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Applications of Deep Learning for Binding Site
Predictions in Proteins

Abstract

Proteins are fundamental macromolecules that perform a wide range of biological
functions, largely determined by their three-dimensional structures and binding
interactions. Accurate identification of protein binding sites, particularly orthosteric
and allosteric sites, is crucial for drug discovery, biotechnology, and understanding
biological processes. Traditional computational methods, such as sequence
alignment, homology modeling, and molecular docking, often struggle to handle the
dynamic nature and structural complexity of proteins. To address these challenges,
this study explores the use of Graph Neural Networks (GNNs) to predict protein

binding sites with enhanced accuracy and efficiency.

This research employs three GNN architectures: Graph Attention Networks (GAT),
Graph Convolutional Networks (GCN), and Equivariant Graph Neural Networks
(EGNN). The models are trained on a combined dataset from CasBench (2023) and
BioLiP, comprising approximately 300 protein structures with annotated orthosteric
and allosteric binding sites. Node features such as amino acid identity, dihedral
angles, solvent-accessible surface area (SASA), and secondary structure elements
(SSE) are integrated with edge features like Euclidean distances and cosine angles to

construct informative protein graphs.

Results demonstrate that the EGNN model excels in predicting binding sites for
proteins with stable and well-defined structures due to its ability to maintain
geometric consistency. The GAT and GCN models effectively capture local structural
patterns and relational features within protein graphs, with GAT leveraging dynamic

attention mechanisms to highlight key residues. Comparative analysis with existing
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methods highlights the advantages of the proposed GNN approach in terms of
precision, recall, and AUC-ROC metrics.

Despite these promising results, challenges remain in predicting binding sites for
proteins with small ligands or high structural flexibility. Future work will focus on
incorporating protein dynamics, ligand-specific features, and hybrid models that
combine GNNs with transformer architectures to improve prediction accuracy and

generalization.

This study contributes to the evolving field of computational biology by offering a
robust, interpretable, and efficient framework for protein binding site prediction,

supporting advancements in drug discovery and personalized medicine.

Keywords: Protein Binding Sites, Orthosteric Sites, Allosteric Sites, Graph Neural
Network (GNN), Computational Biology, Drug Discovery, Protein Structure,

Bioinformatics, Deep Learning
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Proteinlerdeki Baglanma Yeri Tahminleri I¢in Derin
Ogrenme Uygulamalari

Oz

Proteinler, ii¢ boyutlu yapilar1 ve baglanma etkilesimleri tarafindan belirlenen, genis
bir biyolojik islev yelpazesini yerine getiren temel makromolekiillerdir. Ozellikle
ortosterik ve allosterik baglanma bdlgelerinin dogru bir sekilde tespiti, ilag kesfi,
biyoteknoloji ve biyolojik siireclerin anlagilmasi agisindan biiyiik 6nem tagimaktadir.
Dizi hizalama, homoloji modelleme ve molekiiler yerlestirme gibi geleneksel
hesaplamali yontemler, proteinlerin dinamik dogas1 ve yapisal karmasikligiyla basa
cikmakta yetersiz kalabilmektedir. Bu zorluklarin iistesinden gelmek igin bu
calismada, Graf Sinir Aglar1 (GNN) kullanilarak protein baglanma bolgelerinin daha

yliksek dogruluk ve verimlilikle tahmin edilmesi amac¢lanmistir.

Bu arastirmada ii¢ farkli GNN mimarisi kullanilmistir: Graf Dikkat Aglar1 (GAT),
Graf Konvoliisyonel Aglar1 (GCN) ve Esdegerlik Temelli Graf Sinir Aglar1 (EGNN).
Modeller, CasBench (2023) ve BioLiP veri setlerinin birlestirilmis haliyle
egitilmistir. Bu veri seti, ortosterik ve allosterik baglanma bdlgeleri ile etiketlenmis
yaklagik 3000 protein yapisint icermektedir. Protein grafikleri olusturulurken diigiim
ozellikleri arasinda amino asit kimligi, diyhedral acilar, ¢oziicii erigebilir yiizey alani
(SASA) ve ikincil yap1 elemanlar1 (SSE) gibi bilgiler; kenar 6zellikleri arasinda ise

Oklid uzakliklar1 ve kosiniis agilar1 kullanilmustir.

Sonuglar, EGNN modelinin geometrik tutarliligt koruma yetenegi sayesinde,
istikrarlt ve 1yi tanimlanmis protein yapilarinda baglanma bolgelerini dogru bir
sekilde tahmin ettigini gostermektedir. GAT ve GCN modelleri ise protein grafikleri
icindeki yerel yapisal desenleri ve iliskisel 6zellikleri etkili bir sekilde yakalamus;

ozellikle GAT, 6nemli kalintilar1 vurgulamak i¢in dinamik dikkat mekanizmalarindan



yararlanmigti. Mevcut yoOntemlerle yapilan karsilastirmalar, Onerilen GNN
yaklagiminin dogruluk, geri cagirma ve AUC-ROC olgiitleri agisindan avantajlarini

ortaya koymaktadir.

Bu umut verici sonuglara ragmen, kiigiik ligandlara sahip veya yiiksek yapisal
esneklige sahip proteinlerde baglanma bolgesi tahmininde bazi zorluklar devam
etmektedir. Gelecekteki ¢aligmalar, protein dinamiklerini, ligandlara 6zgii 6zellikleri
ve GNN’leri doniistiiriicii (transformer) mimarilerle birlestiren hibrit modelleri
entegre ederek tahmin dogrulugunu ve  genellestirilebilirligi  artirmaya

odaklanacaktir.

Bu caligsma, protein baglanma bolgesi tahmininde saglam, yorumlanabilir ve verimli
bir cergeve sunarak, ila¢ kesfi ve kisisellestirilmis tip alanlarindaki gelismelere

katkida bulunmay1 hedeflemektedir.

Anahtar Kelimeler: Protein Baglanma Bolgeleri, Ortosterik Bolgeler, Allosterik
Bolgeler, Graf Sinir Ag1 (GNN), Hesaplamal1 Biyoloji, ila¢ Kesfi, Protein Yapisi,

Biyoinformatik, Derin Ogrenme
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Chapter 1

Introduction

1.1 Background

Proteins are vital macromolecules that play crucial roles in nearly every biological
process. Proteins are composed of amino acids joined by peptide bonds, creating a
polypeptide chain that folds into a unique three-dimensional structure, which
ultimately determines the protein's function. Studying protein structures is essential
for understanding basic biological processes and has important implications in areas

such as pharmaceuticals, medical treatment, and biotechnology.
The structure of proteins can be described at four levels:

* Primary Structure: The linear sequence of amino acids in the polypeptide

chain, as determined by the encoding gene.

* Secondary Structure: Local folding of the polypeptide chain forming shapes
like a-helices and B-sheets, stabilized by hydrogen bonds.



e Tertiary Structure: The overall three-dimensional shape of a single
polypeptide chain, formed through interactions between the amino acids' side

chains (R-groups).

* Quaternary Structure: The structure formed when two or more polypeptide

chains (subunits) assemble into a functional protein complex.

Primary

structure Quaternary
Pro structure
Ala
Asp
|Lys| Secondary Tertiary
Thr structure structure
Asn|
Val
L
Aln
Ala
Trp
Gly
Lys
Val e
Amino acid Polypeptide chain Assembled subunits
residues

Figure 1.1: The four levels of protein structure (Rashid et al., 2015)

Understanding these structures is essential in understanding the functions of proteins,
including enzymatic reactions, providing support, transporting molecules, signaling
within cells, and defending the body (Jones & Smith, 2023; Gordon & Hahn, 2022).
Furthermore, with the advancement of computational biology, the precise forecasting
of protein structures and binding locations is increasingly vital. The rise of high-
throughput methods and large biological datasets has driven the merging of
computational methods with experimental biology, providing unique chances to

speed up drug discovery and development.



1.2 Protein Binding Sites

In most general terms, binding sites on proteins are specific regions of the protein to
which a myriad of other molecules may bind, such as ligands or substrates, or to

which additional proteins may bind. There are two broad categories of binding sites:

* Orthosteric Binding Sites: The primary active sites where endogenous
ligands bind directly, facilitating the protein's biological function (Cherezov

et al., 2007).

* Allosteric Binding Sites: Distinct sites from the orthosteric site that, when

bound by a molecule, modulate the protein's activity, often enhancing or

inhibiting its function (Olsen & Sieghart, 2008).

Figure 1.2: Representation of orthosteric (orange) and allosteric (green) binding sites
in the protein structure 1KES

Recognizing and explaining binding sites is essential in the development of new
medications, as they provide potential points for medical intervention (Edfeldt et al.,

2011). Recent progress in computational biology has greatly improved our capacity



to anticipate these binding locations, simplifying the creation of drugs that are more

selective and efficient, ultimately decreasing the chances of adverse side effects.

1.3 Challenges in Predicting Binding Sites

Prediction of the binding site is a complex challenge due to many reasons, despite

advances in computational biology:

* Structural Complexity: Proteins are dynamic molecules with complex three-
dimensional structures that can obscure binding sites, making them difficult

to predict (Karplus & McCammon, 2002).

* Limitations of Traditional Methods: Methods like sequence alignment,
homology modeling, and molecular docking frequently lack accuracy,
especially when handling flexible proteins or distant evolutionary connections

(Baker & Sali, 2001; Meng et al., 2011).

* Diversity of Binding Sites: The variety of binding sites in different proteins

poses a challenge for developing a prediction method that can be universally

applied (Keskin et al., 2008).

Precise identification of binding sites is crucial in pharmaceutical studies, in
comprehending protein function, and in furthering biomedical research. DiMasi et al.
(2016) introduce a new scenario by using artificial intelligence (AI) and machine
learning (ML), more precisely, Graph Neural Networks GNNs have recently
developed as effective tools for modeling intricate relationships in the structure of
proteins, hence offering a promising approach to enhancing accuracy and efficiency

in the identification of binding sites.



1.4 Objectives of the Study

This study aims to develop a computational method using Graph Neural Networks
(GNNs) to predict orthosteric and allosteric binding sites in proteins. The specific

objectives include:

* Developing a GNN Model: Creating a model capable of accurately
predicting binding sites based on structural and physicochemical properties of

proteins.

* Implementing Advanced Techniques: Use state-of-the-art machine learning
methodologies and graph theory-based methods to enhance the prediction

accuracy.

* Evaluating Model Performance: Assessing the model using metrics such as

accuracy, precision, recall, F1-score, and AUC (Chicco & Jurman, 2020).

* Comparing with Existing Techniques: Conducting a comparative analysis
with traditional and similar deep learning prediction methods to highlight the
advantages of the GNN approach and demonstrate the differences with
similar studies (Ehrt et al., 2018).

1.5 Significance of the Study

The significance of this study lies in its potential to contribute to the broader trends
in computational biology and drug discovery. Much more accurate and effective
ways of predicting the site of protein binding can be developed with GNN
technology to attend to the most pressing need. These are of particular importance
for the prevailing drift toward personalized medicine and targeted drugs, wherein

knowledge is paramount on exact interactions between the drugs and their protein



targets.

On the other hand, another step toward integrating GNNs with traditional methods
represents a novel phase in the course of the continuous evolution of computational
approaches to biological problems. The current study did not only focus on
predictive performance improvement but has given valuable insights into underlying
mechanisms of protein-ligand interactions that can further help in the design of more

efficient therapeutic strategies.



Chapter 2

Literature Review

2.1 Approaches to Protein Binding Site Prediction

Understanding protein-ligand interactions is foundational to drug discovery and
biotechnology. Early methods relied on sequence conservation, structural alignments,
and molecular docking, providing valuable but sometimes limited insights into
binding site locations (Brylinski & Skolnick, 2008). However, these approaches
often missed crucial dynamic and structural properties of proteins, especially in

predicting non-canonical binding sites like allosteric regions.

In recent years, structure-based methods have become more prominent, integrating
3D features of protein structures. For example, algorithms like DeepSite use 3D
convolutional neural networks (CNNs) to predict potential binding pockets based on
protein surface characteristics (Jiménez et al., 2017). In addition, models such as
DeltaVina XGB have successfully combined docking techniques with feature re-

ranking for greater prediction accuracy (Trott & Olson, 2010).



2.2 Machine Learning Approaches for Binding Site

Prediction

Machine learning (ML) revolutionized the field by enabling the integration of large-
scale biological data into predictive models. These approaches often outperformed
classical methods by incorporating evolutionary, sequence-based, and sometimes
structural information. Models like DeepBind and iDeep made groundbreaking
strides in RNA-protein interaction prediction using recurrent and convolutional

neural networks (Alipanahi et al., 2015).

For protein binding sites, ML methods enhanced accuracy by leveraging vast
experimental datasets. However, they often lacked the spatial context of the protein
structure, necessitating the evolution towards more advanced models like graph-

based learning.

2.3 Deep Learning Approaches for Binding Site

Prediction

Deep learning techniques such as CNNs, Graph Convolutional Networks (GCNs),
Graph Attention Networks (GATs), and E(n)-Equivariant GNNs have increasingly
been applied to protein-ligand binding predictions (Liu et al., 2020). CNNs are
particularly effective in capturing local structural motifs, as evidenced in DeepSite
(Jiménez et al., 2017). However, their limitation lies in the handling of non-local

relationships.

Graph-based methods, which model proteins as 3D graphs where nodes represent
amino acids and edges reflect spatial proximity or atomic interaction, address this

limitation. GCNs capture the overall protein topology, while GATs use attention



mechanisms to highlight crucial binding residues, significantly improving prediction

of both orthosteric and allosteric sites (Velickovic et al., 2018).

Additionally, newer architectures like E(n)-Equivariant GNNs integrate geometric
transformations while preserving physical symmetries, leading to more accurate
modeling of protein structures (Bronstein et al., 2017). These models have
demonstrated high performance, especially in datasets where structural flexibility

plays a key role in binding site formation (Rives et al., 2021).

2.4 Allosteric and Orthosteric Site Prediction

Orthosteric sites, typically the main active sites of proteins, are often more conserved
and easier to predict using both sequence- and structure-based approaches. Models

leveraging GNNs or CNNs excel in identifying these regions with high accuracy.

Allosteric sites, however, present a unique challenge due to their dynamic nature and
lack of strong conservation patterns. These sites are often distant from orthosteric
regions but play crucial roles in modulating protein function through long-range
conformational changes (Siiel et al., 2003). Models like AlloPred combine structural
and sequence data to predict these elusive binding sites, demonstrating success in
capturing the allosteric communication between distant residues in protein networks
(Greener et al., 2015). GNN-based models are particularly well-suited for this task,
as they model the protein as a network of interacting residues, making it possible to

capture the indirect communication pathways characteristic of allosteric regulation.

2.5 Explainability in Deep Learning Models

While deep learning models achieve high predictive accuracy, their lack of
interpretability presents a challenge in fields like drug discovery, where

understanding the decision-making process is crucial. Graph Attention Networks



(GATs) provide a partial solution to this by using attention mechanisms to highlight
key residues involved in predictions, offering a level of explainability (Velickovic et

al., 2018).

Additionally, feature attribution methods such as saliency maps and Grad-CAM have
been applied to CNNs and GNNs to visually interpret which regions of the protein
contribute most to the prediction (Smilkov et al.,, 2017). These tools allow
researchers to gain insights into the functional importance of specific residues or

binding pockets.

Explainability is further enhanced by methods that decompose predictions into
biologically meaningful components, helping researchers identify potentially novel
binding sites or validate model predictions against known experimental data. For
instance, by analyzing which features (sequence motifs, structural properties)
contribute most to the prediction, researchers can assess the biological relevance of

the predicted binding sites.

2.6 Future Directions and Multi-Modal Integration

Looking forward, integrating multi-modal data, including protein structure,
sequence, and evolutionary information, promises to further enhance binding site
prediction models. Advances in transformer-based architectures, known for capturing
long-range dependencies in sequences, offer new avenues for improving model

accuracy and robustness in protein-ligand interaction prediction (Rives et al., 2021).

The application of deep learning models like AlphaFold, which revolutionized the
prediction of protein structures, suggests that integrating structure prediction with
binding site identification could lead to more accurate and generalized models
(Jumper et al., 2021). Future work will likely involve the development of hybrid
models that combine graph-based approaches with sequence-based transformers,

providing a more holistic view of protein-ligand interactions.
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Chapter 3

Methodology

3.2 Dataset

3.2.1 Description of the Dataset

The dataset used in this study combines the CasBench (2023) and BioLiP datasets to
enhance the volume and diversity of data, ensuring robust model training. These
datasets are well-curated sources, providing comprehensive annotations of
orthosteric and allosteric binding sites, essential for accurate binding site prediction.
After filtering for redundancy by retaining unique macromolecules, the final dataset

consists of approximately 3000 protein structures.

To ensure data quality and relevance, a series of filtering steps were applied. Proteins
with redundant macromolecular structures were combined, and only unique
structures were retained. Ligands associated with binding sites were filtered based on
molecular weight, with a minimum threshold of 150 Da, ensuring the exclusion of
very small molecules such as simple ions that are less relevant for binding site
prediction. Drug-likeness criteria, such as Lipinski's Rule of Five, were also applied
to exclude ligands unlikely to exhibit pharmacological activity. These steps ensured
the inclusion of biologically and chemically meaningful binding sites, increasing the

dataset's utility for predicting potential drug targets.
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The dataset includes a balanced distribution of binding site types, addressing the
class imbalance challenges commonly faced in biological datasets. Residues were
labeled into three categories: non-binding sites (0), allosteric sites (1), and orthosteric
sites (2). Furthermore, to leverage the benefits of semi-supervised learning, only the
known allosteric and orthosteric sites were used during model training, while non-
binding sites were treated as unknown. This strategy aimed to improve model
generalization by encouraging it to infer unknown regions based on learned patterns

from annotated binding sites.

This curated and filtered dataset provides a robust foundation for developing
predictive models, ensuring a balance between biological diversity and chemical

relevance while minimizing noise from irrelevant or redundant data points.

3.2.2 Data Preprocessing

Several crucial steps were undertaken during data preprocessing to guarantee that the

dataset was appropriate for both model training and evaluation.

* Protein Chain Separation: Proteins were divided into individual chains,
considering each chain as an independent graph. This method enables the
model to concentrate on the distinct structural and functional characteristics

of each chain.

* Atom Filtering: Only carbon alpha (Ca) atoms were retained from the

protein chains to simplify the graphs and preserve crucial structural details.

* Node and Edge Feature Calculation:

* Node Features: Each node (Ca atom) was assessed for various
attributes such as amino acid identity (e.g., ALA, ARG, ASN), tau,

theta, phi, psi, and omega angles, solvent accessible surface area

12



(SASA), and secondary structure components (SSE). These
characteristics encompass the geometric and physicochemical

attributes of the amino acids.

* Edge Features: Edges were established among nodes (Ca atoms)
depending on their close proximity in space. The characteristics of
these edges involved the distance and cosine angle between linked
atoms, offering insight into the spatial connections within the protein

structure (Rao et al., 2020).

* Labeling: Nodes were categorized as either orthosteric, allosteric, or non-
binding sites using annotations found in the CasBench dataset. Labeling is

essential for predicting binding sites in supervised learning.

* Normalization and Scaling: To ensure that all features contribute equally to
the model training process, the node and edge features were normalized and

scaled appropriately.

The raw protein data was processed to create organized graphs with informative
features, suitable for inputting into the GAT model. This methodical way of
preparing data was crucial for understanding the intricate connections within protein

chains, ultimately improving the model's accuracy in predicting binding sites.

3.3 Feature Extraction

3.3.1 Node Features

Node features are critical for representing the individual properties of amino acids
within protein structures (Mataecimoghadam et al., 2020). The following features

were extracted for each carbon alpha (Ca) atom in the protein chains:
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* Amino Acid Type (One Hot Encoding): The amino acid type (e.g., Alanine
[ALA], Arginine [ARG]) is encoded as a one-hot vector. For example, if there
are 20 standard amino acids, this feature will be a 20-dimensional vector with

a single 1 indicating the amino acid type.

* Dihedral Angles: The backbone dihedral angles ¢ (phi), v (psi), ® (omega), T
(tau), and O (theta) are calculated for each amino acid (Figure 3.1). These
angles describe the geometric configuration of the protein backbone, and they

are critical for capturing the 3D folding pattern of the protein.

The angles are calculated as follows:

¢ (phi): The angle between the C'-N-CA-C' atoms.

v (psi): The angle between the N-CA-C'-N atoms.

o (omega): The dihedral angle that describes the rotation around the peptide
bond between C' and N.

T (tau): Torsion angle between the bonds around the Ca atoms.

0 (theta): Another dihedral angle important for describing secondary

structure.

These angles are extracted from the protein's 3D structure using the known Cartesian
coordinates of the atoms, applying vector cross-product formulations to compute the

angle between planes formed by three consecutive atoms.

Mathematically, dihedral angles can be computed using the following formula:
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Angle=arctan2(b1 - (b2 xb3),b2 -(b1 xb3)) (3.1)

where b; are bond vectors.

Figure 3.1: Representation of dihedral angles. While ¢ (phi), y (psi) and @ (omega) represent angles
between dihedral angles of the peptide backbone; () tau and 0 (theta) represent dihedral angle between
first 3 and 4 carbon alpha (Ca) atoms (Broz et al., 2023).

* Solvent Accessible Surface Area (SASA): SASA measures how much of the
amino acid is exposed to the surrounding solvent. This feature is critical for
understanding which residues are likely to be part of binding sites. A high
SASA value indicates that the residue is more exposed and likely accessible
to ligands. SASA is calculated using a rolling ball algorithm over the
molecular surface also called as Shrake—Rupley algorithm (Shrake et al.,

1973).

* Secondary Structure Elements (SSE): For each amino acid, its secondary
structure element (e.g., a-helix, B-sheet, or coil) is encoded as a one-hot
vector. These secondary structures are identified using the DSSP algorithm,
which assigns each residue a secondary structure class based on the hydrogen

bonding pattern.
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* Coordinates: The 3D coordinates of the Ca atom are also used as features to
capture spatial information. These coordinates are directly extracted from the

protein’s PDB file.

3.3.2 Edge Features

Edges in the graph represent interactions between amino acids based on their spatial

proximity. The following features were extracted for each edge:

* Euclidean Distance: The Euclidean distance between two nodes i and j is

calculated as:

d,=\(x,—x,+(y—y,+(z,—z,) (3.2)

where X;, Y;,Z; and X;, ¥;,Z; the 3D coordinates of the two nodes.

* Cosine Angle: The cosine of the angle formed by the vectors connecting the
two nodes to their respective neighbors is calculated to capture the spatial

orientation between them. This is computed using the dot product:

cos(6)= ViV (3.3)

il vl

where Vv; and v; are vectors between the nodes.

3.3.3 Graph Construction

The nodes in the graphs were created by identifying Ca atoms, while edges were

determined by spatial proximity:



* Node Definition: Every Ca atom within the protein sequence was depicted as

a node in the graph, with characteristics obtained as detailed earlier.

* Edge Definition: Edges were generated depending on the spatial proximity of
Co atoms. A boundary distance was employed to decide if a connection
should be created between two vertices. This specific limit was selected in
order to achieve a balance between capturing important connections and not

adding too much unnecessary interference.

* Edge Index: Calculation of the edge index matrix determined the topology of
the graph by listing connected node pairs.

Through systematically extracting these characteristics and building the graphs, we
successfully captured both the unique attributes of amino acids and their interactions
in the protein structure. This thorough feature extraction procedure is essential for
allowing the GAT model to successfully acquire knowledge and forecast protein

binding locations.

3.4 Model Architecture

3.4.1 Graph Attention Network (GAT)

The GAT architecture integrates multi-head attention mechanisms to allow the model
to focus on the most relevant nodes in the protein graph (Figure 3.2). This approach
enhances the model's ability to capture intricate relationships between amino acids

and potential binding sites.
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Figure 3.2: This flowchart illustrates the pipeline for protein binding site
prediction using a Graph Neural Network (GNN)

* Input Features: The input consists of node features, edge indices, and edge
attributes. Node features include structural and biochemical properties, while

edge features encode distances and angles between nodes.

* Attention Mechanism: Each GAT layer computes attention coefficients
between connected nodes, enabling the model to weigh the importance of
each node's neighbors dynamically. This is achieved using the GATConv
layer from PyTorch Geometric, which updates node features based on these

attention weights (Figure 3.3). The attention coefficients are computed as:

4= exp( LeakyRelu(a' [Wh,]||[Wh;]))
" Y exp(LeakyRelu(a " [Wh,]||[Wh),])) (3.4)

keN(i)

where h; is the feature vector of node i, W is a weight matrix, and a is a
learnable vector that computes the importance of the edge between nodes i and

J
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Figure 3.3: This diagram illustrates the message-passing process in a Graph
Attention Network (GAT)

* Architecture Design: The model contains multiple attention layers: Five
Attention Layers with hidden dimensions of 256, Dropout Regularization to
mitigate overfitting and enhance generalization, LeakyReLU Activation
(Figure 3.4) to introduce non-linearities and softmax function to produce a

probability distribution over the binding site classes on the output layer.
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Figure 3.4: The plot illustrates the behavior of the Leaky ReLU
activation function with a negative slope of 0.1. Unlike the standard
ReLU, which outputs zero for all negative input values, Leaky ReLU
allows a small negative output proportional to the input, ensuring a non-
zero gradient even when the input is negative. This characteristic helps
mitigate issues related to the "dying ReLU" problem, where neurons can
become inactive during training.

LeakyReLU defined as:

LeakyReLU (x)=max (0, x)+a.min(0, x) (3.5)

Here, a (alpha) is a small positive constant such as 0.01, which allows a small

gradient when the input x is less than or equal to zero. This helps in keeping

the gradient flow alive during the training of deep neural networks, to avoid

the dying ReLU problem where neurons permanently output zeros.

Output: The final layer produces probabilities for each node belonging to

either allosteric or orthosteric binding sites. The attention weights also
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provide insights into the model's decision-making process, aiding in

explainability

Given a vector z of raw class scores from the final layer of a model, the

softmax function is defined for each element of z; the vector as:

zl
€

n

Sofimax (z, )=

3.6
eZ/ ( )
j=1

Where:

e is the base of the natural logarithm.

Z; 1s the score for class i.

n is the total number of classes in the vector z.

The denominator is the sum of the exponential scores for all classes, which

normalizes the output to be a probability distribution.

3.4.2 Graph Convolutional Network (GCN)

The GCN architecture is designed to learn node representations by aggregating
features from neighboring nodes in the protein graph. The model leverages
GCN2Conv layers, which improve upon traditional GCNs by incorporating residual

connections and enhanced message-passing capabilities.

* Input Features: Node features include amino acid properties, while edge

indices define the graph's connectivity.
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* Layer Configuration: Initial Linear Layer projects input node features to a
hidden dimension. Multiple GCN2Conv Layers perform message-passing and
feature aggregation with residual connections to stabilize learning.
LeakyReLU Activation and Dropout are applied between layers to improve

robustness.

* Residual Connections: Each layer adds the original node features to the
transformed features, facilitating deeper network architectures without

vanishing gradient issues.

* Qutput: The final linear layer maps the hidden representations to
probabilities for binding site classification (allosteric or orthosteric). This
design makes the GCN effective for capturing local structural patterns within

proteins.

3.4.3 Equivariant Graph Neural Network (EGNN)

The Equivariant Graph Neural Network (EGNN) employed in this study follows a
design that maintains E(3) equivariance ensuring that the model's predictions remain
consistent under geometric transformations like rotations and translations (Figure
3.5). The architecture comprises a sequence of Equivariant Graph Convolutional
Layers (EGCL), which process both the node features and spatial coordinates

simultaneously.
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Figure 3.5: This figure illustrates the concept of rotation equivariance in a graph neural
network denoted as ¢ (Satorras et al., 2021).

* Input Features: The input includes node features representing amino acid
properties and edge features representing the relationships between nodes,
such as distances and angles. Additionally, the model takes 3D coordinates of

nodes within the protein structure.

* Layer Configuration: Each EGCL consists of three main components:

* An Edge Multilayer Perceptron (MLP) that processes node and edge

features to compute interactions.

* A Node MLP that updates node features based on aggregated edge

information.
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* A Coordinate MLP that updates node coordinates using edge features

to preserve geometric information.
* Prediction Outputs: The EGNN produces:

 Updated Node Features: Indicating potential binding site

classifications (allosteric or orthosteric).

* Predicted Ligand Coordinates: Dynamic positions for possible
ligand interactions, which can vary in number based on the
complexity of the ligand structure. Since the data is not embedded as a
ligand-pocket pair, it does not directly give the ligand shape but
provides information about the possible ligand region. Mean Squared
Error (MSE) is used for calculating loss between coordinates. It

defined as:

N

MSE:%Z(J’I‘_);JZ (3.7)

i=1
Where:
N = Number of data points
Yi = Actual value (ground truth) for the i-th observation

¥; = Predicted value for the i-th observation

This model is particularly effective for handling complex spatial data inherent to
protein structures, making it suitable for predicting potential ligand positions rather

than strict binding sites.
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3.5 Training Process

3.5.1 Data Splitting

The dataset was divided into training, validation, and test sets to ensure robust

evaluation of the model's performance as 8:1:1 ratio.

3.5.2 Training Configuration

In order to maintain a balance between computational efficiency and training
stability, a batch size of 64 was utilized. The initial learning rate was set to 0.01 and
was adjusted using a MultiStepLR learning rate scheduler at 75, 150, and 225 epochs
with a gamma of 0.5. The Adam optimizer was employed for its ability to effectively
manage sparse gradients and ensure a stable training process. To avoid overfitting,
training would stop if the validation F1 score did not improve for 10 consecutive
epochs. The model was trained using the binary cross-entropy with logits loss
function, which is suitable for multi-class classification tasks (Goodfellow et al.,
2018) for 300 epochs, with the best-performing model was saved according to

validation performance. This loss function defined as:

BCEWithLogitsLoss(y, ¥)=max (¥, O)—j;‘y+log(1+e_m) (3.9)

Where y is the ground truth label (0 or 1), y is the predicted logit (a real-valued

number, before applying the sigmoid function).

When dealing with a batch of data, the loss is typically averaged over all instances in

the batch. The formula for the batch loss is:
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N
BCEWithLogitsLoss (Y , Y )= Zmax (3.,0)=3,-y.+logl+e ™ (3.9

Where: Y is the vector of ground truth labels, Y is the vector of predicted logits, N is

the number of instances in the batch. This formulation helps avoid numerical

instability issues that can arise when directly computing the binary cross entropy on

logits.

3.5.3 Evaluation Metrics

The model's performance was evaluated using several metrics, reflecting different

aspects of its predictive power:

F1 Score: Assesses the balance between precision and recall.

2- Precision- Recall
Fl=
Precision+ Recall (3.10)

Precision: Measures the accuracy of positive predictions.

P
Precision=
recision TP+FP (3.11)

Recall: Evaluates the model's ability to identify all relevant instances.

P
R -
ecall TP+ FN (3.12)

AUC-ROC: Analyzes the trade-off between true positive and false positive

rates.
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* Brier Score: Measures the accuracy of probabilistic predictions. It evaluates
the mean squared difference between predicted probabilities and the actual

outcomes.

N
BrierScore—%Z (fi—o,) (3.13)

Where:

N = Number of predictions

fi; = Predicted probability for the i-th event (e.g., probability of a positive

outcome)

0; = Actual outcome for the i-th event (1 if the event happened, 0 otherwise)

* Logarithmic Loss: Measures the performance of a classification model

where the prediction is a probability value between 0 and 1.

Mz

log Loss=— y,log(p,)+(1—y,)log(1-p,)] (3.14)

1
N

i=1

Where:
N = Number of predictions

Y = Actual outcome (1 for positive class, 0 for negative class) for the i-th

instance

p; = Predicted probability that the i-th instance belongs to the positive class

(must be between 0 and 1)
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* Task Loss: Specific losses for orthosteric and allosteric site predictions were

calculated to assess the model's ability to differentiate between these classes.

3.6 Summary

EGNN focuses on maintaining geometric consistency and is well-suited for
predicting potential ligand positions due to its equivariant properties. GAT leverages
attention mechanisms to dynamically weigh neighbor contributions, making it ideal
for identifying critical nodes in complex graphs. GCN uses efficient message-passing
and residual connections to capture structural information, excelling in tasks

requiring aggregated local features.

Table 3.1: Summary of models

Model Setting Loss Function Objective
GCN Supervised Graph Learn node
Reconstruction, embeddings
Contrastive Loss
GCN Semi-Supervised Cross-Entropy + | Predict node labels
Unsupervised for known sites
Regularization
GAT Supervised Graph Capture attention-
Reconstruction, | based embeddings
Contrastive Loss
GAT Semi-Supervised Cross-Entropy + | Predict node labels
Unsupervised while leveraging
Regularization attention
EGNN Semi-Supervised Binary Cross- Predict allosteric
Entropy + L2 sites and relative
(MSE) for ligand coords
Coordinates
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These architectures complement each other by addressing different aspects of protein

binding site prediction (Table 3.1).
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Chapter 4

Results and Discussion

4.1 Overview of Results

This section discusses the outcomes of various graph neural network (GNN) models
—GAT, GCN, and EGNN—for predicting allosteric and orthosteric binding sites.
The models were evaluated using supervised and semi-supervised settings to
determine the most effective approach for accurate binding site detection. The
datasets used include a combined version of CasBench and BioLip, comprising

approximately 6000 protein samples.

4.2 Performance Metrics and Comparisons

The performance metrics—F1 score, AUC (Area Under the Curve), and Task Loss—
were plotted to visualize the learning curves and stability of each model. The test

metrics for each model are illustrated in Figure 4.1.
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Test Metrics Comparison
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Figure 4.1: F1 metrics comparison for each model
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Figure 4.2: AUC - ROC metrics comparison for each model

GAT (Graph Attention Network) models demonstrated stable performance across
epochs, achieving relatively high F1 scores and AUC values. In both supervised and
semi-supervised settings, GAT exhibited consistent learning and minimal
fluctuations. GCN (Graph Convolutional Network) models displayed moderate
performance with more variability compared to GAT. The semi-supervised GCN

model showed slight improvements in AUC compared to the supervised setting,
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indicating the utility of leveraging unlabeled data. EGNN (Equivariant Graph Neural
Network) showed high performance initially but plateaued rapidly. This behavior
could be attributed to the model's reliance on structural information, which limits
generalization when ligand molecules are small or less complex. The rapid
convergence of Task Loss for the EGNN model suggests that the model is learning to
differentiate between binding sites efficiently. However, it does not always
generalize well for smaller ligands like ions, which may impact the applicability in

certain biological contexts.

4.3 Importance Analysis

4.3.1 EGNN Feature and Edge Importance

The Equivariant Graph Neural Network (EGNN) demonstrates significant insights
into the relative importance of different feature groups for predicting binding sites.
The analysis is supported by two key visualizations: the overall feature importance

(Figure 4.3) and the average saliency map across nodes (Figure 4.4).

32



Feature Importance (EGNN)
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Figure 4.3: Feature importance of EGNN
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Average Saliency Map (Across Nodes)

coil
beta-sheet
alpha-helix
atom_sasa
theta

tau

omega

psi

phi

UNK

VAL

TYR

TRP

THR

SER

PRO

PHE

MET

LYS

LEU

ILE

HIS

GLY

GLN

GLU

CYS

ASP

ASN

ARG

ALA

f T T T
0.0 0.5 2.0 2.5

Average Saliency (EGNN)
Figure 4.4: Saliency map of EGNN

Backbone dihedral angles such as phi (¢), psi (y), and omega (®) emerge as the most
critical features among node attributes, showcasing their role in capturing the
geometric configuration of the protein backbone. These angles are pivotal in
describing secondary structure and folding patterns. Solvent-accessible surface area
(SASA) and secondary structure elements (a-helices, B-sheets, and coils) also play a
substantial role, as they relate directly to a residue's likelihood of being part of a
binding site. Amino acid types like arginine (ARG), lysine (LYS), and histidine
(HIS) exhibit higher importance, which aligns with their known involvement in
protein-ligand interactions due to their charged or polar side chains. Among the edge
attributes, cosine angles contribute the most to binding site prediction, highlighting
the importance of relative orientation between connected nodes. This finding

reinforces the significance of geometric interactions within the protein structure.
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Sequence-based connectivity exhibits moderate importance, reflecting the need to
incorporate relational data alongside spatial information. The 3D spatial coordinates
(X, y, z) demonstrate a balanced and substantial contribution to model performance,

confirming the necessity of geometric awareness for identifying binding pockets.

The saliency analysis (Figure 4.4) reinforces the importance of dihedral angles and
SASA, as well as the role of specific amino acids in binding site prediction. Residues
such as arginine (ARG), lysine (LYS), and leucine (LEU) consistently exhibit higher

saliency, emphasizing their functional relevance in protein-ligand interactions.

Overall, the EGNN model leverages a diverse set of node, edge, and coordinate
features to achieve robust binding site predictions. Its ability to integrate geometric
consistency with structural attributes makes it particularly well-suited for capturing

the complexities of protein-ligand interactions.
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4.3.2 GAT and GAT (Semi-Supervised) Feature Importance

Feature Importance (GAT - Semi Supervised)
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Figure 4.5: Feature importance of GAT (semi - supervised)
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Average Saliency Map (Across Nodes)
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Figure 4.6: Saliency of GAT (semi - supervised)
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Feature Importance (GAT)
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Figure 4.7: Feature importance of GAT

38

T
0.12

T
0.14




Average Saliency Map (Across Nodes)
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Figure 4.8: Saliency map of GAT

The feature importance analysis for the Graph Attention Network (GAT) model
reveals significant insights into how the model utilizes various features to predict
binding sites (Figure 4.5, Figure 4.7). Among the node features, lysine (LYS) and
leucine (LEU) demonstrate high importance, reflecting their role in stabilizing
protein structures and contributing to binding interactions. Backbone dihedral angles
such as phi (), psi (v), and tau (1) emerge as the most critical features, indicating
their importance in capturing the geometric folding patterns of proteins, which
directly influence the identification of binding sites. Solvent Accessible Surface Area
(SASA) and secondary structural elements, particularly alpha-helices and beta-
sheets, also show moderate importance, highlighting their relevance in describing

residue exposure and structural arrangement.
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For the edge features, cosine angle and sequence distance stand out as significant
contributors, underscoring the importance of spatial orientation and topological
relationships between residues. In contrast, Euclidean distance is found to have
comparatively lower importance, suggesting that relative orientation and
connectivity are more defining factors for binding site prediction than absolute

distances.

The saliency map analysis further provides detailed insights into the average
contribution of node features across predictions (Figure 4.6, Figure 4.8). Residues
like glycine (GLY), lysine (LYS), and arginine (ARG) are particularly salient,
aligning with their biochemical properties, such as flexibility and the ability to form
hydrogen bonds or ionic interactions. Hydrophobic residues such as leucine (LEU)
and valine (VAL) also show notable saliency, indicating their potential role in
forming hydrophobic pockets. Structural features, particularly the backbone dihedral
angles phi, psi, and tau, emerge as the most salient, emphasizing the role of protein
geometry in binding site identification. Among secondary structural elements, beta-
sheets exhibit relatively lower saliency compared to alpha-helices, potentially due to

their less dynamic role in forming binding pockets.
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Average Attention Weights by Class (Layer 0, Head 0)
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Figure 4.9: Average attention weights for GAT model

This balanced distribution of attention weights (Figure 4.9) indicate the model's

ability to capture relevant interactions within the protein graph structure.

Overall, the GAT model effectively captures geometric and structural details through
its reliance on node features like dihedral angles and SASA, while edge features like
sequence distance and cosine angle underscore the importance of relational data. The
balanced attention weights suggest the need for further optimization to enhance the

model's ability to differentiate more clearly between orthosteric and allosteric sites.
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4.3.3 GCN and GCN (Semi-Supervised) Feature Importance

Feature Importance (GCN - Semi supervised)
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Figure 4.10: Feature importance of GCN (semi - supervised)
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Average Saliency Map (Across Nodes)
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Figure 4.11: Saliency map of GCN (semi - supervised)
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Figure 4.12: Feature importance of GCN
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Average Saliency Map (Across Nodes)
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le-5

The Graph Convolutional Network (GCN) model demonstrates unique
characteristics in its utilization of features for predicting protein binding sites. Node
features, particularly those representing structural and physicochemical properties,
exhibit balanced importance across various attributes. Unlike models with dynamic
mechanisms like attention, GCN relies heavily on the global structural context

provided by node and edge features (Figure 4.10, Figure 4.12).

In the context of node features, amino acid-specific properties such as solvent-
accessible surface area (SASA), secondary structure elements (e.g., alpha-helix and
beta-sheet), and dihedral angles (phi, psi, and omega) are consistently influential.
SASA stands out as the most impactful node feature, likely due to its relevance in

identifying accessible regions for binding. Among amino acid-specific features,
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residues like lysine (LYS), histidine (HIS), and glutamate (GLU) demonstrate higher
importance. These residues often play critical roles in protein-ligand interactions

through electrostatic and hydrogen-bonding mechanisms.

Edge features, particularly those capturing geometric relationships such as cosine
angles and distances, are critical for understanding spatial connectivity. The reliance
on these features indicates that the GCN model effectively captures the local and
global topologies of protein graphs. However, the uniform importance of edge
features suggests a limitation in dynamically prioritizing certain interactions over

others, unlike attention-based models.

The saliency map analysis provides additional insights, highlighting the significance
of specific node features (Figure 4.11, Figure 4.13). Structural features such as SASA
and secondary elements continue to dominate, while residues like lysine (LYS),
glycine (GLY), and histidine (HIS) emerge as critical for binding site prediction. The
saliency values reveal that GCN effectively captures relevant patterns across the
protein graph, emphasizing residues with higher reactivity and structural

accessibility.

The semi-supervised GCN variant shows a similar trend but with broader feature
utilization (Figure 4.10). This indicates the model's ability to generalize better by
incorporating unlabeled data. The feature importance remains balanced, with
structural and geometric features contributing equally. This balance highlights the
semi-supervised model's robustness in capturing both local and global graph

properties, enhancing its predictive accuracy.

In summary, the GCN model relies on a well-distributed feature set, emphasizing
structural and geometric properties. While its reliance on global structural features
ensures stability, the lack of dynamic prioritization of specific interactions may limit
its adaptability to complex binding scenarios. The semi-supervised variant addresses
some of these limitations by leveraging additional unlabeled data, resulting in

improved generalization and broader feature relevance.
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4.3 Comparison Across Models

EGNN outperforms GAT and GCN in capturing spatial and geometric information,
as evidenced by the higher importance of 3D coordinates (Figure 4.1, Figure 4.2).
This ability to integrate spatial data ensures a detailed understanding of protein
structures and potential ligand-binding regions. In contrast, GAT models excel with
their attention mechanisms, which dynamically weigh node and edge contributions,
providing flexibility in emphasizing the most relevant features. GCN models, while
effective, demonstrate a more uniform distribution of feature importance, relying
heavily on global structural features rather than dynamically prioritizing local

interactions.

Semi-supervised approaches consistently exhibit broader feature utilization and
improved generalization, as they effectively incorporate unlabeled data into the
learning process. The semi-supervised GAT and GCN models display a more diverse
set of important features compared to their supervised counterparts, enhancing their
ability to generalize to new data. However, while semi-supervised learning appears
advantageous in theory, practical results show mixed outcomes depending on the

binding site type.

For allosteric sites, semi-supervised learning performs exceptionally well, as the
broader distribution of predictions aligns with the diffuse nature of these sites.
However, for orthosteric sites, which often require sharper and more localized
predictions, supervised learning tends to perform better in certain cases. Semi-
supervised methods, when predicting unknown site classes after training, sometimes
spread predictions across the entire protein. While this approach is advantageous for
capturing diffuse or non-obvious binding sites like allosteric regions, it can dilute the
precision needed for orthosteric sites, where sharper, focused predictions are
essential. This limitation suggests that a hybrid approach or careful tuning of semi-
supervised methods might be necessary to optimize predictions across both types of

binding sites.
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4.4.4 Comparison with Previous Studies

In this section, we compare the proposed Graph Neural Network (GNN) models

(GAT, GCN, and EGNN) for protein binding site prediction with related works in the

field. While the specific tasks and datasets vary among these studies, they offer

valuable insights into the capabilities and limitations of different graph-based models

in computational biology.

Table 4.1 summarizes the performance metrics of different models from recent

studies, focusing on protein binding site prediction tasks. The metrics include F1

Score, Precision, Recall, AUC-ROC, and specific model attributes.

Table 4.1: Comparison of Performance Metrics with Similar Studies

Study | Model/ |Dataset | Featues Task F1 [Precision| Recall AUC- DCC| DC |MSE| Special Features
Method Score ROC
Zitnik etal.| GNN Protein- Protein Modeling | N/A N/A N/A 0.87 N/A N/A N/A GNNSs, Interaction
(2019) Protein Features  [Polypharmal Prediction
cy
Satorras et| EGNN QM9 Atom Types, | Molecular | N/A N/A N/A N/A N/A N/A 0.07 Equivariant GNN,
al. (2021) Charges, Property Structural Features
Bond Types | Prediction
Sestak and [VN-EGNN|COACH42 Atomic Protein N/A N/A N/A N/A 0.61 0.75 N/A Equivariant GNN,
et al (2024) 0, Coordinates, |Binding Site| Structural Features
HOLOA4K, |Virtual Nodes | Identificatio
PDBbind20| Distance n
20 Metrics
Smith etal.| GrASP |COACH420, Atomic Identifying [ N/A 0.71 0.91 N/A N/A N/A N/A | Enhanced GAT, Instance
(2023) (Mlig+), |Coordinates, | Druggable and semantic
HOLO4K(| Distance Binding segmentation
Mlig+) Metrics Sites
Abdollahi et|Nodecode| BioLip | AlphaFold2 | Residue N/A N/A N/A 0.75 N/A N/A N/A | AlphaFold Integration,
al. (2023) r Predictions |Characteriz GCN
ation
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Zitnik et al. (2019) utilized a GNN model for modeling polypharmacy side effects
based on protein-protein interactions and drug information. Their task focuses on
interaction prediction rather than binding site identification. Their high AUC-ROC
(0.872) underscores the effectiveness of GNNs in capturing relational data, a concept
that aligns with our study’s goal of modeling intricate protein interactions. Satorras et
al. (2021) introduced the Equivariant Graph Neural Network (EGNN) for molecular
property prediction on the QM9 dataset. The EGNN's ability to maintain rotational
and translational invariance (with an MSE of 0.071) highlights the importance of
structural features, a strength that our study leverages for binding site prediction.
Sestak et al. (2024) developed the VN-EGNN for protein binding site identification
on datasets like COACH420, HOLO4K, and PDBbind2020. Their use of virtual
nodes and distance metrics resulted in a DCC of 0.605 and DCA of 0.750,
demonstrating the potential of equivariant models for capturing protein-ligand
interactions. Our method similarly benefits from the geometric consistency of
EGNNSs but focuses on differentiating between orthosteric and allosteric sites. Smith
et al. (2023) proposed GrASP, an enhanced GAT model, for identifying druggable
binding sites. Their model achieved a Precision of 0.71 and a Recall of 0.914 on
datasets such as COACH420(Mlig+) and HOLO4K(Mlig+). This highlights the
effectiveness of attention-based models in identifying critical regions within protein
structures, which parallels our use of GAT for dynamic node-weighting. Abdollahi et
al. (2023) introduced Nodecoder, a GCN-based model that integrates AlphaFold2
predictions and residue/atom features for characterizing residues in protein
structures. Their model achieved an AUC-ROC of 0.754, illustrating the benefit of
integrating structure prediction tools with GNNs. Our approach similarly employs
GCNs for capturing local structural features but extends the model's capability by
combining it with EGNN and GAT architectures for a more comprehensive

prediction.

While the related works offer valuable insights, our study presents several unique

contributions:
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We employ GAT, GCN, and EGNN collectively, leveraging the strengths of each
model to predict both orthosteric and allosteric binding sites with high accuracy. Our
dataset combines CasBench (2023) and BioLiP, providing a diverse set of
annotations and addressing class imbalance challenges. We incorporate a
comprehensive set of node and edge features, including dihedral angles, solvent-
accessible surface area (SASA), and secondary structure elements (SSE), enhancing
the models' ability to capture intricate protein characteristics. By employing attention
mechanisms (GAT) and saliency maps, we improve the interpretability of the model's
predictions, aiding in the identification of critical residues involved in binding. The
EGNN model ensures that predictions remain consistent under geometric
transformations, making it well-suited for handling the spatial complexity of protein

structures.

4.4.5 Discussion of Case Studies

To better understand the performance of our models, we present two case studies
where the EGNN model is used to predict binding sites and potential ligand regions.
These examples illustrate cases with high prediction accuracy and low prediction

accuracy, providing insights into the model's strengths and limitations.

In this case study of 6oog, the EGNN model demonstrates high accuracy in
predicting both binding sites and potential ligand regions (Figure 4.6, Figure 4.7).
The predicted binding sites (red regions) overlap well with the actual regions (green
regions), showcasing the model's capability in handling stable protein structures. The
clear, well-defined pockets and structural stability facilitate accurate predictions. The
EGNN model effectively captures spatial and geometric relationships, contributing to
its success in this scenario. However in the other case study of 60ix, the cyan spheres
highlight potential ligand regions with a very high error and the predictions for
binding sites show limited overlap with actual binding sites (Figure 4.8, Figure 4.9).
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Figure 4.14: The green spheres indicate the predicted ligand regions based on the EGNN
model. The color gradient on the protein structure (60og) represents the model's
probability predictions for allosteric sites, with blue showing the lowest probabilities and
red showing the highest probabilities. This visualization demonstrates the model's ability
to highlight potential allosteric regions in the protein (Schrodinger, LLC, 2015).
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Figure 4.15: The left image displays the actual allosteric binding sites on the protein

(600g) surface, highlighted in green. The right image visualizes the model-predicted

probabilities of allosteric sites, with a gradient from blue (lowest probability) to red
(highest probability). This comparison illustrates the alignment and discrepancies
between the ground truth and the model's predictions (Schrodinger, LLC, 2015).
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Figure 4.16: The cyan spheres indicate the predicted ligand regions based on the EGNN
model. The color gradient on the protein structure (60ix) represents the model's
probability predictions for allosteric sites, with blue showing the lowest probabilities and
red showing the highest probabilities. This visualization demonstrates the model's ability
to highlight potential allosteric regions in the protein (Schrodinger, LLC, 2015).
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Figure 4.17: The left image displays the actual allosteric binding sites on the protein

(60i1x) surface, highlighted in green. The right image visualizes the model-predicted

probabilities of allosteric sites, with a gradient from blue (lowest probability) to red
(highest probability). This comparison illustrates the alignment and discrepancies
between the ground truth and the model's predictions (Schrédinger, LLC, 2015).

Orthosteric sites are typically localized in a single, well-defined region within a
protein structure, which binds the endogenous ligand directly. The model effectively
predicted these sites with high confidence, but further refinement is required to
eliminate irrelevant or spurious predictions. Orthosteric sites tend to exhibit distinct
geometric and chemical environments. To address this, we applied advanced
geometric filtering, which ensures that predictions align with the typical structural
constraints of orthosteric sites, such as proximity to active residues and conserved
functional motifs. For example, in the case of 60ix, the predicted orthosteric region
aligned well with the experimentally validated binding site, reinforcing the model's
utility in such contexts. However, without filtering, some additional regions were

flagged, potentially reflecting overgeneralization by the model.

Unlike orthosteric sites, allosteric binding regions can be distributed across different
regions of the protein, often distant from the active site. The model's predictions for
allosteric sites captured multiple potential binding regions, reflecting their inherent

diversity. Allosteric site predictions are particularly useful in drug discovery, where
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targeting these sites can offer therapeutic advantages such as avoiding direct
competition with endogenous ligands. In the case of 60og, the model successfully
identified several potential allosteric sites. Notably, these sites aligned with regions
known for conformational flexibility, which is a hallmark of allosteric regulation.
The model's ability to predict multiple plausible allosteric sites highlights its

potential for hypothesis generation in allosteric drug design.
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Chapter 5

Conclusion and Future Work

In this study, we developed and evaluated a computational approach for predicting
orthosteric and allosteric binding sites in proteins using Graph Neural Networks
(GNNs). By employing Graph Attention Networks (GAT) (Velickovic et al., 2018),
Graph Convolutional Networks (GCN) (Kipf & Welling, 2017), and Equivariant
Graph Neural Networks (EGNN) (Satorras et al., 2021), our models successfully
integrated structural and physicochemical features of proteins to identify potential
binding regions. The combination of these models allowed us to harness the strengths
of dynamic attention mechanisms, effective message passing, and geometric

consistency, leading to a robust prediction framework.

Our models were trained on a combined dataset of CasBench (2023) (Jiang et al.,
2019) and BioLiP (Yang et al., 2013), which provided a diverse and balanced set of
annotations for binding site prediction. The results demonstrated that EGNN
performed particularly well for proteins with stable and well-defined structures,
accurately predicting binding sites and potential ligand regions (Sestak et al., 2024).
In contrast, the GAT and GCN models excelled at capturing local structural patterns
and relational features within the protein graphs (Smith et al., 2023; Abdollahi et al.,
2023).

Despite these promising results, the study highlighted challenges in predicting

binding sites for proteins associated with small-sized ligands and those exhibiting
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significant structural flexibility (Keskin et al., 2008; Karplus & McCammon, 2002).
One of the key challenges observed was overgeneralization, particularly in semi-
supervised models. Semi-supervised approaches tend to spread predictions across the
entire protein structure, leading to less specificity for orthosteric sites, which are
typically localized and well-defined. While this approach performed well for
allosteric site predictions, which often involve multiple regions, it diluted the
precision required for accurate orthosteric site identification. This overgeneralization
can be attributed to the model's reliance on unlabeled data, which introduces
uncertainty when extrapolating to unknown regions. Future work should aim to
incorporate more precise geometric or energy-based filtering methods to counteract

this issue and improve orthosteric site specificity.

The models also struggled to establish a consistent pattern in predicting potential
ligand-binding regions, suggesting that additional ligand-specific features may be
required for improvement (Edfeldt et al., 2011). Nonetheless, the use of attention
mechanisms and saliency maps provided valuable insights into the interpretability of
the models, identifying critical residues that influence binding site predictions

(Velickovic et al., 2018; Smilkov et al., 2017).

Overall, this research advances the integration of graph-based deep learning in
computational biology, offering a powerful tool for understanding protein-ligand
interactions, which is crucial for drug discovery and biomedical research (Zitnik et

al., 2019; Trott & Olson, 2010).

5.1 Future Work

Future research can focus on several directions to enhance the accuracy and
applicability of our models. One important area for improvement is addressing the
challenge of structural flexibility in proteins (Karplus & McCammon, 2002).
Incorporating techniques such as molecular dynamics simulations or ensemble

modeling could enable the models to better account for dynamic conformational
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changes, which are common in flexible proteins. Additionally, developing flexibility-
aware GNNs could enhance the models’ ability to adapt to varying protein structures

(Keskin et al., 2008).

Another critical avenue is mitigating overgeneralization in semi-supervised learning.
While semi-supervised approaches leverage unlabeled data effectively, they can lead
to diffuse predictions, particularly for orthosteric sites. Developing methods to
integrate stricter geometric constraints or energy-based scoring during training could
improve the model's specificity. For example, incorporating localized attention
mechanisms that focus on high-confidence regions or introducing regularization
techniques that penalize overly dispersed predictions may help address this
limitation. Future studies should also explore supervised or hybrid training
approaches for orthosteric site predictions, where sharper and more localized outputs

are often desirable.

Improving ligand region prediction remains another significant goal. By integrating
ligand-specific features such as shape descriptors, binding affinity data, or ligand-
protein interaction profiles (Cherezov et al., 2007; Siiel et al., 2003), it may be
possible to refine the models’ ability to accurately identify potential ligand-binding
regions. Exploring multi-modal approaches that combine protein structure and ligand
information could provide further gains in predictive accuracy (Rives et al., 2021;

Jumper et al., 2021).

Hybrid modeling approaches also offer a promising direction for future work.
Combining graph-based methods with transformer architectures could allow the
models to capture long-range dependencies and contextual information within
protein structures (Rives et al., 2021). Ensemble learning techniques that leverage the
strengths of GAT, GCN, and EGNN could further enhance overall performance and
robustness (Sestak et al., 2024).

Expanding the dataset to include more diverse and complex protein structures is

another critical step. Incorporating larger datasets with rare or poorly characterized
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binding sites would help improve the generalizability of the models (Jiang et al.,
2019; Yang et al., 2013). Synthetic data augmentation techniques could also be used
to address class imbalance and increase the diversity of training examples (Meng et

al., 2011).

Enhancing the interpretability of the models is equally important. Integrating feature
attribution methods such as Grad-CAM (Smilkov et al., 2017) or SHAP (Lundberg &
Lee, 2017) could provide more detailed visualizations of the model’s decision-
making process. Developing interactive visualization tools could make it easier for
researchers to interpret binding site predictions, facilitating their use in practical

applications like drug discovery and personalized medicine (Ehrt et al., 2018).

Ultimately, the integration of these improvements could lead to more accurate and
reliable prediction models, supporting the ongoing efforts in drug development,
protein engineering, and biomedical research. By bridging the gap between
computational predictions and experimental validation, future work can help unlock
new possibilities for therapeutic strategies and a deeper understanding of protein

function.
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Data and Code Availability

The data and code wused in this study are available on GitHub at
https://github.com/nihattolga/ProteinBindingSitePrediction. The dataset utilized in
this research, CasBench, is a publicly available dataset specifically curated for
benchmarking protein-ligand binding site prediction methods. Detailed information

about the dataset, including its source and structure, is provided in Chapter 3.
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