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BAZI KISMi TUREVLI DENKLEMLERIN SINIRLAYICI PADE YAKLASIMI
METODU iLE COZUMLERI

Fevziye GULSEVER
Matematik, Yiiksek Lisans Tezi, 2016
Tez Danigmani: Dog. Dr. Ahmet BOZ

OZET

Bu galigma alt1 boliimden olugmaktadir.

Birinci boliimde difiizyon denkleminin sinirlayict Pade yaklasimi ile niimerik ¢oziimii
icin gerekli olan temel bilgiler verilmistir. Ozellikle ¢dziim ydntemine yonelik aciklamalar da

bulunulmustur.

Ikinci béliimde, dzgiin bir calisma olarak lineer difiizyon denkleminin sinirlayici Pade

yaklasimui ile niimerik ¢6ziimii elde edilmistir.

Uciincii béliimde ise aym yontemin singiiler pertiirbe edilmis hiperbolik denklem

tizerindeki uygulamasi incelenmis ve ¢oziim algoritmasi sunulmustur.

Dordiinci  boliimde genellestirilmis  smirlayici Pade yaklagimi igin determinant

formiilleri ifade edilerek konu ile ilgili niimerik 6rnekler incelenmistir.

Besinci bolimde ise ozellikle yerel kesme hatalar {izerine ¢esitli incelemeler
yapilmigtir. Parabolik ve hiperbolik tip baglangi¢- sinir deger problemlerinin sinirlayici Pade

yaklasimu ile ¢ozlimlerinin yerel kesme hatalar1 ayr1 ayri incelenmistir.
Son boliimde ise sonug ve dnerilerde bulunulmustur.

Sonug olarak lineer diflizyon denkleminin niimerik ¢o6ziimii {izerine bir g¢aligma

olusturulmustur.

Anahtar kelimeler: Difiizyon Denklemi, Kismi Tiirevli Diferansiyel Denklemler, Sinirlayici
Pade Yaklagimu.
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NUMERICAL SOLUTION OF THE SOME PARTIAL DIFFERENTIAL EQUATIONS
USING RESTRICTIVE PADE APPROXIMATION

Fevziye GULSEVER
Mathematics, M.S. Thesis, 2016
Thesis Supervisor: Assoc. Dr. Ahmet BOZ

SUMMARY

This study consists of six chapters.

In the first chapter, basic concept are given for about to numerical solution of the

diffusion equation.

In the second chapter, we find that the numerical solution of the diffusion equation

using restrictive Pade approximation. This solution is orginal.

After that, we examined same method fort he singulerly perturbed hiperbolic equation

and given the numerical solution algorithm.

In the fourth chapter, determinant formulation for the generalized restrictive Pade

approximation and examined about to numerical examples.

In the fifth section, some examine for the truncation error. The solution of the parabolic
and hyperbolic initial- boundry value problems are examined separately with local truncation

error.
In the last section, conclusion and recommendations are included.
Consequently, created work about to numerical solution of the linear diffusion equation.

Keywords: Diffusion Equation, Partial Derivative Differential Equation, Restrictive Pade
Approximation.
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1. GIRIS
1.1. Pade Yaklasinm

Pade yaklagimlarinin ge¢cmisi ¢ok eskidir. Henri Eugune Pade tarafindan kullanilan
sekliyle giiniimiize ulagana kadar bir¢ok iinlii matematikei farkli problemlere ¢6ziim bulabilmek
amaciyla Pade yaklasimlarin1 kullandi. Euler C.G.J. Jacobi, Michell Rolle, George Ferdinand
Frobenius, Jean Darboux ve Daniel Bernoulli gibi matematikgiler tarafindan matematigin farkls

alanlarinda problemlere ¢6ziim bulabilmek i¢in kullanildi (Brezinski, 1991).

Guniimiizde yaygin bir sekilde Pade yaklasimlari, diferansiyel denklemlerin niimerik
¢oziimlerinde, kuvvet serilerinin analitik devam problemlerinde, ortogonal polinomlar iizerinde
calisiimasinda (Markov fonksiyonlari i¢in Pade denklemlerinde payda denkleminin ortagonal
oldugu bilinmektedir) kuvvet serilerine ait singiiler noktalarinin, sifir noktalarinin, koklerin ve
kutup noktalarinin bulunmasinda kullanilir. Pade yaklasimlarinin diger niimerik yaklasimlara
gore daha iyi sonu¢ vermesi, bu yaklasima olan ilgiyi arttirdi ve sadece matematikte degil,
fizikte, kimyada, astronomide ve daha farkli bilimsel alanlarda kullanilmasina yol agti. Tek
degiskenli Pade yaklasimlari iizerinde bir¢ok ¢alisma yapilmasina ragmen, ¢ok degiskenli Pade

yaklasimlari iizerine yapilan ¢aligma sayist oldukca sinirlidir.

Cok degiskenli Pade yaklagimlarinin tanimini ilk kez J.S.R Chistolm tarafindan, daha
genel tanimlama ise Levin tarafindan yapilmistir. Teorisini ve temel kavramlarini ilk kapsamli
makale ise 1983’te Annie Cuyt tarafindan yayinlanmistir (Guillaume ve Huard, 2000). Tek
degiskenlilerin birgok 6zelligi agikliga kavusturulmasina ragmen, ¢cok degiskenliler i¢in yapilan
calismalar c¢ok simirhidir. Fakat ¢ok degiskenli Pade yaklasimlarinin, tek degiskenli Pade
yaklagimlarimin birgok 6zelligini kapsadigini sOylemek miimkiindiir. Bir¢cok c¢aligmada tek
degiskenli Pade yaklasimlar1 ile diger niimerik yaklasimlar kiyaslandiginda, Pade
yaklagimlarinin daha iyi bir yaklasim oldugu bilinmektedir. Fakat ¢ok degiskenli Pade
yaklagimlari igin literatiirde, diger niimerik yaklasimlarla yapilan karsilastirmalar1 kapsayan

aragtirmalara rastlamak hemen hemen miimkiin degildir.
1.2. Bir Boyutlu Difiizyon Denklemi

Gozenekli ortamlarda akis ve/veya kiitle yayimi ve 1s1 yayimi yerbilimlerinde difiizyon
tipli problemleri olusturmaktadir. Difiizyon tipli kismi diferansiyel denklemlerin ¢oziimii
niimerik olarak sonlu farklar yontemi ile yapilir. Yer alti suyu akist ve kirlilik ve 1s1 yayim

modeli diflizyon denklemi olarak bilinen,



Uy +vU, = alU,

kismi diferansiyel denklemiyle ifade edilir. Bu denklemde x’e gore birinci ve ikinci tiirev
konumu, t’ye gore tlirev ise zamami temsil etmektedir. Denklemde ifadesi bulunan fiziksel

biiyiikliikler degistirilerek yerbilimlerinde bir problem modellenebilir.

Kirletici maddenin yiiksek konsantrasyonlu bir bolgeden diisiik konsantrasyonlu bir
bolgeye taginmasi molekiiler difiizyon (a # 0) yardim ile gergeklesir. Difiizyon yaymim
bolgeler arasinda konsantrasyon farki sifir oluncaya kadar devam eder. Difiizyonla yaymim
mekanizmanin da kirletici maddenin iginde bulundugu yer alti suyu hareket etmese de kirletici

maddeyi olusturan molekiillerin hareketi difiizyonla yaymimini gergeklestirir (Fetter, 1992).
1.3. Kismi Diferansiyel Denklemler

En az iki bagimsiz ve en az bir bagimh degisken ile bagimli degiskeninin bagimsiz
degiskenlere gore birinci veya daha fazla mertebeden kismi tiirevlerini igeren denklemlere kismi

diferansiyel denklemler denir. Kismi diferansiyel denklemlerin genel formu,
F(X,Y,2,Zx) Zy, Zyxr Zoys Zyys o) = 0

seklindedir.

1.4. Kismi Tiirevli Diferansiyel Denklemlerin Genel Bir Siniflandiriimasi

1.4.1. Lineer olmasina gore

Bir kismi tiirevli denklemdeki bagimli degisken (veya degiskenler) ve bunlarn
denklemdeki biitiin kismi tiirevleri birinci dereceden ve denklemi, bagimli degisken ile onun
tirevleri parantezinde yazdigimizda katsayilar yalmzca bagimsiz degiskenlerin fonksiyonu

oluyorsa bu denkleme lineerdir denir.

Iki bagimsiz bir bagimli degiskene sahip birinci ve ikinci mertebeden lineer kismi

tiirevli denklemlerin genel formlari sirastyla agagidaki gibidir.
P(x,y)zx + Q(x,¥)zy, + R(x,y)z = S(x,y)
A%, Y)2xx + B(X, y)Zxy + R(X,¥)2yy + D(x,¥)2, + E(x,y)z, + F(x,y)z = G(x,y)
1.4.2. Yan lineer (Kuasi-Lineer) olmasina gore

Bir kismi tiirevli denklem, denklemde bulunan en yiiksek basamaktan kismi tiirevlere

gore lineer ise bu denklem yari lineer adin1 alir.



Iki bagimsiz, bir bagimli degiskene sahip birinci ve ikinci mertebeden yari lineer

denklemlerin genel sekilleri sirasiyla asagidaki gibidir.
P(x,y,2)zy + Q(x,y,2)z, = S(x,y,2)
A(x, Y, Z, Zy, zy)zxx =+ B(x, y,Z, zx,zy)zxy + R(x, Y, Z, zx,zy)zyy + D(x, y,Z, Zx,Zy) =0
1.4.3. Hemen- hemen lineer olmasina gore

Bir kismi tiirevli denklem yari-lineer ve denklemde goriilen en yiiksek basamaktan
tiirevlerin katsayilar yalnizca bagimsiz degiskenlerin fonksiyonlar1 ise bu denkleme hemen-

hemen lineer denklem denir.

Iki bagimsiz ve bir bagimli degiskene sahip ikinci basamaktan hemen-hemen lineer bir

denklemin genel sekli,
A, Y)Zxx + B(X,Y) 20y + C(0,Y) 2y, + H(%, 9,2, 24, 2y) = 0
formundadir.
1.5. ikinci Basamaktan Hemen-Hemen Lineer Denklemler I¢in Bir Simflandirma
Genel formu;
A, Y)zZxx + B(X,¥)zxy + C(X,¥)2yy, + H(x,y,z, zx,zy) =0
seklindedir. Burada A,B,C € C2[D] dir.
Diskriminant fonksiyonu,
A, y) = [BGo ) = 440 y)C(x,Y)
Seklinde tanimlanmak iizere denkleme
a) A(x,y) > 0 esitsizliginin saglandig1 noktalarda hiperbolik
b) A(x,y) = 0 esitsizliginin saglandigi noktalarda parabolik
€) A(x,y) < 0 esitsizliginin saglandig1 noktalarda eliptik

tiptendir denir.



1.5.1. Hiperbolik tip

En bilinen 6rnegi dalga denklemidir. ¢ pozitif bir reel sabit ve t zaman degiskeni olmak

lizere;

0%u 5 0%u
o =0
dt2 O0x?

1-boyutlu dalga denklemidir.

Bir boyutlu dalga denkleminin ¢6ziimil [ uzunlugunda titresim halinde olan bir telden t
zaman sonra bir ucundan x kadar uzakliktaki enine yer degisimini verir. Bu tip denklemlerde

baslangi¢ ve sinir kosullari bilinir.

Bu tip denklemler elektromanyetik, hidrodinamik, ses yayilmasi, elastisite ve kuantum

teorisi gibi konularda ¢ok kullanilmaktadir.

Hiperbolik denklemler genellikle titresim problemlerinde veya yogunluk, basing ve

hizdaki siireksizlik durumlari ile ilgili problemlerde kullanilir.
v" Hiperbolik tip denklem;

0%u 5 0%u
e =0
dt2 O0x?

denkleminde A= —c? , B=0ve C=1 dir.
A=B? —4AC = 0 — 4(—c?)1 = 4c? > 0 oldugu icin hiperbolik tip denklem denir.
1.5.2. Eliptik tip

Eliptik kismi diferansiyel denklemler genellikle denge veya kararli hal problemleri ve

bunlarin ¢oziimiiyle karsimiza ¢ikar.

En iyi bilinen eliptik denklemler Laplace ve Poisson denklemleridir ve sirasiyla,

92 02

a_xf + _ay(f = V2¢ = 0; Laplace denklemi
62¢+62¢_ (x.y) = V2 = f; Poisson denklemi
Ox2 ayz = f(x,y) = V°¢ = f; Poisson denklemi

seklinde gosterilir.



Laplace denklemi potansiyel teorinin temel denklemlerinden birisi oldugundan fiziksel
uygulamalar1 coktur. Ornegin yiizeyleri izole edilmis bir ortamda zamandan bagimsiz bir 1s1
dagilim varsa (ki buna karali 1s1 denir) herhangi bir (x,y) noktasindaki 1s1 miktarini veren u(x,y)

fonksiyonu Laplace denklemini saglar.

Ayrica 1s1 kaynagi olmayan bir bdlgede karali sicaklik dagilimi, iletkenlerle cevrili
yiikstiz bir bolgede elektrostatik potansiyel, kaynak veya kuyu olmayan bir akiskanda hiz

dagilimi vs. problemlerinde kargimiza gikar.

Dis kuvvetlerin etkisi altindaki bir telin zamana bagl olarak denge konumuna gelmesi

Poisson denklemi ile ifade edilir.

v" Eliptik tip denklem;

denkleminde A=1,B=0ve C=1 dir.
A=B? —4AC = 0 — 4.1.1 = —4 < 0 oldugu igin eliptik tip denklem denir.
1.5.3. Parabolik tip

Zamana bagli 1s1 veya kiitle yayilmasi problemlerinde karsilagilir. En basit parabolik

denklem

ou 2°%u
ok
ot 0x2

seklindedir.

Bu denklem 1s1 transferi teorisinden elde edilmis olup, ¢Oziimii termal olarak izole
edilmis bir ¢ubugun bir ucundan x kadar uzakliktaki noktasinda t zamanindaki veya t
zamanindan sonraki sicakliginin belirlenmesine imkan saglamaktadir. Bu tip denklemlerde

baslangi¢ ve siir kosullari bilinmektedir.
v' Parabolik tip denklem;

ou 2%u

at " ox?
denkleminde A=k , B=0ve C=0 dir.

A=B? —4AC = 0 — 4.k.0 = 0 = 0 oldugu i¢in parabolik tip denklem denir.



1.6. Sonlu Farklar Denklemi

Ele alinan kismi tiirevli denklemde birinci ve ikinci mertebeden tiirevler yerine sayisal
karsiliklar1 olan sonlu fark formiillerinin konulmasi ile elde edilen denkleme, ilgili kismi tiirevli
denkleme karsilik gelen sonlu fark denklemi denir.

Ornegin;

Birinci mertebeden tiirev igin sirastyla ileri yonli sonlu farklar denklemi, geri yonlii

sonlu farklar denklemi ve merkezi sonlu farklar denklemi;

,()_u(x+h)—u(x) ,()_u(x)—u(x—h) ,()_u(x+h)—u(x—h)
u'(x) = A , u'(x) = 3 , u(x)= h
seklinde yazilabilir.

Yakinsakhk

U = U(x,t) bir kismi tiirevli diferansiyel denklemin tam ¢dziimii (analitik ¢6ziimi) u
da bu kismu diferansiyel denklem i¢in fark denklemlerinden elde edilen yaklagik ¢oziim olsun.
Bu durumda eger sabit bir noktada ya da sabit bir t zaman siras1 boyunca dx, 5t — 0 iken

u — U oluyorsa sonlu fark denklemi yakinsaktir denir.
Kararhhk

Parabolik tiirden kismi tiirevli diferansiyel denklemlerin sonlu fark metodu ile sayisal
¢Oziimiinde, hesaplamanin her agsamasinda hatalar ortaya c¢ikar. Eger ortaya ¢ikan bu hatalar

hesaplama ilerledik¢e sinirsiz olarak biiylimiiyorsa bu uygulama kararlidir denir.

1.7. Tiirevlere Sonlu Fark Yaklasim

Bir u fonksiyonu ve onun tiirevleri tek degerli, sonlu ve x bagimsiz degiskeninin

stirekli bir fonksiyonu olsun.

Taylor teoremine gore;

u(x+h) =ulx) + hu'(x) + };—Tu”(x) + Z—?u”’(x) + (1.1)

ulx —h) =ulx) — hu'(x) + ’;—Tu”(x) — Z—gu”’(x) + - (1.2)

(1.1) denkleminden ikinci ve daha yiiksek mertebeden tiirevler ihmal edilirse,



u(x + h) —u(x)
h

x+h)=ulx)+hu'(x)>u'(x) = +0(h)

fleri yonlii fark yaklagimi elde edilir.

(1.2) denkleminden ikinci ve daha yiiksek mertebeden tiirevler ihmal edilirse,

u(x +h) —u(x)

(x+h)=ulx)+hu'(x)>u'(x) = o

+ 0(h)

geri yonlii fark yaklagimi elde edilir.

(1.1) —(1.2) denkleminden tiglincii ve daha yiiksek mertebeden tiirevler ihmal edilirse ve

bu denklemler toplanirsa,
(x + h) + u(x — h) = 2u(x) + h?u" (x) + 0(h*)

(x+h) —2u(x) +u(x—h)

u//(x) — 3

yazilabilir.
(1.1) denkleminden (1.2) denklemi ¢ikarilirsa;
(x + h) —u(x — h) = 2hu’'(x) + 0(h®)

_(x+h)—ulx—h)
B 2h

u'(x) + 0(h®)

elde edilir. Bu ifadeye merkezi fark yaklagimi adi verilir. Merkezi fark yaklagimi geometrik
olarak P noktasindaki tegetin egimine AB kirisinin egimi yardimryla yaklagim ifade eder. Diger
fark yaklagimlarina gore merkezi fark yaklagimiin daha iyi bir sonug verecegi sekilden de

goriilmektedir.
1.8. Crank-Nicolson Metodu

Acik ve kapali metotlar bir 6 parametresini iceren daha genel bir formiil altinda

birlestirilebilir. Bu formiil;

0 1-6 1
— (Vip1; — 201 + Vic1j) + =5 (Vi jo1 — 2051 + Vicgjo1) =~ (Vi; — Vi jo1)
h h k

seklindedir.



Burada #= 0 alindiginda Crank Nicolson metodunun ag¢ik ¢6ziimiinii , = 1 alindiginda
ise Crank Nicolson kapali ¢dziimiinii verir. Ozel bir durum olarak ise 6 =% oldugunda ise

sayisal yontem bu yontemi kesfeden John Crank ve Phyllis Nicolson adiyla anilmaktadir.

1.8.1. Crank Nicolson acik ¢6ziim metodu

ou _ o' s
at 9% (1.3)
Bir boyutlu parabolik denklemine ilgili fark yaklagimlarini uygularsak,
,j+1 L] — i+1,) L] i1-1,) (14)

k h?

esitligini elde ederiz. Burada, x =1ih(i=0,1,2,..) ve t=jk(k=0,12,..) dir. (1.4)

denkleminin diizenlenmesi sonucunda;

Ujje1 = Ujj + I(Ujgq — 2055 + Uj_q )

esitligi bulunur. r = % olmak iizere bu formiil, j. zaman sirasindaki bilinen sicaklik degerlerine
gore (i,j+1). diigiim noktasindaki bilinmeyenler u; ;.4 sicaklik degerini verir. Bu yiizden birinci
zaman sirasindaki eksene ait bilinmeyen u degerleri, bilinen sinir degerlerine ve t=0 anindaki
baslangi¢c degerlerine gore hesaplanabilir. Benzer sekilde ikinci zaman sirasindaki degerlere
gore hesaplanir ve bu sekilde devam edilir. Yani bir bilinmeyen diigiim noktas1 degerlerine gore

ifade eden formiile agik (explicit) formiil denir.

Kullanim1 kolay ve programlamasi basit olan bu metot her zaman dogru ¢6ziim vermez.
. .. - v e ..k 1
Yapilacak bir kararlilik analizi, sonuglarin dogru ve ¢éziimiin kararl olmasi igin iz < 5 sartiin

saglanmasi1 gerekliligini ortaya koyar. Bu kosul ise zaman ve konum adimlarinin keyfi

almamayacagini gosterir.
1.8.2. Crank Nicolson kapali ¢o6ziim metodu

Klasik agik metot, hesaplama agisindan ¢ok basittir. Ancak kararlilik goz Oniine
alindiginda 6t = k zaman adimimin simirlilig1 s6z konusudur. Hesaplamalarin biiyiik bir zaman
periyodu i¢in yapilmasi gerektiginden zaman adimlarinin sayist ve buna bagl olarak da islem
sayist artacaktir. Bu olumsuzlugu ortadan kaldirmak i¢in 6t = k zaman adiminin sinirh
olmadig1 bazi sonlu fark yaklasimlar: gelistirilmistir. Bu yaklasimlardan biri de Crank-Nicolson

kapali ¢oziim yaklagimlaridir. Crank ve Nicolson r degerinin biitiin degerleri i¢in gegerli olan



(yakinsak ve kararli ) ve daha az hesaplama gerektiren bir metot gelistirdiler. Bu metodun esasi,
2
denklemde goriilen % yerine onun (j+1). ve j.zaman sirasindaki sonlu fark operatorii yazilarak

ortalamas1 alinmasidir. Bu takdirde,

ou 0%u
ot 9%x

denklemine,

Wijer —Uij  T(Uipgjen = 2 jeg T Ujimg g L My~ 2Uj + Ujq
k 2

2 h? h?
Seklinde bir yaklagim elde edilir. r = % olmak {izere bu denklemi diizenlersek,

—TU_q 1+ 2+ 20U 51 — Ty 41 = TU-q; + (2 + 200 + TU4q )

esitligi elde edilir. Dikkat edilire bu denklemin sol tarafi u degerinin {i¢ tane bilinmeyen

degerini, sag tarafi ise li¢ tane bilinen degeri igerir.

I A .
(i,j+1)
j+1 + ¢ : Bilinmeyen Degerler
(i,j) @ : Bilinen Degerler
J * *
J—1
i—1 i i+1 X

Crank Nicolson Izgara Gosterimi

Eger her bir zaman sirasinda n tane diiglim noktasi varsa o zaman j =0 ve i =
1,2, 3, ...,nicin buldugumuz denklemi bilinen baslangi¢ ve sinir kosullarina bagl olarak birinci
zaman sirasindaki n tane bilinmeyen i¢in n tane denklem verecektir. Benzer sekilde j=1, birinci
zaman adiminda hesaplanmis degerlere bagli olarak ikinci zaman sirasinda bilinmeyen n tane u
degerini ifade eder. Bu sekilde bir bilinmeyen diigiim noktas: degerinin hesaplanmasi i¢in bir
denklem sisteminin ¢6ziimiine ihtiya¢ duyuluyorsa o zaman bu metoda kapali ¢6ziim metodu

denir. Olusan bu denklem sistemi Gauss yok etme metodu ile ¢oziilebilir.
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2. DIFUZYON DENKLEMININ SINIRLAYICI PADE YAKLASIMI iLE NUMERIK
cOzZUMU

Bu boliimde, lineer difiizyon denkleminin smirlayict Pade yaklagimi ile ¢oziimii
incelenecektir. Bu metodun en biiyiilk avantaji bazi r degerlerinde tam ¢oziimiin elde
edilmesidir. Bu metodun uygulanmasinda yiiksek dogruluk, hizli sonuca yaklagsma ve iyi
sonuclarin elde edildigi goriilmektedir. Hesaplama sonucunda, elde edilen degerler diger

metotlarla elde edilen degerler ile karsilagtirilmistir.

2.1. Giris

Smirlayic1 Pade yaklagimi ile gesitli ¢alismalar yapilmistir. Smirlayici Pade yaklagimi
metodunu Ismail ve Elbarbary, parabolik kismi diferansiyel denklemler icin (Ismail ve
Elbarbary, 1998, 1999; Ismail vd. 2000) ; Ismail ve Younes hiperbolik kismi diferansiyel
denklemler igin (Ismail ve Hassan 2000 a, 2000 b; Ismail ve Elbarbary 2001) ;ismail ve
Elbietar schrodinger denklemi igin (Ismail ve Elbietar, 2001, 2002) uygulamislardir.

Simdi asagidaki bir boyutlu diflizyon denklemini ele alalim.
Up = Uy, + (1) 0<x<L (2.1)
U = (D(Wuy)x 0<x<L (2.2)
baslangi¢ sart1 olarak,
u(x,0) = f(x) 0<x<L (2.3)

sinir sart1 olarak,

u(0,t) = go(x) t>0 (2.4)
u(L,t) = g;(x) t>0 (2.5)
kullanilacaktir.

Buradaki f(u) fonksiyonlar lineer kaynak fonksiyonlaridir. D (u) fonksiyonu, difiizyon
terimidir. Bu difiizyon terimi, difiizyon isleminde 6nemli bir role sahiptir (Giiraslan ve Sar1
2011, Meral ve Tezer 2009, 2011). D(u) difiizyon terimi birkag¢ farkli formda ortaya ¢ikabilir.
Iyi bilinen (well known) difiizyon islemlerinden bazilar1 hizli ve bazilar1 yavas difiizyon
islemleridir. D(u) = u™ seklinde bir difiizyon terimi i¢in n < 0 oldugunda hizli difiizyon,

n > 0 oldugunda yavas difiizyon islemi olur.
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2.2. Metot
2.2.1. Siirlayic1 pade yaklasimi (RPA)

f(x) fonksiyonu icin sinirlayici Pade yaklasimi rasyonel fonksiyon tipinde asagidaki

sekilde yazilabilir (Hasan vd.1995 a, 1995 b).

M . .
Yi=o aixl+ztil=1 SixM+l

1+2?’:1 bixi

RPA[M + a/N]j)(x) = (2.6)

Burada a pozitif tamsayisi, N niimeratériinden daha biiyiik dereceli olamaz. Yani
a = 0(1)N dir.

f(x) = RPA[M + a /Nl (x) = 0(xM+N*1) (2.7)

f (x) fonksiyonu bir Maclauren Serisine sahip olsun.

flx) =Y2,cixt (2.8)

(2.6) ve (2.8) denklemlerinden (Ismail ve Elbarbary 1996) ;

(E2ocix)(1+ X bixt) — TMgaixt — TE, Ex M = 0(xM¥N*) (2.9)

elde edilir. (2.9) esitliginin sol tarafi x’in ilk (M + N + 1). kuvveti ihmal edilirse, (M + N + 1)

denklemden olusan bir sistem elde edilir.
a, =cp+ i1 C_ib;, v =0(1)M (i>M ise b;=0)
Cr+n—s + Dieq Cuan—i-sbi = En—s (>0 ise ¢=0) (2.10)

Buradan, €;’nin bir fonksiyonu olarak a; ve b; , i = 0(1)a katsayilar1 hesaplanabilir.

Dolayisiyla €; parametresi de (Hassan vd. 2013) hesaplanabilir.
f(x;) = RPA[M + a/N]sp(x) , i=11Da (2.11)

Siirlayict Pade yaklagimina birkag¢ drnek verelim. Burada; o=1.

apt+aix
1+b1x

* RPA[1/1]f@x)(x) =

Burada; ag=cp
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b, = Slc_o a
* RPA[Z/1]p0 () = %};‘:2"2
Burada; aq = ¢
a =c+ 00(5161— c2)
a, =€,
b, = 81; G
® RPA[3/1]f)(x) = ao+a1x11abz;2+a3x3
Burada; a, = ¢,
a; =c¢+ @
a; =c; + @
as; =€,
by = 810_2 G

NOT: Smirlayict Pade Yaklagiminda €& =0,i = 1(1)a igin klasik Pade yaklagim
elde edilir.

Mo
Yi—o Bixt

143N yixt”

PA[M/N]f(x)(X) = (2.12)

Siirlayic1 Pade yaklagimi i¢in yerel kesme hatasini veren teorem asagidaki gibidir.

Teorem 2.1. Eger f(x) fonksiyonu (n+ 1). mertebeden tiireve sahipse her x
icin {Xg, Xy, ..., X, X} nokta kiimesini i¢ine alan en kiiciik / aralifinda en az bir n sayis1 vardir.

Buna gore;

Mo
Ryno(x) = f(x) = RPAIM + a/N] sy = (;Tll(;) (Runom)@V (2.13)
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Burada []g4+1(x) =x(x —x1)(x —x3) ...(x —x4) V& Rypne » sinirlayict pade

yaklagim igin yerel kesme hatasidir (Ismail ve Elbarbary, 1996).
2.2.2. Ustel matris i¢in simirlayie1 pade yaklagim

exp(rA) iistel matrisi yakinsak kuvvet serileri seklinde tanimlanabilir.
242 a3 w ™ n 40
exp(rA) =I+rA+;A +;A + - =Zn=OFA LAY =1 (2.14)

Burada A, (N — 1)X(N — 1) boyutlu bir matristir.

Tek fonksiyon igin sinirlayici pade yaklasimi metodunda (2.6) denklemindeki €; terimi,

tistel matrisin sinirlayici pade yaklasimindaki €; kare matrisine indirgenebilir. Burada

&g & 0
82 82 82 see

| € € |
Ei — 3 3
| 7 7 |
\ i EN-2 EN-2 SN—Z/
0 EN-1 EN-17 (N-D)x(N-1)
dir.
Ornegin;
1 -1 1

RPA{1/1meUA(r)::(1+-(81—-5A)r) (14—(81+-5A)r) (2.15)

2.2.3. Coziim metodunun uygulanmasi

Bu kisimda, f(u) = —u i¢in difiizyon denklemini inceleyecegiz (Wazwaz, 2007).
Boylece (2.1) denklemi,

Up = Uyy — U (2.16)
sekline doniisiir.
Baslangig sart1 olarak;
u(x,0) = sinx 0<x<1 (2.17)
sinir sartt olarak da;

u(0,t) = 0 t>0
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u(1,t) =0 t>0 (2.18)
kullanilacaktir. Bu probleminin tam ¢6ziimii;

U(x,t) = e ?sinx (2.19)
seklindedir (Wazwaz, 2007).

(2.16) denklemini baslangi¢ ve sinir kosullartyla birlikte ele alalim. Diigiim noktalar x
ve t dogrultusunda h ve k olan a¢ik dikdortgensel bir bolge iizerinde ¢alisacagiz. (x,t) diigiim

noktasi (ih,jk) ile ifade edilir ve U(ih, jk) = U i = 0(1)N gosterimi kullanilir ve j negatif

L

olmayan bir tam sayidir.

(2.6) denkleminin diigiim noktasindaki ¢oztiimii;
Uj+1 = €xp (k(sz - 1)) Ui (2.20)
seklindedir (Hassan vd., 2000).

(ih, jk) diigiim noktasinda, D,.? kismi tiirev gosterimi alisilmus formda ifade edilirse;
1
sz = E(Ui+1,j - 2Ui,j + Ui—l,j) (221)

yazilabilir.
Merkezi sonlu farklar formiiliinden;
U=Uj;1 —2U0; +U;_4 (2.22)
seklinde yazilabilir.

(2.21) ve (2.22) yaklagimlar1 (2.20) denkleminde yerine yazildiginda asagidaki esitlik
elde edilir.

U = exp(rA) U/, r == (2.23)

h2

Burada; U/ = (Uy;, Uy, ...,Uy-1;)" , Nt =1 ve
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__2+2h2 1_h2 0
1—h% —2+2h% 1-h*
1—h2 —2+2h%?1—h?

A= (2.24)

: 1—h%2-2+2h% 1—h?
0 0 0 1-h%? —2+2h%y_1)n-1

A matrisinin nasil elde edildigini gosterelim.

(2.20) denkleminde (2.21) ve (2.22) denklemlerini yazalim.

1
Uijs1 = exp(k(ﬁ (Uiprj — 2U;; + Uiy j) — Uprj — 2U; ; + Uiy §))

k
= exp(ﬁ (1= h®)Upypj + (=24 201U j + (1 = K2 U;_4 )))

Burada; r = X . Bu ifadeleri matrise yerlestirelim ve baglangi¢ sartindan dolay: ilk

hZ
satirda birinci siitundaki terim, son satirda son siitundaki terim ihmal edilip, (2.24) deki gibi

kayan matris elde edilir.

(2.23) denklemindeki iistel matris form yaklagimi kullanildiginda;

RPA[1/Uespora () = (1 4+ (E=24) 7). (14 (€ +24)7) (2.25)

olur. (2.16) denkleminin diigiim noktalarindaki yaklasik ¢oziimii;

1 1
<€i —5 1- hz)) rUiqj1 + [(€i— A= R*)Dr +1]U; 41 + (€ — 5(1 — h®)rUssq 41

1 1
_ (si +la- hZ)) Uiy + [(€ — (1 = h2)r + 1)U, + (ei +ia- hz)) rUiy; (2.26)
esitligi ile elde edilmistir.

Denklemin diigiim noktasindaki tam ¢éziimii ~ U; j.1 = exp (k(sz — 1)) U dir.

Bu tam ¢6ziimde hem merkezi sonlu farklar formiiliinii hem de tiirevin merkezi sonlu farklar

formiiliinii yazarsak;

U/*t = exp(rA)U7 r=h£

2

bulunur.
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vt = (1+ (& —34) r)_l (1+ (& +547)v7

1 1
<€i —3 (1- hz)) rUiqje1 + [(€i = A= R*)Dr +1U; j41 + (€ — 5(1 — h*)rUssq 41

1 1
= <€L + E(l - h2)> rUi—l,j + [(Sl - (1 - hz))T' + 1]Ul,] + <€l + 5(1 - h2)>rUi+1,j

oldugunu gosterelim.

—2+2h%? 1-—h? 0 & & 0 1 0 0
A= 1-— hz —2 4+ th 1-— h2 , €i = 82 82 82 , I = 0 1 0
0 1-h? —2+2h? 0 & & 0 0 1

j+1 T i — T
UM = Ui-1,j+1 Ui j+1, Uivrj+1)” Ve U) = (Uj—q,,U; j, Uigq 5)° Olsun.

i,jr

=7k
41— , p 1 j
Ut = (1+(&=54)r) (1+E+50r)U

esitligindeki parantez i¢indeki ifadeleri bulalim.

(1 + (si —%A)r) =

1 0 0] /[€&1 €& 0] q[-2+42h?2 1—h? 0 '
0 1 0|+([E2 & & 3 1-h? —2+42h? 1-h? r
00 1 0 & & 0 1-h2  -2+2n2l/
- 1 1
1+<81—§(—2+2h2))r (81—5(1—h2))r 0

= (sz —%(1—}12))1«

0
Ve
1
(1+(€i+EA)r)=
1 0 0
0 1 0|+
0 0 1

1 2
1+(€2—§(—2+2h ))r

(€3 —%(1 —hz))r

& &€ 0 1[-2+ 2h?
€ & &+ > 1—h?
0 & & 0

<€2 —%(1 - h2)>r

1
1+ (83 —5(—2 + ZhZ))r

1 —h? 0
—2+2h?* 1-h? r
1-h? =2+ 2h?
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1+ (81 +%(—2 + 2h2)>r (81 +%(1 - h2)>r 0

= <€2+%(1—h2))r 1+(€2+%(—2+2h2))r (82+%(1—h2)>r

0 (83 + % (1- hz)) r 1+ <s3 + % (-2 + 2h2)) r|

. ; 1 -1 1 P ..
Seklinde bulunur. U/*1 = (I + (Si — EA) r) (I + (€ + EA)r) U’ esitliginin soldan

her iki tarafim (1 + (Si - %A) r) ile garpalim;

- 1 1
1+(81—E(—2+2h2))r (81—5(1—h2)>r 0
# . 4 Ui—1,j+1
(82 -5 (1- hZ))r 1+ (82 & (-2 + 2h2)> T (82 — 5(1 - hz)) r || Uij+1
1 1 Uit1,j+1
0 (83—5(1—h2)>r 1+(€3—§(—2+2h2)>r
i 1 1
1+(81+—(—2+2h2))r (€1+—(1—h2)>r 0
12 21 1 Vi1
= <€2+§(1—h2))r 1+ €2+§(—2+2h2)>r (€2+§(1—h2))r | Uij
1 1 Ui+1,j
0 (€3+§(1—h2))r 1+(€3+E(—2+2h2)>r

seklinde yazilabilir. Buradan; ikinci satirdaki elemanlar garpilirsa;

1 1
<(82 -3 (1- hz)) rUi—qj+1 +[(E2— (1 — h*)r + 1U;je1 + ((E2 — 5 1- hz))rUi+1,j+1

1 2 2 1 2
= [ (&, +§(1 —h?) JrUi—y; + [((E — A = D))r + 1]U; ; + | (€2 +§(1 — h?) |1V
esitligi bulunur. Genel halini yazarsak;

1 1
(81' - 5(1 - h2)> rUiqje1 +[(€i = A= h*)Dr +1U; 41 + (€ — 5(1 — h®)1Uisq 541

1 2 2 1 2
= EL+E(1—h) TUL_1J+[(SL—(1—h))T+1]U1J+ €l+§(1_h) rUi+1,j

bulunur.
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€; degerleri ilk adimdan itibaren hesaplanmaya baslanir. Ilk segim olarak &; = (€]

iicgensel formdadir. Buna gore;

€iic1 =€ = &1 = &

ve €; =0 dir. & ‘in ikinci

secimi kdsegen matris formundadir. Dolayisiyla €; = [Si_j], €i=2¢& veg=0dr

2.3. Niimerik Sonuclar

Smirlayici pade yaklasiminin dogrulugunu gostermek igin farkli t zamanlarinda farkl

metotlardan elde edilen sonuglar tabloda karsilagtirilmistir. Tablodaki veriler tam degerlere

kompakt sonlu farklar metoduna ait degerlere sinirlayici Taylor yaklasimi degerlerine ve

siirlayict Pade yaklasimi degerlerine aittir. Ayrica tabloda sonuglardan elde edilen mutlak

hatalar da belirtilmistir.

Cizelge 2.1. Sinirlayict Pade Yaklasimi i¢in farkli t=0.01 zamaninda mutlak hatalar.

T X Tam RPA RTA Mutlak CFD6 Mutlak Hata
(Giiraslan, 2010)

Sonug hata

1/6 | 0.162611 | 0.162611 | 0.162611 | 1.02E-10

2/6 | 0.320715 | 0.320715 | 0.320715 | 1.01E-10

3/6 | 0.469932 | 0.469932 | 0.469932 | 1.01E-10 | 0.469932 | 1.02E-11

0.01

4/6 | 0.606125 | 0.606125 | 0.606125 | 1.06E-10

5/6 | 0.725520 | 0.725520 | 0.725520 | 1.12E-10

1 0.824808 | 0.824808 | 0.824808 | 1.15E10
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Cizelge 2.2. Sinirlayici Pade Yaklagimu i¢in farkli t=0.1 zamaninda mutlak hatalar.

T X Tam RPA RTA Mutlak CFD6 Mutlak Hata
Sonug¢ Hata (Giiraslan, 2010)
1/6 0.135824 | 0.135824 | 0.135824 | 1.26E-9
2/6 0.267884 | 0.267884 | 0.267884 | 1.16E-9
01 3/6 0.392520 | 0.392520 | 0.392520 | 2.01E-11 | 0.392520 | 2.04E-11
4/6 0.506278 | 0.506278 | 0.506278 | 1.25E-10
5/6 0.606005 | 0.606005 | 0.606005 | 1.21E-9
1 0.688938 | 0.688938 | 0.688938 | 1.66E-9

Cizelge 2.3. Sinirlayict Pade Yaklasimi i¢in farkli t=1 zamaninda mutlak hatalar.

T X Tam RPA RTA Mutlak CFD6 Mutlak Hata
Sonug Hata (Giiraslan, 2010)
1/6 | 0.022451 0.022451 | 0.022451 2.54E-10
2/6 | 0.044280 0.044280 | 0.044280 2.12E-10
1.00 3/6 | 0.064883 0.064883 | 0.064883 4.25E-12 0.064883 4.91E-12
4/6 | 0.083687 0.083687 | 0.083687 1.92E-11
5/6 | 0.100172 0.100172 | 0.100172 2.04E-10
1 0.113880 0.113880 | 0.113880 2.52E-10

Uygulanan niimerik 6rnek sonucunda bir boyutlu difiizyon denkleminin sinirlayici Pade

yaklasimi (RPA) metoduyla ¢6ziim sonuglari tabloya aktarilmigtir. Béylece Tablo 1, Tablo 2,

Tablo 3 olusturulmustur. Tablo 1°de t=0.01, x=0.5 i¢in elde edilen sonuglar Kompakt sonu

farklar metodu ve smirlayici Taylor yaklagimi (RTA) metodu ile karsilagtirilmstir. Tablo 2 ve

Tablo 3’te ise t=0,1 ve t=1, x=0.5 i¢in karsilagtirilmustir.

Tim bu sonuclara bakildiginda uygulanan metot, diger metotlara gore daha gecerli

sonuglar vermektedir. Bu metot ile ¢6ziim islemi kolay oldugundan uygulama daha verimli

olmaktadir. Bu metot, diger denklemlerin ¢oztiimlerinde de uygulanabilir.
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3. SINGULER PERTURBE EDILMIS HIPERBOLIK DENKLEMIN SINIRLAYICI
PADE YAKLASIMI iLE COZUMU

Bu boliimde, singiiler pertiirbe edilmis hiperbolik denklemin sinirlayici Pade yaklagimi
ile ¢c6ziimii incelenecektir. Denkleme bu ¢6ziim metodu uygulanacak, elde edilen sonuglar tablo

halinde verilecektir. Ayrica denklemin kararlilik analizinden bahsedilecektir.
3.1. Giris

Singiiler pertiirbe edilmis birinci mertebeden hiperbolik kismi diferansiyel denklemini

ele alalim.
66—”+aa—”=f(xt) x>0,t=>0 (3.1)
at ox P T '

Burada; & > 0, a reel pozitif sabit ve f(x,t), verilen baslangic ve smir kosullarini

saglayan siirekli fonksiyondur.
Basglangi¢ kosulu olarak;
u(x,0) = ug(x), 0<x<1
ve simir kosulu olarak;
u(0,t) = go(t), u(l,t)=g4.(), t=0 (3.2)
kullanilacaktir.

U, icin asagidaki merkezi sonlu farklar yaklagimi kullanilir.
1
u(ih, t) = oh [(u(@i+ Dht) — (u(i—Dht)]; i=1(1)N —1.

(3.1) denkleminde u(ih,t)’den u(x,t)’ye yar1 ayristirilmig bir yaklagim yapilirsa

dU(iht) _ a

dt _zsh[U((i_l)h't)_U((i+Dh,t)]"‘%f(xi); 1<i<N-1,t=>0

(3.3)
elde edilir.
Burada;
U(ih, 0) = uy(ih), U(0,t) = go(t) ve UINh,t) = g,(t), t=0

dir ve (3.3) denklemini matris formunda yazarsak;
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‘;—% = AU(t) + F(t) (3.4)

yazilir. Burada;

U(t) = (UL (6), Uy (£), .. Uy_1()"

1
E(t) = 3 (L), f2(8), ooy fy—1 ()T

Ui (t) = U(th t)! fl(t) = f(lh! t)

ve

=~
I
1
e —

1 0dy-pxw-1
seklindedir.
(3.4) diferansiyel denklem sisteminin ¢6ziimii (Hassan, 2005; Ibrahim, vd., 1987);
U(t) = exp(tA) U(t) + [-] + exp(tA)]A"'F. (3.5)
ya da es olarak
Ut +At) = —A7'F + exp(AtA) [U(t) + AIF | (3.6)
seklindedir.

[M/N], PA[M/N] pade yaklagimini kullanarak exp(AtA) yaklasimini yaparsak (3.6)

denklemini her j adimi i¢in
Ut = —AT'F + PA,an| UV +AT'F ], At =k (3.7
seklinde yazilabilir.

Bir sonraki boliimde hiperbolik denklemler icin singiiler pertiirbe edilmis baslangic
sinir-deger probleminin ¢6ziimii i¢in kapali metot tanimlanacak ve yontemin etkinligi diger
metotlarla karsilastirilacaktir.(Hassan vd., 1995; 1998 ) makalelerinde oldugu gibi tistel matris

yaklagimi i¢in sinirlayici Pade yaklagimi kullamlacaktir.
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3.2. Metot
3.2.1. Coziim metodu

Ustel exp(kA) igin [0/1] ve [1/1] sinirlayic1 Pade yaklagimlarimi (Hassan vd., 1999) ‘da

asagidaki formda verilmistir.
i. RPA[0/1]expkay = I + (E = K)A)™! (3.8)

(3.6) denklemindeki exp (kA) matrisinini (3.8) denkleminde yazarsak;

Uttt = —AT'F+ (I +(E-KA) T U +A'F), Ac=k (3.9)
ya da

I+ (E-RAY* =V - (€E-kF (3.10)
elde edilir.

Boylece;

((gz_sl;)a) Uj—qj+1 T Ui je1 — (%) Uipyje1 = Wij — (%) fx, t) (3.11)

formu elde edilir.

Benzer sekilde exp(kA) i¢in Hassan ve arkadaslar1 sinirlayici Pade yaklagimindaki
[1/1] asagidaki sekildedir.

ii. RPA[1/1] expgeay (k) = (1 + (e - %k) A)_l . (1 +(e+3k)A) (3.12)

Benzer sekilde (3.6) denkleminde exp(kA) istel yaklagim igin (3.8) kullanihirsa;

Ut = —a'F + (1+(e-2k) A)_l (1+(e+3k)A)[ U +A7'F] (3.13)
ya da

(1+(e=3k)A)uw*t = (1+(E+3k)A) U + kF (3.14)

elde edilir.

Buradan benzer sekilde;
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(E-0.5k)a (E-0.5k)a (E40.5k)a
(5ot g = (557w = (S ey + 0 =
(E+0.5k)a k
( 26h )ui+1J + (g) fxi, )
(3.15)
formu bulunur.

(3.11) ve (3.15) denklemlerinde &€ = 0 alindiginda, [0/1] ve [1/1] yaklasimlari igin
klasik Pade yaklagimi elde edilir. £ kisitlayici parametreyi hesaplamak i¢in ilk adimda ya tam

¢Oziimil bilmeliyiz ya da ¢ok iyi bir niimerik ¢6zlime sahip olmaliy1z..
3.3. Kararhlik Analizi

Von Neumann kararlilik analizi metodunu kullanarak; (3.11) ve (3.15) fark denklemleri

icin G, ve G, ¢arpanlarim elde edebiliriz.

A 1-1 (—(5 +§]'15k)asin 9)
01:1 E—Ra_ ' 61:1 (E=05Ka__—\" I=v-1
6h sin — TSUT.

(3.16) ve (3.20) denklemlerinden kosulsuz sartsiz |G| < 1ve|G,| <1 olarak

diisiiniiliir.
3.4. Yerel Kesme Hatasi
1. Smurlayici Pade yaklagimui [0/1] igin;

Taylor agilimimni kullanarak (ismail vd. 2000,2001; Ismail ve Younes 2000 a, 2000 b.)
da belirtildigi gibi (3.11) fark denklemlerinin yerel kesme hatasi elde edilebilir. Buna gore;

T (8 _ k)ai h2n+1 62n+1 + i k™ o™u
U= Sh (2n + 1)!ox2m+1 ) nl on “h

=0

62m+n+1u
<n| ax2m+1atn>
@@n

n
(E _ k)a h2m+1 i
oh (Zm + 1)!

n=0
seklinde yazabiliriz.

Yeterince biiylik pozitif n tamsayisi i¢in en az bir M;, M, M3 pozitif reel sayilar var

olmak {izere,
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n

0™u 0"u ’ amtny
—_ 2;

axn

vn igin, <M, < M;

— | < -
atn dx™mot"

ve M = max{M,, M,, M5} olmak iizere,

(3.11) denklemindeki iist sinirdaki yerel kesme hatast T;;

E—k
ek (1 +u.sinhh> — 1|

|T,;| <M 57

olacak sekilde yazilabilir.
ii. Sinirlayic1 Pade yaklagimi (RPA) [1/1] igin;
Yine ayn1 sekilde Taylor acilimi kullanarak (3.15) denkleminin yerel kesme hatasi

® h2n+1 62n+1u ® kn anu
Tij=(ry —12) Z ( | 2n+1) + Z <_l_n>
P 2n+ 1)!0x Wi n! o Wi

n=0

ol h2m+1 s kn aZm+n+1u
—-n —,Z (—,W)
i (2m+ 1)! n! dx at Wi

n=0

_ (E-0Skga _ (E+05k)a

burada; n, = s 2 m dir. Yeterince biiyiik pozitif n tamsayist i¢in en az bir

M;, M,, M; pozitif reel sayilar1 var olmak iizere,

0™"u
ox™

am+nu
dx™motn

0™u

Vn icin, —
¢ I

< M, < M,, < M,

ve M = max{M,, M, M3} olmak iizere,

|Tij| < M|(rie* —7;) sinhh + X -1
seklinde bulabiliriz.
3.5. Niimerik Sonuglar

Simdi niimeriksel bir 6érnekle (3.11) ve (3.15) deki klasik metot ile (3.6) daki lstel
exp(kA) ig¢in [0/1] ve [1/1] Pade yaklagimim kiyaslayalim.

Singiiler pertiirbe edilmis hiperbolik kismi diferansiyel denklemi ele alalim.

Baslangi¢ kosulu ve siir kosulu olarak;
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u(x,0) = exp(—t/9)
u(x,0) = exp(x) + x? —axn
d(x,1) = exp(x —1/6) + x?> — x
kullanilacaktir.
Problemin tam ¢0zlimii ise;
u(x,t) = exp(x —t/8) + x> — x
dir.
Problemin ¢6ziimii i¢in 2 durum incelenebilir.

Durum 1: &; sinirlayict parametresi hesaplanir. Daha sonra x=0.1 , 0.5, 0.9 , h=0.1 ve
6=0.01 alinarak Tablo 1’deki degerler elde edilir.

Durum 2: genel olarak ilk asamada tam ¢dziim bilinmez. Bu yiizden ilk adimda
hesaplama yapabilmek i¢in klasik Pade yaklasimi metodu kullanilir. Daha sonraki islemlerde €

kisitlayic1 parametresi kullanilarak sinirlayici Pade yaklagimi uygulanir.

Cizelge 3.1. Farkli adimlarda kullanilan metodun ve klasik metodun mutlak hatalari.

Sinirlayict Pade Yaklagiminda Klasik Metotta Mutlak Hata
Mutlak Hata

X RPA[1/1] RPA[0/1] PA[1/1] PA[0/1]
0.1 4.30 x 10716 2.44 x 10715 2.73x 1073 7.38 X 1072
0.5 500 4.44 x 10716 2.38 x 10715 3.73x 1073 7.38 X 1072
0.9 2.77 x 10716 2.38 x 10715 5.32x 1073 7.38 x 1072
0.1 1.92 x 10715 2.44 x 10715 4.55 x 1073 7.38 X 1072
0.5 1000 1.83 x 10715 238 x 1071° 4,04 x 1073 7.38 X 1072
0.9 1.87 x 10715 2.38 x 1071° 2.93 x 1073 7.38 x 1072
0.1 3.63 x 10715 2.44 x 10715 3.98 x 1073 7.38 X 1072
0.5 1500 3.66 x 1071° 2.48 x 10715 3.70 x 1073 7.38 x 1072
0.9 3.44 x 1071° 2.48 x 1071° 440 x 1073 7.38 x 1072
0.1 419 x 10715 2.44 x 10715 2.79 x 1073 7.38 X 1072
0.5 2000 4.27 x 10715 2.48 x 10715 4.06 x 1073 7.38 x 1072
0.9 448 x 10715 248 x 10715 472 x 1073 7.38 x 1072




Cizelge 3.2. Farkli adimlarda kullanilan metodun ve klasik metodun mutlak hatalari.
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Sinirlayict Pade Yaklagiminda

Klasik Metotta Mutlak Hata

Mutlak Hata
X RPA[1/1] RPA[0/1] PA[1/1] PA[0/1]
0.1 8.68 x 107> 1.35 x 10714 1.78 x 1073 4,03 x 1073
0.5 500 9.82 x 10715 1.37 x 10714 2.81x 1073 5.60 x 1073
0.9 1.12 x 10714 1.51 x 10714 3.91x 1073 7.25x 1073
0.1 1.21 x 10714 1.07 x 10715 4,03 x 1073 6.99 x 1073
0.5 1000 1.01 x 1074 8.52 x 10~1° 2.73x 1073 5.63 x 1073
0.9 8.99 x 10715 7.97 x 10715 1.82x 1073 437 x 1073
0.1 8.54 x 107> 2.94 x 10715 1.69 x 1073 4,62 x 1073
0.5 1500 1.06 x 10714 419 x 10715 2.96 x 1073 5.67 x 1073
0.9 1.03 x 10714 412 x 1071 1.88x 1073 6.66 x 1073
0.1 1.11 x 10715 3.60 x 10716 3.81x 1073 6.39 x 1073
0.5 2000 9.90 x 10715 1.60 x 10715 2.84x 1073 5.65x 1073
0.9 9.02 x 10715 2.51 x 10715 1.88 x 1073 492 x 1073

Cizelge 3.3. Farkli adimlarda kullanilan metodun ve klasik metodun mutlak hatalari.

Sinirlayici Pade Yaklagiminda Mutlak Hata

Klasik Metotta Mutlak Hata

X Durum 1 Durum 2

RPA[1/1] RPAJ0/1] RPAJ1/1] RPAJ0/1] PA[1/1] PA[0/1]
0.1 2.7 x 10714 42 x 10714 7.7 x 1077 7.7 x 1077 7.7 x 1073 7.5x 1073
0.5 500 3.5 x 1071 4.6 x 1071 1.3x107° 1.3x107° 1.3x 1074 1.2 x 1074
0.9 2.7 x 10714 1.1x 10713 2.2x 107 2.2 %107 2.2%x 1074 2.1x 1074
0.1 9.4 x 10~ 6.5 x 10714 1.2 x 107° 1.2 x10°° 1.2x 1074 1.2x 1074
0.5 1000 6.7 X 10714 1.2x 10713 2.4 x 107 2.4 x10°° 2.4 x 1074 2.4 %x 1074
0.9 2.4 x 10714 3.2x 10713 47 x10°° 47 x10°° 4.7 x 107* 46x107%
0.1 2.3 x 10714 7.4 x 10714 1.5x 107° 1.5%x107° 1.5x 107* 1.5x 107*
0.5 1500 83 x 1014 2.0x 10713 3.5%x 107 3.5%x 107 3.5x107* 3.6 X 1074
0.9 1.3 x 10713 59 x 10713 7.4 % 1076 7.4 x 1076 7.4 x 1074 7.2%x 1074
0.1 6.8 x 1071 6.9 x 10714 1.6 x 107° 1.6 X 107° 1.6 x 1074 1.6 x 1074
0.5 2000 8.1 x 1014 2.8x 10713 45x10°° 45x%x10°° 45x 107 43x107*
0.9 3.0x 10713 9.2 x 10713 1.0 x 107° 1.0 x 10°° 1.0 x 1073 1.0 x 1073

metotla elde edilen mutlak hatalara gére ¢cok daha kiigiiktiir.

1. Durum i¢in Tablo 1,2,3 kullanilan metottan elde edilen mutlak hatalarin klasik

2. Duruma gore elde edilen niimerik sonuglar gdstermektedir ki kullanilan yontemdeki

mutlak hata klasik yonteme gore 1. durumdaki kadar olmasa da yine de kiigiiktiir.
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4. GENELLESTIRILMIiS SINIRLAYICI PADE YAKLASIMI iCIN ACIK
DETERMINAT FORMULLERI

Bu caligmada genellestirilmis smirlayict Pade yaklagimina bir giris yapilmustir.
Ardindan agik determinant formiilleri sunulmustur. Elde edilen temel sonuglar Hassan N.A.
Ismail tarafindan yapilan smirlayici Pade yaklasiminin ¢oziilebilirligi ve tekligi calismasi ile

desteklenmistir. Uygulanan niimerik dérnekler yontemin etkinligini gdstermistir.
4.1. Giris

(Hassan N.A. Ismail ve E.M.E. Elbarbary 1998; Hassan N.A.Ismail ve A.Y. Hassan
2000 a, 2000 b; Hassan N.A. Ismail vd. 2000, Hassan N.A.Ismail 2005, 2004) aralarindaki
calismalarda ifade edilen sinirlayict Pade yaklagimi, parabolik ve hiperbolik kismi diferansiyel
denklemler i¢in baglangic ve sinir-deger problemlerinin ¢dziimiinde uygulanmistir. Bu
uygulama ile hizli dogru sonuglar alinmistir. Bu yaklasima dayanarak (Hassan N.A.Ismail ve
E.M.E. Elbarbary 2001, 2004; E.M.E Elbarbary vd. 2003)’de sinirlayict Taylor yaklagimi ile

sinirlayic1 Chebyshev rasyonel yaklagimi gelistirilmistir.
f (x) fonksiyonu i¢in x’e bilinen kuvvet serisi;
f)=Y2,cxt ¢y #0,x€C (4.1)

seklindedir. Buna gore (4.1) denklemi ile tanimlanan f(x) fonksiyonu i¢in siirlayici Pade

yaklasim (Hassan N.A. Ismail 2004)’da tanimlandig gibi;

m ool ya M+
=g aix + X, Eix

RP¢((m,a,n)(x) = 2 45T pixt (4.2)
seklindedir. Boylece;

RPfiy(m, a,n)(x) — f(x) = O(x™*"*1) (4.3)

RPy(m,a,n)(x;) = f(x), i =1,23,..,a (4.4)

yazilabilir. Burada m, n negatif olmayan tamsayilar, a pozitif tamsayidir (¢ < n).
a;, b; ve €; bilinmeyenleri (4.3) ve (4.4) yardimiyla hesaplanacaktir.

Bu ¢alismada sinirlayict Pade yaklasimi igin @ > n durumunu ele alalim. Buradan

hareketle genellestirilmis sinirlayici Pade yaklagimini tanimlayalim.
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4.2. Metot

Tamm 4.1. (4.1) denklemindeki f(x) fonksiyonu igin genellestirilmis sinirlayict Pade

yaklagimu;
G10m, /)] (1) = Hooti EEs e @)
seklinde yazilabilir.
Buradan;
Gl(m, a/m)]fe(x) — f(x) = 0™ ™) (4.6)
G[(m, a/m)] ) (xi) = f(x) (4.7)
yazilabilir.
Burada;
i) m, n negatif olmayan tamsay1 ve o pozitif tamsayidir.
i) xi#0, ; #x;, 1<i<j<a
iii) by #1
seklindedir.
K
R,(x) = f(x) — Zcixi , k=01,..
i=0
=f(x), k<0 (4.8)
Ri(x) = =R (%) (4.9)

Teorem 4.1. Eger Bpyqn(0) #0 ise a <n i¢in G[(m,a/n)]s) genellestirilmis

siirlayict Pade yaklagimi ifadesi mevcuttur ve

GI(m, a/M)]fe) = Am-an (x)/ Bptan () (4.10)

seklinde verilir.

Burada;



Cm+a+1

Cm+n

Cm+a

Cm+n-1

Bm+a,n(x)= Rm+a(x1) lem+a(x1)

1

Cm+a+1

Cm+n

Rm+a(Xa) XoRmia(Xa)

X
Cm+a

Cm+n-1

Am+a,n(x)= Rm""ff(xl) lem-I'-a(xl)

olur.

Ispat: (4.6) esitliginden;

Rm+a(xa) xaRm+a(xa)
Zﬁga cix!

m+a i
Zi:O Ci—lx

Cm+a-n+1

Cm
X1" R yq(x1)

xaan+a(xa)
x"

Cm+a-n+1

Cm
X1" R yq(x1)

xaan+a (xa)

m+a i
Yizo Ci—nX
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(4.11)

(4.12)

(bo + byx + -+ bpx™)(co + c1x + ) = ag + a;x + -+ Apx™ + Ex™ 4 4

Saxm+a + 0 (xm+a+1)

yazilabilir.

(4.13)

(4.13) esitligindeki x! nin Kkatsayilari i=0,1,...m+n hesaplandiginda (m+n+1)

denklemden olusan bir sistem elde edilir.

( ap = agby
al = bocl + b]_CO

Am = by + biCpy—q + -+ bycpy
€1 = boCmy1 + b1Cm + -+ bpCmni1

€¢ =boCmya + biCm_14a+ + bnCm_nia
0 = boCmra+1 T b1Cmia + -+ bnCm-n+ta+1

0 = boCimin + b1Cmin—1 + =+ + bucpy

(4.14)

by =1 oldugu igin by, ..., b, katsayilar1 (4.14) ve (4.7) denkleminden son (n — «a)

esitliginden elde edilebilir. Boylece lineer cebirsel denklem sistemi,
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( bicmya + -+ bpCm_niar1 = —Cmia+1

{ bicmin—1t+ -+ bpCm = —Cmin (4.15)

bllem+a—1(x1) + -t bnxlan+a—n(x1) = _Rm+a(x1) .
blxaRm+a—1(xa) + et bnxaan+a—n(xa) = _Rm+a(xa)

seklinde yazilabilir. (denklem sisteminin katsayilar matrisinin determinanti 0’dan farkh

olmalidir.)

by, by, ..., b, degerlerinin bilinmesiyle ag,ay, ..., 4y, €41, ..., €, degerleri  (4.14)
denklemindeki ilk (m+1+0) denklemden hesaplanabilir. Boylece Tanim 1’e gore sonuglari

ispatlamis oluruz.

Teorem 4.2. Eger Byyq,(0) #0 ise a >n i¢in  G[(m, a/n)]f) genellestirilmis

sinirlayict Pade yaklagimu;

G[(m’ a/n)]f(x) = A_m+a,n(x)/§m+a,n (x) (4-16)
seklinde verilir.
Burada;
§m+a,n(x) =
ﬁm+n(x1) xlﬁm+n—1(x1) x1n§m+n(x1) x, x, "
_ : R G : : 417
Rm+n(xa) xaRm+n—1(xa) xaan+n(xa) xam+n+1 xam+a ( )
Am+af,n(x) =
Rpn(¥1)  XiRpun-1(x1) = X "Rppgn(x) 2™ x, M
ﬁm+n(xa) xaﬁm+n—1(xa) xan§m+n(xa) xam+n+1 xam+a (4.18)
l(r;-gn cl-xi :r;—gn Ci—lxi :r;-(k)n Ci—nxi xm+n+1 xmta

dir.

ispat : (4.13) denklemindeki x* katsayilar1 hesaplandiginda ve (4.7) denklemindeki x;
noktasindaki « kisitlama parametresi hesaplandiginda (m +n + a + 1) denklemden ve

(m + n + a + 1) bilinmeyenden olusan asagidaki denklem sistemi elde edilir.
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ap = aghy
a, = b0C1 + b1C0

Ay = boCp + biCp_q + -+ + bpCm_n
€1 = boCm1 + b1Cm + -+ bpCm_ni1

€n = boCmin + b1Cm_14n + -+ bpcyy

bof(x1) = ag + -+ amxy™ + €10y ™ T + o+ €02 — byxy f(x1) — - = bpxy " f (1)
bOf(xa) =ag+-+ amxam + Elxam+1 +oet Eaxam+a - blxaf(xa) -t bnxanf(xa)
(4.19)

by =1 dir. (4.19) denklem sistemindeki son «a  denklemde gegen
Qg, Ay, -, Ay, €1, .., €, Katsayilart ilk (m+n+1) denklemdeki katsayilarla yer degistirdiginde

by, ...,by, ve €,.4, ..., €, katsayilar1 da hesaplanmis olur. Boylece asagidaki denklem sistemi

yazilabilir.
byx1 R pn—1(x1) + -+ + by ™Ry (1) + €y 2y ™ oo 4 €400, ™F Y = =Ry (1)
blxaﬁm+n—1(xa) + -t bnxanﬁm(xa) + E’n+1xocm+n+1 + et Eaxam+a = _ﬁm+n(xa)

(4.20)

seklinde yazilabilir.(4.20) denklem sisteminin katsayilar matrisinin determinant1 0’dan farkli

olmalidir.

by, by ..., b, degerlerinin hesaplanmasiyla ve ag,ay, ..., am, €1, .-, €, katsayilarinin
(4.19) denklemindeki ilk (m 4+ n + 1) denklemden elde edilmesiyle tanim (4.1)’e gore ispat

tamamlanmis olur.

NOT: RPg(y)(m,n,a)(x) simrlayict Pade yaklasim fonksiyonu a < n i¢in G[m,a/
n]ru) genellestirilmis sinirlayict Pade yaklagiminin 6zel halidir. (H.N.A. Ismail 2004)
calismasinda verilen sinirlayici Pade yaklagiminin varlik ve ¢oziilebilirlik kosullart By, o # 0

kosulu ile esdegerdir.

(4.7) denklemindeki o kisitlayici parametre yoksa ya da @ = 0 alinirsa a < n igin
G[m,a/n]s) yaklasim (G.A. Baker ve P.R.Graves- Morris 1981) ‘deki klasik Pade
yaklagimma indirgenir. Genellestirilmis simirlayict Pade yaklagimi olan G[m,a/n]z
ifadesinde m=0 almnirsa (H.N.A. Ismail 2004) ‘daki gibi simrlayici Taylor yaklagimina

indirgenir.



Teorem 4.3. Hata Formiilleri

. a<nve Bpypga # 0ise

xm+n+1

a ,
x)—G [m,—] = 2 oext
f( ) nlf(x) Bm+na t=0"1
dir. Burada;
Cm+a+1 Cm+a Cm+a-n+1
Cm+n Cm+n-1 Cm
e; = Rm+a(x1) lem+a—1(x1) xlan+a—n(x1)
Ryta(Xa) XeRmia—1(xa) Xo" Rmta-n(Xa)
Cmin+1+i Cm+a+i Cm+1+i
dir.
ii. @>nveBy,q,(0)#0ise
JRUTTIERY o ;
fO0) = GIm,a/n)s = = (L2 9ix' + H(X))
m+n,a
dir. Burada;
§m+n(x1) x1§m+n(x1) xlnﬁm+n(x1) x1m+n+1
gi= Rm+n(xa) xa§m+n—1(xa) xanﬁm(xa) xam+n+1

Cm+n+1+i Cm+n+i

ﬁm+n(x1) x1§m+n(x1)
Hix) = | . : B :
( ) Rm+n(xa) xaRm+n—1(xa)
0 0

dir.

ispat:

Cm+1+i 0

x1nﬁm+n(x1) 751m+n+1

xanﬁm(xa) xam+n+1

0 -1

(4.11) ve (4.12) matrislerinden kalan, eger By, 14,(0) # 0 ise
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(4.21)
(4.22)
(4.23)
x1m+a
mea| (4.24)
a
0
x1m+a
L mra | (4:25)
a
_xoc—n—l



Bm+a,n(x)f(x) - Am+a,n(x)f(x) =

[o¢]

= E XML+

i=0

dir.
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Cm+a+1 Cm+a Cm+a-n+1

Cm+n Cm+n-1 Cm
Rm+(x(x1) lem+a—1(x1) xlan+a—n(x1)
Rm+a(xa) xaRm+a—1(xa) xaan+a—n(xa)

(oe] (o0} [00]

Z ot Z Gt 2 cxiHn
i=m+n+1 i=m+n i=m+1
Cm+a+1 Cm+a Cm+a-n+1

Cm+n Cm+n-1 Cm
Rm+a(x1) X1Rmyq-1(x1) - X1"Rpmyq-n(x1)
Rm+a(xa) xaRm+a—1(xa) xaan+a—n(xa)
Cm4n+1+i Cm+a+i Cm+1+i

ii. (4.17) ve (4.18) matrislerinden kalan, eger By 1.4, (0) # 0 ise

Em+a,n(x)f(x) - “Tm+a,n(x)f(x)

Rm+n(x1) %1 Ry (1) X" Rppyn (1) 2Ly e
— §m+n(xa) xa~m+n—1(xa) xanﬁm(xa) xam+n+1 xam+oz
[oe) [oe) [oe)
Z c~xi Z c-xi“ Z C-XHn _xm+n+1 v —_yMmta
i i i
i=m+n+1 i=m+n i=m+1
o Rm+n(x1) xlﬁm+n(x1) x1n§m+n(x1) XLy e
=Z:xm+n+1+i ¢ ¢ U + " 1+
= Rm+n(xa) xaRm+n—1(xa) xaan(xa) Xg eoxg
Cman+1+i Cman+i Cm+1+i 0 0
§m+n(x1) xlﬁm+n(x1) x1n§m+n(x1) x1m+n+1 e x M
+ 1. : o K : . :
Rm+n(xa) xaRm+n—1(xa) xaan(xa) xam+n+1 xam+a

0 0

0 —1 _x(l—n—l
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4.3. Niitmerik Ornekler

Uzerinde cahstigimiz yaklasimin dogrulugunu gostermek icin asagidaki ornekleri

inceleyelim.
Ornek 1: f(x) = e* fonksiyonunu diisiinelim.

Tablo 1°de [0,1] araliginda m,n,a farkli degerleri ig¢in x; = 1,x, = 0,5 sinirlayici
sartlar ile G[m, a/n]f(x) yaklasiminin bazi mutlak hata degerleri verilmistir. Tablo 1°de e* in

icin mertebe ya da diigiim noktalarinda artmalar genellestirilmis Pade yaklasim ile kesinlesir.
Ornek 2: f(x) = 1 — In(1 — x) fonksiyonunu diisiinelim.

Tablo 2’de [0,0.5] arahigindaki m,n,a farkli degerleri i¢in x; = 0.5,x, = 0.25
smirlayict sartlart ile [m, a/n]¢) yaklasimmnin maksimum hatalari verilmistir. Tablo 2’de

[0,0.5] araliginda f(x) fonksiyonu i¢in, genellestirilmis sinirlayict Pade yaklagimi sirasiyla pay

ve paydanin derecesi ayni olan Pade yaklasimindan daha iyi ve agik sonug verir.

Cizelge 4.1. G[m, a/n]z () yaklagimi i¢in bazi mutlak hata degerleri.

m a n 0,2 0,65 0,9
1 1 1 1.08518 x 10~* 2.29067 x 1073 2.13199 x 1073
2 1 1 3.23843 x 1076 2.07386 x 107* 2.55659 x 10™*
2 2 1 1.33439 x 1077 4.07182 x 107° 1.29909 x 1075
1 2 | 2 6.52891 x 1078 2.32978 x 107° 8.12328 x 107°
2 2 | 2 1.23061 x 107° 1.36368 x 1077 6.37368 x 1077

Cizelge 4.2. [0,0.5] araligindaki maximum hata.

m a n maxxe[0‘0_5]|f(x) maxxE[0,0.S]lf(x)
— G[m, a/n)sul = [m, a/n]pl
2 1 0 4.09347 x 1073 2.64805 x 1072
2 1 1 1.35880 x 10~* 1.48051 x 1073
2 2 1 1.79839 x 1075 438847 x 107*
2 2 2 1.22010 x 107 3.82026 x 107°
3 2 2 2.88994 x 1077 9.92566 x 107°
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5. PARABOLIK VE HIPERBOLIK TiP BASLANGIC - SINIR DEGER
PROBLEMLERININ SINIRLAYICI PADE YAKLASIMI iLE COZUMLERININ
YEREL KESME HATALARI

5.1. Giris

Simirlayici Pade yaklasimi (RPA) , parabolik ve hiperbolik kismi diferansiyel
denklemlerinin sadece baslangi¢ ve sinir-deger problemlerinde degil ayni zamanda da belli
asamadaki tam c¢oziimlerin bazi degerlerini bulmak i¢in kullanilir. Metodun kapali formuna
ihtiya¢ yoktur. Metot, bilinen tam ¢oziimiin bazi noktalartyla uyumlu, parametrelere adapte

edilmis, sonlu farklar metodundan tiiretilmistir.

Hassan N.A. Ismail ve digerleri, parabolik ve hiperbolik problemlerin yakinsakligini
incelemislerdir. Ayrica bazi uygulamalarda konveksiyon difiizyondaki sivi dinamigi yada
Shrodinger denkleminde kullanmislardir. Bu metot, Burger ya da KdV denklemleri gibi non-
lineer tipteki problemlerde, iki boyutlu ve degisken katsayili denklem sistemlerinde de

incelenmistir.

5.2. Hiperbolik Tip Baslangi¢ Simir- Deger Probleminin Tam Coziimii icin Sonlu Farklar
Metodu

U +au, =0 (5.1)
ua = (—a)'u, ; negatif olmayan integral (5.2)

Birinci sonlu farklar metodundan;
Ujj+1 — Uij n Ui j — Ui-1,j _

K TTh

0, h = Ax, k=At

ui_j_,_l = (1 - r)ui,j + Tui_l'j r = (53)

yazilir.

Ikinci sonlu farklar metodunu, Taylor Serisi yardin ile yazalim.

2
Upjer = Uiy + k(Ui + 7(utt)i,j + e

2

= Uy — ak(uy); +7a2(uxx)i,j + -



k2a?

T (im1j = 205 + Uiy ) + o

=Ujj — :_Z(uiﬂ,j —up_q) +

r r?
= U — _(ui+1,j - ui—l,j) +—= (ui—l,j —2u;; + ui+1,j) + -
2 2

1 ) 5 1,
= E(T +r )ui_l,j + (1 -7 )ui,]’ +E(T' — r)ui+1,j + ...
5.3) veya (5.4) denklemlerinde h = ak ve r = 1 alirsak;
( y
Ujj+1 = Uj—1,5

bulunur.

Tyj =7 Wijer = Uimg )

1] kz 3 hZ h3
= E <kut + 7“—“— + Zuttt + "'> + (hux - 7uxx + zuxxx _ e )]
L ij

1 % k3 (ka)? (ka)?
E kut+7utt+zum+~-- + kaux—Tuxx+Tuxxx—---
ij

1 k2 K3
= % [k(ut + aux) + > (utt - azuxx) + o (uttt + azuxxx) + ]ij
(5.2) denklemini kullanarak;

Ty; = (0) + (0)k + (0)k*+--=0

1[ k2 3 h2 3
=% <u + ku, +7utt + 5 Yeet + ) = (u — hu, +7uxx = — Uyyx T )
I ij ij
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(5.4)

(5.5)

(5.6)

(5.7)

seklinde yerel kesme hatasini bulmus oluruz. (5.5) sonlu farklar denklemlerindeki tam ¢6ziim

gosterir ki baglangi¢ ve sinir sartlar1 0 ve h=ak sec¢imi yapilabilir.

5.3. Parabolik ve Hiperbolik Problemlerin Crank-Nicolson Metodu ile Céiiziimiinde Yerel

Kesme Hatasi
5.3.1. Parabolik denklem icin diferansiyel formunda yerel kesme hatasi
Up = Uyy

Denklemini ele alalim. Bu denklem i¢in sonlu farklar formiili;
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1 1
p (i jer —usj) = e [(uim1 = 2w + 1) + (Wimq = 205 + Ujiq) ju1 ] (5.8)
Yerel kesme hatasinin sonlu farklar denklemi;
1 1
Tijsen(h k) = ;(ui,j+1 —u; ;) — m[(ui—l —2u; + Uiq)j + (Wimg — 2U; + Uy1) j41] (5.9)
yerel kesme hatasinin diferansiyel formu;
— 1 241 2 _ 1 2 1 3 1 4
Ty yen(h k) = [— Sugah? + Supk? = S h?k + 1 k® — ——ugoh® + -+
0 (h*™, k”)]. , nm>0, m+n=4 (5.10)
LJj
0(h?,k?) , iyi bilinen yerel kesme hatasidir.

5.3.2. Hiperbolik denklem icin Crank Nicolson metodunda yerel kesme hatasinin

diferansiyel formu
us+au, =0

Crank Nicolson sonlu farklar formu:;
1 a
E(ui,j+1 —u;;) + an [(ivr — wim1)j + (Wis1 — Ui—1)j41] =0
Burada; r = ];—Z almirsa sonlu farklar formu i¢in yerel kesme hatasi
1 a
Tijjen(h k) = % (wgjer —uij) + ah [(Uivs —uimg)j + @Wis1 — Uim1) j41]

1
= ﬁ{(zui,jﬂ — 2w ;) + [ (Uipr — Uim1)j + Wip1 — Ui1) 4]}
1
= [(=ruimq + 203 + TU51) jor — (Pimg + 20 — TU4q) (5.11)
seklinde olur. Bu durumda yerel kesme hatasinin diferansiyel formu;
1 1 1 1 k*
Tijjen = a [guxshz + U2z hk? + b’ + — e + ---]U (5.12)

olur.
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5.4. Parabolik Tip Baslangic-Simir Deger Probleminin Simirlayici Pade Yaklagim ile

Coziimiinde Yerel Kesme Hatasi

Bu problemi bazi iinlii matematikgiler (Ismail vd., 1998, 1999 ; Ismail ve Elbeetar,

2001; Ismail vd., 2002; Elbarbary, 2001 ; Elbarbary vd., 2003 ) ele almislardir.

5.4.1. Sonlu farklarda yerel kesme hatasi

Crank Nicolson metodunda j. ve 0. asama igin T; j/cn Ve Tjg/cy olmak tizere yerel

kesme hatas1 hesaplanabilir.

1 1 1 1
_ [(—grui—ﬁ' A+r)Ui=51 U4 1) jr1 = (5T Ui-1 +(1—T)ui—57”ui+1)j]

T, i/en = . (5.13)

benzer sekilde;

1 1 1 1
[(—ETU—L’—1+ A+ui—51Uip )1~ (5T Ui-1 + (1—r)ui—5rui+1)0]

Tiojen = - (5.14)

yazilabilir.

Sinirlayict Pade yaklasiminda (RPA) j. ve 0. asama igin T; ;/grp V€ T;o/gp OlMak

iizere yerel kesme hatasi hesaplanabilir. Farkli formlarda;

1 1 j+1
[(Ei - 7) rug + (14 (6 + Dr)u; — (6 — j)’”ui+1]
Ti,j/RP = k
1 1 1
[(Ei + 7) ru;i— + (1 + (6 — Dr)u; + (¢; + 7)rui+1]
k
r . . .
= ;EiZ;L’lq W/t —u)+ T jen =160+ Tijen (5.15)
burada;
i+1

0y = Z (w/*t —w’) =

l=i-1

4 4
= [(But + h%u,,2 + rll—zutx‘; + - ) + S(Sutz + h%u,z,2 + :—Zutzxa. + - )]ij (5.16)

benzer sekilde;

Tio/rp = T€0i0+ Tio/cn (5.17)



burada;

i+1

Oio = Z (u11 - ulo) =
1=i—-1
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[(Sut + h2uy,e2 + utx4 + - ) (Butz + h%u,z,2 + utz 4+ )] (5.18)

bulunur.

i,0

Sinirlayict Pade metodunda ; (5.17) denklemindeki  T;o/gp = 0 koyup ¢; degerini

buluruz.
r€ioio = —1ljo/cN
1
re; = ——Tio/cn
Oio /

seklindedir. (u¢); o # 0 iken (5.15) denklemini (5.19) denkleminde yazarsak;

Tij

T
1,0/CN
Ji,0 /

Tij/rp = Tijjen —
Tij/cn(hk)aio(hKk)=T;o/cn(hk)a; j(hk)
O'i'o(h,k)

T;j/rp(h k) =

bulunur. Burada; h’in tek kuvvetleri ortadan kalkar.

(5.10) denkleminde j = 0 : m,n > 0 ,m + n > 4 koyarsak;

(5.19)

(5.20)

(5.21)

(5.22)

1 2, 1 2 1 2 1 1 4 2m ,n
Tijsen = [—Eutzh +gut3k —ﬁutah k+24ut k3 —360ut3h +--+ 0™k )]
mn=0,m+n =>4
Ti,j/RP(hi k) =
[3(ut)m+0(kh2){ [(utz)l](ut)lo (utz)i,o(ut)i,]’]h +Z[(ut3)i,j(ut)i,0_

()0 ()i Jk? + = [Qe)s ;o — esdso ()i + Qes)py (U)o —

(ug3) ;0 (utz)i,j]k3 + g [(ut3)i,j (U)o — (We3)io (ut)i,j]kh2 +

Koseli parantez igine alinan ifadeler;

} (5.23)
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A = [(utz)i‘j(utm)i,o — (utz)i‘o(utm)i,j] , L, m=0(1) (5.24)

seklinde yazilabilir.

u(x,t) = e tsinx , x =ih, t=jk kapall formdaki tam c¢oziimiinii (5.24) den yerine

yazarsak;
Ay = (D™ [(e 7 sinx); (e sinx); o — (e tsinx); o (e tsinx); ;| = 0 (5.25)
bulunur ve (5.25) denklemi;
T;j/rp(h,k) =0 (5.26)
oldugunu gosterir.

5.5. Hiperbolik Tip Baslangic-Simir Deger Probleminin Smmirlayici Pade Yaklasim fle

Coziimiinde Yerel Kesme Hatasi

Standart hiperbolik denklem u; + au, = 0 seklindedir ve denklem fiizerine bazi
matematikgiler calismalar yapmislardir (Ismail ve Hassan , 2000 a, 2000 b ; Ismail vd., 2001;
Ismail ve Elsaid , 2003).

5.5.1. Crank Nicolson metodunda sonlu farklar formunda yerel kesme hatasi
(5.11) denkleminde r = % alinirsa;
1
Tijsen = 5 [(=rwi—y + 2u; + 1U41) jo1 — (Pui—g + 2 — T4 ] (5.27)
seklinde yerel kesme hatas1 bulunur.
5.5.2. Siirlayici pade metodu i¢in yerel kesme hatasi

(5.13) denkleminde r = % alinirsa;

(—rui_l + 2(1 + ei,lr)ui + rui+1)j+1 = (ruj_1 + 2(1 + ei,lr)ui —TUq)j  (5.28)

1
Tij/rp = E{(—rui_l +2(1+€r)u; + rui+1)j+1 — (ruj—y +2(1 + €m)u; — rui+1)]-}

2r
=% (wijer —uij)eis + Tijjen

buradan;
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a
Tijrp = Tijsen + 4 (wije1 — uij)€ir = Tyjjen + 0y €0 (5.29)
(5.14) denkleminden benzer sekilde;
a
Tio/rp = Tijojen + n (ui,l - ui,o)ei,l = Tio/cn + Tio€ip (5.30)
Simnirlayici Pade metodunda €;; bulmak i¢in ; T; g /gp = 0 koyalim.
0i0€i0 = —Tio/cn (5.31)
O-i,j
Tij/re = Tijjen + —Tio/cn
0i,0

Ti,j/CN (h'k)ffi,o(h:k)_Ti,o/CN (h,k) oij (h,k)

= o0 (k) (5.32)
dir. Burada;
0y (k) = 3 (wijs1 — wi ) = a(ue + Sutt + kz—zum + :—zut4 + )i (5.33)
oio(h k) = %(ui,l - ui,O) = a(u; + Sutt + kz_zuttt + I;_zut4 + - )io (5.34)
Tyo/cn (h, k) = a(6uuysh? + 241,eh® + duehk? + 24ug 4 ) (5.35)
seklindedir.

(5.12), (5.32), (5.33), (5.34) ve (5.35) denklemlerini kullanarak; hiperbolik tip
baslangig- smir deger probleminin sinirlayici pade metodu ile ¢6ziimiindeki yerel kesme

hatasinin degisik formu;

Ty j/re(h k) = m{g [ue)ioCuys)ij — (We)ij(uys)io] R

+ % [(ut)i,o(ux4)i,j - (ut)i,j(ux4)i,o]h3
+ (@)oo — (21 (uys)i W2 + -+

(5.36)

Koseli parantez igine alinan ifadeler;

Ay = [ (), o Gtem)ey = (), (sem)io] (5.37)
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seklinde yazilabilir.
u(x,t) =e*t, x =ih, t= jk kapali formdaki tam ¢6ziimiinii (5.37) den yerine yazarsak;
Apm = (FDH™[(=e* )00 ; — (—e*); j(e¥7 0] = 0 (5.38)
bulunur ve (5.38) denklemi;
Ti,j/RP(h; k)=0 (5.39)
oldugunu gosterir.

Bu c¢alismada uygulanan simirlayici pade yaklasimi (RPA) metodunun avantajlarini

asagidaki gibi 6zetlemek miimkiindiir.

1. Bu metot bazi zaman adimlarinda tam ¢oziimii verir. Ornegin; t=k icin u(x,t)=u(ih,k) ,
i=1(1)N

2. Bir zaman adimminda tam ¢oziimii bilmeden yaklasim uygulamak miimkiindiir.
Yontemin etkinligi ve dogrulugu ¢ok kiigiik, uygun h ve k degerlerinin alinmasina
baglidir.

3. Ilk adimda ihtiyag duyulan tam ¢oziim kapali formda degildir. Bu durumda bazi
noktalardaki tam ¢6ziimiin bilinmesine ihtiya¢ vardir.

4. Denklemin tam c¢oziimii kapali formda verilmedigi silirece yontemin sonuglarini
karsilastirmak miimkiin degildir.

5. Bu yontemle ilgili calismalar gelistirilerek yiiksek mertebeli sistem degisken katsayili

lineer olmayan problemlere uygulanmasi miimkiindiir.
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6. SONUC VE ONERILER

Diflizyon denklemine sinirlayict Pade yaklasimi metodu uygulanmis ve elde edilen
sonuglar tablo olarak ifade edilmistir. Sonuclardan goriilmektedir ki smirlayic1 Pade yaklagimi
bu denklem igin iyi sonuglar vermektedir. Bu metodun lineer olmayan denklemler igin de

uygulanmasi ¢alisilabilir.

Benzer sekilde farkli lineer denklemler icin heniiz calisiimamis olanlar i¢in de
uygulamalar yapilabilir. Yapilan ¢aligmalardan anlasilmaktadir ki metot genel olarak niimerik

¢oziim anlaminda iyi sonuglar vermektedir.
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