THE REPUBLIC OF TURKIYE
MUGLA SITKI KOCMAN UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND
APPLIED SCIENCES

DEPARTMENT OF COMPUTER ENGINEERING

A MACHINE LEARNING-BASED APPROACH FOR
AUTOMATIC THEFT DETECTION

IREM KARACA ULUOGLU

MASTER’S THESIS

DECEMBER 2024
MUGLA

MUGLA SITKI KOCMAN UNIVERSITY
Graduate School of Natural and Applied Sciences

APPROVAL OF THESIS

The thesis submitted by IREM KARACA ULUOGLU, titled “A MACHINE
LEARNING-BASED APPROACH FOR AUTOMATIC THEFT DETECTION”
was unanimously accepted by the jury members on December 27, 2024, to fullfill the
requirements for the degree of Master’s in the Department of Computer Engineering.

THESIS JURY MEMBERS
Assist. Prof. Dr. Erdem TURK (Head of Jury) Signature:

Department of Computer Engineering,
Mugla Sitk1 Kogman University, Mugla

Assoc. Prof. Dr. Barig Ethem SUZEK (Supervisor) Signature:

Department of Computer Engineering,
Mugla Sitki Kogman University, Mugla

Assoc. Prof. Dr. Giirhan GUNDUZ (Member) Signature:

Department of Computer Engineering,
Pamukkale University, Denizli

APPROVAL OF HEAD OF THE DEPARTMENT
Assoc. Prof. Dr. Barig Ethem SUZEK Signature:

Head of Department Computer Engineering,

Mugla Sitk1 Kogman University, Mugla

Assoc. Prof. Dr. Barig Ethem SUZEK Signature:

Supervisor, Department Computer Engineering,

Mugla Sitk1 Kogman University, Mugla

Date of Defense: 12/27/2024

I hereby declare that all information in this document has been obtained and presented
in accordance with academic and ethical conduct. I also declare that, as required by
these rules and conduct, I have fully cited and referenced all material and results that
are not original to this work.

Irem Karaca Uluoglu
12/27/2024

OZET
OTOMATIK HIRSIZLIK TESPITi iCIN MAKINE OGRENIMi TABANLI
BiR YAKLASIM

frem KARACA ULUOGLU

Yiiksek Lisans Tezi
Fen Bilimleri Enstitiisii
Bilgisayar Miihendisligi Anabilim Dali
Danisman: Dog. Dr. Baris Ethem SUZEK
Aralik 2024, 94 sayfa

Hirsizlik, kiiresel olarak artan yaygin bir sugtur. Hirsizlig1 6nlemek icin siklikla video
gozetim sistemleri kullanilsa da bu sistemlerde hirsizligin tespiti, sikici ve tutarsiz
olabilen manuel izlemeye baghdir. Bu, otomatik hirsizlik tespit sistemlerine olan
ihtiyac1 ortaya koymaktadir. Bu ¢aligmada, derin 6grenme tabanli dnceden egitilmis
insan eylemi tanima modelleri kullanarak otormatik hirsizlik tespit sistemi i¢in makine
O0grenimi tabanli bir yaklagim gelistirmeyi amagladik. Yaklagimimiz dort temel
adimdan olusuyordu: veri seti hazirlama, 6zellik vektorii olusturma, hirsizlik tespiti
icin model egitimi ve performans degerlendirmesi. Central Florida Universitesi-Sug
kamu veri setinden tiirettigimiz veri setlerini kullandik. Ilk veri setinde stealing ve
normal videolar, ikinci veri setinde shoplifting, stealing ve normal videolar ve {igiincii
veri setinde ise shoplifting, stealing, robbery ve normal videolar yer aliyordu.
Hirsizlikla ilgili kategorileri iceren videolar "theft" olarak etiketlenirken, normal
videolar "normal" olarak etiketlendi. Her videodan 400 6zellige sahip Oznitelik
vektorleri olusturmak icin Onceden egitilmis dort insan eylem tanima modeli
kullandik. Bu, adim {i¢ verisetinden tiiretilen 12 ayr1 veri seti ile sonuglandi. Sonra
farkli veri kiimeleri arasinda hirsizligi normal videolardan ayirt etmek icin ikili
smiflandirma yapildi. Egitim verilerine Support Vector Machine, Decision Tree,
Neural Network, Random Forest, K-Nearest Neighbors, Gaussian Naive Bayes ve
Gradient Boosting olmak tizere ¢esitli makine 6grenimi algoritmalar1 hiperparametre
ayarlamasi ile uygulandi. Model performansi, test kiimesine gore degerlendirildi. En
iyi performans gdosteren, 0,90'lik AUC, 0,90'lik dogruluk, 0,91'lik duyarlilik, 0,901k
kesinlik ve 0,90k F1 score ile Neural Network modelidir. Bu yaklagim, hirsizlik
onlemede gercek video gdzetim verilerine uygulanabilir ve insan giivenligini
artirabilir. Bu caligma, insan miidahalesini azaltarak, dogrulugu artirma ve video
gozetimi isleme siirecinde tutarliligi koruma potansiyeli sunmaktadir.

Anahtar Kelimeler: Hirsizlik Tespiti, Makine Ogrenimi, Eylem Tanima, Video’da
Otomatik Hirsizlik Tespiti, Video Gozetimi

ABSTRACT
A MACHINE LEARNING-BASED APPROACH FOR AUTOMATIC THEFT
DETECTION

frem KARACA ULUOGLU

Master of Science (M.Sc.)

Graduate School of Natural and Applied Sciences
Department of Computer Engineering
Supervisor: Assoc. Prof. Dr. Baris Ethem SUZEK
December 2024, 94 pages

Theft, a common crime, is increasing globally. Although video surveillance systems
are frequently employed to prevent theft, the detection of theft in these systems
depends on manual monitoring, which can be tedious and inconsistent. This reveals
the need for automatic theft detection systems. In this study, we aimed to develop a
machine learning-based approach for automatic theft detection systems using deep
learning-based pre-trained human action recognition models. Our approach consisted
of four key steps: dataset preparation, feature vector generation, model training for
theft detection, and performance evaluation. We used datasets derived from the
University of Central Florida-Crime public dataset. The first dataset contained stealing
and normal videos, the second included shoplifting, stealing, and normal videos, and
the third dataset had shoplifting, stealing, robbery, and normal videos. Videos
involving theft-related categories were labeled as “theft,” while normal videos were
labeled as “normal”. We utilized four pre-trained human action recognition models to
generate feature vectors with 400 features from each video. This resulted in 12 distinct
datasets derived from three datasets. Binary classification was then performed to
distinguish theft from normal videos across the different datasets. Machine learning
algorithms were applied to the training data, including Support Vector Machine,
Decision Tree, Neural Network, Random Forest, K-Nearest Neighbors, Gaussian
Naive Bayes, and Gradient Boosting, with hyperparameter tuning. Model performance
was evaluated based on the test set. The best-performing model was the Neural
Network, achieving an AUC of 0.90, accuracy of 0.90, recall of 0.91, precision of 0.90,
and an F1 score of 0.90. This approach can be applied to real video surveillance data
in theft prevention and increase human safety. Here, by lowering human involvement,
there will be the potential to increase accuracy and maintain consistency in video
surveillance processing.

Keywords: Theft Detection, Machine Learning, Action Recognition, Automatic Theft
Detection in Video, Video Surveillance

ACKNOWLEDGEMENTS

First of all, I am grateful to my advisor Assoc. Prof. Dr. Baris Ethem Siizek for his
knowledge, tolerance and guidance in the realization of this study. Your valuable
feedback and continuous support enlightened my path and contributed greatly to
completing my thesis in the best possible way.

Additionally, I would want to thank my spouse, Omer Uluoglu, whose constant love
and support provided me with the emotional support I needed. I am grateful to my
parents, Ayse and Sahin Karaca, and brother, Anil Karaca, for their constant backing
and belief in me.

Finally, throughout the process of finishing this thesis, I would want to sincerely thank
everyone who helped and advised me.

Vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.....cuiiinininininsinsensssssississsssissssssssssssssssssssssssssssssssssssssns vi
TABLE OF CONTENTS....covttrninntinunnnissisissssessessnsons vii
LIST OF TABLES ...uuouiiiiininininstnsnississississsssssssssssssssstsssssssssssssssssssssssssssssssssses viii
LIST OF FIGURESccouiiiiiiinintnnississisicsisssssssssssssssissssssssssssssssssssssssssssssssssssns ix
1. INTRODUCTIONuuiiiiricinrensensanssnssissississessessessns 1
2. LITERATURE REVIEW......cuinininininsisssssessssssnssissssssssssssssssssssssssssssssssnes 3
3. METHODOLOGY c..uuinuinicricsensensensasssnssissississessesssanes 7
3.1. Dataset Collection and Creation...........c.eeeevuerieneenienieneenienieneenieeee e 7
3.1.2. Theft Datasetsccceeieriieiirieniieierteteetee sttt 7
3.1.2. Pre-trained modelsccccovuirieniiiiiiiiiiieiecieeee e 9
3.1.3. Feature CT@AtIONcocuerueeiiieieriieieeiesieete ettt st 11

3.2. Data Transformation...........cceeereeiierienieniienieieeeesieeste et 12
3.3. Feature SEleCtiONcoeiviiiiiiiiiieniiesieeeeteie ettt 13
3.3.1. Filter-based feature Selectioncccoeevueriierienienienieieeieneeeeesieee 13
3.3.2. Feature importance quantifiCationcocceeeeueeriienciieniienieenieeie e 14
3.3.3. Feature eXtraCtionccceevueeieriienienienieeieeite sttt sttt st 15

3.4. Classification Algorithms and Model Training..........ccccoeeveriieniienieenieennene. 16
3.5. Performance Evaluationc..cocevieriiiiiinieniiiienieieccseeeeesieee e 18
3.5.1. Hyperparameterazationccueeeveerieerieerieeneeenieeseeeseesseesseesneeseesnnes 19

4. RESULTS..ucotiitiiinninsnisnissecsssssesssissssssssssesssssssssssssssssssssssssssssssssssassssssssssssssassase 24
4.1. Effects of Data Transformationccccecevieneiiienienienienieneeeseeseeeeeee e 24
4.2. Effects of Feature Selection.........cocevieriieiieiieniiiienieieeiceeerieeeeeeee e 25
4.3. Performance RESUILScccuiriiriiiiiiiiicieceeeeee e 35
4.4. Inspection of False Negatives........cceecuiiriieiiieniieeieeiie et 38
5. CONCLUSION..ccouuiiiisecssicsenssnsssecsasssnssssssssssasssssssssssssssssssssassssssssssassssssssssasssassase 40
REFERENCEScuuiiiiiinininissnsssissississisissanses 42
APPENDICES ...ccuiiiiiiiniinnisnicsissisessssssssssssisssanes 45
Appendix A. Performance Results of the Best Three Results...........cccccceeenennnenee. 45
Appendix B. 400 Action ClasSeSs.........ceecuieriieriiieriienieeniieetieieeseeesieeseeeseeseneenseens 90
Appendix C. Machine Learning Algorithms Parameter Sets..........ccccoceveevuennnee. 93

vii

LIST OF TABLES

Table 3.1. Machine learning algorithms and best parameter Setsc..ccccevvvereennen.

Table 4.1. Performance results

viii

LIST OF FIGURES

Figure 3.1. Shoplifting sample VIdEO VIEWcceeviieiiieniieiienieeieeeie et 8

Figure 3.2. NS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot.27
Figure 3.3. NS-i3d-resnet50-v1-kinetics400 dataset feature importance plot 28
Figure 3.4. NS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot28
Figure 3.5. NS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot29
Figure 3.6. NSS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

.. 29
Figure 3.7. NSS-i3d-resnet50-v1-kinetics400 dataset feature importance plot......... 30
Figure 3.8. NSS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot
.. 30
Figure 3.9. NSS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot
.. 31
Figure 3.10. NSSR-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance
Plot.cccee.. . N N R R IR ., 31

Figure 3.11. NSSR-i3d-resnet50-v1-kinetics400 dataset feature importance plot 32
Figure 3.12. The NSSR-slowfast-4x16-resnet50-kinetics400 dataset feature

TMPOTLANCE PLOL...eiiuiiiiiiieiieii ettt sttt sttt st b b st esaeenreas 32
Figure 3.13. NSSR-slowfast-8x8-resnet101-kinetics400 dataset feature importance

101 (o) OO RPN 33
Figure 4.1. False negative shoplifting video framesc..cccceeverieniininienennicneene. 38
Figure 4.2. False negative stealing video framesccoceveevinieninninicnceneneee, 39
Figure 4.3. False negative normal video framesccccceceeveeviniieninnenieneecneee, 39

1. INTRODUCTION

A crime is a violation of law that is illegal, detrimental to a person or society, and
subject to legal consequences. Damage can be monetary, psychological, or physical.
Crime causes enormous losses in terms of both people and money. The local and
worldwide crime rates are increasing. Theft is among common crimes defined as
taking one's property without the use of force. Theft is rising nationally and
internationally. As a result of this increase, the use of surveillance video cameras in
public places such as airports, train stations, schools, hospitals, banks, shopping malls,
education institutions, and crowded streets has also increased to provide safety. Video
surveillance systems are used as a preventive measure against theft. The purposes of
surveillance video cameras are to maintain track of regular activity and identify
unusual ones. According to the definition used in the surveillance sector, an anomaly
is any unusual occurrence that deviates from normal behavior and is generally
understood to be a deviation from standard norms, types, arrangements, or forms.
Among the anomalies, the theft anomaly, which creates material and moral losses, is
very important. In video surveillance systems, theft detection relies on manual
monitoring and identification of suspicious activities from video feeds by humans.
Therefore, continuous monitoring could be tedious, resource-constrained, cost-

inefficient, inconsistent, and unscalable due to human involvement.

For many applications, like theft detection, preserving security depends on the ability
to identify anomalies in video surveillance. Since anomalous occurrences only occur
0.01% of the time and 99.9% of the monitoring time is wasted, manually detecting
anomalies is a labor-intensive and ongoing procedure that takes a lot of time and effort
from human workers (Duong et al., 2023). Thus, intelligent systems that can
automatically identify abnormal events in the video stream are desperately needed.
The capacity to automatically identify security incidents or potentially dangerous
occurrences occurring inside the field of vision of cameras is offered by Automated

Video Surveillance technology (Jadhav et al., 2017).

There is a need for automatic theft detection systems capable of handling large

volumes of data that are consistent, accurate, scalable, and continuously available.

Several applications that use action recognition and machine learning have surfaced in
recent years for the detection of theft. Despite much research in this field, no transfer
learning implementation has been done. In this work, we constructed feature vectors
using a recently developed theft dataset by applying action recognition methods. For
this process, we chose four separate action recognition algorithms, and we used
machine learning methods on the feature vector datasets that were produced. We also
included steps for feature extraction. Our work differs from earlier research in this

subject because of these techniques, especially the application of transfer learning.

2. LITERATURE REVIEW

Researchers have carried out various studies to date on the detection of anomalies in
surveillance videos. There are quite extensive publications on this subject. In 2018,
Sultani and colleagues conducted a research on the deep anomaly ranking algorithm,
which predicts high anomaly scores for anomalous video segments and offered a new
large-scale, first-of-its-kind dataset of 128 hours of videos (Sultani et al., n.d.). A
survey from that same year suggested using a one-class neural network model to
identify anomalies in huge, complicated datasets (Chalapathy et al., 2018). In 2019,
using multilevel representations of both intensity and motion data, Vu and colleagues
created a framework for accurate anomaly detection (Vu et al., 2019). In 2021, Ullah
and colleagues introduced a time-complexity-reduced anomaly recognition framework
for surveillance that is effective and lightweight, utilizing convolutional neural
networks (CNNs). To accurately detect anomalous behavior in surveillance videos,
they extracted spatial CNN attributes from a sequence of video frames and fed them
to the suggested residual attention-based long short-term memory network (Ullah et
al., 2021). In 2020, in contrast to full-frame learning, the research presented a method
for learning abnormal behavior in the video by identifying attention to the area using
spatiotemporal information (Nasaruddin et al., 2020). In a survey in 2021, a multitask
deep neural network was suggested as a solution to the anomaly detection problem,
which was considered a fully supervised learning problem (Wan et al., 2021). In 2022,
Zaigham Zaheer and colleagues presented a unique technique for video anomaly
identification using unsupervised Generative Cooperative Learning (GCL) that builds
a cross-supervision between a discriminator and a generator by taking advantage of
the low frequency of anomalies (Zaigham Zaheer et al., n.d.). A survey that utilizes a
model based on deep learning for surveillance system anomaly detection was released
in 2022 (Amin et al., 2022) . In 2023, Liu and colleagues provided a two-stream spatio-
temporal generative model to identify anomalous behavior in real-time from video

surveillance (Liu et al., 2023).

Datasets have been created to be used for anomaly detection. In 2008, the subway
dataset, which consists of two long video recordings that capture individuals entering
and leaving a train station, became accessible (Adam et al., 2008). In 2009, the UMN
dataset that simulated a populated area where actors walk to an exact location and
escape with anomalous behavior was published (Mehran et al., n.d.). In 2013, the
Avenue dataset that involves abnormal events that were recorded at CUHK campus
avenue was offered (Lu et al., 2013). In 2013, the UCSD dataset that has two sub-
datasets, Pedestrian 1 and Pedestrian 2, which involve events captured in various
crowded stages, was published (Anomaly Detection and Localization in Crowded
Scenes, n.d.). In 2016, the ShanghaiTech Campus dataset that includes 13 sequences,
including intricate lighting, camera angles, and many kinds of anomalies, most of
which are connected to unusual things, the wrong direction, and unusual behavior, was
offered (Liu et al., n.d.). In 2018, the UCF-Crime dataset that contains anomalies about
stealing, shoplifting, robbery, burglary, abuse, arrest, arson, assault, explosion,
fighting, road accidents, shooting, and vandalism was published (Sultani et al., n.d.).
In 2020, the Street Scene dataset that involves anomalies, for instance, bikers outside
lanes and jaywalking, became accessible (Ramachandra & Jones, n.d.). In 2021, the
HR-Crime dataset, which is a subset of the UCF-Crime dataset that includes Human-
Related (HR) videos, was released (Boekhoudt et al., n.d.).

Review articles that describe the datasets and machine learning methods that have been
published thus far in the anomaly detection field are also available. A review paper
on methods based on deep learning for detecting anomalies in videos was released in
2021 (Nayak et al., 2021). In 2022, a review publication that summarizes anomaly
analysis datasets and machine learning models was released (Tran et al., 2022). In
2023, a review paper was released about deep learning approaches to the detection of
anomalies in surveillance videos (Chandrakala et al., 2023). In the same year, a paper
that analyze the existing deep learning structures and machine learning methods used
to detect anomalous cases in surveillance videos to examine their benefits and
difficulties was published. Also, this survey summarizes anomaly detection datasets
(Sengoniil et al., 2023). Another review paper that explains all datasets that contain
abnormal events and discusses deep learning models up to now was published (Duong

etal., 2023).

The field of human action recognition is fast developing, with notable progress made
in the creation of models and systems. Review papers that summarize the state of the
field have emerged as academics explore deeper. In 2024, an extensive review of
Human Action Recognition systems is given in the paper. It discusses deep learning
and machine learning techniques, benchmark datasets for human action recognition,
metrics to assess the effectiveness and architecture of systems for human action
recognition, current problems, and potential future paths for the field (Karim et al.,
2024). In the same year, a review of deep learning techniques for multimodal vision-
based human action recognition is presented in a publication. Shafizadegan and
colleagues present a four-level category for human action recognition techniques that
take into account the architecture, similarities, availability, and modalities of the
frameworks. They identify benchmark human action recognition as well. The study
examines possible future research opportunities in the field and highlights the top-
performing techniques on well-known and current benchmark datasets (Shafizadegan

et al., 2024).

When all the publications are considered, it is concluded that there are a lot of papers
related to anomaly detection or human action recognition systems. However, few
papers have been conducted to automatically detect theft or subcategories of theft
detection. In 2018, a publication that provides theft detection with machine learning
was released. In this paper, a motion was detected using convolution neural networks
and sent a warning to the owner (Kushwaha et al., 2018). In 2023, a paper about the
detection of theft using deep learning was published. This survey uses real-time object
identification on live video feeds to improve security protocols and enable quick
reactions to possible threats (Shirole & Virdhe, 2023). In the same year, a paper
indicates using a hybrid neural network to identify shoplifting. To compare their model
with other approaches, Muneer and colleagues built a new dataset, which they used to
compare and find that their model performed better (Muneer et al., 2023). In 2024, an
article presents a new technique for identifying theft in surveillance video. This
approach tries to lower false positives and is meant to work well both in the daytime
and at night. Waddenkery and Soma emphasize the importance of the system's capacity
to gain knowledge from tiny quantities of data and adapt to changing circumstances

for real-time applications (Waddenkery & Soma, 2024).

Transfer learning, as everyone knows, is an approach to machine learning that applies
the information of a trained model developed for one task to another that is related but
different. This allows for the transfer of knowledge from task one to the second model,
which is task-specific. It decreases the quantity of data required to train a model and
increases efficiency. You can accomplish high accuracy in your particular domain by
utilizing pre-trained models on huge data sets. Pre-trained models significantly
decrease the amount of time needed for training. Models may overfit the training set
in situations where there is insufficient data. Through the application of the more
comprehensive knowledge gained from the original dataset, transfer learning helps to
reduce this risk. It enables simple adjustment with minor changes to new operations or
domains for a specific application, a pre-trained model can be efficiently adjusted. By
encouraging knowledge sharing across many tasks, transfer learning makes it possible
to apply ideas from one work to another. For instance, video analysis can benefit from

the features acquired in image recognition.

In this research, we will work on theft detection. We will discuss the definition of theft
by Article 141 of the Turkish Criminal Law. In the direction of article 141, we wanted
to evaluate theft in 4 groups. However, since burglary does not always result in theft,
we determined the number of our groups as 3. These groups are stealing, shoplifting,
and robbery. To achieve this, firstly, we created datasets from the UCF-Crime dataset
that contains three theft groups that are determined and normal videos. There is no
publication in the literature on theft detection, considering novel datasets that contain
three categories. Additionally, there are no publications in the literature about running
several action recognition algorithms and making predictions using transfer learning
as a result and using them as features. There are only a few products in this field that

are commercially developed abroad and sold.

3. METHODOLOGY

Our methodology was organized into five main steps. Dataset development and
collection is the first step, during which we acquired and selected the information
required for analysis. In the second step, data transformation, we prepared the data.
To find the most relevant parameters which would improve model performance, we
then carried out feature selection. After that, we trained models and used a variety of
classification algorithms. Lastly, we evaluated the model's performance to determine

its overall efficiency and accuracy.

3.1. Dataset Collection and Creation

This study aims to identify theft in surveillance videos. To carry out this study, a
dataset was developed. The section on data creation and gathering involved several

procedures. Under subheadings, the specifics of these steps are arranged and clarified.

3.1.2. Theft Datasets

Following a comprehensive analysis of all theft and criminality-related research, we
have found two open-source datasets that are significant to our study. A high-
resolution, multi-camera dataset called the Charlotte Anomaly Dataset (CHAD) was
created specifically for anomaly detection in commercial parking lots. Four cameras
simultaneously capture the same scene: one HD camera and three Full-HD cameras.
CHAD is made up of 412 high-quality videos totaling about 1.15 million frames.
Among these, 1.09 million frames exhibit routine activity, while 59,000 frames contain
anomalies (Danesh Pazho et al., 2022). These 412 videos had not been categorized.
We didn't know which video had which anomaly. We just knew videos that contain
anomalies. For this reason, we excluded and didn't utilize this dataset. UCF-Crime

dataset is open-source, and it includes 13 different categories of anomalies related to

crimes, such as shoplifting, stealing, robbery, burglary, arrest, arson, assault, abuse,
road accident, fighting, explosion, shooting, and vandalism. Additionally, there are
videos called normal that don't have any anomalies. A significant collection of 128
hours of video makes up this dataset. It has 1900 untrimmed real-world surveillance
videos (Sultani et al., n.d.). We used this dataset to construct our unique datasets. Our
datasets include data gathered from four separate categories: shoplifting, stealing,
robbery, and normal. We might have used the burglary category and the data in this
category because we are interested in theft, but since burglaries are typically armed,
after analyzing videos, we decided to consider the types of thefts that are carried out

unarmed. We eliminated this category.

Figure 3.1. Shoplifting sample video view

We created three different datasets for our study. First, there is the NS dataset, which
has 200 videos evenly split into two categories: 100 normal videos and 100 stealing
videos. Expanding on this, we produced a second dataset called NSS, which offers
three categories: 150 normal videos, 100 stealing videos, and 50 shoplifting videos.
Lastly, an even more comprehensive third dataset, NSSR, includes four categories:
300 videos of normal, 50 videos of shoplifting, 100 videos of stealing, and 150 videos
of robbery.

3.1.2. Pre-trained models

In our research, we used Apache MXNet, which is an open-source deep-learning
framework. It enables neural networks with deep layers to be defined, trained, and
used. It works with a wide range of platforms, including the infrastructure used by
cloud computing. MXNet is well-known for its scalability, which is crucial for
managing huge data sets and complicated models since it enables users to train models
across distributed systems and many GPUs. Additionally, it serves as the foundation
for several high-level libraries, including Gluon, which makes deep learning model
construction and training easier. A compact, easy-to-understand API for deep learning
is offered by the Gluon library in Apache MXNet. It enables the quick development,
building, and training of deep learning structures without reducing training speed.
State-of-the-art (SOTA) deep learning methods for computer vision are developed
using GluonCV. Based on the Gluon interface of the Apache MXNet framework,
GluonCV is an open-source computer vision library. It makes it simpler for developers
and researchers to apply and experiment with cutting-edge techniques by offering a
collection of pre-trained models, datasets, and tools made especially for computer
vision work. To recognize and categorize actions in video sequences, GluonCV
provides several action recognition models. Applications like sports analysis, video
surveillance, and human-computer interaction depend on these models. Among the
significant action recognition models in GluonCV are I3D and SlowFast Networks.
By expanding 2D filters into 3D, I3D models enable 2D convolutional networks to
learn spatiotemporal properties directly from video inputs. In tasks requiring action
recognition, this method has significantly improved performance. SlowFast networks
can efficiently capture both slow motion and quick motion by processing video at
several temporal levels. While the Fast pathway concentrates on high-frequency
movements, the Slow pathway records intricate spatial details. The models can be
easily applied to user-provided datasets or customized for particular applications by

using the pre-trained weights and implementations that GluonCV offers.

We used several GluonCV action recognition models. These models are an effective
resource for anyone trying to identify actions in videos. The first is
13d nl10 resnetl01 v1 kinetics400. The Inflated 3D ConvNet (I3D) architecture is
specifically implemented in the model i3d nl10 resnetl01 v1 kinetics400.

Its purpose is to recognize actions in video data. By extending 2D convolutional
networks into 3D by inflating its filters, [3D, represented by the Inflated 3D ConvNet
architecture, enables the model to learn spatiotemporal properties directly from video
frames. This method efficiently records information about appearance as well as
action. The model aims to employ a non-local operation using ten input frames, as
denoted by the nll10 indicator, improving its capacity to capture long-range
dependencies in the video data. This 13D model's foundation is built upon the 101-
layer ResNet-101 design. ResNet, which is renowned for its effectiveness in image
recognition applications, uses skip connections to lessen the impact of the gradient
disappearing issue and make it possible to train deeper networks. V1: This
abbreviation often denotes the ResNet architecture version that was utilized in the
model. Kinetics400: This 400-class dataset, which is frequently used to train action
recognition models, is utilized to pre-train the model. i3d_resnet50 vl kinetics400 is
the second one. The second action recognition model that we utilized was
13d_resnet50 vl kinetics400. This model is an I3D model. It also uses the Kinetics
400 dataset. However, this model has resnet50. ResNet makes use of residual learning,
a theory that facilitates the training of extremely deep networks. It uses shortcut
connections, also called skip connections, to add the input to the result of a deeper
layer without going through a few levels. Typically, images with a resolution of 224
by 224 pixels are fed into ResNet-50. For tasks involving classification, the output is
typically a probability distribution across a collection of classes. The utilized third
action recognition model was slowfast 4x16 resnet50 kinetics400. It is a SlowFast
model architecture. 4x16 represents the video input sampling structure. That usually
means that in this instance, the Fast pathway processes frames at a rate of 16 frames
per second, whereas the Slow pathway processes frames at a rate of 4. This design
facilitates the balancing of motion capture and detail. The Kinetics 400 dataset and
resnet50 architecture are used in this model. This technique recognizes motions in
videos by efficiently utilizing both slow and fast motion information. We used the
slowfast 8x8 resnetl01 kinetics400 model. This model utilizes the SlowFast
architecture, too. 8x8 indicates the model's sample method. In particular, it usually
indicates that the Fast pathway functions at a rate of 8 frames per second, enabling a
more in-depth comprehension of both fast and slow movements. The Slow pathway

analyzes video frames at a rate of 8 frames per second.

10

The Kinetics 400 dataset and resnet101 architecture are used in this model. This model
is an advanced model for identifying actions in videos. It uses a dual-stream
architecture to leverage both spatial and temporal information, and it uses a strong
backbone (ResNet101) that has been trained on a large dataset (Kinetics-400). If we
explain the Kinetics400 dataset in more detail, a collection of original action videos
from YouTube is called Kinetics400, and it is used for action recognition. With
306,245 short-trimmed movies from 400 action categories, it is one of the largest and
most often used datasets in the academic area for evaluating the effectiveness of the
most sophisticated video action detection models. Usually, each video clip lasts for ten
seconds or less. It offers enough time information to accurately represent the actions'
dynamics. Action classes are used to label the dataset, enabling models trained on it to
identify particular actions in videos. It is widely used for deep learning model training

and evaluation, particularly for models with complex architectures.

3.1.3. Feature creation

To generate features, firstly, we developed a Python script that takes input in the form
of text files ending in .txt. The path to a unique video, its frame count, and its associated
video name are all included in each row of this text file. The last two fields, which are
just placeholders and do not function in the code, are the number of frames and the
video label. As a result, to satisfy the script's input requirements, arbitrary positive
integers were inserted into these fields. The script returns human activity predictions
in videos specified in a text file. We have run 4 GluonCV action recognition models
across three distinct datasets with the usage of this script. A total of 12 distinct feature
datasets were produced using this process. For ease of identification and further
analysis inside our study, each of these feature datasets has been named systematically.
The names of the feature datasets are as follows, in order. NS - 13d - nl10 - resnet101-
v1- kinetics400, NS - 13d - resnet50 - v1- kinetics400, NS - slowfast - 4x16 - resnet50
- kinetics400, NS - slowfast - 8x8 - resnetl01 - kinetics400, NSS - i3d - nll0 -
resnet101- v1- kinetics400, NSS - 13d - resnet50 - v1- kinetics400, NSS - slowfast -
4x16 - resnet50 - kinetics400, NSS - slowfast - 8x8 - resnet101 - kinetics400, NSSR -
13d - nl10 - resnet101- v1- kinetics400, NSSR - i3d - resnet50 - v1- kinetics400, NSSR
- slowfast - 4x16 - resnet50 - kinetics400, NSSR - slowfast - 8x8 - resnetl01 -

kinetics400. NS refers to the dataset containing Normal and Stealing videos, while

11

NSS includes Normal, Stealing, and Shoplifting videos. NNSR includes Normal,
Stealing, Shoplifting and Robbery videos. The remaining part of the dataset's name is
the name of the pre-trained model. In each feature dataset, each row contains the
category of the video and a series of action inference probability values that are 400
vectors. The categorical label (theft/normal) of the video is indicated by the first value
in each entry, and the next values are the inference probabilities over 400 different
action classes. There is a table that includes 400 different action classes in the

Appendix B section.

3.2. Data Transformation

In this study, we used several data transformation techniques, such as binarization,
max absolute scaling, and Z-score normalization (standard scaling). Standardization is
a statistical technique that rescales and modifies the distribution of data to yield a mean
of zero and a standard deviation of one. Z-score normalization was the first
preprocessing method used on the data. This preprocessing stage successfully changed
every value in the dataset, guaranteeing that the distribution that resulted had a
standard deviation of 1 and a mean of 0. This type of it reduces the impact of various
scales on various variables, facilitates feature comparison, and increases the
effectiveness of machine learning algorithms. The data distribution becomes more
stable and comparable as a result. Furthermore, it increases machine learning
algorithms' effectiveness by decreasing their sensitivity to the size of the input features.
Additionally, during the preprocessing stage of the analysis, the data normalization
method known as max absolute scaling was utilized. To scale features to a range
between -1 and 1, max absolute scaling is a data normalization approach that takes into
account the maximum absolute value of each feature. When working with datasets that
have both positive and negative values in their characteristics, this method is especially
helpful. After these data transformations, binarization was used. The process of

converting numerical data into binary form is known as binarization.

12

The 0.001, 0.0001, 0.00001, and 0.000001 are the four threshold values that have been
established. The datasets were binarized using these thresholds, converting continuous

feature values into binary representations that met the preset standards.

In this study, we employed the Scikit-learn package, an open-source Python machine
learning and data modeling library, for data transformations. The scikit-learn version
was 1.2.0. We constructed a StandardScaler object for Z-score normalization. Using
the fit_transform method from the StandardScaler object, the standard deviation and
mean for each feature were specified to apply Z-score normalization. To apply max
absolute scaling, we created an instance of the MaxAbsScaler. Max absolute scaling
was applied by calculating the maximum absolute value for each feature with the

fit_transform method that is from the MaxAbsScaler object.

3.3. Feature Selection

Feature selection is the process of identifying and selecting a subset of relevant
attributes (or variables) from the larger range of features in a dataset. Feature selection
is primarily used to reduce overfitting, increase accuracy, and shorten training times
in machine learning models. In this study, we used the Scikit-learn library for feature
selection operations. The subsections provide a detailed explanation of the

advancements we made in our study about feature selection.

3.3.1. Filter-based feature selection

Feature selection methods that rely on filters assess the importance of features by
analyzing their statistical characteristics, regardless of machine learning algorithms.
They can be scaled and are fast. SelectKBest is included in them since it uses a scoring
function for evaluating features. To evaluate features, SelectKBest frequently uses
statistical tests such as correlation coefficients (for regression) or the ANOVA F-test
(for classification). Based on the selected criterion, that is, f classif for classification
tasks (ANOVA F-value), this approach scores and then chooses the top K features with
the highest scores. As might be expected, this method accepts two different

parameters, which are "scoring function" and "k."

13

The integer "k" indicates how many top characteristics to choose. The default for k is
10. Some of the scoring functions (f classif, chi2, and f regression) are explained.
f classif is ANOVA F-value between label/feature. Each feature's linear relationship
to the target variable is measured by this function, which is utilized for classification
tasks. It facilitates the identification of characteristics that differ noticeably between
classes. chi2 is chi-squared statistics of non-negative features. This evaluates the
independence of features about the target variable and is applied to categorical
characteristics. It evaluates if there is a difference between the distribution of
categorical variables and what would be predicted if they were independent.
f regreesion is the F-value between label/feature. It is used for regression tasks. To
find features that significantly affect the prediction of continuous outcomes, this

calculates the linear correlation between the target variable and each feature.

The SelectKBest feature selection approach is applied in our study. To evaluate the
impact of various feature subsets, we applied this approach with three distinct K
values. These are 20, 30, and 50. We choose to use the ANOVA F-value (f classif) for
the scoring function because it is especially appropriate for classification tasks. We
implemented this selection method because it has the advantage of handling big
datasets efficiently while preserving computing efficiency. Furthermore, its simple

implementation makes it easy to interpret.

3.3.2. Feature importance quantification

Feature importance quantifies each feature's contribution to a machine learning
model's prediction performance. Gaining knowledge about the underlying data and
increasing model efficiency can be achieved by determining which attributes have the
most influence. There are several approaches to assess a feature's importance. These
are coefficient-based, tree-based, or permutation importance. In this research, we used
a based feature importance method that is a random forest to calculate. A method for
assessing the worth of features in decision tree algorithms, such as random forests and
decision trees, is called tree-based feature importance. To increase accuracy and
manage overfitting, random forests, a collaborative learning technique, generate

numerous decision trees and aggregate their predictions.

14

Random forest features are valued using Mean Decrease Impurity (MDI), a critical
technique for assessing each feature's impact on a random forest machine learning
model's predictive power. The quality of a split is assessed in decision trees using
impurity metrics such as entropy or Gini impurity. There is a better split when the
impurity is lower. Every decision tree in the random forest helps to lower the node's
impurity when a feature is utilized to split the tree. Each time a feature is utilized in a
split, the magnitude of the impurity reduction it achieves is noted. Once every tree has
been constructed, the overall impurity decrease for every feature has been added up.
To obtain a proportionate score, the feature importance score for each feature is then
normalized, often by dividing by the total impurity reduction across all features. Each
feature's proportion to the model's overall decision-making process is shown by the
score that results. The more important a feature is in establishing predictions, the
higher its score. All things considered, random forest feature significance is a useful
model assessment. Interpreting the model and learning more about the data is made
easier by knowing which features have the biggest influence on the predictions. It
assists in choosing the most essential aspects, which improve model performance and
simplify it. Underlying connections between features and the target variable are

revealed by feature importance.

Using the scikit-learn library to compute random forest feature importance, firstly, we
created and fitted the random forest model. We got feature importances using feature
importances attributes directly from the fitted model. It returns the importance scores.
Then, we accessed the important feature names. Additionally, we visualized feature

importance using a bar plot.

3.3.3. Feature extraction

In the machine learning process, feature extraction is an essential phase that turns raw
data into a collection of useful features. With the help of these features, predictive
models are constructed, allowing algorithms to recognize patterns and generate
accurate predictions. The goal of feature extraction is to enhance the quality and
usefulness of input data while decreasing dimensionality. PCA, or principal
component analysis, is a feature extraction technique. This dimensionality reduction

technique is commonly used to reduce the number of variables in huge data sets while

15

maintaining much of the original data. Accuracy naturally decreases as a data set's
variables are reduced, but the key to dimensionality reduction is to compromise a little
accuracy in favor of simplicity. As a result of smaller data sets being simpler to
examine and visualize, machine learning algorithms can analyze data points

considerably more quickly and easily because fewer variables need to be processed.

Using the scikit-learn library to apply PCA, we created a PCA object. We identified
the number of components to keep. Then, we fitted and transformed the data. The
number of components was taken as 5, 10, 15, and 20, and experiments were carried

out on the data sets, respectively.

3.4. Classification Algorithms and Model Training

Classification machine learning algorithms to be utilized for model training were
identified. KNNeighbors, Gaussian Naive Bayes, Decision Trees, Support Vector
Machines, Random Forests, Neural Networks, and Gradient Boosting are among the
machine learning techniques that have been specified. A supervised machine learning
algorithm known as a support vector machine (SVM) classifies data by identifying the
best line or hyperplane in an N-dimensional space that optimizes the distance among
each class. It works well in high-dimensional spaces, is sensitive to overfitting, and is
adaptable because of its kernel functions (linear, RBF, etc.). One supervised learning
technique for classification is the Decision Tree algorithm. It displays choices and their
potential outcomes as a tree-like structure, with each internal node standing for a
feature-based decision, each branch for the decision's result, and each leaf node for a
class label. The objective is to learn basic decision rules derived from the data features
to build a model that estimates the value of a target variable. It is easy to understand
and interpret. In addition to handling both numerical and categorical data, it requires
minimal data preprocessing. Based on the idea that comparable data points are likely
to provide similar results, the supervised classification method is the K-Nearest
Neighbors (KNN) machine learning algorithm. As an illustration of instance-based
learning, KNN does not build an explicit model; instead, it bases its predictions on the
complete training dataset. Achieving optimal performance requires careful evaluation

of the distance metric and K selection.

16

The K parameter indicates how many nearest neighbors should be considered when
making a prediction. To assess the "closeness" of data points, KNN uses distance

measurements.

One ensemble learning technique that is often utilized for classification is the Random
Forest algorithm. To increase accuracy and manage overfitting, it aggregates the
predictions of several decision trees. The Random Forest algorithm relies on a set of
decision trees. Utilizing a random portion of the training data, each tree is trained to
produce a variety of models that can identify various patterns. By utilizing the
advantages of several decision trees, it mitigates the weaknesses of individual models
while achieving high accuracy and robustness. For classification tasks, Gaussian Naive
Bayes is a probabilistic machine learning method based on the Bayes principle. The
term "Gaussian" denotes the assumption that the characteristics have a Gaussian
(normal) distribution. A simple and effective approach for classification problems,
especially when working with big datasets, is Gaussian Naive Bayes. Gradient
Boosting, an ensemble method that creates models one after the other in an attempt to
correct the errors made by the previous models used for classification problems, is one
of the most effective machine learning algorithms. Gradient Boosting is able to
generate extremely accurate predictions by integrating the results of these models. A
neural network is a classification model for machine learning that is based on the
structure and functions of the human brain. In this model, there are some key
components. Some of them are layers and activation functions. The layer that gets the
input data is called the input layer. Weighted connections are used in the processing of
hidden layers, which are intermediate layers. The final classifications or predictions
are generated by the output layer. Since activation functions establish each neuron's
output and add non-linearity to the model, they are essential parts of neural networks.
Neural networks are capable of learning intricate patterns and relationships in the data
because of this non-linearity. Twelve feature datasets were trained using all the
machine learning algorithms we mentioned above. Then, the datasets were re-trained

by applying all preprocesses steps.

17

3.5. Performance Evaluation

After the model training, we assessed the model’s performance using evaluation
metrics that are AUC, precision, accuracy, recall, and F1 score. The following

paragraphs explain the definitions and formulas of evaluation metrics.

Accuracy, which is a major measurement metric, is utilized for assessing the efficiency
of classification models. It refers to the proportion of accurate predictions to all
predictions. This assessment indicates that if 100 predictions were made, 70 of them
would have come true, indicating a 70% accuracy rate for the model.

TP+TN
TP+TN+ FP+FN

Accuracy =

Recall is utilized as a performance metric to assess the classification model's
efficiency. It is also named true positive rate or sensitivity. It is obtained with true
positive predictions divided by the sum of true positive and false negative predictions.
It shows the model's ability to identify all relevant instances. If the model determines
60 out of 100 true positive cases correctly, the recall will be 60%.

TP

Recall = Sensitivity = TPR = TP T FN

Precision is a crucial measurement metric. By showing the proportion of expected
positive cases that are true positives, it evaluates how accurate the model is at making
positive predictions. The model's capacity to accurately specify pertinent instances is
indicated by the ratio of true positive predictions to the sum of true positive and false
positive predictions. For instance, a model's precision is 0.6 (or 60%) if it predicted 50
positive instances, but just 30 of those were accurate.

TP

P .. _
recision TP + FP

18

The F1 score, which provides a single measure that balances precision and recall, is
the fundamental evaluation metric. The F1 score is calculated by taking the harmonic
mean of recall and precision metrics. Its range is between 0 and 1. While 0 shows the

worst performance, 1 shows the best precision and recall.

2 * Precision * Recall
F1-Score =

Precision + Recall

The Area Under the Curve assesses the ability of the models to discriminate between
positive and negative classes with different thresholds. This crucial performance
metric is the area under the Receiver Operating Characteristic (ROC) curve. It is
referred to as AUC. Its values vary from 0.5, which indicates random performance, to
1.0, which indicates excellent categorization. If the model discriminates positive and
negative classes better, the AUC will be higher. If AUC is 70%, it shows that the
possibility of a positive instance chosen at random having a higher estimated value

than a negative instance chosen at random is 70%.
1
AUC = f TPR(FPR™(x))dx
x=0

Python libraries were utilized for model training and performance evaluation. The
scikit-learn, which is a machine learning library, was used. Its version was 1.2.0.
Pandas, which is a data analysis library, was used. The version of the panda’s library
was 1.5.2. A Python library for data visualization called Seaborn was used. Its version
was 0.12.2. NumPy, which is a Python library for scientific computing, was also used.
The version of NumPy was 1.24.1. The extensive Python visualization library
Matplotlib was utilized to create static, animated, and interactive displays. The version

used is 3.6.2. Also, the Python version was 3.10.

3.5.1. Hyperparameterazation

First, each of the 12 datasets was divided into train and test sets. The test size was 20
percent of the dataset, while 80 percent of the dataset was for the training part. This
separation is essential for the later assessment of model performance since it enables
the training set to be used for model fitting and parameter adjustment and the testing
set to be used as a separate sample for evaluating how well the created models

generalize. After the division of datasets as train and test, we used 5-fold cross-

19

validation in the training part. It is a machine learning model training and evaluation
technique. By ensuring that the model is trained on many subsets of the data and
reducing the overfitting probability, this approach produces a more accurate
assessment of the model's performance. We utilized the scikit-learn library's cross-
validation technique to apply 5-fold cross-validation in the training section. The
function enables the computation of multiple measurements simultaneously and is
helpful for cross-validation. We obtained the average of 5-fold train performance
results on 80 percent of datasets. Then, we trained 80% of the datasets with the
appropriate classification models. After this process, we predicted it with the test

datasets and generated the performance results.

In training, we used multiple machine learning algorithms that were mentioned in the
classification algorithms and model training part. For each machine learning
algorithm, we utilized different parameter sets. To use algorithms from scikit-learn,
firstly, we imported associated library lines. Then, we created classifiers and set the
parameters of classifiers. The following paragraphs explain the parameters of these
machine learning algorithms in the scikit-learn library. These parameters are the

parameters used in this research.

In the SVM algorithm, four important parameters are used. The trade-off between
maximizing the margin and decreasing classification error is managed by the
regularization parameter that is named "C". It needs to be completely positive. A high
C value aims to accurately classify every training example, whereas a small C value
permits more misclassifications. The default value is one for C. "kernel" designates
the kind of kernel that will be utilized in the algorithm. These include linear, poly, rbf,
sigmoid, and precomputed. If none is provided, rbf is used by default. To facilitate
class separation, kernels convert the input data into higher-dimensional space.
"gamma" is the kernel coefficient for kernels of values rbf, poly, and sigmoid. It takes
two values that are scale, auto, or float. The default is scale. According to these, the
value of gamma is assigned. "degree" refers to the polynomial kernel function's degree
(or "poly"). It must not be negative. All other kernels disregard it. The default value of

degree is three.

20

In the Decision Tree algorithm, five crucial parameters are considered. The first
parameter is "criterion," which specifies the function to measure the quality of a split.
Criterion values are gini, entropy, log loss. The default value of the criterion
parameter is gini. The "splitter" parameter is utilized at each node to select the split.
Values of this parameter are best and random. Best is used for selecting the best split,
and random is used for selecting the best random split. The default value is best. The
argument "max_depth" indicates the tree's maximum depth. It limits the number of
splits in the tree. Its values can be integer. The default value is None. This parameter
helps prevent overfitting. "min_samples leaf" is another important option that is
essential. It indicates the least amount of samples required at a leaf node. Values of
this parameter can be integer or float. The default value is 2. By keeping the model
from learning too particular patterns, it aids in smoothing the model. The
"random_state" parameter regulates the estimator's level of randomness. Its values are

integer or None. The default value is None.

"n_neighbors" was the first important parameter in the K-Nearest Neighbors (KNN)
method that determined how many neighbors would be utilized for classification. Its
values are integer. The default value is 5. Usually, values are odd numbers to prevent
classification ties. To compute the nearest neighbors, an "algorithm" parameter is
utilized. Values of the parameter are "auto", "ball tree", "kd tree", and "brute". The
default is "auto". The leaf size provided to the KDTree or BallTree algorithms is
known as the "leaf size" parameter. This may impact memory utilization and the speed
of the query and building. When determining the distance between two points, the

distance metric is defined by the "p" parameter. Generally, p is 1 for Manhattan, and

p is 2 for Euclidean distance. These are the parameters that are most frequently utilized.

"n_estimators," or the entire number of trees in the forest, was the first important
parameter in the Random Forest algorithm. Values of parameters are integer. The
default is 100. More trees generally increase both performance and computation time.
The next parameter, "max_features", indicates how many features should be taken into
consideration when determining the optimal split. Parameter values can be integer,
float, sqrt, log2, or None. The default value is None, which means all features are
considered. Other parameters that we also mentioned in the decision tree classifier are

"criterion" and "min_samples_leaf".

21

In Gaussian Naive Bayes, it had one crucial parameter, that is "var_smoothing". We
adjusted this parameter. This parameter enhances numerical stability by adding a small
amount of variance to the features. When a feature's variation is relatively minimal, it

helps avoid zero division errors.

In Gradient Boosting algorithm has six important parameters that are considered. The
first parameter is "n_estimators", which is the quantity of boosting stages(trees) that
must be executed. Although they can improve accuracy, more boosting stages run the
danger of overfitting. Its values are integer. The default is 100. The next crucial
parameter is "max_depth", which is the deepest point of each individual tree. With the
use of this parameter, overfitting can be avoided; deeper trees can represent more
complex relationships. Values can be integer or None. The default value is 3. Another
parameter is "min_samples_split", which is the bare minimum of samples needed to
separate an internal node. Values are integer and float. The default is 2.
"min_samples_leaf" is the minimum number of samples needed to reach a leaf node.
It aids in reducing overfitting. Values can be integer or float. The default is 1.
"subsample" is the fraction of samples that will be utilized to fit each base learner
individually. Values are float. A value below 1.0 that is default can aid in avoiding
overfitting. "max_features" is the number of features to take into account when trying
to find the ideal split. Values can be "sqrt", "log2", integer, float, or None. The default

value is None.

Three key parameters are taken into consideration in the Neural Network algorithm.
This variable "hidden layer sizes" describes how many neurons are hidden in each
layer. Values are array-like (n_layers,). The default is (100,). The next parameter is
"activation", which is the function that activates the hidden layers. Values are
"identity", "logistic", "tanh", and "relu". The default is "relu". The last parameter is
"max_iter", which is the most iterations (epochs) that can be used to train the model.
If the loss doesn't get better, the solver might quit sooner. Values are integer. The

default value is 200.

22

Taking into account the parameters of the algorithms we mentioned in the above
paragraphs, we determined the best parameter sets and fine-tuned them accordingly in
the hyperparameterization step. Subsequently, the best classification algorithm models
and parameter sets were determined based on their AUC, F1 score, accuracy, precision,
and recall over the test sets. The best-performing algorithms and hyperparameters are
shown in Table 1.1. All machine learning algorithms used in this study and their

hyperparameters are included in the Appendix C section.

Table 3.1. Machine learning algorithms and best parameter sets

Machine learning algorithm Parameter set

Neural Network {'hidden_layer sizes'": (50, 50), 'activation": 'relu’, 'max_iter": 50}

Random Forest {'criterion': 'gini', 'n_estimators'": 100, 'max_{features'": 'sqrt',
'min_samples_leaf": 5}

Gradient Boosting {'n_estimators': 300, 'max_features'": 'log2', 'max_depth": 3,
'min_samples_split": 5, 'min_samples_leaf": 1, 'subsample: 1.0}

KNeighbors {'leaf size': 40, 'n_neighbors": 7, 'p": 2, 'algorithm': 'auto'}

Decision Tree {'criterion': 'gini', 'Tandom_state": 0, 'max_depth': None,
'min_samples_leaf': 1, 'splitter': 'best'}

Gaussian Naive Bayes {'var_smoothing": le-12}

Support Vector Machine {'kernel": 'rbf, 'gamma': 1, 'C": 1.0}

23

4. RESULTS

4.1. Effects of Data Transformation

In this research, we performed data transformations to all datasets before the execution
of machine learning algorithms. We found that these transformations contribute to
improving machine learning algorithms’ performances. Since we know how well a
model can learn from the data, how interpretable the model is, and the overall quality
of predictions directly depends on the preprocessing steps to be applied, we carefully
tried different preprocessing techniques and recorded the results by selecting the ones
that were suitable for our study. In our study, we tried to make the correct choice and
application of data transformations important and to make them effective on the

results.

The results show that z-score normalization is quite useful in improving performance
in the Gaussian Naive Bayes model. Because normalization makes sure that features
are on the same scale and are more likely to satisfy the Gaussian distribution
assumption, it enhances performance. The model's performance has improved in
comparison to the pre-normalization level. The results show that max absolute scaling
applied to the datasets is more useful in the Neural Network model. Because this model
is sensitive to the magnitude of the data but does not require the data to be shifted to
zero or restricted to a specific range. It is also seen that the performance is better after
applying maximum absolute scaling in Gradient Boosting and Random Forest models.
Binarization has been applied with various threshold values, and among these
threshold values, 0.0001 has given the best results. The second best threshold was
0.00001. After applying binarization, the most effective results have been obtained

with Random Forests, Neural Network, and Gradient Boosting models.

24

4.2. Effects of Feature Selection

In this study, we implemented feature importance, feature selection, and PCA that play
crucial roles in improving model performance, reducing overfitting, and enhancing

interpretability.

The results show us that when we apply feature selection, the model focuses on the
most important factors and increases the prediction accuracy as we remove irrelevant
features. At the same time, the complexity of the model is reduced. We observed that
training times were reduced as the number of features decreased. Hyperparameters
automatically accelerated the optimization time. When the results obtained after
applying feature selection are compared, the best algorithms for each data set are
explained with their values. The best classification algorithm models were determined
based on their AUC, recall, precision, accuracy, and F1 score on the test set. The model
with the highest performance was the Random Forest with an AUC of 0.88, accuracy
of 0.88, precision of 0.88, recall of 0.88, and F1 score of 0.88 on NS - i3d - nl10 -
resnet101- v1- kinetics400 dataset with used SelectKBest method that K is 20. The
best was the Random Forest with an AUC of 0.85, accuracy of 0.85, precision of 0.85,
recall of 0.86, and F1 score of 0.85 on NS - i3d - resnet50 - v1- kinetics400 with used
SelectKBest method that K is 30. The best was the Gaussian Naive Bayes with an
AUC of 0.84, accuracy of 0.83, precision of 0.83, recall of 0.87, and F1 score of 0.82
on NS - slowfast - 4x16 - resnet50 - kinetics400 with same method and K value. The
best was the Gaussian Naive Bayes with an AUC of 0.81, accuracy of 0.80, precision
of 0.82, recall of 0.80, and F1 score of 0.80 on NS - slowfast - 8x8 - resnet101 -
kinetics400 with used SelectKBest method that K is 50. The best was the Decision
Tree with an AUC of 0.75, accuracy of 0.75, precision of 0.75, recall of 0.75, and F1
score of 0.75 on NSS - i3d - nl10 - resnet101- v1- kinetics400 with used SelectKBest
method that K is 20. The best was the Random Forest with an AUC of 0.77, accuracy
of 0.77, precision of 0.77, recall of 0.77, and F1 score of 0.77 on NSS - i3d - resnet50
- v1- kinetics400 with used SelectK Best method that K is 30. The best was the Random
Forest with an AUC of 0.83, accuracy of 0.83, precision of 0.83, recall of 0.84, and F1
score of 0.83 on NSS - slowfast - 4x16 - resnet50 - kinetics400 with used SelectKBest
method that K is 50.

25

The best was the Random Forest with an AUC of 0.72, accuracy of 0.72, precision of
0.74, recall of 0.72, and F1 score of 0.71 on NSS - slowfast - 8x8 - resnetl01 -
kinetics400 with the same method and K value. The best-performing model was the
Gradient Boosting with an AUC of 0.73, accuracy of 0.73, precision of 0.73, recall of
0.73 and F1 score of 0.73 on NSSR - i3d - nl10 - resnet101- v1- kinetics400 with the
same method and K value. The best was the Gradient Boosting with an AUC of 0.73,
accuracy of 0.73, precision of 0.73, recall of 0.74, and F1 score of 0.73 on NSSR - i3d
- resnet50 - vI- kinetics400 with the same method and K value. The best was the
Gradient Boosting with an AUC of 0.80, accuracy of 0.79, precision of 0.79, recall of
0.80, and F1 score of 0.79 on NSSR - slowfast - 4x16 - resnet50 - kinetics400 with
used SelectKBest method that K is 20. The best was the Gradient Boosting with an
AUC of 0.71, accuracy of 0.71, precision of 0.72, recall of 0.71, and F1 score of 0.71
on NSSR - slowfast - 8x8 - resnet101 - kinetics400 with used SelectK Best method that
K is 30. It is inferred from the findings that the best results of using the SelectKBest
method are obtained by using K 50. The best model is seen as a Random Forest after
feature selection is applied. In addition, Gradient Boosting, Gaussian Naive Bayes,

and Decision Tree are the other best-performing models.

Feature importance was applied to all datasets. The results indicated which feature was
more important. Since these features corresponded to actions in our dataset, they
demonstrated which action had a better score in which theft category. We used random
forest feature importance, and this returned importance scores. We obtained
importance scores for all datasets. By analyzing feature importance scores, we
identified the two most significant actions for each dataset. Below, we detail these
datasets along with their top-ranked actions. For the NS-i3d-nl10-resnetlO1-v1-
kinetics400, the most important actions are pumping_gas and pushing car. The NS-
13d-resnet50-v1-kinetics400 highlights pumping_gas and building cabinet, while the
NS-slowfast-4x16-resnet50-kinetics400 emphasizes changing wheel and
bookbinding. In the case of the NS-slowfast-8x8-resnetl01-kinetics400,
pumping gas, and changing wheel are the most critical. Pumping gas and
answering_questions are notable actions for the NSS-i3d-nl10-resnetlO1-v1-
kinetics400, whereas pumping_gas and changing wheel are important actions for the

NSS-i3d-resnet50-v1-kinetics400.

26

Pumping_gas and changing wheel are highlighted in NSS-slowfast-8x8-resnet101-
kinetics400, whereas changing wheel and pumping_gas are ranked as the top actions
in the NSS-slowfast-4x16-resnet50-kinetics400 dataset. In the NSSR-i3d-nll10-
resnet101-v1-kinetics400, texting and extinguishing fire are the most important,
followed by texting and motorcycling in the NSSR-i3d-resnet50-v1-kinetics400. The
NSSR-slowfast-4x16-resnet50-kinetics400 prioritizes news_anchoring and
riding_unicycle, while assembling_computer and motorcycling are the key actions for
NSSR-slowfast-8x8-resnet101-kinetics400. To visually present these findings, we
have created bar plots for the feature importance of each dataset, which are shown

below.

Feature importances using MDI

using_remote_controller_-not_gaming-
spraying
riding_a_bike
moving_furniture
playing_paintball
using_computer
unloading_truck
sharpening_pencil
eating_burger
cleaning_floor
dining
extinguishing_fire
blasting_sand
motorcycling
driving_car
bowling
answering_questions
bookbinding
waiting_in_line
auctioning
building_cabinet
changing_wheel
checking_tires
pushing_car
pumping_gas

0.00 0.01 0.02 0.03 0.04

Mean decrease in impurity

Figure 3.2. NS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

27

Mean decrease in impurity

Mean decrease in impurity

Feature importances using MDI

chopping_wood
using_computer
using_remote_controller_-not_gaming-
throwing_ball
shoveling_snow
garbage_collecting
stretching_leg
motorcycling
moving_furniture
bowling
driving_car
changing_oil
writing

spraying
reading_book
extinguishing_fire
tai_chi
pushing_wheelchair
blasting_sand
bookbinding
changing_wheel
checking_tires
pushing_car
building_cabinet

pumping_gas

0.00 0.01 0.02 0.03 0.04

Figure 3.3. NS-i3d-resnet50-v1-kinetics400 dataset feature importance plot

Feature importances using MDI

spraying
playing_bagpipes
folding_paper
faceplanting
reading_book
moving_furniture
riding_unicycle
dancing_gangnam_style
sharpening_pencil
garbage_collecting
tai_chi
using_computer
exercising_with_an_exercise_ball
throwing_ball
building_cabinet
hoverboarding
motorcycling
pushing_car
writing
blasting_sand
checking_tires
changing_oil
pumping_gas
bookbinding
changing_wheel

0.00 0.01 0.02 0.03 0.04

Figure 3.4. NS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot

28

Mean decrease in impurity

Mean decrease in impurity

Feature importances using MDI

skateboarding
garbage_collecting
training_dog
side_kick
riding_scooter
riding_a_bike
texting

busking
reading_newspaper
folding_clothes
pushing_car
pushing_cart
bookbinding
stretching_arm
motorcycling
writing
building_cabinet
moving_furniture
changing_oil
answering_questions
spraying
driving_car
checking_tires
changing_wheel

pumping_gas

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

Figure 3.5. NS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot

Feature importances using MDI

using_computer
chopping_wood
moving_furniture
cleaning_floor
pushing_cart
counting_money
driving_car
breakdancing
motorcycling
texting
sweeping_floor
building_cabinet
reading_newspaper
pushing_wheelchair
spraying

auctioning
news_anchoring
extinguishing_fire
mopping_floor
blasting_sand
changing_wheel
pushing_car
using_remote_controller_-not_gaming-
answering_questions
pumping_gas

0.00 0.01 0.02 0.03

Figure 3.6. NSS-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

29

Feature importances using MDI

news_anchoring
sign_language_interpreting
country_line_dancing
throwing_ball
moving_furniture
stretching_leg
pushing_wheelchair
bookbinding
driving_car

dining
unloading_truck
building_cabinet
spraying

tai_chi
using_remote_controller_-not_gaming-
changing_oil
garbage_collecting
motorcycling
shoveling_snow
blasting_sand
checking_tires
extinguishing_fire
pushing_car
changing_wheel
pumping_gas

Mean decrease in impurity

0.00 0.01 0.02 0.03

Figure 3.7. NSS-i3d-resnet50-v1-kinetics400 dataset feature importance plot

Feature importances using MDI

unloading_truck
bookbinding
shaving_head
throwing_ball
using_computer
playing_chess
setting_table
using_remote_controller_-not_gaming-
texting
riding_unicycle
playing_volleyball
pushing_wheelchair
spraying
answering_questions
driving_car
pushing_car
garbage_collecting
motorcycling
shoveling_snow
writing
blasting_sand
changing_oil
checking_tires
pumping_gas
changing_wheel

Mean decrease in impurity

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Figure 3.8. NSS-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot

30

Feature importances using MDI

skateboarding
jogging
washing_hands
jumpstyle_dancing
unloading_truck
counting_money
using_remote_controller_-not_gaming-
smoking
changing_oil
tasting_beer
moving_furniture
spray_painting
playing_chess
spraying
driving_car
pushing_cart
pushing_car
motorcycling
blasting_sand
using_computer
checking_tires
writing
answering_questions
changing_wheel

pumping_gas

Mean decrease in impurity

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Figure 3.9. NSS-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot

Feature importances using MDI

moving_furniture
answering_questions
reading_newspaper
pushing_wheelchair
pushing_cart
cleaning_windows
skateboarding
spray_painting
sword_fighting
spraying
changing_oil
checking_tires
garbage_collecting
driving_car
pushing_car
headbutting
using_remote_controller_-not_gaming-
unloading_truck
motorcycling
headbanging
news_anchoring
changing_wheel
pumping_gas
extinguishing_fire
texting

Mean decrease in impurity

0.000 0.005 0.010 0.015 0.020

Figure 3.10. NSSR-i3d-nl10-resnet101-v1-kinetics400 dataset feature importance plot

31

Feature importances using MDI

recording_music
passing_American_football_-not_in_game-
shoveling_snow
jogging
checking_tires
pushing_cart
spray_painting
pushing_car

welding
news_anchoring
reading_newspaper
garbage_collecting
unloading_truck
changing_wheel
playing_monopoly
changing_oil
riding_unicycle
spraying
catching_or_throwing_frisbee
pushing_wheelchair
pumping_gas
driving_car
assembling_computer
motorcycling

texting

0.000 0.005 0.010 0.015

Mean decrease in impurity

Figure 3.11. NSSR-i3d-resnet50-v1-kinetics400 dataset feature importance plot

Feature importances using MDI

bobsledding
bookbinding
pushing_wheelchair
shoveling_snow
playing_poker
checking_tires

dining
using_computer
riding_a_bike
catching_or_throwing_frisbee
using_remote_controller_-not_gaming-
pushing_car

welding
skateboarding
garbage_collecting
assembling_computer
changing_oil
changing_wheel
unloading_truck
motorcycling
driving_car
pumping_gas

texting
news_anchoring
riding_unicycle

0.000 0.005 0.010 0.015 0.020

Mean decrease in impurity

Figure 3.12. The NSSR-slowfast-4x16-resnet50-kinetics400 dataset feature importance plot

32

Feature importances using MDI

bending_metal
playing_monopoly
pushing_cart
checking_tires
blasting_sand
playing_bagpipes
riding_scooter
welding
spray_painting
pushing_car
unloading_truck
pumping_gas
answering_questions
pushing_wheelchair
riding_unicycle
riding_a_bike
driving_car
changing_oil
garbage_collecting
smoking

texting

jogging
changing_wheel
assembling_computer
motorcycling

0.000 0.005 0.010 0.015 0.020

Mean decrease in impurity

Figure 3.13. NSSR-slowfast-8x8-resnet101-kinetics400 dataset feature importance plot

PCA was applied to all datasets separately, with component numbers 5, 10, 15, and 20
before the training. By the meaning of this, the dimensions of the datasets were
reduced. The performance of the models was evaluated both before and after applying
PCA. The results revealed that, in some cases, the models performed better following
the application of PCA. After the implementation of PCA according to the results, the
obtained best models and the datasets on which these models were applied are
explained. The best-performing model was the KNeighbors with an AUC of 0.90,
accuracy of 0.90, precision of 0.90, recall of 0.91, and F1 score of 0.90 on NS-i3d-
nl10- resnetl0-v-kinetics400 dataset with used 5 components. The best was the
Random Forest with an AUC of 0.85, accuracy of 0.85, precision of 0.85, recall of
0.86, and F1 score of 0.85 on NS-i3d-resnet50-v1-kinetics400 with used 20
components. On the NS-slowfast-4x16-resnet50-kinetics400 with 20 components, the
KNeighbors performed the best, with an F1 score of 0.83, an AUC of 0.83, accuracy,
precision, and recall of 0.83. With 20 components, Gradient Boosting performed the
best, achieving an AUC of 0.84, accuracy, precision, recall, and F1 score of 0.85 on

the NS-slowfast-8x8-resnet101-kinetics400.

33

With an AUC of 0.68, accuracy of 0.68, precision of 0.68, recall of 0.69, and F1 score
of 0.68 on NSS-i3d-nl10-resnet101-v1-kinetics400 using 5 components, the Random
Forest method performed the best. On the NSS-i3d-resnet50-v1-kinetics400 using 20
components, the KNeighbors approach was received the best, with an F1, accuracy,
precision, recall, and AUC of 0.65. With an AUC of 0.73, accuracy, precision, recall,
and F1 score of 0.73 on NSS-slowfast-4x16-resnet50-kinetics400 using 5 components,
Gradient Boosting performed the best. With an F1 score of 0.72, recall of 0.72,
accuracy, precision, and AUC of 0.72 on NSS-slowfast-8x8-resnetl101-kinetics400
using 20 components, KNeighbors performed the best. With 20 components and an
AUC of 0.66, accuracy of 0.66, precision of 0.66, recall of 0.67, and F1 score of 0.66
on the NSSR-13d-nl10-resnet101-v1-kinetics400, the Decision Tree model performed
the best. The best was the Decision Tree with an AUC of 0.66, accuracy of 0.66,
precision of 0.66, recall of 0.66, and F1 score of 0.66 on NSSR-i3d-resnet50-v1-
kinetics400 with used 15 components. The best was the Neural Network with an AUC
of 0.72, accuracy of 0.72, precision of 0.72, recall of 0.72, and F1 score of 0.72 on
NSSR-slowfast-4x16-resnet50-kinetics400 with the same component size. The best
was the Neural Network with an AUC of 0.68, accuracy of 0.68, precision of 0.68,
recall of 0.68, and F1 score of 0.67 on NSSR-slowfast-8x8- resnetl101-kinetics400
with used same component size. It is seen that the best results are obtained when the
component number is selected as 20. Furthermore, the results indicate that selecting
10 components led to worse performance, while using 5 and 15 components produced
the best outcomes. After applying PCA, the best model is KNeighbors. Additionally,
Neural Network and Random Forest, Gradient Boosting and Decision Tree are the

other best-performing models.

34

4.3. Performance Results

In this study, each preprocessing step, PCA, and then feature selection with three
different parameters were applied to all datasets separately. All training operations
were performed by considering the raw datasets that were not preprocessed and feature
selection. As mentioned in the previous sections, the results were evaluated with AUC,

recall, precision, accuracy, and F1 score and performance metrics.

Table 2.1 displays the outcomes. The table consists of the dataset name, applied
preprocessing process, feature selection process, best machine learning algorithm
used, the best parameter set of the algorithm, training performance metrics, and test
performance metrics. The best machine learning algorithm and the best parameter set
are included in this section, while all the results, including all the machine learning

algorithms and all the parameter sets used, are included in the Appendix A section.

35

Table 4.1. Performance results

Dataset Preprocess Feature selection Machine learning algorithm Parameter set Train metrics Test metrics
NS-i3d-nl10- Binarization (Threshold=1 No Neural Network {'hidden_layer_sizes'": (50, 50), AUC : 0.86 (+/-0.08) AUC:0.90
resnet101-v1- /10000) 'activation': 'relu’, 'max_iter": 50} Accuracy : 0.81 (+/-0.13) Accuracy : 0.90
kinetics400 Recall : 0.81 (+/-0.13) Recall : 0.91

NS-13d-resnet50-
v-kinetics400

NS-slowfast-
4x16-resnet50-
kinetics400

NS-slowfast-
8x8-resnet101-
kinetics400

NSS-13d-nl10-
resnet101-v-
kinetics400

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold = 1
/100000)

Binarization (Threshold = 1
/10000)

Binarization (Threshold = 1
/10000)

Binarization (Threshold = 1
/1000)

Z-score Normalization

No

Gradient Boosting

KNeighbors

Random Forest

Neural Network

Gradient Boosting

{'n_estimators": 300, 'max_features'":
'log2', 'max_depth': 3,
'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

{'leaf size': 30, 'n_neighbors" 5, 'p": 2,
‘algorithm': 'auto'}

{'criterion': 'gini', 'n_estimators": 100,
'max_features": 'sqrt',
'min_samples_leaf": 5}

{'hidden_layer_sizes": (20,), 'activation"

'relu’, 'max_iter": 100}

{'n_estimators': 200, 'max_features'":
'sqrt', 'max_depth": 3,
'min_samples_split": 2,
'min_samples_leaf': 1, 'subsample': 0.8}

Precision : 0.81 (+/-0.12)
F1-Score : 0.80 (+/-0.13)
AUC : 0.87 (+/-0.13)
Accuracy : 0.79 (+/-0.14)
Recall : 0.79 (+/-0.15)
Precision : 0.79 (+/-0.14)
F1-Score : 0.79 (+/-0.14)
AUC : 0.86 (+/-0.12)
Accuracy : 0.77 (+/-0.13)
Recall : 0.77 (+/-0.13)
Precision : 0.78 (+/-0.14)
F1-Score : 0.77 (+/-0.14)
AUC : 0.87 (+/-0.16)
Accuracy : 0.78 (+/-0.20)
Recall : 0.78 (+/-0.20)
Precision : 0.79 (+/-0.21)
F1-Score : 0.78 (+/-0.20)
AUC : 0.78 (+/-0.16)
Accuracy : 0.73 (+/-0.15)
Recall : 0.73 (+/-0.15)
Precision : 0.74 (+/-0.15)
F1-Score : 0.73 (+/-0.15)
AUC : 0.84 (+/-0.18)
Accuracy : 0.75 (+/-0.16)
Recall : 0.76 (+/-0.16)
Precision : 0.75 (+/-0.16)
F1-Score : 0.75 (+/-0.16)

Precision : 0.90
F1-Score : 0.90
AUC:0.90
Accuracy : 0.90
Recall : 0.91
Precision : 0.90
F1-Score : 0.90
AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85
AUC:0.87
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.87
AUC:0.77
Accuracy : 0.77
Recall : 0.79
Precision : 0.77
F1-Score : 0.76
AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80

36

Table 4.1. (contd

Dataset Preprocess Feature Machine Learning Parameter Set Train Metrics Test Metrics
Selection Algorithm
NSS-slowfast- Max Absolute Scaling SelectKBest (K Random Forest {'criterion': 'entropy', 'n_estimators': AUC : 0.83 (+/-0.16) AUC:0.85
4x16-resnet50- =50) 100, 'max_features': 'sqrt’, Accuracy : 0.74 (+/-0.17) Accuracy : 0.85
kinetics400 'min_samples_leaf": 1} Recall : 0.74 (+/-0.17) Recall : 0.85
Precision : 0.74 (+/-0.16) Precision : 0.85
F1-Score : 0.74 (+/-0.17) ~ F1-Score : 0.85
NSS-slowfast- Binarization (Threshold=1 No Neural Network {'hidden_layer_sizes': (100,), AUC : 0.76 (+/-0.08) AUC: 0.80
8x8-resnetl101- /1000000) 'activation': 'identity’, 'max_iter': 100} Accuracy : 0.68 (+/-0.12) Accuracy : 0.80
kinetics400 Recall : 0.69 (+/-0.14) Recall : 0.80
Precision : 0.68 (+/-0.12) Precision : 0.80
F1-Score : 0.67 (+/-0.12) F1-Score : 0.80
NSSR-i3d-nl10- Max Absolute Scaling SelectKBest (K Gradient Boosting {'n_estimators': 200, 'max_features'": AUC : 0.77 (+/-0.12) AUC: 0.76
resnet101-v1- =50) 'sqrt’, 'max_depth': 5, Accuracy : 0.70 (+/-0.08) Accuracy : 0.76
kinetics400 'min_samples_split": 5, Recall : 0.70 (+/-0.08) Recall : 0.76
'min_samples_leaf': 1, 'subsample': 1.0} Precision : 0.70 (+/-0.08) Precision : 0.76
F1-Score : 0.70 (+/-0.08) F1-Score : 0.76
NSSR-i3d- Binarization (Threshold=1 No Gradient Boosting {'n_estimators": 100, 'max_features'": AUC: 0.78 (+/-0.11) AUC:0.76
resnet50-v1- /10000) 'sqrt', 'max_depth': 3, Accuracy : 0.69 (+/-0.12) Accuracy : 0.77
kinetics400 'min_samples_split": 2, Recall : 0.69 (+/-0.12) Recall : 0.77
'min_samples_leaf': 1, 'subsample': 0.8} Precision : 0.70 (+/-0.12) Precision : 0.77
F1-Score : 0.69 (+/-0.11) F1-Score : 0.77
NSSR-slowfast- Max Absolute Scaling SelectKBest (K Gradient Boosting {'n_estimators": 100, 'max_features'": AUC : 0.75 (+/-0.08) AUC: 0.80
4x16-resnet50- =20) 'sqrt’, 'max_depth': 3, Accuracy : 0.69 (+/-0.13) Accuracy : 0.80
kinetics400 'min_samples_split": 5, Recall : 0.69 (+/-0.13) Recall : 0.81
'min_samples_leaf': 1, 'subsample': 1.0} Precision : 0.69 (+/-0.13) Precision : 0.80
F1-Score : 0.68 (+/-0.13) F1-Score : 0.80
NSSR-slowfast- Binarization (Threshold=1 No Gradient Boosting {'n_estimators': 300, 'max_features'": AUC : 0.76 (+/-0.05) AUC:0.73
8x8-resnetl101- /100000) 'log2', 'max_depth': 3, Accuracy : 0.68 (+/-0.05) Accuracy : 0.73
kinetics400 'min_samples_split": 5, Recall : 0.68 (+/-0.05) Recall : 0.73

'min_samples_leaf': 1, 'subsample': 1.0}

Precision : 0.69 (+/-0.05)
F1-Score : 0.68 (+/-0.06)

Precision : 0.73
F1-Score : 0.73

37

4.4. Inspection of False Negatives

In this study, predictions were made using all models to classify videos as either theft-
related or normal. The results revealed instances where normal videos were
misclassified as theft, or theft-related videos were mistakenly identified as normal. To
further investigate these discrepancies, I randomly selected 10 videos and reviewed 3
of them in detail. One of the selected videos depicted a shoplifting incident.As shown
in Figure 3.1, I included three frames: one just before the theft, one at the moment of
the theft, and one after the event. Because the video quality was low and the frames
before and after the theft were similar, it was challenging to identify the precise
moment of the theft. This made it challenging for the models to accurately detect the
theft, and as a result, the video was misclassified as normal. This, revealed the
difficulties of detecting theft in low-quality images where there are consecutive similar

frames, which caused to errors in estimation.

Figure 14.1. False negative shoplifting video frames

The second video, which was labeled as "Stealing," was incorrectly predicted as
"Normal." In contrast, the third video, labeled as "Normal," was predicted as "Theft."
Figure 3.2 shows three frames from the video containing theft, while Figure 3.3 shows
three frames from the normal video. Upon comparing these frames, it becomes evident
that distinguishing between the two videos is challenging, as the frames appear
strikingly similar. This similarity made it difficult for the model to accurately classify
the videos, leading to incorrect predictions. The close resemblance between the frames

highlights the complexity of accurately detecting theft in such footage.

38

Figure 16 False negative normal video frames

39

5. CONCLUSION

We developed a machine learning-based approach for automatic theft detection
utilizing pre-trained human action recognition models in this study. The most suitable
models for theft detection in real surveillance datasets were found. Inferences were
obtained using action recognition models in theft anomaly video datasets. These
inferences were used as features of each video, and this study was guided in this way.
By applying machine learning classification models to datasets that contained features
obtained from inferences, we aimed to make a difference. In order to assess whether a
video is a theft or a normal video, we performed binary classification on different
datasets that included theft incidents divided into three separate categories. The best
results were achieved with the NS-i3d-nl10-resnet101-v1-kinetics400 and NS-i3d-
resnet50-v-kinetics400 datasets, = which were generated using the
13d nl10 resnetlO1 v1 kinetics400 and i13d-resnet50-v-kinetics400 pre-trained
models. These datasets contain normal and theft data. These results were obtained
using Neural Network and Gradient Boosting performance models. These results were
achieved by applying binarization to the datasets. In the datasets containing stealing,
shoplifting, and normal data, the best result was obtained from the NSS-slowfast-4x16-
resnet50-kinetics400 dataset. On the other hand, the best results from datasets
containing all four categories were achieved from the NSSR-slowfast-4x16-resnet50-
kinetics400. These result were obtained by applying max absolute scaling and feature
selection techniques to the datasets. When comparing the SlowFast pre-trained video
input sampling structures, 8x8 and 4x16, the highest results were obtained with 4x16
according to the dataset categories. While the fast path processes frames at 16 frames
per second, the slow path processes frames at four frames per second, allowing us to
obtain higher results. The 8x8 result is higher in the dataset containing only normal
stealing videos. The machine learning algorithms that delivered the highest
performance were Neural Network, Gaussian Naive Bayes, Gradient Boosting,

KNeighbors and Random Forest.

40

In contrast, the Decision Tree and Support Vector Machine models produced the
lowest performance and are not recommended for this problem. The results from the
preprocessed datasets outperformed those from the raw datasets. The most effective
preprocessing techniques were binarization and max absolute scaling. Furthermore,
the results achieved by applying feature selection to the datasets generated with the
slowfast-4x16-resnet50-kinetics400 pre-trained model are significantly better than
those obtained without applying feature selection. Meanwhile, in other datasets,
similar performance results were observed with fewer features after applying the
feature selection method. The test metrics typically fall within the range obtained by
adding or subtracting the standard deviation of the training results. This situation and
the test metrics are generally to be higher, as has been expected. However, there are
some exceptional cases The short quantity of data in the test set as a result of the little

number of theft data is determined to be the cause of this situation.

This approach can be applied to real video surveillance data in theft prevention and
increase human safety. Here, by lowering human involvement, there will be the
potential to increase accuracy, support scalability, and maintain consistency in video
surveillance processing. The ability to accurately detect theft automatically with data
received from surveillance video systems increases the security level in indoor and
outdoor areas. It enables individuals or institutions to prevent economic or trust losses
caused by malicious criminals. Despite its promise, this study still has drawbacks,
including the possibility of false positives in complicated situations and its reliance on
the standard of surveillance videos. These problems might be resolved by further
improving the model. In conclusion, this study shows how machine learning may
improve surveillance systems, setting the platform for more secure, more effective

ways of preventing crime and theft.

41

REFERENCES

Adam, A., Rivlin, E., Shimshoni, 1., & Reinitz, D. (2008). Robust real-time unusual
event detection using multiple fixed-location monitors. /EEE Transactions on
Pattern Analysis and Machine Intelligence, 30(3), 555-560.
https://doi.org/10.1109/TPAMI.2007.70825

Amin, S. U., Ullah, M., Sajjad, M., Cheikh, F. A., Hijji, M., Hijji, A., & Muhammad,
K. (2022). EADN: An Efficient Deep Learning Model for Anomaly Detection in
Videos. Mathematics 2022, Vol. 10, Page 1555, 10(9), 1555.
https://doi.org/10.3390/MATH10091555

Anomaly Detection and Localization in Crowded Scenes. (n.d.). Retrieved December

14, 2023, from http://www.svcl.ucsd.edu/projects/anomaly/

Boekhoudt, K., Matei, A., Aghaei, M., & Talavera, E. (n.d.). HR-Crime: Human-
Related Anomaly Detection in Surveillance Videos.

https://doi.org/10.34894/IRRDJE

Chalapathy, R., Menon, A. K., & Chawla, S. (2018). Anomaly Detection using One-
Class Neural Networks. http://arxiv.org/abs/1802.06360

Chandrakala, S., Deepak, K., & Revathy, G. (2023). Anomaly detection in surveillance
videos: a thematic taxonomy of deep models, review and performance analysis.
Artificial Intelligence Review, 56(4), 3319-3368.
https://doi.org/10.1007/S10462-022-10258-6/FIGURES/10

Danesh Pazho, A., Alinezhad Noghre, G., Rahimi Ardabili, B., Neff, C., & Tabkhi, H.
(2022). CHAD: Charlotte Anomaly Dataset. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 13885 LNCS, 50—66. https://doi.org/10.1007/978-3-031-31435-
34

42

Duong, H. T., Le, V. T., & Hoang, V. T. (2023). Deep Learning-Based Anomaly
Detection in Video Surveillance: A Survey. Sensors 2023, Vol. 23, Page 5024,
23(11), 5024. https://doi.org/10.3390/S23115024

Karim, M., Khalid, S., Aleryani, A., Khan, J., Ullah, 1., & Ali, Z. (2024). Human
Action Recognition Systems: A Review of the Trends and State-of-the-Art. I[EEE
Access, 12,36372-36390. https://doi.org/10.1109/ACCESS.2024.3373199

Liu, W., Cao, J., Zhu, Y., Liu, B., & Zhu, X. (2023). Real-time anomaly detection on
surveillance video with two-stream spatio-temporal generative model.
Multimedia Systems, 29(1), 59-71. https://doi.org/10.1007/S00530-022-00979-
7/FIGURES/10

Liu, W., Luo, W., Lian, D., & Gao, S. (n.d.). Future Frame Prediction for Anomaly
Detection-A New Baseline. Retrieved December 14, 2023, from https://github.

Lu, C., Shi, J., & Jia, J. (2013). Abnormal Event Detection at 150 FPS in MATLAB.
https://doi.org/10.1109/ICCV.2013.338

Mehran, R., Oyama, A., & Shah, M. (n.d.). Abnormal Crowd Behavior Detection using
Social Force Model.

Muneer, ., Saddique, M., Habib, Z., & Mohamed, H. G. (2023). Shoplifting Detection
Using Hybrid Neural Network CNN-BiLSMT and Development of Benchmark
Dataset. Applied Sciences (Switzerland), 13(14).
https://doi.org/10.3390/app13148341

Nasaruddin, N., Muchtar, K., Afdhal, A., & Dwiyantoro, A. P. J. (2020). Deep
anomaly detection through visual attention in surveillance videos. Journal of Big

Data, 7(1), 1-17. https://doi.org/10.1186/S40537-020-00365-Y/TABLES/5

Nayak, R., Pati, U. C., & Das, S. K. (2021). A comprehensive review on deep learning-
based methods for video anomaly detection. Image and Vision Computing, 106,

104078. https://doi.org/10.1016/J.IMAVIS.2020.104078

Ramachandra, B., & Jones, M. J. (n.d.). Street Scene: A new dataset and evaluation

protocol for video anomaly detection.

43

Sengoniil, E., Samet, R., Abu Al-Haija, Q., Algahtani, A., Alturki, B., & Alsulami, A.
A. (2023). An Analysis of Artificial Intelligence Techniques in Surveillance

Video Anomaly Detection: A Comprehensive Survey. Applied Sciences 2023,
Vol. 13, Page 4956, 13(8), 4956. https://doi.org/10.3390/APP13084956

Shafizadegan, F., Naghsh-Nilchi, A. R., & Shabaninia, E. (2024). Multimodal vision-
based human action recognition using deep learning: a review. Artificial
Intelligence Review 2024 57:7,57(7), 1-85. https://doi.org/10.1007/S10462-024-
10730-5

Sultani, W., Chen, C., & Shah, M. (n.d.). Real-world Anomaly Detection in
Surveillance Videos. Retrieved December 14, 2023, from

http://crev.ucf.edu/projects/real-world/

Tran, T. M., Vu, T. N, Vo, N. D., Nguyen, T. V., & Nguyen, K. (2022). Anomaly
Analysis in Images and Videos: A Comprehensive Review. ACM Computing
Surveys, 55(7). https://doi.org/10.1145/3544014

Ullah, W., Ullah, A., Hussain, T., Khan, Z. A., & Baik, S. W. (2021). An Efficient
Anomaly Recognition Framework Using an Attention Residual LSTM in
Surveillance Videos. Sensors 2021, Vol. 21, Page 2811, 21(8), 2811.
https://doi.org/10.3390/S21082811

Vu, H., Nguyen, T. D., Le, T., Luo, W., & Phung, D. (2019). Robust Anomaly
Detection in Videos Using Multilevel Representations. Proceedings of the AAAI
Conference on Artificial Intelligence, 33(01), 5216-5223.
https://doi.org/10.1609/AAAIL.V33101.33015216

Waddenkery, N., & Soma, S. (2024). An efficient convolutional neural network for
detecting the crime of stealing in videos. Entertainment Computing, 51, 100723.

https://doi.org/10.1016/J. ENTCOM.2024.100723

Wan, B., Jiang, W, Fang, Y., Luo, Z., & Ding, G. (2021). Anomaly detection in video
sequences: A benchmark and computational model. IET Image Processing,

15(14), 3454-3465. https://doi.org/10.1049/IPR2.12258

Zaigham Zaheer, M., Mahmood, A., Haris Khan, M., Segu, M., Yu, F., & Lee, S.-L.
(n.d.). Generative Cooperative Learning for Unsupervised Video Anomaly

Detection.

44

APPENDICES

Appendix A. Performance Results of the Best Three Results

In the Appendix A section, for all machine learning algorithms, the performance
results of the best three models among all the results obtained by applying all

preprocessing and feature selection steps separately are shown in the tables below.

45

Table 1.1. The best three results after applying selectkbest-20 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200, AUC : 0.88
resnet101-v1- 1000) 'max_features": 'sqrt', Accuracy : 0.88
kinetics400 'min_samples_leaf": 2} Recall : 0.88

Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 300, AUC : 0.88
resnet101-v1- 1000) 'max_features": 'log2', Accuracy : 0.88
kinetics400 'min_samples_leaf": 2} Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer sizes': (100,), AUC: 0.86
resnet101-v1- 1000) 'activation': 'identity’, 'max_iter': 100} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200, AUC : 0.88
resnet101-v1- 10000) 'max_features": 'sqrt', Accuracy : 0.88
kinetics400 'min_samples_leaf": 2} Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 20) KNeighbors {'leaf size": 30, 'n_neighbors": 5, 'p" AUC:0.88
resnet101-v1- 10000) 2, 'algorithm': 'kd_tree'} Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer sizes'": (20,), AUC: 0.86
resnet101-v1- 10000) 'activation': 'relu', 'max_iter': 100} Accuracy : 0.85
kinetics400 Recall : 0.89

Precision : 0.85
F1-Score : 0.85

46

Table 1.2. The best results after applying selectkbest-20 feature selection and binarization on NS

Dataset Preprocess Feature Selection Best Machine Learning Best Parameter Set Test Metrics
Algorithm
NS-i3d-resnet50-v-kinetics400 Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer sizes'": (50, 50), AUC:0.83
100000) 'activation': 'relu’, 'max_iter': Accuracy : 0.83
50} Recall : 0.83

NS-13d-resnet50-v-kinetics400

NS-13d-nl10-resnet101-v1-
kinetics400

NS-13d-nl10-resnet101-v1-
kinetics400

NS-13d-resnet50-v-kinetics400

NS-13d-resnet50-v-kinetics400

Binarization (Threshold =1/
100000)

Binarization (Threshold =1/
100000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

Neural Network

Random Forest

Random Forest

Gradient Boosting

Gradient Boosting

{'hidden_layer sizes'": (20,),
'activation': 'relu’, 'max_iter":
100}

{'criterion': 'entropy’,
'n_estimators": 200,
'max_features": 'sqrt',
'min_samples_leaf": 5}

{'criterion': 'gini', 'n_estimators'":

300, 'max_features': 'log2',
'min_samples_leaf": 2}

{'n_estimators'": 100,
'max_features": 'sqrt',
'max_depth": 3,
'min_samples_split": 2,
'min_samples_leaf': 1,
'subsample': 0.8}
{'n_estimators'": 200,
'max_features": 'sqrt',
'max_depth": 5,
'min_samples_split": 5,
'min_samples_leaf': 1,
'subsample': 1.0}

Precision : 0.83
F1-Score : 0.83
AUC: 0.82
Accuracy : 0.83
Recall : 0.82
Precision : 0.83
F1-Score : 0.82
AUC: 0.81
Accuracy : 0.80
Recall : 0.83
Precision : 0.80
F1-Score : 0.80
AUC:0.83
Accuracy : 0.83
Recall : 0.83
Precision : 0.83
F1-Score : 0.83
AUC: 0.81
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.82

AUC: 0.81
Accuracy : 0.83
Recall : 0.84
Precision : 0.83
F1-Score : 0.82

47

Table 1.3. The best three results after applying selectkbest-20 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer sizes'": (100,), 'activation': AUC:0.75
8x8-resnetl101- 1000) 'relu', 'max_iter': 50} Accuracy : 0.75
kinetics400 Recall : 0.77

NSS-13d-nl10-
resnet101-v1-
kinetics400

NSS-13d-nl10-
resnet101-v1-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-13d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold =1/
1000)

Binarization (Threshold =1/
1000)

Binarization (Threshold =1/
10000)

Binarization (Threshold =1/
10000)

Binarization (Threshold =1/
10000)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

Gradient Boosting

Gradient Boosting

Neural Network

Neural Network

Neural Network

{'n_estimators': 100, 'max_features" 10,
'max_depth": 5, 'min_samples_split': 10,
'min_samples_leaf': 1, 'subsample': 1.0}

{'n_estimators': 300, 'max_features": 'log2',
'max_depth" 3, 'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

{'hidden_layer_sizes'": (20,), 'activation"
'relu’, 'max_iter": 100}

{'hidden_layer sizes": (10,), 'activation"
'relu’, 'max_iter": 50}

{'hidden_layer_sizes": (20,), 'activation"
'relu’, 'max_iter": 100}

Precision : 0.75
F1-Score : 0.75
AUC:0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73
AUC:0.72
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.72
AUC:0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75
AUC:0.75
Accuracy : 0.75
Recall : 0.75
Precision : 0.75
F1-Score : 0.75
AUC:0.74
Accuracy : 0.73
Recall : 0.80
Precision : 0.73
F1-Score : 0.72

48

Table 1.4. The best three results after applying selectkbest-20 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer sizes": (10,), 'activation" AUC:0.72
4x16-resnet50- 100000) 'relu’, 'max_iter': 50} Accuracy : 0.72
kinetics400 Recall : 0.73

Precision : 0.72

F1-Score : 0.71
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 20) KNeighbors {'leaf size": 30, 'n_neighbors" 11, 'p": 2, AUC:0.70
resnet50-v- 100000) ‘algorithm': 'auto'} Accuracy : 0.70
kinetics400 Recall : 0.72

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-i3d-
resnet50-v-
kinetics400

NSS-i3d-
resnet50-v-
kinetics400

NSS-i3d-
resnet50-v-
kinetics400

Binarization (Threshold =1/
100000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

Random Forest

Support Vector Machine

Gaussian Naive Bayes

Gaussian Naive Bayes

{'criterion': 'gini', 'n_estimators": 500,

'max_features": 'sqrt', 'min_samples_leaf": 5}

{'kernel": 'rbf, 'gamma': 1, 'C": 1.0}

{'var_smoothing": 0.01}

{'var_smoothing': 0.001}

Precision : 0.70
F1-Score : 0.70
AUC :0.70
Accuracy : 0.70
Recall : 0.70
Precision : 0.70
F1-Score : 0.70
AUC : 0.68
Accuracy : 0.68
Recall : 0.68
Precision : 0.68
F1-Score : 0.68
AUC : 0.68
Accuracy : 0.68
Recall : 0.72
Precision : 0.68
F1-Score : 0.67
AUC : 0.68
Accuracy : 0.68
Recall : 0.72
Precision : 0.68
F1-Score : 0.67

49

Table 1.5. The best three results after applying selectkbest-20 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer_sizes'": (50, 50), 'activation': AUC:0.71
resnet50-v- 1000) 'relu’, 'max_iter": 50} Accuracy : 0.71
kinetics400 Recall : 0.71

Precision : 0.71
F1-Score : 0.71
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.71
resnet50-v- 1000) 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.71
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.71
Precision : 0.71
F1-Score : 0.71
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer sizes": (100,), 'activation': 'relu’, =~ AUC:0.71
resnet50-v- 1000) 'max_iter": 50} Accuracy : 0.71
kinetics400 Recall : 0.71
Precision : 0.71
F1-Score : 0.71
NSSR-slowfast- Binarization (Threshold =1/ SelectKBest (K = 20) Neural Network {'hidden_layer_sizes": (100,), 'activation": 'relu’, ~ AUC : 0.69
8x8-resnet101- 10000) 'max_iter": 50} Accuracy : 0.68
kinetics400 Recall : 0.71
Precision : 0.68
F1-Score : 0.68
NSSR-slowfast- Binarization (Threshold =1/ SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC : 0.69
8x8-resnet101- 10000) 'max_depth" 3, 'min_samples_split": 5, Accuracy : 0.68
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.71

NSSR-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold =1/
10000)

SelectKBest (K = 20)

Random Forest

{'criterion': 'gini', 'n_estimators": 500,
'max_features": 'sqrt', 'min_samples_leaf": 5}

Precision : 0.68
F1-Score : 0.68
AUC : 0.68
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.67

50

Table 1.6. The best three results after applying selectkbest-20 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K =20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.71
resnet101-v1- 100000) 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.72
kinetics400 Recall : 0.72

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

NSSR-i3d-nl10-
resnet101-v1-
kinetics400

NSSR-i3d-
resnet50-v-
kinetics400

NSSR-i3d-
resnet50-v-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold =1/
100000)

Binarization (Threshold =1/
100000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

Neural Network

Neural Network

KNeighbors

KNeighbors

Random Forest

{'hidden_layer sizes': (50, 50), 'activation':
'relu’, 'max_iter": 50}

{'hidden_layer sizes": (100,), 'activation':
'identity’, 'max_iter": 100}

{'leaf size': 30, 'n_neighbors" 5, 'p": 2,
‘algorithm': 'auto'}

{'leaf size': 40, 'n_neighbors" 5, 'p": 2,
'algorithm': 'brute'}

{'criterion': 'entropy', 'n_estimators': 100,
'max_features": 'sqrt', 'min_samples_leaf": 1

Precision : 0.72
F1-Score : 0.71
AUC:0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71
AUC:0.71
Accuracy : 0.72
Recall : 0.72
Precision : 0.72
F1-Score : 0.71
AUC : 0.64
Accuracy : 0.63
Recall : 0.65
Precision : 0.63
F1-Score : 0.63
AUC : 0.64
Accuracy : 0.63
Recall : 0.65
Precision : 0.63
F1-Score : 0.63
AUC : 0.64
Accuracy : 0.65
Recall : 0.66
Precision : 0.65
F1-Score : 0.64

51

Table 1.7. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.85
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.85
kinetics400 Recall : 0.86

Precision : 0.85
F1-Score : 0.85

NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.83
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators': 200, AUC:0.83
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10- Z-Score Normalization SelectKBest (K = 20) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.88
resnet101-v1- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.88
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.88

Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10- Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.83
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10- Z-Score Normalization SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC:0.83
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

52

Table 1.8. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.79
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.78
kinetics400 Recall : 0.80

Precision : 0.78

F1-Score : 0.78
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.79
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.78
kinetics400 Recall : 0.79

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling

Z-Score Normalization

Z-Score Normalization

Z-Score Normalization

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

Random Forest

Gradient Boosting

Gradient Boosting

Random Forest

{'criterion': 'gini', 'n_estimators": 300,
'max_features": 'log2', 'min_samples_leaf": 2}

{'n_estimators': 300, 'max_features": 'log2',
'max_depth": 5, 'min_samples_split": 2,
'min_samples_leaf': 5, 'subsample': 1.0}

{'n_estimators': 200, 'max_{features'": 'sqrt',
'max_depth" 5, 'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

{'criterion': 'gini', 'n_estimators": 100,
'max_features": 'sqrt', 'min_samples_leaf": 1}

Precision : 0.78
F1-Score : 0.78
AUC:0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77
AUC:0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78
AUC:0.77
Accuracy : 0.77
Recall : 0.79
Precision : 0.77
F1-Score : 0.76
AUC:0.77
Accuracy : 0.77
Recall : 0.78
Precision : 0.77
F1-Score : 0.77

53

Table 1.9. The best results after applying selectkbest-20 feature selection and max absolute scaling, z-score normalization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- Max Absolute Scaling SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth": 3, 'min_samples_split': 5, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.81

Precision : 0.80

F1-Score : 0.80
NSSR-slowfast- Max Absolute Scaling SelectKBest (K = 20) Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.77
4x16-resnet50- 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.77
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.78

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling

Z-Score Normalization

Z-Score Normalization

Z-Score Normalization

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

SelectKBest (K = 20)

Random Forest

Gradient Boosting

Gradient Boosting

Gradient Boosting

{'criterion': 'gini', 'n_estimators": 500,
'max_features": 'sqrt', 'min_samples_leaf": 5}

{'n_estimators': 100, 'max_features" 10,
'max_depth": 5, 'min_samples_split': 10,
'min_samples_leaf': 5, 'subsample': 1.0}

{'n_estimators': 100, 'max_{features'": 'sqrt',
'max_depth": 3, 'min_samples_split": 2,
'min_samples_leaf': 1, 'subsample': 0.8}

{'n_estimators': 100, 'max_{features'": 'sqrt',
'max_depth" 3, 'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

Precision : 0.77
F1-Score : 0.77
AUC:0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77
AUC:0.80
Accuracy : 0.79
Recall : 0.80
Precision : 0.79
F1-Score : 0.79
AUC:0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.77
AUC:0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

54

Table 1.10. The best three results after applying selectkbest-20 feature selection and no-preprocess on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.88
resnet101-v1- 'max_features': 'sqrt', 'min_samples leaf": 5} Accuracy : 0.88
kinetics400 Recall : 0.88

Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC: 0.86
resnet101-v1- 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.85
resnet101-v1- 'max_features': 'sqrt', 'min_samples leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NSS-slowfast- No SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.78
4x16-resnet50- 'max_depth": 3, 'min_samples_split': 2, Accuracy : 0.78
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.79
Precision : 0.78
F1-Score : 0.78
NSS-slowfast- No SelectKBest (K = 20) Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC:0.77
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.77
kinetics400 Recall : 0.77
Precision : 0.77
F1-Score : 0.77
NSS-slowfast- No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.77
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.77
kinetics400 Recall : 0.77

Precision : 0.77
F1-Score : 0.77

55

Table 1.11. The best three results after applying selectkbest-20 feature selection and no-preprocess on NSSR
Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- No SelectKBest (K = 20) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.79
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.80
Precision : 0.79
F1-Score : 0.79
NSSR-slowfast- No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.78
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.78
kinetics400 Recall : 0.79
Precision : 0.78
F1-Score : 0.78
NSSR-slowfast- No SelectKBest (K = 20) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.78
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.78
kinetics400 Recall : 0.78

Precision : 0.78
F1-Score : 0.78

56

Table 1.12. The best three results after applying selectkbest-30 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 30, 'n_neighbors" 5, 'p": 2, AUC: 0.86
resnet101-v1- 1000) ‘algorithm": 'kd_tree'} Accuracy : 0.85
kinetics400 Recall : 0.89

Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.85
resnet101-v1- 1000) 'max_depth": 5, 'min_samples_split": 2, Accuracy : 0.85
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 50, 'n_neighbors" 5, 'p": 2, AUC:0.85
resnet50-v- 1000) ‘algorithm': 'ball tree'} Accuracy : 0.85
kinetics400 Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.88
resnet101-v1- 10000) 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.88
resnet101-v1- 10000) 'max_features": 'log2', 'min_samples_leaf": 2} Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC: 0.86
resnet101-v1- 10000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87

Precision : 0.85
F1-Score : 0.85

57

Table 1.13. The best three results after applying selectkbest-30 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.83
resnet50-v- 100000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83
NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 50, 'n_neighbors" 15, 'p": 2, AUC:0.83
resnet50-v- 100000) ‘algorithm': 'auto'} Accuracy : 0.83
kinetics400 Recall : 0.83
Precision : 0.83
F1-Score : 0.83
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) Gaussian Naive Bayes {'var_smoothing": 0.01} AUC: 0.81
resnet101-v1- 100000) Accuracy : 0.80
kinetics400 Recall : 0.82
Precision : 0.80
F1-Score : 0.80
NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.76
resnet50-v- 1000000) 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.78
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.79
Precision : 0.78
F1-Score : 0.77
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 50, 'n_neighbors" 15, 'p": 2, AUC:0.75
resnet101-v1- 1000000) ‘algorithm': 'auto'} Accuracy : 0.75
kinetics400 Recall : 0.75
Precision : 0.75
F1-Score : 0.75
NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.74
resnet50-v- 1000000) 'max_depth": 3, 'min_samples_split": 5, Accuracy : 0.75
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.75

Precision : 0.75
F1-Score : 0.75

58

Table 1.14. The best three results after applying selectkbest-30 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.74
8x8-resnetl101- 1000) 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.73
kinetics400 Recall : 0.75

Precision : 0.73
F1-Score : 0.73
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes': (50, 50), 'activation': AUC:0.73
resnet50-v- 1000) 'relu', 'max_iter': 50} Accuracy : 0.73
kinetics400 Recall : 0.73
Precision : 0.73
F1-Score : 0.73
NSS-slowfast- Binarization (Threshold=1/ SelectKBest (K =30) Neural Network {'hidden_layer sizes'": (10,), 'activation': 'relu’, AUC:0.72
4x16-resnet50- 1000) 'max_iter': 50} Accuracy : 0.72
kinetics400 Recall : 0.75
Precision : 0.72
F1-Score : 0.71
NSS-slowfast- Binarization (Threshold=1/ SelectKBest (K =30) Neural Network {'hidden_layer sizes': (100,), 'activation': AUC:0.77
4x16-resnet50- 10000) 'identity', 'max_iter': 100} Accuracy : 0.77
kinetics400 Recall : 0.77
Precision : 0.77
F1-Score : 0.77
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 40, 'n_neighbors" 7, 'p": 2, AUC:0.77
4x16-resnet50- 10000) 'algorithm': 'auto'} Accuracy : 0.77
kinetics400 Recall : 0.77
Precision : 0.77
F1-Score : 0.77
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 30, 'n_neighbors" 5, 'p": 2, AUC:0.77
4x16-resnet50- 10000) 'algorithm': 'auto'} Accuracy : 0.77
kinetics400 Recall : 0.77

Precision : 0.77
F1-Score : 0.77

59

Table 1.15. The best three results after applying selectkbest-30 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size": 30, 'n_neighbors" 11, 'p": 2, AUC:0.74
4x16-resnet50- 100000) 'algorithm': 'auto'} Accuracy : 0.73
kinetics400 Recall : 0.74

Precision : 0.73
F1-Score : 0.73
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 50, 'n_neighbors" 15, 'p": 2, AUC:0.74
4x16-resnet50- 100000) 'algorithm': 'auto'} Accuracy : 0.73
kinetics400 Recall : 0.74
Precision : 0.73
F1-Score : 0.73
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes'": (50, 50), 'activation': AUC:0.72
4x16-resnet50- 100000) 'relu, 'max_iter': 50} Accuracy : 0.72
kinetics400 Recall : 0.74
Precision : 0.72
F1-Score : 0.71
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes": (10,), 'activation": 'relu’, AUC: 0.68
8x8-resnet101- 1000000) 'max_iter": 50} Accuracy : 0.68
kinetics400 Recall : 0.70
Precision : 0.68
F1-Score : 0.67
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes": (10,), 'activation": 'relu’, AUC : 0.66
resnet50-v- 1000000) 'max_iter": 50} Accuracy : 0.67
kinetics400 Recall : 0.68
Precision : 0.67
F1-Score : 0.66
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Decision Tree {'criterion': 'gini', 'random_state": 0, AUC : 0.66
resnet50-v- 1000000) 'max_depth": 3, 'min_samples_leaf': 2, 'splitter': = Accuracy : 0.67
kinetics400 'best'} Recall : 0.73

Precision : 0.67
F1-Score : 0.64

60

Table 1.16. The best three results after applying selectkbest-30 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network 'hidden_layer_sizes': (50, 50), 'activation: relu’, AUC:0.73
resnet50-v- 1000) 'max_iter": 50} Accuracy : 0.73
kinetics400 Recall : 0.73

Precision : 0.73
F1-Score : 0.73
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer_sizes'": (20,), 'activation": 'relu’, AUC:0.72
resnet50-v- 1000) 'max_iter': 100} Accuracy : 0.73
kinetics400 Recall : 0.73
Precision : 0.73
F1-Score : 0.73
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes": (100,), 'activation': AUC:0.72
resnet50-v- 1000) 'identity’, 'max_iter": 100} Accuracy : 0.73
kinetics400 Recall : 0.73
Precision : 0.73
F1-Score : 0.73
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes": (100,), 'activation': AUC:0.72
resnet101-v1- 10000) 'identity’, 'max_iter": 100} Accuracy : 0.71
kinetics400 Recall : 0.74
Precision : 0.71
F1-Score : 0.70
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes': (100,), 'activation': 'relu’, =~ AUC:0.71
resnet101-v1- 10000) 'max_iter": 50} Accuracy : 0.71
kinetics400 Recall : 0.72
Precision : 0.71
F1-Score : 0.71
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 30) Neural Network {'hidden_layer_sizes'": (50, 50), 'activation': AUC:0.71
resnet101-v1- 10000) 'relu’, 'max_iter": 50} Accuracy : 0.71
kinetics400 Recall : 0.72

Precision : 0.71
F1-Score : 0.71

61

Table 1.17. The best three results after applying selectkbest-30 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes": (100,), 'activation': AUC:0.72
resnet50-v- 100000) 'identity', 'max_iter': 100} Accuracy : 0.73
kinetics400 Recall : 0.73

Precision : 0.73
F1-Score : 0.72
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 30) Neural Network {'hidden_layer sizes': (100,), 'activation': 'relu’, =~ AUC: 0.71
resnet101-v1- 100000) 'max_iter": 50} Accuracy : 0.72
kinetics400 Recall : 0.72
Precision : 0.72
F1-Score : 0.71
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K =30) Neural Network {'hidden_layer sizes': (100,), 'activation': AUC: 0.71
resnet101-v1- 100000) 'identity', 'max_iter': 100} Accuracy : 0.72
kinetics400 Recall : 0.72
Precision : 0.72
F1-Score : 0.71
NSSR-slowfast- Binarization (Threshold =1/ SelectKBest (K = 30) KNeighbors {'leaf size': 30, 'n_neighbors" 3, 'p": 2, AUC : 0.66
4x16-resnet50- 1000000) ‘algorithm': 'auto'} Accuracy : 0.68
kinetics400 Recall : 0.68

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

SelectKBest (K = 30)

SelectKBest (K = 30)

Random Forest

Random Forest

{'criterion': 'entropy', 'n_estimators': 100,
'max_features": 'sqrt', 'min_samples_leaf": 1}

{'criterion': 'gini', 'n_estimators": 100,
'max_features": 'sqrt', 'min_samples_leaf": 2}

Precision : 0.68
F1-Score : 0.66
AUC : 0.66
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.66
AUC : 0.66
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.66

62

Table 1.18. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 500, AUC: 0.86
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87

Precision : 0.85
F1-Score : 0.85
NS-i3d- Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC: 0.86
resnet50-v- 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d- Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC:0.85
resnet50-v- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Z-Score Normalization SelectKBest (K = 30) Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.85
resnet101-v1- 'max_depth": 3, 'min_samples_split": 5, Accuracy : 0.85
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NS-i3d- Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.85
resnet50-v- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NS-i3d- Z-Score Normalization SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC:0.85
resnet50-v- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.86

Precision : 0.85
F1-Score : 0.85

63

Table 1.19. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.77
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.77
kinetics400 Recall : 0.78

Precision : 0.77

F1-Score : 0.77
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.77
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf’: 5} Accuracy : 0.77
kinetics400 Recall : 0.78

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling

Z-Score Normalization

Z-Score Normalization

Z-Score Normalization

SelectKBest (K = 30)

SelectKBest (K = 30)

SelectKBest (K = 30)

SelectKBest (K = 30)

Random Forest

Gradient Boosting

Random Forest

Random Forest

{'criterion': 'gini', 'n_estimators": 500,
'max_features": 'sqrt', 'min_samples_leaf": 5}

{'n_estimators': 300, 'max_features": 'log2',
'max_depth": 3, 'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

{'criterion': 'gini', 'n_estimators": 200,
'max_features": 'sqrt', 'min_samples_leaf": 2}

{'criterion': 'gini', 'n_estimators": 300,
'max_features': 'log2', 'min_samples_leaf": 2}

Precision : 0.77
F1-Score : 0.77
AUC:0.77
Accuracy : 0.77
Recall : 0.77
Precision : 0.77
F1-Score : 0.77
AUC:0.79
Accuracy : 0.78
Recall : 0.80
Precision : 0.78
F1-Score : 0.78
AUC:0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78
AUC:0.79
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78

64

Table 1.20. The best three results after applying selectkbest-30 feature selection and max absolute scaling, z-score normalization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- Max Absolute Scaling SelectKBest (K = 30) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.75
4x16-resnet50- 'max_depth": 3, 'min_samples_split': 2, Accuracy : 0.75
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.76

Precision : 0.75

F1-Score : 0.75
NSSR-slowfast- Max Absolute Scaling SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.75
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.75
kinetics400 Recall : 0.75

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

NSSR-slowfast-
4x16-resnet50-
kinetics400

Max Absolute Scaling

Z-Score Normalization

Z-Score Normalization

Z-Score Normalization

SelectKBest (K = 30)

SelectKBest (K = 30)

SelectKBest (K = 30)

SelectKBest (K = 30)

Random Forest

Gradient Boosting

Gradient Boosting

Gradient Boosting

{'criterion': 'entropy', 'n_estimators': 200,
'max_features": 'sqrt', 'min_samples_leaf": 5}

{'n_estimators': 300, 'max_features": 'log2',
'max_depth": 5, 'min_samples_split": 2,
'min_samples_leaf': 5, 'subsample': 1.0}

{'n_estimators': 200, 'max_{features'": 'sqrt',
'max_depth": 3, 'min_samples_split": 2,
'min_samples_leaf': 1, 'subsample': 0.8}

{'n_estimators': 300, 'max_features": 'log2',
'max_depth" 3, 'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

Precision : 0.75
F1-Score : 0.75
AUC:0.75
Accuracy : 0.74
Recall : 0.75
Precision : 0.74
F1-Score : 0.74
AUC:0.74
Accuracy : 0.74
Recall : 0.74
Precision : 0.74
F1-Score : 0.74
AUC:0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73
AUC:0.74
Accuracy : 0.73
Recall : 0.74
Precision : 0.73
F1-Score : 0.73

65

Table 1.21. The best three results after applying selectkbest-30 feature selection and no-preprocess on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC: 0.86
resnet101-v1- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.85
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.89

Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC: 0.86
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- No SelectKBest (K = 30) KNeighbors {'leaf size': 40, 'n_neighbors" 7, 'p": 2, AUC: 0.86
resnet101-v1- ‘algorithm': 'auto'} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NSS-slowfast- No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.81
Precision : 0.80
F1-Score : 0.80
NSS-slowfast- No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC:0.78
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.78
kinetics400 Recall : 0.79
Precision : 0.78
F1-Score : 0.78
NSS-slowfast- No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.78
4x16-resnet50- 'max_depth" 5, 'min_samples_split": 5, Accuracy : 0.78
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.79

Precision : 0.78
F1-Score : 0.78

66

Table 1.22.

The best three results after applying selectkbest-30 feature selection and no-preprocess on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- No SelectKBest (K = 30) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.77
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 5} Accuracy : 0.77
kinetics400 Recall : 0.77

Precision : 0.77
F1-Score : 0.77
NSSR-slowfast- No SelectKBest (K = 30) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.77
4x16-resnet50- 'max_depth": 3, 'min_samples_split': 2, Accuracy : 0.77
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.77
Precision : 0.77
F1-Score : 0.77
NSSR-slowfast- No SelectKBest (K = 30) Random Forest {'criterion': 'gini', 'n_estimators': 200, AUC:0.76
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.76
kinetics400 Recall : 0.77

Precision : 0.76
F1-Score : 0.76

67

Table 1.23. The best three results after applying selectkbest-50 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.88
resnet101-v1- 1000) 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.88
kinetics400 Recall : 0.89

Precision : 0.88

F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC: 0.86
resnet101-v1- 1000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87

NS-slowfast-
8x8-resnet101-
kinetics400

NS-13d-nl10-
resnet101-v1-
kinetics400

NS-13d-nl10-
resnet101-v1-
kinetics400

NS-13d-nl10-
resnet101-v1-
kinetics400

Binarization (Threshold =1/
1000)

Binarization (Threshold =1/
10000)

Binarization (Threshold =1/
10000)

Binarization (Threshold =1/
10000)

SelectKBest (K = 50)

SelectKBest (K = 50)

SelectKBest (K = 50)

SelectKBest (K = 50)

Neural Network

Gradient Boosting

Neural Network

Random Forest

{'hidden_layer sizes": (10,), 'activation": 'relu’,
'max_iter": 50}

{'n_estimators': 200, 'max_{features'": 'sqrt',
'max_depth": 5, 'min_samples_split": 5,
'min_samples_leaf': 1, 'subsample': 1.0}

{'criterion': 'gini', 'n_estimators': 100,
'max_features": 'sqrt', 'min_samples_leaf": 2}

{'criterion': 'gini', 'n_estimators": 300,
'max_features': 'log2', 'min_samples_leaf": 2}

Precision : 0.85
F1-Score : 0.85
AUC : 0.86
Accuracy : 0.85
Recall : 0.87
Precision : 0.85
F1-Score : 0.85
AUC : 0.88
Accuracy : 0.88
Recall : 0.89
Precision : 0.88
F1-Score : 0.88
AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88
AUC : 0.88
Accuracy : 0.88
Recall : 0.88
Precision : 0.88
F1-Score : 0.88

68

Table 1.24. The best three results after applying selectkbest-50 feature selection and binarization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.88
resnet50-v- 100000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.88
kinetics400 Recall : 0.88

Precision : 0.88
F1-Score : 0.88

NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC:0.83
resnet50-v- 100000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Neural Network {'hidden_layer sizes": (100,), 'activation": 'relu’, =~ AUC : 0.83
resnet50-v- 100000) 'max_iter": 50} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 50) Support Vector Machine {'kernel": 'rbf, 'gamma': 1, 'C": 1.0} AUC:0.76
resnet101-v1- 1000000) Accuracy : 0.75
kinetics400 Recall : 0.78

Precision : 0.75
F1-Score : 0.75

NS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.76
resnet50-v- 1000000) 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.78
kinetics400 Recall : 0.79

Precision : 0.78
F1-Score : 0.77

NS-i3d-nl10- Binarization (Threshold =1/ SelectKBest (K = 50) KNeighbors {'leaf size': 50, 'n_neighbors" 5, 'p": 2, AUC:0.75
resnet101-v1- 1000000) ‘algorithm': 'ball tree'} Accuracy : 0.75
kinetics400 Recall : 0.75

Precision : 0.75
F1-Score : 0.75

69

Table 1.25. The best three results after applying selectkbest-50 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.77
8x8-resnetl101- 1000) 'max_features': 'log2', 'min_samples_leaf’: 2} Accuracy : 0.77
kinetics400 Recall : 0.77

Precision : 0.77
F1-Score : 0.77
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) KNeighbors {'leaf size': 50, 'n_neighbors" 15, 'p": 2, AUC:0.73
resnet50-v- 1000) 'algorithm': 'auto'} Accuracy : 0.72
kinetics400 Recall : 0.82
Precision : 0.72
F1-Score : 0.70
NSS-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 50) Neural Network {'hidden_layer sizes'": (20,), 'activation': 'relu’, AUC:0.72
resnet101-v1- 1000) 'max_iter': 100} Accuracy : 0.72
kinetics400 Recall : 0.77

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
4x16-resnet50-
kinetics400

Binarization (Threshold =1/
10000)

Binarization (Threshold =1/
10000)

Binarization (Threshold =1/
10000)

SelectKBest (K = 50)

SelectKBest (K = 50)

SelectKBest (K = 50)

Random Forest

Random Forest

KNeighbors

{'criterion': 'gini', 'n_estimators": 100,
'max_features": 'sqrt', 'min_samples_leaf": 2}

{'criterion': 'gini', 'n_estimators": 200,
'max_features": 'sqrt', 'min_samples_leaf": 2}

{'leaf size': 30, 'n_neighbors" 5, 'p": 2,
‘algorithm': 'auto'}

Precision : 0.72
F1-Score : 0.71
AUC : 0.80
Accuracy : 0.80
Recall : 0.80
Precision : 0.80
F1-Score : 0.80
AUC:0.78
Accuracy : 0.78
Recall : 0.79
Precision : 0.78
F1-Score : 0.78
AUC:0.78
Accuracy : 0.78
Recall : 0.78
Precision : 0.78
F1-Score : 0.78

70

Table 1.26. The best three results after applying selectkbest-50 feature selection and binarization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) KNeighbors {'leaf size': 40, 'n_neighbors" 7, 'p": 2, AUC:0.73
resnet50-v- 100000) ‘algorithm': 'auto'} Accuracy : 0.73
kinetics400 Recall : 0.73

Precision : 0.73
F1-Score : 0.73
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.72
resnet50-v- 100000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.72
kinetics400 Recall : 0.72
Precision : 0.72
F1-Score : 0.72
NSS-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_{features": 'log2', AUC:0.71
resnet50-v- 100000) 'max_depth": 3, 'min_samples_split": 5, Accuracy : 0.72
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.72

NSS-slowfast-
4x16-resnet50-
kinetics400

NSS-slowfast-
8x8-resnet101-
kinetics400

NSS-slowfast-
8x8-resnet101-
kinetics400

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

Binarization (Threshold =1/
1000000)

SelectKBest (K = 50)

SelectKBest (K = 50)

SelectKBest (K = 50)

Decision Tree

Neural Network

KNeighbors

{'criterion': 'gini', 'random_state': 0,
'max_depth": None, 'min_samples leaf": 1,
'splitter': 'best'}

{'hidden_layer_sizes'": (50, 50), 'activation':
'relu’, 'max_iter": 50}

{'leaf size": 50, 'n_neighbors" 15, 'p": 2,
‘algorithm': 'auto'}

Precision : 0.72
F1-Score : 0.72
AUC:0.70
Accuracy : 0.70
Recall : 0.71
Precision : 0.70
F1-Score : 0.70
AUC : 0.68
Accuracy : 0.68
Recall : 0.69
Precision : 0.68
F1-Score : 0.68
AUC : 0.66
Accuracy : 0.67
Recall : 0.68
Precision : 0.67
F1-Score : 0.66

71

Table 1.27. The best three results after applying selectkbest-50 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Neural Network {'hidden_layer sizes'": (50, 50), 'activation': AUC:0.73
resnet50-v- 1000) 'relu’, 'max_iter": 50} Accuracy : 0.73
kinetics400 Recall : 0.73

Precision : 0.73
F1-Score : 0.73

NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.73
resnet50-v- 1000) 'max_features': 'sqrt', 'min_samples leaf’: 5} Accuracy : 0.73
kinetics400 Recall : 0.73

Precision : 0.73
F1-Score : 0.73

NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Neural Network {'hidden_layer sizes": (100,), 'activation": 'relu’, =~ AUC: 0.73
resnet50-v- 1000) 'max_iter": 50} Accuracy : 0.73
kinetics400 Recall : 0.73

Precision : 0.73
F1-Score : 0.73

NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Neural Network {'hidden_layer sizes": (100,), 'activation": 'relu’, =~ AUC: 0.76
resnet50-v- 10000) 'max_iter": 50} Accuracy : 0.76
kinetics400 Recall : 0.76

Precision : 0.76
F1-Score : 0.76

NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.75
resnet50-v- 10000) 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.75
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.75

Precision : 0.75
F1-Score : 0.75

NSSR-i3d- Binarization (Threshold =1/ SelectKBest (K = 50) Neural Network {'hidden_layer_sizes'": (50, 50), 'activation': AUC:0.75
resnet50-v- 10000) 'relu’, 'max_iter": 50} Accuracy : 0.75
kinetics400 Recall : 0.75

Precision : 0.75
F1-Score : 0.75

72

Table 1.28. The best three results after applying selectkbest-50 feature selection and binarization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.78
resnet101-v1- 100000) 'max_depth": 5, 'min_samples_split': 5, Accuracy : 0.78
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.78

Precision : 0.78
F1-Score : 0.78
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.77
resnet101-v1- 100000) 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.78
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.77
Precision : 0.78
F1-Score : 0.77
NSSR-i3d-nl10- Binarization (Threshold=1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.77
resnet101-v1- 100000) 'max_depth": 5, 'min_samples_split": 10, Accuracy : 0.78
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.77
Precision : 0.78
F1-Score : 0.77
NSSR-slowfast- Binarization (Threshold =1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC : 0.66
4x16-resnet50- 1000000) 'max_depth": 5, 'min_samples_split': 5, Accuracy : 0.67
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.67
Precision : 0.67
F1-Score : 0.66
NSSR-slowfast- Binarization (Threshold =1/ SelectKBest (K = 50) Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC: 0.65
4x16-resnet50- 1000000) 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.66
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.67
Precision : 0.66
F1-Score : 0.65
NSSR-slowfast- Binarization (Threshold =1/ SelectKBest (K = 50) Neural Network {'hidden_layer_sizes'": (50, 50), 'activation': AUC: 0.65
4x16-resnet50- 1000000) 'relu', 'max_iter': 50} Accuracy : 0.66
kinetics400 Recall : 0.67

Precision : 0.66
F1-Score : 0.65

73

Table 1.29. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.90
resnet101-v1- 'max_features": 'log2', 'min_samples_leaf": 2} Accuracy : 0.88
kinetics400 Recall : 0.90

Precision : 0.88
F1-Score : 0.87
NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC: 0.86
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Max Absolute Scaling SelectKBest (K = 50) Neural Network {'hidden_layer_sizes": (20,), 'activation": 'relu’, AUC:0.84
resnet101-v1- 'max_iter': 100} Accuracy : 0.83
kinetics400 Recall : 0.85
Precision : 0.83
F1-Score : 0.82
NS-i3d-nl10- Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC: 0.86
resnet101-v1- 'max_features": 'log2', 'min_samples_leaf": 2} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d- Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.85
resnet50-v- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.85
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.86
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.84
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.83
kinetics400 Recall : 0.85

Precision : 0.83
F1-Score : 0.82

74

Table 1.30. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC:0.85
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.85
kinetics400 Recall : 0.85

Precision : 0.85
F1-Score : 0.85
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.83
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.83
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.84
Precision : 0.83
F1-Score : 0.83
NSS-slowfast- Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.82
4x16-resnet50- 'max_depth" 5, 'min_samples_split": 5, Accuracy : 0.82
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.82
Precision : 0.82
F1-Score : 0.82
NSS-slowfast- Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.83
4x16-resnet50- 'max_depth": 5, 'min_samples_split': 10, Accuracy : 0.83
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.84
Precision : 0.83
F1-Score : 0.83
NSS-slowfast- Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.81

NSS-slowfast-
4x16-resnet50-
kinetics400

Z-Score Normalization

SelectKBest (K = 50)

Random Forest

{'criterion': 'entropy', 'n_estimators': 100,
'max_features": 'sqrt', 'min_samples_leaf": 1}

Precision : 0.80
F1-Score : 0.80
AUC: 0.80

Accuracy : 0.80
Recall : 0.81

Precision : 0.80
F1-Score : 0.80

75

Table 1.31. The best three results after applying selectkbest-50 feature selection and max absolute scaling, z-score normalization on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10- Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.76
resnet101-v1- 'max_depth": 5, 'min_samples_split': 5, Accuracy : 0.76
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.76

Precision : 0.76
F1-Score : 0.76

NSSR-slowfast- Max Absolute Scaling SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.74
4x16-resnet50- 'max_features': 'log2', 'min_samples_leaf’: 2} Accuracy : 0.74
kinetics400 Recall : 0.74

Precision : 0.74
F1-Score : 0.74

NSSR-i3d-nl10- Max Absolute Scaling SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.74
resnet101-v1- 'max_depth": 5, 'min_samples_split": 10, Accuracy : 0.74
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.74

Precision : 0.74
F1-Score : 0.74

NSSR-slowfast- Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.76
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.76
kinetics400 Recall : 0.76

Precision : 0.76
F1-Score : 0.76

NSSR-slowfast- Z-Score Normalization SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.74
4x16-resnet50- 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.74
kinetics400 Recall : 0.74

Precision : 0.74
F1-Score : 0.74

NSSR-slowfast- Z-Score Normalization SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.74
4x16-resnet50- 'max_depth": 3, 'min_samples_split': 5, Accuracy : 0.73
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.74

Precision : 0.73
F1-Score : 0.73

76

Table 1.32. The best three results after applying selectkbest-50 feature selection and no-preprocess on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC: 0.86
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87

Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- No SelectKBest (K = 50) Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC: 0.86
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.87
Precision : 0.85
F1-Score : 0.85
NS-i3d- No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC:0.85
resnet50-v- 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.85
kinetics400 Recall : 0.85
Precision : 0.85
F1-Score : 0.85
NSS-slowfast- No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.83
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.83
kinetics400 Recall : 0.84
Precision : 0.83
F1-Score : 0.83
NSS-slowfast- No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.83
4x16-resnet50- 'max_features": 'log2', 'min_samples_leaf": 2} Accuracy : 0.83
kinetics400 Recall : 0.83
Precision : 0.83
F1-Score : 0.83
NSS-slowfast- No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.82
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.82
kinetics400 Recall : 0.82

Precision : 0.82
F1-Score : 0.82

77

Table 1.33. The best three results after applying selectkbest-50 feature selection and no-preprocess on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- No SelectKBest (K = 50) Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.75
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.75
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.75

Precision : 0.75
F1-Score : 0.75

NSSR-slowfast- No SelectKBest (K = 50) Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.74
4x16-resnet50- 'max_features': 'log2', 'min_samples_leaf’: 2} Accuracy : 0.73
kinetics400 Recall : 0.74

Precision : 0.73
F1-Score : 0.73

NSSR-i3d- No SelectKBest (K = 50) Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.73
resnet50-v- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.73
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.74

Precision : 0.73
F1-Score : 0.73

78

Table 1.34. The best three results after applying binarizationa and no selection on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Binarization (Threshold =1/ No Random Forest {'criterion': 'entropy', 'n_estimators': 200, AUC:0.88
resnet101-v1- 1000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.88
kinetics400 Recall : 0.88

Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 500, AUC:0.88
resnet101-v1- 1000) 'max_features": 'sqrt', 'min_samples_leaf": 5} Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Binarization (Threshold =1/ No Neural Network {'hidden_layer_sizes": (20,), 'activation": 'relu’, AUC:0.85
resnet101-v1- 1000) 'max_iter': 100} Accuracy : 0.85
kinetics400 Recall : 0.85
Precision : 0.85
F1-Score : 0.85
NS-i3d-nl10- Binarization (Threshold =1/ No Neural Network {'hidden_layer_sizes'": (50, 50), 'activation': AUC:0.90
resnet101-v1- 10000) 'relu’, 'max_iter": 50} Accuracy : 0.90
kinetics400 Recall : 0.91
Precision : 0.90
F1-Score : 0.90
NS-i3d-nl10- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes": (100,), 'activation": 'relu’, =~ AUC : 0.88
resnet101-v1- 10000) 'max_iter": 50} Accuracy : 0.88
kinetics400 Recall : 0.89
Precision : 0.88
F1-Score : 0.88
NS-i3d- Binarization (Threshold =1/ No Neural Network {'hidden_layer_sizes": (20,), 'activation": 'relu’, AUC:0.88
resnet50-v- 10000) 'max_iter': 100} Accuracy : 0.88
kinetics400 Recall : 0.88

Precision : 0.88
F1-Score : 0.88

79

Table 1.35. The best three results after applying binarization and no selection on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 300, 'max_{features": 'log2', AUC:0.90
resnet50-v- 100000) 'max_depth" 3, 'min_samples_split": 5, Accuracy : 0.90
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.91

Precision : 0.90
F1-Score : 0.90

NS-i3d- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.88
resnet50-v- 100000) 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.88
kinetics400 Recall : 0.89

Precision : 0.88
F1-Score : 0.88

NS-i3d- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.88
resnet50-v- 100000) 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.88
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.89

Precision : 0.88
F1-Score : 0.88

NS-i3d-nl10- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes": (100,), 'activation": 'relu’, =~ AUC : 0.83
resnet101-v1- 1000000) 'max_iter": 50} Accuracy : 0.83
kinetics400 Recall : 0.83

Precision : 0.83
F1-Score : 0.83

NS-i3d-nl10- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes": (100,), 'activation': AUC: 0.80
resnet101-v1- 1000000) 'identity’, 'max_iter": 100} Accuracy : 0.80
kinetics400 Recall : 0.81

Precision : 0.80
F1-Score : 0.80

NS-i3d-nl10- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC: 0.80
resnet101-v1- 1000000) 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.81

Precision : 0.80
F1-Score : 0.80

80

Table 1.36. The best three results after applying binarization and no selection on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes': (100,), 'activation": 'relu’, =~ AUC: 0.78
4x16-resnet50- 1000) 'max_iter': 50} Accuracy : 0.78
kinetics400 Recall : 0.79

Precision : 0.78
F1-Score : 0.78
NSS-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.78
4x16-resnet50- 1000) 'max_depth": 3, 'min_samples_split': 5, Accuracy : 0.78
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.78
Precision : 0.78
F1-Score : 0.78
NSS-i3d-nl10- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes': (100,), 'activation": 'relu’, =~ AUC:0.77
resnet101-v1- 1000) 'max_iter': 50} Accuracy : 0.77
kinetics400 Recall : 0.82
Precision : 0.77
F1-Score : 0.76
NSS-slowfast- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators': 100, AUC: 0.82
4x16-resnet50- 10000) 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.82
kinetics400 Recall : 0.82
Precision : 0.82
F1-Score : 0.82
NSS-slowfast- Binarization (Threshold =1/ No Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC: 0.80
4x16-resnet50- 10000) 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.80
kinetics400 Recall : 0.81
Precision : 0.80
F1-Score : 0.80
NSS-i3d- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes': (100,), 'activation": 'relu’, =~ AUC: 0.79
resnet50-v- 10000) 'max_iter": 50} Accuracy : 0.78
kinetics400 Recall : 0.79

Precision : 0.78
F1-Score : 0.78

81

Table 1.37. The best three results after applying binarization and no selection on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC: 0.84
4x16-resnet50- 100000) 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.83
kinetics400 Recall : 0.84

Precision : 0.83
F1-Score : 0.83
NSS-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.83
4x16-resnet50- 100000) 'max_depth": 5, 'min_samples_split": 10, Accuracy : 0.83
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.84
Precision : 0.83
F1-Score : 0.83
NSS-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.82
4x16-resnet50- 100000) 'max_depth": 5, 'min_samples_split": 10, Accuracy : 0.82
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.82
Precision : 0.82
F1-Score : 0.82
NSS-slowfast- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes': (100,), 'activation': AUC: 0.80
8x8-resnetl101- 1000000) 'identity', 'max_iter': 100} Accuracy : 0.80
kinetics400 Recall : 0.80
Precision : 0.80
F1-Score : 0.80
NSS-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.75
4x16-resnet50- 1000000) 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.75
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.75
Precision : 0.75
F1-Score : 0.75
NSS-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.73
8x8-resnetl101- 1000000) 'max_depth": 5, 'min_samples_split": 10, Accuracy : 0.73
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.73

Precision : 0.73
F1-Score : 0.73

82

Table 1.38. The best three results after applying binarization and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes'": (10,), 'activation': 'relu’, AUC:0.74
resnet50-v- 1000) 'max_iter": 50} Accuracy : 0.73
kinetics400 Recall : 0.74

Precision : 0.73
F1-Score : 0.73
NSSR-i3d-nl10- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.73
resnet101-v1- 1000) 'max_features': 'sqrt', 'min_samples leaf": 2} Accuracy : 0.73
kinetics400 Recall : 0.73
Precision : 0.73
F1-Score : 0.72
NSSR-i3d-nl10- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.73
resnet101-v1- 1000) 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.73
kinetics400 Recall : 0.73
Precision : 0.73
F1-Score : 0.73
NSSR-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.79
4x16-resnet50- 10000) 'max_depth": 5, 'min_samples_split': 5, Accuracy : 0.78
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.79
Precision : 0.78
F1-Score : 0.78
NSSR-slowfast- Binarization (Threshold =1/ No Neural Network {'hidden_layer sizes': (100,), 'activation": 'relu’, =~ AUC:0.77
4x16-resnet50- 10000) 'max_iter': 50} Accuracy : 0.77
kinetics400 Recall : 0.77
Precision : 0.77
F1-Score : 0.77
NSSR-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.77
4x16-resnet50- 10000) 'max_depth": 3, 'min_samples_split': 2, Accuracy : 0.77
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.77

Precision : 0.77
F1-Score : 0.77

83

Table 1.39 The best three results after applying binarization and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-i3d-nl10- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 300, 'max_{features": 'log2', AUC:0.75
resnet101-v1- 100000) 'max_depth": 3, 'min_samples_split': 5, Accuracy : 0.75
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.75

Precision : 0.75
F1-Score : 0.75
NSSR-i3d- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.75
resnet50-v- 100000) 'max_features': 'sqrt', 'min_samples leaf’: 5} Accuracy : 0.75
kinetics400 Recall : 0.75
Precision : 0.75
F1-Score : 0.75
NSSR-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.73
4x16-resnet50- 100000) 'max_depth": 3, 'min_samples_split': 5, Accuracy : 0.73
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.74
Precision : 0.73
F1-Score : 0.73
NSSR-i3d- Binarization (Threshold =1/ No Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC:0.70
resnet50-v- 1000000) 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.71
kinetics400 Recall : 0.71
Precision : 0.71
F1-Score : 0.71
NSSR-slowfast- Binarization (Threshold =1/ No Random Forest {'criterion': 'gini', 'n_estimators": 100, AUC:0.70
4x16-resnet50- 1000000) 'max_features': 'sqrt', 'min_samples leaf": 1} Accuracy : 0.71
kinetics400 Recall : 0.72
Precision : 0.71
F1-Score : 0.70
NSSR-slowfast- Binarization (Threshold =1/ No Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.70
4x16-resnet50- 1000000) 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.70
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.70

Precision : 0.70
F1-Score : 0.70

84

Table 1.40. The best three results after applying max absolute scaling, z-score normalization and no selection on NS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- Max Absolute Scaling No Gaussian Naive Bayes {'var_smoothing": 0.01} AUC:0.90
resnet101-v1- Accuracy : 0.90
kinetics400 Recall : 0.90

Precision : 0.90
F1-Score : 0.90
NS-i3d-nl10- Max Absolute Scaling No Gaussian Naive Bayes {'var_smoothing': 0.001} AUC:0.90
resnet101-v1- Accuracy : 0.90
kinetics400 Recall : 0.90
Precision : 0.90
F1-Score : 0.90
NS-i3d-nl10- Max Absolute Scaling No Neural Network {'hidden_layer sizes": (100,), 'activation": 'relu’, =~ AUC : 0.88
resnet101-v1- 'max_iter": 50} Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing'": 0.01} AUC:0.88
resnet101-v1- Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing': 0.001} AUC:0.88
resnet101-v1- Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- Z-Score Normalization No Gaussian Naive Bayes {'var_smoothing": 1e-05} AUC:0.88
resnet101-v1- Accuracy : 0.88
kinetics400 Recall : 0.88

Precision : 0.88
F1-Score : 0.88

85

Table 1.41. The best three results after applying max absolute scaling, z-score normalization and no selection on NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSS-slowfast- Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.82
4x16-resnet50- 'max_depth" 5, 'min_samples_split": 5, Accuracy : 0.82
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.82

Precision : 0.82
F1-Score : 0.82
NSS-slowfast- Max Absolute Scaling No Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.82
4x16-resnet50- 'max_depth": 5, 'min_samples_split': 10, Accuracy : 0.82
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.82
Precision : 0.82
F1-Score : 0.82
NSS-slowfast- Max Absolute Scaling No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 5, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.80
Precision : 0.80
F1-Score : 0.80
NSS-slowfast- Z-Score Normalization No Random Forest {'criterion': 'entropy', 'n_estimators': 100, AUC:0.85
4x16-resnet50- 'max_features": 'sqrt', 'min_samples_leaf": 1} Accuracy : 0.85
kinetics400 Recall : 0.85
Precision : 0.85
F1-Score : 0.85
NSS-slowfast- Z-Score Normalization No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.82
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.82
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.82
Precision : 0.82
F1-Score : 0.82
NSS-slowfast- Z-Score Normalization No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.82
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.82
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.82

Precision : 0.82
F1-Score : 0.82

86

Table 1.42. The best three results after applying max absolute scaling, z-score normalization and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- Max Absolute Scaling No Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.76
4x16-resnet50- 'max_features': 'log2', 'min_samples_leaf’: 2} Accuracy : 0.76
kinetics400 Recall : 0.76

Precision : 0.76
F1-Score : 0.76
NSSR-slowfast- Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.76
4x16-resnet50- 'max_depth": 5, 'min_samples_split': 5, Accuracy : 0.76
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.76
Precision : 0.76
F1-Score : 0.76
NSSR-i3d-nl10- Max Absolute Scaling No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.76
resnet101-v1- 'max_depth": 5, 'min_samples_split': 5, Accuracy : 0.76
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.76
Precision : 0.76
F1-Score : 0.76
NSSR-slowfast- Z-Score Normalization No Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.77
4x16-resnet50- 'max_features': 'log2', 'min_samples_leaf’: 2} Accuracy : 0.77
kinetics400 Recall : 0.78
Precision : 0.77
F1-Score : 0.77
NSSR-slowfast- Z-Score Normalization No Gradient Boosting {'n_estimators': 300, 'max_features": 'log2', AUC:0.77
4x16-resnet50- 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.77
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.77
Precision : 0.77
F1-Score : 0.77
NSSR-slowfast- Z-Score Normalization No Gradient Boosting {'n_estimators': 100, 'max_features" 10, AUC:0.75
4x16-resnet50- 'max_depth": 5, 'min_samples_split": 10, Accuracy : 0.76
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.76

Precision : 0.75
F1-Score : 0.75

87

Table 1.43. The best three results after applying no-preprocess and no selection on NS and NSS

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NS-i3d-nl10- No No Random Forest {'criterion': 'gini', 'n_estimators": 200, AUC:0.88
resnet101-v1- 'max_features": 'sqrt', 'min_samples_leaf": 2} Accuracy : 0.88
kinetics400 Recall : 0.88

Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- No No Gaussian Naive Bayes {'var_smoothing'": 1e-08} AUC:0.88
resnet101-v1- Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NS-i3d-nl10- No No Gaussian Naive Bayes {'var_smoothing": le-12} AUC:0.88
resnet101-v1- Accuracy : 0.88
kinetics400 Recall : 0.88
Precision : 0.88
F1-Score : 0.88
NSS-slowfast- No No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC:0.82
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.82
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.82
Precision : 0.82
F1-Score : 0.82
NSS-slowfast- No No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.81
Precision : 0.80
F1-Score : 0.80
NSS-slowfast- No No Gradient Boosting {'n_estimators': 100, 'max_{features'": 'sqrt', AUC: 0.80
4x16-resnet50- 'max_depth" 3, 'min_samples_split": 5, Accuracy : 0.80
kinetics400 'min_samples_leaf': 1, 'subsample': 1.0} Recall : 0.80

Precision : 0.80
F1-Score : 0.80

88

Table 1.44. The best three results after applying no-preprocess and no selection on NSSR

Dataset Preprocess Feature Selection Machine Learning Algorithm Parameter Set Test Metrics
NSSR-slowfast- No No Gradient Boosting {'n_estimators': 300, 'max_{features": 'log2', AUC:0.77
4x16-resnet50- 'max_depth": 5, 'min_samples_split': 2, Accuracy : 0.77
kinetics400 'min_samples_leaf': 5, 'subsample': 1.0} Recall : 0.77

Precision : 0.77
F1-Score : 0.77

NSSR-slowfast- No No Random Forest {'criterion': 'gini', 'n_estimators": 300, AUC:0.76
4x16-resnet50- 'max_features": 'log2', 'min_samples_leaf": 2} Accuracy : 0.76
kinetics400 Recall : 0.77

Precision : 0.76
F1-Score : 0.76

NSSR-i3d- No No Gradient Boosting {'n_estimators': 200, 'max_{features'": 'sqrt', AUC:0.76
resnet50-v- 'max_depth": 3, 'min_samples_split": 2, Accuracy : 0.76
kinetics400 'min_samples_leaf': 1, 'subsample': 0.8} Recall : 0.76

Precision : 0.76
F1-Score : 0.76

89

Appendix B. 400 Action Classes

In Appendix B section, the 400 action classes used in the data obtained using the pre-

train action recognition model are shown in tables.

90

Table 2.1. 400 action classes

abseiling
air_drumming
answering_questions
applauding
applying_cream
archery
arm_wrestling
arranging_flowers
assembling computer
auctioning

baby waking up
baking_cookies
balloon_blowing
bandaging
barbequing
bartending
beatboxing

bee keeping

belly dancing

bench pressing
bending back
bending metal
biking through snow
blasting_sand
blowing_glass
blowing leaves
blowing_nose
blowing out candles
bobsledding
bookbinding

bouncing on_trampoline

bowling

braiding hair
breading or breadcrumbing
breakdancing
brush_painting
brushing_hair
brushing_teeth

building cabinet
building_shed

bungee jumping

busking

canoeing_or kayaking
capoeira

carrying_baby
cartwheeling
carving_pumpkin

catching fish
catching or throwing baseball
catching or throwing frisbee
catching or throwing softball
celebrating

changing oil

changing wheel

checking _tires
cheerleading
chopping_wood

clapping

clay pottery making
clean_and jerk
cleaning_floor
cleaning_gutters
cleaning_pool

cleaning shoes

cleaning_toilet
cleaning windows
climbing a rope
climbing ladder
climbing_tree
contact juggling
cooking_chicken
cooking egg
cooking on_campfire
cooking_sausages
counting_money
country line dancing
cracking neck
crawling_baby
crossing_river
crying

curling_hair

cutting nails

cutting pineapple
cutting_watermelon
dancing_ballet
dancing_charleston
dancing gangnam_style
dancing macarena
deadlifting
decorating_the christmas_tree
digging

dining

disc_golfing
diving_cliff
dodgeball
doing_aerobics

doing_laundry
doing_nails
drawing
dribbling_basketball
drinking
drinking_beer
drinking_shots
driving_car
driving_tractor
drop kicking
drumming_fingers
dunking_basketball
dying_hair
eating_burger
eating_cake
eating_carrots
eating_chips
eating_doughnuts
eating_hotdog
eating_ice cream
eating_spaghetti
eating_ watermelon
egg hunting
exercising_arm
exercising with an_exercise ball
extinguishing_fire
faceplanting
feeding_birds
feeding fish
feeding goats
filling eyebrows
finger snapping

fixing_hair
flipping_pancake
flying_kite
folding_clothes
folding_napkins
folding paper
front_raises
frying vegetables
garbage collecting
gargling
getting a haircut
getting a_tattoo
giving_or receiving_award
golf chipping
golf driving
golf putting
grinding_meat
grooming_dog
grooming_horse
gymnastics_tumbling
hammer_throw
headbanging
headbutting

high jump

high kick
hitting_baseball
hockey_stop
holding snake
hopscotch
hoverboarding
hugging

hula hooping

hurdling
hurling_-sport-
ice_climbing
ice_fishing
ice_skating
ironing
javelin_throw
jetskiing

jogging

juggling balls
juggling fire
juggling soccer ball
jumping_into_pool
jumpstyle dancing
kicking_field goal
kicking soccer ball
kissing
kitesurfing
knitting

krumping
laughing

laying bricks
long_jump

lunge
making a cake
making a sandwich
making bed
making_jewelry
making pizza
making snowman
making_sushi
making tea

marching
massaging_back
massaging_feet
massaging_legs
massaging
person's_head
milking cow
mopping_floor
motorcycling
moving_furniture
mowing_lawn
news_anchoring
opening_bottle
opening_present
paragliding
parasailing
parkour
passing_American
_football in game-
passing_American_
football notin_game-
peeling_apples
peeling_potatoes
petting animal -
not_cat-
petting_cat
picking_fruit
planting_trees
plastering
playing_accordion
playing badminton
playing bagpipes

91

Table 2.1. (contd

playing_basketball
playing bass guitar
playing_cards
playing_cello
playing_chess
playing_clarinet
playing_controller
playing_cricket
playing_cymbals
playing_didgeridoo
playing drums
playing_flute
playing_guitar
playing_harmonica
playing_harp
playing_ice hockey
playing_keyboard
playing_kickball
playing_monopoly
playing organ
playing_paintball
playing_piano
playing_poker
playing_ recorder
playing_saxophone
playing_squash
_or_racquetball
playing_tennis
playing trombone
playing_trumpet
playing ukulele

playing_violin

playing volleyball
playing_ xylophone
pole vault

presenting weather forecast
pull_ups

pumping_fist
pumping_gas
punching_bag
punching person_-boxing-
push_up

pushing_car
pushing_cart

pushing wheelchair
reading_book
reading_newspaper
recording_music
riding_a bike
riding_camel
riding_elephant
riding_mechanical bull
riding_mountain_bike
riding mule

riding_or walking with horse
riding_scooter
riding_unicycle
ripping_paper
robot_dancing

rock climbing

rock scissors_paper
roller skating

running_on_treadmil
sailing
salsa_dancing
sanding_floor
scrambling eggs
scuba_diving
setting_table
shaking hands
shaking head
sharpening_knives
sharpening_pencil
shaving_head
shaving_legs
shearing_sheep
shining_shoes
shooting_basketball
shooting_goal -soccer-
shot_put
shoveling_snow
shredding_paper
shuffling_cards

side kick
sign_language interpreting
singing

situp

skateboarding
ski_jumping

skiing not
slalom_or_crosscountry-
skiing_crosscountry
skiing slalom

skipping_rope
slacklining

slapping
sled_dog_racing
smoking

smoking hookah
snatch_weight lifting
sneezing

sniffing

snorkeling
snowboarding
snowkiting
snowmobiling
somersaulting
spinning_poi
spray_painting
spraying

springboard diving
squat
sticking_tongue out
stomping_grapes
stretching_arm
stretching leg
strumming_guitar
surfing_crowd
surfing water
sweeping_floor
swimming_backstroke
swimming_breast stroke
swimming_butterfly stroke
swing dancing

swinging_legs
swinging on_something
sword fighting
tai_chi
taking a shower
tango dancing
tap_dancing
tapping_guitar
tapping_pen
tasting_beer
tasting_food
testifying
texting
throwing_axe
throwing_ball
throwing_discus
tickling
tobogganing
tossing_coin
tossing_salad
training_dog
trapezing
trimming _or shaving beard
trimming_trees
triple_jump
tying bow _tie
tying _knot -not on a tie-
tying_tie
unboxing
unloading_truck
using_computer

using_remote_controller
_-not_gaming-
using_segway
vault
waiting_in_line
walking the dog
washing_dishes
washing_feet
washing_hair
washing hands
water skiing
water_sliding
watering_plants
waxing back
waxing chest
waxing_eyebrows
waxing_legs
weaving_basket
welding
whistling
windsurfing
wrapping_present
wrestling

writing

yawning

yoga

zumba

92

Appendix C. Machine Learning Algorithms Parameter Sets

In Appendix C section, All parameter sets used for all machine learning algorithms are shown in

tables.

Table 3.1. Neural network parameter sets

{'hidden_layer sizes" (10,), 'activation": 'relu’, 'max iter' : 50}
{'hidden_layer sizes": (100,), 'activation": 'relu’, 'max_iter' : 50}
{'hidden_layer sizes": (50,50), 'activation': 'relu’, 'max_iter' : 50}
{'hidden_layer sizes": (20,), 'activation": 'relu’, 'max _iter' : 100}
{'hidden_layer sizes": (100,), 'activation': 'identity', 'max_iter' : 100}

Table 3.2. Support vector machine parameter sets

{'kernel'": 'linear', 'C": 1.0}

{'kernel": 'rbf, 'gamma": 1,'C": 1.0}

{'kernel': 'poly’, 'degree': 3, 'gamma': 0.01, 'C": 1.0}
{'kernel": 'sigmoid', 'gamma’: 1, 'C": 1.0}

Table 3.3. Decision tree parameter sets

{'criterion": 'gini', 'random_state' : 0, 'max_depth' : None, 'min_samples leaf : 1, 'splitter": 'best'}
{'criterion': 'entropy', 'random_state' : 0, 'max_depth' : 5, 'min_samples leaf : 1, 'splitter": 'best'}
{'criterion": 'entropy', 'random_state' : 42, 'max_depth' : 3, 'min_samples_leaf' : 1, 'splitter': 'best'}
{'criterion": 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf : 2, 'splitter": 'best'}
{'criterion": 'gini', 'random_state' : 42, 'max_depth' : 5, 'min_samples_leaf' : 2, 'splitter': 'best'}
{'criterion": 'gini', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf : 2, 'splitter': 'random'}
{'criterion": 'entropy', 'random_state' : 0, 'max_depth' : 3, 'min_samples_leaf : 2, 'splitter': 'random'}

Table 3.4. Gaussian naive bayes parameter sets

{'var_smoothing": le-2}
{'var_smoothing": le-3}
{'var_smoothing": le-5}
{'var_smoothing": 1e-8}
{'var_smoothing": le-12}
{'var_smoothing": le-15}

93

Table 3.5. Random forest parameter sets

{'criterion":
{'criterion":
{'criterion":
{'criterion":
{'criterion":
{'criterion":
{'criterion":
{'criterion":

'gini’,
'gini’,
'gini’,
'gini’,
'gini’,

'entropy’, 'n_estimators'
'n_estimators' :
'n_estimators' :
'n_estimators'
'n_estimators'
'n_estimators':
'entropy’, 'n_estimators': 200, 'max_features":
'gini', 'n_estimators': 500, 'max_features': 'sqrt', 'min_samples_leaf': 5}

: 200, 'max_features' :
: 300, 'max_features'

: 100, 'max_features' : 'sqrt’, 'min_samples leaf' : 1}
100, 'max_features' : 'sqrt', 'min_samples_leaf : 1}
100, 'max_features' : 'sqrt', 'min_samples_leaf : 2}
'sqrt’, 'min_samples leaf : 2}
:'log2', 'min_samples_leaf : 2}
100, 'max_features': 'sqrt', 'min_samples_leaf’: 5}
'sqrt’, 'min_samples leaf’: 5}

Table 3.6. KNeighbors parameter sets

{'leaf size":
{'leaf size":
{'leaf size":
{'leaf size":
{'leaf size":
{'leaf size":
{'leaf size":
{'leaf size":

30,
30,
40,
30,
50,
50,
30,
40,

'n_neighbors': 3,
'n_neighbors': 5,
'n_neighbors': 7
'n_neighbors': 1
'n_neighbors': 1
'n_neighbors": 5
'n_neighbors': 5
'n_neighbors': 5

'p': 2, 'algorithm': 'auto'}
'p': 2, 'algorithm': 'auto'}
'p': 2, 'algorithm': 'auto'}

,'p': 2, 'algorithm': 'auto'}
,'p": 2, 'algorithm': 'auto'}
'p': 2, 'algorithm': 'ball tree'}
'p': 2, 'algorithm': 'kd tree'}
'p': 2, 'algorithm': 'brute'}

Table 3.7. Gradient boosting parameter sets

{'n_estimators":
{'n_estimators":
{'n_estimators":
{'n_estimators":
{'n_estimators":
{'n_estimators":
{'n_estimators":
{'n_estimators":

100, 'max_features' :
200, 'max_features' : '
100, 'max_features' :
300, 'max_features'
200, 'max_features' :
100, 'max_features' :
300, 'max_features'
100, 'max_features' :

'sqrt', 'max_depth' :

sqrt', 'max_depth'

'sqrt', 'max_depth' :
: 'log2', 'max_depth' :

'sqrt', 'max_depth'
10, 'max_depth' :

: 'log2', 'max_depth' :

10, 'max_depth'

3, 'min_samples_split'
: 3, 'min_samples_split'
3, 'min_samples_split'

: 5, 'min_samples_split'
5, 'min_samples_split' :

3, 'min_samples_split' :

5, 'min_samples_split' :
: 5, 'min_samples_split' :

: 2, 'min_samples_leaf' :
: 2, 'min_samples_leaf' :
: 5, 'min_samples_leaf' :
5, 'min_samples_leaf' :
: 5, 'min_samples_leaf' :
10, 'min_samples_leaf' :
2, 'min_samples_leaf :
10, 'min_samples_leaf' :

M

N N — = = = e

94

CURRICULUM VITAE

Personel Information

Name & Surname [[tk [Jrokoss

Nationality M Rkt o}

Phone 2 FO(Q SdkadiakG

E-posta ;R) RO K K

Education
Degree Institution Year of Graduation
High School Mugla Anatolian High School 2012
BSc Mugla Sitk1 Kogman University 2017

Work Experience
Software Engineer (2018 - 2022) — Tiibitak (ILTAREN)

Research Assistant (2022 - Present) — Mugla Sitki Kogman University Department of Computer
Engineering

Oral Presentations in International Symposiums

Karaca Uluoglu irem, Siizek Baris Ethem, 2024. A Machine Learning Based Approach for
Automatic Theft Detection. IGSCONG’24 - 4th International Graduate Studies Congress
(IGSCONG)

95

