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It is known that the spectra of optical modes supported by microresonators are 
shape and size dependent. We have introduced an additional parameter, i.e., 
spatially varying refractive index to tailor the spectra of optical modes in microdisc 
resonator while keeping size and shape intact. So, a new class of whispering 
gallery mode (WGM) microresonators, referred to as graded index (GRIN) 
microresonators, is proposed. On the other hand, the WGMs in optical 
microresonator resemble to the confined electron states in atoms. We have studied 
these new proposed structures as photonic atoms. A cluster of such microresonators 
can be named photonic mulecule. Then, the PT-symmetry condition has been 
studied in microresonators. In optics, the PT-symmetry condition translated to the 
complex refractive index. We have studied a new type of add-drop microring 
resonator made of gain and loss materials as a simple implementation of PT-
symmetry in microphotonics.  The modal analysis of the structure is investigated 
numerically. It is expected that the findings of GRIN microresonator may open up 
new research and device opportunities in photonics. 
 
Key Words: Microresonators, Graded inedx, Maxwel’s fish eye, Whispering 

gallery modes, Photonic atom, PT-symmetry,  
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  : Prof. Dr. Hamide KAVAK 
  : Prof. Dr. Emirullah MEHMETOV 
  : Prof. Dr. Zeki YARAR 
  : Yrd. Doç. Dr. Mirbek TURDUEV 
  

Bilindiği üzere, mikrorezonatör yapılarda uyarılan optik modların 
spektrumları, yapının boyutlarına ve şekline bağlıdır. Biz bu çalışmada ek bir 
parametre olarak; mikrodisk rezonatörde etkin kırılma indisinin konumsal değişimi 
tanımladık. Derecelendirilmiş kırıcılık indisli mikrorezonatörler, whispering 
gallery modes (WGM) rezonatörler içinde yeni bir sınıf olarak sunulmaktadır. Bu 
tip yapılarda elde edilen optik modların hapsedilmiş elektron durumlarına benzer 
özellikler göstermesi sebebiyle, bu tip yapılar fotonik atom olarak 
isimlendirilmektedir. Fotonik atomlardan oluşan zincir yapısına fotonik molekül 
denmektedir. Ayrıca, PT- simetri koşulları mikrorezonatör yapılarında incelenmiş 
olup halkalı yapının kompleks kırıcılık indisine sahip olduğu varsayılmıştır: 
Mikrorezonatör yapısının halkalı kısmının periyodik kazançlı ve kayıplı 
ortamlardan oluştuğu varsayılmış olup bu tipteki PT- simetrili rezonatör yapısının 
modal analizi nümerik olarak incelenmiştir. GRIN mikrorezonatörden elde edilen 
bu bulguları, fotonik alanında yeni araştırma ve uygulama fırsatları doğuracağı 
ümit edilmektedir. 
 
Anahtar Kelimeler: Mikrorezonatör, Derecelendirilmiş kırılma indis, Fotonik 

atom, PT- simetri, Maxwell’s fish eye, Whispering gallery 
modes, 
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EXTENDED ABSTRACT 
 

As the photonic devices, dielectric microspheres and similar 

geometries are optical elements that have attracted increased attention in 

recent literature due to their ability to exhibit on-resonance and off-

resonance properties. It means that, in on-resonance case, they can select 

narrow part of the incident beam for further manipulation and processing. If 

we illuminate the circular structure laterally, its natural oscillations appear. 

These optical oscillations are known as whispering gallery modes (WGMs). 

On the other hand, in off-resonance case, which the circular structure is 

illuminated perpendicularly, photonic jets (PJs) appear in the shadow side. 

In this case, the light is squeezed and its intensity enhances.  

WGM resonators have variety of applications in optical systems, 

such as optical filters, modulators, and sensors including biological sensors. 

One of the key performance metrics of an optical resonator is its quality 

factor (Q-factor), a measure of how much energy is stored in the resonator 

with respect to the energy lost per resonance cycle. This work studies a new 

method for achieving high optical Q-factor on spherical dielectric 

microresonators. We expect the graded index (GRIN) approach can increase 

the Q-factor in comparison with typical conventional microresonators.  

GRIN structures have been widely studied in recent years, from 

invisibility cloaks and illusion devices, to planar lenses, such as Maxwell’s 

fish eye (MFE). Fabrication of such structures, where the dielectric medium 

is modified rapidly on a few-wavelength scale, is challenging and limited by 

scattering loses introduced by discrete elements often used in the effective 

media.  Fortunately, the thickness variation at the microscale and nanoscale 

has been achieved by advances in new manufacturing techniques, such as 
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microlithography and focused ion beam techniques. The effective refractive 

index of any transparent material, such as polymer (low refractive index) or 

silicon (high refractive index), depends on the thickness variation of the slab 

that guides the light. 

In this work, the emphasis is on the effects of the geometry and 

refractive index of the microspheres on the resonances. Generally, the 

optical resonances in microrsonator are a function of morphology, meaning, 

their geometry and refractive index. Conditions required for WGMs to occur 

will be studied extensively. The coupled portion of the light that enters the 

sphere stays inside it, provided that the refractive index of the sphere is 

larger than that of its surrounding medium. The total internal reflection 

coupled with the matching conditions results in a resonance of certain 

wavelengths of the incident light inside the sphere. The solutions of 

Schrodinger-like equations in the spherical coordinates inside the sphere are 

expressed in terms of their radial and angular components or modes.  

At first, we will treat MFE within a 2D model as a GRIN resonator. 

Starting from Maxwell equations the optical resonant modes of the structure 

are calculated both analytically and numerically.  

The WGMs in optical microcavity resemble to the confined electron 

states in atoms. The WGMs contributing to photonic binding are always 

localized at the cavity surface, so they would be equivalent to atoms excited 

into high-energy orbitals. Due to these similarities optical microresonators 

can be termed as photonic atoms. On the other hand, clusters of circular 

cavities with coupled WGMs, several mutually coupled photonics atoms, 

form a photonic molecule.  
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There are examples of photonic molecule with plane discs in the 

literature. In second step of this wok, we assume the MFEs as the 

components of photonic molecule in linear chain and planer structures. The 

effect of mode splitting and mode hybridization are studied in these 

structures.  

The optical resonators containing gain-loss materials implement 

platform that resemble the quantum systems with non-Hermitian parity–

time (PT)-symmetric Hamiltonians.  These resonators can provide 

asymmetric transmission. It means that different resonant modes of 

resonator can be exited depending on the input channel.  

In optics, the PT-symmetry condition translated to the complex 

refractive index. In this work, we will study a new type of add-drop 

microring resonator made of gain and loss materials as a simple 

implementation of PT-symmetry in microphotonics.  

The numerical method that we use in this work along the analytical 

solutions is Finite-difference time-domain (FDTD) method. We use the 

Meep, free software, and commercial FDTD software packages developed 

by Lumerical Company. The MATLAB will be used as usual simulation 

and calculation software. 
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1. INTRODUCTION 
 

As the photonic devices, optical microresonators (or microcavities) have 

attracted increased attention in past decades mostly due to improvement in micro 

and nano fabrication technologies. These axially symmetric structures such as 

spherical, circular, ring, toroid and rectangular shaped microcavities can confine 

light to small volumes by resonant recirculation and select narrow part of the 

incident beam for further manipulation and processing (Tobing, Dumon 2010). 

If we illuminate a circular structure laterally, it traps light in a small 

volume resulting in optical resonances in the transmission spectrum. These optical 

oscillations are known as whispering gallery modes (WGMs). The concept of 

WGMs is defined as circular electromagnetic waves supported by transmission 

from boundaries of the symmetrical structure. As a matter of course, these modes 

are morphologhy dependent, meaning depend on the geometry and refractive index 

of resonator and srounding medium. By using highly transparent, low scattering 

loss material, such as silica, the WGMs can provide extremely high values of Q-

factor in a small mode volume. The Q-factor is mainly limited by the material 

attenuation and scattering loss contributed by surface roughness and geometrical 

imperfections. The high index difference at the boundary and relatively larger 

curvature (typically exceeds several wavelengths) guarantee the minimization of 

radiative loss and bending loss. 

Devices based on optical microresonators are already indispensable for a 

wide range of studies and applications. These devices have been demonstrated to 

be important components in many applications. Some examples include single 

photon sources in cavity quantum electrodynamics (QED) applications, interfaces 

for quantum communications, microlasers, biosensing, optical circuits, dynamic 

filters and switches in optical communications (Vahala 2003). 

On the other hand, graded index (GRIN) structures have been receiving 

great interest in recent years from invisibility cloaks and illusion devices, to planar 
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lenses, such as Maxwell’s fish eye (MFE). These structures are inhomogeneous 

media with spatially varying refractive index distributions. Among GRIN 

structures, the MFE is of special interest and can be implemented using dielectric 

materials. (Dadashi et al 2014a). In this thesis, we study a new method for 

achieving high optical Q-factor on spherical dielectric microresonators. We have 

shown that, the GRIN approach can increase the Q-factor in comparison with 

typical conventional microresonators. 

There are different approaches to fabrication dielectric microresonators. 

Microdisc or microtoroid can be made by photolithography and chemical etching 

(Zhu et al 2010). Microfluidic ring resonator is made by an etched cylindrical tube 

integrated with chemical fluid (Shopova et al 2007).   

Fabrication of GRIN structures, where the dielectric medium is modified 

rapidly on a few-wavelength scale, is challenging and limited by scattering loses 

introduced by discrete elements often used in the effective media.  Fortunately, the 

thickness variation at the microscale and nanoscale has been achieved by advances 

in new manufacturing techniques, such as microlithography and focused ion beam 

techniques. The effective refractive index of any transparent material, such as 

polymer (low refractive index) or silicon (high refractive index), depends on the 

thickness variation of the slab that guides the light.  

After this introductory chapter, the thesis is organized as follows. Chapter 

2 briefly introduces the general information and historical background of the 

optical microresonators. Theoretical and experimental works on microresonator is 

presented and the advantage and limitations are analyzed. Also in this chapter, the 

historical background of Photonic Atoms (PAs) and Photonic Molecules (PMs) 

will be discussed.  

The main device for this thesis is MFE, on which the optical properties are 

analyzed and analytical and numerical techniques are discussed. In chapter 3, first 

the necessary numerical tools for the study of the structures are presented. The 

finite-difference time-domain (FDTD) method is presented in this chapter. Also, an 
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introduction to optical microresonators, different aspects of them, such as their 

geometry, quality factor (Q-factor) and free spectral range (FSR) are introduced.  

In chapter 4 we theoretically investigate optical characteristics of 2D MFE. 

The emphasis is on the effects of the geometry and refractive index of the 

microspheres/microdiscs on the resonances. Starting from Maxwell equations the 

optical resonant modes of the structure are calculated both analytically and 

numerically. The solutions of Schrodinger-like equations in the spherical 

coordinates inside the sphere are expressed in terms of their radial and angular 

components or modes. Through our numerical calculations, the FDTD method is 

used. A detailed analysis section is included to study Q factor and FSR 

Chapter 5 of this thesis considers the structure studied in the previous 

chapter, MFE, as a Photonic Atom (PA). The WGMs in optical microcavity 

resemble to the confined electron states in atoms. The WGMs contributing to 

photonic binding are always localized at the cavity surface, so they would be 

equivalent to atoms excited into high-energy orbitals. Due to these similarities 

optical microresonators can be termed as photonic atoms. On the other hand, 

clusters of circular cavities with coupled WGMs, several mutually coupled 

photonics atoms, form a photonic molecule (PM).  

In chapter 6 we study a new type of add-drop microring resonator made of 

gain and loss materials as a simple implementation of PT-symmetry in 

microphotonics. The relevant references are listed thereafter. 

 The numerical method that we use in this thesis along the analytical solutions 

is FDTD method. We use the MEEP, free software. The MATLAB will be used as 

usual simulation and calculation software. 
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2. REVIEW OF LITERATURE 
 

Optical microresonators have gained a great prominence as fundamental 

building blocks for a variety of applications in photonics. Functionally similar to 

Fabry–Perots resonator, optical microresonators can take the form of closed shapes 

such as ring, disc, racetrack, ellipse, or sphere and cylinder with a common feature 

that there exists a curved boundary which refocuses the propagating field (see 

Figure 2.1). The confinement of light in these closed geometries, however, does not 

require an inner dielectric boundary. This is evidenced by the existence of optical 

whispering gallery modes (WGMs). Placement of a microresonator near a 

waveguide enables access to modes of the resonant cavity. In this particular 

arrangement, the resonant modes are accessed through evanescent coupling, 

phenomena analogous to tunneling in solid-state physics (Heebner et al 2008).  

 

Figure 2.1. The various forms of photonic microresonators (Tobing, Dumon 
2010). 
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The history of optical microresonators starts with the physical explanation 

of whispering gallery effect as early as 1910 by Lord Rayleigh. His analysis of the 

channeling of acoustic waves by the dome of St. Paul’s cathedral in London is a 

first step to similar methods applied to electromagnetic waves. It was known that a 

sound (a whisper) uttered at one end of the dome could still be heard loudly at the 

opposite end of the dome, a large distance away from the source. Lord Rayleigh 

described this phenomenon by noting that sound seemed to “stick” to the dome’s 

walls and propagate only inside a narrow layer near the surface of the concave wall 

of the gallery (Oraevsky 2002) (see Figure 2.2). 

 

 
Figure 2.2. (a) Whispering gallery under the dome of St. Paul's Cathedral in 

London. (b) The sound intensity profile showing the whispering 
gallery phenomenon that Lord Rayleigh studied. (Oraevsky 2002) 

 

In the early 1960s, ring and disc resonators have been implemented in 

microwave applications for electromagnetic waves. In the optical domain, 

integrated ring resonators were proposed by Marcatili (1969) at Bell Labs. 

Marcatili studied light transmission through closed dielectric rod of rectangular 

cross section. He studied the relations between radiation losses resulting from 

curvature, geometry, and electric characteristics of the bent dielectric guide. For a 

given radius of curvature R, he analytically showed the radiation loss can be 



2. REVIEW OF LITERATURE                                                     Khalil DADASHİ 

7 

reduced (i) by increasing the difference between the refractive index of the guide, 

n1, and those of the media toward the outside, n3, and inside, n5, of the curved guide 

axis (see Figure 2.3 ); (ii) by increasing the guide width a (iii) by choosing the 

height of the guide large enough to confine the fields as much as possible within 

the guide in the direction normal to the plane of curvature (Marcatili 1969). 

In another work at Bell Labs, Weber and Ulrich (1971) demonstrated the 

first optical ring resonator. They reported the operation and characteristics of a ring 

laser formed by a single-mode lightguiding thin film. The Rhodamine-6G-doped 

polyurethane (n = 1.55) film was coated on the surface of a cylindrical glass rod (n 

= 1.47). The geometry established feedback for laser oscillation around the 

circumference of the rod. A N2 laser (λ = 337.1 nm) served as pump source. Light 

was coupled in and out of the resonator with a prism (see Figure 2.4). A 0.8 µm-

thick film of polyurethane, doped with Rhodamine-6G, was coated on the outside 

of a glass rod of 5 mm diameter. The beam of a N2 laser was focused into a line, 

pumping a narrow section of the rod. The resulting laser light traveled around the 

rod. It was coupled out by a prism, which was in loose contact with the rod. The 

two output beams corresponded to clockwise and counterclockwise oscillation of 

the ring laser (Weber and Ulrıch 1971). 

 

 
Figure 2.3. Closed dielectric waveguide (Marcatili, 1969).  
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Figure 2.4. The first ring-laser arrangement (Weber and Ulrıch 1971).  

 

Haavisto and Pajer (1980) demonstrated the first low-loss channel 

waveguides in a ring-resonator configuration. The waveguide structure of the thin-

film resonator was fabricated by the photopolymerization of doped polymethyl 

methacrylate (PMMA) films. The substrate was quartz disc of 13 cm diameter and 

the radius of the ring was 4.5 cm (see Figure 2.5). This low-loss structure enabled a 

substantial improvement in the evaluation of the characteristics, particularly losses, 

of channel waveguides. In their fabricated structure total losses, including 

coupling, material, bending, and fabrication losses, were 0.05±0.01 dB/cm. 

Although they offered an alternative to existing fiber-optic hybrid devices, but the 

ring was quite large (circumference 28.3 cm). The significant feature of this work 

was that the device was fabricated without lithography by using direct-writing with 

a 325 nm He–Cd laser (Haavisto and Pajer 1980).  
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Figure 2.5. Ring-resonator configuration with input-output prism couplers (P1-P4) 

and evanescent-wave couplers (Cl,C2). Two tangential straight channel 
waveguides serve as evanescent-wave input and output couplers. 
Prism couplers (P's) are used to couple light in and out of the 
resonator. (Haavisto and Pajer 1980).  

 

The first optical glass fiber ring resonator, operating at λ = 632.8 nm, was 

demonstrated by Stokes, Chodorow, and Shaw by using a single strand of single 

mode optical fiber and a directional coupler in 1982. They used a single mode 

optical fiber to make a high finesse optical resonator by forming a short piece of 

fiber into a closed ring to form a low loss cavity. A fiber resonator of length L=3 m 

was fabricated from ITT fiber having a 4 μm core diameter. A single frequency, 

long coherence length He-Ne laser (λ = 632.8 nm) was used to excite the resonator 

(Stokes et al 1982).  

Up to 1982, the ring resonators had been made for use at microwave 

frequencies and their design had been considered by a number of authors (Heebner 

et al 2008). Optical filters were required for a number of purposes in optical 

communication systems. For compatibility with optical fibers, such filters should 

be constructed from stripe waveguides. Walker and Wilkinson demonstrated a ring 

resonator with dimensions suitable for optical communications (Walker and 

Wilkinson 1983). The waveguides used for the fabrication of the ring resonators 
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(with circumference of 3.1 mm and operating at λ = 632.8 nm) were made by 

silver-sodium ion-exchange in substrates of soda-lime glass. In the similar work 

Connors and Mahapatra demonstrated a ring resonator with circumference of 4.1 

mm and operating at λ = 632.8 nm in 1986 (Heebner et al 2008). 

In 1984, Honda, Garmire and Wilson reported observation of resonance in 

a ring waveguide. They wanted to study the possible application of the passive ring 

resonator to inertial rotation sensing, for this reason the resonator consisted of an 

integrated optics ring fabricated with a diameter as large as possible (4 cm in 

diameter). Coupling onto and off of the resonant ring was provided by adjacent 

straight channel waveguides acting as directional couplers. The waveguides were 

fabricated by potassium ion exchange in commercially available soda lime glass 

substrates (Honda et al 1984). The geometry which they used was very similar to 

Figure 2.5.  

Ring resonators in lithium niobate were particularly appealing because of 

the possibility of electro-optic tuning. Such a resonator using directional couplers 

and Ti-diffused guides demonstrated by K. H. Tietgen in 1984. Tietgen represented 

the first demonstration of a tunable ring resonator. Instead of a circular ring, he 

used a waveguide loop with two 3 dB couplers. His device used electro-optic 

tuning, had a circumference of over 24 mm, and operated at λ = 790 nm (Heebner 

et al, 2008).  

Proton exchange in lithium niobate using benzoic acid permits a large Δn. 

Moreover, proton exchange provides guided modes for only the extraordinary 

polarization state. For that reason, the fabrication of ring resonators made by proton 

exchange in lithium niobate has gained attention of Mahapatra and Robinson 

(Mahapatra and Robinson 1984). They used the racetrack configuration as shown 

in Figure 2.6. The mask was fabricated using an e-beam pattern generator with a 

spot size of 0.25 μm. So, the maximum sidewall roughness and lateral offset of the 

guides was 0.25 μm. This resulted in significant scattering losses, since the 

waveguides were only 2 μm wide. The device was fabricated on Z-cut LiNbO3. 
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The ring structure was defined on a 800-Å layer of chromium with the proton 

exchange. Channel guides were found to support two or three TM modes 

(Mahapatra and Robinson 1984). 

 

 
Figure 2.6. A schematic of the resonator using the racetrack configuration 

(Mahapatra and Robinson 1984). 
 

In 1997, Rafizadeh et al stepped up an important step toward developing 

photonic integrated circuits. They demonstrated nanofabrication methods of 

semiconductor waveguide-coupled microcavity ring and disk resonators. They 

studied 10.5 and 20.5 mm in diameter AlGaAs/GaAs ring and disk microcavity 

resonators which are the smallest ones at that time. 

Alongside various doped and undoped silica-based glasses and Si-based 

component, there have been some works in electrooptic polymers. Because of the 

wide range of indexes of refraction, polymers are suitable materials for 

microresonators. The maximum index difference of available polymers is 0.3. 

Polymer films are simple to fabricate as the various polymer layers can be spin-

coated, and other layers can be deposited with chemical vapor deposition. They can 

be easily patterned by photo processing. Moreover, polymers can be engineered to 
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have desirable properties by doping them with appropriate materials, or whole new 

polymers can be designed. They are resilient and can withstand a lot of abuse 

without breaking (Chen et al 2003). Vertical coupling is well suited to the polymer 

technology because of the ease of fabricating in different layers and the range of 

indices available.  

The first polymer microresonators have been introduced by Rabiei et al in 

2002. They reported the first work using polymers in both passive and active 

microresonators (Rabiei et al 2002). Rabiei et al fabricated two different sets of 

devices; one set with an index difference of 0.1 and radius greater than 220 μm, 

and a second set with an index difference of 0.3 and radius greater than 25 μm. The 

fabrication of the device had several levels using polymer materials. First, a Teflon 

film was coated with spin coating method on silicon substrate. Then the film was 

etched using reactive-ion etching (RIE). In the next steps, by using lithography, 

coating and etching methods the ring, input and drop waveguides were formed 

(Rabiei et al 2002). In addition, another group at the University of Maryland 

demonstrated polymer microring and microracetrack resonators made from 

benzocyclobutene (BCB) microrings (Chen et al 2003). They demonstrated optical 

channel dropping filters with a variety of FSR’s by varying the resonator 

circumference. Their devices were among the smallest radius (10 μm) and widest 

FSR (18.25 nm) for this class of devices. Further, the first microresonators made 

from BCB, which is a popular low-cost polymer for photonics applications were 

introduced. 

    Another class of WGM microresonators was based on III-V 

semiconductors. There are, of course, many demonstrations of microresonators 

from various groups, each employing slightly different approaches. In 1993, Chu et 

al reported the demonstration, for the first time, of a microdisc laser in the 

InAlGaAs-InGaAs quantum well (QW) material system. The microdisc was 

formed by the selective etching method. This material system, with widely tunable 

bandgap energy could be used as optical window in fiber optic communications. In 
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fact, the achievement of microdisc lasers in these material systems had potential 

application for optical communication systems (Chu et al 1993). For such 

microdisc laser with 20 μm diameter, the lasing demonstrated at single mode at 1.5 

μm under pulsed excitation with 518 nm Argon-ion laser at low temperature, 80ºK. 

The laser threshold intensity was four times higher but mode area is 12 times larger 

than former systems. That, in turn, provided the higher trap density and surface 

recombination in this material system.  

Most of early works in 1990s did not incorporate bus waveguides and 

relied on fibers to directly couple to and collect light from the disc. The first GaAs-

AlGaAs resonator laterally coupled to bus waveguides was demonstrated by 

Rafizadeh et al in 1997 (Heebner et al 2008) as an important step toward 

developing photonic integrated circuits. They reported the demonstration of 

semiconductor waveguide-coupled microcavity ring and disc resonators. The 

scanning electron microscope (SEM) images of microresonators are shown in 

Figure 2.7. They used nanolithography methods to fabricate and demonstrate 

waveguide-coupled 10.5mm and 20.5-mm-diameter ring and disk microresonators. 

The adjacent waveguides were 2 μm wide at each end and gradually taper to 0.5 

mm near the ring or disc. Thus, the ratio of the waveguide width to disc and ring 

radii was about 0.1 in the coupling region. The waveguide structure was grown 

upon a GaAs substrate by molecular-beam epitaxy. The key microcavity resonator 

design parameters were the coupling efficiency and the waveguide propagation loss 

(which was mainly due to sidewall roughness). Strong waveguiding confinement 

dictated at the resonator-to-waveguide gap has to be very small for adequate 

evanescent coupling. . Based on the limits of the nanofabrication technology at that 

time, the fabricated gap widths was 0.1 μm (Rafizadeh et al 1997).   
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Figure 2.7. SEM images of a 10.5-μm-diameter (a) disk and (b) ring. ( Rafizadeh et 

al 1997). 
 

The developments on fabrication of high quality solid state structures with 

sizes on the scale of the wavelength of light made it possible to modify the 

interaction between light and matter within a single solid state system. These 

systems, some known optical microresonators, enhanced the study of confined 

photon properties such as that of the detailed works had been done on confined 

electron states in nanostructures (Bayer et al 1998).  Optical microresonators can 

be termed photonic atoms (PAs). Controllable interaction between light and matter 

in microresonators can be further modified and enhanced by the manipulation of 

their mutual coupling. These coupled microresonators introduce new terms in 

photonics: Photonic molecules (PMs). 

Theoretical studies carried on for over two decades have provided novel 

PM designs. Such type of configurations provides lowering thresholds of 

semiconductor microlasers, producing directional light emission, achieving 

optically induced transparency and enhancing sensitivity of microcavity-based 

sensors. Photonic molecules are photonic structures formed by electromagnetic 

coupling of two or more PAs (Boriskina 2010). Stephen Arnold et al were the first 

to introduce the term photonic atom in 1992. In a two dimensional distribution of 
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spherical dielectric particles on a glass surface, known as a microparticle hole 

burning medium, they showed the differences in the frequencies of morphology-

dependent resonances (MDRs) with size enable one to generate a fluorescence 

excitation spectrum that is inhomogeneous (Arnold et al 1992). In their previous 

work, they had presented a means for encoding information into such a distribution 

of particles in room temperature that takes direct advantage of the narrow MDR's 

of microparticle. For the case of the fluorescence excitation spectrum taken on an 

ensemble of dyed microspheres, their work was based on two facts: A given MDR 

occurs at a wavelength in proportion to the particle's size (with the refractive index 

held constant). The second one, the spectrum is composed of the sum of spectra 

from individual particles, each with resonances that appear at different 

wavelengths. So, a collection of particles having a distribution of sizes gives rise to 

a photophysical response that is inhomogeneous. Thus, the normal homogeneously 

broadened excitation spectrum of a typical dye at room temperature is found to 

become inhomogeneous for measurements on an ensemble of dyed particles.  

Furthermore, electrodynamical calculations for a pair of particles in contact 

provided an explanation for the apparent lack of importance of interparticle 

interactions. By disregarding the interactions between particles, even though each 

particle in the distribution touched at least one of its neighbors, they made 

interpretation for the experimental results.  

The first demonstration of a lithographically fabricated PM was inspired by 

Bayer et al in an analogy with a simple diatomic molecule (Bayer et al 1998). They 

reported studies of the optical modes in molecule-like structures made from pairs 

of interacting photonic dots which had been coupled by narrow channels. They 

studied optical modes in these structures as a function of the coupling and the mode 

energies were compared to detailed calculations. The confined photon modes had 

been studied by photoluminescence spectroscopy as functions of the coupling 

which could be varied through the structure design. They found that the optical 
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modes in photonic molecules can exhibit strong similarities to those of electronic 

states of diatomic molecules.  

 

 
Figure 2.8. Formation of (a) photonic benzene, (b) benzene WG of π type, and (c) 

benzene WG of σ type in a 2D hexagonal photonic crystal; each solid 
dot denotes a defect atom of radius r (Lin 2003). 

 

In 2003, Lin proposed an artificial nature-inspired PM structure. It 

consisted of coupled-defect atoms in a 2D photonic crystal. Lin theoretically 

presented a method to determine the frequency of each resonant mode for the PM. 

He showed that the confined optical modes, within the major band gap, are closely 

analogous to the ground-state molecular orbitals of their chemical counterparts and 

the corresponding electromagnetic spectrum is also isomorphous to the electric 

energy levels (Lin 2003). Figure 2.8 (a) shows a 2D photonic molecule named as 

the photonic benzene. In the second part of his work, Lin proposed a new type of 

photonic waveguide for the two-dimensional systems. Before his work, the 

formation of conventional photonic waveguides generally was considered as the 

arrangement of the desired defect atoms along a line. However, this approach had 

limited the potential of development. Instead of a line defects in photonic crystals, 

the defect atoms were closely arranged to form a structure that is similar to a real 

molecule. Figure 2.8(b)-(c) shows two type of 2D benzene waveguide. In 

particular, manipulating the mechanism of photon hopping between photonic 
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benzenes can provide the function of guiding photons along the benzene chain with 

a very high transmission, and presents an optical feature of twin waveguiding 

bandwidths in the 2D system. 

In 1999, Prof. Yariv and his colleagues introduced a new type of optical 

waveguide, coupled-resonator optical waveguide (CROW) that consists of a 

sequence of coupled resonators (See Figure 2.9(c)). Two mechanisms had been 

used in the past for optical waveguiding. Waveguiding by total internal reflection 

and Bragg waveguiding, in which waveguiding is achieved through Bragg 

reflection from a periodic structure as illustrated in Figure 2.9 (a)-(b). Unlike these 

types of optical waveguide, waveguiding in CROW is achieved through weak 

coupling between otherwise localized high-Q optical cavities. Figure 2.9(c) shows 

a possible realization of such a waveguide based on evanescent-field coupling 

between the high-Q WGMs of individual microdisk cavities. Employing formalism 

similar to the tight-binding method in solid-state physics, Yariv et al obtained the 

relations for the dispersion and the group velocity of the photonic band of the 

CROW’s and found that they are solely characterized by coupling factor. They also 

demonstrated the possibility of highly efficient nonlinear optical frequency 

conversion and perfect transmission through bends in CROWs. In realization of the 

CROW they assumed sufficiently large separation between the individual 

resonators.  Consequently, the eigenmode of the electromagnetic field in such a 

coupled-resonator waveguide remain essentially the same as the high-Q mode in a 

single resonator. At the same time one must take into account the coupling between 

the individual high-Q modes to explain the transmission of the electromagnetic 

waves. This coupling is exactly the optical analog of the tight-binding limit in 

condensed-matter physics, in which the overlap of atomic wave functions is large 

enough that corrections to the picture of isolated atoms are required yet at the same 

time is not large enough to render the atomic description completely irrelevant. The 

individual resonators in the CROW are the optical counterpart of the isolated 
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atoms, and the high-Q mode in the resonators corresponds to the atomic wave 

function (Yariv 1999). 

For device applications in photonics, the structures where photons can be 

trapped for long time without losing their energy are highly desirable. In all-optical 

switching devices, optical storages in optical routing systems and quantum 

repeaters in quantum information processing and communication, as active 

systems, a scheme to decrease light velocity with a strictly loss-free mechanism is 

essential. However, preparing lossless medium for these device applications are 

limited because of the extreme precision required in the manufacturing. Therefore 

it is important to develop a passive system which significantly decreases the speed 

of light (Hara et al 2005). 

 

 
Figure 2.9. Three types of waveguiding: (a) waveguiding achieved through total 

internal reflection at the interface between a dielectric medium with a 
high refractive index n2 and a low refractive index n1. (b) Bragg 
waveguiding achieved by reflection from periodic Bragg stacks. (c) 
CROW, with waveguiding that is due to coupling between individual 
microdisks. R is the size of a unit cell, and ez is the direction of the 
periodicity for the coupled resonators. (d) CROW realized by coupling 
of the individual defect cavities in a 2D photonic crystal. R and ez are 
defined the same as in (c) (Yariv et al 1999). 
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At the last decades of twentieth century, manipulation of light path in 

micrometer length scale was mostly based on the photonic crystal concept. 

Photonic crystals, artificially manufactured materials having a periodic dielectric 

constant, have periodic modulation of the refractive index. Nearly free photon 

approach, analogous to the nearly free electron approach in band theory and tight-

binding photon approach analogous to tight-binding approximation in solid state 

physics successfully used in photonic crystals. The idea of using tight-binding 

approach in PMs was offered by Mukaiyama et al in 1999. The manipulation of 

light can be achieved by confining of light in a small unit of the wavelength size. 

Light propagates through the system of such units due to the coupling between the 

nearest neighbors. This approach is referred to as the tight-binding photon 

approach. Within the tight-binding photon approach the optical waves can be 

guided by connecting the units in the arbitrarily shaped microstructures 

(Mukaiyama et al 1999).  The microspheres are the most natural choice of the unit 

to be employed in the tight-binding photon device. It is known that a dielectric 

sphere acts as a unique optical microcavity which has very long photon storage 

time within a small mode volume (Mukaiyama et al 1999).  The coherent coupling 

between two adjacent small microspheres of diameters ranging from 2 to 5 µm has 

been realized for first time by Mukaiyama et al. Such relatively small spheres can 

be employed as PAs for the tight-binding scheme. On the other hand, the coherent 

coupling results in the splitting of the corresponding WGMs is a manifestation of 

the normal mode splitting (NMS) in coupled harmonic oscillators. Although some 

attempts had been made, because of the difficulty in the precise size control of the 

spheres NMS had not been observed yet. Mukaiyama and his colloquies reported 

the observation of normal mode splitting in the system of two polymer spheres in 

contact (bisphere) under extreme size control. In order to make the bisphere, they 

chose two spheres of the desired size by comparing the frequencies of the specific 

WGM resonances. The frequencies of the observed bisphere resonances agreed 

with the wave optics calculations.  



2. REVIEW OF LITERATURE                                                     Khalil DADASHİ 

20 

In another work from previous research group, Hara et al could design and 

construct a linear molecule as a chain of coupled PAs composed of size-matched 

microspheres placed in a V groove on crystalline silicon (Hara et al 2005). They 

studied the spectral finger-prints of linear molecules by combining the tight-

binding photonic description with the wave-vector quantization due to periodic 

boundary conditions. Actually, the propagating modes with slow group velocity of 

defect or edge modes of photonic crystals, which are referred as heavy photon 

modes had been studied by formers. But the group delay in such modes in photonic 

crystals is limited by its bandwidth. The new proposed coupled cavity waveguides 

(CCWs) composed of three dimensional high quality factor microcavities had the 

potential to remove this limitation. In CCWs, trapped photons in a microcavity can 

tunnel to a neighboring cavity. The CCW structures with many attractive features 

had been faced major technological difficulties that time. The fabrication of such 

structures required extreme accuracy and reproducibility, beyond the limit of 

microfabrication technology of ten years ago. So, Hara et al proposed and realized 

a bottom-up method to construct a CCW structure to overcome these difficulties. 

Polystyrene spheres of 4.2 µm in diameter doped with Nile Red (refractive index 

1.59) were used. They used a Q-switched Nd-YLF laser on its second mode with a 

wavelength of 527 nm, a repetition rate of 1 kHz, and pulse duration of 300 ns as a 

pump light source. At the end, they found that a photonic band is formed due to the 

resonant coupling of nearest-neighbor WGMs and it is in excellent agreement with 

a coupled oscillator tight-binding model. They also demonstrated that the structures 

have a strong potential for an optimal control of photons in the visible region (Hara 

et al 2005).  

In 2000, Miyazaki and Jimba applied ab initio tight-binding formalism in 

bisphere PM. Their work opened up a new possibility to describe MDRs by the 

tight-binding model. They showed that the energy spectra reveals the fine structure 

of the bonding and antibonding branches originating from the Mie resonance of a 

single sphere. The formation of bonding and antibonding states can be deduced 
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from electric field distribution. Miyazaki and Jimba used this detailed information 

of resonance in a bishpere. In analogy to the quantum-mechanical formation of the 

molecular orbits, it is expected that the interaction between spheres brings about 

the bonding and antibonding states of the electromagnetic field. These states can be 

expressed as a linear combination of the Mie resonance states of each sphere. 

Before this work, Fuller had observed numerically that the electromagnetic 

coupling between spheres causes the narrow Mie resonance to split into distinct, 

relatively broad peaks and dips in the forward-scattering spectrum of the bisphere 

(Fuller 1991). Also, in the photoluminescence study of the photonic molecule made 

from a pair of photonic dots coupled by narrow channels, it had been found that the 

optical modes in photonic molecules exhibit strong similarities to those of the 

electronic states in diatomic molecules (Bayer et al 1998). Miyazaki and Jimba, 

wanted to determine accurately the positions of MDR’s by using the internal 

energy spectra. The internal energy plays a crucial role in lasing because it gives a 

direct measure of the quality factor Q. Based on the vector spherical harmonics 

expansion, they got a simple and handy tight binding equation that clarified the 

meaning of the overlap integral. In addition, it gave almost all the qualitative 

explanations of the characteristic features of MDRs in a bisphere. In their approach 

the overlap integral could be evaluated exactly. In this sense, they called the 

formalism as the ab initio tight-binding model (Miyazaki and Jimba 2000).  

Rakovich and Donegan provided a survey of PAs and PMs in 2010, after 

thier some works in the issue. By considering the analogy of Mie resonances 

(WGMs) of a single spherical microcavity with atomic orbitals in a hydrogen atom, 

they introduced the mode numbers of microcavity. The eigenfunction for the 

electron confined in the hydrogen atom and electromagnetic fields confined in a 

microsphere are very similar. So, in the absence of gain, they could  characterized 

WGM resonances by a mode number n (angular quantum number), a mode order l 

(radial quantum number), and an azimuthal mode number m (azimuthal quantum 

number). The value of n is proportional to the circumference divided by the 
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wavelength of the light propagating within the microsphere, the mode order l 

indicates the number of maxima in the radial distribution of the internal electric 

field, and the azimuthal mode number m gives the orientation of the WGMs orbital 

plane (Rakovich and Donegan 2010). Also, they stated that, unlike energy states of 

electrons in the atom, photonic states in spherical microcavities are not localized, 

due to the finite storage time of photons in the resonant mode. This time, named as 

photon lifetime, is controlled by quality factor Q of the WGMs and therefore can 

be limited by diffractive losses, absorption, gain, shape deformation or refractive 

index inhomogeneities. As a result, the resonant internal field of a spherical cavity 

is not completely confined to the interior of the microparticle. Depending on the 

size of the microsphere, the evanescent field can extend into the surroundings up to 

a couple of micrometers permiting efficient coupling of microcavities. This partial 

delocalization of Mie resonance states (WGMs) suggests the possibility for 

coherent coupling between WGMs of two adjacent spherical particles with closely 

matched sizes, a main step from PAs to PMs (Rakovich and Donegan 2010). One 

another point has been noticed these researchers, is complex internal distribution of 

the density of photonic states of the PM originating from lifting of the degeneracy 

of PM modes with respect to the azimuthal mode number m.  

Almost the last article on PAs and PMs was published by Li et al in 2017. 

Again, by considering the analogy between quantum mechanics and the classical 

electrodynamics, they assembled dielectric microspheres as classical photonic 

atoms, and sorted them in a wide range of structures to form linear chains and 

planar PMs. They studied WGM hybridization in such PMs theoretically and 

experimentally. The numerical simulation was performed in the 2-D case 

corresponding to the equatorial cross section of the 3-D structures. Li et al studied 

various structures, 3-sphere and 4-sphere chain molecules, quadrumers, 5-atom 

crosses and hexamers. They observed that PMs have certain spectral properties 

which are closely related to the topology and geometry of a given molecular 

configuration. The number of atoms determines the number of spectral components 
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which can be split or degenerate depending on the symmetry. They introduce the 

spectral signature of PMs, as a result of WGM hybridization effects. They showed 

that the splitting/ hybridization of WGM modes are dependent on the symmetry, 

number of constituting atoms and topology of the photonic molecules which in 

principle can be viewed as spectral signatures of various molecules (Li et al 2017). 

In order to find the spectral signature, the simulations were performed for three 

different combinations of the structural parameters, the refractive indices n, 

diameters D of microspheres and surrounding media (air or water). They chose the 

diameter of circular resonators 7 and 25 μm, the refractive index was varied from 

1.59 to 1.9, and the medium was changed from air to water (Li et al 2017). Strong 

coupling and mode splitting are observed in every case. According to their FDTD 

simulations, Li et al found that the splitting patterns of supermodes were quite 

similar even though the diameter of circular resonators is varied from 7 μm to 25 

μm, their index was varied from 1.59 to 1.9, and the medium was changed from air 

to water. Also, each photonic molecule with a particular configuration and 

symmetry had unique resonant properties that give rise to its distinct spectral 

signature. This can able one to identify the molecule configuration based on its 

spectrum, giving the ability to potentially utilize such signatures for geometry or 

position sensing. In the E-field map, the shortest and longest wavelength 

components can be called antibonding and bonding modes, respectively. For 

antibonding mode, they found that the electric field appears to be distributed rather 

uniformly among all constituent atoms, which is not seen in other modes. Also, the 

E-field is reduced at the points where the circular resonators touch which means 

that the coupling at these points is weakened. To experimental study of spectral 

properties of photonic molecule, Li et al assembled various molecular 

configurations with polystyrene microspheres with nominal diameter of 25 μm and 

similar resonant positions of WGMs. The positions of the WGM resonances were 

determined using transmission spectra through side coupled tapered fiber in 

aqueous environment. Liquid environment enables particle movement and is 
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critical for developing biomedical applications, thus most of WGMs based sensors 

are characterized in an aqueous medium. This novel work opens up a way to 

explore quantum-optics analogies in photonics and to create novel structures such 

as parity-time synthetic lattices, coupled resonator ladders or waveguides based on 

an effective gauge field for photons (Li et al 2017).  
In the following chapters we study Maxwell fish-eye (MFE) as a graded 

index (GRIN) microresonator. The history of this newly considered structure came 

back to the middle of 19th century. In 1854, seven years before declaration of the 

electromagnetic theory of light, James Clerk Maxwell invented MFE based upon 

the method of geometrical optic. A spherically symmetric inhomogeneous lens 

which refractive index is a function ,)/(1/(2)( 22
0 Rrnrn += where R denotes 

the radius of the sphere, and r the radial distance measured from the center of 

sphere (Tai 1958). At first, the MFE problem was an unbounded i. e. ,)( 0nrn =  

for Rr f but in recent works it is assumed  ,1)( =rn  for Rr f . 

The wave equation for this problem can be reduced to the Laplace equation 

on a four-dimensional sphere. The symmetry group for this problem is, therefore, 

the same as that found by Fock for the hydrogen atom in the case of the discrete 

spectrum.  

The similarity between light rays in MFE and the trajectories of a particle 

of mass m in the attractive potential was realized by researchers. In 2009 

Makowski offered a normalizable solution for Schrodinger equation at the energy 

of E=0 and compared the results to the corresponding classical trajectories. His 

model was a specific version of the MFE. Before Makowski's work, Lenz for the 

refractive index and Demkov and Ostrovsky for the corresponding potentials, had 

shown that there exist a large class of functions )(rnk  and )(rVk  with the perfect 

focusing properties. The Lenz–Demkov–Ostrovsky (LDO) focusing potentials had 

the form of  222 )(2/)( kk
k RwrU rrr +-= -  , R/@r  and for all rational 
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values of k lead to regular zero-energy quantum solutions. The MFE model is 

recovered for 1=k . In each case, there exist normalizable solutions, if the 

coupling constant w is a quantized quantity. Makowski proposed another model 

which, contrary to the LDO potentials, was not central but could be related in some 

relation to the MFE case, i. e., to the question of finding focusing effects in media, 

where the refractive index or the corresponding to it potential, vary continuously 

with the radial coordinate. The model had square-integrable 0=E  wave functions 

and also gave its exact classical trajectories (Makowski 2009).  

In 2009 Leonhardt proved that MFE, as an ideal optical instrument, 

perfectly images light waves in two dimensions (Leonhardt 2009). Then in another 

work in 2010, Leonhardt and Philbin showed that the MFE in three dimensions has 

infinite resolution as well. They proved perfect imaging in three dimensions and 

obtain the quantitative results of Leonhardt 2009 by analyzing the electromagnetic 

Green function. In their theory having absorption is equivalent to having a complex 

wave number in the definition of the Green function. The singularities of the Green 

function describe source and image, but they are not affected by the wave number 

that only reduces the amplitude (Leonhardt and Philbin 2010). 
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3. MATERIAL AND METHOD 
 

In this chapter, the numerical technique which is widely applicable for 

analysis of broad class of structures is presented. Since the last decades of 

twentieth century, the processing power and memory capacity of high-speed 

computers increases by the year. So, the solutions of electromagnetic (EM) field 

problems have been changed from contentious equations to discrete 

approximations.  The discrete forms are usually easier to implement in computers 

(Buchanan 1996). These methods directly give the total picture of a field as it 

propagates through a structure involving several variations in physical 

characteristics. Among discrete approximations, the numerical analysis and 

simulation in the time-domain has been interested rather than frequency-domain. 

There are a number of finite-difference schemes for Maxwell's equations, but Yee 

scheme, known as Finite-Difference Time-Domain (FDTD) Method, persists as it 

is very robust and versatile.  

 

3.1. Finite-Difference Time-Domain (FDTD) Method 
The FDTD method, introduced by K. S. Yee in 1966, was the first direct 

time-domain technique for solution of Maxwell's differential (curl) equations on 

spatial grids or lattices (Yee 1966). The Yee algorithm solves both electric and 

magnetic fields in time and space by using the coupled Maxwell’s curl equations, 

rather than solving each independently wave equations. Maxwell’s curl equations 

are discretized in space and time by approximating with centered two-point finite 

differences (Taflove and Hagness 2005). There are several reasons for the 

expansion of interest in FDTD and related computational solution approaches for 

Maxwell's equations. The flexibility and capability of studying complex structures, 

easy implementation, visualizing the time-varying fields with the volume of space, 

handling nonlinear, frequency dependent, and conducting materials, obtaining 

easily broad spectral information by a single run made FDTD a powerful and 
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versatile numerical tool. The memory requirement is linearly proportional with the 

volume of the simulated structure (Kurt 2006). The FDTD method determines the 

frequency response over a wide spectrum of frequencies, whereas many other 

simulation methods require different models and/or techniques for different 

frequencies. As the FDTD method is time-based the results produced can also help 

us providing an insight to EM wave propagation within the structures. Results from 

FDTD simulations allow the wave to be visualized, which helps in checking 

results. Frequency-domain techniques often conceal how the EM waves propagate 

within the structure (Buchanan 1996).  

 
3.1.1. Maxwell's Equations 

For a region of space that has no electric or magnetic current sources, but 

may have materials that absorb electric or magnetic field energy, the time 

dependent Maxwell's equations are given in differential form (MKS units): 

 

MEB
-´-Ñ=

¶
¶

t
 (3.1a) 

JHD
-´Ñ=

¶
¶

t
 (3.1b) 

0=×Ñ D  (3.1c) 

0=×Ñ B  (3.1d) 

where 

B   -  magnetic flux density,  

E  -  electric field,  

M  -  equivalent magnetic current density,  

D  -   electric flux density,  

H  -  magnetic field,  

J  -   electric current density.  
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In linear, isotropic, nondispersive materials we can apply the following 

simple relations: 

 

HHBEED 00 , mmmeee rr ====    (3.2) 

 

where 

0e  -  free-space permittivity,  

re  -  relative permittivity, 

0m  -   free-space permeability. 

rm  -  relative permeability. 

 

Here, J and M can act as independent sources of electric and magnetic 

fields energy, sourceJ  and sourceM . Also, isotropic materials with nodispersive 

electric and magnetic losses are taken to study. This yield:  

 

HMMEJJ *+=+= ss sourcesource ,     (3.3) 

 

where s  is electric conductivity and *s  is equivalent magnetic loss. By 

substituting equations (3.2), (3.3) into equations (3.1a), (3.1b) we obtain: 
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              (3.5) 
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The components of above equations in Cartesian coordinates are: 
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             (3.7) 

 

The above six coupled partial differential equations form the basis of the 

FDTD method for electromagnetic wave interactions with objects in three 

dimensions (Taflove 1975).  

 
3.2. General Formulation of FDTD Method 

In 1966, Kane S. Yee introduced a set of finite-difference equations for the 

equations (3.6), (3.7) for the lossless materials case 0=s  and 0=*s  (Taflove 

2005). The adapted notation to represent a space point in a uniform, rectangular 

lattice is ( ) ( )zkyjxikji DDD= ,,,,  where, xD  , yD  and zD  are the lattice 

increments in the Cartesian coordinates  (Yee cell dimensions) and i  , j  and k  

are integers (Yee cell indices). The Yee unit cell and cell dimensions have been 

showed in Figure 3.1 schematically. Assume u   is a function of space and time 
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),,,( tzyxuu = . At a discrete point in the grid and at a discrete point in time the 

function can be written as:  

 

( ) n
kjiutnzkyjxiu ,,,,, =DDDD                (3.8) 

 

where tD  is the time increment (time-step size) and n  is an integer (time step 

index).The superscript n  is related to time t  by the equation tnt D= . The space 

and time derivatives are approximated by centered two-point finite differences with 

second order accuracy  

 

( ) ( )[ ]2,,21,,21,,, xO
x
uu

x
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¶
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Figure 3.1. Cubic unit cell of the Yee space lattice, the electric and magnetic field 

vectors, and lattice increments (Taflove, 2005). 
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By applying the above notations, we can achieve a numerical 

approximation for the first equation of equation sets (3.7) 
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On the right-hand side of this equation, the magnetic field quantities are 

evaluated at time-step n , but the electric field and material conductivity values on 

the time-step n  are not available. Because, only the previous values, 2/1-n  ,  of   

xE  are stored in the memory. The Figure 3.2 shows time-step Leap-Frogging in 

Yee algorithm. Here, the electric field values are defined at half time steps and 

magnetic field values are defined at whole number time steps. For adapting the 

time-step indices in equation (3.11) we use the well known semi-implicit 

approximation relation 
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By substituting the equation (3.12) into equation (3.11), collecting all 

common terms, isolating 2/1+n
xE  on the left-hand side, and doing needed arithmetic 

calculations we can introduce an explicit form of finite-difference equation for xE  
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Figure 3.2. Time step leap-frogging in Yee algorithm. 
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By analogy, we can derive finite-difference equations for the rest of 

equations (3.7) and equations (3.6). 
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For cubic lattice D=D=D=D zyx  and updating coefficients C  and D  

are defined as 
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Equations (3.13), (3.14) are the general form of finite-difference 

expressions of equations (3.4), (3.5) and are known as the three dimensional (3D) 

FDTD method equations. It is clear from these equations, the electric field values 

are only defined at half time steps and the magnetic field values are only defined at 

whole ones. This allows electric and magnetic field components updates in a 

FDTD analysis to be interlaced in time. Electric field values are calculated at each 

time step, and then the magnetic field values are calculated at next time step. As 

shown in Figure 3.2 for updating a field component, only past electric and 

magnetic field components are required (Hill 1996). Of course, at the beginning the 

initial conditions are needed as all EM problems. 
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The equations (3.13), (3.14) have been driven regardless to the medium are 

studying. Simplifications can be applied as following sections.  

 

3.3. Maxwell's Equations in Isotropic Medium 
The time-dependent Maxwell's curl equations in isotropic medium 

( reee 0= , 0mmm r=  and 1=rm ) are 
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The components of above equations in Cartesian coordinates are: 
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3.4. One Dimensional FDTD 

For one dimensional propagation, we can assume: a) 0¹xE , 0=yE  and 

0=zE .  b) There isn't any variation in the yx -  surface ( 0=
¶
¶
x

 and 0=
¶
¶
y

).  

So the equations (3.19), (3.20) reduce to the following equations: 
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In addition, if the propagation of 1D EM wave be in z direction and electric 

field is x –polarized ( 0== zx HH ), then Maxwell’s equations can be written as 
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These equations are used in simulation of wave propagation in one 

dimension. In FDTD formulation, by using the central difference approximation in 

both the spatial and time derivatives we can express the equation (3.25) at space-

time point ),( tntzkz D=D=  as  
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Similarly, the equation (3.26) can be written at time-space point 

)2,2( ttzz D+D+  as  
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Solving for xE   and yH  at time step 2/1+n  and 1+n  respectively 

yields  
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As mentioned in the section 3.2, this system of equations is coupled or 

interlocked. If a source is defined at some places in the computational domain, 
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propagation of light from this source in time and space can be obtained starting 

from equation (3.29) by inserting some initial values of fields corresponding to this 

source. Then electric field at the next time step might be evaluated 

straightforwardly and if inserted to equation (3.30) magnetic field components in 

the next time step can also be found. This time staggered calculation of electric and 

magnetic field components is often called leapfrogging. Proceeding the time cycle 

gives evolution of fields in time and space which was searched for. In Figure 3.3 

each row corresponds to a specific instant in time, at half time steps, whereas each 

column represents a single spatial grid point through time. The gray and blue grid 

lines represent whole and half steps respectively, in both time and space. The 

orange triangles represent xE  while the purple triangles represent yH . We see that 

for every triangle there are three arrows pointing towards it. One comes from the 

previous time step. The other two come from a half-step down and a half-step to 

the right or left. The initial values that must be given are the green circles, and the 

boundaries are the orange and purple circles.   

 

 
Figure 3.3. The FDTD approximation grid. 
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The magnitudes of Equations (3.25) and (3.26) are not the same degree 

because 5

0
0 104.1 ´@e

m . We want them to be for our computations. So, a change 

of variables is necessary to fix this discrepancy in our equations. By substituting 

xx EE
0

0~
m

e=  in Equations (3.29) and (3.30) we have  
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Now, we have a discrete representation of 1D FDTD in general form. By 

considering the stability of algorithm, initial values and boundary condition the 

suitable codes can be written in desired programming language.  

 

3.4.1. Stability of FDTD Algorithm  
The choice of space increment and time-step can affect the performance 

(stability and the accuracy) of the finite-difference approximations to Maxwell’s 

differential equations. For example in 1D simulation, an EM wave requires a 

minimum time of 0/ cxt D=D  to propagate a distance of one cell xD in free space. 

It is arises from the fact that an electromagnetic wave cannot propagate faster than 

the speed of light in free space. When we get to 2D simulation, we have to allow 

for the propagation in the diagonal direction, which brings the time to 

)2/( 0cxt D=D . Obviously, 3D simulation requires )3/( 0cxt D=D (Sullivan, 

2000). Generally, the Courant number or numerical stability factor defined as   
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222 zyx
tcS

D+D+D

D
=                          (3.33) 

 

For the stability of FDTD algorithm 1£S  must be satisfied. This stability 

criterion ensures the convergence of the numerical simulation. The cell size 

xD should sample adequate portion of the minimum wavelength component (worst 

scenario case) of the EM field. Usually 20/minl£Dx is safe for enough accuracy 

but depending on the situation one may increase or reduce the sampling rate. As 

the pulse propagates down the FDTD mesh, the pulse becomes distorted 

(broadening and ringing the tail of the pulse) due to the numerical dispersion. Well 

resolved grid resolution also enables solution which is independent of the angle of 

the propagation (Kurt 2006). 

 

3.4.2. Boundary Conditions 
One of the major problems with any beam propagation method is that the 

computational region has to be truncated by numerical boundaries. The numerical 

boundary is represented by the extreme points on which the field is sampled. 

Because the whole numerical scheme is generally lossless, the total energy within 

the computational region remains the same, and hence any wave that in reality 

should leave this region is directed back into it, thereby representing an unreal 

phenomenon. The conventional way to reduce the effect of this problem is to put a 

strongly absorbing medium of appropriate thickness at the edge of the 

computational region, thereby imposing the so-called absorbing boundary 

condition (ABC) (Agrawal 2004). They should absorb the out-going EM field by 

suppressing the spurious back reflected energy regardless of the polarization, 

propagation direction, and frequency. ABC, perfectly matched layer (PML), or 

periodic boundary condition (PBC) are usually implemented with FDTD. 
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3.4.2.1. Perfectly Matched Layer (PML) 
The main problem with FDTD method and any beam propagation method 

is that the simulation region has to be represented by a finite domain bounded by 

numerical boundaries. Because the whole numerical scheme is generally lossless, 

the total energy within the numerical region remains the same, and hence any wave 

that should leave the region is directed back into it, thereby representing an unreal 

phenomenon. The conventional way to reduce the effect of this problem is to put a 

strongly absorbing medium of appropriate thickness at the edge of the region, 

thereby imposing the so-called absorbing boundary condition (Agrawal and 

Sharma 2004). The most used boundary condition in FDTD method is perfectly 

matched layer (PML). PML is an absorbing medium that is commonly used to 

truncate numerical simulations of electromagnetism and other wave equations in 

FDTD simulations. Actually, it is powerful technique to absorb waves incident on 

the boundaries of wave-equation simulation. The layer has reflectionless property 

and interfaces between the simulation region and adjacent media. The concept of 

PML was introduced by Berenger (Berenger 1994) for application of FDTD 

solutions for Maxwell’s equations. In the PML method a layer of a specially 

designed anisotropic medium is put at the edge of the simulation region as have 

been showed in Figure 3.4. The absorption profile in this layer can be arbitrarily 

chosen, subject to certain conditions. The PML boundary condition was found to 

be highly effective for applications to optical wave propagation and have been 

developed to different version (Agrawal and Sharma 2004). 

 
3.5. Two Dimensional FDTD 

In this study all the simulations have been done in two dimensions. So, 

after introducing the general formulation of FDTD method in three dimension and 

presentation related parameters in one dimension we turn the discussion to two 

dimension FDTD. We can assume the structure being studied extends to infinity in 

the in the z-direction without any changes in the transverse cross section. If the 
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incident wave is also uniform in the z-direction, all the partial derivations of the 

fields with respect to z will be zero in Equations (3.19) and (3.20). So these 

equation reduces to: 

 
Figure 3.4. Schematic of perfectly matched layer (PML) (Berenger 1994). 
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In general form of 2D FDTD formulation, we choose between one of the 

two groups of three electromagnetic fields components.  

 

1) The transverse electric (TE) mode, which is composed of Ex, Ey and Hz. 

2) The transverse magnetic (TM) mode, which is composed of Ez, Hx and Hy. 

 

The most important note here is that in the study of waveguides, as the 

simulation in the following chapters the TE and TM modes are defined as do in 

optics, but here we must continue the formulation in the general form of FDTD 

method. For TE mode we have the following set equations: 
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and TM mode include the equations: 
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These two modes constitute the two possible ways that 2D FDTD problems 

can be set up for the case of zero partial derivation in the z-direction. As can be 

seen the TE and TM modes contain no common field components. So, these modes 

can sexist simultaneously with no mutual interaction for structures composed of 

isotropic materials or anisotropic materials having no off-diagonal components in 

the constitutive tensors (Taflove and Hagness 2005).  

 

3.6. Maxwell’s fish-eye (MFE) 
The main structure that has been studied in this thesis, especially in units 4 

and 5 is Maxwell’s fish-eye as a graded index (GRIN) medium. The original MFE 

is an unbounded, spherically symmetric, inhomogeneous medium which is 

infinitely large (Luneburg 1964). In this work, the bounded form of MFE with a 

perfectly electrical conductor boundary (Leonhardt 2009, Liu et al 2013) will be 

used. The refractive index of bounded MFE varies according to a reverse quadratic 

function of distance ,)/(1/)( 2
0 Rrnrn +=  where 0n is the refractive index in the 

origin, R  is the physical radius of  MFE, and  the radius r  is measured in 

spherical coordinate system (Liu et al 2013). As has been showed in the Figure 3.5 

the refractive index in the center of MFE, 0n , reduces uniformly to 2/0n  in the 

edge of disc. Here we assume the refractive index of MFE in the center is  4641.3  

accordance to next units’ simulations.  

 



3. MATERIAL AND METHOD                                                    Khalil DADASHI 

45 

 
Figure 3.5. Refractive index of Maxwell’s fish-eye for 4641.30 =n and 

mR m79.2=  . 
 
3.7. Important Design Parameters of Microresonators 

In this section, we briefly introduce and derive simple expressions for 

parameters that are important in realization of microresonators. Calculation of the 

Q-factor is the most important computational tasks in investigation of light 

behavior in resonators. The Q-factor is related to photon lifetime in 

microresonators. In other words, it is proportional to stored energy inside 

microresonators and inversely proportional to losses from microresonators. 

Bending loss, scattering loss and material loss are the main loss mechanisms for a 

microresonator (Rabiei, et al 2002). Bending loss is primarily determined by the 

index difference between resonator and surrounding medium. The familiar 

definition of the Q-factor is: 

 

w
w
D

= 0Q  ,               (3.38) 
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where 0w is resonant frequency. Practically, the Q-factor of a resonator is defined 

by 

 
FWHMFWHMf

fQ
l

l
D

º
D

= 00 ,              (3.39) 

 

where FWHM is full width of half maximum of related resonance, 0f and  0l  are 

frequency and wavelength of resonance respectively (Chremmos et al 2010).  

The other important parameter that must be considered for studying of 

microresonators is free spectral range (FSR), which is basically the distance 

between the resonances in transmission spectrum of a microresonator. Simply the 

FSR are defined as: 

 

mmmm ffFSR ll -º-= ++ 11              (3.40) 

 

Finally, another important parameter for measuring of resonator 

performance is finesse (Ƒ). The finesse is defined and calculated (approximately) as 

(Rabiei, et al 2002, Chremmos et al 2010) 

 

Ƒ = 
FWHM

FSR
lD

                (3.41) 

 

This parameter and FSR are the most important parameters for a microresonator 

(Rabiei, et al 2002).  
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3.8. Computational Tools 
In this thesis, in addition to analytical calculations, the computational 

finite-difference time-domain (FDTD) method has been used. We implemented the 

FDTD method by MEEP program and Lumerical commercial software.  

The MEEP package is Linux based free software from MIT Nanostructures 

and Computation research group. This program computes definite-frequency 

eigenmodes of Maxwell's equations in periodic dielectric structures, especially for 

the photonic crystals, for arbitrary wavevectors, using fully-vectorial and three-

dimensional methods. It is also applicable to many other problems in optics, such 

as waveguides and resonator systems. 

Nowadays, some commercial FDTD software packages are available. We 

have useed the FDTD Solutions introduced by Lumerical Company 

(https://www.lumerical.com). FDTD Solutions is generally a windows based 

package. It is a 3D Maxwell Equations solver, capable of analyzing the interaction 

of electromagnetic waves with complicated structures employing wavelength scale 

features.  
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4. GRADED INDEX MICRORESONATORS1 
 
4.1. Introduction 

Whispering gallery modes (WGMs) in optical microresonators (or 

microcavities) have been studied vastly in the past two decades (Vahala 2003). 

WGMs are eigenmodes of wave field inside a given resonator with smooth edges. 

Theoretical and experimental studies have been conducted by several groups on 

WGMs in microresonators, and this is due to the spatial and temporal confinement 

of light in these structures. As a matter of course, these modes mainly depend on 

the geometry of resonator which is open to engineering possibilities. Optical WGM 

microresonators have led to many applications in various fields such as single 

photon sources in cavity quantum electrodynamics (QED) applications, interfaces 

for quantum communications, microlasers, biosensing, optical circuits, dynamic 

filters and switches in optical communications (Michler et al 2000, Wilk et al 2007, 

Sandoghdar et al 1996, Armani et al 2007, Franchimon et al 2013, Djordjev et al 

2002). Concurrently, graded index (GRIN) structures have been receiving great 

interest in recent years. These structures are inhomogeneous media with spatially 

varying refractive index distributions. GRIN structures are widely used in optics 

and photonics applications due to their unique light coupling, focusing, modeling, 

and switching abilities (Gomez-Reino et al 2002). 

Among GRIN structures, the Maxwell’s fish eye (MFE) is of special 

interest and can be implemented using dielectric materials. The original MFE is an 

unbounded, spherically symmetric, inhomogeneous medium which is infinitely 

large (Luneburg 1964). Recently, the modified form of MFE is being investigated 

in literature and it is bounded with a perfectly electrical conductor boundary 

(Leonhardt 2009, Liu et al 2013). In this work, the bounded form of MFE will be 

                                                 
1 This chapter is based on: Dadashi, Kh., Kurt, H., Ustun, K., Esen, R., 2014. Graded Index 
Optical Microresonators: Analytical and Numerical Analyses, J. Opt. Soc. Am. B, 31(9): 
2239–2245. 
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used. The refractive index of bounded MFE varies according to a reverse quadratic 

function of distance (Liu et al 2013): 

 

,
)/(1

)( 2
0

Rr
nrn

+
=                 (4.1) 

 

where 0n is the refractive index in the origin, R  is the physical radius of  MFE, 

and  the radius r  is measured in spherical coordinate system, 
21222 )( zyxr ++= . 

In recent works on MFE, more attention has been paid to the imaging 

properties of MFE lens in the framework of wave optics.  Achieving the perfect 

image and enhancing the resolution were the main objectives in studies of 

Leonhardt (2009) and Leonhardt and Philbin (2010). In another work, designing of 

a wide angle terahertz detectors with independent incident angle have been recently 

studied by Liu et al (2013). 

The study of the MFE as a boundary value problem within the framework 

of Maxwell equations goes back to Tai (1958) works. Two second order 

differential equations for transverse electric (TE) and transverse magnetic (TM) 

modes were derived. Equations were changed to hypergeometric differential 

equation form but because of the lack of appropriate computing systems 

calculations of these equations were delayed for some years. Later, Rosu and  

Reyes (1984) computed the radial behavior of TE and TM modes based on the 

Tai's previously derived equations. They found analytical expressions for both TE 

and TM modes. The azimuthal modes were not mentioned in this work and only 

radial modes of solitary MFE were introduced. 

Radially GRIN media with different profiles and various material types 

(metamaterials, plasmonics etc.) have been investigated for different applications. 

An omnidirectional photonic hole was proposed and the incident optical energy 
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was stored for a certain period of time by Liu et al (2010). Narimanov et al (2009) 

proposed an effective optical black hole that provides broad-band omnidirectional 

light absorption. In another study, gravitational lensing effects were demonstrated 

with a microstructure waveguide that was used as an omnidirectional absorber 

holding potential for light harvesting and microcavity applications (Sheng et al 

2013). Efficient light transportation through a sharp waveguide corner was 

achieved by GRIN waveguide (Wang et al 2012). Hollow core fiber with a radially 

GRIN cladding was studied to increase the light penetration towards the core 

region by Zhu et al (2012). Plasmonic Luneburg and Eaton lenses were 

investigated to focus and bend surface plasmon polaritons (Zentgraf et al 2011). In 

that work, scattering losses were reduced due to gradual change of the optical 

properties. From this quick literature review, we can claim that there is a growing 

interest to propose and investigate more complex and advanced photonic materials 

for manipulating light interaction with the designed structures.  

This chapter of the present thesis provides the solution for the eigenvalue 

problem associated with the radially inhomogeneous disc resonator. The near-field 

maps of higher order WGMs of the MFE disc resonator are extracted. The main 

task of this chapter is to derive analytical and numerical solution to the specific 

problem at hand. Then, MFE resonators as building blocks for integrated photonic 

circuits will be explored paying attention to different aspects such as Q-factors, 

free-spectral range, and scattering losses. 

In this chapter, we introduce the idea of combining optical microdisc with 

GRIN medium that is represented by 2D MFE. The optical resonant modes of the 

structure are calculated both analytically and numerically. The analytical solution 

for planar disc with step index contrast can be found in the literature (Quan and  

Guo, 2009). The analytical solution together with finite-difference time-domain 

(FDTD) exploration of MFE microresonator are proposed in this chapter for the 

first time to the best of our knowledge. 
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As mentioned before, attempts to find the electromagnetic modes of MFE 

resonator can be found in Tai (1958) and Rosu and Reyes (1994). The formulations 

in these studies were carried out in terms of a boundary-value problem and general 

discussion involving a radially stratified medium was adapted. Rosu and Reyes 

(1994) ended up with the same type of solution as ours but following a rather 

different approach. It could be important to have an alternative derivation for the 

same problem with detailed explanation of the intermediate steps. Besides, 

extraction of the supported modes in an alternative and complementary way via 

FDTD was carried out in this chapter. 

 
4.2. Maxwell's Fish Eye as Graded Index Microresonator 

To analyze the behavior of MFE microresonator, we use Helmholtz 

equation for TE modes. In general, one should be careful while attempting to drive 

the Helmholtz equation starting from the Maxwell equations if the medium has 

inhomogeneous refractive index profile )(re . In our case due to spatial form of 

)(re , we have the second order differential equation which is the same as general 

Helmholtz equation that can be derived for an homogenous medium.  

 

4.2.1. Helmholtz Equation 

In a GRIN structure where the refractive index )(rn  is only a function of 

the radial parameter r  measured from the origin of the coordinate system, the 

Maxwell equations in nonmagnetic source-free region can be written as follows: 

 

HE 0miω=´Ñ               (4.2a) 

EH )(0 ri ewe-=´Ñ               (4.2b) 

0])([ =×Ñ Ere               (4.2c) 

0=×Ñ H                (4.2d) 
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In these equations, it was assumed that the electromagnetic fields have time 

dependence in the form of )exp( tiw-  where w  is angular frequency, 0e  and 0m  

are permittivity and permeability of free space, )(re  denotes the permittivity of 

the media as mentioned before and we assume 1)( =rm as is usual for most 

materials. Starting with equation (4.2a) we have: 

 

,0)(2 =-´Ñ´Ñ EE rk e                (4.3) 

 

where )/2(/ 0lpw == ck  is wave number in free space. Equation (4.3) can be 

rewritten as: 

 

.0)(22 =-Ñ-×ÑÑ EEE)( rk e               (4.4) 

 

One can easily show that for the present problem at hand under the 

transverse electric (TE) mode case, the first term of equation (4.4) can be 

discarded. When we evaluate equation (4.2c): 

 

.0)()]([ =×Ñ+×Ñ EE rr ee                            (4.5) 

 

The first term of last equation can be extracted in spherical coordinates as: 

 

.
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¶
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¶

¶
=×Ñ E             (4.6) 

 

For TE modes, E doesn’t have any component in the  yx -  plane so 

0=rE . As a result the first term of equation (4.6) becomes zero. On the other 
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hand, )(re  is homogeneous in q  and f  so the other two terms of equation (4.6) 

turn out to zero as well. Consequently, 0)]([ =×Ñ Ere . It can be concluded from 

equation (4.5) that 0=×Ñ E  and the form given in equation (4.4) transform into 

the Helmholtz equation for TE modes as follows: 

 

.0)(22 =+Ñ EE rk e                 (4.7) 

 

where ck /00 wmew == , )/2( 0lp=k  is wave number, 0l  wave length, c  

speed of light, 0e  permittivity and 0m  is permeability of the free space. w is 

angular frequency and 2)()( rnr =e  is permittivity of the media and as is usual for 

most materials we assumed 1)( =rm . 

 

4.3. Analytical Solutions of Helmholtz Equation 
Two dimensional representation of Maxwell’s fish eye as a GRIN medium 

is shown in Figure 4.1(a). In Figure 4.1(b) a 3D representation of refractive index 

distribution of the complete configuration is shown. For TE - polarized waves that 

propagate in the yx -  plane, the E-field has only the z  component. So, the 

equation (4.7) can be expressed as follow in the 2D polar coordinates: 

 

.0)(11 2
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22

2
=+

¶
¶

+
¶

¶
+

¶
¶

z
zzz ErkE

rr
E

rr
E
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             (4.8) 

 

To solve equation (4.8) we assume the separation of variables in the form 

of: 

),()(),( jj FY= rrEz                (4.9) 
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and introduce the separation constant m . As a result, the equation (4.8) can be 

separated as follows: 

 

,0)()( 2
2

2
=F+

F
j

j
j m

d
d

                                                                    (4.10a) 

 

 
Figure 4.1. (a) Schematic view of 2D Maxwell’s fish eye. (b) The 3D 

representation of refractive index distribution of the complete 
configuration including bus waveguide and MFE resonator. 
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Equations (4.10b) and (4.10c) are valid for the inside and outside of the 

MFE disc, respectively. 

The general solutions of equation (4.10a) are in the form of: 

 

( ) ,...3,2,1sincos)( =+=F å mmBmA
m

mmm jjj          (4.11) 
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where mA , mB  are constants and m  will be the azimuthal mode number. Due to 

symmetry of the system, mB  will be omitted. Then, the solutions can be written in 

a simple and compact form as: 

 

....3,2,1cos)( ==F å mmA
m

mm jj                       (4.12)  

 

For analytical solution of equations (4.10b) and (4.10c) we change the 

radial variable to Rr /=x  and introduce the constant 

2/))1(1( 2122
0

2
0 Rnk+-=h . After that, the general solutions can be written as: 

 

},)],1[],,([)1(

)],1[],,([)1({)(

222
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xhhxx

xhhxxx

hh

hh

-+--++

-+++=Y
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mmFRC

mmFRC

mm
m

mm
m

m

in
m

      (4.13) 

 

where -+
mm CC ,  are real constants and F is hypergeometric function (Arfken and 

Weber, 2005). -
mC  must vanish because the second term in equation (4.13) have 

singularity in the origin. The solutions for equation (4.10c) are in the form of 

)}({)( krHDrealr mm
out
m =Y  where mD are complex constants and )(krHm  are 

the Hankel functions and are defined as )()()( krjYkrJkrH mmm ±= , 1-=j . 

)(krJm  and )(krYm  denote Bessel function of first and second kind (Arfken and 

Weber, 2005). As a result, we have the following solutions for Rr f  region: 

 

.))}()(({)( å ±=Y
m

mmm
out
m krjYkrJDrealr                        (4.14) 
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From the continuity condition of )(rmY at the interface of MFE with the 

environment, Rr =  or 1=x , the following equation is obtained: 

 

)),()(()1],1[],,([22 kRjYkRJDmmFRC mmm
m

m ±=-++++ hhhh   (4.15) 

 

which correlates the amplitudes mD  to  +
mC : 

 

.
))()((

)1],1[],,([22
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m

m ±
-++

=
++ hhhh

                       (4.16) 

 

By choosing the real part of the equation (4.14) and performing algebraic 

manipulations, the equation (4.9), can be written as in the following forms: 
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Continuity condition of the first order derivative of zE ( out
z

in
z EE , ) with 

respect to r  (or equivalentlyx ) at the interface of MFE ( Rr = or 1=x ) follows: 
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Equation (4.18) is a transcendental equation and can be utilized for finding 

the eigenmodes of GRIN microresonator by graphical solution method.  All 

parameters in equation (4.18), except m , are known. Here we predetermine m by 

the results of FDTD method (Taflove, Hagness 2005) to ease the comparison. 

Generally, for every m, we have valid solutions given by the analytical method. 

 

4.4. Numerical Analysis of 2D MFE 

We consider a 2D MFE microresonator closely coupled to a straight 

dielectric waveguide as shown in Figure 4.2. The MFE is excited by placing an 

electromagnetic source in the waveguide. We note that, the existence of the 

waveguide would shift the resonance frequency and may cause slight deformations 

in the resonant modes’ field distribution. But, as we will demonstrate later in this 

chapter, there is a good agreement between the field distribution inside of MFE in 

two cases, with and without the optical waveguide. We consider optical waves 

propagating in the yx -  plane with electric field intensity vector polarized 

perpendicular to the plane (TE modes whose magnetic and electric field 

components are, xH , yH and zE  respectively). 
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Figure 4.2. The chacteristic parameters of 2D Maxwell’s fish eye. The locations of 

input (P1) and out put (P2) ports.  
 

By imposing an appropriate excitation source for waveguide, the resonance 

spectrum of MFE can be found. A Gaussian source with broad band width is 

located in port P1 and the transmission of waveguide is monitored in port P2. The 

locations of ports are shown in Figure 4.2.  

The transmission spectrum of the waveguide coupled to MFE can be 

obtained as Figure 4.3. The dips in this normalized spectrum show resonance 

modes of MFE in terms of normalized frequencies. By choosing one set of these 

resonance modes we can excite the system by continuous sources. The frequencies 

of new sources can be selected easily from Figure 4.3. Consequently, the coupling 

snapshots in the steady state can be extracted and these snapshots give us the 

related azimuthal mode number of MFE, specifically m number. Figure 4.4 shows 

the FDTD simulations for normalized frequencies of ,2282.0=la 2304.0,2291.0  

and 2315.0  that result 27,23,22=m and 29  respectively. n0ll =  and a  is 

defined as 20ayx =D=D , where xD and yD are the grid sizes of  the 2D Yee lattice 

in FDTD method (Arfken, Weber 2005). The refractive index of MFE is set 

according to equation (3.1) with 4641.30 =n . The radius of MFE is set to aR 12= , 

linear waveguide width is ad = and the gap between waveguide and MFE 

is ag 4.0= . The perfect matched layer (PML) boundary condition has been used 

around the simulation domain and the last slide has been showed for time step 
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tD7000 (Arfken, Weber 2005). Simulations were performed with the FDTD 

method, using MEEP, freely available software package (Oskooi et al, 2010).  

 
Figure 4.3. Normalized transmission spectum of waveguide in port P2 showing 

resonaces modes of MFE. 
 

 
Figure 4.4. E-field intensity profiles for (a) 1=n , 29=m  , (b) 2=n , 27=m , 

(c) 4=n , 27=m , (d) 5=n , 22=m  
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By inspecting the resonance frequencies of MFE in Figure 4,3, one can 

straightforwardly excite different modes sustained in the MFE microdisc. WGM 

behavior of the modes circulating around and inside the structure is apparent in 

Figure 4.4 and Figure 4.5. We should note that Figs. 4.4(a)-(d) are intensity plots. 

Figure 4.5 is amplitude profile. 

 

 
Figure 4.5. E-field distribution of MFE coupled optical waveguide for  

4=n , 23=m . 
 

4.5. Modes of 2D MFE 
After determination of the azimuthal mode number m  via FDTD 

simulation, we can turn to equation (4.18) and find the radial modes by graphical 

solving of this equation. The results give us only the orders of radial modes n . 

Since WGMs are confined inside of microresonator, to find the positions of radial 

modes or radial maximums and minimums of electric field, we use 

0/ =¶¶ rEin
z relation for 1pp xorRr . Accordingly, the following expression 

is obtained: 
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By graphically solving of equation (4.19), for a given azimuthal mode m , 

the exact locations of the radial modes n  can be extracted. Now, all characteristics 

of WGMs are known. Figure 4.6 shows the result for 23=m and 4=n . The four 

intersect points in this figure are 494.0=x  , 632.0 , 755.0  and 884.0  which 

determine the radial peaks and valleys of the electric field corresponding to specific 

mode.  

 

 
Figure 4.6. Graphical solution of equation (4.19) 

 

Additionally, the radial component of electric field inside the MFE can be 

written from equation (4.13) as: 
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Figure 4.7 shows )(xin
mY  expressed in equation (4.20) for the inside 

region of MFE. We can make a comparison between Figures 4.6 and 4.7 such that 

the locations of peaks and dips in Figure 4.7 exactly correspond to intersection 

points between the two curves plotted in Figure 4.6 . 

Figure 4.8 shows the electric field distribution inside of MFE as defined by 

Eq. 4.17(a) for 4=n  and 23=m . When we compare the analytical result shown 

in Figure 4.8 with the numerical one presented in Figure 4.5 we see that there is a 

good agreement between the two approaches.  In plotting Figure 4.8 the straight 

waveguide is not considered. The close agreement between the two methods 

supports the idea that the presence of optical waveguide does not strongly perturb 

the MFE microdisc. 

The properties of disc and ring microresonators have been studied from 

both theoretical and experimental standpoints (Vahala 2003, Quan, GUO 2009, 

Prkna et al 2004). In the proposed configuration the microdisc of usual waveguide-

resonator configuration has been replaced by a MFE lens. To the best of our 

knowledge, the idea of replacing the microdisc with a GRIN medium has been 

proposed in this thesis for the first time. Although the design and fabrication of 

GRIN devices by using traditional approaches such as continuously varying doping 

on natural dielectric media are not very practical, but the emerging disciplines of 

artificial dielectrics will open up possibilities to realize spatially varying or GRIN 

devices such as MFE lenses (liu et al, 2013). 
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Figure 4.7. Radial component of electric field inside region of MFE. 

 

 
Figure 4.8. Electric field distribution inside of 2D MFE for 4=n  and 23=m . 
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The significance of the present study lies not only being a new type of 

microresonator but also possessing a rich resonance characteristics. In conventional 

microresonator the coupled modes penetrate only the region near the edges, but in 

MFE, the coupled modes can penetrate more towards the core region as showed in 

Figures (4.4) and (4.5).  

In the numerical studies when the refractive indices of the waveguide and 

disc resonator are taken to be 7321.1 , the quality factor becomes 188  at the 

normalized frequency 2266.0=la . On the other hand, MFE resonator with a 

variable refractive index (increasing from 7321.1  at the edge to 4641.4  at the 

center) sustains quality factor of 1146  at the normalized frequency 2291.0=la . 

We should note that increasing the refractive index of the disc resonator enhances 

the field confinement; hence, quality factor is expected to increase.  

 

4.6. Spectral Properties of 2D MFE 

In general, the WGMs in dielectric optical resonator are function of the 

morphology, that means geometry and refractive index of the resonator and the 

surrounding medium play important role (Schweiger et al 2006). The morphology 

dependence of these structures encouraged us to examine more complex 

spherical/cylindrical dielectric aiming to obtain higher quality factor, and rich 

optical properties (Chremmos et al 2010). We studied the spectral properties, Q 

factor and free spectral range (FSR) of WGMs in a 2D MFE and compared the 

results with 2D conventional microdisc ones. 

The conventional disc has constant refractive index 2/0n  , radius R  and 

the MFE has refractive index 0n  in the center decreasing to 2/0n  at the rim 

according to equation (4.1) and its radius is R  as have been shown in Figure 4.2. 

They are closely coupled to a straight dielectric waveguide. A Gaussian source 

with broad band width is located in ports P1 to excite the systems and the 
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transmissions of waveguides are monitored in ports P2. All other characteristic 

parameters are the same as the previous section. The parameter 0n  in the refractive 

indices of the disc and MFE is set to 4641.3 . The radius for both microresonators 

is set to aR 12= . a  is defined as 20ayx =D=D . The linear waveguides 

refractive index is 2/0n and their widths are ad = . There is not any gap between 

waveguides and microresonators. The perfect matched layer (PML) boundary 

condition has been used around the simulation domain. The normalized 

transmission spectrums of the waveguides coupled to disc and MFE are shown in 

Figure 4.9. The time steps for all simulations are tD7000  . 

 

 
Figure 4.9. Normalized transmission spectra of the (a) conventional microdisc and 

(b) 2D MFE 
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We see from these figures that MFE refractive index, equation (4.1), has 

two effects: The resonances of disc have been shifted, when it has been changed to 

graded index medium one. These shifts are clearly shown in Table 1, as well. On 

the other hand, the MFE microresonator displays mode splitting in the vicinity of 

its resonances. 

 
Table 4.1. Calculated quality factor and free spectral range for conventional 2D 

microdisc and 2D MFE 
Conv. Disc MFE 

Freq. Q FSR Freq. Q FSR 

0.1601 22 0.0081 0.1545 811 0.0077 

0.1682 23 0.0083 0.1622 850 0.0077 

0.1765 40 0.0085 0.1699 888 0.0077 

0.1850 43 0.0088 0.1776 926 0.0077 

0.1938 44 0.0088 0.1853 965 0.0076 

0.2026 44 0.0086 0.1929 965 0.0078 

0.2112 45 0.0084 0.2007 2084 0.0077 

0.2196 51 0.0083 0.2084 2161 0.0077 

0.2279 54 0.0085 0.2161 2238 0.0076 

0.2364 64 0.0085 0.2238 2314 0.0076 

0.2449 111  0.2314 2391 0.0142 

   0.2456 2456  

 

Figure 4.10 represents the Q  factor for all resonances of conventional disc 

and major resonances of MFE. Clearly, there is notable increase in magnitude of 

Q  in MFE. Table1 contain Q  factors for these two cases. The free space between 

consecutive resonances is known as free spectral range (FSR) (Chremmos et al 

2010).  The information in Table 1 shows that the FSRs for two structures are very 

close to each other. 
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4.7. Fabrication Aspects 

To fabricate the GRIN structure, one can follow the procedures provided in 

Falco et al (2011) and Gabrielli et al (2011). The effective refractive index of any 

transparent material such as polymer (low refractive index) or Silicon (high 

refractive index) depends on the thickness variation of the slab that guides the light. 

Thickness variation at the micron and nano scale can be achieved by means of 

advanced manufacturing techniques such as focused ion beam (Gabrielli et al 

2011). 

 

 
Figure 4.10. Quality factor, Q, for conventional microdisc and 2D MFE. 

 

4.8. Conclusion 

In summary, solutions of Helmholtz equation in spherical coordinates 

come in the form of eigenvalue problems. We have shown that the radial )(n and 

azimuthal )(m  mode numbers can be obtained as eigenvalues of Helmholtz 

equation for 2D Maxwell’s fish eye (MFE) microresonator. We have proposed 2D 

MFE for designing unconventional microresonator. In this new structure, we have 
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introduced an additional parameter, i.e. spatially varying refractive index to 

manipulate the spectra of optical modes in microdisc resonator keeping intact the 

size and shape. The 2D MFE resonator is laterally coupled to an optical waveguide 

and for numerical calculations we use finite-difference time-domain method. 

Analytical and numerical treatments of the design unveil the optical resonances of 

the structure.  

While radially inhomogenous refractive index media based on 

metamaterials and plasmonics have been investigated for various applications 

ranging from optical cloaking to optical black holes, all-dielectric counterpart in 

integrated photonics is limitedly explored. The proposed 2D MFE resonator may 

pave the way for diverse integrated photonic applications rather than solely 

exploring the same structure for mostly imaging studies. 
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5. GRADED INDEX PHOTONIC MOLECULES  
 
5.1. Introduction 

Recent advances in material science and nano-fabrication techniques make 

possible the realization of novel microcavity-based optical components. This 

chapter introduces the fundamental optical properties of graded index (GRIN) 

photonic molecules (PMs). New functionalities of graded index PMs pave the way 

for their use as testbeds for the exploration of physical regimes in atomic physics 

and quantum optics. 

When a circular microcavity is illuminated laterally with a laser beam, the 

resulted WGMs resemble to the confined electron states in atoms. In fact, one can 

transform the Maxwell equations into a Schrodinger equation that reveals modal 

functions that are analogous to wave functions of electrons in an atom. The WGMs 

are associated with photon confinement by a particle's dielectric potential. 

However, unlike states in a conventional atom, the modes of a photonic atom are 

virtual with the photon lifetime limited by leakage out of the particle (Arnold et al 

1992).  The leakage can be extremely slow.  

In the photonic cases, at low refractive index dielectric microspheres or 

microdiscs, the WGMs contributing to photonic binding are always localized at the 

cavity surface, so they would be equivalent to atoms excited into high-energy 

orbitals (Shi et al 2012). Due to these similarities optical microcavities can be 

termed as photonic atoms (PA) (Wang et al 2011, Shi et al 2012). The most typical 

examples of PAs range from metallic nanoparticles (Gopinath 2009), to low 

refractive index dielectric microspheres or microdiscs (Ishii and Babaa 2005). In 

the former case, the high optical dissipation of metals is a big obstacle for 

developing devices. On the other hand, clusters of circular cavities with coupled 

WGMs have interesting spectral and optical transport properties (Li et al, 2014). 

Several mutually coupled photonics atoms form a photonic molecule (PM). The 

electromagnetic modes of the whole structure are very similar to the bonding 
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(symmetric) or antibonding (antisymmetric) electronic wave function modes 

formed in molecules (Wang et al 2011). Typical PM structures consist of two or 

more light-confining resonant cavities such as Fabry–Pérot resonators, 

microspheres, microrings, point-defect cavities in photonic crystal (PC) (Boriskina 

2010). It is interesting to study the photonic molecule of various structures using 

optical techniques and it may further improve our understanding of the real 

molecular structures (Wang et al 2011).  In principle, two or more microspheres 

close to each other allows optical coupling of the modes between the spheres, 

which results in a complex rearrangement of the mode structure in the strong 

coupling regime similar to the electronic molecular orbital in a chemical molecule 

(Bayer et al 1998). Specifically, photonic molecules are often modeled as two 

dimensional coupled dielectric disks. Based on the spatial configurations and the 

number of coupled microdisks, peculiar spectral features such as mode-splitting 

and enhancement in Q-factors could be achieved (Boriskina 2006).  

Unique optical properties of PAs, including light confinement in compact 

structures, high quality factors, and sensitivity to environmental changes have 

made them attractive building blocks for a variety of applications in basic science, 

information processing, and biochemical sensing (Boriskina 2010). 

Optical properties of complex PMs depend on mutual coupling between all 

the cavities forming the PM and can be optimally tuned by adjusting the sizes and 

shapes of individual cavities as well as their positions  

 
5.2. MFE Microcavity as a Photonic Atom 

In this section we study a simplified 2D MFE microdisc for understanding 

the underlying physical properties of 3D MFE as photonic atom. The MFE 

microdisc is assumed to have a refractive index profile relative to radial distance, r, 

as shown in Equation (4.1). A conventional microdisc having the refractive index 

of 2/0n  and a MFE with refractive index of )(rn  are assumed to side-exciting by 
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using a dielectric waveguide with the refractive index of 2/0nnw = , separately. 

The schematic representations of both structures are illustrated in Figures 5.1(a) 

and (b) and side-exciting do as shown in 5.1(a). In our case, the 0n  and R  are set 

to be 4641.3  and mm79.2 .  

 

 
Figure 5.1. The schematic of the: (a) conventional microcavity and (b) (MFE) coupling to 

the bus waveguide. (c) Input and output ports, physical characteristics of  
microcavities. 

 

For a given PA or PM the spectral characteristics which are represented by 

the total number of the split components and their spectral shifts are named 

spectral signatures (Li 2017). The spectral signatures mainly are representative of 

number of constitutive atoms, topology and symmetry of structure. In Figures 

5.2(a) and (b) we have showed the spectral signatures of normal disc and MFE 

respectively. The numerical simulations were performed by FDTD method with 

commercial software by Lumerical (Lumerical 2017) and were tested by MEEP 

program (Oskooi et al 2010). In Lumerical calculations, a Gaussian modulated 

pulse of 6 femtoseconds (fs) width was launched into the input port of waveguide 
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as illustrated in Figure 5.1(c). The electric vector of input electromagnetic waves 

was polarized in direction normal to the plane (TE mode was investigated). For all 

calculations, the shut-off criteria of 10−5 have been used. In this condition, the 

electric field in the computational domain is less than 10−5 of the input field and the 

convergence of results is guaranteed. 

One of the important observations is that the transmission spectrum of 

MFEs is considerably more sophisticated compared to their conventional 

counterparts. Instead of each mode in conventional disc there is a supermode, 

containing three modes, in MFE. The narrow WGM peaks in supermodes allow 

observations of fine splitting effects related to refractive index varying of PA. To 

be clearer, we calculated the Q factor in both systems. The Q-factor in the 

conventional microdisc is 172=Q  at the resonance wavelength of 1551 nm, 

whereas in MFE this value reaches up to 382,505,751 321 === QQQ for 

resnonce modes of 1503 nm, 1515 nm and 1530 nm respectively. The resonance 

modes in conventional microdisc have free spectral ranges (FSR) of 91 nm in the 

vicinity of 1550 nm. For MFE the FSR of supermodes is 88. That large difference 

in Q-factors implies that the MFE microcavities are more useful for high quality 

sensing systems. 
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Figure 5.2. The normalized transmitted E-field (spectral signatures) for (a) conventional 

microdisc and (b) MFE. There are shifting to the left and broadening of 
supermodes in MFE  

 

 
Figure 5.3. Spatial E-field distribution for (a) conventional microdisc at nm1551=l .  

Spatial E-field distribution for MFE: (b) nm15031 =l , 
(c) nm15152 =l and (d) nm15303 =l . 
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After obtaining the transmission spectrum (spectral signatures) of both 

structures the spatial electric field (E-field) distribution was obtained by launching 

continuous wave source into the input port of waveguide at each desired mode. The 

spatial distribution of electric field for uncoupled modes in convensıonal microdisc 

and for one supermode for MFE are shown in Figure 5.3.  

 

5.3. Spatial Configurations of MFE for Photonic Molecule 
The sharp resonances of supermodes in single MFE encouraged us to study 

the spectral features of clusters of MFEs. Using microspheres as classical PAs, we 

can assemble them in a wide range of structures including linear chains and planar 

geometries. These configurations can be investigated as PMs.  

In this section, we are studying four different configurations of PMs 

including three linear chains with two, three and four PAs and a quadrumer formed 

by 4 circular resonators as planer structure. All the structures are schematically 

shown in insets of Figures 5.4 and 5.6. In order to find the spectral signature of 

each configuration, the FDTD simulations were performed for different 

combinations of the structural parameters. For all structures, corresponding 

normalized transmissions (spectral signatures) are obtained as done in the last 

section for simple structures. The simulation tool is Lumerical software too. 

Figures 5.4(a),(b) and 5.6(a),(b) show the normalized transmissions (spectral 

signatures) of the studied structures. The green dashed lines in each figure shows 

the uncoupled mode of conventional disc for comparison and showing the left 

shifting of supermodes.  
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Figure 5.4. The transmission spectrum of PMs. (a) Linear chain with two MFE.  (b) Linear 

chain with three MFE. The arrows show the wavelength selected to simulate 
the electric field distributions. 

 

As mentioned in the previous section we can obtain the Q-factor for each 

mode from transmission spectrum.  We have selected three modes from the 

supermode nearing of the uncoupled mode of conventional microdisc (1551nm). 

Three red arrows show the wavelength of selected mode in each figure. The results 

are summarized in Table 5.1. The results of previous section for conventional 

microdisc and single MFE are added in two first rows for comparison.  

It is deduced from results showed in Table 5.1 that the quality factor of 

resonances in supermodes are much greater than in the parent conventional 

microdisc, about nine times in quadrumer ( nm15242 =l ). It seems we can 

introdue structures with the optical supermodes (Boriskina 2007, Boriskina 2010) 
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by employing these GRIN PMs. Also, it can be resulted from the transmission 

spectra in Figures 5.4 and 5.6 that the large number of resonances in each 

supermodes appear when the number of coupled PAs are increased, which 

indicates the possibility to have wavelength selectivity in the PM structures. In 

addition, there is the potential of wavelength switching with the PM structures. 

Lastly, it should be noted that in the previous section we had mode splitting in 

uncoupled MFE or GRIN PA.  Now, in coupled MFEs or PMs the effect of mode 

hybridization (Li et al 2017) occurs.  

 

Table 5.1 Calculated Q-factor for 2D Microdisc, Uncoupled MFE as Photonic Atom (PA) 
and various Photonic Molecules (PMs). The selected wavelengths (WLs) are 
shown in related figure with red arrows. 

 λ (nm) Q Radial 
mode (n)  

Angular 
mode (l) 

Disc 1551 182 1 16 

1 atom (MFE) 
1502 757 1 18 
1515 505 2 16 
1530 382 3 14 

2 atoms chain 
(Selected WLs) 

1501 750 1 19 
1520 760 2 17 
1533 511 3 15 

3 atoms chain 
(Selected WLs) 

1506 1506 1 19 
1521 1521 2 17 
1534 307 3 15 

4 atoms chain 
(Selected WLs) 

1505 1505 1 19 
1519 759 2 17 
1531 765 3 15 

Quadrumer 
(Selected WLs) 

1499 1249 1 19 
1524 1016 2 17 
1537 768 3 15 
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Based on information of transmission spectrum, we can reach to field map 

or field distribution of each mode. We have selected three modes form supermode 

near 1551 nm for each MP. The selected modes are addressed by red arrows in 

Figures 5.4 and 5.6. The Figures 5.5 and 5.7 show the E-field distributions of 

selected modes. The energy transfer along the elements of PMs can be achieved 

through nearest neighbor interactions between adjacent cavities (photon hopping) 

(Boriskina 2010).  

We can see a noticeable point in Figure 5.7(c) which the E-field is 

concentrated in two side resonators, while the two central ones are almost dark.  

This effect has been seen in the other PMs too. In the 3 atoms chain, the mode with 

nm1879=l  and in the five atoms chain the mode with nm1909=l  the central 

atom is completely dark as can be seen in Figure 5.8. For linear chains this can be 

explained by the Bloch modes formation in the coupled molecule (Li et al 2017, 

Möller et al 2007). According to Möller et al explanations, among the eight split 

modes in a four atoms chain, light blue colored region in Figure 5.6(a), the mode 

nm15313 =l  dominant for the first and the Fourth microresonator. 
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Figure 5.5. Spatial E-field distribution for two atoms chain: (a)  nm15011 =l , 

(b) nm15202 =l  and (c) nm15333 =l . Spatial E-field distribution for 
three atoms chain; (d) nm15061 =l ,  (e) nm15212 =l  and  
(f) nm15343 =l . 
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Figure 5.6. The transmission spectrum of PMs. (a) Linear chain with four MFE.  (b) 

Quadrumer. The arrows show the wavelength selected to simulate the electric 
field distributions.  

 

The radial (n) and angular (l) mode numbers of specific resonances are also 

explored to better understand the WGM features in coupled MFE microresonators 

as PMs. For this purpose, various resonant wavelengths are selected from the 

transmission spectra of PMs from Figures 5.4 and 5.6, in which some regarding 

wavelengths are marked by red arrows in the figures. The calculated field (E-field) 

distributions are demonstrated in Figures 5.5 and 6.7. As done in the previous 

section, the electric vector of input electromagnetic waves was polarized in 

direction normal to the plane (TE mode was investigated). Here, some of 

concerned E-field may become more complex in comparison to single atom case. 



5. GRADED INDEX PHOTONIC MOLECULES                        Khalil DADASHI 

82 

The corresponding radial and angular mode numbers for different structures are 

listed in the Table 5.1.  

 

 
Figure 5.7. Spatial E-field distribution for 4 atoms chain: (a)  nm15051 =l , 

(b) nm15192 =l  and (c) nm15313 =l , Spatial E-field distribution for 
Quadrumer: (d) nm14991 =l ,  (e) nm15242 =l  and  (f) nm15373 =l .  
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Figure 5.8. Spatial E-field distribution for (a) 3 atoms chain at nm1879=l , (b) 5 atoms 

chain at nm1909=l .  
 
5.4. Conclusion 

In this chapter, the coupling behaviors of optical modes in PMs formed by 

two or more MFEs have been investigated. Each PM has certain spectral property 

which is related to the topology and geometry of a given molecular configuration 

and contrast between refractive index of PM and surrounding medium. The varying 

of refractive index of PM has been mentioned in our work.  
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In a single MFE as PAs the mode splitting is occurred. This PA has sharper 

resonances than the conventional microspheres.  

In PMs the couplings between WGMs with different radial and angular 

mode numbers are observed, resembling the mode hybridization of atomic orbital 

in chemical molecules. So, it seems that in GRIN PMs we observe the mode 

hybridization. The supper-modes are formed in small structure (finger prints) in 

comparison to other works. The number of atoms and refractive index variation 

determine the number of spectral components which can be split or remain 

degenerate depending on the symmetry. The unique characteristics of GRIN PMs 

make possible the realization of ultra-compact on-chip optical delay lines and 

biosensors. 
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6. PARITY-TIME- (PT-) SYMMETRY IN MICRORING RESONATORS1 
 
6.1. Introduction 

In the Dirac–von Neumann formulation of quantum mechanics, the 

Hamiltonian, H , of all physical systems is represented by Hermitical operator on a 

Hilbert space (Shankar 1994). The Hermiticity of H is expressed by the equation 

 
†HH = .                  (6.1) 

 

The symbol † represents the operations of matrix transposition combined 

with complex conjugation. The mathematical symmetry condition (6.1) implies 

that the eigenvalues of H are real and the time-evolution operator iHteT -=  is 

unitary (Bender 2007). In other words, the energy eigenvalues are real and the 

wave function norm remains invariant with time (Shankar 1994).  

In 1998, Bender and Boettcher showed that it is possible to describe natural 

processes by means of non-Hermitian Hamiltonians (Bender 2007). They showed 

that the mathematical Hermiticity requirement (6.1) can be replaced by the 

analogous but physically transparent condition of space–time reflection symmetry 

or Parity-Time- (PT-) symmetry: 

 
PTHH =                   (6.2) 

 

without violating any of the physical axioms of quantum mechanics (Bender 2007). 

In equation (6.2) P represents the space-reflection operator, or parity operator. P is 

a linear operator. T represents the time-reversal operator and it is not a linear 

                                                 
1 This chapter is based on: Giden, I. H., Dadashi, Kh., Botey, M., Herrero, R., Staliunas, K., 
Kurt, H., 2015. Nonreciprocal light transmission in gain-loss modulated micro ring 
resonators. In Transparent Optical Networks (ICTON), 17th International Conference. 
IEEE. 
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operator. PT-symmetric Hamiltonian need not be Hermitian. Thus, it is possible to 

have a fully consistent quantum theory whose dynamics is described by a non-

Hermitian Hamiltonian (Bender 2007). By pioneering work of Bender and his 

colleagues new kinds of Hamiltonians were introduced in which the mathematical 

condition of Dirac Hermiticity (6.1) has been replaced by the physical condition of 

PT-symmetry (6.2). In the general form of the time-independent Schrodinger 

eigenvalue problem we have the equation: 

 

yy EH = ,                 (6.3) 

 

in which y and E  are the eigenstate (or eigenfunction) and eigenvalue of 

H respectively. Let us assume that  y  be is an eigenstate of the PT operator too. 

 

lyy =PT                   (6.4) 

 

The general formalism of PT-symmetric quantum mechanics implies that, 

if every eigenstates of a PT–symmetric Hamiltonian is also an eigenstates of the PT 

operator, the PT-symmetry of H is unbroken. In this case, the potential associated 

with Hamiltonian obeys:  

 

)()( * rr -= VV .                 (6.5) 

 

It shows a necessary condition (but not sufficient) for a Hamiltonian to 

have unbroken PT-symmetry. It is required that the potential energy operator is 

even in its real part while odd in its imaginary (Guo et al 2009). 

Conversely, if some of the eigenstates of a PT-symmetric Hamiltonian are 

not simultaneously eigenstates of the PT operator, the PT- symmetry of H is broken 

(Bender 2007). 
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The formal similarity between the Schrodinger equation and the wave 

equation in optics made it possible to realize complex PT-symmetric potentials 

within the framework of optics (Guo et al 2009).  

In optics, the PT-symmetry condition on the potential associated with 

Hamiltonian, translated to the complex refractive index, 

 
)()( rr -= *nn .                 (6.6) 

 
)()()( rrr imgreal ninn += ,                (6.7) 

 
which implies that the real part of the refractive index, )r(realn ,  is symmetric, 

while the imaginary part, )r(imgn , is asymmetric. Various theoretical and 

experimental studies carried out in optical PT-symmetric systems. New features 

such as PT phase transitions, asymmetric light propagation, unidirectional 

invisibility, asymmetric chirality. The pioneering works investigated in 1D and 2D 

PT-symmetric systems were also considered (Turduev et la 2015, Regensburger et 

al 2012) as the basis of the development of novel devices. Nevertheless, to date a 

limited number of the reported studies investigate PT-symmetry in ring geometries 

(Giden et al 2016, Peng et al 2014, Feng et al 2014). 

On the other hand, ring resonators have a special place in integrated 

photonic devices. Due to their small size, however much larger than the optical 

wavelength, such resonators are expected to support a large number of closely 

spaced multiple resonances. Therefore, these structures when side-coupled to 

signal waveguides behave as spectral filters, thereby allowing compact wavelength 

division multiplexing applications (WDM) (Little et al 1997).  

In this chapter, a new type of add-drop microring resonator is proposed that 

is made up of gain and loss materials. In all-dielectric linear systems, light 

transmission is reciprocal: A symmetric transmission spectrum is observed when 
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an incident source is pumped from one side and output power detected in the other 

side or vice versa. On the other hand, PT-symmetric optical systems that consist of 

balanced gain-loss modulation possess unique characteristics such as unidirectional 

beam propagation, asymmetric light transmission and nonreciprocal chirality. It is 

numerically proved that PT-symmetric optical resonator designs can be achieved 

by properly arranging the gain-loss modulation so that different resonant modes 

can be promoted depending on the direction of source incidence. Corresponding 

transmission of the ring resonant modes operates in the telecommunication 

wavelength range mm7.15.1 - .  

 
6.2. The Structure  

Ring resonators have a special place in integrated photonic devices due to 

small sizes and supporting multiple resonances. These types of photonic structures 

behave as a spectral filter thereby allowing WDM applications. In this chapter, an 

add-drop microring resonator is designed that include balanced gain-loss materials 

and proposed for the enhancement of nonreciprocal resonant modes. The designed 

structure with its geometrical parameters is schematically represented in Figure 

6.1(a). It consists of two Si-waveguides having a width of mw m31.0= . These 

waveguides are coupled to a ring resonator whose radius and thickness sizes are set 

to )62.0,79.2(),( mmrR mm= . The up and down waveguides are made of Si 

with a refractive index of 46.3=wgn at the telecom wavelengths. The ring 

resonator contains two adjacent regions as can be viewed from Figure 6.1(a): Blue 

half (left semicircle) of the ring is composed of a synthetic gain (G) material 

having a complex index of 01.0jnn SiG -=  while the red half (right semicircle) 

is formed by a lossy (L) material whose refractive index is fixed as 

01.0jnn SiL += . The spacing between up/down waveguide and the ring 

resonator is kept as ms m20.0= .  
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Our design includes four ports. When an incident beam is launched from 

Port 1 (red rows), it couples to the ring resonator and at resonant frequencies, the 

coupled light rotating the ring encounters a circularly 1D PT symmetric structure as 

in Figure 6.1(b), viz. loss-gain modulated structure in one dimension. On the other 

hand, in the case of source incidence via Port 4, the light at resonance circulates the 

ring and meets a 1D gain-loss modulated PT system, as shown in Figure 6.1(c). In 

that case, resonant modes occurring in forward and backward incidences may 

undergoes nonreciprocal coupling due to symmetry breaking effect of 1D PT 

symmetric modulation in the backward and forward coupled modes (Guo et al 

2009).  

 

6.3. Verification of Nonreciprocal Light Transmission 
In order to prove the above-mentioned discussion, 2D finite-difference 

time-domain (FDTD) modelling is performed using Lumerical software package 

(Lumerical 2017). The electric vector of input electromagnetic waves was 

polarized in direction normal to the plane (TE mode was investigated).  

 

 
Figure 6.1. Designed add-drop ring resonator formed by gain-loss materials 

is schematically presented in (a). 1D PT symmetric structure 
that coupled light encounters while circulating the ring resonator 
in the cases of (b) forward (From Port 1) and (c) backward 
(From Port 4) incidences. 
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Figure 6.2. (a) Calculated output power spectra detected at Port 4 (P1→4) and 

Port 1 (P4→1). The output powera of two different resonant 
frequencies for (b) forward coupling at  mml 577.1=   and (c) 
backward coupling at mml 642.1= . 

 

The structure is illuminated by a broadband Gaussian pulse from Port 1 

(Port 4) and the corresponding output power is monitored at Port 4 (Port 1), which 

we named as P1→4 (P4→1). The incident source with an average power of mW70.3  

has a smaller width of mm28.0  than waveguide width in order to enhance beam 
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confinement. The calculated output power spectra for power incidence via Port 1 

(forward) and Port 4 (backward) have been represented in Figure 6.2(a). The graph 

has been zoomed around two different resonant frequencies the Figures 6.2(b)-(c). 

As can be clearly seen from the figures 6.2(b)-(c), detected output powers are 

dependent on the left/right source illumination: at the resonant wavelength of 

mml 577.1= , the forward resonant mode (P1→4) is much more enhanced than 

backward one (P4→1) whereas at the operating wavelength of mml 642.1= , the 

resonant enhancement is inversed.  

To better understand that condition, a term called power difference, PD , is 

defined having the following equation:  

 

),max( 1441

1441

--

-- -
=D

PP
PPP      (6.8) 

 

The resulting power difference is plotted in Figure 6.3. That spectrum 

implies that the coupling mechanism in gain-loss balanced ring resonator varies 

depending on forward/backward incidence, which situation never happens in all-

dielectric systems.  
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Figure 6.3. Normalized difference PD for the studied PT-symmetric 

configuration. 
 
6.4. Conclusions  

We propose a 2D add-drop ring resonator system that is composed of 

balanced gain-loss materials. The designed passive structure mimics a 1D PT-

symmetric structure, due to showing different wave coupling mechanisms 

depending on the forward/backward light illumination (input channel), which are 

not observed in analogous all-dielectric configurations. Our discussion is 

numerically confirmed by 2D FDTD simulations. The calculated results show that 

our designs exhibit asymmetric resonant effects close to the resonance frequencies, 

suggesting that such types of microresonators could be applied in the field of 

asymmetric light propagation, for switching and sensing applications.  
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