REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

ENHANCING SECURITY LEVEL OF INDUSTRIAL INTERNET OF
THINGS DEVICES BASED ON BOTNET DETECTION AND
FEATURE SELECTION

Weam Husham Abdulwahhab AL-JABBARI

MASTER OF SCIENCE THESIS
Department of Computer Engineering

Computer Engineering Program

Supervisor

Prof. Dr. Hasan Hiiseyin BALIK

Co-Supervisor

Assoc. Prof. Dr. Muhammed Ali AYDIN

December, 2022

REPUBLIC OF TURKEY
YILDIZ TECHNICAL UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

ENDUSTRIYEL NESNELERIN INTERNETI CIHAZLARININ GUVENLIK
SEVIYESININ BOTNET TESPITi VE OZELLIK SECIMI TABANLI
GELISTIRILMESI

A thesis submitted by Weam Husham Abdulwahhab AL-JABBARI in partial fulfillment of
the requirements for the degree of MASTER is approved by the committee on 27.12.2022
in Department of Computer Engineering, Computer Engineering Program.

Prof. Dr. Hasan Hiiseyin BALIK Assoc. Prof. Dr. Mohammed Ali AYDIN
Yildiz Technical University Istanbul University-Cerrahpasa
Supervisor Co- supervisor

Approved By the Examining Committee

Prof. Dr. Hasan Hiiseyin BALIK, Supervisor
Yildiz Technical University é Z%\

Prof. Dr. Nizamettin AYDIN, Member

Yildiz Technical University

Prof. Dr. Belal Ismael KHALIL, Member

University of ANBAR § — iy

I hereby declare that I have obtained the required legal permissions during data
collection and exploitation procedures, that I have made the in-text citations and
cited the references properly, that I haven't falsified and/or fabricated research
data and results of the study and that 1 have abided by the principles of the
scientific research and ethics during my Thesis Study under the title of Enhancing
Security Level of Industrial Internet of Things Devices based on BotNet Detection
and Feature Selection supervised by my supervisors, Prof. Dr. Hasan Hiiseyin
BALIK and Assoc. Prof. Dr. Mohammed Ali AYDIN. In the case of a discovery of
false statement, I am to acknowledge any legal consequence.

Weam Husham Abdulwahhab AL-JABBARI
Signature

AL

o,

Dedicated to the Souls of

my Father and Sister

ACKNOWLEDGEMENTS

I am grateful to my supervisors, Prof. Dr. Hasan Hiiseyin BALIK and Assoc. Prof.
Dr. Mohammed Ali AYDIN, for their essential counsel, unwavering support, and
tolerance during my M.Sc. research. Their vast wisdom and extensive knowledge
has been an inspiration to me throughout my study. I would like to extend my
deepest gratitude to everyone in the Computer Engineering Department at Yildiz
Technical University, most especially to Department Head Prof. Dr. Nizamettin
AYDIN and the secretary (Suna Hanim and Filiz Hanim) for their boundless
enthusiasm, help, and support during my study. In addition, I would like to
express my gratitude to Lect. Nurdan YILDIZ GUNDUZ for all of her guidance,

assistance, and encouragement.

I would also like to give special thanks to my dearest friend B. Al-Ani for his
continuous support and understanding when undertaking my research and

writing my project.

I would like to express my gratitude to my mother and my brothers Ahmed and

Ali and all family members for their continuous supporting and prayers.

Finally, words cannot express my gratitude to my soulmate, my husband Wisam
for his invaluable patience and feedback. I also could not have undertaken this
journey without the tremendous understanding and encouragement of my son
Dawood and my Daughter Haya, it would be impossible for me to complete my

study without them.

Weam Husham Abdulwahhab AL-JABBARI

TABLE OF CONTENTS

LIST OF SYMBOLS viii
LIST OF ABBREVIATIONS ix
LIST OF FIGURES xiii
LIST OF TABLES Xiv
ABSTRACT XV
OZET xvii
1 INTRODUCTION 1
1.1 LItEratlr® REOVIEBW ounenienieieein ittt ettt e et ean e et seneaennenstneensanenseneensanensennes 1
1.2 Objective of the ThesiS......c.iuiiiiiiiii e e 5
G 17 010 1 1= £ N 6

2 THEORETICAL BACKGROUND 8
2.0 TNETOAUCTION «.eeeeeee et e e e e e e e e eae e e s e e e e e e e aareeraeeaesasanareaeanans 8
2.2 Internet Of Things (IOT)uuuuuuuuuuuuuuuuiuiiuuieutueeeeeeeeeeeereeenneeenereeenneeeneeneeennaeea—.. 8
2.3 Industrial Internet of Things (ITOT)uuuueuruuueiuiiiiiiiiiiiieieieeaeeeaeeeeeeeaeaeeaea—... 9
2.4 Differences between IOT and II0T een e et e e eaaanns 10

B T 5 10 [T 12
2.6 BotNet Structure and BeRavior........oe.veeeee e 13
2.7 BOENELS QNA TTOT ..eieiie ettt et e e e e e e e e e eaeans 15
2.8 Security of IIoT in Accordance to BotNet DeteCtion..............eveveeeeeeneeveveevennnns 16
2.9 BotNet Detection MeChaniSImS . .o v iu ettt e e 16
2.9.1 HODNEYIELS c.uutiiiiiiiiiiiiiin ittt ettt e e e 17

2.9.2 Intrusion Detection Systems (IDS)......cccuuieeriiiiiiriieiiiiinreriiieneeeeiiineenns 17
2.10 Machine Learning (IML)uuuuueeeeiieieeiiiiiiiiieeeeeeeeseersnieeeeeeeeeeessannnnnaeeeesaseeens 19
2.10.1 Types of Machine Learning..........ccccceeeeeerreiiieiieeeeeeeeneeiiiieeeeeeee e e 20
2.10.2 Popular Machine Learning Algorithms............cccccceeviniiiiiiiiiiiiiinnnnnn, 22
2.11 Datasets of Widespread Use in ML for Intrusion Detection.............cccuueueeee. 24
2.11.1 DARPA 98 DaAt@SEL....ceeeuuiiiiuieiiieieiiieeiiieeetiieeetiieeeteieeeenaeernneennneenanees 24
2.11.2 KDD CUP 99 DAt@SEL ..ceuureirnneiiniieiiireiiieietiieretieeetiieeetnieseeniesennaesennnnnes 25
2.11.3 NSL-KDD Dataset......cuuuueeriiiiiiiiiiiiiiiiiiiiieiiiiiiiiiiieeeeeeninniseeeeeesnnns 25
2.11.4 UNSW-NBIS5 DataSet.....cccerveeiiirmmmmmiiiiiniiiiiiiiiiiieeneeeenttieiieee e eeeeenns 26
2.11.5 CSE-CIC-IDS2018 DAtaSeLuuvvvrrreeeeeeeianiiiiiieereeeeeeenireereeeeeeseeeennnes 26
2.11.6 N-BalOT DAtasetccceviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeceieeeceeeeeeeeeeceee e 26
2.11.7 BOt-IOT DAtaset........ceuuuviiriiiiiiiimiiiiiiiiinieieiiiiiii et eeeeeens 27
2.11.8 X-IIOTID DAtaSet.....cccuuuuieiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiien e eeeeettnnne e e eeeenees 27
2.12 Features Selection (FS) ...t eeieeeeieeeeeie et ee e e e e evaaeeeraneeenas 32
2.12.1 Filter Features SeleCtioncccueeuiiiiiiiiiiniiiiiicieeeee e 34
2.12.2 Wrapper Features SeleCtioncceeeeerieriiiiieeeieeeeeienniiiieeeeeeeeeeeeeeanns 34
2.12.3 Embedded Features Selection..........ccceereeriiiiiiiieieeeiinieiiiieieeeeeeeeeeeaae 35
2.13 FS using the Eurasian Oystercatcher Optimizer (EOQO)ccceeeeeveeriuuenneen. 36
2.13.1 Mathematical Model of the EOO..........cccooviiiiiiiimiiiiiiiiiiieeeiecee e 36
2.13.2 EOO AlZOTitRM ...ccceiiiiiiiiieeee e e e e e 38
2.14 FS using the Rock Hyraxes Swarm Optimization (RHSO)uuvevuereennnes 39
2.14.1 Mathematical Model of the RHSOcccooviiiiiiimiiiiiiiiiiecenieeeeee 40
2.14.2 RHSO Algorithm........cccooiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee, 41

3 THE ML-BASED BOTNET DETECTION SYSTEM 43
3.1 INETOAUCTION teeieeeiiiiiieeteee ettt e e ettt et e e e e e e et e e e e e e e e e e nrnneeeae 43
3.2 The Proposed ML-Based BotNet Detection System Architecture 43
3.3 Dataset PreproCesSing STEPSceeeiiiieiiiiiiiiiieiieeeeiiiiiiiee e e e eeeteeiiie e e eeeeeeens 45
3.3.1 Dropping Unnecessary FEatures.........ccooeeeeiiiummuniiiiiieeiiiiiiiiiiieeeeeeeeennns 46
3.3.2 Replacing Some Nonnumeric Valuesccceeeeeeeeiinniiiiienieeeeeeeenennnes 46
3.3.3 Dropping the “nan” Values from the Datasetcceevuvvrvreeeeerrnnnnnnes 47
3.3.4 Handling the Categorical Values (Data Transformation) 47

Vi

3.3.5 Data Normalizationcccoeverrrimiiiieieeiniiiiieieeeee et eeeeeee e e
3.3.6 Re-Labelling the Target Feature (“class2”)cccceeeeeieeieeeriienieeeeeeeeeennns
3.4 EOO and RHSO Algorithms Steps for Implementationccccceeeeeeeuennneeen.
3.4.1 Representation of the Problem (Initialize Population)..........ccccc.o........
3.4.2 Performing the Calculations on Fitness..........cccccceeeeierriiiiieieceeeennnnnnnee
3.4.3 FS Algorithms Final Results...........cceeiiiiiiiiiiiiiiiiiiiinieiiieieceeeee e
3.5 MappPing Of DAtASELeeeeeeeeiieeiiiiiiiieeeeeeeeeeriiietee e e e e e e et teeeeeeeeessneneeeees
3.6 SPIItING DAtASET...uuueiiiieeiiiiiiiiiiieee e e e eeeteiieeeeeeeeeeeerttaaaeeaeeeeeeesessesanaaeeaaaanenns
3.7 Machine Learning Algorithms Implementation.................eeeeueeeeeeeeeeueeeeenennnens
3.7.1 Random Forest Algorithm Implementation...........cccceeeeeviiiiiiiiiinnnnnnnnn.
3.7.2 KNN Algorithm Implementationccceeevviviiiiiiiiiiiieiiiiieiiiiieeeieeeeeeeeen.

3.8 The Overall Structure of the Proposed SYStEIMuvvvveeveeerereeeeeeneeeeeenennnens

4 RESULTS AND DISCUSSION

4.1 INErOAUCHION teeeiiiiiiieiiiiitee et ettt e e e e e ettt e e e e e eesabbe e e e e e eeeeeeanenneeees
4.2 Experimental Results and DiSCUSSION......cccevrriuiiiiiiieeeinieiiiiiiiteeee e
4.3 Comparing the Results with the Literatureccccceeeieiiiiiiiiieeeeeiireeeeeee.
4.4 CONCIUSIONS .eettiiieieiiiiitieee e et e ettt et e e e e s ettt et e e e e e e esabbeeteeeeeeeesnrnneeeas

4.5 FULUTE WOTKS. e ittt et e e ee e e e e e e e e e e eae e e e e eaaeaaa e raaaanans

REFERENCES

PUBLICATIONS FROM THESIS

Vii

56

56
57
61
64
65

67

81

LIST OF SYMBOLS

ang

circ

Lb

X'

n
Leaderpos
L

X

r2

delta

ub

Angle of a move

Caloric value

Circular motion and mimic the circle system
Each diminution

Energy at a current time

Final Energy

Iteration value

Lower bounds of variables

Normalized feature

Number of oyster catcher

Old position of the leader

Optimal Length of oyster

Position of (Oyster \ Leader) or significant feature
Radius (random no. Between 0,1)

Random value between (0,1)

Random value between (Ib,ub)

Time required to open oyster

upper bounds of variables

viii

LIST OF ABBREVIATIONS

AF

AFRL

Al

AL

ANN

AOA

ATT&CK

BA

BBFO

BoT-IoT

BotNet

BS

BSA

C&C

CC

CKC

CNSC

Colab

CPS

CPU

CSHO

CSsv

DARPA

DAT

DDD

DDoS

Agnostic-Features

Air Force Research Lab

Artificial Intelligence

Alerts

Artificial Neural Network

Arithmetic Optimization Algorithm
Adversarial Tactics, Techniques and Common Knowledge
Bat Algorithm

Binary Bacterial Foraging Optimization
Bot-Internet of Things

Bot Network

Base Station

Bird Swarms Algorithm

Command and Control

Complete Capture

Cyber Kill Chain

Complete Network and System Configuration
Colaboratory

cyber-physical systems

Central Processing Unit

Competitive Swarm Henry Optimization
Comma-Separated Values

Defense Advanced Research Projects Agency
Divers Attacks Scenario and Types

Diverse Data Duration

Distributed Denial Of service

DE

DL

DoS

DT

EO

EOO

FGGWO

ES

GA

GIWRF

GPS

GRU

GTO

GWO

HDS

HIIDS

HR

HTTP

IDSs

IIoT

IIoT-CP

IIoT-T

IIRA

IoT

Ip

IRC

IrDA

IT

Deferential Evolution

Deep Learning

Denial Of service

Decision Tree

Eurasian Oystercatcher

Eurasian Oystercatcher Optimizer

Fractional Gravitational Grey Wolf Optimization
Feature Selection

Genetic Algorithm

Gini Impurity-based Weighted Random Forest
Global Positioning System

Gated Recurrent Unit

Gorilla Troops Optimizer

Grey Wolf Optimization

Heterogeneous Data Sources
Health-Intelligent Intrusion Detection System
Host Resources

Hypertext Transfer Protocol

Intrusion Detection Systems

Industrial Internet of Things

[TIoT Connectivity Protocols

IToT Traces

Industrial Internet Reference Architecture
Internet of Things

Internet Protocol

Internet Relay Chat

Infrared Data Association

Information Technology

KDD

KNN

LAN

LD

MALC

MB

MD

MIT

ML

MOPSO

NADAM

NB

N-BaloT

NFC

NN

NSL-KDD

NT

oT

p2p

PA

PC

pcap

pp

PSO

R2L

Knowledge Discovery in Databases
K-Nearest Neighbors

Logs

Local Area Network

Labeled Dataset

Managing Across the Lifecycle Capstone
Mega Byte

Metadata

Massachusetts Institute of Technology
Machine Learning

Multi-Objective Particle Swarm Optimization
Nesterov-Accelerated Adaptive Moment Estimation
Naive Bayes

Network Based on IoT

Near-Field Communication

Nearest Neighbor

Network Security Laboratory-KDD
Network Traffic

Operational Technology

Peer-to-Peer

Public Availability

Personal Computer

Packet Capture

Physical Process

Particle Swarm Optimization

Remote to Local

Recent Attacks

Random Access Memory

Xi

RaNN

RFID
RHSO
RNT
SVM
TCP
TON-IoT
U2R

UCI

UDP
UNSW-UNB15
UWB
WiFi
WSN

ZigBee

Random Neural Network

Random Forest

Radio-Frequency Identification
Rock Hyraxes Swarm Optimization
Realistic Network Traffic

Support Vector Machine
Transmission Control Protocol
Telemetry of Network-IoT

User to Root

University of California, Irvine
User Datagram Protocol

University of New South Wales-Network Bots 15
Ultra-Wideband

Wireless Fidelity

Wireless Sensor Networks

Zonal Intercommunication Global - Standard

Xii

LIST OF FIGURES

Figure 2.1 Example of IoT applications.cccceeeeeeeireiiiiiiiiieeeeeeerieiieieceeeeennn 9
Figure 2.2 Evolution of indusStry.cceeiiiiiiiiiiiiiiiiieeiieeeeteee e 10
Figure 2.3 Some of the similarities and differences between IoT and IIoT....... 11
Figure 2.4 Botnets attack.cccccuueeiiiiiiiiiiiiiiiiieeeee e 13
Figure 2.5 Cetralized vs. P2P DOINELS.cccvvviiiuiiieeeeieeeeeeeceee e 15
Figure 2.6 Methods of intrusion deteCtion.eeeeeererereeeeerrereeeeeseeeeeennnns 19
Figure 2.7 Improvement of ordinary systems using ML..........ccccceceereeerruvrnnnen. 20
Figure 2.8 Categories Of ML...........uuuuuueuriueiiriieireeeireeeeereeeeereeeeeeeeeeeee——————. 22
Figure 2.9 Benefits of features selection.cccceeeeeeiirriiiiiiiiieeeeineeeieeeee, 32
Figure 2.10 Concept of features Selection.ccccceeeeeerriiieierieeeeereereeieneeeee 33
Figure 2.11 The process of filter features selection.cceeeeeeeeeireerinnnneeen. 34
Figure 2.12 The process of wrapper features selection............cccceeeeeeereueeneneen. 35
Figure 2.13 The process of embedded features selection.cccccceeeiuunnnnneen. 36
Figure 2.14 The eurasian oystercatCher.c..eueeeeeereririiiiiieiieeee e 36
Figure 2.15 Pseudo code for the EQO algorithm............cccccvvvviiiiiiiiiiieiniiininnnn, 38
Figure 2.16 The rock Nyraxes.........euueeiuiuiiiiiiiiiiiiiiiiiiiiiiiieiiieeeiieeeeeeeeeeeeeaaeeaaees 40
Figure 2.17 Pseudo code for the RHSO algorithm...........cccccvviiiieereiiinnnniinnnee. 42
Figure 3.1 The structure of the proposed botnet detection system................... 44
Figure 3.2 X-IIOTID PreproCesSing StEPS.ueuuueeuuurererrremmerrenrrreenreesnnsesensessnnnnees 45
Figure 3.3 The mapping ProCedure.couvrururuiieeeieeeeiiiiiiieee e e e e eeeeereee e 51
Figure 3.4 Steps fOr @VeIrY tree.uuiiiiiiiiiiiiiiiiiteee e ettt 53
Figure 3.5 Steps to implement the KNN algorithm............cccccceeiiiiiininnniee. 54
Figure 3.6 The overall structure of the proposed System..........cccccceeeereueennneen. 55
Figure 4.1 Increasing of accuracy ratio chart.cccccceeverviiiiiiiieeeeiiiniiieeeee. 59
Figure 4.2 Decreasing of time ratio chart...........cccccceeeirieiiiiiiiiiieei e, 60
Figure 4.3 Decreasing of memory ratio chart........ccccceevvrviiiiiiiiieeeeiininniiienen, 61

Xiii

LIST OF TABLES

Table 2.1 Features of the X-ITOTID dataset..........cccuereerrrrueeeernniieeeeeriieeeeseenes 28
Table 2.2 The X-IIoTID dataset's distribution of attack types.cccccccuvveeernnee. 30
Table 2.3 Comparison between X-IIoTID with popular existing datasets........... 30
Table 2.4 Datasets and recent literature employing them.cccoeecvveernnnnne. 31
Table 3.1 Replacing equivilant nonnumeric values.cccccuvviveeeeeeirernnenennnen. 46
Table 3.2 Converting nonsense values t0 “Nan”c.cceeveeevivrrieeeeeeerenssnnnenenns 47
Table 3.3 Re-labelling the target featute (“class2”)........ccccverevremrrevemeeeeeneeennnnns 49

Table 4.1 Locations of the chosen features when applying EOO algorithm. 57
Table 4.2 Locations of the chosen features when applying RHSO algorithm... 57

Table 4.3 The accuracy and resources consumption in the BotNet detection. .. 58

Table 4.4 Increasing ratio Of ACCUTACY. «..ecouvvreeerriiiiieieriiieeeeeieee e ee e 59
Table 4.5 Decreasing ratio of time cONSUMPLION.ceeeereiuvieierriiiieeeeiiiieee e 60
Table 4.6 Decreasing ratio of memory CONSUMPLION.ceeeeeruveeeerrruureeerennnnne 61
Table 4.7 Results obtained from the literature and proposed system. 62

Xiv

ABSTRACT

Enhancing Security Level of Industrial Internet of Things
Devices Based On BotNet Detection And Feature
Selection

Weam Husham Abdulwahhab AL-JABBARI

Department of Computer Engineering

Master of Science Thesis

Supervisor: Prof. Dr. Hasan Hiiseyin BALIK

Co-Supervisor: Assoc. Prof. Dr. Muhammed Ali AYDIN

The cybersecurity threat landscape in the Industrial Internet of Things (IIoT)
context is becoming increasingly sophisticated as a result of the growing attack
surface and the accumulative complexity of new system behaviors. The potential
for BotNets to take control of devices attached to the Industrial Internet of Things
presents enormous security risks. Exploitation of private information, violation of
personal rights, and even occasionally the commission of cyberattacks that put
people's lives in danger, such as the sabotaging of medical equipment, are all
potential consequences of BotNets attack. Techniques based on machine learning
(ML) have been found to have good prediction accuracy when it comes to
determining whether data retrieved from network traffic is safe or malicious. Net
flow anomaly detection using ML is a fascinating topic because it can interpret
complex network traffic and detect anomalies. This thesis aims to lower the risk

of exposure to BotNet attacks occurring in the environment of the IIoT, which will

XV

ultimately result in an enhancement in the level of security afforded to IIoT
devices. Hence, the determination of this thesis is to reveal the design and
implementation of a multi-classification BotNets detection system that is based on
the selection of features and machine learning algorithms. The X-IIoTID dataset,
which is a specialized dataset on IIoT cyber threats, was utilized in the suggested
system in order to serve as a benchmark for its performance. Separately from one
another, the Eurasian Oystercatcher Optimizer (EOO) and Rock Hyraxes Swarm
Optimization (RHSO) algorithms are utilized as features selection approaches in
conjunction with a fitness analyzer that makes use of the ML algorithm. The
suggested fitness analyzer consisted of two elements: the first of these was the
level of accuracy that could be achieved by ML, and the second of these was the
total number of features that could be extracted. Since dealing with less data has
a favorable effect on both the system's accuracy and its resource consumption, the
EOO and RHSO algorithms are employed to reduce the attributes of the dataset.
After examining the results obtained by both the EOO and RHSO algorithms, it
was determined that the RHSO algorithm produced favorable performance. Both
the original X-IIoTID dataset, with all of its original features, as well as the new
sub datasets had the machine learning methods Random Forest and KNN applied
to it in order to create multiclass classifiers (with two subsets of features using
dataset mapping). When compared to the previous research works, the results
revealed a substantial amount of development prospects in terms of accuracy and
the consumption of available resources. The results of this thesis indicate that the
proposed system is capable of producing superior outcomes to those achieved by
the comparable approaches. The experimental study revealed that employing the
RHSO algorithm in conjunction with the Random Forest algorithm was superior,
with a rate of accuracy of (99.88%), time of detection (1.25 minute), and memory

consumption of (49.11 MB).

Keywords: Cybersecurity, BotNet, Eurasian Oystercatcher Optimizer (EOO), Rock
Hyraxes Swarm Optimization (RHSO), X-IIoTID Dataset.

YILDIZ TECHNICAL UNIVERSITY
GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

XVi

OZET

Endiistriyel Nesnelerin Interneti Cihazlarinin Giivenlik
Seviyesinin BotNet Tespiti ve Ozellik Secimi Tabanl

Gelistirilmesi

Weam Husham Abdulwahhab AL-JABBARI

Bilgisayar Miithendisligi Anabilim Dali

Yiiksek Lisans Tezi

Danigsman: Prof. Dr. Hasan Hiiseyin BALIK

Es-Danisman: Do¢. Dr. Muhammed Ali AYDIN

Endiistriyel Nesnelerin Interneti (IIoT) baglamindaki siber giivenlik tehdidi
ortami, artan saldir1 ylizeyi ve yeni sistem davranislarinin biriken karmasikliginin
bir sonucu olarak giderek daha karmasik hale geliyor. BotNet'lerin Endiistriyel
Nesnelerin Interneti'ne bagh cihazlarin kontroliinii ele gecirme potansiyeli, cok
biiyiik giivenlik riskleri sunar. Ozel bilgilerin suistimal edilmesi, kisilik haklarinin
ihlali ve hatta bazen tibbi ekipmanin sabote edilmesi gibi insanlarin hayatlarini
tehlikeye atan siber saldirilarin komisyonu, BotNet saldirisinin olasi sonuglaridir.
Ag trafiginden alinan verilerin giivenli mi yoksa kotii amachh mi oldugunun
belirlenmesi s6z konusu oldugunda, makine 6grenimine (ML) dayali tekniklerin
iyi bir tahmin dogruluguna sahip oldugu bulunmustur. ML kullanarak net akis
anormalligi algilama, karmasik ag trafigini yorumlayabildigi ve anormallikleri
algilayabildigi icin biiyiileyici bir konudur. Bu tez, IIoT ortaminda meydana gelen

ve sonugta IloT cihazlarina saglanan giivenlik diizeyinde bir iyilestirme ile

Xvii

sonuclanacak olan BotNet saldirilarina maruz kalma riskini azaltmayi
amaclamaktadir. Bu nedenle, bu tezin amaci, 6znitelik secimine ve makine
O0grenimi algoritmalarina dayali cok sinifli bir BotNet algilama sisteminin
tasarimini ve uygulamasim gostermektir. Onerilen sistemde, IIoT siber tehditler
konusunda uzmanlasmis bir veri seti olan X-IIoTID veri seti, performansi icin bir
kiyaslama olarak hizmet etmek {tizere kullamilmistir. Eurasian Oystercatcher
Optimizer (EOO) ve Rock Hyraxes Swarm Optimization (RHSO) algoritmalari
birbirinden ayr1 olarak, ML algoritmasini kullanan bir uygunluk analizcisi ile
birlikte 6zellik secim yaklasimlari olarak kullanilir. Onerilen uygunluk analizérii
iki unsurdan olusuyordu: bunlardan birincisi ML ile elde edilebilecek dogruluk
seviyesi ve ikincisi ise ¢ikarilabilecek toplam 6znitelik sayisiydi. Daha az veriyle
ugragsmanin hem sistemin dogrulugu hem de kaynak tiiketimi tizerinde olumlu bir
etkisi oldugundan, veri kiimesinin o6zniteliklerini azaltmak i¢cin EOO ve RHSO
algoritmalar1 kullanilir. Hem EOO hem de RHSO algoritmalarn ile elde edilen
sonuclar incelendikten sonra RHSO algoritmasinin olumlu performans iirettigi
belirlendi. Hem orijinal X-IIoTID veri kiimesi, hem de tiim orijinal 6zellikleriyle
birlikte yeni alt veri kiimeleri, ¢cok sinifli siniflandiricilar (veri kiimesi eslemesini
kullanan iki alt 6zellik alt kiimesiyle) olusturmak icin kendisine uygulanan makine
ogrenme yontemleri Random Forest ve KNN'ye sahipti. . Onceki arastirma
calismalariyla karsilastirildiginda, sonuglar, dogruluk ve mevcut kaynaklarin
tiketimi acisindan 6nemli miktarda gelisme beklentisi ortaya koydu. Bu tezin
sonuglari, onerilen sistemin karsilastirilabilir yaklasimlarla elde edilenlere gore
daha istiin sonuclar iiretme yetenegine sahip oldugunu gostermektedir. Deneysel
calisma, Rastgele Orman algoritmasi ile birlikte RHSO algoritmasinin
kullanilmasinin, dogruluk orani (%99.88), algilama siiresi (1.25 dakika) ve bellek

tiiketimi (49.11 MB) ile istiin oldugunu ortaya koydu.

Anahtar Kelimeler: Siber Giivenlik, BotNet, Avrasya Oystercatcher Optimizer
(EOO), Rock Hyraxes Swarm Optimization (RHSO), X-IIoTID Veri Kiimesi.

YILDIZ TEKNIK UNIVERSITESI
FEN BILIMLERI ENSTITUSU

XViii

1

INTRODUCTION

1.1 Literature Review

There are many similarities between IoT and IIoT in terms of integrity, privacy, and
security because many of the technological solutions for IIoT are built on IoT. While
IloT-enabled devices make people's and businesses' lives easier, their privacy may suffer
as aresult [1]. IIoT devices have hardware and software that may be used to track user
activity, so it is essential to develop regulations and technical solutions to guarantee
that users' privacy, security, and autonomy are constantly protected. The IIoT creates a
wide platform for sophisticated cyberattacks as more and more devices are linked to
the Internet nearly every day. Data leaks, loss of privacy, and the potential for misuse
due to unauthorized access that could seize control of the devices are common worries
with regard to IIoT devices [2]. Distributed denial of service (DDoS) cyberattacks using
various protocols of communication, data breaches by keylogging and data leakage,
tracing via biometrics, and network scans for open ports are a few frequent threats that
affect IIoT devices and networks. BotNets are often used to carry out many of these

cyberattacks on IIoT systems and networks [3].

When it comes to developing a model, which is effective in network attack recognition
that is based on machine learning, feature selection is an essential stage. One can
anticipate that a more condensed set of features will lead to more effective collection
and storage, both of which are essential components of an IIoT network environment
with high speeds [4]. To put it another way, the effectiveness of machine learning
(ML)-based on intrusion detection systems is contingent on the quality and veracity of
the data that is used to train and assess the ML models. Utilizing Features Selection
will significantly cut down on the amount of time required to finish the detection, as
well as reduce the amount of CPU and main memory (RAM) consumption, and in

several cases improve accuracy.

An area of specialization within the field of Artificial Intelligence known as Machine
Learning has attracted more attention in modern years. This is largely because ML
models and algorithms have grown more potent and are now integrated with more
data and computing capacity, boosting their effectiveness. An unindustrialized
approach for spotting network movement that indicates harmful behavior on a targeted
network is ML-based intrusion detection systems. Researchers have effectively applied
ML to the creation of more sophisticated intrusion detection systems technologies,
obtaining a reasonable attack detection accuracy [5]. From labelled data samples,
supervised ML seeks to understand and learn about sophisticated security events.
However, due to a number of logistical and privacy concerns, collecting labeled
datasets from real production networks is quite difficult. As a result, researchers have
developed simulated intrusion detection system datasets, which are often produced in
controlled test conditions in which data tags for both malicious and benign flow can be

consistently and quickly inserted.

When working with a large dataset, feature selections plays a crucial role in filtering
out unnecessary, duplicate, or redundant features. It is a preprocessing procedure for
vast amounts of data that can be used to select a subset of features or a collection of
attributes, which aids in the construction of an effective model for characterization of
the selected subset. It also has several additional goals, such as reducing
dimensionality, decreasing the size of the data needed for the learning process, refining
predictive accurateness, and expanding the developed models. This section examines

the literature pertaining to feature selection in concentration with attack detection.

By combining the Particle Swarm Optimization (PSO) approach with features selection,
Nilesh Kunhare et al. (2020) [6] discussed improving the accuracy and detection rate
of IDSs. Researchers only employed 10 features from the NSL-KDD dataset. To obtain
the optimum output, the PSO algorithm was employed with a separate number of
iterations and fixed particles for the features that were chosen. On the dataset's sets of
training and testing, the results were contrasted with ML algorithms. The observed
performance metrics, including accuracy, were superior to those produced by other

algorithms.

Maria Habib et al. (2020) [7] introduced a method for transforming conventional IDSs
into intelligent, adaptive, and multi unbiased for IoT networks. The foundation of the
updated approach is the integration of MOPSO-Lévy, which stands for multi-objective
particle swarm optimization with a Lévy flight randomization component. The updated
MOPSO-Lévy was subjected to testing on actual IoT network data taken from the UCI
repository. When compared to cutting-edge evolutionary multi-objective algorithms,

MOPSO-Lévy has shown better outcomes.

Maha M. Althobaiti et al. (2021) [8] suggested a model that eliminate noise from the
dataset. The described model then adopted a feature selection strategy based on binary
bacterial foraging optimization (BBFO) to pick the best set of features. The gated
recurrent unit (GRU) model was utilized as a method for the detection of breaches in
industrial cyber-physical systems (CPS) context. By fine-tuning the GRU model's
hyperparameters, the detection rate was increased with the help of the Nesterov-
accelerated Adaptive Moment Estimation (NADAM) optimizer. Tests utilizing industrial

CPS data verified the model's accuracy.

Abdullah Alharbi et al. (2021) [9] suggested a Neural Networks with Local Global Best
Bat Algorithm to elect feature subgroups for effective BotNet attack recognition. The
suggested Bat Algorithm (BA) made use of the local-global best-based inertia weighting
in order to apprise the velocity of the bats that were a part of the swarm. Researchers
suggested using a Gaussian distribution for population initialization to deal with BA
swarm diversity. In order to improve exploration throughout each generation, the local-
global best function and Gaussian density function were added after the local search

process. The proposed technique was assessed on an N-BaloT dataset.

By enhancing the functionality of the Gorilla Troops Optimizer (GTO) with the process
for bird swarms (BSA), also known as the GTO-BSA method, Saif S. Kareem et al.
(2022) [10] attempted to provide a new feature selection strategy. With the aid of BSA,
which is effective at locating the regions that yield the optimal solution, GTO's
effectiveness was improved. The act of the proposed approach was evaluated on four

IoT-IDS datasets: BoT-IoT, CICIDS-2017, UNSW-NB15, and NSL-KDD.

Sohail Saif et al. (2022) [11] presented a ML and meta-heuristic model to construct a

health-intelligent intrusion detection system (HIIDS). The framework has been used to

combine ML algorithms like KNN and Decision Tree with metaheuristic algorithms like
PSO, GA, and DE. The NSL-KDD training dataset was used to create a decision tree-
based ML model.

In order to locate attackers in the IoT setting, Mythili Henry Boopathi (2022) [12]
developed an IDS utilizing the suggested Competitive Swarm Henry Optimization
(CSHO)-based Deep Maxout network. By incorporating the characteristics from
optimization methods into the classifier's training, the implemented approach
recognizes attacks by determining the suitable overall result with the best load value
for each iteration. The info is routed towards the base station (BS) through the routing
process, which is carried out using the Fractional Gravitational Grey Wolf Optimization

(FGGWO) algorithm, and is accessible to the network's distributed nodes.

Raisa Abedin Disha et al. (2022) [13] suggested a strategy that utilized multiple
classification models for the IDS due to the efficiency of ML techniques. The UNSW-
NB15 and TON-IoT datasets were utilized for offline examination to assess the act of
the models. A set of attributes was chosen using a Gini Impurity-based Weighted
Random Forest (GIWRF) model as the features selection procedure because the
effectiveness of IDS suffers with a high-dimensional feature vector. Twenty features

from UNSW-NB15 and ten features from the TON-IoT dataset were chosen.

Mohammed Otair et al. (2022) [14] proposed a method for IDS that combines Grey
Wolf Optimization (GWO) and Particle Swarm Optimization (PSO) to tackle features
selection issues and apply the optimal value to update each grey wolf position's
information. The NSL-KDD dataset was utilized to measure the effectiveness of the
method. The SVM and k-means algorithms were utilized in order to conduct the
evaluations necessary to determine the classification's accuracy, rate of detection, the
rate of false alarm, number of attributes. The outcomes have demonstrated that the

proposed technique achieved the essential enhancement of the GWO algorithm.

In their research, Aniss Chohra et al. (2022) [15] developed an approach that
concentrated on determining the appropriate hyperparameters for ensemble
approaches to identify the essential features from a specified dataset. The suggested
method was tested on datasets: UNSW-NB15, and NSL-KDD. A swarm intelligence

optimization (PSO) was combined with ensemble methods to create the proposed

approach. They chose the proper collection of features on every validation dataset using
the best solutions identified by the optimization algorithm. They developed and
optimized a self-learning autoenocoder for the identification of anomalies in every one
of these datasets using solely those features. According to the results, their anomaly

detection algorithms surpassed the most effective techniques used on these datasets.

1.2 Objective of the Thesis

In accordance with [16], developments in the Industrial Internet of Things (IIoT),
networking, the continued growth of intelligent ecosystems, as well as the urgent
demand for automation of processes have not only created new prospects but also
widened the terrain of cyber-threats and attacks. This has mostly been observed even
as industries rush to conform to the objectives of the highly anticipated industry 4.0. In
particular, it is now clear that the fusion and convergence of industrial operational
technology (OT) and information technology (IT) leads to intelligence, complexity in
the IIoT ecosystem, changes in society, and general alterations to the designs of digital
forensic investigations and security measures. As a result, as many industries try to
reach their industry 4.0 goals, the digital forensic side of IIoT isn't really taken into
account or integrated. This is because the cyber security threat landscape in this context
is also getting more complicated because the attack surface is getting bigger and new
system behaviors are becoming more different. According to the previously discussed
literature, ML learning techniques have shown good prediction accuracy in identifying
data from network traffic as safe or malicious. Devices net flow anomaly detection using
a ML technique is a promising subject due to its power of understanding complex traffic
on the network and detecting anomalies, even though there are not many solutions
used today for larger IIoT contexts, including corporate networks. When deploying
anomaly detection models in actual IIoT operational environments, the challenges for
ML-based BotNet attack detection include scaling to larger sizes of network traffic;
reducing computational power consumption; encompassing different attack types;
classifying traffic aggregation as benign or malicious; and gaining high accuracy of ML

model results by easing the fitted model to avoid additional investments. In contrast to

other studies, the main target of this thesis is to use feature selection algorithms to

obtain high performance of standard ML models with less consumption of resources.

1.3 Hypothesis

The most significant goal of this thesis is to decrease the exposure of BotNet attacks in
the IIoT environment, which will ultimately result in enhancing the security of IloT

devices. The following will be the study's primary objectives in brief:

- To explore the IIoT BotNet attack detection as a multiclass classification
problem utilizing the IIoT datasets.

- To assess and utilize the new X-IIoTID dataset [17], which is a specialized
dataset in the IIoT cyber attacks field. According to the authors’ knowledge,
three researchers have only used this dataset including the creator of the
dataset.

- The Eurasian Oystercatcher Optimizer (EOO) [18], and Rock Hyraxes Swarm
Optimization (RHSO) [19] was chosen to be applied as a features selection
algorithms. This will be beneficial in getting high system accuracy, decrease
training time and overall system resources.

- To utilize a machine learning algorithm as a fitness for the two features
selection algorithms. This guarantees that the algorithms’ output features will
all be trained. Because the feature selection algorithms will actually train on all
the chosen features based on their fitness, this strengthens the algorithms.

- To evaluate the new sub datasets having the reduced features using state of the
art ML algorithms.

- To compare the results of both features selection algorithms.

- To compare the results with the literatures.

The thesis consisting of four chapters (including this chapter), Chapter Two provides a
deep theoretical background about the subject. Chapter Three explains the proposed

system and all of its details including system requirements and tools that are used to

implement this system. Chapter Four contains the simulation of the suggested system
and the discussion and examination of the outcomes that are gained through out this
work. It also includes the most important work conclusions and recommendations

aimed at future work.

2

THEORETICAL BACKGROUND

2.1 Introduction

In this chapter, the fundamentals of IoT and IIoT systems are discussed in addition to
their differences. A review of BotNet detection systems has been presented, along with
a brief description of each type. Additionally, ML and the various types of strategies it
employs to detect BotNets have been discussed, with an emphasis on the algorithms
employed in this thesis. The strategies for features selection are also demonstrated. The
final part of this chapter presents tables that offer a short review of the most current
studies conducted in this area. Most of the common datasets in the subject of BotNet
detection are explained, as are the environments used for project implementation, with

a focus on the dataset and environment utilized in this thesis.

2.2 Internet of Things (IoT)

The Internet of Things (IoT) is a network of computers and other gadgets that can
interact and communicate with one another. It has arisen in the modern period and is
driving the creation of innovative business process technologies [20]. The networked,
IP-enabled objects are referred to as "things". Sensor Panels, self-driving vehicles,
infrared data association (IrDA), laser copier, NFC data centers, video observation,
ultra-wideband (UWB), tablet devices, cell phones, ZigBee, and mobile and Wi-Fi
systems are a few examples of things that could be utilized. The Internet of Things
(IoT) is thought of as a net of countless physical things through all of its secondary
technologies (In 2026, there will be 76.45 billion digital devices, up from 24.15 billion
in 2019) [21]. By 2025, the IoT could have an economic influence on the worldwide
budget of $3.9 to $11.1 trillion [22]. These gadgets are equipped with various
additional critical tools in addition to Internet Protocol (IP), for instance radio-

frequency identification (RFID), GPS services, sensors, near field communication

(NFC), actuators, nanotechnologies, and cloud computing. Figure 2.1 shows some

examples of IoT applications.

Smart Homes Transportation

Z

[Agriculture] . E Entlerpnse
— Solutions

10T

-t il

Manufacturing

Supply Chain

Management

Health Care Smart City

Figure 2.1 Example of IoT applications

2.3 Industrial Internet of Things (IIoT)

A groundbreaking idea that has recently gained widespread attention is the Industrial
Internet of Things (IloT), which represents a completely intelligent, connected,
automated, and transparent industrial operation that boosts production processes and
efficiency. Industrial IoT (IIoT) or Industry 4.0 is a principle for a cutting-edge,
intelligent, completely integrated factory that uses emerging innovation (such as
artificial intelligence, cloud computing, IoT, etc.) and innovative technologies (such
monitoring, automation, and IIoT) can improve the construction environment through
cost savings, quality improvements, and remote operating operations, among other

things [23].

Digitization and the spread of smart gadgets or devices have penetrated critical

industrial and infrastructure sectors. Healthcare, water, power, as well as other

components of crucial systems can run more effectively, profitably, and dependably
due to gadgets having wireless and wired connectivities [24]. Such installations are
referred to as the Industrial Internet of Things (IIoT), in which industrial resources are
evolving to fully skillful in automatically responding to and modifying their activities
depending on info obtained over the vast networked control loop spanning from the
Edge and Cloud to the Enterprise layers [25]. Yet, this significant integration between
Operational Technology (OT) and Information Technology (IT) systems that is at the
core of the technologies of the IIoT, has extended the cyber threats and raised the
likelihood that cyber-attacks will be undertaken against such vital systems [26]. Figure

2.2 illustrates a brief evolution of industry.

Industry 1.0 Industry 2.0 Industry 3.0 Industry 4.0
“Mechanization Mass Pr"duFﬂ‘m “Automation “Cyber physical Systems
Steam Power” Assembly line Computers and Electronics” 01"
Electrical Energy”
| o INDUSTRY
= L 4
3 40
1®1 o
@_@ - . EREE
1784 1870 1969 Now

Figure 2.2 Evolution of industry

2.4 Differences between IoT and IloT

The Industrial Internet of Things (IloT) denotes to industrial sectors such as energy and
production control, as well as interconnected sensors, instruments, and other
computer-connected devices [27]. IIoT is for the industrial sector, while IoT is for the
commercial sector. The next industrial revolution, formerly written as the Industrial
Internet of Things, will begin within the time period called by Industry 4.0
[28]. Industry 4.0 [29] is regarded as being part of the 4™ Industrial Revolution. In
Industry 4.0, factories feature machines with internet communication and sensors that
are connected to a computer that can manage the entire production line and draw

significant conclusions on their own [30]. With the support of the Internet of Services,

10

both inner and intra-organizational facilities are supplied to users in order for them to
utilize the production series. Cyber-security, cloud and edge computing, 3D printers,
industrial automation, big data, and the Internet of Things are all facilitated by the

IIoT.

Briefly, IoT and IIoT rely on hardware like sensors, internet connectivity, and
embedded systems. However, IIoT devices tend to be more expensive than IoT ones
because of their need for greater precision in comparison to those of IoT devices. IIoT
employs more advanced technology for greater precision. Because IloT operates in key
business areas like manufacturing, equipment monitoring, and so on, IIoT services are
more sophisticated than IoT systems; as technology breakthroughs improve, so does
complexity. Thus, the complexity of IIoT applications exceeds that of IoT applications.
IoT end requirements prioritize user comfort, whereas IIoT end requirements prioritize

return on investment [31].

Despite the differences between IoT and IIoT, the two techniques have a lot in common,
such as connectivity, data acquisition, storage, analytics, and visualization as it is shown

in Figure 2.3.

A 1IOT
IoT Iﬂ Connectivity
Data
e Consumer Application. acquisition, e Industrial Application.
e Focus on Smart Devices. Storage, e Focus on Industrial Systems.
e Easy Off-site Programming. Analytics e Remote On-site
e Low-scale Network. Visualization Programming.
¢ Maintenance in consumer e Large-scale Network.
Request. e Maintenance Scheduled and
— — Planned.
. i :
am D top Vﬁa

Figure 2.3 Some of the similarities and differences between IoT and IloT

11

2.5 BotNets

BotNets are networks made up of host computers that have been made to serve as
slaves under the control of one or more hackers known as botmaster, in order to carry
out destructive actions. Hackers use a wide array of inventive methods to spread
malware that has the potential to transform a system into a zombie or bot. When a
hacker instead of the user is in charge of a computer, suspicious actions on the internet
are carried out without the user's knowledge. In other words, BotNets are groups of
computers that work together to carry out illegal operations using malicious software.
Attackers frequently make use of bots in order to infect a substantial number of systems
all at once. These machines collectively make up the BotNet. Such zombies can be used
to propagate infections, attack servers, send spam emails, perform various forms of
fraud, and engage in other online crimes. BotNet size is an unpredictable quantity that
can be modest or enormous. It depends on how complex and sophisticated the
employed bots are. There are tens of thousands of zombies in a huge BotNet. A smaller

BotNet, on the other hand, was made up of just a few thousand zombies.

The owner of the device that has been transformed into a zombie is oblivious of the
fact that the impacted device and all of its functions are now being remotely operated,
enslaved, and employed for bad intentions by one or more virus operators who are
using Internet Relay Chat (IRC) as a crucial instrument for his illicit actions. In addition,
the owner of the computer is uninformed of the fact that the affected system is now
being used for malicious purposes. Numerous varieties of malware, malicious software,
and programs have already and are still entangling the internet. While simpler types of
bots lack such capabilities, large bots employ their internal spreaders to propagate

infections [32].

Figure 2.4 depicts a brief illustration of an assault carried out by BotNets against a

target. Botmaster is in charge of this attack and has full control over it.

12

Bot Master

N

Control Control Control

Victim

Figure 2.4 BotNets attack

2.6 BotNet Structure and Behavior

Botnets represent one of the most severe hazards that are now presented to the security
of systems and the Internet of Things in this modern era of cloud computing and
ubiquitous computing. BotNet attacks can leverage a wider variety of infection
channels, thanks to recent developments in ubiquitous computing designs, which
including connected mobile smartphones and the Internet of Things. Because
networked devices and system platforms are changing so quickly, BotNets are always
getting new kinds and new ways to attack [33]. As an example, from 2018 to 2019, the
number of instances of the IIoT BotNet Mirai grew from about 143,000 to 225,000
[34].

In the 1980s, a known type of program that would later be known as BotNets first

arose. In late 1993, a BotNet kit called Eggdrop, which was based on Internet Relay

13

Chat (IRC), was the first to establish the concept of BotNet development tools. The
primary intent of the C Language-based Eggdrop was to facilitate the sharing of data
and the coordinated action of several instances. In spite of the fact that the first BotNet
was helpful and worked for a good purpose, the newer versions have mostly utilized

for bad things since then [35].

A command and control server, or C&C server for short, is typically used to administer
BotNets, which are networks of hosts that have been compromised by malware. The
architecture of the command and control server makes it possible for damaging
distributed assaults to be launched against compromised devices or other connected
hosts over the Internet or a LAN. The command and control servers are referred to as

botmaster, while infected devices are referred to as bot [36].

Both centralized and peer-to-peer or P2P architectural configurations are often used to
categorize BotNets as shown in Figure 2.5. The way commands are delivered through
the C&C channel defines these structures. Bots in centralized BotNets receive their
instructions from a central C&C server. In a P2P net, on the other hand, the BotNet
instructions spread through the P2P overlay network. Centralized botnets are normally
further well-organized, but they are less resistant to detecting systems since the

centralized C&C server serves as the BotNet's single potential failure point [37].

Botnets can be utilized for a diversity of distributed assaults, including piracy, extortion,
the spread of malicious software, DDoS attacks and several more. Internet Relay Chat
(IRC) was initially used to distribute BotNets, but today's attack vectors for BotNets are
far more complex. Vulnerability attacks, compromised websites, file-sharing networks,
and infected email attachments are some of these attack vectors. IIoT widespread
devices are becoming increasingly common, giving BotNets a wider attack surface and
many more vulnerable targets to infect. The availability of calculating and the
connected internet have led to the creation and development of progressively
complicated BotNets, as demonstrated by well-known BotNet attacks like Mirai and

Zeus, making ongoing research in the area important [38].

14

Centralize Peer to Peer

Figure 2.5 Cetralized vs. P2P Botnets

2.7 BotNets and IIoT

The network of compromised machines expands as the BotNet spreads to new IloT
devices, giving the BotNet greater computational power and the ability to launch more
intense attacks. Additionally, because of the widespread use of IIoT in important
industries and businesses, these entities are now more vulnerable to cybercrimes where
foreign adversaries attempt to bypass security measures [39]. The threats associated
with the potential takeover of IIoT devices are immense. Hacking risks include stealing
private information, violating personal rights, and occasionally even carrying out
cyberattacks that put people in danger of dying, such as sabotaging therapeutic gear.
For IIoT systems used in Industry 4.0, this can mean manufacture and service
disruptions, trade secret theft, and sensitive company data outflow, all of which could
result in significant financial losses. IIoT attacks, particularly those launched by
BotNets, have significantly increased in frequency in recent years. It becomes more and
more challenging to protect the IIoT networks and equipment due to the wide variety

of attacks that can be made on different protocols and devices [40].

15

2.8 Security of IIoT in Accordance to BotNet Detection

The technological age, in which IIoT plays a vital role, has profoundly impacted our
lives. Moreover, the IloT's phenomenal expansion is a major cause of numerous and
serious cybersecurity vulnerabilities. Hence, there has recently been a lot of interest in
both academic and industry in identifying and mitigating potential cyberattacks on IIoT
networks. Establishing an IIoT BotNet, as previously stated, is a major attack; typically,
enterprises use a variety of restrictions on unauthorized access, such as threat
intelligence and intrusion detection, to identify and stop IloT BotNets from operating.
These strategies could be slightly useful, but they are incapable of detecting the
emergence of zero-day IIoT BotNets with no identified patterns. This is why researchers
and businesses alike are concentrating on methods for detecting BotNets in the IIoT.
Typically, the goal is to identify the source of an attack and minimize the traffic it
causes. Analyzing how BotNet structures arise in IIoT systems with the assistance of
both business and academics should make it easier to improve security measures for

spotting both known and emerging BotNets [41].

Research into the unique characteristics of IIoT BotNets is helping to improve defenses
against these threats. In an effort to combat this widespread issue, the field of BotNet
attacks detection is seeing progress, thanks to machine learning. It is generally agreed
that BotNets present one of the greatest threats to IIoT networks. There are now a wide
variety of solutions and services for intrusion detection on the market. These products
and services offer varying degrees of security across IIoT devices. Recent developments
in machine learning have shown some impressive performance in the recognition and

classification of various types of attacks [42].

2.9 BotNet Detection Mechanisms

As the communication and infrastructure of the BotNet evolve, so do the detection
methods. Studies have put out a wide range of architectures and strategies for BotNet
detection through time. Both passive and active approaches can be used to detect

botnets. Nevertheless, the usual taxonomy for detecting BotNets divides them into two

16

categories: honeynets (also known as honeypots) and intrusion detection systems (IDS)

[43].

2.9.1 Honeynets

Since Honeynets only collect samples from BotNets and must be merged with other
analysis tools like antivirus and sandbox, they are not extensively used in the particular
bot detection system. Additionally, Honeynets are ineffective at spotting P2P as well as
other decentralized BotNets. The majority of the time, Honeynets are helpful for

analyzing BotNets and their characteristics [44].

2.9.2 Intrusion Detection Systems (IDS)

The operation of IIoT devices and the intrusion detection systems (IDS) are built on the
same principles. The IloT architecture can have an intrusion detection layer added on
top of it or it can have it integrated further into the application and connection layer.
The key idea underlying how intrusion detection functions is that it gives data nodes
that emerge from a certain network a distinct identification. All data nodes with
different identifiers that the system cannot figure out are denied, and the client is

notified of any security breaches [45].

There are a wide variety of methods available for intrusion detection (as shown in
Figure 2.6), which can identify any hostile actions carried out by IIoT systems.
Industries and businesses utilize a variety of intrusion detection techniques, including
detection system based upon signatures, anomaly, specifications, machine learning,
deep learning, and a hybrid of methodologies. An approach that is based on signatures
is utilized in order to detect the communication and information sessions that are sent
across the connection layer. Those systems identify slightly anomaly in the information
sessions sent over the network and send out an alarm centered on the information. It
is an actual effective and quick approach to find system intrusion. This strategy makes
use of the attack patterns that have been designated for it relying on the information
that has been gathered historically. It performs a search in the history for something

like the signatures of the data that contributed to the intrusion, and it also performs a

17

search in the future for the same types of intrusion signals and warns the user if they
are found. This technique has the drawback that it cannot identify any further
intrusions since the system would not distinguish the signature as one associated with

an incursion [10].

Due to the fact that anomaly-based detection relies on irregular or anomalous data
packets rather than signatures, it mitigates the disadvantage of the signature-based
detection method. An anomaly will be identified in every new data session that
attempts to access the system but does not fit the systematic properties. The system will
be more secure as a result, but users must maintain consistency in their data to prevent

user data from becoming corrupted.

The instructions that are available to the system and that the data packs of the system
will obey are the foundation of the approach to intrusion detection that is known as
specification-based intrusion detection. This collection of instructions considers every

data packet to be an anomaly if it does not fit with the instructions in its entirety [46].

Within the scope of the detection of intrusions, machine learning is used in a diversity
of ways. The system is designed to pick up new information from previous attacks.
Machine learning applications make this possible. The system quickly stops any similar
intrusion and notifies the user if it occurs again on the machine. Deep learning is not
the same as traditional machine learning since machine learning employs just one
algorithm to teach a computer from its past experiences, whereas deep learning
employs multiple algorithms. Contrarily, DL is a branch of ML and is made up of

numerous strands of algorithms known as ANNs (artificial neural networks) [47].

Combining the abovementioned intrusion detection techniques results in a more
sophisticated intrusion detection system. Each technique has unique advantages, thus
a combination of techniques can be employed to shield the system against numerous
cyberattacks. Compared to separate approaches, this strategy offers stronger protection

[15].

18

Detection

BotNet |
Mechanisms

[Intrusion Detection System

' / / 4 4 b

Signature Anomaly Specifications ML DL Detection using ‘
Based Based Based ‘ Based Based Combination ‘
Detection Detection Detection | Detection Detection Methods

Figure 2.6 Methods of intrusion detection

2.10 Machine Learning (ML)

The comprehensive research of statistics, algorithms, analysis, computations etc., which
are employed for systems to complete a certain job without even being programmed is
referred to as machine learning (ML). Numerous popular programs exists that employ
learning algorithms. One of the reasons a search engine like Google is so effective is
because of a learning algorithm that has been taught how to categorize web sites. Such
algorithms are put to use for a comprehensive variability of purposes, such as predictive
analytics, data mining, image processing, and so forth. The key advantage of utilizing
machine learning is that when an algorithm understands what it should do with the

data, it can carry out those actions on its own without human intervention [48].

A mathematical model is constructed using the sample data through ML, referred to as
"training data," as a means of making inferences or decisions without being explicitly
instructed to do so by the programmer. One of the presumed characteristics of machine
learning when compared to humans is similar prediction and making decisions
capabilities. A distinctive "learning machine" finds rules, which whenever applied to a
set of inputs, provide the intended result. These rules will also produce the correct
outcome for the majority of additional inputs (in addition to the training data),
provided that such data originated from the identical or a related statistical range as

the training data [49].

19

In a conclusion, the machine learning algorithms make huge improvements to ordinary
systems in learning and prediction aspects, which leads to improved results as shown

in Figure 2.7.

Predicts
Ordinary Machine
Systems Learning ﬁ

Improves

Results

Figure 2.7 Improvement of ordinary systems using ML

2.10.1 Types of Machine Learning

ML covers a broad extensive variety of subject areas and is inspired by artificial
intelligence (AI). The field is focused on acquiring skills or knowledge via practical
application. Typically, this includes extracting relevant topics from previously gathered
data. As a result, machine learning encompasses a vast diversity of learning, ranging
from whole academic fields to specific approaches. As indicated in Figure 2.8, machine
learning has been divided into four categories due to its complexity: supervised
learning, unsupervised learning, semi-supervised learning, and reinforcement learning.
All of them take a particular aim and method of operation that results in different forms
of data. Supervised learning accounts for more than 70% of learning algorithms, while
unsupervised learning accounts for 10% to 20%. The remaining space is used by semi-

supervised and reinforcement learning [50].

20

Supervised learning methods are applied to data sets that contain a collection of inputs
and their output data. Through training on both the inputs and the targets, the machine
acquires the knowledge necessary to link those inputs to the proper outputs. The model
is trained until it reaches the appropriate accuracy level based on that training data.
The model's validity is determined by testing it with previously unseen data (test set).
Support Vector Machines, Decision Tree and Tree Ensembles (including Gradient
Boosting methods, Random Forest etc.), and Artificial Neural Networks (for instance

Multi Layer Perceptron) are a few examples of supervised learning algorithms.

Unsupervised learning aims to "make sense" of the data because there isn't a target or
label variables to predict. Clustering data populations for certain interventions is a
common application of this type. Hierarchical clustering, Density-Based Spatial
Clustering of Applications with Noise, and K-means are examples of unsupervised

learning techniques.

Semi-supervised learning is a method of machine learning that, during training,
combines a large volume of unlabeled data alongside a very small amount of data that
has been labeled. Learning in a semi-supervised environment is a middle ground
between learning in an unsupervised environment and learning in a supervised
environment. The categorization of web material, the classification of text data, and
the development of algorithms for speech recognition are all examples of semi-

supervised learning.

The machine can be taught to make accurate decisions through the process of
reinforcement learning. A situation with an agent is introduced in which it must take
activities to increase the accumulative benefit (typically called return in episodic
complications) or average benefit (in ongoing problems) that involves a significant
number of steps in advance. The agent learns from previous experiences and attempts
to gather as much information as possible in order to make good decisions.
Reinforcement learning methods include the Deep Reinforcement Learning and

Markov Decision Process [48].

21

(" N)

Create a prediction mode! o
using data from both the &
Supervised input and the outcome. 'y Predict
— o Classification. 0 Next
e Regression. Value.
\. J —
()
Organize and analyze date Identify
— Unsupervised just using the input data. Clusters.
o Clustering.
e Dimensionality
. reduction.
Machine)
Learning —
()
Semi Combination of labeled anc a Hybrid
—> . unlabeled data. Learning.
Supervised o Primarily used in image -||||||||||||||-
and speech recognition.
\) N—_—/
(\
Complex decision Problems Learn
Reinforcement with no training data sets. From
— . |
Learning *Reward System. M M Mistakes.
eRecommendation
System. \ J
\ Y,

Figure 2.8 Categories of ML

2.10.2 Popular Machine Learning Algorithms

In the next section, two of the machine learning algorithms, which utilize the majority
of the time will be investigated. These algorithms are capable of being applied in order

to locate a solution to the multi classification issue.

2.10.2.1 Random Forest Algorithm

It was invented by Leo Breiman [51]. The term "Random Forest" refers to a well-known
method of supervised machine learning, which is used for problems involving
classification and regression. It does this by constructing decision trees based on the
many samples that it has, and then using their average in classification and their
majority vote in regression. The versatility of the Random Forest Algorithm to cope
with data sets that comprise both continuous variables and discrete variables is one of

the most essential elements of this algorithm, such as data used in regression, as well

22

as categorical variables, as used in classification. It offers superior outcomes when it

comes to classification concerns that may arise. The following important characteristics

may be observed in the Random Forest model:

1.

Diversity: Due to the fact that every tree is one of a kind, not all characteristics,
factors, or features are taken into consideration while building any given tree.

Immune to the curse of dimensionality: The feature representation is being
constrained as a result of the fact that every tree doesn't really take into

consideration all of the features.

. Parallelization: Every branch of the tree is constructed independently using a

variety of data and attributes. This suggests that it is feasible to construct
random forests by making the most of the capabilities of the central processing
unit (CPU).

Train-Test split: Owing to the fact that there will consistently be thirty
percent of the data that is concealed from the decision tree when employing a
random forest, it is not necessary to divide the data in half for the purposes of
training and testing when using this method.

Consistency: The majority vote/average ensures that the outcome is consistent.
Random Forests employs a classification strategy known as an ensemble

approach in order to provide the desired outcome.

Several decision trees typically trained utilizing the data from the training session.

When splitting the nodes, this dataset contains the observations and attributes that will

be picked at random. In a system modeled like a rain forest, many decision trees are

utilized. Every decision tree has a node that serves as the root, nodes that serve as leaf

nodes, and decision nodes. The final outcome that was determined by a certain decision

tree is shown by the "leaf node" at the end of each tree. The ultimate decision is made

by majority vote. In this particular instance, the ultimate output of the rain forest

system is the option that was chosen by the vast majority of the decision trees. [52].

For more details on Random Forest algorithm, please see [51].

23

2.10.2.2 K-Nearest Neighbor (KNN) Algorithm

As stated by [53], the KNN algorithm was invented by E. Fix and J.L. Hodges in 1951
as Nearest Neighbor algorithm (NN). It was evolved by T. Cover, and P. Hart [54] to
the K-Nearest Neighbor algorithm that is known today. The KNN method makes the
assumption that there is a resemblance among the new case or data and the existing
cases, and then places the new case through into categorization that is the most
comparable to the categories that are already there. It saves all of the data that is
currently accessible and assigns a category to a new point of information depending on
how similarly it is structured. This indicates that the KNN technique may be utilized to
quickly and simply place newly discovered data into a category that is a good fit for it
whenever this occurs. During the training phase, the KNN algorithm does nothing more
than store the dataset. When it receives new data, it then categorizes current data
together into group that is significantly similar to the new data [55]. For more details

on KNN algorithm, please see [53] and [54].

2.11 Datasets of Widespread Use in ML for Intrusion Detection

Numerous research organizations are currently compiling a vast number of different
data sets, not only for the goals of their own research projects, but also with the
intention of supplying information to online libraries. Explained below are some of the
most common types of intrusion detection datasets that have been utilized in ML data

analysis and in this thesis.

2.11.1 DARPA 98 Dataset

DARPA 1998 gathered together and dispersed the first standard data used in the
assessment of systems for the detection of intrusions into computer networks by MIT
Lincoln Lab according to the budget allocation of "Defense Advanced Research Projects
Agency" (DARPA) and "Air Force Research Lab" (AFRL). Since the DARPA dataset
consists of fresh files, scientists must mine properties from those files in order to use
them in ML methods. The first benchmark dataset for assessing computer intrusion

detection systems was developed as part of the 1998 DARPA intrusion detection

24

assessment. This dataset was created to assess the rates of false alarms and detection
rates of systems that detect intrusions utilizing a variety of both well-known and novel
attacks concealed in a large volume of regular background traffic. The dataset was
gathered using a simulated network that was utilized to automatically produce realistic
traffic, which included attempted attacks. The attacks were created to be utilized in the
1998 DARPA study of intrusion detection. The 9 weeks of data that were gathered for
the study included information on over 300 attacks in total. These 300 attacks were

selected from 32 multiple attack kinds and 7 various attack conditions [56].

2.11.2 KDD CUP 99 Dataset

The KDD Cup 1999 dataset was employed in DARPA's IDS assessment platform, which
was carried out by the agency. The data consists of 4 GB of compacted TCP spew
packets that was generated by seven weeks' worth of network activity. It entails of
around 4,900,000 single connection vectors, every single one has 41 attributes. Each
vector is either categorized as an attack or normal (there are 22 defined types of
attacks). An online repository dataset called Knowledge Discovery in Databases (KDD)
contains data on all different forms of intrusion attempts, including DOS, R2L, U2R,
and PROBE. There are 4,898,431 data points in the original KDD dataset. A network
session among two hosts is represented by each data point. Each vector includes a label
attribute that indicates whether the vector is normal or malicious. There are a total of
2952839 data points, of which 2952781 are attack types and 972781 are just normal
data [57].

2.11.3 NSL-KDD Dataset

For the purpose of resolving the essential glitches with the KDD-99 dataset, it was
decided to generate the NSL-KDD dataset. The KDD-99 dataset has been revised and
modified to provide this new dataset. Three major problems have been resolved in the
NSL-KDD dataset. Firstly, replica data in the training and test sets have now been
decreased to prevent classification algorithms from being biased toward the most
redundant entries. Secondly, in order to get accurate results while simultaneously using

classification algorithms, the training and test sets were produced by selecting multiple

25

entries from a pool of candidates from different areas of the regular KDD-99 dataset.
Finally, the imbalance between the quantity of testing and the amount of training has
indeed been addressed for a reduction. The structure of the NSL-KDD dataset is nearly
identical to that of the KDD-99 dataset (specifically, it features 41 different types of

fields and 22 different types of attack or traffic patterns) [58].

2.11.4 UNSW-NB15 Dataset

2015 marked the year when the UNSW-NB15 dataset on the security of computer
networks was made available to the public. This dataset comprises 2,540,044 real
regular and anomalous (attack) network actions from the contemporary period. The
untreated network elements were analyzed, and 49 features were derived from them.
These features included flow based as well as packet based aspects. The classifications
of attacks consist of Exploits Analysis, Generic, Backdoor, DoS, Reconnaissance,

Fuzzers, Worms, and Shellcode [59].

2.11.5 CSE-CIC-IDS2018 Dataset

CSE-CIC-IDS2018 was designed for the purpose of training prediction models for use
in network-based detection of intrusion. Instead of serving as a repository for signature-
based detection systems, this dataset aims to advance investigation into detection based
on anomalies using a variety of ML techniques. CSE-CIC-IDS2018 holds approximately
16,000,000 occurrences gathered during a ten-day period. A network with a PCs,
gateway, servers, switch, and routers has been set up to cover all of the network
configuration requirements. The attack diversity criteria are being supported by the
proposal of a whole spectrum of attacks on various circumstances. Naturally, possessing
all created network traffic, system logs, and resource utilization data from tests, such

as memory and CPU usage, shows support for the heterogeneity criteria [60].
2.11.6 N-BaloT Dataset

The N-BaloT dataset is made up of data samples and has 115 different features. The
dataset was gathered using IoT device port mirroring. To guarantee that the data was

benign, the benign data was taken immediately after the network was established. The

26

data was gathered by injecting two kinds of attacks into several IoT devices. Different
Bashlite and Mirai malwares were injected to create each dataset. Bashlite, commonly
known as gafgyt, infects IoT devices running Linux to carry out DDoS assaults. There
were several different flooding assaults, including UDP and TCP attacks. Using IoT

devices, Mirai is utilized for massive attacks [61].
2.11.7 Bot-IoT Dataset

In the Cyber Range Lab at the University of New South Wales in Canberra, a
heterogeneous network infrastructure was created in order to establish the BoT-IoT
dataset. On the network, there was a combination of typical traffic and traffic from
botnets. There is a diverse selection of formatting options available for the dataset's
source files. In order to facilitate the labeling process and make it more manageable,
the files were segmented according to the both the attack group and the attack
subgroup. The pcap files that were acquired have a total size of 69.3 gigabytes, and
they contain more than 72 million records. The flow of traffic that was extracted is 16.7
gigabytes in size when saved in CSV format. DoS and DDoS attacks, as well as
Keylogging, Operating System and Service Scan, and Data Exfiltration assaults, are all
accounted for in this dataset. Attacks can be further divided into Dos

and DDoS categories based on the protocol that was used [62].
2.11.8 X-IIoTID Dataset

It should be noted that this dataset has been explained in more detail because it is used
to select, test, and train features in this thesis. Muna Al-Hawawreh et al. [17] at the
New South Wales University, also known as UNSW, located in the capital city
of Canberra established the X-IIotID dataset. It is a connection and device-agnostic
dataset that can be used to study and train systems for detecting intrusions that are
powered by machine learning and deep learning for IoT and IIoT devices. IIRA, which
stands for the Industrial Internet Reference Architecture framework serves as the
foundation for the laboratory's design. The design employed is separated into three
points: the platform, the edge, and the enterprise, where numerous industrial and
attack machines, protocols, cloud services, and IoT devices are installed. Three distinct
frameworks, notably CKC, MALC, and ATT&CK, were used to create the malicious

records. The following attack kinds are included in the simulation of the attack process

27

[63]: Reconnaissance, Weaponization, Exploitation, Lateral Movement, Command and

Control, Exfiltration, Tampering, Crypto-Ransomware, and Ransom DoS.

The final set of extracted network traffic features and the attributes that are associated

with the edge gateway's resources is illustrated in Table 2.1, which is taken from [17].

Table 2.1 Features of the X-IIoTID dataset [17]

Feature Type Description Feature Type Description
Name Name
Date Discrete Datestamp Std user Continuous Standard deviation of user time in the last 10
time seconds”
Ts Discrete Timestamp Avg nice Average of nice time (the time used for defining
time Continuous| the priority of
process) in the last 10 seconds
Scr IP Discrete Source endpoint’s IP Std nice . Standard deviation of nice time in the last 10
. Continuous|
address time seconds
Des IP Discrete Destination endpoints’ IP| Avg system Average of system time (time the processor works
address time Continuous| at operating
system functions) in the last 10 seconds
Scr Port | Discrete Source endpoint’s Std system Standard deviation of system time in the last 10
TCP/UDP port, or ICMP | time Continuous| seconds
code
Des Port | Discrete Destination endpoint’s | Avg IO wait Average of I/0 wait time (total time of the CPU is
TCP/UDP, or ICMP code | time Continuous| idle waiting for
1/0 operation) in the last 10 seconds
Protocol |Discrete Protocols (e.g, TCP, Std IO wait o Standard deviation of I/O wait time in the last 10
UDP, ICMP, or other) time seconds
Service |Discrete Application protocol Avg idle Average of idle time (total time of the CPU is not
running in Destination |time ’ busy and does
Continuous| . . .
port not have an outstanding disk I/O requests in the
last 10 seconds
Duration | Continuous The time difference Std idle Standard deviation of idle time in the last 10
between the last packet |time Continuous| seconds
and the first packet seen
Scr bytes | Continuous Number of bytes from | Avg tps Average of the number of transfer requests per
source to destination Continuous| second issued to
“the device in last 10 seconds
Des bytes| Continuous Number of bytes from Std tps Standard deviation of the number of transfer
destination to source Continuous| transaction per
second issued to the device in last 10 seconds
Missed | Continuous Number of missing bytes | Avg rtps Average of the number of read transaction per
byte in content gaps Continuous| second issued to
the device in last 10 seconds
Scr pkts | Continuous Number of sending Std rtps Standard deviation of the number of read
packet Continuous| transaction per second
issued to the“device in last 10 seconds
Des pkts | Continuous Number of received Avg wtps Average of the number of write transaction per
packet Continuous| second issued to
the device in last 10 seconds
Scr IP Continuous Number of sending bytes| Std wtps Standard deviation of the number of write
bytes in the IP header total Continuous| transaction per second
length field issued to the device in last 10 seconds
Des IP Continuous Number of received Avg ldavg 1 Average of average system load during the last
bytes bytes in the IP header Continuous| minute in window
total length field time size 10 seconds

28

Table 2.1 Features of the X-IIoTID dataset [17] (Continue)

Conn Discrete Connection status (1 Std ldavg 1 Standard deviation of average system load during
state complete, 2 Rest, 3 Continuous| the last minute
partial) in window time size 10 seconds
Total Continuous Total number of bytes | Avg Average of used memory in kilobytes in last 10
bytes exchanged between Kbmemused| Continuous{ seconds
source and destination
Byte rate | Continuous Total number of bytes Std . Standard deviation of used memory in kilobytes in
Continuous|
per second Kbmemused last 10 seconds
Total Continuous Total number of packet |Avg num Average of number of tasks created per second in
Pkts exchanged between proc/s Continuous last 10 seconds
source and destination
Pkts rate | Continuous Total number of packet |Std num Standard deviation of number of tasks created per
per second proc/s Continuous| second in last 10
Seconds
orig bytes Continuous Percentage of sending | Avg num) Average of number of context switches per second
s Continuous| .
ratio bytes to the total bytes | swch/s in last 10 seconds
resp Continuous Percentage of receiving | Std num Standard deviation of number of context switches
bytes bytes to the total bytes | swch/s Continuous| per second in last
ratio 10 seconds
orig Continuous Percentage of sending | Anomaly 1 if the connection has alert from Zeek; 0
packts packets to the total Alert Discrete | otherwise
ratio packets
resp pkts | Continuous Percentage of receiving | OSSEC alert 1 if the connection has alert from OSSEC; 0
ratio packets to source IP Discrete | otherwise
packets
SYN Discrete If connection has packet | Alert level . OSSEC alert severity level
. Discrete
with SYN flag (1 or 0)
SYN-ACK| Discrete If connection has packet |R W 1 if there is a read or write activity to the physical
with SYN-ACK flag (1 or | physical Discrete | process; O otherwise
0)
Pure ACK| Discrete If connection has packet | File act 1 if there is a file activities (read, write,delete,
with pure ACK flag (1 or Discrete | copy,create and
0) download); 0 otherwise
Packet |Discrete If connection has packet | Proc act 1 if there is a new process is executed or started; 0
with with payload (1 or 0) Discrete | otherwise
payload
FIN or Discrete If connection has packet |Is privileged 1 if the performed activity (login, process or file
RST with FIN flag or RST (1 Discrete | activity) is privileged
or 0) ; 0 otherwise
Bad Discrete If connection has packet | Login attmp 1 if there is attempt to login; 0 otherwise
checksum| with bad checksum (1 or Discrete
0)
SYN with | Discrete If connection has packet | Succ login 1 if a successful login ; O otherwise
RST with both SYN and RST Discrete
flags (yes or No)
Avg user | Continuous Average of user time
time (the time of process runs
programs/codes)
in the last 10 seconds

The dataset includes 68 features, which contain 421,417 benign records and 399,417
hostile records. There is a subcategory for attacks as well as a sub-subcategory. The
scattering of attack types in the X-IIoTID dataset is presented in Table 2.2, which is

taken from [17].

29

Table 2.2 The X-IIoTID dataset's distribution of attack types [17]

Attack Total number of instances
Reconnaissance 127590
Weaponization 67260
Exploitation 1133
Lateral Movement 31596
Command &Control 2863
Exfiltration 22134
Tampering 5122
Crypto Ransomware 458
RdoS 141261
Normal 421417

Table 2.3 (also taken from [17]) compares the results of an evaluation of the
strengths and weaknesses of seven current datasets with the X-IIoTID dataset. The X-
IIoTID represents the first intrusion dataset designed particularly for IIoT systems. It is
a clearly defined and deliberately created dataset that mirrors recent alterations and
diversity in system events and network traffic configuration created by several and
diverse IIoT devices, connection protocols, and patterns of communication. It provides
unique insight into the threats and cyberattacks on IIoT networks and systems, as well
as innovative and comprehensive features [17]. For these reasons, this dataset is going

to be utilized in this thesis for the purpose of features selection, testing, and training.

Table 2.3 Comparison between X-IIoTID with popular existing datasets [17]

Dataset CNSC HDS RNT | DAT | DDD | FS 1IoT-Cp RA AF TloT-T/ LD | MD | PA
NT |HR |L PP AL | CC MQTT | CoAP | WS

DARPA 98[56] YES |YES |[NO |YES |NO |[NO |YES NO | YES | N/A YES | NO NO |NO |NO YES |NO | YES |NO |YES
KDD CUP 99 [57] YES |YES |[NO |YES |NO |[NO |YES NO | YES | N/A YES | NO NO |NO |NO YES |NO | YES |NO |YES
NSL-KDD [58] YES |YES |[NO |YES |NO |[NO |YES NO | YES |N/A YES | NO NO |NO |NO YES |NO | YES |NO |YES
UNSW-NBI15 [59] YES |YES |[NO |NO |NO [NO |NO NO | YES | NO YES | NO NO |NO |NO NO NO | YES | YES | YES
CICIDS [60] YES |YES | YES |NO |NO [NO |YES |YES|YES|NO YES | NO NO |NO |NO NO NO | YES | YES | NO

N-BaloT [61] NO YES [NO [NO |NO |[NO |YES YES | NO | YES YES | NO NO |NO | YES YES |NO | YES | YES | YES
BoT-IoT [62] NO YES [NO [NO |NO |[NO |YES NO [NO |N/A YES | YES NO |NO |YES YES |NO | YES |YES | YES
X-IIoTID[17] YES | YES | YES | YES | YES | YES | YES | YES | YES | YES YES | YES YES | YES | YES YES YES | YES | YES | YES

CNSC: Complete Network and System Configuration

HDS:"Heterogeneous Data Sources
NT: Network Traffic

HR: Host Resources

L:Logs

PP: Physical Process
AL: Alerts
CC: Complete Capture

RNT: Realistic Network Traffic
DAT:"Divers Attacks Scenario and Types

DDD: Diverse Data Duration

FS: Feature Set

IIoT-CP: IIoT Connectivity Protocols
RA: Recent Attacks

AF: Agnostic-Features

IIoT-T: IIoT Traces
LD: Labeled Dataset
MD: Metadata™

PA: Public Availability

30

Table 2.4 presents a concise summary of the previously listed datasets as well as the

recent research that made use of those datasets.

Table 2.4 Datasets and recent literature employing them

No. Of
Dataset No. Of
Article Year Featur Link Recent Works
Name Records
es

“https://www.ll.
mit.edu/r- Caleb Belth et al. (2020) [64].
d/datasets/1998-

DARPA98 [56] 1998 41 4,900,000 darpa-intrusion- Yen-Yu Chang (2021) [65].
detec—thn- Siddharth Bhatia et al. (2021) [66].
evaluation-
dataset”

“http://kdd.ics.uci Satish Kumar et al. (2022) [67].
.edu/databases/k
KDD Santosh Kumar Sahu et al. (2022)
[57] 1999 41 4,898,431 | ddcup99/kddeupd
CUP99 9.html” [68].
Amir Javadpour et al. (2022) [69].
“https://www.un Abhishek Raghuvanshi et al. (2022)
b.ca/cic/datasets/ [70]
nsl.html]” '
NSL-KDD [58] 2009 41 148,517 Ilhan Firat Kilincer et al. (2022)
[71].
Souradip Roy et al. (2022) [72].
“https://research. P. G. V. Suresh Kumar et al. (2022)
unsw.edu.au/proj 73]
UNSW- ects/unsw-nb15- :
NB1S [59] 2015 49 2,540,044 dataset” Mohammad Humayun Kabir et al.
(2022) [74].
Moutaz Alazab et al. (2022) [75].
“https://www.un Abdulnaser A. Hagar et al. (2022)
b.ca/cic/datasets/ 1761

CSE-CIC- ids-2018.html” :

[60] 2018 80 16,000,000 Mério Antunes et al. (2022) [77].

IDS2018

Mohamed Hammad et al. (2022)
[78].
“https://archive.ic
s.uci.edu/ml/data Sawssen Bacha et al. (2022) [79].
N-BaloT [61] 2018 115 7,062,606 | sets/detection_of Jabed Al Faysal et al. (2022) [80].
IoT_botnet_attack
s N BaloT” Badr Lahasan Le et al. (2022) [81].
“https://research. Tanzila Saba et al. (2022) [82].
unsw.edu.au/proj L. .
- Cristiano Antonio de Souza et al.
BoT-IoT [621 2019 46 73,000,000 | &cts/bot-iot-
dataset” (2022) [83].
Babita Majhi et al. (2022) [84].
“https://ieee-
dataport.org/docu Muna Al-Hawawreh et al. (2021)
ments/x-iiotid- [85].
connectivity-and- X

X-IIoTID [17] 2021 68 820,834 device-agnostic- Thi-Thu-Huong Le et al. (2022)
intrusion-dataset- [86].
industrial- i
internet-things” Rehab Alanazi et al. (2022) [87].

31

2.12 Features Selection (FS)

A new age of data analysis has begun, thanks to the development of knowledge such
as the Internet of Things (IoT) as well as the Industrial Internet of Things (IloT). In this
new era, a gigantic amount of data is generated extremely quickly on a daily basis with
great dimensional data in a diversity of fields, including business intelligence, medical
services, social networks, transportation, online learning, government, advertising, and
the financial system, amongst others. Decision-makers find considerable value and
significance in the insights and knowledge that these large-scale datasets contain. In
the field of machine learning, getting these kinds of insights and knowledge is one of
the hardest things to do [88]. Datasets for modern BotNet identification generally
include a lot of redundant and unnecessary information. The effectiveness of data
analysis tools might be decreased by redundant and irrelevant features, leading to
unintelligible results. Therefore, reducing the dimensionality of such datasets is the
very first stage in any BotNet detection scheme, especially if the dataset is large and
contains a lot of features. Features Selection (FS) is one of the most popular ways to
reduce the extraordinary dimensionality of large datasets. It works by choosing a slight
subset of relevant and important properties (features) and removing irrelevant and

repetitive features with the intention of build good expectation models [89].

()

Enables easy
model building.

Efficient selection
of relevant
features.

®s \ /

Simplifies the

model debugging. Benefits of) —, Improves the model
Features Selection performance.
Explains the model Decreases the Reduces the storage
easily. model requirements.
training time.
=3 Q
e 2 &
]

Figure 2.9 Benefits of features selection

32

In data processing based on machine learning approaches, features selection (FS) is a
vital step. It is a significant stage in the knowledge discovery process. The large
dimensionality, noisy, and irrelevant aspects of the data that are frequently
encountered in this procedure cause an exponential rise in memory and processing time
requirements. FS performs an essential function in rising an efficient and effective
model. It similarly aids in lowering the number of features evaluated while developing
learning models. Many advantages are offered by FS techniques, including fewer
storage needs, improved prediction accuracy, effective learning performance, and
better comprehension. The main concept of features selection is demonstrated in Figure
2.10. As a result, the process of learning is accelerated while at the same time requiring
less space in the learner's memory. In most cases, the FS method is separated into four

stages [80]:

* Generating the subset: A certain searching approach is utilized in order to

arrive at a conclusion regarding a group of features.

* Evaluating the subset: A set of evaluation criteria is applied to the candidate

subset that was chosen for further consideration.

* Stopping criterion: From among all of the candidates that have been reviewed
after they have met the stopping condition, the set of features that is chosen

to be the best fit for the evaluating criterion is chosen.

* Validating the results: Validation of the selected subset can be done by means

of domain knowledge or through the use of a test set.

All Feature Set
Feature Selection
X XXREXEX

Selected Feature set

Figure 2.10 Concept of features selection

33

The selection of features can be accomplished by one of these three standard

mechanisms or methodologies:

2.12.1 Filter Features Selection

Filter methods are strategies for feature ranking that assess the usefulness of features
by considering the inherently meaningful characteristics of the data, regardless of the
classification model. The variables are ranked according to an appropriate ranking
criterion, and any variable that scores below the threshold is eliminated. Filter
approaches use metrics including distance, information, correlation, and consistency to
evaluate how relevant certain features are. The benefits of filter approaches are their
speed, scalability, and lack of dependence on a learning algorithm. The evaluation of
various classifiers can therefore proceed after only one feature selection procedure is
required. The problem with filter approaches is that they don't interact with the
classifier. This means that the results are less accurate and cover a wider range [90]

[91]. The process of filter features selection is presented in Figure 2.11.

Set of all Selecting best Learning
features features

Performance

Algorithm

Figure 2.11 The process of filter features selection

2.12.2 Wrapper Features Selection

Wrapper techniques get their name from the fact that they encase a classifier within a
feature selection course. Usually, a collection of features is picked, their effectiveness
is measured, the original set is changed in some way, and the new set's effectiveness is
also measured. In order to assess the variable subset, the predictor is used as a "black
box" and its performance serves as the objective function. Different feature subsets are
generated and assessed as part of a search strategy that is defined in the space of

potential feature subsets. This method is suited to a certain classification algorithm

34

because it uses a particular classification model that has been trained and tested to
evaluate a particular subset of features. This method has the advantages of being able
to account for feature dependencies, as well as interaction across feature subset search

and model selection [92].

It frequently suffers from the disadvantages of being computationally costly and having
a greater risk of overfitting than filter approaches, particularly if the constructing
classifier does have a significant computational cost. Overfitting occurs when a
classification algorithm learns the data sufficiently well and has limited generalization
capabilities. Another issue with this method is that the feature space is huge, and
considering every conceivable combination would require a significant amount of time
and calculation. To identify the best combinations of features, various heuristic search
techniques must be developed [93]. The process of wrapper features selection is

presented in Figure 2.12.

Selecting the best subset

Set of all Generate Learning Performance

—
features subset .
Algorithm

Figure 2.12 The process of wrapper features selection

2.12.3 Embedded Features Selection

Embedded techniques engage alongside algorithms of learning at a reduced
processing price when compared to the wrapper approach. It preserves feature
dependencies and takes into account not only relationships between input features and
output features, but it also looks locally for features that enable for better local
classification. It employs independent criteria to determine the best subset for a given
cardinality. The learning method is employed to choose the final optimal subset from
among the optimal subsets with varying cardinality [94]. In addition to being

significantly less computationally intensive than wrapper techniques, this approach

35

offers the advantage of incorporating the interactions with the classification model [95]

[96]. The process of embedded features selection is presented in Figure 2.13.

Selecting the best subset

-

Set of all
features

—_—

Generate subset Learning Algorithm

+
Performance

Figure 2.13 The process of embedded features selection

2.13 FS using the Eurasian Oystercatcher Optimizer (EOO)

The Eurasian Oystercatcher Optimizer (EOQO), a new optimization technique
inspired by nature, was introduced by Ahmad Salim et al. [18]. When looking for
mussels, the EOO algorithm imitates the eating habits of Eurasian Oystercatchers (EO)
(shown in Figure 2.14 [18]). Every bird (solution) in the community performs the role
of a search agent in EOO. To ultimately consume the best mussel, the EO switches the
candidate mussel based on the best solution (optimal result). The ratio of mussel size,
calories, and energy must be balanced. Meire and Ervynck [97] came up with the

caloric maximization hypothesis, which gave rise to EOO swarm algorithms.

Figure 2.14 The Eurasian Oystercatcher [18]

2.13.1 Mathematical Model of the EOO

The primary goal of EOs is to maintain a balance between their own energy as well as

the calories they obtain from the mussels. Mussels' size and energy and calories have

36

been tightly correlated. As the length of the mussels grows, so does the number of
calories they contain and the amount of time it takes to open them. Thus, EO waste
must have significant energy. The behavior of EO during the search process is

illustrated in Equations 2.1 and 2.2 [18]:

Y=T+E+L*71* (Xvest + Xi- 1) (2.1)

Xi= Xi-1+Y*C (2.2)

where Xiis a candidate mussel's position, Z is the mussel's length, and it is a random
number between 3 and 5, which represents the range of the ideal mussel length. ¥
stands for the final energy of EO for each solution (iteration). 7'is the amount of time
required to crack open the current mussel (solution), and its amount is dependent on
L, according to Equation 2.3. Using the relevant mussel's size as specified in [18], the
values (3 and 5) were utilized in Equation 2.3. The present energy of the EO, denoted
by the symbol E, is determined by Equation 2.4 [18], and depends on the value of the
iteration because the energy of the EO diminishes over time. In order to increase
unpredictability and uncover additional locations in the search region, ris used, which
is a random number between O and 1. The caloric value, denoted by the letter Cin
Equation 2.2, is determined by the length of the mussel and can be found in Equation

2.5 [18].

=(%*10)—5 (2.3)
S
SEEC

37

Equation 2.3 displays the value between (-5) and (5) as well as the value derived from
Equation 2.5 in the range of 0.6 to 0.8. £was derived from Equation 2.4 and linearly
dropped from 0.5 to -0.5, where 7stands for the number of iteration, which begins with
the iteration number and finishes with one, and the £ value will be fixed in the final
two iterations. As a result, 77and £ that represent the time and energy needed to crack
the potential mussel (which must be lower than EO's energy), may have negative
values. L, a random number that varies randomly, is used to determine the 7' value in

Equation 2.1 and the Cvalue in Equation 2.2.

2.13.2 EOO Algorithm

Figure 2.15 is an illustration of the pseudo-code that the EOO uses to control how it

can handle optimization complications.

Initialize the EOQ population X (1=1.2.3, ., n)
Calculate the Fitness of each search agent
¥ bewr = the best solution 1n search agent

while (1=0)
For each solution in search agent
L=random (3.3)
Calculate T, E and C based on equations 2.3 2 4 and 2.5
Update the position of solution based on equations 2.1 and 2.2

End for

Calculate the fitness of each search agent

XK ber= the best solution in search agent
End While

Returnm X pes

Figure 2.15 Pseudo code for the EOO algorithm [18]

38

Using the time necessary to break the mussel that is computed with the energy of the
bird as well as the size of the mussel as factors to determine the predicted position of
the targeted food, thus enhances the worth of choice. The use of arbitrary values during
the optimization process allows for the exploration of new territory with each iteration.
Consequently, avoid a local minimum problem. The use of random values at each stage

of optimization ensures both exploration and exploitation of the space being optimized.

2.14 FS using the Rock Hyraxes Swarm Optimization (RHSO)

Rock Hyraxes Swarm Optimization (RHSO), an entirely novel instance of a
metaheuristic algorithm, which Belal Al-Khateeb et al. [19] introduced, was motivated
by the natural activities of swarms of rock hyraxes. In order to determine what the Rock
Hyraxes (shown in Figure 2.16 [19]) are eating and how they specifically see this food,
the RHSO algorithm imitates their social behavior. A small, fuzzy mammal called a rock
hyrax (Procavia Capensis) inhabits rocky terrain in sub-Saharan Africa as well as the
coast of the Arabian Peninsula. The colonies of these animals, which can contain up to
50 members, are typically led by a lone male who violently defends his territory. They
raise their children together, eat together, and even sleep together [98] [99]. Rock
hyraxes inhabit regions with a wide range of average temperatures as well as those that
have enough food and water. The successful isolation of the rocky protrusions
segregated through their dispersal may have been facilitated by decreased metabolic
rates and transparent internal temperatures. Every day, the rock hyrax forms a circle
around itself to eat, with its head pointed outward to watch for predators. When the
group is eating or sunbathing, the male or female of breeding age (leader) will keep an
eye on things from a high rock. If danger approaches, they will emit a shrill alarm or

call, the group will immediately begin to take shelter at that point [100].

39

Figure 2.16 The Rock Hyraxes [19]

2.14.1 Mathematical Model of the RHSO

Rock hyraxes begin spending several hours in solar baths and cohabiting together. They
look for food in a specific fashion, creating a circle with various angles and diameters.
The Leader adopts a higher position when they come upon food so that everyone can
eat while being protected from rapacious animals. The population of the Rock hyrax
swarm is initially made up of the leader and followers. The leader chooses the highest
and finest location to watch over the other members. The Leader uses Equation 2.6

[19] below to update its position based on his previous location:

Leader = r1 * x(Leaderros, J) (2.6)

where r7 denotes a random number ranging from 0 to 1, x denotes the Leader's
previous position, LeaderPos denotes the Leader's old location, and ; denotes each
diminution. All members change their positions based on their positions after the leader

position has been updated as shown in Equation 2.7 [19]:

X(i,)) = (x(i,j) — (circ * x(i,j) + Leader)) (2.7)

40

where circ corresponds to a spherical pattern and an attempt is made to replicate the

circular system, it is derived as shown in Equations 2.8, 2.9, and 2.10 [19]:

nl = r2 x cos(ang) (2.8)
n2 = r2 * sin(ang) (2.9
circ = sqrt(n1? + n2?) (2.10)

where ang is an arbitrary value between O and 360, and denotes to the angle of a
movement, and 72 is a random integer between 0 and 1, and refers to the radius. The
ang is updated with each generation, with the update relying on the variables' lower
and upper bounds, which are an arbitrary number called /6 and wub as shown in

Equations 2.11 and 2.12 [19]:

dalta = random [lb, ub] (2.11)

ang = ang + dalta (2.12)

2.14.2 RHSO Algorithm

Figure 2.17 displays the RHSO algorithm's pseudo-code. The RHSO first generates
random solutions and determines the fitness of those solutions. It classifies the
individual with the highest fitness as the Leader, switching from exploratory to
localized exploitation mode and concentrating on the favorable areas when the
universal optimum may be nearby. The Leader symbolizes the most effective approach
to optimization problems that may arise. The search agents restart their exploratory
moves and then transition into a new phase of exploitation. The Leader adjusts his

position in accordance with Equation 2.6, whereas the other members adjust their

41

positions in accordance with the Leader's position as depicted in Equation 2.7. This
method will proceed through all iterations; when it reaches the stop condition, it
returns the Leader as the closest approximation to the optimal solution to the

optimization issue.

Initialize the population of Rock Hyrax N member
Calculate the Fitness of each search agent

Leader = the best search agent

t=1

while (t = Max number of iterations)
update Leader position, according to Eq.(2.6).
update the position of each search agent, according to Eq.(2.7).
Calculate the fitness of each search agent

Select the best member of the population as a leader
Update the angle, according to Eq.(2.11) and Eq.(2.12).

t=t+1.
End While

Return Leader as the best solution.

Figure 2.17 Pseudo code for the RHSO algorithm [19]

42

3

THE ML-BASED BOTNET DETECTION SYSTEM

3.1 Introduction

Through a comprehensive revision of the literature review, it is decided to utilize the
new X-IIoTID dataset [17], which is a specialized dataset in the IIoT cyberattacks field.
According to the authors’ knowledge, three researchers have only used this dataset
including the creator of the dataset. This thesis aims to apply the EOO [18] and RHSO
[19] algorithms as a features selection in the BotNet detection problem and evaluate
their performance by using well-known machine learning algorithms. This will be
helpful in achieving high system accuracy, reducing training time as well as the overall
resources required by the system, and increasing the robustness of the system against

overfitting.

This chapter is dedicated to present the proposed system and its details. It is distributed
into three parts. The first part is implementing a dataset preprocessing on the X- I[IoTID
dataset. The second part of this chapter is the process of implementing the features
selection algorithms ECC and RHSO on the dataset to get a suitable reduced subset of
features. The third part is to use the machine learning state of the art algorithms to
detect BotNets. This part will be implemented on the original dataset with its original

features and on the two subsets features using dataset mapping.
3.2 The Proposed ML-Based BotNet Detection System Architecture

In general, the structure of the proposed system may be broken down into its three
primary components, which are as follows: The first is the dataset preprocessing. The
second part is the implementation of the EOO and RHSO algorithms separately as
features selection methods in which a fitness analyzer that employs the utilization of
the machine learning algorithm is utilized. The fitness analyzer that was suggested
included two components: the first one was the accuracy that was achieved through

ML, and the second component was the quantity of the features that were extracted.

43

The third part is the implementation of ML algorithms on the original X-IIoTID dataset
(with its original features) and on the new datasets (with two subsets features using
dataset mapping). This is a BotNet detection system. The “class2” attribute in the X-
IIoTID dataset will be consider as the target features, which contains nine types of

attack and normal.

The following figure shows the general form of the proposed system, which will be
discussed in greater depth in the sections that are to come in this chapter. Throughout
the essence of the work, a few processes exist that need to be conducted. These
processes include the dataset preprocessing and the dataset mapping, both of which
will be detailed later on in this chapter. The proposed system architecture can be

abbreviated as shown in Figure 3.1.

X-IIoTID Dataset

¥

Dataset

Preprocessing

Original Dataset

v

RHSO Algorithm EOO Algorithm

Mapping Mapping

Features2 Featuresl

Sub Dataset2

Sub Datasetl

Splitting Datasets to

Train and Test data

Machine learning Algorithms

Attack Types Resources
‘ Consumption

Figure 3.1 The structure of the proposed BotNet detection system

44

3.3 Dataset Preprocessing Steps

Because machine learning algorithms acquire knowledge from the data, and the
assessment of learning for problem solving significantly relies on the appropriate data
that is necessary to find an optimal solution (which are called features), preprocessing
the data is the required preliminary stage before any machine learning algorithm can
be used. Because of the fundamental role that these features play in learning and
comprehension, machine learning is frequently interpreted in the context of feature
engineering. Briefly, data preprocessing is a part in the direction of data acquisition
and data analytics that involves taking fresh data and putting it into a form that can be
absorbed by computers and machine learning software. This phase takes place between
the data collection phase and the data analysis phase. so that it can then be examined
by these technologies [101]. Figure 3.2 summarizes the preprocessing steps of the X-

IIoTID dataset that will be discussed in the following subsections.

X-IIoTID Dataset ?

Dropping unnecessary features

Replacing some non-numeric
values

Dropping the ‘nan’ values

Handling the categorical values

Data Normalization

Re-Labeling the target feature
(Class 2)

Original Dataset i

Figure 3.2 X-IIoTID preprocessing steps

45

3.3.1 Dropping Unnecessary Features

This thesis (as mentioned earlier) will consider the “class2” attribute in the X-IIoTID
dataset as the target feature, which contains nine types of attacks and normal behavior.
Therefore, “class1” and “class3” attributes (which are used for binary classification or
further multi classification) will be dropped. The “Date” and “Timestamp” attributes
will also be dropped to increase the process because they do no effect the detection
process. So, from the 68 attributes of the X-IIoTID dataset only 64 attributes will be

used.

3.3.2 Replacing Some Nonnumeric Values

Some of the nonnumeric values in the dataset that have the same meanings was

converted in all its occurrences to numeric with the same values as shown in Table 3.1.

Table 3.1 Replacing equivilant nonnumeric values

Old Nonnumeric Value New Numeric Value
“FALSE” 0
“False” 0
“false” 0
“TRUE” 1
“True” 1
“true” 1

The dataset also contains some nonsense or unidentified data that was converted to
“nan” ("Not a Number', sometimes known as "nan', is a numeric data format that refers
to an indeterminate value or a number that cannot be expressed. This is most
commonly the case with the outcomes of floating-point calculations [102]) as shown

in Table 3.2:

46

Table 3.2 Converting nonsense values to “nan”

Nonsense Data New Data
“_” “nan”
wn» “nan”
«» “nan”

« » “nan”

3.3.3 Dropping the “nan” Values from the Dataset

The “nan” values are almost inevitable in every real-world dataset and practically
impossible to avoid in typical data gathering processes. This can occur for various
reasons, such as errors during data entry, issues on the technical front in the data
collection process, lost/corrupt files, and many other reasons. In any real-world dataset,
there is usually some missing data that have to be dealt with; otherwise, it can
potentially lead to several problems in processing the data. Because of this, all the “nan”

values were dropped from the dataset.

3.3.4 Handling the Categorical Values (Data Transformation)

The X-IIoTID dataset contains services, protocols, status flags, and other attributes as
nominal attributes. Examples of these attributes are: “Scr _IP”, “Scr_port”, “Protocol”,
"Service”, “missed bytes”, “Avg ldavg 1” etc. The classification algorithm requires
each of the input records to be in the shape of vectors composed of the real numbers.
Therefore, the data transformation process changes the categorical values of features
into their corresponding numeric values. As a consequence of this, the symbolic or
categorical elements of the dataset are converted into numeric data. To accomplish
this, these attributes are factorized and then encoded. Utilizing this approach will
enable the acquisition of a numerical representation of an attribute, which is really

useful.

47

3.3.5 Data Normalization

During the process of logical evaluation, the normalization of data is a procedure that
falls under the category of data preprocessing, and it is mainly important when
allocating with data tables. The necessity to minimize the artificial intelligence model's
sensitivity to the values of the attributes contained in the dataset in order to improve
the analyzed model's level of sufficiency is the primary factor that determines the

significance of its implementation [103].

The purpose of changing the values that are contained within the dataset's numerical
columns to a similar scale is to achieve the aim of data normalization, which is to
accomplish this objective without distorting the variations in the ranges of the values.
Each feature in the X-IIoTID dataset has different data limits. As according Equation
3.1, the value of each feature has to be linearly translated to the range O to 1, where
Max signifies the highest amount for every feature and Min denotes the minimum
amount for each feature. The Min-Max Scaler is used to accomplish this goal in order
to prevent problems in the machine learning algorithms that might arise from having
features with values that are excessively high to dominate the dataset. The significant
feature X is normalized to X', so that its minimum value is equal to its highest value

[103].

X — Xmin (3.1)

X' =
Xmax — Xmin

3.3.6 Re-Labelling the Target Feature (“class2”)

Re-labelling the contents (attacks and normal) of the target feature (“class2”) to the
numeric values between (0-9) according to their appearance in the “claas2” attribute

as shown in Table 3.3.

48

Table 3.3 Re-labelling the target featute (“class2”)

Label Re-label
“C&C” 0
“Exfiltration” 1
“Exploitation” 2
“Lateral movement” 3
“Normal” 4
“RDOS” 5
“Reconnaissance” 6
“Tampering” 7
“Weaponization” 8
“crypto-ransomware” 9

3.4 EOO and RHSO Algorithms Steps for Implementation

In this part, the steps that need to be taken in the process of implementing the EOO
and RHSO algorithms are detailed according to this study. These processes include the
features selection method, the representation of the problem, the fitness computation

procedure for the problem, and the halting condition in order to reach the final results.

3.4.1 Representation of the Problem (Initialize Population)

The aim of this system is to test the EOO and RHSO algorithms (separately) as a
features selection and reduction to reduce the features of the X-IIoTID dataset and to
choose the best ones to obtain high accuracy of detecting BotNets and reduce resources

consumption with the least number of features.

49

The total number of the X-IIoTID dataset features is 68, but four of them were dropped
in the preprocessing phase and one is the target attribute, so the total became 63. Since
the number of features is 63, any solution can be represented by 63 binary values of 0
or 1, where O represents the absence of the feature and 1 represents its existence.
According to both the EOO and RHSO algorithms, the solutions are initialized randomly
and then they learn to depend on fitness and the stopping condition to reach the
optimal solution. After the solutions generation process, the dataset is processed based
on the solution values and a new two datasets are generated to be entered into the next

step of the features selection algorithm.

3.4.2 Performing the Calculations on Fitness

In our problem, fitness calculation is a very important part because it determines the
best solution that results from the EOO and RHSO algorithms, and which represents
the final solution. The fitness is calculated using advanced technologically machine
learning algorithms (Random Forest and KNN, which was discussed in Chapter Two).
Because the lowest possible number of features and higher accuracy are needed, multi-
objective function has been built in order to handle the process of trade-offs between
feature count and precision need to be made. It consists of two parts: first is to search
for the highest accuracy and second to get the lowest number of features. The result of
this function is to represent the final fitness to be used by the EOO and RHSO

algorithms.

3.4.3 FS Algorithms Final Results

The results from the step before indicate the final solutions acquired from the EOO and
RHSO algorithms, which represent the best possible solutions once all steps have been
completed. These best solutions are evaluated one at a time by the machine learning

algorithm in order to validate the results that were acquired.

50

3.5 Mapping of Dataset

In this step, the results (best features) acquired by EOO and RHSO algorithms are
projected onto the original dataset so as to select the dataset features to be subsequently
trained and reviewed by the machine learning algorithms in order to measure the
accuracy and resources usage as a consequence. If the obtained subset of features
assumed to be {1, 2,5, 8,9, 11, 13..., 62}, Figure 3.3 demonstrates the mechanism of
mapping the these subset to the original dataset and obtain a new dataset that contains

only the selected features.

Sohmon (Feamres) from EOO or RH50

A

/ A

[
(L)

IX[1 2 X[X[s[X[X[8]9 [X[u]X]

S T N O N N N

—
-—

'.-
s|E2|8|8|g|2|e|E|2|E|E|2|8| & o
o 0|8 ¢
vume | £| 8132|8322 |B|2|8 5 §|° :
SlS|S|8|8|e|8|8|8 |2 F|8|8) ¢ f
.
rl-
Newbmaset | |G |8 |E |8 |2 |3 |§]
according to EEEEEEE E’
EODM%%%%%EEE 2
RE ¢ (& & @ | & | | ki
o,

Figure 3.3 The mapping procedure

51

3.6 Splitting Dataset

In order to evaluate how effectively the machine learning model works, first, the
dataset has to be partitioned into the training set and the testing set. The train set is
utilized in the process of fitting the model, and the relevant data for the train set is
already identified. The other set is referred to as "test data", and its main function is to
be used for making predictions. In this thesis, the dataset is divided into a training
dataset and a testing dataset, with the ratio being 70% training dataset and 30% testing

dataset.

3.7 Machine Learning Algorithms Implementation

Final stage of the work represents interpretation of classification results. The
motivation is to evaluate the features subsets obtained from the FS algorithms, and to
check which one have the stronger impact on predicting (accuracy) and the resources
they consume. Predictions interpretation stage is crucial before making a decision on

choosing the most appropriate and trustworthy model for the future deployment.

3.7.1 Random Forest Algorithm Implementation

To produce more accurate results, Random Forest constructs many decision trees and
combines them. When decision trees are being formed, randomness is added to the
model. Instead of seeking for the most essential feature, it seeks for the best feature
from a randomized group of features. It leads to diversity, which improves the model.
It is fairly simple to determine the significance of a feature when making predictions
[52]. To develop a training model, numerous decision trees are required. Figure 3.4

illustrates the actions taken for every decision tree:

52

Training Samples

Extract m from M

Randomly choose a training set for this tree by estimated the prediction
error of the tree

1.Randomly choose m.

2.Calculate the best split based on m in the training set

Each tree is fully-grown and
not pruned

RF Model

- Class label
(Many Decision Trees)

A test sample

Figure 3.4 Steps for every tree.

where M denotes the feature of the dataset and m denotes a randomly selected features

from M.

3.7.2 KNN Algorithm Implementation

The KNN algorithm is one example of a technique that could be applied to find solutions
to issues involving classification. Due to the fact that KNN uses entirely the data for
training when classifying and does not have a dedicated training stage, it is a lazy
learning algorithm. Since it makes no assumptions about the data that it is being
applied to, this learning algorithm may also be denoted to as a non-parametric learning
algorithm. KNN employs feature likeness to determine the values of new information
points, which means the newfangled information point will be allocated a value
depending on how closely it resembles existing points inside the training set [55].

Figure 3.5 depicts the steps necessary to build the KNN algorithm.

53

Read value of
. ®
e Distance (D)
e Test data

Find the K nearest

neighbors (D) to the
Test data

Set Maximum
Label class of (K) to
Test data

Figure 3.5 Steps to implement the KNN algorithm

where K denotes the number of labeled points (neighbors), and D denotes the distance

between two points.

3.8 The Overall Structure of the Proposed System

The suggested system is demonstrated, and the X- IIoTID dataset preparation was
completed. An appropriate reduced subset of features is achieved after the
implementation of the feature selection algorithms ECC and RHSO on the original
dataset. The resulting solutions are used to apply date mapping on the original dataset.
The original dataset and the two sub datasets are split into a training dataset and a
testing dataset, with the ratio being 70% training dataset and 30% testing dataset. To
detect BotNets and determine accuracy and resource usage, the three datasets were
incorporated into cutting-edge machine learning algorithms. Figure 3.6 describes the

overall structure of the proposed system.

54

Dataset (X-TloTID)

. A

Feature Selection using EOO

Dataset Preprocessing

Dropping Replacing some

unnecessary non-numeric
features valuec o o

Initialize the EO population Xi (i=1, 2, 3,..,n)

Handling the Dropping the
categorical values ‘nan’ values

Calculate the Fitness of each search agent

Re-labeling the

Normalization target featur o2
get feature Original

Dataset

Xbest = the best solution in search agent

For each solution in search agent
Feature Selection using RHSO

Initialize the population of Rock Hyrax N

Length of oyster =random (3, 5)

Calculate (Time to open oyster,
Energy and Caloric value).

Calculate the Fitness of each search
Leader = the best search agent

Update the position of solution
- —————
Calculate the fitness of each search agent
Xbest = the best solution in search agent

Update Leader

Update the position of each search
Calculate the fitness of each search agent

Mapping

Splitting to Training & Testing data

Select best member of the population as a leader

Update angle

Machine learning

T=T+1

>

Return Leader

Random Forest

Evaluation

Accuracy Resources

Consumption

Mapping

Figure 3.6 The overall structure of the proposed system

55

4

RESULTS AND DISCUSSION

4.1 Introduction

Reporting of the results and the necessary discussion and conclusions, are included in
this chapter. In all the experimental results, the run of the system implementation has
been done using Python on Google Colab with a PRO+ subscription. The product that
was produced by Google Research and is referred to as the Colaboratory is what is
meant to be referred to by the abbreviation "Colab". Colab is ideally suited for use in
areas such as machine learning, data analysis, and educational settings since it enables
anybody to create and run unrestricted Python script through the Internet. Technically
speaking, Colab offers access to computer resources like as GPUs and extra RAM while
being a hosted Jupyter notebook service that doesn't need any setup to operate.
Background execution is a feature that's available with Colab Pro+, and it allows for
uninterrupted executable code for a maximum of 24 hours. Idle timeouts will only take
effect if the current code execution comes to an end. By buying a dedicated virtual
machine from the GCP Marketplace, there is an ability to completely remove all runtime

constraints and idle timeouts [104].

All of the procedures and experiments described in this thesis were carried out using
the most well-known dataset in the area of BotNet detection (X-IIoTID) [17]. This
dataset was acquired from the IEEEDataPort/DATASETS official website, and it can be
accessed at the following URL: “https://ieee-dataport.org/documents/x-iiotid-

connectivity-and-device-agnostic-intrusion-dataset-industrial-internet-things”.

The results that were acquired during the research for the thesis are divided up into
two primary parts. The first part is devoted to the presentation and discussion of the
results of the execution of the EOO and RHSO algorithms as a features selection. These
algorithms were used to pick features from the X-IIoTID dataset in order to obtain the
fewest possible features while maintaining the greatest possible accuracy. The second

part is devoted to the presentation and discussion of the results of detecting BotNets,

56

as well as the accuracy and resource usage while utilizing 1) the original dataset, 2)
the sub dataset resulting from the EOO algorithm, and 3) the sub dataset resulting from
the RHSO algorithm. The machine learning algorithms (Random Forest and

KNN) were all used in the process of detecting the BotNet.

4.2 Experimental Results and Discussion

The EOO and RHSO algorithms were used separately to pick as few features as possible
to be employed in the proposed system. By applying these algorithms to the original
dataset (which contains 63 features) using ML algorithms (Random Forest, and KNN),
the results could be found in Tables 4.1 and 4.2. Table 4.1 shows the locations of the
chosen features when applying EOO algorithm. While Table 4.2 shows the locations of
the chosen features when applying RHSO algorithm. The EOO and RHSO algorithms
are population based, each algorithm contains ten solutions, the best result (depending
on the fitness) is chosen as the best features. These selected features are the best

available option to be used in the proposed system.

Table 4.1 Locations of the chosen features when applying EOO algorithm

EOO Algorithm
Machine Learning Number of .
Algorithm Features Locations of Features
Random Forest 13 [2, 6,7, 10,18, 27, 33, 34, 37, 40, 43, 57, 60]
13 [5, 11, 17, 20, 21, 23, 28, 34, 40, 43, 52, 55, 60]
KNN

Table 4.2 Locations of the chosen features when applying RHSO algorithm

RHSO Algorithm
Machine Learning Number of .
AlpGrithn Features Locations of Features
R 10 [7, 10, 20, 23, 34, 40, 44, 58, 60, 62]
KNN 10 [2, 10, 20, 21, 34, 40, 44, 58, 60,62]

57

The Random Forest and KNN algorithms are used for the BotNet detection using the
original dataset and the two sub datasets that obtained from applying the EOO and
RHSO algorithms. The result of the detection in accordance to accuracy and resources
consumption is illustrated in Table 4.3. When the ML algorithms (Random Forest and
KNN) are applied to the three datasets, it is immediately apparent that there is an
improvement in the quality of the results. The accuracy maintains its significant value,
the time necessary to detect BotNets is reduced, and the memory utilization has been

dropped.

Table 4.3 The accuracy and resources consumption in the BotNet detection

. Original Dataset Sub Dataset obtained from Sub Dataset obtained from
Machine & EOO RHSO
Learning

Algorithm

Accuracy Time Memory | Accuracy Time Memory | Accuracy Time Memory

Random 2.73 137.64 1.65 54.05 1.25 49.11
0, 0, 0,
Forest 98.71% Min. MB 99.35% Min. MB 99.88% Min. MB
3.35 30.46 2.26 21.01 0.8 19.69
0, 0, 0/
KNN 94.34% Min. MB 94.44% Min. MB 97.30% Min. MB

Table 4.4 and Figure 4.1 show the increasing ratio of accuracy when using the new sub
datasets with accordance to the original dataset. It has been demonstrated that the
accuracy can indeed be improved by 0.65% when the Random Forest ML algorithm is
employed with the subdataset1, and that it can enhance the accuracy by 1.19% when

it is used with the subdataset?2.

Moreover, it has been demonstrated that the accuracy can in fact be increased by 0.11%
when the KNN ML algorithm is utilized with the subdatasetl, and that it can improve

the accuracy by 3.14% when it is utilized with the subdataset2.

58

Table 4.4 Increasing ratio of accuracy

Sub Dataset obtained from EOO Sub Dataset obtained from RHSO
Machine Learning
Algorithm
Accuracy Accuracy
Random Forest 0.65% 1.19%
KNN 0.11% 3.14%
Increasing Ratio of Accuracy
mRandom Forest WK Nearest Neighbor
4.00%
3.00%
2.00%
1.00% -
0.00% o
Subset of features obtained from Subset of features obtained from
Eurasian Oystercatcher Optimizer Rock Hyraxes Optimizer

Figure 4.1 Increasing of accuracy ratio chart

Table 4.5 and Figure 4.2 show the decreasing ratio of time consumption when using
the new sub datasets with accordance to the original dataset. It has been observed that
the time necessary to complete the detection process can be reduced by a ratio of
39.56% when the Random Forest ML algorithm is applied to subdataset1, and that time
can be reduced by a ratio of 54.21% when the same ML algorithm is used to

subdataset2.

Additionally, it has been found that the duration of time required to finish the detection
process can be decreased by a ratio of 32.54% when the KNN ML algorithm is applied
to subdatasetl, and also that amount of time can be decreased by a ratio of

76.12% when the same ML algorithm is applied to subdataset2.

59

Table 4.5 Decreasing ratio of time consumption

Sub Dataset obtained from EOO Sub Dataset obtained from RHSO
Machine Learning
Algorithm
Time Time
Random Forest 39.56% 54.21%
KNN 32.54% 76.12%

Decreasing Ratio of Time Consumption

mRandom Forest WK Nearest Neighbor

80.00%

60.00%

40.00%

. |

0.00%
Subset of features obtained Subset of features obtained
from Eurasian Oystercatcher from Rock Hyraxes Optimizer
Optimizer

Figure 4.2 Decreasing of time ratio chart

Table 4.6 and Figure 4.3 show the decreasing ratio of memory consumption when using
the new sub datasets with accordance to the original dataset. When the Random Forest
ML algorithm is applied to the first sub dataset, it is noticed that the amount of memory
used in the execution of the detection process is decreased in a ratio of 60.73%. When
the same ML algorithm is applied to the second sub dataset, it is noticed that the
amount of memory used in the execution of the detection process is decreased in a ratio

of 64.32%.

Furthermore, overall memory required for the execution of the detection process is
reduced by a ratio of 31.02% when the KNN ML algorithm is applied on the first sub

dataset. Memory amount for running the detection process are shown to be reduced

60

by a factor of 35.36 percent when the same ML technique is applied to the second sub

dataset.

Table 4.6 Decreasing ratio of memory consumption

Sub Dataset obtained from EOO Sub Dataset obtained
. . from RHSO
Machine Learning
Algorithm
Memory Memory
Random Forest 60.73% 64.32%
KNN 31.02% 35.36%

Decreasing Ratio of Memory Consumption

mRandom Forest WK Nearest Neighbor

70.00%

60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Subset of features obtained from Subset of features obtained from Rock
Eurasian Oystercatcher Optimizer Hyraxes Optimizer

Figure 4.3 Decreasing of memory ratio chart

4.3 Comparing the Results with the Literature

The results that were achieved via the previous studies as well as through the suggested
system are shown in Table 4.7. The incorporation of the feature selection algorithms
(EOO or RHSO) with the methods for machine learning (Random Forest and KNN) has
produced satisfactory results when compared to the results that are reported in the
literatures. The features that are acquired by the two algorithms are used in the
suggested system, which has high results in terms of the amount of time spent

implementing it, the amount of memory consumed, and the accuracy of its predictions.

61

Table 4.7 Results obtained from the literature and proposed system

No.

Researcher/s

Year

Algorithm

Dataset/s

Number of
Selected
Features
from the
Original

Accuracy

Limitations

Nilesh
Kunhare

et al. [6]

2020

PSO

NSL-KDD

10741

99.32

Outdated
dataset.

Only four
attack types.
Perform the
feature
selection
before the
dataset
preprocessing.
Resource
consumption
was not
mentioned.

Maria Habib
et

al. [7]

2020

MOPSO-Levy

Baby Monitor

46/115

93.5

Danmini

Doorbell

43/115

98.6

Security Camera

PT737

45/115

95.5

Security Camera

PT838

45/115

96.1

Ecobee

Thermostat

42/115

99.6

Security Camera

XC1002

44/115

96.9

Security Camera

XC1003

45/115

98.4

Only two
attack types.
Dataset
preprocessing
was not done.
High
computational
cost.

Resource
consumption
was not
mentioned.

Maha M.
Althobaiti et
al. [8]

2021

BBFO

NSL-KDD

18/41

98.1

CICIDS-2012

23/80

98.45

Outdated
dataset.
Binary
classification.
Resource
consumption
was not
mentioned.
The unwanted
samples from
the dataset
did not
removed.

Abdullah
Alharbi et al.
[9]

2021

LGBA-NN

N-BaloT

*/115

90.00

Only two
attack types.
Dataset
preprocessing
was not done.
The number
of selected
features was
not reported.
Resource
consumption
was not
mentioned.

62

Table 4.7 Results obtained from the literature and proposed system (Continue)

Saif S.
Kareem
et al.

[10]

2021

GTOBSA

BoT-IoT

3/46

81.5

NSL-KDD

15/41

95.5

CICIDS-2012

10/80

98.7

UNSW-NB15

17/49

81.5

Outdated
dataset.
Dataset
preprocessing
was not done.
The proposed
system was
tested on 5%
of the full
dataset.
Resource
consumption
was not
mentioned.
Binary
classification.

Sohail Saif,
etal. [11]

2022

PSO+GA+DE

NSL-KDD

10/41

93.67

Outdated
dataset.
Binary
classification.

Mythili
Henry
Boopathi et
al. [12]

2022

CSHO

BoT-IoT

*/115

*k

Accuracy was
not
mentioned.
Binary
classification.
Dataset
preprocessing
was not done.
The number
of selected
features was
not reported.
Resource
consumption
was not
mentioned.

Raisa Abedin
Disha et al.
[13]

2022

GIWRF

UNSW-NB15

20/49

93.01

Network TON-
IoT

10/42

99.9

Binary
classification.
Resource
consumption
was not
mentioned.
Portion of the
dataset was
used.

Mohammed
Otair et al.
[14]

2022

GWO+PSO

NSL-KDD

20741

74.48

Outdated
dataset.
Binary
classification.

10

Aniss Chohra
et al. [15]

2022

CHAMELEON

NSL-KDD

9/41

90.71

UNSW-NB15

8/49

89.52

Outdated
dataset.
Binary
classification.
Dataset
preprocessing
was not done.

11

Proposed
Work

2022

EOO

X-IIoTID

Random

Forest

13/68

99.35

KNN

13/68

94.44

RHSO

X-IIoTID

Random

Forest

10/68

99.88

10/68

97.30

The proposed
work was not
applied to a
real-time

environment.

63

* Not Reported.

** The researcher did not mention the accuracy; however, he mentioned the energy, F-measure,

Precision, and Recall as 0.1610, 0.9001, 0.9052, and 0.8993 respectively.

The research results that were included in the previous tables show that the features
that were selected by both the EEO and the RHSO algorithms led to the use of less data,
which increased the speed of the classification process while also reducing the amount
of time it took and the amount of memory it required. These gains were demonstrated
by the research results that were included in the previous tables. Correspondingly, it
has been realized that utilizing features from the X-IIoTID dataset that have been
properly and scientifically selected has resulted in an improved performance of the
proposed system. This improvement can be seen in terms of the speed with which the
system is implemented, as well as a reduction in the amount of memory that is used

while still maintaining a high level of accuracy.

4.4 Conclusions

During the process of developing the framework for the proposed system, a number of
observations and inferences were made. The list that follows summarizes the most

significant conclusions from this thesis:

1- Due to the strong performance that the ML approaches produce when they
are utilized with the X-IIoTID dataset, they are suited to be used in dealing
with the multi class classification challenges that arise when attempting to
detect BotNet activity.

2- Using a small number of features increases the performance of the ML
algorithms in terms of accuracy, and consumed time and memory for training
and testing models.

3- As according to what was said in the reviewed literature, there have been
earlier efforts that have attempted to decrease the number of features using
a variety of methodologies and algorithms. Combining the feature selection
algorithms (EOO or RHSO) with the methods for machine learning (Random

Forest and KNN) has produced satisfactory results when compared to the

64

results that are reported in the literatures. This is due to the fact that the
EOO or RHSO algorithms are used in conjunction with the Random Forest
and KNN methods.

4- The features that are obtained by the two algorithms are employed in the
system that has been suggested. This system has high results in terms of the
amount of time spent implementing it, the amount of memory that it
consumes, and the accuracy of its predictions.

5- To choose from among the available features, the RHSO algorithm is more
effective than the EOO algorithm in dealing with the BotNet detection
problems, particularly when it comes to working with the X-IIoTID dataset
based on the results described in previous tables.

6- The experimental study revealed that employing the RHSO algorithm in
conjunction with the Random Forest algorithm was superior, with an
accuracy rate of (99.88%), detection time of (1.25 minute), and memory
consumption of (49.11 MB).

7- The thesis overcomes most of the limitations of the literature in accordance
to:

a- Utilizing modernistic dataset, and training and testing the proposed
system using the entire dataset.

b- Dataset preprocessing was done before features selection and training the
model.

c- Reducing the number of features while maintaining high accuracy.

d- Resource consumption was taking into consideration.

e- Detecting BotNets in a multi classification fashion.

f- Applying new dataset and two features selection algorithms that had not

been used in BotNet detection (as far as the authors know).

4.5 Future Works

The following is a list of potential future works that might be done as extra work to this

thesis:

65

1-

Solve the imbalance in the data, which often indicates an uneven distribution
of classifications within the dataset. Both oversampling and undersampling
are methods that can be used to accomplish this goal.

Use the feature selection algorithms in conjunction with one another in a
sequential fashion rather than using them separately. This implies that the
outcomes of the first algorithm might be passed on to the second algorithm.
The features that were produced as a consequence will represent the
solution.

To demonstrate that the system is not dependent on a single dataset, it is
necessary to employ a different BotNet dataset as a benchmark.

Engage the "class1" and "class2" attributes from the X-IIoTID dataset to make
further classifications of attack types.

Setup an IIoT platform or environment and install IIoT devices to observe
real-time data processing and transferring between the devices. The BotNet
detection system could work within this environment to detect Bots in real

life.

66

REFERENCES

[1] Wang Ren, Xin Tong, Jing Du, Na Wang, Shan Cang Li, Geyong Min, Zhiwei Zhao,
Ali Kashif Bashir, “Privacy-preserving using homomorphic encryption in Mobile IoT
systems,” Computer Communications, Volume 165, 2021, Pages 105-111, ISSN
0140-3664, https://doi.org/10.1016/j.comcom.2020.10.022.

[2] Mark Mbock Ogonji, George Okeyo, and Joseph Muliaro Wafula, “A survey on
privacy and security of Internet of Things,” Computer Science Review, Vol. 38,
2020. 100312, ISSN 1574-0137, https://doi.org/10.1016/j.cosrev.2020.100312.

[3] Gonzalo De La Torre Parra, Paul Rad, Kim-Kwang Raymond Choo, and Nicole
Beebe, “Detecting Internet of Things attacks using distributed deep learning,”
Journal of Network and Computer Applications, Vol. 163, article 102662, 2020.
102662, ISSN 1084-8045, https://doi.org/10.1016/j.jnca.2020.102662.

[4] L. Ali, A. I. A. Ahmed, A. Almogren, M. A. Raza, S. A. Shah, A. Khan, and A. Gani,
“Systematic Literature Review on IoT-Based Botnet Attack,” IEEE Access, Vol. 8,
pp. 212220-212232, 2020, doi: 10.1109/ACCESS.2020.3039985.

[5] Mohanad Sarhan, Siamak Layeghy, and Marius Portmann, “Feature Analysis for
ML-based IIoT Intrusion Detection,” ArXiv, Vol. abs/2108.12732, 2021.
https://doi.org/10.48550/arXiv.2108.12732.

[6] Nilesh Kunhare, Ritu Tiwari, and Joydip Dhar, “Particle swarm optimization and
feature selection for intrusion detection system,” Sadhana, Vol. 45, No. 109, 2020.
https://doi.org/10.1007/5s12046-020-1308-5.

[7] Maria Habib, Ibrahim Aljarah, and Hossam Faris, “A Modified Multi-objective
Particle Swarm Optimizer-Based Lévy Flight: An Approach toward Intrusion
Detection in Internet of Things,” Arabian Journal for Science and Engineering,
45:6081-6108, 2020, https://doi.org/10.1007/s13369-020-04476-9.

[8] Maha M. Althobaiti, K. Pradeep Mohan Kumar, Deepak Gupta, Sachin Kumar, and
Romany F. Mansour, “An intelligent cognitive computing based intrusion detection
for industrial cyber-physical systems,” Measurement, Volume 186, 2021, 110145,
ISSN 0263-2241, https://doi.org/10.1016/j.measurement.2021.110145.

67

[9] Abdullah Alharbi, Wael Alosaimi, Hashem Alyami, Hafiz Tayyab Rauf, and Robertas
Damasevicius, “Botnet Attack Detection Using Local Global Best Bat Algorithm for
Industrial Internet of Things,” Electronics, Vol. 10, No. 11: 1341, 2021.
https://doi.org/10.3390/electronics10111341.

[10] Saif S. Kareem, Reham R. Mostafa, Fatma A. Hashim, and Hazem M. El-Bakry, “An
Effective Feature Selection Model Using Hybrid Metaheuristic Algorithms for IoT
Intrusion Detection,” Sensors, Vol. 22, No. 4. 1396., 2022.
https://doi.org/10.3390/5s22041396.

[11] Sohail Saif, Priya Das, Suparna Biswas, Manju Khari, and Vimal Shanmuganathan,
“HIIDS: Hybrid intelligent intrusion detection system empowered with machine
learning and metaheuristic algorithms for application in IoT based healthcare,”
Microprocessors and Microsystems, 2022, 104622, ISSN 0141-9331,
https://doi.org/10.1016/j.micpro.2022.104622.

[12] Mythili Henry Boopathi, “Henry MaxNet: tversky index based feature selection
and competitive swarm henry gas solubility optimization integrated Deep Maxout
network for intrusion detection in IoT,” International Journal of Intelligent
Robotics and Applications, Vol. 6, Pp. 365-383, 2022.
https://doi.org/10.1007/5s41315-022-00234-2.

[13] Raisa Abedin Disha, and Sajjad Waheed, “Performance analysis of machine
learning models for intrusion detection system using Gini Impurity-based Weighted
Random Forest (GIWRF) feature selection technique,” Cybersecurity, Vol. 5, No. 1,
2022. https://doi.org/10.1186,/s42400-021-00103-8.

[14] Mohammed Otair, Osama Talab Ibrahim, Laith Abualigah, Maryam Altalhi, and
Putra Sumari, “An enhanced Grey Wolf Optimizer based Particle Swarm Optimizer
for intrusion detection system in wireless sensor networks,” Wireless Networks,
Vol. 28, pp. 721-744, 2022. https://doi.org/10.1007/s11276-021-02866-x.

[15] Aniss Chohra, Paria Shirani, EIMouatez Billah Karbab, and Mourad Debbabi,
“Chameleon: Optimized feature selection using particle swarm optimization and
ensemble methods for network anomaly detection,” Computers & Security, Vol.
117, 2022, 102684, ISSN 0167-4048,
https://doi.org/10.1016/j.cose.2022.102684.

68

[16] Victor R. Kebande, “Industrial internet of things (IloT) forensics: The forgotten
concept in the race towards industry 4.0,” Forensic Science International: Reports,
Volume 5, 2022, 100257, ISSN 2665-9107,
https://doi.org/10.1016/].fsir.2022.100257.

[17] Muna Al-Hawawreh, Elena Sitnikova, Neda Aboutorab, July 30, 2021, "X-IIoTID:
A Connectivity- and Device-agnostic Intrusion Dataset for Industrial Internet of
Things", IEEE Dataport, 2021, Available at: https://dx.doi.org/10.21227/mpb6-
pySS.

[18] Ahmad Salim, Wisam K. Jummar, Farah Maath Jasim, and Mohammed Yousif,
“Eurasian oystercatcher optimizer: New meta-heuristic algorithm,” Journal of
Intelligent Systems, Vol. 31, No. 1, 2022, pp- 332-
344. https://doi.org/10.1515/jisys-2022-0017.

[19] Belal Al-Khateeb, Kawther Ahmed, Maha Mahmood, and Dac-Nhuong Le, “Rock
Hyraxes Swarm Optimization: A New Nature-Inspired Metaheuristic Optimization
Algorithm,” Computers, Materials & Continua, Vol. 68, No. 1, pp. 643-654, 2021,
ISSN: 1546-2226, https://doi.org/10.32604/cmc.2021.013648.

[20] Ibrahim M. El-Hasnony, Reham R. Mostafa, Mohamed Elhoseny, and Sherif I.
Barakat, “Leveraging Mist and Fog for Big Data Analytics in IoT Environment,”
Transactions on Emerging Telecommunications Technologies, Vol. 32, 2021.
https://doi.org/10.1002/ett.4057.

[21] In Lee, “Internet of Things (IoT) Cybersecurity: Literature Review and Iot Cyber
Risk Management,” Future Internet, Vol. 12, No. 9: 157, 2020.
https://doi.org/10.3390/fi12090157.

[22] Gopal Singh Kushwah, and Virender Ranga, “Voting Extreme Learning Machine
Based Distributed Denial of Service Attack Detection in Cloud Computing,” Journal
of Information Security and Applications, Vol. 53, 2020, 102532, ISSN 2214-2126,
https://doi.org/10.1016/j.jisa.2020.102532.

[23] Lubna Luxmi Dhirani and Thomas Newe, “Hybrid Cloud SLAs for Industry 4.0:
Bridging the gap,” Annals of Emerging Technologies in Computing (AETiC), Print
ISSN: 2516-0281, Online ISSN: 2516-029X, pp. 41-60, Vol. 4, No. 5, 2020,
Published by International Association of Educators and Researchers (IAER),

http://dx.doi.org/10.33166/AETiC.2020.05.003.

69

[24] Muna Al-Hawawreh, Elena Sitnikova, and Frank den Hartog, “An efficient
intrusion detection model for edge system in brownfield industrial internet of
things,” Proceedings of the 3rd International Conference on Big Data and Internet
of Things. Melbourne, Australia: ACM, Pp. 83-87. 2019.
https://doi.org/10.1145/3361758.3361762.

[25] Muna Al-Hawawreh, Frank den Hartog, and Elena Sitnikova, “Targeted
ransomware: A new cyber threat to edge system of brownfield industrial internet
of things,” IEEE Internet of Things Journal, Vol. 6, No. 4, pp. 7137-7151, 2019.
doi: 10.1109/JI0T.2019.2914390.

[26] Koen Tange, Michele De Donno, Xenofon Fafoutis, and Nicola Dragoni, “A
systematic survey of industrial internet of things security: Requirements and fog
computing opportunities,” IEEE Communications Surveys & Tutorials, Vol. 22, No.
4, pp. 2489-2520, Fourthquarter 2020, doi: 10.1109/COMST.2020.3011208.

[27] Tanishq Varshney, Nikhil Sharma, Ila Kaushik, and Bharat Bhushan,
“Authentication & Encryption Based Security Services in Blockchain Technology,”
International Conference on Computing, Communication, and Intelligent Systems
(ICCCIS), 2019, pp. 63-68, doi: 10.1109/ICCCIS48478.2019.8974500.

[28] Shanshan Zhao, Shancang Li, and Yufeng Yao, “Blockchain enabled industrial
internet of things technology,” in IEEE Transactions on Computational Social
Systems, vol. 6, mno. 6, pp. 1442-1453, Dec. 2019, doi:
10.1109/TCSS.2019.2924054.

[29] Jameela Al-Jaroodi, and Nader Mohamed, “Blockchain in industries: A survey,”
in IEEE Access, Vol. 7, Pp- 36500-36515, 2019, doi:
10.1109/ACCESS.2019.2903554.

[30] Tiago M. Fernandez-Caramés, and Paula Fraga-Lamas, “A review on the
application of blockchain to the next generation of cyber secure industry 4.0 smart
factories,” inIEEE Access, Vol. 7, pp. 45201-45218, 2019, doi:
10.1109/ACCESS.2019.2908780.

[31] Tiwari, R., Sharma, N., Kaushik, I., Tiwari, A., and Bhushan, B., “Evolution of IoT
& Data Analytics using Deep Learning,” International Conference on Computing,
Communication, and Intelligent Systems (ICCCIS), 2019. doi:
10.1109/icccis48478.2019.8974481.

70

[32] Umar Iftikhar, Kashif Asrar, Maria Waqgas and Syed Abbas Ali, “BOTNETs: A
Network Security Issue,” International Journal of Advanced Computer Science and
Applications (IJACSA), Vol. 11, Issue 11,
2020. http://dx.doi.org/10.14569/1JACSA.2020.0111155.

[33] Sam Haria, “The growth of the hide and seek botnet,” Network Security, Vol.
2019, Issue 3, 2019, pp. 14-17, ISSN 1353-4858, https://doi.org/10.1016/S1353-
4858(19)30037-6.

[34] European Union Agency for Cybersecurity, ENISA, “From January 2019 to April
2020- Botnet ENISA Threat Landscape”, Available online:
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2020-botnet
(accessed on 06 October 2022).

[35] Maxwell Scale Osagie, Osatohanmwen Enagbonma, and Amanda Inyang, “The
Historical Perspective of Botnet Tools,” Current Journal of Applied Science and
Technology 32 (6), 1-8, 2019. https://doi.org/10.9734/cjast/2019/v32i630040.

[36] Shun-Wen Hsiao, Yi-Ning Chen, Yeali S. Sun, and Meng Chang Chen, “A
cooperative botnet profiling and detection in virtualized environment,” IEEE
Conference on Communications and Network Security (CNS), National Harbor,
MD, USA, 14-16, 2020. doi: 10.1109/CNS.2013.6682703.

[37] Constantinos Patsakis, Fran Casino, and Vasilios Katos, “Encrypted and covert
DNS queries for botnets: Challenges and countermeasures,” Computers & Security,
Vol. 88, 2020, 101614, ISSN 0167-4048,
https://doi.org/10.1016/j.cose.2019.101614.

[38] Sonali Kothari, “Real Time Analysis of Android Applications by Calculating Risk
Factor to Identify Botnet Attack,” Lecture Notes in Electrical Engineering, Vol 570.
Springer, Singapore, 2020. https://doi.org/10.1007/978-981-13-8715-9 7.

[39] R. Kour, “Cybersecurity issues and challenges in Industry 4.0,” in Applications and
Challenges of Maintenance and Safety Engineering in Industry 4.0, pp. 84-101, IGI
Global, 2020. doi: 10.4018/978-1-7998-3904-0.ch005.

[40] J. Prinsloo, S. Sinha, and B. von Solms, “A review of Industry 4.0 manufacturing
process security risks,” Applied Sciences, Vol. 9, No. 23, pp. 5105, 2019.
https://doi.org/10.3390/app9235105.

71

[41] Majda Wazzan, Daniyal Algazzawi, Omaima Bamasaq, Aiiad Albeshri, and Li
Cheng, “Internet of Things Botnet Detection Approaches: Analysis and
Recommendations for Future Research," Applied Sciences, Vol. 11, No. 12: 5713,
2021. https://doi.org/10.3390/app11125713.

[42] Lav Gupta, Tara Salman, Ali Ghubaish, Devrim Unal, Abdulla Khalid Al-Ali, and

Raj Jain, “Cybersecurity of multi-cloud healthcare systems: A hierarchical deep
learning approach,” Applied Soft Computing, Vol. 118, 2022, 108439, ISSN 1568-
4946, https://doi.org/10.1016/j.as0c.2022.108439.

[43] Zahian Ismail, Aman Jantan, Mohd. NajwadiYusoff, and Muhammad Ubale Kiru,

“A Botnet Taxonomy and Detection Approaches,” Test Engineering and
Management, Vol. 82, pp. 3386 - 3408, ISSN: 0193-4120, 2020.
https://www.testmagzine.biz/index.php/testmagzine/article/view/1405.

[44] J. A. Jupin, T. Sutikno, M. A. Ismail, M. S. Mohamad, and S. Kasim, “Review of

the machine learning methods in the classification of phishing attack,” Bulletin of
Electrical Engineering and Informatics, Vol. 8, 1545-1555, 2019. ISSN 2302-9285.
https://doi.org/10.11591/eei.v8i4.1344.

[45] Iftikhar Ahmad, Qazi Emad Ul Haq, Muhammad Imran, Madini O. Alassafi, and
Rayed A. AlGhamdi, “An Efficient Network Intrusion Detection and Classification
System,” Mathematics, Vol. 10, No. 3:530, 2022.
https://doi.org/10.3390/math10030530.

[46] A. Tabassum, A. Erbad, and M. Guizani, “A survey on recent approaches in
intrusion detection system in IoTs,” 15th International Wireless Communications
& Mobile Computing Conference (IWCMC), pp. 1190-1197, Tangier, Morocco,
June 2019. doi: 10.1109/IWCMC.2019.8766455.

[47] S. U. Jan, S. Ahmed, V. Shakhov and I. Koo, "Toward a Lightweight Intrusion
Detection System for the Internet of Things," in IEEE Access, Vol. 7, pp. 42450-
42471, 2019, doi: 10.1109/ACCESS.2019.2907965.

[48] Batta Mahesh, “Machine Learning Algorithms - A Review,” International Journal
of Science and Research (IJSR) ISSN: 2319-7064, 2019. DOI:
10.21275/ART20203995.

[49] Faraz S. Tehrani, Michele Calvello, Zhonggiang Liu, Limin Zhang, and Suzanne

Lacasse, “Machine learning and landslide studies: recent advances and

72

applications,” Natural Hazards, 2022. https://doi.org/10.1007/511069-022-
05423-7.

[50] Khalid Alissa, Tahir Alyas, Kashif Zafar, Qaiser Abbas, Nadia Tabassum, and
Shadman Sakib, “Botnet Attack Detection in IoT Using Machine
Learning,” Computational Intelligence and Neuroscience, Vol. 2022, Article ID
4515642, 14 pages, 2022. https://doi.org/10.1155/2022/4515642.

[51] Leo Breiman, “Random Forests,” Machine Learning, Vol. 45, 5-32, 2001.
https://doi.org/10.1023/A:1010933404324.

[52] Prajyot Palimkar, Rabindra Nath Shaw, and Ankush Ghosh, “Machine Learning
Technique to Prognosis Diabetes Disease: Random Forest Classifier Approach,”
Advanced Computing and Intelligent Technologies. Lecture Notes in Networks and
Systems, Vol. 218, Springer, Singapore, 2022. https://doi.org/10.1007/978-981-
16-2164-2_19.

[53] B. W. Silverman, and M. C. Jones “E. Fix and J.L. Hodges (1951): An Important
Contribution to Nonparametric Discriminant Analysis and Density Estimation:
Commentary on Fix and Hodges (1951),” International Statistical Review / Revue
Internationale de Statistique Vol. 57, No. 3 (Dec. 1989), pp. 233-238.
https://doi.org/10.2307/1403796.

[54] T. Cover, and P. Hart, “Nearest neighbor pattern classification,” in IEEE
Transactions on Information Theory, Vol. 13, No. 1, pp. 21-27, January 1967, doi:
10.1109/TIT.1967.1053964.

[55] Shahadat Uddin, Ibtisham Haque, Haohui Lu, Mohammad Ali Moni, and Ergun
Gide, “Comparative performance analysis of K-nearest neighbour (KNN) algorithm
and its different variants for disease prediction,” Scientific Reports, Vol. 12, Article
number: 6256, 2022. https://doi.org/10.1038/s41598-022-10358-x.

[56] Kristopher Kendall, “A database of computer attacks for the evaluation of intrusion
detection systems,” Master Thesis, Department of Electrical Engineering and
Computer Science, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, June 1999.
http://hdl.handle.net/1721.1/9459.

[571 S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, and P. K. Chan, “Cost-based modeling

for fraud and intrusion detection: Results from the JAM project,” Proceedings

73

DARPA Information Survivability Conference and Exposition. DISCEX'00, 2000,
pp. 130-144 Vol. 2, doi: 10.1109/DISCEX.2000.821515.

[58] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A detailed analysis of the
KDD CUP 99 data set,” Computational Intelligence for Security and Defense
Applications, CISDA 2009. IEEE Symposium on, 2009, pp. 1-6. doi:
10.1109/CISDA.2009.5356528.

[59] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set),” in 2015 Military
Communications and Information Systems Conference (MilCIS), pp. 1-6,
Canberra, ACT, Australia, November 2015. doi: 10.1109/MilCIS.2015.7348942.

[60] Iman Sharafaldin, Amirhossein Gharib, Arash Habibi Lashkari
and Ali A. Ghorbani, “Towards a reliable intrusion detection benchmark dataset,”
Software Networking, Vol. 2017, No. 1, pp. 177-200, 2018, doi:
10.13052/jsn2445-9739.2017.009.

[61] Yair Meidan, Michael Bohadana, Yael Mathov, Yisroel Mirsky, Asaf Shabtai,
Dominik Breitenbacher, and Yuval Elovici, “N-BaloT-Network-based detection of
IoT botnet attacks using deep autoencoders,” IEEE Pervasive Computing, Vol. 17,
No. 3, 8490192, pp- 12-22,
2018. https://doi.org/10.1109/MPRV.2018.03367731.

[62] Nickolaos Koroniotis, Nour Moustafa, Elena Sitnikova, and Benjamin Turnbull,
“Towards the development of realistic botnet dataset in the Internet of Things for
network forensic analytics: Bot-IoT dataset,” Future Generation Computer
Systems, Vol. 100, 2019, Pages 779-796, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2019.05.041.

[63] M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-IloTset:
A New Comprehensive Realistic Cyber Security Dataset of IoT and IIoT
Applications for Centralized and Federated Learning,” IEEE Access, Vol. 10, pp.
40281-40306, 2022, doi: 10.1109/ACCESS.2022.3165809.

[64] Caleb Belth, Xinyi Zheng, and Danai Koutra, “Mining Persistent Activity in
Continually Evolving Networks,” In Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining (KDD '20).

74

Association for Computing Machinery, New York, NY, USA, 934-944, 2020.
https://doi.org/10.1145/3394486.3403136.

[65] Yen-Yu Chang, Pan Li, Rok Sosic, M. H. Afifi, Marco Schweighauser, and Jure
Leskovec, “F-FADE: Frequency Factorization for Anomaly Detection in Edge
Streams,” arXiv:2011.04723, 2021. doi: 10.48550/ARXIV.2011.04723.

[66] Siddharth Bhatia, Mohit Wadhwa, Kenji Kawaguchi, Neil Shah, Philip S. Yu, and
Bryan Hooi, “Sketch-Based Anomaly Detection in Streaming Graphs,” arXiv,
2106.04486, 2021. https://doi.org/10.48550/arXiv.2106.04486.

[67] Satish Kumar, Sunanda Gupta, and Sakshi Arora, “A Comparative Simulation of
Normalization Methods for Machine Learning-based Intrusion Detection Systems
Using KDD Cup’99 Dataset,” Journal of Intelligent & Fuzzy Systems, vol. 42, No. 3,
pp. 1749-1766, 2022. https://doi.org/10.3233/JIFS-211191.

[68] Santosh Kumar Sahu, Durga Prasad Mohapatra, Jitendra Kumar Rout, Kshira
Sagar Sahoo, Quoc-Viet Pham, and Nhu-Ngoc Dao, “A LSTM-FCNN based multi-
class intrusion detection using scalable framework,” Computers and Electrical
Engineering, Vol. 99, 2022, 107720, ISSN 0045-7906,
https://doi.org/10.1016/j.compeleceng.2022.107720.

[69] Amir Javadpour, Pedro Pinto, Forough Ja'fari, and Weizhe Zhang “A distributed
multi-agent intrusion detection and prevention system for cloud IoT
environments,” Cluster Computing, 2022. https://doi.org/10.1007/510586-022-
03621-3.

[70] Abhishek Raghuvanshi, Umesh Kumar Singh, Guna Sekhar Sajja, Harikumar
Pallathadka, Evans Asenso, Mustafa Kamal, Abha Singh, and Khongdet Phasinam,
“Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled
Smart Irrigation in Smart Farming,” Journal of Food Quality, Vol. 2022, Article ID
3955514, 8 pages, 2022. https://doi.org/10.1155/2022/3955514.

[71] Ilhan Firat Kilincer, Fatih Ertam, and Abdulkadir Sengur, “A comprehensive
intrusion detection framework using boosting algorithms,” Computers and
Electrical Engineering, Vol. 100, 2022, 107869, ISSN 0045-7906,
https://doi.org/10.1016/j.compeleceng.2022.107869.

[72] Souradip Roy, Juan Li, Bong-Jin Choi, and Yan Bai, “A lightweight supervised

intrusion detection mechanism for IoT networks,” Future Generation Computer

75

Systems, Vol. 127, 2022, Pp. 276-285, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2021.09.027.

[73] P. G. V. Suresh Kumar, and Shaheda Akthar, “Execution Improvement of Intrusion
Detection System Through Dimensionality Reduction for UNSW-NBI15
Information,” Mobile Computing and Sustainable Informatics, Lecture Notes on
Data Engineering and Communications Technologies, Vol. 68, Springer, Singapore,
2022. https://doi.org/10.1007/978-981-16-1866-6_28.

[74] Mohammad Humayun Kabir, Md Shahriar Rajib, Abu Saleh Md Towfiqur Rahman,
Md. Mahbubur Rahman, and Samrat Kumar, “Network Intrusion Detection Using
UNSW-NB15 Dataset: Stacking Machine Learning Based Approach,” International
Conference on Advancement in Electrical and Electronic Engineering (ICAEEE),
2022, pp. 1-6, doi: 10.1109/ICAEEE54957.2022.9836404.

[75] Moutaz Alazab, Ruba Abu Khurma, Albara Awajan, and David Camacho, “A new
intrusion detection system based on Moth-Flame Optimizer algorithm,” Expert
Systems with Applications, Vol. 210, 2022, 118439, ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2022.118439.

[76] Abdulnaser A. Hagar, and Bharti W. Gawali, “Apache Spark and Deep Learning
Models for High-Performance Network Intrusion Detection Using CSE-CIC-
IDS2018,” Computational Intelligence and Neuroscience, Vol. 2022, Article ID
3131153, 11 pages, 2022. https://doi.org/10.1155/2022/3131153.

[77] Mario Antunes, Luis Oliveira, Afonso Seguro, Jodo Verissimo, Ruben Salgado, and
Tiago Murteira, “Benchmarking Deep Learning Methods for Behaviour-Based
Network Intrusion Detection,” Informatics, Vol.9, No. 1: 29, 2022.
https://doi.org/10.3390/informatics9010029.

[78] Mohamed Hammad, Nabil Hewahi, and Wael Elmedany, “MMM-RF: A novel high
accuracy multinomial mixture model for network intrusion detection systems,”
Computers & Security, Vol. 120, 2022, 102777, ISSN 0167-4048,
https://doi.org/10.1016/j.cose.2022.102777.

[79] Sawssen Bacha, Ahamed Aljuhani, Khawla Ben Abdellafou, Okba Taouali,
Noureddine Liouane, and Mamoun Alazab, “Anomaly-based intrusion detection

system in IoT using kernel extreme learning machine,” Journal of Ambient

76

Intelligence and Humanized Computing, 2022. https://doi.org/10.1007/5s12652-
022-03887-w.

[80] Jabed Al Faysal, Sk Tahmid Mostafa, Jannatul Sultana Tamanna, Khondoker
Mirazul Mumenin, Md. Mashrur Arifin, Md. Abdul Awal, Atanu Shome, and Sheikh
Shanawaz Mostafa, “XGB-RF: A Hybrid Machine Learning Approach for IoT
Intrusion Detection,” Telecom, Vol. 3, No. 1: 52-69, 2022.
https://doi.org/10.3390/telecom3010003.

[81] Badr Lahasan, and Hussein Samma, “Optimized Deep Autoencoder Model for
Internet of Things Intruder Detection,” IEEE Access, Vol. 10, pp. 8434-8448, 2022,
doi: 10.1109/ACCESS.2022.3144208.

[82] Tanzila Saba, Amjad Rehman, Tariq Sadad, Hoshang Kolivand, and Saeed Ali
Bahaj, “Anomaly-based intrusion detection system for [oT networks through deep
learning model,” Computers and Electrical Engineering, Vol. 99, 2022, 107810,
ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2022.107810.

[83] Cristiano Antonio de Souza, Carlos Becker Westphall, and Renato Bobsin
Machado, “Two-step ensemble approach for intrusion detection and identification
in IoT and fog computing environments,” Computers & Electrical Engineering, Vol.
98, 2022, 107694, ISSN 0045-7906,
https://doi.org/10.1016/j.compeleceng.2022.107694.

[84] Babita Majhi, and Prastavana, “An Improved Intrusion Detection System using
BoT-IoT Dataset,” IEEE 11th International Conference on Communication Systems
and Network Technologies (CSNT), 2022, pp- 488-492,
https://doi.org/10.1109/CSNT54456.2022.9787639.

[85] Muna Al-Hawawreh, Elena Sitnikova, and Neda Aboutorab, “Asynchronous Peer-
to-Peer Federated Capability-Based Targeted Ransomware Detection Model for
Industrial IoT,” IEEE Access, Vol. 9, pp. 148738-148755, 2021. doi:
10.1109/ACCESS.2021.3124634.

[86] Thi-Thu-Huong Le, Yustus Eko Oktian, and Howon Kim, “XGBoost for Imbalanced
Multiclass Classification-Based Industrial Internet of Things Intrusion Detection
Systems” Sustainability, Vol. 14, No. 14: 8707, 2022.
https://doi.org/10.3390/5u14148707.

77

[87] Rehab Alanazi, and Ahamed Aljuhani, “Anomaly detection for industrial internet
of things cyberattacks,” Computer Systems Science and Engineering, Vol. 44, No.3,
pp. 2361-2378, 2022. https://doi.org/10.32604/csse.2023.026712.

[88] Hudhaifa Mohammed Abdulwahab, S. Ajitha, and Mufeed Ahmed Naji Saif,
“Feature selection techniques in the context of big data: taxonomy and analysis,”
Applied Intelligence, Vol. 52, pp. 13568-13613, 2022.
https://doi.org/10.1007/5s10489-021-03118-3.

[89] Pudjihartono Nicholas, Fadason Tayaza, Kempa-Liehr Andreas W., and O'Sullivan
Justin M., “A Review of Feature Selection Methods for Machine Learning-Based
Disease Risk Prediction,” Frontiers in Bioinformatics, Vol. 2, 2022, ISSN: 2673-
7647. doi:10.3389/fbinf.2022.927312.

[90] Pooja Chaudhary, Brij Gupta, and A. K. Singh, “Implementing attack detection
system using filter-based feature selection methods for fog-enabled IoT
networks,” Telecommunication Systems, Vol. 81, pp. 23-39, 2022.
https://doi.org/10.1007/5s11235-022-00927-w.

[91] Andrea Bommert, Thomas Welchowski, Matthias Schmid, and Jorg Rahnenfiihrer,
“Benchmark of filter methods for feature selection in high-dimensional gene
expression survival data,” Briefings in Bioinformatics, Vol. 23, Issue 1, January
2022. bbab354, https://doi.org/10.1093/bib/bbab354.

[92] Jiao Hu, Wenyong Gui, Ali Asghar Heidari, Zhennao Cai, Guoxi Liang, Huiling
Chen, and Zhifang Pan, “Dispersed foraging slime mould algorithm: Continuous
and binary variants for global optimization and wrapper-based feature selection,”
Knowledge-Based Systems, Vol. 237, 2022, 107761, ISSN 0950-7051,
https://doi.org/10.1016/j.knosys.2021.107761.

[93] Elnaz Pashaei, and Elham Pashaei, “An efficient binary chimp optimization
algorithm for feature selection in biomedical data classification,” Neural
Computing and Applications, Vol. 34, pp. 6427-6451, 2022.
https://doi.org/10.1007/s00521-021-06775-0.

[94] Saba Bashir, Irfan Ullah Khattak, Aihab Khan, Farhan Hassan Khan, Abdullah
Gani, and Muhammad Shiraz, “A Novel Feature Selection Method for Classification

of Medical Data Using Filters, Wrappers, and Embedded Approaches,” Complexity,

78

Vol. 2022, Article ID 8190814, 12 pages, 2022.
https://doi.org/10.1155/2022/8190814.

[95] Tingquan Deng, Yang Huang, Ge Yang, and Changzhong Wang, “Pointwise
mutual information sparsely embedded feature selection,” International Journal of
Approximate Reasoning, Vol. 151, 2022, pp. 251-270, ISSN 0888-613X,
https://doi.org/10.1016/j.ijar.2022.09.012.

[96] Mohammed CHEMMAKHA, Omar HABIBI, and Mohamed LAZAAR, “Improving
Machine Learning Models for Malware Detection Using Embedded Feature
Selection Method,” IFAC-PapersOnLine, Volume 55, Issue 12, 2022, Pages 771-
776, ISSN 2405-8963, https://doi.org/10.1016/j.ifacol.2022.07.406.

[97] Meire P.M., and Ervynck, A., “Are oystercatchers (Haematopus ostralegus)
selecting the most profitable mussels (Mytilus edulis)?,” Animal Behaviour,
Academic Press: London, ISSN 0003-3472; e-ISSN 1095-8282, 34: 1427-1435,
1986. http://dx.doi.org/10.1016/S0003-3472(86)80213-5.

[98] Kelly J. Brown, “Seasonal variation in the thermal biology of the rock hyrax
(Procavia capensis),” M.Sc. Thesis, Pietermaritzburg, School of Botany and
Zoology, University of KwaZulu-Natal, 2003. http://hdl.handle.net/10413/10124.

[99] Kelly J. Brown, and C. T. Downs, “Basking behavior in the rock hyrax (Procavia
capensis) during winter,” African Zoology, Vol. 42, No. 1, pp. 70-79, 2007.
doi: 10.1080/15627020.2007.11407379.

[100] “Rock Hyrax,” San Diego Zoo Wildlife Alliance Animals and Plants. [Online].
Available: https://animals.sandiegozoo.org/animals/rock-hyrax. [Last Accessed:
06-Nov-2022].

[101] Pushpa Singh, Narendra Singh, Krishna Kant Singh, and Akansha Singh,

“Chapter 5 - Diagnosing of disease using machine learning,” Machine Learning and
the Internet of Medical Things in Healthcare, Academic Press, 2021, Pages 89-111,
ISBN 9780128212295, https://doi.org/10.1016/B978-0-12-821229-5.00003-3.
[102] David Goldberg, “What every computer scientist should know about floating-
point arithmetic,” Association for Computing Machinery, New York, NY, USA, Vol.
23, No. 1, ISSN 0360-0300, 1991. https://doi.org/10.1145/103162.103163.
[103] Ivan Izonin, Roman Tkachenko, Nataliya Shakhovska, Bohdan Ilchyshyn, and

Krishna Kant Singh, “A Two-Step Data Normalization Approach for Improving

79

Classification Accuracy in the Medical Diagnosis Domain,” Mathematics, Vol. 10,
No. 11: 1942, 2022. https://doi.org/10.3390/math10111942.
[104] “Google Colaboratory,” Frequently Asked Questions, [Online]. Available:
https://research.google.com/colaboratory/faq.html#: ~:text=Colaboratory%2C
%2001%20%E2%80%9CColab%E2%80%9D%20for,learning%2C%20data%20a

nalysis%20and%20education. [Accessed: 06-Nov-2022].

80

PUBLICATIONS FROM THESIS

Conference Paper

[1]WEAM HUSHAM ALJABBARI, MUHAMMED ALI AYDIN, and HASAN HUSEYIN
BALIK, “BotNets detection based on machine learning and features selection,”
ORAL SUMMARY PRESENTATION, presented at the 4th International Congress
of Engineering Sciences and Multidisciplinary Approaches, pp: 996, 03-04-05
NOVEMBER, 2022. ISTANBUL, Turkey.

81

