giincelle.

Sekil 25 Basit Politika Arama Algoritmasi

Sekil 25’te aciklanan basit politika arama algoritmasi haricinde baska politika arama
algoritmalari da bulunmaktadir. Bunlardan ilki takviye-pekistirme (reinforce) metodu
olarak adlandirilir ve pekistirmeli 6§renmenin ilk adimidir. Deger t zamaninda ajanin

izledigi politika belirlenmek istenirse denklem 58 kullanilabilir.

Vo(s) = E[R(1); 6] = f p(1;8) R(1)dr (58)

Pekistirmeli 6grenme algoritmasinin tamamen olusturulmasi i¢in denkleme gradyan

hesab1 da eklenerek denklem 59’a ulasilir.

VoV (s) = Vg f p(z; 0) R(x)dr (59)

= fvgp(r; 0) R(r)dr

;0
= f % Vop(t; 0)R(T)dT

= f p(z;0)Vy logp(z; 0) R(t)dr
= E[Vglogp(t; O)R(T)]

Denklemde belirlenen V6(s) parametresinin gradyan hesabi VOVEO(s) seklinde

tanimlanabilir. Eger denklem 59 tekrar duizenlenirse denklem 60°a ulasilir.

T
Vo logp(7; 0) = Vg log(| | p(SeunlSe amy(aels)
t=1

(60)

T
= Vg ) (10gp(seslse @) + Vg logm(alse)

t=1

T
= Vylogm(arlsy)
t=1
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Sekil 26’da denklem 60 kullanilarak politika gradyan1 ve pekistirme algoritmasi
olusturulmustur.

ALGORITMA : Politika Gradyam ve Takviye Algoritmasi

1 : Stokastik bir politika mgy igin M adimda T yériingeyi olugturun.
2 : Gradyan degerini yaklagik olarak hesaplayn.
1 0, (i i
90 < 5 Gl (ST Vo log mo (a5 ")) R )
3 : Parametreleri giincelle.
f—0+ag,

Sekil 26 Politika Gradyani ve Takviye Algoritmasi

Sekil 26’da agiklanan algoritma, gradyanin belirli bir 6rneklem ile hesaplanmis halini
aciklamaktadir, gergek gradyan degeri hesaplanamamistir. Modelin belirlenmedigi
pekistirmeli 6grenme yaklasimlarinda ortam iizerinde daha 6ncesinde herhangi bir
bilgi olmadigindan dolay1 ajanin ilk olarak ortami kesfetmesi ve kesiflerden topladigi
bilgileri kullanmasi gerekir. Ajanin izleyecegi yol denklem 61°de tanimlanmistir

(Kolter, 2016).

max 9 (s,a) 1-—¢
T[(S) = aeA
rastgele aksiyon diger durumlar (61)

7. Pekistirmeli Ogrenmede Deger Tabanh Coziimler

Markov siirecinden daha onceki boliimlerde detaylica bahsedilmistir. Markov karar
stirecinin ¢Ozulmesi optimal olarak hesaplanan durum-deger ve aksiyon-deger
fonksiyonlarinin birlikte ¢oziilmesiyle saglamir. ki denklem de denklem 62’de
gosterilmistir.

V(s) = maxRE + ) PEV.(s) (62)
a

SIeS

0., =RE+y )

P&, max q,(s, @)
SIeS a

Denklem 62°de Vx(s) durum-degeri, qx(s, a) aksiyon-degeri ifade eder. Bu

fonksiyonlar birlikte hesaplandiginda Markov siirecinin optimal ¢éziimii elde edilir.
Daha 6nceki boliimlerde de bahsedildigi gibi durum gegis matrisi ve 6diil fonksiyonu

bilinmediginden dolayr Markov siirecinin kapali formda herhangi bir ¢6zimi
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bulunmamaktadir. Ancak yapay zeka ajan1 bulundugu ortamdan bilgiler elde ederek

t+1 durumunu P(S'|St,at) dagilim fonksiyonunda Orneklemis olur. Yapay zeka

ajaniin ortamdan topladig: bilgiler ile belirlenen 6diil fonksiyonu iizerine yaklasik

olarak hesaplama yapilabilmektedir. Denklem 63’te aciklanmistir
V7 (se) =10 + ¥V (5e41) (63)

Denklem 63’te durum, belirlenen zaman anindaki 6dil ve bir sonraki durumu

e + Y07 (stea) ile giinceller. Eger denklem 63’e zamansal fark da eklenirse denklem
64 elde edilebilir.

V(se) = (1 — )V™(sp) + a(re + yV™(St41)) (64)
V™(se) = V™(se) + a(re + yV™(se41) — V(sp))

Zamansal Fark

a<l

Dikkat edilmelidir ki belirlenen zamandaki V (s¢) degerinin giincellenmesi, bu

parametreye zamansal fark eklendiginde saglanacaktir. Yine ayni sekilde odiil

degerindeki gilincelleme V (s¢) parametresinin zamansal fark eklenmis haliyle

saglanabilir. Zamansal fark denklem 64’te zamanlar arasinda baglanti kurmaktadir.
Zamansal fark fonksiyonu diizgiin bir sekilde anlasildiginda tahmin edilen deger ve
gelecekte tahmin edilecek degerler arasinda iligki kurulabilir. Denklem 64°te ki
hesaplama ile 6diil degeri denklem 63’ten daha optimal bir sekilde hesaplanabilir.
Bunun nedeni bahsedildigi gibi Zamansal fark fonksiyonunun formdulizasyona

eklenmesiyle saglanmaktadir. Zamansal fark algoritmasi sekil 27°de gosterilmistir.

ALGORITMA : Zamansal Fark Algoritmasi

1 : P™(s)=0Vs€S  Algoritma baslangic parametresi.

2 : te0

K STy Durumlart ve édiil degerlerini gézlemle.

4 a = n(s) Belirli bir politika ile bir aksiyon uygula.

5 : St Bir sonraki durumu gézlemle.

6 P7(s,) = V=(s,) + a(r, + yP™(5,41) — V™(5,)) Zamansal Fark ile
giincelleme yap.

7  tet+1

Sekil 27 Zamansal Fark Algoritmasi
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Zamansal fark algoritmasi ile herhangi bir Markov siireci olusturmadan 6diil ve
durum degerini yaklasik olarak hesaplamamizi saglar. Bundan dolay1 bu ¢alismada

da kullanilan Q-6grenme algoritmasi ortaya ¢ikmustir (Kolter, 2016).

8. Q-6grenme Algoritmasi

Q-6grenme fikri ilk olarak Watkins tarafindan ortaya atilmistir (1989). Sonrasinda
matematiksel modeli ve kanit1 Watkins ve Dayan tarafindan sunulmustur (1992). Q-
O0grenme politika dist1 bir yontemdir ve Werbos un 1992°de yayimladig
caligmasindaki (1992) ADHDP’sine (Eyleme bagl bulussal dinamik programlama)
benzer. Oncesinde de sdylendigi gibi Q-6grenme politika dis1 bir yontemdir ve Q(s,a)
fonksiyonu mevcut degerlendirilen politikadan bagimsiz olarak tahmin edilir.
Markov siirecinde optimal hesaplamanin bulunmasi i¢in adimlarin sonuna kadar
beklenmesi gerekirken, Q-6grenmede deger islevi her zaman iterasyonunda
giincellenir. Gegis olasiliklarinin ve ddiillerin basglangicta bilinmedigi durumlarda Q-
degeri yineleme algoritmasinin uyarlanmasini saglar (Geron, 2017). Bir Q-6grenme
islevi uygulamalarimin ana yarar1 mevcut politikanin disindaki eylemlerden de
O0grenmesine izin vermesidir ve kesin bir tahmine ya da kesin bir ¢evresel modelin
kullanimina gerek duymamaktadir. Bu nedenle modelden bagimsiz pekistirmeli
ogrenme siifina girer (Glascher et al., 2010; Luo et al., 2016). Ancak Q-6grenme,
aksiyon-deger fonksiyonu i¢in istenen deneyimi elde etmek i¢in yiiksek miktarda
giiriltili arastirma gerektirir bundan dolay1 egitim siiresi Markov siirecinden daha
uzun strmektedir (Todorov et al., 2012).
Genel itibariyle Q 6grenmesi, durumlarin ve eylemlerin arasindaki iliskiyi gergekei
degerlerle tahmin etmeye dayanir. Q(s,a), s durumunda a hareketi yapilirsa ne kadar
0diil kazanilacagii belirtir. Verimli olarak degerlendirilirse robotun s durumuna
geciste a hareketini hayata gegirmesi beklenir. Bu 6grenme modelinin 6zellikleri
sOyle siralanabilir:

e Bu 0grenme tiirline gore, her hareketin sonucunda Q degerleri

farklilasacaktir.
e Belirli sayida durum ve hareket ikilisi varsa, denklem calistirildikca degerler
birbirlerine yakinlasacaktir (Sutton and Barto, 1998)
e Ogrenme saglanmasi icin herhangi bir sirayla durum ve hareket denklemleri

uygulanabilir, bir siraya ihtiya¢ duyulmaz.
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Bu Ogrenmenin Ozelliklerine dayanarak, ddiillerin kaybedilmeyecegi sdylenebilir.
Aksine elde edilen degerler her zaman saklanir.

Daha onceki basliklarda bahsedildigi gibi deger tabanli yaklasima alternatif olarak
ortaya koyulan Q-ogrenme yonteminde aksiyon ve durumlar denklemi asagidaki
gibidir.

Q™(s,a) = R(s) +y P(s'ls,a)Q™ (s",m(s")) (65)

SIeS
Denklem 65’te yapay zekd ajaninin politikas1 (s ') seklinde gosterilir ve denklem
65’in optimal olarak ¢6zimu denklem 66°da gosterilmistir.

0*(s, ) = R(s) + yz (66)

P(s'|s,a) maxQ*(s’,a)
SIeS areA

Denklem 66 Q-0grenme yonteminin temeli olarak kabul edilmektedir ancak
P(s'|s,a),R(s) ‘nin bilinmedigi durumlarda Q*(s,a) fonksiyonunun ¢oziminin
bulunmasi i¢in denklem 66’ya zamansal fark fonksiyonunun eklenmesi

gerekmektedir.

050 = (1-@)Q"(5,@) + a(r +y max Q' (s', @) 67)
(5,0 = 0*(s,@) + a(r + Y max Q"(s', @) — Q" (5,0)

Zamansal Fark

Denklemde vy gelecekteki odiilleri, R anlik odiilleri, o Ogrenme katsayisini
belirtmektedir. Yani Q 6grenmesinin tahminleri, Q degerlerine gore belirlenir. Bu
sayede kompleks hesaplamalardan kaginarak, uzun vadeli durum ve hareketlerin Q
degerlerine gore 6grenilmesini miimkiin kilar. Daha verimli oldugu i¢in bu 6grenme

sekli tercih edilir.
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Denklem 67°nin algoritma olarak tasarlanmigs hali Sekil 28’de gosterilmistir.

ALGORITMA : Q Ogrenme Algoritmas
1 : ae(01],y Ogrenme oram ve azaltma parametresini belirle.
2 : g>0 Rastgele aksiyon segimi igin epsilon ¢ok kiigiik bir say1.

3 : Q(s,a)=0s€S,acA Qdegerinin baglangic: aksiyon ve durumlar igin
sifir.

4 : Eps=1000 Algoritmamn kag¢ boliim ¢aligacag.

5 : T=100 Algoritmanin her béliim igerisinde kag adim atacag.

6 : Eps« 0

7 s Ajamin baglangi¢ durumu.

8 : T<20

9 g olasihkla rastgele a t

10 : 1— ¢ olasihklaa = max Q(s,a) aksiyon seg.

11 : a aksiyon uygula, s', v bir sonraki durum ve édiilii kaydet.

12 : Q(s,a) =Q(s,a) +a(r +vy max Q(s,a) — Q(s,a)) Q tablosunu
giincelle

13 : ses

Sekil 28 Q-Ogrenme Algoritmasi

Sekil 28 ayn1 zamanda Q-6grenmenin temel yontemlerini de agiklamaktadir (Kolter,
2016).

9. Sarsa Algoritmasi

Sarsa algoritmasi1 durum-eylem-durum-eylem yontemini tekrar eder. Genel itibariyle

Q-0grenmeye benzer ancak politikaya dayali bir zaman fark yontemidir. Eylem deger
fonksiyonu Q(s’,a’) ile mevcut politika ve durum-eylem cifti icin tahmin edilir. Q-
O0grenmesinden farkli olarak kesfi hesaba katmaktadir. Sarsa algoritmasinin

matematiksel modeli denklem 68’da gosterilmistir

Q"(s,@) = (1 - @)Q7(s, @) + a(r + Q™ (s, n(s"))) (68)
0" (s, @) = Q% (s,a) + a(r +yQ" (s, 1(s)) = Q" (5, @)

Zamansal Fark

Denklem. 68’a bakildig: taktirde belirli Q degerleri mevcut bir politika {izerinden
giincellendigi fark edilecektir. Ancak Q-0grenmesinde sabit olan politika, Sarsa
yonteminde parametrik olarak degismektedir. Bundan dolay1 Sarsa algoritmasi agik
bir politikaya bagl bir yontem olarak karsimiza ¢ikmaktadir. Sarsa yonteminde her

iterasyonda Q degerinden bir politika iiretilip o politika lizerinden tekrar hesaplama
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yapilir ve buna gore giincelleme saglanir. Sarsa algoritmasi genel itibariyle a¢ gozlii

bir sekilde hesaplanir. Sarsa yontemi sekil 29°da algoritma olarak agiklanmistir.

ALGORITMA : Sarsa Algoritmasi

1 : ae(01]y ﬁgrenme orani ve azaltma parametresini belirle.

2 : g>0 Rastgele aksiyon segimi icin epsilon ¢ok kiiciik bir say1.

3 : Q(s,a)=0seS,acA Qdegerinin baslangic1 aksiyon ve durumlar i¢in
sifir.

4 : Eps=1000 Algoritmanin kag béliim ¢alhisacag.

5 : T=100 Algoritmamn her béliim icerisinde ka¢ adim atacagi.

6 : Eps«0

7 s Ajamn baglangic durumu.

g8 a Ajamn s durumu icin almasi gereken aksiyonu belirliyoruz

9 T«0

10 : a Aksiyonunu uygula ve r, s’ kaydet.

11 : a’, Ajamin s’ durumu i¢in almas: gereken aksiyonu belirliyoruz

12 : Q(s,a) = Q(s,a) + a(r +yQ(s,a) — Q(s,a)) Q tablosunu
giincelle

13 ses, a«<a

Sekil 29 Sarsa Algoritmast
Algoritmadan da anlasilacag1 iizere Q-6grenme yaklasimi sadece optimal yolu
hesaplarken, Sarsa yontemi bu optimal yolu en giivenli sekilde hesaplamaya calisir.
Bundan dolay1 Q-6grenme yontemi sadece maksimum odiiller tizerinde hareket
ederken, Sarsa yontemi bu maksimum odiilleri gelecekteki durumlar1 ve aksiyonlari
da hesaba katarak hareket eder. Q-6grenme yaklasimi ile Sarsa yonteminin bir diger
farkli da Sarsa yontemi iterasyonda gincel politikaya gore ilerlerken, Q-6grenme

kararin1 sadece maksimum 6diil ve deger {izerinden hesaplar (Sutton ve Barto, 2018).

10. Derin Pekistirmeli Q-6grenme Algoritmasi

Daha 6nceki boliimlerde bahsedilen Q-6grenme ve Sarsa yontemleri tablo metotlar
olarak adlandirilmaktadir. Gergek hayatta bu algoritmalarin kullanimi kontrol
problemleri ve durum uzayinin karmasiklig1 nedeniyle yetersiz kalmaktadir. Bundan
dolay1 pekistirmeli 6grenme ve derin 0grenme yaklasimlarinin birlesimiyle derin
pekistirmeli 6grenme yaklagimi ortaya ¢ikmustir.

Pekistirmeli 6grenmede standart olarak her adimda durum ve aksiyonlar ayristirilarak
her adima Q-6grenme yontemi uygulanabilir ancak ger¢ek diinya problemlerinde her
adimin ayristirilmasi karmasik ve maliyetli olacaktir. Yapay sinir aglarinin fonksiyon

yaklastiric1 6zelligi (Watkins and Dayan, 1992; Sutton, 1999; Riedmiller, 2005) ile
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Q-6grenme yaklagimi birlestirildiginde siirekli durumlarin  bulundugu kontrol
problemleri daha kolay bir sekilde ¢oziilebilmektedir (Levine et al., 2016; Williams,
1992; Peters, 2008; Deisenroth, 2013; Mnih, 2015; Kiumarsi et al., 2018; Xu et al.,
2017; Tsurumine et al., 2019).

Ancak derin pekistirmeli 6grenme algoritmasinin dezavantajli yonleri de mevcuttur.
Bunlardan ilki kontrol problemlerinde karsimiza g¢ikan u(t), zamanin siirekli bir
fonksiyonudur. Ancak bunun pekistirmeli 6grenmede karsihigi a(t) parametresidir.
Pekistirmeli 6grenmede aksiyonlar birbirlerinden ayrik degerde olmasindan dolayi,
pekistirmeli 6grenme ile kontrol problemleri ¢oziilmeye calisildiginda derin Q-
O0grenme algoritmasi yeterli bir ¢6ziim tiretemeyebilir (Kohl and Stone, 2004; Pastor
et al., 2009).

Derin Q-6grenme algoritmasinin akis diyagrami sekil 30’da goriildigi gibidir.

ODUL

EYLEM
CEVRE

GOZLEM

Sekil 30 Derin Q-Ogrenme Algoritmas1 Akis Diyagrami

Derin pekistirmeli 6grenme algoritmasi ilk olarak 2015 yilinda 6nerilmistir (Levine

et al., 2016). Denklem 69’da Q-6grenme formiiliine bakildiginda

Q(s,@) = Q(s,@) + a(r; + y max Q(s', @) = Q(s', @) (69)

Iteratif olarak giincellendigi goriilmektedir. Ancak siirekli durum degerlerin herhangi

bir iteratif ¢6ziimii bulunmamaktadir. Derin Q-6grenme algoritmasinin temelinde
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fonksiyon yakinlastirma kullanildigindan denkleme fonksiyon yaklastirma teknigi
uygulanmalidir. Bu fonksiyon denklem 70’de gOsterilmektedir.

Q(s,a:0) = Q*(s, ) (70)

Denklem 70’de 8 parametresi derin sinir aglarinin parametrelerini temsil etmektedir.

Denklem 69 Denklem 70’deki gibi tekrar olusturuldugunda asagidaki denklem ortaya

cikar.
Q(s,@) = Q(s,@) + a(rs +y maxQ(s'a’) — Q(s,)) (72)
Hedef Tahmin
Maliyet

Eger denklem 71 iki farkli pargaya ayrilirsa denklem 72’teki denklem grubu ortaya

cikar.
¥y =1, +ymaxQ(s'a’:0) (72)
aeA
7 =0Q(s,a:0)

Denklem 72’de ilk parga hedefi, ikinci parga tahmin edilen degeri agiklar. Denklem
72 baz alinarak maliyet fonksiyonu olusturulmak istendiginde denklem 73 elde edilir.

(73)
Li(6;) = Es,a,r[(? —Q(s q, 91’))2]

Denklem 64’e maliyet fonksiyonunun gradyani eklendiginde denklem 74 elde edilir.

Voll(6) = Esars [ +ymaxQ(s'a':6-) ~ Qs 0))Va Qs 00]

Sirastyla denklem 73 ve denklem 74 kullanilarak derin Q-6grenmenin algoritmasi
olusturulabilir (Mnih et al, 2015).

Derin pekistirmeli 6grenmenin algoritmasi sekil 31°de verilmistir.
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ALGORITMA : Derin Q Ogrenme Algoritmasi

: D, C Hafiza alam ve C giincelleme adim parametrelerini olugtur.

: Q(s,a:0)  Tahmin degerini rastgele iiretilen 8 parametreleriyle hesapla.
: Q(s,a:0)  Hedef degerini rastgele iiretilen 0 parametreleriyle hesapla.

: Eps+« 0

: s Ajamin baglangi¢ durumu.

: t<20

: & olasilikla rastgele a, aksiyon seg.

: 1 — ¢ olasilikla a, = argmaxQ(s,, a,: 0) aksiyon seg.

a€d
: a, aksiyonunu sisteme uygula ve ry, S,,, 6diil ve bir sonraki

=T - - - Y SO
-

durumu hesapla.

10 : D = (s;,a¢, 11, Se+1)  Bellege verileri kaydet.
11 : D = (s;,a;,7},5j41)  Bellekten rastgele veriler olugtur.
12 : r, t=j+1
Y= rj+_vmaxQ(S“|,a,ﬂ I) dd
asd
13 : (9 — Q(sj, aj: 6,))* Maalivet fonksiyonunu gradyan azalan ile
optimum yap.
14 : Her C adimda bir Q) = Q

Sekil 31 Derin Q-Ogrenme Algoritmasi
11. Derin Deterministik Politika Gradyan Algoritmasi

Derin deterministik politika gradyan algoritmasi, derin politika gradyan ve derin Q-
O0grenme yonteminin birlestirilmesiyle olusturulmus bir algoritmadir. Derin Q-
O0grenme algoritmasi siirekli durum ve birbirinden ayrik aksiyon kiimeleri {izerinde
calistigindan dolay: siirekli aksiyon uzayina uygulanamaz. Ornegin 7 eklem bélgeli
bir robot kol ele alindiginda, robot kolun eklemlerinin uygulayacagi her bir aksiyon 3
boyutlu bir galisma uzaymnca 3'=2187 olacaktir. Aksiyon alamindaki yapay zeka
ajanlarinin atacagi her adimda aksiyon iistel olarak biiyliyecektir. Bundan dolay1 da
aksiyon uzayr c¢ok fazla bliyliyecek ve yapay zeka ajanlarinin ortami kesfetmesi
imkansiz hale gelecektir. Ayrica yapay zeka ajanlarinin 6grenme gerceklestirecegi
uzay1 ayriklastirdigimizda bu durum bilgi kaybia sebep olacaktir. Bu sebepten
dolay1r derin deterministik politika gradyan algoritmasi ortaya c¢ikmistir. Derin
deterministik politika gradyan algoritmasi politika tabanli bir algoritmadir ve yapay
zeka ajanlarinin aksiyon alacaklari ortamda derin 6grenmeden gelen fonksiyon

yaklastiric1 yontemi sayesinde ayrik uzay problemini ¢6zmektedir.
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Robot kol uygulamalarinda, robot kolun eklemleri ve kolun hareket edecegi alan
degiskeni parametreleri Derin deterministik politika algoritmasina giris verisi olarak
eklenecek ve sonug olarak uygun politika degerleri elde edilecektir (Lillicrap et al.,

2015).

Standart pekistirmeli 6grenme fonksiyonu denklem 75’te gosterilmistir.

Q" (sp ar) = E[r(sp,ae) + vQ™ (Ses1, X41)] (75)

Eger denklem 75’e deterministik politika yontemi de eklenirse denklem 76 elde
edilecektir.

L(6%) = E[(Q(s¢, a: 69) — y)?] (76)
Ye = r(Se @) + ¥Q(Se1, T(Se41): 09)

Denklem 76’a gradyan tabanli bir giincelleme eklenirse denklem 77’e ulasilir

Vgr] = E[VenQ(s,@|69)|s = 5., a = m(s,|6™)] (77)
Vor] = E[VerQ(s, a|0%)|s = s, @ = m(s¢) Vg, m(s¢10™)|s = 5]

Denklem 77° ayni zamanda deterministik politika gradyani algoritmasinin
fonksiyonudur.
Pekistirmeli 6grenmeye derin yapay sinir aglar1 eklendiginde model olusturmak ve
algoritmanin performansint arttirmak igin veriler arasindaki korelasyonu en aza
indirmek gereklidir. Ancak pekistirmeli 6grenmede yapay zeka ajanlarinin topladigi
veriler arasinda yiiksek bir korelasyon bulunmaktadir. Bundan dolay1 derin Q-
O0grenme yoOnteminde her iterasyonda olusturulan bellek alam1 ayni sekilde derin
deterministik politika gradyant yonteminde de olusturulmali ve bu belleklere
toplanan veriler birbirlerinden bagimsiz sekilde secilip buna gore egitim
gergeklestirilmelidir.

Derin deterministik politika gradyan algoritmasi sekil 32’de gosterilmistir.
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ALGORITMA : Derin Deterministik Politika Gradyam Algoritmas
1 : Q(s, al09),n(s|8™ Kritik ve aktér yapay sinir aglarin rastgele
parametreler 8%, 0™ ile baglangicim olugstur.

2 : Q& Hedef kritik ve aktor yapay sinir aglarin 69 « 62,9 g™
parametreleriyle baslangic degerlerini olustur.

3 : D Bellek alann olugtur.

4 :+ M Algoritmanin kag béliim ¢ahgacagin olugtur.

5 T Algoritmanin her bir béliim igerisinde kag adim atacagim olugtur.

6 : Bolim=1:M

7 = Ajamin kefis olusturmasi igin, T adet N rastgele deger iiret.

8 Baglangi¢ durumunu s, olustur.

9 t=1:T

10 : Aksiyon secimi a, = n(s,|0™) + N, olustur.

11 : Aksiyonu a, ortama uygula ve ry, s, degerlerini gézlemle.

12 : D = (s;, a4, 15, 8141) Degerlerini hafizaya kaydet.

13 : Hafizadan P adet uniform drnek degerler olustur.

0y =1+ YQ(Sear, R(5041167)10%)  Degerini olustur

IS5 : L= iZfﬂ(}’! - Q(s;,a;]09))? Kritik yapay sinir agim giincelle.

16 :

Vor] = T, V,Q(5,al69) |s = s,, @ = n(s;) Vorrr(s167)|s, Aktor
vapay sinir agini politika gradyan: ile giincelle.

17 : 09 « 169 + (1 —1)0°
6% « 16™ + (1 —1)8™ Hedef yapay sinir aglarimin parametresini
giincelle.

Sekil 32 Derin Deterministik Politika Gradyan1 Algoritmasi
C. Federe Ogrenme

Derin pekistirmeli 6grenmede, durum o6zellik alani kiiciik ve egitim verileri sinirh
oldugunda yiiksek kaliteli politikalar olusturmak zordur. Derin pekistirmeli
o0grenmede Onceki transfer 6grenme yaklagimlarinin basarisina ragmen, veri ve/veya
modellerin gizliligi nedeniyle veri ya da modellerin bir ajandan digerine dogrudan
transferine genellikle mahremiyet bilincine sahip bir¢cok uygulamada izin verilmez.
Bundan dolay1 Federe Ogrenme ydntemi ortaya ¢ikmustir.

Bu yontemde aracilar arasinda sinirli bilgi (yani Q-ag1 ¢iktisi) paylasarak her araci
icin 6zel bir Q-ag politikas1 6grenmeyi amaglar. Bilgi, baskalarina génderildiginde
“kodlanir” ve baskalar1 tarafindan alindiginda “kod ¢oziilir”. Bazi1 ajanlarin
durumlara ve eylemlere karsilik gelen ddiilleri oldugunu, diger ajanlarin ise ddiilleri

olmadan durumlar gozlemlendigi bu yontemde kabul edilebilir. Ceza olmadan, bu
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temsilciler kendi bilgilerine dayali olarak karar yonergeleri olugturamazlar. Politika
kararlar1 alirken tiim temsilcilerin bir koalisyona takilmalarindan fayda saglanir.
Birlesik pekistirmeli 6grenmenin birgok uygulamasi mevcuttur. Ornegin imalatta, bir
lirliniin imalati, triinliin farkli bilesenlerini {ireten farkli fabrikalar1 igerebilir.
Fabrikanin karar verme politikas1 6zeldir ve paylasiimaz. Ote yandan, sinirl isleri ve
(baz1 fabrikalar icin) iicret eksikligi nedeniyle, bireyler i¢in yiiksek kaliteli karar
verme yonergelerini bagimsiz olarak gelistirmek genellikle zordur. Bu nedenle
kisisel verilerin agiklanmamasi durumunda karar alma politikalarini federe bir
sekilde gozden gecirmelerinde fayda vardir. Baska bir 6rnek, hastaneler i¢in hasta
bakim politikalar1 gelistirmektir. Hastalar bazi hastanelerde tedavi edilebiliyor ve
tedavi hakkinda higbir zaman geri bildirimde bulunmuyor olabilir, bu da bu
hastanelerin hastalar1 tedavi etmek ve hastalar i¢in tedavi kararlar1 vermek ig¢in
odiillendirilmedigini diisiindiirtir. Ayrica hasta kayitlar1 6zeldir ve hastane ile
paylasilmaz. Bu nedenle, federe diizeyde hastane tedavi politikalarinin gozden
gecirilmesine ihtiya¢ vardir.

Federe derin 6grenme algoritmasi, kiiresel bir durumu (veya dogrudan “kiiresel” bir
durum olusturmak icin kullanilan alt durumlari) gozlemleyen, bireysel eylemleri
secen ve ekip odulleri (veya her ajan, diger ajanlarla paylasilan bireysel 6diil alir)
(Mnih et al., 2013). FedRL, acentelere bazi gordiiklerini paylasmamalarin1 ve bazi
acentelere 0diil almamalarin1 tavsiye eder. FedRL c¢ercevesi genel itibariyle,
gozlemlerin birbirleriyle paylasilmasi sartiyla (Cao, 2019), ilgili ancak farkl
gorevlerin veya aracilarin Ogrenme performansini iyilestirmek i¢in &grenme
deneyimini gorevlere aktarmayr amaglayan pekistirmeli Ogrenmede transfer
ogrenmeden de farklidir (Liu et al., 2019). FedRL algoritmasi politikanin aracilar
arasinda paylasilamayacagini one siirmektedir.

Dagitilmis  6grenme modellerinin - amaci, Ozellikle bilgi islem giiclinlin
paralellestirilmesi iken, federe 6grenme modellerinin amaci, dncelikle heterojen veri
kiimeleri iizerinde egitim yapmaktir. Hem dagitilmis 6grenme modelleri hem de
federe 6grenme modelleri, modelleri birden ¢ok sunucuda egitir. Bununla birlikte,
o6grenme modellerinde genel bir varsayim, yerel veri kiimesinin diizgiin dagildig: ve
smiflarin kabaca ayni biyiikliikte oldugudur (Mnih et al., 2015; Duan et al., 2016).
Buna karsilik, birlesik bir 6grenme modelinde, veri kiimesi heterojen olabilir ve
siiflar dengesiz olabilir. Bu nedenle, dagitilmis bir 6grenme modeli durumunda,

merkezi sunucu tipik olarak yerel istemcilerden toplanan ortalama gradyan
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giincellemelerinin ortalamasini alir ve daha sonra bunun yerine giincellenmis modeli
merkezi sunucudan indirebilir.

Aktorlerin kendi ag parametreleri vardir 0. Calisanlar, ¢evresel gozlemler géz oniine
alindiginda yapilacak Ogrenme gorevlerini ve eylemleri gergeklestirmek igin
katilime1 aglart kullanir. Isciler, katilimecr agi tarafindan tanimlanan eylemleri
gonderir ve ortamin bir sonraki durumunu gozlemler. Eylemler sonucunda calisanlar
olumlu veya olumsuz 6diiller alirlar. Elestirmenler, eylem odiillerini ag parametreleri
olarak goriiyor. Elestirmen, iscilerle birlikte, aktor tanimli eylemlerin ortami daha
olumlu hale getirip getirmedigini degerlendirmeyi Ogrenir ve elestirmenin geri
bildirimi, oyuncuyu optimize etmek i¢in kullanilir.

FedRL cercevesi ii¢ asamada calismaktadir. Ilk olarak, her ajan Gauss farklilasmasi
kullanilarak “karsilastirilan” diger ajanlardan Q aglarmin ¢ikti degerlerini toplar.
Ayrica, Q aginin global ¢iktisini hesaplamak i¢in yerel Q ag1 ¢ikisini ve sifrelenmis
degerleri girdi olarak alan MLP (multilayer perceptron) gibi paylasilan bir deger ag1
olusturur. Son olarak, global Q-aginin ¢iktisina dayali olarak paylasilan deger agin
ve kendi Q-agimi giinceller. MLP’nin araci tarafindan paylasildigini ve aracinin kendi
Q-aginin baskalari tarafindan bilinmedigini ve egitim sirasinda paylasilan sifreli Q-
agmin ¢iktisindan tiiretilmemesi gerekmektedir.

Markov karar siireci daha dnceki maddelerde de bahsedildigi gibi (S,A,T,r) seklinde
tanimlanabilir. Burada S durum uzayini, A aksiyon uzayini, T ise gecis fonksiyonunu
temsil etmektedir. SxA — S,i.e., T(5a,s) =P (s | s, a), durum uzayu icin gegerli
olan, sonraki durum olasiligini belirtir, S € S mevcut durumunu belirtir. r, 6dul

fonksiyonu ve S — R, burada R gergek sayilarin alanidir. 7 eldeki politikay: temsil

eder. Ve V 7 (s) fonksiyonu ve t + 1 adimindaki Q-fonksiyonu asagidaki denklemler

ile giincellenebilir:

VEA(S) = () + ) T(5,m(s), sV (s, (78)
SIES
Ve
0Fs(5,0) = 7(5) + ) T(5,0,WE(S"), (79)
SIES

Burada t € {0,..,K - 1} kosulu saglanmalidir. Markov siirecinin ¢dziimii 7* en iyi

politika ile V”* (s) = maxm V™(s) yada Q”*(s, ' (s)) = maxm Q" (s, 7(s)) seklinde

olacaktir. Ancak derin 6grenmede gecis tiirevi T bilinmediginden dolay1 Q-agi
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Q(s, a; 8) fonksiyonu ile giincellenir ve burada 6 parametresi agin parametresini

temsil etmektedir. Asagidaki denklem ile glincellenir:

Qe+1(s,a;0) = Eg, {V max Q;(s’,a’; 0)ls, a} (80)
areA

Calismada arastirmacilar tarafindan yapildig1 gibi, 8 parametrelerini 6grenmenin
bir yolu (s,a, s, r) gegislerini yeniden yiiriitme belleklerinde Q depolamak ve 6’y1

tekrar tekrar giincellemek i¢in bir toplu 6rneklemden yararlanmaktir (Smart ve

Kaelbling, 2002). @ bir kez 6grenildiginde * ilkesi Q(s, a; ) ‘ den ¢ikarilabilir.

n*(s) = arg rglgj(Q (s,a; 0) (81)

Federe derin pekistirmeli 6grenme problemi su sekilde tanimlanir:

Da ={(sa, aa, s’a, ra )} ajan a tarafindan toplanan durum ve eylem ciftleri D =

{( sB,ap )} ajan B tarafindan toplanan durum ve eylem ciftleri. o Ve T[B*
politikalariin federatif olarak olusturulmasini amacliyoruz.

Birlesik  derin  pekistirmeli  Ogrenme probleminde asagidaki maddeler
varsayilmaktadir.

Al: sa ve sB durumlarinin ozellik uzaylari, a ve [ ajanlar arasinda farkhidir.
Ornegin, bir sq durumu, bir hastanin o hastanesindeki kardiyogramini belirtirken,
baska bir sB durumu, aym hastanin  hastanesindeki elektroensefalogramini
belirtir ve sa ve sf ‘nin dzellik uzaylariim farkli oldugunu gosterir.

A2: Da ve DB gegisleri, kendi modellerini 6grenirken o ve (8 arasinda dogrudan
paylasilamaz. Bununla birlikte, Da ve DB gecisler arasindaki yazismalar birbirleri
tarafindan bilinmektedir. Bagka bir deyisle ajan «, ajan f’a bir geg¢isin ID’sini
gonderebilir ve ajan 3, DB‘de karsilik gelen gegisi bulmak i¢in bu ID’i kullanabilir.
Ornegin, hastanede ID belirli bir hastaya karsilik gelebilir.

A3: Qua ve QB islevlerinin ¢iktilar, baz1 gizlilik koruma mekanizmalar tarafindan
korunmalar1 kosuluyla birbirleriyle paylasilabilir

Al,2,3 maddelerine dayanarak, veri ve modellerin gizliligini koruyarak tiim ajanlar
icin yiiksek kaliteli politikalar1 6gretme amaglanmaktadir.

MLP ile birlestirilmis federe Q-aginin fonksiyonu asagidaki gibidir.
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Q%(.,Cp;64,05) = MLP([Q4 (5 02)|Cp]; 64) (82)
QF (- Cai 65, 85) = MLP([Ca|Qs(-5 65)]; 65)

Burada 6g MLP’nin parametreleridir ve [.|.] birlestirme islemini gosterir. Bir
MLP’nin parametreleri aracilar arasinda paylastirilabilir. MLP giincellendiginde
giincellenen parametreler diger aracilarla paylastirilir.

Ajanlar ile ilgili olarak, asagida gosterildigi gibi, kendi temel Q-agimi giincellerken
diger ajanin temel Q-agmi (Gauss gurtltusi ile) sabit olarak gorlntlleyerek her

ajanin birlesik Q aglar1 tanimlanir.

QF (-, Cp; 64, 85) = MLP([Qu (5 8D Cp]; 65) (83)
QF (-1 Cai 05, 65) = MLP([Ca|Qs(5 65)]: 6,)
Burada Ca = QAa(sa,aa;Ha) ve CB = QAﬁ(sﬁ,aﬁ,'Gﬁ) fonksiyonlar sirasiyla ajan f’
nin Q-ag1 ve ajan a’nin Q-ag1 giincellerken sabittir.
Ajan o ve ajan B nin Q-aglarinin kare hata kaybi U'a(ea,eg) ve I/ [g(Qﬁﬂgj

fonksiyonlar1 minimize edilerek egitilir. Ve son olarak asagidaki denklemlere

ulasilir
L(6a,6,) = E[(Y/ = Q%(s], al, Cp; 64, 6,))?] (84)
14,(85.85) = E[(Y) = QF (s}, a}, Cus 65, 65))?

Federe 6grenmenin basit bir algoritmasi sekil 33 ve 34’te gbsterilmistir.

ALGORITMA: Federe Derin Ogrenme Algoritmasi [Sunucu]

Basla wy
for hert=0,1,.. do
M «—max ([C.K], 1)
St = rastgele m katilimct ayarla
for katilimcr i¢in k € Siin parallel do

wf,; = Yerel Giincelle (k, wy)
— nk ok —
Wi+1 = ZkESt; Wir1, Mg = XkeseNk

~No oabhwNE

Sekil 34 Kullanilacak Federe Derin Ogrenme Algoritmasi S6zde Kodu (Sunucu)

48



ALGORITMA Federe Derin Ogrenme Algoritmasi [Yerel]

1 B = yerel minibatch boyutu

2 m = yerel katilimci sayisi

3 E = egitim turu

4 n = 6grenme orant

5 Basla

6 Wo «— rastgele baslatma

7 liletisim boyunca}

8 fort=1,.,T,...do

9 St «— (rastgele alt kiime — max (C x K, 1) katilimci)
10 {her katilimci igin yerel optimizasyon}
11 for katilimcr k € Sy do

12 verel agirliklart baslat: wiy <— wra
13 for epoch e €[1,E] do

14 Yerel verileri bol, B(:;kByzg“znlarl)
15 - for yigin b €B do

16 : Wik <— Wik — Niocal Al (Wi ; b)
17 end for

18 end for

19 end for

20 {Merkezi Ortalama}

21 WtZkeSt Wtk

22 : end for

Sekil 33 Kullanilacak Federe Derin Ogrenme Algoritmasinin Sézde Kodu (Yerel)
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I11. ROBOTLARDA PEKISTIRMELIi OGRENME

Pekistirmeli 6grenmeye gore, gelisen ve 6grenen robot sistemi, harekete gegerken ve
karar alirken her zaman ortam ile etkilesim igerisindedir. Ogrenme yetenegi olan
robot etkenleri anlayip analiz ederek, en iyi eylemi se¢mek icin ¢alisir. Bu robotun
analiz yetenegine Ornek olarak disiiniilebilir. Bu islemleri gergeklestirirken her
seferinde bulundugu ortamdan deneme yanilma adi verilen iyi ve kotii dontisler alir.
Bu sekilde robot, en iyi sonuca ulagmis olur. Bununla birlikte gercek diinyadaki
pekistirmeli 6grenmenin uygulamalari, genellikle 6grenme yonteminin kendisinin
Otesinde onemli teknik gelismeler gerektirmektedir: fiziksel donanim igin pratik olan
O0grenme siirelerini de elde etmek i¢in politika ya da deger islevi i¢in uygun bir temsil
secilmelidir (Bicchi, 1995; Platt, 2007). Ancak gercek dunyadaki robotik
caligmalarina derin pekistirmeli 6grenme yoOntemlerinin uygulanmasindaki temel
zorluklardan birisi de yiiksek ornek karmasikligr olmustur (Bicchi, 1995; Stulp et al.,
2011)
Bu o6grenme yonteminde ortamin oOzellikleri robota tanimlanmalidir. Deneme
yanilmadan alinan sonuglar performansi dlglimlemek i¢in kullanilir. Bu dlgtimleri
etkileyen tiim degiskenler ortam olarak diisiiniilebilir (Russel and Norvig, 1995).
Bu robotlar her seferinde yeni seyler 6grenmeyebilir. Bunun yerine ge¢mis bilgilerini
de kullanabilir. Bunlar kompleks olabilecegi gibi basit seyler de olabilir. Ogrenebilen
robotun hedefe giderken ge¢mis tecriibelerinden faydalanip faydalanmayacagini ya
da yeni olasiliklar bulup bulamayacagini yapilan plan belirler. Ortam ile §grenebilen
robot arasinda yaygin kabul edilen iliskiler sekilde gosterilmistir (Kulkarni, 2012).
Bir robotun 6grenebilen rasyonel robot sayilabilmesi igin, ortamdaki karmasik
problemleri tespit edip onlar1 ¢dzebilmesi gerekmektedir. Bu robotlarin sahip olmast
gereken ozellikler de sOyle siralanabilir:

1. Siirekli veya belirli araliklarla ortamlardan veri toplamali

2. Tek bagina karar almal1 ve bu kararlar1 uygulayabilmeli

3. Farkli bilgileri bir araya getirerek, tekil bilgilerle daha genis bir bilgi havuzu

olusturabilmeli.
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4. Siirekli 6grenme yetenegi olmali
5. Daha Once edindigi tecriibelerle yeni bilgiler edinebilmeli.
Eger ortamda siirekli bir degisim varsa, sensorlerden alinan veriler yeterli degilse ya
da yeterli olsa bile temiz ve anlasilabilir degilse, robot i¢cin durum karmasiklasabilir.
Bu durumlarda robot inisiyatif almali ve ge¢mis tecriibelerinden de yola gikarak
gerekirse bulundugu eylemleri 6diil ve ceza deneyimlerinin arasina katabilmelidir.
Bu sekilde esnek hareketlerde bulunmak i¢in robotta su 6zellikler olmalidir:
1. Responsive olmalidir. Elde ettigi datalara gore olaylara zamaninda cevap
verebilmelidir.
2. Proactive, yani onsezili olmalidir. Ansizin gerceklesen cevresel konulardaki
firsatlar1 gorebilmeli ve uygun eylemi se¢melidir.
3. Bulundugu ortamdaki diger robotlarla ve kisilerle etki tepki iliskilerine

girebilmeli, yani sosyal olmalidir.

4 N\ R

.. Algilar
Robot Sensorler -

( bwm ) l

(Ortam Nasil Degisir

Algilanan Ortam

Eylemlerimin Ortam
Sonucu Ne Olabilir

Kosul — Eylem |
(eger-dyleyse) Uygulanan Eylem
kurallari

Hareket Eylemler

\ Uygulayicilar Y, ‘E—/

Sekil 35 Akilli Robot Ortam Iliskisi
A. Ogrenen Robotlar

Daha 6nce de anlatildigi gibi bir robotun akilli olarak siniflandirabilmesi igin, tek
basina degisken ortamlarda eyleme gecilmesi ve karar verebilmesi gerekliligi
bulunur. Robotun ge¢mis tecriibelerinden edindigi veriler, ¢ikarim yapmaya ve dogru
hedefe ulagsmasina yeterli olmayabilir. Yani robotlar her karardan sonra kendini

gelistirmelidir ve bu degisken ortamlarda mantikli karar almasi saglanmalidir.
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Bizim diinyamizdaki &gretmen esligindeki ©Ogrenme, robotlar i¢in goézetimli
ogrenmeye karsilik gelmektedir. Bu sebeple robotlar tahmini  modeller
gelistirebilmelidir. Bu tahminler ¢iktilarin eylemlerle olan iliskilerine, rakiplerin
verebilecegi tepkilerin tahminlerine dayanir. Ogrenebilen bu robotlar bazen de
rastgele hareketler yapmak durumunda kalir. Ancak bu eylemler rastgele olsa da

sonucuna gore 6diil ve ceza datalarinin incelenebilir olmasi gerekir.

Yorumlama <«——— Sensorler =

A\ Denemeler 1

™ Performans

Ogrenme P Degerlendirmesi Ortam
Bilgi
\i l
Hareket >
Karar Uygulayicilar
Mekanizmasi

Sekil 36 Akilli Robot Ogrenme Siireci

Robotlarin diinyasinda da tipki bizim diinyamizda oldugu gibi 6diil ve ceza eylem
tamamlandiktan sonra gelmektedir. Ve yine tipki bizde oldugu gibi kararin
hakliligini 6l¢mek icin ¢ok onemlidirler. Ciinkii bu sayede robot verilen kararlarda
degisim gerekip gerekmedigini degerlendirir ve eylemlerine bu sekilde devam eder.
Robotun toplam 6diiliiniin en yiiksek seviyeye ulasabilmesi i¢in periyodik odiller
onemlidir. Siire¢ igerisinde 0diil gelmezse, robot tahminlere dayali bir sekilde

maksimum odiile ulagsmaya ¢alisacaktir.
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Ortam

J\ /\ /k /“\

\/ \/ \/ \/

T=t, =t =t

Sekil 37 Odiiltin Ortamdan Durum-Eylem ikilisi Sonras1 Nasil Geldiginin iliskisi

Ogrenebilen robotlar, her zaman maksimum 6diilii hedefler. Odiilleri bazen belirli
periyodlarla bazen de asil hedefe ulastiginda elde eder. Odiilii belirten denklem
85’deki gibidir.

RT = rt—1 +rt-—2 +rt-=3 +..4r7 (89)

Ortam ile robot arasinda bulunan iliskiyi incelersek, 6diil ve eylemlerden sonra elde
edilen sonuclar farkli olacaktir. Siirekli gorevlerde kisimlara ayirmak zor olabilir ama
periyodik gorevlerde bu ¢ok daha kolay olacaktir. Toplam 6diil de bu siiregte alinmig

odallerin hepsinin bir araya gelmesinden olusacaktir.

B. Robotlarda Eylem Secim Metodlar:

Pekistirmeli 6grenme tiirlinlin diger tiirlerden en biiyiik ayristigi nokta, 6dil ve
cezalarin talimat olmasi degil de yorumlanabilmesi ve gec¢misteki, gelecekteki
pozisyonlara gore sekillenmesidir. Bu sekilde tutarli bir arastirma miimkiin
olmaktadir (Sutton ve Barto, 2018). Sadece iyi ve kotii davramis olarak
tanimlanmaktan ziyade bu degerlendirmenin sonucunda optimizasyon temelli veriler
elde edilir. Bagka bir yandan da gézetimli 6grenme tiirii ¢ok 6nemli bir yontemdir.
Bu yontemde odiiller degil de hareketler ve onlarin sonuglar1 belirlenir ve aralarinda

iliski kurulur.
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Durum ve eylem arasindaki iliskiyi anlamak icin, arastirma ve faydalanma iyi
dengelenmelidir. Bunu dengelemek igin de se¢cim metodu ve degiskenler iyi
belirlenmelidir. Eger robot siirekli faydalanmaya c¢alisirsa, yani siirekli ayn1 yolu
segmeye baslarsa daha hedef icin iyi bir yol olsa da robot bunu gérmezden gelecektir
ya da dodiller diisiikse robot bu yola girmez ve hicbir zaman istenilen sonug
alinamayabilir. Ancak robot siirekli gelisir ve tek bir yola sadik kalmazsa, ilerleme
ve Ogrenme miimkiin olmaz. Iste bu sebeple arastirma ve faydalanma iyi

dengelenmelidir.
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IV. ILGILI CALISMALAR

Bu boliimde pekistirmeli 68renme, federe 6grenme, robot kollarinin cisimlerin
tutulabilirligini 6grenmesi konusunda sunulan farkli caligmalar incelenecektir.
Calismada aragtirmacilar, bir robot kolunun hareket planlama ve hareket kontroli, iki
robot kol arasindaki is birligi ve bir robot kolunun uzaktan kontrolii gibi hizmetler
i¢in Mobil U¢ Bulutu (MEC) algoritmasin1 énermislerdir (Tsokalo et al., 2019). iki
robot kolunun is birligi kullanim durumu, iiretim hattindaki karsilikli ¢alisma
konusunda birden fazla robot kolu arasindaki is birligine iliskin bir tahminde
bulunmuglardir. Caligmada arastirmacilar otomobil endiistrisinde algilama, kontrol
ve lretim i¢in yeni mi al ve yerlestir robotu dénermislerdir (Smys and Ranganathan,
2019). Alma ve yerlestirme robotlari, ¢esitli endiistrilerde montaj, paketleme, kutu
paketleme ve denetimde kullanilmaktadir.

Robotik 6grenmede, dinamik sistemlere dayali motor ilkeleri (Schaal et al., 2007;
Ijspeert et al., 2002) hem taklit hem de pekistirmeli 6grenme yoluyla yeni
davraniglar hizli ve giivenilir bir sekilde kazanmasima izin vermektedir. Ornekler
etkileyici olsa da gorevi yeniden 6grenmeden bir motor ilkelinin deneme yanilma
yoluyla farkli bir davranisa nasil genellestirilebilecegini ele almamislardir. Ornegin
bir fincanda top (Kober and Peters, 2011) hareketinde ip uzunlugu degistirilmisse,
hareket parametreleri de degistirilecek ve davranis yeniden Ogrenilmelidir. Birkag
santimetrelik bir dizi uzunlugu varyasyonlar1 nedeniyle davranisin biiyiilk miktarda
degismeyecegi goz Oniine alindiginda, Ogrenilen davranisi degistirilmis goreve
genellemek daha iyi olacaktir. Davranislarin bu tiir genellestirilmesi, hareket
temsilinin meta-parametrelerinin uyarlanmasiyla basarilabilir.

Takviyeli 6grenmede, gorevler arasinda genelleme yapmak igin meta-parametreleri
kullanmaya yonelik bircok girisimde bulunulmustur (Caruana, 1997). Ozellikle,
sebeke diinyasi etki alanlarinda, politikalarin meta-parametrelerini degistirerek ve
ayarlayarak onemli bir hizlanma elde edilebilir (McGovern and Barto, 2001).
Robotikte, bu tlir meta-parametre 6grenimi, yiiksek boyutlu durumlar ve eylenmeler
karmagik motor beceriler i¢in pekistirmeli 6grenmenin karmasikligi nedeniyle yararl

olabilir.
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Arastirmacilar bu (Gu et al, 2017) calismada, politika dis1 derin Q-Ogrenme
Olgeklerine dayanan yeni bir derin pekistirmeli 6grenme algoritmasinin karmasik 3B
manipiilasyon problemlerine 6lgeklendigini ve derin sinir ag1 stratejilerinin 6grenme
icin ¢ok etkili bir sekilde kullanildigim1 ve gercek fiziksel diinya {izerinde
gelistirilebilecegini gostermektedirler. ilke giincellemelerini es zamansiz olarak
toplayan birden ¢ok robotta algilamay paralel hale getirmigler ve bu sayede egitim
siiresini de azaltilabilecegini vadetmislerdir. Caligmada arastirmacilar yontemlerinin
simiilasyonda c¢esitli 3B manipiilasyon yeteneklerinin yani sira ger¢ek robotlarda 6n
izleme ve elle olusturma olmadan kapt agma yetenegi kazandirilabilecegini
gosterdigini iddia etmektedirler. Bu makalenin ana katkisi, bir robotik kiime iizerinde
paralel NAF algoritmalarin1 kullanarak asenkron derin pekistirmeli 6grenmeyi
gostermektir. Arastirmacilarin gergeklestirdigi onceki ¢alismada (Levine et al., 2016)
model tabanli pekistirmeli 6grenme ve model tabanli olmayan pekistirmeli 6grenme
yaklagimlarin1 incelemiglerdir. Model tabanli algoritmalar, Gauss suregleri
(Deisenroth and Rasmussen, 2011), karisim modelleri (Moldovan et al., 2015) ve
yerel dogrusal 6grenme algoritmalarini (Lioutikov et al., 2014) incelemislerdir. Derin
sinir ag1 stratejileri, model tabanli yontemler tarafindan derin ag stratejilerini
ogrenmek i¢in kullanilan yonetimli politika arama algoritmasi (Levine et al., 2016)
baglaminda model tabanli 6grenme ile birlestirilir. Bu tlir yontemlerin bir dizi gergek
diinya probleminde basarili oldugu ve vyiiksek 6grenme verimliligi sagladig
gosterilmistir. Derin pekistirmeli 6grenmede simiilasyon deneylerini hizlandirmak
icin paralel 6grenme yontemi de Onerilmistir (Mnih et al., 2016). Birden fazla
robotun deneyimlerini birlestirerek robotik 6grenmeyi hizlandirmak icin de gesitli
aragtirmacilar ¢aligmalarini sunmuslardir (Inaba et al., 2000; Kuffner, 2010; Kehoe et
al., 2013; Kehoe et al., 2015). Ters kinematik problemleri ¢6zmek i¢in uyarlamali
ogrenme algoritmalarinin kullanildig1 bir ¢alisma yapilmistir (Hasan et al., 2006). Bu
calismada ucakta kullanilabilecek ve konum kontrolii yapabilen bir manipiilator
gelistirilmistir. Bagka bir ¢alismada 6 eklem bélgeli ¢ift kollu mobil robot H20nin
konum kontrolii ve farkli oOzelliklere sahip kavrayict ucglarinin tasarimini
gerceklestirmiglerdir (Mohammed et al., 2016). Bulanik mantik tabanli kontrol
algoritmalarin1 destekleyen bir c¢alismada, bir robotik kola bulanik mantik
tahminlerine dayali genellestirilmis bir kontrol yapis1 uygulamiglardir (Cronin et al,

2014). Benzer bir ¢alisma da 2 eklem bolgeli robot kol i¢in bulanik mantik tabanli bir
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kontrol yapis1 gelistirilmis olsa, bu yapinin kayma ve PID kontrol yapisini aragtirmak
amaciyla kargilastirmali bir makale de sunulmustur (Lochan and Roy, 2014).

Son on yilda, robotikte pekistirmeli 6grenme uygulamasi istikrarli bir sekilde
artmistir. Schaal (1997) bir robotu ters kinematik polarite dengesi gorevinde
(gostererek 6grenme) egitmek i¢in pekistirmeli 6grenmeyi kullanmistir. Daha yakin
zamanlarda Bhatnagar, Sutton, Gavamzade ve Lee (2009) bu ¢aligmanin devamini
sunmuglardir. Theodorou, Peters ve Schaal (2007), el hareketlerinin kontrollini
optimize etmek i¢in pekistirmeli 6grenmeyi kullanmiglar. Peters ve Schaal (2008),
robotikte Dogal Aktor Kritik (NAC) algoritmasini sunmuslardir. Buchli, Thedorou,
Stulp ve Schaal (2010), degisken empedans kontrol dongiileri igin bir yol
entegrasyon yontemi kullanarak politika tabanli bir pekistirme 6grenme yaklagimini
onermislerdir. Ancak Onerilen semanin etkinli§i sadece simiilasyonlarda
gosterilmektedir. Aktor ve elestirmen tabanli robotlar icin pekistirmeli 6grenme
hakkinda daha fazla bilgi grubun diger ¢alismalarinda da bulunabilir (Atkeson and
Schaal, 1997; Hoffmann et al., 2012). Daha yakin zamanda, Theodorou, Buchli ve
Schaal (2010) yol integrallerini kullanarak kilavuz tabanli pekistirmeli 6grenmeyi
robot bir kdpek iizerinde test etmislerdir (Kappen, 2005). Digney ve June (1996),
robot-gevre etkilesimi igin i¢ ige bir Q-6grenme algoritmasi onermislerdir. Kuan ve
digerleri (1998), saglam kayan mod empedans kontrolii ile uyumluluk sorunlarini ele
almak i¢in bir pekistirmeli 6grenme mekanizmasi 6nermislerdir ve bu yaklagimi
simiilasyonda test etmiglerdir. Calismalari, farkli adaptasyon gorevlerindeki
farkliliklar1 hesaba katmak icin pekistirmeli 6grenme algoritmalarini kullanmaktadir.
Bucak ve Zohdy (1999; 2001), tek baglantili ve ¢ift baglantili robotlar i¢in bir
pekistirmeli 6grenme yaklasimi kontrol semasi onermislerdir. Gaskett (2002) robot
kontrolli i¢in Q-06grenme tizerine ¢alismistir. Smart ve Kaelbling (2002), mobil
robotlarda gezinme gorevleri i¢in pekistirmeli 6grenmeyi kullanmistir. Izawa, Kondo
ve Ito (2004), robotik bir kolun iki eklemli ve alt1 paketli kas-iskelet kolunu en iyi
sekilde kontrol etmek i¢in bir pekistirmeli 6grenme yaklasimi olan aktor kritik
metodu uygulamiglardir. Shah ve Gopal (2009), giivenli olmayan kosullar altinda
robotik kollarin pekistirmeli 6grenme kontroliinii 6nermislerdir. Kim, Park ve Kang
(2008; 2010) gevre ile etkilesime girerek farkli durumlara uygun ¢oziimler bulmak
i¢in pekistirmeli 6grenme yontemlerini kullanmiglardir. Riedmiller, Gabel, Hafner ve
Lange (2009), robotik futbol oynamak i¢in toplu pekistirmeli Ogrenmeyi

kullanmiglardir. Bu ¢alismada deger fonksiyonuna yaklagmak i¢in bir patlama modu
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yapist kullanarak ¢ok katmanli bir algilayict kullanmislardir. Adam, Busoniou ve
Babushka (2012) tarafindan yapilan ¢alismada Q-6grenme yontemlerinin deneysel
uygulamasinit ve Sarsa ornek tekrarimi robotik kaleci ve ters sarka¢ orneklerine
uygulamiglardir. Stingu ve Lewis (2011), bir quadcopter kullanarak insansiz hava
aract (IHA) kullanarak rotayr simiile etmislerdir. Q-fonksiyonu ve kontrol
politikasini modellemek igin Sarangapani’nin (2006) caligmasina dayanan radyal
tabanli fonksiyon sinir aglarin1 kullanmiglardir. Arastirmacilar, yararli 6grenme
sonuglar1 elde etmek i¢in konvoliisyonel sinir aglar1 (CNN’ler) kullanarak ham piksel
girislerinden kontrol politikalarin1 6grenmek i¢in model tabanli olmayan bir
algoritma olan Q-6grenme yontemini kullanan bir algoritma gostermislerdir (Mnih et
al., 2013). Calismada yeni farkli atari 2600 oyunuyla ortaya koyduklari algoritmayi
test etmisler ve c¢aligsmalar1 alt1 oyunda insan oyuncuyu gec¢mistir. Daha yakin
zamanlarda arastirmacilar kavram kanitlamada yakin politika optimizasyonundan
daha iyi performans gosteren hiyerarsik elestiri adli bir algoritma 6nermislerdir (Cao,
2019). Son zamanlarda, hassas kontrol ve dogru sonuglar gerektiren oyunlara,
robotlara ve otonom siiriise pekistirmeli 6grenme uygulanmistir (Sutton and Barto,
1998; Silver et al., 2016; Mnih, 2015; Duan ve digerleri, 2016; Li ve digerleri, 2018).
Arastirmacilar etkilesimi aragtirmak ve ajanlar arasindaki 6grenmeyi paylagmak igin
pek ¢ok etmenli ortamda pekistirmeli 6grenme uygulamiglardir (Tampuu et al, 2017).
Calismada arastirmacilar, verileri veya bilgileri dogrudan aktarmadan, diger ajanlarin
yardimiyla her ajan igin bir Q-68renme ag1 olusturularak veri ve modellerin gizlilik
gereksinimleri goz oniinde bulundurularak federe bir pekistirmeli 6grenme yaklagimi
onerilmistir (Zhuo et al., 2019). Bir ajandan baska bir ajana ge¢is ¢alismada (Liu et
al.,, 2019) bulut robotlarinin navigasyon yardimi i¢in bulutta konuslandirilmig
paylasilan bir modeli gelistirmek icin evrimsel transfer 6grenmeli bir bilgi fiizyon
algoritmas1 olarak yasam boyu birlesik pekistirmeli O6grenme algoritmasi
onermiglerdir. Bonawitz ve ark. (2019) federasyon siirecini tanimladi ve 2019 yilinda
federasyon politikasi icin bir federasyon sistemi protokolii tasarladi. Federasyon
politikasi, her dagitilmis cihazdaki yerel verileri kullanarak egitimi gergeklestirir ve
hesaplanan gradyan veya egitim modelini merkezi sunucuya gonderir. Zhuo ve ark.
(2019), bir federasyon politikasi kullanarak her ajan i¢in bir Q-0grenme agini
kullanarak yeni bir pekistirmeli 6grenme algoritmasi 6nermislerdir. Her araci, yerel
verileri kullanarak kendi Q-6grenme agini kullanarak optimal bir Q degeri hesaplar.

Caligmada arastirmacilar federe 6grenmeyi denetimli makine 6grenimi teknikleri
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tizerinden gergeklestirmislerdir (McMahan et al., 2016). Calismada birlesik 6grenme,
temel kullanici verilerine dogrudan erisim olmaksizin sanal klavye arama Oneri
kalitesini iyilestirmek i¢in bir modeli egitmek, degerlendirmek ve dagitmak igin
ticari, kiiresel 6l¢ekli bir ortamda kullanmiglardir (Yang et al., 2018). Denetlenen
smiflandirma gorevleri i¢in birlestirilmis 6grenmenin daha fazla uygulamasi (Khan et
al., 2012; Chen et al., 2018; Zhou et al., 2018; Smith et al., 2017)’de bulunabilir.
Stokastik gradyan inig (SGD) algoritmasinin ¢esitli dagitilmis versiyonu c¢alismada
onerilmistir (De and Goldstein, 2016; Chen et al., 2016). Calismada yazarlar, istemci
modellerinin yanmi sira paylagilan modeli tek bir biiyiilk Q-6grenme ag1 olarak ele
almiglar ve Bellman denklemini kullanarak optimize etmislerdir (Zhuo et al., 2019).
Ancak bu caligmada, istemcilerin her birine ayr1 Q-6grenmesi vardir ve paylasilan
model parametrelerine bir federasyon politikas1 karar verir. Calismada yazarlar,
mevcut calismada bir federasyon politikast model birlestirme yontemi belirlerken,
tiretici aglara dayali bilgi birlestirme algoritmasini kullanmiglardir (Liu et al., 2019).
McMahan ve ark. (2016), geleneksel gradyan inis giincellemelerini uygulamak
yerine istemci cihazlardan model agirliklarinin ortalamasin1 almak igin gereken
iletisim turlarinin sayisin1 azaltmayr amaclayan birlesik ortalama (FEDAVG)
algoritmasin1 sunmuglardir. FEDAVG, etkinligini test etmek icin biiyiik dlgekli bir

sistemde (Bonawitz et al., 2019) ¢alismasinda kullanilmistir.

61






V. YONTEM

Calismanin bu boliimiinde ortaya konulan algoritmalar ve bu algoritmanin
uygulanabilirligi ve uygulama sonuglarinin analizi ve degerlendirilmesi hakkinda
bilgiler verilecektir.

S6z konusu ¢alisma daha 6ncesinde ¢ok fazla odaklanilmamais bir alan ve yeni ortaya
¢ikmis bir alan1 birlestirecektir. Hali hazirdaki bu ¢alismada robot kollarmin (Sekil
38) federe derin 6grenme ve federe derin pekistirmeli 6grenme algoritmalariyla
belirli cisimleri tutmaya calismasi {izerinedir. Federe derin O0grenme ile robot
kollarmin belirli cisimleri tutabilirliginin 6l¢limii sadece federe derin pekistirmeli
O0grenme yonteminin sonuglarmin tutarli olup olmadigi konusunda test merci olarak
bulunmaktadir. Buradaki amag¢ elde tutma verileri olmadigr durumlarda yapilacak
olan calismalara oncii olmaktir. Federe derin 6grenme ile yapilan ¢aligmada veriler
Kaggle.com  (https://www.kaggle.com/datasets/ugocupcic/grasping-dataset)  adli
siteden alimmustir. Eldeki veride 3 kol eklem bolgeli ve 3 parmakli tutma ucu olan ve
bu tutma ucundaki parmaklarin da 3 eklem bdélgesi bulunmaktadir. Algoritma Python
dilinde yazilmistir ve Intel(R) Xeon (R) Gold 5218R CPU ile Windows Server

izerinden gerceklestirilmistir.

Sekil 38 Ornek Bir Robot Kol

63



Calismanin kaynak kodlar1 calismanin gegerli olmas1 durumunda agik kaynak olarak
Github.com adli sitede ¢aligma ismi ile yayinlanacaktir.

Bilindigi tlizere federe Ogrenme birden fazla sistemin ayni anda Ogrenmesini
amaclamaktadir. Bu sebeple calisma 3 robot kolun birlikte egitilmesi iizerine
odaklanmistir. Robotlarin tutabilirligini federe derin Ogrenme ile Ogrenmesi
algoritmas1 yukarida daha once aciklanan sistemde en iyi 6§renme yonteminin ve en
iyl agin bulunmasi konusunda calistirilmistir. Yapilan degerlendirmeler sonucunda
en iyi agin 18 girdi néronlu (18 hareket noktasi oldugundan dolay1), ve 3 tane 18x18
ndronlu gizli katman ve 1 tane 18 ndronlu gizli katman ve ¢ikti katmani olarak da 1
noronlu bir katman oldugu goriilmiistiir. Cikti katmaninin aktivasyon fonksiyonu
‘sigmoid’, kayip fonksiyonu ‘binary crossentropy’ (tek bir ¢ikti oldugundan),
optimizer olarak ‘adam’ fonksiyonu se¢ilmistir. Olusturulan model toplam 10 dongii
yapacaktir. Ayni sekilde robotlarin kendi i¢lerinde yapacagi 6grenme dongiisti de 10
olarak belirlenmistir.

Federe derin pekistirmeli 6grenme yonteminde ise modelden bagimsiz bir Q-
O0grenme algoritmast kullanilmistir ve federe derin 68renme algoritmasi yaklasik
%090 o6grenme gerceklestirmistir. Bundan dolay1 federe derin pekistirmeli 6grenme
yontemi de yaklagik %90 6grenme diizeyine erisene kadar kag¢ dongli yapacagi
hesaplanacak ve gereken dongii Ogrenildikten sonra iki algoritma ayni anda
calistirilacak ve sonuglar test edilecektir.

Test konusu olarak kullanilacak federe derin 6grenme algoritmasinin sdézde kodu

sekil 39 ve sekil 40°da gosterilmistir.

ALGORITMA: Federe Derin Ogrenme Algoritmasi [Sunucu]

Basla wy
for hert=0,1,.. do
M<«—max ([C.K], 1)
St = rastgele m katilimct ayarla
for katilimct i¢in k € S¢in parallel do

wf, ; = Yerel Giincelle (k, w;)
— nk ok —
Wit1 = ZkEStE Wit Mo = DkeseNk

~NOo ok wWwN e

Sekil 39 Kullanilacak Federe Derin Ogrenme Algoritmasi Sézde Kodu (Sunucu)
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ALGORITMA: Federe Derin Ogrenme Algoritmasi [Yerel]

1 B = yerel minibatch boyutu

2 m = yerel katilimci sayisi

3 E = egitim turu

4 n = ogrenme orani

5 Basla

6 Wo «— rastgele baslatma

7 {iletisim boyunca}

8 fort=1,.T,..do

9 St « (rastgele alt kiime — max (C x K, 1) katilimci)
10 {her katilimci igin yerel optimizasyon}
11 for katilimci k € Sy do

12 verel agirliklart baslat: wix «<— Wi
13 for epoch e €[1,E] do

14 Yerel verileri bol, B(:;kByzg“mlarz)
15 for yigin b €B do

16 : Wik «<— Wik — Nigcat A1 (Weic 5 D)
17 end for

18 end for

19 end for

20 : {Merkezi Ortalama}

21 Wi Yiest — r Wtk

22 : end for

Sekil 40 Kullanilacak Federe Derin Ogrenme Algoritmasinin Sézde Kodu (Yerel)

Algoritmada asil odaklanilan ve sunulan federe derin pekistirmeli 6grenme

algoritmasinin sdzde kodu asagidadir (Sekil 41, Sekil 42).
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ALGORITMA: Federe Derin Pekistirmeli Ogrenme (isci)

O©ooO~NOO O wWwN -

fori=1,2,3,..., Mdo

for her béliimiin t adminda do
Her st durumu icin ©@ aktér modelini ¢calistir ve do aksiyon at
Ortamdan rt+1, St+1 alin
<st, at, rt+1, St+1> yoriinge bellegine kaydedin
End
if 6grenme siireci biterse then
Ow aktor modelin parametresini dahil ederek Mw mesajini sunucuya
gonderin
Break
Else
Giincelle mhg)|q <76
forj=1,23,...,Kdo
Yoriinge belleginden bir mini-batch B alin (B 'nin boyutu U’dur)
fort=1,2,... Udo
Vy, ve denklem kritik modelini kullanarak At yi hesaplayin

Vu(st) ve Vumrg 4 degerlerini alin
LVt (1) degerini hesaplayin
g Aktor modeli kullanarak L¢P (8) degerini hesaplayin
End
Gradyan: gu = I7LV(,u) ortalama(le(,u),...,LUVCu)) ‘a gore hesapla
Vu parametresini SGD araciligiyla gy ile gtincelleyin
g= VI_CLIP(Q) gradyant, ortalama(LCLIP(G), LCLIP(Q)) ve aktor

model parametresi m a gére giincelleyin
7y parametresini gg ‘e gore SGD ile gincelleyin

End
Sunucuya gg iceren mw mesajini gonderin

End
Miisait degilse sunucudan mc mesajint bekleyin
if mc aktor model parametresine 0 sahipse then
Mevcut aktér modeli parametresini alinan 0 ile degistirin
else if mc ortalama g ~gradyanina sahipse
SGD araciligiyla alinan g "ile ng guncelleyin

End

Sekil 41 Kullanilacak Federe Derin Pekistirmeli Ogrenme Algoritmasi (Isci)
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ALGORITMA: Federe Derin Pekistirmeli Ogrenme (Sunucu)

1 fori=1,2,3,..., Mdo

2 P=1]

3 forw € W do

4 w is¢isinden my mesajini al

5 my, ‘yi P’ye bol

6 End

7 if bir mesaj varsa my, € P ve my, W is¢isi aktor model parametresi

Ow then

8 0 =0w

9 . W — {w} icerisindeki is¢ilere ¢ “model pal’ametresini de
ekleyerek m¢ mesajini gonder

10 : W =W -{w}

11 Else

12 Timmw €P sh& %" gradyanlarn topla

13 g "= ortalama( s &)

14 Ortalama gradyan g ~dahil olmak tizere W ‘daki tiim is¢ilere mc
mesajint génder

15 End

16 : if W bos ise then

17 Break

18 End

19 : End

Sekil 42 Kullanilacak Federe Derin Pekistirmeli Ogrenme Algoritmasi (Sunucu)

Calismada, ugtan uca robotik kavrama ic¢in eylem alani, kartezyen uzayda siirekli
eylemlerden olugmaktadir. Eklem alanit yerine kartezyen uzaydaki eylemleri
kullanarak, eylem alani bir robotun belirli kinematik konfigiirasyonuna gore
degismez. Ayrica, kartezyen eylemler, kendi kendine c¢arpigsmalardan kaginirken
diisiik seviyeli eylem kontroldrlerine giivenilir bir sekilde komutlar da saglamak i¢in
geleneksel yontemler ve hareket planlama yaklagimlarinin kullanilabildigi yerlerde
daha iyi giivenilirlik saglamaktadir. Kollarin tutucularinin kullanabilecegi kartezyen
uzay sekil 43’te gosterilmistir. Tutucu pozisyonu i¢in eylemler, her ikisi de robot
taban koordinat gergevesine gore ifade edilen 6teleme yer degistirmesi igin (dx,dy,dx)

ve z ekseni dg etrafinda nispi rotasyonlardan olusmaktadir.
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Sekil 43 Robot Kollarinin Tutucularinin Kullanabilecegi Katezyen Uzay

Sekil 43’te (dx,dy,dx)’nin bir Gteleme yer degistirmesini dg’nin bir nispi sapma
doniistinti ve kiskag kapanmasi ve agilmasinin g ile gosterilmektedir. Bu eylemler

[-1,1] araliginda normallestirilir ve ardindan uygulanmadan 6nce metrik ve agisal
birimlere yeniden Olc¢eklendirilir. Kiska¢ eylemi g ayrica siirekli bir araliktadir.
Burada pozitif degerler tutucuyu agar ve negatif degerler tutucunun kapanmasini
saglar. Bu nedenle, RL aracisinin bir tanimlama grubu (dx,dy,dx, dg, g) igin karsilik
gelen degerleri siirekli eylemlerin herhangi bir kombinasyonunu yapmasina izin

Verir.

A. V-REP (Coppelia Robotics Virtual Robotic Experiment Platform)

Bu projede V-REP kullanmilmistir. V-REP Coppelia Robotics firmasinin sanal
ortamda robotik calismalar yapilmasi amaciyla gelistirilen bir simiilasyon ortamidir.
V-REP’in egitim amagl kullanimi {icretsizdir. Python dahil olmak iizere birden ¢ok
programlama dilini destekler ve bir uzak API araciligiyla erisilebilir. Simiilator,
Mico kolu da dahil olmak Uzere birden fazla robotik platform modeline sahiptir.
Simulasyon modeli ¢ok dogru ve gergek kolu ¢ok iyi temsil ederken, parmaklarin
kontrolii farklidir. Az calistirilan parmaklarin simiilasyonda uygulanmasi daha zor
oldugundan, bir parmagin her biri bir segmenti kontrol eden iki aktiiatoriidiir. Gergek
kol bir lineer akttiator kullanirken, simiilasyondaki iki aktiiator doner aktiiatordiir. V-
REP sadece kavramak icin degil, daha cok genel simiilasyonlar i¢in iiretildiginden,

nesneleri fizige dayali olarak kavramaya calismak oldukca zordur. Ciinkii V-REP
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sirtinmeyi o kadar dogru bir sekilde modellenemez. Ancak similasyonda
carpismay1 oldukca kolay bir sekilde tespit edebiliriz, bu nedenle parmaklar bir
nesneyi kavramaya calisirken carpistiginda fizige giivenmek yerine nesneyi bir
kavrama simiile ederek ug¢ efektore baglanabilir. V-REP farkli modlarda calisabilir;
asenkron ve senkron. Asenkron modun yaygin olarak kullanilir, simiilasyonu
duraklatmadan olabildigince hizli ¢alistirir. Ancak senkron mod i¢in simiilasyonu bir
adim ilerletmek i¢in bir tetikleme sinyaline ihtiya¢ vardir. Kolun mevcut durumuna
ihtiya¢ oldugundan dolay1 senkron modu kullanmak gerekmektedir. Her adimda bir
islem gerceklestirilir ve delta siiresini (At) ayni tutarken kolun yeni durumu alinir. Bu
ayni zamanda 6diil degerini hesaplamaya, veriyi tren arabelleginde gondermeye ve
yeni eylemi, kol onceki eylemini gergeklestirmeden farkli bir duruma getirerek
hesaplamaya izin verir.

Senkron modunu kullanmanin en biiylik dezavantaji, simiilatdre bir kamera
eklendiginde, giincelleme hizinin normalde yaklasik 40Hz-60Hz’de caligmaya
kiyasla yaklasik 4Hz-6Hz’e diismesidir. Bu, egitim i¢in gorsel girdiyi kullanmay1
imkansiz hale getirmektedir, ¢iinkii egitimin uzun siirmesi gerekir. Bu proje igin
gorsel girdi olmadigindan dolay1 {izerinde doku olmayan bir kiire cisim kavranmaya
caligilacaktir. Kiire cismin yarigapt 3cm olarak belirlenmistir. V-REP, noktalar
arasindaki minimum mesafeyi hesaplayabilir ve gorsellestirebilir, bizim
durumumuzda, odiil islevi i¢in kullanilacak olan u¢ efektor ile kiirenin ortasi
arasindaki minimum mesafeyi almaktadir. V-REP c¢arpisma testini yapar, ancak
yapabilecegi tiim c¢arpismalart kaydetmek istenmez, c¢ogunlukla son efektorle
ilgilenilmektedir. Bu nedenle, yalmizca ug¢ efektoriin kolla degil, zeminle veya
nesneyle carpisip carpismadigi kontrol edilir. Simiilasyonda parmaklarin nesneyi
kavraylp kavramadigi kontrol edilmek i¢in her bir parcanin nesneyle carpisip

carpismadigi kontrol edilmektedir.

B. Egitim Oncesi

Egitim veya daha iyisi egitim ornekleri olusturmak, V-REP gibi bir fizik simulatori
kullanilarak nispeten yavas olabilir. Ancak simiilatorii sadece ileri kinematik
kullanarak basitlestirebiliriz. Her bir eklemin mevcut konumunu takip ederek, ileri
kinematigi hesaplayarak son efektér konumunu hesaplayabiliriz. Actor agindaki

eylemi ve kesif siiresinin 50ms’lik bir delta siiresiyle ekleyerek, kolun hareketini
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simiile edebiliriz. Bir denemenin ¢aligsmas1 yaklasik 12,5 saniye siirdiiglinden dolay1
birgok deneme yapilabilecektir. Ancak bu ydntemin dezavantaji, nesneleri
kavrayamamak ve herhangi bir ¢arpigsma kontrolii olmamasidir. Bu nedenle, fizik
simiilatorii kullanirken egitim siiresini azaltip azaltamayacagimizi gérmek i¢in bu

yontemi yalnizca egitim Oncesi bir agsama olarak kullanilacaktir.

C. Mimari

Kolu kontrol etmek i¢in bir sinir aginin kullanmanin yan1 sira, kolu kontrol etmek
i¢in mimariyi optimize etmenin miimkiin olup olmadig: arastirilmak istenmektedir.
Bir mimari, bir dizi eklemi kontrol eden aglarin miktaridir. Bir sinir aginin, hepsi
ayni 6diil islevine bagli olarak 6 eklemi ve parmagi kontrol edecegi yerde, her birinin
mevcut aktiiatorlerin bir alt kiimesini kontrol ettigi ve kendi 6diil islevine sahip
oldugu iki sinir agina sahip olmak miimkiin olabilir. Ornegin, alt eklemler ve ug
efektoriin nerede bitecegi lizerinde biiylik bir etkiye sahipken, yiiksek eklemler, ug
efektoriin son konumunun ince ayarini yapmak i¢in kullanilir. Bu nedenle, bu aglara
farkli 6dil islevleri vermek, egitim performansini iyilestirebilir. Birden fazla ag
kullanirken ince ayarlanabilen farkli hiper parametrelerin miktarini azaltmak ig¢in
mimarideki her ag icin gizli néronlarin miktarini ayni tutuyoruz. Ancak aglar igin

farkli 6diil islevleri denenmektedir.

D. Odiil Islevi

Bir nesneyi basarili bir sekilde kavradiktan ve kaldirdiktan sonra, temsilciye yalnizca
cok seyrek bir 6diil verilmesi arzu edilirse de, bu tiir bir yaklagim, rastgele kesif
yoluyla bir basariya ulagsmanin seyrekligi nedeniyle egitimi uzatacaktir. Bu nedenle,
bu ¢alisma, ii¢ farkli asamadan olusmaktadir. Bunlar; ulasma, dokunma ve kavrama
gibi seyrek oOdiilleri bir araya getiren bilesik bir 6dil islevinden yararlanir. Bu
asamalar, ajanin Once bir nesneye yaklagsmasi, ardindan dokunmasi, kavramasi
gereken hiyerarsik bir akisi takip eder. Her boliim boyunca, temsilcinin, son agamada
istenen bir hedefe yol agmayacak herhangi bir ddiillendirici davranigtan vazgegirmek
icin bu asamalarin her birinden yalnizca bir kez 6diil almasina izin verilir, 6rnegin
strekli olarak biriktirmek icin bir nesneyi tekrar tekrar itmek gibi. Dokunmanin
odili, odil islevindeki her bilesenin orani ve 0lg¢egi, aracinin optimize etmeyi

amacladig ilkeyi dogrudan etkiledigi i¢in ayarlanabilir bir ortam hiper parametresi
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olarak ele alinabilir. Genel olarak, son asamadi 6diil, ilk asamada verilen 6diilden
cok daha yiiksek olmalidir; bu, yalnizca temsilcinin egitimine rehberlik etmesi
anlamina gelir bu nedenle, her | asamasi igin bireysel 6diilii belirlemek igin tistel bir
islev ri'lexp kullanilir. Temel reyy € [1, =) ayarlanabilir, burada rey, = 7, uygulanan
kavrama gorevi i¢in ampirik olarak tatmin edici sonuclar vermektedir. Ve teorik
olarak elde edilebilir maksimum 6dul rpax = 400 ile bulunur. Gorevi basarmak igin
pozitif odiile ek olarak, araciya ayrica istenmeyen carpismalarin sayisindan
caydirmak i¢in robotun yer diizlemi ile ¢carpismada oldugu her zaman adimi igin -1
negatif odiil verilir. Ayrica, aracty1 gérevi miimkiin oldugunca hizli gergeklestirmeye
tesvik etmek i¢in sonlandirilana kadar her adiminda -0.005’lik kuclk bir 6dil

cikarilmaktadir. Tiim 6diiller gizelge 3’te 6zetlenmistir.

Cizelge 3 rexp = 7 ayarlandig1 ve her boliimiin en fazla 100 zaman adimina sahip
oldugu kavrama gorevi icin bu calismada kullanilan 6diil fonksiyonuna genel bakis.

Hareketler Odiiller

Ulasmak roexp =1

Dokunmak rlexp =7 (boliim basina bir kez)
Kavramak Pep = 49

Carpigsma -1 (her adimda)

Cabuk Hareket Etme  -0.005

E. Kesif

Kesif pekistirmeli 6grenmenin bir pargasidir, onsuz ajan herhangi bir 6grenme
gerceklestiremez. Bu ¢alismada iki Gauss kesif yontemi kullanilmaktadir. Bu
yontemin yani sira, bir aktiiatoriin kesfedecegi bir olasilik belirleyerek kesif miktari
da siirlanmaktadir. 7 aktiiator, 6 eklem ve bir kavrayic1 bulundugundan dolay1 3
boyutlu uzayda hareket ederek bir hedefe ulagsmak ve kavrama gorevi yapmak,
hedefe ulagmak i¢in tek basina kesif yapmak ¢ok zor olacaktir. Bir aktiiatoriin bazen
Ogrenilmis hareketini gerceklestirmesine izin vererek, kol hedefine daha yakin
hareket edecek ve hedefin etrafini kesfedebilmesi saglanabilir.

Calismada kullanilacak olan robot kolunun D-H (Denavit-Hartenberg) degiskenleri
cizelgede gosterilmistir.

Cizelge 4 Robotik Kol I¢in Verilen D-H Parametreleri

i a(i-1) a(i-1) di theta
1 0 0 0.2755 ql

71



2 ]2 0 0 q2
3 0 0.2900 0.0070 93
4 ]2 0 0.1661 g4
5 1.0472 0 0.0856 95
6 1.0472 0 0.2028 46

Cizelge 4’teki eklem sayisi i olarak temsil edilir. @ x ekseni etrafinda olgiilen z
eksenleri arasindaki acidir, a x ekseni etrafinda Olgiilen z eksenleri arasindaki
mesafedir, d; z ckseni etrafinda ol¢iilen x eksenleri arasindaki mesafedir, theta ise
eklemin agisidir.

Denavit-Hartenberg yontemini biraz agiklamak gerekirse; robotlarin kinematik
modelini ¢ikarirken en ¢ok kullanilan yontemlerden bir tanesidir. D-H yOntemi bir
nevi homojen donilisiim saglamaktadir. Bu yontemde dort ana degisken kullanilir ve
robot kinematigi ¢ikarilir. Yukarida agiklanan degiskenler hesaplanirken oncelikle
robot kolunun eklem bélgeleri belirlenir ve donme eksenleri baglardan bir fazla
olacak sekilde numaralandirilir. Bu asamadan sonra bu eksenlerin her birine
koordinat ¢ergevesi yerlestirilir ve bag donme ekseni koordinat gercevesinin Z ekseni
kabul edilir.

F. Ajan

Bir ajan, simulasyon ve sinir aglart ile olan baglantiyr yonetmektedir. Araci bir
calistirma ile baglamadan Once en son aktor agimi alir ve simiilasyon diinyasin
sifirlar. Daha sonra maksimum 250 adim gerceklestirilir, burada bir adim
similasyonda At'lik 50ms ile gergeklestirilen tek bir eylemdir ve maksimum ¢alisma
stiresi her adimda 12,5 saniyedir. Aract her adim i¢in durumu alir, durumu aktor agi
icin girdi olarak kullanilir. Eylem, bir eklemin gergeklestirilmesi gereken radyan
cinsinden hizidir. Egitim sirasinda araci, simiilasyonda gerceklestirmeden once
eyleme kesif de ekleyecektir. Simiilasyon bir zaman adimi atildiktan sonra yeni
durum toplanir ve 6dil belirlenir. Baglangi¢ durumu, 6diil gerceklestirilen eylem ve
yeni durum tekrar arabellege kaydedilir. Durum, kullanilan tiim eklemlerin radyan
cinsinden konumu, ug¢ efektdr baglantisinin metre cinsinden X,y,z konumu ve
kullanildiginda, radyan cinsinden parmaklarin agis1 ve son olarak metre cinsinden
hedef konumu (x,y,z). Eklemlerin a¢1 girdileri, aginin 2z (bir eklemin tam doniisii)
ile bolinmesiyle 0 ile 1 arasinda bir degere normalize edilir. Parmak eklemleri,
acabilecekleri maksimum aralik oldugu i¢in 1.0472 radyana (60 derece) boliinerek

normallestirilir. Pozisyon degerleri i¢in, kolun erisimi 1 metrenin altinda oldugu i¢in
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girisleri normallestirmemiz gerekmez. Bu bilgiler simiilasyondan elde edilebilir.
Aracinin yani sira, arabelleginden mini bir toplu is almaktadir. Egitim dizisi yaklasik

100Hz’de ¢alismaktadir.

G. Konum

Ik 6nce kolun ug efektérii belirli bir konuma hareket ettirmeyi dgrenmesine izin
vererek baslanacaktir, bu algoritmanin dogru calistifin1 gosterecek ve ayrica
parametre ayarina daha 1yi fikir verecektir. Deneyler sadece bir eklem kullanilarak
baslayacak, bu ug efektoriin yalnizca bir diizlemde hareket edecegi, daha fazla eklem
eklendiginde ug¢ efektoriin 3B uzayda hareket edecegi ve hedefini bulmasin
zorlastiracagl anlamma gelmektedir. Ik eklem kullanilarak baslanmistir ve
karmasiklig1 artirmak igin daha fazla eklem bolgesi eklenecektir. Ilk asamalarda
farkli 6grenme oranlarin1 ve gizli katman boyutlan test edilecektir. Test edilecek
parametre miktarin1 azaltmak i¢in en iyi 6grenme oranini ve gizli katman boyutlarini
belirlemek i¢in erken sonuglar kullanilacaktir. Algoritmanin ne kadar saglam oldugu
da test edilecek ve birden fazla hedefi 6grenmenin {iistesinden gelip gelemeyecegi
gortlecektir. Ajan, uc efektorii hedefin 4cm yakinina yerlestirilebildiginde, en az bir
zaman boyunca orada tuttugunda ve eylem vektoriiniin uzunlugu 0.001’den kii¢iik
oldugunda basarili olmustur. Bu hedefe ulastiginda kolun biraz hareket etmesine izin
verir, ancak kolun tam konumunda durmayi 6§renmesi ¢ok daha fazla egitim siiresi
gerektirmektedir. Bu sekilde, kaleye yakin oldugunda kol hala yavaglamak zorunda
kalir, ancak tam bir durma noktasina gelmek i¢in kalenin gevresinde ¢ok fazla zaman
harcamak zorunda kalmaz. Odiil fonksiyonu icin, negatif uzaklik carp1 a sabit, c1 ve
eylemlerin negatif nokta ¢arpimi ¢arp1 a sabit, ¢2 almir. {1k deneyler, c1 igin 1 ve c2
icin 0.2 degerinin iyi sonuglar verdigini, yani mesafe faktoriiniin eylem c¢iktisindan
daha 6nemli oldugunu gosterdi. Bu 6diil isleviyle, hedef konumuna hareket edilerek
en yiksek 0diill elde edilebilir ve her eylem i¢in sifir ¢ikti degerine sahip
olundugunda, hedef konumundan uzaklasmak daha diisiik bir 6dil verir. Kol zemine
carptiginda, kosu basarisiz olur ve sona erer, son eylemini yaparken hesaplanan
mevcut ddlle ekstra bir negatif 6dul -1 eklenir. Kol kendine ¢arpiyorsa kosu devam
eder. Kendi kendine c¢arpismada basarisiz olmamasinin nedeni, simiilasyonu

yavaglatan ekstra hesaplamalar gerektirmesi ve ayni zamanda erken deneyler
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sirasinda hicbir zaman bir soruna neden olmadiginin gosterilmesidir, ¢iinkii nadiren

gerceklesir ve olmadigr i¢in yalnizca daha biiyilik negatif 6diil alir.

H. Kavrama

Kavrama icin sadece tek bir nesne, bir kiire cisim kavranmaya caligilacaktir.
Kavrama ile, parmaklarin nesneyi kavradigi kastedilmektedir, ancak nesneyi
kaldirmas1 gerekmemektedir. Simiilasyonun fizigini kullanarak bir nesneyi kavramak
ve kaldirmak dogru bir sekilde yapilmasi ¢ok zor olabilir ve simiilatérde ¢cok sayida
ince ayar yapilmasi gerektirir. Ayrica son efektérden yani tutucudan c¢ok net bir
bicimde geri bildirim almay1 gerektirir. Bu calismada tiim eklemler kullanilir ve
deneylerde her zaman parmaklar da eklenir. Parmaklar tek bir hamle ile kontrol
edilmez, her biri i¢in ayr1 ayr1 6grenme gerceklestirilir. Bu ayn1 zamanda daha iyi bir
kavrama hareketi yaratacaktir. Nesnenin nasil kavranacagini belirlemek i¢in oldukga
basit bir yontem kullanilmaktadir. Nesnenin orta nokta konumuna yaklasmasi igin
ona c¢oklu agilar verilecektir. Planlayict da bu koleksiyondan en 1iyisini
belirleyecektir. Araci, tim parmak segmentleri nesneye dokundugunda basarili
olmus sayilacaktir. Bu, parmaklarin nesneyi kavradigr anlamina gelmektedir, ancak
kavramanin c¢ok dogru olmadigi durumlar da olabilir. Son efektor, nesneyi,
parmaklarin nesneyi tam olarak degil, yalnizca kiiciik bir yiizeyle kavramasina neden
olacak bir aciyla kavranabilir. Ger¢ek hayatta nesne daha sonra hareket eder ve
biiyiikk olasilikla kavrayan parmaklara daha iyi oturur, ancak simiilasyonda bu,
nesnenin garip ¢arpisma davranisi olusturmasina neden olabilir. Bu nedenle cismin
agir olmasi ve kolla hareket ettirilemeyecek olmasi se¢ilmistir. Bu sekilde cismin
garip hareket etmesi konusunda endiselenmemize gerek kalmaz, ancak kavramanin
her zaman optimal bir kavrama olmadig1 da gdz 6niinde bulundurulur. Odiil islevi
icin, nesneden 5 cm’den fazla uzaktayken kavrama olmadigin goéz Oniinde
bulundurulur. Odiil islevi igin, nesneden 5 cm’den fazla uzaktayken parmaklarin
negatif mesafe carpr sabit, c2, nesnenin 5 cm yakininda parmaklarin pozitif agisi
carp1 c2 oldugunda, negatif mesafe ¢arp1 sabit, cl alinir. Ve eylemlerin negatif nokta
{iriinii ¢arp1 a sabit, c3. ilk deneyler, c1, c2 i¢in 0,5 ve ¢3 i¢in 0,2 i¢in 1 degerinin iyi

sonuglar verdigini gostermektedir. U¢ efektor yere degdiginde ¢alisma durur, 6diile -
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1 eklenir, ancak kendi kendine ¢arpisma olmaz. Mesafe dl¢iimii, u¢ efektdr noktasi

ile nesnenin merkezi arasindaki mesafedir.

l. Tensorflow

Bu ¢alismada sinir aglarin1 programlamak icin Tensorflow [Kaynak] kullanilmistir.
Tensorflow, simiilasyonu sinir aglarina baglamay1 epey kolaylastiran Python’da
programlanabilir. Tensorflow ayrica, sinir aglarmi egitmek icin bir GPU
kullanilabilir, ag boyutlar1 GPU’larin sagladigi paralellikten tam olarak yararlanacak
kadar biiyiikk olmadigindan dolay1 CPU {izerinde calistirilmistir. Tensorflow,
karmagik aglar olusturmay1 kolaylastirir, ancak bu ¢alismada tamamen bagli sinir
aglar1 kullanilmaktadir. Tam baglantili bir sinir ag1, matrix ¢arpimlart ile kolayca
olusturulabilir. Tensorflow ayrica birgok farkli etkinlestirme islevine sahiptir.
Tensorflow, agirliklar1 giincellemek icin gereken tlirevleri otomatik olarak
hesaplayacaktir. Bu, tiirevi hesaplama konusunda endiselenmeye gerek kalmadan
derin aglar olusturulmasina olanak tanir. Hata fonksiyonu ve egitim algoritmas1 da
belirtilebilir. Ayrica egitim i¢in toplu islerden yararlanmak kolaydir ve girdisine gore
bir agin ¢iktis1 da kolaylikla alinabilir. Farkli parametreleri kullanmak icin, belirtilen
giris ve ¢ikis sayisina, gizli ndron ve katman sayisina ve 6grenme oranlarina dayali
olarak dogru bir Tensorflow modeli olusturmaya izin veren bir yapilandirma dosyasi

olusturulmus ve ¢alismalar bunun {lizerinden yiiriitiilmiistdr.

I. Hiper parametre Optimizasyonu

Hiper parametrelerin se¢imi, 6grenilen bir ilkenin nihai performansinin yani sira
o0grenme egrisi de dnemli dlgiide etkilenebilir. DRL’nin hiper parametrelere karsi bu
kirilganligi, bu nedenle optimizasyonlarin biiylik 6nem tasidigr ve her ortam igin
gerceklestirilmesi gerektigi anlamina gelir. Bu c¢alismada, olusturulan ortam,
gozlemler ve kullanilan RL algoritmalar1 ig¢in politikanin saglam bir sekilde
Ogrenilmesini saglayacak bir dizi hiper parametre elde etmek amaciyla hem otomatik
optimizasyon hem de manuel ince ayar gerceklestirilir. ilk olarak, Optuna adinda bir

hiper parametre optimizasyon c¢ercevesi kullanilarak otomatik bir hiper parametre

75



optimizasyonu uygulanir. Optuna ve diger benzer ¢erceveler, hiper parametre uzayini
yinelemeli olarak aramak ve bazi metriklere gore en iyi sonuglari saglayan bir
kombinasyon bulmak i¢in kullanilan bir dizi farkli deneme gerceklestirerek DL i¢in
uygun bir hiper parametre kombinasyonu segme sorununu ele alir. RL agisindan bu
metrik, bir aracinin belirli bir degerlendirme doénemi boyunca biriktirebildigi bir
odiildiir. Optuna, Ornekleyici ve budayici olmak iizere iki boliimden olusur.
Ornekleyici, bir sonraki deneme i¢in hiper parametre arama alanindan bir dizi hiper
parametre secer. Bu tlr bir se¢im tamamen rastgele olabilir. Ornegin bir deneyin
basinda veya Onceki tim denemelerden istatistiksel analiz yapan algoritmalar
uygulayarak. Bu baglamda Pruner, bosa harcanan kaynaklarin miktarini siirlamak
amaciyla umut verici olmayan denemelerin erken durdurulmasina izin veren bir
stratejidir. Budama, her denemenin degerlendirme boliimlerinin diizenli araliklarla
caligtirilmasin1  gerektirir; burada her yeni deneme, Onceki tiim denemelerin
performansiyla karsilastirilir ve 6diil karsilastirilabilir sekilde ¢ok diisiikse budanir.
Kavrama ortam i¢in, giivenilir bir performans saglayan bir taban ¢izgisi elde etmek
icin ilk olarak hiper parametreleri optimize etmek ig¢in Optuna uygulanir. Bu
optimizasyon, arama alaninin, 6zellik ¢ikaricinin boyutu ve aktor-elestirmen aglar
dahil olmak iizere c¢ogu hiper parametreden olusturdugu SAC kullanilarak
gergeklestirilmistir. Yeniden oynatma arabelleginin boyutu, toplu is boyutu ve ilk
entropi otomatik olarak optimize edilmedi. Yeniden yiiriitme arabellegi ve toplu is
boyutu, sirasiyla maksimum RAM ve VRAM kullanimi agisindan kullanilan sistem
icin yeterince biiyiik olacak sekilde segilmistir. Ilk etropi tutarli tutulur ciinkii biiyiik
ilk entropinin istenmeyen budama ile sonuglanabilecegi her denemenin ilk
asamalarinda performansi dogrudan etkiler. Maksimum deneme siiresi 1500 zaman
adimi olan toplam 70 deneme kullanilmistir. Budamay: tetikleyebilecek her 125
zaman adiminda bir 20 degerlendirme boliimii seti gerceklestirilmistir. Sonunda,
sonraki manuel ayarlama igin en iyi performans gosteren hiper parametre seti
kullanilmistir. Optuna ile otomatik optimizasyon, bu calismada olusturulan gibi
karmasik ortamlar i¢in ¢ok fazla hesaplama siiresi gerektirdiginden manuel ayar
uygulanir. Bu ayni zamanda, maksimum deneme siiresi 1500 zaman adimi olan 70
denemenin kullanilmasinin da nedenidir. Ve bu halihazirda 1 haftalik bir deneme
siiresi almistir. Bu nedenle, hedeflenen hiper parametrelerin manuel olarak

ayarlanmasi, manuel olarak baslatilan ve durdurulan birka¢ denemeyle daha yapildi.
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Bu surecin odak noktasi ¢cogunlukla uygulanan ortamin hiper parametreleridir. Tim

aktor-elestirmen algoritmalart i¢in ortaya ¢ikan parametreler Gizelge 5°te gorulebilir.

Cizelge 5 Olusturulan Sinir Ag1 i¢in Hiper Parametreleri

Degisken Deger
Hiperparametre DFQN
Optimizasyon Algoritmasi Adam

Ogrenme Oran1
Mini-Batch Boyutu

Giuncelleme Frekansi

Her Giincellemedeki Gradyan Adimi

Tekrar Arabellek Boyutu

Discount Faktori
Hedef Giincelleme Orani

Elestirmen Sayisi
Aktivasyon Fonksiyonu

Kesif Eylemi Giiriiltiisii
Hedef Politika GurGltist

[k Entropi Katsaysi
Entropi Katsayist

Atom Numarasi

Kesilmis Atom Sayisi

Lineer, 1.5.10% — 0
32

Her bolimden sonra
100

40000

0.999
5.10°

1
Binary Crossentropy

N(0, 0.25)
N(0, 0.25)
0.1

-dim(A) = -5
25

3
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VI. SIMULASYON SONUCLARI VE DEGERLENDIRMESI

A. Simiilasyon Sonuclar1 ve Kavrama Deneyleri

Calismada 3 farkli robot kolunun federe derin 6grenme ve federe derin pekistirmeli
o0grenme teknikleri ile cisimlerin tutulabilirliginin 6grenilmesi iizerinde ¢alisiimistir.
Sekil 6.1,6.2 ve 6.3’te Robot kollarin tek baslarina 6grenme sonuglar1 gésterilmistir.
Sekillerde sonuglar 2500 score lizerinden degerlendirilmis ve 2500 score federe derin
o6grenme modelindeki %90’lik egitim dogruluguna karsilik gelmektedir. Sekillerdeki
1200 dongii federe derin 6grenme yaklagiminda 300 dongiliye karsilik gelmektedir.
Asagidaki sekillerden anlasildigi gibi robot kollar tek baslarina yaklasik olarak 900
dongiide 2500 puana ulagmislardir. Federe derin 6grenme yOntemi ile federe derin
pekistirmeli 6grenme yontemlerinin karsilastirilmas:  sekil 47 ve sekil 48’de
gosterilmistir. Sekillerden de anlasilacag: lizere federe derin pekistirmeli 6grenme
yonteminde robot kollar herhangi bir yerel optimaya takilmadan 1000 dongude %90
diizeylerinde 6grenme gergeklestirmislerdir. Ancak sekil 44’te goriilecegi tizere
federe derin 6grenme yonteminde robot kol 2’nin ¢alisma performansi ancak 1200
dongiide %90 diizeylerine erigmistir. Federe derin 6grenme yontemi yaklasik olarak
6 saat stirmekte iken, federe derin pekistirmeli 6grenme yontemi 5 saat stirmektedir.
Yani federe derin pekistirme yontemi ile 6grenme hedeflenen basar1 diizeyine federe

derin 6grenmeden daha hizli ulagmustir.
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Sekil 44 Robot Kol 1’in derin pekistirmeli 6§renme sonuglari
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Sekil 45 Robot Kol 2’nin derin pekistirmeli 6grenme sonuglari
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Sekil 47 Federe derin 6grenme yontemi ile 6grenme
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Sekil 49 Federe derin pekistirmeli 6grenme 2 ve 3 robot kolu ile 6grenme sonucunun
karsilastirmasi

Federe derin pekistirmeli 6grenme algoritmasinda sunucuya bagli alt sistemlerin
sayist ne kadar arttirilirsa 6grenme o kadar hizli ve diizenli gerceklesir. Sekil 49’da
robot sayist 2’den 3’e ¢ikarildiginda O6grenme diizeyinin ne kadar hizlandigi
gorilmektedir.

Her 10 denemeden sonra bir test ¢alistirmasi gerceklestirilen, her deney sirasinda,
kesif eklemeden ve her adimda aglar1 egitmeden bir test calistirmasi yapildi. Actor ve
Critic aglari, her 324 nérondan olusan 2 gizli katmana sahiptir ve arabellek yontemi

kullanilarak egitilmistir. Kavramak i¢in hep ayni nesneleri kullanilmistir ve nesne
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hep ayni pozisyondadir. Cizelge 6 fizik simiilatoriince 700 6n egitim denemesi ve
300 6grenme denemesi kullanmanin sonuglarini gostermektedir. Sonuglarin da
gosterdigi gibi, ag nesneyi kavramayi yeterince 6grenmemistir. Ortalama mesafe,
nesneye yaklastigini gosterse de, cismi gergekten kavrayamamistir. Test caligmasi
sirasinda bazi denemelerde kavramaya ¢ok yaklasirken, nesneyi yatay yerine dikey
olarak kavramaya calisirken ¢ogunlukla yanlis bir yonelime sahiptir. Bu durum
bliylik olasilikla egitim Oncesi asamada asir1 egitilmesinden kaynaklandigi
disiiniilmektedir. Bu asamanin fizigi olmadig1 ve dolayisiyla kavramaya bile
kalkisamadigindan dolayi, yolunda tutmasi gereken bir nesne oldugunu bilmeden
sadece bir konuma gitmeyi 6grenmistir. Kavrama, bir noktaya gitmekten ¢cok daha
zor oldugundan dolayr kosu sayisi 1500’e ¢ikarilmistir ve on egitim asamasi
kullanilmamistir.  Cizelge 7 sonuglari gostermektedir. %90 basari oranmi ile
algoritmanin bir nesneyi kavramay1 d6grenebildigi gosterilmistir. Dezavantaji ise, 6n
egitim yontemini kullanmadan genel egitim 5 saatten fazla stirmektedir. 3,94 cm’lik
ortalama mesafe, aglarin ug¢ efektoriinii son konumuna yaklastirabildigini, ancak
bazen oryantasyonun dogru olmadigini gosteriyor. Bazen son efektor ve parmaklar
nesnenin etrafindadir ancak basarili olamamistir. Bu biiyiik olasilikla, parmaklarin
tiim boliimlerinin nesneyle dogru sekilde temas etmedigi anlamina gelmektedir.
Cizelge 6 Hedef pozisyonuna gore nihai pozisyonun standart sapmasi ile ortalama
basar1 oran1 ve ortalama mesafe. 700 denemelik 6n egitim kullanilarak ortalama 10

deneme ve toplu 6grenme icin bir arabellek ve iki araci kullanilarak 300 deneme i¢in
fizik simiilatorii kullanilarak egitilmistir. 6 eklem ve 3 parmak kullanilmistir.

Gaussian
Dogruluk Orani %60
Ortalama Mesafe  6.11cm

Ortalama Hata 4.12cm

Cizelge 7 Hedef Pozisyonuna gore nihai pozisyonun standart sapmasi ile ortalama
basar1 oran1 ve ortalama mesafe. Ortalama 10 deneme, 1500 deneme i¢in fizik
simiilatori kullanilarak egitilmis, toplu 6grenme igin bir arabellek ve iki araci; 6
eklem ve 3 parmak kullanilmistir.

OuUP
Dogruluk Orani %90
Ortalama Mesafe  3.94cm

Ortalama Hata 1.93cm
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Bir dizi deneyde robot kolunun cisimlerin tutulabilirliginin dgrenilmesi
gosterilmistir. 1 ile 3 eklem bolgesi kullanarak ¢evrimi¢i 6grenme miimkiin olsa da
caligmada kullanilacak 7 eklem bolgeli robot kol kullanildiginda performans
diismektedir. Coziimlerden birisi 1200’den fazla deneme yapilmasina izin vermek
olsa da bu nispeten basit gorevi 6grenmek de ¢ok fazla zaman alacaktir. Bir egitim
dizisinin aglart mini gruplarda egitebilecegi bir arabellek kullanarak, ayni miktarda
deneme kullanildiginda sonuglarin ¢ok daha iyi oldugu, ancak heniiz miikemmel
olmadig1 gosterilmistir. Deneme sayist iki katina ¢ikarildiginda basar1 orani her bir
kesif yontemi i¢in %80 ve %90 basar1 oranlar ile kabul edilebilir hale gelir. Ancak
egitim siiresi de iki katina ¢ikmaktadir. Bir aracin egitim ornekleri olusturmak igin
yapabilecegi yinelemelerin miktarin1 artirmak i¢in FDRL algoritmasi sunulmustur.
Nispeten biiyiik miktarda 6n egitim denenesi ve fizik simiilatorii kullanilarak daha az
miktarda egitim kullanildiginda, aglar egitmek icin gereken toplam siireyi azaltirken
performans artirilmig oldu. 1200 ¢alistirma iizerinden %85 ve %90 basar1 oranlari ile
kolun ug¢ efektorii belirli bir konuma hareket ettirmeyi saglamak i¢in algoritma
yeterince saglam goriinmektedir. Bazi durumlarda Gauss kesif yontemi daha iyi
performans gosterirken, diger durumlarda OUP kesif yontemi daha iyi performans
gostermektedir. Ancak basart orani, ortalama mesafe ve standart sapmadaki fark
nispeten kicuktar.

Pearson korelasyonu yaygin olarak iki rastgele degisken arasindaki iliskiyi bulmak
icin kullanilir. Pearson korelasyon katsayisi, X ve Y degiskenleri tamamen ayniysa
+1, tamamen farkliysa 0 ve zit yonde tamamen ayniysa -1 degerine sahiptir. Cizelge
8 aym tipteki ili¢ robot kolun dinamikleri i¢in homojenlik testinin sonuclarini
gostermektedir. Iki tablodan da bilindigi gibi, farkli yonlere uygulanan kuvvetler 100
defa sabit olmasina ragmen motor ve sarkag acilar1 farkli sekilde degismektedir. Her
bir robot kolun 6zellikle motor agisindaki degisiklik, sarkag agisindaki degisiklikten
daha cesitlidir. Ayni tipte birden fazla robot kolun sonug olarak, ayni iretim hattinda
tiretilmelerine ragmen dinamikleri birbirinden biraz farklidir. Bu, robot kol 2’nin
olgun modelini aldiktan sonra bile Isci 1 ve 3’te ki ek Ogrenime hala ihtiyag

duyuldugu anlamina gelir.
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Cizelge 8 Ayni tiirden birden ¢ok robot kol cihazinin dinamikleri i¢in homojenlik
testinin sonuglart.

(@) Motor a¢1 degisikliklerinin bir (b) Sarkag agis1 degisikliklerinin
pearson korelasyon matrisi pearson korelasyon matrisi
Motor Agisi Koll Kol2 Kol3 Sarka¢A¢isi Koll Kol2 Kol3
Kol 1 1 0.77 086 Koll 1 098  0.96
Kol 2 - 1 0.75 Kol 2 - 1 0.98
Kol 3 - - 1 Kol 3 - - 1

Nicel olarak, cismin yer degistirilmemesi ajana her boliim sirasinda bir nesneyi daha
iyl kavrama sansi verir bu nedenle biriken 6diilii en {ist diizeye ¢ikarir. Daha uzun
epizot siireleri goz Oniine alindiginda, basar1 orani yapay olarak arttirilabilir. Bununla
birlikte, bu tir bir politikanin niteliksel analizinin asir1 derecede kaotik ve giivensiz
oldugu diisiinilmektedir. Robotik manipiilasyonun gercek diinyadaki uygulamalari,
giivenlik standartlarin1 karsilamay1 ve ¢evre ile daha yapilandirilmig bir etkilesim
kullanmay1 gerektirir. Bu iste egitilmis araclar, bu tiir garantileri saglamak i¢in
miicadele eder ve gergek robotlarda denetimsiz kullanimlari, kazara hasar riskini
azaltan uyumlu nesnelerle smirlidir. Bunu akilda tutarak, ayrik eylem alanlar
Ornegin dnceden tanimlanmamis eylem temelleri ve gilivenlik sinirlarina sahip piksel
bazinda eylem alani, gérev ¢ozme yeteneklerini gelistirecek daha karmasik ilkeleri
O0grenme yeteneginin azalmasina ragmen, daha belirleyici davraniglart nedeniyle su
anda gercek diinya uygulamalari i¢in daha uygun olabilir. Bu nedenle, srekli ugtan
uca kontrol ile gercek dinyadaki robotik maniptlasyon gorevlerini ¢6zmek igin
uygulanabilir olmadan 6nce RL i¢in bir gilivenlik teorisinin gelistirilmesi gerektigine
inanilmaktadir. Ablasyon c¢alismalar1 bazi beklenmedik sonuglar1 getirmistir.
Ozellikle gosterimlerin kullanilmas1, erken asamalarda daha hizli &grenmeye
ragmen, yeni sahnelerde ulagilabilir basari oranini %7 oraninda azaltmistir.
Performanstaki bu Onemli disiisiin, en sonunda yerel bir optimal politikaya
yakinsamaya Yol acan alt-optimal kodlanmis politika tarafindan getirilen bir
Onyargidan kaynaklandigi tartisilabilir. Tamamen sifirdan kesfetmesi gereken ajanin,
kiiresel olarak optimal olan ve bu tiir dnyargilardan etkilenmeyen bir politikaya
yaklagma sans1 daha yiiksektir. Bu nedenle, deneysel sonuglar, mumkinse RL icin
gosterilerin kullanilmasindan vazgecilmesi gerektigini ve bunun yerine miifredat
O0grenimi gibi daha iyi garantileri olan diger yontemlerin uygulanmasi gerektigini

gostermektedir.
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Proprioseptif gozlemlerin eklenmesi, basar1 oraninda %?2’lik kiiglik bir artis saglar.
Bu gozlemler kolaylikla elde edilebildigi icin kullanimlarin faydali oldugu
diisiiniilmektedir. Benzer sekilde gorsel gézlemlerde renk 6zniteliklerin kullanilmasi
basar1 oranini %10,5 oraninda artirmaktadir ki bu ¢ok 6nemli kabul edilmektedir. Bu
nedenle egitim i¢in kullanilan bir ortam ger¢ek¢i olusturmay1 destekliyorsa, bunlarin
eklenmesi yararhdir. Oznitelik ¢ikarict parametrelerin  paylasimi igin yapilan
analizler bazi ilging sonuglar1 da ortaya c¢ikarmistir. Her gbzlem yigmi icin ayri
Oznitelik c¢ikaricilar kullanildiginda, ilk Ogrenme, tek bir paylasilan Oznitelik
¢ikaricinin  kullanirmindan ¢ok daha hizlidir. Bu mevcut olana kiyasla gec¢mis
gozlemler i¢in farkli 6znitelik ¢ikaricilar ¢ok daha fazla sayida birlesik 6grenilebilir
parametreye sahiptir. Bununla birlikte, her iki yaklasim da ¢ok benzer bir nihai basari
oranina ulasabilir. Son yillarda RL’nin biiyiik potansiyeline ve 6nemli ilerlemelerine
ragmen, gercek diinyadaki robotik manipiilasyon gorevleri i¢in uygulanabilirligi hala
sinirlidir. DRL tarafindan 6grenilen ugtan uca politikalarin gercek robotik sistemlere
saglam bir sekilde entegre edilebilmesi icin ele alinmasi gereken birka¢ zorluk
vardir. Modelden bagimsiz RL algoritmalarinin  6rnek verimliligini artirma
girisimleri olmasina ragmen, deneyim tekrarina sahip politika dis1 algoritmalar bile
en uygun politikayr 6grenmek i¢in binlerce kez gecis gerektirir. Hiperparametrelere
duyarlilik, RL’nin biiyiik 6lgekli kullanimini saglamak i¢in ele alinmasi1 gereken bir
diger onemli sorundur. Hiperparametrelerin her gorev icin optimizasyonu, her
denemenin uzun egitim siiresi nedeniyle ¢cok zaman alan bir prosediirdiir. Benzer
sekilde, RL’de tekrar {iretilebilirlik, bir¢ok robotun calistig1i ortamlarin yiiksek
stokastikligi nedeniyle siirekli gorevler i¢in ¢ok zordur. Yiiksek dogruluklu fizik ve
isleme ile ucuz paralel simiilasyonlar, yakin gelecekte bu sorunlarin bazilarini
hafifletebilir. Bu nedenle, DRL’nin robotik manipiilasyon alaninda umut verici bir

gelecege sahip olacagina inanilmaktadir.
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VIl. SONUC VE GELECEK CALISMALAR

Bu c¢alismada federe derin o6grenme ve federe derin pekistirmeli 68renme
yaklasimlar1 kullanilarak robot kollarin cisimleri tutabilirligini 6gretmeye
calisilmigtir. Federe O6grenme bilindigi ilizere birden fazla alt sistemin sunucu
tizerinde aym1 anda egitilme olanagr saglamaktadir. Ayni1 zamanda egitim
gergeklestirilirken alt sistemlerin verileri sunucuya gonderilmez bu da dgreticiye veri
guvenligini saglar. Ayn1 zamanda alt sistemler aymi anda Ogrendiklerinden
birbirleriyle sinir aglarinin hatalarini ve agirliklarini paylastiklari i¢in 6grenme stireci
daha hizli gerceklesmektedir. Goriilmiistiir ki federe derin pekistirmeli 6grenme
yaklasimi standart federe derin 6grenme yaklasimindan daha iyi performans
gostermis ve daha hizli calismistir. Federe derin pekistirmeli 6grenme yaklagiminin
bir 6nemli yonii de baslangicta ve egitim gerceklesirken herhangi bir veriye ihtiyag
duymadan 6grenmesidir. Bundan dolay1 gelecekte insansiz Hava Araclarinda federe
pekistirmeli 6grenme yaklasimlart kullanilabilir ve araglarin daha once hig
gormedikleri alanlarda hizlica egitilmesi saglanabilir. Agin algidan 6grenebilmesi
icin oncelikle kuruluma bir kamera eklenebilir. Ilk kullanim fikri bu olsa da,
giincelleme oranlar1 agisindan V-REP simiilasyonunda bir sinira ulagilmistir. Algi
eklemek Ogrenmeyi iyilestirilebilir ¢linki daha bilgilendirici bir durum saglar.
Deneysel kuruluma bir kamera eklemek kurulum i¢in sonuglar iyilestirilebilse de,
sahneye birden fazla nesne ekleyerek deneyin zorlugunu arttirmak, aga nesnelerden
hangisi oldugunu sdyleyen daha {iist diizey bir karar verme siirecinin eklenmesi
gerekir. Toplu normallestirme ve birakma gibi diizenlilestirme teknikleri eklenerek
baska bir iyilestirme yapilabilir. Bu calismada sunulmamasina ragmen, kisa siire
icerisinde bunlarla ilgili deneyler yapilmasma ragmen, Onemli bir gelisme
goriilmemistir. Ancak sadece iki teknik denenmistir ve sadece Tensorflow g¢ercevesi
tarafindan saglanan standart degerler kullanmilmistir. Farkli parametrelerle
tyilestirmeler olabilir. Ancak bu, ¢ok fazla zaman harcanmasi gereken daha fazla
deney gerektirmektedir. Farkli bir robotik kol kullanilarak da iyilestirmeler

yapilabilir. Calismada Mico kolunun segilmesinin tek nedeni, o zamanlar robotik
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laboratuvarlarda mevcut olan bir robot kol olmasi ve gercek diinyada da ¢ok fazla
kullanilmasidir. Ancak bu projenin son asamasinda simiilasyonda kullanilmak tizere
yeni bir robotik kol, Panda robotik kol kullanima sunulmustur. Panda, lineer olarak
hareket ettirilen iki parmakli bir kavrayiciya sahip 7 serbestlik dereceli bir robotik
koldur. Bu robotik kolun ana avantaji, kuvvet algilamaya sahip olmasidir, yani bir
cisimle carpisirsa bir nesneye ne kadar kuvvetle ittigini algilayabilir ve ayrica bir
nesneyi tutarken kuvvet algilama 6zelligine sahiptir. Bu geri bildirim, 6diil islevi igin
degerli bilgiler saglayabilir. Diger ilging kisim ise 7 serbestlik dereceli olmasidir. Bu
7. Eklem bolgesi kolun geri kalan1 hala hareket edebilitken u¢ efektdriin ayni
pozisyonda kalmasina izin vermektedir. Bu ilave karmasiklik, son efektoriin nihai
konumuna ulagmasini kolaylastirmali, ancak ayni zamanda kesif sirasinda
karmasikligi artiracak ve muhtemelen aktér ve elestirmen igin Ogrenmesini
zorlastiracaktir. Bu aragtirma manipiilasyon alaninda yalnizca nispeten basit bir

senaryoya odaklanmustir.
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