
YAŞAR UNIVERSITY

GRADUATE SCHOOL

MASTER’S THESIS

MACHINE LEARNING BASED

ENERGY-EFFICIENT

INDOOR POSITIONING

FOR MOBILE INTERNET OF THINGS

ALPER SAYLAM

THESIS ADVISOR: PROF. DR. VOLKAN RODOPLU
CO-ADVISOR: PROF. DR. CÜNEYT GÜZELİŞ

ELECTRICAL AND ELECTRONICS ENGINEERING

PRESENTATION DATE: 28.07.2022

BORNOVA / İZMİR

JULY 2022

We certify that, as the jury, we have read this thesis and that in our opinion it is fully
adequate, in scope and in quality, as a thesis for the degree of Master of Science.

Jury Members: Signature:

Prof. (PhD) Volkan RODOPLU

Yaşar University
.

Prof. (PhD) Cüneyt GÜZELİŞ

Yaşar University
.

Prof. (PhD) Mustafa SEÇMEN

Yaşar University
.

Prof. (PhD) Barış ATAKAN

Izmir Institute of Technology
.

Prof. (PhD) Ayşegül UÇAR

Fırat University
.

Prof. (PhD) Yücel ÖZTÜRKOĞLU

Director of the Graduate School

iii

ABSTRACT

MACHINE LEARNING BASED ENERGY-EFFICIENT INDOOR
POSITIONING FOR MOBILE INTERNET OF THINGS

Saylam, Alper
MSc, Electrical and Electronics Engineering

Advisor: Prof. Dr. Volkan Rodoplu
Co-Advisor: Prof. Dr. Cüneyt Güzeliş

July 2022

Artificial Intelligence is a promising solution to indoor positioning and tracking systems
in overcoming the challenges of positioning accuracy and energy consumption of mobile
Internet of Things (IoT) devices. The majority of the past works in the positioning
literature have focused on enhancing the positioning accuracy and solving the problem
of transmit energy consumption via reactive approaches. In contrast to these past
approaches, our approach is to forecast the future trajectory of a mobile IoT device and
determine the positioning interval based on these trajectory forecasts. Our approach
aims to reduce the transmit energy consumption of a mobile IoT device in indoor
positioning and tracking systems.

In this thesis, first, we develop an algorithm called “Dynamic Positioning Interval based
on Reciprocal Forecasting Error (DPI-RFE)” in order to achieve energy-efficient indoor
positioning. In contrast with existing indoor positioning algorithms, DPI-RFE adapts
the positioning interval based on the reciprocal instantaneous forecasting error, thereby
dynamically trading off transmit energy consumption against forecasting error. We
compare the performance of DPI-RFE with respect to total transmit energy consumption
and average forecasting error against those of the Constant Positioning Interval (CPI)
and Positioning Interval based on Displacement (PID) algorithms. Our results show that
DPI-RFE significantly outperforms both of these benchmark algorithms with respect to
transmit energy consumption while achieving a competitive average forecasting error
performance.

Second, in order to improve energy efficiency further for mobile IoT devices, we
develop a novel architecture called “Machine Learning Enabled Sleep Time Estimation
(MLE-STE)”. Our MLE-STE architecture forecasts the trajectory of the mobile device
and estimates the maximum allowable sleep time of the mobile device with respect
to forecast positions subject to a target maximum forecasting error. We compare the
performance of our MLE-STE architecture against those of PID and our DPI-RFE

iv

algorithms with respect to transmit energy consumption and forecasting error. Our
results show that the MLE-STE architecture outperforms both PID and DPI-RFE.

This thesis paves the way to the development of machine-learning-based indoor po-
sitioning and tracking systems that achieve high energy efficiency for mobile IoT
devices.

Keywords: Indoor Positioning and Tracking, mobile Internet of Things (IoT), trajectory
forecasting, Artificial Intelligence (AI), Machine Learning (ML), energy efficiency

v

ÖZ

MOBİL NESNELERİN İNTERNETİ İÇİN MAKİNE ÖĞRENİMİNE
DAYALI ENERJİ VERİMLİ İÇ MEKANDA KONUMLANDIRMA

Saylam, Alper
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği

Danışman: Prof. Dr. Volkan Rodoplu
Yardımcı Danışman: Prof. Dr. Cüneyt Güzeliş

Temmuz 2022

Yapay Zekâ, mobil Nesnelerin İnterneti (IoT) cihazlarının konumlandırma doğruluğu
ve enerji tüketimi ile ilgili zorlukların üstesinden gelmede iç mekan konumlandırma
ve izleme sistemleri için umut verici bir çözümdür. Konumlandırma literatüründeki
geçmiş çalışmaların çoğu, konumlandırma doğruluğunu artırmaya ve reaktif yaklaşımlar
yoluyla iletim enerji tüketimi sorununu çözmeye odaklanmıştır. Bu geçmiş yaklaşım-
ların aksine, yaklaşımımız bir mobil IoT cihazının gelecekteki yörüngesini tahmin
etmek ve bu yörünge tahminlerine dayalı olarak konumlandırma aralığını belirlemektir.
Yaklaşımımız, iç mekan konumlandırma ve izleme sistemlerinde bir mobil IoT cihazının
iletim enerji tüketimini azaltmayı amaçlamaktadır.

Bu tezde ilk olarak, enerji verimli iç mekan konumlandırma elde etmek için “Karşılıklı
Tahmin Hatasına Dayalı Dinamik Konumlandırma Aralığı (DPI-RFE)” adlı bir algo-
ritma geliştirilmiştir. Mevcut iç mekan konumlandırma algoritmalarının aksine, DPI-
RFE, karşılıklı anlık tahmin hatasına dayalı olarak konumlandırma aralığını uyarlar,
böylece iletim enerji tüketimini tahmin hatasına karşı dinamik olarak değiştirir. Toplam
iletim enerji tüketimi ve ortalama tahmin hatası açısından DPI-RFE’nin performansı
Sabit Konumlandırma Aralığı (CPI) ve Yer Değiştirme tabanlı Konumlandırma Ar-
alığı (PID) ile karşılaştırılmaktadır. Sonuçlarımız, rekabetçi bir ortalama tahmin hatası
performansı elde ederken, DPI-RFE’nin iletim enerji tüketimi açısından bu kıyaslama
algoritmalarının her ikisinden de önemli ölçüde daha iyi performansa sahip olduğunu
göstermektedir.

İkincisi, mobil IoT cihazları için enerji verimliliğini daha da artırmak için “Makine
Öğrenimi Etkinleştirilmiş Uyku Süresi Tahmini (MLE-STE)” adlı yeni bir mimari
geliştirilmiştir. MLE-STE mimarimiz, mobil cihazın yörüngesini tahmin eder ve hedef
maksimum tahmin hatasına tabi olan tahmin pozisyonlarına göre mobil cihazın izin
verilen maksimum uyku süresini tahmin eder. MLE-STE mimarimizin performansı,
PID ve DPI-RFE algoritmalarının performansıyla, iletim enerji tüketimi ve tahmin

vi

hatası açısından karşılaştırılmaktadır. Sonuçlarımız, MLE-STE mimarisinin hem PID
hem de DPI-RFE’den daha iyi performansa verdiğini göstermektedir.

Bu tez, mobil IoT cihazları için yüksek enerji verimliliği sağlayan makine öğrenimi
tabanlı iç mekan konumlandırma ve izleme sistemlerinin geliştirilmesine giden yolu
açmaktadır.

Anahtar Kelimeler: İç Mekan Konumlandırma ve İzleme, mobil Nesnelerin İnterneti
(IoT), yörünge tahmini, Yapay Zeka (AI), Makine Öğrenimi, enerji verimliliği

vii

ACKNOWLEDGEMENTS

Throughout my MSc thesis program, I have been encouraged and supported by many
people who are my advisors, teammates, and my family. First, I would like to thank my
advisor Prof. Dr. Volkan Rodoplu for his endless support and advice. I have learned
from him how to think critically and how to manage long-term projects. Second, I
would like to thank my co-advisor Prof. Dr. Cüneyt Güzeliş for his critical contributions
and direction throughout the course of my thesis. Third, I would like to thank my
teammates Rıfat Orhan Çıkmazel, Nur Keleşoğlu, and Mert Nakıp for their precious
friendship and help.

Finally, I would like to thank my family for their limitless support and grateful patience
during this journey.

Alper SAYLAM
İzmir, 2022

viii

TEXT OF OATH

I declare and honestly confirm that my study, titled “MACHINE LEARNING BASED
ENERGY-EFFICIENT INDOOR POSITIONING FOR MOBILE INTERNET OF
THINGS” and presented as a Master’s Thesis, has been written without applying to
any assistance inconsistent with scientific ethics and traditions. I declare, to the best of
my knowledge and belief, that all content and ideas drawn directly or indirectly from
external sources are indicated in the text and listed in the list of references.

ALPER SAYLAM

Signature:

July 28, 2022

ix

TABLE OF CONTENTS

ABSTRACT . iv

ÖZ . vi

ACKNOWLEDGEMENTS . viii

TEXT OF OATH . ix

TABLE OF CONTENTS . x

LIST OF FIGURES . xii

LIST OF TABLES . xiii

SYMBOLS AND ABBREVIATIONS . xiv

1 INTRODUCTION . 1

1.1 Positioning Techniques and Mobile Internet of Things 1
1.1.1 Positioning and Tracking Applications 2

1.2 Indoor Positioning and Tracking System 2
1.2.1 Indoor Positioning and Tracking System Challenges 4
1.2.2 Energy Consumption of a Mobile IoT Device in Indoor Positioning

and Tracking . 5

1.3 Basic Definitions in Machine Learning and the Context of our Work 6
1.3.1 Trajectory Forecast of a Mobile IoT Device 6

1.4 Relationship to the State of The Art . 7

1.5 Contributions of this Thesis . 8

1.6 Outline of this Thesis . 8

2 Dynamic Positioning Interval Based On Reciprocal Forecasting Error (DPI-RFE)

Algorithm for Energy-Efficient Mobile IoT Indoor Positioning 10

2.1 Introduction . 10

2.2 Assumptions and Basic System Design 11

2.3 Dynamic Positioning Interval Based On Reciprocal Forecasting Error (DPI-

RFE) Algorithm . 12

2.4 Results . 13
2.4.1 Simulation Setup . 13

2.4.1.1 Description of the Positioning Data Set 13
2.4.1.2 Forecasting Methodology 13
2.4.1.3 Benchmark Algorithms 14

2.4.2 Performance Evaluation . 14

2.5 Summary . 16

x

3 Machine Learning Enabled Sleep Time Estimation (MLE-STE) Architecture for

Indoor Positioning in Energy-Efficient Mobile Internet of Things (IoT) 18

3.1 Introduction . 18

3.2 Assumptions . 20

3.3 Machine Learning Enabled Sleep Time Estimation Architecture 21
3.3.1 Trajectory Forecaster . 22
3.3.2 Sleep Time Estimator Module 23

3.3.2.1 Training Methodology for the STE Module 24

3.4 Results . 26
3.4.1 Simulation Methodology . 26

3.4.1.1 Indoor Positioning Data Set 26
3.4.1.2 Training Parameters of the Trajectory Forecaster 27
3.4.1.3 Training Parameters of the STE Module 28

3.4.2 Benchmark Algorithms . 28
3.4.3 Performance Evaluation . 29

3.5 Summary . 31

4 CONCLUSIONS . 32

. 34

REFERENCES . 34

xi

LIST OF FIGURES

Figure 1.1 Indoor positioning system components 3

Figure 1.2 Line-of-Sight and Non-Line-of-Sight signals 4

Figure 1.3 Illustration of the signals at different positioning intervals 5

Figure 1.4 Illustration of trajectory forecasting 6

Figure 2.1 Architectural description of the Dynamic Positioning Interval based

on Reciprocal Forecasting Error (DPI-RFE) algorithm 12

Figure 2.2 Comparison of the total transmit energy consumption incurred by

the mobile IoT device under our DPI-RFE algorithm versus those

under the CPI and PID algorithms 15

Figure 2.3 Comparison of the forecasting error of our DPI-RFE algorithm against

those of the CPI and PID algorithms 16

Figure 2.4 Instantaneous positioning interval Tc of our DPI-RFE algorithm ver-

sus those of the CPI and PID algorithms 17

Figure 3.1 Architecture of the Machine Learning Enabled Sleep Time Estima-

tion (MLE-STE) architecture for energy-efficient indoor positioning 20

Figure 3.2 Subdivision of the deployment region into identical subregions . . 21

Figure 3.3 Internal structure of the Trajectory Forecaster (TF) 22

Figure 3.4 Internal structure of the Sleep Time Estimator (STE) module . . . 24

Figure 3.5 Training data preparation for the STE module 25

Figure 3.6 Demonstration of how to determine the desired value of Ts 27

Figure 3.7 Total transmit energy consumption performance under MLE-STE,

PID, and DPI-RFE algorithms 29

xii

LIST OF TABLES

Table 1.1 Positioning and tracking applications and their environments 3

Table 3.1 Forecasting error of the trajectory forecasters under MLE-STE, PID

and DPI-RFE . 30

Table 3.2 Positioning interval of the mobile IoT device under MLE-STE and

benchmark algorithms . 30

xiii

SYMBOLS AND ABBREVIATIONS

ABBREVIATIONS:

IoT Internet of Things

ML Machine Learning

AI Artificial Intelligence

IP Indoor Positioning

Wi-Fi Wireless Fidelity

IPT Indoor Positioning and Tracking

PID Positioning Interval based on Displacement

CPI Constant Positioning Interval

DPI-RFE Dynamic Positioning Interval based on Reciprocal Forecasting Error

PS Position Selection

FEC Forecasting Error Calculator

PIU Positioning Interval Update

MLE-STE Machine Learning Enabled Sleep Time Estimation

STE Sleep Time Estimator

BoSN Bank of Sigmoid Neurons

TF Trajectory Forecaster

AoA Angle of Arrival

RSSI Received Signal Strength Indicator

TDOA Time Difference of Arrival

TOF Time of Flight

MLP Multi-layer Perceptron

LSTM Long Short Term Memory

Adam Adaptive Moment Estimation

MSE Mean Square Error

Continued on the next page

xiv

ABBREVIATIONS:
ReLU Rectified Linear Unit Function

SYMBOLS:

G Gateway

D Mobile IoT device

R Deployment region

M Set of anchors

B Number of beacons transmitted by the device

T Duration between successive beacons transmitted by device

Ts Sleep time

Tc Positioning interval

E Transmit energy consumption of the mobile IoT device

k Discrete time index

ix[k] Row index of the cell that the position estimate of the device takes
place at time instant k

iy[k] Column index of the cell that the position estimate of the device takes
place at time instant k

x[k] 2D vector, composed of the x and y coordinates of the position estimate
of the mobile device in slot k

U Past window

V Forecast window

c[k] Estimate cell position of the device at time k

ĉT [k+ v] vth step ahead forecast cell position, where k is the discrete-time index

Fx Forecaster that forecasts the row index of the cell positions

Fy Forecaster that forecasts the column index of the cell positions

emax Threshold for the forecasting error of the Trajectory Forecaster

γ Threshold for the displacement in forecast cell positions of the device

xv

CHAPTER 1

INTRODUCTION

The goal of this thesis is the design of machine-learning-based approaches that aim to
reduce the transmit energy consumption of mobile IoT devices in indoor positioning and
tracking systems. In particular, we develop the “Dynamic Positioning Interval based
on Reciprocal Forecasting Error (DPI-RFE)” algorithm and the “Machine Learning
Enabled Sleep Time Estimation (MLE-STE)” architecture for energy-efficient indoor
positioning and tracking systems.

In this chapter, we discuss the problem addressed in this thesis and the technical back-
ground that will be utilized in the following chapters. First, we discuss the importance
of indoor positioning and tracking systems for IoT applications. In addition, we review
the positioning techniques and present positioning and tracking applications. Second,
we review the indoor positioning and tracking system, its challenges, and describe the
energy consumption of mobile devices in indoor positioning and tracking system. Third,
we review the rudiments of Machine Learning (ML) and provide the context for this
work. Fourth, we present the relationship between our study and the state of the art.
Finally, we give an outline for the rest of the thesis.

1.1 Positioning Techniques and Mobile Internet of Things

The development of Industry 4.0 exposes useful Internet of Things (IoT) applications in
distinct sectors such as logistics, healthcare, energy, and transportation as well. The IoT
applications improve the industrial processes, enable fast and effective ways, provide
low-cost productions, and provide human safety as well (Fantana et al., 2013). An
IoT application consists of numerous static, portable, and mobile IoT devices in order
to satisfy the expectations of the industry. Since numerous IoT devices (particularly
mobile devices) take part in the industry, the positioning and tracking of those devices
become crucial. (Ramakrishnan, Gaur, & Singh, 2016).

Nowadays, the need for positioning and tracking of mobile IoT devices both indoors
and outdoors via wireless signal is growing rapidly. The wireless positioning techniques
are categorized into two groups: (1) self-positioning, (2) remote positioning. Remote
positioning refers to the computation of the position of the device by a central computing
entity. In contrast, self-positioning refers to the case in which the position of the mobile

1

device is computed by a device located on the mobile device (Svalastog, 2007).

Self-positioning includes three main positioning techniques, which are GPS (Global
Positioning Techniques), Indoor GPS, and Mobile Terminal Positioning over Satellite
UMTS (S-UMTS). In a GPS system, the satellites transmit signals to a mobile device,
which computes its position based on those signals. Thus, the mobile device determines
its 3D position (latitude, longitude, and altitude). Similarly, the same process is applied
in indoor GPS, but positions are not as accurate as outdoors. In contrast to GPS,
S-UMTS utilizes only two satellites in order to obtain the mobile device position
(Zeimpekis, Giaglis, & Lekakos, 2002).

Remote positioning, which is also utilized for the scope of this thesis, consists of
four techniques (Zeimpekis et al., 2002). The first technique is Cell Identification,
which provides the approximate position of the mobile device by identifying in which
cell the device is located at a given time. The second technique is Angle of Arrival
(AoA), which determines the device position by considering the intersection of the
two straight lines produced by the distinct signals sent from the mobile device to two
distinct receivers (Niculescu & Nath, 2003). The third technique is Time of Arrival
(ToA), which obtains the position of the mobile device by observing the flight time of
the signal sent from the mobile device to the receiver (Shin & Sung, 2002). The fourth
technique is Time Difference of Arrival (TDoA), which computes the position of the
mobile device based on the intersection region of the TDoA measurements each of
which provides a hyperbolic locus (Y. Wang & Ho, 2016).

1.1.1 Positioning and Tracking Applications

The positioning and tracking of the IoT devices are expected to be in the industry and
the daily life of human beings in the near future. In addition, the positioning appli-
cations are categorized into two groups regarding the application environments (e.g.,
indoor and outdoor). Table 1.1 shows the applications and their operation environments
(Zeimpekis et al., 2002). (Piras, Marucco, & Charqane, 2010) states that while the out-
door positioning systems guarantee high performance, indoor positioning applications
do not guarantee high performance (hence, indoor positioning is more challenging than
outdoor). The positioning and tracking of a mobile IoT device in an indoor environment
is the main problem that this thesis addresses.

1.2 Indoor Positioning and Tracking System

The indoor positioning and tracking system is comprised of three main components,
which are the transmitter, the receiver, and the central computing entity (Svalastog,

2

Table 1.1. Positioning and tracking applications and their environments

Application Application Environment

Automotive assistance Outdoor

Travel service Outdoor

Product tracking Outdoor/Indoor

Traffic management Outdoor

Field personnel support Outdoor/Indoor

Vehicle tracking Outdoor

People tracking Outdoor/Indoor

Fleet Management Outdoor

2007). Fig. 1.1 shows an illustration of an indoor positioning and tracking system. In the
system, the mobile IoT device (shortly, device), which is located on the moving object
whose position is computed, operates as a transmitter. Note that the device is battery
limited. Each anchor, which is a static device, represents a receiver, and the gateway
operates as a central computing entity. In the system, the device first transmits signals,
which can be Wi-Fi, Bluetooth, and Zigbee, to the anchors (Bai, Ciravegna, Bond, &
Mulvenna, 2020). In Fig. 1.1, dashed lines represent the two distinct transmitted signals
that are sent from the device to the two distinct anchors.

Figure 1.1. Indoor positioning system components

Each anchor computes the positioning indicator such as AoA, TDoA, and ToA based
on the received signal (Svalastog, 2007). As shown in Fig. 1.1, each anchor sends the
computed position indicator to the gateway. The gateway then determines the position
of the mobile device based on the position indicator produced by the anchors. The

3

DPI-RFE algorithm that we develop in Chapter 2 and the MLE-STE architecture that
we develop in Chapter 3 are designed to reside in the central computing entity.

1.2.1 Indoor Positioning and Tracking System Challenges

Indoor positioning is particularly challenging due to the fact that it is highly affected by
the unpredictable wireless signal characteristics (Nessa, Adhikari, Hussain, & Fernando,
2020). These characteristics cause limited accuracy, reliability, and robustness in indoor
positioning and tracking systems. Moreover, the transmitting signal from the device
to the anchor is affected by the following conditions: change of indoor propagation
channel due to device motion, the density of the obstacles, attenuation of the transmitted
signals, and multipath (Mainetti, Patrono, & Sergi, 2014).

Figure 1.2. Line-of-Sight and Non-Line-of-Sight signals

In an indoor positioning system, there occur distinct paths from the transmitter to the
receiver due to the characteristics of wireless communication. The direct path from
transmitter to receiver is called the Line of Sight (LoS) path. A path that is produced by
reflection from a surface or penetration of an obstacle, which is a penetrable object, is
called a Non-Line-of-Sight (NLoS) path.

Fig. 1.2 shows a LoS path and two NLoS paths. Since multiple paths from the transmitter
to the receiver exist, there is a multipath profile at the receiver, which reduces the
accuracy, the robustness, and the reliability of indoor positioning and tracking systems
(García, Poudereux, Hernández, Ureña, & Gualda, 2015). In this thesis, we focus
entirely on the end result of the position obtained from positioning indicator, which

4

already incorporate the effects of multipath. We utilize the past positions obtained in
this manner to forecast the future trajectory of the device and focus on reducing the
transmit energy consumption while taking into account the forecasting error. Thus, in
this thesis, we do not target improvements in obtaining position estimates themselves
but rather focus on how such position estimates can be used to forecast future positions.
Such forecasts are then used to put the device to sleep over durations for which we
expect to achieve accurate forecasts.

1.2.2 Energy Consumption of a Mobile IoT Device in Indoor Positioning
and Tracking

The mobile device in an indoor positioning and tracking system is powered by a
battery, which has limited capacity (Bisio, Lavagetto, Marchese, & Sciarrone, 2016).
Furthermore the device consumes energy for the following operations: scanning the
environment to connect to the anchor, and to periodically transmit signal in order to
indicate its position. The “positioning interval” refers to the duration between the
two successive transmissions that contain positioning indicators. The works in the
positioning literature, which focus on the energy consumption of the mobile device,
have introduced solutions that reduce the energy consumption by utilizing energy-
efficient technology or energy-efficient hardware for the mobile device. Note that
Wi-Fi-based positioning systems are much more energy-consuming than Bluetooth Low
Energy (BLE) based systems (Kárník & Streit, 2016).

Figure 1.3. Illustration of the signals at different positioning intervals

In Fig. 1.3, we present three distinct scenarios for the positioning interval with which
the device transmits. In this figure, each “D” represents the signal transmitted by the
mobile device, and each slot represents a time slot. In the first scenario, the device
transmits the signal at a period of two time slots, which is the most frequent advertising
scenario among these scenarios. In the second scenario, the device transmits signals at a
period of three time slots. In the third scenario, the device transmits signals at a period
of four time slots. In the first scenario, since the device transmits the signal the most
frequently, the device consumes the most transmit energy among all of the scenarios. In
the third scenario, since the device transmits signals the least frequently, it consumes

5

the least transmit energy. This illustration shows that a larger positioning interval results
in higher energy efficiency for the mobile device.

1.3 Basic Definitions in Machine Learning and the Context of our Work

ML models have rapidly grown in IoT applications due to their characteristics such
as being accurate, fast, and reliable (Tahsien, Karimipour, & Spachos, 2020). An ML
model is utilized to find the pattern or to make predictions based on a given data set.
The ML model consists of two stages, which are the training and test stages, that are
used in order to determine the values of the model parameters such as the weights and
biases of the neurons. In the training state, the ML model aims to compute the values of
the model parameters over the data set called the “training set”. In the test stage, the
trained model is tested over the set called the “test set” to observe the accuracy of the
trained model.

In this thesis, we develop the DPI-RFE algorithm and MLE-STE architecture, each
of which is ML-enabled to forecast the trajectory of a mobile IoT device in an indoor
positioning and tracking system and to reduce the transmit energy consumption problem
of the mobile device.

1.3.1 Trajectory Forecast of a Mobile IoT Device

One of the operations in our DPI-RFE and MLE-STE is the forecasting of the future
trajectory of the mobile IoT device. Throughout this thesis, we consider only the 2D
positions (x and y coordinates) of the mobile device. The ML model estimates the future
states based on the past states of the data. Thus, in order to estimate the future trajectory
of the mobile device, we take into account the past trajectory of the mobile device.

Figure 1.4. Illustration of trajectory forecasting

Fig. 1.4 shows an illustration of trajectory forecasting. In this figure, each “P” represents
a 2D position of the mobile device, and the dashed vertical bar represents the current
time. The positions that occur before the current time indicate the past trajectory, and

6

the positions that occur after the current time indicate the forecast trajectory produced
by the ML model based on this past trajectory. A key performance metric of trajectory
forecasting is the forecasting error, namely the difference between the actual position
and the forecast position over the course of the trajectory.

1.4 Relationship to the State of The Art

In this section, we present the relationship between our algorithm and the state of the art.
We categorize the works in the indoor positioning literature into three groups: (1) the
works that focus only on the trajectory forecasting of the mobile device based on ML
models; (2) the works that develop motion-triggered algorithms that dynamically adjust
the beacon interval of the mobile device; and (3) the works that forecast the trajectory
of the device and provide adaptive solutions in order to reduce the energy consumption
of the mobile device.

In the first category, we address the ML enabled algorithms that forecast the future
trajectory of a mobile IoT device by using its past trajectory. The majority of the
articles on trajectory forecasting in the literature have considered trajectory forecasting
of mobile objects (e.g., pedestrians, phones, traffic agents) in order to avoid collisions
and to provide efficient navigation in various applications such as autonomous vehicles
and social robots (Alahi et al., 2016; Huang, Bi, Li, Mao, & Wang, 2019; Ma et al.,
2019). Recent works (Xue, Huynh, & Reynolds, 2018; Pellegrini, Ess, Schindler, &
Van Gool, 2009; Vu, Le, & Lee, 2014; H. Liu et al., 2019) have demonstrated that
the ML model that forecasts the future trajectory by considering the past trajectory
provides promising results. In (C. Wang, Ma, Li, Durrani, & Zhang, 2019), human
trajectory forecasting was utilized in order to efficiently allocate the resources for the
5G applications. In contrast to those past works, we forecast the future trajectory of a
mobile device in order to reduce its energy consumption.

In the second category, we contrast our work against those works that adjust the sampling
interval of the mobile devices that are employed in indoor positioning systems in a
motion-triggered manner. In (Zhang, Liu, & Jiang, 2012; X. Liu, Zhan, & Cen, 2018;
González, Morillo, Álvarez-García, Ros, & Ruiz, 2019; Abdellatif, Mtibaa, Harras, &
Youssef, 2013; Kuxdorf-Alkirata, Spathmann, Koch, & Bruckmann, 2018), the sampling
rate of the mobile device is dynamically adjusted by considering the information from
an accelerometer that is located on the mobile device and that triggers the system
when it detects the motion of device. Similarly, Reference (Shafer & Chang, 2010)
develops an algorithm that computes the indoor position only when the accelerometer
detects the mobile device’s movement. In (Kjærgaard, Langdal, Godsk, & Toftkjær,
2009), an algorithm called EnTracked optimizes the position updates by regarding the

7

system conditions and mobility of the device. In contrast, our DPI-RFE and MLE-STE
dynamically adjust the positioning interval of the mobile device in an adaptive manner.

In the third category, we compare our works against adaptive solutions that aim to reduce
the energy consumption of the mobile device in an indoor positioning system. Reference
(Constandache, Gaonkar, Sayler, Choudhury, & Cox, 2009) has introduced an energy-
efficient algorithm called EnLoc for positioning applications. The EnLoc algorithm
first forecasts the mobility patterns of a mobile device and determines the optimal
positioning accuracy for a given energy budget. Reference (Chon, Talipov, Shin, & Cha,
2011) has developed an algorithm that estimates the regularity of the mobile device’s
mobility and forecasts its residence time at a place in order to schedule the beacon
interval of a mobile device. In (Saylam, Cikmazel, Kelesoglu, Nakip, & Rodoplu, 2021),
an adaptive algorithm called Positioning Interval based on Displacement (PID) adjusts
the positioning interval of a mobile device based on when the device is forecast to
change its cell. In contrast to the adaptive algorithms in that category, While DPI-RFE
determines the positioning interval reciprocal to the forecasting error in an adaptive
manner, MLE-STE architecture adaptively determines the positioning interval for given
conditions in order to reduce the energy consumption of the mobile device.

1.5 Contributions of this Thesis

The first contribution of this thesis is the development of a novel algorithm, which
we call DPI-RFE for energy-efficient indoor positioning and tracking system. Our
algorithm uses ML in order to forecast the future trajectory of a mobile IoT device
and adapts the positioning interval of the device in a manner that is reciprocal to the
instantaneous forecasting error.

The second contribution of this thesis is the development of an architecture, which we
call MLE-STE in an energy-efficient indoor positioning and tracking system for mobile
IoT device. Our MLE-STE architecture first forecasts the trajectory of the mobile IoT
device and then utilizes the ML models in order to estimate a sleep time for the mobile
device based on the forecast trajectory. Our architecture considers both forecasting
error and device displacement, in estimating sleep time. Thereby, our architecture
significantly reduces the transmit energy consumption of the mobile device by adapting
the sleep time and keeps the forecasting error below the threshold as well.

1.6 Outline of this Thesis

The rest of the thesis is organized as follows: In Chapter 2, we propose an algorithm
called DPI-RFE, which runs at gateway G , dynamically updates the positioning interval

8

of the mobile device based on its trajectory forecasts. Moreover, the algorithm reduces
the energy consumption of the mobile device by adjusting its positioning interval.
In addition, we also present the performance of the DPI-RFE algorithm against the
benchmarks with respect to the total transmit energy consumption, average forecasting
error and positioning interval.

In Chapter 3, we develop an architecture called MLE-STE, which is implemented in G ,
which consists of a Trajectory Forecaster, an Accumulator, and a Sleep Time Estimator
(STE) module in order to enhance the energy efficiency of the mobile device. The
advantage of this architecture is that it determines a sleep time that reduces energy
consumption and satisfies a given forecasting error. In addition, we also measure the
performance of the MLE-STE architecture in terms of transmitting energy consumption
and trajectory forecasting error.

In Chapter 4, we present our conclusions and discuss directions for our future work.

9

CHAPTER 2

DYNAMIC POSITIONING INTERVAL BASED ON RECIPROCAL
FORECASTING ERROR (DPI-RFE) ALGORITHM FOR

ENERGY-EFFICIENT MOBILE IOT INDOOR POSITIONING

2.1 Introduction

As we have discussed in Chapter 1, Indoor Positioning (IP) is expected to play a key role
in next-generation wireless networks in order to enable a plethora of services such as
navigation, proximity marketing, asset tracking as well as social distancing (Alrashidi,
2020; Duque Domingo, Cerrada, Valero, & Cerrada, 2017). While providing accurate
IP is the main goal of these networks, it is equally important that such accuracy is
provided without depleting the scarce battery resources of the mobile devices whose
positions are being determined (Constandache et al., 2009). In particular, trading off
positioning accuracy against energy consumption is crucial for mobile IoT devices,
which constitute a rapidly growing segment of the Internet (Ericsson, Jun. 2021). AI is
increasingly playing an important role in the design of wireless networks (Nguyen et al.,
2020). Recent work has also applied ML techniques to IP (Alahi et al., 2016; C. Wang
et al., 2019; Huang et al., 2019; Xue et al., 2018; Cakan, Şahin, Nakip, & Rodoplu,
2021).

The main contribution of this chapter1 is the design of a novel algorithm called DPI-RFE
which dynamically adapts the positioning interval of the device in a manner that is
reciprocal to the instantaneous forecasting error.

Our DPI-RFE algorithm is distinct from existing algorithms that (1) forecast the future
trajectory of a mobile device without any regard to energy efficiency (Alahi et al.,
2016; C. Wang et al., 2019; Huang et al., 2019; Xue et al., 2018; Ma et al., 2019;
Pellegrini et al., 2009), or (2) adjust the positioning interval of a mobile device based
on motion detection by the device (i.e. motion-triggered energy-efficient IP) (Chon
et al., 2011; Zhang et al., 2012; X. Liu et al., 2018; Yin, Wu, Yang, & Liu, 2017;
González et al., 2019), or (3) forecast future trajectory of a mobile device in order
to achieve energy-efficient IP (Saylam, Cikmazel, et al., 2021; Constandache et al.,
2009). Our results show that with regard to total energy consumption of the mobile IoT

1The technical content in this chapter has been published as a conference paper (Saylam, Kelesoglu,
Cikmazel, Nakip, & Rodoplu, 2021) at the International Conference on Computer, Information and
Telecommunication Systems (CITS) 2021.

10

device, DPI-RFE significantly outperforms both the Constant Positioning Interval (CPI)
algorithm, which serves as a benchmark, and the PID algorithm (Saylam, Cikmazel, et
al., 2021), which adapts the sleep duration in response to a significant forecast change
in position. Furthermore, DPI-RFE achieves an average forecasting error that is close
to that achieved by PID.

The rest of this chapter is organized as follows: In Section 2.2, we state our assumptions
and basic system design. In Section 2.3, we describe our DPI-RFE algorithm. In Section
2.4, we discuss our results. In Section 2.5, we summarize this chapter.

2.2 Assumptions and Basic System Design

Throughout this work, we shall focus on a particular mobile IoT device, denoted by
D, that roams an indoor deployment region, which we denote by R. Furthermore, we
observe this device D over an interval T in time. We assume that there is a set M of
positioning anchors (or “anchors” for short) with which D is associated over T .

We assume that device D has the ability to send a beacon signal that is heard successfully
by each anchor in M . We assume that the anchors in M are connected to a gateway G.
Based on the beacon signals received by each of the anchors in M , gateway G estimates
the current position of device D.2

Device D wakes up and remains awake for a duration of T seconds, during which
it sends L positioning beacons at regular intervals of Tb seconds. Thus, T = LTb.
Then, the device goes to sleep for Ts seconds. In our design, T is fixed, whereas Ts

is potentially variable in each cycle. We define the “positioning interval”, denoted by
Tc, as the duration between two successive wake-ups of the device. Thus, Tc = T +Ts.
Furthermore, in our design, Ts as an integer multiple of T .

We divide up the time axis into slots of duration T . We let k denote the discrete-time
index of a time slot. For every k, we let x[k] denote the 2D vector, composed of the x

and y coordinates of the position estimate of the mobile device in slot k. This estimate
is based on the L beacons received by the anchors during slot k, if the device is awake in
slot k. In particular, no such position estimate is formed at G during a slot if the device
D sleeps in that slot.3

2For example, if Angle of Arrival (AoA) is used as the underlying positioning technology, each anchor
records the AoA measurements based on the beacon signal received from D. The gateway G combines
these AoA measurements in order to compute the current position of D.

3Thus, forecasting is needed for each slot in which no position estimate is available at G.

11

Figure 2.1. Architectural description of the Dynamic Positioning Interval based on
Reciprocal Forecasting Error (DPI-RFE) algorithm

2.3 Dynamic Positioning Interval Based On Reciprocal Forecasting Error
(DPI-RFE) Algorithm

Fig. 2.1 shows the architecture that implements our DPI-RFE algorithm. We note
that this architecture resides at gateway G. The architecture is comprised of four
modules: Forecasting; Position Selection (PS); Forecasting Error Calculation (FEC);
and Positioning Interval Update (PIU). Below, we describe each of these modules.

First, the Forecasting module in Fig. 2.1 takes as input the past position estimates
formed when the device was awake as well as the past forecast positions for those slots
at which the device was not awake. (The Accumulator in the figure accumulates the
past forecasts. The Forecasting module uses these during those slots at each of which a
past position estimate is not available since the device was not awake in that slot.) The
Forecasting module takes this superposition of position estimates and position forecasts
for a total of U slots into the past and forms position forecasts V slots into the future.4

(Recall that each slot is of duration T seconds.) The output of the Forecasting module
is the vector of forecast positions, denoted by x̂(k+ v)v∈{1,...V}.5

Second, the PS module selects a position among the forecast positions based on the
value of the positioning interval Tc that is fed into this module. This selected position is
x̂(k+Tc).

Third, this forecast position x̂(k+Tc) is input from the PS to the FEC. Recall that device
D sends a sequence of L beacons in a slot of duration T when it is awake. The FEC
module takes the position estimate of D denoted by x[k+Tc] and the selected forecast
position x̂(k+Tc) and computes the Euclidean distance between these two positions in

4Note that past forecasts are used in all slots for which no position estimates are available in order to
form forecasts of future positions.

5The argument that appears in the parentheses is the time index for which the forecast is formed.

12

order to obtain the instantaneous forecasting error denoted by e in Fig. 2.1.

Fourth, the PIU module takes the instantaneous forecasting error as an input and
determines the next positioning interval, namely Tc, based on this forecasting error.
After the positioning interval has been determined, PIU passes to the PS the value of Tc

as shown in Fig. 2.1.

Our DPI-RFE algorithm performs a particular selection of Tc based on the forecasting
error e, which we now describe. We shall denote the nth positioning interval by T (n)

c and
the nth forecasting error by e(n). The DPI-RFE algorithm computes the next positioning
interval denoted by T (n+1)

c based on the current positioning interval T (n)
c and the nth

forecasting error e(n) as T (n+1)
c = T (n)

c /e(n) provided that this value does not fall below
T and does not rise above V T .6 (DPI-RFE sets T (n+1)

c to the lower or the upper bound,
respectively, if T (n)

c /e(n) hits any one of these limits.) That is, the value of the next
positioning interval is chosen to be that of the current positioning interval times the
reciprocal of the current forecasting error.7

2.4 Results

2.4.1 Simulation Setup

In this section, first, we describe our positioning data set. Second, we explain our
forecasting methodology for the DPI-RFE algorithm. Third, we describe the benchmark
algorithms against which we compare the performance of our algorithm.

2.4.1.1 Description of the Positioning Data Set

The data set (Positioning Dataset, 2019) used in this work consists of kinematically
collected positions of a human moving in a rectangular deployment region that has a
length of 70 m and a width of 35 m. We scaled the data set to a deployment region that
has size 4 × 4 m. In the data set, there are two features, namely the x and y coordinates
of the human, who carries the mobile device.8

2.4.1.2 Forecasting Methodology

The duration for which the device remains awake, namely T , is set to 1 s. We use a
Multi-layer Perceptron (MLP) (Haykin & Haykin, 2001) forecasting scheme in the

6The former case corresponds to zero sleep duration; the latter case is the maximum duration for which
forecasts into the future are available.

7In our future work, we shall explore alternative choices in the functional form that characterizes the
dependence of the positioning interval on the forecasting error.

8In the data set, there is a total of 5718 samples for training and 1907 samples for testing.

13

DPI-RFE algorithm. The number of layers and the number of neurons in each layer of
the MLP model are optimized in order to minimize Mean Square Error (MSE).

The Forecasting module has a distinct MLP model in order to forecast the future
positions on each of the x and y axes. The number of past samples, namely U , is set
to 20, and the number of future forecasts, namely V , is set to 10. Each MLP model is
comprised of a single hidden layer with 20 neurons and an output layer with 10 neurons.
Rectified Linear Unit Function (ReLU) is utilized at both layers. In the training stage,
10-fold cross-validation is applied. For each fold, the number of epochs is 250 and the
batch size is 20.

2.4.1.3 Benchmark Algorithms

We examine the performance of our DPI-RFE algorithm against two benchmark algo-
rithms: CPI and PID (Saylam, Cikmazel, et al., 2021).

In the CPI algorithm, the duration between two successive wake-ups of the mobile
device, namely Tc, is constant. This algorithm reports forecast positions during those
slots at which the device sleeps. In this work, we use the same MLP-based forecasting
scheme for CPI as we do for DPI-RFE.9

The PID algorithm adaptively chooses the positioning interval based on the forecast
displacement of the mobile device D as follows: The deployment region R is divided
into sub-regions called “cells”. Based on the forecast trajectory of the device, the PID
algorithm sets the positioning interval to be the duration until the first time that the
device is forecast to cross over to an adjacent cell.

2.4.2 Performance Evaluation

We shall evaluate the performance of DPI-RFE against the CPI and PID algorithms
with respect to both the total transmit energy consumption and the average forecasting
error measured over a 300 s observation interval.

Let Ptx denote the transmit power consumption incurred by the mobile device when the
L beacons are transmitted. We let Ton denote the duration during which the L beacons
are transmitted.10 Then, the total transmit energy consumption of device over one cycle
of duration Tc is PtxTon. We take Ptx = 16.25 mW , and Ton = 3 ms in this work.11

9Hence, the key difference is that while Tc is constant in CPI, it is variable in DPI-RFE.
10Note that Ptx is incurred only when a beacon is transmitted. We do not quantify the idle power when

no transmission occurs while the device is awake. Since we model only beacon transmission and no
downlink reception, this model is reasonable in an IP setting.

11These are the specifications of the Texas Instruments CC2640R2F evaluation board for an AoA-based
positioning system, which is taken as a representative platform.

14

Figure 2.2. Comparison of the total transmit energy consumption incurred by the
mobile IoT device under our DPI-RFE algorithm versus those under the
CPI and PID algorithms

Fig. 2.2 shows the total transmit energy consumption of each algorithm over the ob-
servation interval. We let K ≡ Tc/T . Note that this ratio is constant for CPI. In this
figure, CPI under K = 1 (i.e. zero sleep duration) provides an upper bound to the total
transmit energy consumption, while CPI under K = 10 serves as a lower bound (for
V = 10 step ahead forecasting).12 In the figure, first, we see that the total transmit
energy consumption of DPI-RFE remains close to that of the CPI for K = 10. Second,
we see that DPI-RFE significantly outperforms PID in total energy consumption across
the entire observation interval.13

Fig. 2.3 displays the time-averaged forecasting error so far (in meters14) of each algo-
rithm over the same observation interval. At t = 300 s, where approximate convergence
has been attained, we see that the average forecasting error of DPI-RFE is slightly
higher than that of the PID algorithm. Note that the average forecasting error of both
DPI-RFE and PID are above the CPI that has K = 1.15

12The total energy consumption of CPI under K = 1 increases linearly as a function of time, as the device
consumes constant transmit power and does not sleep in this case. The total energy consumption of
CPI under K = 10 is a piecewise linear function that is constant whenever the device is asleep.

13The plots for the total energy consumption of both DPI-RFE and PID are constant over the intervals
on which the device sleeps. Recall that T = 1 s throughout our simulations.

14Since AoA-based positioning was used in the data set, the average forecasting error is relatively
large compared with alternative technologies such as Ultrawideband (UWB). We emphasize that our
DPI-RFE algorithm is not specific to AoA and can be used on top of any underlying IP technology.

15The forecasting error so far for CPI under K = 1 is calculated based on the past vector of position
estimates (rather than forecasts) since the device does not sleep at all in this case. Even though the
instantaneous forecasting error is not used at all by the CPI algorithm itself under K = 1, the average

15

Figure 2.3. Comparison of the forecasting error of our DPI-RFE algorithm against
those of the CPI and PID algorithms

Fig. 2.4 displays the instantaneous positioning interval Tc as a function of time. Note
that Tc = 1 and Tc = 10 s for CPI under K = 1 and K = 10, respectively. In this figure,
we see that the positioning interval of DPI-RFE varies between this lower and upper
bound, while that of PID fluctuates between 1 and 4 s. The average positioning intervals
of PID and DPI-RFE are 1.51 and 5.52 s, respectively. Hence, the average positioning
interval of DPI-RFE is significantly higher than that of PID.

In summary, although the average forecasting error of DPI-RFE is slightly higher than
that of PID as shown in Fig. 2.3, the total transmit energy consumption of DPI-RFE is
significantly lower than that of PID as shown in Fig. 2.2. The reason is that DPI-RFE
acts fast in response to the changes in the instantaneous forecasting error, as shown in
Fig. 2.4, in order to decrease the energy expenditure.

2.5 Summary

We have developed a novel algorithm called DPI-RFE that dynamically trades off
forecasting accuracy in trajectory prediction and total transmit energy consumption
for mobile IoT devices by using AI. Our algorithm forecasts the future trajectory of a
mobile device and updates the positioning interval based on the instantaneous reciprocal
forecasting error. We have demonstrated our DPI-RFE algorithm outperforms CPI and

forecasting error attained after convergence in this case serves as a lower bound for other algorithms
that are required to utilize past forecasts for those slots in which the device sleeps.

16

Figure 2.4. Instantaneous positioning interval Tc of our DPI-RFE algorithm versus
those of the CPI and PID algorithms

PID algorithms with respect to total transmit energy consumption, while achieving an
average forecasting error that is close to that of PID.

17

CHAPTER 3

MACHINE LEARNING ENABLED SLEEP TIME ESTIMATION
(MLE-STE) ARCHITECTURE FOR INDOOR POSITIONING IN
ENERGY-EFFICIENT MOBILE INTERNET OF THINGS (IOT)

3.1 Introduction

As we discussed in Chapter 1, along with the increasing demand for IoT, the positioning
and tracking of mobile objects, such as pedestrians and assets that carry mobile IoT de-
vices, IoT becomes crucial in indoor environments such as individual homes, hospitals,
airports, and smart factories (Pritt, 2013; Mussina & Aubakirov, 2018; Noertjahyana,
Wijayanto, & Andjarwirawan, 2017). Indoor positioning and tracking systems (posi-
tioning systems for short) span a wide range of IoT applications and take part critical
roles in IoT applications. For instance, indoor positioning and tracking system monitors
the employees and the assets in a smart factory to avoid the collision between assets
and employees. Therefore, indoor positioning and tracking systems are expected to be
accurate and efficient.

The challenges in positioning systems are positioning accuracy, energy consumption,
reliability, and robustness. In this chapter, we focus on the energy consumption of a
mobile IoT devices in a positioning system due to the limited battery source of the
mobile IoT devices. For instance, mobile IoT devices consume significantly high energy
to transmit signals. In positioning systems, a mobile IoT device periodically transmits
signals in order to indicate its position (Gu, Lo, & Niemegeers, 2009; Kasmi, Norrdine,
& Blankenbach, 2015; Kwak, Park, Kim, Han, & Kwon, 2018; Gu & Ren, 2015; Yüksel
& Töreyin, 2018; Shih, Chiu, Cheng, Lin, & Yi, 2012). Periodic transmission requires
a wide power bandwidth for mobile IoT devices since it consumes significantly high
energy to transmit the signals.

AI techniques currently play an important role in IoT applications such as those found
on autonomous cars, smart grids as well as in farming. In addition, AI is becoming a
significant enabler of positioning systems, where significant performance advantages
can be obtained (Mukhopadhyay et al., 2021; Cheng, Chang, Wang, & Wu, 2020). In
positioning systems, AI techniques are utilized in order to improve positioning accuracy
as well as forecast the future trajectory of the mobile IoT device (Yu, Oh, & Kim, 2020;
Cakan et al., 2021; Mantini & Shah, 2016).

18

We categorize the past works that have focused on the trajectory forecast and enhanced
the energy efficiency of the mobile IoT device into three groups: First, the past works
(Alahi et al., 2016; Huang et al., 2019; Ma et al., 2019; Xue et al., 2018; Pellegrini
et al., 2009; C. Wang et al., 2019) present AI techniques that are utilized in order to
forecast the future trajectory of the mobile device in indoor positioning and tracking
systems. Second, the past works in the positioning literature (Zhang et al., 2012; X. Liu
et al., 2018; González et al., 2019; Shafer & Chang, 2010; Kjærgaard et al., 2009) focus
on motion-triggered algorithms in order to reduce the advertising energy consumption
(namely, transmit energy consumption) of the mobile device. The idea behind motion-
triggered algorithms is that the position of the mobile device is updated only when the
device detects motion. Third, the recent works (Constandache et al., 2009; Chon et al.,
2011; Saylam, Cikmazel, et al., 2021; Saylam, Kelesoglu, Cikmazel, Nakip, & Rodoplu,
2021) introduce algorithms that forecast the trajectory of the mobile device but do not
utilize machine-learning-based sleep time estimation.

The main contribution of this chapter1 is the development of an architecture called
MLE-STE for energy-efficient mobile IoT devices in indoor positioning systems. Our
architecture first forecasts the future trajectory of the mobile device and then estimates
the maximum allowable sleep time under a given acceptable forecasting error and
acceptable displacement. Our MLE-STE architecture significantly reduces the transmit
energy consumption of the mobile device by adapting the positioning interval. While
the recent works (Saylam, Cikmazel, et al., 2021) and (Saylam, Kelesoglu, et al., 2021)
for energy-efficient indoor positioning systems have focused on only forecasting error
or device displacement, our novel architecture estimates the sleep duration via a ML
model that considers both forecasting error and device displacement.

We compare the performance of our architecture against the algorithms in (Saylam,
Cikmazel, et al., 2021), (Saylam, Kelesoglu, et al., 2021) called PID and DPI-RFE in
terms of total transmit energy consumption and average forecasting error. We see that
our architecture outperforms the PID and DPI-RFE algorithms with respect to the total
transmit energy consumption.

The rest of this chapter is organized as follows: In Section 3.3, we present our MLE-
STE architecture for the indoor positioning. In Section 3.4, we present our simulation
methodology, benchmarks, and performance evaluation. In Section 3.5, we summarize
our results.

1The technical content in this chapter has been submitted as a journal paper (Saylam, Güzeliş, &
Rodoplu, n.d.).

19

3.2 Assumptions

Throughout this chapter, we assume that there is a single mobile IoT device (shortly,
device), denoted by D, that moves in a region called “deployment region”. We let R

denote the deployment region. We assume that there is a set of anchors denoted by
M . The device communicates to each anchor by sending a positioning signal called a
“beacon”. We shall define positioning indicator2 that is computed by the anchors based
on the received beacons.

We let G denote the gateway in whose coverage area the device and the anchors fall. We
define the position estimate of the device as a 2D position that is estimated by G based
on the positioning indicators that the G receives from the anchors. We assume that each
anchor communicates its positioning indicator to the gateway on the uplink channel, and
the gateway also can communicate with the device via the downlink channel when it is
required. Let B denote the number of beacons called successive beacons required by G

in order to estimate the current position of the device. We let T denote required duration
at which the device transmits B successive beacons when it is awake. Throughout this
thesis, we assume that T is an integer. Let E denote the transmit energy consumption
that the device requires in order to send B beacons. In addition, we define “sleep time”
as the duration that the mobile device does not send any beacon. Let Ts denote the sleep
time. We also define the “positioning interval” as the time interval between two position
estimates and denote it by Tc. Note that Tc as Tc = Ts +T . We assume that Ts = KT ,
where K is a positive integer.

Figure 3.1. Architecture of the Machine Learning Enabled Sleep Time Estimation
(MLE-STE) architecture for energy-efficient indoor positioning

2The positioning indicator can be chosen as Angle of Arrival (AoA), Received Signal Strength Indicator
(RSSI), Time of Flight (TOF), depending on desired positioning accuracy.

20

3.3 Machine Learning Enabled Sleep Time Estimation Architecture

In this section, we describe our novel architecture for an energy-efficient indoor po-
sitioning system. Our architecture is comprised of a Trajectory Forecaster (TF), an
accumulator, and a Sleep Time Estimator (STE) module, as shown in Fig. 3.1. First, we
shall define cells as rectangular regions that are formed by subdividing the deployment
region R into N identical regions each of which has length L and width W as shown in
Fig. 3.2.3 Second, we let ix[k] ∈ N and iy[k] ∈ N denote the row index and the column
index of the cell for which the position estimate of the device takes place at time instant
k, where let k denote the discrete time. We also define the cell estimate of the device
(namely, cell of the device) as c[k] = [ix[k], iy[k]]T .

Figure 3.2. Subdivision of the deployment region into identical subregions

TF consists of two distinct forecasters such that the first one individually forecasts the
row index and the second one forecasts the column index of the cell of the device. Note
that the TF converts each position estimate to a cell estimate before the forecasting.
Recall that the cell estimates are available only when the device is awake and transmits
beacons.4 As shown in Fig 3.1, in order to form the trajectory forecasting in each
case (i.e. if the device is asleep or the device is awake), whenever TF forecasts, the
accumulator stores and delays the forecast cells of the device. We call those cells
delayed forecast cells of the device. The delayed positions are utilized to fill the empty
inputs of TF which corresponds to cells when device is asleep (The instants where the
device is asleep are obtained from the feedback loop of Ts.) for the next forecasting.
The accumulator sends only the delayed forecast cells where the device is asleep, which
are the empty input for the TF. Note that the input of TF is a collection that consists of
the combination of the past estimate cells and the delayed forecast cells of the device
and as shown in Fig 3.1. In other words, cT [k− u]u∈{0,...,U} represents the past cell
estimates and filled positions with the delayed forecast cells. We let cT [k−u]u∈{0,...,U}

3The deployment region does not have to be rectangular. There exist small enough L and W such that
the deployment region can be covered by such cells arbitrary chosen.

4There is no beacon transmission from the device to the anchors when the device is asleep.

21

denote input of TF, where U indicates the past window. The output of TF is a collection
that is comprised of the forecast cell of the device (in other words, trajectory forecasts)
denoted by ĉT [k+ v]v∈{1,...,V}, where V denotes the forecast window.

In Fig. 3.1, the STE module takes ĉT [k+ v]v∈{1,...,V} and updates Ts. We will describe
the internal structure of the STE module in Section 3.3.2. Recall that Tc = Ts +T .5

3.3.1 Trajectory Forecaster

Fig. 3.3 shows the internal structure of TF. Recall that TF is comprised of two distinct
forecasters that forecast the row index and column index of the cell of the device.
Note that each forecaster in TF is also individually trained. We shall let Fx denote
the forecaster that forecasts the row index of the cell of the device, and Fy denote the
forecaster that forecasts the column index of the cell of the device.

Figure 3.3. Internal structure of the Trajectory Forecaster (TF)

Fig. 3.3, the forecaster Fx is comprised of a collection of neurons with a sigmoid
activation function and a Long Short Term Memory (LSTM) model (Smagulova &

5In the positioning system, the gateway G communicates the updated sleep time to the device. The
device sleeps until the end of that sleep time and then starts to send the beacon.

22

James, 2019). Recall that cT [k− u]u∈{0,...,U} is the combination of the past cell esti-
mates and delayed forecast cells. The forecaster Fx has U +1 neurons each of which
corresponds to a past cell of the device. First, each sigmoid neuron u in Fx takes c[k−u]

in cT [k−u]u∈{0,...,U} in order to produce features, each of which contains information
about the past cell of the device. The LSTM model in Fx then takes the outputs of each
sigmoid neuron as its inputs in order to produce the collection of the row index of the
forecast cell of the device denoted by [îx[k+ v]v∈{1,...,V}]T . As shown in Fig. 3.3, Fy

has the same inputs and the same internal structure as Fx, but it produces the collection
of the column index of the forecast cell of the device denoted by [îy[k+ v]v∈{1,...,V}]T .
When Fx and Fy complete their forecasting processes, TF combines each forecast
column index with its related row index in order to produce ĉT [k+ v]v∈{1,...,V}.

3.3.2 Sleep Time Estimator Module

In this section, we describe the inputs, the outputs, and the internal structure of the
Sleep Time Estimator module, which dynamically updates the sleep time of the device
based on the trajectory forecasting error6 of TF and displacement of the device in the
forecast cell positions in order to reduce the transmit energy consumption of the device.

Fig. 3.4 shows the internal structure of the STE module, which is comprised of a
Bank of Sigmoid Neurons (BoSN) that has V number of neurons and a Multi-Layer
Perceptron (MLP) model. The input of the module is ĉT [k+ v]v∈{1,...,V} and the output
of the module is Ts. Note that ĉ[k] = [îx[k], îy[k]]T .

We explain the key idea behind this module is as follows: The STE module estimates
Ts for the device by considering the trajectory forecast of the device. However, if the
module puts the device to sleep for a long time, the forecasting error of TF increases
due to the accumulation process explained in Section 3.3. To this end, the STE module
estimates the maximum allowable Ts for the device by considering both the device
displacement and a given maximum allowable forecasting error. In Section 3.3.2.1, we
will describe via pseudo-code how to determine the set whose elements are the optimal
sleep times across trajectory forecasts.

The STE module has an end-to-end trainable7 algorithm that includes two stages: In
the first stage each sigmoid neuron v takes ix[k+ v] and iy[k+ v] as inputs in order to
produce fv, where fv is the output of the vth sigmoid neuron. Note that each fv carries
the information on the cell of the mobile device at time instant k+ v. In the second
stage, the MLP model takes the collection of features fv∈{1,...,V} produced in the first

6The trajectory forecasting error refers to the Euclidean distance between the forecast cell of the device
and the estimated cell of the device. Let eforecast denote forecasting error of TF.

7The phrase “end-to-end trainable” refers to the fact that all parameters are trainable under the same
loss function.

23

stage in order to estimate Ts.

Figure 3.4. Internal structure of the Sleep Time Estimator (STE) module

3.3.2.1 Training Methodology for the STE Module

In order to obtain training data for the STE module, we first run TF, and construct a
set that is comprised of the trajectory forecasts. Let T̂ = {ĉT [k+ v]v∈{1,...,V} ∈ N2V}k

denote a set of the trajectory forecasts. In addition, we let T = {cT [k+ v]v∈{1,...,V} ∈
N2V}k denote the set of future estimate cells of the device, constructed for training of
the MLE-STE. We note that each sample in T is associated with a sample T̂ .8 We
let γ denote the threshold for the displacement in forecast cell positions of the device
(Which we call device displacement for short), and emax denote the maximum tolerable
forecasting error for the Trajectory Forecaster. Second, we define the “optimal sleep”
time as one that satisfies the following conditions: The device displacement is less than
γ and the forecasting error of the Trajectory Forecaster is less than emax. In addition,
there is an optimal sleep time for each trajectory forecast. We let S ∗ denote a set,
which is comprised of optimal sleep times, each of which is associated with a trajectory
forecast in T̂ .

We now describe via pseudo-code how to determine the optimal sleep time values,
each of which corresponds to a trajectory forecast. Fig. 3.5 shows the pseudo-code of
the DetermineOptimalSleepTime function (or “function” for short) that is utilized to
determine an optimal sleep time for each forecast trajectory.

8For instance, the nth sample of T corresponds to the nth sample of T̂ .

24

1 Set DetermineOptimalSleepTime(T , T̂ , γ , emax) {
2 S ∗ = /0 ;
3 for (i = 0; i < |T̂ |; i++) {
4 [flag,m∗] = find(argmaxm{||T̂ [i][0]− T̂ [i][m]||
4 | ||T̂ [i][0]− T̂ [i][m]|| ≤ γ});
5 if(flag = 0) S ∗.append(0);
6 else {
7 while (eforecast ≤ emax) {
8 eforecast = ||T [i][m∗]− T̂ [i][m∗]||;
9 m∗ = m∗+1;
10 }
11 S ∗.append(m∗);
12 }
13 }
14 return S ∗;
15 }

Figure 3.5. Training data preparation for the STE module

On Line 2, the function initializes S ∗ to the null set. On Line 3, the function selects
the ith sample in T and T̂ . On Line 4, the function first computes maximum m value
denoted m∗ in the range [1,V] that does not exceed γ by taking the weighted Euclidean
norm between first and mth forecast position of the ith sample in T̂ , where weight is
equal to 1.25. The idea behind this line is to find the time when the device changes its
position by applying thresholding. Then, the function returns a flag and m∗. If there
exist a m∗, flag is 1 and is 0 otherwise. This flag refers that the function finds a m∗

where the device position exceeds the threshold. Hence, the function returns m∗ if and
only if the flag is 1. On Line 5 the function checks the flag. If the flag is 0, the function
sets 0 to the optimal sleep time for that trajectory forecast.

Otherwise (if the flag is 1), between Line 7 and 9, the function computes the weighted
Euclidean norm between the m∗th forecast cell position in ith sample in T̂ and m∗th
future cell position of the ith sample in T in order to determine the forecasting error
of TF, denoted by eforecast. The weight of that Euclidean norm is equal to 1.25. The
function then increases the m∗ by one. That process continues until the break condition
(namely, eforecast ≤ emax) is satisfied. When the break condition is not satisfied which
means that the forecasting error of the TF exceeds the given threshold, the optimal sleep
time of that sample is set to m∗ (Line 11).

In Fig. 3.6, we demonstrate how to determine desired Ts values for each trajectory
forecast that is produced by the TF. To this end, we present two distinct scenarios that
show the determination of the desired Ts values for two distinct forecast trajectories.
In each scenario, we set γ and emax which are the design parameters for MLE-STE
architecture to 1.25 m.

25

In the first scenario shown in Fig. 3.6, each slot represents a time slot and the values
in the slots represent the center of the cells. According to the process, firstly we check
the displacement in the forecast trajectory which is the Euclidean distance between two
successive forecast positions. We see that the displacement of the device is zero until
the t = 3 but that of the device is 1.76 at t = 4, which exceeds the threshold value for
the device displacement γ . Then, the process completes the displacement check and
starts checking the forecasting error, which is the Euclidean distance between a forecast
and an actual positions. When we check the forecasting error at t = 4, we see that the
forecasting error is 1.76 and exceeds threshold emax. Thus, the process terminates at
t = 4 and declares the t = 4 as the desired Ts for that forecast trajectory.

Similarly, in the second scenario, we first compute the device displacement in the
forecast trajectory until the displacement exceeds γ . As shown in the second scenario
in Fig. 3.6, the device displacement exceeds γ at t = 3. After the displacement check,
the process computes the forecasting error between the forecast and actual positions at
t = 4. Since the forecasting error at t = 4 does not exceed emax, the process continues
with the next forecast and actual positions. We see that the forecasting error at t = 5
exceeds emax. Thus, the process terminates at t = 5 and determines t = 5 as the desired
Ts for that forecast trajectory. This process is applied to each trajectory forecast that TF
produces in order to determine its desired Ts values.

3.4 Results

3.4.1 Simulation Methodology

In this subsection, we will describe the indoor positioning data set, structure, and the
training parameters for the TF and the STE modules.

3.4.1.1 Indoor Positioning Data Set

In this chapter, we use the data set in (Fang, Islam, Munir, & Nirjon, 2020). It is
comprised of the 2D position estimates of the human users that carry a mobile IoT
device on a 11.84 m × 18 m rectangular space. The position estimates are obtained via
the Wireless Fidelity (Wi-Fi) readings. The system parameters that are used estimating
the device position are as follows: T = 50 ms, B = 1, and the energy consumption of the
device incurred to send a beacon is 48.75 µJ. In this chapter, we utilize the position
estimate of a single user in our simulation.9 We subdivide the dataset into a train set
and a test set, whose portions are as: 80% and 20% respectively.

9Our design can be generalized to multiple users by applying this design to each user.

26

Figure 3.6. Demonstration of how to determine the desired value of Ts

Before training, we convert the 2D estimate positions of the device to the cell of the
device as described in Section 3.3. We set L = 1.25 m and W = 1.25 m.10

3.4.1.2 Training Parameters of the Trajectory Forecaster

In this subsection, we describe the training parameters of the TF. We set U = 300 and
V = 400.11 In addition, we fix the structure of each LSTM model in the Trajectory

10We set the length and the width of the cell to 1.25 m because the most of the works in the indoor
positioning literature that use the Wi-Fi technology have approximately 1.25 m average positioning
error. (H. Liu, Darabi, Banerjee, & Liu, 2007).

11Since, the position estimate interval is 50 ms, we set the past window U and forecast window V to
large numbers in order to forecast positions over a long time horizon.

27

Forecaster as follows: One hidden LSTM layer, which has RELU activation function,
three dense layers and one output layer, which consists of V linear neurons. In addition,
the activation function of each neuron at each of the dense layer is set to RELU. We
search the number of neurons for each hidden layer in the range [2,256] at increments of
two in order to obtain the local optimal structure that gives the minimum Mean Squared
Error (MSE). The local optimal structure of each forecaster in TF is (in vector notation)
[50,128,64,32,400]. Moreover, the training parameters of each network (Fx and Fy)
in TF are as follows: We set the number of epochs to 100. We apply early stopping
and 5-fold Cross-validation12 in order to prevent overfitting. Furthermore, we utilize
Adaptive moment estimation (Adam) as the optimizer.

3.4.1.3 Training Parameters of the STE Module

We now describe the training parameters of the STE module. The module takes the
samples in T̂ as inputs and the samples in S ∗ as the desired outputs. Recall that the
STE is comprised of the Bank of Sigmoid Neurons (BoSN) and the MLP model. The
structure of the module is as follows: BoSN consists of 400 sigmoid neurons; an MLP
model consists of 4 hidden layers each of which has a RELU activation function; and
one output layer, which is comprised of a single linear neuron. We apply the search
described in Section 3.4.1.2 in order to find the local optimal structure for the STE
module. The local optimal MLP architecture for that data set is (in vector notation)
[128,64,32,16,1]. Moreover, we set the training parameters in Section 3.4.1.2 for the
training of the STE module.

3.4.2 Benchmark Algorithms

In this subsection, we will describe two benchmark algorithms that are utilized in order
to reduce the transmit energy consumption of the device by adjusting the positioning
interval. We will compare the performance of the MLE-STE architecture against these
two benchmarks in Section 3.4.3.

The first benchmark is called PID, which first takes the forecast positions of the device
and then computes the positioning interval of the device based on the displacement of
the device (Saylam, Cikmazel, et al., 2021). This algorithm first divides the deployment
region R into the sub-regions called "cells" and allocates each forecast position of
the device to the corresponding cell where the 2D position of the device falls. It then
sets the duration, where the device passes to the adjacent cell for the first time as the
positioning interval of the device.

12In 5-fold cross-validation, the data are split into 5 segments. In each fold 4 of these segments are used
for training and 1 segment is used for testing.

28

The second one, called DPI-RFE which we describe in previous chapter, computes
the positioning interval of the device as follows: The DPI-RFE algorithm first takes
the forecasts positions of the device and computes the forecasting error by taking the
Euclidean distance between the position estimate where the device is awake, and the
forecast position that corresponds to this position estimate. It then determines the
duration, which is reciprocal to the forecasting error as the positioning interval of the
device (Saylam, Kelesoglu, et al., 2021).

3.4.3 Performance Evaluation

In this section, we present our simulation results in order to evaluate the performance of
MLE-STE against PID and DPI-RFE algorithms, which are energy-efficient algorithms
in indoor positioning literature. We examine the STE module under emax = 1.25 m
because this condition refers to the minimum possible forecasting error when the cell
size is 1.25 m × 1.25 m. We also examine MLE-STE under emax = 2.5 m, which
refers to double of the minimum possible error. We do not consider values greater
than emax = 2.5 m because they do not significantly improve energy efficiency. In
addition, we compare these schemes over a 120 s observation interval in terms of total
transmit energy consumption of the mobile device, the forecasting error of the trajectory
forecasters, and the positioning interval of the device.

Figure 3.7. Total transmit energy consumption performance under MLE-STE, PID, and
DPI-RFE algorithms

Fig. 3.7 shows the total transmit energy consumption of the device for PID, DPI-RFE
and MLE-STE under emax = 1.25 m and emax = 2.5 m. We measure the total transmit

29

energy consumption under each algorithm as follows: If the device is awake, the total
transmit energy consumption continually increases. Otherwise (when the device is
asleep) the total transmit energy consumption stays constant during the sleep time of
the device. When we examine our results in Fig. 3.7, we see that the transmit energy
consumption of the PID algorithm is significantly higher than that of DPI-RFE and
MLE-STE. We also see that the DPI-RFE is close MLE-STE under emax = 1.25 m but
the STE module under emax = 2.5 m significantly outperforms the other algorithms
shown in label of Fig. 3.7.

Table 3.1. Forecasting error of the trajectory forecasters under MLE-STE, PID and
DPI-RFE

Algorithm Type Mean Standard

(m) Deviation

(m)

PID 2.82 1.08

DPI-RFE 3.4 1.47

MLE-STE under emax = 1.25 m 3.5 0.9

MLE-STE under emax = 2.5 m 3.53 0.75

In Table 3.1, we present the mean and standard deviation of the forecasting error of the
trajectory forecasters in each algorithm.13 In this table, we see that while the forecasting
error of STE module under emax = 1.25 m and emax = 2.5 m are slightly higher than that
of DPI-RFE. We also see that the forecasting error of the PID algorithm is comparable
to that of MLE-STE.

Table 3.2. Positioning interval of the mobile IoT device under MLE-STE and bench-
mark algorithms

Algorithm Type Mean Standard

(s) Deviation

(s)

PID 1.24 0.61

DPI-RFE 6.82 5.22

MLE-STE under emax = 1.25 m 6.38 1.79

MLE-STE under emax = 2.5 m 14.96 3.56

In Table 3.2, we present the positioning interval of the device, which is inversely
proportional to the energy consumption of the device. We see that the positioning
13Each algorithm accumulates the forecast positions when the device is asleep.

30

interval of MLE-STE under emax = 2.5 m is approximately two times higher than those
of DPI-RFE and MLE-STE under emax = 1.25 m. Moreover, the positioning interval of
MLE-STE under emax = 2.5 is significantly higher than that of PID, where the difference
is one order of magnitude.

In summary, although the forecasting error of MLE-STE under emax = 2.5 m is slightly
higher than those of DPI-RFE and MLE-STE under emax = 1.25 m and is comparable
to that of PID as shown in Table 3.1, the total transmit energy consumption of the
of MLE-STE under emax = 2.5 m outperforms the other algorithms as displayed in
Fig. 3.7. The reason is that while the PID algorithm only updates the positioning
interval of the device whenever it observes the displacement, and DPI-RFE updates
positioning interval reciprocal to the forecasting error, the STE module considers both
the displacement of the device and the forecasting error in order to adjust the positioning
interval.

3.5 Summary

We have developed a novel architecture called MLE-STE that reduces the energy
consumption of mobile IoT devices in indoor positioning systems. Our MLE-STE first
forecasts the trajectory of the mobile device and then estimates the sleep time, which
satisfies the given forecasting error threshold and the device displacement threshold,
based on that forecast trajectory.

We investigated the performance of our MLE-STE against the PID and DPI-RFE
algorithms, which served as benchmarks in this chapter, in terms of total transmit energy
consumption and forecasting error. Our simulation results showed that MLE-STE
architecture outperforms the benchmarks. In our future work, we will implement our
MLE-STE architecture on a gateway that serves an energy-efficient indoor positioning
system.

31

CHAPTER 4

CONCLUSIONS

In this thesis, in order to reduce the transmit energy consumption of a mobile IoT
device in an indoor positioning system, we have introduced the “Dynamic Positioning
Interval based on Reciprocal Forecasting Error (DPI-RFE)” algorithm and the “Machine
Learning Enabled Sleep Time Estimation (MLE-STE)” architecture, which provide
adaptive solutions that adjust the positioning interval and the sleep time of the mobile
IoT device. Each of these first forecasts the trajectory of the mobile IoT device and
determines a sleep time for the device based on the forecast trajectory. This reduces
the transmit energy consumption of the mobile IoT device since the mobile IoT device
is prevented from periodically transmitting signals. In Chapter 2, we proposed the
DPI-RFE algorithm, which aims to maximize the energy efficiency of the mobile IoT
device by adjusting the sleep time of the device reciprocally to the forecasting error.
We also evaluated the performance of the algorithm. In Chapter 3, we proposed the
MLE-STE architecture, which determines the sleep time of the mobile IoT device by
satisfying the given conditions and is introduced to improve the energy consumption of
the device.

In Chapter 2, we proposed our DPI-RFE algorithm and compared the performance
of this algorithm in terms of total transmit energy consumption, positioning interval,
and average forecasting error against the benchmarks algorithms, which are Constant
Positioning Interval (CPI) under K = 1, CPI under K = 10, and Positioning Interval
based on Displacement (PID). We have come to the following conclusions: (1) DPI-RFE
significantly outperforms PID and CPI when the K = 1. It is also comparable with CPI
when the K = 10 with respect to the total transmit energy consumption. (2) While the
average positioning interval of DPI-RFE is 1.51, that of PID is 5.52. (3) DPI-RFE has a
slightly higher average forecasting error than PID and CPI under K = 1.

In Chapter 3, we introduced our novel MLE-STE architecture and examined the perfor-
mance of MLE-STE against the benchmark algorithms, called PID and DPI-RFE, each
of which reduces the transmit energy consumption of the mobile device in an indoor
positioning system. We compare the performance of MLE-STE under emax = 1.25 m
and emax = 2.5 m against PID and DPI-RFE with respect to the total transmit energy
consumption, the average positioning interval, and the average forecasting error. First,
we showed that our MLE-STE significantly outperforms each benchmark algorithm

32

under emax = 2.5 m. Second, we showed that while the average positioning interval of
our MLE-STE is 14.96 s under emax = 2.5, that of PID is 1.24 s and that of DPI-RFE
is 6.82 s. Finally, we demonstrated that under emax = 2.5 m MLE-STE has a slightly
higher forecasting error than PID, which achieves the lowest forecasting error among
the benchmarks.

In conclusion, we showed that DPI-RFE and MLE-STE are promising for energy-
efficient indoor positioning. In addition, our results show that DPI-RFE and MLE-STE
significantly improves energy efficiency for mobile IoT devices in an indoor positioning
system.

In the future, first, the forecasting performance of the trajectory forecasting can be
improved. Second, the system can be generalized from the case of a single mobile IoT
device to multiple mobile IoT devices. Third, positioning errors due to the multipath
effect can be addressed in our system.

33

REFERENCES

Abdellatif, M., Mtibaa, A., Harras, K. A., & Youssef, M. (2013). Greenloc: An energy
efficient architecture for WiFi-based indoor localization on mobile phones. In
2013 IEEE international conference on communications (icc) (pp. 4425–4430).

Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., & Savarese, S. (2016).
Social LSTM: Human trajectory prediction in crowded spaces. In Proceedings of

the IEEE conference on Computer Vision and Pattern Recognition (pp. 961–971).

Alrashidi, M. (2020). Social distancing in indoor spaces: an intelligent guide based on
the Internet of Things: COVID-19 as a case study. Computers, 9(4), 91.

Bai, L., Ciravegna, F., Bond, R., & Mulvenna, M. (2020). A low cost indoor positioning
system using Bluetooth Low Energy. IEEE Access, 8, 136858–136871.

Bisio, I., Lavagetto, F., Marchese, M., & Sciarrone, A. (2016). Smart probabilistic
fingerprinting for WiFi-based indoor positioning with mobile devices. Pervasive

and Mobile Computing, 31, 107–123.

Cakan, E., Şahin, A., Nakip, M., & Rodoplu, V. (2021). Multi-layer perceptron
decomposition architecture for mobile IoT indoor positioning. In 2021 IEEE 7th

World Forum on Internet of Things (WF-IoT) (pp. 253–257).

Cheng, L., Chang, H., Wang, K., & Wu, Z. (2020). Real time indoor positioning system
for smart grid based on UWB and Artificial Intelligence techniques. In 2020

IEEE conference on Technologies for Sustainability (SusTech) (pp. 1–7).

Chon, Y., Talipov, E., Shin, H., & Cha, H. (2011). Mobility prediction-based smartphone
energy optimization for everyday location monitoring. In Proceedings of the 9th

ACM Conference on Embedded Networked Sensor Systems (pp. 82–95).

Constandache, I., Gaonkar, S., Sayler, M., Choudhury, R. R., & Cox, L. (2009). Enloc:
Energy-efficient localization for mobile phones. In IEEE INFOCOM 2009 (pp.
2716–2720).

Duque Domingo, J., Cerrada, C., Valero, E., & Cerrada, J. A. (2017). An improved
indoor positioning system using RGB-D cameras and wireless networks for use
in complex environments. Sensors, 17(10), 2391.

Ericsson. (Jun. 2021).
Ericsson Mobility Report. (https://www.ericsson.com/en/mobility-report)

Fang, S., Islam, T., Munir, S., & Nirjon, S. (2020). EyeFi: Fast human identifica-
tion through vision and WiFi-based trajectory matching. In IEEE International

34

Conference on Distributed Computing in Sensor Systems (DCOSS).

Fantana, N. L., Riedel, T., Schlick, J., Ferber, S., Hupp, J., Miles, S., . . . Svensson,
S. (2013). Iot applications—value creation for industry. Internet of Things:

Converging technologies for smart environments and integrated ecosystems, 153.

García, E., Poudereux, P., Hernández, Á., Ureña, J., & Gualda, D. (2015). A robust
uwb indoor positioning system for highly complex environments. In 2015 IEEE

International Conference on Industrial Technology (ICIT) (pp. 3386–3391).

González, J. L. S., Morillo, L. M. S., Álvarez-García, J. A., Ros, F. E. D. S., & Ruiz,
A. R. J. (2019). Energy-Efficient Indoor Localization WiFi-Fingerprint System:
An experimental study. IEEE Access, 7, 162664–162682.

Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for
wireless personal networks. IEEE Communications surveys & tutorials, 11(1),
13–32.

Gu, Y., & Ren, F. (2015). Energy-efficient indoor localization of smart hand-held
devices using Bluetooth. IEEE Access, 3, 1450–1461.

Haykin, S. S., & Haykin, S. S. (2001). Kalman filtering and neural networks (Vol. 284).
Wiley Online Library.

Huang, Y., Bi, H., Li, Z., Mao, T., & Wang, Z. (2019). Stgat: Modeling spatial-
temporal interactions for human trajectory prediction. In Proceedings of the IEEE

International Conference on Computer Vision (pp. 6272–6281).

Kárník, J., & Streit, J. (2016). Summary of available indoor location techniques.
IFAC-PapersOnLine, 49(25), 311–317.

Kasmi, Z., Norrdine, A., & Blankenbach, J. (2015). Towards a decentralized magnetic
indoor positioning system. Sensors, 15(12), 30319–30339.

Kjærgaard, M. B., Langdal, J., Godsk, T., & Toftkjær, T. (2009). Entracked: energy-
efficient robust position tracking for mobile devices. In Proceedings of the

7th international conference on Mobile systems, applications, and services (pp.
221–234).

Kuxdorf-Alkirata, N., Spathmann, O., Koch, O., & Bruckmann, D. (2018). Improved
energy efficiency of indoor positioning systems by adaptive sampling and smart
post-processing of sensor data. In 2018 16th IEEE International New Circuits

and Systems Conference (NEWCAS) (pp. 225–228).

Kwak, M., Park, Y., Kim, J., Han, J., & Kwon, T. (2018). An energy-efficient and
lightweight indoor localization system for Internet-of-Things (IoT) environments.

35

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies, 2(1), 1–28.

Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning
techniques and systems. IEEE Transactions on Systems, Man, and Cybernetics,

Part C (Applications and Reviews), 37(6), 1067–1080.

Liu, H., Xu, Y., Wu, X., Lv, X., Zhang, D., & Zhong, G. (2019). Big data forecasting
model of indoor positions for mobile robot navigation based on apache spark
platform. In 2019 ieee 4th international conference on cloud computing and big

data analysis (icccbda) (pp. 378–382).

Liu, X., Zhan, Y., & Cen, J. (2018). An energy-efficient crowd-sourcing-based indoor
automatic localization system. IEEE Sensors Journal, 18(14), 6009–6022.

Ma, Y., Zhu, X., Zhang, S., Yang, R., Wang, W., & Manocha, D. (2019). Trafficpredict:
Trajectory prediction for heterogeneous traffic-agents. In Proceedings of the

AAAI Conference on Artificial Intelligence (Vol. 33, pp. 6120–6127).

Mainetti, L., Patrono, L., & Sergi, I. (2014). A survey on indoor positioning systems.
In 2014 22nd international conference on software, telecommunications and

computer networks (softcom) (pp. 111–120).

Mantini, P., & Shah, S. K. (2016). Multiple people tracking using contextual trajectory
forecasting. In 2016 IEEE Symposium on Technologies for Homeland Security

(HST) (pp. 1–6).

Mukhopadhyay, S. C., Tyagi, S. K. S., Suryadevara, N. K., Piuri, V., Scotti, F., &
Zeadally, S. (2021). Artificial intelligence-based sensors for next generation IoT
applications: a review. IEEE Sensors Journal, 21(22), 24920–24932.

Mussina, A., & Aubakirov, S. (2018). Rssi based Bluetooth Low Energy indoor
positioning. In 2018 IEEE 12th International Conference on Application of

Information and Communication Technologies (AICT) (pp. 1–4).

Nessa, A., Adhikari, B., Hussain, F., & Fernando, X. N. (2020). A survey of machine
learning for indoor positioning. IEEE Access, 8, 214945–214965.

Nguyen, D. C., Cheng, P., Ding, M., Lopez-Perez, D., Pathirana, P. N., Li, J., . . .
Poor, H. V. (2020). Enabling AI in future wireless networks: a data life cycle
perspective. IEEE Communications Surveys & Tutorials, 23(1), 553–595.

Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Ieee

infocom 2003. twenty-second annual joint conference of the IEEE Computer and

Communications Societies (IEEE Cat. No. 03CH37428) (Vol. 3, pp. 1734–1743).

36

Noertjahyana, A., Wijayanto, I. A., & Andjarwirawan, J. (2017). Development of mobile
indoor positioning system application using android and Bluetooth Low Energy
with trilateration method. In 2017 international conference on soft computing,

intelligent system and information technology (ICSIIT) (pp. 185–189).

Pellegrini, S., Ess, A., Schindler, K., & Van Gool, L. (2009). You’ll never walk
alone: Modeling social behavior for multi-target tracking. In 2009 IEEE 12th

International Conference on Computer Vision (pp. 261–268).

Piras, M., Marucco, G., & Charqane, K. (2010). Statistical analysis of different low
cost gps receivers for indoor and outdoor positioning. In IEEE/ION Position,

Location and Navigation Symposium (pp. 838–849).

Positioning Dataset. (2019, May). (https://zenodo.org/record/2647508#.YPBYO-
gzbIU)

Pritt, N. (2013). Indoor positioning with maximum likelihood classification of Wi-Fi
signals. In Sensors, 2013 ieee (pp. 1–4).

Ramakrishnan, R., Gaur, L., & Singh, G. (2016). Feasibility and efficacy of ble beacon
iot devices in inventory management at the shop floor. International Journal of

Electrical & Computer Engineering (2088-8708), 6(5).

Saylam, A., Cikmazel, R. O., Kelesoglu, N., Nakip, M., & Rodoplu, V. (2021). Energy-
Efficient Indoor Positioning for Mobile Internet of Things Based on Artificial
Intelligence. In Innovations in Intelligent Systems and Applications Conference

(pp. 1–6).

Saylam, A., Güzeliş, C., & Rodoplu, V. (n.d.). Machine Learning Enabled Sleep Time
Estimation (MLE-STE) Architecture For Indoor Positioning In Energy-Efficient
Mobile Internet Of Things (IoT) (submitted).

Saylam, A., Kelesoglu, N., Cikmazel, R. O., Nakip, M., & Rodoplu, V. (2021).
Dynamic Positioning Interval Based On Reciprocal Forecasting Error (DPI-
RFE) Algorithm for Energy-Efficient Mobile IoT Indoor Positioning. In 2021

International Conference on Computer, Information and Telecommunication

Systems (CITS) (pp. 1–5).

Shafer, I., & Chang, M. L. (2010). Movement detection for power-efficient smartphone
WLAN localization. In Proceedings of the 13th ACM international conference on

Modeling, analysis, and simulation of wireless and mobile systems (pp. 81–90).

Shih, P.-L., Chiu, P.-J., Cheng, Y.-C., Lin, J.-Y., & Yi, C.-W. (2012). Energy-aware
pedestrian trajectory system. In 2012 41st international conference on parallel

processing workshops (pp. 514–523).

37

Shin, D.-H., & Sung, T.-K. (2002). Comparisons of error characteristics between toa
and tdoa positioning. IEEE Transactions on Aerospace and Electronic Systems,
38(1), 307–311.

Smagulova, K., & James, A. P. (2019). A survey on lstm memristive neural network
architectures and applications. The European Physical Journal Special Topics,
228(10), 2313–2324.

Svalastog, M. S. (2007). Indoor positioning-technologies, services and architectures

(Unpublished master’s thesis).

Tahsien, S. M., Karimipour, H., & Spachos, P. (2020). Machine learning based
solutions for security of Internet of Things (IoT): A survey. Journal of Network

and Computer Applications, 161, 102630.

Vu, T. H. N., Le, T. H., & Lee, Y. K. (2014). Forecasting moving object position based
on temporal patterns. In 2014 International Conference on Indoor Positioning

and Indoor Navigation (IPIN) (pp. 733–740).

Wang, C., Ma, L., Li, R., Durrani, T. S., & Zhang, H. (2019). Exploring trajectory
prediction through machine learning methods. IEEE Access, 7, 101441–101452.

Wang, Y., & Ho, K. (2016). TDOA positioning irrespective of source range. IEEE

Transactions on Signal Processing, 65(6), 1447–1460.

Xue, H., Huynh, D. Q., & Reynolds, M. (2018). SS-LSTM: A hierarchical LSTM
model for pedestrian trajectory prediction. In 2018 IEEE Winter Conference on

Applications of Computer Vision (WACV) (pp. 1186–1194).

Yin, Z., Wu, C., Yang, Z., & Liu, Y. (2017). Peer-to-peer indoor navigation using
smartphones. IEEE Journal on Selected Areas in Communications, 35(5), 1141–
1153.

Yu, H. K., Oh, S. H., & Kim, J. G. (2020). AI based location tracking in WiFi
indoor positioning application. In 2020 International Conference on Artificial

Intelligence in Information and Communication (ICAIIC) (pp. 199–202).

Yüksel, K. D., & Töreyin, B. U. (2018). A deep learning and RSSI based approach
for indoor positioning. In 2018 26th Signal Processing and Communications

Applications Conference (SIU) (pp. 1–4).

Zeimpekis, V., Giaglis, G. M., & Lekakos, G. (2002). A taxonomy of indoor and
outdoor positioning techniques for mobile location services. ACM SIGecom

Exchanges, 3(4), 19–27.

Zhang, L., Liu, J., & Jiang, H. (2012). Energy-efficient location tracking with smart-

38

phones for IoT. In SENSORS, 2012 IEEE (pp. 1–4).

39

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TEXT OF OATH
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	SYMBOLS AND ABBREVIATIONS
	1 INTRODUCTION
	1.1 Positioning Techniques and Mobile Internet of Things
	1.1.1 Positioning and Tracking Applications

	1.2 Indoor Positioning and Tracking System
	1.2.1 Indoor Positioning and Tracking System Challenges
	1.2.2 Energy Consumption of a Mobile IoT Device in Indoor Positioning and Tracking

	1.3 Basic Definitions in Machine Learning and the Context of our Work
	1.3.1 Trajectory Forecast of a Mobile IoT Device

	1.4 Relationship to the State of The Art
	1.5 Contributions of this Thesis
	1.6 Outline of this Thesis

	2 Dynamic Positioning Interval Based On Reciprocal Forecasting Error (DPI-RFE) Algorithm for Energy-Efficient Mobile IoT Indoor Positioning
	2.1 Introduction
	2.2 Assumptions and Basic System Design
	2.3 Dynamic Positioning Interval Based On Reciprocal Forecasting Error (DPI-RFE) Algorithm
	2.4 Results
	2.4.1 Simulation Setup
	2.4.1.1 Description of the Positioning Data Set
	2.4.1.2 Forecasting Methodology
	2.4.1.3 Benchmark Algorithms

	2.4.2 Performance Evaluation

	2.5 Summary

	3 Machine Learning Enabled Sleep Time Estimation (MLE-STE) Architecture for Indoor Positioning in Energy-Efficient Mobile Internet of Things (IoT)
	3.1 Introduction
	3.2 Assumptions
	3.3 Machine Learning Enabled Sleep Time Estimation Architecture
	3.3.1 Trajectory Forecaster
	3.3.2 Sleep Time Estimator Module
	3.3.2.1 Training Methodology for the STE Module

	3.4 Results
	3.4.1 Simulation Methodology
	3.4.1.1 Indoor Positioning Data Set
	3.4.1.2 Training Parameters of the Trajectory Forecaster
	3.4.1.3 Training Parameters of the STE Module

	3.4.2 Benchmark Algorithms
	3.4.3 Performance Evaluation

	3.5 Summary

	4 CONCLUSIONS
	REFERENCES
	

