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ABSTRACT 

 

APPLICABILITY OF EVOLUTIONARY GAME THEORETIC MODELS TO 

DYNAMIC SOCIAL NETWORKS 

 

Melis YILMAZ 

Master of Science in MIS 

Advisor: Assoc.Prof.Dr. Mehmet N. AYDIN 

 

JUNE, 2016 

 

It is known that in social communities; humans display two main patterns of 

behavior: acting in their own utility or acting for the utility of the community in which 

they exist (cooperation). Mentioned two basic behaviors are addressed by the 

traditional game theory models which take as their basis the rational human. Therefore, 

these models accept that the behavior which would bring in the optimal outcome, is 

the one that maximizes the personal benefits of decision makers. On the other hand, 

evolutionary game-theoretic models hold that if one player does not know the next 

move of the other player, a dilemma is created and two basic behaviors of each one of 

the two players are simultaneously made possible to continue. Thus, it is possible to 

analyze the behaviors of humans with studies that combine network science, which 

allows examining dynamic social networks, and evolutionary game theory. In this 

context; the thesis study thereof explains a social network connection game, in light of 

the options of sending or not sending connections. Additionally, the study examines 

the results of relevant researches to investigate effects of network topologies on 

strategy choices of individuals. In conclusion, it is indicated that a social network 

connection game can be applicable in measuring decision-making skills of individuals. 
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YÜKSEK LİSANS TEZİ 

Melis YILMAZ 

Yönetim Bilişim Sistemleri, Yüksek Lisans 

Danışman: Doç. Dr. Mehmet N. AYDIN 

 

Haziran, 2016 

 

Sosyal topluluklarda insanların iki temel davranış sergiledikleri bilinmektedir: 

bireysel çıkarları doğrultusunda hareket etmeleri veya içinde bulundukları sosyal 

topluluğun çıkarları doğrultusunda hareket etmeleri (kooperasyon). Bu iki temel 

davranış rasyonel insan varsayımını baz alan geleneksel oyun teorisi modelleri ile 

incelenmektedir. Dolayısıyla bu modeller optimal sonuç getirecek olan davranışın 

karar alıcıların kişisel çıkarlarını maksimize edecek olan davranış olduğu kabul 

etmektedirler. Diğer taraftan evrimsel oyun teorisi modellerinde eğer bir oyuncu diğer 

oyuncunun gelecek hamlesini bilmiyorsa, çıkmaz yaratılarak oyuncuların iki temel 

davranışının da devam ettirilmesine imkan sağlanmaktadır. Dolayısıyla dinamik 

sosyal ağları araştırmaya olanak sağlayan ağ biliminin ve evrimsel oyun teorisinin 

beraber kullanıldığı çalışmalarda insan davranışlarının analiz edilmesi mümkün 

olmaktadır. Bu bağlamda bu tez çalışmasında sosyal ağlardaki bağlantı gönderme ve 

bağlantı göndermeme seçenekleri ele alınarak sosyal ağ bağlantı oyunu gösterilmiştir. 

Ayrıca sosyal ağların topolojik özelliklerinin bireylerin seçimlerine etkisini araştırmak 

için ilgili çalışmalar incelenmiştir. Sonuç olarak, sosyal ağ bağlantı oyununun 

bireylerin karar alma yeteneklerinin ölçülmesi için uygulanılabilir olduğu 

gösterilmiştir. 
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Chapter 1  Introduction 

1.1 Introduction to the Research  

 

 Dynamic social networks have been subject to investigations in an emerging 

field so-called network science to understand the very nature of interactions among 

various people in social contexts such as online interactive platforms.  

Among others, scholars (e.g., Barabasi, 2007) have emphasized the importance 

of network topologies, such as scale-free networks or random networks, and 

evolutionary game theoretical accounts have been employed to illuminate the 

underpinnings of human interactions in dynamic social networks. 

 In the context of social networks, both socioemotional and socioeconomic 

behaviors of people have been examined. Sociologists have argued that 

socioemotional behaviors of people might be affected by numerous factors. For 

example, homophily can shape social interactions (Christakis and Fowler, 2010). 

 Whereas, in socioeconomic context, generally game theorists, who examine 

strategic decision-makings of people, accept the rationality assumption in traditional 

game-theoretic models. Therefore, solution concepts of traditional game theory, such 

as Nash equilibrium, have focused on the best response that results in the highest 

outcome of a game.  

However, there are studies (e.g., Zhang et al., 2015) that focus on the effects of 

the network topologies (e.g. scale-free network topology) on the evolution of  
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cooperative strategy, which does not yield the highest outcome of a game, in 

dynamic social networks.    

Thus, a conceptual ground on which specific concepts of evolutionary game 

theory that are linked to certain characteristics of dynamic aspect of social networks 

might enable researchers to analyze effects of network topologies on evolution of 

cooperative strategy. In addition, strategic decision-making abilities can be examined 

with evolutionary game-theoretic models. 

In this respect, a social network connection game is considered, along with 

connect and not connect strategies. Defective strategy (not connect) dominates 

cooperative strategy (connect), while mutual choice of cooperative strategy yields a 

higher outcome than mutual choice of defective strategy. Therefore, in a social 

network connection game, a dilemma occurs that can allow observation of 

cooperative strategy’s evolution in dynamic social networks.  

Consequently, one of the purposes of this thesis study is to discuss outcomes of 

relevant studies to find out effects of network topologies on the emergence and 

evolution of cooperation. Another aim of this study is to explain a social network 

connection game to demonstrate application of 2x2 symmetric games to dynamic 

social networks for measuring “decision-making abilities” of humans regarding risky 

situations.  
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1.2 Findings 

 

By following a number of empirical works that combine evolutionary game 

theory with social networks (e.g., Gracia-Lázaro et al., 2012) it can be said that 

humans have been cooperating in social networks. However, the concept of 

evolutionary game theory depends on the Darwinian natural selection mechanism 

that eliminates cooperation from the network population sooner or later (Zhang et al., 

2015; Nowak, 2006). Therefore, one might think that a 2x2 symmetric matrix can 

represent two main choices of humans in spatial social networks, but the complexity 

of social interactions may not be properly explained if strategy update rule depends 

on the accumulated payoff. 

Furthermore, the results of studies (Poncela et al., 2009; Ifti, Killingback and 

Doebeli, 2004) showed that evolution of cooperation hinges upon network topologies 

(with respect to scale-free characteristics or characteristics of a lattice) in dynamic 

spatial networks. 

On the other hand, Gracia-Lázaro et al. (2012) indicated that levels of 

cooperation are same in both scale-free network and square lattice, when it comes to 

behaviors of humans in heterogeneous networks (Gracia-Lázaro et al., 2012). Given 

this evidence, it can be inferred that artificial algorithms, which are generated to 

observe the emergence and evolution of cooperative strategy, differ from the human 

behaviors in real world. Additionally, contrary to results of other studies, such as 

(Zhang et al., 2015), it can be said that it is possible to measure “decision-making 

abilities” of humans with the application of continuous 2x2 symmetric games to 

dynamic social networks. 
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Therefore, besides examining the effects of social network topologies on levels 

of cooperation, comparing cooperation levels of people, such as individuals from 

different range of age groups or professions, might be possible by means of the 

application of continuous 2x2 symmetric games (e.g. continuous prisoner’s dilemma 

games) to dynamic spatial social networks. This might allow analysis of decision-

making abilities of individuals from different social groups, social classes, etc. 

 In this sense, a social network connection game, which might theoretically 

allow an empirical survey to compare decision-making skills of humans from 

different social groups, range of ages, etc., is considered. In this game, defective 

strategy (not connect) dominates cooperative strategy (connect), whereas mutual 

selection of cooperative strategy (connect) results in higher outcome than mutual 

selection of defective strategy (not connect). Thus, a dilemma occurs that makes 

possible to sustain two strategies (connect and not connect) if this game is 

continuously played. 

As a result, the social interactions of individuals might not be adequately 

described with a symmetric 2x2 game because of the existence of numerous 

sociological underlying factors that affect human behaviors in the real world. 

Whereas, strategic situations (the choice between “connect” and “not connect” 

strategies) might be described with a 2x2 symmetric game (a social network 

connection game) to investigate and compare decision-making skills of humans in 

dynamic spatial social networks. 

 

 



5 

1.3 Thesis Structure 

 

The thesis consists of four parts. Chapter two focuses on the basic concept of 

networks from the perspective of network science. The purpose is to supply 

information about network topological measures, typical network models, and real-

world network types. Furthermore, properties of complex systems are clarified due to 

their importance in terms of understanding evolutionary processes of complex 

systems.   

Chapter three gives an introduction to concept of game theory, and explains 

both assumptions and solution methods of game theory. Throughout the chapter, 

concept of evolutionary game theory is expounded, as well as the notions 

cooperation and defection are made clear. 

The last chapter explains a social network connection game that might take 

place in any social network platform where users interact with each other by 

sending/receiving connections. Finally, to investigate the effects of network 

topologies on social cooperation, the results of relevant models are examined. 
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Chapter 2 Research Background of Networks 

In this chapter real-world networks, types of networks and network topological 

measures are explained. Furthermore, properties of complex systems are clarified. 

This helps us to point out the importance of complex systems’ behavior. 

 

2.1 Network Representation 

         “A network can be modelled as a graph 𝐺(𝑁, 𝐸) where 𝑁 is a finite set of 

nodes (vertices) and 𝐸 is a finite set of edges (links) such that each edge is associated 

with a pair of nodes 𝑖 and 𝑗” (Öbayashi, 2007, p. 84). If each edge of a graph 𝐺 

indicates a direction; then, a graph 𝐺 is directed that is also known as digraph (Ore 

and Wilson, 1990).  

         Barabasi (2012) made clear that the difference between terminologies of the 

network and the graph is that networks often refer to real-world systems that consist 

of the combination of nodes and links, whereas vertex and edge are related to the 

mathematical representations of networks. 

         Many objects of contexts, such as social sciences (e.g., Centola, 2010) or  

semantic descriptions (e.g., Borge-Holthoefer and Arenas 2010), have been 

represented as networks (Baronchelli et al., 2013). 

To investigate networks as complex systems, there is an emerging discipline 

called network science. According to The National Research Council, “In short, 
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network science consists of the study of network representations of physical, 

biological, and social phenomena, leading to predictive models of these phenomena” 

(Strategy for an Army center for network science, technology, and experimentation, 

2007, p. 3). 

In this sense, before representing real-world phenomena in network data, a 

network representation concept is a requirement to differ networks from other 

phenomena (Bachmaier, Brandes and Schreiber, 2013). Initially, a phenomenon 

needs to be converted to a network concept; then, the network concept can be 

represented as network data (Bachmaier, Brandes and Schreiber, 2013).   

 

2.2 Real-World Networks 

There are various ways to categorize networks, but for the sake of understanding 

basic types, in the following, we explain four types real-world networks: information 

networks, technological networks, biological networks, and social networks. 

Moreover, main characteristics of social networks and perspective of social network 

analysis are clarified. 

• Technological networks: These types of networks are men- made networks that 

are generally designed to spread commercial properties or resources, for 

instance, networks of electricity or information (Newman, 2003). The internet, 

which physically connects a large number of computers, is another important 

instance of technological networks (Easley and Kleinberg, 2010). 

• Information networks: These networks are represented with vertices and 

citation patterns (edges). A network of citations between academic papers is a 

classical example of information networks (Egghe and Rousseau, 1990). 
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Vertices represent articles and directed edges from each vertex denote citations 

between the articles (Newman, 2003).  

• Biological Networks: One of the most common types of biological networks is 

the protein-protein interaction network where proteins are represented as 

agents (Bachmaier, Brandes and Schreiber, 2010). Biological networks, where 

interactions of different biological organisms arise, can also be called as 

ecological networks that refer to greater space or timescales (Junker and 

Schreiber, 2008). 

 

  

2.2.1 Social Networks  

 

A social network can be represented as a graph where nodes refer to 

individuals and ties refer to interactions of individuals (Das, 2010). To analyze social 

interactions, individuals of social networks and their connections are represented as 

vertices and edges, respectively; it is then possible to explain social networks using 

graph-based representations (Hansen, Schneiderman and Smith, 2011). Social 

networking platforms can be networks of professionals and contacts, such as 

LinkedIn, or Facebook, or can be networks where individuals share contents such as 

Flickr or Youtube (Benevenuto et al., 2009). Connections of online social networks 

can be messages, links, posts, documents, locations, or other objects that are created 

by users (Hansen, Schneirderman and Smith, 2011). 
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2.2.1.1 Social Network Analysis 

 

 

In social networks, where individuals are connected by a particular pattern of 

ties, connections indicate who is connected to whom (Christakis and Fowler, 2010). 

Some of tie types are communication ties that denote who talks to whom, or who 

shares information with whom, formal ties that denote who reports to whom, or 

proximity ties that denote who is spatially close to whom (Katz et al., 2004).  

Ties of social networks are classified into weak ties and strong ties. 

Acquaintances who are less likely to be communicated are called weak ties, and 

close friends who are more likely to be communicated are called strong ties 

(Granovetter, 1983).  

Contrary to physical and biological hierarchies, observations depend on 

identifying who interacts with whom, but not who is physically close to whom to 

describe social hierarchies in spatial terms (Simon,1991). In this sense, in terms of 

social network analysis the primary concern is describing positions of individuals in 

relation to others to focus on social interactions (Hansen, Schneiderman and Smith, 

2011). 

Milgram (1967) introduced the small-world phenomenon that is one of the 

important features of social networks. Milgram indicated that a wide range of short 

paths exist in social networks and individuals can efficiently detect these short paths 

in a collective way (Milgram, 1967 as cited in Easley and Kleinberg, 2010). This 

phenomenon is also known as six degrees of separation which indicates that instead 

of the wide-spreading pattern of the diffusion of information or an emergent 

behavior, people tend to prefer a kind of focused search (Milgram, 1967 as cited in 

Easley and Kleinberg, 2010). 
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2.2.1.2 Social Capital 

 

Putnam (1995) clarified notion of social capital.“By "social capital," I mean 

features of social life-networks, norms, and trust-that enable participants to act 

together more effectively to pursue shared objectives. Whether or not their shared 

goals are praiseworthy is, of course, entirely another matter” (Putnam, 1995, pp. 664-

665). 

Putnam (2000) examined social networks as specific forms of the social 

capital (Scott and Carrington, 2011). Scott and Carrington (2011) stated that social 

networks might be relevant resources of social capital, but they are much more than 

to be only resources. Therefore, considering a social network as a source of social 

capital is too restrictive (Scott and Carrington, 2011). 

 

2.3 Types of Network Topologies 

           The network topologies, such as random graphs, small world networks, or 

scale-free networks, have an influence on evolutionary dynamics of networks 

(Barabasi et al., 2002). 

• Regular networks: Regular networks, which have a high clustering coefficient 

and characteristic path length, can be explained as nearest-neighbor coupled 

networks where nodes are connected by a few of their neighbors (Kirley, 

2005).  

• Random networks: Erdös and Renyi (1959) introduced random networks 

theory. In random networks, the probability of the connection of two nodes is 
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random, and the primary concern of random networks is achieving the optimal 

placement of links randomly between nodes (Barabasi, 2012).  

 

2.3.1 Scale-Free and Small-world as Phenomena of Real-World Networks 

 

The small-world phenomenon exists if any two individuals in the network are 

connected to their intermediate acquaintances in a short sequence (Kleinberg, 2000). 

In the first place, there is a fixed number of vertices in both Erdős-Rényi 

networks and small world networks; then, the vertices are randomly connected each 

other in Erdős-Rényi networks, while the vertices are reconnected in small world 

networks without modifying the fixed number of vertices (Barabasi et al., 1999). 

However, real-world networks are not static, because they continuously evolve by 

the addition of new nodes to the existing nodes (Barabasi et al., 1999). 

Furthermore, from the perspective of evolving network theory, instead of the 

abrupt emergence of the system, evolution of the system as the whole is the main 

interest (Papacharissi, 2011). Therefore, if an evolving network model is applied, 

many nodes then would be added, and one can observe that emergent network would 

be a scale-free network in which hubs would naturally arise (Papacharissi, 2011).  

In a network, highly connected nodes are hubs whose removal have larger 

impact than removal of ones who have lower degrees (Albert et al., 2000; 

Baronchelli et al., 2013). 

Scale-free network topology is explained in two steps: first step is the growth 

step which initially starts with a small number (𝑚0) of vertices, and a newcomer, 

with 𝑚 (≤𝑚0) edges, is added at each time step; then, this newcomer attaches to a 

vertex that is already existed in the network (Barabasi et al., 1999). The second step 
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is the probability of preferential attachment stage in which the probability π indicates 

that a newcomer is most likely to attach to a vertex with large number of connections 

(Barabasi et al., 1999). 

 

2.4 Network Topological Measures 

In this section quantitave topological network measures: degree distribution, average 

path length and diameter, and clustering coefficient are explained, as well as the 

concept of centrality is clarified. 

 Degree distribution: Total number of links that are attached to a node is a 

general definition of degree (Kirley, 2005). Considering degree 𝑘𝑖 of a node 𝑖, 

the probability is that a randomly chosen node has exactly 𝑘 edges, and the 

distribution function 𝑃(𝑘) characterizes distribution of node degrees over the 

network (Kirley, 2005). In a network, the importance of nodes is determined by 

the sum of node’s connected links, therefore, higher degree implies more 

importance (Kirley, 2005).  

 Average path length and diameter: A path length refers to total number of a 

path’s links (Barabasi, 2012). The shortest path is a path that has the shortest 

distance between any pair of nodes (Barabasi, 2012). Whereas, average path 

length measures average distance (number of edges along the shortest path that 

connects a pair of nodes) in a graph (Kirley, 2005). On the other hand, the 

diameter refers to the largest distance between any pair of nodes (Barabasi, 

2012).  

 Clustering coefficient: The local clustering coefficient and the global clustering 

coefficient are considerable to be aware of meanings of network structures 
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(Katzir and Hardiman, 2015). Explanation of the local clustering coefficient is 

“the local clustering coefficient of a node in a graph as the ratio of the number 

of edges between its neighbors to the maximal possible number of such edges” 

(Katzir and Hardiman, 2015, p. 540). The clustering coefficient as a local 

property involves the probability that two nearest neighbors of a node are also 

the nearest neighbors of each other (Kirley, 2005). Whereas, “The global 

clustering coefficient of a graph is the ratio of the number of triangles (ordered 

triples of different nodes in which are all nodes connected) to the number of 

connected triplets (ordered triples of different nodes in which consecutive 

nodes are connected)” (Katzir and Hardiman, 2015, p. 540).  

 Centrality: One can review various measures used for centrality such as 

closeness centrality. Centrality, which is often considered as degree centrality, 

evaluates centrality of nodes by the number of their connected edges (Lerman, 

Ghosh and Kang, 2010). Centrality measure can only examine the importance 

of nodes depending on the structure of network in static network analysis 

(Lerman, Ghosh and Kang, 2010). Whereas, a novel centrality metric, which 

measures centrality of a node by the number of its paths, of any length, that is 

attached to this node, is for dynamic network analysis (Lerman, Ghosh and 

Kang, 2010). 
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2.5 Complex Systems 

Whitesides (1999) stated that a complex system, in which the number of 

independent components are interacted with each other is large in degree, is very 

vulnerable to its first conditions or to small perturbations.  

On the other hand, a general definition might not adequate to explain intricate 

characteristics of complex networks. To stress this inadequacy, Barabasi (2007) 

noted that "A complete theory for complexity does not yet exist, due to failure of the 

available tools for various reasons.  First, most complex systems are not made of 

identical components, such as gases and magnets. Rather, each gene in a cell or each 

individual in society has its own characteristic behavior. Second, while the 

interactions among the components are manifestly nonlinear, truly chaotic behavior 

is more the exception than the rule. Third, and most important, molecules and people 

do not obey either the extreme disorder of gases, where any molecule can collide 

with any other molecule, or the extreme order of magnets, where spins interact only 

with their immediate neighbors in a periodic lattice. Rather, in complex systems, the 

interactions form networks, where each node interacts with only a small number of 

selected partners whose presence and effects might be felt by far away nodes” 

(Barabasi, 2007, p. 1). 

2.5.1 Properties of Complex Systems 

 

 Nonlinearity: According to the superposition principle of linear systems if 𝐴 

and 𝐵 are both solutions; then, their sum would be 𝐴 + 𝐵 (Rickles, Hawe and 

Shiell, 2007). This means that a linear system can be separate into its parts, and 

every part of linear systems can be solved one by one for the full solution 
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(Rickles, Hawe and Shiell, 2007). However, solution of the superposition 

principle cannot be possible for nonlinear systems due to existence of functions 

of variables such as 𝑥𝑦, 𝑠𝑖𝑛(𝑥), 𝑥3 (Rickles, Hawe and Shiell, 2007). 

Ladyman, Lambert and Wiesner (2012) pointed out that complex systems’ 

nonlinearity property is not solely enough to represent the whole complexity, 

because even a simple system can display the nonlinearity property. 

 Hierarchical organization: As Simon (1991) stated that organization of organs, 

tissues, and cells can be an instance of hierarchical organization in biological 

systems. Cells are organized into tissues, tissues are organized into organs, 

organs are organized into systems, and the nucleus, mitochondria, or 

microsomes as well-defined subsystems can be detected with the downward 

movement in animal cells (Simon, 1991). On the other hand, the hierarchical 

structure of physical systems generally contains two levels, for instance, 

planetary systems or galaxies are at a macro level, and elementary particles, 

atoms, or molecules are at micro level (Simon, 1991). 

 Feedback: Rickles, Hawe and Shiell (2007) explained that feedback may arise 

between micro and macro levels of organisations in complex systems. The 

micro level interactions between the subunits create some pattern in the macro 

level interactions; then, the created patterns back-react onto the subunits of the 

system that leads to a formation of a new pattern which back-reacts again on 

and on (Rickles, Hawe and Shiell, 2007). 

 Robustness: The notion of robustness refers how well the network stays 

connected when either vertices or edges have been removed (Van Steen, 2010). 

According to Zhang and Sundaram (2012), the connectivity is a primary 

interest of the studies of structural robustness that focus on how networks resist 
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the loss of nodes or edges owing to either unexpected failures or planned 

attacks. Whereas, the main concern of dynamic robustness analysis is how 

nodes carry out certain purposes when even some nodes display atypical 

behaviors (Zhang and Sundaram, 2012). Ladyman, Lambert and Wiesner 

(2012) concluded that “Robustness seems to be necessary but not sufficient for 

complexity because a random system can be said to be robust in the trivial 

sense that perturbations do not affect its order because it doesn’t have any” 

(Ladyman, Lambert and Wiesner, 2012, p.7). 

 

2.5.1.1 Emergence 

 

In complex systems, interactions of agents often result in large-scale behaviors, 

which are known as emergent behaviors, that occur as a result of unexpected 

collective interactions which cannot be easily foreseen from knowledge of other 

agents’ behaviors (Mitchell and Newman, 2001). 

 According to Heylighen (1989), one of the important principles of emergence 

is that the macro properties of complex systems cannot be separated into the lower 

order subsystems or its own parts. 
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Figure 2.1. Mathematical and scientific roots of emergence (Goldstein, 1999) 

 

It is the view of Mitchell and Newman (2001) that the evolution itself in 

ecosystems, where species of life forms interact with each other in a cooperative or 

competitive way, is one of the considerable examples of emergent behaviors. In the 

process of evolution, both evolution itself and ecosystem variety, which are the 

examples of emergent behaviors, are mutually responsible for existence of each other 

(Mitchell and Newman, 2001). 

In the social context, the language variation and change, which is a result of the 

evolutionary change of vocabularies throughout centuries, is an example of emergent 

behaviors (Sawyer, 2005). Language variation and change often occur due to 

numberless routine speeches of small groups in societies (Sawyer, 2005).
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Chapter 3 Research Background of Game Theory 

In this chapter notions about traditional game theory and evolutionary game theory 

are clarified. Moreover, assumptions and solution concepts of both traditional game 

theory and evolutionary game theory are explained.  

 

3.1 Concept of Game Theory 

Myerson defined game theory as “the study of mathematical models of conflict 

and cooperation between rational decision makers” (Myerson, 1997, p. 1). 

In a normal form (strategic form) game, players adopt strategies so as to make 

their payoff values as maximum as possible depending on their current information 

about the game (Rasmusen, 2001). A payoff, which represents profitability of the 

outcomes to players, is gained by each player at the end of a game (Turocy and 

Stengel, 2002). 

The extensive form is the other representation form of games. In an extensive 

form game, which is represented with a decision tree or a game tree, nodes represent 

players who have to make decisions, branches of nodes represent choices that are 

available to every player, and vectors indicate payoffs of players (Romp, 1997).  
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3.2 Assumptions of Traditional Game Theory 

Common knowledge is a prevalent assumption of traditional game theory. A 

strategic form (normal form) game consists of rational players who need common 

knowledge to maximize their utility (Varian, 1992). “Common knowledge of the 

rules goes even a few steps further: first it says yes, everybody knows that everybody 

knows that the constitution is available to all. Second, it says that everybody knows 

that the constitution is widely available. And third, that everybody knows that 

everybody knows, ad infinitum” (Dutta, 1999, p. 18). 

Aumann (1995) explained the solution concept for conditions when common 

knowledge of rationality would associate with the backward induction method. 

Williams (2013) clarified the method of backwards induction as “backwards involves 

working backwards up the game to determine, first, what a rational player would do 

at the last node of the tree, what the player with the previous move would do given 

that the player with the last move is rational, and so on until the first node of the tree 

is reached” (Williams, 2013, p. 55). 

However, although decision makers have been assumed to be rational who 

always move to increase their utilities in traditional game theoretic models, it has 

been argued that determination criteria of rationality are unclear due to the 

difficulties of rational decision-making. For instance, the opinion of Gintis (2005) is 

that rationality assumption can result in both informational and material limitations. 

Furthermore, expecting from humans to be objective or to be unmoved by both 

impulsive and predictable emotionality leads to restrictions (Gintis, 2005). 

Perfect information is another assumption of traditional game theory. “A game 

has perfect information when at any point in time only one player makes a move, and 
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knows all the actions that have been made until then” (Turocy and Stengel, 2002, p. 

3). 

3.3 Nash Equilibrium 

Nash (1951) introduced the concept of Nash Equilibrium. Nash equilibrium is a 

solution concept of game theory that has been prevalently used to examine strategic 

choices of decision makers (e.g., Daskalakis and Papadimitriou, 2015). 

 Two types of Nash equilibrium have been defined. According to Darity 

(2008), "A pure-strategy Nash equilibrium is an action profile with the property that 

no single player can obtain a higher payoff by deviating unilaterally from this 

profile” (p. 540). Whereas, “A Nash equilibrium (mixed strategy) is a strategy profile 

with the property that no single player can, by deviating unilaterally to another 

strategy, induce a lottery that he or she finds strictly preferable" (Darity, 2008, p. 

540). 

In order to maximize utility, a natural consistency requirement is that a player’s 

expectations from choices of the opponent have to coincide with each other (Varian, 

1992). If expectations are consistent with the real results; then, expectations are 

considered to be rational, and a Nash equilibrium is related to these rational 

expectations (Varian, 1992).  

Perfect equilibrium is another solution concept of traditional game theory. 

Selten (1975) proposed concept of a perfect equilibrium to explain conditions when 

games have many equilibria.  
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3.4 The Prisoner’s Dilemma and The Snowdrift game 

 

Concept of the Prisoner’s Dilemma game and the Snowdrift game enable 

analysis of social dilemmas that occurs due to the ubiquitous emergence and survival 

of cooperation (Doebeli and Hauert, 2005). 

 

3.4.1 The Prisoner’s Dilemma Game  

 

Tucker (1980) considered a fictional scenario that is the basis of the prisoner's 

dilemma game that describes a situation in which two prisoners have to choose either 

“confess” or “deny”, although they cannot communicate with each other.  

Table 3.1. The Prisoner’s Dilemma game (Doebeli, M. and Hauert, C., 2005)  

 C D 

C b-c -c 

D b 0 

 

As shown in Table 3.1, if the mutual choice is 𝐶, then a player gains the reward 

𝑅 =  𝑏 − 𝑐, but if she adopts 𝐷, while the opponent plays 𝐶, she obtains 𝑇 = 𝑏 

(Doebeli and Hauert, 2005). On the other hand, combination of 𝐶 and 𝐷 results in a 

payoff of – 𝑐, whereas mutual choice of 𝐷 yields payoff of 0 (Doebeli and Hauert, 

2005). 
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3.4.2 The Snowdrift Game 

 

In the two-player Snowdrift game, players can either choose cooperation (C) or 

defection (D). Cooperation results in a benefit, 𝑏, to both the cooperator and the 

opponent (Doebelli and Hauert, 2004; Doebelli and Hauert, 2005).  If the opponent 

defects, a cooperator pays cost, 𝑐, however, if the opponent cooperates as well, a 

cooperator then pays only a cost 𝑐/2 (Doebelli and Hauert, 2004; Doebelli and 

Hauert, 2005).  

Table 3.2. The Snowdrift Game (Doebeli, M. and Hauert, C., 2005) 

 C D 

C b-c/2 b-c 

D b 0 

 

For both cooperator and the opponent, mutual choice of cooperation results in a 

reward 𝑅 =  𝑏 −  𝑐/2, while mutual choice of defection results in 𝑃 =  0 (Doebelli 

and Hauert, 2004; Doebelli and Hauert, 2005). When 𝑏 >  𝑐 >  0, cooperation is a 

better strategy than defection if the opponent chooses defection, however, if the 

opponent chooses cooperation, defection is still the best response as shown in Table 

2.2. (Doebelli and Hauert, 2004; Doebelli and Hauert, 2005). 

3.5 Continuous Prisoner’s Dilemma Games 

Axelrod (1984) generated algorithm to play continuously the prisoner’s 

dilemma game and introduced the concept of Continuous Prisoner’s Dilemma 

Games. 

In spatial continuous prisoner’s dilemma games, which is a common model to 

examine evolution of cooperation in spatial structures, people can either choose 
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defection or cooperation (Ifti, Killingback and Doebeli, 2004). It is known that if 

individuals interact with their neighbors and learn to contrast their results with their 

neighbors; then, cooperative investments can evolve to noticeable levels in spatial 

networks (Ifti, Killingback and Doebeli, 2004). 

3.6 Cooperation and Defection in Evolution 

 Darwin (1859) initiated theory of evolution and introduced the concept natural 

selection based on his observations about the evolution of biological species. 

“Evolution is the physical, genetic, or behavioral change in populations of biological 

organisms over time. Evolution’s more interesting and significant manifestations 

result from natural selection, a process that engineers biological systems” (Vincent 

and Brown 2005, p. 24). 

In the process of evolution, both cooperative and defective behaviors can 

occur.“A cooperator is someone who pays a cost, c, for another individual to receive 

a benefit, b. A defector has no cost and does not deal out benefits” (Nowak, 2006, p. 

1560). Natural selection needs contribution to constitute cooperation in mixed 

populations, since without any mechanism natural selection always acts to increase 

the relative abundance of defectors, then leads to disappearance of cooperators from 

the populations eventually (Nowak, 2006).  

However, the presence of altruistic behaviors of biological organisms have 

been examined in studies of evolutionary biology. For instance, Wilson (2008) 

examined underlying factors of insects’ altruistic behaviors. 

Whereas, in the social context, studies of evolutionary game theory generally 

have focused on cultural evolution. For example, Mesoudi (2011) argued 
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applicability of Darwin’s theory of evolution to cultural evolution such as evolution 

of the religions or customs. 

3.7  Evolutionary Game Theory 

Smith and Price (1973) applied Darwin’s theory of evolution to game theory 

and introduced the concept of evolutionary game theory in their seminal paper. It is 

known that in evolutionary game-theoretic models, fitness determines the success of 

organisms, therefore, biological organisms continuously update their strategies in the 

process of evolution (Aumann and Hart, 1992; McNamara and Weissing, 2010). “In 

the evolutionary game, players generally inherit their strategies and occasionally 

acquire a novel strategy as a mutation. The strategy set is determined by genetic, 

physical, and environmental constraints that may change with time” (Vincent and 

Brown, 2005, p. 17). 

The Moran process designates strategy update rule of organisms in the biologic 

process of evolution. Cooney, Allen and Veller (2015) clarified the Moran process as 

“one member of the population is chosen to die; each member is equally likely to be 

chosen. A new individual is then born, taking the place of the one chosen to die. The 

new individual is of the same type as its parent, the member chosen for reproduction 

(which can be the same as the individual that was chosen to die)” (Cooney, Allen and 

Veller, 2015, p. 9). The indication can be therefore that the concept of evolutionary 

game theory is designed for biologic populations. However, evolutionary game-

theoretic models have been applied to dynamic social networks. For instance, Roos 

et al. (2015) examined cultural distinctions in social norm strength and explain the 

roots of evolutionary cultural variation in strength of social norms with evolutionary 

game-theoretic models.  
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Chapter 4  Evolutionary Game Theoretical Approach to Social Networks 

In this chapter relevant models that associate evolutionary game theoretical approach 

with dynamic social networks are examined in detail. In particular, we explain an 

application of 2x2 symmetric games to evolving social networks. Then, we introduce 

a game called social network connection game for measuring decision-making 

abilities of humans, and we calculate both accumulated payoff and evolutionary 

stable strategy of this game. 

 

4.1 Relevant Models 

 

 As shown in Table 4.1., a number of relevant models investigate effects of 

network topologies, such as scale-free or square lattice, on emergence and evolution 

of cooperation in spatial evolving networks. 

Ifti, Killingback and Doebeli (2004) aimed to investigate the effects of 

increasing neighborhood size and connectivity on cooperation in spatial continuous 

prisoner’s dilemma games. The work of Iyer and Killingback (2016) examined social 

dilemmas (in the prisoner’s dilemma, hawk-dove and coordination classes of game) 

to find out how cooperation evolves in spatial social networks.  

Zhang et al. (2015) investigated scale-free networks’ topological effects on 

evolution of cooperation in social networks. Similarly, Poncela et al. (2009) 
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examined the effects of the scale-network on evolution of cooperative strategy in a 

homogeneous network. 

Alternatively, Gracia-Lázaro et al. (2012) tested human behaviors to find out 

effects of network topologies (scale-free network and square lattice) on cooperation 

in heterogeneous networks. In this respect, the results of the studies, which 

investigate effects of network topologies on evolution of cooperation in social 

networks, are reviewed to discuss applicability of continuous 2x2 symmetric games 

to dynamic spatial networks as indicated in Table 4.1. 

 

Table 4.1. Relevant Models Examined  

Authors Models Purpose 

 (Zhang, et 

al., 2015) 

Unfavorable 

Individuals in Social 

Gaming Networks 

Investigate topological properties of less-

connected individuals in scale-free networks 

 

(Poncela et 

al., 2009) 

 

Evolutionary Game 

Dynamics in Growing 

Structured 

Populations 

Examine emergence and evolution of 

cooperation in a growing scale-free network 

(Ifti, 

Killingback 

and Doebeli, 

2004) 

Effects of 

neighbourhood size 

and connectivity on 

the spatial Continuous 

Prisoner's Dilemma 

Investigate the effects of neighbourhood size 

and connectivity on the spatial Continuous 

Prisoner’s Dilemma Games 

(Gómez-

Gardeñes et 

al., 2008) 

Natural selection of 

cooperation and 

degree hierarchy in 

heterogeneous 

populations 

Indicate how the dynamical partition 

correlates with classes of connectivity and 

typify the temporal fluctuations of the 

fluctuating set, revealing the mechanisms 

that hold cooperation stable in macroscopic 

scale-free structures. 

 (Iyer and 

Killingback, 

2016) 

Evolution of 

Cooperation in Social 

Dilemmas on 

Complex Networks 

Study the evolution of cooperation in three 

exemplars of key social dilemmas in the 

prisoner’s dilemma, hawk-dove and 

coordination classes of game. 

(Gracia-

Lázaro et al., 

2012) 

Heterogeneous 

networks do not 

promote cooperation 

when humans play a 

Prisoner’s Dilemma 

Examine relevance of playing a spatial 

Prisoner’s Dilemma on a lattice and a scale-

free network with population structure in a 

human experimental group 
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4.2 A Social Network Connection Game in Normal Form 

     In evolutionary game-theoretic models, 2x2 symmetric games have been applied 

to social networks. For instance, Zhang et al. (2015) considered a 2x2 symmetric 

game, in which 𝑇 > 𝑅 > 𝑃 > 𝑆, and 2𝑅 > 𝑇 + 𝑆. 𝛺𝑖𝑗′ denotes the strategy of 𝑖 

against 𝑗 that obtain vectors (1,0)𝑡𝑟and (0,1)𝑡𝑟 for the cooperative and defective 

strategies, respectively (Zhang et al., 2015). The payoff 𝐺𝑖  represents strategy of 𝑖 

against strategy of  𝑗 in one stage of the game (Zhang et al., 2015). 

   𝐺𝑖  = 𝛺𝑖𝑗′ 
𝑡𝑟 (

𝑅 𝑆
𝑇 𝑃

) 𝛺𝑖𝑗′                     (4.4) 

    

On this basis, a scenario is considered to show how 2x2 symmetric games can 

be applied to social networks, where players interact with each other by sending 

and/or receiving connections, for measuring decision-making abilities of humans. 

According to this scenario, mutual not connect results in payoff of (0,0) because 

there is no interaction between players, and the optimal choice is combination of “not 

connect” and “connect” strategies (2,-1), since the best response of each player is 

being not connected while receiving a connection from other player. 

On the other hand, mutual connect results in (1,1), because it is assumed that 

although players send connections to each other, they reciprocally receive 

connections. While, if a player chooses connect, whereas the opponent chooses not 

connect; then, she obtains the lowest payoff value of a social network connection 

game (-1,2).  

In a social network connection game, players do not have certain information 

about the opponent’s future actions, therefore, they might choose either connect or 
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not connect strategies. As shown in Table 4.2., there are two players to gain payoffs. 

Let’s explain all eight conditions: 

 Player 1 chooses connect and player 2 chooses not connect. In this case 

payoff value is (-1, 2).  

 Player 1 chooses not connect and player 2 chooses not connect. In this 

case payoff value is (0,0). 

 Player 1 chooses connect and player 2 chooses connect. In this case 

payoff value is (1,1).  

 Player 1 chooses not connect and player 2 chooses connect. In this case 

payoff value is (2,-1). 

 Player 2 chooses connect and player 1 chooses not connect. In this case 

payoff value is (-1,2).  

 Player 2 chooses not connect and player 1 chooses not connect. In his 

case payoff value is (0,0). 

 Player 2 chooses connect and player 1 chooses connect. In this case 

payoff value is (1,1).  

 Player 2 chooses not connect and player 1 chooses connect. In this case 

payoff value is (2,-1). 

 

Table 4.2 A Social Network Connection Game 

 

 

 

 

   

 Player 2 

Connect Not Connect P
lay

er 1
 

Connect (1,1) (-1,2) 

Not Connect (2,-1) (0,0) 
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As a consequence, if players do not know future choices of opponents; then, a 

dilemma occurs, even though not connect strategy dominates connect strategy (2>-

1), because mutual choice of connect strategy yields higher payoff value than mutual 

choice of not connect strategy (1>0). 

 

4.3 A Social Network Connection Game in Extensive Form 

 

 

Figure 4.1. A Social Network Connection Game in Extensive Form 

In a social network connection game in extensive form, branches of player 1 

and player 2 illustrate strategies available for them, and vectors (1,1), (-1,2), (2,-1), 

(0,0) represent payoffs of players.  

However, a social network connection game in extensive form cannot represent 

the situation in which players simultaneously act without any knowledge about 

opponents’ future actions. Because, a social network connection game in extensive 

form game can only be applied for the cases where player 1 moves first, and player 2 

moves after having observed the choice of player 1.  

 

 

 

connect Not connect connect Not connect
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4.3.1 Evolutionary Stable Strategy of a Social Network Connection Game 

 

In order to calculate evolutionary stable strategy of a social network connection 

game shown in Table 4.2., we use the calculation method of the body-size game 

(Easley and Kleinberg, 2010). It is assumed that in a random interaction, for some 

small positive number 𝑥, a 1– 𝑥 the fraction of the network population chooses 

connect and an 𝑥 fraction of the network population chooses not connect.  

With probability 1 −  𝑥,  if a player chooses connect and the opponent chooses 

connect as well, she obtains a payoff of 1, while with probability 𝑥, if the opponent 

chooses not connect; then, she obtains a payoff of -1. In this case, her expected 

payoff is 1(1 −  𝑥) + (−1) · 𝑥 =  1 − 2𝑥. 

With probability 1 −  𝑥, if a player chooses not connect and the opponent 

chooses connect; then, she obtains a payoff of 2, while with probability 𝑥, if the 

opponent chooses not connect as well, she receives a payoff of 0. In this case, her 

expected payoff is 2(1 − 𝑥) + 0 · 𝑥 = 2 − 2𝑥. 

It is assumed that in a random interaction, for some very small positive number 

𝑥, a 1 − 𝑥 fraction of the network population chooses not connect and an 𝑥 fraction 

of the network population chooses connect. 

With probability 1 − 𝑥, if a player chooses not connect and the opponent also 

chooses not connect; then, she obtains payoff of 0, while with probability 𝑥, if the 

opponent chooses connect, she obtains payoff of 2. In this case, her expected payoff 

is 0(1 − 𝑥) + 2 · 𝑥 = 2𝑥. 

With probability 1 −  𝑥, if a player chooses connect and the opponent chooses 

not connect; then, she obtains payoff of -1, while with probability 𝑥, if the opponent 
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chooses connect as well, she obtains payoff of 1. In this case, her expected payoff is 

(−1) · (1 − 𝑥) +  1 · 𝑥 = 2𝑥 − 1 

Since the expected payoff of not connect is higher than the expected payoff of 

connect in each situation (2 − 2𝑥 > 1 − 2𝑥 and 2𝑥 > 2𝑥 − 1), evolutionary stable 

strategy is not connect.  

 

4.3.2 Accumulated Payoff Calculation of a Social Network Connection Game 

 

 

 

Figure 4.2. A sample of a graph to indicate the calculation of accumulated payoff of 

a social network connection game 

 

Figure 4.2. illustrates a graph that is generated to demonstrate how to calculate 

accumulated payoff of a social network connection game. It is assumed that this 

graph might represent any state of a dynamic social network after it has started to 

grow.  
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To indicate calculation of accumulated payoff, nodes 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 are 

considered to be neighbors. Each node iteratively plays a social network connection 

game with their neighbors at each time step throughout the network lifetime; then, 

every node obtains an accumulated payoff (π): 

• Node 𝐴 plays with the nodes 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹, then obtains payoffs of 

2, 1, 1, (− 1), 0, respectively, and accumulated payoff of node A is (𝜋𝐴) = 2 +

1 + 1 + (−1) + 0 = 3. 

• Node 𝐵 plays with the nodes 𝐴, 𝐶, 𝐷, 𝐸 and 𝐹, then obtains payoffs of 

(−1), 2, (− 1), 0, 0, respectively, and accumulated payoff of node B is (𝜋𝐵) =

(−1) + 2 + (−1) + 0 + 0 = 0. 

• Node 𝐶 plays with the nodes 𝐴, 𝐵, 𝐷, 𝐸 and 𝐹, then obtains payoffs of 

1, (−1), (− 1), 1, (−1), respectively, and the accumulated payoff of node 𝐶 is 

(𝜋𝐶) = 1 + (−1) + (−1) + 1 + (−1) = −1.  

• Node 𝐷 plays with the nodes 𝐴, 𝐵, 𝐶, 𝐸 and 𝐹, then obtains payoffs of 

1, 2, 2, 0, (− 1), respectively, and accumulated payoff of node 𝐷 is (𝜋𝐷) = 1 +

2 + 2 + 0 + (−1) = 4.  

• Node 𝐸 plays with the nodes 𝐴, 𝐵, 𝐶, 𝐷 and 𝐹, then obtains payoffs of 

2, 0, 1, 0, 0, respectively, and accumulated payoff of node 𝐸 is (𝜋𝐸) = 2 + 0 +

1 + 0 + 0 = 3.  

• Node 𝐹 plays with the nodes 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸, then obtains payoffs of 

0, 0, 2, 2, 0, respectively, and accumulated payoff of node 𝐹 is (𝜋𝐹) = 0 + 0 +

2 + 2 + 0 = 4. 
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4.3.3 Applicability of a Social Network Connection Game to Dynamic Spatial 

Social Networks 

 

Two Nash equilibria occur (2,-1) and (-1, 2) in a social network connection 

game due to its symmetric structure. If not connect strategy is played against connect 

strategy, not connect strategy dominates connect strategy (2>-1). However, mutual 

connect strategy yields payoff of 1, while mutual not connect yields payoff of 0. For 

this reason, a dilemma occurs in this game.  

Since not connect strategy dominates connect strategy, and evolutionary stable 

strategy is not connect strategy, it can be said that not connect is defective strategy 

and connect is cooperative strategy in a social network connection game. 

However, static solutions, such as evolutionary stable strategy and Nash 

equilibrium, seem meaningless if the purpose is both describing how individuals 

establish or reestablish their connections and how they constitute social networks. 

A strategic decision-making situation between connect or not connect 

strategies can be represented with both a normal form game and an extensive form 

game. In social network connection game in normal, players cannot observe the other 

players’ following choices and they can unconsciously choose cooperative strategy. 

If players of a social network connection game continuously play this game at each 

time step throughout network lifetime; then, they would see that cooperative strategy 

can yield either higher payoff value than defective strategy or the worst payoff value 

of this game after any round. Thus, rational strategic decision-making abilities of 

individuals regarding risky situations can be examined with a social network 

connection game in normal form (strategic form). 
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On the other hand, a social network connection game in extensive form 

represents a situation in which player 1 has chance to observe the choice of player 2. 

Therefore, a social network connection game in extensive form is not proper to 

investigate evolution of cooperation due to the advantageous position of player 1.   

As a result, if the purpose is both examining evolution of a cooperative strategy 

in dynamic spatial social networks and analyzing decision makers’ choices, 

application of a social network connection game in normal form seems appropriate. 

 

4.4 Discussion of Results 

It is indicated that the evaluation criterion of evolutionary game theory is 

obviously unfair to less-connected individuals in social networks, because a 

randomly chosen individual can be removed by her high-fitness neighbor after any 

round of continuous 2x2 symmetric games (Zhang et al., 2015).  

Furthermore, it is stated that application of evolutionary game-theoretic models 

to social networks seems to depend on Darwinian natural selection mechanism which 

would eventually eliminate cooperation from the network populations (Zhang et al., 

2015; Nowak, 2006). However, cooperation is an essence of human society, even it 

is a costly behavior (Fu et al., 2008). On this basis, one can deduce that application 

of evolutionary game theory to dynamic social networks can lead to controversial 

results in terms of the examination of human interactions. 

Moreover, it is inferred that cooperation levels hinge upon network topologies 

(Poncela et al., 2009; Ifti, Killingback and Doebeli, 2004). Additionally, Poncela et 

al. (2009) had drawn attention to the fact that the evolutionary dynamics alone 

cannot lead to high levels of cooperation in scale-free networks. It is also 
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demonstrated that cooperation levels decrease after the growing phase of evolving 

networks (Gómez-Gardeñes et al., 2008; Poncela et al., 2009).  

Besides, Iyer and Killingback (2016) reported that certain structural properties, 

which are common in real-world social networks, considerably affect the increase of 

cooperation levels that is present in the prisoner’s dilemma, hawk-dove and 

coordination classes of games. 

On the other hand, the results of a human experiment indicated that 

cooperation levels are same in both scale-free network and square lattice in 

heterogeneous networks (Gracia-Lázaro et al., 2012). Given this evidence, it might 

be said that choices of decision makers in real world differ from artificial decision-

making algorithms that are synthetically generated to examine effects of network 

topologies on evolution of cooperative strategy. Additionally, contrary to other 

works (e.g., Zhang et al., 2015) it might be inferred that evolution of cooperation can 

be observed with the method of accumulated payoff calculation in dynamic social 

networks.   

In addition to analyzing the effects of social network topologies on emergence 

and evolution of cooperation, cooperation levels of humans from different social 

groups, genders, etc. might be compared with each other using the concept of 

continuous 2x2 symmetric games. That is to say individuals from same social groups 

or classes can play a game among each other; then, cooperation levels of each 

different groups or classes can be contrasted with each other. This may allow 

researchers to compare decision-making skills of individuals from different social 

groups, social classes, etc. regarding risky positions. 

Consequently, from evolutionary game theory perspective, a 2x2 symmetric 

social connection game seems proper for application to examine rational choices of 
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decision makers if this game is continuously played in dynamic spatial social 

networks, where individuals are represented with nodes and their interactions are 

represented with edges. However, in sociological context, results of the researches 

(e.g., Berkowitz, 1972; Kaplan, Grünwald and Hirte, 2016) showed that social 

interactions of individuals can be formed by various social variables in real world. In 

this sense, it can be said that a 2x2 symmetric game might be restrictive in terms of 

representing the whole certain underlying factors that form socioemotional 

interactions of people in real world. But, to examine decision-making abilities of 

humans, continuous 2x2 symmetric games might be applicable to dynamic socio-

spatial networks where players have to choose one of the two strategies: connect or 

not connect. 
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Conclusion 

Network topological measures have been used to determine the importance of 

nodes (e.g. degree distribution, centrality), as well as to understand structure of 

networks (e.g. clustering coefficient, average path length and diameter) in complex 

networks. Moreover, it is known that properties, such as nonlinearity, hierarchical 

organization, feedback, robustness, or emergence affect evolutionary dynamics of 

complex systems. Additionally, complex social networks exhibit different 

characteristics (e.g. six degrees of separation) that represent how people interact with 

each other in dynamic social networks (Easley and Kleinberg, 2010).  

However, if the purpose is examining either altruistic behaviors of humans 

(e.g. emergent behaviors) or rational decision-making skills of individuals in social 

networks, combination of evolutionary game theory and network science seems 

proper for application. 

Besides the examination of network topological effects on interactions of 

humans, evolutionary game-theoretic models might be applied in order to compare 

cooperation levels of humans from different cultures, professions, ages, etc. 

In this sense, a social network connection game is articulated and we content 

that defective strategy (not connect) dominates cooperative strategy (connect), and 

defective strategy (not connect) is evolutionary stable. In a social network connection 

game, if not connect strategy is chosen against connect strategy; then, not connect 

strategy results in higher payoff value than connect strategy. On the other hand, 
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mutual choice of connect strategy yields higher payoff value than mutual choice of 

not connect strategy. The indication is therefore that a dilemma occurs if players do 

not have knowledge about opponents’ future choices. 

It is obvious that both connect and not connect strategies have to be sustained 

to analyze interactions of individuals in dynamic social networks, and a social 

network connection game theoretically enables maintenance of cooperation due to 

the occurrence of a dilemma.  

In a nutshell, although intricate socioemotional interactions of humans can be 

formed by countless factors in real world, such as homophily, by means of the 

concept of continuous 2x2 symmetric games (e.g. continuous prisoner’s dilemma 

games) “rationality” of decision makers might be examined with 2x2 symmetric 

games in dynamic social networks as indicated with a social network connection 

game.  
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