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ÖZET 

Dummy 

Sardar Alt Denklem Yönteminin Kesirli M-Türevli Diferansiyel Denkleme 

Uygulanması 
 

İlkay KOÇOĞLU TEKİN 

 

Yüksek Lisans Tezi 

 

FIRAT ÜNİVERSİTESİ 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 

Ocak 2025,   Sayfa:  ix  + 21 

 

 

Bu çalışmada, sığ su dalgalarının davranışını modellemek için lineer olmayan kısmi diferansiyel 

denklem ile ifade edilen varyant Boussinesq sisteminin tam çözümleri elde edilmiştir. Bu denklem sistemi 

orijinal Boussinesq sisteminin bir modifikasyonudur. Kesirli M-türevli varyant Boussinesq sisteminin 

hareketli dalga çözümleri Sardar alt denklem yöntemi ile elde edilmiş, bu denklem sisteminin çözümünün 

yapılabilmesi için kısmi diferansiyel denklemine dalga dönüşümü uygulanarak adi diferansiyel denkleme 

indirgenmiştir. Bu tezin amacı kesirli M-türevli modelin ifade ettiği matematiksel yapılara ışık tutmak ve 

sistemin daha iyi anlaşılmasına katkıda bulunmaktadır. Varyant Boussinesq sisteminin analitik çözümünün 

fiziksel özelliklerini açıklamak için 2 boyutlu, 3 boyutlu ve kontur grafikleri elde edildi. Sonuç olarak Sardar 

alt denklem yönteminin bu tür denklem sistemleri için güçlü, doğru ve hassas bir yöntem olduğu ifade 

edilmiştir. Bununla birlikte bu yöntemin farklı kesirli modellere de uygulanabilirliği ifade edilebilir. 

 

Anahtar Kelimeler: Varyant Boussinesq sistem, Kesirli M-türev, Sardar alt denklem yöntemi, Soliton, 

Dalga. 
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ABSTRACT 
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 Application Of The Sardar Sub Equation Method To The Fractional M-

Derivative Differential Equation 

 

İlkay KOÇOĞLU TEKİN 

 

Master's Thesis 

 

FIRAT UNIVERSITY 

Graduate School of Natural and Applied Sciences 

Department of Mathematics 

January 2025,   Pages:  ix  + 21 

 

 

         In this study, the exact solutions of the variant Boussinesq system, expressed by a nonlinear partial 

differential equation to model the behavior of shallow water waves, have been obtained. This system of 

equations is a modification of the original Boussinesq system. The traveling wave solutions of the fractional 

M-derivative variant Boussinesq system were obtained using the Sardar sub-equation method. To solve this 

system of equations, the wave transformation was applied to the partial differential equation, reducing it to 

an ordinary differential equation. The purpose of this thesis is to shed ligh on the mathematical structures 

represented by the fractional M-derivative model and to contribute to a better understanding of the system 

2D, 3D and contour graphs were obtained. As a result, it has been stated that the Sardar sub-equation method 

for such systems of equations. Furthermore, it can be suggested that this method is applicable to diffrnt 

fractional models as well. 

 

Keywords: Variant Boussinesq system, Fractional M-derivative, Sardar sub-equation Method, Soliton, 

Wave.  
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SİMGELER VE KISALTMALAR 

Simgeler 

𝛼 : Alfa 

𝛽  : Beta 

𝜗  : Değişik Teta 

𝜔  : Omega  

𝜂  : Eta 

𝜆  : Lambda 

Ψ  : Psi 

𝜉  : Xi 

Θ  : Teta 

ℝ  : Gerçek Sayılar Kümesi 

ℤ  : Tam Sayılar Kümesi 

 

Kısaltmalar 

ADD  : Adi Diferansiyel Denklem 

KTDD : Kısmi Türevli Diferansiyel Denklem 

LDD  : Lineer Diferansiyel Denklem 

LODD  : Lineer Olmayan Diferansiyel Denklem  

SSM  : Sardar Alt Denklem Yöntemi 



1. GİRİŞ 

Son yıllarda popülerliği oldukça artan kesirli türevler, klasik türevin tam sayı olmayan 

mertebelerinden oluşur. Klasik türevi daha geniş perspektife yayan bu kesirli türevler karmaşık 

fiziksel olayların modellenmesine ışık tutar. 

Kesirli türevleri konu edinen çok sayıda araştırmalar yapılmıştır. M. Caputo (1967), kendi 

adını paylaştığı Caputo kesirli türevini ADD çözümlerinde BDP koşullarını tanımlamayı 

kolaylaştırmayı amaçlayarak tanıtmıştır [1]. 

Bu türevin tarihinin, türevin yaratıcısı olarak anılan Leibniz’ e, L’ Hospital tarafından 
1

2
 

mertebe türevi sormasıyla ortaya çıktığı ve Leibniz’ in bu konuyla ilgili ne kadar karmaşık görünse 

de bir gün çok büyük çalışmalarda öncü olacağı cevabını vermesi ile başladığı rivayet edilmiştir 

[1,2]. 

Boussinesq denklemleri, sıvı dinamiği ve akışkanlar mekaniği gibi birçok fiziksel problemde 

önemli yere sahiptir. Bu denklemin modifikasyonu olan varyant Boussinesq denklem, klasik 

Boussinesq denkleminin daha geniş uygulamalarının yapılabilmesi için genelleştirilmesidir. Bu 

denklem lineer olmayan terimler içerdiğinden çözülmesi zor bir denklem olduğundan dolayı 

analitik ve sayısal çözüm yöntemine başvurulur. Varyant Boussinesq denklem özellikle daha az 

derin yüzey dalga etkileşimlerini inceleyen bir modeldir [3]. Genellikle şu şekilde ifade edilir: 

𝜕2𝜂

𝜕𝑡2
+

𝜕

𝜕𝑥
(𝜂2

𝜕𝜂

𝜕𝑥
) = 𝜇

𝜕2𝜂

𝜕𝑥2
. 

Burada 𝜂(𝑥, 𝑡) su yüzeyi yüksekliği, 𝜇 ise viskoziteyi temsil eder [4,5,6]. 

Bu tezde ise aşağıda verilen kesirli M-türevli varyant Boussinesq denklem sistemi Sardar alt 

denklem yöntemi ile çözülmüştür. 

  𝐷𝑀,𝑡
𝛹,Θ𝑈 + 𝐷𝑥𝑉 + 𝑈𝐷𝑥𝑈 = 0, 

𝐷𝑀,𝑡
𝛹,Θ𝑉 + 𝑉𝐷𝑥𝑈 + 𝑈𝐷𝑥𝑉 + 𝐷𝑥𝑥𝑥𝑈 = 0.                                                                                         (1.1) 

Söz konusu olan (1.1) denklem sistemi literatürde su dalgaları için bir modeldir [6,7,8]. 

Burada Ψ türevin derecesi olup Ψ ∈ (0,1] aralığındadır.



2. DALGA 

Fiziğin temel kavramlarından biri olan dalga; bir ortamda veya boşlukta yayılan 

titreşimlerdir. Bir cisim üzerine uygulanan enerji, cisim üzerinde bir hareketlenme oluşturur. Bu 

olay cismin hareketi gibi görünse de bırakılan enerjinin taşınmasıdır. 

Bir boyutlu lineer dalga denklemi, 

𝑢𝑡𝑡 − 𝑐
2𝑢𝑥𝑥 = 0  

formundadır. Bu tip bir denklemin genel çözümü,  

𝑢(𝑥, 𝑡) = ℎ(𝑥 − 𝑐𝑡) + 𝑔(𝑥 + 𝑐𝑡) 

şeklindedir. Dalganın şekli zamana göre değişmiyorsa, ℎ(𝑥 − 𝑐𝑡) sağa doğru, 𝑔(𝑥 + 𝑐𝑡) sola doğru 

hareketi ifade eder. 

Bir diğer dalga denklemi formu, 

𝑢𝑡(𝑥, 𝑡) + 𝜗0𝑢𝑥(𝑥, 𝑡) = 0 

şeklindedir. Bu denklemdeki “𝜗0” terimi dalganın hızını gösterir. Bu dalga denkleminin periyodik 

çözümleri  

𝑢(𝑥, 𝑡) = 𝑒𝑖(𝑤𝑡−𝑘𝑥) 

şeklinde aranır. Bu çözüm formunda; k dalga sayısını, w açısal frekansı gösterir. Çözüm fonksiyonu 

denklemde kullanılırsa  𝑤 = 𝜗0𝑘 dağılım ilişkisi elde edilir. 

Lineer olmayan dalga sistemi de, 

𝑢𝑡(𝑥, 𝑡) + 𝜗(𝑢)𝑢𝑥(𝑥, 𝑡) = 0  

Şeklindedir. Burada  

𝜗(𝑢) = 𝜗0 + 𝛼𝑢
𝜂 

formunda 𝑢 değişkenine bağlı olarak verilir. 

Lineer olmayan genelleştirilmiş dalga denklemi, 

𝑢𝑡(𝑥, 𝑡) + 𝜗0𝑢𝑥(𝑥, 𝑡) + 𝛽𝑢
𝜂𝑢𝑥(𝑥, 𝑡) + 𝛼𝑢𝑥𝑥𝑥(𝑥, 𝑡) = 0 

şeklindedir. Dalganın denkleminin çözümü için, 

𝑢(𝑥, 𝑡) = 𝑈(𝜁),    𝜁 = 𝑝𝑥 − 𝑍𝑡  

dalga dönüşümü uygulanır. Dalganın hızı p serbest bir değişken olmak üzere 𝜗 =
𝑝

𝑍
  olur. Bu 

dalganın çözümü bir darbeye benzer. p arttıkça darbe keskinleşir. 
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Dalgalar; durağan ve hareketli dalgalar olarak ikiye ayrılır. Şekil 2.1’ de bir dalganın ifadesi 

verilmiştir. Fizik ve mühendisliğin önemli bir başlığı olan dalga kavramının önemli bir alt başlığı 

“Soliton” dur [9]. 

 

 

 
Şekil 2.1. Bir dalganın ifadesi 

2.1. Soliton 

Geçmişi 1800’ lü yıllara dayanan soliton, özel bir tip dalgadır. Solitonlar; şeklini ve hızını 

koruyarak yayılım gösteren, çarpışmaları elastik olan dalgalardır. S. Russell tarafından ilk olarak 

sığ su dalgalarında gözlemlenen solitonlar, günümüzde gelişen teknolojik ve bilimsel çalışmalarla 

birçok alanda gözlemlenmiştir. Örneğin; plazma fiziği, akışkanlar mekaniği, fiber optik, kimyasal 

fizik, mekanik, makine öğrenme vb. [9,10]. 

Solitonlar; lineer olmayan kısmi türevli diferansiyel denklemlerin çözümleri ile elde 

edilebilir. Solitonların genel özelliklerini şu şekilde verebiliriz: 

• Solitonlar periyodik dalgalar değildir. 

• Şekil ve hız gibi özellikleri değişmeksizin yayılım gösterirler. 

• Çarpışmaları sonucunda yapılar kararlılık gösterir. 

• Solitonun hızı genliği ile orantılıdır. 

Bu özellikler, soliton ve bilinen dalga kavramı arasındaki en temel farkları gösterir. Şekil 

2.2’ de iki solitunun çarpışma sonucu özelliklerini koruduğu görülür [11,12,13]. 
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Şekil 2.2. İki solitonun çarpışmasının grafiği 



3. TEMEL KAVRAMLAR 

Bu bölümde tezde kullanılan temel tanımlara yer verilmiştir. 

3.1. Adi Türev 

𝑦 = 𝑓(𝑥) fonksiyonu (𝑎, 𝑏) aralığında tanımlı ve 𝑥0 ∈ (𝑎, 𝑏) olsun. 

𝑦′ = 𝑓′(𝑥0) = lim
𝑥→0

𝑓(𝑥0 + ℎ) − 𝑓(𝑥0)

ℎ
 

değeri varsa, bu limit değeri f fonksiyonunun 𝑥 = 𝑥0 noktasındaki türevidir. Bu limit, f(x) 

fonksiyonunun x noktasındaki değişim oranını gösterir. Fonksiyonun değeri, x değiştikçe sonsuz 

derecede küçük değişiklikler gösterir ve bu da belirtilen noktadaki eğriye teğet çizgisinin eğimine 

eşittir. Burada x değişkenine bağımlı değişken, y değişkenine bağımsız değişken denir [9,14]. 

3.2. Diferansiyel Denklem 

x bağımsız değişken, 𝑦 = 𝑦(𝑥) bilinmeyen fonksiyon ve bu fonksiyonun türevleri 

(𝑦, 𝑦′,⋯ , 𝑦(𝑛)) arasındaki bağlantıyı gösteren 𝐹(𝑦, 𝑦′,⋯ , 𝑦(𝑛)) = 0 şeklindeki ifadeye 

diferansiyel denklem denir. Bu tür denklemler, modelleme hareketi, büyüme veya çürüme süreçleri 

gibi çeşitli fiziksel, biyolojik ve finansal olayların değişim oranını açıklamak için kullanılır. 

3.3. Adi Diferansiyel Denklem 

Bilinmeyen 𝑦 = 𝑦(𝑥) fonksiyonu tek değişkenli ise diferansiyel denkleme adi diferansiyel 

denklem (ADD) denir. Genel olarak, 

𝑓 (𝑥, 𝑦,
𝑑𝑦

𝑑𝑥
,
𝑑2𝑦

𝑑𝑥2
, ⋯ ,

𝑑𝑛𝑦

𝑑𝑥(𝑛)
) = 0 

şeklinde yazılır. Bu yüzden bir ADD, basit türevler içerir. ADD’ ler genellikle değişimin yalnızca 

bir değişkene bağlı olduğu sistemleri temsil etmek ve değerlendirmek için kullanılır. Örneğin, 

dinamikte zaman veya bazı uzaysal modellerdeki mekanlar [9,15,16]. 

3.4. Kısmi Türevli Diferansiyel Denklem 

Bilinmeyen fonksiyon iki veya daha fazla değişken içeriyorsa yani 𝑦 = 𝑦(𝑥, 𝑡) şeklinde ise 

denkleme kısmi diferansiyel denklem (KDD) denir. Genel olarak, 
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𝑓 (𝑥, 𝑡, 𝑦,
𝜕𝑦

𝜕𝑡
,
𝜕2𝑦

𝜕𝑡2
, ⋯ ,

𝜕𝑚

𝜕𝑥𝑘𝜕𝑡𝑙
) = 0 , (𝑘 + 𝑙 = 𝑚) 

şeklinde yazılır. KTDD’ ler, ısı dağılımı, dalga yayılımı ve akışkan dinamiği gibi birden fazla 

boyuta sahip modelleme olayları için kullanışlıdır [17]. 

3.5. Diferansiyel Denklemlerin Derecesi 

Bir diferansiyel denklemde en yüksek türevli ifadenin kuvvetine diferansiyel denklemin 

derecesi denir. Örneğin;  𝑦′′ + 𝑥𝑦′ + 5𝑦 = 0 ikinci mertebeden birinci dereceden değişken 

katsayılı lineer adi diferansiyel denklemdir [18]. 

3.6. Diferansiyel Denklemlerin Mertebesi 

Bir diferansiyel denklemde en yüksek mertebeli türeve diferansiyel denklemin mertebesi 

denir. Örneğin, 𝑦′ = 𝑥𝑦2 + sin𝑥 birinci mertebeden birinci dereceden adi diferansiyel denklemdir 

[9,17]. 

3.7. Özel ve Genel Çözüm 

Bir diferansiyel denklemin çözümü olduğu iddia edilen fonksiyon keyfi sabitler içeriyorsa 

böyle bir çözüme genel çözüm, keyfi sabitlere değerler verilerek elde edilen çözümlere ise özel 

çözüm denir. Örneğin, 𝑦 = 𝑐1𝑥 + 𝑐2𝑥
2   genel çözüm, 𝑦 = 𝑥 −

𝑥2

2
  özel çözümdür [17]. 

3.8. Başlangıç Değer Problemi 

Diferansiyel denklemlerde bilinmeyen fonksiyon ve onun türevleri üzerinde bağımsız 

değişkenin aynı değerler için verilen şartlar altında çözümlerinin problemine başlangıç değer 

problemi denir. Bu şartlara da başlangıç şartları denir. Örneğin; 

𝑦′′ + 2𝑦 = 𝑒𝑥 

𝑦(𝜋) = 1 , 𝑦′(𝜋) = 2 

başlangıç değer problemidir [18]. 

3.9. Sınır Değer Problemi 

Diferansiyel denklemlerde bilinmeyen fonksiyon ve onun türevleri üzerinde bağımsız 

değişkenlerin farklı değerleri için verilen şartlar altında çözümlerinin problemine sınır değer 

problemi denir. Bu şartlara da sınır şartları denir [18]. Örneğin; 
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𝑦′′ + 2𝑦 = 𝑒𝜋 

𝑦(0) = 1  , 𝑦′(1) = 0   

sınır değer problemidir. 

3.10. Lineer ve Lineer Olmayan Denklem 

Bir diferansiyel denklemde bağımlı değişken kendisi veya türevleri ile çarpım ya da bölüm 

durumunda ise veya bağımlı değişken üstel, trigonometrik ya da logaritmik olarak bulunuyor ise 

veya bağımlı değişkenin herhangi bir türevinin derecesi iki ve ikiden büyük ise bu tür diferansiyel 

denklemlere lineer olmayan diferansiyel denklem (LODD) denir. Aksi durumda lineer denklem 

(LDD) denir.  Büyük önem taşıyan bazı yaygın olarak bilinen LDD’ ler şunlardır; 

𝑈𝑥𝑥 +𝑈𝑦𝑦 = 0, 

𝑈𝑥𝑥 + 𝑖𝑈𝑡 = 0, 

𝑈𝑥𝑥 − 𝑐
2𝑈𝑡𝑡 = 0. 

Bunlar sırasıyla; Laplace denklemi, Lineer Schrödinger denklemi ve dalga denklemleridir. 

Büyük ilgi çeken bazı LODD’ ler; 

(𝑎𝑈𝑈𝑥 + 𝑏𝑈𝑥𝑥𝑥 + 𝑈𝑡)𝑥 + 𝑈𝑦𝑦 = 0, 

𝑎𝑢𝑈𝑥 + 𝑏𝑈𝑥𝑥 + 𝑈𝑡 = 0, 

𝑈𝑥𝑥 −𝑈𝑡𝑡 = 𝛼 sinh(𝑈). 

Bunlar sırasıyla; KP, Korteweg-deVries (KdV) ve sine-Gordon denklemleridir [9,19,20]. 

3.11. Dengeleme Prensibi 

Lineer olmayan herhangi bir adi diferansiyel denklemde en yüksek mertebeden lineer olan 

terim 
𝑑𝑞𝑢

𝑑ξ 
𝑞      ve en yüksek mertebeden lineer olmayan terim   𝑢𝑝 (

𝑑𝑟𝑢

𝑑𝜉𝑟
)
𝑠

  ile verilsin. m dengeleme 

terimi olmak üzere   𝑚 + 𝑞 = 𝑚𝑝 + 𝑠(𝑚 + 𝑟) eşitliği yazılabilir. Örneğin,  

(1 + 𝑎 − 𝑐2)𝑢′′ + 𝛼𝑢 + 𝛽𝑢3 = 0 

𝑚 + 2 = 3𝑚 → 2𝑚 = 2 → 𝑚 = 1 

olarak bulunur [9]. 
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3.12. Kesirli Türev 

Kesirli türev, 𝛼 ∈ ℝ olacak şekilde tanımlı kesirli türev derecesi olmak üzere eğer 𝑓(𝑥) 

fonksiyonunun 𝛼 dereceden türevi; 

𝐷𝛼𝑓(𝑥) =
1

Γ(1 − 𝛼)𝑑𝑥

𝑑

𝑑𝑥
∫

𝑓(𝑡)

(𝑥 − 𝑡)𝛼

𝑥

𝛼

𝑑𝑡 

şeklinde tanımlanır [21]. 

3.13. M-Kesirli Türev 

𝑓: [0,∞) → ℝ fonksiyon ve 𝑡 > 0 olsun. 0 < 𝛼 < 1 için,  

𝐷𝑀
𝛼,𝛽
𝑓(𝑡) = lim

𝜀→0

𝑓 (𝑡𝐸𝛽(𝜀𝑡
𝛼)) − 𝑓(𝑡)

𝜀
 

şeklinde tanımlanır. Burada, 𝜀𝛽(. ), 𝛽 > 0 tek parametreli Mittag-Leffler fonksiyonudur [6,21,22]. 

 



4. MATERYAL VE METOT 

4.1. Kesirli M-Türev 

𝛼 ∈ (0,1] , 𝛽 > 0, 𝑎, 𝑏 ∈ ℝ ve t > 0 noktasında 𝑓 𝑣𝑒 𝑔, 𝛼 kez diferansiyellenebilir olsun. M-

türev için; 

𝐷𝛭,𝑡
𝛼,𝛽
(𝛼𝑓(𝑡) + 𝑏𝑔(𝑡)) = 𝑎𝐷𝛭,𝑡

𝛼,𝛽
𝑓(𝑡) + 𝑏𝐷𝛭,𝑡

𝛼,𝛽
𝑔(𝑡)                                                                         (4.1) 

𝐷𝛭,𝑡
𝛼,𝛽
(𝑓(𝑡). 𝑔(𝑡)) = 𝑓(𝑡)𝐷𝛭,𝑡

𝛼,𝛽
𝑔(𝑡) + 𝑔(𝑡)𝐷𝛭,𝑡

𝛼,𝛽
𝑓(𝑡)                                                                       (4.2) 

𝐷𝛭,𝑡
𝛼,𝛽
(
𝑓(𝑡)

𝑔(𝑡)
) =

𝑔(𝑡)𝐷𝛭,𝑡
𝛼,𝛽
𝑓(𝑡)−𝑓(𝑡)𝐷𝛭,𝑡

𝛼,𝛽
𝑔(𝑡)

(𝑔(𝑡))2
                                                                                               (4.3) 

𝐷𝛭,𝑡
𝛼,𝛽(𝑐) = 0, burada 𝑢(𝑡) = 𝑐 keyfi sabit                                                                                      (4.4) 

𝐷𝛭,𝑡
𝛼,𝛽
𝑓(𝑡) =

𝑡1−𝛼

Γ(𝛽+1)

𝑑𝑓(𝑡)

𝑑𝑡
                                                                                                                   (4.5) 

𝐷𝑀,𝑡
𝛼,β(𝑡𝑎) = 𝑎𝑡𝑎−𝑡, 𝑎 ∈ ℝ                                                                                                               (4.6) 

𝐷𝑀,𝑡
𝛼,β(𝑓𝑜𝑔)(𝑡) = 𝑓′(𝑔(𝑡))𝐷𝑀

𝛼,β
𝑔(𝑡)                                                                                                (4.7) 

yukarıdaki özellikler tanımlanmıştır [6,23]. 

4.2. Sardar Alt Denklem Yöntemi 

Öncelikle 𝑉(𝑥, 𝑡) için aşağıdaki lineer olmayan kısmi diferansiyel denklemi göz önünde 

bulunduralım: 

𝐹(𝑉, 𝑉𝑡, 𝑉𝑥 , 𝑉𝑡𝑡, 𝑉𝑥𝑥, … ) = 0                                                                                                             (4.8) 

burada 𝐹, 𝑉 ‘nin kısmi türevlerinin bir fonksiyonudur. (4.8) numaralı denklemi çözmek için 

𝑉(𝑥, 𝑡) = 𝜗(𝜂), 𝜂 =
Γ(Φ+1)

Ψ
(𝑥Ψ − 𝑐𝑡Ψ)                                                                                        (4.9) 

dalga dönüşümü yapılır. 

Dalga dönüşümü (4.8) numaralı denklemi lineer olmayan bir adi diferansiyel denkleme  

𝚀(𝜗, 𝜗′, 𝜗′′, 𝜗′′′, … ) = 0                                                                                                                 (4.10) 

indirgenir. Burada  

𝜗 = 𝜗(𝜂), 𝜗′ =
𝑑𝜗(𝜂)

𝑑𝜂
, 𝜗′′ =

𝑑2𝜗(𝜂)

𝑑𝜂2
, … 



10 

şeklindedir.Denklem (4.10) ün çözümleri 

𝜗(𝜂) = ∑ 𝜔𝑖𝜙
𝑖(𝜂), 𝜔𝑛 ≠ 0,

𝑛
𝑖=0                                                                                                        (4.11) 

şeklinde kabul edilir. Burada 𝜔𝑖, (𝑖 = 0,1, … , 𝑛) sabit katsayılardır. Burada çözüm (4.11) kabul 

edildiği için yardımcı denklem (4.12) kullanılarak (4.10) denkleminde en yüksek mertebeden türev 

ve lineer olmayan terim arasında dengeleme prensibi uygulanarak 𝜂 tam sayısı bulunur. Yardımcı 

denklem, 

(𝜙′(𝜂))2 = 𝜌 + 𝑎𝜙2(𝜂) + 𝜙4(𝜂),                                                                                                 (4.12) 

şeklindedir. Burada 𝑎 ve 𝜌 reel sabitlerdir. (4.12) yardımcı denkleminin genel çözüm ifadeleri 

aşağıda verilmiştir: 

1.Durum:   Eğer 𝛼 > 0 ve 𝜌 = 0 ise  

𝜙1
±(𝜂) = ±√−𝜌𝑞𝑎𝑠𝑒𝑐ℎ𝜌𝑞(√𝑎𝜂),                                                                                                  (4.13) 

𝜙2
±(𝜂) = ±√𝜌𝑞𝑎 cos 𝑒𝑐ℎ𝜌𝑞(√𝑎𝜂),                                                                                                (4.14) 

2.Durum: Eğer 𝛼 < 0 ve 𝜌 = 0 ise  

𝜙3
±(𝜂) = ±√−𝜌𝑞𝑎𝑠𝑒𝑐𝜌𝑞√−𝑎𝜂,                                                                                                     

 (4.15) 

𝜙4
±(𝜂) = ±√−𝜌𝑞𝑎 cos 𝑒𝑐𝜌𝑞(√−𝑎𝜂),                                                                                             

 (4.16) 

3.Durum: Eğer 𝛼 < 0 ve 𝜌 =
𝑎2

4
 ise 

𝜙5
±(𝜂) = ±√−

𝑎

2
𝑡𝑎𝑛ℎ𝜌𝑞(√−

𝑎

2
𝜂),                                                                                                 

 (4.17) 

𝜙6
±(𝜂) = ±√−

𝑎

2
𝑐𝑜𝑡ℎ𝜌𝑞(√−

𝑎

2
𝜂),                                                                                                  

 (4.18) 

𝜙7
±(𝜂) = ±√−

𝑎

2
(𝑡𝑎𝑛ℎ𝜌𝑞(√−2𝛼𝜂 ± 𝑖√𝜌𝑞 𝑠𝑒𝑐ℎ𝜌𝑞( √−2𝛼 𝜂)),                                                   (4.19) 

𝜙8
±(𝜂) = ±√−

𝑎

2
(𝑐𝑜𝑡ℎ𝜌𝑞(√−2𝛼𝜂) ± √𝜌𝑞 cos 𝑒𝑐ℎ𝜌𝑞(√−2𝑎𝜂)),                                               (4.20) 

𝜙9
±(𝜂) = ±√−

𝑎

8
(𝑡𝑎𝑛ℎ𝜌𝑞 (√−

𝛼

8
𝜂) + 𝑐𝑜𝑡ℎ𝜌𝑞(√−

𝛼

8
𝜂)),                                                             

 (4.21) 
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4.Durum: Eğer 𝛼 > 0 ve 𝜌 =
𝑎2

4
 ise  

𝜙10
± (𝜂) = ±√

𝑎

2
𝑡𝑎𝑛𝜌𝑞 (√

𝑎

2
𝜂),                                                                                                        (4.22) 

𝜙11
± (𝜂) = ±√

𝑎

2
𝑐𝑜𝑡𝜌𝑞 (√

𝑎

2
𝜂),                                                                                                         (4.23) 

𝜙12
± (𝜂) = ±√

𝑎

2
𝑡𝑎𝑛𝜌𝑞(√2𝑎𝜂) ± √𝜌𝑞𝑠𝑒𝑐𝜌𝑞(√2𝑎𝜂)),                                                                    (4.24) 

𝜙13
± (𝜂) = ±√

𝑎

2
(𝑐𝑜𝑡𝜌𝑞(√2𝑎𝜂) ± √𝜌𝑞 cos 𝑒𝑐𝜌𝑞 (√2𝑎𝜂)),                                                            (4.25) 

𝜙14
± (𝜂) = ±√

𝑎

8
(𝑡𝑎𝑛𝜌𝑞 (√

𝑎

8
𝜂) + 𝑐𝑜𝑡𝜌𝑞 (√

𝑎

8
𝜂)) ,                                                                        (4.26) 

Burada  

𝑠𝑒𝑐𝜌𝑞(𝜂) =
2

𝜌𝑒𝑖𝜂 + 𝑞𝑒−𝑖𝜂
, 𝑐𝑜𝑠𝑒𝑐𝜌𝑞(𝜂) =

2𝑖

𝜌𝑒𝑖𝜂 − 𝑞𝑒−𝑖𝜂
, 𝑡𝑎𝑛ℎ𝜌𝑞(𝜂) =

𝜌𝑒𝜂 − 𝑞𝑒−𝜂

𝜌𝑒𝜂 + 𝑞𝑒−𝜂
,  

𝑐𝑜𝑡ℎ𝜌𝑞(𝜂) =
𝜌𝑒𝜂 + 𝑞𝑒−𝜂

𝜌𝑒𝜂 − 𝑞𝑒−𝜂
, 𝑡𝑎𝑛𝜌𝑞(𝜂) = −𝑖

𝜌𝑒𝑖𝜂 − 𝑞𝑒−𝑖𝜂

𝜌𝑒𝑖𝜂 + 𝑞𝑒−𝑖𝜂
, 𝑐𝑜𝑡𝜌𝑞(𝜂) = 𝑖

𝜌𝑒𝑖𝜂 + 𝑞𝑒−𝑖𝜂

𝜌𝑒𝑖𝜂 − 𝑞𝑒−𝑖𝜂
 

şeklidedir. 

(4.11) ve (4.12) denklemlerini (4.10) denklemine ekleyerek, 𝜙𝑖 katsayılarını toplar ve sıfıra 

eşitleriz. Burada bir cebirsel denklem sistemi elde ederiz. Daha sonra, ilgili denklem grubunu 

çözerek, bu değişkenleri (4.11) denklemine koyarak ve ardından (4.13)-(4.26) denklemlerini 

kullanarak (4.8) denkleminin tam çözümlerine ulaşırız [6,24]. 

4.3. Sardar Alt Denklem Yönteminin Kesirli M-Türevli Varyant Boussinesq 

Denklem Sistemine Uygulanması 

Bu bölümde, denklem (1.1) ile ifade edilen kesirli M-türevli varyant Boussinesq denklem 

sisteminin kesin çözümlerini elde etmek için Sardar alt denklem yöntemi uygulanacaktır. Söz 

konusu olan (1.1) denklem sistemini çözmek için (1.1) denklem sistemine aşağıdaki dalga 

dönüşümü uygulanacaktır. 

𝑈(𝑥, 𝑡) = 𝑢(𝜂), 𝜂 = (𝜆𝑥 − 𝑤)
Г(𝛩+1)

𝛹
𝑡𝛹                                                                                (4.27) 

𝑉(𝑥, 𝑡) = 𝑣(𝜂), 𝜂 = ( 𝜆 𝑥 − 𝑤)
Г(𝛩+1)

𝛹
𝑡𝛹                                                                                                (4.28) 

Burada 𝜆 ve w reel sabitlerdir. İlk olarak (1.1) denklem sistemindeki türevleri kesirli M-türev 

kurallarını kullanarak hesaplayacak olursak (4.7) denkleminden; 
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𝐷𝑀,𝑡
Ψ,Θ𝑈(𝑥, 𝑡) =

𝑑𝑢

𝑑𝜂
𝐷𝑀,𝑡
Ψ,Θ𝜂(𝑥, 𝑡)        

elde edilir. Bu ifadeyi de (4.5) denkleminden 

𝑈′
𝑡1−Ψ

Γ(1+Θ)
 [
Γ(1+Θ)

Ψ
(−𝑤Ψ𝑡Ψ−1)] = −𝑤𝑢′      

şeklinde elde ederiz. Benzer şekilde, 

𝐷𝑀,𝑡
Ψ,Θ𝑉(𝑥, 𝑡) =

𝑑𝑣

𝑑𝜂
𝐷𝑀,𝑡
Ψ,Θ𝜂(𝑥, 𝑡)   türevi; 

𝑉′
𝑡1−Ψ

Γ(1+Θ)
 [
Γ(1+Θ)

Ψ
(−𝑤Ψ𝑡Ψ−1)] = −𝑤𝑢′  şeklinde hesaplanır. Diğer türevler ise; 

𝐷𝑥𝑉 = 𝜆𝑣
′ 

𝐷𝑥𝑈 = 𝜆𝑢
′ 

𝐷𝑥𝑥𝑥𝑈 = 𝜆
3𝑢′′′ şeklinde hesaplanır. Bu türevler (1.1) denklem sisteminde yerine yazılırsa 

aşağıdaki lineer olmayan ADD sistemi elde edilir. 

−𝑤𝑢′ + 𝜆𝑣′ + 𝜆𝑢𝑣′ = 0                                                                                                                              (4.29) 

−𝑤𝑣′ + 𝜆𝑢′ + 𝜆𝑣′ + 𝜆3𝑢′′′ = 0                                                                                                                 (4.30) 

(4.29) denkleminin integrali alınırsa; 

−𝑤𝑢 + 𝜆𝑣 +
𝜆

2
𝑢2 = 0    ve buradan da 

𝑣 =
𝑤

𝜆
𝑢 −

𝑢2

2
                                                                                                                                   (4.31) 

elde edilir.Şimdi, denklem (4.31)'i denklem (4.30)' da yerine yazarsak: 

−𝑤(
𝑤

𝜆
𝑢′ + 𝑢𝑢′) + (

𝑤

𝜆
𝑢 −

𝑢2

2
)𝜆𝑢′ + 𝑢𝜆 (

𝑤

𝜆
𝑢′ − 𝑢𝑢′) + 𝜆3𝑢′′′ = 0 

−
𝑤2

𝜆
𝑢′ +𝑤𝑢𝑢′ +𝑤𝑢𝑢′ −

𝜆

2
𝑢2𝑢′ + 𝜆𝑢2𝑢′ + 𝜆3𝑢′′′ = 0 

−
𝑤2

𝜆
𝑢′ + 3𝑤𝑢𝑢′ −

3𝜆

2
𝑢2𝑢′ + 𝜆3𝑢′′′ = 0 

denklemi elde edilir. Bu denklemin integralini alırsak; 

−
𝑤2

𝜆
𝑢 +

3

2
𝑤𝑢2 −

𝜆

2
𝑢3 + 𝜆3𝑢′′ = 0 

ve buradan da, 

−2𝑤2𝑢 + 3𝜆𝑤𝑢2 − 𝜆2𝑢3 + 2𝜆4𝑢′′ = 0                                                                                                 (4.32) 
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denklemi elde edilir. 

İşleme yardımcı denklem ile denge prensibi uygulanarak 𝜂’ nin belirlenmesiyle başlar. 

Denklem (4.32)' da u  ve 
3u  değerlerinin eşitlenmesi için 𝜂 = 1 sonucuna ulaşılır. 𝜂 = 1 için 

(4.11) denklemi şu hale gelir:  

0 1 1( ) ( ), 0.u     = +                                                                                                                  (4.33) 

(4.27), (4,28) ve (4.33) denklemleri (4.12) denkleminde yerine konulursa, ( )i  ' nın bütün 

katsayılarını toplayıp sıfıra eşitlersek, aşağıdaki denklemleri elde ederiz: 

                                                                                          (4.34) 

                                                              (4.35) 

                                                                                                      (4.36) 

                                                                                                               (4.37) 

Bu denklem sistemini Wolfram Mathematica-12 kullanarak çözerek şu sonuca ulaşırız: 

                                                                                                 (4.38) 

Denklem (4.38), (4.13) ve (4.25)' den, (1.1) kesirli M-türevli variant Boussinesq denklem 

sisteminin yeni soliton çözümleri aşağıdaki gibi ifade edilir: 

Durum 1: Eğer 0a   ve 0 =  ise; 

Denklem (4.13) için aşağıdaki çözüm yapılmıştır : 

𝑈1(𝑥, 𝑡) =
𝑤

𝜆
+
2√2𝑒

√−
𝑤2

𝜆4
(𝑥𝜆−

𝑡𝛹𝑤 Г [1+𝛩]
𝛹

)

√2 √𝑝𝑞𝑤
2

𝜆4
  𝜆

𝑒
√2√−

𝑤2

𝜆2
  (𝑥𝜆−

𝑡𝛹𝑤 Г  [1+𝛩]
𝛹

) 

𝑝+𝑞

,                                  (4.39) 

𝑉1(𝑥, 𝑡) =
(

 
 
 
 
 
 
 

1−
8𝑒

√2√−
𝑤2

𝜆2
  (𝑥𝜆−

𝑡𝛹𝑤 Г  [1+𝛩]
𝛹

) 

𝑝+𝑞

(

  
 
𝑒

√2√−
𝑤2

𝜆2
  (𝑥𝜆−

𝑡𝛹𝑤 Г  [1+𝛩]
𝛹

) 

𝑝+𝑞

)

  
 

2

)

 
 
 
 
 
 
 

𝑤2

2𝜆2
,                                   (4.40) 
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Şekil 4.1’de (4.39) ve (4.40) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ =

1, 𝜆 = 0.3, 𝑡 = 0.01 değerleri için 3-boyutlu grafiği, Şekil 4.2’de (4.39) ve (4.40) çözüm 

fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.01 değerleri için kontur 

grafiği ve Şekil 4.3’de (4.39) ve (4.40) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ =

0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.01 değerleri için 2-boyutlu grafiği çizilmiştir. 

 

 

Şekil 4.1. (4.39) ve (4.40) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 =

0.01 değerleri için 3-boyutlu grafiği 

 

 

 

Şekil 4.2. (4.39) ve (4.40) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 =
0.01 değerleri için kontur grafiği 
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Şekil 4.3. (4.39) ve (4.40) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 =
0.01 değerleri için 2-boyutlu grafiği 

Denklem (4.14) için aşağıdaki çözüm yapılmıştır: 

 

𝑈2(𝑥, 𝑡) =
𝑤

𝜆
+
2√2ⅇ

√−
𝑤2

𝜆4
(𝑥𝜆−

𝑡𝛹𝑤 Г [1+𝛩]
𝛹

)

√2 √−
𝑝𝑞𝑤2

𝜆4
𝜆

𝑒
√2√−

𝑤2

𝜆2
  (𝑥𝜆−

𝑡𝛹𝑤 Г  [1+𝛩]
𝛹

) 

𝑝−𝑞

,                      (4.41) 

𝑉2(𝑥, 𝑡) =
(

 
 
 
 
 
 
 

1+
8𝑒

√2√−
𝑤2

𝜆2
  (𝑥𝜆−

𝑡𝛹𝑤Г  [1+𝛩]
𝛹

) 

𝑝𝑞

(

  
 
−𝑒

√2√−
𝑤2

𝜆2
  (𝑥𝜆−

𝑡𝛹𝑤 Г  [1+𝛩]
𝛹

) 

𝑝+𝑞

)

  
 

2

)

 
 
 
 
 
 
 

𝑤2

2𝜆2
                      (4.42) 

Şekil (4.4)’ de (4.41) ve (4.42) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ =

1, 𝜆 = 0.3, 𝑡 = 0.1 değerleri için 3-boyutlu grafiği, Şekil 4.5’ de (4.41) ve (4.42) çözüm 

fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.1 değerleri için kontur 

grafiği ve şekil 4.6’da (4.41) ve (4.42) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ =

0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.1 değerleri için 2-boyutlu grafiği çizilmiştir. 
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Şekil 4.4. (4.41) ve (4.42) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.1 

değerleri için 3-boyutlu grafiği 

 

 

          

Şekil 4.5. (4.41) ve (4.42) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.1 

değerleri için kontur grafiği 

 

 

 

Şekil 4.6. (4.41) ve (4.42) çözüm fonksiyonlarının, 𝑤 = 0.5, 𝑝 = 𝑞 = 1,Ψ = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.1 

değerleri için 2-boyutlu grafiği 

 

 



5. BULGULAR VE TARTIŞMA 

Bu çalışmada, Sardar alt denklem yöntemini, kesirli M-türevli varyant Boussinesq sistem 

çözümüne başarıyla uyguladık. Sardar-alt denklem yönteminin detayları ve (1.1)'de verilen kesirli 

M-türevli varyant Boussinesq sisteminin çözümü bölüm 4'te verilmiştir. Denklem sistemi (1.1)’ in 

çözümleri uygulamalı olarak başarıyla gerçekleştirilmiştir. Bu çözümü gerçekleştirmek için kısmi 

diferansiyel denkleme dalga dönüşümü uygulanıp adi diferansiyel denkleme indirgenerek sunulan 

çözümlerden bazılarının uygun parametre değerleri ile 3-boyutlu, 2-boyutlu ve kontur grafikleri 

aracılığıyla fiziksel temsilleri sunulmaktadır. 

Elde edilen sonuçlar, kıyıya yakın ortamlardaki uzun dalgaların davranışını tahmin etmek ve 

anlamak için güçlü bir çerçeve olan kıyı ve okyanus mühendisliği alanına önemli katkılar 

sağladığını gösterdi. 

 



6. SONUÇLAR 

Bu tezde Sardar alt denklem yöntemini kullanarak kesirli M-türevli varyant Boussinesq 

sisteminin davranışını araştırdık. Kesirli M-türev tanımını kullanarak, modelin davranışına ilişkin 

değerli bilgiler sağlayan kapsamlı bir analiz gerçekleştirdik. Bulgularımızın pratik uygunluğunu 

arttırmak için, sunulan çözümlerden bazılarının uygun parametre değerleri altında 3-boyutlu, 2-

boyutlu ve kontur grafiklerini sunduk. Sonuç olarak, bu çalışmanın bulguları kıyı ve okyanus 

mühendisliğine önemli bir katkı sağlamakta, kıyıya yakın ortamlardaki dalgaların davranışlarını 

tahmin etmek ve anlamak için güçlü ve hassas sonuçlar vermektedir.  

6.1. Grafik Yorumu ve Fiziksel Önemi 

Elde edilen çözümlerin karakteristiğinin daha iyi anlaşılması için çözümlerin 3-boyutlu, 2-

boyutlu ve kontur grafikleri çizilmiştir. 

Şekil 4.1’de (4.13) denkleminin çözümünde 𝑤 = 0.5, 𝑝 = 1, 𝑞 = 1, 𝜓 = 0.75, Θ = 1, 𝜆 =

0.3, 𝑡 = 0.01 sabitleri alınarak hareketli dalga çözümünün 3-boyutlu, Şekil 4.2’ de (4.13) 

denkleminin çözümünde 𝑤 = 0.5, 𝑝 = 1, 𝑞 = 1, 𝜓 = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.01 sabitleri 

alınarak hareketli dalga çözümünün kontur ve Şekil 4.3’de (4.13) denkleminin çözümünde 𝑤 =

0.5, 𝑝 = 1, 𝑞 = 1, 𝜓 = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.01 sabitleri alınarak hareketli dalga çözümünün 

2-boyutlu grafikleri elde edilmiştir.  

Şekil 4.4’de (4.14) denkleminin çözümünde 𝑤 = 0.5, 𝑝 = 1, 𝑞 = 1, 𝜓 = 0.75, Θ = 1, 𝜆 =

0.3, 𝑡 = 0.01 sabitleri alınarak hareketli dalga çözümünün 3-boyutlu, Şekil 4.5’de (4.14) 

denkleminin çözümünde 𝑤 = 0.5, 𝑝 = 1, 𝑞 = 1, 𝜓 = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.01 sabitleri 

alınarak hareketli dalga çözümünün kontur ve Şekil 4.6’da ve  (4.14) denkleminin çözümünde 𝑤 =

0.5, 𝑝 = 1, 𝑞 = 1, 𝜓 = 0.75, Θ = 1, 𝜆 = 0.3, 𝑡 = 0.01 sabitleri alınarak hareketli dalga çözümünün 

2-boyutlu grafikleri elde edilmiştir. 

 



ÖNERİLER 

Bu çalışmada kullanılan Sardar alt denklem yöntemi kesirli M-türeve sahip varyan 

Boussinesq denklem sistemine uygulanmıştır. Yöntemin lineer olmayan başka diferansiyel 

denklem sistemlerine de uygulanabilirliği test edilebilir. 

Varyant Boussinesq denklem sistemi içindeki parametrelerin çözümler üzerindeki etkileri 

daha detaylı incelenebilir ve fiziksel temsilleri karşılaştırılabilir. 
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