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                                                   ÖZET 

RÜZGÂR ENERJİSİ ÜRETİM TAHMİNİ İÇİN HİBRİT TRANSFORMER 

MODELİ 

 

Ahmed BABIKER ABDALLA IBRAHIM 

Yüksek Lisans Tezi 

Yapay Zekâ ve Veri Bilimi Ana Bilim Dalı 

Danışman: Doç. Dr. Kenan ALTUN 

2025, 69+xvii  sayfa 

 

Rüzgâr enerjisinin elektrik şebekesine giderek daha fazla entegre edilmesi, stabilite ve 

verimliliğin sağlanabilmesi için doğru tahminleri zorunlu kılmaktadır. Önemli bir 

yenilenebilir enerji kaynağı olan rüzgâr enerjisi, doğasındaki değişkenlik nedeniyle 

zorluklar sunmaktadır. Rüzgâr hızının ve yönünün doğru tahmini hem teknik bir engel 

hem de üretimin talebi karşılayacak şekilde optimize edilerek rüzgâr enerjisi 

verimliliğinin maksimize edilmesi ve maliyetlerin minimize edilmesi açısından 

ekonomik bir zorunluluktur. Ancak mevcut yöntemler, karmaşıklık veya 

yorumlanabilirdik eksikliği nedeniyle genellikle sınırlamalarla karşı karşıya 

kalmaktadır. 

Bu çalışma, insan beyninin bilgi işleme yeteneklerinden esinlenerek, yeni bir iki 

aşamalı hibrit Transformer tabanlı rüzgâr gücü tahmin modeli önermektedir. 

Geleneksel istatistiksel yöntemler ile ileri makine öğrenimi tekniklerinin güçlü 

yönlerini birleştiren önceki çalışmalara dayanarak geliştirilen bu model, önemli 

avantajlar sunmayı hedeflemektedir. 

Önerilen model, iki aşamalı bir Transformer mimarisi kullanmaktadır. İlk aşama, 

rüzgâr parametrelerinin yüksek doğrulukta tahminine odaklanırken, ikinci aşama bu 

tahminleri enerji üretim tahmini için kullanmaktadır. Hibrit mimarimiz, Transformer 

modellerinin zamansal yeteneklerinden yararlanarak, alan bilgisi ve istatistiksel 

özellikler ile zenginleştirilmiştir. Önerilen model, birçok rüzgâr enerjisi veri seti 

üzerinde değerlendirilmiş ve mevcut yöntemlere kıyasla tahmin doğruluğunda önemli 

iyileşmeler göstermiştir. Bulgularımız, hibrit Transformer modellerinin, rüzgâr enerjisi 
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üretiminde mevcut olan karmaşık zamansal bağımlılıkları ve değişkenliği etkili bir 

şekilde yakalayabildiğini, böylece şebeke yönetimi ve operasyonel planlamanın 

iyileştirilmesine yönelik güçlü bir çözüm sunduğunu göstermektedir. 

Önerilen yöntemlerin geliştirilmesi ve analizi aracılığıyla, bu araştırma doğru ve 

güvenilir rüzgâr gücü tahminlerine katkıda bulunmayı, maliyet etkin, sürdürülebilir ve 

verimli elektrik enerjisi planlamasının yolunu açmayı amaçlamaktadır. Bu planlar, 

şebeke yönetiminin optimize edilmesi, fosil yakıtlara bağımlılığın azaltılması, 

yenilenebilir enerji kaynaklarının daha etkili bir şekilde entegrasyonu ve talep yanıtı 

stratejilerinin iyileştirilmesini içermektedir. Rüzgâr gücü tahmin doğruluğunun 

artırılmasıyla, hibrit model daha iyi elektrik planlamasını, yedek güç kaynaklarına olan 

ihtiyacın minimize edilmesini ve daha sürdürülebilir bir enerji şebekesine geçişi 

desteklemektedir. Gelecek araştırma yönleri ve yenilenebilir enerji tahminindeki 

potansiyel uygulamalar da tartışılmaktadır. 

 

Anahtar kelimeler: Rüzgâr Enerjisi Tahmini, Transformer Modelleri, Hibrit Model, 

Yenilenebilir Enerji. 
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                                                   ABSTRACT 

HYBRİD TRANSFORMER MODEL FOR WİND ENERGY PRODUCTİON 

FORECASTİNG 

 

Ahmed BABIKER ABDALLA IBRAHIM 

Master's Thesis 

Department of Artificial Intelligence and Data Science 

Advisor: Assoc. Prof. Dr. Kenan ALTUN 

2025, 69+xvii pages 

 

The increasing integration of wind power into the electrical grid necessitates accurate 

forecasting to ensure stability and efficiency. Wind power, a crucial renewable source, 

poses challenges due to its inherent variability. Accurate wind speed and direction 

prediction is both a technical hurdle and an economic imperative for maximizing wind 

power efficiency and minimizing costs by tailoring production to meet demand. 

However, current methods often face limitations due to complexity or lack of 

interpretability. 

Inspired by the human brain's information processing capabilities, this paper proposes 

a novel two-stage hybrid Transformer-based wind power forecasting model. Building 

upon the referenced work, which combines the strengths of traditional statistical 

methods and advanced machine learning techniques, this model aims to offer 

significant advantages. 

The proposed model employs a two-step Transformer architecture. The first stage 

focuses on highly accurate wind parameter estimation, while the second one leverages 

these estimates for energy production forecasting. Our hybrid architecture leverages 

the temporal capabilities of transformer models, enhanced by incorporating domain-

specific knowledge and statistical features. The proposed model is evaluated on 

multiple wind power datasets, demonstrating significant improvements in forecasting 

accuracy compared to existing methods. Our findings indicate that hybrid transformer 

models can effectively capture the complex temporal dependencies and variability 
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inherent in wind power generation, offering a robust solution for enhancing grid 

management and operational planning. 

Through the development and analysis of the proposed methods, this research 

endeavors to contribute to accurate and reliable wind power forecasting, paving the 

way for cost-effective, sustainable, and efficient electrical energy planning. These 

plans include optimizing grid management, reducing reliance on fossil fuels, 

integrating renewable energy sources more effectively, and improving demand 

response strategies. By enhancing wind power forecasting accuracy, the hybrid model 

supports better scheduling and dispatch of electricity, minimizes the need for costly 

backup power sources, and facilitates the transition to a more sustainable energy grid. 

Future research directions and potential applications in renewable energy forecasting 

are also discussed. 

 

Keywords: Wind Power Forecasting, Transformer Models, Hybrid Model, Renewable 

Energy. 
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1. GİRİŞ 

Fosil yakıtlardan yenilenebilir enerjiye geçiş, iklim değişikliğiyle mücadele ve enerji 

güvenliğini sağlama gibi iki önemli zorunluluk nedeniyle küresel enerji politikasının 

temel bir odak noktasıdır [1]. Rüzgâr enerjisi, 2020 yılı sonunda dünya genelinde 

kurulu kapasitesinin 743 KW'a ulaşmasıyla en umut verici yenilenebilir enerji 

kaynaklarından biri olarak öne çıkmıştır [2]. Rüzgar enerjisinin genişlemesi, büyük 

ölçüde teknolojik ilerlemeler, devletlerin destekleyici politikaları ve enerji sektörünün 

karbonsuz aştırılmasının gerekliliğinin giderek daha fazla anlaşılmasıyla mümkün 

olmuştur. Ancak, rüzgâr enerjisinin mevcut elektrik şebekelerine entegrasyonu, 

rüzgârın doğasında bulunan değişkenlik ve öngörülemezlik nedeniyle önemli zorluklar 

barındırmaktadır [3]. Bu öngörülemezlik, şebeke kararlılığına yönelik riskler 

doğurmakta, işletme maliyetlerini artırmakta ve enerji planlamasını karmaşık hale 

getirmektedir. Bu sebeple, rüzgâr enerjisi sistemlerinin güvenilirliğini ve verimliliğini 

korumak adına doğru rüzgâr gücü tahminleri büyük önem taşımaktadır. 

Rüzgâr enerjisi tahminleri, rüzgâr kaynaklarının doğal değişkenliği ile istikrarlı ve 

öngörülebilir enerji üretimi ihtiyacı arasında köprü görevi görmektedir. Bu tahminler, 

şebeke operatörlerinin rüzgâr gücü üretimindeki dalgalanmaları önceden görüp 

operasyonlarını buna göre ayarlamalarını sağlayarak fosil yakıtlara dayalı yedek enerji 

santrallerine olan bağımlılığı en aza indirir [4]. Bunun yanı sıra, doğru tahminler enerji 

dağıtımının optimize edilmesine, rezerv gereksinimlerinin azaltılmasına ve rüzgâr 

enerjisi üretiminin ekonomik verimliliğinin artırılmasına katkı sağlar. Bu bağlamda, 

daha doğru ve güvenilir tahmin modellerinin geliştirilmesi, yenilenebilir enerji 

alanında çalışan araştırmacılar ve uygulayıcılar için bir öncelik haline gelmiştir [5]. 

Rüzgâr türbini teknolojisi ve enerji yönetim sistemlerindeki ilerlemelere rağmen, 

rüzgâr gücü tahmini hâlâ karmaşık bir zorluktur. Bu zorluk, rüzgârın, sıcaklık, basınç 

ve topoğrafya gibi pek çok meteorolojik faktörden etkilenen doğrusal olmayan ve 

rastlantısal yapısından kaynaklanmaktadır [6]. Bu faktörler karmaşık şekillerde 

etkileşime girerek, rüzgâr davranışını yüksek bir doğrulukla tahmin etmeyi 

zorlaştırmaktadır. İstatistiksel ve fiziksel modellere dayanan geleneksel tahmin 

yöntemleri, rüzgâr gücü üretiminin dinamik ve belirsiz doğasını tam olarak 

yansıtmakta yetersiz kalmıştır [7]. Bu nedenle, bu sınırlamaları gidermek ve rüzgâr 
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gücü tahminlerinin doğruluğunu artırmak için farklı tahmin tekniklerini birleştiren 

yeni yaklaşımlar önerilmiştir. 

1.1 Rüzgâr Gücü Tahmininin Önemi 

Rüzgâr gücü tahmini, enerji planlaması, yük dengeleme ve elektrik şebekelerinin 

güvenilir bir şekilde işletilmesi gibi birçok şebeke yönetimi açısından hayati öneme 

sahiptir [8]. Rüzgâr enerjisinin enerji karışımındaki payının artmasıyla birlikte, doğru 

tahminler yapmak şebeke istikrarını korumak için vazgeçilmez hale gelmiştir. 

Rüzgârın öngörülemez doğası, enerji üretiminde önemli dalgalanmalara neden 

olabilir; bu da arz ve talep arasında dengesizliklere yol açabilir. Bu tür dengesizlikler, 

doğru bir şekilde yönetilmezse voltaj kararsızlığı, frekans sapmaları ve hatta elektrik 

kesintileri gibi ciddi sorunlara neden olabilir [9]. Doğru tahminler sunarak, şebeke 

operatörleri bu riskleri hafifletebilir, geleneksel enerji santrallerinin üretimlerini 

ayarlayabilir, bakım programlarını düzenleyebilir ve yedek güç yönetimini daha etkili 

bir şekilde gerçekleştirebilir.  

Bunun yanı sıra, rüzgâr gücü tahmini, enerji sistemlerinin ekonomik optimizasyonuna 

da katkı sağlar. Doğru tahminler, enerji üretiminin daha iyi planlanmasını sağlayarak 

pahalı yedek enerji ihtiyacını azaltır ve enerji dengesizliklerinden kaynaklanan 

maliyetleri en aza indirir [10]. Bu durum, özellikle elektrik üreticilerinin tahmin edilen 

ve gerçek üretim arasındaki dengesizliklerden dolayı önemli mali cezalarla karşı 

karşıya kalabileceği serbestleştirilmiş elektrik piyasalarında büyük önem taşır. Ayrıca, 

doğru tahminler, elektrik piyasalarında daha verimli teklif verilmesini mümkün kılar; 

çünkü üreticiler, beklenen rüzgâr üretimine dayalı olarak daha güvenilir üretim 

taahhütleri sunabilirler [11]. 

Daha geniş bir enerji dönüşümü bağlamında, rüzgâr enerjisi tahmini, yenilenebilir 

enerji kaynaklarının elektrik şebekesine entegrasyonunu desteklemek açısından 

önemli bir rol oynamaktadır. Rüzgâr enerjisi, küresel elektrik üretimindeki payını 

artırmaya devam ettikçe, isabetli tahminler yapmak, fosil yakıtlara olan bağımlılığı 

azaltmak ve düşük karbon emisyonlu bir enerji sistemine geçişi hızlandırmak için 

kritik öneme sahip olacaktır [12]. Rüzgâr gücünün, küresel ısınmayı sanayi öncesi 

seviyelerin 2°C'nin altında tutmayı hedefleyen Paris Anlaşması'nın hedeflerine 

ulaşmada kilit bir rol oynaması beklenmektedir [13]. Rüzgâr enerjisinin güvenilirliğini 

ve öngörülebilirliğini artırarak, tahminler yenilenebilir enerji kaynaklarının tam 
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potansiyelleriyle kullanılmasını sağlamakta ve enerji sektörünün karbonsuz 

aştırılmasına katkıda bulunmaktadır. 

1.2 Rüzgâr Enerjisi Tahminindeki Zorluklar 

Rüzgâr enerjisi tahmini, rüzgârın karmaşık ve dinamik yapısı nedeniyle doğası gereği 

zordur. Rüzgâr hızı ve yönü kısa zaman dilimlerinde ve farklı coğrafi bölgelerde 

önemli ölçüde değişebilir ve bu da rüzgâr enerjisi üretimini yüksek hassasiyetle tahmin 

etmeyi zorlaştırır [14]. Bu dalgalanmalar, atmosfer basıncı, sıcaklık, nem ve Dünya'nın 

topografyası gibi çeşitli meteorolojik faktörlerden etkilenir. Örneğin, rüzgâr hızları 

genellikle artan irtifa ile artar, ancak dağlar veya binalar gibi engellerin varlığı 

türbülans yaratabilir ve rüzgâr akışını etkileyebilir. Dahası, rüzgâr desenleri basınç 

sistemleri, hava cepheleri ve jet akımları gibi büyük ölçekli atmosferik olaylardan 

etkilenir ve bu da rüzgâr hızında ve yönünde ani ve öngörülemeyen değişikliklere yol 

açabilir [15]. 

Rüzgâr enerjisi üretiminin öngörülemezliği, istikrarlı ve güvenilir bir enerji tedarikini 

sürdürmesi gereken şebeke operatörleri için önemli zorluklar oluşturur. Rüzgâr enerjisi 

üretimi tahmin edilen seviyelerin altında kalırsa, şebeke operatörlerinin açığı 

kapatmak için gaz veya kömür gibi geleneksel enerji santrallerini açmaları gerekebilir. 

Bu, işletme maliyetlerini artırabilir ve rüzgâr enerjisinin çevresel faydalarını 

azaltabilir, bu da daha yüksek sera gazı emisyonlarına yol açabilir [16]. Öte yandan, 

rüzgâr enerjisi üretimi öngörülen seviyeyi aşarsa, fazla enerji kesilebilir veya 

depolanabilir, bu da verimsizliklere ve artan maliyetlere neden olur.  

Erken rüzgâr enerjisi tahmin yöntemleri, gelecekteki rüzgâr modellerini tahmin etmek 

için geçmiş rüzgâr verilerini kullanan istatistiksel modellere dayanıyordu. En yaygın 

kullanılan istatistiksel modellerden biri, kısa vadeli tahminler için etkili olan ancak 

genellikle rüzgâr verilerinin doğrusal olmayan ve durağan olmayan özelliklerini 

yakalamakta zorlanan ARIMA modelidir [17]. Diğer geleneksel istatistiksel modeller 

arasında mevsimselliği hesaba katan ARMA, ARX ve mevsimsel ARIMA (SARIMA) 

modelleri bulunur [18]. Bu modeller tahmin için basit ve anlaşılır bir yaklaşım sağlasa 

da bu modellerin en büyük sınırlamalarından biri, rüzgâr enerjisi üretiminde yaygın 

olan doğrusal olmayan ilişkiler ve durağan olmayan verilerle başa çıkamamalarıdır 

[19]. 
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Bu modeller, doğrusal bağımlılıklara dayalı olarak gelecekteki rüzgâr desenlerini 

tahmin etmek için tarihsel verilere güvenir [20]. Örneğin, ARIMA modelleri, rüzgâr 

verilerindeki döngüsel davranışları ve mevsimselliği yakaladıkları için kısa vadeli 

tahminlerde etkili olduklarını kanıtlamıştır [21].  

Sınırlamalarına rağmen, istatistiksel modeller basitlikleri, anlaşılabilirlikleri ve 

uygulanma kolaylıkları nedeniyle değerli olmaya devam etmektedir. Örneğin, Pinson 

ve Madsen (2012), kısa vadeli rüzgâr gücü tahmini için SARIMA modellerini 

kullanmış ve özellikle mevsimsel etkileri yakalamada orta düzeyde başarı elde etmiştir 

[22]. Ancak, bu modeller genellikle doğrusal olmayan rüzgâr verilerinin daha belirgin 

hale geldiği uzun vadeli tahminlerde zorlanmaktadır. Bu durum, karmaşık rüzgâr 

desenlerini ele alabilen daha sofistike yöntemlerin araştırılmasına yol açmıştır. 

İstatistiksel modellerin nicel analizleri, daha uzun zaman dilimlerinde tahmin 

yaparken performanslarının azalma eğiliminde olduğunu ortaya koymaktadır. 

Örneğin, kısa vadeli tahminlerde ARIMA modelleri için RMSE 5%-10% arasında 

değişebilir, ancak uzun vadeli tahminlerde, modelin doğrusal varsayımları nedeniyle 

bu hata önemli ölçüde artabilir [23]. 

İstatistiksel modellere ek olarak, fiziksel modeller de rüzgâr gücünü tahmin etmek için 

kütlenin ve momentumun korunumu gibi fiziksel yasalara dayalı olarak rüzgâr akış 

dinamiklerini simüle etmek amacıyla kullanılmıştır. NWP modelleri olarak da bilinen 

fiziksel modeller, atmosferik koşullara dayanarak tahminler oluşturmak için hava 

durumu istasyonlarından ve uydulardan elde edilen meteorolojik verileri kullanır [24]. 

Bu modeller, basınç sistemlerinin oluşumu ve rüzgâr ile arazi arasındaki etkileşim gibi 

rüzgâr desenlerini yöneten fiziksel süreçleri dikkate alarak, rüzgâr davranışı hakkında 

detaylı içgörüler sağlayabilir [25]. NWP modelleri, çeşitli atmosferik parametreleri 

dikkate alarak orta ve uzun vadeli tahminlerde mükemmel sonuçlar verir [26]. 

Giebel ve arkadaşları (2013), NWP modellerinin rüzgâr davranışının temel fiziğini 

yakalamadaki gücünü vurgulayarak, bu modellerin özellikle orta vadeli tahminlerde 

faydalı olduğunu belirtmişlerdir [27]. Ancak, bu modellerin doğru tahminler 

üretebilmesi için kapsamlı hesaplama kaynaklarına ve yüksek kaliteli giriş verilerine 

ihtiyaç vardır. Karmaşıklıkları, özellikle büyük ölçekli rüzgâr çiftlikleri için gerçek 

zamanlı tahminlerde kullanılmalarını sınırlamaktadır [28]. 
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Fiziksel modellerin en önemli sınırlamalarından biri, giriş verilerinin kalitesine olan 

bağımlılıklarıdır. Meteorolojik kapsamın seyrek olduğu bölgelerde, tahminlerin 

doğruluğu azalabilir. Ayrıca, fiziksel modeller, büyük ölçekli atmosferik desenlere 

odaklandıkları için yerel ve ani rüzgâr değişimlerini yakalamada daha az etkili 

olabilirler ve bu nedenle kısa vadeli tahminlerde daha az etkilidirler [29]. 

Fiziksel modeller ile istatistiksel modellerin nicel karşılaştırmaları, NWP modellerinin 

genellikle orta ve uzun vadeli tahminlerde istatistiksel modellerden daha iyi 

performans gösterdiğini ortaya koymaktadır. Örneğin, NWP modelleri için ortalama 

mutlak hata genellikle 10%-15% arasında değişirken, aynı tahmin dönemi için 

istatistiksel modellerde bu oran 20%-25% arasında değişmektedir [30]. Ancak, NWP 

modellerinin yüksek hesaplama maliyeti, bu modellerin gerçek zamanlı tahmin 

uygulamalarında yaygın olarak benimsenmesinin önündeki önemli bir engel olmaya 

devam etmektedir. 

1.3 Rüzgâr Gücü Tahmininde Makine Öğrenimi ve Derin Öğrenme 

Geleneksel istatistiksel ve fiziksel modellerin sınırlamaları, rüzgâr gücü tahmininde 

makine öğrenimi tekniklerinin benimsenmesini teşvik etmiştir. Makine öğrenimi 

modelleri, özellikle yapay sinir ağları, verilerdeki karmaşık ve doğrusal olmayan 

ilişkileri ele alma konusundaki üstün yetenekleri nedeniyle rüzgâr gücü üretiminde 

mevcut karmaşık desenleri yakalamak için uygun hale gelmiştir [31]. Tarihsel 

verilerden öğrenme ve gözlemlenen eğilimlere dayalı doğru tahminler üretme 

yetenekleri nedeniyle FNN'ler ve RNN'ler gibi sinir ağları üzerinde kapsamlı 

çalışmalar yapılmıştır [32]. 

FNN'ler en basit yapay sinir ağı türlerinden biridir ve birbirine bağlı çok katmanlı 

nöronlardan oluşur. Bu ağlar giriş verilerini işler ve çıktı tahminleri üretir. FNN'ler, 

rüzgâr davranışındaki anlık eğilimleri ve dalgalanmaları yakalamaya odaklanan kısa 

vadeli rüzgâr gücü tahmini için özellikle etkilidir [33]. Ancak, FNN'ler uzun vadeli 

bağımlılıklarla başa çıkmakta zorluk çekerler çünkü bellek yetenekleri yoktur ve 

önceki zaman adımlarından bilgi depolayamazlar [34]. Bu sınırlamanın üstesinden 

gelmek için, geri bildirim döngüleri içeren daha gelişmiş bir sinir ağı türü olarak 

RNN'ler geliştirilmiştir. Bu ağlar, önceki zaman adımlarından bilgi depolayarak 

ardışık verilerdeki zamansal bağımlılıkları yakalayabilir [35]. 
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RNN'ler, özellikle orta vadeli tahminlerde, FNN'lere kıyasla rüzgâr gücü tahmininde 

önemli gelişmeler göstermiştir. Önceki zaman adımlarından bilgi depolayarak, 

RNN'ler rüzgâr hızı, yönü ve güç çıkışı arasındaki zamansal bağımlılıkları 

yakalayabilir ve bu da onları daha uzun zaman dilimleri boyunca rüzgâr gücünü tahmin 

etmede daha etkili hale getirir [36]. Ancak, RNN'ler özellikle çok uzun dizilerle 

uğraşırken zayıflayan eğimler gibi sorunlarla karşılaşabilir ve bu da uzak zaman 

adımlarından öğrenmeyi zorlaştırır [37]. 

Bu zorlukların üstesinden gelmek için, LSTM ağları ve CNN'ler gibi daha gelişmiş 

makine öğrenimi modelleri tanıtılmıştır. LSTM ağları, daha uzun zaman dilimleri 

boyunca bilgi depolayabilen ve ardışık verilerdeki uzun vadeli bağımlılıkları 

yakalayabilen bellek hücreleri içeren bir RNN türüdür [38]. Bu özellik, LSTM ağlarını 

özellikle geçmiş ve gelecek olaylar arasındaki zamansal ilişkileri dikkate almanın 

önemli olduğu rüzgâr gücü tahmini gibi zaman serisi tahmin görevleri için uygun hale 

getirir [39]. 

CNN'ler, verilerdeki mekânsal desenleri yakalamada özellikle etkili olan bir sinir ağı 

türüdür. Başlangıçta görüntü tanıma görevleri için geliştirilen CNN'ler, meteorolojik 

verilerdeki rüzgâr hızı ve yön haritaları gibi mekânsal desenleri analiz etmek için 

rüzgâr gücü tahmini için uyarlanmıştır [40]. Bu mekânsal desenlerden öğrenerek, 

CNN'ler coğrafi özelliklerin ve büyük ölçekli hava sistemlerinin rüzgâr davranışı 

üzerindeki etkisini hesaba katarak daha doğru tahminler üretebilir [41]. 

Rüzgâr gücü tahmininde makine öğrenimi modellerinin elde ettiği başarılara rağmen, 

bu modellerin bazı sınırlamaları da vardır. Makine öğrenimi modellerinin en büyük 

zorluklarından biri, eğitim için büyük miktarda yüksek kaliteli veri gerektirmesidir 

[42]. Tarihsel veri setlerinin sınırlı olduğu veya rüzgâr desenlerinin yüksek derecede 

değişkenlik gösterdiği bölgelerde, doğru tahmin modellerinin eğitilmesi zor olabilir, 

bu durum ise optimal olmayan tahmin sonuçlarına yol açabilir. Ayrıca, makine 

öğrenimi modelleri, özellikle geniş ölçekli veri setleriyle veya karmaşık model 

yapılarıyla çalışırken yüksek hesaplama gücü gerektirebilir, bu da işlem süresini ve 

maliyetleri artırabilir [43]. 

1.4 Makine Öğrenmesi ve Derin Öğrenmede Belirsizlik Miktarı 

Belirsizlik Miktarı Belirlemesi, rüzgâr enerjisi tahminlerinin güvenilirliğini 

değerlendirme ve enerji yönetimi konusunda bilinçli kararlar alma imkânı tanıdığı için, 
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rüzgâr gücü tahminlerinde kritik bir öneme sahiptir. Rüzgâr gücü tahminlerindeki 

doğal belirsizliği ele almak için çeşitli makine öğrenimi yaklaşımları geliştirilmiştir.  

Öne çıkan bir yöntem, belirsizliği modellemeye yönelik olasılıksal bir yaklaşım sunan 

Gauss Süreçleri (GP'ler) kullanımını içerir. GP'ler, yalnızca nokta tahminleri 

sağlamakla kalmaz, aynı zamanda güven aralıkları gibi belirsizlik ölçümleri de sunan 

parametrik olmayan modellerdir. Bu özellik, belirsizliği hesaba katmanın daha sağlam 

karar verme süreçlerine yol açabileceği rüzgâr gücü tahminleri için GP'leri özellikle 

yararlı kılar. Xie ve arkadaşları tarafından yapılan bir çalışma, GP'lerin belirsizliği 

açıkça kantifiye eden olasılıksal çıktılar sağlayarak, rüzgâr gücü tahminlerinde tahmin 

doğruluğunu ve güvenilirliğini artırmadaki etkinliğini göstermiştir [44]. 

Bir diğer yaklaşım ise, yanıt değişkeni dağılımının koşullu çeyreklerini tahmin eden 

istatistiksel bir teknik olan kantil regresyonunu içerir. Makine öğrenimi modellerine 

uygulandığında kantil regresyonu, farklı belirsizlik seviyelerini temsil eden aralık 

tahminlerinin üretilmesine olanak tanır ve olası sonuçların daha kapsamlı bir 

görünümünü sunar. Araştırmalar, kantil regresyonunun makine öğrenimi modelleriyle 

entegre edildiğinde, gelecekteki olası değerlerin aralığını yakalayarak rüzgâr gücü 

tahminlerinin sağlamlığını önemli ölçüde artırabileceğini göstermiştir ve böylece 

tahmin belirsizliği hakkında daha net bir resim sunar [45]. 

Son olarak, Monte Carlo dropout, özellikle sinir ağlarında, derin öğrenme 

modellerinde belirsizliği tahmin etmek için kullanılan bir tekniktir. Çıkarım 

aşamasında nöronları rastgele bırakmak suretiyle birden fazla tahmin yapılabilir ve bu 

tahminlerdeki varyasyonlar üzerinden belirsizlik tahmin edilebilir. Gal ve 

Ghahramani, Monte Carlo dropout yönteminin sinir ağlarında belirsizliği etkin bir 

şekilde kantifiye ettiğini ve rüzgâr gücü tahminleri de dahil olmak üzere çeşitli 

uygulamalarda tahminlerin sağlamlığını artırdığını göstermiştir [46]. 

Bu teknikler, rüzgâr gücü tahminlerinde makine öğrenimi modellerinin gelişen 

peyzajını vurgulamakta ve tahminlerin güvenilirliğini ve doğruluğunu artırmak için 

belirsizlik Miktarı Belirlemesi önemini ön plana çıkarmaktadır. 

1.5 Rüzgâr Gücü Tahmin Yöntemlerinin Evrimi 

Hibrit modeller, rüzgâr gücü tahminlerinde önemli bir ilerlemeyi temsil etse de bazı 

sınırlamaları bulunmaktadır. Hibrit modellerin doğruluğu, girdi verilerinin kalitesine 
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ve altta yatan algoritmaların karmaşıklığına bağlıdır. Hatalı veya eksik meteorolojik 

veriler, özellikle karmaşık araziye sahip bölgelerde veya hava koşullarının değişken 

olduğu yerlerde, tahminlerde önemli hatalara yol açabilir [47]. Ayrıca, hibrit 

modellerin hesaplama açısından pahalı olabileceği ve etkili bir şekilde 

uygulanabilmesi için özel donanım ve yazılım gerektirebileceği unutulmamalıdır. Bu 

nedenle, büyük ölçekli rüzgâr gücü tahminlerine uygulanabilecek daha verimli ve 

ölçeklenebilir hibrit modeller geliştirmeyi amaçlayan çalışmalar devam etmektedir. 

Bu gelişmeler, hibrit modellerin daha doğru ve sağlam rüzgâr gücü tahminlerine 

ulaşmadaki önemini vurgulamaktadır. Geleneksel istatistiksel yöntemlerin, fiziksel 

modellerin ve ileri düzey makine öğrenimi tekniklerinin güçlü yönlerini birleştirerek, 

hibrit modeller rüzgâr gücü tahminlerindeki zorluklara kapsamlı bir çözüm 

sunmaktadır. Bu yaklaşım, rüzgâr enerjisinin yüksek oranda kullanıldığı bölgelerde, 

doğru tahminlerin şebeke istikrarını korumak ve enerji üretimini optimize etmek için 

kritik olduğu durumlarda özellikle önem taşımaktadır [48]. 

1.6 Hibrit Model Varyantları 

Literatürde, rüzgâr gücü tahmin doğruluğunu artırmak amacıyla çeşitli hibrit model 

varyantları araştırılmıştır. Bu modeller, genellikle daha kapsamlı bir tahmin sistemi 

oluşturmak için birden fazla yaklaşımı entegre ederek hem geleneksel istatistiksel 

yöntemlerin hem de modern makine öğrenme tekniklerinin güçlü yönlerinden 

yararlanmayı hedefler. 

• Geliştirilmiş LSTM ve BPNN Modeli: 

Bu hibrit model, LSTM ağlarını BPNN ile birleştirir. LSTM ağları, hafıza hücreleri 

sayesinde rüzgâr verilerindeki zamansal bağımlılıkları ve uzun vadeli desenleri 

yakalamada son derece etkilidir, bu da bilgiyi uzun süreler boyunca saklamalarına 

yardımcı olur. BPNN, desen tanıma ve doğrusal olmayan ilişkileri öğrenme konusunda 

başarılı olduğunda, hibrit model, rüzgâr gücü üretimindeki kısa vadeli dalgalanmalar 

ve uzun vadeli eğilimlerle başa çıkabilir. Bu kombinasyon, özellikle rüzgâr 

davranışındaki karmaşık dinamikleri yakalamada tahmin performansını artırır. Nicel 

karşılaştırmalar, bu modelin geleneksel LSTM modellerine kıyasla RMSE'yi 73% 

kadar azaltarak, rüzgâr gücü tahmini için sağlam bir seçim olduğunu göstermektedir 

[49]. 
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• SARIMAX + RNN + SVR Modeli: 

Dışsal Değişkenler (Exogenous Variables) ile SARIMAX modeli, rüzgâr gücü 

üretimini etkileyen mevsimsellik ve dış faktörleri hesaba katan popüler bir zaman 

serisi tahmin yöntemi olarak bilinir. Bu hibrit yaklaşımda, SARIMAX, RNN'ler ve 

SVR ile birleştirilir. SARIMAX modelleri, mevsimsel eğilimleri ve dışsal değişkenleri 

yakalamada yetenekliyken, RNN'ler, veri noktalarından oluşan dizileri işleyerek 

rüzgâr verilerindeki zamansal bağımlılıkları ele alır. Küçük ve orta boyutlu veri 

kümeleriyle başa çıkmadaki etkinliği ile bilinen SVR, tahmin doğruluğunu artırmak 

için ek bir regresyon analizi katmanı ekler. Bu hibrit model, genel performansı 

artırarak, tahmin hatalarını azaltır ve daha güvenilir tahminler sağlar. Çalışmalar, bu 

yaklaşımın SARIMAX veya RNN modellerini tek başına kullanmaya kıyasla 

RMSE'yi 93% oranında azalttığını göstermiştir [50]. 

• Wavelet Transform + NARMAX + PSO Modeli: 

Bu model, rüzgâr gücü verilerinin doğrusal olmayan ve durağan olmayan özelliklerini 

ele almak için tasarlanmış ileri düzey bir hibrit modeldir. Wavelet Transform, veri ön 

işleme için kullanılır ve rüzgâr gücü zaman serisini farklı frekans bileşenlerine 

ayırarak, gürültüyü izole etmeye ve verilerdeki ilgili desenleri belirlemeye yardımcı 

olur. Daha sonra, NARMAX modelleri, girdi değişkenleri ile rüzgâr gücü çıktısı 

arasındaki doğrusal olmayan ilişkileri yakalamak için kullanılır ve bu da onları rüzgâr 

gücü üretimi gibi yüksek dinamik sistemler için uygun hale getirir. Son olarak, PSO, 

NARMAX modelinin parametrelerini ince ayar yapmak için bir optimizasyon tekniği 

olarak uygulanır ve modelin doğruluğunu daha da artırır. Bu kombinasyon, bireysel 

yöntemlere kıyasla RMSE'yi 99,8% oranında azaltarak, rüzgâr gücü tahmini için en 

etkili hibrit modellerden biri haline getirir [51]. 

Bu hibrit model varyantlarının her biri, rüzgâr gücü tahmininde karşılaşılan zorlukların 

üstesinden gelmek için farklı tahmin tekniklerini birleştirmenin potansiyelini ortaya 

koymaktadır. Farklı yöntemlerin güçlü yönlerinden yararlanarak, hibrit modeller, 

bağımsız modellere kıyasla doğruluk, dayanıklılık ve uyarlanabilirlikte önemli 

iyileştirmeler sunabilir. İstatistiksel modellerin makine öğrenme teknikleriyle 

entegrasyonu, doğrusal olmayan verilerin daha iyi ele alınmasını sağlarken, PSO gibi 

optimizasyon teknikleri, parametrelerin ince ayarını yaparak model performansını 

daha da artırır. 
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1.7 Rüzgâr Gücü Tahmininde Transformer Modellerinin Yükselişi 

Son yıllarda, Transformer modelleri, rüzgâr gücü tahmini de dahil olmak üzere sıra 

modelleme görevleri için geleneksel makine öğrenimi modellerine güçlü bir alternatif 

olarak ortaya çıkmıştır. Başlangıçta doğal dil işleme (NLP) görevleri için geliştirilen 

Transformer modelleri, uzun mesafeli bağımlılıkları ve bağlamsal bilgileri ele alma 

konusundaki olağanüstü başarısıyla dikkat çekmiş ve bu da onları zaman serisi tahmin 

görevleri için özellikle uygun hale getirmiştir [52]. RNN'ler ve LSTM'lerin aksine, 

verileri sıralı olarak işleyen Transformer'lar, tahmin yaparken girdi dizisinin farklı 

bölümlerinin önemini değerlendirmelerine olanak tanıyan bir öz-dikkat mekanizması 

kullanır [53].  

Öz-dikkat mekanizması, Transformer'ların tüm girdi dizisi boyunca veri noktaları 

arasındaki ilişkileri, sıralı yapıları nedeniyle sınırlı olan geleneksel tekrarlayan 

modellere göre daha verimli bir şekilde yakalamasını sağlar [54]. Bu durum, kısa 

vadeli dalgalanmaların yanı sıra rüzgâr davranışındaki uzun vadeli eğilimlerin de 

dikkate alınmasının önemli olduğu rüzgâr gücü üretiminde içsel olan karmaşık 

zamansal bağımlılıkları yakalamada Transformer'ları özellikle etkili kılar [55]. 

Transformer modellerinin rüzgâr gücü tahmininde kullanılması, araştırma alanında 

nispeten yeni bir yaklaşımdır, ancak ilk bulgular oldukça umut vericidir. Bu modeller, 

öz-dikkat mekanizmasını kullanarak rüzgâr hızları, yönleri ve güç çıktıları arasındaki 

karmaşık ilişkileri etkili bir şekilde modelleyebilmekte, bu da daha doğru ve güvenilir 

tahminler yapmalarına olanak tanımaktadır [56]. 

İki aşamalı bir Transformer modeli, önce rüzgâr parametrelerini tahmin ederek ve 

ardından bu tahminleri rüzgâr gücü üretimini öngörmek için kullanarak rüzgâr gücü 

tahmin doğruluğunda önemli bir ilerleme kaydetmektedir. Bu yenilikçi yaklaşım, 

mevcut modellerden önemli ölçüde daha iyi performans göstermekte ve Ortalama 

Kare Hatasını, İyileştirilmiş LSTM ve BPNN Modeline kıyasla 73%'ün üzerinde, 

SARIMAX + RNN + SVR Modeline kıyasla 93% ve Wavelet Transform + NARMAX 

+ PSO Modeline kıyasla 99,8% oranında azaltmaktadır. Bu durum, rüzgâr gücü 

tahmininde önerilen Transformer tabanlı yaklaşımın üstün doğruluğunu ve 

güvenilirliğini ortaya koymaktadır. 
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1.8 Araştırmanın Önemi 

Bu araştırmanın önemi, yenilenebilir enerji tahmini, özellikle de rüzgâr gücü tahmini 

alanına potansiyel katkısında yatmaktadır. Rüzgâr enerjisi, küresel enerji karışımına 

önemli bir katkı olarak büyümeye devam ederken, doğru tahminlere duyulan ihtiyaç, 

elektrik şebekelerinin kararlılığını ve verimliliğini sağlamak için giderek daha kritik 

hale gelmektedir. Doğru rüzgâr gücü tahminleri, şebeke operatörlerinin enerji üretim 

programlarını optimize etmelerini, maliyetli yedek enerji kaynaklarına olan 

bağımlılığı azaltmalarını ve enerji dengesizlikleriyle ilişkili riskleri en aza 

indirmelerini sağlar. 

Ayrıca bu araştırma, rüzgâr enerjisinin elektrik şebekelerine entegrasyonunun 

güvenilirliğini artırarak, sürdürülebilir enerji sistemlerine geçiş ve sera gazı 

emisyonlarını azaltma gibi daha geniş hedeflere de hitap etmektedir. Önerilen hibrit 

Transformer modeli, geleneksel istatistiksel yöntemlerin ve modern makine öğrenimi 

tekniklerinin güçlü yönlerini birleştirerek, rüzgâr gücü tahmini için yenilikçi bir 

yaklaşım sunmaktadır. Bu yaklaşımın, tahmin doğruluğunu artırması, işletme 

maliyetlerini düşürmesi ve yenilenebilir enerji kaynaklarının verimli yönetimine 

katkıda bulunması beklenmektedir. 

1.9 Amaç ve Kapsam 

Bu araştırmanın temel amacı, rüzgâr gücü tahmini için tahminlerin doğruluğunu ve 

güvenilirliğini artıran ve böylece rüzgâr enerjisinin elektrik şebekesine 

entegrasyonunu destekleyen yenilikçi bir hibrit Transformer tabanlı model 

geliştirmektir. Özellikle, bu çalışma aşağıdaki hedefleri ele almayı amaçlamaktadır: 

• Hedef 1: Rüzgâr gücü tahmin doğruluğunu artırmak için geleneksel istatistiksel 

yöntemleri ileri düzey makine öğrenimi teknikleriyle birleştiren iki aşamalı bir hibrit 

Transformer modeli tasarlamak. 

• Hedef 2: Önerilen modelin performansını birden fazla rüzgâr gücü veri setinde 

değerlendirerek, doğruluğunu mevcut en iyi tahmin modelleriyle karşılaştırmak. 

• Hedef 3: Modelin enerji üretimini optimize etmeye, fosil yakıtlara bağımlılığı 

azaltmaya ve talep yanıt stratejilerini iyileştirmeye odaklanarak gerçek dünya şebeke 

yönetimi senaryolarında uygulanabilirliğini değerlendirmek. 
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Bu araştırmanın kapsamı, çeşitli rüzgâr gücü veri setlerinde hibrit modelin 

geliştirilmesi ve doğrulanmasını içerir. Çalışma, ayrıca önerilen modelin şebeke 

yönetimini iyileştirme, yedek enerji kaynaklarına duyulan ihtiyacı azaltma ve 

yenilenebilir enerji kaynaklarının şebekeye entegrasyonunu kolaylaştırma 

konularındaki potansiyel uygulamalarını da araştırmaktadır. Buna ek olarak, araştırma, 

hibrit Transformer modellerinin güneş enerjisi tahmini gibi diğer yenilenebilir enerji 

tahmin görevlerine uygulanması için gelecekteki yönleri de göz önünde 

bulundurmaktadır. 

1.10 Gelecekteki Araştırma Yönleri 

Rüzgâr gücü tahmininde kaydedilen ilerlemeye rağmen, bazı araştırma zorlukları 

devam etmektedir. Öncelikli alanlardan biri, doğruluktan ödün vermeden eksik veya 

gürültülü verileri işleyebilen daha sağlam modellerin geliştirilmesidir. Bu ihtiyaç, 

özellikle sınırlı meteorolojik verilere sahip bölgelerde kritik öneme sahiptir. Veri 

artırma tekniklerinin ve gelişmiş ön işleme yöntemlerinin geliştirilmesi, bu sorunu 

çözmede önemli bir rol oynayabilir. 

Bir diğer önemli araştırma alanı da gerçek zamanlı tahminde Transformatör 

modellerinin uygulanmasıdır. Transformatör mimarileri önemli bir potansiyel gösterse 

de, gerçek zamanlı senaryolardaki uygulamaları hala sınırlıdır. Gelecekteki 

araştırmalar, gerçek zamanlı kullanım için optimize edilmiş daha verimli 

Transformatör mimarileri geliştirmeye odaklanmalıdır. 

Ayrıca, daha yorumlanabilir tahmin modellerine olan talep artmaktadır. 

Transformatörler de dahil olmak üzere makine öğrenimi modelleri tahmin 

doğruluğunda önemli iyileştirmeler sağlasa da karmaşıklıkları nedeniyle genellikle 

"kara kutular" olarak tanımlanmaktadırlar. Şebeke operatörlerinin ve karar vericilerin 

güvenini kazanmak için, rüzgâr gücü tahmin modelleri için açıklanabilir yapay zekâ 

tekniklerinin geliştirilmesi kritik öneme sahip olacaktır. Araştırma çabaları, yorumlana 

bilirliği doğrudan model tasarımına entegre etmeye veya model tahminlerine ilişkin 

içgörü sağlayan açıklama sonrası yöntemler geliştirmeye odaklanabilir. 

Rüzgâr gücü tahmin yöntemlerinin evrimi, rüzgâr gücünü elektrik şebekesine entegre 

etmenin artan karmaşıklığını yansıtır. Özellikle Transformatör mimarilerini içeren 

hibrit modeller, rüzgâr verilerindeki karmaşık zamansal bağımlılıkları yakalama 

yetenekleri nedeniyle gelecekteki araştırmalar için umut verici bir yön sunar. Ancak, 
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literatürde veri kalitesi, gerçek zamanlı tahmin yetenekleri ve model yorumlana 

bilirliği konusunda hala boşluklar bulunmaktadır. Bu boşlukları ele almak, rüzgâr gücü 

tahminlerinin doğruluğunu ve güvenilirliğini iyileştirmek ve yenilenebilir enerji 

kaynaklarının yaygın olarak benimsenmesini ve büyümesini desteklemek için kritik 

öneme sahiptir.  
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2. TRANSFORMER MODELLERİ 

Bu bölüm, Hibrit Transformer modelinin rüzgâr gücü tahmininde geliştirilmesi ve 

uygulanmasını anlamak için gerekli olan temel teorileri ve teknik yönleri sunmaktadır. 

Tartışma, bu araştırmada kullanılan modelin temelini oluşturan makine öğrenimi ve 

derin öğrenme alanındaki temel kavramların ayrıntılı bir incelemesiyle başlar. Bu 

kavramlar arasında sinir ağları, Uzun Kısa Süreli Hafıza ağları ve Transformer 

modelleri bulunmaktadır. Bu tekniklerin her biri, rüzgâr gücü tahminlerinde içsel olan 

karmaşık ve doğrusal olmayan ilişkilerin ele alınmasında kritik bir rol oynamaktadır. 

2.1 Makine Öğrenimi ve Derin Öğrenmenin Temelleri 

Makine öğrenimi ve derin öğrenme, rüzgâr gücü tahmini de dahil olmak üzere modern 

veri odaklı yaklaşımların önemli bileşenleridir. Bu teknolojiler, büyük veri 

kümelerinden öğrenme yetenekleri ve karmaşık desenleri tespit edebilme kapasiteleri 

sayesinde yüksek doğrulukta tahminler yapabilen gelişmiş modellerin geliştirilmesine 

olanak tanır. Bu bölümde, bu çalışmada geliştirilen hibrit modelin temelini oluşturan 

kritik kavramlar ve mimariler hakkında genel bir bakış sunulacaktır [57]. 

2.2 Random Forest (Rastgele Orman) Algoritması 

Random Forest, çok yönlülüğü, yüksek doğruluk oranı ve farklı veri türlerini işleme 

yeteneği nedeniyle geniş bir kullanım alanına sahip olan güçlü bir topluluk öğrenme 

yöntemidir.  

Breiman tarafından 2001 yılında tanıtılan Random Forest, eğitim sürecinde birden 

fazla karar ağacı oluşturur ve bu ağaçların sınıflandırma için çoğunluk oyu veya 

regresyon için ortalama tahmini sonuç olarak verir. Bu yaklaşım, "kalabalığın 

bilgeliği" prensibinden yararlanarak, birden fazla modelin birleştirilmesinin aşırı 

uyumu azaltabileceği ve modelin genelleme yeteneğini artırabileceği fikrine dayanır. 

Rüzgâr gücü tahmini gibi zaman serisi tahmin görevlerinde, Random Forest yalnızca 

doğru tahminler sağlamakla kalmaz, aynı zamanda veri setindeki gürültüyü etkili bir 

şekilde azaltma kabiliyetiyle de dikkat çeker [58]. 

Random Forest, karar ağaçlarına dayanan bir topluluk (ensemble) yöntemidir ve her 

bir ağaç, eğitim verilerinin rastgele bir alt kümesi ve özelliklerin rastgele bir alt kümesi 

kullanılarak oluşturulur. Bu rastgelelik, ağaçlar arasında çeşitlilik yaratarak, 
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topluluğun genel olarak bireysel hatalara ve veri setindeki önyargılara karşı daha 

dayanıklı olmasını sağlar [59]. 

Random Forest oluşturmanın ana adımları şunlardır: 

• Bootstrap Örnekleme: Ormandaki her ağaç için, orijinal veri setinden 

yedeklemeli olarak rastgele bir örnek (bootstrap örneği) seçilir. Bu, her bir ağacın 

benzersiz bir eğitim seti üzerinde eğitilmesini sağlar ve modelin genelleme yeteneğini 

artırır [60]. 

• Özellik Rastgeleliği: Her bir karar ağacının her bölünme noktasında, 

özelliklerin rastgele bir alt kümesi seçilir ve bu alt kümeden en iyi bölünme noktası 

belirlenir. Bu, ağaçlar arasındaki korelasyonu azaltarak modelin daha iyi genelleme 

yapmasına katkıda bulunur [61]. 

• Birleştirme (Agregasyon): Son tahmin, tüm ağaçların tahminlerinin 

birleştirilmesiyle yapılır. Sınıflandırma görevlerinde bu, genellikle çoğunluk oylaması 

ile, regresyon görevlerinde ise tahminlerin ortalaması alınarak gerçekleştirilir [62]. 

Random Forest, büyük veri setlerini işleyebilme kapasitesi, yüksek boyutlu veri 

alanlarında çalışabilme yeteneği ve daha az parametre ayarı ile yüksek doğruluk 

sağlaması nedeniyle birçok uygulama için cazip bir seçenek olarak öne çıkmaktadır. 

Ayrıca, veri setlerindeki gürültüyü azaltmada etkin bir rol oynar [63]. 

 

Şekil 2.1. Random Forest Algoritma Diyagramı. 
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2.2.1 Gürültü Azaltma İçin Random Forest Kullanımı 

Verideki gürültü, doğru tahmin yapmak için gerekli olan temel desenleri gizleyebilen 

rastgele değişiklikler veya gereksiz bilgilere atıfta bulunur. Rüzgâr gücü tahminlerinde 

kullanılan zaman serisi verilerinde, gürültü; sensör hataları, çevresel etkiler veya 

tahmin modeline anlamlı katkı sağlamayan rastgele dalgalanmalar gibi çeşitli 

kaynaklardan ortaya çıkabilir. 

Gürültü Azaltma Aracı Olarak Random Forest: Random Forest, topluluk yapısı ve 

birden fazla karar ağacından tahminleri ortalama alarak yumuşatma yöntemiyle 

gürültü azaltmada oldukça etkilidir. Bu yöntemin temel prensipleri şunlardır: 

• Aykırı Değerlere Dayanıklı: Random Forest, her bir ağaç için orijinal veri 

setinden rastgele seçilmiş bootstrap örnekleri kullanarak inşa edilir. Bu nedenle, 

verideki bazıaykırı değerler veya gürültüler her ağaçta yer almayabilir. Bu durum, 

hatalı verilerin etkisini topluluk genelinde seyrelterek nihai tahmin üzerindeki 

etkilerini azaltır [64]. 

 • Ortalama Alma Etkisi: Birden fazla ağacın çıktılarının ortalamasını alarak, 

Random Forest tahminleri yumuşatır ve gürültülü verilerin neden olabileceği 

dalgalanmaları azaltır. Her bölünme noktasında rastgele özellik seçimi, modelin 

öğrenme sürecinde gürültünün baskın olmasını engeller [65]. 

 • Özellik Önemi ve Gürültü Filtreleme: Random Forest, modelde kullanılan her 

bir özelliğin tahmin üzerindeki etkisini ölçmek için bir önem derecesi belirler. Bu 

ölçüm, modelin gürültüye neden olan veya tahmin doğruluğuna katkı sağlamayan 

özellikleri tespit edip elemesini sağlar. Bu şekilde, model daha çok önemli ve anlamlı 

özelliklere odaklanarak, gürültünün olumsuz etkilerini azaltabilir [66]. 

 • Topluluk Ortalama Alma ile Gürültü Azaltma: Gürültülü veri setlerinde, 

bireysel karar ağaçları verideki rastgele dalgalanmalara fazla tepki vererek aşırı 

uyumlu sonuçlar üretebilir. Ancak, Random Forest'ın ortalama alma mekanizması, 

farklı veri alt kümeleri ve özelliklerle oluşturulan birçok ağacın çıktısını birleştirerek 

bu sorunu hafifletir. Bu yaklaşım, rastgele gürültüyü etkili bir şekilde dengeler ve daha 

istikrarlı, daha doğru tahminler sağlar [67]. 
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2.2.2 Rüzgâr Gücü Tahmininde Random Forest Uygulaması 

Rüzgâr gücü tahmininde Random Forest kullanımı, gürültü azaltma açısından önemli 

faydalar sunar. Rüzgâr verileri oldukça değişken olabilir ve birçok öngörülemeyen 

faktörden etkilenebilir. Random Forest kullanılarak, model bu gürültüyü filtreleyebilir 

ve böylece tahminlerin doğruluğunu ve güvenilirliğini artırabilir. Örneğin, dalgacık 

dönüşümleri gibi diğer ön işleme teknikleriyle birleştirildiğinde, Random Forest 

gürültü azaltma yeteneklerini daha da artırabilir ve rüzgâr gücü üretiminin daha doğru 

tahminlerini elde edebilir [68]. 

Random Forest, verilerdeki doğrusal olmayan ilişkileri işleme yeteneğine sahiptir ve 

bu da onu doğrusal modellerin yetersiz kalabileceği rüzgâr gücü tahmininin karmaşık 

dinamikleri için ideal hale getirir. Meteorolojik faktörler arasındaki etkileşimlerin tam 

spektrumunu yakalamak, bu modelin güçlü yönlerinden biridir [69]. 

Random Forest, makine öğreniminde güçlü bir araçtır çünkü gürültüyü azaltmada ve 

tahmin doğruluğunu iyileştirmede özellikle etkili olan bir topluluk yaklaşımı sunar. 

Aykırı değerlere karşı sağlamlığı, önemli özelliklerin seçimi ve ortalama yöntemi, onu 

rüzgâr gücü tahmin modellerinde veri kalitesini iyileştirmek için ideal bir seçim haline 

getirir. Gürültüyü etkili bir şekilde azaltarak, Random Forest yenilenebilir enerji 

sistemlerinde güç üretimini optimize etmeye ve şebeke istikrarını sağlamaya yardımcı 

olan daha güvenilir ve doğru tahminler sağlar. Rüzgâr gücü tahmini daha gelişmiş 

modellerin entegrasyonuyla gelişmeye devam ederken, Random Forest özellikle 

gürültülü ve karmaşık veri kümelerini içeren görevlerde veri bilimcileri ve 

mühendisleri için değerli bir araç olmaya devam ediyor. 

2.3 Sinir Ağları 

NN'ler, makine öğrenimi ve derin öğrenmenin temel yapı taşları arasında yer alır. Bu 

ağlar, insan beyninin yapısını ve çalışma şeklini taklit ederek, veri işleyen ve çıktılar 

üreten yapay nöronların katmanlarından oluşur. Her bir nöron, kendisine gelen giriş 

bilgilerine bir matematiksel fonksiyon uygular ve bu sonucu bir sonraki katmana iletir. 

Sinir ağı, tahmin edilen çıktı ile gerçek hedef arasındaki hata oranını minimize ederek 

ağırlıklarını optimize eder; bu süreç eğitim olarak adlandırılır [70].  
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2.3.1 İleri Beslemeli Sinir Ağları  

FNN, en temel sinir ağı türlerinden biridir ve verilerin giriş katmanından çıkış 

katmanına yalnızca tek yönlü olarak aktığı yapılardır. FNN'ler, çeşitli sınıflandırma ve 

regresyon görevlerinde güçlü performans gösterir, ancak zamansal bağımlılıklar veya 

bağlam bilgisi gerektiren sıralı verilerle çalışmakta zorlanabilirler. Bu durum, özellikle 

geçmiş rüzgâr modellerinin gelecekteki koşulları öngörmede kritik olduğu rüzgâr 

enerjisi tahminlerinde önemli bir sınırlamadır [71]. 

2.3.2 İleri Beslemeli Sinir Ağlarının Yapısı 

Bir İleri Beslemeli Sinir Ağı, sıralı olarak düzenlenmiş birden fazla nöron katmanından 

oluşur. Bu katmanlar üç ana kategoriye ayrılır: 

• Giriş Katmanı: Bu katman, ağın dış dünyadan aldığı verileri işler. Her nöron, 

bir giriş özelliğini temsil eder. Örneğin, rüzgâr gücü tahmininde bu katmandaki 

nöronlar, rüzgâr hızı, sıcaklık, nem gibi çevresel verileri ve geçmiş enerji üretim 

verilerini işleyebilir. 

• Gizli Katmanlar: Giriş ve çıkış katmanları arasında yer alan bir veya daha fazla 

gizli katman bulunur. Bu katmanlar, giriş verilerine doğrusal olmayan dönüşümler 

uygulayarak, ağın karmaşık desenleri ve ilişkileri öğrenmesini sağlar. Gizli 

katmanlardaki nöronlar, bir önceki katmandan aldıkları bilgiyi ağırlıklı bir şekilde 

toplar, bir aktivasyon fonksiyonundan geçirir ve sonucu bir sonraki katmana iletir. 

Gizli katmanların sayısı ve her katmandaki nöron sayısı, çözülmek istenen problemin 

karmaşıklığına göre değişir. 

• Çıktı Katmanı: Son katman, ağın nihai çıktısını üretir. Sınıflandırma 

görevlerinde bu katmanda, her biri bir sınıfı temsil eden birden fazla nöron olabilir. 

Regresyon görevlerinde ise genellikle sürekli bir değer üreten tek bir nöron bulunur. 

Bu nöron, örneğin tahmin edilen rüzgâr gücü üretimi gibi bir çıktıyı hesaplar. 
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Şekil 2.2. ffn mimarisi 

 

2.3.3 İleri Beslemeli Sinir Ağlarının Çalışma Mekanizması 

   FFN çalışması iki ana aşamada gerçekleşir: ileri yayılım ve geri yayılım. 

• İleri Yayılım: Bu aşamada, giriş verileri ağın giriş katmanından alınıp çıkış 

katmanına kadar taşınır. Her gizli katmandaki nöron, giriş verilerini belirli ağırlıklarla 

çarpar, sonuçları toplar ve doğrusal olmayan bir aktivasyon fonksiyonundan geçirir. 

Yaygın olarak kullanılan aktivasyon fonksiyonları arasında ReLU , Sigmoid ve Tanh 

bulunur. Bu işlemler sonucunda üretilen değerler, ağın çıktısını belirlemek için çıkış 

katmanına iletilir [72]. 

• Geri Yayılım ve Eğitim: Ağın tahmini, gerçek hedef değer ile karşılaştırılır ve 

hata miktarı bir kayıp fonksiyonu kullanılarak hesaplanır (örneğin, Ortalama Kare 

Hatası). Geri yayılım yöntemi, bu hatayı en aza indirmek için ağdaki ağırlıkların 

ayarlanmasına olanak tanır. Bu işlem, kayıp fonksiyonunun türevlerinin hesaplanması 

ve ağırlıkların gradyan inişi gibi optimizasyon teknikleri kullanılarak 

güncellenmesiyle gerçekleştirilir. Bu süreç birçok kez tekrarlanarak ağın tahmin 

doğruluğu artırılır [73].  

2.3.4 Rüzgâr Gücü Tahmininde İleri Beslemeli Sinir Ağlarının Kullanımı 

Rüzgâr gücü tahmini bağlamında, FFN, çeşitli girdi özellikleri ile gelecekteki rüzgâr 

gücü üretimi arasındaki ilişkileri modellemek için kullanılır. Gelişmiş modeller, LSTM 

ve Transformatörler gibi zaman serisi verilerini işleme kapasitesine sahip olsa da 

FFN'ler, girdiler ve çıktılar arasındaki ilişkilerin daha basit mimarilerle ele alınabildiği 

durumlarda hala yaygın olarak kullanılır [74]. 
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Temel Uygulamalar: 

• Kısa Vadeli Rüzgâr Gücü Tahmini: FFN'ler, giriş özelliklerinin güncel ve 

yakın zamandaki meteorolojik verilere dayandığı kısa vadeli tahminlerde etkili bir 

şekilde kullanılır. Yapılarının basitliği, bu ağları hesaplama açısından verimli kılar ve 

hızlı tahminler gerektiren durumlar için uygun hale getirir [75]. 

• Veri Ön İşleme ve Özellik Çıkarımı: FFN'ler, ham verilerin işlenmesi ve 

özelliklerin çıkarılması gibi ön hazırlık işlemlerinde diğer daha karmaşık modellerle 

birlikte kullanılabilir. Örneğin, bir FFN, ham girdi verilerini, LSTM veya 

Transformatör gibi modellerin daha iyi işleyebileceği özelliklere dönüştürebilir [76]. 

• Toplu Modeller: FFN'ler, toplu modelleme yaklaşımlarının bir parçası olarak, 

diğer sinir ağı türleri veya makine öğrenimi algoritmaları ile birleştirilebilir. Birden 

fazla modelin çıktılarının ortalamasını alarak, toplu modeller hem varyansı azaltabilir 

hem de veri setindeki ana eğilimleri daha iyi yakalayabilir [77]. 

2.3.5 Rüzgâr enerjisi üretim tahmininde FFN'nin avantajları 

Avantajları: 

• Basitlik: FFN'ler, modelleri uygulamak ve eğitmek için kolaydır ve bu da onları 

birçok tahmin görevi için erişilebilir bir seçenek haline getirir. 

• Hesaplama Verimliliği: Daha karmaşık modellerle karşılaştırıldığında, FFN'ler 

daha az hesaplama gücü gerektirir ve bu da onları kaynak sınırlı uygulamalar için 

uygun hale getirir. 

• Esneklik: FFN'ler, regresyon ve sınıflandırma görevleri dahil olmak üzere çok 

çeşitli sorunlara uygulanabilir. 

2.3.6 Rüzgâr Enerjisi Tahmini için FFN'lerin Geliştirilmesi 

FFN'ler belirli uygulamalar için etkili olsa da zamansal bağımlılıkları ele alma 

konusundaki sınırlamaları, bunları diğer tekniklerle birleştirerek hafifletilebilir. 

Örneğin, FFN'ler, ardışık veriler için daha uygun olan RNN'ler veya Transformatörler 

gibi modellerle çalıştıkları hibrit modellerde kullanılabilir. Ayrıca, aşırı uyumu 

azaltmak ve görülmemiş verilere genelleme yapma yeteneğini artırmak için FFN'lere 

bırakma, ağırlık düzenleme ve erken durdurma gibi teknikler uygulanabilir. 
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FFN'ler, rüzgâr gücü tahmini de dahil olmak üzere çeşitli görevler için basitlik ve 

esneklik sunan temel bir makine öğrenimi modelidir. Sıralı verileri işlemedeki 

sınırlamalarına rağmen, ön işleme, özellik çıkarma ve topluluk veya hibrit 

modellerdeki bileşenler olarak rolleri, onları bir veri bilimcisinin araç setinde 

vazgeçilmez bir araç haline getirir. Araştırmacılar, FFN'lerin güçlü ve zayıf yönlerini 

anlayarak, rüzgâr gücü tahmini bağlamında yeteneklerini en iyi şekilde 

değerlendirebilir ve tahminlerin hem doğru hem de hesaplama açısından verimli 

olmasını sağlayabilirler. 

2.4 Rüzgâr Enerjisi için Transformatör Modellerinde LSTM Ağlarının  

Kullanımı LSTM ağları, özellikle kaybolan ve patlayan eğimler olmak üzere uzun 

vadeli bağımlılıkları öğrenmenin zorluklarının üstesinden gelmek için tasarlanmış özel 

bir RNN türüdür. LSTM'ler, uzun veri dizileri segmentleri boyunca bilgileri 

depolamalarına ve seçici olarak güncellemelerine olanak tanıyan bellek hücrelerine 

sahiptir ve bu da onları rüzgâr enerjisi üretimi gibi zaman serisi tahmin görevleri için 

özellikle etkili hale getirir [78].  

Bu araştırma bağlamında, LSTM'ler Transformatör modellerine entegre edilmiştir ve 

böylece sıralı verileri işleme yetenekleri artırılmıştır. Transformatörler, kendi kendine 

dikkat mekanizmalarıyla zaman serisi tahminini ve diğer sıralı veri görevlerini devrim 

niteliğinde değiştirmiş olsa da, bazen LSTM'lerin doğal olarak ele aldığı ince zamansal 

bağımlılıkları yakalamakta zorlanırlar. LSTM katmanını Transformer mimarisine 

dahil ederek, model her iki yaklaşımın güçlü yönlerinden yararlanır: LSTM'nin zaman 

içinde bilgi depolama yeteneği ve Transformer'ın tüm dizi boyunca karmaşık, uzun 

vadeli bağımlılıkları ve ilişkileri modelleme kapasitesi [79]. 
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Şekil 2.3. lstm katmanı 

 

2.4.1 Hibrit Transformer Modellerinde LSTM'nin Rolü 

Bu hibrit mimaride, LSTM katmanı tipik olarak ardışık verileri Transformer'ın öz-

dikkat katmanlarına geçmeden önce ön işlemek veya kodlamak için kullanılır. LSTM 

katmanı, rüzgâr hızı veya güç çıkışı gibi giriş zaman serisi verilerini işler ve hem kısa 

vadeli dalgalanmaları hem de uzun vadeli eğilimleri yakalar. Bu zamansal 

bağımlılıkları kapsayan LSTM katmanının çıktısı daha sonra Transformer 

katmanlarına beslenir. Bu ardışık işleme, Transformer'ın veriler içindeki daha geniş 

kalıpları ve ilişkileri modellemeye odaklanmasını sağlarken, LSTM katmanı ayrıntılı 

zamansal yapıyı işler [80]. 

2.4.2 Rüzgâr Gücü Tahminindeki Uygulamalar 

Rüzgâr gücü tahmininde, meteorolojik değişkenler arasındaki karmaşık zamansal 

ilişkileri yakalamak, doğru tahminler yapmak için hayati önem taşır. LSTM ve 

Transformer modellerinin hibrit kullanımı, LSTM'nin zamansal işleme gücünü ve 

Transformer'ın diziler arasındaki karmaşık ilişkileri ele alma yeteneğini birleştirerek 

daha sağlam ve doğru bir tahmin modeli sağlar. Bu yaklaşım, rüzgâr desenlerinin hem 

ani kısa vadeli değişiklikler hem de rüzgâr gücü üretim verilerinde yaygın olan uzun 

vadeli eğilimler sergilediği senaryolarda özellikle yararlıdır [81].  

LSTM katmanlarını Transformer modellerine entegre etmek, rüzgâr gücü tahmini de 

dahil olmak üzere zaman serisi tahmin görevlerinin performansını iyileştirmek için 
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güçlü bir yaklaşımdır. LSTM'lerin zamansal duyarlılığını Transformers'ın küresel 

dikkat yetenekleriyle birleştirerek, bu hibrit model rüzgâr gücü verilerinin ince 

dinamiklerini daha etkili bir şekilde yakalayabilir ve daha doğru ve güvenilir tahminler 

yapabilir. LSTM'ler ve Transformers arasındaki sinerji, karmaşık, ardışık veri odaklı 

uygulamalar için makine öğrenimi modellerinin devam eden evriminde önemli bir 

yeniliği temsil eder.  

2.4.3 LSTM ve Transformatör Modellerini Birleştirmenin Avantajları 

• Geliştirilmiş Zamansal Dinamikler: LSTM'nin geçmiş girdileri tutma yeteneği, 

Transformatör modellerinin olayların sırasının ve zamanlamasının kritik olduğu 

görevlerde, örneğin rüzgâr desenlerindeki ani değişiklikleri tahmin etmede daha iyi 

performans göstermesini sağlar. 

• Geliştirilmiş Sıra Gösterimi: Sıra verilerini önce bir LSTM katmanıyla 

işleyerek, sonraki Transformatör katmanları daha bilgilendirici ve bağlamsal olarak 

farkında bir girdi alır ve bu da modelin genel performansını iyileştirir. 

• Transformatör Sınırlamalarının Hafifletilmesi: Transformatörler güçlü olsa da 

verilerin sıralı sırasının kritik olduğu senaryolarda bazen yetersiz kalabilirler. LSTM 

katmanlarının dahil edilmesi, veriler Transformatör katmanlarına ulaşmadan önce 

zamansal sırayı ve bağımlılıkları açıkça modelleyerek bu sınırlamayı hafifletir [82]. 

2.5 Transformer Modelleri 

LSTM'ler birçok ardışık tahmin görevinde etkili olduklarını kanıtlamış olsalar da bazı 

sınırlamalara sahiptirler. Bu sınırlamalardan biri, ardışık işlemeye olan 

bağımlılıklarıdır, bu da özellikle uzun dizilerde hesaplama açısından pahalı ve yavaş 

olabilir. Transformer modellerinin tanıtılması, bu sınırlamaların üstesinden gelmekte 

önemli bir ilerleme kaydetti. İlk olarak doğal dil işleme (NLP) için geliştirilen 

Transformer'lar, o zamandan beri zaman serisi tahmini de dahil olmak üzere geniş bir 

yelpazedeki uygulamalar için uyarlanmıştır [32].  

Transformer'lar, RNN'lerden ve LSTM'lerden, girdilerin dizideki konumlarından 

bağımsız olarak, modelin girdi verilerinin farklı bölümlerinin önemini 

değerlendirmesini sağlayan kendi kendine dikkat (self-attention) mekanizmalarını 

kullanmalarıyla ayrılırlar. Bu, Transformer'ların LSTM'lerden daha verimli bir şekilde 

verilerdeki karmaşık bağımlılıkları yakalamasını sağlar, çünkü dizileri ardışık olarak 

değil, paralel olarak işleyebilirler. Kendi kendine dikkat mekanizması, tüm giriş 
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değerlerinin ağırlıklı bir toplamını hesaplar, burada ağırlıklar her giriş değerinin 

mevcut çıktı için ne kadar ilgili olduğuna göre belirlenir. Bu yaklaşım, Transformer'ı 

uzak veri noktaları arasındaki ilişkileri etkili bir şekilde modellemesine olanak tanır, 

bu da gelecekteki rüzgâr koşullarını etkileyebilecek çeşitli meteorolojik faktörler ve 

zaman gecikmelerinin olduğu rüzgâr gücü tahmininde özellikle faydalıdır. 

 2.5.1 Transformatör Mimarisi Genel Bakış  

Bir Transformatör modeli genellikle bir kodlayıcı-kod çözücü yapısından oluşur. 

Ancak birçok uygulamada, özellikle zaman serisi tahmininde, yalnızca kodlayıcı 

bileşeni bağımsız olarak kullanılır. Modelin mimarisi, her biri iki ana bileşenden 

oluşan birden fazla kodlayıcı katmanından oluşur: çok başlı bir öz-dikkat mekanizması 

ve mekansal olarak bağımsız, tam bağlı bir ileri besleme ağı. 

Kodlayıcı mimarisi: 

• Öz-Dikkat Mekanizması: Öz-dikkat mekanizması, Transformatör modelinin 

temel yeniliğidir. Modelin giriş dizisinin farklı öğelerinin göreceli önemini 

değerlendirmesine olanak tanır. Dizileri adımlar halinde işleyen RNN'ler ve 

LSTM'lerin aksine, öz-dikkat mekanizması tüm diziyi aynı anda işler ve dizideki iki 

öğe arasındaki ilişkileri konumlarından bağımsız olarak belirleyebilir. Zaman serisi 

tahmininde, uzun menzilli bağımlılıkları yakalama yeteneği, zaman açısından uzak 

olan olayların birbirini etkileyebileceği durumlarda özellikle değerlidir. 

• Çoklu Baş Dikkat: Transformatör, verilerdeki ilişkilerin farklı yönlerini 

yakalamak için çoklu baş dikkat mekanizması kullanır. Bu, tek bir dikkat 

fonksiyonuna güvenmek yerine, modelin verilerin farklı gösterimlerini öğrenen birden 

fazla dikkat başı kullandığı anlamına gelir. Bu farklı baş daha sonra birleştirilir ve 

doğrusal olarak dönüştürülür, bu da modelin dizinin farklı bölümlerinin önemini 

değerlendirirken birden fazla bakış açısını dikkate almasına olanak tanır. 

• Konum Tabanlı İleri Beslemeli Ağlar: Öz-dikkat katmanından sonra, her 

kodlayıcı dizideki her konuma bağımsız ve aynı şekilde uygulanan tamamen bağlı bir 

ileri beslemeli ağ içerir. Bu ağ, modele doğrusal olmayanlık katan ReLU aktivasyon 

fonksiyonuna sahip iki doğrusal dönüşümden oluşur. Transformatörün paralel işleme 

doğası nedeniyle sıralı bilginin kaybına rağmen, giriş verilerine konumsal kodlamalar 

eklenir ve modelin dizideki öğelerin göreli konumlarını çıkarmasına olanak tanır ve 

sıralı bilgileri korumaya yardımcı olur. 
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• Konumsal Kodlama: Transformatör verileri doğası gereği sıralı olarak 

işlemediğinden, dizideki öğelerin sırasını çıkarsamak için bir yola ihtiyaç duyar. 

Konumsal kodlama bunu, dizideki konumunu kodlayan her giriş öğesine benzersiz bir 

vektör ekleyere gerçekleştirir. Bu yaklaşım, modelin dikkat puanlarını hesaplarken 

olayların sırasını hesaba katmasını ve böylece zaman serisi verilerinin sıralı yapısını 

korumasını sağlar. 

Kod çözücü mimarisi: 

• Maskelenmiş Çok Başlı Dikkat: Kod çözücüde, çok başlı dikkat mekanizması, 

modelin dizideki gelecekteki konumlara dikkat etmesini önlemek için eğitim sırasında 

hafifç değiştirilir. Bu "maskeleme", modelin her konumda yaptığı tahminlerin yalnızca 

önceki öğelere bağlı olmasını sağlar; bu da dil üretimi ve tahmin gibi görevler için 

kritik öneme sahiptir. 

• Kodlayıcı-Kod Çözücü Dikkat: Kod çözücü ayrıca, kodlayıcının giriş dizisinin 

ilgili bölümlerine odaklanmasını sağlayan ek bir dikkat mekanizması içerir. Bu dikkat 

mekanizması, modelin girdiyi çıktıyla hizalamasına yardımcı olur ve nihai tahminin 

girdi dizisinin en alakalı kısımları tarafından bilgilendirilmesini sağlar. 
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Şekil 2.4. Transformatör model mimarisini 

 

2.5.2 Öz-Dikkat (Self-Attention) Mekanizması 

Öz-Dikkat mekanizması, Transformer mimarisinin temel yapı taşlarından biridir ve 

modelin dizileri daha verimli bir şekilde işlemesini ve tüm dizi boyunca karmaşık 

bağımlılıkları yakalamasını sağlar. Bu mekanizma, modelin girdideki her öğenin diğer 

öğelere olan ilişkisini dinamik olarak değerlendirmesine olanak tanır. Böylece, uzak 

konumlarda bile olsa, ilgili bilgilerin dikkate alınmasını sağlar. 

Öz-Dikkat Mekanizmasının İşleyişi: 

• Sorgu, Anahtar ve Değer Vektörleri: Kendine dikkat mekanizmasının temelini 

sorgu (query), anahtar (key) ve değer (value) vektörleri oluşturur. Dizideki her bir öğe 



27 
 

için model, bu üç vektörü oluşturur. Sorgu vektörü, dikkati hesaplanan öğeyi temsil 

eder; anahtar vektörü, dikkatin yönlendirildiği öğeyi temsil eder; değer vektörü ise 

aktarılacak bilgiyi taşır [83]. 

• Dikkat Puanları: Her bir öğe çifti için dikkat puanları, sorgu ve anahtar 

vektörlerinin nokta çarpımı ile hesaplanır. Bu puanlar, anahtar vektörlerinin 

boyutunun karekökü ile ölçeklendirilir ve ardından softmax fonksiyonu ile 

normalleştirilir. Bu süreç, dikkat puanlarını olasılıklara dönüştürerek, her öğenin ne 

kadar önemli olduğunu belirler. Böylece, model hangi öğelere daha fazla odaklanması 

gerektiğini öğrenir [84]. 

• Ağırlıklı Toplam: Her bir pozisyon için nihai çıktı, değer vektörlerinin dikkat 

puanlarına göre ağırlıklı toplamı alınarak elde edilir. Bu, modelin sorgu tarafından 

sağlanan bağlama bağlı olarak dizinin farklı bölümlerini dinamik bir şekilde 

vurgulamasını sağlar. Böylece, model girdideki kritik bilgileri daha iyi temsil eder 

[85]. 

 

Şekil 2.5. Öz-Dikkat 
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2.5.3 Zaman Serisi Tahmini için Transformer Model Uygunluğu 

Transformer modelinin Öz-Dikkat mekanizması ve benzersiz mimarisi, rüzgâr enerjisi 

tahmini de dahil olmak üzere zaman serisi tahminleri için çeşitli avantajlar sunar. Bu 

avantajlar, modelin özellikle karmaşık ve büyük ölçekli veri setleriyle çalışmasını 

kolaylaştırarak daha doğru ve güvenilir tahminler yapmasını sağlar [86]. 

• Karmaşık Bağımlılıkları Yakalama: Zaman serisi verileri, farklı zaman 

noktaları arasında karmaşık ve doğrusal olmayan ilişkiler içerebilir. Transformer 

modellerinde kullanılan kendine dikkat mekanizması, modelin dizideki çeşitli zaman 

noktalarının önemini değerlendirmesine olanak tanır. Bu mekanizma, zaman serisi 

verilerindeki uzun vadeli bağımlılıkları yakalama yeteneği sunar ve bu da tahmin 

doğruluğunu artırır [87]. 

• Eksik Verileri Ele Alma: Gerçek dünya zaman serisi verilerinde eksik veri 

noktaları sıkça karşılaşılan bir sorundur. Transformer modelleri, sıralı işleme 

yöntemlerine sıkı sıkıya bağlı kalmak yerine, mevcut olan ilgili bilgilere odaklanarak 

bu boşlukları etkili bir şekilde doldurabilir. Bu esneklik, eksik veri noktalarından 

kaynaklanabilecek olumsuz etkileri azaltarak modelin genel performansını artırır [88]. 

• Değişken Dizi Uzunluklarına Uyum: Transformer modeli, önemli mimari 

değişikliklere ihtiyaç duymadan değişken uzunluktaki dizilere uyum sağlayabilir. Bu 

özellik, zaman serisi tahminlerinde, tahmin ufkuna bağlı olarak giriş dizisinin 

uzunluğunun değişebileceği durumlarda oldukça faydalıdır. Modelin bu esnekliği, 

geniş bir yelpazede farklı tahmin görevlerinde kullanılmasını mümkün kılar [89]. 

• Geliştirilmiş Yorumlanabilirdik: Kendine dikkat mekanizması tarafından 

üretilen dikkat puanları, modelin tahmin yaparken dizinin hangi bölümlerini en önemli 

gördüğüne dair içgörüler sağlar. Bu yorumlanabilirdik, rüzgâr gücü tahmini gibi 

uygulamalarda son derece değerlidir. Modelin karar verme sürecini anlamak, modelin 

ince ayarını yapmak ve paydaşlarla güven inşa etmek açısından önemlidir [90]. 

Transformer modelleri, uzun vadeli bağımlılıkları verimli bir şekilde yakalama, büyük 

veri setlerini işleme ve paralel işleme yetenekleriyle zaman serisi tahminleri için güçlü 

bir araç sunar. Rüzgâr gücü üretimi gibi karmaşık tahmin görevlerinde, bu mimari, 

ölçeklenebilirlik ve doğruluk açısından avantajlar sağlar. Yenilenebilir enerji alanında 

doğru ve güvenilir tahminlere olan talep arttıkça, Transformer modelleri modern 

tahmin tekniklerinin ön saflarında yer almaya devam edecektir. 
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3. HİBRİT MODEL MİMARİSİ VE ENTEGRASYON STRATEJİLERİ 

3.1 Sinir Ağları, LSTM ve Hibrit Modellerin Entegrasyonu 

Bu araştırmada önerilen hibrit model, rüzgâr enerjisi tahmininde bulunan çok yönlü 

zorlukları etkili bir şekilde ele almak için sinir ağlarının, LSTM katmanının ve 

Dönüştürücü modellerinin yeteneklerini stratejik olarak entegre eder. Hibrit mimarinin 

her bir bileşeni, rüzgâr enerjisi verilerinin karmaşıklığını ve değişkenliğini yakalamak 

için uygun olan tutarlı bir model oluşturmak için farklı güçlü yönler sunar. 

Sinir Ağları, hibrit modelin temel çerçevesi olarak hizmet eder ve verilerde bulunan 

çeşitli ve genellikle doğrusal olmayan ilişkilerden öğrenmek için sağlam bir yapı 

sağlar. Esneklikleri ve uyarlanabilirlikleri, sinir ağlarını rüzgâr enerjisi üretimini 

etkileyen çeşitli girdi özelliklerini işlemek için önemli bir bileşen haline getirir. 

 LSTM katmanları, rüzgâr desenlerinde bulunan zamansal bağımlılıkları özel olarak 

ele almak için entegre edilmiştir. Büyük dizilerde bilgileri tutabilen bellek hücrelerini 

içeren benzersiz mimarileri sayesinde, LSTM'ler hem kısa vadeli dalgalanmaları hem 

de uzun vadeli eğilimleri modellemede özellikle etkilidir. Bu yetenek, olayların sırasını 

ve zamanlamasını anlamanın doğru tahminler yapmak için elzem olduğu rüzgar 

enerjisi tahmininde çok önemlidir. 

Transformatör Modelleri, büyük veri kümeleri arasında uzun vadeli bağımlılıkları ve 

ilişkileri yakalamak için güçlü bir mekanizma sağlayarak hibrit mimariyi daha da 

geliştirir. Transformatörün kendi kendine dikkat mekanizması, modelin sıralamadaki 

konumlarından bağımsız olarak çeşitli girdi özelliklerinin önemini dinamik olarak 

tartmasına olanak tanır. Bu yetenek, çeşitli meteorolojik değişkenlerin rüzgâr enerjisi 

üretimini etkilemek için doğrusal olmayan şekillerde etkileşime girdiği rüzgâr enerjisi 

tahmininde özellikle değerlidir. 

Bu hibrit modelde, LSTM katmanı rüzgâr enerjisi verilerinin zamansal dinamiklerini 

kodlamaktan sorumludur ve hem kısa hem de uzun vadeli bağımlılıkların doğru bir 

şekilde yakalanmasını sağlar. Kodlanan veriler daha sonra farklı meteorolojik 

değişkenler arasındaki karmaşık ilişkileri ve bunların rüzgâr enerjisi üretimi 

üzerindeki toplu etkilerini modellemeye odaklanan Transformatör bileşenine geçirilir. 

Transformatörün büyük veri kümelerini daha yüksek hesaplama verimliliğiyle işleme 
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yeteneğinden yararlanarak, model çeşitli bilgi kaynaklarını etkili bir şekilde entegre 

edebilir ve daha doğru tahminler üretebilir. 

Bu hibrit yaklaşım, özellikle geleneksel modellerin verilerin karmaşıklığı ve 

değişkenliğiyle mücadele edebileceği senaryolarda tahmin doğruluğunu artırmak için 

tasarlanmıştır. 

3.2 Hibrit Model Genel Bakış  

Bu çalışma, ultra kısa vadeli rüzgâr gücü tahmininin doğruluğunu artırmak için birden 

fazla gelişmiş makine öğrenimi tekniğini entegre eden bir hibrit model sunmaktadır. 

Model, veri ön işleme, özellik mühendisliği ve Random Forest  Regresyonu , Birinci 

Transformer Modeli ve İkinci Transformer Modeli gibi bir dizi tahmin modeli 

kombinasyonunu kullanmaktadır. Şekil (6), hibrit model için bir akış diyagramı 

göstermektedir. 
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Şekil 3.1. Hibrit dönüşüm modeli akış şeması. 
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3.3 Hibrit Transformatör Model Mimarisi  

3.3.1 Hava Tahmini için İlk Transformatör Modeli 

İlk Transformatör Modeli hava durumu tahmini için tasarlanmıştır ve ileri beslemeli 

sinir ağları ile Uzun Kısa Süreli Bellek ağlarını birleştiren karmaşık bir mimari içerir. 

LSTM Katmanı: İlk Transformatör Modelindeki LSTM katmanı, sıralı verilerdeki 

zamansal bağımlılıkları yakalamak için kritik bir bileşendir. LSTM ağları, özellikle 

uzun dizilerle çalışırken geleneksel Tekrarlayan Sinir Ağlarının eğitimini 

engelleyebilen kaybolan eğim sorununu ele almak için tasarlanmış bir RNN türüdür. 

Uzun Kısa Süreli Bellek ağı, ağ içindeki bilgi ve eğim akışını düzenleyen bir kapı 

mekanizması aracılığıyla kaybolan eğim sorununu çözer. Unutma kapısı, önceki hücre 

durumundan hangi bilginin atılacağını belirler ve şu şekilde gösterilir: 

                      𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                    [3.1]                                       

Burada 𝑓𝑡    unutma kapısıdır, σ sigmoid aktivasyon fonksiyonunu belirtir, 𝑊𝑓       

ağırlık matrisidir,ℎ𝑡−1 önceki gizli durumdur, 𝑥𝑡     mevcut giriştir ve 𝑏𝑓 önyargı 

terimidir. Giriş kapısı, hücre durumundaki bilgi güncellemelerini kontrol eder ve 

aktivasyonu şu şekilde sağlanır: 

           𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑖] + 𝑏𝑖)                                          [3.2] 

Burada 𝑖𝑡    giriş kapısı vektörüdür ve 𝑊𝑖, 𝑏𝑖              karşılık gelen ağırlıklar ve 

önyargılardır. Aday hücre durumu şu şekilde hesaplandı: 

                        𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)                                        [3.3] 

Burada 𝐶𝑡      aday hücre durumudur, 𝑊𝑐       ve 𝑏𝑐 aday hücre durumu için ağırlıklar 

ve önyargılardır. 

𝐶 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡                                              [3.4] 

Burada  𝐶 yeni hücre durumudur,𝐶𝑡−1 önceki hücre durumudur, ∗ eleman bazında 

çarpmayı ifade eder. Çıkış kapısı, çıkışı geçerli zaman adımında belirler ve gizli 

durumu, aktivasyonu şu şekilde açıklanan şekilde günceller: 

                                      𝑂𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                              [3.5] 

Burada 𝑂𝑡 çıkış kapısı vektörüdür 𝑊𝑜 , 𝑏𝑜 ağırlıklar ve önyargılardır. 
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Gizli durumda şu şekilde verilir: 

  ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                                                              [3.6]                   

Burada ℎ𝑡 mevcut gizli durumdur. 

LSTM'nin Birinci Transformer Modelinde kullanılması, modelin uzun vadeli 

bağımlılıkları öğrenmesini ve saklamasını sağlar. Bu, doğru hava durumu tahmini ve 

rüzgâr gücü tahmini için gereklidir. Verilerin ardışık yapısını etkili bir şekilde 

yakalayarak, LSTM katmanı modelin daha kesin tahminler üretme yeteneğine katkıda 

bulunur. 

Çok Kafa Dikkat Mekanizması: Birinci Transformer Modeli, LSTM katmanının 

ardından çok kafa bir dikkat (multi-head attention) mekanizması kullanarak rüzgâr 

gücü tahminini iyileştirir. Bu mekanizma, modelin hava durumu verisi dizisinin farklı 

bölümlerine aynı anda odaklanmasına olanak tanır, bu da özellikler arasındaki 

karmaşık etkileşimleri yakalar ve dikkat ağırlıkları aracılığıyla yorumlanabilirliği 

artırır. Çok kafalı dikkatin paralel işleme doğası, modelin zamansal verinin çeşitli ilgili 

yönlerini verimli bir şekilde değerlendirmesini sağlayarak daha iyi performansa yol 

açar. 

  Ç𝑜𝑘𝐾𝑎𝑓𝑎(𝑄, 𝐾, 𝑉) = 𝑏𝑖𝑟𝑙𝑒ş𝑡𝑖𝑟𝑚𝑒(𝑘𝑎𝑓𝑎1, … . , 𝑘𝑎𝑓𝑎ℎ)𝑊
𝑜                    [3.7] 

Her bir kafa şu şekilde hesaplanır: 

           𝑘𝑎𝑓𝑎𝑖 = 𝑑𝑖𝑘𝑘𝑎𝑡(𝑄𝑊𝑖
𝑞 , 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑣)                                  [3.8]   

Burada 𝑄𝑊𝑖
𝑞 , 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑣    öğrenilmiş projeksiyon matrisleridir, 𝑊𝑜 çıktı projeksiyon 

matrisidir. 

LSTM ve çok kafalı dikkat mekanizmalarının Birinci Transformer Modeline 

entegrasyonu, modelin ardışık verileri işleme ve doğru tahminlerde bulunma 

yeteneğini önemli ölçüde artırır. Bu, bu gelişmiş sinir ağı bileşenlerinin birleşik bir 

çerçevede birleştirilmesinin gücünü gösterir. 

3.3.2 İleri Beslemeli Sinir Ağı  

FFN, birinci transformer modelinin çıktısını daha da iyileştirmek için kullanılır. Birinci 

modelden alınan hava durumu tahminlerini girdi olarak alır ve tahmin doğruluğunu 

artırmak için bu tahminleri daha ileri düzeyde işler. 
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        𝐹𝐹𝑁(𝑥) = 𝑚𝑎𝑥(0, 𝑥𝑤1 + 𝑏1)𝑤2 + 𝑏2                                         [3.9]                                                               

Burada 𝑤1, 𝑤2  ağırlık matrisleridir 𝑏1, 𝑏2 önyargı terimleridir, max(0,.) ReLU 

aktivasyon fonksiyonunu temsil eder. Bu adım, başlangıç tahminlerinden kaynaklanan 

herhangi bir kalıntı hatanın son güç tahmin aşamasından önce en aza indirilmesini 

sağlar. 

3.3.3 Güç Tahmini için İkinci Transformer Modeli 

İkinci Transformer Modeli, güç üretimini tahmin etmek için iyileştirilmiş hava durumu 

tahminlerini orijinal girdi özellikleriyle birleştirir. Bu model, statik kovaryatlar ve 

dinamik özellikleri birleştiren bir Transformer mimarisi kullanır. 

Statik Kovaryat Kodlayıcı (Static Covariate Encoder): Statik kovaryatlar, statik 

kodlamalar oluşturmak için yoğun katmanlar (dense layers) ve toplu normalizasyon 

(batch normalization) aracılığıyla işlenir. Bu kodlamalar, zamanla sabit kalan verinin 

statik özelliklerini yakalamada yardımcı olur. Bu süreç, aşağıdaki gibi matematiksel 

olarak tanımlanabilir: 

               𝑠′ = 𝑅𝑒𝐿𝑈(𝑊𝑠. 𝑠 + 𝑏𝑠)                                      [3.10] 

Burada s statik değişkenlerin vektörüdür, 𝑊𝑠 statik değişkenlerin vektörüdür,𝑏𝑠  

önyargı vektörüdür, s′ dönüştürülmüş statik unsurlardır. 

LSTM Katmanı: Birleştirilmiş statik ve dinamik girdiler, yeniden şekillendirilir ve 

zamansal işlemeyi ele alan LSTM katmanlarından geçirilir. İkinci Transformer 

Modelindeki LSTM katmanları, güç üretim verilerindeki zamansal bağımlılıkları 

yakalamak için kritik öneme sahiptir. 

Gated Artık Ağ (Gated Residual Network): LSTM katmanlarının çıktıları, karmaşık 

bağımlılıkları yakalamak için Gated Artık Ağı'ndan geçirilir. GRN, doğrusal dönüşüm, 

kapı mekanizması ve artık bağlantılar (residual connections) gibi çeşitli bileşenlerden 

oluşur. Bu bileşenler, birlikte modelin giriş özelliklerini işleme yeteneğini artırır ve 

eğitim sürecini stabilize eder.  

GRN'yi tanımlayan denklemler şu şekildedir:  

           Doğrusal dönüşüm: 

                                           𝑧 = 𝑤𝑧 . 𝑥 + 𝑏𝑧                                                                      [3.11] 
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Burada  𝑥önceki katmandan gelen girdidir (örneğin, LSTM çıktıları), 𝑤𝑧 ağırlık 

matrisidir, 𝑏𝑧  Bias vektörü. 

         Kapı mekanizması: 

                                     𝑔 = 𝜎(𝑊𝑔. 𝑥 + 𝑏𝑔)                                                                              [3.12] 

Burada 𝑊𝑔      kapı için ağırlık matrisidir, 𝑏𝑔   Bias vektörü, 𝑔  geçit sinyalidir ve σ, 

çıktıyı 0 ile 1 arasına sıkıştıran sigmoid aktivasyon fonksiyonunu temsil eder. 

      Artık bağlantılar: 

                                  𝑦 = 𝑔 ∗ 𝑧 + (1 − 𝑔) ∗ 𝑧                                                       [3.13] 

Burada 𝑦   GRN'nin dönüştürülmüş çıktıyı da içeren nihai çıktısıdır, 𝑧  ve 𝑥 orijinal 

girdi 

GRN, artık bağlantıları öğrenerek modelin girdi özelliklerini işleme yeteneğini artırır; 

bu da eğitim sürecini istikrarlı hale getirir ve modelin tahmin doğruluğunu iyileştirir. 

Yoğun Katmanlar ve Dropout: Son güç tahmini, statik ve dinamik girdilerin 

birleştirilmesi ve bunların düzenleme amacıyla dropout ile yoğun katmanlardan 

geçirilmesiyle üretilir. Bu yoğun katmanlar, girdi özellikleri ile hedef değişken 

arasındaki doğrusal olmayan ilişkileri yakalamaya yardımcı olurken, dropout ise 

eğitim sırasında birimleri rastgele devre dışı bırakarak aşırı uyumayı (overfitting) 

önler. 

3.4 Model Geliştirmede Etik Hususlar 

Rüzgâr gücü tahmini için hibrit Transformer modelinin geliştirilmesinde, modelin adil, 

şeffaf ve sorumlu bir şekilde çalışmasını sağlamak amacıyla çeşitli etik hususlar ele 

alınmıştır. Makine öğrenimi modellerinde etik kaygılar genellikle önyargı, adalet, 

şeffaflık ve model tahminlerinin potansiyel sosyal etkisi gibi konular etrafında döner. 

Bu araştırmada, model geliştirme sürecinde bu faktörlere dikkat edilerek etik 

standartlar korunmuş ve model çıktılarının paydaşlar tarafından güvenilebilir olmasını 

sağlamak amaçlanmıştır. 

Adaletin Sağlanması: Makine öğreniminde adalet, modelin belirli bir grup veya veri 

türüne ayrıcalık tanımadığından ya da dezavantaj oluşturmadığından emin olmayı 

gerektirir. Araştırmada kullanılan veri kümesi ağırlıklı olarak meteorolojik ve rüzgâr 
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gücü üretim verilerinden oluşsa da adalet önemli bir husus olarak ele alınmıştır. Farklı 

coğrafi bölgelerin, mevsimsel değişimlerin veya diğer bağlamsal faktörlerin eşit temsil 

edilmemesi, önyargıya yol açabilir. Bu sorunu ele almak için, veri kümesi model 

eğitiminden önce potansiyel önyargılar açısından dikkatlice incelenmiştir. Veriler, 

farklı bölgelerde ve zaman dilimlerinde çeşitli rüzgâr modelleri ve koşullarının dengeli 

ve kapsamlı bir şekilde temsil edilmesini sağlamak amacıyla ön işleme tabi 

tutulmuştur. 

Ayrıca, modelin performansını etkileyebilecek istem dışı önyargıların ortadan 

kaldırılmasına vurgu yapılarak özellik mühendisliği ve seçimi gerçekleştirilmiştir. 

Rüzgâr gücü üretimi ile doğrudan ilgili olan meteorolojik değişkenlere odaklanılarak, 

modelin tahminlerinde adalet sağlanmış ve önyargıya neden olabilecek gereksiz 

değişkenlerin kullanımından kaçınılmıştır. 

Şeffaflık ve Yorumlanabilirdik: Model geliştirmede şeffaflık, güven inşa etmek ve 

paydaşların modelin nasıl çalıştığını ve neden belirli tahminlerde bulunduğunu 

anlamalarını sağlamak için esastır. Bu araştırmada, model geliştirme sürecinin her 

adımı, veri ön işleme ve model mimarisi tasarımından sonuçlara kadar dikkatlice 

belgelenmiştir. Bu belgelendirme, modelin arkasındaki karar alma sürecinin hem 

teknik hem de teknik olmayan paydaşlar tarafından anlaşılır ve erişilebilir olmasını 

sağlar. 

Transformer modelinde kullanılan kendi kendine dikkat mekanizmaları, modelin 

yorumlana bilirliğine de katkıda bulunur. Model tarafından üretilen dikkat skorları, 

modelin tahmin yaparken hangi girdi özelliklerini en önemli olarak değerlendirdiğine 

dair içgörüler sunar. Bu şeffaflık düzeyi, tahminleri etkileyen faktörlerin 

anlaşılmasının operatörlerin daha bilinçli kararlar almasına yardımcı olabileceği 

rüzgâr gücü tahmininde oldukça önemlidir. 

Hesap Verebilirlik ve Sosyal Etki: Rüzgâr gücü tahmininin enerji yönetimi ve kaynak 

tahsisi üzerindeki potansiyel etkisi göz önünde bulundurulduğunda, modelin 

tahminlerinin sosyal sonuçları geliştirme sürecinde dikkate alınmıştır. Model, hataları 

en aza indirerek enerji kullanımında verimsizliklere veya şebeke dengesizliklerine yol 

açabilecek riskleri minimize edecek şekilde sağlam ve doğru olacak şekilde 

tasarlanmıştır. Modelin güvenilirliğini ve tahminlerinin şeffaflığını sağlamak suretiyle, 
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araştırma, sürdürülebilir enerji yönetimi ve iklim değişikliğiyle mücadele gibi daha 

geniş hedeflere olumlu katkıda bulunmayı amaçlamaktadır. 

3.4.1 Çevresel Etkiler 

Rüzgâr gücü tahmininin çevresel etkileri, yenilenebilir enerji sayesinde karbon 

emisyonlarını azaltmanın ötesine geçer. Hibrit Transformer modelleri gibi ileri makine 

öğrenimi modellerinin eğitilmesi ve uygulanması, önemli ölçüde enerji tüketimine ve 

dolayısıyla daha büyük bir karbon ayak izine yol açabilir. Buradaki etik zorluk, 

geliştirilmiş tahmin doğruluğunun çevresel faydaları ile bu iyileştirmeleri sağlamak 

için gereken hesaplama kaynaklarının çevresel maliyetleri arasındaki dengeyi 

bulmaktır. 

Azaltma Stratejileri: Çevresel etkiyi azaltmak için birkaç iyi uygulama hayata 

geçirilebilir: 

• Enerji Verimli Model Tasarımı: Makine öğrenimi modellerinin enerji 

verimliliği için optimize edilmesi önemlidir. Bu, modelin karmaşıklığının 

azaltılmasını, daha verimli algoritmaların kullanılmasını veya hesaplamaları daha 

verimli gerçekleştirebilen Grafik İşlem Birimleri (GPU'lar) veya Tensör İşlem 

Birimleri (TPU'lar) gibi donanım hızlandırma teknolojilerinin kullanılmasını 

içerebilir. 

• Yenilenebilir Enerji Kaynaklarının Kullanımı: Mümkün olan her durumda, 

hesaplama kaynaklarını çalıştırmak için kullanılan enerji yenilenebilir kaynaklardan 

sağlanmalıdır. Veri merkezleri, model eğitimi ve dağıtımının genel karbon ayak izini 

azaltmak için güneş, rüzgar veya hidroelektrik güç kullanacak şekilde tasarlanabilir 

veya yenilenebilir enerji kaynaklarına dönüştürülebilir. 

• Karbon Dengeleme: Kaçınılmaz emisyonlar için, organizasyonlar karbon 

dengeleme programlarına yatırım yapabilir. Bu programlar, yeniden ağaçlandırma 

veya yenilenebilir enerji girişimleri gibi çevresel projelere yatırım yaparak, salınan 

karbon dioksit miktarını dengelemeye yardımcı olur.  

Bu azaltma stratejilerini geliştirme sürecine entegre ederek, ileri rüzgâr gücü tahmin 

modellerinin çevresel etkisi önemli ölçüde azaltılabilir ve bu süreç daha sürdürülebilir 

ve etik açıdan sorumlu hale getirilebilir. 
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3.4.2 Doğru Tahminlerin Sorumluluğu 

Doğru rüzgâr gücü tahmini, yalnızca enerji üretimini optimize etmek ve şebeke 

güvenilirliğini sağlamak için değil, aynı zamanda yenilenebilir enerjiye olan kamu 

güvenini sürdürmek için de kritik öneme sahiptir. Yanlış tahminler, aşırı üretime yol 

açarak enerjinin boşa harcanmasına ve şebeke altyapısına zarar verme potansiyeline 

sahipken, yetersiz üretim enerji eksikliklerine ve yedek olarak fosil yakıtların 

kullanılmasını gerektirebilir, bu da rüzgar enerjisinin çevresel faydalarını azaltır. 

Azaltma Stratejileri: Tahminlerin doğruluğunu ve güvenilirliğini sağlamak için şu en 

iyi uygulamalar benimsenmelidir: 

• Sağlam Model Doğrulama: Modeli çeşitli senaryolar ve koşullar altında test 

etmek için titiz doğrulama teknikleri kullanılmalıdır. Bu, modelin sağlamlığını ve 

görülmemiş veriler üzerinde genelleme yeteneğini sağlamak için çapraz doğrulama, 

duyarlılık analizi ve örnek dışı testleri içerebilir. 

• Model Geliştirmede Şeffaflık: Modellerin nasıl geliştirildiği, eğitildiği ve test 

edildiği konusunda şeffaflık esastır. Araştırmacılar, veri kaynakları, model 

parametrelerinin seçimi ve doğrulama süreçleri de dahil olmak üzere metodolojilerini 

belgelemeli, bu sayede akran incelemesi ve sonuçların tekrarlanması mümkün 

olmalıdır. Bu şeffaflık, aynı zamanda modelin sınırlamalarını ve belirsizliklerini 

paydaşlara iletmek açısından da önemlidir. 

• Sürekli Model İyileştirme: Hava koşullarının dinamik doğası ve rüzgâr gücü 

teknolojisinin gelişen durumu göz önüne alındığında, modeller yeni veriler geldikçe 

sürekli olarak güncellenmeli ve iyileştirilmelidir. Bu yinelemeli yaklaşım, tahmin 

modelinin zaman içinde doğru ve geçerli kalmasını sağlar.  

Bu uygulamalara öncelik vererek, geliştiriciler doğru ve güvenilir rüzgâr gücü 

tahminleri sağlama konusundaki etik sorumluluklarını yerine getirebilir, böylece 

yenilenebilir enerjinin şebekeye sürdürülebilir entegrasyonunu destekleyebilirler. 

3.4.3 Enerji Üretiminde İsraf ve Verimsizliği Önleme 

Doğruluğu sağlamanın ötesinde, enerji üretiminde israf ve verimsizliği önleme 

konusunda etik bir yükümlülük vardır. Tahmin hataları aşırı tahminlere ve gereksiz 

enerji depolama maliyetlerine veya diğer yenilenebilir kaynakların kısıtlanmasına yol 
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açabilirken, düşük tahminler yedek olarak fosil yakıtların kullanılmasını gerektirebilir 

ve enerji sisteminin genel verimliliğini ve sürdürülebilirliğini azaltabilir. 

Azaltma Stratejileri: İsrafı ve verimsizliği en aza indirmek için aşağıdaki stratejiler 

uygulanabilir: 

• Optimize Edilmiş Karar Alma Çerçeveleri: Tahmin modellerini tahmin 

belirsizliğine uyum sağlayabilen karar alma çerçeveleriyle entegre etmek, daha bilinçli 

enerji üretimi ve dağıtım kararları alınmasına yardımcı olabilir. Bu çerçeveler israfı en 

aza indirmek ve mevcut enerji kaynaklarının kullanımını optimize etmek için 

tasarlanmalıdır. 

• Senaryo Planlama ve Risk Yönetimi: Senaryo planlama teknikleri, farklı 

tahmin sonuçlarını öngörmek ve acil durum planları hazırlamak için kullanılabilir. Bu 

yaklaşım, şebeke operatörlerinin yedek kaynakların verimli ve yalnızca ihtiyaç 

duyulduğunda kullanılmasını sağlayarak tahmin hatalarıyla ilişkili riskleri daha iyi 

yönetmelerini sağlar. 

• İşbirlikçi Enerji Yönetimi: Enerji üreticileri, şebeke operatörleri ve tahminciler 

arasındaki iş birliğini teşvik etmek daha koordineli ve verimli enerji yönetimine yol 

açabilir. Paydaşlar arasında veri ve bilgi paylaşımı, tahminlerin genel doğruluğunu 

iyileştirebilir ve israfçı enerji uygulamalarının olasılığını azaltabilir. 

Bu stratejileri uygulayarak, enerji üretiminde israf ve verimsizliği önleme 

konusundaki etik yükümlülük daha iyi karşılanabilir ve daha sürdürülebilir ve sorumlu 

bir enerji sistemine katkıda bulunulabilir. 

Hibrit Transformatör gibi gelişmiş makine öğrenimi modellerinin rüzgâr enerjisi 

tahminine entegre edilmesi, dikkatlice yönetilmesi gereken bir dizi etik hususu 

beraberinde getirir. Çevresel etkileri en aza indirmekten doğru tahminler sağlamaya ve 

enerji üretiminde israfı önlemeye kadar her bir husus önemli bir etik ağırlığa sahiptir. 

Bu bölümde özetlenen azaltma stratejilerini benimseyerek, araştırmacılar, geliştiriciler 

ve endüstri uzmanları bu etik zorlukları etkili bir şekilde ele alabilir ve rüzgâr enerjisi 

tahmininin faydalarının sosyal açıdan sorumlu, çevresel açıdan sürdürülebilir ve etik 

açıdan sağlam bir şekilde gerçekleştirilmesini sağlayabilir. Alan geliştikçe, 

sürdürülebilirlik ve sosyal sorumlulukla uyumlu tahmin teknolojilerinin 

geliştirilmesine rehberlik etmede bu etik boyutlara sürekli dikkat edilmesi önemli 

olacaktır.  
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4. METODOLOJİ 

4.1 Veri Toplama ve Ön İşleme 

Bu veri seti, Kaggle web sitesinden (Mubashir Rahim) [91] elde edilen saha 

meteoroloji gözlemleri ve rüzgar enerjisi üretim verilerinin benzersiz bir derlemesidir. 

Veri seti, 2 Ocak 2017'den 31 Aralık 2021'e kadar olan kayıtları içerir ve çeşitli hava 

koşulları ile rüzgar enerjisi üretimi arasındaki etkileşime dair gerçek dünya içgörüleri 

sağlar. Saha ortamına kurulan yüksek teknoloji ürünü ekipmanlar kullanılarak titizlikle 

toplanan bu veri seti, sıcaklık (C°), nem (%), çiğ noktası (C°) ve farklı irtifalardaki 

rüzgar özellikleri (hız m/s ve yön dereceleri) gibi çeşitli meteorolojik değişkenleri 

kaydetmiştir. Veri seti ayrıca rüzgâr türbinlerinden normalize edilmiş güç çıkışının 

saatlik ölçümlerini de içerir. 

 T
em

p
er

a
tu

re
_

2
m

 

R
el

a
ti

v
e
 H

u
m

id
it

y
_

2
m

 

D
ew

p
o

in
t_

2
m

 

W
in

d
 S

p
ee

d
_

1
0

m
 

W
in

d
 S

p
ee

d
_

1
0

0
m

 

W
in

d
 D

ir
e
ct

io
n

_
1

0
m

 

W
in

d
 D

ir
e
ct

io
n

_
1

0
0

m
 

W
in

d
 G

u
st

s_
1

0
m

 

P
o

w
er

 

Count 43800 43800 43800 43800 43800 43800 43800 43800 43800 

mean 
47.8691
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3.59114
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203.637
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0.40538
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std 
19.4536

91 
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10 

1.64931

8 

2.68521

6 

96.3712

62 

97.9598

52 

3.56914

7 

0.28832

2 

min -14.4 18 -17.1 0 0.1 1 0 0.5  

25% 32.1 60 24.3 2.41 4.38 132 130 5 0.1489 

50% 47.3 74 38.1 3.3 6.08 255 266 7.2 0.34765 

75% 64.5 7486 54.7 4.59 7.99 277 278 10 0.6596 

max 94.1 100 76.3 13.45 20.65 360 360 29.2 0.9913 

 

Tablo 4.1. Veri İstatistikleri 

 

Tablo 4.1, 2 Ocak 2017 ile 31 Aralık 2021 tarihleri arasında toplanan rüzgar enerjisi 

üretimi veri setinin temel istatistiksel özelliklerinin ayrıntılı bir özetini sunmaktadır. 

İncelenen temel meteorolojik değişkenler; sıcaklık (2m), bağıl nem (2m), çiy noktası 

(2m), rüzgâr hızı (10m ve 100m yüksekliklerde), rüzgâr yönü (10m ve 100m 
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yüksekliklerde), rüzgâr hızındaki ani artışlar (10m) ve güç çıktısı (kW) olarak 

sıralanmaktadır. Her bir değişken, veri sayısı (count), ortalama (mean), standart sapma 

(std), minimum değer, 25. yüzdelik dilim (25%), medyan (50%), 75. yüzdelik dilim 

(75%) ve maksimum değer gibi temel ölçütler ile tanımlanmıştır. Bu istatistikler, veri 

dağılımı, değişkenlik ve merkezi eğilimler hakkında önemli bir anlayış sağlayarak 

keşifsel veri analizi ve sonraki modelleme çalışmaları için sağlam bir temel 

oluşturmaktadır. 

 

4.2 Keşifsel Veri Analizi 

Keşifsel Veri Analizi (KVA), bir veri setindeki temel örüntüleri ve yapıları anlamada 

kritik bir rol oynar. Rüzgâr gücü üretimi için KVA, güç çıktısını etkileyen anahtar 

faktörleri belirlemeye, veri kalitesini değerlendirmeye ve sonraki istatistiksel analiz ve 

modellemeye rehberlik edebilecek içgörüler sağlamaya yardımcı olur. Bu bölümde, bir 

rüzgâr gücü üretimi veri setinin kapsamlı bir KVA'sı sunularak, verideki önemli 

eğilimler ve ilişkiler ortaya çıkarılmaya çalışılmaktadır. 

 

Şekil 4.1. Zaman Serisi Analizi 

 

Verilen zaman serisi grafiği, 24 saatlik sıcaklık ölçümlerinin analizini içermektedir. 

Şekil 4.1'deki grafikte, x ekseninde 24 saatlik formatta zaman, y ekseninde ise santigrat 

derece (C°) cinsinden sıcaklık yer almaktadır. Bu analiz, bir gün boyunca gözlemlenen 
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sıcaklık eğilimlerini ve önemli veri noktalarını detaylı bir şekilde incelemeyi 

amaçlamaktadır. 

Grafik, 24 saatlik periyod boyunca değişen sıcaklık ölçümlerini göstermektedir. 

Kaydedilen maksimum sıcaklık 34.68 C° olup, grafikte kırmızı bir nokta ile 

vurgulanmıştır. Buna karşılık, minimum sıcaklık 20.30 C° olarak kaydedilmiş ve yeşil 

bir nokta ile işaretlenmiştir. 11:00 ve 18:00 civarında iki önemli zirve gözlemlenmiştir. 

16:00'daki en düşük sıcaklık, genel eğilime göre bir aykırı değer olarak dikkat 

çekmektedir. Gözlemlenen bu desen, güneş ışığı, hava durumu koşulları ve coğrafi 

konum gibi faktörlerden etkilenebilecek tipik günlük sıcaklık dalgalanmalarını 

yansıtmaktadır. 15:00 ve 16:00 civarındaki keskin düşüş ve ardından gelen yükselme, 

ani hava değişiklikleri veya diğer yerel fenomenlere işaret ediyor olabilir.  

 

 

Şekil 4.2. Korelasyon Matrisi Isı Haritası 
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24 saatlik sıcaklık ölçümlerinin analizi, gün içinde belirgin desenler ve önemli 

dalgalanmalar olduğunu ortaya koymaktadır. Bu değişimleri anlamak, yerel hava 

durumu koşulları hakkında fikir edinmek ve günlük aktiviteleri planlamak açısından 

büyük önem taşır. Gelecek araştırmalar, bu sıcaklık değişimlerini etkileyen temel 

faktörleri, meteorolojik veriler, coğrafi etkiler ve mevsimsel değişiklikler gibi unsurlar 

bağlamında daha derinlemesine inceleyebilir. 

Şekil 4.2'de sunulan korelasyon matrisi ısı haritası, çeşitli meteorolojik parametreler 

ile güç üretimi arasındaki ilişkilerin kapsamlı bir analizini sağlar. 2 metre yükseklikteki 

sıcaklık (temperature_2m), hem 2 metre yükseklikteki çiy noktası (dewpoint_2m) hem 

de 2 metre yükseklikteki bağıl nem (relativehumidity_2m) ile çok yüksek pozitif 

korelasyon göstermektedir; korelasyon katsayıları sırasıyla 1.00 ve 0.93’tür. Bu 

durum, daha yüksek sıcaklıkların, daha yüksek nem ve çiy noktası ile güçlü bir şekilde 

ilişkili olduğunu gösterir. Ayrıca, 10 metre yükseklikteki rüzgâr hızı (windspeed_10m) 

ve 100 metre yükseklikteki rüzgar hızı (windspeed_100m) mükemmel bir korelasyon 

(1.00) sergilemekte olup, farklı yüksekliklerde rüzgâr davranışının tutarlı olduğunu 

öne sürmektedir. 

Dikkat çekici bir şekilde, 10 metre yükseklikteki rüzgâr yönü (winddirection_10m) ve 

100 metre yükseklikteki rüzgâr yönü (winddirection_100m) de çok yüksek pozitif 

korelasyon (0.99) göstermektedir; bu, yükseklikle birlikte rüzgâr yönünde çok az bir 

değişiklik olduğunu gösterir. Ancak, güç üretimi, her iki yükseklikteki rüzgâr yönü ile 

(10m için 0.93 ve 100m için 0.94) ve 10 metredeki rüzgâr patlamaları 

(windgusts_10m) ile orta düzeyde pozitif korelasyonlar sergilemekte, ancak sıcaklık, 

bağıl nem ve rüzgâr hızı ile daha düşük korelasyonlar göstermektedir; bu katsayılar 

0.24 ile 0.29 arasında değişmektedir. Bu bulgular, rüzgâr yönü ve patlamalarının, 

sıcaklık veya nemden daha fazla güç üretimi üzerinde etkili olduğunu göstermektedir. 

Bu analiz, meteorolojik faktörler arasındaki karmaşık etkileşimleri ve bunların güç 

üretimi üzerindeki kolektif etkisini vurgulamakta, rüzgâr parametrelerinin güç çıkışını 

tahmin etmede ne kadar önemli olduğunu ortaya koymaktadır. Farklı yüksekliklerdeki 

rüzgâr hızları ve yönleri arasındaki yüksek korelasyonlar, bu yükseklikler arasında 

rüzgâr modellerinin nispeten üniforman olduğunu öne sürerek, güç üretim 

çalışmalarında rüzgarla ilgili ölçümlerin güvenilirliğini pekiştirmektedir. 
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Bu korelasyon matrisi, değişkenler arasındaki ilişkileri belirlemede kritik bir rol oynar 

ve güç üretimini etkileyen faktörleri anlamada ve tahmin modellerinin 

geliştirilmesinde önemli bilgiler sunar. Bu içgörülerden yararlanarak, enerji üreticileri 

rüzgâr gücü tahminlerinin doğruluğunu artırabilir, daha güvenilir ve verimli bir enerji 

üretimi sağlayabilir. 

 

Şekil 4.3. Rüzgâr önü ile rüzgâr hızı arasındaki ilişki 

 

Şekil 4.3, 10m ve 100m yüksekliklerdeki rüzgâr yönü ile rüzgâr hızı arasındaki ilişkiyi 

gösteren polar grafiği temsil eder. Mavi daireler ve kırmızı üçgenler sırasıyla rüzgâr 

hızlarını göstermektedir. Veriler, rüzgârın ağırlıklı olarak doğudan estiğini ve 

100m'deki hızların 10m'dekinden daha yüksek olduğunu, bu durumun da rüzgâr 

hızının irtifa ile artma eğilimini yansıttığını göstermektedir. Grafik, net bir açıklama 

ve kılavuz çizgilerle iyi bir şekilde etiketlenmiştir, bu da yorumlamayı kolaylaştırır. 

Bu görselleştirme, farklı yüksekliklerdeki rüzgâr modellerinin anlaşılması, türbin 
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yerleşimi ve performansının optimize edilmesine yardımcı olarak enerji üretim 

verimliliğini artırdığı için rüzgâr gücü üretimi tahmini açısından önemlidir. 

4.3 Veri Kalitesi 

Veri kalitesi, hibrit modellerin etkinliğinde kritik bir rol oynar. Yüksek kaliteli giriş 

verileri, doğru tahminler üretmek için esastır, oysa düşük veri kalitesi, model 

performansını zayıflatarak önemli hatalar ortaya çıkarabilir. Bu nedenle, veri setinin 

kapsamlı ön işleme adımlarıyla iyi hazırlanmasını sağlamak, modelleme sürecinin 

önemli bir parçasıdır.  

4.3.1 Başlangıç Veri Hazırlığı 

Veri ön işlemenin ilk adımı, veri setini yüklemek ve kronolojik olarak düzenlemektir. 

Bu zamansal düzenleme, zaman serisi tahminleri için kritik öneme sahiptir ve veri 

noktalarının sıralamasının korunmasını sağlar. Ay, hafta günü, saat ve dakika gibi 

zamansal özellikler, modelin zamanın bağlamsal anlayışını elde etmesini sağlamak 

için tarih-saat bilgilerinden çıkarılır; bu, mevsimsellik ve günlük rüzgâr döngülerini 

yakalamak açısından hayati önem taşır.  

4.3.2 Rüzgâr Yönü Verilerinin Dönüştürülmesi 

Dairesel bir değişken olan rüzgâr yönü, modelin süreksizlikler nedeniyle (örneğin, 

359° ile 0° arasındaki geçiş) yanlış yönlendirilmemesi için özel bir işlem gerektirir. Bu 

sorunu çözmek için, rüzgâr yönü verilerine sinüs ve kosinüs dönüşümleri uygulanarak, 

iki sürekli değişkene dönüştürülür ve bu sayede model tarafından daha etkili bir şekilde 

işlenebilir hale getirilir.  

4.3.3 Özellik Seçimi ve Normalizasyon 

Özellik seçimi aşamasında, sıcaklık, nem, rüzgâr hızı ve rüzgâr yönü gibi temel 

meteorolojik değişkenler modelin girdileri olarak belirlenir. Bu özelliklerin öğrenme 

sürecine eşit katkı sağlamalarını güvence altına almak için, bu veriler StandardScaler 

kullanılarak standardize edilir. Bu yöntem, verileri ortalamadan çıkararak merkezler 

ve birim varyansa ölçeklendirir, böylece tüm özellikler karşılaştırılabilir bir ölçeğe 

yerleştirilir. Hedef değişken olan ‘Güç’ için MinMaxScaler kullanılarak, değerler 0 ile 

1 arasında normalize edilir. Bu normalizasyon, tek bir özelliğin ölçeği nedeniyle model 
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üzerinde orantısız bir etki yapmasını önleyerek, kararlı bir eğitim sağlamak ve tahmin 

doğruluğunu artırmak açısından kritik öneme sahiptir.  

4.3.4 Random Forest Regressor ile Gürültü Azaltma 

Veri setini daha da iyileştirmek ve giriş verilerinin kalitesini artırmak için Random 

Forest Regressor kullanılarak gürültü azaltma işlemi yapılır. 10 derinliğe, 200 

tahminciye ve diğer göreve özel hiperparametrelere sahip Random Forest modeli, 

hedef değişken olan ‘Güç’ü tahmin etmek üzere veri seti üzerinde eğitilir. Model, 

eğitim verilerine uyum sağladıktan sonra tahminlerini kullanarak, regressor etkili bir 

şekilde gürültüyü filtreler ve veriyi pürüzsüz hale getirir. Gürültüsü azaltılmış olan bu 

çıktı, sonraki modelleme çabaları için güncellenmiş hedef değişken olarak kullanılır. 

Bu gürültü azaltma adımı, hibrit modelin sağlamlığını artırarak daha doğru ve 

güvenilir tahmin sonuçları elde edilmesini sağlar.  
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5. SONUÇLAR VE DENEYLER 

5.1 Model Değerlendirmesi 

Bir sinir ağı modelinin performansını değerlendirmek, doğru tahminler yapma 

konusundaki etkinliğini anlamak için kritik öneme sahiptir. Bu çalışmada, 

Feedforward Sinir Ağımızın performansını değerlendirmek için üç değerlendirme 

metriği kullandık: MSE, MAE ve RMSE. Bu metrikler, modelin tahmin doğruluğunu 

ve hata özelliklerini kapsamlı bir şekilde anlamamızı sağlar.  

5.1.1 Ortalama Kare Hata   

MSE, regresyon görevleri için yaygın olarak kullanılan bir metriktir ve hataların 

karelerinin ortalamasını, yani tahmin edilen değerler ile gerçek değerler arasındaki 

ortalama kare farkını ölçer. MSE'nin formülü şu şekilde verilir: 

                             𝑀𝑆𝐸 =
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)

21
𝑛                                                                [5.1] 

Burada 𝑂𝑖     gerçek değer, 𝑃𝑖     tahmin edilen değer ve 𝑛    gözlem sayısıdır.  

MSE, sonucu orantısız bir şekilde etkileyebilecek hata terimlerini karelediği için aykırı 

değerlere karşı özellikle hassastır. Buna rağmen, basitliği ve daha büyük hataları daha 

önemli ölçüde cezalandırması nedeniyle popüler bir seçim olmaya devam etmektedir 

[92]. 

5.1.2 Ortalama Mutlak Hata  

MAE, bir tahmin setindeki hataların ortalama büyüklüğünü, yönlerini dikkate almadan 

ölçer. Şu şekilde hesaplanır: 

                              𝑀𝐴𝐸 =
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑛=1                                                                             [5.2] 

MAE, hataları karelemediği için MSE’ye göre aykırı değerlere (outliers) karşı daha az 

duyarlıdır; bunun yerine, tahmin edilen ve gerçek değerler arasındaki mutlak farkı 

dikkate alır. Bu metrik, hedef değişkenle aynı birimlerde ortalama tahmin hatasını net 

bir şekilde yorumlama olanağı sağlar, bu da onu anlamayı kolaylaştırır [93]. 
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5.1.3 Kök Ortalama Kare Hata  

RMSE, ortalama kare hatanın karekökü olup, hata büyüklüğünün ortalama ölçüsünü 

verir. Şu şekilde tanımlanır: 

                       𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)2
𝑛
𝑛=1                                                         [5.3] 

RMSE, orijinal hedef değişkenin birimlerini korur, bu da onu pratik anlamda daha 

anlaşılır kılar. MSE gibi, RMSE de hataların karelenmesi nedeniyle aykırı değerlere 

duyarlıdır. Özellikle büyük hataların istenmediği ve daha ağır bir şekilde 

cezalandırılması gerektiğinde tercih edilir [94]. 

5.1.4 Yüzde farkı 

Hibrit Transformatör modelinin performansının, karşılaştırma için kullanılan diğer 

yöntemlerle karşılaştırılması için kullanılır ve aşağıdaki denklemle hesaplanır: 

                𝐾𝑎𝑧𝑎𝑛ç =
𝑀𝑒𝑡𝑟𝑖𝑐𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒−𝑀𝑒𝑡𝑟𝑖𝑐𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑

𝑀𝑒𝑡𝑟𝑖𝑐𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒
∗ 100                                        [5.4]                                                                                 

Burada 𝑀𝑒𝑡𝑟𝑖𝑐𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑, önerilen Hybird Transformer tarafından elde edilen RMSE 

veya MAE'yi, 𝑀𝑒𝑡𝑟𝑖𝑐𝑙𝑖𝑡𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ise karşılaştırma için kullanılan hibrid yaklaşım 

modelleri için elde edilen RMSE veya MAE'yi temsil eder.  

Pozitif yüzde değerleri, önerilen H-Transformer'ın ilgili literatür yöntemine göre daha 

yüksek bir performans metriği elde ettiğini gösterir. 

Bu formül, hibrit Transformer modelinin performansındaki iyileşmeyi veya düşüşü, 

referans alınan diğer yöntemlere göre yüzdelik olarak ifade eder. Örneğin, bir tahmin 

modelinin doğruluğu eski yönteme göre yüzde kaç daha iyi veya kötü olduğunu 

belirlemek için bu formül kullanılabilir. 

5.2 Deneysel Kurulum 

Bu araştırma için deneysel kurulum, hibrit Transformer modelinin rüzgâr gücü 

tahminindeki performansını titizlikle değerlendirmek amacıyla özenle tasarlanmıştır. 

Deneyler, model eğitimi ve değerlendirmesi için gerekli hesaplama kaynaklarını 

sağlayan Google Colab platformunda gerçekleştirilmiştir. Deneyler, modelin farklı 
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zaman dilimleri ve koşullarda doğruluğunu, sağlamlığını ve genelleştirile bilirliğini 

değerlendirmeye odaklanmıştır. 

Veri setinin bölünmesinden önce, öznitelik mühendisliği gerçekleştirilmiştir. Zaman 

tabanlı öznitelikler eklenmiş; örneğin, veri setine ay, haftanın günü, saat ve dakika gibi 

zaman bilgileri dahil edilmiştir. Ayrıca, rüzgar yönü verileri radyan cinsine 

dönüştürülerek sinüs ve kosinüs bileşenlerine ayrılmıştır. Bu, yönlerin döngüsel 

yapısını modelin daha iyi anlamasına olanak tanımıştır. Özetle, bu işlem şu adımlarla 

gerçekleştirilmiştir: 

- Ay, haftanın günü, saat ve dakika gibi zaman bilgileri türetilmiştir. 

- Rüzgar yönü (10 m ve 100 m yükseklikte) radyana çevrilmiş ve sinüs ile kosinüs 

bileşenlerine ayrılmıştır. 

- Ağ seçimi özniteliği, belirli rüzgar hızı ve yönü koşullarına dayalı olarak 

oluşturulmuştur. 

Eğitim seti, modeli eğitmek için kullanılmış; doğrulama seti, hiper parametreleri 

ayarlamak ve aşırı öğrenmeyi (overfitting) önlemek için kullanılmıştır; test seti ise 

modelin performansını bağımsız olarak değerlendirmiştir. Bu tarih bazlı bölme 

yöntemi, modelin gerçek dünya tahmin senaryolarını yansıtan gelecekteki olayları 

tahmin etme yeteneğini test eder. 

 Model eğitimi ve değerlendirmesi için kullanılan veri seti, tarihsel rüzgâr gücü üretim 

verileri ve ilgili meteorolojik değişkenleri içermektedir. Modelin temsil edici verilere 

dayalı olarak eğitilmesini ve test edilmesini sağlamak amacıyla, veri seti, zamana 

dayalı olarak eğitim, doğrulama ve test setlerine bölünmüştür. Bu yaklaşım, zaman 

serisi tahminlerinde veri sıralamasının korunmasını sağlar ve modelin eğitim sırasında 

görmediği gelecekteki veriler üzerinde değerlendirilmesini garanti eder.  

Eğitim seti, modeli eğitmek için kullanılmış; doğrulama seti, hiper parametreleri 

ayarlamak ve aşırı öğrenmeyi (overfitting) önlemek için kullanılmıştır; test seti ise 

modelin performansını bağımsız olarak değerlendirmiştir. Bu tarih bazlı bölme 

yöntemi, modelin gerçek dünya tahmin senaryolarını yansıtan gelecekteki olayları 

tahmin etme yeteneğini test eder. 

Veri Ön İşleme : Veri ön işleme, modelin eğitim ve değerlendirme sürecinin önemli bir 

adımını oluşturmaktadır. Bu süreçte kullanılan metodoloji, özelliklerin 
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ölçeklendirilmesini ve gürültü azaltma yöntemlerini içermektedir. Aşağıda veri ön 

işleme sürecinin detayları açıklanmıştır. 

5.2.1 Veri Ölçeklendirme 

Modelin daha iyi performans göstermesi ve daha hızlı yakınsaması için veri 

setlerinden özelliklerin ve hedef değişkenin ayrılması ve ölçeklendirilmesi gereklidir. 

Bu çalışmada uygulanan veri ön işleme fonksiyonu, aşağıdaki adımları içermektedir: 

- Özelliklerin ve hedef değişkenin ayrılması: `feature_columns` ve `target_column` 

parametreleri kullanılarak, özellikler ve hedef değişken `X` ve `y` dizileri olarak 

ayrılmıştır. 

- Özelliklerin ölçeklendirilmesi: StandardScaler` kullanılarak `X` dizisi 

ölçeklendirilmiştir. Bu ölçeklendirme, veri setindeki değişkenlerin ortalama ve 

standart sapma ile normalize edilmesini sağlar ve modelin daha tutarlı sonuçlar 

üretmesine katkıda bulunur. 

- Ölçekleyicinin yeniden kullanımı: Eğitim, doğrulama ve test veri setlerinin tutarlı bir 

şekilde ölçeklendirilmesi amacıyla, eğitim veri seti ile fit edilen ölçekleyici, doğrulama 

ve test setlerine de uygulanmıştır. Bu adım, modelin farklı veri bölümlerinde tutarlı bir 

performans sergilemesini garanti eder. 

5.2.2 Gürültü Azaltma 

Modelin tahmin doğruluğunu artırmak için `RandomForestRegressor` gürültü azaltma 

yöntemi olarak kullanılmıştır. Random Forest algoritması, veriyi ağaç tabanlı bir yapı 

üzerinde eğiterek modelin aşırı uyum riskini azaltır ve daha genel geçer tahminler 

üretir. Gürültü azaltma süreci şu adımları içermektedir: 

- Random Forest Modelinin Eğitimi: Model, `max_depth=10`, `min_samples_leaf=4` 

ve `n_estimators=200` hiper parametreleri ile eğitilmiştir. Rastgele bir başlangıç 

noktası belirlemek amacıyla `random_state=42` kullanılmıştır. Bu yapılandırma, 

modelin genelleme yeteneğini artırırken, eğitim sürecinde aşırı uyumun önüne geçer. 

- Negatif Tahminlerin Sıfırlanması: Modelin tahmin sonuçlarında negatif değerlerin 

bulunmasını önlemek amacıyla, tahmin edilen güç değerleri `np.clip` fonksiyonu ile 

sıfırın altına düşmeyecek şekilde ayarlanmıştır. Bu işlem, modelin yalnızca pozitif ve 

fiziksel olarak anlamlı değerler üretmesini sağlar. 
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Bu veri ön işleme adımları, modelin aşırı uç tahminleri filtrelemesine ve daha güvenilir 

sonuçlar üretmesine olanak tanımıştır. Gürültü azaltma ve ölçeklendirme adımları, 

modelin doğruluğunu artırarak eğitim sürecini ve tahmin performansını optimize 

etmiştir. Bu sayede, modelin gerçek dünya uygulamalarına daha iyi uyum sağlaması 

sağlanmıştır. 

Eğitim Prosedürleri: Tüm modeller, adil bir karşılaştırma sağlamak amacıyla aynı 

hiper parametreler kullanılarak eğitilmiştir; bu hiper parametreler, epoch sayısı, batch 

boyutu ve öğrenme hızı planlamasını içerir. Modeller, yeterli bir yakınsama süresi 

sağlarken aşırı öğrenmeyi önlemek için sabit bir epoch sayısı boyunca eğitilmiştir. 

Eğitim sürecinde, öğrenme hızı başta daha yüksek başlayarak öğrenmeyi hızlandırmak 

ve modelin ince ayarını yapmak için eğitim ilerledikçe kademeli olarak azaltılmak 

üzere bir öğrenme hızı planlayıcısı kullanılmıştır. 

Eğitim süreci, geri yayılım (backpropagation) ve hibrit modelin karmaşıklığını ele 

almada verimliliği ve etkinliği nedeniyle seçilen Adam optimizasyonusun ile 

gerçekleştirilmiştir. Ayrıca, modelin doğrulama seti üzerindeki performansı iyileşmeyi 

durdurduğunda eğitimi sonlandırmak için erken durdurma (early stopping) 

uygulanarak aşırı öğrenmenin önüne geçilmiştir. 

Kullanılan Araçlar: Deneylerin yürütülmesi için Jupyter Notebook, yüksek 

performanslı hesaplama kaynaklarıyla sorunsuz entegrasyonu ve çok yönlülüğü 

nedeniyle tercih edilmiştir. Modelin karmaşıklığı ve yüksek hesaplama gereksinimleri 

göz önüne alındığında, ileri seviye GPU hızlandırıcılarla donatılmış güçlü makinelerde 

çalışabilme özelliği özellikle hibrit Transformer modelinin eğitimi açısından faydalı 

olmuştur. Ayrıca, Jupyter Notebook’un TensorFlow ve Keras gibi popüler makine 

öğrenimi kütüphaneleriyle uyumluluğu, modelin uygulanmasını ve kapsamlı eğitim 

prosedürlerinin yürütülmesini kolaylaştırmıştır. 

Deneysel düzenek, hibrit Transformer modelinin kapsamlı bir şekilde 

değerlendirilmesini sağlamak amacıyla titizlikle yapılandırılmıştır ve elde edilen 

sonuçların güvenilirliği ile gerçek dünya rüzgar gücü tahmin senaryolarına 

uygulanabilirliği garanti altına alınmıştır. Jupyter Notebook kullanımı, 

standartlaştırılmış eğitim protokolleri ve katı değerlendirme ölçütleri, deneylerin 

sağlamlığına önemli ölçüde katkıda bulunmuştur. Bu yapılandırılmış yöntem, modelin 

performansının yalnızca kontrollü deneysel koşullarda doğrulanmasını sağlamakla 
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kalmamış, aynı zamanda yenilenebilir enerji tahminleri alanında pratik uygulamalar 

için ölçeklenebilir ve uyarlanabilir olmasını da güvence altına almıştır. 

5.3 Model Performansı 

Modelin performansı oldukça sağlam olup, genel eğilimleri ve önemli dönüş 

noktalarını etkili bir şekilde yakalamaktadır. Bununla birlikte, modelin gerçek güç 

değerlerini hafifçe düşük veya yüksek tahmin ettiği bazı sapmalar meydana 

gelmektedir; örneğin, 7-8 ve 18-20 saatleri civarında. Bu sapmalara rağmen, tahminler 

genellikle gerçek verilere oldukça yakındır, bu da modelin güçlü bir performans 

sergilediğini göstermektedir.  

Nicel metrikler de bu performansı desteklemektedir; Hibrit Transformer Modeli, 

0.0009819084327411442 MSE, 0.023314690139361036 MAE ve 

0.031335418183600874 RMSE değerlerine ulaşmıştır. Bu düşük hata değerleri, 

yüksek tahmin doğruluğunu ve güvenilirliğini göstermektedir. 

 

Şekil 5.1. Gerçek Değerler vs. Tahmin Edilen Değerler 

 

Şekil 5.1 24 saatlik bir süre boyunca hibrit bir modelden elde edilen öngörülen 

değerlerle gerçek güç değerlerinin karşılaştırmalı analizini sunmaktadır. X ekseni, 

günün saatlerini 0 ile 24 arasında gösterirken, y ekseni normalleştirilmiş güç 

değerlerini göstermektedir. Güç değerleri 0 ile 1 arasında normalleştirilmiş olarak 

temsil edilmektedir. Kesintisiz mavi çizgi gerçek güç verilerini temsil ederken, kesikli 
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turuncu çizgi tahmin modeli tarafından üretilen öngörülen güç değerlerini temsil 

etmektedir. Hem gerçek hem de öngörülen güç seviyeleri, güç kullanımının veya 

üretiminin saat 12-13 ve 20-21 civarında zirveye ulaştığı belirgin döngüsel örüntüler 

sergilemektedir. Buna karşılık, güç seviyeleri en düşük seviyelerine sabahın erken 

saatlerinde (saat 1 ile 6 arasında) ve tekrar saat 18 civarında ulaşmaktadır. Tahmin 

modeli genellikle gerçek verilerin eğilimini takip eder ve günlük dalgalanmaları belirli 

bir doğrulukla yakalar. Bu grafik, hibrit modelin 24 saatlik bir süre boyunca güç 

değerlerini tahmin etmedeki doğruluğunu ve güvenilirliğini görsel olarak gösterdiği 

için rüzgar enerjisi üretim tahmini için büyük önem taşımaktadır. Doğru tahminler, 

rüzgar enerjisi sistemlerinin işletimini ve yönetimini optimize etmek, arz ve talebi 

dengelemek ve rüzgar enerjisini şebekeye entegre etmek için kritik öneme sahiptir. 

Gerçek ve tahmin edilen değerleri yan yana sunarak, paydaşlar modelin performansını 

değerlendirebilir, iyileştirilecek alanları belirleyebilir ve enerji üretim verimliliğini ve 

istikrarını artırmak için bilinçli kararlar alabilir.  

Özetle, Hibrit Transformatör Modeli, 24 saatlik süre boyunca güç değerlerini tahmin 

etmede mükemmel bir performans sergilemekte ve eğilimler ve spesifik değerler 

açısından gerçek verilerle yakın bir uyum göstermektedir. Küçük farklılıklar bulunsa 

da model, büyük zirveleri ve dip noktalarını etkili bir şekilde yakalayarak zaman serisi 

verilerini işleme konusundaki dayanıklılığını ortaya koymaktadır. Daha ayrıntılı nicel 

analizler veya ek bilgiler için raporlanan hata metrikleri, modelin tahmin yetenekleri 

hakkında kapsamlı bir anlayış sunmaktadır. 

5.4 Hibrit Transformer Modellerinin Karşılaştırmalı Analizi 

Bu bölümde, hibrit Transformer modelinin performansı, geliştirilen LSTM + BPNN 

modeli, SARIMAX + RNN + SVR modeli ve Dalga Dönüşümü ile NARMAX 

modelini de içeren diğer modellerle karşılaştırılarak değerlendirilmektedir. 

Karşılaştırma, MSE, MAE ve RMSE gibi temel metriklere dayanmaktadır. 

Tablo 5.1, 24 saatlik bir süre boyunca farklı modellerin güç tahmin sonuçlarının 

karşılaştırmalı analizini göstermektedir. Bu tablo, 0 ile 1 arasında normalize edilmiş 

gerçek saatlik türbin çıkışı ve NARMAX + Wavelet + PSO Modeli, Hibrit 

Transformatör Modeli, Geliştirilmiş LSTM + BPNN Modeli ve SARIMA + RNN + 

SVR Modeli tarafından yapılan tahminler için sütunlar içermektedir. Her satır, her saat 

için tahmin edilen değerleri göstererek model performansının net bir karşılaştırmasını 



54 
 

sağlar. Tablo ayrıca, her model için MSE, MAE ve RMSE gibi tahmin doğruluğunu 

değerlendiren ana metrikleri de içermektedir. Bu karşılaştırma, her tahmin yönteminin 

göreceli güçlü ve zayıf yönlerini vurgular ve saatlik güç üretimindeki değişiklikleri 

yakalamadaki etkinliklerini gösterir. Ayrıntılı değerlendirme, her yöntemin tahmin 

doğruluğu hakkında bilgi sağlar ve güç tahmini için en güvenilir modeli belirlemeye 

yardımcı olur. 

Saat 
Gerçek 

değer 

Hybird 

Transformer 

Model 

Improved 

LSTM + BPNN 

Model 

SARIMAX + 

RNN + SVR 

Model 

NARMAX with 

Wavelet 

Transform 

Model 

0 0.232106 0.180854 0.133966 0.258393 0.6673997 

1 0.156073 0.140302 0.139516 0.338965 -0.672907 

2 0.146339 0.147552 0.138571 0.530705 0.154998 

3 0.134493 0.163269 0.137376 0.532545 -0.223042 

4 0.136243 0.191564 0.156767 0.524920 0.910545 

5 0.173944 0.196822 0.161844 0.393874 -0.696963 

6 0.172938 0.193192 0.154648 0.395648 -0.463316 

7 0.128924 0.185021 0.145695 0.501467 0.357713 

8 0.104406 0.164403 0.119358 0.553291 0.975003 

9 0.228590 0.236192 0.200893 0.524875 -0.877866 

10 0.321443 0.327896 0.302571 0.498328 -0.584304 

11 0.556436 0.558073 0.641904 0.386760 0.689656 

12 0.551984 0.529848 0.621198 0.303988 0.879186 

13 0.533363 0.458632 0.561710 0.346444 -0.790414 

14 0.406486 0.385407 0.472963 0.484789 -0.824549 

15 0.388125 0.359364 0.399056 0.534644 0.808140 

16 0.501301 0.435368 0.485012 0.241107 1.437533 

17 0.664373 0.606116 0.644426 0.259800 -1.40178 

18 0.587803 0.612235 0.652598 0.447982 -0.361161 

19 0.533020 0.500236 0.575885 0.544804 0.083316 

20 0.417594 0.352551 0.363142 0.545884 0.618797 

21 0.319931 0.254534 0.246186 0.465732 -0.895971 

22 0.340846 0.320076 0.329063 0.330404 0.802257 

23 0.476332 0.394224 0.406132 0.237368 -0.673688 

MSE  0.001062059637

788918 

0.003975007374

605689 

0.088902653806

64342 

0.523528390239

2479 MAE  0.024059141353

267647 

0.047159700082

77329 

0.015003343052

24331 

0.583104301935

19 RMSE  0.032589356876

75145 

0.063047659548

99269 

0.122488134332

44589 

0.723552617464

1675  

Tablo 5.1 Günlük Saat Bazlı Veriler. 
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Tablo 5.2 ise her modelin hesaplama maliyetini detaylandırmaktadır. Bu tablo, eğitim 

süresi (saat cinsinden), kullanılan bellek miktarı (GB cinsinden), ve gerekli 

işlemci/GPU kaynaklarını özetleyerek modellerin pratik uygulamalardaki kullanımını 

değerlendirmek için kritik bir çerçeve sağlar. Bu karşılaştırma, her tahmin yönteminin 

göreceli güçlü ve zayıf yönlerini vurgularken, saatlik güç üretimindeki değişiklikleri 

yakalamadaki etkinliklerini ve hesaplama verimliliklerini gösterir. Ayrıntılı 

değerlendirme, her yöntemin hem tahmin doğruluğu hem de hesaplama maliyeti 

hakkında bilgi sağlayarak güç tahmini için en uygun ve güvenilir modeli belirlemeye 

yardımcı olur. Bu ek maliyet değerlendirmesi, pratik uygulamalarda yüksek doğruluk 

ile verimli kaynak kullanımını dengelemek isteyen enerji üreticileri ve model 

kullanıcıları için önem taşımaktadır. Hesaplama maliyeti ve doğruluk arasındaki bu 

denge, özellikle büyük veri setleri ve gerçek zamanlı uygulamalar için model 

seçiminde kritik rol oynar. 

Model Uygulama Süresi Çıkarım 

Süresi 

Bellek 

Kullanımı 

EK Detaylar 

NARMAX + 

Wavelet 

3 saat 10 dakika 2.82 1.7 GB Karmaşık zaman serisi analizi 

için dalgacık dönüşümü, 

Narmax modellemesi ve 

diferansiyel evrim kullanır. 

BPNN+LSTM 1 saat 7 dakika 10.54 s 2.3 GB Orta düzey çıkarım süresi için 

Backpropagation Sinir Ağı 

(BPNN) ve LSTM'yi 

birleştiren derin öğrenme 

tabanlı model. 

SARIMAX+ 

RNN+SVR 

30 dakika 5 s 3.56 GB Tahmin doğruluğunu nispeten 

yüksek bellek kullanımı ile 

dengelemek için SARIMAX, 

RNN ve SVR'yi birleştirir. 

Hybrid  

Transformer 

45 dakika 8 s 3 GB Karmaşık veriler üzerinde 

iyileştirilmiş performans sunan 

Transformer tabanlı model. 

 

Tablo 5.2 Günlük Saat Bazlı Veriler. 



56 
 

 

Şekil 5.2. Gün içerisinde saatlik uygulama modellerinin Güç karşılaştırılması. 

 

Şekil 5.2'deki grafik, dört farklı tahmin modelinin gerçek güç değerlerine karşı 24 

saatlik bir süre boyunca güç tahmin doğruluğunun karşılaştırmalı analizini 

sunmaktadır. X ekseni zamanı saat cinsinden gösterirken, y ekseni 0 ile 0,7 arasında 

değişen normalleştirilmiş güç değerlerini temsil etmektedir. Açıklama kısmı, her bir 

modeli tanımlamaktadır: Gerçek değerler siyah düz çizgi ile gösterilirken, Wavelet 

Modeli, BPNN + LSTM, Hibrit Transformatör Modeli ve SARIMAX + RNN + SVR 

modellerinin tahminleri sırasıyla mavi kesik çizgi, turuncu kesik-noktalı çizgi, yeşil 

noktalı çizgi ve mor düz çizgi ile gösterilmiştir. Genel olarak, Hibrit Transformatör 

Modeli ve BPNN + LSTM modeli, tam zaman aralığında güç seviyelerindeki 

dalgalanmaların hem zamanlamasını hem de genliğini yakalayarak gerçek değerlere 

en yakın uyumu sergilemektedir. Özellikle Hibrit Transformatör Modeli, güç 

talebindeki altta yatan değişkenliği modelleme konusundaki güçlü kapasitesini 

yansıtarak, gerçek verilerin zirve ve dip noktalarını yakından takip etmektedir, 

özellikle yüksek varyanslı bölümlerde. Benzer şekilde, BPNN + LSTM modeli de 

benzer bir performans sergilemekte, ancak bazen gerçek değerlere göre hafif bir 

gecikme veya öne geçme göstermektedir. Buna karşılık, Wavelet Modeli güç 

değerlerini sürekli olarak düşük tahmin etmekte ve zirve değerleri etkili bir şekilde 

yakalayamayan düşük genlikli dalgalanmalar göstermektedir; bu durum, ani 
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değişikliklere yeterince yanıt veremeyebileceğini düşündürmektedir. SARIMAX + 

RNN + SVR modeli, özellikle saat 0-12 arasında, bazı bölümlerde önemli ölçüde aşırı 

tahmin yaparak gerçek değerlerden önemli ölçüde sapmaktadır. Bu model, tepe 

yüksekliklerini yakalasa da gerçek verilerle hizalanmayan ve abartılı tahminlere yol 

açan daha büyük dalgalanma eğilimi göstermektedir. Farklı zaman dilimlerini 

incelediğimizde, saat 0-8 arasında, Wavelet Modeli hariç tüm modeller başlangıçtaki 

güç diplerini yeterince yakalamakta, ancak SARIMAX + RNN + SVR modelinin aşırı 

tahmini belirgin bir şekilde öne çıkmaktadır. Saat 8-16 arasında, Hibrit Transformatör 

Modeli ve BPNN + LSTM, gerçek eğilimi yakından takip etmeye devam ederken, 

Wavelet Modeli güç zirvelerine yetersiz yanıt vermektedir. Saat 16-24 arasındaki son 

bölümde, Hibrit Transformatör Modeli ve BPNN + LSTM gerçek değerlerle uyumu 

koruyarak tahmin güçlerini gösterirken, SARIMAX + RNN + SVR modeli hafif bir 

aşırı tahmin göstermekte, Wavelet Modeli ise güç değerlerini düşük tahmin etmeye 

devam etmektedir. Genel olarak, bu analiz, dört model arasında Hibrit Transformatör 

Modeli'nin en doğru ve güvenilir tahminci olduğunu, Wavelet Modeli'nin güç 

talebindeki değişkenliklere sınırlı duyarlılık gösterdiğini ve SARIMAX + RNN + SVR 

modelinin aşırı tahmin yapma eğiliminde olduğunu göstermektedir. Bu bulgular, 

yüksek doğruluk gerektiren güç tahmin uygulamalarında model seçimini 

bilgilendirebilir ve kısa vadeli değişkenlik ile uzun vadeli eğilimleri yakalama 

açısından transformatör tabanlı ve yapay sinir ağı hibrit yaklaşımlarının etkinliğini 

vurgulamaktadır.  
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6. TARTIŞMA VE SONUÇ 

Bu çalışmada, rüzgâr kaynaklarının değişkenliği ve süreksizliğinden kaynaklanan 

zorlukların üstesinden gelmek için rüzgâr enerjisi üretim tahmini için yeni bir iki 

aşamalı hibrit Transformatör tabanlı model tanıttık. Model, özellikle Transformatör 

mimarileri olmak üzere gelişmiş makine öğrenimi tekniklerinin gücünden 

yararlanarak rüzgar enerjisi tahminlerinin doğruluğunu ve güvenilirliğini artırır. 

Transformatör modelini ve İleri Beslemeli Sinir Ağını entegre eden hibrit modelimiz, 

geleneksel istatistiksel modellere ve hatta LSTM gibi gelişmiş derin öğrenme 

modellerine kıyasla tahmin doğruluğunda önemli iyileştirmeler sağlar. 

Transformatörün verimli dikkat mekanizması, dinamik belirteçleme ve iyileştirilmiş 

konum kodlaması, rüzgâr enerjisi verilerindeki karmaşık zamansal bağımlılıkları ve 

değişkenliği yakalamada etkili olduğunu kanıtlamaktadır. 

MSE, MAE ve RMSE gibi metriklerle yapılan titiz değerlendirmeler sonucunda, hibrit 

modelimiz, iyileştirilmiş LSTM ve BPNN modelleri, hibrit istatistiksel model ve RNN 

ve SARIMAX modellerine kıyasla en düşük hata oranlarına ulaşarak üstün performans 

göstermiştir. Karşılaştırmalı analiz, rüzgâr enerjisi üretimini tahmin etmede hibrit 

modelin sağlamlığını ve doğruluğunu vurgular. 

Bu araştırma, rüzgâr enerjisi tahmini için sağlam bir çözüm sağlayarak şebeke 

kararlılığı, operasyonel planlama ve maliyet etkin enerji yönetimi için kritik öneme 

sahip yenilenebilir enerji tahmini alanına katkıda bulunur. Bulgular, yenilenebilir 

enerji uygulamalarında hibrit Transformatör modellerinin potansiyelini vurgular ve 

model yorumlana bilirliğini daha da geliştirmek, dinamik tahmin için gerçek zamanlı 

verileri entegre etmek ve rüzgâr enerjisi üretimindeki içsel belirsizlikleri ele almak için 

daha sağlam modeller geliştirmek üzere gelecekteki araştırmalara zemin hazırlar. 

Sonuç olarak, önerilen hibrit Transformatör modeli rüzgâr enerjisi tahmininde önemli 

bir ilerlemeyi temsil eder ve geleneksel yöntemlerin sınırlamalarını aşmak, 

sürdürülebilir ve verimli enerji sistemleri hedefini ilerletmek için umut verici bir 

yaklaşım sunar. Gelecekteki çalışmalar, ek sahaya özgü özelliklerin entegrasyonunu, 

gerçek zamanlı veri asimilasyonunu ve farklı coğrafi bölgelere ve rüzgâr çiftliği 

yapılandırmalarına adaptasyonu keşfetmeye odaklanacak ve rüzgâr enerjisi tahmin 
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modellerinin tahmin doğruluğunu ve uygulanabilirliğini daha da artırmayı 

amaçlayacaktır.  
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