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Applications of Deep Learning for Binding Site 
Predictions in Proteins

Abstract

Proteins are fundamental macromolecules that perform a wide range of biological 

functions,  largely  determined  by  their  three-dimensional  structures  and  binding 

interactions. Accurate identification of protein binding sites, particularly orthosteric 

and allosteric sites, is crucial for drug discovery, biotechnology, and understanding 

biological  processes.  Traditional  computational  methods,  such  as  sequence 

alignment, homology modeling, and molecular docking, often struggle to handle the 

dynamic nature and structural complexity of proteins. To address these challenges, 

this study explores the use of Graph Neural Networks (GNNs) to predict protein 

binding sites with enhanced accuracy and efficiency.

This research employs three GNN architectures:  Graph Attention Networks (GAT), 

Graph  Convolutional  Networks  (GCN),  and  Equivariant  Graph  Neural  Networks 

(EGNN). The models are trained on a combined dataset from CasBench (2023) and 

BioLiP, comprising approximately 300 protein structures with annotated orthosteric 

and  allosteric  binding  sites.  Node  features  such  as  amino  acid  identity,  dihedral 

angles,  solvent-accessible surface area (SASA),  and secondary structure elements 

(SSE) are integrated with edge features like Euclidean distances and cosine angles to 

construct informative protein graphs.

Results  demonstrate  that  the  EGNN model  excels  in  predicting binding sites  for 

proteins  with  stable  and  well-defined  structures  due  to  its  ability  to  maintain 

geometric consistency. The GAT and GCN models effectively capture local structural 

patterns and relational features within protein graphs, with GAT leveraging dynamic 

attention mechanisms to highlight key residues. Comparative analysis with existing 
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methods  highlights  the  advantages  of  the  proposed  GNN  approach  in  terms  of 

precision, recall, and AUC-ROC metrics.

Despite these promising results,  challenges remain in predicting binding sites for 

proteins with small ligands or high structural flexibility. Future work will focus on 

incorporating  protein  dynamics,  ligand-specific  features,  and  hybrid  models  that 

combine GNNs with transformer architectures to improve prediction accuracy and 

generalization.

This study contributes to the evolving field of computational biology by offering a 

robust,  interpretable,  and  efficient  framework  for  protein  binding  site  prediction, 

supporting advancements in drug discovery and personalized medicine.

Keywords:  Protein Binding Sites, Orthosteric Sites, Allosteric Sites, Graph Neural 

Network  (GNN),  Computational  Biology,  Drug  Discovery,  Protein  Structure, 

Bioinformatics, Deep Learning
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Proteinlerdeki Bağlanma Yeri Tahminleri İçin Derin 
Öğrenme Uygulamaları

Öz

Proteinler, üç boyutlu yapıları ve bağlanma etkileşimleri tarafından belirlenen, geniş 

bir  biyolojik  işlev  yelpazesini  yerine  getiren  temel  makromoleküllerdir.  Özellikle 

ortosterik ve  allosterik bağlanma bölgelerinin doğru bir  şekilde tespiti,  ilaç keşfi, 

biyoteknoloji ve biyolojik süreçlerin anlaşılması açısından büyük önem taşımaktadır. 

Dizi  hizalama,  homoloji  modelleme ve  moleküler  yerleştirme gibi  geleneksel 

hesaplamalı yöntemler, proteinlerin dinamik doğası ve yapısal karmaşıklığıyla başa 

çıkmakta  yetersiz  kalabilmektedir.  Bu  zorlukların  üstesinden  gelmek  için  bu 

çalışmada, Graf Sinir Ağları (GNN) kullanılarak protein bağlanma bölgelerinin daha 

yüksek doğruluk ve verimlilikle tahmin edilmesi amaçlanmıştır.

Bu araştırmada üç farklı GNN mimarisi kullanılmıştır:  Graf Dikkat Ağları (GAT), 

Graf Konvolüsyonel Ağları (GCN) ve Eşdeğerlik Temelli Graf Sinir Ağları (EGNN). 

Modeller,  CasBench  (2023) ve  BioLiP veri  setlerinin  birleştirilmiş  haliyle 

eğitilmiştir. Bu veri seti, ortosterik ve allosterik bağlanma bölgeleri ile etiketlenmiş 

yaklaşık 3000 protein yapısını içermektedir. Protein grafikleri oluşturulurken düğüm 

özellikleri arasında amino asit kimliği, diyhedral açılar, çözücü erişebilir yüzey alanı 

(SASA) ve ikincil yapı elemanları (SSE) gibi bilgiler; kenar özellikleri arasında ise 

Öklid uzaklıkları ve kosinüs açıları kullanılmıştır.

Sonuçlar,  EGNN modelinin  geometrik  tutarlılığı  koruma  yeteneği  sayesinde, 

istikrarlı  ve  iyi  tanımlanmış  protein  yapılarında  bağlanma  bölgelerini  doğru  bir 

şekilde tahmin ettiğini göstermektedir. GAT ve GCN modelleri ise protein grafikleri 

içindeki yerel yapısal desenleri ve ilişkisel özellikleri etkili bir şekilde yakalamış; 

özellikle GAT, önemli kalıntıları vurgulamak için dinamik dikkat mekanizmalarından 
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yararlanmıştır.  Mevcut  yöntemlerle  yapılan  karşılaştırmalar,  önerilen  GNN 

yaklaşımının doğruluk, geri çağırma ve AUC-ROC ölçütleri açısından avantajlarını 

ortaya koymaktadır.

Bu  umut  verici  sonuçlara  rağmen,  küçük  ligandlara  sahip  veya  yüksek  yapısal 

esnekliğe  sahip  proteinlerde  bağlanma  bölgesi  tahmininde  bazı  zorluklar  devam 

etmektedir. Gelecekteki çalışmalar, protein dinamiklerini, ligandlara özgü özellikleri 

ve  GNN’leri  dönüştürücü  (transformer) mimarilerle  birleştiren  hibrit  modelleri 

entegre  ederek  tahmin  doğruluğunu  ve  genelleştirilebilirliği  artırmaya 

odaklanacaktır.

Bu çalışma, protein bağlanma bölgesi tahmininde sağlam, yorumlanabilir ve verimli 

bir  çerçeve  sunarak,  ilaç  keşfi  ve  kişiselleştirilmiş  tıp  alanlarındaki  gelişmelere 

katkıda bulunmayı hedeflemektedir.

Anahtar Kelimeler:  Protein  Bağlanma Bölgeleri,  Ortosterik  Bölgeler,  Allosterik 

Bölgeler,  Graf Sinir Ağı (GNN),  Hesaplamalı Biyoloji,  İlaç Keşfi,  Protein Yapısı, 

Biyoinformatik, Derin Öğrenme
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Chapter 1

Introduction

1.1 Background

Proteins are vital macromolecules that play crucial roles in nearly every biological  

process. Proteins are composed of amino acids joined by peptide bonds, creating a 

polypeptide  chain  that  folds  into  a  unique  three-dimensional  structure,  which 

ultimately determines the protein's function. Studying protein structures is essential 

for understanding basic biological processes and has important implications in areas 

such as pharmaceuticals, medical treatment, and biotechnology.

The structure of proteins can be described at four levels:

• Primary Structure: The linear sequence of amino acids in the polypeptide 

chain, as determined by the encoding gene.

• Secondary Structure: Local folding of the polypeptide chain forming shapes 

like α-helices and β-sheets, stabilized by hydrogen bonds.
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• Tertiary  Structure: The  overall  three-dimensional  shape  of  a  single 

polypeptide chain, formed through interactions between the amino acids' side 

chains (R-groups).

• Quaternary Structure: The structure formed when two or more polypeptide 

chains (subunits) assemble into a functional protein complex.

Understanding these structures is essential in understanding the functions of proteins, 

including enzymatic reactions, providing support, transporting molecules, signaling 

within cells, and defending the body (Jones & Smith, 2023; Gordon & Hahn, 2022). 

Furthermore, with the advancement of computational biology, the precise forecasting 

of protein structures and binding locations is increasingly vital.  The rise of high-

throughput  methods  and  large  biological  datasets  has  driven  the  merging  of 

computational  methods  with  experimental  biology,  providing  unique  chances  to 

speed up drug discovery and development.
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Figure 1.1: The four levels of protein structure (Rashid et al., 2015)



1.2 Protein Binding Sites

In most general terms, binding sites on proteins are specific regions of the protein to 

which a myriad of other molecules may bind, such as ligands or substrates, or to 

which additional proteins may bind. There are two broad categories of binding sites: 

• Orthosteric  Binding  Sites: The  primary  active  sites  where  endogenous 

ligands bind directly, facilitating the protein's biological function (Cherezov 

et al., 2007).

• Allosteric Binding Sites: Distinct sites from the orthosteric site that, when 

bound  by  a  molecule,  modulate  the  protein's  activity,  often  enhancing  or 

inhibiting its function (Olsen & Sieghart, 2008).

Recognizing and explaining binding sites  is  essential  in the development of  new 

medications, as they provide potential points for medical intervention (Edfeldt et al., 

2011). Recent progress in computational biology has greatly improved our capacity 

3

Figure 1.2: Representation of orthosteric (orange) and allosteric (green) binding sites 
in the protein structure 1KE5



to anticipate these binding locations, simplifying the creation of drugs that are more 

selective and efficient, ultimately decreasing the chances of adverse side effects.

1.3 Challenges in Predicting Binding Sites

Prediction of the binding site is a complex challenge due to many reasons, despite 

advances in computational biology:

• Structural Complexity: Proteins are dynamic molecules with complex three-

dimensional structures that can obscure binding sites, making them difficult 

to predict (Karplus & McCammon, 2002).

• Limitations  of  Traditional  Methods: Methods  like  sequence  alignment, 

homology  modeling,  and  molecular  docking  frequently  lack  accuracy, 

especially when handling flexible proteins or distant evolutionary connections 

(Baker & Sali, 2001; Meng et al., 2011).

• Diversity of Binding Sites: The variety of binding sites in different proteins 

poses a challenge for developing a prediction method that can be universally 

applied (Keskin et al., 2008).

Precise  identification  of  binding  sites  is  crucial  in  pharmaceutical  studies,  in 

comprehending protein function, and in furthering biomedical research. DiMasi et al.  

(2016) introduce a new scenario by using artificial intelligence (AI) and machine 

learning  (ML),  more  precisely,  Graph  Neural  Networks  GNNs  have  recently 

developed as effective tools for modeling intricate relationships in the structure of 

proteins, hence offering a promising approach to enhancing accuracy and efficiency 

in the identification of binding sites.
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1.4 Objectives of the Study

This study aims to develop a computational method using Graph Neural Networks 

(GNNs) to predict orthosteric and allosteric binding sites in proteins. The specific 

objectives include:

• Developing  a  GNN  Model: Creating  a  model  capable  of  accurately 

predicting binding sites based on structural and physicochemical properties of 

proteins.

• Implementing Advanced Techniques: Use state-of-the-art machine learning 

methodologies  and graph theory-based methods  to  enhance  the  prediction 

accuracy. 

• Evaluating Model Performance: Assessing the model using metrics such as 

accuracy, precision, recall, F1-score, and AUC (Chicco & Jurman, 2020).

• Comparing with Existing Techniques: Conducting a comparative analysis 

with traditional and similar deep learning prediction methods to highlight the 

advantages  of  the  GNN  approach  and  demonstrate  the  differences  with 

similar studies (Ehrt et al., 2018).

1.5 Significance of the Study

The significance of this study lies in its potential to contribute to the broader trends 

in  computational  biology and drug discovery.  Much more  accurate  and effective 

ways  of  predicting  the  site  of  protein  binding  can  be  developed  with  GNN 

technology to attend to the most pressing need. These are of particular importance 

for the prevailing drift  toward personalized medicine and targeted drugs, wherein 

knowledge is paramount on exact interactions between the drugs and their protein 
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targets.

On the other hand, another step toward integrating GNNs with traditional methods 

represents a novel phase in the course of the continuous evolution of computational 

approaches  to  biological  problems.  The  current  study  did  not  only  focus  on 

predictive performance improvement but has given valuable insights into underlying 

mechanisms of protein-ligand interactions that can further help in the design of more 

efficient therapeutic strategies. 
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Chapter 2

Literature Review

2.1 Approaches to Protein Binding Site Prediction

Understanding  protein-ligand  interactions  is  foundational  to  drug  discovery  and 

biotechnology. Early methods relied on sequence conservation, structural alignments, 

and  molecular  docking,  providing  valuable  but  sometimes  limited  insights  into 

binding  site  locations  (Brylinski  &  Skolnick,  2008).  However,  these  approaches 

often  missed  crucial  dynamic  and  structural  properties  of  proteins,  especially  in 

predicting non-canonical binding sites like allosteric regions.

In recent years, structure-based methods have become more prominent, integrating 

3D features  of  protein structures.  For  example,  algorithms like DeepSite  use 3D 

convolutional neural networks (CNNs) to predict potential binding pockets based on 

protein surface characteristics (Jiménez et al.,  2017).  In addition, models such as 

DeltaVina XGB have successfully  combined docking techniques  with  feature  re-

ranking for greater prediction accuracy (Trott & Olson, 2010).
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2.2 Machine Learning Approaches for Binding Site 

Prediction

Machine learning (ML) revolutionized the field by enabling the integration of large-

scale biological data into predictive models. These approaches often outperformed 

classical  methods  by  incorporating  evolutionary,  sequence-based,  and  sometimes 

structural  information.  Models  like  DeepBind  and  iDeep  made  groundbreaking 

strides  in  RNA-protein  interaction  prediction  using  recurrent  and  convolutional 

neural networks (Alipanahi et al., 2015).

For  protein  binding  sites,  ML  methods  enhanced  accuracy  by  leveraging  vast 

experimental datasets. However, they often lacked the spatial context of the protein 

structure,  necessitating  the  evolution  towards  more  advanced  models  like  graph-

based learning.

2.3 Deep Learning Approaches for Binding Site 

Prediction

Deep learning techniques such as  CNNs,  Graph Convolutional Networks (GCNs), 

Graph Attention Networks (GATs), and  E(n)-Equivariant GNNs have increasingly 

been  applied  to  protein-ligand  binding  predictions  (Liu  et  al.,  2020).  CNNs  are 

particularly effective in capturing local structural motifs, as evidenced in  DeepSite 

(Jiménez et al.,  2017). However, their limitation lies in the handling of non-local 

relationships.

Graph-based methods, which model proteins as 3D graphs where nodes represent 

amino acids and edges reflect spatial proximity or atomic interaction, address this 

limitation.  GCNs capture  the  overall  protein  topology,  while  GATs use  attention 
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mechanisms to highlight crucial binding residues, significantly improving prediction 

of both orthosteric and allosteric sites (Velickovic et al., 2018).

Additionally,  newer architectures like  E(n)-Equivariant  GNNs integrate geometric 

transformations  while  preserving  physical  symmetries,  leading  to  more  accurate 

modeling  of  protein  structures  (Bronstein  et  al.,  2017).  These  models  have 

demonstrated high performance,  especially  in  datasets  where structural  flexibility 

plays a key role in binding site formation (Rives et al., 2021).

2.4 Allosteric and Orthosteric Site Prediction

Orthosteric sites, typically the main active sites of proteins, are often more conserved 

and easier to predict using both sequence- and structure-based approaches. Models 

leveraging GNNs or CNNs excel in identifying these regions with high accuracy.

Allosteric sites, however, present a unique challenge due to their dynamic nature and 

lack of strong conservation patterns. These sites are often distant from orthosteric 

regions  but  play  crucial  roles  in  modulating  protein  function  through long-range 

conformational changes (Süel et al., 2003). Models like AlloPred combine structural 

and sequence data to predict these elusive binding sites, demonstrating success in 

capturing the allosteric communication between distant residues in protein networks 

(Greener et al., 2015). GNN-based models are particularly well-suited for this task, 

as they model the protein as a network of interacting residues, making it possible to 

capture the indirect communication pathways characteristic of allosteric regulation.

2.5 Explainability in Deep Learning Models

While  deep  learning  models  achieve  high  predictive  accuracy,  their  lack  of 

interpretability  presents  a  challenge  in  fields  like  drug  discovery,  where 

understanding  the  decision-making  process  is  crucial.  Graph  Attention  Networks 
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(GATs) provide a partial solution to this by using attention mechanisms to highlight 

key residues involved in predictions, offering a level of explainability (Velickovic et 

al., 2018).

Additionally, feature attribution methods such as saliency maps and Grad-CAM have 

been applied to CNNs and GNNs to visually interpret which regions of the protein 

contribute  most  to  the  prediction  (Smilkov  et  al.,  2017).  These  tools  allow 

researchers to gain insights into the functional importance of specific residues or 

binding pockets.

Explainability  is  further  enhanced  by  methods  that  decompose  predictions  into 

biologically meaningful components, helping researchers identify potentially novel 

binding sites or validate model predictions against  known experimental  data.  For 

instance,  by  analyzing  which  features  (sequence  motifs,  structural  properties) 

contribute most to the prediction, researchers can assess the biological relevance of 

the predicted binding sites.

2.6 Future Directions and Multi-Modal Integration

Looking  forward,  integrating  multi-modal  data,  including  protein  structure, 

sequence,  and evolutionary information,  promises to further enhance binding site 

prediction models. Advances in transformer-based architectures, known for capturing 

long-range  dependencies  in  sequences,  offer  new  avenues  for  improving  model 

accuracy and robustness in protein-ligand interaction prediction (Rives et al., 2021).

The application of deep learning models like  AlphaFold, which revolutionized the 

prediction of protein structures,  suggests that integrating structure prediction with 

binding  site  identification  could  lead  to  more  accurate  and  generalized  models 

(Jumper et al.,  2021).  Future work will  likely involve the development of hybrid 

models  that  combine  graph-based  approaches  with  sequence-based  transformers, 

providing a more holistic view of protein-ligand interactions.
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Chapter 3

Methodology

3.2 Dataset

3.2.1 Description of the Dataset

The dataset used in this study combines the CasBench (2023) and BioLiP datasets to 

enhance the volume and diversity of  data,  ensuring robust  model  training.  These 

datasets  are  well-curated  sources,  providing  comprehensive  annotations  of 

orthosteric and allosteric binding sites, essential for accurate binding site prediction. 

After filtering for redundancy by retaining unique macromolecules, the final dataset 

consists of approximately 3000 protein structures.

To ensure data quality and relevance, a series of filtering steps were applied. Proteins 

with  redundant  macromolecular  structures  were  combined,  and  only  unique 

structures were retained. Ligands associated with binding sites were filtered based on 

molecular weight, with a minimum threshold of 150 Da, ensuring the exclusion of 

very  small  molecules  such  as  simple  ions  that  are  less  relevant  for  binding  site 

prediction. Drug-likeness criteria, such as Lipinski's Rule of Five, were also applied 

to exclude ligands unlikely to exhibit pharmacological activity. These steps ensured 

the inclusion of biologically and chemically meaningful binding sites, increasing the 

dataset's utility for predicting potential drug targets.
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The dataset  includes a balanced distribution of binding site types,  addressing the 

class imbalance challenges commonly faced in biological datasets. Residues were 

labeled into three categories: non-binding sites (0), allosteric sites (1), and orthosteric 

sites (2). Furthermore, to leverage the benefits of semi-supervised learning, only the 

known allosteric and orthosteric sites were used during model training, while non-

binding  sites  were  treated  as  unknown.  This  strategy  aimed  to  improve  model 

generalization by encouraging it to infer unknown regions based on learned patterns 

from annotated binding sites.

This  curated  and  filtered  dataset  provides  a  robust  foundation  for  developing 

predictive  models,  ensuring  a  balance  between biological  diversity  and chemical 

relevance while minimizing noise from irrelevant or redundant data points.

3.2.2 Data Preprocessing

Several crucial steps were undertaken during data preprocessing to guarantee that the 

dataset was appropriate for both model training and evaluation.

• Protein  Chain  Separation:  Proteins  were  divided  into  individual  chains, 

considering each chain as an independent  graph.  This method enables the 

model to concentrate on the distinct structural and functional characteristics 

of each chain.

• Atom  Filtering:  Only  carbon  alpha  (Cα)  atoms  were  retained  from  the 

protein chains to simplify the graphs and preserve crucial structural details.

• Node and Edge Feature Calculation:

• Node  Features:  Each  node  (Cα  atom)  was  assessed  for  various 

attributes such as amino acid identity (e.g., ALA, ARG, ASN), tau, 

theta,  phi,  psi,  and  omega  angles,  solvent  accessible  surface  area 
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(SASA),  and  secondary  structure  components  (SSE).  These 

characteristics  encompass  the  geometric  and  physicochemical 

attributes of the amino acids.

• Edge  Features:  Edges  were  established  among  nodes  (Cα  atoms) 

depending on their  close proximity in space.  The characteristics  of 

these edges involved the distance and cosine angle between linked 

atoms, offering insight into the spatial connections within the protein 

structure (Rao et al., 2020).

• Labeling:  Nodes were categorized as either orthosteric,  allosteric,  or non-

binding sites using annotations found in the CasBench dataset. Labeling is 

essential for predicting binding sites in supervised learning.

• Normalization and Scaling: To ensure that all features contribute equally to 

the model training process, the node and edge features were normalized and 

scaled appropriately.

The raw protein data  was processed to  create  organized graphs with informative 

features,  suitable  for  inputting  into  the  GAT  model.  This  methodical  way  of 

preparing data was crucial for understanding the intricate connections within protein 

chains, ultimately improving the model's accuracy in predicting binding sites.

3.3 Feature Extraction

3.3.1 Node Features

Node features are critical for representing the individual properties of amino acids 

within  protein  structures  (Mataeimoghadam et  al.,  2020).  The  following  features 

were extracted for each carbon alpha (Cα) atom in the protein chains:
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• Amino Acid Type (One Hot Encoding): The amino acid type (e.g., Alanine 

[ALA], Arginine [ARG]) is encoded as a one-hot vector. For example, if there 

are 20 standard amino acids, this feature will be a 20-dimensional vector with 

a single 1 indicating the amino acid type. 

• Dihedral Angles: The backbone dihedral angles ϕ (phi), ψ (psi), ω (omega), τ 

(tau), and  θ (theta) are calculated for each amino acid (Figure 3.1). These 

angles describe the geometric configuration of the protein backbone, and they 

are critical for capturing the 3D folding pattern of the protein. 

The angles are calculated as follows:

ϕ (phi): The angle between the C'-N-CA-C' atoms.

ψ (psi): The angle between the N-CA-C'-N atoms.

ω (omega): The dihedral angle that describes the rotation around the peptide 

bond between C' and N.

τ (tau): Torsion angle between the bonds around the Cα atoms.

θ  (theta):  Another  dihedral  angle  important  for  describing  secondary 

structure.

These angles are extracted from the protein's 3D structure using the known Cartesian 

coordinates of the atoms, applying vector cross-product formulations to compute the 

angle between planes formed by three consecutive atoms.

Mathematically, dihedral angles can be computed using the following formula:
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Angle=arctan 2(b1 ​⋅(b 2 ​×b 3 ​) , b 2 ​⋅(b1 ​×b 3 ​)) (3.1)

where bi are bond vectors. 

• Solvent Accessible Surface Area (SASA): SASA measures how much of the 

amino acid is exposed to the surrounding solvent. This feature is critical for 

understanding which residues are likely to be part of binding sites. A high 

SASA value indicates that the residue is more exposed and likely accessible 

to  ligands.  SASA is  calculated  using  a  rolling  ball  algorithm  over  the 

molecular  surface  also  called  as  Shrake–Rupley  algorithm (Shrake  et  al., 

1973).

• Secondary Structure Elements (SSE): For each amino acid, its secondary 

structure  element  (e.g.,  α-helix,  β-sheet,  or  coil)  is  encoded  as  a  one-hot 

vector. These secondary structures are identified using the DSSP algorithm, 

which assigns each residue a secondary structure class based on the hydrogen 

bonding pattern.
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Figure 3.1: Representation of dihedral angles. While φ (phi), ψ (psi) and ω (omega) represent angles 
between dihedral angles of the peptide backbone; (τ) tau and θ (theta) represent dihedral angle between 

first 3 and 4 carbon alpha (Cα) atoms (Broz et al., 2023). 



• Coordinates: The 3D coordinates of the Cα atom are also used as features to 

capture spatial information. These coordinates are directly extracted from the 

protein’s PDB file. 

3.3.2 Edge Features

Edges in the graph represent interactions between amino acids based on their spatial 

proximity. The following features were extracted for each edge:

• Euclidean Distance: The Euclidean distance between two nodes i and j is 

calculated as: 

d ij=√( x i−x j)
2+( y i− y j)

2+( z i−z j)
2 (3.2)

where xi , y i , zi and x j , y j , z j the 3D coordinates of the two nodes. 

• Cosine Angle: The cosine of the angle formed by the vectors connecting the 

two nodes to their respective neighbors is calculated to capture the spatial 

orientation between them. This is computed using the dot product: 

cos(θ )=
v i . v j

|v i|.|v j|
(3.3)

where v i and v j are vectors between the nodes. 

3.3.3 Graph Construction

The nodes in the graphs were created by identifying Cα atoms, while edges were 

determined by spatial proximity: 
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• Node Definition: Every Cα atom within the protein sequence was depicted as 

a node in the graph, with characteristics obtained as detailed earlier.

• Edge Definition: Edges were generated depending on the spatial proximity of 

Cα  atoms.  A boundary  distance  was  employed  to  decide  if  a  connection 

should be created between two vertices. This specific limit was selected in 

order to achieve a balance between capturing important connections and not 

adding too much unnecessary interference.

• Edge Index: Calculation of the edge index matrix determined the topology of 

the graph by listing connected node pairs. 

Through systematically extracting these characteristics and building the graphs, we 

successfully captured both the unique attributes of amino acids and their interactions 

in the protein structure. This thorough feature extraction procedure is essential for 

allowing the  GAT model  to  successfully  acquire  knowledge and forecast  protein 

binding locations.

3.4 Model Architecture

3.4.1 Graph Attention Network (GAT)

The GAT architecture integrates multi-head attention mechanisms to allow the model 

to focus on the most relevant nodes in the protein graph (Figure 3.2). This approach 

enhances the model's ability to capture intricate relationships between amino acids 

and potential binding sites. 
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• Input Features: The input consists of node features, edge indices, and edge 

attributes. Node features include structural and biochemical properties, while 

edge features encode distances and angles between nodes. 

• Attention  Mechanism:  Each  GAT  layer computes  attention  coefficients 

between connected nodes,  enabling the model to weigh the importance of 

each  node's  neighbors  dynamically.  This  is  achieved  using  the  GATConv 

layer from PyTorch Geometric, which updates node features based on these 

attention weights (Figure 3.3). The attention coefficients are computed as:

aij=
exp(LeakyRelu(a⊤ [Whi ]||[Wh j ]))

∑
k ∈N (i)

exp(LeakyRelu(a⊤ [Whi ]||[Wh j ]))
(3.4)

where  hi is the feature vector of node  i,  W  is a weight matrix, and  a is a 

learnable vector that computes the importance of the edge between nodes i and 

j. 
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Figure 3.2: This flowchart illustrates the pipeline for protein binding site 
prediction using a Graph Neural Network (GNN)



• Architecture  Design:  The  model  contains  multiple  attention  layers:  Five 

Attention Layers with hidden dimensions of 256,  Dropout Regularization to 

mitigate  overfitting  and  enhance  generalization,  LeakyReLU  Activation 

(Figure 3.4) to introduce non-linearities and softmax  function to produce a 

probability distribution over the binding site classes on the output layer.
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Figure 3.3: This diagram illustrates the message-passing process in a Graph 
Attention Network (GAT) 



LeakyReLU defined as:

LeakyReLU ( x)=max (0 , x)+α .min(0 , x) (3.5)

Here, α  (alpha) is a small positive constant such as 0.01, which allows a small 

gradient when the input x is less than or equal to zero. This helps in keeping 

the gradient flow alive during the training of deep neural networks, to avoid 

the dying ReLU problem where neurons permanently output zeros. 

• Output:  The final layer produces probabilities for each node belonging to 

either  allosteric  or  orthosteric  binding  sites.  The  attention  weights  also 
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Figure 3.4: The plot illustrates the behavior of the Leaky ReLU 
activation function with a negative slope of 0.1. Unlike the standard 
ReLU, which outputs zero for all negative input values, Leaky ReLU 

allows a small negative output proportional to the input, ensuring a non-
zero gradient even when the input is negative. This characteristic helps 

mitigate issues related to the "dying ReLU" problem, where neurons can 
become inactive during training.



provide  insights  into  the  model's  decision-making  process,  aiding  in 

explainability 

Given a vector z of raw class scores from the final layer of a model,  the 

softmax function is defined for each element of zi the vector as: 

Softmax ( z i ​)=
e z i

∑
j=1

n

e z j
(3.6)

Where:

e is the base of the natural logarithm.

zi is the score for class i.

n is the total number of classes in the vector z.

The denominator is the sum of the exponential scores for all classes, which 

normalizes the output to be a probability distribution.

3.4.2 Graph Convolutional Network (GCN)

The  GCN architecture  is  designed  to  learn  node  representations  by  aggregating 

features  from  neighboring  nodes  in  the  protein  graph.  The  model  leverages 

GCN2Conv layers, which improve upon traditional GCNs by incorporating residual 

connections and enhanced message-passing capabilities.

• Input Features:  Node features  include amino acid properties,  while  edge 

indices define the graph's connectivity.
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• Layer Configuration: Initial Linear Layer  projects input node features to a 

hidden dimension. Multiple GCN2Conv Layers perform message-passing and 

feature  aggregation  with  residual  connections  to  stabilize  learning. 

LeakyReLU Activation and  Dropout are applied between layers to improve 

robustness.

• Residual  Connections:  Each layer  adds  the  original  node  features  to  the 

transformed  features,  facilitating  deeper  network  architectures  without 

vanishing gradient issues.

• Output:  The  final  linear  layer  maps  the  hidden  representations  to 

probabilities  for  binding  site  classification  (allosteric  or  orthosteric).  This 

design makes the GCN effective for capturing local structural patterns within 

proteins.

3.4.3 Equivariant Graph Neural Network (EGNN)

The Equivariant Graph Neural Network (EGNN) employed in this study follows a 

design that maintains E(3) equivariance ensuring that the model's predictions remain 

consistent  under  geometric  transformations  like  rotations  and translations  (Figure 

3.5).  The  architecture  comprises  a  sequence  of  Equivariant  Graph Convolutional 

Layers  (EGCL),  which  process  both  the  node  features  and  spatial  coordinates 

simultaneously.
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• Input Features:  The input includes node features representing amino acid 

properties  and edge features representing the relationships between nodes, 

such as distances and angles. Additionally, the model takes 3D coordinates of 

nodes within the protein structure.

• Layer Configuration: Each EGCL consists of three main components:

• An Edge Multilayer Perceptron (MLP) that processes node and edge 

features to compute interactions.

• A Node MLP that updates node features based on aggregated edge 

information.
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Figure 3.5: This figure illustrates the concept of rotation equivariance in a graph neural 
network denoted as φ (Satorras et al., 2021).



• A Coordinate MLP that updates node coordinates using edge features 

to preserve geometric information.

• Prediction Outputs: The EGNN produces:

• Updated  Node  Features:  Indicating  potential  binding  site 

classifications (allosteric or orthosteric).

• Predicted  Ligand  Coordinates:  Dynamic  positions  for  possible 

ligand  interactions,  which  can  vary  in  number  based  on  the 

complexity of the ligand structure. Since the data is not embedded as a 

ligand-pocket  pair,  it  does  not  directly  give  the  ligand  shape  but 

provides information about the possible ligand region. Mean Squared 

Error  (MSE)  is  used  for  calculating  loss  between  coordinates.  It 

defined as:

MSE= 1
N ∑

i=1

N

( y i− ŷ i)
2 (3.7)

Where:

N  = Number of data points

y i = Actual value (ground truth) for the i-th observation

ŷ i = Predicted value for the i-th observation

This model is particularly effective for handling complex spatial  data inherent to 

protein structures, making it suitable for predicting potential ligand positions rather 

than strict binding sites.
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3.5 Training Process

3.5.1 Data Splitting

The  dataset  was  divided  into  training,  validation,  and  test  sets  to  ensure  robust 

evaluation of the model's performance as 8:1:1 ratio.

3.5.2 Training Configuration

In  order  to  maintain  a  balance  between  computational  efficiency  and  training 

stability, a batch size of 64 was utilized. The initial learning rate was set to 0.01 and 

was adjusted using a MultiStepLR learning rate scheduler at 75, 150, and 225 epochs 

with a gamma of 0.5. The Adam optimizer was employed for its ability to effectively  

manage sparse gradients and ensure a stable training process. To avoid overfitting, 

training would stop if the validation F1 score did not improve for 10 consecutive 

epochs.  The  model  was  trained  using  the  binary  cross-entropy  with  logits  loss 

function,  which is  suitable  for  multi-class  classification tasks  (Goodfellow et  al., 

2018)  for  300  epochs,  with  the  best-performing  model  was  saved  according  to 

validation performance. This loss function defined as:

BCEWithLogitsLoss ( y , ŷ)=max ( ŷ ,0)− ŷ⋅y+log (1+e−| ŷ|) (3.8)

Where  y is the ground truth label (0 or 1),  ŷ is the predicted logit (a real-valued 

number, before applying the sigmoid function).

When dealing with a batch of data, the loss is typically averaged over all instances in  

the batch. The formula for the batch loss is:
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BCEWithLogitsLoss(Y ,Ŷ )= 1
N ∑

i=1

N

max ( ŷ i ,0)− ŷ i⋅y i+log 1+e−| ŷ i| (3.9)

Where: Y  is the vector of ground truth labels, Ŷ  is the vector of predicted logits, N  is 

the  number  of  instances  in  the  batch. This  formulation  helps  avoid  numerical 

instability issues that can arise when directly computing the binary cross entropy on 

logits.

3.5.3 Evaluation Metrics

The model's performance was evaluated using several metrics, reflecting different 

aspects of its predictive power:

• F1 Score: Assesses the balance between precision and recall.

F 1= 2⋅Precision⋅Recall
Precision+Recall

(3.10)

• Precision: Measures the accuracy of positive predictions.

Precision= TP
TP+FP

(3.11)

• Recall: Evaluates the model's ability to identify all relevant instances.

Recall= TP
TP+FN

(3.12)

• AUC-ROC: Analyzes the trade-off between true positive and false positive 

rates.
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• Brier Score: Measures the accuracy of probabilistic predictions. It evaluates 

the mean squared difference between predicted probabilities and the actual 

outcomes.

Brier Score= 1
N ∑

i=1

N

( f i−oi)
2 (3.13)

Where: 

N  = Number of predictions

f i = Predicted probability for the  i-th event (e.g.,  probability of a positive 

outcome)

oi = Actual outcome for the i-th event (1 if the event happened, 0 otherwise)  

• Logarithmic  Loss:  Measures  the  performance  of  a  classification  model 

where the prediction is a probability value between 0 and 1.

log Loss=− 1
N
∑
i=1

N

[ y i log ( pi)+(1− y i) log (1− pi)] (3.14)

Where:

N  = Number of predictions

y i = Actual outcome (1 for positive class, 0 for negative class) for the  i-th 

instance 

pi = Predicted probability that the i-th instance belongs to the positive class 

(must be between 0 and 1)
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• Task Loss: Specific losses for orthosteric and allosteric site predictions were 

calculated to assess the model's ability to differentiate between these classes.

3.6 Summary

EGNN focuses  on  maintaining  geometric  consistency  and  is  well-suited  for 

predicting potential ligand positions due to its equivariant properties. GAT leverages 

attention mechanisms to dynamically weigh neighbor contributions, making it ideal 

for identifying critical nodes in complex graphs. GCN uses efficient message-passing 

and  residual  connections  to  capture  structural  information,  excelling  in  tasks 

requiring aggregated local features.

Table 3.1: Summary of models

Model Setting Loss Function Objective

GCN Supervised Graph 
Reconstruction, 

Contrastive Loss 

Learn node 
embeddings 

GCN Semi-Supervised Cross-Entropy + 
Unsupervised 

Regularization 

Predict node labels 
for known sites 

GAT Supervised Graph 
Reconstruction, 

Contrastive Loss 

Capture attention-
based embeddings 

GAT Semi-Supervised Cross-Entropy + 
Unsupervised 

Regularization 

Predict node labels 
while leveraging 

attention 

EGNN Semi-Supervised Binary Cross-
Entropy + L2 

(MSE) for 
Coordinates 

Predict allosteric 
sites and relative 

ligand coords 
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These architectures complement each other by addressing different aspects of protein 

binding site prediction (Table 3.1).
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Chapter 4

Results and Discussion

4.1 Overview of Results 

This section discusses the outcomes of various graph neural network (GNN) models

—GAT,  GCN, and  EGNN—for predicting allosteric and orthosteric binding sites. 

The  models  were  evaluated  using  supervised  and  semi-supervised  settings  to 

determine  the  most  effective  approach  for  accurate  binding  site  detection.  The 

datasets  used  include  a  combined  version  of  CasBench and  BioLip,  comprising 

approximately 6000 protein samples.

 4.2 Performance Metrics and Comparisons

The performance metrics—F1 score, AUC (Area Under the Curve), and Task Loss—

were plotted to visualize the learning curves and stability of each model. The test 

metrics for each model are illustrated in Figure 4.1. 
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GAT (Graph Attention  Network)  models  demonstrated  stable  performance  across 

epochs, achieving relatively high F1 scores and AUC values. In both supervised and 

semi-supervised  settings,  GAT  exhibited  consistent  learning  and  minimal 

fluctuations.  GCN  (Graph  Convolutional  Network)  models  displayed  moderate 

performance  with  more  variability  compared to  GAT.  The  semi-supervised  GCN 

model  showed slight  improvements  in  AUC compared  to  the  supervised  setting, 
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Figure 4.1: F1 metrics comparison for each model

Figure 4.2: AUC - ROC metrics comparison for each model



indicating the utility of leveraging unlabeled data. EGNN (Equivariant Graph Neural 

Network) showed high performance initially but  plateaued rapidly.  This  behavior 

could be attributed to the model's reliance on structural information, which limits 

generalization  when  ligand  molecules  are  small  or  less  complex.  The  rapid 

convergence of Task Loss for the EGNN model suggests that the model is learning to 

differentiate  between  binding  sites  efficiently.  However,  it  does  not  always 

generalize well for smaller ligands like ions, which may impact the applicability in 

certain biological contexts. 

4.3 Importance Analysis 

4.3.1 EGNN Feature and Edge Importance

The Equivariant Graph Neural Network (EGNN) demonstrates significant insights 

into the relative importance of different feature groups for predicting binding sites. 

The analysis is supported by two key visualizations: the overall feature importance 

(Figure 4.3) and the average saliency map across nodes (Figure 4.4). 
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Figure 4.3: Feature importance of EGNN



Backbone dihedral angles such as phi (ϕ), psi (ψ), and omega (ω) emerge as the most 

critical  features  among  node  attributes,  showcasing  their  role  in  capturing  the 

geometric  configuration  of  the  protein  backbone.  These  angles  are  pivotal  in 

describing secondary structure and folding patterns.  Solvent-accessible surface area 

(SASA) and secondary structure elements (α-helices, β-sheets, and coils) also play a 

substantial role, as they relate directly to a residue's likelihood of being part of a  

binding  site.  Amino  acid  types  like  arginine  (ARG),  lysine  (LYS),  and  histidine 

(HIS) exhibit  higher  importance,  which  aligns  with  their  known  involvement  in 

protein-ligand interactions due to their charged or polar side chains. Among the edge 

attributes,  cosine angles contribute the most to binding site prediction, highlighting 

the  importance  of  relative  orientation  between  connected  nodes.  This  finding 

reinforces  the  significance  of  geometric  interactions  within  the  protein  structure. 
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Figure 4.4: Saliency map of EGNN



Sequence-based connectivity exhibits  moderate importance,  reflecting the need to 

incorporate relational data alongside spatial information. The 3D spatial coordinates 

(x, y, z) demonstrate a balanced and substantial contribution to model performance, 

confirming the necessity of geometric awareness for identifying binding pockets. 

The saliency analysis (Figure 4.4) reinforces the importance of dihedral angles and 

SASA, as well as the role of specific amino acids in binding site prediction. Residues 

such as arginine (ARG), lysine (LYS), and leucine (LEU) consistently exhibit higher 

saliency, emphasizing their functional relevance in protein-ligand interactions.

Overall,  the  EGNN model  leverages a  diverse  set  of  node,  edge,  and coordinate 

features to achieve robust binding site predictions. Its ability to integrate geometric 

consistency with structural attributes makes it particularly well-suited for capturing 

the complexities of protein-ligand interactions.
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4.3.2 GAT and GAT (Semi-Supervised) Feature Importance

36

Figure 4.5: Feature importance of GAT (semi - supervised)
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Figure 4.6: Saliency of GAT (semi - supervised)
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Figure 4.7: Feature importance of GAT



The  feature  importance  analysis  for  the  Graph  Attention  Network  (GAT)  model 

reveals significant insights into how the model utilizes various features to predict 

binding sites (Figure 4.5, Figure 4.7). Among the node features, lysine (LYS) and 

leucine  (LEU)  demonstrate  high  importance,  reflecting  their  role  in  stabilizing 

protein structures and contributing to binding interactions. Backbone dihedral angles 

such as phi (ϕ), psi (ψ), and tau (τ) emerge as the most critical features, indicating 

their  importance  in  capturing  the  geometric  folding  patterns  of  proteins,  which 

directly influence the identification of binding sites. Solvent Accessible Surface Area 

(SASA)  and  secondary  structural  elements,  particularly  alpha-helices  and  beta-

sheets,  also show moderate importance, highlighting their relevance in describing 

residue exposure and structural arrangement.
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Figure 4.8: Saliency map of GAT



For the edge features, cosine angle and sequence distance stand out as significant 

contributors,  underscoring  the  importance  of  spatial  orientation  and  topological 

relationships  between  residues.  In  contrast,  Euclidean  distance  is  found  to  have 

comparatively  lower  importance,  suggesting  that  relative  orientation  and 

connectivity  are  more  defining  factors  for  binding  site  prediction  than  absolute 

distances.

The  saliency  map  analysis  further  provides  detailed  insights  into  the  average 

contribution of node features across predictions (Figure 4.6, Figure 4.8). Residues 

like  glycine  (GLY),  lysine  (LYS),  and  arginine  (ARG)  are  particularly  salient, 

aligning with their biochemical properties, such as flexibility and the ability to form 

hydrogen bonds or ionic interactions. Hydrophobic residues such as leucine (LEU) 

and  valine  (VAL)  also  show  notable  saliency,  indicating  their  potential  role  in 

forming hydrophobic pockets. Structural features, particularly the backbone dihedral 

angles phi, psi, and tau, emerge as the most salient, emphasizing the role of protein 

geometry in binding site identification. Among secondary structural elements, beta-

sheets exhibit relatively lower saliency compared to alpha-helices, potentially due to 

their less dynamic role in forming binding pockets. 
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This  balanced  distribution  of  attention  weights  (Figure  4.9)  indicate  the  model's 

ability to capture relevant interactions within the protein graph structure.

Overall, the GAT model effectively captures geometric and structural details through 

its reliance on node features like dihedral angles and SASA, while edge features like 

sequence distance and cosine angle underscore the importance of relational data. The 

balanced attention weights suggest the need for further optimization to enhance the 

model's ability to differentiate more clearly between orthosteric and allosteric sites.
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Figure 4.9: Average attention weights for GAT model



4.3.3 GCN and GCN (Semi-Supervised) Feature Importance
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Figure 4.10: Feature importance of GCN (semi - supervised)
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Figure 4.11: Saliency map of GCN (semi - supervised)
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Figure 4.12: Feature importance of GCN



The  Graph  Convolutional  Network  (GCN)  model  demonstrates  unique 

characteristics in its utilization of features for predicting protein binding sites. Node 

features, particularly those representing structural and physicochemical properties, 

exhibit balanced importance across various attributes. Unlike models with dynamic 

mechanisms  like  attention,  GCN  relies  heavily  on  the  global  structural  context 

provided by node and edge features (Figure 4.10, Figure 4.12).

In  the  context  of  node  features,  amino  acid-specific  properties  such  as  solvent-

accessible surface area (SASA), secondary structure elements (e.g., alpha-helix and 

beta-sheet), and dihedral angles (phi, psi,  and omega) are consistently influential.  

SASA stands out as the most impactful node feature, likely due to its relevance in 

identifying  accessible  regions  for  binding.  Among  amino  acid-specific  features, 
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Figure 4.13: Saliency map of GCN



residues like lysine (LYS), histidine (HIS), and glutamate (GLU) demonstrate higher 

importance.  These  residues  often  play  critical  roles  in  protein-ligand interactions 

through electrostatic and hydrogen-bonding mechanisms.

Edge features,  particularly those capturing geometric relationships such as cosine 

angles and distances, are critical for understanding spatial connectivity. The reliance 

on these features indicates that the GCN model effectively captures the local and 

global  topologies  of  protein  graphs.  However,  the  uniform  importance  of  edge 

features suggests a limitation in dynamically prioritizing certain interactions over 

others, unlike attention-based models.

The saliency map analysis provides additional insights, highlighting the significance 

of specific node features (Figure 4.11, Figure 4.13). Structural features such as SASA 

and  secondary  elements  continue  to  dominate,  while  residues  like  lysine  (LYS), 

glycine (GLY), and histidine (HIS) emerge as critical for binding site prediction. The 

saliency values  reveal  that  GCN effectively  captures  relevant  patterns  across  the 

protein  graph,  emphasizing  residues  with  higher  reactivity  and  structural 

accessibility.

The semi-supervised GCN variant shows a similar trend but with broader feature 

utilization (Figure 4.10). This indicates the model's ability to generalize better by 

incorporating  unlabeled  data.  The  feature  importance  remains  balanced,  with 

structural and geometric features contributing equally. This balance highlights the 

semi-supervised  model's  robustness  in  capturing  both  local  and  global  graph 

properties, enhancing its predictive accuracy.

In summary, the GCN model relies on a well-distributed feature set, emphasizing 

structural and geometric properties. While its reliance on global structural features 

ensures stability, the lack of dynamic prioritization of specific interactions may limit 

its adaptability to complex binding scenarios. The semi-supervised variant addresses 

some  of  these  limitations  by  leveraging  additional  unlabeled  data,  resulting  in 

improved generalization and broader feature relevance.
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4.3 Comparison Across Models

EGNN outperforms GAT and GCN in capturing spatial and geometric information, 

as evidenced by the higher importance of 3D coordinates (Figure 4.1, Figure 4.2). 

This  ability  to  integrate  spatial  data  ensures  a  detailed  understanding  of  protein 

structures and potential ligand-binding regions. In contrast, GAT models excel with 

their attention mechanisms, which dynamically weigh node and edge contributions, 

providing flexibility in emphasizing the most relevant features. GCN models, while 

effective,  demonstrate  a  more uniform distribution of  feature  importance,  relying 

heavily  on  global  structural  features  rather  than  dynamically  prioritizing  local 

interactions.

Semi-supervised  approaches  consistently  exhibit  broader  feature  utilization  and 

improved  generalization,  as  they  effectively  incorporate  unlabeled  data  into  the 

learning process. The semi-supervised GAT and GCN models display a more diverse 

set of important features compared to their supervised counterparts, enhancing their 

ability to generalize to new data. However, while semi-supervised learning appears 

advantageous in theory,  practical  results  show mixed outcomes depending on the 

binding site type.

For  allosteric  sites,  semi-supervised  learning  performs  exceptionally  well,  as  the 

broader  distribution  of  predictions  aligns  with  the  diffuse  nature  of  these  sites. 

However,  for  orthosteric  sites,  which  often  require  sharper  and  more  localized 

predictions,  supervised  learning  tends  to  perform  better  in  certain  cases.  Semi-

supervised methods, when predicting unknown site classes after training, sometimes 

spread predictions across the entire protein. While this approach is advantageous for 

capturing diffuse or non-obvious binding sites like allosteric regions, it can dilute the 

precision  needed  for  orthosteric  sites,  where  sharper,  focused  predictions  are 

essential. This limitation suggests that a hybrid approach or careful tuning of semi-

supervised methods might be necessary to optimize predictions across both types of 

binding sites.
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4.4.4 Comparison with Previous Studies

In  this  section,  we compare the proposed  Graph Neural  Network (GNN) models 

(GAT, GCN, and EGNN) for protein binding site prediction with related works in the 

field.  While  the  specific  tasks  and datasets  vary among these  studies,  they offer 

valuable insights into the capabilities and limitations of different graph-based models 

in computational biology. 

Table  4.1  summarizes  the  performance  metrics  of  different  models  from  recent 

studies,  focusing on protein binding site prediction tasks. The metrics include F1 

Score, Precision, Recall, AUC-ROC, and specific model attributes.

Table 4.1: Comparison of Performance Metrics with Similar Studies

Study Model/

Method 

Dataset Featues Task F1 

Score 

Precision Recall AUC-

ROC 

DCC DC MSE Special Features 

Zitnik et al. 

(2019) 

GNN Protein-

Protein 

Protein 

Features 

Modeling 

Polypharma

cy 

N/A N/A N/A 0.87 N/A N/A N/A GNNs, Interaction 

Prediction 

Satorras et 

al. (2021) 

EGNN QM9 Atom Types, 

Charges, 

Bond Types 

Molecular 

Property 

Prediction 

N/A N/A N/A N/A N/A N/A 0.07 Equivariant GNN, 

Structural Features 

Sestak and 

et al (2024) 

VN-EGNN COACH42

0, 

HOLO4K, 

PDBbind20

20 

Atomic 

Coordinates, 

Virtual Nodes, 

Distance 

Metrics 

Protein 

Binding Site 

Identificatio

n

N/A N/A N/A N/A 0.61 0.75 N/A Equivariant GNN, 

Structural Features  

Smith et al. 

(2023) 

GrASP COACH420

(Mlig+), 

HOLO4K(

Mlig+) 

Atomic 

Coordinates, 

Distance 

Metrics 

Identifying 

Druggable 

Binding 

Sites

N/A 0.71 0.91 N/A N/A N/A N/A Enhanced GAT, Instance 

and semantic 

segmentation

Abdollahi et 

al. (2023) 

Nodecode

r 

BioLip AlphaFold2 

Predictions 

Residue 

Characteriz

ation

N/A N/A N/A 0.75 N/A N/A N/A AlphaFold Integration, 

GCN 
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Zitnik et al. (2019) utilized a  GNN model for modeling polypharmacy side effects 

based on protein-protein interactions and drug information. Their task focuses on 

interaction prediction rather than binding site identification. Their high  AUC-ROC 

(0.872) underscores the effectiveness of GNNs in capturing relational data, a concept 

that aligns with our study’s goal of modeling intricate protein interactions. Satorras et 

al. (2021) introduced the Equivariant Graph Neural Network (EGNN) for molecular 

property prediction on the QM9 dataset. The EGNN's ability to maintain rotational 

and translational invariance (with an MSE of 0.071) highlights the importance of 

structural features,  a strength that our study leverages for binding site prediction. 

Sestak et al. (2024) developed the VN-EGNN for protein binding site identification 

on  datasets  like  COACH420,  HOLO4K,  and PDBbind2020.  Their  use  of  virtual 

nodes  and  distance  metrics  resulted  in  a  DCC  of  0.605 and  DCA of  0.750, 

demonstrating  the  potential  of  equivariant  models  for  capturing  protein-ligand 

interactions.  Our  method  similarly  benefits  from  the  geometric  consistency  of 

EGNNs but focuses on differentiating between orthosteric and allosteric sites. Smith 

et al. (2023) proposed  GrASP, an enhanced GAT model, for identifying  druggable 

binding sites. Their model achieved a  Precision of 0.71 and a  Recall of 0.914 on 

datasets  such  as  COACH420(Mlig+)  and  HOLO4K(Mlig+).  This  highlights  the 

effectiveness of attention-based models in identifying critical regions within protein 

structures, which parallels our use of GAT for dynamic node-weighting. Abdollahi et 

al.  (2023) introduced  Nodecoder,  a GCN-based model that integrates  AlphaFold2 

predictions  and  residue/atom  features  for  characterizing  residues  in  protein 

structures. Their model achieved an  AUC-ROC of 0.754, illustrating the benefit of 

integrating structure prediction tools with GNNs. Our approach similarly employs 

GCNs for capturing local structural features but extends the model's capability by 

combining  it  with  EGNN and  GAT architectures  for  a  more  comprehensive 

prediction. 

While the related works offer valuable insights, our study presents several unique 

contributions: 
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We employ  GAT, GCN, and EGNN collectively, leveraging the strengths of each 

model to predict both orthosteric and allosteric binding sites with high accuracy. Our 

dataset  combines  CasBench  (2023) and  BioLiP,  providing  a  diverse  set  of 

annotations  and  addressing  class  imbalance  challenges.  We  incorporate  a 

comprehensive set  of  node and edge features,  including  dihedral  angles,  solvent-

accessible surface area (SASA), and secondary structure elements (SSE), enhancing 

the models' ability to capture intricate protein characteristics. By employing attention 

mechanisms (GAT) and saliency maps, we improve the interpretability of the model's 

predictions, aiding in the identification of critical residues involved in binding. The 

EGNN model  ensures  that  predictions  remain  consistent  under  geometric 

transformations, making it well-suited for handling the spatial complexity of protein 

structures. 

4.4.5 Discussion of Case Studies

To better understand the performance of our models, we present two case studies 

where the EGNN model is used to predict binding sites and potential ligand regions. 

These examples illustrate cases with  high prediction accuracy and  low prediction 

accuracy, providing insights into the model's strengths and limitations. 

In  this  case  study  of  6oog,  the  EGNN  model demonstrates  high  accuracy  in 

predicting both binding sites and potential ligand regions (Figure 4.6, Figure 4.7). 

The predicted binding sites (red regions) overlap well with the actual regions (green 

regions), showcasing the model's capability in handling stable protein structures. The 

clear, well-defined pockets and structural stability facilitate accurate predictions. The 

EGNN model effectively captures spatial and geometric relationships, contributing to 

its success in this scenario. However in the other case study of 6oix, the cyan spheres 

highlight  potential  ligand regions  with  a  very  high  error  and the  predictions  for 

binding sites show limited overlap with actual binding sites (Figure 4.8, Figure 4.9). 
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Figure 4.14: The green spheres indicate the predicted ligand regions based on the EGNN 
model. The color gradient on the protein structure (6oog) represents the model's 

probability predictions for allosteric sites, with blue showing the lowest probabilities and 
red showing the highest probabilities. This visualization demonstrates the model's ability 

to highlight potential allosteric regions in the protein (Schrödinger, LLC, 2015).
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Figure 4.15: The left image displays the actual allosteric binding sites on the protein 
(6oog) surface, highlighted in green. The right image visualizes the model-predicted 
probabilities of allosteric sites, with a gradient from blue (lowest probability) to red 
(highest probability). This comparison illustrates the alignment and discrepancies 
between the ground truth and the model's predictions (Schrödinger, LLC, 2015). 
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Figure 4.16: The cyan spheres indicate the predicted ligand regions based on the EGNN 
model. The color gradient on the protein structure (6oix) represents the model's 

probability predictions for allosteric sites, with blue showing the lowest probabilities and 
red showing the highest probabilities. This visualization demonstrates the model's ability 

to highlight potential allosteric regions in the protein (Schrödinger, LLC, 2015). 



Orthosteric  sites  are  typically  localized  in  a  single,  well-defined region within  a 

protein structure, which binds the endogenous ligand directly. The model effectively 

predicted  these  sites  with  high  confidence,  but  further  refinement  is  required  to 

eliminate irrelevant or spurious predictions. Orthosteric sites tend to exhibit distinct 

geometric  and  chemical  environments.  To  address  this,  we  applied  advanced 

geometric filtering, which ensures that predictions align with the typical structural 

constraints of orthosteric sites, such as proximity to active residues and conserved 

functional motifs. For example, in the case of 6oix, the predicted orthosteric region 

aligned well with the experimentally validated binding site, reinforcing the model's 

utility in such contexts.  However,  without filtering, some additional regions were 

flagged, potentially reflecting overgeneralization by the model.

Unlike orthosteric sites, allosteric binding regions can be distributed across different 

regions of the protein, often distant from the active site. The model's predictions for 

allosteric sites captured multiple potential binding regions, reflecting their inherent 

diversity. Allosteric site predictions are particularly useful in drug discovery, where 
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Figure 4.17: The left image displays the actual allosteric binding sites on the protein 
(6oix) surface, highlighted in green. The right image visualizes the model-predicted 
probabilities of allosteric sites, with a gradient from blue (lowest probability) to red 
(highest probability). This comparison illustrates the alignment and discrepancies 
between the ground truth and the model's predictions (Schrödinger, LLC, 2015). 



targeting  these  sites  can  offer  therapeutic  advantages  such  as  avoiding  direct 

competition with endogenous ligands. In the case of  6oog, the model successfully 

identified several potential allosteric sites. Notably, these sites aligned with regions 

known for conformational flexibility, which is a hallmark of allosteric regulation. 

The  model's  ability  to  predict  multiple  plausible  allosteric  sites  highlights  its 

potential for hypothesis generation in allosteric drug design. 
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Chapter 5

Conclusion and Future Work

In this study, we developed and evaluated a computational approach for predicting 

orthosteric  and allosteric  binding sites  in  proteins  using  Graph Neural  Networks 

(GNNs). By employing Graph Attention Networks (GAT) (Velickovic et al., 2018), 

Graph  Convolutional  Networks  (GCN)  (Kipf  & Welling,  2017),  and  Equivariant 

Graph Neural  Networks (EGNN) (Satorras et  al.,  2021),  our models  successfully 

integrated structural and physicochemical features of proteins to identify potential 

binding regions. The combination of these models allowed us to harness the strengths 

of  dynamic  attention  mechanisms,  effective  message  passing,  and  geometric 

consistency, leading to a robust prediction framework.

Our models were trained on a combined dataset of CasBench (2023) (Jiang et al., 

2019) and BioLiP (Yang et al., 2013), which provided a diverse and balanced set of 

annotations  for  binding  site  prediction.  The  results  demonstrated  that  EGNN 

performed  particularly  well  for  proteins  with  stable  and  well-defined  structures, 

accurately predicting binding sites and potential ligand regions (Sestak et al., 2024). 

In contrast, the GAT and GCN models excelled at capturing local structural patterns 

and relational features within the protein graphs (Smith et al., 2023; Abdollahi et al., 

2023).

Despite  these  promising  results,  the  study  highlighted  challenges  in  predicting 

binding sites for proteins associated with small-sized ligands and those exhibiting 
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significant structural flexibility (Keskin et al., 2008; Karplus & McCammon, 2002). 

One of the key challenges observed was overgeneralization,  particularly in semi-

supervised models. Semi-supervised approaches tend to spread predictions across the 

entire protein structure,  leading to less specificity for orthosteric sites,  which are 

typically  localized  and  well-defined.  While  this  approach  performed  well  for 

allosteric  site  predictions,  which  often  involve  multiple  regions,  it  diluted  the 

precision required for accurate orthosteric site identification. This overgeneralization 

can  be  attributed  to  the  model's  reliance  on  unlabeled  data,  which  introduces 

uncertainty  when  extrapolating  to  unknown regions.  Future  work  should  aim  to 

incorporate more precise geometric or energy-based filtering methods to counteract 

this issue and improve orthosteric site specificity.

The models also struggled to establish a consistent pattern in predicting potential 

ligand-binding regions,  suggesting that  additional  ligand-specific  features  may be 

required for improvement (Edfeldt et al.,  2011). Nonetheless, the use of attention 

mechanisms and saliency maps provided valuable insights into the interpretability of 

the  models,  identifying  critical  residues  that  influence  binding  site  predictions 

(Velickovic et al., 2018; Smilkov et al., 2017).

Overall,  this  research  advances  the  integration  of  graph-based  deep  learning  in 

computational  biology,  offering  a  powerful  tool  for  understanding  protein-ligand 

interactions, which is crucial for drug discovery and biomedical research (Zitnik et 

al., 2019; Trott & Olson, 2010).

5.1 Future Work

Future  research  can  focus  on  several  directions  to  enhance  the  accuracy  and 

applicability of our models. One important area for improvement is addressing the 

challenge  of  structural  flexibility  in  proteins  (Karplus  &  McCammon,  2002). 

Incorporating  techniques  such  as  molecular  dynamics  simulations  or  ensemble 

modeling could enable  the  models  to  better  account  for  dynamic conformational 
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changes, which are common in flexible proteins. Additionally, developing flexibility-

aware GNNs could enhance the models’ ability to adapt to varying protein structures 

(Keskin et al., 2008).

Another critical avenue is mitigating overgeneralization in semi-supervised learning. 

While semi-supervised approaches leverage unlabeled data effectively, they can lead 

to  diffuse  predictions,  particularly  for  orthosteric  sites.  Developing  methods  to 

integrate stricter geometric constraints or energy-based scoring during training could 

improve  the  model's  specificity.  For  example,  incorporating  localized  attention 

mechanisms  that  focus  on  high-confidence  regions  or  introducing  regularization 

techniques  that  penalize  overly  dispersed  predictions  may  help  address  this 

limitation.  Future  studies  should  also  explore  supervised  or  hybrid  training 

approaches for orthosteric site predictions, where sharper and more localized outputs 

are often desirable.

Improving ligand region prediction remains another significant goal. By integrating 

ligand-specific features such as shape descriptors, binding affinity data, or ligand-

protein  interaction  profiles  (Cherezov et  al.,  2007;  Süel  et  al.,  2003),  it  may be 

possible to refine the models’ ability to accurately identify potential ligand-binding 

regions. Exploring multi-modal approaches that combine protein structure and ligand 

information could provide further gains in predictive accuracy (Rives et al., 2021; 

Jumper et al., 2021).

Hybrid  modeling  approaches  also  offer  a  promising  direction  for  future  work. 

Combining  graph-based  methods  with  transformer  architectures  could  allow  the 

models  to  capture  long-range  dependencies  and  contextual  information  within 

protein structures (Rives et al., 2021). Ensemble learning techniques that leverage the 

strengths of GAT, GCN, and EGNN could further enhance overall performance and 

robustness (Sestak et al., 2024).

Expanding the dataset  to  include more diverse  and complex protein structures  is 

another critical step. Incorporating larger datasets with rare or poorly characterized 
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binding sites would help improve the generalizability of the models (Jiang et al., 

2019; Yang et al., 2013). Synthetic data augmentation techniques could also be used 

to address class imbalance and increase the diversity of training examples (Meng et 

al., 2011).

Enhancing the interpretability of the models is equally important. Integrating feature 

attribution methods such as Grad-CAM (Smilkov et al., 2017) or SHAP (Lundberg & 

Lee,  2017)  could  provide  more  detailed  visualizations  of  the  model’s  decision-

making process. Developing interactive visualization tools could make it easier for 

researchers  to  interpret  binding site  predictions,  facilitating  their  use  in  practical 

applications like drug discovery and personalized medicine (Ehrt et al., 2018).

Ultimately, the integration of these improvements could lead to more accurate and 

reliable  prediction  models,  supporting  the  ongoing  efforts  in  drug  development, 

protein  engineering,  and  biomedical  research.  By  bridging  the  gap  between 

computational predictions and experimental validation, future work can help unlock 

new possibilities  for  therapeutic  strategies  and a  deeper  understanding of  protein 

function.
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Data and Code Availability

The  data  and  code  used  in  this  study  are  available  on  GitHub  at 

https://github.com/nihattolga/ProteinBindingSitePrediction.  The  dataset  utilized  in 

this  research,  CasBench,  is  a  publicly  available  dataset  specifically  curated  for 

benchmarking protein-ligand binding site prediction methods. Detailed information 

about the dataset, including its source and structure, is provided in Chapter 3.
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