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ÖZET 

Meta Sezgisel Algoritmalar İle Biyolojik Sinyallerin İşlenmesi 

 

Bu çalıĢmada, EEG sinyallerinin meta sezgisel algoritmalar ile sınıflandırılması 

gerçekleĢtirilmiĢ ve sınıflandırıcıların değiĢkenleri değiĢtirilerek Ayrık dalgacık 

dönüĢümünün sınıflandırma üzerindeki etkileri incelenmiĢtir. Ġlk olarak ön iĢleme tabi 

tutulan EEG sinyallerinden dalgacık dönüĢümü yöntemiyle öznitelik vektörleri elde 

edilmiĢ, sonrasında ise DVM ve kNN yöntemiyle sınıflandırma gerçekleĢtirilmiĢtir. 

Dalgacık DönüĢümünün sınıflandırma üzerindeki etkileri tablo olarak verilerek 

sınıflandırma sonucunda EEG sinyallerinin sağlıklı veya epileptik olduğu hakkında bilgi 

sağlanmıĢtır. Bu çalıĢmada 1. seviye Haar, Db4 ve Symlet dalgacıkları ile 5-kat ve 10-

kat çapraz doğrulama (k-fold cross validation) kullanılarak sınıflandırma yapılmıĢtır. 

GerçekleĢtirilen sınıflandırma sonuçları kıyaslandığında SVM yöntemi KNN ‘ye göre 

daha baĢarılı sonuç vermekte ve dalgacık analizi değiĢkenleri karĢılaĢtırılmasında SVM 

için kernel tipi Doğrusal ve Polinom olan ve Symlet dalgacığı kullanıldığında en iyi 

sonucu verirken; kNN için ise Öklid mesafesi ve dalgacık tipi olarak ise Haar 

kullanıldığında en iyi sonucu vermektedir. Ayrıca, çapraz doğrulama değeri arttıkça 

baĢarımının azaldığı açık bir Ģekilde görülmektedir. 

 

Anahtar kelimeler: Ayrık Dalgacık DönüĢümü, DVM, EEG, Epilepsi, KNN  
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SUMMARY 

Biological Signal Processing Using Metaheuristic Algorithms 

 

In this thesis, classiffication of EEG signals by using metaheuristic algorithms is 

realised and Discreet Wavelet Transform (DWT) and its effect on classification is 

analyzed by changing variables of classifiers. First, pre-processed EEG signals are 

obtained, then feature vectors are produced by Discreet Wavelet Transform method 

after then classification is realized by SVM and k-NN methods. Discreet Wavelet 

Transform effects on the classification is shown by tables as a result of the classification 

is epileptic or healthy. In this thesis, 1. level Haar, Db4 and Symlets wavelets with 5-

fold and 10-fold Cross Validation are used for classification. When classification results 

compared, SVM method gives better than kNN method. Comparing the variables; for 

SVM, linear and polynomial kernel type and using symlet wavelet gives better result. 

While for the kNN, Euclidean and Cityblock distance and using Haar wavelet gives 

better result. It is clearly seen that when the k value of k-fold cross validation is 

increased the result of classification decreased.  

 

Keywords: DWT, EEG, Epilepsy, k-NN, SVM 
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1. GİRİŞ 

1.1 TEZİN KONUSU VE AMACI 

Henüz nasıl çalıĢtığı tam olarak keĢfedilememiĢ olan insan beyni en karmaĢık yapıya 

sahip olan organlardan bir tanesidir. Günlük hayatta okuma-yazmadan hafızaya, nefes 

almadan yürümeye kadar bütün faaliyetler beynin denetimindedir. Bütün bu faaliyetleri 

denetleyen beynin, nasıl çalıĢtığı hala tam olarak keĢfedilmemiĢtir. 

 

Epilepsi aralıklı olarak tekrarlanan krizlerle tanımlanan bir nörolojik rahatsızlıktır ve  bu 

krizler beyindeki anormal sinirsel aktiviteler yüzünden oluĢur. Bu aktiviteler  EEG 

iĢaretlerinde gözlemlenebilirler. Bu nedenle Epilepsi hastalığının teĢhis edilmesinde 

EEG (Elektroensefalografi) yöntemi uygulanmaktadır. EEG kayıtlarının otomatik olarak 

değerlendirilmesi için bir çok sınıflama yöntemi  kullanılmaktadır. 

 

EEG, beyindeki sinir hücreleri tarafından hem uyku, hem de uyanıklık halindeyken 

üretilen elektriksel faaliyetin beyin dalgaları Ģeklinde  kaydedilmesidir. Beyinde 

gerçekleĢen normal elektriksel faaliyetler baĢta epilepsi (sara hastalığı) olmak üzere pek 

çok durumda bozulabilir. EEG‟yi oluĢturan beyin dalgalarının incelenmesi ile bu 

bozukluğun yeri ve Ģekli hakkında bilgi edinilebilir.  

 

EEG cihazları, kafatasının üzerinde belirlenmiĢ bazı özel noktalara yerleĢtirilen 

elektrotlar aracılığıyla beyindeki sinyalleri kaydeder. Kaydedilen bu sinyaller Dalgacık 

DönüĢümü gibi farklı yöntemler kullanarak analiz edilebilirler. Dalgacık DönüĢümü ile 

sinyal dalgacık katsayılarına ayrılır ve bu katsayılar sınıflandırıcılara giriĢ olarak 

uygulanarak verilerin sadeleĢtirilip sınıflandırılması sağlanabilir. 

 

Hastalık teĢhisi genellikle ön iĢleme, öznitelik çıkarma/seçme ve sınıflama 

iĢlemlerinden oluĢmaktadır. ĠĢaret/görüntü elde etme, bozucu etkenlerin yok edilmesi, 

ortalama alma, eĢik değeri belirleme, iĢaret/görüntü iyileĢtirme gibi iĢlemler ön iĢlemeyi 
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oluĢturmaktadır. Öznitelik çıkarma; Ģekil tanımlama ve Ģeklin önemli özniteliklerinin 

çıkarılıp öznitelik vektörünün elde edilmesi iĢlemidir. Öznitelik seçme isteğe bağlı 

olarak yapılan bir iĢlem olup sınıflama iĢlemi açısından en belirleyici özniteliklerin 

seçilmesi ile öznitelik vektörünün boyutunun azaltılmasıdır. Sınıflamada ise kullanılan 

algoritmaya bağlı olarak giriĢ öznitelik vektörleri incelenir ve sınıflama sonucu 

belirlenir böylece teĢhis sistemlerinin son aĢaması olan sınıftalama gerçekleĢmiĢ olur . 

Sınıflama sonucunu belirlemesi açısından ele alındığında öznitelik çıkarma ve gerekli 

durumlarda öznitelik seçme, sınıflama sistemlerinin baĢarısını oldukça etkilemektedir. 

 

Bu çalıĢmada, EEG iĢaretlerinin spektral analizi, Ayrık Dalgacık DönüĢümü (ADD) ile 

gerçekleĢtirilmiĢtir ve iĢaret hakkında önemli bilgi içeren dalgacık katsayıları iĢareti 

temsil eden öznitelik vektörleri olarak ele alınmıĢtır. Dalgacık katsayıları üzerinde 

istatistiksel iĢlemler kullanılarak öznitelik vektörlerinin boyutları azaltılmıĢtır. Elde 

edilen öznitelik vektörleri, Destek Vektör Makinaları (DVM) ve k En Yakın KomĢuluk 

(kNN) sınıflandırma yöntemlerinin giriĢlerine uygulanmıĢ ve sınıflandırıcıların 

parametreleri değiĢtirilerek Dalgacık DönüĢümünün sınıflandırma üzerindeki etkileri ve 

sınıflandırma performansları karĢılaĢtırmalı olarak incelenmiĢtir. 

 

1.2 LİTERATÜR ÖZETİ 

EEG iĢaretlerinin sınıflandırılmasıyla ilgili literatürde birçok çalıĢma bulunmaktadır. 

AĢağıda baĢlıca araĢtırmacıların çalıĢmaları özetlenmiĢtir. 

 

Miner (1998), Dalgacık teorisi, geleneksel Fourier metotları ve Dalgacık analizlerinin 

geliĢimini inceleyerek sinyal iĢleme alanı temelli çeĢitli karĢılaĢtırmalar yapmıĢ, ayrıca 

sürekli ve ayrık dalgacık analizi algoritmaları vermiĢtir. 

 

Deon Garrett ve diğerleri (2003) EEG iĢaretlerini sınıflandırmada doğrusal olmayan 

sınıflandırma yöntemlerinin, doğrusal olan sınıflandırma yöntemlerine göre çok fazla 

üstün olmadığını gösteren bir çalıĢma yapmıĢlardır. ÇalıĢmalarında yapay sinir ağı, 

destek vektör makineleri gibi doğrusal olmayan sınıflandırma yöntemi ile doğrusal 

sınıflandırma biçimi olan lineer ayırtaç analizi (linear discriminant analysis) yöntemini 
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karĢılaĢtırmıĢtır. Bunu yaparken 5 ayrı düĢünsel durumda kaydedilmiĢ EEG verilerini 

kullanmıĢlardır. Buldukları sonuçlarda destek vektör makineleri ile sınıflandırma 

ortalama %72, yapay sinir ağına göre %69.4, lineer ayrıĢım analizine göre  %66 

oranında baĢarım elde etmiĢler ve doğrusal yöntemin daha hızlı çalıĢtığını ve doğrusal 

olmayan yöntemlere göre de çok az hata yaptığını belirtmiĢlerdir. 

 

Kıymık ve ark. (2004), gerçek zamanlı uygulamalar için EEG sinyallerindeki 

epileptik sürecin belirlenmesinde STFT (Shirt Time Fourier Transform) ve Dalgacık 

Analiz yöntemlerini kapsayan bir çalıĢma yapmıĢlar ve bu çalıĢmada Dalgacık 

DönüĢümü‟nün diğer spektral analiz yöntemi olan STFT‟ ye oranla daha baĢarılı 

sonuçlar verdiğini göstermiĢlerdir. 

 

Übeyli ve Güler (2004), Dalgacık DönüĢümü ile EEG iĢaretlerinden çıkarılan öznitelik 

vektörleri üzerinde istatistiksel iĢlemlerin gerçekleĢtirilmesi ile ilgili bir çalıĢma 

yapmıĢlardır. 

 

SubaĢı ve Erçelebi (2005), çalıĢmalarında EEG sinyallerinin sınıflandırılması için 

sinyalleri Dalgacık DönüĢümü ile frekans bantlarına ayrıĢtırmıĢ, yapay sinir ağları ve 

Logistik Regresyon yöntemiyle sınıflandırma yapmıĢlardır. 

 

Batar (2005), tez çalıĢmasında EEG iĢaretlerini dalgacık analiz yöntemini kullanarak 

yapay sinir ağlarıyla uyku, yarı uyku ve uyanıklık durumlarına göre sınıflandırma 

yapmıĢtır. 

 

GüneĢ ve ark. (2006), EEG iĢaretlerinin dalgacık analizini yaparak Kısa Zaman 

Fourier DönüĢümü ile karĢılaĢtırmıĢlardır. 

 

Jahankhani ve ark. (2006), Epilepsili ve sağlıklı bireylerden alınan EEG 

sinyallerinden Ayrık Dalgacık DönüĢümü ile öznitelik vektörleri elde etmiĢler, MLP ve 

RBF ağlar ile sınıflandırma yapmıĢlardır. Arka planı gürültülü EEG iĢaretlerine 

gömülmüĢ, sabit olmayan anlamlı EEG iĢaretlerini elde etmek için etkili bir yöntem 

olduğunu söylemiĢlerdir. Ayrıca karar verme zamanını arttırmak için çok kanallı 

EEG cihazından elde ettikleri iĢaretlerin boyutlarını temel bileĢenler analizi (PCA) 



4 

 

yöntemini kullanarak azaltmıĢlardır. 

 

Tezel ve Özbay (2007), EEG sinyallerinin sınıflandırılmasında yeni bir yaklaĢım 

denemiĢler, hatanın geriye yayılmasına dayanan geleneksel YSA ile yeni bir YSA 

modeli kullanarak epileptik EEG sinyallerinin sınıflandırma doğruluğu ve performans 

hızını değerlendirmiĢlerdir. 

 

Toprak (2007) EEG Sinyallerinin Dalgacık DönüĢümü ve Yapay sinir ağları ile analizi, 

adlı Yüksek Lisans tezi çalıĢmasında EEG sinyallerinin sınıflandırılması ve daha net 

veri analizinin yapılabilmesi için DD ve YSA metotları birlikte kullanmıĢtır. EEG 

iĢaretlerinin spektral analizi ADD ile gerçekleĢtirmiĢ. Elde edilen öznitelik vektörleri 

çeĢitli ağ yapılarının giriĢlerine uygulayarak değiĢik algoritmaların, iĢareti, epilepsi-

normal olarak, sınıflandırma performanslarını incelemiĢtir. 

 

Sezer (2008) Epilepsi teĢhisi için EEG sinyal analizi [EEG signal analysis for epilepsy 

diagnosis] adlı yüksek lisans tezi çalıĢmasında değiĢik YSA yapılarını deneneyerek, 

EEG sinyallerinden epilepsi teĢhisi yapmak için en hızlı ve en baĢarılı olan YSA 

yapısını belirlemeye çalıĢmıĢtır. 

 

Özer (2010) EEG iĢaretlerinin diskriminant analizi ile sınıflandırılması [Classification 

of EEG signals by using discriminant analysis] adlı Yüksek lisans tezi çalıĢmasında 

EEG iĢaretlerinin farklı öniĢlemlerle diskriminant analizi ile karĢılaĢtırmalı olarak 

sınıflandırmıĢ ve danıĢmanlı algoritmaların (LDA ve DVM), danıĢmansız 

algoritmalardan (K-ortalama ve BCO) daha baĢarılı sonuçlar verdiği sonucunu 

gözlemlemiĢtir. 

 

Yapılan çalıĢmalarda Dalgacık DönüĢümünün sınıflandırma baĢarımlarının üzerindeki 

etkisi üzerine yeterli düzeyde durulmadığı ve geliĢtirmeye ihtiyaç duyulduğu 

görülmektedir.  
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2.GENEL KAVRAMLAR 

2.1 BEYİN VE YAPISI 

2.1.1 Beyin Anatomisi 

Beyin merkezi sinir sisteminin en önemli parçasıdır, kafatası içerisinde yer alır ve beyni 

içten çevreleyen bir zar tarafından korunur. Yüzeysel olarak beyin ortalama 2000-2100 

cm²‟dir, kütlesi ise yetiĢkinlerde ortalama olarak 1300-1400 gramdır.  (Jensen, 2006). 

 

Beyin dört ana yapıdan meydana gelir : Beyin, Beyincik, Köprü, Soğancık. Beyin, en 

büyük alana sahiptir.. Beyin sağ ve sol beyin yarımküresi olmak üzere iki bölümden 

oluĢur. Sağ beyin yarım küresi, vücudun sol tarafını, sol yarımküre ise sağ tarafını 

kontrol eder. Beyin zarı olarak adlandırılan beynin dıĢtaki katmanı gri maddeden 

yapılır. Gri madde sinir hücrelerinden oluĢturulur Bu hücreler beyin aktivitelerini 

kontrol eder. Ġç kısım beyaz maddedendir.. Beyaz madde, beyindeki sinir hücreleri ile 

omurilik arasında bilgi taĢıyan aksonlardan oluĢturulur. Hemisfer, ġekil 1‟de 

numaranlandırılan frontal (1), parietal (2), temporal (3) , oksipital (4) ve serebellum (5) 

olarak adlandırılan 5 loba ayrılabilir (Sekil 2.1). 

 

 

ġekil 2.1: Beynin Yapısı  
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Frontal lob: Bilinçli düĢünmede rol oynar ; zarar görmesi durumunda ruh hali ve 

hissiyat değiĢikliği olabilir. 

Parietal lob: ÇeĢitli duyu organlarından gelen bilgileri birleĢtirmede önemli rol oynar. 

Ayrıca nesnelerin kullanılması ve bazı mekansal görüĢ iĢlemelerinde parietal lobun kimi 

bölümleri rol alır. 

Oksipital lob: Görme duyusuyla ilgili bilgilerin iĢlendiği lobdur. 

Temporal lob: Koku ve sesin algılanması, aynı zamanda da yüzler, mekanlar gibi 

karmaĢık uyaranların iĢlenmesinde rol oynar 

Serebellum: Duyu organlarından gelen bilgilerle haraketi iliĢkilendirir ve özellikle 

dengenin sağlanmasında önemli rol oynar. 

2.1.2 Sinir Ağı 

 

Beyin çoğu hareket ve davranıĢın  düzenlenmesi ve denetlenmesinin yanında, kan 

basıncı, kalp atıĢı, sıvı dengesi ve beden sıcaklığı gibi beden iĢlemlerini de düzenler ve 

denetler. Ġnsan beyninde yaklaĢık 100 milyar nöron bulunur ayrıca beynin bir 

milimetreküpünde bir milyondan fazla nöron vardır (Jensen, 2006). Merkezi Sinir 

Sistemini (MSS) oluĢturan beyin ve omurilikten kodlanmıĢ sinir darbeleri halindeki 

komutlar, sinirler yoluyla organlara gönderilerek organların faaliyetlerini düzenler. Her 

bir sinirin diger sinirlerle baglantıya sahip oldugu bu yapı, Sinir Agı olarak 

adlandırılmaktadır. Sinir sistemi ve beyin fonksiyonlarının ana unsuru olan nöronlar 

hücre gövdesi, dendrit ve akson olmak üzere üç temel kısımdan oluĢur. Nöronlar, 

dendrit adı verilen ve hücre gövdesinden çıkan on binlerce kola sahiptir. Dendritler 

diğer nöronlardan aldığı elektriksel etkiyi akson adı verilen uzun bir lif boyunca diğer 

nöronlara iletir. Her nöron miyelin kılıfla sarılı bir tane aksona sahiptir (Sousa, 2001). 

Nöronlar sinaps adı verilen ve akson uçları, dendrit veya hücre gövdesi arasında 

bulunan birleĢme noktaları aracılığıyla  iletiĢim kurarlar.  
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Sekil 2.2. Nöronun Yapısı (Stevens ve Goldberg, 2001) 

 

Beyindeki iletiĢim sinir hücreleri arasında elektriksel ve kimyasal sinyaller aracılığıyla 

oluĢur. Sinir hücresi kendi elektrik sinyalini oluĢturur ve akson aracılığı ile dendrit‟lere 

gönderir. Dendrid‟ler ise bu sinyalleri sinapslere göndererek diğer sinyallerin hücrelere 

gönderilmesini sağlar. Böylece iki hücre arasında bilgi alıĢveriĢi sağlanmıĢ olur (Wolfe, 

2001). ġekil 2.2‟te hücreler arası iletim gösterilmektedir. 

 

ġekil 2.3. Sinir sistemi iletiĢimi (Sezer‟den, 2008) 

 

Hücrelerdeki elektro-kimyasal olayların sonucu oluĢan iyonik akımlar elektrotlar 

yardımıyla alınıp iĢaret iĢleme iĢlemlerinden geçirildikten sonra çeĢitli hastalıklara tanı 

konmasında yararlanılır. 
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2.2 EPİLEPSİ 

2.2.1 Epilepsi Nedir 

 

Epilepsi, aralıklı olarak tekrar eden kriz nobetleriyle tanımlanan bir norolojik 

rahatsızlıktır ve dünya nufusunun yaklasık %1‟inde görülmektedir. Epilepsinin çok 

farklı türleri bulunmaktadır, bu nedenle her hastada farklı Ģekilde görülebilir. Epilepsi 

nöbeti tüm vucudun kasılması ve çırpınma Ģeklinde olabildiği gibi, sadece yüz, kol ya 

da bacakta kasılma, anlamsız konuĢma ve davranıĢlar, titreme ve sabit bakma Ģeklinde 

de epilepsi nöbetleri görülebilir. (Gökcil, 2007). 

 

Epilepsiden bahseden ilk kiĢi M.Ö. 350‟lerde Hipokrat‟tır. Bu yüzden "Hipokrat 

hastalığı" olarak da bilinir.Epilepsi  ile   ilgili  ilk   fizyopatolojik  değerlendirmeler   19.   

yüzyılda   John Hughlings   Jackson   tarafından,   sadece   klinik   gözlemelere   

dayanılarak   ortaya atılmıĢtır. Jackson‟ın epilepsi alanına yaptığı katkılar modern tıp 

bilimi tarafından hala kullanılmaktadır.  

 

2.2.2 Epilepsi Nöbetleri 

 

Epilepsi nöbetleri, beyindeki hücrelerin kontrol edilemeyen, ani ve anormal deĢarjlarına 

bağlı olarak ortaya çıkan bir durumdur. Beyin hücreleri arasındaki uyumlu çalıĢma,  

elektriksel  sinyallerle  sağlanır.  Nöbetin  nedeni,  bir  tür  beklenmeyen elektriksel 

uyarı olarak düĢünülebilir. Kısaca; epileptik nöbet, beynin kuvvetli ve ani elektriksel  

boĢalımı sonucu  oluĢan kısa  süreli  ve  geçici  bir  durumdur.  Bayılma, morarma, 

sıçrama, çırpınma, anlamsız bakma, dalma vb. Ģekilde ortaya çıkan bir 

rahatsızlıktır.(Gökçil, 2007) 

 

2.2.3 Epilepsi Teşhisi 

 

Epilepsi tanısında en önemli nokta; nöbetler hakkında verilen bilgidir. Genel fizik ve 

nörolojik muayene yapıldıktan sonra baĢvurulacak ilk laboratuar inceleme aracı; 

elektroensefalografi (EEG) dir. Normal EEG epilepsi olmadığını göstermez ve anormal 

EEG de her zaman epilepsi demek değildir. EEG tetkiki kısa süreli, dinamik bir tetkik 
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olduğundan çekim sırasında herhangi bir anormallik ortaya çıkmayabilir. Bu nedenle; 

tanıya yardımcı olmak amacı ile tekrarlayan ya da uykusuzluk/uyku EEG çekimleri 

yapılabilir. Epilepsi hastalığı tanısının konulmasında en önemli tetkik EEG‟dir. 

Bilgisayarlı beyin tomografisi (BBT) ve magnetik rezonans incelemesi (MRI) epilepsi 

nöbetlerine neden olan olayların ortaya konmasında yardımcı olabilir. 

 

2.2.4 Epilepsi Nedenleri 

 

Epilepsi; doğuĢtan gelen kromozom hastalıkları,  bazı  enzim  eksiklikleri , gebelikte 

bebeğin beyin geliĢimini etkileyen mikrobik hastalıklar, doğum  sırasında  meydana  

gelebilecek  beyin  zedelenmesi ve beynin oksijensiz kalması, doğum sonrası menenjit, 

beyin iltihabı, beyin zedelenmesi, beyin tümörleri, uzun süren ateĢli havaleler ve tiroid 

hastalıkları sonucunda ortaya çıkabilir  (Epilepsie  Fonds  2005). 

 

2.2.5 Epilepsi Tedavisi 

 

Epilepsi rahatsızlığı, mutlaka doktora baĢvurulmasını ve doktorun gerekli gördüğü 

sürece kontrol altında kalınmasını gerektirir. Basit bir epilepsi nöbeti zararsız olmakla 

beraber, nöbetlerin tekrarlaması, beynin oksijensiz kalmasına yol açabilir. 

Epilepsi ilaçla veya cerrahi olarak tedavi edilebilir. %70-75 oranında tek ilaçla nöbetler 

kontrol altına alınabir. Epilepsili hasta ilacını kullanarak aktif ve baĢarılı bir yaĢam 

sürebilir (Gökçil, 2007). Epilepsinin tedavisi icin farklı yöntemlerin bulunmasına 

rağmen hastaların %25‟inde bu nöbetler kontrol altına alınamamaktadır (Gardner et al., 

2006). Farklı ilaclar kullanılarak epilepsi nobetlerinin onune gecilmeye calıĢılmasının 

yanı sıra  beynin sorunlu bolgesini elektriksel olarak uyaran cihazlar da gelistirilmeye 

çalıĢılmaktadır. Bu tarzdaki calısmaların etkili bir bicimde uygulanabilmesi icin de 

epilepsi tespiti ve tahmini çok önemlidir. 
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2.3 EEG (ELEKTROANSEFALOGRAM) 

2.3.1 EEG Nedir?  

EEG iĢaretleri, beyin yüzeyinden elektrotlarla algılanan düĢük genlikli biyoelektrik 

iĢaretlerdir. Kelime anlamı olarak Yunanca‟da “Beyin elektriksel resmi” anlamına  

gelmektedir. Beyinde bir takım elektriksel faaliyetlerin varlığı ilk defa, 1875 yılında 

Caton tarafından hayvanlar üzeninde yaptığı araĢtırmalar sonucu ortaya çıkmıĢtır.. 1929 

yılında ise Hans Berger ilk defa, insan beyninde elektriksel aktivitenin varlığını, kafaya 

yerleĢtirilen elektrotlar ve bunlara bağlı bir galvanometre yardımıyla ortaya koymuĢtur. 

Berger, 1930'da Elektroansefalogram (EEG) adı verilen bu dalgaların gözün açılıp 

kapanmasıyla değiĢtiğini göstermiĢtir. 

 

 

ġekil 2.4 Hans Berger tarafından kaydedilen ilk EEG sinyali 

 

Elektronikteki geliĢmelerle birlikte EEG iĢaretlerinin varlığı bilimsel bir Ģekilde ortaya 

konulmuĢ ve 1934 yılında Adrian ve Matthews,  elektrotlarla alınan EEG  iĢaretlerini 

kuvvetlendirip kaydedilmesini sağlamıĢlardır. 1939 yılında P. A. Davis, uyanık bir 

insanın EEG‟sinde, sese karĢı uyarılan yanıtların olduğunu bulmuĢtur. H. A. Davis ve 

arkadaĢları aynı sene, aynı olayın uyuyan insanda da meydana geldiğini göstermiĢlerdir. 

Ġkinci Dünya SavaĢı sonrasında, elektronik ve  bilgisayar alanında  meydana  gelen  

büyük geliĢmelerle birlikte ortaya çıkan olumlu sonuçlar, bu alanda da kendisini 

göstermiĢ  ve EEG‟nin klinik uygulamaları geliĢtirilerek tanımı üzerinde yapılan 

araĢtırmalar olumlu sonuçlar vermiĢtir (Yazgan, 1996). EEG sinyalleri, yaĢa, cinsiyete, 

beynin uyanıklık durumuna, biliĢsel uyaranlara, genetik faktörlere ve beyin 

hastalıklarının var olup olmamasına bağlı olarak değiĢimler gösterirler. Beyindeki  sinir  

hücreleri tarafından  hem  uyanıklık,  hem  de  uyku halindeyken üretilen elektriksel 
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faaliyet kağıt üzerine beyin dalgaları halinde yazdırılır. EEG, insan davranıĢlarını 

anlamak ve sonuç çıkarmak için beyindeki iĢlemlerin temelinde yatanı yansıtma 

yeteneğine sahip fizyolojik bir sinyaldir. Beyin normal elektriksel faaliyetini 

sürdürürken epilepsi (sara hastalığı) gibi pek çok nedenden dolayı aktivitesi bozulur. 

EEG ile ölçülen beyin dalgalarının değerlendirilmesi ile bu bozukluk hakkında bilgi 

edinilir. 

 

2.3.2 EEG Dalgaları 

Elektroansefalografi (EEG) iĢaretleri, EKG ve EMG iĢaretlerinde olduğu gibi Ģekil 

bakımından değil, kapsadığı frekanslara göre değerlendirilmektedir. EEG iĢaretleri 

periyodik olmadığından  genlik, faz ve frekansları sürekli değiĢir. Bu nedenle, anlamlı 

bir veri elde edebilmek için, uzun süreli ölçümler yapılması gerekmektedir Bir EEG 

iĢareti içerisinde, kiĢinin ruhsal durumuna ve düĢündüklerine göre, farklı frekans 

bandına sahip beĢ ayrı dalga bulunabilir. EEG iĢaretlerinin analizinde morfolojik 

özelliklerinin yanı sıra bu dalgalardan da faydalanılır. Tablo 2.1‟de EEG iĢaretlerinin 

kapsadıktan frekans bandları ve bu bandlara verilen özel isimler birlikte gösterilmiĢtir 

(Yazgan, 1996). 

 

Tablo 2.1. EEG Frekans bandları 

BAND ĠSMĠ SEMBOL 
FREKANS 

ARALIĞI 

OLUġTUĞU 

BÖLGE 

Delta δ 0,5 – 3,5 Hz DeğiĢken 

Teta θ 4 – 7 Hz DeğiĢken 

Alfa α 8 – 12 Hz 
Oksipital / 

Parietal 

Beta β 12 – 22 Hz Frontal 

Gamma γ 22 – 30 Hz DeğiĢken 

 

Delta Dalgaları: 0.5 hertz ile 4 hertz frekansları arasındaki spektrum bölümü delta 

aralığıdır. Bazı durumlarda 1 Hz'in altına da düĢer. Genlikleri, 100 μV (p-p)‟den 

küçüktür. Delta dalgaları süt çocuklarında, genç çocuklarda, derin uyku halinde ve ağır 

organik beyin hastalıklarında görülür. YetiĢkinlerde görülen delta aktivitesi anormal 

olarak nitelendirilir (Yazgan 1996; Koçal, 2007). 
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ġekil 2.5 Delta Dalgası 

 

Teta Dalgaları: 4 hertz ile 8 hertz frekansları arasındaki spektrum bölümü teta 

aralığıdır. Teta aktivitesi genellikle çocuklarda beyinin temporal ve merkezi bölümünde 

bulunur. YetiĢkinlerde  duygusal, gerginlik  ve  düĢ kırıklığı durumlarında ortaya  çıkar. 

Genlikleri 100 μV (p-p)‟den küçüktür (Koçal, 2007). 

 

 

ġekil 2.6 Teta Dalgası 

 

Alfa Dalgaları: 8-12 Hz  arasındaki beyin  dalgalarıdır ,genlikleri  50  μV kadardır. 

Uyanık  normal ve  sakin kimselerde  görülür.  Yoğun  Ģekilde  oksipital  bölgede  

ortaya  çıkar. Uyku durumunda yok olurlar. Uyanık kiĢi dikkatini özel bir Ģeye 

yöneltirse alfa dalgaları yerine, daha yüksek frekanslı, fakat düĢük genlikli EEG 

iĢaretleri (beta dalgaları) meydana gelir (Yazgan 1996). 

 

 

ġekil 2.7 Alfa Dalgası 

 

Beta Dalgaları: 13 hertz ile 23 hertz frekansları arasındaki spektrum bölümü beta 

aralığıdır. Beta ritimleri genel olarak normal yetiĢkinlerde ön merkezi beyinden alınır. 

Saçlı derinin parietal ve frontal bölgelerinde belirgin olarak kaydedilebilir. Beta-I (BI) 

ve Beta-II (BII) diye ikiye ayrılırlar. BII dalgalarının frekansı, BI‟dalga frekansının iki 
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katıdır ve  alfa  dalgalarında  olduğu  gibi  zihinsel  aktivitenin  artması  ile  ortadan  

kalkarlar  ve yerlerine düĢük genlikli asenkron iĢaretler oluĢur. BII dalgaları, merkezi 

sinir sisteminin kuvvetli aktivasyonunda veya gerginlik hallerinde ortaya çıkar (Yazgan 

1996). 

 

 

ġekil 2.8 Beta Dalgası 

 

Gamma Dalgaları: Bazı araĢtırmacılar tarafından kullanılmaktadır. Genlikleri, 2 μV 

(p- p)‟den daha küçüktür. Kafanın merkezinde, genlikleri daha büyüktür. Uykunun 

karakteristik belirtisini taĢırlar (Yazgan, 1996). 

 

 

ġekil 2.9 Gamma Dalgaları 

 

2.3.3 EEG Kullanım Alanları 

 

Tıp : EEG, BaĢta  epilepsi olmak üzere bir çok beyin rahatsızlıklarının teĢhisinde 

hastaya acı vermeyen ve  ucuz bir yöntem olması nedeniyle yaygın olarak kullanılır. 

Nöroloji: EMG, Ekokardiogram ve nörolojik kontroller ile birlikte hastanın beyin 

patolojisinin belirlenmesinde, 

 

Beyin Cerrahisi (Neurosurgery): Beyinden ameliyatla çıkartılacak tümör gibi anormal 

patolojik dokuların yerinin belirlenmesinde, 

 

Anestezi: Anestezi altındaki hastanın anestezi seviyesinin belirlenmesinde, 
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Pediatri: Ortalaması alınmıĢ uyarılmıĢ potansiyeller (Averaged evoked potentials) gibi 

diğer test yöntemleriyle birlikte, yeni doğmuĢ çocukların iĢitme  ve görme 

problemlerinin belirlenmesinde, 

 

Psikiyatri: Zihinsel bir bozukluğun daha kesin bir Ģekilde belirlenmesi amacıyla, 

organik bir beyin hastalığının var olup olmadığının belirlenmesinde kullanılmaktadır. 

EEG iĢaretlerindeki ana bileĢenin frekansı yaĢla birlikte artar, genlikleri ise azalır Bir 

çocuğun EEG'sinin genliği büyük, frekansı düĢüktür. YetiĢkinlerde genlik düĢer, 

frekans artar. , EEG üzerinde etkili olan durumlardan biride Ģuur durumudur. ġuur 

durumuna bağlı olarak uykudaki yetiĢkinde EEG'nin genliği artar, frekansı ise 

azalır.(Yazgan, 1996). 

 

EEG, psikomatik bulguların tanısında yardımcı olmamaktadır .EEG klinikte, beynin iki 

yarım küresinin elektriksel hareketleri karĢılaĢtırılarak  kafa içindeki yabancı yapıların 

lokalizasyonunda kullanılmaktadır. (Kalaycı, 1996). 

 

EEG,  epilepsinin  tanınması,  izlenmesi  ve  tedavisinin  planlanması  aĢamalarında 

klinik açıdan önem taĢıyan bir yöntemdir. Epilepsi, bir grup beyin hücresinin aĢırı 

boĢalmasına  bağlı,  mental  ve  motor  fonksiyonların  geçici  olarak  kaybolduğu, 

epileptik krizler ile kendini gösteren nörolojik bir fonksiyon bozukluğudur. Epilepsi 

krizleri sırasında EEG‟de epileptik aktivitenin saptanması, epilepsinin diğer epilepsi 

benzeri kriz oluĢturan hastalıklar ile ayırıcı tanısının yapılabilmesini sağlar. Epileptik 

krizler sırasında EEG‟de yüksek genlikli, tekrarlayıcı, birbiri ardı sıra gelen dalga 

Ģekilleri gözlenir. Krizler arası (interictal) dönemlerde ise diken (spike), diken-dalga 

kompleksi (spike-and wave ), keskin dalga (sharp wave) gibi kısa süreli dalga tipleri 

kaydedilir (Kalaycı, 1996). 
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3. MALZEME VE YÖNTEM 

3.1 MALZEME 

3.1.1 Kullanılan Veri 

Bu çalıĢmada kullanılan EEG sinyalleri; Bonn Üniversitesi Epileptoloji bölümü veri 

tabanından alınmıĢtır. Tüm veri, 5 kümeden oluĢmaktadır (A,B,C,D,E) ve her küme 100 

tek kanal EEG segmenti içermektedir. Her bir segment artefaktların gözle 

incelenmesinden sonra seçilmiĢtir. A kümesi, sağlıklı kiĢilerden, gözler açık biçimde, 

yüzey elektrotları ile kaydedilmiĢ EEG verisini içerir. B kümesi, sağlıklı kiĢilerden, 

gözler kapalı biçimde, yüzey elektrotları ile kaydedilmiĢ EEG verisini içerir. C ve D 

kümeleri, hastalıklı kiĢilerden, epilepsi krizinin olmadığı anda, giriĢimsel olarak 

kaydedilmiĢ EEG verisini içerir. E kümesi ise hastalıklı kiĢilerden, epilepsi krizi anında,  

giriĢimsel olarak kaydedilmiĢ EEG verisini içerir. Bu EEG iĢaretlerinin örnekleme 

frekansı 173,61 Hz ile sayısallaĢtırılmıĢtır ve her bir küme 39.33 dakikalık kayıt 

içermektedir. Analizlerde, sağlıklı gönüllülerden (Küme A) ve epilepsi hastalarından 

(Küme E) alınan EEG iĢaretleri kullanılmıĢtır. Küme A; kafatası dıĢından, küme E; kafa 

boĢluğu içinden kaydedilmiĢtir. Verilerin incelenmesinde MATLAB programından 

faydalanılmıĢtır. 

 

3.2 YÖNTEM 

3.2.1 Dalgacık Dönüşümü 

Dalgacık DönüĢümü son yıllarda kullanımı yaygınlaĢan ve iĢareti alt frekans bandlarına 

ayrıĢtıran bir sinyal iĢleme yöntemidir. Dalgacık  dönüĢümü, zamanla karakteristiği 

değiĢen durağan olmayan sinyal iĢleme için zaman ölçekli inceleme yöntemi olarak 

ortaya çıkmıĢtır.  
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Genel olarak Dalgacık DönüĢümleri herhangi bir sinyali ölçek parametreleriyle 

etiketlenmiĢ yerel bileĢenlerine ayrıĢtırmaktadır. Böylelikle sinyallerin zamansal 

karakteristiklerini spektral bileĢenler cinsinden ifade etmek mümkün olmaktadır. 

Dalgacık DönüĢümlerinin bu özelliği görüntü iĢleme, konuĢma tanıma ve özellikle 

biyomedikal sinyal iĢleme gibi alanlarda çok önemli uygulama   alanları   bulmasına yol 

açmıĢtır (Tansel ve ark. 1993). Dalgacık DönüĢümü durağan olmayan sinyaller ve 

nümerik sinyal iĢleme üzerine oldukça fazla kullanılmaktadır. Dalgacık DönüĢümünde 

de Fourier  analizde ki gibi sinyal alt bileĢenlerine bölünür. Fourier analizi bir sinyalin 

analizini yaparken sinyali farklı  frekanslardaki  sinüs  ve  kosinüs bileĢenlerine böler. 

Dalgacık DönüĢümü ise sinyali  ana dalgacığın ölçeklenmiĢ ve kaydırılmıĢ alt 

dalgacıklarına böler. Durağan olmayan türdeki sinyallerin iĢlenmesinde, sinyalin  zaman 

ve frekans bölgeleri arasında bir iliĢki elde etmek çok yararlı olmaktadır. Dalgacık 

DönüĢümü, farklı frekanslarda durağan olmayan güce sahip zaman serisi sinyallerinin 

analizinde kullanılabilir. Fourier analizi sinyali sadece frekans bölgesine  taĢıdığından  

sinyalin zamandaki  bilgileri  kaybolmaktadır. Bu nedenle durağan olmayan sinyallerin 

analizinde Fourier dönüĢümü yeterli olmamaktadır.  

 

EEG iĢaretleri durağan olmayan sinyallerdir ve bu iĢaretlerde zaman zaman ortaya çıkan 

kısa süreli dik darbeler ve karmaĢık dalgalar teĢhis için önemli bilgiler taĢımaktadır. Bu 

durumda bu özel spektral bileĢenlerin hangi zaman aralığında meydana geldiği önemli 

olabilir ve Fourier analizi yetersiz kalır (Yazgan ve Korürek, 1996). 

 

Fourier dönüĢümü, sinyali dönüĢtürürken frekans bölgesine taĢır, sinyalin zaman bilgisi 

kaybolur, durağan kendini sürekli tekrar eden sinyallerde bu sorun teĢkil etmez ama 

durağan olmayan yani EEG gibi sinyallerin analizinde dalgacıkların yapısı itibariyle 

Dalgacık DönüĢümü kullanılır. Birçok veri sinyali, önemli sayılabilecek 

durağansızlıklar veya geçici özellikler (eğim, ansızın değiĢim, kırılma ve olayların 

baĢlangıç ve bitiĢleri) içerebilir. Bu beklenmedik özellikler ve durağansızlıklar, veri 

sinyalinin en önemli kısımları olabilmektedir (özellikle EEG ve EKG vb.) , bu noktada 

Dalgacık DönüĢümü kullanımı bir zorunluluk olarak karĢımıza çıkmaktadır. 

 

Dalgacıklar sonlu sürelidirler bu yüzden yerel sinyal özelliklerinin analizini mümkün 

kılarlar. Dalgacık DönüĢümleri tüm sinyal frekans- zaman bilgisini korurlar. Bu 
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sebeplerden dolayı durağan olmayan gerçek doğal sinyallerin dalgacık temelli 

metotlarla iĢlenmesi geleneksel metotlardan daha iyi sonuçlar sağlarlar (Miner 1998). 

Özellikle durağan olmayan sinyallerde karĢılaĢılan süreksizliklerin sinyaldeki yerini 

daha iyi tespit edebilmek amacıyla Dalgacık DönüĢümü kullanılır.  

 

Dalgacık  analizininde sinyal, dalgacık ölçekleri ile gösterilir ve Fourier temelli analizde 

olduğu gibi sinüs temel fonksiyonları değil de dalgacık fonksiyonları kullanıldığından 

keskin süreksizlikleri içeren veriler için çok uygundur. Dalgacık DönüĢümlerinde 

zaman tanımlı bölgesinde verilen sinyal, dalgacık fonksiyonu denilen özel bir 

fonksiyonla çarpılır ve sinyalin her bir kesiti için dönüĢüm hesaplanır. Dalgacık 

DönüĢümlerinde ana hedef bir sinyali ölçek parametreleri ile etiketlenmiĢ temel 

fonksiyon kümelerine ayrıĢtırabilmektir. Bu büyük boyutlu sinyallerin daha küçük yerel 

bölgelerinde analizine olanak tanır. Diğer bir ifadeyle, düĢük frekanslar için geniĢ, 

yüksek frekanslar için dar olacak Ģekilde değiĢen pencere boyutlarının olmasıyla, bütün 

frekans aralıklarında optimum zaman- frekans çözünürlüğü sağlanabilmektedir. (ġekil 

4.2) Zaman tabanlı (Shannon), frekans tabanlı (Fourier), STFT (gabor) ve Dalgacık 

DönüĢümlerini göstermektedir (Polikar 2005). 

 

 

ġekil 3.1: Sinyal analiz yöntemleri arasındaki iliĢki 

 

Dalgacık DönüĢümünün taban fonksiyonlarına “dalgacık” denir. Dalgacıklar ortalama 

değeri sıfır olan ve zamanla sınırlı bir dalga Ģeklidir. Zaman ekseninde kaydırma ve 

ölçekleme parametreleri dalgacıkların temelini oluĢturmaktadır. Dalgacık sinyalinin 
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genleĢtirildiği bölgelerde sinyaldeki yavaĢ değiĢimleri ve/veya düĢük frekansları; 

büzüldüğü bölgelerde ise ani değiĢimleri ve/veya yüksek frekans bileĢenleri 

görülebilmektedir.  

 

Dalgacık DönüĢümü, veriyi farklı ölçeklerde ve çözünürlükte analiz ettiği  için ayrıntılı 

bir analiz yapmıĢ olur, çünkü ölçek her defasında iki kat artar ve buna göre analiz 

tekrarlanır, dolayısıyla çözünürlük artmıĢ olur, bu da sinyalin ayrıntılı  olarak 

iĢlenmesini sağlar. Bu ise tıp elektroniğinde istenilen bir durumdur. Dalgacık analizi bir 

sinyale ait zaman ve frekans tanımlı bölgelerindeki bilgileri eĢzamanlı  olarak  gösterir.  

Böylece  sinyaldeki  yönsemeler,  çöküm  noktaları  ve süreksizliklerin belirlenmesi 

diğer  sinyal analiz  metotlarına göre çok daha kolay olmaktadır.  

 

Dalgacık DönüĢümü ile kayda değer bir kötüleĢme olmaksızın bir sinyali sıkıĢtırmak 

veya gürültüden arındırmak mümkündür. Ayrıca Dalgacık dönüĢümü, baĢka sinyal 

iĢleme yöntemlerinin yakalayamadığı eğimleri, bozulma noktalarını, yüksek dereceli 

türevlerde süreksizlikleri ve benzerlikleri çıkarmada baĢarılıdır. 

 

Dalgacık DönüĢümü‟nün iki tipi vardır: Sürekli Dalgacık DönüĢümü (SDD) ve Ayrık 

Dalgacık DönüĢümü (ADD) (Adeli vd., 2002). Sürekli Dalgacık DönüĢümünde 

ölçeklendirme ve dönüĢüm parametreleri sürekli değiĢtiğinden her bir ölçek için 

dalgacık katsayılarının hesaplanması zor ve zaman alıcıdır. Bu nedenle daha çok ADD 

kullanılmaktadır (Güler ve Übeyli, 2004). 

 

3.2.1.1. Dalgacık çeşitleri 

 

Dalgacık  dönüĢümünde  birbirinden  farklı  dalgacık  çeĢitleri  kullanılır.  Çok 

karĢılaĢılan dalgacık çeĢitleri aĢağıda verilmiĢtir. Bu çalıĢmada Haar ve Daubechies 

dalgacıkları kullanılmıĢtır. 

 

Daubechies dalgacığı:  Haar dalgacık‟a benzemektedir. Db1, Haar dalgacık‟ın aynısıdır. 

Daubechies dalgacığı fonksiyonun formülü denklem 3.1‟de verilmiĢtir. ġekil 3.2‟de 

grafiksel olarak gösterilmiĢtir. 
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ġekil 3.2: Daubechies dalgacıkları. (Sezer‟den, 2008) 

 

  (3.1) 

 

Haar dalgacığı: Ġlk orthonormal dalgacık fonksiyonları kümesi, 1910 yılında Haar ile 

ortaya konmuĢtur. Haar dalgacık en eski ve en basit dalgacık fonksiyonudur.  Haar  

dalgacık  fonksiyonun formülleri denklem 3.2, 3.3, 3.4 ile verilmiĢtir. Grafiksel olarak 

ise ġekil 3.3‟de gösterilmiĢtir. 

 

 

 

ġekil 3.3: Haar dalgacık fonksiyonu.  

 

 



20 

 

 ,  (3.2) 

 ,  (3.3) 

 ,  (3.4) 

 

Meksika Ģapkası dalgacığı: 

 

Meksika Ģapkası dalgacığı formülü denklem 3.5 ile verilmiĢtir. Grafiksel olarak ise 

ġekil 3.4‟de gösterilmiĢtir. 

 

 

ġekil 3.4: Meksika Ģapkası dalgacığı. (Sezer‟den, 2008) 

 

 (3.5) 

 

Meyer dalgacığı: Meyer dalgacığı formülü denklem 3.6 ile verilmiĢtir. Grafiksel olarak 

ise ġekil 3.5‟de gösterilmiĢtir. 

 



21 

 

 

ġekil 3.5: Meyer dalgacığı (Sezer‟den, 2008) 

 

 (3.6)

  

Morlet dalgacığı: Bu dalgacık ölçeklendirme fonksiyonuna sahip değildir fakat net 

Ģekilde anlaĢılırdır. Morlet  dalgacığı  formülü  denklem  3.7  ile  verilmiĢtir.  Grafiksel  

olarak  ise  ġekil 3.6‟de gösterilmiĢtir. 

 

 

ġekil 3.6: Morlet dalgacığı. (Sezer‟den, 2008)  
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 (3.7) 

 

Symlets dalgacık: Db ailesinin değiĢmiĢ hali olarak Daubechies ile desteklenen simetrik 

dalgacık yaklaĢımıdır. ġekil 4.7‟ de Symlets dalgacık ailesine ait fonksiyonların zaman-

genlik gösterimleri verilmiĢtir. 

 

 

ġekil 3.7 Symlets dalgacık ailesine ait fonksiyonların zaman-genlik gösterimleri (Sezer‟den, 

2008) 

 

3.2.1.2. Sürekli Dalgacık Dönüşümü 

 

Sürekli Dalgacık DönüĢümü  (Continious Wavelet Transform)  bütün zaman aralığı 

boyunca dalgacık fonksiyonu ‟nin kaydırılmıĢ ve ölçeklenmiĢ sekliyle sinyalin 

çarpımından oluĢur. SDD‟nin sonucunda birçok dalgacık katsayısı elde edilir bunlar 

ölçek ve pozisyon fonksiyonlarıdır. Dalgacık DönüĢümünün en önemli özelliği her bir 

spektral bileĢeni için dönüĢüm hesaplanırken pencere geniĢliğinin değiĢmesidir. 

Bir  iĢaretinin Sürekli Dalgacık DönüĢümü Denklem 3.8‟deki gibi tanımlanabilir:  

 

 (3.8) 

 

Formül zamana bağlı olarak sinyal fonksiyonu ve dalgacık fonksiyonunun bileĢimidir. 
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Denklem 3.8‟deki  dalgacık dönüĢüm katsayılarını, , analizde kullanılan 

temel fonksiyonu, a ölçek (frekans) parametresi ve b de zaman (konum) parametresini 

gösterir. Dalgacık DönüĢümünün iki temel parametresi vardır: 

 

 (ölçek): Bir fonksiyonu sıkıĢtırır veya yayar.  `nın büyük değerleri küçük frekanslara 

(kaba ölçek), a'nın küçük değerleri yüksek frekanslara (ince ölçek) karĢılık gelir. 

 

 (öteleme parametresi): dalgacığın zaman (iĢaret) veya x; y boyunca (resim) 

ötelenmesini sağlar.  sürekli veya ayrık olabilir (HaĢiloğlu 1999). 

 

Ölçeklendirme parametresi , haritadaki ölçek de olduğu gibi, detaylı olmayan genel 

görünümler için yüksek ölçek, detaylı görünümler için ise düĢük ölçek uygundur. 

Ölçeklendirme, bir sinyalinin zaman-genlik gösterimini sıkıĢtıran veya geniĢleten bir 

matematiksel dönüĢümdür. Matematiksel ifade ile;  verilen fonksiyon ise  

fonksiyonun ölçeklendirilmiĢ halidir. Ana dalgacık iĢlemde tüm pencereler için bir 

prototip olarak kullanılmak üzere seçilir.  değerini büyütüp küçültmekle Ana dalgacık 

fonksiyonunun genleĢmesi ve büzülmesi sağlanır. Ana dalgacık seçildiği zaman 

hesaplama iĢlemi  ile baĢlar ve dalgacık dönüĢümü tüm  değerleri için 

hesaplanır. Büyük ölçek değeri sinyali geniĢletmek için, küçük ölçek değeri sinyali 

sıkıĢtırmak için uygundur. Fakat Ana dalgacık fonksiyonu ifadesine dikkat edilirse  

skalalandırma parametresi paydada yer almaktadır. Bu durumda  skalalandırma 

parametresine, aralığında değerler verildiğinde sinyal geniĢlemiĢ olur ve böylece 

alçak frekans bileĢenlerinin analizi için uygun pencere geniĢliği elde edilir.  

parametresine aralığında değerler verildiğinde ise sinyal zaman ekseninde 

sıkıĢtırılmıĢ olur ve böylece yüksek frekans bileĢenlerinin analizi için uygun pencere 

geniĢliği elde edilir. Tüm  değerleri için hesap iĢlemleri yapıldıktan sonra iĢaretin 

dalgacık dönüĢümü hesaplanmıĢ ve ölçek ve pozisyonun bir fonksiyonu olan dalgacık 

katsayıları üretilmiĢ olur. Yüksek frekans analizlerinde kısa pencere seçimleri yeterli 
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olup, alçak frekans analizlerinde ise uzun pencere aralıkları seçilmelidir. Dalgacık 

dönüĢümü sonucunda oluĢan; geniĢ ölçekli ana dalgacık katsayıları sinyalin kaba sinyal 

özelliklerini, küçük ölçekli ana dalgacık katsayıları ise küçük ayrıntı özelliklerini ortaya 

çıkarır. Bu da çok karmaĢık sinyallerin analizinde üstünlük sağlar ve aranılan bir 

durumdur. 

 

  öteleme parametresi, pencere fonksiyonun sinyal üzerindeki yerini değiĢtirir. Yani 

zaman ekseninde sinyal boyunca pencereyi hareket ettirir. Ayrıca bu terim, zaman-

frekans grafiğinde zaman bilgisini sağlar (Polikar 2005). 

 

 çarpanı ise, dönüĢtürülmüĢ iĢretin her ölçekte aynı enerjiye sahip olması için 

yapılan normalizasyon iĢlemidir. Bu çarpan sayesinde Ana dalgacık fonksiyonundan 

elde edilen pencere fonksiyonlarının enerjisinin, Ana dalgacık fonksiyonun enerjisi ile 

aynı olması sağlanır.  

Ters Sürekli Dalgacık DönüĢümü ise  ana dalgacığın kabul olunabilirlik sabiti olmak 

üzere Denklem 10‟da olduğu Ģekilde verilir: 

 

 (3.9) 

 

  (3.10) 

 

Kabul olunabilirlik sabiti   Denklem 3.11‟ te verilen ifade ile bulunur. 

 

 ,   (3.11) 
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Uygulamalarda Denklem 3.11‟de verilen Sürekli Dalgacık DönüĢümünün 

kullanılmamını zorlaĢtıran dezavantajlar vardır. SDD ile tek boyutlu sinyalin, iki 

boyutlu zaman-skala birleĢik gösterimi elde edilir. Bu gerekenden fazla olan bir 

lüzumsuz gösterim Ģeklidir. Çoğu uygulama için bu fazlalığın giderilmesi 

gerekmektedir. Fazlalığının giderilmesine rağmen, Sürekli Dalgacık DönüĢümünde 

sonsuz sayıda baz fonksiyonuna gereksinim devam etmektedir. Ayrıca  çoğu  sinyalin  

dalgacık  dönüĢümünün  analitik  çözümü  mümkün  değildir sadece nümerik olarak 

veya görsel analog bilgisayarla hesaplanabilirler. 

 

Ayrıca SDD zaman-band geniĢliği çarpımı, sinyalin zaman-band geniĢliği çarpımının 

karesine eĢittir. Mümkün olduğu kadar az bileĢenle bir sinyalin analizini yapmaya 

çalıĢan çoğu uygulama için bu dezavantajlar, Sürekli Dalgacık DönüĢümü‟nü 

kullanımını kullanıĢsız hale getirir. Fazla veri hesaplamak zor ve zaman alıcıdır. 

Bundan dolayı pratikte Sürekli Dalgacık DönüĢüm‟ün ayrık versiyonu kullanılır 

(Tangirala ve ark. 2001). 

 

SDD, bilgisayarda hesaplanırken ayrık olarak iĢlenir. Ancak, Ayrık Dalgacık 

DönüĢümünden farkı ölçeğin ve kaymanın sürekli olmasıdır. 

 

3.2.1.3. Ayrık Dalgacık Dönüşümü 

 

Sürekli Dalgacık DönüĢümü ile tek boyutlu sinyalin, iki boyutlu zaman-skala birleĢik 

gösterimi elde edildiğinden iĢlem ve veri kapasitesi çok büyüktür.  

 

Çoğu uygulama için bu fazlalığın giderilmesi gerekmektedir. Fazlalık giderilmesine 

rağmen, SDD‟ de sonsuz sayıda baz fonksiyonuna gereksinim devam etmektedir. Çoğu 

sinyalin DD‟ sinin analitik çözümü mümkün değildir sadece nümerik olarak veya görsel 

analog bilgisayarlarla hesaplanabilir. Ayrıca SDD‟ nin zaman-band geniĢliği çarpımı, 

sinyalin zaman-band geniĢliği çarpımının karesine eĢittir. Mümkün olduğu kadar az 

bileĢenle bir sinyalin analizini yapmaya çalıĢan çoğu uygulama için bu dezavantajlar, 

SDD‟ nin kullanımını kullanıĢsız hale getirir. Bundan dolayı pratikte SDD‟ nin ayrık 

versiyonu kullanılır (GümüĢ, 2003). iĢlem verimliliğini arttırmak için konum ve 
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ölçeklerin ikili kuvvetleri alınmsı iĢlemina ikili dalgacık (dyadic) dönüĢümü denir. 

Mallat, ikili dalgacık dönüĢümünü sayısal süzgeçlerle gerçekleĢtirmiĢ ve bu süzgeçler 

sayesinde dalgacık dönüĢümü iĢlemi hızlandırılmıĢtır.  

 

 Zaman boyutunda sıkıĢtırma frekans boyutunda yayılma ve yukarı doğru kaymaya 

denk düĢer veya bunun tam tersi de geçerlidir. Zaman domeninde ötelenmiĢ baz 

fonksiyonları ile sinyal nasıl tümüyle kaplanıyorsa aynı yolla frekans domeninde 

sinyalin sonlu uzunluktaki spektrumu geniĢletilmiĢ baz fonksiyonlarının spektrumları 

ile kaplanabilir. Frekans domeninde sinyalin geniĢletilmiĢ baz fonksiyonlarının 

spektrumları ile en iyi Ģekilde kaplanması, geniĢletilmiĢ baz fonksiyonlarının 

spektrumlarının birbirleriyle kesiĢecek Ģekilde baz fonksiyonlarının ayarlanması ile elde 

edilir (GümüĢ, 2003). 

Bir dalgacığın değiĢen ölçekler için frekans tayfları ġekil 3.7‟ de gösterilmektedir. Her 

bir dalgacık bant geçiren süzgeç olarak alınırsa bunun  ölçeklenmiĢ  serisi  de  bant  

geçiren  süzgeç  serisi  oluĢturacaktır. Her bir spektrumun merkez değeri ile bant 

geniĢliği oranına  bakacak olursak hepsinde bu oranın eĢit olduğu görülür. Bu oran 

“sadakat faktörü (Q)” (fidelity factor) olarak adlandırılır. Ve tüm baz fonksiyonları ise 

“Sabit Q faktörlü filtre kümesi” olarak adlandırılır (Valens 1999). 

 

 

 
 

ġekil 3.7: Ölçekleme ve dalgacık fonksiyonlarının spektrumları (Batar‟dan, 2005) 

 

Birçok  uygulamada  zaman-bant  geniĢliği  çarpımının  farklı  frekans  ve/veya farklı 

zamanlarda bölümlenebilmesi istenir. ġekil 3.7‟ den de görülebileceği gibi bu amaca 

dalgacık dönüĢümüyle ulaĢılır.  

 

Sürekli  Dalgacık  DönüĢümü‟ndeki bu fazla gereksizlik  ölçeğin  2‟nin katlarıyla 

değiĢtiği dyatic dalgacık parametreleriyle (a=2i ve b=k2i  gibi) ortadan kaldırılır (Fliege 

1996).  Böylece  hem SDD‟  nin genel yapısından gelen fazlalıklar azaltılır yani sadece 

yeterli düzeyde/sayıda öteleme ve ölçekleme yapılır hem de iĢaret istenilen yeterli 
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frekans bantlarında incelenebilir. Ölçek ve öteleme parametreleri olan a ve b‟ nin bu 

Ģekilde dyatic seçilmesi temel fonksiyonu seyrekleĢtirir. 

ġekil 3.8‟de verildiği gibi sıfıra doğru sinyal spektrumun, 2 çarpanı ile spektrumu 

daralan baz fonksiyonlarını kaplanması için bir alçak geçiren filtre spektrumu 

yerleĢtirilebilir. 

 

Bu çözüm ilk defa 1989‟da Mallat tarafından ölçeklendirme fonksiyonu ile yapılmıĢtır.  

Bu fonksiyonun spektrumu gerekli olan alçak geçiren filtre spektrumunu karĢılar. 

Ölçeklendirme fonksiyonu, spektrumun alçak geçiren özelliğinden dolayı, ortalama 

filtresi olarak da adlandırılır. Bir baz fonksiyonu band geçiren filtre ve skalalandırma 

fonksiyonu da alçak geçiren filtre olarak kabul edilirse, tüm baz fonksiyonları ve 

skalalandırma fonksiyonu bir filtre kümesi olarak kabul edilir (GümüĢ, 2003). 

 

 

 

ġekil 3.8: Ölçekleme ve dalgacık fonksiyonlarının spektrumları (Batar‟dan, 2005) 

 

Bu yöntemle, alçak frekansları analiz eden geniĢ pencereler (j‟nin büyük değerlerine 

karĢılık Ana dalgacık fonksiyonundan elde edilen baz fonksiyonları) büyük adımlarla 

ötelenmiĢ olur, aynı Ģekilde yüksek frekansları analiz eden dar pencereler (j‟nin küçük 

değerlerine karĢılık Ana dalgacık Fonksiyonundan elde edilen baz fonksiyonları) 

sinyaldeki hızlı değiĢimleri yakalamak amacıyla, küçük adımlarla ötelenmiĢ olur.(Sezer, 

2008) 

 

 ve   olarak  alındığında  Ayrık  Dalgacık  DönüĢümü  denklemi 

3.12‟deki gibi tanımlanır: 

 

 (3.12) 
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ADD ile yapılan iĢlem ve elde edilen katsayı miktarı azalmaktadır. Ayrık Dalgacık 

DönüĢümü‟nde esas amaç sayısal süzgeçleri kullanarak ayrık sinyallerin zaman-ölçek 

gösterimini elde etmektir. DüĢük frekanstaki bileĢenlerin analizi için sinyal alçak  

geçiren  filtrelerden, yüksek frekans bileĢenlerini analiz yapmak için ise yüksek geçiren 

filtrelerden  geçirilir.  Bunun sonucunda ADD farklı frekans bantları ve çözünürlükte 

analiz yaptığı için sinyali yaklaĢıklık ve ayrıntı bileĢenlerine ayrıĢtırabilmektedir. 

YaklaĢıklık sinyalin büyük ölçekli-düĢük frekanslı bileĢenlerine karĢılık gelirken, 

ayrıntı kısmı ise küçük ölçekli-yüksek frekanslı bileĢenlerini oluĢturmaktadır (Misiti ve 

ark. 2000). 

 

 

DD bir filtre kümesi olarak göz önüne alınırsa, DD iĢlemini sinyalin bu filtre 

kümesinden geçirilmesi olarak düĢünebiliriz. Her farklı filtrenin çıkıĢı Dalgacık ve 

skalalandırma fonksiyonu dönüĢüm katsayılarıdır. Bu analiz “alt band kodlaması” 

olarak adlandırılmaktadır (GümüĢ, 2003). 

 

Bu analizde, x(t) iĢareti ayrı ayrı alçak geçiren ve yüksek geçiren filtrelerden geçirilirek 

iki frekans bandı elde edilir. Filtre çıkıĢında yeralan iĢaretteki her iki örnekten biri atılır. 

Böylece iĢaretin yaklaĢıklık katsayıları ve ayrıntı katsayıları elde edilmiĢ olur. Yüksek 

geçiren kısmı genelde istenilen detayları içeren kısımdır. YaklaĢıklık katsayıları bir 

sonraki ölçeğe ait katsayıları elde etmek için kullanılır (Çetin ve Kucur 2003). Eğer 

istenilen bilgi elde edilebilirse bu iĢlem burada sonlandırılır. Fakat hala alçak geçiren 

kısımda ilgilendiğimiz sinyalin detayları yer almaktadır ve bunların incelenmesi 

amacıyla alçak geçiren kısmı tekrar alçak ve yüksek geçiren olmak üzere iki parçaya 

bölünebilir. Birçok iĢaret için düĢük frekans bilgileri iĢaretin en önemli kısmıdır. Diğer 

yandan, yüksek frekans kısmı ise ayrıntılardır (detail). Dalgacık analizinde; yüksek 

ölçek katsayılarına “yaklaĢıklık (approximation)”, düĢük ölçek katsayılarına da “ayrıntı 

(detail)” katsayıları denir. Yüksek geçiren süzgecin çıkıĢı ayrıntı, alçak geçiren süzgecin 

çıkıĢı yaklaĢıklık katsayılarını verir. Böylece iĢaret süzgeçlerden geçirilerek alt 

bantlarına ayrılır ve iĢaretin boyutunun değiĢmemesi için süzgeçlerin çıkıĢlarının örnek 

sayısı yarıya indirilir. Bu iĢlem, istenilen bilgilerin elde edilmesine kadar devam 

edilebilir. Bu yolla iteratif filtre kümesi elde edilmiĢ olur. Frekans bandlarının sayısı 

genelde bilgi veya hesaplanabilir güç miktarına göre sınırlıdır. ġekil 3.6‟ da verilen 
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yöntemde iki filtre tasarlanması yeterli olacaktır, fakat sinyal spektrumunun filtrelerin 

spektrumları ile kaplanma Ģekli hep sabittir (GümüĢ, 2003). 

 

 

Ayrık Dalgacık DönüĢümü (ADD), pratikte uygulamalarda iki adımlı bir prosedür 

olarak gerçeklenebilen bir ayrık konvolüsyon denklemidir. Prosedürün ilk adımı ayrık 

sinyalin, sayısal alçak geçiren ve yüksek geçiren filtrelere uygulanmasıdır. Ġkinci 

adımda ise konvolüsyon sonunda yani  filtrelerin  çıkıĢında  elde  edilen  diziler,  seyrek  

örnekleme  (subsampling)  ile baĢtan itibaren her iki dizi elemanın sadece baĢtaki 

eleman alınarak, eleman sayıları yarıya düĢürülür. Ayrıca bu  iĢleme aĢağıya doğru 

örnekleme (downsampling) de denir. Bu Ģekilde ayrık sinyalin eleman sayısı toplamı ile 

konvolüsyon sonucunda elde edilen sinyal dizilerinin eleman sayılarının toplamı aynı 

olur. Bir x[n] iĢaretinin Alt bantlarına ayrıĢtırılma prosedürü blok diyagram olarak ġekil 

3.9‟de gösterilmiĢtir. 

 

 
 

 

ġekil 3.9: DWT ile alt bantlarına ayırma; g[n]: yüksek geçiren filtre, h [n]:alçak geçiren filtre 

 

ġekil 3.9‟daki h(n) alçak geçiren filtrenin, g(n) yüksek geçiren filtrenin dürtü cevabıdır. 

 iĢaretin ayrıntı katsayılarını,  yaklaĢık katsayılarını,  dalgacık 

dönüĢümünün seviyesini göstermektedir. YaklaĢık katsayılarını Denklem 3.13 ile, 

ayrıntı katsayılarını da Denklem 3.14 ile gösterebiliriz  

 

 (3.13) 
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  (3.14) 

 

 

 
 

ġekil 3.10 Ayrık Dalgacık DönüĢümü sinyalin ayrıĢtırılması iĢlemi (Burcu‟dan, 2007) 

 

ġekil 3.10‟da ayrıĢtırma ile elde edilen sinyalin yaklaĢıklığı ( i cA ), sinyalin alçak 

frekans bileĢenlerini, detaylar ( i cD ) ise sinyalin yüksek frekans bileĢenlerini içerir. cD 

detay katsayıları küçüktür ve yüksek frekans gürültüsü içerir. cA yaklaĢıklık katsayısı 

orijinal sinyalden çok daha az gürültü içerir (Boztoprak,2005).  

 

ġekil  3.11‟de  verilen  akıĢ  Ģeması,  dallanmanın  hem  alçak  hem  de  yüksek frekans  

bileĢenleri  için  gerçeklenmesi  ile  edilir  ve  bu  Ģekilde  gerçekleĢtirilen dalgacık 

dönüĢümü, “Dalgacık Paket Dönüşümü” (“Dalgacık Packet Transform” (WP)) olarak 

adlandırılır. Ayrıca ġekil 3.11 ‟deki akıĢ Ģeması “Dalgacık Paket AyrıĢtırma Ağacı” 

olarak da bilinir. Dalgacık Paket dönüĢümü sayesinde uygulamalarımızda sinyallerin   

istediğimiz   frekans   bandlarını   analiz   edebilme olanağına kavuĢuruz. 
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ġekil 3.11: Dalgacık paket dönüĢümü (Burcu‟dan, 2007) 

 

Sinyalin, analiz ile elde edilen bileĢenlerinden tekrar elde edilmesi iĢlemine “Sentez” 

veya “Geriçatılma” denir. Sentez iĢleminde, ayrıĢtırma sonucunda elde edilen dalgacık 

katsayılarından sinyalin yukarı doğru örnekleme iĢlemi ile geri çatılması gerçekleĢtirilir. 

ġekil 3.12 „de gösterildiği gibi yukarı doğru örnekleme iĢleminde, Dalgacık katsayıları 

dizilerinde her iki örnek arasına bir “0” genlikli örnek eklenir. Sinyal bu iĢlem sonunda 

kayıpsız olarak tekrar elde edilebilir. AĢağıya doğru örnekleme iĢlemi ile lüzumsuz 

olarak nitelendirilen bilgilerin arındırılmasının, sinyalin tekrar elde edilmesini 

engelleyecek veri kaybına yol açmamaktdır. Ayrıntı ve yaklaĢıklık  katsayıları  

kullanılarak  asıl  iĢaret  ġekil  3.12‟daki  gibi  tekrar  elde edilebilir. ĠĢareti yeniden elde 

edebilmek için ayrıntı ve yaklaĢıklık katsayıları önce 2 ile yukarı örneklenir yani iĢareti 

oluĢturan her iki örnek arasına sıfır eklenir.  

 

 
 

ġekil 3.12. Yukarı doğru örnekleme (Burcu‟dan, 2007) 

 

Daha sonra  yukarı örneklenmiĢ  iĢaretler    ve    sentez  filtrelerinden 

geçirilerek filtre çıkıĢlarındaki iĢaretler toplanır. Sentez filtreleri,  ve  analiz 

filtrelerinin zaman eksenine göre tersidir ve aĢağıdaki denklemlerle ifade edilir. 
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 (3.12) 

 

 (3.13) 

 

 

 
 

 

ġekil 3.13: Alt bantlara ayırma yöntemine göre analiz ve sentez iĢlemleri (Burcu‟dan, 2007) 

 

3.2.2 Ön İşleme 

 

Ön iĢlemlerin amacı verileri standartlaĢtırarak, özellik çıkarımı için hazır duruma 

getirmektir.Verilerin ön iĢlemesi en zor iĢlemlerden birisidir. ĠĢaret/görüntü elde etme, 

bozucu etkenlerin yok edilmesi, ortalama alma, eĢik değeri belirleme, iĢaret/görüntü 

iyileĢtirme gibi iĢlemler ön iĢlemeyi oluĢturmaktadır (Übeyli ve Güler 2004). Mevcut 

EEG kayıtlarının her biri 4096 örnekten oluĢmaktadır.  

 

3.2.3 Öznitelik Çıkarma 
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Öznitelik çıkarma, farklı düĢünce durumunda kaydedilen EEG iĢaretlerinin önemli 

özelliklerinin çıkarılıp öznitelik vektörünün elde edilmesi iĢlemidir. 

Öznitelik çıkarma iĢleminde çok farklı yöntemler kullanılabildiği için EEG iĢaretini 

tanımlayan farklı öznitelikler elde edilebilmektedir. Çıkarılan her öznitelik vektörü 

iĢareti tanımlayabilir fakat sınıflandırma aĢamasında hiç biri yüzde yüz doğruluk 

vermeyebilir. Bundan dolayı, yüksek sınıflandırma baĢarımı elde etmek için farklı 

özniteliklerin birlikte kullanımı gerekli olmuĢtur. Bu Ģekilde çok sayıda öznitelik 

kullanan sınıflandırma iĢlemleri daha iyi sonuçlar vermektedir. 

 

EEG iĢaretleri, hastalık teĢhisinin doğruluğunu sağlamak için çoğunlukla 8-10 saatlik 

kayıtlar Ģeklinde alınmaktadır. EEG kayıtlarının bu Ģekilde uzun olmasından dolayı, 

EEG iĢaretlerinin analizinin bilgisayar ortamında yapılması gerekli olmuĢtur. 

Literatürde çok sayıda analiz yöntemi olmakla birlikte bu çalıĢmada iĢaretlerin spektral 

analizi Dalgacık DönüĢümü ile gerçekleĢtirilmiĢ ve sınıflama iĢlemi için kullanılan 

öznitelik vektörleri elde edilmiĢtir. Uygun dalgacık seçimi ve ayrıĢım seviyelerinin 

sayısının tespiti, iĢaretlerin Dalgacık DönüĢümü ile analizinde oldukça önemlidir. 

ĠĢaretin baskın frekans bileĢenlerine göre ayrıĢım seviyelerinin sayısı tespit edilir. 

Sınıflamanın doğruluğu uygulama için seçilen dalgacık tipine de bağlıdır. Bu çalıĢmada, 

EEG iĢaretleri için ayrıĢım seviyelerinin sayısı 1 olarak belirlenmiĢ, dalgacık 

katsayılarının hesaplanmasında Haar ile 4. dereceden Daubechies dalgacık (db4) 

kullanımı uygun görülmüĢtür. Dalgacık DönüĢümü ile sinyal D olarak adlandırılan 

detay ve A olarak adlandırılan yaklaĢım alt-bantlarına ayrılmıĢtır.  

 

3.2.4 Öznitelik Seçme 

Dalgacık katsayıları iĢaret hakkında önemli bilgi içerdiği için EEG iĢaretlerinin dalgacık 

katsayıları iĢareti temsil eden öznitelik vektörleri olarak ele alındı. Çıkarılan öznitelik 

vektörlerinin boyutlarının azaltılabilmesi için dalgacık katsayıları üzerinde istatistiksel 

özellikler kullanıldı. EEG iĢaretlerinin zaman-frekans dağılımını göstermekte kullanılan 

istatistiksel özellikler aĢağıda verilmektedir: 

1. Her bir alt banddaki katsayıların mutlak değerlerinin ortalaması. 

2. Her bir alt banddaki katsayıların mutlak değerlerinin maksimumu. 

3. Her bir alt banddaki katsayıların kuvvetlerinin ortalaması. 



34 

 

4. Her bir alt banddaki katsayıların standard sapması. 

Özellik 1-3 iĢaretin frekans dağılımını gösterirken özellik 4 frekans dağılımındaki 

değiĢim miktarını göstermektedir (SubaĢı, 2005). 

 

3.2.5 Sınıflama 

 

Farklı düĢünsel ve görsel durumlarda kaydedilen EEG iĢaretlerini elde edilen öznitelik 

vektörlerine göre sınıflandırma önemli bir konudur. ĠĢaretin hangi sınıfa ait olduğuna 

karar verme hem hızlı hem de doğru olmalıdır. Literatürde birçok sınıflandırma yöntemi 

mevcuttur. Bunlardan en çok kullanılanları destek vektör makineleri (support vector 

machines), k en yakın komĢuluk (k nearest neighbor), doğrusal ayırteden analizi (linear 

discriminant analysis), sinir ağları (neural networks), bayes sınıflandırıcısı (bayesian 

classifier) ‟dır. Aynı tür uygulamada değiĢik sınıflandırma algoritmaları farklı sonuçlar 

verebilmektedir. Elde edilen öznitelik vektörlerine en uygun sınıflandırıcıyı seçebilmek 

için sınıflandırma yöntemlerinin özelliklerinin iyi bilinmesi gerekmektedir. AĢağıda 

sınıflandırmada sıklıkla kullanılan k en yakın komĢuluk ve destek vektör makineleri 

yöntemlerinin özellikleri, üstünlükleri, kritik noktaları üzerinde durulmuĢ, performans 

analizleri incelenmiĢtir. 

 

3.2.6 k- En Yakın Komşuluk Yöntemi 

 

k-en yakın komĢuluk algoritması uygulanabilirliği basit, parametrik olmayan öğrenme 

algoritmalarından biridir. Bir çok değiĢik uygulama alanında kullanılan bu algoritma, 

gürültülü eğitim dokümanlarına karĢı dirençlidir ve eğitim sayısı arttığında daha etkili 

olmaktadır. k-en yakın komĢuluk uygulaması yeni sorgu örneğini sınıflandırmak için 

kullanılan bir komĢuluk sınıflandırma algoritmasıdır. Eğitim veri kümesine ait örnekler 

sınıf etiketleriyle birlikte verilmekte ve sınıflandırıcı bu eğitim verileriyle eğitilerek 

daha önce karĢılaĢmadığı bir örneğin sınıfını tahmin etmektedir.  Bir sorgu örneği 

verildiği zaman, bu sorgu noktasına en yakın k tane eğitim noktası bulunur. 

Sınıflandırma ise bu k tane nesnenin en fazla olanı ile yapılır. k-en yakın komĢuluk basit 

ve verimli olduğundan sınıflandırma iĢlemlerinde sıklıkla kullanılan yöntemlerden 

biridir.  



35 

 

 

 

ġekil 3.14 : Örnek kNN sınıflandırma 

ġekil 3.14‟deki k-NN sınıflandırma örneğinde; Test örneği (yeĢil daire), birinci sınıf 

(mavi kareler) veya ikinci sınıf (kırmızı üçgen) sınıflandırılması gerekir. Eğer k=3 ise 

ikinci sınıfa atanır çünkü iç daire içinde sadece 2 üçgen ve 1 kare vardır. Eğer k = 5 ise, 

birinci sınıfa atanır çünkü dıĢ daire içinde 3 kareye karĢılık 2 üçgen bulunmaktadır. 

 

k-NN Ġki örnek arasındaki yakınlık veya uzaklıkları ölçen bir uzaklık fonksiyonu 

esasına dayanmaktadır. x ve y örnekleri arası uzaklık fonksiyonu olarak genellikle 

standart Euclidean uzaklığı d(x,y) kullanılmaktadır. Genelde ölçüt olarak Euclidean 

uzaklığının kullanımı yaygın olmakla birlikte probleme göre alternatif diğer ölçütlerin 

kullanımı ile daha iyi sonuçlar alınabilir.  

 

k-en yakın komĢuluk algoritmasının performansı öncelikli olarak uzaklık mesafesine 

bağlı olmasının yanında k değerinin seçimine de bağlıdır. Genellikle k değerinin yüksek 

seçilmesi gürültüye karĢı daha duyarsız yapmakta ve sınıflar arası sınırları daha 

yumuĢatmaktadır (Rosa,2001). 

 

k-en yakın komĢuluk algoritması bir tembel  öğrenme  örneğidir.  Tembel  öğrenme  

basitçe  eğitim  sırasında  eğitim  verilerini saklar ve sınıflandırma zamanına kadar 

öğrenimini geciktirir. Uzaklık bazlı öğrenme algoritması, en iyi sonuçları elde etmek 

için, hangi uzaklık tipinin ve hangi niteliğin kullanılacağı konusunda açık değildir. Bu 

çalıĢmada Öklit (Euclidean), Kosinüs, Cityblock (Manhattan) ve korelasyon  

uzaklıklarına dayalı en yakın komĢuluk yöntemleri karĢılaĢtırmalı olarak uygulanmıĢtır.  
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Öklit uzaklığı:   ve  n- uzaylı koordinat 

düzleminde iki nokta olmak üzere,  ve  arasındaki uzaklık denklem 3.14 ile 

bulunabilir.  

 

 (3.14) 

 

Cityblock uzaklığı (Manhattan);  ve  n- uzaylı 

koordinat düzleminde iki nokta olmak üzere,  ve  arasındaki uzaklık denklem 3.15 ile 

bulunabilir.  

 

 (3.15) 

 

Kosinüs uzaklığı; 

 (3.16) 

Denklem 3.16‟da öznitelik uzayında eğitim noktalarını,  test noktalarını,  ( 

i=1,2,…, ∞) i. denemeye ait uzaklığı belirtir. Test örneği verildiğinde en düĢük   

değerine karĢı gelen eğitim örneği bulunur ve sınıfı o test örneği için seçilir.  

 

Korelasyon uzaklığı : Korelasyon katsayısı denklem 3.17 iken 
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 (3.17) 

 

Korelasyon uzaklığı denklem 3.18 ile tanımlanır. 

 

 (3.18) 

 

3.2.7 Destek Vektör Makineleri 

 

Destek Vektör Makineleri (Support Vector Machines (SVM)), sınıflandırma ve 

regresyon problemlerinin çözümü amacıyla Vapnik tarafından ortaya atılmıĢ istatistiksel 

öğrenme teorisi ve yapısal riski en aza indirme ilkesine dayanan bir öğrenme 

algoritmasıdır (Vapnik 1995, 1998). Destek Vektör Makinaları, pozitif ve negatif 

örnekleri bilinen bir uzayı ikiye bölen en iyi hiper-düzlemi bulmaya çalıĢan, gözetimli 

bir öğrenme ve sınıflandırma yöntemidir. DVM,  herhangi bir sınıflandırma ya da 

regresyon problemini, bir karesel programlama problemine dönüĢtürerek yerel 

çözümlere takılmadan çözer. Yerel çözümlere takılmama özelliği, DVM‟nin diğer 

tekniklere göre sahip olduğu avantajlardan biridir. Ayrıca DVM, oldukça yüksek 

genelleme yapabilme yeteneğine  sahiptir.  

 

DVM‟nin uygulama alanlarına örnek olarak, el yazısı tanıma, yüz tanıma, 3-boyutlu 

nesne tanıma, ses tanıma, konuĢmacı tanıma, metin  sınıflandırma  verilebilir.  DVM  

sınıflandırıcıları,  margin‟i  (aralığı)  maximum yapan  bir  en  uygun  (optimal)  ayırıcı  

hiperdüzlemi  oluĢturmaya  çalıĢır.  Burada bahsedilen margin kavramı, ayırıcı 

hiperdüzlemden, en yakın veri noktasına olan minimum uzaklığı tanımlamaktadır. ġekil 

3.15‟de verilen iki ayrı kümeyi birbirinden ayırmak için sonsuz sayıda en uygun 

olmayan hiperdüzlem çizilebilir. Ancak DVM bu iki kümeyi ayırmak için maksimum 

marjini (en yakın eğitim noktalarının uzaklığı) sağlayan en uygun hiperdüzlemi arar.  
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ġekil 3.15: Grafik 2 boyutlu eksende yer alan 3 hiperdüzlemi gösterir. H3 sınıflandırma yapmaz 

iken, H1 küçük marjin ile ve H2 büyük marjin ile sınıflandırma yapar. 

 

DVM sınıflandırıcılarda veriler doğrusal olarak ayrılabilen bir yapıdan ya da doğrusal 

olarak ayrılamayan bir yapıdan oluĢabilir. Ancak, gerçek yaĢam problemlerinin büyük 

çoğunluğu birçok farklı bileĢenden oluĢan problemlerdir ve doğrusal olarak ayrılmıĢ bir 

yapı Ģeklinde olmayabilirler. Doğrusal olarak  ayrılabilen  veriler  arasında maksimum  

margin‟in bulunması iĢlemi  kolaydır, ancak doğrusal olarak ayrılamayan veriler 

üzerinde sınıflandırma yaparken, bu veriler  öncelikle doğrusal olarak ayrılabilecekleri 

farklı bir uzaya aktarılmalıdırlar. Ardından veriler bu yeni uzayda sınıflandırılırlar. 

 

DVM sınıflandırıcıları, doğrusal DVM sınıflandırıcıları ve doğrusal olmayan DVM 

sınıflandırıcıları olmak üzere iki bölümde incelenecektir. 

 

3.2.7.1. Doğrusal Destek Vektör Makinesi sınıflandırıcıları 

 

Doğrusal DVM sınıflandırıcıları doğrusal olarak ayrılabilen ve doğrusal olarak 

ayrılamayan veriler üzerinde iĢlem yapan DVM sınıflandırıcıları olarak iki grupta 

incelenecektir. 

 

Doğrusal olarak ayrılabilme durumu  

 

 

 ({ })   Eğitim kümesindeki örnekleri, ve   ve  bu 

örneklerin sınıf etiketlerini göstermek üzere, pozitif etiketli örnekleri negatif etiketli 

örneklerden ayırabilen bir hiperdüzlemi ele alalım. Doğrusal ayırma fonksiyonunu 

denklem 3.19‟ daki gibi belirtelim. 
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  (3.19) 

 

 

Burada w hiperdüzlemin normali ve b eğilim değeri olarak adlandırılır. Ayrıca   

değeri de hiperdüzlemin merkez noktasına olan dik uzaklığıdır. Bu durumda karar 

kuralı: 

 

 

    (3.20) 

 

 

  (3.21) 

 

Böylece tüm eğitim verileri denklem 3.21 koĢuluna göre doğru sınıflandırılmıĢ 

olmaktadır 

 

w ve b sonsuz sayıda değer alabileceğinden birden fazla hiperdüzlem bulunmaktadır. 

Fakat en büyük marjin bir tanedir ve DVM‟nin amacı onu bulmaktır. Marjinin 

büyüklüğü oranında ayırma hiperdüzlemi ile tanımlanan doğrusal sınıflandırıcının 

genelleĢtirme hatasının da o kadar küçük olacağı varsayılmıĢtır. 
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ġekil 3.16: Doğrusal ayrılabilme durumunda optimal ayırıcı hiperdüzlem, marjin ve Kuramsal 

hiperdüzlemler 

 

 ve   , düzlemlerine kuramsal hiper düzlem 

denmektedir. En büyük marjin  ile  arasıdır. 

 

  (3.22) 

 

 

   ,  için (3.23) 

  

   ,  için (3.24) 
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Kuramsal hiper düzlemlerin üzerine düĢen noktalar destek vektörleri olarak bilinir. 

Destek vektörleri Ģekil 3.16‟da yuvarlak içerisine alınmıĢlardır. Marjini maksimize 

etmek için w minimize yapılır. Bu marjı maksimize yaparken kullanılan w ve b 

değerleri ve x giriĢ verisi olmak üzere  denkleminin iĢareti bulunmaya çalıĢılır. 

Bu bir quadratik programlama problemidir. 

Maksimum sınırın bulunması iĢlemi: 

 

  (3.25) 

 

  ,  (3.26) 

 

ile ifade edilir.  

 

Doğrusal olarak ayrılabilme durumunda, bu iki değerli veriler bir hiperdüzlem ile 

ayrılabilecektir. Bu hiperdüzleme Ayırıcı Hiperdüzlem adı verilir. SVM‟nin amacı, bu 

hiperdüzlemin iki örnek grubuna eĢ uzaklıkta olmasını sağlamaktır. Doğrusal olarak 

ayrılabilme durumu için, ayırıcı hiperdüzlemi Ģu Ģekilde tanımlanabilir (Denklem 3.27): 

 

  (3.27) 

 

Burada  w  bir ağırlık vektörünü (veya hiperdüzlemin normalini), b skaleri de bir sapma 

değerini ifade etmektedir ve bu parametrelerin alacağı değerler ayırıcı hiperdüzlemin 

pozisyonunu belirler.  

 

Doğrusal olarak ayrılamama durumu 

 

 

Bir önceki bölüm‟de belirtilen iĢlemler ancak eğitim örneklerinin tamamen ayrılabilir 

olması durumunda çalıĢmaktadır. Eğer ki, örnekler lineer olarak tamamen ayrılabilir 
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durumda değilse problemin çözümü için pozitif zayıflık değiĢkenleri          

kullanılır (Cortes ve Vapnik, 1995). Denklem (3.27)‟deki koĢul bu zayıflık değiĢkenleri 

ile yeniden tanımlanacak olursa, yeni ifadeler: 

 için ;   (3.28) 

 için ;   (3.29) 

 

 ,  olması durumunda örneği doğru sınıflandırılmıĢ ,  olması 

durumunda x örneği doğru sınıflandırılmıĢ ancak,   ve   hiperdüzlemleri arasında 

yeralıyor   ise yanlıĢ sınıflandırılmıĢ demektir (Alpaydın, 2004). 

 

 

 

ġekil 3.17: Lineer ayrılamama durumunda optimum ayırıcı hiperdüzlem 

 

ġekil 3.17‟deki gibi Lineer ayrılamama durumunda optimum ayırıcı hiperdüzlem 

sistemin ezberlemesi, yani eğitim verisi içinde olası her durum için bir çözüm 

üretmemesi için sisteme bir C üst sınırı eklenir. Bu üst sınır Lagrange çarpanlarının 

alabilecekleri maksimum değeri göstermektedir. Bu Ģekilde Lagrange çarpanlarının 0 < 
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 < C aralığında kalması sağlanmaktadır. Bu bilgilere göre Lagrange formülasyonu 

yeniden Ģu Ģekilde ifade edilecektir;  

 

  (3.30) 

 

Yukarıdaki formülasyonda , ‟nin pozitif olmasını garanti etmek için kullanılmıĢ 

olan Lagrange parametreleridir. Bu Lagrange formülasyonu da çözülmesi zor 

olduğundan dolayı lineer ayrılabilir örneklerde olduğu gibi dual problemine 

dönüĢtürülmektedir. Bu probleme de Karush-Kuhn-Tucker (KKT) Ģartları uygulanırsa; 

 

 (3.31) 

 

 (3.32) 

 

 (3.33) 

 

ifadeleri elde edilir. Bu ifadeler (3.30)‟de yerlerine yazılırsa: 0 <  < C   , , elde 

edilir. Bu problemin çözümünde 0 <  < C  aralığında yer alan Lagrange çarpanlarına 

karĢılık gelen  değerleri Destek Vektörleridir (Demirci, 2007). 

 

3.2.7.2. Doğrusal olmayan Destek Vektör Makinesi sınıflandırıcıları 

 

Gerçek-dünya problemlerinin büyük çoğunluğu birçok farklı bileĢenden oluĢan 

problemlerdir ve bu problemlerde veriler doğrusal olmayan karar yüzeyleri ile 
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modellenebilir. Doğrusal olmayan problemlerin çözümünü bulmanın yolu,  çekirdek 

fonksiyonları ile örneklerin öncelikle daha yüksek boyutlu ve doğrusal olarak 

ayrılabilecekleri bir  uzaya  taĢınıp,  ardından çözümün bu  yeni  uzayda  aranması  ile 

mümkün olmaktadır.(Burges,1998) 

 

 

 

ġekil 3.18 Bir doğrusal olmayan Destek Vektör Makinesi 

 

ġekil 3.18‟da bir doğrusal olmayan SVM; 3.19‟de ise bir giriĢ uzayını özellik uzayına 

eĢleme yani bir giriĢ uzayını verilerin doğrusal olarak ayrılabileceği daha yüksek 

boyutlu bir özellik uzayına taĢıma görülmektedir. 

 

Destek Vektör Makinelerini doğrusal olmayan problemlere uygularken kullanılan 

yöntemde temel fikir, doğrusal olarak ayrılamayan veriyi doğrusal olarak ayrılabileceği 

bir yüksek boyutlu özellik uzayına taĢımaktır. Böylece en uygun ayırıcı hiperdüzlem bu 

özellik uzayında bulunabilir. GiriĢ uzayındaki eğitim verisi vektörleri çekirdek 

fonksiyonları kullanılarak özellik uzayına aktarılır. 
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ġekil 3.19: GiriĢ uzayını özellik uzayına eĢleme 

 

 

Destek Vektör Makinelerinde kullanılan çeĢitli çekirdek (kernel) türleri; Doğrusal 

(Linear), RBF, Polinom (Polynomial), Quadratic, MLP  ( Sigmoid)‟dir.  

 

Doğrusal çekirdek  fonksiyonu: 

 (3.34) 

 

Radyal tabanlı çekirdek fonksiyonu (RBF): RBF, Destek Vektör Makinelerinde 

kullanılan çekirdek türlerinden en popüler olan seçimdir. Bunun temel nedeni reel x-

ekseninin tüm aralıklarında lokalize ve sonlu tepkiler vermesindendir. 

 (3.35) 

 

Polinom çekirdek fonksiyonu: 

 

 (3.36) 
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Quadratic çekirdek fonksiyonu: 

 

 (3.37) 

 

MLP (Sigmoid) çekirdek (kernel) fonksiyonu: 

 

 (3.38) 
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4. BULGULAR 

 

 

Sağlıklı bireyler ve epilepsili hastalardan alınan EEG iĢaretleri 1. Seviye Haar, Db4 ve 

Symlet (Sym4) dalgacıklarına ayrılarak ayrı ayrı test edilmiĢ ve öznitelikleri istatistiksel 

yöntemler (Minimum, Maksimum, Ortalama, standart sapma) ile çıkarılarak KNN ve 

DVM sınıflandırıcılarıyla sınıflandırılmıĢtır. Sınıflandırıcıların değiĢkenleri 

değiĢtirilerek ayrı ayrı test edilmiĢ ve sınıflandırma sonuçları tablolar ve grafikler 

halinde verilmiĢtir. Böylece, Ayrık Dalgacık DönüĢümünün sınıflandırma sonuçları 

üzerindeki etkisi incelenmiĢtir. Sistemin baĢarısını değerlendirmek için tespit 

duyarlılılığı, hasta baĢına düĢen yanlıĢ pozitif (YP) oranı ve doğru pozitif (DP) oranları 

hesaplanmıĢtır. Sınıflandırma iĢlemininin genel yapısı aĢağıda Tablo 4.1‟de 

verilmektedir: 

Tablo 4.1: Sınıflandırma iĢleminin blok diyagram genel yapısı 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EEG Verisi 

Öznitelik Çıkarma 

Ayrık Dalgacık DönüĢümü 

(Seviye 1) 

Dalgacık Katsayıları 

Dalgacık Katsayılarının Bazı 

Ġstatiksel Değerleri 

KNN ve DVM  Eğitim / Test 

Sınıf 

 

Öznitelik Seçme 
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Belirli bir sinyalin boyutunun düĢürülmesine öznitelik çıkarma iĢlemi denilmektedir. 

Öznitelik seçme ise isteğe bağlı olarak yapılan bir iĢlem olup sınıflama iĢlemi açısından 

en belirleyici özniteliklerin seçilmesi ve böylece öznitelik vektörünün boyutunun 

azaltılmasıdır. Bu tezde, giriĢ sinyallerinin özniteliklerinin belirlenmesi için dalgacık 

yöntemi kullanılmıĢtır. 

 

Ayrık Dalgacık DönüĢümü sonucunda, sinyaller alt bileĢenlerine ayrıĢtırılır. Bu alt 

bileĢenler; asıl iĢaretin düĢük frekans bileĢeni olan yaklaĢım ve yüksek frekans 

bileĢenleri olan ayrıntı (yatay, dikey ve köĢegen) ve bunların birleĢim katsayılarından 

oluĢmaktadır. Her bir giriĢ bileĢeni Haar, dB4, ve sym4 tip dalgacık kullanılarak 1. 

seviye dalgacık katsayıları elde edilmiĢtir. Öznitelik vektörü ise hesaplanan dalgacık 

katsayılarının bazı istatistik değerleri alınarak oluĢturulmuĢtur. Öznitelik vektörünün 

oluĢturmak için kullanılan istatistikler ise aĢağıda verilmektedir: 

 

 Dalgacık yöntemi ile hesaplanan yaklaĢık, yatay, dikey ve köĢegen ayrıntı 

katsayılarının en büyük değerleri, 

 Dalgacık yöntemi ile hesaplanan yaklaĢık, yatay, dikey ve köĢegen ayrıntı 

katsayılarının en küçük değerleri, 

 Dalgacık yöntemi ile hesaplanan yaklaĢık, yatay, dikey ve köĢegen ayrıntı 

katsayılarının ortalama değerleri, 

 Dalgacık yöntemi ile hesaplanan yaklaĢık, yatay, dikey ve köĢegen ayrıntı 

katsayılarının standart sapma değerleri, 

 

Böylece her bir giriĢ iĢaretini tanımlayan öznitelik vektörü oluĢturulmuĢtur. Elde edilen 

öznitelik vektörleri k-katlı çapraz doğrulama yöntemi ile eğitime ve teste tabi 

tutulmuĢlardır. k- katlı çapraz doğrulama (k-fold cross validation), teste tabi tutulacak 

veriyi, k adet alt veriye ayırır. k-1 tane kat, eğitim için, son kat ise test için kullanılır. 

Çapraz doğrulama iĢlemi, her bir değerlendirmede kullanılan farklı kat ayrılarak, k defa 

tekrarlanır. Her veri noktası mutlaka bir kez test dizisinde, k-1 kez de eğitim dizisinde 

yer alır. Böylece sınıflandırılacak verilerin hepsi test edilerek verinin tamamı hakkında 

sonuç elde edilir. Bu tezde k, 5,10 ve 20 alınarak k-katlı çapraz doğrulama giriĢ verisine 

uygulanmıĢtır. 
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4.1 DVM İLE BULUNAN SONUÇLAR 

DVM‟de çekirdek fonksiyonu olarak doğrusal (Lineer), polinom, Karesel (Quadratic) 

ve radyal tabanlı fonksiyon (RTF) çekirdekleri kullanılmıĢtır. C  yaptırım parametresi 

1000 ve   parametresi 0.1 seçilmiĢtir. DVM ile sınıflandırma baĢarımları aĢağıda 

tablolar halinde verilmiĢtir. 

Tablo 4.2 Haar dalgacığı 5-kat çapraz doğrulama sonuçları 

Doğrusal (Lineer) Karesel (Quadratic) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

98,25 95,75 98,37 97,37 93,12 97,5 

RTF Polinom (Polynomial) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

96 96,37 95,87 99,75 97,87 99,87 

 

Tablo 4.3 Haar dalgacığı 10-kat çapraz doğrulama sonuçları 

Doğrusal (Lineer) Karesel (Quadratic) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

97,38 94,83 97,16 91,5 90,55 91,33 

RTF Polinom (Polynomial) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

94,72 95,44 94,66 98,44 98,05 98,16 

 

Tablo 4.4 Db4 dalgacığı 5-kat çapraz doğrulama sonuçları 

Doğrusal (Lineer) Karesel (Quadratic) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

99,12 90,62 99,12 96,75 86,12 97 

RTF Polinom (Polynomial) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

96,37 89,62 96,37 99,75 89,75 99,75 
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Tablo 4.5: Db4 Dalgacığı 10-kat çapraz doğrulama 

Doğrusal (Lineer) Karesel (Quadratic) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

96,61 88,5 96,5 97,11 83,11 96,88 

RTF Polinom (Polynomial) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

94,88 85,77 94,72 95,33 85,94 95,16 

 

Tablo 4.6 Symlet dalgacığı 5-kat çapraz doğrulama sonuçları 

Doğrusal (Lineer) Karesel (Quadratic) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

98,00 89,37 98,25 93,37 85,5 95,5 

RTF Polinom (Polynomial) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

99,87 88,62 99,87 96 90 95,87 

 

Tablo 4.7 Symlet dalgacığı 10-kat çapraz doğrulama sonuçları 

Doğrusal (Lineer) Karesel (Quadratic) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

96,38 88,5 96,05 94,33 81,55 94,05 

RTF Polinom (Polynomial) 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

91,94 88,55 91,88 98,55 86,5 98,38 

 

Yukarıdaki tabloların grafiksel olarak gösterimi ise aĢağıda verilmektedir: 
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ġekil 4.1:Haar dalgacığı 5-kat çapraz doğrulama 

 

 

ġekil 4.2: Haar dalgacığı 10-kat çapraz doğrulama 

 

 

ġekil 4.3: Db4 dalgacığı 5-kat çapraz doğrulama 
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ġekil 4.4: Db4 dalgacığı 10-kat çapraz doğrulama 

 

 

ġekil 4.5: Symlet(sym4) dalgacığı 5-kat çapraz doğrulama 
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ġekil 4.6: Symlet dalgacığı 5-kat çapraz doğrulama 

 

DVM sınıflandırıcısının test performansı istatistiksel parametrelerin hesaplanması ile 

değerlendirilir. Bu kavramlar aĢağıda verilmiĢtir: 

 

Gerçek Pozitif (GP): Gerçek tanıya (Epilepsili ĠĢaret) uygun olarak sınıflandırıcının da 

epilepsili dediği olgular, 

Gerçek Negatif (GN): Sağlıklı kitleye, sınıflandırıcının da sağlıklı dediği olgular, 

YanlıĢ Pozitif (YP): Sağlıklı olduğu halde sınıflandırıcının epilepsili dediği olgular, 

YanlıĢ Negatif (YN): Epilepsili olduğu halde sınıflandırıcının saptayamadığı olgular, 

 

Yukarıdaki bilgiler ıĢığında EEG verilerinin DVM ile sınıflandırma sonuçları Tablo 4.8‟ 

de verilmiĢtir. 

Tablo 4.8. DVM Doğrusal çekirdek fonksiyon tipi için Sınıflandırma Sonuçları 

Dalgacık 

Tipi Gerçek Durum 

Kestirilen Durum 

Negatif Pozitif 

(sağlıklı) (epilepsili) 

Haar 

Negatif (sağlıklı) 99 1 

Pozitif (epilepsili) 1 1 

Db4 

Negatif (sağlıklı) 99 1 

Pozitif (epilepsili) 1 1 

Sym4 

Negatif (sağlıklı) 99 1 

 Pozitif (epilepsili)  1  1 
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Tablo 4.8‟den de görüldüğü gibi doğrusal çekirdek fonksiyonu ile yapılan sınıflandırma 

ile her 3 dalgacık için de 100 tane sağlıklı iĢaretten 99 tanesi sağlıklı diye 

sınıflandırılırken 1 tanesi epilepsili olarak sınıflandırılmıĢtır. 

 

DVM ile yapılan sınıflandırma iĢleminin istatiksel sonuçları ayrıca Tablo 4.9.‟da 

gösterilmiĢtir. 

 

Tablo 4.9. DVM Doğrusal çekirdek fonksiyon için Ġstatiksel Sonuçlar 

 
Duyarlılık (sensitivity) Özgüllük (specifity) Hassaslık (precision) 

 
Haar dB4 Sym4 Haar dB4 Sym4 Haar dB4 Sym4 

yaklaşım 99 99 99 100 100 100 100 100 100 

ayrıntı 96 85 87 99 96 97 98,96 95,5 96,66 

birleşik 99 99 99 100 100 100 100 100 100 

 

Tablo 4.10. DVM Polinom çekirdek fonksiyon için Ġstatiksel Sonuçlar 

 
Duyarlılık (sensitivity) Özgüllük (specifity) Hassaslık (precision) 

 
Haar dB4 Sym4 Haar dB4 Sym4 Haar dB4 Sym4 

yaklaşım 100 100 100 100 100 100 100 100 100 

ayrıntı 98 85 87 99 94 93 98,98 93,4 92,55 

birleşik 100 98 97 100 100 100 100 100 100 

 

 

DVM sınıflandırıcısının istatiksel sonuçlarına bakıldığında, en yüksek duyarlılık oranı 

%100 ile Polinom çekirdek fonksiyonu kullanılarak elde edilmiĢtir. En yüksek seçicilik 

oranı ise %90 ile doğrusal çekirdek fonksiyonuna aittir. Toplam sınıflama doğruluğu ise 

symlet dalgacık kullanıldığında polinom çekirdek fonksiyonu ile en yüksek %99,87 

oranına ulaĢılmıĢtır. 
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4.2. KNN İLE BULUNAN SONUÇLAR : 

k-en yakın komĢuluk algoritmasının performansı öncelikli olarak uzaklık mesafesine 

bağlı olmasının yanında k değerinin seçimine de bağlıdır. K sayısını belirlemenin en 

pratik yolu k‟yı toplam eğitim örnekleri sayısının karekökünden daha az olarak 

seçmektir (Rosa,2001). Genellikle k değerinin yüksek seçilmesi gürültüye karĢı daha 

duyarsız yapmakta ve sınıflar arası sınırları daha yumuĢatmaktadır. Bu çalıĢmada k 

değeri 3 olarak belirlenerek aĢağıda sınıflandırma sonuçları tablolar halinde verilmiĢtir. 

 

Tablo 4.11: Haar dalgacığı 5-kat çapraz doğrulama, k=3, mesafe değiĢkeni sonuç karĢılaĢtırma 

Öklid (Euclidean) Cityblock 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

99,12 97 99,12 99,12 97,62 99,25 

Cosine Correlation 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

73,62 69,62 68,12 67,62 70,5 64,5 

 

Tablo 4.12: Haar dalgacığı 10-kat çapraz doğrulama, k=3, mesafe değiĢkeni sonuç karĢılaĢtırma 

Öklid (Euclidean) Cityblock 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

98,5 95,61 98,5 98,66 96,72 98,55 

Cosine Correlation 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

63,61 66,11 58,5 60,27 66,27 56,38 
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Tablo 4.13: Db4 dalgacığı 5-kat çapraz doğrulama, k=3, mesafe değiĢkeni sonuç karĢılaĢtırma 

Öklid (Euclidean) Cityblock 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

99 85,12 99 98,5 86,37 98,62 

Cosine Correlation 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

71,75 65,37 65 67,12 68,75 62,37 

 

Tablo 4.14: Db4 dalgacığı 10-kat çapraz doğrulama, k=3, mesafe değiĢkeni sonuç karĢılaĢtırma 

Öklid (Euclidean) Cityblock 

yaklaĢım ayrıntı birleĢik yaklaĢım ayrıntı birleĢik 

97,16 86,33 97,38 98,22 85,38 98,22 

cosine correlation 

yaklaĢım ayrıntı birleĢik yaklaĢım ayrıntı birleĢik 

64,38 63,83 58,77 63,38 57,11 58 

 

Tablo 4.15: Symlet dalgacığı 5-kat çapraz doğrulama, k=3, mesafe değiĢkeni sonuç 

karĢılaĢtırma 

Öklid (Euclidean) Cityblock 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

99 89,25 99 98,75 90,12 98,75 

Cosine Correlation 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

73,12 71,12 66,75 65,25 70,12 63,75 
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Tablo 4.16: Symlet dalgacığı 10-kat çapraz doğrulama, k=3, mesafe değiĢkeni sonuç 

karĢılaĢtırma 

Öklid (Euclidean) Cityblock 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

97,61 89,05 97,55 97,05 89,77 97,16 

Cosine Correlation 

YaklaĢım Ayrıntı BirleĢik YaklaĢım Ayrıntı BirleĢik 

66,44 66,11 61,83 62,11 63 58 

 

 

Tüm dalgacıklar için kNN mesafe değiĢkenlerinden Öklid ve Cityblock sınıflandırma 

baĢarımı açısından daha iyi sonuçlar vermektedir. kNN sınıflandırıcısında mesafe öklid 

ve cityblock için, Haar dalgacığı ile daha iyi baĢarım elde edilmiĢtir. Yukarıdaki 

tabloların grafiksel olarak gösterimi aĢağıda verilmektedir; 

 

 

ġekil 4.7: Haar dalgacığı 5-kat çapraz doğrulama 
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ġekil 4.8: Haar dalgacığı 10-kat çapraz doğrulama 

 

 

 

ġekil 4.9: Db4 dalgacığı 5-kat çapraz doğrulama 
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ġekil 4.10: Db4 dalgacığı 10-kat çapraz doğrulama 

 

 

ġekil 4.11: Symlet 5-kat çapraz doğrulama 

 

 

 

ġekil 4.12: Symlet 10-kat çapraz doğrulama  

 

Tablo 4.17 kNN, Öklid mesafesi duyarlılık, özgüllük ve hassaslık tablosu 

 
Duyarlılık 

(sensitivity) 
Özgüllük (specifity) Hassaslık (precision) 

  Haar dB4 Sym4 Haar dB4 Sym4 Haar dB4 Sym4 

yaklaşım 99 99 99 100 100 100 100 100 100 

ayrıntı 97 86 88 99 91 90 98,97 90,52 89,79 

birleşik 99 99 99 100 100 100 100 100 100 
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5. TARTIŞMA VE SONUÇ 

 

Bu ÇalıĢmada, Dalgacık DönüĢümünün EEG sınıflandırması üzerindeki etkileri 

incelenmiĢtir. EEG sinyallerin ön iĢleme tabi tutulmuĢ ve Dalgacık DönüĢümü 

yöntemiyle öznitelik vektörleri elde edilmiĢ, sonrasında ise DVM ve kNN yöntemiyle 

sınıflandırma gerçekleĢtirilmiĢtir. Ayrık Dalgacık DönüĢümünün sınıflandırma 

üzerindeki etkileri tablolar halinde verilerek sınıflandırma sonucunda EEG sinyallerinin 

sağlıklı veya epileptik olduğu hakkında bilgi sağlanmıĢtır. Denemelerde 1. Seviye Haar,  

Db4 ve Symlet (Sym4) dalgacıkları, sadece yaklaĢım katsayıları (approach coefficients), 

sadece ayrıntı katsayıları (detail coefficients) ve birleĢik katsayıları (approach + detail 

coeffcients) ile 5-kat ve 10-kat çapraz doğrulama (k-fold cross validation) ayrı ayrı 

denenmiĢtir. DVM sınıflandırıcısı çekirdek fonksiyonu polinom olarak belirlendiğinde 

Sym4 en iyi baĢarımı verirken, KNN sınıflandırcısında mesafe öklid olarak 

belirlendiğinde en iyi baĢarımı Haar dalgacığı vermektedir.  

 

GerçekleĢtirilen sınıflandırma sonuçları kıyaslandığında her 3 dalgacık için de SVM 

yöntemi KNN „ye göre hem duyarlılık olarak hem de doğruluk olarak daha baĢarılı 

sonuç vermekte ve dalgacık analizi değiĢkenleri değiĢtirilerek yapılan 

karĢılaĢtırmalarda, SVM için kernel tipi Doğrusal ve Polinom olan; kNN için ise Öklid 

ve cityblock mesafesi en iyi sonucu vermekte ve çapraz doğrulama değeri arttıkça 

baĢarımının azaldığı görülmektedir. YaklaĢım katsayılarının sınıflandırmada daha çok 

belirleyici olduğu tablolardan görülmektedir. 

 

Bu tez çalıĢmasında elde edilen sınıflandırma sonuçları literatür sonuçları ile 

karĢılaĢtırıldığında gerek baĢarım gerekse duyarlılık ve seçicilik oranları ile baĢarılı 

oldukları görülmektedir. Bu çalıĢma, epilepsi hastalarına ait EEG sinyallerinin daha 

doğru ve net olarak analiz edilmesini ve epilepsi teĢhisinin otomatik olarak yapılmasını 

sağlayan bir metot önermektedir. Ġlerde bu konuyla ilgili yapılabilecek çalıĢmalar; 
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epilepsili ve sağlıklı bireylerin sınıflandırılması için farklı öznitelik çıkarma ve 

sınıflandırıcılar uygulanarak daha iyi performans elde edilebilir ve de EEG haricindeki 

diğer durağan olmayan verilere de uygulanarak Dalgacık DönüĢümünün sınıflandırma 

doğruluğu üzerindeki etkileri hakkında bir analiz yapılabilir. 
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EKLER 

Ek-1 

 
clc 
clear all 

  
seviye=1; 
%wtipi='db4' sym4;     
wtipi='haar'; 
svmkerneltipi='linear'; 
xfoldcv=5; 
kdegeri=3; 
mesafe='euclidean'; 

  
dizin=pwd; 
hastadosyalari=dir([dizin '\S\']); 
hastadosyalari(1:2,:)=[];    
sagliklidosyalari=dir([dizin '\Z\']); 
sagliklidosyalari(1:2,:)=[]; 

  
for i=1:size(hastadosyalari,1) 
    data(i,:)=textread([dizin '\S\' hastadosyalari(i,1).name]); 
end 

  
for i=1:size(sagliklidosyalari,1) 
    data2(i,:)=textread([dizin '\Z\' sagliklidosyalari(i,1).name]); 
end 

  
hastasayisi=size(data,1); 
sagliklisayisi=size(data2,1); 

  
[C1,C2]=wavedec(data(1,:),seviye,wtipi);    %boyut bulmak için 
hasta_appr=zeros(hastasayisi,C2(1,1)); 
hasta_det=zeros(hastasayisi,C2(1,2)); 

  
for i=1:hastasayisi 
    [C1,C2]=wavedec(data(i,:),seviye,wtipi); 
    appr=appcoef(C1,C2,wtipi,seviye); %son seviyenin yakınlık bileşeni 
    temp=detcoef(C1,C2,seviye);        
    hasta_appr(i,:)=appr; 
    hasta_det(i,:)=temp; 
end 

  
[C1,C2]=wavedec(data(1,:),seviye,wtipi);    %boyut 
saglikli_appr=zeros(sagliklisayisi,C2(1,1)); 
saglikli_det=zeros(sagliklisayisi,C2(1,2)); 

  
for i=1:sagliklisayisi 
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    [C1,C2]=wavedec(data2(i,:),seviye,wtipi); 
    appr=appcoef(C1,C2,wtipi,seviye);   %son seviyenin yakınlık 

bileşeni 
    temp=detcoef(C1,C2,seviye);   %tüm seviyelerin detay bileşenlerini 

bul 

     
    saglikli_appr(i,:)=appr; 
    saglikli_det(i,:)=temp; %sadece 1 seviye varken 
end 

  
set_appr_orj=zeros(hastasayisi+sagliklisayisi,5); 
set_det_orj=zeros(hastasayisi+sagliklisayisi,5); 
set_birlesik_orj=zeros(hastasayisi+sagliklisayisi,5); 

  
for j=1:hastasayisi 
    set_appr_orj(j,1)=min(hasta_appr(j,:)); 
    set_appr_orj(j,2)=max(hasta_appr(j,:)); 
    set_appr_orj(j,3)=mean(hasta_appr(j,:)); 
    set_appr_orj(j,4)=std(hasta_appr(j,:)); 
    set_appr_orj(j,5)=1; 
    set_det_orj(j,1)=min(hasta_det(j,:)); 
    set_det_orj(j,2)=max(hasta_det(j,:)); 
    set_det_orj(j,3)=mean(hasta_det(j,:)); 
    set_det_orj(j,4)=std(hasta_det(j,:)); 
    set_det_orj(j,5)=1; 
    set_birlesik_orj(j,1)=min([hasta_appr(j,:) hasta_det(j,:)]); 
    set_birlesik_orj(j,2)=max([hasta_appr(j,:) hasta_det(j,:)]); 
    set_birlesik_orj(j,3)=mean([hasta_appr(j,:) hasta_det(j,:)]); 
    set_birlesik_orj(j,4)=std([hasta_appr(j,:) hasta_det(j,:)]); 
    set_birlesik_orj(j,5)=1; 
end 

  
for j=1:sagliklisayisi 
    set_appr_orj(j+hastasayisi,1)=min(saglikli_appr(j,:)); 
    set_appr_orj(j+hastasayisi,2)=max(saglikli_appr(j,:)); 
    set_appr_orj(j+hastasayisi,3)=mean(saglikli_appr(j,:)); 
    set_appr_orj(j+hastasayisi,4)=std(saglikli_appr(j,:)); 
    set_det_orj(j+hastasayisi,1)=min(saglikli_det(j,:)); 
    set_det_orj(j+hastasayisi,2)=max(saglikli_det(j,:)); 
    set_det_orj(j+hastasayisi,3)=mean(saglikli_det(j,:)); 
    set_det_orj(j+hastasayisi,4)=std(saglikli_det(j,:)); 
    set_birlesik_orj(j+hastasayisi,1)=min([saglikli_appr(j,:) 

saglikli_det(j,:)]); 
    set_birlesik_orj(j+hastasayisi,2)=max([saglikli_appr(j,:) 

saglikli_det(j,:)]); 
    set_birlesik_orj(j+hastasayisi,3)=mean([saglikli_appr(j,:) 

saglikli_det(j,:)]); 
    set_birlesik_orj(j+hastasayisi,4)=std([saglikli_appr(j,:) 

saglikli_det(j,:)]); 
end 

  

  
%Approximation için 5x2 cross validation 
appr_accuracy=zeros(1,10); 
det_accuracy=zeros(1,10); 
birlesik_accuracy=zeros(1,10); 
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%Approximation için X-fold cross validation 

  
appr_accuracy=zeros(1,xfoldcv); 
det_accuracy=zeros(1,xfoldcv); 
birlesik_accuracy=zeros(1,xfoldcv); 
appr_knn_accuracy=zeros(1,xfoldcv); 
det_knn_accuracy=zeros(1,xfoldcv); 
birlesik_knn_accuracy=zeros(1,xfoldcv); 
satirsayisi=hastasayisi+sagliklisayisi; 
foldsize=satirsayisi/xfoldcv; 

  
mkdir('c:','set_appr'); 
mkdir('c:','set_det'); 
mkdir('c:','set_birlesik'); 

  
for i=1:xfoldcv 
    perm=randperm(hastasayisi+sagliklisayisi); 
    set_appr=set_appr_orj(perm,:); 
    set_det=set_det_orj(perm,:); 
    set_birlesik=set_birlesik_orj(perm,:); 
    test=1:satirsayisi; 
    train=((i-1)*foldsize+1):(i*foldsize); 
    test(train)=[]; 

     
    model=svmtrain(set_appr(train,1:end-

1),set_appr(train,end),'KERNEL_FUNCTION',svmkerneltipi); 
    classes=svmclassify(model,set_appr(test,1:end-1)); 
    temp=classes-set_appr(test,end); 
    temp=find(temp(:,1)~=0); 
    temp=size(classes,1)-size(temp,1);  %doğru sayısı 
    appr_accuracy(1,i)=(100*temp)/size(classes,1); 

     
    appr_knnsonuc=knnclassify(set_appr(test,1:end-

1),set_appr(train,1:end-1),set_appr(train,end),kdegeri,mesafe); 
    appr_knnsonuc=appr_knnsonuc-set_appr(test,end); 
    temp=find(appr_knnsonuc(:,1)==0); 
    appr_knn_accuracy(1,i)=(100*size(temp,1))/size(classes,1); 

     
     xlswrite(['c:\set_appr\train' num2str(i)],[set_appr(train,:) 1-

set_appr(train,end)]); 
     xlswrite(['c:\set_appr\test' num2str(i)],[set_appr(test,:) 1-

set_appr(test,end)]); 

     
    model=svmtrain(set_det(train,1:end-

1),set_det(train,end),'KERNEL_FUNCTION',svmkerneltipi); 
    classes=svmclassify(model,set_det(test,1:end-1)); 
    temp=classes-set_det(test,end); 
    temp=find(temp(:,1)~=0); 
    temp=size(classes,1)-size(temp,1);  %doğru sayısı 
    det_accuracy(1,i)=(100*temp)/size(classes,1); 

     
    det_knnsonuc=knnclassify(set_det(test,1:end-

1),set_det(train,1:end-1),set_det(train,end),kdegeri,mesafe); 
    det_knnsonuc=det_knnsonuc-set_det(test,end); 
    temp=find(det_knnsonuc(:,1)==0); 
    det_knn_accuracy(1,i)=(100*size(temp,1))/size(classes,1); 
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    xlswrite(['c:\set_det\train' num2str(i)],[set_det(train,:) 1-

set_det(train,end)]); 
     xlswrite(['c:\set_det\test' num2str(i)],[set_det(test,:) 1-

set_det(test,end)]); 

     
    model=svmtrain(set_birlesik(train,1:end-

1),set_birlesik(train,end),'KERNEL_FUNCTION',svmkerneltipi); 
    classes=svmclassify(model,set_birlesik(test,1:end-1)); 
    temp=classes-set_birlesik(test,end); 
    temp=find(temp(:,1)~=0); 
    temp=size(classes,1)-size(temp,1);  %doğru sayısı 
    birlesik_accuracy(1,i)=(100*temp)/size(classes,1); 

     
    birlesik_knnsonuc=knnclassify(set_birlesik(test,1:end-

1),set_birlesik(train,1:end-

1),set_birlesik(train,end),kdegeri,mesafe); 
    birlesik_knnsonuc=birlesik_knnsonuc-set_birlesik(test,end); 
    temp=find(birlesik_knnsonuc(:,1)==0); 
    birlesik_knn_accuracy(1,i)=(100*size(temp,1))/size(classes,1); 

     
         xlswrite(['c:\set_birlesik\train' 

num2str(i)],[set_birlesik(train,:) 1-set_birlesik(train,end)]); 
     xlswrite(['c:\set_birlesik\test' 

num2str(i)],[set_birlesik(test,:) 1-set_birlesik(test,end)]); 
end 

  

  
appr_son=mean(appr_accuracy); 
det_son=mean(det_accuracy); 
birlesik_son=mean(birlesik_accuracy); 

  
appr_knn_son=mean(appr_knn_accuracy); 
det_knn_son=mean(det_knn_accuracy); 
birlesik_knn_son=mean(birlesik_knn_accuracy); 

  
fprintf('\n\n\n%d fold Cross Validation SVM Sonuclari:\n',xfoldcv); 
fprintf('Kullanilan wavelet tipi %s, seviye %d\n',wtipi,seviye); 
fprintf('Kullanilan SVM Kernel %s\n',svmkerneltipi); 
fprintf('Tum Approximationdan min max mean ve std hesaplandiginda 

accuracy=%f\n',appr_son); 
fprintf('Tum Detailsdan min max mean ve std hesaplandiginda 

accuracy=%f\n',det_son); 
fprintf('Hem Approximation hem de Detailsdan min max mean ve std 

hesaplandiginda accuracy=%f\n',birlesik_son); 

  
fprintf('\n\n\n%d fold Cross Validation KNN Sonuclari:\n',xfoldcv); 
fprintf('Kullanilan K %d, mesafe %s\n',kdegeri,mesafe); 
fprintf('Tum Approximationdan min max mean ve std hesaplandiginda 

accuracy=%f\n',appr_knn_son); 
fprintf('Tum Detailsdan min max mean ve std hesaplandiginda 

accuracy=%f\n',det_knn_son); 
fprintf('Hem Approximation hem de Detailsdan min max mean ve std 

hesaplandiginda accuracy=%f\n',birlesik_knn_son); 
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Ek-2 

 

clc 
clear 
dizin=pwd; 
filtretipleri={'haar','db4','sym4'}; 
seviye=1; 

  
hastadosyalari=dir([dizin '\S\']); 
sagliklidosyalari=dir([dizin '\Z\']); 
data=[]; 

  
hastasayisi=0; 
sagliklisayisi=0; 
sayac=1; 

  
for i=1:size(hastadosyalari,1) 
    if hastadosyalari(i,1).isdir==0 
        temp=textread([dizin '\S\' hastadosyalari(i,1).name]); 
        data(sayac,:)=temp; 
        sayac=sayac+1; 
        hastasayisi=hastasayisi+1; 
    end 
end 

  
for i=1:size(sagliklidosyalari,1) 
    if hastadosyalari(i,1).isdir==0 
        temp=textread([dizin '\Z\' sagliklidosyalari(i,1).name]); 
        data(sayac,:)=temp; 
        sayac=sayac+1; 
        sagliklisayisi=sagliklisayisi+1; 
    end 
end 

  
siniflar=[ones(hastasayisi,1) ; zeros(sagliklisayisi,1)]; 
%datada ilk 'hastasayisi' kadarı (100) hasta, sonraki 'sagliklisayisi' 

kadarı (100) sağlıklı 

  
shuf=randperm(hastasayisi+sagliklisayisi); 
data=data(shuf,:); 
siniflar=siniflar(shuf); 

  
foldsayisi=10; 
knnk=3; 

  
indices=crossvalind('Kfold',1:hastasayisi+sagliklisayisi,foldsayisi); 

  
tp=zeros(3,4,5);    %1. boyut feature grubu, 2. boyut filtretipi, 3. 

boyut sınıflandırıcı 
tn=zeros(3,4,5); 
fp=zeros(3,4,5); 
fn=zeros(3,4,5); 

  
for j=1:size(filtretipleri,2) 

     
    waveletdata=[]; 
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    for i=1:size(data,1) 
        [C L]=wavedec(data(i,:),seviye,filtretipleri{j}); 
        waveletdata(i,j,1)=min(C(1:L(1)));      %appr 
        waveletdata(i,j,2)=max(C(1:L(1))); 
        waveletdata(i,j,3)=mean(C(1:L(1))); 
        waveletdata(i,j,4)=std(C(1:L(1))); 

         
        waveletdata(i,j,5)=min(C(L(1)+1:L(1)+L(2)));        %detail 
        waveletdata(i,j,6)=max(C(L(1)+1:L(1)+L(2))); 
        waveletdata(i,j,7)=mean(C(L(1)+1:L(1)+L(2))); 
        waveletdata(i,j,8)=std(C(L(1)+1:L(1)+L(2))); 
    end 

     
    temp1=waveletdata(:,j,1:4); %sadece appr 
    temp2=waveletdata(:,j,5:8); %sadece detail 
    temp3=waveletdata(:,j,:);   %hepsi 

     
    kerneltipi={'linear','polynomial','rbf','quadratic'}; 

     
    for y=1:foldsayisi 
        testk=(indices==y); 
        traink=~testk; 

         
        %knn kısmı 
        

tahmin=knnclassify(temp1(testk,:),temp1(traink,:),siniflar(traink),knn

k,'euclidean'); 
        r=(tahmin+siniflar(testk)); 
        tp(1,j,1)=tp(1,j,1)+length(find(r==2)); 
        tn(1,j,1)=tn(1,j,1)+length(find(r==0)); 
        r=(tahmin-siniflar(testk)); 
        fp(1,j,1)=fp(1,j,1)+length(find(r==1)); 
        fn(1,j,1)=fn(1,j,1)+length(find(r==-1)); 

         
        

tahmin=knnclassify(temp2(testk,:),temp2(traink,:),siniflar(traink),knn

k,'euclidean'); 
        r=(tahmin+siniflar(testk)); 
        tp(2,j,1)=tp(2,j,1)+length(find(r==2)); 
        tn(2,j,1)=tn(2,j,1)+length(find(r==0)); 
        r=(tahmin-siniflar(testk)); 
        fp(2,j,1)=fp(2,j,1)+length(find(r==1)); 
        fn(2,j,1)=fn(2,j,1)+length(find(r==-1)); 

         
        

tahmin=knnclassify(temp3(testk,:),temp3(traink,:),siniflar(traink),knn

k,'euclidean'); 
        r=(tahmin+siniflar(testk)); 
        tp(3,j,1)=tp(3,j,1)+length(find(r==2)); 
        tn(3,j,1)=tn(3,j,1)+length(find(r==0)); 
        r=(tahmin-siniflar(testk)); 
        fp(3,j,1)=fp(3,j,1)+length(find(r==1)); 
        fn(3,j,1)=fn(3,j,1)+length(find(r==-1)); 

         
        for ty=1:4  %svm döngüsü 
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model=svmtrain(temp1(traink,:),siniflar(traink),'KERNEL_FUNCTION',kern

eltipi{ty}); 
            tahmin=svmclassify(model,temp1(testk,:)); 
            r=(tahmin+siniflar(testk)); 
            tp(1,j,ty+1)=tp(1,j,ty+1)+length(find(r==2)); 
            tn(1,j,ty+1)=tn(1,j,ty+1)+length(find(r==0)); 
            r=(tahmin-siniflar(testk)); 
            fp(1,j,ty+1)=fp(1,j,ty+1)+length(find(r==1)); 
            fn(1,j,ty+1)=fn(1,j,ty+1)+length(find(r==-1)); 

             
            

model=svmtrain(temp2(traink,:),siniflar(traink),'KERNEL_FUNCTION',kern

eltipi{ty}); 
            tahmin=svmclassify(model,temp2(testk,:)); 
            r=(tahmin+siniflar(testk)); 
            tp(2,j,ty+1)=tp(2,j,ty+1)+length(find(r==2)); 
            tn(2,j,ty+1)=tn(2,j,ty+1)+length(find(r==0)); 
            r=(tahmin-siniflar(testk)); 
            fp(2,j,ty+1)=fp(2,j,ty+1)+length(find(r==1)); 
            fn(2,j,ty+1)=fn(2,j,ty+1)+length(find(r==-1)); 

             
            

model=svmtrain(temp3(traink,:),siniflar(traink),'KERNEL_FUNCTION',kern

eltipi{ty}); 
            tahmin=svmclassify(model,temp3(testk,:)); 
            r=(tahmin+siniflar(testk)); 
            tp(3,j,ty+1)=tp(3,j,ty+1)+length(find(r==2)); 
            tn(3,j,ty+1)=tn(3,j,ty+1)+length(find(r==0)); 
            r=(tahmin-siniflar(testk)); 
            fp(3,j,ty+1)=fp(3,j,ty+1)+length(find(r==1)); 
            fn(3,j,ty+1)=fn(3,j,ty+1)+length(find(r==-1));  

             
        end 
    end 
end 

  
accuracy=((tp+tn)/(hastasayisi+sagliklisayisi))*100; 
precision=(tp./(tp+fp))*100; 
sensitivity=(tp./(tp+fn))*100; 
specificity=(tn./(tn+fp))*100; 
tss=(((tp.*tn)-(fp.*fn))./((tp+fn).*(fp+tn)))*100; 

  

  
save sonuc4 
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