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OZET

RUZGAR ENERJiSi URETIiM TAHMINI iCiN HiBRiT TRANSFORMER
MODELI

Ahmed BABIKER ABDALLA IBRAHIM

Yiiksek Lisans Tezi
Yapay Zeka ve Veri Bilimi Ana Bilim Dah
Damisman: Do¢. Dr. Kenan ALTUN
2025, 69+xvii sayfa

Riizgar enerjisinin elektrik sebekesine giderek daha fazla entegre edilmesi, stabilite ve
verimliligin saglanabilmesi i¢in dogru tahminleri zorunlu kilmaktadir. Onemli bir
yenilenebilir enerji kaynagi olan riizgar enerjisi, dogasindaki degiskenlik nedeniyle
zorluklar sunmaktadir. Riizgar hizinin ve yoniiniin dogru tahmini hem teknik bir engel
hem de iiretimin talebi karsilayacak sekilde optimize edilerek riizgar enerjisi
verimliliginin maksimize edilmesi ve maliyetlerin minimize edilmesi agisindan
ekonomik bir zorunluluktur. Ancak mevcut yontemler, karmasiklik veya
yorumlanabilirdik eksikligi nedeniyle genellikle sinirlamalarla kars1 karsiya

kalmaktadir.

Bu calisma, insan beyninin bilgi isleme yeteneklerinden esinlenerek, yeni bir iki
asamalr hibrit Transformer tabanli riizgdr gilicii tahmin modeli Onermektedir.
Geleneksel istatistiksel yontemler ile ileri makine 6grenimi tekniklerinin giicli
yonlerini birlestiren Onceki calismalara dayanarak gelistirilen bu model, 6nemli

avantajlar sunmay1 hedeflemektedir.

Onerilen model, iki asamali bir Transformer mimarisi kullanmaktadir. Ilk asama,
rlizgar parametrelerinin yliksek dogrulukta tahminine odaklanirken, ikinci agama bu
tahminleri enerji iiretim tahmini i¢in kullanmaktadir. Hibrit mimarimiz, Transformer
modellerinin zamansal yeteneklerinden yararlanarak, alan bilgisi ve istatistiksel
ozellikler ile zenginlestirilmistir. Onerilen model, bir¢ok riizgar enerjisi veri seti
tizerinde degerlendirilmis ve mevcut yontemlere kiyasla tahmin dogrulugunda 6nemli

iyilesmeler gostermistir. Bulgularimiz, hibrit Transformer modellerinin, riizgar enerjisi
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tiretiminde mevcut olan karmasik zamansal bagimliliklart ve degiskenligi etkili bir
sekilde yakalayabildigini, boylece sebeke ydnetimi ve operasyonel planlamanin

tyilestirilmesine yonelik giiclii bir ¢6ziim sundugunu gostermektedir.

Onerilen yéntemlerin gelistirilmesi ve analizi aracilityla, bu arastirma dogru ve
giivenilir riizgar giicii tahminlerine katkida bulunmay1, maliyet etkin, siirdiiriilebilir ve
verimli elektrik enerjisi planlamasinin yolunu agmay1 amacglamaktadir. Bu planlar,
sebeke yoOnetiminin optimize edilmesi, fosil yakitlara bagimliligin azaltilmasi,
yenilenebilir enerji kaynaklarinin daha etkili bir sekilde entegrasyonu ve talep yaniti
stratejilerinin iyilestirilmesini igermektedir. Riizgar giicli tahmin dogrulugunun
artirtlmasiyla, hibrit model daha iyi elektrik planlamasini, yedek gii¢ kaynaklarina olan
thtiyacin minimize edilmesini ve daha siirdiiriilebilir bir enerji sebekesine gecisi
desteklemektedir. Gelecek arastirma yonleri ve yenilenebilir enerji tahminindeki

potansiyel uygulamalar da tartigilmaktadir.

Anahtar Kkelimeler: Riizgar Enerjisi Tahmini, Transformer Modelleri, Hibrit Model,

Yenilenebilir Enerji.



ABSTRACT

HYBRID TRANSFORMER MODEL FOR WIND ENERGY PRODUCTION
FORECASTING

Ahmed BABIKER ABDALLA IBRAHIM

Master's Thesis
Department of Artificial Intelligence and Data Science
Advisor: Assoc. Prof. Dr. Kenan ALTUN
2025, 69-+xvii pages

The increasing integration of wind power into the electrical grid necessitates accurate
forecasting to ensure stability and efficiency. Wind power, a crucial renewable source,
poses challenges due to its inherent variability. Accurate wind speed and direction
prediction is both a technical hurdle and an economic imperative for maximizing wind
power efficiency and minimizing costs by tailoring production to meet demand.
However, current methods often face limitations due to complexity or lack of

interpretability.

Inspired by the human brain's information processing capabilities, this paper proposes
a novel two-stage hybrid Transformer-based wind power forecasting model. Building
upon the referenced work, which combines the strengths of traditional statistical
methods and advanced machine learning techniques, this model aims to offer

significant advantages.

The proposed model employs a two-step Transformer architecture. The first stage
focuses on highly accurate wind parameter estimation, while the second one leverages
these estimates for energy production forecasting. Our hybrid architecture leverages
the temporal capabilities of transformer models, enhanced by incorporating domain-
specific knowledge and statistical features. The proposed model is evaluated on
multiple wind power datasets, demonstrating significant improvements in forecasting
accuracy compared to existing methods. Our findings indicate that hybrid transformer

models can effectively capture the complex temporal dependencies and variability



inherent in wind power generation, offering a robust solution for enhancing grid

management and operational planning.

Through the development and analysis of the proposed methods, this research
endeavors to contribute to accurate and reliable wind power forecasting, paving the
way for cost-effective, sustainable, and efficient electrical energy planning. These
plans include optimizing grid management, reducing reliance on fossil fuels,
integrating renewable energy sources more effectively, and improving demand
response strategies. By enhancing wind power forecasting accuracy, the hybrid model
supports better scheduling and dispatch of electricity, minimizes the need for costly
backup power sources, and facilitates the transition to a more sustainable energy grid.
Future research directions and potential applications in renewable energy forecasting

are also discussed.

Keywords: Wind Power Forecasting, Transformer Models, Hybrid Model, Renewable
Energy.
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1. GIRIS

Fosil yakitlardan yenilenebilir enerjiye gecis, iklim degisikligiyle miicadele ve enerji
giivenligini saglama gibi iki 6nemli zorunluluk nedeniyle kiiresel enerji politikasinin
temel bir odak noktasidir [1]. Riizgar enerjisi, 2020 yili sonunda diinya genelinde
kurulu kapasitesinin 743 KW'a ulagmasiyla en umut verici yenilenebilir enerji
kaynaklarindan biri olarak 6ne ¢ikmistir [2]. Riizgar enerjisinin genislemesi, biiyiik
ol¢iide teknolojik ilerlemeler, devletlerin destekleyici politikalar1 ve enerji sektoriintin
karbonsuz astirilmasiin gerekliliginin giderek daha fazla anlasilmasiyla miimkiin
olmustur. Ancak, riizgar enerjisinin mevcut elektrik sebekelerine entegrasyonu,
rliizgarin dogasinda bulunan degiskenlik ve ongoriilemezlik nedeniyle 6nemli zorluklar
barindirmaktadir [3]. Bu Ongoriilemezlik, sebeke kararliligina yonelik riskler
dogurmakta, isletme maliyetlerini artirmakta ve enerji planlamasin1 karmagsik hale
getirmektedir. Bu sebeple, riizgar enerjisi sistemlerinin giivenilirligini ve verimliligini

korumak adina dogru riizgar giicii tahminleri biiyiik 6nem tagimaktadir.

Riizgér enerjisi tahminleri, riizgar kaynaklarinin dogal degiskenligi ile istikrarli ve
Ongoriilebilir enerji liretimi ihtiyaci arasinda koprii gérevi gormektedir. Bu tahminler,
sebeke operatorlerinin riizgar giicii tretimindeki dalgalanmalart 6nceden goriip
operasyonlarini buna gore ayarlamalarini saglayarak fosil yakitlara dayali yedek enerji
santrallerine olan bagimlilig1 en aza indirir [4]. Bunun yani sira, dogru tahminler enerji
dagitiminin optimize edilmesine, rezerv gereksinimlerinin azaltilmasia ve riizgar
enerjisi dretiminin ekonomik verimliliginin artirilmasina katki saglar. Bu baglamda,
daha dogru ve giivenilir tahmin modellerinin gelistirilmesi, yenilenebilir ener;ji

alaninda ¢alisan arastirmacilar ve uygulayicilar i¢in bir 6ncelik haline gelmistir [5].

Riizgar tiirbini teknolojisi ve enerji yonetim sistemlerindeki ilerlemelere ragmen,
riizgar giicii tahmini hala karmasik bir zorluktur. Bu zorluk, riizgarin, sicaklik, basing
ve topografya gibi pek ¢ok meteorolojik faktorden etkilenen dogrusal olmayan ve
rastlantisal yapisindan kaynaklanmaktadir [6]. Bu faktorler karmagsik sekillerde
etkilesime girerek, riizgdr davranisini yiiksek bir dogrulukla tahmin etmeyi
zorlagtirmaktadir. Istatistiksel ve fiziksel modellere dayanan geleneksel tahmin
yontemleri, rlizgar gilicii liretiminin dinamik ve belirsiz dogasini tam olarak

yansitmakta yetersiz kalmistir [7]. Bu nedenle, bu siirlamalar1 gidermek ve riizgar



giicii tahminlerinin dogrulugunu artirmak i¢in farkli tahmin tekniklerini birlestiren

yeni yaklagimlar onerilmistir.

1.1 Riizgar Giicii Tahmininin Onemi

Riizgar giicii tahmini, enerji planlamasi, yiikk dengeleme ve elektrik sebekelerinin
giivenilir bir sekilde isletilmesi gibi bir¢ok sebeke yonetimi agisindan hayati 6neme
sahiptir [8]. Riizgar enerjisinin enerji karisimindaki payimin artmasiyla birlikte, dogru
tahminler yapmak sebeke istikrarin1 korumak i¢in vazgecilmez hale gelmistir.
Riizgarin Ongoriillemez dogasi, enerji iiretiminde Onemli dalgalanmalara neden
olabilir; bu da arz ve talep arasinda dengesizliklere yol agabilir. Bu tiir dengesizlikler,
dogru bir sekilde yonetilmezse voltaj kararsizligi, frekans sapmalar1 ve hatta elektrik
kesintileri gibi ciddi sorunlara neden olabilir [9]. Dogru tahminler sunarak, sebeke
operatorleri bu riskleri hafifletebilir, geleneksel enerji santrallerinin {iretimlerini
ayarlayabilir, bakim programlarini diizenleyebilir ve yedek gli¢c yonetimini daha etkili

bir sekilde gerceklestirebilir.

Bunun yani sira, riizgar giicii tahmini, enerji sistemlerinin ekonomik optimizasyonuna
da katki saglar. Dogru tahminler, enerji liretiminin daha iyi planlanmasini saglayarak
pahali yedek enerji ihtiyacini azaltir ve enerji dengesizliklerinden kaynaklanan
maliyetleri en aza indirir [10]. Bu durum, 6zellikle elektrik iireticilerinin tahmin edilen
ve gercek liretim arasindaki dengesizliklerden dolayr onemli mali cezalarla karsi
karsiya kalabilecegi serbestlestirilmis elektrik piyasalarinda biiyiik 6nem tasir. Ayrica,
dogru tahminler, elektrik piyasalarinda daha verimli teklif verilmesini miimkiin kilar;
clinkii ireticiler, beklenen riizgar iiretimine dayali olarak daha giivenilir iiretim

taahhiitleri sunabilirler [11].

Daha genis bir enerji doniisiimii baglaminda, riizgar enerjisi tahmini, yenilenebilir
enerji kaynaklarimin elektrik sebekesine entegrasyonunu desteklemek agisindan
onemli bir rol oynamaktadir. Riizgar enerjisi, kiiresel elektrik tiretimindeki payin
artirmaya devam ettikce, isabetli tahminler yapmak, fosil yakitlara olan bagimlilig
azaltmak ve diisiik karbon emisyonlu bir enerji sistemine ge¢isi hizlandirmak igin
kritik 6neme sahip olacaktir [12]. Riizgar giiciiniin, kiiresel 1sinmay1 sanayi oncesi
seviyelerin 2°C'nin altinda tutmayir hedefleyen Paris Anlagsmasi'min hedeflerine
ulagsmada kilit bir rol oynamasi1 beklenmektedir [13]. Riizgar enerjisinin giivenilirligini

ve Ongoriilebilirligini artirarak, tahminler yenilenebilir enerji kaynaklarinin tam



potansiyelleriyle kullanilmasimni saglamakta ve enerji sektoriiniin  karbonsuz

astirtlmasina katkida bulunmaktadir.

1.2 Riizgar Enerjisi Tahminindeki Zorluklar

Riizgar enerjisi tahmini, riizgarin karmasik ve dinamik yapis1 nedeniyle dogas1 geregi
zordur. Riizgar hiz1 ve yonii kisa zaman dilimlerinde ve farkli cografi bolgelerde
onemli 6l¢iide degisebilir ve bu da rlizgar enerjisi liretimini yiiksek hassasiyetle tahmin
etmeyi zorlastirir [ 14]. Bu dalgalanmalar, atmosfer basinci, sicaklik, nem ve Diinya'nin
topografyas1 gibi cesitli meteorolojik faktorlerden etkilenir. Ornegin, riizgar hizlar
genellikle artan irtifa ile artar, ancak daglar veya binalar gibi engellerin varligi
tiirbiilans yaratabilir ve riizgar akisini etkileyebilir. Dahasi, riizgar desenleri basing
sistemleri, hava cepheleri ve jet akimlar1 gibi biiylik 6lgekli atmosferik olaylardan
etkilenir ve bu da riizgar hizinda ve yoniinde ani ve ongoriilemeyen degisikliklere yol

acabilir [15].

Riizgér enerjisi iiretiminin 6ngoriilemezligi, istikrarli ve giivenilir bir enerji tedarikini
stirdlirmesi gereken sebeke operatdrleri igin dnemli zorluklar olusturur. Riizgar enerjisi
tiretimi tahmin edilen seviyelerin altinda kalirsa, sebeke operatorlerinin agig1
kapatmak icin gaz veya komdir gibi geleneksel enerji santrallerini agmalari gerekebilir.
Bu, isletme maliyetlerini artirabilir ve rilizgar enerjisinin ¢evresel faydalarini
azaltabilir, bu da daha yiiksek sera gaz1 emisyonlaria yol agabilir [16]. Ote yandan,
riizgar enerjisi Uretimi Ongoriilen seviyeyi asarsa, fazla enerji kesilebilir veya

depolanabilir, bu da verimsizliklere ve artan maliyetlere neden olur.

Erken riizgar enerjisi tahmin yontemleri, gelecekteki riizgar modellerini tahmin etmek
i¢cin gecmis riizgar verilerini kullanan istatistiksel modellere dayaniyordu. En yaygin
kullanilan istatistiksel modellerden biri, kisa vadeli tahminler i¢in etkili olan ancak
genellikle riizgar verilerinin dogrusal olmayan ve duragan olmayan o&zelliklerini
yakalamakta zorlanan ARIMA modelidir [17]. Diger geleneksel istatistiksel modeller
arasinda mevsimselligi hesaba katan ARMA, ARX ve mevsimsel ARIMA (SARIMA)
modelleri bulunur [18]. Bu modeller tahmin i¢in basit ve anlasilir bir yaklagim saglasa
da bu modellerin en biiyiik sinirlamalarindan biri, riizgar enerjisi liretiminde yaygin
olan dogrusal olmayan iliskiler ve duragan olmayan verilerle basa ¢ikamamalaridir

[19].



Bu modeller, dogrusal bagimliliklara dayali olarak gelecekteki riizgar desenlerini
tahmin etmek igin tarihsel verilere giivenir [20]. Ornegin, ARIMA modelleri, riizgar
verilerindeki dongiisel davranislart ve mevsimselligi yakaladiklar i¢in kisa vadeli

tahminlerde etkili olduklarini kanitlamistir [21].

Sinirlamalarina  ragmen, istatistiksel modeller basitlikleri, anlagilabilirlikleri ve
uygulanma kolayliklar1 nedeniyle degerli olmaya devam etmektedir. Ornegin, Pinson
ve Madsen (2012), kisa vadeli riizgar giicii tahmini i¢in SARIMA modellerini
kullanmis ve 6zellikle mevsimsel etkileri yakalamada orta diizeyde basari elde etmistir
[22]. Ancak, bu modeller genellikle dogrusal olmayan riizgar verilerinin daha belirgin
hale geldigi uzun vadeli tahminlerde zorlanmaktadir. Bu durum, karmasik riizgar

desenlerini ele alabilen daha sofistike yontemlerin arastirilmasina yol agmustir.

[statistiksel modellerin nicel analizleri, daha uzun zaman dilimlerinde tahmin
yaparken performanslarinin azalma egiliminde oldugunu ortaya koymaktadir.
Ornegin, kisa vadeli tahminlerde ARIMA modelleri igin RMSE 5%-10% arasinda
degisebilir, ancak uzun vadeli tahminlerde, modelin dogrusal varsayimlari nedeniyle

bu hata 6nemli 6lgiide artabilir [23].

Istatistiksel modellere ek olarak, fiziksel modeller de riizgar giiciinii tahmin etmek igin
kiitlenin ve momentumun korunumu gibi fiziksel yasalara dayali olarak riizgar akis
dinamiklerini simiile etmek amaciyla kullanilmistir. NWP modelleri olarak da bilinen
fiziksel modeller, atmosferik kosullara dayanarak tahminler olusturmak i¢in hava
durumu istasyonlarindan ve uydulardan elde edilen meteorolojik verileri kullanir [24].
Bu modeller, basing sistemlerinin olusumu ve riizgér ile arazi arasindaki etkilesim gibi
rliizgar desenlerini yoneten fiziksel siirecleri dikkate alarak, riizgar davranisi hakkinda
detayl1 i¢goriiler saglayabilir [25]. NWP modelleri, ¢esitli atmosferik parametreleri

dikkate alarak orta ve uzun vadeli tahminlerde miikemmel sonuglar verir [26].

Giebel ve arkadaglar1 (2013), NWP modellerinin riizgar davranisinin temel fizigini
yakalamadaki giiciinii vurgulayarak, bu modellerin 6zellikle orta vadeli tahminlerde
faydali oldugunu belirtmislerdir [27]. Ancak, bu modellerin dogru tahminler
tiretebilmesi i¢in kapsamli hesaplama kaynaklarina ve yiiksek kaliteli giris verilerine
ihtiyag vardir. Karmasikliklari, 6zellikle biiyiik 6l¢ekli riizgar ¢iftlikleri i¢in gercek

zamanli tahminlerde kullanilmalarini sinirlamaktadir [28].



Fiziksel modellerin en énemli sinirlamalarindan biri, giris verilerinin kalitesine olan
bagimliliklaridir. Meteorolojik kapsamin seyrek oldugu bolgelerde, tahminlerin
dogrulugu azalabilir. Ayrica, fiziksel modeller, biiyiik 6l¢ekli atmosferik desenlere
odaklandiklar1 i¢in yerel ve ani riizgar degisimlerini yakalamada daha az etkili

olabilirler ve bu nedenle kisa vadeli tahminlerde daha az etkilidirler [29].

Fiziksel modeller ile istatistiksel modellerin nicel karsilastirmalari, NWP modellerinin
genellikle orta ve uzun vadeli tahminlerde istatistiksel modellerden daha iyi
performans gosterdigini ortaya koymaktadir. Ornegin, NWP modelleri igin ortalama
mutlak hata genellikle 10%-15% arasinda degisirken, ayn1 tahmin donemi igin
istatistiksel modellerde bu oran 20%-25% arasinda degismektedir [30]. Ancak, NWP
modellerinin yiliksek hesaplama maliyeti, bu modellerin ger¢ek zamanli tahmin
uygulamalarinda yaygin olarak benimsenmesinin oniindeki 6nemli bir engel olmaya

devam etmektedir.

1.3 Riizgar Giicii Tahmininde Makine Ogrenimi ve Derin Ogrenme

Geleneksel istatistiksel ve fiziksel modellerin sinirlamalari, riizgar giicii tahmininde
makine Ogrenimi tekniklerinin benimsenmesini tesvik etmistir. Makine 6grenimi
modelleri, 6zellikle yapay sinir aglari, verilerdeki karmasik ve dogrusal olmayan
iligkileri ele alma konusundaki {istiin yetenekleri nedeniyle riizgar giicii iiretiminde
mevcut karmasik desenleri yakalamak i¢in uygun hale gelmistir [31]. Tarihsel
verilerden O68renme ve gozlemlenen egilimlere dayali dogru tahminler iiretme
yetenekleri nedeniyle FNN'ler ve RNN'ler gibi sinir aglar1 iizerinde kapsamli

calismalar yapilmistir [32].

FNN'ler en basit yapay sinir ag1 tiirlerinden biridir ve birbirine bagli ¢ok katmanli
noronlardan olusur. Bu aglar giris verilerini isler ve ¢ikti1 tahminleri iiretir. FNN'ler,
rliizgar davranisindaki anlik egilimleri ve dalgalanmalar1 yakalamaya odaklanan kisa
vadeli riizgar giicli tahmini i¢in 6zellikle etkilidir [33]. Ancak, FNN'ler uzun vadeli
bagimliliklarla basa ¢ikmakta zorluk cekerler ¢iinkii bellek yetenekleri yoktur ve
onceki zaman adimlarindan bilgi depolayamazlar [34]. Bu sinirlamanin iistesinden
gelmek icin, geri bildirim dongiileri igeren daha gelismis bir sinir ag1 tiirii olarak
RNN'ler gelistirilmistir. Bu aglar, dnceki zaman adimlarindan bilgi depolayarak

ardisik verilerdeki zamansal bagimliliklar1 yakalayabilir [35].



RNN'ler, 6zellikle orta vadeli tahminlerde, FNN'lere kiyasla riizgar giicli tahmininde
onemli gelismeler gostermistir. Onceki zaman adimlarindan bilgi depolayarak,
RNN'ler riizgar hizi, yonii ve gilic ¢ikisi arasindaki zamansal bagimliliklari
yakalayabilir ve bu da onlar1 daha uzun zaman dilimleri boyunca riizgar giiciinii tahmin
etmede daha etkili hale getirir [36]. Ancak, RNN'ler ozellikle ¢ok uzun dizilerle
ugrasirken zayiflayan egimler gibi sorunlarla karsilasabilir ve bu da uzak zaman

adimlarindan 6grenmeyi zorlastirir [37].

Bu zorluklarin iistesinden gelmek icin, LSTM aglart ve CNN'ler gibi daha gelismis
makine 6grenimi modelleri tanitilmistir. LSTM aglari, daha uzun zaman dilimleri
boyunca bilgi depolayabilen ve ardisik verilerdeki uzun vadeli bagimliliklar:
yakalayabilen bellek hiicreleri igeren bir RNN tiiriidiir [38]. Bu 6zellik, LSTM aglarini
ozellikle gegmis ve gelecek olaylar arasindaki zamansal iliskileri dikkate almanin
onemli oldugu riizgar giicli tahmini gibi zaman serisi tahmin gorevleri i¢in uygun hale

getirir [39].

CNN'ler, verilerdeki mekansal desenleri yakalamada 6zellikle etkili olan bir sinir ag1
tiiriidiir. Baslangigta goriintii tanima gorevleri i¢in gelistirilen CNN'ler, meteorolojik
verilerdeki riizgar hiz1 ve yon haritalar1 gibi mekansal desenleri analiz etmek icin
riizgar gilicii tahmini i¢in uyarlanmistir [40]. Bu mekansal desenlerden O0grenerek,
CNN'ler cografi ozelliklerin ve biiyiik 6lcekli hava sistemlerinin riizgar davranisi

tizerindeki etkisini hesaba katarak daha dogru tahminler iiretebilir [41].

Riizgar giicii tahmininde makine 6grenimi modellerinin elde ettigi basarilara ragmen,
bu modellerin baz1 sinirlamalar1 da vardir. Makine 6grenimi modellerinin en biiyiik
zorluklarindan biri, egitim icin biiyiik miktarda yiiksek kaliteli veri gerektirmesidir
[42]. Tarihsel veri setlerinin sinirlt oldugu veya riizgar desenlerinin yliksek derecede
degiskenlik gosterdigi bolgelerde, dogru tahmin modellerinin egitilmesi zor olabilir,
bu durum ise optimal olmayan tahmin sonuclarina yol agabilir. Ayrica, makine
o0grenimi modelleri, 6zellikle genis Olgekli veri setleriyle veya karmasik model
yapilariyla ¢alisirken yiiksek hesaplama giicli gerektirebilir, bu da islem siiresini ve

maliyetleri artirabilir [43].

1.4 Makine Ogrenmesi ve Derin Ogrenmede Belirsizlik Miktari

Belirsizlik Miktar1 Belirlemesi, riizgar enerjisi tahminlerinin = giivenilirligini

degerlendirme ve enerji yonetimi konusunda bilingli kararlar alma imkani1 tanidigi igin,
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rliizgar giicii tahminlerinde kritik bir 6neme sahiptir. Riizgar giicii tahminlerindeki

dogal belirsizligi ele almak i¢in ¢esitli makine 6grenimi yaklasimlar: gelistirilmistir.

One ¢ikan bir ydntem, belirsizligi modellemeye ydnelik olasiliksal bir yaklasim sunan
Gauss Siiregleri (GP'ler) kullanimini igerir. GP'ler, yalnizca nokta tahminleri
saglamakla kalmaz, ayni1 zamanda giiven araliklar1 gibi belirsizlik 6l¢limleri de sunan
parametrik olmayan modellerdir. Bu 6zellik, belirsizligi hesaba katmanin daha saglam
karar verme siireclerine yol agabilecegi riizgar giicti tahminleri i¢in GP'leri 6zellikle
yararlt kilar. Xie ve arkadaglar tarafindan yapilan bir ¢aligma, GP'lerin belirsizligi
acikca kantifiye eden olasiliksal ¢iktilar saglayarak, riizgar giicii tahminlerinde tahmin

dogrulugunu ve giivenilirligini artirmadaki etkinligini gostermistir [44].

Bir diger yaklasim ise, yanit degiskeni dagiliminin kosullu ¢eyreklerini tahmin eden
istatistiksel bir teknik olan kantil regresyonunu igerir. Makine 6grenimi modellerine
uygulandiginda kantil regresyonu, farkli belirsizlik seviyelerini temsil eden aralik
tahminlerinin iretilmesine olanak tanir ve olasi sonuglarin daha kapsamli bir
goriiniimiinii sunar. Arastirmalar, kantil regresyonunun makine 6grenimi modelleriyle
entegre edildiginde, gelecekteki olasi degerlerin araligin1 yakalayarak riizgar giicii
tahminlerinin saglamligin1 6nemli 6l¢iide artirabilecegini gostermistir ve bdylece

tahmin belirsizligi hakkinda daha net bir resim sunar [45].

Son olarak, Monte Carlo dropout, O6zellikle sinir aglarinda, derin 6grenme
modellerinde belirsizligi tahmin etmek icin kullanilan bir tekniktir. Cikarim
asamasinda ndronlar1 rastgele birakmak suretiyle birden fazla tahmin yapilabilir ve bu
tahminlerdeki varyasyonlar iizerinden belirsizlik tahmin edilebilir. Gal ve
Ghahramani, Monte Carlo dropout yonteminin sinir aglarinda belirsizligi etkin bir
sekilde kantifiye ettigini ve riizgar gilicii tahminleri de dahil olmak iizere ¢esitli

uygulamalarda tahminlerin saglamligini artirdigini géstermistir [46].

Bu teknikler, riizgar giicii tahminlerinde makine 6grenimi modellerinin gelisen
peyzajint vurgulamakta ve tahminlerin giivenilirligini ve dogrulugunu artirmak igin

belirsizlik Miktar1 Belirlemesi 6nemini 6n plana ¢ikarmaktadir.

1.5 Riizgar Giicii Tahmin Yoéntemlerinin Evrimi

Hibrit modeller, riizgar giicii tahminlerinde 6nemli bir ilerlemeyi temsil etse de bazi

sinirlamalar1 bulunmaktadir. Hibrit modellerin dogrulugu, girdi verilerinin kalitesine



ve altta yatan algoritmalarin karmagsikligina baglhidir. Hatali veya eksik meteorolojik
veriler, 6zellikle karmasik araziye sahip bolgelerde veya hava kosullarinin degisken
oldugu yerlerde, tahminlerde O6nemli hatalara yol acabilir [47]. Ayrica, hibrit
modellerin hesaplama agisindan pahali olabilecegi ve etkili bir sekilde
uygulanabilmesi i¢in 6zel donanim ve yazilim gerektirebilecegi unutulmamalidir. Bu
nedenle, biiylik 6lgekli riizgar giicli tahminlerine uygulanabilecek daha verimli ve

Olceklenebilir hibrit modeller gelistirmeyi amaglayan ¢alismalar devam etmektedir.

Bu gelismeler, hibrit modellerin daha dogru ve saglam riizgar giicli tahminlerine
ulagsmadaki 6nemini vurgulamaktadir. Geleneksel istatistiksel yontemlerin, fiziksel
modellerin ve ileri diizey makine 6grenimi tekniklerinin gii¢lii yonlerini birlestirerek,
hibrit modeller riizgar giicii tahminlerindeki zorluklara kapsamli bir ¢oziim
sunmaktadir. Bu yaklagim, riizgar enerjisinin yiiksek oranda kullanildig1 bolgelerde,
dogru tahminlerin sebeke istikrarini korumak ve enerji tiretimini optimize etmek i¢in

kritik oldugu durumlarda 6zellikle nem tagimaktadir [48].

1.6 Hibrit Model Varyantlari

Literatiirde, riizgar giicli tahmin dogrulugunu artirmak amaciyla gesitli hibrit model
varyantlar1 arastirilmistir. Bu modeller, genellikle daha kapsamli bir tahmin sistemi
olusturmak i¢in birden fazla yaklasimi entegre ederek hem geleneksel istatistiksel
yontemlerin hem de modern makine o6grenme tekniklerinin giiclii yonlerinden

yararlanmay1 hedefler.
*  QGelistirilmis LSTM ve BPNN Modeli:

Bu hibrit model, LSTM aglarint BPNN ile birlestirir. LSTM aglar1, hafiza hiicreleri
sayesinde rilizgar verilerindeki zamansal bagimliliklar1 ve uzun vadeli desenleri
yakalamada son derece etkilidir, bu da bilgiyi uzun siireler boyunca saklamalarina
yardimc1 olur. BPNN, desen tanima ve dogrusal olmayan iliskileri 6grenme konusunda
basarili oldugunda, hibrit model, riizgar giicli iiretimindeki kisa vadeli dalgalanmalar
ve uzun vadeli egilimlerle basa c¢ikabilir. Bu kombinasyon, ozellikle riizgar
davranisindaki karmagik dinamikleri yakalamada tahmin performansini artirir. Nicel
karsilastirmalar, bu modelin geleneksel LSTM modellerine kiyasla RMSE'yi 73%
kadar azaltarak, riizgar giicli tahmini i¢in saglam bir se¢cim oldugunu gostermektedir

[49].



e  SARIMAX + RNN + SVR Modeli:

Digsal Degiskenler (Exogenous Variables) ile SARIMAX modeli, riizgar giicii
iiretimini etkileyen mevsimsellik ve dis faktorleri hesaba katan popiiler bir zaman
serisi tahmin yontemi olarak bilinir. Bu hibrit yaklasimda, SARIMAX, RNN'ler ve
SVR ile birlestirilir. SARIMAX modelleri, mevsimsel egilimleri ve digsal degiskenleri
yakalamada yetenekliyken, RNN'ler, veri noktalarindan olusan dizileri isleyerek
riizgar verilerindeki zamansal bagimliliklar1 ele alir. Kiiciik ve orta boyutlu veri
kiimeleriyle basa ¢ikmadaki etkinligi ile bilinen SVR, tahmin dogrulugunu artirmak
icin ek bir regresyon analizi katmani ekler. Bu hibrit model, genel performansi
artirarak, tahmin hatalarin1 azaltir ve daha giivenilir tahminler saglar. Calismalar, bu
yaklasimin SARIMAX veya RNN modellerini tek basma kullanmaya kiyasla
RMSE'yi 93% oraninda azalttigin1 géstermistir [50].

*  Wavelet Transform + NARMAX + PSO Modeli:

Bu model, riizgar giicii verilerinin dogrusal olmayan ve duragan olmayan 6zelliklerini
ele almak i¢in tasarlanmis ileri diizey bir hibrit modeldir. Wavelet Transform, veri 6n
isleme icin kullanilir ve riizgdr giicii zaman serisini farkli frekans bilesenlerine
ayirarak, giiriiltiiyii izole etmeye ve verilerdeki ilgili desenleri belirlemeye yardimei
olur. Daha sonra, NARMAX modelleri, girdi degiskenleri ile riizgar giicii ¢iktis
arasindaki dogrusal olmayan iliskileri yakalamak i¢in kullanilir ve bu da onlar1 riizgar
giicii tiretimi gibi yiiksek dinamik sistemler i¢in uygun hale getirir. Son olarak, PSO,
NARMAX modelinin parametrelerini ince ayar yapmak i¢in bir optimizasyon teknigi
olarak uygulanir ve modelin dogrulugunu daha da artirir. Bu kombinasyon, bireysel
yontemlere kiyasla RMSE'yi 99,8% oraninda azaltarak, riizgar giicii tahmini i¢in en

etkili hibrit modellerden biri haline getirir [51].

Bu hibrit model varyantlarinin her biri, riizgar giicii tahmininde karsilasilan zorluklarin
istesinden gelmek icin farkli tahmin tekniklerini birlestirmenin potansiyelini ortaya
koymaktadir. Farkli yontemlerin giiclii yonlerinden yararlanarak, hibrit modeller,
bagimsiz modellere kiyasla dogruluk, dayaniklilik ve uyarlanabilirlikte Onemli
iyilestirmeler sunabilir. Istatistiksel modellerin makine 6grenme teknikleriyle
entegrasyonu, dogrusal olmayan verilerin daha iyi ele alinmasini saglarken, PSO gibi
optimizasyon teknikleri, parametrelerin ince ayarini1 yaparak model performansini

daha da artirir.



1.7 Riizgar Giicii Tahmininde Transformer Modellerinin Yiikselisi

Son yillarda, Transformer modelleri, riizgar giicli tahmini de dahil olmak {izere sira
modelleme gorevleri i¢in geleneksel makine 6grenimi modellerine giiclii bir alternatif
olarak ortaya ¢ikmistir. Baglangicta dogal dil isleme (NLP) gorevleri icin gelistirilen
Transformer modelleri, uzun mesafeli bagimliliklar1 ve baglamsal bilgileri ele alma
konusundaki olaganiistii basaristyla dikkat ¢ekmis ve bu da onlar1 zaman serisi tahmin
gorevleri i¢in Ozellikle uygun hale getirmistir [52]. RNN'ler ve LSTM'lerin aksine,
verileri sirali olarak isleyen Transformer'lar, tahmin yaparken girdi dizisinin farklh
boliimlerinin dnemini degerlendirmelerine olanak taniyan bir 6z-dikkat mekanizmasi

kullanir [53].

Oz-dikkat mekanizmasi, Transformer'larin tiim girdi dizisi boyunca veri noktalar:
arasindaki iligkileri, sirali yapilar1 nedeniyle sinirli olan geleneksel tekrarlayan
modellere gore daha verimli bir sekilde yakalamasini saglar [54]. Bu durum, kisa
vadeli dalgalanmalarin yani sira riizgar davramisindaki uzun vadeli egilimlerin de
dikkate alinmasinin 6nemli oldugu riizgar giicii iiretiminde ic¢sel olan karmagsik

zamansal bagimliliklar1 yakalamada Transformer'lar1 6zellikle etkili kilar [55].

Transformer modellerinin riizgar giicli tahmininde kullanilmasi, aragtirma alaninda
nispeten yeni bir yaklagimdir, ancak ilk bulgular olduk¢a umut vericidir. Bu modeller,
0z-dikkat mekanizmasini kullanarak riizgar hizlari, yonleri ve gii¢ ¢iktilar1 arasindaki
karmasik iliskileri etkili bir sekilde modelleyebilmekte, bu da daha dogru ve giivenilir

tahminler yapmalarina olanak tanimaktadir [56].

Iki asamali bir Transformer modeli, 6nce riizgar parametrelerini tahmin ederek ve
ardindan bu tahminleri riizgar giicii tiretimini 6ngdérmek i¢in kullanarak riizgar giicii
tahmin dogrulugunda 6nemli bir ilerleme kaydetmektedir. Bu yenilik¢i yaklagim,
mevcut modellerden 6nemli 6l¢iide daha iyi performans gdstermekte ve Ortalama
Kare Hatasini, lyilestirilmis LSTM ve BPNN Modeline kiyasla 73%'iin iizerinde,
SARIMAX + RNN + SVR Modeline kiyasla 93% ve Wavelet Transform + NARMAX
+ PSO Modeline kiyasla 99,8% oraninda azaltmaktadir. Bu durum, riizgar giicii
tahmininde Onerilen Transformer tabanli yaklagimin {stiin dogrulugunu ve

giivenilirligini ortaya koymaktadir.
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1.8 Arastirmanin Onemi

Bu aragtirmanin 6nemi, yenilenebilir enerji tahmini, 6zellikle de riizgar giicli tahmini
alanina potansiyel katkisinda yatmaktadir. Rlizgar enerjisi, kiiresel enerji karigimina
onemli bir katki olarak biiylimeye devam ederken, dogru tahminlere duyulan ihtiyagc,
elektrik sebekelerinin kararliligini ve verimliligini saglamak icin giderek daha kritik
hale gelmektedir. Dogru riizgar giicii tahminleri, sebeke operatorlerinin enerji iiretim
programlarin1 optimize etmelerini, maliyetli yedek enerji kaynaklarma olan
bagimlhilig1 azaltmalarim1 ve enerji dengesizlikleriyle iligkili riskleri en aza

indirmelerini saglar.

Ayrica bu arastirma, riizgdr enerjisinin elektrik sebekelerine entegrasyonunun
giivenilirligini artirarak, siirdiiriilebilir enerji sistemlerine gecis ve sera gazi
emisyonlarini azaltma gibi daha genis hedeflere de hitap etmektedir. Onerilen hibrit
Transformer modeli, geleneksel istatistiksel yontemlerin ve modern makine 6grenimi
tekniklerinin giiclii yonlerini birlestirerek, riizgar giici tahmini i¢in yenilik¢i bir
yaklagim sunmaktadir. Bu yaklasimin, tahmin dogrulugunu artirmasi, isletme
maliyetlerini diisiirmesi ve yenilenebilir enerji kaynaklarmin verimli yOnetimine

katkida bulunmasi1 beklenmektedir.

1.9 Amag¢ ve Kapsam

Bu aragtirmanin temel amaci, riizgar giicli tahmini i¢in tahminlerin dogrulugunu ve
giivenilirligini  artiran ve boylece riizgdr enerjisinin  elektrik  sebekesine
entegrasyonunu destekleyen yenilikgi bir hibrit Transformer tabanli model

gelistirmektir. Ozellikle, bu ¢alisma asagidaki hedefleri ele almay1 amaglamaktadar:

*  Hedef 1: Riizgar giicli tahmin dogrulugunu artirmak icin geleneksel istatistiksel
yontemleri ileri diizey makine 6grenimi teknikleriyle birlestiren iki agamali bir hibrit

Transformer modeli tasarlamak.

+  Hedef2: Onerilen modelin performansini birden fazla riizgar giicii veri setinde

degerlendirerek, dogrulugunu mevcut en iyi tahmin modelleriyle karsilastirmak.

*  Hedef 3: Modelin enerji liretimini optimize etmeye, fosil yakitlara bagimlilig
azaltmaya ve talep yanit stratejilerini iyilestirmeye odaklanarak gercek diinya sebeke

yonetimi senaryolarinda uygulanabilirligini degerlendirmek.
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Bu arastirmanin kapsami, ¢esitli riizgar giicli veri setlerinde hibrit modelin
gelistirilmesi ve dogrulanmasini igerir. Calisma, ayrica Onerilen modelin sebeke
yonetimini iyilestirme, yedek enerji kaynaklarina duyulan ihtiyaci azaltma ve
yenilenebilir enerji  kaynaklarmin  sebekeye entegrasyonunu kolaylastirma
konularindaki potansiyel uygulamalarini1 da arastirmaktadir. Buna ek olarak, arastirma,
hibrit Transformer modellerinin giines enerjisi tahmini gibi diger yenilenebilir enerji
tahmin gorevlerine uygulanmasi i¢in gelecekteki yoOnleri de g6z Oniinde

bulundurmaktadir.

1.10 Gelecekteki Arastirma Yonleri

Riizgar giicii tahmininde kaydedilen ilerlemeye ragmen, bazi arastirma zorluklar
devam etmektedir. Oncelikli alanlardan biri, dogruluktan &diin vermeden eksik veya
giiriiltiili verileri isleyebilen daha saglam modellerin gelistirilmesidir. Bu ihtiyac,
ozellikle simirli meteorolojik verilere sahip bolgelerde kritik 6neme sahiptir. Veri
artirma tekniklerinin ve gelismis 6n isleme yontemlerinin gelistirilmesi, bu sorunu

¢ozmede 6nemli bir rol oynayabilir.

Bir diger onemli arastirma alani da ger¢cek zamanli tahminde Transformator
modellerinin uygulanmasidir. Transformatdr mimarileri 6nemli bir potansiyel gosterse
de, gercek zamanli senaryolardaki uygulamalar1 hala sinirhdir.  Gelecekteki
arastirmalar, gercek zamanli kullanim i¢in optimize edilmis daha verimli

Transformatdr mimarileri gelistirmeye odaklanmalidir.

Ayrica, daha yorumlanabilir tahmin modellerine olan talep artmaktadir.
Transformatorler de dahil olmak {izere makine Ogrenimi modelleri tahmin
dogrulugunda 6nemli iyilestirmeler saglasa da karmasikliklar1 nedeniyle genellikle
"kara kutular" olarak tanimlanmaktadirlar. Sebeke operatorlerinin ve karar vericilerin
giivenini kazanmak i¢in, riizgar giicii tahmin modelleri i¢in agiklanabilir yapay zeka
tekniklerinin gelistirilmesi kritik dneme sahip olacaktir. Arastirma cabalari, yorumlana
bilirligi dogrudan model tasarimina entegre etmeye veya model tahminlerine iliskin

icgorii saglayan agiklama sonrasi yontemler gelistirmeye odaklanabilir.

Riizgér giicli tahmin yontemlerinin evrimi, riizgar giiciinii elektrik sebekesine entegre
etmenin artan karmasikligim yansitir. Ozellikle Transformatdr mimarilerini igeren
hibrit modeller, riizgar verilerindeki karmasik zamansal bagimliliklar1 yakalama

yetenekleri nedeniyle gelecekteki arastirmalar i¢cin umut verici bir yon sunar. Ancak,
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literatiirde veri kalitesi, gercek zamanli tahmin yetenekleri ve model yorumlana
bilirligi konusunda hala bogluklar bulunmaktadir. Bu bosluklar1 ele almak, riizgar giicti
tahminlerinin dogrulugunu ve giivenilirligini iyilestirmek ve yenilenebilir enerji
kaynaklarinin yaygin olarak benimsenmesini ve biliyiimesini desteklemek i¢in kritik

Ooneme sahiptir.
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2. TRANSFORMER MODELLERI

Bu boliim, Hibrit Transformer modelinin riizgar giicii tahmininde gelistirilmesi ve
uygulanmasini anlamak i¢in gerekli olan temel teorileri ve teknik yonleri sunmaktadir.
Tartigma, bu arastirmada kullanilan modelin temelini olusturan makine 6grenimi ve
derin 6grenme alanindaki temel kavramlarin ayrintili bir incelemesiyle baglar. Bu
kavramlar arasinda sinir aglari, Uzun Kisa Siireli Hafiza aglar1 ve Transformer
modelleri bulunmaktadir. Bu tekniklerin her biri, riizgar giicii tahminlerinde igsel olan

karmasik ve dogrusal olmayan iligkilerin ele alinmasinda kritik bir rol oynamaktadir.

2.1 Makine Ogrenimi ve Derin Ogrenmenin Temelleri

Makine 6grenimi ve derin grenme, riizgar giicii tahmini de dahil olmak iizere modern
veri odaklt yaklagimlarin 6nemli bilesenleridir. Bu teknolojiler, biiyiik veri
kiimelerinden 6grenme yetenekleri ve karmasik desenleri tespit edebilme kapasiteleri
sayesinde yliksek dogrulukta tahminler yapabilen gelismis modellerin gelistirilmesine
olanak tanir. Bu boliimde, bu ¢alismada gelistirilen hibrit modelin temelini olugturan

kritik kavramlar ve mimariler hakkinda genel bir bakis sunulacaktir [57].

2.2 Random Forest (Rastgele Orman) Algoritmasi

Random Forest, ¢cok yonliiliigii, yiiksek dogruluk orani ve farkli veri tiirlerini isleme
yetenegi nedeniyle genis bir kullanim alanina sahip olan giiclii bir topluluk 6grenme

yontemidir.

Breiman tarafindan 2001 yilinda tanitilan Random Forest, egitim siirecinde birden
fazla karar agaci olusturur ve bu agaclarin siniflandirma i¢in ¢ogunluk oyu veya
regresyon icin ortalama tahmini sonug¢ olarak verir. Bu yaklasim, "kalabaligin
bilgeligi" prensibinden yararlanarak, birden fazla modelin birlestirilmesinin asiri
uyumu azaltabilecegi ve modelin genelleme yetenegini artirabilecegi fikrine dayanur.
Riizgar giicii tahmini gibi zaman serisi tahmin gorevlerinde, Random Forest yalnizca
dogru tahminler saglamakla kalmaz, ayn1 zamanda veri setindeki giiriiltiiyti etkili bir

sekilde azaltma kabiliyetiyle de dikkat ¢eker [58].

Random Forest, karar agaclarina dayanan bir topluluk (ensemble) yontemidir ve her
bir agac, egitim verilerinin rastgele bir alt kiimesi ve 6zelliklerin rastgele bir alt kiimesi

kullanilarak olusturulur. Bu rastgelelik, agaclar arasinda c¢esitlilik yaratarak,
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toplulugun genel olarak bireysel hatalara ve veri setindeki Onyargilara kars1 daha

dayanikli olmasini saglar [59].
Random Forest olusturmanin ana adimlari sunlardir:

»  Bootstrap Ornekleme: Ormandaki her aga¢ icin, orijinal veri setinden
yedeklemeli olarak rastgele bir 6rnek (bootstrap 6rnegi) secilir. Bu, her bir agacin
benzersiz bir egitim seti lizerinde egitilmesini saglar ve modelin genelleme yetenegini

artirir [60].

»  Ogzellik Rastgeleligi: Her bir karar agacinin her béliinme noktasinda,
ozelliklerin rastgele bir alt kiimesi segilir ve bu alt kiimeden en iyi boliinme noktasi
belirlenir. Bu, agaglar arasindaki korelasyonu azaltarak modelin daha iyi genelleme

yapmasina katkida bulunur [61].

* Birlestirme (Agregasyon): Son tahmin, tiim agaclarin tahminlerinin
birlestirilmesiyle yapilir. Siniflandirma gdrevlerinde bu, genellikle ¢ogunluk oylamasi

ile, regresyon gorevlerinde ise tahminlerin ortalamasi alinarak gerceklestirilir [62].

Random Forest, biiyiikk veri setlerini isleyebilme kapasitesi, yliksek boyutlu veri
alanlarinda c¢alisabilme yetenegi ve daha az parametre ayari ile yliksek dogruluk
saglamas1 nedeniyle bir¢ok uygulama i¢in cazip bir segenek olarak one ¢ikmaktadir.

Ayrica, veri setlerindeki giiriiltiiyii azaltmada etkin bir rol oynar [63].
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Sekil 2.1. Random Forest Algoritma Diyagramu.
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2.2.1 Giiriiltii Azaltma I¢in Random Forest Kullanim

Verideki giiriiltii, dogru tahmin yapmak icin gerekli olan temel desenleri gizleyebilen
rastgele degisiklikler veya gereksiz bilgilere atifta bulunur. Riizgar giicii tahminlerinde
kullanilan zaman serisi verilerinde, giiriiltii; sensor hatalari, ¢evresel etkiler veya
tahmin modeline anlamli katki saglamayan rastgele dalgalanmalar gibi c¢esitli

kaynaklardan ortaya ¢ikabilir.

Giiriiltii Azaltma Araci Olarak Random Forest: Random Forest, topluluk yapis1 ve
birden fazla karar agacindan tahminleri ortalama alarak yumusatma yontemiyle

giiriiltii azaltmada oldukca etkilidir. Bu yontemin temel prensipleri sunlardir:

*  Aykint Degerlere Dayanikli: Random Forest, her bir aga¢ i¢in orijinal veri
setinden rastgele secilmis bootstrap Ornekleri kullanarak insa edilir. Bu nedenle,
verideki baziaykir1 degerler veya giiriiltiiler her agagta yer almayabilir. Bu durum,
hatali verilerin etkisini topluluk genelinde seyrelterek nihai tahmin {zerindeki

etkilerini azaltir [64].

* Ortalama Alma Etkisi: Birden fazla agacin ¢iktilarinin ortalamasini alarak,
Random Forest tahminleri yumusatir ve giiriiltiilii verilerin neden olabilecegi
dalgalanmalar1 azaltir. Her boliinme noktasinda rastgele 6zellik se¢imi, modelin

O0grenme siirecinde giiriiltiiniin baskin olmasini engeller [65].

«  Ozellik Onemi ve Giiriiltii Filtreleme: Random Forest, modelde kullanilan her
bir 6zelligin tahmin iizerindeki etkisini 6lgmek i¢in bir 6énem derecesi belirler. Bu
6l¢iim, modelin giiriiltilye neden olan veya tahmin dogruluguna katki saglamayan
ozellikleri tespit edip elemesini saglar. Bu sekilde, model daha ¢ok dnemli ve anlamhi

ozelliklere odaklanarak, giiriiltiinlin olumsuz etkilerini azaltabilir [66].

* Topluluk Ortalama Alma ile Giirilti Azaltma: Giiriltili veri setlerinde,
bireysel karar agaclar1 verideki rastgele dalgalanmalara fazla tepki vererek asiri
uyumlu sonuglar iiretebilir. Ancak, Random Forest'in ortalama alma mekanizmasi,
farkli veri alt kiimeleri ve 6zelliklerle olusturulan birgok agacin ¢iktisini birlestirerek
bu sorunu hafifletir. Bu yaklagim, rastgele giirtiltiiyii etkili bir sekilde dengeler ve daha

istikrarli, daha dogru tahminler saglar [67].
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2.2.2 Riizgar Giicii Tahmininde Random Forest Uygulamasi

Riizgar giicii tahmininde Random Forest kullanimi, giiriiltli azaltma agisindan 6nemli
faydalar sunar. Riizgar verileri olduk¢a degisken olabilir ve birgok Ongoriilemeyen
faktorden etkilenebilir. Random Forest kullanilarak, model bu giiriiltiiyt filtreleyebilir
ve bdylece tahminlerin dogrulugunu ve giivenilirligini artirabilir. Ornegin, dalgacik
doniistimleri gibi diger 6n isleme teknikleriyle birlestirildiginde, Random Forest
giiriiltii azaltma yeteneklerini daha da artirabilir ve riizgar giicii iretiminin daha dogru

tahminlerini elde edebilir [68].

Random Forest, verilerdeki dogrusal olmayan iliskileri isleme yetenegine sahiptir ve
bu da onu dogrusal modellerin yetersiz kalabilecegi riizgar giicii tahmininin karmagsik
dinamikleri i¢in ideal hale getirir. Meteorolojik faktorler arasindaki etkilesimlerin tam

spektrumunu yakalamak, bu modelin gii¢lii yonlerinden biridir [69].

Random Forest, makine 6greniminde giiclii bir aractir ¢iinkii giirtiltiiyili azaltmada ve
tahmin dogrulugunu iyilestirmede o6zellikle etkili olan bir topluluk yaklagimi sunar.
Aykiri degerlere kars1 saglamligi, dnemli 6zelliklerin se¢imi ve ortalama yontemi, onu
rlizgar giicli tahmin modellerinde veri kalitesini iyilestirmek i¢in ideal bir se¢im haline
getirir. Guriltiiyii etkili bir sekilde azaltarak, Random Forest yenilenebilir enerji
sistemlerinde gii¢ liretimini optimize etmeye ve sebeke istikrarini saglamaya yardimeci
olan daha giivenilir ve dogru tahminler saglar. Riizgar giicli tahmini daha gelismis
modellerin entegrasyonuyla gelismeye devam ederken, Random Forest o6zellikle
giriiltiilii ve karmasik veri kiimelerini iceren gorevlerde veri bilimcileri ve

miihendisleri i¢in degerli bir ara¢ olmaya devam ediyor.

2.3 Sinir Aglar

NN'ler, makine 6grenimi ve derin 0grenmenin temel yap: taslart arasinda yer alir. Bu
aglar, insan beyninin yapisini ve ¢aligma seklini taklit ederek, veri isleyen ve ¢iktilar
lireten yapay noronlarin katmanlarindan olusur. Her bir néron, kendisine gelen giris
bilgilerine bir matematiksel fonksiyon uygular ve bu sonucu bir sonraki katmana iletir.
Sinir ag1, tahmin edilen ¢ikt1 ile gercek hedef arasindaki hata oranin1 minimize ederek

agirliklarini optimize eder; bu siire¢ egitim olarak adlandirilir [70].
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2.3.1 ileri Beslemeli Sinir Aglar

FNN, en temel sinir ag1 tlrlerinden biridir ve verilerin giris katmanindan ¢ikis
katmanina yalnizca tek yonlii olarak aktig1 yapilardir. FNN'ler, ¢esitli siniflandirma ve
regresyon gorevlerinde gii¢lii performans gosterir, ancak zamansal bagimliliklar veya
baglam bilgisi gerektiren sirali verilerle calismakta zorlanabilirler. Bu durum, 6zellikle
gecmis riizgdr modellerinin gelecekteki kosullar1 dngormede kritik oldugu riizgar

enerjisi tahminlerinde 6nemli bir sinirlamadir [71].
2.3.2 Ileri Beslemeli Sinir Aglarinin Yapisi

Bir ileri Beslemeli Sinir Ag, sirali olarak diizenlenmis birden fazla néron katmanindan

olusur. Bu katmanlar {i¢ ana kategoriye ayrilir:

e  Giris Katmani: Bu katman, agin dis diinyadan aldig: verileri isler. Her ndron,
bir giris 6zelligini temsil eder. Ornegin, riizgar giicii tahmininde bu katmandaki
noronlar, riizgdr hizi, sicaklik, nem gibi ¢evresel verileri ve ge¢mis enerji iiretim
verilerini isleyebilir.

e  Gizli Katmanlar: Girig ve ¢ikis katmanlari arasinda yer alan bir veya daha fazla
gizli katman bulunur. Bu katmanlar, giris verilerine dogrusal olmayan doniistimler
uygulayarak, agin karmasik desenleri ve iligkileri Ogrenmesini saglar. Gizli
katmanlardaki noronlar, bir 6nceki katmandan aldiklar1 bilgiyi agirlikli bir sekilde
toplar, bir aktivasyon fonksiyonundan gecirir ve sonucu bir sonraki katmana iletir.
Gizli katmanlarin sayis1 ve her katmandaki ndron sayisi, ¢éziilmek istenen problemin
karmagikligina gore degisir.

e (Cikt1 Katmani: Son katman, agin nihai ¢iktisin1 tretir. Siniflandirma
gorevlerinde bu katmanda, her biri bir sinifi temsil eden birden fazla néron olabilir.
Regresyon gorevlerinde ise genellikle siirekli bir deger iireten tek bir néron bulunur.

Bu ndron, 6rnegin tahmin edilen riizgar giicii iiretimi gibi bir ¢iktiy1 hesaplar.
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GIRIS KATMANI GIZLI KATMANLAR CIKTI KATMANI

Sekil 2.2. ffn mimarisi

2.3.3 Ileri Beslemeli Sinir Aglarmin Calisma Mekanizmasi

FFN ¢aligsmasi iki ana asamada gergeklesir: ileri yayilim ve geri yayilim.

e leri Yayilm: Bu asamada, giris verileri agm giris katmanindan almip ¢ikis
katmanina kadar tasinir. Her gizli katmandaki ndron, giris verilerini belirli agirliklarla
carpar, sonuglari toplar ve dogrusal olmayan bir aktivasyon fonksiyonundan gegirir.
Yaygin olarak kullanilan aktivasyon fonksiyonlar: arasinda ReLU , Sigmoid ve Tanh
bulunur. Bu iglemler sonucunda iiretilen degerler, agin ¢iktisin1 belirlemek icin ¢ikis
katmanina iletilir [72].

e  QGeri Yayilim ve Egitim: Agin tahmini, gercek hedef deger ile karsilastirilir ve
hata miktar1 bir kayip fonksiyonu kullanilarak hesaplanir (6rnegin, Ortalama Kare
Hatas1). Geri yayilim yontemi, bu hatayr en aza indirmek icin agdaki agirliklarin
ayarlanmasina olanak tanir. Bu islem, kayip fonksiyonunun tiirevlerinin hesaplanmasi
ve agihiklarin  gradyan inisi gibi optimizasyon teknikleri kullanilarak
giincellenmesiyle gerceklestirilir. Bu siire¢ bir¢ok kez tekrarlanarak agin tahmin

dogrulugu artirilir [73].

2.3.4 Riizgar Giicii Tahmininde ileri Beslemeli Sinir Aglarimin Kullanim

Riizgar giicii tahmini baglaminda, FFN, ¢esitli girdi 6zellikleri ile gelecekteki riizgar
giicll liretimi arasindaki iligkileri modellemek i¢in kullanilir. Gelismis modeller, LSTM
ve Transformatdrler gibi zaman serisi verilerini isleme kapasitesine sahip olsa da
FFN'ler, girdiler ve ¢iktilar arasindaki iligkilerin daha basit mimarilerle ele alinabildigi

durumlarda hala yaygin olarak kullanilir [74].
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Temel Uygulamalar:

e Kisa Vadeli Riizgar Giicii Tahmini: FFN'ler, giris 6zelliklerinin gilincel ve
yakin zamandaki meteorolojik verilere dayandigi kisa vadeli tahminlerde etkili bir
sekilde kullanilir. Yapilarinin basitligi, bu aglar1 hesaplama agisindan verimli kilar ve
hizli tahminler gerektiren durumlar i¢in uygun hale getirir [75].

e Veri On Isleme ve Ozellik Cikarimi: FFN'ler, ham verilerin islenmesi ve
ozelliklerin ¢ikarilmasi gibi 6n hazirlik islemlerinde diger daha karmagsik modellerle
birlikte kullanilabilir. Ornegin, bir FFN, ham girdi verilerini, LSTM veya
Transformator gibi modellerin daha iyi isleyebilecegi 6zelliklere doniistiirebilir [76].

o Toplu Modeller: FFN'ler, toplu modelleme yaklagimlarinin bir pargasi olarak,
diger sinir ag1 tiirleri veya makine 6grenimi algoritmalar ile birlestirilebilir. Birden
fazla modelin ¢iktilarinin ortalamasini alarak, toplu modeller hem varyansi azaltabilir

hem de veri setindeki ana egilimleri daha iyi yakalayabilir [77].
2.3.5 Riizgar enerjisi iiretim tahmininde FFN'nin avantajlari

Avantajlar1:

e Basitlik: FFN'ler, modelleri uygulamak ve egitmek i¢in kolaydir ve bu da onlar1
bircok tahmin gorevi i¢in erisilebilir bir secenek haline getirir.

e Hesaplama Verimliligi: Daha karmasik modellerle karsilastirildiginda, FFN'ler
daha az hesaplama giicii gerektirir ve bu da onlar1 kaynak sinirli uygulamalar i¢in
uygun hale getirir.

e  Esneklik: FFN'ler, regresyon ve siniflandirma gorevleri dahil olmak tizere ¢ok

cesitli sorunlara uygulanabilir.

2.3.6 Riizgar Enerjisi Tahmini icin FFN'lerin Gelistirilmesi

FFN'ler belirli uygulamalar i¢in etkili olsa da zamansal bagimliliklar1 ele alma
konusundaki sinirlamalari, bunlar1 diger tekniklerle birlestirerek hafifletilebilir.
Ornegin, FFN'ler, ardigik veriler igin daha uygun olan RNN'ler veya Transformatorler
gibi modellerle calistiklar1 hibrit modellerde kullanilabilir. Ayrica, asir1 uyumu
azaltmak ve goriilmemis verilere genelleme yapma yetenegini artirmak i¢in FFN'lere

birakma, agirlik diizenleme ve erken durdurma gibi teknikler uygulanabilir.
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FFN'ler, riizgar giicli tahmini de dahil olmak iizere ¢esitli gorevler i¢in basitlik ve
esneklik sunan temel bir makine 6grenimi modelidir. Sirali verileri islemedeki
sinirlamalarina ragmen, on isleme, Ozellik ¢ikarma ve topluluk veya hibrit
modellerdeki bilesenler olarak rolleri, onlar1 bir veri bilimcisinin ara¢ setinde
vazgecilmez bir arag¢ haline getirir. Arastirmacilar, FFN'lerin gii¢lii ve zayif yonlerini
anlayarak, riizgdr gilici tahmini baglaminda yeteneklerini en 1iyi sekilde
degerlendirebilir ve tahminlerin hem dogru hem de hesaplama agisindan verimli

olmasini saglayabilirler.

2.4 Riizgar Enerjisi icin Transformator Modellerinde LSTM Aglarinin

Kullanimi LSTM aglari, 6zellikle kaybolan ve patlayan egimler olmak iizere uzun
vadeli bagimliliklar1 §grenmenin zorluklarinin tistesinden gelmek i¢in tasarlanmis 6zel
bir RNN tiiriidiir. LSTM'ler, uzun veri dizileri segmentleri boyunca bilgileri
depolamalarina ve segici olarak gilincellemelerine olanak taniyan bellek hiicrelerine
sahiptir ve bu da onlar riizgar enerjisi liretimi gibi zaman serisi tahmin gorevleri i¢in

ozellikle etkili hale getirir [78].

Bu aragtirma baglaminda, LSTM'ler Transformatdr modellerine entegre edilmistir ve
bdylece sirali verileri isleme yetenekleri artirilmistir. Transformatorler, kendi kendine
dikkat mekanizmalariyla zaman serisi tahminini ve diger sirali veri gorevlerini devrim
niteliginde degistirmis olsa da, bazen LSTM'lerin dogal olarak ele aldig1 ince zamansal
bagimliliklar1 yakalamakta zorlanirlar. LSTM katmanini Transformer mimarisine
dahil ederek, model her iki yaklagimin gii¢lii yonlerinden yararlanir: LSTM'nin zaman
icinde bilgi depolama yetenegi ve Transformer'in tiim dizi boyunca karmasik, uzun

vadeli bagimliliklar ve iligkileri modelleme kapasitesi [79].
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Sekil 2.3. Istm katmani

2.4.1 Hibrit Transformer Modellerinde LSTM'nin Rolii

Bu hibrit mimaride, LSTM katman tipik olarak ardisik verileri Transformer'in 6z-
dikkat katmanlarina gegmeden dnce 6n islemek veya kodlamak i¢in kullanilir. LSTM
katmani, riizgar hiz1 veya gii¢ ¢ikisi gibi giris zaman serisi verilerini isler ve hem kisa
vadeli dalgalanmalar1 hem de uzun vadeli egilimleri yakalar. Bu zamansal
bagimliliklar1 kapsayan LSTM katmaninin ¢iktist daha sonra Transformer
katmanlarina beslenir. Bu ardisik isleme, Transformer'in veriler i¢indeki daha genis
kaliplart ve iligkileri modellemeye odaklanmasini saglarken, LSTM katmani ayrintili

zamansal yapiy1 isler [80].

2.4.2 Riizgar Giicii Tahminindeki Uygulamalar

Riizgar giici tahmininde, meteorolojik degiskenler arasindaki karmasik zamansal
iligkileri yakalamak, dogru tahminler yapmak i¢in hayati énem tasir. LSTM ve
Transformer modellerinin hibrit kullanimi, LSTM'nin zamansal isleme giiciinii ve
Transformer'in diziler arasindaki karmasik iliskileri ele alma yetenegini birlestirerek
daha saglam ve dogru bir tahmin modeli saglar. Bu yaklagim, riizgar desenlerinin hem
ani kisa vadeli degisiklikler hem de riizgar giicii iiretim verilerinde yaygin olan uzun

vadeli egilimler sergiledigi senaryolarda 6zellikle yararhidir [81].

LSTM katmanlarint Transformer modellerine entegre etmek, riizgar giicli tahmini de
dahil olmak tizere zaman serisi tahmin gorevlerinin performansini iyilestirmek ic¢in
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giiclii bir yaklasimdir. LSTM'lerin zamansal duyarliligini Transformers'in kiiresel
dikkat yetenekleriyle birlestirerek, bu hibrit model riizgar giicii verilerinin ince
dinamiklerini daha etkili bir sekilde yakalayabilir ve daha dogru ve giivenilir tahminler
yapabilir. LSTM'ler ve Transformers arasindaki sinerji, karmasik, ardisik veri odakl
uygulamalar i¢in makine 6grenimi modellerinin devam eden evriminde O6nemli bir

yeniligi temsil eder.

2.4.3 LSTM ve Transformator Modellerini Birlestirmenin Avantajlari

e  QGelistirilmis Zamansal Dinamikler: LSTM'nin ge¢mis girdileri tutma yetenegi,
Transformatdr modellerinin olaylarin sirasinin ve zamanlamasiin kritik oldugu
gorevlerde, 6rnegin riizgar desenlerindeki ani degisiklikleri tahmin etmede daha iyi
performans gostermesini saglar.

e QGelistirilmis Sira Gosterimi: Sira verilerini 6nce bir LSTM katmaniyla
isleyerek, sonraki Transformatdr katmanlar1 daha bilgilendirici ve baglamsal olarak
farkinda bir girdi alir ve bu da modelin genel performansini iyilestirir.

e  Transformator Sinirlamalarinin Hafifletilmesi: Transformatdrler giiclii olsa da
verilerin siral1 sirasinin kritik oldugu senaryolarda bazen yetersiz kalabilirler. LSTM
katmanlarinin dahil edilmesi, veriler Transformator katmanlarina ulasmadan Once

zamansal siray1 ve bagimliliklart agik¢a modelleyerek bu sinirlamay1 hafifletir [82].

2.5 Transformer Modelleri

LSTM'ler bir¢ok ardisik tahmin gorevinde etkili olduklarini kanitlamis olsalar da bazi
sinirlamalara  sahiptirler. Bu sinirlamalardan  biri, ardisik islemeye olan
bagimliliklaridir, bu da 6zellikle uzun dizilerde hesaplama agisindan pahali ve yavas
olabilir. Transformer modellerinin tanitilmasi, bu sinirlamalarin iistesinden gelmekte
onemli bir ilerleme kaydetti. Ilk olarak dogal dil isleme (NLP) igin gelistirilen
Transformer'lar, o zamandan beri zaman serisi tahmini de dahil olmak tizere genis bir

yelpazedeki uygulamalar i¢in uyarlanmistir [32].

Transformer'lar, RNN'lerden ve LSTM'lerden, girdilerin dizideki konumlarindan
bagimsiz olarak, modelin girdi verilerinin farkli boéliimlerinin  dnemini
degerlendirmesini saglayan kendi kendine dikkat (self-attention) mekanizmalarini
kullanmalariyla ayrilirlar. Bu, Transformer'larin LSTM'lerden daha verimli bir sekilde
verilerdeki karmasik bagimliliklar1 yakalamasini saglar, ¢iinkii dizileri ardisik olarak
degil, paralel olarak isleyebilirler. Kendi kendine dikkat mekanizmasi, tiim giris

23



degerlerinin agirlikli bir toplamini hesaplar, burada agirliklar her giris degerinin
mevcut ¢ikt1 i¢in ne kadar ilgili olduguna gore belirlenir. Bu yaklasim, Transformer't
uzak veri noktalar1 arasindaki iligkileri etkili bir sekilde modellemesine olanak tanir,
bu da gelecekteki riizgar kosullarini etkileyebilecek cesitli meteorolojik faktorler ve

zaman gecikmelerinin oldugu riizgar giicli tahmininde 6zellikle faydalidir.

2.5.1 Transformator Mimarisi Genel Bakis

Bir Transformatér modeli genellikle bir kodlayici-kod ¢oziicii yapisindan olusur.
Ancak bircok uygulamada, ozellikle zaman serisi tahmininde, yalnizca kodlayici
bileseni bagimsiz olarak kullanilir. Modelin mimarisi, her biri iki ana bilesenden
olusan birden fazla kodlayic1 katmanindan olusur: ¢cok basl bir 6z-dikkat mekanizmasi

ve mekansal olarak bagimsiz, tam bagli bir ileri besleme agi.
Kodlayic1 mimarisi:

e Oz-Dikkat Mekanizmasi: Oz-dikkat mekanizmasi, Transformatér modelinin
temel yeniligidir. Modelin giris dizisinin farkli 6gelerinin goreceli Onemini
degerlendirmesine olanak tanir. Dizileri adimlar halinde isleyen RNN'ler ve
LSTM'lerin aksine, 6z-dikkat mekanizmasi tiim diziyi ayni anda isler ve dizideki iki
0ge arasindaki iligkileri konumlarindan bagimsiz olarak belirleyebilir. Zaman serisi
tahmininde, uzun menzilli bagimliliklar1 yakalama yetenegi, zaman agisindan uzak
olan olaylarin birbirini etkileyebilecegi durumlarda 6zellikle degerlidir.

e Coklu Bas Dikkat: Transformator, verilerdeki iligkilerin farkli yonlerini
yakalamak icin ¢oklu bas dikkat mekanizmasi kullanir. Bu, tek bir dikkat
fonksiyonuna giivenmek yerine, modelin verilerin farkli gosterimlerini 6grenen birden
fazla dikkat bas1 kullandigi anlamina gelir. Bu farkli bas daha sonra birlestirilir ve
dogrusal olarak doniistiiriiliir, bu da modelin dizinin farkli boliimlerinin énemini
degerlendirirken birden fazla bakis agisin1 dikkate almasina olanak tanir.

e Konum Tabanli ileri Beslemeli Aglar: Oz-dikkat katmanindan sonra, her
kodlayic1 dizideki her konuma bagimsiz ve ayni sekilde uygulanan tamamen bagh bir
ileri beslemeli ag icerir. Bu ag, modele dogrusal olmayanlik katan ReLU aktivasyon
fonksiyonuna sahip iki dogrusal doniisiimden olusur. Transformatoriin paralel isleme
dogasi1 nedeniyle siral1 bilginin kaybina ragmen, giris verilerine konumsal kodlamalar
eklenir ve modelin dizideki 6gelerin goreli konumlarini ¢ikarmasina olanak tanir ve

siral1 bilgileri korumaya yardimci olur.
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e Konumsal Kodlama: Transformatdr verileri dogasi geregi sirali olarak
islemediginden, dizideki 6gelerin sirasini ¢ikarsamak i¢in bir yola ihtiya¢ duyar.
Konumsal kodlama bunu, dizideki konumunu kodlayan her giris 6gesine benzersiz bir
vektor ekleyere gerceklestirir. Bu yaklasim, modelin dikkat puanlarini hesaplarken
olaylarin sirasini hesaba katmasini ve bdylece zaman serisi verilerinin sirali yapisini

korumasin1 saglar.
Kod ¢oziicii mimarisi:

e Maskelenmis Cok Basli Dikkat: Kod ¢oziiclide, ¢ok basli dikkat mekanizmast,
modelin dizideki gelecekteki konumlara dikkat etmesini 6nlemek i¢in egitim sirasinda
hafif¢ degistirilir. Bu "maskeleme", modelin her konumda yaptig1 tahminlerin yalnizca
onceki 6gelere bagli olmasini saglar; bu da dil iiretimi ve tahmin gibi gdrevler igin
kritik neme sahiptir.

e Kodlayici-Kod Coziicii Dikkat: Kod ¢oziicii ayrica, kodlayicinin giris dizisinin
ilgili boliimlerine odaklanmasini saglayan ek bir dikkat mekanizmasi igerir. Bu dikkat
mekanizmasi, modelin girdiyi ¢iktiyla hizalamasina yardimer olur ve nihai tahminin

girdi dizisinin en alakali kisimlari tarafindan bilgilendirilmesini saglar.
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Oz-Dikkat mekanizmas1, Transformer mimarisinin temel yap1 taslarindan biridir ve
modelin dizileri daha verimli bir sekilde islemesini ve tiim dizi boyunca karmasik
bagimliliklar1 yakalamasini saglar. Bu mekanizma, modelin girdideki her 6genin diger

Ogelere olan iliskisini dinamik olarak degerlendirmesine olanak tanir. Boylece, uzak

Sorgu, Anahtar ve Deger Vektorleri: Kendine dikkat mekanizmasinin temelini

sorgu (query), anahtar (key) ve deger (value) vektorleri olusturur. Dizideki her bir 6ge



icin model, bu {li¢ vektorii olusturur. Sorgu vektori, dikkati hesaplanan 6geyi temsil
aktarilacak bilgiyi tagir [83].

e Dikkat Puanlari: Her bir 6ge cifti icin dikkat puanlari, sorgu ve anahtar
vektorlerinin nokta carpimi ile hesaplanir. Bu puanlar, anahtar vektorlerinin
boyutunun karekokii ile oOlgeklendirilir ve ardindan softmax fonksiyonu ile
normallestirilir. Bu siire¢, dikkat puanlarini olasiliklara doniistiirerek, her 6genin ne
kadar 6nemli oldugunu belirler. Boylece, model hangi 6gelere daha fazla odaklanmasi
gerektigini 6grenir [84].

e Agirlikli Toplam: Her bir pozisyon i¢in nihai ¢ikti, deger vektorlerinin dikkat
puanlaria gore agirlikli toplami alinarak elde edilir. Bu, modelin sorgu tarafindan
saglanan baglama bagli olarak dizinin farkli boliimlerini dinamik bir sekilde

vurgulamasini saglar. Boylece, model girdideki kritik bilgileri daha iyi temsil eder
[85].

COK BASLI DIKKAT

- &::

V K Q

Sekil 2.5. Oz-Dikkat
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2.5.3 Zaman Serisi Tahmini i¢cin Transformer Model Uygunlugu

Transformer modelinin Oz-Dikkat mekanizmas1 ve benzersiz mimarisi, riizgar enerjisi
tahmini de dahil olmak {izere zaman serisi tahminleri i¢in ¢esitli avantajlar sunar. Bu
avantajlar, modelin 6zellikle karmagsik ve biiyiik 6l¢ekli veri setleriyle caligmasini

kolaylastirarak daha dogru ve giivenilir tahminler yapmasini saglar [86].

e Karmasik Bagimliliklar1 Yakalama: Zaman serisi verileri, farkli zaman
noktalar1 arasinda karmasik ve dogrusal olmayan iliskiler igerebilir. Transformer
modellerinde kullanilan kendine dikkat mekanizmasi, modelin dizideki ¢esitli zaman
noktalarinin 6nemini degerlendirmesine olanak tanir. Bu mekanizma, zaman serisi
verilerindeki uzun vadeli bagimliliklar1 yakalama yetenegi sunar ve bu da tahmin
dogrulugunu artirir [87].

e Eksik Verileri Ele Alma: Gergek diinya zaman serisi verilerinde eksik veri
noktalart sikca karsilasilan bir sorundur. Transformer modelleri, sirali isleme
yontemlerine siki sikiya bagli kalmak yerine, mevcut olan ilgili bilgilere odaklanarak
bu bosluklar etkili bir sekilde doldurabilir. Bu esneklik, eksik veri noktalarindan
kaynaklanabilecek olumsuz etkileri azaltarak modelin genel performansini artirir [88].

e Degisken Dizi Uzunluklarina Uyum: Transformer modeli, énemli mimari
degisikliklere ihtiya¢c duymadan degisken uzunluktaki dizilere uyum saglayabilir. Bu
Ozellik, zaman serisi tahminlerinde, tahmin ufkuna bagl olarak giris dizisinin
uzunlugunun degisebilecegi durumlarda oldukg¢a faydalidir. Modelin bu esnekligi,
genis bir yelpazede farkli tahmin gorevlerinde kullanilmasini miimkiin kilar [89].

e QGelistirilmis Yorumlanabilirdik: Kendine dikkat mekanizmasi tarafindan
uiretilen dikkat puanlari, modelin tahmin yaparken dizinin hangi boéliimlerini en 6nemli
gordiigiine dair iggoriiler saglar. Bu yorumlanabilirdik, riizgar giicii tahmini gibi
uygulamalarda son derece degerlidir. Modelin karar verme siirecini anlamak, modelin

ince ayarint yapmak ve paydaslarla gliven insa etmek agisindan dnemlidir [90].

Transformer modelleri, uzun vadeli bagimliliklar: verimli bir sekilde yakalama, biiyiik
veri setlerini isleme ve paralel isleme yetenekleriyle zaman serisi tahminleri i¢in giiclii
bir ara¢ sunar. Riizgar giicii liretimi gibi karmagik tahmin gorevlerinde, bu mimari,
Olceklenebilirlik ve dogruluk acisindan avantajlar saglar. Yenilenebilir enerji alaninda
dogru ve giivenilir tahminlere olan talep arttik¢a, Transformer modelleri modern

tahmin tekniklerinin 6n saflarinda yer almaya devam edecektir.
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3. HIiBRIT MODEL MiMARIiSi VE ENTEGRASYON STRATEJILERI

3.1 Sinir Aglari, LSTM ve Hibrit Modellerin Entegrasyonu

Bu arastirmada 6nerilen hibrit model, riizgar enerjisi tahmininde bulunan ¢ok yonlii
zorluklan etkili bir sekilde ele almak i¢in sinir aglarmin, LSTM katmaninin ve
Dontistiirticii modellerinin yeteneklerini stratejik olarak entegre eder. Hibrit mimarinin
her bir bileseni, riizgar enerjisi verilerinin karmagsikligini ve degiskenligini yakalamak

i¢cin uygun olan tutarli bir model olusturmak i¢in farkli giiclii yonler sunar.

Sinir Aglari, hibrit modelin temel ¢ercevesi olarak hizmet eder ve verilerde bulunan
cesitli ve genellikle dogrusal olmayan iligskilerden 6grenmek i¢in saglam bir yapi
saglar. Esneklikleri ve uyarlanabilirlikleri, sinir aglarini riizgar enerjisi tiretimini

etkileyen gesitli girdi 6zelliklerini islemek i¢in 6nemli bir bilesen haline getirir.

LSTM katmanlari, riizgar desenlerinde bulunan zamansal bagimliliklar: 6zel olarak
ele almak icin entegre edilmistir. Bilylik dizilerde bilgileri tutabilen bellek hiicrelerini
iceren benzersiz mimarileri sayesinde, LSTM'ler hem kisa vadeli dalgalanmalar1 hem
de uzun vadeli egilimleri modellemede 6zellikle etkilidir. Bu yetenek, olaylarin sirasini
ve zamanlamasini anlamanin dogru tahminler yapmak i¢in elzem oldugu riizgar

enerjisi tahmininde ¢ok dnemlidir.

Transformatdr Modelleri, biiyiik veri kiimeleri arasinda uzun vadeli bagimliliklar1 ve
iligkileri yakalamak i¢in gii¢lii bir mekanizma saglayarak hibrit mimariyi daha da
gelistirir. Transformatdriin kendi kendine dikkat mekanizmasi, modelin siralamadaki
konumlarindan bagimsiz olarak ¢esitli girdi 6zelliklerinin 6nemini dinamik olarak
tartmasina olanak tanir. Bu yetenek, ¢esitli meteorolojik degiskenlerin riizgar enerjisi
tiretimini etkilemek i¢in dogrusal olmayan sekillerde etkilesime girdigi riizgar enerjisi

tahmininde 6zellikle degerlidir.

Bu hibrit modelde, LSTM katmani riizgar enerjisi verilerinin zamansal dinamiklerini
kodlamaktan sorumludur ve hem kisa hem de uzun vadeli bagimliliklarin dogru bir
sekilde yakalanmasini saglar. Kodlanan veriler daha sonra farkli meteorolojik
degiskenler arasindaki karmasik iliskileri ve bunlarin rlizgar enerjisi Uretimi
tizerindeki toplu etkilerini modellemeye odaklanan Transformator bilesenine gegirilir.

Transformatdriin biiyiik veri kiimelerini daha yiiksek hesaplama verimliligiyle isleme

29



yeteneginden yararlanarak, model cesitli bilgi kaynaklarmi etkili bir sekilde entegre

edebilir ve daha dogru tahminler iiretebilir.

Bu hibrit yaklasim, ozellikle geleneksel modellerin verilerin karmasikligr ve
degiskenligiyle miicadele edebilecegi senaryolarda tahmin dogrulugunu artirmak i¢in

tasarlanmustur.

3.2 Hibrit Model Genel Bakis

Bu ¢aligma, ultra kisa vadeli riizgar giicii tahmininin dogrulugunu artirmak i¢in birden
fazla gelismis makine 6grenimi teknigini entegre eden bir hibrit model sunmaktadir.
Model, veri 6n isleme, 6zellik miihendisligi ve Random Forest Regresyonu , Birinci
Transformer Modeli ve Ikinci Transformer Modeli gibi bir dizi tahmin modeli
kombinasyonunu kullanmaktadir. Sekil (6), hibrit model i¢in bir akis diyagrami

gostermektedir.
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Verileri Train/Val/Test'e BSlun

Hava durumu dontsimi modeli

olusturun

Sekil 3.1. Hibrit doniisiim modeli akis semas.
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3.3 Hibrit Transformator Model Mimarisi
3.3.1 Hava Tahmini icin Tlk Transformatér Modeli

[1k Transformatdr Modeli hava durumu tahmini icin tasarlanmistir ve ileri beslemeli

sinir aglar1 ile Uzun Kisa Siireli Bellek aglarini birlestiren karmasik bir mimari igerir.

LSTM Katman: Ik Transformatér Modelindeki LSTM katmani, sirali verilerdeki
zamansal bagimliliklar1 yakalamak icin kritik bir bilesendir. LSTM aglan, 6zellikle
uzun dizilerle c¢alisirken geleneksel Tekrarlayan Sinir Aglarinin egitimini

engelleyebilen kaybolan egim sorununu ele almak i¢in tasarlanmig bir RNN tiirtidiir.

Uzun Kisa Siireli Bellek ag1, ag icindeki bilgi ve egim akisini diizenleyen bir kapi
mekanizmasi araciligiyla kaybolan egim sorununu ¢ozer. Unutma kapisi, 6nceki hiicre

durumundan hangi bilginin atilacagini belirler ve su sekilde gosterilir:
fe = o(Ws - [he—y1, x:] + bf) [3.1]

Burada f;  unutma kapisidir, ¢ sigmoid aktivasyon fonksiyonunu belirtir, W
agirlik matrisidir,h,_; Onceki gizli durumdur, x; mevcut giristir ve by Onyargi
terimidir. Giris kapisi, hiicre durumundaki bilgi giincellemelerini kontrol eder ve

aktivasyonu su sekilde saglanir:
ir = o(Wi. [he—q, x;] + b)) [3.2]

Burada i,  giris kapis1 vektoriidiir ve W;, b; karsilik gelen agirliklar ve

onyargilardir. Aday hiicre durumu su sekilde hesaplandi:
C; = tanh(W,. [h¢—q, x] + b) [3.3]

Burada C;  aday hiicre durumudur, W,  ve b, aday hiicre durumu i¢in agirliklar

ve Onyargilardir.
C=fi*xCiq+i*C [3.4]

Burada C yeni hiicre durumudur,C;_; 6nceki hiicre durumudur, * eleman bazinda
carpmay1 ifade eder. Cikis kapisi, ¢ikist gecerli zaman adiminda belirler ve gizli

durumu, aktivasyonu su sekilde agiklanan sekilde giinceller:
0t = o(W,.[he—1, x¢] + bo) [3.5]

Burada O; ¢ikis kapis1 vektoriidiir W,, b, agirliklar ve onyargilardir.
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Gizli durumda su sekilde verilir:
ht = Ot * tanh(Ct) [36]
Burada h; mevcut gizli durumdur.

LSTM'in Birinci Transformer Modelinde kullanilmasi, modelin uzun vadeli
bagimliliklar1 6grenmesini ve saklamasini saglar. Bu, dogru hava durumu tahmini ve
riizgar giicli tahmini i¢in gereklidir. Verilerin ardisik yapisimi etkili bir sekilde
yakalayarak, LSTM katmani modelin daha kesin tahminler liretme yetenegine katkida

bulunur.

Cok Kafa Dikkat Mekanizmasi: Birinci Transformer Modeli, LSTM katmaninin
ardindan c¢ok kafa bir dikkat (multi-head attention) mekanizmasi kullanarak riizgar
giicll tahminini iyilestirir. Bu mekanizma, modelin hava durumu verisi dizisinin farkli
boliimlerine aym1 anda odaklanmasina olanak tanir, bu da ozellikler arasindaki
karmagik etkilesimleri yakalar ve dikkat agirliklar1 aracilifiyla yorumlanabilirligi
artirir. Cok kafali dikkatin paralel isleme dogasi, modelin zamansal verinin ¢esitli ilgili
yonlerini verimli bir sekilde degerlendirmesini saglayarak daha iyi performansa yol

acar.
CokKafa(Q,K,V) = birlestirme(kafay, ...., kafa,)W° [3.7]
Her bir kafa su sekilde hesaplanir:
kafa; = dikkat(QW,%, KW}, vwY) [3.8]
Burada QWiq, KWk, vW? 6grenilmis projeksiyon matrisleridir, W ¢ikt: projeksiyon
matrisidir.

LSTM ve c¢ok kafali dikkat mekanizmalarinin Birinci Transformer Modeline
entegrasyonu, modelin ardisik verileri isleme ve dogru tahminlerde bulunma
yetenegini onemli Ol¢iide artirir. Bu, bu gelismis sinir ag1 bilesenlerinin birlesik bir

cercevede birlestirilmesinin giliclinii gosterir.

3.3.2 leri Beslemeli Sinir Ag

FFN, birinci transformer modelinin ¢iktisin1 daha da iyilestirmek i¢in kullanilir. Birinci
modelden alinan hava durumu tahminlerini girdi olarak alir ve tahmin dogrulugunu

artirmak i¢in bu tahminleri daha ileri diizeyde isler.
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FFN(x) = max(0,xw; + b;)w, + b, [3.9]

Burada w;,w, agirlik matrisleridir by, b, Onyargi terimleridir, max(0,.) ReLU
aktivasyon fonksiyonunu temsil eder. Bu adim, baslangi¢ tahminlerinden kaynaklanan
herhangi bir kalint1 hatanin son gii¢ tahmin asamasindan 6nce en aza indirilmesini

saglar.

3.3.3 Gii¢ Tahmini icin Ikinci Transformer Modeli

Ikinci Transformer Modeli, gii¢ iiretimini tahmin etmek i¢in iyilestirilmis hava durumu
tahminlerini orijinal girdi Ozellikleriyle birlestirir. Bu model, statik kovaryatlar ve

dinamik ozellikleri birlestiren bir Transformer mimarisi kullanir.

Statik Kovaryat Kodlayici (Static Covariate Encoder): Statik kovaryatlar, statik
kodlamalar olusturmak i¢in yogun katmanlar (dense layers) ve toplu normalizasyon
(batch normalization) araciligiyla islenir. Bu kodlamalar, zamanla sabit kalan verinin
statik 6zelliklerini yakalamada yardimci olur. Bu siireg, asagidaki gibi matematiksel

olarak tanimlanabilir:
s’ = ReLU(W,.s + by) [3.10]

Burada s statik degiskenlerin vektoriidiir, W, statik degiskenlerin vektoriidiir,bg

onyarg1 vektoriidiir, s" doniistiiriilmiis statik unsurlardir.

LSTM Katmani: Birlestirilmis statik ve dinamik girdiler, yeniden sekillendirilir ve
zamansal islemeyi ele alan LSTM katmanlarindan gegirilir. Ikinci Transformer
Modelindeki LSTM katmanlari, gii¢ iiretim verilerindeki zamansal bagimliliklar

yakalamak i¢in kritik 6neme sahiptir.

Gated Artik Ag (Gated Residual Network): LSTM katmanlarin ¢iktilari, karmasik
bagimliliklar1 yakalamak i¢in Gated Artik Agi'ndan gegirilir. GRN, dogrusal doniisiim,
kap1 mekanizmasi ve artik baglantilar (residual connections) gibi ¢esitli bilesenlerden
olusur. Bu bilesenler, birlikte modelin giris 6zelliklerini isleme yetenegini artirir ve

egitim siirecini stabilize eder.
GRN'yi tamimlayan denklemler su sekildedir:
Dogrusal doniisiim:

Z=w,x+b, [3.11]
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Burada xo0nceki katmandan gelen girdidir (6rnegin, LSTM ¢iktilar1), w, agirlik

matrisidir, b, Bias vektorii.
Kap1 mekanizmasi:
g=0(W,.x+b,) [3.12]

Burada W kap1 i¢in agirlik matrisidir, by, Bias vektori, g gegit sinyalidir ve o,

ciktry1 0 ile 1 arasina sikistiran sigmoid aktivasyon fonksiyonunu temsil eder.
Artik baglantilar:
y=g*z+(1—g)xz [3.13]

Burada y GRN'nin doniistiiriilmiis ¢iktiy1 da igeren nihai ¢iktisidir, z ve x orijinal

girdi

GRN, artik baglantilar1 6grenerek modelin girdi 6zelliklerini isleme yetenegini artirir;

bu da egitim siirecini istikrarli hale getirir ve modelin tahmin dogrulugunu iyilestirir.

Yogun Katmanlar ve Dropout: Son gii¢ tahmini, statik ve dinamik girdilerin
birlestirilmesi ve bunlarin diizenleme amaciyla dropout ile yogun katmanlardan
gecirilmesiyle tretilir. Bu yogun katmanlar, girdi 6zellikleri ile hedef degisken
arasindaki dogrusal olmayan iliskileri yakalamaya yardimci olurken, dropout ise
egitim sirasinda birimleri rastgele devre dis1 birakarak asiri uyumay: (overfitting)

oOnler.

3.4 Model Gelistirmede Etik Hususlar

Riizgar giicii tahmini i¢in hibrit Transformer modelinin gelistirilmesinde, modelin adil,
seffaf ve sorumlu bir sekilde ¢alismasini saglamak amaciyla cesitli etik hususlar ele
alimmistir. Makine 6grenimi modellerinde etik kaygilar genellikle onyargi, adalet,
seffaflik ve model tahminlerinin potansiyel sosyal etkisi gibi konular etrafinda doner.
Bu aragtirmada, model gelistirme siirecinde bu faktorlere dikkat edilerek etik
standartlar korunmus ve model ¢iktilarinin paydaslar tarafindan giivenilebilir olmasinm

saglamak amaglanmistir.

Adaletin Saglanmasi: Makine 6greniminde adalet, modelin belirli bir grup veya veri
tiirline ayricalik tanimadigindan ya da dezavantaj olusturmadigindan emin olmay1

gerektirir. Arastirmada kullanilan veri kiimesi agirlikli olarak meteorolojik ve riizgar
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giicli Uiretim verilerinden olugsa da adalet 6nemli bir husus olarak ele alinmistir. Farkli
cografi bolgelerin, mevsimsel degisimlerin veya diger baglamsal faktorlerin esit temsil
edilmemesi, Onyargiya yol agabilir. Bu sorunu ele almak i¢in, veri kiimesi model
egitiminden Once potansiyel Onyargilar agisindan dikkatlice incelenmistir. Veriler,
farkli bolgelerde ve zaman dilimlerinde ¢esitli riizgar modelleri ve kosullarinin dengeli
ve kapsamli bir sekilde temsil edilmesini saglamak amaciyla 6n isleme tabi

tutulmustur.

Ayrica, modelin performansimi etkileyebilecek istem dis1 Onyargilarin ortadan
kaldirilmasina vurgu yapilarak 6zellik miihendisligi ve secimi gerceklestirilmistir.
Riizgar giicii iiretimi ile dogrudan ilgili olan meteorolojik degiskenlere odaklanilarak,
modelin tahminlerinde adalet saglanmis ve Onyargiya neden olabilecek gereksiz

degiskenlerin kullanimindan ka¢imilmastir.

Seffaflik ve Yorumlanabilirdik: Model gelistirmede seffaflik, giiven insa etmek ve
paydaslarin modelin nasil c¢alistigimi ve neden belirli tahminlerde bulundugunu
anlamalarin1 saglamak i¢in esastir. Bu arastirmada, model gelistirme siirecinin her
adimi, veri 0n isleme ve model mimarisi tasarimindan sonuclara kadar dikkatlice
belgelenmistir. Bu belgelendirme, modelin arkasindaki karar alma siirecinin hem
teknik hem de teknik olmayan paydaslar tarafindan anlasilir ve erisilebilir olmasini

saglar.

Transformer modelinde kullanilan kendi kendine dikkat mekanizmalari, modelin
yorumlana bilirligine de katkida bulunur. Model tarafindan {iretilen dikkat skorlari,
modelin tahmin yaparken hangi girdi 6zelliklerini en 6nemli olarak degerlendirdigine
dair icgoriller sunar. Bu seffaflik diizeyi, tahminleri etkileyen faktorlerin
anlasilmasinin operatdrlerin daha bilingli kararlar almasma yardimci olabilecegi

rlizgar giicii tahmininde oldukca 6dnemlidir.

Hesap Verebilirlik ve Sosyal Etki: Riizgar giicli tahmininin enerji yonetimi ve kaynak
tahsisi lizerindeki potansiyel etkisi goz Oniinde bulunduruldugunda, modelin
tahminlerinin sosyal sonuglar1 gelistirme siirecinde dikkate alinmistir. Model, hatalar
en aza indirerek enerji kullaniminda verimsizliklere veya sebeke dengesizliklerine yol
acabilecek riskleri minimize edecek sekilde saglam ve dogru olacak sekilde

tasarlanmistir. Modelin giivenilirligini ve tahminlerinin seffafligin1 saglamak suretiyle,
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aragtirma, siirdiiriilebilir enerji yonetimi ve iklim degisikligiyle miicadele gibi daha

genis hedeflere olumlu katkida bulunmay1 amaglamaktadir.

3.4.1 Cevresel Etkiler

Riizgar giici tahmininin g¢evresel etkileri, yenilenebilir enerji sayesinde karbon
emisyonlarini azaltmanin 6tesine gecer. Hibrit Transformer modelleri gibi ileri makine
O0grenimi modellerinin egitilmesi ve uygulanmasi, 6nemli 6l¢iide enerji tiiketimine ve
dolayisiyla daha biiylik bir karbon ayak izine yol agabilir. Buradaki etik zorluk,
gelistirilmis tahmin dogrulugunun g¢evresel faydalari ile bu iyilestirmeleri saglamak
icin gereken hesaplama kaynaklarmin cevresel maliyetleri arasindaki dengeyi

bulmaktir.

Azaltma Stratejileri: Cevresel etkiyi azaltmak igin birkag iyi uygulama hayata

gegirilebilir:

e Enerji Verimli Model Tasarimi: Makine 6grenimi modellerinin enerji
verimliligi i¢in optimize edilmesi Onemlidir. Bu, modelin karmasikliginin
azaltilmasini, daha verimli algoritmalarin kullanilmasini veya hesaplamalar1 daha
verimli gerceklestirebilen Grafik Islem Birimleri (GPU'lar) veya Tensér Islem
Birimleri (TPU'lar) gibi donanim hizlandirma teknolojilerinin kullanilmasini
igerebilir.

e  Yenilenebilir Enerji Kaynaklarinin Kullanimi: Miimkiin olan her durumda,
hesaplama kaynaklarini ¢alistirmak i¢in kullanilan enerji yenilenebilir kaynaklardan
saglanmalidir. Veri merkezleri, model egitimi ve dagitiminin genel karbon ayak izini
azaltmak icin giines, riizgar veya hidroelektrik giic kullanacak sekilde tasarlanabilir
veya yenilenebilir enerji kaynaklarina doniistiirtilebilir.

e Karbon Dengeleme: Kagmilmaz emisyonlar i¢in, organizasyonlar karbon
dengeleme programlarina yatirim yapabilir. Bu programlar, yeniden agaglandirma
veya yenilenebilir enerji girisimleri gibi gevresel projelere yatirim yaparak, salinan

karbon dioksit miktarini: dengelemeye yardimet olur.

Bu azaltma stratejilerini gelistirme siirecine entegre ederek, ileri riizgar giicii tahmin
modellerinin ¢evresel etkisi 6nemli dl¢lide azaltilabilir ve bu siire¢ daha stirdiirtilebilir

ve etik acidan sorumlu hale getirilebilir.
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3.4.2 Dogru Tahminlerin Sorumlulugu

Dogru riizgar giicii tahmini, yalnizca enerji liretimini optimize etmek ve sebeke
giivenilirligini saglamak i¢in degil, ayn1 zamanda yenilenebilir enerjiye olan kamu
glivenini siirdiirmek i¢in de kritik oneme sahiptir. Yanlis tahminler, asir1 tiretime yol
acarak enerjinin bosa harcanmasina ve sebeke altyapisina zarar verme potansiyeline
sahipken, yetersiz iiretim enerji eksikliklerine ve yedek olarak fosil yakitlarin

kullanilmasini gerektirebilir, bu da riizgar enerjisinin ¢evresel faydalarini azaltir.

Azaltma Stratejileri: Tahminlerin dogrulugunu ve giivenilirligini saglamak i¢in su en

iyi uygulamalar benimsenmelidir:

e Saglam Model Dogrulama: Modeli ¢esitli senaryolar ve kosullar altinda test
etmek icin titiz dogrulama teknikleri kullanilmalidir. Bu, modelin saglamligin1 ve
goriilmemis veriler lizerinde genelleme yetenegini saglamak icin capraz dogrulama,
duyarlilik analizi ve 6rnek disi testleri icerebilir.

e Model Gelistirmede Seffaflik: Modellerin nasil gelistirildigi, egitildigi ve test
edildigi konusunda seffaflik esastir. Arastirmacilar, veri kaynaklari, model
parametrelerinin se¢imi ve dogrulama siiregleri de dahil olmak iizere metodolojilerini
belgelemeli, bu sayede akran incelemesi ve sonuglarin tekrarlanmasi mimkiin
olmalidir. Bu seffaflik, ayn1 zamanda modelin sinirlamalarini ve belirsizliklerini
paydaslara iletmek agisindan da 6nemlidir.

e  Siirekli Model lyilestirme: Hava kosullarinin dinamik dogas1 ve riizgar giicii
teknolojisinin gelisen durumu géz ontline alindiginda, modeller yeni veriler geldikce
stirekli olarak gilincellenmeli ve iyilestirilmelidir. Bu yinelemeli yaklasim, tahmin

modelinin zaman i¢inde dogru ve gecerli kalmasini saglar.

Bu uygulamalara oncelik vererek, gelistiriciler dogru ve giivenilir riizgar giicti
tahminleri saglama konusundaki etik sorumluluklarini yerine getirebilir, bdylece

yenilenebilir enerjinin sebekeye siirdiiriilebilir entegrasyonunu destekleyebilirler.

3.4.3 Enerji Uretiminde israf ve Verimsizligi Onleme

Dogrulugu saglamanin otesinde, enerji iiretiminde israf ve verimsizligi Onleme
konusunda etik bir yiikiimliiliik vardir. Tahmin hatalar1 asir1 tahminlere ve gereksiz

enerji depolama maliyetlerine veya diger yenilenebilir kaynaklarin kisitlanmasina yol
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acabilirken, diisiik tahminler yedek olarak fosil yakitlarin kullanilmasini gerektirebilir

ve enerji sisteminin genel verimliligini ve siirdiirtilebilirligini azaltabilir.

Azaltma Stratejileri: Israfi ve verimsizligi en aza indirmek i¢in asagidaki stratejiler

uygulanabilir:

e Optimize Edilmis Karar Alma Cerceveleri: Tahmin modellerini tahmin
belirsizligine uyum saglayabilen karar alma ¢ergeveleriyle entegre etmek, daha bilingli
enerji tiretimi ve dagitim kararlar1 alinmasina yardimci olabilir. Bu gergeveler israfi en
aza indirmek ve mevcut enerji kaynaklarinin kullanimini optimize etmek igin
tasarlanmalidir.

e Senaryo Planlama ve Risk YOnetimi: Senaryo planlama teknikleri, farkli
tahmin sonuglarint 6ngérmek ve acil durum planlart hazirlamak i¢in kullanilabilir. Bu
yaklagim, sebeke operatorlerinin yedek kaynaklarin verimli ve yalnizca ihtiyag
duyuldugunda kullanilmasini saglayarak tahmin hatalariyla iliskili riskleri daha iyi
yonetmelerini saglar.

e Isbirlik¢i Enerji Yonetimi: Enerji iireticileri, sebeke operatorleri ve tahminciler
arasindaki ig birligini tesvik etmek daha koordineli ve verimli enerji yonetimine yol
acabilir. Paydaslar arasinda veri ve bilgi paylasimi, tahminlerin genel dogrulugunu

Iyilestirebilir ve israf¢1 enerji uygulamalarinin olasiligini azaltabilir.

Bu stratejileri uygulayarak, enerji iiretiminde israf ve verimsizligi Onleme
konusundaki etik yiikiimliiliik daha iyi karsilanabilir ve daha siirdiiriilebilir ve sorumlu

bir enerji sistemine katkida bulunulabilir.

Hibrit Transformator gibi gelismis makine 6grenimi modellerinin riizgar enerjisi
tahminine entegre edilmesi, dikkatlice yonetilmesi gereken bir dizi etik hususu
beraberinde getirir. Cevresel etkileri en aza indirmekten dogru tahminler saglamaya ve
enerji Uretiminde israfi onlemeye kadar her bir husus 6nemli bir etik agirliga sahiptir.
Bu boliimde 6zetlenen azaltma stratejilerini benimseyerek, arastirmacilar, gelistiriciler
ve endiistri uzmanlari bu etik zorluklar etkili bir sekilde ele alabilir ve riizgér enerjisi
tahmininin faydalarinin sosyal ac¢idan sorumlu, ¢evresel agidan siirdiiriilebilir ve etik
acidan saglam bir sekilde gerceklestirilmesini saglayabilir. Alan gelistikge,
sirdiiriilebilirlik  ve sosyal sorumlulukla uyumlu tahmin teknolojilerinin
gelistirilmesine rehberlik etmede bu etik boyutlara siirekli dikkat edilmesi dnemli

olacaktir.
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4. METODOLOJi

4.1 Veri Toplama ve On Isleme

Bu veri seti, Kaggle web sitesinden (Mubashir Rahim) [91] elde edilen saha
meteoroloji gdzlemleri ve riizgar enerjisi liretim verilerinin benzersiz bir derlemesidir.
Veri seti, 2 Ocak 2017'den 31 Aralik 2021'e kadar olan kayitlari igerir ve ¢esitli hava
kosullart ile riizgar enerjisi liretimi arasindaki etkilesime dair gercek diinya iggoriileri
saglar. Saha ortamina kurulan yiiksek teknoloji tirlinii ekipmanlar kullanilarak titizlikle
toplanan bu veri seti, sicaklik (C°), nem (%), ¢ig noktas1 (C°) ve farkh irtifalardaki
riizgar Ozellikleri (hiz m/s ve yon dereceleri) gibi ¢esitli meteorolojik degiskenleri
kaydetmistir. Veri seti ayrica rlizgar tlirbinlerinden normalize edilmis gii¢ ¢ikisinin

saatlik dlgtimlerini de igerir.
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25% 32.1 60 24.3 241 4.38 132 130 5 0.1489
50% 47.3 74 38.1 3.3 6.08 255 266 7.2 0.34765
75% 64.5 7486 54.7 459 7.99 277 278 10 0.6596
max 94.1 100 76.3 13.45 20.65 360 360 29.2 0.9913

Tablo 4.1. Veri Istatistikleri

Tablo 4.1, 2 Ocak 2017 ile 31 Aralik 2021 tarihleri arasinda toplanan riizgar enerjisi
tiretimi veri setinin temel istatistiksel 6zelliklerinin ayrintili bir 6zetini sunmaktadir.
Incelenen temel meteorolojik degiskenler; sicaklik (2m), bagil nem (2m), ¢iy noktasi

(2m), riizgar hiz1 (10m ve 100m yiiksekliklerde), riizgar yonii (10m ve 100m
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yiiksekliklerde), riizgadr hizindaki ani artiglar (10m) ve giic c¢iktist (kW) olarak
siralanmaktadir. Her bir degisken, veri sayisi (count), ortalama (mean), standart sapma
(std), minimum deger, 25. ylizdelik dilim (25%), medyan (50%), 75. yiizdelik dilim
(75%) ve maksimum deger gibi temel Ol¢iitler ile tanimlanmistir. Bu istatistikler, veri
dagilimi, degiskenlik ve merkezi egilimler hakkinda 6nemli bir anlayis saglayarak
kesifsel veri analizi ve sonraki modelleme ¢alismalart i¢in saglam bir temel

olusturmaktadir.

4.2 Kesifsel Veri Analizi

Kesifsel Veri Analizi (KVA), bir veri setindeki temel oriintiileri ve yapilar1 anlamada
kritik bir rol oynar. Riizgar giicii tiretimi i¢in KVA, gii¢c ciktisini etkileyen anahtar
faktorleri belirlemeye, veri kalitesini degerlendirmeye ve sonraki istatistiksel analiz ve
modellemeye rehberlik edebilecek i¢goriiler saglamaya yardimci olur. Bu boliimde, bir
rliizgar giicli liretimi veri setinin kapsamli bir KVA's1 sunularak, verideki onemli
egilimler ve iligkiler ortaya ¢ikarilmaya ¢alisiimaktadir.

24-Hour Temperature Readings
® Max Temp: 34.68°C
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Sekil 4.1. Zaman Serisi Analizi

Verilen zaman serisi grafigi, 24 saatlik sicaklik 6l¢limlerinin analizini icermektedir.
Sekil 4.1'deki grafikte, x ekseninde 24 saatlik formatta zaman, y ekseninde ise santigrat

derece (C°) cinsinden sicaklik yer almaktadir. Bu analiz, bir giin boyunca gézlemlenen
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sicaklik egilimlerini ve Onemli veri noktalarmi detayli bir sekilde incelemeyi

amaclamaktadir.

Grafik, 24 saatlik periyod boyunca degisen sicaklik Slgiimlerini gdstermektedir.

Kaydedilen maksimum sicaklik 34.68 C° olup, grafikte kirmizi bir nokta ile

vurgulanmigtir. Buna karsilik, minimum sicaklik 20.30 C° olarak kaydedilmis ve yesil

bir nokta ile isaretlenmistir. 11:00 ve 18:00 civarinda iki 6nemli zirve gozlemlenmistir.

16:00'daki en diisiik sicaklik, genel egilime gore bir aykir1 deger olarak dikkat

cekmektedir. Gozlemlenen bu desen, giines 15181, hava durumu kosullar1 ve cografi

konum gibi faktorlerden etkilenebilecek tipik giinlilk sicaklik dalgalanmalarini

yansitmaktadir. 15:00 ve 16:00 civarindaki keskin diislis ve ardindan gelen yiikselme,

ani hava degisiklikleri veya diger yerel fenomenlere isaret ediyor olabilir.
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24 saatlik sicaklik oOlgilimlerinin analizi, glin i¢inde belirgin desenler ve Onemli
dalgalanmalar oldugunu ortaya koymaktadir. Bu degisimleri anlamak, yerel hava
durumu kosullar1 hakkinda fikir edinmek ve giinliik aktiviteleri planlamak agisindan
bliyiik 6nem tasir. Gelecek arastirmalar, bu sicaklik degisimlerini etkileyen temel
faktorleri, meteorolojik veriler, cografi etkiler ve mevsimsel degisiklikler gibi unsurlar

baglaminda daha derinlemesine inceleyebilir.

Sekil 4.2'de sunulan korelasyon matrisi 1s1 haritasi, ¢esitli meteorolojik parametreler
ile gii¢ iiretimi arasindaki iligkilerin kapsamli1 bir analizini saglar. 2 metre yiikseklikteki
sicaklik (temperature 2m), hem 2 metre yiikseklikteki ¢iy noktasi (dewpoint 2m) hem
de 2 metre yiikseklikteki bagil nem (relativehumidity 2m) ile ¢ok yiiksek pozitif
korelasyon gostermektedir; korelasyon katsayilari sirastyla 1.00 ve 0.93’tiir. Bu
durum, daha yiiksek sicakliklarin, daha yiiksek nem ve ¢iy noktasi ile gii¢lii bir sekilde
iligkili oldugunu gosterir. Ayrica, 10 metre ylikseklikteki riizgar hiz1 (windspeed 10m)
ve 100 metre yiikseklikteki riizgar hiz1 (windspeed 100m) miikemmel bir korelasyon
(1.00) sergilemekte olup, farkli yiiksekliklerde riizgar davranisinin tutarli oldugunu

One surmektedir.

Dikkat ¢ekici bir sekilde, 10 metre yiikseklikteki riizgar yonti (winddirection_10m) ve
100 metre yiikseklikteki riizgar yonii (winddirection 100m) de ¢ok yiiksek pozitif
korelasyon (0.99) gostermektedir; bu, yiikseklikle birlikte riizgar yoniinde ¢ok az bir
degisiklik oldugunu gosterir. Ancak, gii¢ liretimi, her iki yiikseklikteki riizgar yonii ile
(10m icin 0.93 ve 100m i¢in 0.94) ve 10 metredeki riizgar patlamalar
(windgusts_10m) ile orta diizeyde pozitif korelasyonlar sergilemekte, ancak sicaklik,
bagil nem ve riizgar hiz1 ile daha diisiik korelasyonlar gostermektedir; bu katsayilar
0.24 ile 0.29 arasinda degismektedir. Bu bulgular, riizgar yonii ve patlamalarinin,

sicaklik veya nemden daha fazla gii¢ iiretimi lizerinde etkili oldugunu gdstermektedir.

Bu analiz, meteorolojik faktorler arasindaki karmasik etkilesimleri ve bunlarin giic
tiretimi lizerindeki kolektif etkisini vurgulamakta, riizgar parametrelerinin gii¢ ¢ikisini
tahmin etmede ne kadar 6nemli oldugunu ortaya koymaktadir. Farkl1 yiiksekliklerdeki
rliizgar hizlar1 ve yonleri arasindaki yiiksek korelasyonlar, bu yiikseklikler arasinda
riizgdr modellerinin nispeten iliniforman oldugunu oOne siirerek, gilic iiretim

calismalarinda riizgarla ilgili dl¢limlerin glivenilirligini pekistirmektedir.
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Bu korelasyon matrisi, degiskenler arasindaki iligkileri belirlemede kritik bir rol oynar
ve glic iretimini etkileyen faktorleri anlamada ve tahmin modellerinin
gelistirilmesinde 6nemli bilgiler sunar. Bu iggoriilerden yararlanarak, enerji lireticileri
riizgar giicii tahminlerinin dogrulugunu artirabilir, daha giivenilir ve verimli bir enerji

tiretimi saglayabilir.

Relationship between Wind Direction and Wind Speed

00
® 10m Wind Speed
A 100m Wind Speed
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Sekil 4.3. Riizgar onii ile riizgar hiz1 arasindaki iliski

Sekil 4.3, 10m ve 100m ytiksekliklerdeki riizgar yonti ile riizgar hiz1 arasindaki iliskiyi
gosteren polar grafigi temsil eder. Mavi daireler ve kirmizi liggenler sirasiyla riizgar
hizlarmi gostermektedir. Veriler, riizgarin agirlikli olarak dogudan estigini ve
100m'deki hizlarin 10m'dekinden daha yiiksek oldugunu, bu durumun da riizgar
hizinin irtifa ile artma egilimini yansittigin1 gostermektedir. Grafik, net bir agiklama
ve kilavuz cizgilerle iyi bir sekilde etiketlenmistir, bu da yorumlamay: kolaylastirir.

Bu gorsellestirme, farkli yiiksekliklerdeki riizgar modellerinin anlagilmasi, tiirbin
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yerlesimi ve performansinin optimize edilmesine yardimci olarak enerji iiretim

verimliligini artirdigi i¢in riizgar giicii tiretimi tahmini agisindan 6nemlidir.

4.3 Veri Kalitesi

Veri kalitesi, hibrit modellerin etkinliginde kritik bir rol oynar. Yiiksek kaliteli giris
verileri, dogru tahminler iiretmek i¢in esastir, oysa diisiik veri kalitesi, model
performansini zayiflatarak 6nemli hatalar ortaya ¢ikarabilir. Bu nedenle, veri setinin
kapsamli 6n isleme adimlartyla iyi hazirlanmasini saglamak, modelleme siirecinin

onemli bir parcasidir.

4.3.1 Baslangi¢ Veri Hazirh@:

Veri 6n islemenin ilk adimi, veri setini yiiklemek ve kronolojik olarak diizenlemektir.
Bu zamansal diizenleme, zaman serisi tahminleri i¢in kritik 6neme sahiptir ve veri
noktalarinin siralamasinin korunmasini saglar. Ay, hafta giinii, saat ve dakika gibi
zamansal 6zellikler, modelin zamanin baglamsal anlayigini elde etmesini saglamak
icin tarih-saat bilgilerinden ¢ikarilir; bu, mevsimsellik ve giinliik riizgar dongiilerini

yakalamak acisindan hayati 6nem tasir.

4.3.2 Riizgar Yonii Verilerinin Doniistiiriilmesi

Dairesel bir degisken olan riizgar yonii, modelin siireksizlikler nedeniyle (6rnegin,
359¢ ile 0° arasindaki gegis) yanlis yonlendirilmemesi i¢in 6zel bir islem gerektirir. Bu
sorunu ¢ozmek i¢in, riizgar yonii verilerine siniis ve kosiniis doniistimleri uygulanarak,
iki siirekli degiskene doniistiiriiliir ve bu sayede model tarafindan daha etkili bir sekilde

islenebilir hale getirilir.

4.3.3 Ozellik Secimi ve Normalizasyon

Ozellik secimi asamasinda, sicaklik, nem, riizgdr hiz1 ve riizgar yonii gibi temel
meteorolojik degiskenler modelin girdileri olarak belirlenir. Bu 6zelliklerin 6grenme
stirecine esit katki saglamalarini giivence altina almak icin, bu veriler StandardScaler
kullanilarak standardize edilir. Bu yontem, verileri ortalamadan ¢ikararak merkezler
ve birim varyansa Ol¢eklendirir, boylece tiim 6zellikler karsilastirilabilir bir dlgege
yerlestirilir. Hedef degisken olan ‘Gii¢’ i¢in MinMaxScaler kullanilarak, degerler 0 ile

1 arasinda normalize edilir. Bu normalizasyon, tek bir 6zelligin 6l¢cegi nedeniyle model
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tizerinde orantisiz bir etki yapmasini nleyerek, kararli bir egitim saglamak ve tahmin

dogrulugunu artirmak acisindan kritik 6neme sahiptir.

4.3.4 Random Forest Regressor ile Giiriiltii Azaltma

Veri setini daha da iyilestirmek ve girig verilerinin kalitesini artirmak i¢in Random
Forest Regressor kullanilarak giiriilti azaltma islemi yapilir. 10 derinlige, 200
tahminciye ve diger goreve 6zel hiperparametrelere sahip Random Forest modeli,
hedef degisken olan ‘Gii¢’ii tahmin etmek iizere veri seti lizerinde egitilir. Model,
egitim verilerine uyum sagladiktan sonra tahminlerini kullanarak, regressor etkili bir
sekilde giirtiltiiyii filtreler ve veriyi piiriizsiiz hale getirir. Giiriiltiisii azaltilmig olan bu
¢ikt1, sonraki modelleme ¢abalari i¢in giincellenmis hedef degisken olarak kullanilir.
Bu giiriiltii azaltma adimi, hibrit modelin saglamligini artirarak daha dogru ve

giivenilir tahmin sonuglar1 elde edilmesini saglar.
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S. SONUCLAR VE DENEYLER

5.1 Model Degerlendirmesi

Bir sinir ag1 modelinin performansint degerlendirmek, dogru tahminler yapma
konusundaki etkinligini anlamak i¢in kritik Oneme sahiptir. Bu c¢alismada,
Feedforward Sinir Agimizin performansim1 degerlendirmek igin lic degerlendirme
metrigi kullandik: MSE, MAE ve RMSE. Bu metrikler, modelin tahmin dogrulugunu

ve hata 6zelliklerini kapsamli bir sekilde anlamamiz1 saglar.

5.1.1 Ortalama Kare Hata

MSE, regresyon gorevleri i¢in yaygin olarak kullanilan bir metriktir ve hatalarin
karelerinin ortalamasini, yani tahmin edilen degerler ile gercek degerler arasindaki

ortalama kare farkini 6lger. MSE'min formiilii su sekilde verilir:
MSE = 34(0; — P)? [5.1]

Burada O0; gercek deger, P; tahmin edilen deger ve n  gézlem sayisidir.

MSE, sonucu orantisiz bir sekilde etkileyebilecek hata terimlerini kareledigi i¢in aykir1
degerlere kars1 6zellikle hassastir. Buna ragmen, basitligi ve daha biiyiik hatalar1 daha
onemli Olclide cezalandirmasi nedeniyle popiiler bir se¢im olmaya devam etmektedir

[92].

5.1.2 Ortalama Mutlak Hata

MAE, bir tahmin setindeki hatalarin ortalama biiytikliigilinii, yonlerini dikkate almadan

Olcer. Su sekilde hesaplanir:
MAE = ~¥1_,(0; — P,)? [5.2]

MAE, hatalar1 karelemedigi icin MSE’ye gore aykir1 degerlere (outliers) kars1 daha az
duyarhdir; bunun yerine, tahmin edilen ve gercek degerler arasindaki mutlak farki
dikkate alir. Bu metrik, hedef degiskenle ayn1 birimlerde ortalama tahmin hatasini net

bir sekilde yorumlama olanagi saglar, bu da onu anlamay1 kolaylastirir [93].
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5.1.3 Kok Ortalama Kare Hata

RMSE, ortalama kare hatanin karekdkii olup, hata biiyiikliigiiniin ortalama Sl¢iistinii

verir. Su sekilde tanimlanir:

RMSE = [151_,(0; - P’ [5.3]

RMSE, orijinal hedef degiskenin birimlerini korur, bu da onu pratik anlamda daha
anlagilir kilar. MSE gibi, RMSE de hatalarin karelenmesi nedeniyle aykir1 degerlere
duyarlidir. Ozellikle biiyiik hatalarin istenmedigi ve daha agir bir sekilde

cezalandirilmasi gerektiginde tercih edilir [94].

5.1.4 Yiizde farka

Hibrit Transformatér modelinin performansinin, karsilastirma ic¢in kullanilan diger

yontemlerle karsilastirilmasi icin kullanilir ve asagidaki denklemle hesaplanir:

MetricCiiterature—Metricproposed
: proposed 4 100 [5.4]
Metriciiterature

Kazang =

Burada Metricy,oposeq, Onerilen Hybird Transformer tarafindan elde edilen RMSE
veya MAE'yi, Metricjiterature 15€¢ karsilagtirma i¢in kullanilan hibrid yaklasgim

modelleri i¢in elde edilen RMSE veya MAE'yi temsil eder.

Pozitif yiizde degerleri, 6nerilen H-Transformer'in ilgili literatiir yontemine gore daha

yiiksek bir performans metrigi elde ettigini gosterir.

Bu formiil, hibrit Transformer modelinin performansindaki iyilesmeyi veya diisiisii,
referans alman diger yontemlere gore yiizdelik olarak ifade eder. Ornegin, bir tahmin
modelinin dogrulugu eski yonteme gore yilizde ka¢ daha i1yi veya kotii oldugunu

belirlemek i¢in bu formiil kullanilabilir.

5.2 Deneysel Kurulum

Bu arastirma i¢in deneysel kurulum, hibrit Transformer modelinin riizgar giicli
tahminindeki performansini titizlikle degerlendirmek amaciyla 6zenle tasarlanmistir.
Deneyler, model egitimi ve degerlendirmesi i¢in gerekli hesaplama kaynaklarini

saglayan Google Colab platformunda gerceklestirilmistir. Deneyler, modelin farkli
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zaman dilimleri ve kosullarda dogrulugunu, saglamligin1 ve genellestirile bilirligini

degerlendirmeye odaklanmustir.

Veri setinin boliinmesinden 6nce, 0znitelik mithendisligi gerceklestirilmistir. Zaman
tabanli 6znitelikler eklenmis; 6rnegin, veri setine ay, haftanin giinii, saat ve dakika gibi
zaman bilgileri dahil edilmistir. Ayrica, riizgar yoni verileri radyan cinsine
dontstiiriilerek siniis ve kosinilis bilesenlerine ayrilmistir. Bu, yonlerin dongiisel
yapisin1 modelin daha iyi anlamasina olanak tanimistir. Ozetle, bu islem su adimlarla

gerceklestirilmistir:
- Ay, haftanin giinii, saat ve dakika gibi zaman bilgileri tiiretilmistir.

- Riizgar yonii (10 m ve 100 m ytiikseklikte) radyana ¢evrilmis ve siniis ile kosiniis

bilesenlerine ayrilmistir.

- Ag se¢imi Ozniteligi, belirli riizgar hizi ve yonii kosullarina dayali olarak

olusturulmustur.

Egitim seti, modeli egitmek i¢cin kullanilmis; dogrulama seti, hiper parametreleri
ayarlamak ve asir1 6grenmeyi (overfitting) onlemek icin kullanilmistir; test seti ise
modelin performansin1 bagimsiz olarak degerlendirmistir. Bu tarih bazli bolme
yontemi, modelin gercek diinya tahmin senaryolarini yansitan gelecekteki olaylari

tahmin etme yetenegini test eder.

Model egitimi ve degerlendirmesi i¢in kullanilan veri seti, tarihsel riizgar giicii iiretim
verileri ve ilgili meteorolojik degiskenleri igermektedir. Modelin temsil edici verilere
dayal1 olarak egitilmesini ve test edilmesini saglamak amaciyla, veri seti, zamana
dayali olarak egitim, dogrulama ve test setlerine boliinmiistiir. Bu yaklagim, zaman
serisi tahminlerinde veri siralamasinin korunmasini saglar ve modelin egitim sirasinda

gormedigi gelecekteki veriler lizerinde degerlendirilmesini garanti eder.

Egitim seti, modeli egitmek i¢in kullanilmis; dogrulama seti, hiper parametreleri
ayarlamak ve asir1 6grenmeyi (overfitting) onlemek icin kullanilmistir; test seti ise
modelin performansin1 bagimsiz olarak degerlendirmistir. Bu tarih bazli bolme
yontemi, modelin gercek diinya tahmin senaryolarini yansitan gelecekteki olaylari

tahmin etme yetenegini test eder.

Veri On Isleme : Veri 6n isleme, modelin egitim ve degerlendirme siirecinin &nemli bir

adimin1  olusturmaktadir. Bu siliregte  kullanilan  metodoloji, o6zelliklerin
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6l¢eklendirilmesini ve giiriiltii azaltma yontemlerini igermektedir. Asagida veri 6n

isleme stirecinin detaylar1 agiklanmustir.

5.2.1 Veri Olceklendirme

Modelin daha iyi performans gostermesi ve daha hizli yakinsamasi i¢in veri
setlerinden 6zelliklerin ve hedef degiskenin ayrilmasi ve dl¢eklendirilmesi gereklidir.

Bu ¢alismada uygulanan veri 6n isleme fonksiyonu, asagidaki adimlar1 icermektedir:

- Ozelliklerin ve hedef degiskenin ayrilmasi: “feature columns’ ve “target column’
parametreleri kullanilarak, ozellikler ve hedef degisken X' ve 'y' dizileri olarak

ayrilmistir.

- Ogzelliklerin  6l¢eklendirilmesi: ~ StandardScaler' kullanilarak X' dizisi
Olceklendirilmistir. Bu Olgeklendirme, veri setindeki degiskenlerin ortalama ve
standart sapma ile normalize edilmesini saglar ve modelin daha tutarli sonuglar

uretmesine katkida bulunur.

- Olgekleyicinin yeniden kullanimi: Egitim, dogrulama ve test veri setlerinin tutarl bir
sekilde ol¢eklendirilmesi amaciyla, egitim veri seti ile fit edilen dl¢ekleyici, dogrulama
ve test setlerine de uygulanmistir. Bu adim, modelin farkli veri boliimlerinde tutarli bir

performans sergilemesini garanti eder.

5.2.2 Giiriiltii Azaltma

Modelin tahmin dogrulugunu artirmak i¢in ‘RandomForestRegressor’ giiriiltii azaltma
yontemi olarak kullanilmistir. Random Forest algoritmasi, veriyi agag¢ tabanl bir yap1
tizerinde egiterek modelin asir1 uyum riskini azaltir ve daha genel geger tahminler

iretir. Glriiltii azaltma siireci su adimlar1 igermektedir:

- Random Forest Modelinin Egitimi: Model, ‘'max_depth=10", ‘'min_samples_leaf=4"
ve 'n_estimators=200" hiper parametreleri ile egitilmistir. Rastgele bir baslangic
noktas1 belirlemek amaciyla ‘random_state=42" kullanilmistir. Bu yapilandirma,

modelin genelleme yetenegini artirirken, egitim siirecinde asirt uyumun Oniine geger.

- Negatif Tahminlerin Sifirlanmasi: Modelin tahmin sonuglarinda negatif degerlerin
bulunmasini 6nlemek amaciyla, tahmin edilen gii¢ degerleri ‘np.clip’ fonksiyonu ile
sifirin altina diismeyecek sekilde ayarlanmistir. Bu islem, modelin yalnizca pozitif ve

fiziksel olarak anlamli degerler iiretmesini saglar.
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Bu veri 6n isleme adimlari, modelin asir1 u¢ tahminleri filtrelemesine ve daha giivenilir
sonuclar liretmesine olanak tanmmistir. Gliriiltii azaltma ve olgeklendirme adimlari,
modelin dogrulugunu artirarak egitim siirecini ve tahmin performansini optimize
etmistir. Bu sayede, modelin ger¢ek diinya uygulamalarina daha iyi uyum saglamasi

saglanmistir.

Egitim Prosediirleri: Tiim modeller, adil bir karsilastirma saglamak amaciyla aym
hiper parametreler kullanilarak egitilmistir; bu hiper parametreler, epoch sayisi, batch
boyutu ve dgrenme hizi planlamasini igerir. Modeller, yeterli bir yakinsama siiresi
saglarken asir1 6grenmeyi Onlemek i¢in sabit bir epoch sayis1 boyunca egitilmistir.
Egitim siirecinde, 6grenme hiz1 basta daha yiiksek baglayarak 6grenmeyi hizlandirmak
ve modelin ince ayarint yapmak icin egitim ilerledik¢e kademeli olarak azaltilmak

tizere bir 6grenme hizi planlayicisi kullanilmigtir.

Egitim siireci, geri yayilim (backpropagation) ve hibrit modelin karmasikligini ele
almada verimliligi ve etkinligi nedeniyle secilen Adam optimizasyonusun ile
gerceklestirilmistir. Ayrica, modelin dogrulama seti tizerindeki performansi iyilesmeyi
durdurdugunda egitimi sonlandirmak i¢in erken durdurma (early stopping)

uygulanarak asir1 6grenmenin Oniine gecilmistir.

Kullanilan Araglar: Deneylerin yiriitiilmesi i¢in Jupyter Notebook, yiiksek
performansl hesaplama kaynaklariyla sorunsuz entegrasyonu ve ¢ok yonliligii
nedeniyle tercih edilmistir. Modelin karmasiklig1 ve yiiksek hesaplama gereksinimleri
g0z Oniine alindiginda, ileri seviye GPU hizlandiricilarla donatilmis giiclii makinelerde
calisabilme 6zelligi 6zellikle hibrit Transformer modelinin egitimi agisindan faydali
olmustur. Ayrica, Jupyter Notebook’un TensorFlow ve Keras gibi popiiler makine
ogrenimi kiitiiphaneleriyle uyumlulugu, modelin uygulanmasini ve kapsamli egitim

prosediirlerinin yiiriitiilmesini kolaylastirmistir.

Deneysel diizenek, hibrit Transformer modelinin kapsamli bir sekilde
degerlendirilmesini saglamak amaciyla titizlikle yapilandirilmistir ve elde edilen
sonuclarin giivenilirligi ile gercek diinya riizgar giicli tahmin senaryolarina
uygulanabilirligi  garanti altina alinmistir.  Jupyter Notebook kullanimi,
standartlastirilmis egitim protokolleri ve kati degerlendirme Olciitleri, deneylerin
saglamligina 6nemli dl¢lide katkida bulunmustur. Bu yapilandirilmis yontem, modelin

performansinin yalnizca kontrollii deneysel kosullarda dogrulanmasini saglamakla
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kalmamis, ayn1 zamanda yenilenebilir enerji tahminleri alaninda pratik uygulamalar

icin Olgeklenebilir ve uyarlanabilir olmasini da glivence altina almistir.

5.3 Model Performansi

Modelin performansi olduk¢a saglam olup, genel egilimleri ve Onemli doniis
noktalarini etkili bir sekilde yakalamaktadir. Bununla birlikte, modelin gercek giic
degerlerini hafif¢e diisiik veya yiiksek tahmin ettigi bazi sapmalar meydana
gelmektedir; 6rnegin, 7-8 ve 18-20 saatleri civarinda. Bu sapmalara ragmen, tahminler
genellikle gergek verilere olduk¢a yakindir, bu da modelin gii¢lii bir performans

sergiledigini gostermektedir.

Nicel metrikler de bu performansi desteklemektedir; Hibrit Transformer Modeli,
0.0009819084327411442 MSE, 0.023314690139361036 MAE ve
0.031335418183600874 RMSE degerlerine ulasmistir. Bu diisiik hata degerleri,

yiiksek tahmin dogrulugunu ve giivenilirligini gostermektedir.

Actual vs Predicted Power for 24 Hours
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Sekil 5.1. Gergek Degerler vs. Tahmin Edilen Degerler

Sekil 5.1 24 saatlik bir silire boyunca hibrit bir modelden elde edilen 6ngoriilen
degerlerle gergek giic degerlerinin karsilastirmali analizini sunmaktadir. X ekseni,
giiniin saatlerini 0 ile 24 arasinda gosteritken, y ekseni normallestirilmis gii¢
degerlerini gostermektedir. Gii¢ degerleri 0 ile 1 arasinda normallestirilmis olarak

temsil edilmektedir. Kesintisiz mavi ¢izgi gercek gii¢ verilerini temsil ederken, kesikli
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turuncu ¢izgi tahmin modeli tarafindan iiretilen Ongdriilen giic degerlerini temsil
etmektedir. Hem ger¢ek hem de Ongoriilen gii¢ seviyeleri, giic kullaniminin veya
tiretiminin saat 12-13 ve 20-21 civarinda zirveye ulastigi belirgin dongiisel oriintiiler
sergilemektedir. Buna karsilik, gii¢ seviyeleri en diisiik seviyelerine sabahin erken
saatlerinde (saat 1 ile 6 arasinda) ve tekrar saat 18 civarinda ulasmaktadir. Tahmin
modeli genellikle gercek verilerin egilimini takip eder ve giinliik dalgalanmalar belirli
bir dogrulukla yakalar. Bu grafik, hibrit modelin 24 saatlik bir siire boyunca gii¢
degerlerini tahmin etmedeki dogrulugunu ve giivenilirligini gorsel olarak gosterdigi
icin riizgar enerjisi iiretim tahmini i¢in biiylik 6nem tasimaktadir. Dogru tahminler,
rlizgar enerjisi sistemlerinin igletimini ve yonetimini optimize etmek, arz ve talebi
dengelemek ve riizgar enerjisini sebekeye entegre etmek i¢in kritik 6neme sahiptir.
Gergek ve tahmin edilen degerleri yan yana sunarak, paydaslar modelin performansini
degerlendirebilir, iyilestirilecek alanlar1 belirleyebilir ve enerji tiretim verimliligini ve

istikrarini artirmak igin bilingli kararlar alabilir.

Ozetle, Hibrit Transformatdér Modeli, 24 saatlik siire boyunca gii¢ degerlerini tahmin
etmede milkemmel bir performans sergilemekte ve egilimler ve spesifik degerler
acisindan gergek verilerle yakin bir uyum gostermektedir. Kiiciik farkliliklar bulunsa
da model, biiyiik zirveleri ve dip noktalarini etkili bir sekilde yakalayarak zaman serisi
verilerini isleme konusundaki dayanikliligin1 ortaya koymaktadir. Daha ayrintili nicel
analizler veya ek bilgiler i¢in raporlanan hata metrikleri, modelin tahmin yetenekleri

hakkinda kapsamli bir anlayis sunmaktadir.

5.4 Hibrit Transformer Modellerinin Karsilastirmah Analizi

Bu béliimde, hibrit Transformer modelinin performansi, gelistirilen LSTM + BPNN
modeli, SARIMAX + RNN + SVR modeli ve Dalga Doniisiimii ile NARMAX
modelini de iceren diger modellerle karsilastirilarak degerlendirilmektedir.

Kargilagtirma, MSE, MAE ve RMSE gibi temel metriklere dayanmaktadir.

Tablo 5.1, 24 saatlik bir siire boyunca farkli modellerin giic tahmin sonuglarinin
karsilastirmali analizini gostermektedir. Bu tablo, 0 ile 1 arasinda normalize edilmis
gercek saatlik tiirbin ¢ikisi ve NARMAX + Wavelet + PSO Modeli, Hibrit
Transformator Modeli, Gelistirilmis LSTM + BPNN Modeli ve SARIMA + RNN +
SVR Modeli tarafindan yapilan tahminler i¢in siitunlar icermektedir. Her satir, her saat

icin tahmin edilen degerleri gostererek model performansinin net bir karsilastirmasini
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saglar. Tablo ayrica, her model icin MSE, MAE ve RMSE gibi tahmin dogrulugunu
degerlendiren ana metrikleri de icermektedir. Bu karsilastirma, her tahmin yonteminin
goreceli gliclii ve zayif yonlerini vurgular ve saatlik gii¢ tiretimindeki degisiklikleri
yakalamadaki etkinliklerini gosterir. Ayrintili degerlendirme, her yontemin tahmin
dogrulugu hakkinda bilgi saglar ve gii¢c tahmini i¢in en giivenilir modeli belirlemeye

yardimci olur.

NARMAX with
Hybird Improved SARIMAX +
Gercek Wavelet
Saat Transformer LSTM + BPNN RNN + SVR
deger Transform
Model Model Model
Model
0 0.232106 0.180854 0.133966 0.258393 0.6673997
1 0.156073 0.140302 0.139516 0.338965 -0.672907
2 0.146339 0.147552 0.138571 0.530705 0.154998
3 0.134493 0.163269 0.137376 0.532545 -0.223042
4 0.136243 0.191564 0.156767 0.524920 0.910545
5 0.173944 0.196822 0.161844 0.393874 -0.696963
6 0.172938 0.193192 0.154648 0.395648 -0.463316
7 0.128924 0.185021 0.145695 0.501467 0.357713
8 0.104406 0.164403 0.119358 0.553291 0.975003
9 0.228590 0.236192 0.200893 0.524875 -0.877866
10 0.321443 0.327896 0.302571 0.498328 -0.584304
11 0.556436 0.558073 0.641904 0.386760 0.689656
12 0.551984 0.529848 0.621198 0.303988 0.879186
13 0.533363 0.458632 0.561710 0.346444 -0.790414
14 0.406486 0.385407 0.472963 0.484789 -0.824549
15 0.388125 0.359364 0.399056 0.534644 0.808140
16 0.501301 0.435368 0.485012 0.241107 1.437533
17 0.664373 0.606116 0.644426 0.259800 -1.40178
18 0.587803 0.612235 0.652598 0.447982 -0.361161
19 0.533020 0.500236 0.575885 0.544804 0.083316
20 0.417594 0.352551 0.363142 0.545884 0.618797
21 0.319931 0.254534 0.246186 0.465732 -0.895971
22 0.340846 0.320076 0.329063 0.330404 0.802257
23 0.476332 0.394224 0.406132 0.237368 -0.673688
MSE 0.001062059637 0.003975007374 0.088902653806 0.523528390239
MAE 0.024059141353 0.047159700082 0.015003343052 0.583104301935
RMSE 0.032589356876 0.063047659548 0.122488134332 0.723552617464

Tablo 5.1 Gilinlik Saat Bazli Veriler.
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Tablo 5.2 ise her modelin hesaplama maliyetini detaylandirmaktadir. Bu tablo, egitim
stiresi (saat cinsinden), kullanilan bellek miktar1 (GB cinsinden), ve gerekli
islemci/GPU kaynaklarini 6zetleyerek modellerin pratik uygulamalardaki kullanimini
degerlendirmek icin kritik bir ¢erceve saglar. Bu karsilastirma, her tahmin yonteminin
goreceli giiclii ve zayif yonlerini vurgularken, saatlik gii¢ liretimindeki degisiklikleri
yakalamadaki etkinliklerini ve hesaplama verimliliklerini gosterir. Ayrintili
degerlendirme, her yontemin hem tahmin dogrulugu hem de hesaplama maliyeti
hakkinda bilgi saglayarak gii¢ tahmini i¢in en uygun ve giivenilir modeli belirlemeye
yardimci olur. Bu ek maliyet degerlendirmesi, pratik uygulamalarda yiiksek dogruluk
ile verimli kaynak kullanimimi dengelemek isteyen enerji lireticileri ve model
kullanicilar i¢in 6nem tasimaktadir. Hesaplama maliyeti ve dogruluk arasindaki bu
denge, ozellikle biiyiikk veri setleri ve gercek zamanli uygulamalar i¢in model

seciminde kritik rol oynar.

Model Uygulama Siiresi Cikarim Bellek EK Detaylar
Siiresi Kullanimi

NARMAX + 3 saat 10 dakika 2.82 1.7GB Karmagik zaman serisi analizi

Wavelet icin dalgacik doniistimii,
Narmax modellemesi ve
diferansiyel evrim kullanir.

BPNN+LSTM 1 saat 7 dakika 10.54 s 2.3GB Orta diizey ¢ikarim siiresi i¢in
Backpropagation Sinir Ag1
(BPNN) ve LSTM'yi
birlestiren derin 6grenme
tabanli model.

SARIMAX+ 30 dakika 5s 3.56 GB Tahmin dogrulugunu nispeten

RNN+SVR yiiksek bellek kullanimai ile
dengelemek igin SARIMAX,
RNN ve SVR'yi birlestirir.

Hybrid 45 dakika 3GB Karmagik veriler iizerinde

Transformer

iyilestirilmis performans sunan
Transformer tabanli model.

Tablo 5.2 Giuinlik Saat Bazli Veriler.
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Model Comparison - Actual vs Predicted Power for 24 Hours
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Sekil 5.2. Giin igerisinde saatlik uygulama modellerinin Giig karsilastiriimasi.

Sekil 5.2'deki grafik, dort farkli tahmin modelinin gercek gilic degerlerine karsi 24
saatlik bir siire boyunca gilic tahmin dogrulugunun karsilagtirmali analizini
sunmaktadir. X ekseni zamani saat cinsinden gosterirken, y ekseni 0 ile 0,7 arasinda
degisen normallestirilmis gii¢ degerlerini temsil etmektedir. Agiklama kismi, her bir
modeli tanimlamaktadir: Gergek degerler siyah diiz ¢izgi ile gosterilirken, Wavelet
Modeli, BPNN + LSTM, Hibrit Transformator Modeli ve SARIMAX + RNN + SVR
modellerinin tahminleri sirasiyla mavi kesik ¢izgi, turuncu kesik-noktali ¢izgi, yesil
noktali ¢izgi ve mor diiz ¢izgi ile gosterilmistir. Genel olarak, Hibrit Transformator
Modeli ve BPNN + LSTM modeli, tam zaman aralifinda gii¢ seviyelerindeki
dalgalanmalarin hem zamanlamasini hem de genligini yakalayarak ger¢ek degerlere
en yakin uyumu sergilemektedir. Ozellikle Hibrit Transformatér Modeli, giig
talebindeki altta yatan degiskenligi modelleme konusundaki giiclii kapasitesini
yansitarak, gercek verilerin zirve ve dip noktalarimi yakindan takip etmektedir,
ozellikle yiiksek varyanslhi boliimlerde. Benzer sekilde, BPNN + LSTM modeli de
benzer bir performans sergilemekte, ancak bazen gercek degerlere gore hafif bir
gecikme veya One gecme gostermektedir. Buna karsilik, Wavelet Modeli gii¢
degerlerini siirekli olarak diisiik tahmin etmekte ve zirve degerleri etkili bir sekilde

yakalayamayan diisilk genlikli dalgalanmalar gostermektedir; bu durum, ani
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degisikliklere yeterince yanit veremeyebilecegini diisiindiirmektedir. SARIMAX +
RNN + SVR modeli, 6zellikle saat 0-12 arasinda, bazi boliimlerde 6nemli dlgiide asiri
tahmin yaparak gercek degerlerden 6nemli Ol¢lide sapmaktadir. Bu model, tepe
yuksekliklerini yakalasa da gercek verilerle hizalanmayan ve abartili tahminlere yol
acan daha biiyiikk dalgalanma egilimi gostermektedir. Farkli zaman dilimlerini
inceledigimizde, saat 0-8 arasinda, Wavelet Modeli hari¢ tiim modeller baglangictaki
gii¢ diplerini yeterince yakalamakta, ancak SARIMAX + RNN + SVR modelinin asir1
tahmini belirgin bir sekilde 6ne ¢ikmaktadir. Saat 8-16 arasinda, Hibrit Transformator
Modeli ve BPNN + LSTM, ger¢ek egilimi yakindan takip etmeye devam ederken,
Wavelet Modeli gli¢ zirvelerine yetersiz yanit vermektedir. Saat 16-24 arasindaki son
boliimde, Hibrit Transformatér Modeli ve BPNN + LSTM gercek degerlerle uyumu
koruyarak tahmin gii¢lerini gdsterirken, SARIMAX + RNN + SVR modeli hafif bir
asir1 tahmin gdstermekte, Wavelet Modeli ise gii¢ degerlerini diisiik tahmin etmeye
devam etmektedir. Genel olarak, bu analiz, dort model arasinda Hibrit Transformator
Modeli'nin en dogru ve giivenilir tahminci oldugunu, Wavelet Modeli'nin gii¢
talebindeki degiskenliklere sinirli duyarlilik gosterdigini ve SARIMAX +RNN + SVR
modelinin agir1 tahmin yapma egiliminde oldugunu gostermektedir. Bu bulgular,
yilksek dogruluk gerektiren giic tahmin wuygulamalarinda model se¢imini
bilgilendirebilir ve kisa vadeli degiskenlik ile uzun vadeli egilimleri yakalama
acisindan transformatdr tabanli ve yapay sinir ag1 hibrit yaklagimlarinin etkinligini

vurgulamaktadir.
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6. TARTISMA VE SONUC

Bu calismada, riizgar kaynaklarinin degiskenligi ve siireksizliginden kaynaklanan
zorluklarin iistesinden gelmek icin riizgar enerjisi liretim tahmini i¢in yeni bir iki
agsamal1 hibrit Transformator tabanli model tanittik. Model, 6zellikle Transformator
mimarileri olmak iizere gelismis makine Ogrenimi tekniklerinin giiciinden

yararlanarak riizgar enerjisi tahminlerinin dogrulugunu ve giivenilirligini artirir.

Transformatdr modelini ve ileri Beslemeli Sinir Agini entegre eden hibrit modelimiz,
geleneksel istatistiksel modellere ve hatta LSTM gibi gelismis derin O0grenme
modellerine  kiyasla tahmin dogrulugunda Onemli iyilestirmeler saglar.
Transformatdriin verimli dikkat mekanizmasi, dinamik belirtecleme ve iyilestirilmis
konum kodlamas, riizgar enerjisi verilerindeki karmagsik zamansal bagimliliklar1 ve

degiskenligi yakalamada etkili oldugunu kanitlamaktadir.

MSE, MAE ve RMSE gibi metriklerle yapilan titiz degerlendirmeler sonucunda, hibrit
modelimiz, iyilestirilmis LSTM ve BPNN modelleri, hibrit istatistiksel model ve RNN
ve SARIMAX modellerine kiyasla en diisiik hata oranlarina ulasarak {istiin performans
gostermistir. Karsilagtirmali analiz, riizgar enerjisi liretimini tahmin etmede hibrit

modelin saglamligini ve dogrulugunu vurgular.

Bu arastirma, riizgar enerjisi tahmini i¢in saglam bir ¢0ziim saglayarak sebeke
kararlilig1, operasyonel planlama ve maliyet etkin enerji yonetimi i¢in kritik dneme
sahip yenilenebilir enerji tahmini alanina katkida bulunur. Bulgular, yenilenebilir
enerji uygulamalarinda hibrit Transformator modellerinin potansiyelini vurgular ve
model yorumlana bilirligini daha da gelistirmek, dinamik tahmin i¢in gergek zamanl
verileri entegre etmek ve riizgar enerjisi tiretimindeki igsel belirsizlikleri ele almak i¢in

daha saglam modeller gelistirmek lizere gelecekteki aragtirmalara zemin hazirlar.

Sonug olarak, dnerilen hibrit Transformatdr modeli riizgar enerjisi tahmininde 6nemli
bir ilerlemeyi temsil eder ve geleneksel yoOntemlerin sinirlamalarii asmak,
stirdiiriilebilir ve verimli enerji sistemleri hedefini ilerletmek i¢in umut verici bir
yaklasim sunar. Gelecekteki ¢aligmalar, ek sahaya 6zgii 6zelliklerin entegrasyonunu,
gercek zamanli veri asimilasyonunu ve farkli cografi bolgelere ve riizgar ciftligi

yapilandirmalarina adaptasyonu kesfetmeye odaklanacak ve riizgar enerjisi tahmin
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modellerinin tahmin dogrulugunu ve uygulanabilirligini daha da artirmay:

amaglayacaktir.
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