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SYNTHESIS AND PREPARATION OF POLYMERIC DRUG CARRIER 
MICELLES  

SUMMARY 

 

Cancer is the biggest health problem in the modern world which is caused to death of 
millions of patients and at least millions waiting for a proper cure for this disease. 
Curcumin (diferuloylmethane) is a polyphenol derived from the rhizome of the plant 
Curcuma longa, commonly called turmeric which is one of the potent cytotoxic 
agents and investigated as a drug for the treatment of cancer. But solubility of the 
curcumin in water is very poor to be used intravenously. Encapsulation of the 
curcumin with micelles formed by the amphiphilic block copolymers thought to be a 
solution for enhancing solubility of the curcumin in water. A2B type amphiphilic 
miktoarm star  block copolymers consist of  polyethylene glycol (PEG) and poly  ε-
caprolactone (PCL) are synthesized to prepare micelles and via self-assembly of 
these amphiphilic block copolymers in water. And the enhancement of curcumin’s 
solubility is aimed by entrapment in the hydrophobic core. 

Two different copolymers are synthesized with three different ways. PEG is 
commercially available in various molecular weights, so no need to be synthesized 
from monomers, and for the synthesis of the copolymers they can be easily 
functionalized from the hydroxy (-OH) end. PCL is synthesized by using ring 
opening polymerization (ROP) to produce exact chain lengths and it gives options 
for synthesis of the optimum hydrophobic ratio for micelle stability. During the 
synthesis of the block copolymers, either “arm-first” or “core-first” strategies are 
used and segments are gathered via Click chemistry and Diels-Alder (DA) reaction.  

The first copolymer,  PEG2-PCL miktoarm star block copolymer is synthesized with 
core-first method by using both Diels-Alder and Click chemistry. 

As a second type of block copolymer, PEG-PCL2 copolymer is synthesized following 
by two different methods. In the first method, the synthesis was carried out through 
arm-first strategy using only Diels-Alder reaction, and the micellar characterization 
of PEG-PCL2 copolymer was found to be very promising. Due to long steps of the 
synthesis of PEG-PCL2 block copolymer, an alternative synthetical method was 
developed with less steps. This is achieved by using modified PEG chain as the 
macro-initiator of the ring opening polymerization. It gives very good results with 
high yield and easy way of synthesis, with no side product and also easy purification.   

In the second part of the study, the micellar characterization of the synthesized 
amphiphilic  star block copolymers are carried out. Partical size analyses are done by 
using Zeta-sizer. Critical micelle concentration analyses are done with 
spectrophotometeric measurements by using pyrene as flourescent probe. Critical 



 
 

xx 
 

micelle concentration values are determined by plotting I3/I1 with Log C (g/mL). 
Curcumin is loaded to the prepared micelles and the maximum loading capacity of 
the micelles are determined with Ultra Fast Liquid Chromatogrphy (UFLC) 
measurements. The loaded amount of the drugs are calculated via area under curve 
method.  

The synthesized A2B type block copolymers were characterized by NMR and GPC 
analyses. The micellar formation of the amphiphilic block copolymers was found to 
be sufficient as drug carriers for curcumin, and particularly for PCL2-PEG copolymer 
with enhanced solubility to 321.7 µg/mL  from 0.6 µg/mL.    
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POLYMERĐK ĐLAÇ TAŞIYICI MĐSELLERĐN SENTEZĐ VE 
HAZIRLANMASI 

ÖZET  

Modern dünyanın en büyük problemi olan kanser, milyonlarca kişinin ölümüne 
sebep oldu, en az milyonlarca hasta bu hastalık için uygun bir tedavi beklemektedir. 
Halk arasındaki genel adı zerdeçal olarak bilinen ve Curcuma longa bitkisinin 
köklerinden elde edilen kürkimin polifenoldür.  kürkimin sitotoksik özelliği nedeni 
ile kanser tedavisinde potent ilac olarak araştırılmaktadır. Fakat kürküminin sudaki 
çözünürlüğü damardan verilebilmesi için yeterli değildir. Bu nedenle kürküminin 
amfifilik polymerik miseller ile enkapsülasyonu sudaki çözünürlüğünün arttırılması 
için uygun bir çözüm olarak düşünüldü. Misellerin hazırlanması için poli Ɛ-
kaprolakton (PCL) ve polietilenglikol (PEG) oluşan  A2B tipi miktoarm star blok 
copolimerler sentezlendi ve bu amfifilik block kopolimerlerin suda kendiliğinde 
misel oluşturarak kürkimini hidrofobik çekirdekte hapsedip çözünürlüğünün 
arttırılması planlandı.   

Đki farklı kopolimer üç değişik yöntem ile sentezlendi. PEG’in değişik moleküler 
ağırlıktaki türevleri ticari olarak mevcuttur, bu nedenle monomerlerden 
sentezlenmesine gerek duyulmadı. Ayrıca kopolimerlerin sentezi için hidroksi (-OH) 
ucundan kolayca fonksiyonlandırılabilirler. PCL misel kararlılığı için gerekli olan 
optimum hidrofobik oranın elde edilmesi için uygun başlatıcılar ile halka açılması 
polimerizasyonu üzerinden istenen zincir uzunluklarında sentezlendi. Sentez 
aşamasında arm-first ve core-first metodları kullanıldı ve segmentler Click kimyası  
ve Diels-Alder (DA) reaksiyonları ile birleştirildi. 

Đlk kopolymer, PEG2-PCL miktoarm star block kopolimeri; Click kimyası ve Diels-
Alder reaksiyonları  kullanılarak core-first metodu ile sentezlendi. 

Đkinci tür blok kopolimer, PEG-PCL2 iki değişik yöntem takip edilerek sentezlendi. 
Birinci yöntemde, sadece Diels-Alder reaksiyonu kullanılarak, arm-first stratejisi 
üzerinden sentezlendi, ve PEG-PCL2  blok kopolimerinin misel karakterizasyonu 
daha ileri araştırmalar için umut verici bulundu. PEG-PCL2 blok kopolimerinin 
sentezi uzun sentez basamakları nedeniyle alternatif  yöntem ile daha az basamakta 
sentezlendi. Modifiye PEG zincirinin halka açılması polimerizasyonunda makro-
başlatıcı olarak kullanılması ile bunun üstesinden gelindi. Bu yöntem yüksek verim 
ve kolay sentez yanında yan ürünsüz ve kolay saflaştırma sağladı. Kritik misel 
konsantrasyonu tayini piren floresans prob olarak kullanılarak spektrofotometrik 
yöntemle gerçekleştirildi. Kritik misel konsantrasyonu değerleri I3/I1  karşı  Log C 
(g/ml) eğrisi çizilerek hesaplandı. kürkümin polimerik misellere yüklendikten sonra 
maksimum yükleme kapasitesi ultra hızlı sıvı kromotografi cihazı le tayin edildi. 
Yüklenen kürkümin miktarları eğri altındaki alan yöntemi üzerinden hesaplandı. 
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Sentezlenen A2B tipi blok kopolimerler NMR ve GPC analizleri ile karakterize 
edildi. Amfifilik kopolimerlerin misel formları kürkümin için ilaç taşıyıcısı olarak 
yeterli bulundu, özelikle de PCL2-PEG kopolimeri kürküminin çözünürlüğünü 0.6 
µg/ml’den 321.7 µg/ml ye arttırdı. 
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1.  INTRODUCTION 

Todays world’s biggest unchallenged health problem is the cancer with millions of 

patients. Because, a lot of reasons are mentioned for its formation, but there is no 

certain reason identified as a cause for this disease, and it now reaches nearly 2000 

different types of cancer due to the changes in organs and tissues, especially in the 

critical organs and cells, so the cure is too complex. Because of all this difficulties, it 

does not left to the chance which cause to kill the cells without cancer.  

But, how could a simple drug can differ between a healthy tissue and a tumor, and 

even the limited number of cures have lots of negative results, such as side effects, 

poor effectivitness and high costs, that makes it irrecoverable for poor countries. But 

scientists and companies continue to search trying to find solutions to similar 

problems of the chemotherapy with collaboration of the different disciplines. These 

efforts are focused on to find and develop new drug delivery systems. Drug delivery 

systems (DDS) are simply the transportation of the drugs to body in various ways by 

using even synthetic or natural macromolecules for better solutions to disease and 

new gateways due to the classic medical treatments.  

Cancer occurs at a molecular level when multiple subsets of genes undergo genetic 

alterations, either activation of oncogenes or inactivation of tumor suppressor genes. 

Then malignant proliferation of cancer cells, tissue infiltration, and dysfunction of 

organs will appear. Tumor tissues are characterized with active angiogenesis and 

high vascular density which keep blood supply for their growth, but with a defective 

vascular architecture. Combined with poor lymphatic drainage, they contribute to 

what is known as the enhanced permeation and retention (EPR) effect. Tumor genes 

are not stable with their development and often show genovariation [1]. The inherent 

complexity of tumor microenvironment and the existence of P-glycoprotein (Pgp) 

usually act as barriers to traditional chemotherapy by preventing drug from reaching 

the tumor mass. Meanwhile, delivery of the therapeutic agents in vivo shares 

physiological barriers, including hepatic and renal clearance, enzymolysis and 

hydrolysis, as well as endosomal/lysosomal degradation.  In addition, the efficiency 
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of anticancer drugs is limited by their unsatisfactory properties, such as poor 

solubility, narrow therapeutic window, and intensive cytotoxicity to normal tissues, 

which may be the causes of treatment failure in cancer. 

Accordingly, there is a great need for new therapeutic strategies capable of delivering 

chemical agents and other therapeutic materials specifically to tumor locations. With 

the development of nanotechnology, the integration of nanomaterials into cancer 

therapeutics is one of the rapidly advancing fields which probably revolutionize the 

treatment of cancer. Nanotechnology is the creation and utilization of materials, 

devices, and systems through the control of matter on the nanometer (1 billionth of a 

meter) scale. Nanocarrier systems can be designed to interact with target cells and 

tissues or respond to stimuli in well-controlled ways to induce desired physiological 

responses. They represent new directions for more effective diagnosis and therapy of 

cancer [1]. The  reduction of the side effects, sustained release of the drug in body, 

decreasing the cost, are the examples of the advantages aimed in DDS and the recent 

works are succeeded in most of them. Drug delivery systems are one of the most 

attractive headline in the last quarter of the 20 th century by the development of the 

nanotechnology and the application area of them is increased, and today it becomes a 

market that its value is mentioned with billions and expected to be reach trillions at 

the end of the first quarter of the 21 th century.  

One of the goals of the DDS is targeted drug delivery and micelles, which are good 

candidates for this achivement. Addition to liposomes, amphiphilic block copolymers 

are used to form micelles with improved bioavailability for the drugs. They have 

many advantegous with different properties depending on the polymer composition, 

and preparation conditions, such as: a pH sensitive polymer allow a delivery system 

which can release the drug where the micelle meets the proper pH value, by 

programming the synthesis of the block copolymer at the beginning, or by 

preparation of temperature sensitive micelles which are sensitive to the temperature 

of the environment. Thus, during circulation of the micelles in the blood vessels, the 

drug is released when it meets a tumoral area, where the temperature is higher than 

healthy tissues and organs of the body.   

Liposomes are also used for the same targets but, micelles of amphiphilic block 

copolymers seem to have better properties, such as tunnable micelle size, lover CMC 

and higher drug loading capacity than the liposoms which are approved by the Food 
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and Drug Administration (FDA). Amphiphilic copolymers have also molecular 

architecture in which different domains, both hydrophilic and hydrophobic, present 

within the polymer molecules. This gives rise to unique properties of these materials 

in selected solvents, at surfaces as well as in the bulk, due to microphase separation 

[2]. The characteristic self-organization of these materials in the presence of selective 

media often results in the formation of aggregates such as micelles, microemulsions, 

and adsorbed polymer layers [3].  

Polymers with a wide variety of functional groups can be produced by ring-opening 

polymerizations. Ring-opening polymerization (ROP) is a unique polymerization 

process [3-7], in which a cyclic monomer is opened to generate a linear polymer. 

Nowadays, increasing attention is paid to biodegradable and biocompatible polymers 

for applications in the biomedical and pharmaceutical fields, primarily because after 

use they can be eliminated from the body via natural pathways and also they can be a 

solution to problems concerning the global environment and the solid waste 

management. Aliphatic polyesters are among the most promising materials as 

biodegradable polymers. The commonly used biocompatible polymers are aliphatic 

polyesters, such as poly(ε-caprolactone) (PCL), poly(lactic acid) (PLA), 

poly(glycolic acid) (PGA), and their corresponding copolymers [8]. PCL and PEG 

are both well-known FDA approved biodegradable and biocompatible materials, 

which have been widely used in the biomedical field [9]. 

The “click chemistry” concept was introduced by Sharpless and co-workers in 2001 

[10]. Selected reactions were classified as click chemistry if they were modular, 

stereospecific, wide in scope, resulted in high yields, and generated only safe 

byproducts. Several efficient reactions such as copper(I)-catalyzed azide-alkyne  

cycloaddition (CuAAC), Diels-Alder (DA) cycloadditions, nucleophilic substitution 

and radical reactions can be classified under this term. The Diels-Alder reaction is an 

organic chemical reaction (specifically, a cycloaddition) between a conjugated diene 

and a substituted alkene, commonly termed dienophile, to form a substituted 

cyclohexene system [11, 12]. Some of the Diels-Alder reactions are reversible; the 

decomposition reaction of the cyclic system is then called the Retro-Diels-Alder. For 

example, Retro-Diels-Alder compounds are commonly observed when a Diels Alder 

product is analyzed via mass spectrometry [12].  
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Star polymers are among the macromolecular architectures receiving growing 

interest, due to their distinct properties in bulk, melt and solutions. They often exhibit 

lower solution and melt viscosities compared to those of the linear counterparts [13]. 

The synthesis of star-shaped polymers is generally achieved by one of two 

approaches; the ‘‘arm-first’’ in which the polymer arms are coupled to a 

multifunctional coupling agent and the ‘‘core-first’’ based on a multifunctional core 

as initiator.  

Amphiphilic star-shaped block copolymers have recently attracted much attention 

because these polymers can behave as unimolecular micelles or be designed to 

exhibit a very low critical aggregation concentration (CAC) [14-15]. However, star-

block copolymers comprising hydrophobic biodegradable and hydrophilic 

biocompatible segments are of particular interest, especially for biomedical 

applications, this is the reason to prepare PCL-PEG amphihilic copolymers in this 

these study.  

Polymeric micelles (PMs) very stable, having low critical micelle concentration  

(CMC) values compared to surfactant micelles, as low as 10- 6 M. All these issues 

related to PMs make them ideal carriers for anticancer drugs and tumor targeting. 

PMs have attracted a lot of attention as a carrier for poorly water-soluble drugs, 

genes [14-15] and imaging agents. Indeed, they have also been used for the delivery 

of hydrophobic agents. And the size of them led to be used for passive targetting of 

the cytotoxic drugs. Nanoparticles are solid, colloidal particles consisting of 

macromolecular substances that vary in size from 10 nm to 1000 nm (Kreuter, 

1994a). However, particles >200 nm are not heavily pursued and nanomedicine often 

refers to devices <200 nm (i.e., the width of microcapillaries). Typically, the drug of 

interest is dissolved, entrapped, adsorbed, attached and/or encapsulated into or onto a 

nano-matrix. Depending on the method of preparation nanoparticles, nanospheres, or 

nanocapsules can be constructed to possess different properties and release 

characteristics for the best delivery or encapsulation of the therapeutic agent (Barratt, 

2000; Couvreur et al., 1995; Pitt et al., 1981) [16].  

Turmeric has been used historically as a component of Indian Ayurvedic medicine 

since 1900 BC to treat a wide variety of ailments. Research in the latter half of the 

20th century has identified curcumin as responsible for most of the biological 

activity of turmeric. In vitro and animal studies have suggested a wide range of 
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potential therapeutic or preventive effects associated with curcumin especially its 

cytotoxic potent makes it a potent anti-cancer agent and researches still continue to 

become a drug on market. But, poor solubility of curcumin is one of the barrier 

behind this process.  

In this study, we tried to get rid of solubility problem of the curcumin by its 

encapsulation with prepared micelles of the synthesized amphiphilic polymers.  

Poorly water-soluble, hydrophobic agents are known to be associated with problems 

in therapeutic applications such as poor absorption and bioavailability, as well as 

drug aggregation related complications such as embolism. On the other  hand, poor 

water solubility is associated with many drugs, especially anticancer drugs. PMs 

promisingly increase the water  solubility of such drugs by 10 to 5000 fold [17]. 

For this purpose; the two different AB2 type miktoarm star amphiphilic copolymers 

(PEG2-PCL and PCL2-PEG) are synthesized with three different methods for 

encapsulation of curcumin to enhance its solubility in the plasma via using both 

Click chemistry and Diels-Alder reactions. The identification of the synthesized  

copolymers was made based on NMR and GPC analyses, and their micellar 

characterization was carried out by the measurements of CMC with flourescent probe 

pyrene, of particle size analysis on Zeta-sizer, and of the max. loading capacity of 

curcumin on UFLC.  
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2.  THEORETICAL PART 

2.1 Chemistry of Curcumin 

Curcumin (diferuloylmethane; see Figure 2.1) is a natural yellow orange dye derived 

from the rhizome of Curcuma longa Linn, an East Indian plant. It is insoluble in 

water and ether but is soluble in ethanol, dimethylsulfoxide and other organic 

solvents. It has a melting point of 1830C and a molecular weight of 368.37. 

Commercial curcumin contains three major components: curcumin (77%), 

demethoxycurcumin (17%), and bisdemethoxycurcumin (3%), together referred to as 

curcuminoids (Figure 2.1). Spectrophotometrically, curcumin absorbs maximally at 

415-420 nm in acetone and a 1% solution of pure curcumin has an optical density of 

1650 absorbance units. It has a brilliant yellow hue at pH 2.5 to 7.0, and takes on a 

red hue at pH > 7.0. Curcumin fluorescence is a broad band in acetonitrile (λmax = 

524 nm), ethanol (λmax = 549 nm), or micellar solution (λmax = 557 nm). Curcumin 

produces singlet oxygen (1O2) upon irradiation (λ> 400 nm) in toluene or acetonitrile 

(pHi = 0.11 for 50 µM curcumin); in acetonitrile curcumin also quenched 1O2 (kq = 7 

x 106 M/S). 1O2 production was about 10 times lower in alcohols. Recently, Das and 

Das have studied the 1O2 quenching activity of curcumin in detail. Curcumin 

photogenerates superoxide in toluene and ethanol. In contrast, it quenches superoxide 

ions in acetonitrile.    

Curcumin is also phototoxic to mammalian cells, as demonstrated in a rat basophilic 

leukemia cell model, and this phototoxicity likewise requires the presence of oxygen. 

The spectral and photochemical properties of curcumin vary with environment, 

resulting in the potential for multiple or alternate pathways for the execution of 

photodynamic effects. For example, curcumin photogenerates singlet oxygen and 

reduced forms of molecular oxygen under several conditions relevant to cellular 

environments. 
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Figure 2.1: Natural yellow dye, Curcumin (diferuloylmethane; 1, 7-Bis(4-hydroxy-
3-methoxyphenyl)-1,6-heptadiene-3,5-dione) curcumin I, MW 368; 
curcumin II, MW 338; Curcumin III, MW 308. 

Tonnesen examined the kinetics of pH-dependent curcumin degradation in aqueous 

solution. A plot of the rate constant against pH indicated the pKa values of the acid 

protons. The graph also indicated the complexity of curcumin degradation. The same 

investigators also investigated the stability of curcumin when exposed to UV/visible 

radiation. The main degradation products were identified. The reaction mechanisms 

were investigated and the order of the overall degradation reactions and the half-lives 

of curcumin in different solvents and in the solid state were determined. These 

workers also examined the photobiological activity of curcumin using bacterial 

indicator systems. On irradiation with visible light, curcumin proved to be phototoxic 

for Salmonella typhimurium and Escherichia coli, even at very low concentrations. 

The observed phototoxicity makes curcumin a potential photosensitizing drug, which 

might find application in the phototherapy of, for example, psoriasis, cancer and 

bacterial and viral diseases. Recently, the same group, prepared a complexed 

curcumin with cyclodextrin to improve its water solubility and the hydrolytic and 

photochemical stability of the compound. Complex formation resulted in an increase 

in water solubility at pH 5 by a factor of at least 104. The hydrolytic stability of 

curcumin under alkaline conditions was strongly improved by complex formation, 

while the photodecomposition rate was increased compared to a curcumin solution in 

organic solvents. The cavity size and the charge and bulkiness of the cyclodextrin 

side-chains influenced the stability constant for complexation and the degradation 

rate of the curcumin molecule. Wang et al. examined the degradation kinetics of 

curcumin under various pH conditions and the stability of curcumin in physiological 
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matrices. When curcumin was incubated in 0.1 M phosphate buffer and serum-free 

medium, pH 7.2, at 370C, about 90% decomposed within 30 minutes. A series of pH 

conditions ranging from 3 to 10 were tested and the results showed that 

decomposition was pH dependent and occurred faster at neutral-basic conditions. It 

is more stable in cell culture medium containing 10% fetal calf serum and in human 

blood; less than 20% of curcumin decomposed within 1 hour and, after incubation 

for 8 hours, about 50% of curcumin still remained. Trans- 6-(4'-hydroxy-3'-

methoxyphenyl)2,4-dioxo-5-hexenal was predicted to be the major degradation 

product and vanillin, ferulic acid and feruloyl methane were identified as minor 

degradation products. The amount of vanillin increased with incubation time [18]. 

Wide arrays of phenolic substances, especially those present in dietary and medicinal 

plants, have been reported to possess substantial antioxidant, antiinflammatory, 

anticarcinogenic, and antimutagenic effects . The spice turmeric is used in curries as 

a coloring and flavoring agent in various parts of the world, especially in the Indian 

subcontinent, an area that has a low incidence of colorectal cancer . 

Several animal model studies have shown that curcumin suppresses carcinogenesis in 

skin, stomach, colon, breast, and liver. Curcumin is reported to induce apoptosis in a 

wide variety of tumor cells, including B- and T-cell leukemias, colon, and breast 

carcinoma. Chemopreventive activities of curcumin are thought to involve up-

regulation of carcinogen-detoxifying enzymes  and antioxidants, suppression of 

cyclooxygense-2 expression , and inhibition of nuclear factor-nB release . Inhibition 

of nuclear factor-nB release by curcumin also leads to the downregulation of various 

proinflammatory cytokines (e.g.,tumor necrosis factor and interleukins) and 

inhibition of the mRNAexpression of several proinflammatory enzymes (e.g., 

cyclooxygense, lipoxygenases, metalloproteinases, and nitric oxide synthase).  In 

animal studies, curcumin undergoes rapid metabolic reduction and conjugation, 

resulting in poor systemic bioavailability after oral administration. For example, an 

oral dose of 0.1 g/kg administered to mice yielded a peak plasma concentration of 

free curcumin that was only 2.25 µg/mL . In rats, curcumin completely disappeared 

from plasma within 1 h after a 40 mg/kg i.v. dose. When given orally at a 500 mg/kg 

dose, peak concentrations of 1.8 ng/mL of free curcumin were detected in plasma.  

The major metabolites of curcumin identified in rat plasma were curcumin 

glucuronide and curcumin sulfate based on enzymatic hydrolysis studies. 
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Hexahydrocurcumin, hexahydrocurcuminol, and hexahydrocurcumin glucuronide 

were also present in minor amounts . 

Data on the pharmacokinetic properties and metabolism of curcumin in human are 

very limited. In a human study conducted in 25 patients with precancerous lesions, 

free curcumin concentrations in plasma after taking 4, 6, and 8 g of curcumin per day 

for 3 months were 0.19, 0.20, and 0.60 µg/mL, respectively. None of the curcumin 

conjugates or metabolites of curcumin were reported in that study. A study of six 

patients with advanced colorectal cancer dosed with 3.6 g of curcumin daily for up to 

3 months yielded 4.3, 5.8, and 3.3 ng/mL mean plasma concentrations of curcumin, 

curcumin glucuronide, and curcumin sulfate, respectively, 1 h after administration . 

In animal models, no toxicity has been reported to date. Similarly, in human to date, 

few adverse events due to curcumin even at very high doses have been reported. 

Whether the low toxicity is only a function of lack of bioavailability is an open 

question [19]. 

2.2 Drug Delivery Systems and Nanotechnology 

2.2.1 The “NANO era” of targeted or site-controlled drug delivery systems 

In the mid to late 1970s the concept of polymer-drug conjugates or “nano-

therapeutics”, independently arose at various places around the world. Three key 

technologies were the major factors that stimulated the immense activity and clinical 

success of nanotherapeutics from the late 1980s to the present. The first was the 

concept of “PEGylation”, which refers to polyethylene glycol conjugated drugs or 

drug carriers. The second is the concept of “active targeting” of the drug conjugate 

by conjugating cell membrane receptor antibodies, peptides or small molecule cell 

ligands to the polymer carrier. The third was the discovery of the “enhanced 

permeation and retention effect” (EPR) by Hiroshi Maeda in Kumamoto, Japan, 

wherein nano-scale carriers are entrapped within solid tumors due to leaky 

vasculature of the fast-growing tumor. This is called “passive” targeting as 

contrasted with active targeting. These will be discussed and referenced below. 

The first major success of polymer-drug conjugates was based on the conjugation of 

poly(ethylene glycol) or PEG to the drug, known by the term “PEGylation”. In the 

late 1960s, Frank Davis at Rutgers University conceived of the concept of 
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PEGylation to enhance both the circulation time and the stability (against enzyme 

attack or immunogenic recognition) of the recombinant protein drugs that were just 

being developed. This led to the founding of the PEGylation company called Enzon, 

at the beginning of the 1980s. The first clinical products were PEGylated enzymes 

such as asparaginase and glutaminase, which metabolized asparagine and glutamine, 

essential nutrients for leukemic cancer cells. Milton Harris, a chemistry professor at 

the University of Alabama, Huntsville later founded Shearwater Polymers, the other 

important PEGylation company, that subsequently collaborated with major 

pharmaceutical companies to introduce a number of PEGylated recombinant protein 

products to the clinic. Independent of Davis and around that same time in the 1970s, 

Helmut Ringsdorf at the University of Mainz sketched the idea of a targeted, 

polymer-drug conjugate and published it in 1975. 

 Independent of Ringsdorf, Jindra Kopecek in Prague conceived of a new polymer 

carrier called poly(hydroxypropyl methacrylamide) (PHPMA) which was first 

synthesized by Karel Ulbrich, his PhD student; the drug was conjugated to the 

PHPMA by pendant tetrapeptide linkages that were degradable by cathepsin B, a 

lysosomal enzyme. The polymer synthesis and characterization was carried out in 

Prague and the conjugate's drug action was tested in collaboration with Ruth Duncan, 

John Lloyd's PhD student, in the UK (Kopecek was introduced to Lloyd and Duncan 

by Ringsdorf). Duncan also contributed to the design of the polymer. Blanka Rihova 

in Prague found PHPMA to be non-immunogenic, and James Cassidy, MD, a UK 

clinician, led the clinical trials. The drugs included doxorubicin and other small 

molecule anti-cancer drugs. The drug-polymer conjugates could be actively targeted 

with ligands such as galactose, an asialo-glycoprotein membrane receptor ligand for 

hepatocytes, for liver cancer treatment. Etienne Schacht of Ghent later synthesized 

new degradable peptide sequences. This was truly an international success story of a 

remarkable team of scientists and clinicians, bringing a novel polymer-drug 

conjugate to the clinic.  This success has had a great influence on the field of 

nanoscale polymeric therapeutics. Duncan has published several reviews of nano-

carriers and nano-therapeutics, one along with Kopecek.  

Other polymer-small drug conjugates are currently being developed; examples 

include: Cell Therapeutics in Seattle with Xyotax®, a polyglutamic acid-paclitaxel 
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conjugate, in phase III trials, and Insert Therapeutics of Mark Davis, with IT-101, a 

PEG-cyclodextrin-camptothecin polymeric micelle in phase II trials. Polymeric 

micelle-small drug and nucleic acid DDS will be discussed in more detail below. 

One of the earliest examples of active targeting was the use of a polyclonal antibody 

to target a drug in the late 1950s. The development and availability of monoclonal 

antibodies in the 1960s made it possible to deliver nano-therapeutics to specific cells. 

Other ligands have been discovered and have been used to target cells. One of the 

most notable has been the integrin receptor ligand, the peptide RGD, first published 

in 1980 in Science by Pierschbacher and Ruoslahti. 

In 1984, Hiroshi Maeda of Kumamoto University discovered what he called the 

“Enhanced Permeation and Retention” effect, or EPR.  He was carrying out animal 

studies with his novel polymerdrug conjugate, styrene-maleic anhydride (SMA) 

conjugated to the anti-cancer peptide drug, neocarcinostatin (NCS), which he called 

“SMANCS” and he had labeled the conjugate with a dye. He noted that the dye 

accumulated within the tumor tissue, and concluded that the rapidly forming 

vasculature in such solid tumors was “leaky”, while the lymph drainage system was 

not yet working efficiently, and that led to its entrapment or accumulation within the 

tumor tissue. This combination caused the nano-scale SMANCS to be trapped within 

the extra-vascular tumor tissue. He submitted a manuscript on this observation, and 

Maeda recalls that Folkman was one of the reviewers; Folkman encouraged him to 

publish that exciting finding “as soon as possible” . Recent evidence by various 

researchers suggests that the EPR effect is only effective close to the leaky vessels, 

and not throughout the tumor, due perhaps to the low diffusion coefficient of the 

nanocarriers within the tumor‘s extravascular tissues. 

In the late 1980s and early 1990s, other nano-scale DDS were developed, including 

PEGylated polymeric micelles and liposomes. Kazunori Kataoka, Teruo Okano and 

Masayuki Yokoyama in Tokyo synthesized A-B block copolymers of a PEG block 

conjugated to a hydrophobic amino acid block. These block copolymers 

spontaneously formed PEGylated polymeric micelles above a very low CMC. The 

hydrophobic cores of the micelles could be loaded with small hydrophobic drugs 

such as doxorubicin, either by physically loading the drug or by conjugating it to the 
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amino acid pendant acid groups, and the terminal OH groups of the PEGs could be 

conjugated with cell specific ligands for targeted delivery. Around essentially the 

same time, and independent of Kataoka et al.'s work, Alexander Kabanov in 

Nebraska developed drug-loaded PEGylated micelles based on PEO-PPO-PEO tri-

block copolymers known as Pluronics® (where “PEO”=“PEG”) Many different 

PEGylated polymeric micelles are now in clinical trials for delivery of a number 

of small molecule drugs.  

In the early 1990s, the emergence of important nucleic acid drugs, such as plasmid 

DNA (pDNA) and antisense ODNs (“oligos”) led to the development of cationically-

condensed pDNA or ODN nanoparticles. Both cationic polymers and cationic 

liposomes were used to condense the nucleic acid drugs; the resultant complexes are 

called polyplexes or lipoplexes, respectively. One key polycation development was 

by Jean-Paul Behr, who proposed the use of poly(ethyleneimine) or PEI for 

complexation and intracellular delivery of nucleic acid drugs, where endosomal 

escape was enhanced by the PEI due to the “proton sponge” mechanism. 

Block polymers of PEG-polycation (A-B) or PEG-polycation-PEG (AB- A) have 

been used to condense a nucleic acid drug, to form PEGylated micelles, with the 

water insoluble nucleic acid-polycation electrostatic complexes (polyplexes) forming 

the core of the PEGylated polymeric micelle. More recently, in the 2000s, a number 

of companies (e.g., Alnylam, Roche, Merck, Calando) have been involved in clinical 

trials for delivery of siRNA from similar lipoplexes and polyplexes. 

Nano-scale albumin-based drug carriers have recently reached the clinic. Examples 

include Abraxane®, a nanoparticle of albumin and paclitaxel, and Albuferon-α®, a 

conjugate of albumin and interferon-α. 

During the 1990s Vladimir Torchilin developed many liposomal formulations, some 

for diagnostic imaging applications and others for drug delivery, where hydrophilic 

drugs could be loaded in the aqueous core of the liposome, or hydrophobic drugs 

could be loaded in the lipidbilayer shell. A PEGylated liposome-doxorubicin product 

called Doxil® was approved by the FDA for clinical use in 1995. Martin Woodle and 

Frank Martin developed this product at Liposome Technologies Inc., (LTI). 

Nano-scale DDS with polymeric carriers that are still underdevelopment include 

dendrimers, dendronized polymers and other hyper-branched polymers. Most of 
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these have succeeded because of the emergence of three key technologies: (1) 

PEGylation, (2) active targeting to specific cells by ligands conjugated to the DDS, 

or passive targeting to solid tumors via the EPR effect [20]. 

2.2.2. Nanoparticle Carriers based on Amphiphilic Polymers for Drug Delivery 

Polymeric micelles from of amphiphilic block copolymers [21, 22] are 

supramolecular core-shell-type assemblies of tens of nanometers in diameter, which 

can mimic naturally occuring biological transport systems such as lipoproteins and 

viruses [23]. Recently, polymeric micelles as carriers of anti-tumor drugs have drawn 

increasing research interests, due to their various advantages in drug delivery 

applications. First, polymeric micelles are highly stable in aqueous solution because 

of their intrinsic low critical micelle concentration (CMC), which prevents the drug-

entrapped micelles from dissociation upon dilution in the blood stream after 

intravenous injection. Furthermore, the nanosize of polymeric micelles can facilitate 

their extravasations at tumor sites while avoiding renal clearance and nano-specific 

reticuloendothelial uptake. In these micellar delivery systems, the hydrophobic core 

of the micelles is a carrier compartment that accommodates anti-tumor drugs, and the 

shell consists of a brush-like protective corona that stabilizes the nanoparticles in 

aqueous solution [23-25]. 

The problem associated with the classical micelle structure can be overcome by 

developing molecules in which the lipophilic components are covalently bound 

together within the micelle core. Core polymerization is an effective method to 

prevent dissociation of the block copolymer micelle. Kataoka’s group has 

successfully employed this idea. In their study, the micelles were prepared from an 

amphiphilic block copolymer in which the hydrophobic block contained a 

polymerizable end group. After micellation, the end groups on the hydrophobic block 

were polymerized to form a stable core for the star-shaped polymer structure. The 

resulting micelles showed fairly high stability and maintained small size. As 

anticipated, the core polymerized micelle showed excellent solubilization of rather 

large molecules such as taxol. 

Another approach developed recently by Uhrich et al. with a three-arm star polymer 

composed of mucic acid substituted with fatty acid as the lipophilic inner block and 

with PEG as the hydrophilic outer block. This new type of molecule was capable of 
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encapsulating a hydrophobic model drug in aqueous media. However, due to the 

structural constraints, the free volume of the hydrophobic core was limited, and only 

one or two drug molecules could be encapsulated in each micelle. A series of star 

block copolymers with the number of arms ranging from three to eight have also 

been synthesized . The arms were composed of block copolymer with PEG as the 

inner hydrophilic block and PCL as the outer hydrophobic block. The application of 

this type of copolymer as an injectable drug delivery system was reported . It was 

found that a reversible sol-gel transition process exists for this system, which is 

useful for drug delivery. However, such star copolymers do not form micelles in 

aqueous media because the hydrophilic block is located in the interior of the star. A 

recent paper described the synthesis of a four-arm star block copolymer of PCL and 

PEG by the same route and similar chemistry as reported in this paper. Another paper  

described the preparation of a four-arm star PCL-b-PEG polymer with diethylzinc 

catalyst. However, the molecular weight distribution of the block copolymer was 

unacceptably wide. 

Many studies have been carried out using dendrimers as drug delivery systems. Star 

polymers with a dendrimer as the hydrophobic core and multiple PEG chains as the 

hydrophilic arms have been synthesized and investigated as unimolecular micelles 

for drug delivery by Fre´chet and Kono. It has been demonstrated that the micelles 

with larger dendrimer core have a higher encapsulation capability than those with 

smaller cores. However, due to the structural limitations involved in the synthesis of 

dendrimers of higher generation, and the relatively compact structure of the 

dendrimers, it is difficult to increase significantly the size of the hydrophobic 

dendritic core in the dendrimer- PEG star polymer. Therefore, such dendrimer 

systems have limitations in terms of drug-loading capacity and delivery of 

compounds of large size [26]. 

Recently, more and more attention has been paid for applying biodegradable 

polymers, especially aliphatic polyesters such as poly(ε-caprolactone) (PCL), 

polylactide (PLA), and polyglycolide (PGA), as biomaterials due to their 

biocompatibility, degradability, and excellent shaping and molding properties. PCL 

is a kind of  biodegradable materials with low toxicity, excellent biocompatibility  

and bioabsorbability in vivo. It has been widely used in biomedical applications, such 

as sustained drug delivery systems, implants for orthopedic devices and absorbable 
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fibers. However, the low hydrophilicity and high crystallinity of PCL reduce its 

degradation rate, which results in poorer soft tissue compatibility [25-28]. Anti-

tumor drug, doxorubicin (DOX), is widely used in cancer chemotheraphy. Major 

drawbacks of the drug is the acute toxicity to normal tissue and inherent multi-drug 

resistance effect. To reduce the acute toxicity of the free drug and improve their 

therapeutic efficacy, various liposome [29] and polymeric micelle systems were 

designed as delivery vehicles. The use of polymeric micelles as carriers of anticancer 

drugs has advanced greatly by the work of some researchers [30].   

Micelles formed from amphiphilic block copolymer shape recently attracted 

significant attention in diverse fields of medicine and biology. In particular, 

polymeric micelles have been developed as drug and gene delivery systems  as well 

as carriers for various contrasting agents in diagnostic imaging applications. In an 

aqueous environment, the hydrophobic blocks of the copolymer are expected to 

segregate into the core of the micelle, whereas the hydrophilic blocks form the 

corona or outer shell. Such a core-shell architecture of the polymeric micelles is 

essential for their utility as novel functional materials for pharmaceutical 

applications. The hydrophobic micelle core serves as a microenvironment for the 

incorporation of various therapeutic compounds; the corona, or outer shell, serves as 

a stabilizing interface between the hydrophobic core and the external medium. As a 

result, polymeric micelles can be used as efficient containers for reagents with poor 

solubility and/or low stability in physiological environments. Interest in polymeric 

micelles for drug delivery has increased rapidly since the late 1980s. Most of the 

work has focused on classical micelles formed by intermolecular aggregation of 

amphiphilic polymers as the drug delivery vehicle, and the advantages of using 

micelle structures as a drug delivery system have been demonstrated. 

The major factors that influence the performance of polymeric micelles for drug 

delivery are loading capacity, release kinetics, circulation time, biodistribution, size, 

and stability. Micelle stability is particularly important. Recent studies have shown 

that the in vivo antitumor activity of a drug incorporated into the polymer micelles is 

positively correlated with the stability of micelles in vitro. The formation of classical 

micelles is thermodynamically favorable only above a specific concentration of the 

amphiphilic molecules (critical micelle concentration, cmc). Above the cmc, micelles 

are in dynamic equilibrium with the free copolymer molecules (unimers) in solution, 
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continuously breaking and reforming. When the concentration of the copolymer is 

below the cmc, micelles tend to disassemble. Such thermodynamic instability of 

micelles below the cmc is one of the concerns for their application in vivo. A 

delivery system is subject to a severe dilution upon intravenous injection into an 

animal or human subject. In the bloodstream, under dilution, micelles begin to 

disassemble, causing changes in micelle structure and size. Therefore, controlling the 

release rate of drugs is difficult. Sudden dissociation of micelles may cause serious 

toxicity problems due to potentially large fluctuations in drug concentrations. 

The problem associated with the classical micelle structure can be overcome by 

developing molecules in which the lipophilic components are covalently bound 

together within the micelle core. Core polymerization is an effective method to 

prevent dissociation of the block copolymer micelle. Kataoka’s group has 

successfully employed this idea. In their study, the micelles were prepared from an 

amphiphilic block copolymer in which the hydrophobic block contained a 

polymerizable end group. After micellation, the end groups on the hydrophobic block 

were polymerized to form a stable core for the star-shaped polymer structure. The 

resulting micelles showed fairly high stability and maintained small size. As 

anticipated, the core polymerized micelle showed excellent solubilization of rather 

large molecules such as taxol .  

Another approach developed recently by Uhrich et al.  with a three-arm star polymer 

composed of mucic acid substituted with fatty acid as the lipophilic inner block and 

with PEG as the hydrophilic outer block. This new type of molecule was capable of 

encapsulating a hydrophobic model drug in aqueous media. However, due to the 

structural constraints, the free volume of the hydrophobic core was limited, and only 

one or two drug molecules could be encapsulated in each micelle. A series of star 

block copolymers with the number of arms ranging from three to eight has also been 

synthesized. The arms were composed of block copolymer with PEG as the inner 

hydrophilic block and PCL as the outer hydrophobic block. The application of this 

type of copolymer as an injectable drug delivery system was reported. It was found 

that a reversible sol-gel transition process exists for this system, which is useful for 

drug delivery. However, such star copolymers do not form micelles in aqueous 

media because the hydrophilic block is located in the interior of the star. A recent 

paper described the synthesis of a four-arm star block copolymer of PCL and PEG by 
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the same route and similar chemistry as reported in this paper. Another paper 

described the preparation of a four-arm star PCL-b-PEG polymer with diethylzinc 

catalyst. However, the molecular weight distribution of the block copolymer was 

unacceptably wide. 

Many studies have been carried out using dendrimers as drug delivery systems. Star 

polymers with a dendrimer as the hydrophobic core and multiple PEG chains as the 

hydrophilic arms have been synthesized and investigated as unimolecular micelles 

for drug delivery by Fre´chet and Kono. It has been demonstrated that the micelles 

with larger dendrimer core have a higher encapsulation capability than those with 

smaller cores. However, due to the structural limitations involved in the synthesis of 

dendrimers of higher generation, and the relatively compact structure of the 

dendrimers, it is difficult to increase significantly the size of the hydrophobic 

dendritic core in the dendrimer- PEG star polymer. Therefore, such dendrimer 

systems have limitations in terms of drug-loading capacity and delivery of 

compounds of large size [31].     

2.3 Targeted Drug delivery  

There are two ways of targeted drug delivery.  

2.3.1 Passive tumor targeting 

Most anticancer drugs used in conventional chemotherapy have no tumor selectivity 

and are randomly distributed in the body, resulting in a relatively low therapeutic 

index. For this reason, the common solid tumors that are major causes of cancer 

mortality are difficult to treat with chemotherapy alone. Polymeric carriers bearing 

physically entrapped or chemically conjugated drugs are an attractive strategy for 

improving the efficiency of tumor targeting. These nanoscale drug delivery systems 

have shown promising pharmacokinetics at both the whole body and cellular levels. 

At first, it seemed as though receptor-mediated targeting was the only workable way 

to improve tumor selectivity, and thus, many researchers sought to develop 

conjugates bearing tumor-specific antibodies or peptides. However, more recent 

studies have shown that polymer-conjugated drugs and nanoparticulates show 

prolonged circulation in the blood and accumulate passively in tumors even in the 
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absence of targeting ligands, suggesting the existence of a passive retention 

mechanism. 

Tumor blood vessels are generally characterized by abnormalities such as a relatively 

high proportion of proliferating endothelial cells, increased tortuosity, pericyte 

deficiency and aberrant basement membrane formation. This defective vascular 

structure, which is likely the result of the rapid vascularization necessary to provide 

oxygen and nutrients for fast-growing cancers, decreases lymphatic drainage and 

renders the vessels permeable to macromolecules. Because of the decreased 

lymphatic drainage, the permeant macromolecules are not removed efficiently, and 

are thus retained in the tumor. This passive targeting phenomenon, first identified by 

Maeda et al. has been called the ‘‘enhanced permeation and retention (EPR) effect’’. 

Since this first identification, numerous studies have shown that the EPR effect 

results in passive accumulation of macromolecules and nanosized particulates (e.g. 

polymer conjugates, polymeric micelles, dendrimers, and liposomes) in solid tumor 

tissues, increasing the therapeutic index while decreasing side effects. (Fig. 2.2) 

illustrates the concept of passive tumor targeting by EPR effects.  

The optimum size of nanoparticles that can be accumulated in a tumor by the EPR 

effect is not yet precisely known. However, studies using liposomes and 

nanoparticles have indicated that the cutoff size of the pores in tumor vessels is as 

large as 200 nm–1.2 mm and direct observation of tumor vasculature has 

demonstrated a tumor dependent pore cutoff size ranging from 200nm to 2 mm. 

These size ranges seem to indicate that drug loaded nanoparticles may be 

accumulated in malignant tumor cells. Consistent with this, administration of 

liposomal formulations with entrapped DOX have been demonstrated to exhibit 

favorable pharmacokinetics due to EPR-mediated tumor targeting, as compared with 

free DOX. In addition, polymer-based nanoparticles bearing DOX were found to 

circulate in the blood for more than 3 days, and gradually accumulated in tumors via 

the EPR effect. In theory, the EPR effect could be used to generally deliver genes 

and proteins to primary or metastasized tumors, suggesting that a wide variety of 

polymer-based nanomedicines may be used for tumor targeting of anticancer drugs. 

However, it should be noted that the vessel permeability that forms a cornerstone of 

the EPR effect varies during tumor progression. In addition, extravasation of 
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polymeric nanomedicines will depend on the tumor type and anatomical location, as 

well as the physicochemical properties of the utilized polymer [32]. 

 

Figure 2.2: Passive drug targeting through the enhanced permeability and retention 
(EPR) effect. The polymeric nanoparticles preferentially accumulate in 
solid tumors, owing at least in part to leaky tumor vessels and an 
ineffective lymphatic drainage system [32]. 

2.3.2 Active tumor targeting 

Researchers have expended a great deal of effort aimed at developing methods for 

efficiently delivering drugs to tumor cells through active targeting. Cancer cells often 

display increased cell surface expression of proteins that may be found at low levels 

on normal cells (tumor-associated antigens), as well as proteins that are found 

exclusively on cancer cell surfaces (tumor-specific antigens). Active drug targeting is 

usually achieved by chemical attachment to a targeting component that strongly 

interacts with antigens (or receptors) displayed on the target tissue, leading to 

preferential accumulation of the drug in the targeted organ, tissue, or cells. The use 

of a targeting moiety not only decreases adverse side effects by allowing the drug to 

be delivered to the specific site of action, but also facilitates cellular uptake of the 

drug by receptor mediated endocytosis, which is an active process requiring a 

significantly lower concentration gradient across the plasma membrane than simple 

endocytosis. 
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Active targeting often makes use of monoclonal antibodies, which were first shown 

to be capable of binding to specific tumor antigens in 1975. For successful cancer 

therapy, antigen targets for monoclonal antibody therapy should be expressed on the 

cancer cells but not on critical host cells, and there should be a low risk of mutation 

or structural variation among the antigens. Several monoclonal antibody-based 

therapeutic agents have been approved by the FDA. In addition, although 

monoclonal antibodies were initially used as therapeutic agents in their own right, 

they may also serve as carriers by conjugation to a drug or nanoparticular drug 

delivery system. 

Numerous other ligands have been used for active targeting. Folate targeting is an 

interesting approach for cancer therapy because it offers several advantages over the 

use of monoclonal antibodies. Folates are low molecular weight vitamins required by 

eukaryotic cells, and their conjugates have the ability to deliver a variety of drugs or 

imaging agents to pathological cells without causing harm to normal tissues. More 

importantly, elevated levels of folate receptors (FRs) are expressed on epithelial 

tumors of various organs such as colon, lung, prostate, ovaries, mammary glands, 

and brain. Folate is known to be non-immunogenic, and folate-conjugated drugs or 

nanoparticles are rapidly internalized via receptor-mediated endocytosis.  

Furthermore, the use of folate as a targeting moiety is believed to bypass cancer cell 

multidrug-efflux pumps. The receptor-mediated uptake of folate conjugates proceeds 

through a series of distinct steps, as shown in Figure 2.3. The process begins with the 

conjugate binding to FRs on the cell surface. The plasma membrane then invaginates 

and eventually forms a distinct intracellular compartment. The endocytic vesicles 

(endosomes) become acidified to pH ca. 5, allowing the FR to release the folate 

conjugates. The membrane-bound FRs recycle back to the cell surface, allowing 

them to mediate the delivery of additional folate conjugates. Concurrently, the folate 

conjugates released from FRs escape the endosome, resulting in drug deposition in 

the cytoplasm. To date, a number of conjugates (including protein toxins, immune 

stimulants, chemotherapeutic agents, liposomes, nanoparticles, and imaging agents) 

have been successfully modified with folates and delivered to FR-expressing cells. 

Transferrin, an 80kDa glycoprotein, is also suitable ligand for tumor targeting 

because its receptors are over-expressed on cancers, at levels correlating with the 

grade of malignancy. Transferrin is synthesized by the liver and secreted to plasma, 
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where it binds to endogeneous iron, forming the iron-transferrin chelate, which is an 

important physiological source of iron for cells in the body. Transferrin receptors on 

cell surfaces recognize the chelate and mediate its endocytosis into acidic 

compartments. The low pH environment triggers dissociation of the iron and the 

iron-poor transferrin is released out of the cell for recycling. Transferrin receptors are 

often upregulated on the surface of malignant cells, and have thus become a target 

for cancer therapy. Bellocq et al. developed a transferrin-modified, cyclodextrin 

polymer- based gene delivery system composed of polymer/ DNA nanoparticles that 

were surface-modified to display PEG, yielding transferrin targeting of cancer cells. 

These transferrin-conjugated nanoparticles remained stable in a physiological 

solution and could be used to transfect leukemia cells with increased efficiency over 

untargeted particles, indicating the potential of transferrin-modified nanoparticles in 

cancer therapeutics. More recently, Sahoo and Labhasetwar prepared paclitaxel 

loaded nanoparticles with shells formed of the biodegradable polymer, poly(lactic–

co–glycolic acid) (PLGA), conjugated to transferrin via epoxy linkages. The 

transferrin-conjugated nanoparticles demonstrated greater cellular uptake and 

reduced exocytosis, yielding greater antiproliferative activity and more sustained 

effects compared to the free drug or unconjugated nanoparticles. 

Luteinizing hormone-releasing hormone (LHRH) is another targeting moiety; the 

LHRH receptor is barely present on the surfaces of most healthy human cells, but is 

over-expressed in ovarian and some other cancer cells. Dharap et al. recently 

developed the LHRH–PEG–camptothecin targeted anticancer drug delivery system, 

wherein LHRH targets the corresponding receptors in cancer cells: PEG is used as a 

carrier to prolong the circulation time in blood, and camptothecin functions as the 

anticancer drug. The targeted conjugate exhibited significantly higher cytotoxicity 

against cancer cells than the non-targeted PEG– camptothecin conjugate or the free 

drug in vivo, indicating the validity of actively targeted nanoparticles for anticancer 

therapy [32]. 
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Figure 2.3: Receptor-mediated endocytosis of folate-conjugated drugs. The folate             
receptors recognize the conjugates, which are subsequently subjected to 
membrane invagination. As the endosomal compartment acidifies, the 
conjugate and the drugs are released from the receptor into the cytosol 
[32].. 

2.4 Micelle structure and composition 

Polymer micelles are composed of amphiphilic macromolecules that have distinct 

hydrophobic and hydrophilic block domains, with the structure of the copolymers 

usually being a di-block, tri-block, or graft copolymer. Within each copolymer 

system, aqueous exposure induces the hydrophobic and hydrophilic segments to 

phase separate and form nanoscopic supramolecular core/shell structures.  

Depending on the relative size of the hydrophobic and hydrophilic segments and 

solvent conditions, Eisenberg et al. have demonstrated the formation of structures of 

many morphologies, including spheres, rods, vesicles, tubules, and lamellae. 

Although aggregates of different morphology may provide drastically different 

pharmacokinetic properties, as in the case of filamentous nanocarriers which can 

provide different flow behavior over spherical particles due to anisotropic alignment  

most current applications have focused on spherical micelles and thus will be the 

subject of this review. Many types of copolymers have been used for micelle 

formation, but the requirements of biocompatibility and oftentimes biodegradability 

have limited the choice of copolymers in clinical applications. Table 2.1 provides the 

names and structures of common copolymers for drug delivery applications. For the 
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hydrophilic segment, the most commonly used polymer is polyethylene glycol (PEG) 

with a molecular weight of 2-15 kD. PEG is completely water soluble, non-toxic, and 

uncharged, the latter property serving to lessen the possibility of undesired 

electrostatic interactions with plasma proteins. Other hydrophilic polymers such as 

poly(N-vinyl pyrrolidone) (PVP) or poly(N-isopropyl acrylamide) (pNIPAM) have 

also been used to form the micelle corona layer. For the hydrophobic segments, the 

most common materials are hydrophobic polyesters, but other materials, such as 

polyethers, polypeptides, or poly(β-amino ester) have also been used. Polyesters and 

polyamides can undergo hydrolytic and enzyme-catalyzed degradations, respectively, 

and are considered biodegradable. As an example of a micelle forming copolymer, 

Pluronic is a ternary copolymer of PEG and poly(propylene oxide) (PPO) oriented in 

a PEG-PPO-PEG configuration. Upon micellization, the hydrophobic PPO segments 

form the core while the PEG segments form the corona. The core-shell structure of 

polymer micelles affords several advantages for drug delivery applications. Firstly, 

drug encapsulation within the micelle core allows for solubilization of water 

insoluble drugs. For example, the water solubility of paclitaxel can be increased by 

several orders of magnitude from 0.0015 to 2 mg/mL through micelle incorporation. 

Secondly, micelles have prolonged blood half-lives because PEG prevents 

opsonization, effectively reducing micelle uptake by the reticuloendothelial system 

(RES). Thirdly, their small size (10-100 nm) makes them suitable for injection and 

enhanced tumor deposition due to the enhanced permeability and retention (EPR) 

effect stemming from the leakiness of tumor vasculature. Finally, their chemistry 

allows for the development of multifunctional modalities that can enhance micelle 

accumulation in cancerous tissues and facilitate drug internalization inside cancer 

cells [33]. 
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   Table 2.1: Commonly Used Block Segments of Copolymers for Micellar Drug 
Delivery Systems [33]. 

 

 

 

Figure 2.4: Shematic illustration of the core-shell structure of a polymer micelle 
with intended functions of each component 
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2.4.1 Methods of micelle preparation 

There are two principal methods for the preparation of block copolymer micelles, the 

direct dissolution method and the dialysis method, as outlined in Fig. 2.5. The choice 

of which method to use depends mostly on the solubility of the block copolymer in 

water. To this point, mostly startype micelles have been investigated as drug carriers. 

Star-type micelles are formed from block copolymers which have corona-forming 

blocks that are longer than the core-forming blocks. If the copolymer is marginally 

soluble in water, the direct dissolution method is employed, whereas if the 

copolymer is poorly soluble in water, the dialysis method is usually employed.  

The direct dissolution simply involves adding the copolymer to water or another 

aqueous medium such as phosphate buffer saline. The micelles formed from the                 

PEO-b-PPO-b-PEO copolymers are routinely formed by direct dissolution, but in 

some cases the copolymer and water are mixed at elevated temperatures to ensure 

micellization. 

The dialysis method is often used when micelles are to be formed from a copolymer 

that is not easily soluble in water. In this case, the copolymer is first dissolved in a 

common organic solvent that is miscible with water such as dimethylformamide, 

tetrahydrofuran, or dimethylacetamide. The copolymer solvent mixture is stirred and 

then dialyzed against bidistilled water. During the process of dialysis micelle 

formation is induced and the organic solvent is removed. 

The size and size population distribution of micelles produced using the dialysis 

method may vary depending on the organic solvent employed. In addition, the 

weight fraction or yield of micelles obtained was also found to vary with the choice 

of organic solvent. For example, in a study by La et al., the use of DMSO as the 

organic solvent gave rise to PEO-b-PBLA micelles which were only 17 nm in size; 

however, only 6% of the copolymer formed micelles. Yet, when DMAc was used, 

the micelles were obtained in high yield, with an average particle size of 19 nm and a 

narrow size distribution. In this way, the dialysis method provides a means of 

tailoring the size and size population distribution of the micelles. 

Recently, our group has been worked on crewcut micelle systems formed from a 

variety of copolymers such as PS-b-PAA, PS-b-PEO and PCL-b-PEO. Crew-cut 
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aggregates are formed from copolymers which have core-forming blocks that are 

longer than the corona-forming blocks. These copolymers are thus insoluble in water 

and therefore must first be dissolved in a common organic solvent. For this reason, 

the method of preparation employed involves the initial dissolution of the copolymer 

in a common organic solvent followed by the slow addition of water at a very slow 

rate. Self-assembly occurs at some critical water content which depends on the 

physical properties of the block copolymer, primarily the length of the hydrophobic 

block and the copolymer concentration. The copolymer in the organic:water solvent 

mixture is then dialyzed against bidistilled water. Our studies have found that the 

size, size distribution and morphology of the micelles can depend on both the 

common organic solvent employed and the rate of water addition to the copolymer 

solvent mixture. Once again this demonstrates the many parameters of the micelles 

(size, size population distribution and morphology) that can be manipulated by 

simple variations within the method of preparation. 

2.4.2 Micelle stability 

The stability of block copolymer micelles includes two different concepts 

thermodynamic stability and kinetic stability. A micelle is thermodynamically stable 

relative to disassembly to single chains in pure water if the total copolymer 

concentration is above the critical micelle concentration (CMC). The critical micelle 

concentration (CMC) is the copolymer concentration below which only single chains 

exist but above which both micelles and single chains are present. However, even if a 

micelle system is below its CMC, it may still be kinetically stable and survive at least 

for some period or time, if the core is large and the core material is below the Tg or if 

it is crystalline and thus physically crosslinked. Table 2.2, discusses the way in 

which a number of parameters affect the stability of the micelle as a drug delivery 

vehicle.  

The CMC of polymeric micelles can be estimated by fluorescence spectroscopy 

using pyrene, a hydrophobic fluorescence probe that preferentially partitions into the 

hydrophobic core of the micelle. Pyrene undergoes changes in its photophysical 

properties as a result of the change in the micropolarity and it experiences upon 

diffusion from bulk water (hydrophilic environment) into the micelle core 

(hydrophobic environment). Two methods exist for determining the CAC of 
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polymeric micelles with pyrene fluorescence. The original method, proposed by 

Kalyanasundaram et al. takes advantage of the changes in the vibronic fine structure 

of the pyrene emission and monitors the changes in the ratio of the intensities I1 and 

I3 of the [0,0] and [0,2] bands, respectively. More recently, it has been suggested that 

a more accurate determination of the CAC can be obtained by monitoring the 

changes in the ratio of the pyrene excitation spectra intensities at λ = 333 nm for 

pyrene in water and λ = 336 nm for pyrene in a hydrophobic medium. By plotting the 

I336/I333 intensity ratios vs. the logarithm of the concentration of the aqueous 

solutions of copolymer, sigmoidal curves are obtained, where, at the CAC, a sharp 

increase is observed in the fluorescence intensity ratio (I336/I333) as the polymer 

concentration increases [34]. 

2.4.2.1 Thermodynamic stability 

A delivery system is subject to ‘sink conditions’ or severe dilution upon intravenous 

injection into an animal or human subject. In an average individual, the total blood 

volume is approximately 5,L. For example, following the intravenous injection of 

100 mL (i.e. 0.3 mL kg-1 min-1 for 5 min.) of a 2% (w:w) PCL21-b-PEO44 micelle 

solution, the concentration of copolymer in the blood would be 400 mg L-1. 

Therefore it is very important to know the critical micelle concentration of a 

particular copolymer. The CMC for PCL21-b- PEO44 is 2.8x10-7 or 1.2 mg L-1 . 

However, the copolymer concentration of 400 mg L-1 may be below the value of the 

CMC of many of the other block copolymers that have been explored as micellar 

delivery vehicles.  

The CMC values for PBLA-b-PEO have been reported to range between 5–18 mg L-1 

while the CMC for a PLA-b-PEO system was found to be 35 mg L-1. The CMC 

values for several PEO-b-PPO-b- PEO systems were reported to range between 10 

and 1000 mg L-1. In some cases, injecting a larger volume or a more concentrated 

micellar solution would prevent the copolymer concentration from falling below the 

CMC immediately upon injection.  

However, it may prove to be more advantageous to begin with a copolymer system 

with a lower CMC value. The CMC of a copolymer is determined by many factors, 

some of which are the nature and length of the coreforming block, length of the 

hydrophilic block and the presence of hydrophobic solubilizates. The nature and 
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length of the core-forming block have the most profound effect on the CMC. 

Amphiphilic copolymers which contain a highly hydrophobic block have lower 

CMC values in water than those which include the less hydrophobic blocks. The 

CMC values for PS-b-PEO copolymers, which contain the highly hydrophobic 

polystyrene block, range between 1 and 5 mg L-1. 

For a series of copolymers, if the corona-forming block is kept constant, an increase 

in the molecular weight of the core-forming block will decrease the CMC. To a 

lesser extent, if the length of the core-forming block is maintained at a constant 

length, than an increase in the length of the hydrophilic block will cause an increase 

in the value of the CMC. 

The use of a copolymer system with a low CMC value may increase the in vivo 

stability of the micelles. However, in many papers, the disassembly of micelles into 

single chains is mentioned to be advantageous since this will facilitate elimination 

of the copolymer material from the body via the kidneys. Therefore, the ideal micelle 

system will be stable to sink conditions encountered upon injection and will facilitate 

elimination by eventual disassembly into single chains [35]. 

2.4.2.2 Kinetic stability 

The disassembly of micelles at copolymer concentrations below the CMC has been 

reported to be quite slow for some copolymer systems. The rate of disassembly 

depends, among others, upon the physical state of the micelle core. Micelles formed 

from copolymers containing a hydrophobic block which has a high glass transition 

temperature will tend to disassemble more slowly than those with a low glass 

transition temperature. 

The rate of disassembly is likely affected by many of the same factors which affect 

the rate of unimer exchange between micelles. The unimer exchange rate has been 

found to be dependent on many factors such as content of solvent within the core, the 

hydrophobic content of the copolymer and the lengths of both the hydrophilic and 

hydrophobic blocks. For example, Creuz et al. studied micelles formed from 

poly((dimethylamino)alkyl methacrylate)-bsodium methacrylate and found that the 

rate of unimer exchange decreased with an increase in the hydrophobic:hydrophilic 

balance of the copolymer. 
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In addition, there is also evidence that the incorporation of hydrophobic compounds 

into block copolymer micelles may enhance micelle stability (Table 2.2). For 

example, in a study by Kataoka’s group, they found that both the physical 

entrapment and:or chemical conjugation of adriamycin (ADR) into the micelle core 

increased the structural stability of the poly(ethylene glycol)– poly(aspartic acid) 

(PEG–P(Asp)) micelles. In their study, they assessed the stability of the micelle by 

gel exclusion chromatography. They found that the stability of the micelle increased 

as the amount of chemically conjugated adriamycin was increased, and also that the 

physical entrapment of adriamycin into the PEG– P(Asp)ADR micelles further 

enhanced micellar stability. They suggested that the presence of both the physically 

entrapped and chemically conjugated drug increased the hydrophobic interactions 

within the core, producing micelles which were more tightly packed [35]. 

Table 2.2: The various factors which influence the thermodynamic or kinetic 
stability of block copolymer micelles [35]. 

 

2.4.4 Micelle size 

The size of colloidal particles is one of the properties which largely influences the 

circulation time and organ distribution of the vehicle. Particles which are less than 

200 nm are said to be less susceptible to RES clearance, and those less than 5 mm 

have access to small capillaries. Also, the size of the carrier may influence its 

mechanism of entry into cells, which may, in turn, influence the kinetics and extent 

of cell uptake. 

The size of micelles is controlled by several factors, among which are the length of 

the coreforming block and the length of the corona forming block. Several different 

groups have contributed to this area of research, and as a result scaling relations have 

been developed [36].  
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Small size (10±100 nm) is one of the most interesting features of polymeric micelles. 

Besides allowing the extravasation of the carriers, it permits the sterilization of the 

preparation to be done simply by filtration and minimizes the risks of embolism in 

capillaries, contrary to larger drug carriers . Micellar size seldom exceeds 100 nm, 

but depends on several factors including copolymer molecular weight, relative 

proportion of hydrophilic and hydrophobic chains and aggregation number. The size 

of micelles prepared by dialysis can be affected by the organic solvent used to 

dissolve the polymer. It was shown that PEO±PBLA micelles prepared by first 

dissolving the block copolymer in DMF and dialyzing the resulting solution against 

water, yielded larger micelles than micelles directly prepared in water. Size 

measurements can be done to study the interaction of polymeric micelles with 

biological media. For instance, PEO±PPO±PEO micelles were found to maintain 

their initial size in the presence of antibodies and bovine serum albumin, suggesting 

the apparent absence of interaction with plasma proteins. 

Determination of micelle size is particularly useful for the characterization of 

thermo-responsive micelles. Polymers used to prepare such micelles exhibit a lower 

critical solution temperature (LCST) which can be defined as the temperature at 

which the polymer phase separates . Below the LCST the polymer is soluble, but it 

precipitates at temperatures above the LCST. The diameter of these micelles rapidly 

rises at temperatures above the LCST, of the micelles. This effect of temperature on 

size was shown to be reversible, since the micellar architecture was maintained after 

lowering the temperature below the LCST. 

Micellar diameter and size polydispersity can be obtained directly in water or in an 

isotonic buffer by dynamic light scattering (DLS). DLS can also provide some 

information on the sphericity of polymeric micelles. By DLS, it was shown that the 

addition of a low molecular weight surfactant such as sodium dodecyl sulfate (1% 

w/v) can destroy the polymeric micelle structure and brings about a complete shift of 

the mean diameter from approximately 50 to 3 nm . 
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Figure 2.5: In-vivo behaviour of the polymeric micelles [37]. 

Micellar size can also be estimated by atomic force microscopy (AFM), transmission 

electron microscopy, scanning electron microscopy (SEM). These methods allow the 

characterization of the micelle shape and size dispersity. Conventional SEM is 

widely used in the field of colloidal carriers since it has high resolution and the 

sample preparation is relatively easy. However, to be analyzed, the samples must 

withstand high vacuum. Furthermore, the visualization of the particles requires them 

to be conductive, which is achieved by coating their surface with gold. The thickness 

of the coating, which can reach several nanometers, has to be taken into account in 

the size determination. New imaging tools such as AFM enable the visualization of 

polymeric micelles at atmospheric pressure without gold coating. By AFM, Cammas 

et al.  showed that micelles of PNIPA±b±PSt had a discus shape with a 5 nm height 

and a 20 nm diameter, which was close to the 24 nm size measured by DLS. Finally, 

ultracentrifugation velocity studies are sometimes performed to assess the 

polydispersity of polymeric micelles [35]. 
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2.5 Drug incorporation 

The method of drug incorporation employed will depend mostly on the method of 

micelle preparation used for the particular block copolymer in question. If the 

micelles are formed by direct dissolution in water, than an aliquot of a copolymer 

water stock solution is often added to a vial which contains the drug to be 

incorporated. For example, a drug stock solution in acetone is made and then an 

aliquot is added to an empty vial, the acetone is allowed to evaporate, and then the 

copolymer:water mixture is added. However, the drug may also be incorporated by 

the oil in water emulsion method, in which case the drug is added dropwise in a 

solvent such as chloroform to the micelle solution in water. The drug is incorporated 

as the solvent evaporates. 

Finally, if the micelles are prepared by the dialysis method, then the drug is added 

with the copolymer to the common organic solvent and then the preparation proceeds 

as described above for the micelles alone. In some cases, the oil in water emulsion 

method is also used for the incorporation of drugs into micelles prepared by the 

dialysis method. 

In a study by La et al., the amount of indomethacin (IMC) entrapped into PEO-b-

PBLA micelles was measured when both the dialysis method and the oil in water 

emulsion method were employed as methods of drug incorporation. The amount of 

IMC entrapped into the PEO-b-PBLA micelles was found to be 20.4% (w:w) and 

22.1% (w:w) when the dialysis method and oil in water emulsion method were 

employed, respectively. 

For the incorporation of drugs into crew-cut micelle systems, the slow addition of 

water method may be employed, as described previously. For example, the 

copolymer and drug are dissolved in the organic solvent and stirred for several hours. 

Water is then added at a slow rate and then the solutions are dialyzed against 

bidistilled water.  

2.5.1 Drug loading procedures 

Insoluble drugs can be incorporated in micelles by chemical conjugation or by 

physical entrapment through dialysis or emulsification techniques (Fig. 2.7). The 

simple equilibration of the drug and micelles in water may not result in high levels of 

incorporated drug. Chemical conjugation implies the formation of a covalent bond, 
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such as an amide bond, between specific groups on the drug and the hydrophobic 

polymer of the core. Such bonds are resistant to enzymatic cleavage mainly because 

of steric hindrance and cannot be readily hydrolyzed unless spacer groups are 

introduced. When possible, the incorporation of a drug by a physical procedure 

should be preferred. However, the insertion of hydrophilic compounds such as 

proteins may require the chemical hydrophobization of the molecule. Polyionic 

compounds can be incorporated through the formation of polyion complex micelles. 

Physical entrapment of drugs is generally done by the dialysis (Fig. 2.6a) or oil-in-

water emulsion procedure (Fig. 2.6b). The dialysis method consists in bringing the 

drug and copolymer from a solvent in which they are both soluble (e.g. ethanol, N-N-

dimethylformamide) to a solvent that is selective only for the hydrophilic part of the 

polymer (e.g. water). As the good solvent is replaced by the selective one, the 

hydrophobic portion of the polymer associates to form the micellar core 

incorporating the insoluble drug during the process. Extending the dialysis over 

several days may ensure the complete removal of the organic solvent. The oil-in-

water emulsion method consists in preparing an aqueous solution of the copolymer to 

which a solution of the drug in a water-insoluble volatile solvent (e.g. chloroform) is 

added in order to form an oil-in-water emulsion. The micelle-drug conjugate is 

formed as the solvent evaporates. The main advantage of the dialysis procedure over 

the latter method is that the use of potentially toxic solvents such as chlorinated 

solvents can be avoided. Both dialysis and oil-in-water emulsion methods were   for 

the incorporation of DOX in PEO±PBLA micelles. The emulsification method was 

more efficient since the DOX content of the micelles was estimated to be 12% (w/w) 

compared to 8% (w/w) for the dialysis technique. 

The drug loading procedure may affect the distribution of a drug within the micelle. 

Cao et al. showed that pyrene incorporated in micelles as they were forming was not 

protected from the aqueous environment as well as pyrene incorporated after 

micelles were formed, although the first method yielded a drug loading three times 

higher than the second method. Protection from aqueous environment may explain 

the improved chemical stability of DOX incorporated into polymeric micelles and 

the increased resistance of plasmid DNA in polyion complex micelles against 

enzymatic degradation. 
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Entrapment efficiency depends on the initial amount of drug added. Going over the 

maximum loading capacity results in precipitation of the drug and lower yield. Drug 

loading efficiency was also found to be dependent on the aggregation number of the 

copolymer. Micelles showing a higher aggregation number allow a greater amount of 

drug to be solubilized in their inner core [37]. 

 

Figure 2.6: Drug loading of polymeric micelles by the dialysis (a) and the oil-in-
water methods (b) [37]. 

2.5.2 Loading capacity 

The micelle core serves as the cargo space for various lipophilic drugs. However, this 

cargo space is limited; for instance, a typical 1% (w:w) PCL-b-PEO (20-b-44) 

micelle solution contains only approximately 0.5% core volume. This means that in a 

1 mL aliquot of this 1% (w:w) micelle solution only 5 mL is core volume. In order to 

exploit maximally the minimal loading space available, we must manipulate the 

many factors which control the loading capacity and loading efficiency. 

Several of the major factors which influence both the loading capacity and loading 

efficiency of block copolymer micelles are nature of the solute, nature of the core-
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forming block, core block length, total copolymer molecular weight, solute 

concentration and, to a lesser extent, the nature and block length of the corona. Many 

studies have indicated that the overriding factor is the compatibility between the 

solubilizate and the core-forming block [38]. 

2.5.3 Examples of drug-loaded polymeric micelles 

Examples of compounds loaded into polymeric micelles as well as the corresponding 

drug loading procedure are given in Table 2.3. Although polymeric micelles have 

mostly been studied as delivery systems for anticancer drugs they could be used to 

transport plasmid DNA , antisense oligonucleotides or for the delivery of diagnostic 

agents to a specific organ in the body. 

Evidence of drug incorporation can be obtained by GPC or DLS since both methods 

can detect a change in micellar size which usually increases in the presence of drugs. 

The location of a drug inside the micelle core is sometimes demonstrated by 

quenching experiments. For instance, iodide (I2) which is a water soluble quencher of 

DOX, does not affect the fluorescence of the micelle incorporated drug but quenches 

the fluorescence of the free drug. Such experiments showed that DOX was retained 

in PEO±PBLA after freeze drying and reconstitution in water. In the case of DOX, 

the self-association of the drug in the micelle core also results in a decrease in the 

fluorescence intensity of the drug. More recently, the retention and slow release of 

amphotericin B from polymeric micelles was indirectly ascertained by measuring the 

decrease of its hemolytic activity after incorporation into PEO±PBLA micelles [39]. 
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Table 2.3: Examples of drugs and tracers loaded into polymeric micelles [39]. 

 

2.6 Star Polymers  

Polymer properties are influenced by their structure and topology. Therefore,         

the synthesis of complex macromolecular architectures to control polymer properties 

is an ongoing field of study in polymer science. Branching in polymers is a useful 

structural variable that can be used advantageously to modify polymer physical 

properties and the processing characteristics as a result of changing the melt, 

solution, and solid-state properties of polymers [40]. It has been shown that 

branching results in a more compact structure in comparison to linear polymers of 

similar molecular weight, due to their high segment density, which affects the 

crystalline, mechanical, and viscoelastic properties of the polymer. A branched 

polymer structure was described as a nonlinear polymer comprised of molecules with 

more than one backbone chain radiating from branch points (junction points; atoms 

or small group from which more than two long chains emanate) [41]. Star polymers 
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constitute the simplest form of branched macromolecules where all the chains as arm 

segments of one molecule are linked to a centre (Figure 2.7).  

 

 

Figure 2.7: Illustration of a star polymer. 

2.6.1 Preparation of star polymers  

The methodology of living polymerization is ideally suited for the preparation of star 

polymers since it is possible to vary and control important structural parameters such 

as molecular weight, molecular weight distribution, copolymer composition and 

microstructure, tacticity, chain end functionality and the number of branches per 

molecule. Because termination and chain transfer reactions are absent and the chain-

ends may be stable for sufficient time periods, these polymerizations have the 

following useful synthetic attributes for star polymer synthesis: 

I. One polymer is formed for each initiator molecule, so that the number average 

molecular weight of polymers or block segments can be predicted from the reaction 

stoichiometry. Multifunctional initiators with functionality n can form stars with n 

arms. 

II. If the rate of initiation is rapid or competitive with the rate of propagation, 

polymers  with narrow molecular weight distributions are formed [42]. 

III. When all of the monomer has been consumed, the product is a polymer with 

reactive chain ends that can be participate in a variety of post polymerization 

reactions: 

a. block copolymerization by addition of a second monomer, and/or 

b. end-linking with multifunctional linking agents to form the corresponding star 

polymers with uniform arm lengths. 
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There are three general synthetic methods for the preparation of star-shaped 

polymers. These methods have been based on two approaches: arm-first and core-

first. 

I. End linking with multifunctional linking agent (arm-first) 

II. Use of multifunctional initiators (core-first) 

III. Use of difunctional monomers (arm-first) 

2.6.1.1 End Linking with Multifunctional Linking Agent (Arm-First Method) 

In the first method, referred to as the “arm-first” method, monofunctional living 

chains of known length and low polydispersity are used as precursor. Subsequently, 

the active sites located at chain end are reacted with a compound carrying a number 

of appropriate reactive functions, whereupon chemical links are formed. The number 

of arms corresponds to the functionality of the linking agent as shown in figure: 2.9. 

The precursor chains become the star branches, and the linking agent becomes the 

core. 

 

Figure 2.8: Illustration of the synthesis of star polymers by arm-first method. 

The main advantage of this method is that the arms of the resulting star polymer are 

well-defined because the precursor arms can be characterized independently from the 

star. Because of the well-defined arms, the number of arms can be readily determined 

by measuring the molecular weight of the star. In principle, a variety of well defined, 

star polymers with different numbers of arms can be prepared using this 

methodology by varying the functionality of the linking agents. Disadvantages of the 

method can be observed. When long time required for the linking reaction and the 

need to perform fractionation in order to obtain pure star polymer, because in almost 

all cases a small excess of the living arm is used in order to ensure complete linking.   
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2.6.1.2Use of multifunctional initiators (core-first method) 

The “core-first” method involves the use of a multifunctional initiator (core). The 

number of arms per star polymer is determined by the number of initiating 

functionalities on each initiator (Figure 2.9). There are several requirements that a 

multifunctional initiator has to fulfill in order to produce star polymers with uniform 

arms, low molecular weight distribution, and controllable molecular weights. All the 

initiation sites must be equally reactive and have the same rate of initiation. 

Furthermore, the initiation rate must be higher than the propagation rate [43]. 

  

Figure 2.9:  Illustration of  the synthesis of star and star block copolymers by “core-
first” method. 

2.6.1.3 Use of difunctional monomers (arm-first method) 

In this method, a living polymer precursor is used as macroinitiator for the 

polymerization of a small amount of a suitable cross-linker, such as ethylene glycol 

dimethacrylate (EGDM) or divinyl benzene (DVB) [44]. Microgel nodules of tightly 

cross-linked polymer are formed upon the polymerization. These nodules serve as 

the branch point from which the arms emanate (Figure 2.10).     

 

Figure 2.10: Illustration of the synthesis of star polymers by “arm-first” method. 
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The functionality of the stars prepared by this method can be determined by 

molecular weight measurements on the arms and the star product, but it is very 

difficult to predict and control the number of arms. The average number of arms 

attached to a star core depends on several experimental parameters, including the 

degree of polymerization (DP) and composition of the arm precursor, the chemical 

nature of cross-linker, the amount of cross-linker. Incomplete incorporation of linear 

arm precursors into the formed star is a common problem in this “arm-first” method, 

which could be explained by the loss of chain-end initiating sites or a buildup of 

steric hindrance around the core, as the coupling reactions proceed. 

2.7 Miktoarm star polymers  

The term “miktoarm” has been attributed to star polymers with three or more arms, at 

least two of which are molecularly and chemically different (chemical asymmetry). 

Miktoarm is a combination of Greek miktos, meaning “mixed”, and arm. This term 

was proposed by Hadjichristidis in 1992  and was widely accepted by the other 

research groups all over the world [45]. Although, the terms heteroarm star and 

AnBm-type star were also used for these types of star structures, miktoarm star (μ-

star) will be used throughout this work to refer to star polymers with corresponding 

structure.    

 

Figure 2.11: Illustration of  the synthesis of star and star block copolymers by 
“core-first” method.Illustration of miktoarm star polymers structures 
where each letter represents different polymeric arms. 
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The most common examples of miktoarm stars are the A2B, A3B, A2B2, AnBn (n > 2) 

and ABC types. Other less common structures, like the ABCD, AB5, and AB2C2 are 

also available (Figure 2.11). 

2.8 Amphiphilic Star Block Copolymers 

Amphiphilic block copolymers with hydrophilic and hydrophobic segments have 

been investigated extensively not only because of their unique self-organization 

characteristics but also for their wide range of potential applications such as drug 

delivery and separations technology [46]. At an aqueous interface, the amphiphilic 

property of block copolymers composed of hydrophilic and hydrophobic segments 

can cause the distal end of the hydrophilic chain to extend into the bulk aqueous 

solution, anchoring the hydrophilic block to the substrate surface through 

hydrophobic segments [47]. Amphiphilic block copolymers form micelles and 

hollow spheres having unique characteristics, such as nanosize, core-shell 

architecture, and low critical micelle concentration, and find potential applications as 

nanoreactors, nanoreservoirs, gene delivery vehicles, and reaction media for 

biocatalysis [48]. In an aqueous solution, micelles with core-shell structure are 

formed through the segregation of insoluble blocks into the core, which is 

surrounded by hydrophilic shell composed of hydrophilic blocks [49]. In general, 

drugs can be loaded into the hydrophobic cores of the micelles, which lowers their 

toxicity in the human body and prolongs their circulation time in the blood [50]. The 

use of block polymer micelles as drug-delivery vehicles, namely, micellar drug-

delivery systems, was proposed in the 1980s with the aim to improve the curative 

effect of sparingly soluble pharmaceuticals [51]. The micellar characteristics of 

amphiphilic diblock copolymers depend on the nature of each block. The surface 

properties of self-organized micelles would be highly dependent on the structure of 

hydrophilic block. For example, poly(ethylene oxide) (PEO) block would provide a 

biocompatible surface environment for micellar aggregates. On the other hand, the 

micellar core characteristics would be determined by the structure of hydrophobic 

blocks  [52]. 

Amphiphilic star-shaped block copolymers have recently attracted much attention 

because these polymers can behave as unimolecular micelles or be designed to 

exhibit a very low critical aggregation concentration (CAC) [53]. So far, several 
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amphiphilic star-block copolymers have been synthesized including star-

poly(ethylene oxide)-block-poly(styrene) [54], star-poly(methyl vinyl ether)-block-

poly(isobutylene) [55], star-poly(2,3-dihydroxypropylacrlate)-block-poly(methyl 

methacrylate) [56], star-poly(ethylene glycol)-block-poly(isobutylene) [57] and star-

poly(methacrylic acid)-block-poly(isobutylene) [58]. However, star-block 

copolymers comprising hydrophobic biodegradable and hydrophilic biocompatible 

segments are of particular interest, especially for biomedical applications. 

Choi et al. [59] synthesized star-poly(ethylene oxide)-block-poly(L-lactic acid) (star-

PEO-b-PLA) and star-PEO-block-poly(ε-caprolactone) (star-PEO-b-PCL) by 

initiating ring-opening polymerization of L-lactide and ε-caprolactone, respectively, 

with four and eight arm  PEO at 110 oC in the bulk. Hedrick et al. [60] reported 

combination of ring-opening and atom transfer radical polymerization (ATRP). 

These authors synthesized dendrimer like multiarm  poly(ε-caprolactone)-2-

bromoisobutyrate which was used as macroinitiator in ATRP of 2-hydroxyethyl 

methacrylate and PEG-methacrylate, respectively.   

 

Figure 2.12: Dilute solution of block copolymers into spherical micelles [61]. 

2.9 Ring-Opening Polymerization (ROP) 

Ring-opening polymerization (ROP) is a unique polymerization process, in which a 

cyclic monomer is opened to generate a linear polymer. It is fundamentally different 

from a condensation polymerization in that there is no small molecule byproduct 

during the polymerization. Polymers with a wide variety of functional groups can be 

produced by ring-opening polymerizations. Preparation of cyclic monomers, studies 

of catalysis and mechanisms are active areas of research both in academia and 

industry [62-65]. 

Nowadays, increasing attention is paid to degradable and biodegradable 

biocompatible polymers for applications in the biomedical and pharmaceutical fields, 
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primarily because after use they can be eliminated from the body via natural 

pathways and also they can be a solution to problems concerning the global 

environment and the solid waste management. Aliphatic polyesters are among the 

most promising materials as biodegradable polymers.  

2.9.1 Controlled  Ring-Opening Polymerization of cyclic esters 

The ring opening polymerization (ROP) of lactones and lactides to produce 

poly(ester)s provides versatile biocompatible and biodegradable polymers possessing 

good mechanical properties. These advantages have seen aliphatic poly(ester)s 

receive increasing attention over the last few years driven by their application as 

biodegradable substitutes for conventional commodity thermoplastics and 

applications in the biomedical field [66]. 

Aliphatic poly(ester)s can be either synthesized by polycondensation of hydroxyl-

carboxylic acids or by the ring-opening polymerization (ROP) of cyclic esters. The 

polycondensation technique yields low molecular weight polyesters (Mn<30.000) 

with poor control of specific end groups [67]. In contrast, high molecular weight 

aliphatic polyesters can be prepared in short periods of time by ROP. There has been 

much research directed towards the controlled ROP of commercially available cyclic 

esters including glycolide, lactide and -caprolactone resulting in aliphatic 

poly(ester)s with high molecular weights [68]. 

In practice, the ROP of lactones and lactides requires an appropriate catalyst to 

proceed in reasonable conditions and to afford polymers with controlled properties 

(2.1). Since the pioneering work of Kleine et al. in the 1950s metal-based catalytic 

systems have been the focus of considerable attention for the polymerization of 

cyclic esters, and numerous studies have been carried out to elucidate the mechanism 

of such coordination polymerizations. Through variation in the nature of the metal 

center and of the surrounding ligands, a broad range of initiators have been prepared 

and evaluated [69-73]. 
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Besides the coordination-insertion mechanism, alternative strategies based on 

anionic, nucleophilic, or cationic promoters have also been recently (re)evaluated, 

the preliminary results reported in these fields being rather promising [74, 75].  

2.9.2 Catalysts  

A large variety of organometallic compounds, such as metal alkoxides and metal 

carboxylates, has been studied as initiators or catalysts in order to achieve effective 

polymer synthesis [76]. The covalent metal alkoxides with free p or d orbitals react 

as coordination initiators and not as anionic or cationic initiators [77]. The most 

widely used complex for the industrial preparation of polylactones and polylactides 

is undoubtedly Sn(Oct)2. It is commercially available, easy to handle, and soluble in 

common organic solvents and in melt monomers. It is highly active and allows for 

the preparation of high-molecular-weight polymers in the presence of an alcohol 

[78]. Aluminum alkoxides have also proved to be efficient catalysts for the ROP of 

cyclic esters. The common example, namely, aluminum (III) isopropoxide, Al(Oi-

Pr)3, has been largely used for mechanistic studies. However, it has been revealed to 

be significantly less active than Sn(Oct)2 [79]. Moreover, an induction period of a 

few minutes is systematically observed with Al(Oi-Pr)3 attributed to aggregation 

phenomenon [80]. For all these reasons, Al(Oi-Pr)3 is much less used for the 

preparation of biodegradable polyesters, and especially since aluminum ions do not 

belong to the human metabolism and are suspected of supporting Alzheimer’s 

disease. 

Much interest has thus been devoted to zinc derivatives as potential nontoxic 

catalysts. Zinc powder itself is a relatively good polymerization catalyst that is used 

industrially [81]. With reaction times of several days at 140 °C in bulk, it is roughly 

as active as Al(Oi-Pr)3. Numerous zinc salts have also been investigated  [82]. 
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2.9.3 Coordination-Insertion ROP  

Covalent metal carboxylates, particularly tin(II) bis(2-ethylhexanoate) usually 

referred to as tin(II) octanoate, Sn(Oct)2 belong to the most frequently used initiators 

for polymerization of cyclic esters due to its low cost, low toxicity, and high 

efficiency. Although, there are controversial reports in the literature about the nature 

of Sn(Oct)2 activity in the polymerization of lactones, two basic types of mechanism 

have been proposed. The first one is directly catalytic type where the catalyst serves 

to activate monomer through coordination with its carbonyl oxygen [83, 84]. The 

second mechanism is the monomer insertion type mechanism where the catalyst acts 

as co-initiator along with either purposely added or adventitious hydroxyl impurities, 

and polymerization proceeds though an activated stannous alkoxide bond [85,86].  
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Kricheldorf and co-workers have recently illustrated how the structure of the alcohol 

initiator may influence the strength of the catalyst/alcohol interaction [84, 86].  

According to these authors, this interaction, in the early stages of reaction, is 
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responsible for formation of the “true” initiating species, subsequent ring opening, 

and formation of the active, propagating chain end. Prior to the beginning of 

polymerization, adventitious hydroxyfunctional impurities (e.g., water) or purposely 

added alcohol first complex and subsequently react with Sn(Oct)2 producing a 

stannous alkoxide species (a) and free 2-ethylhexanoic acid (b) as shown in 2.3. 

Further reaction with a second equivalent of alcohol produces the stannous 

dialkoxide initiator (c) and releases a second equivalent of 2-ethylhexanoic acid (b) 

as depicted in 2.3 [86, 87]. Adventitious water, meanwhile, serves mainly as a 

catalyst deactivator via a reversible reaction with a or c, thereby decreasing the 

concentration of active initiator and producing a stannous alcohol derivative (d), 

such as shown in 2.3, which is more thermodynamically stable than the stannous 

dialkoxide and is less efficient as an initiator [86]. 
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(2.4) 

Reaction of c with monomer by means of coordination- insertion generates the first 

actively propagating chain end (e) consisting of not only the initiating alcohol 

fragment but also the active propagating center derived from the first monomer unit 

and stannous alkoxide. The e species may either propagate or undergo rapid 

intermolecular exchange of the stannous alkoxide moiety for a proton from either 

hydroxyl groups of initiator (if remaining) or another hydroxy chain end, either e or 

polymeric in nature. This rapid exchange of protons and stannous alkoxide moieties 

results in a dynamic equilibrium between activated and deactivated chain ends as 

depicted in 2.4, where R= unreacted alcohol initiator or hydroxy chain ends 

generated in situ. This process eventually consumes the remaining unreacted alcohol 

initiator not involved in the initial formation of c. ROP based on coordination-

insertion mechanism has been thoroughly investigated since it may yield well-

defined polyesters through living polymerization [77, 88]. 
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In such coordination-insertion polymerizations the efficiency of the molecular-

weight control depends from the ratio kpropagation/kinitiation but also from the extent of 

transesterification side reactions. These transesterification reactions can occur both 

intramolecularly (backbiting leading to macrocyclic structures and shorter chains) 

and intermolecularly (chain redistributions) (2.5-2.6) [89]. Intermolecular 

transesterification reactions modify the sequences of copolylactones and prevent the 

formation of block co-polymers. Intramolecular transesterification reactions cause 

degradation of the polymer chain and the formation of cyclic oligomers.  

The polymerization/depolymerization equilibrium should also be taken into account 

as a particular case of intramolecular transesterification reaction. All of these side 

reactions result in broader molecular-weight distributions, sometimes making the 

molecular weights of the resulting polymers irreproducible. The extent of these 

undesirable transesterification reactions was found to strongly depend on the metallic 

initiator [79]. Side reactions occur from the very beginning of the polymerization 

with Sn(Oct)2, leading to rather broad MWD (PDI indexes around 2) but only at high 

or even complete conversion with Al(Oi-Pr)3, yielding lower PDI indexes (less than 

1.5) [79,90].  

Parameters that influence the number of transesterifications are temperature, reaction 

time, and type and concentration of catalyst or initiator. Depending on the metal 

used, the initiator is more or less active towards transesterification reactions [90].  
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The promising results obtained with Sn(Oct)2, Al(Oi-Pr)3, and Zn(Lact)2 have given 

rise to a growing interest in metal-based initiators that would display higher catalytic 

activity and better control the extent of the undesirable transesterification reactions. 

2.9.4 Poly(ε-caprolactone) 

Poly(ε-caprolactone) (PCL) is a semicrystalline polymer which represents one of 

several aliphatic polyesters that undergo degradation and absorbtion in vivo [91, 92]. 

The repeating molecular structure of PCL homopolymer consists of five non-polar   

methylene groups and a single relatively polar ester group. Although not produced 

from renewable raw materials, PCL is a fully biodegradable thermoplastic polymer 

due to the presence of the hydrolytically unstable aliphatic-ester linkage. PCL has 

good water, oil, solvent and chlorine resistance.  

PCL has some unusual properties, including a low Tg (~ –60 °C) and Tm (~ 60 °C) 

and a high thermal stability. These properties are related to PCL’s chain of carbons, 

as longer chains are give rise to less mobility and lower Tm’s and Tg’s. PCL is also 

highly permeable, which results from its low Tg and subsequent rubbery state at 

room temperature. 

PCL is one of biodegradable polymers which have been used to prepare functional 

materials [93]. Copolymers containing poly(ε-caprolactone) (PCL) are especially 

interesting because they are miscible with a wide range of polymers, and they have 

features like crystallizability, lack of toxicity, ability to disperse pigments, low-

temperature adhesiveness, and printability [94]. 

PCL has been increasingly studied  in the scientific community and applied for drug 

delivery and tissue engineering [95]. Owing to its high crystallinity and strong 
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hydrophobicity of polymer backbone, PCL homopolymer usually show slow 

biodegradation  and drug-release rate [96]. 

PCL is compatiable with numerous other polymers, has the possibility of blending 

this aliphatic polyester with a number of commercial polymers such as poly(vinyl 

chloride) and bisphenol A polycarbonate.  PCL is of interest as a packaging material 

and in biomedical applications since it is degradable and its degredation products are 

non-toxic. PCL and other copolymers have been evaluated for medical uses such as 

drug delivery systems, an external casting material for broken bones, as a material 

for use in making custom dental impression trays. 

In addition to above, it is used mainly in thermoplastic polyurethanes, resins for 

surface coatings, adhesives and synthetic leather and fabrics. It also serves to make 

stiffeners for shoes and orthopedic splints, and fully biodegradable compostable 

bags, sutures, and fibres. Because the homopolymer has a degradation time on the 

order of 2 years, copolymers have been synthesized to accelerate the rate of 

bioabsorption. In Sweden there has been an attempt to produce PCL bags, but they 

degraded before reaching the customers. 

2.10 Click Chemistry  

“Click chemistry” is a chemical term introduced by Sharpless in 2001  and describes 

chemistry tailored to generate substances quickly and reliably by joining small units 

together [97]. Click chemistry can be summarized only one sentence: Molecules that 

are easy to make. Sharpless also introduced some criteria in order to fullfill the 

requirements as reactions that: are modular, wide in scope, high yielding, create only 

inoffensive by-products, are stereospecific, simple to perform and that require benign 

or easily removed solvent. Nowadays there are several processes have been 

identified under this term in order to meet these criterias such as nucleophilic ring 

opening reactions; non-aldol carbonyl chemistry; thiol additions to carbon–carbon 

multiple bonds (thiol-ene and thiol-yne); and cycloaddition reactions. Among these 

selected reactions, copper(I)-catalyzed azide-alkyne (CuAAC) and Diels-Alder (DA) 

cycloaddition reactions and thiol-ene reactions have gained much interest among the 

chemists not only the synthetic ones but also the polymer chemists.  
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2.10.1 Copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC)  

Huisgen’s 1,3-dipolar cycloaddition of alkynes and azides yielding triazoles is, 

undoubtedly, the premier example of a click reaction [98]. Recently, 1,3-dipolar 

cycloadditions, such as reactions between azides and alkynes or nitriles, have been 

applied to macromolecular chemistry, offering molecules ranging from the block 

copolymers to the complexed macromolecular structures [99]. 

Sharpless and co-workers have identified a number of reactions that meet the criteria 

for click chemistry, arguably the most powerful of which discovered to date is the 

Cu(I)-catalyzed variant of the Huisgen 1,3-dipolar cycloaddition of azides and 

alkynes to afford 1,2,3-triazoles [100]. Because of Cu(I)-catalyzed variant of the 

Huisgen 1,3-dipolar cycloaddition of azides and alkynes reactions’ quantitative 

yields, mild reaction condition, and tolerance of a wide range of functional groups, it 

is very suitable for the synthesis of polymers with various topologies and for polymer 

modification 101]. Because of these properties of Huisgen 1,3-dipolar cycloaddition, 

reaction is very practical. Moreover, the formed 1,2,3-triazole is chemically very 

stable 102]. 

In recent years, triazole forming reactions have received much attention and new 

conditions were developed for the 1,3-dipolar cycloaddition reaction between 

alkynes and azides [103]. 1,2,3-triazole formation is a highly efficient reaction 

without any significant side products and is currently referred to as a click reaction 

[104]. 

Copper(I)-catalyzed reaction sequence which regiospecifically unites azides and 

terminal acetylenes to give only 1,4-disubstituted 1,2,3 triazoles (2.7). 

In fact, the discovery of Cu(I) efficiently and regiospecifically unites terminal 

alkynes and azides, providing 1,4-disubstituted 1,2,3-triazoles under mild conditions, 

was of great importance. On the other hand, Fokin and Sharpless proved that only 

1,5-disubstituted 1,2,3-triazole was obtained from terminal alkynes when the catalyst 

switched from Cu(I) to ruthenium(II) [102]. 
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(2.7) 

2.11 Diels-Alder reaction 

 The Diels-Alder (DA) reaction is a concerted [4π+2π] cycloaddition reaction of a 

conjugated diene and a dienophile. This reaction is one of the most powerful tools 

used in the synthesis of important organic molecules. The three double bonds in the 

two starting materials are converted into two new single bonds and one new double 

bond to afford cyclohexenes and related compounds (equation 2.8). This reaction is 

named for Otto Diels and Kurt Alder, who received the 1950 Nobel prize for 

discovering this useful transformation [103-105]. 

 

(2.8) 

 Typically, the DA reaction works best when either the diene is substituted with 

electron donating groups (like -OR, -NR2, etc) or when the dienophile is substituted 

with electron-withdrawing groups (like -NO2, -CN, -COR, etc) [106]. 

2.11.1 Stereochemistry of Diels-Alder reaction 

There are stereochemical and electronic requirements for the DA reaction to occur 

smoothly. First, the diene must be in an s-cis conformation instead of an s-trans 

conformation to allow maximum overlap of the orbitals participating in the reaction 

(equation 2.9).  
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(2.9)

The “s” in s-cis and s-trans refers to “sigma”, and these labels describe the 

arrangement of the double bonds around the central sigma bond of a diene. Dienes 

often exist primarily in the lower energy s-trans conformation, but the two 

conformations are in equilibrium with each other. The s-cis conformation is able to 

react in the DA reaction and the equilibrium position shifts towards the s-cis 

conformer to replenish it. Over time, all the s-trans conformer is converted to the s-

cis conformer as the reaction proceeds.  

A unique type of stereoselectivity is observed in DA reactions when the diene is 

cyclic. In the reaction of maleic anhydride with cyclopentadiene, for example, the 

endo isomer is formed (the substituents from the dienophile point to the larger 

bridge) rather than the exo isomer (the substituents from the dienophile point away 

from the larger bridge) (equation 2.10).  

The preference for endo–stereochemistry is “observed” in most DA reactions. The 

fact that the more hindered endo product is formed puzzled scientists until 

Woodward, Hoffmann, and Fukui used molecular orbital theory to explain that 

overlap of the p orbitals on the substituents on the dienophile with p orbitals on the 

diene is favorable, helping to bring the two molecules together [107, 108].  
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(2.10) 

Hoffmann and Fukui shared the 1981 Nobel Prize in chemistry for their molecular 

orbital explanation of this and other organic reactions. In the illustration below, 

notice the favorable overlap (matching light or dark lobes) of the diene and the 

substituent on the dienophile in the formation of the endo product (equation 2.11):  

 

(2.11) 

Oftenally, even though the endo product is formed initially, an exo isomer will be 

isolated through a DA reaction. This occurs because the exo isomer, having less 

steric strain than the endo which is more stable, and because the DA reaction is often 

reversible under the reaction conditions. In a reversible reaction, the product is 

formed, reverts to starting material, and forms again many times before being 

isolated. The more stable the product, the less likely it will be to revert to the starting 

material. If the reaction is not reversible under the conditions used, the kinetic 
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product will be isolated. However, if the first formed product is not the most stable 

product and the reaction is reversible under the conditions used, then the most stable 

product, called the thermodynamic product, will often be isolated.  
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3. EXPERIMENTAL PART 

3.1 Materials 

-Caprolactone (-CL, 99%, Aldrich) was dried over CaH2 and distilled in vacuum 

prior to use. Succinic anhydride (97%, Aldrich), 9-anthracenemethanol (97%, 

Aldrich), α-bromoisobutryl bromide (98%, Aldrich), triethylamine (Et3N, 99.5%, 

Aldrich), toluene-4-sulfonyl Chloride (TsCl, 99%, Fluka), pyrene (Sigma, 99%), 

NaN3 (99.5%, Aldrich), 4-Pentynoic acid (95%, Aldrich)   N,N’-

dicyclohexylcarbodiimide (DCC, 99%, Aldrich), 4-dimethylaminopyridine (DMAP, 

99%, Aldrich), tin(II)-2-ethylhexanoate (Aldrich, 98%), divinylbenzene (DVB, 80%, 

Aldrich), CuBr (99.9%, Aldrich), were used as received. N, N, N’, N”, N”-

pentamethyldiethylenetriamine (PMDETA, 99%, Aldrich) was distilled over NaOH 

prior to use. Poly(ethylene glycol) monomethylether (Me-PEG-OH, Mn = 2000 and 

550, Fluka) were dried by azeotropic distillation with anhydrous toluene. 

Tetrahydrofuran (THF, 99.8%, J.T. Baker) was dried and distilled from 

benzophenone-Na. Dichloromethane (CH2Cl2, 99%, J. T. Baker  ) was dried and 

distilled over and P2O5. Diethyl ether (99.7%, Aldrich), 1.4-dioxane (99.8%, 

Aldrich), toluene (99.8%, Aldrich), methanol (99.8%, Aldrich) were used without 

further purification. Ethyl acetate (EtOAc) and hexane were in technical grade and 

distilled prior to use, Spectra/Por dialysis membrane (MWCO:3500, Nominal Flat 

Width:18.0 mm, Diameter:11.5 mm, Vol/Length: 1.1 mL/cm). Curcumin (≥ 90 %, 

Merck) 

3.2 Instrumentation 

The 1H and 13C (250 MHz) spectra were recorded on Bruker NMR AC 250 and 

Varian Mercury-VX (400 MHz) spectrometer in CDCl3. The conventional Gel 

Permeation Chromatography (GPC) measurements were carried out with an Agilent 

instrument (Model 1100) consisting of a pump, refractive index, and UV detectors. 

Four Waters Styragel columns (HR 5E, HR 4E, HR 3, HR 2), (4.6 mm internal 

diameter, 300 mm length, packed with 5 μm particles) were used in series. The 
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effective molecular weight ranges were 2000- 4.000.000, 50-100.000, 500-30.000, 

and 500–20.000, respectively. THF was used as eluent at a flow rate of 0.3 mL/min 

at 30 °C. Toluene was used as an internal standard. The molecular weights of the 

polymers were calculated on the basis of linear PS standards (Polymer Laboratories). 

The second GPC system with an Agilent model isocratic pump, four Waters Styragel 

columns (guard, HR 5E, HR 4, HR 3, and HR 2), a Viscotek TDA 302 triple detector 

(RI, dual laser light scattering (LS) (λ = 670 nm, 90° and 7°) and a differential 

pressure viscometer) (TD-GPC) was conducted to measure the absolute molecular 

weights in THF with a flow rate of 0.5 mL/min at 35 °C. All three detectors were 

calibrated with a PS standard having narrow molecular weight distribution (Mn = 

115,000 g/mol, Mw/Mn = 1.02, [η] = 0.519 dL/g at 35 °C in THF, dn/dc = 0.185 

mL/g) provided by Viscotek company. Typical sample concentrations for GPC-

analysis were in the range of 2–8 mg/mL depending on molecular weight of analyzed 

polymers. Data analyses were performed with OmniSec 4.5 software from Viscotek 

Company. Malvern Zetasizer NanoZS Particle size of particles and molecules from a 

maximum size range 0.3nm to 10 microns using NIBS technology and Dynamic 

Light Scattering, Zeta potential in aqueous and non-aqueous dispersions using M3-

PALS technology with the range 3.8nm - 100µm and molecular weight range of 

1000-2x107 Da. Hitachi F-4500 Fluorscence Spectrophotometer, Telstar cryodos 

laboratory freeze-drier, Fisher scientific sonicator, Centirfuge VWR compactstar CS-

4, UFLC Shimadzu DGU-20A3 equiped with Shimadzu fluorescense detector RF-

10XL, Prominence-diode array detector SPD-M20A, Prominence communications 

bus module CBM-20A, Shimadzu column oven CTO-10AS VP, Prominence 

Degasser DGU-20A3, Prominence Liguid chromatograph LC-20AB, and 

Prominence auto sampler SIL-20AC. 

3.3 Synthesis methods 

4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (1) [109], 4-(2-hydroxyethyl)-10-

oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (2) [109] were prepared according 

to published procedures. 

3.3.1 Synthesis of 4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (1)  

Maleic anhydride (60.0 g, 0.6 mol) was suspended in 150 mL of toluene and the 

mixture warmed to 80 °C. Furan (66.8 mL, 0.9 mol) was added via syringe and the 
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turbid solution was stirred for 6 h. The mixture was then cooled to ambient 

temperature white solids formed during standing were collected by filtration and 

washed with 2 × 30 mL of petroleum ether and once with diethyl ether (50 mL) 

afforded 1 as white needless. Yield: 80.2 g  (80%). Mp: 114-115 oC (DSC). 1H NMR 

(CDCl3, δ) 6.57 (s, 2H, CH=CH, bridge protons), 5.45 (s, 2H, -CHO, bridge-head 

protons), 3.17 (s, 2H, CH-CH, bridge protons).  

3.3.2 Synthesis of 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-

3,5-dione (2)  

1 (10.0 g, 60.0 mmol ) was suspended in methanol ( 150 mL ) and the mixture cooled 

to 0 °C. A solution of ethanolamine (3.6 mL, 60.0 mmol) in 30 mL of methanol was 

added dropwise (10 min) to the reaction mixture, and the resulting solution was 

stirred for 5 min at 0 °C, then 30 min at ambient temperature, and finally refluxed for 

6 h. After cooling the mixture to ambient temperature, solvent was removed under 

reduced pressure, and residue was dissolved in 150 mL of CH2Cl2 and washed with 3 

× 100 mL of water. The organic layer was separated, dried over Na2SO4 and filtered. 

Removal of the solvent under reduced pressure gave white-off solid which was 

further purified by flash chromatography eluting with ethylacetate (EtOAc) to give 

the product  as a white solid. Yield: 6.7 g (50%). Mp = 138-139 C (DSC). 1H NMR 

(CDCl3, δ) 6.51 (s, 2H, CH=CH, bridge protons), 5.26 (s, 2H, -CHO, bridge-head 

protons), 3.74-3.68 (m, 4H, NCH2CH2OH), 2.88 (s, 2H, CH-CH, bridge protons).  

3.3.3 Synthesis of 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid (3) 

The 2,2-bis(hydroxymethyl)propanoic acid (8 g, 59.6 mmol) along with p-TSA (0.45 

g, 2.32 mmol), and 2,2-dimethoxypropane (11.2 mL, 89.4 mmol) dissolved in 40 mL 

of dry acetone, and stirred 2h at room temperature. In the vicinity of 2h, while 

stirring continued the reaction mixture was neutralized with 6 mL of totally NH4OH 

(25%), and absolute ethanol (1:5), filtered off by-products and subsequent dilution 

with dichloromethane (100 mL), and once extracted with distilled water (40 mL). 

The organic phase dried with Na2SO4, concantrated to yield 7.4 g (71%) as white 

solid after evaporation of the solvent. 1H NMR (CDCl3, δ) 4.18 (d, 2H, CCH2O), 

1.38 (s, 3H, CCH3) 1.36 (s, 3H, CCH3), 1.18 (s, 3H, C=OC(CH2O)2CH3).  
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3.3.4 Synthesis of adduct alcohol-acid ketal ester and hydrolysis to diol  

2 (0.8g, 5.0 mmol) and 3 (1.05g, 5.0 mmol) DMAP (0.06g, 5mmol) DCC (0,124g, 

6mmol) was dissolved in CH2CI2 (50 mL), The reaction mixture was stirred for 

overnight at 25 oC, then extracted with 1 M HCl and distilled water organic phase 

was dried over Na2SO4. The crude product was purified by flash chromatography 

eluting with ethylacetate (EtOAc), DCM and MeOH to give the viscous light yellow 

product (Yield = 1.5 g; 81 %).  . 

  2-3 ester (1.5 g, 4.1 mmol) was dissolved in a mixture of 20 mL of THF and 10 mL 

of 1 M HCl. The reaction mixture was stirred for 2 h at room temperature. The 

reaction mixture was filtered off and reaction mixture was concentrated and extracted 

with 160 mL of CH2Cl2 and 40 mL of water. The combined organic phase was dried 

with Na2SO4 and concentrated and 1.09 g product is obtained (Yield = 1.09 g; 70 %). 
1H NMR (CDCl3, δ) 4.18 (d, 2H, CCH2O), 3.63 (d, 2H, CCH2O), 1.38 (s, 3H, CCH3) 

1.36 (s, 3H, CCH3), 1.18 (s, 3H, C=OC(CH2O)2CH3), 6.51 (s, 2H, CH=CH, bridge 

protons), 5.26 (s, 2H, -CHO, bridge-head protons), 3.92-4.18 (m, 4H, NCH2CH2OH), 

2.88 (s, 2H, CH-CH, bridge protons). 

3.3.5 Synthesis of  2 alkyne end functionalized core for synthesis of PEG2 (Core) 

Adduct-diol (0.83g, 2.55 mmol), 4-Pentynoic acid (0.53g, 5.63 mmol), DMAP 

(0.31g, 2.55 mmol), DCC (1.16g, 5.63 mmol) was dissolved in 80 mL of CH2CI and 

left for stirring overnight at 25 °C. The product was purified by flash 

chromatography eluting with ethylacetate (EtOAc), DCM and Hexane after extracted 

with distillated water and 0.9. g product was obtained (Yield = 0.90 g; 82 %). NMR 

spectra of the proves the ester formation with 4-pentynoic acid with  1H NMR 

(CDCl3, δ) 1.16 (s, 3H, CCH3), 1.96 (s, 1H, CH2CCH), 2.48-2.53 (OC=OCH2CH2C), 

2.88 (s, 2H, CH-CH, bridge protons),   3.84 (t, 2H, NCH2CH2OC=O), 4.18-4.30 (m, 

2H, CCH2OC=O and NCH2CH2O), 5.25 (s, 2H, -CHO, bridge-head protons), 6.50 (s, 

2H, CH=CH, bridge protons). 

3.3.6 Synthesis of Azide ended Me-PEG  

Me-PEG (Mn 550 g/mol) (5.0 g, 9.09 mmol) was dissolved in 100 mL of CH2CI. To 

this solution 4- toluene sulfonylchloride (2.57 g, 13.5 mmol), DMAP (1.10 g, 9.0 

mmol) and triethylamine was added (1.87 mL, 13,5 mmol). Reaction mixture was 
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then left overnight at room temperature to stir. It was firstly extracted with 1 M HCI 

then 2 times with distilled water  ant dried over Na2SO4. After evaporation of the 

solvent  5.85 g viscous coulorless product obtained.      

Me-PEG-Tos (5.0 g, 0.79 mmol) was dissolved in DMF and NaN3 (1.02 g, 15.8 

mmol) added to solution and left for mixing overnight at room temperature.The 

reaction mixture firstly filitered then extracted with CH2CI and water three times and 

dried over Na2SO4 after evaporation of the solvent 3.5 g viscous product 

gained(Yield = 3.5 g; 70 %).   1H NMR (CDCl3, δ)  3.62 (repeating units of the 

PEG), 3.34 (s, 3H, PEG-OCH3), 3.39 (b, 2H, PEG-CH2CH2N3), 2.27 (s, 2H, 

OCH2CH2N3) 

3.3.7 Synthesis of the PEG2 by using click reaction  

The core (0.78 g, 1.61 mmol) and PEG-N3 (2.09 g, 3.53 mmol) were placed in a 

schlenk tube then dissolved in DMF . PMDETA (0.35 mL, 1.61 mmol) and CuBr 

(0.23 g, 1.61 mmol) added to solution and fastly transported to vacuum line after 

degassing reaction mixture was left to mixing in room temperature for overnight. For 

purificaiton polymer solution was passed through alumina column to remove copper 

salt and pricipitated in cold diethylether (Yield = 2.25 g; 85 %).  .  white solid 

product is gained.  1H NMR (CDCl3, δ) 1.15 (s, 3H, CCH3), 2.72 (t, 2 H, triazole-

CH2), 2.88 (s, 2H, CH-CH, bridge protons), 2.98 (t, 2H, OC=OCH2CH2), 3.36 (s, 3H, 

PEG-OCH3), 3.62 (repeating units of the PEG), 3.84 (t, 2H, NCH2CH2OC=O), 4.18 

(s, 3H, CCH2OC=O), 4.49 (t, 2H, NCH2CH2OC=O), δ) 6.50 (s, 2H, CH=CH, bridge 

protons), 5.25 (s, 2H, -CHO, bridge-head protons), 7.51 (s, 1H, triazole proton) 

3.3.8 Synthesis of anthracene end-functionalized PCL (Anth-PCL)  

Anthracene end-functionalized poly(ε-caprolactone) (anth-PCL) was prepared by 

ROP of -caprolactone (-CL) (5.0 mL, 0.047 mol) in bulk using tin(II)-2-

ethylhexanoate (Sn(Oct)2) as a catalyst and 9-anthracene methanol (0.20 g, 0.94 

mmol) as an initiator at 110 °C for 3 h., The degassed monomer, catalyst, and 

initiator were added to a previously flamed schlenk tube equipped with a magnetic 

stirring bar in the order mentioned. The tube was degassed with three FPT, left in 

argon, and placed in a thermostated oil bath. After the polymerization, the mixture 

was diluted with THF, and precipitated into an excess amount of cold methanol. It 

was isolated by filtration and dried at 40 oC in a vacuum oven for 24 h. Yield: 4.4 g 
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(82%). 1H NMR (CDCl3, δ) 8.50 (s, 1H, ArH of anthracene), 8.31 (d, 2H, ArH of 

anthracene), 8.01 (d, 2H, ArH of anthracene), 7.60-7.42 (m, 4H, ArH of anthracene), 

6.2 (s, 2H, CH2-anthracene), 4.0 (t, 2H, CH2OC=O of PCL), 3.60 (t, 2H, CH2OH, 

end-group of PCL), 2.2 (t, 2H, C=OCH2 of PCL), 1.2-1.8 (m, 6H, CH2 of PCL) 

3.3.9 Synthesis of PCL-PEG2 miktoarmstar copolymer via Diels-Alder click 

reaction  

In a 100 mL of two-necked round bottom flask were added anth-PCL (1.14 g, 0.3 

mmol, based on Mn,1H NMR) and PEG2 (1.00 g, 0.6 mmol, based on Mn, 1H NMR) 

in 75 mL of toluene. The mixture was bubbled with nitrogen for 30 min. at room 

temperature and then refluxed for 48 h under nitrogen in the dark. After that time, 

toluene was evaporated under high vacuum and the residual solid dissolved in THF, 

and subsequently precipitated into methanol-diethylether. The obtained product was 

dried in a vacuum oven at 40 °C for 24 h. (Yield = 1.4 g; 85 %).  1H NMR (CDCl3, 

δ) 1.18 (s, 3H, CCH3), 2.30-1.30 (s, 2H, aliphatic CH2 of PCL), 2.72 (s, 2H, triazole-

CH2), 2.98 (t, 2H, NCH2CH2), 3.35 (s, 3H, PEGOCH3) 3.62 (repeating units of the 

PEG),  4.04 (s, 2H,O=CCH2CH2 repeating unit of PCL) 4.48 (s, 2H, CCH2O and 

NCH2CH2OC=O) 4.8 (bridge protons) 5.46 (s, 2H, CCCCH2OC=O) 7,1-7,4 

(aromatic protons) 7.51 (s, 1H, triazole proton) 

3.3.10 Synthesis of Me-PEG2000-COOH 

Me-PEG2000 (5 g, 2.5 mmol) was dissolved in 150 mL of DCM. To the reaction 

mixture were added Et3N (3.5 mL, 119.6 mmol), DMAP (1.22 g, 10.0 mmol), and 

succinic anhydride (1.0 g, 10.0 mmol) in that order. The reaction mixture was stirred 

for overnight at 25 oC, then poured into ice-cold water and extracted with CH2Cl2. 

The organic phase was washed with 1 M HCl, dried over Na2SO4 and concentrated. 

The crude product was precipitated in diethylether. Yield: 4.5 g (86%). 1H NMR 

(CDCl3, δ) 4.22 (s, 2H, OCH2CH2OC=O), 3.61(s, repeating units of the PEG), 3.52 

(s, 2H, OCH2CH2OC=O), 3.34 (s, 3H, CH3PEG), 2.62 (s, 2H, O=CCH2-CH2C=O),  

3.3.11 Synthesis of maleimide end-functionalized PEG (MI-PEG)  

Me-PEG-COOH (Mn  = 2100 based on Mn, 1H NMR) (5.0 g, 2.38 mmol) was 

dissolved in 100 mL of CH2Cl2. To the reaction mixture were added DMAP (0.24 g, 

2.00 mmol) and 4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-
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dione (1.25 g, 6.0 mmol) in that order. After stirring 5 min at room temperature, a 

solution of DCC (1.24 g, 6.00 mmol) in 10 mL of CH2Cl2 was added. Reaction 

mixture was stirred for overnight at room temperature. After filtration off the salt, the 

solution was concentrated and the viscous brown color product was purified by 

column chromatography over silica gel eluting with CH2Cl2/EtOAc mixture (1:1, 

v/v) and then with CH2Cl2/methanol (90:10, v/v) to obtain MI-PEG as white solid. 

Yield: 5.0 g (88%).  1H NMR (CDCl3, δ) 6.50 (s, 2H, CH=CH as bridge protons), 

5.25 (s, 2H, -CHO, bridge-head protons), 4.23 (m, 4H, CH2OC=O), 3.75-3.51 (m, 

OCH2CH2 repeating unit of PEG, C=ONCH2, and CH2-PEG repeating unit), 3.36 (s, 

3H, PEG-OCH3), 2.87 (s, 2H, CH-CH, bridge protons) 2.61-2.56 (m, 4H, 

C=OCH2CH2C=O). 

3.3.12 Synthesis of anthracen-9ylmethyl  2,2,5-trimethyl-[1,3]dioxane-5-

carboxylate (4) 

9-Anthracene methanol (2 g, 9.6 mmol) was dissolved in 50 mL of CH2Cl2 and 3 (2 

g, 11.5 mmol), and DMAP (1.17 g, 9.6 mmol) were added to the reaction mixture in 

that order. After stirring 5 minutes at room temperature, DCC (2.37 g, 11.5 mmol) 

dissolved in 20 mL of CH2Cl2 was added. Reaction mixture was stirred overnight at 

room temperature and urea byproduct was filtered. Then reaction mixture was 

extracted with water/ CH2Cl2 (1:4) two times and combined organic phase was dried 

with Na2SO4. Solvent was evaporated and the remaining product was purified by 

column chromatography over silica gel eluting with hexane/ethyl acetate (4:1) to 

give pale yellow oil (Yield = 2.97 g; 85 %).  1H NMR (CDCl3, δ) 8.50 (s, 1H, ArH of 

anthracene), 8.32 (d, 2H, ArH of anthracene), 8.02 (d, 2H, ArH of anthracene), 7.60-

7.45 (m, 4H, ArH of anthracene), 6.2 (s, 2H, CH2-anthracene), 4.14 (d, 2H, CCH2O), 

3.58 (d, 2H, CCH2O), 1.38 (s, 3H, CCH3), 1.35 (s, 3H, CCH3), 1.08 (s, 3H, 

C=OC(CH2O)2CH3). 

3.3.13 Synthesis of anthracen-9ylmethyl  3-hydroxy-2-(hydroxymethyl)-2 

methylpropanoate (5) 

9-anthrylmethyl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate  (2.95 g, 8.1 mmol) was 

dissolved in a mixture of 20 mL of THF and 10 mL of 1 M HCl. The reaction 

mixture was stirred for 2 h at room temperature. The precipitated product was 

filtered off and reaction mixture was concentrated and extracted with 160 mL of 
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CH2Cl2 and 40 mL of water. The combined organic phase was dried with Na2SO4 

and concentrated. Hexane was added to the reaction mixture and it was kept in deep 

freeze overnight to give white solid (Yield = 2.4 g, 91 %). 1H NMR (CDCl3, δ) 8.52 

(s, 1H, ArH of anthracene), 8.30 (d, 2H, ArH of anthracene), 8.03 (d, 2H, ArH of 

anthracene), 7.60-7.45 (m, 4H, ArH of anthracene), 6.2 (s, 2H, CH2-anthracene), 

3.85 (d, 2H, CH2OH), 3.66 (d, 2H, CH2OH), 2.17(br, 2H, OH), 1.01 (s, 3H, CCH3). 

3.3.14 Synthesis of anthracene end-functionalized (PCL)2   

Anth-(PCL)2 was prepared by ROP of -CL (5.0 mL, 0.047 mol) in bulk using 

tin(II)-2-ethylhexanoate as a catalyst and 5 (0.30 g, 0.94 mmol) as an initiator at 110 

°C for 9 h. The degassed monomer, catalyst, and initiator were added to a previously 

flamed schlenk tube equipped with a magnetic stirring bar in the order mentioned. 

The tube was degassed with three FPT, left in argon, and placed in a thermostated oil 

bath. After the polymerization, the mixture was diluted with THF, and precipitated 

into an excess amount of cold methanol. It was isolated by filtration and dried at 40 
oC in a vacuum oven for 24 h. 1H NMR (CDCl3, δ) 8.50 (s, 1H, ArH of anthracene), 

8.30 (d, 2H, ArH of anthracene), 8.03 (d, 2H, ArH of anthracene), 7.60-7.47 (m, 4H, 

ArH of anthracene), 6.2 (s, 2H, CH2-anthracene), 4.0 (t, 2H, CH2OC=O of PCL), 

3.60 (t, 2H, CH2OH, end-group of PCL), 2.3 (t, 2H, C=OCH2 of PCL), 1.2-1.8 (m, 

6H, CH2 of PCL). 

3.3.15 Synthesis of miktoarm PEG2-PCL star block copolymer via Diels-Alder 

click reaction 

In a 100 mL of two-necked round bottom flask were added anth-(PCL)2 (1.0 g, 0.187 

mmol, based on Mn, 1H NMR) and MI-PEG (1.2 g, 0.224 mmol, based on Mn) in 75 

mL of toluene. The mixture was bubbled with nitrogen for 30 min. at room 

temperature and then refluxed for 48 h under nitrogen in the dark. After that time, 

toluene was evaporated under high vacuum and the residual solid dissolved in THF, 

and subsequently precipitated into methanol. The obtained product was dried in a 

vacuum oven at 40 °C for 24 h. Yield: 1.2 g (60%). 1H NMR (CDCl3, δ) 7.2 (ArH of 

cycloadduct), 5.4 (br, 2H, cycloadduct-CH2OC=O), 4.83 (s, 1H, CH, bridge-head 

proton), 4.0 (repeating unit of PCL), 3.62 (br, 6H, -OCH2CH2, repeating unit of PEG 

and NCH2CH2OC=O), 2.4 (m, 4H, C=OCH2CH2C=O), 2.4-0.9 (aliphatic protons of 

PCL and PEG). 
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3.3.16 Modification of the Me-PEG with 2,2,5-trimethyl-[1,3]dioxane-5-

carboxylic acid (PEG-AK) 

Me-PEG Mn 2000 g/mol (5.00 g, 2,50 mmol), 2,2,5-trimethyl-[1,3]dioxane-5-

carboxylic acid (1.20 g, 7.50 mmol) DMAP (0.30 g, 2.50 mmol) was placed in 250 

mL round bottom flask and dissolved in 95 mL of CH2CI After stirring 5 min at 

room temperature, a solution of DCC (1.55 g, 7.50 mmol) in 10 mL of CH2Cl2 was 

added and left to mixing overnight. For purification, afer filitration of the reaction 

mixture solvent was evaporated then precipitated in cold diethylether and placed in 

vacuum drying-oven overnight and 5.0 g of  product is gained with % 92 yield. 1H 

NMR (CDCl3, δ) 3.36 (s, 3H, PEG-OCH3), 4,30 (t, 2H, CH2OC=O) 3.51-3.75 (m, 

OCH2CH2 repeating unit of PEG, 1.38 (s, 3H, CCH3) 1.36 (s, 3H, CCH3), 1.18 (s, 

3H, C=OC(CH2O)2CH3).  

3.3.17 Dehydrolization of the ketal moiety (PEG-Diol) 

PEG-AK (5.00 g, 2.38 mmol) was dissolved in a mixture of 50 mL of THF and 10 

mL of 1 M HCl. The reaction mixture was stirred for 2 h at room temperature. The 

reaction mixture was filtered off and reaction mixture was concentrated and extracted 

with 250 mL of CH2Cl2. The combined organic phase was dried with Na2SO4 after 

filitration the solvent evaporated and concentrated then precipitated in cold 

diethylether and placed in vacuum  drying-oven 4.50 g of pure product obtained with 

% 92 yield. 1H NMR (CDCl3, δ) 1.18 (s, 3H, CCH3), 3.60 (s, 2H, CCH2OH), 3.36 (s, 

3H, PEG-OCH3), 4,30 (t, 2H, CH2OC=O), 3.51-3.75 (m, OCH2CH2 repeating unit of 

PEG),  

3.3.18 Synthesis of PEG-PCL2 miktoarmstar copolymer with ROP via using 

PEG-Diol as initiator 

PEG-PCL2 was prepared by ROP of -CL (2.0 mL, 0.047 mol) in bulk using tin(II)-

2-ethylhexanoate (22.2 µg) as a catalyst and PEG-Diol (0.57 g, 0.27 mmol) as an 

initiator at 110 °C for 5 h. The degassed monomer, catalyst, and initiator were added 

to a previously flamed schlenk tube equiped with a magnetic stirring bar in the order 

mentioned. The tube was degassed with three FPT, left in argon, and placed in a 

thermostated oil bath. After the polymerization, the mixture was diluted with THF, 
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and precipitated into an excess amount of cold diethylether. It was isolated by 

filtration and dried at 40 oC in a vacuum oven for 24 h and 2.2 g of product is 

obtained with % 84 conversion . 1H NMR (CDCl3, δ) 4.02 (repeating unit of PCL), 

3.62 (t, 4H, -OCH2CH2, repeating unit of PEG), 3.36 (s, 3H, PEG-OCH3), 4.04, 

2.25,1.6 and 1.30 (m, 2H, aliphatic protons of PCL), 1.18 (S, 3H, CCH3) 4.20 (s, 2H, 

CCH2OC=O) 13C NMR (APT) (CDCl3, δ) 174 (repeating carbonyl carbon of the 

PCL chain), 7,05 (repeating ester CH2 of the PEG chain), 64.1,34.2, 28.3, 25.5, 24.6 

(repeting CH2 ünits of the PCL), 59.0 (CH3 at the end of the PEG chain ), 19 (CCH3), 

46.3 (OC=OC(CH2)2C) 173 (PEGOC=OC) 

3.4 Micellar Characterization of the amphiphilic block copolymers             

3.4.1 Preparation of the micelle 

Micelles were prepared with the dialysis method. 100 mg of the copolymers were 

dissolved in DMF and left to stirring for over night. Water was added slowly  to vial 

till the water content become 67% percent of the total volume then left to stirring for 

over night. 3 Different water content (50, 67 and 75%) dialysis was done to observe 

the effect of the DMF over water ratio on the size of the micelles. The solution was 

transported to the dialysis membrane ( MWCO 3500)  and placed in 3 L destilled 

water carring tank and stirred at 300 rpm. Water of the tank is changed periodically 

until the rigidity of the dialysis membrane was lost. After the dialysis, polymer 

solution placed in vials and placed in freeze-drier and lyophilized at -50 oC for 

removal of the water. After the lyophilisation process the products seems like white 

fluffy cotton in the vials 

3.4.2 Zeta-Sizer Measurements 

4 mg polymer was dissolved in 1 mL deionized water (18.4 µQ) and filtered with 0.2 

µm filter to remove aggregates then started to dilute to half till to prepare 20 samples 

before the measurments samples were waited 20 min. for reformation of the micelles.  

The measurements were carried out with Malvern Zetasizer NanoZS and  1730 angle 

of lazer beam. Every analyze is repeated 5 times with 3 minute measurment time  

Dynamic light scattering (DLS) is a technique used for particle sizing of samples, 

typically in the sub-micron range. The technique measures the time-dependent 

fluctuations in the intensity of scattered light from a suspension of particles 



67 

 

undergoing random, Brownian motion. Analysis of these intensity fluctuations 

allows for the determination of the diffusion coefficients, which in turn yield the 

particle size through the Stokes- Einstein equation. 

Conventional DLS instruments use a detection angle of 90° and this optical 

configuration may not be sensitive enough for the successful measurement of 

surfactant micelles. 

The Zetasizer Nano range of instruments incorporates non-invasive back scatter 

(NIBS) optics. The scattered light is detected at an angle of 173° and this novel 

optics arrangement maximizes the detection of scattered light while maintaining 

signal quality. This provides exceptional sensitivity that is required for measuring the 

size of nanoparticles, such as surfactant micelles, at low concentrations. [110]  

3.4.3 CMC Analysis 

Pyrene was used as fluorescent probe for determination of the CMC. 20 samples of 1 

mL  6X10-7 M pyrene solutions are prepared by solving pyrene in acetone and then 

aceton was evaporated under vacuum. For polymer solutions, firstly 10 mg/ mL  

polymer solution was prepared and by twice dilution, 20 samples were prepared via 

solving polymers with phosphate buffer solution  (PBS) and left to stirring overnight 

The polymer solutions were transfered to pyrene vials, then 1 min vortex and 6 min 

sonication applied and left to stirring for overnight.  

The CMC was determined as the point of cross-section of the extrapolation of the 

change in absorbance over a wide range of concentration of polymer. CMC was 

determined by  comparing the peak intensities at 339 nm to 336 nm for PEG2-PCL 

338 nm to 335 nm for PEG-PCL2 and this values plotted with the concentrations of 

the polymers to observe the change of the emission of the pyrene due to change in 

the enviorment from nonpolar micelle core to polar water surrounding.  

3.4.4 Preparation of Curcumin loaded polymeric micelles and determination of 

the maximum curcumin loading capacity 

For determination of the maximum loading capacity of the polymeric micelles 

curcumin was choosen because of its high potent anti-cancer effect  on various 

tumors. Curcumin fluorescence is a broad band in acetonitrile (λmax = 524 nm) and 

it makes it a suitable drug for UFLC measurements which is a better method for 
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determination of the maximum loading drug capacity of the drug carrier polymeric 

micelles 

For the measurment of the maximum drug loading capacity, firstly a series of 

standart solutions (0.125-100 µg/mL)  of the curcumin were prepared with MeOH  

for drawing the calibration curve. Then, series of curcumin solutions were prepared 

in CCI3H (0.2-4.0 mg/mL) for drug loading and the solvent was evaporated under 

vacuum and 20 mg/mL polymer solutions were prepared. Polymer solutions are left 

to stirring for overnight and they then transferred to curcumin vials. Before left them 

to stirring for overnight, vortex and sonication was applied. After one night stirring, 

the samples are placed in centrifuge and rotated at 6000 rpm for a half hour to 

precipitate and unencapsulated curcumin in the water then 100 µL of the supernatant 

solution was taken into vials and diluted with MeOH to 1mL.  

UFLC measurments were carried out with Column: XR-ODS 50 x 3 mm, 2.2 um ID, 

Column temperature: 30 oC, Mobile phase: MeCN:% 2 Asetik asit (50:50,v/v), Flow 

rate: 0.5 mL/min, Wavelenght: 420 nm, Injection volume: 10 L and amount of the 

loaded drug is calculated by area under curve method.  
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4. RESULTS AND DISCUSSION 

4.1 Synthesis of the Amphiphilic Miktoarm Star Block Copolymers 

The objective of this thesis is to design A2B type miktoarm star block copolymers in 

order to use in massive targeted drug delivery system. For this pupose PEG2-PCL 

and PCL2-PEG miktoarm star block copolymers were synthesized in three different 

ways and  the characterization of the synthesized products. 1H NMR and GPC 

analysis were carried out where necessary for polymers. Data of this analysis are 

used to prove the formation of the targetd molecular structure. Mn,GPC of the products 

based on linear PS standards (RI detector). However, determination of more precise  

molecular weight for PCL, a correction formula was used:  Mn,PCL = 0.259 X 

Mn,GPC
1.073  

4.1.1 Synthesis of PEG2-PCL With Core-First Method By using both Diels-

Alder and CuAAC Reactions. 

Core-First strategy was used for the synthesis of the PEG2-PCL miktoarm star block 

copolymer. Due to this strategy high yield reactions are required for junction of the  

PEG and PCL moieties.  

Copper catalyzed reactions are not prefered by the FDA but before this final 

procedure two different procedure are experienced but the reactions did not work out. 

So, it was decided to use CuAAC, but if the micellar characterization gives good 

results the miktoarm star block copolymer, new pathway will be searched for this 

polymer  Diels-Alder (DA) reaction and the CuAAC (click) was used for the 

synthesis because both of them has high yield and with no side products.  DA was 

used for the juntion of the PCL chain and click for the PEG chains. For the PEG 

chains click is prefered because the prufication of the unreacted PEG is very hard 

and the reaction yield of the click was very high and has a simple process for 

purification as mentioned in experimental section.  
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4.1.1.1 Synthesis of the Core  

The core have two different functional groups, first one is dienophile group for DA 

and alkyne  group for the click. 4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione 

has a dienophile group and for gaining two alkyne group for junction of the PEG 

chains (4.1) 
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4-(2-hydroxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione esterified 

with 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid and hydrolyzed to give two –OH 

funtional group. The addition of the acid to diol group can be easily followed by the 
1H NMR with formation of the 1.18 (C=OC(CH2O)2CH3), 3.63 (CCH2O) and signal 

shift of the CH2 protons from 3.68 ppm (NCH2CH2OH) to 4.18 ppm 

Secondly, -OH groups of the product turn to alkyne groups by esterification with 4-

Pentynoic acid.  Formation of the product is proved with  1H NMR spectra.   
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Figure 4.1: 1H NMR spectra of the core 

4.1.1.2 Modification of the Me-PEG for Click Reaction  

The core was ready for the click reaction with two alkyne groups to prepare the Me-

PEG moety  –OH end of the Me-PEG was turned to azide group in two steps.  

O

OH
1- TsCL

2- NaN3

O

n n N3

 

(4.2)

In first step –OH group turn to tosyl group as mentioned in previous part and in the 

second step tosyl group is substituted with azide group that was used in click reaction 

(4.2) between Me-PEG-N3 to core Formation of the tosyl end  can be observered 

with formation of  the aromatic signals  between 7.0-8.0 ppm and the substitution of 

the tosyl group with azide group is can be followed with loss of aromatic signals and 

formation of the peak at 2.27 ppm  
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Figure 4.2: The comparison of the 1H NMR spectra of the Me-PEG-TsCI and Me-
PEG-N3 

4.1.1.3 Synthesis of the PCL Chain ViaUsing  9-anthracene Methanol  as 

Initiator 

PCL was synthesized with ROP that allows various type of initiatiors and for 

bonding  the PCL chain to core. 9-anthracene methanol is a proper inititor because it 

has got a diene group  that gives ability for bonding  to core with DA (4.3).  

O O

Sn(oct)2

110 oC

OH

O

O

m

OH

 

(4.3) 
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The product was characterized with both GPC and 1H NMR . Mn,NMR= 3450 of the 

polymer was determined accordingly from the integration of the peaks at 4.02 and 

8.28 ppm related to PCL’s repeating unit and anthracene end-group protons, 

respectively.  

 

Figure 4.3: 1H NMR spectrum of the Ant-PCL 

4.1.1.4 Synthesis of the PEG2 Via Click Chemistry 

The Me-PEG-N3 was bonded to core with click reaction between azide end of the 

PEG chain and alkyne functional group of the core. 2.2 equivalent of the Me-PEG-N3 

was used in the reaction to ensure the bonding of the both alkyne end of the core 

(4.4) and excess amount of the was removed in the last step of the reactions with 

precipitation in cold diethylether-methanol mixture. 

The product was characterized with both 1H NMR and GPC analysis. The formation 

of the triazole ring proves the bonding of the Me-PEG to core and it can be fallowed 

with the signal at 7.51 ppm and the signals at 3.62 is belongs to PEG chain. 
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Figure 4.4: 1H NMR spectrum of the PEG2 

4.1.1.5 Synthesis of the PEG2-PCL with Diels-Alder Reaction  

At the final step Ant-PCL was bonded to core via Diels-Alder reaction with 

procedure mentioned in the experimental part and characterized with both 1H NMR 

and GPC analysis. From the GPC trace chromotogram the reaction can be fallowed. 

The products peak is is not good separated from  the Ant-PCL   because PEG chains 

are absorbed by the column and it couses a longer retention time and it seems the 

molecular weight is lovered although it is increasing with the addition of the         

MI-PEG2 to PCL chain (4.4)  
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Table 4.1: Molecular weight analyses of the PEG2-PCL 

Polymer Precursor 

Mn,theo 

(g/mol) 

Mn,NMR 

(g/mol) 

Mn,GPC 

(g/mol) Mw/Mn 

PCL-

(PEG)2 

Anth-(PCL) + 

MI-PEG2  5000 5200 7000 1.07 

 

 

Figure 4.5 GPC analysis of PEG2, Ant-PCL and PCL—PEG2 miktoarm star block 
copolymer. 
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Figure 4.6: 1H NMR Spectrum of the PEG2-PCL  

4.1.2 Synthesis of PCL2-PEG By Using DA 

The second synthesized miktoarm star copolymer was PCL2-PEG. For the synthesis 

of the aimed product arm-first method was choosen. The synthesis of second 

copolymer was easier than the first one because the production of the PCL2 part was 

avaliable with little modification on the ROP initiator by using 2,2,5-trimethyl-

[1,3]dioxane-5-carboxylic acid for getting 2 –OH functional group for snythesis of 

the two arm and also it has a diene group allready for DA.  And Me-PEG‘s –OH end 

was prepared for the DA by using Succinic anhydride as linker for modifing the Me-

PEG end as a dieneophile with 4,10-dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione for 

DA. Me-PEG is commercially available in various chain lenghts and Me-PEG2000  

was choosen to produce a optimum  hydrophobe to hydrophile chain ratio for 

formation of the micelle because other available options are Me-PEG550 and Me-

PEG5000 The first one would cause less soluble block copolymer that could cause a 

precipitation in water without forming micelle and the second can be totally soluble 

in water again without forming any micellar structure. 

The second synthesized polymer have sent to USA Chicago Illinois and micellar 

characterization of the product was carried out by Fatemeh BAHADORI and the 

results found to be very promising for drug carrying polymeric micelle so the 
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synthesis of the copolymer was modified for a shorter and a cleaner pathway as 

mentioned in the coming section.   

4.1.2.1 Modifications of Me-PEG2000  

The Me-PEG’s –OH end was not available for boning 4-(2-hydroxyethyl)-10-oxa-4-

azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione to have a dieneophile end. So, firstly –OH 

end of it turn into –COOH by Succinic anhydride via ring opening in the presence of 

TEA/DMAP catalyst system (4.5). And, secondly 4,10-dioxatricyclo[5.2.1.02,6]dec-

8-ene-3,5-dione. was bonded to PEG chain with esterification reaction between 

COOH functional end of the PEG end –OH group of the 4-(2-hydroxyethyl)-10-oxa-

4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione as shown in the experimental part.  
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(4.5) 

The characterization of the prouducts were done with 1H NMR and GPC analyses. 

From the NMR analysis, the peak at 2.87 (CH-CH, bridge protons) ) 6.50 (CH=CH 

as bridge protons), 5.25 (-CHO, bridge-head protons), 4.23 (CH2OC=O), 3.75-3.51 

(OCH2CH2) and 2.62 ppm ( O=CCH2-CH2C=O) proved the adding of the 4,10-

dioxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione and succinic anhydride linking. And 

GPC analysis shows that no degradation was occured during the process by the 

observation of a single peak on the chromatogram. 
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Figure 4.7: 1H NMR spectrum of the MI-PEG 

4.1.2.2 The preparation of the Ant-PCL2 

The PCL moiety of the miktoarm star block copolymer was synthesized in 3 steps. In 

first 2 steps initiator of the ROP was prepared and at the last step Ant-PCL2 was 

synthesized with ROP via using anthracenediol as initiator. 

Firstly  -OH functionality of the 9-anthracenemethanol was esterified with the –

COOH moiety of the 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid.  DCC  was 

used as a coupling agent and catalytic amount of DMAP as catalyst to give 

anthracen-9-ylmethyl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate. The observation of 

proton signals at 4.14 ppm (CCH2O), 3.58 ppm (CCH2O), 1.38 ppm  (CCH3), 1.35 

ppm  (CCH3), 1.08 ppm  (C=OC(CH2O)2CH3) and the shift of CH2-anthracene signal 

to 6.2 ppm   proves the addition of the 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid 

group to 9-anthracenemethanol (4.6). 

Secondly, ketal protection of the diol group was removed with hydrolysis. Formation 

of the diol can be followed by the  loss of the  1.38 ppm  (CCH3), 1.35 ppm  (CCH3) 

and the change of the chemical shift of the CCH2O signals from 4.14 ppm to 3.66 

ppm. The product was abtained as yellow needle like solid  
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At the final step, Ant-PCL2 was synthesized via ring oppening polymerization by 

using anthracen-9-ylmethyl 3-hydroxy-2-(hydroxymethyl)-2-methylpropanoate as 

initiator. The  product was characterized by both 1H NMR and  GPC. The proton 

signals at 4.0 ppm  (CH2OC=O of PCL), 3.60 ppm (CH2OH, L), 2.3 ppm (C=OCH2), 

1.2-1.8 ppm (CH2). indicated PCL and the signals in the aromatic region indicated to 

initiator.  
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Figure 4.8: 1H NMR spectra of: a) 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid; 
b) anthracen-9ylmethyl 2,2,5-trimethyl-1,3-dioxane-5-carboxylate ; c) 
anthracen-9ylmethyl 3-hydroxy-2-(hydroxymethyl)-2-
methylpropanoate in CDCl3 

 

Figure 4.9: The 1H NMR spectrum of the Ant-PCL2 
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4.1.2.3 The Synthesis of PCL2-PEG via DA  

In the final step of the procedure, MI-PEG and Ant-PCL2 were coupled with DA 

reaction at high temperature (110 0C). During the reaction firstly the furan protection 

of the MI-PEG was removed due to retro Diels-Alder reaction. After removal of the 

furan, the end of the PEG was still dieneophile, so DA reaction occurs between PEG 

and PCL chains to give the PCL2-PEG product (4.7).  
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(4.7)

 

Figure 4.10: GPC analyses of PEG2, Ant-PCL and PEG2-PCL miktoarm star block 
copolymer. 
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The product was characterized by both 1H NMR and GPC analyses. From the GPC 

analysis the signal of the product was observed near Ant-PCL2 precursor because 

even the molecular weight was increased with the joining of the two chains, and the 

retention of the PEG moiety in the column was due to the adsorption behaviour of 

the PEG. Molecular weight of the product observed near to PCL, but higher than 

PEG. The PDI value of the product shows that one product was observed as desired. 
1H NMR anlayses also proved the success of the synthesis due to peaks at 3.62 ppm 

(br, 6H, -OCH2CH2, repeating unit of PEG and (NCH2CH2OC=O) and 4.0, 2.4-0.9  

ppm  (repeating unit of PCL) also disappearance of the characteristic peaks of 

anthracene proved the DA reaction formation and junction of the two chains. 

Table 4.2: Molecular weight analyses of the PCL2-PEG 

Polymer Precursor 

Mn,theo 

(g/mol) 

Mn,NMR 

(g/mol) 

Mn,GPC 

(g/mol) Mw/Mn 

PEG-

(PCL)2 

Anth-(PCL)2 

+ MI-PEG 6400 6200 8400 1.07 

 

Figure 4.11: 1H NMR spectra of the PCL2-PEG 
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4.1.3 Synthesis of the PCL2-PEG By Using Modified MePEG 

The first production procedure of the  PCL2-PEG was given good result for micellar 

characterization and synthesis, but it was too long. The synthesis of the product was 

required too many steps that is not prefered for a product that will be used in 

pharmacy. Because it interacts with different solvents and also, due to nature of the 

polymers, shorter pathways are prefered for less use of the solvents and other 

chemicals. Also, economically shorter pathways are more favorable and one of the 

main goals of the DDS is too decrease the coast of the drugs.  

Due to the reasons mentioned above the synthesis of the PCL2-PEG was reformed to 

give shorter pathway. The use of the PEG chain as macroinitiator for ROP was 

acomplished by the previous works such pluronics of the Kabanov but in our 

synthesis we need two PCL chains so, two functional –OH groups. Me-PEG2000 is 

modified with 2,2,5-trimethyl-[1,3]dioxane-5-carboxylic acid. and then hydrolyzed 

to gain two functional –OH goups, After that simple modification on Me-PEG it 

becomes a proper initiator for production of PCL2 moiety with ROP   

4.1.3.1 Synthesis of the PEG-Diol  

The modification of the Me-PEG to PEG-Diol  was carried out in two steps. Firstly 

Me-PEG’s –OH en was esterified in presence of the DCC/DMAP catalyst system 

(4.8) and purified by precipitating in cold diethylether. In the second step ketal 

protection of the diol was removed by hydrolysis in the acidic media. The steps were 

followed by both 1H NMR and GPC analysis. The success of the esterification was 

proved with the formation of the peak at 4,30 ppm (CH2OC=O) that proves the 

formation of the ester bond between –OH of the Me-PEG and –COOH of the 2,2,5-

trimethyl-[1,3]dioxane-5-carboxylic acid.  And the peaks that belongs to 2,2,5-

trimethyl-[1,3]dioxane-5-carboxylic acid ( 1.38 ppm  (CCH3) 1.36 ppm (CCH3) and  

1.18 ppm  (C=OC(CH2O)2CH3). And the removal of the ketal protection is can be 

fallowed by the absence of the peaks at 1.38 ppm  (CCH3) 1.36 ppm (CCH3) on 1H 

NMR spectrum of the PEG-Diol.  

 

 

(4.8)
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Figure 4.12: 1H NMR Spectrum of the PEG-Diol 

4.1.3.2 The Synthesis of the PCL2-PEG via ROP 

After preparation of the macroinitiator with only one step the miktoarm star block 

copolymer was synthesized by using modified PEG as macroinitiator. The synthesis 

wass carried out in the standart conditions of the ROP of the �-CL (4.9)  and for 

purification cold diethylether is used for precipitation of the product which was used 

for the both purification of the PEG and PCL.  
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For the characterization of the product GPC, 13C NMR and 1H NMR  analysis were 

carried out. Both NMR spectrums are proves the addition of the �-CL molecules to 
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macroinitiator via ROP with the peaks at 174, 64.1,34.2, 28.3, 25.5 and 24.6 ppm  

(repeting CH2 ünits of the PCL) on 13C NMR  (APT) and 4.04, 2.25,1.6 and 1.30 

ppm on 1H NMR Also, GPC chromatogram was proved the formation of the 

miktoarm star block copolymer by the increase to higher molecular weight with good 

PDI value.  

Table 4.3: Molecular weight analyses of the PCL2-PEG synthesized with macro-
initiator 

Polymer Precursor 

Mn,theo 

(g/mol) 

Mn,NMR 

(g/mol) 

Mn,GPC 

(g/mol) Mw/Mn 

PCL2-PEG PEG-Diol 6000 5750 7000 1.10 

 

Figure 4.13: GPC analyses of PEG2, Ant-PCL and PEG2-PCL miktoarm star block 
copolymer. 
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Figure 4.14: The 1H NMR and  13C NMR  spectrums of the PCL2-PEG miktoarm 
star block copolymer 

4.2 Preparation and Characterization of the Micelles 

The micellar characterization of the polymeric micelles were made by three ways 

size distribution, CMC analysis, and max. curcumin loading capacity of the micelles. 

But the micellar characterization of the PCL2- PEG was done by the Fatemeh 

Bahadori so it won’t be discussed in here   

4.2.1 Preparation of the Micelles 

In this study, we explored the potential of the PCL-PEG micelles as a drug delivery 

vehicle for lipophilic drugs. The PCL-PEG micelles can not be prepared in water  

due to the hydrophobicity of the polycaprolactone core. For this reason, the block 

copolymer was first dissolved in DMF, and micellization is induced by the dropwise 

addition of water, followed by dialysis. 

Dialysis method is used for preparation of the micelle form the amphiphilic 

miktoarm star block copolymers. Copolymer is first dissolved in the DMF, but, as 
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mentioned in the theoretical part, this could cause an increase in the diameter of the  

micelles. Direct dialysis with water can reduce the size of the micelles.  And, after 

dialysis the samples were freeze-dried at -50 oC, but, generally prefered degree was 

indicated to be -80 oC in the literature. This disadvantage is compensated by a longer  

lyophilisation time. 

The morphology of the micelles are effected from the ratio of the DMF to observe 

this effect was observed by addition of the different amount of the water after 

dissolving in DMF The molecular weight cut off value of the dialysis membrane was 

choosen as 3500 to get rid off impurities and DMF.  

4.2.2 Particle Size Analyses 

Size of the micelles were measured with Malvern Zeta-sizer. Conventional DLS 

instruments use scattered lights with a detection angle of 90° and this optical 

configuration may not be sensitive enough for the successful measurement of 

surfactant micelles. Therefore the scattered light was detected at an angle of 173° and 

this novel optics arrangement maximizes the detection of scattered light by 

maintaining signal quality. This provides exceptional sensitivity that is required for 

measuring the size of nanoparticles at low concentrations.  

Firstly, PEG2-PCL’s micellar size was measured as 175 nm and 143 nm for PCL2-

PEG micelles. The measured sizes are reasonable which followed behaviour of the 

block copolymer after a series of dilution, the peak of the micelle was lost in the 

diagram because the concentration of the amphiphilic miktoarm star block 

copolymer was fallen under the CMC value, so the remaining peaks are belongs to 

aggregates that can be seen in the figure 4.16  
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Figure 4.15: Particle size distribution of the PEG2-PCL micelles  

 

Figure 4.16: The particle size distribution of the PEG2-PCL micelles after dilution  

Secondly, micellar size of the PEG-PCL2 micelles were studied with same procedure 

but this time to observe the effect of the water/DMF ratio on the size of the micelles, 

three different samples were prepared for Zeta-sizer analysis vary from 1/1 to 3/1      

( v/v, water/DMF)  
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Table 4.4: DMF/H2O (V/V) and  the size of the micelles prepared with PCL2-PEG 

DMF/H2O (V/V) Micellar Size (nm) 

1/1 154.0 

1/2 179.2 

1/3 143.1 

 

 

Figure 4.17: The size distributions of the polymeric micelles that prepared with 
different DMF/H2O ratios 

The effect of the ratio of the DMF did not show a linearity with the increase in the 

amount of the water, and the smallest micellar size was observerd for the 1/3 ratio. 

Even with this unusual micellar sizes the prepared micelles can be used for DDS 

because it is stil under the critical value of the polymeric carriers size range (200 nm) 

used for the passive targeting.   
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4.2.3 CMC Measurements 

The CMC measurement of the polymeric micelles were done by using pyrene as 

fluorescent probe. Fluorescence behaviour of pyrene is changing due to the polarity 

of the chemical enviorment of the molecule. So this makes it a good fluorescent 

probe for determination of the CMC value of the amphiphilic block copolymers, the 

concentration of the polymer was diluted to half till to under the CMC value. The 

self-assembly of the micelles will broken and the loaded pyrene will be released to 

water environment and red shift was observed in the emission spectrum of the 

pyrene. So, by plotting the polymer concentration with the ratio of the intensities of 

the emmision wavelenghts of pyrene CMC value can be observed with the sharp 

decrease in the ratio of the intensities at around 1.  

 

Figure 4.18: The fluorescence spectrum of the PCL2-PEG and PEG2-PCL 

The red-shift of the emmission of pyrene can be both followed on the fluorescence 

spectrum of the polymeric micelles caused by the dilution of polymer concentration 

via change on the environment of the pyrene after degradation of polymeric micelles. 

But the aggregates that were formed during the degradation of the polymeric 

micelles keep some amount of the pyrene in hydrophobic area which cause to 

unexpected emissions, but they were underestimated while plotting on the diagram. 

The shift of the emmission wavelenght is observed differently for the polymers. 

However, the corona of the both polymer is composed of the same polymer (PCL), 
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same morphologies with different arm structures cause unequal fluorescent 

responses. So, red shift observed for PEG2-PCL was from 336 nm to 339 nm and 

from 335 nm to 338 nm for  PCL2-PEG. 

For determination of the CMC values I3/I1 is calculated for samples, then plotted 

with Log C (mg/mL). The CMC values 12 mg/L for PEG2-PCL and 9 mg/L for 

PCL2-PEG are determined. These valus are good enough for a drug carrying micelle. 

However, the success of the CMC values are changing due to the loaded drugs 

depending on their effective doses and stability of the micellar structure related to 

several factors. Therefore, a complete judgement can not be made without in vivo 

tests. 

 

Figure 4.19: The CMC graphs of the polymeric micelles 

4.2.4 Encapsulation of the Curcumin with Polymeric Micelles 

The final step of the experiments was drug loading to polymeric micelles and 

measurement of the maximum loading capacity. Although, curcumin has high drug 

potential due to its antioxidant, cytotoxic (anticancer) and anti-Alzheimer properties 

unfortunately, its water solubility is very poor (0.6 µg/mL). In this experiment, the 

effect of the encapsulation of curcumin with prepared micellar formulation was 

observed via maximum loading capacity measurements. 
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The loaded curcumin amounts are found with the external standart method. Firstly, a 

calibration curve was drawn with the standart curcumin concentrations to observe the 

response of the column to curcumin, then the loaded curcumin amounts are 

calculated via plotting the area under curve values of the samples on the calibration 

curve (figure 4.20). This calibration curve was used for both the polymeric micelles. 

 

Figure 4.20 : The calibration curve of the curcumin standarts used in calculations 

The used standards were choosen at very low concentration to detect very low 

amount that loaded to polymeric micelles and also not to reach over the Beer-

Lambert’s law. The average of the three samples measurements was used to 

determine the loaded amount of the curcumin for each concentration to avoid the 

experimental errors.  

The maximum curcumin loading capacity was calculated to be 126.7 µg in 20 mg of 

the PEG2-PCL polymeric micelle. The expected loaded amount must be higher than 

the observed loaded value 321.7 µg for the second 20 mg of the polymeric carrier 

PCL2-PEG. Micelles higher concentrations will be experienced because it was seem 

to maximum loading capacity had not reached to the curcumin amounts can be 

accomplished from the Table 4.5. As seen the Table, the loaded amount of the 

curcumin is increasing depending on the initial curcumin amount, however, a better 

maximum point must be observed.  
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Table 4.5: The loaded curcumin amount to polymeric micelles. 

Curcumin amount 

(µg) 

200.0 500.0 1000.0 2000.0 3000.0 4000.0 

Cur. Conc. in 

PEG2-PCL 

Micelles (mg/mL) 

28.8 68.8 126.7 50.7 30.4 135.1 

Curcumin Conc. in 

PCL2-PEG 

Micelles (mg/mL) 

27.8 31.0 59.3 91.5 146.7 321.7 

The solubility of the curcumin increased from 0.6 µg/mL to 135.1 µg/mL with PEG2-

PCL micelles which means the solubility in water increased 211 fold. Although it has 

not reached to the maximum loading capacity for PCL2-PEG micelles, however it  

increased 536 fold. 
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5. CONCLUSION 

In conclusion, well-defined amphiphilic miktoarm star-block copolymers were 

succesfully synthesized to prepare drug carrier polymeric micelles by benefit from 

their amphiphilic structure via a combination of ROP, highly efficient Diels–Alder 

and click reactions. In first study, PEG2-PCL and PCL2-PEG star block copolymers 

were synthesized based on ’’core-first’’ and  ‘‘arm-first’’ methodology. As a result, 

well-controlled macromolecular architectures with controlled molecular weights and 

rather narrow molecular weight distributions were achieved. 

In the first step of synthetical studies, synthesis of the PEG2-PCL star block 

copolymer and PCL2-PEG star block copolymer was carried out with two different 

methods. For this purpose, we have prepared a proper core that needs two alkyne and 

one dieneophile end group, and subsequentially azide functionalized PEG550 chains 

are attached to the core with Huisgen type copper catalyzed cycloaddition reaction. 

In the next step,  synthesis of PEG2-PCL star block copolymer was carried out using 

the anthracene end-functionalized (diene) PCL which bonded to core via Diels-Alder 

reaction.  

For the synthesis of PCL2-PEG type of block copolymer, the two methods were used; 

one of them was carried out through Diels-Alder reaction without Click chemistry, 

the other was realized using PEG as macroinititator. The first type of PCL2-PEG 

synthesis is accomplished by using ‘’arm-first method’’. The PCL moiety was 

synthesized by ROP with modified anthracene initiator that hydroxy end turned to 

diol. PEG chain was also modified with to MI-PEG by changing hydroxy end of the 

Me-PEG in two steps. At the last step of this procedure, two moieties are bonded via 

high yield DA reaction. It is obvious that DA click reaction is a versatile and 

efficient method for the preparation of well-defined polymeric structures. But the 

second synthesis pathway is better due to less reaction steps and easy purification 

method. These adventages also bring the economical priority to the second method in 

the synthesis of  PCL2-PEG. In this method, the Me-PEG was used as macroinitiator 

for the ROP with modification on its hydroxy end to diol in the two simple steps. 
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Moreover, both GPC and 1H NMR analysis confirmed a successful block copolymer 

formation. 

In the second part of the study, the micellar characterization of the amphiphilic star 

block copolymers is carried out via CMC determinations and Zeta-size analyses. For 

the observation of effectivity of the prepared micelles, one of the most searched 

potent anticancer compounds curcumin is loaded to the prepared polymeric micelles. 

Because, the biggest obstacle for the curcumin is its low water solubility as observed 

for several drugs. 

The CMC analysis was given brief information about the stability of the micelles 

which may conserve their self-assembly even at low concentrations. This property is 

required for drug carrier vehicles in order to keep the active compound unreleased  

until reach to the targeted tissue or organ without destroying self assembly or 

degradation. 

Zeta-sizer results exhibited that the size of prepared micelles were out of the desired 

range (10-100 nm) for polymeric micelles. But, they are still in the range of passive 

targeting zone with size lower than 200 nm . 

On the other hand, curcumin loading results are fairly satisfying with its increased 

water solubility. These results indicated that water solubility of curcumin is increased 

up to 211 fold with PEG2-PCL, and reached to 560 fold for PCL2-PEG copolymers. 

But,  without knowledge of the exact effective dose value, these results are 

considered to be only promising good solubility results. The best way to understand 

effectivness of the polymeric micelles is to test them in vivo conditions.   
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