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SUMMARY

As compression becomes the heart of digital video applications, H.264/AVC has 
become widely used in various applications and services because of its high coding 
efficiency. With the spread of H.264/AVC contents, the need for editing video has 
substantially increased. It has been strongly required to edit the H.264/AVC coded 
contents with less computational complexity since the compression of H.264/AVC 
requires far more processing power than other existing formats such as MPEG-4, and 
MPEG-2. So, compressed domain editing that has benefits like savings for memory, 
processing power and delay (due to decoding and then re-encoding the edited video 
back to the compressed domain), and the preservation of picture quality by avoiding 
lossy decode/re-encode chain is used.

In this thesis, two methods for compressed domain editing of H.264/AVC are 
proposed: there is a fast editing method provided that the editing is performed in
GOP-based. Since there is no dependency between consecutive GOPs when closed 
GOP,  cut and splice operations are done easily without decoding the originally 
coded stream.

Secondly, frame-accurate editing is proposed. In frame accurate editing, cut points 
can be seleceted inside a GOP and it is required that every frame contained in the
resultant stream. It consists of  re-encoding method with tandem connection of frame
based decoder and encoder. When cutting out a segment of H.264/AVC video at 
arbitrary location, it is needed to decode and re-encode only the frames that are out 
of the GOP boundary at the beginning or ending part of the segments. The newly
created GOPs at the two ends may have a different size, but the segment is still
conformable to the standard format.

These two methods are used on various contents and output streams produced. The 
streams are verified with H.264/AVC reference decoder and the compliances of the 
two methods to the standard are proven.
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ÖZET

Görüntü sıkıştırma, sayısal görüntü uygulamalarında önemini arttırdıkça, H264/AVC 
sayısal kodlama standartı da yüksek kodlama kabiliyeti sebebiyle değişik 
uygulamalarda ve servislerde yaygınlaşmaya başlamıştır. H.264/AVC standartı ile 
kodlanan içerikler çoğaldıkça, görüntü düzeltmeye duyulan ihtiyaç da artış 
göstermektedir. H.264/AVC ile kodlanan bu içerikleri daha az hesaplama gücü 
harcayarak düzenlemek de H.264/AVC satndartının MPEG-4 ve MPEG-2 gibi 
standartlara göre yoğun işlem gereketirmesi sebebiyle kaçınılmaz hale gelmiştir. 
Bunun sonucu olarak H.264/AVC standartı ile kodlanan içerikler, daha az işlem gücü 
ve hafıza kullanan, düzenlemeyi daha çabuk yapan, ve görüntü kalitesini 
kodçözme/yeniden kodlama gibi adımlar içermediği için koruyan sıkışmış uzayda 
görüntü düzenleme teknikleriyle düzenlenmektedirler.

Bu tez çalışması kapsamında, iki adet sıkışmış uzayda H.264/AVC düzenleme 
tekniği ele alınmıştır: ilki GOP tabanlı çalıştığı için hızlı bir yöntem olan GOP-
Tabanlı düzenleme yöntemidir. H.264/AVC standartında kapalı GOP yönteminde 
GOP lar arasında bir bağ bulunmadığı için kesme ve yapıştırma işlemleri, orjinal 
kodlanmış içeriği değiştirmeden rahatlıkla gerçekleştirilebilir.

İkinci yöntem olarak tam-çerçeve tabanlı yöntem ele alınmıştır. Bu yöntemde kesme 
noktaları GOP içinde seçilebilir ve kodlanmış çıkış görüntüsünde seçilen bütün 
çerçeveler yer almalıdır. Bu yöntemde ardısıra bağlanmış kodçözücü/kodlayıcı 
kullanılmıştır. Çıkışta üretilen kodlanmış GOP lar giriş GOP larına göre farklı 
boyutlarda olabilir fakat H.264/AVC standartına uygun olmak zorundadırlar.

Her iki yöntemle de değişik durumlar için sıkıştırılmış uzayda görüntü düzenleme 
yapılmış, ve oluşturulan kodlanmış çıktıların H.264/AVC standartına uygunluğu 
referans kodçözücü yardımıyla kanıtlanmıştır.
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1. INTRODUCTION

The increasing demand to video data into telecommunications services, the corporate 

environment, the entertainment industry, and at home has made digital video 

technology a necessity. There is a problem that still image and digital video data 

rates are very large. Data rates of high magnitude consume a lot of the bandwidth, 

storage and computing resources in the typical personal computer. For this reason, 

video compression standards have been developed to eliminate picture redundancy, 

allowing video information to be transmitted and stored in a compact and efficient 

way.

H.264/AVC is a video compression standard jointly developed by ITU-T VCEG and 

ISO/IEC MPEG standards committees. The standard is becoming more popular as it 

promises much higher compression than earlier video coding standards. The standard 

provides flexibilities in coding and organization of data which enable efficient error 

resilience. The increased coding efficiency offers new application areas. As 

expected, the increase in compression efficiency and flexibility come at the expense 

of increase in complexity, which is a fact that must be overcome.

As the importance of compression increases in digital video applications, the need 

for editing video in the compressed domain has substantially increased. Video 

editing is a natural and necessary operation that is most commonly employed by 

users for finalizing and organizing their video content. The benefits of video editing 

in the compressed domain are abundant. While the obvious ones include savings for 

memory, processing power and delay (due to decoding and then re-encoding the 

edited video back to the compressed domain), the most significant benefit is the 

preservation of picture quality by avoiding the lossy decode-encode chain [9].

There are several works in literature about compressed domain editing. These are 

generally on MPEG-2 video coding standard. In [2], picture-type conversion method 
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in compressed domain for MPEG-2 content for trimming at arbitrary frame is 

explained.

In [9], methods to concatenate MPEG-2 segments while maintaining video buffer 

verifier requirements are proposed. Also methods to overcome buffer 

underflow/overflow problems in MPEG-2 video coding standard are proposed in 

[11].

Techniques about editing of H.263 and MPEG-4 video coding standards are 

proposed in [8] and [10]. These techniques include not only cutting and splicing 

operations, but also contain fading and blending on MPEG-4 and H.263 coded 

videos.

In [7], a fast frame accurate editing method of H.264/AVC is proposed. But this 

work based on baseline profile and the problems when occur in the existence of B 

frames are ignored.
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2. OVERVIEW OF H.264/AVC

H.264 is the newest video coding standard, developed by the ITU-T Video Coding 

Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group 

(MPEG) as the product of a partnership effort known as the Joint Video Team (JVT).

The main goals of the H.264/AVC standardization effort have been enhanced 

compression performance and provision of a "network-friendly" video representation 

addressing "conversational" (video telephony) and "non-conversational" (storage, 

broadcast, or streaming) applications.

Figure 2.1: Scope of Video Coding Standardization

The scope of the standardization is illustrated in Figure 2.1, which shows the typical 

video encoding/decoding chain (excluding the transport or storage of the video 

signal). In all ITU-T and ISO/IEC video coding standards, only the central decoder is 

standardized, by imposing restrictions on the bitstream and syntax, and defining the 

decoding process of the syntax elements. Every decoder conforming to the standard 

will produce similar output when given an encoded bitstream that conforms to the 

constraints of the standard.

An H.264 video stream is organized in discrete packets, called “NAL units” 

(Network Abstraction Layer units). Each of these packets can contain a part of a slice

and there may be one or more NAL units per slice. But not all NAL units contain 
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slice data; there are also NAL unit types for other purposes, such as signalling, 

headers and additional data.

The slices contain a part of a video frame. In normal bitstreams, each frame consists 

of a single slice whose data is stored in a single NAL unit. Nevertheless, the 

possibility to spread frames over an almost arbitrary number of NAL units can be 

useful if the stream is transmitted over an error-prone medium: The decoder may 

resynchronize after each NAL unit instead of skipping a whole frame if a single error 

occurs.

H.264 also supports optional interlaced encoding. In this encoding mode, a frame is 

split into two fields. Fields may be encoded using spacial or temporal interleaving.

To encode color images, H.264 uses the YCbCr color space like its predecessors, 

separating the image into luma (or “luminance”, brightness) and chroma (or 

“chrominance”, color) planes. It is, however, fixed at 4:2:0 subsampling, i.e. the 

chroma channels each have half the resolution of the luma channel.

2.1 Comparison of H.264/AVC and Prior Standards

As described in [3], H.264/AVC uses translational block based motion compensation 
and transform based residual coding as in prior coding standards. However, 
H.264/AVC promises significant differences in details which are stated in Table 2.1.

Table 2.1: Comparison of H.264/AVC and Prior Compression Standards

H.264 MPEG-1/2/4, H.261/3

Prediction in space 
domain

- Spatial prediction

- Encode the prediction modes (Use

 predictive coding if 4x4 modes are used)

- No spatial prediction

Transform - Integer Transform - 8x8 Discrete Cosine Transform 

(DCT) for pixel values

Quantization - Quantization including scaling - Quantization

Prediction in - No coefficient prediction - Coefficient prediction (for DC 

values in MPEG-2 and AC
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frequency domain values in the first row and 

column in MPEG-4)

References

- Permits up to 15 (2 mostly used) 

reference pictures

- Bi-predictive B-slices

- A P-slice may reference a picture that 

has B-slices 

- Supports explicit weighting coefficients 

and (a+b)/2 type

- A P-slice references only 

one I-picture

- Bi-directional B-slices

- Only permit (a+b)/2 type 

prediction weighting

Block Sizes - Tree-structured (16x16, 16x8, 8x16, 

8x8, 8x4, 4x8, 4x4)

- Either 16x16 or 8x8

Motion Estimation

- half or ¼-pixel accuracy

- 6-point interpolation for half-pixel and 

2-point linear interpolation for ¼-pixel 

- MPEG2 permits half-pixel 

accuracy and MPEG4 permits 

¼-pixel accuracy

- 2-point linear interpolation

Relative to prior video coding methods, some highlighted features of the H.264/AVC 

design that enable enhanced coding efficiency include the following enhancements 

of the ability to predict the values of the content of a picture to be encoded:

• Variable block-size motion compensation with small block sizes: H.264/AVC 

supports more flexibility in the selection of motion compensation block sizes and 

shapes than any previous standard, with a minimum luma motion compensation 

block size as small as 4x4 [3].

• Quarter-sample-accurate motion compensation: Most prior standards enable half 

sample motion vector accuracy at most. The new design improves up on this by 

adding quarter sample motion vector accuracy, as first found in an advanced profile 

of the MPEG-4 Visual (Part 2) standard, but further reduces the complexity of the 

interpolation processing compared to the prior design [3].

• Multiple reference picture motion compensation: H.264/AVC extends upon the 

enhanced reference picture selection technique found in H.263++ to enable efficient 

coding by allowing an encoder to select among a larger number of pictures (15) that 
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have been decoded and stored in the decoder. The same extension of referencing 

capability is also applied to motion-compensated bi-prediction, which is restricted in 

MPEG-2 to using two specific pictures only (one of these being the previous I or P 

picture in display order and the other being the next I or P picture in display order)

[3].

• Decoupling of referencing order from display order: In prior standards, there was a 

strict dependency between the ordering of pictures for motion compensation 

referencing purposes and the ordering of pictures for display purposes. In 

H.264/AVC, these restrictions are largely removed, allowing the encoder to choose 

the ordering of pictures for referencing and display purposes with a high degree of 

flexibility constrained only by a total memory capacity bound imposed to ensure 

decoding ability [3].

• Weighted prediction: A new innovation in H.264/AVC allows the motion-

compensated prediction signal to be weighted and offset by amounts specified by the 

encoder. This can dramatically improve coding efficiency for scenes containing 

fades, and can be used flexibly for other purposes as well [3].

• Directional spatial prediction for intra coding: A new technique of extrapolating the 

edges of the previously-decoded parts of the current picture is applied in regions of 

pictures that are coded as intra (i.e., coded without reference to the content of some 

other picture). This improves the quality of the prediction signal, and also allows 

prediction from neighboring areas that were not coded using intra coding [3].

• Small block-size transform: All major prior video coding standards used a 

transform block size of 8x8, while the new H.264/AVC design is based primarily on 

a 4x4 transform. This allows the encoder to represent signals in a more locally 

adaptive fashion, which reduces artifacts known colloquially as "ringing". (The 

smaller block size is also justified partly by the advances in the ability to better 

predict the content of the video using the techniques noted above, and by the need to 

provide transform regions with boundaries that correspond to those of the smallest 

prediction region.) [3]

• Exact-match inverse transform: In previous video coding standards, the transform 

used for representing the video was generally specified only within an error tolerance 
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bound, due to the impracticality of obtaining an exact match to the ideal specified 

inverse transform. As a result, each decoder design would produce slightly different 

decoded video, causing a "drift" between encoder and decoder representation of the 

video and reducing effective video quality [3].

• Arithmetic entropy coding: An advanced entropy coding method known as 

arithmetic coding is included in H.264/AVC. While arithmetic coding was 

previously found as an optional feature of H.263, a more effective use of this 

technique is found in H.264/AVC to create a very powerful entropy coding method 

known as CABAC (context-adaptive binary arithmetic coding) [3].

• Context-adaptive entropy coding: The two entropy coding methods applied in 

H.264/AVC, termed CAVLC (context-adaptive variable-length coding) and 

CABAC, both use context-based adaptivity to improve performance relative to prior 

standard designs [3].

• In-the-loop deblocking filtering: Block-based video coding produces artifacts 

known as blocking artifacts. These can originate from both the prediction and 

residual difference coding stages of the decoding process. Application of an adaptive 

deblocking filter is a well-known method of improving the resulting video quality, 

and when designed well, this can improve both objective and subjective video 

quality. Building further on a concept from an optional feature of H.263+, the 

deblocking filter in the H.264/AVC design is brought within the motion compensated 

prediction loop, so that this improvement in quality can be used in inter-picture 

prediction to improve the ability to predict other pictures as well [3].

Robustness to data errors/losses and flexibility for operation over a variety of 

network environments is enabled by a number of design aspects new to the 

H.264/AVC standard including the following highlighted features [3].

• Parameter set structure: The parameter set design provides for robust and efficient 

conveyance header information. As the loss of a few key bits of information (such as 

sequence header or picture header information) could have a severe negative impact 

on the decoding process when using prior standards, this key information was 

separated for handling in a more flexible and specialized manner in the H.264/AVC 

design [3].
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• NAL unit syntax structure: Each syntax structure in H.264/AVC is placed into a 

logical data packet called a NAL unit. Rather than forcing a specific bitstream 

interface to the system as in prior video coding standards, the NAL unit syntax 

structure allows greater customization of the method of carrying the video content in 

a manner appropriate for each specific network [3].

• Flexible slice size: Unlike the rigid slice structure found in MPEG-2 (which 

reduces coding efficiency by increasing the quantity of header data and decreasing 

the effectiveness of prediction), slice sizes in H.264/AVC are highly flexible, as was 

the case earlier in MPEG-1 [3].

• Flexible macroblock ordering (FMO): A new ability to partition the picture into 

regions called slice groups has been developed, with each slice becoming an 

independently-decodable subset of a slice group. When used effectively, flexible 

macroblock ordering can significantly enhance robustness to data losses by 

managing the spatial relationship between the regions that are coded in each slice [3]. 

• Arbitrary slice ordering (ASO): Since each slice of a coded picture can be decoded 

independently of the other slices of the picture, the H.264/AVC design enables 

sending and receiving the slices of the picture in any order relative to each other. 

This capability, first found in an optional part of H.263+, can improve end-to-end 

delay in real-time applications, particularly when used on networks having out-of-

order delivery behavior (e.g., internet protocol networks) [3].

• Data Partitioning: Since some coded information for representation of each region 

(e.g., motion vectors) is more important or more valuable than other information for 

purposes of representing the video content, H.264/AVC allows the syntax of each 

slice to be separated into up to three different partitions for transmission, depending 

on a categorization of syntax elements. Here the design is simplified by having a 

single syntax with partitioning of that same syntax controlled by a specified 

categorization of syntax elements [3].

• SP/SI synchronization/switching pictures: The H.264/AVC design includes a new 

feature consisting of picture types that allow exact synchronization of the decoding 

process of some decoders with an ongoing video stream produced by other decoders 

without penalizing all decoders with the loss of efficiency resulting from ending an I 
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picture. This can enable switching a decoder between representations of the video 

content that used different data rates, recovery from data losses or errors, as well as 

enabling trick modes such as fast-forward, fast-reverse, etc [3].

These major differences results make H.264/AVC standard to achieve 50% average 

coding gain over MPEG-2, and 47% average coding gain over H.263 baseline 

encoders [4]. In Figure 2.2, visual quality of H.264 can be seen clearly. In this case, 

input is raw video encoded at constant bitrate (QCIF, 30 fps, 100 kbit/s).

Figure 2.2: Visual Comparison of H.264/AVC and Prior Standards

2.2 H.264/AVC Profiles and Levels

The standard includes the following seven sets of capabilities, which are referred to 

as profiles, targeting specific classes of applications:

 Baseline Profile (BP): Primarily for lower-cost applications with limited 

computing resources, this profile is used widely in videoconferencing and 

mobile applications. 

MPEG-4 core (33.5 dB) H.264 (42 dB)

Original H.263 baseline (33 dB) H.263+ (33.5 dB)
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 Main Profile (MP): Originally intended as the mainstream consumer profile 

for broadcast and storage applications, the importance of this profile faded 

when the High Profile was developed for those applications. 

 Extended Profile (XP): Intended as the streaming video profile, this profile 

has relatively high compression capability and some extra tricks for 

robustness to data losses and server stream switching. 

 High Profile (HiP): The primary profile for broadcast and disc storage 

applications, particularly for high-definition television applications (this is the 

profile adopted into HD-DVD and Blu-ray Disc).

 High 10 Profile (Hi10P): Going beyond today's mainstream consumer 

product capabilities, this profile builds on top of the High Profile adding 

support for up to 10 bits per sample of decoded picture precision. 

 High 4:2:2 Profile (Hi422P): Primarily targeting professional applications 

that use interlaced video, this profile builds on top of the High 10 Profile 

dding support for the 4:2:2 chroma  subsampling format while using up to 10 

bits per sample of decoded picture precision. 

 High 4:4:4 Predictive Profile (Hi444PP): This profile builds on top of the 

High 4:2:2 Profile—supporting up to 4:4:4 chroma sampling, up to 14 bits 

per sample, and additionally supporting efficient lossless region coding and 

the coding of each picture as three separate color planes. 

Table 2.2 shows the relationship between the three Profiles and the coding tools 

supported by H.264/AVC standard.

Performance limits for H.264/AVC encoders/decoders are defined by a set of Levels, 

each placing limits on parameters such as sample processing rate, picture size, coded 

bitrate and memory requirements. Table 2.3 shows some of the levels specified in the 

standard (for all of the levels, see [1]).
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Table 2.2: H.264/AVC Profiles

Baseline Extended Main High High 10 High 
4:2:2

High 4:4:4 
Predictive

I and P Slices Yes Yes Yes Yes Yes Yes Yes

B Slices No Yes Yes Yes Yes Yes Yes

SI and SP Slices No Yes No No No No No

Multiple Reference 
Frames Yes Yes Yes Yes Yes Yes Yes

In-Loop Deblocking 
Filter Yes Yes Yes Yes Yes Yes Yes

CAVLC Entropy 
Coding Yes Yes Yes Yes Yes Yes Yes

CABAC Entropy 
Coding No No Yes Yes Yes Yes Yes

Flexible Macroblock 
Ordering (FMO) Yes Yes No No No No No

Arbitrary Slice 
Ordering (ASO) Yes Yes No No No No No

Redundant Slices (RS) Yes Yes No No No No No

Data Partitioning No Yes No No No No No

Interlaced Coding 
(PicAFF, MBAFF) No Yes Yes Yes Yes Yes Yes

4:2:0 Chroma Format Yes Yes Yes Yes Yes Yes Yes

Monochrome Video 
Format (4:0:0) No No No Yes Yes Yes Yes

4:2:2 Chroma Format No No No No No Yes Yes

4:4:4 Chroma Format No No No No No No Yes

8 Bit Sample Depth Yes Yes Yes Yes Yes Yes Yes

9 and 10 Bit Sample 
Depth No No No No Yes Yes Yes

11 to 14 Bit Sample 
Depth No No No No No No Yes

8x8 vs. 4x4 Transform 
Adaptivity No No No Yes Yes Yes Yes

Quantization Scaling 
Matrices No No No Yes Yes Yes Yes

Separate Cb and Cr 
QP control No No No Yes Yes Yes Yes

Separate Color Plane 
Coding No No No No No No Yes

P. Lossless Coding No No No No No No Yes
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Table 2.3: Some of H.264/AVC Levels

Level 
number

Max 
MBs per 
second

Max frame 
size (MBs)

Max video 
bit rate 

(VCL) for 
BP, XP 
and MP

Max video 
bit rate 

(VCL) for 
HP

Max video 
bit rate 

(VCL) for 
Hi10P

Max video 
bit rate 

(VCL) for 
Hi422P 

and 
Hi444PP

Examples for 
high resolution @

frame rate

1.1 3000 396 192 kbit/s 240 kbit/s 576 kbit/s 768 kbit/s
176x144@30.3 
320x240@10.0 
352x288@7.5 

1.3 11880 396 768 kbit/s 960 kbit/s 2304 kbit/s 3072 kbit/s 320x240@36.0
352x288@30.0

2 11880 396 2 Mbit/s 2.5 Mbit/s 6 Mbit/s 8 Mbit/s 320x240@36.0 
352x288@30.0

2.1 19800 792 4 Mbit/s 5 Mbit/s 12 Mbit/s 16 Mbit/s 352x480@30.0
352x576@25.0

3 40500 1620 10 Mbit/s 12.5 Mbit/s 30 Mbit/s 40 Mbit/s

352x480@61.4
352x576@51.1
720x480@30.0
720x576@25.0

3.1 108000 3600 14 Mbit/s 17.5 Mbit/s 42 Mbit/s 56 Mbit/s
720x480@80.0
720x576@66.7
1280x720@30.0

3.2 216000 5120 20 Mbit/s 25 Mbit/s 60 Mbit/s 80 Mbit/s 1280x720@60.0
1280x1024@42.2

4 245760 8192 20 Mbit/s 25 Mbit/s 60 Mbit/s 80 Mbit/s
1280x720@68.3
1920x1088@30.1
2048x1024@30.0

5 589824 22080 135 Mbit/s 168.75 Mbit
/s 405 Mbit/s 540 Mbit/s

1920x1088@72.3 (13)
2048x1024@72.0 (13)
2048x1088@67.8 (12)
2560x1920@30.7 (5)
3680x1536/26.7 (5)
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3. H.264/AVC CODED DATA STRUCTURE

H.264/AVC is designed in two layers: a video coding layer (VCL), that is designed 

to represent the video content, and a network adaptation layer (NAL), which 

provides header information and VCL representation of the video for transfer and 

storage, as shown in Figure 3.1. The purpose of separately specifying the VCL and 

NAL is to distinguish between coding-specific features (at the VCL) and transport-

specific features (at the NAL).

Figure 3.1: Structure of H.264/AVC Video Encoder

3.1 Network Abstraction Layer

The network abstraction layer (NAL) is designed in order to provide "network 

friendliness" to enable simple and effective customization of the use of the VCL for a 

broad variety of systems. The NAL facilitates the ability to map H.264/AVC VCL 

data to transport layers such as:

• RTP/IP for any kind of real-time wire-line and wireless internet services 

• File formats, e.g. ISO MP4 for storage and MMS
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• H.32X for wireline and wireless conversational services

• MPEG-2 systems for broadcasting services, etc.

The output of the encoding process is VCL data (a sequence of bits representing the 

coded video data) which are mapped to NAL units prior to transmission or storage. 

Each NAL unit contains a Raw Byte Sequence Payload (RBSP), a set of data 

corresponding to coded video data or header information. A coded video sequence is 

represented by a sequence of NAL units that can be transmitted over a packet-based 

network or a bitstream transmission link or stored in a file as shown in Figure 3.2. 

  ...                                                                                  ...

Figure 3.2: Sequence of NAL Units

The NAL unit structure definition specifies a generic format for use in both packet-

oriented and bitstream-oriented transport systems, and a series of NAL units 

generated by an encoder is referred to as a NAL unit stream.

3.1.1 VCL and non-VCL NAL Units

NAL units can be VCL or non-VCL NAL units. The VCL NAL units contain the 

data that represents the values of the samples in the video pictures, and the non-VCL 

NAL units contain any associated additional information such as parameter sets 

(important header data that can apply to a large number of VCL NAL units) and 

supplemental enhancement information (timing information and other supplemental 

data that may enhance usability of the decoded video signal but are not necessary for 

decoding the values of the samples in the video pictures).

3.1.2 Parameter Sets

A parameter set is supposed to contain information that is expected to rarely change 

and offers the decoding of a large number of VCL NAL units. There are two types of 

parameter sets; sequence parameter sets, which apply to a series of consecutive 

coded video pictures called a coded video sequence, and picture parameter sets, 

NAL
Header RBSP NAL

Header RBSP NAL
Header RBSP
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which apply to the decoding of one or more individual pictures within a coded video 

sequence.

The sequence and picture parameter set mechanism decouples the transmission of 

infrequently changing information from the transmission of coded representations of 

the values of the samples in the video pictures. Each VCL NAL unit contains an 

identifier that refers to the content of the relevant picture parameter set, and each 

picture parameter set contains an identifier that refers to the content of the relevant 

sequence parameter set. In this manner, a small amount of data (the identifier) can be 

used to refer to a larger amount of information (the parameter set) without repeating 

that information within each VCL NAL unit.

3.1.3 NAL Units in Transport Systems

Some systems (e.g., H.320 and MPEG-2 | H.222.0 systems) require delivery of the 

entire or partial NAL unit stream as an ordered stream of bytes or bits within which 

the locations of NAL unit boundaries need to be identifiable from patterns within the 

coded data itself. For use in such systems, the H.264/AVC specification defines a 

byte stream format. In the byte stream format, each NAL unit is prefixed by a 

specific pattern of three bytes called a start code prefix. The boundaries of the NAL 

unit can then be identified by searching the coded data for the unique start code 

prefix pattern. The use of emulation prevention bytes guarantees that start code 

prefixes are unique identifiers of the start of a new NAL unit.

In other systems (e.g., internet protocol / RTP systems), the coded data is carried in 

packets that are framed by the system transport protocol, and identification of the 

boundaries of NAL units within the packets can be established without use of start 

code prefix patterns. In such systems, the inclusion of start code prefixes in the data 

would be a waste of data carrying capacity, so instead the NAL units can be carried 

in data packets without start code prefixes.
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3.1.4 Access Units

A set of NAL units in a specified form is referred to as an access unit. The decoding 

of each access unit results in one decoded picture.

Each access unit contains a set of VCL NAL units that together compose a primary 

coded picture. It may also be prefixed with an access unit delimiter to aid in locating 

the start of the access unit. Some supplemental enhancement information (SEI) 

containing data such as picture timing information may also precede the primary 

coded picture.

The primary coded picture consists of a set of VCL NAL units consisting of slices or 

slice data partitions that represent the samples of the video picture.

3.1.5 Coded Video Sequences

A coded video sequence consists of a series of access units that are sequential in the 

NAL unit stream and use only one sequence parameter set. Each coded video 

sequence can be decoded independently of any other coded video sequence. 

At the beginning of a coded video sequence is an instantaneous decoding refresh 

(IDR) access unit. An IDR access unit contains an intra picture – a coded picture that 

can be decoded without decoding any previous pictures in the NAL unit stream, and 

the presence of an IDR access unit indicates that no subsequent picture in the stream 

will require reference to pictures prior to the intra picture it contains in order to be 

decoded. A NAL unit stream may contain one or more coded video sequences.

3.2 Video Coding Layer

As in all prior video coding standards, the VCL design follows the so-called block 

based hybrid video coding approach (as depicted in Figure 3.3) , in which each coded 

picture is represented in block shaped units of associated luma and chroma samples 

called macroblocks. The basic source-coding algorithm is a hybrid of inter-picture 

prediction to exploit temporal statistical dependencies and transform coding of the 
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prediction residual to exploit spatial statistical dependencies. The encoding process 

also includes decoding process (except for entropy decoding) since the motion 

estimation has to use the same reconstructed reference picture with the decoder.

Figure 3.3: Basic coding structure of H.264/AVC for a macroblock

A coded video sequence in H.264/AVC consists of a sequence of coded pictures. A 

coded picture in can represent either an entire frame or a single field, as was also the 

case for MPEG-2 video.

3.2.1 Macroblocks, Slices, and Slice Groups

A picture is partitioned into fixed-size macroblocks that each covers a rectangular 

picture area of 16x16 samples of the luma component and 8x8 samples of each of the 

two chroma components. This partitioning into macroblocks has been adopted into 

all previous ITU-T and ISO/IEC video coding standards since H.261. Macroblocks 

are the basic building blocks of the standard for which the decoding process is 

specified.

Slices are a sequence of macroblocks which are processed in the order of a raster 

scan. A picture maybe split into one or several slices as shown in Figure 3.4. 
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Figure 3.4: Subdivision of a picture into slices

A picture is therefore a collection of one or more slices in H.264/AVC. Slices are 

self-contained in the sense that given the active sequence and picture parameter sets, 

their syntax elements can be parsed from the bitstream and the values of the samples 

in the area of the picture that the slice represents can be correctly decoded without 

use of data from other slices provided that utilized reference pictures are identical at 

encoder and decoder. Some information from other slices maybe needed to apply the 

deblocking filter across slice boundaries.

Each slice can be coded using different coding types as follows:

• I slice: A slice in which all macroblocks of the slice are coded using intra 

prediction.

• P slice: In addition to the coding types of I slices, some macroblocks of the P slice 

can also be coded using inter prediction with at most one motion compensated 

prediction signal per prediction block.

• B slice: In addition to the coding types available in a P slice, some macroblocks of 

the B slice can also be coded using inter prediction with two motion compensated 

prediction signals per prediction block.

The above three coding types are very similar to those in previous video coding 

standards with the exception of the use of reference pictures as described below. The 

following two coding types for slices are new:
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• SP slice: A so-called switching P slice that is coded such that efficient switching 

between different precoded pictures becomes possible.

• SI slice: A so-called switching I slice that allows an exact match of a macroblock in 

an SP slice for random access and error recovery purposes. Encoding and decoding 

process for macroblocks.

3.2.2 Encoding and Decoding Process for Macroblocks

All luma and chroma samples of a macroblock are either spatially or temporally 

predicted, and the resulting prediction residual is encoded using transform coding. 

For transform coding purposes, each color component of the prediction residual 

signal is subdivided into smaller 4x4 blocks. Each block is transformed using an 

integer transform, and the transform coefficients are quantized and encoded using 

entropy coding methods.

Figure 2.5 shows block diagram of the video coding layer for a macroblock. The 

input video signal is split into macroblocks, the association of macroblocks to slice 

groups and slices is selected, and then each macroblock of each slice is processed as 

shown.

Every coded macroblock in an H.264 slice is predicted from previously-encoded 

data. This prediction is subtracted from the current macroblock and the result of the 

subtraction (residual) is compressed and transmitted to the decoder, together with 

information required for the decoder to repeat the prediction process (motion 

vector(s), prediction mode, etc.).

The decoder creates an identical prediction and adds this to the decoded residual 

block. The encoder bases its prediction on encoded and decoded image samples 

(rather than on original video frame samples) in order to ensure that the encoder and 

decoder predictions are identical.
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3.2.2.1 Intra Prediction Process

Intra prediction is derived from decoded samples of the same decoded slice in 

encoder and this process extracts the spatial redundancy between adjacent 

macroblocks in a slice. The intra predicted pictures usually give better quality and 

lower distortion than inter predicted picture, but intra prediction requires much more 

bits to represent the samples. Because of the higher bit rate requirement of an intra 

predicted slice, the number of the intra predicted slices is quite less than the inter 

slices for reduction of bits in stream.

H.264/AVC standard supports intra-prediction for blocks of 4x4 to help achieve

better compression for high motion areas. There are nine prediction modes in 

Intra_4x4 mode as shown in Figure 3.5. This mode is supported only for luma 

blocks.

Figure 3.5: Intra_4x4 Prediction Modes

H.264/AVC also has a 16 x 16 mode, which is aimed to provide better compression 

for flat regions of a picture at lower computational costs. This mode is also helpful to 

avoid the irritating gradients that show up in flat regions of the picture quantized 

with high quantization parameters. Intra_16x16 mode supports 4 direction modes as 

shown in Figure 3.6. This mode is supported for 16x16 luminance blocks and 8x8 

chrominance blocks.
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Figure 3.6: Intra_16x16 Prediction Modes

A further intra coding mode, I_PCM, enables encoder to transmit the values of the 

image samples directly (without prediction or transformation). The I_PCM mode 

allows the encoder to precisely represent the values of the samples. It enables placing 

a hard limit on the number of bits a decoder must handle for a macroblock without 

harm to coding efficiency.

3.2.2.2 Inter Prediction Process

In video coding, it is well known that temporal correlations of macroblocks are 

stronger than spatial correlations of macroblocks. Inter prediction is carried out on 

the decoded samples of reference pictures other than the current decoded picture, and 

this process eliminates the temporal redundancy between successive pictures for the 

compression.

Inter prediction in H.264/AVC supports variable block sizes from 16x16 to 4x4 as 

depicted in Figure 3.7 and in Figure 3.18.

Figure 3.7: Macroblock Partitions: 16x16, 16x8, 8x16, and 8x8
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Figure 3.8: Sub-macroblock Partitions: 8x8, 8x4, 4x8, and 4x4

The luminance component of each macroblock (16×16 samples) may be split up in 

four ways (Figure 3.7) and motion compensated either as one 16×16 macroblock 

partition, two 16×8 partitions, two 8×16 partitions or four 8×8 partitions. If the 8×8 

mode is chosen, each of the four 8×8 sub-macroblocks within the macroblock may 

be split in a further 4 ways (Figure 3.8), either as one 8 × 8 sub-macroblock partition, 

two 8 × 4 sub-macroblock partitions, two 4×8 sub-macroblock partitions or four 4×4 

sub-macroblock partitions. 

These partitions and sub-macroblock give rise to a large number of possible 

combinations within each macroblock. This method of partitioning macroblocks into 

motion compensated sub-blocks of varying size is known as tree structured motion 

compensation.

In video coding standards, the macroblock motion is found out in motion estimation 

block using reference picture(s). Motion estimation block can be summarized as 

finding the minimal difference for original block and reference block (from reference 

picture). As the process has computational overhead, there are several methods and 

algorithms for approximated, restricted and fast motion estimation such as using 

search windows, stepped searches etc.

A separate motion vector is required for each partition or sub-macroblock. Each 

motion vector must be coded and transmitted and the choice of partitions must be 

encoded in the compressed bitstream. Choosing a large partition size (16×16, 16×8, 

8×16) means that a small number of bits are required to signal the choice of motion 

vectors and the type of partition but the motion compensated residual may contain a 

significant amount of energy in frame areas with high detail. Choosing a small 
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partition size (8×4, 4×4, etc.) may give a lower-energy residual after motion 

compensation but requires a larger number of bits to signal the motion vectors and 

choice of partitions. The choice of partition size therefore has a significant impact on 

compression performance. In general, a large partition size is appropriate for 

homogeneous areas of the frame and a small partition size may be beneficial for 

detailed areas.

Each chroma component in a macroblock (Cb and Cr) has half the horizontal and 

vertical resolution of the luma component. Each chroma block is partitioned in the 

same way as the luma component, except that the partition sizes have exactly half the 

horizontal and vertical resolution (an 8×16 partition in luma corresponds to a 4×8 

partition in chroma). The horizontal and vertical components of each motion vector 

(one per partition) are halved when applied to the chroma blocks.

The concept of B slices is generalized in H.264 when compared with prior video 

coding standards. In B slices, to build the prediction signal, some macroblocks or 

blocks may use a weighted average of two distinct motion-compensated prediction 

values. B slices employ two distinct lists of reference pictures, which are referred to 

as the first (list 0) and the second (list 1) reference picture lists. Four different types 

of inter prediction are supported: list 0, list 1, bi-predictive, and direct prediction. For 

the bi-predictive mode, a weighted average of motion-compensated list 0 and list 1 

prediction signals is used for the prediction signal. The direct prediction mode is 

inferred from previously transmitted syntax elements and can be any of the other 

types of modes. For each 16x16, 16x8, 8x16, and 8x8 partition, list 0, list 1 or bi-

predictive methods can be chosen separately. An 8x8 partition of a B macroblock can 

also be coded in direct mode. Similar to P-Skip mode, if no prediction error signal is 

transmitted for a direct macroblock mode, it is also referred to as B-Skip mode. 

3.2.2.3 Transform & Quantization

In H.264 similar to the other standards, a transformation and quantization is applied 

on the prediction residuals. However, H.264/AVC employs a 4x4 integer transform 

as opposed to the 8x8 floating point DCT transform used in the other standard 

codecs. The transform is an approximation of the 4x4 DCT and hence it has similar 
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coding gain to the DCT transform. Since the integer transform has an exact inverse 

operation, there is no mismatch between the encoder and the decoder which is a 

problem in all DCT based codecs.

Figure 3.9: Integer 4x4 Forward Transformation Matrix 

After the transformation using the matrix of Figure 3.9, each coefficient is scaled 

with a specified factor to make the final transform coefficient. The scaled 

coefficients are then quantized with a quantization step size determined by a given 

Quantization Parameter (QP). In H.264/AVC the values of the quantizer step sizes 

have been defined such that the scaling and quantizing stages are mixed to be 

performed by simple integer operations in both encoder and decoder [2]. In 

particular, the inverse operations of scaling, quantizing and transforming are directly 

described in the standard using pure integer operations [1].

3.2.2.4 Entropy Coding

Before transmission, generated data of all types are entropy coded. H.264 supports 

two different methods of entropy coding namely Context Adaptive Variable Length 

Coding (CAVLC) and Context Adaptive Binary Arithmetic Coding (CABAC). As 

well as a conceptual difference between the two methods, CABAC is more efficient 

than CAVLC which itself is superior to the conventional VLC (Huffman) used in the 

other standard video coding standards.

In CAVLC mode, the residual data is coded using CAVLC but other data are coded 

using simple Exp-Golomb codes. These data are first appropriately mapped to the 

Exp-Golomb codes depending on the data type (e.g. MB headers, MVs, etc.), and 

then the corresponding code words are transmitted.
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The zigzag scanned quantized coefficients of a residual block are coded using 

Context Adapting VLC tables. The already coded information of the neighboring 

blocks (i.e. upper and left blocks) and the coding status of the current block 

determine the context. Optimized VLC tables are specifically provided for each 

context to efficiently code the coefficients in different statistical conditions.

In CABAC mode, the generated data including headers and residual data are coded 

using a binary arithmetic coding engine. The compression improvement of CABAC 

is the consequence of non-integer length symbol assignment, adaptive probability 

estimation and improved context modeling scheme. 

Figure 3.10: A Simplified Block Diagram of CABAC Coder

A block diagram of CABAC coding process is depicted in Figure 3.10. In order to 

code a syntax element, it is first mapped to a binary sequence called bin string. In the 

standard, proper binarization mapping schemes are provided for different types of 

data. For each element of the bin string (i.e. bin) a context index is defined based on 

the neighboring information and the coder status. There are 399 different contexts in 

the standard for various types of data, and the context modeling scheme (i.e. 

derivation of the context index) for each data type is clearly specified. The binary 

arithmetic coder engine then codes the bins using associated probability estimation 

tables addressed by the context index and generates the output stream. Subsequently, 

the probability tables are updated based on the coded bins for the future use.

3.2.2.5 Deblocking Filter

A deblocking filter is applied to each decoded macroblock to reduce blocking 

distortion. The deblocking filter is applied after the inverse transform in the encoder 

(before reconstructing and storing the macroblock for future predictions) and in the 
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decoder (before reconstructing and displaying the macroblock). The filter smoothes

block edges, improving the appearance of decoded frames. The filtered image is used 

for motion-compensated prediction of future frames and this can improve 

compression performance because the filtered image is often a more faithful 

reproduction of the original frame than a blocky, unfiltered image.

In summary, a hybrid video encoding algorithm is used in H.264/AVC standard and 

typically proceeds as follows: Each picture is split into blocks. The first picture of a 

video sequence (or for a "clean" random access point into a video sequence) is 

typically coded in intra mode. For all remaining pictures of a sequence or between 

random access points, typically inter picture coding modes are used for most blocks. 

The encoding process for inter prediction consists of choosing motion data 

comprising the selected reference picture and motion vector to be applied for all 

samples of each block. The motion and mode decision data, which are transmitted as 

side information, are used by encoder and decoder to generate identical inter 

prediction signals using motion compensation [12]. 

The residual of the intra or inter prediction, which is the difference between the 

original block and its prediction, is transformed by a frequency transform. The 

transform coefficients are then scaled, quantized, entropy coded, and transmitted 

together with the prediction side information [12].

The encoder duplicates the decoder processing so that both will generate identical 

predictions for subsequent data. Therefore, the quantized transform coefficients are 

constructed by inverse scaling and are then inverse-transformed to duplicate the 

decoded prediction residual [12].

The residual is then added to the prediction, and the result of that addition may then 

be fed into a deblocking filter to smooth out block-edge discontinuities induced by 

the block-wise processing. The final picture (which is also displayed by the decoder) 

is then stored for the prediction of subsequent encoded pictures [12].
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4. GOP BASED H.264/AVC VIDEO EDITING

4.1 Compressed Domain Processing

Compressed-domain processing performs a user-defined operation on a compressed 

video stream without going through a complete decompress/process/re-compress 

cycle; the processed result is a new compressed video stream. In other words, the 

goal of compressed-domain processing (CDP) algorithms is to efficiently process 

one standard-compliant compressed video stream into another standard-compliant 

compressed video stream with a different set of properties. In this thesis, cutting a 

portion from a H.264/AVC coded stream and splicing of two H.264/AVC streams 

into one stream are discussed. 

A conventional solution to the problem of processing compressed video streams, 

shown in the top path of Figure 4.1, involves the following steps: first, the input 

compressed video stream is completely decompressed into its pixel domain 

representation; this pixel-domain video is then processed with the appropriate 

operation; and finally the processed video is recompressed into a new output 

compressed video stream. Such solutions are computationally expensive and have 

large memory requirements. In addition, the quality of the coded video can 

deteriorate with each re-coding cycle.

Figure 4.1: Pixel Domain Processing & Compressed Domain Processing
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Compressed domain processing methods can lead to a more efficient solution by 

only partially decompressing the bitstream and performing processing directly on the 

compressed-domain data. CDP algorithms can have benefits like savings for 

memory, processing power and delay (due to decoding and then re-encoding the 

edited video back to the compressed domain), and the preservation of picture quality 

by avoiding lossy decode/re-encode chain.

4.2 H.264/AVC GOP Structure

In MPEG encoding, GOP specifies the order in which intra-frames and inter frames 

are arranged. The GOP is a group of successive pictures within an MPEG-coded 

video stream. Each MPEG-coded video stream consists of successive GOPs. From 

the MPEG pictures contained in it the visible frames are generated.

Each MPEG sequence has a sequence header at its leading end and a number of 

GOPs following the sequence header. The sequence header carries various 

parameters necessary to expand the sequence. Each GOP includes a GOP header and 

a plurality pictures following the GOP header, such as I-picture (intra frame), B-

picture (bidirectional interpolated frame) and P-picture (predictive frame), which are 

produced in a pattern I,B,B,P,B,B, repeatedly. 

The I-picture includes one complete data for one frame and can reproduce one frame 

picture by itself using parameters from GOP header and sequence header. The B-

picture includes data for one frame, but can not reproduce one frame picture by itself. 

Similarly, the P-picture includes data for one frame, but can not reproduce one frame 

picture by itself.

GOP always begins with an I-frame. Afterwards several P-frames follow, in each 

case with some frames distance. In the remaining gaps are B-frames. With the next I-

frame a new GOP begins.

The GOP structure is often referred by two numbers, for example M=3, N=12. The 

first one tells the distance between two anchor frames (I or P). The second one tells 

the distance between two full images (I-frames), it is the GOP length. For the above 
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example, the GOP structure is IBBPBBPBBPBB. Instead of the M parameter one 

can use the maximal count of B-frames between two consecutive anchor frames.

The more I-frames the MPEG stream has, the more it is editable. However, having 

more I-frames increases the stream size. In order to save bandwidth and disk space, 

videos prepared for internet broadcast often have only one I-frame per GOP.

H.264/AVC standard itself does not actually include a definition of a concept called 

GOP. GOP term is used to identify a group of pictures with starts with an I frame. 

Every I frame is a new GOP starting point.

4.2.1 Byte Stream NAL Unit Syntax and Parsing

Since H.264/AVC standard does not define a GOP structure, there is no identical 

header for GOP (which MPEG-2 standard has). In order to catch the start of a new 

GOP, one has to search for a new I frame. This is done by decoding the bitstream 

headers and look for a header of a NAL unit that contains an I frame. Table 4.1 

shows the syntax of byte stream NAL units.

Table 4.1: Byte Stream NAL Unit Syntax

This table specifies how a NAL unit is parsed from the bitstream. Categories 

(labelled in the table as C) specify the partitioning of slice data into at most three 

slice data partitions. Slice data partition A contains all syntax elements of category 2. 
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Slice data partition B contains all syntax elements of category 3. Slice data partition 

C contains all syntax elements of category 4 [1].

The following descriptors specify the parsing process of each syntax element [1]:

– ae(v): context-adaptive arithmetic entropy-coded syntax element.

– b(8): byte having any pattern of bit string (8 bits). 

– ce(v): context-adaptive variable-length entropy-coded syntax element with the left 

bit first.

– f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit 

first. 

– i(n): signed integer using n bits. When n is "v" in the syntax table, the number of 

bits varies in a manner dependent on the value of other syntax elements. 

– me(v): mapped Exp-Golomb-coded syntax element with the left bit first.

– se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. 

– te(v): truncated Exp-Golomb-coded syntax element with left bit first. 

– u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of 

bits varies in a manner dependent on the value of other syntax elements.

– ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. 

The parsing process for these descriptors are specified in H.264/AVC standard [1].

Input to parsing of byte stream NAL units process consists of an ordered stream of 

bytes consisting of a sequence of byte stream NAL unit syntax structures. Output of 

parsing process consists of a sequence of NAL unit syntax structures.
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At the beginning of the parsing process, the decoder initializes its current position in 

the byte stream to the beginning of the byte stream. It then extracts and discards each 

leading_zero_8bits syntax element (if present), moving the current position in the 

byte stream forward one byte at a time, until the current position in the byte stream is 

such that the next four bytes in the bitstream form the four-byte sequence 

0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and 

decode each NAL unit syntax structure in the byte stream until the end of the byte 

stream has been encountered (as determined by unspecified means) and the last NAL 

unit in the byte stream has been decoded [1]:

1. When the next four bytes in the bitstream form the four-byte sequence 

0x00000001, the next byte in the byte stream (which is a zero_byte syntax element) 

is extracted and discarded and the current position in the byte stream is set equal to 

the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a 

start_code_prefix_one_3bytes) is extracted and discarded and the current position in 

the byte stream is set equal to the position of the byte following this threebyte 

sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at 

the current position in the byte stream up to and including the last byte that precedes 

the location of any of the following conditions:

a. A subsequent byte-aligned three-byte sequence equal to 0x000000, or

b. A subsequent byte-aligned three-byte sequence equal to 0x000001, or

c. The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current 

position in the byte stream is advanced by NumBytesInNALunit bytes. This 
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sequence of bytes is nal_unit( NumBytesInNALunit ) and is decoded using the NAL 

unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as 

determined by unspecified means) and the next bytes in the byte stream do not start 

with a three-byte sequence equal to 0x000001 and the next bytes in the byte stream 

do not start with a four byte sequence equal to 0x00000001, the decoder extracts and 

discards each trailing_zero_8bits syntax element, moving the current position in the 

byte stream forward one byte at a time, until the current position in the byte stream is 

such that the next bytes in the byte stream form the four-byte sequence 0x00000001 

or the end of the byte stream has been encountered (as determined by unspecified 

means). 

4.2.2 NAL Unit Syntax and Semantics

After parsing the NAL header, NAL unit is obtained. In Table 4.2, NAL unit syntax 

is given.

Table 4.2: NAL Unit Syntax

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is 

required for decoding of the NAL unit.
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“forbidden_zero_bit” shall be equal to 0. 

“nal_ref_idc” not equal to zero specifies that the content of the NAL unit contains a 

SPS or a PPS or a slice of a reference picture or a slice data partition of a reference 

picture. For a new GOP start point, this variable shall not be zero.

“nal_unit_type” specifies the type of RBSP data structure contained in the NAL unit 

as specified in Table 4.3. VCL NAL units are specified as having “nal_unit_type”

equal to 1 to 5. Remaining NAL units are called non-VCL NAL units.

Table 4.3: NAL Unit Type Codes
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4.3 GOP Based Editing

In this thesis, only closed GOPs are studied. In these GOPs, all the frames in the 

current GOP can be decoded even if the previous GOPs do not exist. That means the 

frames inside the GOP do not referenced from the frames that belong to previous 

GOPs. Since GOPs are independent, splicing or cutting operations is become just a 

copy and a paste operation of GOPs in compressed domain.

As stated in [6], some terminology is used in compressed domain video editing. 

“Starting cut point” is the point where the extraction operation is going to start and 

“ending cut point” is the point where extraction operation is going to end. The last

frame before the starting cut point is called “exit frame” and the first frame after the 

ending cut point is called “entry frame”. Correspondingly, the GOPs containing the 

exit frame and the entry frame are called exit GOP and entry GOP respectively. After 

the editing operation frames between exit frame and entry frame are extracted from 

the original sequence and output sequence is formed.

By means of GOP based editing, it is meant to say there is no frame based operations 

on the video sequences. Every processing remains at GOP level. Even if the starting 

and/or ending cut points are selected inside the GOPs, cutting and splicing operations 

are done on GOPs and resulting output stream may include frames that are between 

start cut point and ending cut point (which they are not intended to be included in 

output stream). An example is shown in Figure 4.2.
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Figure 4.2: An Example of GOP-Based Editing (Cutting)
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After the cutting operation of the above example, GOP 2 is discarded and the output 

video sequence consists of GOP 0, GOP 1, and GOP 3. This can be seen on Figure 

4.3.

Figure 4.3: Output Video Sequence after Cutting Operation

If the starting cut point and ending cut point is selected at GOP boundaries, after 

GOP based editing, every frame is contained in the output stream. In this case, exit 

frame is an I frame (and a starting point of a new GOP), and entry frame is the last 

frame of a GOP (can be a P or a B frame). This case is illustrated in Figure 4.4.
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Figure 4.4: An Example of Editing at GOP Boundaries

In the above example starting cut point is just after the exit frame, and the ending cut 

point is just before the entry frame. After the cutting operation GOP 1 and GOP 2 are

discarded and the output video sequence consists of GOP 0, and GOP 3. Accurate 

editing is done in this example and output video sequence is illustrated in Figure 4.5.
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Figure 4.5: Output Video Sequence after Cutting Operation
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Simulations are done on H.264/AVC reference software, which is also called JM [5].

This software includes encoder/decoder pair. Version 8.0 is used in simulations since 

newer versions come with more complexity.

Input streams that are used in GOP based editing is generated from the encoder 

which is included in JM Software. As GOP length, period of I frames is selected 12. 

Than a control mechanism is setup and included in decoder code to simulate GOP 

based editing in compressed domain. The steps during the GOP based cutting 

operation are: 

a) Decode the input bitstream until a new NAL unit header (0x000001 or 

0x00000001) is found.

b) Decode “nal_unit_type” (5 bits) and determine the type of the NAL unit. If 

the NAL unit is an SPS or a PPS than copy this NAL unit to the output 

stream.

c) If the NAL unit is an I frame, this is a new GOP starting point. Copy this 

NAL unit and the upcoming NAL units until the GOP that includes exit 

frame.

d) After exit frame is found, bypass the next GOPs until entry frame is found.

e) After the GOP that includes entry frame is found, concatenate this GOP and 

the residual GOPs to the output stream.
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5. FRAME ACCURATE H.264/AVC VIDEO EDITING

5.1 Frame Accurate Cutting & Splicing

In frame accurate editing, as opposed to GOP based editing, it is desired that every

selected frame is contained in the output stream after the editing operation. If the 

starting cut point and ending cut point is selected at GOP boundaries, the editing 

process becomes GOP based editing. But if the starting cut point or ending cut point 

is selected inside the GOP, additional processing is required to discard every frame 

between starting cut point and ending cut point.

Figure 5.1 shows an example of frame accurate cutting operation. Here, the numbers 

under the frames shows the frame numbers in display order. Exit frame is fourth 

frame and entry frame is nineteenth frame in this case. Exit GOP is first GOP and 

entry GOP is fourth GOP respectively.

I

GOP 0

43210

B P B P I

98765

B P B P I

10

B P B P I B P B P

GOP 1 GOP 2 GOP 3

11 12 13 14 15 16 17 19

I B P B P

20 21 22 23 24

GOP 4

Exit 
Frame

Entry 
Frame

18

Figure 5.1: Frame Accurate Cutting Operation

After cutting operation, output video sequence consists of frames 0-3 and 18-24 (3 

and 18 included). Clearly some transformations and additional processing are 

required around exit frame and entry frame regions. These are going to be explained 

in next pages. Output video sequence of the above example is shown in Figure 5.2.
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Figure 5.2: Output of Frame Accurate Cutting Operation

As explained later, “entry GOP processing” and “exit GOP processing” are the basis 

for these two operations (cutting, and splicing). Only difference between them is; 

splicing has two exit and entry frames (and two entry/exit GOP processing 

accordingly). Frame accurate splicing operation of two video segments from two 

different video sequences is shown in Figure 5. In this example, video frames 

between 3 and 10 of video sequence 2 are concatenated after video frames between 6 

and 17 from video sequence 1. Output video sequence is shown in Figure 5.4.

Figure 5.3: Frame Accurate Splicing Operation
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Figure 5.4: Output of Frame Accurate Splicing Operation

5.2 Conversion Procedures

As the nature of the video coding standards, there are temporal dependencies 

between frames. When we cut a portion of video sequence from a video stream, it is 

likely that the reference frames of some inter-coded frames (P, B) in the output 

sequence may not be included. So, there must be frame conversion algorithms to 

solve this problem. In this work, two procedures are going to be explained: 

i) Exit GOP Processing

ii) Entry GOP Processing

These conversion procedures determine necessary frame conversions that can be 

possible decoding, re-encoding, and other processing. These two procedures work on 

the related GOPs (entry and exit GOPs) and resultant video sequence is frame-

accurate, and must be conformable to H.264/AVC standard.

These conversion procedures are independent from each other and handled 

separately. For cutting operation, as seen on Figure 5.1, firstly exit GOP processing 

is applied to exit GOP and then entry GOP processing is applied to entry GOP. For 

splicing operation, as seen on Figure 5.3, the processing order is reversed. First entry 

GOP processing is applied to entry GOP in first input video sequence and then exit 

GOP processing is applied to exit GOP in first input video sequence. Same 

operations are done for the second input video sequence and the extracted GOPs are 

combined together.



40

Before presenting these conversion procedures, the problematic case of existence of 

B frames should be presented: The order in which decoded pictures are displayed is 

called the display order. The order in which the pictures are transmitted and decoded 

is called the coded order. The coded order is the same as the display order if there are 

no B-frames in the sequence. However, if B-frames are present, the coded order may 

not be the same as the display order because B-frames typically use temporally future 

reference frames as well as temporally past reference frames, and a temporally future 

reference frame for a B-frame precedes the B-frame in coded order. Difference 

between display order and the coded order can be clearly seen on Figure 5.5 and 

Figure 5.6.

0 1 2 3 4 5 6 7 8 11 129 10

Figure 5.5: Display Order

0 1 23 4 56 7 89 10 1112

Figure 5.6: Coded Order

If the video sequence is composed of only I and P pictures, the processing is 

relatively simple since there is no backward processing. However if the sequence has 

B frames (and any of the cut points is selected adjacent to B frames), then the 

conversion procedures embody re-encoding and reordering of these coded pictures. 

Because after cutting or splicing operation, backward or forward reference of B 

frames may be discarded.



41

5.2.1 Exit GOP Processing

This processing works around the exit frame. Exit GOP processing may include 

decoding, and re-encoding of some frames around the exit frame. There are three 

possible cases for this process. These cases completely depend on the type of the exit 

frame. In all of the cases, it is assumed that the input video sequence consists of I, P, 

and B frames.

5.2.1.1 I Frame Processing

If the exit frame is an I frame, this means this frame is the first frame of the GOP.

Also this frame does not need any of the following frames to be decoded. So,

terminating the exit GOP after getting the I frame would not be problematic. This is 

illustrated in Figure 5.7.

Exit GOP

Exit 
Frame

Figure 5.7: Exit GOP (exit frame is an I frame)

For I frame case process works as follows: Until the exit frame is met, decode the 

NAL headers and copy these NAL units to the output stream. When the exit frame is 

met, copy also this NAL unit to the output stream. Exit processing is completed.

Figure 5.8 shows the output GOP that is going to be added to the output stream.

Exit GOP

Figure 5.8: Output GOP (exit frame is an I frame)
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5.2.1.2 P Frame Processing

If the exit frame is a P frame, procedure is almost like the above situation. The only 

difference is continuing grabbing operation of frames after the exit frame is met. This 

grabbing lasts until the frames that come after exit frame in coded order but come 

before in display order, are all read from the input stream and copied to the output 

stream.

This case is shown in Figure 5.9. Frames are arranged in display order and subscript 

numbers shows the coded order. P1 frame is read from the input stream before frames 

B2 and B3. After copying NAL unit that includes P1 frame in it, processing must 

continue and copying all of the frames that resides between I0 and P1 in display order 

must be copied to the output stream. Output GOP is shown in Figure 5.10.

0 12 3

Exit GOP

Exit 
Frame

45 6

Figure 5.9: Exit GOP (exit frame is a P frame)

Exit GOP

Figure 5.10: Output GOP (exit frame is a P frame)
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5.2.1.3 B Frame Processing

If the exit frame is a B frame, additional effort is needed because backward reference 

frame of exit frame (and several possible frames) is going to be discarded in the 

output stream. 

0 12 3

Exit GOP

Exit 
Frame

45 6

Figure 5.11: Exit GOP (exit frame is a B frame)

As seen from the figure, when exit frame is B6, backward reference frame of B5 and 

B6 (P4) is going to be discarded in the output stream. Since only P1 can be a reference 

to B5 and B6, each of these B frames must be converted to a P frame (that uses only 

forward prediction). This operation includes decoding all of the B frames and then 

re-encoding these frames in frame type of P.

The steps during this operation are: 

a) Copy NAL units that include frames from starting of the exit GOP to the last 

P frame that comes before the exit frame. In above example these are I0, P1, 

B2, and B3.

b) To use as a reference frame, decode the previous reference frame (I or P 

frame). In above example this frame is P1.

c) Decode all of the B frames starting from the previous forward reference (I or 

P frame) to the exit frame. In above example these frames are B5 and B6.
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d) Encode these frames (P1, B5, and B6), with the supplemental information 

gathered while decoding operation.

e) After encoding, discard first frame (which is re-encoding of P1) and copy 

remaining NAL units that include P coded frames (which is re-encoding of B5

and B6) to the output stream.

This operation is simulated in JM software by using both the decoder and the 

encoder. First, related frames are fully decoded (not just the headers). Then the raw 

image data sent to the encoder with the necessary ancillary data that is acquired 

while decoding. These are; profile and level of sequence, frame width & height, QP 

(quantization parameter) that determines the visual quality of the frames, number of 

reference frames (generally one). Alongside with these parameters, SPS and PPS of 

the input video sequence are sent to the encoder to prevent any incompatibility. All 

of these parameters are held in a structure and sent to encoder with the raw image 

data. Figure 5.11 illustrates this operation.

Figure 5.12: Frame Conversion of B Frames

After encoding operation we have a stream that is composed of an I frame (re-

encoding of P1) and following P frames. The NAL units that contain P frames (P1

and P2) are copied to output stream. Resulting output GOP is shown in Figure 5.13.

Figure 5.13: Output GOP (exit frame is a B frame)
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There is a problem must be handled. When looked at the output exit GOP, it is seen 

that P1’ and P2’ are referencing from P1. But the actual reference of P1’ and P2’ is I0, 

decoded and re-encoded version of P1. So, there will be a drift error that while 

decoding the resulting output stream, decoded frames of P1’ and P2’ are different 

from the frames that were get at encoder side. To minimize this error, while coding 

the P1, the encoder parameters are set to give the high picture quality. This error 

drifts until to the end of the exit GOP, in this example for two frames. And after 

doing the simulations, it is seen that there is minimum visual difference between 

original input frames and the converted frames (B5, B6 and P1’ and P2’).

5.2.2 Entry GOP Processing

This processing works around the entry frame. Entry GOP processing includes

decoding, and re-encoding of frames after the exit frame.

Figure 5.14: Entry GOP Processing

Since frames before entry frame are not supposed to be at the output stream, there are

no forward reference frames for the frames after the entry frame. This can be seen on 

Figure 5.14. Any conversion of the entry frame will tend to conversion of the other 

frame until the end of the entry GOP. So, the procedure in entry GOP processing is:

a) Decode all of the frames starting from entry frame to the end of the entry 

GOP. In above example these frames are P1, P4, B5, and B6.
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b) Encode these frames (P1, P4, B5, and B6), with the supplemental information 

gathered while decoding operation.

c) After encoding, copy the NAL units that include coded frames (which is re-

encoding of P1, P4, B5, and B6) to the output stream.

Output of the above example is shown in Figure 5.15.

Figure 5.15: Output GOP (Entry GOP Processing)

5.3 Rate Control

Block-based hybrid video encoding schemes such as the MPEG-2 and H.264 are 

lossy processes. They achieve compression not only by removing truly redundant 

information, but also by making small quality compromises that perceptible. In 

particular, the quantization parameter QP regulates how much spatial detail is saved. 

When QP is very small, almost all the detail is retained. As QP is increased, bit-rate 

decreases which results some increase in distortion and some loss of quality.

There are two types of coding: CBR (Constant Bit Rate), and VBR (Variable Bit 

Rate).  Because video compression is done by manipulating motion frames, if a video 

picture does not change dynamically, the compression rate can be much higher since 

there are few radical changes in the picture.  VBR provides for a smaller file size by 

being able to vary the compression ratio as the content of video sequence changes.  

CBR keeps the transfer rate constant regardless of any changes in the video picture.
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When encoding CBR sequences, the encoder usually enforces some rate control 

mechanisms to ensure that the generated bitstream will not cause buffer violations at 

the decoders.

In decoder side, video buffer is initially empty, then coded data bits are placed into 

the buffer at a constant bitrate from the input channels. After an initial delay, the

decoder will accumulate enough bits (about 80% full) in the video buffer and start to 

fetch data from the buffer one frame at a time with a specific interval [11].

The decoder video buffer may overflow when the bitstream has many low bitrate 

frames in a series (such as a fade-in sequence) such that the decoder can not remove 

bits from the video buffer fast enough. Newly arrived bits will be lost due to lack of 

available buffer space. On the other hand, the video buffer may underflow if the 

bitstream has many large frame within a short period of time (due to abrupt scene 

changes or video editing). The decoder will quickly drain the buffer. Then at the 

supposed decoding time, the decoder cannot get a complete picture from the buffer. 

The video/audio will be jittery [11].

In editing of CBR sequences, the average bitrate of the output sequence should be 

kept the same as the input sequence and decoder buffer constraint sholud not be 

violated. Thus it is needed to allocate appropriate amount of bits before re-encoding

the frames that need type conversion. Some methods are introduced for H.264 in [7], 

and for MPEG-2 in [11].

Simulation environment is JM Software and the decoder in JM software works as 

follows:

a) Search for a NAL unit header. After finding the NAL unit header, mark this 

point and search for the next NAL unit header. After finding the next NAL 

unit header mark this point as well.

b) Then copy the NAL unit which is between the marked points (whatever the 

size is) to the buffer. And decode the NAL unit.

c) Repeat this operation until the end of sequence is found.
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In this thesis work, only VBR coding case is investigated. Decoder in JM Software

works on NAL units and has no time stamp dependencies. Thus overflow and 

underflow situations can not be seen in this environment. 

During frame conversion operations, encoder parameters are selected depending on 

the input video stream parameters. So, it is concluded that there is no 

overflow/underflow situation at cut points. Figure 5.16 shows the comparison of the 

data rate of the original video stream and the compressed domain edited output 

stream around cut point. In below example, frames between 15th and 22nd seconds of 

input video sequence are cut using compressed domain techniques proposed in this 

thesis work.

Figure 5.16: Bitrate Change after Compressed Domain Cutting Operation
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5.4 Results

As mentioned before, for simulating the algorithms that proposed in this thesis work, 

H.264/AVC JM reference software is used. This software is released by the JVT and 

can be downloaded from the web [5].

This software packet is open source and includes both H.264/AVC encoder and 

H.264/AVC decoder. Codes are written in plain C and can be compiled and run 

under MS Windows and Linux operating systems. After being familiar with the 

structure of the encoder and decoder code, any algorithm can be embedded into this 

code and simulations can be done.

To simulate the compressed domain video cutting operation (both GOP-based editing 

and frame-accurate editing), a control mechanism is written in C language and 

embedded into the JM H.264 decoder code. Resulting program receives exit frame 

and entry frame from the user. In order to operate, decoder needs a configuration file 

which is shown in Figure 5.17.

Figure 5.17: JM H.264/AVC Decoder Configuration File

Then, it starts to decode the H.264 coded input video stream. This mechanism 

prevents full decoding of input video stream. In this mechanism, it is allowed to 

decode NAL headers and decode necessary frames around cut/splice points. After 

finding the exit frame and/or entry frame, mechanism decides whether re-encoding is 

necessary or not.
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In exit GOP processing, the mechanism looks for the exit frame. After finding the 

exit frame (from NAL header), type of the frame is extracted from slice header. 

According to the type of the frame, exit GOP processing is executed on the exit 

GOP.  If the frame is a B frame, re-encoding of certain frames is needed (5.2.1.3). To 

achieve this, these certain frames are fully decoded and then sent to the encoder. 

Then resulting encoded stream is added to the output video stream. 

In entry GOP processing, same procedure is performed. In this case, all the frames 

from the entry frame to the end of the GOP are sent to encoder (5.2.2). Resulting 

video stream is added to the output stream. 

To measure the performance of the video editing, a raw input video with a resolution 

of CIF is taken. It is first encoded in JM encoder with main profile, level 3.0, 

CAVLC, GOP length of 13, IBBPBBPBBBBBP format, parameters. Then this 

stream is used as input video sequence of video cutting operation and the exit frame 

is selected as a B frame. QP of P frames of input stream is 20 and QP of B frames is 

30. At frame type conversion step (decoding, re-encoding), these values are used.  

For conformance tests, several H.264/AVC coded streams are used. These streams 

are edited so that each case of exit GOP processing and entry GOP processing can be 

experimented. Then, these streams are decoded with JM decoder software. It is seen 

that compressed domain edited streams are completely frame-accurate and are fully 

complaint to the H.264/AVC standard.  

To see the visual performance of the edited streams, an application called Stream 

Eye from Elecard Inc. is used. This application provides the user with a visual 

representation of the encoded video features and a stream structure analysis of 

MPEG-1/2/4 or AVC/H.264 Video Elementary Streams (VES), MPEG-1 System 

Streams (SS), MPEG-2 Program Streams (PS) and MPEG-2 Transport Streams (TS). 

More information can be obtained from their website (http://www.elecard.com). 

Below, snapshots of Stream Eye application are given. In these figures visual quality 

of the re-encoded frames and bit-rate change can be seen clearly. 
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Figure 5.18: Exit and Entry Frames (and GOPs) in Input Stream 
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Figure 5.19: Output Stream after Cutting Operation 

Above figures (Figure 5.18 and Figure 5.19) are examples of frame-accurate editing 

when exit-frame is a P frame and entry frame is a B frame. In this example, frames 

between display #126 and display #212 are cut. In exit GOP, frames up to the exit 

frame are directly copied to the output stream. In entry GOP, frames are re-encoded 

and appended to the output stream. It should be noticed that in Stream Eye program, 

frames are arranged in coded order. 
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Figure 5.20: Exit and Entry Frames (and GOPs) in Input Stream 
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Figure 5.21: Output Stream after Cutting Operation 

In above figures (Figure 5.20 and Figure 5.21) an example of frame-accurate editing 

when exit-frame is a B frame and entry frame is a B frame is illustrated. In this 

example, frames between display #596 and display #687 are cut. In exit GOP, frames 

with display numbers 594, 595, and 596 are fully decoded and re-encoded. Resulting 

H.264/AVC coded stream are appended to the output stream. In entry GOP, frames 

687 and 688 are re-encoded and appended to output stream. 

To compare the visual performance, PSNR of the originally B coded frame (display 

#596) and re-encoded and converted to P frame (display #596) are calculated and 

compared. Table 5.1 shows that after video editing, visual performance is decreased 

in acceptable amount. 
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Table 5.1: Visual Quality Comparison of Original Frame and Compressed Domain 

Edited Frame 

 Original Frame 

 

(B frame, QP: 30) 

Compressed Domain Edited 

Frame 

(P frame, QP: 20) 

Y PSNR 38.1 37.69 

Cb PSNR 45.7 45.16 

Cr PSNR 47.7 47.14 
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CONCLUSION & FUTURE WORK 

In this thesis, compressed domain editing techniques on H.264/AVC coded video 

sequences are investigated. Both GOP based methods and frame accurate methods 

are proposed. These methods are used for cutting portions from input video sequence 

or for splicing two different H.264/AVC coded video sequences. 

Since there is no dependency between consecutive GOPs when GOPs are closed, cut 

and splice operaions are easily done on contents without decoding the originally 

coded stream.  

As opposed to GOP-based editing, frame-accurate editing needs extra effort because 

of interframe coding. For exit GOP and entry GOP processing, several cases are 

investigated and methods are proposed. These methods require partial decoding; 

headers of the NAL units, some important frames around exit frame and entry frame. 

Also in some cases frame conversion is required. For that purpose, encoding 

operation with appropriate parameters is needed. 

 These methods have advantageous results over conventional solution (that is 

complete decoding and re-encoding of input stream). These are: savings for memory, 

processing power and time delay, and the preservation of picture quality by avoiding 

the lossy decode/re-encode chain. 

These methods are embedded in the H.264/AVC standard reference code (JM) and 

proposed methods are simulated. Results show that, with small and acceptable 

decrease in visual quality and a small amount of increase in bitrate around cut points, 

proposed methods work successfully. 

For future work, if the buffer control mechanism is setup, this work can be extended 

to CBR compliant model. After that, the use of these methods becomes more 

reasonable on limited capacity channels such as streaming and broadcast 

applications.  

These methods are applied on CAVLC coded H.264/AVC streams. After adding 

CABAC support, main profile and other high profiles would be completely 

supported. 
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