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It is known that the spectra of optical modes supported by microresonators are
shape and size dependent. We have introduced an additional parameter, i.e.,
spatially varying refractive index to tailor the spectra of optical modes in microdisc
resonator while keeping size and shape intact. So, a new class of whispering
gallery mode (WGM) microresonators, referred to as graded index (GRIN)
microresonators, is proposed. On the other hand, the WGMSs in optical
microresonator resemble to the confined electron states in atoms. We have studied
these new proposed structures as photonic atoms. A cluster of such microresonators
can be named photonic mulecule. Then, the PT-symmetry condition has been
studied in microresonators. In optics, the PT-symmetry condition translated to the
complex refractive index. We have studied a new type of add-drop microring
resonator made of gain and loss materials as a simple implementation of PT-
symmetry in microphotonics. The modal analysis of the structure is investigated
numerically. It is expected that the findings of GRIN microresonator may open up
new research and device opportunities in photonics.

Key Words: Microresonators, Graded inedx, Maxwel’s fish eye, Whispering
gallery modes, Photonic atom, PT-symmetry,
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Bilindigi Uzere, mikrorezonatdr yapilarda uyarilan optik modlarin
spektrumlari, yapinin boyutlarina ve sekline baghdir. Biz bu calismada ek bir
parametre olarak; mikrodisk rezonatdrde etkin kirilma indisinin konumsal degisimi
tanimladik. Derecelendirilmis kiricilik indisli mikrorezonatorler, whispering
gallery modes (WGM) rezonatorler iginde yeni bir sinif olarak sunulmaktadir. Bu
tip yapilarda elde edilen optik modlarin hapsedilmis elektron durumlarina benzer
Ozellikler goOstermesi  sebebiyle, bu tip yapilar fotonik atom olarak
isimlendirilmektedir. Fotonik atomlardan olusan zincir yapisina fotonik molekiil
denmektedir. Ayrica, PT- simetri kosullart mikrorezonatér yapilarinda incelenmis
olup halkali yapinin kompleks kiricilik indisine sahip oldugu varsayilmstir:
Mikrorezonator yapisinin  halkali  kisminin - periyodik kazangli ve kayiph
ortamlardan olustugu varsayilmis olup bu tipteki PT- simetrili rezonatdr yapisinin
modal analizi niimerik olarak incelenmistir. GRIN mikrorezonattrden elde edilen
bu bulgulari, fotonik alaninda yeni arastirma ve uygulama firsatlart doguracagi
umit edilmektedir.

Anahtar Kelimeler: Mikrorezonator, Derecelendirilmis kirilma indis, Fotonik
atom, PT- simetri, Maxwell’s fish eye, Whispering gallery
modes,



EXTENDED ABSTRACT

As the photonic devices, dielectric microspheres and similar
geometries are optical elements that have attracted increased attention in
recent literature due to their ability to exhibit on-resonance and off-
resonance properties. It means that, in on-resonance case, they can select
narrow part of the incident beam for further manipulation and processing. If
we illuminate the circular structure laterally, its natural oscillations appear.
These optical oscillations are known as whispering gallery modes (WGMs).
On the other hand, in off-resonance case, which the circular structure is
illuminated perpendicularly, photonic jets (PJs) appear in the shadow side.
In this case, the light is squeezed and its intensity enhances.

WGM resonators have variety of applications in optical systems,
such as optical filters, modulators, and sensors including biological sensors.
One of the key performance metrics of an optical resonator is its quality
factor (Q-factor), a measure of how much energy is stored in the resonator
with respect to the energy lost per resonance cycle. This work studies a new
method for achieving high optical Q-factor on spherical dielectric
microresonators. We expect the graded index (GRIN) approach can increase
the Q-factor in comparison with typical conventional microresonators.

GRIN structures have been widely studied in recent years, from
invisibility cloaks and illusion devices, to planar lenses, such as Maxwell’s
fish eye (MFE). Fabrication of such structures, where the dielectric medium
is modified rapidly on a few-wavelength scale, is challenging and limited by
scattering loses introduced by discrete elements often used in the effective
media. Fortunately, the thickness variation at the microscale and nanoscale

has been achieved by advances in new manufacturing techniques, such as
11



microlithography and focused ion beam techniques. The effective refractive
index of any transparent material, such as polymer (low refractive index) or
silicon (high refractive index), depends on the thickness variation of the slab
that guides the light.

In this work, the emphasis is on the effects of the geometry and
refractive index of the microspheres on the resonances. Generally, the
optical resonances in microrsonator are a function of morphology, meaning,
their geometry and refractive index. Conditions required for WGMs to occur
will be studied extensively. The coupled portion of the light that enters the
sphere stays inside it, provided that the refractive index of the sphere is
larger than that of its surrounding medium. The total internal reflection
coupled with the matching conditions results in a resonance of certain
wavelengths of the incident light inside the sphere. The solutions of
Schrodinger-like equations in the spherical coordinates inside the sphere are
expressed in terms of their radial and angular components or modes.

At first, we will treat MFE within a 2D model as a GRIN resonator.
Starting from Maxwell equations the optical resonant modes of the structure
are calculated both analytically and numerically.

The WGMs in optical microcavity resemble to the confined electron
states in atoms. The WGMs contributing to photonic binding are always
localized at the cavity surface, so they would be equivalent to atoms excited
into high-energy orbitals. Due to these similarities optical microresonators
can be termed as photonic atoms. On the other hand, clusters of circular
cavities with coupled WGMs, several mutually coupled photonics atoms,

form a photonic molecule.



There are examples of photonic molecule with plane discs in the
literature. In second step of this wok, we assume the MFEs as the
components of photonic molecule in linear chain and planer structures. The
effect of mode splitting and mode hybridization are studied in these
structures.

The optical resonators containing gain-loss materials implement
platform that resemble the guantum systems with non-Hermitian parity—
time (PT)-symmetric Hamiltonians.  These resonators can provide
asymmetric transmission. It means that different resonant modes of
resonator can be exited depending on the input channel.

In optics, the PT-symmetry condition translated to the complex
refractive index. In this work, we will study a new type of add-drop
microring resonator made of gain and loss materials as a simple
implementation of PT-symmetry in microphotonics.

The numerical method that we use in this work along the analytical
solutions is Finite-difference time-domain (FDTD) method. We use the
Meep, free software, and commercial FDTD software packages developed
by Lumerical Company. The MATLAB will be used as usual simulation

and calculation software.
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1. INTRODUCTION Khalil DADASHI

1. INTRODUCTION

As the photonic devices, optical microresonators (or microcavities) have
attracted increased attention in past decades mostly due to improvement in micro
and nano fabrication technologies. These axially symmetric structures such as
spherical, circular, ring, toroid and rectangular shaped microcavities can confine
light to small volumes by resonant recirculation and select narrow part of the
incident beam for further manipulation and processing (Tobing, Dumon 2010).

If we illuminate a circular structure laterally, it traps light in a small
volume resulting in optical resonances in the transmission spectrum. These optical
oscillations are known as whispering gallery modes (WGMSs). The concept of
WGMs is defined as circular electromagnetic waves supported by transmission
from boundaries of the symmetrical structure. As a matter of course, these modes
are morphologhy dependent, meaning depend on the geometry and refractive index
of resonator and srounding medium. By using highly transparent, low scattering
loss material, such as silica, the WGMs can provide extremely high values of Q-
factor in a small mode volume. The Q-factor is mainly limited by the material
attenuation and scattering loss contributed by surface roughness and geometrical
imperfections. The high index difference at the boundary and relatively larger
curvature (typically exceeds several wavelengths) guarantee the minimization of
radiative loss and bending loss.

Devices based on optical microresonators are already indispensable for a
wide range of studies and applications. These devices have been demonstrated to
be important components in many applications. Some examples include single
photon sources in cavity quantum electrodynamics (QED) applications, interfaces
for quantum communications, microlasers, biosensing, optical circuits, dynamic
filters and switches in optical communications (Vahala 2003).

On the other hand, graded index (GRIN) structures have been receiving

great interest in recent years from invisibility cloaks and illusion devices, to planar
1



1. INTRODUCTION Khalil DADASHI

lenses, such as Maxwell’s fish eye (MFE). These structures are inhomogeneous
media with spatially varying refractive index distributions. Among GRIN
structures, the MFE is of special interest and can be implemented using dielectric
materials. (Dadashi et al 2014a). In this thesis, we study a new method for
achieving high optical Q-factor on spherical dielectric microresonators. We have
shown that, the GRIN approach can increase the Q-factor in comparison with
typical conventional microresonators.

There are different approaches to fabrication dielectric microresonators.
Microdisc or microtoroid can be made by photolithography and chemical etching
(Zhu et al 2010). Microfluidic ring resonator is made by an etched cylindrical tube
integrated with chemical fluid (Shopova et al 2007).

Fabrication of GRIN structures, where the dielectric medium is modified
rapidly on a few-wavelength scale, is challenging and limited by scattering loses
introduced by discrete elements often used in the effective media. Fortunately, the
thickness variation at the microscale and nanoscale has been achieved by advances
in new manufacturing techniques, such as microlithography and focused ion beam
techniques. The effective refractive index of any transparent material, such as
polymer (low refractive index) or silicon (high refractive index), depends on the
thickness variation of the slab that guides the light.

After this introductory chapter, the thesis is organized as follows. Chapter
2 briefly introduces the general information and historical background of the
optical microresonators. Theoretical and experimental works on microresonator is
presented and the advantage and limitations are analyzed. Also in this chapter, the
historical background of Photonic Atoms (PAs) and Photonic Molecules (PMs)
will be discussed.

The main device for this thesis is MFE, on which the optical properties are
analyzed and analytical and numerical techniques are discussed. In chapter 3, first
the necessary numerical tools for the study of the structures are presented. The

finite-difference time-domain (FDTD) method is presented in this chapter. Also, an
2



1. INTRODUCTION Khalil DADASHI

introduction to optical microresonators, different aspects of them, such as their
geometry, quality factor (Q-factor) and free spectral range (FSR) are introduced.

In chapter 4 we theoretically investigate optical characteristics of 2D MFE.
The emphasis is on the effects of the geometry and refractive index of the
microspheres/microdiscs on the resonances. Starting from Maxwell equations the
optical resonant modes of the structure are calculated both analytically and
numerically. The solutions of Schrodinger-like equations in the spherical
coordinates inside the sphere are expressed in terms of their radial and angular
components or modes. Through our numerical calculations, the FDTD method is
used. A detailed analysis section is included to study Q factor and FSR

Chapter 5 of this thesis considers the structure studied in the previous
chapter, MFE, as a Photonic Atom (PA). The WGMs in optical microcavity
resemble to the confined electron states in atoms. The WGMs contributing to
photonic binding are always localized at the cavity surface, so they would be
equivalent to atoms excited into high-energy orbitals. Due to these similarities
optical microresonators can be termed as photonic atoms. On the other hand,
clusters of circular cavities with coupled WGMs, several mutually coupled
photonics atoms, form a photonic molecule (PM).

In chapter 6 we study a new type of add-drop microring resonator made of
gain and loss materials as a simple implementation of PT-symmetry in
microphotonics. The relevant references are listed thereafter.

The numerical method that we use in this thesis along the analytical solutions
is FDTD method. We use the MEEP, free software. The MATLAB will be used as

usual simulation and calculation software.
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2. REVIEW OF LITERATURE Khalil DADASHI

2. REVIEW OF LITERATURE

Optical microresonators have gained a great prominence as fundamental
building blocks for a variety of applications in photonics. Functionally similar to
Fabry—Perots resonator, optical microresonators can take the form of closed shapes
such as ring, disc, racetrack, ellipse, or sphere and cylinder with a common feature
that there exists a curved boundary which refocuses the propagating field (see
Figure 2.1). The confinement of light in these closed geometries, however, does not
require an inner dielectric boundary. This is evidenced by the existence of optical
whispering gallery modes (WGMs). Placement of a microresonator near a
waveguide enables access to modes of the resonant cavity. In this particular
arrangement, the resonant modes are accessed through evanescent coupling,

phenomena analogous to tunneling in solid-state physics (Heebner et al 2008).

- -« — !
Microdisk Microring Polygon Microtoroid

4

Annular Bragg Micro-pillar
grating (ABG) { micro-post)

Microsphere

Figure 2.1. The various forms of photonic microresonators (Tobing, Dumon
2010).



2. REVIEW OF LITERATURE Khalil DADASHI

The history of optical microresonators starts with the physical explanation
of whispering gallery effect as early as 1910 by Lord Rayleigh. His analysis of the
channeling of acoustic waves by the dome of St. Paul’s cathedral in London is a
first step to similar methods applied to electromagnetic waves. It was known that a
sound (a whisper) uttered at one end of the dome could still be heard loudly at the
opposite end of the dome, a large distance away from the source. Lord Rayleigh
described this phenomenon by noting that sound seemed to “stick” to the dome’s
walls and propagate only inside a narrow layer near the surface of the concave wall
of the gallery (Oraevsky 2002) (see Figure 2.2).

'ﬂ..." .."..‘,'ll'.
Figure 2.2. (a) Whispering gallery under the dome of St. Paul's Cathedral in
London. (b) The sound intensity profile showing the whispering
gallery phenomenon that Lord Rayleigh studied. (Oraevsky 2002)

In the early 1960s, ring and disc resonators have been implemented in
microwave applications for electromagnetic waves. In the optical domain,
integrated ring resonators were proposed by Marcatili (1969) at Bell Labs.
Marcatili studied light transmission through closed dielectric rod of rectangular
cross section. He studied the relations between radiation losses resulting from
curvature, geometry, and electric characteristics of the bent dielectric guide. For a

given radius of curvature R, he analytically showed the radiation loss can be
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reduced (i) by increasing the difference between the refractive index of the guide,
n;, and those of the media toward the outside, ns, and inside, ns, of the curved guide
axis (see Figure 2.3 ); (ii) by increasing the guide width a (iii) by choosing the
height of the guide large enough to confine the fields as much as possible within
the guide in the direction normal to the plane of curvature (Marcatili 1969).

In another work at Bell Labs, Weber and Ulrich (1971) demonstrated the
first optical ring resonator. They reported the operation and characteristics of a ring
laser formed by a single-mode lightguiding thin film. The Rhodamine-6G-doped
polyurethane (n = 1.55) film was coated on the surface of a cylindrical glass rod (n
= 1.47). The geometry established feedback for laser oscillation around the
circumference of the rod. A N, laser (A = 337.1 nm) served as pump source. Light
was coupled in and out of the resonator with a prism (see Figure 2.4). A 0.8 um-
thick film of polyurethane, doped with Rhodamine-6G, was coated on the outside
of a glass rod of 5 mm diameter. The beam of a N, laser was focused into a line,
pumping a narrow section of the rod. The resulting laser light traveled around the
rod. It was coupled out by a prism, which was in loose contact with the rod. The
two output beams corresponded to clockwise and counterclockwise oscillation of
the ring laser (Weber and Ulrich 1971).

Figure 2.3. Closed dielectric waveguide (Marcatili, 1969).
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Figure 2.4. The first ring-laser arrangement (Weber and Ulrich 1971).

Haavisto and Pajer (1980) demonstrated the first low-loss channel
waveguides in a ring-resonator configuration. The waveguide structure of the thin-
film resonator was fabricated by the photopolymerization of doped polymethyl
methacrylate (PMMA) films. The substrate was quartz disc of 13 cm diameter and
the radius of the ring was 4.5 cm (see Figure 2.5). This low-loss structure enabled a
substantial improvement in the evaluation of the characteristics, particularly losses,
of channel waveguides. In their fabricated structure total losses, including
coupling, material, bending, and fabrication losses, were 0.05+0.01 dB/cm.
Although they offered an alternative to existing fiber-optic hybrid devices, but the
ring was quite large (circumference 28.3 cm). The significant feature of this work
was that the device was fabricated without lithography by using direct-writing with
a 325 nm He—Cd laser (Haavisto and Pajer 1980).
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Figure 2.5. Ring-resonator configuration with input-output prism couplers (P1-P,)
and evanescent-wave couplers (C;,C,). Two tangential straight channel
waveguides serve as evanescent-wave input and output couplers.
Prism couplers (P's) are used to couple light in and out of the
resonator. (Haavisto and Pajer 1980).

The first optical glass fiber ring resonator, operating at A = 632.8 nm, was
demonstrated by Stokes, Chodorow, and Shaw by using a single strand of single
mode optical fiber and a directional coupler in 1982. They used a single mode
optical fiber to make a high finesse optical resonator by forming a short piece of
fiber into a closed ring to form a low loss cavity. A fiber resonator of length L=3 m
was fabricated from ITT fiber having a 4 um core diameter. A single frequency,
long coherence length He-Ne laser (A = 632.8 nm) was used to excite the resonator
(Stokes et al 1982).

Up to 1982, the ring resonators had been made for use at microwave
frequencies and their design had been considered by a number of authors (Heebner
et al 2008). Optical filters were required for a number of purposes in optical
communication systems. For compatibility with optical fibers, such filters should
be constructed from stripe waveguides. Walker and Wilkinson demonstrated a ring
resonator with dimensions suitable for optical communications (Walker and

Wilkinson 1983). The waveguides used for the fabrication of the ring resonators
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(with circumference of 3.1 mm and operating at A = 632.8 nm) were made by
silver-sodium ion-exchange in substrates of soda-lime glass. In the similar work
Connors and Mahapatra demonstrated a ring resonator with circumference of 4.1
mm and operating at A = 632.8 nm in 1986 (Heebner et al 2008).

In 1984, Honda, Garmire and Wilson reported observation of resonance in
a ring waveguide. They wanted to study the possible application of the passive ring
resonator to inertial rotation sensing, for this reason the resonator consisted of an
integrated optics ring fabricated with a diameter as large as possible (4 cm in
diameter). Coupling onto and off of the resonant ring was provided by adjacent
straight channel waveguides acting as directional couplers. The waveguides were
fabricated by potassium ion exchange in commercially available soda lime glass
substrates (Honda et al 1984). The geometry which they used was very similar to
Figure 2.5.

Ring resonators in lithium niobate were particularly appealing because of
the possibility of electro-optic tuning. Such a resonator using directional couplers
and Ti-diffused guides demonstrated by K. H. Tietgen in 1984. Tietgen represented
the first demonstration of a tunable ring resonator. Instead of a circular ring, he
used a waveguide loop with two 3 dB couplers. His device used electro-optic
tuning, had a circumference of over 24 mm, and operated at A = 790 nm (Heebner
et al, 2008).

Proton exchange in lithium niobate using benzoic acid permits a large 4n.
Moreover, proton exchange provides guided modes for only the extraordinary
polarization state. For that reason, the fabrication of ring resonators made by proton
exchange in lithium niobate has gained attention of Mahapatra and Robinson
(Mahapatra and Robinson 1984). They used the racetrack configuration as shown
in Figure 2.6. The mask was fabricated using an e-beam pattern generator with a
spot size of 0.25 um. So, the maximum sidewall roughness and lateral offset of the
guides was 0.25 pum. This resulted in significant scattering losses, since the

waveguides were only 2 um wide. The device was fabricated on Z-cut LiNbOs.
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The ring structure was defined on a 800-A layer of chromium with the proton
exchange. Channel guides were found to support two or three TM modes
(Mahapatra and Robinson 1984).
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Figure 2.6. A schematic of the resonator using the racetrack configuration
(Mahapatra and Robinson 1984).

In 1997, Rafizadeh et al stepped up an important step toward developing
photonic integrated circuits. They demonstrated nanofabrication methods of
semiconductor waveguide-coupled microcavity ring and disk resonators. They
studied 10.5 and 20.5 mm in diameter AlGaAs/GaAs ring and disk microcavity
resonators which are the smallest ones at that time.

Alongside various doped and undoped silica-based glasses and Si-based
component, there have been some works in electrooptic polymers. Because of the
wide range of indexes of refraction, polymers are suitable materials for
microresonators. The maximum index difference of available polymers is 0.3.
Polymer films are simple to fabricate as the various polymer layers can be spin-
coated, and other layers can be deposited with chemical vapor deposition. They can

be easily patterned by photo processing. Moreover, polymers can be engineered to
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have desirable properties by doping them with appropriate materials, or whole new
polymers can be designed. They are resilient and can withstand a lot of abuse
without breaking (Chen et al 2003). Vertical coupling is well suited to the polymer
technology because of the ease of fabricating in different layers and the range of
indices available.

The first polymer microresonators have been introduced by Rabiei et al in
2002. They reported the first work using polymers in both passive and active
microresonators (Rabiei et al 2002). Rabiei et al fabricated two different sets of
devices; one set with an index difference of 0.1 and radius greater than 220 um,
and a second set with an index difference of 0.3 and radius greater than 25 um. The
fabrication of the device had several levels using polymer materials. First, a Teflon
film was coated with spin coating method on silicon substrate. Then the film was
etched using reactive-ion etching (RIE). In the next steps, by using lithography,
coating and etching methods the ring, input and drop waveguides were formed
(Rabiei et al 2002). In addition, another group at the University of Maryland
demonstrated polymer microring and microracetrack resonators made from
benzocyclobutene (BCB) microrings (Chen et al 2003). They demonstrated optical
channel dropping filters with a variety of FSR’s by varying the resonator
circumference. Their devices were among the smallest radius (10 um) and widest
FSR (18.25 nm) for this class of devices. Further, the first microresonators made
from BCB, which is a popular low-cost polymer for photonics applications were
introduced.

Another class of WGM microresonators was based on [lI-V
semiconductors. There are, of course, many demonstrations of microresonators
from various groups, each employing slightly different approaches. In 1993, Chu et
al reported the demonstration, for the first time, of a microdisc laser in the
InAlGaAs-InGaAs quantum well (QW) material system. The microdisc was
formed by the selective etching method. This material system, with widely tunable

bandgap energy could be used as optical window in fiber optic communications. In
12
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fact, the achievement of microdisc lasers in these material systems had potential
application for optical communication systems (Chu et al 1993). For such
microdisc laser with 20 um diameter, the lasing demonstrated at single mode at 1.5
um under pulsed excitation with 518 nm Argon-ion laser at low temperature, 80°K.
The laser threshold intensity was four times higher but mode area is 12 times larger
than former systems. That, in turn, provided the higher trap density and surface
recombination in this material system.

Most of early works in 1990s did not incorporate bus waveguides and
relied on fibers to directly couple to and collect light from the disc. The first GaAs-
AlGaAs resonator laterally coupled to bus waveguides was demonstrated by
Rafizadeh et al in 1997 (Heebner et al 2008) as an important step toward
developing photonic integrated circuits. They reported the demonstration of
semiconductor waveguide-coupled microcavity ring and disc resonators. The
scanning electron microscope (SEM) images of microresonators are shown in
Figure 2.7. They used nanolithography methods to fabricate and demonstrate
waveguide-coupled 10.5mm and 20.5-mm-diameter ring and disk microresonators.
The adjacent waveguides were 2 um wide at each end and gradually taper to 0.5
mm near the ring or disc. Thus, the ratio of the waveguide width to disc and ring
radii was about 0.1 in the coupling region. The waveguide structure was grown
upon a GaAs substrate by molecular-beam epitaxy. The key microcavity resonator
design parameters were the coupling efficiency and the waveguide propagation loss
(which was mainly due to sidewall roughness). Strong waveguiding confinement
dictated at the resonator-to-waveguide gap has to be very small for adequate
evanescent coupling. . Based on the limits of the nanofabrication technology at that

time, the fabricated gap widths was 0.1 um (Rafizadeh et al 1997).
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Figure 2.7. SEM images of a 10.5-um-diameter (a) disk and (b) ring. ( Rafizadeh et
al 1997).

The developments on fabrication of high quality solid state structures with
sizes on the scale of the wavelength of light made it possible to modify the
interaction between light and matter within a single solid state system. These
systems, some known optical microresonators, enhanced the study of confined
photon properties such as that of the detailed works had been done on confined
electron states in nanostructures (Bayer et al 1998). Optical microresonators can
be termed photonic atoms (PAs). Controllable interaction between light and matter
in microresonators can be further modified and enhanced by the manipulation of
their mutual coupling. These coupled microresonators introduce new terms in
photonics: Photonic molecules (PMs).

Theoretical studies carried on for over two decades have provided novel
PM designs. Such type of configurations provides lowering thresholds of
semiconductor microlasers, producing directional light emission, achieving
optically induced transparency and enhancing sensitivity of microcavity-based
sensors. Photonic molecules are photonic structures formed by electromagnetic
coupling of two or more PAs (Boriskina 2010). Stephen Arnold et al were the first

to introduce the term photonic atom in 1992. In a two dimensional distribution of
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spherical dielectric particles on a glass surface, known as a microparticle hole
burning medium, they showed the differences in the frequencies of morphology-
dependent resonances (MDRs) with size enable one to generate a fluorescence
excitation spectrum that is inhomogeneous (Arnold et al 1992). In their previous
work, they had presented a means for encoding information into such a distribution
of particles in room temperature that takes direct advantage of the narrow MDR's
of microparticle. For the case of the fluorescence excitation spectrum taken on an
ensemble of dyed microspheres, their work was based on two facts: A given MDR
occurs at a wavelength in proportion to the particle's size (with the refractive index
held constant). The second one, the spectrum is composed of the sum of spectra
from individual particles, each with resonances that appear at different
wavelengths. So, a collection of particles having a distribution of sizes gives rise to
a photophysical response that is inhomogeneous. Thus, the normal homogeneously
broadened excitation spectrum of a typical dye at room temperature is found to
become inhomogeneous for measurements on an ensemble of dyed particles.
Furthermore, electrodynamical calculations for a pair of particles in contact
provided an explanation for the apparent lack of importance of interparticle
interactions. By disregarding the interactions between particles, even though each
particle in the distribution touched at least one of its neighbors, they made
interpretation for the experimental results.

The first demonstration of a lithographically fabricated PM was inspired by
Bayer et al in an analogy with a simple diatomic molecule (Bayer et al 1998). They
reported studies of the optical modes in molecule-like structures made from pairs
of interacting photonic dots which had been coupled by narrow channels. They
studied optical modes in these structures as a function of the coupling and the mode
energies were compared to detailed calculations. The confined photon modes had
been studied by photoluminescence spectroscopy as functions of the coupling

which could be varied through the structure design. They found that the optical
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modes in photonic molecules can exhibit strong similarities to those of electronic

states of diatomic molecules.
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Figure 2.8. Formation of (a) photonic benzene, (b) benzene WG of x type, and ()
benzene WG of ¢ type in a 2D hexagonal photonic crystal; each solid
dot denotes a defect atom of radius r (Lin 2003).

In 2003, Lin proposed an artificial nature-inspired PM structure. It
consisted of coupled-defect atoms in a 2D photonic crystal. Lin theoretically
presented a method to determine the frequency of each resonant mode for the PM.
He showed that the confined optical modes, within the major band gap, are closely
analogous to the ground-state molecular orbitals of their chemical counterparts and
the corresponding electromagnetic spectrum is also isomorphous to the electric
energy levels (Lin 2003). Figure 2.8 (a) shows a 2D photonic molecule named as
the photonic benzene. In the second part of his work, Lin proposed a new type of
photonic waveguide for the two-dimensional systems. Before his work, the
formation of conventional photonic waveguides generally was considered as the
arrangement of the desired defect atoms along a line. However, this approach had
limited the potential of development. Instead of a line defects in photonic crystals,
the defect atoms were closely arranged to form a structure that is similar to a real
molecule. Figure 2.8(b)-(c) shows two type of 2D benzene waveguide. In

particular, manipulating the mechanism of photon hopping between photonic
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benzenes can provide the function of guiding photons along the benzene chain with
a very high transmission, and presents an optical feature of twin waveguiding
bandwidths in the 2D system.

In 1999, Prof. Yariv and his colleagues introduced a new type of optical
waveguide, coupled-resonator optical waveguide (CROW) that consists of a
sequence of coupled resonators (See Figure 2.9(c)). Two mechanisms had been
used in the past for optical waveguiding. Waveguiding by total internal reflection
and Bragg waveguiding, in which waveguiding is achieved through Bragg
reflection from a periodic structure as illustrated in Figure 2.9 (a)-(b). Unlike these
types of optical waveguide, waveguiding in CROW is achieved through weak
coupling between otherwise localized high-Q optical cavities. Figure 2.9(c) shows
a possible realization of such a waveguide based on evanescent-field coupling
between the high-Q WGMs of individual microdisk cavities. Employing formalism
similar to the tight-binding method in solid-state physics, Yariv et al obtained the
relations for the dispersion and the group velocity of the photonic band of the
CROW'’s and found that they are solely characterized by coupling factor. They also
demonstrated the possibility of highly efficient nonlinear optical frequency
conversion and perfect transmission through bends in CROWs. In realization of the
CROW they assumed sufficiently large separation between the individual
resonators. Consequently, the eigenmode of the electromagnetic field in such a
coupled-resonator waveguide remain essentially the same as the high-Q mode in a
single resonator. At the same time one must take into account the coupling between
the individual high-Q modes to explain the transmission of the electromagnetic
waves. This coupling is exactly the optical analog of the tight-binding limit in
condensed-matter physics, in which the overlap of atomic wave functions is large
enough that corrections to the picture of isolated atoms are required yet at the same
time is not large enough to render the atomic description completely irrelevant. The

individual resonators in the CROW are the optical counterpart of the isolated

17



2. REVIEW OF LITERATURE Khalil DADASHI

atoms, and the high-Q mode in the resonators corresponds to the atomic wave
function (Yariv 1999).

For device applications in photonics, the structures where photons can be
trapped for long time without losing their energy are highly desirable. In all-optical
switching devices, optical storages in optical routing systems and quantum
repeaters in quantum information processing and communication, as active
systems, a scheme to decrease light velocity with a strictly loss-free mechanism is
essential. However, preparing lossless medium for these device applications are
limited because of the extreme precision required in the manufacturing. Therefore
it is important to develop a passive system which significantly decreases the speed
of light (Hara et al 2005).
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Figure 2.9. Three types of waveguiding: (a) waveguiding achieved through total
internal reflection at the interface between a dielectric medium with a
high refractive index n, and a low refractive index n;. (b) Bragg
waveguiding achieved by reflection from periodic Bragg stacks. (c)
CROW, with waveguiding that is due to coupling between individual
microdisks. R is the size of a unit cell, and e, is the direction of the
periodicity for the coupled resonators. (d) CROW realized by coupling
of the individual defect cavities in a 2D photonic crystal. R and e, are
defined the same as in (c) (Yariv et al 1999).
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At the last decades of twentieth century, manipulation of light path in
micrometer length scale was mostly based on the photonic crystal concept.
Photonic crystals, artificially manufactured materials having a periodic dielectric
constant, have periodic modulation of the refractive index. Nearly free photon
approach, analogous to the nearly free electron approach in band theory and tight-
binding photon approach analogous to tight-binding approximation in solid state
physics successfully used in photonic crystals. The idea of using tight-binding
approach in PMs was offered by Mukaiyama et al in 1999. The manipulation of
light can be achieved by confining of light in a small unit of the wavelength size.
Light propagates through the system of such units due to the coupling between the
nearest neighbors. This approach is referred to as the tight-binding photon
approach. Within the tight-binding photon approach the optical waves can be
guided by connecting the units in the arbitrarily shaped microstructures
(Mukaiyama et al 1999). The microspheres are the most natural choice of the unit
to be employed in the tight-binding photon device. It is known that a dielectric
sphere acts as a unique optical microcavity which has very long photon storage
time within a small mode volume (Mukaiyama et al 1999). The coherent coupling
between two adjacent small microspheres of diameters ranging from 2 to 5 um has
been realized for first time by Mukaiyama et al. Such relatively small spheres can
be employed as PAs for the tight-binding scheme. On the other hand, the coherent
coupling results in the splitting of the corresponding WGMs is a manifestation of
the normal mode splitting (NMS) in coupled harmonic oscillators. Although some
attempts had been made, because of the difficulty in the precise size control of the
spheres NMS had not been observed yet. Mukaiyama and his colloquies reported
the observation of normal mode splitting in the system of two polymer spheres in
contact (bisphere) under extreme size control. In order to make the bisphere, they
chose two spheres of the desired size by comparing the frequencies of the specific
WGM resonances. The frequencies of the observed bisphere resonances agreed

with the wave optics calculations.
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In another work from previous research group, Hara et al could design and
construct a linear molecule as a chain of coupled PAs composed of size-matched
microspheres placed in a V groove on crystalline silicon (Hara et al 2005). They
studied the spectral finger-prints of linear molecules by combining the tight-
binding photonic description with the wave-vector quantization due to periodic
boundary conditions. Actually, the propagating modes with slow group velocity of
defect or edge modes of photonic crystals, which are referred as heavy photon
modes had been studied by formers. But the group delay in such modes in photonic
crystals is limited by its bandwidth. The new proposed coupled cavity waveguides
(CCWs) composed of three dimensional high quality factor microcavities had the
potential to remove this limitation. In CCWs, trapped photons in a microcavity can
tunnel to a neighboring cavity. The CCW structures with many attractive features
had been faced major technological difficulties that time. The fabrication of such
structures required extreme accuracy and reproducibility, beyond the limit of
microfabrication technology of ten years ago. So, Hara et al proposed and realized
a bottom-up method to construct a CCW structure to overcome these difficulties.
Polystyrene spheres of 4.2 um in diameter doped with Nile Red (refractive index
1.59) were used. They used a Q-switched Nd-YLF laser on its second mode with a
wavelength of 527 nm, a repetition rate of 1 kHz, and pulse duration of 300 ns as a
pump light source. At the end, they found that a photonic band is formed due to the
resonant coupling of nearest-neighbor WGMs and it is in excellent agreement with
a coupled oscillator tight-binding model. They also demonstrated that the structures
have a strong potential for an optimal control of photons in the visible region (Hara
et al 2005).

In 2000, Miyazaki and Jimba applied ab initio tight-binding formalism in
bisphere PM. Their work opened up a new possibility to describe MDRs by the
tight-binding model. They showed that the energy spectra reveals the fine structure
of the bonding and antibonding branches originating from the Mie resonance of a

single sphere. The formation of bonding and antibonding states can be deduced
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from electric field distribution. Miyazaki and Jimba used this detailed information
of resonance in a bishpere. In analogy to the quantum-mechanical formation of the
molecular orbits, it is expected that the interaction between spheres brings about
the bonding and antibonding states of the electromagnetic field. These states can be
expressed as a linear combination of the Mie resonance states of each sphere.
Before this work, Fuller had observed numerically that the electromagnetic
coupling between spheres causes the narrow Mie resonance to split into distinct,
relatively broad peaks and dips in the forward-scattering spectrum of the bisphere
(Fuller 1991). Also, in the photoluminescence study of the photonic molecule made
from a pair of photonic dots coupled by narrow channels, it had been found that the
optical modes in photonic molecules exhibit strong similarities to those of the
electronic states in diatomic molecules (Bayer et al 1998). Miyazaki and Jimba,
wanted to determine accurately the positions of MDR’s by using the internal
energy spectra. The internal energy plays a crucial role in lasing because it gives a
direct measure of the quality factor Q. Based on the vector spherical harmonics
expansion, they got a simple and handy tight binding equation that clarified the
meaning of the overlap integral. In addition, it gave almost all the qualitative
explanations of the characteristic features of MDRs in a bisphere. In their approach
the overlap integral could be evaluated exactly. In this sense, they called the
formalism as the ab initio tight-binding model (Miyazaki and Jimba 2000).
Rakovich and Donegan provided a survey of PAs and PMs in 2010, after
thier some works in the issue. By considering the analogy of Mie resonances
(WGMs) of a single spherical microcavity with atomic orbitals in a hydrogen atom,
they introduced the mode numbers of microcavity. The eigenfunction for the
electron confined in the hydrogen atom and electromagnetic fields confined in a
microsphere are very similar. So, in the absence of gain, they could characterized
WGM resonances by a mode number n (angular quantum number), a mode order |
(radial gquantum number), and an azimuthal mode number m (azimuthal quantum

number). The value of n is proportional to the circumference divided by the
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wavelength of the light propagating within the microsphere, the mode order |
indicates the number of maxima in the radial distribution of the internal electric
field, and the azimuthal mode number m gives the orientation of the WGMs orbital
plane (Rakovich and Donegan 2010). Also, they stated that, unlike energy states of
electrons in the atom, photonic states in spherical microcavities are not localized,
due to the finite storage time of photons in the resonant mode. This time, named as
photon lifetime, is controlled by quality factor Q of the WGMs and therefore can
be limited by diffractive losses, absorption, gain, shape deformation or refractive
index inhomogeneities. As a result, the resonant internal field of a spherical cavity
is not completely confined to the interior of the microparticle. Depending on the
size of the microsphere, the evanescent field can extend into the surroundings up to
a couple of micrometers permiting efficient coupling of microcavities. This partial
delocalization of Mie resonance states (WGMs) suggests the possibility for
coherent coupling between WGMs of two adjacent spherical particles with closely
matched sizes, a main step from PAs to PMs (Rakovich and Donegan 2010). One
another point has been noticed these researchers, is complex internal distribution of
the density of photonic states of the PM originating from lifting of the degeneracy
of PM modes with respect to the azimuthal mode number m.

Almost the last article on PAs and PMs was published by Li et al in 2017.
Again, by considering the analogy between quantum mechanics and the classical
electrodynamics, they assembled dielectric microspheres as classical photonic
atoms, and sorted them in a wide range of structures to form linear chains and
planar PMs. They studied WGM hybridization in such PMs theoretically and
experimentally. The numerical simulation was performed in the 2-D case
corresponding to the equatorial cross section of the 3-D structures. Li et al studied
various structures, 3-sphere and 4-sphere chain molecules, quadrumers, 5-atom
crosses and hexamers. They observed that PMs have certain spectral properties
which are closely related to the topology and geometry of a given molecular

configuration. The number of atoms determines the number of spectral components
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which can be split or degenerate depending on the symmetry. They introduce the
spectral signature of PMs, as a result of WGM hybridization effects. They showed
that the splitting/ hybridization of WGM modes are dependent on the symmetry,
number of constituting atoms and topology of the photonic molecules which in
principle can be viewed as spectral signatures of various molecules (Li et al 2017).
In order to find the spectral signature, the simulations were performed for three
different combinations of the structural parameters, the refractive indices n,
diameters D of microspheres and surrounding media (air or water). They chose the
diameter of circular resonators 7 and 25 um, the refractive index was varied from
1.59 to 1.9, and the medium was changed from air to water (Li et al 2017). Strong
coupling and mode splitting are observed in every case. According to their FDTD
simulations, Li et al found that the splitting patterns of supermodes were quite
similar even though the diameter of circular resonators is varied from 7 um to 25
um, their index was varied from 1.59 to 1.9, and the medium was changed from air
to water. Also, each photonic molecule with a particular configuration and
symmetry had unique resonant properties that give rise to its distinct spectral
signature. This can able one to identify the molecule configuration based on its
spectrum, giving the ability to potentially utilize such signatures for geometry or
position sensing. In the E-field map, the shortest and longest wavelength
components can be called antibonding and bonding modes, respectively. For
antibonding mode, they found that the electric field appears to be distributed rather
uniformly among all constituent atoms, which is not seen in other modes. Also, the
E-field is reduced at the points where the circular resonators touch which means
that the coupling at these points is weakened. To experimental study of spectral
properties of photonic molecule, Li et al assembled various molecular
configurations with polystyrene microspheres with nominal diameter of 25 ym and
similar resonant positions of WGMSs. The positions of the WGM resonances were
determined using transmission spectra through side coupled tapered fiber in

aqueous environment. Liquid environment enables particle movement and is
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critical for developing biomedical applications, thus most of WGMs based sensors
are characterized in an agueous medium. This novel work opens up a way to
explore quantum-optics analogies in photonics and to create novel structures such
as parity-time synthetic lattices, coupled resonator ladders or waveguides based on
an effective gauge field for photons (Li et al 2017).

In the following chapters we study Maxwell fish-eye (MFE) as a graded
index (GRIN) microresonator. The history of this newly considered structure came
back to the middle of 19th century. In 1854, seven years before declaration of the
electromagnetic theory of light, James Clerk Maxwell invented MFE based upon

the method of geometrical optic. A spherically symmetric inhomogeneous lens
which refractive index is a function n(r) =2n,/(1+ (r*/R?),where R denotes
the radius of the sphere, and r the radial distance measured from the center of

sphere (Tai 1958). At first, the MFE problem was an unbounded i. e. n(r)=n, ,

for r ¥ R but in recent works it is assumed n(r)=1, forr fR.

The wave equation for this problem can be reduced to the Laplace equation
on a four-dimensional sphere. The symmetry group for this problem is, therefore,
the same as that found by Fock for the hydrogen atom in the case of the discrete
spectrum.

The similarity between light rays in MFE and the trajectories of a particle
of mass m in the attractive potential was realized by researchers. In 2009
Makowski offered a normalizable solution for Schrodinger equation at the energy
of E=0 and compared the results to the corresponding classical trajectories. His
model was a specific version of the MFE. Before Makowski's work, Lenz for the

refractive index and Demkov and Ostrovsky for the corresponding potentials, had
shown that there exist a large class of functions n, (r) and V, (r) with the perfect
focusing properties. The Lenz—Demkov-Ostrovsky (LDO) focusing potentials had

the form of U, (r)=-w/2R?r?(r *+r*)?> | r@/R and for all rational
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values of k lead to regular zero-energy quantum solutions. The MFE model is
recovered for kK =1. In each case, there exist normalizable solutions, if the
coupling constant w is a quantized quantity. Makowski proposed another model
which, contrary to the LDO potentials, was not central but could be related in some
relation to the MFE case, i. e., to the question of finding focusing effects in media,
where the refractive index or the corresponding to it potential, vary continuously
with the radial coordinate. The model had square-integrable E =0 wave functions
and also gave its exact classical trajectories (Makowski 2009).

In 2009 Leonhardt proved that MFE, as an ideal optical instrument,
perfectly images light waves in two dimensions (Leonhardt 2009). Then in another
work in 2010, Leonhardt and Philbin showed that the MFE in three dimensions has
infinite resolution as well. They proved perfect imaging in three dimensions and
obtain the quantitative results of Leonhardt 2009 by analyzing the electromagnetic
Green function. In their theory having absorption is equivalent to having a complex
wave number in the definition of the Green function. The singularities of the Green
function describe source and image, but they are not affected by the wave number
that only reduces the amplitude (Leonhardt and Philbin 2010).
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3. MATERIAL AND METHOD

In this chapter, the numerical technique which is widely applicable for
analysis of broad class of structures is presented. Since the last decades of
twentieth century, the processing power and memory capacity of high-speed
computers increases by the year. So, the solutions of electromagnetic (EM) field
problems have been changed from contentious equations to discrete
approximations. The discrete forms are usually easier to implement in computers
(Buchanan 1996). These methods directly give the total picture of a field as it
propagates through a structure involving several variations in physical
characteristics. Among discrete approximations, the numerical analysis and
simulation in the time-domain has been interested rather than frequency-domain.
There are a number of finite-difference schemes for Maxwell's equations, but Yee
scheme, known as Finite-Difference Time-Domain (FDTD) Method, persists as it

is very robust and versatile.

3.1. Finite-Difference Time-Domain (FDTD) Method

The FDTD method, introduced by K. S. Yee in 1966, was the first direct
time-domain technique for solution of Maxwell's differential (curl) equations on
spatial grids or lattices (Yee 1966). The Yee algorithm solves both electric and
magnetic fields in time and space by using the coupled Maxwell’s curl equations,
rather than solving each independently wave equations. Maxwell’s curl equations
are discretized in space and time by approximating with centered two-point finite
differences (Taflove and Hagness 2005). There are several reasons for the
expansion of interest in FDTD and related computational solution approaches for
Maxwell's equations. The flexibility and capability of studying complex structures,
easy implementation, visualizing the time-varying fields with the volume of space,
handling nonlinear, frequency dependent, and conducting materials, obtaining

easily broad spectral information by a single run made FDTD a powerful and
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versatile numerical tool. The memory requirement is linearly proportional with the
volume of the simulated structure (Kurt 2006). The FDTD method determines the
frequency response over a wide spectrum of frequencies, whereas many other
simulation methods require different models and/or techniques for different
frequencies. As the FDTD method is time-based the results produced can also help
us providing an insight to EM wave propagation within the structures. Results from
FDTD simulations allow the wave to be visualized, which helps in checking
results. Frequency-domain techniques often conceal how the EM waves propagate

within the structure (Buchanan 1996).

3.1.1. Maxwell's Equations
For a region of space that has no electric or magnetic current sources, but
may have materials that absorb electric or magnetic field energy, the time

dependent Maxwell's equations are given in differential form (MKS units):

%:-N’E-M (3.1a)

?H—It):N'H—J (3.1b)

NxD=0 (3.1¢)

N*B = (3.1d)
where

B - magnetic flux density,

E - electric field,

M - equivalent magnetic current density,

D - electric flux density,

H - magnetic field,

J - electric current density.
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In linear, isotropic, nondispersive materials we can apply the following

simple relations:

D=eE=e,e,E , B=mH=mmyH (3.2)
where
€o - free-space permittivity,
e, - relative permittivity,
My - free-space permeability.
m, - relative permeability.

Here, Jand M can act as independent sources of electric and magnetic

fields energy, Jource @nd Mgy, . Also, isotropic materials with nodispersive

electric and magnetic losses are taken to study. This yield:

J=Jguree +SE , M =M,y +S H (3.3)

source

where s is electric conductivity and S~ is equivalent magnetic loss. By

substituting equations (3.2), (3.3) into equations (3.1a), (3.1b) we obtain:

H 1-~. 1 *

WZ—EN E_H(MSOUI‘CG-I-S H) (34)
fE 1.. 1

ﬁ:EN H—E(Jsource+sE) (3.5)
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The components of above equations in Cartesian coordinates are:

TH, _ 1¢TE, 1E, _
mt m§9z Ty

U
(M source, ts* Hx)l;I
u

TH y 1 éﬂEZ ﬂEX J
= - X_M +s*H | (3.6)
it m 8 1 Mz ( source, y)‘a
TH, _1¢1E, TE, \
= —a - - M +s * H A
ﬂt m g ﬂy ﬂX ( source, Z)H
E éqH, fH U
ﬂ . zléﬂ_z__y_(‘]sourcex +SEX)(J
it egfy 1z i

fE, _16fH, TH,

—_ =T — 2

ft e§fz Ix

fE, _1¢H, _1H, -(J +SE )u
qt e g x ﬂy source, z H

(o, 55} .

The above six coupled partial differential equations form the basis of the
FDTD method for electromagnetic wave interactions with objects in three

dimensions (Taflove 1975).

3.2. General Formulation of FDTD Method

In 1966, Kane S. Yee introduced a set of finite-difference equations for the
equations (3.6), (3.7) for the lossless materials case s =0 and s =0 (Taflove
2005). The adapted notation to represent a space point in a uniform, rectangular
lattice is (i, j, k)= (iDx, jDy,kDz) where, Dx , Dy and Dz are the lattice
increments in the Cartesian coordinates (Yee cell dimensions) and i , j and k

are integers (Yee cell indices). The Yee unit cell and cell dimensions have been

showed in Figure 3.1 schematically. Assume U is a function of space and time
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u=u(x,y,z,t). At a discrete point in the grid and at a discrete point in time the
function can be written as:

u(ibx, jDy, kDz,nDt) = |/ (3.8)

ik

where Dt is the time increment (time-step size) and n is an integer (time step
index).The superscript n is related to time t by the equation t = nDt . The space
and time derivatives are approximated by centered two-point finite differences with

second order accuracy

fu(iDx, jDy, kDz, nDt) y Uiy, ik ~ Uity ik + O[(Dx)z]

3.9
x Dx (3.9)
. . u_nJ_rJ/Z _ u-”TJ/Z
flu(idx, JD%’kDZ'”Dt)z ik = ik +O[(Dt)2] (3.10)
Hy
2 .-t:_ . s F
Hipt—
/ -|E «"’-z
j':,"_;:
" |
Iix# _
| .___.pl'{x
(i,j.k) H-'

g
X

Figure 3.1. Cubic unit cell of the Yee space lattice, the electric and magnetic field
vectors, and lattice increments (Taflove, 2005).
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By applying the above notations, we can achieve a numerical

approximation for the first equation of equation sets (3.7)

n+1/2 n-1/2 n n
X|iyj+1/2,k+1/2 - Ex|i,j+1/2,k+1/2 - 1 %Hz|i,j+l,k+]/2 - HZ|i,j,k+J/2
Dt e. . D
I,]+%,k+%§ y (3.11)
H,[ -H,/ 0
_ Yhjrzka Y2k n _s E i
Dz source, i, j+Y2,k+12 i,j+1/2,k+12 X|i,j+1/2,k+1/2:

g

On the right-hand side of this equation, the magnetic field quantities are
evaluated at time-step n, but the electric field and material conductivity values on
the time-step n are not available. Because, only the previous values, n-1/2 , of

E, are stored in the memory. The Figure 3.2 shows time-step Leap-Frogging in

Yee algorithm. Here, the electric field values are defined at half time steps and
magnetic field values are defined at whole number time steps. For adapting the
time-step indices in equation (3.11) we use the well known semi-implicit

approximation relation

n+1/2
E " _ X|i,j+1/2,k+]/2 B
xli, j+1/2,k+1/2 ~ 2

n-1/2

EX|i,j+1/2,k+]/2

(3.12)

By substituting the equation (3.12) into equation (3.11), collecting all

common terms, isolating EQ+1/2 on the left-hand side, and doing needed arithmetic

calculations we can introduce an explicit form of finite-difference equation for E,
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n—1/2 n n+1/2 n+ 1 n+¥2 n+2

Figure 3.2. Time step leap-frogging in Yee algorithm.

n

n+12 (H |
Buli, jayz ka2 2l jHLk+y2

EX|| JjH2, k+1/2 a

n-Y2
EX|i,j+]/2,k+]/2 +C0'

xli, j+/2,k+1/2
bz (3.13a)
0

n

" p DY
i,jt/2k+1/2 g

Yl jyzka Jsoureg

n n
-H," _ +H -
Z||,j,k+]/2 y i,j+/2k

By analogy, we can derive finite-difference equations for the rest of
equations (3.7) and equations (3.6).
n

Y i-]/2,j+1,k+]/2(H |.'j/2 j+Lk+ (3 13b)
0

n+y2 _
Yiicy2, jeik+y2

n-y2
- +Goe

i-1/2, j+Lk+1/2

E,

A8 fiy2 jrkey2

n
-H |-1/2 ]+l,k +H || 1, j4Lk+2 |i,j+l,k+]/2 _‘]SOUFC9 i-1/2, j+Lk+/2 é
n+l/2 n-12 n
Ez| i-12,j+)/2.k+1 Ca 2li-y2, j+1/2, k+lEZ| i-J2, J+1/2J<+1+C"'EZ i—1/2,i+1/2,k+1§Hyivi+1/2,k+l (3.13c)
n n n n 0
_Hy|i—Lj+]/2,k+1 X|i—1/2,i,k+1 - HX|i-1/2vJ'+lk+1 - ‘]S°“r°? Y242k g
n+l n 2
Xi-1/2, j+*Lk+ D‘iH _]/2]+],k+1H | i-12,j+1k+1 DOH —]/2]+],k+].§Ey i-12, j+1k+32 (3 148.)
|2 2 /2 _ 2 0
EYi_]/z’j+]_'k+]/2 EZ| i-12,j+U2,k+1 EZ| i-12, j+32k+1 SOUWJi_]/ZjﬂkﬂDE‘

33



3. MATERIAL AND METHOD Khalil DADASHI

n+l

n+l/2
. =Dun !
y|,]+]/2,k+1 Ty

i,j+]/2,k+l(EZ|i+]/2» it2k+

412 ;
DY

i,j+y2k+l g

n

H +

ijzka i jHr2ka DD'HY (3 14b)
n+y2 n+y/2 n+y2

_EZ|i—]/2,j+1/2,k+1 + Ex|i,j+]/2,k+]/2 - EX|i,j+]/2,k+3/2 - Msour09

n+l

n
i jHLk+y2 Da,Hz

n+y2
+
i,j+1k+J/zHZ|i,j+1k+J/2 Do

HZ| i,j+],k+]/2(EX|i’J'+3/2vk+j/2

v (3.14c)

i,j+Lk+Y2 6

n+y/2

n+y2
i-1/2, j+Lk+1/2 - Ey

412, j41k+/2 ~ Wlsourcg

n+y2

_EX|i,j+]/2,k+]/2 + Ey

For cubic lattice Dx =Dy = Dz =D and updating coefficients C and D

are defined as

¢ s . D0 /&2 s . Dto & 0 /& s . Dtd
o) b Sl g S0 o D26 Sk (3 15)
i,j,k Ze.’_ = Ze.’_ - ij.k ei,j,kDT 2ei,j,k B

& s Do /& s Dtb 2 o /2 s Dtd
Dy, =Gl- 2 [ D), , =6 > 7 /Qe e (3.16)
MECC g al § 2mg s bk §m, 5 D7 £ am, -

[/ ik g

Equations (3.13), (3.14) are the general form of finite-difference
expressions of equations (3.4), (3.5) and are known as the three dimensional (3D)
FDTD method equations. It is clear from these equations, the electric field values
are only defined at half time steps and the magnetic field values are only defined at
whole ones. This allows electric and magnetic field components updates in a
FDTD analysis to be interlaced in time. Electric field values are calculated at each
time step, and then the magnetic field values are calculated at next time step. As
shown in Figure 3.2 for updating a field component, only past electric and
magnetic field components are required (Hill 1996). Of course, at the beginning the

initial conditions are needed as all EM problems.
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The equations (3.13), (3.14) have been driven regardless to the medium are

studying. Simplifications can be applied as following sections.

3.3. Maxwell's Equations in Isotropic Medium
The time-dependent Maxwell's curl equations in isotropic medium

(e =ege, ,m=mmyand m, =1)are

LI R (3.17)
It eqe,
H__1r-e (3.18)
(it Mo

= - 3.19
eg (3.19)

H )
H, ZLEEE_EQ (3.20)
qt my e X 2 ¢
TH, _1z7g, fE/0
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3.4. One Dimensional FDTD

For one dimensional propagation, we can assume: a) E, 0, E, =0 and

1

E, =0. b) There isn't any variation in the X -y surface (.”1 =0 and ‘ﬂ_ =0).
X y

So the equations (3.19), (3.20) reduce to the following equations:

H,

X =

S L5

=0 (3.21)
it meg Tz Tygq

My _1g16, fE.6__19E

L'y _ 0_ . (3.22)
Mt meéeTx fzg my 1z

g,
fH, _ 1295 _TB0_, (3.23)
it megTy Txy

H, 8 H
fE,__1 gfH, TH,0_ 1 TH, (3.24)
ﬂt eoer ﬂy ﬂZ ﬂ eoer ﬂZ

In addition, if the propagation of 1D EM wave be in z direction and electric

field is x —polarized (H, = H, = 0), then Maxwell’s equations can be written as

H
fE,.__1 W, (3.25)
fit ee, Tz
H
ﬂ_y = _i TE, (3.26)
it my, Yz
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These equations are used in simulation of wave propagation in one
dimension. In FDTD formulation, by using the central difference approximation in
both the spatial and time derivatives we can express the equation (3.25) at space-

time point (z =kDz,t =nDt) as

n

k)

n
. - H|" . -H
E\ _ E, % _ 1 Uhey ™y
Dt e, Dz

(3.27)

Similarly, the equation (3.26) can be written at time-space point

(z+D%,t+D%)as

Hy

n+l n
-H + +
ol T ey 1 EX|:+1% -E,| %2

Dt Mo Dz

(3.28)

Solving for E, and H, attimestep n+1/2 and n+1 respectively

yields

EX|E+% = EX|E_% B DtD éHy :+}/ - Hy E }/9 (329)
e€/Dze 2 /28
n+1 n Dt n+}/ n+}/d
=H - E 2-E 2 3.30
y k+% y k+% mODz§ Xlk+1 X|k p ( )

As mentioned in the section 3.2, this system of equations is coupled or

interlocked. If a source is defined at some places in the computational domain,
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propagation of light from this source in time and space can be obtained starting
from equation (3.29) by inserting some initial values of fields corresponding to this
source. Then electric field at the next time step might be evaluated
straightforwardly and if inserted to equation (3.30) magnetic field components in
the next time step can also be found. This time staggered calculation of electric and
magnetic field components is often called leapfrogging. Proceeding the time cycle
gives evolution of fields in time and space which was searched for. In Figure 3.3
each row corresponds to a specific instant in time, at half time steps, whereas each
column represents a single spatial grid point through time. The gray and blue grid

lines represent whole and half steps respectively, in both time and space. The

orange triangles represent E, while the purple triangles represent H, . We see that

for every triangle there are three arrows pointing towards it. One comes from the
previous time step. The other two come from a half-step down and a half-step to
the right or left. The initial values that must be given are the green circles, and the

boundaries are the orange and purple circles.

a
—— 1 —
-

¥ ¥ ¥ ¥
|L.
. S .
8 . 4 ¥ ¥
x ' ! 4 &
S L T . .

Figure 3.3. The FDTD approximation grid.
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The magnitudes of Equations (3.25) and (3.26) are not the same degree

because m% @1.410°. We want them to be for our computations. So, a change
0

of variables is necessary to fix this discrepancy in our equations. By substituting

X

E, = % E, in Equations (3.29) and (3.30) we have
0

~ i+l ~ -y 1 Dtg . no ¢
E,| ?=E| ?-————FCH -H : (3.31)
Xk Xk er /eomo ng yk+}é y|k—%ﬂ
n+1 n 1 Dtg= Y% = mY¥o
H =H -———E -E : 3.32
yk+% yk+% /eomo ng Xk+1 Xk g ( )

Now, we have a discrete representation of 1D FDTD in general form. By
considering the stability of algorithm, initial values and boundary condition the

suitable codes can be written in desired programming language.

3.4.1. Stability of FDTD Algorithm
The choice of space increment and time-step can affect the performance
(stability and the accuracy) of the finite-difference approximations to Maxwell’s

differential equations. For example in 1D simulation, an EM wave requires a

minimum time of Dt = Dx/c, to propagate a distance of one cell Dx in free space.

It is arises from the fact that an electromagnetic wave cannot propagate faster than
the speed of light in free space. When we get to 2D simulation, we have to allow

for the propagation in the diagonal direction, which brings the time to
Dt = DX/(\/§CO). Obviously, 3D simulation requires Dt = DX/(\/§CO)(SuIIivan,

2000). Generally, the Courant number or numerical stability factor defined as
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_ cDt
Dx? + Dy? + Dz?

S (3.33)

For the stability of FDTD algorithm S £1 must be satisfied. This stability
criterion ensures the convergence of the numerical simulation. The cell size

Dx should sample adequate portion of the minimum wavelength component (worst
scenario case) of the EM field. Usually Dx £ I ;. / 20 is safe for enough accuracy

but depending on the situation one may increase or reduce the sampling rate. As
the pulse propagates down the FDTD mesh, the pulse becomes distorted
(broadening and ringing the tail of the pulse) due to the numerical dispersion. Well
resolved grid resolution also enables solution which is independent of the angle of
the propagation (Kurt 2006).

3.4.2. Boundary Conditions

One of the major problems with any beam propagation method is that the
computational region has to be truncated by numerical boundaries. The numerical
boundary is represented by the extreme points on which the field is sampled.
Because the whole numerical scheme is generally lossless, the total energy within
the computational region remains the same, and hence any wave that in reality
should leave this region is directed back into it, thereby representing an unreal
phenomenon. The conventional way to reduce the effect of this problem is to put a
strongly absorbing medium of appropriate thickness at the edge of the
computational region, thereby imposing the so-called absorbing boundary
condition (ABC) (Agrawal 2004). They should absorb the out-going EM field by
suppressing the spurious back reflected energy regardless of the polarization,
propagation direction, and frequency. ABC, perfectly matched layer (PML), or
periodic boundary condition (PBC) are usually implemented with FDTD.
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3.4.2.1. Perfectly Matched Layer (PML)

The main problem with FDTD method and any beam propagation method
is that the simulation region has to be represented by a finite domain bounded by
numerical boundaries. Because the whole numerical scheme is generally lossless,
the total energy within the numerical region remains the same, and hence any wave
that should leave the region is directed back into it, thereby representing an unreal
phenomenon. The conventional way to reduce the effect of this problem is to put a
strongly absorbing medium of appropriate thickness at the edge of the region,
thereby imposing the so-called absorbing boundary condition (Agrawal and
Sharma 2004). The most used boundary condition in FDTD method is perfectly
matched layer (PML). PML is an absorbing medium that is commonly used to
truncate numerical simulations of electromagnetism and other wave equations in
FDTD simulations. Actually, it is powerful technique to absorb waves incident on
the boundaries of wave-equation simulation. The layer has reflectionless property
and interfaces between the simulation region and adjacent media. The concept of
PML was introduced by Berenger (Berenger 1994) for application of FDTD
solutions for Maxwell’s equations. In the PML method a layer of a specially
designed anisotropic medium is put at the edge of the simulation region as have
been showed in Figure 3.4. The absorption profile in this layer can be arbitrarily
chosen, subject to certain conditions. The PML boundary condition was found to
be highly effective for applications to optical wave propagation and have been

developed to different version (Agrawal and Sharma 2004).

3.5. Two Dimensional FDTD

In this study all the simulations have been done in two dimensions. So,
after introducing the general formulation of FDTD method in three dimension and
presentation related parameters in one dimension we turn the discussion to two
dimension FDTD. We can assume the structure being studied extends to infinity in

the in the z-direction without any changes in the transverse cross section. If the
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incident wave is also uniform in the z-direction, all the partial derivations of the
fields with respect to z will be zero in Equations (3.19) and (3.20). So these
equation reduces to:

.............

—

b L —
ML — L

Perfesr comduntoy —frr

Figure 3.4. Schematic of perfectly matched layer (PML) (Berenger 1994).

fE,_ 1 TH,

It ee, Ty

LY g TH, g (3.34)
M e €& X

fE, _ 1 zTH, fH,0

Tt e My 5

H,_ 1z fE

it m& Ty

M, L1l (3.35)
it My € X o
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In general form of 2D FDTD formulation, we choose between one of the

two groups of three electromagnetic fields components.

1) The transverse electric (TE) mode, which is composed of E,, E, and H,.

2) The transverse magnetic (TM) mode, which is composed of E,, Hy and H,.

The most important note here is that in the study of waveguides, as the
simulation in the following chapters the TE and TM modes are defined as do in
optics, but here we must continue the formulation in the general form of FDTD

method. For TE mode we have the following set equations:

IE, _ 1 H,

ﬂt eOer ﬂy

E o

e, _ 1 g_JH,9 (3.36)
it eere TXxo

fH, _ 1216, _TE/0

it m0§ Ty fxg

and TM mode include the equations:

‘HEZ: 1 ae‘ﬂHy_‘ﬂHXQ

ﬂt eOer ﬂX ﬂy B
H,__171E 37
it my Ty

Iy, 1718

1t my Tx
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These two modes constitute the two possible ways that 2D FDTD problems
can be set up for the case of zero partial derivation in the z-direction. As can be
seen the TE and TM modes contain no common field components. So, these modes
can sexist simultaneously with no mutual interaction for structures composed of
isotropic materials or anisotropic materials having no off-diagonal components in

the constitutive tensors (Taflove and Hagness 2005).

3.6. Maxwell’s fish-eye (MFE)

The main structure that has been studied in this thesis, especially in units 4
and 5 is Maxwell’s fish-eye as a graded index (GRIN) medium. The original MFE
is an unbounded, spherically symmetric, inhomogeneous medium which is
infinitely large (Luneburg 1964). In this work, the bounded form of MFE with a
perfectly electrical conductor boundary (Leonhardt 2009, Liu et al 2013) will be

used. The refractive index of bounded MFE varies according to a reverse quadratic
function of distance n(r) = ny/1+ (r/R)?, where n is the refractive index in the

origin, R is the physical radius of MFE, and the radius r is measured in

spherical coordinate system (Liu et al 2013). As has been showed in the Figure 3.5

the refractive index in the center of MFE, n, , reduces uniformly to n,/2 in the

edge of disc. Here we assume the refractive index of MFE in the center is 3.4641

accordance to next units’ simulations.
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3.50

Figure 3.5. Refractive index of Maxwell’s fish-eye for n,=3.4641land
R=2.79mm .

3.7. Important Design Parameters of Microresonators

In this section, we briefly introduce and derive simple expressions for
parameters that are important in realization of microresonators. Calculation of the
Q-factor is the most important computational tasks in investigation of light
behavior in resonators. The Q-factor is related to photon lifetime in
microresonators. In other words, it is proportional to stored energy inside
microresonators and inversely proportional to losses from microresonators.
Bending loss, scattering loss and material loss are the main loss mechanisms for a
microresonator (Rabiei, et al 2002). Bending loss is primarily determined by the
index difference between resonator and surrounding medium. The familiar

definition of the Q-factor is:

_ Wy
Dw

Q : (3.38)
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where Wy is resonant frequency. Practically, the Q-factor of a resonator is defined

by

Q= o , (3.39)

where FWHM is full width of half maximum of related resonance, fy and 1, are
frequency and wavelength of resonance respectively (Chremmos et al 2010).

The other important parameter that must be considered for studying of
microresonators is free spectral range (FSR), which is basically the distance
between the resonances in transmission spectrum of a microresonator. Simply the
FSR are defined as:

FSR = fm+1 - fm © Im+1 - Im (340)

Finally, another important parameter for measuring of resonator
performance is finesse (F). The finesse is defined and calculated (approximately) as
(Rabiei, et al 2002, Chremmos et al 2010)

] ey

This parameter and FSR are the most important parameters for a microresonator
(Rabiei, et al 2002).
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3.8. Computational Tools

In this thesis, in addition to analytical calculations, the computational
finite-difference time-domain (FDTD) method has been used. We implemented the
FDTD method by MEEP program and Lumerical commercial software.

The MEEP package is Linux based free software from MIT Nanostructures
and Computation research group. This program computes definite-frequency
eigenmodes of Maxwell's equations in periodic dielectric structures, especially for
the photonic crystals, for arbitrary wavevectors, using fully-vectorial and three-
dimensional methods. It is also applicable to many other problems in optics, such
as waveguides and resonator systems.

Nowadays, some commercial FDTD software packages are available. We
have useed the FDTD Solutions introduced by Lumerical Company

(https://www.lumerical.com). FDTD Solutions is generally a windows based

package. It is a 3D Maxwell Equations solver, capable of analyzing the interaction
of electromagnetic waves with complicated structures employing wavelength scale

features.
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4. GRADED INDEX MICRORESONATORS!

4.1. Introduction

Whispering gallery modes (WGMs) in optical microresonators (or
microcavities) have been studied vastly in the past two decades (Vahala 2003).
WGMs are eigenmodes of wave field inside a given resonator with smooth edges.
Theoretical and experimental studies have been conducted by several groups on
WGMs in microresonators, and this is due to the spatial and temporal confinement
of light in these structures. As a matter of course, these modes mainly depend on
the geometry of resonator which is open to engineering possibilities. Optical WGM
microresonators have led to many applications in various fields such as single
photon sources in cavity quantum electrodynamics (QED) applications, interfaces
for quantum communications, microlasers, biosensing, optical circuits, dynamic
filters and switches in optical communications (Michler et al 2000, Wilk et al 2007,
Sandoghdar et al 1996, Armani et al 2007, Franchimon et al 2013, Djordjev et al
2002). Concurrently, graded index (GRIN) structures have been receiving great
interest in recent years. These structures are inhomogeneous media with spatially
varying refractive index distributions. GRIN structures are widely used in optics
and photonics applications due to their unique light coupling, focusing, modeling
and switching abilities (Gomez-Reino et al 2002).

Among GRIN structures, the Maxwell’s fish eye (MFE) is of special
interest and can be implemented using dielectric materials. The original MFE is an
unbounded, spherically symmetric, inhomogeneous medium which is infinitely
large (Luneburg 1964). Recently, the modified form of MFE is being investigated
in literature and it is bounded with a perfectly electrical conductor boundary
(Leonhardt 2009, Liu et al 2013). In this work, the bounded form of MFE will be

! This chapter is based on: Dadashi, Kh., Kurt, H., Ustun, K., Esen, R., 2014. Graded Index
Optical Microresonators: Analytical and Numerical Analyses, J. Opt. Soc. Am. B, 31(9):
2239-2245.
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used. The refractive index of bounded MFE varies according to a reverse quadratic
function of distance (Liu et al 2013):

n(r) = Mo

LRy “

where N, is the refractive index in the origin, R is the physical radius of MFE,
and the radius r is measured in spherical coordinate system,
- (x2 + y2 " 22)1/2_

In recent works on MFE, more attention has been paid to the imaging
properties of MFE lens in the framework of wave optics. Achieving the perfect
image and enhancing the resolution were the main objectives in studies of
Leonhardt (2009) and Leonhardt and Philbin (2010). In another work, designing of
a wide angle terahertz detectors with independent incident angle have been recently
studied by Liu et al (2013).

The study of the MFE as a boundary value problem within the framework
of Maxwell equations goes back to Tai (1958) works. Two second order
differential equations for transverse electric (TE) and transverse magnetic (TM)
modes were derived. Equations were changed to hypergeometric differential
equation form but because of the lack of appropriate computing systems
calculations of these equations were delayed for some years. Later, Rosu and
Reyes (1984) computed the radial behavior of TE and TM modes based on the
Tai's previously derived equations. They found analytical expressions for both TE
and TM modes. The azimuthal modes were not mentioned in this work and only
radial modes of solitary MFE were introduced.

Radially GRIN media with different profiles and various material types
(metamaterials, plasmonics etc.) have been investigated for different applications.

An omnidirectional photonic hole was proposed and the incident optical energy
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was stored for a certain period of time by Liu et al (2010). Narimanov et al (2009)
proposed an effective optical black hole that provides broad-band omnidirectional
light absorption. In another study, gravitational lensing effects were demonstrated
with a microstructure waveguide that was used as an omnidirectional absorber
holding potential for light harvesting and microcavity applications (Sheng et al
2013). Efficient light transportation through a sharp waveguide corner was
achieved by GRIN waveguide (Wang et al 2012). Hollow core fiber with a radially
GRIN cladding was studied to increase the light penetration towards the core
region by Zhu et al (2012). Plasmonic Luneburg and Eaton lenses were
investigated to focus and bend surface plasmon polaritons (Zentgraf et al 2011). In
that work, scattering losses were reduced due to gradual change of the optical
properties. From this quick literature review, we can claim that there is a growing
interest to propose and investigate more complex and advanced photonic materials
for manipulating light interaction with the designed structures.

This chapter of the present thesis provides the solution for the eigenvalue
problem associated with the radially inhomogeneous disc resonator. The near-field
maps of higher order WGMs of the MFE disc resonator are extracted. The main
task of this chapter is to derive analytical and numerical solution to the specific
problem at hand. Then, MFE resonators as building blocks for integrated photonic
circuits will be explored paying attention to different aspects such as Q-factors,
free-spectral range, and scattering losses.

In this chapter, we introduce the idea of combining optical microdisc with
GRIN medium that is represented by 2D MFE. The optical resonant modes of the
structure are calculated both analytically and numerically. The analytical solution
for planar disc with step index contrast can be found in the literature (Quan and
Guo, 2009). The analytical solution together with finite-difference time-domain
(FDTD) exploration of MFE microresonator are proposed in this chapter for the

first time to the best of our knowledge.
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As mentioned before, attempts to find the electromagnetic modes of MFE
resonator can be found in Tai (1958) and Rosu and Reyes (1994). The formulations
in these studies were carried out in terms of a boundary-value problem and general
discussion involving a radially stratified medium was adapted. Rosu and Reyes
(1994) ended up with the same type of solution as ours but following a rather
different approach. It could be important to have an alternative derivation for the
same problem with detailed explanation of the intermediate steps. Besides,
extraction of the supported modes in an alternative and complementary way via

FDTD was carried out in this chapter.

4.2. Maxwell's Fish Eye as Graded Index Microresonator

To analyze the behavior of MFE microresonator, we use Helmholtz
equation for TE modes. In general, one should be careful while attempting to drive
the Helmholtz equation starting from the Maxwell equations if the medium has

inhomogeneous refractive index profile e (r). In our case due to spatial form of
e(r), we have the second order differential equation which is the same as general

Helmholtz equation that can be derived for an homogenous medium.

4.2.1. Helmholtz Equation

In a GRIN structure where the refractive index n(r) is only a function of

the radial parameter r measured from the origin of the coordinate system, the

Maxwell equations in nonmagnetic source-free region can be written as follows:

N~ E =iwm,H (4.23)
N~ H =-iweze(r)E (4.2b)
Nx[e(r)E]=0 (4.2¢)
NxH=0 (4.2d)
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In these equations, it was assumed that the electromagnetic fields have time

dependence in the form of exp(-iwt) where w is angular frequency, e, and m,

are permittivity and permeability of free space, e (r) denotes the permittivity of
the media as mentioned before and we assumem(r) =1as is usual for most

materials. Starting with equation (4.2a) we have:
N~ N~ E-k%(r)E=0, (4.3)

where k =w/c=(2p/1,) is wave number in free space. Equation (4.3) can be

rewritten as:

N(NE) - N°E - k% (r)E = 0. (4.4)

One can easily show that for the present problem at hand under the
transverse electric (TE) mode case, the first term of equation (4.4) can be
discarded. When we evaluate equation (4.2c):

[Ne (N]XE +e (r)NXE = 0. (4.5)

The first term of last equation can be extracted in spherical coordinates as:

[Ne (N]¥E = fle (r) E, + e (r) E, + fle(r) E;. (4.6)

Tr r{q rsinq If

For TE modes, E doesn’t have any component in the X -y plane so

E, =0. As a result the first term of equation (4.6) becomes zero. On the other
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hand, e (r) is homogeneous in g and f so the other two terms of equation (4.6)
turn out to zero as well. Consequently, [Ne (r)]J*E = 0. It can be concluded from

equation (4.5) that NxE =0 and the form given in equation (4.4) transform into

the Helmholtz equation for TE modes as follows:
N2E + k2% (r)E =0. (4.7)

where k =w./e;my =w/c, k=(2p/1l,) iswave number, I, wave length, c
speed of light, e, permittivity and m, is permeability of the free space. wis

angular frequency and e (r) = n(r)? is permittivity of the media and as is usual for

most materials we assumed m(r) =1.

4.3. Analytical Solutions of Helmholtz Equation

Two dimensional representation of Maxwell’s fish eye as a GRIN medium
is shown in Figure 4.1(a). In Figure 4.1(b) a 3D representation of refractive index
distribution of the complete configuration is shown. For TE - polarized waves that

propagate in the X -y plane, the E-field has only the z component. So, the
equation (4.7) can be expressed as follow in the 2D polar coordinates:
1 1°E

1°E, 19E 2
L+ —t+——X+k%(rE, =0. 4.8
ﬂrZ r ﬂl‘ r.Z ﬂjz () z ( )

To solve equation (4.8) we assume the separation of variables in the form

of:

E.(r3)=Y(NFQJ) (4.9)

o4



4.GRADED INDEX MICRORESONATORS Khalil DADASHI

and introduce the separation constant m. As a result, the equation (4.8) can be
separated as follows:

2 -
IFW) | m2e) =0, (4.102)
dj

(a) ’ (b)

Figure 4.1. (a) Schematic view of 2D Maxwell’s fish eye. (b) The 3D
representation of refractive index distribution of the complete
configuration including bus waveguide and MFE resonator.

2 é 2, 2 2]
d Yz(r) L1dy(n) ‘e kng - m2 GY(r) =0 r£R, (4.10b)
dr r dr glL+(r/R)T° ry

2 é 20
d YZ(I‘) +l dY(r) + ékz ‘m_ZUY(r) =0 rfR. (4.10c)
dr rodr & req

Equations (4.10b) and (4.10c) are valid for the inside and outside of the
MFE disc, respectively.

The general solutions of equation (4.10a) are in the form of:

F() = & (A, cosmj +B,sinmj) m=123.., (411

m
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where A, B, are constants and m will be the azimuthal mode number. Due to

symmetry of the system, B, will be omitted. Then, the solutions can be written in

a simple and compact form as:

F.g)= éAn cosmj m=123.... (4.12)

For analytical solution of equations (4.10b) and (4.10c) we change the

radial variable to X=r/R and introduce the constant

h=@0-1+ kénng)M)IZ. After that, the general solutions can be written as:

Yo (x) = QLCaR™ X" (1+x*)" F(Ih,h +m],[m+1], -x?)
m (4.13)
+C R™Mx"1+x?)"F(lh,h -m],[-m+1],-x?)},

where Cr; ,C,, are real constants and F is hypergeometric function (Arfken and

Weber, 2005). C must vanish because the second term in equation (4.13) have
singularity in the origin. The solutions for equation (4.10c) are in the form of
Y2 (r) = real{D,,H,, (kr)} where D, are complex constants and H . (kr) are
the Hankel functions and are defined as H,,(kr) = J. (kr)* jY,,(kr) ,j= J-1.
J.,(kr) and Y., (kr) denote Bessel function of first and second kind (Arfken and

Weber, 2005). As a result, we have the following solutions for r ¥ R region:

Yo (r) = é reaD,,(J,,(kr) £ jY. (kr))} (4.14)
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From the continuity condition of Y, (r) at the interface of MFE with the

environment, r = R or X =1, the following equation is obtained:
CIR™M"E(Ih,h +m],[m+1],-1) =D, (J,,(kR) £ jY,. (kR)), (4.15)

which correlates the amplitudes D, to Cy:

_ C,R™M2"F(h,h +m],[m+1],-1)

D, :
(Im(kR) % Y, (kR))

(4.16)

By choosing the real part of the equation (4.14) and performing algebraic

manipulations, the equation (4.9), can be written as in the following forms:

EX(rd)°EN(x,J) = Q{ACLR™ X L +x?)"
m r£R, (4.17a)
F([h,h +m],[m+1], -x?)cos(mj)}

E(r.3) = AfAC,R™ ™ 2" F(h,h +m] [m+1],-1)

- In(kR) Iy (kr) + Y, (KR)Y;, (kr))
(In(kR)+Yn (kR)

r FR. (4.17b)

cos(ny)}

Continuity condition of the first order derivative of E, (EI", E?") with

respect to r (or equivalentlyX) at the interface of MFE (r = R or x =1) follows:
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CiRM™ M x2h X%{mF([h,h +m],[m+1],-1) +hF([h,h + m]

,[m+1],-1)—m++1h)

F(h+1,h+m+1],[m+2],-1D}=

(4.18)
CIR™™M2"E(lh, h+m], [m+1],-1)
_ 3. (KR)JE (KR) +Y, (KR)YE (KR)

(Im(kR) + Y7 (kR))

Equation (4.18) is a transcendental equation and can be utilized for finding
the eigenmodes of GRIN microresonator by graphical solution method. All
parameters in equation (4.18), exceptm, are known. Here we predetermine m by
the results of FDTD method (Taflove, Hagness 2005) to ease the comparison.

Generally, for every m, we have valid solutions given by the analytical method.

4.4. Numerical Analysis of 2D MFE

We consider a 2D MFE microresonator closely coupled to a straight
dielectric waveguide as shown in Figure 4.2. The MFE is excited by placing an
electromagnetic source in the waveguide. We note that, the existence of the
waveguide would shift the resonance frequency and may cause slight deformations
in the resonant modes’ field distribution. But, as we will demonstrate later in this
chapter, there is a good agreement between the field distribution inside of MFE in
two cases, with and without the optical waveguide. We consider optical waves

propagating in the X -y plane with electric field intensity vector polarized
perpendicular to the plane (TE modes whose magnetic and electric field

components are, H, , Hyand E, respectively).
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P1 P2

Figure 4.2. The chacteristic parameters of 2D Maxwell’s fish eye. The locations of
input (P1) and out put (P2) ports.

By imposing an appropriate excitation source for waveguide, the resonance
spectrum of MFE can be found. A Gaussian source with broad band width is
located in port P1 and the transmission of waveguide is monitored in port P2. The
locations of ports are shown in Figure 4.2.

The transmission spectrum of the waveguide coupled to MFE can be
obtained as Figure 4.3. The dips in this normalized spectrum show resonance
modes of MFE in terms of normalized frequencies. By choosing one set of these
resonance modes we can excite the system by continuous sources. The frequencies
of new sources can be selected easily from Figure 4.3. Consequently, the coupling
snapshots in the steady state can be extracted and these snapshots give us the
related azimuthal mode number of MFE, specifically mnumber. Figure 4.4 shows
the FDTD simulations for normalized frequencies of a/l =0.2282, 0.2291 0.2304

and 0.2315 that result m=22, 23, 27 and 29 respectively. 1=1,/n and a is
defined as Dx =Dy =a/20, where Dx and Dy are the grid sizes of the 2D Yee lattice
in FDTD method (Arfken, Weber 2005). The refractive index of MFE is set
according to equation (3.1) withn, =3.4641. The radius of MFE is set toR=12a,
linear waveguide width is d=aand the gap between waveguide and MFE
isg =0.4a. The perfect matched layer (PML) boundary condition has been used

around the simulation domain and the last slide has been showed for time step
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7000Dt (Arfken, Weber 2005). Simulations were performed with the FDTD
method, using MEEP, freely available software package (Oskooi et al, 2010).
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Figure 4.3. Normalized transmission spectum of waveguide in port P2 showing
resonaces modes of MFE.
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By inspecting the resonance frequencies of MFE in Figure 4,3, one can
straightforwardly excite different modes sustained in the MFE microdisc. WGM
behavior of the modes circulating around and inside the structure is apparent in
Figure 4.4 and Figure 4.5. We should note that Figs. 4.4(a)-(d) are intensity plots.
Figure 4.5 is amplitude profile.
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Figure 4.5. E-field distribution of MFE coupled optical waveguide for
n=4,m=23.

4.5. Modes of 2D MFE

After determination of the azimuthal mode number m via FDTD
simulation, we can turn to equation (4.18) and find the radial modes by graphical
solving of this equation. The results give us only the orders of radial modesn.
Since WGMs are confined inside of microresonator, to find the positions of radial

modes or radial maximums and minimums of electric field, we use

‘HE;”/‘HI’ =Orelation for r p R or x p1. Accordingly, the following expression

is obtained:
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mx ™ @ +x )" F([h,h +m],[m+1],-x?) + 2x ™ (@ +x )"

F(fh,h +m],[m+1],-x?) (4.19)

:&mxmﬂp([h +1,h+m+1], [m+2],-x?).
m

By graphically solving of equation (4.19), for a given azimuthal mode m,
the exact locations of the radial modes n can be extracted. Now, all characteristics
of WGMs are known. Figure 4.6 shows the result for m=23and n=4. The four
intersect points in this figure are X =0.494 ,0.632, 0.755 and 0.884 which

determine the radial peaks and valleys of the electric field corresponding to specific
mode.
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Figure 4.6. Graphical solution of equation (4.19)

Additionally, the radial component of electric field inside the MFE can be

written from equation (4.13) as:
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Yo () = Q&" @+ x%)" F(lh,h +m],[m+1],-x?)}. (4.20)

Figure 4.7 shows Yr:q”(x) expressed in equation (4.20) for the inside

region of MFE. We can make a comparison between Figures 4.6 and 4.7 such that
the locations of peaks and dips in Figure 4.7 exactly correspond to intersection
points between the two curves plotted in Figure 4.6 .

Figure 4.8 shows the electric field distribution inside of MFE as defined by
Eq. 4.17(a) for n=4 and m =23. When we compare the analytical result shown
in Figure 4.8 with the numerical one presented in Figure 4.5 we see that there is a
good agreement between the two approaches. In plotting Figure 4.8 the straight
waveguide is not considered. The close agreement between the two methods
supports the idea that the presence of optical waveguide does not strongly perturb
the MFE microdisc.

The properties of disc and ring microresonators have been studied from
both theoretical and experimental standpoints (Vahala 2003, Quan, GUO 2009,
Prkna et al 2004). In the proposed configuration the microdisc of usual waveguide-
resonator configuration has been replaced by a MFE lens. To the best of our
knowledge, the idea of replacing the microdisc with a GRIN medium has been
proposed in this thesis for the first time. Although the design and fabrication of
GRIN devices by using traditional approaches such as continuously varying doping
on natural dielectric media are not very practical, but the emerging disciplines of
artificial dielectrics will open up possibilities to realize spatially varying or GRIN

devices such as MFE lenses (liu et al, 2013).

63



4.GRADED INDEX MICRORESONATORS

Khalil DADASHI

LIiEY farb. uni)

%]
T

]

o
-

1 0.2 1.4 0.6

Figure 4.7. Radial component of electric field inside region of MFE.
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The significance of the present study lies not only being a new type of
microresonator but also possessing a rich resonance characteristics. In conventional
microresonator the coupled modes penetrate only the region near the edges, but in
MFE, the coupled modes can penetrate more towards the core region as showed in
Figures (4.4) and (4.5).

In the numerical studies when the refractive indices of the waveguide and
disc resonator are taken to be 1.7321, the quality factor becomes 188 at the
normalized frequencya/l =0.2266. On the other hand, MFE resonator with a
variable refractive index (increasing from 1.7321 at the edge to 4.4641 at the
center) sustains quality factor of 1146 at the normalized frequencya/l =0.2291.

We should note that increasing the refractive index of the disc resonator enhances

the field confinement; hence, quality factor is expected to increase.

4.6. Spectral Properties of 2D MFE

In general, the WGMs in dielectric optical resonator are function of the
morphology, that means geometry and refractive index of the resonator and the
surrounding medium play important role (Schweiger et al 2006). The morphology
dependence of these structures encouraged us to examine more complex
spherical/cylindrical dielectric aiming to obtain higher quality factor, and rich
optical properties (Chremmos et al 2010). We studied the spectral properties, Q
factor and free spectral range (FSR) of WGMs in a 2D MFE and compared the

results with 2D conventional microdisc ones.
The conventional disc has constant refractive index n,/2 , radius R and
the MFE has refractive index N, in the center decreasing to n,/2 at the rim

according to equation (4.1) and its radius is R as have been shown in Figure 4.2.
They are closely coupled to a straight dielectric waveguide. A Gaussian source

with broad band width is located in ports P1 to excite the systems and the
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transmissions of waveguides are monitored in ports P2. All other characteristic
parameters are the same as the previous section. The parameter n in the refractive
indices of the disc and MFE is set to3.4641. The radius for both microresonators

is set toR=12a. a is defined as Dx=Dy=a/20. The linear waveguides
refractive index is ny /2 and their widths ared =a. There is not any gap between

waveguides and microresonators. The perfect matched layer (PML) boundary
condition has been used around the simulation domain. The normalized
transmission spectrums of the waveguides coupled to disc and MFE are shown in

Figure 4.9. The time steps for all simulations are 7000Dt .
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Figure 4.9. Normalized transmission spectra of the (a) conventional microdisc and
(b) 2D MFE
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We see from these figures that MFE refractive index, equation (4.1), has
two effects: The resonances of disc have been shifted, when it has been changed to
graded index medium one. These shifts are clearly shown in Table 1, as well. On
the other hand, the MFE microresonator displays mode splitting in the vicinity of

its resonances.

Table 4.1. Calculated quality factor and free spectral range for conventional 2D
microdisc and 2D MFE

Conv. Disc MFE
Freq. Q FSR Freq. Q FSR

0.1601 22 0.0081 | 0.1545 811 0.0077
0.1682 23 0.0083 { 0.1622 850 0.0077
0.1765 40 0.0085 { 0.1699 888 0.0077
0.1850 43 0.0088 { 0.1776 926 0.0077
0.1938 44 0.0088 { 0.1853 965 0.0076
0.2026 44 0.0086 { 0.1929 965 0.0078
0.2112 45 0.0084 | 0.2007 2084 0.0077
0.2196 51 0.0083 { 0.2084 2161 0.0077
0.2279 54 0.0085 | 0.2161 2238 0.0076
0.2364 64 0.0085 { 0.2238 2314 0.0076
0.2449 111 0.2314 2391 0.0142
0.2456 2456

Figure 4.10 represents the Q factor for all resonances of conventional disc
and major resonances of MFE. Clearly, there is notable increase in magnitude of
Q in MFE. Tablel contain Q factors for these two cases. The free space between
consecutive resonances is known as free spectral range (FSR) (Chremmos et al
2010). The information in Table 1 shows that the FSRs for two structures are very

close to each other.
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4.7. Fabrication Aspects

To fabricate the GRIN structure, one can follow the procedures provided in
Falco et al (2011) and Gabrielli et al (2011). The effective refractive index of any
transparent material such as polymer (low refractive index) or Silicon (high
refractive index) depends on the thickness variation of the slab that guides the light.
Thickness variation at the micron and nano scale can be achieved by means of

advanced manufacturing techniques such as focused ion beam (Gabrielli et al

2011).
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Figure 4.10. Quiality factor, Q, for conventional microdisc and 2D MFE.

4.8. Conclusion
In summary, solutions of Helmholtz equation in spherical coordinates

come in the form of eigenvalue problems. We have shown that the radial (n)and
azimuthal (m) mode numbers can be obtained as eigenvalues of Helmholtz

equation for 2D Maxwell’s fish eye (MFE) microresonator. We have proposed 2D

MFE for designing unconventional microresonator. In this new structure, we have
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introduced an additional parameter, i.e. spatially varying refractive index to
manipulate the spectra of optical modes in microdisc resonator keeping intact the
size and shape. The 2D MFE resonator is laterally coupled to an optical waveguide
and for numerical calculations we use finite-difference time-domain method.
Analytical and numerical treatments of the design unveil the optical resonances of
the structure.

While radially inhomogenous refractive index media based on
metamaterials and plasmonics have been investigated for various applications
ranging from optical cloaking to optical black holes, all-dielectric counterpart in
integrated photonics is limitedly explored. The proposed 2D MFE resonator may
pave the way for diverse integrated photonic applications rather than solely

exploring the same structure for mostly imaging studies.
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5. GRADED INDEX PHOTONIC MOLECULES

5.1. Introduction

Recent advances in material science and nano-fabrication techniques make
possible the realization of novel microcavity-based optical components. This
chapter introduces the fundamental optical properties of graded index (GRIN)
photonic molecules (PMs). New functionalities of graded index PMs pave the way
for their use as testbeds for the exploration of physical regimes in atomic physics
and quantum optics.

When a circular microcavity is illuminated laterally with a laser beam, the
resulted WGMs resemble to the confined electron states in atoms. In fact, one can
transform the Maxwell equations into a Schrodinger equation that reveals modal
functions that are analogous to wave functions of electrons in an atom. The WGMs
are associated with photon confinement by a particle's dielectric potential.
However, unlike states in a conventional atom, the modes of a photonic atom are
virtual with the photon lifetime limited by leakage out of the particle (Arnold et al
1992). The leakage can be extremely slow.

In the photonic cases, at low refractive index dielectric microspheres or
microdiscs, the WGMs contributing to photonic binding are always localized at the
cavity surface, so they would be equivalent to atoms excited into high-energy
orbitals (Shi et al 2012). Due to these similarities optical microcavities can be
termed as photonic atoms (PA) (Wang et al 2011, Shi et al 2012). The most typical
examples of PAs range from metallic nanoparticles (Gopinath 2009), to low
refractive index dielectric microspheres or microdiscs (Ishii and Babaa 2005). In
the former case, the high optical dissipation of metals is a big obstacle for
developing devices. On the other hand, clusters of circular cavities with coupled
WGMs have interesting spectral and optical transport properties (Li et al, 2014).
Several mutually coupled photonics atoms form a photonic molecule (PM). The

electromagnetic modes of the whole structure are very similar to the bonding
71



5. GRADED INDEX PHOTONIC MOLECULES Khalil DADASHI

(symmetric) or antibonding (antisymmetric) electronic wave function modes
formed in molecules (Wang et al 2011). Typical PM structures consist of two or
more light-confining resonant cavities such as Fabry—Pérot resonators,
microspheres, microrings, point-defect cavities in photonic crystal (PC) (Boriskina
2010). It is interesting to study the photonic molecule of various structures using
optical techniques and it may further improve our understanding of the real
molecular structures (Wang et al 2011). In principle, two or more microspheres
close to each other allows optical coupling of the modes between the spheres,
which results in a complex rearrangement of the mode structure in the strong
coupling regime similar to the electronic molecular orbital in a chemical molecule
(Bayer et al 1998). Specifically, photonic molecules are often modeled as two
dimensional coupled dielectric disks. Based on the spatial configurations and the
number of coupled microdisks, peculiar spectral features such as mode-splitting
and enhancement in Q-factors could be achieved (Boriskina 2006).

Unique optical properties of PAs, including light confinement in compact
structures, high quality factors, and sensitivity to environmental changes have
made them attractive building blocks for a variety of applications in basic science,
information processing, and biochemical sensing (Boriskina 2010).

Optical properties of complex PMs depend on mutual coupling between all
the cavities forming the PM and can be optimally tuned by adjusting the sizes and

shapes of individual cavities as well as their positions

5.2. MFE Microcavity as a Photonic Atom

In this section we study a simplified 2D MFE microdisc for understanding
the underlying physical properties of 3D MFE as photonic atom. The MFE
microdisc is assumed to have a refractive index profile relative to radial distance, r,

as shown in Equation (4.1). A conventional microdisc having the refractive index

of ny /2 and a MFE with refractive index of n(r) are assumed to side-exciting by
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using a dielectric waveguide with the refractive index ofn, =n,/2, separately.
The schematic representations of both structures are illustrated in Figures 5.1(a)

and (b) and side-exciting do as shown in 5.1(a). In our case, the n, and R are set

to be 3.4641 and 2.79mm .
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Figure 5.1. The schematic of the: (a) conventional microcavity and (b) (MFE) coupling to
the bus waveguide. (c) Input and output ports, physical characteristics of
microcavities.

For a given PA or PM the spectral characteristics which are represented by
the total number of the split components and their spectral shifts are named
spectral signatures (Li 2017). The spectral signatures mainly are representative of
number of constitutive atoms, topology and symmetry of structure. In Figures
5.2(a) and (b) we have showed the spectral signatures of normal disc and MFE
respectively. The numerical simulations were performed by FDTD method with
commercial software by Lumerical (Lumerical 2017) and were tested by MEEP
program (Oskooi et al 2010). In Lumerical calculations, a Gaussian modulated

pulse of 6 femtoseconds (fs) width was launched into the input port of waveguide
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as illustrated in Figure 5.1(c). The electric vector of input electromagnetic waves
was polarized in direction normal to the plane (TE mode was investigated). For all
calculations, the shut-off criteria of 10> have been used. In this condition, the
electric field in the computational domain is less than 10~ of the input field and the
convergence of results is guaranteed.

One of the important observations is that the transmission spectrum of
MFEs is considerably more sophisticated compared to their conventional
counterparts. Instead of each mode in conventional disc there is a supermode,
containing three modes, in MFE. The narrow WGM peaks in supermodes allow
observations of fine splitting effects related to refractive index varying of PA. To
be clearer, we calculated the Q factor in both systems. The Q-factor in the

conventional microdisc is Q =172 at the resonance wavelength of 1551 nm,
whereas in MFE this value reaches up to Q, =751, Q, =505, Q;=382 for

resnonce modes of 1503 nm, 1515 nm and 1530 nm respectively. The resonance
modes in conventional microdisc have free spectral ranges (FSR) of 91 nm in the
vicinity of 1550 nm. For MFE the FSR of supermodes is 88. That large difference
in Q-factors implies that the MFE microcavities are more useful for high quality

sensing systems.
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Figure 5.2. The normalized transmitted E-field (spectral signatures) for (a) conventional
microdisc and (b) MFE. There are shifting to the left and broadening of
supermodes in MFE
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Figure 5.3. Spatial E-field distribution for (a) conventional microdisc at 1 =1551nm.

Spatial E-field  distribution  for  MFE: (b) 1, =1503nm,
(c) 1, =1515nmand (d) I; =1530nm.
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After obtaining the transmission spectrum (spectral signatures) of both
structures the spatial electric field (E-field) distribution was obtained by launching
continuous wave source into the input port of waveguide at each desired mode. The
spatial distribution of electric field for uncoupled modes in convensional microdisc

and for one supermode for MFE are shown in Figure 5.3.

5.3. Spatial Configurations of MFE for Photonic Molecule

The sharp resonances of supermodes in single MFE encouraged us to study
the spectral features of clusters of MFEs. Using microspheres as classical PAs, we
can assemble them in a wide range of structures including linear chains and planar
geometries. These configurations can be investigated as PMs.

In this section, we are studying four different configurations of PMs
including three linear chains with two, three and four PAs and a quadrumer formed
by 4 circular resonators as planer structure. All the structures are schematically
shown in insets of Figures 5.4 and 5.6. In order to find the spectral signature of
each configuration, the FDTD simulations were performed for different
combinations of the structural parameters. For all structures, corresponding
normalized transmissions (spectral signatures) are obtained as done in the last
section for simple structures. The simulation tool is Lumerical software too.
Figures 5.4(a),(b) and 5.6(a),(b) show the normalized transmissions (spectral
signatures) of the studied structures. The green dashed lines in each figure shows
the uncoupled mode of conventional disc for comparison and showing the left

shifting of supermodes.
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Figure 5.4. The transmission spectrum of PMs. (a) Linear chain with two MFE. (b) Linear
chain with three MFE. The arrows show the wavelength selected to simulate
the electric field distributions.

As mentioned in the previous section we can obtain the Q-factor for each
mode from transmission spectrum. We have selected three modes from the
supermode nearing of the uncoupled mode of conventional microdisc (1551nm).
Three red arrows show the wavelength of selected mode in each figure. The results
are summarized in Table 5.1. The results of previous section for conventional
microdisc and single MFE are added in two first rows for comparison.

It is deduced from results showed in Table 5.1 that the quality factor of

resonances in supermodes are much greater than in the parent conventional
microdisc, about nine times in quadrumer (I, =1524nm). It seems we can

introdue structures with the optical supermodes (Boriskina 2007, Boriskina 2010)
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by employing these GRIN PMs. Also, it can be resulted from the transmission
spectra in Figures 5.4 and 5.6 that the large number of resonances in each
supermodes appear when the number of coupled PAs are increased, which
indicates the possibility to have wavelength selectivity in the PM structures. In
addition, there is the potential of wavelength switching with the PM structures.
Lastly, it should be noted that in the previous section we had mode splitting in
uncoupled MFE or GRIN PA. Now, in coupled MFEs or PMs the effect of mode
hybridization (Li et al 2017) occurs.

Table 5.1 Calculated Q-factor for 2D Microdisc, Uncoupled MFE as Photonic Atom (PA)
and various Photonic Molecules (PMs). The selected wavelengths (WLs) are
shown in related figure with red arrows.

Radial Angular
- (nm) Q mode (n) mode (1)

Disc 1551 182 1 16
1502 757 1 18
1 atom (MFE) 1515 505 7 16
1530 382 3 14
2 atoms chain 1501 70 L 19
1520 760 2 17

lected WL
(Selected WLs) 1533 511 3 15
2 wtoms chai 1506 1506 1 19
1521 1521 2 17

lected WL
(Selected WLs) 1534 307 3 15
4 atorme chi 1505 1505 1 19
1519 759 2 17

lected WL
(Selected WLs) 1531 765 3 15
Quadrumer 1499 1249 1 19
1524 1016 2 17

lected WL
(Selected WLs) 1537 768 3 15
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Based on information of transmission spectrum, we can reach to field map
or field distribution of each mode. We have selected three modes form supermode
near 1551 nm for each MP. The selected modes are addressed by red arrows in
Figures 5.4 and 5.6. The Figures 5.5 and 5.7 show the E-field distributions of
selected modes. The energy transfer along the elements of PMs can be achieved
through nearest neighbor interactions between adjacent cavities (photon hopping)
(Boriskina 2010).

We can see a noticeable point in Figure 5.7(c) which the E-field is
concentrated in two side resonators, while the two central ones are almost dark.
This effect has been seen in the other PMs too. In the 3 atoms chain, the mode with

1 =1879nm and in the five atoms chain the mode with 1 =1909nm the central

atom is completely dark as can be seen in Figure 5.8. For linear chains this can be
explained by the Bloch modes formation in the coupled molecule (Li et al 2017,
Moller et al 2007). According to Mdller et al explanations, among the eight split

modes in a four atoms chain, light blue colored region in Figure 5.6(a), the mode

I, =1531nm dominant for the first and the Fourth microresonator.
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Figure 55. Spatial E-field distribution for two atoms chain: (@) I, =1501nm,

(b)1, =1520nm and (c) I; =1533nm. Spatial E-field distribution for

three atoms chain; (d) 1, =1506nm, ()1, =1521nm and
(f)1;=1534nm.
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Figure 5.6. The transmission spectrum of PMs. (a) Linear chain with four MFE. (b)
Quadrumer. The arrows show the wavelength selected to simulate the electric
field distributions.

The radial (n) and angular () mode numbers of specific resonances are also
explored to better understand the WGM features in coupled MFE microresonators
as PMs. For this purpose, various resonant wavelengths are selected from the
transmission spectra of PMs from Figures 5.4 and 5.6, in which some regarding
wavelengths are marked by red arrows in the figures. The calculated field (E-field)
distributions are demonstrated in Figures 5.5 and 6.7. As done in the previous
section, the electric vector of input electromagnetic waves was polarized in
direction normal to the plane (TE mode was investigated). Here, some of

concerned E-field may become more complex in comparison to single atom case.
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The corresponding radial and angular mode numbers for different structures are
listed in the Table 5.1.
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Figure 5.7. Spatial E-field distribution for 4 atoms chain: (@) I, =1505nm,

()1, =1519nm and (c) I; =1531nm, Spatial E-field distribution for
Quadrumer: (d) 1, =1499nm, (e) I, =1524nm and (f) I; =1537nm.
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Figure 5.8. Spatial E-field distribution for (a) 3 atoms chainat 1 =1879nm, (b) 5 atoms

chainat I =1909nm..

5.4. Conclusion

In this chapter, the coupling behaviors of optical modes in PMs formed by
two or more MFEs have been investigated. Each PM has certain spectral property
which is related to the topology and geometry of a given molecular configuration
and contrast between refractive index of PM and surrounding medium. The varying
of refractive index of PM has been mentioned in our work.
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In a single MFE as PAs the mode splitting is occurred. This PA has sharper
resonances than the conventional microspheres.

In PMs the couplings between WGMs with different radial and angular
mode numbers are observed, resembling the mode hybridization of atomic orbital
in chemical molecules. So, it seems that in GRIN PMs we observe the mode
hybridization. The supper-modes are formed in small structure (finger prints) in
comparison to other works. The number of atoms and refractive index variation
determine the number of spectral components which can be split or remain
degenerate depending on the symmetry. The unique characteristics of GRIN PMs
make possible the realization of ultra-compact on-chip optical delay lines and

biosensors.
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6. PARITY-TIME- (PT-) SYMMETRY IN MICRORING RESONATORS!

6.1. Introduction
In the Dirac-von Neumann formulation of gquantum mechanics, the
Hamiltonian, H , of all physical systems is represented by Hermitical operator on a

Hilbert space (Shankar 1994). The Hermiticity of H is expressed by the equation

H=H' (6.1)

The symbol T represents the operations of matrix transposition combined

with complex conjugation. The mathematical symmetry condition (6.1) implies

that the eigenvalues of H are real and the time-evolution operator T =e M s
unitary (Bender 2007). In other words, the energy eigenvalues are real and the
wave function norm remains invariant with time (Shankar 1994).

In 1998, Bender and Boettcher showed that it is possible to describe natural
processes by means of non-Hermitian Hamiltonians (Bender 2007). They showed
that the mathematical Hermiticity requirement (6.1) can be replaced by the
analogous but physically transparent condition of space—time reflection symmetry

or Parity-Time- (PT-) symmetry:

H=H" (6.2)

without violating any of the physical axioms of quantum mechanics (Bender 2007).
In equation (6.2) P represents the space-reflection operator, or parity operator. P is

a linear operator. T represents the time-reversal operator and it is not a linear

! This chapter is based on: Giden, I. H., Dadashi, Kh., Botey, M., Herrero, R., Staliunas, K.,
Kurt, H., 2015. Nonreciprocal light transmission in gain-loss modulated micro ring
resonators. In Transparent Optical Networks (ICTON), 17th International Conference.
IEEE.
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operator. PT-symmetric Hamiltonian need not be Hermitian. Thus, it is possible to
have a fully consistent quantum theory whose dynamics is described by a non-
Hermitian Hamiltonian (Bender 2007). By pioneering work of Bender and his
colleagues new kinds of Hamiltonians were introduced in which the mathematical
condition of Dirac Hermiticity (6.1) has been replaced by the physical condition of
PT-symmetry (6.2). In the general form of the time-independent Schrodinger

eigenvalue problem we have the equation:

Hy =Ey, (6.3)

in which y and E are the eigenstate (or eigenfunction) and eigenvalue of

H respectively. Let us assume that y be is an eigenstate of the PT operator too.

PTy =1y (6.4)

The general formalism of PT-symmetric quantum mechanics implies that,
if every eigenstates of a PT-symmetric Hamiltonian is also an eigenstates of the PT
operator, the PT-symmetry of H is unbroken. In this case, the potential associated

with Hamiltonian obeys:

V(r)=V(-r). (6.5)

It shows a necessary condition (but not sufficient) for a Hamiltonian to
have unbroken PT-symmetry. It is required that the potential energy operator is
even in its real part while odd in its imaginary (Guo et al 2009).

Conversely, if some of the eigenstates of a PT-symmetric Hamiltonian are
not simultaneously eigenstates of the PT operator, the PT- symmetry of H is broken

(Bender 2007).
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The formal similarity between the Schrodinger equation and the wave
equation in optics made it possible to realize complex PT-symmetric potentials
within the framework of optics (Guo et al 2009).

In optics, the PT-symmetry condition on the potential associated with

Hamiltonian, translated to the complex refractive index,
nr)y=n"(-r). (6.6)
n(r) =n"(r) +in™(r), 6.7)

which implies that the real part of the refractive index, n"@'(r), is symmetric,

while the imaginary part, nimg(r), is asymmetric. Various theoretical and

experimental studies carried out in optical PT-symmetric systems. New features
such as PT phase transitions, asymmetric light propagation, unidirectional
invisibility, asymmetric chirality. The pioneering works investigated in 1D and 2D
PT-symmetric systems were also considered (Turduev et la 2015, Regensburger et
al 2012) as the basis of the development of novel devices. Nevertheless, to date a
limited number of the reported studies investigate PT-symmetry in ring geometries
(Giden et al 2016, Peng et al 2014, Feng et al 2014).

On the other hand, ring resonators have a special place in integrated
photonic devices. Due to their small size, however much larger than the optical
wavelength, such resonators are expected to support a large number of closely
spaced multiple resonances. Therefore, these structures when side-coupled to
signal waveguides behave as spectral filters, thereby allowing compact wavelength
division multiplexing applications (WDM) (L.ittle et al 1997).

In this chapter, a new type of add-drop microring resonator is proposed that
is made up of gain and loss materials. In all-dielectric linear systems, light

transmission is reciprocal: A symmetric transmission spectrum is observed when
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an incident source is pumped from one side and output power detected in the other
side or vice versa. On the other hand, PT-symmetric optical systems that consist of
balanced gain-loss modulation possess unique characteristics such as unidirectional
beam propagation, asymmetric light transmission and nonreciprocal chirality. It is
numerically proved that PT-symmetric optical resonator designs can be achieved
by properly arranging the gain-loss modulation so that different resonant modes
can be promoted depending on the direction of source incidence. Corresponding

transmission of the ring resonant modes operates in the telecommunication

wavelength range 1.5-1.7mm.

6.2. The Structure

Ring resonators have a special place in integrated photonic devices due to
small sizes and supporting multiple resonances. These types of photonic structures
behave as a spectral filter thereby allowing WDM applications. In this chapter, an
add-drop microring resonator is designed that include balanced gain-loss materials
and proposed for the enhancement of nonreciprocal resonant modes. The designed

structure with its geometrical parameters is schematically represented in Figure
6.1(a). It consists of two Si-waveguides having a width of w=0.31 mm. These
waveguides are coupled to a ring resonator whose radius and thickness sizes are set
to (R,r)=(2.79mm,0.62mm). The up and down waveguides are made of Si
with a refractive index of n,, =3.46at the telecom wavelengths. The ring
resonator contains two adjacent regions as can be viewed from Figure 6.1(a): Blue
half (left semicircle) of the ring is composed of a synthetic gain (G) material
having a complex index of ng =ng; — J0.01 while the red half (right semicircle)
is formed by a lossy (L) material whose refractive index is fixed as
n_ =ng + j0.01. The spacing between up/down waveguide and the ring

resonator is kept as $ =0.20mm.
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Our design includes four ports. When an incident beam is launched from
Port 1 (red rows), it couples to the ring resonator and at resonant frequencies, the
coupled light rotating the ring encounters a circularly 1D PT symmetric structure as
in Figure 6.1(b), viz. loss-gain modulated structure in one dimension. On the other
hand, in the case of source incidence via Port 4, the light at resonance circulates the
ring and meets a 1D gain-loss modulated PT system, as shown in Figure 6.1(c). In
that case, resonant modes occurring in forward and backward incidences may
undergoes nonreciprocal coupling due to symmetry breaking effect of 1D PT
symmetric modulation in the backward and forward coupled modes (Guo et al
2009).

6.3. Verification of Nonreciprocal Light Transmission

In order to prove the above-mentioned discussion, 2D finite-difference
time-domain (FDTD) modelling is performed using Lumerical software package
(Lumerical 2017). The electric vector of input electromagnetic waves was

polarized in direction normal to the plane (TE mode was investigated).

(a)

Port 3 EIEgrt 4_w (h)
.‘ * E:>M..'"M
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Figure 6.1. Designed add-drop ring resonator formed by gain-loss materials
is schematically presented in (a). 1D PT symmetric structure
that coupled light encounters while circulating the ring resonator
in the cases of (b) forward (From Port 1) and (c) backward
(From Port 4) incidences.
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Figure 6.2. (a) Calculated output power spectra detected at Port 4 (P;_.4) and
Port 1 (P4-1). The output powera of two different resonant
frequencies for (b) forward coupling at 1 =1.577mm and (c)
backward coupling at 1 =1.642mm.

The structure is illuminated by a broadband Gaussian pulse from Port 1
(Port 4) and the corresponding output power is monitored at Port 4 (Port 1), which

we named as Pi1_4 (P4_1). The incident source with an average power of 3.70mW

has a smaller width of 0.28mm than waveguide width in order to enhance beam
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confinement. The calculated output power spectra for power incidence via Port 1
(forward) and Port 4 (backward) have been represented in Figure 6.2(a). The graph
has been zoomed around two different resonant frequencies the Figures 6.2(b)-(c).
As can be clearly seen from the figures 6.2(b)-(c), detected output powers are
dependent on the left/right source illumination: at the resonant wavelength of

I =1.577mm, the forward resonant mode (P;_4) is much more enhanced than
backward one (P4_1) whereas at the operating wavelength of 1 =1.642mm, the

resonant enhancement is inversed.
To better understand that condition, a term called power difference, DP , is

defined having the following equation:

DP = I:)1—4 B P4—l
max(P_4,Py_1)

(6.8)

The resulting power difference is plotted in Figure 6.3. That spectrum
implies that the coupling mechanism in gain-loss balanced ring resonator varies
depending on forward/backward incidence, which situation never happens in all-

dielectric systems.
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Figure 6.3. Normalized difference DP for the studied PT-symmetric
configuration.

6.4. Conclusions

We propose a 2D add-drop ring resonator system that is composed of
balanced gain-loss materials. The designed passive structure mimics a 1D PT-
symmetric structure, due to showing different wave coupling mechanisms
depending on the forward/backward light illumination (input channel), which are
not observed in analogous all-dielectric configurations. Our discussion is
numerically confirmed by 2D FDTD simulations. The calculated results show that
our designs exhibit asymmetric resonant effects close to the resonance frequencies,
suggesting that such types of microresonators could be applied in the field of

asymmetric light propagation, for switching and sensing applications.
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