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Hırsızlık, küresel olarak artan yaygın bir suçtur. Hırsızlığı önlemek için sıklıkla video 
gözetim sistemleri kullanılsa da bu sistemlerde hırsızlığın tespiti, sıkıcı ve tutarsız 
olabilen manuel izlemeye bağlıdır. Bu, otomatik hırsızlık tespit sistemlerine olan 
ihtiyacı ortaya koymaktadır. Bu çalışmada, derin öğrenme tabanlı önceden eğitilmiş 
insan eylemi tanıma modelleri kullanarak otomatik hırsızlık tespit sistemi için makine 
öğrenimi tabanlı bir yaklaşım geliştirmeyi amaçladık. Yaklaşımımız dört temel 
adımdan oluşuyordu: veri seti hazırlama, özellik vektörü oluşturma, hırsızlık tespiti 
için model eğitimi ve performans değerlendirmesi. Central Florida Üniversitesi-Suç 
kamu veri setinden türettiğimiz veri setlerini kullandık. İlk veri setinde stealing ve 
normal videolar, ikinci veri setinde shoplifting, stealing ve normal videolar ve üçüncü 
veri setinde ise shoplifting, stealing, robbery ve normal videolar yer alıyordu. 
Hırsızlıkla ilgili kategorileri içeren videolar "theft" olarak etiketlenirken, normal 
videolar "normal" olarak etiketlendi. Her videodan 400 özelliğe sahip öznitelik 
vektörleri oluşturmak için önceden eğitilmiş dört insan eylem tanıma modeli 
kullandık. Bu, adım üç verisetinden türetilen 12 ayrı veri seti ile sonuçlandı. Sonra 
farklı veri kümeleri arasında hırsızlığı normal videolardan ayırt etmek için ikili 
sınıflandırma yapıldı. Eğitim verilerine Support Vector Machine, Decision Tree, 
Neural Network, Random Forest, K-Nearest Neighbors, Gaussian Naive Bayes ve 
Gradient Boosting olmak üzere çeşitli makine öğrenimi algoritmaları hiperparametre 
ayarlaması ile uygulandı. Model performansı, test kümesine göre değerlendirildi. En 
iyi performans gösteren, 0,90'lık AUC, 0,90'lık doğruluk, 0,91'lık duyarlılık, 0,90'lık 
kesinlik ve 0,90'lık F1 score ile Neural Network modelidir. Bu yaklaşım, hırsızlık 
önlemede gerçek video gözetim verilerine uygulanabilir ve insan güvenliğini 
artırabilir. Bu çalışma, insan müdahalesini azaltarak, doğruluğu artırma ve video 
gözetimi işleme sürecinde tutarlılığı koruma potansiyeli sunmaktadır. 

 
Anahtar Kelimeler: Hırsızlık Tespiti, Makine Öğrenimi, Eylem Tanıma, Video’da 

Otomatik Hırsızlık Tespiti, Video Gözetimi  
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ABSTRACT 
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Theft, a common crime, is increasing globally. Although video surveillance systems 
are frequently employed to prevent theft, the detection of theft in these systems 
depends on manual monitoring, which can be tedious and inconsistent. This reveals 
the need for automatic theft detection systems. In this study, we aimed to develop a 
machine learning-based approach for automatic theft detection systems using deep 
learning-based pre-trained human action recognition models. Our approach consisted 
of four key steps: dataset preparation, feature vector generation, model training for 
theft detection, and performance evaluation. We used datasets derived from the 
University of Central Florida-Crime public dataset. The first dataset contained stealing 
and normal videos, the second included shoplifting, stealing, and normal videos, and 
the third dataset had shoplifting, stealing, robbery, and normal videos. Videos 
involving theft-related categories were labeled as “theft,” while normal videos were 
labeled as “normal”. We utilized four pre-trained human action recognition models to 
generate feature vectors with 400 features from each video. This resulted in 12 distinct 
datasets derived from three datasets. Binary classification was then performed to 
distinguish theft from normal videos across the different datasets. Machine learning 
algorithms were applied to the training data, including Support Vector Machine, 
Decision Tree, Neural Network, Random Forest, K-Nearest Neighbors, Gaussian 
Naive Bayes, and Gradient Boosting, with hyperparameter tuning. Model performance 
was evaluated based on the test set. The best-performing model was the Neural 
Network, achieving an AUC of 0.90, accuracy of 0.90, recall of 0.91, precision of 0.90, 
and an F1 score of 0.90. This approach can be applied to real video surveillance data 
in theft prevention and increase human safety. Here, by lowering human involvement, 
there will be the potential to increase accuracy and maintain consistency in video 
surveillance processing. 

 
Keywords: Theft Detection, Machine Learning, Action Recognition, Automatic Theft 

Detection in Video, Video Surveillance  
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1. INTRODUCTION 

A crime is a violation of law that is illegal, detrimental to a person or society, and 

subject to legal consequences. Damage can be monetary, psychological, or physical. 

Crime causes enormous losses in terms of both people and money. The local and 

worldwide crime rates are increasing. Theft is among common crimes defined as 

taking one's property without the use of force. Theft is rising nationally and 

internationally. As a result of this increase, the use of surveillance video cameras in 

public places such as airports, train stations, schools, hospitals, banks, shopping malls, 

education institutions, and crowded streets has also increased to provide safety. Video 

surveillance systems are used as a preventive measure against theft. The purposes of 

surveillance video cameras are to maintain track of regular activity and identify 

unusual ones. According to the definition used in the surveillance sector, an anomaly 

is any unusual occurrence that deviates from normal behavior and is generally 

understood to be a deviation from standard norms, types, arrangements, or forms. 

Among the anomalies, the theft anomaly, which creates material and moral losses, is 

very important. In video surveillance systems, theft detection relies on manual 

monitoring and identification of suspicious activities from video feeds by humans. 

Therefore, continuous monitoring could be tedious, resource-constrained, cost-

inefficient, inconsistent, and unscalable due to human involvement. 

For many applications, like theft detection, preserving security depends on the ability 

to identify anomalies in video surveillance. Since anomalous occurrences only occur 

0.01% of the time and 99.9% of the monitoring time is wasted, manually detecting 

anomalies is a labor-intensive and ongoing procedure that takes a lot of time and effort 

from human workers (Duong et al., 2023). Thus, intelligent systems that can 

automatically identify abnormal events in the video stream are desperately needed. 

The capacity to automatically identify security incidents or potentially dangerous 

occurrences occurring inside the field of vision of cameras is offered by Automated 

Video Surveillance technology (Jadhav et al., 2017).
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There is a need for automatic theft detection systems capable of handling large 

volumes of data that are consistent, accurate, scalable, and continuously available. 

Several applications that use action recognition and machine learning have surfaced in 

recent years for the detection of theft. Despite much research in this field, no transfer 

learning implementation has been done. In this work, we constructed feature vectors 

using a recently developed theft dataset by applying action recognition methods. For 

this process, we chose four separate action recognition algorithms, and we used 

machine learning methods on the feature vector datasets that were produced. We also 

included steps for feature extraction. Our work differs from earlier research in this 

subject because of these techniques, especially the application of transfer learning. 
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2. LITERATURE REVIEW 

Researchers have carried out various studies to date on the detection of anomalies in 

surveillance videos. There are quite extensive publications on this subject. In 2018, 

Sultani and colleagues conducted a research on the deep anomaly ranking algorithm, 

which predicts high anomaly scores for anomalous video segments and offered a new 

large-scale, first-of-its-kind dataset of 128 hours of videos (Sultani et al., n.d.). A 

survey from that same year suggested using a one-class neural network model to 

identify anomalies in huge, complicated datasets (Chalapathy et al., 2018). In 2019, 

using multilevel representations of both intensity and motion data, Vu and colleagues 

created a framework for accurate anomaly detection (Vu et al., 2019). In 2021, Ullah 

and colleagues introduced a time-complexity-reduced anomaly recognition framework 

for surveillance that is effective and lightweight, utilizing convolutional neural 

networks (CNNs). To accurately detect anomalous behavior in surveillance videos, 

they extracted spatial CNN attributes from a sequence of video frames and fed them 

to the suggested residual attention-based long short-term memory network (Ullah et 

al., 2021). In 2020, in contrast to full-frame learning, the research presented a method 

for learning abnormal behavior in the video by identifying attention to the area using 

spatiotemporal information (Nasaruddin et al., 2020). In a survey in 2021, a multitask 

deep neural network was suggested as a solution to the anomaly detection problem, 

which was considered a fully supervised learning problem (Wan et al., 2021). In 2022, 

Zaigham Zaheer and colleagues presented a unique technique for video anomaly 

identification using unsupervised Generative Cooperative Learning (GCL) that builds 

a cross-supervision between a discriminator and a generator by taking advantage of 

the low frequency of anomalies (Zaigham Zaheer et al., n.d.).  A survey that utilizes a 

model based on deep learning for surveillance system anomaly detection was released 

in 2022 (Amin et al., 2022) . In 2023, Liu and colleagues provided a two-stream spatio-

temporal generative model to identify anomalous behavior in real-time from video 

surveillance (Liu et al., 2023).
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Datasets have been created to be used for anomaly detection. In 2008, the subway 

dataset, which consists of two long video recordings that capture individuals entering 

and leaving a train station, became accessible (Adam et al., 2008). In 2009, the UMN 

dataset that simulated a populated area where actors walk to an exact location and 

escape with anomalous behavior was published (Mehran et al., n.d.). In 2013, the 

Avenue dataset that involves abnormal events that were recorded at CUHK campus 

avenue was offered (Lu et al., 2013). In 2013, the UCSD dataset that has two sub-

datasets, Pedestrian 1 and Pedestrian 2, which involve events captured in various 

crowded stages, was published (Anomaly Detection and Localization in Crowded 

Scenes, n.d.). In 2016, the ShanghaiTech Campus dataset that includes 13 sequences, 

including intricate lighting, camera angles, and many kinds of anomalies, most of 

which are connected to unusual things, the wrong direction, and unusual behavior, was 

offered (Liu et al., n.d.). In 2018, the UCF-Crime dataset that contains anomalies about 

stealing, shoplifting, robbery, burglary, abuse, arrest, arson, assault, explosion, 

fighting, road accidents, shooting, and vandalism was published (Sultani et al., n.d.). 

In 2020, the Street Scene dataset that involves anomalies, for instance, bikers outside 

lanes and jaywalking, became accessible (Ramachandra & Jones, n.d.). In 2021, the 

HR-Crime dataset, which is a subset of the UCF-Crime dataset that includes Human-

Related (HR) videos, was released (Boekhoudt et al., n.d.). 

Review articles that describe the datasets and machine learning methods that have been 

published thus far in the anomaly detection field are also available.  A review paper 

on methods based on deep learning for detecting anomalies in videos was released in 

2021 (Nayak et al., 2021). In 2022, a review publication that summarizes anomaly 

analysis datasets and machine learning models was released (Tran et al., 2022). In 

2023, a review paper was released about deep learning approaches to the detection of 

anomalies in surveillance videos (Chandrakala et al., 2023). In the same year, a paper 

that analyze the existing deep learning structures and machine learning methods used 

to detect anomalous cases in surveillance videos to examine their benefits and 

difficulties was published. Also, this survey summarizes anomaly detection datasets 

(Şengönül et al., 2023). Another review paper that explains all datasets that contain 

abnormal events and discusses deep learning models up to now was published (Duong 

et al., 2023).
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The field of human action recognition is fast developing, with notable progress made 

in the creation of models and systems. Review papers that summarize the state of the 

field have emerged as academics explore deeper. In 2024, an extensive review of 

Human Action Recognition systems is given in the paper. It discusses deep learning 

and machine learning techniques, benchmark datasets for human action recognition, 

metrics to assess the effectiveness and architecture of systems for human action 

recognition, current problems, and potential future paths for the field (Karim et al., 

2024). In the same year, a review of deep learning techniques for multimodal vision-

based human action recognition is presented in a publication. Shafizadegan and 

colleagues present a four-level category for human action recognition techniques that 

take into account the architecture, similarities, availability, and modalities of the 

frameworks. They identify benchmark human action recognition as well. The study 

examines possible future research opportunities in the field and highlights the top-

performing techniques on well-known and current benchmark datasets (Shafizadegan 

et al., 2024). 

When all the publications are considered, it is concluded that there are a lot of papers 

related to anomaly detection or human action recognition systems. However, few 

papers have been conducted to automatically detect theft or subcategories of theft 

detection. In 2018, a publication that provides theft detection with machine learning 

was released. In this paper, a motion was detected using convolution neural networks 

and sent a warning to the owner (Kushwaha et al., 2018). In 2023, a paper about the 

detection of theft using deep learning was published. This survey uses real-time object 

identification on live video feeds to improve security protocols and enable quick 

reactions to possible threats (Shirole & Virdhe, 2023). In the same year, a paper 

indicates using a hybrid neural network to identify shoplifting. To compare their model 

with other approaches, Muneer and colleagues built a new dataset, which they used to 

compare and find that their model performed better (Muneer et al., 2023). In 2024, an 

article presents a new technique for identifying theft in surveillance video.  This 

approach tries to lower false positives and is meant to work well both in the daytime 

and at night. Waddenkery and Soma emphasize the importance of the system's capacity 

to gain knowledge from tiny quantities of data and adapt to changing circumstances 

for real-time applications (Waddenkery & Soma, 2024).
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Transfer learning, as everyone knows, is an approach to machine learning that applies 

the information of a trained model developed for one task to another that is related but 

different. This allows for the transfer of knowledge from task one to the second model, 

which is task-specific. It decreases the quantity of data required to train a model and 

increases efficiency. You can accomplish high accuracy in your particular domain by 

utilizing pre-trained models on huge data sets. Pre-trained models significantly 

decrease the amount of time needed for training. Models may overfit the training set 

in situations where there is insufficient data. Through the application of the more 

comprehensive knowledge gained from the original dataset, transfer learning helps to 

reduce this risk. It enables simple adjustment with minor changes to new operations or 

domains for a specific application, a pre-trained model can be efficiently adjusted. By 

encouraging knowledge sharing across many tasks, transfer learning makes it possible 

to apply ideas from one work to another. For instance, video analysis can benefit from 

the features acquired in image recognition. 

In this research, we will work on theft detection. We will discuss the definition of theft 

by Article 141 of the Turkish Criminal Law. In the direction of article 141, we wanted 

to evaluate theft in 4 groups. However, since burglary does not always result in theft, 

we determined the number of our groups as 3. These groups are stealing, shoplifting, 

and robbery. To achieve this, firstly, we created datasets from the UCF-Crime dataset 

that contains three theft groups that are determined and normal videos. There is no 

publication in the literature on theft detection, considering novel datasets that contain 

three categories. Additionally, there are no publications in the literature about running 

several action recognition algorithms and making predictions using transfer learning 

as a result and using them as features. There are only a few products in this field that 

are commercially developed abroad and sold. 
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3. METHODOLOGY 

Our methodology was organized into five main steps. Dataset development and 

collection is the first step, during which we acquired and selected the information 

required for analysis.  In the second step, data transformation, we prepared the data. 

To find the most relevant parameters which would improve model performance, we 

then carried out feature selection. After that, we trained models and used a variety of 

classification algorithms. Lastly, we evaluated the model's performance to determine 

its overall efficiency and accuracy. 

3.1. Dataset Collection and Creation 

This study aims to identify theft in surveillance videos. To carry out this study, a 

dataset was developed. The section on data creation and gathering involved several 

procedures. Under subheadings, the specifics of these steps are arranged and clarified. 

3.1.2. Theft Datasets 

Following a comprehensive analysis of all theft and criminality-related research, we 

have found two open-source datasets that are significant to our study. A high-

resolution, multi-camera dataset called the Charlotte Anomaly Dataset (CHAD) was 

created specifically for anomaly detection in commercial parking lots. Four cameras 

simultaneously capture the same scene: one HD camera and three Full-HD cameras. 

CHAD is made up of 412 high-quality videos totaling about 1.15 million frames. 

Among these, 1.09 million frames exhibit routine activity, while 59,000 frames contain 

anomalies (Danesh Pazho et al., 2022). These 412 videos had not been categorized. 

We didn't know which video had which anomaly.  We just knew videos that contain 

anomalies. For this reason, we excluded and didn't utilize this dataset. UCF-Crime 

dataset is open-source, and it includes 13 different categories of anomalies related to 
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crimes, such as shoplifting, stealing, robbery, burglary, arrest, arson, assault, abuse,  

road accident, fighting, explosion, shooting, and vandalism. Additionally, there are 

videos called normal that don't have any anomalies. A significant collection of 128 

hours of video makes up this dataset. It has 1900 untrimmed real-world surveillance 

videos (Sultani et al., n.d.). We used this dataset to construct our unique datasets. Our 

datasets include data gathered from four separate categories: shoplifting, stealing, 

robbery, and normal. We might have used the burglary category and the data in this 

category because we are interested in theft, but since burglaries are typically armed, 

after analyzing videos, we decided to consider the types of thefts that are carried out 

unarmed. We eliminated this category. 

 
Figure 3.1. Shoplifting sample video view 

We created three different datasets for our study. First, there is the NS dataset, which 

has 200 videos evenly split into two categories: 100 normal videos and 100 stealing 

videos. Expanding on this, we produced a second dataset called NSS, which offers 

three categories: 150 normal videos, 100 stealing videos, and 50 shoplifting videos. 

Lastly, an even more comprehensive third dataset, NSSR, includes four categories: 

300 videos of normal, 50 videos of shoplifting, 100 videos of stealing, and 150 videos 

of robbery. 
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3.1.2. Pre-trained models 

In our research, we used Apache MXNet, which is an open-source deep-learning 

framework. It enables neural networks with deep layers to be defined, trained, and 

used. It works with a wide range of platforms, including the infrastructure used by 

cloud computing. MXNet is well-known for its scalability, which is crucial for 

managing huge data sets and complicated models since it enables users to train models 

across distributed systems and many GPUs.  Additionally, it serves as the foundation 

for several high-level libraries, including Gluon, which makes deep learning model 

construction and training easier. A compact, easy-to-understand API for deep learning 

is offered by the Gluon library in Apache MXNet. It enables the quick development, 

building, and training of deep learning structures without reducing training speed. 

State-of-the-art (SOTA) deep learning methods for computer vision are developed 

using GluonCV. Based on the Gluon interface of the Apache MXNet framework, 

GluonCV is an open-source computer vision library. It makes it simpler for developers 

and researchers to apply and experiment with cutting-edge techniques by offering a 

collection of pre-trained models, datasets, and tools made especially for computer 

vision work. To recognize and categorize actions in video sequences, GluonCV 

provides several action recognition models. Applications like sports analysis, video 

surveillance, and human-computer interaction depend on these models. Among the 

significant action recognition models in GluonCV are I3D and SlowFast Networks. 

By expanding 2D filters into 3D, I3D models enable 2D convolutional networks to 

learn spatiotemporal properties directly from video inputs. In tasks requiring action 

recognition, this method has significantly improved performance. SlowFast networks 

can efficiently capture both slow motion and quick motion by processing video at 

several temporal levels. While the Fast pathway concentrates on high-frequency 

movements, the Slow pathway records intricate spatial details. The models can be 

easily applied to user-provided datasets or customized for particular applications by 

using the pre-trained weights and implementations that GluonCV offers. 

We used several GluonCV action recognition models. These models are an effective 

resource for anyone trying to identify actions in videos. The first is  

i3d_nl10_resnet101_v1_kinetics400. The Inflated 3D ConvNet (I3D) architecture is 

specifically implemented in the model i3d_nl10_resnet101_v1_kinetics400.
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Its purpose is to recognize actions in video data. By extending 2D convolutional 

networks into 3D by inflating its filters, I3D, represented by the Inflated 3D ConvNet 

architecture, enables the model to learn spatiotemporal properties directly from video 

frames. This method efficiently records information about appearance as well as 

action. The model aims to employ a non-local operation using ten input frames, as 

denoted by the nl10 indicator, improving its capacity to capture long-range 

dependencies in the video data. This I3D model's foundation is built upon the 101-

layer ResNet-101 design. ResNet, which is renowned for its effectiveness in image 

recognition applications, uses skip connections to lessen the impact of the gradient 

disappearing issue and make it possible to train deeper networks. V1: This 

abbreviation often denotes the ResNet architecture version that was utilized in the 

model. Kinetics400: This 400-class dataset, which is frequently used to train action 

recognition models, is utilized to pre-train the model. i3d_resnet50_v1_kinetics400 is 

the second one. The second action recognition model that we utilized was 

i3d_resnet50_v1_kinetics400. This model is an I3D model. It also uses the Kinetics 

400 dataset. However, this model has resnet50. ResNet makes use of residual learning, 

a theory that facilitates the training of extremely deep networks. It uses shortcut 

connections, also called skip connections, to add the input to the result of a deeper 

layer without going through a few levels. Typically, images with a resolution of 224 

by 224 pixels are fed into ResNet-50. For tasks involving classification, the output is 

typically a probability distribution across a collection of classes. The utilized third 

action recognition model was slowfast_4x16_resnet50_kinetics400. It is a SlowFast 

model architecture. 4x16 represents the video input sampling structure.  That usually 

means that in this instance, the Fast pathway processes frames at a rate of 16 frames 

per second, whereas the Slow pathway processes frames at a rate of 4. This design 

facilitates the balancing of motion capture and detail. The Kinetics 400 dataset and 

resnet50 architecture are used in this model. This technique recognizes motions in 

videos by efficiently utilizing both slow and fast motion information. We used the 

slowfast_8x8_resnet101_kinetics400 model. This model utilizes the SlowFast 

architecture, too. 8x8 indicates the model's sample method. In particular, it usually 

indicates that the Fast pathway functions at a rate of 8 frames per second, enabling a 

more in-depth comprehension of both fast and slow movements. The Slow pathway 

analyzes video frames at a rate of 8 frames per second.
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The Kinetics 400 dataset and resnet101 architecture are used in this model. This model 

is an advanced model for identifying actions in videos. It uses a dual-stream 

architecture to leverage both spatial and temporal information, and it uses a strong 

backbone (ResNet101) that has been trained on a large dataset (Kinetics-400). If we 

explain the Kinetics400 dataset in more detail, a collection of original action videos 

from YouTube is called Kinetics400, and it is used for action recognition. With 

306,245 short-trimmed movies from 400 action categories, it is one of the largest and 

most often used datasets in the academic area for evaluating the effectiveness of the 

most sophisticated video action detection models. Usually, each video clip lasts for ten 

seconds or less. It offers enough time information to accurately represent the actions' 

dynamics. Action classes are used to label the dataset, enabling models trained on it to 

identify particular actions in videos. It is widely used for deep learning model training 

and evaluation, particularly for models with complex architectures. 

3.1.3. Feature creation 

To generate features, firstly, we developed a Python script that takes input in the form 

of text files ending in .txt. The path to a unique video, its frame count, and its associated 

video name are all included in each row of this text file. The last two fields, which are 

just placeholders and do not function in the code, are the number of frames and the 

video label.  As a result, to satisfy the script's input requirements, arbitrary positive 

integers were inserted into these fields. The script returns human activity predictions 

in videos specified in a text file. We have run 4 GluonCV action recognition models 

across three distinct datasets with the usage of this script. A total of 12 distinct feature 

datasets were produced using this process. For ease of identification and further 

analysis inside our study, each of these feature datasets has been named systematically. 

The names of the feature datasets are as follows, in order. NS - i3d - nl10 - resnet101- 

v1- kinetics400, NS - i3d - resnet50 - v1- kinetics400, NS - slowfast - 4x16 - resnet50 

- kinetics400, NS - slowfast - 8x8 - resnet101 - kinetics400, NSS - i3d - nl10 - 

resnet101- v1- kinetics400, NSS - i3d - resnet50 - v1- kinetics400, NSS - slowfast - 

4x16 - resnet50 - kinetics400, NSS - slowfast - 8x8 - resnet101 - kinetics400, NSSR - 

i3d - nl10 - resnet101- v1- kinetics400, NSSR - i3d - resnet50 - v1- kinetics400, NSSR 

- slowfast - 4x16 - resnet50 - kinetics400, NSSR - slowfast - 8x8 - resnet101 - 

kinetics400. NS refers to the dataset containing Normal and Stealing videos, while 
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NSS includes Normal, Stealing, and Shoplifting videos. NNSR includes Normal, 

Stealing, Shoplifting and Robbery videos. The remaining part of the dataset's name is 

the name of the pre-trained model. In each feature dataset, each row contains the 

category of the video and a series of action inference probability values that are 400 

vectors. The categorical label (theft/normal) of the video is indicated by the first value 

in each entry, and the next values are the inference probabilities over 400 different 

action classes. There is a table that includes 400 different action classes in the 

Appendix B section. 

3.2. Data Transformation 

In this study, we used several data transformation techniques, such as binarization, 

max absolute scaling, and Z-score normalization (standard scaling). Standardization is 

a statistical technique that rescales and modifies the distribution of data to yield a mean 

of zero and a standard deviation of one. Z-score normalization was the first 

preprocessing method used on the data. This preprocessing stage successfully changed 

every value in the dataset, guaranteeing that the distribution that resulted had a 

standard deviation of 1 and a mean of 0. This type of it reduces the impact of various 

scales on various variables, facilitates feature comparison, and increases the 

effectiveness of machine learning algorithms. The data distribution becomes more 

stable and comparable as a result. Furthermore, it increases machine learning 

algorithms' effectiveness by decreasing their sensitivity to the size of the input features.   

Additionally, during the preprocessing stage of the analysis, the data normalization 

method known as max absolute scaling was utilized. To scale features to a range 

between -1 and 1, max absolute scaling is a data normalization approach that takes into 

account the maximum absolute value of each feature. When working with datasets that 

have both positive and negative values in their characteristics, this method is especially 

helpful. After these data transformations, binarization was used. The process of 

converting numerical data into binary form is known as binarization.
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The 0.001, 0.0001, 0.00001, and 0.000001 are the four threshold values that have been 

established. The datasets were binarized using these thresholds, converting continuous 

feature values into binary representations that met the preset standards. 

In this study, we employed the Scikit-learn package, an open-source Python machine 

learning and data modeling library, for data transformations. The scikit-learn version 

was 1.2.0. We constructed a StandardScaler object for Z-score normalization. Using 

the fit_transform method from the StandardScaler object, the standard deviation and 

mean for each feature were specified to apply Z-score normalization. To apply max 

absolute scaling, we created an instance of the MaxAbsScaler.  Max absolute scaling 

was applied by calculating the maximum absolute value for each feature with the 

fit_transform method that is from the MaxAbsScaler object. 

3.3. Feature Selection 

Feature selection is the process of identifying and selecting a subset of relevant 

attributes (or variables) from the larger range of features in a dataset. Feature selection 

is primarily used to reduce overfitting, increase accuracy, and shorten training times 

in machine learning models. In this study, we used the Scikit-learn library for feature 

selection operations. The subsections provide a detailed explanation of the 

advancements we made in our study about feature selection. 

3.3.1. Filter-based feature selection 

Feature selection methods that rely on filters assess the importance of features by 

analyzing their statistical characteristics, regardless of machine learning algorithms. 

They can be scaled and are fast. SelectKBest is included in them since it uses a scoring 

function for evaluating features. To evaluate features, SelectKBest frequently uses 

statistical tests such as correlation coefficients (for regression) or the ANOVA F-test 

(for classification). Based on the selected criterion, that is, f_classif for classification 

tasks (ANOVA F-value), this approach scores and then chooses the top K features with 

the highest scores. As might be expected, this method accepts two different 

parameters, which are "scoring function" and "k."
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The integer "k" indicates how many top characteristics to choose. The default for k is 

10. Some of the scoring functions (f_classif, chi2, and f_regression) are explained. 

f_classif is ANOVA F-value between label/feature. Each feature's linear relationship 

to the target variable is measured by this function, which is utilized for classification 

tasks. It facilitates the identification of characteristics that differ noticeably between 

classes. chi2 is chi-squared statistics of non-negative features. This evaluates the 

independence of features about the target variable and is applied to categorical 

characteristics. It evaluates if there is a difference between the distribution of 

categorical variables and what would be predicted if they were independent. 

f_regreesion is the F-value between label/feature. It is used for regression tasks. To 

find features that significantly affect the prediction of continuous outcomes, this 

calculates the linear correlation between the target variable and each feature. 

The SelectKBest feature selection approach is applied in our study.   To evaluate the 

impact of various feature subsets, we applied this approach with three distinct K 

values. These are 20, 30, and 50. We choose to use the ANOVA F-value (f_classif) for 

the scoring function because it is especially appropriate for classification tasks. We 

implemented this selection method because it has the advantage of handling big 

datasets efficiently while preserving computing efficiency. Furthermore, its simple 

implementation makes it easy to interpret. 

3.3.2. Feature importance quantification 

Feature importance quantifies each feature's contribution to a machine learning 

model's prediction performance. Gaining knowledge about the underlying data and 

increasing model efficiency can be achieved by determining which attributes have the 

most influence. There are several approaches to assess a feature's importance. These 

are coefficient-based, tree-based, or permutation importance. In this research, we used 

a based feature importance method that is a random forest to calculate. A method for 

assessing the worth of features in decision tree algorithms, such as random forests and 

decision trees, is called tree-based feature importance. To increase accuracy and 

manage overfitting, random forests, a collaborative learning technique, generate 

numerous decision trees and aggregate their predictions.
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Random forest features are valued using Mean Decrease Impurity (MDI), a critical 

technique for assessing each feature's impact on a random forest machine learning 

model's predictive power. The quality of a split is assessed in decision trees using 

impurity metrics such as entropy or Gini impurity. There is a better split when the 

impurity is lower. Every decision tree in the random forest helps to lower the node's 

impurity when a feature is utilized to split the tree. Each time a feature is utilized in a 

split, the magnitude of the impurity reduction it achieves is noted. Once every tree has 

been constructed, the overall impurity decrease for every feature has been added up. 

To obtain a proportionate score, the feature importance score for each feature is then 

normalized, often by dividing by the total impurity reduction across all features. Each 

feature's proportion to the model's overall decision-making process is shown by the 

score that results. The more important a feature is in establishing predictions, the 

higher its score. All things considered, random forest feature significance is a useful 

model assessment. Interpreting the model and learning more about the data is made 

easier by knowing which features have the biggest influence on the predictions. It 

assists in choosing the most essential aspects, which improve model performance and 

simplify it. Underlying connections between features and the target variable are 

revealed by feature importance. 

Using the scikit-learn library to compute random forest feature importance, firstly, we 

created and fitted the random forest model. We got feature importances using feature_ 

importances attributes directly from the fitted model. It returns the importance scores. 

Then, we accessed the important feature names. Additionally, we visualized feature 

importance using a bar plot. 

3.3.3. Feature extraction 

In the machine learning process, feature extraction is an essential phase that turns raw 

data into a collection of useful features. With the help of these features, predictive 

models are constructed, allowing algorithms to recognize patterns and generate 

accurate predictions. The goal of feature extraction is to enhance the quality and 

usefulness of input data while decreasing dimensionality. PCA, or principal 

component analysis, is a feature extraction technique. This dimensionality reduction 

technique is commonly used to reduce the number of variables in huge data sets while 
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maintaining much of the original data. Accuracy naturally decreases as a data set's 

variables are reduced, but the key to dimensionality reduction is to compromise a little 

accuracy in favor of simplicity. As a result of smaller data sets being simpler to 

examine and visualize, machine learning algorithms can analyze data points 

considerably more quickly and easily because fewer variables need to be processed. 

Using the scikit-learn library to apply PCA, we created a PCA object. We identified 

the number of components to keep. Then, we fitted and transformed the data. The 

number of components was taken as 5, 10, 15, and 20, and experiments were carried 

out on the data sets, respectively. 

3.4. Classification Algorithms and Model Training 

Classification machine learning algorithms to be utilized for model training were 

identified. KNNeighbors, Gaussian Naive Bayes, Decision Trees, Support Vector 

Machines, Random Forests, Neural Networks, and Gradient Boosting are among the 

machine learning techniques that have been specified. A supervised machine learning 

algorithm known as a support vector machine (SVM) classifies data by identifying the 

best line or hyperplane in an N-dimensional space that optimizes the distance among 

each class. It works well in high-dimensional spaces, is sensitive to overfitting, and is 

adaptable because of its kernel functions (linear, RBF, etc.). One supervised learning 

technique for classification is the Decision Tree algorithm. It displays choices and their 

potential outcomes as a tree-like structure, with each internal node standing for a 

feature-based decision, each branch for the decision's result, and each leaf node for a 

class label. The objective is to learn basic decision rules derived from the data features 

to build a model that estimates the value of a target variable. It is easy to understand 

and interpret.  In addition to handling both numerical and categorical data, it requires 

minimal data preprocessing. Based on the idea that comparable data points are likely 

to provide similar results, the supervised classification method is the K-Nearest 

Neighbors (KNN) machine learning algorithm. As an illustration of instance-based 

learning, KNN does not build an explicit model; instead, it bases its predictions on the 

complete training dataset. Achieving optimal performance requires careful evaluation 

of the distance metric and K selection.
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The K parameter indicates how many nearest neighbors should be considered when 

making a prediction. To assess the "closeness" of data points, KNN uses distance 

measurements. 

One ensemble learning technique that is often utilized for classification is the Random 

Forest algorithm. To increase accuracy and manage overfitting, it aggregates the 

predictions of several decision trees. The Random Forest algorithm relies on a set of 

decision trees. Utilizing a random portion of the training data, each tree is trained to 

produce a variety of models that can identify various patterns. By utilizing the 

advantages of several decision trees, it mitigates the weaknesses of individual models 

while achieving high accuracy and robustness. For classification tasks, Gaussian Naive 

Bayes is a probabilistic machine learning method based on the Bayes principle. The 

term "Gaussian" denotes the assumption that the characteristics have a Gaussian 

(normal) distribution. A simple and effective approach for classification problems, 

especially when working with big datasets, is Gaussian Naive Bayes. Gradient 

Boosting, an ensemble method that creates models one after the other in an attempt to 

correct the errors made by the previous models used for classification problems, is one 

of the most effective machine learning algorithms. Gradient Boosting is able to 

generate extremely accurate predictions by integrating the results of these models. A 

neural network is a classification model for machine learning that is based on the 

structure and functions of the human brain. In this model, there are some key 

components. Some of them are layers and activation functions. The layer that gets the 

input data is called the input layer. Weighted connections are used in the processing of 

hidden layers, which are intermediate layers. The final classifications or predictions 

are generated by the output layer. Since activation functions establish each neuron's 

output and add non-linearity to the model, they are essential parts of neural networks. 

Neural networks are capable of learning intricate patterns and relationships in the data 

because of this non-linearity. Twelve feature datasets were trained using all the 

machine learning algorithms we mentioned above. Then, the datasets were re-trained 

by applying all preprocesses steps. 
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3.5. Performance Evaluation 

After the model training, we assessed the model’s performance using evaluation 

metrics that are AUC, precision, accuracy, recall, and F1 score. The following 

paragraphs explain the definitions and formulas of evaluation metrics. 

Accuracy, which is a major measurement metric, is utilized for assessing the efficiency 

of classification models. It refers to the proportion of accurate predictions to all 

predictions. This assessment indicates that if 100 predictions were made, 70 of them 

would have come true, indicating a 70% accuracy rate for the model. 

Accuracy	=	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Recall is utilized as a performance metric to assess the classification model's 

efficiency. It is also named true positive rate or sensitivity. It is obtained with true 

positive predictions divided by the sum of true positive and false negative predictions. 

It shows the model's ability to identify all relevant instances. If the model determines 

60 out of 100 true positive cases correctly, the recall will be 60%. 

Recall = Sensitivity = 𝑇𝑃𝑅 = 		
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

Precision is a crucial measurement metric. By showing the proportion of expected 

positive cases that are true positives, it evaluates how accurate the model is at making 

positive predictions. The model's capacity to accurately specify pertinent instances is 

indicated by the ratio of true positive predictions to the sum of true positive and false 

positive predictions. For instance, a model's precision is 0.6 (or 60%) if it predicted 50 

positive instances, but just 30 of those were accurate. 

Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
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The F1 score, which provides a single measure that balances precision and recall, is 

the fundamental evaluation metric. The F1 score is calculated by taking the harmonic 

mean of recall and precision metrics. Its range is between 0 and 1. While 0 shows the 

worst performance, 1 shows the best precision and recall. 

F1-Score	=	
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

The Area Under the Curve assesses the ability of the models to discriminate between 

positive and negative classes with different thresholds. This crucial performance 

metric is the area under the Receiver Operating Characteristic (ROC) curve. It is 

referred to as AUC. Its values vary from 0.5, which indicates random performance, to 

1.0, which indicates excellent categorization. If the model discriminates positive and 

negative classes better, the AUC will be higher. If AUC is 70%, it shows that the 

possibility of a positive instance chosen at random having a higher estimated value 

than a negative instance chosen at random is 70%. 

𝐴𝑈𝐶 = 	J 𝑇𝑃𝑅(𝐹𝑃𝑅!"(𝑥))𝑑𝑥
"

#$%
 

Python libraries were utilized for model training and performance evaluation. The 

scikit-learn, which is a machine learning library, was used. Its version was 1.2.0. 

Pandas, which is a data analysis library, was used. The version of the panda’s library 

was 1.5.2. A Python library for data visualization called Seaborn was used. Its version 

was 0.12.2. NumPy, which is a Python library for scientific computing, was also used.  

The version of NumPy was 1.24.1. The extensive Python visualization library 

Matplotlib was utilized to create static, animated, and interactive displays. The version 

used is 3.6.2. Also, the Python version was 3.10. 

3.5.1. Hyperparameterazation 

First, each of the 12 datasets was divided into train and test sets. The test size was 20 

percent of the dataset, while 80 percent of the dataset was for the training part. This 

separation is essential for the later assessment of model performance since it enables 

the training set to be used for model fitting and parameter adjustment and the testing 

set to be used as a separate sample for evaluating how well the created models 

generalize. After the division of datasets as train and test, we used 5-fold cross-
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validation in the training part. It is a machine learning model training and evaluation 

technique. By ensuring that the model is trained on many subsets of the data and 

reducing the overfitting probability, this approach produces a more accurate 

assessment of the model's performance. We utilized the scikit-learn library's cross-

validation technique to apply 5-fold cross-validation in the training section. The 

function enables the computation of multiple measurements simultaneously and is 

helpful for cross-validation. We obtained the average of 5-fold train performance 

results on 80 percent of datasets. Then, we trained 80% of the datasets with the 

appropriate classification models. After this process, we predicted it with the test 

datasets and generated the performance results. 

In training, we used multiple machine learning algorithms that were mentioned in the 

classification algorithms and model training part. For each machine learning 

algorithm, we utilized different parameter sets. To use algorithms from scikit-learn, 

firstly, we imported associated library lines. Then, we created classifiers and set the 

parameters of classifiers. The following paragraphs explain the parameters of these 

machine learning algorithms in the scikit-learn library. These parameters are the 

parameters used in this research. 

In the SVM algorithm, four important parameters are used. The trade-off between 

maximizing the margin and decreasing classification error is managed by the 

regularization parameter that is named "C". It needs to be completely positive. A high 

C value aims to accurately classify every training example, whereas a small C value 

permits more misclassifications. The default value is one for C. "kernel" designates 

the kind of kernel that will be utilized in the algorithm. These include linear, poly, rbf, 

sigmoid, and precomputed. If none is provided, rbf is used by default. To facilitate 

class separation, kernels convert the input data into higher-dimensional space. 

"gamma" is the kernel coefficient for kernels of values rbf, poly, and sigmoid. It takes 

two values that are scale, auto, or float. The default is scale. According to these, the 

value of gamma is assigned. "degree" refers to the polynomial kernel function's degree 

(or "poly"). It must not be negative. All other kernels disregard it. The default value of 

degree is three.
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In the Decision Tree algorithm, five crucial parameters are considered. The first 

parameter is "criterion," which specifies the function to measure the quality of a split.  

Criterion values are gini, entropy, log_loss. The default value of the criterion 

parameter is gini. The "splitter" parameter is utilized at each node to select the split. 

Values of this parameter are best and random. Best is used for selecting the best split, 

and random is used for selecting the best random split. The default value is best. The 

argument "max_depth" indicates the tree's maximum depth. It limits the number of 

splits in the tree. Its values can be integer.  The default value is None. This parameter 

helps prevent overfitting. "min_samples_leaf" is another important option that is 

essential. It indicates the least amount of samples required at a leaf node. Values of 

this parameter can be integer or float. The default value is 2. By keeping the model 

from learning too particular patterns, it aids in smoothing the model. The 

"random_state" parameter regulates the estimator's level of randomness.  Its values are 

integer or None. The default value is None. 

"n_neighbors" was the first important parameter in the K-Nearest Neighbors (KNN) 

method that determined how many neighbors would be utilized for classification. Its 

values are integer. The default value is 5.  Usually, values are odd numbers to prevent 

classification ties. To compute the nearest neighbors, an "algorithm" parameter is 

utilized. Values of the parameter are "auto", "ball_tree", "kd_tree", and "brute". The 

default is "auto". The leaf size provided to the KDTree or BallTree algorithms is 

known as the "leaf_size" parameter. This may impact memory utilization and the speed 

of the query and building. When determining the distance between two points, the 

distance metric is defined by the "p" parameter. Generally, p is 1 for Manhattan, and 

p is 2 for Euclidean distance. These are the parameters that are most frequently utilized. 

"n_estimators," or the entire number of trees in the forest, was the first important 

parameter in the Random Forest algorithm. Values of parameters are integer. The 

default is 100. More trees generally increase both performance and computation time. 

The next parameter, "max_features", indicates how many features should be taken into 

consideration when determining the optimal split. Parameter values can be integer, 

float, sqrt, log2, or None. The default value is None, which means all features are 

considered. Other parameters that we also mentioned in the decision tree classifier are 

"criterion" and "min_samples_leaf". 
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In Gaussian Naive Bayes, it had one crucial parameter, that is "var_smoothing". We 

adjusted this parameter. This parameter enhances numerical stability by adding a small 

amount of variance to the features. When a feature's variation is relatively minimal, it 

helps avoid zero division errors. 

In Gradient Boosting algorithm has six important parameters that are considered. The 

first parameter is "n_estimators", which is the quantity of boosting stages(trees) that 

must be executed. Although they can improve accuracy, more boosting stages run the 

danger of overfitting. Its values are integer. The default is 100. The next crucial 

parameter is "max_depth", which is the deepest point of each individual tree. With the 

use of this parameter, overfitting can be avoided; deeper trees can represent more 

complex relationships. Values can be integer or None. The default value is 3. Another 

parameter is "min_samples_split", which is the bare minimum of samples needed to 

separate an internal node. Values are integer and float. The default is 2. 

"min_samples_leaf" is the minimum number of samples needed to reach a leaf node. 

It aids in reducing overfitting. Values can be integer or float. The default is 1. 

"subsample" is the fraction of samples that will be utilized to fit each base learner 

individually. Values are float. A value below 1.0 that is default can aid in avoiding 

overfitting. "max_features" is the number of features to take into account when trying 

to find the ideal split. Values can be "sqrt", "log2", integer, float, or None. The default 

value is None. 

Three key parameters are taken into consideration in the Neural Network algorithm. 

This variable "hidden_layer_sizes" describes how many neurons are hidden in each 

layer. Values are array-like (n_layers,). The default is (100,). The next parameter is 

"activation", which is the function that activates the hidden layers. Values are 

"identity", "logistic", "tanh", and "relu". The default is "relu". The last parameter is 

"max_iter", which is the most iterations (epochs) that can be used to train the model. 

If the loss doesn't get better, the solver might quit sooner. Values are integer. The 

default value is 200. 
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Taking into account the parameters of the algorithms we mentioned in the above 

paragraphs, we determined the best parameter sets and fine-tuned them accordingly in 

the hyperparameterization step. Subsequently, the best classification algorithm models 

and parameter sets were determined based on their AUC, F1 score, accuracy, precision, 

and recall over the test sets. The best-performing algorithms and hyperparameters are 

shown in Table 1.1. All machine learning algorithms used in this study and their 

hyperparameters are included in the Appendix C section. 

Table 3.1. Machine learning algorithms and best parameter sets 

Machine learning algorithm Parameter set 

Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 'relu', 'max_iter': 50} 
 Random Forest {'criterion': 'gini', 'n_estimators': 100, 'max_features': 'sqrt', 
'min_samples_leaf': 5} 

Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 'max_depth': 3, 
'min_samples_split': 5, 'min_samples_leaf': 1, 'subsample': 1.0} 

KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 'algorithm': 'auto'}  
 Decision Tree {'criterion': 'gini', 'random_state': 0, 'max_depth': None, 
'min_samples_leaf': 1, 'splitter': 'best'} 
 Gaussian Naive Bayes {'var_smoothing': 1e-12}  

Support Vector Machine {'kernel': 'rbf', 'gamma': 1, 'C': 1.0} 
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4. RESULTS 

4.1. Effects of Data Transformation 

In this research, we performed data transformations to all datasets before the execution 

of machine learning algorithms. We found that these transformations contribute to 

improving machine learning algorithms’ performances. Since we know how well a 

model can learn from the data, how interpretable the model is, and the overall quality 

of predictions directly depends on the preprocessing steps to be applied, we carefully 

tried different preprocessing techniques and recorded the results by selecting the ones 

that were suitable for our study. In our study, we tried to make the correct choice and 

application of data transformations important and to make them effective on the 

results. 

The results show that z-score normalization is quite useful in improving performance 

in the Gaussian Naive Bayes model. Because normalization makes sure that features 

are on the same scale and are more likely to satisfy the Gaussian distribution 

assumption, it enhances performance. The model's performance has improved in 

comparison to the pre-normalization level. The results show that max absolute scaling 

applied to the datasets is more useful in the Neural Network model. Because this model 

is sensitive to the magnitude of the data but does not require the data to be shifted to 

zero or restricted to a specific range. It is also seen that the performance is better after 

applying maximum absolute scaling in Gradient Boosting and Random Forest models. 

Binarization has been applied with various threshold values, and among these 

threshold values, 0.0001 has given the best results. The second best threshold was 

0.00001. After applying binarization, the most effective results have been obtained 

with Random Forests, Neural Network, and Gradient Boosting models. 
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4.2. Effects of Feature Selection 

In this study, we implemented feature importance, feature selection, and PCA that play 

crucial roles in improving model performance, reducing overfitting, and enhancing 

interpretability. 

The results show us that when we apply feature selection, the model focuses on the 

most important factors and increases the prediction accuracy as we remove irrelevant 

features. At the same time, the complexity of the model is reduced. We observed that 

training times were reduced as the number of features decreased. Hyperparameters 

automatically accelerated the optimization time. When the results obtained after 

applying feature selection are compared, the best algorithms for each data set are 

explained with their values. The best classification algorithm models were determined 

based on their AUC, recall, precision, accuracy, and F1 score on the test set. The model 

with the highest performance was the Random Forest with an AUC of  0.88, accuracy 

of 0.88, precision of 0.88, recall of 0.88, and F1 score of 0.88 on NS - i3d - nl10 - 

resnet101- v1- kinetics400 dataset with used SelectKBest method that K is 20. The 

best was the Random Forest with an AUC of 0.85, accuracy of 0.85, precision of 0.85, 

recall of 0.86, and F1 score of 0.85 on NS - i3d - resnet50 - v1- kinetics400 with used 

SelectKBest method that K is 30. The best was the Gaussian Naive Bayes with an 

AUC of 0.84, accuracy of 0.83, precision of 0.83, recall of 0.87, and F1 score of 0.82 

on NS - slowfast - 4x16 - resnet50 - kinetics400 with same method and K value. The 

best was the Gaussian Naive Bayes with an AUC of 0.81, accuracy of 0.80, precision 

of 0.82, recall of 0.80, and F1 score of 0.80 on NS - slowfast - 8x8 - resnet101 - 

kinetics400 with used SelectKBest method that K is 50. The best was the Decision 

Tree with an AUC of 0.75, accuracy of 0.75, precision of 0.75, recall of 0.75, and F1 

score of 0.75 on NSS - i3d - nl10 - resnet101- v1- kinetics400 with used SelectKBest 

method that K is 20. The best was the Random Forest with an AUC of 0.77, accuracy 

of 0.77, precision of 0.77, recall of 0.77, and F1 score of 0.77 on NSS - i3d - resnet50 

- v1- kinetics400 with used SelectKBest method that K is 30. The best was the Random 

Forest with an AUC of 0.83, accuracy of 0.83, precision of 0.83, recall of 0.84, and F1 

score of 0.83 on NSS - slowfast - 4x16 - resnet50 - kinetics400 with used SelectKBest 

method that K is 50.
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The best was the Random Forest with an AUC of 0.72, accuracy of 0.72, precision of 

0.74, recall of 0.72, and F1 score of 0.71 on NSS - slowfast - 8x8 - resnet101 - 

kinetics400 with the same method and K value. The best-performing model was the 

Gradient Boosting with an AUC of 0.73, accuracy of 0.73, precision of 0.73, recall of 

0.73 and F1 score of 0.73 on NSSR - i3d - nl10 - resnet101- v1- kinetics400 with the 

same method and K value. The best was the Gradient Boosting with an AUC of 0.73, 

accuracy of 0.73, precision of 0.73, recall of 0.74, and F1 score of 0.73 on NSSR - i3d 

- resnet50 - v1- kinetics400 with the same method and K value. The best was the 

Gradient Boosting with an AUC of 0.80, accuracy of 0.79, precision of 0.79, recall of 

0.80, and F1 score of 0.79 on NSSR - slowfast - 4x16 - resnet50 - kinetics400 with 

used SelectKBest method that K is 20. The best was the Gradient Boosting with an 

AUC of 0.71, accuracy of 0.71, precision of 0.72, recall of 0.71, and F1 score of 0.71 

on NSSR - slowfast - 8x8 - resnet101 - kinetics400 with used SelectKBest method that 

K is 30. It is inferred from the findings that the best results of using the SelectKBest 

method are obtained by using K 50. The best model is seen as a Random Forest after 

feature selection is applied. In addition, Gradient Boosting, Gaussian Naive Bayes, 

and Decision Tree are the other best-performing models. 

Feature importance was applied to all datasets. The results indicated which feature was 

more important. Since these features corresponded to actions in our dataset, they 

demonstrated which action had a better score in which theft category. We used random 

forest feature importance, and this returned importance scores. We obtained 

importance scores for all datasets. By analyzing feature importance scores, we 

identified the two most significant actions for each dataset. Below, we detail these 

datasets along with their top-ranked actions. For the NS-i3d-nl10-resnet101-v1-

kinetics400, the most important actions are pumping_gas and pushing_car. The NS-

i3d-resnet50-v1-kinetics400 highlights pumping_gas and building_cabinet, while the 

NS-slowfast-4x16-resnet50-kinetics400 emphasizes changing_wheel and 

bookbinding. In the case of the NS-slowfast-8x8-resnet101-kinetics400, 

pumping_gas, and changing_wheel are the most critical. Pumping_gas and 

answering_questions are notable actions for the NSS-i3d-nl10-resnet101-v1-

kinetics400, whereas pumping_gas and changing_wheel are important actions for the 

NSS-i3d-resnet50-v1-kinetics400.
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Pumping_gas and changing_wheel are highlighted in NSS-slowfast-8x8-resnet101-

kinetics400, whereas changing_wheel and pumping_gas are ranked as the top actions 

in the NSS-slowfast-4x16-resnet50-kinetics400 dataset. In the NSSR-i3d-nl10-

resnet101-v1-kinetics400, texting and extinguishing_fire are the most important, 

followed by texting and motorcycling in the NSSR-i3d-resnet50-v1-kinetics400. The 

NSSR-slowfast-4x16-resnet50-kinetics400 prioritizes news_anchoring and 

riding_unicycle, while assembling_computer and motorcycling are the key actions for 

NSSR-slowfast-8x8-resnet101-kinetics400. To visually present these findings, we 

have created bar plots for the feature importance of each dataset, which are shown 

below. 

 
Figure 3.2. NS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot 
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Figure 3.3. NS-i3d-resnet50-v1-kinetics400 dataset feature importance plot 

 
Figure 3.4. NS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot 
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Figure 3.5. NS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot 

 
Figure 3.6. NSS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot 
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Figure 3.7. NSS-i3d-resnet50-v1-kinetics400 dataset feature importance plot 

 
Figure 3.8. NSS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot 
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Figure 3.9. NSS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot 

 

Figure 3.10. NSSR-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot 
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Figure 3.11. NSSR-i3d-resnet50-v1-kinetics400 dataset feature importance plot 

 
Figure 3.12. The NSSR-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot 
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Figure 3.13. NSSR-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot 

PCA was applied to all datasets separately, with component numbers 5, 10, 15, and 20 

before the training. By the meaning of this, the dimensions of the datasets were 

reduced. The performance of the models was evaluated both before and after applying 

PCA. The results revealed that, in some cases, the models performed better following 

the application of PCA. After the implementation of PCA according to the results, the 

obtained best models and the datasets on which these models were applied are 

explained. The best-performing model was the KNeighbors with an AUC of 0.90, 

accuracy of 0.90, precision of 0.90, recall of 0.91, and F1 score of 0.90 on NS-i3d-

nl10- resnet10-v-kinetics400 dataset with used 5 components. The best was the 

Random Forest with an AUC of 0.85, accuracy of 0.85, precision of 0.85, recall of 

0.86, and F1 score of 0.85 on NS-i3d-resnet50-v1-kinetics400 with used 20 

components. On the NS-slowfast-4x16-resnet50-kinetics400 with 20 components, the 

KNeighbors performed the best, with an F1 score of 0.83, an AUC of 0.83, accuracy, 

precision, and recall of 0.83. With 20 components, Gradient Boosting performed the 

best, achieving an AUC of 0.84, accuracy, precision, recall, and F1 score of 0.85 on 

the NS-slowfast-8x8-resnet101-kinetics400.
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With an AUC of 0.68, accuracy of 0.68, precision of 0.68, recall of 0.69, and F1 score 

of 0.68 on NSS-i3d-nl10-resnet101-v1-kinetics400 using 5 components, the Random 

Forest method performed the best. On the NSS-i3d-resnet50-v1-kinetics400 using 20 

components, the KNeighbors approach was received the best, with an F1, accuracy, 

precision, recall, and AUC of 0.65. With an AUC of 0.73, accuracy, precision, recall, 

and F1 score of 0.73 on NSS-slowfast-4x16-resnet50-kinetics400 using 5 components, 

Gradient Boosting performed the best. With an F1 score of 0.72, recall of 0.72, 

accuracy, precision, and AUC of 0.72 on NSS-slowfast-8x8-resnet101-kinetics400 

using 20 components, KNeighbors performed the best. With 20 components and an 

AUC of 0.66, accuracy of 0.66, precision of  0.66, recall of 0.67, and F1 score of 0.66 

on the NSSR-i3d-nl10-resnet101-v1-kinetics400, the Decision Tree model performed 

the best. The best was the Decision Tree with an AUC of 0.66, accuracy of 0.66, 

precision of 0.66, recall of 0.66, and F1 score of 0.66 on NSSR-i3d-resnet50-v1-

kinetics400 with used 15 components. The best was the Neural Network with an AUC 

of 0.72, accuracy of 0.72, precision of 0.72, recall of 0.72, and F1 score of 0.72 on 

NSSR-slowfast-4x16-resnet50-kinetics400 with the same component size. The best 

was the Neural Network with an AUC of 0.68, accuracy of 0.68, precision of 0.68, 

recall of 0.68, and F1 score of 0.67 on NSSR-slowfast-8x8- resnet101-kinetics400 

with used same component size. It is seen that the best results are obtained when the 

component number is selected as 20.  Furthermore, the results indicate that selecting 

10 components led to worse performance, while using 5 and 15 components produced 

the best outcomes. After applying PCA, the best model is KNeighbors. Additionally, 

Neural Network and Random Forest, Gradient Boosting and Decision Tree are the 

other best-performing models. 
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4.3. Performance Results 

In this study, each preprocessing step, PCA, and then feature selection with three 

different parameters were applied to all datasets separately. All training operations 

were performed by considering the raw datasets that were not preprocessed and feature 

selection. As mentioned in the previous sections, the results were evaluated with AUC, 

recall, precision, accuracy, and F1 score and performance metrics. 

Table 2.1 displays the outcomes. The table consists of the dataset name, applied 

preprocessing process, feature selection process, best machine learning algorithm 

used, the best parameter set of the algorithm, training performance metrics, and test 

performance metrics. The best machine learning algorithm and the best parameter set 

are included in this section, while all the results, including all the machine learning 

algorithms and all the parameter sets used, are included in the Appendix A section. 
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Table 4.1. Performance results 

Dataset  Preprocess Feature selection Machine learning algorithm Parameter set Train metrics Test metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 
/ 10000) 

No Neural Network {'hidden_layer_sizes': (50, 50), 
'activation': 'relu', 'max_iter': 50} 
 

AUC : 0.86 (+/-0.08) 
Accuracy : 0.81 (+/-0.13) 
Recall : 0.81 (+/-0.13) 
Precision : 0.81 (+/-0.12) 
F1-Score : 0.80 (+/-0.13) 

AUC : 0.90 
Accuracy : 0.90 
Recall : 0.91 
Precision : 0.90 
F1-Score : 0.90 

NS-i3d-resnet50-
v-kinetics400 

Binarization (Threshold = 1 
/ 100000) 

No Gradient Boosting {'n_estimators': 300, 'max_features': 
'log2', 'max_depth': 3, 
'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.87 (+/-0.13) 
Accuracy : 0.79 (+/-0.14) 
Recall : 0.79 (+/-0.15) 
Precision : 0.79 (+/-0.14) 
F1-Score : 0.79 (+/-0.14) 

AUC : 0.90 
Accuracy : 0.90 
Recall : 0.91 
Precision : 0.90 
F1-Score : 0.90 

NS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 
/ 10000) 

No KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'auto'} 
 

AUC : 0.86 (+/-0.12) 
Accuracy : 0.77 (+/-0.13) 
Recall : 0.77 (+/-0.13) 
Precision : 0.78 (+/-0.14) 
F1-Score : 0.77 (+/-0.14) 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-slowfast-
8x8-resnet101- 
kinetics400 
 

Binarization (Threshold = 1 
/ 10000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 
'min_samples_leaf': 5} 

AUC : 0.87 (+/-0.16) 
Accuracy : 0.78 (+/-0.20) 
Recall : 0.78 (+/-0.20) 
Precision : 0.79 (+/-0.21) 
F1-Score : 0.78 (+/-0.20) 

AUC : 0.87 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.87 

NSS-i3d-nl10-
resnet101-v- 
kinetics400 

Binarization (Threshold = 1 
/ 1000) 

No Neural Network {'hidden_layer_sizes': (20,), 'activation': 
'relu', 'max_iter': 100} 
 

AUC : 0.78 (+/-0.16) 
Accuracy : 0.73 (+/-0.15) 
Recall : 0.73 (+/-0.15) 
Precision : 0.74 (+/-0.15) 
F1-Score : 0.73 (+/-0.15) 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.79 
Precision : 0.77 
F1-Score : 0.76 

NSS-i3d-
resnet50-v-
kinetics400 

Z-score Normalization No Gradient Boosting {'n_estimators': 200, 'max_features': 
'sqrt', 'max_depth': 3, 
'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.84 (+/-0.18) 
Accuracy : 0.75 (+/-0.16) 
Recall : 0.76 (+/-0.16) 
Precision : 0.75 (+/-0.16) 
F1-Score : 0.75 (+/-0.16) 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.80 
Precision : 0.80 
F1-Score : 0.80 
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Table 4.1. (contd) 

Dataset  Preprocess Feature 
Selection 

Machine Learning 
Algorithm 

Parameter Set Train Metrics Test Metrics 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K 
= 50) 

Random Forest {'criterion': 'entropy', 'n_estimators': 
100, 'max_features': 'sqrt', 
'min_samples_leaf': 1}  

AUC : 0.83 (+/-0.16) 
Accuracy : 0.74 (+/-0.17) 
Recall : 0.74 (+/-0.17) 
Precision : 0.74 (+/-0.16) 
F1-Score : 0.74 (+/-0.17) 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.85 
Precision : 0.85 
F1-Score : 0.85  

NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 
/ 1000000) 

No Neural Network {'hidden_layer_sizes': (100,), 
'activation': 'identity', 'max_iter': 100} 

AUC : 0.76 (+/-0.08) 
Accuracy : 0.68 (+/-0.12) 
Recall : 0.69 (+/-0.14) 
Precision : 0.68 (+/-0.12) 
F1-Score : 0.67 (+/-0.12) 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.80 
Precision : 0.80 
F1-Score : 0.80 

NSSR-i3d-nl10-
resnet101-v1- 
kinetics400 

Max Absolute Scaling SelectKBest (K 
= 50) 

Gradient Boosting {'n_estimators': 200, 'max_features': 
'sqrt', 'max_depth': 5, 
'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.77 (+/-0.12) 
Accuracy : 0.70 (+/-0.08) 
Recall : 0.70 (+/-0.08) 
Precision : 0.70 (+/-0.08) 
F1-Score : 0.70 (+/-0.08) 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-i3d-
resnet50-v1- 
kinetics400 

Binarization (Threshold = 1 
/ 10000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 
'sqrt', 'max_depth': 3, 
'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.78 (+/-0.11) 
Accuracy : 0.69 (+/-0.12) 
Recall : 0.69 (+/-0.12) 
Precision : 0.70 (+/-0.12) 
F1-Score : 0.69 (+/-0.11) 

AUC : 0.76 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K 
= 20) 

Gradient Boosting {'n_estimators': 100, 'max_features': 
'sqrt', 'max_depth': 3, 
'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.75 (+/-0.08) 
Accuracy : 0.69 (+/-0.13) 
Recall : 0.69 (+/-0.13) 
Precision : 0.69 (+/-0.13) 
F1-Score : 0.68 (+/-0.13) 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NSSR-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 
/ 100000) 

No Gradient Boosting {'n_estimators': 300, 'max_features': 
'log2', 'max_depth': 3, 
'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.76 (+/-0.05) 
Accuracy : 0.68 (+/-0.05) 
Recall : 0.68 (+/-0.05) 
Precision : 0.69 (+/-0.05) 
F1-Score : 0.68 (+/-0.06) 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 
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4.4. Inspection of False Negatives 

In this study, predictions were made using all models to classify videos as either theft-

related or normal. The results revealed instances where normal videos were 

misclassified as theft, or theft-related videos were mistakenly identified as normal. To 

further investigate these discrepancies, I randomly selected 10 videos and reviewed 3 

of them in detail. One of the selected videos depicted a shoplifting incident.As shown 

in Figure 3.1, I included three frames: one just before the theft, one at the moment of 

the theft, and one after the event. Because the video quality was low and the frames 

before and after the theft were similar, it was challenging to identify the precise 

moment of the theft. This made it challenging for the models to accurately detect the 

theft, and as a result, the video was misclassified as normal. This, revealed the 

difficulties of detecting theft in low-quality images where there are consecutive similar 

frames, which caused to errors in estimation. 

 
Figure 14.1. False negative shoplifting video frames 

The second video, which was labeled as "Stealing," was incorrectly predicted as 

"Normal." In contrast, the third video, labeled as "Normal," was predicted as "Theft." 

Figure 3.2 shows three frames from the video containing theft, while Figure 3.3 shows 

three frames from the normal video. Upon comparing these frames, it becomes evident 

that distinguishing between the two videos is challenging, as the frames appear 

strikingly similar. This similarity made it difficult for the model to accurately classify 

the videos, leading to incorrect predictions. The close resemblance between the frames 

highlights the complexity of accurately detecting theft in such footage.  
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Figure 15 False negative stealing video frames 

 

Figure 16 False negative normal video frames 
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5. CONCLUSION 

We developed a machine learning-based approach for automatic theft detection 

utilizing pre-trained human action recognition models in this study. The most suitable 

models for theft detection in real surveillance datasets were found. Inferences were 

obtained using action recognition models in theft anomaly video datasets. These 

inferences were used as features of each video, and this study was guided in this way. 

By applying machine learning classification models to datasets that contained features 

obtained from inferences, we aimed to make a difference. In order to assess whether a 

video is a theft or a normal video, we performed binary classification on different 

datasets that included theft incidents divided into three separate categories.  The best 

results were achieved with the NS-i3d-nl10-resnet101-v1-kinetics400 and NS-i3d-

resnet50-v-kinetics400 datasets, which were generated using the 

i3d_nl10_resnet101_v1_kinetics400 and i3d-resnet50-v-kinetics400 pre-trained 

models. These datasets contain normal and theft data. These results were obtained 

using Neural Network and Gradient Boosting performance models. These results were 

achieved by applying binarization to the datasets. In the datasets containing stealing, 

shoplifting, and normal data, the best result was obtained from the NSS-slowfast-4x16-

resnet50-kinetics400 dataset. On the other hand, the best results from datasets 

containing all four categories were achieved from the NSSR-slowfast-4x16-resnet50-

kinetics400. These result were obtained by applying max absolute scaling and feature 

selection techniques to the datasets. When comparing the SlowFast pre-trained video 

input sampling structures, 8x8 and 4x16, the highest results were obtained with 4x16 

according to the dataset categories. While the fast path processes frames at 16 frames 

per second, the slow path processes frames at four frames per second, allowing us to 

obtain higher results. The 8x8 result is higher in the dataset containing only normal 

stealing videos. The machine learning algorithms that delivered the highest 

performance were Neural Network, Gaussian Naive Bayes, Gradient Boosting, 

KNeighbors and Random Forest.
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In contrast, the Decision Tree and Support Vector Machine models produced the 

lowest performance and are not recommended for this problem. The results from the 

preprocessed datasets outperformed those from the raw datasets. The most effective 

preprocessing techniques were binarization and max absolute scaling. Furthermore, 

the results achieved by applying feature selection to the datasets generated with the 

slowfast-4x16-resnet50-kinetics400 pre-trained model are significantly better than 

those obtained without applying feature selection. Meanwhile, in other datasets, 

similar performance results were observed with fewer features after applying the 

feature selection method.  The test metrics typically fall within the range obtained by 

adding or subtracting the standard deviation of the training results. This situation and 

the test metrics are generally to be higher, as has been expected.  However, there are 

some exceptional cases The short quantity of data in the test set as a result of the little 

number of theft data is determined to be the cause of this situation. 

This approach can be applied to real video surveillance data in theft prevention and 

increase human safety. Here, by lowering human involvement, there will be the 

potential to increase accuracy, support scalability, and maintain consistency in video 

surveillance processing. The ability to accurately detect theft automatically with data 

received from surveillance video systems increases the security level in indoor and 

outdoor areas. It enables individuals or institutions to prevent economic or trust losses 

caused by malicious criminals. Despite its promise, this study still has drawbacks, 

including the possibility of false positives in complicated situations and its reliance on 

the standard of surveillance videos. These problems might be resolved by further 

improving the model. In conclusion, this study shows how machine learning may 

improve surveillance systems, setting the platform for more secure, more effective 

ways of preventing crime and theft.
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APPENDICES 

Appendix A. Performance Results of the Best Three Results 

In the Appendix A section, for all machine learning algorithms, the performance 

results of the best three models among all the results obtained by applying all 

preprocessing and feature selection steps separately are shown in the tables below. 
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Table 1.1. The best three results after applying selectkbest-20 feature selection and binarization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 
'min_samples_leaf': 2}  

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 
'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20)  Neural Network {'hidden_layer_sizes': (100,), 
'activation': 'identity', 'max_iter': 100} 
 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 
'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 
2, 'algorithm': 'kd_tree'} 
 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,), 
'activation': 'relu', 'max_iter': 100} 
 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.89 
Precision : 0.85 
F1-Score : 0.85 
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Table 1.2. The best results after applying selectkbest-20 feature selection and binarization on NS 

Dataset  Preprocess Feature Selection Best Machine Learning 
Algorithm 

Best Parameter Set Test Metrics 

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (50, 50), 
'activation': 'relu', 'max_iter': 
50} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,), 
'activation': 'relu', 'max_iter': 
100} 

AUC : 0.82 
Accuracy : 0.83 
Recall : 0.82 
Precision : 0.83 
F1-Score : 0.82 

NS-i3d-nl10-resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20)  Random Forest {'criterion': 'entropy', 
'n_estimators': 200, 
'max_features': 'sqrt', 
'min_samples_leaf': 5} 
 

AUC : 0.81 
Accuracy : 0.80 
Recall : 0.83 
Precision : 0.80 
F1-Score : 0.80 

NS-i3d-nl10-resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 
300, 'max_features': 'log2', 
'min_samples_leaf': 2} 
 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 
'max_features': 'sqrt', 
'max_depth': 3, 
'min_samples_split': 2, 
'min_samples_leaf': 1, 
'subsample': 0.8}  

AUC : 0.81 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.82 

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200, 
'max_features': 'sqrt', 
'max_depth': 5, 
'min_samples_split': 5, 
'min_samples_leaf': 1, 
'subsample': 1.0} 

AUC : 0.81 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.82 
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Table 1.3. The best three results after applying selectkbest-20 feature selection and binarization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.77 
Precision : 0.75 
F1-Score : 0.75 

NSS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20)  Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.72 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.72 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,), 'activation': 
'relu', 'max_iter': 100}  

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (10,), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,), 'activation': 
'relu', 'max_iter': 100}  

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.80 
Precision : 0.73 
F1-Score : 0.72 
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Table 1.4. The best three results after applying selectkbest-20 feature selection and binarization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (10,), 'activation': 
'relu', 'max_iter': 50}  

AUC : 0.72 
Accuracy : 0.72 
Recall : 0.73 
Precision : 0.72 
F1-Score : 0.71 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20) KNeighbors {'leaf_size': 30, 'n_neighbors': 11, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.70 
Accuracy : 0.70 
Recall : 0.72 
Precision : 0.70 
F1-Score : 0.70 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20)  Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.70 
Accuracy : 0.70 
Recall : 0.70 
Precision : 0.70 
F1-Score : 0.70 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Support Vector Machine {'kernel': 'rbf', 'gamma': 1, 'C': 1.0} AUC : 0.68 
Accuracy : 0.68 
Recall : 0.68 
Precision : 0.68 
F1-Score : 0.68 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.68 
Accuracy : 0.68 
Recall : 0.72 
Precision : 0.68 
F1-Score : 0.67 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Gaussian Naive Bayes {'var_smoothing': 0.001} AUC : 0.68 
Accuracy : 0.68 
Recall : 0.72 
Precision : 0.68 
F1-Score : 0.67 
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Table 1.5. The best three results after applying selectkbest-20 feature selection and binarization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.71 
Accuracy : 0.71 
Recall : 0.71 
Precision : 0.71 
F1-Score : 0.71 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.71 
Accuracy : 0.71 
Recall : 0.71 
Precision : 0.71 
F1-Score : 0.71 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 20)  Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.71 
Accuracy : 0.71 
Recall : 0.71 
Precision : 0.71 
F1-Score : 0.71 

NSSR-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.69 
Accuracy : 0.68 
Recall : 0.71 
Precision : 0.68 
F1-Score : 0.68 

NSSR-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.69 
Accuracy : 0.68 
Recall : 0.71 
Precision : 0.68 
F1-Score : 0.68 

NSSR-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.68 
Accuracy : 0.68 
Recall : 0.69 
Precision : 0.68 
F1-Score : 0.67 
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Table 1.6. The best three results after applying selectkbest-20 feature selection and binarization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2}  

AUC : 0.71 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.71 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.71 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.71 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 20)  Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.71 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.71 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'auto'}  

AUC : 0.64 
Accuracy : 0.63 
Recall : 0.65 
Precision : 0.63 
F1-Score : 0.63 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) KNeighbors {'leaf_size': 40, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'brute'} 

AUC : 0.64 
Accuracy : 0.63 
Recall : 0.65 
Precision : 0.63 
F1-Score : 0.63 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1 

AUC : 0.64 
Accuracy : 0.65 
Recall : 0.66 
Precision : 0.65 
F1-Score : 0.64 
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Table 1.7. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 20)  Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 
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Table 1.8. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.80 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 20)  Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.78 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.79 
Precision : 0.77 
F1-Score : 0.76 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.78 
Precision : 0.77 
F1-Score : 0.77 
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Table 1.9. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 20) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.78 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 20)  Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.80 
Accuracy : 0.79 
Recall : 0.80 
Precision : 0.79 
F1-Score : 0.79 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.78 
Precision : 0.78 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.78 
Precision : 0.78 
F1-Score : 0.78 
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Table 1.10. The best three results after applying selectkbest-20 feature selection and no-preprocess on NS and NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 20)  Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 
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Table 1.11. The best three results after applying selectkbest-20 feature selection and no-preprocess on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.80 
Accuracy : 0.79 
Recall : 0.80 
Precision : 0.79 
F1-Score : 0.79 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 20)  Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.78 
Precision : 0.78 
F1-Score : 0.78 
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Table 1.12. The best three results after applying selectkbest-30 feature selection and binarization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'kd_tree'} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.89 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30)  KNeighbors {'leaf_size': 50, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'ball_tree'}  

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 
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Table 1.13. The best three results after applying selectkbest-30 feature selection and binarization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30)  Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.81 
Accuracy : 0.80 
Recall : 0.82 
Precision : 0.80 
F1-Score : 0.80 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.76 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.77 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.74 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 
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Table 1.14. The best three results after applying selectkbest-30 feature selection and binarization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.75 
Precision : 0.73 
F1-Score : 0.73 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30)  Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.72 
Accuracy : 0.72 
Recall : 0.75 
Precision : 0.72 
F1-Score : 0.71 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 
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Table 1.15. The best three results after applying selectkbest-30 feature selection and binarization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 11, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30)  Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.72 
Accuracy : 0.72 
Recall : 0.74 
Precision : 0.72 
F1-Score : 0.71 

NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.68 
Accuracy : 0.68 
Recall : 0.70 
Precision : 0.68 
F1-Score : 0.67 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.66 
Accuracy : 0.67 
Recall : 0.68 
Precision : 0.67 
F1-Score : 0.66 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Decision Tree {'criterion': 'gini', 'random_state': 0, 
'max_depth': 3, 'min_samples_leaf': 2, 'splitter': 
'best'} 

AUC : 0.66 
Accuracy : 0.67 
Recall : 0.73 
Precision : 0.67 
F1-Score : 0.64 
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Table 1.16. The best three results after applying selectkbest-30 feature selection and binarization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30) Neural Network 'hidden_layer_sizes': (50, 50), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu', 
'max_iter': 100} 

AUC : 0.72 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 30)  Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100}  

AUC : 0.72 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.72 
Accuracy : 0.71 
Recall : 0.74 
Precision : 0.71 
F1-Score : 0.70 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.71 
Accuracy : 0.71 
Recall : 0.72 
Precision : 0.71 
F1-Score : 0.71 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.71 
Accuracy : 0.71 
Recall : 0.72 
Precision : 0.71 
F1-Score : 0.71 
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Table 1.17. The best three results after applying selectkbest-30 feature selection and binarization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.72 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.72 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.71 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.71 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 30)  Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.71 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.71 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 3, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.66 
Accuracy : 0.68 
Recall : 0.68 
Precision : 0.68 
F1-Score : 0.66 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.66 
Accuracy : 0.68 
Recall : 0.69 
Precision : 0.68 
F1-Score : 0.66 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.66 
Accuracy : 0.68 
Recall : 0.69 
Precision : 0.68 
F1-Score : 0.66 
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Table 1.18. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

Max Absolute Scaling SelectKBest (K = 30)  Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 
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Table 1.19. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.78 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.78 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 30)  Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.80 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2}  

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 
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Table 1.20. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 30) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.76 
Precision : 0.75 
F1-Score : 0.75 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 30)  Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.75 
Accuracy : 0.74 
Recall : 0.75 
Precision : 0.74 
F1-Score : 0.74 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.74 
Accuracy : 0.74 
Recall : 0.74 
Precision : 0.74 
F1-Score : 0.74 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 
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Table 1.21. The best three results after applying selectkbest-30 feature selection and no-preprocess on NS and NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.89 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 30)  KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 
'algorithm': 'auto'}    

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1}  

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 
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Table 1.22. The best three results after applying selectkbest-30 feature selection and no-preprocess on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8}  

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 30)  Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.77 
Precision : 0.76 
F1-Score : 0.76 
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Table 1.23. The best three results after applying selectkbest-50 feature selection and binarization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.89 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50)  Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.89 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Neural Network {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 
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Table 1.24. The best three results after applying selectkbest-50 feature selection and binarization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Support Vector Machine {'kernel': 'rbf', 'gamma': 1, 'C': 1.0} AUC : 0.76 
Accuracy : 0.75 
Recall : 0.78 
Precision : 0.75 
F1-Score : 0.75 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.76 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.77 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) KNeighbors {'leaf_size': 50, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'ball_tree'} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 
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Table 1.25. The best three results after applying selectkbest-50 feature selection and binarization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.73 
Accuracy : 0.72 
Recall : 0.82 
Precision : 0.72 
F1-Score : 0.70 

NSS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu', 
'max_iter': 100}  

AUC : 0.72 
Accuracy : 0.72 
Recall : 0.77 
Precision : 0.72 
F1-Score : 0.71 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2}    

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.80 
Precision : 0.80 
F1-Score : 0.80 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2}  

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 
'algorithm': 'auto'} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.78 
Precision : 0.78 
F1-Score : 0.78 
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Table 1.26. The best three results after applying selectkbest-50 feature selection and binarization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 
'algorithm': 'auto'}  

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.72 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.72 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.71 
Accuracy : 0.72 
Recall : 0.72 
Precision : 0.72 
F1-Score : 0.72 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Decision Tree {'criterion': 'gini', 'random_state': 0, 
'max_depth': None, 'min_samples_leaf': 1, 
'splitter': 'best'} 

AUC : 0.70 
Accuracy : 0.70 
Recall : 0.71 
Precision : 0.70 
F1-Score : 0.70 

NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.68 
Accuracy : 0.68 
Recall : 0.69 
Precision : 0.68 
F1-Score : 0.68 

NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 
'algorithm': 'auto'}  

AUC : 0.66 
Accuracy : 0.67 
Recall : 0.68 
Precision : 0.67 
F1-Score : 0.66 
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Table 1.27. The best three results after applying selectkbest-50 feature selection and binarization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 
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Table 1.28. The best three results after applying selectkbest-50 feature selection and binarization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.78 
Precision : 0.78 
F1-Score : 0.78 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0}  

AUC : 0.77 
Accuracy : 0.78 
Recall : 0.77 
Precision : 0.78 
F1-Score : 0.77 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 5, 'subsample': 1.0}  

AUC : 0.77 
Accuracy : 0.78 
Recall : 0.77 
Precision : 0.78 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.66 
Accuracy : 0.67 
Recall : 0.67 
Precision : 0.67 
F1-Score : 0.66 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.65 
Accuracy : 0.66 
Recall : 0.67 
Precision : 0.66 
F1-Score : 0.65 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50}  

AUC : 0.65 
Accuracy : 0.66 
Recall : 0.67 
Precision : 0.66 
F1-Score : 0.65 
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Table 1.29. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.90 
Accuracy : 0.88 
Recall : 0.90 
Precision : 0.88 
F1-Score : 0.87 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu', 
'max_iter': 100} 

AUC : 0.84 
Accuracy : 0.83 
Recall : 0.85 
Precision : 0.83 
F1-Score : 0.82 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2}  

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.86 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.84 
Accuracy : 0.83 
Recall : 0.85 
Precision : 0.83 
F1-Score : 0.82 
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Table 1.30. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.85 
Precision : 0.85 
F1-Score : 0.85 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.83 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.83 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1}  

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 
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Table 1.31. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2}  

AUC : 0.74 
Accuracy : 0.74 
Recall : 0.74 
Precision : 0.74 
F1-Score : 0.74 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.74 
Accuracy : 0.74 
Recall : 0.74 
Precision : 0.74 
F1-Score : 0.74 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.74 
Accuracy : 0.74 
Recall : 0.74 
Precision : 0.74 
F1-Score : 0.74 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 
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Table 1.32. The best three results after applying selectkbest-50 feature selection and no-preprocess on NS and NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.86 
Accuracy : 0.85 
Recall : 0.87 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-
resnet50-v-
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5}  

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.85 
Precision : 0.85 
F1-Score : 0.85 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2}  

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.83 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 
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Table 1.33. The best three results after applying selectkbest-50 feature selection and no-preprocess on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

No SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 
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Table 1.34. The best three results after applying binarizationa and no selection on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Random Forest {'criterion': 'entropy', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 500, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu', 
'max_iter': 100} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.85 
Precision : 0.85 
F1-Score : 0.85 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 
'relu', 'max_iter': 50} 

AUC : 0.90 
Accuracy : 0.90 
Recall : 0.91 
Precision : 0.90 
F1-Score : 0.90 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.89 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu', 
'max_iter': 100}  

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 
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Table 1.35. The best three results after applying binarization and no selection on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.90 
Accuracy : 0.90 
Recall : 0.91 
Precision : 0.90 
F1-Score : 0.90 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.89 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.89 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.83 
Precision : 0.83 
F1-Score : 0.83 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 
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Table 1.36. The best three results after applying binarization and no selection on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.78 
Accuracy : 0.78 
Recall : 0.78 
Precision : 0.78 
F1-Score : 0.78 

NSS-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.82 
Precision : 0.77 
F1-Score : 0.76 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NSS-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50}  

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 



 82 

Table 1.37. The best three results after applying binarization and no selection on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 2}  

AUC : 0.84 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.83 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.83 
Accuracy : 0.83 
Recall : 0.84 
Precision : 0.83 
F1-Score : 0.83 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 
'identity', 'max_iter': 100} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.80 
Precision : 0.80 
F1-Score : 0.80 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSS-slowfast-
8x8-resnet101- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 1, 'subsample': 1.0}  

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 
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Table 1.38. The best three results after applying binarization and no selection on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.74 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2}  

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.72 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
1000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1}  

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.73 
Precision : 0.73 
F1-Score : 0.73 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.79 
Accuracy : 0.78 
Recall : 0.79 
Precision : 0.78 
F1-Score : 0.78 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
10000) 

No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 
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Table 1.39 The best three results after applying binarization and no selection on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 5} 

AUC : 0.75 
Accuracy : 0.75 
Recall : 0.75 
Precision : 0.75 
F1-Score : 0.75 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
100000) 

No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0}  

AUC : 0.73 
Accuracy : 0.73 
Recall : 0.74 
Precision : 0.73 
F1-Score : 0.73 

NSSR-i3d-
resnet50-v-
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.70 
Accuracy : 0.71 
Recall : 0.71 
Precision : 0.71 
F1-Score : 0.71 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Random Forest {'criterion': 'gini', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.70 
Accuracy : 0.71 
Recall : 0.72 
Precision : 0.71 
F1-Score : 0.70 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Binarization (Threshold = 1 / 
1000000) 

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.70 
Accuracy : 0.70 
Recall : 0.70 
Precision : 0.70 
F1-Score : 0.70 
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Table 1.40. The best three results after applying max absolute scaling, z-score normalization and no selection on NS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling No Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.90 
Accuracy : 0.90 
Recall : 0.90 
Precision : 0.90 
F1-Score : 0.90 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling No Gaussian Naive Bayes {'var_smoothing': 0.001} AUC : 0.90 
Accuracy : 0.90 
Recall : 0.90 
Precision : 0.90 
F1-Score : 0.90 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu', 
'max_iter': 50} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 0.001} AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 1e-05} AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 
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Table 1.41. The best three results after applying max absolute scaling, z-score normalization and no selection on NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling No Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.80 
Precision : 0.80 
F1-Score : 0.80 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization No Random Forest {'criterion': 'entropy', 'n_estimators': 100, 
'max_features': 'sqrt', 'min_samples_leaf': 1} 

AUC : 0.85 
Accuracy : 0.85 
Recall : 0.85 
Precision : 0.85 
F1-Score : 0.85 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8}  

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 
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Table 1.42. The best three results after applying max absolute scaling, z-score normalization and no selection on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling No Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-i3d-nl10-
resnet101-v1-
kinetics400 

Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 5, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization No Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.78 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0} 

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

Z-Score Normalization No Gradient Boosting {'n_estimators': 100, 'max_features': 10, 
'max_depth': 5, 'min_samples_split': 10, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.75 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.75 
F1-Score : 0.75 
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Table 1.43. The best three results after applying no-preprocess and no selection on NS and NSS 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NS-i3d-nl10-
resnet101-v1-
kinetics400 

No No Random Forest {'criterion': 'gini', 'n_estimators': 200, 
'max_features': 'sqrt', 'min_samples_leaf': 2} 

AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No No Gaussian Naive Bayes {'var_smoothing': 1e-08} AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NS-i3d-nl10-
resnet101-v1-
kinetics400 

No No Gaussian Naive Bayes {'var_smoothing': 1e-12} AUC : 0.88 
Accuracy : 0.88 
Recall : 0.88 
Precision : 0.88 
F1-Score : 0.88 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.82 
Accuracy : 0.82 
Recall : 0.82 
Precision : 0.82 
F1-Score : 0.82 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.81 
Precision : 0.80 
F1-Score : 0.80 

NSS-slowfast-
4x16-resnet50- 
kinetics400 

No No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 5, 
'min_samples_leaf': 1, 'subsample': 1.0} 

AUC : 0.80 
Accuracy : 0.80 
Recall : 0.80 
Precision : 0.80 
F1-Score : 0.80 
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Table 1.44. The best three results after applying no-preprocess and no selection on NSSR 

Dataset  Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics 
NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 
'max_depth': 5, 'min_samples_split': 2, 
'min_samples_leaf': 5, 'subsample': 1.0}  

AUC : 0.77 
Accuracy : 0.77 
Recall : 0.77 
Precision : 0.77 
F1-Score : 0.77 

NSSR-slowfast-
4x16-resnet50- 
kinetics400 

No No Random Forest {'criterion': 'gini', 'n_estimators': 300, 
'max_features': 'log2', 'min_samples_leaf': 2} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.77 
Precision : 0.76 
F1-Score : 0.76 

NSSR-i3d-
resnet50-v-
kinetics400 

No No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt', 
'max_depth': 3, 'min_samples_split': 2, 
'min_samples_leaf': 1, 'subsample': 0.8} 

AUC : 0.76 
Accuracy : 0.76 
Recall : 0.76 
Precision : 0.76 
F1-Score : 0.76 
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Appendix B. 400 Action Classes 

In Appendix B section, the 400 action classes used in the data obtained using the pre-

train action recognition model are shown in tables.
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Table 2.1. 400 action classes 

abseiling 
air_drumming 
answering_questions 
applauding 
applying_cream 
archery 
arm_wrestling 
arranging_flowers 
assembling_computer 
auctioning 
baby_waking_up 
baking_cookies 
balloon_blowing 
bandaging 
barbequing 
bartending 
beatboxing 
bee_keeping 
belly_dancing 
bench_pressing 
bending_back 
bending_metal 
biking_through_snow 
blasting_sand 
blowing_glass 
blowing_leaves 
blowing_nose 
blowing_out_candles 
bobsledding 
bookbinding 
bouncing_on_trampoline 
bowling 

braiding_hair 
breading_or_breadcrumbing 
breakdancing 
brush_painting 
brushing_hair 
brushing_teeth 
building_cabinet 
building_shed 
bungee_jumping 
busking 
canoeing_or_kayaking 
capoeira 
carrying_baby 
cartwheeling 
carving_pumpkin 
catching fish 
catching_or_throwing_baseball 
catching_or_throwing_frisbee 
catching_or_throwing_softball 
celebrating 
changing_oil 
changing_wheel 
checking_tires 
cheerleading 
chopping_wood 
clapping 
clay_pottery_making 
clean_and_jerk 
cleaning_floor 
cleaning_gutters 
cleaning_pool 
cleaning_shoes  

cleaning_toilet 
cleaning_windows 
climbing_a_rope 
climbing_ladder 
climbing_tree 
contact_juggling 
cooking_chicken 
cooking_egg 
cooking_on_campfire 
cooking_sausages 
counting_money 
country_line_dancing  
cracking_neck 
crawling_baby 
crossing_river  
crying 
curling_hair 
cutting_nails 
cutting_pineapple 
cutting_watermelon  
dancing_ballet 
dancing_charleston 
dancing_gangnam_style 
dancing_macarena 
deadlifting 
decorating_the_christmas_tree 
digging 
dining 
disc_golfing 
diving_cliff 
dodgeball 
doing_aerobics  

doing_laundry 
doing_nails 
drawing 
dribbling_basketball 
drinking 
drinking_beer 
drinking_shots 
driving_car 
driving_tractor 
drop_kicking 
drumming_fingers 
dunking_basketball 
dying_hair 
eating_burger 
eating_cake 
eating_carrots 
eating_chips 
eating_doughnuts 
eating_hotdog 
eating_ice_cream 
eating_spaghetti 
eating_watermelon 
egg_hunting 
exercising_arm 
exercising_with_an_exercise_ball 
extinguishing_fire 
faceplanting 
feeding_birds 
feeding_fish 
feeding_goats 
filling_eyebrows 
finger_snapping 

fixing_hair 
flipping_pancake 
flying_kite 
folding_clothes 
folding_napkins 
folding_paper 
front_raises 
frying_vegetables 
garbage_collecting 
gargling 
getting_a_haircut 
getting_a_tattoo 
giving_or_receiving_award 
golf_chipping 
golf_driving 
golf_putting 
grinding_meat 
grooming_dog 
grooming_horse 
gymnastics_tumbling 
hammer_throw 
headbanging 
headbutting 
high_jump 
high_kick 
hitting_baseball 
hockey_stop 
holding_snake 
hopscotch 
hoverboarding 
hugging 
hula_hooping 

hurdling 
hurling_-sport- 
ice_climbing 
ice_fishing 
ice_skating 
ironing 
javelin_throw 
jetskiing 
jogging 
juggling_balls 
juggling_fire 
juggling_soccer_ball 
jumping_into_pool 
jumpstyle_dancing 
kicking_field_goal 
kicking_soccer_ball 
kissing 
kitesurfing 
knitting 
krumping 
laughing 
laying_bricks 
long_jump 
lunge 
making_a_cake 
making_a_sandwich 
making_bed 
making_jewelry 
making_pizza 
making_snowman 
making_sushi 
making_tea 

marching 
massaging_back 
massaging_feet 
massaging_legs 
massaging_ 
person's_head 
milking_cow 
mopping_floor 
motorcycling 
moving_furniture 
mowing_lawn 
news_anchoring 
opening_bottle 
opening_present 
paragliding 
parasailing 
parkour 
passing_American 
_football_in_game- 
passing_American_ 
football_notin_game- 
peeling_apples 
peeling_potatoes 
petting_animal_-
not_cat- 
petting_cat 
picking_fruit 
planting_trees 
plastering 
playing_accordion 
playing_badminton 
playing_bagpipes 
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Table 2.1. (contd) 

playing_basketball 
playing_bass_guitar 
playing_cards 
playing_cello 
playing_chess 
playing_clarinet 
playing_controller 
playing_cricket 
playing_cymbals 
playing_didgeridoo 
playing_drums 
playing_flute 
playing_guitar 
playing_harmonica 
playing_harp 
playing_ice_hockey 
playing_keyboard 
playing_kickball 
playing_monopoly 
playing_organ 
playing_paintball 
playing_piano 
playing_poker 
playing_recorder 
playing_saxophone 
playing_squash 
_or_racquetball 
playing_tennis 
playing_trombone 
playing_trumpet 
playing_ukulele 

playing_violin 
playing_volleyball 
playing_xylophone 
pole_vault 
presenting_weather_forecast 
pull_ups 
pumping_fist 
pumping_gas 
punching_bag 
punching_person_-boxing- 
push_up 
pushing_car 
pushing_cart 
pushing_wheelchair 
reading_book 
reading_newspaper 
recording_music 
riding_a_bike 
riding_camel 
riding_elephant 
riding_mechanical_bull 
riding_mountain_bike 
riding_mule 
riding_or_walking_with_horse 
riding_scooter 
riding_unicycle 
ripping_paper 
robot_dancing 
rock_climbing 
rock_scissors_paper 
roller_skating 

running_on_treadmil 
sailing 
salsa_dancing 
sanding_floor 
scrambling_eggs 
scuba_diving 
setting_table 
shaking_hands 
shaking_head 
sharpening_knives 
sharpening_pencil 
shaving_head 
shaving_legs 
shearing_sheep 
shining_shoes 
shooting_basketball 
shooting_goal_-soccer- 
shot_put 
shoveling_snow 
shredding_paper 
shuffling_cards 
side_kick 
sign_language_interpreting 
singing 
situp 
skateboarding 
ski_jumping 
skiing_not_ 
slalom_or_crosscountry- 
skiing_crosscountry 
skiing_slalom 

skipping_rope 
slacklining 
slapping 
sled_dog_racing 
smoking 
smoking_hookah 
snatch_weight_lifting 
sneezing 
sniffing 
snorkeling 
snowboarding 
snowkiting 
snowmobiling 
somersaulting 
spinning_poi 
spray_painting 
spraying 
springboard_diving 
squat 
sticking_tongue_out 
stomping_grapes 
stretching_arm 
stretching_leg 
strumming_guitar 
surfing_crowd 
surfing_water 
sweeping_floor 
swimming_backstroke 
swimming_breast_stroke 
swimming_butterfly_stroke 
swing_dancing 

swinging_legs 
swinging_on_something 
sword_fighting 
tai_chi 
taking_a_shower 
tango_dancing 
tap_dancing 
tapping_guitar 
tapping_pen 
tasting_beer 
tasting_food 
testifying 
texting 
throwing_axe 
throwing_ball 
throwing_discus 
tickling 
tobogganing 
tossing_coin 
tossing_salad 
training_dog 
trapezing 
trimming_or_shaving_beard 
trimming_trees 
triple_jump 
tying_bow_tie 
tying_knot_-not_on_a_tie- 
tying_tie 
unboxing 
unloading_truck 
using_computer 

using_remote_controller 
_-not_gaming- 
using_segway 
vault 
waiting_in_line 
walking_the_dog 
washing_dishes 
washing_feet 
washing_hair 
washing_hands 
water_skiing 
water_sliding 
watering_plants 
waxing_back 
waxing_chest 
waxing_eyebrows 
waxing_legs 
weaving_basket 
welding 
whistling 
windsurfing 
wrapping_present 
wrestling 
writing 
yawning 
yoga 
zumba 
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Appendix C. Machine Learning Algorithms Parameter Sets 

In Appendix C section, All parameter sets used for all machine learning algorithms are shown in 

tables. 

Table 3.1. Neural network parameter sets 

{'hidden_layer_sizes': (10,), 'activation': 'relu', 'max_iter' : 50} 
 {'hidden_layer_sizes': (100,), 'activation': 'relu', 'max_iter' : 50} 
 {'hidden_layer_sizes': (50,50), 'activation': 'relu', 'max_iter' : 50} 
 {'hidden_layer_sizes': (20,), 'activation': 'relu', 'max_iter' : 100} 
 {'hidden_layer_sizes': (100,), 'activation': 'identity', 'max_iter' : 100} 
 

Table 3.2. Support vector machine parameter sets 

{'kernel': 'linear', 'C': 1.0} 
 {'kernel': 'rbf', 'gamma': 1, 'C': 1.0} 
 {'kernel': 'poly', 'degree': 3, 'gamma': 0.01, 'C': 1.0} 
 {'kernel': 'sigmoid', 'gamma': 1, 'C': 1.0} 
 

Table 3.3. Decision tree parameter sets 

{'criterion': 'gini', 'random_state' : 0, 'max_depth' : None, 'min_samples_leaf' : 1, 'splitter': 'best'} 
 {'criterion': 'entropy', 'random_state' : 0, 'max_depth' : 5, 'min_samples_leaf' : 1, 'splitter': 'best'} 
 {'criterion': 'entropy', 'random_state' : 42, 'max_depth' : 3, 'min_samples_leaf' : 1, 'splitter': 'best'} 
 {'criterion': 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'best'} 
 {'criterion': 'gini', 'random_state' : 42, 'max_depth' : 5, 'min_samples_leaf' : 2, 'splitter': 'best'} 
{'criterion': 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'random'} 
 
{'criterion': 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'random'} 
 {'criterion': 'entropy', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'random'} 
 

Table 3.4. Gaussian naive bayes parameter sets 

{'var_smoothing': 1e-2} 
 {'var_smoothing': 1e-3} 
 {'var_smoothing': 1e-5} 
 {'var_smoothing': 1e-8} 
 {'var_smoothing': 1e-12} 
 {'var_smoothing': 1e-15} 
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Table 3.5. Random forest parameter sets 

{'criterion': 'entropy', 'n_estimators' : 100, 'max_features' : 'sqrt', 'min_samples_leaf' : 1} 
 {'criterion': 'gini', 'n_estimators' : 100, 'max_features' : 'sqrt', 'min_samples_leaf' : 1} 
 {'criterion': 'gini', 'n_estimators' : 100, 'max_features' : 'sqrt', 'min_samples_leaf' : 2} 
 {'criterion': 'gini', 'n_estimators' : 200, 'max_features' : 'sqrt', 'min_samples_leaf' : 2} 
 {'criterion': 'gini', 'n_estimators' : 300, 'max_features' : 'log2', 'min_samples_leaf' : 2} 
 {'criterion': 'gini', 'n_estimators': 100, 'max_features': 'sqrt', 'min_samples_leaf': 5} 
 {'criterion': 'entropy', 'n_estimators': 200, 'max_features': 'sqrt', 'min_samples_leaf': 5} 
 {'criterion': 'gini', 'n_estimators': 500, 'max_features': 'sqrt', 'min_samples_leaf': 5} 
 

Table 3.6. KNeighbors parameter sets 

{'leaf_size': 30, 'n_neighbors': 3, 'p': 2, 'algorithm': 'auto'} 
 {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 'algorithm': 'auto'} 
 {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 'algorithm': 'auto'} 
 {'leaf_size': 30, 'n_neighbors': 11, 'p': 2, 'algorithm': 'auto'} 
 {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 'algorithm': 'auto'} 
 {'leaf_size': 50, 'n_neighbors': 5, 'p': 2, 'algorithm': 'ball_tree'} 
 {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 'algorithm': 'kd_tree'} 
 {'leaf_size': 40, 'n_neighbors': 5, 'p': 2, 'algorithm': 'brute'} 
 

Table 3.7. Gradient boosting parameter sets 

{'n_estimators': 100, 'max_features' : 'sqrt', 'max_depth' : 3, 'min_samples_split' : 2, 'min_samples_leaf' : 1, 
'subsample': 0.8} 
 
{'n_estimators': 200, 'max_features' : 'sqrt', 'max_depth' : 3, 'min_samples_split' : 2, 'min_samples_leaf' : 1, 
'subsample': 0.8} 
 
{'n_estimators': 100, 'max_features' : 'sqrt', 'max_depth' : 3, 'min_samples_split' : 5, 'min_samples_leaf' : 1, 
'subsample': 1.0} 
 
{'n_estimators': 300, 'max_features' : 'log2', 'max_depth' : 3, 'min_samples_split' : 5, 'min_samples_leaf' : 1, 
'subsample': 1.0} 
 
{'n_estimators': 200, 'max_features' : 'sqrt', 'max_depth' : 5, 'min_samples_split' : 5, 'min_samples_leaf' : 1, 
'subsample': 1.0} 
 
{'n_estimators': 100, 'max_features' : 10, 'max_depth' : 5, 'min_samples_split' : 10, 'min_samples_leaf' : 1, 
'subsample': 1.0} 
 
{'n_estimators': 300, 'max_features' : 'log2', 'max_depth' : 5, 'min_samples_split' : 2, 'min_samples_leaf' : 5, 
'subsample': 1.0} 
 
{'n_estimators': 100, 'max_features' : 10, 'max_depth' : 5, 'min_samples_split' : 10, 'min_samples_leaf' : 5, 
'subsample': 1.0} 
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