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ABSTRACT

DISCONTINUOUS DYNAMICS WITH GRAZING POINTS

Kivileim, Aysegiil
Ph.D., Department of Mathematics
Supervisor : Prof. Dr. Marat Akhmet

July, 2016, [222] pages

The scope of this thesis is to investigate the periodic solutions of impulsive systems
with grazing and modeling through differential equations with impulses. By means of
differential equations with impacts, the system which is modeled through two distinct
differential equations is taken into account and such models are named as models with
impact deformations. The surfaces as well as the coefficient of restitution are deter-
mined to be dependent on the impact velocity. The simulations are obtained for the
relation of the displacement and the restitution with the impact velocity. Analytical
formulas are also determined for them. The periodic solutions and their stability are
examined analytically for the impulsive systems with the deformable surfaces and
the velocity dependent coefficient of restitution and the results are actualized through
simulations. The chattering, which was known infinitely many impact occurring in
a finite time, is suppressed in the systems by utilizing deformable surfaces and ve-
locity dependent coefficient of restitution. An appropriate definition for the grazing
phenomenon is presented. Discontinuous dynamical systems with graziness are ob-
tained. The differentiability and other properties of discontinuous dynamical system
are widely investigated. The orbital stability of the periodic solutions are proved.
Applying small parameter analysis, the bifurcation of periodic solutions is observed
in specific examples. The non-autonomous grazing phenomenon is considered and
some sufficient conditions are obtained for the differentiability with respect to initial
values. The perturbations around the periodic solutions of those systems are consid-



ered and the theoretical results are visualized by simulations.

Keywords: Grazing solutions, Discontinuous dynamical Systems, Chattering, Impact
deformations, Coefficient of restitution, Deformable surfaces, Grazing cycles of non-
autonomous systems, Regular perturbations around the grazing cycles, Van der Pol’s
oscillators, Vertical and horizontal grazing

vi



(0Y/

SIYIRIP GECEN NOKTALARA SAHIP SUREKSIZ DINAMIKLER

Kivileim, Aysegiil
Doktora, Matematik Bolimi

Tez Yoneticisi : Prof. Dr. Marat Akhmet

2016 ,[222]sayfa

Bu tezin amac s1yirip gecen ¢oziimlere sahip impalsif diferansiyel denklemleri aras-
tirmak ve impalsif diferansiyel denklemler kullanarak modellemektir. Vuruglu dife-
ransiyel denklemler kullanarak farkli iki diferansiyel denklemlerle modellenen sis-
temleri tek bir diferansiyel denklem kullanarak modellenebilir. Bu modeller i¢in res-
tiitasyon katsayist ve ylizeylerin vurus hizina bagl olarak degisiklik gosterebilecegi
belirlenmistir. Analitik formiiller kullanilarak ve simiilasyon yapilarak restitiisyon
katsayis1 ve yer degisiminin vurus hizina bagh degisimi elde edilmistir. Deforme
olabilen yiizeylere ve hiza bagh restiitasyon katsayisina sahip vuruslu diferansiyel
denlemlerin periyodik ¢oziimleri ve onlarin kararlilig1 incelenmistir. Sinirli zamanda
siirsiz vurus olarak tanimlanan tikirdama deforme olabilen ve ¢arpma hizina bagh
restiitasyon katsayist kullanilarak sistemlerde baskilanmistir. Styirip gegen durumlar
icin uygun tanimlamalar verilmistir. Siyirip gecen ¢oziimler iceren siireksiz dinamik
sistemler elde edilmistir. Tiirevlenebilme ve diger sistem 0Ozellikleri genisge incelen-
mistir. Bu sistemlerin periyodik ¢oziimlerinin yoriingesel kararlili1 ispatlanmustir.
Kiiciik parametre yontemi kullanilarak, periyodik ¢oziimlerin dallanmasi belirli 6r-
nekler iizerinde elde edilmistir. Otonom olmayan siyirip ge¢gme durumlarina sahip
sistemlerde tiirevlenebilme icin gerekli kosullar elde edilmigtir. Bu sistemlerin pe-
riyodik ¢oziimleri etrafinda pertiirbasyon yapilmistir ve teorik sonuglar simiilasyon
kullanilarak gorsellestirilmistir.
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Anahtar Kelimeler: Siyirip gecen ¢oziimler, Siireksiz dinamik sistemler, Sonlu za-
manda sonsuz ¢arpma, Vurus deformasyonlari, Restiitasyon katsayisi ve deforme olan
yiizeyler, Otonom olmayan sistemlerin siyirip gecen periyodik ¢oziimleri, Siyirip ge-
cen periyodik ¢oziimler etrafindaki diizenli pertiirbasyonlar, Dikey ve yatay siyirip
gecme
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CHAPTER 1

INTRODUCTION

Ordinary differential equations serve as mathematical model for many exciting real
world problems not only in science and technology but also in such diverse areas
as economics, psychology, defense and demography. Rapid growth in the theory of
differential equations and in its applications to almost every branch of knowledge
have resulted in a continued interest in its study by students in many disciplines. This
has given ordinary differential equations a distinct place in mathematics curricula all

over the world.

In early stages, mathematicians were engaged in formulating differential equations
and solving them tacitly assuming that a solution always existed. The rigorous proof
of existence and uniqueness of first order initial value problem was first presented by
Cauchy in his lectures in 1820-1830. He also extended his process to system of such
initial value problems. In 1976, Lipschitz improved Cauchy’s technique with a view

making it more practical.

In 1893, Picard presented an existence theory based on a different method of suc-
cessive approximations, which is considered more constructive than that of Cauchy-
Lipschitz. The Pioneering works of Picard, Cauchy and Lipschitz are united in the
analysis of a qualitative nature of ordinary differential equations. Instead of finding
solutions explicitly, it provides sufficient conditions on the known quantities which
ensure the existence of solution. Besides existence and uniqueness additional suf-
ficient conditions to analyze the properties of solutions, asymptotic behaviour, os-
cillator, behaviour, stability, so on, carefully examined. Moreover, R. Bellman, I.

Bendixon, H. Poincare and B. Van der Pol are some of the mathematicians who han-



dle with qualitative theory of differential equations.

Dynamical systems are mathematical objects used to model physical phenomena
whose state (or instantaneous description) changes over time. If one needs to describe
real world problems adequately discontinuity and continuity should be considered to-
gether. The discontinuity property of the motion is as old as the motion itself. The
dynamical system theory takes us away from the idea of discontinuities because of the
continuous nature of the dynamics. However, the applications in engineering, elec-
tronics, biology, medicine and social sciences requires the implementation of either
sudden changes of an elsewhere continuous process or in the form of discrete time
settings. Discrete time settings (Difference equations) can be considered as an instru-
ment in the analysis of continuous motions such as Poincare maps. Moreover, such
maps can be applied in the investigation of Impulsive differential equations where
continuous alterations are mixed with impact type changes in equal portion. Such
differential equations may admit discontinuity either at the fixed moments or at the
moments when the integral curves reaches the curves in the extended phase space
(t,x) as both time increases or decreases. For such system, there exists no general
formula for the impact times in general. For this reason, such system of differen-
tial equations are called differential equations with variable moments of impulses.
The interest in systems with discontinuous trajectories have grown in recent years
because of the needs of modern technology. Still the theory of these systems seems
very far being complete and there is still much to do make the application of the
theory more effective. It is natural to assume short term perturbations act instanta-
neously that is in the form of impulses. It is known that many biological phenomena
such as thresholds, bursting rhythm models in medicine and biology, optimal control
models in economics, pharmakinetics and frequency modulated systems do exhibit
impulsive effects. For this reason the theory of impulsive differential equations are
far much richer than the corresponding theory of differential equations without im-
pulses. These types of dynamical systems were considered at the beginning of the
development of nonlinear mechanics and attracted the attention of physics. Because
they give possibility to adequately describe processes in non-linear oscillating sys-

tems. A well-known example of such a problem is the model of a clock.

Because of the complexity in the analysis of differential equations with variable mo-



ments of impulses, the differential equations with fixed moments of impulses are
widely investigated. However, modeling systems with fixed moment of impulse re-
duce the reality of the models. For this reason, to introduce the systems with vari-
able moments of impulses is urgent. In this thesis, we mainly used the differential
equations with variable moments of impulses and a method which was introduced
by Akhmet [S]] is used for the analysis of such systems. The method which reduce
the systems with variable to fixed moments of impulses by preserving its dynamical

properties is called a B—equivalent method.

1.1 Characteristics of Differential Equations with Impulses

In this thesis, R, N and Z stand for real numbers, natural numbers and integers, re-

spectively. Set by || - || the Euclidean norm and (, ) inner product for the vectors in

R™.

For some system of differential equations, there may exist some short term perturba-
tions whose duration is negligible comparing with the whole system. These pertur-
bations may cause change in the state of the motion. To illustrate the processes with
impulse, let us take into account the bouncing ball model which impact against the
horizontal flat surface. The velocity of the ball changes when it hits the surface. This
type of model is important for the improvement of the theory of differential equations
with impulses [3, 4} 15, 8, [109]]. There are two different types of impulsive differential
equation system. They are: system of differential equations with fixed moments of
impulses and those with variable moments of impulses. Let us start with a system

with fixed moment of impulses:

o' = f(t @),
Ax’t:&' = Il(x)7

(1.1)

where ' denotes the derivative of state variable x € R™ with respect to time, {6; };c7
denotes the moments of the impulses and the index ¢ belong to a finite or infinite
index set. The function f(¢,x) in (I.I) is rate of continuous change of state variable

and I;(x) is instantaneous change of phase variable x. Additionally second equation
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in (L.I)) can be interpreted as Ax|,—g, = x(0;4) — x(6;), where z(6;+) is the position
of the solution after impulse and z(6;) is the position of the solution before impulse.
Moreover, in this thesis all solutions of the impulsive systems are considered as left
continuous. To illustrate the behavior of any solution of (I.1]), we will consider the
following process. The solution of (I.1)) behaves as a solution of 2’ = f(¢, z) until
the impulse moment ¢t = ;. At the moment ¢ = 6;, the solution admits jump. That is
second equation in will be used. Then, the solution will continue as a solution
of ' = f(t, x) with initial value (0;, z(6;+)), this process continue until the maximal
interval of existence of solutions [5]]. Moreover, we can conclude that the solution of

(1.1)) has discontinuities of the first kind.

In systems with variable impulse actions, the impulses occurs whenever solution
meets the one of the surfaces of discontinuity in phase space. Comparing with the
differential equations with fixed moments of impulses. However, modeling the real
world problems with the system of differential equations with variable moments of
impulses are far more adequate than those with fixed moments of impulses. An im-

pulsive system with variable moments of impulses can be of the form,

‘/'E, = f(t7 x)?
Ax|t:7'i(:v) = ]z($)7
where x, Ax f(t,x) and I;(z) is described before. For each i € Z, 7;(x) is the sur-

(1.2)

face of discontinuity. It is easy to observe from the second equation in (I.2) that the
impulse moments depend on the solution. Thus, each solution has its own impulse
moments. For this reason, the analysis of these system are more complex than those
with fixed moments of impulses. Moreover, it is easy to see that both (I.1]) and (1.2))
are non-autonomous differential equations with impulses. There is a class of differ-
ential equations with impulses which is autonomous. Such systems can be expressed

as

(1.3)
Azlzer = I(),

where I is the surface of discontinuity. In order to introduce the solution of (I.3),

take into account one of the trajectory of f(x), the state point of this trajectory moves
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until it coincides with the set I'. Assume it meets with I" at the moment ;. After it
meets, the point x((;) is mapped to z(¢;) + I(2({;)). Then, the state point moves
along again as a trajectory of (I.3) with initial value z((;) + /(z({;)) until the next
coincidence with the surface of discontinuity I" and so on. If the vector field f(¢, z) in
(L.I) is f(z), then we will call such systems autonomous differential equations with
fixed moments of impulses. Under certain conditions, such autonomous differential
equations with both fixed and variable moments of impulses, form a discontinuous
dynamical system. In book [5], some sufficient conditions for the discontinuous dy-

namical system are presented.

There exists also some interesting features in the models with contact. It is easy to say
that the contact can be instantaneous or last for a while. We will call the system with
impact if the duration of contact is negligible or instantaneous In an idealized world,
there may exist some models where there occur infinitely many impacts in finite time.
As we mentioned, such cases cannot been observed in real world applications. For
those reason, to make the systems with chattering more realistic surface is considered
as deformable and the coefficient of restitution is considered as variable. To model
such systems, we considered a system of differential equation with variable moments

of impulses.

There are some models where we can analyze them through two differential equation.
For such models, to investigate the procedure the stitching method is used in literature,
in this procedure the solutions of two different differential equations are glued one by
one consecutively. It is appearant that to consider the dynamical properties of these
models through stitching method is not efficient because the only way to overcome
any problem is to find the exact solutions of differential equations. To solve the
dynamical problems and to find the dynamical properties of system, we proposed a
model which consists of differential equations with variable moments of impulses
called models with impact deformations. Such models save the framework of the

solutions of the model with two different differential equation.



1.2 Discontinuous Dynamical Systems

Because of the complex nature of real world, the modeling with continuous dynam-
ical system is much more realistic because of its accuracy and reality of predictions
of discontinuity in engineering. Dynamical systems consist of piecewise continuous
trajectories. To investigate the behavior of the trajectories of discontinuous dynamical
system, the properties of vector field should be considered with maps. The discon-
tinuous trajectories can not be reduced to flows or cascades. But because of the fact
that time is continuous for discontinuous trajectories, flows are much more similar
to discontinuous flows in time sense. T. Pavlidis [103]] is formulated the conditions
for autonomous equations with discontinuities to be a dynamical system. Some other
papers [3,15, 8], also include some practical and theoretical ideas about discontinuous
flows. There is a chapter in the book of M. Akhmet [5] which covers the provided
conditions for the existence of a discontinuous flow and a differentiable discontin-
uous flow. In the same book also some sufficient conditions are presented for an
autonomous impulsive system to be a B— - flow and B— smooth discontinuous flow.
The B— continuity and [109], some properties of discontinuous dynamical systems
are provided and they are supported through examples. In these books [, [109]], the
definitions, theorems and lemmas for discontinuous dynamical system are only con-
sidered for those whose trajectories intersects the surfaces of discontinuity transver-
sal. There is no specific condition for discontinuous dynamical systems whose trajec-
tories intersects the surfaces of discontinuity tangentially at least one point. We will
call these type of trajectories grazing trajectories and the points where the tangential

intersection occurs as grazing points.

1.3 A coincise review on grazing phenomenon

Grazing phenomenon is a special case which can be observed in impacting systems.
There can be found two different approaches in the literature for the definition of
grazing. One of them is that the grazing occurs whenever the trajectory meets with
zero velocity to the surface of discontinuity [98],[99],[106]. Another one is that the
trajectory meets with the surface tangentially [23, 27, 31, 46]]. In the light of these
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papers, we focused on the analytical expression of the tangency at the grazing point

to define the horizontal grazing and vertical grazing.

In literature grazing phenomena is considered generally for systems where whose
vector fields are non autonomous and the impulse functions and surfaces of discon-
tinuities are only functions of space variable. Nordmark [97]-[100] in his seminal
paper investigated the existence of grazing periodic and aperiodic solutions by uti-
lizing a special map called Nordmark map. Budd is also considered the grazing as
a bifurcation phenomena which can be interpreted as transition from the continuous
trajectory to discontinuous under parameter variation. To handle with this problem,
Budd defined a map which is called zero time discontinuity map. Feigin [39, 40] is
also considered the the existence of periodic solutions and period doubling solutions
in his papers. Ivanov found some sufficient conditions for systems with graziness

which undergoes a bifurcation under a parameter chance.

There are wide ranges of studies about grazing phenomenon [23} 31}, 27, 46,98, 106].
All existing studies are conducted on autonomous systems [[106, 53], the systems with
discontinuous right hand side [19, 33]] and non-autonomous system with autonomous
surfaces of discontinuity [99]. In [46], a criterion for horizontal grazing motions in
a dry friction oscillator is determined by means of the local theory of non-smooth
dynamical systems on the connectible and accessible domains. In the study [99]], the
creation of periodic orbits associated with grazing bifurcations in the models of im-
pacting systems and some sufficient conditions are obtained for the existence of a
family of periodic solutions. In [42], two distinct types of grazing bifurcations are
taken into account. One is that the stable motion disappears and system stabilized
onto an already existing attracting solution and the other in which there is an imme-
diate jump to chaos as part of an orbit grazes at a stop. In the paper [98], the stable
periodic orbits and chaotic motions are determined analytically by utilizing the limit
mapping. In [99]], some sufficient conditions are obtained to determine the existence
of a family of periodic orbits whose creation is caused by ramification from the graz-
ing bifurcation point. The smallest appropriate parameter alteration for the horizontal
grazing in a hybrid system is determined by applying numerical methods [36]. A gen-
eral method is presented for the construction of suitable local maps near a horizontal

grazing point for n-dimensional PWS systems in [33]]. In our paper [6], we have taken



into account the grazing properties of discontinuous dynamical systems and we prove

the orbital stability theorem for them.

In [76], some information about the strange attractor fragmentation which is caused
by grazing in non-smooth dynamical systems is given. The sufficient and necessary
conditions for grazing bifurcation in non-smooth dynamical system are considered.
The initial sets of grazing mapping with the corresponding initial grazing manifolds
are introduced and taken into account. The fragmentation of strange attractors of
chaotic motions which is induced by grazing are presented. In the paper [98], the
nonlinear dynamics of vibro-impact system is investigated utilizing the Poincare map,
which has piecewise property and singularity in it. Because two masses have the
grazing contact with each other, the singularity is generated in the map and it gives

rise to the instability of periodic motions.

The paper [97], the motion of single degree of freedom periodically forced oscillator
subjected to a rigid amplitude constraint is taken into account. By analytical methods,
the singularities caused by grazing impact are investigated. It is shown that as a stable
periodic orbit comes to a grazing impact under control of single parameter a special
type of bifurcation occurs. It is observed that the motion after the bifurcation may be

non-periodic and a criterion for this based on orientation and eigenvalues are given.

Shaw and Holmes [111] studied the details of grazing bifurcation in a single degree
of freedom one sided impact oscillator. It is explored that a grazing bifurcation take
places when a point on the orbit of the Poincare map intersects the line of the stop with
zero velocity. Some mathematical and numerical analysis have been done on single
degree and multi-degree of freedom impacting harmonic oscillators. It is observed
that they reveal variety of complex behaviour such as grazing bifurcation, chattering

and trapping.

In the study [23], a new form of bifurcation called the grazing bifurcation is iden-
tified and exemplified that it leads to complex dynamics including chaotic behavior
interspersed with period adding windows of periodic behaviour. The normal form
for the grazing bifurcation is constructed to classify the dynamics around it. It is

demonstrated that complex dynamic behaviour can be found at a grazing bifurcation.



It has been shown in [25] that new types of bifurcations exist if a system evolves from
a nonimpacting to an impacting state as a system parameter varies smoothly. They
named these type of bifurcations as grazing bifurcations. In the paper, different types
of grazing bifurcation are observed in a simple sinusoidally forced oscillator system
in the presence of friction and hard wall where impacts happen. In [44], it is observed
that grazing or zero velocity impacts cause non-differentiability in Poincare map. It
has importance for the bifurcation when a stable impacting motion change to impact-
ing motion. The grazing bifurcation is defined as a bifurcation where a zero velocity
impact is involved. In the paper, they studied how the grazing bifurcation of a sim-
ple periodic motion can be analyzed in a class of periodically driven vibro-impact
systems. By using local analytical methods an expression for the local Poincare map-
ping is obtained. The rising and grazing touch which occur in sticking solutions of
a two degree of freedom plastic impact oscillator are taken into account. Dynamics
of vibro-impact system is described by a three dimensional map which has piece-
wise property and singularity. In [S7], a linear oscillator undergoing impact with a
secondary elastic support is considered experimentally and semi-analytically for near
grazing conditions. In the study [99], the creation of periodic orbits associated with
grazing bifurcations are taken into account and the existence of a family of orbits are
given. A numerical example for an impacting system with one degree of freedom is

presented.

In the papers [S8, 59], the bifurcation around the grazing solution of the system with
a parameter is examined. The bifurcations scenarios have been obtained for such
system under variation of the parameter. The parameter variation is observed only in
the vector-field of an impacting system. Some sufficient conditions for the stability
of a grazing periodic solution is presented. In the paper [58]], it is asserted that the
grazing impact which is known to be a discontinuous bifurcation can be regularized
with appropriate impact rule which differs in many aspects from the existing ones.
In [59]], considering the non-zero impact duration, the bifurcations which are related
with grazing contacts are analyzed. To find the resulting motion, some algebraic
conditions are derived. The theoretical results are exemplified by taking into account
a mechanical system which consists of a disc with an offset center of gravity bouncing

on an oscillating surface.



These all papers are united in the following sense, vector-field is the function of both
time and space variables and the surfaces of discontinuity and the jump operator of it
are defined only through the space variables, then it is easy to call the system a half-
autonomous impulsive system. However, there exist some systems where both the
vectorfield and the surface of discontinuity consist of space variables, then they are
called autonomous impulsive system [21]. Finally, there are papers about mechanical
systems where vectorfield as well as surface of discontinuity consist of both time
and space variables. Then it is easy to see that such systems are non-autonomous

impulsive systems [3].

1.4 Organization of Thesis

The organization of this thesis is of the following form. In Chapter 2, a large class
of viscoelastic mechanisms with impact deformations such that colliding parts are
deformable and the Newton’s coefficient of restitution is variable is taken into ac-
count. It is shown that the Kelvin-Voigt viscoleastic model is displaced by the system
with variable moments of impacts in analysis of mechanisms with contacts. The sug-
gested impact deformations are compared with the experimental data. By applying
deformable surfaces and the variable coefficient of restitution in the models with im-
pacts, we suppress the chattering. By making use of the qualitative theory for the
systems with variable moments of impulses, we have investigated the existence of
periodic solutions and their stability. To actualize the theoretical results, extended
examples with simulations are presented. In Chapter 3, discontinuous dynamical sys-
tems with grazing solutions are taken into account. The group property, continuity
and smoothness of motions and continuation of solutions, are widely analyzed. A
variational system around a grazing solution which depends on near solutions is con-
structed. Orbital stability of grazing cycles is examined by linearization. The method
of small parameter is widen for investigation of neighborhoods of grazing orbits, and
grazing bifurcation of cycles is demonstrated in an example. Linearization around a
grazing equilibrium point is discussed. The mathematical aspect of the work depends
on the theory of discontinuous dynamical systems [S)]. Our approach is analogous to

that one of the continuous dynamics analysis and the results of this section can be
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widened for functional and partial differential equations and others. Some illustra-
tions with grazing limit cycles and bifurcations are picture to actualize the theoretical
results. As an example for those systems, we have taken into account a coupled Van
der Pol oscillators and the orbital stability of it is considered by applying our results
which we have presented before as well as in the paper [6]. In Chapter 4, the grazing
phenomenon is considered in two different types of non-autonomous systems. First
one is of the form where the vector field is defined by the time and space variables and
the surfaces of discontinuity and impact function are defined by only space variables.
For those systems, we have considered the sufficient conditions for the asymptotical
stability and the regular perturbations around the asymptotically stable grazing solu-
tions. Some examples are provided to show the applicability of our results. The other
type is defined by the time dependent vector field as well as the surfaces of disconti-
nuity which is of the form ¢t = 7;(z), i € Z. For this systems, the grazing is defined,
the differentiability of solutions with respect to initial values and the regular pertur-
bations around the grazing periodic solution is considered. Additionally, appropriate
definitions for the vertical and horizontal grazing are given for non-autonomous sys-
tems. For those, the periodic grazing solutions and their stability is considered by
applying special linearization technique. In Chapter 5, the discussion about the exist-
ing results in this thesis is considered and the future works which can be done in the

light of this thesis are summarized.
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CHAPTER 2

MODELING

Vibro-impact system [[16} 20] is the term used to present a system which is driven in
some way and which also exhibits an intermittent or continuous sequence of contacts
with limiting constraints of the motion. Vibro-impact systems involve multiple im-
pact interactions in the form of jumps in the state space. The dynamics and properties
of vibro-impact systems and specifications of nonlinear phenomena with discontinu-
ity have been investigated in the literature for decades [17, 52, 183} [107]. Compared
with a single impact, the non-linear dynamics of vibro-impact systems are more com-
plicated. The trajectories of such systems have discontinuities, which are caused by
the impacts, in phase space. Although the presence of non-linearity and discontinuity
complicates the dynamic analysis of such systems, they can be described theoretically
and numerically with discontinuities in good agreement with reality. Such systems
with impacts appear in a wide variety of engineering applications. The operation of
vibration hammers, impact dampers, inertial shakers, pile drivers, milling and form-
ing machines, and other vibro-impact systems is based on the impact action for mov-
ing bodies [24, 163, 80]. Machines with clearances, heat exchangers, steam generator
tubes, fuel rods in nuclear power plants, rolling railway wheel-set, piping systems,

granular gases, gear transmissions, and other such systems perform impacts.

An overwhelming number of investigations on vibro-impact mechanisms consider
models with rigid flat surfaces of impact [13} 137, 41, 162 104} [124]. It is natural
that some materials behave more elastically on impact than others. Any material
body deforms under external forces. A deformation is called elastic if it is reversible

and time independent. That is, the deformation vanishes instantaneously as soon as
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forces are removed. A viscoelastic deformation is reversible but it is a time dependent
deformation. It increases with time after application of the load, and it decreases
slowly after the load is removed. A plastic deformation is irreversible, in other words,

it is a permanent deformation. A mechanical model for plastic deformation is drawn
in Fig. 2.5

The primary contributions of the present study are summarized below:

e The contact model with the Kelvin-Voigt viscoelastic motion [35} 164} [123] is
replaced by contact model with impact deformations in analysis of mechanisms
with contacts. By comparing with the Kelvin-Voigt model, the surfaces of dis-
continuity and coefficient of restitution are determined analytically and numer-

ically.

e The model with impact deformations is compared with the experimental data
(15143, 45, 49]]. It is shown that our equations, derived for the coefficient of
restitution and displacement, are in accordance with the experimental data in

the literature.

e Chattering, which can only be observed in an idealized model of an impact
system [22, 166, 53], is suppressed by using impact deformations. The acquired

models are compared with the existing ones with chattering in the literature.

e Systems with impact deformations are exemplified through several mechani-
cal models. Stability and periodicity for these systems are demonstrated by
simulations. Using the differentiability properties of the impulsive system, the

stability of these systems are also verified analytically.

e Granular materials, comprised of many single solid particles regardless of par-
ticle size, are presented for possible applications of impact deformations. The
investigations, done on the mechanical systems, can be also conducted on gran-
ular gases [61), 90l [102]]. Granular materials are supposed to have chattering
phenomena. To give a more realistic model for these materials, the chattering
should be suppressed. By utilizing our results, the engineering problems can be

investigated extensively.
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2.1 Rigid flat surfaces and the constant coefficient of restitution

The main mathematical model of impact is generally characterized by the coefficient
of restitution, 12, defined as vy = — Rv;, where v; is the relative normal velocity before
collision, and vy is the relative normal velocity after collision [86]. Additionally, the

coefficient of restitution varies between 0 and 1.

A system with rigid flat surfaces of impact and the constant coefficient of restitution
can be modeled by the differential equations with variable moments of impulses [,

3,169, 73, 1109] One can observe that such systems can be modeled as follows

' +ky +my = f(t,y,y), y#0, (2.1a)

Ay |y—0 = —(1+ R)y' (2.1b)

where R is the coefficient of restitution , R € [0, 1], k is the damping constant, m is
the spring’s stiffness, and f(¢,y, ') is the force which is applied from outside to the
system. The equality Ay/'(8) = /(6%) — 3/ (0~) denotes the jump operator in which
t = 0 is the time when a mass reaches the rigid obstacle which is at position y = 0.
Also, y/(0~) is the pre-impact velocity, which is the velocity before impact (which is
the left limit of the velocity) and 3/ (6") is the post-impact velocity, i.e., the velocity
after impact (which is the right limit of the velocity). In mechanical models, the
solutions are assumed to be left continuous [S)]. Thus, the velocity is assumed as left
continuous, i.e., y'(0~) = y'(f). System is extensively used in applications such
as mechanics and electronics [3} 13, [119]]. It is called a model with the Newton’s law

of impact.

There can be found some applications of mechanisms with a constant coefficient of
restitution in biology. For example, the mechanical base of impact resistance in a
biological armor is investigated. By using the coefficient of restitution, an informative

analysis of a biological system have been conducted [[117].

There is no system in the real world which is as idealized as the system with rigid flat

surfaces and the constant coefficient of restitution. By introducing new conditions
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on colliding bodies, we aim to develop a model for the vibro-impact systems, which
includes the framework of equation (2.1)). A detailed illustrations of such a model can

be found in the remaining part of the study.

2.1.1 The Kelvin-Voigt model and the mechanisms with contacts

Consider a vibro-impact model, at some time intervals the bodies interact with each
other and at other time intervals, they move separately. In general, the investigations
on motions of such systems are comprised of two phases, i.e., Free Flight Motion
(FFM) and Contact Motion (CM). FFM is observed when the parts of the mechanisms
are not in contact. A motion which has the period of time when the colliding bodies
are in contact with each other, is called CM. The interaction between bodies can be
of different types. For example, one body penetrates another body or strikes another
body, being in contact. An impact action can last several seconds or can be instan-
taneous. In the literature, different types of differential equations are utilized to ana-
lyze CM, such as the Kelvin-Voigt viscoelastic motion (KVM) [35, 164, [123]] and the
Maxwell viscoelastic model [35)64]. In the case of a non-elastic impact, the model
with Newton’s law of impact is also considered as a contact model [41} 162, 86, [119].
If we diminish the contact time zero, then one may consider contact motions as impact
ones. In the last several decades, mechanisms with impacts are considered through
differential equations with impulse. Thus, in our study, we consider two types of
contact motion. One is considered by KVM and other one is impulse motion. More
precisely, we consider impulse motion in the form of Newton restitution law with

constant and variable coefficients of restitution.

KVM is investigated as an illustration for CM. Many original applications of the
model can be found in robotics [86] and biology [12}128]]. For example, Argatov [12]
have examined some experimental outcomes with a non-linear viscoelastic impact
model. The main properties of the articular impact have been qualitatively predicted
using the linear viscoelastic theory. For the main parameters of the Kelvin-Voigt and

Maxwell models, exact analytical solutions have been attained.

KVM consists of a damper in parallel with a spring and they are linked with a table.
The mechanism illustrating the Kelvin-Voigt model is depicted in Fig. and the
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mathematical formulation of the model can be given as follows:
my" +ny +cy=—-mg, y<0 (2.2)

where m is the mass of the bead, n is a damping coefficient, and c is a linear spring

constant.

Figure 2.1: The Kelvin-Voigt Model with a spring and a damper.

In a mass-spring-damper system, the main energy dissipation is caused by a damper.
Energy in a vibrating system is either dissipated into heat or radiated away. A vi-
brating system may encounter many different types of damping forces from internal

molecular friction to sliding friction and fluid resistance.

For n = 0 and ¢ # 0, there is no damper attached to the system. In such system, the
bead reaches the table with velocity vy and squeezes the table and leaves the table with
the same velocity vy, only the direction of the velocity changes after the termination
of the contact. When n # 0 and ¢ # 0, the system consists of a damper and a
spring such system may dissipate or produce energy during motion. When n > 0, the
system dissipates energy during motion. Some kinetic energy is transformed into the
deformation of the material, heat, sound and other forms of energy [95]. The bead
reaches the table with the velocity v, at the level y = 0 and compresses the table.
After the maximum displacement is attained, the bead moves up and reaches the level

= 0 with the velocity less than vy. This motion proceeds until the bead stops. On
the other hand, when n < 0, the system produces energy during motion [10]. This

type of systems are applicable in mechanical and electrical models [10].
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Let us consider the following model. The bead has a free fall in a uniform gravi-
tational field without air resistance from a height y, with an initial velocity vg = 0
to the table which lies at the position y = 0. After the bead meets with the table, it
exerts pressure on the table and it squeezes the table. Additionally, the Kelvin-Voigt

viscoelastic model is only valid when the bead and the table act in unison.

A contact motion can be distinguished by two phases, i.e., a loading phase and an
unloading phase. The loading phase, starts with the contact, continues up to the max-
imum displacement. The maximum displacement is attained whenever the velocity
of the bead becomes zero. The unloading phase, begins with the maximum displace-
ment, lasts until the bodies are separated from each other. In both the loading and the
unloading phases, the model is governed by equation (2.2). During loading phase ki-
netic energy of the motion is transformed into the internal energy of the deformation

by the contact force.

Let us consider the solution of equation with the conditions y(t*) = 0 and
y'(t*) = v, where t* is the first time the bead reaches the table (the position y = 0).
The solution of the equation with a damped oscillatory process can be given as
follows

y(t) = =% 4 2 exp(— 5 (¢ — 1)) [ cos(
2cv+ng . V4Ame—n? .
p L L e ))]. 2.3)

Vadme — n?

) +

The conditional period, the logarithmic decrement, the conditional amplitude, and the
phase angle are quantities which characterize a mechanism with a damped oscillatory
process. By utilizing the features of the system, we can determine the conditional
period and the logarithmic decrement. However, the initial conditions are needed to

determine the amplitude and the phase for an oscillatory mechanism [10].

It is known that the model with the Newton’s law of impact and the model with the
Kelvin-Voigt viscoelastic motion are autonomous systems. Thus we can consider
the meeting moment with the table in the motion with the Kelvin-Voigt viscoelastic
model as an initial moment of the motion. That is, we can take an initial condition as

y(0) = 0and ¢y/(0) = .
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The classical approach of analyzing vibro-impact problems is stitching [[14, 74} 118]],
i.e., integrating motion between impacts and using impact conditions to switch be-
tween time intervals of solution. It has been observed that the researchers have
analyzed the processes with elastic impact by combining the solutions of two dif-
ferent differential equations. One can understand the process through the following
example. Consider a mechanical model whose motion is comprised of FFM and
KVM. At first, we suppose that it performs FFM, we can denote the equation of
FFM as x(t, to, x9), where zy is the initial position of the body and ¢ is the initial
moment of the motion. When two bodies collide at time ¢;, the solution can be an-
alyzed through the equation of KVM. The equation is investigated as a solution of
the differential equation which governs the impact process, i.e., y(t, t1, z(t1, to, xo))-
After KVM, the body continues again its motion as an equation of FFM, which is
x(t, to, y(ta, t1, x(t1, to, xg))), Where to is the time when details are separated. Then it
continues its motion as an equation of KVM and so on. This process continues until

the bead stops.

Consider a mechanical model with the Kelvin-Voigt viscoelastic motion. The mo-
tion of the model is comprised of two phases, FFM which is governed by equation
z" = —g and CM, which is governed by KVM, equation . Thus, we have intro-
duced Contact Model with Kelvin-Voigt viscoelastic Motion (CMKVM). A diagram
for CMKVM is depicted in Fig. [2.2] Now, we will describe the motion as follows.
First, the bead starts its motion from the height y, with initial velocity vyp = 0 in a
uniform gravitational field without air resistance. The first time when the bead meets
with the table is t* = 1/2yy/g. It is the moment when the bead is in the position
y = 0. After meeting with the table, the bead applies a force, which is stemming from
the weight and the velocity of the bead, on the table. As a consequence, the table is
compressed by these forces (loading phase). To calculate how deep the bead travel,
we must find the minimum value of the function (2.3)). In order to verify it, we need
to check the time when the derivative of the position function is zero, i.e. the first
root of the function (2.3)) gives the moment when the maximum displacement is taken
and it is apparent that the velocity of the bead is zero at this time. The following

equation (2.4), which also corresponds to the velocity of the bead, is the derivative of

the function (2.3)
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CMKVM

FFM KVM

Figure 2.2: The diagram of the Contact Model with the Kelvin-Voigt Viscoleastic
Motion.

Viadme — n?

y'(t) = exp ( — %(t — t*)> [v COS(T(t — %))
et ()], 24

and ¢ is the time when the bead reaches the maximum displacement after the motion
starts. It can be evaluated as follows

2m vv4me — n? 210
Y - Ay A4 (—) L. 2.5)
Vame —n? nv + 2mg g

Additionally, one can evaluate the level of the bead when it attains the maximum
displacement as

me

arctan (
nv + 2mg

n
o) ===+ e (- ey

nvg + m92 + cv?

(2.6)

g/ mecv? + mnug + m2g?

However, the stitching method is not appropriate to investigate the dynamical proper-
ties of the vibro-impact systems. If the duration in contact motion is considered small
with respect to the duration of FEM, then the model can be called contact model with

impact deformations.

2.1.2 Impact deformations

The first stage of impact system studies based on the hypothesis of hard impact

with a constant coefficient of restitution [[107)]. The second level is characterized
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by introducing concept of soft impact described by the linear characteristics of force-
deformation or/and force-velocity relations during contact. That is, the surfaces are
not rigid flat, and the coefficient of restitution is variable. There are some mecha-
nisms with elastic and deformable parts, the coefficient of restitution of which cannot
be assumed as constant. Modeling of such mechanisms is more complicated than that
of those with rigid flat surfaces and the constant coefficient of restitution. In some pa-
pers [32, 189, [124]], the coefficient of restitution is considered variable, and a detailed
mechanical analysis of the coefficient of restitution is presented. A general impacting
hybrid system is considered, where the coefficient of restitution is assumed to be vari-
able in [32]. However, many other papers and books [37, 41} 162], the coefficient of
restitution is taken as constant if one considers a concrete mechanical model. The in-
teresting problem of bifurcation and chaos is investigated in a system with deformable
surfaces [[72]] and the constant coefficient of restitution in [81]. Additionally, it is the
first time that the surface of discontinuity is considered as perturbed nonlinearly and
the detailed analysis of existence of discontinuous limit cycle for the Van der Pol

equation with impacts has been given in [8].

It is recognized that the evaluation of the coefficients is still unclear for any particular
system and we need to know a detailed nature of elastic waves [32] to calculate it. It
has been shown that [86] at low impact velocities and for most materials with linear

elastic range, the coefficient of restitution can be approximated by the equation
R(v)=1-aw,

where v is the velocity before collision. In [89], by means of the simulations and ex-
periments, it is demonstrated that the coefficient of restitution is a function of impact
velocity if the particle undegoes both the viscoelastic and the plastic deformations at
low and high velocities. Additionally, two different analytical expressions are demon-
strated for the impact velocity dependent coefficient of restitution in [29,60]. Both are
compatible with the nature of the impact velocity dependent coefficient of restitution,
1.e., the coefficient of restitution is varied form zero to unity, and inverse proportional

to the absolute value of the impact velocity.

Force characteristics are used to describe the contact interaction of two bodies dur-

ing impact. Two approaches are considered to analyze force characteristics for the
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interaction between solids [[14]. One is proposed by Stearmann which consists of two
elastic bodies that deform under compression by a force. The force can be interpreted

as follows

3
F = cug, 2.7

where u is the distance between the centers of masses of the objects in the meet-
ing time and c¢; is the proportionality constant determined via experiments. When
the plastic deformation is taken account this model is not appropriate. Thus, Poschl

proposed another formula for the force characteristics

3 d
F = cud +b(22)2, (2.8)
dt
where the positive and negative signs correspond to the loading and unloading phases

of collision, respectively.

Indeed, Babitsky [[14] stated more general formula to analyze the force characteristics,

i.e.,

du,
F = ®(up, d—to). (2.9)

From equation (2.9), one can understand that the force characteristics depend on both

the impact velocity and the surface position.

Utilizing the implicit function theorem, we can propose that equation (2.9) have a

dug

solution of the form uy = (<

). It means that the displacement depends on the

dug ~o

impact velocity. We can denote 5* ~ ', then the displacement can be presented as

v = o). (2.10)

In [127], it was shown experimentally that ¢(z’) changes linearly with the pre-impact
velocity. Additionally, the relation with the pre-impact velocity and the variable co-
efficient of restitution can be found in [14, 86]. So, we can propose that the graphs

®(2’) and (2') can be pictured in Figs 2.3]and [2.4] respectively[14, [86]].
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In systems with impact deformations, the interacting bodies apply some forces to
each others. Depending on these forces and the material properties of the bodies,
some are deformed under these forces. These deformations can be in a various type
such as plastic, elastic and viscoelastic. During these deformations, the displacement
changes. As mentioned before, in such systems, where deformation occurs, the coef-
ficient of restitution can not be assumed as constant. Thus, the deformable surfaces
and the variable coefficient of restitution are the direct consequences of impact defor-
mations. Let us consider a mechanical system with an impacting object and a surface
of discontinuity. When the object meets with the surface, it apply some force on the
surface. Due to this force, if the impacting object is rigid, only the surface of dis-
continuity is deformed. Depending on the velocity of the object at the impact time,
a displacement occurs on the surface of discontinuity. It can be observed that the

displacement is proportional to the impact velocity, that is, if the impact velocity is

X=

/ X=(v)

Figure 2.3: The graph of the displacement versus the pre-impact velocity.

higher, the displacement is deeper.

In Fig. [2.3] the graph of the displacement of the bead versus the pre-impact velocity
has been depicted. It can be observed that the displacement increases whenever the
pre-impact velocity of the bead increases in absolute value. We only forecast how
the displacement changes with the pre-impact velocity in Fig. [2.3]. Additionally, the

forecast will be supported by simulation results in the next section.

V(v)

Figure 2.4: The graph of the coefficient of restitution versus pre-impact velocity.
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The relation between the coefficient of restitution and the pre-impact velocity is pic-
tured in Fig. [2.4] Itis observed that the coefficient of restitution is inverse proportional

to the pre-impact velocity [37, 55,160, 66, 186} 90, 91, [117].

2.1.3 Granular materials

Granular material is composed of many single solid particles regardless of particle
size. In numerical simulations of rapid granular flows, particles collide with each
other. As a consequence of these collisions, energy is dissipated and the dissipa-
tion is characterized by the coefficient of restitution. In contrast to elastic interaction
of particles in molecular gases, the collision of macroscopic granules are generally
inelastic. There is a huge literature about the inelastic collision of granular gases
[61, 190, 91} [102]. The important difference between granular media and ordinary
gases or liquids is that interactions between granules are naturally inelastic. It is cru-
cial to remember that any apparently fluid-like behavior of a granular material is a
completely dynamic phenomenon. To illustrate, the surface waves do not emerge as
a linear response to external energy input but are the consequence of a highly non-
linear hystretic transition out of the solidlike state [61]. As a consequence, in each
collision some energy is dissipated away. The interactions in a granular gas can be
modeled by utilizing a standard approach based on the assumption of instantaneous
collisions among granules with energy dissipation characterized by a constant coeffi-
cient of restitution [[102]. The consequences of recent molecular dynamic simulations
of a two dimensional granular medium is presented in [91]. It is assumed that a gas

of inelastic discs in which the interactions occur only through collisions.

For the granules, it is possible to collide infinitely often in a finite time which is called
an inelastic collapse [61, 91]. For mechanical systems, the inelastic collapse is called
chattering [61, [102]. The detailed literature about the chattering behavior will be
given in the next section. The important difference between an ordinary gas molecules
and a gas of granules is that the interactions are dissipative, pairwise collisions of
granules preserve momentum but they do not preserve kinetic energy [102]. The
steady removal of kinetic energy in the granules due to dissipative collisions whenever

it is compared with common molecular gases. In [89]], the properties of granular gases
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has been investigated and the particles are assumed to be colliding viscoelastically
. As a consequence of the viscoelastic collision, it is observed that the restitution
coefficient is a function of the pre-impact velocity. Thus, the investigations, done on

the impact mechanisms, can be also performed on granular gases.

2.1.4 Chattering

Chattering is one of the most interesting features of an impacting system which is
characterized by an infinite number of impacts occurring in a finite time [22, 66].
The chattering behavior can be observed in the vibro-impact systems with rigid flat
surfaces and the constant coefficient of restitution. It can be only seen in an idealized
model of an impacting system, only a large but a finite number of impacts occurs
in a more realistic model. In the book of Ibrahim [55]], chattering is understood as
special type of oscillation characterized by very small amplitudes that are decreas-
ing with time. Some analytical results, which demonstrate chattering, are exhibited.
An asymptotic estimate of the chattering time with respect to a small parameter pro-
portional to the excitation amplitude is demonstrated for a linear model of inverted
pendulum impacting between lateral walls [29]. Lenci, Demeio and Petrini [66] have
presented a method to compute the time length of chattering in a model for an im-
pacting linear inverted pendulum between two lateral walls. This method also serves
information about suppression of chattering as the excitation amplitude is increased.
Chattering oscillations are depicted for different excitation values in [66] Fig. 10.
In a cooling gas of rigid particles interacting with a constant coefficient of restitu-
tion, groups of particles within the gas may experience chattering. It is demonstrated
through molecular dynamic simulations that a two dimensional gas of inelastic disks
collide infinitely often in a finite time along their joint line of centers [91]. In [90],
the dynamics of a one dimensional gas of inelastic point particles are investigated.
It has been shown through simulations that three particle perform an infinite number
of impacts in a finite time [90]. A detailed analysis of chattering for impact oscilla-
tors can be found in the paper of Budd and Dux [22]. In the study [22], chattering
is not only investigated for autonomous systems, but it is also considered for non-
autonomous systems. A systematic study of chattering behavior is provided for a

periodically forced, single degree of freedom impact oscillator with a restitution law
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at each impact. The relation between the chattering behavior and the certain types
of chaotic behavior is also observed. Guisepponi, Marchesoni and Borromeo have
proposed [48] that chattering resembles with the inelastic collapse. In the process, in-
elastic balls dissipate their energy through an infinite number of collisions in a finite
amount of time. It is also checked numerically [48] that the bouncing ball chatter-
ing is suppressed in the limit when the coefficient of restitution is approaching unity.
Chattering trajectories in the impact space for the model of the bouncing bead with
a vibrating platform is depicted, one can see in Fig. 7 in paper [48]. In the work of
Wagg and S. Bishop [[125]], chatter and sticking, which are the nonsmooth phenomena
of the impacting systems, has been extensively investigated for a two-degree of free-
dom impact oscillator. Luck and Metha [68]] have carried out the dynamic analysis of
a bouncing ball on a vibrating platform. An infinite number of smaller and smaller
bounces in a finite time is defined as a complete chattering for the system. It is also
demonstrated that generic trajectories result in a complete chattering, or locking. In
other words, the ball bounces infinitely many times in an absorbing region without
arriving the transmitting region, since there exists an exponential decay in the bounc-
ing amplitudes. Luo and Connor [79] investigated the dynamic mechanisms of the
impacting chatter with stick by using the local singularity theory of discontinuous
dynamical system and in the study [78]], they examined the motion mechanism of im-

pacting chatter with stick exploiting the theory of discontinuous dynamical system.

It has been demonstrated through above studies that chattering is one of the important
phenomena in mechanics and media. As a consequence, one either produces mathe-
matical methods to discover and investigate chattering or constructs models such that
chattering will not be possible as a motion for the system. There is no wide amount of
work about chattering phenomena which serves detailed mathematical analysis. Ex-
cept possibly the eminent paper of Budd and Dux [22], where chattering is observed
through exact solutions of models. Additionally, the book of Nagaev [94] contains a
huge computational work on the investigation of chattering in concrete models. Due
to the scarcity of the mathematical theory of chattering, it is crucial to consider models
with chattering, and substitute them convenient perturbations in order to suppress any
chattering in the acquired models. This study is especially devoted to this problem.

The suppression of chattering can be comprehended as a modification of a model with
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chattering to the model whose solutions may admit only finite number of discontinu-
ities on a finite time interval of existence. It is essential to assert that chattering can
be suppressed not only in mechanical systems but also in granular media [91}102] by

our results.

In Section the suppression of chattering is attained through perturbations in the
coefficient of restitution and the surfaces of discontinuity. Thus, we bring theoretical
dynamics, which can be understood as the dynamics of the idealized model, closer to

reality by using perturbations.

The outline of the remaining part of this study is as follows. In Section 2, a model
for a vibro-impact system with viscoelastic parts is obtained and illustrated. In the
third section, three concrete mechanical examples are presented for the systems with
impact deformations. The existence and stability of the periodic solutions for such
models are analyzed by using Poincaré map and the differentiability with respect to
the initial condition for differential equations with variable moments of impulses. In
the fourth one, chattering has been suppressed on two different mechanical systems
by introducing impact deformations. The fifth section covers the discussions about

this study.

2.2 The modeling

2.2.1 Models with impact deformations

In the following discussion, the bead is not considered as a point in the coordinate
system, i.e., it admits nonzero radius. Its lowest point should be considered to de-
termine the meeting moment with the surface of impact. The bottom point of the
bead is denoted as P. The meeting moment, 6, can be calculated from the equation
x(0) = ¢(2'(9)), where x(0) is the position of P at time 6. If z(0) is the position of
the center, ¢, of the bead, then we have that x(6) = 2(0) —rg and 2(0) = ro+¢(2'(0)),
where 7 is the radius of the bead. During the motion, the bead is assumed to be non

deformable.
The position of the bead when it reaches the level z = 0 can be seen in Fig. part
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Figure 2.5: A model with a bead and a surface (a) The bead reaches the level x = 0
with a velocity v, and the deformation begins. (b) The plastic deformation occurs
on both the bead and the surface. After deformation, the bead lies at the position

x = ¢(v).

(a). In Fig. 2.5 part (b), it can be observed that the plastic deformation occurs both
on the bead and the surface. The deformation of the system can be understood as a
combination of deformations that occur on the ball and the surfaces of discontinuity

at the same time.

Let us start with a simple model which has been considered in the literature as a
bouncing bead model. It is known that the bouncing bead model is the origin of the
mechanical systems. In the model, there is a steel bead having a free fall from a
height x( with an initial velocity 2'(0) = 0 in the uniform gravitational field without
air resistance. By utilizing differential equations with variable moments of impulses,

we can give a mathematical model for the bouncing bead as follows:

ZL’” = -9, oy 7& 07
Ai[}/‘xzo = —(1 + R)LC,

(2.11)

In this model, the bead is dropped from height zy with zero initial velocity on the
surface which is at the level x = 0 and both are rigid flat. When R = 1, the collision
is totally elastic, i.e., there is no energy dissipation during collision. When the coeffi-
cient of restitution is R = 0, we have a totally inelastic collision. In this collision, all

of the energy is dissipated away and the bead stops abruptly.

In this study, we consider the model where the level of the strike as well as the co-
efficient of collision (the Newton’s coefficient of restitution) are variable, i.e., both

depend on the velocity of the bead at the moment of strike.

The idea of the variable coefficient of restitution is not new. Hertz stated that the coef-
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ficient of restitution varies with the pre-impact velocity [37]]. The displacement of the
bead also depends on the pre-impact velocity when the surfaces are not rigid. That is,
in various impact velocities the displacements of the bead are different. Additionally,
there are some papers [37, [81]] which affirm that the displacement of the bead, ¢(z'),

is linear.

Now, it is reasonable to change system (2.11)) into the following one

' =—g, x#d),
Ax/’x:(b(xf) = —(1 + ZD(Z’/)).I'/

(2.12)

In this model, the bead has a free fall until it reaches the level x = ®(z’), and the
motion of the bead is governed by differential equation 2”7 = —g. When the bead
reaches the level x = ®(0), the impact occurs and the velocity changes with 0+ =
—(1(0))0, where © = '~ and 0" = 2'*. It moves up as a solution of the differential
equation z” = —g with the initial condition x(0) = ®(v) and 2/(0) = —(¢(0))0.
This motion continues until the velocity of the bead becomes zero when it reach the
level x = 0, or the velocity of the bead becomes zero somewhere between x = ®(v)

and x = 0.

. =0 . =

P

(a) (b)

Figure 2.6: (a) A model consisting of a bead and a ground, where the bead is at the
level x = 0. At that level, the elastic deformation begins. (b) A model consisting of
a bead and a ground, where the bead is at the level x = ®(v), maximum deformation
occurs.

In Fig. 2.6] part (a), it is depicted that after performing a free fall, the bead meets with
the ground which lies at the level x = 0. After meeting, the deformation occurs on
the ground but no deformation occurs on the bead. The shape of the bead does not
change and the material of the bead is not lost after collision. The displacement is

considered to be depending on the velocity, v. It is the velocity when the bead meets
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with the surface which lies at the position z = 0.

2.2.2 Replacing the Kelvin-Voigt model with the impulse model and analysis of

mechanisms with impacts

In this part of our study, we replace the Kelvin-Voigt model with the impulse model,
where the all dynamical properties of the Kelvin-Voigt model is preserved. By com-
paring KVM and IM, we derive proper analytical expression for the functions ®(z’)

and ¥ (2').

We calculate the displacement as y(§) = ¢(y'(0)) and at that level the velocity, which
is the meeting velocity of the bead with the table, is calculated from the model with
the Kelvin-Voigt viscoelastic motion. The maximum displacement is taken when the
velocity of the bead becomes zero, i.e., y'(£) = 0, where £ is considered as a moment
when the maximum displacement is attained. In the motion with the Newton’s law
of impact, we will consider that the bead meets with the level x = 0 with velocity
v. The beads meet the surface which lies at the level x = 0 with velocity v in both
models. In our calculations, the time 7 corresponds the travel time of the bead, whose
motion modeled by by using system (2.12), from the level = 0 to the level where it
attains maximum displacement. Additionally, we will suppose that the beads in both
models reach the level z = 0 again with velocity v at a time 7'. The equations, needed
to calculate the displacement and the coefficient of restitution, can be presented as

follows:

z(t) = —=gt* + vt, (2.13)

w(t) = —%g(T—t)2 + (T —t). (2.14)

Moreover by finding the first minimal positive root of the equation (2.3)), we have
calculated the time 7" and by substituting 7" to equation (2.4) we have evaluated the
velocity, v, numerically. By utilizing equations (2.13), (2.14), 7" and v, we calculate

the time 7 as follows:
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20T — gT?

= 2.15
204+ 29T +7v @15

Ui

Now, substituting (2.15)) to equation (2.13), we evaluate the maximum displacement
for the model (2.12)) as follows:

1 20T — gT?

() = —59 ):+

( 20Tv — gT*v
27 20+ 29T + v

20+ 29T + v

(2.16)

To calculate the function ¢ (v) for system (2.12)), we use the velocities v and v, it is
reasonable to consider v as the pre-impact velocity and v as the post-impact velocity

[115]. Consequently, the coefficient of restitution can be calculated as

P(v) = - (2.17)

In previous section, we consider the vibro-impact system which is modeled by using
two different differential equations for two different stages of the motion, i.e, FFM
and Impulse Motion (IM). In this section, instead of analyzing FFM and IM sepa-
rately, we have analyzed the Contact Model with Impact Deformations (CMID) as a
combination of two stages of the motion. This can be understood through Fig.

CMID

FFM IM

Figure 2.7: The diagram of the contact model with impact deformations.

As a consequence of the combination, we have presented a new model for CMID - a
differential equation with variable moments of impulses for the motion. The idea of
modeling with the impulsive differential equations is taken from the book [5] and the

papers [7, 8]]. Such models serve many dynamical properties. CMID is governed by
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the following system

2 +ar' +bx = f(t,x,2)), x# &), (2.18a)

AL |pma@y = —(1 +(2"))a’ (2.18b)

where © = ®(2’) is the level of strike and (') is the coefficient of restitution. In
(2.18)), during the FFM, which is governed by (2.18a), the system may gain or loss
some energy depending on the mechanical properties of the system. For this reason,
we introduce the constants ¢ and b to the system (2.18). Our aim is to provide a
model, described by (2.I8), becomes mechanically and physically realistic. Since
y'(07) = —[R]y' (") in is replaced, now with 2/(6%) = —[¢(2/(607))]2'(67).
Then it is reasonable to call CMID.

x= d(X)

Figure 2.8: The graph of the displacement function for the contact model with impact
deformations.

By using the equations (2.18a) and (2.2)), we present the following system

y'+ay +by = f(t,y,y), y>0, (2.19)

my’ +ny +cy=—mg, y<O. (2.20)

Our aim in this study is to give appropriate model for the mechanisms with viscoelas-
tic parts by using the impulsive differential equation (2.12). So, by utilizing the
Kelvin-Voigt viscoelastic model, we find appropriate approximations for the func-
tion ®(z’) and ¢(z’). Now, in system (2.12)), the function ®(z’) is replaced with the
equation and the function ¢)(z’) is replaced with the equation (2.17), we assert
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that the blue curve and the red curve in Fig. [2.10]overlap for =,y > 0. We can replace
the system (2.19)+(2.20) with the system (2.18)) in the analysis if the contact time for
system (2.19)+(2.20) is small. In other words, if the contact motion time is small in
CMKVM, we can replace CMKVM with CMID. Diagrams for CMKVM and CMID
are depicted in Fig. [2.2] and Fig. respectively. The analysis of CMKVM is done
by using stitching method. Stitching method is not convenient in the dynamical anal-
ysis of such systems. CMID is a special type of differential equations with variable
moments of impulses. The dynamical properties of this system can be analyzed easily
by using the properties of differential equations with variable moments of impulses.
As a consequence of these replacement, we can analyze the dynamical properties
of CMKVM by using CMID under certain conditions. Thus, CMID does not only

present a new modeling type for CMKVM but it also make the investigations easier.
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Figure 2.9: The coefficient of restitution versus the absolute value of the velocity at
the level x = 0.

In Fig. the red curve is the time series of the mechanical model with the Kelvin-
Voigt viscoelastic motion and the blue curve is the time series of system (2.12)). If
the duration of time needed for contact motion in the model with the Kelvin-Voigt
viscoelastic motion is taken as zero approximately then the blue curve and the red
curve approach to each other, and if in equation (2.2) the linear spring constant, c,
is larger, then the function ¢(v) approaches to zero. The time, needed for the bead
to travel from the level z = 0 to level x = ¢(v) in the model with the Kelvin-

Voigt viscoelastic motion, approaches to zero whenever the linear spring constant, c,
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™A~

Figure 2.10: The red curve is the time series of CMKVM and the blue one is the time
series of system @ (CMID).

tends to infinity. If in equation (2.2), the mass m is small, then the acceleration is
large and the velocity increases rapidly [10]. This rapid change in velocity leads to
a formulation of condition of jump. We can assert that the function (2.6)) increases
to zero if the time ¢ in formula decreases. If the function (2.6)) is zero, then
the blue and red curves coincide. Accordingly, the implementation of the impulsive

differential equation (2.12) to analyze the viscoelastic mechanisms is realistic.

2.2.3 Discussions on the surface of discontinuity and the coefficient of restitu-

tion

In this part of the work, we depicted in Figs 2.11] and 2.12] for an illustration of our
analytical data and investigated the coherence of our analytical and numerical results

with the existing ones in the literature.

In our simulations given in Figs [2.11] and 2.12] we take gravitational acceleration
g as 9.8, the constants m, n, c as 64, 16, 1601, respectively, and the velocity v as
—10. For model (2.12)), we will denote the displacement as z(n) = ®(v). By means
of equation (2.16), we draw Fig. [2.T1] It can be observed through Fig. [2.11] that the

displacement increases whenever the absolute value of the meeting velocity increases.
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Some studies are conducted on the penetration depth and the pre-impact velocity by
using a single projectile fired into concrete in [49]]. The graph of penetration depth
which depends on pre-impact velocity has been illustrated in [49] Fig. 12. It can
be observed from Fig. 12 in [49] that the penetration depth increases whenever the
absolute value of the pre-impact velocity increases. Additionally, other experimental
results about the penetration depth and pre-impact velocity can be found in [43]. The
experiments are conducted on the depth of penetration into grout and concrete targets
with ogive-nose steel projectiles. Through these experiments, it is observed that the
penetration depth increased when the absolute value of the striking velocity increases

until the nose erosion is excessive [[43]].

-3t

D(v)

-35}F
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Figure 2.11: The displacement versus the absolute value of the velocity at the level
x = 0.
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Figure 2.12: The coefficient of restitution versus the absolute value of the pre-impact
velocity.
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In Fig. [2.12] the coefficient of restitution versus the absolute value of the pre-impact
velocity has been simulated. The pre-impact velocity is taken as the velocity when
the interacting bodies meet with each other [[115,[127]. It is reasonable to assume that
the function ¢ (v) is a function of the pre-impact velocity. In real experiments for the
ideal bouncing bead model, the restitution coefficient depends on the velocity of the
ball before impact relative to the platform [60, [89] [116]. In Fig. [2.12] it can be ob-
served that when the absolute value of the pre-impact velocity is higher the coefficient
of restitution is higher. In collisions, the energy dissipation increases if the pre-impact
velocity increases [37]]. That is, the coefficient of restitution and the absolute value of
the pre-impact velocity are inverse proportional to each other [37]. In [89], the sim-
ulations of vibrated granular medium present that the restitution coefficient depends
on the velocity before impact. Fig. 1 in paper [89] illustrates the behavior of the
coefficient of restitution with respect to the pre-impact velocity. The paper of Tabor
[116] contains a detailed analysis of the restitution coefficient and it is observed that
the coefficient of restitution depends on the pre-impact velocity. The relationship be-
tween the restitution coefficient and the velocity before impact is pictured in Fig. 6
in paper [[116]. In the paper of Wu, Li and Thornton [127]], an analytical expression
for the restitution coefficient, which depends on the velocity before the impact, has
been presented. The computer simulation, which represents the connection between
the pre-impact velocity and the coefficient of restitution, is exhibited in Fig. 3 in
paper [127]. In [60], the coefficient of restitution, which depends on the pre-impact
velocity, is presented analytically. In paper [60] Fig. 5, the correlation between the
coefficient of restitution and pre-impact velocity is pictured for two different models.
Additionally, the comparison of several models to experimental results of aluminum
oxide spheres impacting a aluminum flat and a steel flat are depicted in Figs 7 and 8,
respectively [60]. One can compare Fig. 1 in paper [89], Figs 5, 7, 8 in paper [60],
Fig. 3 in paper [127] and with the our simulation result which is illustrated in Fig.
[2.12] It can be observed through mentioned simulations, and our simulation presented
by Fig. that the coefficient of restitution depends on the pre-impact velocity but
in our simulation the coefficient of restitution is increases whenever the absolute value
of the pre-impact velocity increases. On the other hand, in [45]], the impact behav-
ior of wet granules was investigated by measuring the coefficient of restitution. It is

observed that the coefficient of restitution is increased with velocity, when the elastic
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energy exceeds the associated with adhesion. Then, it is observed that the restitution
decreases with velocity when the yield stress is exceeded. In paper [45] Fig. 6, it can
be observed that the coefficient of restitution increases up to a maximum value with
the increasing impact speed, then decreases with the impact speed after the maximum
coefficient of restitution is attained. Our simulation result, which can be observed
through Fig. [2.12] that the restitution increases with the velocity and varies between
zero and one. Additionally, in Fig. 5 paper [135], the graph of the coefficient of resti-
tution for millimetric water drops hitting a super-hydrophobic surface is drawn. In
low velocities at the impact, it can be observed that the restitution increases with the
increasing velocities. Our simulation, illustrated in Fig. agrees with the results
of the simulations given in papers [15, 45]. Our system is comprised of a spring and
a damper, for this system there is no specific material properties like a steel or an
aluminum. The graph of the coefficient of restitution given in Fig. does not
agree with the graphs presented in papers [60, 89, [116]. Because they consider the
dynamics of the contact motion as less elastically. That is, they use hard materials
such as steel and aluminum in their experiments. We propose that the materials with

small elasticity has to be investigated in a different way in a contact motion.

There are some mechanisms [14] with rigid flat surfaces and a constant coefficient of
restitution which have a periodic solution under certain conditions. It is significant to
investigate the existence and stability of the limit cycles of the systems with a variable
coefficient of restitution and deformable surfaces. Because there is no such system
can be found in the real world as idealized as the system with the constant coefficient

of restitution and rigid flat surfaces.

2.3 Periodic motions and stability in mechanisms with impact deformations

In order to demonstrate what kind of problems arise for the mechanisms with impact
deformations, we consider the following examples. In the literature, many researches
have been done on vibroimpact systems with the constant coefficient of restitution and
rigid flat surfaces (impact deformations) [4 1} 154,155,162, 80,81, 115,119} 124]. Some
works on the variable coefficient of restitution and deformable surfaces can be also

found in the literature [32, 37, 160, |89]. In these works a mechanical model is given
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but whenever the analytical computations are considered, the models are considered

with rigid flat surfaces and the constant coefficient of restitution.

As a first example, let us consider a mass, which is hinged to the wall vertically
with a spring and a damper parallel to each other [47]. When the mass is passing
through the position z; = p|zy — 1|, 29 > 0, a bullet with an infinitesimal mass,
fired with a constant velocity, sticks in the mass. Due to the action of the bullet, the
mass is subdued to an impact which affects as a constant increase in the velocity.
The increment in velocity can be comprehended as follows x5 (67) — x5(67) = I,
where 6 corresponds to the sticking moment of the mass and the bullet. After that
time, the mass continues its motion and reaches maximum angular displacement.
Then, it swings back and reaches the level z; = 0, x5 < 0. At that moment, the
bullet with an infinitesimal mass, fired with a constant velocity, sticks in the mass,
again. Then, the mass experiences a constant increase in the velocity, i.e., the equality
25(0%)—25(67) = I, is the difference between pre-impact and post-impact velocities
and 0 is the moment when the bullet sticks in the mass. The above process of the mass
and the bullet lasts until the mass stops and at each moment when the mass passes
through the levels x; = plzy — 1|, o > 0and x; = 0, x5 < 0, the mass performs

impacts. The motion of the system is described by

T = T,

Ty = —T1 — Ty, Ty # plre — 1,

AI2|LE1:H|$2—1| =1, x9 > 0,

T = 19, (2.21)
rh=—mx1 —xy, x1#0,

Az —0 = 1o, xe <0,

PR

V3
(2.21) has a periodic solution with the initial condition (0, 1). The periodic solution

where I; = 3, I, = 4exp( ) — exp(\/ig) and ;1 = 0, the non-perturbed system

can be presented as

x(t) = 4(6_% sin(@),e_g cos(@)), t € (0,

2

%L
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V3(t — 27/V/3)

z(t) = —e 5

in( ), cos(

_ (t—4n/V/3) ( .
2 S

V3(t = 2m/v/3) ))
2 )
2w 4n

NG

There is a 47 /+/3—periodic solution for the non perturbed system 1i The graph
of the periodic solution can be seen in Fig.

te(

].

6

Figure 2.13: The periodic solution of the non perturbed-system ll with the initial
condition z(0) =0, a/(0) = 1.

It is observed that the system with the constant coefficient of restitution and rigid
flat surfaces exhibits a periodic motion under some parameter values. It is important
also verify the existence of a periodic solution whenever the surfaces are not rigid flat
and the coefficient of restitution is not constant. Let us consider the perturbed system
with parameters [, = 3, I, = 4exp(—7r\/§) —exp(ﬂ\/g), i = 0.01. Moreover,
z(t,0,2°, ) is the solution of the perturbed system with initial value 2° = (29, 29). It
is crucial to understand how the solution of the perturbed system behaves with respect
to the initial condition as time increases whenever it is close to the initial condition
of the periodic orbit. Denote by F'(x9, ;1) the mapping of semi-line 2’ > 0, x =0
into itself given by F': Rt — R,

F(a3, p) = x(T (1), 0,2°, ), (2.22)

where T'(1) is the time needed for the perturbed system to reach the semi line x =

0, 2’ > 0, after two jumps. T(0) = 4m/+/3 is the period of the non-perturbed
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system. The fixed points with x > 0 of the mapping, F(k,u) = k, lead up to
disconnected cycles of system (2.21)), periodic motions along which are subject to two
impulsive effect in the period. The stability of the disconnected limit cycle of system
(2.21) is determined by the stability of fixed point of the mapping. To check the

stability of the mapping, we calculate the derivative of the map at the initial moment,

. OF (29, r 0 . R 0 . .
ie., (I% - O2(T(1)0271) The partial derivative, 92(t0:271) ig a solution of the
Oz Oxy Ox, ’

following variational equation

uy = us,
w, = -—up—uy, t#0,
I — I psgn(x3—1)
Auy (O) . m0(1+usg11(m0—1)) xo(lii-uusggn(;o—l)) ul([)) 27
o \ I ’ 2—11usgn(132—1) , tE [O’ ﬁ)
AuQ(O) z9(14psgn(z9—1)) z9(1+psgn(z9—1)) uQ(O)
uy =g, (2.23)
2
uy = —uy — us, t;«é%,
s 1 27
Au(B| w0 (A o 2m 4y
s I s
Au2(7§) TaFmene=1) U UZ(jg) V3 V3"

where 7 = xg(?/%) and u(0) = (0,1). The system lb is constructed by using
the differentiability properties of solutions with respect to the initial condition for
impulsive differential equations [5]. We have calculated the derivative of the map

through the solution of system (2.23)). That is,

OF (K, ) Liusgn(k —1) 2 Lipsgn(k —1) \2
ok \/(/i(l + psgn(k — 1))> * <1 k(1 + psgn(k 1))
—Lusgn(k — 1)

k(1 + psgn(k — 1)) — Ljusgn(k — 1)

(2.24)
exp(—1/v/3(2r — arctan(

))-

The fixed point of the map F'(k, p) is x* = 1. The fixed point corresponds to the dis-
continuous cycle of the perturbed system (2.21)). To analyze stability of discontinuous
limit cycle, we calculate the derivative (2.24) at the point z*. It can be computed as
ML{ ++ = exp(—27/+/3). By means of the correspondence with the fixed point

of the map and discontinuous limit cycles of the system [S0, [108]], we can say that the
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system has a stable discontinuous limit cycle [7, 8]]. The stability of the discontinuous

cycle can be observed in Fig. [2.14]

Figure 2.14: The red one is a solution of the perturbed-system |b with the initial
condition z(0) = 0, 2'(0) = 0.8, and the blue one is a solution of the perturbed-
system (2.21) with the initial condition z(0) =0, 2'(0) = 1.2.

In Fig. [2.14] one can observe that the inner solution of system (2.21) with the initial
condition (0,0.8) is drawn in red curve and the outer solution of the system (2.21])
with the initial point (0, 1.2) is drawn in blue curve. As time increases, these two
solutions approach to the limit cycle from inside and outside, respectively. In the light
of the simulations, it can be understood that the system (2.21) has a stable periodic

solution.

As a second example, we will give a model of an impacting system comprising a
mass, a spring, and a damper. The spring and the damper are attached to the wall
in parallel with each other and they are linked with a mass. They are placed on
the ground horizontally. Additionally, in our example the damper has a negative
resistance on the system , i.e., the energy of the system increases. In the book of
Andronow and Chaikin [10], some mechanical and electrical models with negative
resistance can be found. For example, the Froude pendulum is one of the popular
model which has a negative resistance. In [120], a mathematical model is presented
for an impact print hammer to describe the characteristic behavior and the velocity
dependent coefficient of restitution is also introduced with the model. In our example,
the obstacle is placed at the position z; = (22 — 1)?. When the mass meets with the

obstacle, the impact occurs. During an impact, the velocity of the mass changes with

41



A

2(07) — 2(07) = —(1 + R — 0.0325(67))22(6~), where 0 is the moment when the

mass collides with the obstacle.

A linear oscillator, which 1s subdued to impacts, can be described by the following

system

2 =29,
Zé =—21+ 22, <1 7é /1‘1(22 - 1)27 (225)
A2lompr(zo-12 = —(1+ R —0.0322)2, 2 >0,

where 11 = 0.001 and R = exp(—Jz) + 0.03.

Let us determine a 27 /+/3-periodic solution of the non-perturbed system l) It

can be presented as follows:

(0,1), ift =0
2(t) = (2.26)

—e V3 (eb sin(*t), e Cos(‘/Tgt)), ift e (0, \2/—%]

The phase portrait of the periodic solution for the non-perturbed system is depicted
in Fig.

12

0.8r
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Figure 2.15: The periodic solution of the non perturbed system li with the initial
condition z(0) =0, 2/(0) = 1.

To prove the existence of the periodic solution for the perturbed system, we define the

map P (23, 111) : Ry — R, as follows:
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P(237 ,LL1) = Z(T(M1>7 07 20, :ul)v (227)

2(T(p1),0, zo, pt1) is the state position after a period 7'(p;) taken by z(t, 0, 2o, 1)
which is a solution of the perturbed system with 1y = 0.001, T(0) = 27//3,
and the initial condition zy = (0, 29). In order to determine the stability of the periodic
solution, we need to check the derivative of the map with respect to the second
component of the initial value, zJ, at the fixed point of the map . The fixed

Bz(t,ﬂ,zo 7#‘1)

point of the map is z* = 1. It can be derived easily that the derivative =35 isa
2
solution of the following system
vy = Vg,
vy = —v1 + vy, (2.28)
—1-R+0.0329 2p1(29—1)(1+R—0.0329)
Avy(0) i 1—2,“(23—1)2 21—2,“(23—1) . v1(0)
o 0.0329 2p1(29—1)(1+R—0.0329)—1—R-+0.0629
Ava(0) e BTy ] [0

with the initial condition v(0) = (0, 1). Above system can be obtained by using the
theory of the differentiability of solutions with respect to the initial condition for

impulsive differential equations [J].

Using the solution of ([2.28)), the derivative of the map (2.27), 8PE§C’“ 1), can be found
as follows:
() _ (2l =10+ R 01050):
o 12— 1)
_ — — 2y 1
n ((C 1)(2Rpuy — 0.06141C) R+0.06C) )2 (2.29)
1—2u(¢—1)
1 2p1(¢ —1)(1 + R —0.03(¢) >
— (7 — arct .
SR (\/3(7T aretan (g (R — 0.080) — R+ 0.06C
If we calculate the derivative at the point z* = 1, we analyze the stability of the

periodic solution. The derivative of the map (2.27) which is computed at the fixed
point is %&’“)\g:f ~ (.82, which is less than one in modulus [[109, 50, [108]]. Then,
we can assert that the perturbed system has a stable limit cycle by using the relation

between map and the solution of the system.
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Figure 2.16: The red trajectory is a solution of the perturbed-system 1} with initial
value z(0) = 0, 2/(0) = 1.2 and the blue one is a solution of the perturbed-system

(2.25) with initial value 2(0) =0, 2(0) = 0.8.

In Fig. two different solutions of system is drawn. The inner solution
with the initial condition z(0) = 0, 2’(0) = 0.8 is drawn in blue curve and the outer
solution with initial data z(0) = 0, 2/(0) = 1.2 is drawn in red curve. This two
solutions approach limit cycle from inside and from outside, respectively. Moreover,

we can conclude that system ([2.25)) has a stable discontinuous limit cycle.

In the third example, our aim is to present a mathematical model for the collision of
two masses which are attached to the wall in one side and the remaining parts strike
each other when the distance between masses is 23(t) —z1(t) = 0.02+€ex4(t). During
collision velocities of the masses differ as (w, () — wy(87)) — (w4 (07) —wy(67)) =

—(1+ R)(w4(8™) —wy(A7)), where f is the time when two masses collide. However,

our system does not have any dampers attached with the masses.

The motion of two masses is governed by the following system

w; = wa,
wy = —0.2w; + 0.01,
wy = wy, (2.30)
W, = —0.055ws + 0.01,
A(ws = wa)|uwg—wi=0024ew, = —((1+ R)(wg — wy)).
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For ¢ = 0, system has periodic solution with an initial value w(0) = (—1,0,2,0)

which can be seen in the Fig.
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Figure 2.17: The phase portrait of the periodic solution of the non-perturbed system

(2.30) with initial value w(0) = (—1,0,2,0)

For the perturbed system with e = 0.01, we have defined the Poincaré map [50, [108]
with two variables M (x5, 24, €), the fixed point of the map M (x5, 24, 0) corresponds
to periodic solution of the system (2.30). We can understand that, it also corresponds
to the performance of the coupled system which continues its motion in a harmony.
For the perturbed system, we have a stable solution for one mass. For the remaining

mass, we have an unstable solution. The stable solution can be observed in Fig. [2.1§]
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Figure 2.18: The blue curve is the phase portrait of the first mass for the perturbed
system corresponding to initial value w(0) = (—0.8,0,1.75,0) and red one is
the phase portrait of the first mass for the perturbed system (2.30) with initial value
w(0) = (-1.1,0,2.1,0)
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2.4 The suppression of chattering through impact deformations

In this section, by applying small variations on the surfaces of discontinuity and the
coefficient of restitution in the models with chattering, we suppress chattering in such
models. Then, the obtained model do not have infinite number of impact in a finite
time. In other words, our idea is to substitute former models which are comprised
of rigid flat surfaces of discontinuity and a constant coefficient of restitution with
these which have the deformable surfaces of discontinuity and a variable coefficient
of restitution. Then, our system with impact deformations will admit finite number
of impacts in a finite time. As a consequence of that, our system become a more
adequate modeling of the mechanisms with impacts, since chattering is not a realistic
phenomenon (it is an idealize model). Chattering is one of the interesting phenom-
ena for a system with impacts. In this study, chattering is comprehended as infinitely
many impacts occur in a finite time. In the literature [22, 29| 61, 166, 90, 91]], many
investigations have been done to remove chattering from the system. In some papers,
chattering has been suppressed in the system by applying variations on the excitation
amplitude [29, 48]]. In paper [91], chattering of a granular gas is considered. How-
ever, the suppression of chattering remains a huge problem for the mechanics and
media. Our aim in this section is to suppress chattering in mechanical models by
using impact deformations. Moreover, an assumption, which is mentioned in book
of Nagaev [94]], is also considered to suppress chattering in the system. We suppress
the chattering in two different mechanical systems, which admit chattering, by using
small modifications on surface of discontinuity and the coefficient of restitution to the

models .

The first mechanical model, that we suppressed the chattering, is a bouncing bead
model which starts a free fall from a height 2(0) = 10 with the initial velocity z'(0) =
0. During the motion, the air resistance is neglected. When the bead reaches the level
x = 0, the impact occurs. After the impact, some energy is dissipated away. The

motion of the bead is governed by the following system
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7, o
Y =9,

Ar'|,—g = —1.92".

In system (2.31)), the number 1.9 can be comprehended as follows 1.9 = 1 + 0.9,
where the coefficient of restitution is R = 0.9, and the level of the impact surface is

x = 0.

10

-2

Figure 2.19: The time series of the motion which is governed by system ll .

The time series of the motion can be seen in Fig. [2.19] In Fig. [2.19] one can observe
that the height of the bead decreases but it cannot be zero during the motion as time in-
creases. As time goes to infinity, the heights of the bead approaches to zero. As a con-
sequence, the system preforms infinitely many jumps in a finite time. The velocity of
the bead after the & —th impact can be computed as v, = RF~'v;, where v, is velocity
of the bead after it first reaches the level x = 0 and R is the coefficient of restitution.

2
—l Ui = R* ¢, and
g

t1 =R 8%, is the flight time between first bounce and second bounce. The bead

[2 - 2091+ R
stops after a time, 7 = il + Z RM1t, = ﬂil—i_—R' The height of the bead
g o1 g 1=

after the k — th impact is (t) = R** 1z, where x, is the initial height of the bead.
Additionally, the phase portrait of equation (2.31) with initial data 2(0) = 10 and

2'(0) = 0 is depicted in Fig.

The flight time between k — th and (k + 1) — th bounces is 7, =

System (2.31) is not eligible for the real world applications. Because there is no such

system which undergoes infinitely many impacts in a finite time in the real world. It
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Figure 2.20: The phase portrait of system 1}

can be supposed that the number of strikes can be reduced to finite if elasticity and
quasi elasticity are taken into account. One of the task of this study is to provide a
model where quasi elasticity idea is expressed as deformable surfaces of impacts as
well as the striking bodies are assumed not rigid flat and it has the variable coefficient
of restitution [32} 89]. To verify that the bead undergoes finitely many strikes in a
finite time, the variable coefficient of restitution and deformable surfaces are intro-
duced with the model. This model is more realistic for the applications of the real
world systems. Additionally, it enables us to have adequate results in the real world

systems.

The system with impact deformations can be presented as follows:

"
r =—-g,

A= 0026127 = —(0.0232" 4+ 1.9)2,

(2.31)

with the initial condition z(0) = 0.2 and 2’(0) = 0. In the system, ¢(z’) = 0.0232" +
0.9 corresponds to the variable coefficient of restitution. When the bead reaches the
surface z = —0.026|2'|, the impact occurs and the velocity of the bead changes
proportional to the coefficient of restitution. It can be seen in Fig. [2.21] that after
some time the trajectory of system (2.31) lies below the surface of meeting, z = 0,
which is drawn as a red line. After the seventh bounce, the bead cannot reach the
level = 0 again, which can be observed from Fig. [2.21] Fig. [2.22] and Table 2.1]
In the literature, this is considered as a stop in the motion [94]. One can suppose

mechanically that the bead never leave the ground again. As a consequence of this
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fact, the bead whose motion is governed by system (2.31) performs finitely many

impacts in a finite time.
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Figure 2.21: The time series of the motion which is governed by system (2.31).
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Figure 2.22: The phase portrait of system 1}

Observing the result of the simulation, which is depicted in Fig. [2.21] one can see

that in larger impact velocities the displacement is larger. This is a fully agreement
with Figs[2.3|and 2.11]

As a second mechanical model that we suppress chattering, we consider the linear
inverted pendulum model, which impact against the rigid flat wall with a constant co-
efficient of restitution [60,102]]. The linear inverted pendulum is used in the modeling
of various engineering applications, such as rings, printers, machine tools, dynamics
of rigid standing structures, mooring buoy, moored vessels in a harbor against stiff
fenders, and rolling railway wheel set [102]. The mechanical model of a linear in-

verted pendulum can be observed in Fig. [2.23] During the motion of the impacting
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Table 2.1: The bouncing bead is starting its motion with height 0.2 and zero initial
velocity, the deformation occurs only on surface where the bead meets. The numbers
from 0 to 9 correspond to the number of bounce and the values from 0.2 to —0.001923
correspond to the heights of the bead in each bounce.

Number of bounce Height (unit) Number of bounce Height (unit)

0 0.2 5 0.01564
1 0.1275 6 0.006795
2 0.08041 7 0.001702
3 0.04966 8 -0.001923
4 0.03022 9

pendulum, we will take the wall at the position z = 1 as an impacting surface.

Figure 2.23: The linear inverted pendulum impacting on a rigid flat surface.

The motion is governed by the following system

" +0.012" — x = 0.01sin(2¢),
(2.32)

A$,|:c:1 = —<1 + R)ZL’/,
where = 0/0,,,, is the normalized angle, ¢ = 0.01 is the viscous damping which
varies from zero to unity, 0.01sin(2¢) is the harmonic excitation representing the
horizontal acceleration of the base and x = 1 is the surface of discontinuity. It is
reasonable to take the coefficient of restitution as 0.9 in practical applications [102].

The time series and the phase portrait corresponding to system (2.32)) with the initial
condition z(0) = 0 and z’(0) = 0 are depicted in Figs and [2.25] respectively.
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Figure 2.24: The time series of the motion which is governed by system (2.32).
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Figure 2.25: The phase portrait of system 1i

In Fig. [2.24] one can observe that the pendulum performs infinitely many strikes in a
finite time. In papers [29, 66], the detailed mathematical investigations are presented
for the model. Our aim in this chapter to remove chattering from the system. In
order to suppress chattering in the system, we can consider that the impacting wall is

deformable, and the coefficient of restitution is variable.

Let us consider the following model of linear inverted pendulum, where the coeffi-
cient of restitution is variable and the walls are deformable. During the motion, one

of the walls, which is at the position x = 1 + 0.1z, is considered. The motion can be
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governed by the following system

2" +0.012" — x = 0.01 sin(2t),
(2.33)
Az |y=14010 = —(1+ R — 0.012") 2.

The time series and the phase portrait of system (2.33]) with the initial condition

x(0) = 0 and 2/(0) = 0 are drawn in Figs and [2.27] respectively.
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It can be derived from Fig. [2.26] that at large impact velocities the displacement is
larger which is a good agreement with the reality and our proposals made in previous
sections. It is observed in Fig. [2.26] that after some time interval the pendulum cannot
reach the wall which lies at position z = 1. This is understood as the termination of

the motion [94]. It can be concluded that the pendulum exerts finitely many impacts
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in a finite time to the wall. Thus, this is called the suppression of chattering. It can be
comprehended through Table [2.2] that after tenth impact, the pendulum cannot meet

with the wall which lies at the level z = 1, again.

Table 2.2: The first column where the numbers emerge is corresponding to the number
of bounce and the second column where decimals emerge is corresponding to the
displacement of the pendulum.

Number of bounce Displacement Number of bounce Displacement

0 0 6 0.9388
1 0.5382 7 0.9619
2 0.702 8 0.9787
3 0.7952 9 0.9888
4 0.8628 10 0.9979
5 0.8628 11 1.002

2.5 Discussion

In the real world, the interacting surfaces are not necessarily rigid flat, and the coef-
ficient of restitution is not constant for the vibro-impact systems. In the light of this
fact, we have presented a new model for the viscoelastic mechanisms with impacts by
utilizing differential equations with variable moments of impulses. The Kelvin-Voigt
viscoelastic model has been illustrated as an example for the contact motion. Two of
the most important characteristics of the colliding bodies which are the dependence
of the coefficient of restitution on the pre-impact velocity and the presence of de-
formable surfaces are investigated. We call these systems system with impact defor-
mations. We replace CMKVM with CMID if the contact time is short for CMKVM.
The theoretical results are actualized by extended examples and simulations. By us-
ing the qualitative theory for the differential equations with variable moments of im-
pacts, we have examined the existence of periodic solutions and their stability for
systems whose surfaces are not rigid flat and the coefficient of restitution is variable.
We compare the models, which have chattering phenomena, with the existing ones
in literature. As a particular outcome of this study, the suppression of chattering is

achieved by using impact deformations. As a consequence of suppression of chatter-
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ing, we can adapt our models to the real world applications. Many researches can be
done on deformable surfaces and the variable coefficient of restitution. For example,
the grazing bifurcation [32]], which occurs for low impact velocities, is widely inves-
tigated in impacting systems with rigid flat surfaces. However, it is still remaining as

an open problem for impacting systems with deformable surfaces.

A granular gas can be treated as an assembly of identical bouncing ball, each of the
granules are colliding inelastically with the walls of the container and the ambient
balls. Therefore, some of the results presented here may apply to the study of high-

temperature or low density vibrated granular gases as well [91, [102].

A huge number of the viscoelastic mechanisms with deformable surfaces of impacts
are presented in the literature. Actually, theory of the mechanisms can be converted
to the models of impulsive system with impacts at variable moments [5,109]. Several
examples for these mechanisms are provided in this study. We hope that our proposals
will throw light on the existing power of the theory and it is also expected that the
results will expedite the course of the investigations, and give new opportunities for

the theoretical analysis of impact mechanisms.
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CHAPTER 3

DISCONTINUOUS DYNAMICAL SYSTEMS WITH GRAZING
POINTS

3.1 Introduction

Due to the non-smoothness of the vibro-impact systems, they can be considered as
an example for non-linear dynamical systems which exhibits complicated dynamics.
In the literature, grazing became an attractive properties of the dynamics [31} 133} 93].
Two different definitions have been found for the grazing in the literature. One of
the definition is that the grazing takes place when a trajectory touches the barrier
tangentially [31} 33]], [34], [[70, [71} [75, [77]. In [97]-[100], the grazing is defined as
getting close of the velocity to zero near the barrier. Our definition in this thesis is

similar to that one given in [31} 34, [73]].

In the study [36], grazing is taken into account as a boundary which divides regions of
distinct dynamics. They examine the case that the trajectory meets an event trigger-
ing hypersurface tangentially . The optimization, continuation and shooting methods
are improved and they are exemplified for the transient and grazing phenomena. It
is illustrated by applying robotics and power electronics. In the study [106], the
grazing cycle and its linearization for hybrid systems are determined by utilizing a
numerical continuation method. By means of this, the normal-form coefficients have
been calculated, which give a rise to chaos and period-adding cascade. The neces-
sary and sufficient conditions of the discontinuous boundary are expounded in [70].
In [[77], by utilizing non-stick mapping, the necessary and sufficient conditions in a

linear oscillator with a periodical force and dry friction are attained for the grazing.
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By constructing special maps, Nordmark map [97]]-[100] and zero time discontinuity
mapping [19} 33} 93]], the existence of cycles and the stability of them are examined

in mechanics.

In the present study, the dynamics with grazing points are modeled by applying differ-
ential equations with variable moments of impacts and utilizing the methods of which
is initiated in [2, 3, 5]. As a consequence of the methods, the role of the mappings
[97]]-[100] is removed in the analysis. At the grazing point, the trajectory may touch
the barrier tanegentially and the tangent plane drawn to the barrier at that point may
be parallel to one or more than one coordinate axes. In particular, it implies that its
velocity diminishes to zero [97]]-[100]. . Then, one can say that this is an axial graz-
ing. Otherwise, it is non-axial grazing. This study covers examples and theoretical

results for both axial and non-axial grazing.

In [89], by simulations and experiments, it is demonstrated that restitution coefficient
depends on the impact velocity of the particle by considering both the plastic and
viscoelastic deformations of particles occurring at high and low impact velocities,
respectively. In [87], it is proposed that for the large percentage of materials with
linear elastic range, at low impact velocities, the restitution coefficient takes the form
R(v) = 1 — av, where v is the impact velocity and «a is a constant. Additionally, for
low impact velocities the restitution law can be considered quadratic [37]. For this
reason, we will utilize variable restitution coefficients in the impacting models in the

present study.

For analysis of autonomous differential equations, it is eligible to use the features of
dynamical systems. They are continuation of solutions in both time directions, the
group property, continuity and differentiability in parameters. The studies of discon-
tinuous dynamical systems with transversal intersections of orbits with surfaces, B—
smooth discontinuous flows, is presented in [2, 3, 5]. In the present research, the
dynamics is obtained for systems with grazing orbits. Moreover, the adaptation of
the definitions of orbital stability and asymptotic phase is done for the grazing cycles.
The theorem of orbital stability is proved, which can not be underestimated for theory

of impact mechanisms.

The remaining part of the present chapter can be organized as follows. In Section 3,
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some necessary notations, definitions and theorems to specify discontinuous dynam-
ical systems is introduced . In Section 3, it is demonstrated how the dynamics can
be linearized around grazing orbits. In Section 4, the theorem of orbital stability is
adapted for grazing cycles of discontinuous dynamics. In Section 5, the small param-
eter analysis is autilized near grazing orbits and bifurcation of cycles is obtained. In
last three sections, examples are presented to realize the theoretical results, analyti-

cally and numerically. Finally, Conclusion covers a summary of the present study.

3.2 Discontinuous dynamical systems

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respec-
tively. Consider the set D € R" such that D = UD,;, where D;, 1 = 1,2,... k,
components of D, are disjoint open connected subsets of R". To describe the surface
of discontinuity, we present a function ® : D" — R" which is two times continu-
ously differentiable. The set can be defined as I' = ®~!(0) and is a closed subset of
D, where D is the closure of D. Denote OI as the boundary of I'. One can easily see
that I' = UY_,T';, where T'; are parts of the surface of discontinuity in the components
of D. Denote I' = J(I'), ®(x) = ®(J~'(z)). Denote an r— neighborhood of D in R"
for a fixed » > 0 as D". Let ['" be the r— neighborhood of ' in R", for a fixed » > 0
and define functions J : I — D" and .J : [ — D7, such that, J(T), J(I') C D.
Assume that a function f(z) : D" — R" is continuously differentiable in D". Set the

gradient vector of ® as V&(z).

The next definitions will be used in the remaining part of the study. Let z:(¢t—) be the
left limit position of the trajectory and x(t+) be the right limit of the position of the
trajectory at the moment ¢. Define Ax(t) := x(t+) — z(t—) as the jump operator for
a function z(t) such that z(¢) € I" and ¢ is a discontinuity moment. In other words,
the discontinuity moment ¢ is the moment when the trajectory meets the surface of
discontinuity I". The function /(z) will be used in the next part of the chapter which

is defined as I(z) := J(z) — z, forz € T.
The following assumptions are needed throughout this study.

(C1) V&(z) #£0forallz €T,

57



(€C2) J € (™) and det | 22| 0, forall z € I\ oT,

(C3) TN Carnar,

(C4) (VO(x), f(x)) #0ifz € T\ T,
(C5) (VO(x), f(x)) #0ifz e T\ aT,
(C6) J(x) =z forall z € IT,

(C7) J(z) =z forall z € OT.

It can be easily verified that I = {z € D|®(z) = 0} and J(z) # x on I since
of (C2). Condition (C1) implies that for every x, € I, there is a number j and
a function ¢,,(x1,...,2j_1,%j41,...,2,) such that I' is the graph of the function
Tj = ¢Quo(®1,...,Tj-1,Tj41,...,2,) in a neighborhood of xy. The same assertion
is true for every zy € I'. Moreover, V&)(:v) # 0, for all z € T, can be verified by
utilizing the condition (C2). The conditions (C2), (C6), (C'7), imply that the equality
J(z) = z, is true for all z € OT.

Let </ be an interval in Z. We say that the strictly ordered set § = {0,},7 € <7, is
a B—sequence [3] if one of the following alternatives holds: (i) § = 0, (i) 6 is a
nonempty and finite set, (7i¢) 6 is an infinite set such that |f;] — oo as i — oo. In

what follows, 6 is assumed to be a B—sequence .

The main object of our discussion is the following system,

3.1
Ax|zer = I(2).

In order to define a solution of (3.1), we need the following function and spaces.

A function ¢(t) : R — R", n € N, 0 is a B—sequence, is from the set PC(R, 0) if it
: (2) is left continuous, (i7) is continuous, except, possibly, points of 6, where it has

discontinuities of the first kind.

A function ¢(t) is from the set PC*(R, ) if ¢(t), ¢/ (t) € PC(R, #), where the deriva-
tive at points of ¢ is assumed to be the left derivative. If ¢(¢) is a solution of (3.1)),
then it is required that it belongs to PC'*(R, ) [3].
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We say that z(t) : .4/ — R",.# C R, is a solution of on .# if there exists
an extension Z(t) of the function on R such that #(t) € PC'(R,6), the equality
2(t) = f(z(t), t € £, istrueif x(t) ¢ ', x(6;+) = J(x(6;)) for z(6;) € T" and
z(0;+) € T, 0; € 7. If 6, is a discontinuity moment of z(t), then z(6;) € T, for
0; > 0and z(6;) € T, for 0; < 0. If 2(6;) € OT or x(6;) € OT, then x(6;) is a point of

discontinuity with zero jump.

Definition 1 A point x* from Ol or ol isa grazing point of system (3.1)) if
(VO(z*), f(x*)) = 0 or (VO(z*), f(z*)) = 0, respectively. If at least one of coordi-

nates of VQ:)(x*) is zero then the grazing is axial, otherwise it is non-axial.

Definition 2 An orbit v(z*) = {x(t,0,2%)|z* € D, t € R} of (3.1) is grazing if

there is at least one grazing point on the orbit.

Consider a solution z(¢) : R — R™ and {6, } be the moments of the discontinuity, they
are the moments where solution x(t) intersects I" as time increases and the moments

when the solution it intersects I as time decreases.

A solution z(t) = x(t,0,x¢), g € D of (3.1) locally exists and is unique if the
conditions (C'1) — (C'3) are valid [5].

In the following part of the chapter, let || - || be the Euclidean norm, that is for a vector

x = (z1,29,...,7,) in R", the norm is equal to \/2? + 23 + ... + 22.

The following condition for (3.I) guarantees that any set of discontinuity moments
of the system constitutes a B— sequence and we call the condition B— sequence

condition.
(C8) supp || f(2)| < +oo, and inf, 7 (0, y(¢,0,20)) > 0.

In [S]], some other B— sequence conditions are provided.

We will request for discontinuous dynamical systems that any sequence of disconti-

nuity moments to be a B— sequence.

Let us set the system

y' = fy) (3.2)



for the possible usage in the remaining part of the study.

Consider a solution y(¢, 0, z¢), xg € f, of (3.2). Denote the first meeting point of the
solution with the surface I', provided the point exists, by y((, 0, zo). The following

conditions are sufficient for the continuation property.

(C9) (a) Every solution y(t,0,x), zo € D, of (3.2) is continuable to either co or I'
as time increases,
(b) Every solution y(t, 0, xq), g € D, of (3.2) is continuable to either —oo or

I" as time decreases.

To verify the continuation of the solutions of (3.1)), the following theorems can be

applied.

Theorem 1 [5] If the conditions (C8) and (C9) are valid, then, every solution x(t) =
z(t,0,0), o € D of (3.1)) is continuable on R.

Now, we will present a condition which is sufficient for the group property.

(C10) For all zy € D, the solution y(t, 0, x¢) of (3.2) does not intersect T before it

meets the surface I' as time increases.

In other words, for each zy € D and a positive number s such that y(s,0,z¢) € T,

there exists a number r, 0 < r < s, such that y(r,0,zo) € I.

It is easy to verify that the condition (C'10) is equivalent to the assertion that for all
xo € D, the solution y(¢, 0, x¢) of (3.2)) does not intersect I" before it meets the surface
I as time decreases. In other words, for each 2y € D and a negative number s such

that 3(s,0, o) € T, there exists a number r, s < r < 0, such that y(r, 0, z) € L.

Theorem 2 (The group property) Assume that conditions (C1)-(C10) hold. Then,
x(ta,0,2(t1,0,20)) = x(ta + 11,0, x0), for all t1,t5 € R.

Proof. Denote by £(t) = z(t+t), fora fixed ¢ € R. It can be verified that the sequence
{6; —1} is a set of discontinuity moments of &(¢) and the function is a solution of (3.1
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[5]. The next step is to show that the following equality z(—t,0, z(t,0,z0)) = xo,
holds for all x5 € D and ¢t € R. Consider the case ¢ > 0. If the set of discontinuity
moments {6;} is empty, the proof is same with that for continuous dynamical systems
[30]. Because of the condition (C'2), which corresponds to invertibility of the jump
function J, the equality z(6;, 0, z(6;4)) = x(6;), holds for all i € o/. Assuming that
61 < 0 < 6, we should verify x(—6,,0,2(0,,0,20)) = xy. Denote by Z(t) =
x(t,0,x(01)). The point z(#,) lies on the discontinuity surface I". By condition (C'3)
the solution Z(t) is a trajectory of 4/ = f(y) for decreasing ¢. Condition (C'10), part
(a), implies that the trajectory Z(t) cannot meet with I" if t > —6); as time decreases.
That is, Z(—6,) = ¢ as the dynamics is continuous. The proof for ¢ < 0 can be done

in a similar way.

Remark 1 For the application of the results, it is possible to take the initial moment

as to = 0, without being the discontinuity moment since of the group property. Then

—

Denote by [a,b], a,b € R, the interval [a, b], whenever a < b and [b, a|, otherwise.
Let z1(t) € PC(R,0Y), ' = {6}}, and 25(t) € PC(R,,6?), 6> = {0?}, be two
different solutions of (3.1).

Definition 3 The solution x(t) is in the e—neighborhood of x,(t) on the interval .%

if
e the sets 01 and 6 have same number of elements in .7 ;
o |0 — 0% < eforall 0} € .7;
o the inequality ||x1(t) — x2(t)|| < € is valid for all t, which satisfy t € 7 \

Ue}eﬂ(ez‘l —6,0; +e).

The topology defined with the help of e— neighborhoods is called the B-topology.
It can be apparently seen that it is Hausdorff and it can be considered also if two

solutions z1(¢) and x5(t) are defined on a semi-axis or on the entire real axis.
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Definition 4 The solution x((t) = x(t,0, z),t € R, zy € D, of (3.1) B-continuously
depends on x for increasing t if there corresponds a positive number ¢ to any positive
€ and a finite interval [0,0], b > 0 such that any other solution x(t) = x(t,0,) of
lies in e—neighborhood of xy(t) on [0,b] whenever & € B(xy,0). Similarly,
the solution xy(t) of B-continuously depends on x( for decreasing t if there
corresponds a positive number § to any positive € and a finite interval [a,0], a < 0
such that any other solution z(t) = z(t,0,%) of lies in e—neighborhood of
zo(t) on [a,0] whenever & € B(x,d). The solution xo(t) of (3.1) B-continuously
depends on x if it continuously depends on the initial value, x, for both increasing

and decreasing t.

If conditions (C1)-(C7) hold, then each solution z((t) : R — R", z4(t) = z(¢,0, xo),
of (3.1) continuously depends on z; [5].

3.2.1 B-equivalence to a system with fixed moments of impulses

In order to facilitate the analysis of the system with variable moments of impulses
(3.1), a B-equivalent system [5] to the system with variable moments of impulses will

be utilized in our study. Below, we will construct the B-equivalent system.

Let z(t) = x(t, 0, xo + Az) be a solution of system (3.1]) neighbor to x(¢) with small
||Az||. If the point zo(6;) is a (5)— or (y)— type point, then it is a boundary point.
For this reason, there exist two different possibilities for the near solution z(t) with

respect to the surface of discontinuity. They are:

(N1) The solution z(t) intersects the surface of discontinuity, I', at a moment near to

eia

(N2) The solution z(t) does not intersect I', in a small time interval centered at 6.

Consider a solution z¢(t) : .# — R", .# C R, of (3.1). Assume that all discontinuity
points 6;, ¢ € o7 are interior points of .#. There exists a positive number r, such that
r-neighborhoods of D;(r) of (6;,2((6;)) do not intersect each other. Consider r is

sufficiently small and so that every solution of (3.2)) which satisfies condition (N1)
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and starts in D;(r) intersects I" in G;(r) as ¢ increases or decreases. Fix i € 7 and
let £(t) = x(t,0;,x), (0;,x) € D;i(r), be a solution of (3.2), 7; = 7;(x) the meeting
time of £(¢) with I" and () = z(t,7,&(m) + J(£(7))) another solution of (3.2).
Denoting by W;(x) = 1(6;) — x, one can find that it is equal to

/f ds+Jx+/ £l )ds)+/:if(¢(s))ds (3.3)

and maps an intersection of the plane ¢ = ; with D;(r) into the plane t = 6.

Let us present the following system of differential equations with impulses at fixed
moments, whose impulse moments, {6;}, i € 7, are the moments of discontinuity

of .To(t),

y = fy),
Ayli=e, = Wi(y(0:)).

3.4)

The function f is the same as the function in system (3.1]) and the maps W;, i € &7,
are defined by equation (3.3). If £(¢) = z(¢, 0;, x) does not intersect I" near 6; then we
take W;(z) = 0.

Let us introduce the sets F, = {(t,z)|t € I,||x — 2¢(t)|| < 7}, and D;(r), i €
</, closure of an r— neighborhood of the point (6;, x¢(0;+)). Write D" = F, U
(Uier Di(1)) U (Usey Di(r)). Take 7 > 0 sufficiently small so that D" C R x D.
Denote by D(h) an h-neighborhood of z((0). Assume that conditions (C'1) — (C'10)
hold. Then systems and are B-equivalent in D" for a sufficiently small
[5]. That is, if there exists A > 0, such that:

1. for every solution y(t) of (3.4) such that y(0) € D(h), the integral curve of
y(t) belongs to D" and there exists a solution z(t) = z(¢,0,y(0)) of (3.1

which satisfies
x(t) = y(t), 1€ [a, b\ UL, (7.6, (3.5)

where 7; are moments of discontinuity of x(¢). One should precise that we
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assume 7; = 6;, if z:(t) satisfies (/NV2). Particularly,

y(6;), ifb, <m,

y(0;"), otherwise,
(3.6)
JI(TZ'), lf 02 Z Tiy

y(mi) =
x(7;"), otherwise.

2. Conversely, if (3.4) has a solution y(t) = y(¢,0,4(0)),y(0) € D(h), then there
exists a solution x(t) = x(¢,0,y(0)) of (3.1) which has an integral curve in D",
and (3.5) holds.

A solution x(t) satisfies (3.1) and (3.4) simultaneously.

Consider a solution z¢(t) : R — R", z¢(t) = x(¢,0,xq), xo € D with discontinuity
moments {6;}. Fix a discontinuity moment 6;. At this discontinuity moment, the
trajectory may be on I' and T'. All possibilities of discontinuity moment should be

analyzed. For this reason, we should investigate the following six cases:

() zo(0;) € T\ OT,
(o) 2o(6;) € T\ O,
(8) wo(6:) € O & (VO(x0(6:)), f(x0(6:))) # 0,
() wo(0:) € OF & (V(wo(6)), f(w0(0:))) # 0,
(7) @o(6:) € T & (V& (w0(6:)), f(w0(6:))) = 0,
(') wo(6:) € O & (V& (x0(6y)), f(wo(6:))) = 0.
If a discontinuity point x(6;) satisfy the case («), (()) the case (3), ((’)) and the

case (), ((")) we will call it an (o) — type point, a (§)— type point and a (y)— type

point, respectively.

Besides, we present the following definition which is compliant with Definition [2]

Definition 5 If there exists a discontinuity moment, 0;, i € < | for which one of the
cases (7y) or (7') is valid, then the solution z¢(t) = x(t,0,z¢), o € R" of (3.1)) is

called a grazing solution and t = 0; is called a grazing moment.
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Next, we consider the differentiability properties of grazing solutions. The theory
for the smoothness of discontinuous dynamical systems’ solutions without grazing

phenomenon is provided in [5].

Denote by Z(t),j = 1,2,...,n, a solution of (3.4) such that z(0) = xzy + Az, Az =
(&1,&2, ..., &), and let 7; be the moments of discontinuity of Z(t).

The following conditions are required in what follows.

—

(A) Forallt € [0,b]\ Uicr (1;,0:], the following equality is satisfied
2(t) — mo(t) = Y _u;(t)é; + O(||Az])), (3.7)
i=1

where u;(t) € PC([0,b],8).

(B) There exist constants v;;, j € <7, such that
ny =05 = Y v+ O(]| Adl]); (3.8)
i=1

(C') The discontinuity moment 7; of the near solution approaches to the discontinu-

ity moment 6;, j € 7, of grazing one as ¢ tends to zero.

The solution Z(¢) has a linerization with respect to solution x(t) if the condition (A)
is valid and, moreover, if the point z((6;) is of (a)— or (3)— type, then the condition

(B) is fulfilled. For the case xy(6;) is of (7)— type the condition (C') is true.

The solution z((t) is K —differentiable with respect to the initial value x on [0, b] if
for each solution Z(¢) with sufficiently small Az the linearization exists. The func-

tions u;(t) and v;; depend on Az and uniformly bounded on a neighborhood of .

It is easy to see that the differentiability implies B—continuous dependence on solu-

tions to initial data.
Define the map ((¢,x) as ((t,z) = z(¢,0,x), forz € D.

A K-smooth discontinuous flow is a map ((¢,z) : R x D — D, which satisfies the

following properties:
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(I) The group property:

(i) ¢(0,x) : D — D is the identity;
(i) ¢(t,((s,x)) = C(t+ s,x)is valid forall t,s € Rand z € D.

(ID) ((t,x) € PCY(R) for each fixed z € D.

(D) ¢(t,x) is K-differentiable in z € D on [a,b] C R for each a,b such that the

discontinuity points of ((t, z) are interior points of [a, b].

In [5], it was proved that if the conditions of Theorem [I]and (C1)-(C10) are fulfilled,
then system (3.I) defines a B-smooth discontinuous flow [3] if there is no grazing
points for the dynamics. It is easy to observe that the 5-smooth discontinuous flow is
a subcase of the K -smooth discontinuous flow. In the next section, we will construct
a variational system for (3.1)) in the neighborhood of grazing orbits. That is, we will
assume that some of the discontinuity points are (y)— type points. Linearization
around a solution and its stability will be taken into account. Thus, analysis of the

discontinuous dynamical systems with grazing points will be completed.

3.3 Linearization around grazing orbits and discontinuous dynamics

The object of this section is to verify K — differentiability of the grazing solution.
Consider a grazing solution zo(t) = x(t,0,z0), xo € D, of (3.1). We will demon-

strate that one can write the variational system for the solution x((t) as follows:

(3.9
Au‘t:gi = B,u(@z),
where the matrix A(t) € R™™ of the form A(t) = w. The matrices B;, i =

1,...,n, will be defined in the remaining part of the study. The matrix B; is bivalued

if 0; is a grazing moment or of (3)—type.

The right hand side of the second equation in (3.9) will be described in the remain-
ing part of the study for each type of the points. As the linearization at a point of

discontinuity, we comprehend the second equation in (3.9).
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3.3.1 Linearization at («)— type points

Discontinuity points of () and (o) types are discussed in [3]. In this subsection, we

will outline the results of the book.

Assume that z(6;) is an («)—type point. It is clear that the B— equivalent system
(3.4) can be applied in the analysis. The functions 7;(x) and W;(x), are described in

Subsection Differentiating ®(z(7;(x))) = 0, we have

or(eo(6)  Palwo(6) %5 .
dr;  Du(wo(6:)) f(wo(6:)) '
Then, considering (3.3]), we get the following equation,
OW;i(xo(0;)) N . . or, oI, 0
B U (f (xo(0:)) f<x°(9’>+‘]<x°(9’>)))axoj +ax(ej+faxoj), (3.11)

where e; = (0,...,1,...,0).

The matrix B; € R™ ™ in equation (3.9) is defined as B; = W;,, where W, is the

n X n matrix of the form VI/Z;U r [8W1g;01(91))’ 8WZ(BJ;O2(61))’ A . %1(6’))] Its vector-
components %{?@i)), j = 1,...,n, evaluated by (3.11). Moreover, the compo-
]

nents of the gradient V7; have to be evaluated by formula (3.10).

3.3.2 Linearization at (J)— type points

In what follows, denote n x n zero matrix by O,,. In the light of the possibilities (/N1)
and (N2), the matrix B; in (3.1) can be expressed as follows:

Wiz, if  (N1)is valid,
B, = (3.12)
O, if  (N2)is valid,
where W, is evaluated by formula (3.11)) and V7 (z) evaluated by formula (3.10).

The differentiability properties for the cases (/) and (/') can be investigated simi-

larly.
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3.3.3 Linearization at a grazing point

Fix a discontinuity moment 6; and assume that one of the cases () or (/) is satisfied.

We will investigate the case (+y). The case (') can be considered in a similar way.

Considering condition (C'1) with the formula (3.10), it is easy to see that one coor-
dinate of it is infinity at a grazing point. This gives arise singularity in the system,
which makes the analysis harder and the dynamics complex. Through the formula
(3.10), one can see that the singularity is just caused by the position of the vector field
with respect to the surface of discontinuity and the impact component of the dynam-
ical system does not participate in the appearance of the singularity. To handle with

the singularity, we will rely on the following conditions.

(Al) A grazing point is isolated. That is, there is a neighborhood of the point with

no other grazing points.
(A2) The map W;(z) in (3.3) is differentiable at the grazing point x = x(6;).

(A3) The function 7;(x) does not exceed a positive number less than ;1 — 6; near a

grazing point, x((6;), on a set of points which satisfy condition (N1).

In the present study, we analyze the case, when the impact functions neutralize the
singularity caused by transversality. That is, the triad: impact law, the surface of
discontinuity and the vector field is specially chosen, such that condition (A2) is valid.
Presumably, if there is no of this type of suppressing, complex dynamics near the
grazing motions may appear [33), 70,97, 98]. In the examples stated in the remaining

part of the study, one can see the verification of (A2), in details.

Let us prove the following assertion.

Lemma 1 If conditions (C1), (C4), (C6), (C8) and (A3) hold. Then, ;(x) is con-

tinuous near a grazing point x(6;), on a set of points, which satisfy condition (N1).

Proof. Let x4(6;) be a grazing point. If Z is not a point from the orbit of the graz-

ing solution, the continuity of 7;(x) at the point x = Z can be proven using similar
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technique presented in [5]. Now, the continuity at z((6;) is taken into account. On
the contrary, assume that 7;(z) is not continuous at the point x = x((#;). Then, there
exists a positive number €, and a sequence {x,, },cz such that 7;(z,) > ¢y whenever
xn — x(0;), as n — oo. Moreover, from condition (A3), one can assert that there
exists a subsequence 7;(x,, ) which converges to a number ¢y < 79 < 0,41 — 0;.
Without loss of generality, assume that the subsequence converges the point where
the sequence {x, } <z converges. Since of the continuity of solutions in initial value,
x(7;(xy), 0, z,,) approaches to z(7g, 0, z(6;)). But z(7;(z,), 0, ,,) is on the surface of
discontinuity I', (79,0, 20(6;)) ¢ . This contradicts with the closeness of the sur-
face of discontinuity I'. The continuity at other points of the grazing orbit is valid by

the group property. [

Since of B—equivalence of systems (3.I) and (3.4)), we will consider linearization
around z(t) as solution of the system (3.4), consequently, only formula (3.7)) will be
needed. Finally, the linearization matrix for the grazing point also has to be defined
by the formula (3.12)), where W, exists by condition (A2). The following lemma is

needed in the remaining part.

=1,2,.
ax‘(j) 7.] ) Y

neighborhood of the grazing point and they are continuous at the point [11|]. Then,

Lemma 2 Assume that the partial derivatives ..,n exist in a

the function W;(z) is differentiable at z*.

In what follows, we will consider only grazing motions such that condition (A2)
holds. Consequently, the continuous dependence on initial data is valid. More pre-
cisely, B— continuous dependence on initial data is true. Now, if conditions (C'1) —
(C'10) and (A1), (A2) are assumed, the system defines a K — smooth discontin-

uous flow for dynamics with grazing points.

3.3.4 Linearization around a grazing periodic solution

Let ¥(¢) : R — D be a periodic solution of (3.1) with period w > 0 and 6;, i € Z,
are the points of discontinuity which satisfy (w, p)— property, i.e. 6,1, = 0;, + w,p is

a natural number.
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Let us fix a solution z(t) = x(¢,0, ¥(0) + Ax) and assume that linearization of W (¢)

with respect to x(t) exists and is of the form

(3.13)

Aul—g, = Bju.
The matrix B; is determined by (3.12). It is known that A(t + w) = A(t), t € R.
But, the sequence B; may not be periodic in general, since of (3.12). This makes
the analysis of the neighborhood of W(t) difficult. For this reason, we suggest the

following condition.

(A4) For each sufficiently small Az € R", the variational system (3.13)) satisfies
Biy, = Bi, i € Z. There exist a finite number m < 2!, where [ is the number
of points of (/3)— or (y)— type in the interval [0, w], of the periodic sequences
B;.

The assumption (A4) is valid for many low dimensional models of mechanics and
those which can be decomposed into low dimensional subsystems. To distinguish

()

7

periodic sequences B; in the assumption (A4), we will apply the notation B; = D

1€Zandj=1,2,...,m.

If the condition (A4) is not fulfilled, then complex dynamics near a periodic mo-
tion may appear. This case can be investigated either by methods developed through
mappings applications [25, [106] or it requests additional development of our present

results.

In the next example, we will demonstrate that the system constitutes X — smooth

discontinuous flow although it has grazing points in the phase space.

Example 1 (K-smooth discontinuous flow with grazing points). Consider an impact

model
!
Yy = 1,
e (3.14a)
Yo = —y1 + 0.001ys,
AYslyer, = —y2 — Riy3,
2lyer, 2R (3.14b)

Ayslyer, = —(1 + Ra)yo,
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with the domain D = R?, Ry = exp(—0.00057) and Ry = 0.9. In the paper [37],
it is stated that the coefficient of restitution for low velocity impact still remains as
an open problem. In the study [9], by considering Kelvin-Voigt model for the elastic
impact, we derived quadratic terms of the velocity in the impact law. This arguments

make the quadratic term for the impulse equation (3.14b) reasonable.

Let us describe the set of discontinuity curves by I' = I'y U I'y. The components
I'y and Ty are intervals of the vertical lines y;, = exp(0.000257) and y; = 0,
respectively and they will be precised next. Fix a point P = (0,42) € D, with
Y2 > 1. Let y(t,0, P) be a solution of (3.14d) and it meets with the vertical line
1 = exp(0.000257), xy > 0 at the point P, = (exp(0.000257),y2(61,0, P)),
where 0, is the meeting moment with the line. Consider the point on the Ty which
is Qo = (exp(0.000257), —R1y2(01,0, P2)?) and denote Q1 = (0,y2(62,0,Q3)),
where 0 is the moment of meeting of the solution y(t,0,Q2) with the vertical line
x1 = 0, x9 < 0. We shall need also the point P, = (0, —Roy2(02,0,Q)>)). Finally,
we obtain the region G in yellow and blue between the vertical lines and graphs of
the solutions in Figure [3.1] The region G contains discontinuous trajectories and
outside of this region all trajectories are continuous. Moreover, both region G and its

complement are invariant.

'<* By

i

Figure 3.1: The region G for system (3.14) is depicted in details. The curves of
discontinuity I' = I'y U Ty and I' = I'y U I'y are drawn as vertical lines in red and
green, respectively and the grazing orbit in magenta.
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Define T'y = {(vy1,vy2)] 11 = exp(0.000257), 0 < yo < y2(01,0,(0,92))}, and
Ty = {(y1,y2)| y1 = 0, ya(62,0, —R1y2((61,0, (0, %2)))?) < yo < 0}. The boundary

of the curve, I' = 1'y U 'y, has of four points, they are
ol = {(07 0)7 (exp(0000257r), 0)7 (exp(0000257r), y2<91a O’ (07 gQ)))a
(Oa 92(9% Oa _R1y2(917 07 (0’ gQ)))}
In the following part of the example, we will show that two of them, y* = (yi,y3) =

(exp(0.000257),0) and the origin, (0,0) are grazing points. Moreover, it can be

easily validated that other two points are of —type.

Issuing from system , the curve of discontinuity T' consists of two components

Ty and Ty. The components are the following sets

fl = {(y17y2)| N = eXp(0000257T)7 —R1y2(91> 07 (Oa g2>)2 S Y2 S 0}

and

Ly = {(y1.92) 91 = 0, 0 < = Ryy(62,0, Qa) ).
One can verify that the function

v - exp(0.0005t)<sin(t), cos(t)), ift €[0,7), .

(07 1)7 lft =T,
is a discontinuous periodic solution of with period w = m, whose discontinuity
points (0, 1) and (0, — exp(0.00057)) belong to T and T, respectively. The expression
(VO ((exp(0.000257),0)), f((exp(0.000257),0)))

= {(1,0), (0, — exp(—0.000257))) = 0

verifies that y* is a (y)—type point, i.e. a grazing point of the solution V(t). It is
easily seen that the grazing is axial. Now, we can assert that the periodic solution

(3-15) is a grazing solution in the sense of Definition [} Its simulation is depicted in

Figure[3.2]

Since the complement of G is invariant in both directions and consists of continuous
trajectories of the linear system (3.14d), one can easily conclude that the complement

is a continuous dynamical system [30]. Thus, to verify the dynamics for the whole
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Figure 3.2: The grazing orbit of system (3.14).

system, one need to analyze it in the region G. This set is bounded, consequently for
solutions in it conditions (C8) and (C9) are fulfilled and by Theorem |l| they admit

B—sequences and continuation property.

Consider ((y2) : [y2(02,0,Q2),y2(01,0, P)] — [y2(02, 0, Qa),y2(61,0, P)] such that
it is continuously differentiable, satisfies ((y2) = — Rays in a neighborhood of y, = 0
and is the identity at the boundary points, i.e. ((y2(61,0,P)) = y2(01,0, P) and
C(y2(01,0, P)) = y2(01,0, P). It is easily seen that such function exists. On the basis

of this discussion, let us introduce the following system,

yi = Y2,
yh = —y1 + 0.001ys, (3.16)

Ayslyer = ((y2) — 1.

It is apparent that system (3.16) is equivalent to (3.14) near the orbit of periodic

solution V(t). That is, they have the same trajectories there.

Specifying for , it is easy to obtain that ®(y1,15) = ®(y1,12) = (y1 —
exp(0.000257))y1, f(y1,y2) = (y2, —y1 + 0.001ys) and J(y) = (y1,((y2)).

Now, we will verify that system (3.16) defines a K— smooth discontinuous flow.
First, condition (C1) is verified since V®1(y) = V®y(y) = (1,0) # 0, for all
y € D. The jump function J(y) = (y1,((y2)) is continuously differentiable func-
tion. So, condition (C2) is valid. It is true that I' N [ C ornor. Inequalities

(VOi(y), f(y)) = ((1,0), (2, —y1 + 0.001y2)) = y» # 0 and (VP2(y), f(y)) =
((1,0), (y2, —y1 + 0.001ys)) = y2 # 0, if y € T'\ O, validate the condition
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(C4). Moreover, (N®1(y), f(y)) = ((1,0), (y2, —y1 + 0.001y,)) = v» # 0 and
(VOs(y), f()) = ((1,0), (y2, —y1 + 0.001ys)) = yo # 0, if y € T\ OT. Conditions
(C6) and (C7) hold as the function ( is such defined. Thus, conditions (C'1) — (C'10)
have been verified. Consequently, the system defines the K — smooth discon-
tinuous flow for all motions except the grazing ones. To complete the discussion, one

need to linearize the system near the grazing solutions. First, we proceed with the

linearization around the grazing periodic orbit .

The solution, V(t) has two discontinuity moments 0; = 5 and 0, = w in the interval
[0, w]. The corresponding discontinuity points are of (y)— and («)— types, respec-
tively. Next, we will linearize the system at these points. The linearization at the
second point exists [5] and the details of this will be analyzed in the next example.

This time, we will focus on the grazing point y*.

First, we assume that y(t) = y(t,0,y* + Ay), Ay = (Ayy, Ays) is not a grazing
solution. Moreover, the solution intersects the line I'y at time t = £ neart = 0y as time
increases. The meeting point J = (71, 72) = (41 (€. 0, (" +Ay)), 12 6,0, (" +Ay)),
is transversal one. It is clear §; = exp(0.000257) and y, > 0. In order to find a

linearization at the moment t = 0;, we use formula (3.3) for y(t), and find that

7(y)
Do [ LN bt ) T + ) (e + Flute) )
0;
+f(y(s)+J(y(S)))0g;?§)+/ 0f (y(s) ;IJ(MS)))@;;?C[S’
" (3.17)

where e; = (1,0)T, T denotes the transpose of a matrix. Substituting y = ¥ to the

formula (3.17), we obtain that

OWi(y(&,0,y" + Ay)) or(y(&,0,y* + Ay))

= f(y(&0,y" + Ay))

oy oyt
*+ A
+Jy(y(§,0,y*+Ay))<el+f(y(§,0,y*+Ay)))67<y(§’oéz?+ y”)) a1
(J(E.0.5" + Ay)

+ F(E0, (6,0 + A TIIE

Considering the formula (3.10) for the transversal point § = (41, §2), the first compo-
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or(y or(y 1
T(g) can be evaluated as 7'(10/) = ——. From the last equality, it is seen how
Iy Yy Y2

the singularity appears at the grazing point. Finally, we obtain that

nent

oWi(y y 1 1 0
N T IS R
Yy —ij1 — 0.0017, Y2 0 —2Ri%,
o) CO) [ e T
—ij1 — 0.0017, 2 g1+ 0.001Ry (72)2 U
g2 — Ri(72)? 1 10 Y
) ’ (=) i + 0.0017,
—Y1 — 0001(y2 — Rl(yg) ) Y2 0 _2R1y2 @2
(3.19)
Calculating the righthand side of we have
0Wz y —Rygp — 1
gy) _ 1y2 , (3.20)
Y1 0.001(1 — Ry%2) + 2R1(0.001%; — 71)

The last expression demonstrates that the derivative is a continuous function of its
arguments in a neighborhood of the grazing point. Since it is defined and continuous
for the points, which are not from the grazing orbit by the last expression and for
other points it can be determined by the limit procedure. Indeed, one can easily show

that the derivative at the grazing point y* is

—1
(3.21)
0.001 — 1.8 exp(0.000257)
Similarly, all other points of the grazing orbit can be discussed.
Next, differentiating (3.3)) with y(t) again we obtain that
owi(y) _ [ 05(0) ous) ) )
i\Y Y) OYy\s T\Y T\Y
_ [ YW,
o / DDES s+ Fu(e) G A w)lea + F0(s) G )
0;
97 (y) / Of (y(s) + J(y(s))) y(s)
+ fly+ () g pe o ds,
7(y)
(3.22)
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where ey = (0,1)T. Calculate the right hand side of (3:22) at the point §j = (Y1, 9)

to obtain

OW;(y(€,0,y" + Ay)) or(y(&,0,y" + Ay))

= f(y(&0,y" + Ay))

0y Oy
* * 87— aov * + A
(€0, + Ay) ( #1060+ dy) TS "J”) 6.2
2
. or O,y + A
+ (6, 0,y" + ) TUES Y T 20
Y2
To calculate the fraction Oy (&, Oé;yyo +4y)) in (3.23), we apply formula (3.10)
2
97 (y)

for the transversal point § = (1, y2). The second component 5,0 takes the form
Y

_ 2
or(y)
yd

= 0. This and formula (3.23)) imply

OW;(y 0
o _[ 0] oot
Y5 —2R7s
Similar to (3.21)), one can obtain that
Wily') _ (3.25)
Y3 0
Joining (3.21)) and (3.23)), it can be obtained that
) 1 0
Wiy (y*) = : (3.26)

0.001 — 1.8 exp(0.000257) 0O

The continuity of the derivatives in a neighborhood of y* implies that the function W

is differentiable at the grazing point y = y*, and the condition (A2) is valid.

Now, on the basis of the discussion made above, one can obtain the bivalued matrix

of coefficients for the grazing point as
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O, if (N1) is valid,

=
[

—1
, If(N2)isvalid.
0.001 — 1.8 exp(0.000257) 0

The matrix Dgl) = Oy is for near solutions of which are in the region where Z

in, see Fig. and do not intersect the curve of discontinuity I'y. The matrix

=

0.001 — 1.8 exp(0.000257) 0O
is for near solutions of (3.13), which intersects the curve of discontinuity T'y. They
start in the subregion, where the point Y is placed. Thus, the linearization for
U(t) at the grazing point exists. Moreover, since another point of discontinuity
(0, exp(0.00057)) is not grazing, the linearization at the point exist as well as lin-
earization at points of continuity [, [105]. Consequently, there exist linearization

around V().

To verify condition (A3), consider a near solution y(t) = y(t,0,y) to V(t), where
g = (0,92), Y2 > Wy(0) = 1, which satisfy the condition (N1). It is true that

Oi1—0; = g = % The first coordinate of the near solution is presented as
y1(t) = gexp(0.0005t) sin(t) and

™ w

yi(5) = y1(2) = yexp(0.000257) > exp(0.000257) = \111(2). Thus, the meeting
moment of near solution y(t) with the surface of discontinuity is less than . So, it
implies that 0 < 7(y) < § — € for a small number ¢ if the first coordinate of y is close
to exp(0.000257). This validates condition (A3). Now, Lemmal|l|proves the condition
().

Now, let us take into account the point (0,0). By utilizing Definition|l| we obtain that
(V®((0,0)), £((0,0))) = ((1,0),(0,0)) = 0. That is, the origin is a grazing point.
In the same time it is a fixed point of the system. For this particular grazing point,

we can find the linearization directly. Indeed, all the near solutions satisfy the linear
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impulsive system,
Ty = 19,
zy = —x1 + 0.0012, (3.27)
Axy|y—0 = —(1 + Ry)xs.

Consider a solution z(t) = x(t,0, ), where zo = (29,29) # (0,0) with moments

of discontinuity 0;,1 € 7, then the linearization system for the equation around the

equilibrium is

u) = ug,
wy = —uy + 0.001uy, (3.28)
Ausli—g, = —(1 + Ry)us.
Indeed, if ui(t), u1(0) = ey, us(t), uz(0) = ey, are solutions of (3.28)), then one can
see that z(t) — (0,0) = x%uy (t) + 2us(t), for all t € R.

We have obtained that linearization exists for both grazing solutions V(t), and the
equilibrium at the origin. Moreover, conditions (C1) — (C'10) are valid and all other
solutions are B-differentiable in parameters [5]. Thus, the system (3.14) defines a

K — smooth discontinuous flow in the plane.

In the next example, we will finalize the linearization around the grazing solution

U(t).
Example 2 (Linearization around the grazing discontinuous cycle). We continue

analysis of the last example, and complete the variational system for V(t).

Let us consider this time, the linearization at the non-grazing moment w = m. The

discontinuity point is ¢ = (0, — exp(0.00057)) and it is of (o) — type, since
(Ve(c), f(0))

= ((1,0)(— exp(0.00057), —0.001 exp(0.00057))) = — exp(0.00057) # 0.

Utilizing (3.10), the gradient can be computed as V7 (c) = (exp(—0.00057),0).
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Then, utilizing V1 (c) and formula , one can determine that the matrix of lin-

earization at the moment 7 is

exp(—0.00057) 0
0.001 0

9 =

From the monotonicity of the jump function, —Ryy3, it follows that the the yellow
and blue subregions of G are invariant. Consequently, for each solution near to
U(t), the sequences B; is of two types B; = ng), i € Zand j = 1,2, where
-1 0

DY, = 0a D, - DY
0.001 — 1.8 exp(0.000257) 0O

o = ) -

exp(—0.00057) 0

0.001 0
tion around the periodic solution on R is of two subsystems:

,i € Z. That is, the condition (A4) is valid and the lineariza-

/
Up = Ug,

uy = —uy + 0.001us,

» (3.29)
Au|t:92i—l = DQiflu’
Au|t:92i = Déz)uﬂ
and
uy = ug,
wy = —uy + 0.001uy,
o (3.30)
Au’t=92¢71 = D2i—1u7
Au’t=92¢ = Dé?)u,
where 0y 1 = P and 0,; = in

2

The sequences {ng )}, j = 1,2, are 2— periodic. It is appearant that system
+(@) is a (w,2)— periodic. Thus, the variational system for the grazing

solution is constructed.
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3.4 Orbital stability

In this section, we proceed investigation of the grazing periodic solution ¥(¢). Anal-
ysis of orbital stability will be taken into account. Denote by B(z,d), an open ball
with center at z and the radius § > 0 for a fixed point z € "\ 9T". By condition (C3),
the ball is divided by surface I" into two connected open regions. Denote ¢*(z,0),
for the region, where solution z(t) = x(t, 0, ) of (3.2)) enters as time increases. The

region is depicted in Figure|3.3

Set the path of the periodic solution W () as

n:={xeD:x=V(t), teR}

c(z,8)

Figure 3.3: The region ¢ (z,0).

Define dist(A,a) = inf,c 4 ||a — a||, where A is a set, and a is a point.

Definition 6 The periodic solution V(t) : R — D of is said to be orbitally
stable if for every € > 0, there is a 0 = 0(¢) > 0 such that dist(x(t,0,x¢),n) < €, for
all t > 0, provided dist(xg,m) < § and xq ¢ U;c™ (V(6;),0) fori = 1,...,m, where
m is the number of points V(0;) € T'\ OT".

The point x is not considered in regions ¢*(¥(6;),0),i = 1,...,m, since solutions
which start there move continuously on a finite interval, while W(¢) experiences a
non-zero jump at t = 6; and this violates the continuity in initial value, in general. In
the same time, we take into account any region adjoint to points of 91", since the jump
of W(t) is zero there and, consequently, the continuous dependence in initial value is

valid for all near points.
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Definition 7 The solution V(t) : R, — D of is said to have asymptotic phase
property if a 6 > 0 exists such that to each xy satisfying dist(xo,n) < § and xo ¢
Uict (W (6;),9), for i = 1,...,m, there corresponds an asymptotic phase a(xo) € R
with property: for all € > 0, there exists T'(¢) > 0, such that x(t + «(zy), 0, x¢) is in
e-neighborhood of V(t) in B—topology fort € [T'(¢), 00).

Let us consider the following system, which will be needed in the following lemmas

and theorem

(3.31)
Am‘t:(i = BZ'U,

where A(t) and B; are n x n function-matrices, A(t + w) = A(t), for all t € R and
there exists an integer p such that (;,, = (; +w and B, , = B;, forall « € Z.

Lemma 3 Assume that system has a simple unit characteristic multiplier and
the remaining n — 1 ones are in modulus less than unity. Then, the system has

a real fundamental matrix X (t), of the form

X(t) = P(t) ) (B ) (3.32)

where P € PC'(R, 0) is a regular, w-periodic matrix, and B is an (n —1) x (n — 1)

matrix with all eigenvalues have negative real parts.

Proof. Denote the matrix X (¢), X (0) = I, as fundamental matrix of system (3.31).
There is a matrix B; such that the substitution z = P(t)z, where

P(t) = X(t)exp(—Bit), transforms to the following system with constant
coefficient [5]],

2= Az. (3.33)

The matrix exp(Aw) has a simple unit eigenvalue and remaining (n — 1) ones are

in modulus less than unity. Hence, there exists real nonsingular matrix M, which
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satisfies

1 0
M exp(Aw)M =
0 Gy

The remaining part of the proof is same as proof of Lemma 5.1.1 in [38]]. J

Throughout this section, we will assume that (A4) is valid. That is, the variational
system (3.13) consists of m periodic subsystems. For each of these systems, we
find the matrix of monodromy, U;(w) and denote corresponding Floquet multipliers
by pﬁj), 1 =1,...,n, 5 = 1,...,m. In the next part of the study, the following

assumption is needed.
(A5) pgj) =1 and \pgj)| <1,i=2,...,nforeachj=1,...,m.

Lemma 4 Assume that the assumptions (A4) and (AS) are valid. Then, for each
Jj=1,...,m, the system (3.13) admits a fundamental matrix of the form

U(t) = B(t)[1, exp(Hw)], teR, (3.34)

where P; € PCY(R, () is a regular, w-periodic matrix and H; is an (n—1)x (n—1)—

matrix with all eigenvalues have negative real parts.
The proof of Lemmad] can be done similar to that of Lemma 3]

Theorem 3 Assume that conditions (C'1)—(C7), (C10), and the assumptions (A1) —
(A5) hold. Then w- periodic solution V(t) of (3.1)) is orbitally asymptotically stable

and has the asymptotic phase property.

Proof. Since of the group property, we may assume W(0) is not a discontinuity point.
Then, one can displace the origin to the point ¥(0), and the coordinate system can be
rotated in such a way that the tangent vector ¥(, = ¥’(0) points in the direction of the

positive x; axis i.e. the coordinates of this vector are Uj = (¥{,,0,...,0), ¥, > 0.

Let 6,7 € 7Z, be the discontinuity moments of W(¢). Denote the path of the solution
byn ={zr € X : x = ¥(t),t € R}. There exists a natural number p, such that
0;+p = 0; +w for all i. Because of conditions (C'1) — (C7) and K —differentiability of
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W (t) there exists continuous dependence on initial data and consequently there exists
a neighborhood of 7 such that any solutions which starts in the set will have moments
of discontinuity which constitute a B— sequence with difference between neighbors
approximately equal to the distance between corresponding neighbor moments of dis-
continuity of the periodic solution W(t). Consequently we can determine variational

system for W(¢), with points of discontinuity ¢;, i € Z.

On the basis of discussion in Section 2.1, one can define in the neighborhood of 7 a

B— equivalent system of type (3.4). The variational system of it takes the form

2= A(t)z +r(t, 2),
W ( ) (3.35)
Azlimg, =Dz +qi(2), j=12...,m,

where 7(t,2) = [f(V(t) + z) — f(V(t))] — A(t)z and ¢;(z) = W;(¥(6;) + z) —
()

Wi (¥ (6;)) — ng )2, are continuous functions, and matrices D, satisty condition
(A4). The functions are continuously differentiable with respect to z. One can verify
that r(¢,0) = ¢;(0) = 0 and r(t + w, z) = r(t, z) for t € R. Moreover, the derivatives
satisfy r/(t,0) = ¢.,(0) = 0 and the functions r(¢,z) — 0, ¢;(2) — 0, 7.(t,z) — 0
and ¢.,(z) — 0, as z — 0 uniformly in ¢t € [0,00), ¢ > 0. Each system for
7 = 1,2,...,m, corresponds to a region adjoint to initial value, xy such that these

regions cover a neighborhood of z.

Fix a number j and denote Y;(¢) the fundamental matrix of adjoint to (3.35)) linear

homogeneous system

y = Ay, (336
Ay|t=9¢ = Dz(j)y7
of the form (3.34). One can verify that
1 0
Y, (Y5 (s) = Py(1) Ps). @A)

for —oo < t, 5 < 0.

We can write
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1 0 [0 0 N 1 0
0 exp(H,(t—s)) 0 exp(H;(t—s)) 0 Opy |

where O,,_; is the (n — 1) x (n — 1) zero matrix. Then it can be driven

Vi)Y, (s) = GV (¢, ) + GY (1, 5) = GO (1, 5),

J

where

ng) t,s) = Pt ’ ! P1(s),
(t:5) () 0 exp(H;(t—s)) | ’ (®)
@ (s o) — P L 0 =
G35’ (t,s) = P;(t) I P (s)

Denote the eigenvalues of the matrix H; by )\gj ), I A9, By means of the Lemma
and there exits a number v > 0, such that Re(/\,gj)) < —a,k=2,3,...,n, where
Re(z) means the real part of the number, 2. Taking into account that the matrices P;

and Pj_1 are regular and periodic, the following estimates can be calculated

GD(t,5)] < KW exp(—aft — s)), (3.38)
GY)(t, )] < K9, (3.39)

where K9 is a positive real constant.

Denote the first column of the fundamental matrix Y by y'. By the equation (3.34),
x! is equal to the first column of P;, this means that it is a w-periodic solution of

(3.13).

By assumptions of the theorem the variational system (3.35) satisfies the conditions

of Lemma] and one can verify that the following estimate is true [38]

Y;(t)] < KY exp(—at) for t >0, (3.40)
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where K 1(j Visa positive constant. Let us setup the following integral equation

29(t,a) = Y;(t)a + / GO (¢, s)r(s, 2(s))ds — / GY(t, s)r(s, 2(s))ds
+ 3 GO0+ a(=(00) — > G (¢, 0k ai(2(0)), (3.41)
0<0, <t t<f<oco

where a = [0, aq,...,a,], a; € R, i =2,3,..., n, are orthogonal to ¥'(0), i.e. with

the zero first coordinate.

Let z(()j )(t, a) = 0, and consider the following successive approximations

o0

29(t a) = Yj(t)a + / GO(L, s)r(s, 25-1(5))ds + Y GO (L, O+ )i (25-1(6)),

0 k=1

(3.42)
for k = 1,2,.... By using the approximation (3.42)) and estimation (3.40), one can
verify that

129(t,0)| < KP|a|exp(—at/2). (3.43)

We will show that the bounded solution of (3.41) exists and satisfies (3.33). For
arbitrary positive small number L, there exists a number 6 = 6(L) such that for

21| <6, 22| <6

r(t,z1) — 7(t, 22)| < Llz1 — 2o (3.44)
and
|6i(21) — qi(22)| < L|z1 — 2], (3.45)
uniformly in ¢ € [0, 00).
N2 1
Denote by L :4K<J>(—— )
CROERY M a 1—exp(—abd/2)

Next, by using mathematical induction, we are going to show that 2 (t,a),s =

1,2,..., are defined for ¢ € [0, 00) and satisfy

129, (t,a) — 29)(t,a)| < KV|a| exp(—at/2)/2°, s = 0,1,2, ..., (3.46)

85



if L < L. Utilizing Lemma [ and inequalities (3.40), (3.44), (3.45) and 0, — 0; >

0,1 € Z, one can verify that

129 (t,a) — 29 (t,0)| < KP|a|Ly exp(—at/2) /(25 a). (3.47)

As a consequence of (3.46), the sequence z,(fll(t, a) converges uniformly on ¢ €

0.00). |al < 6/2KY and
[0,00), |a| < /2K,

29(t, )] < 2K |aj exp(—at/2),s = 1,2,.....

Therefore, the limit function z()(¢,a) exists on the same domain, it is piecewise

continuous, satisfies (]311'[) and the following estimate

129)(t,a)| < 2K9|a| exp(—at/2). (3:48)

Denote by z(t) = 29 (t,a), for j = 1,2,...,m. Next, we will verify that z0) (¢, a)
satisfies (3.35)). For it, differentiate (3.41)

Z(t) = YI(W)a+ G (1, t)r(t, (1)) + Gt )r(t, 2(1) +

t o)

/Gg)(t,s)r(s,z(s))ds—/Gg)(t,s)r(s,z(s))ds—i—
S G OA) a(z00) — Y GE (Lt )an(z(60r) =

A)Y;(t)a+ GO (L, t)r(t, 2(t)) + /A(t)G(j) (t,s)r(s,z(s))ds +

> AMGI(t, 05+ )qr(2(0k)) = A(b)z(t) + (¢, 2(t)).

0<0;<t

Fix 0y, k € Z, then
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O
2(0k+) — 2(0k) = Y;(0r+)a + / GV (6+, s)r(s, z(s))ds

0
- / G (Ot s)r(s.2(s))ds + D GY (Oht. )i (2(6:+))
O 0<6; <6

O
= > GOt 00)q:(2(0:4)) — Yi(Bi)a — / G (6, s)r(s, 2(s))ds
0 <0;<oco 0

o

+/G(j)(9k,s)r(s 2(s))ds — Z G (04, 0:+)qi(2(6;))

0<6; <0

+ ) G GY (0r, 0:+)ai(2(0:4)) = D 2(0k) + ai(2(0%)).

01 <0; <00

The above discussion proves that z(/) (t,a),7 = 1,,2,...,m, are bounded solutions

of system (3.35).

We will determine the initial values of bounded solutions in terms of (n — 1) pa-
rameters aéj), ,a¥. 5 =1,,2,...,m. Denote a¥) = 0,a},a,...,al]. By using

(3.41), we obtain

29(0,a9) = v;(0)at?) — /ng)(o,s)r(s,z(s))ds -
Y GP(0,04)au(=(6) = P;(0)a — P;(0) (1) OO ’
/Pj_l(s)r(s,z(s))ds— Z P (s)qr(2(0r))-

In the way utilized in [38], one can show that the coordinates of the initial value

(z1,...,7,) € D of the solution 2\) satisfy the equation
z + Z Axy— (s, ..., 2,) =0, (3.49)
where h; € Ct 5 =1,,2,...,m

One can see that equation (3.49) determines (n — 1) dimensional hypersurfaces S7 C

D,j =1,2,...,m, in a neighborhood of the origin such that each solution which
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starts at the surface satisfies inequality (3.48). From the analytical representation,
it follows that the equation of the tangent space of S at the origin is described by
the equation 7 + i CZ x; and the first coordinate of the gradient of the left hand
side in is urilzt; Moreover, the path 7 intersects S7 transversely. This and
condition (A4) imply that the path of every solution ¢(t) near W(¢) intersects one of

the manifolds S7,j = 1,2,...,m, at some ¢ € [0, 2w].

Because of the continuous dependence on initial values, a §(¢) > 0 exists for a given
€ > 0, such that if dist(z°, ns) < d(e), then the solution ¢(¢, z°) is defined on [0, 2],
and dist(¢(t,2°),n) < € < ¢ fort € [0,2T]. Therefore, the path of ¢(¢,x°) inter-
sects S7 for some j = 1,2,...,m and t; € [0,2w]. The solution ¢(t, 4(t1,2°)) =
¢(t + t1,2°) has its initial value in S7, consequently, satisfies (3.48). In the light
of the B— equivalence, the corresponding solution x(¢), z(0) = ¢(0) — ¥(0), of
(3.35)) satisfies the property that for all ¢ > 0, there exists 7'(¢) such that z(¢) is in
an e— neighborhood of W(¢) for ¢ € [T'(¢), 00). That is, the solution V() is orbitally

asymptotically stable and there exists an asymptotical phase. [

Definitions of the orbital stability and an asymptotic phase as well as theorem of
orbital stability for non-grazing periodic solutions are also presented in [[113]. In our
study, we suggest the orbital stability theorem for grazing periodic solutions, its proof
and formulate the definitions for the stability. They are different in many aspects
from those provided in [113]]. It is valuable that they also valid, if the solution is

non-grazing.

To shed light on our theoretical results, we will present the following examples.
Example 3 We continue with the system presented in Examples|l|and |2l In Example
[]} we verified that system (3.106)defines a K — smooth discontinuous flow in the plane

and the variational system +@ around the grazing periodic solution, V(t)

is approved.

Using systems and , one can evaluate the Floquet multipliers as ,051) =1,
p(zl) = (0.8551, p§2) = land p;Q) = 0. This verifies condition (A5).

The conditions (C1) — (C7) and (C10) are validated and the assumptions (A4) and
(A5) verified. By using Theorem 3| we can assert that the solution, V(t) is orbitally
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asymptotically stable. The stability is illustrated in Fig. The red one is for a
trajectory of the discontinuous periodic solution (3.15) of (3.14) and the blue one is
for the near solution of with initial value yy = (0.8,1.2). It can be observed

from Fig. that the blue trajectory approaches the red one as time increases.

15

0.5

Y,(t)
o

W

-1.5
-0.2 0 0.2 0.4 0.6 0.8 1 12

y,@®

Figure 3.4: The red discontinuous cycle of (3.14) axially grazes I at (0.000257), 0)
and (0, — exp(—0.00057)) is an («)-type point. The blue arcs are of the trajectory
with initial value (0.8,1.2). It is seen that it approaches the grazing one as time in-
creases.

Example 4 (A periodic solution with a non-axial grazing). We will take into account

the following autonomous system with variable moments of impulses

Ty = 19,
Th = —x
2 )
1 3.50
Az |per = E — x4+ K(x — 131)27 ( )
1
Axo|zer = E — 29 + K (2 — 5131)27

where T = {(z1,22)|x1 + 25 = V2}, T = {(21,22)|71 = 22} and K = 0.11. It
11

is easy to verify that the point x* = (5 5) is a grazing point since of the equality

(VO(z*), f(z*)) = ((1,1),(5,—3)) = 0 and it is non-axial graziness. We assume

that the domain is the plane.
The solution ¥(t) = (sin(t),cos(t)), t € R is a grazing one, since the point x* =
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(%) is from its orbit. The cycle and the line of discontinuity are depicted in Figure
3.5

Figure 3.5: The red curve is the orbit of W(¢) which grazes non-axially the line of
discontinuity.

Let us consider the linearization at the grazing point x* next. We will consider the
near solution x(t) = x(t,0,x2* + Ax). Denote t = &, the moment when the solution
meets the surface of discontinuity I' at the point & = x(§) = x(&,0, z* + Ax). Taking
into account formulae (3.17), (3.18) with (3.30), one can obtain the following matrix

OW;(x(§,0,2" + Ax)) | T2 T —2K(Zy — 1) —2K(Z2 —71)
ax(l) —I Ty — T —2K<f2 — i’l) —2K(f2 — Ifl)
— _L — - 2
x(el—i— To 1>+ - T K(z2 71) 717.
—7,| T1— X2 \/LE _ K(@ _ 1—:1)2 T, — To
3.51)
Calculating the right hand side of the expression (3.31)), we obtain that
—V/240.22
7 s Yy * A
oW, (z(&,0 f + Ax)) _ 202 (3.52)
oY V2 4 0.22

22

Using similar method with that of the first one, the second derivative can be computed
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as

V2+0.22
OWi((8,0,2" + Az)) _ 22 (3.53)
00 —v/2+0.22 '

2v/2

Combining (3.52)) and (3.53), we can obtain the following matrix for the linearization

at the grazing point x*,

V24022 V2+0.22

oy 2v/2 2V/2
Wig(2*) = V24022 —v24022|" (3.54)

2v/2 2v/2

It is appearant that the matrix Wi, (x*) is continuous with respect to its arguments,
since it is constant if the point ©* + Ax is not from the orbit of the grazing solution.
Since of the limit procedure, it is the same constant for all points of the grazing
solution. Thus, the Jacobian is constant matrix in a neighborhood of the grazing

point and condition (A2) is valid.

Now, let us check the validity of the condition (A3). Consider a near solution x(t) =
x(t,0,), to the grazing cycle V(t), where T = (0,Z3), To > V5(0) = 1. So, the
near solution x(t) satisfies the condition (N1). For the grazing periodic solution,
it is true that 0,1 — 0; = 2w = w. The grazing solution V(t) = x(t,0,(0,1)),
touches the line of discontinuity I at t = %. The first coordinate of the near solution
is x1(t) = Zosin(t), and xl(%}) =T sin(%)) = % > \Ifl(%d) = % Consequently,
the near solution x(t) meets the line of discontinuity I' before the moment % . This
implies that 0 < 7(x) < § — €, for a small positive € whenever x(t) is close to \%

Thus, the condition (A3) is valid and Lemmall|proves condition (C').

In the light of the above discussion, the bivalued matrix of coefficients for the grazing

point is easily obtained as
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(

O, if (N1) is valid,
—v/2+0.22 f+022

o (3.55)

\ 2v/2 2f

It is appearant that the interior of the grazing orbit is invariant. Let us show that the
external part of the unit circle is positively invariant. It is sufficient to demonstrate
that Ji(x1)? + Jy(22)? > 1 for any (z1,z5) € . Denote 2, = z and x5 = /2 — z
and consider the formula

F(2) = Ji(2)2 + (V32— 2)? = (%+o.11(\/§—2z)2)2+<%+o.11(\/§—2z)2)2,

where F(\lf) = 1. It is easy to calculate thatF’(%) = OandF”(%) = 0.88v/2 > 0.
Consequently,
1 1 1 1
Flz) = F(—=)=F()—-1=-F'(—=)(z — —=)*> 4+ o(||z —
(2) (\/5) (2) > (\/5)( \/5) (I \/—||)

if z is close to —= f Thus, near the grazing point, the external region is invariant. From
this discussion, since of the formula ([3.53)), we can conclude that the condition (A4)
is valid. Taking into account it with the expression (3.53), the linearization system for

(3.50) around the grazing solution V(t) is obtained as
— (3.56)

V24022 V24022

Db _ D@ _ 2v/2 2v2 =
where D, Os and D, V340922 /34022 1€

2V/2 2V/2

To finalize stability analysis, consider the first system in (3.56)), with matrices Dgl) =

Oy. Its multipliers are ,051) = pgl) = 1 and it constitutes the linearization for the

orbits which are inside the circle. The system does not give a decision by orbital
stability theorem, Theorem 3| Nevertheless, from the simple analysis [105] result, we

know that the grazing orbit is stable with respect to inside orbits of the system. The

92



linearization of orbits which are outside of the circle has multipliers p?) = 1 and
,052) = —0.15. It means that the periodic solution is orbitally stable with respect to
solutions outside of the circle. Summarizing the discussion, we can conclude that the

periodic solution is stable. The stability result is observed through simulations and it

is seen in Fig. 3.6]
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Figure 3.6: The red orbit of system (3.50) non-axially grazes the surface I'. The
magenta trajectory with initial point (0, 1.32) approaches the cycle as time increases.
The green cycle with initial point (0,0.96) demonstrates the inside stability of the
grazing orbit.

3.5 Small parameter analysis and grazing bifurcation

In this part, we will discuss existence and bifurcation of cycles for perturbed systems,
if the generating one admits a grazing periodic solution. In continuous dynamical
systems, a small parameter may cause a change in the number of periodic solutions
in critical cases. In the present analysis, we will demonstrate that the change may
happen in non-critical cases, since of the non-transversality. That is why, one can

say that grazing bifurcation is under discussion. Let us deal with the following system

v’ = f(x) + pg(z, 1),
AxL’UEF(M) = I(JZ) + MK<177 M)7

(3.57)
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where z € R",t € R, I'(n) = {z| ®(x) + po(x, u) = 0}, o € (—po, pto), and pig is
a sufficiently small positive number. Functions f(x), I(x) and ®(x) are continuously
differentiable up to second order, g(x, ), K(x, 1) are continuously differentiable in
x and p. The function ¢(z, i) is continuously differentiable in x up to second order
and to first order in ;. We assume that the generating system for is the system
(3.1) with all conditions assumed for the system, earlier. The main assumption of this
section is that admits a w—periodic solution, ¥(¢). Let ¥(0) = (¢?,¢3,...,¢%)

be the initial value of the solution.

Our aim is to find conditions that verify the existence of periodic solutions of
with a period .7 such that for ¢ = 0, the periodic solutions of are turned
down to W(¢). It is common for the autonomous systems that the period .7 does not
coincide with w. Thus, in the remaining part of the study, we will consider the period

7 as an unknown variable.

Due to the fact that W(0) is not an equilibrium, there exits a number

J = 1,2,...,n, such that f;((?,¢7,...,¢%) # 0. In other words, the vector field
is transversal to line z; = CJQ near the point. Hence, to try points near to W(0)
for the periodicity, it is sufficient to consider those with j—th coordinate is equal
to CJQ, [85]. For the discontinuous dynamics, the choice of the fixed coordinate can
be made easier if the surface of discontinuity is provided with a constant coordi-
nate. We will demonstrate this in examples. Denote the initial values of the in-
tended periodic solution by (1, (o, . . ., (,,. Assume that one initial value (; is known,
ie. CJQ. Thus, the problem contains n—many unknowns, they can be presented as
C1,Co, -+, G=15Cjt1s - - -, Cny 7. Denote solution of by zs(t, (1, Coy - vy Cay 1)
with initial conditions (0, (1, (2, - . ., (n, pt) = (5. To determine the unknowns, we

will consider the Poincaré criterion, which can be written as

yk(gaglaCQW"?Cnmu)Exk(y7clag2a"'7CnaM)_gkzoy k= 1,2,...771,
(3.58)

where (; = (7. The equations (3.58) are satisfied with = 0,.7 = w,G; = (), =

1,2,...,n, since W(t) is the periodic solution.
The following condition for the determinant is also needed in the remaining part study.
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(A6)

8(y1(w7<?7<87“~7<‘?717 ;‘)+17"'7<2)0)) a(yl(wvcgzcgr“zcgfl) JQ+1,'-~7<9L10))
a((yQ(w7<§)9<37~~:<§)717 JQ+17-~'7<2,70)) a('yé(w7<¥7<gv"'9<?71> ?+17~~~:<2’0))

07 oon #0 (3.59)
a(yn(W7C?7C877 ?717<?+17“'7<210)) a(yn(w7<?7<20)7 ‘;‘)71)4.‘70’4',1"“7(2’0))

Theorem 4 Assume that condition (A6) is valid. Then, admits a non-trivial

periodic solution, which converges in the B— topology to the non-trivial w-periodic

solution of as ju tends to zero.

We will present the following examples to realize our theoretical results.

Example 5 In this example, we will consider the perturbed system in case the gen-
erating system has a graziness. To show that, let us take into account the following

perturbed system

Ty = T2,

Ty = —0.001z9 — xy,
(3.60)
Ax2’:):€F1 = _(1 + Rle + /’LxQ)x%

Azy|zer, = —(1+ Ry + p(z2 — exp(0.0017/2)) 5.
It is easy to see that the system ([3.60) is of the form (3.57). For n = 0, the generating
system became . For the perturbed system ([3.60), we will investigate existence

of the periodic solution around the grazing periodic solution of (3.14) with the help
of Theorem

There are two sorts of possible periodic solutions of (3.60) around the grazing one.
One of them has two impulse moments during the period since it crosses both lines
of discontinuity, i.e. ©1 = 0 and x1 = exp(0.000257). The other sort is the periodic
solution which does not intersect the line 1 = exp(0.000257) and intersects the line
x1 = 0. We will show the existence of both type of periodic solutions if || sufficiently

small.

Let us start with the second type, assume that the solution for the perturbed system

exists and it starts at the point (0, xg2), T2 < 1 and does not intersect the line x; =

95



exp(0.000257). Denote the initial values of the periodic solution by (; and (. Since
the periodic solution necessarily intersects the line x1 = 0, one can choose (; = () =
0. By specifying the formula in (3.38) for the system (3.60), it is easy to obtain the

following expressions

yl(gaoa €2’/‘L> = xl(gaoa g?a:“) = Oa
yZ(gaoa QQ’:L[’) = ZEQ(?,O, g?a:”) - €2 = 0.

(3.61)

Next, taking the derivative of the expressions in (3.61)), we can obtain the following

3(:71(9707C27#)) a(yl('?707<27,“)) axl(w707<gro) 8301(“):07(370)
(S (T7,0,62,1)  O(F2(T,0,62,1)) o (w,0,63,0) w2 (w,0,63,0)  4|° )
07 92 0.7 B

The determinant (3.62) is calculated by means of the monodromy matrix of (3.14),

with the impulse matrix Dgl) =0y, ie.

1 —0.0317
1.0158 —0.1014

(3.63)

Taking into account the system (3.66) with (3.63) at (s = (3 and T = w for n = 0,

one can derive that

8--yl (W707C(2)70) 8yl (%07(370)
a7 ac _

055(,0,62.0) ay@(w,o,é,o) . = —0.0317 exp(0.000257) # 0. (3.64)
07 9C2

This verifies condition (AG6). Thus, condition (AG6) is valid, then by utilizing Theorem
@), we can assert that the system (3.57) admits a non-trivial periodic solution, which
converges in the B— topology to the non-trivial w-periodic solution of (3.1) as p

tends to zero.

Now, let us verify that system (3.60) has a circle which intersects the line x; =
exp(0.000257) in the neighborhood of (exp(0.000257),0). So, the periodic solu-

tion will attain two discontinuity moments in a period. Denote the initial values of
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the periodic solution by (; and (5. To apply the condition (AG), fix one initial value
¢1 = (Y = 0 of the intended periodic solution and in the light of the expressions (3.58))

‘5/1(‘7.’07C27M) = "L‘l(yaO?C—?aM) = 07
y?(ga(LCQ?M) = $2(=7a07C27M) - CZ = 0.

(3.65)

Taking the derivative of the expressions (3.63) with respect to variables 7 and (s,

one can obtain the following

(F(T,0,62,1)  O(F(T,0,62,1)) 071 (w,0,63,0) 01 (w,0,63,0)
0.7 9o _ 0.7 9Ca (3 66)
8(y2(y107<.27u)) 8('-9‘72(‘?701C27M)) 8$2(w701<—370) 8$2 (waO:Cg,O) _ 1 ’ ’
a7 3Ca 97 BCa

To determine the above determinant, the monodromy matrix of (3.13) with the jump
(2)

matrix D;”’ can be evaluated as

1 0.01
0 0.704

(3.67)

For p = 0, with the values w and (9 the determinant (3.66) can be determined as

7 0 7 0 -
LGN ANZAOGON| | exp(0.00025m)  —0.296 (3.68)

= 0.01exp(25.107°7) # 0.

This verifies condition (A6). So, By Theorem 4} we can conclude that the perturbed
system (3.60) admits a non-trivial 7 (u)— periodic solution which converges in the

B— topology to the non-trivial w-periodic solution of (3.14) as p tends to zero such
that 7 (0) = w.

In Fig. [3.7} some numerical results are provided to show the solutions of system ([3.60))
with p = 0.05.

The periodic solutions for . # 0 are not grazing. For p = 0, we have one periodic

solution which is orbitally stable, and for |1 < 0O, there exist two periodic solutions.
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Figure 3.7: The red arcs are the trajectory of the system with initial value
(0, 1.2) and the blue arcs are the orbit with initial value (0, 1.5). Through simulation,
we observe that the trajectories approach to the periodic solution of (3.60) as time
increases.

One of them has one discontinuity moment in each period, in other words, the cycle
does not intersect the surface of discontinuity around grazing point and it is orbitally
stable and the other one has two discontinuity moments in each period. This means,
the number of periodic solutions increases by variation of i, around ;1 = 0. So, we

will call that bifurcation of periodic solution from a grazing cycle.

Example 6 Let us consider the following system with variable moments of impulses

and a small parameter

Ty = 19,
rh = —0.0001[x3 + (1 — 1)* — (1 4 p)*|wy — 21 + 1, (3.69)

Ax?‘xeF = _(1 + Rx? + ,Ulg)xQ + N27

where R = 0.9 and I" = {x|z1 = 0,29 < 0}. It is easy to see that system is of
the form and ®(x1,x9) = x1 = 0. The system has a periodic solution

U, (t) = (1+ (14 ) cos(t), —(1 + ) sin(t)), (3.70)

where t € R for u € (—2,0].
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The generating system of (3.69) has the following form

T = @,
ahy = —0.0001[23 + (21 — 1)* — Lzg — 21 + 1, (3.71)
Azsylser = —(1 + Raz)as,
and admits the periodic solution Vy(t) = (1 + cos(t), —sin(t)). By means of the
equality (V®(z*), f(x*)) = ((1,0),(0,1)) = 0 with * = (0,0) € 9L, it is easy to

say that x* is a grazing point of V(t).

Let us start with the linearization of system around the periodic solution W (t).
Consider a near solution y(t) = y(t,0,y* + Ay), where Ay = (Ayy, Ays), to the
periodic solution V(t). Assume that y(t) satisfies condition (N1), and it meets the
surface of discontinuity I at the moment t = £ and at the point §j = y(&,0,y" +
Ay). Considering the formula (3.10) for the transversal point § = (Y1, Ys), the first

) can be evaluated as or(y) = ——. From the last equality, the

Yy oYy Yo
singularity is seen at the grazing point. By taking into account (3.17) with (3.71)) and

o7 (1)

component

we obtain that

Oyy
oWily) _ Ry, — 1 3.72)
N R (AR A VL (7R V)]
Similarly, taking into account the formula (3.22), one can evaluate that
87(‘3) =0,
Y3
This and formula (3.23)) imply
(Y 0
oWilg) _ . (3.73)
Oy —2R7s
Joining (3.72) and (3.73), the matrix W, (y) can be obtained as
_ Ry, — 1 0
Wiy(y) = : (3.74)

—0.0003R(95 + (;h — 1)* — 1) —2Rp,
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The last expression implies continuity of the partial derivatives near the grazing point.

This validates condition (A2).

Then, evaluating the matrix in aty = y* = (0,0), it is easy to obtain

-1 0
Wiy(y*) = : (3.75)
0.0003R 0

and

-1 0
, if (N1)isvalid,
B; =14 10.0003R 0 (3.76)

Os, if  (N2)isvalid.

To verify condition (A3), let us specify the region

H={(y1,y2)lyo < V1—(h —1)%,0 <y <1}

For the grazing solution V(t), we have that 0,1 — 0; = 27. Consider a near solution
y(t) = (yi(t),v2(t)) = y(t,0,7) to VU(t). To satisfy the condition (N1), take § =
(U1,Y2) € H. The orbit of y(t) is below the grazing orbit. Fix pointsy = (y1,y2) € H
and ) = (Y, 19) of the orbits y(t) and V(t), respectively such that 0 < y; = ¢ < 1
and 1y < 0. Since of the equation iy = ys, the speed of y1(t) at (y1,y2) is larger than
the speed of W1(t) at (11,12). Consequently, one can find that 7(y) < § < 2m for
y € H. Thus, the condition (A3) is valid and Lemmall|verifies the condition (C).

It is easy to demonstrate that the condition (A4) is valid such that near solutions to
the grazing one are either continuous or discontinuous. That is, they don’t intersect
the line of discontinuity I or intersect it permanently near to the grazing point and by
means of the formula (3.76), the linearization system for around the grazing
cycle Wy (t) consists of the following two subsystems

Uy = ug,

(3.77)
ul, = —0.0001 sin(2t)u; + 0.0002 sin’(t)us,
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and

/
Up = Ug,

u, = —0.0001 sin(2t)u; + 0.0002 sin’(t)us,
(3.78)

-1 0
AU|27W' = u.

0.0003R 0

The system + is (2w, 1) periodic. The Floquet multipliers of system
+ are p\" =1, p = 0.939, p = 1, p? = 0.912. Thus, condi-
tion (Ab) is validated. Moreover, the conditions (C1) — (C7) and (Al), (A2) can
be verified utilizing similar way presented in Example [I| Consequently, Theorem [3|
authenticates that the grazing periodic solution (cycle), Wy (t) of the system is
orbitally stable. The simulation results demonstrating the orbital stability of W (t)
are depicted in Figure 3.8

15

L L L L
-0.5 0 0.5 15 2 2.5

1
%)

Figure 3.8: The grazing cycle of system || is in red. The blue arcs are the trajec-
tory of the system with initial point (0.5, 1.2) and the green continuous orbit is with
initial value (0.1, 0). They demonstrate stability of the grazing solution.

Next, we will investigate two sorts of periodic solutions of system (3.69) with a period
T near to 2m. The first one is continuous and the second admits discontinuities once
on a period. For those solutions, corresponding linearization systems around the
grazing cycle V(t) are (3.7T7) and (3.78)), respectively. Let us start with the contin-
uous periodic solutions of (3.69). For continuous periodic solution, we will consider

the linearization system (3.77).

To apply Theorem denote Wy(0) = (¢V,0). That is, consider (3 = 0. Then, apply-

ing the above discussion, obtain that the Poincarée condition admits the form of the
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following equations,

ST Cpn) =x1(T,G,p) — a1 =0,
ST Cyp) = 22(T G, ) = 0.

(3.79)

Because solutions of the system (3.71)) have continuous derivatives with respect to the

time, phase variables and parameters, we can calculate the following determinant

85/1(“}7@’0) 85’1(%@,0)

0T o
0w, (), 0)  9F(w, (7, 0)|" (3.80)
0T 19
First, we need the monodromy matrix of the system (3.77). It is
0.939 —0.0001407
(3.81)
—0.0003165 1

It is easy to see that first column of the determinant (3.80) is computed by utilizing
and the second column is evaluated by means of the first column of the matrix

(3-81). From this discussion, one can obtain that the determinant (3.80) is equal to

0 —0.061
= 0.061 # 0. (3.82)
1 —0.0003165

Thus, in the light of Theorem |4}, we can conclude that for sufficiently small |ji| there
exists a unique periodic solution of the system

Ty = 29,

(3.83)

rh = —0.0001[22 + (1 — 1)? — (1 4 p)}ay — 2y + 1.
It is exactly the cycle ([3.70) with a period = 27 If i < 0, the solution is separated
from the set I'. Consequently, it is a periodic continuous solution of the equation
(3-69). It is orbitally stable by the theorem for continuous dynamics [30], since of the
continuous dependence of multipliers on the parameter. The function V,(t), ;1 > 0,
intersects I and can not be a solution of equation (3.69). Thus, the system does not

admit a continuous periodic solution near to W (t), if the parameter is positive.
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Considering those solutions which have one moment of discontinuity in a period, one

can find that the corresponding linearization of W (t) is the system (3.78).
The monodromy matrix of can be evaluated as

0.939 —0.00052
—0.000427 1

(3.84)

It can be easily observed that the discontinuous solution intersects the line xr1 = 0.
For this reason, one can specify the first coordinate of the initial value as ; = (¥ = 0.
In the light of these discussions and the formula (3.58), the following equations are

obtained:

yl(ya07c27ﬂ) = xl(ya07c2aﬂ) = 07

L5”2(<?a 07 CQ?H’) = 332(9, 07 §2a ,U) F CQ = 0.
Then, taking the derivative of the system (3.83) with respect to J and (3, and cal-

(3.85)

culating it at 7 = w, (o = ¢J = 0, and for = 0, the following determinant is

obtained
85ﬁ(w,0,§3,0) 8=5ﬂ1(w,0, CS,O)
07 Gy _ 0 —0.0006 _ N
053(w,0,¢9,0) 0% (w,0,¢2,0)| ~ |1 0.0009 0.0006 # 0. (3.86)
0T ¢,

Thus, condition (A6) holds. Then, utilizing Theorem H} it is easy to conclude that
for sufficiently small . there exists a unique periodic solution of the system (3.69)
with a period ~ 2m. It is true that for positive as well as negative .. Moreover,
these solutions are orbitally asymptotically stable because of the continuous depen-
dence of solutions on parameter and initial values and they meet the discontinuity

line transversally.

For each fixed v # 0, solutions near to the periodic ones intersect the line of dis-
continuity I' transversally once during the time approximately equal to the period.
That is, the smoothness which is requested for the application of the Poincaré con-
dition is valid, since the smoothness for the grazing point has already been verified.
It is clear that there can not be another solutions with period close to 2m. Thus, one
can make the following conclusion. The original system (3.69) admits two orbitally
stable periodic solutions, continuous and discontinuous, if n < 0. There is a single

orbitally stable continuous solution (grazing) if = 0. Additionally, there is a unique

103



discontinuous orbitally stable periodic solution for positive values of the parameter.
Consequently, grazing bifurcation of cycles appears for the system with small param-

eter.

We have obtained regular behavior in dynamics near grazing orbits by Poincare small
parameter analysis. Nevertheless, outside the attractors irregular phenomena may be

observed.

In Figure the solutions of the system (3.69) with parameter = —0.2 are de-
picted through simulations. The red arcs are the trajectory of the system (3.69) with
initial value (0.7,0.05) and the blue arcs are the trajectory of the system with
initial value (0.4,0.05). It is seen that both red and blue trajectories approach the
discontinuous periodic solution of (3.69), as time increases. So, the discontinuous
cycle is orbitally stable trajectory. Moreover, the green one is a continuous periodic
trajectory of with initial value (0, 0.05) and it is orbitally asymptotically stable.
To sum up, there exists two periodic solutions of (3.69) for the parameter n = —0.2,
one is continuous, the other one is discontinuous and both solutions are orbitally

asymptotically stable.

2.5

Figure 3.9: The blue, red and green arcs constitute the trajectories of system (3.69)
with ;o = —0.2. The first two approach as time increases to the discontinuous limit
cycle and the third one is the continuous limit cycle itself.

In Fig. the red arcs are the orbit of the system with initial value (0,0.1) and the
blue arcs are the trajectory of it with initial value (0,0.4). Both trajectories approach
to the discontinuous cycle of system (3.69), as time increases. Thus, Fig. [3.10]illus-

trates the existence of the orbitally stable discontinuous periodic solution if 1 = 0.2.
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Figure 3.10: The red and blue arcs constitute the trajectories of the system 1) with
1 = 0.2. Both orbits approach to the discontinuous limit cycle, as time increases.

3.6 Conclusion

In literature, the dynamics in the neighborhood of the grazing points [19, 25, 31,
33, 134,139, 140] is generally analyzed through maps of the Poincaré type. The main
analysis is conducted on complex dynamics behavior such as chaos and bifurcation
(19125, 31, 33, 134, [39]. However, there is still no sufficient conditions for the dis-
continuous motion to admit main features of dynamical systems : the group property,
continuous and differentiable dependence on initial data and continuation of motions,
which are useful for both local and global analysis. Variational systems for graz-
ing solutions have not been considered in general as well as orbital stability theorem
and regular perturbation theory around cycles, despite, particular cases can be found
in specialized papers. See, for example, [20]. To investigate these problems in the
present study, we have applied the method of B— equivalence and results on dis-
continuous dynamics developed and summarized in [3]. In our analysis the grazing
singularity is observed through the gradient of the time function 7(z), since some of
its coordinates are infinite. We have found the components of the discontinuous dy-
namical system that is the vector field, surfaces of discontinuity and the equations of
jump such that interacting they neutralize the effect of singularity. Then, we linearize
the system at the grazing moments and this brings the dynamics to regular analysis
and make suitable for the application. By means of the linearization, the theory can
be understood as a part of the general theory of discontinuous dynamical system.

Thus, we have considered grazing phenomena as a subject of the general theory of
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discontinuous dynamical systems [35], discovered a partition of set of solutions near
grazing solution such that we determine linearization around a grazing solution is a
collection of several linear impulsive systems with fixed moments of impulses. This
constitutes the main novelty of the present study. To linearize a solution around the
grazing one, a system from the collection is to be utilized. This result has been applied
to prove the orbital stability theorem. The way of analysis in [2, 3}, 15] continues in the
present study and it admits all attributes which are proper for continuous dynamics
[30]. That is why, we believe that the method can be extended for introduction and
research of graziness in other types of dynamics such as partial and functional differ-
ential equations and others. Next, we plan to apply the present results and the method

of investigation for problems initiated in [19, 31} 33} [34].

3.6.1 An example: Van der Pol oscillators generated from grazing dynamics

In this example, we take into account two coupled Van der Pol equations with impacts.
The main novelty is that the degenerated system for the model admits an oscillation
with zero impact velocity. To prove presence of oscillations, beside the perturbation
method, the newly developed linearization for dynamics with grazing has been ap-
plied. As different from the theoretical results such as Nordmark mapping and Zero
time discontinuity mapping, the grazing is examined through another method of dis-
continuous dynamics, which diminishes the role of mappings in the analysis. The rich
diversity of changes in the dynamics is observed under regular perturbations, since of
the grazing discontinuity. By means of the simulation results, the analytical studies

are visualized.

Van der Pol oscillator has been found many applications in biology [38], electronics
and mechanics [8]]. Van der Pol oscillator is used to model the vacuum tube circuits
in the early stages of the electronics technology. Van der Pol and his coworkers ana-
lyzed the electrical circuits inserting vacuum tubes and they determined limit cycles
of them. Moreover, the output of the system became a cycle with the frequency of the
applied signal when a signal is applied to these circuits with frequency near to that of
the limit cycle. Such phenomenon give a rise to the entrainment of the cycle with the

signal. He developed various types of electronic circuit models for the investigation
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of the heart dynamics and the external applied signal is found to be as an analogous
to the situation that the heart is driven with a peacemaker. He was seeking to stabilize
the irregular beatings of the heart by means of his entrainment study. The Van der
Pol oscillator can be seen as a impact oscillator with a non-linear damping force. In
literature, a wide ranges of works have been conducted on it. In [38]], the qualitative
analysis for the existence and non-existence of periodic solution of the oscillator has
been investigated. By applying numerical methods, the cycles of the oscillator has
been examined [84, [121]]. In the paper [8]], the limit cycles for the impacting Van der
Pol oscillator has been obtained. By applying the generalized eigenvalue method, the

stability of it is determined analytically.

In this study, the degenerated system is uncoupled which consists of a harmonic and
Van der Pol oscillators. The harmonic oscillator has a grazing cycle which is orbitally
stable from outside and stable from inside and the Van der Pol has a stable focus. The
perturbed system contains two coupled Van der Pol oscillators. It is proved that this
system admits a discontinuous torus which is considered as a Cartesian product of one
continuous and discontinuous cycles. Then, it is called bifurcation of discontinuous

torus.

We want to show how the results, derived in [[6], are efficient for the analysis of the
regular dynamics around the grazing cycle of the impacting Van der Pol oscillators.
In the light of the theoretical results of the paper, we will investigate the grazing in
the degenerated oscillators, and the persistence of the stable cycle under regular per-
turbation. We consider a harmonic oscillator with impacts as a degenerated one for
the Van der Pol oscillator. That is, the degenerated oscillator is not a Van der Pol
oscillator. The system, which we will analyze in this study, has the nonlinearities in
both the vector field and the jump function. By applying newly developed lineariza-
tion and perturbation theory, the orbital stability in the system of coupled Van der Pol

oscillators have been examined.

In [38], the Van der Pol oscillator has been considered as a perturbed harmonic os-
cillator. For that, by applying averaging method, an approximate periodic solution of
the oscillator has been obtained analytically. Moreover, by applying Dulac’s criterion,

it has been determined that there exists no periodic solution in the region |z| < 1. In
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this study, by considering deformable surfaces and the velocity dependent coefficient
of restitution and by utilizing the theories which are initiated in [6], the existence of

the orbitally stable discontinuous cycle of the oscillator inside the region is obtained.

It is hard to analyze the cycles of the systems with grazing points since of the singu-
larity in the Poincare mapping. In the literature, in order to analyze these systems,
some different methods are applied such as Nordmark mapping [97] and other types
of mappings [33, 31]. These mappings are made up of the composition of several
discrete or continuous motions. In this investigation, we have proposed a method,
which was presented in [S], converts systems with variable moments to those with
fixed moments by preserving dynamical properties of the original system. There is a
huge difference between these two approaches, because by applying the method, B-
equivalent method, the role of mappings are diminished in the analysis and it indicates
that how the method is efficient for the analysis and makes the investigations close
to the existing theory of differential equations with impulses and ordinary differential
equations. In our concern, science develops in various directions and by different
methods. The strength of science is determined by the diversity of methods. For
this reason, besides the methods realized in [31} 98], the application of B-equivalent
method, which converts the differential equations with variable moments of impulses
to those with fixed moment by saving dynamical properties of the original ones, has

to be also realized to enrich the analysis and results for the grazing phenomenon.

In such papers [31} 33,134, 97, O8], generally the complex behavior around the graz-
ing solution or grazing points investigated. The way of study for the grazing is far
more different in many senses from that ones in the literature because the aim of the
present study is to find regular behaviors around it. The results, which are based on
the linearization technique around grazing solutions, are fully analogues to the exist-
ing results in ordinary differential equations [38]. Until now, the theories obtained
for differential equations [5] with impulses is very analogues to that for ordinary dif-
ferential equations and in this study and the papers [6], some sufficient conditions,
which proceed the existing results of impulsive system, are obtained for the systems

with grazing.

Earlier, (6], we have considered discontinuous dynamics with grazing points. Some
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sufficient conditions are obtained to define a discontinuous flow. Orbital stability
definition is considered for those systems and orbital stability theorem is proved for
the systems with grazing. In the literature, it is first time that orbital stability theorem
is taken into account for discontinuous dynamics with grazing. Then, by applying
regular perturbation [85] to the system, the orbitally stable oscillation for the model is
examined. The aim of the present study is to show the applicability of the results, [6].
The approach of this study is different in many aspects from those in the literature,
because the singularity, which is caused by the grazing, is suppressed in the system by
harmonizing the vector field, the surface of discontinuity and the jump function. This
allows us to consider the dynamics with grazing as a regular one. In the literature,
the grazing is investigated through mapping approach and in this study, by utilizing
special linearization technique the role of mapping is eliminated in the analysis. Also,
it is a seminal study that the Van der Pol equation is taken into account with the

grazing.

This study is devoted to show the existence of orbitally stable discontinuous cycle of
the following perturbed system
"+ pu(l — 232’ +x =0,
v +a(l —y?)y +y+ puxr =0, (3.87)
Ax'|aer, = —(1+ Ra')a’,
where ' stands for the derivative with respect to time, I',, is the surface of discontinuity
which is defined by I'), = {(z,2,y,y')|xr = 1 — p, u > 0}, the coefficient a is a
positive constant and R is the coefficient of restitution. It is seen that the system

contains coupled Van der Pol oscillators.

The technique, which was developed in the paper [[6], will be used in the present study.
For models with impacts in the literature, the scientists generally formalize the jump
equation by means of the Newton’s coefficient of restitution which varies between
zero and unity. That is, 2/, = —Rz’ , where 2’ and z/_, denote the velocity before
and after an impact, respectively. In this study, the coefficient of restitution will be
taken into account as variable, in other words we will consider a velocity dependent
coefficient of restitution. Many researches [56, 189, [110] have been conducted on
the variable coefficient of restitution. In [89]], the velocity dependent coefficient of

restitution is analyzed through simulations and in [[116l], some experimental results
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are obtained. The relation between the restitution and impact velocity is depicted for
two different models in [|60]. It is exhibited in [56]] that the restitution coefficient is not
constant at each cycle and every test. In this study, the impact function is considered

as velocity dependent, the idea behind this is carefully analyzed in the paper [9]].

The degenerated system for (3.87) is

2 +x=0,
Y +a(l— )y +y =0, (3.:88)
Ax|ger, = —(1 + Rx')2'.

It consists of the following two uncoupled oscillators

2 4+x=0,
(3.89)
Ax|,=1 = —(1 + Ra')a/,
and
y' +a(l —y*)y +y=0. (3.90)

The first equation is a harmonic oscillator with impacts and the second one is a Van
der Pol oscillator. It is easy to demonstrate that W, (¢) = cos(t) is a periodic solution
of (3.89). The importance of the present research is connected to a difficulty in the

analysis of the degenerated system, since the cycle is a grazing one.

Due to the fact that the linearization technique for the grazing oscillators has not been
developed properly, yet, there are difficulties in the perturbation method. In the paper
[6]], a linearization system with two compartments is obtained for the grazing cycles
of discontinuous dynamical system. In that paper, some sufficient conditions for the
orbital stability and regular perturbations for the grazing cycle of those systems are
presented. This study aims to show how these results are applicable and efficient for

the discontinuous dynamics.

In the remainder, a perturbed system is taken into account as a couple of two Van
der Pol equations. A harmonic oscillator with impacts is considered as a generating
model. For that system, it is verified that there is a continuous grazing plane cycle
and by applying linearization technique, developed in [6]], it is demonstrated that the

cycle is orbitally stable from outside and stable from inside. Then, by utilizing the
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small parameter, the system is obtained as two Van der Pol oscillators which are
connected unilaterally. For this system, we obtain a discontinuous torus as a Cartesian
product of two cycles, discontinuous and continuous ones. Moreover, it is approved
that the cycle is orbitally stable with continuous and discontinuous coordinates such
that if one interpret Cartesian product of two cycles as torus, we can formulate the
main result as a bifurcation of a discontinuous torus. We would like to emphasize on
as a particular result of the present study which concerns the oscillator (3.89). It is
proved that it admits a unique continuous cycle which is stable. However, when it
is perturbed, the generated oscillator admits a discontinuous cycle which is orbitally
stable. In other words, it is asymptotically stable. That is, grazing in the degenerated
model is a reason when perturbation creates discontinuity as well as it “improves”

stability.

In the last section in this study, we will discuss the case when the Van der Pol oscil-
lator in the generating system (3.88) admits a limit cycle and the generating system
(3-88) admits two unit multipliers. This case can be comprehended as a critical one
for the perturbation theory. Since the orbital stability theorem [38] as well as the
small parameter method [38), [85] are hard to be applied. This problem can be taken
into account by utilizing the results which are obtained in [3] Section 7.2. In this
study, through simulations, we obtain that the continuous torus is transformed to dis-
continuous one under the regular perturbation. We have present this discussion at the

end of the study to demonstrate the future work.

The rest of the example can be outlined as follows. In Section 2, we give a brief
summary for the discontinuous dynamical system with grazing. The degenerated sys-
tem with grazing is described. Section 3 covers the information about dynamics in
harmonic oscillator with a grazing point. A recently developed linearization method
[6] around grazing solutions has been utilized for the system to examine or-
bitally stability. Section 4, is the main part of the study. By applying results of [6]],
the orbitally stable cycle for the perturbed system has been obtained. Finally,
bifurcation of discontinuous torus is observed and utilizing simulation tools, we have
visualized the results of the present study. Section 5 includes a detailed summary of

this study and some future works about the problem.
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Defining variables as x = x1, ' = X9, y = x3, Yy = x4, the system (3.88) can be

rewritten as

Ty = 19,
ThH = —T1,

Th = T4, (3.91)
), = —a(l — z3)zy — w3,

Aw2|$ef‘o = —(1 + RZL‘Q)JZQ.

Due to the fact that the generating system is an uncoupled one, The generating system

(3.91) can be decomposed into following two systems,

{El — $27
rh = —x, (3.92)
Ax?’xel“o (1 + RmQ)x%
and
To = Iy,
iy (3.93)
) = —a(l — z3)xy — 3.

In the following part of the study, we will consider the stable oscillations of (3.91). It
will be demonstrated in the following part that the fixed point of the equation (3.90) is
a stable focus. In Fig. [3.12] the blue arc is drawn for the solution of (3.93)) with initial
value (0.2,0), which starts outside, approaches the fixed point (0, 0) of the system

(3.93).

First, we will show that, the model (3.89) has a grazing cycle, which is of the form
WUy (t) = cos(t). To accomplish it, we will consider Definition [I| We have

(VO (T,(0), T\ (0)), (¥ (0), —T1(0))) = ((1,0),(0,1)) = 0, then we can say that
the cycle Wy (t) = cos(t), of the system (3.89) is a grazing one. In the next section,
we will consider the linearization around the grazing cycle of the impacting harmonic

oscillator (3.89)).

Considering the system (3.91)) with (3.1]), one can determine that the barrier is 'y =
{([Eh To, T3, ZE4)|ZL’1 = ]_}, and it is defined by CD(CL’l, To, T3, .174) =T — 1 = 0 and the

vector field is f(xq, 22, 23, 14) = (22, =11, 24, —a(l — 22) 24 — 3).
Denote the cycle of the system (3.91) by W (¢) = (cos(t), —sin(t), Us(t), Uy(t)),
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where U3(t) = 0 and W,(t) = 0 is the fixed point of the system (3.93). To save the
integrity of this study, it is important to see that the cycle, W(t), of the system (3.91)

is a grazing one and the point W (0) is grazing.
Indeed, it is easy to verify that
(Ve (a"), f(27)) = ((1,0,0,0), (0,1, —a(l — (¥3(0))*) T4(0) — ¥3(0))) = 0,

and applying Definitions |1 and |5, one can conclude that the cycle W(¢) grazes the
surface of discontinuity I'y at the point ¥ (0).

3.6.1.1 Dynamics in the harmonic oscillator with the grazing point

Next, we will consider the linearization around the periodic solution W, (t) = cos(t)
of the impacting system . Denoting the meeting moment of the solution x(t) =
x(t,0, xq) of with a barrier x = 1 by ¢ = 6, we obtain for Ax'(§) = !, — 2’
where 2’ and 2/, are velocities before and after impact, respectively. In order to
analyze the stability of the grazing cycle W(t) = (U (¢), ¥/ (1)), it is urgent to con-
sider the linearization around the cycle. There exist two different types of solutions
near the grazing cycle. Some of them do not meet the surface of discontinuity and
others intersect the surface of discontinuity near the grazing point (W;(0), ¥} (0)),

transversely.

For the continuous solutions, the linearization around the periodic solution W(#) is

ul = uo,
Lo (3.94)

= —Uj.

N~

u

The fundamental matrix of (3.94) is U(t), where U(0) = I, I5, is 2 x 2 identity
matrix. It is easy to verify by using techniques [38,85] that the grazing cycle is stable

with respect to the continuous inside solutions.

To obtain a linearization for the outside solutions to the cycle, it is important to con-
sider a near solution x(t) = x(t, 0;, ¥ (6;)+Ax) = (x1(t), z2(t)), to ¥ (t) of the differ-
ential part of the last system, near the moment ¢ = 6,. The solution z(¢) meets the bar-
rier at a moment ¢t = &; near to t = 0; at the point (x1, z2) = (z1(&), 2(&;)). Let also,

Z(t) = (21(¢), Z2(t)) be a solution of the equation such that #(&;) = x(&) + J(x(&)),
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where J(z1,x9) = (z1,0.623), it is easy to determine that R = 0.6 in (3.92) Define

the following map

Wit = 1| 2 | as 4 (a: Lo ds) R PN
6, | z1(s) 0, | —x1(s) & | —Z1(s)
Now, we will carry on with examining the near discontinuous solution to the grazing
cycle. It is too hard to analyze the systems with variable moments of impulses (3.92)
for this reason, we should propose another system which preserves the dynamical
properties of (3.92). For it, by applying B— equivalence technique which is initiated
in [3] and revised for the discontinuous dynamics with grazing points in [6], we will
obtain a system with fixed moments of impacts to the system (3.92) which preserves

dynamical properties of (3.92). Then, the B—equivalent system has the form

!/
Xy = Ta,

Th = —x1, (3.95)

where © = (1, 22)7, T is the transpose of a matrix, §; = 2i, i € Z and the maps
Wi(x(6;)), i € Z, is precised in (3.95). It is easy to verify that the cycle W(t) =
(Wq(t), Ui(t)) = (cos(t), —sin(t)) is a solution of system (3.93), as well [3].

Due to the construction of the map W;, the solutions of (3.92) and (3.95) coincide
except the intervals m, i € Z, where m = [6;,&] whenever 0; < &; and

0;,&:] = [&, 0;], otherwise. By applying the method presented in [6], the derivative of
the map (3.95)) with respect to the first component of the initial value can be obtained

as
oW, (z) T | -1 10 T | -1
o I [ R O (O R )R
Oy 7 T2 0 1.27 7 Ty
- (3.96)
T — Ty Ty 0.6%, — 1.27, |

where e; = (1,0)7. Through the last expression, we can conclude that the derivative
is a continuous function in its arguments in a neighborhood of the grazing point. Due

to the fact that the point Z is a transversal one, we get

(z —1
lim IWi(z) _ . (3.97)
zar Oxf —1.2

114



By considering the theory which is originated in paper [6], we have the following

linearization matrix at x*,

. -1 0
Wale) = | ] (3.98)

Taking into account the above calculations, the linearization system for (3.89) around
the periodic solution W(#), can be obtained as

[—
Uy = U2,

yA— (3.99)
Auli—g, = Wip(2*)u,
where the matrix W;, (z*) calculated in (3.98). Then, one can evaluate the multipliers
as p1 = land p, = 0. In the light of Theorem 5.1 in the paper [6]], since one multiplier
is unity and one is inside the unit disc, it is easy to conclude that the solution, ‘If(t)
is orbitally stable with respect to outside impacting solution [5]. One can observe
in Fig. [3.T1] that the near inside solutions are continuous and the outside ones are
discontinuous and the green one is drawn for the grazing cycle and the cycle is stable
with respect to inside solution and orbitally stable with respect to outside solutions
[6]. In Fig. 3.11]and [3.12] the solutions of the system (3.91)) are depicted. Because
both systems are separated from the each other, the trajectories of the system can be

drawn separately as seen in Figs. [3.1T]and [3.12]

The Fig. [3.11]is depicted for the solutions of an impacting harmonic oscillator which
is subdued impacts at variable moments. The grazing cycle is pictured in green and
the solutions with initial values (x1(0),22(0)) = (—1.8,0) and (x1(0),z2(0)) =
(—0.9,0) are drawn in blue and red, respectively. The blue curves approach the the
green cycle as time increases and the inside cycle, which is drawn in red preserves its
distance to the grazing cycle of the harmonic oscillator. It illustrates that the grazing
cycle is orbitally stable with respect to impacting solutions and stable with respect to

the non impacting solutions.

In Fig. [3.12] the solution of a non-impacting Van der Pol equation (3.93)) with the
constant a = 1 is depicted with initial value (x3(0), z4(0)) = (0,0.03) in blue. From
the simulation, one can observe the the solution approaches the fixed point, (0, 0) of

the system (3.93). Thus, the fixed point is a stable focus.
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Figure 3.11: The blue and red arcs are for the solutions of system

with initial values (z1(0), 22(0)) = (—1.8,0) and (z1(0), z2(0)) = (—0.9,0), respec-
tively. The green circle is for the grazing cycle of (3.92)). It is apparent that the cycle
is stable with respect to inside solution and orbitally stable with respect to outside
solution.

In Fig. the coordinates z(t) — x3(t) — x4(t) of system with initial val-
ues (21(0), 22(0), z5(0), 24(0)) = (0,1.3,0,0.03) and (z1(0), x2(0), z5(0), 24(0)) =
(0,0.9,0,0.03) are pictured in blue and red, respectively. It is hard to see in Fig.
how the solutions behave. For this reason, one should consider the Fig. 3.12]in order
to observe that there exists a stable focus of the Van der Pol oscillator which is mod-
eled through the system (3.93)). It is seen in Fig. [3.13]that the trajectories are attracted

by the circle in the plane x4, = 0.

0.03

0.02

-0.01 L L I L
-5 0 5 10 15 20
X5 x 107

Figure 3.12: (a)The blue arc is drawn for the solution of system (3.93) with initial
value (x3(0), z4(0)) = (0,0.03).
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Figure 3.13: (b)The blue and red arcs are pictured for the coordinates
x1(t) — x2(t) — x4(t) of the solution of the system (3.91) with initial values
(21(0), 22(0), 23(0), 24(0)) = (0,1.8,0,0.03) and (x1(0),22(0),z3(0),24(0)) =
(0,0.9,0,0.03), respectively.

3.6.1.2 Regular perturbations: The bifurcation of torus

In this section, by applying regular perturbations to the model (3.88), we obtain the
system (3.87). It is easy to see that the system (3.87)) is a coupled system although the
equations of the system (3.88) are uncoupled. Next, the existence of orbitally stable

discontinuous periodic motion of (3.88)) will be analyzed.

By applying the Dulac’s criterion [38]] through analysis of the expression (1 — %),
we have obtained that there is no continuous periodic solutions of (3.92)) near the unit

circle for small p # 0.

Next, the aim of the present study is to examine the existence of orbitally stable
discontinuous periodic solution of Van der Pol’s equation (3.100) near to the grazing
cycle. Defining variables as © = x1, ' = xo, y = x3, iy = 14, the system (3.87) can

be rewritten as

/

T = x9,

rh=—x— pu(l — %)z,

xh = Ty, (3.100)
)y = —a(l — 23)xy — x5 — pry,

Azs|zer, = —(1 + Rxg)ws.

Let us construct the following map in order to determine the periodic solution of
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the perturbed system (3.100). Denote by 71, 72, 73 and 74 the initial values of the
intended solution (periodic solution of the perturbed system) and 7 the period of it.
Let v9,79,79,~ be an initial value of the periodic solution W (¢) of the generating
system . Fix one initial value of the cycle of the perturbed system 75 = 73 = 0.
In order to investigate the existence of the periodic solution, we will consider the

following equations

Pr(T, 715795 Y30 Vs 1) = T (T, 71579, V3s Y 1) — 1 =

Po(T, 71,795 Y3, Yas 1) = 2T, 1,755 Y35 Y 1) = 0, (3.101)
Ps(7, 71575 Y35 Y 1) = T3(7, 71,79, V35 Y, 1) — Y3 = 0,

Pa(T 71,79, 935 Vs 1) = 2a(T, 71,79, V35 Y4, 1) — 74 = 0.

To solve the equations in (3.101)), it request that the following determinant should not

be equal to zero.

OPL(T v 3 vak) . OPUTY9Y8,74.1)
or 074
D pu— . . p—
OPa(r9ysyal) . OPalTy 98 74.1)
or O (T717273:74,)=(2m,1,0,78 73 ,0)
1 (1719873, 7404) 921 (1,791,799 ,73,74,1)
or 0va
dza(rmnfasam) . Omarmasasan) _ g
or 8’}/4 (T,’Yl 772773”74)/"‘):(27“170"7{?,)77270)
(3.102)
The determinant is computed as
D=PxQ, (3.103)
where
0 A1 (T,71,75 773,74,18)
p— $2<7771772a’73a747:u) 6»721
- 0 D2 (T,71,79,73,74,14)
_xl(Ta Y15 V25735 Vds M)
om (T71,7v2,73,74,1)=(27,1,0,78 72,0)
(3.104)
and
A3 (11,99, 3,74,8) 1 0m3(T,71,75 73, 74,44)
Q= O3 074
D4 (T,71,79,73,74,14) g (T Y1,99,73,74,8) 1 ’
073 074

(T71,72,73,74,)=(27,1,0,78 73,0)

(3.105)
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0 0
The determinant P in (3.104), by means of the monodromy matrix, , of
0 1
(3.99) is evaluated as
Py (7_7'Yl 7787“) oPy (7—771 773 ,,U,) O _ 1
_ or oy _ _
P= OPa(ryiyesp)  OP2(T71,79.1) o 1 0 =—1. (3.106)
or M (7,71,p)=(2m,1,0)

Next, let us continue with the determinant () in (3.105)). To calculate it, we should
consider the linearization for the system (3.93)) around the fixed point (0, 0). Then, by
applying theory of ordinary differential equations, the linearization for (3.93)) at the
fixed point (0, 0) can be obtained in the form,

Ul = Uy,

(3.107)

Uy = —uz — Uy,

with the fundamental matrix U (t), where U(0) = I,. By considering (3.107), the

monodromy matrix is obtained as

cos(1.73207)  sin(1.7320m)
exp(—7) . (3.108)
—sin(1.73207) cos(1.73207)

With the monodromy matrix (3.108)), the determinant (), is evaluated as

cos(1.7320m) — 1 sin(1.7320m)
Q = exp(—7) —0.0012.  (3.109)
—sin(1.7320m)  cos(1.7320m) — 1

Combining (3.106) with (3.109), the determinant (3.103)) is computed as

D =P x@Q=-0.0012 # 0. (3.110)

Thus, by applying the results of the paper [6]] which is given as Theorem 5.1, we can
assert that there exists a cycle of the perturbed system (3.100) for sufficiently small
u>0and p < 0, as well.

Because of the continuous dependence in initial value for the fundamental matrix
of (3.100) and continuity of the matrix W, (x*) [6], the multipliers of the perturbed
system become in the form that one is equal to unity and all others are less than unity.

Thus, the cycle of the perturbed system is orbitally stable.
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In the previous part, we have demonstrated that there exists an orbitally stable peri-
odic solution of the perturbed system (3.100). Now, to actualize the theoretical result,
we will present the following simulations and they are drawn for R = 0.6, a = 1
and ;o = 0.1. In Fig. [3.16] the two dimensional projection of the solutions of the per-
turbed system, the coordinates 1 (t) and x4(t), are simulated with initial conditions
x1(0) = 0, 22(0) = 1.02, x3(0) = 0, 24(0) = 0.2, and z1(0) = 0, z2(0) = 1.6,
x3(0) = 0, 24(0) = 0.02, in blue and red, respectively. In Figs[3.14] [3.15|and [3.16]

with the same initial conditions, the coordinates x1 (t) — xo(t), z1(t) — x2(t) — x3(t)
and x1(t) — x3(t) — x4(t), for the solution of are pictured, respectively. In Fig.
3.14] it is easy to see that the outside solution drawn in blue approaches the discontin-
uous periodic solution of (3.100) and the inside solution drawn in red approaches the
discontinuous periodic solution of @), as time increases. In the figure, one can

conclude that the discontinuous periodic solution is orbitally asymptotically stable.

15

Figure 3.14: The coordinates x;(t), xo(t) of the solutions of the system (3.100).

In Fig. the coordinates x4 (t) — z2(t) — x3(t) are depicted. To make the visual-
ization better, we consider the projection of the solutions of (3.100) with initial values
z(0) = (0,1.02,0,0.02) and z(0) = (0,1.4,0,0.02) onto the x; — x5 plane. In the
Fig. the blue one is for the solution with initial value z(0) = (0, 1.02,0,0.02)
and the red one is for that with initial value (0) = z(0) = (0, 1.4,0,0.02). One
can observe that both approach the discontinuous periodic solution of the perturbed

system (3.100)) as time increases.

In Fig. [3.T1] the degenerated oscillator has a stable continuous cycle, which grazes
the surface of discontinuity, I'y. In Fig. [3.14] by applying regular perturbations to the
surface of discontinuity and vector field, the orbitally stable discontinuous cycle of the

Van der Pol equation is obtained. Moreover, in one can see through simulation
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Figure 3.15: Three dimensional projection on the space x; — x5 — x3, the coordinates
x1(t), zo(t) and x3(t), of the solutions of the system (3.100).
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Figure 3.16: Three dimensional projection on the space x; — x3 — x4, the coordinates
x1(t), z3(t) and x4(t) of the solutions of system (3.100).

0.15

0.1

0.051

®

~

X

-0.05f

-0.1+

-0.15

1 015 02 025

-0. L L L
—6.1 -0.05 0 0.05 0.
X0

Figure 3.17: The coordinates x3(t), z4(t) of the solutions of the system (3.100). Co-
ordinates of the solutions of system (3.100) which approach to the corresponding
coordinate of the limit cycle.

that the origin is a stable focus for the system (3.93)), but by applying perturbation to
the system, one can see in Fig. [3.17]that, an orbitally stable continuous cycle for the

the third and fourth equations of (3.100) is obtained.

Let us sum up the above discussion. As u slightly changes from zero, the Cartesian
product of the circle, (cos(t), —sin(t)), and focus, (0, 0), of the system (3.91]) became

the Cartesian product of discontinuous and continuous cycles of system (3.100) (see
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: O
Figure 3.18: The generating system has a trajectory which is a Cartesian product of

a grazing continuous cycle and a stable focus. Under regular perturbation, they are
transformed to discontinuous and continuous cycles, respectively.

Fig. [3.18). One can consider the Cartesian product of cycles as a discontinuous torus
(see Fig. [3.19). This is why, one can say about the bifurcation of the discontinuous

torus from the cycle and the equilibrium.
A

Figure 3.19: The Cartesian product of discontinuous and continuous cycles can be
considered as a discontinuous torus.

3.6.1.3 Discussion

In the literature, the existence of the periodic solutions of Van der Pol oscillators and
their stability are analyzed numerically and qualitatively. It is not new to examine
coupled Van der Pol oscillators even if they are discontinuous. However, the main
difficulty in the present study is caused by the grazing in the degenerated system,
which is a harmonic oscillator with a grazing cycle. The difficulty with grazing is
that it may cause a singularity in the linearization system. However, in this study, the
singularity is suppressed in the system with the compliance of the vector field, the
surface of discontinuity and the jump function. As different from the existing results,
the orbitally stable cycle for the Van der Pol oscillator exists inside the region |z;| <
1. By considering impacting Van der Pol oscillator, the discontinuous orbitally stable
cycle of that system is obtained. This study demonstrates that how the results initiated

in the paper [6]] is eligible to analyze multi-dimensional and non-linear mechanical
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systems. In this study, we obtained a discontinuous orbitally stable cycle for the
impacting Van der Pol oscillator. By applying the periodic solution as a perturbation
for other non-impacting Van der Pol’s oscillator, the discontinuous cycle is extended
to the four dimensional space. Thus, we have verified the existence of discontinuous

cycle for the perturbed system and demonstrated that the cycle is orbitally stable.

One of the most popular method to prove the stability of a cycle is to evaluate the
Floquet multipliers of the linearization system along the cycle. It can be applied only
the cycle is located precisely. Particularly, when the cycle is near to a critical point,
the theory of bifurcation can be utilized to prove the stability [114]. Borg [18] and
Cronin [28] proved the existence of a stable cycle in their studies, although, it is not
precisely located in a region. If the dimension of the equation is larger than two,
the conditions of Cronin become complicated and need computer verification. The
method of Borg and Cronin is applied in three dimensional equations by Sheerman
[112]. The phase-asymptotic orbital stability is a method that presents powerful kind
of stability for the applications. Some other ways of investigations that prove the

orbital stability by means of a computer is considered in [67].

Even if one can prove the existence of periodic solution for perturbed system, the
studies of Borg and Cronin should be developed for the systems with grazing and
impact. It is worth noticing that methods developed in the book [S]] and demonstrated
in [6] will give possibility to analyze not only regular but also critical cases for the

models with grazing points.

In this part, we will consider the critical case when both systems (3.92)) end (3.93)

admit orbitally stable cycles.

It is demonstrated in the book [38] that the system (3.93) has orbitally stable cycle

with the parameter a < 0.

Denote the quasi-periodic solution of by U(t) = (cos(t),sin(t), z3(t), z4(t)).
In Fig. one can observe that the blue solution with initial value

z(0) = (—2.1,0,2.3,0) which starts outside approaches the cycle and the red one
with initial value z(0) = (—1.98,0,2.1,0) which starts inside approaches the cycle

as time increases.
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Let us verify Definition 1| for ¥(¢). For it, the expression (V®(x*), f(z*)) = 0,
should be valid at the grazing point z* = W(0). It is easy to verify that

((1,0,0,0), (0,1, —2(1 — (23(0))?)z4(0) — x3(0))) = 0, then we can conclude that
the cycle W(t) grazes the surface of discontinuity Iy at the point ¥(0). So, we can say
that U(0) is grazing and by Definition[5| U(¢) is a grazing quasi-periodic solution.

In Figs. [3.11]and[3.20] the solutions of system (3.91)) are depicted. Because both sys-
tems are separated from the each other, the trajectories of these systems can be drawn
separately as seen in Figs. and The Fig. is pictured for the impacting
harmonic oscillator which is subdued impacts at variable moments. In Fig. [3.20] a
non-impacting Van der Pol oscillator is simulated and it is easy to see that the outside
as well as inside solutions which are drawn in blue and red, respectively, approach
the cycle of the Van der Pol’s oscillator as time increases. In Fig. [3.21] the coordinates
x1(t) —x3(t) —x4(t) of system with initial values (z1(0), 25(0), 23(0), 24(0)) =
(—1.4,0,1.9,0) and (21(0), 22(0), x3(0), 24(0)) = (—0.98, 0, 2.1, 0) are visualized in
blue and red, respectively. To obtain a better visualization, one should consider the
Fig. [3.20]in order to observe that there exists orbitally stable cycle of the Van der Pol
oscillator which is modeled through the system (3.93)).

o)
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5 -2 -15 -1 -05 0 05 1 15 2 25
x40

Figure 3.20: The red arc is for solution of system (3.93) with initial value
(23(0),24(0)) = (1.9,0) and the blue one is for the same with initial value

(25(0), 24(0)) = (2.1,0).

In Fig. the coordinates z(t) — xo(t) — x3(t) are depicted. To obtain a better
view, we consider the projections of the solutions of with initial values z(0) =
(—2.1,0,1.9,0) and z(0) = (—2.3,0,2.3,0) onto the z; — 5 plane. In the Fig.
the blue and red ones are for the solution with initial values z(0) = (—2.1,0,1.9,0)
and z(0) = (—2.3,0,2.3,0), respectively. One can observe that both approach the

discontinuous periodic solution of the perturbed system (3.100) as time increases.
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T x,0

Figure 3.21: The red arc is for the coordinates z(t) — x3(t) — x4(t) of sys-
tem with initial value (z;(0),22(0),23(0),24(0)) = (—1.4,0,1.9,0) and
the blue one is for the same coordinates of system (3.91) with initial value
(21(0),22(0), 23(0), 24(0)) = (—0.98,0,2.1,0).

0
-05

%0 -15 2 (0

Figure 3.22: Three dimensional projection, the coordinates x1(t), x5(t) and x3(t), of
the system @, on the 1 — 25 — x3 plane.

-1
x,(0)

Figure 3.23: (b) The coordinates x1(t), z2(t) of the system (3.100).

In Figs [3.22] and [3.24] with the same initial conditions the three dimensional projec-
tions, the coordinates x1(t) — xo(t) — x3(t), and z1(t) — x3(t) — x4(t) respectively,
for the solutions of are pictured. In Fig. the coordinates x3(t), z4(t) of
the system (3.100) are depicted.

Moreover, the impacting part of the system (3.100) admits a periodic grazing solu-
tion which is orbitally stable with respect to outside and stable with respect to inside
solution. For the generating system, there exist two continuous cycles the Cartesian

product of them constitutes a continuous torus. It is worth mentioning that the cycles
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Figure 3.24: (a)Three dimensional projection, the coordinates x;(t), x3(t) and x4(t)
of the system @), on the x; — x3 — x4 plane.

0
X300

Figure 3.25: (b)The coordinates x3(t), x4(t) of the system (3.100).

of the generating system as well as perturbed system are, in general, with incommen-
surate periods because of the autonomous character of the systems. Under regular
perturbation, there are two orbitally stable cycles one is discontinuous and other is
continuous. So, one can say about bifurcation of discontinuous torus. In this exam-
ple, since there are two unit multipliers of the degenerated system, one can not apply
orbital stability theorem to examine the stability of the cycle. This is why, we con-
sider only simulation analysis. In the future, utilizing the methods of small parameter
for critical cases [38, 85,192, [96], which were developed for discontinuous dynamics

in [5], the stability of the cycle for the critical cases can be examined.

Figure 3.26: The system (3 - has two stable continuous cycles and Cartesian prod-
uct of them constitutes a continuous torus under regular perturbation, while the sys-
tem admits one discontinuous and one continuous cycles and Cartesian prod-
uct of them is a torus which is discontinuous. Under variation of the parameter i, one
can see the transformation of the torus from continuous to discontinuous.
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CHAPTER 4

GRAZING SOLUTIONS OF NON-AUTONOMOUS SYSTEMS

Grazing is a popular phenomenon in theoretical analysis as well as applications [31,
36, 153, 75, [7771,[97]-[100]. In literature, grazing is understood as a particular case
which makes the dynamics around it complicated such as the appearance of chaos
through period adding [97] and bifurcation [31]. Many investigations are conducted
on grazing, some of them are: in [100], the existence of periodic solution for the
higher dimensional mechanical systems are investigated, in the studies [31, [33]], the
authors define the grazing bifurcation for the systems of differential equations with
discontinuous right hand side and analyze the stability of periodic grazing solutions
and in [36], grazing is defined as a bounding case which divides the regions with
quite different dynamical behaviors and point, the system trajectory makes tangential
contact with an event. It is observed that by finding smallest parameter alteration

necessary to induce grazing, a basis for an optimization technique is obtained.

In the literature, two different approaches have been utilized to define grazing phe-
nomenon. One of them is that grazing is the case when a trajectory meets with zero
velocity to the surface of discontinuity [97]-[100]. The other is that the trajectory
meets the surface of discontinuity tangentially [31, 33} 34} [75]]. In the present study,
to develop theory for non-autonomous systems with grazing points, we will take into
account the comprehension of the authors who assert that the solutions intersect the
surface of discontinuity tangentially at the grazing point. Our approach is maximally

close to the way of investigations like ordinary differential equations.

In literature some special non-autonomous systems are taken into account. They con-

sist of a non-autonomous vector-field and autonomous surfaces. In this present part of
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the study, we will consider a special non-autonomous system with non-autonomous
surfaces of discontinuity such that the surfaces are defined by ¢t = 7;(z), i € Z.
For such systems, we introduce definitions such as a grazing point for the non-
autonomous system, the continuous/ discontinuous grazing point and a proper lin-
earization for non-autonomous impulsive systems near the periodic solution which
has grazing points is constructed. Moreover, the theoretical results are supported by

examples and simulations.

4.1 Preliminaries

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respec-
tively. Let G C R"™ be an open, bounded and connected set. Introduce the following

system of differential equations with variable moments of impulses

z' = f(taw)a
Ax’t:n(w) 3 Jz(x)a

where (t,i,2) € RxZx G, the function f (¢, z) is continuous on R x GG, continuously

4.1

differentiable in « and 7'— periodic, i.e. f(t + T,z) = f(t,x), functions J; and
7;(x), i € Z, are defined on G and continuously differentiable on GG. The following
equality J;, = J; for a natural number p is valid and 7;(x) has (T, p)—property, i.e.

Ti(x) + T = 1i1p(z) forall i € Z,z € G. Denote by [;(x) = J;(x) + .
Let (, ) be the dot product.

Consider a solution x(t) of (4.1). Denote 6;, i € Z, if §; = 7;(x(6;)). That is, t = 6;
is the moment of the intersection of the solution x(t) with the surface t = 7;(x).
Regardless, if z(¢) has a discontinuity at the moment or not, we call the ¢t = 6; the

moment of discontinuity.

Denote by V() = (22 2ni) - 2i@)) the gradient of the function 7;(x). Let

Or1 ' Oxs 7 Ozn

us introduce the main object of the present discussion.

Definition 8 A point (6;,x(0;)), i € Z, is a grazing if (V71;(x(6;)), f(0;,2(6;))) = 1.

It is a continuous grazing point provided 1(x(6;)) = 0, otherwise it is discontinuous
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one.
Definition 9 A solution x(t) of is grazing if it has a grazing point (0;, x(6;)).

Assume that (4.1]) admits a grazing T—periodic solution ¥(¢) with discontinuity mo-
ments ¢;, ¢ € Z, such that 0;,, = 0, + T,7 € Z.
Consider the system of ordinary differential equations

¥ = f(t, ), 4.2)

which is a part of (4.1).

Let us formulate the following conditions which are sufficient for existence, unique-

ness and continuation of solutions of (4.1)) [5].

(N1) Forany ¢ € G, i € Z, the inequality 7;(c + J;(c)) < 7;(c) is valid;

(N2) forallz € G, 7;(x) < Ty1(x).

In what follows, let || - || be the Euclidean norm, that is for a vector

x = (21,73, ...,7,) in R", the norm is equal to /2% + x% + ... + 22.

We need also the following assertions.

(N3) There exist positive numbers C' and N with C'N < 1 such that

87’1(33)
< < N.
(t,il)le%%ﬁGHf(t’x)H =G, r:?eaé(H ox H -
or, I
(N4) forall z € G and i € Z, max (07N poyy <
0<o<1 Ox

Suppose that conditions (N1)— (N4) are fulfilled. Then, every solution z(t) : I — G
of (4.1)) intersects each of the surfaces of discontinuity ¢t = 7;(z),7 € Z, at most once
[5].

—

Denote by [a,b], a,b € R, the interval [a, b], whenever a < b and [b, a|, otherwise.
Let 71(t) € PC(R,,0%), 0 = {6}, and z5(t) € PC(R,,6?), 62 = {6?}, be two
different solutions of (4.1J).
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Definition 10 The solution x5(t) is in the e—neighborhood of 1 (t) on the interval I

if
o |0] —0?| < e forall 0} € R;

e the inequality ||z1(t) — z2(t)|| < € is valid for all t, which satisfy t € R\
Uprer(0] — €, 0] +¢).

The topology defined with the help of e— neighborhoods is called the B-topology [5].
One can easily see that it is Hausdorff and it can be considered also if two solutions

x1(t) and x5(t) are defined on a semi-axis or on the entire real axis.

It is too complicated to invesitgate the systems with variable moments of impulses.
To facilitate our analysis, an important method is presented in [S] which reduces the
systems with variable moments of impulses to those with fixed moments of impulses.
The system with fixed moment of impulses is named a B-equivalent system to the sys-
tem with variable moments of impulses. In order to construct a B-equivalent system

near the integral curve of W(t), we will consider the following way.

Consider a point (¢;, z) € R x G with a fixed &, on the periodic solution with a fixed
i € Z.Let & = &(x) be the meeting moment of the solution z(t) = x(t,6;, x) of
#.2). Additionally, assume that the solution z(t) = x(t, 6;, x(6;)) of (4.2) exists on
m Due to the differentiability of the functions 7;(x), it is true that near solutions
meets the surface near to the periodic solution. The map W : & — z1(&) can be

constructed as

&i &i 0;
VVi(x):/f(u,x(u))du+Ji(x+/f(u,x(u))du)—|—/f(u,3:1(u))du. 4.3)
0; 0; &

Let us take into consideration the following system of differential equations with fixed
moments of impulses

y = f(ty),

Ayli=o, = Wi(y),
which is B— equivalent in G C R" to (.1). It is easy to see that U(¢) is also a

(4.4)

solution of (#.4) as well. In the following part, we will consider the system (4.4))
instead of (4.1) to construct a linearization system around W (¢).
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Since of the way of construction of W;(z) systems and are B—equivalent
in the neighborhood of U(¢). That is, if z(¢) : U — G is a solution of (4.1)), then is
coincides with a solution y(t) : U — G when y(tg) = x(to), forty € U \ Uiezm-
Particularly, 2:(0;) = y(6;+), =(&) = y(&), if 0; > &, (0;) = y(6;), x(&+) =

y(&), if0; < &.

4.2 Differentiability of the solutions

In this part of the study, we will analyze the differential dependence of solutions on
initial conditions for the differential equations with variable moments of impulses

with emphasis on grazing points.

Denote by z;(t),j = 1,2,...,n, solutions of (4.1) with 27(tq) = zg + &e; =

(29,29, ...,29 2] + &a9,,,...,2)), & € R, and let 1! be the moments of dis-

continuity of z;(¢).

The solution z(t) is B—differentiable with respect to xé, j=1,2,...,n,0n[ty, T],if
there exists § > 0, such that if (¢o, 77 (o) € D(to,d) N G, where D(to,d) = {(to, z) :

|z — xo|| < d} is a disc with center at (%o, x¢) and with radius § > 0, then

(A) there exist constants v;;, ¢ € Z, such that

0; —nl = vi;& + o(€]); (4.5)

—

(B) forall t € [a,b]\ Usez (6;,77], the following equality is satisfied
(1) = x(t) = w; ()€ + o([¢]), (4.6)
where u;(t) € PC([ty,T],0). The pair {u;, {v;;}:} is said to be a B— deriva-
tive of z(t) with respect to z7 on [a, b).
Due to the complexity of analysis, which appears since of the grazing phenomenon,

we will only discuss the linearization for periodic solutions.

The object of maining part is to find conditions for the smoothness of the grazing

solution. In other words, for the existence of linearization around a grazing periodic
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solution W(¢) with a period 7', and with discontinuity moments 0;,7 = 1,2,...,p, on

the interval [0, 7).

We will construct the variational system in a neighborhood of the periodic solution

U (t) as follows:

4.7)

Au|t:9i = Dzu(Oz),
where the matrix A(t) € R™" of the form A(t) = %u:\p(t). The matrices
D;, v = 1,...,n will be defined in the remaining part of the study. Solutions of

the variational equation (4.7) are the B— derivatives, (u;(t)), j =1,2,...,n.

We will call the second equation in (4.7) a linearization at discontinuity moments,
0;,1 € 7Z. In what follows, we will consider the linearization at both the transversal

and tangential discontinuity points.

4.2.1 Linearization at a transversal point

In this part, our aim is to give information about the matrices D; and the gradient
V0;(x) if the discontinuity point (6; + jT,¥(0; + jT)), j € Z, is a transversal one
which means V7,(V(0; + j7))f(0; + jT,V(0; + jT)) # 1. In the following part
of the study, we will consider the discontinuity points, for j = 0, (6;, V(6;)), as
discontinuity moments. The linearization in these circumstances is described in [J5].
The T'— periodic solution ¥(¢) has p— many discontiunity moment in each period
and assume that the £—th many of them are grazing and the remaining p — k—many

of them are transversal moments.

Fix a transversal discontinuity point (6;, ¥(6;)), i = k + 1,...,p. The following

equation is driven by considering the equation 6;(x) = 7;(z(0;(x))), [5]

_ V(Y (0;)U(6;)
1— V7 (W(6,))f(0:,9(6;))

where U (t), is a fundamental matrix of v’ = f, (¢, x(t))u with U(x) = I, where [ is

VO, (¥(6;)) (4.8)

n X n identity matrix.
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By taking into account derivative of the B-map defined by (4.3) with respect to = we

can determine the matrix D; as

Di = (f(0:,9(0:)) — f(0:,9(6,)))0;(¥(0:)) + J(¥(0:)))0;()+
Jiw(I+ f(0:,9(0:))0;(9(6:)))-

4.9)

4.2.2 Linearization at a grazing point

Assume that the periodic solution W(¢) intersects the surface of discontinuity ¢ =
7(x) at the moment, ¢t = 6;, 1 <[ < k, tangentially. That is, (6, + j7T, Y (6, + jT)),
J € Z, are grazing points of the periodic solution W ().

Let us consider the grazing point (6;, ¥(6;)). In the remainder, we will compute the
derivatives of functions ¢;(x) and W;(x), at the grazing point which are described in
the previous part of the study. One can observe from the equality (#.§)), there exists
two different possibility for the V6,(z), first is at least one of the coordinate of the
gradient V6,(z) is infinity or all its coordinates are finite numbers. The complexity
arises when at least one of the coordinate is infinity. It can be observed that the
singularity is caused by the vector field and the surface of discontinuity. In order to

handle with the complexity, the following conditions should be asserted.

(A1) A grazing point is isolated.

(A2) The matrix W;(z) is a differentiable at (6;, V(6,)).

Next, we consider the case when the singularity appears at gradient V6,(x) at the
grazing point (;, ¥(6;)) and we consider that how the impact function eliminate the
singularity in the whole system. To suppress the singularity, the harmony of impact
law, vector fields and the surface of discontinuity is important. If these components
do not work in an harmony, some complex situations may appear. This complex sit-
uations are not taken into account in this thesis. Our concern is to determine regular
behaviour around the grazing solutions of impulsive systems Let us present the fol-
lowing assumption, which is needed to approve the existence of B— derivatives at the

grazing point and in the neighborhood of it.
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In the following example, we will take into account the linearization of a function

0;(x) at a grazing point.

Example 7 Consider the following one dimensional system

' =4 —sin(t),
17 (4.10)

Am|t:7’¢(ib) =—4dr+1- 1_62:27

where 7;(x) = 1 arctan(z) + im, i € Z and G = (—16,16).

It is easy to verify by substituting (4.10) that the following expression,

0 iof t=0,
U(t) = (4.11)

4t + cos(t) — 4m + 1 if te (0,

defines a w—periodic solution of (¢.10). The solution is simulated in Figure

For the point (¢1,¥((¢1))) = (0,0), one can get (V1o(V((G1))), f(¢1, ¥((G))) =

(}L,4> = 1. That is, (¢1,¥((¢1))) = (0,0) is a grazing point. Denote the grazing

point by (t*,z*) = (0,0).

Figure 4.1: The red curves correspond to the periodic solution, W(¢), of system 1|
and the blue curves are the surfaces of discontinuity, ¢t = 7;(z), i = 0,1,2,...,11.

The periodic solution ¥ (t) has one discontinuity point (1, V(((1))) = (0,0) in the
period interval |0, 7|, which is a grazing point. Our aim in this example is to verify the
existence, uniqueness and extension of solutions of (4.10) and derive the linearization
for around the grazing periodic orbit, V(t). The moments t = iw, i € Z, are

also grazing.
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Let us verify the conditions (N1) — (N4). For any & € G, and i € 7, because T;(x)
is increasing function and ¥ > T — 4w + 1 — 17 T2, it is true that 7;(% — 47 + 1 —
15@%) < 7;(Z). This validates the condition (Nl). It is appearant that (N2) is also
true. There exists positive numbers N = 1/4 C = 4, with the inequality CN < 1,
which is true for all point in the domain G except the grazing points (im,0), i € Z.
The differentiability in the grazing point will be expressed in details further. The

following ones can be estimated as

, or;(x)
eax | fE )l = max 4= sin@)]] <4 max] =5 =
Il < 5
max || ——| < -.
G 422+ 1) = 1
So, (N3) is verified. For all x € G and i € 7, we have
ori(z + ol;(z)) 1 647 + 33
‘ = — < 0.
Jnax, 5 , 1i(x)) o??§1<1+(x+a(—%))2’ TR

This verifies condition (N4).

Now, we will continue with the linearization at the point (¢1,V((¢1))) = (0,0).
The grazing point is isolated as well. First, consider a near solution of @.10)
z(t) = x(t,0,Az) to U(t), which meets the surface To(x) = 1 arctan(z), at the
point ( arctan(z), z). Considering derivative of [@3) with respect to a solution of
(@.10) near to the periodic solution, we obtain that

) [ At B k0,00, 0010) T+
&i
0i(x)
8‘18535”) (1+ / af(“’ai‘)(“))axg( Vdu + 18, 20(6,(a )))‘Zi") (4.12)
&
&i
Of (u, z1(u)) Oy (u) 90;(x)
+/ I E i 1(01(), 22 (0)
Substituting (% arctan(z), z) ro @I12), we have
WD) — p(0u@), ol 22 4 2
90,(7) 90,(7) (“413)

FO2), 20(6.0) =L ) F(6. @), 21 (0,()



Next, we will evaluate the derivative 895—(@. To do it, the formula (4.8)) will be taken

z
00;(z) __ 1
dr ~  4tan?(4t)+2sin(2t)"

into account, and the derivative is calculated as It is easy
fo see that as t tends to zero the fraction diverges to infinity. Moreover; it is easy to
see that T = x(t) Thus, at the grazing point singularity appears, to cope with the
singularity we will utilize the compliance of vector field and the jump function and

we consider the equality (A.13)), and we get

owi(z) 4 — sin(t) _ tan(4?) <1 4 — sin(t) )_
ox 4 tan?(4t) + sin(?) 16 4 tan®(4t) + 2 sin(2t)
4 — 2sin(2t) B 47° + 4z
Atan?(4) + 2sin(2f) 6422 + 32sin(0.5 tan(z))’

(4.14)

calculating above expression as T tends to the grazing point x* = (0, we obtain that

(3 W 1 A7
g @) g AEAAE 7 (4.15)
oz Ox z—0 6472 4 16sin(0.5 tan(z))

N |+

where Z = —

In order to obtain a linearization system around grazing periodic solution V(t), the
differentiability of the functions W;(x) at the grazing point x* should be verified. To
accomplish it, we will verify the derivative of the function W;,(z) exists at the point
x*. The derivative can be calculated as follows
Wi(z) — Wi(z*
Wiz(2*) = lim (z) (z”)

T—* r — x*

)

above equation can be calculated by applying Mean Value Theorem [11)], we obtain

that

OWi(Z) (. % — I — 1
Wi (a®) = lim 22 @ T) = Ze=a) 4.16)

T—x* r — x*

where T lies in the interval (x*—e, x*+€), for some positive €. By means of expressions

with @.16)) it is easy to obtain that
Wiz(2") = Z. (4.17)

Then, we can conclude that the linearization exists at the grazing point and the deriva-

tive is continuous as well. This verifies condition (A2).

Assume that the linearization of () at the grazing point, (6;, V(6;)), exists in the

above defined sense for each [ = 1,2, ..., k. Because of the previous discussion, the
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gradient, V6,(z), depends on the solution x; (t) = x(t, ty, xo + Ax) of (4.1), neighbor
to U(¢), with small ||Ax||.

Differentiating equation (4.3)), we get the following one :

w = ({01, W(0)) — f (61, W(6))) VOL(T(6))
K 4.18)

+ Jia (U (0,)) (L4 f(0, W (60,))VO,(¥(6;))).

Let us formulate one of them. Other constructive conditions will be investigated in

our future investigations.

(N5) For each Az € R", the variational system (4.7)), around ¥(¢) on R, the lin-

earization system is

(4.19)

such that D;, = D;.

The following assertions can be verified in the way of presented in Theorem 6.1.1 in

[S].

Theorem 5 Assume that conditions (N1) — (N5) are valid. Then the solution V(t)
of @) for each finite interval [0, a), a > 0, has B— derivatives with respect to initial
conditions, (u;(t)), which satisfies the variational equation [@.7) with initial values
e; =(0,0,...,1,0,...,0),j=1,2,...,n.

J
4.2.3 Stability of the grazing periodic solution

The system (4.19) is the variational system around the grazing periodic solution W(¢).
One can derive the matrix of monodromy, U;(7"), and the corresponding Floquet
multipliers p;, © = 1,2, ..., n. The next assumption is needed to verify the stability

of the periodic solution, W(¢).

(N6) |pi| <1,i=1,2,... n.
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Theorem 6 Assume that conditions (N1) — (N6) and assumptions (Al) and (A2)
are valid. Then, T'— periodic solution V(t) of is asymptotically stable.

The last theorem can be proved similarly to Theorem 7.2.1 in [5].

We will exhibit some examples to actualize our theoretical results in the following

section.

4.3 Examples

Example 8 In this example, we will continue to analyze the system in Example[7| We
derive the linearization for 0(x) at the grazing point (6;,V(6;)) = (0, 0) there. Thus,

the linearization for V(t) consists of a m— periodic system,

(4.20)
Ault:ﬂ'i = DU,

where coefficient D by formula @.18)), is equal to —}l. The multiplier of the varia-
tional system is p = %. It is inside the unit circle and condition (N6) holds.
The conditions (N1) — (NG6) are valid, then by Theorem |6} the periodic solution U(t)
of (.10 is asymptotically stable. The stability of the solution, V(t), is pictured in
Fig. through simulations.

Figure 4.2: The black curves are the solutions of 1) with initial values
(—m/16,—1) and (7/16, 1), respectively. The red one corresponds to the periodic
solution W(¢) and the blue curves are the surfaces of discontinuity, t = 7;(x), i =
0,1,2,...,11.

138



Example 9 In this example, we will consider the following system of differential

equation with variable moment of impulse actions

Ty =—x1 +4,
xh = 2w sin(27t) + 1,
(4.21)
A$1|t:n(x) = —4($1 + 0751’%) —1,
AI2|t:’TZ‘(Z’) =1- O.25ZE2,

where 7;(x) = 0.25x1 + i. For this system, denote by x = (1, x2). Let the domain of
the system be G = {(t,z)|t € R, z; € (—10,10), zo € (—2,2)}. System @.21) is
of the type @.1) with f(t,z) = (—x1 +4, 2w sin(2nt) + 1) and J;(z) = (—x1 — 1, 1).

It is easy to observe that f(t,x) is a 1—periodic function.

Figure 4.3: The above figure is for first component z(t) of the periodic solution,
WU (t), with grazing points at (i,0,0), ¢ € Z versus time, ¢ and the second component
x(t) of the periodic solution, W(¢), with grazing points at (7,0, 0), i € Z versus time,
t, is the right one.

It can be easily verified that the system admits a 1—periodic solution of the form

U(t) = (0.0) if =0 (4.22)

(texp(—t) —exp(—1),—cos(2mt) +t—1) if te€(0,1],
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with discontinuity moments 0; = i, 1 € 7. It is easy to determine, utilizing the equality
((4,0),(0.25,—2)) = 1, that (0,,¥(0;)) = (0,0,0) is a grazing point. Moreover, by
means of the periodicity of VU(t), we can conclude that all moments t = iw, i € Z,

are grazing ones. The components of periodic solution is simulated in Figure

For ever point (T1,T2) € G, the inequality 0.25(Z1 — 1) < 0.25%, is true, this
validates (N1). The condition (N2) is also valid because 7;(z) = 0.25z1 + i <
0.25x1 + i 4+ 1 = 7,41(x). Due to the vector-field, surface of discontinuity and the
jump function, it is easy to say that every solution which meets the surface of disconti-
nuity in the neighborhood of the grazing periodic solution WV (t) intersects the surface

at most once. For this reason, there is no need to check (N3).

Next, we will continue with the linearization of the system [.21)) around the periodic
solution V(t). To obtain it, first, we will consider the derivative of the formula (4.3),

then we get

alg/;éx) _ / af(uéZO(U))axgiU) A f(ei(x)’xo(eim))a%fu
&
0i(z)
8{;56)( (1) N / 8f(u(,9zo(u))8x§3(cu)du+f(gi’xo(ei(xmgii) 2%
&
&i
+/8f(u(’9z1<u))ax5;“)du—f(&(x%a(@(x)))aeéf).

0;

Consider a near solution z(t) of @.21) to V(t). Assume that near solution meets
the surface of discontinuity t = 1;(x), at the point T. Denote the meeting point by

T = (Z1,T2) = (7y(T)), substituting it to (4.23)), we have

1
0 (4.24)
)

Substitute the function f(t,x) and the Jacobian J,(x) into (4.24)), it is easy to obtain
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that

oW, (z) B 4+025 | 90,z oJz) /|1
0 o T (
Oy omsin(2nt) +1| 07) O

- 0
(4.25)

71 +0.25 80i(m)> n 0.7527 — 1+ 0.25| 96,(z)
2rsin(2rt) + 1| 021 orsin(2rt) +1 | 027
In order to evaluate above expression, we need to find the derivative ag;(f ), by apply-
891(‘@) '
0x]

ing formula (@.8)), we obtain that <-7* = % It is easy to see that at the grazing point
the derivative is infinity. To handle with it, we will apply a special jump function and

vector field. Substituting the derivative to (4.25)), we get

oW;(z)  |T1—0.1z7| 1 0.2z, 0 ( 1

— o = — +
Ozt 0 o 0 0|0
(4.26)
71+ 0.25 1 ) ~ 1022, 0.8 0
2msin(2nt) + 1| 1 0 0
By applying similar technique one can determine that
oW;(z 0
# = : (4.27)
oxy 0

Now, we will continue with the linearization around the grazing periodic solution

().

Depending on the position of the near solution, the variational system for the periodic

solution, V(t), is of the form

Uy = —uy,
w, =0, (4.28)
Au‘t:ﬂ'i = Di“?
0.8 0 o
where D; = ,and 0; = i, 1 € Z. System (4.28) is (1,1)— periodic. The
—0.1 0

multipliers are equal to py = 0.8, ps = 0.3679. All of them are inside the unit
circle, and by Theorem [6] one can conclude that the periodic solution is asymptoti-

cally stable. Considering the near solutions with initial values (—1,—3.2, —1.4) and
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x,(0

Figure 4.4: The above figures are for the first and second components of the peri-
odic solution, W(t). Green curves are the solution x;(¢) of with initial values
(—1,-3.2,—1.4) and (—1, —2.8,—0.8), and red curves are the grazing periodic solu-
tion, which have grazing point at (i, 0,0), ¢ € Z.. The bottom one is for the second
component x5 () of the periodic solution, W(¢).

(—1,—-2.8,—0.8), by using numerical simulation tools, we depicted the components

of the near solutions to the components of ¥ (t) in Figure

4.4 Regular perturbations around grazing periodic solution

Let D, be a domain in R" having compact closure, and let 1y be a fixed positive

number. On the set
D ={(x,t,i,plxr € Dy, —00 <t <00, 1 €L, —po < jt < o}

we take into account the following system,

o' = f(t,z) + po(t, z, p),

AL |t=ry @)t ey = Li(T) + pbi (2, 1),

(4.29)

where the functions I;, 7;, 6; and 7); have continuous partial derivatives of second order

with respect to the variables y,z;, j = 1,2,...,n, f € COJ(D) N CEHI(Dy),
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¢ € COLN(D)YNC122)(Dy), where Dy is the union of certain neighborhoods of the
surfaces t = 7;(z), i € Z. Moreover, we will assume that there exist a real number
T > 0 and an integer p > 0 for which the following equalities are valid in the domain
D:

f(t+T7 il?) = f(tvm)a ¢(t+T7$mu) = ¢(t,x,u), Iier = [i7 eier = 01'7 Tivp = Ti +T
and 7;4p, = 7);.

The generating system is of the form

‘/r/ = f(t7 x))
A[Eh:n(@ = ]Z(l')

(4.30)

Assume that system (4.30) has a periodic solution W (¢) with period 7" and satisfies the
conditions (N1)—(N5) and assumptions (A1) and (A2) are valid. If || is sufficiently
small, then (4.29) admits a 7'— periodic solution which converges W (¢) as || tends

to zero.

The next examples are presented to actualize our theoretical results and the increment

of the periodic solution is demonstrated through simulation.

Example 10 Let us consider the following one dimensional system with variable mo-

ments of impulses

' =4 —2sin(2t) + po(t, x, 1),
5 (4.31)

A tmry @) s (o) = —4T = 1 = zeo + i, 1),
where yu is a sufficiently small parameter. The system is of the form [({.10) for 1 =
0. Considering the system [d.29), the functions and matrices can be determined as
A =0, f(t) = 4 — 2sin(2t), which is 7 —periodic, I; = —47 — 1 — L2 = L and

16 32
ni(x, ;) = 2(2? — tan?(0.04) + 2x).

The generating system can be determined as in the form

' =4 — 2sin(2t),
5 4.32)

AT |imry(zy) = —4T — 1 — 1—6x

The eigenvalue of the matrix of monodromy for it can be determined as p, which is not

equal to one, so we can say that the system [.31)) has a unique T'—periodic solution,

U, (t) for p sufficiently small.
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4.5 Conclusion

This study includes information about non autonomous system with non-fixed mo-
ments of impulses whose solutions have grazing points. By applying a novel tech-
nique, we construct a linearization system around the grazing periodic solution. Con-
crete mechanical models are demonstrated and some simulations are presented to
visualize theoretical results. By applying regular perturbations, existence of periodic
solution of these systems are investigated and exemplified. Grazing solutions are
widely investigated in mechanical systems, but there is a few studies can be found
in neural networks which includes graziness. However, the grazing bifurcation and
graziness are not widely investigated for neural networks. Further, we will apply
our methods to investigate the stability of neural networks model which has grazing

points in other words which meets the threshold tangentially.

4.6 Horizontal and vertical grazing

Horizontal and vertical grazing should be considered because they cannot be taken
into account by utilizing the existing results for the grazing phenomenon in the lit-
erature. In a geometrical sense, the horizontal grazing occurs when the surface of
discontinuity has a tangent plane at the grazing point which is parallel to the time
axis and the vertical grazing occurs whenever the tangent plane at the grazing point
is perpendicular to the time axis. The horizontal and vertical grazing are depicted
in Figures and respectively. The appropriate definitions of the horizontal
and vertical grazing for non-autonomous system whose vector field and surfaces are
defined by non-autonomous functions and the definition of horizontal grazing for
non-autonomous system with cylindrical surface of discontinuity are given. The pe-
riodic solutions which have vertical or horizontal grazing are obtained in specific
examples. The stabilities of them are examined by constructing proper linearization
systems around the periodic solutions. The periodic solutions and their stabilities are

observed through simulations and the results are depicted.
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Take into account the following differential equation
" +a(t)r +b(t)x = f(t,z,2), (4.33)

where a(t) is a variable damping function, b(t) is a variable spring function and
f(t,x,2") is a force applied to the system. Assume that it is subject to impacts with a
cylindrical surface I' = {(¢, z,2’)|®(x,2") = 0}. The type of the barrier is common
for impact mechanisms. To illustrate, the surfaces z = X and 2’ = X in (¢, z, ')
are cylindrical surfaces. Thus, if the grazing occurs in the non-autonomous equation

(4.33), then it is mainly a horizontal one as expected.

In the paper [[101], the system of leaky integrate-and-fire neuron model is presented

as

dt (4.34)

where v is the internal state, k is the leaky parameter and S(¢) is the input time series
which is positive. If the internal state u reaches the threshold © the spike occurs and
the internal state immediately resets to the resting state © = 0. In the leaky integrate
and fire neuron model, the grazing takes place whilst there exists a time 7" such that
& = —ku+S(T) =0, (See Fig. it is taken from the paper [101]. ) This
demonstrates that the horizontal grazing can be observed in neural networks. More-
over, it is determined that the bifurcation results in the breaking of inter spike interval
attractors. In [27]], it is demonstrated that the grazing bifurcation can be utilized to
find the Arnol’d tongue diagram for mode-locked responses and determined that the
horizontal grazing phenomenon in integrate-and-fire neuron model causes the passing

to a regular firing either from a fast firing or from a doublet firing and it causes the

diminish of the stability of sub-threshold oscillations.

The presentation of the vertical grazing is beneficial since the method of analysis can
be applied for models with singularities under impacts. Such systems can be seen
in the models of electrically driven robot manipulator which has slower mechanical
dynamics and faster electrical dynamics. In this type of systems, we should consider
the problem in two parts such as one part is slower and one part is faster dynamics

[[122]]. For which the vertical grazing can be utilized in the analysis of faster dynamics.
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(t0")

Figure 4.5: Horizontal grazing in neural networks [[101]].

A

t=t*

Figure 4.6: Vertical grazing.

4.7 Grazing non-autonomous system with variable impulse moments

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respec-
tively. Let G C R” be an open and connected set. The non-autonomous systems with
variable moments of impulses consist of two different systems. One is that the vec-
tor field as well as surfaces are defined by non-autonomous functions and the other
is the vector field defined as non-autonomous function bu the surfaces defined as an

autonomous functions in other words the surfaces are cylindrical.

The first type can be considered as a following system

x’ = f(t7$>7
Aw’t:n(m) = Jz(x)a

(4.35)

where (t,7,2) € R x Z x G, the function f(t,z) is continuously differentiable in
xz and t on R x G, and T'— periodic in ¢, i.e. f(t + T,x) = f(t,z), functions
Ji(z) and 7;(z), i € Z, are differentiable on G and J;(x) satisfies the following
equality, J;4,(z) = J;(x) for a natural number p and 7;(x) has (7', p)—property, i.e.
7i(2) + T = 7i4p(x) forall i € Z.
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The other type of system can be defined by the following system of impulsive differ-
ential equations

x/ = f(t7 x)?

A‘r|:c€1“ - Jz<x>7

(4.36)

where I' is a cylindrical surface of discontinuity and defined as I' = {(¢, z)|®(z) =
0,t € R, x € G}. The function f(t,z) is continuously differentiable in x and ¢ on
R x G, and T'— periodic in ¢, i.e. f(t+7T,z) = f(t, z), functions J;(x) and ®(z) = 0
are differentiable on G and J; () satisfies the following equality, .J;1,(z) = J;(z) for

a natural number p and for all 7 € Z.

To simplify the notation, we need the following system of ordinary differential equa-

tions

y' = f(t,y). (4.37)

Assume that the conditions (N1) — (N3) are valid. Then, the solution of (4.33)

intersects the surfaces of discontinuity exactly once [3]].

Consider a periodic solution W(¢) of (4.35). Denote by 6;, i € Z, the moment of
meeting of a the periodic solution with the surface ¢t = 7;(z), ¢ € Z. The intersection

moments satisfy the property that 0,,, = 0, + T, ¢ € Z, where p is a positive number.

Definition 11 There is a horizontal grazing of the periodic solution V(t) of (@.35))
at a point (0;,9(0,)), 1l = 1,2,...,p, if for some j = 1,2,...,n, the conditions are
fulfilled:

(i) f3(6:,%(60)) =0,

(ii) a function
t = n(z;) = n(V1(0), Ya(0)), ..., V1(01), 25, V,41(6)), ..., U, (6)) is in-
vertible near v; = x? = U;(6,) for z; < x? or r; > x?, and the one sided
derivative [~ (t)]_|i=o, or [ (1)) |i=0, is equal to zero, respectively.

Definition 12 A vertical grazing of the periodic solution V(t) of (@.35) at a point
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(0,9 (0,)) exits at the point (0,,¥(0,))l = 1,2,...,p, if forsome j = 1,2,...,n, the
following conditions are fulfilled:

(i) a function x; = W;(t) is invertible near x; = x) = V;(0,) for x; < x) or/and
x; > 1, and the one sided derivative [W;l(xj)]’_|3;:mj or/and [\Ilj_l(:zc])];|:C:I7

is equal to zero, respectively.

(ii) 70, ((6))) = 0.

Consider a periodic solution W(¢) of (4.36). Denote by 6;, i € Z, the meeting mo-
ments of W(¢) with the surface ®(z) = 0. They satisfy the property for all i € Z,

0;+p = 0; + T, where p is a positive number.

Definition 13 There is a horizontal grazing of the periodic solution V(t) of the sys-
tem (@.36) at a point (6,,V(0,)), where | = 1,2, ...,p, if the equality at the point
(D(W(A))), f(0,,9(6)) = 0 is valid.

Next, we will construct B—equivalent system to the system (4.33)) [5]], which re-
duces the systems with variable moments of impulses to that with fixed moments
of impulses. For the system (4.36), it can be obtained similarly. Consider a point
(0;,x) € R x G on the periodic solution with a fixed i € Z. Let § = &;(z) be
the meeting moment of the solution z(¢) = z(¢,6;,x) of #.37). Additionally, as-

sume that the solution x4 (t) = x(¢, 0;, x(6;)) of (@.37) exists on [#;, &;]. The B— map

W :x — x1(§) can be constructed as

&i &i 0;
Wi;(x) :/f(u,x(u))du+Ji(x—l—/f(u,x(u))du)+/f(u,x1(u))du. (4.38)
0; 0; &

Let us take into account the following system of differential equations with fixed

moments of impulses
y' = ft.y),
Ayli=s, = Wily).

(4.39)

Due to the construction of W;(z) systems (4.35) and (4.39) are B—equivalent [5] in
the neighborhood of W(¢). That is, if z(t) : U — G is a solution of (4.35), then
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coincides with a solution y(t) : U — G when y(to) = x(to), forty € U\ Uiezm-
Particularly, z(6;) = y(0;+), z(&) = y(&), if 0; > &, z(6;) = y( i), 2(&+) =
y(&), if 6; < &. Tt is easy to see that W(¢) is also a solution of (4.39)) as well. In the
remaining part of the study, we will consider (4.39) instead of @

Assume that the periodic solution W(¢) of (4.33) meets the surface t = 7;(x) at the

moment ¢ = 6;, transversally. Let us start with the derivative of the equation 0;(x) =

7i(2(6i(x))), [5],

VO, (0(6) = 5 —vvrj(l( (ée)’g) (9(“\)1]( 77 (4.40)
(t

where U(t), is a fundamental matrix of v’ = f,(¢t, U(¢))u with U(¢;) = I, where [ is

n X n identity matrix.

By taking the derivative of the B-map defined by (#.38) with respect to x, we can

determine the matrix D, as

Dy = Wi (V(0;)) = (f(6:, W(6:)) — [ (63, ¥(6:)))6; (¥ (6;)) @41)
+ J(W(60:))0i(x) + Jia(T + f(6:, ¥ (6:))05( L (6:))),
where the Jacobian matrix can be obtained as Wi, (¥(6;)) = [, 9%, . FTA],

It is easy to see that the linearization at the point (6;, ¥(6;)) can be obtained as
Aul,_g, = Dy, (4.42)
with Dy, = D, i € Z.

For Examples [I2] and [3] one can utilize the formulas (4.40) and (4.41) to obtain
a linearization at the point (0;, V(6;)), i € Z. For Example we cannot apply
formulas due to the appearance of singularity in the formula (4.47)) at the grazing
point. For this example, we will consider another approach to obtain a linearization

at the grazing point.

Example 11 In this example, the motion of one degree of freedom mechanical os-

cillator which is subjected to impacts with a rigid wall is considered and it can be
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expressed as

2" +0.222" + x = 14 0.22sin(¢),
(4.43)

Am,|(t,x,l”)€l—‘ = —(1 + 0.9x/)$/,
where the surface of discontinuity is T' = {(t,xz,2')|x = 0, t € R}. System @.43)
admits 2w— periodic continuous solution of the form V(t) = 1 — cos(t). Defining

variables as x = x1 and ' = x5, we have
T = X,
b = —0.2205 — 21 + 1 + 0.22sin(t), (4.44)
Ax2|(t,901,acz)er - _(1 + O.9[L’2)l’2,
where T = {(t, 1, x3)|x1 = 0, t € R} and the points (6;, V(0;), V'(6;)) = (271,0,0),
i € Z, are grazing as well. Denote by x(0;) = (x1(0;),x2(0;)). The grazing periodic
solution VU (t) of [@.44) is depicted in blue in Figure In what follows, we will
apply formula (4.41)) in the basis of system (@.44).

Fix i € Z, and consider a near solution z(t) = (x1(t), x2(t)) = z(t, 0;, ¥(6;) + Ax),

to U(t) of the differential part of the system (@.44). The solution x(t) impacts the

barrier at a moment t = §; near to t = 6; and at the point (v1,x2) = (x1(&), 22(&)).

Let also, ¥(t) = (T1(t), Z2(t)) be a solution of the equation such that &(&;) = x(&;) +

J(x(&;)). Define the following map
&i

(s) (
Wi(x) = / ds+ J| x+
J z1(s) — 0.22x5(s) + 1 + 0.22sin(s)

0 -
/ 72(s) ds) n (4.45)
J —x1(s) — 0.2225(s) + 1 + 0.22sin(s)

0, T 7
/ Ty(s)

ds.

4 —Z1(s) — 0.22%5(s) + 1 + 0.225sin(s)

Let us start with a linearization for inside continuous solutions. The solutions, inside
of the cycle, do not impact the barrier with non-zero velocity and are continuous.
Thus, the linearization for these solutions is the following system [51],

uy = ug,

(4.46)

uy = —up — 0.22us.
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The multipliers of the system are pgl) = 0.5006 — 0.01914, pgl) = 0.5006 + 0.0191z,
where i* = —1. Since the multipliers are inside the unit circle, the cycle U(t) is

asymptotically stable with respect to inside continuous solutions.

Now, we will continue with the linearization for the outside discontinuous solutions.
The linearization system around the cycle V(t) for solutions which are outside of the

cycle has the form, [5],

Uy = ug,
u'2 = —u; — 0.22u9, (4.47)
Autli—g, = Wia(a*)u,

where 0; = 2mi and u = (uy, us)”, where T denotes transpose of a matrix. The matri-
ces Wi, (x*) will be evaluated below. Assume that the solution x(t) meets the barrier
at the moment t = T and denote the meeting point as T = (1) = (x1(7), z2(7)),
where x1(T) = 0, 2(7) < 0 and 7 =~ 2. It is easy to see that any impacting so-
lution near to V(t) meets the barrier transversely. Taking derivative of (#.43) and

substituting x = I to the derivative, we obtain that

oWi(z) Ty O&(Z) N U
O] —Z — 0.22%, + 1 + 0.22sin(7) | 071 0 1.96Z

o1+ i a&(f) - (4.48)
—Zy — 0.2225 + 1 + 0.22sin(r)| 977

—0.98(22)* 9¢:(z)
—Fy +0.2156(72)% + 1 + 0.22sin(r) | 077

Moreover, differentiating ®(x(&;(x))) = 0, we have

oG((0)  Peln(0)) T

or, a0 fne0)) ) =P (449

or the transversal point T = (T1, T2 the first component —a&(g) can be evaluated as
) ’ Ox
1

%((f) = —%. From the last equality, it is seen how the singularity appears at the
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grazing point x* = (x73, x5) = (0,0). Finally, we obtain that
oW,(z) ) -1 0
(7)+

0x) | =7, — 0.22%, + 1 + 0.22sin(r) 0 1.96%,

To

(%)
€1 — -
Ty +0.22(T —sin(7)) — 1| 22
(4.50)
0.98(i2)? (—1>
Ty + 0.2156(Z)? — 1 — 0.22sin(7)
—1+0.98%,
0.22 + 0.215625 + 1.96(21 — 0.22sin(r) + 0.2275 — 1)

where e; = (1,0)7.

The last expression demonstrates that the derivative is a continuous function of its
arguments in a neighborhood of the grazing point. Since % is a transversal point, one

can evaluate the limit as

lim OWilz) =y (4.51)

T—x* a%

S]]

-1
where B =
—1.74

To linearize system at the grazing point x*, we should verify that the function W;(x)

is differentiable at x*. The differentiability requests that the partial derivatives

82/71'%)“7), J = 1,2, exist in a neighborhood of the grazing point and they are continuous
at the point [11)]. To compute the derivative % at x*, the following expression
1

will be taken into account

an(f{,x;) Wi(x17x§> — VV;(.%‘T,:L’;)

= lim =

0ui i 1(%; . Wfl . 331) (4.52)
i\L1,Ly) — WilT1, T
lim D2 —~L"% _B+B.
mlﬁx’l‘ I — xl
Applying the Mean Value Theorem [|11l], we obtain that
P2 (a1 — i) — Blay — a7)
lim : . + B, (4.53)
xlﬁzf T — xl

where ( lies between 1 and 7.
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From (@.53), considering (4.51)), we have that
oW, (x%, %

OWilzi, z3) z 2 _p. (4.54)

Ox}

So, the derivative exists and is continuous at x*.

Now, let us check the existence and continuity of the derivative at x*. To ac-

i
029
complish these, we should continue with differentiating (.45)) again and substituting

T = (Z1,T3). Then, we obtain
oW, (z) T o&@ (1 0
Oxf —%) — 02285 + 1 + 0.22sin(7)| 075 0 1.967,

( Ty 8&(@))
€9 + 0
—Ty — 0.22(Zy —sin(7)) + 1| 973

0.98(Z2)? 9&(T
(@) 6lo) _ (4.55)
Ty — 0.2156(73)% — 1 — 0.22sin(r) | 923
Ty — 0.98(7)? &7 1 0
2 ( 2> —f (Ol‘) —+ o+
—Ty — 0.22(%5 — 0.98(7,)%)| 972 0 1.96z,
—7y — 0.22(z5 —sin(7)) + 1| 023
where eo = (0,1)T. To evaluate the derivative 83 0 in (4.53), we apply formula
(4.49) for the transversal point & = (Z1,Z2) and it is equal to 85‘( ) = 0. This and
formula (4.55)) imply
oW, (z
li =) _ ¢ (4.56)
Toa* 81:2
where C' =
0
Similar to above discussion for the first derivative, one can obtain that M(; (Sc e,
T2
and the derivative is continuous at x*. Thus, both derivatives a‘g Sf”) and a ( ) exist in

a neighborhood of x* and they are continuous at x*. That is, W;(x) is dzﬁerentiable at

x*. Since of the periodicity, the linearization can be obtained for all grazing moment

0;, 1 € 7.
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Joining @.54) and [@.56)), it is obtained that

-1 0
Wi (2*) = , (4.57)
~1.74 0

The multipliers of are py = 0 and py = 0.5339. Due to the fact that the multi-
pliers are less than unity in norm, we can conclude that the periodic solution V(t) is
asymptotically stable. The near solutions to V(t) are depicted in Figure 4.7\ with ini-
tial values (ty, 2%, 29) = (0,0.05,0) and (to,2?,29) = (0,0,—0.9), in magenta and
green, respectively. It can be observed from Figure that both green and magenta

solutions approach the grazing periodic solution asymptotically as time increases.

X0
-

X0

Figure 4.7: The blue one is the periodic solution W(¢), the green curve is the near
impacting solution of {#.44)) with initial data (0,0, —0.9), and the magenta is the near
non-impacting solution of (4.44)) with initial data (0,0.05, 0).

Despite the grazing, the singularity is not obtained in the derivative (4.40) in Ex-
amples |12 and So, the method presented in [S] can be utilized in the following

examples to find a linearization at the grazing point.

Example 12 We will consider the system

(4.58)
AZL”t:n(I) = —0.21‘,

where 7;(x) = 10arccos(x + 0.1) + im. One can easily determine that the system has

zero solution x(t) = 0. We will consider it as a m—periodic solution of (4.58).
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By means of the fact that 7;(x) is an increasing function it is easy to see that condition

(N1) is valid. For constants C' = 1/11, and N = , such that CN < 1 and the

9

following inequalities are valid max; zyerxp || f(t, © || =0 < C, maxgep |75~ 8“(1 | =
ori(x+oJ;

meen |l < N, and masose (S, o)

= maxg<,<] ———=—— < 0. So, (N2) is valid. The condition (N3) is also true

—((1— 0.2U)x)
for this example.

The integral line x(t) = 0 is tangent to the surface t = 1o(x) at the point

(01,U(01)) = (0,0). Indeed, since the right hand side f(t,z) is constantly zero, the
condition (i) is valid. Take into account the function t = n(z) = 10arccos(z + 0.1),
which is invertible near x = V(0;) = 0, for x < 0 and the one sided derivative
(7 ()] |i=g, = 0.1sin(0;) = 0. So, it validates the condition (i1). Therefore, the
zero solution has horizontal grazing at the point (01, ¥V (6,)) = (0,0). Moreover, one

can validate easily that (7i,0), i € Z are also horizontal grazing points.

Let us obtain a linearization system around zero solution. For a solution, z(t) =
x(t,0,Z), with T > 0, there exists no intersection with the surfaces of discontinuity.

This is why, the linearization system has the form

u = 0. (4.59)

Next, consider another solution x(t) = x(t,0,Z), with T < 0 of {#.58). One can
easily find that the solution meets each of the surfaces of discontinuity. Due to the
periodicity of the system, linearization near the zero solution at all points (i, 0)
is the same, if exists. So, it is sufficient to consider the linearization around the
grazing point (0,0) for those points where T < 0. Let us start with the function
0(z) = 10arccos(x(6(x)) + 0.1). By taking derivative of it, we get

/ f(0(z), 2(0(x)))0(x) +1
0'(z) = —10 : 4.60
) V11— (z(0(x) +0.1)?) (460

and substituting the grazing point into the equation (.60), one can get 0'(0) =

—10/+/0.99.

The coefficients in the impulsive part of the linearization system have to be evaluated

by formula
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D; = (f(6(0),2(6(0))) — f(6(0),2(6(0)) + J((6(0)))))6"(0)
+ Jo(1+ £(6(0),2(6(0))))6'(0) = —0.2,
foralli € 7.

So, linearization system for the intersecting solutions with initial value ¥ < 0 can be

determined as

4.61)
Atlp—r; = —0.2u.

Consider solutions with & < 0. The linearization for them is the system (.61)) and
its multiplier can be evaluated as p = 0.8 < 1, and consequently solutions with
negative initial values are attracted by the zero solution. Nevertheless, the solutions
with positive initial values are constant. That is, one can say that the zero solution
is stable for neighbors from above. On the basis of the discussion, one can conclude
that zero solution is stable. It is pictured in Figure The solutions V(t) = 0, and
x(t, 0, ) with initial values T > 0 and T < 0 are depicted in black, red and magenta,
respectively in Fig. and the stability of the zero solution is apparently seen by

virtue of simulation.

0.05

5 10 15 20 ‘ 25 30 35 40 45

Figure 4.8: The blue curves are the discontinuity surfaces t = 7;(z),7 =0,1,2,...,7.
The solutions W(¢) = 0, and z(¢,0, z) with initial values z = 0.01 and £ = —0.03
are depicted in black, red and magenta, respectively.

Through the last examples, it is seen that the tangent at the grazing point is parallel to

the time axis. This approves why we call the phenomenon as horizontal grazing.
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Example 13 In order to demonstrate vertical grazing, we take into account the fol-

lowing system

1
r=——= teli—1,i),

Vi—t (4.62)
Ax’t:n-(ac) - _]-7

where f(t,z) = \/% and 7;(z) = /16 — 22 — 3 + i, i € Z. The domain is equal to

G = (—0.6,0.6). One can easily determine that the system has a 1—periodic solution

—2 if t=0,
—2v/1—1 if te(0,1].

The integral curve of the solution is tangent to the curve of discontinuity To(x) =

T(t) =

V1 — 22 4 1 at the point (01, V(6,)), and the tangent is vertical. That is, one can
find that the function x = V(t) is invertible near x = V(6,) = 0 and for v < 0,
and the left hand derivative is equal 1o [V ' (2;)] |o—o, = —252(01)* = 0 and let
To(z) = 7(x), and 1,(z) = —\/% = 0. Conditions (i) and (ii) are verified and
the periodic solution V(t) has vertical grazing at the point (01, V(ny)). Similarly, the

points are (i,0), i € Z are vertical grazing ones. The periodic solution, V(t), is

exhibited through simulation in Fig.

Now, we will validate the conditions from (N1) to (N4). Every solution which meets a
discontinuity surface does not intersect the same one again, which validates (N'1) and
instead of the equation ©' = \/%, t € [i—1,1), we will take into account the differen-

tial equation * = -1t € [i—1,i). ForC = land N = 0.7, such that CN < 1 and

dx Vi—t’
the following inequalities are valid max zyerxp || f(t, )| = 1, max,ep Hag—y)H =

oti(z+oJ;(x
MaXyep ||\/ﬁ” < N, and maXOSoéﬂ%, Ji(x))
—2

Maxp<y<i Taono < 0. So, (N2) is verified. Conditions (N3) and (N4) can

be validated easily.

Consider a near solution x(t) = x(t,0,) of [A.62) to V(t) with T # 0. It is easy to
determine that all near solutions intersects the surface of discontinuity T7(x) = 7o(x).
We could not evaluate the derivative ¢'(x) at the grazing point, by considering the

original system. For this reason, let us interchange the dependent and independent
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variables in the equation. Consider the system

dt
— =1t (4.63)
dx

Since the function ¥V (t) is invertible on the interval [0, 1], its inverse satisfies the equa-

tion (4.63)), as well as the surface 1o(x) can be written as X (t) = —+/16 — (t — 3)2,

for negative values of x. It is easy to check that the solution

0 ) = -2
T (z) = = (4.64)

1—2 if ze(=2,0],

of the equation (#.63)) has a horizontal grazing point, (¥~1(6,),0;) = (0,1).

Introduce the function ¢(t) as an analogue of 0(x) for the last equation. It is easy to

find that

1
0'0) = —, (4.65)
O =5wm
since the functions are mutually inverse. Let us evaluate ¢'(1). Issuing from that
_ — a2 ry o —2(6(1))=3)(v/1-t(é(1)¢' (1)+1)
8(0) = —v/T6 = (H(9(0) = 3% we get ¢/(1) =~V DV g

¢'(1) = —\/ig, i.e. 0'(0) = —/3. Taking into account the periodicity of system ([#.62)

as well as U(t), one can conclude that 0(0), is equal to —/3, for all i € 7. By

utilizing this discussion and equation @&1)), one can obtain that D; = D = —+/3.

Thus, the variational system for all solutions near V(t) has the form

(4.66)

Au = —/3u.
The multiplier for (#.66) can be found as p = —+/3 + 1, and it is less than one
in absolute value. So, the periodic solution V(t) is asymptotically stable. One can
observe through simulations results exhibited in Fig. that near solutions approach

to th orbit of the cycle V(t) as time increases.

This section includes information about a non-autonomous system with non-fixed
moments of impulses whose solutions have vertical and grazing points. For the hori-
zontal grazing, a system with a non-autonomous vector field and a cylindrical surface

of discontinuity is considered as an example and for the vertical grazing the systems
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Figure 4.9: The blue curve is for the cycle W(¢), the magenta and green curves are the
solutions which start with an initial condition —1.9 and —2.1, respectively. The red
curves are the surfaces of discontinuity t = 7;(x),i =0, 1,...,6.

with non-autonomous vector field and the surfaces of discontinuity is exemplified.
By applying a novel technique, we construct a linearization system around the graz-
ing periodic solution. Concrete models are demonstrated and some simulations are
presented to visualize theoretical results. Grazing solutions are widely investigated
in mechanical systems, but there is a few studies can be found in neural networks
which includes grazing. Further, we will apply our methods to investigate the stabil-
ity of neural network models which have grazing points in other words which meet

the threshold tangentially.

4.8 Grazing periodic solutions of the system of differential equations with sta-

tionary impulses

In examples, we shall need non-constant restitution coefficients in impact mecha-
nisms. It is presented in [24] numerically and through simulations that at low impact
velocities R(v) = 1 — av, where v is the velocity before collision and « is a constant.
For low impact velocities the restitution law can be considered velocity dependent
[37]. In [61], it is observed through simulations and experiments that the coefficient
of restitution depends on the impact velocity of the particle by considering both the
viscoelastic and the plastic deformations of particles occurring at low and high veloc-

ities, respectively.
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Our aim in this study is to seek some sufficient conditions for the linearization around
a grazing periodic orbit. Then, by means of the linearization, we consider the stabil-
ity of the grazing periodic solution. The stability of periodic solution of an impact
system is generally investigated by applying the method of Poincare map. However,
for the grazing solutions at the grazing point the Poincare map is not differentiable
so this method is not applicable for the analysis of such systems. The stability of
these solutions are widely investigated by constructing normal map and Nordmark
map around the grazing periodic orbit [26, 165, 97, [100]. In the paper of [65], the au-
thor investigate the bifurcations of dynamical systems, represented by a second-order
differential equation with periodic coefficients and an impact condition with grazing
points. In [[126], the non-differentiability of Poincare mapping for grazing impacts is
considered. Considering solutions near a grazing orbit for a single-freedom- degree
vibro-impact system, Nordmark derived a two dimensional local map which express
the dynamics of an orbit near the grazing point. Nordmark also studied the dynam-
ics of this map and obtained several important results [97]]. In the paper [98]], this
analysis are generalized to n-dimensional impact oscillators and some conditions for
the persistence or disappearance of a local attractor in the neighborhood of a grazing
periodic solution are taken into account. The grazing bifurcations have been known
in Russian literature as C'— bifurcations. Feigin [39] constructed a map to demon-
strate existence and stability of periodic solution of system which undergoes the C'—

bifurcation.

In our previous paper [6], discontinuous dynamics with grazing solutions is discussed.
The group property, continuation of solutions, continuity and smoothness of motions
are thoroughly analyzed. A variational system around a grazing solution which de-
pends on near solutions is constructed. Stability of grazing cycles is examined by
linearization. Small parameter method is extended for analysis of neighborhoods of
grazing orbits, and grazing bifurcation of cycles is observed in an example. Lineariza-
tion around an equilibrium grazing point is discussed. The mathematical background
of the study relies on the theory of discontinuous dynamical systems [S]. Our ap-
proach is analogues to that one of the continuous dynamics analysis and results can

be easily extended on functional differential, partial differential equations and others.

In the present study, the non-autonomous system with stationary impulse condition
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has been taken into account. Due to the fact that the differential equation of the sys-
tem is non-autonomous but the impulse equation is autonomous, this system can be
named “half-autonomous system." In order to analyze these type of equations, we
should request conditions which are in many senses different than those presented
in [6]. In other words, our present research is slightly different than that for au-
tonomous impulsive systems. For this reason, the problems of grazing solutions of

half-autonomous systems is considered in a different part of this chapter.

The remaining part of the study is divided into four parts. The next section covers in-
formation of the half autonomous systems, grazing point and grazing solution. Some
sufficient conditions are provided. The third section is about the linearization of the
half autonomous system around the grazing periodic solution. The four section is
related with the stability of the periodic solution. In the fifth, the small parameter
analysis have been conducted on the neighborhood of grazing periodic solution. The
last one is the discussion section which displays the sum of our work and possible

future works related with our subject of discussion.

4.8.1 The grazing solutions

Let R, N and Z be the sets of all real numbers, natural numbers and integers, respec-
tively. Consider the open connected and bounded set G € R". Let ® : G — R be a
function, differentiable up to second order with respect to z, S = ®~1(0) is a closed
subset of G. Define a continuously differentiable function J : G — G such that
J(S) C G. The function /(x) will be used in the following part of the study which is
defined as I (z) := J(z) — x,forz € S.

The following definitions will be utilized in the remaining part of the study. Let z(0—)
be the left limit of a function z(¢) at the moment ¢, and z(6+) be the right limit of the
solution. Define Ax(6) := z(6+) — x(f—) as the jump operator for z(¢) such that
x(f) € S and t = 6 is a moment of discontinuity. Discontinuity moments are the

moments when the solution meets the surface of discontinuity.
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In this study, we take into account the following system

r' = f(t7$)v
A‘T‘IES = [($)7

(4.67)

where (¢, z) € R x G, the functions f(t, x) is continuously differentiable with respect
to x up to second order and continuous with respect to time. We will consider the
surface of discontinuity as I' = {(¢, z)|®(z) = 0} C R x S. We say that the system is
with stationary impulse conditions, since the function /(x) and the surface S do not

depend on time.

For the convenience in notation, let us separate the differential equation of the impulse

system as

y' = f(ty). (4.68)

Assume that the solution xy(t) = z(t, 9, zo), to € R, 29 € G of intersects the

surface of discontinuity I, at the moments ¢t = 6;, ¢ € Z.

Set the gradient vector of ® with respect to z as V®(x). The normal vector of I'
at a meeting moment, ¢ = 6;, of the solution z((t) can be determined as n o=
(0,V®(z0(6;))) € R™™! where (,) means the dot product. For the tangency, the
vectors 77 and (1, f(6;, 2(6;))) should be perpendicular to each other . That s,

(VO (x0(0:)), f(0i,20(0:))) = 0.

In what follows, let || - || be the Euclidean norm, that is for a vector

x = (z1,79,...,7,) in R", the norm is equal to \/2? + 23 + ... + 22.
Consider the function H (¢, z) := (V®(z), f(t,z)), with (t,x) € R x S.

Let us start with the following definitions.

Definition 14 A point (0;,z0(0;)) is a grazing point and 0; a grazing moment for a

solution x(t) of {#.67) if H(0;,z0(0;)) = 0 and I(xy(6;)) = 0.
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Definition 15 A solution xy(t) of is grazing if it has a grazing point

(0:,20(0;)). The moment 0; is the grazing moment of the solution x(t).

Definition 16 A point (0;,x0(0;)) is a transversal point and 0; a transversal moment

for a solution x(t) if H(0;,x0(0;)) # 0.

Figure 4.10]is drawn to illustrate the grazing phenomenon. The red line is a grazing
solution z((t) of (#.67), and it intersects the surface I" at the point P = (6;, x¢(6;)).
The yellow region is the tangent plane to the surface at the point. Vector v is tangent
to the integral curve at P. It belongs to the tangent plane. This is why the point is

grazing.

X

2

Figure 4.10: The red line is a grazing solution x(¢) of with the grazing point
P = (6;,x0(0;)). The yellow region is the tangent plane to the surface I at the grazing
point. Vector v is tangent to the integral curve at P.

In what follows, we will assume that the following condition is valid.

(H1) For each grazing point (6;, z¢(6;)) there is a number ¢ > 0 such that H (¢, x) #
Oand J(x) ¢ Sif0 < |t —6;| <dand 0 < ||z — zo(6;)] < 0.

It is also clear that function H (¢, ) # 0 near a transversal point.

Consider a solution z(t) = z(t, 6;, zo + Ax) of with a small ||Az||. Because
of the geometrical reasons caused by the tangency at the grazing point, this solution
may not intersect the surface of discontinuity near (6;, z¢(6;)). For this reason there

exist two different behavior of it with respect to the surface of discontinuity, they are:
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(N1) The solution x(t) intersects the surface of discontinuity I" at a moment near to

0;.

(N2) There is no intersection moments of z(t¢) close to 6;.

We say that = {0,} is a B—sequence if one of the following alternatives holds: ()
6 = 0, (ii) 0 is a nonempty and finite set, (i77) € is an infinite set such that |6;| — oo

as ¢ — oo. In what follows, we will consider B—sequences.
In order to define a solution of (4.67), the following functions and sets are needed.

A function ¢(t) : R — R", n € N, is from the set PC(R, ) if it : (¢) is left contin-
uous, (i7) is continuous, except, possibly, points of §, where it has discontinuities of

the first kind.

A function ¢(t) is from the set PC*(R, ) if ¢(t), ¢/ (t) € PC(R, #), where the deriva-
tive at points of 0 is assumed to be the left derivative. If ¢(¢) is a solution of ({#.67),
then it is required that it belongs to PC*(R, ). We say that z(t) : .# — R", ¥ C R,
is a solution of on .# if there exists an extension Z(¢) of the function on
# such that Z(t) € PC'(R,6), the equality t € &, is true if z(t) ¢ S,
z(0;+) = J(x(6;)) for x(6;) € Sand §; € .&.

4.8.1.1 B-equivalence to a system with fixed moments of impulses

The system with variable moments of impulses is a difficult task for the investigations.
In order to facilitate the analysis, in [3], a powerful instrument was suggested which
reduces the systems with variable moments of impulses to those with fixed moments
of impulses, which preserves the dynamical properties of (4.67). The system with
fixed moment of impulses is called a B-equivalent system to the system with variable

moments of impulses. The B-equivalent system can be constructed as follows.

Consider a solution zy(t) : .# — R", # C R, of (4.67). Assume that all disconti-
nuity points 0; of z((t), i € <7, are interior points of .#. Where ¢/ is an interval in
Z. There exists a positive number r, such that r-neighborhoods G;(r) of (6;, zo(6;))
do not intersect each other. Fix i € & and let £(t) = z(t,0;,x), (0;,2) € Gy(r),
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be a solution of (4.68), which satisfies (N1), and 7, = 7;(z) the meeting time of
&(t) with S and ¥ (t) = (¢, 7, &(7;) + J(£(7;))) another solution of (4.68). Denote
W;(x) = (0;) — x and one can define the map W;(x) as

/f ds+Jx+/ F(s,£(5))ds) + /f ))ds (4.69)

It is a map of an intersection of the plane ¢t = 6; with G;(r) into the plane ¢t = ;. Let us
present the following system of differential equations with impulses at fixed moments,

whose impulse moments, 6;, ¢ € o/, correspond to the points of discontinuity of

l'o(t),

y, = f(ta y),
Ayli=s, = Wi(y(0:)).

(4.70)

The function f is the same as the function in system (4.70) and the map W;, i € &7,
is defined by equation if z(t) satisfies condition (N'1). Otherwise, if a solution
x(t) satisfies (N2), then we assume that it admits the discontinuity moment ¢; with

zero jump such that W;(z(6;)) = 0.

Let us introduce the sets F, = {(t,z)|t € &, ||z — zo(t)|| < r},and G; (r), i € o,
an r— neighborhood of the point (6;, x¢(6;+)). Write G" = F} U (U;je s Gi(r)) U
(Uier G (1)). Take r sufficiently small so that G" C R x G. Denote by G(h) an
h-neighborhood of z((0).

Definition 17 Systems (4.67) and ({.70) are said to be B—equivalent in G" if there

exists h > 0, such that:

1. for every solution y(t ofm) 4.70) such that y(0) € G(h), the integral curve of
y(t) belongs to G" there exists a solution x(t) = x(t,0,y(0)) of (#.67) which

satisfies

2(t) = y(t), t € la, b\ UL (7,0, (4.71)



where T; are moments of discontinuity of x(t). Particularly:

y<91)7 lfez <,
z(0;) =
y(0;+), otherwise,
(4.72)
x(m), if0i >,
y(mi) = .
x(7i+), otherwise.

2. Conversely, if {.67) has a solution xz(t) = x(t,0,z(0)),z(0) € G(h), then
there exists a solution y(t) = y(t, 0, z(0)) of (#.70) which has an integral curve
in G", and ({.71) holds.

The solution (t) satisfies (4.67) and (4.70) simultaneously.

4.8.2 Linearization around grazing solutions

The object of this section is to investigate the smoothness of the grazing solution.
Consider a grazing solution zo(t) = x(¢,0,z0), ©o € G, of (4.67) which was in-
troduced in the last section. We will demonstrate that one can write the variational

system for the solution as follows:

(4.73)
Au‘tzgi = Bl?L(Ql),

where the matrix A(t) € R™*" of the form A(t) = w. We call the second
equation in (4.73)) as the linearization at a moment of discontinuity or at a point of
discontinuity. It is different for transversal and grazing points. However, the first
differential equation in (4.73)) is common for all type of solutions. The matrices B;

will be described in the remaining part of the study for each type of the points.

4.8.2.1 Linearization at a transversal moment

Linearization at the transversal point has been analyzed completely in Chapter 6, [5]].

Let us demonstrate the results shortly. The B— equivalent system (4.70) is involved in
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the analysis, since the solution z((t) satisfies also the equation at all moments
of time, and near solutions do the same for all moments except small neighborhoods
of the discontinuity moment 6,;. Consequently, it is easy to see that the system of
variations around x(t) for and are identical. Assume that z(6;) is at a
transversal point. We consider the reduced B-equivalent system and use the functions
7;(x) and W;(z), defined by equation (4.69), are presented in Subsection for

linearization. Differentiating ®(z(7;(z))) = 0, we have

: . (I)a: xz 01 ,—8:60(00
Onal0)) 00O Gu )y
8370]‘ <(I)r($0(92))7 f(eh 370(92)»
The Jacobian W, ($0<91)> = [8Wi8(;3§1(9i))7 8Wi8(z§2(9i)), ce %&561))] is evaluated by
O] _ 16y, (61)) = (65,009 + J(w(63)))) o+
O0xy; 0z,
(4.75)
9 e+ F6rw0(0) 20
81‘() €; i» Lo\Ui &on )

where e; = (0,...,1,...,0), 7 =1,2,...,n. Next, by considering the second equa-
H',—/

J
tion in (4.70) and using mean value theorem, one can obtain that

A(z(0;) —wo(0;)) = Wi(2(0:) — 20(6:)) = Wiz(20(0:)) (2(6:) — 20(0:)) + O(||2(0;) —
-

zo(6;)]])

From the last expression it is seen that the linearization at the transversal moment is

determined with the matrix B; = W;,.(z¢(6;)).

4.8.2.2 Linearization at a grazing moment

Fix a discontinuity moment #; and assume that it is of grazing type. Considering
Definition [§] with the formula (4.74)), it is appearant that at least one coordinate of the
gradient, V7(x), is infinity at the grazing point. This causes singularity in the system,
which makes the analysis harder and the dynamics complex. Through the formula
(.74), one can see that the singularity is just caused by the position of the vector
field with respect to the surface of discontinuity and the impact does not participate

in the appearance of the singularity. To get rid of the singularity, we will consider the
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following conditions.

(A1) The map W;(x) in (4.69) is differentiable if z = x((6;).

(A2) 7;(x) < ;11 — 0; — € for some positive € on a set of points near x(¢;), which

satisfy condition (N1).

The appearance of singularity in does not mean that the Jacobian W;,(x) is
infinity. Because, in order to find the Jacobian, not only the surface of discontinuity
and the vector field are required, but the jump function is also needed. The regularity
of the Jacobian can be arranged by means of the proper choice of the vector field, sur-
face of discontinuity and jump function. In other words, if they are specially chosen,
the map can be differentiable, and this validates condition (A1). Thus, in the present
study we analyze the case, when the impact functions neutralize the singularity. Pre-
sumably, if there is no of this type of suppressing, complex dynamics near the grazing
motions may appear [97, 98, [70, 33]]. In the examples stated in the remaining part of

the study, one can see the verification of (A1), in details.

There are many ways are suggested to investigate the existence and stability of peri-
odic solution of systems with graziness in literature [99, 53]]. They investigate them
by constructing special maps around the grazing point. In this study, we suggest to
investigate the existence and stability by using the method of Floquet multipliers for
dynamics with continuous time. It is a well known method in literature [5, [113]], but
this is not widely applied to the analysis of the stability of grazing solutions because
of the tangency of the grazing solution with the surface of discontinuity. This is the

main novelty of our study.

By means of these discussions, one can conclude that the matrix B; in (4.73)) is the

following

Wi, if (1) is valid,
B; = 4.76)
O, if  (N2)is valid,

where O,, denotes the n X n zero matrix.
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Denote by z(t),j7 = 1,2,...,n, a solution of (4.70) with z(ty) = zo + Az, Az =
(&1,&, ..., &), and let n); be the moments of discontinuity of Z(t).

The following conditions are required in what follows.

—

(A) Forallt € .Z\ Ujey (1, 0;], the following equality is satisfied
(1) — wo(t) = Y wi(t)é + O(| Ax])), (4.77)
i=1

where u;(t) € PC(.#,0) and . is a finite subset of R.

(B) There exist constants v;;, j € <7, such that
0 — 8= Y _ vk + O(|Ax])); (4.78)
=1

(C') The discontinuity moment 7; of the near solution approaches to the discontinu-

ity moment 6}, j € <7, of grazing one as ¢ tends to zero.

The solution Z(¢) has a linearization with respect to solution z((t) if the condition
(A) is valid. Moreover, if x(6;) is a grazing point, then the condition (C') is fulfilled

and condition (B) is true if zo(6;) is a transversal point.

The solution z(t) is K —differentiable with respect to the initial value xy on .#, ¢y €
&, if for each solution Z(t) with sufficiently small Az the linearization exists. The
functions u;(t) and v;; depend on Az and uniformly bounded on a neighborhood of

Zg.

Lemma 5 Assume that the conditions (H1) and (A2) are valid. Then, the function

7;(x) is continuous on the set of points near a grazing point which satisfy condition

(N1).

Proof. Let the point (6;,20(0;)) € I' be a grazing one. First, consider a point
(0;,%),T # w0(0;). By means of condition (H1), the continuity of 7(x) at T can
be verified by applying technique presented in [5]. Next, we will take into account

the continuity at (6;, z¢(6;)). Contrarily, assume that 7;(z) is not continuous at z(6;).
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Moreover, assume without loss of generality that it is non-negative. Then, there ex-
ists a positive number ¢, and a sequence xzy, k € Z such that 7(x;) > € and xy
tends to xo(0;) as k — oo. Furthermore, by means of the condition (A2), the sub-
sequence 7(xy) converges to a number 7y, where ¢ < 79 < 6,1 — ;. Otherwise,
one can take a subsequence of z;. Due to the fact that the solutions are continuous
with respect to initial data, (0; + 7(xx), x(0; + 7(xx),0;,xx)) € T approaches to
(0; + 70, 2(0; + 10, 0;, 0(0;)). However, the point (6; + 7o, z(0; + 70, 0;, 20(6;)) ¢ T
and x(0; + 19, 0;,x0(0;) ¢ S, as well. Because of the closeness of S, we can say that

it is impossible. [].

The systems and are B—equivalent, for this reason it is acceptable to
linearize system instead of system around z,(t) = x(t,to, z), which
is a solution of both systems. Thus, by applying linearization to (4.70), the system
is obtained. Additionally, the linearization matrix B; in for the grazing
point also has to be defined by the formula (.76), where W, exists by condition
(A2).

On the basis of the discussion made in Subsections 4.8.2.1| to 4.8.2.2] one can con-

clude that the variational system for the solution z(¢) with the grazing points can be

constructed as a system (4.73]).

4.9 Stability of grazing periodic solutions

In this part of the study, by means of the discussions made in the previous part of
the study, we will investigate the stability of a periodic solution. Consider the system
again and the function f(t,z) : R x D — R"™, where D is open connected
subset of R". Additionally assume that f(¢,z) is 7'— periodic in time, i.e. f(t +
T,x) = f(t,z), for T > 0.

Let U(¢) : Ry — D be a periodic solution of (4.67) with period T and 6;, i € Z, be
the points of discontinuity which satisty (7', p)— property, i.e. 0,4, = 6, + T,pisa

natural number.

Fix a solution z(t) = x(t, o, ¥(to) + Ax) and assume that the linearization of that
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solution around W(t) exists and there are | many transversal and & many grazing
discontinuity moments of V(%) in [to, to + T']. It is easily seen that the matrix A(t) in
the variational system for W(t) is T'—periodic. However, in general, through
the formula (.76)), the sequence B; may not be periodic. For this reason, in what

follows we assume the validity of the next condition.

(A3) For each Ax € R", the variational system for the near solution
x(t) = x(t, to, xo + Ax) to W(t) is one of the following m periodic homoge-

neous linear impulsive systems

u = A(t)u,
, (4.79)
Auly—p, = B,
such that Bi(i)p = Bi(j ), 1 € Z, 3 = 1,...,m, where the number m cannot be

larger than 2F.

We will call the collection of m systems (#.79) the variational system around the
periodic grazing orbit. This assumption is valid for many low dimensional models

and those which can be decomposed into two dimensional subsystems.

So, the variational system (4.79) consists of m periodic subsystems. For each of

these systems, we find the matrix of monodromy, U,(7") and denote corresponding
(

Floquet multipliers by pij ), 1=1,...,n,7 =1,...,m. Next, we need the following

assumption,
A4 |p¥| <1,i=1,...,n foreachj=1,... m.

Theorem 7 Assume that the conditions (H1), (Al) — (A4) are valid. Then T—
periodic solution V(t) of is asymptotically stable.

Proof. Let 6;,i € 7Z, be the discontinuity moments of W (¢). There exists a natural
number p, such that 6,,, = 6, + T for all : € Z. Because of conditions (H1) and
B—differentiability of W(t), there exists continuous dependence on initial data and

consequently there exists a neighborhood of (6;, z¢(6;)) such that any solutions which
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starts in the set will have moments of discontinuity which constitute a B— sequence
with difference between neighbors approximately equal to the distance between cor-
responding neighbor moments of discontinuity of the periodic solution W(¢). For this

reason, the variational system for W(¢), can be determined through B-reduced system.

On the basis of above discussion, the variational system of W(¢) takes the form

2 =A(t)z + ¢(t, 2),

4 (4.80)
AZ’tZQi :BZ-(j)Z—Fwi(Z), 7= 1,2,...,m,

where ¢(t, 2) = [f(t,W(t) + 2) — f(t,U(t)] — A(t)z and ¢i(z) = Wi(¥(0;) +
2)— Wi (W(6;)) — BY )2, are continuous functions, and matrices Bi(j )

(A4).

satisfy condition

Denote Y;(t), j = 1,2,...,m the fundamental matrix of adjoint to (@.80)
linear homogeneous system

y = At)y,

Ayli_g = B(j)y.

i

(4.81)

Due to the conditions (A3) and (A4), there exist numbers KX > 0 and 7 > 0 such that

forall j =1,2,...,m, the following estimate holds
1Y;(t, 8)|| < Ke 70 (4.82)

Any solution of (4.80) neighbor to the trivial one can be written as one of the follow-
ing form

t

2(t, 20) = Z(t,t9)z0 + /Yj(t, S)P(s, z(s,20))ds + Z Y;(t,0;)0i(2(60;, 20))-

to to<0;<t
(4.83)
The functions ¢(t, z) and v (t, z) satisfy the inequalities
lo(t, 2)|| < 1]=]] (4.84)
and
[¥s ()] < =], (4.85)
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forall t > ¢, ||z|| < k, k > 0. Using estimates (4.82)), (4.84)) and (4.85)), we obtain
that

t
I2(t, z0)|| < Ke 10| z]| +/Ke‘”“‘s)ZIIZ(s,ZO)IIdS
o (4.86)
+ Y Ke )

to<O;<t

|2(6s, 20) |-

There exists positive § such that the inequality 6,1 — 6; > 0 is true. By applying

Gronwall-Bellman Lemma [} [113]], one can obtain the following estimate

12(t, to)|| < Ke~ G Kl=gln(k)(i=to)) .11 (4.87)

For sufficiently small [, it is true that v — K — in(1 + kl) > 0, any solution (¢, z)
of (@-80), with ||z|| < = is defined for all ¢ > ¢, and lim;_ ||2(¢, 2| = 0. Thus,
the the trivial solution of (@.80) is exponentially stable. [J

Example 14 In this example, we consider the following system of differential equa-

tion with variable moments of impulses

2" +0.0022" + z = =1 — 0.002sin(¢),
(4.88)
Ar|zes = —(1+0.92") 2,

where S = {(x,2')|®(z,2") = x = 0}. Let us rewrite the system (4.88) in the form
Ill = T,
ry = —0.00229 — 21 — 1 — 0.002sin(2), (4.89)
Ax2|m65 - _(1 + 0-91'2)1'2’

where x = (x1, z5) and the discontinuity surface S can be written in the form S =
{(z1,22)|P(x) = 1 = 0}. It has a periodic solution V(t) = (—1+ cos(t), — sin(t)).
The orbit of which is pictured in Fig.

The system @.89) has a discontinuity surface S = {(z1,22)| 1 = 0, x5 > 0}.
Then, it is easy to see that ®(x) = 2. Consider the function H(t,z) at the point
(0;,9(0;)) = (2mi, U (2mi)), @ € Z. It is true that H (2mi, ¥ (27mi)) = 0, J(V(271)) =
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Figure 4.11: The periodic solution W(t) of (4.89) and the blue line is the surface of
discontinuity S.

0 and H(t,z) # 0 for some number 6 > 0, such that |t — 27i| < § and ||z —
U(2mi)|| < 8. So, by means of Definitions [I4]and [13] we can say that (6;, ¥(6;)) =
(2mi, U (2mi)) = (274, 0, 0) is a grazing point and the periodic solution ¥ (t) contains
the grazing point (27i,0,0), then we can say that V(t) is a grazing periodic orbit.
Additionally, all points (2wi, V(2wi)), i € Z are grazing points. This validates the
condition (H1).

In the remaining part, we will investigate the stability of the grazing orbit by the lin-
earization of (4.89) around the solution. Because the point (2mi,0,0) is a grazing
point, we will consider the linearization by applying formulas and (4.76). By
means of condition (H1), it is true that the solutions intersects the surface of disconti-
nuity transversely near the grazing one. For this reason, consider a point & = (0, T5)

on the surface of discontinuity I near z* = (0,0). Because of the transversality of

Z, the first component aaTT(f) of the gradient NV1(Z) can be determined by formula
(#.49), it is obtained as %TT(? = —%. At the grazing point, the first component can be
evaluated as % = —00.

Tl

First, we assume that x(t) = x(t,0,2* + Ax), Az = (Azy, Axs) is not a grazing
solution. That is, the point z* + Ax is not an orbit point of V(t). Hence, the meeting
point T = (Z1,%2) = (21(&,0, (z* + Ax)),22(&,0, (z* + Ax)), is transversal one.

Moreover; £ is the meeting moment with I'.

It is clear 1 = 0 and X5 < 0. In order to find a linearization at the moment t = 6;,
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we use formula (#.69) and find that

7(z)
Olg/;él') _ / af(zj(S))8§£§)d8+f(57x(3)>a;g) + (@) (et
0;
f(s, 93(3))8;3(3?) + f(s,2(s) + J(:E(S)))agi?nt / of(s, :z:(s)a;r J(2(s)) 8;:;;)613,

(z)

(4.90)
where e; = (1,0)T, T denotes the transpose of a matrix. Substituting v = T to the
formula (4.90), we obtain that

W, ({6, 0,0" + A)
0z

or(xz(&,0,2* + Ax))
oz

o
or(J(x(&,0,2* + Ax)))
0t '

+J(2(£,0, 2" + Ax)) <61 +F(E 2(€, 0,27 + Ax)))ar(a:(g, 0,2* + A:z:))))

+f(&2(&,0, (J(x(£, 0,27 + Ax))))) (4.91)

Considering the formula (&.49) for the transversal point & = (T1, To), the first com-
oT(x) or(x) e
5 can be evaluated as - = ——. From the last equality, it is seen

0x 03 To

how the singularity appears at the grazing point. By taking into account (4.88)) with
#.91)), one can obtain that

ponent

oWi(z) _ T2 (_ i) N I 0
Oy —%; — 0.0022, — 1 — 0.002sin(¢) T 0 —2Rjs
T2 1
€1 + - —
< ' |:x1 —0.002F — 1 — 0.002 sin(g)] ( :v2>>

: i (-5
—71 + 0.002R(75)* — 1 — 0.002sin(¢) )

| (- 1)

1

Ty — R(Z2)?
—z; — 0.002(z2 — R(79)?)

1 0
0 —2Rz,

1+ 0.125 — 1 — 0.002sin()
)

(4.92)
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Calculating the righthand side of [#.92) we can obtain that

O} 0.1(1 — R%5) + 2R(0.1Z, — 71 — 1 — 0.002sin(¢)) ’
Similarly, differentiating [&.69) with x(t) one can find that
7(x)
oWi(x) [ Of(s,x) 0x(s) ot (x)
o = | s psa) T + L
0;
ot (x) ot (x)
+ Hon) G + slso+ sa) @.94)

0 1(s, 3(5) + J(a(s))) O(s)
+/ ox 0x9 as,

7(z)

where e; = (0,1). Calculate the right hand side of #94) at the point & = (I, T2)

to obtain
oW (x(€,0,2" + Ax)) Or(a(£, 0.2 + Ax))
= 0,y "+ A
- (e, 0,57+ Aa) TEECE
X y or(x(£,0, 2" + Ax
+J,(a(6.0.0" + Ax)) ( + (6 0(6,0,0° + A THELT ”)
2
0 0,27 4+ A
+ £((E.0.0° + Aa) ZTEE 0 2
0xy
(4.95)
*+A
To calculate the fraction Or(a (&, %wo +A2) in @.95), we apply formula (@.49)
T3
for the transversal point & = (T, Z2). The second component 367)':(6905) = 0. This and
formula (@.93) imply :
oW;(z 0
@) _ . (4.96)
61132 _QR:Z‘Q
Joining (4.93) and @.56), the matrix W;,(Z) can be obtained as
Rxy —1
Wi (%) = 2 (4.97)
0.1(1 — RZ5) + 2R(0.125 — 7, — 1 — 0.002sin(€)) —2R7,
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Taking into account formula (4.97)), we can assert that the map W;(x) is differentiable
at x = z*. Thus, this verifies the condition (Al). Let consider a near solution to
(0;,W(0;)) there are two possibility for the near solution it satisfies (N1) an d (N2).
The meeting moment 7(x) can not been taken into account whenever it satisfies (N'1).
So, to validate the condition condition (A2), we should only consider those which
satisfies (N2). To verify it, let us take into account a solution of the first equation in
which starts at the point & = (0,Z2) € S. The solution of at T is the

form

o)
/1 —(0.01)2
2T

This solution meets the surface . at the moment t = \/TTW’ again. Thus, the

x(t,0,7) = exp(0.01¢) sin(4/1 — (0.01)2¢).

meeting moment 7;(x) = t < 21 — €, where € is a small positive number and this
verifies (A2). Let us come back to the linearization part. The last expression (4.97)
demonstrates that the Jacobian is continuous function of its arguments in a neighbor-
hood of the grazing point. Indeed, it is defined and continuous for the points, which
are not from the orbit of grazing solution. For the orbit points of the grazing solution
the Jacobian can be determined by the limit procedure. We apply it when x — x*, as
well as & — 21, where 27 is the first grazing discontinuity point of periodic solution

U (t), then we obtain that

-1 0
Wi ly) = - (+.98)
01-2R 0

Consequently, the function W;(x) is differentiable at the grazing point x = x* and
(A1) is valid.

Utilizing with above discussion, we obtain that

, if (NI) is valid,
Bi=4101-2R 0 : (4.99)

O, if (N2) is wvalid.

On the basis of the above discussion, we can assert that the variational system con-
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sists of m = 2 linear homogenous subsystems:

2= At)z,
(4.100)
Az|i—g, = BWz,
and
7= At)z,
(4.101)
Az|—g, = BP2,
0 1 0 0
where A(t) = ,0; = 2mi, BY) = Oy and B® = . One
-1 —0.02 —-0.6 04

can check easily that A(t + 27) = A(t), forall t € R, Bi(l) = BW, BZ-(Q) = B®),
and 27 (i + 1) = 2mi + 2m. Thus, {Bi(j)}, j = 1,2 are 1—periodic. Moreover, system
@.100)+ @.101) is a (27, 1)—periodic system this validates (A3). The monodromy
matrices for @100) and (@.101)) have multipliers pgl) = 0.9844, pgl) = 0.9844,

p§2) = 0.9844, pg) = 0.098. Thus, the condition (A4) is valid. Consequently, the

conditions (H1) and (A1) — (A4) are valid, by means of Theorem[]] it is easy to say
that the periodic solution V(t) is asymptotically stable. In Fig. the red curve
corresponds to the periodic solution V(t), the blue line is the discontinuity surfaces
S and S and the black curves are the phase portrait of a solution of (#4.89) with initial
value xo = (—0.01,0.5). One can observe that the black curves approach the red one

as time increases.

%00

I I I I I I I I I I
-2 -18 -1.6 -14 -1.2 -0.8 -0.6 -0.4 -0.2 0

-1
0

Figure 4.12: The red curve is the periodic solution ¥ (¢) of (4.89)), the blue ones are
the phase portrait of the solution of (4.89) with initial value zy = (—0.01,0.5). and
the blue line is the surface of discontinuity .S.
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Example 15 In this example, we take into account the following system

2" — 0.052' + 2 = —0.05sin(t) + 1,
1
Az|(panes =1 — N R(z' +x —1)*, (4.102)

1
Ar|ganes = —= — 2 + R(a" + 2 — 1)%,

V2

where R = 0.5and S = {(z,2')|x — 2’ = 1 — \/2}. It is easy to see that T = R x S.

Defining variables as x = x1 and x' = x4, the system [.102)), can be rewritten as

T) = 29,
xy = 0.01xg — 21 — 0.01sin(t) + 1,
1 (4.103
Awll(m,zz)ES =1- E — 1 + R(ZI?Q + 1z — 1)2, )
1
Ax2|(:c1,x2)65 =—F= -T2+ R(CL’Q +x — 1)2,

V2

where S = {(z1,x9)|x1 — 29 — 1 + V2 = 0}. It is easy to see that ' = R x S.
The system has a 2m—periodic solution, that is V(t) = (1 — cos(t), sin(t)),t € R. At
time t = . it has a grazing point of the form (0;,V(0;)) = (5 + 2mi, 1 — \/LE’ \%)
To verify it, we will consider ®(x1,x5) = x1 — x5 — 1 + \/5, then the gradient of is
V&(z1,22) = (1, —1). Taking into account formula H(t, ) at (5,1 — \/Li’ 1-— \/Li)’
we obtain that

s 1 1 1 0.01 1

HE ) = <(1’_1>’(E’W_HEH_O'MSM%» —0.

VG
In (4.13)), the periodic solution of (4.103) is depicted.

Next, let us consider the linearization of @.103) at the grazing point (6;,V(6;))).
Consider a solution x(t) = x(t,0,V(6;) + Az) of (@.103) which is near to V(t).
Denote the meeting moment of x(t) with the surface of discontinuity I' as t = (
and the meeting point with S as © = z(¢) = x((,0,¥(0;) + Ax). It is easy to see

that (¢, z(C)) € I'. Then, taking into account formulae (#.90) and (4.91)) with system
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0

Figure 4.13: The red curve is the periodic solution W(t) of (4.103) and the blue line
is the surface of discontinuity S.

@.103)), we obtain that

oWi(z) T (_ 1 >
o —%1 4 0.01%5 + 1 4 0.01sin(¢) 1.99Z5 — v/2 + 1 — 0.01sin(¢)
11 T2
+2K(ZE1+CL’2—1> e+ X
11 —Z1 +0.01z3 — 1 — 0.01sin(¢)

1
( a 1.992, — V2 + 0.01 Sin(o>>

7 T R(Z2 + 31— 1)?

X
—1+4 55 = R(Z2 + 71 — 1)* + 0.0L( 5 + R(T> + 71 — 1)* —sin(()) + 1

(- 1 )
2%y — 0.01Z5 — /2 +0.01sin(¢) /"

(4.104)

Above equation is simplified as
oW (z) L1 4 R(zy — V2)?
0} =252 4 0.01(¥22=L 4 R(7, — V2)?)
2R(275 — \/2)Ty (4.105)

2R(2%5 — V/2)(=71 + 0.01(Zy — sin(¢)) — 1) :

1
( 22, — 0.0125 — /2 4 0.01 sin(C)>
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Calculating @103) at (0;, ¥ (6;)), we obtain that

OWi(W(0:)) _ [~1-V2R| (4.106)
0y —0.505

Similarly, one can obtain that

oWy () Ty — 5+ R(Ty — V2)?

Ory | L — 7+ 001(T — L + Rz — v2)?)
2R(27; — V/2) + 2R(2T5 — V/2)Ty y (4.107)
2R(2%5 — V/2)(—Z1 + 0.01Z5 — 1 — 0.01sin(())
1

<2f2 —0.017, — 2+ 0.01 sin(()>
and simply we obtain that

OW; (W (6:)) _ 1+ V2R . (4.108)
oz 0.505

Combining [@.106)) with (.108)), we obtain the linearization matrix at (6;, V(6;)),

—1—+v2R 1++2R
Wiz (¥ (60;)) = V2 V2 . (4.109)
—0.505 0.505

Utilizing with above discussion, we obtain that

—1—-+v2R 1++2R
if (NI) is valid,
B, = —0.505 0.505 . (4.110)

O, if  (N2) 1s valid.

In the light of the expression (d.109) and the formula {.76)), the variational system
for U(t) can be obtained as

/
Uy = Uz,

4.111)

uy = 0.01uy — uy
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and
/ p—
U) = Ug,
/
Uy = 0.01ug — uq,

|-1- V2R 1++V2R
e ~0.505 0.505

(4.112)

Au|t:%i u.

It is easy to see that the variational system is (2w, 1) periodic system which verifies
condition (A3) and the eigenvalues of th monodromy matrix can be obtained as pgl) =
0.908, pgl) = —0.608, p&Q) = 0.879, p§2) = —0.02. Thus, the assumption (A4) is true.
Using similar method presented in Example it is easy to verify the conditions (A1)
and (A2). In the light of the conditions (H1) and (A1) — (A4), By means of Theorem
@ we can conclude that the periodic solution ¥ (t) of @.103) is asymptotically stable.
In Fig. the red curve corresponds ti the periodic solution ¥ (t) of (4.103) and the
blue line is the surface of discontinuity S. The magenta curve is the near solution to
U (t) of @.103) with initial value (1, —1.1). The magenta curve approaches to the red

curve as time increases which verifies through simulation that the periodic solution is

asymptotically stable.

15

0.5F

s ‘ ‘ ‘ ‘ ‘
-0.5 0 0.5 1 1.5 2 2.5
X, (0

Figure 4.14: The red curve is the periodic solution W(¢) of (4.103)) and the blue line
is the surface of discontinuity S. The magenta curve is the near solution to W(t) of
(.103)) with initial value (1, —1.1).
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4.9.1 Regular perturbations around the grazing periodic solution

In the previous part of the study, we analyze the existence and stability of periodic
solutions of non-autonomous systems with a stationary impulse condition. In this
part, we will investigate the bifurcation of grazing periodic solutions by applying
regular perturbation to the system. Under certain conditions, the perturbation gives
rise the existence of periodic solution in impulsive systems. Due to the complexity of
the grazing behavior, there may be different type of bifurcation scenarios. In this part
of the study, we will demonstrate the increment in the number of periodic solutions

with the variation of the parameter p.
To make our investigations, we take into account the following perturbed system:

a’ = f(t,ﬁ) + Ng(t’xnu)v
A-r‘xES(u) = I(Qf) + :UK('Ta ,U)v

(4.113)

where (t,z) € R X G, € (—po, fto), o is a fixed positive number. The system
is T'—periodic system, i.e. f(t+7,z) = f(t,x)and g(t+7T,z, n) = g(t, x, )
with some positive number 7'. Additionally, f(¢,z) is two times differentiable in x,
continuous in time and first order differentiable in . The function K (z, i) is differ-
entiable in z and p and I(z) is differentiable in x. The surface of discontinuity of
@.113), S(p) is defined as S(p) = {z € G| P(z) + up(z, n) = 0}, where &(z)
second order differentiable in x and ¢(x, ) is second and first order differentiable in

x and p, respectively.

The generating system of ({.113)) is the system (#.67). In the previous section, we
assumed that the generating system has a periodic solution W¥(¢). All assumptions and

conditions (H1), (A1) — (A4) are also valid in this subsection.

Let us seek the periodic solutions of (¢.113) around the grazing one. Generally, the
investigation on the periodic solutions of such systems is carried out by utilizing
Poincare map which is based on the values of solutions at the period moment. For
this reason, we will analyze the existence of the periodic solution of in the
light of this map. But, it may not be differentiable near a grazing point [82, 25].
To handle with this problem, we make use of the condition (A1). There can be m

different linearization system can be appear around the grazing solution depending
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on the grazing point. Fix some j, where j € 1,2,..., m. Denote a solution of system

(@.113) by

2D, A9 A9 ), i=1,2,.. . n, (4.114)
with initial values
290,49, 4D )y =49 i=1,2,... n. (4.115)

Moreover, considering the periodic solution W(t) = (V4(¢),..., ¥, (¢)) of the gener-

ating system, it is easy to obtain that
29 (t, 01 (0), ..., 9,(0),0) = Uy(t), i =1,2,...,n. (4.116)

In order to verify the existence of such periodic solution of (4.113)), it is neccessary

and sufficient to check the validity of the following equality

PO, D) =T A, A0 ) P =12, 0 @117)

(2

By means of the equation conditions -(@.117) are satisfied for y = 0,

v = ¥;(0), since the generating solution is periodic.

The following conditions for the determinant will be needed for the rest of the study.

(AS)
02 (1,..1m) 02 (1107m)
01 Ovn
: ‘ 20 (4.118)
02 (i) . OPL Qi)
871 8'Yn

If this solution belongs to the proper subset, we will say it a periodic solution of the
perturbed system. To find the solutions, we should verify the condition (A5) and we
have to see that is solvable. In the set of the initial values which contains

initial with that request linearizations.

Assume that the conditions (H1) and (A1) — (A5) are valid. Then, (4.67) admits
a non-trivial m T'— periodic solution, which converges in the B— topology to the

T-periodic solution of (4.113)) as . tends to zero.
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Let us verify the above assertion. Without loss of generality, assume that the moments
of discontinuity of the periodic solution W(¢) admits that 0 < 6; < ... < 6, < T
Let zU)(t) = 2(¢, 0,21, 1) be a solution of the perturbed system with initial
values )(0) = 2V). Fix j in the system (3.13) and fixed some solution x()(¢),
whose linearization is exactly that system. Taking into account the conditions and
assumptions (H1) and (A1) — (A4), it is easy to verify that the discontinuity moments
of 1) (¢) satisfy that 0 < 1, < ... < 1, < T and there exists a neighborhood ¥(0)
which does not intersect . Applying the formulas (@.114)-(4.117), the following can

be obtained

P (y, 1) = X(T,0,y, 1) —y = 0. (4.119)

It is satisfied with y = 2U). Now, let us apply implicit function theorem to verify the
existence of the periodic solutions of (.113)) with the help of (.119) in the neighbor-
hood of (¥(0),0). For = 0, it is easy to obtain the following variational system

u' = A(t)u,
4 (4.120)
Au(0;) = B u(9,),
where i € Z and j = 1,...,m. The K—derivatives of the solution z()(¢) in z)

forms the fundamental matrix Y (¢, 20)(¢), 1), of the variational system (#&.120)
with Y0)(0,20)(¢), u) = I, where I is an identity matrix. The uniqueness of the

periodic solution ¥(¢) implies that
PPNy, 1) = Z9N(T,0,y, 1) — I #0. (4.121)

Thus, the equation has a unique solution in the neighborhood of ¥(0) for
sufficiently small |p|. The suggested periodic solution of the perturbed system takes
the form

2U)(t) = 2(t,0,29 (), 1), where 219) (1) are the initial values of that solution which
are obtained uniquely from the equation (#.119). This solution became closer to W (0)
as y tends to zero. Denote the number of grazing point of the periodic solution by 3
and it can be vary from O to m. The above part is verified only for a fixed 7, bu it can

be done for all possible S—many periodic solutions. Thus, we can conclude that the
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system (4.67) admits a non-trivial 5— many 7'— periodic solution, which converge in
the B— topology to the 7T'— periodic solution of (4.113)) as || tends to zero.

This assertion will be realized thoroughly in the next subsection which covers some
application results about the present study. In the models, we are not going to ap-
prove rigorously existence of solutions and their stability. Nevertheless, we will check
necessary conditions and we will verify the stability by means of simulations. The
necessary conditions which says about the linearization make it possible to seek the

periodic solutions and stability through simulations.

4.9.2 Some application results

The mechanical and electrical interpretation of the first model has not been deter-
mined, yet. However, this model contains a Van der Pol oscillator with a periodic
external force which is connected unilaterally to another oscillator. The second one is
provided with its full mechanical meaning. In this model, two mass m and M weakly
connected to each other bi-laterally with a spring and a damper. The first mass, m, is
subdued impacts with the rigid barrier and the other mass, M, connected to the wall
with a spring and damper. The mechanical model for this can be observed from Fig.

\
A\

\\
\\

7(m(m)7 M 4(]D(H% -

m =1

=
=

Figure 4.15: The mechanical model for two degree of freedom oscillator.

Let us start with the first model which has two coupled oscillator and they are con-

nected to each other unilaterally.
Model 1: Consider the following perturbed system of differential equation with vari-
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able moments of impulses:
" +0.0022" + z = —(1 + p) — 0.002sin(t),
y' —2(1 —y*)y +y = psin(t) + 0.01z,, (4.122)
Ar'|zes = —(1+0.52")a,
where © = (z,2',y,y') S = {z|®(z,2,y,y’) = v = 0}. Defining the variables as
x1=x,x9 =2, w3 =y, and x4 = ¢/, (@.122) can be rewritten as
T = 19,
xy = —0.00222 — 1 — (1 + p) — 0.002sin(¢),
2l = 4, (4.123)

where © = (z1, x9, 3, 24) and the vector field is f(z) = (29, —0.00229 — 7 — (1 +
w) — 0.002sin(t), 24, 2(1 — y3)ys — y3 + 0.01 sin(¢)) the discontinuity surface S can
be written in the form S = {z|®(x) = z; = 0}.

For 11 = 0, the system (4.123)) is reduced to
T = T,
ry = —0.00229 — 21 — 1 — 0.002sin(2),
2l = 24, (4.124)
v = 2(1 — x2)zy — w3 + psin(t),
Axg|zes = —(1 + 0.5x9)xs.

Let us verify that the point * = (0,0, 23(0), 24(0)) is a grazing point of the periodic
solution, U (t) = (—1 + cos(t), —sin(t), x3(t), z4(t)). By considering the expression
(®(x*), f(z*)) = ((1,0,0,0), (0, =1, 24(0), 2(1—23(0)?)x4—23(0)+0.01 sin(0))) =

0, we can conclude that the point x* is grazing by Definition 1 which is stated in [6]].
To consider the existence of the periodic solutions of the system (4.124)), we should
take into account the following impacting system

T = T,

ry = —0.00229 — 21 — 1 — 0.002sin(t), (4.125)

Axs|zes = —(1 + 0.529) 5.
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The grazing periodic solution of the system {.125)) is ¥ (¢) = (—1-+cos(t), — sin(t)),
which has a grazing point at (0, 0).

In the remainder, we will seek the periodic solutions of (4.126))

Ty = 19,
ry = —0.00222 — 21 — (1 + p) — 0.002sin(¢), (4.126)
AZEQ‘IGS = —(1 + 0.5%2)3?2

for sufficiently small p. Two sorts of periodic solutions of exist around the
grazing one. One of them has no impulse during the period since it does not cross the
line of discontinuity. The other sort is the periodic solution which intersects the line
21 = 0. We will show the existence of both type of periodic solutions for a sufficiently

small |y

Let us start with the second type. Denote the initial values of the intended periodic
solution by (i, (2, (3 and (4. By specifying the formula for the system (@.123), it is

easy to obtain the following expressions

(1)(T C1, G2, G35 G, )—5C1(T C1s G2, G35 Ca,s ) G =0,
PTG, G, G, Ca ) = 22(T, Cr, G, Gay Ca ) — G2 = 0, w1
PENT, 1, Coy G, Can ) = 23(T G, Coy G, Cas 1) — G5 = 0,

(1)(T C1, G2, G35 G4, )—M(T Cis C2,5 G35 Ca,s ) Ca=0.
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Next, taking the derivative of the expressions in (@.127)), we can obtain the following

021 (27,0,0,23(27) x4 (27),0) 021 (27,0,0,03(27) 24 (27),0)
1 T 0G4
025 (27,0,0,a3(27), w4 (27),0) 025 (27,0,0,3(27),4(27),0)
8¢ T 0G4 _
025V (27,0,0,w3(2m) 24 (27),0) 025 (27,0,0,03(2m),24(27),0) |
91 T 09G4
025 (27,0,0,3(27) 4 (27),0) 028 (27,0,0,23(27),24(27),0)
9G1 to 94
0z1(2m,0,0,23(27),x4(27),0) 1 0z1(27,0,0,23(27),24(27),0)
oG T 0C4
Oz2(27,0,0,23(27),z4(27),0) Oz2(27,0,0,23(27),z4(27),0)
061 T 0G4 _
Oz3(2m,0,0,23(27),24(27),0) Oz3(27,0,0,23(27),z4(27),0) - (4128)
0 T 9G4
0x4(27,0,0,23(27),24(27),0) 0z4(27,0,0,23(27),x4(27),0) 1
(é/6] T ¢4
0z1(27,0,0,23(27),x4(27),0) 1 Oz1(27,0,0,23(27),x4(27),0)
281 9G2 «
0z2(27,0,0,23(27),z4(27),0) Oz2(2m,0,0,253(2m),x4(27),0) 1
(é/6] 04
0z3(2m,0,0,23(27),x4(27),0) 1 Ox3(27,0,0,23(27),x4(27),0)
9Cs 94
0x4(27,0,0,23(27),24(27),0) 0z4(2m,0,0,253(2m),4(27),0) 1
0¢3 o¢3

The third determinant (#.128)) is calculated by means of the variational system, with
the impulse matrix Dil) = 0o, itis
/
Ul — Ug,
(4.129)
wy = —0.002uy — uy,
where U (0) = I, I, is 2 x 2—identity matrix. By considering the variational system

(4.129), the monodromy matrix can be computed as [51]]

1 —0.0317
1.0158 —0.1014

(4.130)

Taking into account the system (#.124)) with @.130) at (; = (Y = 0and (; = ¢§ = 0,
(), 2, (Y, ¢ are the values of the periodic solution of the generating system @.124)

at the period 7' = 27 for ; = 0, one can derive that

8$1(27T7<(1)7<(2)7<g7<270) 8131(27T7C(1)7<37<§7C270)

0.017
6{1 8{2 —
02m D B0 om0 |~ 0TOP(TTE=E) £ 0. (413D)
o1 9¢2
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Morever, the fourth determinant in (4.128)) is calculated by means of the linearization
of third and fourth equations in (4.123) with respect to its periodic solution. It is
easy to say that the system admits an aymptotically stable periodic solution [38].
Thus, we can conclude that all eigenvalues of the monodromy matrix is less than
unity and the fourth determinant (4.128)) is not equal to zero. The product of third
and fourth determinant is not zero and this verifies condition (A5). Thus, condition
(A5) is valid, then we can assert that the system admits a non-trivial periodic
solution, which converges in the B— topology to the non-trivial T-periodic solution

of (#.124) as p tends to zero which does not impact to the surface of discontinuity.

Now, let us verify that system (4.122) has a discontinuous periodic solution which
intersects the line x; = 0 in the neighborhood of (0, 0, z3(27), x4(27)). So, the peri-
odic solution will attain a discontinuity moment in a period. Denote the initial values
of the periodic solution by (i, (s, (3 and (4. In the light of the expressions (.117),

one can write that

@(2 (T C1, G2, G35 Ca, ) = 331(T C1, G2, G35 G, ) ¢ =0,
‘@(2)<T 417627C37<47 ) Q(T §17§27C37C47 ) CQ - 07

2 (4.132)
'@( (T <17<27C37C47 ) 3(T C17C27<37<47 ) <3 = OJ

(2)<T C1, G2, G35 G, ) = I4(T C1, G2, C3, 4, ) =0

Taking the derivative of the expressions with respect to variables (i, (o, (3
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and (4, one can obtain the following

02 (27,0,0,z3(27),4(27),0) 02 (27,0,0,23(27),4(27),0)
a1 T 0G4
025 (27,0,0,3(27), 4 (27),0) 025 (27,0,0,3(27),4(27),0)
oG T elen _
02 (27,0,0,05(2) w4 (21),0) 028 (27,0,0,25(27) ,wa(2m),0) |
9¢1 to 04
025 (27,0,0,23(27) 4 (27),0) 028 (27,0,0,23(27),24(27),0)
¢ T 04
0z1(2m,0,0,23(27),74(27),0) 1 0x1(27,0,0,23(27),x4(27),0)
oG U 0¢4
Ox2(27,0,0,23(27),z4(27),0) Oz2(27,0,0,23(27),z4(27),0)
oG T 9G4 —
Ox3(27,0,0,23(27),z4(27),0) Ox3(27,0,0,23(27),z4(27),0) o (4 133)
PR R 9Ca
0x4(27,0,0,23(27),x4(27),0) 0z4(2m,0,0,23(27),x4(27),0) 1
oG T ¢4
0z1(27,0,0,23(27),x4(27),0) i 0x1(27,0,0,23(27),24(27),0)
a1 0C2 x
Ox2(27,0,0,23(27),x4(27),0) Oz2(2m,0,0,x53(2m),4(27),0) 1
¢ 04
0z3(2m,0,0,23(27),x4(27),0) 1 0x3(2,0,0,23(27),24(27),0)
o¢3 ¢4
0z4(27,0,0,23(27),z4(27),0) 024(2m,0,0,23(27),z4(27),0) 1
9¢3 9¢s

Let us obtain a variational system for 4.124] around the grazing periodic solution
WU (t), to accomplish it let us consider a near solution to W(t). For a fixed i € Z, take
into account a near solution z(t) = x(t,0;,V(6;) + Azx) = (x1(t), z2(t)), to ¥(t)
of the differential part of the last system, near the moment ¢ = #;, assuming that it
impacts the barrier at a moment ¢ = ¢; near to ¢t = 6; and at the point (x1,z5) =
(x1(&),x2(&;)). Let also, (t) = (Z1(t), Z2(t)) be a solution of the equation Z(&;) =
z(&) + J(x(&)), where J(zy,72) = (71,0.9823). In the light of this, define the

following map

& ( )
To(s
Wi(z) = / ? ds+
J x1(s) — 0.002z5(s) + 1 4 0.002sin(s)
&i
I+ / w2(s) ds (4.134)
J —z1(s) — 0.002x2(s) + 1 4 0.002 sin(s)
0;

/ T(s)
+ ds.
4 —Z1(s) — 0.002%2(s) + 1 + 0.002 sin(s)

Taking into account the map (4.134)), we can write a B-equivalent system to (£.124)
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(5]

Ty = 19,
xh = —0.002z5 — 1 — 1 — 0.002sin(t), (4.135)
Az, = Wil (6:))z,

W;(W(6;)) will be precised below.

The construction of WW; allows that the solutions of (4.135]) and (4.124) coincide ex-

cept the time intervals m, i € Z, where m = [0;,&] whenever 0; < &; and

0, &) = [&, 0:], otherwise. For this reason, system (4.135)) can be used for the analy-

sis of the stability of the periodic solution. For the transversal point & = (Z1, Ts),

06i(7) 06i(7) 1

= ——. In

utilizing formula (3.10), the derivative is computed as

0z dxY Ty
the last expression, one can see how the singularity appears at the grazing point
x* = (x3,23) = (0,0). Then by means of the derivative, it is easy to obtain that
0 = ) ( — T) + e+
O — %1 — 0.002Z; + 1 + 0.002 sin(7) T 0 1.96Z,

y (-2)
—Z; — 0.002Z5 4+ 1 4 0.002 sin(7) T2

—0.98(75)? ( 1 >
—Z1 — 0.0294(z2)? + 1 + 0.002 sin(7) T

—1+ 0.98Z,
0.002 + 0.02945 — 1.96(—Z; + 0.002sin(7) — 0.002Z + 1)

(4.136)

where ¢; = (1,0)7.

From the last expression, it is easy to see that the derivative is a continuous function

of its arguments in a neighborhood of the grazing point. Since Z is a transversal point,

we get
oW, (z
lim Ef”> - B, 4.137)
T—x* 8551
where B = | . To linearize system at the grazing point z*, we should verify

—-1.93
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that the function W;(x) is differentiable at 2* = (W, (6;), ¥2(6;)). The differentiability

)

requests that the partial derivatives

, J = 1,2, exist in a neighborhood of the

o9
: . . . . OWi(z)
grazing point and they are continuous at the point. To compute the derivative 50
Ly
at x*, the following expression will be taken into account
OWilat,as) . Wilan,ag) = Wiaf,a3)
lim TR CRTU T2 BB
r1—x] T — 2y
Applying the Mean Value Theorem, we obtain that
P (w1 = af) = Blay — )
lim ! " + B, (4.139)
{L’l—)CET T — ,’])1

where ( lies between z; and 7.

Similar to above discussion for the first derivative, one can obtain for the second

o OW;(z*) 0 Ay .
derivative that g0 = and the derivative is continuous at x*. Thus, both
Lo 0
W; oW, . ) .
derivatives (z) d (z) exist in a neighborhood of z* and they are continu-

19 09
ous at z*. That is, W;(x) is differentiable at 2*. Since of the periodicity, the lineariza-

tion can be obtained for all grazing moment 6;, i € Z.

Joining the derivatives, the one can obtain that

~1 0
Wi (z*) = . (4.140)
~1.93 0

The above matrix will be called the linearization matrix at *.

For the near impacting solution, the linearization system can be obtained as
uy = ug,
uy = —0.002uy — uy, (4.141)
Au‘t:27ri = VVM(.T*)'LL,

where W;,(z*) is determined in (4.140). The monodromy matrix of the {.141) is

equal to
0.0000 0.0017

0.0081 0.8546

(4.142)
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For 1 = 0, taking into account (4.142), the determinant (3.66) can be obtained as

023 (270,000 02 (27,0,0,0)

¢ ¢ _
395”(2;,070,0) 0%2)(27?,0,070) - (4.143)
8(1 8<2
—1 0.0017
= —0.02exp(0.001/1/3.99) # 0. (4.144)

0.0081 0.8546

Moreover, the determinant in (#.133)) is calculated by means of the linearization of
third and fourth equations in (#.123)) with respect to its periodic solution. It is easy
to say that the system admits an asymptotically stable periodic solution [38]]. Thus,
we can conclude that all eigenvalues of the monodromy matrix is less than unity and
the fourth determinant (4.133) is not equal to zero. The product of third and fourth
determinant is not zero and this verifies condition (A5). This verifies condition (A5).
So, we can conclude that the perturbed system (@.122)) admits a non-trivial periodic
solution which converges in the B— topology to the non-trivial T-periodic solution
of (.123) as p tends to zero. Consequently, we can say that system (4.126)) admits
two periodic solutions with the variation of ;, around zero. It means that the number
of periodic solution increases with the help of the small change in ;. We will call this

bifurcation of the grazing periodic solution. The discontinuous periodic solution is

depicted for ; = 0.1 in Fig.

X,(t) T X, (t)

Figure 4.16: The coordinates x(t), x2(t) and z4(t) are depicted. The blue curve is
for those coordinates of the solution with initial value z(0) = (—2.3,0,2,0) and the
red one is for the same ones with the initial value z(0) = (—2.01,0, 2, 0).

In Fig. 4.16| we pictured the coordinates x5(t), z3(t) and z4(t) the near solutions of
the system (4.122) with the same initial data and in [4.19] the projection of the coor-

dinates x3(t) — z4(t) is depicted in order to demonstrate the existence of an asymp-
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0
o
o & o

135 -2 -15 1 -05 0

xl(t)
Figure 4.17: The blue curve is for the coordinates 1 (t) — z5(t) of the solution with
initial value z(0) = (—2.3,0, 2, 0) and the red one is for the same ones with the initial
value (0) = (—2.01,0,2,0). One can see that these solutions (drawn in blue and red)
approach asymptotically discontinuous periodic solution of the perturbed system and
this picture is also the projection of Fig. onto the x1(t) — xo(t) plane.

totically stable periodic solution of the non-impacting part of the system (#.122))

-5 -
X0 ¥ 0

Figure 4.18: The coordinates x;(t), x3(t) and xz4(t) are depicted and blue and red
ones are for the solution with initial values x(0) = (—2.3,0,2,0) and z(0) =
(—2.01,0,2,0), respectively.

-3 -2 -1 0 1 2 3

Figure 4.19: The projection of Fig. onto the x3(t) — x4(t) plane.

Model 2: Let us consider the mechanical problem which consists of two mass and

they weakly coupled to each other with spring and damper and one of them impacts
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against the rigid wall. The mathematical model for this problem is of the form

mz"” + ax’ + bx + €1 (2’ — i) + e2(x — y) = csin(t),

1
My"+ Ay + e (v —2') + &2y — ) + BEy?’ =C, (4.145)
A |zes = —(1 + Ra')a!,

where S = {(z,2",y,v)|®(x,2',y,y') =  + 1 = 0}, R is the coefficient of restitu-

tion which varies between zero and unity.
The system (#.143) can be normalized as

o+ ma' 4 x4 (2 — o) + pa(z — y) = nysin(t),
Y+ &y + &y’ — (e — ) — pa(e —y) = &, (4.146)
Ar'|zes = —(1 + Ra')a,
where 7, = a/m, 1y = b/m, n3 = ¢/m, & = A/M, & = B/M, & = C/M,
1 = e1/m and puy = €3/M. The generating system corresponding to normalized

system (4.146)) takes the form

"+ ma' + nx = nzsin(t),
Y+ &y + &y’ =&, (4.147)
Ar'|zes = —(1+ Ra')x'.

In this model, we will consider the case when the coefficients are ; = 1, o = 1,
ny = 1,& =1, & = 1/16 and &3 = 4 and the coefficient of restitution R = 0.8.

Defining variables as x = x1, ¥’ = x5, y = x3 and vy = x4, we can obtain that

(L’l — xQ,

Ty = —xy — 1 + sin(t),

Ty = Iy, (4.148)
1

Ty = —1wy — Ex% +4,

where x = (21, 9, x3,24) and S = {z|®(z) = x; + 1 = 0}.

From the description, one can see that the model in (4.143)) in the sense of analysis is

quite similar to that for the model in (4.122)). This is why, we will pass the detailed
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analysis for the system (4.145]) and we will present essential discussions related to
the application of the assertion related with the small parameter analysis near grazing

solution and provide final results what we have obtained through above calculations.

It is easy to see that the generating system (4.148) consists of two uncoupled oscil-
lators, one of them is an impacting forced spring-mass-damper system and the other

one is forced duffing oscillator. The system can be interpreted as the following sube-

quations
Ty = 19,
rh = —xy — 11 + sin(t), (4.149a)
Aw2|x65 = —(]_ + O.8£L‘2)I2,

and

(4.149b)

It is easy to verify that the first system, (#.149a), has a 27 —periodic solution W (t) =
(— cos(t), sin(t)) which grazes the surface of discontinuity at the moment ¢ = 0 and at
the point ¥(0) = (—1,0). The system (#.149b)) has a fixed point (4, 0). Thus, we have
that W(¢) = (— cos(t), sin(¢), 4, 0) is a solution of the generating system, (4.148). In
the following part, we will consider W(¢) as 2r— periodic function. At the moment
t* = 0 and the point z* = (—1,0,4,0) = W(¢*) it i,s tru that (P (xx), f(t*, x%)) =
((1,0,0,0),(0,—1,0,0)) = 0. Now, we can conclude that the point z* = (—1,0, 4, 0)

is a grazing point and ¥ (t) is grazing periodic solution.

Because the two systems, (4.1494) and (.149b), are uncoupled, we will consider
the linearization of these systems, separately. Let us start with the system (4.149a)).
There are two different type of solutions near the periodic solution due to the fact
that the periodic solution, (), is a grazing one. The first type is non-impacting and

the other is impacting. We will continue with the non-impacting one. For those, the
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linearization system has the form

Uy = ug,
(4.150)
Uy = —Up — Uy.
The characteristic multipliers of the system are pgl) = 0.0288 4 0.03227 and pgl) =
0.0288 —0.0322:. All characteristic multipliers are less than unity in magnitude. Now,

we can conclude that the periodic solution, ¥ (t) is asymptotically stable with respect

to inside (non-impacting) solutions.

Next, we will take into account the linearization of with respectt to impacting
solutions. In the light of the the calculations done for Model 1, the linearization

system can be obtained as

uy = ug,
Uy = —Uy — Uy, (4.151)

Au(2mi) = Wi (U (213) )u(27i).

Considering the formulas (3.10) and (3.T1)), the characteristic multipliers of the lin-
earization system, (.151) can be computed as p§2) = 0.0868 and pg) = 0. Now,
we can say that the characteristic multipliers are inside the unit disc, so the periodic

solution is asymptotically stable with respect to impacting (outside) solutions.

Let us take into account the linearization of system (4.149b)) at the fixed point, (4, 0),

and it is obtained as
Uy = Uy,
(4.152)
uy = —uy — 3uy.
The characteristic multipliers of the system are @152) p{" = 0.3679 and p{"’ =
0.3679. Both are inside the unit disc, then it is easy to conclude that the fixed point,

(4,0), is asymptotically stable.

In Fig. .20} the grazing periodic solution for system (4.149a)) is depicted in green.
The blue is depicted for the coordinates, x;(¢) and z5(t) of the system (#.148)) with
initial value (2.12, 0,4, 3) and red is simulated for the coordinates, () and x2(t) of

the system (4.148)) with initial value (0, 0,4, 3). It is easy to see in Fig. that bots

solutions approach the green periodic solution asymptotically, as time increases.
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Figure 4.20: The green is for the grazing periodic solution of system (#.149a)). The
blue and red are for the coordinates, x1(t) and x2(¢) of the system (4.148)) with initial
values (2.12,0,4,3) and (0, 0,4, 3), respectively.

In Figs. and 4.22| the coordinates x(t), z2(t) and x3(t) and x1(t), x3(t) and
x4(t) of the system (4.148)) are depicted, respectively. Taking into account both of
the Figs., we can conclude that all near solutions approach to the grazing periodic

solution, W(¢), of the system (4.148) as time increases.

4 0
0 x,®
%, -4 2

Figure 4.21: The blue and red are for the coordinates, 1 (t), xo(t) and z3(t) of the
system (4.148) with initial values (2.12,0, 4, 3) and (0, 0,4, 3), respectively.

If we consider the system with regular perturbation z; and po, we can see the ex-
istence of discontinuous periodic solution for the system (4.149a)) which is orbitally

asymptotically stable and the system (4.149a)) has a continuous periodic solution.

Defining variables as x = z;, 2’ = x5, y = x3 and v = x4, we can obtain that
) ) 3 )

Ty = 1o,
q;/2 = —T9 — T + sin(t) — ,u1(174 - -T2> - MQ(xl - 1‘3),
xé = 14, (4.153)

T =~y — =2 + 4+ (ws — 32) + o1 — 75),

Ax2|m€$ = _(1 + 0-81'2)1'27
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Figure 4.22: The blue and red are for the coordinates, z1(t), x3(t) and z4(t) of the
system (4.148)) with initial values (2.12,0, 4, 3) ans (0, 0,4, 3), respectively.

where © = (21, 2, x3,24) and S = {z|®(z) = x; + 1 = 0}.

Next, our aim to verify that the perturbed system (4.145) admits a periodic solution
which approaches the periodic solution of the generating system (4.147) as p; and
1o tend to zero. To accomplish it, we will use the formulas and assertions, given in
subsection Now, the independent variables are y; and po which are not single.
For this reason, it is worth saying that applying similar analysis, done for Model 1, it
is easy to conclude that the perturbed system (4.143]) has a periodic solution. Due to
the continuity of the linearization system and the linearization matrix, we can say that
the periodic solution is asymptotically stable. It can be observed in Figs 4.23] #.24]
and

15

l,
0.5
fw 0
-0.5
_1t
N
_l_ L L L L
135 -1 -0.5 0 0.5 1

x, (0

Figure 4.23: The blue and red are for the coordinates, (), x2(t) for the solution of
system (4.153)) with initial values (1,0, 4.15,0.1) and (0, 0,4.15, 0), respectively.

If we consider Fig. 4.25]as a projection to the x; — x5 plane, we obtain Fig. #.23]and
additionally if we take into account [4.26]as a projection to the z3 — =4 plane, we get

Fig. [4.23] In both couples of figures, it is easy to see that the solution of the system
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Figure 4.24: The blue and red are for the coordinates, z3(t), x4(t) for the solution of
system (4.153) with initial values (1,0, 4.15,0.1) and (0, 0,4.15, 0), respectively.

X0

0 22 X,®

Figure 4.25: The blue and red are for the coordinates, x;(t), x2(t) x5(t), for the
solution of system (4.153)) with initial values (1,0,4.15,0.1) and (0, 0,4.15,0), re-
spectively.

is asymptotically stable.

Next, we will consider the following bi-laterally connected oscillator as a different
from above results the periodic solutions of the non-impacting oscillator can not be
determined analytically. For this reason, we will verify our results, which is obtained

in Model 2 by using simulations. Let us consider the following system

2"+ +a+ (2 — ) + pe(r — y) = sin(?),

1
Y 2y + my —2") + pa(y — ) + 1—6y3 +sin(t) = 4, (4.154)
Az |es = —(1 4+ 0.82"),

where © = (z,2/,y,y) S = {x|®(z) = v = —1}. The generating system for |4.154
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Figure 4.26: The blue and red are for the coordinates,z(t), x3(t), x4(t) for the so-
lution of system (4.153)) with initial values (1,0,4.14,0.1) and (0, 0,4.15,0), respec-
tively.

is of the fomr
2"+ 2’ + = sin(t),

1
y' +y + 1—6y3 =4 + sin(t), (4.155)

Ar'|zes = —(1 +0.82")a,
Defining the variables x = x1, &’ = x5, y = 3 and y' = x4, the systems (.153)) and
(4.154) can be rewritten as

Q?l — 5C2,
ry = —x' —x — sin(t),
Ty = T, (4.156)

and
Ty = 19,
ry = —x' —x —sin(t) — py(z4 — x2) — po(rsz — 1),
Ty = T4, (4.157)
T = —14 — %x% + p1(y — 22) + po(rs — 1) + 4 + sin(t),
Azsles = —(1 4 0.8z9) 1o,
where © = (21,9, x3,24) and S = {z|®(x) = x; = —1}. Similar to Model2, the
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system (4.156)) consists of two uncoupled oscillators and they are:

Ty = x9,
ry = —a' —x — sin(t), (4.158a)

Azslpes = —(1 4 0.822) w5,

(4.158b)

1
Ty = —my — 1—61‘% + 4 + sin(t).

In Model 2, it is obtained that the system has a grazing cycle which is of
the form W(t) = (— cos(t), sin(t)). Since of the system has an equilibrium
with charachteristic exponents having negative real part, by applying theorems for
the existence of solutions of quasi-linear systems [38, 92], one can prove that the
periodic solution of the system exists whenever the coefficient of =3 in the system is
sufficiently small. Taking into account the coefficient 1/16 we obtain a 27-periodic
solution for that system which can be seen in the Fig. and it is easy to observe
that this solution is asymptotically stable. If one can determine the periodic solution
\If(t) = (W3(t), Uy(t)) of (.138b) analytically, then it will be possible to evaluate its
Floquet multipliers. However, for this case it is impossible to determine the periodic

solution in an analytical way. For this reason, we have obtained some simulation

results to verify our results.

Denote the 2w —periodic solution of by U(t)(— cos(t),sin(t), Us(t), Uy(t)).
Utilizing the formula (®(z*), f(t*, x*)), at the grazing moment and point of the peri-
odic solution

(t*,2*) = (0,¥(0)) = (0,—1,0,¥5(0), Uy(0)), it is easy to verify that the point z*

and the moment ¢* are grazing. So, the periodic solution, W(t), is a grazing one.

Figs. [4.28 and [4.29] are depicted to show the asymptotical properties of the system in
there dimensional space. Considering the projection of .28 onto the x; — x5 plane,
we obtain the on the left part of the Fig. .27 Through the left part of the Fig. one can
observe that both solutions drawn in red and blue approach the discontinuous
periodic solution, W(#) of the system (#.158a) and from the right part, it is easy to see
both solutions drawn in red and blue approach the continuous periodic solution, \if(t)

of the system (4.158b)), as time increases.
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Figure 4.27: On the left part, the blue and red are for the coordinates, x;(t), z5(t) for
the solution of system (4.156) with initial values (1,0,4.15,0.1) and (0, 0,4.15,0),
respectively. On the right part, the blue and red are for the coordinates, x3(t), x4(t) for
the solution of system (4.156) with initial values (1,0,4.15,0.1) and (0, 0,4.15,0),
respectively.

0

0

o 122 N0

Figure 4.28: The blue and red are for the coordinates, x(t), z2(t) x3(t), for the
solution of system (4.156) with initial values (1,0,4.15,0.1) and (0, 0,4.15,0), re-
spectively.

In both Figs. @ the outside and inside solutions which are drawn in blue and red,
respectively approach the periodic solution of the system (4.157)), as time increases.
The Figs. and in drawn for the coordinates x(t), xo(t) z3(t), and 1 (¢),
x3(t), r4(t), repsectively. From that figures, one can see the asymptotic properties of
the solutions of the perturbed system (4.157). In order to obtain better view, if one
project the Figs. d.3T]and .32]into 21 — x5 and x5 — x4 planes, respectively, one can
obtain the left and right parts of Fig. respectively.

In general, the analysis of periodic solutions by using implicit function theorem is not
applicable in systems which have graziness. Because grazing point may violate the
differentiability of the Poincare map. For this in literature many methods have been
used such as Nordmark map [97]]-[100] and zero time discontinuity mapping (ZDM)

[23]. By using special assumptions, we investigate the existence and stability of peri-
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Figure 4.29: The blue and red are for the coordinates,z(t), x3(t), x4(t) for the so-
lution of system (&.156)) with initial values (1,0,4.14,0.1) and (0, 0,4.15,0), respec-

tively.
0.5
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Figure 4.30: In the left, the blue and red are for the coordinates, x;(t), zo(t) for
the solution of system (4.157)) with initial values (1,0,4.15,0.1) and (0, 0, 4.15,0),
respectively. In the right, the blue and red are for the coordinates, x3(t), x4(t) for
the solution of system (4.157) with initial values (1,0,4.15,0.1) and (0, 0,4.15,0),
respectively.

odic solution of the perturbed system without disrupting the nature of the mechanisms

with impacts.

4.9.3 Discussion

The singularity provided by grazing which appears in the Poincare map, if one want to
analyze the problem of stability the following mapping approaches such as zero time
discontinuity mapping [23]] and Nordmark mapping [97/]]-[100] should be considered.
In the literature, ss distinct from the mapping results, Ivanov [38],[39] analyzed the
stability of the grazing periodic solution half autonomous systems under a parame-
ter variation in the vector field through the variational system approach. As different

from the theoretical results, the singularity in our analysis appears during the con-
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Figure 4.31: The blue and red are for the coordinates, x(t), x2(t) x3(t), for the
solution of system (4.153) with initial values (1,0,4.15,0.1) and (0, 0,4.15,0), re-
spectively.
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Figure 4.32: The blue and red are for the coordinates,z(t), x3(t), x4(t) for the so-
lution of system (#.153)) with initial values (1,0,4.14,0.1) and (0, 0,4.15,0), respec-
tively.

struction of linearization at the moment of discontinuity. By harmonizing the vector

field, the barrier and the jump equations, the singularity is suppressed in the system.

We provide some examples with simulations to demonstrate the practicability of our
theoretical results. In addition, this work can be applied the integrate and fire neu-
ron models which intersects the threshold tangentially. We propose that such phe-
nomenon can be understood as the activity of a neuron cell transfers to the non-firing

stage to firing stage.

By applying regular perturbations to the half autonomous system, we investigate the
existence of periodic solution of the perturbed system. We derive rigorous mathe-

matical method for the analysis of discontinuous trajectories near grazing orbits. If
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there is no impacts in models, our results can be easily reduced to those for finite
dimensional continuous dynamics. That is why, this method is convenient to inves-
tigate infinite dimensional problems and periodic solutions of functional differential

equations and bifurcation theory.

In what follows, to emphasize the effectiveness of our results, we compare our way
of investigation with that proposed in papers [38,159]. In the paper [59]], the following

equation is taken into consideration

G = f(t,q,q). (4.159)

Model is subdued impacts with the law gt = —eq—, where ¢+ and ¢, velocities
before and after impacts, respectively. It is assumed that the system with the impact
law has a periodic solution go(t). It is assumed in the paper that ¢, is the initial moment
and denoted the impacting time by ¢}, ¢ € Z, such that ¢, <t} < t;, < .... Moreover,
it is notated that £ = g — qo(t), 7 = ¢ — qo(t), and it is asserted that they satisfy the

following relation

O _ X0ty | ©| + 0@ 40, (4.160)

n(t) u

where the fundamental matrix X (¢, ¢,) satisfied the following variational system

X(t,to) = AR)X(t,ty), At) = 01 . X(to, to) = I, 4.161)

fo T
where I, is 2 x 2 identity matrix. The entries of the matrix A(t) was computed
along the periodic solution ¢o(t). In the remaining part, without loss of generality,
it is assumed that £, = 0. By considering the formula (3.11) with (3.10), it is easy
to compute the matrix in (4.163) and as well as applying B-equivalence technique,

the linearization around the periodic solution ¢y(t), is considered with the following

relations
. I(ug, th)
0 =& I(go(t) At) Aty + ug Aty = %f )
1
+ - / _gi - / _fi / _67
no=n _'_f(thoaul) _I(,r] +f(t1707u1) )_f(t1707u1) .
Uq Ut U1l
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Simplifying above equations, we obtain that

+ _ I(tlbul) —
f - Uy 5 )
77+ _ (f(t/1707u1) - f(t,lvoaul + I(tllvu1>) _ Iu(tlbul)f(t/hovul))gf_'_ (4162)

Up Uy
(1+ Lu(ty, w))¢

Above system can be obtained in the following matrix form

+ —
|y o]
nt n
where
I(t’l,ul) 0
Bl = ’ / /u1 / ’ . (4163)
t7,0,u1)—f(¢],0,u1+1(t] u L, (t] u t7,0,u
f(l 1) f(;l 1 (1 1))_ (1 lthi(1 1) 1+Iu(t/17u1)

However in the paper [58], the relations in (.162) is computed as

I(
& = ") - ') =+ L))
1
]u(tllaul)f<t/1a07u1)

)&+ (1 + Lu(th, w))C

Uy
The impact matrix can be computed through the relations of the paper [58]] as

o u1+I(t’1,u1)

0
B, = 1 . (4.165)
f(t/ 707u1)_f(t, 707u1+[(t, 7u1)) Iu(t/ 7u1)f(t, 707u1) /
; 111 . - . uy . 1+ Iu(tb ul)

If your compare the results what we have obtained in (4.162) with those (4.164),
what the Ivanov obtained in his paper, you can find first entry of the first row is
slightly different than our result. Because, particularly, the formula (8) first equation,

& =q*(t)) — ¢"(t}), in the paper [58]] does not make sense.
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CHAPTER 5

CONCLUSION

In this thesis, Kelvin-Voigt contact model is displaced by contact model with im-
pact deformations for the investigation of mechanisms with contacts. Comparing
these two model, appropriate coefficient of restitution and the surfaces of disconti-
nuity obtained analytically and numerically. The obtained model with impact de-
formations is compared with the existing experimental data. It is observed that the
obtained results are slightly similar with that of those in literature. In some mechan-
ical models the chattering phenomenon is observed analytically and simulation and
it is suppressed by utilizing models with impact deformations. The existence and
stability of periodic solutions for some mechanical systems is investigated by means
of differentiability properties impulsive systems analytically and through simulation
results. A brief summary is done for the granular material to emphasize that our
results can be applicable for the models with granular material. The grazing solu-
tions of the impulsive systems are analyzed. For those, appropriate definitions are
presented. The differentiability properties of impulsive system, orbital stability and
small parameter method are considered for those systems. The K- smooth discon-
tinuous flow is defined. Two different types of non autonomous impulsive systems
is considered. One is with autonomous surfaces of discontinuity and impulse func-
tion and non-autonomous vector field. For those systems, we have used the term
non-autonomous systems with stationary impact actions and the other type consti-
tutes of non-autonomous vector field and surfaces of discontinuity with autonomous
impulse function. For both non-autonomous systems, we have obtained definitions of
grazing point, solution and moment. The asymptotical stability of grazing periodic

solutions are considered by applying special linearization technique. Regular pertur-
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bations around the grazing cycles of both systems are obtained and the existence of
the asymptotically stable periodic solutions are examined. The appropriate definitions
for the horizontal and vertical grazing is given and linearization around the periodic
solutions of systems with horizontal or vertical grazing is obtained. The results of

this thesis are exemplified through simulation results obtained from MATLAB [88]].

This our results for the modeling study is also extend for other types of contact model
in the form of Kelvin-Voigt contact model and the grazing phenomena can be ob-
served also in impulsive systems with non stationary impact and the non-autonomous
impulsive systems. These type of systems have been already considered in our next
papers and the systems with discontinuous right hand side can be taking into account
for the analysis of grazing solutions and stability. Moreover, the results of the section
related with non-autonomous grazing phenomenon can be applied to the analysis of

the neural networks which meet the threshold tangentially.
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