

THE REPUBLIC OF TÜRKİYE

MUĞLA SITKI KOÇMAN UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND

APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

A MACHINE LEARNING-BASED APPROACH FOR

AUTOMATIC THEFT DETECTION

İREM KARACA ULUOĞLU

 MASTER’S THESIS

DECEMBER 2024

MUĞLA

MUĞLA SITKI KOÇMAN UNIVERSITY

Graduate School of Natural and Applied Sciences

APPROVAL OF THESIS

The thesis submitted by İREM KARACA ULUOĞLU, titled “A MACHINE
LEARNING-BASED APPROACH FOR AUTOMATIC THEFT DETECTION”
was unanimously accepted by the jury members on December 27, 2024, to fullfill the
requirements for the degree of Master’s in the Department of Computer Engineering.

__

THESIS JURY MEMBERS
Assist. Prof. Dr. Erdem TÜRK (Head of Jury) Signature:
Department of Computer Engineering,
Muğla Sıtkı Koçman University, Muğla

Assoc. Prof. Dr. Barış Ethem SÜZEK (Supervisor) Signature:
Department of Computer Engineering,
Muğla Sıtkı Koçman University, Muğla

Assoc. Prof. Dr. Gürhan GÜNDÜZ (Member) Signature:
Department of Computer Engineering,
Pamukkale University, Denizli

APPROVAL OF HEAD OF THE DEPARTMENT

Assoc. Prof. Dr. Barış Ethem SÜZEK Signature:
Head of Department Computer Engineering,
Muğla Sıtkı Koçman University, Muğla

Assoc. Prof. Dr. Barış Ethem SÜZEK Signature:
Supervisor, Department Computer Engineering,
Muğla Sıtkı Koçman University, Muğla

Date of Defense: 12/27/2024

 iii

I hereby declare that all information in this document has been obtained and presented
in accordance with academic and ethical conduct. I also declare that, as required by
these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

İrem Karaca Uluoğlu

12/27/2024

 iv

ÖZET
OTOMATİK HIRSIZLIK TESPİTİ İÇİN MAKİNE ÖĞRENİMİ TABANLI

BİR YAKLAŞIM

İrem KARACA ULUOĞLU

Yüksek Lisans Tezi

 Fen Bilimleri Enstitüsü
Bilgisayar Mühendisliği Anabilim Dalı

Danışman: Doç. Dr. Barış Ethem SÜZEK
Aralık 2024, 94 sayfa

Hırsızlık, küresel olarak artan yaygın bir suçtur. Hırsızlığı önlemek için sıklıkla video
gözetim sistemleri kullanılsa da bu sistemlerde hırsızlığın tespiti, sıkıcı ve tutarsız
olabilen manuel izlemeye bağlıdır. Bu, otomatik hırsızlık tespit sistemlerine olan
ihtiyacı ortaya koymaktadır. Bu çalışmada, derin öğrenme tabanlı önceden eğitilmiş
insan eylemi tanıma modelleri kullanarak otomatik hırsızlık tespit sistemi için makine
öğrenimi tabanlı bir yaklaşım geliştirmeyi amaçladık. Yaklaşımımız dört temel
adımdan oluşuyordu: veri seti hazırlama, özellik vektörü oluşturma, hırsızlık tespiti
için model eğitimi ve performans değerlendirmesi. Central Florida Üniversitesi-Suç
kamu veri setinden türettiğimiz veri setlerini kullandık. İlk veri setinde stealing ve
normal videolar, ikinci veri setinde shoplifting, stealing ve normal videolar ve üçüncü
veri setinde ise shoplifting, stealing, robbery ve normal videolar yer alıyordu.
Hırsızlıkla ilgili kategorileri içeren videolar "theft" olarak etiketlenirken, normal
videolar "normal" olarak etiketlendi. Her videodan 400 özelliğe sahip öznitelik
vektörleri oluşturmak için önceden eğitilmiş dört insan eylem tanıma modeli
kullandık. Bu, adım üç verisetinden türetilen 12 ayrı veri seti ile sonuçlandı. Sonra
farklı veri kümeleri arasında hırsızlığı normal videolardan ayırt etmek için ikili
sınıflandırma yapıldı. Eğitim verilerine Support Vector Machine, Decision Tree,
Neural Network, Random Forest, K-Nearest Neighbors, Gaussian Naive Bayes ve
Gradient Boosting olmak üzere çeşitli makine öğrenimi algoritmaları hiperparametre
ayarlaması ile uygulandı. Model performansı, test kümesine göre değerlendirildi. En
iyi performans gösteren, 0,90'lık AUC, 0,90'lık doğruluk, 0,91'lık duyarlılık, 0,90'lık
kesinlik ve 0,90'lık F1 score ile Neural Network modelidir. Bu yaklaşım, hırsızlık
önlemede gerçek video gözetim verilerine uygulanabilir ve insan güvenliğini
artırabilir. Bu çalışma, insan müdahalesini azaltarak, doğruluğu artırma ve video
gözetimi işleme sürecinde tutarlılığı koruma potansiyeli sunmaktadır.

Anahtar Kelimeler: Hırsızlık Tespiti, Makine Öğrenimi, Eylem Tanıma, Video’da

Otomatik Hırsızlık Tespiti, Video Gözetimi

 v

ABSTRACT
A MACHINE LEARNING-BASED APPROACH FOR AUTOMATIC THEFT

DETECTION

İrem KARACA ULUOĞLU

Master of Science (M.Sc.)

Graduate School of Natural and Applied Sciences
Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Barış Ethem SÜZEK
December 2024, 94 pages

Theft, a common crime, is increasing globally. Although video surveillance systems
are frequently employed to prevent theft, the detection of theft in these systems
depends on manual monitoring, which can be tedious and inconsistent. This reveals
the need for automatic theft detection systems. In this study, we aimed to develop a
machine learning-based approach for automatic theft detection systems using deep
learning-based pre-trained human action recognition models. Our approach consisted
of four key steps: dataset preparation, feature vector generation, model training for
theft detection, and performance evaluation. We used datasets derived from the
University of Central Florida-Crime public dataset. The first dataset contained stealing
and normal videos, the second included shoplifting, stealing, and normal videos, and
the third dataset had shoplifting, stealing, robbery, and normal videos. Videos
involving theft-related categories were labeled as “theft,” while normal videos were
labeled as “normal”. We utilized four pre-trained human action recognition models to
generate feature vectors with 400 features from each video. This resulted in 12 distinct
datasets derived from three datasets. Binary classification was then performed to
distinguish theft from normal videos across the different datasets. Machine learning
algorithms were applied to the training data, including Support Vector Machine,
Decision Tree, Neural Network, Random Forest, K-Nearest Neighbors, Gaussian
Naive Bayes, and Gradient Boosting, with hyperparameter tuning. Model performance
was evaluated based on the test set. The best-performing model was the Neural
Network, achieving an AUC of 0.90, accuracy of 0.90, recall of 0.91, precision of 0.90,
and an F1 score of 0.90. This approach can be applied to real video surveillance data
in theft prevention and increase human safety. Here, by lowering human involvement,
there will be the potential to increase accuracy and maintain consistency in video
surveillance processing.

Keywords: Theft Detection, Machine Learning, Action Recognition, Automatic Theft

Detection in Video, Video Surveillance

 vi

ACKNOWLEDGEMENTS

First of all, I am grateful to my advisor Assoc. Prof. Dr. Barış Ethem Süzek for his
knowledge, tolerance and guidance in the realization of this study. Your valuable
feedback and continuous support enlightened my path and contributed greatly to
completing my thesis in the best possible way.
Additionally, I would want to thank my spouse, Ömer Uluoğlu, whose constant love
and support provided me with the emotional support I needed. I am grateful to my
parents, Ayşe and Şahin Karaca, and brother, Anıl Karaca, for their constant backing
and belief in me.
 Finally, throughout the process of finishing this thesis, I would want to sincerely thank
everyone who helped and advised me.

 vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. vi
TABLE OF CONTENTS ... vii

LIST OF TABLES .. viii
LIST OF FIGURES .. ix

1. INTRODUCTION .. 1
2. LITERATURE REVIEW .. 3

3. METHODOLOGY ... 7
3.1. Dataset Collection and Creation .. 7

3.1.2. Theft Datasets ... 7
3.1.2. Pre-trained models .. 9

3.1.3. Feature creation .. 11
3.2. Data Transformation .. 12

3.3. Feature Selection ... 13
3.3.1. Filter-based feature selection .. 13

3.3.2. Feature importance quantification .. 14
3.3.3. Feature extraction ... 15

3.4. Classification Algorithms and Model Training ... 16
3.5. Performance Evaluation .. 18

3.5.1. Hyperparameterazation ... 19
4. RESULTS .. 24

4.1. Effects of Data Transformation ... 24
4.2. Effects of Feature Selection ... 25

4.3. Performance Results .. 35
4.4. Inspection of False Negatives .. 38

5. CONCLUSION ... 40
REFERENCES ... 42

APPENDICES .. 45
Appendix A. Performance Results of the Best Three Results 45

Appendix B. 400 Action Classes .. 90
Appendix C. Machine Learning Algorithms Parameter Sets 93

 viii

LIST OF TABLES

Table 3.1. Machine learning algorithms and best parameter sets 23
Table 4.1. Performance results ... 36

 ix

LIST OF FIGURES

Figure 3.1. Shoplifting sample video view .. 8
Figure 3.2. NS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot . 27
Figure 3.3. NS-i3d-resnet50-v1-kinetics400 dataset feature importance plot 28
Figure 3.4. NS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot 28
Figure 3.5. NS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot 29
Figure 3.6. NSS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot
 .. 29
Figure 3.7. NSS-i3d-resnet50-v1-kinetics400 dataset feature importance plot 30
Figure 3.8. NSS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot
 .. 30
Figure 3.9. NSS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot
 .. 31
Figure 3.10. NSSR-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance
plot .. 31
Figure 3.11. NSSR-i3d-resnet50-v1-kinetics400 dataset feature importance plot 32
Figure 3.12. The NSSR-slowfast-4x16-resnet50-kinetics400 dataset feature
importance plot ... 32
Figure 3.13. NSSR-slowfast-8x8-resnet101-kinetics400 dataset feature importance
plot .. 33
Figure 4.1. False negative shoplifting video frames .. 38
Figure 4.2. False negative stealing video frames ... 39
Figure 4.3. False negative normal video frames .. 39

 1

1. INTRODUCTION

A crime is a violation of law that is illegal, detrimental to a person or society, and

subject to legal consequences. Damage can be monetary, psychological, or physical.

Crime causes enormous losses in terms of both people and money. The local and

worldwide crime rates are increasing. Theft is among common crimes defined as

taking one's property without the use of force. Theft is rising nationally and

internationally. As a result of this increase, the use of surveillance video cameras in

public places such as airports, train stations, schools, hospitals, banks, shopping malls,

education institutions, and crowded streets has also increased to provide safety. Video

surveillance systems are used as a preventive measure against theft. The purposes of

surveillance video cameras are to maintain track of regular activity and identify

unusual ones. According to the definition used in the surveillance sector, an anomaly

is any unusual occurrence that deviates from normal behavior and is generally

understood to be a deviation from standard norms, types, arrangements, or forms.

Among the anomalies, the theft anomaly, which creates material and moral losses, is

very important. In video surveillance systems, theft detection relies on manual

monitoring and identification of suspicious activities from video feeds by humans.

Therefore, continuous monitoring could be tedious, resource-constrained, cost-

inefficient, inconsistent, and unscalable due to human involvement.

For many applications, like theft detection, preserving security depends on the ability

to identify anomalies in video surveillance. Since anomalous occurrences only occur

0.01% of the time and 99.9% of the monitoring time is wasted, manually detecting

anomalies is a labor-intensive and ongoing procedure that takes a lot of time and effort

from human workers (Duong et al., 2023). Thus, intelligent systems that can

automatically identify abnormal events in the video stream are desperately needed.

The capacity to automatically identify security incidents or potentially dangerous

occurrences occurring inside the field of vision of cameras is offered by Automated

Video Surveillance technology (Jadhav et al., 2017).

 2

There is a need for automatic theft detection systems capable of handling large

volumes of data that are consistent, accurate, scalable, and continuously available.

Several applications that use action recognition and machine learning have surfaced in

recent years for the detection of theft. Despite much research in this field, no transfer

learning implementation has been done. In this work, we constructed feature vectors

using a recently developed theft dataset by applying action recognition methods. For

this process, we chose four separate action recognition algorithms, and we used

machine learning methods on the feature vector datasets that were produced. We also

included steps for feature extraction. Our work differs from earlier research in this

subject because of these techniques, especially the application of transfer learning.

 3

2. LITERATURE REVIEW

Researchers have carried out various studies to date on the detection of anomalies in

surveillance videos. There are quite extensive publications on this subject. In 2018,

Sultani and colleagues conducted a research on the deep anomaly ranking algorithm,

which predicts high anomaly scores for anomalous video segments and offered a new

large-scale, first-of-its-kind dataset of 128 hours of videos (Sultani et al., n.d.). A

survey from that same year suggested using a one-class neural network model to

identify anomalies in huge, complicated datasets (Chalapathy et al., 2018). In 2019,

using multilevel representations of both intensity and motion data, Vu and colleagues

created a framework for accurate anomaly detection (Vu et al., 2019). In 2021, Ullah

and colleagues introduced a time-complexity-reduced anomaly recognition framework

for surveillance that is effective and lightweight, utilizing convolutional neural

networks (CNNs). To accurately detect anomalous behavior in surveillance videos,

they extracted spatial CNN attributes from a sequence of video frames and fed them

to the suggested residual attention-based long short-term memory network (Ullah et

al., 2021). In 2020, in contrast to full-frame learning, the research presented a method

for learning abnormal behavior in the video by identifying attention to the area using

spatiotemporal information (Nasaruddin et al., 2020). In a survey in 2021, a multitask

deep neural network was suggested as a solution to the anomaly detection problem,

which was considered a fully supervised learning problem (Wan et al., 2021). In 2022,

Zaigham Zaheer and colleagues presented a unique technique for video anomaly

identification using unsupervised Generative Cooperative Learning (GCL) that builds

a cross-supervision between a discriminator and a generator by taking advantage of

the low frequency of anomalies (Zaigham Zaheer et al., n.d.). A survey that utilizes a

model based on deep learning for surveillance system anomaly detection was released

in 2022 (Amin et al., 2022) . In 2023, Liu and colleagues provided a two-stream spatio-

temporal generative model to identify anomalous behavior in real-time from video

surveillance (Liu et al., 2023).

 4

Datasets have been created to be used for anomaly detection. In 2008, the subway

dataset, which consists of two long video recordings that capture individuals entering

and leaving a train station, became accessible (Adam et al., 2008). In 2009, the UMN

dataset that simulated a populated area where actors walk to an exact location and

escape with anomalous behavior was published (Mehran et al., n.d.). In 2013, the

Avenue dataset that involves abnormal events that were recorded at CUHK campus

avenue was offered (Lu et al., 2013). In 2013, the UCSD dataset that has two sub-

datasets, Pedestrian 1 and Pedestrian 2, which involve events captured in various

crowded stages, was published (Anomaly Detection and Localization in Crowded

Scenes, n.d.). In 2016, the ShanghaiTech Campus dataset that includes 13 sequences,

including intricate lighting, camera angles, and many kinds of anomalies, most of

which are connected to unusual things, the wrong direction, and unusual behavior, was

offered (Liu et al., n.d.). In 2018, the UCF-Crime dataset that contains anomalies about

stealing, shoplifting, robbery, burglary, abuse, arrest, arson, assault, explosion,

fighting, road accidents, shooting, and vandalism was published (Sultani et al., n.d.).

In 2020, the Street Scene dataset that involves anomalies, for instance, bikers outside

lanes and jaywalking, became accessible (Ramachandra & Jones, n.d.). In 2021, the

HR-Crime dataset, which is a subset of the UCF-Crime dataset that includes Human-

Related (HR) videos, was released (Boekhoudt et al., n.d.).

Review articles that describe the datasets and machine learning methods that have been

published thus far in the anomaly detection field are also available. A review paper

on methods based on deep learning for detecting anomalies in videos was released in

2021 (Nayak et al., 2021). In 2022, a review publication that summarizes anomaly

analysis datasets and machine learning models was released (Tran et al., 2022). In

2023, a review paper was released about deep learning approaches to the detection of

anomalies in surveillance videos (Chandrakala et al., 2023). In the same year, a paper

that analyze the existing deep learning structures and machine learning methods used

to detect anomalous cases in surveillance videos to examine their benefits and

difficulties was published. Also, this survey summarizes anomaly detection datasets

(Şengönül et al., 2023). Another review paper that explains all datasets that contain

abnormal events and discusses deep learning models up to now was published (Duong

et al., 2023).

 5

The field of human action recognition is fast developing, with notable progress made

in the creation of models and systems. Review papers that summarize the state of the

field have emerged as academics explore deeper. In 2024, an extensive review of

Human Action Recognition systems is given in the paper. It discusses deep learning

and machine learning techniques, benchmark datasets for human action recognition,

metrics to assess the effectiveness and architecture of systems for human action

recognition, current problems, and potential future paths for the field (Karim et al.,

2024). In the same year, a review of deep learning techniques for multimodal vision-

based human action recognition is presented in a publication. Shafizadegan and

colleagues present a four-level category for human action recognition techniques that

take into account the architecture, similarities, availability, and modalities of the

frameworks. They identify benchmark human action recognition as well. The study

examines possible future research opportunities in the field and highlights the top-

performing techniques on well-known and current benchmark datasets (Shafizadegan

et al., 2024).

When all the publications are considered, it is concluded that there are a lot of papers

related to anomaly detection or human action recognition systems. However, few

papers have been conducted to automatically detect theft or subcategories of theft

detection. In 2018, a publication that provides theft detection with machine learning

was released. In this paper, a motion was detected using convolution neural networks

and sent a warning to the owner (Kushwaha et al., 2018). In 2023, a paper about the

detection of theft using deep learning was published. This survey uses real-time object

identification on live video feeds to improve security protocols and enable quick

reactions to possible threats (Shirole & Virdhe, 2023). In the same year, a paper

indicates using a hybrid neural network to identify shoplifting. To compare their model

with other approaches, Muneer and colleagues built a new dataset, which they used to

compare and find that their model performed better (Muneer et al., 2023). In 2024, an

article presents a new technique for identifying theft in surveillance video. This

approach tries to lower false positives and is meant to work well both in the daytime

and at night. Waddenkery and Soma emphasize the importance of the system's capacity

to gain knowledge from tiny quantities of data and adapt to changing circumstances

for real-time applications (Waddenkery & Soma, 2024).

 6

Transfer learning, as everyone knows, is an approach to machine learning that applies

the information of a trained model developed for one task to another that is related but

different. This allows for the transfer of knowledge from task one to the second model,

which is task-specific. It decreases the quantity of data required to train a model and

increases efficiency. You can accomplish high accuracy in your particular domain by

utilizing pre-trained models on huge data sets. Pre-trained models significantly

decrease the amount of time needed for training. Models may overfit the training set

in situations where there is insufficient data. Through the application of the more

comprehensive knowledge gained from the original dataset, transfer learning helps to

reduce this risk. It enables simple adjustment with minor changes to new operations or

domains for a specific application, a pre-trained model can be efficiently adjusted. By

encouraging knowledge sharing across many tasks, transfer learning makes it possible

to apply ideas from one work to another. For instance, video analysis can benefit from

the features acquired in image recognition.

In this research, we will work on theft detection. We will discuss the definition of theft

by Article 141 of the Turkish Criminal Law. In the direction of article 141, we wanted

to evaluate theft in 4 groups. However, since burglary does not always result in theft,

we determined the number of our groups as 3. These groups are stealing, shoplifting,

and robbery. To achieve this, firstly, we created datasets from the UCF-Crime dataset

that contains three theft groups that are determined and normal videos. There is no

publication in the literature on theft detection, considering novel datasets that contain

three categories. Additionally, there are no publications in the literature about running

several action recognition algorithms and making predictions using transfer learning

as a result and using them as features. There are only a few products in this field that

are commercially developed abroad and sold.

 7

3. METHODOLOGY

Our methodology was organized into five main steps. Dataset development and

collection is the first step, during which we acquired and selected the information

required for analysis. In the second step, data transformation, we prepared the data.

To find the most relevant parameters which would improve model performance, we

then carried out feature selection. After that, we trained models and used a variety of

classification algorithms. Lastly, we evaluated the model's performance to determine

its overall efficiency and accuracy.

3.1. Dataset Collection and Creation

This study aims to identify theft in surveillance videos. To carry out this study, a

dataset was developed. The section on data creation and gathering involved several

procedures. Under subheadings, the specifics of these steps are arranged and clarified.

3.1.2. Theft Datasets

Following a comprehensive analysis of all theft and criminality-related research, we

have found two open-source datasets that are significant to our study. A high-

resolution, multi-camera dataset called the Charlotte Anomaly Dataset (CHAD) was

created specifically for anomaly detection in commercial parking lots. Four cameras

simultaneously capture the same scene: one HD camera and three Full-HD cameras.

CHAD is made up of 412 high-quality videos totaling about 1.15 million frames.

Among these, 1.09 million frames exhibit routine activity, while 59,000 frames contain

anomalies (Danesh Pazho et al., 2022). These 412 videos had not been categorized.

We didn't know which video had which anomaly. We just knew videos that contain

anomalies. For this reason, we excluded and didn't utilize this dataset. UCF-Crime

dataset is open-source, and it includes 13 different categories of anomalies related to

 8

crimes, such as shoplifting, stealing, robbery, burglary, arrest, arson, assault, abuse,

road accident, fighting, explosion, shooting, and vandalism. Additionally, there are

videos called normal that don't have any anomalies. A significant collection of 128

hours of video makes up this dataset. It has 1900 untrimmed real-world surveillance

videos (Sultani et al., n.d.). We used this dataset to construct our unique datasets. Our

datasets include data gathered from four separate categories: shoplifting, stealing,

robbery, and normal. We might have used the burglary category and the data in this

category because we are interested in theft, but since burglaries are typically armed,

after analyzing videos, we decided to consider the types of thefts that are carried out

unarmed. We eliminated this category.

Figure 3.1. Shoplifting sample video view

We created three different datasets for our study. First, there is the NS dataset, which

has 200 videos evenly split into two categories: 100 normal videos and 100 stealing

videos. Expanding on this, we produced a second dataset called NSS, which offers

three categories: 150 normal videos, 100 stealing videos, and 50 shoplifting videos.

Lastly, an even more comprehensive third dataset, NSSR, includes four categories:

300 videos of normal, 50 videos of shoplifting, 100 videos of stealing, and 150 videos

of robbery.

 9

3.1.2. Pre-trained models

In our research, we used Apache MXNet, which is an open-source deep-learning

framework. It enables neural networks with deep layers to be defined, trained, and

used. It works with a wide range of platforms, including the infrastructure used by

cloud computing. MXNet is well-known for its scalability, which is crucial for

managing huge data sets and complicated models since it enables users to train models

across distributed systems and many GPUs. Additionally, it serves as the foundation

for several high-level libraries, including Gluon, which makes deep learning model

construction and training easier. A compact, easy-to-understand API for deep learning

is offered by the Gluon library in Apache MXNet. It enables the quick development,

building, and training of deep learning structures without reducing training speed.

State-of-the-art (SOTA) deep learning methods for computer vision are developed

using GluonCV. Based on the Gluon interface of the Apache MXNet framework,

GluonCV is an open-source computer vision library. It makes it simpler for developers

and researchers to apply and experiment with cutting-edge techniques by offering a

collection of pre-trained models, datasets, and tools made especially for computer

vision work. To recognize and categorize actions in video sequences, GluonCV

provides several action recognition models. Applications like sports analysis, video

surveillance, and human-computer interaction depend on these models. Among the

significant action recognition models in GluonCV are I3D and SlowFast Networks.

By expanding 2D filters into 3D, I3D models enable 2D convolutional networks to

learn spatiotemporal properties directly from video inputs. In tasks requiring action

recognition, this method has significantly improved performance. SlowFast networks

can efficiently capture both slow motion and quick motion by processing video at

several temporal levels. While the Fast pathway concentrates on high-frequency

movements, the Slow pathway records intricate spatial details. The models can be

easily applied to user-provided datasets or customized for particular applications by

using the pre-trained weights and implementations that GluonCV offers.

We used several GluonCV action recognition models. These models are an effective

resource for anyone trying to identify actions in videos. The first is

i3d_nl10_resnet101_v1_kinetics400. The Inflated 3D ConvNet (I3D) architecture is

specifically implemented in the model i3d_nl10_resnet101_v1_kinetics400.

 10

Its purpose is to recognize actions in video data. By extending 2D convolutional

networks into 3D by inflating its filters, I3D, represented by the Inflated 3D ConvNet

architecture, enables the model to learn spatiotemporal properties directly from video

frames. This method efficiently records information about appearance as well as

action. The model aims to employ a non-local operation using ten input frames, as

denoted by the nl10 indicator, improving its capacity to capture long-range

dependencies in the video data. This I3D model's foundation is built upon the 101-

layer ResNet-101 design. ResNet, which is renowned for its effectiveness in image

recognition applications, uses skip connections to lessen the impact of the gradient

disappearing issue and make it possible to train deeper networks. V1: This

abbreviation often denotes the ResNet architecture version that was utilized in the

model. Kinetics400: This 400-class dataset, which is frequently used to train action

recognition models, is utilized to pre-train the model. i3d_resnet50_v1_kinetics400 is

the second one. The second action recognition model that we utilized was

i3d_resnet50_v1_kinetics400. This model is an I3D model. It also uses the Kinetics

400 dataset. However, this model has resnet50. ResNet makes use of residual learning,

a theory that facilitates the training of extremely deep networks. It uses shortcut

connections, also called skip connections, to add the input to the result of a deeper

layer without going through a few levels. Typically, images with a resolution of 224

by 224 pixels are fed into ResNet-50. For tasks involving classification, the output is

typically a probability distribution across a collection of classes. The utilized third

action recognition model was slowfast_4x16_resnet50_kinetics400. It is a SlowFast

model architecture. 4x16 represents the video input sampling structure. That usually

means that in this instance, the Fast pathway processes frames at a rate of 16 frames

per second, whereas the Slow pathway processes frames at a rate of 4. This design

facilitates the balancing of motion capture and detail. The Kinetics 400 dataset and

resnet50 architecture are used in this model. This technique recognizes motions in

videos by efficiently utilizing both slow and fast motion information. We used the

slowfast_8x8_resnet101_kinetics400 model. This model utilizes the SlowFast

architecture, too. 8x8 indicates the model's sample method. In particular, it usually

indicates that the Fast pathway functions at a rate of 8 frames per second, enabling a

more in-depth comprehension of both fast and slow movements. The Slow pathway

analyzes video frames at a rate of 8 frames per second.

 11

The Kinetics 400 dataset and resnet101 architecture are used in this model. This model

is an advanced model for identifying actions in videos. It uses a dual-stream

architecture to leverage both spatial and temporal information, and it uses a strong

backbone (ResNet101) that has been trained on a large dataset (Kinetics-400). If we

explain the Kinetics400 dataset in more detail, a collection of original action videos

from YouTube is called Kinetics400, and it is used for action recognition. With

306,245 short-trimmed movies from 400 action categories, it is one of the largest and

most often used datasets in the academic area for evaluating the effectiveness of the

most sophisticated video action detection models. Usually, each video clip lasts for ten

seconds or less. It offers enough time information to accurately represent the actions'

dynamics. Action classes are used to label the dataset, enabling models trained on it to

identify particular actions in videos. It is widely used for deep learning model training

and evaluation, particularly for models with complex architectures.

3.1.3. Feature creation

To generate features, firstly, we developed a Python script that takes input in the form

of text files ending in .txt. The path to a unique video, its frame count, and its associated

video name are all included in each row of this text file. The last two fields, which are

just placeholders and do not function in the code, are the number of frames and the

video label. As a result, to satisfy the script's input requirements, arbitrary positive

integers were inserted into these fields. The script returns human activity predictions

in videos specified in a text file. We have run 4 GluonCV action recognition models

across three distinct datasets with the usage of this script. A total of 12 distinct feature

datasets were produced using this process. For ease of identification and further

analysis inside our study, each of these feature datasets has been named systematically.

The names of the feature datasets are as follows, in order. NS - i3d - nl10 - resnet101-

v1- kinetics400, NS - i3d - resnet50 - v1- kinetics400, NS - slowfast - 4x16 - resnet50

- kinetics400, NS - slowfast - 8x8 - resnet101 - kinetics400, NSS - i3d - nl10 -

resnet101- v1- kinetics400, NSS - i3d - resnet50 - v1- kinetics400, NSS - slowfast -

4x16 - resnet50 - kinetics400, NSS - slowfast - 8x8 - resnet101 - kinetics400, NSSR -

i3d - nl10 - resnet101- v1- kinetics400, NSSR - i3d - resnet50 - v1- kinetics400, NSSR

- slowfast - 4x16 - resnet50 - kinetics400, NSSR - slowfast - 8x8 - resnet101 -

kinetics400. NS refers to the dataset containing Normal and Stealing videos, while

 12

NSS includes Normal, Stealing, and Shoplifting videos. NNSR includes Normal,

Stealing, Shoplifting and Robbery videos. The remaining part of the dataset's name is

the name of the pre-trained model. In each feature dataset, each row contains the

category of the video and a series of action inference probability values that are 400

vectors. The categorical label (theft/normal) of the video is indicated by the first value

in each entry, and the next values are the inference probabilities over 400 different

action classes. There is a table that includes 400 different action classes in the

Appendix B section.

3.2. Data Transformation

In this study, we used several data transformation techniques, such as binarization,

max absolute scaling, and Z-score normalization (standard scaling). Standardization is

a statistical technique that rescales and modifies the distribution of data to yield a mean

of zero and a standard deviation of one. Z-score normalization was the first

preprocessing method used on the data. This preprocessing stage successfully changed

every value in the dataset, guaranteeing that the distribution that resulted had a

standard deviation of 1 and a mean of 0. This type of it reduces the impact of various

scales on various variables, facilitates feature comparison, and increases the

effectiveness of machine learning algorithms. The data distribution becomes more

stable and comparable as a result. Furthermore, it increases machine learning

algorithms' effectiveness by decreasing their sensitivity to the size of the input features.

Additionally, during the preprocessing stage of the analysis, the data normalization

method known as max absolute scaling was utilized. To scale features to a range

between -1 and 1, max absolute scaling is a data normalization approach that takes into

account the maximum absolute value of each feature. When working with datasets that

have both positive and negative values in their characteristics, this method is especially

helpful. After these data transformations, binarization was used. The process of

converting numerical data into binary form is known as binarization.

 13

The 0.001, 0.0001, 0.00001, and 0.000001 are the four threshold values that have been

established. The datasets were binarized using these thresholds, converting continuous

feature values into binary representations that met the preset standards.

In this study, we employed the Scikit-learn package, an open-source Python machine

learning and data modeling library, for data transformations. The scikit-learn version

was 1.2.0. We constructed a StandardScaler object for Z-score normalization. Using

the fit_transform method from the StandardScaler object, the standard deviation and

mean for each feature were specified to apply Z-score normalization. To apply max

absolute scaling, we created an instance of the MaxAbsScaler. Max absolute scaling

was applied by calculating the maximum absolute value for each feature with the

fit_transform method that is from the MaxAbsScaler object.

3.3. Feature Selection

Feature selection is the process of identifying and selecting a subset of relevant

attributes (or variables) from the larger range of features in a dataset. Feature selection

is primarily used to reduce overfitting, increase accuracy, and shorten training times

in machine learning models. In this study, we used the Scikit-learn library for feature

selection operations. The subsections provide a detailed explanation of the

advancements we made in our study about feature selection.

3.3.1. Filter-based feature selection

Feature selection methods that rely on filters assess the importance of features by

analyzing their statistical characteristics, regardless of machine learning algorithms.

They can be scaled and are fast. SelectKBest is included in them since it uses a scoring

function for evaluating features. To evaluate features, SelectKBest frequently uses

statistical tests such as correlation coefficients (for regression) or the ANOVA F-test

(for classification). Based on the selected criterion, that is, f_classif for classification

tasks (ANOVA F-value), this approach scores and then chooses the top K features with

the highest scores. As might be expected, this method accepts two different

parameters, which are "scoring function" and "k."

 14

The integer "k" indicates how many top characteristics to choose. The default for k is

10. Some of the scoring functions (f_classif, chi2, and f_regression) are explained.

f_classif is ANOVA F-value between label/feature. Each feature's linear relationship

to the target variable is measured by this function, which is utilized for classification

tasks. It facilitates the identification of characteristics that differ noticeably between

classes. chi2 is chi-squared statistics of non-negative features. This evaluates the

independence of features about the target variable and is applied to categorical

characteristics. It evaluates if there is a difference between the distribution of

categorical variables and what would be predicted if they were independent.

f_regreesion is the F-value between label/feature. It is used for regression tasks. To

find features that significantly affect the prediction of continuous outcomes, this

calculates the linear correlation between the target variable and each feature.

The SelectKBest feature selection approach is applied in our study. To evaluate the

impact of various feature subsets, we applied this approach with three distinct K

values. These are 20, 30, and 50. We choose to use the ANOVA F-value (f_classif) for

the scoring function because it is especially appropriate for classification tasks. We

implemented this selection method because it has the advantage of handling big

datasets efficiently while preserving computing efficiency. Furthermore, its simple

implementation makes it easy to interpret.

3.3.2. Feature importance quantification

Feature importance quantifies each feature's contribution to a machine learning

model's prediction performance. Gaining knowledge about the underlying data and

increasing model efficiency can be achieved by determining which attributes have the

most influence. There are several approaches to assess a feature's importance. These

are coefficient-based, tree-based, or permutation importance. In this research, we used

a based feature importance method that is a random forest to calculate. A method for

assessing the worth of features in decision tree algorithms, such as random forests and

decision trees, is called tree-based feature importance. To increase accuracy and

manage overfitting, random forests, a collaborative learning technique, generate

numerous decision trees and aggregate their predictions.

 15

Random forest features are valued using Mean Decrease Impurity (MDI), a critical

technique for assessing each feature's impact on a random forest machine learning

model's predictive power. The quality of a split is assessed in decision trees using

impurity metrics such as entropy or Gini impurity. There is a better split when the

impurity is lower. Every decision tree in the random forest helps to lower the node's

impurity when a feature is utilized to split the tree. Each time a feature is utilized in a

split, the magnitude of the impurity reduction it achieves is noted. Once every tree has

been constructed, the overall impurity decrease for every feature has been added up.

To obtain a proportionate score, the feature importance score for each feature is then

normalized, often by dividing by the total impurity reduction across all features. Each

feature's proportion to the model's overall decision-making process is shown by the

score that results. The more important a feature is in establishing predictions, the

higher its score. All things considered, random forest feature significance is a useful

model assessment. Interpreting the model and learning more about the data is made

easier by knowing which features have the biggest influence on the predictions. It

assists in choosing the most essential aspects, which improve model performance and

simplify it. Underlying connections between features and the target variable are

revealed by feature importance.

Using the scikit-learn library to compute random forest feature importance, firstly, we

created and fitted the random forest model. We got feature importances using feature_

importances attributes directly from the fitted model. It returns the importance scores.

Then, we accessed the important feature names. Additionally, we visualized feature

importance using a bar plot.

3.3.3. Feature extraction

In the machine learning process, feature extraction is an essential phase that turns raw

data into a collection of useful features. With the help of these features, predictive

models are constructed, allowing algorithms to recognize patterns and generate

accurate predictions. The goal of feature extraction is to enhance the quality and

usefulness of input data while decreasing dimensionality. PCA, or principal

component analysis, is a feature extraction technique. This dimensionality reduction

technique is commonly used to reduce the number of variables in huge data sets while

 16

maintaining much of the original data. Accuracy naturally decreases as a data set's

variables are reduced, but the key to dimensionality reduction is to compromise a little

accuracy in favor of simplicity. As a result of smaller data sets being simpler to

examine and visualize, machine learning algorithms can analyze data points

considerably more quickly and easily because fewer variables need to be processed.

Using the scikit-learn library to apply PCA, we created a PCA object. We identified

the number of components to keep. Then, we fitted and transformed the data. The

number of components was taken as 5, 10, 15, and 20, and experiments were carried

out on the data sets, respectively.

3.4. Classification Algorithms and Model Training

Classification machine learning algorithms to be utilized for model training were

identified. KNNeighbors, Gaussian Naive Bayes, Decision Trees, Support Vector

Machines, Random Forests, Neural Networks, and Gradient Boosting are among the

machine learning techniques that have been specified. A supervised machine learning

algorithm known as a support vector machine (SVM) classifies data by identifying the

best line or hyperplane in an N-dimensional space that optimizes the distance among

each class. It works well in high-dimensional spaces, is sensitive to overfitting, and is

adaptable because of its kernel functions (linear, RBF, etc.). One supervised learning

technique for classification is the Decision Tree algorithm. It displays choices and their

potential outcomes as a tree-like structure, with each internal node standing for a

feature-based decision, each branch for the decision's result, and each leaf node for a

class label. The objective is to learn basic decision rules derived from the data features

to build a model that estimates the value of a target variable. It is easy to understand

and interpret. In addition to handling both numerical and categorical data, it requires

minimal data preprocessing. Based on the idea that comparable data points are likely

to provide similar results, the supervised classification method is the K-Nearest

Neighbors (KNN) machine learning algorithm. As an illustration of instance-based

learning, KNN does not build an explicit model; instead, it bases its predictions on the

complete training dataset. Achieving optimal performance requires careful evaluation

of the distance metric and K selection.

 17

The K parameter indicates how many nearest neighbors should be considered when

making a prediction. To assess the "closeness" of data points, KNN uses distance

measurements.

One ensemble learning technique that is often utilized for classification is the Random

Forest algorithm. To increase accuracy and manage overfitting, it aggregates the

predictions of several decision trees. The Random Forest algorithm relies on a set of

decision trees. Utilizing a random portion of the training data, each tree is trained to

produce a variety of models that can identify various patterns. By utilizing the

advantages of several decision trees, it mitigates the weaknesses of individual models

while achieving high accuracy and robustness. For classification tasks, Gaussian Naive

Bayes is a probabilistic machine learning method based on the Bayes principle. The

term "Gaussian" denotes the assumption that the characteristics have a Gaussian

(normal) distribution. A simple and effective approach for classification problems,

especially when working with big datasets, is Gaussian Naive Bayes. Gradient

Boosting, an ensemble method that creates models one after the other in an attempt to

correct the errors made by the previous models used for classification problems, is one

of the most effective machine learning algorithms. Gradient Boosting is able to

generate extremely accurate predictions by integrating the results of these models. A

neural network is a classification model for machine learning that is based on the

structure and functions of the human brain. In this model, there are some key

components. Some of them are layers and activation functions. The layer that gets the

input data is called the input layer. Weighted connections are used in the processing of

hidden layers, which are intermediate layers. The final classifications or predictions

are generated by the output layer. Since activation functions establish each neuron's

output and add non-linearity to the model, they are essential parts of neural networks.

Neural networks are capable of learning intricate patterns and relationships in the data

because of this non-linearity. Twelve feature datasets were trained using all the

machine learning algorithms we mentioned above. Then, the datasets were re-trained

by applying all preprocesses steps.

 18

3.5. Performance Evaluation

After the model training, we assessed the model’s performance using evaluation

metrics that are AUC, precision, accuracy, recall, and F1 score. The following

paragraphs explain the definitions and formulas of evaluation metrics.

Accuracy, which is a major measurement metric, is utilized for assessing the efficiency

of classification models. It refers to the proportion of accurate predictions to all

predictions. This assessment indicates that if 100 predictions were made, 70 of them

would have come true, indicating a 70% accuracy rate for the model.

Accuracy	=	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Recall is utilized as a performance metric to assess the classification model's

efficiency. It is also named true positive rate or sensitivity. It is obtained with true

positive predictions divided by the sum of true positive and false negative predictions.

It shows the model's ability to identify all relevant instances. If the model determines

60 out of 100 true positive cases correctly, the recall will be 60%.

Recall = Sensitivity = 𝑇𝑃𝑅 = 		
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Precision is a crucial measurement metric. By showing the proportion of expected

positive cases that are true positives, it evaluates how accurate the model is at making

positive predictions. The model's capacity to accurately specify pertinent instances is

indicated by the ratio of true positive predictions to the sum of true positive and false

positive predictions. For instance, a model's precision is 0.6 (or 60%) if it predicted 50

positive instances, but just 30 of those were accurate.

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 19

The F1 score, which provides a single measure that balances precision and recall, is

the fundamental evaluation metric. The F1 score is calculated by taking the harmonic

mean of recall and precision metrics. Its range is between 0 and 1. While 0 shows the

worst performance, 1 shows the best precision and recall.

F1-Score	=	
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

The Area Under the Curve assesses the ability of the models to discriminate between

positive and negative classes with different thresholds. This crucial performance

metric is the area under the Receiver Operating Characteristic (ROC) curve. It is

referred to as AUC. Its values vary from 0.5, which indicates random performance, to

1.0, which indicates excellent categorization. If the model discriminates positive and

negative classes better, the AUC will be higher. If AUC is 70%, it shows that the

possibility of a positive instance chosen at random having a higher estimated value

than a negative instance chosen at random is 70%.

𝐴𝑈𝐶 = 	J 𝑇𝑃𝑅(𝐹𝑃𝑅!"(𝑥))𝑑𝑥
"

#$%

Python libraries were utilized for model training and performance evaluation. The

scikit-learn, which is a machine learning library, was used. Its version was 1.2.0.

Pandas, which is a data analysis library, was used. The version of the panda’s library

was 1.5.2. A Python library for data visualization called Seaborn was used. Its version

was 0.12.2. NumPy, which is a Python library for scientific computing, was also used.

The version of NumPy was 1.24.1. The extensive Python visualization library

Matplotlib was utilized to create static, animated, and interactive displays. The version

used is 3.6.2. Also, the Python version was 3.10.

3.5.1. Hyperparameterazation

First, each of the 12 datasets was divided into train and test sets. The test size was 20

percent of the dataset, while 80 percent of the dataset was for the training part. This

separation is essential for the later assessment of model performance since it enables

the training set to be used for model fitting and parameter adjustment and the testing

set to be used as a separate sample for evaluating how well the created models

generalize. After the division of datasets as train and test, we used 5-fold cross-

 20

validation in the training part. It is a machine learning model training and evaluation

technique. By ensuring that the model is trained on many subsets of the data and

reducing the overfitting probability, this approach produces a more accurate

assessment of the model's performance. We utilized the scikit-learn library's cross-

validation technique to apply 5-fold cross-validation in the training section. The

function enables the computation of multiple measurements simultaneously and is

helpful for cross-validation. We obtained the average of 5-fold train performance

results on 80 percent of datasets. Then, we trained 80% of the datasets with the

appropriate classification models. After this process, we predicted it with the test

datasets and generated the performance results.

In training, we used multiple machine learning algorithms that were mentioned in the

classification algorithms and model training part. For each machine learning

algorithm, we utilized different parameter sets. To use algorithms from scikit-learn,

firstly, we imported associated library lines. Then, we created classifiers and set the

parameters of classifiers. The following paragraphs explain the parameters of these

machine learning algorithms in the scikit-learn library. These parameters are the

parameters used in this research.

In the SVM algorithm, four important parameters are used. The trade-off between

maximizing the margin and decreasing classification error is managed by the

regularization parameter that is named "C". It needs to be completely positive. A high

C value aims to accurately classify every training example, whereas a small C value

permits more misclassifications. The default value is one for C. "kernel" designates

the kind of kernel that will be utilized in the algorithm. These include linear, poly, rbf,

sigmoid, and precomputed. If none is provided, rbf is used by default. To facilitate

class separation, kernels convert the input data into higher-dimensional space.

"gamma" is the kernel coefficient for kernels of values rbf, poly, and sigmoid. It takes

two values that are scale, auto, or float. The default is scale. According to these, the

value of gamma is assigned. "degree" refers to the polynomial kernel function's degree

(or "poly"). It must not be negative. All other kernels disregard it. The default value of

degree is three.

 21

In the Decision Tree algorithm, five crucial parameters are considered. The first

parameter is "criterion," which specifies the function to measure the quality of a split.

Criterion values are gini, entropy, log_loss. The default value of the criterion

parameter is gini. The "splitter" parameter is utilized at each node to select the split.

Values of this parameter are best and random. Best is used for selecting the best split,

and random is used for selecting the best random split. The default value is best. The

argument "max_depth" indicates the tree's maximum depth. It limits the number of

splits in the tree. Its values can be integer. The default value is None. This parameter

helps prevent overfitting. "min_samples_leaf" is another important option that is

essential. It indicates the least amount of samples required at a leaf node. Values of

this parameter can be integer or float. The default value is 2. By keeping the model

from learning too particular patterns, it aids in smoothing the model. The

"random_state" parameter regulates the estimator's level of randomness. Its values are

integer or None. The default value is None.

"n_neighbors" was the first important parameter in the K-Nearest Neighbors (KNN)

method that determined how many neighbors would be utilized for classification. Its

values are integer. The default value is 5. Usually, values are odd numbers to prevent

classification ties. To compute the nearest neighbors, an "algorithm" parameter is

utilized. Values of the parameter are "auto", "ball_tree", "kd_tree", and "brute". The

default is "auto". The leaf size provided to the KDTree or BallTree algorithms is

known as the "leaf_size" parameter. This may impact memory utilization and the speed

of the query and building. When determining the distance between two points, the

distance metric is defined by the "p" parameter. Generally, p is 1 for Manhattan, and

p is 2 for Euclidean distance. These are the parameters that are most frequently utilized.

"n_estimators," or the entire number of trees in the forest, was the first important

parameter in the Random Forest algorithm. Values of parameters are integer. The

default is 100. More trees generally increase both performance and computation time.

The next parameter, "max_features", indicates how many features should be taken into

consideration when determining the optimal split. Parameter values can be integer,

float, sqrt, log2, or None. The default value is None, which means all features are

considered. Other parameters that we also mentioned in the decision tree classifier are

"criterion" and "min_samples_leaf".

 22

In Gaussian Naive Bayes, it had one crucial parameter, that is "var_smoothing". We

adjusted this parameter. This parameter enhances numerical stability by adding a small

amount of variance to the features. When a feature's variation is relatively minimal, it

helps avoid zero division errors.

In Gradient Boosting algorithm has six important parameters that are considered. The

first parameter is "n_estimators", which is the quantity of boosting stages(trees) that

must be executed. Although they can improve accuracy, more boosting stages run the

danger of overfitting. Its values are integer. The default is 100. The next crucial

parameter is "max_depth", which is the deepest point of each individual tree. With the

use of this parameter, overfitting can be avoided; deeper trees can represent more

complex relationships. Values can be integer or None. The default value is 3. Another

parameter is "min_samples_split", which is the bare minimum of samples needed to

separate an internal node. Values are integer and float. The default is 2.

"min_samples_leaf" is the minimum number of samples needed to reach a leaf node.

It aids in reducing overfitting. Values can be integer or float. The default is 1.

"subsample" is the fraction of samples that will be utilized to fit each base learner

individually. Values are float. A value below 1.0 that is default can aid in avoiding

overfitting. "max_features" is the number of features to take into account when trying

to find the ideal split. Values can be "sqrt", "log2", integer, float, or None. The default

value is None.

Three key parameters are taken into consideration in the Neural Network algorithm.

This variable "hidden_layer_sizes" describes how many neurons are hidden in each

layer. Values are array-like (n_layers,). The default is (100,). The next parameter is

"activation", which is the function that activates the hidden layers. Values are

"identity", "logistic", "tanh", and "relu". The default is "relu". The last parameter is

"max_iter", which is the most iterations (epochs) that can be used to train the model.

If the loss doesn't get better, the solver might quit sooner. Values are integer. The

default value is 200.

 23

Taking into account the parameters of the algorithms we mentioned in the above

paragraphs, we determined the best parameter sets and fine-tuned them accordingly in

the hyperparameterization step. Subsequently, the best classification algorithm models

and parameter sets were determined based on their AUC, F1 score, accuracy, precision,

and recall over the test sets. The best-performing algorithms and hyperparameters are

shown in Table 1.1. All machine learning algorithms used in this study and their

hyperparameters are included in the Appendix C section.

Table 3.1. Machine learning algorithms and best parameter sets

Machine learning algorithm Parameter set

Neural Network {'hidden_layer_sizes': (50, 50), 'activation': 'relu', 'max_iter': 50}
 Random Forest {'criterion': 'gini', 'n_estimators': 100, 'max_features': 'sqrt',
'min_samples_leaf': 5}

Gradient Boosting {'n_estimators': 300, 'max_features': 'log2', 'max_depth': 3,
'min_samples_split': 5, 'min_samples_leaf': 1, 'subsample': 1.0}

KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 'algorithm': 'auto'}
 Decision Tree {'criterion': 'gini', 'random_state': 0, 'max_depth': None,
'min_samples_leaf': 1, 'splitter': 'best'}
 Gaussian Naive Bayes {'var_smoothing': 1e-12}

Support Vector Machine {'kernel': 'rbf', 'gamma': 1, 'C': 1.0}

 24

4. RESULTS

4.1. Effects of Data Transformation

In this research, we performed data transformations to all datasets before the execution

of machine learning algorithms. We found that these transformations contribute to

improving machine learning algorithms’ performances. Since we know how well a

model can learn from the data, how interpretable the model is, and the overall quality

of predictions directly depends on the preprocessing steps to be applied, we carefully

tried different preprocessing techniques and recorded the results by selecting the ones

that were suitable for our study. In our study, we tried to make the correct choice and

application of data transformations important and to make them effective on the

results.

The results show that z-score normalization is quite useful in improving performance

in the Gaussian Naive Bayes model. Because normalization makes sure that features

are on the same scale and are more likely to satisfy the Gaussian distribution

assumption, it enhances performance. The model's performance has improved in

comparison to the pre-normalization level. The results show that max absolute scaling

applied to the datasets is more useful in the Neural Network model. Because this model

is sensitive to the magnitude of the data but does not require the data to be shifted to

zero or restricted to a specific range. It is also seen that the performance is better after

applying maximum absolute scaling in Gradient Boosting and Random Forest models.

Binarization has been applied with various threshold values, and among these

threshold values, 0.0001 has given the best results. The second best threshold was

0.00001. After applying binarization, the most effective results have been obtained

with Random Forests, Neural Network, and Gradient Boosting models.

 25

4.2. Effects of Feature Selection

In this study, we implemented feature importance, feature selection, and PCA that play

crucial roles in improving model performance, reducing overfitting, and enhancing

interpretability.

The results show us that when we apply feature selection, the model focuses on the

most important factors and increases the prediction accuracy as we remove irrelevant

features. At the same time, the complexity of the model is reduced. We observed that

training times were reduced as the number of features decreased. Hyperparameters

automatically accelerated the optimization time. When the results obtained after

applying feature selection are compared, the best algorithms for each data set are

explained with their values. The best classification algorithm models were determined

based on their AUC, recall, precision, accuracy, and F1 score on the test set. The model

with the highest performance was the Random Forest with an AUC of 0.88, accuracy

of 0.88, precision of 0.88, recall of 0.88, and F1 score of 0.88 on NS - i3d - nl10 -

resnet101- v1- kinetics400 dataset with used SelectKBest method that K is 20. The

best was the Random Forest with an AUC of 0.85, accuracy of 0.85, precision of 0.85,

recall of 0.86, and F1 score of 0.85 on NS - i3d - resnet50 - v1- kinetics400 with used

SelectKBest method that K is 30. The best was the Gaussian Naive Bayes with an

AUC of 0.84, accuracy of 0.83, precision of 0.83, recall of 0.87, and F1 score of 0.82

on NS - slowfast - 4x16 - resnet50 - kinetics400 with same method and K value. The

best was the Gaussian Naive Bayes with an AUC of 0.81, accuracy of 0.80, precision

of 0.82, recall of 0.80, and F1 score of 0.80 on NS - slowfast - 8x8 - resnet101 -

kinetics400 with used SelectKBest method that K is 50. The best was the Decision

Tree with an AUC of 0.75, accuracy of 0.75, precision of 0.75, recall of 0.75, and F1

score of 0.75 on NSS - i3d - nl10 - resnet101- v1- kinetics400 with used SelectKBest

method that K is 20. The best was the Random Forest with an AUC of 0.77, accuracy

of 0.77, precision of 0.77, recall of 0.77, and F1 score of 0.77 on NSS - i3d - resnet50

- v1- kinetics400 with used SelectKBest method that K is 30. The best was the Random

Forest with an AUC of 0.83, accuracy of 0.83, precision of 0.83, recall of 0.84, and F1

score of 0.83 on NSS - slowfast - 4x16 - resnet50 - kinetics400 with used SelectKBest

method that K is 50.

 26

The best was the Random Forest with an AUC of 0.72, accuracy of 0.72, precision of

0.74, recall of 0.72, and F1 score of 0.71 on NSS - slowfast - 8x8 - resnet101 -

kinetics400 with the same method and K value. The best-performing model was the

Gradient Boosting with an AUC of 0.73, accuracy of 0.73, precision of 0.73, recall of

0.73 and F1 score of 0.73 on NSSR - i3d - nl10 - resnet101- v1- kinetics400 with the

same method and K value. The best was the Gradient Boosting with an AUC of 0.73,

accuracy of 0.73, precision of 0.73, recall of 0.74, and F1 score of 0.73 on NSSR - i3d

- resnet50 - v1- kinetics400 with the same method and K value. The best was the

Gradient Boosting with an AUC of 0.80, accuracy of 0.79, precision of 0.79, recall of

0.80, and F1 score of 0.79 on NSSR - slowfast - 4x16 - resnet50 - kinetics400 with

used SelectKBest method that K is 20. The best was the Gradient Boosting with an

AUC of 0.71, accuracy of 0.71, precision of 0.72, recall of 0.71, and F1 score of 0.71

on NSSR - slowfast - 8x8 - resnet101 - kinetics400 with used SelectKBest method that

K is 30. It is inferred from the findings that the best results of using the SelectKBest

method are obtained by using K 50. The best model is seen as a Random Forest after

feature selection is applied. In addition, Gradient Boosting, Gaussian Naive Bayes,

and Decision Tree are the other best-performing models.

Feature importance was applied to all datasets. The results indicated which feature was

more important. Since these features corresponded to actions in our dataset, they

demonstrated which action had a better score in which theft category. We used random

forest feature importance, and this returned importance scores. We obtained

importance scores for all datasets. By analyzing feature importance scores, we

identified the two most significant actions for each dataset. Below, we detail these

datasets along with their top-ranked actions. For the NS-i3d-nl10-resnet101-v1-

kinetics400, the most important actions are pumping_gas and pushing_car. The NS-

i3d-resnet50-v1-kinetics400 highlights pumping_gas and building_cabinet, while the

NS-slowfast-4x16-resnet50-kinetics400 emphasizes changing_wheel and

bookbinding. In the case of the NS-slowfast-8x8-resnet101-kinetics400,

pumping_gas, and changing_wheel are the most critical. Pumping_gas and

answering_questions are notable actions for the NSS-i3d-nl10-resnet101-v1-

kinetics400, whereas pumping_gas and changing_wheel are important actions for the

NSS-i3d-resnet50-v1-kinetics400.

 27

Pumping_gas and changing_wheel are highlighted in NSS-slowfast-8x8-resnet101-

kinetics400, whereas changing_wheel and pumping_gas are ranked as the top actions

in the NSS-slowfast-4x16-resnet50-kinetics400 dataset. In the NSSR-i3d-nl10-

resnet101-v1-kinetics400, texting and extinguishing_fire are the most important,

followed by texting and motorcycling in the NSSR-i3d-resnet50-v1-kinetics400. The

NSSR-slowfast-4x16-resnet50-kinetics400 prioritizes news_anchoring and

riding_unicycle, while assembling_computer and motorcycling are the key actions for

NSSR-slowfast-8x8-resnet101-kinetics400. To visually present these findings, we

have created bar plots for the feature importance of each dataset, which are shown

below.

Figure 3.2. NS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

 28

Figure 3.3. NS-i3d-resnet50-v1-kinetics400 dataset feature importance plot

Figure 3.4. NS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot

 29

Figure 3.5. NS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot

Figure 3.6. NSS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

 30

Figure 3.7. NSS-i3d-resnet50-v1-kinetics400 dataset feature importance plot

Figure 3.8. NSS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot

 31

Figure 3.9. NSS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot

Figure 3.10. NSSR-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

 32

Figure 3.11. NSSR-i3d-resnet50-v1-kinetics400 dataset feature importance plot

Figure 3.12. The NSSR-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot

 33

Figure 3.13. NSSR-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot

PCA was applied to all datasets separately, with component numbers 5, 10, 15, and 20

before the training. By the meaning of this, the dimensions of the datasets were

reduced. The performance of the models was evaluated both before and after applying

PCA. The results revealed that, in some cases, the models performed better following

the application of PCA. After the implementation of PCA according to the results, the

obtained best models and the datasets on which these models were applied are

explained. The best-performing model was the KNeighbors with an AUC of 0.90,

accuracy of 0.90, precision of 0.90, recall of 0.91, and F1 score of 0.90 on NS-i3d-

nl10- resnet10-v-kinetics400 dataset with used 5 components. The best was the

Random Forest with an AUC of 0.85, accuracy of 0.85, precision of 0.85, recall of

0.86, and F1 score of 0.85 on NS-i3d-resnet50-v1-kinetics400 with used 20

components. On the NS-slowfast-4x16-resnet50-kinetics400 with 20 components, the

KNeighbors performed the best, with an F1 score of 0.83, an AUC of 0.83, accuracy,

precision, and recall of 0.83. With 20 components, Gradient Boosting performed the

best, achieving an AUC of 0.84, accuracy, precision, recall, and F1 score of 0.85 on

the NS-slowfast-8x8-resnet101-kinetics400.

 34

With an AUC of 0.68, accuracy of 0.68, precision of 0.68, recall of 0.69, and F1 score

of 0.68 on NSS-i3d-nl10-resnet101-v1-kinetics400 using 5 components, the Random

Forest method performed the best. On the NSS-i3d-resnet50-v1-kinetics400 using 20

components, the KNeighbors approach was received the best, with an F1, accuracy,

precision, recall, and AUC of 0.65. With an AUC of 0.73, accuracy, precision, recall,

and F1 score of 0.73 on NSS-slowfast-4x16-resnet50-kinetics400 using 5 components,

Gradient Boosting performed the best. With an F1 score of 0.72, recall of 0.72,

accuracy, precision, and AUC of 0.72 on NSS-slowfast-8x8-resnet101-kinetics400

using 20 components, KNeighbors performed the best. With 20 components and an

AUC of 0.66, accuracy of 0.66, precision of 0.66, recall of 0.67, and F1 score of 0.66

on the NSSR-i3d-nl10-resnet101-v1-kinetics400, the Decision Tree model performed

the best. The best was the Decision Tree with an AUC of 0.66, accuracy of 0.66,

precision of 0.66, recall of 0.66, and F1 score of 0.66 on NSSR-i3d-resnet50-v1-

kinetics400 with used 15 components. The best was the Neural Network with an AUC

of 0.72, accuracy of 0.72, precision of 0.72, recall of 0.72, and F1 score of 0.72 on

NSSR-slowfast-4x16-resnet50-kinetics400 with the same component size. The best

was the Neural Network with an AUC of 0.68, accuracy of 0.68, precision of 0.68,

recall of 0.68, and F1 score of 0.67 on NSSR-slowfast-8x8- resnet101-kinetics400

with used same component size. It is seen that the best results are obtained when the

component number is selected as 20. Furthermore, the results indicate that selecting

10 components led to worse performance, while using 5 and 15 components produced

the best outcomes. After applying PCA, the best model is KNeighbors. Additionally,

Neural Network and Random Forest, Gradient Boosting and Decision Tree are the

other best-performing models.

 35

4.3. Performance Results

In this study, each preprocessing step, PCA, and then feature selection with three

different parameters were applied to all datasets separately. All training operations

were performed by considering the raw datasets that were not preprocessed and feature

selection. As mentioned in the previous sections, the results were evaluated with AUC,

recall, precision, accuracy, and F1 score and performance metrics.

Table 2.1 displays the outcomes. The table consists of the dataset name, applied

preprocessing process, feature selection process, best machine learning algorithm

used, the best parameter set of the algorithm, training performance metrics, and test

performance metrics. The best machine learning algorithm and the best parameter set

are included in this section, while all the results, including all the machine learning

algorithms and all the parameter sets used, are included in the Appendix A section.

 36

Table 4.1. Performance results

Dataset Preprocess Feature selection Machine learning algorithm Parameter set Train metrics Test metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1
/ 10000)

No Neural Network {'hidden_layer_sizes': (50, 50),
'activation': 'relu', 'max_iter': 50}

AUC : 0.86 (+/-0.08)
Accuracy : 0.81 (+/-0.13)
Recall : 0.81 (+/-0.13)
Precision : 0.81 (+/-0.12)
F1-Score : 0.80 (+/-0.13)

AUC : 0.90
Accuracy : 0.90
Recall : 0.91
Precision : 0.90
F1-Score : 0.90

NS-i3d-resnet50-
v-kinetics400

Binarization (Threshold = 1
/ 100000)

No Gradient Boosting {'n_estimators': 300, 'max_features':
'log2', 'max_depth': 3,
'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.87 (+/-0.13)
Accuracy : 0.79 (+/-0.14)
Recall : 0.79 (+/-0.15)
Precision : 0.79 (+/-0.14)
F1-Score : 0.79 (+/-0.14)

AUC : 0.90
Accuracy : 0.90
Recall : 0.91
Precision : 0.90
F1-Score : 0.90

NS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1
/ 10000)

No KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2,
'algorithm': 'auto'}

AUC : 0.86 (+/-0.12)
Accuracy : 0.77 (+/-0.13)
Recall : 0.77 (+/-0.13)
Precision : 0.78 (+/-0.14)
F1-Score : 0.77 (+/-0.14)

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1
/ 10000)

No Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt',
'min_samples_leaf': 5}

AUC : 0.87 (+/-0.16)
Accuracy : 0.78 (+/-0.20)
Recall : 0.78 (+/-0.20)
Precision : 0.79 (+/-0.21)
F1-Score : 0.78 (+/-0.20)

AUC : 0.87
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.87

NSS-i3d-nl10-
resnet101-v-
kinetics400

Binarization (Threshold = 1
/ 1000)

No Neural Network {'hidden_layer_sizes': (20,), 'activation':
'relu', 'max_iter': 100}

AUC : 0.78 (+/-0.16)
Accuracy : 0.73 (+/-0.15)
Recall : 0.73 (+/-0.15)
Precision : 0.74 (+/-0.15)
F1-Score : 0.73 (+/-0.15)

AUC : 0.77
Accuracy : 0.77
Recall : 0.79
Precision : 0.77
F1-Score : 0.76

NSS-i3d-
resnet50-v-
kinetics400

Z-score Normalization No Gradient Boosting {'n_estimators': 200, 'max_features':
'sqrt', 'max_depth': 3,
'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.84 (+/-0.18)
Accuracy : 0.75 (+/-0.16)
Recall : 0.76 (+/-0.16)
Precision : 0.75 (+/-0.16)
F1-Score : 0.75 (+/-0.16)

AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

 37

Table 4.1. (contd)

Dataset Preprocess Feature
Selection

Machine Learning
Algorithm

Parameter Set Train Metrics Test Metrics

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K
= 50)

Random Forest {'criterion': 'entropy', 'n_estimators':
100, 'max_features': 'sqrt',
'min_samples_leaf': 1}

AUC : 0.83 (+/-0.16)
Accuracy : 0.74 (+/-0.17)
Recall : 0.74 (+/-0.17)
Precision : 0.74 (+/-0.16)
F1-Score : 0.74 (+/-0.17)

AUC : 0.85
Accuracy : 0.85
Recall : 0.85
Precision : 0.85
F1-Score : 0.85

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1
/ 1000000)

No Neural Network {'hidden_layer_sizes': (100,),
'activation': 'identity', 'max_iter': 100}

AUC : 0.76 (+/-0.08)
Accuracy : 0.68 (+/-0.12)
Recall : 0.69 (+/-0.14)
Precision : 0.68 (+/-0.12)
F1-Score : 0.67 (+/-0.12)

AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K
= 50)

Gradient Boosting {'n_estimators': 200, 'max_features':
'sqrt', 'max_depth': 5,
'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.77 (+/-0.12)
Accuracy : 0.70 (+/-0.08)
Recall : 0.70 (+/-0.08)
Precision : 0.70 (+/-0.08)
F1-Score : 0.70 (+/-0.08)

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-i3d-
resnet50-v1-
kinetics400

Binarization (Threshold = 1
/ 10000)

No Gradient Boosting {'n_estimators': 100, 'max_features':
'sqrt', 'max_depth': 3,
'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.78 (+/-0.11)
Accuracy : 0.69 (+/-0.12)
Recall : 0.69 (+/-0.12)
Precision : 0.70 (+/-0.12)
F1-Score : 0.69 (+/-0.11)

AUC : 0.76
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K
= 20)

Gradient Boosting {'n_estimators': 100, 'max_features':
'sqrt', 'max_depth': 3,
'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.75 (+/-0.08)
Accuracy : 0.69 (+/-0.13)
Recall : 0.69 (+/-0.13)
Precision : 0.69 (+/-0.13)
F1-Score : 0.68 (+/-0.13)

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NSSR-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1
/ 100000)

No Gradient Boosting {'n_estimators': 300, 'max_features':
'log2', 'max_depth': 3,
'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.76 (+/-0.05)
Accuracy : 0.68 (+/-0.05)
Recall : 0.68 (+/-0.05)
Precision : 0.69 (+/-0.05)
F1-Score : 0.68 (+/-0.06)

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

 38

4.4. Inspection of False Negatives

In this study, predictions were made using all models to classify videos as either theft-

related or normal. The results revealed instances where normal videos were

misclassified as theft, or theft-related videos were mistakenly identified as normal. To

further investigate these discrepancies, I randomly selected 10 videos and reviewed 3

of them in detail. One of the selected videos depicted a shoplifting incident.As shown

in Figure 3.1, I included three frames: one just before the theft, one at the moment of

the theft, and one after the event. Because the video quality was low and the frames

before and after the theft were similar, it was challenging to identify the precise

moment of the theft. This made it challenging for the models to accurately detect the

theft, and as a result, the video was misclassified as normal. This, revealed the

difficulties of detecting theft in low-quality images where there are consecutive similar

frames, which caused to errors in estimation.

Figure 14.1. False negative shoplifting video frames

The second video, which was labeled as "Stealing," was incorrectly predicted as

"Normal." In contrast, the third video, labeled as "Normal," was predicted as "Theft."

Figure 3.2 shows three frames from the video containing theft, while Figure 3.3 shows

three frames from the normal video. Upon comparing these frames, it becomes evident

that distinguishing between the two videos is challenging, as the frames appear

strikingly similar. This similarity made it difficult for the model to accurately classify

the videos, leading to incorrect predictions. The close resemblance between the frames

highlights the complexity of accurately detecting theft in such footage.

 39

Figure 15 False negative stealing video frames

Figure 16 False negative normal video frames

 40

5. CONCLUSION

We developed a machine learning-based approach for automatic theft detection

utilizing pre-trained human action recognition models in this study. The most suitable

models for theft detection in real surveillance datasets were found. Inferences were

obtained using action recognition models in theft anomaly video datasets. These

inferences were used as features of each video, and this study was guided in this way.

By applying machine learning classification models to datasets that contained features

obtained from inferences, we aimed to make a difference. In order to assess whether a

video is a theft or a normal video, we performed binary classification on different

datasets that included theft incidents divided into three separate categories. The best

results were achieved with the NS-i3d-nl10-resnet101-v1-kinetics400 and NS-i3d-

resnet50-v-kinetics400 datasets, which were generated using the

i3d_nl10_resnet101_v1_kinetics400 and i3d-resnet50-v-kinetics400 pre-trained

models. These datasets contain normal and theft data. These results were obtained

using Neural Network and Gradient Boosting performance models. These results were

achieved by applying binarization to the datasets. In the datasets containing stealing,

shoplifting, and normal data, the best result was obtained from the NSS-slowfast-4x16-

resnet50-kinetics400 dataset. On the other hand, the best results from datasets

containing all four categories were achieved from the NSSR-slowfast-4x16-resnet50-

kinetics400. These result were obtained by applying max absolute scaling and feature

selection techniques to the datasets. When comparing the SlowFast pre-trained video

input sampling structures, 8x8 and 4x16, the highest results were obtained with 4x16

according to the dataset categories. While the fast path processes frames at 16 frames

per second, the slow path processes frames at four frames per second, allowing us to

obtain higher results. The 8x8 result is higher in the dataset containing only normal

stealing videos. The machine learning algorithms that delivered the highest

performance were Neural Network, Gaussian Naive Bayes, Gradient Boosting,

KNeighbors and Random Forest.

 41

In contrast, the Decision Tree and Support Vector Machine models produced the

lowest performance and are not recommended for this problem. The results from the

preprocessed datasets outperformed those from the raw datasets. The most effective

preprocessing techniques were binarization and max absolute scaling. Furthermore,

the results achieved by applying feature selection to the datasets generated with the

slowfast-4x16-resnet50-kinetics400 pre-trained model are significantly better than

those obtained without applying feature selection. Meanwhile, in other datasets,

similar performance results were observed with fewer features after applying the

feature selection method. The test metrics typically fall within the range obtained by

adding or subtracting the standard deviation of the training results. This situation and

the test metrics are generally to be higher, as has been expected. However, there are

some exceptional cases The short quantity of data in the test set as a result of the little

number of theft data is determined to be the cause of this situation.

This approach can be applied to real video surveillance data in theft prevention and

increase human safety. Here, by lowering human involvement, there will be the

potential to increase accuracy, support scalability, and maintain consistency in video

surveillance processing. The ability to accurately detect theft automatically with data

received from surveillance video systems increases the security level in indoor and

outdoor areas. It enables individuals or institutions to prevent economic or trust losses

caused by malicious criminals. Despite its promise, this study still has drawbacks,

including the possibility of false positives in complicated situations and its reliance on

the standard of surveillance videos. These problems might be resolved by further

improving the model. In conclusion, this study shows how machine learning may

improve surveillance systems, setting the platform for more secure, more effective

ways of preventing crime and theft.

 42

REFERENCES

Adam, A., Rivlin, E., Shimshoni, I., & Reinitz, D. (2008). Robust real-time unusual

event detection using multiple fixed-location monitors. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 30(3), 555–560.

https://doi.org/10.1109/TPAMI.2007.70825

Amin, S. U., Ullah, M., Sajjad, M., Cheikh, F. A., Hijji, M., Hijji, A., & Muhammad,

K. (2022). EADN: An Efficient Deep Learning Model for Anomaly Detection in

Videos. Mathematics 2022, Vol. 10, Page 1555, 10(9), 1555.

https://doi.org/10.3390/MATH10091555

Anomaly Detection and Localization in Crowded Scenes. (n.d.). Retrieved December

14, 2023, from http://www.svcl.ucsd.edu/projects/anomaly/

Boekhoudt, K., Matei, A., Aghaei, M., & Talavera, E. (n.d.). HR-Crime: Human-

Related Anomaly Detection in Surveillance Videos.

https://doi.org/10.34894/IRRDJE

Chalapathy, R., Menon, A. K., & Chawla, S. (2018). Anomaly Detection using One-

Class Neural Networks. http://arxiv.org/abs/1802.06360

Chandrakala, S., Deepak, K., & Revathy, G. (2023). Anomaly detection in surveillance

videos: a thematic taxonomy of deep models, review and performance analysis.

Artificial Intelligence Review, 56(4), 3319–3368.

https://doi.org/10.1007/S10462-022-10258-6/FIGURES/10

Danesh Pazho, A., Alinezhad Noghre, G., Rahimi Ardabili, B., Neff, C., & Tabkhi, H.

(2022). CHAD: Charlotte Anomaly Dataset. Lecture Notes in Computer Science

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), 13885 LNCS, 50–66. https://doi.org/10.1007/978-3-031-31435-

3_4

 43

Duong, H. T., Le, V. T., & Hoang, V. T. (2023). Deep Learning-Based Anomaly

Detection in Video Surveillance: A Survey. Sensors 2023, Vol. 23, Page 5024,

23(11), 5024. https://doi.org/10.3390/S23115024

Karim, M., Khalid, S., Aleryani, A., Khan, J., Ullah, I., & Ali, Z. (2024). Human

Action Recognition Systems: A Review of the Trends and State-of-the-Art. IEEE

Access, 12, 36372–36390. https://doi.org/10.1109/ACCESS.2024.3373199

Liu, W., Cao, J., Zhu, Y., Liu, B., & Zhu, X. (2023). Real-time anomaly detection on

surveillance video with two-stream spatio-temporal generative model.

Multimedia Systems, 29(1), 59–71. https://doi.org/10.1007/S00530-022-00979-

7/FIGURES/10

Liu, W., Luo, W., Lian, D., & Gao, S. (n.d.). Future Frame Prediction for Anomaly

Detection-A New Baseline. Retrieved December 14, 2023, from https://github.

Lu, C., Shi, J., & Jia, J. (2013). Abnormal Event Detection at 150 FPS in MATLAB.

https://doi.org/10.1109/ICCV.2013.338

Mehran, R., Oyama, A., & Shah, M. (n.d.). Abnormal Crowd Behavior Detection using

Social Force Model.

Muneer, I., Saddique, M., Habib, Z., & Mohamed, H. G. (2023). Shoplifting Detection

Using Hybrid Neural Network CNN-BiLSMT and Development of Benchmark

Dataset. Applied Sciences (Switzerland), 13(14).

https://doi.org/10.3390/app13148341

Nasaruddin, N., Muchtar, K., Afdhal, A., & Dwiyantoro, A. P. J. (2020). Deep

anomaly detection through visual attention in surveillance videos. Journal of Big

Data, 7(1), 1–17. https://doi.org/10.1186/S40537-020-00365-Y/TABLES/5

Nayak, R., Pati, U. C., & Das, S. K. (2021). A comprehensive review on deep learning-

based methods for video anomaly detection. Image and Vision Computing, 106,

104078. https://doi.org/10.1016/J.IMAVIS.2020.104078

Ramachandra, B., & Jones, M. J. (n.d.). Street Scene: A new dataset and evaluation

protocol for video anomaly detection.

 44

Şengönül, E., Samet, R., Abu Al-Haija, Q., Alqahtani, A., Alturki, B., & Alsulami, A.

A. (2023). An Analysis of Artificial Intelligence Techniques in Surveillance

Video Anomaly Detection: A Comprehensive Survey. Applied Sciences 2023,

Vol. 13, Page 4956, 13(8), 4956. https://doi.org/10.3390/APP13084956

Shafizadegan, F., Naghsh-Nilchi, A. R., & Shabaninia, E. (2024). Multimodal vision-

based human action recognition using deep learning: a review. Artificial

Intelligence Review 2024 57:7, 57(7), 1–85. https://doi.org/10.1007/S10462-024-

10730-5

Sultani, W., Chen, C., & Shah, M. (n.d.). Real-world Anomaly Detection in

Surveillance Videos. Retrieved December 14, 2023, from

http://crcv.ucf.edu/projects/real-world/

Tran, T. M., Vu, T. N., Vo, N. D., Nguyen, T. V., & Nguyen, K. (2022). Anomaly

Analysis in Images and Videos: A Comprehensive Review. ACM Computing

Surveys, 55(7). https://doi.org/10.1145/3544014

Ullah, W., Ullah, A., Hussain, T., Khan, Z. A., & Baik, S. W. (2021). An Efficient

Anomaly Recognition Framework Using an Attention Residual LSTM in

Surveillance Videos. Sensors 2021, Vol. 21, Page 2811, 21(8), 2811.

https://doi.org/10.3390/S21082811

Vu, H., Nguyen, T. D., Le, T., Luo, W., & Phung, D. (2019). Robust Anomaly

Detection in Videos Using Multilevel Representations. Proceedings of the AAAI

Conference on Artificial Intelligence, 33(01), 5216–5223.

https://doi.org/10.1609/AAAI.V33I01.33015216

Waddenkery, N., & Soma, S. (2024). An efficient convolutional neural network for

detecting the crime of stealing in videos. Entertainment Computing, 51, 100723.

https://doi.org/10.1016/J.ENTCOM.2024.100723

Wan, B., Jiang, W., Fang, Y., Luo, Z., & Ding, G. (2021). Anomaly detection in video

sequences: A benchmark and computational model. IET Image Processing,

15(14), 3454–3465. https://doi.org/10.1049/IPR2.12258

Zaigham Zaheer, M., Mahmood, A., Haris Khan, M., Segu, M., Yu, F., & Lee, S.-I.

(n.d.). Generative Cooperative Learning for Unsupervised Video Anomaly

Detection.

 45

APPENDICES

Appendix A. Performance Results of the Best Three Results

In the Appendix A section, for all machine learning algorithms, the performance

results of the best three models among all the results obtained by applying all

preprocessing and feature selection steps separately are shown in the tables below.

 46

Table 1.1. The best three results after applying selectkbest-20 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt',
'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2',
'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,),
'activation': 'identity', 'max_iter': 100}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt',
'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p':
2, 'algorithm': 'kd_tree'}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,),
'activation': 'relu', 'max_iter': 100}

AUC : 0.86
Accuracy : 0.85
Recall : 0.89
Precision : 0.85
F1-Score : 0.85

 47

Table 1.2. The best results after applying selectkbest-20 feature selection and binarization on NS

Dataset Preprocess Feature Selection Best Machine Learning
Algorithm

Best Parameter Set Test Metrics

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (50, 50),
'activation': 'relu', 'max_iter':
50}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,),
'activation': 'relu', 'max_iter':
100}

AUC : 0.82
Accuracy : 0.83
Recall : 0.82
Precision : 0.83
F1-Score : 0.82

NS-i3d-nl10-resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Random Forest {'criterion': 'entropy',
'n_estimators': 200,
'max_features': 'sqrt',
'min_samples_leaf': 5}

AUC : 0.81
Accuracy : 0.80
Recall : 0.83
Precision : 0.80
F1-Score : 0.80

NS-i3d-nl10-resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators':
300, 'max_features': 'log2',
'min_samples_leaf': 2}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100,
'max_features': 'sqrt',
'max_depth': 3,
'min_samples_split': 2,
'min_samples_leaf': 1,
'subsample': 0.8}

AUC : 0.81
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.82

NS-i3d-resnet50-v-kinetics400 Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200,
'max_features': 'sqrt',
'max_depth': 5,
'min_samples_split': 5,
'min_samples_leaf': 1,
'subsample': 1.0}

AUC : 0.81
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.82

 48

Table 1.3. The best three results after applying selectkbest-20 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'relu', 'max_iter': 50}

AUC : 0.75
Accuracy : 0.75
Recall : 0.77
Precision : 0.75
F1-Score : 0.75

NSS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.72
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.72

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,), 'activation':
'relu', 'max_iter': 100}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (10,), 'activation':
'relu', 'max_iter': 50}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (20,), 'activation':
'relu', 'max_iter': 100}

AUC : 0.74
Accuracy : 0.73
Recall : 0.80
Precision : 0.73
F1-Score : 0.72

 49

Table 1.4. The best three results after applying selectkbest-20 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (10,), 'activation':
'relu', 'max_iter': 50}

AUC : 0.72
Accuracy : 0.72
Recall : 0.73
Precision : 0.72
F1-Score : 0.71

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) KNeighbors {'leaf_size': 30, 'n_neighbors': 11, 'p': 2,
'algorithm': 'auto'}

AUC : 0.70
Accuracy : 0.70
Recall : 0.72
Precision : 0.70
F1-Score : 0.70

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.70
Accuracy : 0.70
Recall : 0.70
Precision : 0.70
F1-Score : 0.70

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Support Vector Machine {'kernel': 'rbf', 'gamma': 1, 'C': 1.0} AUC : 0.68
Accuracy : 0.68
Recall : 0.68
Precision : 0.68
F1-Score : 0.68

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.68
Accuracy : 0.68
Recall : 0.72
Precision : 0.68
F1-Score : 0.67

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Gaussian Naive Bayes {'var_smoothing': 0.001} AUC : 0.68
Accuracy : 0.68
Recall : 0.72
Precision : 0.68
F1-Score : 0.67

 50

Table 1.5. The best three results after applying selectkbest-20 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.71
Accuracy : 0.71
Recall : 0.71
Precision : 0.71
F1-Score : 0.71

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.71
Accuracy : 0.71
Recall : 0.71
Precision : 0.71
F1-Score : 0.71

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.71
Accuracy : 0.71
Recall : 0.71
Precision : 0.71
F1-Score : 0.71

NSSR-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.69
Accuracy : 0.68
Recall : 0.71
Precision : 0.68
F1-Score : 0.68

NSSR-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.69
Accuracy : 0.68
Recall : 0.71
Precision : 0.68
F1-Score : 0.68

NSSR-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.68
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.67

 51

Table 1.6. The best three results after applying selectkbest-20 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 20) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2,
'algorithm': 'auto'}

AUC : 0.64
Accuracy : 0.63
Recall : 0.65
Precision : 0.63
F1-Score : 0.63

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) KNeighbors {'leaf_size': 40, 'n_neighbors': 5, 'p': 2,
'algorithm': 'brute'}

AUC : 0.64
Accuracy : 0.63
Recall : 0.65
Precision : 0.63
F1-Score : 0.63

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1

AUC : 0.64
Accuracy : 0.65
Recall : 0.66
Precision : 0.65
F1-Score : 0.64

 52

Table 1.7. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

 53

Table 1.8. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.79
Accuracy : 0.78
Recall : 0.80
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.77
Accuracy : 0.77
Recall : 0.79
Precision : 0.77
F1-Score : 0.76

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

 54

Table 1.9. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.80
Accuracy : 0.79
Recall : 0.80
Precision : 0.79
F1-Score : 0.79

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

 55

Table 1.10. The best three results after applying selectkbest-20 feature selection and no-preprocess on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

 56

Table 1.11. The best three results after applying selectkbest-20 feature selection and no-preprocess on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.80
Accuracy : 0.79
Recall : 0.80
Precision : 0.79
F1-Score : 0.79

NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

 57

Table 1.12. The best three results after applying selectkbest-30 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2,
'algorithm': 'kd_tree'}

AUC : 0.86
Accuracy : 0.85
Recall : 0.89
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 5, 'p': 2,
'algorithm': 'ball_tree'}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

 58

Table 1.13. The best three results after applying selectkbest-30 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2,
'algorithm': 'auto'}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.81
Accuracy : 0.80
Recall : 0.82
Precision : 0.80
F1-Score : 0.80

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.76
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.77

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2,
'algorithm': 'auto'}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.74
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

 59

Table 1.14. The best three results after applying selectkbest-30 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.74
Accuracy : 0.73
Recall : 0.75
Precision : 0.73
F1-Score : 0.73

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.72
Accuracy : 0.72
Recall : 0.75
Precision : 0.72
F1-Score : 0.71

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2,
'algorithm': 'auto'}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2,
'algorithm': 'auto'}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

 60

Table 1.15. The best three results after applying selectkbest-30 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 11, 'p': 2,
'algorithm': 'auto'}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2,
'algorithm': 'auto'}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.72
Accuracy : 0.72
Recall : 0.74
Precision : 0.72
F1-Score : 0.71

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.68
Accuracy : 0.68
Recall : 0.70
Precision : 0.68
F1-Score : 0.67

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.66
Accuracy : 0.67
Recall : 0.68
Precision : 0.67
F1-Score : 0.66

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Decision Tree {'criterion': 'gini', 'random_state': 0,
'max_depth': 3, 'min_samples_leaf': 2, 'splitter':
'best'}

AUC : 0.66
Accuracy : 0.67
Recall : 0.73
Precision : 0.67
F1-Score : 0.64

 61

Table 1.16. The best three results after applying selectkbest-30 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Neural Network 'hidden_layer_sizes': (50, 50), 'activation': 'relu',
'max_iter': 50}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu',
'max_iter': 100}

AUC : 0.72
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.72
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.72
Accuracy : 0.71
Recall : 0.74
Precision : 0.71
F1-Score : 0.70

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.71
Accuracy : 0.71
Recall : 0.72
Precision : 0.71
F1-Score : 0.71

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.71
Accuracy : 0.71
Recall : 0.72
Precision : 0.71
F1-Score : 0.71

 62

Table 1.17. The best three results after applying selectkbest-30 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.72
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.72

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 30) Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) KNeighbors {'leaf_size': 30, 'n_neighbors': 3, 'p': 2,
'algorithm': 'auto'}

AUC : 0.66
Accuracy : 0.68
Recall : 0.68
Precision : 0.68
F1-Score : 0.66

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.66
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.66

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.66
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.66

 63

Table 1.18. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

 64

Table 1.19. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.79
Accuracy : 0.78
Recall : 0.80
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

 65

Table 1.20. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.75
Accuracy : 0.75
Recall : 0.76
Precision : 0.75
F1-Score : 0.75

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.75
Accuracy : 0.74
Recall : 0.75
Precision : 0.74
F1-Score : 0.74

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.74
Accuracy : 0.74
Recall : 0.74
Precision : 0.74
F1-Score : 0.74

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

 66

Table 1.21. The best three results after applying selectkbest-30 feature selection and no-preprocess on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.86
Accuracy : 0.85
Recall : 0.89
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 30) KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2,
'algorithm': 'auto'}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

 67

Table 1.22. The best three results after applying selectkbest-30 feature selection and no-preprocess on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.76
Accuracy : 0.76
Recall : 0.77
Precision : 0.76
F1-Score : 0.76

 68

Table 1.23. The best three results after applying selectkbest-50 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.88
Accuracy : 0.88
Recall : 0.89
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.88
Accuracy : 0.88
Recall : 0.89
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Neural Network {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

 69

Table 1.24. The best three results after applying selectkbest-50 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Support Vector Machine {'kernel': 'rbf', 'gamma': 1, 'C': 1.0} AUC : 0.76
Accuracy : 0.75
Recall : 0.78
Precision : 0.75
F1-Score : 0.75

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.76
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.77

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) KNeighbors {'leaf_size': 50, 'n_neighbors': 5, 'p': 2,
'algorithm': 'ball_tree'}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

 70

Table 1.25. The best three results after applying selectkbest-50 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2,
'algorithm': 'auto'}

AUC : 0.73
Accuracy : 0.72
Recall : 0.82
Precision : 0.72
F1-Score : 0.70

NSS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu',
'max_iter': 100}

AUC : 0.72
Accuracy : 0.72
Recall : 0.77
Precision : 0.72
F1-Score : 0.71

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) KNeighbors {'leaf_size': 30, 'n_neighbors': 5, 'p': 2,
'algorithm': 'auto'}

AUC : 0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

 71

Table 1.26. The best three results after applying selectkbest-50 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) KNeighbors {'leaf_size': 40, 'n_neighbors': 7, 'p': 2,
'algorithm': 'auto'}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.72
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.72

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.72

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Decision Tree {'criterion': 'gini', 'random_state': 0,
'max_depth': None, 'min_samples_leaf': 1,
'splitter': 'best'}

AUC : 0.70
Accuracy : 0.70
Recall : 0.71
Precision : 0.70
F1-Score : 0.70

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.68
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.68

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) KNeighbors {'leaf_size': 50, 'n_neighbors': 15, 'p': 2,
'algorithm': 'auto'}

AUC : 0.66
Accuracy : 0.67
Recall : 0.68
Precision : 0.67
F1-Score : 0.66

 72

Table 1.27. The best three results after applying selectkbest-50 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
10000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

 73

Table 1.28. The best three results after applying selectkbest-50 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.77
Accuracy : 0.78
Recall : 0.77
Precision : 0.78
F1-Score : 0.77

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.77
Accuracy : 0.78
Recall : 0.77
Precision : 0.78
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.66
Accuracy : 0.67
Recall : 0.67
Precision : 0.67
F1-Score : 0.66

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.65
Accuracy : 0.66
Recall : 0.67
Precision : 0.66
F1-Score : 0.65

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.65
Accuracy : 0.66
Recall : 0.67
Precision : 0.66
F1-Score : 0.65

 74

Table 1.29. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.90
Accuracy : 0.88
Recall : 0.90
Precision : 0.88
F1-Score : 0.87

NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu',
'max_iter': 100}

AUC : 0.84
Accuracy : 0.83
Recall : 0.85
Precision : 0.83
F1-Score : 0.82

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.85
Accuracy : 0.85
Recall : 0.86
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.84
Accuracy : 0.83
Recall : 0.85
Precision : 0.83
F1-Score : 0.82

 75

Table 1.30. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.85
Accuracy : 0.85
Recall : 0.85
Precision : 0.85
F1-Score : 0.85

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.83
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.83

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.83
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.83

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

 76

Table 1.31. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.74
Accuracy : 0.74
Recall : 0.74
Precision : 0.74
F1-Score : 0.74

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.74
Accuracy : 0.74
Recall : 0.74
Precision : 0.74
F1-Score : 0.74

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.74
Accuracy : 0.74
Recall : 0.74
Precision : 0.74
F1-Score : 0.74

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

 77

Table 1.32. The best three results after applying selectkbest-50 feature selection and no-preprocess on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85

NS-i3d-
resnet50-v-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.85
Accuracy : 0.85
Recall : 0.85
Precision : 0.85
F1-Score : 0.85

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.83
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.83

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NSS-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

 78

Table 1.33. The best three results after applying selectkbest-50 feature selection and no-preprocess on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSSR-slowfast-
4x16-resnet50-
kinetics400

No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

No SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.73
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

 79

Table 1.34. The best three results after applying binarizationa and no selection on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

No Random Forest {'criterion': 'entropy', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

No Random Forest {'criterion': 'gini', 'n_estimators': 500,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

No Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu',
'max_iter': 100}

AUC : 0.85
Accuracy : 0.85
Recall : 0.85
Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

No Neural Network {'hidden_layer_sizes': (50, 50), 'activation':
'relu', 'max_iter': 50}

AUC : 0.90
Accuracy : 0.90
Recall : 0.91
Precision : 0.90
F1-Score : 0.90

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
10000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.88
Accuracy : 0.88
Recall : 0.89
Precision : 0.88
F1-Score : 0.88

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
10000)

No Neural Network {'hidden_layer_sizes': (20,), 'activation': 'relu',
'max_iter': 100}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

 80

Table 1.35. The best three results after applying binarization and no selection on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.90
Accuracy : 0.90
Recall : 0.91
Precision : 0.90
F1-Score : 0.90

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

No Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.89
Precision : 0.88
F1-Score : 0.88

NS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.88
Accuracy : 0.88
Recall : 0.89
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

 81

Table 1.36. The best three results after applying binarization and no selection on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000)

No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

NSS-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.77
Accuracy : 0.77
Recall : 0.82
Precision : 0.77
F1-Score : 0.76

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

No Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

No Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
10000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

 82

Table 1.37. The best three results after applying binarization and no selection on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

No Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.84
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.83

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

No Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.83
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.83

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

No Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation':
'identity', 'max_iter': 100}

AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

 83

Table 1.38. The best three results after applying binarization and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000)

No Neural Network {'hidden_layer_sizes': (10,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

No Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.72

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
1000)

No Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.73
Accuracy : 0.73
Recall : 0.73
Precision : 0.73
F1-Score : 0.73

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
10000)

No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

 84

Table 1.39 The best three results after applying binarization and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold = 1 /
100000)

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
100000)

No Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 5}

AUC : 0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
100000)

No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.73
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

NSSR-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.70
Accuracy : 0.71
Recall : 0.71
Precision : 0.71
F1-Score : 0.71

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Random Forest {'criterion': 'gini', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.70
Accuracy : 0.71
Recall : 0.72
Precision : 0.71
F1-Score : 0.70

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold = 1 /
1000000)

No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.70
Accuracy : 0.70
Recall : 0.70
Precision : 0.70
F1-Score : 0.70

 85

Table 1.40. The best three results after applying max absolute scaling, z-score normalization and no selection on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling No Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.90
Accuracy : 0.90
Recall : 0.90
Precision : 0.90
F1-Score : 0.90

NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling No Gaussian Naive Bayes {'var_smoothing': 0.001} AUC : 0.90
Accuracy : 0.90
Recall : 0.90
Precision : 0.90
F1-Score : 0.90

NS-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling No Neural Network {'hidden_layer_sizes': (100,), 'activation': 'relu',
'max_iter': 50}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 0.01} AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 0.001} AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 1e-05} AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

 86

Table 1.41. The best three results after applying max absolute scaling, z-score normalization and no selection on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling No Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization No Random Forest {'criterion': 'entropy', 'n_estimators': 100,
'max_features': 'sqrt', 'min_samples_leaf': 1}

AUC : 0.85
Accuracy : 0.85
Recall : 0.85
Precision : 0.85
F1-Score : 0.85

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

 87

Table 1.42. The best three results after applying max absolute scaling, z-score normalization and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling No Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 5, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization No Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization No Gradient Boosting {'n_estimators': 100, 'max_features': 10,
'max_depth': 5, 'min_samples_split': 10,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.75
Accuracy : 0.76
Recall : 0.76
Precision : 0.75
F1-Score : 0.75

 88

Table 1.43. The best three results after applying no-preprocess and no selection on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10-
resnet101-v1-
kinetics400

No No Random Forest {'criterion': 'gini', 'n_estimators': 200,
'max_features': 'sqrt', 'min_samples_leaf': 2}

AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

No No Gaussian Naive Bayes {'var_smoothing': 1e-08} AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10-
resnet101-v1-
kinetics400

No No Gaussian Naive Bayes {'var_smoothing': 1e-12} AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

NSS-slowfast-
4x16-resnet50-
kinetics400

No No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.82
Accuracy : 0.82
Recall : 0.82
Precision : 0.82
F1-Score : 0.82

NSS-slowfast-
4x16-resnet50-
kinetics400

No No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.80
Accuracy : 0.80
Recall : 0.81
Precision : 0.80
F1-Score : 0.80

NSS-slowfast-
4x16-resnet50-
kinetics400

No No Gradient Boosting {'n_estimators': 100, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 5,
'min_samples_leaf': 1, 'subsample': 1.0}

AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

 89

Table 1.44. The best three results after applying no-preprocess and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast-
4x16-resnet50-
kinetics400

No No Gradient Boosting {'n_estimators': 300, 'max_features': 'log2',
'max_depth': 5, 'min_samples_split': 2,
'min_samples_leaf': 5, 'subsample': 1.0}

AUC : 0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77

NSSR-slowfast-
4x16-resnet50-
kinetics400

No No Random Forest {'criterion': 'gini', 'n_estimators': 300,
'max_features': 'log2', 'min_samples_leaf': 2}

AUC : 0.76
Accuracy : 0.76
Recall : 0.77
Precision : 0.76
F1-Score : 0.76

NSSR-i3d-
resnet50-v-
kinetics400

No No Gradient Boosting {'n_estimators': 200, 'max_features': 'sqrt',
'max_depth': 3, 'min_samples_split': 2,
'min_samples_leaf': 1, 'subsample': 0.8}

AUC : 0.76
Accuracy : 0.76
Recall : 0.76
Precision : 0.76
F1-Score : 0.76

 90

Appendix B. 400 Action Classes

In Appendix B section, the 400 action classes used in the data obtained using the pre-

train action recognition model are shown in tables.

 91

Table 2.1. 400 action classes

abseiling
air_drumming
answering_questions
applauding
applying_cream
archery
arm_wrestling
arranging_flowers
assembling_computer
auctioning
baby_waking_up
baking_cookies
balloon_blowing
bandaging
barbequing
bartending
beatboxing
bee_keeping
belly_dancing
bench_pressing
bending_back
bending_metal
biking_through_snow
blasting_sand
blowing_glass
blowing_leaves
blowing_nose
blowing_out_candles
bobsledding
bookbinding
bouncing_on_trampoline
bowling

braiding_hair
breading_or_breadcrumbing
breakdancing
brush_painting
brushing_hair
brushing_teeth
building_cabinet
building_shed
bungee_jumping
busking
canoeing_or_kayaking
capoeira
carrying_baby
cartwheeling
carving_pumpkin
catching fish
catching_or_throwing_baseball
catching_or_throwing_frisbee
catching_or_throwing_softball
celebrating
changing_oil
changing_wheel
checking_tires
cheerleading
chopping_wood
clapping
clay_pottery_making
clean_and_jerk
cleaning_floor
cleaning_gutters
cleaning_pool
cleaning_shoes

cleaning_toilet
cleaning_windows
climbing_a_rope
climbing_ladder
climbing_tree
contact_juggling
cooking_chicken
cooking_egg
cooking_on_campfire
cooking_sausages
counting_money
country_line_dancing
cracking_neck
crawling_baby
crossing_river
crying
curling_hair
cutting_nails
cutting_pineapple
cutting_watermelon
dancing_ballet
dancing_charleston
dancing_gangnam_style
dancing_macarena
deadlifting
decorating_the_christmas_tree
digging
dining
disc_golfing
diving_cliff
dodgeball
doing_aerobics

doing_laundry
doing_nails
drawing
dribbling_basketball
drinking
drinking_beer
drinking_shots
driving_car
driving_tractor
drop_kicking
drumming_fingers
dunking_basketball
dying_hair
eating_burger
eating_cake
eating_carrots
eating_chips
eating_doughnuts
eating_hotdog
eating_ice_cream
eating_spaghetti
eating_watermelon
egg_hunting
exercising_arm
exercising_with_an_exercise_ball
extinguishing_fire
faceplanting
feeding_birds
feeding_fish
feeding_goats
filling_eyebrows
finger_snapping

fixing_hair
flipping_pancake
flying_kite
folding_clothes
folding_napkins
folding_paper
front_raises
frying_vegetables
garbage_collecting
gargling
getting_a_haircut
getting_a_tattoo
giving_or_receiving_award
golf_chipping
golf_driving
golf_putting
grinding_meat
grooming_dog
grooming_horse
gymnastics_tumbling
hammer_throw
headbanging
headbutting
high_jump
high_kick
hitting_baseball
hockey_stop
holding_snake
hopscotch
hoverboarding
hugging
hula_hooping

hurdling
hurling_-sport-
ice_climbing
ice_fishing
ice_skating
ironing
javelin_throw
jetskiing
jogging
juggling_balls
juggling_fire
juggling_soccer_ball
jumping_into_pool
jumpstyle_dancing
kicking_field_goal
kicking_soccer_ball
kissing
kitesurfing
knitting
krumping
laughing
laying_bricks
long_jump
lunge
making_a_cake
making_a_sandwich
making_bed
making_jewelry
making_pizza
making_snowman
making_sushi
making_tea

marching
massaging_back
massaging_feet
massaging_legs
massaging_
person's_head
milking_cow
mopping_floor
motorcycling
moving_furniture
mowing_lawn
news_anchoring
opening_bottle
opening_present
paragliding
parasailing
parkour
passing_American
_football_in_game-
passing_American_
football_notin_game-
peeling_apples
peeling_potatoes
petting_animal_-
not_cat-
petting_cat
picking_fruit
planting_trees
plastering
playing_accordion
playing_badminton
playing_bagpipes

 92

Table 2.1. (contd)

playing_basketball
playing_bass_guitar
playing_cards
playing_cello
playing_chess
playing_clarinet
playing_controller
playing_cricket
playing_cymbals
playing_didgeridoo
playing_drums
playing_flute
playing_guitar
playing_harmonica
playing_harp
playing_ice_hockey
playing_keyboard
playing_kickball
playing_monopoly
playing_organ
playing_paintball
playing_piano
playing_poker
playing_recorder
playing_saxophone
playing_squash
_or_racquetball
playing_tennis
playing_trombone
playing_trumpet
playing_ukulele

playing_violin
playing_volleyball
playing_xylophone
pole_vault
presenting_weather_forecast
pull_ups
pumping_fist
pumping_gas
punching_bag
punching_person_-boxing-
push_up
pushing_car
pushing_cart
pushing_wheelchair
reading_book
reading_newspaper
recording_music
riding_a_bike
riding_camel
riding_elephant
riding_mechanical_bull
riding_mountain_bike
riding_mule
riding_or_walking_with_horse
riding_scooter
riding_unicycle
ripping_paper
robot_dancing
rock_climbing
rock_scissors_paper
roller_skating

running_on_treadmil
sailing
salsa_dancing
sanding_floor
scrambling_eggs
scuba_diving
setting_table
shaking_hands
shaking_head
sharpening_knives
sharpening_pencil
shaving_head
shaving_legs
shearing_sheep
shining_shoes
shooting_basketball
shooting_goal_-soccer-
shot_put
shoveling_snow
shredding_paper
shuffling_cards
side_kick
sign_language_interpreting
singing
situp
skateboarding
ski_jumping
skiing_not_
slalom_or_crosscountry-
skiing_crosscountry
skiing_slalom

skipping_rope
slacklining
slapping
sled_dog_racing
smoking
smoking_hookah
snatch_weight_lifting
sneezing
sniffing
snorkeling
snowboarding
snowkiting
snowmobiling
somersaulting
spinning_poi
spray_painting
spraying
springboard_diving
squat
sticking_tongue_out
stomping_grapes
stretching_arm
stretching_leg
strumming_guitar
surfing_crowd
surfing_water
sweeping_floor
swimming_backstroke
swimming_breast_stroke
swimming_butterfly_stroke
swing_dancing

swinging_legs
swinging_on_something
sword_fighting
tai_chi
taking_a_shower
tango_dancing
tap_dancing
tapping_guitar
tapping_pen
tasting_beer
tasting_food
testifying
texting
throwing_axe
throwing_ball
throwing_discus
tickling
tobogganing
tossing_coin
tossing_salad
training_dog
trapezing
trimming_or_shaving_beard
trimming_trees
triple_jump
tying_bow_tie
tying_knot_-not_on_a_tie-
tying_tie
unboxing
unloading_truck
using_computer

using_remote_controller
_-not_gaming-
using_segway
vault
waiting_in_line
walking_the_dog
washing_dishes
washing_feet
washing_hair
washing_hands
water_skiing
water_sliding
watering_plants
waxing_back
waxing_chest
waxing_eyebrows
waxing_legs
weaving_basket
welding
whistling
windsurfing
wrapping_present
wrestling
writing
yawning
yoga
zumba

 93

Appendix C. Machine Learning Algorithms Parameter Sets

In Appendix C section, All parameter sets used for all machine learning algorithms are shown in

tables.

Table 3.1. Neural network parameter sets

{'hidden_layer_sizes': (10,), 'activation': 'relu', 'max_iter' : 50}
 {'hidden_layer_sizes': (100,), 'activation': 'relu', 'max_iter' : 50}
 {'hidden_layer_sizes': (50,50), 'activation': 'relu', 'max_iter' : 50}
 {'hidden_layer_sizes': (20,), 'activation': 'relu', 'max_iter' : 100}
 {'hidden_layer_sizes': (100,), 'activation': 'identity', 'max_iter' : 100}

Table 3.2. Support vector machine parameter sets

{'kernel': 'linear', 'C': 1.0}
 {'kernel': 'rbf', 'gamma': 1, 'C': 1.0}
 {'kernel': 'poly', 'degree': 3, 'gamma': 0.01, 'C': 1.0}
 {'kernel': 'sigmoid', 'gamma': 1, 'C': 1.0}

Table 3.3. Decision tree parameter sets

{'criterion': 'gini', 'random_state' : 0, 'max_depth' : None, 'min_samples_leaf' : 1, 'splitter': 'best'}
 {'criterion': 'entropy', 'random_state' : 0, 'max_depth' : 5, 'min_samples_leaf' : 1, 'splitter': 'best'}
 {'criterion': 'entropy', 'random_state' : 42, 'max_depth' : 3, 'min_samples_leaf' : 1, 'splitter': 'best'}
 {'criterion': 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'best'}
 {'criterion': 'gini', 'random_state' : 42, 'max_depth' : 5, 'min_samples_leaf' : 2, 'splitter': 'best'}
{'criterion': 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'random'}

{'criterion': 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'random'}
 {'criterion': 'entropy', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf' : 2, 'splitter': 'random'}

Table 3.4. Gaussian naive bayes parameter sets

{'var_smoothing': 1e-2}
 {'var_smoothing': 1e-3}
 {'var_smoothing': 1e-5}
 {'var_smoothing': 1e-8}
 {'var_smoothing': 1e-12}
 {'var_smoothing': 1e-15}

 94

Table 3.5. Random forest parameter sets

{'criterion': 'entropy', 'n_estimators' : 100, 'max_features' : 'sqrt', 'min_samples_leaf' : 1}
 {'criterion': 'gini', 'n_estimators' : 100, 'max_features' : 'sqrt', 'min_samples_leaf' : 1}
 {'criterion': 'gini', 'n_estimators' : 100, 'max_features' : 'sqrt', 'min_samples_leaf' : 2}
 {'criterion': 'gini', 'n_estimators' : 200, 'max_features' : 'sqrt', 'min_samples_leaf' : 2}
 {'criterion': 'gini', 'n_estimators' : 300, 'max_features' : 'log2', 'min_samples_leaf' : 2}
 {'criterion': 'gini', 'n_estimators': 100, 'max_features': 'sqrt', 'min_samples_leaf': 5}
 {'criterion': 'entropy', 'n_estimators': 200, 'max_features': 'sqrt', 'min_samples_leaf': 5}
 {'criterion': 'gini', 'n_estimators': 500, 'max_features': 'sqrt', 'min_samples_leaf': 5}

Table 3.6. KNeighbors parameter sets

{'leaf_size': 30, 'n_neighbors': 3, 'p': 2, 'algorithm': 'auto'}
 {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 'algorithm': 'auto'}
 {'leaf_size': 40, 'n_neighbors': 7, 'p': 2, 'algorithm': 'auto'}
 {'leaf_size': 30, 'n_neighbors': 11, 'p': 2, 'algorithm': 'auto'}
 {'leaf_size': 50, 'n_neighbors': 15, 'p': 2, 'algorithm': 'auto'}
 {'leaf_size': 50, 'n_neighbors': 5, 'p': 2, 'algorithm': 'ball_tree'}
 {'leaf_size': 30, 'n_neighbors': 5, 'p': 2, 'algorithm': 'kd_tree'}
 {'leaf_size': 40, 'n_neighbors': 5, 'p': 2, 'algorithm': 'brute'}

Table 3.7. Gradient boosting parameter sets

{'n_estimators': 100, 'max_features' : 'sqrt', 'max_depth' : 3, 'min_samples_split' : 2, 'min_samples_leaf' : 1,
'subsample': 0.8}

{'n_estimators': 200, 'max_features' : 'sqrt', 'max_depth' : 3, 'min_samples_split' : 2, 'min_samples_leaf' : 1,
'subsample': 0.8}

{'n_estimators': 100, 'max_features' : 'sqrt', 'max_depth' : 3, 'min_samples_split' : 5, 'min_samples_leaf' : 1,
'subsample': 1.0}

{'n_estimators': 300, 'max_features' : 'log2', 'max_depth' : 3, 'min_samples_split' : 5, 'min_samples_leaf' : 1,
'subsample': 1.0}

{'n_estimators': 200, 'max_features' : 'sqrt', 'max_depth' : 5, 'min_samples_split' : 5, 'min_samples_leaf' : 1,
'subsample': 1.0}

{'n_estimators': 100, 'max_features' : 10, 'max_depth' : 5, 'min_samples_split' : 10, 'min_samples_leaf' : 1,
'subsample': 1.0}

{'n_estimators': 300, 'max_features' : 'log2', 'max_depth' : 5, 'min_samples_split' : 2, 'min_samples_leaf' : 5,
'subsample': 1.0}

{'n_estimators': 100, 'max_features' : 10, 'max_depth' : 5, 'min_samples_split' : 10, 'min_samples_leaf' : 5,
'subsample': 1.0}

 95

CURRICULUM VITAE

Personel Information

Name & Surname : İ*** K***** U******
Nationality : T*****h

Phone : +90 5********6
E-posta : i****************@** *** *r

Education

Degree Institution Year of Graduation

High School Muğla Anatolian High School 2012

BSc Muğla Sıtkı Koçman University 2017

Work Experience

Software Engineer (2018 - 2022) – Tübitak (İLTAREN)

Research Assistant (2022 - Present) – Muğla Sıtkı Koçman University Department of Computer

Engineering

Oral Presentations in International Symposiums

Karaca Uluoğlu İrem, Süzek Barış Ethem, 2024. A Machine Learning Based Approach for

Automatic Theft Detection. IGSCONG’24 - 4th International Graduate Studies Congress

(IGSCONG)

