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BAZI KISMİ TÜREVLİ DENKLEMLERİN SINIRLAYICI PADE YAKLAŞIMI 

METODU İLE ÇÖZÜMLERİ 

Fevziye GÜLSEVER 

Matematik, Yüksek Lisans Tezi, 2016 

Tez Danışmanı: Doç. Dr. Ahmet BOZ 

ÖZET 

Bu çalışma altı bölümden oluşmaktadır. 

Birinci bölümde difüzyon denkleminin sınırlayıcı Pade yaklaşımı ile nümerik çözümü 

için gerekli olan temel bilgiler verilmiştir. Özellikle çözüm yöntemine yönelik açıklamalar da 

bulunulmuştur. 

İkinci bölümde, özgün bir çalışma olarak lineer difüzyon denkleminin sınırlayıcı Pade 

yaklaşımı ile nümerik çözümü elde edilmiştir. 

Üçüncü bölümde ise aynı yöntemin singüler pertürbe edilmiş hiperbolik denklem 

üzerindeki uygulaması incelenmiş ve çözüm algoritması sunulmuştur.  

Dördüncü bölümde genelleştirilmiş sınırlayıcı Pade yaklaşımı için determinant 

formülleri ifade edilerek konu ile ilgili nümerik örnekler incelenmiştir. 

Beşinci bölümde ise özellikle yerel kesme hataları üzerine çeşitli incelemeler 

yapılmıştır. Parabolik ve hiperbolik tip başlangıç- sınır değer problemlerinin sınırlayıcı Pade 

yaklaşımı ile çözümlerinin yerel kesme hataları ayrı ayrı incelenmiştir. 

Son bölümde ise sonuç ve önerilerde bulunulmuştur.  

Sonuç olarak lineer difüzyon denkleminin nümerik çözümü üzerine bir çalışma 

oluşturulmuştur. 

Anahtar kelimeler: Difüzyon Denklemi, Kısmi Türevli Diferansiyel Denklemler, Sınırlayıcı 

Pade Yaklaşımı.  
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NUMERICAL SOLUTION OF THE SOME PARTIAL DIFFERENTIAL EQUATIONS 

USING RESTRICTIVE PADE APPROXIMATION 

Fevziye GÜLSEVER 

Mathematics, M.S. Thesis, 2016 

Thesis Supervisor: Assoc. Dr. Ahmet BOZ 

SUMMARY 

This study consists of six chapters. 

In the first chapter, basic concept are given for about to numerical solution of the 

diffusion equation. 

In the second chapter, we find that the numerical solution of the diffusion equation 

using restrictive Pade approximation. This solution is orginal.  

After that, we examined same method fort he singulerly perturbed hiperbolic equation 

and given the numerical solution algorithm.  

In the fourth chapter, determinant formulation for the generalized restrictive Pade 

approximation and examined about to numerical examples. 

In the fifth section, some examine for the truncation error. The solution of the parabolic 

and hyperbolic initial- boundry value problems are examined separately with local truncation 

error. 

In the last section, conclusion and recommendations are included. 

Consequently, created work about to numerical solution of the linear diffusion equation. 

Keywords: Diffusion Equation, Partial Derivative Differential Equation, Restrictive Pade 

Approximation. 
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1. GİRİŞ 

1.1. Pade Yaklaşımı 

Pade yaklaşımlarının geçmişi çok eskidir. Henri Eugune Pade tarafından kullanılan 

şekliyle günümüze ulaşana kadar birçok ünlü matematikçi farklı problemlere çözüm bulabilmek 

amacıyla Pade yaklaşımlarını kullandı. Euler C.G.J. Jacobi, Michell Rolle, George Ferdinand 

Frobenius, Jean Darboux ve Daniel Bernoulli gibi matematikçiler tarafından matematiğin farklı 

alanlarında problemlere çözüm bulabilmek için kullanıldı (Brezinski, 1991). 

Günümüzde yaygın bir şekilde Pade yaklaşımları, diferansiyel denklemlerin nümerik 

çözümlerinde, kuvvet serilerinin analitik devam problemlerinde, ortogonal polinomlar üzerinde 

çalışılmasında (Markov fonksiyonları için Pade denklemlerinde payda denkleminin ortagonal 

olduğu bilinmektedir)  kuvvet serilerine ait singüler noktalarının, sıfır noktalarının, köklerin ve 

kutup noktalarının bulunmasında kullanılır. Pade yaklaşımlarının diğer nümerik yaklaşımlara 

göre daha iyi sonuç vermesi, bu yaklaşıma olan ilgiyi arttırdı ve sadece matematikte değil, 

fizikte, kimyada, astronomide ve daha farklı bilimsel alanlarda kullanılmasına yol açtı. Tek 

değişkenli Pade yaklaşımları üzerinde birçok çalışma yapılmasına rağmen, çok değişkenli Pade 

yaklaşımları üzerine yapılan çalışma sayısı oldukça sınırlıdır. 

Çok değişkenli Pade yaklaşımlarının tanımını ilk kez J.S.R Chistolm tarafından, daha 

genel tanımlama ise Levin tarafından yapılmıştır. Teorisini ve temel kavramlarını ilk kapsamlı 

makale ise 1983’te Annie Cuyt tarafından yayınlanmıştır (Guillaume ve Huard, 2000). Tek 

değişkenlilerin birçok özelliği açıklığa kavuşturulmasına rağmen, çok değişkenliler için yapılan 

çalışmalar çok sınırlıdır. Fakat çok değişkenli Pade yaklaşımlarının, tek değişkenli Pade 

yaklaşımlarının birçok özelliğini kapsadığını söylemek mümkündür. Birçok çalışmada tek 

değişkenli Pade yaklaşımları ile diğer nümerik yaklaşımlar kıyaslandığında, Pade 

yaklaşımlarının daha iyi bir yaklaşım olduğu bilinmektedir. Fakat çok değişkenli Pade 

yaklaşımları için literatürde, diğer nümerik yaklaşımlarla yapılan karşılaştırmaları kapsayan 

araştırmalara rastlamak hemen hemen mümkün değildir. 

1.2. Bir Boyutlu Difüzyon Denklemi 

Gözenekli ortamlarda akış ve/veya kütle yayımı ve ısı yayımı yerbilimlerinde difüzyon 

tipli problemleri oluşturmaktadır. Difüzyon tipli kısmi diferansiyel denklemlerin çözümü 

nümerik olarak sonlu farklar yöntemi ile yapılır. Yer altı suyu akışı ve kirlilik ve ısı yayım 

modeli difüzyon denklemi olarak bilinen,  



2 

 

𝑈𝑥𝑥 + 𝑣𝑈𝑥 = 𝛼𝑈𝑡 

kısmi diferansiyel denklemiyle ifade edilir. Bu denklemde x’e göre birinci ve ikinci türev 

konumu, t’ye göre türev ise zamanı temsil etmektedir. Denklemde ifadesi bulunan fiziksel 

büyüklükler değiştirilerek yerbilimlerinde bir problem modellenebilir.  

Kirletici maddenin yüksek konsantrasyonlu bir bölgeden düşük konsantrasyonlu bir 

bölgeye taşınması moleküler difüzyon (𝛼 ≠ 0) yardımı ile gerçekleşir. Difüzyon yayınımı 

bölgeler arasında konsantrasyon farkı sıfır oluncaya kadar devam eder. Difüzyonla yayınım 

mekanizmanın da kirletici maddenin içinde bulunduğu yer altı suyu hareket etmese de kirletici 

maddeyi oluşturan moleküllerin hareketi difüzyonla yayınımını gerçekleştirir (Fetter, 1992).  

1.3. Kısmi Diferansiyel Denklemler 

En az iki bağımsız ve en az bir bağımlı değişken ile bağımlı değişkeninin bağımsız 

değişkenlere göre birinci veya daha fazla mertebeden kısmi türevlerini içeren denklemlere kısmi 

diferansiyel denklemler denir. Kısmi diferansiyel denklemlerin genel formu, 

𝐹(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦, 𝑧𝑥𝑥, 𝑧𝑥𝑦, 𝑧𝑦𝑦, … ) = 0 

şeklindedir. 

1.4. Kısmi Türevli Diferansiyel Denklemlerin Genel Bir Sınıflandırılması 

1.4.1. Lineer olmasına göre 

Bir kısmi türevli denklemdeki bağımlı değişken (veya değişkenler) ve bunların 

denklemdeki bütün kısmi türevleri birinci dereceden ve denklemi, bağımlı değişken ile onun 

türevleri parantezinde yazdığımızda katsayılar yalnızca bağımsız değişkenlerin fonksiyonu 

oluyorsa bu denkleme lineerdir denir. 

İki bağımsız bir bağımlı değişkene sahip birinci ve ikinci mertebeden lineer kısmi 

türevli denklemlerin genel formları sırasıyla aşağıdaki gibidir. 

𝑃(𝑥, 𝑦)𝑧𝑥 +𝑄(𝑥, 𝑦)𝑧𝑦 + 𝑅(𝑥, 𝑦)𝑧 = 𝑆(𝑥, 𝑦) 

𝐴(𝑥, 𝑦)𝑧𝑥𝑥 + 𝐵(𝑥, 𝑦)𝑧𝑥𝑦 + 𝑅(𝑥, 𝑦)𝑧𝑦𝑦 + 𝐷(𝑥, 𝑦)𝑧𝑥 + 𝐸(𝑥, 𝑦)𝑧𝑦 + 𝐹(𝑥, 𝑦)𝑧 = 𝐺(𝑥, 𝑦) 

1.4.2. Yarı lineer (Kuasi-Lineer) olmasına göre 

Bir kısmi türevli denklem, denklemde bulunan en yüksek basamaktan kısmi türevlere 

göre lineer ise bu denklem yarı lineer adını alır. 
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İki bağımsız, bir bağımlı değişkene sahip birinci ve ikinci mertebeden yarı lineer 

denklemlerin genel şekilleri sırasıyla aşağıdaki gibidir. 

𝑃(𝑥, 𝑦, 𝑧)𝑧𝑥 + 𝑄(𝑥, 𝑦, 𝑧)𝑧𝑦 = 𝑆(𝑥, 𝑦, 𝑧) 

𝐴(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦)𝑧𝑥𝑥 + 𝐵(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦)𝑧𝑥𝑦 + 𝑅(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦)𝑧𝑦𝑦 + 𝐷(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦) = 0 

1.4.3. Hemen- hemen lineer olmasına göre 

Bir kısmi türevli denklem yarı-lineer ve denklemde görülen en yüksek basamaktan 

türevlerin katsayıları yalnızca bağımsız değişkenlerin fonksiyonları ise bu denkleme hemen-

hemen lineer denklem denir. 

İki bağımsız ve bir bağımlı değişkene sahip ikinci basamaktan hemen-hemen lineer bir 

denklemin genel şekli, 

𝐴(𝑥, 𝑦)𝑧𝑥𝑥 +𝐵(𝑥, 𝑦)𝑧𝑥𝑦 + 𝐶(𝑥, 𝑦)𝑧𝑦𝑦 +𝐻(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦) = 0 

formundadır. 

1.5. İkinci Basamaktan Hemen-Hemen Lineer Denklemler İçin Bir Sınıflandırma 

Genel formu; 

𝐴(𝑥, 𝑦)𝑧𝑥𝑥 +𝐵(𝑥, 𝑦)𝑧𝑥𝑦 + 𝐶(𝑥, 𝑦)𝑧𝑦𝑦 +𝐻(𝑥, 𝑦, 𝑧, 𝑧𝑥 , 𝑧𝑦) = 0 

şeklindedir. Burada A,B,C ∈ C2[D] dir. 

Diskriminant fonksiyonu,  

∆(𝑥, 𝑦) = [𝐵(𝑥, 𝑦)]2 − 4𝐴(𝑥, 𝑦)𝐶(𝑥, 𝑦) 

Şeklinde tanımlanmak üzere denkleme  

a) ∆(𝑥, 𝑦) > 0 eşitsizliğinin sağlandığı noktalarda hiperbolik 

b) ∆(𝑥, 𝑦) = 0 eşitsizliğinin sağlandığı noktalarda parabolik 

c) ∆(𝑥, 𝑦) < 0 eşitsizliğinin sağlandığı noktalarda eliptik 

tiptendir denir. 
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1.5.1. Hiperbolik tip 

En bilinen örneği dalga denklemidir. c pozitif bir reel sabit ve t zaman değişkeni olmak 

üzere; 

𝜕2𝑢

𝜕𝑡2
− 𝑐2

𝜕2𝑢

𝜕𝑥2
= 0 

1-boyutlu dalga denklemidir. 

Bir boyutlu dalga denkleminin çözümü 𝑙 uzunluğunda titreşim halinde olan bir telden t 

zaman sonra bir ucundan x kadar uzaklıktaki enine yer değişimini verir. Bu tip denklemlerde 

başlangıç ve sınır koşulları bilinir. 

Bu tip denklemler elektromanyetik, hidrodinamik, ses yayılması, elastisite ve kuantum 

teorisi gibi konularda çok kullanılmaktadır. 

Hiperbolik denklemler genellikle titreşim problemlerinde veya yoğunluk, basınç ve 

hızdaki süreksizlik durumları ile ilgili problemlerde kullanılır. 

 Hiperbolik tip denklem; 

𝜕2𝑢

𝜕𝑡2
− 𝑐2

𝜕2𝑢

𝜕𝑥2
= 0 

denkleminde A= −𝑐2 , B=0 ve C= 1  dir.  

∆=𝐵2 − 4𝐴𝐶 = 0 − 4(−𝑐2 )1 = 4𝑐2 > 0 olduğu için hiperbolik tip denklem denir. 

1.5.2. Eliptik tip 

Eliptik kısmi diferansiyel denklemler genellikle denge veya kararlı hal problemleri ve 

bunların çözümüyle karşımıza çıkar. 

En iyi bilinen eliptik denklemler Laplace ve Poisson denklemleridir ve sırasıyla, 

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 𝛻2𝜙 = 0; Laplace denklemi 

                   
 𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 𝑓(𝑥, 𝑦) = ∇2𝜙 = 𝑓;  Poisson denklemi 

şeklinde gösterilir. 
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Laplace denklemi potansiyel teorinin temel denklemlerinden birisi olduğundan fiziksel 

uygulamaları çoktur. Örneğin yüzeyleri izole edilmiş bir ortamda zamandan bağımsız bir ısı 

dağılımı varsa (ki buna karalı ısı denir) herhangi bir (x,y) noktasındaki ısı miktarını veren u(x,y) 

fonksiyonu Laplace denklemini sağlar. 

Ayrıca ısı kaynağı olmayan bir bölgede karalı sıcaklık dağılımı, iletkenlerle çevrili 

yüksüz bir bölgede elektrostatik potansiyel, kaynak veya kuyu olmayan bir akışkanda hız 

dağılımı vs. problemlerinde karşımıza çıkar. 

Dış kuvvetlerin etkisi altındaki bir telin zamana bağlı olarak denge konumuna gelmesi 

Poisson denklemi ile ifade edilir.  

 Eliptik tip denklem; 

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑦2
= 0 

denkleminde A= 1 , B=0 ve C= 1  dir.  

∆=𝐵2 − 4𝐴𝐶 = 0 − 4.1.1 = −4 < 0 olduğu için eliptik tip denklem denir. 

1.5.3. Parabolik tip 

Zamana bağlı ısı veya kütle yayılması problemlerinde karşılaşılır. En basit parabolik 

denklem  

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
 

şeklindedir. 

Bu denklem ısı transferi teorisinden elde edilmiş olup, çözümü termal olarak izole 

edilmiş bir çubuğun bir ucundan x kadar uzaklıktaki noktasında t zamanındaki veya t 

zamanından sonraki sıcaklığının belirlenmesine imkan sağlamaktadır. Bu tip denklemlerde 

başlangıç ve sınır koşulları bilinmektedir. 

 Parabolik tip denklem; 

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑥2
 

denkleminde A= 𝑘 , B=0 ve C= 0  dir.  

∆=𝐵2 − 4𝐴𝐶 = 0 − 4. 𝑘. 0 = 0 = 0 olduğu için parabolik tip denklem denir. 
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1.6. Sonlu Farklar Denklemi 

Ele alınan kısmi türevli denklemde birinci ve ikinci mertebeden türevler yerine sayısal 

karşılıkları olan sonlu fark formüllerinin konulması ile elde edilen denkleme, ilgili kısmi türevli 

denkleme karşılık gelen sonlu fark denklemi denir. 

Örneğin;  

Birinci mertebeden türev için sırasıyla ileri yönlü sonlu farklar denklemi, geri yönlü 

sonlu farklar denklemi ve merkezi sonlu farklar denklemi; 

𝑢′(𝑥) =
𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
 ,   𝑢′(𝑥) =

𝑢(𝑥) − 𝑢(𝑥 − ℎ)

ℎ
 ,     𝑢′(𝑥) =

𝑢(𝑥 + ℎ) − 𝑢(𝑥 − ℎ)

2ℎ
 

şeklinde yazılabilir. 

Yakınsaklık  

𝑈 = 𝑈(𝑥, 𝑡) bir kısmi türevli diferansiyel denklemin tam çözümü (analitik çözümü) u 

da bu kısmı diferansiyel denklem için fark denklemlerinden elde edilen yaklaşık çözüm olsun. 

Bu durumda eğer sabit bir noktada ya da sabit bir 𝑡 zaman sırası boyunca 𝛿𝑥, 𝛿𝑡 → 0 iken 

𝑢 → 𝑈 oluyorsa sonlu fark denklemi yakınsaktır denir. 

Kararlılık  

Parabolik türden kısmi türevli diferansiyel denklemlerin sonlu fark metodu ile sayısal 

çözümünde, hesaplamanın her aşamasında hatalar ortaya çıkar. Eğer ortaya çıkan bu hatalar 

hesaplama ilerledikçe sınırsız olarak büyümüyorsa bu uygulama kararlıdır denir. 

1.7. Türevlere Sonlu Fark Yaklaşımı  

     Bir u fonksiyonu ve onun türevleri tek değerli, sonlu ve x bağımsız değişkeninin 

sürekli bir fonksiyonu olsun. 

Taylor teoremine göre; 

𝑢(𝑥 + ℎ) = 𝑢(𝑥) + ℎ𝑢′(𝑥) +
ℎ2

2!
𝑢′′(𝑥) +

ℎ3

3!
𝑢′′′(𝑥) + ⋯                              (1.1) 

𝑢(𝑥 − ℎ) = 𝑢(𝑥) − ℎ𝑢′(𝑥) +
ℎ2

2!
𝑢′′(𝑥) −

ℎ3

3!
𝑢′′′(𝑥) + ⋯                                  (1.2) 

(1.1) denkleminden ikinci ve daha yüksek mertebeden türevler ihmal edilirse, 
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(𝑥 + ℎ) = 𝑢(𝑥) + ℎ𝑢′(𝑥) ⇒ 𝑢′(𝑥) =
𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
+ 𝑂(ℎ)                             

İleri yönlü fark yaklaşımı elde edilir. 

(1.2) denkleminden ikinci ve daha yüksek mertebeden türevler ihmal edilirse, 

(𝑥 + ℎ) = 𝑢(𝑥) + ℎ𝑢′(𝑥) ⇒ 𝑢′(𝑥) =
𝑢(𝑥 + ℎ) − 𝑢(𝑥)

ℎ
+ 𝑂(ℎ)                             

geri yönlü fark yaklaşımı elde edilir. 

(1.1) –(1.2) denkleminden üçüncü ve daha yüksek mertebeden türevler ihmal edilirse ve 

bu denklemler  toplanırsa, 

(𝑥 + ℎ) + 𝑢(𝑥 − ℎ) = 2𝑢(𝑥) + ℎ2𝑢′′(𝑥) + 𝑂(ℎ4) 

𝑢′′(𝑥) =
(𝑥 + ℎ) − 2𝑢(𝑥) + 𝑢(𝑥 − ℎ)

ℎ2
 

yazılabilir. 

(1.1) denkleminden (1.2) denklemi çıkarılırsa;  

(𝑥 + ℎ) − 𝑢(𝑥 − ℎ) = 2ℎ𝑢′(𝑥) + 𝑂(ℎ3) 

𝑢′(𝑥) =
(𝑥 + ℎ) − 𝑢(𝑥 − ℎ)

2ℎ
+ 𝑂(ℎ3) 

elde edilir. Bu ifadeye merkezi fark yaklaşımı adı verilir. Merkezi fark yaklaşımı geometrik 

olarak P noktasındaki teğetin eğimine AB kirişinin eğimi yardımıyla yaklaşımı ifade eder. Diğer 

fark yaklaşımlarına göre merkezi fark yaklaşımının daha iyi bir sonuç vereceği şekilden de 

görülmektedir. 

1.8. Crank-Nicolson Metodu 

Açık ve kapalı metotlar bir 𝜃 parametresini içeren daha genel bir formül altında 

birleştirilebilir. Bu formül;  

𝜃

ℎ2
(𝑣𝑖+1,𝑗 − 2𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗) +

1 − 𝜃

ℎ2
(𝑣𝑖+1,𝑗−1 − 2𝑣𝑖,𝑗−1 + 𝑣𝑖−1,𝑗−1) =

1

𝑘
(𝑣𝑖,𝑗 − 𝑣𝑖,𝑗−1) 

şeklindedir. 
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Burada θ= 0 alındığında Crank Nicolson metodunun açık çözümünü , θ= 1 alındığında 

ise Crank Nicolson kapalı çözümünü verir. Özel bir durum olarak ise 𝜃 =
1

2
 olduğunda ise 

sayısal yöntem bu yöntemi keşfeden John Crank ve Phyllis Nicolson adıyla anılmaktadır. 

1.8.1. Crank Nicolson açık çözüm metodu 

                                 
𝜕𝑢

𝜕𝑡
=

𝜕2𝑢

𝜕2𝑥
                                                         (1.3) 

Bir boyutlu parabolik denklemine ilgili fark yaklaşımlarını uygularsak, 

                              
𝑢𝑖,𝑗+1−𝑢𝑖,𝑗

𝑘
=

𝑢𝑖+1,𝑗−2𝑢𝑖,𝑗+𝑢𝑖−1,𝑗

ℎ2
                                       (1.4) 

eşitliğini elde ederiz. Burada,  𝑥 = 𝑖ℎ(𝑖 = 0,1,2,… ) ve 𝑡 = 𝑗𝑘(𝑘 = 0,1,2,… ) dir. (1.4) 

denkleminin düzenlenmesi sonucunda; 

ui,j+1 = ui,j + r(ui+1,j − 2ui,j + ui−1,j) 

eşitliği bulunur. 𝑟 =
𝑘

ℎ2
  olmak üzere bu formül, j. zaman sırasındaki bilinen sıcaklık değerlerine 

göre (i,j+1). düğüm noktasındaki bilinmeyenler  𝑢𝑖,𝑗+1 sıcaklık değerini verir. Bu yüzden birinci 

zaman sırasındaki eksene ait bilinmeyen u değerleri, bilinen sınır değerlerine ve t=0 anındaki 

başlangıç değerlerine göre hesaplanabilir. Benzer şekilde ikinci zaman sırasındaki değerlere 

göre hesaplanır ve bu şekilde devam edilir. Yani bir bilinmeyen düğüm noktası değerlerine göre 

ifade eden formüle açık (explicit) formül denir.  

Kullanımı kolay ve programlaması basit olan bu metot her zaman doğru çözüm vermez.  

Yapılacak bir kararlılık analizi, sonuçların doğru ve çözümün kararlı olması için 
k

h2
≤

1

2
 şartının 

sağlanması gerekliliğini ortaya koyar. Bu koşul ise zaman ve konum adımlarının keyfi 

alınamayacağını gösterir.  

1.8.2. Crank Nicolson kapalı çözüm metodu 

Klasik açık metot, hesaplama açısından çok basittir. Ancak kararlılık göz önüne 

alındığında 𝛿𝑡 = 𝑘 zaman adımının sınırlılığı söz konusudur. Hesaplamaların büyük bir zaman 

periyodu için yapılması gerektiğinden zaman adımlarının sayısı ve buna bağlı olarak da işlem 

sayısı artacaktır. Bu olumsuzluğu ortadan kaldırmak için 𝛿𝑡 = 𝑘 zaman adımının sınırlı 

olmadığı bazı sonlu fark yaklaşımları geliştirilmiştir. Bu yaklaşımlardan biri de Crank-Nicolson 

kapalı çözüm yaklaşımlarıdır. Crank ve Nicolson 𝑟 değerinin bütün değerleri için geçerli olan 
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(yakınsak ve kararlı ) ve daha az hesaplama gerektiren bir metot geliştirdiler. Bu metodun esası, 

denklemde görülen 
∂2u

∂2x
  yerine onun (j+1). ve j.zaman sırasındaki sonlu fark operatörü yazılarak 

ortalaması alınmasıdır. Bu takdirde, 

𝜕𝑢

𝜕𝑡
=
𝜕2𝑢

𝜕2𝑥
                                                  

denklemine, 

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝑘
=
1

2
{
𝑢𝑖+1,𝑗+1 − 2𝑢𝑖,𝑗+1 + 𝑢𝑖−1,𝑗+1

ℎ2
+
𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗

ℎ2
} 

Şeklinde bir yaklaşım elde edilir. 𝑟 =
𝑘

ℎ2
  olmak üzere bu denklemi düzenlersek, 

−𝑟𝑢𝑖−1,𝑗+1 + (2 + 2𝑟)𝑢𝑖,𝑗+1 − 𝑟𝑢𝑖+1,𝑗+1 = 𝑟𝑢𝑖−1,𝑗 + (2 + 2𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖+1,𝑗 

eşitliği elde edilir. Dikkat edilire bu denklemin sol tarafı u değerinin üç tane bilinmeyen 

değerini, sağ tarafı ise üç tane bilinen değeri içerir. 

 

Crank Nicolson Izgara Gösterimi 

Eğer her bir zaman sırasında 𝑛 tane düğüm noktası varsa o zaman 𝑗 = 0 ve 𝑖 =

1, 2, 3,… , 𝑛 için bulduğumuz denklemi bilinen başlangıç ve sınır koşullarına bağlı olarak birinci 

zaman sırasındaki n tane bilinmeyen için n tane denklem verecektir. Benzer şekilde j=1, birinci 

zaman adımında hesaplanmış değerlere bağlı olarak ikinci zaman sırasında bilinmeyen n tane u 

değerini ifade eder. Bu şekilde bir bilinmeyen düğüm noktası değerinin hesaplanması için bir 

denklem sisteminin çözümüne ihtiyaç duyuluyorsa o zaman bu metoda kapalı çözüm metodu 

denir. Oluşan bu denklem sistemi Gauss yok etme metodu ile çözülebilir. 
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2. DİFÜZYON DENKLEMİNİN SINIRLAYICI PADE YAKLAŞIMI İLE NÜMERİK                           

ÇÖZÜMÜ 

Bu bölümde, lineer difüzyon denkleminin sınırlayıcı Pade yaklaşımı ile çözümü 

incelenecektir. Bu metodun en büyük avantajı bazı r değerlerinde tam çözümün elde 

edilmesidir. Bu metodun uygulanmasında yüksek doğruluk, hızlı sonuca yaklaşma ve iyi 

sonuçların elde edildiği görülmektedir. Hesaplama sonucunda, elde edilen değerler diğer 

metotlarla elde edilen değerler ile karşılaştırılmıştır. 

2.1. Giriş 

Sınırlayıcı Pade yaklaşımı ile çeşitli çalışmalar yapılmıştır. Sınırlayıcı Pade yaklaşımı 

metodunu İsmail ve Elbarbary, parabolik kısmi diferansiyel denklemler için (İsmail ve 

Elbarbary, 1998, 1999;  İsmail vd. 2000) ; İsmail ve Younes hiperbolik kısmi diferansiyel 

denklemler için (İsmail ve Hassan 2000 a, 2000 b;  İsmail ve Elbarbary 2001) ;İsmail ve 

Elbietar schrodinger denklemi için (İsmail ve Elbietar, 2001, 2002)  uygulamışlardır. 

Şimdi aşağıdaki bir boyutlu difüzyon denklemini ele alalım. 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢)                                     0 < 𝑥 < 𝐿                                                                         (2.1) 

𝑢𝑡 = (𝐷(𝑢)𝑢𝑥)𝑥                                       0 < 𝑥 < 𝐿                                                                        (2.2) 

başlangıç şartı olarak, 

𝑢(𝑥, 0) = 𝑓(𝑥)                                         0 < 𝑥 < 𝐿                                                                    (2.3) 

sınır şartı olarak, 

𝑢(0, 𝑡) = 𝑔0(𝑥)                                              𝑡 > 0                                                                       (2.4) 

𝑢(𝐿, 𝑡) = 𝑔1(𝑥)                                                𝑡 > 0                                                                  (2.5) 

kullanılacaktır. 

Buradaki 𝑓(𝑢) fonksiyonları lineer kaynak fonksiyonlarıdır. 𝐷(𝑢) fonksiyonu, difüzyon 

terimidir. Bu difüzyon terimi, difüzyon işleminde önemli bir role sahiptir (Güraslan ve Sarı 

2011, Meral ve Tezer 2009, 2011). 𝐷(𝑢) difüzyon terimi birkaç farklı formda ortaya çıkabilir. 

İyi bilinen (well known) difüzyon işlemlerinden bazıları hızlı ve bazıları yavaş difüzyon 

işlemleridir. 𝐷(𝑢) = 𝑢𝑛 şeklinde bir difüzyon terimi için 𝑛 < 0 olduğunda hızlı difüzyon, 

𝑛 > 0 olduğunda yavaş difüzyon işlemi olur. 
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2.2. Metot 

2.2.1. Sınırlayıcı pade yaklaşımı (RPA) 

𝑓(𝑥) fonksiyonu için sınırlayıcı Pade yaklaşımı rasyonel fonksiyon tipinde aşağıdaki 

şekilde yazılabilir (Hasan vd.1995 a, 1995 b).  

𝑅𝑃𝐴[𝑀 + 𝛼 𝑁⁄ ]𝑓(𝑥)(𝑥) =
∑ 𝑎𝑖𝑥

𝑖𝑀
𝑖=0 +∑ Ԑ𝑖𝑥

𝑀+𝑖𝛼
𝑖=1

1+∑ 𝑏𝑖𝑥
𝑖𝑁

𝑖=1

                                            (2.6) 

Burada  𝛼 pozitif tamsayısı, 𝑁 nümeratöründen daha büyük dereceli olamaz. Yani 

𝛼 = 0(1)𝑁 dir. 

𝑓(𝑥) − 𝑅𝑃𝐴[𝑀 + 𝛼 𝑁⁄ ]𝑓(𝑥)(𝑥) = 0(𝑥
𝑀+𝑁+1)                                                                (2.7) 

𝑓(𝑥) fonksiyonu bir Maclauren Serisine sahip olsun. 

𝑓(𝑥) = ∑ 𝑐𝑖𝑥
𝑖∞

𝑖=0                                                                                                 (2.8) 

(2.6) ve (2.8) denklemlerinden (İsmail ve Elbarbary 1996) ; 

(∑ 𝑐𝑖𝑥
𝑖∞

𝑖=0 )(1 + ∑ 𝑏𝑖𝑥
𝑖𝑁

𝑖=1 ) − ∑ 𝑎𝑖𝑥
𝑖𝑀

𝑖=0 − ∑ Ԑ𝑖𝑥
𝑖+𝑀𝛼

𝑖=1 = 0(𝑥𝑀+𝑁+1)         (2.9) 

elde edilir. (2.9) eşitliğinin sol tarafı 𝑥’in ilk (𝑀 + 𝑁 + 1). kuvveti ihmal edilirse, (𝑀 + 𝑁 + 1) 

denklemden oluşan bir sistem elde edilir. 

 𝑎𝑟 = 𝑐𝑟 +∑ 𝑐𝑟−𝑖𝑏𝑖 ,
𝑟
𝑖=1 𝑟 = 0(1)𝑀                (𝑖 > 𝑀    𝑖𝑠𝑒    𝑏𝑖 = 0)                  

𝑐𝑀+𝑁−𝑠 + ∑ 𝑐𝑀+𝑁−𝑖−𝑠𝑏𝑖 = Ԑ𝑁−𝑠
𝑁
𝑖=1                   (𝑖 > 0      𝑖𝑠𝑒     𝑐𝑖 = 0 )         (2.10) 

Buradan, Ԑi’nin bir fonksiyonu olarak 𝑎𝑖 ve bi , 𝑖 = 0(1)𝛼 katsayıları hesaplanabilir. 

Dolayısıyla Ԑi  parametresi de (Hassan vd. 2013) hesaplanabilir.  

𝑓(𝑥𝑖) = 𝑅𝑃𝐴[𝑀 + 𝛼 𝑁⁄ ]𝑓(𝑥)(𝑥𝑖)    , 𝑖 = 1(1)𝛼                                           (2.11) 

Sınırlayıcı Pade yaklaşımına birkaç örnek verelim. Burada; α=1.  

  𝑅𝑃𝐴[1 1⁄ ]𝑓(𝑥)(𝑥) =
𝑎0+𝑎1𝑥

1+𝑏1𝑥
 

Burada ;     𝑎0 = 𝑐0 

 𝑎1 = ℇ1 
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                    𝑏1 =
ℇ1 − 𝑐1
𝑐0

 

 𝑅𝑃𝐴[2 1⁄ ]𝑓(𝑥)(𝑥) =
𝑎0+𝑎1𝑥+𝑎2𝑥

2

1+𝑏1𝑥
 

Burada ;     𝑎0 = 𝑐0 

                     𝑎1 = 𝑐1 +
𝑐0(ℇ1 − 𝑐2)

𝑐1
 

                     𝑎2 = ℇ1 

                    𝑏1 =
ℇ1 − 𝑐2
𝑐1

 

  𝑅𝑃𝐴[3 1⁄ ]𝑓(𝑥)(𝑥) =
𝑎0+𝑎1𝑥+𝑎2𝑥

2+𝑎3𝑥
3

1+𝑏1𝑥
 

Burada ;     𝑎0 = 𝑐0 

                     𝑎1 = 𝑐1 +
𝑐0(ℇ1 − 𝑐2)

𝑐1
 

                     𝑎2 = 𝑐2 +
𝑐1(ℇ1 − 𝑐3)

𝑐2
 

                     𝑎3 = ℇ1 

                    𝑏1 =
ℇ1 − 𝑐3
𝑐2

 

NOT: Sınırlayıcı Pade Yaklaşımında  Ԑi = 0 , 𝑖 = 1(1)𝛼  için klasik Pade yaklaşımı 

elde edilir.  

𝑃𝐴[𝑀 𝑁⁄ ]𝑓(𝑥)(𝑥) =
∑ 𝛽𝑖𝑥

𝑖𝑀
İ=0

1+∑ 𝛾𝑖𝑥
𝑖𝑁

𝑖=1

 .                                                                 (2.12) 

Sınırlayıcı Pade yaklaşımı için yerel kesme hatasını veren teorem aşağıdaki gibidir. 

Teorem 2.1. Eğer 𝑓(𝑥) fonksiyonu  (𝑛 + 1). mertebeden türeve sahipse her x 

için  {x0, x1, … , xα, x} nokta kümesini içine alan en küçük 𝐼 aralığında en az bir 𝜂 sayısı vardır. 

Buna göre;  

𝑅𝑀,𝑁,𝛼(𝑥) = 𝑓(𝑥) − 𝑅𝑃𝐴[𝑀 + 𝛼 𝑁⁄ ]𝑓(𝑥) =
∏ (𝑥)𝛼+1

(𝛼+1)!
(𝑅𝑀,𝑁,𝛼(𝜂))

(𝛼+1) (2.13) 
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Burada  ∏ (𝑥)𝛼+1 = 𝑥(𝑥 − 𝑥1)(𝑥 − 𝑥2)… (𝑥 − 𝑥𝛼) ve  𝑅𝑀,𝑁,𝛼 , sınırlayıcı pade 

yaklaşımı için yerel kesme hatasıdır (İsmail ve Elbarbary, 1996). 

2.2.2. Üstel matris için sınırlayıcı pade yaklaşımı  

𝑒𝑥𝑝(𝑟𝐴) üstel matrisi yakınsak kuvvet serileri şeklinde tanımlanabilir. 

exp(rA) = 𝐼 + rA +
r2

2!
𝐴2 +

r3

3!
𝐴3 +⋯ = ∑

𝑟𝑛

𝑛!
𝐴𝑛∞

𝑛=0 , 𝐴0 = 𝐼                       (2.14) 

Burada 𝐴, (𝑁 − 1)𝑋(𝑁 − 1) boyutlu bir matristir. 

Tek fonksiyon için sınırlayıcı pade yaklaşımı metodunda (2.6) denklemindeki Ԑi terimi, 

üstel matrisin sınırlayıcı pade yaklaşımındaki Ԑi  kare matrisine indirgenebilir. Burada 

Ԑ𝑖 =

(

 
 
 
 

𝜀1 𝜀1 0

𝜀2 𝜀2 𝜀2 ⋯

⋮ 𝜀3 𝜀3 ⋱

⋮ ⋮ ⋱
⋮ 𝜀𝑁−2 𝜀𝑁−2 𝜀𝑁−2

0 𝜀𝑁−1 𝜀𝑁−1)

 
 
 
 

(𝑁−1)𝑋(𝑁−1)

 

dır. 

Örneğin; 

𝑅𝑃𝐴[1 1⁄ ]exp(𝑟𝐴)(𝑟) = (𝐼 + (Ԑ1 −
1

2
𝐴) 𝑟)

−1

(𝐼 + (Ԑ1 +
1

2
𝐴)𝑟)            (2.15) 

2.2.3. Çözüm metodunun uygulanması  

Bu kısımda, 𝑓(𝑢) = −𝑢 için difüzyon denklemini inceleyeceğiz (Wazwaz, 2007). 

Böylece (2.1) denklemi, 

𝑢𝑡 = 𝑢𝑥𝑥 − 𝑢                                                                                                                         (2.16) 

şekline dönüşür. 

Başlangıç şartı olarak; 

𝑢(𝑥, 0) = sin𝑥                 0 < 𝑥 < 1                                                                                               (2.17) 

sınır şartı olarak da; 

𝑢(0, 𝑡) = 0                       𝑡 > 0 
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𝑢(1, 𝑡) = 0                       𝑡 > 0                                                                                                (2.18) 

kullanılacaktır. Bu probleminin tam çözümü;  

𝑈(𝑥, 𝑡) = 𝑒−2𝑡 sin 𝑥                                                                                                              (2.19) 

şeklindedir (Wazwaz, 2007). 

(2.16) denklemini başlangıç ve sınır koşullarıyla birlikte ele alalım. Düğüm noktaları x 

ve t doğrultusunda h ve k olan açık dikdörtgensel bir bölge üzerinde çalışacağız. (x,t) düğüm 

noktası (ih,jk) ile ifade edilir ve 𝑈(𝑖ℎ, 𝑗𝑘) = 𝑈𝑖,𝑗   ,   𝑖 = 0(1)𝑁  gösterimi kullanılır ve j negatif 

olmayan bir tam sayıdır. 

(2.6) denkleminin düğüm noktasındaki çözümü; 

𝑈𝑖,𝑗+1 = exp (𝑘(𝐷𝑥
2 − 1))𝑈𝑖,𝑗                                                                                         (2.20) 

şeklindedir (Hassan vd., 2000). 

(ih, jk) düğüm noktasında, 𝐷𝑥
2 kısmi türev gösterimi alışılmış formda ifade edilirse; 

𝐷𝑥
2 =

1

ℎ2
(𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗)                                                                                     (2.21) 

yazılabilir. 

Merkezi sonlu farklar formülünden; 

𝑈 = 𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1                                                                                                      (2.22) 

şeklinde yazılabilir. 

(2.21) ve (2.22) yaklaşımları (2.20) denkleminde yerine yazıldığında aşağıdaki eşitlik 

elde edilir. 

𝑈𝑗+1 = exp(𝑟𝐴)𝑈𝑗 ,     𝑟 =
𝑘

ℎ2
                                                                                            (2.23) 

Burada;    𝑈𝑗 = (𝑈1,𝑗, 𝑈2,𝑗, … , 𝑈𝑁−1,𝑗)
𝑇  , 𝑁ℎ = 1    ve  
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A =

[
 
 
 
 
 
 
 
−2 + 2h2

1 − h2

⋮
⋮
0

1 − h2

−2+ 2h2

1 − h2

⋯
1− h2

−2 + 2h2

⋯
⋯

1− h2

0

⋱

1 − h2

0
−2 + 2h2

1 − h2

0

1 − h2

−2+ 2h2]
 
 
 
 
 
 
 

(N−1)x(N−1)

 (2.24) 

A matrisinin nasıl elde edildiğini gösterelim. 

(2.20) denkleminde (2.21) ve (2.22) denklemlerini yazalım.  

𝑈𝑖,𝑗+1 = exp (𝑘(
1

ℎ2
(𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗) − 𝑈𝑖+1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖−1,𝑗)) 

             = exp (
𝑘

ℎ2
((1 − ℎ2)𝑈𝑖+1,𝑗 + (−2 + 2ℎ

2)𝑈𝑖,𝑗 + (1 − ℎ
2)𝑈𝑖−1,𝑗)) 

Burada; 𝑟 =
𝑘

ℎ2
  . Bu ifadeleri matrise yerleştirelim ve başlangıç şartından dolayı ilk 

satırda birinci sütundaki terim, son satırda son sütundaki terim ihmal edilip, (2.24) deki gibi 

kayan matris elde edilir. 

(2.23) denklemindeki üstel matris form yaklaşımı kullanıldığında; 

𝑅𝑃𝐴[1 1⁄ ]exp(𝑟𝐴)(𝑟) = (𝐼 + (Ԑ −
1

2
𝐴) 𝑟)

−1
. (𝐼 + (Ԑ +

1

2
𝐴) 𝑟)                                           (2.25) 

olur. (2.16) denkleminin düğüm noktalarındaki yaklaşık çözümü; 

(Ԑ𝑖 −
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗+1 + [(Ԑ𝑖 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗+1 + (Ԑ𝑖 −
1

2
(1 − ℎ2))𝑟𝑈𝑖+1,𝑗+1 

 

= (Ԑ𝑖 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗 + [(Ԑ𝑖 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗 + (Ԑ𝑖 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖+1,𝑗   (2.26) 

eşitliği ile elde edilmiştir. 

Denklemin düğüm noktasındaki tam çözümü       𝑈𝑖,𝑗+1 = exp (𝑘(𝐷𝑥
2 − 1))𝑈𝑖,𝑗     dir. 

Bu tam çözümde hem merkezi sonlu farklar formülünü hem de türevin merkezi sonlu farklar 

formülünü yazarsak;  

𝑈𝑗+1 = exp (𝑟𝐴)𝑈𝑗  , r=
k

h2
    

bulunur.  
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                 𝑈𝑗+1 = (𝐼 + (Ԑ𝑖 −
1

2
𝐴) 𝑟)

−1
(𝐼 + (Ԑ𝑖 +

1

2
𝐴)𝑟)𝑈𝑗  

(Ԑ𝑖 −
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗+1 + [(Ԑ𝑖 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗+1 + (Ԑ𝑖 −
1

2
(1 − ℎ2))𝑟𝑈𝑖+1,𝑗+1 

 

= (Ԑ𝑖 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗 + [(Ԑ𝑖 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗 + (Ԑ𝑖 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖+1,𝑗    

olduğunu gösterelim.  

 A = [
−2 + 2h2 1 − h2 0
1 − h2 −2 + 2h2 1 − h2

0 1 − h2 −2 + 2h2
]    ,    ℇi = [

ℇ1 ℇ1 0
ℇ2 ℇ2 ℇ2
0 ℇ3 ℇ3

]  ,  𝐼 = [
1 0 0
0 1 0
0 0 1

] 

𝑈𝑗+1 = (𝑈𝑖−1,𝑗+1, 𝑈𝑖,𝑗+1, 𝑈𝑖+1,𝑗+1)
𝑇   ve      𝑈𝑗 = (𝑈𝑖−1,𝑗, 𝑈𝑖,𝑗, 𝑈𝑖+1,𝑗)

𝑇 olsun.  

𝑈𝑗+1 = (𝐼 + (Ԑ𝑖 −
1

2
𝐴) 𝑟)

−1

(𝐼 + (Ԑ𝑖 +
1

2
𝐴)𝑟)𝑈𝑗 

eşitliğindeki parantez içindeki ifadeleri bulalım. 

(𝐼 + (Ԑ𝑖 −
1

2
𝐴) 𝑟) = 

                               [[
1 0 0
0 1 0
0 0 1

] + ([

ℇ1 ℇ1 0
ℇ2 ℇ2 ℇ2
0 ℇ3 ℇ3

] −
1

2
[
−2 + 2h2 1 − h2 0
1 − h2 −2+ 2h2 1 − h2

0 1 − h2 −2 + 2h2
]  ) 𝑟] 

    =

[
 
 
 
 
 1 + (ℇ1 −

1

2
(−2 + 2h2)) 𝑟 (ℇ1 −

1

2
(1 − h2)) 𝑟 0

(ℇ2 −
1

2
(1 − h2)) 𝑟 1 + (ℇ2 −

1

2
(−2 + 2h2)) 𝑟 (ℇ2 −

1

2
(1 − h2)) 𝑟

0 (ℇ3 −
1

2
(1 − h2)) 𝑟 1 + (ℇ3 −

1

2
(−2 + 2h2)) 𝑟]

 
 
 
 
 

 

Ve  

(𝐼 + (Ԑ𝑖 +
1

2
𝐴) 𝑟) = 

                               [[
1 0 0
0 1 0
0 0 1

] + ([

ℇ1 ℇ1 0
ℇ2 ℇ2 ℇ2
0 ℇ3 ℇ3

] +
1

2
[
−2 + 2h2 1 − h2 0
1 − h2 −2+ 2h2 1 − h2

0 1 − h2 −2 + 2h2
]  ) 𝑟] 
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    =

[
 
 
 
 
 1 + (ℇ1 +

1

2
(−2 + 2h2)) 𝑟 (ℇ1 +

1

2
(1 − h2)) 𝑟 0

(ℇ2 +
1

2
(1 − h2)) 𝑟 1 + (ℇ2 +

1

2
(−2 + 2h2)) 𝑟 (ℇ2 +

1

2
(1 − h2)) 𝑟

0 (ℇ3 +
1

2
(1 − h2)) 𝑟 1 + (ℇ3 +

1

2
(−2 + 2h2)) 𝑟

]
 
 
 
 
 

 

Şeklinde bulunur.  𝑈𝑗+1 = (𝐼 + (Ԑ𝑖 −
1

2
𝐴) 𝑟)

−1
(𝐼 + (Ԑ𝑖 +

1

2
𝐴)𝑟)𝑈𝑗 eşitliğinin soldan 

her iki tarafını (𝐼 + (Ԑ𝑖 −
1

2
𝐴) 𝑟) ile çarpalım;  

[
 
 
 
 
 1 + (ℇ1 −

1

2
(−2 + 2h2)) 𝑟 (ℇ1 −

1

2
(1 − h2)) 𝑟 0

(ℇ2 −
1

2
(1 − h2)) 𝑟 1 + (ℇ2 −

1

2
(−2 + 2h2)) 𝑟 (ℇ2 −

1

2
(1 − h2)) 𝑟

0 (ℇ3 −
1

2
(1 − h2)) 𝑟 1 + (ℇ3 −

1

2
(−2 + 2h2)) 𝑟]

 
 
 
 
 

. [

𝑈𝑖−1,𝑗+1
𝑈𝑖,𝑗+1
𝑈𝑖+1,𝑗+1

]

=

[
 
 
 
 
 1 + (ℇ1 +

1

2
(−2 + 2h2)) 𝑟 (ℇ1 +

1

2
(1 − h2)) 𝑟 0

(ℇ2 +
1

2
(1 − h2)) 𝑟 1 + (ℇ2 +

1

2
(−2 + 2h2)) 𝑟 (ℇ2 +

1

2
(1 − h2)) 𝑟

0 (ℇ3 +
1

2
(1 − h2)) 𝑟 1 + (ℇ3 +

1

2
(−2 + 2h2)) 𝑟

]
 
 
 
 
 

. [

𝑈𝑖−1,𝑗
𝑈𝑖,𝑗
𝑈𝑖+1,𝑗

] 

şeklinde yazılabilir. Buradan; ikinci satırdaki elemanlar çarpılırsa;  

((Ԑ2 −
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗+1 + [(Ԑ2 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗+1 + ((Ԑ2 −
1

2
(1 − ℎ2))𝑟𝑈𝑖+1,𝑗+1 

 

= ((Ԑ2 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗 + [((Ԑ2 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗 + ((Ԑ2 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖+1,𝑗    

eşitliği bulunur.  Genel halini yazarsak;  

(Ԑ𝑖 −
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗+1 + [(Ԑ𝑖 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗+1 + (Ԑ𝑖 −
1

2
(1 − ℎ2))𝑟𝑈𝑖+1,𝑗+1 

 

= (Ԑ𝑖 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖−1,𝑗 + [(Ԑ𝑖 − (1 − ℎ

2))𝑟 + 1]𝑈𝑖,𝑗 + (Ԑ𝑖 +
1

2
(1 − ℎ2)) 𝑟𝑈𝑖+1,𝑗 

bulunur. 
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Ԑi  değerleri ilk adımdan itibaren hesaplanmaya başlanır. İlk seçim olarak Ԑ1 = [Ԑi,j] 

üçgensel formdadır. Buna göre;     Ԑ𝑖,𝑖−1 = Ԑ𝑖,𝑖 = Ԑ𝑖,𝑖+1 = Ԑ𝑖    ve Ԑi,j = 0  dır. Ԑ1 ‘in ikinci 

seçimi köşegen matris formundadır. Dolayısıyla Ԑ1 = [Ԑi,j],   Ԑi,i = Ԑi  ve Ԑi,j = 0 dır.  

2.3. Nümerik Sonuçlar 

Sınırlayıcı pade yaklaşımının doğruluğunu göstermek için farklı t zamanlarında farklı 

metotlardan elde edilen sonuçlar tabloda karşılaştırılmıştır. Tablodaki veriler tam değerlere 

kompakt sonlu farklar metoduna ait değerlere sınırlayıcı Taylor yaklaşımı değerlerine ve 

sınırlayıcı Pade yaklaşımı değerlerine aittir. Ayrıca tabloda sonuçlardan elde edilen mutlak 

hatalar da belirtilmiştir.  

Çizelge 2.1. Sınırlayıcı Pade Yaklaşımı için farklı t=0.01 zamanında mutlak hatalar. 

T X Tam  

Sonuç 

RPA RTA Mutlak  

hata 

CFD6 Mutlak Hata 

(Güraslan, 2010) 

0.01 

1/6 0.162611 0.162611 0.162611 1.02E-10   

2/6 0.320715 0.320715 0.320715 1.01E-10   

3/6 0.469932 0.469932 0.469932 1.01E-10 0.469932 1.02E-11 

4/6 0.606125 0.606125 0.606125 1.06E-10   

5/6 0.725520 0.725520 0.725520 1.12E-10   

1 0.824808 0.824808 0.824808 1.15E10   

 

 

 

 

 

 

 

 



19 

 

Çizelge 2.2. Sınırlayıcı Pade Yaklaşımı için farklı t=0.1 zamanında mutlak hatalar. 

T X Tam 

Sonuç 

RPA RTA Mutlak 

Hata 

CFD6 Mutlak Hata 

(Güraslan, 2010) 

0.1 

1/6 0.135824 0.135824 0.135824 1.26E-9   

2/6 0.267884 0.267884 0.267884 1.16E-9   

3/6 0.392520 0.392520 0.392520 2.01E-11 0.392520 2.04E-11 

4/6 0.506278 0.506278 0.506278 1.25E-10   

5/6 0.606005 0.606005 0.606005 1.21E-9   

1 0.688938 0.688938 0.688938 1.66E-9   

 

Çizelge 2.3. Sınırlayıcı Pade Yaklaşımı için farklı t=1 zamanında mutlak hatalar. 

T X Tam 

Sonuç 

RPA RTA Mutlak 

Hata 

CFD6 Mutlak Hata 

(Güraslan, 2010) 

1.00 

1/6 0.022451 0.022451 0.022451 2.54E-10   

2/6 0.044280 0.044280 0.044280 2.12E-10   

3/6 0.064883 0.064883 0.064883 4.25E-12 0.064883 4.91E-12 

4/6 0.083687 0.083687 0.083687 1.92E-11   

5/6 0.100172 0.100172 0.100172 2.04E-10   

1 0.113880 0.113880 0.113880 2.52E-10   

 

Uygulanan nümerik örnek sonucunda bir boyutlu difüzyon denkleminin sınırlayıcı Pade 

yaklaşımı (RPA) metoduyla çözüm sonuçları tabloya aktarılmıştır. Böylece Tablo 1, Tablo 2, 

Tablo 3 oluşturulmuştur. Tablo 1‘de t=0.01, x=0.5 için elde edilen sonuçlar Kompakt sonu 

farklar metodu ve sınırlayıcı Taylor yaklaşımı (RTA) metodu ile karşılaştırılmıştır. Tablo 2 ve 

Tablo 3’te ise t=0,1 ve t=1, x=0.5 için karşılaştırılmıştır. 

Tüm bu sonuçlara bakıldığında uygulanan metot, diğer metotlara göre daha geçerli 

sonuçlar vermektedir. Bu metot ile çözüm işlemi kolay olduğundan uygulama daha verimli 

olmaktadır. Bu metot, diğer denklemlerin çözümlerinde de uygulanabilir.  
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3. SİNGÜLER PERTÜRBE EDİLMİŞ HİPERBOLİK DENKLEMİN SINIRLAYICI  

PADE YAKLAŞIMI İLE ÇÖZÜMÜ 

Bu bölümde, singüler pertürbe edilmiş hiperbolik denklemin sınırlayıcı Pade yaklaşımı 

ile çözümü incelenecektir. Denkleme bu çözüm metodu uygulanacak, elde edilen sonuçlar tablo 

halinde verilecektir. Ayrıca denklemin kararlılık analizinden bahsedilecektir.  

 3.1. Giriş  

Singüler pertürbe edilmiş birinci mertebeden hiperbolik kısmi diferansiyel denklemini 

ele alalım. 

𝛿
𝜕𝑢

𝜕𝑡
+ 𝑎

𝜕𝑢

𝜕𝑥
= 𝑓(𝑥, 𝑡),      𝑥 > 0 , 𝑡 ≥ 0                                                                              (3.1) 

Burada; 𝛿 > 0,   𝑎 reel pozitif sabit ve 𝑓(𝑥, 𝑡), verilen başlangıç ve sınır koşullarını 

sağlayan sürekli fonksiyondur. 

Başlangıç koşulu olarak; 

𝑢(𝑥, 0) = 𝑢0(𝑥), 0 ≤ 𝑥 ≤ 1 

ve  sınır koşulu olarak; 

𝑢(0, 𝑡) = 𝑔0(𝑡),      𝑢(1, 𝑡) = 𝑔1(𝑡),    𝑡 ≥ 0                                 (3.2) 

kullanılacaktır. 

𝑢𝑥 için aşağıdaki merkezi sonlu farklar yaklaşımı kullanılır. 

𝑢(𝑖ℎ, 𝑡) =
1

2ℎ
[(𝑢(𝑖 + 1)ℎ, 𝑡) − (𝑢(𝑖 − 1)ℎ, 𝑡)];    𝑖 = 1(1)𝑁 − 1. 

(3.1) denkleminde u(ih,t)’den u(x,t)’ye yarı ayrıştırılmış bir yaklaşım yapılırsa  

𝑑𝑈(𝑖ℎ,𝑡)

𝑑𝑡
=

𝑎

2𝛿ℎ
[𝑈((𝑖 − 1)ℎ, 𝑡) − 𝑈((𝑖 + 1)ℎ, 𝑡)] +

1

𝛿
𝑓(𝑥, 𝑡);  1 ≤ 𝑖 ≤ 𝑁 − 1 , 𝑡 ≥ 0  

(3.3) 

elde edilir. 

Burada; 

 𝑈(𝑖ℎ, 0) = 𝑢0(𝑖ℎ), 𝑈(0, 𝑡) = 𝑔0(𝑡) 𝑣𝑒 𝑈(𝑁ℎ, 𝑡) = 𝑔1(𝑡),    𝑡 ≥ 0 

dır ve (3.3) denklemini matris formunda yazarsak; 
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𝑑𝑈

𝑑𝑡
= 𝐴𝑈(𝑡) + 𝐹(𝑡)                                                                                                    (3.4) 

yazılır. Burada; 

𝑈(𝑡) = (𝑈1(𝑡), 𝑈2(𝑡), …𝑈𝑁−1(𝑡))
𝑇
 

     𝐹(𝑡) =
1

𝛿
(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑁−1(𝑡))

𝑇 

𝑈𝑖(𝑡) = 𝑈(𝑖ℎ, 𝑡), 𝑓𝑖(𝑡) = 𝑓(𝑖ℎ, 𝑡) 

ve  

𝐴 =

[
 
 
 
 
 
0 −1 ⋯
1 0 −1 ⋮ ⋱ ⋮

⋱ ⋱
⋱ ⋱ ⋱

⋱ 1 0 −1
1 0 ]

 
 
 
 
 

(𝑁−1)𝑥(𝑁−1)

 

şeklindedir. 

(3.4) diferansiyel denklem sisteminin çözümü (Hassan, 2005; İbrahim, vd., 1987);  

          𝑈(𝑡) = exp(𝑡𝐴)𝑈(𝑡) + [−𝐼 + exp(𝑡𝐴)]𝐴−1𝐹.                                                                 (3.5) 

ya da eş olarak  

     𝑈(𝑡 + ∆𝑡) = −𝐴−1𝐹 + exp(∆𝑡𝐴) [ 𝑈(𝑡) + 𝐴−1𝐹 ]                                                         (3.6) 

şeklindedir. 

[M/N], PA[M/N] pade yaklaşımını kullanarak exp(∆𝑡𝐴) yaklaşımını yaparsak (3.6) 

denklemini her j adımı için 

               𝑈𝑗+1 = −𝐴−1𝐹 + 𝑃𝐴𝑒𝑥𝑝(𝑘,𝐴)[  𝑈
𝑗 + 𝐴−1𝐹 ], ∆𝑡 = 𝑘                                                       (3.7) 

şeklinde yazılabilir. 

Bir sonraki bölümde hiperbolik denklemler için singüler pertürbe edilmiş başlangıç 

sınır-değer probleminin çözümü için kapalı metot tanımlanacak ve yöntemin etkinliği diğer 

metotlarla karşılaştırılacaktır.(Hassan vd., 1995; 1998 ) makalelerinde olduğu gibi üstel matris 

yaklaşımı için sınırlayıcı Pade yaklaşımı kullanılacaktır. 
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3.2. Metot 

3.2.1. Çözüm metodu  

Üstel  exp (𝑘𝐴) için [0/1] ve [1/1] sınırlayıcı Pade yaklaşımlarını (Hassan vd., 1999) ‘da 

aşağıdaki formda verilmiştir. 

i. 𝑅𝑃𝐴[0/1]exp (𝑘𝐴) = (𝐼 + (ℰ − 𝑘)𝐴)
−1                                        (3.8) 

(3.6) denklemindeki 𝑒𝑥𝑝 (𝑘𝐴) matrisinini (3.8) denkleminde yazarsak; 

  𝑈𝑗+1 = −𝐴−1𝐹 + (𝐼 + (ℰ − 𝑘)𝐴)−1[  𝑈𝑗 + 𝐴−1𝐹 ], ∆𝑡 = 𝑘                        (3.9) 

ya da  

(𝐼 + (ℰ − 𝑘)𝐴)𝑈𝑗+1 = 𝑈𝑗 − (ℇ − 𝑘)𝐹                                                                     (3.10) 

elde edilir. 

Böylece; 

(
(ℰ−𝑘)𝑎

2𝛿ℎ
) 𝑢𝑖−1,𝑗+1 + 𝑢𝑖,𝑗+1 − (

(ℰ−𝑘)𝑎

2𝛿ℎ
) 𝑢𝑖+1,𝑗+1 = 𝑢𝑖,𝑗 − (

ℰ−𝑘

𝛿
) 𝑓(𝑥𝑖, 𝑡)          (3.11) 

formu elde edilir. 

Benzer şekilde 𝑒𝑥𝑝(𝑘𝐴) için Hassan ve arkadaşları sınırlayıcı Pade yaklaşımındaki 

[1/1] aşağıdaki şekildedir. 

ii. 𝑅𝑃𝐴[1 1⁄ ]exp(𝑘𝐴)(𝑘) = (𝐼 + (Ԑ −
1

2
𝑘)𝐴)

−1

. (𝐼 + (Ԑ +
1

2
𝑘)𝐴)             (3.12) 

Benzer şekilde (3.6) denkleminde 𝑒𝑥𝑝(𝑘𝐴) üstel yaklaşımı için (3.8) kullanılırsa; 

𝑈𝑗+1 = −𝐴−1𝐹 + (𝐼 + (Ԑ −
1

2
𝑘)𝐴)

−1

. (𝐼 + (Ԑ +
1

2
𝑘)𝐴) [  𝑈𝑗 + 𝐴−1𝐹 ]  (3.13) 

ya da 

(𝐼 + (Ԑ −
1

2
𝑘)𝐴)𝑈𝑗+1 = (𝐼 + (Ԑ +

1

2
𝑘)𝐴)𝑈𝑗 + 𝑘𝐹        (3.14) 

elde edilir. 

Buradan benzer şekilde; 
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(
(ℰ−0.5𝑘)𝑎

2𝛿ℎ
) 𝑢𝑖−1,𝑗+1 + 𝑢𝑖,𝑗+1 − (

(ℰ−0.5𝑘)𝑎

2𝛿ℎ
) 𝑢𝑖+1,𝑗+1 = (

(ℰ+0.5𝑘)𝑎

2𝛿ℎ
) 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗 −

 (
(ℰ+0.5𝑘)𝑎

2𝛿ℎ
) 𝑢𝑖+1,𝑗 + (

𝑘

𝛿
) 𝑓(𝑥𝑖, 𝑡)  

(3.15)  

formu bulunur. 

 (3.11) ve (3.15) denklemlerinde ℰ = 0 alındığında, [0/1] ve [1/1] yaklaşımları için 

klasik Pade yaklaşımı elde edilir. ℰ kısıtlayıcı parametreyi hesaplamak için ilk adımda ya tam 

çözümü bilmeliyiz ya da çok iyi bir nümerik çözüme sahip olmalıyız.. 

3.3. Kararlılık Analizi 

Von Neumann kararlılık analizi metodunu kullanarak; (3.11) ve (3.15) fark denklemleri 

için 𝐺1 𝑣𝑒 𝐺2 çarpanlarını elde edebiliriz. 

𝐺1 =
1

1 − 𝐼 (
(ℰ − 𝑘)𝑎
𝛿ℎ

𝑠𝑖𝑛 𝜃)
   ,    𝐺1 =

1 − 𝐼 (
(ℰ + 0.5𝑘)𝑎

𝛿ℎ
𝑠𝑖𝑛 𝜃)

1 − 𝐼 (
(ℰ − 0.5𝑘)𝑎

𝛿ℎ
𝑠𝑖𝑛 𝜃)

 , 𝐼 = √−1 

(3.16) ve (3.20) denklemlerinden koşulsuz şartsız |𝐺1| ≤ 1 𝑣𝑒 |𝐺2| ≤ 1 olarak 

düşünülür. 

3.4. Yerel Kesme Hatası  

i. Sınırlayıcı Pade yaklaşımı [0/1] için; 

Taylor açılımını kullanarak  (İsmail vd. 2000,2001; İsmail ve Younes 2000 a, 2000 b.) ‘ 

da belirtildiği gibi (3.11) fark denklemlerinin yerel kesme hatası elde edilebilir. Buna göre;  

Ti,j=
(ℰ − 𝑘)𝑎

𝛿ℎ
∑(

ℎ2𝑛+1

(2𝑛 + 1)!

𝜕2𝑛+1𝑢

𝜕𝑥2𝑛+1
)
(𝑖,𝑗)

+

∞

𝑛=0

∑(
𝑘𝑛

𝑛!

𝜕𝑛𝑢

𝜕𝑛
)
(𝑖,𝑗)

∞

𝑛=0

−
(ℰ − 𝑘)𝑎

𝛿ℎ
∑

ℎ2𝑚+1

(2𝑚 + 1)!
∑ (

𝑘𝑛

𝑛!

𝜕2𝑚+𝑛+1𝑢

𝜕𝑥2𝑚+1𝜕𝑡𝑛
)
(𝑖,𝑗)

∞

𝑛=0

∞

𝑚=0

 

şeklinde yazabiliriz. 

Yeterince büyük pozitif n tamsayısı için en az bir  M1, M2, M3 pozitif reel sayıları var 

olmak üzere, 
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 ∀𝑛 𝑖ç𝑖𝑛,     |
𝜕𝑛𝑢

𝜕𝑥𝑛
| ≤ 𝑀1 ,    |

𝜕𝑛𝑢

𝜕𝑡𝑛
| ≤ 𝑀2 ,    |

𝜕𝑚+𝑛𝑢

𝜕𝑥𝑚𝜕𝑡𝑛
| ≤ 𝑀3 

ve  𝑀 = 𝑚𝑎𝑥{𝑀1,𝑀2,𝑀3} olmak üzere,  

(3.11) denklemindeki üst sınırdaki yerel kesme hatası Ti,j; 

|Ti,j| ≤ 𝑀 |𝑒𝑘 (1 +
(ℇ − 𝑘)𝑎

𝛿ℎ
. sinhℎ) − 1| 

olacak şekilde yazılabilir. 

ii. Sınırlayıcı Pade yaklaşımı (RPA) [1/1] için; 

Yine aynı şekilde Taylor açılımı kullanarak (3.15) denkleminin yerel kesme hatası  

Ti,j=(𝑟1 − 𝑟2)∑(
ℎ2𝑛+1

(2𝑛 + 1)!

𝜕2𝑛+1𝑢

𝜕𝑥2𝑛+1
)
(𝑖,𝑗)

+

∞

𝑛=0

∑(
𝑘𝑛

𝑛!

𝜕𝑛𝑢

𝜕𝑛
)
(𝑖,𝑗)

              

∞

𝑛=0

−𝑟1 ∑
ℎ2𝑚+1

(2𝑚 + 1)!
∑ (

𝑘𝑛

𝑛!

𝜕2𝑚+𝑛+1𝑢

𝜕𝑥2𝑚+1𝜕𝑡𝑛
)
(𝑖,𝑗)

∞

𝑛=0

∞

𝑚=0

 

burada;    𝑟1 =
(ℇ−0.5𝑘)𝑎

𝛿ℎ
 , 𝑟2 =

(ℇ+0.5𝑘)𝑎

𝛿ℎ
   dır.  Yeterince büyük pozitif n tamsayısı için en az bir  

M1, M2, M3 pozitif reel sayıları var olmak üzere, 

 ∀𝑛 𝑖ç𝑖𝑛,     |
𝜕𝑛𝑢

𝜕𝑥𝑛
| ≤ 𝑀1 ,    |

𝜕𝑛𝑢

𝜕𝑡𝑛
| ≤ 𝑀2 ,    |

𝜕𝑚+𝑛𝑢

𝜕𝑥𝑚𝜕𝑡𝑛
| ≤ 𝑀3 

ve  𝑀 = 𝑚𝑎𝑥{𝑀1,𝑀2,𝑀3} olmak üzere,  

|Ti,j| ≤ 𝑀|(𝑟1𝑒
𝑘 − 𝑟2) sinhℎ + 𝑒

𝑘 − 1| 

şeklinde bulabiliriz. 

3.5. Nümerik Sonuçlar 

Şimdi nümeriksel bir örnekle (3.11) ve (3.15) deki klasik metot ile (3.6) daki üstel 

𝑒𝑥𝑝(𝑘𝐴)  için [0/1] ve [1/1] Pade yaklaşımını kıyaslayalım. 

Singüler pertürbe edilmiş hiperbolik kısmi diferansiyel denklemi ele alalım. 

𝛿
𝜕𝑢

𝜕𝑡
+
𝜕𝑢

𝜕𝑥
= 2𝑥 − 1 

Başlangıç koşulu ve sınır koşulu olarak; 
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 𝑢(𝑥, 0) = 𝑒𝑥𝑝(−𝑡 𝛿⁄ ) 

𝑢(𝑥, 0) = 𝑒𝑥𝑝(𝑥) + 𝑥2 − 𝑎𝑥𝑛 

𝑑(𝑥, 1) = 𝑒𝑥𝑝(𝑥 − 1 𝛿⁄ ) + 𝑥2 − 𝑥 

kullanılacaktır. 

Problemin tam çözümü ise; 

𝑢(𝑥, 𝑡) = 𝑒𝑥𝑝(𝑥 − 𝑡 𝛿⁄ ) + 𝑥2 − 𝑥 

dir. 

Problemin çözümü için 2 durum incelenebilir. 

Durum 1: ℰi sınırlayıcı parametresi hesaplanır. Daha sonra x=0.1  , 0.5 , 0.9  , h=0.1 ve 

δ=0.01 alınarak Tablo 1’deki değerler elde edilir.  

Durum 2: genel olarak ilk aşamada tam çözüm bilinmez. Bu yüzden ilk adımda 

hesaplama yapabilmek için klasik Pade yaklaşımı metodu kullanılır. Daha sonraki işlemlerde ℰ 

kısıtlayıcı parametresi kullanılarak sınırlayıcı Pade yaklaşımı uygulanır. 

Çizelge 3.1. Farklı adımlarda kullanılan metodun ve klasik metodun mutlak hataları.  

  Sınırlayıcı Pade Yaklaşımında                   

Mutlak Hata 

Klasik Metotta Mutlak Hata 

     x      RPA[1/1]      RPA[0/1]      PA[1/1]      PA[0/1] 

  0.1 

  0.5 

  0.9 

   

  500 

4.30 × 10−16 

4.44 × 10−16 

2.77 × 10−16 

2.44 × 10−15 

2.38 × 10−15 

2.38 × 10−15 

2.73 × 10−3 

3.73 × 10−3 

5.32 × 10−3 

7.38 × 10−2 

7.38 × 10−2 

7.38 × 10−2 

  0.1 

  0.5 

  0.9 

   

  1000 

1.92 × 10−15 

1.83 × 10−15 

1.87 × 10−15 

2.44 × 10−15 

2.38 × 10−15 

2.38 × 10−15 

4.55 × 10−3 

4.04 × 10−3 

2.93 × 10−3 

7.38 × 10−2 

7.38 × 10−2 

7.38 × 10−2 

  0.1 

  0.5 

  0.9 

  

  1500 

   3.63 × 10−15 

3.66 × 10−15 

3.44 × 10−15 

2.44 × 10−15 

2.48 × 10−15 

2.48 × 10−15 

3.98 × 10−3 

3.70 × 10−3 

4.40 × 10−3 

7.38 × 10−2 

7.38 × 10−2 

7.38 × 10−2 

  0.1 

  0.5 

  0.9 

   

  2000 

4.19 × 10−15 

4.27 × 10−15 

4.48 × 10−15 

2.44 × 10−15 

2.48 × 10−15 

2.48 × 10−15 

2.79 × 10−3 

4.06 × 10−3 

4.72 × 10−3 

7.38 × 10−2 

7.38 × 10−2 

7.38 × 10−2 
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Çizelge 3.2.  Farklı adımlarda kullanılan metodun ve klasik metodun mutlak hataları. 

  Sınırlayıcı Pade Yaklaşımında                   

Mutlak Hata 

Klasik Metotta Mutlak Hata 

     x      RPA[1/1]      RPA[0/1]      PA[1/1]      PA[0/1] 

  0.1 

  0.5 

  0.9 

   

  500 
8.68 × 10−15 

9.82 × 10−15 

1.12 × 10−14 

1.35 × 10−14 

1.37 × 10−14 

1.51 × 10−14 

1.78 × 10−3 

2.81 × 10−3 

3.91 × 10−3 

4.03 × 10−3 

5.60 × 10−3 

7.25 × 10−3 

  0.1 

  0.5 

  0.9 

   

  1000 
1.21 × 10−14 

1.01 × 10−14 

8.99 × 10−15 

1.07 × 10−15 

8.52 × 10−15 

7.97 × 10−15 

4.03 × 10−3 

2.73 × 10−3 

1.82 × 10−3 

6.99 × 10−3 

5.63 × 10−3 

4.37 × 10−3 

  0.1 

  0.5 

  0.9 

  

  1500 
   8.54 × 10−15 

1.06 × 10−14 

1.03 × 10−14 

2.94 × 10−15 

4.19 × 10−15 

4.12 × 10−15 

1.69 × 10−3 

2.96 × 10−3 

1.88 × 10−3 

4.62 × 10−3 

5.67 × 10−3 

6.66 × 10−3 

  0.1 

  0.5 

  0.9 

  

  2000 
1.11 × 10−15 

9.90 × 10−15 

9.02 × 10−15 

3.60 × 10−16 

1.60 × 10−15 

2.51 × 10−15 

3.81 × 10−3 

2.84 × 10−3 

1.88 × 10−3 

6.39 × 10−3 

5.65 × 10−3 

4.92 × 10−3 

               

Çizelge 3.3. Farklı adımlarda kullanılan metodun ve klasik metodun mutlak hataları. 

x 

         Sınırlayıcı Pade Yaklaşımında Mutlak Hata  
Klasik Metotta Mutlak Hata 

                     Durum 1           Durum 2 

    RPA[1/1]      RPA[0/1] RPA[1/1] RPA[0/1]      PA[1/1]     PA[0/1] 

  0.1 

  0.5 

  0.9 

   

500 
2.7 × 10−14 

3.5 × 10−14 

2.7 × 10−14 

4.2 × 10−14 

4.6 × 10−14 

1.1 × 10−13 

7.7 × 10−7 

1.3 × 10−6 

2.2 × 10−6 

7.7 × 10−7 

1.3 × 10−6 

2.2 × 10−6 

7.7 × 10−5 

1.3 × 10−4 

2.2 × 10−4 

7.5 × 10−5 

1.2 × 10−4 

2.1 × 10−4 

  0.1 

  0.5 

  0.9 

   

1000 
9.4 × 10−14 

6.7 × 10−14 

2.4 × 10−14 

6.5 × 10−14 

1.2 × 10−13 

3.2 × 10−13 

1.2 × 10−6 

2.4 × 10−6 

4.7 × 10−6 

1.2 × 10−6 

2.4 × 10−6 

4.7 × 10−6 

1.2 × 10−4 

2.4 × 10−4 

4.7 × 10−4 

1.2 × 10−4 

2.4 × 10−4 

4.6 × 10−4 

  0.1 

  0.5 

  0.9 

  

1500 
2.3 × 10−14 

8.3 × 10−14 

1.3 × 10−13 

7.4 × 10−14 

2.0 × 10−13 

5.9 × 10−13 

1.5 × 10−6 

3.5 × 10−6 

7.4 × 10−6 

1.5 × 10−6 

3.5 × 10−6 

7.4 × 10−6 

1.5 × 10−4 

3.5 × 10−4 

7.4 × 10−4 

1.5 × 10−4 

3.6 × 10−4 

7.2 × 10−4 

0.1 

0.5 

0.9 

 

2000 
6.8 × 10−14 

8.1 × 10−14 

3.0 × 10−13 

6.9 × 10−14 

2.8 × 10−13 

9.2 × 10−13 

1.6 × 10−6 

4.5 × 10−6 

1.0 × 10−6 

1.6 × 10−6 

4.5 × 10−6 

1.0 × 10−6 

1.6 × 10−4 

4.5 × 10−4 

1.0 × 10−3 

1.6 × 10−4 

4.3 × 10−4 

1.0 × 10−3 

 

1. Durum için Tablo 1,2,3 kullanılan metottan elde edilen mutlak hataların klasik 

metotla elde edilen mutlak hatalara göre çok daha küçüktür.  

2. Duruma göre elde edilen nümerik sonuçlar göstermektedir ki kullanılan yöntemdeki 

mutlak hata klasik yönteme göre 1. durumdaki kadar olmasa da yine de küçüktür.  
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4. GENELLEŞTİRİLMİŞ SINIRLAYICI PADE YAKLAŞIMI İÇİN AÇIK 

DETERMİNAT FORMÜLLERİ 

Bu çalışmada genelleştirilmiş sınırlayıcı Pade yaklaşımına bir giriş yapılmıştır. 

Ardından açık determinant formülleri sunulmuştur. Elde edilen temel sonuçlar Hassan N.A. 

İsmail tarafından yapılan sınırlayıcı Pade yaklaşımının çözülebilirliği ve tekliği çalışması ile 

desteklenmiştir. Uygulanan nümerik örnekler yöntemin etkinliğini göstermiştir.  

4.1. Giriş 

 (Hassan N.A. İsmail ve E.M.E. Elbarbary 1998; Hassan N.A.İsmail ve A.Y. Hassan 

2000 a, 2000 b; Hassan N.A. İsmail vd. 2000, Hassan N.A.İsmail 2005, 2004) aralarındaki 

çalışmalarda ifade edilen sınırlayıcı Pade yaklaşımı, parabolik ve hiperbolik kısmı diferansiyel 

denklemler için başlangıç ve sınır-değer problemlerinin çözümünde uygulanmıştır. Bu 

uygulama ile hızlı doğru sonuçlar alınmıştır. Bu yaklaşıma dayanarak (Hassan N.A.İsmail ve 

E.M.E. Elbarbary 2001, 2004; E.M.E Elbarbary vd. 2003)’de sınırlayıcı Taylor yaklaşımı ile 

sınırlayıcı Chebyshev rasyonel yaklaşımı geliştirilmiştir. 

𝑓(𝑥) fonksiyonu için 𝑥’e bilinen kuvvet serisi; 

𝑓(𝑥) = ∑ 𝑐𝑖𝑥
𝑖∞

𝑖=0     𝑐0 ≠ 0 , 𝑥 ∈ ℂ           (4.1) 

şeklindedir. Buna göre (4.1) denklemi ile tanımlanan 𝑓(𝑥) fonksiyonu için sınırlayıcı Pade 

yaklaşımı (Hassan N.A. İsmail 2004)’da tanımlandığı gibi; 

𝑅𝑃𝑓(𝑥)(𝑚, 𝛼, 𝑛)(𝑥) =
∑ 𝑎𝑖𝑥

𝑖𝑚
𝑖=0 +∑ Ԑ𝑖𝑥

𝑚+𝑖𝛼
𝑖=1

1+∑ 𝑏𝑖𝑥
𝑖𝑛

𝑖=1

              (4.2) 

şeklindedir. Böylece; 

𝑅𝑃𝑓(𝑥)(𝑚, 𝛼, 𝑛)(𝑥) − 𝑓(𝑥) = 𝑂(𝑥𝑚+𝑛+1)                                                           (4.3) 

𝑅𝑃𝑓(𝑥)(𝑚, 𝛼, 𝑛)(𝑥𝑖) = 𝑓(𝑥𝑖) , 𝑖 = 1,2,3, … , 𝛼                                                     (4.4) 

yazılabilir. Burada 𝑚, 𝑛 negatif olmayan tamsayılar, α pozitif tamsayıdır (𝛼 ≤ 𝑛).  

𝑎𝑖 , 𝑏𝑖 𝑣𝑒 ℇ𝑖 bilinmeyenleri (4.3) ve (4.4) yardımıyla hesaplanacaktır.  

Bu çalışmada sınırlayıcı Pade yaklaşımı için 𝛼 > 𝑛 durumunu ele alalım. Buradan 

hareketle genelleştirilmiş sınırlayıcı Pade yaklaşımını tanımlayalım. 
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4.2. Metot 

Tanım 4.1. (4.1) denklemindeki f(x) fonksiyonu için genelleştirilmiş sınırlayıcı Pade 

yaklaşımı; 

 𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥)(𝑥) =
∑ 𝑎𝑖𝑥

𝑖𝑚
𝑖=0 +∑ Ԑ𝑖𝑥

𝑚+𝑖𝛼
𝑖=1

∑ 𝑏𝑖𝑥
𝑖𝑛

𝑖=1

                                                          (4.5) 

şeklinde yazılabilir. 

Buradan; 

 𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥)(𝑥) − 𝑓(𝑥) = 𝑂(𝑥
𝑚+𝑛+1)                                                         (4.6) 

 𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥)(𝑥𝑖) = 𝑓(𝑥𝑖)                                                                                                (4.7) 

yazılabilir.  

Burada; 

i) 𝑚, 𝑛 negatif olmayan tamsayı ve α pozitif tamsayıdır. 

ii) 𝑥𝑖 ≠ 0,   𝑥𝑖 ≠ 𝑥𝑗  , 1 ≤ 𝑖 < 𝑗 ≤ 𝛼 

iii) 𝑏0 ≠ 1 

şeklindedir. 

𝑅𝑘(𝑥) = 𝑓(𝑥) −∑𝑐𝑖𝑥
𝑖

𝑘

𝑖=0

   ,   𝑘 = 0,1,….  

                                                = 𝑓(𝑥),   𝑘 < 0                                                                           (4.8) 

                                     𝑅̃𝑘(𝑥) = −𝑅𝑘(𝑥)                                                                                  (4.9) 

Teorem 4.1. Eğer 𝐵𝑚+𝛼,𝑛(0) ≠ 0 ise 𝛼 ≤ 𝑛 için  𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥) genelleştirilmiş 

sınırlayıcı Pade yaklaşımı ifadesi mevcuttur ve  

                        𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥) =
𝐴𝑚+𝛼,𝑛(𝑥)

𝐵𝑚+𝛼,𝑛(𝑥)
⁄                                                            (4.10) 

şeklinde verilir. 

Burada;  
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                 𝐵𝑚+𝛼,𝑛(𝑥) =

|

|

𝑐𝑚+𝛼+1 𝑐𝑚+𝛼 ⋯ 𝑐𝑚+𝛼−𝑛+1
⋮ ⋮ ⋯ ⋮

𝑐𝑚+𝑛 𝑐𝑚+𝑛−1 ⋯ 𝑐𝑚
𝑅𝑚+𝛼(𝑥1) 𝑥1𝑅𝑚+𝛼(𝑥1) ⋯ 𝑥1

𝑛𝑅𝑚+𝛼(𝑥1)
⋮ ⋮ ⋮ ⋮

𝑅𝑚+𝛼(𝑥𝛼) 𝑥𝛼𝑅𝑚+𝛼(𝑥𝛼) ⋯ 𝑥𝛼
𝑛𝑅𝑚+𝛼(𝑥𝛼)

1 𝑥 ⋯ 𝑥𝑛

|

|

                             (4.11) 

                 𝐴𝑚+𝛼,𝑛(𝑥) =

|

|

𝑐𝑚+𝛼+1 𝑐𝑚+𝛼 ⋯ 𝑐𝑚+𝛼−𝑛+1
⋮ ⋮ ⋯ ⋮

𝑐𝑚+𝑛 𝑐𝑚+𝑛−1 ⋯ 𝑐𝑚
𝑅𝑚+𝛼(𝑥1) 𝑥1𝑅𝑚+𝛼(𝑥1) ⋯ 𝑥1

𝑛𝑅𝑚+𝛼(𝑥1)
⋮ ⋮ ⋮ ⋮

𝑅𝑚+𝛼(𝑥𝛼) 𝑥𝛼𝑅𝑚+𝛼(𝑥𝛼) ⋯ 𝑥𝛼
𝑛𝑅𝑚+𝛼(𝑥𝛼)

∑ 𝑐𝑖𝑥
𝑖𝑚+𝛼

𝑖=0 ∑ 𝑐𝑖−1𝑥
𝑖𝑚+𝛼

𝑖=0 ⋯ ∑ 𝑐𝑖−𝑛𝑥
𝑖𝑚+𝛼

𝑖=0

|

|

                              (4.12) 

olur. 

İspat: (4.6) eşitliğinden; 

(𝑏0 + 𝑏1𝑥 +⋯+ 𝑏𝑛𝑥
𝑛)(𝑐0 + 𝑐1𝑥 +⋯) = 𝑎0 + 𝑎1𝑥 +⋯+ 𝑎𝑚𝑥

𝑚 + ℇ1𝑥
𝑚+1 +⋯+

ℇ𝛼𝑥
𝑚+𝛼 +𝑂(𝑥𝑚+𝛼+1)                                                                                            

   (4.13) 

yazılabilir. 

(4.13) eşitliğindeki 𝑥𝑖 nin katsayıları i=0,1,…,m+n hesaplandığında (m+n+1) 

denklemden oluşan bir sistem elde edilir.  

    

{
 
 
 
 

 
 
 
 

𝑎0 = 𝑎0𝑏0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮
𝑎𝑚 = 𝑏0𝑐𝑚 + 𝑏1𝑐𝑚−1 +⋯+ 𝑏𝑛𝑐𝑚

ℇ1 = 𝑏0𝑐𝑚+1 + 𝑏1𝑐𝑚 +⋯+ 𝑏𝑛𝑐𝑚−𝑛+1
⋮

ℇ𝛼 = 𝑏0𝑐𝑚+𝛼 + 𝑏1𝑐𝑚−1+𝛼 +⋯+ 𝑏𝑛𝑐𝑚−𝑛+𝛼
0 = 𝑏0𝑐𝑚+𝛼+1 + 𝑏1𝑐𝑚+𝛼 +⋯+ 𝑏𝑛𝑐𝑚−𝑛+𝛼+1

⋮
0 = 𝑏0𝑐𝑚+𝑛 + 𝑏1𝑐𝑚+𝑛−1 +⋯+ 𝑏𝑛𝑐𝑚

                                                                       (4.14) 

𝑏0 = 1 olduğu için 𝑏1, … , 𝑏𝑛 katsayıları (4.14) ve (4.7) denkleminden son (𝑛 − 𝛼)  

eşitliğinden elde edilebilir. Böylece lineer cebirsel denklem sistemi,  
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{
 
 

 
 

𝑏1𝑐𝑚+𝛼 +⋯+ 𝑏𝑛𝑐𝑚−𝑛+𝛼+1 = −𝑐𝑚+𝛼+1
⋮

𝑏1𝑐𝑚+𝑛−1 +⋯+ 𝑏𝑛𝑐𝑚 = −𝑐𝑚+𝑛
𝑏1𝑥1𝑅𝑚+𝛼−1(𝑥1) + ⋯+ 𝑏𝑛𝑥1

𝑛𝑅𝑚+𝛼−𝑛(𝑥1) = −𝑅𝑚+𝛼(𝑥1)
⋮

𝑏1𝑥𝛼𝑅𝑚+𝛼−1(𝑥𝛼) + ⋯+ 𝑏𝑛𝑥𝛼
𝑛𝑅𝑚+𝛼−𝑛(𝑥𝛼) = −𝑅𝑚+𝛼(𝑥𝛼)

                                             (4.15) 

şeklinde yazılabilir. (denklem sisteminin katsayılar matrisinin determinantı 0’dan farklı 

olmalıdır.) 

𝑏0, 𝑏1, … , 𝑏𝑛 değerlerinin bilinmesiyle 𝑎0, 𝑎1, … , 𝑎𝑚, ℇ1, … , ℇ𝛼 değerleri (4.14) 

denklemindeki ilk (m+1+α) denklemden hesaplanabilir. Böylece Tanım 1’e göre sonuçları 

ispatlamış oluruz.  

Teorem 4.2. Eğer 𝐵̅𝑚+𝛼,𝑛(0) ≠ 0 ise 𝛼 > 𝑛 için   𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥) genelleştirilmiş 

sınırlayıcı Pade yaklaşımı; 

                        𝐺[(𝑚, 𝛼/𝑛)]𝑓(𝑥) = 𝐴̅𝑚+𝛼,𝑛(𝑥) 𝐵̅𝑚+𝛼,𝑛⁄ (𝑥)                                             (4.16) 

şeklinde verilir. 

Burada; 

𝐵̅𝑚+𝛼,𝑛(𝑥)   = 

|

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛−1(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

1 𝑥 ⋯ 𝑥𝑛 0 ⋯ 0

| (4.17) 

𝐴̅𝑚+𝛼,𝑛(𝑥) = 

||

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛−1(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

∑ 𝑐𝑖𝑥
𝑖𝑚+𝑛

𝑖=0 ∑ 𝑐𝑖−1𝑥
𝑖𝑚+𝑛

𝑖=0 ⋯ ∑ 𝑐𝑖−𝑛𝑥
𝑖𝑚+𝑛

𝑖=0 𝑥𝑚+𝑛+1 ⋯ 𝑥𝑚+𝛼

|| (4.18) 

dır. 

İspat : (4.13) denklemindeki 𝑥𝑖 katsayıları hesaplandığında ve  (4.7) denklemindeki 𝑥𝑖 

noktasındaki 𝛼 kısıtlama parametresi hesaplandığında (𝑚 + 𝑛 + 𝛼 + 1) denklemden ve 

(𝑚 + 𝑛 + 𝛼 + 1) bilinmeyenden oluşan aşağıdaki denklem sistemi elde edilir. 
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{
 
 
 
 
 

 
 
 
 
 

𝑎0 = 𝑎0𝑏0
𝑎1 = 𝑏0𝑐1 + 𝑏1𝑐0

⋮
𝑎𝑚 = 𝑏0𝑐𝑚 + 𝑏1𝑐𝑚−1 +⋯+ 𝑏𝑛𝑐𝑚−𝑛
ℇ1 = 𝑏0𝑐𝑚+1 + 𝑏1𝑐𝑚 +⋯+ 𝑏𝑛𝑐𝑚−𝑛+1

⋮
ℇ𝑛 = 𝑏0𝑐𝑚+𝑛 + 𝑏1𝑐𝑚−1+𝑛 +⋯+ 𝑏𝑛𝑐𝑚

𝑏0𝑓(𝑥1) = 𝑎0 +⋯+ 𝑎𝑚𝑥1
𝑚 + ℇ1𝑥1

𝑚+1 +⋯+ ℇ𝛼𝑥1
𝑚+𝛼 − 𝑏1𝑥1𝑓(𝑥1) −⋯− 𝑏𝑛𝑥1

𝑛𝑓(𝑥1)
⋮

𝑏0𝑓(𝑥𝛼) = 𝑎0 +⋯+ 𝑎𝑚𝑥𝛼
𝑚 + ℇ1𝑥𝛼

𝑚+1 +⋯+ ℇ𝛼𝑥𝛼
𝑚+𝛼 − 𝑏1𝑥𝛼𝑓(𝑥𝛼) − ⋯− 𝑏𝑛𝑥𝛼

𝑛𝑓(𝑥𝛼)

  

(4.19) 

𝑏0 = 1 dir. (4.19) denklem sistemindeki son 𝛼  denklemde geçen 

𝑎0, 𝑎1, … , 𝑎𝑚, ℇ1, … , ℇ𝑛 katsayıları ilk (m+n+1) denklemdeki katsayılarla yer değiştirdiğinde 

𝑏1, … , 𝑏𝑛 ve ℇ𝑛+1, … , ℇ𝛼 katsayıları da hesaplanmış olur. Böylece aşağıdaki denklem sistemi 

yazılabilir. 

{
𝑏1𝑥1𝑅̃𝑚+𝑛−1(𝑥1) + ⋯+ 𝑏𝑛𝑥1

𝑛𝑅̃𝑚(𝑥1) + ℇ𝑛+1𝑥1
𝑚+𝑛+1 +⋯+ ℇ𝛼𝑥1

𝑚+𝛼 = −𝑅̃𝑚+𝑛(𝑥1)
⋮

𝑏1𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) + ⋯+ 𝑏𝑛𝑥𝛼
𝑛𝑅̃𝑚(𝑥𝛼) + ℇ𝑛+1𝑥𝛼

𝑚+𝑛+1 +⋯+ ℇ𝛼𝑥𝛼
𝑚+𝛼 = −𝑅̃𝑚+𝑛(𝑥𝛼)

 

(4.20) 

şeklinde yazılabilir.( 4.20) denklem sisteminin katsayılar matrisinin determinantı 0’dan farklı 

olmalıdır. 

𝑏0, 𝑏1… , 𝑏𝑛 değerlerinin hesaplanmasıyla ve 𝑎0, 𝑎1, … , 𝑎𝑚, ℇ1, … , ℇ𝑛 katsayılarının 

(4.19) denklemindeki ilk (𝑚 + 𝑛 + 1) denklemden elde edilmesiyle tanım (4.1)’e göre ispat 

tamamlanmış olur.  

NOT:  𝑅𝑃𝑓(𝑥)(𝑚, 𝑛, 𝛼)(𝑥)  sınırlayıcı Pade yaklaşım fonksiyonu 𝛼 ≤ 𝑛 için 𝐺[𝑚, 𝛼/

𝑛]𝑓(𝑥) genelleştirilmiş sınırlayıcı Pade yaklaşımının özel halidir. (H.N.A. İsmail 2004) 

çalışmasında verilen sınırlayıcı Pade yaklaşımının varlık ve çözülebilirlik koşulları 𝐵𝑚+𝑛,𝛼 ≠ 0 

koşulu ile eşdeğerdir. 

(4.7) denklemindeki α kısıtlayıcı parametre yoksa ya da 𝛼 = 0 alınırsa 𝛼 ≤ 𝑛 için 

𝐺[𝑚, 𝛼/𝑛]𝑓(𝑥) yaklaşımı (G.A. Baker ve P.R.Graves- Morris 1981) ‘deki klasik Pade 

yaklaşımına indirgenir. Genelleştirilmiş sınırlayıcı Pade yaklaşımı olan 𝐺[𝑚, 𝛼/𝑛]𝑓(𝑥) 

ifadesinde m=0 alınırsa (H.N.A. İsmail 2004) ‘daki gibi sınırlayıcı Taylor yaklaşımına 

indirgenir. 
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Teorem 4.3.  Hata Formülleri 

i. 𝛼 ≤ 𝑛 ve  𝐵𝑚+𝑛,𝛼 ≠ 0 ise  

      𝑓(𝑥) − 𝐺 [𝑚,
𝛼

𝑛
]
𝑓(𝑥)

=
𝑥𝑚+𝑛+1

𝐵𝑚+𝑛,𝛼
∑ 𝑒𝑖𝑥

𝑖 ∞
𝑖=0                                                       (4.21) 

dir. Burada;  

         𝑒𝑖 =

|

|

𝑐𝑚+𝛼+1 𝑐𝑚+𝛼 ⋯ 𝑐𝑚+𝛼−𝑛+1
⋮ ⋮ ⋯ ⋮

𝑐𝑚+𝑛 𝑐𝑚+𝑛−1 ⋯ 𝑐𝑚
𝑅𝑚+𝛼(𝑥1) 𝑥1𝑅𝑚+𝛼−1(𝑥1) ⋯ 𝑥1

𝑛𝑅𝑚+𝛼−𝑛(𝑥1)
⋮ ⋯ ⋮ ⋮

𝑅𝑚+𝛼(𝑥𝛼) 𝑥𝛼𝑅𝑚+𝛼−1(𝑥𝛼) ⋯ 𝑥𝛼
𝑛𝑅𝑚+𝛼−𝑛(𝑥𝛼)

𝑐𝑚+𝑛+1+𝑖 𝑐𝑚+𝛼+𝑖 ⋯ 𝑐𝑚+1+𝑖

|

|

                                    (4.22) 

dır. 

ii. 𝛼 > 𝑛 ve 𝐵̅𝑚+𝛼,𝑛(0) ≠ 0 ise  

 𝑓(𝑥) − 𝐺[𝑚, 𝛼/𝑛]𝑓(𝑥) =
𝑥𝑚+𝑛+1

𝐵̅𝑚+𝑛,𝛼
(∑ 𝑔𝑖𝑥

𝑖∞
𝑖=0 + 𝐻(𝑥))                                        (4.23) 

dir. Burada; 

𝑔𝑖 = |

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

𝑐𝑚+𝑛+1+𝑖 𝑐𝑚+𝑛+𝑖 ⋯ 𝑐𝑚+1+𝑖 0 ⋯ 0

|  (4.24) 

 

𝐻(𝑥) = |

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

0 0 ⋯ 0 −1 ⋯ −𝑥𝛼−𝑛−1

| (4.25) 

dir. 

İspat: 

      (4.11) ve (4.12) matrislerinden kalan, eğer 𝐵𝑚+𝛼,𝑛(0) ≠ 0  ise  
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i.  

𝐵𝑚+𝛼,𝑛(𝑥)𝑓(𝑥) − 𝐴𝑚+𝛼,𝑛(𝑥)𝑓(𝑥) =

|

|

|

𝑐𝑚+𝛼+1 𝑐𝑚+𝛼 ⋯ 𝑐𝑚+𝛼−𝑛+1
⋮ ⋮ ⋯ ⋮

𝑐𝑚+𝑛 𝑐𝑚+𝑛−1 ⋯ 𝑐𝑚
𝑅𝑚+𝛼(𝑥1) 𝑥1𝑅𝑚+𝛼−1(𝑥1) ⋯ 𝑥1

𝑛𝑅𝑚+𝛼−𝑛(𝑥1)
⋮ ⋯ ⋮ ⋮

𝑅𝑚+𝛼(𝑥𝛼) 𝑥𝛼𝑅𝑚+𝛼−1(𝑥𝛼) ⋯ 𝑥𝛼
𝑛𝑅𝑚+𝛼−𝑛(𝑥𝛼)

∑ 𝑐𝑖𝑥
𝑖

∞

𝑖=𝑚+𝑛+1

∑ 𝑐𝑖𝑥
𝑖+1

∞

𝑖=𝑚+𝑛

⋯ ∑ 𝑐𝑖𝑥
𝑖+𝑛

∞

𝑖=𝑚+1

|

|

|

 

                                         = ∑𝑥𝑚+𝑛+1+𝑖
∞

𝑖=0 |

|

𝑐𝑚+𝛼+1 𝑐𝑚+𝛼 ⋯ 𝑐𝑚+𝛼−𝑛+1
⋮ ⋮ ⋯ ⋮

𝑐𝑚+𝑛 𝑐𝑚+𝑛−1 ⋯ 𝑐𝑚
𝑅𝑚+𝛼(𝑥1) 𝑥1𝑅𝑚+𝛼−1(𝑥1) ⋯ 𝑥1

𝑛𝑅𝑚+𝛼−𝑛(𝑥1)
⋮ ⋯ ⋮ ⋮

𝑅𝑚+𝛼(𝑥𝛼) 𝑥𝛼𝑅𝑚+𝛼−1(𝑥𝛼) ⋯ 𝑥𝛼
𝑛𝑅𝑚+𝛼−𝑛(𝑥𝛼)

𝑐𝑚+𝑛+1+𝑖 𝑐𝑚+𝛼+𝑖 ⋯ 𝑐𝑚+1+𝑖

|

|

 

dir.  

ii. (4.17) ve (4.18) matrislerinden kalan, eğer 𝐵̅𝑚+𝛼,𝑛(0) ≠ 0  ise  

𝐵̅𝑚+𝛼,𝑛(𝑥)𝑓(𝑥) − 𝐴̅𝑚+𝛼,𝑛(𝑥)𝑓(𝑥)

=
|

|

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

∑ 𝑐𝑖𝑥
𝑖

∞

𝑖=𝑚+𝑛+1

∑ 𝑐𝑖𝑥
𝑖+1

∞

𝑖=𝑚+𝑛

⋯ ∑ 𝑐𝑖𝑥
𝑖+𝑛

∞

𝑖=𝑚+1

−𝑥𝑚+𝑛+1 ⋯ −𝑥𝑚+𝛼
|

|
 

 

=∑𝑥𝑚+𝑛+1+𝑖
∞

𝑖=0

|

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

𝑐𝑚+𝑛+1+𝑖 𝑐𝑚+𝑛+𝑖 ⋯ 𝑐𝑚+1+𝑖 0 ⋯ 0

| 

 

+ |

𝑅̃𝑚+𝑛(𝑥1) 𝑥1𝑅̃𝑚+𝑛(𝑥1) ⋯ 𝑥1
𝑛𝑅̃𝑚+𝑛(𝑥1) 𝑥1

𝑚+𝑛+1 ⋯ 𝑥1
𝑚+𝛼

⋮ ⋮ ⋯ ⋮ ⋮ ⋯ ⋮
𝑅̃𝑚+𝑛(𝑥𝛼) 𝑥𝛼𝑅̃𝑚+𝑛−1(𝑥𝛼) ⋯ 𝑥𝛼

𝑛𝑅̃𝑚(𝑥𝛼) 𝑥𝛼
𝑚+𝑛+1 ⋯ 𝑥𝛼

𝑚+𝛼

0 0 ⋯ 0 −1 ⋯ −𝑥𝛼−𝑛−1

| 
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4.3. Nümerik Örnekler   

Üzerinde çalıştığımız yaklaşımın doğruluğunu göstermek için aşağıdaki örnekleri 

inceleyelim. 

Örnek 1: 𝑓(𝑥) = 𝑒𝑥 fonksiyonunu düşünelim. 

Tablo 1’de [0,1] aralığında 𝑚, 𝑛, 𝛼 farklı değerleri için 𝑥1 = 1 , 𝑥2 = 0,5 sınırlayıcı 

şartları ile 𝐺[𝑚, 𝛼/𝑛]𝑓(𝑥) yaklaşımının bazı mutlak hata değerleri verilmiştir. Tablo 1’de 𝑒𝑥 in 

için mertebe ya da düğüm noktalarında artmalar genelleştirilmiş Pade yaklaşımı ile kesinleşir.  

Örnek 2: 𝑓(𝑥) = 1 − 𝑙𝑛 (1 − 𝑥) fonksiyonunu düşünelim. 

Tablo 2’de [0,0.5] aralığındaki 𝑚, 𝑛, 𝛼 farklı değerleri için  𝑥1 = 0.5 , 𝑥2 = 0.25 

sınırlayıcı şartları ile [𝑚, 𝛼/𝑛]𝑓(𝑥) yaklaşımının maksimum hataları verilmiştir. Tablo 2’de 

[0,0.5] aralığında f(x) fonksiyonu için, genelleştirilmiş sınırlayıcı Pade yaklaşımı sırasıyla pay 

ve paydanın derecesi aynı olan Pade yaklaşımından daha iyi ve açık sonuç verir.  

Çizelge  4.1.  𝐺[𝑚, 𝛼/𝑛]𝑓(𝑥) yaklaşımı için bazı mutlak hata değerleri. 

       𝑚 𝛼 𝑛 0,2 0,65 0,9 

1 1 1 1.08518 × 10−4 2.29067 × 10−3 2.13199 × 10−3 

2 1 1 3.23843 × 10−6 2.07386 × 10−4 2.55659 × 10−4 

2 2 1 1.33439 × 10−7 4.07182 × 10−6 1.29909 × 10−5 

1 2 2 6.52891 × 10−8 2.32978 × 10−6 8.12328 × 10−6 

2 2 2 1.23061 × 10−9 1.36368 × 10−7 6.37368 × 10−7 

                 

Çizelge 4.2. [0,0.5] aralığındaki maximum hata. 

       𝑚 𝛼 𝑛 𝑚𝑎𝑥𝑥∈[0,0.5]|𝑓(𝑥)

− 𝐺[𝑚, 𝛼/𝑛]𝑓(𝑥)| 

𝑚𝑎𝑥𝑥∈[0,0.5]|𝑓(𝑥)

− [𝑚, 𝛼/𝑛]𝑓(𝑥)| 

2 1 0 4.09347 × 10−3 2.64805 × 10−2 

2 1 1 1.35880 × 10−4 1.48051 × 10−3 

2 2 1 1.79839 × 10−5 4.38847 × 10−4 

2 2 2 1.22010 × 10−6 3.82026 × 10−5 

3 2 2 2.88994 × 10−7 9.92566 × 10−6 
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5. PARABOLİK VE HİPERBOLİK TİP BAŞLANGIÇ – SINIR DEĞER 

PROBLEMLERİNİN SINIRLAYICI PADE YAKLAŞIMI İLE ÇÖZÜMLERİNİN 

YEREL KESME HATALARI 

5.1. Giriş 

Sınırlayıcı Pade yaklaşımı (RPA) , parabolik ve hiperbolik kısmi diferansiyel 

denklemlerinin sadece başlangıç ve sınır-değer problemlerinde değil aynı zamanda da belli 

aşamadaki tam çözümlerin bazı değerlerini bulmak için kullanılır. Metodun kapalı formuna 

ihtiyaç yoktur. Metot, bilinen tam çözümün bazı noktalarıyla uyumlu, parametrelere adapte 

edilmiş, sonlu farklar metodundan türetilmiştir. 

Hassan N.A. İsmail ve diğerleri, parabolik ve hiperbolik problemlerin yakınsaklığını 

incelemişlerdir. Ayrıca bazı uygulamalarda konveksiyon difüzyondaki sıvı dinamiği yada 

Shrödinger denkleminde kullanmışlardır. Bu metot, Burger ya da KdV denklemleri gibi non-

lineer tipteki problemlerde, iki boyutlu ve değişken katsayılı denklem sistemlerinde de 

incelenmiştir. 

5.2. Hiperbolik Tip Başlangıç Sınır- Değer Probleminin Tam Çözümü İçin Sonlu Farklar  

Metodu  

         𝑢𝑡 + 𝑎𝑢𝑥 = 0                                                                                                                   (5.1) 

𝑢𝑡𝑙 = (−𝑎)
𝑙𝑢𝑥𝑙  ; 𝑙 negatif olmayan integral                                                           (5.2) 

Birinci sonlu farklar metodundan; 

𝑢𝑖,𝑗+1 − 𝑢i,j

k
+ 𝑎

𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

ℎ
= 0 , ℎ = ∆𝑥 , 𝑘 = Δ𝑡  

                  𝑢𝑖,𝑗+1 = (1 − 𝑟)𝑢𝑖,𝑗 + 𝑟𝑢𝑖−1,𝑗                        𝑟 =  
     𝑎𝑘      

ℎ
                       (5.3) 

yazılır. 

İkinci sonlu farklar metodunu, Taylor Serisi yardımı ile yazalım. 

𝑢𝑖,𝑗+1 = 𝑢𝑖,𝑗 + 𝑘(𝑢𝑡)𝑖,𝑗 +
𝑘2

2
(𝑢𝑡𝑡)𝑖,𝑗 +⋯ 

            = 𝑢𝑖,𝑗 − 𝑎𝑘(𝑢𝑥)𝑖,𝑗 +
𝑘2

2
𝑎2(𝑢𝑥𝑥)𝑖,𝑗 +⋯ 
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            = 𝑢𝑖,𝑗 −
𝑘𝑎

2ℎ
(𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗) +

𝑘2𝑎2

2ℎ2
(𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗) + ⋯                     (5.4) 

             = 𝑢𝑖,𝑗 −
𝑟

2
(𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗) +

𝑟2

2
(𝑢𝑖−1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖+1,𝑗) + ⋯   

             =
1

2
(𝑟 + 𝑟2)𝑢𝑖−1,𝑗 + (1 − 𝑟

2)𝑢𝑖,𝑗 +
1

2
(𝑟2 − 𝑟)𝑢𝑖+1,𝑗 +⋯ 

(5.3)  veya (5.4) denklemlerinde ℎ = 𝑎𝑘 ve 𝑟 = 1 alırsak; 

               𝑢𝑖,𝑗+1 = 𝑢𝑖−1,𝑗                                                                                                            (5.5) 

bulunur. 

𝑇𝑖,𝑗 =
1

𝑘
(𝑢𝑖,𝑗+1 − 𝑢𝑖−1,𝑗) 

       =
1

𝑘
[(𝑢 + 𝑘𝑢𝑡 +

𝑘2

2
𝑢𝑡𝑡 +

𝑘3

6
𝑢𝑡𝑡𝑡 +⋯)

𝑖,𝑗

− (𝑢 − ℎ𝑢𝑥 +
ℎ2

2
𝑢𝑥𝑥 −

ℎ3

6
𝑢𝑥𝑥𝑥 +⋯)

𝑖,𝑗

] 

       =
1

𝑘
[(𝑘𝑢𝑡 +

𝑘2

2
𝑢𝑡𝑡 +

𝑘3

6
𝑢𝑡𝑡𝑡 +⋯)+ (ℎ𝑢𝑥 −

ℎ2

2
𝑢𝑥𝑥 +

ℎ3

6
𝑢𝑥𝑥𝑥 −⋯)]

𝑖,𝑗

 

      =
1

𝑘
[(𝑘𝑢𝑡 +

𝑘2

2
𝑢𝑡𝑡 +

𝑘3

6
𝑢𝑡𝑡𝑡 +⋯) + (𝑘𝑎𝑢𝑥 −

(𝑘𝑎)2

2
𝑢𝑥𝑥 +

(𝑘𝑎)3

6
𝑢𝑥𝑥𝑥 −⋯)]

𝑖,𝑗

 

     =
1

𝑘
[𝑘(𝑢𝑡 + 𝑎𝑢𝑥) +

𝑘2

2
(𝑢𝑡𝑡 − 𝑎

2𝑢𝑥𝑥) +
𝑘3

6
(𝑢𝑡𝑡𝑡 + 𝑎

2𝑢𝑥𝑥𝑥) + ⋯ ]
𝑖,𝑗
                      (5.6) 

(5.2) denklemini kullanarak; 

       𝑇𝑖,𝑗 = (0) + (0)𝑘 + (0)𝑘2 +⋯ ≡ 0                                                                      (5.7) 

şeklinde yerel kesme hatasını bulmuş oluruz. (5.5) sonlu farklar denklemlerindeki tam çözüm  

gösterir ki başlangıç ve sınır şartları 0 ve h=ak seçimi yapılabilir. 

5.3. Parabolik ve Hiperbolik Problemlerin Crank-Nicolson Metodu İle Çöüzümünde Yerel 

Kesme Hatası  

5.3.1. Parabolik denklem için diferansiyel formunda yerel kesme hatası 

                     𝑢𝑡 = 𝑢𝑥𝑥 

Denklemini ele alalım. Bu denklem için sonlu farklar formülü; 
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1

𝑘
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) =

1

2ℎ2
[(𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1)𝑗 + (𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1)𝑗+1]                 (5.8) 

Yerel kesme hatasının sonlu farklar denklemi; 

𝑇𝑖,𝑗 𝐶𝑁⁄ (ℎ, 𝑘) =
1

𝑘
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) −

1

2ℎ2
[(𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1)𝑗 + (𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1)𝑗+1]  (5.9) 

yerel kesme hatasının diferansiyel formu; 

 𝑇𝑖,𝑗 𝐶𝑁⁄ (ℎ, 𝑘) = [−
1

12
𝑢𝑥4ℎ

2 +
1

6
𝑢𝑡3𝑘

2 −
1

24
𝑢𝑥4𝑡ℎ

2𝑘 +
1

24
𝑢𝑡4𝑘

3 −
1

360
𝑢𝑥6ℎ

4 +⋯+

𝑂(ℎ2𝑚, 𝑘𝑛)]
𝑖,𝑗
        𝑛, 𝑚 > 0 ,     𝑚 + 𝑛 ≥ 4                                                                  (5.10) 

𝑂(ℎ2, 𝑘2) , iyi bilinen yerel kesme hatasıdır. 

5.3.2. Hiperbolik denklem için Crank Nicolson metodunda yerel kesme hatasının 

diferansiyel formu  

 𝑢𝑡 + 𝑎𝑢𝑥 = 0 

Crank Nicolson sonlu farklar formu; 

              
1

𝑘
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) +

𝑎

4ℎ
[(𝑢𝑖+1 − 𝑢𝑖−1)𝑗 + (𝑢𝑖+1 − 𝑢𝑖−1)𝑗+1] = 0 

Burada; 𝑟 =
𝑘𝑎

2ℎ
  alınırsa sonlu farklar formu için yerel kesme hatası  

𝑇𝑖,𝑗 𝐶𝑁⁄ (ℎ, 𝑘) =
1

𝑘
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) +

𝑎

4ℎ
[(𝑢𝑖+1 − 𝑢𝑖−1)𝑗 + (𝑢𝑖+1 − 𝑢𝑖−1)𝑗+1] 

                        =
1

2𝑘
{(2𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗) + 𝑟[(𝑢𝑖+1 − 𝑢𝑖−1)𝑗 + (𝑢𝑖+1 − 𝑢𝑖−1)𝑗+1]} 

                        =
1

2𝑘
[(−𝑟𝑢𝑖−1 + 2𝑢𝑖 + 𝑟𝑢𝑖+1)𝑗+1 − (𝑟𝑢𝑖−1 + 2𝑢𝑖 − 𝑟𝑢𝑖+1)𝑗]             (5.11) 

şeklinde olur. Bu durumda yerel kesme hatasının diferansiyel formu; 

𝑇𝑖,𝑗 𝐶𝑁⁄ = 𝑎 [
1

6
𝑢𝑥3ℎ

2 +
1

4
𝑢𝑥2𝑡2ℎ𝑘

2 +
1

24
𝑢𝑥4ℎ

3 +
1

24

𝑘4

ℎ
𝑢𝑥4 +⋯]

𝑖,𝑗
                (5.12) 

olur. 
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5.4. Parabolik Tip Başlangıç-Sınır Değer Probleminin Sınırlayıcı Pade Yaklaşımı İle 

Çözümünde Yerel Kesme Hatası  

Bu problemi bazı ünlü matematikçiler (İsmail vd., 1998, 1999 ; İsmail ve Elbeetar, 

2001; İsmail vd., 2002; Elbarbary, 2001 ; Elbarbary vd., 2003 )  ele almışlardır. 

5.4.1. Sonlu farklarda yerel kesme hatası  

      Crank Nicolson metodunda j. ve 0. aşama için 𝑇𝑖,𝑗 𝐶𝑁⁄  ve 𝑇𝑖,0 𝐶𝑁⁄  olmak üzere yerel 

kesme hatası hesaplanabilir. 

𝑇𝑖,𝑗 𝐶𝑁⁄ =
[(−

1

2
𝑟𝑢𝑖−1+(1+𝑟)𝑢𝑖−

1

2
𝑟𝑢𝑖+1)𝑗+1−(−

1

2
𝑟𝑢𝑖−1+(1−𝑟)𝑢𝑖−

1

2
𝑟𝑢𝑖+1)𝑗]

𝑘
              (5.13) 

benzer şekilde; 

𝑇𝑖,0 𝐶𝑁⁄ =
[(−

1

2
𝑟𝑢𝑖−1+(1+𝑟)𝑢𝑖−

1

2
𝑟𝑢𝑖+1)1−(−

1

2
𝑟𝑢𝑖−1+(1−𝑟)𝑢𝑖−

1

2
𝑟𝑢𝑖+1)0]  

𝑘
                (5.14) 

yazılabilir. 

      Sınırlayıcı Pade yaklaşımında (RPA) j. ve 0. aşama için  𝑇𝑖,𝑗 𝑅𝑃⁄  ve 𝑇𝑖,0 𝑅𝑃⁄  olmak 

üzere yerel kesme hatası hesaplanabilir. Farklı formlarda; 

𝑇𝑖,𝑗 𝑅𝑃⁄ =
[(𝜖𝑖 −

1
2) 𝑟𝑢𝑖−1 +

(1 + (𝜖𝑖 + 1)𝑟)𝑢𝑖 − (𝜖𝑖 −
1
2)𝑟𝑢𝑖+1]

𝑗+1

𝑘

−
[(𝜖𝑖 +

1
2) 𝑟𝑢𝑖−1 +

(1 + (𝜖𝑖 − 1)𝑟)𝑢𝑖 + (𝜖𝑖 +
1
2)𝑟𝑢𝑖+1]

1

𝑘
 

        =
𝑟

𝑘
𝜖𝑖 ∑ (𝑢𝑙

𝑗+1 − 𝑢𝑙
𝑗) + 𝑇𝑖,𝑗 𝐶𝑁⁄ = 𝑟𝜖𝑖𝜎𝑖,𝑗

𝑖+1
𝑙=𝑖−1 + 𝑇𝑖,𝑗 𝐶𝑁⁄         (5.15) 

burada; 

𝜎𝑖,𝑗 = ∑ (𝑢𝑙
𝑗+1 − 𝑢𝑙

𝑗) =

𝑖+1

𝑙=𝑖−1

 

= [(3𝑢𝑡 + ℎ
2𝑢𝑡𝑥2 +

ℎ4

12
𝑢𝑡𝑥4 +⋯) +

𝑘

2
(3𝑢𝑡2 + ℎ

2𝑢𝑡2𝑥2 +
ℎ4

12
𝑢𝑡2𝑥4 +⋯)]

𝑖,𝑗
  (5.16) 

benzer şekilde; 

    𝑇𝑖,0 𝑅𝑃⁄ = 𝑟𝜖𝑖𝜎𝑖,0 + 𝑇𝑖,0 𝐶𝑁⁄                                                                                              (5.17) 
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burada; 

𝜎𝑖,0 = ∑ (𝑢𝑙
1 − 𝑢𝑙

0) =

𝑖+1

𝑙=𝑖−1

 

= [(3𝑢𝑡 + ℎ
2𝑢𝑡𝑥2 +

ℎ4

12
𝑢𝑡𝑥4 +⋯) +

𝑘

2
(3𝑢𝑡2 + ℎ

2𝑢𝑡2𝑥2 +
ℎ4

12
𝑢𝑡2𝑥4 +⋯)]

𝑖,0
 (5.18) 

bulunur. 

Sınırlayıcı Pade metodunda ; (5.17) denklemindeki     𝑇𝑖,0 𝑅𝑃⁄ = 0 koyup  𝜖𝑖 değerini 

buluruz. 

             𝑟𝜖𝑖𝜎𝑖,0 = −𝑇𝑖,0 𝐶𝑁⁄  

           𝑟𝜖𝑖 = −
1

𝜎𝑖,0
𝑇𝑖,0 𝐶𝑁⁄                                                                                                            (5.19) 

şeklindedir. (𝑢𝑡)𝑖,0 ≠ 0 iken (5.15) denklemini (5.19) denkleminde yazarsak; 

    𝑇𝑖,𝑗 𝑅𝑃⁄ = 𝑇𝑖,𝑗 𝐶𝑁⁄ −
𝜎𝑖,𝑗

𝜎𝑖,0
𝑇𝑖,0 𝐶𝑁⁄                                                                        (5.20) 

    𝑇𝑖,𝑗 𝑅𝑃⁄ (ℎ, 𝑘) =
𝑇𝑖,𝑗 𝐶𝑁⁄ (ℎ,𝑘)𝜎𝑖,0(ℎ,𝑘)−𝑇𝑖,0 𝐶𝑁⁄ (ℎ,𝑘)𝜎𝑖,𝑗(ℎ,𝑘)

𝜎𝑖,0(ℎ,𝑘)
                                         (5.21) 

bulunur. Burada; h’ın tek  kuvvetleri ortadan kalkar.  

 (5.10) denkleminde 𝑗 = 0 ∶ 𝑚, 𝑛 ≥ 0  , 𝑚 + 𝑛 ≥ 4 koyarsak; 

𝑇𝑖,𝑗 𝐶𝑁⁄ = [−
1

12
𝑢𝑡2ℎ

2 +
1

6
𝑢𝑡3𝑘

2 −
1

24
𝑢𝑡3ℎ

2𝑘 +
1

24
𝑢𝑡4𝑘

3 −
1

360
𝑢𝑡3ℎ

4 +⋯+ 𝑂(ℎ2𝑚, 𝑘𝑛)]
𝑖,0

 

𝑚, 𝑛 ≥ 0  ,𝑚 + 𝑛 ≥ 4                                                                                                                       (5.22) 

    𝑇𝑖,𝑗 𝑅𝑃⁄ (ℎ, 𝑘) = 

−1

[3(𝑢𝑡)𝑖,0+𝑂(𝑘,ℎ
2)]
{
1

8
[(𝑢𝑡2)𝑖,𝑗(𝑢𝑡)𝑖,0 − (𝑢𝑡2)𝑖,0(𝑢𝑡)𝑖,𝑗]ℎ

2 +
1

4
[(𝑢𝑡3)𝑖,𝑗(𝑢𝑡)𝑖,0 −

(𝑢𝑡3)𝑖,0(𝑢𝑡)𝑖,𝑗]𝑘
2 +

1

8
[(𝑢𝑡4)𝑖,𝑗(𝑢𝑡)𝑖,0 − (𝑢𝑡4)𝑖,0(𝑢𝑡)𝑖,𝑗 + (𝑢𝑡3)𝑖,𝑗(𝑢𝑡2)𝑖,0 −

(𝑢𝑡3)𝑖,0(𝑢𝑡2)𝑖,𝑗]𝑘
3 +

1

8
[(𝑢𝑡3)𝑖,𝑗(𝑢𝑡)𝑖,0 − (𝑢𝑡3)𝑖,0(𝑢𝑡)𝑖,𝑗]𝑘ℎ

2 +⋯}  (5.23) 

Köşeli parantez içine alınan ifadeler; 
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𝐴𝑙,𝑚 = [(𝑢𝑡𝑙)𝑖,𝑗
(𝑢𝑡𝑚)𝑖,0 − (𝑢𝑡𝑙)𝑖,0(𝑢𝑡

𝑚)𝑖,𝑗]  , 𝑙, 𝑚 = 0(1)∞               (5.24) 

şeklinde yazılabilir. 

𝑢(𝑥, 𝑡) = 𝑒−𝑡𝑠𝑖𝑛𝑥  , 𝑥 = 𝑖ℎ ,    𝑡 = 𝑗𝑘  kapalı formdaki tam çözümünü (5.24) den yerine 

yazarsak;  

𝐴𝑙,𝑚 = (−1)𝑙+𝑚[(𝑒−𝑡𝑠𝑖𝑛𝑥)𝑖,𝑗(𝑒
−𝑡𝑠𝑖𝑛𝑥)𝑖,0 − (𝑒

−𝑡𝑠𝑖𝑛𝑥)𝑖,0(𝑒
−𝑡𝑠𝑖𝑛𝑥)𝑖,𝑗] = 0                    (5.25) 

bulunur ve (5.25) denklemi; 

                                        𝑇𝑖,𝑗 𝑅𝑃⁄ (ℎ, 𝑘) = 0                                                                                         (5.26) 

olduğunu gösterir. 

5.5. Hiperbolik Tip Başlangıç-Sınır Değer Probleminin Sınırlayıcı Pade Yaklaşımı İle 

Çözümünde Yerel Kesme Hatası 

Standart hiperbolik denklem 𝑢𝑡 + 𝑎𝑢𝑥 = 0 şeklindedir ve denklem üzerine bazı 

matematikçiler çalışmalar yapmışlardır (İsmail ve Hassan , 2000 a, 2000 b ; İsmail vd., 2001; 

İsmail ve Elsaid , 2003). 

5.5.1. Crank Nicolson metodunda sonlu farklar formunda yerel kesme hatası 

(5.11) denkleminde 𝑟 =
𝑎𝑘

2ℎ
 alınırsa; 

𝑇𝑖,𝑗 𝐶𝑁⁄ =
1

2𝑘
[(−𝑟𝑢𝑖−1 + 2𝑢𝑖 + 𝑟𝑢𝑖+1)𝑗+1 − (𝑟𝑢𝑖−1 + 2𝑢𝑖 − 𝑟𝑢𝑖+1)𝑗]                     (5.27) 

şeklinde yerel kesme hatası bulunur. 

5.5.2. Sınırlayıcı pade metodu için yerel kesme hatası 

(5.13) denkleminde 𝑟 =
𝑎𝑘

2ℎ
 alınırsa; 

(−𝑟𝑢𝑖−1 + 2(1 + 𝜖𝑖,𝑙𝑟)𝑢𝑖 + 𝑟𝑢𝑖+1)𝑗+1 = (𝑟𝑢𝑖−1 + 2(1 + 𝜖𝑖,𝑙𝑟)𝑢𝑖 − 𝑟𝑢𝑖+1)𝑗        (5.28) 

𝑇𝑖,𝑗 𝑅𝑃⁄ =
1

𝑘
{(−𝑟𝑢𝑖−1 + 2(1 + 𝜖𝑖,𝑙𝑟)𝑢𝑖 + 𝑟𝑢𝑖+1)𝑗+1 − (𝑟𝑢𝑖−1 + 2(1 + 𝜖𝑖,𝑙𝑟)𝑢𝑖 − 𝑟𝑢𝑖+1)𝑗} 

              =
2𝑟

𝑘
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗)𝜖𝑖,𝑙 + 𝑇𝑖,𝑗 𝐶𝑁⁄  

buradan; 
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𝑇𝑖,𝑗 𝑅𝑃⁄ = 𝑇𝑖,𝑗 𝐶𝑁⁄ +
𝑎

ℎ
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗)𝜖𝑖,𝑙 = 𝑇𝑖,𝑗 𝐶𝑁⁄ + 𝜎𝑖,𝑗𝜖𝑖,𝑙                                (5.29) 

(5.14) denkleminden benzer şekilde; 

𝑇𝑖,0 𝑅𝑃⁄ = 𝑇𝑖,0 𝐶𝑁⁄ +
𝑎

ℎ
(𝑢𝑖,1 − 𝑢𝑖,0)𝜖𝑖,𝑙 = 𝑇𝑖,0 𝐶𝑁⁄ + 𝜎𝑖,0𝜖𝑖,𝑙                                    (5.30) 

Sınırlayıcı Pade metodunda 𝜖𝑖,𝑙 bulmak için ; 𝑇𝑖,0 𝑅𝑃⁄ = 0 koyalım. 

          𝜎𝑖,0𝜖𝑖,𝑙 = −𝑇𝑖,0 𝐶𝑁⁄                                                                                                          (5.31) 

𝑇𝑖,𝑗 𝑅𝑃⁄ = 𝑇𝑖,𝑗 𝐶𝑁⁄ +
𝜎𝑖,𝑗

𝜎𝑖,0
𝑇𝑖,0 𝐶𝑁⁄   

         =
𝑇𝑖,𝑗 𝐶𝑁⁄ (ℎ,𝑘)𝜎𝑖,0(ℎ,𝑘)−𝑇𝑖,0 𝐶𝑁⁄ (ℎ,𝑘)𝜎𝑖,𝑗(ℎ,𝑘)

𝜎𝑖,0(ℎ,𝑘)
                                                            (5.32) 

dir. Burada; 

𝜎𝑖,𝑗(ℎ, 𝑘) =
𝑎

ℎ
(𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗) = 𝑎(𝑢𝑡 +

𝑘

2
𝑢𝑡𝑡 +

𝑘2

2
𝑢𝑡𝑡𝑡 +

𝑘3

24
𝑢𝑡4 +⋯)𝑖,𝑗                   (5.33) 

𝜎𝑖,0(ℎ, 𝑘) =
𝑎

ℎ
(𝑢𝑖,1 − 𝑢𝑖,0) = 𝑎(𝑢𝑡 +

𝑘

2
𝑢𝑡𝑡 +

𝑘2

2
𝑢𝑡𝑡𝑡 +

𝑘3

24
𝑢𝑡4 +⋯)𝑖,0                        (5.34) 

𝑇𝑖,0 𝐶𝑁⁄ (ℎ, 𝑘) = 𝑎(6𝑢𝑥3ℎ
2 + 24𝑢𝑥4ℎ

3 + 4𝑢𝑥2ℎ𝑘
2 + 24𝑢𝑥4

𝑘4

ℎ
+⋯)𝑖,0                       (5.35) 

şeklindedir. 

(5.12),  (5.32), (5.33), (5.34) ve (5.35) denklemlerini kullanarak; hiperbolik tip 

başlangıç- sınır değer probleminin sınırlayıcı pade metodu ile çözümündeki yerel kesme 

hatasının değişik formu; 

    𝑇𝑖,𝑗 𝑅𝑃⁄ (ℎ, 𝑘) =
1

[𝑢𝑡 + 𝑂(𝑘)]𝑖,0
{
𝑎

6
[(𝑢𝑡)𝑖,0(𝑢𝑥3)𝑖,𝑗 − (𝑢𝑡)𝑖,𝑗(𝑢𝑥3)𝑖,0]ℎ

2

+
𝑎

24
[(𝑢𝑡)𝑖,0(𝑢𝑥4)𝑖,𝑗 − (𝑢𝑡)𝑖,𝑗(𝑢𝑥4)𝑖,0]ℎ

3

+ [(𝑢𝑡2)𝑖,0(𝑢𝑥3)𝑖,𝑗 − (𝑢𝑡2)𝑖,𝑗(𝑢𝑥3)𝑖,0]ℎ
2𝑘 +⋯}       

 (5.36) 

Köşeli parantez içine alınan ifadeler; 

𝐴𝑙,𝑚 = [(𝑢𝑡𝑙)𝑖,0
(𝑢𝑥𝑚)𝑖,𝑗 − (𝑢𝑡𝑙)𝑖,𝑗(𝑢𝑥

𝑚)𝑖,0]                                                (5.37) 
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şeklinde yazılabilir. 

𝑢(𝑥, 𝑡) = 𝑒𝑥−𝑡   , 𝑥 = 𝑖ℎ ,    𝑡 = 𝑗𝑘  kapalı formdaki tam çözümünü (5.37) den yerine yazarsak;  

𝐴𝑙,𝑚 = (−1)𝑙+𝑚[(−𝑒𝑥−𝑡)𝑖,0(𝑒
𝑥−𝑡)𝑖,𝑗 − (−𝑒

𝑥−𝑡)𝑖,𝑗(𝑒
𝑥−𝑡)𝑖,0] = 0                  (5.38) 

bulunur ve (5.38) denklemi; 

            𝑇𝑖,𝑗 𝑅𝑃⁄ (ℎ, 𝑘) = 0                                                                                       (5.39) 

olduğunu gösterir. 

Bu çalışmada uygulanan sınırlayıcı pade yaklaşımı (RPA) metodunun avantajlarını 

aşağıdaki gibi özetlemek mümkündür. 

1. Bu metot bazı zaman adımlarında tam çözümü verir. Örneğin; t=k için u(x,t)=u(ih,k) , 

i=1(1)N  

2. Bir zaman adımında tam çözümü bilmeden yaklaşım uygulamak mümkündür. 

Yöntemin etkinliği ve doğruluğu çok küçük, uygun h ve k değerlerinin alınmasına 

bağlıdır. 

3. İlk adımda ihtiyaç duyulan tam çözüm kapalı formda değildir. Bu durumda bazı 

noktalardaki tam çözümün bilinmesine ihtiyaç vardır.  

4. Denklemin tam çözümü kapalı formda verilmediği sürece yöntemin sonuçlarını 

karşılaştırmak mümkün değildir. 

5. Bu yöntemle ilgili çalışmalar geliştirilerek yüksek mertebeli sistem değişken katsayılı 

lineer olmayan problemlere uygulanması mümkündür. 
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6. SONUÇ VE ÖNERİLER 

Difüzyon denklemine sınırlayıcı Pade yaklaşımı metodu uygulanmış ve elde edilen 

sonuçlar tablo olarak ifade edilmiştir. Sonuçlardan görülmektedir ki sınırlayıcı Pade yaklaşımı 

bu denklem için iyi sonuçlar vermektedir. Bu metodun lineer olmayan denklemler için de 

uygulanması çalışılabilir.  

Benzer şekilde farklı lineer denklemler için henüz çalışılmamış olanlar için de 

uygulamalar yapılabilir. Yapılan çalışmalardan anlaşılmaktadır ki metot genel olarak nümerik 

çözüm anlamında iyi sonuçlar vermektedir.   
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