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Abstract

In this thesis we consider two problems related to additive cyclic codes. In
the first part, we obtain a lower bound on the minimum distance of additive cyclic
codes via the number of rational points on certain algebraic curves over finite fields.
This is an extension of the analogous bound for classical cyclic codes. Our result
is the only general bound on such codes aside from Bierbrauer’s BCH bound. We
compare our bound’s performance against the BCH bound for additive cyclic codes
in a special case and provide examples where it yields better results. In the second
part, we study complementary dual additive cyclic codes. We give a sufficient

condition for a special class of additive cyclic codes to be complementary dual.



TOPLAMSAL DEVIRSEL KODLAR UZERINE

Funda Ozdemir
Matematik, Doktora Tezi, 2016

Tez Danigmani: Dog. Dr. Cem Giineri

Tez Es Damigmani: Prof. Dr. Ferruh Ozbudak

Anahtar Kelimeler: Toplamsal devirsel kod, sonlu bir cisim tizerinde cebirsel egri,

Hasse-Weil sinir1, BCH sinir1, biitiinleyici dual kod.

Ozet

Bu tez caligmasinda, toplamsal devirsel kodlara iligkin iki ayri problem ele
alimmigtir. 11k boliimde, sonlu cisimler tizerinde tammli bazi cebirsel egrilerin
rasyonel nokta sayisi lizerinden toplamsal devirsel kodlarin minimum uzakligina
bir alt sinir elde edilmigtir. Bu sinir, klasik devirsel kodlar i¢in yazilmig benzer
bir sinirin genellemesidir. Bu sonug, Bierbrauer’in BCH siir1 diginda bu kodlar
{izerine yazilmis tek genel simrdir. Ozel bir durumda, toplamsal devirsel kodlar
tizerindeki bu sinirin BCH sinirina karsi performans kiyaslamasi yapilmistir ve daha
iyi sonug verdigi érnekler sunulmustur. Ikinci boliimde, biitiinleyici dual toplam-
sal devirsel kodlar calisilmistir. Toplamsal devirsel kodlarin 6zel bir alt siifinin

biittinleyici dual olabilmesi i¢in yeter sart verilmigtir.
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Introduction

Coding theory is concerned with improving reliability of communication over
noisy channels. This is done by adding redundancy to information messages so
that the transmission errors can be detected or even corrected. Linear codes are
the most important classes of codes and widely studied because of their algebraic
structure, which provides easier implementation. Cyclic codes form a fundamental
subclass of linear codes. They are closed under all cyclic shifts. This extra combi-
natorial structure yields a richer algebraic structure for cyclic codes as they can be
represented as ideals of certain rings. The most important parameter of a cyclic
code is its minimum distance which is difficult to find in general. Therefore it is
important to find general bounds for the minimum distance of a cyclic code. We
will be interested in two such bounds in this dissertation. The first one is the BCH
bound (Bose- Ray-Chaudhuri- Hocquenghem), which depends on the information
given by the zero set of the code. The second bound is due to Wolfmann who
used algebraic curves over finite fields and the Hasse-Weil bound on their number
of rational points [17]. Main tools in relating the weights in cyclic codes and the
number of rational points on certain algebraic curves are the trace representation
of the codes and the additive version of Hilberts Theorem 90.

In this thesis, we focus on additive cyclic codes, introduced by Bierbrauer
[2], which are nonlinear generalizations of cyclic codes. The alphabet of these
codes is not a finite field but a vector space £ over a ground field F,. Bierbrauer
computed the dimension and proved a BCH type bound for the minimum distance
of additive cyclic codes. In the first part of this dissertation, we obtain a Hasse-
Weil type bound on additive cyclic codes, hence extend the analogous result from
cyclic codes. Our bound is much easier to compute compared to the BCH bound.
Moreover, we compare our bound’s performance against the BCH bound in a

special case and present examples where it yields better results.



Linear complementary dual (LCD) codes are linear codes that meet their dual
trivially. These codes were introduced by Massey in [14]. In the same paper,
Massey also showed that asymptotically good LCD codes exist and they provide
an optimum linear coding solution for the two-user binary adder channel. He left
open the question of whether these codes achieve the Gilbert-Varshamov bound,
which is proved later by Sendrier ([15]). LCD codes were rediscovered recently for
their applications to cryptography in the context of side channel attacks ([5]). So
far, cyclic LCD codes were characterized completely by Yang and Massey in [18],
and quasi-cyclic LCD codes were partially studied in [6] and characterized by using
their concatenated structure in [11]. The second part of this dissertation is devoted
to the study of complementary dual subclass of additive cyclic codes. We give a

sufficient condition for a special class of additive cyclic codes to be complementary

dual.



Chapter 1

Background on Coding Theory

1.1 Linear Codes

Let F, be the finite field with ¢ elements, where ¢ is a prime power. A g-ary
linear code of length n and dimension % is a k-dimensional vector subspace of Fy.
The elements of the code are called codewords. The minimum distance of the code
is minimum weight of its nonzero codewords, where the weight of a codeword is
the number of coordinates that are not zero. A linear code of length n, dimension
k and minimum distance d is referred to as [n, k, d] code. The dual of the code C,
denoted as C*, is the orthogonal complement of C' in [y, where the dual is usually
taken with respect to Euclidean inner product on Fy. One can also consider the
dual with respect to other inner products.

Since a linear code is a vector space, it admits a basis. Any codeword can be
expressed as the linear combination of these basis vectors. A generator matric G
of an [n, k,d] code C is a k x n matrix whose rows form a basis for C. If G has the
form [I|A], where I, is the k x k identity matrix, then G is said to be in standard
form. There are many generator matrices for a linear code, but there is a unique
one in standard form.

Consider the extension F' = F, of degree r over F;,. One can construct linear

codes over I, by starting with a linear code over F'. Let

Tr: FF— I,



denote the trace mapping, which is defined by
Tr(a) =a+a’+---+a’ ', foracF.

Definition 1.1.1. Let C' be an F-linear code of length n. Then

. C’|]Fq =CnN FZ is called the subfield subcode of C.

o Tr(C) := {(Tr(c1),...,Tr(cy)) : (c1,y...,¢,) € C}is called the trace code of
C.

It is obvious that C'|g, and Tr(C') are g-ary linear codes of lenth n. The following
famous theorem due to Delsarte is important to see the relation between trace code

and subfield subcode.

Theorem 1.1.2. (Delsarte) [3, Theorem 12.14] For any F-linear code C' of length
n, the following holds:
(T(C)) " = (CH)]g,.

Definition 1.1.3. An F-linear code C is called Galois closed with respect to F,
if it is invariant under the Frobenius automorphism x + x? of I’ over F,, i.e. if
C = (1. The Galois closure of C' is the smallest Galois closed code containing C

and it is denoted by C.

Theorem 1.1.4. Let C be an F-linear code of length n.

i. Tr(C) =Tr(C)
1. If C' is Galois closed, then

a. Tr(C) = Clg,
b. dimg, (Tr(C)) = dimp(C)

Proof. See Theorems 12.16 and 12.17 in [3]. H

1.2 Cyclic Codes

1.2.1 Basic Definitions and the BCH Bound

Cyclic codes form an important subclass of linear codes and they have been

widely studied in the literature. Cyclic codes have been generalized in various ways

4



and the topic of this thesis is one of these generalizations in nonlinear setting.

Definition 1.2.1. A linear code C is called cyclic if (¢,—1,¢o,...,Cpn_2) is in C

whenever (cg,c1,...,¢,-1) isin C.

In other words a linear code that is closed under cyclic shift is called a cyclic
code. It is easy to verify that the dual code of a cyclic code is also cyclic.

A cyclic code can be viewed as an ideal in a polynomial ring. Hence, they
have richer algebraic structure than ordinary linear codes. Consider the following

F,-vector space isomorphism:

Fy — F,lz]/(z" — 1)
(ag,a1,...,an-1) — Qo+ aix+ -+ ap_12" "

Due to this correspondence, any codeword ¢ = (cg, ¢y, ..., ¢,—1) € C can be iden-
tified with the polynomial ¢(z) = Z?;ol c;xt. Since multiplication by x in the ring
F,[z]/(x™ — 1) corresponds to a cyclic shift, if ¢(z) is in C then zc(x) mod 2" — 1

is also in C'. This observation makes the following characterization obvious.

Proposition 1.2.2. [13, Theorem 6.1.3] A linear code C in F} is cyclic if and
only if C' is an ideal in Fy[z]/(z" — 1).

Since F,[z]/(2"—1) is a principal ideal ring, an ideal C' is generated by a nonzero
unique monic polynomial g(x) of the least degree, which is called the generator
polynomial of C. We write C' = (g(z)). Note that g(z) divides 2" — 1. If the
dimension of C' is k, then the degree of g(z) is n—k and {g(z), zg(z), ..., 2" 1g(z)}
forms a basis for C. Vice versa, each monic divisor g(z) € F,[z] of 2™ — 1 is
the generator polynomial of some cyclic code of dimension k& = n — deg(g) in
F,[z]/{z™ —1).

For a polynomial f(z) € F,[z], its monic reciprocal polynomial is defined as
f*(x) _ O_IZL’deg(f)f(l’_l)

where fy is the nonzero constant term of f(x). If f(x) = f*(x), then f(x) is said
to be self-reciprocal. Note that if f(z) divides " — 1, then so does f*(x).

Proposition 1.2.3. [13, Section 6.2] Let C = (g(z)) be a cyclic code of length n

5



and dimension k. Then the dual code C* is cyclic of dimenison n — k with the

generator polynomial h*(x), where h(z) = (2™ —1)/g(x).

Definition 1.2.4. The g-cyclotomic coset mod n containing ¢ is the subset of

Z/nZ defined by
Cy = {i,qi,...,¢" i},

where b is the smallest nonnegative integer such that ¢’ = i mod n.

It is easy to see that two cyclotomic cosets are either equal or disjoint, so the
cyclotomic cosets partition Z/nZ.

In the rest of this chapter, assume that ged(n,q) = 1 by which we guarantee
that 2" —1 has distinct roots in its splitting field over F,. Let r be the multiplicative
order of ¢ mod n. Then F' = F,- is the splitting field of 2 —1. Let o be a primitive
h

n'™ root of unity in F over F,. We have

1= = [Je- o),

where f;’s are distinct irreducible polynomials over F,. If o’ is a root of f;(x), then
a? is also its root. So there is a one-to-one correspondence between irreducible

factors of 2™ — 1 and ¢-cyclotomic cosets mod n.

Definition 1.2.5. Let C' be a g-ary cyclic code of length n with the generator
polynomial g(x) = szl fi,(x) and {iy,...,i.} be a set of representatives of the

cyclotomic cosets corresponding to {f;, }5_;. Then

j=
e the set {i1,...,is} is called a basic zero set of C.

e the collection of g-cyclotomic cosets szl C;; is called the zero set of C.

Theorem 1.2.6. (BCH bound) [13, Theorem 6.6.2] If the zero set of a cyclic code
C' of length n contains t consecutive integers mod n, then the minimum distance

d(C) of C is at least t + 1.

This well-known result can be generalized. The underlying reason is that if «
is a primitive n'* root of unity then of, for any j with ged(j,n) = 1, is also a
primitive n'* root of unity. Before stating the generalized BCH bound, we need

the following definition.



Definition 1.2.7. A C Z/nZ is called an interval of length w if there is an integer
J, which is relatively prime to n, such that A = {jI,j({ +1),...,5(l+u—1)} (

mod n) for some integer | € Z/nZ.

Theorem 1.2.8. [2, Theorem 8] If the zero set of a cyclic code C' contains an
interval of size t, then d(C) >t + 1.

1.2.2 Algebraic Geometric Bound

Besides the BCH bound, there exists another lower bound on the minimum
distance of cyclic codes which is obtained by relating the weights of codewords
and the number of rational points on certain algebraic curves (see [17]). For this
relation we need the trace description of cyclic codes via the basic zero sets of their

duals, and the additive form of Hilbert’s Theorem 90.

Proposition 1.2.9. [17, Proposition 2.1] Let C be a q-ary cyclic code of length
n=q —1and {j1,...,j,} € Z/nZ be a basic zero set of C+. For a primitive

element o of Fyr, we have the following trace representation for C':

C = {(Tr(f(ao)), L Te(f(@ ) f2) = Zakwj’“ eF, [x]} :

Theorem 1.2.10. (Hilbert’s Theorem 90) For x € F' =F,, Tr(x) = 0 if and only
if y? —y = x for somey € F.

Note that if y? — y = x, then for any yy € [y, the element y + y, also satisfies
the same equation. Now let C' be a g-ary cyclic code of length n = ¢" —1 (primitive
case) with dual’s basic zero set {j;}/_, C Z/nZ where j; > 1 for all i. Then the
weight of the codeword ¢y € C' is determined by f € F[z] as follows (by Hilbert’s
Theorem 90):

wt(cs) =n—{zr e F:Tr(f(x)) =0} +1
X7 ()
.

T

:q—

Here, |X} 7(F)| denotes the number of affine F-rational points of the Artin-Schreier

type curve

Xp:yl —y = f(x).

7



To write a lower bound on the minimum distance of C', we need an upper bound

on the number of affine F-rational points of each curve in the family

14

F={y'—y=fle): fla) = > aa’ € Fla]}.

k=1

If deg f is relatively prime to ¢, then the corresponding curve in F is irreducible.

For the number |X;(F')| of F-rational points of any curve Xy in F with genus g(X)

and ged(deg(f),q) = 1, Serre’s improvement on the celebrated Hasse-Weil bound
([16, Theorem 5.3.1]) states that

X (F) < "+ 1+ g(Xp) 2V ). (1.2.1)

Since each curve in F has only one F-rational point at infinity, we have

(X (F) < ¢ + (X)) 12V ]

Proposition 1.2.11. [16, Proposition 6.4.1] The genus of the curve Xy € F with
ged(deg(f),q) =1 is :
9(X7) = (g~ 1)(des(f) 1)

Following the observations above, we are ready to state the following algebraic

geometric bound on the minimum distance of cyclic codes.

Theorem 1.2.12. [17, Theorem 4.3] Let C be a cyclic code of legnthn = ¢"—1 over
F, such that {ji,...,j,} C Z/nZ is a basic zero set of its dual, where ged(j;, q) =1
for ali. Let j = max{j;: 1 <i <v}. Then

Remark 1.2.13. It is possible to generalize the bound above to the imprimitive
case (i.e. to the case where n properly divides ¢"—1). See [17] for details. Moreover,
the Hasse-Weil bound on reducible curves (i.e. curves with ged(deg(f),q) # 1) was
obtained in [8] to extend Wolfmann’s minimum distance bound on cyclic codes to

a more general class of cyclic codes.



1.3 Linear Complementary Dual Codes

A linear complementary dual (LCD) code is a linear code (' satisfying CNC+ =
{0}. The next characterization is due to Massey [14].

Proposition 1.3.1. Let C' be a linear code of length n and dimension k with a
generator matriv G. Then C is an LCD code if and only if the matrizr GGT is

invertible, where GT denotes the transpose of G.

The complete characterization for LCD subclass of cyclic codes is given by Yang

and Massey ([18]).

Theorem 1.3.2. Let C' be a q-ary cyclic code of length n with the generator poly-
nomial g(x). Then C is an LCD code if and only if g(x) is self-reciprocal and all

monic irreducible factors of g(x) have the same multiplicity in g(z) and in ™ — 1.

Recall that if ged(n,q) = 1, then 2™ — 1 has no repeated factors in F [z]. We

have thus the following corollary.

Corollary 1.3.3. If g(x) is the generator polynomial of a q-ary cyclic code C of
length n with ged(n,q) = 1, then C' is an LCD code if and only if g(x) is self-

reciprocal.

Other than Proposition 1.3.1 and Theorem 1.3.2, there are two more general
results on LCD codes. Firstly, Sendrier showed that LCD codes meet the Gilbert-
Varshamov bound ([15]). Secondly, Giineri-Ozkaya-Solé characterized quasi-cyclic
LCD codes in [11] and studied further properties in this code class, which is another

generalization of classical cyclic codes.



Chapter 2

Additive Cyclic Codes

Additive cyclic codes were introduced by Bierbrauer as nonlinear generaliza-
tions of cyclic codes ([2]). Results presented in Sections 2.2, 2.3 and 2.4 appeared
in [10].

2.1 Notation and Definition

Let g be a prime power, F' = F, and £ = F" throughout this chapter, where
m < r are positive integers. Let n | (¢" — 1) be a positive integer, W be the
multiplicative subgroup of F* of order n and « be a generator of W. Fix A =

{i1,...,is} CZ/nZ. Let
P(A) = {a1x" + ...+ a,2™ :ay,...,a, € F},
which is an F-linear space of polynomials and set
B(A) = {(f(a”), ... f(a" 1)) : f(z) € P(A)} € F™

LetI' = {71, ...,%m} C F be alinearly independent set over F,. Define an F-linear

code of length mn

(B(A),T): = {(mf@®),...,ymf(a’);
?71f(05n71)7 e >’me(an71)) : f(l'> € P<A)}

10



Consider the F,-linear mapping

¢FSF—>E

z — (Tr(mz), ..., Tr(yme))

where Tr denotes the trace map from F' to F,. Note that ¢r is surjective since I'

is linearly independent. Extend ¢r naturally as follows:

¢F FY— BT
(1, ..., xp) — (or(x1),. .., or(z,)).

Definition 2.1.1. An additive cyclic code of length n over E is defined as

or (B(A)) = {or((F(@").-.. f(@"™)) : (@) € P(A)}.

The set A is called the defining set of the code.

Remark 2.1.2. The code ¢r(B(A)) is an additive subgroup of E" and it is closed

under cyclic shift. Consider the codeword

¢y = (6r(f(@”)), ..., or(f(a" 7))

/\ja*"fxif €

in ¢r(B(A)) determined by f(z) = i Az € P(A). For g(z) =
=1 1

J
P(A), we have

S

J

(ér(f(@" ), ¢r(f(a")), .. or(f(@"))) = (ér(g(a”)), ér(g(@)); .. or(g(a™ 1)),

which is also a codeword in ¢r(B(A)). Hence, the name additive cyclic is justified.

If we view the code in IFZ"‘” as

¢F (B(A)) = {(Tr(’ylf(ao))’ c 7Tr(7mf(a0));
S Tr(yf (@), o, Te(ym (@) + f(z) € P(A)},

then it is an Fy-linear code of length mn over F,, which is equal to Tr((B(A),T)).
Moreover, as a length mn code over [y, it is closed under shift by m coordinates.

Hence, over Fy, ¢r (B (A)) is a quasi-cyclic code of length mn and index m.

11



Remark 2.1.3. Classical cyclic codes correspond to the special case m = 1. In
this case ¢r (B(A)) is the cyclic code of length n over F, whose dual’s basic zero

set is contained in {i,...,is} (cf. Proposition 1.2.9).

2.2 Algebraic Geometric Bound on the Minimum
Distance

In this section, we obtain a Hasse-Weil type bound on the minimum distance
of additive cyclic codes.
Let n = ¢" — 1 and assume that ¢; > 0 for all j in this section. Then we

have f(0) = 0 for any f(x) € P(A). Hence, the weight of the codeword c¢; =
(6r(f(@)), ..., r(f(a™1))) in ¢r(B(A)) is

wt(cs) =n—{z € F: ¢r(f(z)) =0} +1
=q¢ —{zeF:Tr(yif(z)) =0forall 1 <i<m}|.  (2.2.1)

Let us define the following [F -linear subspace in F:
Vi={zr e F:Tr(pnx)="---=Tr(y,x) =0}. (2.2.2)

Since {71, ..., Ym} is linearly independent over F,, V' is an F,-subspace of codimen-
sion m in F' ([7, Proposition 2.1]).
A polynomial A(T') € F[T] is called g-additive, if it is of the form

m—1

A(T) = apT"" 4 ap T + -+ agT.

We will use the following result.

Lemma 2.2.1. [7, Corollary 2.5] For every F-linear subspace U in F of codimen-
sion m, there exists a uniquely determined monic q-additive polynomial A(T) €

F[T) of degree ¢, which splits in F' and satisfies
U=Im(A) ={A(y) :y € F}.

The following is now easy to observe.

12



Proposition 2.2.2. Let U be an F,-subspace of codimension m in F and let
A(T) € F[T] be the monic g-additive polynomial attached to U as in Lemma 2.2.1.
Define

B(T):= [[(T —u) € F[TY,

uelU

which 1s another q-additive polynomial. Then

U =1Im(A) = Ker(B) and B(A(T))=T7 —T.
Proof. B(T) is ¢g-additive by Theorem 3.52 in [12]. From the definition of B(T),
it is clear that Ker(B) = U. Since U = Im(A) by Lemma 2.2.1, we have

B(T)= ]I *—w=]]T-AW).

u€lm(A) yer

Then we have the following composition

B(A(T)) = [J(AT) - A)) = [ ] AT — w),
yeF yer
where the last equality is due to A(T") being g-additive. Since B(A(z)) = 0 for
all z in F, T7 — T divides B(A(T)). We also have deg B(A(T)) = ¢""™¢™ = q".
Therefore, B(A(T)) =T9 —T.
[l

Remark 2.2.3. Let U = {z € F : Tr(z) = 0} be a codimension 1 F -subspace
of F. Then it is easily seen that B(T) = Tr(T) and A(T) = T9 — T so that
Im(A) = U = Ker(B). This, in fact, is the well-known Hilbert’s Theorem 90
(cf. Theorem 1.2.10). So, Proposition 2.2.2 can be viewed as a generalization of

Hilbert’s Theorem 90.

By (2.2.1) and (2.2.2), computing the weight of the codeword ¢y € ¢r(B(A))
requires the determination of the number of x € F' such that f(z) € V. Let A(T)
and B(T) be the g-additive polynomials of degree ¢™ and ¢"~™, respectively, that

are attached to V as in Proposition 2.2.2. By the same proposition, we have

f(z) € V for x € F if and only if A(y) = f(x) for some y € F.

13



Moreover, if A(y) = f(x) then A(y + yo) = A(y) = f(x) for all yg € Ker(A). Note
that there are deg A = ¢ such y’s and all lie in F since A splits in F (cf. Lemma

2.2.1). Hence,
X ()

: 2.2.3
po (2.2.3)

wt(cp) = q" —

where |X J?f (F)| denotes the number of affine F-rational points on the curve A
defined by
AY) = f(X). (2.2.4)

These observations lead to the following, which is an extension of the algebraic

geometric bound on the distance of classical cyclic codes to additive cyclic codes.

Theorem 2.2.4. Consider the additive cyclic code ¢r (B(A)) of lengthn =q" — 1
over E, where A = {iy,...,is} C Z/nZ. Assume that gcd(i;,q) = 1 for all j and
let i =max{i; : 1 <j <s}. Then,

(¢" =1 —1)[2/q"]

d(¢r(B(A)) >q¢ —¢ ™™ — e :

Proof. Since the weights of all codewords are related to F-rational affine points
on the family F = {A(Y) = f(X) : f(X) € P(A)}, writing an upper bound
on the number of affine F-rational points that applies to all members of F will
yield a lower bound on the minimum distance of ¢r (B(A)) The assumption on
i;'s guarantee that any curve in F (except for the one with f(X) = 0, which
corresponds to the zero codeword) is irreducible. Moreover, any such curve has
one F-rational point at infinity. The number (¢™ — 1)(i — 1)/2 is an upper bound
on the genera of the curves in F (see the proof of Corollary 2.11 in [8]). Therefore,

Serre’s improvement on the Hasse-Weil bound (1.2.1) yields

e p) < g+ T g,

for any X € F. The result follows by (2.2.3). O

Remark 2.2.5. Wolfmann’s bound for classical cyclic codes corresponds to m = 1
in the above result (cf. Remark 2.1.3). In that case, curves (2.2.4) related to
codewords are Artin-Schreier type curves, i.e. A(T) = T? — T in (2.2.4) (cf.
Remark 2.2.3).
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Remark 2.2.6. We can generalize our bound in Theorem 2.2.4 to the imprim-
itive case. For a proper divisor n of ¢" — 1, the weight of the codeword c¢; =
(or(f(a®), ..., or(f(a"1))) € ¢r(B(A)) where a is a generator of the multiplica-
tive subgroup W of F* of order n is

wt(cs) = n — [{z € W : ér(f(z)) = 0}]
—n— [{o T € Figp(fa"5)) = 0} + 1

=n+1- ]{x$ S Tr(’yzf(:an_l)) =0forall 1 <i<m}|

By (2.2.2) and the argument following Remark 2.2.3, we get

g -1 ¢ -1
n

wt(cp) =n+1—|{x EF: flx=)eV}

n ( |X;:f<F>|>
= [y — %
qg —1 q

where [} T(F)| denotes the number of affine F-rational points on the curve X;

defined by

Hence, we obtain the following minimum distance bound

i 1)L2\/7J)

2g™

n

(o (B(4) >

(qr . qr—m .

where i = max{qTT_lij mod ¢" —1:1<j <s}.

A Hasse-Weil type bound for additive cyclic codes in Theorem 2.2.4 can be

optimized in the following way.

Corollary 2.2.7. Let S be the set of positive integers v which are relatively prime
ton = q" — 1 and (vi; mod n) is relatively prime to q for all 1 < j < s. Let
i, = max{vi; modn :1<j < s} and . = min{i, : v € S}. The following bound
holds for the code ¢r (B(A)) in Theorem 2.2.:

d (¢F(B(A))) > —q " — (™ — 1)(;q_ml)t2ﬁj |

Proof. Since ged(v,n) = 1, the mapping x — z¥ is a permutation of F**. Hence,

the number of affine F-rational points of the curve defined by A(Y) = f(X¥ medn)
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is the same as that of the curve defined by A(Y) = f(X). Note that on the code’s
side, this change amounts to considering an additive cyclic code which is equivalent
to ¢r (B(A)) Therefore, one can estimate the weights in ¢r (B(A)) by all such
curves (i.e. any v € S). Moreover, the assumption that ged(q, vi; mod n) = 1
(for all j) guarantees that A(Y) = f(X* ™m°d ") defines an irreducible curve again.
Hence, the bound of Theorem 2.2.4 holds for any v € S, replacing ¢ by i,. The
best lower bound is obtained by ¢. O

Remark 2.2.8. Note that the assumption ged(ij,q) = 1 (for all j) in Theorem

2.2.4 is made to guarantee that the equation
AY) = X" 4o A X" (2.2.5)

defines an irreducible curve over I’ whose genus and hence the Hasse-Weil bound on
the number of its F-rational points are known. The Hasse-Weil bound on reducible
curves was obtained in [8] to extend Wolfmann’s minimum distance bound on cyclic
codes (cf. Remark 1.2.13). The same result can also be used for extending Theorem
2.2.4. This involves determining degrees of the so-called left greatest common
divisors for corresponding additive polynomials. For the purpose of determining

such possible degrees, the notion of LGCD trees are used (see [8] for details).

2.3 The Dual and the BCH Bound on the Mini-

mum Distance

Our purpose in this section is to introduce the BCH bound due to Bierbrauer
which is a generalization of the BCH bound for cyclic codes and compute it for
¢r(B(A)). We will continue to use the notation introduced above. Bierbrauer

proved the following BCH type bound for additive cyclic codes.

Theorem 2.3.1. [2, Theorem 8] If A contains an interval of length t mod n, then
d(or(B(A)LY) >t +1.

Our goal is to compare the bound in Theorem 2.2.4 for ¢r(B(A)) with the bound
above. For this, we need to find B C Z/nZ and a set I'" such that ¢r(B(A)) =
ér/(B(B))*. Here the dual is taken with respect to the Euclidean dot product on
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E™ (ur,...,un) - (U1, ..., Un) = Doy s - vy, for us,v; € E = Fy*, where w; - v; is the

Fuclidean product.

Lemma 2.3.2. Let A, B be subsets of Z/nZ and I',I" be F,-linearly independent

subsets of F. If (B'(A),F)L = (B(B),I'), then Tr(B(A),I') = (Tr((B(B),F’)))l.

Proof. By Theorem 1.1.4 i and the assumption, we have
Tr(B(A),T) = Te((B(A).T)) = Tr((B(B), I')*).
Theorem 1.1.2 and 1.1.4 ii imply that
Tr((B(B),1")*) = ((B(B), I")ls,) " = (Tx((B(B).I7))) "

The result follows from Theorem 1.1.4 i. OJ

From the above Lemma, our problem reduces to finding B C Z/nZ and an

[F,-independent set IV = {+4,....,7,,} C F such that

(B(A),T) = (B(B),I).

In other words, we can work with codes over the extension F. The following useful

fact will be needed.

Lemma 2.3.3. If k is not a multiple of n, then

i(at)k:1_<a )n_1_<an> o 1-1 —0.

1—ak  1—aF 1—aF

Definition 2.3.4. Let Z C Z/nZ be a g-cyclotomic coset mod n. Define

Ve(Z) : = {(p1(a®), ..., pm(a”);
p1(@™ ), oY) s pi(x) € P(Z)}.
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To simplify notation, we will denote the codeword in Vp(Z) determined by
pi(x) € P(Z) as (p1(x),...,pm(x)). Using this notation, we state the following
fact on the Euclidean inner product of two vectors which will be referred to several

times in the rest of this chapter.

Lemma 2.3.5. If a and b are integers such that a +b % 0 mod n, and cy,...,cp

are elements of F, then
(crz®, coz®, . .. cppz®) - (clxb, Y A ,cmxb) =0.

Proof. With our notation, the inner product above is the Euclidean product of the

following vectors in F™":

01040“ .. CmOéoa clonb .l CmOéOb
a a b b
cro e Cm QY cro e Cm QY
Cl(l/2a v CmaQa . ClOé2b e CmOé2b
Cla(n—l)a Cma(n—l)a Cla(n—l)b . Cma(n—l)b
For every i € {1,...,m}, the i*® column contributes the following to the product:
n—1
C? E at(a-i—b).
t=0
By Lemma 2.3.3, this sum is 0 since a + b # 0 mod n. m

In the following, by a Galois closure of a codeword (p1(x),...,pm(x)) € Vr(Z),

we mean the F-space spanned by the vectors

r—1

(p1(33), .. ,pm(:r)), (pl(m)q7 .. 7pm(x)‘1)7 o (p1($)q - 7pm(x)qr—1>.

This space will be denoted by (p1(x),...,pm(z)). The Galois closure of a set of

codewords is similarly defined and denoted.
Lemma 2.3.6. Let Z be a g-cyclotomic coset mod n. Then

i. dimVr(Z) =ml|Z|.
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i. @, Ve(Z) = P, Vr(—2Z) = F™, where Z runs through all q-cyclotomic

cosets mod n.

iii. Vi(Z2)t = D, Vr(Z'), where Z' runs through all q-cyclotomic cosets

mod n.

w. Ifp(z) € P(Z), then the Galois closure of (ip(z),- -+, Ymp(x)) is contained
in Ve(Z). Therefore (B(Z),T') C Vr(Z).

Proof. i. Consider the F-linear evaluation map

Ev:P(Z) — F"

p(@) — (p(a’),....p(a" 1)),

whose kernel is {0}, since any polynomial p(z) € P(Z) has degree < n. Extend

this map as

Ev:P(Z)" — F™

(p1(x), ..o, pm(x)) —> (Ev(pl(x)), s Ev(pm(x)))

Note that the image of this map is Vp(Z). Hence the F-dimension of Vp(Z) is
mdimP(Z) =m|Z|.

ii. Note that the sum is indeed direct since (p1(z),...,pm(z)) € Vr(Z) is the
same as (q1(x),...,qn(x)) € Vp(Z') if and only if p;(x) = ¢;(z) for all 1 <i <m
(by a degree argument). This is impossible since Z and Z' are distinct cosets.
By part i, dimension of the direct sum is m_,|Z| = mn. Since each Vp(Z) is
contained in F™", the result follows.

iii. By Lemma 2.3.5, for a g-cyclotomic coset Z' # —Z, Vr(Z') C Ve(Z)*.
Hence the direct sum is contained in Vp(Z)+. These two spaces have the same

dimension by part i.

iv. This is clear since (vip(z),- - ,Ymp(z)) is an F-space and p(z)? € P(Z)
for any 7. The last assertion follows from the definition of (B(Z),TI"). O

Corollary 2.3.7. i (B(A),I) =&, [(B(4),I)NVr(2)] =@, (B(ANZ),T).
ii. BA),T) =@, [BANZ),0) NVe(-2)].
Proof.
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1. Immediate from Lemma 2.3.6.

ii. Since (ZS’(A),F)l C F™ and ™" = @, Vr(—Z) by Lemma 2.3.6 ii, we have

the following decomposition

(B(A),1) =P [BA),T) NVi(-2)]

[[@ (B(AnZ),T)] N VF(—Z)]

Z/

[plEEnEasy

Z/

]

@ D D

N VF(_Z)]

where the second equality follows from part i and the third equality follows from
the fact that (U@ V)* = UL V* for any two subspaces U and V of the same
space.

Fix a cyclotomic coset Z = Z;. Then the corresponding summand of WL

18

[(NBANZ),T) | NVie(=Zo) = () [BANZ).T) N Vi(-2)]

zZ! zZ!

— BANZ), D) N Vi(—Z)

where the last equality follows from the fact that (B(ANZ'), F)L NVe(=Zp) =
Vie(—Zo) when Z' # Zy, since @ ., Vr(—2) C (B(AN Z'), F)L by Lemma 2.3.6.

Hence the result follows. O

Recalling our goal, decomposition of the dual code in Corollary 2.3.7 reduces

our task to finding I C F' and By C Z/nZ for each summand such that
BANZ),0) NVi(—Z) = (B(B,),T).

It then follows that B =, Bz.

The following result will yield the set B, hence the dual code, explicitly in the
case m = 2. In fact, Theorem 2.3.8 provides an algorithm for determining the set
B, which will be used for Magma computations in Section 2.4. We will denote
the dimension of (B(By),I") by kz below. Note that this implies dim ¢p(B(A)) =
mn — Y, kz (cf. Theorem 1.1.4 ii).
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Theorem 2.3.8. Let m = 2, I' = (1,7) and b = [F,(v) : F,] > 1. Let Z =
{i,iq,...,1¢° '} be a q-cyclotomic coset mod n of length s. For T’ = (—~,1), we
have the following:

i. IfANZ =10, then By = —Z and k; = 2s.

. If ANZ = {ig",iq"2,...,iq"} for some 0 <up <ug < -+ <u < s—1 and
b does not divide s, then By =0 and k; = 0.

iii. If ANZ = {ig",iq"2, ..., ig"} for some 0 <up <ug < -+ <uy < s—1 andb
divides s, set Ay = {ig"=t® mod n : 0 < £ <r —1} for somea € {1,...,t}.
Then

e By=0andky; =0if ANZ ¢ Ay.
® BZ:_AZ andk:Z:szfAﬂnglZ

Proof. i. If AnNZ =0, then (B(AN Z),T") = {0} which yields
BAN2),T) NVi(=Z) = Vi(~2).

Note that dim Vp(—Z) = 2s and (B(—Z%2),I") C Vp(—Z). By definition,

(B(=Z),T") = Span {(—ya~t, a~%), (—yx—,a=4), ..., (—yz~ia" " g )}

Codewords above, spanning (B(—Z2),1"), are F-linearly independent by Lemma
2.3.5, since orthogonality implies linear independence. Moreover, for every a =
0,1,...,8 — 1, both (—yz~%" 27%") and (—v%2~"" 27%") are in the Galois clo-
sure. These two codewords are linearly independent since v? # v (this would

contradict b > 1). Hence, dim (B(—Z2),I") = 2s and (B(—2),1") = Vr(—2).
Therefore B; = —Z.

ii. We have

(B(AN Z),T") = Span{ (x¥d"" | yxia™ ), (21d"? ~rzia*?), ... (21" yxid*)},
Note that for any 1 < a <'t,

(@)%, (y2™)T) = (a7, 47 2"™)

21



since |Z| = s. Hence, (wiqua,vqsx"qua) is also an element of the Galois closure.
Moreover, (2", yz'"") and (2"*,y72""") are linearly independent since 74" #
v by the assumption that b1 s.

Suppose u € {0,1,...,s — 1} \ {uy,...,u;}. Then,
<(xiqu1>qu_ul7 (Wiqul)quw) _ (xiquﬁqu_ulxiqu> c BANZT.
Moreover, due to the length of Z again, we have
<(xiqu>qs’ (un_ulxiqu)qv _ (xiquﬁqm_ulxiqu) c BANZ)T.

If 44" = 44" then 4" "'(@~1) = 1. The order of v is a divisor of ¢* — 1,
hence it cannot divide a power of ¢. This means the order divides ¢° — 1, which
yields 44" =1 = 1. This contradicts the fact that bt s. Hence, (:L’iqu, 'yqu_ulxiqu> and
<$iq“, G xiq“> are linearly independent.

Arguing as in part i, we have dim (B(ANZ),I') = 2s and (B(ANZ),T) =
Vr(Z). Note that Vp(Z)t N Vp(=Z) = {0} by Lemma 2.3.6 (iii). Therefore
By, =0 and k, = 0.

iii. Assume that ANZ ¢ Ay. Let j € {1,...,t} be such that i ¢ A;. Then

—ugq

Note that (wiq“j R ) and <xiquj 4T e ) are linearly independent elements
of (B(AN Z),T), since otherwise 447 "* = ~. This would yield b|(u; — u,), which
would contradict the assumption that iq*% ¢ Ay.

Let v € {1,...,t} be such that ig* € A,. Then ig" = i¢"*® for some . For
je{l,...t} with ig% ¢ Ay, we have

uy —uj Uy — U

(@)™ (™)) = (27 42 ) € (BAN Z),T).

If v9"° " = ~, then b|(u, — u;) which contradicts i¢" ¢ Aj. Hence, (2", yz'?™)
and (ggiqu“ e xiq“”> are two independent elements of (B(AN Z),T).
Finally, let u € {0,1,...,s — 1} \ {u1,...,w}. Then, for j as above and a as
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in the definition of A 7z, we have

U—U;

(@)™ ™ ) = (a7 970" ) € BAN 2T,

(i)™ (i)™ ) = (2", 472" ) € (BIAN Z),T).

If 47" = 427" then 4 “(-¢Y"") — 1 Multiplicative order of v divides
= 1, which yields

¢® — 1, hence it cannot divide ¢*~%. Therefore 77 "“~1
v € Fu-wa. This implies b(u; — u,) which yields a contradiction as above.
Hence (x"qu,yqu_uj xiqu> and (xiqu,yqufu“miqﬁ are two independent elements of
(B(AN Z),T). Now the claim follows as in part ii.

IfANZ C AZ, let u, = ug, +4,bfor 1 < v <t. It is clear that m -
(B(Ay),T). Let £ be such that ig“t® € A, \ AN Z. Then, for any v € {1,...,t},

we have

iquattuby g(t—tu)b iqiv \gE—tb iquattd  q—tu)b jouateh
((l’ ) 7(7‘% ) = \Z 77 x

r (;ﬂ* WQ““*“’) e (B(An Z),T),

~

where the last equality holds since v € Fp. Hence, (B(AN Z),T") = (B(Az),I).

Above discussion yields

(B(AZ), F) _ Span{(xiq“a ’ "}/CCiqua )7 (xiquanb’ ’yl’iquaer), (xl'qua+2b’ ’)/l'iquaJr%), B }

= Span{(z/", yzit"*)}

= Span{ (2" AT 2" ) 0 < e < s — 1},

where the last equality follows from |Z| = s. Hence, dim (B(Az),I") = s. Moreover,

dim ((B(AZ), 0 n VF(—Z)> = dim ((B(AZ), ) o VF(_2>¢>L
— 2n — (dim(B(Az),T) + (2n — dimVp(—2)))
=2n — (s + 2n — 2s)

= S.
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Observe that the codewords

(_,yx—iq“a ) x_iqua)a <_fyqx_iqua+l ) xiq“a+1)7 cee

., (—’yqs_ll‘iiqua-'—(s_l) : x*iqua+(s_l)) c VF(—Z)

~

are all orthogonal to the generators of (B(Az),I"). Arguing as above, we have

—~ 1

(B(Az),I') NVp(—=Z) = Span{(—vy
= Span{(—ye 7 0}
(—

it pigte Ty e = 0,1,2,. ..}

’unaﬂ, x’iquﬁc) 0<c<s—1}

= Span{
= (B(=Az),1")

Therefore By = —AZ. O

2.4 Comparison of the Bounds

In this section we will present some examples to illustrate instances where our
Hasse-Weil type bound performs better than the BCH bound. To optimize the
bound in Theorem 2.2.4 for ¢r(B(A)), we choose the set joA whose maximum
element is the smallest among the maximum elements of jA for every j relatively
prime to n (cf. Corollary 2.2.7). In this respect, we always start with the optimum
defining set A for the code ¢r(B(A)) in the examples below.

Furthermore, to obtain the best BCH bound for the code, we will take the
longest interval in the defining set B of dual code. Say this interval is {jol, jo(l +
1),...,jo(I4+u—1)} for some jj relatively prime to n and for some integer [ € Z/nZ.
The length of this longest interval in B is the same as the length of the longest
consecutive integer sequence in jB. In other words, to optimize the BCH bound
for ¢r(B(A)), we collect the lengths of longest consecutive integer sequence in jB
for every j relatively prime to n, and take the maximum one.

Let m =2, " = (1,7) and b = [F,(y) : F,] > 1. In Tables 2.1 and 2.2, we
present examples of codes where the Hasse-Weil type bound performs better than
the BCH bound. Our bound is easy to compute but the BCH bound requires long
computations in Magma [1] to determine the set B (cf. Theorem 2.3.8) and the

longest interval for this bound.
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In the next example, we give details for one of the codes in Table 2.1 to describe

the computations involved in the results presented in this table.

Example 2.4.1. Consider the codes corresponding to the rows with ¢ =2, r =8
and A = {5,7,9} C Z/255Z in Table 2.1. From Theorem 2.2.4, we have the
following:

4—-1)(9—1)|2v28)

5 = 96.

d(6r(B(A)) = 25— 20 — L

i. First consider the code with b = 2. We can find B using the algorithm in

Theorem 2.3.8. The cyclotomic cosets containing 5, 7 and 9 are

Z(5) = {5, 10, 20, 40, 65, 80, 130, 160}
Z(7) = {7,14, 28,56, 112,131, 193, 224}
Z(9) = {9, 18,33, 36,66, 72,132, 144}

Since b divides the cardinalities of these cyclotomic cosets, we fall in the case
(iii) of Theorem 2.3.8. We have Ay = {5,20,80} , Ay = {7,28,112} and
AZ(Q) = {9, 36, 144}. They give a contribution of —Az(g)) U —AZ(7) U —AZ(Q) =
{111, 143,175,219, 227, 235, 246, 248,250} to B. The cyclotomic cosets not
intersecting A yield a contribution of (5, —Z(i) to B (Theorem 2.3.8 i).
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We optimize the BCH bound for ¢r(B(A)) when j = 133 and obtain

B =1{0,1,2,3,4,5,6,7,8,9,10,11,12, 13,14, 15,16, 17, 18, 19, 20, 21, 22, 23,

24,25,26,27,28,29, 30,31, 32,33, 34, 36, 37, 38, 40,41, 42, 44, 45, 46,

47,48,49,51,52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 63,
69,70, 71,72,73,74,75,76, 77,78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89,

90,91, 92, 93,94, 95, 96, 97, 98,99, 100, 101, 102, 103, 104, 105, 106, 107,

108,109,110, 111,112, 113, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124,
125,126, 127,128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 141,
142,143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 157, 158,
159,160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,173, 174, 175,
176, 177,179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192,
193,194, 195, 196, 197, 198, 199, 203, 204, 205, 206, 207, 208, 209, 210, 211

212,213, 214, 215,216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,

228,229,230, 231, 232,233,234, 235, 236, 237, 238, 239, 240, 241, 242, 243,

244,245, 246, 247, 248,249, 250, 251, 252, 253, 254},

which contains maximum 87 consecutive integers (the underlined sequence
in the set). Hence by Theorem 2.3.1 the BCH bound is 88, which is worse
than the Hasse-Weil type bound.

ii. Consider the codes with b = 4 and b = 8. By applying the same procedure
as in part i, we obtain that BCH bound is 78 in both cases, which is again

worse than the Hasse-Weil type bound.
Again, details for one of the codes in Table 2.2 is given in the next example.

Example 2.4.2. Consider the codes corresponding to the rows with ¢ =3, r =4
and A = {1,2,4,5} C Z/80Z in Table 2.2. The Hasse-Weil type bound for these
codes is 40 by Theorem 2.2.4.

First consider the code with b = 2. We can find B using the algorithm in

26



’ q ‘ r ‘ A b H HW-bound | BCH-bound
2|7 {1,3,5} 7 63 48
217 {1,3,5,7} 7 47 32
2|8 {5,7,9} 8 96 78
2|8 {5,7,9} 4 96 78
2|8 {5,7,9} 2 96 88
2|8 {3,7,9,11} 8 72 64
2|8 {3,7,9,11} 4 72 64
219 {5,9,11} 9 216 164
219 {5,9,11} 3 216 175
219 {1,3,5,7,9,11,13} 9 182 96
219 {1,3,5.7,9,11,13} 3 182 112
219 {(3,5,11,15} 9 148 116
219 {3,5,11,15} 3 148 138
219 {(3,5,11,15,17} 9 114 107
219 {3,5,11,15,17} 3 114 108
2110 {3,5,11,13,19} 10 336 254
2|10 {3,5,11,13,19} 5 336 254
2110 {1,9,1517,1923} |10 240 195
210 {1,0,15,17,19,23} 5 240 195
210 {1,9,15,17,19,23} P 240 994
210 {3,5,7,15,17,21,25} | 10 192 160
2|10 {3,5,7,15,17,21,25} 5 192 160
2110 | {3,57.1517,21,25}) | 2 192 191
2 110 | {1,7,13,15,19,23,25,27} | 10 144 126
2110 | {1,7,13,15,19,23,25,27} | 5 144 129

Table 2.1: Codes for ¢ = 2

Theorem 2.3.8. The cyclotomic cosets containing 1, 2, 4 and 5 are

Z(1) = {1,3,9,27}

Z(2) = {2,6,18,54}
Z(4) = {4,12,28,36)
Z(5) = {5,15,45,55}

Since b divides the cardinalities of these cyclotomic cosets, we fall in the case (iii)
of Theorem 2.3.8. We have Ay = {1,9}, Az = {2,18}, Azu) = {4,36} and
AZ = {5,45}. They give a contribution of AZ
{35,44,62,71,75,76,78,79} to B. The cyclotomic cosets not intersecting A yield
a contribution of (J;4; 45 —Z(i) to B (Theorem 2.3.8 i). We optimize the BCH

UAZ

UAZ

U AZ(5) —



bound for ¢r(B(A)) when j = 3 and obtain

B =1{0,1,2,3,4,5,6,7,8,9,10,11,12, 13,14, 15,16, 17, 18, 19, 20, 21, 22, 23,

24,25,26,27,28,29,30,31, 32,33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46,

47,48, 49,50, 51,52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68,
69,70, 72, 73,74, 77},

which contains maximum 35 consecutive integers (the underlined sequence in
the set). Hence, by Theorem 2.3.1 the BCH bound is 36, which is worse than the
Hasse-Weil type bound.

For the code with b = 4, the same procedure again yields 36 for the BCH
bound.

’ q ‘ r ‘ A ‘ b H HW-bound | BCH-bound
3[4 (12,45} 4 40 36
3[4 {1245} 2 40 36
315 {1,5,8} 5 120 102
315 {1,2,5,7,8} 5 120 79
3|5 {2,4,5,7,10} 5 92 81
316 {4,5,8,10,11,13,14} 6 336 242
316 {4,5,8,10,11,13,14} 3 336 242
316 {4,5,8,10,11,13,14} 2 336 250
316 {7,10,11,14,16,17} 6 264 244
316 {7,10,11,14,16,17} 3 264 244
316 {7.10,11,14,16,17} 2 264 258
316 | {2,4,7,8,11,13,14,17,19,20,22} | 6 144 136
316|4{2,4,7,.8,11,13,14,17,19,20,22} | 3 144 136

Table 2.2: Codes for ¢ = 3
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Chapter 3

Complementary Dual Additive
Cyclic Codes

3.1 A Condition for Complementary Dual Codes

We will continue to use the notation introduced in the previous chapter. Let
n = ¢" — 1 and m = 2 throughout this chapter. For I' = (1,7), the dual of
¢r(B(A)) is ¢r/(B(B)), where I" = (=, 1) and the set B is determined explicitly
in Theorem 2.3.8. Elements of ¢r(B(A)) and its dual ¢r(B(B)) are of the form
¢ = (Te(£(2), Te(1£(2))) for f(z) € P(A) and ¢, = (Tr(—g(2)), Tr(g(x))) for
g(z) € P(B), respectively. Recall that (Tr(f(x)), Tr(vf(x))) denotes the code-
word (Tr(f(a)), Tr(vf(a®);...; Te(f(a"™)), Tr(vf(a™"))). Then ¢r(B(A)) is
not complementary dual if and only if there exist f(xz) € P(A) and g(z) € P(B)
such that ¢y # 0 £ cg and ¢y = ¢4. We will use the following result.

Lemma 3.1.1. /9, Proposition 2.3] Let \; € Fyr and i; be positive integers, for
Jj=12...,s. Assume that the q-cyclotomic cosets containing i;’s are distinct.
Then Tr(Ax™ + Xoz2 + -+ -+ Xgz's) = 0 for all x in Fpr if and only if Tr(\;z%) =0
for all x in Fpr and for all j =1,2,...,s.

A slight modification of Lemma 3.1.1 is needed for our purposes.

Lemma 3.1.2. Let Mo, \; € F' and i; be positive integers, for j = 1,2,...,s.
Assume that the g-cyclotomic cosets mod n containing i;’s are distinct. Then
Tr(Ao + Mz 4+ Aoz + -+ + A\z') = 0 for all x in F* if and only if Tr(\g) = 0
and Tr(\;z%) = 0 for all x in F* and for all j =1,2,...,s.
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Proof. Assume Tr(Ag+ Az + Aoz + -+ -+ A\z') = 0 for all z in F*. By linearity
of the trace map, Tr(Az™ + X\gx™ + -+ 4+ A\2') = —Tr()\g) =: ¢ for all z in F*.
Then

(¢"—1)c= Z Tr(Az™ + - + Az™)

xeF™*
= Tr( Z (M + -+ Az™))
reF™*
=Tr(\ in1+~~+)\s Z:U’)
reF™* xeF™*
=0

where the last equality follows from the fact that if ¢ is not a multiple of ¢" — 1,
then . 2" = 0 by Lemma 2.3.3. Therefore ¢ = 0, i.e. Tr(\g) = 0 and
Tr(A 2 + Aoz + -+« + Agz's) = 0 for all z in F*. By Lemma 3.1.1 , Tr()\g) = 0
and Tr(\;z%) =0 for all  in F* and for all j =1,2,...,s.

The converse is immediate from linearity of the trace map. O]

For A C Z/nZ, denote by A the union of all g-cyclotomic cosets mod n inter-

secting A nontrivially.

Proposition 3.1.3. Let A and B be defining sets for the additive cyclic code and
its dual as before. If AN B =10, then ¢r(B(A)) is complementary dual.

Proof. Let f(z) € P(A) and g(x) € P(B), and suppose ¢y = ¢,. Then Tr(f(z) +
vg(x)) = 0 and Tr(yf(z) —g(x)) = 0 for all x € F*. By the assumption ANB = ),
exponents of f and g cannot lie in the same cyclotomic coset. Some exponents
that appear in f (or in ¢g) may be from the same cyclotomic coset. This is no
harm for concluding Tr(f(z)) = 0 = Tr(vg(x)) and Tr(vyf(x)) = 0 = Tr(g(z)) for
all z in F* (by Lemma 3.1.2), since Tr(az’ + b2’?) = Tr((a + b*/9)27). Therefore,
¢; = 0 = ¢,, i.e. anything in the intersection ¢p (B(A)) N ¢ (B(B)) has to be
[

e

Theorem 3.1.4. Let b= [Fy(v) : Fy] > 1. Then ¢r(B(A)) is complementary dual

if the following conditions are satisfied by every q-cyclotomic coset Z mod n:

i. ANZ =10 if and only if AN (=Z) = 0.
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i. If ANZ # 0, then AN Z is not contained in the ¢°-cyclotomic coset mod n

of some element in AN Z.

Proof. If a cyclotomic coset Z does not intersect A, then we also have AN Z = ().
Therefore, such a cyclotomic coset cannot contribute to AN B.

Now assume that a cyclotomic coset Z intersects A. By assumption i, we have
AN(=Z) # 0 too. If b does not divide | Z| = | — Z|, then by Theorem 2.3.8 part ii,
we have B_, = BNZ = () and such Z cannot contribute to AN B. So assume that
b divides |Z| = | — Z|. Note that A_, is nothing but the ¢’-cyclotomic coset mod
n of some element in AN (—Z). Hence assumption ii implies that AN (—2) € A_y
and therefore (by Theorem 2.3.8), we have B_; = BN Z = (). Therefore such a
coset Z cannot contribute to A N B even if b divides |Z|. The result follows from

Proposition 3.1.3. O

Corollary 3.1.5. Letb = [Fy(7) : F,] = r. Then ¢r(B(A)) is complementary dual

if the following conditions are satisfied by every q-cyclotomic coset Z mod n:
i. ANZ =0 if and only if AN (—=2) = 0.
ii. If ANZ # 0, then there exists at least two elements from Z in A.

Proof. Since b = r, ¢"-cyclotomic coset mod n of any element in AN Z consists of
a single element. Hence, by ii, A N Z satisfies condition ii in Theorem 3.1.4 and

the result follows. O

3.2 Examples

In this section, by using our results we present examples of additive cyclic
complementary dual codes over E = F3. In Table 3.1, M and d stand for the
size and minimum distance of the code, respectively. The computational algebra
system Magma [1] is used for computations.

In the following examples, we describe the computations briefly for some of the

codes presented in Table 3.1.

Example 3.2.1. Let r =5 =b. Then n = ¢" — 1 = 31 and 2-cyclotomic cosets
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mod 31 are

Zy = {0}

7y ={1,2,4,8,16}

Zs = {3,6,12,17,24}
Zs = {5,9,10, 18,20}
Z: = {7,14,19, 25,28}
Zyy = {11,13,21,22,26}
Z15 = {15,23,27,29,30}.

Consider the additive cyclic code of length 31 over F = F2 with defining set
A ={1,2,15,23} where {1,2} C Z; and {15,23} C Zy5 = —Z;. Then

E: Zl UZl5.

The cyclotomic cosets not intersecting A yield a contribution of | J 115 —2j to B
(Theorem 2.3.8 1). Since ANZ; € Ay, = {1} and ANZi5 € Ay, = {15}, there is
no contribution from Z; and —Z; = Zj5 to B (Theorem 2.3.8 iii). Therefore the
defining set of the dual code is

B = U ~Z;.

j#1,15

For this code we satisfy the condition that AN B = . Indeed this code is nonlinear
complementary dual over 2 of length n = 31, size M = 4'% and minimum distance
d = 10.

Note that the best minimum distance of LCD cyclic codes over 4 with length
31 and dimension 10 is d = 10 as well. For instance, the one which is generated

by the self-reciprocal polynomial
gx) =22 + 2V 218 4 2 1o B p S St 41

has minimum distance 10.

Example 3.2.2. Consider the code corresponding to the row with r = 6, b = 6
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and

A ={1,4,31,47,21,42},

where {1,4},{31,47} and {21,42} are contained in the 2-cyclotomic cosets mod
63 21, Z31 = —Z1 and Zy; = —Zo, respectively. Then

X: Zl UZgl UZQl.

From the algorithm provided in Theorem 2.3.8, the defining set of the dual code is

B = U ~Z;.

§#1,31,21

For this code we satisfy the condition that AN B = (). Indeed this code is nonlinear
complementary dual over F2 of length n = 63, size M = 4'* and minimum distance
d=22.

Moreover, for b = 3 the code is still complementary dual with the same pa-
rameters as in the case b = 6. On the other hand, if b = 2, then the code is
not complementary dual since A N Z; is contained in the ¢’-cyclotomic coset of 1

(Theorem 3.1.4 ii).

| b ] A | M| d |

4 1,2 {1,2,7, 11} 45 4

4 4 (1, 4,7, 11} 4 4

4 1,2 {3,6, 5, 10} 45 6

5 5 {1,2, 15, 23} 410 10
6 6, 3 (1,4, 31, 47} 7 24
6 6,3 2 (1,2, 31, 47} A7 24
6 6,3 | {1,431 47,21, 42} | 47 | 22
7 7 {1, 2, 63, 126} AT 5
8 |8, 4,2 {48,127, 191} 47112
8 8, 2 {1, 16, 127, 191} 4112

Table 3.1: Codes over F3
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