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OZET

Meta Sezgisel Algoritmalar ile Biyolojik Sinyallerin islenmesi

Bu calismada, EEG sinyallerinin meta sezgisel algoritmalar ile siniflandirilmasi
gerceklestirilmis ve siniflandiricilarin - degiskenleri degistirilerek Ayrik dalgacik
doniisiimiiniin siniflandirma {izerindeki etkileri incelenmistir. Ilk olarak 6n isleme tabi
tutulan EEG sinyallerinden dalgacik doniistimii yontemiyle Oznitelik vektorleri elde
edilmis, sonrasinda ise DVM ve kNN yontemiyle siniflandirma gercgeklestirilmistir.
Dalgacik Doniisiimiiniin siniflandirma iizerindeki etkileri tablo olarak verilerek
siiflandirma sonucunda EEG sinyallerinin saglikli veya epileptik oldugu hakkinda bilgi
saglanmistir. Bu ¢alismada 1. seviye Haar, Db4 ve Symlet dalgaciklar ile 5-kat ve 10-
kat capraz dogrulama (k-fold cross validation) kullanilarak siniflandirma yapilmstir.
Gergeklestirilen smiflandirma sonuglar1 kiyaslandiginda SVM yontemi KNN ‘ye gore
daha basarili sonu¢ vermekte ve dalgacik analizi degiskenleri karsilastirilmasinda SVM
icin kernel tipi Dogrusal ve Polinom olan ve Symlet dalgacig1 kullanildiginda en iyi
sonucu verirken; kNN icin ise Oklid mesafesi ve dalgacik tipi olarak ise Haar
kullanildiginda en iyi sonucu vermektedir. Ayrica, ¢apraz dogrulama degeri arttikca
basariminin azaldigi acik bir sekilde gorulmektedir.

Anahtar kelimeler: Ayrik Dalgacik Doniisiimii, DVM, EEG, Epilepsi, KNN



SUMMARY

Biological Signal Processing Using Metaheuristic Algorithms

In this thesis, classiffication of EEG signals by using metaheuristic algorithms is
realised and Discreet Wavelet Transform (DWT) and its effect on classification is
analyzed by changing variables of classifiers. First, pre-processed EEG signals are
obtained, then feature vectors are produced by Discreet Wavelet Transform method
after then classification is realized by SVM and k-NN methods. Discreet Wavelet
Transform effects on the classification is shown by tables as a result of the classification
is epileptic or healthy. In this thesis, 1. level Haar, Db4 and Symlets wavelets with 5-
fold and 10-fold Cross Validation are used for classification. When classification results
compared, SVM method gives better than kNN method. Comparing the variables; for
SVM, linear and polynomial kernel type and using symlet wavelet gives better result.
While for the KNN, Euclidean and Cityblock distance and using Haar wavelet gives
better result. It is clearly seen that when the k value of k-fold cross validation is
increased the result of classification decreased.

Keywords: DWT, EEG, Epilepsy, k-NN, SVM



1. GIRIS

1.1 TEZIN KONUSU VE AMACI

Hentiz nasil ¢alistig1 tam olarak kesfedilememis olan insan beyni en karmasik yapiya
sahip olan organlardan bir tanesidir. Gunlik hayatta okuma-yazmadan hafizaya, nefes
almadan yurimeye kadar butun faaliyetler beynin denetimindedir. Butln bu faaliyetleri

denetleyen beynin, nasil ¢alistig1 hala tam olarak kesfedilmemistir.

Epilepsi aralikli olarak tekrarlanan krizlerle tanimlanan bir ndrolojik rahatsizliktir ve bu
krizler beyindeki anormal sinirsel aktiviteler yiziunden olusur. Bu aktiviteler EEG
isaretlerinde gozlemlenebilirler. Bu nedenle Epilepsi hastaliginin teshis edilmesinde
EEG (Elektroensefalografi) yontemi uygulanmaktadir. EEG kayitlarinin otomatik olarak

degerlendirilmesi i¢in bir ¢ok siniflama yontemi kullanilmaktadir.

EEG, beyindeki sinir hiicreleri tarafindan hem uyku, hem de uyaniklik halindeyken
uretilen elektriksel faaliyetin beyin dalgalar1 seklinde kaydedilmesidir. Beyinde
gerceklesen normal elektriksel faaliyetler basta epilepsi (sara hastaligl) olmak tizere pek
¢ok durumda bozulabilir. EEG’yi olusturan beyin dalgalarinin incelenmesi ile bu

bozuklugun yeri ve sekli hakkinda bilgi edinilebilir.

EEG cihazlan, kafatasinin iizerinde belirlenmis bazi 6zel noktalara yerlestirilen
elektrotlar araciligiyla beyindeki sinyalleri kaydeder. Kaydedilen bu sinyaller Dalgacik
Doniistimii gibi farkli yontemler kullanarak analiz edilebilirler. Dalgacik Doniisiimii ile
sinyal dalgacik katsayilarma ayrilir ve bu katsayilar siniflandiricilara giris olarak

uygulanarak verilerin sadelestirilip siniflandirilmasi saglanabilir.

Hastalik teshisi genellikle on isleme, Oznitelik ¢ikarma/segme ve siniflama
islemlerinden olusmaktadir. Isaret/gériintii elde etme, bozucu etkenlerin yok edilmesi,

ortalama alma, esik degeri belirleme, isaret/goriintii 1yilestirme gibi islemler 6n islemeyi



olusturmaktadir. Oznitelik ¢ikarma; sekil tanimlama ve seklin onemli dzniteliklerinin
cikarilip oznitelik vektdriiniin elde edilmesi islemidir. Oznitelik segme istege bagh
olarak yapilan bir islem olup smiflama islemi agisindan en belirleyici 6zniteliklerin
secilmesi ile Oznitelik vektoriiniin boyutunun azaltilmasidir. Siiflamada ise kullanilan
algoritmaya bagli olarak giris Oznitelik vektorleri incelenir ve siniflama sonucu
belirlenir boylece teshis sistemlerinin son asamasi olan siniftalama gerceklesmis olur .
Siniflama sonucunu belirlemesi agisindan ele alindiginda 6znitelik ¢ikarma ve gerekli

durumlarda Oznitelik se¢me, siniflama sistemlerinin basarisini oldukca etkilemektedir.

Bu c¢alismada, EEG isaretlerinin spektral analizi, Ayrik Dalgacik Doniistimii (ADD) ile
gerceklestirilmistir ve isaret hakkinda onemli bilgi iceren dalgacik katsayilari isareti
temsil eden Oznitelik vektorleri olarak ele alinmistir. Dalgacik katsayilari iizerinde
istatistiksel islemler kullanilarak 6znitelik vektorlerinin boyutlar1 azaltilmistir. Elde
edilen 6znitelik vektorleri, Destek Vektor Makinalari (DVM) ve k En Yakin Komsuluk
(KNN) simiflandirma yontemlerinin girislerine uygulanmis ve siniflandiricilarin
parametreleri degistirilerek Dalgacik Doniistiimiiniin siniflandirma {izerindeki etkileri ve

siiflandirma performanslart karsilastirmali olarak incelenmistir.

1.2 LITERATUR OZETi

EEG isaretlerinin siniflandirilmasiyla ilgili literatiirde birgok calisma bulunmaktadir.

Asagida bagslica arastirmacilarin ¢alismalar1 6zetlenmistir.

Miner (1998), Dalgacik teorisi, geleneksel Fourier metotlar: ve Dalgacik analizlerinin
gelisimini inceleyerek sinyal isleme alani temelli ¢esitli karsilastirmalar yapmis, ayrica

stirekli ve ayrik dalgacik analizi algoritmalar: vermistir.

Deon Garrett ve digerleri (2003) EEG isaretlerini siniflandirmada dogrusal olmayan
simiflandirma yontemlerinin, dogrusal olan siniflandirma yontemlerine gore ¢ok fazla
istlin olmadigin1 gosteren bir ¢aligma yapmislardir. Calismalarinda yapay sinir agi,
destek vektor makineleri gibi dogrusal olmayan siniflandirma yontemi ile dogrusal

siiflandirma bicimi olan lineer ayirtag analizi (linear discriminant analysis) yontemini



karsilagtirmistir. Bunu yaparken 5 ayri diisiinsel durumda kaydedilmis EEG verilerini
kullanmiglardir. Bulduklar1 sonuglarda destek vektor makineleri ile smiflandirma
ortalama %72, yapay sinir agma gore %69.4, lineer ayrisim analizine gore %66
oraninda basarim elde etmisler ve dogrusal yontemin daha hizli ¢alistigin1 ve dogrusal

olmayan yontemlere gore de ¢ok az hata yaptigini belirtmislerdir.

Kiymik ve ark. (2004), gercek zamanli uygulamalar icin EEG sinyallerindeki
epileptik surecin belirlenmesinde STFT (Shirt Time Fourier Transform) ve Dalgacik
Analiz yontemlerini kapsayan bir calisma yapmislar ve bu calismada Dalgacik
Donlsumu’nin diger spektral analiz yontemi olan STFT’ ye oranla daha basarili

sonuclar verdigini gostermislerdir.

Ubeyli ve Giiler (2004), Dalgacik Déniisimii ile EEG isaretlerinden ¢ikarilan 6znitelik
vektorleri Uzerinde istatistiksel islemlerin gergeklestirilmesi ile ilgili bir caligma

yapmislardir.

Subas1 ve Ercelebi (2005), calismalarinda EEG sinyallerinin siniflandirilmas: igin
sinyalleri Dalgacik Donustimu ile frekans bantlarma ayristirmis, yapay sinir aglari ve
Logistik Regresyon yontemiyle siniflandirma yapmslardir.

Batar (2005), tez calismasinda EEG isaretlerini dalgacik analiz yontemini kullanarak
yapay sinir aglariyla uyku, yart uyku ve uyaniklik durumlarina gore siniflandirma

yapmistir.

Gunes ve ark. (2006), EEG isaretlerinin dalgacik analizini yaparak Kisa Zaman

Fourier Donlstim ile karsilastirmislardir.

Jahankhani ve ark. (2006), Epilepsili ve saglikli bireylerden alinan EEG
sinyallerinden Ayrik Dalgacik Donustimu ile 6znitelik vektorleri elde etmisler, MLP ve
RBF aglar ile siniflandirma yapmislardir. Arka plant gdrdltili EEG isaretlerine
gbmilmis, sabit olmayan anlamli EEG isaretlerini elde etmek igin etkili bir yontem
oldugunu soylemislerdir. Ayrica karar verme zamanini arttirmak igin ¢ok kanalli

EEG cihazindan elde ettikleri isaretlerin boyutlarmi temel bilesenler analizi (PCA)



yontemini kullanarak azaltmiglardir.

Tezel ve Ozbay (2007), EEG sinyallerinin siniflandiriimasinda yeni bir yaklasim
denemigler, hatanin geriye yayilmasina dayanan geleneksel YSA ile yeni bir YSA
modeli kullanarak epileptik EEG sinyallerinin siniflandirma dogrulugu ve performans

hizini degerlendirmislerdir.

Toprak (2007) EEG Sinyallerinin Dalgacik Doniistimii ve Yapay sinir aglar1 ile analizi,
adli Yiiksek Lisans tezi ¢alismasinda EEG sinyallerinin siniflandirilmasi ve daha net
veri analizinin yapilabilmesi i¢in DD ve YSA metotlar1 birlikte kullanmistir. EEG
isaretlerinin spektral analizi ADD ile gerceklestirmis. Elde edilen 6znitelik vektorleri
cesitli ag yapilarmin girislerine uygulayarak degisik algoritmalarin, isareti, epilepsi-

normal olarak, siniflandirma performanslarini incelemistir.

Sezer (2008) Epilepsi teshisi i¢in EEG sinyal analizi [EEG signal analysis for epilepsy
diagnosis] adli yiiksek lisans tezi ¢aligmasinda degisik YSA yapilarini deneneyerek,
EEG sinyallerinden epilepsi teshisi yapmak i¢in en hizli ve en basarili olan YSA

yapisini belirlemeye caligmistir.

Ozer (2010) EEG isaretlerinin diskriminant analizi ile smiflandiriimasi [Classification
of EEG signals by using discriminant analysis] adli Yiiksek lisans tezi ¢aligmasinda
EEG isaretlerinin farkli Onislemlerle diskriminant analizi ile karsilastirmali olarak
simiflandirmis  ve danmigsmanli algoritmalarin  (LDA ve DVM), danigsmansiz
algoritmalardan (K-ortalama ve BCO) daha basarili sonuglar verdigi sonucunu

gozlemlemistir.

Yapilan ¢alismalarda Dalgacik Dontistimiiniin siniflandirma basarimlarinin zerindeki
etkisi lizerine yeterli diizeyde durulmadigi ve gelistirmeye ihtiya¢ duyuldugu

gorilmektedir.



2.GENEL KAVRAMLAR

2.1 BEYIN VE YAPISI

2.1.1 Beyin Anatomisi

Beyin merkezi sinir sisteminin en dnemli parcasidir, kafatasi icerisinde yer alir ve beyni
icten ¢evreleyen bir zar tarafindan korunur. Yiizeysel olarak beyin ortalama 2000-2100

cm?’dir, kiitlesi ise yetiskinlerde ortalama olarak 1300-1400 gramdir. (Jensen, 2006).

Beyin dort ana yapidan meydana gelir : Beyin, Beyincik, Koprii, Sogancik. Beyin, en
biiyiik alana sahiptir.. Beyin sag ve sol beyin yarimkiiresi olmak iizere iki boliimden
olusur. Sag beyin yarim kiiresi, viicudun sol tarafini, sol yarimkiire ise sag tarafini
kontrol eder. Beyin zar1 olarak adlandirilan beynin distaki katmani gri maddeden
yapilir. Gri madde sinir hiicrelerinden olusturulur Bu hiicreler beyin aktivitelerini
kontrol eder. I¢ kisim beyaz maddedendir.. Beyaz madde, beyindeki sinir hiicreleri ile
omurilik arasinda bilgi tasiyan aksonlardan olusturulur. Hemisfer, Sekil 1’de
numaranlandirilan frontal (1), parietal (2), temporal (3) , oksipital (4) ve serebellum (5)

olarak adlandirilan 5 loba ayrilabilir (Sekil 2.1).

o
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Sekil 2.1: Beynin Yapist



Frontal lob: Bilingli diisiinmede rol oynar ; zarar gérmesi durumunda ruh hali ve
hissiyat degisikligi olabilir.

Parietal lob: Cesitli duyu organlarindan gelen bilgileri birlestirmede 6nemli rol oynar.
Ayrica nesnelerin kullanilmasi ve baz1 mekansal goriis islemelerinde parietal lobun kimi
boliimleri rol alir.

Oksipital lob: Gérme duyusuyla ilgili bilgilerin islendigi lobdur.

Temporal lob: Koku ve sesin algilanmasi, ayn1 zamanda da yiizler, mekanlar gibi
karmagik uyaranlarin islenmesinde rol oynar

Serebellum: Duyu organlarindan gelen bilgilerle haraketi iligskilendirir ve ozellikle

dengenin saglanmasinda 6nemli rol oynar.

2.1.2 Sinir Ag1

Beyin cogu hareket ve davranisin diizenlenmesi ve denetlenmesinin yaninda, kan
basinci, kalp atisi, sivi dengesi ve beden sicakligi gibi beden islemlerini de diizenler ve
denetler. Insan beyninde yaklasik 100 milyar néron bulunur ayrica beynin bir
milimetrekiipiinde bir milyondan fazla néron vardir (Jensen, 2006). Merkezi Sinir
Sistemini (MSS) olusturan beyin ve omurilikten kodlanmis sinir darbeleri halindeki
komutlar, sinirler yoluyla organlara gonderilerek organlarin faaliyetlerini diizenler. Her
bir sinirin diger sinirlerle baglantiya sahip oldugu bu yapi, Sinir Agi olarak
adlandirilmaktadir. Sinir sistemi ve beyin fonksiyonlarinin ana unsuru olan ndronlar
hiicre govdesi, dendrit ve akson olmak {lizere ii¢ temel kisitmdan olusur. Noronlar,
dendrit adi1 verilen ve hiicre govdesinden ¢ikan on binlerce kola sahiptir. Dendritler
diger noronlardan aldigi elektriksel etkiyi akson adi verilen uzun bir lif boyunca diger
noronlara iletir. Her néron miyelin kilifla sarili bir tane aksona sahiptir (Sousa, 2001).
Noronlar sinaps adi verilen ve akson uglari, dendrit veya hiicre govdesi arasinda

bulunan birlesme noktalar1 aracilifiyla iletisim kurarlar.



Dendrit Alkson uclan

Ranvier
€ Hiicre givdesi Bogumu

Schwann

Miyelin kilif hiicresi

Alksan
Hicre Cekirdegi
Sekil 2.2. Noronun Yapisi (Stevens ve Goldberg, 2001)

Beyindeki iletisim sinir hiicreleri arasinda elektriksel ve kimyasal sinyaller araciligiyla
olusur. Sinir hiicresi kendi elektrik sinyalini olusturur ve akson araciligi ile dendrit’lere
gonderir. Dendrid’ler ise bu sinyalleri sinapslere gondererek diger sinyallerin hiicrelere
gonderilmesini saglar. Boylece iki hiicre arasinda bilgi aligverisi saglanmis olur (Wolfe,

2001). Sekil 2.2’te hiicreler arasi iletim gosterilmektedir.

/J' ’ Elektriksel iletim

Hucre govdest T

Akson

Sinaps

Sekil 2.3. Sinir sistemi iletisimi (Sezer’den, 2008)

Hicrelerdeki elektro-kimyasal olaylarin sonucu olusan iyonik akimlar elektrotlar

yardimiyla alinip isaret isleme islemlerinden geg¢irildikten sonra ¢esitli hastaliklara tani

konmasinda yararlanilir.



2.2 EPILEPSI

2.2.1 Epilepsi Nedir

Epilepsi, aralikli olarak tekrar eden kriz nobetleriyle tanimlanan bir norolojik
rahatsizliktir ve diinya nufusunun yaklasik %1’inde gorilmektedir. Epilepsinin ¢ok
farkli tiirleri bulunmaktadir, bu nedenle her hastada farkli sekilde goriilebilir. Epilepsi
ndbeti tim vucudun kasilmasi ve ¢irpinma seklinde olabildigi gibi, sadece yiiz, kol ya
da bacakta kasilma, anlamsiz konusma ve davranislar, titreme ve sabit bakma seklinde

de epilepsi ndbetleri gorulebilir. (Gokceil, 2007).

Epilepsiden bahseden ilk kisi M.O. 350’lerde Hipokrat’tir. Bu yiizden "Hipokrat
hastalig1" olarak da bilinir.Epilepsi ile ilgili ilk fizyopatolojik degerlendirmeler 19.
yizyillda John Hughlings Jackson tarafindan, sadece klinik gozlemelere
dayanilarak ortaya atilmistir. Jackson’in epilepsi alanina yaptigi katkilar modern tip

bilimi tarafindan hala kullanilmaktadir.

2.2.2 Epilepsi Nobetleri

Epilepsi nobetleri, beyindeki hiicrelerin kontrol edilemeyen, ani ve anormal desarjlarina
bagli olarak ortaya c¢ikan bir durumdur. Beyin hiicreleri arasindaki uyumlu calisma,
elektriksel sinyallerle saglanir. Nobetin nedeni, bir tiir beklenmeyen elektriksel
uyar1 olarak disiiniilebilir. Kisaca; epileptik ndbet, beynin kuvvetli ve ani elektriksel
bosalimi sonucu olusan kisa stireli ve gegici bir durumdur. Bayilma, morarma,
sigrama, cirpinma, anlamsiz bakma, dalma vb. sekilde ortaya c¢ikan bir

rahatsizliktir.(Gokgil, 2007)

2.2.3 Epilepsi Teshisi

Epilepsi tanisinda en onemli nokta; nobetler hakkinda verilen bilgidir. Genel fizik ve
norolojik muayene yapildiktan sonra basvurulacak ilk laboratuar inceleme araci;
elektroensefalografi (EEG) dir. Normal EEG epilepsi olmadigin1 gostermez ve anormal

EEG de her zaman epilepsi demek degildir. EEG tetkiki kisa siireli, dinamik bir tetkik



oldugundan ¢ekim sirasinda herhangi bir anormallik ortaya ¢ikmayabilir. Bu nedenle;
tanitya yardimci olmak amaci ile tekrarlayan ya da uykusuzluk/uyku EEG ¢ekimleri
yapilabilir. Epilepsi hastalig1i tanisinin konulmasinda en onemli tetkik EEG’dir.
Bilgisayarli beyin tomografisi (BBT) ve magnetik rezonans incelemesi (MRI) epilepsi

ndbetlerine neden olan olaylarin ortaya konmasinda yardimci olabilir.

2.2.4 Epilepsi Nedenleri

Epilepsi; dogustan gelen kromozom hastaliklari, bazi enzim eksiklikleri , gebelikte
bebegin beyin gelisimini etkileyen mikrobik hastaliklar, dogum sirasinda meydana
gelebilecek beyin zedelenmesi ve beynin oksijensiz kalmasi, dogum sonrasi menenyjit,
beyin iltihabi, beyin zedelenmesi, beyin tiimorleri, uzun siiren atesli havaleler ve tiroid

hastaliklar1 sonucunda ortaya ¢ikabilir (Epilepsie Fonds 2005).

2.2.5 Epilepsi Tedavisi

Epilepsi rahatsizligi, mutlaka doktora basvurulmasini ve doktorun gerekli gordiigii
stirece kontrol altinda kalinmasini gerektirir. Basit bir epilepsi ndbeti zararsiz olmakla
beraber, ndbetlerin tekrarlamasi, beynin oksijensiz kalmasina yol agabilir.

Epilepsi ilacla veya cerrahi olarak tedavi edilebilir. %70-75 oraninda tek ilagla nobetler
kontrol altina alinabir. Epilepsili hasta ilacim1 kullanarak aktif ve basarili bir yasam
strebilir (Gokgil, 2007). Epilepsinin tedavisi icin farkli yontemlerin bulunmasina
ragmen hastalarin %25’inde bu nobetler kontrol altina alinamamaktadir (Gardner et al.,
2006). Farkl: ilaclar kullanilarak epilepsi nobetlerinin onune gecilmeye calisiimasinin
yani sira beynin sorunlu bolgesini elektriksel olarak uyaran cihazlar da gelistirilmeye
calisilmaktadir. Bu tarzdaki calismalarin etkili bir bicimde uygulanabilmesi icin de

epilepsi tespiti ve tahmini gok énemlidir.
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2.3 EEG (ELEKTROANSEFALOGRAM)

2.3.1 EEG Nedir?

EEG isaretleri, beyin ylizeyinden elektrotlarla algilanan diisiik genlikli biyoelektrik
isaretlerdir. Kelime anlami olarak Yunanca’da “Beyin elektriksel resmi” anlamina
gelmektedir. Beyinde bir takim elektriksel faaliyetlerin varligi ilk defa, 1875 yilinda
Caton tarafindan hayvanlar iizeninde yaptig1 aragtirmalar sonucu ortaya ¢ikmistir.. 1929
yilinda ise Hans Berger ilk defa, insan beyninde elektriksel aktivitenin varligini, kafaya
yerlestirilen elektrotlar ve bunlara bagh bir galvanometre yardimiyla ortaya koymustur.
Berger, 1930'da Elektroansefalogram (EEG) adi verilen bu dalgalarin géziin acilip

kapanmasiyla degistigini gostermistir.

Wﬁﬁfmmwwmwww

Sekil 2.4 Hans Berger tarafindan kaydedilen ilk EEG sinyali

Elektronikteki geligsmelerle birlikte EEG isaretlerinin varligi bilimsel bir sekilde ortaya
konulmus ve 1934 yilinda Adrian ve Matthews, elektrotlarla alinan EEG isaretlerini
kuvvetlendirip kaydedilmesini saglamislardir. 1939 yilinda P. A. Davis, uyanik bir
insanin EEG’sinde, sese kars1 uyarilan yanitlarin oldugunu bulmustur. H. A. Davis ve
arkadaglar1 ayn1 sene, ayn1 olaymn uyuyan insanda da meydana geldigini gostermislerdir.
Ikinci Diinya Savasi1 sonrasinda, elektronik ve bilgisayar alaninda meydana gelen
bliylik gelismelerle birlikte ortaya c¢ikan olumlu sonuglar, bu alanda da kendisini
gostermis ve EEG’nin klinik uygulamalar1 gelistirilerek tanimi {izerinde yapilan
aragtirmalar olumlu sonuglar vermistir (Yazgan, 1996). EEG sinyalleri, yasa, cinsiyete,
beynin uyaniklik durumuna, bilissel uyaranlara, genetik faktorlere ve beyin
hastaliklarinin var olup olmamasina bagli olarak degisimler gosterirler. Beyindeki sinir

hiicreleri tarafindan hem uyaniklik, hem de uyku halindeyken firetilen elektriksel
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faaliyet kagit ilizerine beyin dalgalar1 halinde yazdirilir. EEG, insan davranislarini
anlamak ve sonu¢ c¢ikarmak icin beyindeki iglemlerin temelinde yatani yansitma
yetenegine sahip fizyolojik bir sinyaldir. Beyin normal elektriksel faaliyetini
sirdiriirken epilepsi (sara hastaligl) gibi pek ¢ok nedenden dolayr aktivitesi bozulur.
EEG ile olciilen beyin dalgalarinin degerlendirilmesi ile bu bozukluk hakkinda bilgi

edinilir.

2.3.2 EEG Dalgalan

Elektroansefalografi (EEG) isaretleri, EKG ve EMG isaretlerinde oldugu gibi sekil
bakimindan degil, kapsadigi frekanslara gore degerlendirilmektedir. EEG isaretleri
periyodik olmadigindan genlik, faz ve frekanslar siirekli degisir. Bu nedenle, anlaml
bir veri elde edebilmek i¢in, uzun siireli dlgiimler yapilmasi gerekmektedir Bir EEG
isareti icerisinde, kisinin ruhsal durumuna ve diisiindiiklerine gore, farkli frekans
bandina sahip bes ayr1 dalga bulunabilir. EEG isaretlerinin analizinde morfolojik
ozelliklerinin yan1 sira bu dalgalardan da faydalanilir. Tablo 2.1°de EEG isaretlerinin

kapsadiktan frekans bandlar1 ve bu bandlara verilen 6zel isimler birlikte gosterilmistir

(Yazgan, 1996).

Tablo 2.1. EEG Frekans bandlar1

BAND ISMi SEMBOL Plpsais EE
Delta ) 05-35Hz Degisken

Teta 0 4-7Hz Degisken

Alfa o 8 12 Hz Oxsipral /
Beta B 12 - 22 Hz Frontal

Gamma Y 22 — 30 Hz Degisken

Delta Dalgalari: 0.5 hertz ile 4 hertz frekanslar1 arasindaki spektrum boliimii delta
araligidir. Bazi durumlarda 1 Hz'in altina da diiser. Genlikleri, 100 pV (p-p)’den
kiiciiktiir. Delta dalgalar siit cocuklarinda, gen¢ ¢ocuklarda, derin uyku halinde ve agir
organik beyin hastaliklarinda goriiliir. Yetiskinlerde goriilen delta aktivitesi anormal

olarak nitelendirilir (Yazgan 1996; Kocal, 2007).
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0.0 0.2 0.4 0.6 0.8 1.0
Sekil 2.5 Delta Dalgas1

Teta Dalgalari: 4 hertz ile 8 hertz frekanslar1 arasindaki spektrum boliimii teta
araligidir. Teta aktivitesi genellikle ¢ocuklarda beyinin temporal ve merkezi boliimiinde
bulunur. Yetiskinlerde duygusal, gerginlik ve diis kiriklig1 durumlarinda ortaya c¢ikar.
Genlikleri 100 uV (p-p)’den kiigiiktiir (Kocal, 2007).

0.0 0.2 0.4 0.6 0.8 1.0
Sekil 2.6 Teta Dalgasi

Alfa Dalgalari: 8-12 Hz arasindaki beyin dalgalaridir ,genlikleri 50 pV kadardir.
Uyanik normal ve sakin kimselerde goriiliir. Yogun sekilde oksipital bdlgede
ortaya c¢ikar. Uyku durumunda yok olurlar. Uyanik kisi dikkatini 6zel bir seye
yoneltirse alfa dalgalari yerine, daha yiiksek frekansli, fakat diisiik genlikli EEG
isaretleri (beta dalgalar1) meydana gelir (Yazgan 1996).

0.0 0.2 0.2 0.6 0.8 1.0
Sekil 2.7 Alfa Dalgas1

Beta Dalgalari: 13 hertz ile 23 hertz frekanslari arasindaki spektrum bolimii beta
araligidir. Beta ritimleri genel olarak normal yetiskinlerde 6n merkezi beyinden alinir.
Sagli derinin parietal ve frontal bolgelerinde belirgin olarak kaydedilebilir. Beta-1 (BI)
ve Beta-II (BII) diye ikiye ayrilirlar. BII dalgalariin frekansi, BI’dalga frekansinin iki
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katidir ve alfa dalgalarinda oldugu gibi zihinsel aktivitenin artmasi1 ile ortadan
kalkarlar ve yerlerine diisiik genlikli asenkron isaretler olusur. BII dalgalari, merkezi

sinir sisteminin kuvvetli aktivasyonunda veya gerginlik hallerinde ortaya ¢ikar (Yazgan
1996).

0.0 0.2 0.4 0.6 0.8 1.0
Sekil 2.8 Beta Dalgasi

Gamma Dalgalari: Bazi1 arastirmacilar tarafindan kullanilmaktadir. Genlikleri, 2 pV
(p- p)’den daha kiiciiktiir. Kafanin merkezinde, genlikleri daha bayuktir. Uykunun
karakteristik belirtisini tasirlar (Yazgan, 1996).

0.0 0.2 0.4 0.6 0.8 1.0
Sekil 2.9 Gamma Dalgalar1

2.3.3 EEG Kullanim Alanlar:

Tip : EEG, Basta epilepsi olmak iizere bir ¢cok beyin rahatsizliklarinin teshisinde
hastaya ac1 vermeyen ve ucuz bir yontem olmasi nedeniyle yaygin olarak kullanilir.
Noroloji: EMG, Ekokardiogram ve norolojik kontroller ile birlikte hastanin beyin

patolojisinin belirlenmesinde,

Beyin Cerrahisi (Neurosurgery): Beyinden ameliyatla ¢ikartilacak tiimor gibi anormal

patolojik dokularin yerinin belirlenmesinde,

Anestezi: Anestezi altindaki hastanin anestezi seviyesinin belirlenmesinde,
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Pediatri: Ortalamasi alinmis uyarilmis potansiyeller (Averaged evoked potentials) gibi
diger test yoOntemleriyle birlikte, yeni dogmus c¢ocuklarin igitme  ve gorme

problemlerinin belirlenmesinde,

Psikiyatri: Zihinsel bir bozuklugun daha kesin bir sekilde belirlenmesi amacryla,
organik bir beyin hastaliginin var olup olmadigmin belirlenmesinde kullanilmaktadir.
EEG isaretlerindeki ana bilesenin frekansi yasla birlikte artar, genlikleri ise azalir Bir
cocugun EEG'sinin genligi biiyiik, frekans1 distktiir. Yetiskinlerde genlik diiser,
frekans artar. , EEG iizerinde etkili olan durumlardan biride suur durumudur. Suur
durumuna bagli olarak uykudaki yetiskinde EEG'min genligi artar, frekansi ise

azalir.(Yazgan, 1996).

EEG, psikomatik bulgularin tanisinda yardime1 olmamaktadir .EEG klinikte, beynin iki
yarim kiiresinin elektriksel hareketleri karsilastirilarak kafa i¢indeki yabanci yapilarin

lokalizasyonunda kullanilmaktadir. (Kalayci, 1996).

EEG, epilepsinin tanmmmasi, izlenmesi ve tedavisinin planlanmasi asamalarinda
klinik acidan 6nem tasiyan bir yontemdir. Epilepsi, bir grup beyin hiicresinin asiri
bosalmasina bagli, mental ve motor fonksiyonlarin gecgici olarak kayboldugu,
epileptik krizler ile kendini gosteren ndrolojik bir fonksiyon bozuklugudur. Epilepsi
krizleri sirasinda EEG’de epileptik aktivitenin saptanmasi, epilepsinin diger epilepsi
benzeri kriz olusturan hastaliklar ile ayirici tanisinin yapilabilmesini saglar. Epileptik
krizler sirasinda EEG’de yliksek genlikli, tekrarlayici, birbiri ardi sira gelen dalga
sekilleri gozlenir. Krizler arasi (interictal) donemlerde ise diken (spike), diken-dalga
kompleksi (spike-and wave ), keskin dalga (sharp wave) gibi kisa siireli dalga tipleri
kaydedilir (Kalayci, 1996).
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3. MALZEME VE YONTEM

3.1 MALZEME

3.1.1 Kullanilan Veri

Bu ¢alismada kullanilan EEG sinyalleri; Bonn Universitesi Epileptoloji bolimi veri
tabanindan alinmistir. TUm veri, 5 kiimeden olusmaktadir (A,B,C,D,E) ve her kiime 100
tek kanal EEG segmenti icermektedir. Her bir segment artefaktlarin gozle
incelenmesinden sonra se¢ilmistir. A kiimesi, saglikli kisilerden, gozler agik bigimde,
yiizey elektrotlar1 ile kaydedilmis EEG verisini igerir. B kiimesi, saglikli kisilerden,
gozler kapali bi¢cimde, yiizey elektrotlar ile kaydedilmis EEG verisini igerir. C ve D
kiimeleri, hastalikli kisilerden, epilepsi krizinin olmadigi anda, girisimsel olarak
kaydedilmis EEG verisini igerir. E kiimesi ise hastalikl1 kisilerden, epilepsi krizi aninda,
girigsimsel olarak kaydedilmis EEG verisini icerir. Bu EEG isaretlerinin 6rnekleme
frekans1 173,61 Hz ile sayisallagtirilmistir ve her bir kiime 39.33 dakikalik kayit
icermektedir. Analizlerde, saglikli goniillillerden (Kiime A) ve epilepsi hastalarindan
(Kiime E) alinan EEG isaretleri kullanilmistir. Kiime A; kafatasi disindan, kiime E; kafa
boslugu i¢inden kaydedilmistir. Verilerin incelenmesinde MATLAB programindan
faydalanilmistir.

3.2 YONTEM

3.2.1 Dalgacik Doniisiimii

Dalgacik Doniistimii son yillarda kullanim1 yayginlasan ve isareti alt frekans bandlarma
ayristiran bir sinyal isleme yontemidir. Dalgacik doniisiimii, zamanla karakteristigi
degisen duragan olmayan sinyal isleme i¢in zaman Olgekli inceleme yontemi olarak

ortaya ¢ikmaistir.
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Genel olarak Dalgacik Ddoniisiimleri herhangi bir sinyali 06lgek parametreleriyle
etiketlenmis yerel bilesenlerine ayrigtirmaktadir. Bdylelikle sinyallerin zamansal
karakteristiklerini spektral bilesenler cinsinden ifade etmek miimkiin olmaktadir.
Dalgacik Doniistimlerinin bu 6zelligi goriintii isleme, konusma tanima ve Ozellikle
biyomedikal sinyal isleme gibi alanlarda ¢ok 6nemli uygulama alanlar1 bulmasina yol
acmustir (Tansel ve ark. 1993). Dalgacik Doniisiimii duragan olmayan sinyaller ve
nliimerik sinyal isleme {izerine olduk¢a fazla kullanilmaktadir. Dalgacik Doniisiimiinde
de Fourier analizde ki gibi sinyal alt bilesenlerine bélinlr. Fourier analizi bir sinyalin
analizini yaparken sinyali farkli frekanslardaki siniis ve kosiniis bilesenlerine boler.
Dalgacik Doniisiimii ise sinyali ana dalgacigin oOlceklenmis ve kaydirilmis alt
dalgaciklarina boler. Duragan olmayan tiirdeki sinyallerin islenmesinde, sinyalin zaman
ve frekans bolgeleri arasinda bir iligski elde etmek ¢ok yararli olmaktadir. Dalgacik
Dontistimi, farkli frekanslarda duragan olmayan giice sahip zaman serisi sinyallerinin
analizinde kullanilabilir. Fourier analizi sinyali sadece frekans bolgesine tasidigindan
sinyalin zamandaki bilgileri kaybolmaktadir. Bu nedenle duragan olmayan sinyallerin

analizinde Fourier doniisiimii yeterli olmamaktadir.

EEG isaretleri duragan olmayan sinyallerdir ve bu isaretlerde zaman zaman ortaya ¢ikan
kisa siireli dik darbeler ve karmagik dalgalar teshis i¢cin 6nemli bilgiler tasimaktadir. Bu
durumda bu 6zel spektral bilesenlerin hangi zaman araliginda meydana geldigi énemli

olabilir ve Fourier analizi yetersiz kalir (Yazgan ve Kortirek, 1996).

Fourier doniisiimii, sinyali dontistiirlirken frekans bolgesine tasir, sinyalin zaman bilgisi
kaybolur, duragan kendini siirekli tekrar eden sinyallerde bu sorun teskil etmez ama
duragan olmayan yani EEG gibi sinyallerin analizinde dalgaciklarin yapisi itibariyle
Dalgacik Dontisimii  kullanilir.  Bircok veri sinyali, ©Onemli sayilabilecek
duragansizliklar veya gecici Ozellikler (egim, ansizin degisim, kirilma ve olaylarin
baslangi¢c ve bitisleri) icerebilir. Bu beklenmedik 6zellikler ve duragansizliklar, veri
sinyalinin en énemli kisimlart olabilmektedir (6zellikle EEG ve EKG vb.) , bu noktada

Dalgacik Doniisiimii kullanimi bir zorunluluk olarak karsimiza ¢ikmaktadir.

Dalgaciklar sonlu siirelidirler bu yiizden yerel sinyal 6zelliklerinin analizini miimkiin

kilarlar. Dalgacik Doniistimleri tim sinyal frekans- zaman bilgisini korurlar. Bu
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sebeplerden dolayr duragan olmayan ger¢ek dogal sinyallerin dalgacik temelli
metotlarla islenmesi geleneksel metotlardan daha iyi sonuglar saglarlar (Miner 1998).
Ozellikle duragan olmayan sinyallerde karsilasilan siireksizliklerin sinyaldeki yerini

daha iyi tespit edebilmek amaciyla Dalgacik Doniisiimii kullanilir.

Dalgacik analizininde sinyal, dalgacik 6lgekleri ile gosterilir ve Fourier temelli analizde
oldugu gibi siniis temel fonksiyonlar1 degil de dalgacik fonksiyonlar1 kullanildigindan
keskin stireksizlikleri i¢eren veriler i¢in ¢ok uygundur. Dalgacik DOniisiimlerinde
zaman tanimli bolgesinde verilen sinyal, dalgacik fonksiyonu denilen 06zel bir
fonksiyonla carpilir ve sinyalin her bir kesiti i¢in doniisiim hesaplanir. Dalgacik
Dontistimlerinde ana hedef bir sinyali 6lgek parametreleri ile etiketlenmis temel
fonksiyon kiimelerine ayristirabilmektir. Bu biiyiik boyutlu sinyallerin daha kiigiik yerel
bolgelerinde analizine olanak tanir. Diger bir ifadeyle, diisiik frekanslar igin genis,
yiiksek frekanslar i¢in dar olacak sekilde degisen pencere boyutlarinin olmasiyla, biitiin
frekans araliklarinda optimum zaman- frekans ¢oziinilirliigii saglanabilmektedir. (Sekil
4.2) Zaman tabanl (Shannon), frekans tabanli (Fourier), STFT (gabor) ve Dalgacik
Doniisiimlerini gostermektedir (Polikar 2005).

r Y 'y
“
4 :
5 -
” =
Zaman i Genlk
Zaman alaru (Shannon) Frekans Alam (Founer)
A '
- P
i i
& a]
P -
Zaman 2 Zaman i
STFT (Gabor) Wavelet analm

Sekil 3.1: Sinyal analiz yontemleri arasindaki iligki

Dalgacik Doniistimiiniin taban fonksiyonlarina “dalgacik” denir. Dalgaciklar ortalama
degeri sifir olan ve zamanla siirlt bir dalga seklidir. Zaman ekseninde kaydirma ve

Olgekleme parametreleri dalgaciklarin temelini olusturmaktadir. Dalgacik sinyalinin
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genlestirildigi bolgelerde sinyaldeki yavas degisimleri ve/veya diisiikk frekanslari;
biiziildiigii bolgelerde ise ani degisimleri ve/veya yiiksek frekans bilesenleri

gorulebilmektedir.

Dalgacik Doniistimii, veriyi farkli 6l¢eklerde ve ¢oziiniirliikte analiz ettigi icin ayrintili
bir analiz yapmis olur, cilinkii 6l¢cek her defasinda iki kat artar ve buna gore analiz
tekrarlanir, dolayisiyla ¢oziintirliik artmig olur, bu da sinyalin ayrintili  olarak
islenmesini saglar. Bu ise tip elektroniginde istenilen bir durumdur. Dalgacik analizi bir
sinyale ait zaman ve frekans taniml1 bolgelerindeki bilgileri eszamanli olarak gdsterir.
Boylece sinyaldeki yonsemeler, ¢okiim noktalar1 ve siireksizliklerin belirlenmesi

diger sinyal analiz metotlarina gore ¢cok daha kolay olmaktadir.

Dalgacik Doniigiimii ile kayda deger bir kotiilesme olmaksizin bir sinyali sikistirmak
veya giirliltiden arindirmak miimkiindiir. Ayrica Dalgacik doniisiimii, baska sinyal
isleme yontemlerinin yakalayamadigi egimleri, bozulma noktalarini, yiiksek dereceli

tirevlerde sireksizlikleri ve benzerlikleri ¢ikarmada basarilidir.

Dalgacik Doniistimii’niin iki tipi vardir: Strekli Dalgacik Doniistimii (SDD) ve Ayrik
Dalgacik Doniisiimii (ADD) (Adeli vd., 2002). Siirekli Dalgacik Doniisiimiinde
Olceklendirme ve doniisiim parametreleri siirekli degistiginden her bir 6l¢ek icin
dalgacik katsayilarinin hesaplanmasi zor ve zaman alicidir. Bu nedenle daha ¢cok ADD

kullanilmaktadir (Giiler ve Ubeyli, 2004).

3.2.1.1. Dalgacik cesitleri
Dalgacik dontlisimiinde birbirinden farkli dalgacik cesitleri  kullanilir.  Cok
karsilagilan dalgacik cesitleri asagida verilmistir. Bu calismada Haar ve Daubechies

dalgaciklar1 kullanilmistir.

Daubechies dalgacigi: Haar dalgacik’a benzemektedir. Db, Haar dalgacik’in aynisidir.

Daubechies dalgacigi fonksiyonun formiilic denklem 3.1°de verilmistir. Sekil 3.2°de

grafiksel olarak gosterilmistir.
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db10

Sekil 3.2: Daubechies dalgaciklari. (Sezer’den, 2008)

€; = hgSy; + hySgieq + hasyinthysy g (3.1)

Haar dalgacigi: Ilk orthonormal dalgacik fonksiyonlar1 kiimesi, 1910 yilinda Haar ile

ortaya konmustur. ~ Haar dalgacik en eski ve en basit dalgacik fonksiyonudur. Haar
dalgacik fonksiyonun formilleri denklem 3.2, 3.3, 3.4 ile verilmistir. Grafiksel olarak
ise Sekil 3.3’de gosterilmistir.

0a ¢

05

At .
1] 05 1

Sekil 3.3: Haar dalgacik fonksiyonu.



20

P(x)=1,0=x<1/2 (3.2)
Y= —1,1/2<x <1 (3.3)
P (x) = 0,x €& [0,1] (3.4)

Meksika sapkasi dalgacigi:

Meksika sapkasi dalgacigr formiili denklem 3.5 ile verilmistir. Grafiksel olarak ise

Sekil 3.4°de gosterilmistir.

08
086
04F
02}

02}

-8 -6 4 -2 0 2 4 6 8

Sekil 3.4: Meksika sapkasi dalgacigi. (Sezer’den, 2008)

2z
. —t
i

W) === (1- 5w (35)

ﬂﬂﬁﬁz

Meyer dalgacigi: Meyer dalgacigi formiilii denklem 3.6 ile verilmistir. Grafiksel olarak

ise Sekil 3.5’de gosterilmistir.
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-5 0 5

Sekil 3.5: Meyer dalgacig1 (Sezer’den, 2008)

1w

P (w) = [ZH]_;ETSin(E v{;—w lw| — 1}] (3.6)

Morlet dalgacigi: Bu dalgacik dlgeklendirme fonksiyonuna sahip degildir fakat net

sekilde anlagilirdir. Morlet dalgacigi formiilic denklem 3.7 ile verilmistir. Grafiksel

olarak ise Sekil 3.6’de gosterilmistir.

05

-0.5

-4 -6 -4 -2 0 2 4 6 8

Sekil 3.6: Morlet dalgacig1. (Sezer’den, 2008)



22

P(x) = Ce % 12¢cos (5x) (3.7)

Symlets dalgacik: Db ailesinin degismis hali olarak Daubechies ile desteklenen simetrik

dalgacik yaklagimidir. Sekil 4.7 de Symlets dalgacik ailesine ait fonksiyonlarin zaman-

genlik gosterimleri verilmistir.

sym6 sym7 sym8

Sekil 3.7 Symlets dalgacik ailesine ait fonksiyonlarin zaman-genlik gésterimleri (Sezer’den,
2008)

3.2.1.2. Siirekli Dalgacik Doniigtimii

Siirekli Dalgacik Doniigiimii  (Continious Wavelet Transform) biitiin zaman araligi

boyunca dalgacik fonksiyonu i0’nin kaydirilmis ve Olceklenmis sekliyle sinyalin

carpimindan olusur. SDD’nin sonucunda bir¢cok dalgacik katsayisi elde edilir bunlar
6lgek ve pozisyon fonksiyonlaridir. Dalgacik Doniistimiiniin en 6nemli 6zelligi her bir
spektral bileseni i¢in doniisiim hesaplanirken pencere genisliginin degismesidir.

Bir X (t) isaretinin Siirekli Dalgacik Doniistimii Denklem 3.8’deki gibi tanimlanabilir:

C(ab)=a> [[ZX@®P(D)dt (3.8)

Formiil zamana bagli olarak sinyal fonksiyonu ve dalgacik fonksiyonunun bilesimidir.
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Denklem 3.8’deki C(a, b) dalgacik doniisiim katsayilarini, (t), analizde kullanilan

temel fonksiyonu, a 6lcek (frekans) parametresi ve b de zaman (konum) parametresini

gosterir. Dalgacik Doniisiimiiniin iki temel parametresi vardir:

a (6lgek): Bir fonksiyonu sikistirir veya yayar. a ‘nin biiyiik degerleri kiigiik frekanslara

(kaba 6lcek), a'nin kiigiik degerleri yiiksek frekanslara (ince 6l¢ek) karsilik gelir.

b (6teleme parametresi): dalgacigin zaman (isaret) veya X; y boyunca (resim)

Otelenmesini saglar. a; b siirekli veya ayrik olabilir (Hasiloglu 1999).

Olgeklendirme parametresi a, haritadaki 6lgek de oldugu gibi, detayli olmayan genel

goriinimler icin yliksek Olcek, detayli goriintimler icin ise diisiik Olgek uygundur.
Olgeklendirme, bir sinyalinin zaman-genlik gdsterimini sikistiran veya genisleten bir

matematiksel dontisiimdiir. Matematiksel ifade ile; f(t) verilen fonksiyon ise f(st)

fonksiyonun 6lgeklendirilmis halidir. Ana dalgacik islemde tiim pencereler icin bir

prototip olarak kullanilmak {izere secilir. a degerini biiyiitlip kiiciltmekle Ana dalgacik

fonksiyonunun genlesmesi ve biiziilmesi saglanir. Ana dalgacik secildigi zaman

hesaplama islemi a =1 ile baglar ve dalgacik doéniisiimii tiim a degerleri i¢in

hesaplanir. Biiyiik 6lgek degeri sinyali genisletmek icin, kiigiik 6lgek degeri sinyali

sikistirmak i¢in uygundur. Fakat Ana dalgacik fonksiyonu ifadesine dikkat edilirse a
skalalandirma parametresi paydada yer almaktadir. Bu durumda a skalalandirma
parametresine, a < 1 araliginda degerler verildiginde sinyal genislemis olur ve bdylece
alcak frekans bilesenlerinin analizi i¢in uygun pencere genisligi elde edilir. a
parametresine 0 << a < 1araliginda degerler verildiginde ise sinyal zaman ekseninde

sikistirilmis olur ve boylece yiiksek frekans bilesenlerinin analizi i¢in uygun pencere

genisligi elde edilir. Tiim a degerleri i¢cin hesap islemleri yapildiktan sonra isaretin

dalgacik doniisiimii hesaplanmis ve dlcek ve pozisyonun bir fonksiyonu olan dalgacik

katsayilar1 Uretilmis olur. Yiiksek frekans analizlerinde kisa pencere segimleri yeterli
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olup, alcak frekans analizlerinde ise uzun pencere araliklari secilmelidir. Dalgacik
doniisiimii sonucunda olugan; genis 6l¢ekli ana dalgacik katsayilari sinyalin kaba sinyal
ozelliklerini, kiigiik 6l¢ekli ana dalgacik katsayilari ise kiiclik ayrint1 6zelliklerini ortaya
cikarir. Bu da ¢ok karmasik sinyallerin analizinde {istiinliik saglar ve aranilan bir

durumdur.

b oOteleme parametresi, pencere fonksiyonun sinyal {izerindeki yerini degistirir. Yani

zaman ekseninde sinyal boyunca pencereyi hareket ettirir. Ayrica bu terim, zaman-

frekans grafiginde zaman bilgisini saglar (Polikar 2005).

1\va carpani ise, doniistiiriilmiis isretin her olgekte ayni enerjiye sahip olmasi igin

yapilan normalizasyon islemidir. Bu ¢arpan sayesinde Ana dalgacik fonksiyonundan
elde edilen pencere fonksiyonlariin enerjisinin, Ana dalgacik fonksiyonun enerjisi ile
ayni olmasi saglanir.

Ters Surekli Dalgacik Déniistimi ise €, ana dalgacigin kabul olunabilirlik sabiti olmak

uzere Denklem 10°da oldugu sekilde verilir:

F() = CWT{F(2), ¥(a, b)) (3.9)

dadb

F() = = [ JewTF @, 9@ b}z o () (3.10)

EE

Kabul olunabilirlik sabiti Cp Denklem 3.11’ te verilen ifade ile bulunur.

€, = [0 gy ¢, < (3.11)
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Uygulamalarda Denklem 3.11°de verilen Siirekli Dalgacik  Doniisiimiiniin
kullanilmamin1 zorlastiran dezavantajlar vardir. SDD ile tek boyutlu sinyalin, iki
boyutlu zaman-skala birlesik gosterimi elde edilir. Bu gerekenden fazla olan bir
lizumsuz gosterim seklidir. Cogu uygulama i¢in bu fazlaligin giderilmesi
gerekmektedir. Fazlaliginin giderilmesine ragmen, Surekli Dalgacik Doniisiimiinde
sonsuz sayida baz fonksiyonuna gereksinim devam etmektedir. Ayrica ¢ogu sinyalin
dalgacik doniisiimiiniin analitik ¢oziimii miimkiin degildir sadece niimerik olarak

veya gorsel analog bilgisayarla hesaplanabilirler.

Ayrica SDD zaman-band genisligi ¢arpimi, sinyalin zaman-band genisligi ¢arpiminin
karesine esittir. Miimkiin oldugu kadar az bilesenle bir sinyalin analizini yapmaya
calisan ¢ogu uygulama i¢in bu dezavantajlar, Siirekli Dalgacik Doniisiimii’nii
kullanimin1 kullanigsiz hale getirir. Fazla veri hesaplamak zor ve zaman alicidir.
Bundan dolay1 pratikte Siirekli Dalgacik Doniisiim’iin ayrik versiyonu kullanilir

(Tangirala ve ark. 2001).

SDD, bilgisayarda hesaplanirken ayrik olarak islenir. Ancak, Ayrik Dalgacik

Doniistimiinden farki 6l¢egin ve kaymanin stirekli olmasidir.

3.2.1.3. Ayrik Dalgacik Déniigtimii

Surekli Dalgacik Doniisiimii ile tek boyutlu sinyalin, iki boyutlu zaman-skala birlesik

gosterimi elde edildiginden islem ve veri kapasitesi ¢cok biiyiiktiir.

Cogu uygulama i¢in bu fazlaligin giderilmesi gerekmektedir. Fazlalik giderilmesine
ragmen, SDD’ de sonsuz sayida baz fonksiyonuna gereksinim devam etmektedir. Cogu
sinyalin DD’ sinin analitik ¢6ziimii miimkiin degildir sadece niimerik olarak veya gorsel
analog bilgisayarlarla hesaplanabilir. Ayrica SDD’ nin zaman-band genisligi carpimi,
sinyalin zaman-band genisligi ¢carpiminin karesine esittir. Miimkiin oldugu kadar az
bilesenle bir sinyalin analizini yapmaya c¢alisan ¢ogu uygulama i¢in bu dezavantajlar,
SDD’ nin kullanimimi kullanigsiz hale getirir. Bundan dolay: pratikte SDD’ nin ayrik

versiyonu kullanilir (Giimiis, 2003). islem verimliligini arttirmak i¢in konum ve
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Olceklerin ikili kuvvetleri alinmsi islemina ikili dalgacik (dyadic) doniisiimii denir.
Mallat, ikili dalgacik doniisiimiinii sayisal siizgeclerle gerceklestirmis ve bu silizgecler

sayesinde dalgacik doniisiimii islemi hizlandirilmastir.

Zaman boyutunda sikistirma frekans boyutunda yayilma ve yukari dogru kaymaya
denk diiser veya bunun tam tersi de gecerlidir. Zaman domeninde &telenmis baz
fonksiyonlar1 ile sinyal nasil tiimiiyle kaplaniyorsa ayni yolla frekans domeninde
sinyalin sonlu uzunluktaki spektrumu genisletilmis baz fonksiyonlarinin spektrumlari
ile kaplanabilir. Frekans domeninde sinyalin genisletilmis baz fonksiyonlarnin
spektrumlar1 ile en iyi sekilde kaplanmasi, genisletilmis baz fonksiyonlarinin
spektrumlarinin birbirleriyle kesisecek sekilde baz fonksiyonlarinin ayarlanmasi ile elde
edilir (Giimiis, 2003).

Bir dalgacigin degisen 6lcekler icin frekans tayflari Sekil 3.7° de gosterilmektedir. Her
bir dalgacik bant geciren siizgec olarak alinirsa bunun o6lgeklenmis serisi de bant
geciren silizge¢ serisi  olusturacaktir. Her bir spektrumun merkez degeri ile bant
genisligi oranina bakacak olursak hepsinde bu oranin esit oldugu goriiliir. Bu oran
“sadakat faktord (Q)” (fidelity factor) olarak adlandirilir. Ve tiim baz fonksiyonlari ise
“Sabit Q faktorli filtre kiimesi” olarak adlandirilir (Valens 1999).

A

Sekil 3.7: Olgekleme ve dalgacik fonksiyonlarinin spektrumlar1 (Batar’dan, 2005)

Bircok uygulamada zaman-bant genisligi ¢arpimimin farkli frekans ve/veya farkli
zamanlarda boliimlenebilmesi istenir. Sekil 3.7’ den de goriilebilecegi gibi bu amaca

dalgacik doniisiimiiyle ulagilir.

Siirekli Dalgacik Doniistimii’ndeki bu fazla gereksizlik o6lgegin  2’nin katlariyla
degistigi dyatic dalgacik parametreleriyle (a=21 ve b=k21 gibi) ortadan kaldirilir (Fliege
1996). Boylece hem SDD’ nin genel yapisindan gelen fazlaliklar azaltilir yani sadece

yeterli diizeyde/sayida oteleme ve Olgekleme yapilir hem de isaret istenilen yeterli



27

frekans bantlarinda incelenebilir. Olgek ve teleme parametreleri olan a ve b’ nin bu
sekilde dyatic secilmesi temel fonksiyonu seyreklestirir.

Sekil 3.8’de verildigi gibi sifira dogru sinyal spektrumun, 2 carpani ile spektrumu
daralan baz fonksiyonlarmi kaplanmasi i¢in bir algak geciren filtre spektrumu

yerlestirilebilir.

Bu ¢6ziim ilk defa 1989’da Mallat tarafindan 6l¢eklendirme fonksiyonu ile yapilmistir.
Bu fonksiyonun spektrumu gerekli olan algak geciren filtre spektrumunu Kkarsilar.
Olgeklendirme fonksiyonu, spektrumun algak gegiren 6zelliginden dolayi, ortalama
filtresi olarak da adlandirilir. Bir baz fonksiyonu band geciren filtre ve skalalandirma
fonksiyonu da alcak geciren filtre olarak kabul edilirse, tiim baz fonksiyonlar1 ve

skalalandirma fonksiyonu bir filtre kiimesi olarak kabul edilir (Glimiis, 2003).

Olgeklendirme fonksiyonunun Lo
Snekt 0) Baz fonksiyonlarimn
A Spektrumu (9 . spektrumlar

JEm3 Y jomi2 ]
i it i

i [ i )
| I | I
0,/8 0,4 ®, /2 w, @

Sekil 3.8: Olgekleme ve dalgacik fonksiyonlarinin spektrumlar1 (Batar’dan, 2005)

Bu yontemle, algcak frekanslari analiz eden genis pencereler (j’nin biiylik degerlerine
karsilik Ana dalgacik fonksiyonundan elde edilen baz fonksiyonlar1) biiyiik adimlarla
Otelenmis olur, ayn1 sekilde yiiksek frekanslar1 analiz eden dar pencereler (j’nin kiiciik
degerlerine karsilik Ana dalgacik Fonksiyonundan elde edilen baz fonksiyonlari)
sinyaldeki hizl1 degisimleri yakalamak amaciyla, kiigiik adimlarla 6telenmis olur.(Sezer,
2008)

a = 2jve b = k2jolarak alindiginda Ayrik Dalgacik Doniisiimii denklemi

3.12°deki gibi tanimlanir:

Wi k) = 2772 [x()w(277t — k)dt (3.12)
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ADD ile yapilan islem ve elde edilen katsayr miktar1 azalmaktadir. Ayrik Dalgacik
Doniisiimii’nde esas amag sayisal siizgecleri kullanarak ayrik sinyallerin zaman-0l¢ek
gosterimini elde etmektir. Diisiik frekanstaki bilesenlerin analizi i¢in sinyal algcak
geciren filtrelerden, yliksek frekans bilesenlerini analiz yapmak i¢in ise yiiksek gegiren
filtrelerden gecirilir. Bunun sonucunda ADD farkli frekans bantlar1 ve ¢oziiniirliikte
analiz yaptig1 i¢in sinyali yaklasiklik ve ayrint1 bilesenlerine ayristirabilmektedir.
Yaklasiklik sinyalin biiyiik O6lcekli-diisiik frekansli bilesenlerine karsilik gelirken,
ayrint1 kismi ise kucguk 6lgekli-yiiksek frekansl bilesenlerini olusturmaktadir (Misiti ve
ark. 2000).

DD bir filtre kiimesi olarak goz Oniline alinirsa, DD islemini sinyalin bu filtre
kiimesinden gecirilmesi olarak diisiinebiliriz. Her farkli filtrenin ¢ikist Dalgacik ve

skalalandirma fonksiyonu doéniisiim katsayilaridir. Bu analiz “alt band kodlamasr

olarak adlandirilmaktadir (Giimiis, 2003).

Bu analizde, x(t) isareti ayr1 ayr1 algak gegiren ve yiiksek geciren filtrelerden gegirilirek
iki frekans bandi elde edilir. Filtre ¢ikisinda yeralan isaretteki her iki 6rnekten biri atilir.
Boylece isaretin yaklasiklik katsayilar1 ve ayrinti katsayilar elde edilmis olur. Yiiksek
geciren kismi genelde istenilen detaylari igeren kisimdir. Yaklasiklik katsayilari bir
sonraki Olcege ait katsayilari elde etmek i¢in kullanilir (Cetin ve Kucur 2003). Eger
istenilen bilgi elde edilebilirse bu islem burada sonlandirilir. Fakat hala algak gegiren
kisimda ilgilendigimiz sinyalin detaylar1 yer almaktadir ve bunlarin incelenmesi
amaciyla algak geciren kismi tekrar alcak ve yiksek geciren olmak Uzere iki pargaya
boliinebilir. Birgok isaret i¢in diisiik frekans bilgileri isaretin en énemli kismidir. Diger
yandan, ylksek frekans kismi ise ayrintilardir (detail). Dalgacik analizinde; yiiksek
Olcek katsayilarina “yaklasiklik (approximation)”, diisiik 6l¢ek katsayilarina da “ayrinti
(detail)” katsayilar1 denir. Yiiksek geciren siizgecin ¢ikist ayrinti, algak geciren siizgecin
cikist yaklasiklik katsayilarini verir. Bdylece isaret silizgeclerden gegirilerek alt
bantlarina ayrilir ve isaretin boyutunun degismemesi icin siizgeclerin ¢ikislarinin 6rnek
sayis1 yariya indirilir. Bu islem, istenilen bilgilerin elde edilmesine kadar devam
edilebilir. Bu yolla iteratif filtre kiimesi elde edilmis olur. Frekans bandlarinin sayisi

genelde bilgi veya hesaplanabilir giic miktarina gore smirhidir. Sekil 3.6” da verilen
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yontemde iki filtre tasarlanmasi yeterli olacaktir, fakat sinyal spektrumunun filtrelerin

spektrumlari ile kaplanma sekli hep sabittir (Giimiis, 2003).

Ayrik Dalgacik Dontistimii (ADD), pratikte uygulamalarda iki adimli bir prosediir
olarak gerceklenebilen bir ayrik konvoliisyon denklemidir. Prosediiriin ilk adim1 ayrik
sinyalin, sayisal algak gegiren ve yiiksek gegiren filtrelere uygulanmasidir. Ikinci
adimda ise konvoliisyon sonunda yani filtrelerin ¢ikisinda elde edilen diziler, seyrek
ornekleme (subsampling) ile bastan itibaren her iki dizi elemanin sadece bastaki
eleman alinarak, eleman sayilar1 yariya diisiiriiliir. Ayrica bu isleme asagiya dogru
ornekleme (downsampling) de denir. Bu sekilde ayrik sinyalin eleman sayisi toplami ile
konvoliisyon sonucunda elde edilen sinyal dizilerinin eleman sayilarinin toplami ayni
olur. Bir x[n] isaretinin Alt bantlarina ayristirilma prosediirii blok diyagram olarak Sekil

3.9’de gosterilmistir.

2lu]

EAH|

hn|

gn] —@—b
hin] _.CD_.,

Sekil 3.9: DWT ile alt bantlarina ayirma; g[n]: yiiksek geciren filtre, h [n]:algak gegiren filtre

Sekil 3.9°daki h(n) alg¢ak geciren filtrenin, g(n) yiiksek gegiren filtrenin diirtii cevabidir.

d’(n) isaretin ayrmnti katsayilarini, a’(n) yaklasik katsayilarmi, j dalgacik

doniistimiiniin  seviyesini gostermektedir. Yaklasik katsayilarini Denklem 3.13 ile,

ayriti katsayilarini da Denklem 3.14 ile gosterebiliriz ( a® = x(n)).

a’*(n) =X h(2n —m)a’ (m) (3.13)



30

&I+ (n) = 5, g(2n — m)a! (m) (3.14)

¢D Yiiksek Frekans

S ‘ 500 adet Ayrik Dalgacik déniisiimii (DWT) Katsayist

1000 elemanli ayrik sinyal dizisi cA Algak Frekans

-

500 adet Ayrik Dalgacik doniisiimii (DWT) Katsayist

Sekil 3.10 Ayrik Dalgacik Donilisliimii sinyalin ayristirilmasi islemi (Burcu’dan, 2007)

Sekil 3.10°da ayristirma ile elde edilen sinyalin yaklasiklig1 ( 1 cA ), sinyalin algak
frekans bilesenlerini, detaylar (1 cD ) ise sinyalin yliksek frekans bilesenlerini igerir. cD
detay katsayilar1 kiigiiktiir ve yiiksek frekans giiriiltiisii icerir. cA yaklasiklik katsayisi
orijinal sinyalden gok daha az gurultl icerir (Boztoprak,2005).

Sekil 3.11°de verilen akis semasi, dallanmanin hem algak hem de yiiksek frekans
bilesenleri i¢in ger¢eklenmesi ile edilir ve bu sekilde gerceklestirilen dalgacik
dontisimii, “Dalgactk Paket Doniigiimii” (“Dalgacik Packet Transform” (WP)) olarak
adlandirilir. Ayrica Sekil 3.11 ’deki akis semas1 “Dalgacik Paket Ayristirma Agaci”
olarak da bilinir. Dalgacik Paket doniisiimii sayesinde uygulamalarimizda sinyallerin

istedigimiz frekans bandlarin1 analiz edebilme olanagina kavusuruz.



31

Sinyal —l
Al Dl
Y Y ¥ ¥
e Y O O
[444: | |Daas | |apas || oDpas | [ aaps | |[Daps || apps | [oops |

Sekil 3.11: Dalgacik paket doniisiimii (Burcu’dan, 2007)

Sinyalin, analiz ile elde edilen bilesenlerinden tekrar elde edilmesi islemine “Sentez”
veya “Gerigatilma” denir. Sentez isleminde, ayristirma sonucunda elde edilen dalgacik
katsayilarindan sinyalin yukari1 dogru 6rnekleme islemi ile geri ¢catilmasi gergeklestirilir.
Sekil 3.12 ‘de gosterildigi gibi yukar1 dogru 6rnekleme isleminde, Dalgacik katsayilari
dizilerinde her iki 6rnek arasina bir “0” genlikli 6rnek eklenir. Sinyal bu islem sonunda
kayipsiz olarak tekrar elde edilebilir. Asagiya dogru 6rnekleme islemi ile liizumsuz
olarak nitelendirilen bilgilerin arindirtlmasinin, sinyalin tekrar elde edilmesini
engelleyecek veri kaybina yol agmamaktdir. Ayrinti ve yaklasiklik  katsayilari
kullanilarak asil isaret Sekil 3.12°daki gibi tekrar elde edilebilir. Isareti yeniden elde
edebilmek i¢in ayrint1 ve yaklasiklik katsayilar1 dnce 2 ile yukar1 6rneklenir yani isareti

olusturan her iki 6rnek arasina sifir eklenir.

Yukar1 rnekleme
(Upsampling)

®
[ 1 RN H

d 4 1 2 3 4 5 -1 7 o Q 10
Ayrik sinyal Yukar 6rneklenmis (upsampled) ayrik sinyal

ra
&n

Sekil 3.12. Yukar1 dogru 6rnekleme (Burcu’dan, 2007)

Daha sonra yukar1 6rneklenmis isaretler h'(m) ve g'(n) sentez filtrelerinden
gecirilerek filtre ¢ikiglarindaki isaretler toplanir. Sentez filtreleri, h(n) ve g(n) analiz

filtrelerinin zaman eksenine gore tersidir ve asagidaki denklemlerle ifade edilir.
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g’ (n) = (—1)nh(n) (3.12)

h'(n) = (—1)n+ 1g(n) (3.13)

H ]
H 250

|:5 1000 (P > cD:
. . A, .

L 250
L
Analiz, Ayristirma veya ) Wavelet Sentez, Gericatilma veya
Ayrik Wavelet Doniigtimii (DWT) Katsayilari Ters Ayrik Wavelet Doniistimii (IDWT)

Sekil 3.13: Alt bantlara ayirma yontemine gore analiz ve sentez islemleri (Burcu’dan, 2007)

3.2.2 On isleme

On islemlerin amaci verileri standartlastirarak, ozellik ¢ikarimi i¢in hazir duruma
getirmektir. Verilerin 6n islemesi en zor islemlerden birisidir. Isaret/gériintii elde etme,
bozucu etkenlerin yok edilmesi, ortalama alma, esik degeri belirleme, isaret/goriinti
iyilestirme gibi islemler 6n islemeyi olusturmaktadir (Ubeyli ve Giiler 2004). Mevcut
EEG kayitlariin her biri 4096 ornekten olugsmaktadir.

3.2.3 Oznitelik Cikarma
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Oznitelik ¢ikarma, farkli diisiince durumunda kaydedilen EEG isaretlerinin &nemli
ozelliklerinin ¢ikarilip 6znitelik vektoriiniin elde edilmesi islemidir.

Oznitelik ¢ikarma isleminde ¢ok farkli yontemler kullanilabildigi i¢in EEG isaretini
tanimlayan farkli Oznitelikler elde edilebilmektedir. Cikarilan her O6znitelik vektori
isareti tanimlayabilir fakat siniflandirma asamasinda hi¢ biri yiizde yliz dogruluk
vermeyebilir. Bundan dolayi, yiiksek siniflandirma basarimi elde etmek i¢in farkl
Ozniteliklerin birlikte kullanimi gerekli olmustur. Bu sekilde c¢ok sayida 6znitelik

kullanan siniflandirma islemleri daha iyi sonuglar vermektedir.

EEG isaretleri, hastalik teshisinin dogrulugunu saglamak igin ¢ogunlukla 8-10 saatlik
kayitlar seklinde alinmaktadir. EEG kayitlarinin bu sekilde uzun olmasindan dolayz,
EEG isaretlerinin analizinin bilgisayar ortaminda yapilmasi gerekli olmustur.
Literatiirde ¢ok sayida analiz yontemi olmakla birlikte bu ¢alismada isaretlerin spektral
analizi Dalgacik Doniisiimii ile gergeklestirilmis ve smiflama islemi igin kullanilan
Oznitelik vektorleri elde edilmistir. Uygun dalgacik se¢imi ve ayrisim seviyelerinin
sayisinin tespiti, isaretlerin Dalgacik Doniisiimii ile analizinde olduk¢a Onemlidir.
[saretin baskin frekans bilesenlerine gdre ayrisim seviyelerinin sayisi tespit edilir.
Siniflamanin dogrulugu uygulama igin secgilen dalgacik tipine de baglidir. Bu ¢aligmada,
EEG isaretleri i¢in ayrisim seviyelerinin sayisi 1 olarak belirlenmis, dalgacik
katsayilarinin hesaplanmasinda Haar ile 4. dereceden Daubechies dalgacik (db4)
kullanim1 uygun goriilmiistiir. Dalgacik Doniisiimii ile sinyal D olarak adlandirilan

detay ve A olarak adlandirilan yaklagim alt-bantlarina ayrilmistir.

3.2.4 Oznitelik Segcme

Dalgacik katsayilari isaret hakkinda 6nemli bilgi i¢erdigi i¢in EEG isaretlerinin dalgacik
katsayilar1 isareti temsil eden Oznitelik vektorleri olarak ele alindi. Cikarilan 6znitelik
vektorlerinin boyutlarinin azaltilabilmesi i¢in dalgacik katsayilari {izerinde istatistiksel
Ozellikler kullanildi. EEG isaretlerinin zaman-frekans dagilimini géstermekte kullanilan
istatistiksel ozellikler asagida verilmektedir:

1. Her bir alt banddaki katsayilarin mutlak degerlerinin ortalamas.

2. Her bir alt banddaki katsayilarin mutlak degerlerinin maksimumu.

3. Her bir alt banddaki katsayilarin kuvvetlerinin ortalamasi.
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4. Her bir alt banddaki katsayilarin standard sapmasi.
Ozellik 1-3 isaretin frekans dagilimini gosterirken ozellik 4 frekans dagilimindaki

degisim miktarin1 géstermektedir (Subasi, 2005).

3.2.5 Simiflama

Farkl diisiinsel ve gorsel durumlarda kaydedilen EEG isaretlerini elde edilen 6znitelik
vektorlerine gore smiflandirma onemli bir konudur. Isaretin hangi smifa ait olduguna
karar verme hem hizli hem de dogru olmalidir. Literatiirde bir¢ok siniflandirma yontemi
mevcuttur. Bunlardan en ¢ok kullanilanlar1 destek vektor makineleri (support vector
machines), k en yakin komsuluk (k nearest neighbor), dogrusal ayirteden analizi (linear
discriminant analysis), sinir aglar1 (neural networks), bayes smiflandiricist (bayesian
classifier) *dir. Ayni tiir uygulamada degisik siniflandirma algoritmalari farkli sonuglar
verebilmektedir. Elde edilen 6znitelik vektorlerine en uygun simiflandiriciyr se¢ebilmek
icin siniflandirma yontemlerinin 6zelliklerinin iyi bilinmesi gerekmektedir. Asagida
siiflandirmada siklikla kullanilan k en yakin komsuluk ve destek vektor makineleri
yontemlerinin 6zellikleri, Ustlnliikleri, kritik noktalar1 iizerinde durulmus, performans

analizleri incelenmistir.

3.2.6 k- En Yakin Komsuluk Yontemi

k-en yakin komsuluk algoritmasi uygulanabilirligi basit, parametrik olmayan 6grenme
algoritmalarindan biridir. Bir ¢ok degisik uygulama alaninda kullanilan bu algoritma,
giirtiltiilii egitim dokiimanlarina kars1 direncglidir ve egitim sayist arttiinda daha etkili
olmaktadir. k-en yakin komsuluk uygulamasi yeni sorgu 6rnegini smiflandirmak i¢in
kullanilan bir komsuluk smiflandirma algoritmasidir. Egitim veri kiimesine ait 6rnekler
simif etiketleriyle birlikte verilmekte ve siniflandirict bu egitim verileriyle egitilerek
daha Once karsilasmadigi bir O6rnegin siifini tahmin etmektedir. Bir sorgu o6rnegi
verildigi zaman, bu sorgu noktasina en yakin k tane egitim noktast bulunur.
Siniflandirma ise bu k tane nesnenin en fazla olani ile yapilir. k-en yakin komsuluk basit
ve verimli oldugundan smiflandirma islemlerinde siklikla kullanilan yontemlerden

biridir.
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Sekil 3.14 : Ornek kNN siiflandirma

Sekil 3.14’deki k-NN siniflandirma 6rneginde; Test 6rnegi (yesil daire), birinci siif
(mavi kareler) veya ikinci smif (kirmizi tiggen) siniflandirilmas: gerekir. Eger k=3 ise
ikinci sinifa atanir ¢iinkii i¢ daire i¢inde sadece 2 {iggen ve 1 kare vardir. Eger k = 5 ise,

birinci sinifa atanir ¢iinkii dis daire i¢inde 3 kareye karsilik 2 tiggen bulunmaktadir.

kK-NN iki 6rnek arasindaki yakmlik veya uzakliklari dlgen bir uzaklik fonksiyonu
esasina dayanmaktadir. x ve y Ornekleri arasi uzaklik fonksiyonu olarak genellikle
standart Euclidean uzakligi d(x,y) kullanilmaktadir. Genelde o6l¢iit olarak Euclidean
uzakliginin kullanimi yaygin olmakla birlikte probleme gore alternatif diger Olciitlerin

kullanima ile daha iyi sonuglar alinabilir.

k-en yakin komsuluk algoritmasinin performansi oncelikli olarak uzaklik mesafesine
bagli olmasinin yaninda k degerinin se¢imine de baglidir. Genellikle k degerinin yiiksek
secilmesi giiriiltiiye karsi daha duyarsiz yapmakta ve siniflar arasi sinirlar1 daha

yumusatmaktadir (Rosa,2001).

k-en yakin komsuluk algoritmasi bir tembel O6grenme Ornegidir. Tembel Ogrenme
basitce egitim sirasinda egitim verilerini saklar ve smiflandirma zamanima kadar
ogrenimini geciktirir. Uzaklik bazli 6grenme algoritmasi, en 1yl sonuglart elde etmek
icin, hangi uzaklik tipinin ve hangi niteligin kullanilacagi konusunda agik degildir. Bu
calismada Oklit (Euclidean), Kosiniis, Cityblock (Manhattan) ve korelasyon

uzakliklarina dayali en yakin komsuluk yontemleri karsilastirmali olarak uygulanmistir.
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Oklit uzakh@: p =p,,p,,P3..P, V€ q =q4,45.q5.-q, N- uzayll koordinat
duzleminde iki nokta olmak (zere, » ve g arasindaki uzaklik denklem 3.14 ile

bulunabilir.

d(p,qj = y’fZ?zj_(qi - pi:]z (314)

Cityblock uzakh@ (Manhattan); p = p,,p,,p5 ...P,, V€ ¢ = q4.95, 45 -4, N- uzayl
koordinat duzleminde iki nokta olmak Uizere, p ve g arasindaki uzaklik denklem 3.15 ile

bulunabilir.

d(p,q) = llp—ally =X lp; — gl (3.15)

Kosiniis uzakhgi;

B aladae(y
cos(qr) = dy = 2227 (3.16)
'u'l Lypaly®lriy®)

Denklem 3.16’da g(y)oznitelik uzaymda egitim noktalarini, r(y) test noktalarini, d; (
1=1,2,..., ©) 1. denemeye ait uzaklig1 belirtir. Test ornegi verildiginde en diisiik d;

degerine kars1 gelen egitim 6rnegi bulunur ve sinifi o test 6rnegi icin segilir.

Korelasyon uzakhgi : Korelasyon katsayis1 denklem 3.17 iken
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= _Cov(xY) (3.17)

Py = B@. 5w

Korelasyon uzakligi denklem 3.18 ile tanimlanir.

3.2.7 Destek Vektor Makineleri

Destek Vektor Makineleri (Support Vector Machines (SVM)), smiflandirma ve
regresyon problemlerinin ¢6ziimii amaciyla Vapnik tarafindan ortaya atilmis istatistiksel
Ogrenme teorisi ve yapisal riski en aza indirme ilkesine dayanan bir Ogrenme
algoritmasidir (Vapnik 1995, 1998). Destek Vektor Makinalari, pozitif ve negatif
ornekleri bilinen bir uzay1 ikiye bdlen en iyi hiper-diizlemi bulmaya ¢alisan, gézetimli
bir 6grenme ve siniflandirma yontemidir. DVM, herhangi bir smiflandirma ya da
regresyon problemini, bir karesel programlama problemine doniistiirerek yerel
coziimlere takilmadan c¢ozer. Yerel ¢oziimlere takilmama ozelligi, DVM’nin diger
tekniklere gore sahip oldugu avantajlardan biridir. Ayrica DVM, oldukca yiksek

genelleme yapabilme yetenegine sahiptir.

DVM’nin uygulama alanlarina 6rnek olarak, el yazisi tanima, yliz tanima, 3-boyutlu
nesne tanima, ses tanima, konusmaci tanima, metin siniflandirma verilebilir. DVM
siniflandiricilari, margin’i (araligl) maximum yapan bir en uygun (optimal) ayirici
hiperdiizlemi olusturmaya calisir. Burada bahsedilen margin kavrami, ayirici
hiperdiizlemden, en yakin veri noktasina olan minimum uzaklig1 tanimlamaktadir. Sekil
3.15°de verilen iki ayr1 kiimeyi birbirinden ayirmak icin sonsuz sayida en uygun
olmayan hiperdiizlem c¢izilebilir. Ancak DVM bu iki kiimeyi ayirmak i¢in maksimum

marjini (en yakin egitim noktalarinin uzaklig1) saglayan en uygun hiperdiizlemi arar.
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Sekil 3.15: Grafik 2 boyutlu eksende yer alan 3 hiperdiizlemi gosterir. H3 siniflandirma yapmaz
iken, H1 kii¢iik marjin ile ve H2 biiyiik marjin ile siniflandirma yapar.

DVM siniflandiricilarda veriler dogrusal olarak ayrilabilen bir yapidan ya da dogrusal
olarak ayrilamayan bir yapidan olusabilir. Ancak, ger¢ek yasam problemlerinin biiyiik
cogunlugu birgok farkli bilesenden olusan problemlerdir ve dogrusal olarak ayrilmis bir

yap1 seklinde olmayabilirler. Dogrusal olarak ayrilabilen veriler arasinda maksimum

margin’in bulunmasi islemi kolaydir, ancak dogrusal olarak ayrilamayan veriler

tizerinde siniflandirma yaparken, bu veriler oncelikle dogrusal olarak ayrilabilecekleri

farkl1 bir uzaya aktarilmalidirlar. Ardindan veriler bu yeni uzayda siniflandirilirlar.

DVM smiflandiricilari, dogrusal DVM siniflandiricilart ve dogrusal olmayan DVM

siiflandiricilar: olmak tizere iki boliimde incelenecektir.

3.2.7.1. Dogrusal Destek Vektor Makinesi siniflandiricilar

Dogrusal DVM smniflandiricilart  dogrusal olarak ayrilabilen ve dogrusal olarak

ayrilamayan veriler iizerinde islem yapan DVM smiflandiricilart olarak iki grupta

incelenecektir.

Dogrusal olarak ayrilabilme durumu

({x,i=12..1}) Egitim kiimesindeki Ornekleri, ve vy, =41 ve y;=—1 bu

orneklerin smif etiketlerini gostermek Uzere, pozitif etiketli drnekleri negatif etiketli

orneklerden ayirabilen bir hiperdiizlemi ele alalim. Dogrusal ayirma fonksiyonunu

denklem 3.19” daki gibi belirtelim.
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glx)= wi.x+b (3.19)

Burada w hiperdiizlemin normali ve b egilim degeri olarak adlandirilir. Ayrica %

degeri de hiperdiizlemin merkez noktasina olan dik uzakligidir. Bu durumda karar
kurali:

. =0 y; =+1
w.x—|—b{}ﬂx££vi=_1 (3.20)
y;(wix+b)=0 (3.21)

Boylece tiim egitim verileri denklem 3.21 kosuluna gore dogru siniflandirilmis

olmaktadir

w ve b sonsuz sayida deger alabileceginden birden fazla hiperdiizlem bulunmaktadir.
Fakat en blyiuk marjin bir tanedir ve DVM’nin amaci onu bulmaktir. Marjinin
biiylikliigli oraninda ayirma hiperdiizlemi ile tanimlanan dogrusal smiflandiricinin

genellestirme hatasinin da o kadar kiiciik olacagi varsayillmistir.
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Sekil 3.16: Dogrusal ayrilabilme durumunda optimal ayirict hiperdiizlem, marjin ve Kuramsal
hiperduzlemler

Hy=w.x+b=1 ve H,=w'x+b=—1, duzlemlerine kuramsal hiper dizlem

denmektedir. En blyiuk marjin w®.x+ b= 1 ilew®.x + b = —1 arasidir.

(3.22)

wh.x+b =41 ,y,=+1icin (3.23)

wh.x+b =—1 ,y,=—11ic¢in (3.24)

4
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Kuramsal hiper diizlemlerin iizerine diisen noktalar destek vektorleri olarak bilinir.
Destek vektorleri sekil 3.16’da yuvarlak igerisine alinmiglardir. Marjini maksimize
etmek i¢in w minimize yapilir. Bu marji maksimize yaparken kullanilan w ve b

degerleri ve x giris verisi olmak tizere w®. x + b denkleminin isareti bulunmaya ¢aligilir.

Bu bir quadratik programlama problemidir.

Maksimum sinirin bulunmasi islemi:

min,, , %wrw (3.25)
yv;(wix+b)y =4+1,i=1..1 (3.26)
ile ifade edilir.

Dogrusal olarak ayrilabilme durumunda, bu iki degerli veriler bir hiperdiizlem ile
ayrilabilecektir. Bu hiperdiizleme Ayirict Hiperdiizlem adi verilir. SVM’nin amaci, bu
hiperdiizlemin iki 6rnek grubuna es uzaklikta olmasini saglamaktir. Dogrusal olarak

ayrilabilme durumu igin, ayirict hiperdiizlemi su sekilde tanimlanabilir (Denklem 3.27):

flx) = sign(wtx+b) (3.27)

Burada w bir agirlik vektoriinii (veya hiperdiizlemin normalini), b skaleri de bir sapma
degerini ifade etmektedir ve bu parametrelerin alacagi degerler ayiric1 hiperdiizlemin

pozisyonunu belirler.

Dogrusal olarak ayrilamama durumu

Bir onceki boliim’de belirtilen islemler ancak egitim orneklerinin tamamen ayrilabilir

olmast durumunda calismaktadir. Eger ki, ornekler lineer olarak tamamen ayrilabilir
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durumda degilse problemin ¢oziimii i¢in pozitif zayiflik degiskenleri &, i =1.2,..N

kullanilir (Cortes ve Vapnik, 1995). Denklem (3.27)’deki kosul bu zayiflik degiskenleri

ile yeniden tanimlanacak olursa, yeni ifadeler:

v, = +1licin;w.x+ b =+4+1-¢ (3.28)

v, = —licin;wi.x+bh=—-1+¢ (3.29)

& =0,¥vi , £ =0 olmast durumunda 6rnegi dogru smiflandirilmis , & < 0 olmasi
durumunda x 6rnegi dogru siniflandirilmis ancak, H, ve H, hiperdiizlemleri arasinda

yeraliyor & = 1 ise yanlis siniflandirilmis demektir (Alpaydin, 2004).

Sekil 3.17: Lineer ayrilamama durumunda optimum ayirici hiperdiizlem

Sekil 3.17°deki gibi Lineer ayrilamama durumunda optimum ayirici hiperdizlem
sistemin ezberlemesi, yani egitim verisi iginde olasi her durum icin bir ¢6zim
uretmemesi icin sisteme bir C iist sinir1 eklenir. Bu st sinir Lagrange ¢arpanlarinin

alabilecekleri maksimum degeri gostermektedir. Bu sekilde Lagrange ¢arpanlarinin 0 <
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a; < C araliginda kalmas1 saglanmaktadir. Bu bilgilere gore Lagrange formulasyonu

yeniden su sekilde ifade edilecektir;

L,= Iwll*+ c X.& — Z. a, {yv, (Wix+b)—1+ &} — X ut (3.30)

Ba |

Yukaridaki formiilasyonda £&;, u,’nin pozitif olmasini garanti etmek igin kullanilmis

olan Lagrange parametreleridir. Bu Lagrange formilasyonu da c¢o6zllmesi zor
oldugundan dolayr lineer ayrilabilir Orneklerde oldugu gibi dual problemine

doniistiiriilmektedir. Bu probleme de Karush-Kuhn-Tucker (KKT) sartlari uygulanirsa;

Bﬁ? =w—Xiayx =0 (3.31)

_tz—z.a:.v. =0 (332)

b L L

ALy
P

s,  CT@T k=0 (3.33)

ifadeleri elde edilir. Bu ifadeler (3.30)’de yerlerine yazilirsa: 0 < &, < C , Vi, elde
edilir. Bu problemin ¢oziminde O < &; < C araliginda yer alan Lagrange carpanlarina

karsilik gelen x, degerleri Destek Vektorleridir (Demirci, 2007).

3.2.7.2. Dogrusal olmayan Destek Vektor Makinesi siniflandiricilar

Gergek-diinya problemlerinin biiyiik c¢ogunlugu bir¢ok farkli bilesenden olusan

problemlerdir ve bu problemlerde veriler dogrusal olmayan karar yiizeyleri ile
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modellenebilir. Dogrusal olmayan problemlerin ¢6ziimiinii bulmanin yolu, c¢ekirdek
fonksiyonlar1 ile Orneklerin oncelikle daha yiiksek boyutlu ve dogrusal olarak
ayrilabilecekleri bir uzaya tasinip, ardindan ¢6ziimiin bu yeni uzayda aranmasi ile

miimkiin olmaktadir.(Burges,1998)

X3 1 Dogmsal Olmayan Avirma

Dogrisal Aypma ile wanhs
smaflandimnlnug noktalar

Sekil 3.18 Bir dogrusal olmayan Destek Vektor Makinesi

Sekil 3.18’da bir dogrusal olmayan SVM; 3.19°de ise bir giris uzaymni 6zellik uzayina
esleme yani bir giris uzaymi verilerin dogrusal olarak ayrilabilecegi daha yiiksek

boyutlu bir 6zellik uzayina tasima goériilmektedir.

Destek Vektdor Makinelerini dogrusal olmayan problemlere uygularken kullanilan
yontemde temel fikir, dogrusal olarak ayrilamayan veriyi dogrusal olarak ayrilabilecegi
bir yiiksek boyutlu 6zellik uzayima tagimaktir. Boylece en uygun ayirici hiperdiizlem bu
ozellik uzayinda bulunabilir. Giris uzayindaki egitim verisi vektorleri ¢ekirdek

fonksiyonlar1 kullanilarak 6zellik uzayina aktarilir.
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Sekil 3.19: Giris uzayini 6zellik uzayina esleme

Destek Vektor Makinelerinde kullanilan ¢esitli ¢ekirdek (kernel) tiirleri; Dogrusal
(Linear), RBF, Polinom (Polynomial), Quadratic, MLP ( Sigmoid)’dir.

Dogrusal ¢ekirdek fonksiyonu:

K(xx;) = x;".x;

(3.34)

Radyal tabanli ¢ekirdek fonksiyonu (RBF): RBF, Destek Vektér Makinelerinde
kullanilan ¢ekirdek tirlerinden en populer olan secimdir. Bunun temel nedeni reel x-

ekseninin tiim araliklarinda lokalize ve sonlu tepkiler vermesindendir.

||x = ||

K(x;x;) = exp (—=1-) (3.35)

Polinom cekirdek fonksiyonu:

K[x ) (x:5.x;) (3.36)
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Quadratic ¢ekirdek fonksiyonu:

[
K (x,%;) = ‘q'l [ = x| + €2 (3.37)
MLP (Sigmoid) ¢ekirdek (kernel) fonksiyonu:

K[xixj) = tanh (ax,".x; + c) (3.38)
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4. BULGULAR

Saglikli bireyler ve epilepsili hastalardan alinan EEG isaretleri 1. Seviye Haar, Db4 ve
Symlet (Sym4) dalgaciklarina ayrilarak ayri ayr test edilmis ve 6znitelikleri istatistiksel
yontemler (Minimum, Maksimum, Ortalama, standart sapma) ile ¢ikarilarak KNN ve
DVM  smiflandiricilariyla  simiflandirilmistir. . Siniflandiricilarin© degiskenleri
degistirilerek ayr1 ayri test edilmis ve smiflandirma sonuglari tablolar ve grafikler
halinde verilmistir. Boylece, Ayrik Dalgacik Doniisiimiiniin siniflandirma sonuglari
tizerindeki etkisi incelenmistir. Sistemin basarisin1  degerlendirmek igin tespit
duyarlililigi, hasta basina diisen yanlis pozitif (YP) orani ve dogru pozitif (DP) oranlari
hesaplanmistir.  Siiflandirma islemininin genel yapis1 asagida Tablo 4.1°de

verilmektedir:

Tablo 4.1: Simiflandirma isleminin blok diyagram genel yapisi

EEG Verisi

)

Oznitelik Cikarma

Ayrik Dalgacik Doniistimii

(Sevive 1)
v

Dalgacik Katsayilari

! Oznitelik Secme

Dalgacik Katsayilarinin Bazi

istatiksel Degerleri

v
KNN ve DVM Egitim / Test

v
Smf
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Belirli bir sinyalin boyutunun diisiiriilmesine Oznitelik ¢ikarma islemi denilmektedir.
Oznitelik segme ise istege bagl olarak yapilan bir islem olup siniflama islemi agisindan
en belirleyici 0Ozniteliklerin secilmesi ve bdylece 0Oznitelik vektorinin boyutunun
azaltilmasidir. Bu tezde, giris sinyallerinin 6zniteliklerinin belirlenmesi icin dalgacik

yontemi kullanilmistir.

Ayrik Dalgacik Dontisiimii sonucunda, sinyaller alt bilesenlerine ayristirilir. Bu alt
bilesenler; asil isaretin diisiik frekans bileseni olan yaklasim ve yiiksek frekans
bilesenleri olan ayrint1 (yatay, dikey ve kosegen) ve bunlarin birlesim katsayilarindan
olugsmaktadir. Her bir giris bileseni Haar, dB4, ve sym4 tip dalgacik kullanilarak 1.
seviye dalgacik katsayilar1 elde edilmistir. Oznitelik vektorii ise hesaplanan dalgacik
katsayilarinin bazi istatistik degerleri alinarak olusturulmustur. Oznitelik vektoriiniin

olusturmak i¢in kullanilan istatistikler ise asagida verilmektedir:

e Dalgacik yontemi ile hesaplanan yaklasik, yatay, dikey ve kdsegen ayrinti
katsayilarinin en biiyiik degerleri,

e Dalgacik yontemi ile hesaplanan yaklasik, yatay, dikey ve kdsegen ayrinti
katsayilarinin en kiiciik degerleri,

e Dalgacik yontemi ile hesaplanan yaklasik, yatay, dikey ve kdsegen ayrinti
katsayilarinin ortalama degerleri,

e Dalgacik yontemi ile hesaplanan yaklasik, yatay, dikey ve kdsegen ayrinti

katsayilarinin standart sapma degerleri,

Boylece her bir giris isaretini tanimlayan 6znitelik vektorii olusturulmustur. Elde edilen
Oznitelik vektorleri k-kathi c¢apraz dogrulama yontemi ile egitime ve teste tabi
tutulmuslardir. k- katli capraz dogrulama (k-fold cross validation), teste tabi tutulacak
veriyi, k adet alt veriye ayirir. k-1 tane kat, egitim i¢in, son kat ise test i¢in kullanilir.
Capraz dogrulama islemi, her bir degerlendirmede kullanilan farkli kat ayrilarak, k defa
tekrarlanir. Her veri noktast mutlaka bir kez test dizisinde, k-1 kez de egitim dizisinde
yer alir. Boylece siniflandirilacak verilerin hepsi test edilerek verinin tamami hakkinda
sonug elde edilir. Bu tezde k, 5,10 ve 20 alinarak k-katli capraz dogrulama giris verisine

uygulanmustir.
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4.1 DVM iLE BULUNAN SONUCLAR

DVM’de ¢ekirdek fonksiyonu olarak dogrusal (Lineer), polinom, Karesel (Quadratic)
ve radyal tabanli fonksiyon (RTF) cekirdekleri kullanilmistir. C yaptirim parametresi

1000 ve 7 parametresi 0.1 secilmisti. DVM ile smiflandirma basarimlari asagida

tablolar halinde verilmistir.

Tablo 4.2 Haar dalgacig1 5-kat ¢apraz dogrulama sonuglari

Dogrusal (Lineer) Karesel (Quadratic)

Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
98,25 95,75 |98,37 97,37 93,12 |97,5
RTF Polinom (Polynomial)

Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
96 96,37 |95,87 99,75 97,87 (99,87

Tablo 4.3 Haar dalgacigi 10-kat ¢apraz dogrulama sonuglari

Dogrusal (Lineer) Karesel (Quadratic)

Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
97,38 94,83 (97,16 (91,5 90,55 (91,33
RTF Polinom (Polynomial)

Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
94,72 95,44 (94,66 |98,44 98,05 (98,16

Tablo 4.4 Db4 dalgacig: 5-kat ¢apraz dogrulama sonuglari

Dogrusal (Lineer) Karesel (Quadratic)

Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
99,12 90,62 [99,12 96,75 86,12 |97
RTF Polinom (Polynomial)

Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
96,37 89,62 |96,37 ]99,75 89,75 |99,75
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Tablo 4.5: Db4 Dalgacig1 10-kat ¢apraz dogrulama

Dogrusal (Lineer)

Karesel (Quadratic)

Yaklasim

Ayrint1

Birlesik

Yaklasim

Ayrinti

Birlesik

96,61

88,5

96,5

97,11

83,11

96,88

RTF

Polinom (Polynomial)

Yaklasim

Ayrint1

Birlesik

Yaklasim

Ayrinti

Birlesik

94,88

85,77

94,72

95,33

85,94

95,16

Tablo 4.6 Symlet dalgacig1 5-kat ¢capraz dogrulama sonuglari

Dogrusal (Lineer) Karesel (Quadratic)
Yaklasim | Ayrint1 | Birlesik | Yaklagim | Ayrint1 | Birlesik
98,00 89,37 98,25 93,37 85,5 95,5
RTF Polinom (Polynomial)
Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
99,87 88,62 99,87 96 90 95,87

Tablo 4.7 Symlet dalgacig1 10-kat ¢apraz dogrulama sonuglari

Dogrusal (Lineer)

Karesel (Quadratic)

Yaklasim

Ayrint1

Birlesik

Yaklasim

Ayrinti

Birlesik

96,38

88,5

96,05

94,33

81,55

94,05

RTF

Polinom (Polynomi

al)

Yaklasim

Ayrint

Birlesik

Yaklasim

Ayrint1

Birlesik

91,94

88,55

91,88

98,55

86,5

98,38

Yukaridaki tablolarin grafiksel olarak gosterimi ise asagida verilmektedir:
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Sekil 4.1:Haar dalgacig1 5-kat ¢capraz dogrulama
100,00
98,00
96,00 -
94,00 -
92,00 -
90,00
88,00 —
mSeril
86,00 -
£ = £ = £ = £ =
oy g1z g 7 g5 kS
= 3| = 5 | = 3| = 3
= = > =
lineer guadratic polynomial
haar
Sekil 4.2: Haar dalgacig1 10-kat ¢capraz dogrulama
100
95
S0
85
80
W Seril
75

birlesik
birlesik
birlesik
birlesik

yaklasim
yaklasim
yaklasim
yaklasim

lineer quadratic polynomial

dB4

Sekil 4.3: Db4 dalgacigi 5-kat ¢apraz dogrulama
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Sekil 4.4: Db4 dalgacigi 10-kat ¢apraz dogrulama
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lineer quadratic polynomial
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Sekil 4.5: Symlet(sym4) dalgacig1 5-kat ¢apraz dogrulama
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hirle sik

lineer guadratic

hirle sik

Symlets (symd)

Wseril

birlesik

birlesik

palynomial

Sekil 4.6: Symlet dalgacigi 5-kat ¢apraz dogrulama

DVM smiflandiricisinin test performansi istatistiksel parametrelerin hesaplanmasi ile

degerlendirilir. Bu kavramlar asagida verilmistir:

Gergek Pozitif (GP): Gergek taniya (Epilepsili Isaret) uygun olarak siniflandiricinin da

epilepsili dedigi olgular,

Gergek Negatif (GN): Saglikli kitleye, siniflandiricinin da saglikli dedigi olgular,

Yanlis Pozitif (YP): Saglikli oldugu halde siniflandiricinin epilepsili dedigi olgular,

Yanlis Negatif (YN): Epilepsili oldugu halde siiflandiricinin saptayamadigi olgular,

Yukaridaki bilgiler 1s18inda EEG verilerinin DVM ile siniflandirma sonuglari Tablo 4.8’

de verilmistir.

Tablo 4.8. DVM Dogrusal ¢ekirdek fonksiyon tipi i¢in Siniflandirma Sonuglart

Kestirilen Durum
Dalgacik Negatif Pozitif
Tipi Gergek Durum (saglikl1) (epilepsili)

Negatif (saglikl) 99 1
Haar Pozitif (epilepsili) 1 1
Negatif (saglikli) 99 1
Db4 Pozitif (epilepsili) 1 1
Negatif (saglikli) 99 1
Sym4 Pozitif (epilepsili) 1 1
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Tablo 4.8’den de goriildiigii gibi dogrusal ¢ekirdek fonksiyonu ile yapilan siniflandirma
ile her 3 dalgacik i¢in de 100 tane saglikli isaretten 99 tanesi saglikli diye

siiflandirilirken 1 tanesi epilepsili olarak siniflandirilmisgtir.

DVM ile yapilan siniflandirma isleminin istatiksel sonuglar1 ayrica Tablo 4.9.°da

gosterilmistir.

Tablo 4.9. DVM Dogrusal ¢ekirdek fonksiyon icin Istatiksel Sonuglar

Duyarhlik (sensitivity) | Ozgilliik (specifity) Hassaslik (precision)
Haar | dB4 | Sym4 | Haar | dB4 | Sym4 Haar | dB4 | Sym4

yaklasim | 99 99 99 100 | 100 100 100 | 100 | 100
ayrinti 96 85 87 99 96 97 98,96 | 95,5 | 96,66
birlesik 99 99 99 100 | 100 100 100 | 100 | 100

Tablo 4.10. DVM Polinom gekirdek fonksiyon igin istatiksel Sonuclar

Duyarhlik (sensitivity) | Ozgilliik (specifity) Hassaslik (precision)
Haar | dB4 | Sym4 | Haar | dB4 | Sym4 Haar | dB4 | Sym4

yaklagim | 100 | 100 | 100 100 | 100 100 100 | 100 | 100
ayrinti 98 85 87 99 94 93 98,98 | 93,4 | 92,55
birlesik | 100 | 98 97 100 | 100 100 100 | 100 | 100

DVM smiflandiricisinin istatiksel sonuglarina bakildiginda, en yiiksek duyarlilik orani
%100 ile Polinom gekirdek fonksiyonu kullanilarak elde edilmistir. En yiiksek segicilik
orani ise %90 ile dogrusal ¢ekirdek fonksiyonuna aittir. Toplam siniflama dogrulugu ise
symlet dalgacik kullanildiginda polinom gekirdek fonksiyonu ile en yuksek %99,87

oranina ulagilmistir.
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4.2. KNN ILE BULUNAN SONUCLAR:

k-en yakin komsuluk algoritmasinin performansi dncelikli olarak uzaklik mesafesine
bagli olmasinin yaninda k degerinin se¢imine de baghdir. K sayisini belirlemenin en
pratik yolu k’y1 toplam egitim ornekleri sayisinin karekoklnden daha az olarak
se¢mektir (Rosa,2001). Genellikle k degerinin yiiksek secilmesi giiriiltiiye karsi daha
duyarsiz yapmakta ve smiflar arasi sinirlart daha yumusatmaktadir. Bu ¢aligmada k

degeri 3 olarak belirlenerck asagida siniflandirma sonuclari tablolar halinde verilmistir.

Tablo 4.11: Haar dalgacig1 5-kat ¢apraz dogrulama, k=3, mesafe degiskeni sonug karsilastirma
Oklid (Euclidean) Cityblock

Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
99,12 97 99,12 99,12 97,62 99,25

Cosine Correlation

Yaklasim | Ayrint1 | Birlesik | Yaklagim | Ayrint1 | Birlesik
73,62 69,62 |68,12 |67,62 70,5 645

Tablo 4.12: Haar dalgacigi 10-kat ¢capraz dogrulama, k=3, mesafe degiskeni sonug karsilagtirma
Oklid (Euclidean) Cityblock

Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
98,5 95,61 98,5 98,66 96,72 98,55

Cosine Correlation

Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
63,61 66,11 |58,5 60,27 66,27 |56,38
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Tablo 4.13: Db4 dalgacig1 5-kat ¢apraz dogrulama, k=3, mesafe degiskeni sonug karsilagtirma

Oklid (Euclidean) Cityblock

Yaklasim | Ayrint1 | Birlesik | Yaklagim | Ayrint1 | Birlesik
99 85,12 |99 98,5 86,37 |98,62
Cosine Correlation

Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
71,75 65,37 |65 67,12 68,75 [62,37

Tablo 4.14: Db4 dalgacig1 10-kat ¢apraz dogrulama, k=3, mesafe degiskeni sonug karsilagtirma

Oklid (Euclidean) Cityblock

yaklasim | ayrint1 | birlesik | yaklasim | ayrinti | birlesik
97,16 86,33 97,38 98,22 85,38 |98,22
cosine correlation

yaklasim | ayrint1 | birlesik | yaklasim | ayrinti | birlesik
64,38 63,83 58,77 |63,38 57,11 |58

Tablo 4.15: Symlet dalgacig1 5-kat ¢capraz dogrulama, k=3, mesafe degiskeni sonug

kargilastirma
Oklid (Euclidean) Cityblock
Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
99 89,25 |99 98,75 90,12 |98,75
Cosine Correlation
Yaklasim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
73,12 71,12 | 66,75 65,25 70,12 |63,75
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Tablo 4.16: Symlet dalgacig1 10-kat ¢apraz dogrulama, k=3, mesafe degiskeni sonug

karsilagtirma
Oklid (Euclidean) Cityblock
Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik
97,61 89,05 97,55 97,05 89,77 |97,16
Cosine Correlation

Yaklagim | Ayrint1 | Birlesik | Yaklasim | Ayrint1 | Birlesik

66,44 66,11 |61,83 62,11 63 58

Tum dalgaciklar i¢in KNN mesafe degiskenlerinden Oklid ve Cityblock siniflandirma
basarimi agisindan daha iyi sonuclar vermektedir. KNN siniflandiricisinda mesafe 6klid
ve cityblock i¢in, Haar dalgacigi ile daha iyi basarim elde edilmistir. Yukaridaki

tablolarin grafiksel olarak gosterimi asagida verilmektedir;

100 -
80 -
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40 -
20 -

W Seril

hirlesik
hirlesik
hirlesik
hirlesik

yaklasim
yaklasim
yaklasim
yaklasim

Euclidean Cityblock correlation

haar

Sekil 4.7: Haar dalgacig1 5-kat ¢apraz dogrulama
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Sekil 4.10: Db4 dalgacig1 10-kat ¢apraz dogrulama
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cosine correlation
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Sekil 4.11: Symlet 5-kat ¢apraz dogrulama
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Sekil 4.12: Symlet 10-kat ¢capraz dogrulama

WSeril

Tablo 4.17 KNN, Oklid mesafesi duyarlilik, 6zgiilliik ve hassaslik tablosu

(SDeL:,Z?tri:::;) Ozgiilliik (specifity) Hassaslik (precision)

Haar | dB4 | Sym4 | Haar | dB4 | Sym4 | Haar | dB4 | Sym4

yaklasim | 99 99 99 100 | 100 100 100 100 100
ayrinti 97 86 88 99 91 90 98,97 | 90,52 | 89,79
birlesik | 99 99 99 100 | 100 100 100 100 100
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5. TARTISMA VE SONUC

Bu Calismada, Dalgacik Doniisiimiiniin  EEG siniflandirmasi iizerindeki etkileri
incelenmistir. EEG sinyallerin 6n isleme tabi tutulmus ve Dalgacik Doniisiimi
yontemiyle 6znitelik vektorleri elde edilmis, sonrasinda ise DVM ve kNN yontemiyle
smiflandirma  gerceklestirilmistir. Ayrik Dalgacik Doniisiimiiniin -~ siniflandirma
tizerindeki etkileri tablolar halinde verilerek siniflandirma sonucunda EEG sinyallerinin
saglikli veya epileptik oldugu hakkinda bilgi saglanmistir. Denemelerde 1. Seviye Haar,
Db4 ve Symlet (Sym4) dalgaciklari, sadece yaklasim katsayilar1 (approach coefficients),
sadece ayrint1 katsayilar1 (detail coefficients) ve birlesik katsayilar1 (approach + detail
coeffcients) ile 5-kat ve 10-kat ¢apraz dogrulama (k-fold cross validation) ayri ayri
denenmistir. DVM siniflandiricist ¢ekirdek fonksiyonu polinom olarak belirlendiginde
Sym4 en 1iyi basarimi veritken, KNN smiflandircisinda mesafe 6klid olarak

belirlendiginde en iyi basarimi Haar dalgacig1 vermektedir.

Gergeklestirilen smiflandirma sonuclar1 kiyaslandiginda her 3 dalgacik icin de SVM
yontemi KNN ‘ye gore hem duyarlilik olarak hem de dogruluk olarak daha basarili
sonu¢ vermekte ve dalgacik analizi degiskenleri  degistirilerek  yapilan
karsilastirmalarda, SVM igin kernel tipi Dogrusal ve Polinom olan; kNN icin ise Oklid
ve cityblock mesafesi en iyi sonucu vermekte ve ¢apraz dogrulama degeri arttikga
basariminin azaldigi goriilmektedir. Yaklagim katsayilarinin siniflandirmada daha gok

belirleyici oldugu tablolardan goriilmektedir.

Bu tez c¢alismasinda elde edilen smiflandirma sonuglar1 literatiir sonuglari ile
karsilagtirildiginda gerek basarim gerekse duyarlilik ve segicilik oranlar ile basarili
olduklar1 goriilmektedir. Bu galisma, epilepsi hastalarina ait EEG sinyallerinin daha
dogru ve net olarak analiz edilmesini ve epilepsi teshisinin otomatik olarak yapilmasin

saglayan bir metot 6nermektedir. Ilerde bu konuyla ilgili yapilabilecek calismalar;
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epilepsili ve saglikli bireylerin siniflandirilmast ig¢in farkli Oznitelik ¢ikarma ve
smiflandiricilar uygulanarak daha iyi performans elde edilebilir ve de EEG haricindeki
diger duragan olmayan verilere de uygulanarak Dalgacik Doniigiimiiniin siniflandirma

dogrulugu Uzerindeki etkileri hakkinda bir analiz yapilabilir.
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EKLER

Ek-1

clc
clear all

seviye=1;

swtipi='db4' sym4;
wtipi='haar';
svimkerneltipi='linear';
xfoldcv=5;

kdegeri=3;
mesafe='euclidean';

dizin=pwd;

hastadosyalari=dir ([dizin '"\S\']);
hastadosyalari(l:2,:)=[];
sagliklidosyalari=dir([dizin '\Z\']);
sagliklidosyalari(l:2,:)=[];

for i=l:size(hastadosyalari, 1)
data (i, :)=textread([dizin '\S\' hastadosyalari(i,1l) .name]);
end

for i=l:size(sagliklidosyalari,1)
data2 (i, :)=textread([dizin '\Z\' sagliklidosyalari(i,1l) .name]);
end

hastasayisi=size (data,l);
sagliklisayisi=size(data2,1);

[Cl,C2]=wavedec (data(l,:),seviye,wtipi); %boyut bulmak icin
hasta appr=zeros (hastasayisi,C2(1,1));
hasta det=zeros (hastasayisi,C2(1,2));

for i=l:hastasayisi
[Cl,C2]=wavedec (data(i, :),seviye,wtipi);
appr=appcoef (Cl,C2,wtipi, seviye); S%$son seviyenin yakinlik bileseni
temp=detcoef (Cl,C2, seviye);
hasta appr (i, :)=appr;
hasta det (i, :)=temp;
end

[Cl,C2]=wavedec (data(l,:),seviye,wtipi); Sboyut
saglikli appr=zeros(sagliklisayisi,C2(1,1));
saglikli det=zeros(sagliklisayisi,C2(1,2));

for i=l:sagliklisayisi
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[Cl,C2]=wavedec (data2 (i, :),seviye,wtipi);

appr=appcoef (Cl,C2,wtipi, seviye); %son seviyenin yakinlik
bileseni

temp=detcoef (C1l,C2, seviye); %tlim seviyelerin detay bilesenlerini
bul

saglikli appr (i, :)=appr;

saglikli det (i, :)=temp; %sadece 1 seviye varken
end

set appr orj=zeros (hastasayisit+sagliklisayisi,b);
set det orj=zeros (hastasayisi+sagliklisayisi,5);
set birlesik orj=zeros (hastasayisi+sagliklisayisi,5);

for j=l:hastasayisi
set appr orj(j,1)=min (hasta_appr(j,:)
set appr_orj(j,2)=max (hasta_appr(j,:)
set_appr_orj( 3)=mean (hasta_ appr(j,:
(3,4)
(3,5)

)
) 4
))
set appr_orj = td(hasta _appr(j,:));
set appr_orj
set det orj )
set det orj 2)
set det orj 3)
set det orj 4)=
set _det orj(j,5)
J
J

7

mln(hasta _det (J, )
=max (hasta det (3, :)

’
’
)7

’

mean(hasta det (]

(7
(3
(3
(3 d(hasta_det (J

)
)
)
))
set blrle51k or hasta appr(j,:) hasta det (]
hasta appr(j,:) hasta det(J

1) in ([
set blrle51k or 2) X ([
,3)=mean ([hasta appr(j,:) hasta det
4) da(l
5)

(3
(3
set blrle51k _orj (]
(3
(3

L_JAL_IL_A

set blrle31k _orj
set blrle31k _orj

hasta appr(j,:) hasta det(

end

for j=l:sagliklisayisi
set appr_orj (j+hastasayisi,l)=min(saglikli appr(j,:)):;
set appr_orj (j+hastasayisi,?2)=max(saglikli appr(j,:)):;
) ) ;
)=

’

set _appr_orj (j+thastasayisi,3)=mean(saglikli appr (Jj,:

set appr orj (j+thastasayisi,4)=std(saglikli appr(j,:)

set _det orj(jthastasayisi,l)=min(saglikli det(j,:));

set _det orj(jthastasayisi,2)=max(saglikli det(j,:));

set _det orj(jthastasayisi, 3)=mean(saglikli det(j,:));

set det orj(jthastasayisi,4)=std(saglikli det(j,:));

set birlesik orj(j+hastasayisi,l)=min([saglikli appr (j, :)
saglikli det(j,:)1);

set birlesik orj(j+hastasayisi,2)=max([saglikli appr (j,:)
saglikli det (3, :)1);

set birlesik orj(j+hastasayisi,3)=mean([saglikli appr(j,:)
saglikli det(j,:)1);

set birlesik orj(j+hastasayisi,4)=std([saglikli appr (j, :)
saglikli det(j,:)1);
end

);
);
)
):

’

$Approximation icin 5x2 cross validation
appr_accuracy=zeros(1,10);

det accuracy=zeros(1,10);

birlesik accuracy=zeros(1,10);
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$Approximation ig¢in X-fold cross validation

appr_accuracy=zeros (1,xfoldcv) ;

det accuracy=zeros (1l,xfoldcv);

birlesik accuracy=zeros (1l,xfoldcv);
appr_knn accuracy=zeros (1,xfoldcv);

det knn_accuracy=zeros (1,xfoldcv) ;
birlesik _knn accuracy=zeros (1,xfoldcv);
satirsayisi=hastasayisi+sagliklisayisi;
foldsize=satirsayisi/xfoldcv;

mkdir('c:',"'set appr');
mkdir('c:',"'set det');
mkdir('c:', 'set birlesik');

for i=l:xfoldcv
perm=randperm (hastasayisi+sagliklisayisi);
set appr=set appr orj(perm,:);
set det=set det orj(perm,:);
set birlesik=set birlesik orj (perm, :);
test=l:satirsayisi;
train=((i-1)*foldsize+1l) : (i*foldsize);
test(train)=[1];

model=svmtrain (set appr(train,l:end-

1) ,set_appr(train,end), '"KERNEL FUNCTION', svmkerneltipi);
classes=svmclassify (model, set appr(test,l:end-1));
temp=classes-set appr(test,end);
temp=find (temp (:,1)~=0);
temp=size (classes,l)-size(temp,1l); %dodgru sayisi
appr_accuracy(l,1)=(100*temp) /size(classes,1);

appr_ knnsonuc=knnclassify(set appr (test,l:end-
1) ,set _appr(train,l:end-1),set appr(train,end), kdegeri,mesafe);
appr_knnsonuc=appr_ knnsonuc-set appr (test,end);

temp=find (appr knnsonuc(:,1)==0);
appr_knn accuracy(l,i)=(100*size (temp,1))/size(classes,1l);
xlswrite(['c:\set appr\train' num2str(i)], [set appr(train,
set appr(train,end)]);
xlswrite(['c:\set appr\test' num2str(i)], [set appr(test,:)

set appr(test,end)]);

model=svmtrain (set det(train,l:end-

1) ,set_det (train,end), 'KERNEL FUNCTION', svmkerneltipi);
classes=svmclassify (model, set det(test,l:end-1));
temp=classes-set det (test,end);
temp=find (temp (:,1)~=0);

temp=size (classes,l)-size(temp,1l); %dogru sayisi
det accuracy(l,i)=(100*temp) /size(classes,1);

det knnsonuc=knnclassify(set det (test,l:end-

1) ,set _det(train,l:end-1),set det(train,end), kdegeri,mesafe);
det knnsonuc=det knnsonuc-set det (test,end);
temp=find(det knnsonuc(:,1)==0);
det knn accuracy(l,1i)=(100*size (temp,1l))/size(classes,l);

)

1-

1-
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xlswrite(['c:\set det\train' num2str(i)], [set det(train,:) 1-
set det(train,end)]);
xlswrite(['c:\set det\test' num2str(i)], [set det(test,:) 1-

set det(test,end)]);

model=svmtrain(set birlesik(train,l:end-

1) ,set _birlesik(train,end), '"KERNEL FUNCTION', svmkerneltipi);
classes=svmclassify (model, set birlesik(test,l:end-1));
temp=classes-set birlesik(test,end);
temp=find (temp(:,1)~=0);
temp=size (classes,l)-size(temp,1l); %dodru sayisi
birlesik accuracy(l,i)=(100*temp)/size(classes,1);

birlesik knnsonuc=knnclassify(set birlesik(test,l:end-
1) ,set birlesik(train,l:end-
1) ,set birlesik(train,end), kdegeri,mesafe);
birlesik knnsonuc=birlesik knnsonuc-set birlesik (test,end);

temp=find(birlesik knnsonuc(:,1)==0);
birlesik knn accuracy(l,i)=(100*size (temp,1))/size(classes,1);
xlswrite(['c:\set birlesik\train'
num2str (i)], [set birlesik(train,:) l-set birlesik(train,end)]);
xlswrite(['c:\set birlesik\test'
num2str (i) ], [set birlesik(test,:) l-set birlesik(test,end)]);

end

appr_son=mean (appr_accuracy) ;
det son=mean (det accuracy);
birlesik son=mean(birlesik accuracy);

appr_knn son=mean (appr_knn_accuracy) ;
det knn son=mean (det knn accuracy);
birlesik knn son=mean (birlesik knn accuracy);

fprintf ('\n\n\n%d fold Cross Validation SVM Sonuclari:\n',xfoldcv);
fprintf ('Kullanilan wavelet tipi %s, seviye %d\n',wtipi, seviye);
fprintf ('Kullanilan SVM Kernel %s\n',svmkerneltipi);

fprintf ('Tum Approximationdan min max mean ve std hesaplandiginda
accuracy=%f\n',appr son);

fprintf ('Tum Detailsdan min max mean ve std hesaplandiginda
accuracy=%f\n',det son);

fprintf ('Hem Approximation hem de Detailsdan min max mean ve std
hesaplandiginda accuracy=%f\n',birlesik son);

fprintf ('"\n\n\n%d fold Cross Validation KNN Sonuclari:\n',xfoldcv);
fprintf ('Kullanilan K %d, mesafe %s\n', kdegeri,mesafe);

fprintf ('Tum Approximationdan min max mean ve std hesaplandiginda
accuracy=%f\n',appr_knn son);

fprintf ('Tum Detailsdan min max mean ve std hesaplandiginda
accuracy=%f\n',det knn son);

fprintf ('Hem Approximation hem de Detailsdan min max mean ve std
hesaplandiginda accuracy=%f\n',birlesik knn son);
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Ek-2

clc

clear

dizin=pwd;
filtretipleri={'haar','db4d"', "'symd"'};
seviye=1;

hastadosyalari=dir ([dizin '"\S\']);
sagliklidosyalari=dir ([dizin '\z\']);
data=[];

hastasayisi=0;
sagliklisayisi=0;
sayac=1;

for i=l:size (hastadosyalari,l)
if hastadosyalari(i,1l) .isdir==
temp=textread([dizin '\S\' hastadosyalari(i,l) .name]);
data (sayac, :)=temp;
sayac=sayactl;
hastasayisi=hastasayisi+l;
end
end

for i=l:size(sagliklidosyalari,1)
if hastadosyalari(i,l).isdir==
temp=textread ([dizin '\Z\' sagliklidosyalari(i,1l) .name]);
data (sayac, :)=temp;
sayac=sayac+tl;
sagliklisayisi=sagliklisayisi+l;
end
end

siniflar=[ones (hastasayisi,1l) ; zeros(sagliklisayisi,l)];
%datada ilk 'hastasayisi' kadari (100) hasta, sonraki 'sagliklisayisi'
kadari (100) saglaikla

shuf=randperm (hastasayisi+sagliklisayisi);
data=data (shuf, :);
siniflar=siniflar (shuf);

foldsayisi=10;
knnk=3;

indices=crossvalind ('Kfold',l:hastasayisi+sagliklisayisi, foldsayisi);

tp=zeros(3,4,5); %1. boyut feature grubu, 2. boyut filtretipi, 3.
boyut siniflandirici

tn=zeros (3,4,5);

fp=zeros(3,4,5);

fn=zeros(3,4,5);

for j=l:size(filtretipleri,2)

waveletdata=[];
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for i=1l:size(data,l)
[C L]l=wavedec (data(i,:),seviye,filtretipleri{j});

waveletdata (i, j,1)=min(C(1:L(1))); $appr

waveletdata (i, j,2)=max (C(1:L(1)));

waveletdata (i, j,3)=mean(C(1:L(1)));

waveletdata (i, j,4)=std(C(1:L(1)));

waveletdata (i, j,5)=min (C(L(1)+1:L(1)+L(2))) %detail
waveletdata (i, j, 6)=max (C(L(1)+1:L(1)+L(2)));

waveletdata (i, j,7)=mean (C(L(1)+1:L(1)+L(2)));
waveletdata (i, j,8)=std(C(L(1)+1:L(1)+L(2)));

end

templ=waveletdata(:,j,1:4); %sadece appr
temp2=waveletdata(:,3j,5:8); %sadece detail
temp3=waveletdata(:,3,:); Shepsi

kerneltipi={'linear', 'polynomial', 'rbf', "quadratic'};
for y=1l:foldsayisi
testk=(indices==y) ;

traink=~testk;

$knn kismi

tahmin=knnclassify (templ (testk, :), templ (traink, :),siniflar (traink), knn
k, 'euclidean');

r=(tahmin+siniflar (testk));

tp(l,3,1)=tp(1,]j,1)+length (find (r==2));

tn(l,3,1)=tn(1l,]j,1)+length(find(xr==0));

r=(tahmin-siniflar (testk));

fp(l,3,1)=fp(1l,j,1)+length(find(r==1));

fn(l,3,1)=fn(1,j,1)+length(find(r==-1));
tahmin=knnclassify (temp2 (testk, :),temp2 (traink, :),siniflar (traink), knn
k, 'euclidean');

—(tahmin+siniflar(testk));

p(2,3,1)=tp(2,73,1)+tlength (find (xr==2));

tn(2 J,1)=tn(2,3,1)+length(find (r==0));

r=(tahmin-siniflar (testk));

fp(2,3,1)=fp(2,3,1)+length(find (r==1)) ;

fn(2,3,1)=fn(2,j,1)+length(find (r==-1));
tahmin=knnclassify (temp3 (testk, :), temp3 (traink, :),siniflar (traink), knn

k,

'euclidean') ;

r=(tahmin+siniflar (testk));

tp(3,3,1)=tp(3,3,1)+length(find (r==2));
tn(3,3,1) tn(3,j,1)+length(f1nd(r—20));
r=(tahmin-siniflar (testk));

£p(3,3,1)=£fp(3,3,1) +length (find (r==1)) ;
fn(3,3,1)=fn(3,3,1)+length(find (r==-1)) ;

for ty=1:4 Ssvm dongusu
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model=svmtrain (templ (traink, :),siniflar (traink), '"KERNEL FUNCTION', kern
eltipi{tyl});

tahmin=svmclassify (model, templ (testk, :));

=(tahmin+siniflar (testk));

tp(l,j,ty+tl)=tp(l,],ty+l)+length (find(xr==2));
tn(l,J,ty+l)=tn(l,j,ty+l)+length(find (r==0));
r=(tahmin-siniflar (testk));
fp(1,J,ty+l)=fp(1l,J, ty+l)+length(find(r==1));
fn(l,j,ty+l)=fn(1l,j,ty+l)+length(find (r==-1));

model=svmtrain (temp2 (traink, :),siniflar (traink), '"KERNEL FUNCTION', kern
eltipi{ty});
tahmin=svmclassify (model, temp2 (testk, :));

r=(tahmin+siniflar (testk));
tp (2,73, ty+tl)=tp(2,7,ty+l)+length (find (r==2)) ;
tn(2,73,ty+tl)=tn (2,3, ty+l)+length(find (r==0)) ;
r=(tahmin-siniflar (testk));
fp(2,j,ty+1)=fp(2,j,ty+1)+length(f1nd(r=: ));
fn(2,3,ty+1l)=£fn(2,j,ty+1l)+length(find (r==-1));

model=svmtrain (temp3 (traink, :),siniflar (traink), '"KERNEL FUNCTION', kern
eltipi{ty});
tahmin=svmclassify (model, temp3 (testk, :));
=(tahmin+siniflar (testk));
tp(3,3,ty+tl)=tp (3,7, ty+l)+length (find (xr==2));
tn(3,7J,ty+1l)=tn (3,73, ty+1l)+length(find (r==0)) ;
=(

—_— — — — — —

r=(tahmin-siniflar (testk));
fp (3,3, ty+1)=£fp(3,J,ty+1l) +length (find (r= 1));
fn(3,3j,ty+1l)=£fn(3,7j,ty+l) +tlength(find (r==-1));

end
end
end

accuracy=( (tp+tn)/ (hastasayisi+sagliklisayisi))*100;
precision=(tp./ (tp+fp)) *100;

sensitivity=(tp./ (tp+£fn))*100;

specificity=(tn./ (tn+fp))*100;
tss=(((tp.*tn)-(fp.*fn)) ./ ((tp+fn) .* (fp+tn))) *100;

save sonucéd
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