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OzET

Sardar Alt Denklem Y6nteminin Kesirli M-Tiirevli Diferansiyel Denkleme
Uygulanmasi

flkay KOCOGLU TEKIN
Yiiksek Lisans Tezi

FIRAT UNIVERSITESI

Fen Bilimleri Enstitiisii

Matematik Anabilim Dali
Ocak 2025, Sayfa: ix +21

Bu c¢alismada, s1§ su dalgalarinin davranisini modellemek icin lineer olmayan kismi diferansiyel
denklem ile ifade edilen varyant Boussinesq sisteminin tam ¢oziimleri elde edilmistir. Bu denklem sistemi
orijinal Boussinesq sisteminin bir modifikasyonudur. Kesirli M-tiirevli varyant Boussinesq sisteminin
hareketli dalga ¢ozlimleri Sardar alt denklem yontemi ile elde edilmis, bu denklem sisteminin ¢dziimiiniin
yapilabilmesi i¢in kismi diferansiyel denklemine dalga doniigiimil uygulanarak adi diferansiyel denkleme
indirgenmistir. Bu tezin amaci kesirli M-tiirevli modelin ifade ettigi matematiksel yapilara 1s1k tutmak ve
sistemin daha iyi anlasilmasina katkida bulunmaktadir. Varyant Boussinesq sisteminin analitik ¢dzlimiiniin
fiziksel 6zelliklerini agiklamak i¢in 2 boyutlu, 3 boyutlu ve kontur grafikleri elde edildi. Sonug olarak Sardar
alt denklem yonteminin bu tiir denklem sistemleri i¢in gii¢lii, dogru ve hassas bir yontem oldugu ifade

edilmistir. Bununla birlikte bu yontemin farkli kesirli modellere de uygulanabilirligi ifade edilebilir.

Anahtar Kelimeler: Varyant Boussinesq sistem, Kesirli M-tiirev, Sardar alt denklem y6ntemi, Soliton,
Dalga.
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ABSTRACT

Application Of The Sardar Sub Equation Method To The Fractional M-
Derivative Differential Equation

flkay KOCOGLU TEKIiN
Master's Thesis

FIRAT UNIVERSITY

Graduate School of Natural and Applied Sciences

Department of Mathematics

January 2025, Pages: ix +21

In this study, the exact solutions of the variant Boussinesq system, expressed by a nonlinear partial
differential equation to model the behavior of shallow water waves, have been obtained. This system of
equations is a modification of the original Boussinesq system. The traveling wave solutions of the fractional
M-derivative variant Boussinesq system were obtained using the Sardar sub-equation method. To solve this
system of equations, the wave transformation was applied to the partial differential equation, reducing it to
an ordinary differential equation. The purpose of this thesis is to shed ligh on the mathematical structures
represented by the fractional M-derivative model and to contribute to a better understanding of the system
2D, 3D and contour graphs were obtained. As a result, it has been stated that the Sardar sub-equation method
for such systems of equations. Furthermore, it can be suggested that this method is applicable to diffrnt
fractional models as well.

Keywords: Variant Boussinesq system, Fractional M-derivative, Sardar sub-equation Method, Soliton,
Wave.
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SIMGELER VE KISALTMALAR

Simgeler

a : Alfa

B : Beta

) : Degisik Teta

W : Omega

n : Eta

A : Lambda

v : Psi

¢ - Xi

0 : Teta

R : Gergek Sayilar Kiimesi

Z : Tam Sayilar Kiimesi

Kisaltmalar

ADD : Adi Diferansiyel Denklem

KTDD  : Kismi Tiirevli Diferansiyel Denklem
LDD : Lineer Diferansiyel Denklem

LODD :Lineer Olmayan Diferansiyel Denklem
SSM : Sardar Alt Denklem Y 6ntemi



1. GIRIS

Son yillarda popiilerligi olduk¢a artan kesirli tiirevler, klasik tlirevin tam say1 olmayan
mertebelerinden olusur. Klasik tiirevi daha genis perspektife yayan bu kesirli tlirevler karmagik
fiziksel olaylarin modellenmesine 151k tutar.

Kesirli tiirevleri konu edinen ¢ok sayida arastirmalar yapilmistir. M. Caputo (1967), kendi
adin1 paylastigt Caputo kesirli tiirevini ADD ¢dziimlerinde BDP kosullarini tanimlamay1

kolaylastirmay1 amaglayarak tanitmigtir [1].
Bu tiirevin tarihinin, tiirevin yaraticisi olarak anilan Leibniz’ e, L’ Hospital tarafindan %

mertebe tiirevi sormasiyla ortaya ¢iktigi ve Leibniz’ in bu konuyla ilgili ne kadar karmagik goriinse
de bir giin ¢ok biiyiik calismalarda 6ncii olacagi cevabini vermesi ile basladigi rivayet edilmistir
[1,2].

Boussinesq denklemleri, s1vi dinamigi ve akigskanlar mekanigi gibi bir¢ok fiziksel problemde
onemli yere sahiptir. Bu denklemin modifikasyonu olan varyant Boussinesq denklem, klasik
Boussinesq denkleminin daha genis uygulamalarinin yapilabilmesi i¢in genellestirilmesidir. Bu
denklem lineer olmayan terimler icerdiginden ¢oziilmesi zor bir denklem oldugundan dolay1
analitik ve sayisal ¢6ziim yontemine bagvurulur. Varyant Boussinesq denklem 6zellikle daha az
derin yiizey dalga etkilesimlerini inceleyen bir modeldir [3]. Genellikle su sekilde ifade edilir:

2*n 6(26_17)_ on

atz | ox ax) — Foaxz

Burada n(x, t) su ylizeyi yiiksekligi, u ise viskoziteyi temsil eder [4,5,6].
Bu tezde ise asagida verilen kesirli M-tiirevli varyant Boussinesq denklem sistemi Sardar alt

denklem yontemi ile ¢ozilmiistiir.
DU+ DV +UDU =0,
DtV + VDU + UD,V + Dy U = 0. (1.1)

S6z konusu olan (1.1) denklem sistemi literatiirde su dalgalari i¢in bir modeldir [6,7,8].

Burada W tiirevin derecesi olup W € (0,1] araligindadir.



2. DALGA

Fizigin temel kavramlarindan biri olan dalga; bir ortamda veya boslukta yayilan
titresimlerdir. Bir cisim {izerine uygulanan enerji, cisim iizerinde bir hareketlenme olusturur. Bu
olay cismin hareketi gibi goriinse de birakilan enerjinin taginmasidir.

Bir boyutlu lineer dalga denklemi,

Uge = CPUyy = 0
formundadir. Bu tip bir denklemin genel ¢6ziimii,

u(x,t) = h(x —ct) + g(x + ct)

seklindedir. Dalganin sekli zamana gore degismiyorsa, h(x — ct) saga dogru, g(x + ct) sola dogru
hareketi ifade eder.

Bir diger dalga denklemi formu,

u(x, t) + 9ou,(x,t) =0

seklindedir. Bu denklemdeki “J,” terimi dalganin hizin1 gésterir. Bu dalga denkleminin periyodik

¢Oziimleri

u(x’ t) — ei(wt—kx)

seklinde aranir. Bu ¢6ziim formunda; k dalga sayisini, w agisal frekansi gosterir. Coziim fonksiyonu
denklemde kullanilirsa w = 9yk dagilim iliskisi elde edilir.

Lineer olmayan dalga sistemi de,
u(x, t) + 9(Wuy(x, t) =0
Seklindedir. Burada

I(u) =9, + au”

formunda u degiskenine bagli olarak verilir.

Lineer olmayan genellestirilmis dalga denklemi,

U (x, t) + oy (x,t) + fuluy, (x,t) + QUyye(x,t) =0
seklindedir. Dalganin denkleminin ¢6ziimii igin,

u(x,t) =U(Q), {=px—7t

dalga doniisiimii uygulanir. Dalganin hizi p serbest bir degisken olmak iizere 9 = g olur. Bu

dalganin ¢ézlimii bir darbeye benzer. p arttikca darbe keskinlesir.



Dalgalar; duragan ve hareketli dalgalar olarak ikiye ayrilir. Sekil 2.1° de bir dalganin ifadesi
verilmistir. Fizik ve miithendisligin 6nemli bir baslig1 olan dalga kavraminin 6nemli bir alt baslig

“Soliton” dur [9].

Fregquensy = | H Wivelergth = L 1 Velacaty of
' PeUpsEation

=V

Amplibade

Sekil 2.1. Bir dalganin ifadesi

2.1. Soliton

Gegmisgi 1800’ 1 yillara dayanan soliton, 6zel bir tip dalgadir. Solitonlar; seklini ve hizini
koruyarak yayilim gosteren, ¢arpigsmalari elastik olan dalgalardir. S. Russell tarafindan ilk olarak
s1g su dalgalarinda gozlemlenen solitonlar, giintimiizde gelisen teknolojik ve bilimsel ¢alismalarla
bircok alanda gdzlemlenmistir. Ornegin; plazma fizigi, akiskanlar mekanigi, fiber optik, kimyasal
fizik, mekanik, makine 6grenme vb. [9,10].

Solitonlar; lineer olmayan kismi tiirevli diferansiyel denklemlerin g¢oziimleri ile elde
edilebilir. Solitonlarin genel 6zelliklerini su sekilde verebiliriz:

e Solitonlar periyodik dalgalar degildir.
o Sekil ve hiz gibi 6zellikleri degismeksizin yayilim gdsterirler.
e (Carpigsmalari sonucunda yapilar kararlilik gosterir.
e Solitonun hiz1 genligi ile orantilidir.
Bu ozellikler, soliton ve bilinen dalga kavrami arasindaki en temel farklar1 gosterir. Sekil

2.2” de iki solitunun ¢arpisma sonucu 6zelliklerini korudugu goriiliir [11,12,13].



| PR PP ST SR Y PR Y
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Sekil 2.2. iki solitonun ¢arpismasimin grafigi



3. TEMEL KAVRAMLAR

Bu boliimde tezde kullanilan temel tanimlara yer verilmistir.

3.1. Adi Tiirev

y = f(x) fonksiyonu (a, b) araliginda tanimli ve x, € (a, b) olsun.

Y = () = }Ci_%f(xo + h})l — f (o)

degeri varsa, bu limit degeri f fonksiyonunun x = x, noktasindaki tiirevidir. Bu limit, f(x)
fonksiyonunun x noktasindaki degisim oranini gdsterir. Fonksiyonun degeri, x degistikce sonsuz
derecede kiiciik degisiklikler gosterir ve bu da belirtilen noktadaki egriye teget cizgisinin egimine

esittir. Burada x degiskenine bagimli degisken, y degiskenine bagimsiz degisken denir [9,14].

3.2. Diferansiyel Denklem

x bagimsiz degisken, y = y(x) bilinmeyen fonksiyon ve bu fonksiyonun tiirevleri
(y,y',-,y™) arasindaki baglantiyr gosteren F(y,y’,--,y™) =0 seklindeki ifadeye
diferansiyel denklem denir. Bu tiir denklemler, modelleme hareketi, biiyliime veya ¢iiriime siirecleri

gibi ¢esitli fiziksel, biyolojik ve finansal olaylarin degisim oranini agiklamak i¢in kullanilir.

3.3. Adi Diferansiyel Denklem

Bilinmeyen y = y(x) fonksiyonu tek degiskenli ise diferansiyel denkleme adi diferansiyel
denklem (ADD) denir. Genel olarak,

dy d?y d"y\ _
f Vi dxr ™ ) T

seklinde yazilir. Bu yiizden bir ADD, basit tiirevler igerir. ADD’ ler genellikle degisimin yalnizca
bir degiskene bagli oldugu sistemleri temsil etmek ve degerlendirmek icin kullanilir. Ornegin,

dinamikte zaman veya bazi uzaysal modellerdeki mekanlar [9,15,16].

3.4. Kismi Tiirevli Diferansiyel Denklem

Bilinmeyen fonksiyon iki veya daha fazla degisken igeriyorsa yani y = y(x, t) seklinde ise
denkleme kismi diferansiyel denklem (KDD) denir. Genel olarak,



0y 20 O N o et l=m)
F\oty g g gxkan ) = 0 -m

seklinde yazilir. KTDD’ ler, 1s1 dagilimi, dalga yayilimi ve akigkan dinamigi gibi birden fazla
boyuta sahip modelleme olaylari igin kullanighdir [17].

3.5. Diferansiyel Denklemlerin Derecesi

Bir diferansiyel denklemde en yiiksek tiirevli ifadenin kuvvetine diferansiyel denklemin
derecesi denir. Ornegin; y'' + xy’ + 5y = 0 ikinci mertebeden birinci dereceden degisken

katsayili lineer adi diferansiyel denklemdir [18].

3.6. Diferansiyel Denklemlerin Mertebesi

Bir diferansiyel denklemde en yiiksek mertebeli tiireve diferansiyel denklemin mertebesi
denir. Ornegin, y’ = xy? + sin x birinci mertebeden birinci dereceden adi diferansiyel denklemdir
[9,17].

3.7. Ozel ve Genel Céziim

Bir diferansiyel denklemin ¢dziimii oldugu iddia edilen fonksiyon keyfi sabitler i¢eriyorsa

boyle bir ¢ozliime genel ¢6ziim, keyfi sabitlere degerler verilerek elde edilen ¢oziimlere ise 6zel

. 2
¢dziim denir. Ornegin, y = ¢;x + c,x2 genel ¢oziim, y = x — % 0zel ¢oziimdiir [17].

3.8. Baslangic Deger Problemi

Diferansiyel denklemlerde bilinmeyen fonksiyon ve onun tiirevleri lizerinde bagimsiz
degiskenin ayni degerler icin verilen sartlar altinda ¢ézlimlerinin problemine baslangi¢ deger

problemi denir. Bu sartlara da baslangic sartlar1 denir. Ornegin;
y'+2y=e*
y(m =1,y (m) =2

baslangi¢ deger problemidir [18].

3.9. Simr Deger Problemi

Diferansiyel denklemlerde bilinmeyen fonksiyon ve onun tiirevleri iizerinde bagimsiz
degiskenlerin farkli degerleri igin verilen sartlar altinda ¢6ziimlerinin problemine sinir deger

problemi denir. Bu sartlara da simnir sartlar1 denir [18]. Ornegin;

6



y'+2y=e"

y(0)=1,y'(1)=0

sinir deger problemidir.

3.10.

Lineer ve Lineer Olmayan Denklem

Bir diferansiyel denklemde bagimli degisken kendisi veya tiirevleri ile ¢arpim ya da bolim

durumunda ise veya bagimli degisken {istel, trigonometrik ya da logaritmik olarak bulunuyor ise

veya bagimli degiskenin herhangi bir tiirevinin derecesi iki ve ikiden biiyiik ise bu tiir diferansiyel

denklemlere lineer olmayan diferansiyel denklem (LODD) denir. Aksi durumda lineer denklem

(LDD) denir. Biiyiik 6nem tasiyan bazi yaygin olarak bilinen LDD’ ler sunlardir;

3.11.

Uss + Uy = 0,
Uy, +iU, =0,
U.X'.X' - CZUtt = 0

Bunlar sirastyla; Laplace denklemi, Lineer Schrodinger denklemi ve dalga denklemleridir.

Biiyiik ilgi ceken bazi LODD’ ler;
(aUUy + bUyxx + Up)x + Uy, =0,
aulU, + bU,, + U, = 0,

Uy — U = asinh(U).

Bunlar sirasiyla; KP, Korteweg-deVries (KdV) ve sine-Gordon denklemleridir [9,19,20].

Dengeleme Prensibi

Lineer olmayan herhangi bir adi diferansiyel denklemde en yiiksek mertebeden lineer olan

. dl .. . . d'u\S . -
terim =z Veen yiiksek mertebeden lineer olmayan terim u? (d—;) ile verilsin. m dengeleme

ag?

terimi olmak lizere m + q = mp + s(m + r) esitligi yazilabilir. Ornegin,

A+a-c®Hu" +au+pu=0

m+2=3m-2m=2-m=1

olarak bulunur [9].



3.12. Kesirli Tiirev

Kesirli tiirev, @ € R olacak sekilde tanimli kesirli tiirev derecesi olmak iizere eger f(x)

fonksiyonunun a dereceden tiirevi;

1 d (* f(@®

d—wdxdr), -t ™

D¢« =
ORE
seklinde tanimlanir [21].

3.13. M-Kesirli Turev

f:[0,00) = R fonksiyonve t > 0 olsun. 0 < a < 1 igin,

f (tEg(et™)) - £(®)

&

a,B T
D, f(t) = Lll;r(l)

seklinde tammlanir. Burada, 5 (.), f > 0 tek parametreli Mittag-Leffler fonksiyonudur [6,21,22].



4. MATERYAL VE METOT

4.1. Kaesirli M-Tiirev

a€(0,1],8 > 0,a,b € Rvet > 0 noktasinda f ve g, a kez diferansiyellenebilir olsun. M-

tiirev igin;

Dyt (af ) + bg()) = aDy L f () + bDy L g () (4.1)

DB (F(). g(©) = F(ODEE g(®) + g(ODLE f(©) (4.2)
ap O, _ 9ODEEFO-FODYEg®

Dure GGy = @(D)? (4.3)

D,%’ (c¢) = 0, burada u(t) = c keyfi sabit (4.4)
aB ot df()

Dy f(8) = r(B+1) dt (4-5)

Dﬁﬁ(ta) =at®t aeR (4.6)

Dyt (Fog)(®) = f'(9(®)DyP g(®) @7

yukaridaki 6zellikler tanimlanmugtir [6,23].

4.2. Sardar Alt Denklem Yontemi

Oncelikle V(x,t) icin asagidaki lineer olmayan kismi diferansiyel denklemi gz oniinde

bulunduralim:

F(V, Vi, Ve, Vg Vg ) = 0 (4.8)

burada F, V ‘nin kismi tiirevlerinin bir fonksiyonudur. (4.8) numarali denklemi ¢zmek igin

Vix,t) =9(m), n = @ (x‘p — ct‘p) (4.9)

dalga doniistimii yapilir.

Dalga dontisiimii (4.8) numarali denklemi lineer olmayan bir adi diferansiyel denkleme

00,9',9",9",..) =0 (4.10)

indirgenir. Burada

dsm , _ d*0(n)

9=9(n),9 =—=
), an anz




seklindedir.Denklem (4.10) {in ¢6ziimleri

19(77) = Ln=0 wi(pi(n)J(‘)n * 0,

(4.11)

seklinde kabul edilir. Burada w;, (i = 0,1, ...,n) sabit katsayilardir. Burada ¢dztim (4.11) kabul

edildigi i¢in yardimc1 denklem (4.12) kullanilarak (4.10) denkleminde en yiiksek mertebeden tiirev

ve lineer olmayan terim arasinda dengeleme prensibi uygulanarak n tam sayist bulunur. Yardimci

denklem,

@' M) =p+adp*(m) + o*(),

(4.12)

seklindedir. Burada a ve p reel sabitlerdir. (4.12) yardimci denkleminin genel ¢oziim ifadeleri

asagida verilmistir:

1.Durum: Egera > 0vep = 0ise
¢ () = £ /=pqasechyq(Van),

¢35 () = +,/pqa cos echyq(Van),

2.Durum: Egera < 0ve p = 0 ise

o5 () = +/—pqasec,,N—an,
¢ () = +/—pqacosec,,(V=an),

2
3.Durum: Egera < 0ve p = —ise

pFm) =+ Btanhpq( Bn),
pEm) =+ \/T% cothyy( \/T%n),

7 () = -_l-\/j% (tanh,q(V—2an * i\/pq sech,q(N—2an)),

ds(m) =+ |- g (coth,q(V—2an) * \[pq cos echyq(V—2an)),

¢;—’(n) =+ —g(tanhpq (\/—7%77) + cothpq(JT%n)),

10

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



2
4.Durum: Eger @ > 0 ve p = - ise

Bion) = £ [Eeanyq ([20), (422)
s = £ [Eeotyq ([2n) (4:23)

B = & [ anpg (VZan) £ pasecoq (V2am)) (4.20)
L) = i\/% (cotpq (V2an) £ \/pq cosec,, (mn)), (4.25)
AOE i\g <tanpq <\/§TI> + cotyg (Jgﬂ) ) (4.26)
Burada
2 pel —qe™"
S€Cpq ) = W, cosecpq = m, tanh,, (m = W,
_pel+qe’ _ _pel —qe™ - _pe + qe™
COthpq(n) = W, tanpq(n) = —lm, COtpq(T]) = lm

seklidedir.

(4.11) ve (4.12) denklemlerini (4.10) denklemine ekleyerek, ¢! katsayilarini toplar ve sifira
esitleriz. Burada bir cebirsel denklem sistemi elde ederiz. Daha sonra, ilgili denklem grubunu
cozerek, bu degiskenleri (4.11) denklemine koyarak ve ardindan (4.13)-(4.26) denklemlerini

kullanarak (4.8) denkleminin tam ¢oziimlerine ulasiriz [6,24].

4.3. Sardar Alt Denklem Yonteminin Kesirli M-Tiirevli Varyant Boussinesq
Denklem Sistemine Uygulanmasi

Bu boliimde, denklem (1.1) ile ifade edilen kesirli M-tiirevli varyant Boussinesq denklem
sisteminin kesin ¢oziimlerini elde etmek i¢in Sardar alt denklem ydntemi uygulanacaktir. S6z
konusu olan (1.1) denklem sistemini ¢ézmek icin (1.1) denklem sistemine asagidaki dalga

doniisiimii uygulanacaktir.

Ulx,t) =u(@®@), n = (Ax —w) F(OTH)t"" (4.27)

Vix,t) =v(n), n=(Ax— w)@t"" (4.28)

Burada A ve w reel sabitlerdir. {1k olarak (1.1) denklem sistemindeki tiirevleri kesirli M-tiirev

kurallarini kullanarak hesaplayacak olursak (4.7) denkleminden;

11



Dy UCx, ) = 5 Dy n(e, )
elde edilir. Bu ifadeyi de (4.5) denkleminden

, tY ra+e)
r(1+06) L g

(—W‘Ptq"l)] = —wu'

seklinde elde ederiz. Benzer sekilde,

a . .
DILV}IJ,'t@V(x' t) = %D;\f;,’?n(x, t) tiirevi;

1-¥
! Ftl—+®) FUTW) (—WLpth_l)] = —wu’ seklinde hesaplanir. Diger tiirevler ise;
D,V = Av'
D, U = '

DU = 23u”"" seklinde hesaplanir. Bu tiirevler (1.1) denklem sisteminde yerine yazilirsa

asagidaki lineer olmayan ADD sistemi elde edilir.
—wu' + A+ Auv' =0
—wv' + A + '+ A3 =0

(4.29) denkleminin integrali alinirsa;

—wu + v + %uz =0 veburadanda

elde edilir.Simdi, denklem (4.31)'i denklem (4.30)' da yerine yazarsak:
w w u? w
_ ! 12 _ _ ! o ! 3,111 __
W(Au +uu)+</1u 2>/1u +u/1(lu uu)+/1u =0
2

A
—Tu’ + wuu' + wuu' — Euzu’ + U + 23U =0

w? 31, 5
—Tu’ + 3wuu’ ——uu' + 2°u"" =0

denklemi elde edilir. Bu denklemin integralini alirsak;

w? 3 A
- +§wu2 —§u3 +23u" =0

ve buradan da,

—2wlu 4+ 3 wu? =223 + 2200 =0

12

(4.29)

(4.30)

(4.31)

(4.32)



denklemi elde edilir.

Isleme yardimci denklem ile denge prensibi uygulanarak 7’ nin belirlenmesiyle baslar.
Denklem (4.32)' da u” ve u® degerlerinin esitlenmesi i¢in 7 = 1 sonucuna ulasilir. n = 1 igin
(4.11) denklemi su hale gelir:

u(n) = @, +ad(n), @ =0. (4.33)

(4.27), (4,28) ve (4.33) denklemleri (4.12) denkleminde yerine konulursa, @' (77) ' nin biitiin

katsayilarinm toplayip sifira esitlersek, asagidaki denklemleri elde ederiz:

¢’ (n): 2w, +3wle, — 2w,

(4.34)
¢'(n): 2w’ e, +2al 0, + 6wl —31 o o, (4.35)
¢’ (M) :3wle] —31 w0 (4.36)
$’(m):42 0, - Vo) (4.37)

Bu denklem sistemini Wolfram Mathematica-12 kullanarak ¢ozerek su sonuca ulasiriz:

2
w w
w,=—,0,=2Aa=-

A 22 (4.38)

Denklem (4.38), (4.13) ve (4.25)" den, (1.1) kesirli M-tiirevli variant Boussinesq denklem
sisteminin yeni soliton ¢6ziimleri asagidaki gibi ifade edilir:

Durum 1: Eger 8>0 ve p=0 ise;

Denklem (4.13) i¢in asagidaki ¢oziim yapilmustir :

Up(x,t) =5+ : (4.39)

2 t“’ I [1+6]
\/— _W_ WT)
P+q2 w2
t“’ r e)
k \/— _A_Z wr [1+ ] )
p+q

(4.40)

222 ’
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Sekil 4.1°de (4.39) ve (4.40) ¢ozliim fonksiyonlarinin, w = 0.5,p =q =1,¥ = 0.75,0 =
1,1 =0.3,t =0.01 degerleri i¢in 3-boyutlu grafigi, Sekil 4.2’de (4.39) ve (4.40) ¢Ozim
fonksiyonlarinin, w = 0.5,p =q=1,¥ =0.75,0 = 1,4 = 0.3,¢t = 0.01 degerleri i¢in kontur
grafigi ve Sekil 4.3’de (4.39) ve (4.40) ¢oziim fonksiyonlarinn, w = 0.5,p=q=1,¥ =
0.75,0 = 1,4 = 0.3,t = 0.01 degerleri i¢in 2-boyutlu grafigi ¢izilmistir.

Ininh LA

Sekil 4.1. (4.39) ve (4.40) ¢oziim fonksiyonlarinin, w = 0.5,p =q =1,¥ =0.75,0 = 1,1 = 0.3,t =
0.01 degerleri i¢in 3-boyutlu grafigi

Sekil 4.2. (4.39) ve (4.40) ¢ozlim fonksiyonlarmm, w = 0.5,p =q=1,¥ =0.75,0 = 1,1 = 0.3,t =
0.01 degerleri i¢in kontur grafigi

3
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Sekil 4.3. (4.39) ve (4.40) ¢oziim fonksiyonlarmm, w = 0.5,p =q=1,¥ =0.75,0 =1,A = 0.3,t =
0.01 degerleri i¢in 2-boyutlu grafigi

Denklem (4.14) i¢in asagidaki ¢oziim yapilmustir:

w
_;v_f(xl_t w 1;,[1+@]>

w  2VZe V2 —pg‘;v i
Up(x, ) =2 + ~ , (4.41)
NG _‘;:_22 (x,l_qu[l"'@]>
e r—q
Vi _\jlv_zz (xl—twqu,[l"'@])
1+ 8e ra > WZ
Vi _\;:_22 (xl_t"’w l:y[1+@]>
—e ptq
V,(x,t) = — (4.42)

Sekil (4.4)’ de (4.41) ve (4.42) ¢oziim fonksiyonlarinin, w = 0.5,p = q = 1,¥ = 0.75,0 =
1,A=0.3,t =0.1 degerleri i¢in 3-boyutlu grafigi, Sekil 4.5’ de (4.41) ve (4.42) ¢bziim
fonksiyonlarinin, w =05,p=q=1,¥=0.750=1,4=0.3,t = 0.1 degerleri i¢in kontur
grafigi ve sekil 4.6’da (4.41) ve (4.42) ¢oziim fonksiyonlarinin, w =0.5,p=q=1,¥ =
0.75,0 = 1,4 = 0.3,t = 0.1 degerleri igin 2-boyutlu grafigi ¢izilmistir.

15
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Sekil 4.4. (4.41) ve (4.42) ¢oziim fonksiyonlarinm, w = 0.5,p =q=1,¥ =0.75,0 =1,1 =0.3,t = 0.1
degerleri i¢in 3-boyutlu grafigi
lug (x|

2
‘10
' 0 o Ib ' 20 3‘0 o

Sekil 4.5. (4.41) ve (4.42) ¢6ziim fonksiyonlarmin, w = 0.5, p =q=1,% =0.75,0 =1,A=0.3,t = 0.1
degerleri i¢in kontur grafigi
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Sekil 4.6. (4.41) ve (4.42) ¢6ziim fonksiyonlarmmin, w = 0.5, p =q=1,% =0.75,0 = 1,4 =0.3,t = 0.1
degerleri igin 2-boyutlu grafigi
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5. BULGULAR VE TARTISMA

Bu ¢alismada, Sardar alt denklem yontemini, kesirli M-tlirevli varyant Boussinesq sistem
¢oziimiine basariyla uyguladik. Sardar-alt denklem yonteminin detaylari ve (1.1)'de verilen Kkesirli
M-tiirevli varyant Boussinesq sisteminin ¢dziimii bolim 4'te verilmistir. Denklem sistemi (1.1)’ in
¢oziimleri uygulamali olarak basariyla gerceklestirilmistir. Bu ¢oziimii gergeklestirmek i¢in kismi
diferansiyel denkleme dalga doniisiimii uygulanip adi diferansiyel denkleme indirgenerek sunulan
¢oziimlerden bazilarinin uygun parametre degerleri ile 3-boyutlu, 2-boyutlu ve kontur grafikleri
araciligryla fiziksel temsilleri sunulmaktadir.

Elde edilen sonugclar, kiyiya yakin ortamlardaki uzun dalgalarin davranisini tahmin etmek ve
anlamak i¢in giiclii bir gerceve olan kiyr ve okyanus miihendisligi alanina 6nemli katkilar

sagladigini gdsterdi.



6. SONUCLAR

Bu tezde Sardar alt denklem yontemini kullanarak kesirli M-tiirevli varyant Boussinesq
sisteminin davranigini aragtirdik. Kesirli M-tiirev tanimin1 kullanarak, modelin davranigina iligkin
degerli bilgiler saglayan kapsamli bir analiz gerceklestirdik. Bulgularimizin pratik uygunlugunu
arttirmak igin, sunulan ¢oziimlerden bazilarinin uygun parametre degerleri altinda 3-boyutlu, 2-
boyutlu ve kontur grafiklerini sunduk. Sonug olarak, bu ¢alismanin bulgular1 kiy1 ve okyanus
mihendisligine 6nemli bir katki saglamakta, kiyiya yakin ortamlardaki dalgalarin davranislarini

tahmin etmek ve anlamak i¢in gii¢lii ve hassas sonuglar vermektedir.

6.1. Grafik Yorumu ve Fiziksel Onemi

Elde edilen ¢6ziimlerin karakteristiginin daha iyi anlagilmasi i¢in ¢6éziimlerin 3-boyutlu, 2-
boyutlu ve kontur grafikleri ¢izilmistir.

Sekil 4.1°de (4.13) denkleminin ¢éziiminde w = 0.5,p =1,q =1, =0.75,0 = 1,A =
0.3,t = 0.01 sabitleri alimarak hareketli dalga ¢oziimiiniin 3-boyutlu, Sekil 4.2° de (4.13)
denkleminin ¢6ziiminde w =0.5,p=1,q =1,¥ =0.75,0 = 1,4 = 0.3,t = 0.01 sabitleri
alinarak hareketli dalga ¢oziimiiniin kontur ve Sekil 4.3’de (4.13) denkleminin ¢oztiimiinde w =
05p=1,q9q=19Y =0.75,0 = 1,4 = 0.3, t = 0.01 sabitleri alinarak hareketli dalga ¢6zlimiiniin
2-boyutlu grafikleri elde edilmistir.

Sekil 4.4’de (4.14) denkleminin ¢dziiminde w = 0.5,p =1, =1, =0.75,0 =1,1 =
0.3,t = 0.01 sabitleri alinarak hareketli dalga ¢Oziimiiniin 3-boyutlu, Sekil 4.5’de (4.14)
denkleminin ¢6ziiminde w =0.5,p=1,q =1,¥ =0.75,0 =1,4 = 0.3,t = 0.01 sabitleri
alinarak hareketli dalga ¢6ziimiintin kontur ve Sekil 4.6’da ve (4.14) denkleminin ¢6ziimiinde w =
05,p=1,q=19Y =0.75,0 = 1,4 = 0.3,t = 0.01 sabitleri alinarak hareketli dalga ¢6zlimiiniin
2-boyutlu grafikleri elde edilmistir.



ONERILER

Bu calismada kullanilan Sardar alt denklem yoOntemi kesirli M-tiireve sahip varyan
Boussinesq denklem sistemine uygulanmigtir. YoOntemin lineer olmayan bagka diferansiyel
denklem sistemlerine de uygulanabilirligi test edilebilir.

Varyant Boussinesq denklem sistemi igindeki parametrelerin ¢ozlimler iizerindeki etkileri

daha detayli incelenebilir ve fiziksel temsilleri karsilastirilabilir.
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