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Hydroxyapatite (HAp, Ca10(PO4)6(OH)2), which constitutes 70% of bone tissue, is a 

bioactive and biocompatible material. Therefore, it is among the most commonly 

used bone graft materials in bone-tissue engineering. In literature, there are various 

studies on its use as a potential antibiotic-loaded bone graft to prevent postoperative 

bone infection (osteomyelitis). Although these studies showed promising results, 

antibiotic loading capacities were limited with adsorption of the antibiotics onto the 

HAp particle surfaces. Thus, there is a clear need for bioactive systems that can serve 

as reservoirs to enhance the antibiotic-loading and prolong its release, while 

simultaneously inducing bone cell functions for orthopedic applications.  

In this thesis, CaCO3 (vaterite) particles were synthesized by a wet precipitation 

method and used as a template. Subsequently, HAp was precipitated onto the vaterite 

particles to obtaine Vaterite@HAp (core@shell) structure. To dissolve the vaterite 

core, acetic acid was used, and hollow HAp structure was obtained.  

 

Hollow HAp particles were loaded with gentamicin, a widely used antibiotic for 

bone infection. Additionally, these particles were also coated with Rhamnolipid (RL) 
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to prolong the duration of antibiotic release. Antibiotic loaded particles, including 

Vaterite@HAp particles, hollow HAp particles, and RL coated hollow HAp 

particles, were evaluated for their antibacterial efficacy against Gram-positive 

Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) 

strains. 

At all investigated time points, gentamicin loaded, RL coated hollow HAp (GRL-

HAp) particles exhibited superior antibacterial performance, as evidenced by larger 

inhibition zone diameters compared to the gentamicin loaded hollow HAp (G-HAp) 

and gentamicin loaded Vaterite@HAp (G-Vat@HAp) particles. Notably, GRL-HAp 

particles demonstrated up to 32-fold higher bactericidal activity against S. aureus, 

and more than 4000-fold greater bactericidal activity against E. coli. 

Furthermore, Cellular viability results demonstrated that HAp, RL-HAp, G-HAp, 

and GRL-HAp particles were not cytotoxic at 0.1 and 0.01 mg/mL concentrations, 

and there was no significant difference between groups and TCPS. These results 

highlight that GRL-Hap particles are promising towards bone infection. 
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ÖZ 
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Hidroksiapatit (HAp, Ca₁₀(PO₄)₆(OH)₂), kemik dokusunun %70'ini oluşturan 

biyouyumlu ve biyoaktif bir malzemedir. Bu nedenle, kemik-doku mühendisliği 

alanında en yaygın kullanılan kemik grefti malzemeleri arasında yer almaktadır. 

Literatürde, HAp’ın ameliyat sonrası kemik enfeksiyonlarını (osteomiyelit) önlemek 

amacıyla potansiyel bir antibiyotik yüklü kemik grefti olarak kullanımına yönelik 

çeşitli çalışmalar bulunmaktadır. Bu çalışmalar umut verici sonuçlar ortaya koysa da 

antibiyotik yükleme kapasiteleri, antibiyotiklerin HAp partiküllerinin yüzeyine 

adsorpsiyonu ile sınırlı kalmıştır. Bu nedenle, hem antibiyotik yükleme kapasitesini 

artıran hem de salınım süresini uzatarak kemik hücre fonksiyonlarını teşvik eden 

biyoaktif sistemlere duyulan ihtiyaç açıktır. 

Bu tez çalışmasında, CaCO₃ (vaterit) partikülleri yaş çöktürme yöntemiyle 

sentezlenmiş ve şablon olarak kullanılmıştır. Daha sonra, vaterit partikülleri üzerine 

HAp çöktürülerek vaterit@HAp (çekirdek@kabuk) yapısı elde edilmiştir. Vaterit 

çekirdeğin çözünmesini sağlamak amacıyla asetik asit kullanılmış ve içi boş HAp 

partikülleri sentezlenmiştir. 
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Elde edilen içi boş HAp partikülleri, kemik enfeksiyonlarının tedavisinde yaygın 

olarak kullanılan gentamisin antibiyotiği ile yüklenmiştir. Ayrıca, antibiyotik 

salınım süresini uzatmak amacıyla bu partiküller rhamnolipid (RL) ile kaplanmıştır. 

Antibiyotik yüklü partiküller (Vaterit@HAp partikülleri, içi boş HAp partikülleri ve 

RL kaplı içi boş HAp partikülleri), Gram-pozitif Staphylococcus aureus (S. aureus) 

ve Gram-negatif Escherichia coli (E. coli) suşlarına karşı antibakteriyel etkinlik 

açısından değerlendirilmiştir. 

İncelenen tüm zaman noktalarında, gentamisin yüklü RL kaplı içi boş HAp (GRL-

HAp) partikülleri, gentamisin yüklü içi boş HAp (G-HAp) ve gentamisin yüklü 

Vaterit@HAp (G-Vat@HAp) partiküllerine kıyasla daha geniş inhibisyon alanı 

oluşturarak üstün antibakteriyel performans sergilemiştir. Özellikle, GRL-HAp 

partikülleri S. aureus karşısında 32 kat, E. coli karşısında ise 4000 kat daha yüksek 

bakterisidal aktivite göstermiştir. 

Buna ek olarak, hücresel canlılık sonuçları, HAp, RL-HAp, G-HAp ve GRL-HAp 

partiküllerinin 0.1 ve 0.01 mg/mL konsantrasyonlarında sitotoksik olmadığını ve 

gruplar ile TCPS arasında anlamlı bir fark bulunmadığını göstermiştir. Elde edilen 

sonuçlar, GRL-HAp partiküllerinin kemik enfeksiyonlarının tedavisi açısından umut 

vadettiğini ortaya koymaktadır. 
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CHAPTER 1  

1 INTRODUCTION  

Bone damage resulting from trauma, age-related bone resorption, and tumor-induced 

bone loss has been treated with bone grafts in orthopedic surgery for many years 

[1,2,3]. Bone grafting provides an osteoconductive and/or osteoinductive 

environment that promotes bone healing and regeneration [4,5]. Bone healing 

process initiates with osteoinduction, which involves the differentiation of 

pluripotent stem cells into osteoblasts. Proliferation and formation of new bone tissue 

are supported by osteoconductive properties of bone grafts [1,6,7,8]. Clinically, one 

of the mostly used   bone graft material is hydroxyapatite (HAp, Ca10(PO4)6(OH)2). 

70% of bone tissue and 98% of tooth enamel consist of HAp, which is a bioactive, 

biocompatible, and bioresorbable material [1]. It can be sourced from animal bones, 

plants or aquatic sources (Figure 1.1), and chemically synthesized [7,8]. Notably, 

chemically synthesized HAp exhibits comparable tissue compatibility to its naturally 

sourced counterpart [1]. HAp is recognized as the most commonly utilized 

bioceramic in bone tissue engineering [2,6,9]. It has been shown that HAp positively 

affected the adhesion and proliferation of osteoblast cells (bone cells) [10]. Through 

these advantageous properties, HAp serves as an effective carrier for antibiotic 

loading, enabling sustained antimicrobial activity and reducing the risk of post-

surgical infections in orthopedic applications.  
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Figure 1.1 Natural sources of HAp: Animal-derived, plant-based resources, and 

aquatic origins [8]. 

1.1 Gentamicin 

Gentamicin is an aminoglycoside antibiotic consisting of three sugar rings and 

several amino groups. Under physiological conditions (pH ~7.4), its amino groups 

become protonated and form -NH₃⁺ groups. These protonated amino groups were 

shown to interact with the negatively charged phosphate groups of the bacterial 30S 

ribosomal subunit, thereby inhibiting protein synthesis [11]. Gentamicin is a broad-

spectrum antibiotic, exhibiting bactericidal activity against both Gram-negative and 

Gram-positive bacteria. Additionally, it is characterized by its low molecular weight, 

cost-effectiveness, and widespread availability. Due to its broad-spectrum efficacy, 

gentamicin is commonly used for the treatment of bone infections [12,13] 
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Figure 1.2 Chemical formula of Gentamicin [14]. 

 

1.2 Rhamnolipid 

Rhamnolipid (RL) is a glycolipid type of biosurfactant, derived from Gram-Negative 

Pseudomonas aeruginosa bacteria [15]. RL contains both hydrophobic and 

hydrophilic groups which are polar rhamnose units (one or two) and non-polar fatty 

acid chain [16,17]. These amphipathic structures enhance the antibacterial activity 

of RL, which is well-known for its anti-adhesive and anti-biofilm characteristics 

[18,19].  

 

 

Figure 1.3 Molecular formula of mono- and di-rhamnolipids [20]. 
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1.3 Research Objective 

This research aimed to synthesize hollow and mesoporous HAp particles that can 

serve as reservoirs to enhance the antibiotic-loading capacity, while simultaneously 

inducing bone cell functions for orthopedic applications. Hollow and mesoporous 

structure had high surface area and porosity, which are essential for maximizing drug 

encapsulation and facilitating controlled release.  

The primary aim of this study was to synthesize hollow and mesoporous 

hydroxyapatite (HAp) particles to serve as reservoirs, thereby enhancing antibiotic-

loading capacity while simultaneously promoting bone cell functions for orthopedic 

applications.  

HAp particles were synthesized using the anion exchange method. Following 

synthesis, the HAp particles were loaded with gentamicin, a potent aminoglycoside 

antibiotic, to effectively target and mitigate bone infections. To further optimize the 

antibiotic release profile, the gentamicin-loaded hollow HAp particles were 

subsequently coated with rhamnolipid (RL). This coating is critical for maintaining 

therapeutic antibiotic concentrations over an extended period, thereby improving 

infection management and reducing the risk of antibiotic resistance. 
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CHAPTER 2  

2 LITERATURE REVIEW 

2.1 Hollow Hydroxyapatite (HAp) as Antibiotic Loaded Bone Graft 

In orthopedic surgeries such as the fixation of open bone fractures and joint revision 

surgeries, various factors such as the operative environment, the attire worn by 

medical personnel, and microorganisms inherently present on the patient's skin, 

serve as primary sources of bacterial contamination. Gram-positive Staphylococcus 

aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) are primarily 

responsible for approximately 90% of postoperative bone infections observed in 

patients [21,22,23,24]. Following primary bone surgery, oral or intravenous 

antibiotic therapy is administered to prevent infections caused by these opportunistic 

bacteria [8]. However, achieving therapeutic concentrations of antibiotics within 

bone tissue is challenging due to its limited vascularization [6]. Therefore, 

opportunistic bacteria in the surgical area adhere to bone tissue and/or implant 

surfaces, followed by formation of biofilm which is a self-produced polysaccharide-

based extracellular matrix. When bacteria form biofilm, the antibiotic concentrations 

required to eradicate it gets 10 to 100-fold higher than the applied systemic antibiotic 

concentrations [21]. The residual bacteria in the area may even develop resistance to 

suboptimal antibiotic levels. Over time, bone infection will develop and lead to 

failure of the primary surgery [25]. This makes the treatment of osteomyelitis more 

complicated and often necessitates a second surgical intervention [23]. Secondary 

operations typically involve comprehensive debridement (wound cleaning), removal 

of necrotic tissue, and the replacement of the implant [26]. 

To mitigate the risk of bone infection following orthopedic procedures, recent studies 

have focused on local antibiotic therapy [6,27,28]. This approach aims to deliver 

antibiotics at therapeutic concentrations directly to the bone tissue without being 
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affected by poor vascularity and preventing the antibiotic toxicity in healthy tissues. 

There are studies on the use of HAp as a potential antibiotic-loaded bone graft to 

prevent postoperative osteomyelitis [29,30].  The aim of these studies is to achieve 

a sustained and prolonged release of the loaded antibiotics. 

 Antibiotic loading potential and antibiotic release kinetics of HAp particles depend 

on various parameters that can be controlled through the synthesis method and 

procedure of HAp [31,32,33]. While antibiotic release kinetics depend on pore size 

and degradation rate of HAp, antibiotic loading potential is influenced by particle 

size, shape, surface area, pore volume, and structure of HAp particles.  One study 

reported that the release kinetics of gentamicin from HAp particles increased with 

larger pore size. Conversely, the amount of gentamicin loading decreased as the 

porosity of the particles decreased [32].  

Similarly, HAp particles with a large surface area and mesoporous structure (Figure 

2.1a, b) exhibited an antibiotic-loading capacity up to three times higher than 

conventional HAp. While the antibiotic release of mesoporous HAp particles 

reached a plateau in 5 days, the antibiotic release of conventional HAp particles was 

completed within the first 6 hours (Figure 2.1c).  
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Figure 2.1 (a) SEM and (b) TEM bright field image of mesoporous carbonated 

hydroxyapatite microspheres (MCHMs). (c) Cumulative drug release of MCHMs 

and hydroxyapatite (HAPs) [34]. 

 

Additionally, as the concentration of gentamicin loaded onto these particles 

increased, the number of bacteria on the surfaces decreased, with no observed toxic 

effects on stromal cells [34]. 

In another study, the antibiotic-carrying performance of HAp particles and the 

release kinetics of surface-bound antibiotics were tested, and the results showed that 

the antibiotic was released rapidly, completing within a short period of about 30 

minutes [35].  

Jiang et al. implanted powdered vancomycin and HAp particles in tablet form into 

animals as artificial bone to improve bone tissue loss resulting from chronic 

osteomyelitis. The results indicated that the antibiotic-loaded artificial bone was 

gradually resorbed and replaced by new bone tissue, while infection did not recur in 

the damaged tissue [36].  

(b)(a)

(c)
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Although these studies focused on antibiotic release from HAp particles, studies on 

the effects of antibiotic-loaded HAp on bone cell functions and antibacterial activity 

remained limited and insufficient. Moreover, in these studies, antibiotics in powder 

form were either directly mixed with HAp-based bone grafts or the grafts were 

soaked in prepared antibiotic solutions.  Therefore, antibiotics were adsorbed only 

onto the outer surface of the HAp particles.  

However, such methods led to rapid release of the antibiotic, resulting in rapid 

release and compromised efficacy for the local antibiotic therapy. Thus, there is a 

need to synthesize particles that can act as reservoirs, allowing for prolonged and 

increased antibiotic release. To enhance the drug-loading capacity of HAp, only a 

few studies have reported synthesizing it in a shell form with a hollow core. In these 

studies, HAp was loaded with anti-cancer and anti-inflammatory drugs, and time-

dependent drug release was analyzed via absorbance methods. 

In a study conducted by Lai et al., hollow HAp particles (Figure 2.2a) were 

synthesized using an anion exchange method followed by a hydrothermal process. 

These particles were loaded with the anti-cancer drug doxorubicin hydrochloride 

(DOX), and it was observed that DOX release from the particles was completed 

within 96 hours (Figure 2.2b). The DOX-loaded particles exhibited selective 

cytotoxicity: effectively killing hepatocarcinoma cells (Figure 2.3a), showing 

reduced toxicity to healthy hepatocytes (Figure 2.3b) [30].  

 

Figure 2.2 (a) SEM image of the porous hollow HAp microspheres and (b) DOX 

release profiles of the particles in PBS [30]. 

(b)
(a)
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Figure 2.3 (a) Cellular viability of the particles with and without DOX using human 

hepatocarcinoma cells and (b) human hepatocyte cells [30]. 

 

Another research group synthesized hollow HAp particles (Figure 2.4a) using the 

wet precipitation and hydrothermal methods and loaded them with doxorubicin 

(DOX). Drug release from the particles reached a plateau within 20 hours (Figure 

2.4b) [37]. To investigate the cytotoxicity of DOX-loaded HAp, CCK-8 viability 

assays were performed using MC3T3-E1 cells, and it was observed that the number 

of viable cells increased with the culture period.  

 

Figure 2.4  (a) TEM images of HAp hollow microspheres and (b) Cumulative DOX 

release of particles in PBS at pH 7.4 [37]. 

 

In another study, hollow HAp particles were loaded with the anti-inflammatory drug 

ibuprofen. The ibuprofen-loaded HAp was compressed into disk form. Release 

(a)
(b)
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kinetics of particles were compared to pure ibuprofen disk. While the release of pure 

ibuprofen was completed within 2.5 hours (Figure 2.5a), the release of ibuprofen 

from the HAp disks reached a plateau after 48 hours (Figure 2.5b). However, this 

study did not assess cellular interaction or antibacterial activity [38].  

 

Figure 2.5 (a) Release of a pure ibuprofen disk, and (b) ibuprofen-loaded HAp disk 

in SBF [38].  

 

In a study by Safi et al., an attempt was made to synthesize cubic-shaped hollow 

HAp particles via an anion exchange method and loaded them with ibuprofen [39]. 

However, cubic morphology was not preserved during synthesis of hollow particles, 

which led to ruptured structures. Consequently, the drug release was completed in a 

short period of 4 hours.   

As stated previously, none of the studies in literature involved loading antibacterial 

drugs into the HAp shells or testing their performance with bacterial cells. There is 

only one study that synthesizes hollow HAp and loads antibiotics into the particles.  

In this study, a CaCO3 core was synthesized, and a HAp shell was precipitated onto 

it using an anion exchange method. Subsequently, the CaCO3 core was dissolved 

with the aid of acetic acid to obtain a hollow HAp shell. However, during synthesis, 

the particles fused together, lost their morphology, and resulted in ruptured particle 

structures. To test the release kinetics of ciprofloxacin from the particles, the 

antibiotic-loaded particles were placed in a dialysis membrane, followed by 
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immersing them in phosphate-buffered saline (PBS) solution. The absorbance of this 

solution was measured at specific time intervals. It was observed that approximately 

50% of the loaded drug was released over 9 days. However, at these specific release 

time points, fresh PBS was not added to the particles in place of the collected release 

solution. As a result, this method is inadequate for accurately determining the 

potential duration of antibiotic release from the particles [40].   

 

 

Figure 2.6 (a) SEM images of hollow mesoporous HAp particles (hmHANPs) (b) 

ciprofloxacin release of hmHANPs at pH 7.4 [40]. 

 

Although the aforementioned studies demonstrated that the drug loading capacity of 

the hollow particles was increased, it was observed that the drug release durations 

were shorter than anticipated. Moreover, no measures, such as coating the particles, 

were taken to prolong antibiotic release. HAp particles loaded with drugs could be 

coated with lipid-based materials to achieve the desired drug release kinetics [41,42].  

Rhamnolipid (RL), derived from Pseudomonas aeruginosa and known for its anti-

adhesive and anti-biofilm properties [18,19], is a candidate lipid for coating HAp-

based materials. For example, RL-coated poly (lactic-co-glycolic acid) (PLGA) 

nanoparticles were found to have prolonged release of doxorubicin/erlotinib 

compared to those without the RL coating [43]. 

(a)
(b)
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Currently, there is no available system for orthopedic applications that can both 

regulate the release of antibiotics from a reservoir and induce bone healing 

simultaneously. 

The aim of this thesis was synthesis of hollow and porous HAp particles and load 

them with antibiotic, gentamicin, selected for its broad-spectrum activity, to combat 

infections in bone tissue. To prolong the antibiotic release kinetics, the particle 

surfaces were coated with RL. The antibacterial efficacy of the synthesized particles 

was tested against Gram-positive S. aureus and Gram-negative E. coli to fight against 

bone infection. 
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CHAPTER 3  

3 EXPERIMENTAL METHODS 

3.1 Materials 

All the chemicals used in this study were analytical grade. Calcium acetate 

monohydrate (Ca (CH3CO2)2H2O), sodium bicarbonate (NaHCO3), ethylene glycol 

(EG; (CH2OH)2), phosphoric acid (H3PO4, ≥ 85 wt%) and ethanol (C2H5OH) and 

were purchased from Sigma Aldrich and Millipore Milli-Q purification system was 

used to obtain ultrapure water. Minimum Essential Medium α (MEM-α) and fetal 

bovine serum (FBS) were purchased from Serena. 3-(4,5-Dimethylthiazol-2-yl)-2,5-

Diphenyltetrazolium bromide (MTT) kit was purchased from Abcam. Dimethyl 

sulfoxide (DMSO), and hexamethyldisilazane (HMDS) were purchased from Sigma 

Aldrich. Gentamycin sulphate, rhamnolipid (RL) and tryptic soy broth (TSB) were 

purchased from Biobasic, Agae Technologies, and Merck, respectively. 

3.2 Synthesis of Vaterite@HAp and Hollow HAp Particles 

Ellipsoidal vaterite (CaCO3) particles were initially synthesized as template particles 

using a wet precipitation method. For the synthesis of vaterite particles, calcium 

acetate monohydrate (0.3 M) and sodium bicarbonate (0.9 M) solutions were 

prepared. EG was added to each solution, and the solutions were stirred at 500 rpm 

for 4 min. Subsequently, the calcium acetate monohydrate and sodium bicarbonate 

solutions were mixed, and stirred at 500 rpm for 15 min. The mixture was then left 

to stand for 1 h to facilitate vaterite particle precipitation. Afterwards, the vaterite 

particles were sequentially washed with ethanol and distilled water. To form a HAp 

shell on the vaterite cores (Vaterite core@HAp shell), diluted phosphoric acid 

solution prepared in EG was added to the particles. To dissolve the vaterite core and 
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form a hollow HAp shell, the Vaterite@Hap (Vat@HAp, core@shell) structure was 

treated with diluted acetic acid solution. Finally, the particles were rinsed with 

ethanol and distilled water. 

3.3 Antibiotic Loading and Lipid Coating of the Particles 

To facilitate antibiotic loading, Vat@HAp (40 mg) and HAp (40 mg) particles were 

immersed in 10 mL of a 4 mg/mL gentamicin sulfate solution prepared in 1X PBS 

for 4 hours, after which they were referred to as G-Vat@HAp and G-HAp, 

respectively. After loading, the particles were centrifuged and rinsed with distilled 

water to remove unbound antibiotics. For lipid coating of the particles, RL solution 

was used. Initially, RL was dissolved in 1X PBS at a 1:1 mass ratio with the particles. 

Subsequently, HAp and G-HAp particles were immersed in the RL solution for 2 h 

to allow coating, followed by collection of particles via centrifugation and washing 

with distilled water. After RL coating particles were referred to as RL-HAp and 

GRL-HAp, respectively 

3.4 Characterization of particles 

3.4.1 Scanning Electron Microscopy (SEM) 

The surface morphology of the particles was examined using a Scanning Electron 

Microscope (SEM) (FEI Nova Nano SEM 430). Before SEM imaging, particles were 

coated with a thin layer of gold using a Quorum SC7640 sputter coater to prevent 

electrical charge accumulation. SEM imaging was taken under 20kv of accelerating 

voltage.  
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3.4.2 Transmission Electron Microscopy (TEM) 

Transmission Electron Microscopy (TEM, FEI TECHNAI F30) was employed at 

200 kV accelerating voltage to visualize the hollow structure of the particles and 

obtain crystallographic data under bright-field and high-resolution (HR) modes. 

Particle size and shell thickness were measured from these images using ImageJ 

software. 

3.4.3 X-ray diffraction (XRD) 

X-ray diffraction (XRD) was utilized to confirm the crystal structure of the particles. 

For this purpose, measurements were conducted using a Brucker D8 Advance X-ray 

diffractometer) with monochromatic Cu Kα radiation (λ = 1.54 Å) at a scan rate of 

2°/min over a 2θ range of 20°-60°.  

3.4.4 Fourier Transform Infrared Spectroscopy (FTIR) 

The chemical characterization of the particles was performed using Fourier 

Transform Infrared Spectroscopy (FTIR, Perkin Elmer 400) in attenuated total 

reflection (ATR) configuration. Samples were scanned in the range of 4000-400 cm-

1 with 4 cm−1 resolution.  

3.4.5 Thermogravimetric Analysis (TGA) 

 The particles were subjected to Thermogravimetric Analysis (TGA) and Differential 

Thermal Analysis (DTA) using a Perkin Elmer Pyris 1 TGA system. For thermal 

characterization, the particles were heated in a nitrogen atmosphere at a rate of 

10°C/min from Troom to 950 °C.  
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3.4.6 Brunauer-Emmett-Teller (BET) 

The surface area (m²/g), pore size distribution, and pore volume of the particles were 

characterized using a Brunauer-Emmett-Teller (BET) surface characterization 

device (Quantachrome Corporation, Autosorb-6). Prior to BET characterization, 

particles were degassed at 70 °C for 5 h. N2 adsorption-desorption isotherms were 

presented, along with the corresponding pore size distribution. The results were 

characterized according to the International Union of Pure and Applied Chemistry 

(IUPAC) classification. Surface area, pore size and distribution and pore volume of 

the particles were calculated based on the Barret-Joyner-Halenda (BJH) model.  

3.5 In vitro Antibiotic release  

The antibiotic-loaded particles, including G-Vat@HAp, G-HAp, and GRL-HAp, 

were immersed in fresh 1X PBS with a pH of 7.4 to study antibiotic release. At 

specific time intervals (1, 6, 12, 24 h, and 3, 5, 7, 9, 11, 13, 15, 19, 21, 23, 25, 27, 29 

days) the particles were centrifuged, and all release media were collected for 

analysis. At the end of each interval, particles were immersed in fresh 1X PBS.  

3.6 Antibacterial properties 

To assess the antibacterial properties of the particles, inhibition zone (disk diffusion) 

and colony forming unit (CFU) assays were performed with Gram-positive 

Staphylococcus aureus (ATCC 25923) and Gram-negative Escherichia coli (ATCC 

10536) strains. Standard bacterial culture protocols were followed. Initially, for both 

inhibition zone and CFU experiments, bacteria were inoculated onto tryptic soy agar 

(TSA) for 24 h.  Following inoculation, a single colony was transferred to tryptic soy 

broth (TSB) and cultured in a shaking incubator at 37°C with agitation at 200 rpm 

for 4 h. After incubation, the optical density (OD) of the cultures was measured at a 

wavelength of 600 nm, and the bacterial suspensions were diluted to achieve an OD 
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of 0.1. This OD corresponds to approximately 1.5 × 10⁸ colony-forming units 

(CFU)/mL, as determined using the 0.5 McFarland scale [44]. 

For the inhibition zone experiment, 0.5 mL of the prepared bacteria suspensions were 

spread onto TSA plates. Sterile cellulose filters were placed onto bacteria-spread 

agar plates, and 10 μL of the release liquids, collected at different time intervals (up 

to 29 days) from antibiotic loaded particles (G-Vat@HAp, G-HAp, and GRL-HAp) 

were added onto the filters. After incubation at 37°C for 24h, inhibition zones were 

measured.  

For the CFU experiments, bacteria suspensions were diluted to achieve a 

concentration of 10⁶ CFU/mL using TSB for both bacteria strains. These bacteria 

suspensions were then mixed with release liquids (1: 100 diluted) in equal volumes. 

After incubation at 37°C for 24 h, the media in the wells were serially diluted and 

plated onto agar. Number of CFUs were counted after an incubation period of 24 h. 

3.7 Bone Cell Viability 

Prior to the in vitro biological tests, particles were sterilized with 70% ethanol 

solution for 15 min, followed by exposing to UV radiation for 1 h. MC3T3-E1 pre-

osteoblast cells (ATCC CRL-2593) were cultured using Minimum Essential Medium 

α (MEM-α) supplemented with 10% FBS, 1% L-glutamine, and 1% 

penicillin/streptomycin. The cells were cultured under standard cell culture 

conditions (37°C and 5% CO₂). For viability tests, sterilized particles were extracted 

in cell culture medium at concentrations of 0.1 and 0.01 mg/ mL at 37°C for 72 h.  

MC3T3-E1 cells were seeded into 96-well plates at a density of 10,000 cells/well 

and incubated for 24 h under standard conditions (37°C and 5% CO₂) to allow for 

attachment of the cells. After 24 h, the culture media were replaced with extract 

solutions.  The metabolic activities of the cells were assessed for up to 5 days using 

the MTT kit. At the specified time points, the media were aspirated, and the cells 

were rinsed with 1X PBS. 1 mg/mL MTT solutions were added to wells, and 
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incubated for 4 h (37°C, 5% CO₂). After 4 h, an isopropanol solution containing 0.1 

M HCl was added to wells to dissolve the formazan crystals. Subsequently, 

absorbance values were read at a wavelength of 560 nm using a microplate 

absorbance reader (Thermo Scientific Multiskan GO). The obtained values were 

normalized by subtracting the absorbance values of control samples without cells. 

Using a standard absorbance-cell count graph, total cell counts were determined.  

3.8 Statistical analysis  

All biological experiments were conducted in triplicate, with four samples used for 

each repetition. The results were presented as mean ± standard deviation. Statistical 

analyses were performed using Tukey's post hoc test, with the significance level set 

at p<0.05. 
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CHAPTER 4  

4 GENTAMICIN LOADED HOLLOW HAP PARTICLES 

4.1 Results and Discussion  

Initially, vaterite (Figure 4.1a) particles in ellipsoidal morphology were synthesized 

as template. Then, HAp shells were precipitated on the vaterite (CaCO3) core 

(vaterite core@HAp shell) (Figure 4.1b). During the HAp shell precipitation onto 

vaterite cores, ellipsoidal shape of particles was maintained and the change in surface 

morphology was observed in the SEM image (Figure 4.1b). For the synthesis of 

hollow HAp particles, the vaterite core was dissolved by using 1:65 diluted acetic 

acid solution for 3.5 minutes. After acetic acid treatment, hollow shell structured 

particles (Figure 4.1c) were successfully obtained preserving the ellipsoidal 

morphology without rupture of the particles. Hollow structure of HAp seen in bright 

field imaging in TEM characterization (Figure 4.3a). 
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Figure 4.1 SEM images of (a) Vaterite (CaCO3), (b) Vat@ HAp, and (c) HAp 

particles. 

 

XRD analysis was used for phase identification of the synthesized particles (Figure 

4.2). XRD pattern of CaCO₃ particles (blue line) provided peaks at 21.06, 24.99, 

27.16, 32.88, 38.93, 42.76, 43.95, 49.19, 50.13, 55.88 which belonged to (004), 

(110), (112), (114), (211), (008), (300), (304), (118) and (224) crystal planes 

respectively. According to JCPDS references CaCO₃ core was vaterite (#033–0268) 

polymorph. The emergence of HAp phase peaks in the diffraction pattern is evidence 

of HAp precipitation onto the vaterite core (red line). XRD analysis was performed 

to confirm the totally dissolution of the vaterite (#009–0432) core upon acid 

treatment to remain hydroxyapatite (#009–0432) shell structure. Diffraction peaks 

of the HAp particles (black line) are 22.85, 25.82, 31.97, 39.83, 46.58, 49.50, 53.15 
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corresponding to (111), (002), (211), (310), (222), (213), and (004) crystal planes 

respectively. Broad diffraction peaks of HAp indicate the semicrystalline structure 

of HAp shells. During antibiotic loading and RL coating processes, there were no 

phase transformations of HAp were observed (Figure 4.2, green line).  

 

Figure 4.2 XRD spectra of the synthesized particles. 

 

TEM characterization was conducted for HAp and RL-HAp particles (Figure 4.3) to 

confirm the hollow structure of particles and coating. Selected Area Electron 

Diffraction (SAED) patterns of the HAp particles (Figure 4.3b) exhibited diffusive 

and distinct rings, indicating that the particles possess a semicrystalline structure. 

These findings are consistent with the corresponding XRD spectra (Figure 4.2, black 

line). In bright field TEM imaging of RL-HAp particles (Figure 4.3c), RL coating 

was not observed. 
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Figure 4.3 (a and c) Bright field TEM images of a) HAp, and c) RL-HAp particles, 

(b and d) SAED patterns of b) HAp, and d) RL-HAp particles, and e) HR-TEM image 

of HAp particles. 
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In the FTIR spectra (Figure 4.4), characteristics absorption bands of the CO3
2- in the 

vaterite particles (blue line) are 745 cm⁻¹ (out-of-plane bending vibration), 849 cm⁻¹ 

(bending vibration), 876 cm⁻¹ (bending vibration) and 1089 cm⁻¹ (symmetric 

stretching vibration) [45,46,47,48]. For the HAp particles (black line), the bands 

appearing at 478 cm⁻¹ (bending vibration), 561 cm⁻¹ (out-of-plane bending 

vibration), 601 cm⁻¹ (out-of-plane bending vibration) 960 cm⁻¹ (symmetric 

stretching vibration), 1020 cm⁻¹ (asymmetric stretching vibration) and 1120 cm⁻¹ 

(asymmetric stretching vibration) belong to the characteristics PO4
3- absorptions 

bands. The absence of characteristic vaterite absorption bands for HAp particles in 

the FTIR spectra indicates that the vaterite core is fully dissolved and removed [49]. 

Furthermore, absorption bands at 875 cm⁻¹ (bending vibration) and 1411 cm⁻¹ 

(asymmetric stretching vibration) belong to B-type CO3
2- substitution in HAp phase 

for the PO4
3- ions which is the evidence of carbonated HAp [50,51,52].  CO3

2- 

substitution caused deviation from stoichiometric HAp composition. While it did not 

alter the phase of HAp and its X-ray diffraction pattern (Figure 4.2), it will alter the 

crystallinity and cause the broadening of diffraction peaks. It should be noted that 

HAp phase in natural bone is also non-stoichiometric, nanocrystalline and carbonate 

substituted [7,53]. Under physiological conditions, nonstoichiometric HAp is more 

resorbable and has a higher osteoconductive property than stoichiometric HAp 

[9,54,55,56]. Due to CO3
2- ion substitution for the PO4

3- ions, hydroxyl bands at 630 

cm⁻¹ (libration) and 3500 cm⁻¹ (stretching) in HAp particles are absent [57,58]. This 

is resulting in the removal of an OH⁻ ion from the structure to balance the charge 

difference.  After synthesis of HAp particles, they were loaded with gentamicin to 

serve as reservoirs for local antibiotic delivery, as detailed in section 3.3 followed by 

coating with RL to prolonged antibiotic release and to enhance antibacterial 

properties.  

The loading of gentamicin into the HAp particles is confirmed by the presence of 

characteristic primary amine (bending, -NH₂), secondary amine (deformation, -NH) 

and secondary amine (bending, -NH) bands at 1644 cm⁻¹, 1551 cm⁻¹ and 1467 cm⁻¹ 

respectively [59,60,61,62,63]. Moreover, the RL coating of the HAp particles were 
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confirmed by the identification of intense bands at 2958 cm⁻¹ (asymmetric stretching 

-CH3), 2925 cm⁻¹ (asymmetric stretching -CH2), 2854 cm⁻¹ (symmetric stretching -

CH2), 1735 cm⁻¹ (symmetric stretching, -C=O) and 1401 cm⁻¹ (symmetric 

stretching, -COO-) [17,60,61,64,65].  

 

 

Figure 4.4 FTIR spectra of the synthesized particles between a) 2000-500 cm-1, b) 

1700-1200 cm-1, and c) 3500-2500 cm-1. 
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Figure 4.5 TGA and DTG curve of a) Vat@HAp, b) HAp, c) RL-HAp, d) G-HAp, 

and e) GRL-HAp particles. 

 

The TGA and DTG curves of particles (Figure 4.5) illustrate the weight loss and 

thermal behavior of particles upon heating from Troom to 975°C.  

For Vat@HAp particles (Figure 4.5a), 7% weight loss is observed up to 400 °C, 

attributed to the physically bonded and structural water. Decomposition of carbonate 
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content occurs between 600°C and 800°C, with the maximum decomposition rate 

observed at 690°C. 

HAp (Figure 4.5b), RL-HAp (Figure 4.5c), G-HAp (Figure 4.5d) and GRL-HAp 

particles (Figure 4.5e) exhibit weight losses of 9.2%, 6.9%, 9.7% and 6.5%, 

respectively, up to 200°C due to physically bonded water.  

Between 600°C and 800°C, weight losses of 7.0%, 7.4%, 5.3%, and 7.4% are 

observed, respectively, due to the carbonate decomposition of these particles (Figure 

4.5b, c, d, and e). RL-HAp particles (Figure 4.5c) exhibit a 27.6% weight loss 

between 200°C and 600°C. The decomposition of rhamnose groups in rhamnolipid 

occurs at 260°C, with the maximum decomposition rate, followed by the 

decomposition of the hydrocarbon chain at 396°C and 473°C, at their respective 

maximum rates. G-HAp particles (Figure 4.5d) exhibit 4.5% weight loss between 

200°C and 400°C. The decomposition of gentamicin’s amine and hydroxyl groups 

have the maximum decomposition rate at 276°C. GRL-HAp particles (Figure 4.5e) 

show 39.8% total weight loss between 200°C and 600°C, primarily due to the 

decomposition of gentamicin with maximum decomposition rates at 228°C, and 

decomposition of rhamnolipid with maximum decomposition rates at 270°C and 

392°C.  

While antibiotic release kinetics have been shown to depend on the pore size and 

degradation rate of HAp, antibiotic loading potential was influenced by factors such 

as the particle size, shape, surface area, pore volume [31,32,33]. To assess the surface 

properties of the particles, Brunauer-Emmett-Teller (BET) surface characterization 

was applied. BET analysis revealed the surface area (m²/g), pore size distribution, 

and pore volume of the particles. Vat@HAp, HAp and RL-HAp particles have Type 

V adsorption-desorption isotherms. According to the International Union of Pure and 

Applied Chemistry (IUPAC) classification, Type V isotherms are characterized by 

relatively weak adsorbent-adsorbate interactions at low p/p0 values. At higher p/p0 

values, type V isotherms indicate multilayer adsorption, followed by pore filling 

which is the evidence of mesoporous nature of particles. The Type H3 hysteresis 
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loop was observed in the isotherms of all particles. The H3 hysteresis loop indicates 

that the particles are agglomerated and possess slit-shaped pores with a broad range 

of pore size distribution. The Barrett, Joyner, and Halenda (BJH) method was applied 

to calculate the surface area (m²/g), mesopore size (nm), and pore volume (cc/g) of 

particles through the analysis of N₂ adsorption–desorption isotherms. HAp has the 

highest surface area (306.2 m²/g), followed by Vat@HAp (188.9 m²/g) and RL-HAp 

with the lowest surface area (152.2 m²/g). In mesopore volume measurements, HAp 

has higher mesopore volume (0.96 cm³/g) than the RL-HAp (0.47 cm³/g) and 

Vat@HAp and (0.47 cm³/g). In addition, the average pore size of HAp (3.39 nm) 

was higher than RL-HAp (1.65 nm).  

 

 

Figure 4.6 Adsorption and desorption curves, and pore size distributions of a) 

Vat@HAp b) HAp, and c) RL-HAp. 
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4.2 Antibacterial Performance 

Antibacterial performance of antibiotic loaded particles, including G-

Vaterite@HAp, G-HAp, and GRL-HAp was tested against S. aureus and E. coli 

strains. Following incubation at 37°C for 24 hours, inhibition zones for S. aureus 

(Figure 4.7) were observed on TSA plates using release liquids collected at different 

time points. While the inhibition zones of G-Vat@HAp particles visible up to 15 

days, the inhibition zones of G-HAp and GRL-HAp particles seen up to 29 days.  

 

At all-time points, G-HAp particles exhibited the larger inhibition zone areas 

compared to G-Vat@HAp particles. This superior performance can be attributed to 

differences in antibiotic loading mechanisms. While antibiotic molecules only 

adsorbed onto the outer surface of Vat@HAp particles, HAp particles allow for both 

internal loading and surface adsorption of antibiotic.  The drug loading capacity is 

significantly enhanced by synthesizing the particles as hollow, facilitating the 

efficient loading of gentamicin through electrostatic interactions between the 

negatively charged HAp particles and the positively charged gentamicin molecules. 

Furthermore, for all time points, gentamicin GRL-HAp particles have larger 

inhibition zone areas compared to G-HAp particles. This enhancement is attributed 

to the negatively charged RL, which strengthens the electrostatic attraction of 

positively charged gentamicin, thereby increasing the drug loading capacity. 
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Figure 4.7 Inhibition zones of G-Vat@HAp (left), G-HAp (right) and GRL-HAp 

(bottom) particles on S. aureus at 1 h, 6 h, 12 h, 24 h, 5 day, 15 day, 21 day, 25 day 

and 29 day’ time points. 

 

The inhibition zone areas of release liquids were measured by using Image J software 

and summed up to generate a cumulative inhibition zone area graph as shown in 

Figure 4.8 for S. aureus. Cumulative inhibition zone area of G-Vat@HAp, G-HAp, 

and GRL-HAp measured as 725, 1470, 2017 mm2, respectively. 
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Figure 4.8 Cumulative inhibition zone areas of a) GRL-HAp, b) G-HAp, and c) G-

Vat@HAp particles on S. aureus. N=3. 

 

Inhibition zones for E. coli (Figure 4.9) were observed on TSA plates using release 

liquids collected at different time points. While the inhibition zones of G-Vat@HAp 

particles visible up to 24 h, the inhibition zones of G-HAp particles seen until day 

13, and GRL-HAp particles seen up to day 21. Cumulative inhibition zone area for 

E. coli (Figure 4.10) of G-Vat@HAp, G-HAp, and GRL-HAp measured as 402, 923, 

1437 mm2, respectively. 
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Figure 4.9 Inhibition zones of G-Vat@HAp (left), G-HAp (right) and GRL-HAp 

(bottom) particles on E. coli at 1 h, 6 h, 12 h, 24 h, 5 day, 15 day, 21 day, 25 day and 

29 day’ time points. 
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Figure 4.10 Cumulative inhibition zone area of a) GRL-HAp, b) G-HAp, and c) G-

Vat@HAp particles on E. coli. N=3. 

 

The released liquids collected on day 29 were diluted at a 1:100 ratio, and colony-

forming unit (CFU) assays were conducted using these liquids for S. aureus and E. 

coli strains. 

CFU assay graphs (Figure 4.11) and TSA plate (Figure 4.12) results on S. aureus 

show that there were no significant differences between the G-Vat@HAp, G-HAp, 

and control (S. aureus) groups. However, GRL-HAp particles demonstrated up to a 

32-fold greater bactericidal activity against S. aureus. 
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Figure 4.11 S. aureus CFUs upon the interaction with 29th day release (includes only 

28th and 29th days) of gentamicin from the particles. *p<0.001, N=3.  
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Figure 4.12 Agar plate photographs of S. aureus upon the interaction with 29th day 

release (includes only 28th and 29th days) of gentamicin from a) Control, b) G-

Vat@HAp, c) G-HAp, and d) GRL-HAp particles. 

 

CFU assay graphs (Figure 4.13) and TSA plate (Figure 4.14) results on E. coli show 

that there were no significant differences between the G-Vat@HAp, and control (E. 

coli) groups. G-HAp particles reduce the bacteria colony count compared to control 

group. GRL-HAp particles demonstrated up to a 4623-fold greater bactericidal 

activity against E. coli. 
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Figure 4.13 E. coli CFUs upon the interaction with 29th day release (includes only 

28th and 29th days) of gentamicin from the particles. *p<0.001, N=3. 
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Figure 4.14 Agar plate photographs of E. coli upon the interaction with 29th day 

release (includes only 28th and 29th days) of gentamicin from a) Control, b) G-

Vat@HAp, c) G-HAp, and d) GRL-HAp particles. 
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4.3 Cellular Viability Assay 

To assess the cytotoxicity of HAp, RL-HAp, G-HAp and GRL-HAp particles, MTT 

assay was conducted using the MC3T3-E1 cell line. For the viability experiments, 

cells were cultured with particle extracts at 0.1 and 0.01 mg/mL concentrations up 

to 5 days in vitro. The control group was tissue culture polystyrene (TCPS). Cellular 

viability results are provided in Figure 4.15. Results showed that there was no 

significant difference between any group on the 1st and 3rd days of culture (p>0.05). 

On the 5th day of in vitro culture, samples at either extraction concentration did not 

show any statistical difference compared to the TCPS.  

 

 

Figure 4.15 Effect of particle extracts (72h, 37 ⁰C) on MC3T3-E1 (preosteoblast) 

proliferation. N=3. 
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CHAPTER 5  

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In this thesis, hollow HAp particles were successfully synthesized with the aim of 

using them as antibiotic-loaded reservoirs to combat bone tissue infection that may 

occur after bone and orthopedic implant surgeries. Particle characterization studies 

confirmed that the synthesized particles were carbonated HAp, with no residual 

vaterite phase. Gentamicin was loaded into the inner core and adsorbed onto the 

particle surfaces of HAp. To prolong the antibiotic release and sustain the 

antibacterial coating, the hollow HAp particles were coated with RL.  

Surface characterization studies show that HAp had higher surface area (306.2 m²/g), 

greater mesopore volume (0.96 cm³/g) and larger average pore size (3.39 nm) than 

RL-HAp. This indicates that the RL coating reduced the surface area, mesopore 

volume, and average pore size of HAp particles. The antibacterial properties of G-

Vaterite@HAp, G-HAp, and GRL- HAp particles were evaluated against S. aureus 

and E. coli strains using inhibition zone and colony-forming unit (CFU) assays. G-

HAp and GRL-HAp particles exhibited inhibition zones against S. aureus for up to 

29 days, whereas G-Vat@HAp particles exhibited inhibition zones for only 15 days.  

At all the time investigated points, GRL-HAp particles showed the largest inhibition 

zone areas compared to the other particles. The cumulative inhibition zone areas on 

S. aureus were 725, 1470, and 2017 mm² for G-Vat@HAp, G-HAp, and GRL-HAp 

particles, respectively.   

For E. coli, the inhibition zones of the G-Vat@HAp particles were visible up to 24 

hours, G-HAp particles showed inhibition until day 13, and GRL-HAp particles 

exhibited inhibition up to day 21. The cumulative inhibition zone areas for E. coli 
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were 402, 923, and 1437 mm² for the G-Vat@HAp, G-HAp, and GRL-HAp 

particles, respectively. CFU assay results revealed that GRL-HAp particles 

demonstrated up to 32-fold higher bactericidal activity against S. aureus and more 

than 4000-fold greater bactericidal activity against E. coli. 

Furthermore, the cellular viability assay demonstrated that HAp, RL-HAp, G-HAp, 

and GRL-HAp particles were not cytotoxic at 0.1 and 0.01 mg/mL concentration.  

Results indicated that the development of GRL-HAp particles represented a 

promising approach for improving antibiotic delivery and promoting bone cell 

viability in vitro for bone graft applications. 
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