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ABSTRACT

A SIMULATION STUDY ON THE COMPARISON OF METHODS
FOR THE ANALYSIS OF LONGITUDINAL COUNT DATA

inan, Gul
M.Sc., Department of Statistics

Supervisor: Dr. Ozlem ilk

July 2009, 76 pages

The longitudinal feature of measurements and counting process of responses
motivate the regression models for longitudinal count data (LCD) to take into
account the phenomenons such as within-subject association and overdispersion.
One common problem in longitudinal studies is the missing data problem, which
adds additional difficulties into the analysis. The missingness can be handled with
missing data techniques. However, the amount of missingness in the data and the
missingness mechanism that the data have affect the performance of missing data
techniques. In this thesis, among the regression models for LCD, the Log-Log-
Gamma marginalized multilevel model (Log-Log-Gamma MMM) and the random-
intercept model are focused on. The performance of the models is compared via a
simulation study under three missing data mechanisms (missing completely at
random, missing at random conditional on observed data, and missing not random),
two types of missingness percentage (10% and 20%), and four missing data
techniques (complete case analysis, subject, occasion and conditional mean
imputation). The simulation study shows that while the mean absolute error and
mean square error values of Log-Log-Gamma MMM are larger in amount compared

to the random-intercept model, both regression models yield parallel results. The



simulation study results justify that the amount of missingness in the data and that
the missingness mechanism that the data have, strictly influence the performance
of missing data techniques under both regression models. Furthermore, while
generally occasion mean imputation displays the worst performance, conditional
mean imputation shows a superior performance over occasion and subject mean

imputation and gives parallel results with complete case analysis.

Key words: Longitudinal count data, gamma distributed random effects, drop-out

or intermittent missing data, missing data mechanisms, missing data techniques.
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UZUNLAMASINA KESIKLi VERI ANALIiZi iCIN YONTEMLERIN
KARSILASTIRILMASI UZERINE BiR BENZETIM CALISMASI

inan, Gul
Yiksek Lisans, Istatistik Bolimi

Tez Yoneticisi: Dr. Ozlem ilk

Temmuz 2009, 76 sayfa

Olgiimlerin, uzunlamasina ézelligi ve bagimli degiskenin sayim siireci, uzunlamasina
kesikli veri analizi i¢in gelistirilen regresyon modellerin birey i¢i 6l¢imler arasi
bagimhilik ve asiri yayilim gibi olgulari dikkate almasini saglamaktadir. Uzunlamasina
calismalarda, analizlere fazladan zorluk katan, ortak bir sorun, kayip veri
problemidir. Bu problem kayip veri ¢6zim teknikleri vasitasiyla Ustesinden
gelinebilir. Fakat verideki kayip deger miktari ve de verinin sahip oldugu kayip veri
mekanizmasi, ¢ozim tekniklerinin basarisini etkilemektedir. Bu tez calismasinda,
uzunlamasina kesikli veri igin gelistirilmis olan regresyon modelleri arasindan, Log-
Log-Gama marjinallestirilmis ¢ok diizeyli model ile rasgele sabit terimli model
Uzerinde durulmustur. Modellerin basarilari bir benzetim c¢alismasi (Gzerinden, (g
kayip veri mekanizmasi (tamamiyla rasgele kayip, gozlenmis veriye bagl rasgele
kayip, rasgele olmayan kayip), iki tir kayip yizdesi (% 10 ve % 20), ve dort farkh
kayip veri ¢oziim teknigi (tim durum analizi, yerine zaman ortalamasi yikleme,
yerine grup ortalamasi ylikleme, yerine regresyon yontemiyle yikleme) altinda
karsilastirilmistir. Benzetim c¢alismasi, Log-Log-Gama marijinallestirilmis cok dizeyli
modelinin rasgele sabit terimli modelinden daha biyilk ortalama mutlak hata ve
ortalama karesel hata Urettigini gosterirken, her iki regresyon modelinde paralel

sonuclar  gozlenmektedir.  Benzetim c¢alismasi sonuclari, her iki regresyon

Vi



modelinde de veri igindeki kayip deger miktari ve kayip veri mekanizmasinin, kayip
veri ¢c6zUm tekniginin basarisini ciddi bir sekilde etkiledigini dogrulamaktadir. Ayrica,
genellikle yerine zaman ortalamasi ylikleme teknigi en kotl basariyir gosterirken,
yerine regresyon yontemiyle yikleme teknigi, yerine zaman ortalamasi yikleme ve
yerine grup ortalamasi vyikleme tekniklerine nazaran Ustin bir basar

sergilemektedir ve tim durum analiziyle benzer sonuglar dogurmaktadir.

Anahtar Kelimeler: Uzunlamasina kesikli veri, gama dagilimh rasgele etkiler, drop-

out veya kesintili kayip veri, kayip veri mekanizmalari, kayip veri ¢6ziim teknikleri.
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CHAPTER 1

INTRODUCTION

In longitudinal studies, measurements from the same subjects over a sequence of
time periods are taken so that changes in measurements over time periods can be
observed. When the response variable of a longitudinal dataset represents the
counts of a total number of a defined event occurring in a given time interval, this
type of longitudinal data is known as the longitudinal count data (LCD). Many
longitudinal count data examples can be considered from different disciplines.
Examples from econometrics can be the annual number of tourist arrivals in each of
the Mediterranean countries over several years, the total number of patents
acquired yearly by each firm over many years, and the total number of medals won
by nations in the Olympic Games over several periods. An example from political
science can be the total number of homeless protests across cities of a country over
several years. Examples from clinical research include the number of epileptic
seizures of each patient per two-weeks over an eight-week treatment period, and
the number of panic attacks for each patient in a week over a one-month

psychological intervention program.

Like longitudinal data analysis for continuous response variables and for binary
response variables, the starting point for the statistical analysis of longitudinal
count data is the generalized linear models (GLMs) (Nelder and Wedderburn, 1972).
Specifically, similar to cross-sectional count data, longitudinal one is modeled by
Poisson regression as well (Cameron and Trivedi, 1998, Chapter 9). However, the
analysis of longitudinal count data and the estimation of regression parameters
require more special methods due to the longitudinal feature of measurements and

counting process of responses. The most important feature of longitudinal data

1



that motivates the statistical analysis is the association of measurements within a
subject. Since repeated measurements on the same subject are taken over several
time periods, the observations obtained from the same subject are expected to be
correlated. The statistical distribution of the counts is traditionally assumed to be
Poisson distribution (Diggle et al., 2002, Chapter 8). It is well-known that mean
equals to the variance (equi-dispersion) for the Poisson distribution. When the
variability of counts is greater than its expected value under the Poisson model,
then this phenomenon is called overdispersion. More specifically, extra-Poisson
variation occurs (Barron, 1992). As an alternative, the negative-binomial distribution
is the most commonly used model for overdispersed count data (Diggle et al., 2002,
Chapter 8). Apart from these, other characteristics of longitudinal data causing
additional difficulties to the statistical analysis are that the subjects may not have
the same number of repeated measurements, that subjects may be measured at
uncommon set of time intervals, and/or that measurements within a subject may
be taken at non-equidistant time intervals. These irregularly or unequally spaced
longitudinal data will result in an unbalanced longitudinal data design. More
information on longitudinal data design is available in llk (2008, Chapter 2). Last but
not least, when one or more measurements from subjects are missing, the problem
which is named incomplete longitudinal data occurs. In order to accommodate the
longitudinal features of measurements and counting process of responses, methods

accommodating these problems should be developed.

In this thesis, a simulation study is carried out to assess the performance of the
regression estimates produced from a Log-Log-Gamma marginalized multilevel
model developed (Log-Log-Gamma MMM) by Griswold and Zeger (2004) for
longitudinal count data. This model is an expansion of the marginalized latent
variable models, proposed by Heagerty and Zeger (2000). Marginalized latent
variable models are likelihood-based methods that combine a marginal regression
model for the mean response with making use of the flexible dependence

specifications of GLMMs to model the within-subject association. A comparison of



this model is made with a random-intercept model which is the simplest case of
GLMMs where the model includes only one random effect in the linear predictor, in

addition to fixed effects.

For the present study, longitudinal count datasets on 100 subjects are generated for
each model and the simulation study is repeated 120 times. First of all, statistical
analysis of each dataset is performed according to its own statistical model and
results are recorded. Afterwards, observations in the generated datasets for each
model are deleted according to scenarios of three different missing data
mechanism (MCAR, MAR conditional on observed data, and NMAR). Deletion is
limited to only observations from response variable and percentage of missingness
in the samples is adjusted as 10% or 20%. A complete-case analysis is applied and
results are recorded. That is, subjects having missing observations are discarded
from the study and the subjects having complete observations are retained in the
study. Later, the so-called missing observations are filled in by three different single
imputation techniques. Specifically, subject mean imputation, occasion mean
imputation and conditional mean imputation are carried out. In conditional mean
imputation, a Markov model of order 1, that’s first-order autoregressive, AR(1),
model is preferred. Finally, the statistical evaluation of 120 samples for each model,
under each 24 conditions (3 missing data mechanisms X 2 types of missingness
percentage x 4 missing data techniques) is compared via mean absolute error

(MAE) and mean square error (MSE) values.

The development of subsequent chapters of this thesis is organized as follows:
Chapter 2 gives background information on regression model classes for
longitudinal count data and missing data problem. Chapter 3 introduces the
marginalized latent variable models and then focuses on the Log-Log-Gamma
marginalized multilevel model, and its competitor regression model, random-
intercept model for longitudinal count data. Later sections of this chapter provide

detailed information on the three missing data mechanisms, and missing data



techniques i.e. complete case analysis and single imputation methods. Chapter 4 is
devoted to simulation studies and put emphasis on the data generation scenarios,
true values, missing data generation scenarios and estimation of the models. Based
on simulation results, the evaluation of the performance of the models are
discussed in Chapter 5. Finally, concluding remarks and suggestions for future work

are presented in Chapter 6.



CHAPTER 2

HISTORICAL BACKGROUND

This Chapter aims to give brief information about historical background of
regression models for longitudinal count data and missing data problem through

examples from literature.
2.1 Literature Review of Regression Models for Longitudinal Count Data

Diggle et al. (2002, Chapter 7) classify the extension of GLMs for longitudinal data
into three different regression model classes, which is also valid for longitudinal

count data. These are:

i) Marginal or Population-Average models,
ii) Random-Effects or Subject-Specific models,

iii) Transition or Response Conditional models.

In general these three regression model classes view the association problem
between the repeated measurements of a subject from different perspectives and

this leads the models to differ in the interpretation of the regression parameters.

Firstly, marginal models directly specify a regression model for the mean response,
using a known link function. The mean responses are related to the covariates as

follows:

E(Y, | X;)=u; and

2.1
gl 1) =X B, (2.1)

where g is a common link function. The within-subject association, the association

between the repeated measurements of a subject, is modeled separately, possibly
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using additional association parameters. Here, the main interest is on the mean
response and the regression model for the mean response depends only on

covariates, for that reason it is named as marginal. The regression parameters, B’s,

in (2.1) interpreted as the averages of population as in cross-sectional analysis.

When the responses are discrete, i.e., binary or count, the complete joint
distribution of longitudinal responses requires the specification of two-way
associations between the responses (Fitzmaurice and Molenberghs, 2008, Chapter
1). However, building models for these associations that are consistent in an
interpretable manner with the model for the mean response is difficult, in the
context of marginal models (Lipsitz and Fitzmaurice, 2008, Chapter 3).
Consequently, it is hard to estimate regression parameters of the marginal models
by likelihood-based methods (Fitzmaurice and Molenberghs, 2008, Chapter 1).
When the assumption on the distribution of repeated responses is avoided, an
estimation method that is called the generalized estimating equation (GEE) is
considered. It is developed by Liang and Zeger (1986) and it is the multivariate
extension of the quasi-likelihood estimation method (Wedderburn, 1974) by
including additional nuisance parameters in the formulation of covariance matrix of
responses. GEE provides as efficient estimates as maximum likelihood estimation
(MLE) and consistent and asymptotically normal estimates provided that the mean
response model is correctly specified. However, since GEE deprive us of using
likelihood-based methods; this method is not used in this thesis. Further
information on GEE is available in Liang and Zeger (1986), Molenberghs and
Verbeke (2005, Chapter 8) and Lipsitz and Fitzmaurice (2008, Chapter 3). In the
framework of marginal analysis with GEE, it is possible to find several examples in
the literature. For instance, Diggle et al. (2002, Chapter 7) and Molenberghs and
Verbeke (2005, Chapter 19) fit a Poisson model to the data from a clinical trial of 59
epileptics which was first introduced by Leppik et al. (1985). While Diggle et al.
propose a parametric model for the correlation coefficient, Molenberghs and

Verbeke propose first-order autoregressive, AR(1) correlation


http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Verbeke

structure for the within-subject association using SAS GENMOD procedure.

The second method considering the extension of GLMs to longitudinal data setting
is the random-effects models. The random-effects models assume that there is a
natural heterogeneity between the subjects due to unmeasured covariates (Diggle
et al., 2002, Chapter 7). In this sense, regression parameters randomly varying from
one subject to other subject are included into the regression modeling of the mean

response.

There are several ways of introducing randomness into the regression parameters
of the mean response model. Thall and Vail (1990) suggest a family of covariance
models that take within-subject association and overdispersion into account by
introducing an interaction effect of subject-specific and time-specific random
coefficients into the mean response model. While regression parameters are
estimated by GEE, estimation of additional parameters is carried out by the method
of moments. However, their approach cannot be used to model special type of
autocorrelation structures such as first-order autoregressive, AR(1) and first-order
moving average, MA(1). Following this, Jowaheer and Sutradhar (2002) propose a
random-effects model for overdispersed longitudinal count data, which follow a
Gaussian-type autocorrelation structure. Estimation of regression parameters,
association and overdispersion is done via GEE. Although GEE is dominant in
marginal models, it is obvious that random-effects models can be fitted by GEE as

well.

However, among the random-effects models, generalized linear mixed effects
models is the most frequently used one for discrete repeated measurements
(Molenberghs and Verbeke, 2005, Chapter 14). Generalized linear mixed effects
models are also called as generalized linear mixed models (GLMMs) after highly
cited paper of Breslow and Clayton (1993). In social sciences, these models are

known as hierarchical, multilevel, or random-coefficient models as well.


http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?%5Fencoding=UTF8&search-type=ss&index=books&field-author=Geert%20Molenberghs
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In GLMMs, the model for the mean response depends both on covariates and
random effects which enter linearly into the linear predictor via a known link
function. Similarly, mean responses are related to covariates and vector of random

effects as follows:

E(Y, | X;, b,)=n,; and
(2.2)
gluy) =XB+Zb,
where b, is a vector of random effects for subject i, (b, b;;,...,b,;;), and gis a

common link function. Within-subject association is assumed to be resulted from
unobservable variables which are common to each repeated measurement from

the same subject. GLMMs assume the subject-specific random effects, b,, to have a

multivariate normal distribution with zero mean and a covariance matrix, V.

In GLMMs, the aim is to make inference on individual subjects rather than the
population average; for that reason the fixed effects regression parameters, B’s, in
(2.2) are influenced by the subject-specific interpretations whereas in marginal

models target inference is the population.

In GLMMs, maximum likelihood estimation of regression parameters, B’s, in (2.2)

requires the maximization of the likelihood of the data. Maximization is achieved by

integration over the distribution of random effects, b,’s. However, distribution

specification of random effects and high-dimensional integration of them together
with a possibly nonlinear link function may cause computational difficulties in the
evaluation of the likelihood and analytic solutions cannot be provided.
Molenberghs and Verbeke (2005, Chapter 14) divide the approaches toward
maximum likelihood estimation in GLMMs into three categories according to the
frequency of usage and to the availability in statistical software. These are the
approaches based on the approximation of i) the integrand, ii) data, and iii) integral

itself.

While Laplace—type approximations fall in the first category, penalized quasi-

8



likelihood (PQL) and marginal quasi-likelihood (MQL) fall in the second category.
The numerical integration methods such as Gaussian quadrature and adaptive
Gaussian quadrature fall in the latter category. Molenberghs and Verbeke (2005,
Chapter 5) suggests that serious attention should be paid to statistical software
available and to the approximations, which these statistical software are based on,
since different methods produce considerably different parameter estimates.
Detailed information on approximation techniques in GLMMs is available in
Molenberghs and Verbeke (2005, Chapter 14). Furthermore, the implementation of
GLMMs for longitudinal count data can be done via glmm function under the
repeated library in R, glmmPQL function under the MASS library in R, SAS GLIMMIX
procedure, and SAS NLMIXED procedure. In this thesis, SAS NLMIXED procedure
with the numerical integration method Gaussian quadrature, and SAS GLIMMIX
procedure with PQL are used for the regression models discussed in Chapter 3. The
reasons and detailed information on the SAS procedures and approximation and

numerical integration techniques are presented in Section 4.4.

The last method considering the extension of GLMs to longitudinal data setting is
the transition models. In transition models, the mean response is regressed on the
covariates and a subset of past responses of the same subject via a known link
function. These past responses can be considered as additional explanatory
variables. Mean responses are related to the covariates and past responses as

follows:

E(Y; | X;, H;)=u; and

P (2.3)
gl u,) =XB+ > af(H),

where g is a common link function with H,;=(Y,,...,Y; ;) and f (H,)is a function of past

responses. The association between the repeated measurements of a subject is
considered to be as a result of the effect of past responses on the present response.

A specific class of (2.3) is the Markov models of order p (Feller, 1968). The order of
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the Markov models, p, is considered to be the number of past responses influencing
the current response. Application of Markov models to longitudinal data is difficult
in the event of unequally spaced time intervals between repeated measurements of
a subject, and any missing measurement in the data. The interpretation of the fixed

effects regression parameters, B’s, in (2.3) depends on other responses for the

same subject and the order p.

2.2 Literature Review of Missing Data

Since longitudinal studies obtain measurements from all subjects over a sequence
of time periods, it is highly possible to encounter missing values, i.e., the intended
measurements on some subjects cannot be obtained, or are not available for some
reasons. For example, in clinical trials, subjects are followed over a number of
scheduled visits, and incomplete longitudinal data can occur due to missed visits,

withdrawal from the study, loss to follow-up, or death.

In longitudinal studies, two kinds of missing data pattern exist: drop-out and
intermittent missingness. When the subject is withdrawn from the longitudinal
study before its intended completion, no data can be provided thereafter, and this
process is defined as drop-out. Drop-out truncates the longitudinal process and
leads to a monotone missing data pattern for the measurements (Daniels and
Hogan, 2008, Chapter 5). In other words, monotone missing data pattern occur, for
example, when a measurement for a subject is missing at a scheduled visit, and data
for subsequent measurements are also missing thereafter. On the other hand, in
intermittent missing data pattern, a measurement for a subject is missing at one or
more scheduled visits, but after that, data for subsequent measurements are
provided. Intermittent missingness creates gaps in the longitudinal process and
leads to a non-monotone missing data pattern for the measurements. Tables 2.1
and 2.2 below contain some possible monotone and non-monotone missing data

patterns in measurements where O = Observed and M = Missing. In longitudinal

10



studies, it is common to encounter a mixture of drop-outs and intermittent missing

data patterns.

Table 2.1 Monotone Missing Data Patterns  Table 2.2 Non-Monotone Missing Data Patterns

Su bject Y. Y2 Y3 . . . Yn subject Y. Y, Y3 . . . Yn;
1 0O O o . . .. 0O 1 0 O o . . . O
2 0O O o . .. M 2 o M O . . . O
0O O O O M M O M M (0]
O 0O O M M M 0 0O O M M 0]
0O O M M M M 0O O M M M (0]
N O M M M M M N o M M M M (0]

In the event of missing data, it is important to reveal the relationship between the
response variable and the reasons causing missingness (Fitzmaurice and Verbeke,

2008, Chapter 2).

According to terminology by Rubin (1976) and Little and Rubin (2002, Chapter 1)
there are three types of reasons, often referred to as missing data mechanisms,
which cause data to be missing. If the missingness is independent of both observed
and unobserved measurements, this mechanism is said to be missing completely at
random (MCAR). If the missingness is independent of unobserved measurements,
this mechanism is said to be missing at random (MAR) conditional on observed
data. Both of these types of missing data mechanisms are also called ignorable since
it does not affect the inference on the population parameters of interest in the
statistical model (Bennett, 2001). When the missingness is neither MCAR nor MAR
conditional on observed data, it is said to be missing not at random (MNAR). In a
similar fashion, this type of missing data mechanism is also called non-ignorable
since it affects the inference on the population parameters of interest in the

statistical model (Bennett, 2001).

Molenberghs and Fitzmaurice (2008, Chapter 17) state when the missingness is
unrelated to the response variable of interest, loss of information in the data
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would not complicate the statistical analysis. However, when it is related to the
response variable of interest, loss of information in the data would address more
serious questions and require more attention during the statistical analysis. For that
reason, in order to yield valid statistical inferences from incomplete longitudinal
data, the statistical analysis should be performed according to the type of

missingness mechanism that the data have.

Bennett (2001) classifies general methods dealing with missing data into five main
categories, which is also applicable to incomplete longitudinal data. These are: i)
methods that ignore missing values, ii) single imputation methods, iii) other
imputation methods (multiple imputation and markov-chain imputation), iv)
likelihood-based methods, and v) indicator methods. He compares and contrasts
these methods in terms of producing bias in the estimates under the three missing
data mechanisms (MCAR, MAR conditional on observed data, and NMAR), handling

with variability, and availability in statistical software.

In addition to missing data mechanism, the amount of missingness in the data is
also an important determinant in the event of selecting a statistical method to

analyze the missing data (Roth, 1994).

Joseph and Molenberghs (2009) give a comprehensive review of missing data
patterns, mechanisms, models specifying the joint distribution of the data and
missingness mechanism (shared-parameter, pattern-mixture, and selection models)
inferential paradigms, ignorability, and response types in longitudinal studies. The
statistical literature on missing data problem in longitudinal studies with continuous
response or with discrete response is mostly on dropouts and there is much less
attention to intermittent missing data. Correspondingly, in the framework of
incomplete longitudinal count data, Li et al. (2007) propose a random-effects
Markov transition model for Poisson-distributed repeated measures when the data
contain non-ignorable missing values, by making use of shared-parameter models.

Kaciroti et al. (2008) suggest a Bayesian pattern-mixture model to model
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longitudinal data from Poisson responses with potential non-ignorable drop-outs.
An ignorability index is developed to capture the effect of a non-ignorable missing
data mechanism on the statistical analysis and, in turn, it can be used for sensitivity

analyses.

13



CHAPTER 3

METHODOLOGY

In this chapter, we firstly introduce features of the regression models for
longitudinal count data used in this thesis, that’s Log-Log-Gamma marginalized
multilevel model, and random-intercept model. In oncoming part of the chapter,
the detailed descriptions of missing data mechanisms, MCAR, MAR conditional on
observed data, and NMAR, which an incomplete data may have, are illustrated with
notations and examples. We conclude the chapter with missing data techniques to

handle the incomplete data.

3.1 Regression Models

In longitudinal studies, main interest is to model the relationship between the
covariates and the response, as well as the change of response over time. In
Chapter 2, several approaches are introduced which account for the within-subject
association for longitudinal data in order to properly assess the regression
parameter estimates in the model. Marginal models construct two separate
regression models for the mean response, and association between repeated
measurements of a subject. The regression parameters describe the effects of
covariates on the population averaged mean response and their interpretation is
independent of specification of within-subject association model (Fitzmaurice and
Molenberghs, 2008, Chapter 1). Regression parameters of marginal models can be
estimated without specifying joint distribution of responses which leads to GEE to
be developed. However, avoiding defining the complete joint distributions deprive
us of using likelihood-based methods. In this sense, GLMMs are developed such

that a regression model is built for the mean response conditional on both
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covariates and random effects. Random effects, which are shared by the
measurements within a subject, are introduced into the regression model to
represent within-subject association. Contrary to marginal models, GLMMs model
the mean response and the within-subject association through a single equation
and random effects are viewed as the potential source of within-subject
association. The regression parameters of GLMMs describe the effects of covariates
on an individual’s mean response by controlling for the random-effects. However,
interpretations being dependent on random effects and sensitive to within-subject
association specifications and robustness of estimates being dependent on the
distribution of the random effects reflect the disadvantages of GLMMs (Heagerty
and Zeger, 2000).

3.1.1 Marginalized Latent Variable Models and Log-Log-Gamma Marginalized

Multilevel Model

Marginalized latent variable models are proposed by Heagerty and Zeger (2000).
These marginalized multilevel models combine the features of GLMMs and marginal
models, with an aim to compensate the distinctions of these two models. While
marginalized latent variable models take likelihood-based inference capabilities and
flexible within-subject association specifications from GLMMs, they take the
interpretation and robustness of regression parameters from marginal models

(Griswold and Zeger, 2004).

The formulation of marginalized latent variable models define a GLM for the model
of the mean response, and a nonlinear mixed model (NLMM), which is assumed to
be nonlinear in the random effects, for the dependence between measurements of
a subject (within-subject association) and specify a statistical distribution for the

random effects as follows:

i) Marginal Mean Model: g(u;") = X,8"
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ii) Association Model: g(u;) = A,+Zb,
iii) Random Effects Distribution: b, LI F, (0, D)
iv)  Conditional Response Distribution: Y = (Y, | b,)JF.(u;, )

where Y, represents the jth measurement of the i subject, (j=1,2,..,n; i=1,2,...,N),

g is a common link function for both marginal mean model and association model,
W' =E(Y, | X;) and pg =E(Y, | X;,b,), B¥=(By, B ..., By,) refers to the px1 vector

of marginal regression parameters, b,= (b by,...,.b_,;)" refers to the gqx1 vector of
subject-specific random effects with a gxq covariance matrix D and a distribution

F(.). While b, stands for the random intercept, b,b,,..., and b_,, represent the

random slopes in the linear predictor of the association model. Given bij,YUC 's

independently come from a distribution, which is a member of exponential family,

with mean p.ﬁ and a dispersion parameter . X; is a Nxp matrix of fixed effects

covariates, and Z; is a Nx g matrix of random effects covariates. Z; is usually taken

as a subset of X;.

In probability theory, any conditional expectation can be written in terms of

marginal expectation, such that E {u;}=E{E(Y, | X;,b,)}=E(Y, | X;)=p;'. This

ij’ i

C

implies that the integration of conditional mean, p;, over the distribution of

random effects results in marginal mean, ul']”
M _ C _ -1
u = ju” dF(b) = jg (8,+2,b,) dF(b), (3.1)
b b

where g™ is the inverse-link function. Thus, the parameter A; in (3.1) makes a

connection between marginal mean model and association model. The parameter

A; depends on both XU.B'V' marginal linear predictor and the distribution of b,.

Different choices for i — iv result in different models. Griswold and Zeger (2004)
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expand the marginalized latent variable models of Heagerty and Zeger (2000) for
count data. In practice, count data do not hold the equi-dispersion (equality of
mean and variance) assumption of Poisson distribution, and it exhibits most often
overdispersion rather than underdispersion (Cameron and Trivedi, 1998, Chapter 3).
Overdispersion generally arises from omitted covariates in the regression model.
Neglecting overdispersion in the data causes misestimation of the regression
parameters and related estimates such as standard errors and, in turn, misleads
inferences regarding the regression parameters (Yang et al., 2007). To handle
overdispersed count data, a number of approaches are proposed. Among these,
one standard approach is to assign a gamma distribution for random effects and a
Poisson distribution for the conditional response. Since the gamma distribution is
conjugate of the Poisson distribution, this Poisson-gamma mixture leads to
negative-binomial distribution which accommodates overdispersion well
(Greenwood and Yule, 1920; Barron, 1992; Cameron and Trivedi, 1998; Jowaheer
and Sutradhar, 2002; Yang et al., 2007). Griswold and Zeger (2004) follow the same
logic and assume a gamma distribution for random effects and a Poisson
distribution for the conditional response distribution, so that the marginal

distribution of responses becomes negative-binomial distribution.

Like in cross-sectional Poisson and negative binomial regression, a log link function
is commonly assumed for marginal mean and association models. Afterwards, the
marginalized multilevel model of Griswold and Zeger (2004) for count data is named
as Log-Log-Gamma MMM where log stands for common link function of marginal
mean and association models, and Gamma refers to the distribution of random

effects. The formulation of the Log-Log-Gamma MMM is as follows:

i) Marginal Mean Model: log(u') = X,8"
ii) Association Model: log(u;) = A, + log(b,)
iii) Random Effects Distribution: b, [l Gamma(6,,6,)

iv)  Conditional Response Distribution: Y;= (Y, | b,)0 Poisson(;)

By the relationship between marginal and conditional mean, we have:
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w' = [ dF(b),
= exp(X,8") = jexp{Aij+ log(b,)} dF(b),
= X,8" = log( [exp{n,+ log(b,)} dF(b)), (3.2)

+log(b,)} dF(b)),

]

= (X, X,)B" =X, log( jexp{Ai

— B = (Xij’Xij)_lxij, Iog(jeXp{Aij+ log(b;)} dF(b)).

The parameter A, in (3.2) can be solved analytically. The log-link function and
Poisson-gamma mixing distribution, together with the connection between
marginal mean and conditional mean model, lead to Aij=XijB""—Iog(vij)

where E(b;) =6, x0,=v, (Griswold and Zeger, 2004). Hence, the conditional mean,

uﬁ, can be written in terms of the marginal regression parameters, B, such that

W; = exp{A;+log(b,)} = exp{X,8"- log(v,) +log(b,)}. (3.3)

Since (3.3) includes the marginal regression parameters, B*, the estimation of "

can be performed by fitting the conditional model, uﬁ via standard NLMM

techniques. The regression parameters, B", describe the effects of covariates on
the population averaged mean response, averaging over the random effects.
Contrary to GLMMs, random effects in Log-Log-Gamma MMM follow a non-
Gaussian distribution, that’s Gamma distribution, and are allowed to enter the

model nonlinearly.

In addition to fixed effects, we will allow only an intercept coefficient, b,, to

randomly vary from subject to subject in the model. For that reason, to compare
the efficiency of the regression estimates produced from this model, we will use the

random-intercept model from GLMMs as a competitor regression model.
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3.1.2 Random-Intercept Model

As stated in Chapter 2, generalized linear mixed models are the extension of
generalized linear models for longitudinal data. They include multivariate normally
distributed random effects, in addition to fixed effects, in the linear predictor (Rabe-
Hesketh, and Skrondal, 2008). The basic aim of GLMMs is to introduce subject-
specific random effects into the linear predictor to represent the natural
heterogeneity between subjects. In the context of GLMMs, in the linear predictor of
the conditional mean model, in addition to fixed effects, it is possible to assume

either a random intercept, b, together with random slope(s), (b,;,..., b, ), or only

g-1i
a random intercept, b,,. But, the simplest case of GLMMs is naturally a model with

just a random intercept.

The formulation of a random-intercept model for longitudinal count data can be as

follows:

i) Conditional Mean Model: log( ;) = X,8 +Z,by,
ii) Random Intercept Distribution: b, [ MVN(O, V)

iii) Conditional Response Distribution: YU.C= (Y; | b)) U Poisson(uﬁ)

0ij

The Y,’s are assumed to be conditionally independent given subject-specific

random intercepts, b,=(b,,, b .+ by, ) and Y;’s are assumed to have Poisson

0i12 ~0i27 **

c
ij

distribution with conditional mean, p:, depending on both fixed and random

effects. The subject-specific random intercepts, by= (by;, by,, -, by, )" are assumed

to be independent of the covariates, X;, and to have a multivariate normal
distribution with zero mean and covariance matrix, V. In practice, the normality
assumption for random effects may be unrealistic or invalid (Liu and Yu, 2008).
Essentially, any multivariate distribution can be assumed for the random effects
(Fitzmaurice and Molenberghs, 2008, Chapter 1), but multivariate normality

assumption is made for mathematical convenience rather than a strong scientific
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ground (Fitzmaurice and Verbeke, 2008, Chapter 2; Liu and Yu, 2008).

When the interest is on the fixed effects regression parameters for GLMMs rather
than random effects; as mentioned in Chapter 2, the model fitting and inference
requires the maximization of the likelihood of the data. This maximization is

obtained by treating random effects, b,’s, as if they were nuisance parameters and

by integrating over their distribution (Diggle et al., 2002, Chapter 9). In other words,

if the i™" subject’s contribution to the likelihood of the data is defined as

L(BV) = J{Hmyu | b, B) (o, | V) dbi] (3.4

and, then, the expression in (3.5) is expected to be maximized

LBV =TT5, 18V =TT [ TT6, | b BYf(b, 1V) db‘] (3.5)
i=1 i=1p [ =1
However, in GLMMs, the integral in (3.5) cannot be solved analytically since normal
distribution is not conjugate to Poisson distribution. Approximation methods such
as PQL and MQL and numerical integration methods such as Gaussian quadrature
and adaptive Gaussian quadrature are proposed for the evaluation of the likelihood.
The dimension of the integration is the dimension of the random effects, and the
dimension affects the maximization of the integration. Having only one random
coefficient, that’s intercept, in the model ease the implementation of proposed

approximation and numerical integration methods (Diggle et al., 2002, Chapter 9).

Although the normal distribution is not conjugate to Poisson distribution, Cameron
and Trivedi (1998, Chapter 9) remark that multivariate normality assumption takes
considerable attention in the statistical literature because if results can be obtained
for random-intercept GLMMs, then it will be extended to random intercept and

random slope GLMMis.
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One of the most important characteristics of GLMMs is that they have the ability to
accommodate complex within-subject association structures for subject-specific
random intercepts. Weiss (2005, Chapter 8) lists a large number of covariance
structures and detailed information on these covariance structure specifications,
but among them, most commonly used ones are first order autoregressive (AR(1)),
compound symmetry (CS), and unstructured (UN). The covariance structure choice
can influence the results of analysis as well as the conclusion. The number of
parameters, the interpretation of the covariance structure, and effects on fixed
effects are some of the considerations, when selecting the covariance structure

(Kincaid, 2008).

The glmmPQL function under the MASS library in R, and SAS GLIMMIX procedure,
which are used to implement GLMMs for longitudinal count data offer a
straightforward fitting of a wide variety of covariance structures including AR(1), CS,
and UN. The SAS NLMIXED procedure does not allow a straightforward fitting of
these special covariance structures, however after a considerable work, it does.
Kincaid (2008) states that there is not a certain method for determining the best
covariance structure. However, with the help of the computational techniques
mentioned above, it is possible to specify different covariance structures for the
model, and, then, to determine the appropriate covariance structure for the model

by comparing the output of fit-statistics.

3.2 Missing Data Mechanisms

For a longitudinal study, missingness can occur in some measurements of the
response variable Y;, and/or of the covariates X;. However, in this thesis, we will
assume that missingness occurs only in the values of measurements for the
response variable Y; except the measurements in the first time point and that all

values of measurements for the covariates X; are fully observed.

The question of interest in incomplete longitudinal data is whether the missingness
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affects the validity of statistical inference on regression parameters. The effect of
missing data on inference depends on the underlying missingness mechanism it has

(Carpenter, 2005).

Let the set of responses intended to be collected be Y, =(Y,,...,Y,,)", which denote
the repeated measurements for subject i where i = 1,2,..,N. If there are some

missing values for Y, then we can partition Y, into two parts as Y, = (Y°, Y") where

Y° refers to observed responses and Y" refers to missing responses. Let

X;= (Xy,.-, X;, ) refer to the vector of covariates for subject i. The missing values of

Y, can be denoted by the indicators R=(R,,..., R,,)" where R, takes the value of 1 if

Y is observed, and takes O otherwise (Carpenter, 2005; Schafer, 2005; Yucel, 2009).

R =

{1, Y, is observed

0, Y, is missing

Then it turns out that missing data mechanisms introduced by Rubin (1976) and
Little and Rubin (2002) can now be denoted mathematically as the conditional

distribution of R, given the response Y, and covariates X;.

The missing completely at random (MCAR) is defined such that the probability of a
response being missing is independent of both observed values and unobserved

values.

fR Y, V", X) = f(R)

In other words, reasons yielding missingness are not related to the observed or
unobserved responses. For example, in a double-blinded randomized clinical trial
designed to compare the effectiveness in controlling epileptic seizures in a
treatment group with that in a control group, a patient may not attend a scheduled

visit due to work related reasons, not because of the reasons related to the study.

Molenberghs and Fitzmaurice (2008, Chapter 17) states that if the data follow a
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MCAR type of missingness mechanism, the observed data can be considered as a
random sub-sample of the complete data, which is consisted of observed and
unobserved data. As a consequence, moments such as sample means, variances,
and covariances and the joint distribution of the observed data do not differ from
those of the complete data. One of the implications of this is that the completers,
the subjects with no missing values, are considered as a random sample of the
population. The other implication is that the missing component of subjects who
have missing values does not differ from the corresponding components of the
completers. For that reason, most statistical methods for longitudinal data analysis
which are based on observed data or completers will yield valid inferences under

MCAR mechanism.

Second related terminology is missing at random (MAR) conditional on observed
data. It is defined such that the probability of a response being missing depends on

the observed values, but not on the unobserved values.

fR, 1 Y2, Y7, X) =R, | ¥°,X)

This means that reasons yielding missingness are related to the observed values but
not related to the unobserved values. For instance, in the epileptic seizure example
above, patients in the treatment group may drop out of the study because the

treatment is causing an allergic reaction or a slight side-effect such as weight gain.

In contrast to MCAR, when the data follow a MAR conditional on observed data
type of missingness mechanism, the observed data cannot be considered now as a
random sub-sample of the complete data. In fact, the observed data are now a
biased sample of the complete data. Therefore, sample means, variances, and
covariances of the observed data are now biased estimates of those of the
complete data. One of the implications of this is that the completers now cannot be
considered as a random sample of the population. The other implication is that
missing component of subjects that have missing values does differ from the

corresponding components of the completers. As a consequence, certain
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statistical methods for longitudinal data analysis which are based on observed data
or completers will no further yield valid inferences under MAR conditional on

observed data mechanism.

Bennett (2001) states that the missing values can be predicted from the observed
data under MAR conditional on observed data mechanism and that the inference
on the population parameter of interest does not depend on missing data
mechanism, if the data is MAR conditional on observed data. For that reason, this
type of missing data mechanism is also named as “ignorable”. Since MCAR is a
special case of MAR conditional on observed data, MCAR can also be defined as an

ignorable mechanism.

The last mechanism is not missing at random (NMAR). It is defined such that the
probability of a response being missing depends on the unseen observations

themselves even after accounting for all the available observed information.

fR 1Y, Y™, X)=f(R | ¥, Y™, X)

In the example of epileptic seizure study, missingness is considered not at random,
if a patient cannot go to hospital to report the number of seizures he had during
that week, because he is too sick due to experiencing epileptic seizures in large

numbers.

Missing values cannot be predicted from the observed data under NMAR
mechanism. Inference on the population parameters of interest depends not only
on a model for the data, but also on a model for the process that cause missing
values in the data. For that reason, this type of missing data mechanism is referred
to as “non-ignorable” in the likelihood setting, which means it cannot be ignored
from the analysis. Therefore, most statistical methods for longitudinal data analysis
which are based on the observed data will yield invalid inferences under MNAR
mechanism. It is crucial that the effect of missing data mechanism should be

considered in statistical analysis, otherwise results will be biased, and
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amount of variability in the data cannot be estimated precisely.

3.3 Missing Data Techniques

3.3.1 Methods that ignore missing values

Before 1980’s, missing data was considered as something to be gotten rid of (Yucel,
2009). For that reason, firstly, methods ignoring missing values in the data are
developed. In the context of methods ignoring missing values, we will deal with

complete case analysis.

Complete case analysis: In this method, all the subjects with missing values are
extracted from the study, and statistical analysis is limited to only completers. If the
underlying mechanism in the data is MCAR, the results of the statistical analysis will
produce valid estimates since reduced data, namely the completers, would
represent a randomly drawn sub-sample of the complete data. One disadvantage of

complete case analysis is loss of power due to using smaller dataset.

3.3.2 Single imputation methods

Imputation, one of the most commonly used methods in handling missing data,
refers to substituting or filling in missing values with imputed values. Single
imputation methods estimate the values of missing data rather than ignoring it. This
method prefers to “fill-in” or “impute new values” for the missing data and then
treats the data as if it is complete. Thereby, it turns out to be possible to perform
any statistical methods on this complete data. One disadvantage of single
imputation is that it lacks of sampling variability since it imputes only one constant

value for each missing value under one model.

There are many single imputation techniques which are appropriate for incomplete
longitudinal data. To impute the missing value of a subject, some methods use only

the information of that subject with missing data, while others use the information
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of other subjects.

Let’s assume an imaginary longitudinal dataset such that each row of the dataset
corresponds to subjects (i = 1,2,...,N) and that each column corresponds to the
repeated measures of the response, namely occasions, (j = 1,2,..,n;). Let y; be

response for subject i at occasion j and rjj= 1 if yj; is observed, 0 if missing.

When vy; is missing, “before data” method uses the mean of all of the previously
observed values, yi1, Yi,..., Yi-1 prior to the missing value, y; (Engels and Diehr, 2003)

to impute the yj.

A special case of “before data” method is last observation carried forward (LOCF)
method, which is a commonly used imputation technique in longitudinal data. It
replaces Viu1, Vijq+2,--,Yini BY Yij assuming that there is no change from occasion j+1 to
occasion n;. This method can be used when a subject drops out of the study after
occasion j and there are no data thereafter. Another method which uses “after
data” information is next observation carried backward (NOCB). It replaces the
missing value, yj, with the subject’s first next known value, yj;1, after the missing
value, yj. This method is used when a subject fails to complete baseline information
(McKnight et al., 2007). LOCF and NOCB both use subject’s own information to
impute the missing value. For both methods, the distance between the missing
value and the recent observation that will be used to impute that missing value is a

common problem.

However, in this thesis, we will allow a variety of patterns of missingness to occur in
data. For that reason, we will focus on two mean imputation techniques: subject

mean and occasion mean imputation, and one conditional mean imputation.

26



Subject mean imputation: This method uses the information specific to the subject.
The mean of known values in row i, Vi1, Yi2,...,Yij-1, Yij+1,Yij+2,--Yini iS used to replace

the missing value, y; (Schafer, 2005).

j=1 ~ (3.6)

Occasion mean imputation: This method does not use the information specific to
the subject. Engels and Diehr (2003) also name this method as “no person data”.
The mean of known values in column J of that occasion, Y1j,Y2js-+sYi-1js YiedjYie2 jyeee- s YNj

is used to replace the missing value, y; (Schafer, 2005).

N
Z Y

- (3.7)

Vij = y‘j =

T
1

If data is available for a particular occasion for some subjects, but not available for
other subjects, then this method can be preferred. This method is reasonable when
the data is MCAR but it is found that this method underestimates the variance
(Bennett, 2001). Molenberghs and Verbeke (2005, Chapter 27) states that occasion
mean imputation is developed mainly for continuous responses. This is also true for
subject mean imputation. However, we will use rounding to convert continuous

values to count values (See Appendix E).

Unlike the single imputation techniques mentioned above, there are single
imputation techniques which take into account the subject’s covariate information.
Well-knowns are hot-deck imputation and cold-deck imputation techniques which
take their origins from survey research. Hot-deck imputation groups subjects which
are similar with respect to covariates. Then, the method replaces the missing values

with the values of subjects whose covariates are matched, or similar. But,
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complex matching algorithms are needed to be employed to match respondents.
Cold-deck imputation is very similar to hot-deck imputation method. It decides
subject similarity with respect to external information or knowledge of previous
studies, not with respect to the information available in the dataset. It raises doubts

if this external information is of good quality (Bennett, 2001).

The covariate based single imputation method, which we will also use in this thesis,

is conditional mean imputation, in other words, regression imputation.

Conditional mean imputation: This method firstly requires removing all subjects
with missing values in the dataset, that’s complete case analysis. Afterwards, in the
reduced dataset, this method regresses the responses at each occasion on the
corresponding covariates. The resulting fitted regression equations for each
occasion are then used to estimate the missing values in that occasion in the
dataset. For this thesis, we use an AR(1) model as stated in Chapter 2. Since our
response variable represents counts, we will use the log-link function to relate the
responses to the covariates and the previous response. The conditional mean
model for the response at the jth occasion depends on the response at the (j—1)th
occasion, as well as the covariates, such that

E(Y, X, ¥,2) = b, and

log(u;) = X,B + Y- (3.8)

The missing values at the jth occasion in the dataset can be estimated through the
fitted regression equation of (3.8) for the jth occasion. Contrary to other single
imputation methods, this method yields less biased estimators under MAR

conditional on observed data.

Implementation of subject mean, occasion mean and conditional mean imputations
is easy in any statistical software. However, common disadvantage of all these
single imputation methods is that it inserts a constant value for each missing value,

which leads to the underestimation of the variance.
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CHAPTER 4

SIMULATION STUDY

In this chapter, we consider the details of the simulation study. First, we mention
about dataset characteristics such as sample size, within-subject size, and response
variable, covariates, with their statistical distributions. Data generation processes
under each model and true values of the parameters for each model, which are
required to simulate the data, are stated in detail. Afterwards, to create missingness
in the data, missing data generation scenarios are determined for each missing data
mechanisms (MCAR, MAR conditional on observed data, and NMAR). Lastly,

parameter estimation techniques under each model are covered.

4.1 Data Generation Scenarios

The examples in the introduction of Chapter 1 reveal that subjects of interest in
longitudinal studies may be countries, cities, firms, nations, patients and so on. In
this thesis, we will create a longitudinal count dataset similar to the popular
epileptic seizure data (Leppik et al., 1985), which assume that subjects of interest
are patients who suffer from epileptic seizures. Assuming that data collection is
based on periodic scheduled visits in a hypothetical clinical trial, the total number of
subjects is taken as N = 100, indexed by i = 1,2,...,100. The number of repeated
measurements per subject, n;, is assumed to be constant for all subjects and nj=nis
equal to 4, indexed by j = 1, 2, 3, 4. The time interval between two consecutive
repeated measurements, tj, is assumed to be same for both within subjects and
between subjects, and tj = t is equal to one year. Thereby, we can define the
response variable of interest, Yj, as the total number of seizures that each patient

experienced within one year over four successive years. Since measurements
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are reported by subjects at visits, we can say that the longitudinal data are collected
from all subjects every t = 1 year for n = 4 visits, see Figure 4.1. Since all subjects
have equal number of repeated measurements, n = 4, and all subjects have
measurements taken at the same time interval, t = 1 year for all j, we will have a
balanced longitudinal study design (Weiss, 2005, Chapter 1). Thus, we prevent the

complexities, which an unbalanced study design may cause.

1vyear 1vyear 1vyear 1year

NN NN

| | |
| I |
0 1 2 3 4  vyears
v v v v
Visit 1 Visit 2 Visit 3 Visit 4

Figure 4.1 Data collection of repeated measurements for a subject

The data structure of the longitudinal response is shown in Table 4.1.

Table 4.1 Data structure of the longitudinal response

Measurement Occasions

Patient Visit 1 Visit 2 Visit 3 Visit 4

1 Y11 Y12 Yi3 Yia

2 Y1 Y2, Y3 Y24
99 Yoo,1 Yos,2 Y993 Y99,4
100 Y1001 Y100,2 Y100,3 Y1004

Along with the longitudinal response variable, two time-independent covariates,
and a time-dependent covariate, totally three covariates, are determined to relate

the changes in mean response.

The first time-independent covariate, Xy, is assumed to be a continuous variable
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and it is generated from uniform distribution within the range of -1 and 1, for each

subject.

X, [ Unif(-1, 1)

The second time-independent covariate, Xy;, is assumed to be a discrete variable
and is generated for each subject from binomial distribution, taking value of 0 or 1

with probability 0.5.

X, [1Bin(1, 0.5)

Contrary to the time-independent covariates, whose values are fixed over time
periods, the values of the time-dependent covariate change over time points. Since

the data are collected over four time points, the measurements of X, can be

expressed as

X5= (X50, X5, X35, X5,), for eachi. (4.1)

For that reason, for each subject, the time-dependent covariate, X;;, is generated

from a multivariate normal distribution with zero mean and a common AR(1)

within-subject covariance structure.

In an AR(1) within-subject covariance matrix, the measurements which are closer in

time are expected to be more correlated than measurements which are farther in
time. An AR(1) covariance structure has two parameters, 7° and p. Here, 7° is the

common variance of Xs; for all i and j. The correlation between two measurements
of a subject i, X3; and Xzim, is @ function of the absolute value of the distance

between the time points of them, so that

[t tim]

Corr(X3”, Xn)=p" ™,

where 0<p<1. In practice, correlation between the two measurements of a

longitudinal study subject is rarely found to be negative, for that reason, in
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longitudinal studies, p is expected to range from 0 to 1 (Weiss, 2002, Chapter 8).

The within-subject covariance matrix of (4.1) is given by

1 p p ¢
1 2
Cov(X,)= 7° pz PP , for each i, (4.2)
PP p 1 p
P’ p’ p 1
and hence the statistical distribution of (3.1) becomes
0 1 p o p
0 1 2
X, [ MVN, , 7 pz PP , foreachi. (4.3)
0 PP p 1 p
0 3 2
i PP p 1))

Since we do not allow missingness in the covariates, the measurements of the time-
invariant covariates, X;; and X, are assumed to be observed at study entry.
Kalbfleisch and Prentice (1978) classify time-variant covariates into two categories
as internal and external covariates. If the changes in the values of the time-variant
covariate over time periods are affected by the subject’s development over time
periods, then the time-variant covariate is called as internal covariate. For example,
medical sources such as the dosage of the antiepileptic drug that subject is using,
and the number of antiepileptic drugs that subject is using, or metabolic sources
such as lead level in blood and fever level can be considered as internal covariates.
However, if the changes are not related to the subject’s development over time
periods, then it is called as external covariates. For instance, environmental factors
such as the carbon monoxide level in the air, and toxins. Our time-variant covariate,
X3, is assumed to be an external one and measurement process on the time-variant
covariate, Xs;, can continue even if subject drops out of the study (Daniels and

Hogan, 2008, Chapter 5).
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The data structure of these longitudinal covariates may be illustrated as in Table

4.2.

Table 4.2 Data structure of longitudinal covariates for each subject

Measurement Occasions

Patient Visit 1 Visit 2 Visit 3 Visit 4
1 Xll X21 X3,1,1 Xll X21 X3,1,2 Xll XZ,l X3,1,3 Xll X21 X3,1,4
2 X12 X22 X3,2,1 X12 X22 X3,2,2 X12 XZZ X3,2,3 X12 X22 X3,2,4
99 X1,99 X2,99 X3,99,1 X1,99 X2,99 X3,99,2 X1,99 X2,99 X3,99,3 X1 X2,99 X3,99,4
100 X1,100 XZ,lOO X3,100,1 Xl,lOO X2,100 X3,100,2 Xl,lOO X2,100 X3,100, 3 X1,100 X2,100X3,100,4

The data generation of the response variable, Y, is based on the corresponding
regression model, where the matrix of covariates and the vector of fixed effects are
assumed to be same for both models. For simulation studies, R programming
language (version 2.8.1) is used. The R codes for data generation procedures are

available in Appendix A-C.
4.1.1 The Log-Log-Gamma MMM

For the Log-Log-Gamma MMM, random variables, Y;, are generated for each

c
ij

subject from Poisson distribution with conditional mean, W, given by

E(Yij I bOij) = P-E = exp(BoXg+ B, Xy + B, Xy + B3Xs;- log(vij) + Iog(bou) ),

by, [ Gamma(6,, 8,) and v,=E(b,,),

0ij

where Y, is the response variable of the jth measurement for the i subject,

B,, B;, B,,and B, are the fixed effects regression coefficients, which are common
for all subjects, Xoiis constant, and equal to 1, X,;, and X, are the time-independent

covariates for subject i, X;; is the time-dependent covariate of jth measurement for

U]

the i subject, by, is the gamma distributed random intercept coefficient for the it

33



subject, log(by;) is the natural logarithm of b, v, is the expected value of b, and

log(v;) is the natural logarithm of v,.

4.1.2 The Random-Intercept Model

For the random-intercept model, random variables, Y;, are generated for each

subject from Poisson distribution with conditional mean, uﬁ given by

E(Y, | by) = P'-§= exp( BXg+ BX + B,X,+ ByX5;+ by) and by [1MVN,(0, V),

where Y, is the response variable for the jth visit of the i subject,

B,, B,, B,, and B, are the fixed-effect regression coefficients, which are common for
all subjects, Xoi is constant, and equal to 1, X,;, and X,, are the time-independent
covariates for subject i, X, is the time-dependent covariate for jth of n

measurements in the i subject, and by=(b,,, by,, bys, bys) are the random

intercept coefficients for the ith subject, assumed to be multivariate normally
distributed with zero mean and AR(1) within-subject covariance structure, V, which

is common for all subjects.
4.2 True Parameter

Section 4.1 mentions about the scenarios on the generation of the covariates. While
two time-fixed covariates can be easily generated from uniform and binomial
distribution, the generation of the time-varying covariate requires firstly assuming
true values for the within-subject covariance parameters. After setting r°= 1 and

p=0.9, (4.2) turns out to be

1.000 0.900 0.810 0.729

0.900 1.000 0.900 0.810 _
Cov(X;) = , foreach i,

0.810 0.900 1.000 0.900

0.729 0.810 0.900 1.000
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and, in turn, the statistical distribution of (4.1) becomes

1.000 0.900 0.810 0.729
0.900 1.000 0.900 0.810

, , for each .
0.810 0.900 1.000 0.900

0.729 0.810 0.900 1.000

X, 1 MVN,

o O o o

The fixed effects regression parameters, B = (B, , By , B, , Bs ) in both regression

models are set equal to (2,-1.3, 1.5, 1.2)".
4.2.1 The Log-Log-Gamma MMM

For the Log-Log-Gamma MMM, the subject-specific random intercepts,

by = (0g1,002,P03,P0s)  are generated from Gamma distribution assuming
8,=1and 6,=1.In other words,
by; [ Gamma(1, 1), for eachiandj.

The model based generation of the response variable, Yj, at the jth visit can be

illustrated as follows

Y, 11, Xy Xo0s Xogj [log(v,) | [ log(b,,,) |
2
2j 1 Nagr Nor N3 13 log(VZj) Iog(bo,z,j)
..... Z XD | v, B P O I
P 1.5
Y99,j 1, X1,99' Xz,99' X3,99,j 1.2 lOg(V99,j) IOg(bo,sae,j)
_Y100,j_ __1' X1,100’ X2,100' X3,100,j_ _IOg(Vloo,j)_ L IOg(bO,lOO,j)_

4.2.2 The Random-Intercept Model

For the random-intercept model, firstly, the within-subject covariance matrix of

subject-specific random intercepts, by, = (by;,b,,,043,b4,) are generated by setting

the parameter 7?=0.1 and p= 0.5, such that
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0.1000 0.050 0.025 0.0125

0.0500 0.100 0.050 0.0250 i
V =Var(b,) = , foreachi,

0.0250 0.050 0.100 0.0500

0.0125 0.025 0.050 0.1000

and, in turn, the statistical distribution of b, becomes

0.1000 0.050 0.025 0.0125
0.0500 0.100 0.050 0.0250
0.0250 0.050 0.100 0.0500
0.0125 0.025 0.050 0.1000

by J MVN, , foreachi.

o O O O

The model based generation of the response variable, Yj, at the jth visit can be

illustrated as follows

1j 1, X11' X21' X3,1,j ) bO,l,j
Ylj 1, X1zr 227 X3,2,j 13 0,2,]
...... S = (o) IS 2
1.5
Y99,j 1, X1,99r Xz,99r X3,99,j 1.2 b0,99,j
_Y100,j_ __1' X1,100' XZ,lOO' X3,100,j_ L ~0100; | |

So that, based on the true values mentioned above, under each regression model,
120 longitudinal count datasets are generated with the same data structure (each
with 100 subjects and 4 repeated measurements for response variable, two time-

independent covariates, and a time-dependent covariate) and saved.
4.3 Missing Data Generation Scenarios

As noted in Section 3.2, in this thesis we assume that missingness occurs only in 2"
3", or 4™ measurements of the response variable, Y, =(Y,,Y,,Ys,Y,) foralliand
that no missingness occurs in the measurements of the matrix of covariates, X; and
in the 1% measurement of the response variable. We allow any drop-out and

intermittent missing data patterns in the measurements of the response variable,
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Y. =(Y;,Y,,Y;,Y,) . Hence, we may have 8 different missing data patterns in the
measurements of the response variable of a subject. For convenience, the patterns
are classified as completers, intermittent missingness (non-monotone missingness),
and drop-outs (monotone missingness) and are depicted in Table 4.3, where O =

Observed and M = Missing.

Table 4.3 Conventional classification of missing data patterns

Measurement Occasions

Missing Data Patterns Visit 1 Visit 2 Visit 3 Visit 4
Yi 1 Yi 2 Yi 3 Yi 4
Completers 0] (0] 0] 0]
0] M 0] (0]
Intermittent missingness 0] (e} M (e}
0] M 0] M
0] M M (0]
0] (0] (0] M
Drop-out 0] o M M
o] M M M

As stated at the end of the Chapter 1, and reviewed in Section 3.2, we aim to create
missingness in measurements of a dataset like Table 4.1, according to three missing
data mechanisms, i.e. MCAR, MAR conditional on observed data, and NMAR.
Scheffer (2002), Shieh (2003), Fong and Lam (2005), and Yucel (2009) provide

interesting simulation scenarios about these mechanisms.

Similar to them, three missing data mechanisms are applied on the saved original
datasets with generating 10% and 20% missingness in the dataset. Since, there are
400 total observations for 100 subjects with measurements taken over four periods;
for 10% missingness, 40 observations are deleted, and for 20% missingness, 80
observations are deleted. No observations are deleted from the measurements of

the first visit, since all subjects are assumed to have an observation in the first year.

The scenarios developed for three missing data mechanisms are:

i) In MCAR case, missing data is obtained with random deletion, so that any
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observation is missing independently from other variables.
ii) In MAR conditional on observed data case, missingness is limited to
observations of subjects whose X5; value is 1.
iii) In NMAR case, i) an observation at the second visit is more likely to be
missing if the observed response at the first visit is greater than 20, ii) an
observation at the third visit was more likely made missing if the observed value at
the second visit is greater than 25, and iii) an observation at the fourth visit was

more likely to be missing if the observed value at the third visit is greater than 30.

For the NMAR case, we create a scenario similar to the NMAR example in Section
3.2. We expect that subjects, experiencing seizures larger than 20 after the first
visit, do not return for the second visit since they are too sick. If they return for the
second visit, then, again we suppose that subjects, experiencing seizures larger than
25 after the second visit, do not come back for the third visit due to sickness.
However, if they come back for the third visit, lastly, once again, we assume that
subjects, experiencing seizures larger than 30 after the third visit, do not return for

the fourth visit due to extensive seizures.

This yields 3 missing data mechanisms X 2 types of missingness percentage = 6
different conditions for each regression model. Then, complete case analysis in
Section 3.3.1, single imputation methods: occasion mean imputation, subject mean
imputation, and conditional mean imputation in Section 3.3.2 are applied, in order,
onto the so-called incomplete datasets which are saved safely. To impute the values

of missing observations, the equations (3.6), (3.7), and (3.8) are used.

This also yields 3 missing data mechanisms x 2 types of missingness percentage x 4
missing data techniques = 24 different conditions for each regression model as seen

in Figure 4.2.

The R codes for missing data generation scenarios, missing data techniques and
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longitudinal data format are available in Appendix D, E and F, respectively. Now,
under each regression model, the statistical evaluation of 120 datasets in each 24

conditions can be carried out.

\ N

MCAR-10 % MCAR-20% MAR-10% MAR-20% NMAR-10% NMAR-20%

72) D Incomplete data with specified missing
) Complete data data mechanism and percentage

Complete data with occasion mean

Complete data with complete
imputation

case analysis

R Complete data with subject Complete data with conditional mean
& mean imputation [I]]l imputation

Figure 4.2 Schematic display of the simulation process

4.4 Parameter Estimation

As stated throughout the thesis, the aim is to compare the performance of the
regression parameters of both regression models in 24 different conditions. Due to
the special features of the Log-Log-Gamma MMM and the random-intercept model
which were reviewed in detail in Sections 3.1.1 and 3.1.2, the implementation of
these models, unfortunately, lacks computational tools. For that reason, for
parameter estimation of the regression models, we used SAS version 9.1.3, which
was the recent version available in Turkey as of the date this thesis was written.

While SAS NLMIXED procedure is used for the Log-Log-Gamma MMM like
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Griswold and Zeger (2004), SAS GLIMMIX procedure is preferred for the random-

intercept model.

The NLMIXED procedure is a built-in SAS procedure, whereas the GLIMMIX
procedure is an add-on procedure in SAS 9.1.3 which requires to be downloaded

from the web site of SAS.

The NLMIXED procedure is an appropriate choice for nonlinear mixed models, in
which random effects are allowed to enter the linear predictor of the model
nonlinearly. It specifies the conditional distribution for the response variable given
the random effects, either by standard distributions such as normal, binomial, and
Poisson or by general distributions that can be coded using SAS programming
statements. The only distribution available for random effects is normal
distribution. The way of model specification in the NLMIXED procedure has a high
degree of flexibility, compared to other SAS procedures (Molenberghs and Verbeke,
2005, Chapter 15). This advantage enables any non-normal distribution of interest
for random effects to be implemented within the numerical integration techniques
available in the NLMIXED procedure via the probability integral transformation
(Nelson et al., 2006). As stated at the end of the Section 3.1.2, when the random
effects are normally distributed, the NLMIXED procedure does not offer a
straightforward option for the specification of any within-subject covariance
structure. But, by the help of the its flexibility, it is possible to allow the within-
subject covariance matrix of the random effects to be an AR(1) and the like, when
specifying the mean and covariance components of the normal distribution
(Molenberghs and Verbeke, 2005, Chapter 1; Xu et al., 2007). Xu et al. (2007) states
that the NLMIXED procedure in SAS 9.1.3 allows only up to three random effects per
subject, which is a significant disadvantage of the NLMIXED procedure in SAS 9.1.3.

On the other hand, the GLIMMIX procedure is an appropriate choice for generalized
linear mixed models, in which random effects are restricted to enter linear

predictor linearly. It specifies the conditional distribution for the response

40



variable given the random effects to have any distribution in the exponential family,
and only normal distribution for random effects. As stated at the end of Section
3.1.2, any within-subject covariance structure for normally distributed random
effects can be modeled directly in the GLIMMIX procedure. This procedure is
especially recommended for models when the number of random effects per
subject is large (Flom et al., 2006). The reason why we have used two different SAS
procedures for these models is that while the NLMIXED procedure accommodates
the Log-Log-Gamma MMM, it could not handle the random-intercept model, since
the number of random intercept coefficients per subject in our model is four, which
is beyond the NLMIXED procedure capacity. In a similar fashion, while the GLIMMIX
procedure perfectly accommodates the random-intercept model, it cannot handle
the Log-Log-Gamma MMM, since it does not allow random effects to have a

distribution other than normal distribution.

However, the most essential difference between the two SAS procedures is the
estimation techniques that they use (Flom et al., 2006). The likelihood of the data

can be written as

N N n;
LB 'y, by)= [ [f(v 18,6)=TT[ Ty, I b, BYfib, | ©) dbi, (4.4)
i=1 i=1p [ j=1

where (4.4) is the general version of (3.5) for any random-effects model and 0 is

the vector of parameters for the distribution of b,. The estimation in the NLMIXED

procedure is based on maximizing the likelihood in (4.4). The maximization requires
the computation of the integrals in (4.4) over the distribution of random effects.
However, generally it does not provide an analytical solution for the maximization
in (4.4). The NLMIXED procedure computes the integrals in (4.4) by numerical

integration methods such as Gaussian quadrature or adaptive Gaussian quadrature.

Within the framework of NLMIXED procedure, to fit the Log-Log-Gamma MMM we
make the model specification parallel to Griswold and Zeger (2004) and to

accommodate  gamma distributed random effects, we use probability
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integral transformation (PIT) like Nelson et al. (2006). Similar to them, a, is assumed
to be a random effect from standard normal distribution, such that a [1N(0,1), and
then by the use of PIT, it can be shown that ®(a;)=u, U Unif(0,1) where ®(.)is the

cumulative distribution function (CDF) of the standard normal distribution. Again by

the help of PIT, it can also be shown that F,(b;) = u, [l Unif(0,1) where F(.) is the
cumulative distribution function (CDF) of the gamma distribution of b,, with
©=(6,,0,). Then it turns out that b,= F,(u)=F"(®(a)) has the gamma
distribution of interest, where Fe’l(.) is the inverse CDF of gamma distribution. The

equation (4.4) can now be rewritten in terms of random effects, a;, such that

LB | y;, a) Hf(v IBa)‘H H., Vi ®(a)),B) #(a) d } (4.5)

'1b

where ¢(.) is the standard normal distribution density function. Nelson et al. (2006)

suggest that the likelihood in (4.5) can be approximated by the Gaussian quadrature
numerical integration technique well. The approximation with Gaussian quadrature
to integrals in (4.5) is achieved such that ith subject’s likelihood is approximated by a

weighted sum

umwarﬂiﬁwﬂaﬂ@mmmawa

Q

Z (y.J | F (D(z,)),B) #lz,) W, ,

q=1j=

and, thus, the likelihood which is expected to be maximized turns out that

N Q n
LB 1y,)= [ 1160, | RH(®().B) lz,) w

i=1g=1j=1

where z, is quadrature point and indexed by q = 1,..,Q, Q is the order of
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approximation, w, is the standard Gauss-Hermite weight. Since the approximations

will be more accurate as the Q increases, we use Gaussian quadrature with 30
points like Griswold and Zeger (2004) and Nelson et al. (2006). The values of z, and

W, can be obtained from tables (Abramowitz and Stegun, 1972, Table 25.10).

Gaussian quadrature with 40 and 50 points are also tried, but no significant

difference are observed, compared to Gaussian quadrature with 30 points.

The NLMIXED procedure requires specification of initial values for all parameters in
the model. However, one limitation of the NLMIXED procedure occurs when

specifying gamma distributed random effects. This procedure only allows 6, being
equal to 1 (Nelson et al., 2006). This limitation causes us to assume 6, is equal to
8, and to assign only the value of 1 to 8, so that we provide the value of 1 to 6,.

For detail, we refer the reader to the SAS codes which are given in Appendix G.

On the other side, the GLIMMIX procedure is based on the linearization of the
general linear mixed models, that’s it transforms the GLMM into a linear mixed
model such that,

Y,

]

=exp(XB+Zb,) = Y, ~(XB+Zb,)

Linearization of Y, is achieved by expanding exp(X,8 +Zb, ) with some order of

the Taylor series around some point. The order of the Taylor approximation, with
the point around the approximation is carried out, yield different linearization
methods such as PQL and MQL (Molenberghs and Verbeke, 2005, Chapter 14).
While both methods are based on a linear Taylor series expansion, MQL differs from
PQL in that it completely disregards the random effects in the linearization. The
resulting linear mixed model, then, can be fitted by either maximum likelihood

estimation or restricted maximum likelihood (REML) (Harville, 1977) estimation.
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Within the framework of the GLIMMIX procedure, the random-intercept model is
fitted by using PQL, based on REML for the linear mixed models. The option in the
GLIMMIX procedure is the “method=RSPL”, which is the default method. For detail,

we refer the reader to the SAS codes which are given in Appendix H.

Further information on the description of the NLMIXED and GLIMMIX procedures
and their options can be obtained from SAS Institute Inc. (2000) and SAS Institute
Inc. (2004).
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CHAPTER 5

FINDINGS and DISCUSSION

In this chapter, we draw conclusions from the simulation study, and make several
comparisons such as different amount of missing data, missing data mechanisms,
and missing data techniques under both Log-Log-Gamma MMM and random-

intercept model and mention the general performance of both regression models.

Figures 5.1 and 5.2 show the profile plots, which draw response patterns for each
subject, of one of the 120 epileptic seizure counts data generated from the Log-Log-

Gamma model, and the random-intercept model, respectively.

For the data of the Log-Log-Gamma model, most of the subject profiles change
within the range of 0 and 50, while for the data of the random-intercept model,
most change within the range of 0 and 100. Although there are a few exceptions at
the top subject profiles in both figures, the bottom subject profiles cross another in

both figures.
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Figure 5.1 An Epileptic seizure count data which is generated under the Log-Log-Gamma model
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Figure 5.2 An Epileptic seizure count data which is generated under the random-intercept model

Table 5.1 Summary statistics for each visit at each model

Log-Log-Gamma MMM

Statistic Visit 1 Visit 2 Visit 3 Visit 4
Mean 15.39 16.19 14.04 12.38
Variance/ Mean 97.304 88.072 99.105 33.301

Random-Intercept Model

Statistic Visit 1 Visit 2 Visit 3 Visit 4
Mean 34.76 35.09 32.64 34.90
Variance/ Mean 78.507 104.572 92.442 67.558

Table 5.1 shows that the variance to the mean ratio is pretty larger than 1 at each
visit for each regression model. This means that the epileptic seizure counts data for
each regression model exhibit a high degree of overdispersion. Furthermore, the

magnitude of the overdispersion changes across the visits as well.

The evaluation of regression parameters estimates obtained from of 120 simulated
datasets under each 24 conditions (3 missing data mechanisms x 2 types of
missingness percentage X 4 missing data techniques) for each regression model is
performed by the quantities: Mean absolute error (MAE) and mean square error
(MSE). MAE is the average absolute difference between the true value of a

parameter and its estimates. MSE is the average squared difference between the
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true value of a parameter and its estimates.

We firstly sort the 120 estimates of each regression parameter under each 24
conditions for each model and, then, trim 5% of the smallest estimates from the
lower end and 5% of the largest estimates from the upper end. Discarding 6 largest
estimates from the upper end and 6 smallest estimates from the lower end results
in 108 regression parameters estimates, but this disregards potential outliers, and
consequently provides more robust results. Hence, for each regression parameter

across the 24 conditions, MAE and MSE values are computed by

108 . 108 .~
> IB,- B, D (B,- By,
MAE=“=:—— and MSE=“**:+——|
108 108

where B is the true value of the regression parameter of interest indexed by p =

0,1,2,3; r is the simulation index taking values between 1 and 108, and ﬁpr is the

estimate of the p™ regression parameter of interest in the r™ simulation. The MAE
results are tabulated in Tables 5.2 and 5.4, and the MSE results are summarized in
Tables 5.3 and 5.5. In addition to rows reserved for missing data techniques, the
values in row labeled “complete data” in Tables 5.2 - 5.5 refer to the MAE and MSE
values of parameter estimates after the corresponding model is fitted on the
complete data which have no missing values. The results are discussed in the

following sections in detail.
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Table 5.2 Mean Absolute Error of parameters under the Log-Log-Gamma MMM

Log-Log-Gamma MMM

B,=2 B,= -1.3
10% 20% 10% 20%
MCAR
Complete Data 0.6029 0.2114
Complete Case 0.4880 0.5046 0.2284 0.2062
Subject Mean Imputation 0.5204 0.4442 0.2208 0.2336
Occasion Mean Imputation 0.1815 0.2173 0.2566 0.3540
Conditional Mean Imputation 0.2103 0.5786 0.2103 0.2192
MAR conditional on observed data
Complete Data 0.5883 0.2080
Complete Case 0.6059 0.6098 0.1914 0.1802
Subject Mean Imputation 0.4771 0.3625 0.2401 0.2624
Occasion Mean Imputation 0.4693 0.3991 0.2645 0.2645
Conditional Mean Imputation 0.6142 0.5663 0.2188 0.2024
NMAR
Complete Data 0.5586 0.2089
Complete Case 0.6631 0.7770 0.2031 0.1902
Subject Mean Imputation 0.3619 0.2530 0.2392 0.2724
Occasion Mean Imputation 0.5710 0.6532 0.1982 0.2754
Conditional Mean Imputation 0.5973 0.6429 0.2237 0.2033
B,= 1.5 B,= 1.2
10% 20% 10% 20%
MCAR
Complete Data 0.1813 0.1688
Complete Case 0.2023 0.2246 0.1830 0.2487
Subject Mean Imputation 0.2296 0.2360 0.1916 0.2962
Occasion Mean Imputation 0.3075 0.3931 0.2129 0.3152
Conditional Mean Imputation 0.2104 0.1926 0.1944 0.1634
MAR conditional on observed data
Complete Data 0.2362 0.1579
Complete Case 0.2303 0.2848 0.1745 0.1882
Subject Mean Imputation 0.2538 0.2673 0.2382 0.4175
Occasion Mean Imputation 0.2417 0.2207 0.1780 0.2934
Conditional Mean Imputation 0.2404 0.2341 0.1593 0.1796
NMAR
Complete Data 0.1954 0.1687
Complete Case 0.1988 0.2065 0.1942 0.1880
Subject Mean Imputation 0.2161 0.2653 0.3816 0.7348
Occasion Mean Imputation 0.2104 0.2576 0.2256 0.2640
Conditional Mean Imputation 0.2003 0.2673 0.2133 0.2621
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Table 5.3 Mean Square Error of parameters under the Log-Log-Gamma MMM

Log-Log-Gamma MMM

B,=2 B,= —-1.3
10% 20% 10% 20%
MCAR
Complete Data 0.3968 0.0656
Complete Case 0.2967 0.3292 0.0836 0.0722
Subject Mean Imputation 0.3159 0.2363 0.0671 0.0850
Occasion Mean Imputation 0.0469 0.0724 0.0968 0.1857
Conditional Mean Imputation 0.4074 0.3682 0.0677 0.0722
MAR conditional on observed data
Complete Data 0.3940 0.0667
Complete Case 0.4107 0.4119 0.0582 0.0530
Subject Mean Imputation 0.2587 0.1799 0.0818 0.0973
Occasion Mean Imputation 0.2736 0.1992 0.1032 0.1160
Conditional Mean Imputation 0.4230 0.3584 0.0741 0.0606
NMAR
Complete Data 0.3463 0.0581
Complete Case 0.4663 0.6117 0.0600 0.0518
Subject Mean Imputation 0.1700 0.0937 0.0894 0.1170
Occasion Mean Imputation 0.3782 0.4551 0.0567 0.1062
Conditional Mean Imputation 0.4027 0.4598 0.0813 0.0636
B,= 1.5 B,= 1.2
10% 20% 10% 20%
MCAR
Complete Data 0.0515 0.0440
Complete Case 0.0601 0.0722 0.0533 0.1023
Subject Mean Imputation 0.0804 0.0775 0.0569 0.1248
Occasion Mean Imputation 0.1377 0.2226 0.0695 0.1329
Conditional Mean Imputation 0.0678 0.0574 0.0524 0.0412
MAR conditional on observed data
Complete Data 0.0789 0.0355
Complete Case 0.0789 0.1151 0.0441 0.0555
Subject Mean Imputation 0.0985 0.1126 0.0779 0.2140
Occasion Mean Imputation 0.0813 0.0705 0.0502 0.1171
Conditional Mean Imputation 0.0801 0.0835 0.0386 0.0465
NMAR
Complete Data 0.0571 0.0434
Complete Case 0.0561 0.0616 0.0565 0.0512
Subject Mean Imputation 0.0701 0.1193 0.1756 0.5666
Occasion Mean Imputation 0.0649 0.0926 0.0736 0.1040
Conditional Mean Imputation 0.0613 0.0957 0.0627 0.1014
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Table 5.4 Mean Absolute Error of parameters under the Random-Intercept Model

Random-Intercept Model

B,=2 B,= —-1.3
10% 20% 10% 20%
MCAR
Complete Data 0.0442 0.0343
Complete Case 0.0541 0.0579 0.0436 0.0570
Subject Mean Imputation 0.0667 0.0945 0.0390 0.0536
Occasion Mean Imputation 0.4425 0.7708 0.2708 0.4678
Conditional Mean Imputation 0.0477 0.0577 0.0354 0.0429
MAR conditional on observed data
Complete Data 0.0481 0.0346
Complete Case 0.0458 0.0478 0.0387 0.0470
Subject Mean Imputation 0.0888 0.1189 0.0439 0.0656
Occasion Mean Imputation 0.0759 0.1003 0.1940 0.3211
Conditional Mean Imputation 0.0550 0.0576 0.0400 0.0446
NMAR
Complete Data 0.0411 0.0350
Complete Case 0.0349 0.0352 0.0430 0.0614
Subject Mean Imputation 0.1008 0.1325 0.0489 0.0818
Occasion Mean Imputation 0.0911 0.1017 0.0666 0.1448
Conditional Mean Imputation 0.0446 0.0510 0.0349 0.0499
B,= 1.5 B,= 1.2
10% 20% 10% 20%
MCAR
Complete Data 0.0457 0.0415
Complete Case 0.0544 0.0650 0.0508 0.0513
Subject Mean Imputation 0.0552 0.0718 0.1305 0.2705
Occasion Mean Imputation 0.3014 0.5297 0.1511 0.2714
Conditional Mean Imputation 0.0479 0.0508 0.0436 0.0483
MAR conditional on observed data
Complete Data 0.0475 0.0412
Complete Case 0.0574 0.1049 0.0458 0.0510
Subject Mean Imputation 0.0562 0.0966 0.1893 0.4318
Occasion Mean Imputation 0.1324 0.1532 0.1252 0.2229
Conditional Mean Imputation 0.0522 0.0739 0.0476 0.0548
NMAR
Complete Data 0.0379 0.0390
Complete Case 0.0522 0.0707 0.0494 0.0609
Subject Mean Imputation 0.0635 0.0926 0.2271 0.5346
Occasion Mean Imputation 0.0887 0.1741 0.1112 0.1888
Conditional Mean Imputation 0.0450 0.0588 0.0531 0.0882
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Table 5.5 Mean Square Error of parameters under the Random-Intercept Model

Random-Intercept Model

B,=2 B,= —-1.3
10% 20% 10% 20%
MCAR
Complete Data 0.0027 0.0016
Complete Case 0.0043 0.0047 0.0028 0.0050
Subject Mean Imputation 0.0062 0.0121 0.0023 0.0043
Occasion Mean Imputation 0.2023 0.6063 0.0803 0.2289
Conditional Mean Imputation 0.0034 0.0048 0.0017 0.0026
MAR conditional on observed data
Complete Data 0.0033 0.0018
Complete Case 0.0032 0.0033 0.0023 0.0033
Subject Mean Imputation 0.0100 0.0168 0.0029 0.0065
Occasion Mean Imputation 0.0074 0.0128 0.0411 0.1076
Conditional Mean Imputation 0.0042 0.0044 0.0024 0.0029
NMAR
Complete Data 0.0025 0.0017
Complete Case 0.0018 0.0017 0.0026 0.0054
Subject Mean Imputation 0.0123 0.0208 0.0038 0.0098
Occasion Mean Imputation 0.0111 0.0146 0.0061 0.0246
Conditional Mean Imputation 0.0028 0.0041 0.0018 0.0035
B,= 1.5 B,= 1.2
10% 20% 10% 20%
MCAR
Complete Data 0.0030 0.0027
Complete Case 0.0045 0.0060 0.0040 0.0041
Subject Mean Imputation 0.0043 0.0077 0.0215 0.0824
Occasion Mean Imputation 0.0999 0.2923 0.0288 0.0876
Conditional Mean Imputation 0.0035 0.0038 0.0029 0.0035
MAR conditional on observed data
Complete Data 0.0031 0.0025
Complete Case 0.0048 0.0160 0.0031 0.0037
Subject Mean Imputation 0.0051 0.0147 0.0421 0.1996
Occasion Mean Imputation 0.0247 0.0336 0.0229 0.0674
Conditional Mean Imputation 0.0038 0.0074 0.0035 0.0045
NMAR
Complete Data 0.0021 0.0023
Complete Case 0.0039 0.0071 0.0036 0.0053
Subject Mean Imputation 0.0057 0.0138 0.0588 0.3019
Occasion Mean Imputation 0.0112 0.0371 0.0187 0.0478
Conditional Mean Imputation 0.0030 0.0053 0.0048 0.0208
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5.1 Comparison of different amount of Missing Data

In this section, the effect of the amount of missing data on missing data techniques

is analyzed under each model.

5.1.1 The Log-Log-Gamma MMM

The results obtained under the Log-Log-Gamma MMM are shown in Tables 5.2 and
5.3. MAE and MSE values at 20% missingness are larger than those at 10%
missingness across regression parameters, B,, B, and B,, in most of the 12
conditions (3 missing data mechanisms X 4 missing data techniques). In others, the
difference in the values is too small. This means that, as expected, as the
missingness in the data increases, the regression parameters are less accurately and

precisely estimated.

Tables 5.2 and 5.3 illustrate interesting findings. While estimating the regression
parameters of the time-independent covariates, B, and B,, the missingness in the
data influences occasion mean imputation mostly; consequently it displays the
worst performance in estimates. It has the largest MAE and MSE values both at 10%
and 20% missingness, compared to the MAE and MSE values of other techniques. It
is also worthy to mention that when the missingness percentage in the data
increases from 10% to 20%, the MAE and MSE values of occasion mean imputation
grows at a higher rate compared to other techniques. For example, in Table 5.2, for
B,, under MCAR, there exists approximately 28% increase in the MAE values of
occasion mean imputation, when the missingness percentage in the data is changed
from 10% to 20%. However, slight increases appear for other techniques, under the

same condition.

On the other hand, while estimating the regression parameter of the time-

dependent covariate, B,, firstly subject mean imputation, afterwards, occasion

mean imputation are mostly affected by the missingness in the data. As Tables
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5.2 and 5.3, for B,, reveal, subject mean imputation has the largest MAE and MSE
values both at 10% and 20% missingness. Changing missingness percentage from
10% to 20% in the data causes subject mean imputation to exhibit a subversive
effect both on MAE and MSE values. To illustrate, in Table 5.2, under MAR
conditional on observed data, for B,, subject mean imputation at 20% missingness
yield nearly twice as large MAE values as that at 10% missingness. However,
complete case analysis, or conditional mean imputation appears to be more robust

to missingness percentage changes under the same condition.

5.1.2 The Random-Intercept Model

The results obtained under the random-intercept model are reported in Tables 5.4
and 4.5. Across regression parameters, B,, B, and B,, MAE and MSE values at 20%

missingness are larger than those at 10% missingness, in all of the 12 conditions (3

missing data mechanisms X 4 missing data techniques).

The random-intercept model yields identical results with the Log-Log-Gamma MMM
in the context of missingness percentage in the data. As illustrated in the columns
labeled B, and B, in Tables 5.4 and 5.5, while estimating B, and B,, the
missingness percentage in the data affects occasion mean imputation mostly.
Accordingly, it produces the largest MAE and MSE values both at 10% and 20%
missingness, and displays the highest rate of change in MAE and MSE values, when

the missingness percentage in the data changes from 10% to 20%.

Similar to the case in the Log-Log-Gamma MMM, while estimating B,, subject mean

imputation, afterwards, occasion mean imputation are mostly affected by the

missingness percentage in the data. Naturally, as in Tables 5.4 and 5.5, for B,

reveal, subject mean imputation has the largest MAE and MSE values both at 10%

and 20% missingness, compared to the MAE and MSE values of other techniques.
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5.2 Comparison of Missing Data Mechanisms

This section discusses the comparison of the missing data mechanisms under each
model. To aid in the interpretation of results in terms of the missing data
mechanisms, we follow the procedure of Newman (2003). That’s we combine the

MAE values and MSE values across all regression parameters, B_, B,, B, and B, and

tabulate the results in Tables 5.6 and 5.7.

5.2.1 The Log-Log-Gamma MMM

For the Log-Log-Gamma MMM, Table 5.6 shows that all missing data techniques
exhibit larger average MAE and MSE values under NMAR compared to the values
under MAR conditional on observed data and MCAR, both at 10% and 20%
missingness. Not surprisingly, this is the expected case in the framework of missing
data theory, since parameter estimates which are estimated under MCAR or MAR
conditional on observed data are expected to be less biased than those of under
NMAR. Moreover, larger average MAE and MSE values are observed under MAR
conditional on observed data than under MCAR. One exception is occasion mean
imputation which gives slightly lower average MAE and MSE values under MAR
conditional on observed data than MCAR at 20% missingness in the data, as seen in

the bold digits in Table 5.6.

Table 5.6 Average MAE and MSE values of missing data techniques
across all regression parameters including the intercept

Log-Log-Gamma MMM

Average MAE | Average MSE
10% 20% 10% 20%

MCAR
Complete Case 0.275 0.296 | 0.123 0.144
Subject Mean Imputation 0.291 0.303 | 0.130 0.131
Occasion Mean Imputation 0.240 0.320 | 0.088 0.153
Conditional Mean Imputation 0.206 0.288 | 0.149 0.135
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Table 5.6 (Cont’d)

MAR conditional on observed data

Complete Case 0.301 0.316 | 0.148 0.159
Subject Mean Imputation 0.302 0.327 | 0.129 0.151
Occasion Mean Imputation 0.288 0.294 | 0.127 0.126
Conditional Mean Imputation 0.308 0.296 | 0.154 0.137

NMAR

Complete Case 0.315 0.340 | 0.160 0.194
Subject Mean Imputation 0.300 0.381 | 0.126 0.224
Occasion Mean Imputation 0.301 0.363 | 0.143 0.189
Conditional Mean Imputation 0.309 0.344 | 0.152 0.180

5.2.2 The Random-Intercept Model

For the random-intercept model, Table 5.7 illustrates that only the use of subject
mean yields larger average MAE and MSE values under NMAR compared to the
values under MAR conditional on observed data and MCAR. While no significant
differences are observed in average MAE and MSE values of complete case analysis
and conditional mean imputation under three missing data mechanisms, the
average MAE and MSE values of occasion mean imputation are contrary to the
expected pattern in the context of missing data theory. When the missingness
mechanism changes from MCAR to MAR conditional on observed data, then, to
NMAR, there appear a sharp decrease in average MAE and MSE values of occasion
mean imputation both at 10% and at 20% missingness in the data, as seen in the

bold digits in Table 5.7.

Table 5.7 Average MAE and MSE values of missing data techniques
across all regression parameters including the intercept

Random-Intercept Model

Average MAE | Average MSE
10% 20% 10% 20%

MCAR
Complete Case 0.051 0.058 | 0.004 0.005
Subject Mean Imputation 0.073 0.123 | 0.009 0.027
Occasion Mean Imputation 0.291 0.510 | 0.103 0.304
Conditional Mean Imputation 0.044 0.050 | 0.003 0.004
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Table 5.7 (Cont’d)

MAR conditional on observed data

Complete Case 0.047 0.063 | 0.003 0.007
Subject Mean Imputation 0.095 0.178 | 0.015 0.059
Occasion Mean Imputation 0.132 0.199 | 0.024 0.055
Conditional Mean Imputation 0.049 0.058 | 0.003 0.005

NMAR

Complete Case 0.045 0.057 | 0.003 0.005
Subject Mean Imputation 0.110 0.210 | 0.020 0.087
Occasion Mean Imputation 0.089 0.152 | 0.012 0.031
Conditional Mean Imputation 0.044 0.062 | 0.003 0.008

5.3 Comparison of Missing Data Techniques

In this section, the performance of the missing data techniques is discussed

generally.

5.3.1 The Log-Log-Gamma MMM

Under the Log-Log-Gamma MMM, occasion mean imputation performs poorly
among other missing data techniques, and incompetence of occasion mean
imputation is stressed especially when estimating the regression parameters, B,
and B,, since it results in the largest average MAE and MSE values (see Tables 5.2
and 5.3). Furthermore, this missing data technique is the most sensitive to the
missingness percentage in the data. Under MCAR, for B,, occasion mean continues
to perform poorly. However, when it is MAR conditional on observed data or
NMAR, occasion mean imputation is no longer the worst technique for estimating

the regression parameter, B,, and performs better than subject mean imputation.

In general, the failure of occasion mean imputation may be due to the fact that it
does not use information related to subject while imputing missing values.

Consequently, it may not capture the trend within the values of a subject.

Subject mean imputation performs better than occasion mean imputation, in
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estimating the regression parameters, B, and B,. Interestingly, however, for B,

regression parameter, subject mean imputation displays worse results than
occasion mean imputation under MAR conditional on observed data and NMAR. As
Tables 5.2 and 5.3 show that, when the missing data mechanism is NMAR, subject

mean imputation gives the worst estimate for B, compared to other missing data

techniques.

General performance of subject mean imputation over occasion mean imputation
can be explained as its use of information related to subject while imputing missing

values.

Complete case analysis does not deal with imputation task, and uses less
information, unlike occasion and subject mean imputation which use all available

information. Our simulation study shows that across regression parameters, B,, B,
and B, and under all conditions, complete case analysis performs at least as good

as occasion and subject mean imputation in terms of producing smaller or similar

average MAE and MSE values.

Conditional mean imputation outperforms subject and occasion mean imputation in

producing accurate and precise parameter estimates for regression parameters, B, ,
B, and B, and gives similar results with complete case analysis. Conditional mean
imputation gives the smallest MAE and MSE values, for B,, under MAR conditional

on observed data (0.1593 and 0.0386, respectively: see Tables 5.2 and 5.3).

5.3.2 The Random-Intercept Model

The random-intercept model provides substantially similar results with the Log-Log-
Gamma MMM. Like mentioned above for the Log-Log-Gamma MMM, occasion
mean imputation also turns out to be the ineffective method in terms of accuracy

and precision under the random intercept model. It displays the same
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behaviors across the regression parameters, B,, B,, and B,, and under all conditions

under the Log-Log-Gamma MMM.

The behaviors of subject mean imputation and complete case analysis under the
random-intercept model give parallel results to the cases under the Log-Log-
Gamma MMM. Conditional mean imputation turns out be superior to the

unconditional mean imputations, for the regression parameters, B,, B, and B,,

regardless of any missing data mechanism, and give similar results with complete

case analysis. The only exception is for B, under NMAR, for which complete case

analysis performs better than conditional mean imputation.

5.4 Comparison of Regression Models

Inspection of the values in row labeled “complete data” in Tables 5.2 - 5.5 points
out that the Log-Log-Gamma MMM vyields larger MAE and MSE values than the
random-intercept model. This shows that the regression parameters under the Log-
Log-Gamma MMM are less accurately and precisely estimated compared to those
under the random-intercept model. However, this does not directly mean the Log-
Log-Gamma MMM should be abandoned in favour of the random-intercept model.
The difference between the MAE and MSE values of the Log-Log-Gamma MMM and
the random-intercept model can be due to the dissimilarity of estimation methods
in SAS NLMIXED and SAS GLIMMIX procedures. An updated release of SAS NLMIXED
procedure which allows more than three random effects per subject will
accommodate the random-intercept model described in this thesis. Then, it will be
possible to make more fair comparisons between these two regression models and
to tell which one is the best. Although regression model selection is subject to the
qguestion of research interest, it is worthy to remind that one shortcoming of the
random-intercept model is that the results of the model are subject to the within-
subject covariance structure choice in the multivariate distribution. However, the

Log-Log-Gamma MMM is free of this assumption and, besides; it handles the

58



overdispersion problem wisely. The features of the Log-Log-Gamma MMM and the

random-intercept model are discussed in detail in Sections 3.1.1 and 3.1.2.
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CHAPTER 6

CONCLUSION

Among regression models dealing with longitudinal count data in the literature, this
thesis focuses on the Log-Log-Gamma marginalized multilevel model, which was
developed by Griswold and Zeger (2004), and the random-intercept model. Log-Log-
Gamma MMM is a likelihood-based model and offers a GLM for the mean response
model, and a nonlinear mixed model for the within-subject association model.
Separation of the model for mean response from that for within-subject association
eases the interpretation of regression parameters of interest. Moreover, the Log-
Log-Gamma MMM specifies a gamma distribution for the random effects which is
conjugate to the Poisson distribution of conditional mean model. This is a great
advantage over normally distributed random effects model since the Poisson-

gamma mixture is able to remedy the overdispersion problem.

One of the most frequently encountered problems in longitudinal studies is the
missing values in the data due to data collection process over a sequence of time
periods. This leads the longitudinal data to be incomplete. To facilitate the work of
the regression models against missingness, missing data techniques can be utilized.
For instance, the missing values in the data can be either ignored by the use of
complete case analysis, or filled in by the imputation methods such as subject,
occasion, and conditional mean imputation. However, the missingness percentage
in the data and the missingness mechanism that the data have, whether it is MCAR,
MAR conditional on observed data, or NMAR, affect the performance of missing
data techniques. For that reason, these concepts should be taken into account as

well.
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To make an effective assessment, for the Log-Log-Gamma MMM, only a random
intercept is assumed as a random coefficient in the linear predictor. As a competitor
regression model, the random-intercept model from generalized linear mixed

models is preferred.

For the simulation study, 100 subjects with four repeated measurements, three
covariates, where two are time-independent, and one is time-dependent, are
determined. After generating and saving original longitudinal count datasets, under
each model, 24 different conditions are created by multiplying three missing data
mechanisms, two types of missingness percentage and four 4 missing data
techniques. Missingness is limited to 2" 3 or 4™ measurements of the response
variable and not allowed in the measurements of the matrix of covariates, and in
the 1% measurement of the response variable. Any drop-out or intermittent missing

data patterns in the measurements of the response variable are welcomed.

While data generation process is achieved by R version 2.8.1, the statistical
evaluation of the models is achieved by SAS version 9.1.3. Due to the lack of
computational advances, while SAS NLMIXED procedure is preferred for the Log-
Log-Gamma MMM, SAS GLIMMIX procedure is used for the random-intercept

model.

Based on the statistical evaluation quantities, mean absolute error and mean
square error, the simulation study supports the missing data theory and proves that
missingness percentage in the data, and the missingness mechanism that the data
have, influence the performance of missing data techniques under both regression

model.

Under both regression models, while generally occasion mean imputation displays
the worst performance in the estimates, conditional mean imputation shows a
superior performance, over occasion and subject mean imputation, regardless of

missing data amount and missing data mechanisms, and gives parallel results with
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complete case analysis. Although, behaviors are similar under the models, the Log-
Log-Gamma MMM vyields larger MAE and MSE values than the random-intercept

model.

Longitudinal count data lack availability in different statistical software. Model
fitting of longitudinal count data in different statistical software with different
estimation techniques will enable improvement in usage frequency, inference
capabilities and comparison. Furthermore, as Nelson et al. (2006) stresses, non-
normal random effects are taking progressive attention not only from longitudinal
data analysis field, but also from different areas in statistics, and are more realistic
than normally distributed random effects. However, non-normal random effects

suffer from the lack of computational implementation as well.

As a future work, missingness in the data can be admitted to the matrix of
covariates, in addition to the measurements of response variable. However,
although the implementation of incomplete longitudinal continuous data by
multiple imputation technique is offered by the pan function under the PAN library
in R, or SAS Ml procedure, the implementation of incomplete longitudinal count
data by multiple imputation technique is still suffering from computational
availability in statistical software. Filling in missing values in an incomplete
longitudinal count data by multiple imputation technique can be a good extension
of this thesis. Sensitivity analysis on model fit under the normality assumption is
currently under investigation when random effects come from a nonnormal

distribution.
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APPENDIX A

R CODES FOR THE GENERATION OF COVARIATES MATRIX

# Generating the elements of matrix of time-independent covariates, Xf.
# Each row of the matrix, Xf, corresponds to value ofjth visit (j = 1,2,3,4) for the ith
# subject (i=1,2,...,100).

Xf<-matrix(0,100,3)
for(i in 1:dim(Xf)[1])Xf[i,]=cbind(1,runif(1, min=-1, max=1), rbinom(1,1,0.5) )

# Defining a common AR(1) within-subject covariance matrix, Vxs, for the time-
# dependent covariate of all subjects (i=1,2,...,100).

rho<-0.9

sigma2 <-1

times<-1:4

H <- abs(outer(times, times, "-"))
Vx3<- sigma2* rho”H

# Generating the elements of matrix of time-dependent covariates, Xt.

# Each row of the matrix corresponds to value of jth visit (j = 1,2,3,4) for the ith
# subject (i=1,2,...,100).

# Install package mvtnorm package

library(mvtnorm)

Xt<-matrix(0,100,4)
for(i in 1:dim(Xt)[1]) Xt [i,]J=rmvnorm(1,mean=c(0,0,0,0),sigma=Vx3)
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APPENDIX B

R CODES FOR THE GENERATION OF DATA UNDER
LOG-LOG-GAMMA MMM

# Generating the elements of matrix of random intercepts, C. Each row of the

# matrix, C, corresponds to value of j™ visit (j = 1,2,3,4) for the i*" subject

# (i=1,2,..,100). Each random intercept follow a gamma distribution with a shape
# and a scale parameter equal to 1.

C<-matrix(0,100,4)

for(i in 1:dim(C)[1]) {

for(j in 1:dim(C)[2]) {

Cli,jl=rgamma(1, shape=1, rate = 1, scale = 1)
}

}

# Defining the true parameter for the fixed effects regression coefficients
beta_m<-c(2,-1.3,1.5, 1.2)

# Generating the elements of matrix of delta, as stated in the Section 3.1.1, for
# each subject (i=1,2,...,100).

delta<-((cbind((cbind(Xf,Xt[,1])%*%beta_m),(cbind(Xf,Xt[,2])%*%beta_m),
(cbind(Xf,Xt[,3])%*% beta_m), (cbind(Xf,Xt[,4])%*% beta_m)))- log(1))

# Defining the elements of matrix of mu_c for each subject (i = 1,2,...,100)

mu_c <-cbind((exp(delta[,1]+log(C[,1]))),(exp(delta[,2]+ log(C[,2]))) , (exp(delta[,3] +
log(C[,3]))) , (exp(deltal[,4] + log(C[,41))))

# Generating the elements of matrix of response, Y. Each row of the response
# matrix, # Y, corresponds to value of j visit (j = 1,2,3,4) in the i subject
# (i=1,2,..,100).

Y<-matrix(0,100,4)
for(j in 1:dim(Y)[2]){
for(iin 1:dim(Y)[1]){
Y[i,j]= rpois(1, mu_c[i,j])
}
}
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APPENDIX C

R CODES FOR THE GENERATION OF DATA UNDER RANDOM-INTERCEPT MODEL

# Defining a common AR(1) within-subject covariance matrix, V of random-
# intercepts for all subjects (i =1,2,...,100).

rho<-0.5

sigma2 <-0.1

times<-1:4

H <- abs(outer(times, times, "-"))
V<-(sigma2*rho”H)

# Generating the elements of matrix of random intercepts, A. Each row of the

# matrix, # A corresponds to value of [ visit (j = 1,2,3,4) in the i subject

# (i=1,2,..,100). The random-intercepts within a subject has zero mean vector, and
# AR(1) covariance matrix, V.

A<-matrix(0,100,4)
i=dim(A)[1]
for(i in 1:dim(A)[1])A[i,]=rmvnorm(1,mean=c(0,0,0,0),sigma=V)

# Defining the true parameter for the fixed effects regression coefficients
beta<-c(2,-1.3,1.5, 1.2)
# Defining the elements of matrix of mu_c for each subject (i = 1,2,...,100)

mu_c <-cbind( (exp((cbind(Xf,Xt[,1]) %*% beta)+ A[,1])), (exp((cbind(Xf,Xt[,2]) %*%
beta)+ A[,2])), (exp((cbind(Xf,Xt[,3]) %*% beta)+ A[,3])), exp((cbind(Xf,Xt[,4]) %*%
beta)+A[,4])) )

# Generating the elements of matrix of response, Y. Each row of the response
# matrix, # Y corresponds to value ofjth visit (j = 1,2,3,4) for the ith subject
# (i=1,2,..,100).

Y<-matrix(0,100,4)

for(j in 1:dim(Y)[2]) {
for(i in 1:dim(Y)[1]) {
Y[i,jl= rpois(1, mu_c[i,j])
}

}
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APPENDIX D

R CODES FOR MISSING DATA GENERATION SCENARIOS

# For MCAR type missing data mechanism
# generating 10% missingness in the response matrix, Y.

while(sum(is.na(Y))<40) {
id<-sample(1:100, 1,replace=T)
ocassion<-sample(2:4,1, replace=T)
Y[id, ocassion]<-NA

}

Ymis<-Y

sum(is.na(Ymis))

# For MAR conditional on observed data type missing data mechanism
# generating 10% missingness in the response matrix, Y.

a<-data.frame(Y,Xf)
while(sum(is.na(Y))<40) {
row.sample<-((1:nrow(a))[aS$X3.1=="1"])
id<-sample(row.sample, 1,replace=T)
ocassion<-sample(2:4,1, replace=T)
Y[id, ocassion]<-NA

}

Ymis<-Y

sum(is.na(Ymis))

# For NMAR type missing data mechanism
# Generating 10% missingness in the response matrix, Y.

while(sum(is.na(Y))<40) {
row.sample<-((1:nrow(Y))[Y[,1]>20 |Y[,2]>25 |Y[,3]>30])
id<-sample(row.sample, 1,replace=T)
ocassion<-sample(2:4,1, replace=T)

Y[id, ocassion]<-NA

}

Ymis<-Y

sum(is.na(Ymis))

# For 20% missingness in the response matrix, Y, replace 40 with 80 in the R codes
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APPENDIX E

R CODES FOR MISSING DATA TECHNIQUES
# Complete case

b<-data.frame(Ymis,Xf,Xt)
br<-na.exclude(b)

# Subject mean imputation

for(iin 1:dim(Ymis)[1]) {
Ymis[i,][is.na(Ymis[i,])]<-round(mean(Ymis[i,],na.rm=T))
}

Ymeanr<-Ymis
# Occasion mean imputation

for(j in 2:dim(Ymis)[2]) {
Ymisl,j][is.na(Ymis[,j])]<-round(mean(Ymis[,j],na.rm=T))

}

Ymeanc<-Ymis

# Conditional mean imputation

# Columns 1,2,3,and 4 refer to response matrix, Y, column 5 refers to vector of

# ones, column 5, 6 and 7 refer to time-independent covariates, and lastly columns
# 8,9, 10, and 11 refer to time-independent covariates.

# Coef matrix is composed of coefficients of the fitted equations.

Coef <-rbind(coef (glm( br[,2]~ br[,1]+ br[,6]+ br[,7]+ br[,9], family=poisson,
data=br)),

coef(glm( br[,3]~ br[,2]+ br[,6]+ br[,7]+ br[,10], family=poisson, data=br) ),

coef(glm( br[,4]~ br[,3]+ br[,6]+ br[,7]+ br[,11], family=poisson, data=br) ))

for(jin 2:dim(Ymis)[2] ) { for(iin 1:dim(Ymis)[1])
Ymis[i,j][is.na(Ymis[i,j])]1<-round(exp(Coef[j-1,1]+(Coef[j-1,2]*Y[i,j-1])+(Coef[j-1,3]
*Xf[i,][2])+(Coef[j-1,4] *Xf[i,][3]) + (Coef[j-1,5] *Xt[i,j])))

}

Ycon<-Ymis
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APPENDIX F

R CODES FOR LONGITUDINAL DATA FORMAT

# In any data frame, the id column refers to the subject id number, occasion

# column refers to occasion number for that subject. The column Ynew refers to
# the response for the j™ of 4 occasions for the i subject (i = 1,2,...,100).

# The first column of the matrix Xnew corresponds to the time-independent

# covariate, Xy, the second column refers to the time-independent covariate

# X,, and lastly, the third column refers to the time-dependent covariate Xs.

# Longitudinal data format for the complete dataset

Ynew<-as.vector(t(Y))

id <- c(rep(1:100,each=4))

occasion <-c(rep(1:4,100))

Xtt<- as.vector(t(Xt))

Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt)
datal<-data.frame(id,occasion,Ynew, Xnew)

# Longitudinal data format for complete dataset after complete case analysis

Ynew<- br[,c(1,2,3,4)]

d<- nrow(Ynew)

Ynew<-as.vector(t(Ynew))

id <- c(rep(1:d,each=4))

occasion <-c(rep(1:4, d))

Xfr<- br[,c(5,6,7)]

Xtr<- br[,c(8,9,10,11)]

Xtr<- as.vector(t(Xtr))

Xnew<-cbind( rep(Xfr[,2], each=4), rep(Xfr[,3], each=4),Xtr )
data2<-data.frame(id, occasion,Ynew, Xnew)

# Longitudinal data format for the complete dataset after subject mean imputation

Ynew<-as.vector(t(Ymeanr))

id <- c(rep(1:100,each=4))

occasion <-c(rep(1:4,100))

Xtt<- as.vector(t(Xt))

Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt)
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data3<-data.frame(id, occasion,Ynew, Xnew)

# Longitudinal data format for the complete dataset after occasion mean
# imputation

Ynew<-as.vector(t(Ymeanc))

id <- c(rep(1:100,each=4))

ocassion <-c(rep(1:4,100))

Xtt<- as.vector(t(Xt))

Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt )
datad<-data.frame(id, ocassion,Ynew, Xnew)

# Longitudinal data format for the complete dataset after conditional mean
# imputation

Ynew<-as.vector(t(Ycon))

id <- c(rep(1:100,each=4))

occasion <-c(rep(1:4,100))

Xtt<- as.vector(t(Xt))

Xnew<-cbind( rep(Xf[,2], each=4), rep(Xf[,3], each=4),Xtt)
data5<-data.frame(id, occasion,Ynew, Xnew)
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APPENDIX G

SAS CODES FOR LOG-LOG-GAMMA MMM
(Adapted from Griswold and Zeger (2004) and Nelson et al. (2006))

data datal;

infile "C:\Documents and Settings\GulINAN\Desktop\datal.txt" DELIMITER='09';
input no id occasion y x1 x2 xt;

run;

proc sort data=datal;
by id;
run;

proc nlmixed data=datal noad fd gpoints=30;

PARMS thetal=1 betaO_m=2 betal_m=-1.3 beta2_m=1.5 beta3_m=1.2;
eta_m=beta0_m + betal_m*x1+ beta2_m*x2+ beta3_m*xt ;
mu_m=exp(eta_m);

ui= CDF('Normal',ai);

if (ui > 0.9999 ) then ui=0.9999;

bi2=quantile('GAMMA', ui, thetal);

bil=thetal*bi2;

v=thetal*thetal;

delta=eta_m-log(v);

eta_c = delta + log(bil);

mu_c=exp(eta_c);

Model y ~ Poisson(mu_c);

Random ai ~ Normal(0,1) subject=id;

run;

/* noad = refers to nonadaptive Gaussian quadrature */

/* fd = specifies that all derivatives be computed using finite difference
approximations. FD is equivalent to FD=100 */

/* qpoints = refers to the number of quadrature points to be used during
evaluation of integrals */

/* subject = refers to subjects in the model */

/* eta_m = specifies the linear predictor of the mean model */

/* eta_c = specifies the linear predictor of the association model */

/* mu_c = relates the linear predictor to the association model through the link
function */
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APPENDIX H

SAS CODES FOR RANDOM-INTERCEPT MODEL

data datal;

infile "C:\Documents and Settings\GulINAN\Desktop\datal.txt" DELIMITER='09';
input no id occasion y x1 x2 xt;

run;

proc glimmix data=datal MAXOPT=500;
classid;

model y = x1 x2 xt / dist=p link=log s;
random intercept / subject=id type=ar(1);
run;

/* dist = refers to conditional distribution of the data */

/* link = refers to the link function in the model */

/* random intercept = specifies a random intercept in the model */
/* subject = refers to subjects in the model */

/* type = refers to within-subject covariance structure in the model */
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