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SUMMARY

As compression becomes the heart of digital video applications, H.264/AVC has
become widely used in various applications and services because of its high coding
efficiency. With the spread of H.264/AVC contents, the need for editing video has
substantially increased. It has been strongly required to edit the H.264/AVC coded
contents with less computational complexity since the compression of H.264/AVC
requires far more processing power than other existing formats such as MPEG-4, and
MPEG-2. So, compressed domain editing that has benefits like savings for memory,
processing power and delay (due to decoding and then re-encoding the edited video
back to the compressed domain), and the preservation of picture quality by avoiding

lossy decode/re-encode chain is used.

In this thesis, two methods for compressed domain editing of H.264/AVC are
proposed: there is a fast editing method provided that the editing is performed in
GOP-based. Since there is no dependency between consecutive GOPs when closed
GOP, cut and splice operations are done easily without decoding the originally

coded stream.

Secondly, frame-accurate editing is proposed. In frame accurate editing, cut points
can be seleceted inside a GOP and it is required that every frame contained in the
resultant stream. It consists of re-encoding method with tandem connection of frame
based decoder and encoder. When cutting out a segment of H.264/AVC video at
arbitrary location, it is needed to decode and re-encode only the frames that are out
of the GOP boundary at the beginning or ending part of the segments. The newly
created GOPs at the two ends may have a different size, but the segment is still

conformable to the standard format.

These two methods are used on various contents and output streams produced. The
streams are verified with H.264/AVC reference decoder and the compliances of the

two methods to the standard are proven.

X



OZET

Goriintii sikistirma, sayisal gorilintii uygulamalarinda 6nemini arttirdikca, H264/AVC
sayisal kodlama standarti da yiiksek kodlama kabiliyeti sebebiyle degisik
uygulamalarda ve servislerde yayginlagsmaya baslamistir. H.264/AVC standart1 ile
kodlanan icerikler c¢ogaldikca, goriintii diizeltmeye duyulan ihtiya¢ da artig
gostermektedir. H.264/AVC ile kodlanan bu icerikleri daha az hesaplama giicii
harcayarak diizenlemek de H.264/AVC satndartinin MPEG-4 ve MPEG-2 gibi
standartlara gore yogun islem gereketirmesi sebebiyle kacinilmaz hale gelmistir.
Bunun sonucu olarak H.264/AVC standart1 ile kodlanan igerikler, daha az islem giicii
ve hafiza kullanan, diizenlemeyi daha ¢abuk yapan, ve goriintii kalitesini
kod¢dzme/yeniden kodlama gibi adimlar icermedigi i¢in koruyan sikismis uzayda

goriintii diizenleme teknikleriyle diizenlenmektedirler.

Bu tez c¢alismasi kapsaminda, iki adet sikismis uzayda H.264/AVC diizenleme
teknigi ele alinmistir: ilki GOP tabanli ¢alistig1 i¢in hizli bir yontem olan GOP-
Tabanli diizenleme yontemidir. H.264/AVC standartinda kapali GOP yonteminde
GOP lar arasinda bir bag bulunmadigi icin kesme ve yapistirma islemleri, orjinal

kodlanmis igerigi degistirmeden rahatlikla gerceklestirilebilir.

Ikinci yontem olarak tam-cgergeve tabanli yontem ele alinmistir. Bu yontemde kesme
noktalar1 GOP icinde segilebilir ve kodlanmis ¢ikis goriintiisiinde secilen biitlin
cerceveler yer almalidir. Bu yontemde ardisira baglanmis kodg¢dziicli/kodlayici
kullanilmigtir. Cikista iiretilen kodlanmis GOP lar giris GOP larmma gore farkh
boyutlarda olabilir fakat H.264/AVC standartina uygun olmak zorundadirlar.

Her iki yontemle de degisik durumlar i¢in sikistirilmis uzayda goriintii diizenleme
yapilmis, ve olusturulan kodlanmis ¢iktilarin H.264/AVC standartina uygunlugu

referans kod¢oziicli yardimiyla kanitlanmastir.



1. INTRODUCTION

The increasing demand to video data into telecommunications services, the corporate
environment, the entertainment industry, and at home has made digital video
technology a necessity. There is a problem that still image and digital video data
rates are very large. Data rates of high magnitude consume a lot of the bandwidth,
storage and computing resources in the typical personal computer. For this reason,
video compression standards have been developed to eliminate picture redundancy,
allowing video information to be transmitted and stored in a compact and efficient

way.

H.264/AVC is a video compression standard jointly developed by ITU-T VCEG and
ISO/IEC MPEG standards committees. The standard is becoming more popular as it
promises much higher compression than earlier video coding standards. The standard
provides flexibilities in coding and organization of data which enable efficient error
resilience. The increased coding efficiency offers new application areas. As
expected, the increase in compression efficiency and flexibility come at the expense

of increase in complexity, which is a fact that must be overcome.

As the importance of compression increases in digital video applications, the need
for editing video in the compressed domain has substantially increased. Video
editing is a natural and necessary operation that is most commonly employed by
users for finalizing and organizing their video content. The benefits of video editing
in the compressed domain are abundant. While the obvious ones include savings for
memory, processing power and delay (due to decoding and then re-encoding the
edited video back to the compressed domain), the most significant benefit is the

preservation of picture quality by avoiding the lossy decode-encode chain [9].

There are several works in literature about compressed domain editing. These are

generally on MPEG-2 video coding standard. In [2], picture-type conversion method



in compressed domain for MPEG-2 content for trimming at arbitrary frame is

explained.

In [9], methods to concatenate MPEG-2 segments while maintaining video buffer
verifier requirements are proposed. Also methods to overcome buffer

underflow/overflow problems in MPEG-2 video coding standard are proposed in

[11].

Techniques about editing of H.263 and MPEG-4 video coding standards are
proposed in [8] and [10]. These techniques include not only cutting and splicing
operations, but also contain fading and blending on MPEG-4 and H.263 coded

videos.

In [7], a fast frame accurate editing method of H.264/AVC is proposed. But this
work based on baseline profile and the problems when occur in the existence of B

frames are ignored.



2. OVERVIEW OF H.264/AVC

H.264 is the newest video coding standard, developed by the ITU-T Video Coding
Experts Group (VCEQG) together with the ISO/IEC Moving Picture Experts Group
(MPEQ) as the product of a partnership effort known as the Joint Video Team (JVT).

The main goals of the H.264/AVC standardization effort have been enhanced
compression performance and provision of a "network-friendly" video representation
addressing "conversational" (video telephony) and "non-conversational" (storage,

broadcast, or streaming) applications.

———————— > Pre-Processing ——— Encoding
j Post-Processing .
& Error Recovery i Decoding
Destination ’
Scope of Standard

Figure 2.1: Scope of Video Coding Standardization

The scope of the standardization is illustrated in Figure 2.1, which shows the typical
video encoding/decoding chain (excluding the transport or storage of the video
signal). In all ITU-T and ISO/IEC video coding standards, only the central decoder is
standardized, by imposing restrictions on the bitstream and syntax, and defining the
decoding process of the syntax elements. Every decoder conforming to the standard
will produce similar output when given an encoded bitstream that conforms to the

constraints of the standard.

An H.264 video stream is organized in discrete packets, called “NAL units”
(Network Abstraction Layer units). Each of these packets can contain a part of a slice

and there may be one or more NAL units per slice. But not all NAL units contain



slice data; there are also NAL unit types for other purposes, such as signalling,

headers and additional data.

The slices contain a part of a video frame. In normal bitstreams, each frame consists
of a single slice whose data is stored in a single NAL unit. Nevertheless, the
possibility to spread frames over an almost arbitrary number of NAL units can be
useful if the stream is transmitted over an error-prone medium: The decoder may
resynchronize after each NAL unit instead of skipping a whole frame if a single error

occurs.

H.264 also supports optional interlaced encoding. In this encoding mode, a frame is

split into two fields. Fields may be encoded using spacial or temporal interleaving.

To encode color images, H.264 uses the YCbCr color space like its predecessors,
separating the image into luma (or “luminance”, brightness) and chroma (or
“chrominance”, color) planes. It is, however, fixed at 4:2:0 subsampling, i.e. the

chroma channels each have half the resolution of the luma channel.

2.1 Comparison of H.264/AVC and Prior Standards

As described in [3], H.264/AVC uses translational block based motion compensation
and transform based residual coding as in prior coding standards. However,

H.264/AVC promises significant differences in details which are stated in Table 2.1.

Table 2.1: Comparison of H.264/AVC and Prior Compression Standards

H.264 MPEG-1/2/4, H.261/3
Prediction in space | Spatial prediction - No spatial prediction
d . - Encode the prediction modes (Use
omain
predictive coding if 4x4 modes are used)
Transform - Integer Transform - 8x8 Discrete Cosine Transform
(DCT) for pixel values
Quantization - Quantization including scaling - Quantization
Prediction in - No coefficient prediction - Coefficient prediction (for DC
values in MPEG-2 and AC




frequency domain values in the first row and

column in MPEG-4)

- Permits up to 15 (2 mostly used) - A P-slice references only
reference pictures one [-picture

References - Bi-predictive B-slices - Bi-directional B-slices
- A P-slice may reference a picture that - Only permit (a+b)/2 type
has B-slices prediction weighting

- Supports explicit weighting coefficients

and (a+b)/2 type
Block Sizes - Tree-structured (16x16, 16x8, 8x16, - Either 16x16 or 8x8
8x8, 8x4, 4x8, 4x4)
- half or 4-pixel accuracy - MPEG2 permits half-pixel
- 6-point interpolation for half-pixel and | accuracy and MPEG4 permits
Motion Estimation | 2-point linear interpolation for Vs-pixel Ya-pixel accuracy

- 2-point linear interpolation

Relative to prior video coding methods, some highlighted features of the H.264/AVC
design that enable enhanced coding efficiency include the following enhancements

of the ability to predict the values of the content of a picture to be encoded:

» Variable block-size motion compensation with small block sizes: H.264/AVC
supports more flexibility in the selection of motion compensation block sizes and
shapes than any previous standard, with a minimum luma motion compensation

block size as small as 4x4 [3].

* Quarter-sample-accurate motion compensation: Most prior standards enable half
sample motion vector accuracy at most. The new design improves up on this by
adding quarter sample motion vector accuracy, as first found in an advanced profile
of the MPEG-4 Visual (Part 2) standard, but further reduces the complexity of the

interpolation processing compared to the prior design [3].

» Multiple reference picture motion compensation: H.264/AVC extends upon the
enhanced reference picture selection technique found in H.263++ to enable efficient

coding by allowing an encoder to select among a larger number of pictures (15) that



have been decoded and stored in the decoder. The same extension of referencing
capability is also applied to motion-compensated bi-prediction, which is restricted in
MPEG-2 to using two specific pictures only (one of these being the previous I or P

picture in display order and the other being the next I or P picture in display order)

[3].

* Decoupling of referencing order from display order: In prior standards, there was a
strict dependency between the ordering of pictures for motion compensation
referencing purposes and the ordering of pictures for display purposes. In
H.264/AVC, these restrictions are largely removed, allowing the encoder to choose
the ordering of pictures for referencing and display purposes with a high degree of
flexibility constrained only by a total memory capacity bound imposed to ensure

decoding ability [3].

* Weighted prediction: A new innovation in H.264/AVC allows the motion-
compensated prediction signal to be weighted and offset by amounts specified by the
encoder. This can dramatically improve coding efficiency for scenes containing

fades, and can be used flexibly for other purposes as well [3].

* Directional spatial prediction for intra coding: A new technique of extrapolating the
edges of the previously-decoded parts of the current picture is applied in regions of
pictures that are coded as intra (i.e., coded without reference to the content of some
other picture). This improves the quality of the prediction signal, and also allows

prediction from neighboring areas that were not coded using intra coding [3].

* Small block-size transform: All major prior video coding standards used a
transform block size of 8x8, while the new H.264/AVC design is based primarily on
a 4x4 transform. This allows the encoder to represent signals in a more locally
adaptive fashion, which reduces artifacts known colloquially as "ringing". (The
smaller block size is also justified partly by the advances in the ability to better
predict the content of the video using the techniques noted above, and by the need to
provide transform regions with boundaries that correspond to those of the smallest

prediction region.) [3]

» Exact-match inverse transform: In previous video coding standards, the transform

used for representing the video was generally specified only within an error tolerance



bound, due to the impracticality of obtaining an exact match to the ideal specified
inverse transform. As a result, each decoder design would produce slightly different
decoded video, causing a "drift" between encoder and decoder representation of the

video and reducing effective video quality [3].

* Arithmetic entropy coding: An advanced entropy coding method known as
arithmetic coding is included in H.264/AVC. While arithmetic coding was
previously found as an optional feature of H.263, a more effective use of this
technique is found in H.264/AVC to create a very powerful entropy coding method
known as CABAC (context-adaptive binary arithmetic coding) [3].

» Context-adaptive entropy coding: The two entropy coding methods applied in
H.264/AVC, termed CAVLC (context-adaptive variable-length coding) and
CABAC, both use context-based adaptivity to improve performance relative to prior

standard designs [3].

* In-the-loop deblocking filtering: Block-based video coding produces artifacts
known as blocking artifacts. These can originate from both the prediction and
residual difference coding stages of the decoding process. Application of an adaptive
deblocking filter is a well-known method of improving the resulting video quality,
and when designed well, this can improve both objective and subjective video
quality. Building further on a concept from an optional feature of H.263+, the
deblocking filter in the H.264/AVC design is brought within the motion compensated
prediction loop, so that this improvement in quality can be used in inter-picture

prediction to improve the ability to predict other pictures as well [3].

Robustness to data errors/losses and flexibility for operation over a variety of
network environments is enabled by a number of design aspects new to the

H.264/AVC standard including the following highlighted features [3].

» Parameter set structure: The parameter set design provides for robust and efficient
conveyance header information. As the loss of a few key bits of information (such as
sequence header or picture header information) could have a severe negative impact
on the decoding process when using prior standards, this key information was
separated for handling in a more flexible and specialized manner in the H.264/AVC

design [3].



* NAL unit syntax structure: Each syntax structure in H.264/AVC is placed into a
logical data packet called a NAL unit. Rather than forcing a specific bitstream
interface to the system as in prior video coding standards, the NAL unit syntax
structure allows greater customization of the method of carrying the video content in

a manner appropriate for each specific network [3].

* Flexible slice size: Unlike the rigid slice structure found in MPEG-2 (which
reduces coding efficiency by increasing the quantity of header data and decreasing
the effectiveness of prediction), slice sizes in H.264/AVC are highly flexible, as was
the case earlier in MPEG-1 [3].

* Flexible macroblock ordering (FMO): A new ability to partition the picture into
regions called slice groups has been developed, with each slice becoming an
independently-decodable subset of a slice group. When used effectively, flexible
macroblock ordering can significantly enhance robustness to data losses by

managing the spatial relationship between the regions that are coded in each slice [3].

* Arbitrary slice ordering (ASO): Since each slice of a coded picture can be decoded
independently of the other slices of the picture, the H.264/AVC design enables
sending and receiving the slices of the picture in any order relative to each other.
This capability, first found in an optional part of H.263+, can improve end-to-end
delay in real-time applications, particularly when used on networks having out-of-

order delivery behavior (e.g., internet protocol networks) [3].

* Data Partitioning: Since some coded information for representation of each region
(e.g., motion vectors) is more important or more valuable than other information for
purposes of representing the video content, H.264/AVC allows the syntax of each
slice to be separated into up to three different partitions for transmission, depending
on a categorization of syntax elements. Here the design is simplified by having a
single syntax with partitioning of that same syntax controlled by a specified

categorization of syntax elements [3].

» SP/SI synchronization/switching pictures: The H.264/AVC design includes a new
feature consisting of picture types that allow exact synchronization of the decoding
process of some decoders with an ongoing video stream produced by other decoders

without penalizing all decoders with the loss of efficiency resulting from ending an I



picture. This can enable switching a decoder between representations of the video
content that used different data rates, recovery from data losses or errors, as well as

enabling trick modes such as fast-forward, fast-reverse, etc [3].

These major differences results make H.264/AVC standard to achieve 50% average
coding gain over MPEG-2, and 47% average coding gain over H.263 baseline
encoders [4]. In Figure 2.2, visual quality of H.264 can be seen clearly. In this case,

input is raw video encoded at constant bitrate (QCIF, 30 fps, 100 kbit/s).

Original H.263 baseline (33 dB) H.263+ (33.5 dB)

b

MPEG-4 core (33.5 dB) H.264 (42 dB)

Figure 2.2: Visual Comparison of H.264/AVC and Prior Standards

2.2 H.264/AVC Profiles and Levels

The standard includes the following seven sets of capabilities, which are referred to

as profiles, targeting specific classes of applications:

o Baseline Profile (BP): Primarily for lower-cost applications with limited
computing resources, this profile is used widely in videoconferencing and

mobile applications.



e Main Profile (MP): Originally intended as the mainstream consumer profile
for broadcast and storage applications, the importance of this profile faded

when the High Profile was developed for those applications.

o Extended Profile (XP): Intended as the streaming video profile, this profile
has relatively high compression capability and some extra tricks for

robustness to data losses and server stream switching.

o High Profile (HiP): The primary profile for broadcast and disc storage
applications, particularly for high-definition television applications (this is the

profile adopted into HD-DVD and Blu-ray Disc).

e High 10 Profile (HilOP): Going beyond today's mainstream consumer
product capabilities, this profile builds on top of the High Profile adding

support for up to 10 bits per sample of decoded picture precision.

e High 4:2:2 Profile (Hi422P): Primarily targeting professional applications
that use interlaced video, this profile builds on top of the High 10 Profile
dding support for the 4:2:2 chroma subsampling format while using up to 10

bits per sample of decoded picture precision.

e High 4:4:4 Predictive Profile (Hi444PP): This profile builds on top of the
High 4:2:2 Profile—supporting up to 4:4:4 chroma sampling, up to 14 bits
per sample, and additionally supporting efficient lossless region coding and

the coding of each picture as three separate color planes.

Table 2.2 shows the relationship between the three Profiles and the coding tools
supported by H.264/AVC standard.

Performance limits for H.264/AVC encoders/decoders are defined by a set of Levels,
each placing limits on parameters such as sample processing rate, picture size, coded
bitrate and memory requirements. Table 2.3 shows some of the levels specified in the

standard (for all of the levels, see [1]).

10



Table 2.2: H.264/AVC Profiles

. . . . High | High 4:4:4
Baseline | Extended Main High High 10 4:2:2 | Predictive
I and P Slices Yes Yes Yes Yes Yes Yes Yes
B Slices Yes Yes Yes Yes Yes Yes
ST and SP Slices Yes
e Yes Yes Yes Yes Yes Yes Yes
Frames
In-Loop Peblochng Yes Yes Yes Yes Yes Yes Yes
Filter
LENTLE !Entropy Yes Yes Yes Yes Yes Yes Yes
Coding
L l.Entropy Yes Yes Yes Yes Yes
Coding
Flexible Macroblock Yes Yes
Ordering (FMO)
Arbitrary Slice
Ordering (ASO) S e
Redundant Slices (RS) | Yes Yes
Data Partitioning Yes
Interlaced Coding
(PicAFF, MBAFF) Yes Yes Yes Yes Yes Yes
4:2:0 Chroma Format Yes Yes Yes Yes Yes Yes Yes
Monochrome Video
Format (4:0:0) Yes Yes Yes Yes
4:2:2 Chroma Format Yes Yes
4:4:4 Chroma Format Yes
8 Bit Sample Depth Yes Yes Yes Yes Yes Yes Yes
9 and 10 Bit Sample
Depth Yes Yes Yes
11 to 14 Bit Sample
Depth Yes
8x8 vs. 4x4 Transform
Skt Yes Yes Yes Yes
Quantlzathn Scaling Yes Yes Yes Yes
Matrices
Separate Cb and Cr
QP control Yes Yes Yes Yes
Separate C?lor Plane Ves
Coding
P. Lossless Coding Yes
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Table 2.3: Some of H.264/AVC Levels

Max video MR
Max bit rate Max video | Max video | Dbit rate Exambles for
Level MBs per Max frame (VCL) for bit rate bitrate | (VCL) for hioh resglution @
number Pl size (MBs) (VCL) for  (VCL) for | Hi422p | &
second BP, XP . frame rate
4 MP HP HilOP and
an Hi444PP

176x144@30.3

1.1 3000 396 192 kbit/s | 240 kbit/s | 576 kbit/'s = 768 kbit/s | 320x240@10.0
352x288@7.5

. . . . 320x240@36.0
1.3 11880 396 768 kbit/s | 960 kbit/s | 2304 kbit/s | 3072 kbit/s 352x288@30.0

320x240@36.0

2 11880 396 2 Mbit/s | 2.5 Mbit/s | 6 Mbit/s 8 Mbit/s 352x288@30.0
. . . . 352x480@30.0
2.1 19800 792 4 Mbit/s 5 Mbit/s 12 Mbit/s | 16 Mbit/s 352x576@25.0

352x480@61.4

. . . . 352x576@51.1
3 40500 1620 10 Mbivs | 12.5 Mbit's | 30 Mbit's | 40 Mbi's | 000 (PR

720x576@25.0

720x480@80.0
3.1 | 108000 3600 14 Mbit/s | 17.5 Mbit/s = 42 Mbit/s | 56 Mbit/s | 720x576@66.7
1280x720@30.0
. . ) . 1280x720@60.0
32 | 216000 5120 20 Mbit's | 25 Mbit's | 60 Mbivs | BOMbits | oo Kooe

1280x720@68.3

4 245760 8192 20 Mbit/s | 25 Mbit/s | 60 Mbit/s | 80 Mbit/s | 1920x1088@30.1
2048x1024@30.0

1920x1088@72.3 (13)

. 2048x1024@72.0 (13)

168'7/5 Mbit| 405 Mbit/s | 540 Mbit/s | 2048x1088@67.8 (12)
2 2560x1920@30.7 (5)
3680x1536/26.7 (5)

5 589824 22080 135 Mbit/s
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3. H.264/AVC CODED DATA STRUCTURE

H.264/AVC is designed in two layers: a video coding layer (VCL), that is designed
to represent the video content, and a network adaptation layer (NAL), which
provides header information and VCL representation of the video for transfer and
storage, as shown in Figure 3.1. The purpose of separately specifying the VCL and
NAL is to distinguish between coding-specific features (at the VCL) and transport-
specific features (at the NAL).

+ Wideo Coding Layer

Coded Macroblock

h J

Diata Fartitioning

Contral Data

Coded SlicePartition

I— Metwork Abstraction Layer

(H.320, MP4FF H.323/F MFEGZ. ..

Figure 3.1: Structure of H.264/AVC Video Encoder

3.1 Network Abstraction Layer

The network abstraction layer (NAL) is designed in order to provide "network
friendliness" to enable simple and effective customization of the use of the VCL for a
broad variety of systems. The NAL facilitates the ability to map H.264/AVC VCL

data to transport layers such as:
* RTP/IP for any kind of real-time wire-line and wireless internet services
* File formats, e.g. ISO MP4 for storage and MMS
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» H.32X for wireline and wireless conversational services
* MPEG-2 systems for broadcasting services, etc.

The output of the encoding process is VCL data (a sequence of bits representing the
coded video data) which are mapped to NAL units prior to transmission or storage.
Each NAL unit contains a Raw Byte Sequence Payload (RBSP), a set of data
corresponding to coded video data or header information. A coded video sequence is
represented by a sequence of NAL units that can be transmitted over a packet-based

network or a bitstream transmission link or stored in a file as shown in Figure 3.2.

eee | NAL RBSP NAL RBSP NAL

Header Header Header RBSP

Figure 3.2: Sequence of NAL Units

The NAL unit structure definition specifies a generic format for use in both packet-
oriented and bitstream-oriented transport systems, and a series of NAL units

generated by an encoder is referred to as a NAL unit stream.

3.1.1 VCL and non-VCL NAL Units

NAL units can be VCL or non-VCL NAL units. The VCL NAL units contain the
data that represents the values of the samples in the video pictures, and the non-VCL
NAL units contain any associated additional information such as parameter sets
(important header data that can apply to a large number of VCL NAL units) and
supplemental enhancement information (timing information and other supplemental
data that may enhance usability of the decoded video signal but are not necessary for

decoding the values of the samples in the video pictures).

3.1.2 Parameter Sets

A parameter set is supposed to contain information that is expected to rarely change
and offers the decoding of a large number of VCL NAL units. There are two types of
parameter sets; sequence parameter sets, which apply to a series of consecutive

coded video pictures called a coded video sequence, and picture parameter sets,
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which apply to the decoding of one or more individual pictures within a coded video

sequence.

The sequence and picture parameter set mechanism decouples the transmission of
infrequently changing information from the transmission of coded representations of
the values of the samples in the video pictures. Each VCL NAL unit contains an
identifier that refers to the content of the relevant picture parameter set, and each
picture parameter set contains an identifier that refers to the content of the relevant
sequence parameter set. In this manner, a small amount of data (the identifier) can be
used to refer to a larger amount of information (the parameter set) without repeating

that information within each VCL NAL unit.

3.1.3 NAL Units in Transport Systems

Some systems (e.g., H.320 and MPEG-2 | H.222.0 systems) require delivery of the
entire or partial NAL unit stream as an ordered stream of bytes or bits within which
the locations of NAL unit boundaries need to be identifiable from patterns within the
coded data itself. For use in such systems, the H.264/AVC specification defines a
byte stream format. In the byte stream format, each NAL unit is prefixed by a
specific pattern of three bytes called a start code prefix. The boundaries of the NAL
unit can then be identified by searching the coded data for the unique start code
prefix pattern. The use of emulation prevention bytes guarantees that start code

prefixes are unique identifiers of the start of a new NAL unit.

In other systems (e.g., internet protocol / RTP systems), the coded data is carried in
packets that are framed by the system transport protocol, and identification of the
boundaries of NAL units within the packets can be established without use of start
code prefix patterns. In such systems, the inclusion of start code prefixes in the data
would be a waste of data carrying capacity, so instead the NAL units can be carried

in data packets without start code prefixes.
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3.1.4 Access Units

A set of NAL units in a specified form is referred to as an access unit. The decoding

of each access unit results in one decoded picture.

Each access unit contains a set of VCL NAL units that together compose a primary
coded picture. It may also be prefixed with an access unit delimiter to aid in locating
the start of the access unit. Some supplemental enhancement information (SEI)
containing data such as picture timing information may also precede the primary

coded picture.

The primary coded picture consists of a set of VCL NAL units consisting of slices or

slice data partitions that represent the samples of the video picture.

3.1.5 Coded Video Sequences

A coded video sequence consists of a series of access units that are sequential in the
NAL unit stream and use only one sequence parameter set. Each coded video

sequence can be decoded independently of any other coded video sequence.

At the beginning of a coded video sequence is an instantaneous decoding refresh
(IDR) access unit. An IDR access unit contains an intra picture — a coded picture that
can be decoded without decoding any previous pictures in the NAL unit stream, and
the presence of an IDR access unit indicates that no subsequent picture in the stream
will require reference to pictures prior to the intra picture it contains in order to be

decoded. A NAL unit stream may contain one or more coded video sequences.

3.2 Video Coding Layer

As in all prior video coding standards, the VCL design follows the so-called block
based hybrid video coding approach (as depicted in Figure 3.3) , in which each coded
picture is represented in block shaped units of associated luma and chroma samples
called macroblocks. The basic source-coding algorithm is a hybrid of inter-picture

prediction to exploit temporal statistical dependencies and transform coding of the
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prediction residual to exploit spatial statistical dependencies. The encoding process
also includes decoding process (except for entropy decoding) since the motion

estimation has to use the same reconstructed reference picture with the decoder.

y . | Coder

Input wi v

ni;:; [ = c?ntr?l Control
[FETTH i‘., """" * data

bl o g
Tt

i @ p| Transform/ >0 T
scal./quant. I iy

(split into v |Scaling &inv.

macroblocks i transferm
of 16x16 ; k E——
pixels) T i .—é oding .
i i Deblocking
i Intra-frame filter
o prediction ¥
' . el Output
\Y\N_ Metion -t \\ video
Imtraflnter COH"IPT—Z‘nsatIOn & signal
i I Motion
E " data
L[ Motion |

7| estimation |

Figure 3.3: Basic coding structure of H.264/AVC for a macroblock

A coded video sequence in H.264/AVC consists of a sequence of coded pictures. A
coded picture in can represent either an entire frame or a single field, as was also the

case for MPEG-2 video.

3.2.1 Macroblocks, Slices, and Slice Groups

A picture is partitioned into fixed-size macroblocks that each covers a rectangular
picture area of 16x16 samples of the luma component and 8x8 samples of each of the
two chroma components. This partitioning into macroblocks has been adopted into
all previous ITU-T and ISO/IEC video coding standards since H.261. Macroblocks
are the basic building blocks of the standard for which the decoding process is

specified.

Slices are a sequence of macroblocks which are processed in the order of a raster

scan. A picture maybe split into one or several slices as shown in Figure 3.4.
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Slice #0

Slice #1

Slice #2
L | |

Figure 3.4: Subdivision of a picture into slices

A picture is therefore a collection of one or more slices in H.264/AVC. Slices are
self-contained in the sense that given the active sequence and picture parameter sets,
their syntax elements can be parsed from the bitstream and the values of the samples
in the area of the picture that the slice represents can be correctly decoded without
use of data from other slices provided that utilized reference pictures are identical at
encoder and decoder. Some information from other slices maybe needed to apply the

deblocking filter across slice boundaries.

Each slice can be coded using different coding types as follows:

* | slice: A slice in which all macroblocks of the slice are coded using intra

prediction.

* P slice: In addition to the coding types of I slices, some macroblocks of the P slice
can also be coded using inter prediction with at most one motion compensated

prediction signal per prediction block.

* B slice: In addition to the coding types available in a P slice, some macroblocks of
the B slice can also be coded using inter prediction with two motion compensated

prediction signals per prediction block.

The above three coding types are very similar to those in previous video coding
standards with the exception of the use of reference pictures as described below. The

following two coding types for slices are new:
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* SP slice: A so-called switching P slice that is coded such that efficient switching

between different precoded pictures becomes possible.

* Sl slice: A so-called switching I slice that allows an exact match of a macroblock in
an SP slice for random access and error recovery purposes. Encoding and decoding

process for macroblocks.

3.2.2 Encoding and Decoding Process for Macroblocks

All luma and chroma samples of a macroblock are either spatially or temporally
predicted, and the resulting prediction residual is encoded using transform coding.
For transform coding purposes, each color component of the prediction residual
signal is subdivided into smaller 4x4 blocks. Each block is transformed using an
integer transform, and the transform coefficients are quantized and encoded using

entropy coding methods.

Figure 2.5 shows block diagram of the video coding layer for a macroblock. The
input video signal is split into macroblocks, the association of macroblocks to slice
groups and slices is selected, and then each macroblock of each slice is processed as

shown.

Every coded macroblock in an H.264 slice is predicted from previously-encoded
data. This prediction is subtracted from the current macroblock and the result of the
subtraction (residual) is compressed and transmitted to the decoder, together with
information required for the decoder to repeat the prediction process (motion

vector(s), prediction mode, etc.).

The decoder creates an identical prediction and adds this to the decoded residual
block. The encoder bases its prediction on encoded and decoded image samples
(rather than on original video frame samples) in order to ensure that the encoder and

decoder predictions are identical.
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3.2.2.1 Intra Prediction Process

Intra prediction is derived from decoded samples of the same decoded slice in
encoder and this process extracts the spatial redundancy between adjacent
macroblocks in a slice. The intra predicted pictures usually give better quality and
lower distortion than inter predicted picture, but intra prediction requires much more
bits to represent the samples. Because of the higher bit rate requirement of an intra
predicted slice, the number of the intra predicted slices is quite less than the inter

slices for reduction of bits in stream.

H.264/AVC standard supports intra-prediction for blocks of 4x4 to help achieve
better compression for high motion areas. There are nine prediction modes in
Intra_4x4 mode as shown in Figure 3.5. This mode is supported only for luma

blocks.

0 (vertical) 1 (horizontal) 2(DC 3 (diagonal down-left) 4 (diagenal down-right)
M[ A]B]C| D[ E[F[G[H| [M[ A|B]C[D[E]F|G[H MA|B|C|D]E]F]G]H| MABCDEFGH| MABCD|E\F|G|H|
L e i e \
J JI—— JI e
|K] K——— [KIies K
L] ILF—" [CImEsR L L
5 (vertical-right) 6 (horizontal-down) 7 (vertical-left) 8 (horizontal-up)
M[A]B[C] D] E[F]G[H M[AB[C]D[E[F[G[H] MA|B|C|D|E|F|G\H| M A B/ C|D[E[F[G[H]
INRNY [FaEg |
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I\« " s Lo~

Figure 3.5: Intra_4x4 Prediction Modes

H.264/AVC also has a 16 x 16 mode, which is aimed to provide better compression
for flat regions of a picture at lower computational costs. This mode is also helpful to
avoid the irritating gradients that show up in flat regions of the picture quantized
with high quantization parameters. Intra_16x16 mode supports 4 direction modes as
shown in Figure 3.6. This mode is supported for 16x16 luminance blocks and 8x8

chrominance blocks.
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Figure 3.6: Intra_16x16 Prediction Modes

A4

A further intra coding mode, I PCM, enables encoder to transmit the values of the
image samples directly (without prediction or transformation). The I PCM mode
allows the encoder to precisely represent the values of the samples. It enables placing
a hard limit on the number of bits a decoder must handle for a macroblock without

harm to coding efficiency.

3.2.2.2 Inter Prediction Process

In video coding, it is well known that temporal correlations of macroblocks are
stronger than spatial correlations of macroblocks. Inter prediction is carried out on
the decoded samples of reference pictures other than the current decoded picture, and
this process eliminates the temporal redundancy between successive pictures for the

compression.

Inter prediction in H.264/AVC supports variable block sizes from 16x16 to 4x4 as
depicted in Figure 3.7 and in Figure 3.18.

0 0 1
0 0 1
1 2 3
16x16 16x8 8x16 8x8

Figure 3.7: Macroblock Partitions: 16x16, 16x8, 8x16, and 8x8
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8x8 8x4 4x8 4x4

Figure 3.8: Sub-macroblock Partitions: 8x8, 8x4, 4x8, and 4x4

The luminance component of each macroblock (16x16 samples) may be split up in
four ways (Figure 3.7) and motion compensated either as one 16x16 macroblock
partition, two 16x8 partitions, two 8x16 partitions or four 8x8 partitions. If the 8x8
mode is chosen, each of the four 8x8 sub-macroblocks within the macroblock may
be split in a further 4 ways (Figure 3.8), either as one 8 % 8 sub-macroblock partition,
two 8 x 4 sub-macroblock partitions, two 4x8 sub-macroblock partitions or four 4x4

sub-macroblock partitions.

These partitions and sub-macroblock give rise to a large number of possible
combinations within each macroblock. This method of partitioning macroblocks into
motion compensated sub-blocks of varying size is known as tree structured motion

compensation.

In video coding standards, the macroblock motion is found out in motion estimation
block using reference picture(s). Motion estimation block can be summarized as
finding the minimal difference for original block and reference block (from reference
picture). As the process has computational overhead, there are several methods and
algorithms for approximated, restricted and fast motion estimation such as using

search windows, stepped searches etc.

A separate motion vector is required for each partition or sub-macroblock. Each
motion vector must be coded and transmitted and the choice of partitions must be
encoded in the compressed bitstream. Choosing a large partition size (16x16, 16x8,
8x16) means that a small number of bits are required to signal the choice of motion
vectors and the type of partition but the motion compensated residual may contain a

significant amount of energy in frame areas with high detail. Choosing a small

22



partition size (8x4, 4x4, etc.) may give a lower-energy residual after motion
compensation but requires a larger number of bits to signal the motion vectors and
choice of partitions. The choice of partition size therefore has a significant impact on
compression performance. In general, a large partition size is appropriate for
homogeneous areas of the frame and a small partition size may be beneficial for

detailed areas.

Each chroma component in a macroblock (Cb and Cr) has half the horizontal and
vertical resolution of the luma component. Each chroma block is partitioned in the
same way as the luma component, except that the partition sizes have exactly half the
horizontal and vertical resolution (an 8x16 partition in luma corresponds to a 4x8
partition in chroma). The horizontal and vertical components of each motion vector

(one per partition) are halved when applied to the chroma blocks.

The concept of B slices is generalized in H.264 when compared with prior video
coding standards. In B slices, to build the prediction signal, some macroblocks or
blocks may use a weighted average of two distinct motion-compensated prediction
values. B slices employ two distinct lists of reference pictures, which are referred to
as the first (list 0) and the second (list 1) reference picture lists. Four different types
of inter prediction are supported: list 0, list 1, bi-predictive, and direct prediction. For
the bi-predictive mode, a weighted average of motion-compensated list 0 and list 1
prediction signals is used for the prediction signal. The direct prediction mode is
inferred from previously transmitted syntax elements and can be any of the other
types of modes. For each 16x16, 16x8, 8x16, and 8x8 partition, list 0, list 1 or bi-
predictive methods can be chosen separately. An 8x8 partition of a B macroblock can
also be coded in direct mode. Similar to P-Skip mode, if no prediction error signal is

transmitted for a direct macroblock mode, it is also referred to as B-Skip mode.

3.2.2.3 Transform & Quantization

In H.264 similar to the other standards, a transformation and quantization is applied
on the prediction residuals. However, H.264/AVC employs a 4x4 integer transform
as opposed to the 8x8 floating point DCT transform used in the other standard

codecs. The transform is an approximation of the 4x4 DCT and hence it has similar
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coding gain to the DCT transform. Since the integer transform has an exact inverse
operation, there is no mismatch between the encoder and the decoder which is a

problem in all DCT based codecs.

1 1 1 1
2 1 -1 -2
T =
ol -1 -1 1
1 -2 2 -1

Figure 3.9: Integer 4x4 Forward Transformation Matrix

After the transformation using the matrix of Figure 3.9, each coefficient is scaled
with a specified factor to make the final transform coefficient. The scaled
coefficients are then quantized with a quantization step size determined by a given
Quantization Parameter (QP). In H.264/AVC the values of the quantizer step sizes
have been defined such that the scaling and quantizing stages are mixed to be
performed by simple integer operations in both encoder and decoder [2]. In
particular, the inverse operations of scaling, quantizing and transforming are directly

described in the standard using pure integer operations [1].

3.2.2.4 Entropy Coding

Before transmission, generated data of all types are entropy coded. H.264 supports
two different methods of entropy coding namely Context Adaptive Variable Length
Coding (CAVLC) and Context Adaptive Binary Arithmetic Coding (CABAC). As
well as a conceptual difference between the two methods, CABAC is more efficient
than CAVLC which itself is superior to the conventional VLC (Huffman) used in the

other standard video coding standards.

In CAVLC mode, the residual data is coded using CAVLC but other data are coded
using simple Exp-Golomb codes. These data are first appropriately mapped to the
Exp-Golomb codes depending on the data type (e.g. MB headers, MVs, etc.), and

then the corresponding code words are transmitted.
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The zigzag scanned quantized coefficients of a residual block are coded using
Context Adapting VLC tables. The already coded information of the neighboring
blocks (i.e. upper and left blocks) and the coding status of the current block
determine the context. Optimized VLC tables are specifically provided for each

context to efficiently code the coefficients in different statistical conditions.

In CABAC mode, the generated data including headers and residual data are coded
using a binary arithmetic coding engine. The compression improvement of CABAC
is the consequence of non-integer length symbol assignment, adaptive probability

estimation and improved context modeling scheme.

Syntax Bin Bin & Output
| Strin i Cxldx i i Stream
Elemen Binerization 9| Dtermine Ar_lthmetlp
Cixlcx Coding Engine
1 Bin
L
Ctxldx: Context Index Probability | Update

Tables Tables

Figure 3.10: A Simplified Block Diagram of CABAC Coder

A block diagram of CABAC coding process is depicted in Figure 3.10. In order to
code a syntax element, it is first mapped to a binary sequence called bin string. In the
standard, proper binarization mapping schemes are provided for different types of
data. For each element of the bin string (i.e. bin) a context index is defined based on
the neighboring information and the coder status. There are 399 different contexts in
the standard for various types of data, and the context modeling scheme (i.e.
derivation of the context index) for each data type is clearly specified. The binary
arithmetic coder engine then codes the bins using associated probability estimation
tables addressed by the context index and generates the output stream. Subsequently,

the probability tables are updated based on the coded bins for the future use.

3.2.2.5 Deblocking Filter

A deblocking filter is applied to each decoded macroblock to reduce blocking
distortion. The deblocking filter is applied after the inverse transform in the encoder

(before reconstructing and storing the macroblock for future predictions) and in the
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decoder (before reconstructing and displaying the macroblock). The filter smoothes
block edges, improving the appearance of decoded frames. The filtered image is used
for motion-compensated prediction of future frames and this can improve
compression performance because the filtered image is often a more faithful

reproduction of the original frame than a blocky, unfiltered image.

In summary, a hybrid video encoding algorithm is used in H.264/AVC standard and
typically proceeds as follows: Each picture is split into blocks. The first picture of a
video sequence (or for a "clean" random access point into a video sequence) is
typically coded in intra mode. For all remaining pictures of a sequence or between
random access points, typically inter picture coding modes are used for most blocks.
The encoding process for inter prediction consists of choosing motion data
comprising the selected reference picture and motion vector to be applied for all
samples of each block. The motion and mode decision data, which are transmitted as
side information, are used by encoder and decoder to generate identical inter

prediction signals using motion compensation [12].

The residual of the intra or inter prediction, which is the difference between the
original block and its prediction, is transformed by a frequency transform. The
transform coefficients are then scaled, quantized, entropy coded, and transmitted

together with the prediction side information [12].

The encoder duplicates the decoder processing so that both will generate identical
predictions for subsequent data. Therefore, the quantized transform coefficients are
constructed by inverse scaling and are then inverse-transformed to duplicate the

decoded prediction residual [12].

The residual is then added to the prediction, and the result of that addition may then
be fed into a deblocking filter to smooth out block-edge discontinuities induced by
the block-wise processing. The final picture (which is also displayed by the decoder)

is then stored for the prediction of subsequent encoded pictures [12].
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4. GOP BASED H.264/AVC VIDEO EDITING

4.1 Compressed Domain Processing

Compressed-domain processing performs a user-defined operation on a compressed
video stream without going through a complete decompress/process/re-compress
cycle; the processed result is a new compressed video stream. In other words, the
goal of compressed-domain processing (CDP) algorithms is to efficiently process
one standard-compliant compressed video stream into another standard-compliant
compressed video stream with a different set of properties. In this thesis, cutting a
portion from a H.264/AVC coded stream and splicing of two H.264/AVC streams

into one stream are discussed.

A conventional solution to the problem of processing compressed video streams,
shown in the top path of Figure 4.1, involves the following steps: first, the input
compressed video stream is completely decompressed into its pixel domain
representation; this pixel-domain video is then processed with the appropriate
operation; and finally the processed video is recompressed into a new output
compressed video stream. Such solutions are computationally expensive and have
large memory requirements. In addition, the quality of the coded video can

deteriorate with each re-coding cycle.

. Pixel—Dor_nain I
. Processing

*
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5 J
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Figure 4.1: Pixel Domain Processing & Compressed Domain Processing
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Compressed domain processing methods can lead to a more efficient solution by
only partially decompressing the bitstream and performing processing directly on the
compressed-domain data. CDP algorithms can have benefits like savings for
memory, processing power and delay (due to decoding and then re-encoding the
edited video back to the compressed domain), and the preservation of picture quality

by avoiding lossy decode/re-encode chain.

4.2 H.264/AVC GOP Structure

In MPEG encoding, GOP specifies the order in which intra-frames and inter frames
are arranged. The GOP is a group of successive pictures within an MPEG-coded
video stream. Each MPEG-coded video stream consists of successive GOPs. From

the MPEG pictures contained in it the visible frames are generated.

Each MPEG sequence has a sequence header at its leading end and a number of
GOPs following the sequence header. The sequence header carries various
parameters necessary to expand the sequence. Each GOP includes a GOP header and
a plurality pictures following the GOP header, such as I-picture (intra frame), B-
picture (bidirectional interpolated frame) and P-picture (predictive frame), which are

produced in a pattern [,B,B,P,B,B, repeatedly.

The I-picture includes one complete data for one frame and can reproduce one frame
picture by itself using parameters from GOP header and sequence header. The B-
picture includes data for one frame, but can not reproduce one frame picture by itself.
Similarly, the P-picture includes data for one frame, but can not reproduce one frame

picture by itself.

GOP always begins with an I-frame. Afterwards several P-frames follow, in each
case with some frames distance. In the remaining gaps are B-frames. With the next I-

frame a new GOP begins.

The GOP structure is often referred by two numbers, for example M=3, N=12. The
first one tells the distance between two anchor frames (I or P). The second one tells

the distance between two full images (I-frames), it is the GOP length. For the above
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example, the GOP structure is IBBPBBPBBPBB. Instead of the M parameter one

can use the maximal count of B-frames between two consecutive anchor frames.

The more I-frames the MPEG stream has, the more it is editable. However, having
more [-frames increases the stream size. In order to save bandwidth and disk space,

videos prepared for internet broadcast often have only one I-frame per GOP.

H.264/AVC standard itself does not actually include a definition of a concept called
GOP. GOP term is used to identify a group of pictures with starts with an I frame.
Every I frame is a new GOP starting point.

4.2.1 Byte Stream NAL Unit Syntax and Parsing

Since H.264/AVC standard does not define a GOP structure, there is no identical
header for GOP (which MPEG-2 standard has). In order to catch the start of a new
GOP, one has to search for a new I frame. This is done by decoding the bitstream
headers and look for a header of a NAL unit that contains an I frame. Table 4.1

shows the syntax of byte stream NAL units.

Table 4.1: Byte Stream NAL Unit Syntax

byte stream nal wnit] NumBytesIntNAT unit ) { C Descriptor
while{ next_bits{ 24 ) = 0x000001 &&
next bits( 32 1= 0x00000001 3

leading_ zero 8bits /* equal to 0x00 */ i)
if next bits{ 24 ) 1= 0000001 )

zere_byte /* equal to 000 * f8)
start_code_prefix_omne 3bytes /* equal to 0x000001 =/ f24)

nal uniti NumBytesInMNAT unit )
whilel more_data_in byte stream( ) &&
next_bits( 24 ) 1= 0=000001 &&
next butsi 32 ) 1= 000000001 3
trailing zero Shits /* equal to 0=00 */ 8}

ot

This table specifies how a NAL unit is parsed from the bitstream. Categories
(labelled in the table as C) specify the partitioning of slice data into at most three

slice data partitions. Slice data partition A contains all syntax elements of category 2.
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Slice data partition B contains all syntax elements of category 3. Slice data partition

C contains all syntax elements of category 4 [1].

The following descriptors specify the parsing process of each syntax element [1]:

— ae(v): context-adaptive arithmetic entropy-coded syntax element.

— b(8): byte having any pattern of bit string (8 bits).

— ce(v): context-adaptive variable-length entropy-coded syntax element with the left

bit first.

— f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit

first.

—1(n): signed integer using n bits. When n is "v" in the syntax table, the number of

bits varies in a manner dependent on the value of other syntax elements.

—me(v): mapped Exp-Golomb-coded syntax element with the left bit first.

— se(v): signed integer Exp-Golomb-coded syntax element with the left bit first.

— te(v): truncated Exp-Golomb-coded syntax element with left bit first.

—u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of

bits varies in a manner dependent on the value of other syntax elements.

—ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first.

The parsing process for these descriptors are specified in H.264/AVC standard [1].

Input to parsing of byte stream NAL units process consists of an ordered stream of
bytes consisting of a sequence of byte stream NAL unit syntax structures. Output of

parsing process consists of a sequence of NAL unit syntax structures.
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At the beginning of the parsing process, the decoder initializes its current position in
the byte stream to the beginning of the byte stream. It then extracts and discards each
leading zero 8bits syntax element (if present), moving the current position in the
byte stream forward one byte at a time, until the current position in the byte stream is
such that the next four bytes in the bitstream form the four-byte sequence

0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and
decode each NAL unit syntax structure in the byte stream until the end of the byte
stream has been encountered (as determined by unspecified means) and the last NAL

unit in the byte stream has been decoded [1]:

1. When the next four bytes in the bitstream form the four-byte sequence
0x00000001, the next byte in the byte stream (which is a zero_byte syntax element)
is extracted and discarded and the current position in the byte stream is set equal to

the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a
start_code prefix_one 3bytes) is extracted and discarded and the current position in
the byte stream is set equal to the position of the byte following this threebyte

sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at
the current position in the byte stream up to and including the last byte that precedes

the location of any of the following conditions:

a. A subsequent byte-aligned three-byte sequence equal to 0x000000, or

b. A subsequent byte-aligned three-byte sequence equal to 0x000001, or

c. The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current

position in the byte stream is advanced by NumBytesInNALunit bytes. This
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sequence of bytes is nal unit( NumBytesInNALunit ) and is decoded using the NAL

unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as
determined by unspecified means) and the next bytes in the byte stream do not start
with a three-byte sequence equal to 0x000001 and the next bytes in the byte stream
do not start with a four byte sequence equal to 0x00000001, the decoder extracts and
discards each trailing zero 8bits syntax element, moving the current position in the
byte stream forward one byte at a time, until the current position in the byte stream is
such that the next bytes in the byte stream form the four-byte sequence 0x00000001
or the end of the byte stream has been encountered (as determined by unspecified

means).

4.2.2 NAL Unit Syntax and Semantics

After parsing the NAL header, NAL unit is obtained. In Table 4.2, NAL unit syntax

is given.
Table 4.2: NAL Unit Syntax
nal_uvnit{ NumBytesInNAT unit ) { C | Descriptor
forbidden zero hit All | £i1)
nal_ref ide All | uw(2)
nal unit type All | u(3)

NumBytesInEBSP =0
for( 1=1; 1 < NumBytesInNAT unit; 1++ ) {

iff 1 + 2 < NumBytesInNAL unit && next_bits( 24 ) == (=000003 ) {
rbsp_byte] NumBytesInEBSP++ ] All | b(E)
rhsp_byte] NMumBytesInEBSP++ ] All | b(E)
1+=12
emulation_prevention_three byte /* equal to 0x03 # All | £{8)
} else
rbsp_byte] NumBytesInEBSP++ ] All | b(8)

ot

it

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is
required for decoding of the NAL unit.
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“forbidden_zero_bit” shall be equal to 0.

“nal_ref idc” not equal to zero specifies that the content of the NAL unit contains a
SPS or a PPS or a slice of a reference picture or a slice data partition of a reference

picture. For a new GOP start point, this variable shall not be zero.

“nal_unit_type” specifies the type of RBSP data structure contained in the NAL unit
as specified in Table 4.3. VCL NAL units are specified as having “nal unit_type”
equal to 1 to 5. Remaining NAL units are called non-VCL NAL units.

Table 4.3: NAL Unit Type Codes

nal_unit_type Content of NAL unit and EBSP syntax structure C

] Unspecified

1 Coded slice of a non-IDE. picturs 2,3, 4
slice layer without partitioning_ rbsp( )

2 Coded slice data partition A 2
slice data partiion a layer rbspi )

3 Coded slice data partition B 3
slice data_partition b layer rbsp( )

4 Coded slice data partition C 4
slice_data partiion_c_layer rbep( )

3 Coded slice of an IDR. picture 1.3
slice layer without partitionng rbsp( )

& Supplenrental enhancement mformation (SET) 5
sel_thap( )

7 Sequence parameter set 0
seq parameter sef rhsp( )

2 Picture parameter set 1
pic_parameter_set rbsp( )

9 Access unit delimiter &
access umit_delimuter hsp( )

0 End of sequence 7
end of seq rhspl )

11 End of stream E
end of stweam rhapi )

12 Filler data 9

filler_data rhap( )

13 Sequence parameter set extension 10
seq_parameter set extension rhsp()

14.18 Reserved

[
Lad
o

19 Coded slice of an suxiliary coded picture without partiticmng
slice layer without partitioning_ rbsp( )

2023 Reserved

2431 Unspecified
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4.3 GOP Based Editing

In this thesis, only closed GOPs are studied. In these GOPs, all the frames in the
current GOP can be decoded even if the previous GOPs do not exist. That means the
frames inside the GOP do not referenced from the frames that belong to previous
GOPs. Since GOPs are independent, splicing or cutting operations is become just a

copy and a paste operation of GOPs in compressed domain.

As stated in [6], some terminology is used in compressed domain video editing.
“Starting cut point” is the point where the extraction operation is going to start and
“ending cut point” is the point where extraction operation is going to end. The last
frame before the starting cut point is called “exit frame” and the first frame after the
ending cut point is called “entry frame”. Correspondingly, the GOPs containing the
exit frame and the entry frame are called exit GOP and entry GOP respectively. After
the editing operation frames between exit frame and entry frame are extracted from

the original sequence and output sequence is formed.

By means of GOP based editing, it is meant to say there is no frame based operations
on the video sequences. Every processing remains at GOP level. Even if the starting
and/or ending cut points are selected inside the GOPs, cutting and splicing operations
are done on GOPs and resulting output stream may include frames that are between
start cut point and ending cut point (which they are not intended to be included in

output stream). An example is shown in Figure 4.2.

. GOPO __GOP 1 ~_GOP2 __GOP 3
N » - - 7\
sps | PPs | B oo P | B eee P | B oo P | B cee P
Frame | Frame Frame| |[Frame | Frame Frame| |Frame | Frame Frame| |[Frame | Frame Frame
Exit Entry
Frame Frame

Figure 4.2: An Example of GOP-Based Editing (Cutting)
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After the cutting operation of the above example, GOP 2 is discarded and the output
video sequence consists of GOP 0, GOP 1, and GOP 3. This can be seen on Figure
4.3.

. GOPO __GOP 1'— _ GOP 3"
- e A A
| B P | B P | B P
SIS Frame | Frame e Frame| |[Frame | Frame e Frame| |[Frame | Frame eee Frame

Figure 4.3: Output Video Sequence after Cutting Operation

If the starting cut point and ending cut point is selected at GOP boundaries, after
GOP based editing, every frame is contained in the output stream. In this case, exit
frame is an | frame (and a starting point of a new GOP), and entry frame is the last

frame of a GOP (can be a P or a B frame). This case is illustrated in Figure 4.4.

. GOPO __GOP 1 __GOP 2 __GOP 3
) » - - 7\
sPs | PPs | B oo P | B eee P | B oo P | B cee P
Frame | Frame Frame| |[Frame | Frame Frame| |Frame | Frame Frame| |[Frame | Frame Frame
Exit Entry
Frame Frame

Figure 4.4: An Example of Editing at GOP Boundaries

In the above example starting cut point is just after the exit frame, and the ending cut
point is just before the entry frame. After the cutting operation GOP 1 and GOP 2 are
discarded and the output video sequence consists of GOP 0, and GOP 3. Accurate

editing is done in this example and output video sequence is illustrated in Figure 4.5.

- GOPO - GOP 3
) ) > A
| B P | B P
S Frame | Frame | * * * | Frame| |Frame | Frame |* * *| Frame

Figure 4.5: Output Video Sequence after Cutting Operation
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Simulations are done on H.264/AVC reference software, which is also called JM [5].
This software includes encoder/decoder pair. Version 8.0 is used in simulations since

newer versions come with more complexity.

Input streams that are used in GOP based editing is generated from the encoder
which is included in JM Software. As GOP length, period of I frames is selected 12.
Than a control mechanism is setup and included in decoder code to simulate GOP
based editing in compressed domain. The steps during the GOP based cutting

operation are:

a) Decode the input bitstream until a new NAL unit header (0x000001 or
0x00000001) is found.

b) Decode “nal unit type” (5 bits) and determine the type of the NAL unit. If
the NAL unit is an SPS or a PPS than copy this NAL unit to the output

stream.

c) If the NAL unit is an I frame, this is a new GOP starting point. Copy this
NAL unit and the upcoming NAL units until the GOP that includes exit

frame.

d) After exit frame is found, bypass the next GOPs until entry frame is found.

e) After the GOP that includes entry frame is found, concatenate this GOP and
the residual GOPs to the output stream.
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5. FRAME ACCURATE H.264/AVC VIDEO EDITING

5.1 Frame Accurate Cutting & Splicing

In frame accurate editing, as opposed to GOP based editing, it is desired that every
selected frame is contained in the output stream after the editing operation. If the
starting cut point and ending cut point is selected at GOP boundaries, the editing
process becomes GOP based editing. But if the starting cut point or ending cut point
is selected inside the GOP, additional processing is required to discard every frame

between starting cut point and ending cut point.

Figure 5.1 shows an example of frame accurate cutting operation. Here, the numbers
under the frames shows the frame numbers in display order. Exit frame is fourth
frame and entry frame is nineteenth frame in this case. Exit GOP is first GOP and

entry GOP is fourth GOP respectively.

-GOP 0 -GOP 1 -GOP 2 -GOP 3 GOP 4
o B B o

I/ B/P/ B/P||I | B/P|B|P|/I |B|P|B|P|I |B|/P|B|PI|I|B|P|B|P

0 1 2 H 4 5 6 7 8 9 10 11 12 13 14 15 16 17@19’20 21 22 23 24

Exit Entry
Frame Frame

Figure 5.1: Frame Accurate Cutting Operation

After cutting operation, output video sequence consists of frames 0-3 and 18-24 (3
and 18 included). Clearly some transformations and additional processing are
required around exit frame and entry frame regions. These are going to be explained

in next pages. Output video sequence of the above example is shown in Figure 5.2.
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GOPO__ GOP 3’ GOP 4

0 1 2 3 1819 20 21 22 23 24

Figure 5.2: Output of Frame Accurate Cutting Operation

As explained later, “entry GOP processing” and “exit GOP processing” are the basis
for these two operations (cutting, and splicing). Only difference between them is;
splicing has two exit and entry frames (and two entry/exit GOP processing
accordingly). Frame accurate splicing operation of two video segments from two
different video sequences is shown in Figure 5. In this example, video frames
between 3 and 10 of video sequence 2 are concatenated after video frames between 6

and 17 from video sequence 1. Output video sequence is shown in Figure 5.4.

Video Sequence 1

-GOP 0—_ -GOP 1 -GOP 2 -GOP 3 -GOP 4
A A A A

l'B|P|B|PI |B/P|B|P|/I | B|P|B/P||I |B|P|B|P||I B|P|B|P

01 2 3 4 5 H 7 8 9 10 11 12 13 14 15 16%18 19 20 21 22 23 24

Entry Exit
Frame Frame
Video Sequence 2
~GOP 0 ~_GOP 1 ~_GOP2 ~_GOP3 ~_GOP4
» » A 'S
|/B|P|B|P||I |B|P B|P||I | B|P/ B|P|/I \B|/P|B|P||I |B|P|B|P

0 1 2 ﬂ 4 5 6 7 8 97@11 12 13 14 15 16 17 18 19 20 21 22 23 24

Entry Exit
Frame Frame

Figure 5.3: Frame Accurate Splicing Operation
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Output Video

Sequence
~_GOP 1’ GOP 2 GOP 3 GOPO GOP 1. GOP 2'
- ‘k/,,, \lg”/ <L "
Il P/ B|P|I |B|P|B|P|I |B|P|I|P|I B/ P B|P

6 77 8 9910 11 12 13 14%15 16 173 4'"5 6 7 8 9910

Figure 5.4: Output of Frame Accurate Splicing Operation

5.2 Conversion Procedures

As the nature of the video coding standards, there are temporal dependencies
between frames. When we cut a portion of video sequence from a video stream, it is
likely that the reference frames of some inter-coded frames (P, B) in the output
sequence may not be included. So, there must be frame conversion algorithms to

solve this problem. In this work, two procedures are going to be explained:

1) Exit GOP Processing

i1) Entry GOP Processing

These conversion procedures determine necessary frame conversions that can be
possible decoding, re-encoding, and other processing. These two procedures work on
the related GOPs (entry and exit GOPs) and resultant video sequence is frame-

accurate, and must be conformable to H.264/AVC standard.

These conversion procedures are independent from each other and handled
separately. For cutting operation, as seen on Figure 5.1, firstly exit GOP processing
is applied to exit GOP and then entry GOP processing is applied to entry GOP. For
splicing operation, as seen on Figure 5.3, the processing order is reversed. First entry
GOP processing is applied to entry GOP in first input video sequence and then exit
GOP processing is applied to exit GOP in first input video sequence. Same
operations are done for the second input video sequence and the extracted GOPs are

combined together.
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Before presenting these conversion procedures, the problematic case of existence of
B frames should be presented: The order in which decoded pictures are displayed is
called the display order. The order in which the pictures are transmitted and decoded
is called the coded order. The coded order is the same as the display order if there are
no B-frames in the sequence. However, if B-frames are present, the coded order may
not be the same as the display order because B-frames typically use temporally future
reference frames as well as temporally past reference frames, and a temporally future
reference frame for a B-frame precedes the B-frame in coded order. Difference
between display order and the coded order can be clearly seen on Figure 5.5 and

Figure 5.6.

Figure 5.5: Display Order

Figure 5.6: Coded Order

If the video sequence is composed of only I and P pictures, the processing is
relatively simple since there is no backward processing. However if the sequence has
B frames (and any of the cut points is selected adjacent to B frames), then the
conversion procedures embody re-encoding and reordering of these coded pictures.
Because after cutting or splicing operation, backward or forward reference of B

frames may be discarded.
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5.2.1 Exit GOP Processing

This processing works around the exit frame. Exit GOP processing may include
decoding, and re-encoding of some frames around the exit frame. There are three
possible cases for this process. These cases completely depend on the type of the exit
frame. In all of the cases, it is assumed that the input video sequence consists of I, P,

and B frames.

5.2.1.1 I Frame Processing

If the exit frame is an I frame, this means this frame is the first frame of the GOP.
Also this frame does not need any of the following frames to be decoded. So,
terminating the exit GOP after getting the I frame would not be problematic. This is

illustrated in Figure 5.7.

__Exit GOP_

Exit
Frame

Figure 5.7: Exit GOP (exit frame is an | frame)

For I frame case process works as follows: Until the exit frame is met, decode the
NAL headers and copy these NAL units to the output stream. When the exit frame is
met, copy also this NAL unit to the output stream. Exit processing is completed.

Figure 5.8 shows the output GOP that is going to be added to the output stream.

Exit GOP

Figure 5.8: Output GOP (exit frame is an I frame)
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5.2.1.2 P Frame Processing

If the exit frame is a P frame, procedure is almost like the above situation. The only
difference is continuing grabbing operation of frames after the exit frame is met. This
grabbing lasts until the frames that come after exit frame in coded order but come
before in display order, are all read from the input stream and copied to the output

stream.

This case is shown in Figure 5.9. Frames are arranged in display order and subscript
numbers shows the coded order. P; frame is read from the input stream before frames
B, and B;. After copying NAL unit that includes P; frame in it, processing must
continue and copying all of the frames that resides between Iy and P, in display order

must be copied to the output stream. Output GOP is shown in Figure 5.10.

~ —ExitGOP—

Exit
Frame

Figure 5.9: Exit GOP (exit frame is a P frame)

. ExitGOP

Figure 5.10: Output GOP (exit frame is a P frame)
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5.2.1.3 B Frame Processing

If the exit frame is a B frame, additional effort is needed because backward reference
frame of exit frame (and several possible frames) is going to be discarded in the

output stream.

 ——ExtGOP—

Exit
Frame

Figure 5.11: Exit GOP (exit frame is a B frame)

As seen from the figure, when exit frame is B¢, backward reference frame of Bs and
Bs (P4) is going to be discarded in the output stream. Since only P; can be a reference
to Bs and Bg, each of these B frames must be converted to a P frame (that uses only
forward prediction). This operation includes decoding all of the B frames and then

re-encoding these frames in frame type of P.

The steps during this operation are:

a) Copy NAL units that include frames from starting of the exit GOP to the last
P frame that comes before the exit frame. In above example these are Iy, P,

Bz, and B3.

b) To use as a reference frame, decode the previous reference frame (I or P

frame). In above example this frame is P;.

¢) Decode all of the B frames starting from the previous forward reference (I or

P frame) to the exit frame. In above example these frames are Bs and Be.
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d) Encode these frames (P;, Bs, and Bg), with the supplemental information

gathered while decoding operation.

e) After encoding, discard first frame (which is re-encoding of P;) and copy
remaining NAL units that include P coded frames (which is re-encoding of Bs

and Bg) to the output stream.

This operation is simulated in JM software by using both the decoder and the
encoder. First, related frames are fully decoded (not just the headers). Then the raw
image data sent to the encoder with the necessary ancillary data that is acquired
while decoding. These are; profile and level of sequence, frame width & height, QP
(quantization parameter) that determines the visual quality of the frames, number of
reference frames (generally one). Alongside with these parameters, SPS and PPS of
the input video sequence are sent to the encoder to prevent any incompatibility. All
of these parameters are held in a structure and sent to encoder with the raw image

data. Figure 5.11 illustrates this operation.

Decoder Encoder

Figure 5.12: Frame Conversion of B Frames

After encoding operation we have a stream that is composed of an I frame (re-
encoding of P;) and following P frames. The NAL units that contain P frames (P;

and P,) are copied to output stream. Resulting output GOP is shown in Figure 5.13.

_—ExitGoP-——

Figure 5.13: Output GOP (exit frame is a B frame)
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There is a problem must be handled. When looked at the output exit GOP, it is seen
that P;- and P, are referencing from P;. But the actual reference of P> and P,- is Io,
decoded and re-encoded version of P;. So, there will be a drift error that while
decoding the resulting output stream, decoded frames of P;- and P, are different
from the frames that were get at encoder side. To minimize this error, while coding
the P;, the encoder parameters are set to give the high picture quality. This error
drifts until to the end of the exit GOP, in this example for two frames. And after
doing the simulations, it is seen that there is minimum visual difference between

original input frames and the converted frames (Bs, B¢ and P;- and P,-).

5.2.2 Entry GOP Processing

This processing works around the entry frame. Entry GOP processing includes

decoding, and re-encoding of frames after the exit frame.

~——FEntyGoOP-—

Entry
Frame

Figure 5.14: Entry GOP Processing

Since frames before entry frame are not supposed to be at the output stream, there are
no forward reference frames for the frames after the entry frame. This can be seen on
Figure 5.14. Any conversion of the entry frame will tend to conversion of the other

frame until the end of the entry GOP. So, the procedure in entry GOP processing is:

a) Decode all of the frames starting from entry frame to the end of the entry

GOP. In above example these frames are Py, P4, Bs, and Be.
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b) Encode these frames (P;, P4, Bs, and Bg), with the supplemental information

gathered while decoding operation.

c) After encoding, copy the NAL units that include coded frames (which is re-
encoding of Py, P4, Bs, and Bg) to the output stream.

Output of the above example is shown in Figure 5.15.

___Entry GOP

~

Figure 5.15: Output GOP (Entry GOP Processing)

5.3 Rate Control

Block-based hybrid video encoding schemes such as the MPEG-2 and H.264 are
lossy processes. They achieve compression not only by removing truly redundant
information, but also by making small quality compromises that perceptible. In
particular, the quantization parameter QP regulates how much spatial detail is saved.
When QP is very small, almost all the detail is retained. As QP is increased, bit-rate

decreases which results some increase in distortion and some loss of quality.

There are two types of coding: CBR (Constant Bit Rate), and VBR (Variable Bit
Rate). Because video compression is done by manipulating motion frames, if a video
picture does not change dynamically, the compression rate can be much higher since
there are few radical changes in the picture. VBR provides for a smaller file size by
being able to vary the compression ratio as the content of video sequence changes.

CBR keeps the transfer rate constant regardless of any changes in the video picture.
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When encoding CBR sequences, the encoder usually enforces some rate control
mechanisms to ensure that the generated bitstream will not cause buffer violations at

the decoders.

In decoder side, video buffer is initially empty, then coded data bits are placed into
the buffer at a constant bitrate from the input channels. After an initial delay, the
decoder will accumulate enough bits (about 80% full) in the video buffer and start to

fetch data from the buffer one frame at a time with a specific interval [11].

The decoder video buffer may overflow when the bitstream has many low bitrate
frames in a series (such as a fade-in sequence) such that the decoder can not remove
bits from the video buffer fast enough. Newly arrived bits will be lost due to lack of
available buffer space. On the other hand, the video buffer may underflow if the
bitstream has many large frame within a short period of time (due to abrupt scene
changes or video editing). The decoder will quickly drain the buffer. Then at the
supposed decoding time, the decoder cannot get a complete picture from the buffer.

The video/audio will be jittery [11].

In editing of CBR sequences, the average bitrate of the output sequence should be
kept the same as the input sequence and decoder buffer constraint sholud not be
violated. Thus it is needed to allocate appropriate amount of bits before re-encoding
the frames that need type conversion. Some methods are introduced for H.264 in [7],

and for MPEG-2 in [11].

Simulation environment is JM Software and the decoder in JM software works as

follows:

a) Search for a NAL unit header. After finding the NAL unit header, mark this
point and search for the next NAL unit header. After finding the next NAL

unit header mark this point as well.

b) Then copy the NAL unit which is between the marked points (whatever the
size 1s) to the buffer. And decode the NAL unit.

¢) Repeat this operation until the end of sequence is found.
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In this thesis work, only VBR coding case is investigated. Decoder in JM Software
works on NAL units and has no time stamp dependencies. Thus overflow and

underflow situations can not be seen in this environment.

During frame conversion operations, encoder parameters are selected depending on
the input video stream parameters. So, it is concluded that there is no
overflow/underflow situation at cut points. Figure 5.16 shows the comparison of the
data rate of the original video stream and the compressed domain edited output
stream around cut point. In below example, frames between 15" and 22" seconds of
input video sequence are cut using compressed domain techniques proposed in this

thesis work.

Input Video Sequence Bitrate
250000
200000 A
2
o 150000 -
2
£ 100000 |
=
50000 \
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Seconds (25 fps)
Output Video Sequence Bitrate
250000
200000 -
2
& 150000 A ~ \/
2
S 100000 -
=
50000 \
0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
Seconds (25 fps)

Figure 5.16: Bitrate Change after Compressed Domain Cutting Operation
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5.4 Results

As mentioned before, for simulating the algorithms that proposed in this thesis work,
H.264/AVC IM reference software is used. This software is released by the JVT and

can be downloaded from the web [5].

This software packet is open source and includes both H.264/AVC encoder and
H.264/AVC decoder. Codes are written in plain C and can be compiled and run
under MS Windows and Linux operating systems. After being familiar with the
structure of the encoder and decoder code, any algorithm can be embedded into this

code and simulations can be done.

To simulate the compressed domain video cutting operation (both GOP-based editing
and frame-accurate editing), a control mechanism is written in C language and
embedded into the JM H.264 decoder code. Resulting program receives exit frame
and entry frame from the user. In order to operate, decoder needs a configuration file

which is shown in Figure 5.17.

airshow jmliz.zed ..., H.2eL coded bhitstream

test_dec.yuw L. tmtput file, YUV 4:2:0 format

LEST FECLYUW  iaiaees Ref sequence [for 3HER)

I o ano0e Decoded Picture Buffer size

IR naooooo WAL mode (0=innex B, 1: RTP packets]

S N naooonn 3tart Cut Point (last frame in exit GOP) {in display order)
FEEE o Gonnooo End Cut Point (first frame in entry GOP) {in display order)
sooooo e Rate Decoder

04000 L, B decoder

2= 1 F_decoder

leakybucketparam.cfg .. ..., LeakyBucket Params

Thiz iz a file containing input parameters to the JVT H.Z64/AVC decoder.
The text line following each parameter iz discarded by the decoder.

Figure 5.17: JM H.264/AVC Decoder Configuration File

Then, it starts to decode the H.264 coded input video stream. This mechanism
prevents full decoding of input video stream. In this mechanism, it is allowed to
decode NAL headers and decode necessary frames around cut/splice points. After
finding the exit frame and/or entry frame, mechanism decides whether re-encoding is

necessary or not.
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In exit GOP processing, the mechanism looks for the exit frame. After finding the
exit frame (from NAL header), type of the frame is extracted from slice header.
According to the type of the frame, exit GOP processing is executed on the exit
GOP. If the frame is a B frame, re-encoding of certain frames is needed (5.2.1.3). To
achieve this, these certain frames are fully decoded and then sent to the encoder.

Then resulting encoded stream is added to the output video stream.

In entry GOP processing, same procedure is performed. In this case, all the frames
from the entry frame to the end of the GOP are sent to encoder (5.2.2). Resulting

video stream is added to the output stream.

To measure the performance of the video editing, a raw input video with a resolution
of CIF is taken. It is first encoded in JM encoder with main profile, level 3.0,
CAVLC, GOP length of 13, IBBPBBPBBBBBP format, parameters. Then this
stream is used as input video sequence of video cutting operation and the exit frame
is selected as a B frame. QP of P frames of input stream is 20 and QP of B frames is

30. At frame type conversion step (decoding, re-encoding), these values are used.

For conformance tests, several H.264/AVC coded streams are used. These streams
are edited so that each case of exit GOP processing and entry GOP processing can be
experimented. Then, these streams are decoded with JM decoder software. It is seen
that compressed domain edited streams are completely frame-accurate and are fully

complaint to the H.264/AVC standard.

To see the visual performance of the edited streams, an application called Stream
Eye from Elecard Inc. is used. This application provides the user with a visual
representation of the encoded video features and a stream structure analysis of
MPEG-1/2/4 or AVC/H.264 Video Elementary Streams (VES), MPEG-1 System
Streams (SS), MPEG-2 Program Streams (PS) and MPEG-2 Transport Streams (TS).

More information can be obtained from their website (http://www.elecard.com).

Below, snapshots of Stream Eye application are given. In these figures visual quality

of the re-encoded frames and bit-rate change can be seen clearly.
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Figure 5.18: Exit and Entry Frames (and GOPs) in Input Stream
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Figure 5.19: Output Stream after Cutting Operation

Above figures (Figure 5.18 and Figure 5.19) are examples of frame-accurate editing
when exit-frame is a P frame and entry frame is a B frame. In this example, frames
between display #126 and display #212 are cut. In exit GOP, frames up to the exit
frame are directly copied to the output stream. In entry GOP, frames are re-encoded
and appended to the output stream. It should be noticed that in Stream Eye program,

frames are arranged in coded order.
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Figure 5.21: Output Stream after Cutting Operation

In above figures (Figure 5.20 and Figure 5.21) an example of frame-accurate editing
when exit-frame is a B frame and entry frame is a B frame is illustrated. In this
example, frames between display #596 and display #687 are cut. In exit GOP, frames
with display numbers 594, 595, and 596 are fully decoded and re-encoded. Resulting
H.264/AVC coded stream are appended to the output stream. In entry GOP, frames

687 and 688 are re-encoded and appended to output stream.

To compare the visual performance, PSNR of the originally B coded frame (display
#596) and re-encoded and converted to P frame (display #596) are calculated and
compared. Table 5.1 shows that after video editing, visual performance is decreased

in acceptable amount.
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Table 5.1: Visual Quality Comparison of Original Frame and Compressed Domain

Edited Frame

Original Frame

(B frame, QP: 30)

Compressed Domain Edited

Frame

(P frame, QP: 20)

Y PSNR 38.1 37.69
Cb PSNR 45.7 45.16
Cr PSNR 47.7 47.14
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CONCLUSION & FUTURE WORK

In this thesis, compressed domain editing techniques on H.264/AVC coded video
sequences are investigated. Both GOP based methods and frame accurate methods
are proposed. These methods are used for cutting portions from input video sequence
or for splicing two different H.264/AVC coded video sequences.

Since there is no dependency between consecutive GOPs when GOPs are closed, cut
and splice operaions are easily done on contents without decoding the originally

coded stream.

As opposed to GOP-based editing, frame-accurate editing needs extra effort because
of interframe coding. For exit GOP and entry GOP processing, several cases are
investigated and methods are proposed. These methods require partial decoding;
headers of the NAL units, some important frames around exit frame and entry frame.
Also in some cases frame conversion is required. For that purpose, encoding

operation with appropriate parameters is needed.

These methods have advantageous results over conventional solution (that is
complete decoding and re-encoding of input stream). These are: savings for memory,
processing power and time delay, and the preservation of picture quality by avoiding

the lossy decode/re-encode chain.

These methods are embedded in the H.264/AVC standard reference code (JM) and
proposed methods are simulated. Results show that, with small and acceptable
decrease in visual quality and a small amount of increase in bitrate around cut points,

proposed methods work successfully.

For future work, if the buffer control mechanism is setup, this work can be extended
to CBR compliant model. After that, the use of these methods becomes more
reasonable on limited capacity channels such as streaming and broadcast

applications.

These methods are applied on CAVLC coded H.264/AVC streams. After adding
CABAC support, main profile and other high profiles would be completely
supported.
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