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Son zamanlarda bilgisayar yazılım ve donanım teknolojisindeki hızlı gelişmeler, yapay zekâ ve derin 

öğrenme yöntemlerinin farklı alanlarda yaygın şekilde uygulanmasına olanak tanımıştır. Bu gelişmeler, 

özellikle görüntü işleme, nesne tespiti ve segmentasyon gibi alanlarda dikkat çekici ilerlemelere yol açmıştır. 

Bu tez çalışması, ağız bölgesi ile ilgili hastalıkların ve anatomik yapıların yapay zekâ destekli piksel tabanlı 

segmentasyonu üzerine odaklanmaktadır. Günümüzde diş sağlığı, insan sağlığının önemli bir bileşeni olarak 

kabul edilmekte ve panoramik radyografi görüntüleri, diş hekimliği pratiğinde yaygın bir şekilde 

kullanılmaktadır. 

Literatürdeki çalışmalar genellikle diş hastalıklarını ve yapılarını tespit etmek için görüntüleri kırpma 

yöntemi ile analiz ederken, bu çalışmada panoramik röntgen görüntüleri üzerinde herhangi bir ön işleme 

yapılmadan tüm ağız bölgesi üzerinde segmentesyon işlemleri gerçekleştirilmiştir. Çalışma kapsamında, 

gömülü dişlerin, çürük dişlerin ve diş enfeksiyonlarının tespitine yönelik yapay zekâ tabanlı farklı yöntemler 

uygulanmıştır. Ayrıca Literatürde panoramik radyografi ile segmentasyon uygulamak için veri kümesi 

ihtiyacı olduğu görüldüğünden uzman diş hekimleri ile birlikte yeni bir veri kümesi oluşturulmuş ve 

etiketlenmiştir.  

Bu tez çalışması, literatürdeki eksiklikleri gidermeyi amaçlamakta ve panoramik radyografi 

görüntülerinde yapay zekâ tabanlı segmentasyonu için yeni bir veri kümesi ve en ideal segmentasyon 

yöntemlerini sunmaktadır. Uygulanan yöntemlerin doğruluğu ve etkinliği, diğer güncel modeller ile 

karşılaştırılarak analiz edilmiştir. Elde edilen sonuçlar, uygulanan yöntemlerin başarılı olduğunu göstermiştir 

ve diş hekimliği alanında tanı ve tedavi süreçlerine katkı sağlayacak potansiyele sahip olduğunu ortaya 

koymuştur. 

 

Anahtar Kelimeler: Derin öğrenme, Panoramik diş radyografileri, Yapay zekâ, Anatomik yapı ve hastalık 

tespiti 
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Recent advancements in the fields of computer software and hardware technology have paved the way for 

the widespread integration of artificial intelligence and deep learning methodologies across diverse 

disciplines. These developments have resulted in significant advancements, particularly in domains such as 

image processing, object detection and segmentation. The present thesis focuses on the utilization of artificial 

intelligence to facilitate the segmentation of diseases and anatomical structures related to the oral region. In 

the contemporary context, dental health is acknowledged as a pivotal component of human health, with 

panoramic radiography images being extensively utilized within the domain of dental practice.  

However the majority of studies in the literature analyze images by cropping method to detect dental diseases 

and structures, in this study, segmentation operations were performed on the whole mouth region without 

any preprocessing on panoramic X-ray images. In the course of the study, ranges of artificial intelligence-

based methodologies were employed for the identification of impacted teeth, decayed teeth and dental 

infections. In addition, as there is a need for a dataset to apply segmentation using panoramic radiography in 

the literature, a new dataset was created and annotated with expert dentists.  

This thesis aims to fill the gaps in the literature and presents a new dataset and optimal segmentation methods 

for artificial intelligence-based segmentation of panoramic radiography images. The accuracy and efficiency 

of the applied methods were analyzed in comparison with other current models. The results obtained have 

shown that the applied methods are successful and have the potential to contribute to diagnostic and treatment 

processes in the field of dentistry. 

 

Keywords: Deep learning, Panoramic dental radiographs, Artificial intelligence, Anatomical structure and 

disease detection  
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1. GİRİŞ 

Ağız hastalıkları ve anatomik yapılar yalnızca fiziksel sağlığı değil, aynı zamanda yaşamın 

psikolojik ve sosyal yönlerini de etkilemektedir. Bireylerin yaşam kalitesini önemli ölçüde 

etkilemekte ve etkili tedavi için doğru ve zamanında teşhis gerektirmektedir. Diş çürükleri, diş eti 

hastalıkları ve anatomik yapılar gibi ağız boşluğunu etkileyen hastalıklar önemli rahatsızlıklara, 

fonksiyonel bozukluklara ve yaşam kalitesinin düşmesine neden olabilmektedir. Bu durumların 

erken tespiti ve doğru teşhisi, etkili tedavi stratejilerinin uygulanması ve daha ileri 

komplikasyonların önlenmesi için önem arz etmektedir. Geleneksel teşhis yöntemleri genellikle 

tıbbi görüntülerin manuel olarak yorumlanmasına dayanmaktadır. Bu durum zaman alıcı 

olabilmekte ve farklı hekimler arasında farklı yorumlamalara sebep olabilmektedir [1, 2]. 

Yapay zekânın bir alt kümesi olan derin öğrenme, verilerdeki karmaşık desenleri işlemek için insan 

beyni işlevlerini taklit eden sinir ağlarını içermektedir. Derin öğrenme, büyük hacimli verileri 

işleyebilen, karmaşık örüntüleri tanımlayabilen ve dikkate değer bir hassasiyetle tahmine dayalı 

bilgi çıkarımları üretebilen karmaşık sinir ağı mimarilerinden yararlanır. Derin öğrenmenin diş 

hekimliği alanında kullanımı, yüksek hacimli görüntüleme verileri ve hassas analiz gerekliliği 

nedeniyle avantaj sağlamaktadır. Diş kliniklerinde üretilen görüntüleme verilerinin hacminin 

artmasıyla birlikte, geleneksel manuel yorumlama yöntemleri artan hassasiyet ve verimlilik 

taleplerini karşılamakta yetersiz kalmaya başlamıştır. Bu zorluk, teşhis sürecini otomatikleştirmek 

ve geliştirmek için yapay zekâ teknolojilerinin, özellikle de derin öğrenmenin benimsenmesinin 

yolunu açmıştır [3].  

Derin öğrenme algoritmaları, özellikle de Evrişimsel Sinir Ağları (ESA), görüntü sınıflandırma, 

nesne algılama ve segmentasyon süreçlerinde çeşitli diş anormalliklerini ve hastalıklarını 

tanımlamak için uygulanmıştır. Ağız boşluğu, diş çürükleri, diş eti hastalıkları ve anatomik yapılar 

gibi çok çeşitli hastalıklara ve anatomik anormalliklere sıklıkla maruz kalabilmektedir. Doğru ve 

zamanında müdahaleler olumsuz sağlık sonuçlarının önlenmesinde hayati bir rol oynadığından, 

kesin tanı yöntemlerinin geliştirilmesi büyük önem taşımaktadır. Geleneksel teşhis yaklaşımları 

genellikle tedavinin doğruluğunu ve zamanında yapılmasını tehlikeye atabilecek öznel yorumlara 

dayanmaktadır [4]. 

Diş hekimliğinde diş çürükleri, gömülü dişler ve diş enfeksiyonları gibi durumların teşhisi için 

yaygın olarak kullanılan panoramik diş radyografi, diş ve iskelet yapılarının kapsamlı bir 

görüntüsünü sağlamaktadır. Panoramik radyografilerin yorumlanması genellikle uzman bilgisi 

gerektirir ve bu durum süreci insan hatasına eğilimli hale getirebilmektedir. Bu noktada, derin 

öğrenme modelleri, teşhis hassasiyetini artırarak ve yanlış teşhis olasılığını azaltarak dönüştürücü 

bir avantaj sunmaktadır [5]. 
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Çürük lezyonlarının erken tespiti, önleyici ve minimal girişimsel müdahalelerin uygulanmasına 

olanak sağlayarak diş yapısının korunmasına ve kapsamlı onarıcı işlemler gerektiren daha şiddetli 

aşamalara ilerlemesinin önlenmesine olanak tanıması açısından önem arz etmektedir. Görsel ve 

dokunsal muayene ve radyografik değerlendirme gibi geleneksel çürük tespit yöntemleri, erken 

mine lezyonlarını tutarlı bir şekilde tespit edemeyebilir ve bu durum teşhis ve tedavinin 

gecikmesine neden olabilmektedir. Diş radyografilerinin analizinde derin öğrenme algoritmalarının 

uygulanması, çürük tespitinin duyarlılığını ve özgüllüğünü artırarak zamanında ve doğru teşhisi 

kolaylaştırabilmektedir [4]. 

Gömülü dişler, özellikle de üçüncü azı dişleri, diş hekimliğinde sık karşılaşılan bir durum 

olmaktadır. Gömülü dişler dişlerin etrafındaki yumuşak dokuların iltihaplanması, komşu dişlerin 

erimesi (diş dokularının kaybı) ve kist veya tümör gelişimi gibi çeşitli istenmeyen durumlara yol 

açabilmektedir. Gömülü dişlerin doğru tespiti ve değerlendirilmesi, tedavi planlaması ve olası 

komplikasyonların önlenmesi için önem arz etmektedir. Panoramik radyografi görüntüleri, gömülü 

dişlerin değerlendirilmesinde standart bir görüntüleme yöntemi olarak hizmet vermektedir; ancak 

yorumlanması önemli ölçüde uzmanlık gerektirmektedir. Derin öğrenme modelleri, panoramik 

radyografilerde gömülü dişlerin tespit edilmesine ve sınıflandırılmasına yardımcı olmak, teşhis 

doğruluğunu artırmak ve klinik karar vermeye yardımcı olabilmektedir [6]. 

Diş kökü çevresi ve diş eti iltihaplanmaları da dâhil olmak üzere diş kaynaklı enfeksiyonlar, teşhis 

edilip tedavi edilmezse önemli sağlık risklerini oluşturabilmektedir. Bu enfeksiyonlar ağrıya, diş 

kaybına yol açabilir ve patojenlerin ağız boşluğunun ötesine yayılması durumunda sistemik 

rahatsızlıklara bile neden olabilir. Derin öğrenme yaklaşımları, diş radyografilerinde bu tür 

enfeksiyonların tespitini daha hızlı ve daha yüksek doğrulukla sağlamak için uygulanmış olup, 

geleneksel teşhis yöntemlerine katkı sağlamakta ve zamanında müdahale yoluyla hasta ve hastalık 

olasılıklarını azaltmayı hedeflemektedir [2]. 

Radyografi görüntülerin otomatik analizi, hekim yorgunluğunu ve önyargısını azaltabilmektedir. 

Ayrıca büyük hacimli verileri verimli bir şekilde işleyerek tutarlı yorumlar sağlayabilmekte ve 

böylece teşhis süreçlerini standartlaştırabilmektedir. Yapay zekânın entegrasyonu diş hekimliği 

uygulamalarında iş akışını kolaylaştırabilmekte ve klinik çalışanlarının yoğun zaman alan görüntü 

analizi yerine hasta bakımına daha fazla odaklanmalarını sağlayabilmektedir. Bu teknolojilerin 

benimsenmesi, eğitim algoritmaları için büyük, etiketli veri kümelerine duyulan ihtiyaç, veri 

gizliliğine ilişkin endişeler ve yapay zekâ araçlarının mevcut klinik sistemlere sorunsuz bir şekilde 

entegre edilmesi gerekliliği gibi zorlukları da beraberinde getirebilmektedir. Bu zorlukların 

üstesinden gelmek, yapay zekâ uygulamalarının faydalarını en üst düzeye çıkarırken potansiyel 

risklerini en aza indirecek şekilde geliştirilmesini ve hayata geçirilmesini sağlamak için gerekli 

olmaktadır [7]. 
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1.1. Literatür İncelemesi  

1.1.1. Sağlık Alanında Yapay Zekâ Çalışmaları 

 

Yapay zekâ, sağlık hizmetlerinin kalitesini artırma, hastalıkların erken teşhisi ve tedavi süreçlerinin 

iyileştirilmesi gibi alanlarda büyük bir potansiyele sahip olmaktadır. Ayrıca büyük veri analitiği ve 

makine öğrenimi kullanılarak hasta verilerinin analiz edilmesi ve anlamlı sonuçların çıkarılması 

yetenekleri de bulunmaktadır. Bu durum, klinik uygulamalarda daha doğru tanı ve tedavi 

yöntemlerinin geliştirilmesine olanak tanımaktadır. Bunun yanı sıra, yapay zekâ destekli sağlık 

hizmetleri, pandemi gibi acil durumlarda hızlı yanıt verme kapasitesini artırarak, sağlık 

sistemlerinin dayanıklılığını güçlendirmeyi amaçlamaktadır. Pandemi dönemlerinde, sağlık 

sistemlerinin karşılaştığı zorluklar daha belirgin hale gelmektedir. Bazel ve arkadaşları tarafından 

gerçekleştirilen bir çalışmada, COVID-19 pandemisinin sağlık sistemleri üzerindeki etkileri 

incelenmiş ve yapay zekâ, nesnelerin interneti (IoT), blok zinciri ve büyük veri teknolojilerinin 

sağlık hizmetlerinde nasıl kullanılabileceği ele alınmıştır. Bu teknolojilerin, hastalıkların tespiti, 

izlenmesi ve tanı konulması gibi kritik alanlarda sağladığı avantajlar, sağlık sistemlerinin acil 

durumlara karşı daha dayanıklı hale gelmesine katkıda bulunmaktadır [8]. 

Zhang ve arkadaşları tarafından önerilen Sağlık-CPS (Siber-Fiziksel Sistem), bulut ve büyük veri 

analitiği teknolojileri ile desteklenen hasta merkezli sağlık uygulamaları sunmaktadır. Bu sistem, 

sağlık verilerinin toplanması, yönetimi ve hizmet sunumu süreçlerini birleştirerek, sağlık 

hizmetlerinin etkinliğini artırmayı hedeflemektedir. Böylece, acil durumlarda sağlık hizmetlerine 

erişim hızlanmakta ve sağlık sistemlerinin dayanıklılığı arttırılabilmektedir [9]. 

Yapay zekâ ile tanısal görüntüleme analizinin, hasta sonuçlarının öngörülmesi ve yaşamsal 

bulguların izlenmesi gibi konularda önemli bir potansiyele sahip olduğu görülmektedir. Kunt ve 

arkadaşları tarafından sunulan bir çalışmada, yapay zekânın acil tıptaki potansiyeli vurgulanmakta 

ve bu teknolojinin çeşitli uygulamaları ele alınmaktadır. Yapay zekâ sistemleri, görüntüleme 

teknikleri ile elde edilen verileri analiz ederek hastalıkların erken teşhisinde ve doğru tanı koyma 

süreçlerinde kritik bir rol oynamaktadır. Ayrıca, hasta verilerini inceleyerek sağlık durumlarını ve 

olası komplikasyonları tahmin etmekte, böylece sağlık hizmetlerinin etkinliğini artırmakta ve acil 

durumlarda hızlı müdahale imkânı sunmaktadır. Bu tür uygulamalar, sağlık hizmetlerinin 

etkinliğini artırarak acil durumlarda hızlı müdahale imkânı sunmaktadır [10]. 

Öncel ve Aslan tarafından gerçekleştirilen çalışmada, yapay zekânın kalp damar hastalığın tıptaki 

potansiyelini kapsamlı bir şekilde ele almakta ve karşılaşılan zorlukları detaylı bir biçimde 

açıklamaktadır. Bu durum, yapay zekânın sağlık alanındaki uygulamalarının daha ileriye 

taşınabilmesi için veri çeşitliliğinin artırılması gerektiğini ortaya koymaktadır. Ayrıca, sağlık 

verilerinin kalitesi ve güvenilirliği, bu algoritmaların etkinliğini doğrudan etkileyen unsurlar 
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arasında bulunmaktadır. Dolayısıyla, daha çeşitli ve kapsamlı veri kümeleri sağlamak, bu 

algoritmaların doğruluk oranını artırabilir ve kalp damar hastalıklarının daha hızlı ve doğru bir 

şekilde teşhis edilmesine olanak tanıyabilir [11]. 

Yapay zekâ destekli sistemler, tıbbi görüntüleme verilerinden elde edilen bilgileri analiz ederek, 

hastalıkların erken teşhisini mümkün kılmakta ve bu sayede hasta bakımını önemli ölçüde 

iyileştirmektedir. Şimşek ve Uğraş’a göre, genel muayenehanelerde bu teknolojiler, sağlık 

profesyonellerinin iş yükünü azaltmakta ve klinik karar verme süreçlerini daha etkili hale 

getirmektedir. Bu bağlamda, bu sistemlerin kullanımının, hata oranlarını düşürmesi ve hasta 

güvenliğini artırması gibi önemli avantajları da bulunmaktadır [12]. 

Rehman ve arkadaşlarının gerçekleştirdiği bir incelemede, büyük veri analitiğinin klinik karar 

verme süreçlerinde nasıl kullanılabileceği ve bu süreçlerin iyileştirilmesi için hangi stratejilerin 

benimsenmesi gerektiği üzerinde durulmaktadır. Çalışma, sağlık hizmetlerinde büyük veri 

analitiğinin uygulanmasının getirdiği fırsatları ve zorlukları detaylandırarak, sağlık sistemlerinin 

bu zorlukları aşmak için hangi stratejileri benimsemesi gerektiğine dair öneriler sunmaktadır. 

Özellikle, büyük veri analitiği, hasta verilerinin toplanması, analizi ve yorumlanması süreçlerini 

optimize ederek, klinik karar verme süreçlerinin daha hızlı ve etkili bir şekilde gerçekleştirilmesine 

olanak tanımaktadır. Bu bağlamda, bahsedilen çalışmada araştırmacılar, veri entegrasyonu, makine 

öğrenimi teknikleri ve gerçek zamanlı veri analizi gibi yenilikçi stratejilerin önemini 

vurgulamaktadır. Ayrıca, sağlıkçıların bu yeni teknolojileri benimseme konusundaki direncinin, bu 

süreçlerin etkin bir şekilde uygulanmasında önemli bir engel teşkil ettiğini belirtmektedirler [13]. 

Yapay zekâ, bireylerin genetik ve tıbbi geçmişlerine dayalı olarak özelleştirilmiş tedavi planları 

geliştirme kapasitesine sahiptir. Böylece hastaların kişisel verilerini toplayarak sağlık önerileri 

sunmakta ve sağlık profesyonellerinin klinik karar verme süreçlerine katkıda bulunmaktadır. 

Parekh ve arkadaşları çalışmalarında bireylerin sağlık durumlarını daha iyi anlamalarına ve tedavi 

süreçlerini optimize etmelerine olanak tanıma üzerine odaklanmışlardır. Kişiselleştirilmiş tıp, 

bireylerin tedaviye verdikleri yanıtları izleyerek, tedavi planlarını gerçek zamanlı olarak 

güncelleme imkânı sunmaktadır. Bu süreç, hasta memnuniyetini artırmakta ve sağlık hizmetlerinin 

etkinliğini yükseltmektedir [14]. 

Manias ve arkadaşları, yeni teknolojilerin bireylerin sağlık verilerini analiz ederek, kişiye özel 

sağlık izleme ve karar destek sistemleri geliştirdiğini belirtmektedir. Bu tür sistemler, bireylerin 

sağlık durumlarını daha iyi anlamalarına ve sağlık hizmetlerine erişimlerini artırmalarına yardımcı 

olmaktadır. Özellikle, bu teknolojilerin veri analizi yetenekleri, hastaların bireysel sağlık 

geçmişlerini ve genetik bilgilerini dikkate alarak, hedeflenmiş tedavi önerileri sunma imkânı 

vermektedir. Ayrıca, bu teknolojilerin sağlık hizmetlerine entegrasyonu, sağlıkçıların karar verme 

süreçlerini iyileştirerek, daha hızlı ve doğru müdahaleler gerçekleştirmelerine olanak tanımaktadır. 

Bu durum, yalnızca bireylerin sağlık sonuçlarını iyileştirmekle kalmayıp, aynı zamanda sağlık 
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sisteminin genel verimliliğini ve etkililiğini artırmaktadır. Kişiselleştirilmiş sağlık yaklaşımları, 

özellikle kronik hastalıkların yönetiminde, hastaların tedaviye uyumunu artırmakta ve sonuçların 

iyileşmesine katkı sağlamaktadır [15].  

Çelik ve Kaya çalışmalarında yapay zekânın sağlık hizmetlerinde yaygınlaşması, etik tartışmaları 

ve kaygıları gündeme getirdiğinden bahsetmektedir. Tartışmalar, bu uygulamaların sağlık 

hizmetleri üzerindeki artan etkisi ile birlikte daha da belirgin hale gelmektedir. Özellikle, yapay 

zekâ teknolojilerinin hastaların kişisel verilerini nasıl işlediği ve bu verilerin gizliliği üzerine ciddi 

endişeler bulunmaktadır. Bu uygulamaların artan etkisi, sağlık alanında etik sorunların daha 

yakından incelenmesini gerektirmektedir. Bu bağlamda, karar verme süreçlerinde şeffaflık ve veri 

güvenliği gibi konuların ele alınması önem arz etmektedir. Ayrıca, hekimlerin bu sistemlerin 

kararlarına ne ölçüde güvenebileceği ve bu sistemlerin hasta bakımını nasıl etkilediği gibi sorular 

da kritik bir öneme sahip olmaktadır. Bu nedenle, araştırmacılar çalışmalarında sağlık alanındaki 

uygulamaların etik çerçeveler içinde değerlendirilmesi, yalnızca teknolojinin geliştirilmesi 

açısından değil, aynı zamanda hasta güvenliği ve sağlık hizmetlerinin kalitesi açısından da hayati 

bir gereklilik olduğunu vurgulamışlardır [16]. 

Mehta ve arkadaşları tarafından gerçekleştirilen haritalama çalışmasında, sağlık alanında büyük 

veri analitiği ve yapay zekâ teknolojilerinin mevcut durumu kapsamlı bir şekilde 

değerlendirilmiştir. Çalışma, sağlık sistemlerinde yapay zekâ ve büyük veri kullanımına yönelik 

karşılaşılan zorlukları detaylı bir şekilde inceleyerek, bu zorlukların aşılması için gerekli olan 

araştırma alanlarını belirlemekte ve bu alanlarda daha fazla çalışma yapılmasının önemini 

vurgulamaktadır. Özellikle, sağlık hizmetlerinin etkinliğini artırmak ve hasta bakımını iyileştirmek 

amacıyla bu alanda potansiyel uygulamaları daha iyi anlamak, sağlık çalışanlarının ve 

araştırmacıların önünde duran kritik bir ihtiyaç olarak öne çıkmaktadır [17]. 

1.1.2. Diş Hekimliği Alanında Yapay Zekâ Çalışmaları 

Yapay zekâ, diş hekimlerine tanı koyma, tedavi planlama ve hasta yönetimi gibi süreçlerde 

yardımcı olabilmektedir. Bu uygulamalar, diş hekimlerinin klinik karar verme süreçlerini 

hızlandırmakta ve daha doğru sonuçlar elde etmelerine olanak tanımaktadır. Bonny ve arkadaşları 

tarafından sunulan bir çalışmada, yapay zekânın diş hekimliğinde tanı ve tedavi önerileri sağlamak 

için kullanıldığı belirtilmektedir. Çalışma, bu yöntemlerin diş hekimliği uygulamalarında nasıl bir 

rol oynadığını ve bu teknolojinin klinik karar verme süreçlerine katkısını vurgulamaktadır. Ayrıca, 

bu yöntemlerin hastaların bireysel özelliklerine ve geçmiş tıbbi bilgilerine dayalı olarak 

özelleştirilmiş tedavi planları oluşturma yeteneği, diş hekimliği alanında daha etkili ve 

kişiselleştirilmiş bir yaklaşım sunmaktadır. Yapay zekâ algoritmaları, görüntü işleme teknikleri ile 

birleştirildiğinde, diş hekimlerinin radyografik verileri daha hızlı ve doğru bir şekilde analiz 
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etmelerini sağlamakta ve bu durum erken teşhis ve tedavi sürecini önemli ölçüde iyileştirmektedir 

[18].  

Mallineni ve arkadaşları tarafından yapılan bir çalışmada, son teknolojik yöntemlerin diş 

hekimliğinde, özellikle görüntü tanıma sistemlerinde, önemli bir rol oynadığı ifade edilmektedir. 

Çeşitli diş problemlerinin daha erken aşamalarda tespit edilmesine olanak tanıyarak, hastaların 

tedavi süreçlerini hızlandırmakta ve sonuçları iyileştirmektedir. Bu uygulamaları, elde edilen 

verilerin derinlemesine analizini gerçekleştirebildiği için, diş hekimleri, hastalarının bireysel 

ihtiyaçlarına göre özelleştirilmiş tedavi planları geliştirebilmektedir. Bu durum, diş hekimlerinin 

daha doğru tanılar koymasına ve tedavi süreçlerini daha etkili bir şekilde yönetmesine olanak 

tanıyabilmektedir [19]. 

Dhopte ve Bagde tarafından gerçekleştirilen bir çalışmada, derin öğrenme yöntemlerinin otomatik 

tanı ve tedavi planlama sistemlerinde etkin bir şekilde kullanıldığı ve bu uygulamanın hasta 

sonuçlarını iyileştirdiği vurgulanmaktadır. Derin öğrenme yöntemleri, hastaların tıbbi geçmişi, 

anatomik varyasyonları ve tedavi başarı oranları gibi çok çeşitli faktörleri analiz ederek, diş 

hekimlerine daha bilinçli ve etkili kararlar verme imkânı sunmaktadır. Bu tür sistemler, diş 

hekimlerinin daha kişiselleştirilmiş ve etkili tedavi yaklaşımları geliştirmelerine olanak tanırken, 

aynı zamanda tedavi süreçlerinde hız ve doğruluk sağlama potansiyeli taşımaktadır. Böylece bu 

yöntemler ile hastaların bireysel ihtiyaçlarına göre özelleştirilmiş tedavi planlarını oluşturabilir, bu 

durum hem hasta memnuniyetini artırmakta hem de tedavi sürelerini kısaltmaktadır [20].  

Karaoglanoglu ve arkadaşları tarafından yapılan bir çalışmada, diş çekimi öncesi kaygı 

düzeylerinin değerlendirildiği ve bu kaygının azaltılması için yapay zekâ tabanlı yöntemlerin 

uygulanmasının önemine vurgu yapılmaktadır. Çalışma, hasta kaygısının diş hekimliği 

uygulamalarında karşılaşılan yaygın bir sorun olduğunu göstermekte ve bu teknolojilerin bu 

sorunun üstesinden gelmedeki rolünü detaylandırmaktadır. Bu uygulamalarla hastanın dikkatini 

dağıtıp kaygı seviyelerini düşürerek hastaların tedavi süreçlerinde daha rahat hissetmelerine 

yardımcı olarak kaygı seviyelerini düşürebileceği düşünülmektedir [21].  

Bacanli ve arkadaşları gerçekleştirdiği bir çalışmada, derin öğrenme yöntemlerinin periapikal 

radyografilerde dental dolguların otomatik olarak tespit edilmesi için kullanıldığı belirtilmektedir. 

Çalışma, bu teknolojilerin diş hekimliğinde nasıl bir karar destek aracı olarak işlev görebileceğini 

göstermektedir [22].  

Siddiqui ve arkadaşları tarafından yapılan bir çalışmada, restoratif diş hekimliği, oral patoloji ve 

ortodonti gibi çeşitli alanlarda tanı koyma, tedavi ihtiyaçlarının değerlendirilmesi ve tedavi 

planlaması gibi işlevlerden bahsedilmiştir. Bu inceleme, bu yöntemlerin görüntü analizi ve veri 

madenciliği gibi teknolojik araçlar kullanarak, diş hekimlerine karmaşık klinik durumları daha 

etkili bir şekilde yönetme ve hızlı karar verme süreçlerinde önemli avantajlar sağladığını ortaya 

koymaktadır. Ayrıca, yapay zekâ sistemlerinin, hasta verilerini analiz ederek bireyselleştirilmiş 
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tedavi önerileri sunma potansiyeli, diş hekimliğinde hasta sonuçlarını iyileştirme açısından büyük 

bir fırsat sunmaktadır [23]. 

Khanagar ve arkadaşları tarafından gerçekleştirilen bir çalışmada, yapay zekâ yöntemleri ile diş 

hekimlerinin hastalarının bireysel ihtiyaçlarına uygun, daha etkili tedavi planları oluşturmasına 

olanak tanıdığını vurgulanmıştır. Bu yöntemlerin analitik yetenekleri, hastaların geçmiş tıbbi 

verilerini ve klinik bulgularını analiz ederek, daha doğru teşhisler koyulmasına ve tedavi 

süreçlerinin optimize edilmesine katkıda bulunmaktadır. Bu durum, yalnızca diş hekimlerinin 

hastalarına daha iyi hizmet sunmalarını sağlamakla kalmayıp, aynı zamanda klinik karar verme 

süreçlerini destekleyerek sağlık hizmetlerinin genel kalitesini artırmaktadır [24].  

Batra ve arkadaşları tarafından yapılan bir çalışmada, uzaktan tanı, kayıt tutma ve hasta izleme 

süreçleri ele alınmıştır. Bu uygulamalar, diş hekimlerinin daha geniş bir hasta grubuna ulaşmalarını 

sağlamakta ve tedavi süreçlerini daha verimli hale getirmektedir [25]. 

Mörch ve Ducret tarafından gerçekleştirilen bir incelemede, diş hekimliğindeki yapay zekâ 

uygulamalarının birçok etik sorunla karşılaşılabileceği vurgulanmıştır.  Bu bağlamda, veri gizliliği, 

model önyargısı ve hasta güvenliği gibi konular, klinik uygulamalarda benimsenmesi açısından 

kritik engeller olarak belirlenmiştir. Örneğin, hasta verilerinin gizliliği, bu yöntemlerin etkinliği 

açısından hayati öneme sahipken, bu sistemlerin kullanımı sırasında bu verilerin korunması 

gerektiği hususu, etik bir sorumluluk olarak değerlendirilmektedir. Ayrıca, model önyargısı, bu 

algoritmalarının eğitim süreçlerinde kullanılan verilerin çeşitliliği ile doğrudan ilişkilidir. Eğer bu 

veriler temsili bir şekilde seçilmezse, sonuçlar yanıltıcı olabilir ve belirli hasta gruplarına karşı 

ayrımcı sonuçlar doğurabilir. Bu nedenle, bu uygulamaların etik çerçeveler içinde geliştirilmesi ve 

uygulanması gerektiği, sadece teknolojinin güvenli ve etkili bir şekilde kullanılmasını sağlamakla 

kalmayıp, aynı zamanda hasta haklarının korunması açısından da son derece önemli olmaktadır 

[26]. 

1.1.3. Derin Öğrenme Yöntemlerinin Tıbbi Görüntüleme Alanındaki Kullanımı 

Tıbbi görüntüleme, hastalıkların tanısı, izlenmesi ve tedavi süreçlerinde kritik bir rol oynamaktadır. 

Geleneksel makine öğrenimi yöntemleri, görüntü analizi için belirli özelliklerin manuel olarak 

çıkarılmasını gerektirirken, derin öğrenme, ham verilerden otomatik olarak özellikler öğrenme 

yeteneği sunmaktadır. Ayrıca, derin öğrenme algoritmaları, büyük veri kümeleri ile 

desteklendiğinde, yüksek doğruluk oranları ile sınıflandırma ve segmentasyon işlemlerini 

gerçekleştirebilmektedir. Özellikle, kanser taraması, radyolojik teşhis ve cerrahi planlama gibi 

kritik alanlarda bu teknolojilerin kullanımı, hem klinik uygulamalarda hem de araştırma 

aşamalarında önemli ilerlemeler sağlamakta ve bu sayede sağlık hizmetlerinin etkinliğini 

artırmaktadır. ESA'lar, görüntü sınıflandırma, segmentasyon ve nesne tespiti gibi görevlerde 

yüksek performans sergilemektedir. Bu tür ağlar, katmanlar arasındaki derin yapıları sayesinde, 
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karmaşık görüntü verilerini etkili bir şekilde işleyebilmekte ve yüksek doğruluk oranları elde 

edebilmektedir. Bu yöntemlerin görüntü verilerini doğrudan öğrenme yeteneği sayesinde, 

geleneksel makine öğrenimi yöntemlerinden önemli ölçüde farklılaştığı görülmektedir. ESA’ların 

bu alandaki başarısı, özellikle büyük veri kümeleriyle çalışabilme kabiliyetlerinden ve çeşitli 

görüntüleme tekniklerine (örneğin, MRI, BT ve ultrason) entegrasyon yeteneklerinden 

kaynaklanmaktadır. Ayrıca, bu yöntemlerin, tıbbi teşhis süreçlerinde zaman ve kaynak tasarrufu 

sağladığı, hastalıkların erken teşhisi için önemli bir avantaj sunduğu bilinmektedir [27]. 

Tıbbi görüntüleme alanında derin öğrenmenin sağladığı avantajlar arasında, görüntülerin otomatik 

olarak analiz edilmesi ve yorumlanması yer almaktadır. Puttagunta ve Ravi, bu yöntemlerin, X-ray, 

bilgisayarlı tomografi (BT), mamografi ve dijital histopatoloji görüntüleri gibi çeşitli tıbbi 

görüntüleme türlerinde hastalıkların tespiti için yaygın olarak kullanıldığını vurgulamaktadır. Bu 

teknolojiler, görüntülerin daha hızlı bir şekilde değerlendirilmesini sağlarken, aynı zamanda insan 

hatası olasılığını da azaltarak sonuçların güvenilirliğini artırmaktadır. Bu yöntemler, büyük veri 

kümeleri üzerinde eğitim alarak, karmaşık görüntü örüntülerini tanıma yetenekleri geliştirmekte ve 

bu sayede, erken teşhis ve müdahale olanaklarını genişletmektedir. Özellikle kanser gibi ilerleyici 

hastalıkların tespitinde, bu teknolojilerin sağladığı hassasiyet ve hız, klinik uygulamalarda olumlu 

değişikliklere yol açmaktadır. Örneğin, birçok çalışma, derin öğrenme tabanlı sistemlerin, 

geleneksel yöntemlere kıyasla daha yüksek doğru teşhis oranları sağladığını göstermiştir. Bu 

durum, tıbbi görüntüleme süreçlerinin hızlanmasına ve doğruluğunun artmasına katkıda bulunarak, 

sağlık hizmetlerinin kalitesini önemli ölçüde iyileştirmektedir. Ayrıca, bu teknolojilerin 

entegrasyonu, sağlık profesyonellerinin karar verme süreçlerini destekleyerek, hastaların tedavi 

süreçlerinde daha kişiselleştirilmiş yaklaşımlara olanak tanımaktadır [28].  

Guo ve arkadaşları, çok modlu görüntü analizi üzerine önerdikleri mimarinin, özellik öğrenme, 

sınıflandırıcı ve karar verme seviyelerinde çapraz modül entegrasyonu sağladığını ifade etmektedir. 

Bu tür bir entegrasyon, farklı görüntüleme modalitelerinden elde edilen verilerin daha etkili bir 

şekilde analiz edilmesine olanak tanımaktadır. Özellikle, çok modlu verilerin bir araya getirilmesi, 

her bir modalitenin güçlü yönlerinden yararlanarak, daha kapsamlı ve doğru analiz sonuçları elde 

edilmesini sağlamaktadır. Örneğin, manyetik rezonans görüntüleme (MRG) ve BT gibi farklı 

modaliteler, birlikte kullanıldığında, hastaların durumunu daha ayrıntılı bir biçimde değerlendirme 

imkânı sunmaktadır. Derin öğrenme algoritmaları, bu verilerin birleşimini optimize etmek için 

çeşitli yöntemler ve teknikler kullanmakta, böylece görüntüleme süreçlerinde daha yüksek 

doğruluk ve güvenilirlik sağlanmaktadır. Ayrıca, bu tür entegrasyon, klinik uygulamalarda tanı 

süreçlerini hızlandırma ve hastalıkların daha erken aşamalarda tespit edilme potansiyelini artırma 

konusunda önemli avantajlar sunmaktadır. Bunun sonucunda, sağlık alanında daha etkili karar 

verme mekanizmaları ve bireyselleştirilmiş tedavi yaklaşımları geliştirilebilmektedir [29].  
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Bu teknolojiler, sağlık alanında çok daha geniş bir yelpazede çözümler sunma kapasitesine sahiptir. 

Kim ve arkadaşları, bu yöntemlerin, bilgisayarla destekli tanı, hastalık tahmini, görüntü 

segmentasyonu ve görüntü üretimi gibi çeşitli sağlık sorunlarına yönelik çözümler sunduğunu 

belirtmektedir. Özellikle, bu yöntemler, karmaşık verilerin işlenmesi ve analizinde sağladığı 

avantajlarla dikkat çekmektedir. Derin öğrenme algoritmaları, büyük veri kümelerinin işlenmesi 

sırasında, geleneksel yöntemlere kıyasla daha yüksek doğruluk oranları ile çalışabilmektedir. 

Örneğin, bu algoritmalar, görüntülerin analiz edilmesi ve anormal bulguların tespit edilmesinde 

insan performansını aşabilmektedir. Bu durum, hem zaman hem de maliyet açısından önem arz 

etmekte ve hekimlerin daha verimli bir şekilde çalışmasına olanak tanımaktadır [30]. 

Ahmad ve arkadaşları, derin öğrenme tabanlı tıbbi görüntü analizinin sınırlı veri kümeleri gibi 

zorluklar içerdiğini vurgulamışlardır. Özellikle, tıbbi verilerin genellikle etiketlenmiş kısıtlı 

örneklerle sınırlı olması, modelin genel performansını ve güvenilirliğini olumsuz etkilemektedir. 

Ek olarak, derin öğrenme algoritmalarının karmaşıklığı ve hesaplama gereksinimleri, bu 

teknolojilerin yaygın bir şekilde uygulanmasını zorlaştıran diğer önemli engeller arasında yer 

almaktadır. Araştırmacılar, bu zorlukları aşabilmek amacıyla veri artırma yöntemleri, transfer 

öğrenme teknikleri gibi yöntemler üzerine yoğunlaşmışlardır [31].  

1.1.4. Diş Hastalıklarının Yapay Zekâ Tabanlı Tespiti Çalışmaları  

Diş hastalıklarının tespiti, sağlık alanında önemli bir yer tutmaktadır. Son yıllarda, yapay zekâ ve 

makine öğrenimi gibi teknolojilerin gelişimi, diş hekimliğinde hastalıkların daha hızlı ve doğru bir 

şekilde teşhis edilmesine olanak sağlamaktadır. Diş hastalıklarının erken teşhisi hasta sağlığı ve 

yaşam kalitesi için önem arz etmektedir. Kim ve arkadaşları çalışmalarında, koronal çürük, 

proksimal çürük, servikal çürük, periapikal radyolusensi ve kalan kökler olmak üzere beş yaygın 

hastalığı kapsayan 10.000 panoramik diş görüntülerine HB-ESA, ResNet ve Inception modellerini 

uygulamışlardır.  Bahsedilen hastalıkların teşhisinde uygulanan bu modeller %90 üzerinde 

doğruluk vermiştir. Tespit hassasiyetini artırmak için her hastalık ayrı ayrı modellenmiş ve sonuçlar 

yapay zekânın diş hekimlerine yardımcı olma, tedavi planlama süresini azaltma ve yanlış teşhisleri 

en aza indirmedeki önemli rolünü vurgulamıştır [32]. 

Kheraif ve arkadaşları çalışmalarında, radyografik 2B (2 boyutlu) diş görüntülerini işlemek için 

hibrit grafik kesim segmentasyonunun yanı sıra evrişimsel sinir ağları kullanmışlardır. Ön işleme 

aşamasında, kontrastı artırmak ve parlaklığı eşitlemek için histogram tabanlı bir yaklaşım 

kullanılmış, böylece diş ve kemik bölgelerinin ayırt edilmesi kolaylaştırılmıştır. Bu yöntem 

%97,07'lik bir segmentasyon doğruluğu elde etmiştir [33]. 

Murata ve arkadaşları, maksiller sinüs tespiti için 400 sağlıklı ve 400 iltihaplı, panoramik 

görüntülerin yer aldığı bir veri kümesi üzerinde çalışmışlardır. Kategoriler 6000 örneğe çıkarılarak 

veri arttırma işlemi uygulanmıştır.  AlexNet derin mimarisi uygulanarak 60 sağlıklı ve 60 iltihaplı 
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sinüs üzerinde yapılan testlerde %87,5 doğruluk, %86,7 hassasiyet, %88,3 özgüllük ve 0,875 AUC 

(ROC eğrisinin altındaki alan) elde edilmiştir [34].  

Bulut tabanlı evrişimsel sinir ağları dental görüntülemede önemli gelişmeler sunmaktadır. Elbarga 

ve arkadaşları tarafından gerçekleştirilen bir çalışmada, konik ışınlı bilgisayarlı tomografi (KIBT) 

görüntülerde dental implantların ve protez kron segmentasyonu için bir ESA modeli eğitilmiştir. 

Model, 280 KIBT taramasından oluşan bir veri kümesi kullanarak, implantlar için 0,92±0,02 ve 

restorasyonlu implantlar için 0,91±0,03 Dice benzerlik katsayısı ile yüksek segmentasyon 

doğruluğu elde etmiştir. Ayrıca, segmentasyonu yarı otomatik yaklaşımlardan 60 kat daha hızlı 

(<30 saniye) tamamlayarak üstün başarı göstermiştir [35]. 

Kohlakala ve arkadaşları çalışmalarında, çeşitli açılardan 2B projeksiyonlar oluşturarak 3B (3 

boyutlu) BDT (Bilgisayar Destekli Tespit) yüzey modellerinden yapay eğitim örnekleri üreten bir 

algoritma önermişlerdir. Bu örnekleri, X-ışını görüntülerinde dental implant bağlantı türlerini 

tanımlamak için tam evrişimli bir ağı (FCN) eğitmek için kullanmışlardır. Çalışmada hem yarı 

otomatik hem de tam otomatik sistemler önerilmiş ve tam otomatik sistemde %94,0 segmentasyon 

doğruluğu ve %71,7 tanıma doğruluğu elde edilmiştir [36]. 

Kim ve arkadaşları, 2.430 normal ve maksiller sinüs vakasından oluşan 4.860 hastanın X-ray 

görüntülerini kullanarak maksiller sinüs sınıflandırması üzerine bir çalışma yürütmüştür. Veri 

kümesi eğitim (%70), doğrulama (%15) ve test (%15) alt kümelerine ayrılmıştır. Çalışmada üç 

derin öğrenme modeli-VGG-16, VGG-19 ve ResNet-101 kullanılmış ve bunların sınıflandırma 

sonuçları çoğunluk karar algoritması kullanılarak birleştirilmiştir. Önerdikleri yöntem %94,1'lik bir 

doğruluk sonucu göstermiş, lezyon bölgesinin segmentasyonu için çoğunluk karar algoritması 

kullanılmıştır [37].  

Muresan ve arkadaşları tarafından yapılan bir çalışmada, panoramik röntgen görüntülerinin analizi 

ile dişlerin otomatik tespiti ve dental problem sınıflandırması üzerine bir yaklaşım önerilmiştir. Bu 

çalışma, diş hekimlerine doğru tanı koyma süreçlerinde yardımcı olmayı amaçlamaktadır. Üç diş 

kliniğinden alınan panoramik X-ray görüntüleri kullanıldığı bu çalışmada 0,89 doğruluk, 0,98 

kesinlik, 0,91 hassasiyet ve 0,93 F1 skoru elde edilmiştir [38]. 

Mertoğlu ve arkadaşları, panoramik diş röntgen görüntülerin tespiti ve numaralandırılması üzerine 

yaptıkları çalışmada, derin öğrenme kullanılarak 200 anonim panoramik görüntü üzerinde testler 

gerçekleştirmişlerdir. Bu çalışmada, DESA (Derin Evrişimsel Sinir Ağı) modeli, dişlerin tespitinde 

ve numaralandırılmasında yüksek başarı oranları elde etmiştir. Elde edilen doğruluk, hassasiyet ve 

F1 skoru sırasıyla %99.6, %98.0 ve %98.8 olarak bulunmuştur [39].  

Fukuda ve arkadaşları çalışmalarında 300 görüntüden oluşan bir veri kümesinden 330 dikey kök 

kırıklarını (VRF) kullanarak panoramik radyografilerde dikey kök kırıklarını tespit etmek için bir 

ESA modeli değerlendirmişlerdir. DetectNet ve DIGITS sürüm 5.0 ile geliştirilen model, 

güvenilirliği sağlamak için beş kat çapraz doğrulamaya tabi tutulmuştur. Sistem 0,75 hassasiyet, 
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0,93 hassasiyet ve 0,83 F ölçüsü elde ederek 267 kırığı doğru bir şekilde tanımlarken 20 kırık 

olmayan dişi yanlış tespit etmiştir [40]. 

Hossam ve arkadaşları, derin öğrenme yöntemlerinin diş hastalıklarının teşhisindeki kullanımı 

üzerine çalışmışlardır. Çalışmada, 17 ağız hastalığını teşhis etmek için uzmanlar tarafından 

etiketlenmiş diş görüntülerinden oluşan ODSI-DB veri kümesi kullanılmıştır. Araştırmada 

CenterNet ResNet, EfficientNet ve MobileNet modelleri test edilmiş ve MobileNet’in daha yüksek 

performans göstermiştir. Sınıflandırmada %95,2, lokalizasyonda %90,7 ve regülasyonda %91 

doğruluk elde edilmiştir [41]. 

1.1.5. Gömülü Diş Tespiti Üzerine Yapılan Çalışmalar  

Ariji ve arkadaşları, iki farklı hastaneden toplanan 3200 panoramik görüntü üzerinde segmentasyon 

teknikleri ile bir transfer öğrenme yaklaşımı kullanarak mandibular kanalın gömülü üçüncü molar 

dişe yakınlığı üzerine çalışmışlardır. Çalışmada, A Hastanesinden alınan verilerle bir kaynak model 

geliştirilmiş ve bu model daha sonra hedef modeller oluşturmak için B Hastanesinden alınan daha 

küçük veri kümeleri ile birleştirilmiştir. Elde ettikleri 0,831 Dice katsayısı ile çalışma, transfer 

öğrenmenin sınırlı verilerle bile yüksek performans elde edebileceğini göstermiştir [42]. 

Jeon ve arkadaşları yaptıkları çalışmada, süt ve karma diş yapısına sahip pediatrik hastaların 

periapikal görüntülerinde gömülü meziodensleri tespit etmek için YOLOv3, RetinaNet ve 

EfficientDet-D3 algoritmalarını kullanarak derin öğrenme modelleri geliştirmişlerdir. Çalışmada 

yaşları 3 ile 13 arasında değişen 600 pediatrik hastanın periapikal radyografilerinden oluşan bir veri 

kümesi kullanılmıştır. Veri kümesi eğitim (540 görüntü) ve doğrulama (60 görüntü) olarak 

bölünürken, test için 120 görüntü (60 meziodensli ve 60 meziodenssiz) kullanılmıştır. Her model 

300 iterasyon üzerinden eğitilmiş ve performansları doğruluk, hassasiyet ve özgüllük açısından 

değerlendirilmiştir. EfficientNet-D3 %99,2 ile en yüksek doğruluğu, RetinaNet %98,3 ve YOLOv3 

%97,5 oranında değer elde etmiştir [43].  

Faure ve arkadaşları 530 panoramik radyografiden oluşan bir veri kümesinden gömülü dişleri tespit 

etmek için DHB-ESA (Daha Hızlı Bölgesel Evrişimsel Sinir Ağları) ve ResNet modellerini kullanmış 

ve %51,7 ile %88,9 arasında değişen tespit doğrulukları elde etmiştir. Toplamda 450 etiketli 

gömülü dişin bulunduğu veri kümesi, bir veya daha fazla gömülü diş içeren 178 radyografiden 

oluşmaktadır. Model eğitimi için omurga olarak ResNet101 ile Detectron2'yi kullanılmıştır. COCO 

veri kümesi üzerinde X101-FPN modeli için %43,0'lük kıyaslama AP'sini aşarak %50,58'lik bir 

ortalama hassasiyet (AP) elde etmiştir [6].  

Zhang ve arkadaşları, gömülü mandibular üçüncü molar dişlerin çekilmesinin ardından postoperatif 

yüz şişliğinin belirlenmesinde yapay sinir ağlarının tahmin doğruluğunu değerlendirmek için bir 

çalışma gerçekleştirmişlerdir. Çalışmada, sinir ağının eğitim hızını artırırken yerel minimum riskini 

en aza indiren BP algoritması ile birlikte geliştirilmiş bir eşlenik gradyan geri yayılım (BP) 
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algoritması kullanmışlardır. Model, 300 eğitim ve kalan 100 test olmak üzere 400 hastadan alınan 

veriler kullanılarak eğitilmiş ve test edilmiştir. Hasta demografisi, üçüncü molar dişlerin anatomik 

özellikleri ve cerrahi prosedür detayları gibi faktörleri bir araya getiren sinir ağı, ameliyat sonrası 

şişlik ile işlevsel bir tahmin ilişkisi kurmuştur. Genellemeyi iyileştirmek için 5 kat çapraz 

doğrulama ve erken durdurma teknikleri kullanan modelde, %98,00 oranında doğruluk elde 

edilmiştir [44].  

Imak ve arkadaşları, panoramik diş röntgeni görüntülerinde gömülü dişlerin segmentasyonu için 

ters çevrilmiş bir artık blok ve çift yönlü ConvLSTM katmanlarını içeren yeni bir kodlayıcı-kod 

çözücü ağ mimarisi olan ResMIBCU-Net üzerinde çalışmışlardır. Geliştirilmiş UNet mimarisi, 

gömülü dişlerin tespitinde %99,82 gibi yüksek bir doğruluk oranına ulaşarak derin öğrenme tabanlı 

yaklaşımların oral radyolojide tanı araçlarının geliştirilmesindeki potansiyelini vurgulamışlardır 

[45].  

1.1.6. Enfeksiyon Tespiti Üzerine Yapılan Çalışmalar  

Prajapati ve arkadaşları, evrişimsel sinir ağları ve transfer öğrenme yaklaşımı ile 80 adet diş çürüğü, 

110 adet periapikal enfeksiyon ve 61 adet periodontitis olmak üzere 251 etiketli görüntüden oluşan 

RVG X-ray görüntüleri üzerinde üç farklı diş hastalığının sınıflandırılmasına dayalı bir çalışma 

yürütmüşlerdir. Araştırmacılar, küçük veri kümeleriyle ilişkili zorlukların üstesinden gelmek için 

önceden eğitilmiş bir VGG16 modeli kullanarak bir transfer öğrenme yaklaşımı uygulamışlardır. 

Sınıflandırma sonuçları diş çürüğü için %87,5, periapikal enfeksiyon için %90 ve periodontitis için 

%87,5 oranında doğruluk göstermiştir [46]. 

Wen ve arkadaşları, derin öğrenme yaklaşımını uygulayarak diş eti iltihabı üzerine çalışmışlardır. 

DenseNet tabanlı bir evrişimsel sinir ağı mimarisi uygulamışlardır. Çalışmaları kapsamında, 

geliştirdikleri modeli 826 hastanın ağız içi görüntüleri üzerinde uygulayarak, beş dişeti iltihabını 

0,727 ± 0,117 oranında ortalama IoU (Birleşim Üzerindeki Kesişme Oranı), %73,68 ile %79,22 

oranında da doğruluk ile tespit etmişlerdir [47]. 

Hashem ve Youssef, çalışmalarında gelişmiş makine öğrenimi tekniklerinin büyük veri ile 

uygulanmasıyla, manuel hatalar azaltılıp daha hızlı klinik kararlar alınması sağlanarak diş 

enfeksiyonlarının erken tespiti üzerine bir model önermişlerdir. Çalışmada gürültü giderme ve 

özellik çıkarma yöntemleri kullanılarak 120 dental radyografik görüntü işlenmiştir. Uygulanan 

segmentasyon teknikleri arasında, MSR yaklaşımı %95,8 F1 skoru elde etmiştir. BORNN, DANN, 

GONN ve ADNN sinir ağları uygulanmış, BORNN modeli %98,1 doğruluk ve 0,92 ROC (alıcı 

işletim karakteristiği) değeri ile en yüksek sonucu elde etmiştir [48]. 

Li ve arkadaşları, ağız fotoğraflarından diş eti iltihabı, diş taşı ve yumuşak birikintileri tespit etmek 

için Çok Görevli Öğrenme (Multi-Task Learning) ESA modeli önermişlerdir. Çalışmada, 625 

hastaya ait 3.932 oral görüntünün analizi ile diş eti iltihabı, diş taşı ve yumuşak birikinti tespiti için 
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sırasıyla %87,11 ve %80,11 ve %78,57 AUC değerleri elde edilmiştir. Çalışmalarında, halk ağız 

sağlığı bilinci ve erken teşhis için akıllı telefon gibi cihazların kullanımıyla erişilebilir kamu diş 

sağlığı taramasının derin öğrenme yöntemi ile yaygınlaştırılması vurgulamaktadır [49]. 

Dhingra, BT ve MRI görüntüleri ile sinonazal-dental yapıların analizi için UNet kullanarak Kronik 

Odontojenik Rinosinüzit (CORS) teşhisi üzerine çalışmıştır. Diş enfeksiyonlarından kaynaklanan 

ve paranazal sinüsleri etkileyen bu durum, geleneksel rinosinüzit ile semptom örtüşmesi nedeniyle 

tanısal zorluklar ortaya çıkarmaktadır. Çalışma, %92 oranındaki doğruluk ile geleneksel 

yöntemlerden daha iyi performans gösterdiğini vurgulamıştır [50]. 

Alalharith ve arkadaşları, ortodonti hastalarında diş eti iltihabının erken tespiti için DHB-ESA 

kullanarak derin öğrenme tabanlı bir yaklaşım geliştirmiştir. Çalışmada, eğitim (%80) ve test (%20) 

veri kümelerine bölünmüş, 134 ağız içi görüntü kullanılmıştır. Çalışma kapsamında biri %100 

doğruluk oranı ile diş tespiti için, diğeri %77,12 doğruluk ve %88,02 hassasiyet oranı ile iltihap 

tespiti olmak üzere iki DHB-ESA modeli uygulanmıştır. Yaklaşım, ilgilenilen bölgeyi kırparak 

maksiller orta kesici dişlerdeki diş eti iltihabını belirlemeye odaklanmıştır [51]. 

1.1.7. Çürük Tespiti Üzerine Yapılan Çalışmalar 

Imak ve arkadaşları tarafından gerçekleştirilen bir çalışmada, periapikal görüntüler aracılığıyla diş 

çürüğünün otomatik teşhisi için çoklu girişli derin evrişimsel sinir ağı modeli önerilmiştir. Bu 

yenilikçi model, periapikal görüntülerden elde edilen veriler ile %99.13 doğruluk oranına ulaşarak 

diş çürüğünü tespit etmiştir. Elde edilen bu bulgular, yapay zekâ tabanlı sistemlerin diş 

hastalıklarının teşhisindeki etkinliğini ortaya koymakta ve geleneksel yöntemlerin sınırlamalarını 

aşmak için yeni teknolojilerin entegrasyonunun önemini vurgulamaktadır [52]. 

Park ve arkadaşları çalışmalarında 445 hastadan alınan 2348 ağız içi görüntü üzerinde evrişimli 

sinir ağları (UNet, ResNet-18 ve DHB-ESA) yöntemlerini uygulayarak segmentasyon 

sınıflandırma doğruluğunu 0,813'e ve ROC eğrisi altındaki alanı 0,837'ye yükseltmiştir. Çürük 

lezyonlarını 0,890 ile 0,889 oranları aralığında hassasiyet ve 0,865 ile 0,868 oranları aralığında 

kesinlik elde etmiştir [53].  

Geetha ve arkadaşları, çalışmalarında Laplacian filtreleme, adaptif eşikleme, morfolojik işlemler 

ve geri yayılım sinir ağını içeren bir sistemi geliştirmişlerdir. Çalışmada ağız içi dijital 

radyografiden elde edilen 105 görüntü, yapay bir sinir ağı ile 10-fold çapraz doğrulama kullanarak 

%97,1 doğruluk, %2,8 yanlış pozitif oranı ve 0,987 ROC alanı elde etmişlerdir [54]. 

Saini ve arkadaşları tarafından gerçekleştirilen bir çalışmada, tele-diş hekimliği sistemleri 

kullanılarak diş çürüğünün erken tespiti üzerine odaklanılmıştır. Tele- diş hekimliği uygulamaları 

aracılığıyla, coğrafi engellerin aşılması ve daha geniş bir hasta kitlesine ulaşma imkânı, sağlık 

hizmetlerinin erişilebilirliğini artırma potansiyeline sahiptir. Çalışma, modern diş hekimliği 

uygulamalarında dijital teknolojilerin entegrasyonunu vurgulayarak, uzaktan diş muayenesi 
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imkânlarının faydalarından bahsetmektedir. Çalışmada, derin öğrenme modelleri olan VGG16, 

VGG19, Inception-V3 ve ResNet50 kullanılarak diş çürüğü tespiti gerçekleştirilmiş ve bu 

modellerin performansı karşılaştırılmıştır. Elde edilen sonuçlar, en yüksek doğruluk oranının 

%99.89 ile Inception-V3 modeli ile elde edildiğini göstermektedir. Bu tür sistemlerin, zamanla 

hastaların tedavi süreçlerinin hızlandırılmasına ve maliyetlerin düşürülmesine katkıda 

bulunabileceği üzerinde durulmuştur [55].  

Goswami ve arkadaşları, diş sağlığının önemli bir parçası olan diş çürüğü ve oral kanser tespiti 

üzerine çalışmışlardır. Çalışmada, 598 intraoral görüntü kullanılarak, "Normal dişler", "Çürük" ve 

"Oral kanser" olmak üzere görüntülerin üç sınıfa ayrılması sağlanmıştır. Kullanılan derin öğrenme 

algoritmalarının performansı, elde edilen doğruluk oranı ile ölçülmekte olup, bu oran %83 ile %94 

arasında değişmektedir. Bu doğruluk oranları, sistemin diş hekimliğinde erken teşhis süreçlerine 

olan katkısını vurgulamaktadır [56].  

Verma ve arkadaşları, hibrit bir derin öğrenme ve makine öğrenimi yöntemlerini panoramik diş 

görüntüleri üzerinde uygulayarak diş hastalıklarının tespiti üzerine çalışmışlardır. Özellik çıkarıcı 

olarak ESA ve sınıflandırıcı için DVM (Destek Vektör Makineleri) kullanılan çalışmada, veri 

arttırma yöntemi uygulanmış veri kümesi üzerinde analiz edilerek belirgin çürük, enfeksiyon veya 

kemik kaybı olan “Normal” ve “Anormal” hastalıklar tespit edilmiştir. ESA-DVM modeli, Vanilla-

ESA'lardan ve manuel özellik tabanlı DVM'lerden daha iyi performans göstererek %98,69 

doğruluk elde etmiştir [57].  

Yang ve arkadaşları, 196 hastadan alınan periapikal X-ray görüntüleri kullanılarak diş tedavisi 

sonuçlarının değerlendirilmesine üzerine çalışmışlardır. Çalışma kapsamında görüntüler, 

‘iyileşen’, ‘kötüleşen’ veya ‘belirgin bir değişiklik olmayan’ şeklinde uzman tarafından 

etiketlenerek bir veri kümesi elde edilmiştir. Etiketlenen görüntüler üzerinde evrişimsel sinir ağı 

uygulanarak analiz edilmiş, modelde 0,749 oranında F1 skoru elde edilmiştir [58]. 

1.2. Önerilen Sistemin Genel Çerçevesi  

Diş hekimliği uygulamalarında panoramik radyografi, ağız ve çene bölgesine ilişkin anatomik 

yapıların ve hastalıkların değerlendirilmesinde kritik bir rol oynamaktadır. Geleneksel teşhis 

yöntemleri genellikle manuel olarak gerçekleştirilmekte olup bu durum zaman alıcı olmasının yanı 

sıra insan hatasına açık bir süreç yaratmaktadır. Büyük ölçekli sağlık merkezlerinde yoğun hasta 

trafiği, tanı süreçlerini daha da zorlaştırmakta ve zamanında müdahaleyi engelleyebilmektedir. 

Ayrıca radyografik değerlendirmeler, diş hekiminin deneyim ve bilgi birikimine bağlı olarak 

değişiklik gösterebilmekte ve bu durum da teşhis sürecinde tutarsızlıklara yol açabilmektedir. Bu 

bağlamda, yapay zekâ tabanlı sistemlerin geliştirilmesi, diş hekimliği alanında otomatik teşhis ve 

analiz süreçlerine olanak sağlamaktadır. Yapay zekâ ile desteklenen bu sistemler, hem teşhis 

doğruluğunu artırarak diş hekimlerine yardımcı olmakta hem de tedavi süreçlerini hızlandırarak 
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hasta memnuniyetini artırmaktadır. Bu tez çalışmasında, yüksek çözünürlüklü panoramik diş 

görüntülerine dayalı olarak diş hastalıkları ve ilgili anatomik yapıların otomatik tespiti için özgün 

hibrit derin öğrenme tabanlı yöntemler önerilmiştir. Çalışma kapsamında, kamuya açık veri 

kümelerinden seçilen görüntüler diş hekimi eşliğinde etiketlenerek karma bir veri kümesi 

oluşturulmuş ve ayrıca etik kurul onayı alınarak oluşturulan özgün bir veri kümesi de 

geliştirilmiştir. Aşağıdaki bölümlerde tez çalışmasının amaçları, çıktılarına ek olarak sistemin 

özgün katkıları detaylı şekilde ele alınmıştır. 

1.2.1. Tezin Amacı  

Bu tez çalışmasının temel amacı, panoramik diş radyografi görüntülerinde hastalıkların ve ilgili 

anatomik yapıların tespitine yönelik yenilikçi derin öğrenme yöntemleri geliştirmektir. Çalışma, 

diş hekimlerinin teşhis sürecini daha hızlı ve güvenilir bir şekilde gerçekleştirmesine olanak 

sağlayarak sağlık hizmetlerinin etkinliğini artırmayı hedeflemektedir. 

Günümüzde erişime açık panoramik diş görüntüsü veri kümelerinin sayıca yetersiz oluşu, bu 

çalışmanın önemli bir ihtiyaçtan doğduğunu göstermektedir. Bu nedenle, etik kurulu onayı alınarak 

oluşturulan özgün veri kümesi, uzman diş hekimlerinin rehberliğinde titizlikle etiketlenmiştir. Bu 

özgün veri kümesi, yalnızca çalışmanın başarısına katkı sağlamakla kalmayıp, aynı zamanda yapay 

zekâ tabanlı uygulamalar geliştirmek isteyen diğer araştırmacılar için de önemli bir kaynak 

olabilmektedir. 

1.2.2. Tezin Çıktıları ve Yenilikçi Yönleri 

Bu tez çalışması kapsamında, panoramik diş radyografi görüntülerinde hastalıkların ve ilgili 

anatomik yapıların yapay zekâ tabanlı yöntemlerle tespiti üzerine özgün hibrit yaklaşımlar 

geliştirilmiştir. Literatürde mevcut yöntemler detaylı bir şekilde incelenmiş, güçlü ve zayıf yönleri 

analiz edilerek çalışma sürecine katkı sağlanmıştır. Bu doğrultuda, derin öğrenmeye dayalı yeni 

modeller önerilmiş ve performansları mevcut yöntemlerle karşılaştırılmıştır. Elde edilen sonuçlar, 

önerilen modellerin yüksek başarı sağladığını ortaya koymuştur. 

Literatürde açık erişimli veri kümelerinin sınırlı olması sebebiyle, etik kurul onayı alınarak özgün 

bir veri kümesi oluşturulmuş ve bu veri kümesi uzman diş hekimi eşliğinde titizlikle etiketlenmiştir. 

Geliştirilen modeller, diş hekimlerinin tanı süreçlerini hızlandırarak hata oranlarını düşürmekte 

önemli bir potansiyel sunmaktadır. Ayrıca, oluşturulan bu özgün veri kümesi literatüre önemli bir 

katkı sağlamaktadır ve ileride bu alanda çalışmak isteyen araştırmacılar için değerli bir kaynak 

olarak kullanılabilecektir. 

1.2.3. Tezin Organizasyonu  
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Bu tez çalışması, toplam 7 ana bölümden oluşmaktadır. Her bölüm, çalışmanın amacını, kullanılan 

yöntemleri ve elde edilen sonuçları detaylı bir şekilde açıklamak amacıyla düzenlenmiştir. Aşağıda, 

her bir bölümün içeriği özetlenmiştir: 

Bölüm 1’de, tez konusu ile ilgili genel bilgiler verilmiş ve kapsamlı bir literatür incelemesi 

gerçekleştirilmiştir. Sağlık ve diş hekimliği alanında yapay zekâ çalışmalarına odaklanılmış, derin 

öğrenme yöntemlerinin tıbbi görüntüleme alanındaki kullanımına ilişkin güncel çalışmalar 

incelenmiştir. Ayrıca, gömülü diş, enfeksiyon ve çürük tespiti üzerine yapılan çalışmalar 

detaylandırılmıştır. Son olarak, tezin amacı, çıktıları, yenilikçi yönleri ve organizasyonu 

açıklanmıştır. 

Bölüm 2’de, diş görüntüleme teknikleri, diş anatomisi, görüntü segmentasyon yöntemleri ve 

performans metrikleri detaylı bir şekilde açıklanmıştır. Özellikle panoramik radyografi ve piksel 

tabanlı segmentasyon yöntemleri üzerinde durulmuştur. 

Bölüm 3’de, literatürde bulunan mevcut veri kümeleri incelenmiş ve gömülü diş, enfeksiyon ve 

çürük gibi diş hastalıklarına yönelik veri kümeleri listelenmiştir. Ayrıca, özgün veri kümesinin 

oluşturulma süreci ve etik kurul onayına dayalı veri etiketleme işlemleri detaylandırılmıştır. 

Bölüm 4’de, gömülü dişlerin tespiti üzerine önerilen yöntem ve veri kümesi sunulmuş, geliştirilen 

modelin deneysel sonuçları paylaşılmıştır. Gömülü diş tespiti üzerine yapılan çalışmalar literatürle 

karşılaştırılmıştır. 

Bölüm 5’de,  enfeksiyon tespiti üzerine geliştirilen yöntemler bu bölümde açıklanmıştır. Önerilen 

modellerin performansı literatürdeki diğer çalışmalarla karşılaştırılarak elde edilen sonuçlar 

tartışılmıştır. 

Bölüm 6’de, çürük tespiti için önerilen yöntemler ve kullanılan veri kümeleri sunulmuş, yapılan 

deneysel çalışmalar ve sonuçları detaylı bir şekilde ele alınmıştır. Literatürdeki mevcut çalışmalarla 

performans karşılaştırmaları yapılmıştır. 

Bölüm 7’de, tez çalışmasının genel sonuçları ve bu sonuçların literatüre katkıları bu bölümde 

sunulmuştur. Ayrıca, gelecekte yapılacak çalışmalar için önerilere yer verilmiştir. 

 



 

 

2. MATERYAL VE METOT 

2.1. Diş Görüntüleme Teknikleri  

Diş hekimliğinde teşhis ve tedavi planlamasında kullanılan çeşitli görüntüleme teknikleri, klinik 

çalışanlara hastaların ağız ve diş sağlığı hakkında detaylı bilgiler sunmaktadır. Bu teknikler 

arasında bitewing röntgen, periapikal röntgen, konik ışınlı bilgisayarlı tomografi ve panoramik 

röntgen bulunmaktadır. Her bir yöntem, farklı klinik durumlar için avantaj ve sınırlamalar 

içermektedir [59, 66]. 

2.1.1. Bitewing Radyografi 

Diş hekimliğinde teşhis aracı olan bitewing radyografi, öncelikle arka dişlerin (premolar ve molar 

dişler) kronlarını ve komşu alveolar kemik seviyelerini değerlendirmek için kullanılmaktadır. Bu 

görüntüleme tekniği özellikle interproksimal çürüklerin tespit edilmesinde, mevcut 

restorasyonların değerlendirilmesinde ve periodontal kemik kaybının izlenmesinde etkili 

olmaktadır. Hem maksiller hem de mandibular arkları tek bir görüntüde yakalayan bitewing 

radyografiler, karşılaştırmalı analizleri kolaylaştırarak tanısal doğruluğu artırmaktadır. Şekil 2.1’de 

bitewing (ısırma) yöntemi kullanılarak ortaya çıkarılmış diş röntgeni çeşidi sunulmuştur [59]. 

 

 

 

Şekil 2.1. Bitewing röntgen görüntüsü [59] 

Dijital bitewing radyografiler anında görüntü elde edilmesini sağlayarak hasta bekleme sürelerini 

azaltmakta ve klinik verimliliği artırmaktadır. Ayrıca, dijital sistemler geleneksel film 

radyografisine kıyasla daha düşük radyasyon dozları gerektirdiğinden hasta güvenliğini 

artırabilmektedir [60].  
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BDT sistemlerinin dijital bitewing radyografi ile entegrasyonu, teşhis yeteneklerini daha çok 

artırmaktadır. BDT sistemleri, radyografi görüntüleri analiz etmek için gelişmiş algoritmalar 

kullanmakta ve daha fazla değerlendirme gerektirebilecek endişe verici alanları belirlemede 

hekimlere yardımcı olmaktadır. Son çalışmalar, derin öğrenme modellerinin bitewing 

radyografilerindeki proksimal çürükleri tespit edebildiğini ve klinik uygulamalara yardımcı 

olduğunu göstermiştir. Bu gelişmelere rağmen, bazı sınırlamalar devam etmektedir. Dijital 

bitewing radyografiler, geleneksel muadilleri gibi, üç boyutlu yapıların iki boyutlu gösterimlerini 

sağlar, bu da anatomik özelliklerin üst üste binmesine ve potansiyel teşhis zorluklarına neden 

olabilmektedir. Ayrıca, dijital radyografi ekipmanının başlangıç maliyeti ve sürekli yazılım 

güncellemeleri ve bakım ihtiyacı, diş hekimliği muayenehaneleri için mali hususlar 

oluşturabilmektedir [61]. 

2.1.2. Periapikal Radyografi 

Periapikal radyografi, diş hekimliğinde bir veya daha fazla dişin hem kron ve köklerini hem de 

çevresindeki alveolar kemiği kapsayan ayrıntılı görüntülerini yakalamak için tasarlanmış 

görüntüleme tekniğidir. Bu yöntem özellikle endodontik değerlendirmelerde önem kazanmakta ve 

klinisyenlerin kök kanalı morfolojisini incelemesine, periapikal lezyonları tanımlamasına ve tedavi 

sonrası periapikal dokuların durumunu değerlendirmesine olanak sağlamaktadır [62]. Şekil 2.2’de 

periapikal röntgen çeşidi ile ortaya çıkan diş röntgeni türü sunulmuştur. 

 

 

 

Şekil 2.2. Periapikal röntgen görüntüsü [63] 

Geleneksel periapikal radyografiler, sınırlamaları olmasına rağmen diş teşhisinde önemli bir rol 

oynamaktadır. Bu görüntülerin iki boyutlu olması, anatomik yapıların üst üste binmesine ve kritik 

ayrıntıların gizlenmesine yol açabilmektedir. Ayrıca, görüntü alımı sırasında açılanmadaki 

değişiklikler distorsiyona neden olarak tanısal doğruluğu etkileyebilmektedir. Dijital periapikal 

radyografinin ortaya çıkışı bu zorlukların birçoğunu ele almaktadır. Dijital sistemler, diş yapılarının 
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ayrıntılı incelenmesine yardımcı olan kontrast ve parlaklığın değiştirilmesi gibi işlem sonrası 

ayarlamalarla gelişmiş görüntü kalitesi sağlamaktadır. Ayrıca, dijital radyografi genellikle 

geleneksel film yöntemlerine kıyasla daha düşük radyasyon dozları içermektedir. Dijital 

görüntülerin anında elde edilebilmesi, teşhis sürecini de kolaylaştırarak hızlı klinik karar verme 

sürecini kolaylaştırmaktadır [64].  

Son gelişmeler, yapay zekâ ve derin öğrenme tekniklerinin diş hekimliği radyografilerinin analizine 

dâhil edilmesini sağlamıştır. Özellikle bitewing radyografiler, dişler arası çürüklerin ve erken 

dönem patolojilerin tespitinde yapay zekâ destekli sistemlerle daha hızlı ve doğru bir şekilde analiz 

edilebilmektedir. Bu teknolojiler, klinisyenlere görsel inceleme sırasında gözden kaçabilecek ince 

detayları yakalama konusunda önemli bir destek sağlamaktadır. Benzer şekilde, periapikal 

radyografilerin analizinde de derin evrişimli sinir ağlarının uygulanması, periapikal lezyonların 

tespitinde tanısal doğruluğu artırmada umut verici sonuçlar ortaya koymuştur. Periapikal 

radyografilerin yorumlanması yüksek düzeyde uzmanlık gerektirmektedir, çünkü yanlış 

yorumlama yanlış teşhislere ve tedavi planlarına yol açabilmektedir. Yapay zekâ teknolojileriyle 

desteklenen dijital radyografiye geçiş, hem bitewing hem de periapikal görüntülemenin tanısal 

potansiyelini artırarak hasta sonuçlarının iyileştirilmesine katkıda bulunmaktadır [63, 65]. 

2.1.3. Konik Işınlı Bilgisayarlı Tomografi (KIBT) 

KIBT, dental ve maksillofasiyal yapıların üç boyutlu görüntülenmesini sağlamaktadır. Bu 

görüntüleme yöntemi implantoloji, endodonti, ortodonti ve ağız cerrahisi dâhil olmak üzere çeşitli 

diş hekimliği uzmanlık alanlarında kullanılmaktadır. KIBT, anatomik yapıların değerlendirilmesini 

sağlayarak doğru teşhis ve tedavi planlamasını kolaylaştırmaktadır [66]. Şekil 2.3’te konik ışınlı 

bilgisayarlı tomografi röntgen çeşidi ile ortaya çıkan diş röntgeni türü sunulmuştur. 

 

 

 

Şekil 2.3. Konik Işınlı Bilgisayarlı Tomografi rontgen görüntüleri. (A) aksiyal (B) koronal (C) sagital (D) 

ortogonal göünüm [66] 

İmplant işleminde KIBT, kemik kalitesini ve miktarını değerlendirmek, hayati anatomik işaretleri 

tanımlamak ve implant konumlandırmasını belirlemek için önem arz etmektedir. 3B görüntüler, 
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klinisyenlerin önerilen implant bölgeleri ile inferior alveolar sinir ve maksiller sinüs gibi komşu 

anatomik yapılar arasındaki uzamsal ilişkileri değerlendirmelerine ve böylece cerrahi riskleri en 

aza indirmelerine olanak tanımaktadır [67]. 

Endodontistler karmaşık kök kanalı anatomilerini incelemek, periapikal lezyonları tespit etmek ve 

tedavi sonuçlarını değerlendirmek için KIBT kullanmaktadırlar. Yüksek çözünürlüklü görüntüler, 

geleneksel iki boyutlu radyografilerde görülemeyen kök kırıklarının, ek kanalların ve diğer anormal 

durumların tanımlanmasını kolaylaştırmaktadır. Ortodontide KIBT, kraniyofasiyal morfoloji 

hakkında kapsamlı bilgi sağlayarak maloklüzyonların teşhisine ve bireyselleştirilmiş tedavi 

planlarının geliştirilmesine yardımcı olmaktadır. Ortodontik teşhis ve tedavi planlamasında kritik 

faktörler olan gömülü dişlerin kesin lokalizasyonuna ve hava boyutlarının değerlendirilmesine 

olanak sağlamaktadır [67]. 

KIBT, ayrıca eklem kemik bileşenlerinin ayrıntılı görüntüleri ile temporomandibular eklem (TME) 

bozukluklarının değerlendirilmesinde kullanılabilmektedir. Bu durum, eklem morfolojisinin 

değerlendirilmesini, dejeneratif değişikliklerin tespit edilmesini kolaylaştırmakta ve TME 

patolojilerinin teşhisine yardımcı olmaktadır [67]. KIBT'nin avantajları arasında yüksek uzaysal 

çözünürlük, geleneksel BT'ye kıyasla nispeten düşük radyasyon dozu ve tüm boyutlarda tek tip 

görüntü kalitesi sağlayan izotropik voksellerle görüntü üretme yeteneği yer almaktadır. Hızlı 

tarama süreleri, hareket artefaktları olasılığını azaltarak görüntü netliğini artırmaktadır [68]. Devam 

eden teknolojik gelişmeler ile birlikte KIBT görüntülemede yapay zekâ uygulamaları, tanısal 

doğruluğu ve verimliliği artırmak için araştırılmaktadır [69]. 

2.1.4. Panoramik Radyografi 

Panoramik radyografi, diş hekimliğinde yaygın olarak kullanılan bir görüntüleme yöntemidir ve 

maksillofasiyal bölgenin kapsamlı iki boyutlu genel görünümünü sağlamaktadır. Tüm diş yapısını, 

alveolar kemiği, TME ve çevresindeki anatomik yapıları tek bir görüntüde yakalayarak genel ağız 

sağlığının değerlendirilmesini kolaylaştırmaktadır. Bu görüntüleme tekniği özellikle gömülü dişler, 

süpernümerer dişler ve gelişimsel bozukluklar gibi dental anormal durumların tespitinde 

kullanılmaktadır. Periodontal kemik seviyelerinin değerlendirilmesine, kist ve tümörlerin 

tanımlanmasına ve maksiller sinüs patolojisinin değerlendirilmesine yardımcı olduğu bilinmektedir 

[70]. 

Panoramik radyografinin avantajları arasında geniş bir kapsama alanı, tam ağız içi radyografilere 

kıyasla düşük radyasyon dozu ve hızlı görüntü elde etme kolaylığı yer almaktadır. Dijital 

panoramik sistemler, anında görüntü kullanılabilirliği ve gelişmiş tanısal yorumlama için görüntü 

parametrelerini ayarlama yeteneği sunarak bu avantajları daha da geliştirebilmektedir [71]. 

Yapay zekâ uygulamaları, çürük ve periodontal hastalık gibi diş patolojilerinin tespit edilmesine ve 

anatomik işaretlerin tanımlanmasına yardımcı olabilmekte, böylece klinisyenleri tanısal karar 
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vermede destekleyebilmektedir [72]. Ayrıca, otomatik pozlama kontrolü ve gelişmiş görüntü 

işleme tekniklerine sahip dijital panoramik ünitelerin geliştirilmesi, görüntü netliği ve kontrastında 

önemli iyileşmelere yol açmıştır [71]. Şekil 2.4’te bu tez kapsamında elde edilen veri kümesinde 

bulunan panoramik radyografi örneği yer almaktadır. 

 

 

 

Şekil 2.4. Panoramik röntgen görüntüsü 

2.2. Diş Anatomisi 

Diş anatomisinin kapsamlı bir şekilde anlaşılması, çeşitli ağız sağlığı durumlarının teşhis edilmesi 

ve yönetilmesi için önem arz etmektedir. Bu bölümde diş çürükleri, diş enfeksiyonları ve gömülü 

dişler olmak üzere üç kritik alan ele alınmaktadır. 

2.2.1. Diş Çürükleri 

Diş çürükleri, tüm yaş gruplarındaki bireyleri etkileyen sağlık sorunlarından bir tanesidir. Ağız 

boşluğunda bulunan bazı bakterilerin gıda parçacıklarının fermantasyonu sonucu ürettiği asitlerin 

dişin sert yapısını tahrip etmesi ile oluşmaktadırlar. Bu süreç, tedavi edilmediği takdirde dişin daha 

derin katmanlarına ilerleyebilen mine ve dentinin demineralizasyonu ile başlar. Zamanla lezyon 

genişleyebilir ve ciddi rahatsızlığa, kalıcı ağrıya ve ciddi vakalarda pulpa dokusunda canlılık 

kaybına neden olabilir. Diş çürümesinin ileri aşamaları apse oluşumu, sistemik enfeksiyonlar ve 

hatta diş kaybı gibi komplikasyonlara neden olabilmektedir. Bu durum, erken teşhisin ve bu 

durumun tedavisinde zamanında müdahalenin kritik önemini vurgulamaktadır [73]. 

Diş çürüğünün ilerlemesi farklı aşamalara ayrılabilir: 
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● İlk Demineralizasyon: Bakteriyel metabolizmadan kaynaklanan asidik yan ürünler minede 

mineral içeriğinin kaybına yol açarak beyaz nokta lezyonları şeklinde kendini gösterir. 

● Mine Çürümesi: Demineralizasyonun devam etmesi minenin parçalanmasına ve çürüklerin 

oluşmasına neden olur. 

● Dentin Tutulumu: Tedavi edilmezse, çürük dentine nüfuz ederek hassasiyete ve ağrıya 

neden olur. 

● Pulpal Tutulum: İlerlemiş çürükler diş pulpasına ulaşarak iltihaplanmaya (pulpitis) yol açar 

ve potansiyel olarak nekrozla sonuçlanır. 

Çürük, başlangıç aşamasında tespit edildiğinde florür tedavisi ve beslenme alışkanlıklarının 

değiştirilmesiyle tekrar sertleşme sağlanabilmektedir. Bu gibi durumlarda erken teşhis ve müdahale 

büyük önem taşımaktadır. Ancak ilerlemiş çürükler genellikle dolgu veya kaplama gibi tedavilerle 

onarılır ve dişin işlevi ile estetiği geri kazandırılır. Görüntüleme teknolojilerindeki yenilikler, 

çürüğün erken aşamalarını tespit etmeyi kolaylaştırmış ve bu sayede daha az müdahale gerektiren 

tedavi yöntemlerini mümkün kılmıştır [74]. 

Dişlerin temiz tutulması, şekerli yiyecek tüketiminin sınırlandırılması ve düzenli diş muayenesi 

önleyici yöntemler olabilmektedir. Florür, dişleri güçlendirmeye ve zararlı bakterilerin aktivitesini 

azaltmaya yardımcı olduğu için diş çürümesini önlemenin önemli bir parçasıdır. Son çalışmalar 

ayrıca, çürümeye neden olan bakterilerin büyümesini azaltmak için probiyotik olarak bilinen yararlı 

bakterilerin kullanımını da inceleyerek bu yöntemlerin desteklenmesine vurgu yapmaktadır [75]. 

2.2.2. Diş Enfeksiyonları 

Diş enfeksiyonları genellikle tedavi edilmemiş diş çürüğü, diş eti hastalığı veya diş yaralanması 

sonucu olarak ortaya çıkmaktadır. Ağızdaki bakteriler dişin iç katmanlarına veya çevreleyen 

dokulara girdiğinde ağrıya, şişmeye ve diğer sorunlara yol açabilir. Bu durum, genellikle bakteriyel 

etkenler tarafından tetiklenir ve tedavi edilmediği takdirde ciddi sağlık sorunlarına yol açabilir. Diş 

enfeksiyonlarının önlenmesi ve tedavisi, multidisipliner bir yaklaşım gerektiren karmaşık bir 

süreçtir. Bu bağlamda, diş enfeksiyonlarının tanı ve tedavisinde kullanılan çeşitli teknolojiler ve 

yöntemler üzerine yapılan araştırmalar, bu alandaki gelişmeleri anlamak açısından önem arz 

etmektedir [76]. 

Diş enfeksiyonlarının tedavi yöntemleri, enfeksiyonun türüne ve ciddiyetine bağlı olarak değişiklik 

göstermektedir. Dental implantların değerlendirilmesinde kullanılan BT yönteminin, implant 

yerleştirme öncesi diş enfeksiyonlarının tedavisinde önemli bir rol oynamaktadır. Ayrıca, diş 

enfeksiyonlarının tedavisinde antibiyotik kullanımı da yaygın bir uygulama olmaktadır [77]. Diş 

enfeksiyonlarının yaygın nedenleri arasında sistemik hastalıklar bulunmaktadır. Diş enfeksiyonu 

olan hastalarda diyabet ve diğer risk faktörlerinin prevalansı incelendiğinde diyabetin diş 

enfeksiyonları ile yüksek oranda ilişkili olduğu görülmektedir [78]. Diş enfeksiyonlarının tedavisi 
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genellikle enfeksiyonun kaynağının ele alınmasıyla başlar. Bu süreç, enfekte bölgeyi kök kanal 

prosedürüyle temizlemeyi veya etkilenen dişi çıkarmayı içerebilir. Enfeksiyonu kontrol etmeye 

yardımcı olmak için antibiyotikler reçete edilebilir, ancak bakterinin kaynağını ortadan 

kaldırmadıkları için tek başına bir tedavi olarak kullanılmazlar. Diş enfeksiyonlarının erken teşhis 

ve tedavisi, komplikasyonlardan kaçınmak ve ağız sağlığını korumak açısından önem arz 

etmektedir [79]. 

2.2.3. Gömülü Dişler  

Gömülü dişler, genellikle dişlerin normal pozisyonlarına ulaşamadan çene içinde kalmalarıyla 

karakterize olmalarından kaynaklanmaktadır. Bu durum, çeşitli sebeplerden kaynaklanabilir ve 

tedavi yöntemleri, dişin konumuna ve hastanın genel sağlık durumuna bağlı olarak değişiklik 

gösterebilir. Gömülü dişlerin tespiti ve tanısı, modern görüntüleme teknikleri ve klinik 

değerlendirmelerle yapılmaktadır. Gömülü dişlerin en yaygın sebeplerinden biri, dişlerin çene 

yapısının yetersizliği veya dişlerin normal gelişim sürecinde yaşanan anormalliklerdir. Özellikle 

üçüncü molar dişler (yirmilik dişler) sıklıkla gömülü kalma eğilimindedir [80]. 

Gömülü dişlerin tedavi yöntemleri, genellikle cerrahi müdahale gerektirir. Cerrahi olarak gömülü 

dişin açığa çıkarılması ve ortodontik mekanizmaların uygulanması, dişin diş arkına hizalanması 

için kritik öneme sahip olmaktadır. Bu süreç, dişin destekleyici yapılarında hasar riskini 

artırabilmekte ve tedavi süresini uzatabilmektedir. Erken teşhis ve müdahale, tedavi sürecinin 

başarısı açısından hayati öneme sahip olmaktadır [81]. 

Gömülü dişlerin tespiti, genellikle panoramik röntgenler ve diğer görüntüleme teknikleri ile 

yapılmaktadır. Gömülü dişlerin yönetimi, multidisipliner bir yaklaşım gerektirmekte ve erken tanı 

ile müdahale, tedavi sürecinin başarısını artırmaktadır [82]. 

2.3. Görüntü Segmentasyon Teknikleri 

Yapay zekâ, çeşitli karmaşık zorlukların üstesinden gelmek için gelişmiş ve esnek yaklaşımlar 

sunarak görüntü işleme metodolojilerini dönüştürmede etkili rol oynamıştır. Bu gelişmeler nesne 

algılama, sınıflandırma ve özellikle segmentasyon gibi görevlerde önemli ilerlemeler 

kaydedilmesini kolaylaştırmıştır. Görüntü işlemede yapay zekânın evrimi, geleneksel yöntemlere 

kıyasla karmaşık görsel verileri gelişmiş bir hassasiyetle yorumlama ve analiz etme becerisiyle 

karakterize edilmektedir. Geleneksel görüntü işleme teknikleri genellikle kapsamlı manuel 

müdahale ve alan uzmanlığı gerektiren kural tabanlı veya sezgisel modellere dayanmaktadır. 

Ancak, yapay zekâ tabanlı yaklaşımlar, dikkate değer düzeyde doğruluk ve uyarlanabilirlik elde 

etmek için başta derin öğrenme çerçeveleri olmak üzere veri odaklı algoritmalardan 

yararlanmaktadır. Anlamlı analizi kolaylaştırmak için bir görüntüyü farklı bölgelere veya nesnelere 
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ayırma işlemi olan görüntü segmentasyonu, görsel verilerden anlamlı ve eyleme geçirilebilir 

içgörülerin çıkarılmasını sağlayan çok önemli bir süreç olarak ortaya çıkmıştır. Bu süreç, 

içgörülerin elde edilmesinde ve yüksek hassasiyet ve doğruluk gerektiren görevlerin yerine 

getirilmesinde çok önemli bir rol oynamaktadır. Tıbbi görüntülerdeki anormalliklerin tespit 

edilmesi, otonom araçlardaki nesnelerin tanımlanması ve endüstriyel ürünlerdeki kusurların 

izlenmesi gibi doğru ve güvenilir sonuçlar gerektiren uygulamalar için gerekli olmaktadır. 

Segmentasyon yönteminin seçimi, hesaplama kaynakları, istenen doğruluk ve uygulamanın özel 

gereksinimleri gibi faktörlere bağlı olmaktadır. Uygulamanın hız, doğruluk veya hesaplama 

verimliliği gibi gereksinimlerine bağlı olarak çeşitli segmentasyon teknikleri kullanılabilmektedir 

[83]. Bu bölümde, başlıca segmentasyon stratejileri ele alınmaktadır. 

2.3.1. Bölge Tabanlı Segmentasyon Yöntemleri 

Bölge tabanlı yöntemler, bir görüntü içindeki belirli ilgi alanlarını tanımlamaya odaklanır ve 

görüntüdeki nesneleri tanımlamak için belirli bölgeleri analiz eder. Bu yöntemler sınırlayıcı kutular 

veya tanımlanmış bölgeler içerir, bu durum onları nesne algılama ve örnek segmentasyon görevleri 

için etkili kılmaktadır [84]. Bu bölümde öne çıkan bölge tabanlı segmentasyon yöntemleri ve 

bunların avantajları ve sınırlamaları anlatılmaktadır. 

B-ESA 

Bölge tabanlı Evrişimsel Sinir Ağları (B-ESA), görüntülerdeki ilgi alanlarını belirlemek ve 

sınıflandırmak için evrişimsel sinir ağlarından yararlanan veri odaklı bir çerçeve sunmaktadır. B-

ESA, bir görüntüdeki nesneleri sistematik olarak konumlandırmak ve sınıflandırmak için 

tasarlanmış çok aşamalı bir işlem hattı aracılığıyla çalışmaktadır. İlk aşama, seçici bir arama 

algoritması kullanarak bölge önerileri oluşturmayı içermektedir. Bu öneriler, ilgili nesneleri içeren 

sınırlayıcı kutuları tanımlamaktadır. Sonraki aşamada, her bir sınırlayıcı kutu içindeki görüntü sabit 

bir boyuta yeniden boyutlandırılarak özellik çıkarımı için ESA’dan geçirilmektedir. Son olarak, 

genellikle DVM kullanılarak uygulanan bir sınıflandırıcı, önerilen her bölge içindeki nesnelerin 

varlığını ve kategorisini belirleyebilmektedir. Bölge önerme tekniklerini derin öğrenme ile 

birleştiren B-ESA, geleneksel nesne algılama yöntemleri ile modern sinir ağı mimarileri arasındaki 

boşluğu başarıyla doldurabilmektedir. Ayrıca bölge önerme, özellik çıkarma ve sınıflandırma için 

ayrı aşamalara güvenmek, önemli hesaplama ek yüküne neden olmaktadır [85].  

DHB-ESA 

DHB-ESA, özellik çıkarma ve sınıflandırmayı uçtan uca bir çerçeveye entegre ederek fazlalığı 

azaltmakta yaklaşımını daha da geliştirerek geleneksel seçim arama algoritması yerine doğrudan 

ESA çerçevesi içinde bölge önerileri oluşturan bir RPN (Bölge Öneri Ağı) sunarak özellik çıkarma 
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sürecinin bir parçası olarak bölge önerilerinin oluşturulmasını sağlamıştır. Bölge önerileri doğrudan 

ESA’ya uygulanmak yerine, görüntü önce ESA’ya uygulanır ve elde edilen özellik haritası 

üzerinden bölge önerileri çıkarılır. Bu durum, hesaplama yükünü azaltmakta ve işlem hızını 

iyileştirebilmektedir. Böylece bu yöntemi yüksek doğruluk ve verimlilik gerektiren görevler için 

tercih edilen bir seçenek haline getirmektedir [86]. 

Maskeli B-ESA 

Maskeli B-ESA (Maskeli Bölgesel Evrişimsel Sinir Ağları), nesne algılama çerçevesine örnek 

segmentasyon yetenekleri eklemek için tasarlanmış DHB-ESA’nın önemli bir uzantısını temsil 

etmektedir. Sınırlayıcı kutulara ve sınıf etiketlerine ek olarak piksel düzeyinde nesne maskelerini 

tahmin ederek algılama işlem hattını geliştirir. Bu katman, tıbbi görüntüleme, robotik ve otonom 

sistemler gibi hassas nesne tanımlama gerektiren görevlerde uygulanmasını sağlamaktadır. Maskeli 

B-ESA’nın mimarisi, maske tahminine adanmış paralel bir dal ekleyerek elde edilmiştir. DHB-

ESA RPN kullanarak nesneleri tespit etmeye ve sınırlayıcı kutuları iyileştirmeye odaklanırken, 

Maskeli B-ESA her nesne için ikili bir maske tahmin eden küçük, FCN ekler. Bölge hizalama ile 

ilgili zorlukları aşmak için Maskeli B-ESA, İlgi Bölgesi (RoI) Hizalama işlemini sunmaktadır. 

Niceleme hatalarına neden olabilen DHB-ESA’daki orijinal RoI Pooling'in aksine RoI Align, 

bilineer enterpolasyon kullanarak uzamsal hizalamayı korur. Bu değişiklik, özellikle küçük veya 

ince taneli nesneler için maske tahmin doğruluğunu önemli ölçüde artırmaktadır [87]. 

YOLO 

You Only Look Once (YOLO), görüntüyü bir ızgaraya bölerek sınırlayıcı kutuları ve sınıf 

olasılıklarını aynı anda tahmin etmektedir.  YOLO'nun birleşik mimarisi uçtan uca optimizasyonu 

kolaylaştırarak hem işlem hızında hem de tahmin doğruluğunda iyileştirmelere katkıda bulunur. 

YOLO modeli, giriş görüntüsünü bir S × S ızgarasına bölerek her bir ızgara hücresine B sınırlayıcı 

kutularını, güven puanlarını ve sınıf olasılıklarını tahmin etme sorumluluğu verilir. Güven puanı, 

modelin bir sınırlayıcı kutunun bir nesne içerdiğine dair tahminini ve sınırlayıcı kutu tahmininin 

kesinliğini yansıtır. Bu tasarım, YOLO'nun görüntüyü bütünsel olarak analiz etmesine ve 

tahminlerde bulunurken bağlamsal bilgileri dâhil etmesine olanak tanır. YOLO'nun en önemli 

özelliklerinden biri işlem hızı olarak bilinmektedir. Temel YOLO modeli görüntüleri saniyede 45 

kare hızında işleyebilir ve daha küçük bir versiyon olan Hızlı YOLO saniyede 155 kareye kadar 

hızlara ulaşabilmektedir. Bu performans seviyesi, YOLO'nun otonom sürüş ve video gözetimi gibi 

neredeyse gerçek zamanlı işleme gerektiren uygulamalar için çok uygun olabileceğini 

göstermektedir. Avantajlarına rağmen, YOLO'nun bazı sınırlamaları bulunmaktadır. Bazı tespit 

sistemlerine kıyasla daha fazla lokalizasyon hatası yaptığı ve görüntülerdeki küçük nesneleri doğru 

bir şekilde tespit etmede zorluklarla karşılaştığı gözlemlenmiştir [88]. 
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2.3.2. Piksel Tabanlı Segmentasyon Yöntemleri 

Piksel tabanlı yöntemler, bir görüntüdeki her pikseli analiz ederek her bir pikseli segmente etmeye 

odaklanmaktadır. Bu durum görüntüdeki tüm piksellerin bir kategoriye atanmasını sağlayarak daha 

ayrıntılı segmentasyon gerektiren durumlar için uygun hale getirmektedir. Piksel düzeyinde bilgi 

sağlayarak, özellikle semantik segmentasyon ve yoğun nesne algılama uygulamalarında avantaj 

sunmaktadır [89]. 

UNet 

FCN'ler ailesine ait olan UNet, ilk olarak biyomedikal görüntülerin segmentasyonunda 

uygulanmıştır. Mimarinin küçük veri kümeleriyle yüksek hassasiyet sunma yeteneği, onun tıbbi 

görüntüleme araştırmalarında tercih edilmesine sebep olmaktadır. Daralma yolu ve genişleme yolu 

olmak üzere birbirine bağlı iki bileşen etrafında toplanmıştır. Bu bileşenler, bağlamsal bilgileri 

çıkarmak ve görüntüler içinde doğru konumlandırma sağlamak için birlikte çalışmaktadır [90]. 

UNet mimarisi, adını aldığı ‘U’ şeklindeki tasarıma benzeyen simetrik bir yapı sergilemektedir. 

Genellikle kodlayıcı olarak adlandırılan daralma yolu, özellik çıkarma işleminden sorumlu 

olmaktadır. Bu yol, bir dizi evrişimsel katmandan oluşmakta ve her birinin ardından Doğrultulmuş 

Lineer Birim (ReLU) gibi bir aktivasyon fonksiyonu ve bir maksimum havuzlama işlemi 

gelmektedir. Bu adımlar, özellik haritalarının derinliğini artırırken uzamsal çözünürlüğü kademeli 

olarak azaltarak ağın üst düzey soyut özellikleri yakalamasını sağlamaktadır [90]. Öte yandan, 

genişleyen yol veya kod çözücü, orijinal girdinin uzamsal çözünürlüğünü yeniden oluşturmak için 

özellik haritalarını yukarı örneklemekle görevli olmaktadır. Bu, kodlayıcıda gerçekleştirilen 

uzamsal indirgemeyi tersine çeviren transpoze evrişimler yoluyla elde edilmektedir. UNet'in ayırt 

edici bir özelliği, kodlayıcı ve kod çözücüdeki ilgili katmanları doğrudan birbirine bağlayan atlama 

bağlantılarını kullanmasıdır. Bu bağlantılar, kenarlar ve dokular gibi düşük seviyeli özelliklerin 

kodlayıcıdan kod çözücüye aktarılmasını kolaylaştırır, böylece ince taneli uzamsal ayrıntıları korur 

ve genel segmentasyon doğruluğunu artırır [91]. 

UNet mimarisi çok çeşitli biyomedikal görüntüleme görevlerinde yaygın olarak kullanılmaktadır. 

Tümör segmentasyonu, organ tanımlama ve hücre yapısı analizi gibi alanlarda iyi performans 

göstermektedir. Hesaplama verimliliğini korurken ilgilenilen bölgeleri doğru bir şekilde 

segmentlere ayırma yeteneği, gerçek zamanlı veya gerçek zamana yakın analizin gerekli olduğu 

klinik ortamlarda önemli bir avantaj oluşturmaktadır [92]. UNet mimarisine ait detaylar Şekil 2.5’te 

sunulmuştur. 



27 

64

128

256

512

1024

64

128

256

512

 

Şekil 2.5. UNet ağ mimarisi [90] 

Attention UNet 

Attention UNet, UNet'in klasik kodlayıcı-kod çözücü yapısını korumaktadır. Kodlayıcı, evrişimsel 

ve havuzlama katmanları aracılığıyla özellik çıkarırken, kod çözücü bu özellikleri yukarı 

örnekleyerek segmentasyon haritasını yeniden yapılandırır. Tıbbi görüntüleme görevlerinde 

segmentasyon hassasiyetini artırmak amacıyla Dikkat Geçidi (AG) eklenerek geleneksel UNet 

mimarisi geliştirilmiştir. AG'ler, ilgili kodlayıcı ve kod çözücü katmanları arasındaki atlama 

bağlantılarına gömülüdür. Bu kapılar hem kodlayıcının özellik haritalarından hem de kod 

çözücünün yukarı örneklenmiş çıktılarından girdi alarak hangi kodlayıcı özelliklerinin mevcut kod 

çözme aşamasıyla alakalı olduğunu öğrenmelerini sağlamaktadır. Bu mekanizma, ağın farklı şekil 

ve boyutlardaki hedef yapılara odaklanmasını sağlayarak segmentasyon performansını 

artırmaktadır [93]. Attention UNet mimarisine ait detaylar Şekil 2.6’da sunulmuştur. 
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Şekil 2.6. Attantion Unet model mimarisi [93] 
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R2U-Net 

R2U-Net, özellik çıkarma ve segmentasyon performansını artırmak için tekrarlayan bağlantıları 

(recurrent connections) ve artık blokları (residual blocks) yapısına dâhil eden geleneksel UNet 

mimarisinin gelişmiş bir çeşididir. UNet'in klasik kodlayıcı-kod çözücü yapısını temel alırken, 

bağlamsal bilgileri yakalamak ve derin ağlarda sıklıkla karşılaşılan kaybolan gradyan 

probleminden kaçınmak için yeni yaklaşımlar sunmaktadır. R2U-Net'in kodlayıcı yolu, evrişimsel 

katmanın girişinin çıkışına eklenerek kısayol bağlantısı oluşturduğu artık blokları kullanır. Bu artık 

bloklar, modelin kimlik eşlemelerini öğrenmesini sağlayarak gradyan bozulmasını azaltmakta ve 

daha derin ağların eğitimini kolaylaştırmaktadır. Kodlayıcıdan kod çözücüye atlama bağlantıları 

korunarak düşük seviyeli uzamsal özelliklerin daha yüksek çözünürlüklü katmanlara aktarılması 

sağlanmaktadır [94]. R2U-Net mimarisine ait detaylar Şekil 2.7’de sunulmuştur. 

 

 

G
ir

iş
 g

ö
rü

n
tü

sü

Ç
ık

tı
 

S
e

g
m

a
n

ta
sy

o
n

h
a

ri
ta

sı

ReLU ile Tekrarlayan Üst-Konvülasyon birimi

ReLU ile tekrarlayan konvülasyon birimi

Max. Havuzlama (2x2)

Konvülasyon Trans. 3x3 + ReLU

Konvülasyon 1x1 + ReLU

Birleştirme ya da ekleme
 

Şekil 2.7. R2U-Net model mimarisi [94] 

U2-Net 

U2-Net, özellik çıkarımı için önceden eğitilmiş omurgalara dayanan geleneksel mimarilerin aksine 

hem derinlik hem de yüksek çözünürlüklü özellik haritalarını elde etmesini sağlayan artık U- 

blokları (RSU) ile tasarlanmıştır. Özellik haritalarını aşamalı olarak yükseltir ve bunları atlama 

bağlantıları aracılığıyla ilgili kodlayıcı çıktılarıyla birleştirir. Bu bloklar, her aşamada evrişimsel 

katmanları UNet benzeri yapılarla birleştirerek çok ölçekli özellik çıkarımını geliştirir. Özellik 

haritaları kodlayıcıda ilerledikçe, uzamsal çözünürlükleri azalırken anlamsal derinlikleri artar ve 
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küresel bağlamı etkili bir şekilde yakalar. Kod çözücü, beş aşamalı RSU ile kodlayıcı yapısını 

yansıtır. Özellik haritalarını aşamalı olarak yükseltir ve bunları atlama bağlantıları aracılığıyla ilgili 

kodlayıcı çıktılarıyla bütünleştirir. Her kod çözücü aşamasında ve son kodlayıcı aşamasında, 

belirginlik olasılığı haritaları (Saliency Map Fusion) oluşturulmaktadır. Bu haritalar daha sonra 1×1 

evrişimsel katman ile birleşmektedir [95]. U2-Net mimarisine ait detaylar Şekil 2.8’de 

sunulmuştur. 
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Şekil 2.8. U2-Net model mimarisi [95] 

UNet 3+ 

UNet 3+, tam ölçekli atlama bağlantıları ile derin süpervizyon kullanarak çok ölçekli özellik 

haritalarını birleştiren klasik UNet mimarisini gelişmiş hali olarak ifade edilmektedir. 

Sınıflandırma Tabanlı Modül (CGM), giriş görüntünün hedef nesneyi içerip içermediğini tahmin 

etmekte ve segmentasyon sonuçlarını buna göre ayarlamaktadır. Tam Ölçekli Atlama Bağlantıları: 

tüm kodlayıcı ve kod çözücü seviyelerinden özellik haritalarını toplamaktadır. Bu yaklaşım, daha 

düşük seviyeli katmanlardan gelen ince taneli ayrıntıları daha derin katmanlardan gelen yüksek 

seviyeli anlamsal bilgilerle birleştirir. Derin denetimle, kod çözücü aşaması, gerçek tarafından 

denetlenen segmentasyon tahminleri çıkarılarak sınır hassasiyetini artırılmaktadır [96] . UNet3+ 

mimarisine ait detaylar Şekil 2.9’da sunulmuştur. 
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Şekil 2.9. Unet 3+ model mimarisi [96] 

V-Net 

V-Net, 3B tıbbi görüntü segmentasyonu için tasarlanmış tam evrişimli sinir ağı olarak ifade 

edilmektedir. Geleneksel 2B yöntemlerden farklı olarak, V-Net tüm 3B hacmi işleyerek boyutlar 

arası uzamsal bağımlılıkları yakalar. Kodlayıcı bölümünde 3B evrişimler ve artık bağlantılarla 

özellik çıkarılırken, kod çözücü bölümünde ters evrişimler ve atlama bağlantıları ile segmentasyon 

haritası yeniden oluşturulur [97]. 

PSPNet 

Piramit Sahne Ayrıştırma Ağı (PSPNet), birden fazla ölçekte bağlamsal bilgiyi yakalamak için 

piramit havuzlama modülü kullanan anlamsal segmentasyon modeli olarak tanımlanmaktadır. 

PSPNet, küresel ve yerel bağlamsal özellikleri entegre ederek sahne ayrıştırma, çevre izleme ve 

tıbbi görüntüleme gibi çeşitli uygulamalarda segmentasyon doğruluğunu artırmayı 

amaçlamaktadır. PSPNet mimarisi, özellik çıkarma ağı yapıları kullanır ve genellikle ResNet veya 

DenseNet olarak adlandırılan bir omurga ağı üzerine inşa edilmiştir. Bu özellik haritaları, 

PSPNet'in ayırt edici özelliklerinden biri olan piramit havuzlama modülü aracılığıyla işlenmektedir. 

Farklı seviyelerdeki bu özellik haritaları bilineer enterpolasyon yoluyla yukarı örneklemeye tabi 

tutulur ve ardından birleştirilir. Ağ, piramit havuzlama modülü sayesinde bağlamsal bilgileri 

öğrenme yeteneğine sahiptir. Piramit havuzlama modülü, genellikle 1×1, 2×2, 3×3 ve 6×6 olmak 

üzere birden fazla ızgara ölçeğinde havuzlama işlemleri gerçekleştirmektedir. Havuzlama ile 

boyutu azaltmak için 1×1 evrişimsel işlem uygulanır. Piramit ağırlıklandırma modülünü kullanarak 

farklı bağlamlardan gelen bilgileri birleştirerek yüksek derecede doğruluk elde etmeyi amaçlayan 

anlamsal segmentasyon haritası PSPNet'i üretmek için bir evrişimsel katman kullanılmaktadır. Bir 

ESA türü olan PSPNet, farklı boyutlardaki özellikleri ayrıştırabilmektedir. Böylece farklı 
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ölçeklerdeki bilgileri birleştirerek nesnelerin daha doğru tanınmasını sağlayabilmektedir. 

PSPNet'in çok ölçekli özellikleri bir araya getirme yeteneği, bağlamsal öğrenme yeteneklerini 

geliştirerek farklı boyutlarda olan nesneler içeren sahneleri bölümlere ayırabilmektedir [98]. Bu 

özellik, PSPNet'i nesne deformasyonu ve uzamsal ölçekteki değişimleri ele almak için uygun hale 

getirmektedir. Benzer şekilde PSPNet, çok ölçekli bağlamsal bilgileri birleştirerek yüksek 

çözünürlüklü görüntüleri uzaktan algılama ile tarım alanlarının tanımlanmasını da 

sağlayabilmektedir [99]. 

𝑅 = ∑ (𝑀𝑖 + 𝑁𝑖 ) ⊗ 𝐾𝑖 𝐶 𝑖=1  (2.1) 

Denklem 2.1, önceden eğitilmiş özellik haritaları 𝑀𝑖 ve normalleştirme haritaları 𝑁𝑖 ile bunlara 

karşılık gelen öğrenilmiş matrisler 𝐾𝑖'nin eleman bazında çarpımını toplayarak PSPNet modelinin 

çıktısını hesaplar; burada 𝑖, 1 ile toplam sınıf sayısı 𝐶 arasında değişir. PSPNet mimarisine ait 

detaylar Şekil 2.10’da sunulmuştur. 
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Şekil 2.10. PSPNet model mimarisi [98] 

FPN 

Özellik Piramidi Ağı (FPN), nesne algılama ve görüntü segmentasyonu gibi alanlarda görüntülerin 

birden fazla ölçekte analizini geliştirmek için tasarlanmış bir derin öğrenme mimarisi olarak ifade 

edilmektedir. Ağın farklı seviyelerinden gelen bilgileri entegre eden bir özellik piramidi oluşturarak 

farklı boyutlardaki nesneleri tespit etme zorluğunu ele almaktadır. Bu durum, modelin hem ince 
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taneli hem de üst düzey anlamsal özellikleri yakalamasını sağlayarak girdi görüntüsünün kapsamlı 

bir şekilde anlaşılmasını sağlamaktadır [100]. 

FPN, farklı ölçeklerdeki özellik haritalarını aşağıdan yukarıya yollar ve yanal bağlantılarla 

birleştirerek bir özellik piramidi oluşturur. FPN mimarisi aşağıdan yukarıya yol ve yukarıdan 

aşağıya yol olmak üzere iki temel bileşene dayanmaktadır.  FPN'de aşağıdan yukarıya yol, 

görüntünün derin evrişimsel ağ altyapısından elde edilen özellik haritalarından oluşmaktadır. Bu 

haritalar, ResNet tabanlı modellerde “C2, C3, C4 ve C5” olarak adlandırılan ağın farklı 

aşamalarından elde edilen çıktıları ifade etmektedir. Bu seviyeler, C2'nin düşük seviyeli ayrıntıları 

yakalaması ve C5'in yüksek seviyeli, anlamsal bilgilere odaklanmasıyla daha derin özellikleri 

temsil eder [100, 101]. 

Buna karşılık, yukarıdan aşağıya yol, daha derin, anlamsal olarak daha zengin özellik haritalarını 

yukarı örnekleyerek uzamsal çözünürlüğü artırmayı amaçlamaktadır. Bu süreç sırasında, yanal 

bağlantılar aşağıdan yukarıya yolundaki özellik haritalarını yukarıdan aşağıya yolundaki karşılık 

gelen daha yüksek çözünürlüklü haritalarla birleştirir. Bu yanal bağlantılar, kanal sayısını azaltmak 

ve farklı yollardan gelen özellik haritalarının birleştirilebilmesini sağlamak için evrişimsel işlemleri 

içermektedir. Özellikle RPN ve HB-ESA gibi sistemlerde FPN'nin özellik piramidi, farklı boyut ve 

ölçeklerdeki nesnelerin daha iyi kapsanmasını sağlamaktadır. FPN, farklı ölçeklerdeki özelliklerin 

çıkarılmasını sağlar ve bu özellikleri entegre ederek ağın öğrenme yeteneğini artırır [102, 103]. 

FPN mimarisine ait detaylar Şekil 2.11’de sunulmuştur. 
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Şekil 2.11. FPN model mimarisi [100] 

LinkNet 

LinkNet, ağı, hesaplama verimliliğini korurken doğru segmentasyon sonuçları elde etmek için 

evrişimsel katmanlar, alt örnekleme ve üst örnekleme mekanizmalarından yararlanmaktadır. Her 

bir evrişimsel katmanı toplu normalizasyon ve ReLU aktivasyon fonksiyonu takip ederek eğitim 

sırasında kararlılığı sağlamakta ve ağın yakınsamasını iyileştirmektedir. LinkNet, giriş 

görüntüsünden hiyerarşik özellikleri çıkarmak için bir kodlayıcı ve bu özellikleri orijinal 

çözünürlüğün bir segmentasyon haritasına yeniden yapılandırmak için bir kod çözücü kullanmayı 

içermektir. Bu süreç, kodlayıcıyı kod çözücüye doğrudan bağlayan atlama bağlantıları aracılığıyla 
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ara özellikleri kodlayıcıdan kod çözücüye doğrudan aktarır. Atlama bağlantılarının kullanımı, ağın 

daha derin özellikleri öğrenmesini ve ardından bu özellikleri doğru segmentasyon elde etmek için 

kullanmasını sağlamaktadır. Bu bağlamda, LinkNet, ara özellikleri kod çözücüye aktarmak için 

hızlı bir yol sunarak, ağın özellik haritalarını hızlı bir şekilde dönüştürme olasılığını arttırmaktadır. 

Bu yapı, alt örnekleme (/2) ve üst örnekleme (*2) işlemleri ile birlikte, her bir evrişimsel katmanı 

takip eden toplu normalizasyon ve ReLU aktivasyon fonksiyonları kullanmaktadır. LinkNet'in 

kodlayıcı kısmı, 3x3 maksimum havuzlama kullanarak 7x7 boyut ve adım 2 ile başlar. Bu yapı, 

ResNet18 gibi daha hafif ancak daha üstün bir kodlayıcı olarak hizmet vermektedir. ResNet18, 

derin öğrenme alanında yaygın olarak kullanılan bir mimari olup, derinlik ve performans arasında 

bir denge kurarak daha karmaşık özelliklerin öğrenilmesine olanak tanımaktadır. Ağın bir kodlayıcı 

olarak ResNet18'e dayanması, ResNet18'in derinlik ve parametre verimliliği arasında iyi bir denge 

sunması nedeniyle bu tür uygulamalar için uygunluğunu daha da güçlendirmektedir. Ek olarak, 

kodlayıcı, kaybolan gradyan problemi için daha derin ağ mimarilerini kolaylaştıran artık blokları 

içermektedir [104]. LinkNet mimarisine ait detaylar Şekil 2.12’de sunulmuştur. 
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Şekil 2.12. LinkNet model mimarisi [104] 
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2.3.3. Omurga Modelleri 

Omurga modeller derin öğrenmede, özellikle bilgisayarlı görüde, çoğunlukla büyük bir veri kümesi 

üzerinde eğitilmiş ve genel özellikleri öğrenmiş, birincil özellik çıkarıcılar olan ağ yapılarıdır [105].  

Büyük veri kümeleri üzerinde önceden eğitilen bu modeller segmentasyon, genel nesne tanıma, 

sınıflandırma ve özellik çıkarma gibi görevlerde yaygın olarak kullanılmaktadır. Uygun bir omurga 

modelinin seçilmesi, genel sistemin performansını ve verimliliğini önemli ölçüde 

etkileyebilmektedir. Önceden eğitilmiş bir omurga modeli kullanmak transfer öğrenme avantajları 

sağlamaktadır. Bu transfer öğrenme, genel özelliklerin zaten öğrenilmiş olduğu ve öğrenme 

sürecinin daha hızlı ve verimli bir şekilde gerçekleşebileceği anlamına gelmektedir. Özellikle 

segmentasyonda, önceden eğitilmiş bu modeller daha az etiketli veri ile yüksek performans elde 

edilmesini sağlamaktadır. Bu modellerin başarısı, belirli bir segmentasyon görevi için uygunlukları 

ve performansları değerlendirilirken dikkate alınması gerekmektedir. Bu nedenle, omurga 

modellerinin dikkatli bir şekilde seçilmesi ve uygulanması, görüntü segmentasyonunun genel 

performansını önemli ölçüde etkileyebilmektedir. Omurga modelleri, öğrenilen genel özelliklerden 

yararlanarak daha az hesaplama ile yüksek performans elde edebilmektedir [106]. 

VGG 

VGG (Görsel Geometri Grubu), derinliğin artırılmasıyla daha iyi özellik çıkarımı sağlamak 

amacıyla tasarlanmıştır. Mimari, derinliği artırmak için istiflenmiş bir dizi 3x3 evrişimli katman ve 

ardından uzamsal azaltma için maksimum havuzlama katmanları kullanmaktadır. Bu tasarım, ağın 

derin hiyerarşik temsiller aracılığıyla karmaşık özellikleri yakalamasını sağlamaktadır. VGG-11 ve 

VGG-16 gibi versiyonları, derin öğrenme yöntemleri ile yaygın olarak kullanılmaktadır.  VGG16 

nispeten basit bir mimari sergilemekte ancak daha az parametre ile bile yüksek doğruluk elde 

edebilmektedir [46]. Orijinal VGG modelleri olan VGG16 ve VGG19, sırasıyla 16 ve 19 ağırlık 

katmanı içermektedir. VGG16 ve VGG19, genelleştirilebilir özellikleri öğrenme yetenekleri 

nedeniyle transfer öğrenmede yaygın olarak kullanılmaktadır. Bununla birlikte, mimarilerinin 

basitliği bir değiş tokuşla birlikte gelmekte: modeller hesaplama açısından pahalı, önemli bellek ve 

işlem gücü gerektirmektedir [107].   

ResNet 

ResNet, derin ağların eğitiminde karşılaşılan kaybolan gradyan problemini çözmek için tasarlanmış 

bir mimari olarak ifade edilmektedir. Artık bağlantılar içeren ResNet, gradyanların belirli 

katmanları atlamasına izin vererek derinliği önemli ölçüde artırılmış ağların eğitimini 

kolaylaştırmaktadır. Artık bağlantılar, kaybolan gradyanlarla ilgili sorunları etkili bir şekilde 

azaltarak 100 katmanı aşan ağların performans düşüşü olmadan eğitilmesini sağlamaktadır. 

ResNet'teki en önemli yenilik, geriye yayılma sırasında gradyanın belirli katmanları atlamasına izin 
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veren artık bağlantıların kullanılmasıdır. Bu mimari, ResNet50 ve ResNet101 gibi derin ağların 

performans düşüşü olmadan eğitilmesini kolaylaştırır. ResNet50, ResNet modelinin bir 

versiyonudur ve daha derin ağlardaki optimizasyon sorunlarını ele almak için atlama bağlantıları 

içermektedir. Atlama bağlantılarının dâhil edilmesi optimizasyonu geliştirerek ağın daha verimli 

bir şekilde öğrenmesini sağlamaktadır [108]. 

Inception 

Inception mimarisi, her modülde çok dallı bir yapı kullanarak ağın aynı anda birden fazla ölçekte 

bilgi işlemesine olanak tanımaktadır ve farklı boyutlarda filtrelerin aynı katmanda kullanılmasına 

olanak tanıyarak, modelin daha esnek ve güçlü olmasını sağlamaktadır. Bu tasarım, çeşitli 

özelliklerin yakalanmasını sağlayarak modelin karmaşık örüntüleri tanıma becerisini artırmaktadır. 

Inception-v3 ve Inception-v4 gibi versiyonları, çarpanlara ayrılmış evrişimler ve azaltılmış ızgara 

boyutu gibi optimizasyonlar getirerek mimarinin yeteneklerini daha da geliştirmiştir [109]. 

InceptionV3, paralel olarak işlenen farklı ölçeklerdeki özellik haritalarını birleştirerek karmaşık 

bilgileri daha etkili bir şekilde temsil ederken, InceptionResNetV2 modeli Inception mimarisini 

daha derin ağlarla birleştirerek daha fazla derinlik ve verimlilik sağlar [110]. 

ResNeXt 

ResNeXt, gruplandırılmış evrişimler kullanarak doğruluğu ve verimliliği artırmak için tasarlanmış 

evrişimsel sinir ağı mimarisi olarak ifade edilmektedir. Bir yapı bloğunu birden çok kez tekrarlayan 

modüler bir tasarım sunar ve her blok girişi paralel evrişimsel yollarla işler. Ağın derinliğini veya 

genişliğini artırmaya odaklanan ResNet'in aksine, ResNeXt doğruluğu artırmak için çok dallı 

topolojiyi vurgular. ResNeXt'teki her dal, girdi üzerinde dönüşümler gerçekleştirir ve çıktıları 

toplanarak modelin hesaplama verimliliğini korurken çeşitli özellik temsillerini öğrenmesine 

olanak tanımaktadır [111]. 

DenseNet 

DenseNet, her katmanı ileri beslemeli bir şekilde diğer tüm katmanlara bağlamaktadır.  Bu model, 

katmanlar arasında maksimum bilgi akışı sağlayarak özelliklerin yeniden kullanımını ve gradyan 

yayılımını iyileştirir. DenseNet'in, diğer mimarilere göre daha az parametre ile daha iyi performans 

sağlayabilmektedir. Bu özellik, DenseNet'in özellikle sınırlı veri setleri ile çalışırken avantaj 

sağladığını göstermektedir. DenseNet121 ve DenseNet169 gibi versiyonları bulunmaktadır. 

Bunlardan DenseNet121, katmanlar arasındaki yoğun bağlantılarıyla bilinen, özelliğin yeniden 

kullanımını kolaylaştıran ve parametre verimliliğini artıran her iki evrişimli sinir ağı mimarisidir 

[112]. 

 



36 

Squeeze-and-Excitation Modeli 

SE modeli, her bir özellik haritasının önemini öğrenerek, ağın daha etkili bir şekilde çalışmasına 

ve kanal bazında özelliklerin yeniden kalibrasyonuna odaklanmaktadır. SE blokları, kanallar 

arasındaki karşılıklı bağımlılıkları modelleyerek özellik yanıtlarını uyarlamalı olarak yeniden 

kalibre etmekte ve ağın temsil kapasitesini artırmaktadır. SEResNeXt50 modeli ResNeXt ile 

birleşimi ile oluşturulmuştur [113]. 

EfficientNet 

EfficientNet, bir dizi sabit ölçeklendirme katsayısı kullanarak ağ derinliğini, genişliğini ve 

çözünürlüğünü eşit şekilde ölçeklendiren bileşik ölçeklendirme yöntemi önermektedir. Özellikle 

hesaplama kaynaklarının sınırlı olduğu durumlarda avantaj sağlamaktadır. EfficientNetB7 bileşik 

ölçeklendirme yoluyla performansı artırmaktadır. EfficientNet'in, diğer mimarilere göre daha az 

hesaplama gücü ile daha iyi sonuçlar sağladığı görülmüş olup EfficientNet, mobil ve gömülü 

sistemler gibi kaynak kısıtlı durumlarda yüksek doğruluk elde edebilmektedir [114]. 

MobileNet 

MobileNet, mobil ve gömülü cihazlarda çalıştırılmak üzere tasarlanmıştır. Parametre sayısını ve 

hesaplama maliyetini azaltmak için derinlemesine ayrılabilir evrişimler kullanmaktadır. 

MobileNetV2 ve MobileNetV3 versiyonları, ters çevrilmiş artıklar ve doğrusal darboğazlar gibi 

optimizasyonlar sunmaktadır. MobileNet modelleri hafif tasarımları, düşük bellek ayak izleri ve 

minimum işlemci gereksinimleri nedeniyle mobil gerçek zamanlı uygulamalarda tercih 

edilmektedir [115]. 

Swin Transformer 

Swin Transformer, geleneksel Vision Transformer yapısını geliştirmek amacıyla, lokal pencere 

temelli bir mekanizma ve kaydırılmış pencere yaklaşımı kullanmaktadır. Swin Transformer, giriş 

görüntüsünü sabit boyutlu pencerelere bölerek her bir pencere içinde dikkat mekanizmalarını 

uygular ve bu sayede hesaplama karmaşıklığını önemli ölçüde azaltmaktadır. Modelin dikkat 

hesaplamasında kullandığı temel bileşen "Scaled Dot-Product Attention" formülü ile ifade 

edilmektedir [116]: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) =  Softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (2.2) 

Burada 𝑄 (Sorgu), 𝐾 (Anahtar) ve 𝑉 (Değer) giriş tensörlerini, 𝑑𝑘 ise dikkat vektörünün boyutunu 

temsil etmektedir. Swin Transformer'ın en önemli yeniliklerinden biri olan kaydırılmış pencere 

mekanizması, pencereler arasındaki bilgi akışını artırmak için her bir katmanda pencerelerin 

sınırlarını değiştirir. Bu yaklaşım, küçük boyutlu nesnelerin veya detayların daha iyi temsil 
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edilmesini sağlamaktadır. Ek olarak, Swin Transformer çoklu ölçekli (multi-scale) özellik çıkarımı 

gerçekleştirebilmek için aşamalı bir yapı kullanmaktadır. Bu yapı, özellik haritası boyutlarını her 

aşamada küçültürken, kanal boyutlarını artırarak detayları korumayı hedeflemektedir. Özellik 

çıkarım süreci 𝑊 ve 𝐻 boyutlarındaki bir giriş görüntüsü için aşağıdaki şekilde ifade edilmektedir 

[116]: 

𝐹𝑜𝑢𝑡 =  LayerNorm(Linear(𝐹𝑖𝑛)) (2.3) 

Burada 𝐹𝑖𝑛, girişten gelen özellik haritası; 𝐹𝑜𝑢𝑡 ise işlem sonrası üretilen yeni özellik haritasını 

ifade etmektedir. Swin Transformer, bu yapı sayesinde hem küçük hem de büyük ölçekli nesneleri 

daha etkili bir şekilde öğrenebilir ve segmentasyon, sınıflandırma gibi farklı görevlerde başarılı 

sonuçlar elde edebilmektedir [116]. Swin Transformer mimarisine ait detaylar Şekil 2.13’te 

sunulmuştur. 
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Şekil 2.13. Swin Transformer mimarisi [116] 

2.4. Performans Metrikleri 

Bu tez çalışması kapsamında önerilen yöntemlerin performansı karmaşıklık matrisi kullanılarak 

hesaplanmıştır. Karmaşıklık matrisi, segmentasyon modellerinin performans analizinde kullanılan 

temel araçlardan biri olarak ifade edilmektedir. Modelin tahmin gücünü detaylı bir şekilde 

değerlendirebilmek için, gerçek sınıflar ile tahmin edilen sınıflar arasındaki ilişki doğru pozitif, 

doğru negatif, yanlış pozitif ve yanlış negatif olmak üzere dört farklı durum üzerinden ele 

alınmaktadır. Bu durumlar, modelin farklı senaryolardaki başarı ve başarısızlık düzeylerini ortaya 

koyarak, performans analizi sürecinde kritik bir rol üstlenmektedir. Bu matris, modelin tahminlerini 

doğru veya yanlış değerlendirerek hata türlerini incelemeye olanak tanımaktadır. Böylece, farklı 

modellerin avantaj ve dezavantajları net bir şekilde ortaya konularak kıyaslama işlemleri daha etkin 

bir şekilde gerçekleştirilebilmektedir [117]. 
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Tablo 2.1. Karmaşıklık Matrisi 
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Pozitif DP YN 

Negatif YP DN 

 

Tablo 2.1’de yer alan satırlar, test verilerinin gerçek sınıflarını; sütunlar ise modelin yaptığı 

tahminleri ifade etmektedir. DP, doğru şekilde pozitif sınıfa atanan pikselleri; DN, doğru şekilde 

negatif sınıfa atananları; YP, yanlış şekilde pozitif sınıfa atanan pikselleri ve YN, yanlış biçimde 

negatif sınıfa atanan pikselleri temsil etmektedir. Bu çalışmada, karmaşıklık matrisi kullanılarak 

doğruluk, hassasiyet, kesinlik, IoU, hassasiyet, özgüllük ve F1 skor metrikleri hesaplanmıştır. IoU 

değeri tahmin edilen segmentasyon haritası ile gerçek etiketli görüntü arasındaki örtüşmeyi ölçer 

ve bu örtüşmenin kesişen alanın yüzdesi olarak ifade edilir. Doğruluk metriği, doğru tahminlerin 

toplam tahmin sayısına oranı üzerinden modelin genel başarı düzeyini belirler. Kesinlik, tahmin 

edilen tüm pozitifler arasında doğru tanımlanan pozitif örneklerin oranını değerlendirerek pozitif 

tahminlerin doğruluğunu ortaya koyar. Hassasiyet ise, doğru şekilde tespit edilen gerçek 

pozitiflerin oranını ölçer ve özellikle yanlış negatiflerin en aza indirmenin kritik olduğu sağlık 

hizmetleri gibi alanlarda uygulanmaktadır. F1 skoru, hassasiyet ve kesinlik değerlerini tek bir 

metrikte birleştirerek modelin dengesiz veri kümelerini işleme kapasitesini bütünsel bir şekilde 

temsil eder. Özgüllük metriği, negatif sınıfa ait örneklerin doğru bir şekilde tespit edilme oranını 

ölçerek, yanlış pozitifleri en aza indirme yeteneğini değerlendirir ve özellikle yanlış pozitiflerin 

maliyetinin yüksek olduğu durumlarda kritik bir metrik olarak öne çıkar. ROC eğrisi hassasiyet ve 

özgüllük arasındaki ilişkiyi grafiksel olarak sunarak modelin farklı eşik değerlerindeki 

performansını görselleştirir. AUC, sınıflandırma modelinin genel performansını temsil eder; 

AUC’nin 1’e yakın olması, modelin daha yüksek performans gösterdiğinin bir göstergesi olarak 

kabul edilir [117]. Tüm bu performans metrikleri, modelin gücünü ve zayıf yönlerini daha ayrıntılı 

şekilde değerlendirmek için kullanılmaktadır. Bu performans metrikleri ile ilgili matematiksel 

ifadeler şu şekilde tanımlanmıştır: 

𝐼𝑜𝑈 =   
𝐷𝑃

(𝐷𝑃+𝑌𝑃+𝑌𝑁)
 (2.4) 

𝐹  𝑆𝑘𝑜𝑟 =  ∗ 
𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘∗𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡
 (2.5) 

 𝑜ğ𝑟𝑢𝑙𝑢𝑘 =  
𝐷𝑃+𝐷𝑁

𝐷𝑃+𝐷𝑁+𝑌𝑃+𝑌𝑁
  (2.6) 
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𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 =  
𝐷𝑃

𝐷𝑃+𝑌𝑃
 (2.4) 

𝐻𝑎𝑠𝑠𝑎𝑠𝑖𝑦𝑒𝑡 =  
𝐷𝑃

𝐷𝑃+𝑌𝑁
 (2.8) 

Ö𝑧𝑔ü𝑙𝑙ü𝑘 =  
𝐷𝑁

𝐷𝑁+𝑌𝑃
 (2.9) 



 

 

3. DİŞ HASTALIKLARI VERİ KÜMESİNİN 

HAZIRLANMASI 

3.1. Literatürde Yer Alan Veri Kümeleri 

Bu tez çalışması kapsamında, literatürde bulunan açık erişimli üç farklı veri kümesi detaylı bir 

şekilde incelenmiştir. İncelenen bu veri kümeleri, panoramik diş röntgen görüntülerinden 

oluşmaktadır. Bu veri kümelerindeki görüntüler ayrıntılı olarak analiz edilmiş ve anatomik 

yapıların tespiti için yüksek çözünürlüklü görüntüler seçilerek yeni bir veri kümesi oluşturulmuştur. 

Bu panoramik diş görüntülerinden oluşan veri kümesi gömülü dişlerin yüksek kaliteli görüntülerini 

içermektedir. Her bir veri kümesi, uzman tarafından özenle etiketlenmiş ve çalışmanın hedeflerine 

uygun bir formata dönüştürülmüştür. Etiketleme sürecinde, diş hastalıkları ve dişlerin anatomik 

yapıları detaylı bir şekilde tanımlanmış, böylece veri kümeleri daha kapsamlı bir inceleme ve analiz 

ortamı oluşturulacak şekilde hazırlanmıştır. Böylece, çalışmanın sonuçlarının daha geniş bir diş 

popülasyonuna uygulanabilirliği artırılarak, gelecek çalışmalara temel oluşturacak nitelikte bir veri 

kümesi oluşturulmuştur. Oluşturulan veri kümesine ait ayrıntılı bilgi Tablo 3.1’de sunulmuştur. 

Tablo 3.1. Literatürde yer alan veri kümelerinden oluşturulan yeni veri kümesi detayları 

Kaynak Veri Kümeleri Veri Miktarı Veri Türü Kullanılan Veri Sayısı 

[45] Veri Kümesi-1 304 adet 540x380, png 304 

[118] Veri Kümesi-2 598 adet 2041x1024, jpg 53 

[119] Veri Kümesi-3 116 adet 3100x1300, png 50 

3.1.1. Gömülü Diş Veri Kümesi 

Gömülü dişlerin tespiti için oluşturulan veri kümesi, üç farklı kaynaktan elde edilen panoramik 

radyografi görüntülerinden oluşmaktadır. Veri Kümesi-1’deki panoramik radyografi görüntüler 

yerel bir diş kliniğinden elde edilmiştir, bu veri kümesinden 304 adet görüntü seçilmiştir. Veri 

Kümesi-2 açık erişimli bir dental görüntü havuzundan elde edilmiştir ve bu veri kümesinden 53 

adet görüntü seçilmiştir. Özel bir dental görüntüleme laboratuvarından elde edilen Veri Kümesi-3, 

anatomik yapıların ayrıntılı bir şekilde görülebilmesini sağlayan yüksek çözünürlüklü 

görüntülerden oluşmuştur, bu veri kümesinden 50 adet görünü seçilmiştir. Her görüntü, alanında 

uzman tarafından dikkatlice seçilerek etiketlenmiştir. Matlab Image Labeler programı kullanılarak 

marjinler, kronlar ve kökler dâhil olmak üzere gömülü diş bölgelerinin manuel olarak işaretlenmesi 

için kullanılmıştır. Şekil 3.1’de oluşturulan veri kümesinden seçilen gerçek panoramik radyografi 

görüntüleri ve bu panoramik radyografilerde gömülü dişin etiketlenmiş maskeleri gösterilmektedir. 
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Örnek 1 Örnek 2 Örnek 3 Örnek 4 Örnek 5 Örnek 6

Maske 1 Maske 2 Maske 3 Maske 4 Maske 5 Maske 6

 

Şekil 3.1. Birleştirilmiş veri kümesinden örnek görüntüler (gömülü diş) 

Etiketli maskeler, gömülü dişler beyaz pikselleri ve arka plan siyah pikselleri ifade etmek üzere 

ikili segmentasyon haritalarından oluşmaktadır. Bu maskeler segmentasyona ve modelin 

eğitilmesine olanak sağlamıştır. Şekil 3.1'de kısmen gömülü dişler ve anatomik olarak karmaşık 

vakalar da dâhil olmak üzere veri kümesinden çeşitli örnekler gösterilmektedir. Farklı 

kaynaklardan alınan veri kümelerinin bir araya getirilmesi, modelin farklı klinik senaryolarda etkili 

bir şekilde genelleme yapabilmesini sağlamıştır. Veri Kümesi-3’teki yüksek çözünürlüklü 

görüntüler modelin ince taneli segmentasyon görevlerindeki performansını önemli ölçüde 

artırırken, Veri Kümesi-2’nin sağladığı çeşitlilik modelin sağlamlığını artırmıştır. 

3.2. Toplanan Veri Kümelerinin Diş Hastalıklarına Göre Listelenmesi 

Tez çalışması kapsamında, ayrıca diş hastalıklarının tespiti ve analizi amacıyla özel olarak 

hazırlanan veri kümeleri kullanılmıştır. Bu veri kümeleri, çürük diş ve enfeksiyon olmak üzere bu 

iki diş hastalıklarını kapsayacak şekilde etik kurallar çerçevesinde oluşturulmuş ve uzman 

denetiminde detaylı bir şekilde etiketlenmiştir. Veri kümelerinin hazırlanması sırasında hem klinik 

gereklilikler hem de yapay zekâ tabanlı analizlerde ihtiyaç duyulan kriterler göz önünde 

bulundurulmuştur. Ayrıca etik kurulumuzdan gerekli onay alınarak çalışmanın hem bilimsel hem 

de etik gerekliliklere uygun şekilde yürütülmesi sağlanmıştır. Her iki veri kümesi de yapay zekâ 

tabanlı yöntemlerin geliştirilmesi ve test edilmesi amacıyla kullanılmıştır. Bu veri kümeleri, diş 

hastalıklarının teşhisinde yüksek doğruluk oranlarına ulaşılmasını sağlamanın yanı sıra gelecekteki 

çalışmalar için bir temel oluşturmayı hedeflemektedir. Bu bağlamda, çalışmamızda kullanılan veri 

kümesinin özgünlüğü ve etik kurallara uygun olarak hazırlanmış olması, araştırmanın bilimsel 

değerini artırmaktadır. Toplanan panoramik görüntülerden oluşturulan veri kümelerine ait ayrıntılı 

bilgiler Tablo 3.2’de sunulmuştur. 
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Tablo 3.2. Toplanan özgün veri kümeleri detayları 

Veri Kümeleri Veri Sayısı Veri Türü 

Çürük 474 adet 540x380, png 

Enfeksiyon 378 adet 1784x797, png 

3.2.1. Enfeksiyon Veri Kümesi  

Enfeksiyonların tespiti için hazırlanan veri kümesinde, diş enfeksiyonları ve çevre dokular 

üzerindeki etkileri içeren panoramik görüntüler yer almaktadır. Uzman bir diş hekiminin 

gözetiminde, enfeksiyonların türüne ve yayılımına göre detaylı bir etiketleme işlemi 

gerçekleştirilmiştir. Etiketleme sırasında enfeksiyon bölgeleri, etkilenen dokular ve olası 

komplikasyonlar dikkatlice işaretlenmiştir. Bu veri kümesi, toplamda 378 adet görüntü 

içermektedir ve enfeksiyon çeşitliliği açısından zengin bir yapıya sahiptir. Veri kümesi, 

enfeksiyonların erken teşhisi ve ilerlemiş vakaların sınıflandırılması açısından önemli bir kaynak 

olarak kullanılmaktadır.  

Tez çalışması kapsamında oluşturulan veri kümesi odontojenik enfeksiyonların tespiti için, 

panoramik diş röntgenlerinin etiketleme sürecinde enfeksiyonun yayılım alanları ve lezyon 

bölgeleri detaylı bir şekilde uzman desteğiyle işaretlenmiştir. Bu amaçla, Matlab Image Labeler 

programı kullanılarak enfeksiyonun sınırları ve etkilediği bölgeler manuel olarak belirlenmiştir. 

Uzman eşliğinde, radyografik bulgulara dayanarak enfeksiyonun yoğunluk ve yayılım durumlarını 

değerlendirerek, çalışmanın analiz ihtiyaçlarına uygun bir veri kümesi hazırlanmıştır. Panoramik 

radyografilerin yer aldığı bu veri kümesi enfeksiyonun ayrıntılı bir şekilde görülebilmesini 

sağlayan yüksek çözünürlüklü görüntülerden oluşmaktadır. Şekil 3.2’de oluşturulan veri kümesine 

ait örnek görüntüler yer almaktadır. 

Örnek 1 Örnek 2 Örnek 3 Örnek 4 Örnek 5 Örnek 6

Maske 1 Maske 2 Maske 3 Maske 4 Maske 5 Maske 6

 

Şekil 3.2. Özgün veri kümesinden örnek görüntüler (enfeksiyon) 

Etiketli maskeler, enfeksiyon bölgelerini beyaz pikseller ve arka planı siyah pikseller olarak ifade 

etmek üzere ikili segmentasyon haritalarından oluşmaktadır. Bu maskeler, segmentasyon ve 

modelin eğitilmesine olanak sağlamıştır. Şekil 3.2'de odontojenik enfeksiyonların yayılım 
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alanlarını ve lezyon bölgelerini içeren veri kümesinden çeşitli örnekler gösterilmektedir. Tek bir 

kaynaktan elde edilen yüksek çözünürlüklü panoramik görüntüler, enfeksiyonun detaylı bir şekilde 

analiz edilmesine olanak sağlamış ve modelin ince taneli segmentasyon görevlerindeki 

performansını önemli ölçüde artırmıştır. Uzman desteğiyle oluşturulan bu veri kümesi, enfeksiyon 

tespiti için güvenilir ve kapsamlı bir eğitim ortamı sağlamıştır. 

3.2.2. Çürük Diş Veri Kümesi 

Çürük dişlerin tespiti için hazırlanan veri kümesi, ağız içi panoramik görüntülerden oluşmaktadır. 

Bu veri kümesi, diş çürüklerinin farklı aşamalarını ve tiplerini içerecek şekilde uzman diş hekimi 

eşliğinde etiketlenmiştir. Etiketleme sürecinde çürüklerin sınıflandırılması için klinik kriterler 

temel alınmış ve görüntüler üzerinde her bir çürük bölgesi işaretlenmiştir. Toplamda, farklı yaş 

grubundaki bireylerden elde edilen 474 adet görüntü kullanılmıştır. Veri kümesi, çürüklerin 

derinlik, yayılım ve etkilediği diş yapısını dikkate alarak kapsamlı bir şekilde hazırlanmıştır. Bu 

süreç, hem teşhis algoritmalarının doğruluğunu artırmak hem de daha genel uygulanabilirliği olan 

bir model geliştirmek için kritik önem taşımaktadır.  

Tez çalışması kapsamında oluşturulan veri kümesi, çürük dişlerin tespiti için panoramik diş 

röntgenlerinin etiketleme sürecinde çürük alanlarının konumları ve boyutları detaylı bir şekilde 

uzman desteğiyle işaretlenmiştir. Bu amaçla, Matlab Image Labeler programı kullanılarak çürük 

bölgelerinin sınırları ve etkilediği diş yapıları manuel olarak belirlenmiştir. Uzman eşliğinde, 

radyografik bulgulara dayanarak çürüğün yayılma derecesi ve yoğunluğunu değerlendirerek, 

çalışmanın analiz ihtiyaçlarına uygun bir veri kümesi hazırlanmıştır. Panoramik radyografilerin yer 

aldığı bu veri kümesi, çürük dişlerin ayrıntılı bir şekilde görülebilmesini sağlayan yüksek 

çözünürlüklü görüntülerden oluşmaktadır. Şekil 3.3’te oluşturulan veri kümesine ait örnek 

görüntüler yer almaktadır. 

Örnek 1 Örnek 2 Örnek 3 Örnek 4 Örnek 5 Örnek 6

Maske 1 Maske 2 Maske 3 Maske 4 Maske 5 Maske 6

 

Şekil 3.3. Özgün veri kümesinden örnek görüntüler (çürük diş) 

Etiketli maskeler, çürük alanlarını beyaz pikseller ve arka planı siyah pikseller olarak ifade eden 

ikili segmentasyon haritalarından oluşmaktadır. Bu maskeler, çürük tespiti segmentasyonu ve 
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modelin eğitilmesine olanak sağlamıştır. Şekil 3.3'te veri kümesinden alınan çeşitli panoramik diş 

görüntüleri ile birlikte çürük bölgelerinin belirgin şekilde işaretlenmiş örnekleri gösterilmektedir. 

Tek bir kaynaktan elde edilen bu veri kümesinin yüksek çözünürlüklü görüntüler içermesi, 

çürüklerin ince taneli detaylarının doğru bir şekilde segmentasyonunu sağlamış ve modelin 

performansını önemli ölçüde artırmıştır. Uzman tarafından özenle etiketlenmiş veri kümesi, 

modelin doğruluk ve genelleme yeteneğini güçlendirmiştir, böylece çürük tespiti için sağlam bir 

temel oluşturulmuştur. 



 

 

4. PANORAMİK DİŞ RÖNTGENLERİNDE GÖMÜLÜ DİŞ TESPİTİ 

Bu bölümde panoramik radyografi görüntülerinden gömülü diş tespiti için UNet, FPN, PSPNet ve 

LinkNet segmentasyon modelleri karşılaştırılmıştır. Gömülü diş segmentasyonu için dört 

segmentasyon modellerinin her birine VGG16, ResNet101, ResNeXt101, InceptionV3, 

InceptionResNetV2, DenseNet121, SEResNet101, SEResNeXt101, MobileNet ve EfficientNetB7 

olmak üzere 10 farklı omurga ağı uygulanmıştır. Modellerin performansı kesinlik, hassasiyet, IoU 

skoru ve F1 skoru performans metrikleri ile değerlendirilmiştir. Tez kapsamında gerçekleştirilen 

bu çalışma, panoramik radyografi görüntülerinde gömülü diş tespiti için daha fazla araştırma ve 

model geliştirmenin önemini vurgulamaktadır.   

4.1. Veri Kümesi  

Bu çalışmada, panoramik radyografi görüntüleri içeren üç veri kümesi kullanılmıştır. Bu veri 

kümelerindeki görüntüler ayrıntılı olarak analiz edilmiş ve gömülü diş tespiti için toplamda 407 

adet yüksek çözünürlüklü görüntü seçilerek yeni bir veri kümesi oluşturulmuştur. Bu veri kümesi 

ile çalışmanın sonuçlarının daha geniş bir diş popülasyonuna uygulanması amaçlanmaktadır.  

Eğitim ve değerlendirme için dengeli bir veri kümesi sağlamak amacıyla 407 görüntüden oluşan 

veri kümesi üç alt kümeye ayrılmıştır. Veri kümesinin %80'ini eğitim için ayrılmış 325 görüntü 

içermekte, %5'i doğrulama için ayrılmış 21 görüntü içermekte ve son olarak %15'i test için ayrılmış 

61 görüntü içermektedir. Çalışmada kullanılan veri kümesine ait örnek görüntüler Şekil 4.1’de 

gösterilmiştir. 

Görüntü 1

Maske 1

Görüntü 2 Görüntü 3 Görüntü 4 Görüntü 5 Görüntü 6

Maske 2 Maske 3 Maske 4 Maske 5 Maske 6

Görüntü 7

Maske 7

 

Şekil 4.1. Veri kümesine ait örnek görüntüler 

4.2. Önerilen Yöntem  

Bu çalışmada, panoramik radyografi görüntüleri kullanılarak derin öğrenmeye dayalı gömülü 

dişlerin tespiti için kapsamlı bir çerçeve sunulmuştur. Bu kapsamda, dört farklı segmentasyon 

modeli ve bu yöntemlere dayalı on farklı omurga ağının (önceden eğitilmiş derin mimariler) 
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performansı üzerinde detaylı deneysel analizler gerçekleştirilmiştir. Bu deneysel çalışmalara ilişkin 

kapsamlı bir çerçeve Şekil 4.2'de detaylı olarak sunulmuştur. 

Giriş Görüntüsü

Eğitim / Doğrulama

Test

Omurga 
Ağları

Modeller

Çıkış Görüntüsü
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Şekil 4.2. Mevcut çalışmaya genel bakış 

Bu çalışmada kullanılan segmentasyon modellerinin genel gösterimleri Şekil 4.3’te verilmiştir. 

Birleştirme Ekle

Birleştirme

Ekle Yukarı

Yukarı

Yukarı

(a) (b)

(c) (d)

Ekle

Ekle

 

Şekil 4.3. Uygulanan Segmentasyon modelleri (a) UNet, (b) LinkNet, (c) PSPNet, (d) FPN 
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Önceden eğitilmiş bir omurga modeli kullanmak transfer öğrenme avantajları sağlamaktadır. Bu, 

genel özelliklerin önceden öğrenilmiş olduğu ve öğrenme sürecinin daha hızlı ve verimli bir şekilde 

gerçekleşebileceği anlamına gelmektedir. Özellikle segmentasyon uygulamalarında, önceden 

eğitilmiş bu modeller daha az etiketli veri ile yüksek performans elde edilmesini sağlamaktadır. Bu 

modellerin başarısı, belirli bir segmentasyon görevi için uygunlukları ve performansları 

değerlendirilirken dikkate alınmalıdır. Bu nedenle, omurga modellerinin dikkatli bir şekilde 

seçilmesi ve uygulanması, görüntü segmentasyonunun genel performansını önemli ölçüde 

etkileyebilmektedir. Bu çalışmada segmentasyon modelleri ile birlikte uygulanan farklı özelliklere 

sahip önceden eğitilmiş omurga ağı mimarileri Tablo 4.1'de özetlenmiştir.  

Tablo 4.1. Omurga ağı mimarilerinin özellikleri 

Omurga Ağı Yıl Derin 
Parametre 

(Milyon) 
Giriş Boyutu Özellikleri Kaynak 

ResNet50 2015 50 23.5 224 x 224 x 3 3x3 evrişim, artık bağlantı [108] 

ResNeXt50 2016 50 23.5 224 x 224 x 3 3x3 evrişim, artık bağlantı, darboğaz [111] 

InceptionV3 2015 22 237 299 x 299 x 3 
1x1, 3x3, 5x5 evrişim, maksimum 

havuzlama, inception modülü 
[110] 

InceptionResNetV2 2016 152 54.4 299 x 299 x 3 

1x1, 3x3, 5x5 evrişim, maksimum 

havuzlama, inception modülü, artık 

bağlantı 

[110] 

DenseNet121 2016 121 10.2 224 x 224 x 3 3x3 evrişim, yoğun bağlantı [112] 

VGG16 2014 16 138 224 x 224 x 3 3x3 evrişim, maksimum havuzlama [107] 

SEResNeXt50 2017 10 - 320 x 320 x 3 ResNet blokları, öz-dikkat katmanları [113] 

MobileNet 2017 22 4.2 224 x 224 x 3 
1x1 evrişim katmanları, sıkıştırma ve 

uyarım katmanları 
[115] 

EfficientNetB7 2019 600 66.0 512 x 512 x 3 
EfficientNet serisi, ölçeklenebilir 

mimari 
[114] 

4.3. Deneysel Çalışmalar ve Sonuçları  

Bu çalışmada, panoramik radyografi görüntüleri üzerinde deneysel çalışmalar gerçekleştirilmiştir. 

Deneysel çalışmaların amacı, önerilen hibrit yöntemlerin doğruluğunu ve etkinliğini test ederek 

performanslarını değerlendirmektir. Bu bölümde uygulama süreçlerine dair detaylar, kullanılan 

performans metrikleri ve deneysel çalışmaların görsel ve sayısal sonuçları yer almaktadır. Deneysel 

analizler RTX 6000 grafik kartı ile donatılmış bir iş istasyonunda gerçekleştirilmiştir. Deneysel 

çalışmalar sırasında Python programlama dili derin öğrenme alanında yaygın olarak kullanılan 

TensorFlow, PyTorch ve NumPy gibi kütüphaneler kullanılmıştır. Tablo 4.2, deneysel çalışmalarda 

kullanılan derin öğrenme modeline ait parametrelerin detaylı bir özetini sunmaktadır. Bu tabloda, 

özellikle modelin ağırlık değerleri, öğrenme oranları, aktivasyon fonksiyonları gibi önemli 

parametrelerin değerleri yer almakta olup, model performansının belirleyici unsurlarını ortaya 
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koymaktadır. Deneysel çalışmaların tüm aşamaları, ilgili literatürden elde edilen bilgiler ve 

önerilen yöntemlerin uyarlanmasıyla titizlikle gerçekleştirilmiştir. 

Tablo 4.2. Deneysel çalışmalarda kullanılan görüntü segmentasyon model hiper parametreleri 

Parametre Konfigürasyon 

Optimizasyon Adam 

Learning Rate 0.001 

Ağırlıklar ImageNet 

Epok 300 

Eğitim, Doğrulama, Test 80%, 5%, 15% 

Aktivasyon Fonksiyonu Sigmoid 

 

Tablo 4.2'de listelenen derin öğrenme parametreleri çalışma kapsamında gerçekleştirilen 40 adet 

deneysel çalışmaların tamamında uygulanmıştır. Ayrıca, deneysel çalışmaların temelini oluşturmak 

için 413 panoramik radyografi görüntüsü kullanılmıştır. Bu veri kümesi gömülü diş tespit 

modelinin eğitilmesi ve değerlendirilmesi için kapsamlı bir temel sağlamıştır. Etiketli veri kümesi 

deneysel çalışmada üç bölüme ayrılmıştır: Eğitim için %80 (326), doğrulama için %5 (20) ve test 

için %15 (61). Bu ayrım modelin eğitim, doğrulama ve performans değerlendirmesinde 

kullanılmıştır. Bu ayrımın sadece bir kez yapıldığını ve tüm deneysel çalışmalarda aynı veri 

kümelerinin kullanıldığını belirtmek önemlidir. Bu ayrım, elde edilen sonuçların 

karşılaştırılabilirliğini ve güvenilirliğini sağlamak için dikkatle yapılmıştır. 

Bu çalışmada, her bir segmentasyon modelinin (UNet, LinkNet, PSPNet, FPN) diş tespit 

performansı çeşitli omurga ağları kullanılarak değerlendirilmiştir. Bu kapsamda omurga ağ için 

farklı yapı ve özelliklere sahip önceden eğitilmiş 10 farklı derin mimari seçilmiştir. Modellerin 

performansını kapsamlı bir şekilde analiz etmek amacıyla kesinlik, hassasiye, IoU skoru ve F1 

skoru gibi metrikler kullanılmıştır. Kesinlik, modelin gömülü dişleri yanlışlıkla başka yapılar 

olarak etiketleme olasılığını minimize etmek için önemli bir metrik olarak değerlendirilmiştir. 

Hassasiyet ise gömülü dişlerin kaçırılmamasını sağlamak ve yanlış negatif sonuçları en aza 

indirmek amacıyla kullanılmıştır. IoU skoru, segmentasyonun doğruluğunu ve tahmin edilen 

bölgelerin gerçek bölgelerle ne kadar iyi örtüştüğünü ölçmek için tercih edilmiştir. F1 skoru ise 

hem kesinlik hem de hassasiyet dengesini göz önünde bulundurarak modelin genel performansını 

değerlendirmek amacıyla kullanılmıştır. Bu metrikler, modellerin gömülü diş tespitindeki 

başarısını kapsamlı ve dengeli bir şekilde ölçmek için bir arada değerlendirilmiştir. Tablo 4.3, UNet 

tabanlı performans bulgularını ayrıntılı olarak sunmakta ve bu çalışma için toplanan verileri 

içermektedir. 
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Tablo 4.3. UNet tabanlı performans sonuçları (%) 

Omurga Ağları 
F1 

Skor 
Kesinlik Hassasiyet 

Ortalama 

IoU Skoru 

VGG16 88.58 90.53 86.75 79.75 

ResNet101 89.34 93.68 85.51 80.89 

ResNeXt101 88.23 91.85 85.03 79.18 

InceptionV3 90.17 94.03 86.69 82.19 

InceptionResNetV2 90.43 91.06 89.87 82.60 

DenseNet121 91.07 93.13 89.29 83.75 

SEResNet101 90.05 93.70 86.74 81.98 

SEResNeXt101 89.78 93.25 86.66 81.64 

MobileNet 89.66 91.86 87.66 81.33 

EfficientNetB7 92.02 92.73 91.37 85.29 

 

Tablo 4.3'te görüldüğü üzere, ortalama %85,29 IoU skoru ile öne çıkan EfficientNetB7 

mimarisinin, farklı bir UNet tabanlı omurga ağ olarak kullanılan önceden eğitilmiş derin mimariler 

arasında en yüksek performansı elde ettiği görülmektedir. Ayrıca, DenseNet121 mimarisi %83,75 

IoU skoru ile ikinci en iyi performansı gösterirken, ResNeXt101 modeli IoU skoru (%79,18) ve F1 

skoru (%88,23) açısından diğer modellerden daha düşük performans göstermiştir. Bununla birlikte, 

yaklaşık %81 IoU skoru ile SEResNet101, SEResneXt101 ve MobileNet modelleri benzer 

performans göstermiştir. Şekil 4.4’te UNet modelini temel alan bu omurga mimarilerinin her 

birinden elde edilen görsel sonuçlar sunulmuştur. 
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Şekil 4.4. UNet tabanlı görsel sonuçlar 
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Şekil 4.4, çalışma kapsamında uygulanan tüm omurga ağı tabanlı UNet modelleri için her bir görsel 

tahmin sonucunu göstermektedir. Bu bulgular arasında, Örnek 1, Örnek 2, Örnek 3 ve Örnek 4'teki 

modellerin çoğunun gömülü dişleri doğru tespit etmesine rağmen, az sayıda modelin gömülü 

olmayan dişleri yanlışlıkla gömülü olarak tespit ettiği görülmüştür. Ayrıca, veri kümesinin küçük 

bir yüzdesi Örnek 5'teki zor ve nadir görülen gömülü dişleri içermektedir. Bu nedenle, çoğu model 

bu gömülü dişleri tespit edemezken, DenseNet121, MobileNet ve EfficientNetB7'nin doğru tespiti 

sağladığı görülmüştür. 

PSPNet tabanlı performans sonuçları, bu çalışma kapsamında elde edilen verileri içeren Tablo 

4.4'te ayrıntılı olarak sunulmuştur. 

Tablo 4.4. PSPNet tabanlı performans sonuçları (%) 

Omurga Ağları 
F1 

Skor 
Kesinlik Hassasiyet 

Ortalama 

IoU Skoru 

VGG16 87.83 91.44 84.57 78.59 

ResNet101 86.74 89.14 84.57 76.68 

ResNetxt101 87.47 90.56 84.74 77.93 

InceptionV3 88.35 89.29 87.46 79.23 

InceptionResNetV2 89.41 90.29 88.58 80.94 

DenseNet121 88.80 89.10 88.55 80.05 

SEResNet101 88.20 93.63 83.47 78.99 

SEResNeXt101 87.73 87.70 87.88 78.30 

MobileNet 83.36 87.54 79.70 71.52 

EfficientNetB7 90.67 91.73 89.68 83.10 

 

Tablo 4.4'te görüldüğü üzere PSPNet tabanlı farklı omurga ağları olarak kullanılan önceden 

eğitilmiş derin mimariler arasında en yüksek performans %83,10 IoU skoru ile EfficientNetB7 

mimarisi ile elde edilmiştir. Ayrıca, InceptionResNetV2 mimarisi %80,94 IoU skoru ile diğer 

modellerden daha iyi performans gösterirken, MobileNet modeli hem ortalama IoU skoru (%71,52) 

hem de F1 skoru (%83,36) açısından diğerlerinden daha kötü performans göstermiştir. Öte yandan, 

SEResnet101, SEResNeXt101 ve VGG16 modelleri yaklaşık %78 IoU skoru ile benzer bir 

performans sergilemiştir. Şekil 4.5, PSPNet tabanlı omurga mimarilerinin her birinden elde edilen 

sonuçları göstermektedir. 
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Şekil 4.5. PSPNet tabanlı görsel sonuçlar 

PSPNet tabanlı modellerin performansı Şekil 4.5'te yer alan görsel sonuçlar üzerinde 

değerlendirilmiştir. Bu değerlendirmede Örnek 1, Örnek 2, Örnek 3 ve Örnek 4 için çoğu modelin 

gömülü dişleri başarıyla tespit ettiği gözlemlenmiştir. Ancak bazı modellerin, gömülü olmayan 

dişleri yanlışlıkla gömülü olarak tespit ettiği görülmüştür. İnce detayların kaybedilmesi veya yanlış 

pozitif sonuçların ortaya çıkması gibi sınırlılıklar gözlemlenmiştir. Benzer şekilde, Örnek 5'te, 

VGG16 ve EfficientNetB7 gibi modellerin gömülü dişleri tanımlamada diğer modellere kıyasla 

daha yüksek doğruluk oranları sunduğu gözlemlenmiştir. Bu gömülü dişlerin, ResNet101, 

InceptionV3, InceptionResNetV2 ve MobileNet gibi modeller tarafından kesin olmasa da başarılı 

bir şekilde konumlandırıldığı tespit edilmiştir. Ancak, nadir ve zor bulunan gömülü dişlerin 

tanımlanmasında diğer modellerin sınırlı başarı gösterdiği belirlenmiştir.  

FPN tabanlı modellerin performans sonuçları, bu çalışmada detaylı olarak ele alınmış ve ilgili 

veriler Tablo 4.5'te ayrıntılı şekilde sunulmuştur. FPN tabanlı modellerin performans analizinde, 

gömülü dişlerin doğru şekilde tanımlanmasıyla birlikte, yanlış pozitif ve yanlış negatif tespitlerin 

dağılımı da dikkatle incelenmiştir. Bu sonuçlar, modellerin güçlü ve zayıf yönlerini daha net bir 

şekilde değerlendirme fırsatı sunmaktadır. Tablo 4.5, farklı modellerin F1 skor, kesinlik, hassasiyet 

ve ortalama IoU skoru metrikleri açısından nasıl bir performans sergilediğini ortaya koymaktadır.  
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Tablo 4.5. FPN tabanlı performans sonuçları (%) 

Omurga Ağları 
F1 

Skor 
Kesinlik Hassasiyet 

Ortalama 

IoU Skoru 

VGG16 88.06 93.42 83.38 78.94 

ResNet101 87.42 93.18 82.49 77.96 

ResNeXt101 89.76 92.58 87.26 81.56 

InceptionV3 90.62 92.78 88.60 82.99 

InceptionResNetV2 89.77 92.52 87.31 81.59 

DenseNet121 89.41 92.16 86.86 81.00 

SEResNet101 87.81 90.05 85.84 78.34 

SEResNeXt101 90.03 93.18 87.21 82.07 

MobileNet 90.51 91.17 89.96 82.75 

EfficientNetB7 91.76 93.19 90.45 84.84 

 

Tablo 4.5, EfficientNetB7 mimarisinin %84,84 IoU skoru ile çeşitli FPN tabanlı omurga ağları 

olarak kullanılan tüm önceden eğitilmiş derin mimariler arasında en iyi performansı gösterdiğini 

ortaya koymaktadır. Ayrıca, InceptionV3 mimarisi %82,99 IoU skoru ile ikinci en iyi performansı 

sergilerken, ResNet101 modeli F1 skoru (%87,42) ve IoU skoru (%77,96) ile diğer modellere 

kıyasla daha düşük bir performans göstermiştir. Şekil 4.6, her bir FPN tabanlı omurga mimarisinden 

elde edilen görsel çıktıları sunmaktadır. 
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Şekil 4.6. FPN tabanlı görsel sonuçlar 
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Şekil 4.6, FPN'ye dayalı modellerin performansının ayrıntılı olarak incelenmesinin görsel 

sonuçlarını göstermektedir. Sonuçlarda UNet tabanlı modellerle karşılaştırıldığında benzer 

eğilimler görülmektedir. Örnek 1, Örnek 2, Örnek 3 ve Örnek 4'te modellerin çoğunluğu gömülü 

dişleri doğru tespit ederken, birkaç modelin gömülü olmayan dişleri yanlışlıkla gömülü olarak 

tespit ettiği görülmüştür. Ayrıca, Örnek 5'teki nadir ve bulunması zor gömülü dişler veri kümesinde 

sınırlı sayıda mevcuttur. Bu durum çoğu modelin bu gömülü dişleri tespit edememesine neden 

olurken, DenseNet121, MobileNet ve EfficientNetB7 gibi modellerin bunları doğru 

konumlandırmada başarılı olduğu tespit edilmiştir. 

LinkNet tabanlı modellerin performans bulguları, bu çalışma için toplanan verileri içeren Tablo 

4.6'da verilmiştir. 

Tablo 4.6. LinkNet tabanlı performans sonuçları (%) 

Omurga Ağları 
F1 

Skor 
Kesinlik Hassasiyet 

Ortalama 

IoU Skoru 

VGG16 88.17 91.17 85.60 79.08 

ResNet101 88.54 92.58 84.89 79.63 

ResNeXt101 89.20 91.38 87.25 80.60 

InceptionV3 89.32 92.08 86.78 80.87 

InceptionResNetV2 89.29 94.43 84.80 80.80 

DenseNet121 90.05 93.89 86.54 82.09 

SEResNet101 87.61 89.81 85.61 78.16 

SEResNeXt101 89.17 91.91 86.73 80.55 

MobileNet 89.64 92.73 86.81 81.34 

EfficientNetB7 91.49 93.56 89.59 84.41 

 

Tablo 4.6, LinkNet tabanlı omurga ağları olarak kullanılan önceden eğitilmiş derin mimariler 

arasında EfficientNetB7 mimarisinin %84,41 IoU skoru ile en yüksek performansı elde ettiğini 

göstermektedir. Ayrıca, DenseNet121 mimarisi %82,09 IoU skoru ile ikinci en iyi performansı 

gösterirken, VGG16 modeli hem IoU skoru (%79,08) hem de F1 skoru (%88,17) açısından diğer 

modellerden daha iyi performans göstermiştir. Öte yandan, ResNeXt101, InceptionV3, 

InceptionResnetV2, SEResNeXt101 ve MobileNet mimarileri yaklaşık %80 IoU skoru ile 

karşılaştırılabilir bir performans göstermiştir. Şekil 4.7, LinkNet modeline dayalı tüm bu omurga 

mimarilerinden elde edilen görsel sonuçları göstermektedir. 
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Şekil 4.7. LinkNet tabanlı görsel sonuçlar 

Şekil 4.7'deki görsel sonuçlarda LinkNet tabanlı modellerin performansı ayrıntılı olarak analiz 

edilmiştir. Modellerin çoğunluğu Örnek 1, Örnek 2, Örnek 3 ve Örnek 4'te gömülü dişleri tespit 

etmede başarılı olurken, birkaç modelin gömülü olmayan dişleri yanlışlıkla gömülü olarak tespit 

ettiği görülmüştür. Ayrıca, Örnek 5'teki nadir görülen gömülü dişler veri kümesinde sınırlı sayıda 

bulunmaktadır. Bu da modellerin çoğunun bu gömülü dişleri tespit etmekte zorlandığını 

göstermektedir. Diğer modellerle karşılaştırıldığında DenseNet121, MobileNet, EfficientNetB7 ve 

ResNet101 gibi modellerin doğru konumlandırmada başarılı olduğu görülmüştür. Bu bulgular, 

gömülü dişlerin tespit edilmesi söz konusu olduğunda LinkNet tabanlı modeller ile UNet tabanlı 

modellerin benzer performans gösterdiğini ortaya koymaktadır. 

UNet, PSPNet, LinkNet ve FPN modelleri kapsamlı deneysel incelemeler sonucunda her bir 

omurga ağı için özelleştirilmiş ve her bir modelin tespit performansı dikkatle değerlendirilmiştir. 

Her bir segmentasyon modeli için ortalama IoU skoru performans sonuç değerleri Tablo 4.7'de 

gösterilmektedir. Bu tablo, segmentasyon modellerinin çeşitli omurga konfigürasyonlarındaki 

performanslarının karşılaştırılması için detaylı bir ölçüt olmaktadır. Burada sunulan çalışma, 

gelecekteki çalışmaları veya endüstriyel kullanımları yönlendirmeye yardımcı olabilecek ve hatta 

belirli bir uygulamada hangi modelin daha iyi çalıştığını belirlemeye yardımcı olabilecek önemli 

bilgiler sunmaktadır. 
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Tablo 4.7. Tüm modellerin performans karşılaştırması (%) 

Omurga Ağları LinkNet UNet PSPNet FPN Ortalama 

VGG16 79.08 79.75 78.59 78.94 79.09 

ResNet101 79.63 80.89 76.68 77.96 78.79 

ResNeXt101 80.60 79.18 77.93 81.56 79.82 

InceptionV3 80.87 82.19 79.23 82.99 81.32 

InceptionResNetV2 80.80 82.60 80.94 81.59 81.48 

DenseNet121 82.09 83.75 80.05 81.00 81.72 

SEResNet101 78.16 81.98 78.99 78.34 79.37 

SEResNeXt101 80.55 81.64 78.30 82.07 80.64 

MobileNet 81.34 81.33 71.52 82.75 79.24 

EfficientNetB7 84.41 85.29 83.10 84.84 84.41 

 

Tablo 4.7'deki bilgilere dayanarak, EfficienNetB7'nin tüm segmentasyon modellerinde genel 

olarak en iyi omurga mimarisine sahip olduğu belirlenmiştir. InceptionV3, InceptionResNetV2 ve 

DenseNet121 mimarileri yaklaşık %81 IoU skoru ile ikinci en iyi performansı göstermiştir. Ancak 

ResNet101 mimarisi diğer modellere kıyasla daha düşük bir IoU skoru (%78,79) elde etmiştir. Öte 

yandan, yaklaşık %79 IoU skoru ile MobileNet, VGG16, ResNeXt101 ve SEResNeXt101 

tasarımları karşılaştırılabilir bir performans göstermiştir. Omurga mimarisinin segmentasyon 

modellerinin genel performansını nasıl etkilediğini daha iyi anlamak için bu veriler değerli bir 

referans noktası sunmaktadır. 

Kapsamlı deneysel araştırmalarda, segmentasyon modelleri için UNet, LinkNet, PSPNet ve FPN 

kullanılmış ve her bir modelin tespit performansları titizlikle değerlendirilmiştir. Bu değerlendirme 

sürecinde, her bir segmentasyon modelinin performansı, kullanılan omurga ağlarının çeşitliliği ve 

bu ağların farklı veri kümelerinde gösterdiği başarı düzeyleri üzerinden analiz edilmiştir. 

Çalışmanın sonuçlarına göre, tüm segmentasyon modelleri arasında en iyi performansı gösteren 

omurga ağının EfficientNetB7 olduğu tespit edilmiştir. 

Elde edilen bulgular, her segmentasyon modelinin farklı omurga mimarileri ile nasıl bir performans 

gösterdiğine dair kapsamlı bir karşılaştırma sunmakta ve verimliliği artırmak için en uygun yapının 

seçilmesinde önemli bir rehber niteliği taşımaktadır. Tablo 4.8, bu bulguları ayrıntılı olarak sunarak 

modellerin farklı metrikler açısından nasıl bir başarı sergilediğini detaylı bir şekilde ortaya 

koymaktadır. Bu analiz, segmentasyon modellerinin seçim ve geliştirme süreçlerine yön vermekle 

kalmayıp, ilgili endüstrilerde veya araştırma alanlarında pratik uygulamalar için değerli bir kaynak 

görevi üstlenmektedir. Her model için F1 skoru, kesinlik, hassasiyet ve ortalama IoU skoru gibi 

temel ölçütleri sunmaktadır. Bu metrikler, modellerin performansını kapsamlı bir şekilde 

değerlendirmek amacıyla kullanılmıştır. Kesinlik, yanlış pozitifleri; hassasiyet, eksik tespitleri; F1 

skoru, kesinlik ve hassasiyet dengesini; ortalama IoU ise konumlandırma doğruluğunu ölçmek için 

kullanılmıştır. 
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Tablo 4.8. Segmentasyon modellerinin performans karşılaştırması (%) 

Segmentasyon Modelleri Omurga Ağı F1 Skor Kesinlik Hassasiyet Ortalama IoU Skoru 

UNet 

EfficientNetB7 

92.02 92.73 91.37 85.29 

LinkNet 91.49 93.56 89.59 84.41 

PSPNet 90.67 91.73 89.68 83.10 

FPN 91.76 93.19 90.45 84.84 

 

Tablo 4.8’de, farklı segmentasyon modellerinin performansını karşılaştırılmaktadır. Genel olarak, 

EfficientNetB7 tabanlı segmentasyon modelleri yaklaşık %83-%85 aralığında ortalama IoU 

skorları elde etmiştir. Ayrıca, UNet mimarisi en yüksek performansı gösterirken, PSPNet mimarisi 

ortalama %83 IoU skoru ile en düşük sonuçları üretmiştir. Öte yandan, LinkNet ve FPN mimarileri 

neredeyse eşit performans göstermiştir. Bu gözlemler, her bir modelin hangi metriklerde daha iyi 

performans gösterdiğini belirlemek için önemli bir karşılaştırma sağlar ve araştırmacılara ve 

uygulayıcılara segmentasyon modeli seçimlerinde yol gösterebilmektedir. 

Eğitim ve doğrulama veri kümeleri üzerinden değerlendirildiğinde tüm modeller arasında üstün 

performans gösteren UNet + EfficientNetB7 modelinin performansını gösteren grafikler Şekil 

4.8'de gösterilmektedir. Bu grafikten de görülebileceği gibi, eğitim ve doğrulama performansı 

başlangıçta hızlı bir gelişme göstermiştir. Buna ek olarak, 75 iterasyondan sonra öğrenme hızı daha 

yavaş bir şekilde devam etmiştir. Bu da hızlı bir öğrenme aşamasının ardından modelin daha 

istikrarlı ve sağlam bir performans sergilediğini göstermektedir. Modelin eğitim süreci dinamikleri 

ve performansının zaman içindeki gelişimi bu grafiklerde daha ayrıntılı olarak incelenmiştir. 
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Şekil 4.8. UNet+EfficientNetB7 tabanlı segmentasyon modelinin eğitim/doğrulama grafikleri 

Deneysel araştırmanın kapsamlı bir incelemesinden sonra, EfficientNetB7 modelinin UNet, 

LinkNet, PSPNet ve FPN modelleri için en iyi performansı ürettiği gözlemlenmiştir. Bununla 

birlikte, tüm test görüntüleri incelendikten sonra her modelin bazı kısıtlamalara sahip olduğu 

görülmüştür. Bu kısıtlamalar, özellikle belirli durumlarda görsel tahminlerin doğruluğu üzerinde 

etkili olmaktadır. Örneğin, bazı gömülü dişlerin tespit edilmesinde zorluklar yaşanabilir veya bazı 

durumlarda yanlış pozitif sonuçlar elde edilebilir. Bu kısıtlamaların görsel tahminler üzerindeki 

etkilerini daha derinlemesine incelemek için Şekil 4.9'da gösterilen görüntüler üzerinde bir analiz 
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yapılmıştır. Bu görüntüler, her bir modelin performansını görsel olarak karşılaştırmak ve ilgili 

sınırlamaları daha iyi anlamak için kullanılmıştır. 
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Şekil 4.9. Segmentasyon modellerinin başarısız tespitine örnekler 
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Şekil 4.9'daki görsel sonuçlar EfficientNetB7 tabanlı UNet, LinkNet, FPN ve PSPNet modellerinin 

çıktılarını göstermektedir. Veri kümesinde bu örnek görüntülerden sınırlı sayıda bulunmaktadır ve 

gömülü dişlerin genellikle ağzın üst ve alt kısımlarında, bazen de nadiren orta kısımlarda (Örnek 

1, 2 ve 4) bulunduğu tespit edilmiştir. Ayrıca Örnek 3'te FPN ve PSPNet tasarımlarının gömülü 

dişlerin yerlerini kısmen tanıyabildiği, UNet ve LinkNet mimarilerinin ise gömülü dişleri hiç tespit 

edemediği görülmüştür. Bu, modelin genel etkinliği ve belirli durumlara uyum sağlama yeteneği 

hakkında daha fazla araştırma yapılmasını gerektiren önemli bir bulgudur. 

Bu çalışmanın temel amacı, panoramik radyografi görüntülerinde gömülü dişlerin doğruluğunu 

ölçmek için derin öğrenme tabanlı bir model geliştirmektir. Bu kapsamda, gömülü diş tespiti için 

en iyi yapıları bulmak amacıyla, önceden eğitilmiş UNet, LinkNet, PSPNet ve FPN modellerinin 

çeşitli mimarilere entegrasyonu incelenmiştir. Özellikle kesinlik, hassasiyet ve IoU skorları 

açısından yapılan kapsamlı performans değerlendirmesi, geliştirilen modelin gömülü dişleri etkin 

bir şekilde tanıma ve sınıflandırma konusunda başarılı olduğunu göstermiştir. Modelin gömülü diş 

tespitinde yüksek hassasiyet ve özgüllüğe sahip olması, bu alandaki mevcut teknolojileri aşma 

potansiyelini ortaya koymaktadır. Model, deneysel değerlendirmeler ve uygulama detaylarının da 

gösterdiği gibi, gerçek zamanlı diş görüntülerini hızlı bir şekilde ve mükemmel doğruluk 

oranlarıyla işleyebilmektedir. Bu da modelin klinik uygulanabilirliğini artırarak diş hekimliği 

alanında etkili bir yardımcı araç olarak kullanılma potansiyelini yükseltmektedir. 

Sonuç olarak, bu çalışmanın derin öğrenme tabanlı gömülü diş tespit modelinin başarıları, diş 

hekimliğindeki teknolojik ilerlemelerin klinik uygulamalara nasıl fayda sağlayabileceğinin önemli 

bir örneğini sunmaktadır. Geliştirilen model, diş tespit süreçlerini optimize ederek diş hekimlerine 

daha hızlı, daha güvenilir ve daha etkili teşhis desteği sağlama potansiyeline sahiptir. Ayrıca model, 

gerçek zamanlı diş görüntülerini hızlı bir şekilde işleyebildiğinden yoğun klinik ortamlarda veya 

acil durumlarda kullanım için önerilmektedir. 



 

 

5. PANORAMİK DİŞ RÖNTGENLERİNDE ENFEKSİYON TESPİTİ 

Bu bölümde, panoramik diş görüntülerindeki odontojenik enfeksiyonların segmentasyonu için 

önerilen derin öğrenme tabanlı yaklaşım, ilgili deneysel sonuçlarla birlikte kapsamlı bir şekilde 

sunulmaktadır. Bu çalışmanın temel amacı, EfficientNetB4 tabanlı Swin UNet modelinin 

uygulanması ile odontojenik enfeksiyon segmentasyonunun doğruluğunu ve verimliliğini 

artırmaktır. Bu model, panoramik diş görüntülerindeki enfeksiyona eğilimli bölgeleri belirlemek 

ve segmentlere ayırmak için özel olarak tasarlanmıştır. EfficientNet'in detaylı çok ölçekli özellik 

çıkarma yeteneği, Swin Transformer'ın dikkat mekanizmalarıyla birleştirilerek odontojenik 

enfeksiyonun görüntüden yüksek doğrulukla segmentasyonu sağlanmıştır. Önerilen yöntem, 

segmentasyon sürecini kolaylaştırırken teşhis doğruluğunu artırmış ve manuel analizle ilişkili hata 

olasılığını önemli ölçüde indirmiştir. Bu yöntem, özellikle enfeksiyon sınırlarının sağlıklı yapılarla 

örtüştüğü durumlarda, karmaşık enfeksiyon alanlarının tanımlanmasını sağlar. Bu çalışma, 

özellikle diş radyografisi alanında tıbbi görüntü segmentasyonunda kayda değer bir ilerlemeyi ve 

klinik teşhislerde gelişmiş derin öğrenme tekniklerinin faydalarını vurgulamaktadır. 

5.1. Veri Kümesi  

Bu çalışmada kullanılan veri kümesi, veri kalitesini ve klinik uygunluğu sağlamak için seçilmiş 

378 adet yüksek çözünürlüklü panoramik diş görüntüsünden oluşmaktadır. Her bir görüntü, 

odontojenik enfeksiyon odaklı detaylı etiketleme sürecine tabi tutulmuş ve bu süreç uzman diş 

hekimlerinin rehberliğinde gerçekleştirilmiştir. Veri kümesi, önerilen modelin çeşitli klinik 

senaryolarda uygulanabilirliğini sağlamak amacıyla hafiften şiddetliye çeşitli odontojenik 

enfeksiyon vakalarını içermektedir.  

Bölüm 3'te ayrıntılı olarak açıklandığı üzere, bu çalışma kapsamında kullanılan tüm görüntüler için 

tıbbi araştırma standartlarına bağlı kalınarak etik onay alınmıştır. Ayrıca, veri kümesinin dengeli 

bir şekilde dağıtılması sağlanmış; görüntüler eğitim (%80), doğrulama (%10) ve test (%10) alt 

kümelerine bölünmüştür. Bu yöntem, modelin hem eğitim hem de test süreçlerinde adil bir 

performans değerlendirmesi yapılabilmesi için önemli bir adım olmuştur. 

Mevcut birçok yaklaşımın aksine, bu çalışmada ham girdi görüntülerine herhangi bir ön işlem 

uygulanmamıştır.  Bu tercih, modelin gerçek dünya koşullarındaki performansını daha gerçekçi bir 

şekilde değerlendirme imkânı sunmuş ve aynı zamanda modelin sağlamlığını ve klinik 

uygulanabilirliğini ortaya koymuştur. Etiketleme, dağılım ve değerlendirme süreçlerinde izlenen 

metodoloji, araştırmanın güvenilirliğini artırmış ve elde edilen sonuçların klinik geçerliliğini 

desteklemiştir. Şekil 5.1'de panoramik görüntü örnekleri ve bunlara karşılık gelen gerçek maskeleri 

yer almaktadır.  



60 

Gerçek Görüntü Gerçek Maske

 

Şekil 5.1. Veri kümesinden örnek panoramik diş görüntüleri ve maskeleri 

5.2. Önerilen Yöntem  

Odontojenik enfeksiyonların segmentasyonu için önerilen yöntemde, yüksek doğrulukta 

segmentasyon sonuçları elde etmek amacıyla Swin Transformer mimarisi ile EfficientNet tabanlı 

bir omurga bir araya getirilmiştir. Bu mimari, özellik çıkarma aşamasında çok ölçekli, yüksek 

çözünürlüklü özellikler elde etmek için EfficientNetB4 uygulanmıştır. Elde edilen bu özellikler, 

bağlamsal bilgileri etkili bir şekilde yakalayabilmek için Swin Transformer blokları tarafından 

işlenmiştir. Önerilen modelin genel yapısı; EfficientNetB4 tabanlı bir kodlayıcı, bir darboğaz ve 

Swin Transformer tabanlı bir kod çözücüden oluşmaktadır. 

Kodlayıcı kısmında EfficientNetB4 mimarisi kullanılarak segmentasyon için gerekli olan düşük ve 

yüksek seviyeli özellik haritaları çıkarılmıştır. Düşük seviyeli özellik haritaları, kenar, renk ve doku 

gibi uzamsal detayları içerirken, yüksek seviyeli özellik haritaları, semantik bilgileri temsil 

etmektedir. Bu aşamada elde edilen çok katmanlı özellikler, segmentasyon doğruluğunu artırmada 

önemli bir rol oynamaktadır. 

Kod çözücü kısmında ise, geleneksel evrişim katmanları yerine Swin Transformer blokları ve patch 

expanding katmanları kullanılmıştır. Swin Transformer, özellik haritalarını işlemekte yüksek 

performans gösterirken, patch expanding katmanları ile bu özellik haritalarının boyutları artırılmış 

ve orijinal çözünürlüğe geri dönülmüştür. Bu yapı, hem detay seviyesinde doğruluğu artırmakta 

hem de bağlamsal bilgilerin korunmasını sağlamaktadır. Önerilen EfficientNetB4 tabanlı Swin 

UNet mimarisi Şekil 5.2’de gösterilmektedir. 
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Şekil 5.2. EfficientNetB4 tabanlı Swin UNet mimarisi 

Literatürde yer alan geleneksel yaklaşımların aksine, panoramik görüntülere herhangi bir ön işlem 

uygulanmamış ve modele ham verileri uygulanmıştır. Girdi görüntüleri, enfeksiyona eğilimli 

bölgeleri belirlemek için EfficientNet omurgası kullanılmıştır. Çıkarılan bu özellikler daha sonra 

kod çözücü aşamasında, segmentasyon hassasiyetini artırmak için çok ölçekli dikkat 

mekanizmalarını kullanan Swin Transformer blokları aracılığıyla işlenmiştir. Önerilen yöntem, 

hem yerel hem de küresel bağlamsal bilgileri yakalayarak, karmaşık durumlarda bile enfeksiyon 

bölgelerine doğru bir şekilde segmentasyon yeteneğini göstermektedir.  

Panoramik diş görüntülerindeki karmaşık özellikler için kodlayıcı olarak EfficientNetB4, kod 

çözücü olarak Swin Transformer modülleri uygulanmıştır. Bu modüller, hem küresel hem de yerel 

özellikleri yakalamak için hiyerarşik ve çok ölçekli dikkat mekanizmalarını kullanarak enfeksiyon 

bölgelerinin hassas bir şekilde tanımlanmasını sağlamaktadır. Bu ikili dikkat mekanizması, 

modelin görüntüdeki önemli alanlara dinamik olarak odaklanmasını sağlayarak düşük kontrastlı 

veya üst üste binen bölgeler gibi zorlu senaryolarda bile segmentasyon doğruluğunu 

artırabilmektedir. Tablo 5.1’de uygulanan modelin konfigürasyon ve ara bağlantıları özetlenerek 

kodlayıcı-kod çözücü mimarinin yapısı vurgulanmıştır. EfficientNetB4 tabanlı Swin UNet modeli, 

TensorFlow çerçevesi kullanılarak Python'da uygulanmıştır. Aşırı öğrenme sorununu aşmak ve 
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optimum model performansını sağlamak için eğitim sırasında erken durdurma işlemi (early stop) 

uygulanmıştır. Model eğitimi esnasında kullanılan parametreler Tablo 5.1’de sunulmuştur.  

Tablo 5.1. Önerilen model mimarisine ait hiper parametreler 

Bileşenler Açıklama 

EfficientNet Omurga Ağı Özellik çıkarımı 

Patch Embedding Görüntüyü bölütleme 

Swin Transformer Bloğu Global bilgi işleme 

UNet Kodlayıcı/Kod Çözücü Çok ölçekli işleme 

Çıkış Katmanı Tahmin oluşturma 

 

Tablo 5.1, her katmanın yapılandırmasını gösterirken önerilen modelin ayrıntılı mimarisini 

sunmaktadır. Kodlayıcı, çeşitli ölçeklerde zengin özellik haritaları çıkaran EfficientNetB4'e 

dayanmaktadır. Bu özellik haritaları, uzun menzilli bağımlılıkları ve bağlamsal bilgileri yakalamak 

için darboğaz içindeki Swin Transformer katmanlarına beslenir. Kod çözücü, bölümlere ayrılmış 

bölgelerin doğru bir şekilde yeniden yapılandırılmasını sağlamak için atlama bağlantılarını 

kullanarak bu özellikleri birleştirir.  

378 adet etiketli görüntüden oluşan veri kümesi eğitim için %80'e, doğrulama için %10'a ve test 

için %10 olmak üzere 3 alt kümeye bölünmüştür. Eğitim sırasında, önerilen model Adam optimize 

edicisini 0,001'lik bir başlangıç öğrenme oranıyla kullanmış ve doğrulama performansı düştüğünde 

bu oran 0,1 kat azaltılmıştır.  

5.3. Deneysel Çalışmalar ve Sonuçları  

Tüm deneyler Kaggle platformu üzerinde gerçekleştirilmiştir. Kaggle, model eğitimi ve kullanılan 

veri kümelerinin yönetimini kolaylaştıran ve yüksek hesaplama gücü sunan bir ortam sağlamıştır. 

Deneysel çalışmalar sırasında Kaggle'ın sunduğu 16 GB RAM ve NVIDIA Tesla P100 GPU gibi 

teknik kaynaklar, özellikle derin öğrenme modellerinin eğitimi için yeterli performansı sağlamıştır. 

Önerilen model, hem EfficientNetB4'ün gelişmiş özellik çıkarma hem de Swin Transformer'ın 

hiyerarşik dikkat mekanizmalarının güçlü yönlerinden yararlanmıştır. Bu kombinasyon, özellikle 

üst üste binen sınırlara ve düşük kontrastlı bölgelere sahip karmaşık senaryolarda enfeksiyona 

eğilimli bölgeleri doğru bir şekilde segmentlere ayırmada oldukça etkili olduğunu kanıtlamıştır. 

Modelin etkinliğini değerlendirmek için 378 yüksek çözünürlüklü panoramik diş görüntüsünden 

oluşan veri kümesi eğitim (%80), doğrulama (%10) ve test (%10) alt kümelerine ayrılmıştır. 

Görüntüler, uzman bir diş hekiminin gözetiminde titizlikle etiketlenmiş ve böylece temel gerçek 

verilerinin doğruluğu ve güvenilirliği sağlanmıştır. Önerilen modelin segmentasyon performansı 

doğruluk, kesinlik, hassasiyet, F1 skoru, özgüllük ve AUC metrikleri kullanılarak 

değerlendirilmiştir. Doğruluk, genel doğru tahmin oranını; kesinlik, yanlış pozitifleri; hassasiyet, 
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eksik tespitleri; F1 skoru, kesinlik ve hassasiyet dengesini; özgüllük, yanlış negatifleri; AUC ise 

modelin sınıflandırma yeteneğini ölçmek için kullanılmıştır. UNet, PSPNet, LinkNet ve FPN 

olmak üzere 4 farklı modelle karşılaştırmalı değerlendirmeler yapılmıştır.  

Tablo 5.2. Segmentasyon modellerinin performans karşılaştırması 

Segmentasyon Modeli Doğruluk Kesinlik Hassasiyet F1 Skor Özgüllük AUC 

UNet %85 %65 %45 %54 %90 %68 

PSPNet %88 %70 %40 %52 %92 %67 

LinkNet %80 %60 %45 %52 %88 %65 

FPN %75 %55 %35 %43 %85 %60 

Eff-Swin-UNet (önerilen) %99 %84 %53 %65 %99 %76 

 

Tablo 5.2'de sunulan sonuçlar, önerilen Eff-Swin-UNet modelinin, panoramik diş görüntülerinden 

oluşan veri kümesi üzerinde gerçekleştirilen segmentasyon işleminde diğer modellere kıyasla 

belirgin şekilde üstün bir performans sergilediğini ortaya koymaktadır. Bu sonuçlar, önerilen 

EfficientNetB4-Swin Transformer modelinin mevcut yöntemlere göre daha yüksek doğruluk ve 

etkinlik sunduğunu açıkça göstermektedir. 

Deneysel sonuçlar EfficientNet-Swin Transformer modelinin odontojenik enfeksiyonların doğru 

bir şekilde segmentasyonundaki etkinliğini kanıtlamaktadır. Özellikle, %99 doğruluk oranı ve %84 

kesinlik değeri, modelin sınıflandırma görevini başarılı bir şekilde tamamladığını göstermektedir. 

Önerilen Eff-Swin-UNet modeli, en yüksek %76 AUC değerine ulaşarak, genel segmentasyon 

başarısını tutarlı bir şekilde artırmıştır. Bu durum, modelin segmentasyon işlemlerinde doğru 

pozitifleri etkili bir şekilde ayırt ettiğini ve hata oranını minimize ettiğini vurgulamaktadır. Bu 

sonuçlar, Eff-Swin-UNet modelinin, EfficientNet ve Swin Transformer mimarilerinin avantajlarını 

birleştirerek, daha derin ve daha geniş özelliklerini öğrenmesine olanak tanımasından 

kaynaklanmaktadır. Ayrıca, modelin hiper parametrelerinin dikkatli bir şekilde ayarlanması da bu 

başarılı sonuçta etkili olmuştur. UNet, PSPNet ve LinkNet gibi yaygın olarak kullanılan modellerin 

de belirli ölçüde başarılı olduğu görülmektedir. Ancak, bu modellerin performansı, Eff-Swin-UNet 

modeline kıyasla daha düşüktür. Özellikle hassasiyet ve F1 skoru metriklerindeki düşük değerler, 

bu modellerin pozitif örnekleri doğru bir şekilde tespit etmekte zorlandığını göstermektedir. Diğer 

yandan FPN modeli, diğer modellere kıyasla en düşük performansı sergilemiştir. Bu durum, FPN 

modelinin özellikle bu veri kümesi ve görev için uygun olmadığını veya hiper parametrelerin 

yeterince optimize edilmediğini göstermektedir. Şekil 5.3'te önerilen EfficientNetB4 tabanlı Swin-

Unet mimarisi için hesaplanan performans parametrelerine ait görsel grafik gösterilmektedir. 
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Doğruluk Kesinlik Hassasiyet F1 Skor Özgüllük AUC
 

Şekil 5.3. EfficientNetB4 tabanlı Swin Transformer UNet için performans parametrelerine ait görsel grafik 

Şekil 5.4'te EfficientNetB4 tabanlı Swin-Unet mimarisinin panoramik dental görüntülerde 

enfeksiyon alanlarının segmentasyonu üzerindeki performansı detaylı bir şekilde incelenmiştir. 

Test sonuçları, mimarinin küçük enfeksiyon alanlarının segmentasyonunda sınırlı bir başarı 

gösterdiğini, ancak daha büyük enfeksiyon alanlarını tespit etmede önemli ölçüde daha etkili 

olduğunu ortaya koymaktadır. Bu durum, modelin düşük boyutlu ve ince ayrıntılara sahip 

bölgelerin özelliklerini yeterince temsil edemediğini, ancak geniş ve belirgin enfeksiyon alanlarının 

tespitinde yüksek hassasiyetle çalıştığını göstermektedir. Segmentasyon doğruluğundaki bu 

farklılıklar, modelin büyük nesneleri daha belirgin bir şekilde öğrenme eğiliminde olduğunu ve 

küçük enfeksiyon bölgelerinin modelin dikkat mekanizmalarından kaçabileceğini işaret etmektedir. 

Bu bulgular, model performansının küçük enfeksiyon bölgelerinin segmentasyonunda 

iyileştirilmesi için ek yöntemlere ihtiyaç duyulduğunu ortaya koymaktadır. Bu çalışma, gelişmiş 

klinik tanı araçlarının geliştirilmesine katkı sağlamakta ve hasta takip/tedavi süreçlerini 

iyileştirmeyi amaçlamaktadır. Deneysel çalışmalarda uygulanan bu yöntemlerin karşılaştırıldığı 

görsel sonuçlar sunulmuştur.  
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Şekil 5.4. Önerilen mimarinin görsel sonuçları 

Model performansını ölçmek için kullanılan değerlendirme ölçütleri arasında doğruluk, kesinlik, 

hassasiyet, F1 skoru, özgüllük ve AUC değerleri yer almaktadır. Bu metrikler, önerilen modelin 

dengeli performansını ortaya koymuş ve yanlış pozitifleri en aza indirirken enfeksiyonlu bölgeleri 

tespit etmede yüksek doğruluk sağlamıştır. Önerilen yöntemin diğer yöntemlerden daha yüksek 

enfeksiyon segmentasyonu sergilediği gözlemlenmiştir. Geleneksel UNet ve türevlerinin aksine, 
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EfficientNetB4 tabanlı Swin Transformer, sürekli olarak temel gerçekle yakından uyumlu 

segmentasyon çıktıları sunmuştur. 

Deneysel bulgular, önerilen modelin klinik ortamlarda pratik uygulanabilirliğini ve güvenilirliğini 

vurgulamaktadır. Model, odontojenik enfeksiyonları doğru bir şekilde segmente ederek diş 

hekimlerine kolaylık sunmakta, teşhis hatalarının önüne geçerek tedavi sonuçlarını 

iyileştirmektedir. Tez kapsamında gerçekleştirilen bu çalışma, dental radyografilerde odontojenik 

enfeksiyon segmentasyonu için gelecekteki çalışmalar için güçlü bir temel oluşturmakta ve daha 

erken ve daha etkili müdahalelere olanak sağlamaktadır.  

Tez kapsamında gerçekleştirilen bu çalışma, odontojenik enfeksiyon analizinde gelişmiş 

segmentasyon modellerinin etkinliğini vurgulamakta ve daha karmaşık vakaları içeren gelecek 

araştırmalar için zemin hazırlamaktadır. Bulgular, panoramik diş görüntülerindeki enfeksiyonların 

belirlenmesinde EfficientNetB4 tabanlı Swin Transform modelinin başarımını vurgulamaktadır. 

Deneysel çalışmalarda uygulanan diğer modellere kıyasla önerilen modelin yüksek segmentasyon 

performansı, bu modelin gerçek dünyadaki klinik uygulamalar için teşhis hatalarını azaltarak etkili 

tedavi planlamasında başarı sağlaması ve diş hekimlerine etkili bir şekilde teşhis koyma ve tedavi 

planlama konusunda büyük ölçüde yardımcı olması hedeflenmektedir. Ayrıca, modelin zor 

vakalardaki güvenilirliği, klinik uygulamada enfeksiyon tespitinin doğruluğunu ve verimliliğini 

artırmak için bilgisayar destekli tanı sistemlerine katkı sağlayabileceğini göstermektedir. 



 

 

6. PANORAMİK DİŞ RÖNTGENLERİNDE ÇÜRÜK TESPİTİ 

Diş çürükleri yaygın ağız sağlığı sorunlarından biridir, her yaştan bireyi etkiler ve tedavi edilmediği 

takdirde genellikle ciddi komplikasyonlara yol açar. Doğru ve zamanında tespit, çürüğün 

ilerlemesini önlemek ve etkili tedavi sağlamak için çok önemlidir. Geleneksel olarak, çürüklerin 

tespiti diş hekimleri tarafından panoramik radyografi görüntüleri kullanılarak manuel olarak 

gerçekleştirilmektedir. Bu yöntem yaygın olarak uygulanmakla birlikte, karmaşık görüntüleri 

yorumlamanın doğasında var olan zorluklar, zaman kısıtlamaları ve yüksek hacimli hastaları 

verimli bir şekilde yönetme ihtiyacı nedeniyle hatalara maruz kalabilir. Bu faktörler bazen teşhisin 

gecikmesine yol açarak çürüğün daha ileri aşamalara ilerlemesine izin verebilir ve bu da ciddi 

enfeksiyonlara, kalıcı ağrıya ve hatta diş kaybına neden olabilir. Bu çalışma kapsamında teşhis hızı 

ve doğruluğu artırılabilir, hasta bekleme sürelerini azaltılabilir ve genel bakım verimliliği 

artırılabilir. Manuel teşhisin sınırları göz önüne alındığında, diş çürüklerinin daha güvenilir ve 

verimli bir şekilde tespit edilmesinde diş hekimlerine yardımcı olmak için çeşitli sinir ağları üzerine 

çalışmalar gerçekleştirilmiştir. Bu çalışma, gelişmiş derin öğrenme tekniklerinin uygulanmasını 

araştırmaktadır. Segmentasyon performansını artırmak için uygulanan her modele, iyi özellik 

çıkarma yeteneğine sahip EfficientB3 omurga ağıyla entegre edildi. Deneysel sonuçlar, önerilen 

modelin diğer modellerden daha iyi performans göstererek en yüksek hassasiyeti elde ettiğini 

göstermiştir. 

Bu çalışmanın bulguları, çürük tespitinin doğruluğunu ve tutarlılığını artırmada derin öğrenme 

yöntemlerinin başarısının altını çizmektedir. Bu yöntemler, manuel yorumlamaya olan ihtiyacı 

azaltarak teşhis hatalarını azaltmaya yardımcı olabilir ve çürüklerin daha erken aşamalarda tespit 

edilmesini sağlayarak hızlı tedaviyi ve daha iyi hasta sonuçlarını sağlayabilir. Ayrıca, gelişmiş 

segmentasyon modellerinin iyi omurga ağlarıyla entegrasyonu, diş görüntülemede gelecekteki 

araştırma ve geliştirme için umut verici bir yolu temsil etmektedir. Model performansı, modellerin 

aşırı yanlış pozitifler üretmeden çürükleri doğru bir şekilde tanımlama becerisinin açık bir 

göstergesini sağladığı için birincil değerlendirme ölçütü olarak hassasiyet kullanılarak 

değerlendirilmiştir. Sonuçlar yalnızca önerilen yaklaşımın etkinliğini doğrulamakla kalmamakta, 

aynı zamanda klinik iş akışlarını desteklemek ve genel ağız sağlığı hizmetlerini iyileştirmek için 

bu alanda daha fazla ilerlemenin önemini vurgulamaktadır. 

6.1. Veri Kümesi  

Bu çalışmada kullanılan veri kümesi Mersin Üniversitesi'nden etik onay alınarak elde edilmiş ve 

diş çürüklerinin tespiti için özel olarak düzenlenmiştir. Çürüklerin doğru bir şekilde etiketlenmesini 

sağlamak için deneyimli diş hekimi eşliğinde etiketlenen 474 hastaya ait 474 adet yüksek 
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çözünürlüklü panoramik radyografi görüntüden oluşmaktadır. Model performansını arttırmak ve 

verilerin dengeli bir şekilde dağılmasını sağlamak için veri kümesi üç alt kümeye (%70, %15, %15) 

ayrılmıştır. Çalışma, eğitim, doğrulama ve test setleri arasında dengeli bir dağılım sağlayarak 

yanlılığı en aza indirmeyi ve sonuçların güvenilirliğini artırmayı amaçlamıştır. Çalışmada 

kullanılan veri kümesine ait örnek görüntüler Şekil 6.1’de gösterilmiştir. 

Gerçek Görüntü Gerçek Maske

 

Şekil 6.1. Veri kümesine ait örnek görüntüler 

6.2. Önerilen Yöntem  

Bu çalışma, derin öğrenme tabanlı yaklaşım kullanılarak panoramik radyografilerde diş çürüklerini 

tespit etmek için yeni bir çerçeve sunmaktadır. Önerilen yöntem, yüksek segmentasyon doğruluğu 

elde etmek için EfficientNetB3 tabanlı UNet 3+ modelini kullanmaktadır. Çerçeve şu aşamalardan 

oluşmaktadır: model eğitimi ve değerlendirme; bunların her biri performansı arttırmak ve doğru 

çürük tespiti elde etmek için dikkatlice tasarlanmıştır. Önerilen EfficientNetB3 tabanlı UNet 3+ 

modeli Şekil 6.2'de gösterilmiştir.  
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Şekil 6.2. Eff-UNet 3+ mimarisinin yapısı 

EfficientNetB3 omurgası, giriş görüntülerinden hem düşük hem de yüksek seviyeli özellikleri 

verimli bir şekilde yakalayarak özellik çıkarma yetenekleri sağlamaktadır. Bu omurga, ince 

ayrıntıların doğru segmentasyonda kritik bir rol oynadığı tıbbi görüntüleme görevleri için 

önerilmektedir. UNet 3+ mimarisi, hem küresel hem de yerel bağlamsal bilgileri verimli bir şekilde 

işleyen çok ölçekli bir tasarım içererek segmentasyon sürecini geliştirir. Bu, modelin çürük 

bölgeleri doğru bir şekilde tanımlamasını sağlarken, alakasız arka plan ayrıntılarını bastırarak 

hassas segmentasyonlara sağlayabilmektedir. 

UNet 3+ modeli bir kodlayıcı-kod çözücü yapısından oluşmaktadır. Kodlayıcı giriş görüntülerinden 

özellikleri çıkarırken, kod çözücü bölümlenmiş çıktıyı yeniden yapılandırır. Kodlayıcı ve kod 

çözücü arasındaki atlama bağlantıları, etkili özellik yayılımını kolaylaştırır ve uzamsal bilgileri 

korur. EfficientNetB3 tabanlı model, diş çürükleriyle ilişkili karmaşık desenleri etkili bir şekilde 

yakalamaktadır. Bu özellikler UNet 3+'ın çok ölçekli tasarımı ile daha da geliştirilerek çürük 

bölgelerin belirlenmesinde güçlü performans sağlanmıştır.  

EfficientNetB3 omurgasının önceden eğitilmiş ağırlıklarından yararlanmak için eğitim sürecinde 

transfer öğrenimi kullanılmıştır. Bu yaklaşım, öğrenme sürecini önemli ölçüde hızlandırmış ve 

özellikle sınırlı sayıdaki etiketli verilerle çalışırken model performansını artırdığı gözlemlenmiştir. 

Önceden eğitilmiş model, 474 panoramik radyografi görüntüden oluşan etiketli veri kümesi 

kullanılarak uygulanmıştır. Veri kümesi, Bölüm 6.1'de açıklandığı gibi eğitim, doğrulama ve test 
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olmak üzere üç alt kümeye bölünerek önerilen modelin dengeli ve kapsamlı bir şekilde 

değerlendirilmesi sağlanmıştır. Bu ayrım sadece bir kez yapılmıştır ve tüm deneysel çalışmalarda 

aynı veri kümesi kullanılmıştır. Ayrıca bu ayrım, elde edilen sonuçların karşılaştırılabilirliğini ve 

güvenilirliğini sağlamak için dikkatle yapılmıştır.  

Önerilen EfficientNetB3 tabanlı UNet 3+ modelinin performansı, aşırı yanlış pozitifler üretmeden 

çürük bölgeleri doğru bir şekilde tanımlamadaki önemi göz önüne alındığında, birincil metrik 

olarak hassasiyet kullanılarak değerlendirilmiştir. Diğer segmentasyon modelleriyle yapılan 

karşılaştırmalı deneyler, önerilen yöntemin Tablo 6.1'de belirtildiği gibi üstün sonuçlar elde ettiğini 

göstermiştir. Kesinlik skorları, modelin klinik uygulamalar için kritik olan çürük bölgeleri çürük 

olmayan bölgelerden ayırt etmedeki etkinliğini doğrulamıştır. Tablo 6.1’de sunulan derin öğrenme 

parametreleri tüm deneylerde aynı şekilde uygulanmıştır. EfficientNetB3 tabanlı UNet 3+ modeli, 

TensorFlow çerçevesi kullanılarak Python'da uygulanmıştır. Ayrıca, aşırı öğrenme problemini 

aşmak ve optimum model performansını sağlamak için eğitim sırasında erken durdurma işlemi 

(early stop) uygulanmıştır. Bu tablo, eğitim ve değerlendirme sürecini standartlaştırmak için 

kullanılan konfigürasyonlara kısa bir genel bakış sunmakta, sonuçların tutarlılığını ve 

karşılaştırılabilirliğini detaylıca açıklamaktadır.  

Tablo 6.1. Deneysel çalışmalarda kullanılan görüntü segmentasyon model hiper parametreleri 

Katman Katman Türü Detaylar 

Giriş Katmanı Giriş Boyut: 256×256×3, RGB 

Kodlayıcı Blok 1 
EfficientNetB3  

(Omurga Ağı) 

Çok ölçekli özellik haritalarını çıkarır. Çıktı seviyeleri: 128×128×144, 

64×64×192, 32×32×288 

Köprü Bloğu Birleştirme + Konv2D Kodlayıcıdan gelen çok ölçekli özellikleri birleştirir. 

Çözücü Blok 1 Konv2DTranspoze Özellik haritalarını 64×64×64 boyutlarına genişleterek üst düzey 

özelliklerin birleştirilmesini sağlar. 

Normalizasyon 1 Toplu Normalizasyon Çözücü Blok 1’in çıktısını normalleştirir. 

Aktivasyon 1 ReLU Toplu Normalizasyon 1 çıktısına doğrusal olmayan aktivasyon fonksiyonu 

uygular. 

Füzyon Bloğu 1 Birleştirme + Konv2D Çok ölçekli özellikleri birleştirir ve 64×64×128 boyutlarında bir çıktı 

üretir, ardından özellik boyutunu düşürmek için evrişim uygulanır. 

Çözücü Blok 2 Konv2DTranspoze Özellik haritalarını 128×128×64 boyutlarına genişleterek hiyerarşik üst 

örnekleme gerçekleştirir. 

Füzyon Bloğu 2 Birleştirme + Konv2D Çözücü Blok 2 ve önceki seviyelerden gelen özellikleri birleştirir, 

128×128×128 boyutlarında bir çıktı oluşturur. 

Çözücü Blok 3 Konv2DTranspoze Özellik haritalarını 256×256×256 boyutlarına genişleterek sonuç yeniden 

yapılandırmayı gerçekleştirir. 

Normalizasyon 2 Toplu Normalizasyon Çözücü Blok 3’ün çıktısını normalleştirir. 

Aktivasyon 2 ReLU Toplu Normalizasyon 2 çıktısına doğrusal olmayan aktivasyon fonksiyonu 

uygular. 

Sonuç Katman Konv2D + Aktivasyon 256×256×1 boyutlarında, sigmoid aktivasyon fonksiyonu ile ikili 

sınıflandırma için son çıktı segmentasyon haritasını üretir. 
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Önerilen çerçeve, panoramik radyografilerde diş çürüğü tespiti için çeşitli avantajlar sunmaktadır. 

EfficientNetB3 omurgasının kullanımı özellik çıkarma verimliliğini artırırken, UNet 3+ modeli 

ilgili bölgelere odaklanmak için çok ölçekli mimarisinden yararlanarak hassas segmentasyon 

sağlamıştır. Bu kombinasyon sadece segmentasyon doğruluğunu artırmakla kalmayarak, aynı 

zamanda diş hekimleri tarafından manuel yorumlama için gereken süreyi de azaltabilmektedir. 

Ayrıca, transfer öğrenme yaklaşımı, modelin daha küçük bir veri kümelerinde bile yüksek 

performans elde etmesini sağlayarak gerçek dünya uygulamalara olan uygunluğunu 

gösterebilmektedir. 

6.3. Deneysel Çalışmalar ve Sonuçları  

Bu çalışmada, deneysel analizler Kaggle platformu kullanılarak gerçekleştirilmiştir. Kaggle, veri 

bilimciler ve araştırmacılar için güçlü bir altyapı sağlayarak, model eğitimi ve değerlendirme 

süreçlerinde kullanılan veri kümelerinin yönetimini kolaylaştıran bir ortam sunmaktadır. 

Çalışmalar sırasında Kaggle'ın sunduğu 16 GB RAM ve NVIDIA Tesla P100 GPU gibi teknik 

kaynaklar, özellikle derin öğrenme modellerinin eğitimi için yeterli performans ortamı sağlamıştır. 

Kaggle'ın sağladığı bu yüksek hesaplama gücü, özellikle karmaşık segmentasyon modellerinin 

eğitimi sırasında kritik bir avantaj sağlamıştır.   

Deneysel çalışmalar, tümü EfficientNetB3 omurgası ile entegre edilmiş altı farklı segmentasyon 

modeli kullanılarak gerçekleştirilmiştir. Bu modeller arasında UNet, Attention Unet, V-Net, R2U-

Net, U2-Net ve önerilen UNet 3+ yer almaktadır. Önerilen EfficientNetB3 tabanlı UNet 3+ modeli, 

ayrıntılı bağlamsal bilgileri yakalamak ve giriş görüntülerinin ilgili bölgelerini vurgulamak için 

tasarlanmış olup, yüksek segmentasyon doğruluğu elde etmek amacıyla optimize edilmiştir. 

Modellerin ve bunlara karşılık gelen omurga ağının detaylı listesi Tablo 6.2'de özetlenmiştir.  

Eğitim sürecinde transfer öğrenme stratejisi benimsenmiştir. EfficientNetB3 omurgası, ImageNet 

veri kümesinden önceden eğitilmiş ağırlıklarla başlatılmış ve bu, özellikle sınırlı etiketli veri 

kümesiyle çalışırken öğrenme sürecini hızlandırmıştır. Bu yaklaşım, özellikle etiketli veri 

kümesinin sınırlı boyutu göz önüne alındığında, öğrenme sürecini hızlandırmış ve model 

performansını iyileştirmiştir. Eğitim sırasında aşırı uyumu önlemek ve modellerin genelleme 

kabiliyetini artırmak için erken durdurma tekniği uygulanmıştır. Böylece, modellerin yalnızca 

eğitim verilerine uyum sağlamakla kalmayıp, test verilerinde de tutarlı performans göstermesi 

hedeflenmiştir. 

Tablo 6.2, EfficientNetB3 omurgasını kullanan farklı segmentasyon modellerinin kesinlik, 

hassasiyet ve F1 skoru gibi performans metrikleri açısından karşılaştırmalı sonuçlarını 

sunmaktadır. Kesinlik, yanlış pozitifleri azaltmayı; hassasiyet, eksik tespitleri en aza indirmeyi; F1 

skoru ise kesinlik ve hassasiyet arasındaki dengeyi ölçerek modellerin genel performansını 

değerlendirmek için kullanılmıştır. Bu karşılaştırma, her bir modelin güçlü ve zayıf yönlerini 
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detaylı bir şekilde ortaya koyarak, önerilen UNet 3+ modelinin üstün performansını 

vurgulamaktadır. 

Tablo 6.2. Segmentasyon modellerinin performans karşılaştırması 

Segmentasyon Modeli Omurga Ağı Kesinlik Hassasiyet F1 Skor 

UNet EfficientB3 %62 %42 %50 

VNet EfficientB3 %59 %20 %29 

Attention UNet EfficientB3 %62 %14 %23 

R2U-Net EfficientB3 %53 %32 %40 

U2-Net EfficientB3 %62 %19 %29 

UNet 3+ (önerilen) EfficientB3 %81 %75 %78 

 

Sonuçlar, önerilen UNet 3+ modelinin diğer modellerden daha iyi performans gösterdiğini ve en 

yüksek kesinlik (%81), hassasiyet (%75) ve F1 skorunu (%78) elde ettiğini göstermektedir. Bu 

performans, önerilen modelin panoramik diş görüntülerinde çürüğe eğilimli bölgeleri doğru bir 

şekilde segmentasyonundaki etkinliğini vurgulamaktadır. Buna karşılık, UNet, V-Net ve Attention 

UNet gibi alternatif modeller, kapsamlı çürük bölgelerini yakalamada zorluklara işaret eden önemli 

ölçüde daha düşük hassasiyet ve F1 skorları sergilemiştir. Tablo 6.2'de sunulan sonuçlar, önerilen 

EfficientNetB3 tabanlı UNet 3+ modelinin diğer modellere kıyasla daha iyi performans 

gösterdiğini ve çürük bölgeleri tutarlı bir şekilde yüksek doğrulukla tanımladığını göstermektedir. 

Çeşitli test görüntülerine ait çalışma kapsamında uygulanan segmentasyon modellerinin ve önerilen 

UNet 3+ modelinin görsel sonuçları Şekil 6.3’te sunulmuştur.   
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UNet3+ R2UNet VNet
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Şekil 6.3. Segmentasyon modellerine ait görsel sonuçlar 
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Şekil 6.3, model tarafından oluşturulan segmentasyon maskeleri ile temel gerçek etiketleri arasında 

bir karşılaştırma sunmaktadır. Şekil 6.3 incelendiğinde önerilen modelin çürük bölgeleri doğru bir 

şekilde tespit edebildiği gözlemlenmiştir. Tüm modeller için eğitim ve doğrulama süreçleri dikkatle 

izlenmiştir. Şekil 6.4'te önerilen UNet 3+ modeli için hesaplanan performans parametrelerine ait 

görsel grafik sunulmuştur.  
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Şekil 6.4. UNet3+ için performans parametrelerine ait görsel grafik 

Şekil 6.4, önerilen UNet 3+ modeli için kesinlik, hassasiyet ve F1 skoru değerlendirme metriklerini 

göstermektedir. Model %81 oranında kesinlik değerine ulaşarak yanlış pozitifler olmadan çürük 

dişleri belirlemede yüksek doğruluk oranına sahip olduğunu göstermiştir. %75 hassasiyet değeri, 

gerçek çürük diş alanlarının önemli bir kısmını tespit etme kabiliyetini göstermektedir. Son olarak, 

%78 F1 skoru değeri, kesinlik ve hassasiyet arasındaki dengeli performansı yansıtmakta ve önerilen 

modelin çürük diş segmentasyonundaki başarısını doğrulamaktadır. Şekil 6.5’te önerilen modele 

ait doğruluk grafiği yer almaktadır. 
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Şekil 6.5. UNet3+ modeline ait doğruluk grafiği 

Şekil 6.5, önerilen UNet 3+ modelinin eğitim ve doğrulama doğruluğunu göstermektedir. UNet3+ 

modeline ait doğruluk grafiği, hem eğitim hem de doğrulamada tutarlı bir iyileşme olduğunu 

göstermektedir. İki eğri arasındaki minimum boşluk, düşük aşırı uyum ile iyi genelleştirilmiş bir 

modele işaret etmektedir. Bu sonuç, eğitim sürecinin etkinliğini ve modelin görülmeyen veriler 

üzerinde yüksek performansı sürdürme kabiliyetini vurgulamaktadır. 

Önerilen modelin performansını aynı EfficientNetB3 omurgasını kullanan UNet, V-Net, Attention 

UNet, R2U-Net ve U2-Net gibi diğer segmentasyon modelleri ile değerlendirmek için 

karşılaştırmalı bir analiz yapılmıştır. Tablo 6.2'de özetlenen sonuçlar, önerilen UNet 3+ modelinin 

tutarlı bir şekilde en yüksek hassasiyet puanını elde ettiğini ve çürük bölgeleri doğru bir şekilde 

tanımladığını göstermektedir.  

Önerilen model, otomatik diş çürüğü tespiti için birkaç önemli avantaj sunmaktadır. İlk olarak, 

EfficientNetB3 omurgası verimli ve sağlam özellik çıkarımı sağlayarak modelin doğru 

segmentasyon için gerekli olan hem düşük hem de yüksek seviyeli özellikleri yakalamasını 

sağlamıştır. İkinci olarak, UNet 3+ modeli kritik bölgeleri öne çıkararak ve alakasız arka plan 

bilgilerini bastırarak segmentasyon performansını artırmış, yüksek ve güvenilir sonuçlar 

sağlamıştır. 

Sonuç olarak, transfer öğrenmenin kullanılması, modelin nispeten küçük bir veri kümesiyle bile 

yüksek performans elde etmesini sağlayarak gerçek dünya uygulamaları için pratik ve 

ölçeklenebilir bir çözüm haline getirmektedir. Deneysel sonuçlar ve bunların karşılaştırmalı analizi, 

bu yaklaşımın önemini pekiştirmekte ve gelecekteki araştırmalar ve klinik uygulamalar için bir 

temel oluşturmaktadır.



 

 

7. SONUÇLAR 

Tıbbi görüntüleme teknolojilerindeki hızlı gelişmeler, sağlık alanında hastalıkların erken teşhisi ve 

tedavi süreçlerini kolaylaştırarak hekimlerin iş yükünü önemli ölçüde hafifletmesi hedeflenmiştir. 

Diş hekimliği uygulamaları da bu ilerlemeden faydalanan alanlardan birisi olmaktadır. Ancak, diş 

röntgen görüntülerinin değerlendirilmesinde deneyim ve dikkate dayalı manuel süreçler, teşhis 

sürecinde zaman kaybına ve hata riskine neden olabilmektedir. Bu durum, yapay zekâ tabanlı 

otomatik sistemlerin önemini vurgulamaktadır. 

Bu tez çalışması kapsamında, panoramik diş röntgen görüntülerinden hastalıkların ve ilgili 

anatomik yapıların otomatik olarak tespit edilmesine yönelik derin öğrenme tabanlı özgün hibrit 

modeller geliştirilmiştir. Literatürde bu alanda açık erişimli veri kümelerinin yetersiz olması 

nedeniyle, etik kurul onayı alınarak uzman diş hekimi eşliğinde veriler üzerinde detaylı şekilde 

etiketlemeler yapılmış ve özgün bir veri kümesi oluşturulmuştur. Bu veri kümesi, diş hekimliği 

alanında çalışacak araştırmacılar için önemli bir kaynak sunmaktadır. Çalışmanın çıktıları, 

literatürdeki veri kümesi eksikliği sorununa çözüm sunan özgün bir veri kümesi oluşturarak hem 

bilimsel katkı sağlamış hem de diş hekimliği alanında yapay zekâ tabanlı uygulamaların gelişimine 

olanak tanımıştır. 

Tez çalışmasında, gömülü dişlerin tespiti için önerilen model %92 başarım oranı ile yüksek 

sonuçlar elde etmiştir. Enfeksiyonların tespitinde kullanılan model ile %72 başarım oranı elde 

edilmiştir. Çürük tespiti için önerilen model ise %81 başarım oranı ile yüksek sonuçlar sağlamış ve 

çürüklerin ilerleme seviyesini ayırt etmede yüksek performans göstermiştir. 

Elde edilen bu bulgular, yapay zekâ tabanlı sistemlerin diş hekimliğinde tanı süreçlerini 

iyileştirerek klinik uygulamalarda kullanılabilir olduğunu ortaya koymuştur. Ayrıca, bu 

yöntemlerin, diğer tıbbi görüntüleme uygulamalarına da uyarlanabileceği ve genel tanı süreçlerine 

katkı sağlayabileceği vurgulanmıştır. 

Sonuç olarak, bu tez çalışması, panoramik diş röntgen görüntülerinde hastalık ve anatomik 

yapıların tespitine yönelik önemli bir bilimsel katkı sunmuş, yeni ve özgün hibrit modellerin 

geliştirilmesi ile literatürdeki önemli bir boşluğu doldurmuştur. Bu çalışmanın sonuçları, 

gelecekteki araştırmalar için rehberlik edecek bir temel oluşturmuş ve diş hekimliği alanında yapay 

zekâ uygulamalarının gelişimine katkıda bulunmuştur. 
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