DESIGN AND PERFORMANCE OF CAPACITY APPROACHING IRREGULAR
LOW-DENSITY PARITY-CHECK CODES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ERINC DENIZ BARDAK

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2009

Approval of the thesis:

DESIGN AND PERFORMANCE OF CAPACITY
APPROACHING IRREGULAR LOW-DENSITY PARITY-CHECK CODES

submitted by ERINC DENIZ BARDAK in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Electronics Engineering
Department, Middle East Technical University by,

Prof. Dr. Canan Ozgen
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ismet Erkmen

Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Melek Diker Yiicel
Supervisor, Electrical and Electronics Engineering Dept., METU

Examining Committee Members:

Prof. Dr. Yal¢in Tanik

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Melek Diker Yiicel

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Ali Ozgiir Y1ilmaz

Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Elif Uysal Biyikoglu

Electrical and Electronics Engineering Dept., METU

Sidika Bengiir, M.Sc.
Manager of HC-PTSMM, ASELSAN Inc.

Date: September 10. 2009

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also
declare that, as required by these rules and conduct, I have fully cited and
referenced all material and results that are not original to this work.

Name, Surname: Erin¢ Deniz Bardak

Signature

i1

ABSTRACT

DESIGN AND PERFORMANCE OF
CAPACITY APPROACHING IRREGULAR LOW-
DENSITY PARITY-CHECK CODES

Bardak, Ering Deniz
M. Sc., Department of Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Melek Diker Yiicel
September 2009, 112 pages

In this thesis, design details of binary irregular Low-Density Parity-Check (LDPC)
codes are investigated. We especially focus on the trade-off between the average
variable node degree, w,, and the number of length-6 cycles of an irregular code. We
observe that the performance of the irregular code improves with increasing w, up to
a critical value, but deteriorates for larger w, because of the exponential increase in
the number of length-6 cycles. We have designed an irregular code of length 16,000
bits with average variable node degree w,=3.8, that we call ‘2/3/13” since it has some
variable nodes of degree 2 and 13 in addition to the majority of degree-3 nodes. The
observed performance is found to be very close to that of the capacity approaching
commercial codes. Time spent for decoding 50,000 codewords of length 1800 at
Ew/No=1.6 dB for an irregular 2/3/13 code is measured to be 19% less than that of the

regular (3, 6) code, mainly because of the smaller number of decoding failures.

Keywords: Irregular LDPC Codes, Length-6 Cycles.

v

(0Y/

KAPASITEYE YAKLASAN DUZENSIZ DUSUK
YOGUNLUKLU ESLIK SAGLAMASI KODLARININ
TASARIM VE PERFORMANSI

Bardak, Ering Deniz
Yiiksek Lisans, Elektrik Elektronik Miihendisligi Bolimii
Tez Yoneticisi: Dog¢. Dr. Melek Diker Yiicel

Eyliil 2009, 112 sayfa

Bu tezde, ikili diizensiz Dislik-Yogunluklu Eslik-Saglamasi (DYES) kodlarinin
tasarim ayrintilar1 incelenmektedir. Ozellikle odaklandigimiz konu, diizensiz
ortalama degisken diiglimii derecesi, w,, ile 6 uzunlugundaki dongiiler arasindaki
Odiinlesimdir. Bir kodun basariminin, w, degeri kritik bir degere kadar arttirildikca
diizeldigi fakat daha biiylik w, degerleri i¢in 6 uzunlugundaki dongiilerin sayisindaki
issel artis nedeniyle koétiiye gittigi gozlenmektedir. Tasarladigimiz 16,000 ikil
uzunlugunda, degisken diiglimlerinin ¢ogunlugunun derecesi 3, kalani da 2 ve 13
oldugu i¢in 2/3/13 diye adlandirdigimiz, ortalama degisken diigiim derecesi w,=3.8
olan diizensiz kodun basarimi, kapasiteye yaklasan ticari kodlarinkine ¢ok yakindir.
Ew/No=1.6 dB degerinde 50,000 kod sézciigiinii ¢dziimledigimiz 1800 uzunlugundaki
kodlardan, diizensiz 2/3/13 kod i¢in gereken zamanin, gorece az sayidaki ¢éziimleme

hatas1 nedeniyle, diizenli (3,6) koda gore %19 daha kisa oldugu goriilmiistiir.

Anahtar Sozciikler: Diizensiz DYES Kodlari, 6 Uzunlugundaki Dongiiler.

To My Family and My Fiancée

vi

ACKNOWLEDGEMENTS

I would like to thank my supervisor Assoc. Prof. Dr. Melek Diker Yiicel for her

motivating ideas and valuable guidance.

I would also like to thank to Hande, my fiancée, for giving me all the inspiration I

need and for being “the one” for me.

I also wish to thank my mother Sema and my sister Isil for giving me the

encouragement and all kinds of support during my whole work.

I would also like to thank to Tiirkiye Bilimsel ve Teknolojik Arastirma Kurumu
(TUBITAK) for their contribution to my Master of Science education with the

scholarship.

Finally, I would like to thank my company ASELSAN for the support during this

thesis work.

vil

TABLE OF CONTENTS

ABSTRACT ...ttt ettt ettt et e st e e beesaeeens v
OZ ettt \%
ACKNOWLEDGEMENTS ...ttt ettt et vii
TABLE OF CONTENTS ...ttt viil
LIST OF TABLES ...ttt ettt et e X
LIST OF FIGURES ...ttt st xii
LIST OF ABBREVIATIONS.ottt Xvi
CHAPTERS
1 INTRODUCTION ...ttt ettt et e 1
1.1 Definition and History of LDPC Codes.......c..coevuieeviieriiieiiieeeiie e 2
1.2 Aim and Organization of the ThesiScccccervriiiriiieiiiiece e 5
2 LOW DENSITY PARITY CHECK CODEScooiiiiieeeeeeeeeeeee e 7
2.1 Overview of Linear Block Codes and LDPC Codes..........cccceevieriiiiniennnen. 7
2.2 MacKay & Neil Construction Methods for LDPC Codescuueee..... 14
2.2.1 Regular LDPC Code Construction............cecveeevveeeeiieeniveeesneeenveeennes 14
2.2.2 Irregular LDPC Code Construction by 2A Method...............c.......... 15
223 Irregular LDPC Code Construction by Pseudo-Random Method...... 17
2.3 Encoding of LDPC Codes........cccouviriiieiiiieiieeieeeee et 17
2.4 Decoding of LDPC Codes by Belief Propagation Algorithm.................... 19

viil

3 SIMULATION RESULTS ..ottt 27
3.1 Experimental Preliminaries and Software Controlccceevevvvenveeenneen. 29
3.1.1 Decoder COmMPATiSON........ueeeuieeeiireeieeeeieeerreeesereeeireeereeesseeesaseeenens 29
3.1.2 Effect of Codeword Length on the BER Performance 32
3.2 Wrong Codewords at the Decoder Output..........ccccveeeereeencieeeniiieeeiee e, 33
33 Irregular 2A COdeS......oiiiiiieiieeeeecee et e 40
34 Effect of 2/3/4 TIr@@UIATILYoeevveeeiieeeiie ettt 53
3.5 Effect of 1/3/5 IITe@UIATILYooeeeieeeiieeeiee et 57
3.6 High Degree Variable Nodes Connected to 9 or 19 Check Equations 60
3.6.1 Effect of the Average Variable Node Degreeccccecvvveevieennnennnee. 62
3.6.2 Effect of the Number of Length-6 Cycles........ccceeevvevciienciieenienee, 66
3.7 Joint Effect of Average Variable Node Degree and Length-6 Cycles....... 68
3.7.1 Codes with High Degree Variable Nodes of Degree 9 69
3.7.2 Extension to High Variable Node Degrees of 11 and 13................... 77
3.7.3 Some Codes with Fixed Number of Length-6 Cycles 87
3.8 Codes with Very Long Codeword Lengths..........ccccoveeeiiiiniiiiniiicieeee, 90
3.9 Decoding Times for Regular and Irregular LDPC Codes.............cuueu...... 90
3.10 Random Distribution of Check Node Degreesccccceeevcvveerieeenveeennnen. 90
311 SUMMATY .ot e st e e e s ree e e e sneaaeesensaeeeenns 99
4 CONCLUSIONS ...ttt ettt be e 103
REFERENCESottt st 107
APPENDICES
A. LDPC CODE CONSTRUCTION SOFTWARESccociiiiiiiiieeeeee 111

X

LIST OF TABLES

TABLES

Table 3.1 Time consumptions of log-likelihood and likelihood decoders................. 31
Table 3.2 Distribution of 20 block errors (between decoding failures and wrong
codewords) for rate 1/2 codes of different lengths, when the maximum
number of iterations 1S Set t0 50.oouiiiiiiiiiiiieniieeee e 36
Table 3.3 Distribution of 20 block errors (between decoding failures and wrong
codewords), when maximum number of iterations is set to 20................ 37
Table 3.4 Number of erroneous bits of blocks, which are decided as failure or
wrong decision at the decoder, before and after they are decoded. 39
Table 3.5 Variable node degree distributions of the irregular 2A matrices that we
have constructed for codeword lengths of 576 and 896.......................... 41
Table 3.6 Total number of length-6 cycles for (1200, 600) regular and irregular
codes constructed by the 2A methodccoeeeiiieiiiiiiiiice e, 48
Table 3.7 Total number of length-6 cycles for (1200, 600) regular and irregular

codes constructed by the 2A methodccceveiieiiiiiiiiiiiiieeee 50
Table 3.8 Variable node degree distributions of the 2/3/4 irregular matrices............ 53
Table 3.9 Variable node degree distributions of the 1/3/5 irregular matrices............ 58
Table 3.10 Simulation results for the irregular codes given in Table 3.9 59

Table 3.11 Variable node degree distributions and the number of high weight
columns of 2/3/9 and 2/3/19 irregular codes of rate /2 and length 1800,

with average variable node degrees of 3.2,3.4and 3.6 63
Table 3.12 Number of length-6 cycles of some 2/3/9 and 2/3/19 codes of rate '
and length 1800cccviiiiiiiiiiiie e 67

Table 3.13 Variable node degree distributions and the number of high weight
columns of the 2/3/9 and 2/3/19 irregular codes of rate 2 and length

1800, with average variable node degrees of 3.8, 4,4.2 and 4.4 69

Table 3.14 Number of length-6 cycles of the 2/3/9 codes of rate 2 and length
1800, with average variable node degrees from 3.2t0 4.4c..c........ 72

Table 3.15 Variable node degree distributions and the number of high weight
columns of of the 2/3/11 and 2/3/13 irregular codes of rate /2 and length

Table 3.16 Parameters of the new codes obtained from the 2/3/9 irregular codes of

rate 2 and length 1800, having the number of length-6 cycles around

2000 .. ettt ettt e e be e e reenteeneees 88
Table 3.17 Simulation results for the decoding times of sample regular and irregular
COABS .ottt ettt ettt ettt ettt b ettt ettt sbe b et sbe e e et 92

Table 3.18 Number of rows at each weight for 600x1200 parity-check matrices of
2A irregular codes, where w, shows the average column weight. 95
Table 3.19 Number of rows at each weight for 288x576 parity-check matrices of the
2/3/4 ITeGUIAT COACS ..ottt ettt et 96
Table 3.20 Number of rows at each weight for 288x576 parity-check matrices of the
1/3/5 Irre@UIAr COA@S....eieiiieeiiieeiiie ettt e e ens 98

X1

LIST OF FIGURES

FIGURES

Figure 1.1 Comparison of regular binary Gallager codes with irregular codes, codes
over GF(q), and other outstanding codes of rate 1/4...........ccccevveirennnee. 4
Figure 2.1 The parity-check matrix of a (8, 4) code and the corresponding Tanner

Figure 2.2 A sample parity-check matrix for a (6, 3) code and its Tanner graph. The

cycle of length-4 is shown as bold entries in the matrix and bold edges in

the Graph.....ooiiiiece e 13
Figure 2.3 A part of the bi-partite graph of an irregular LDPC code which is
constructed randomly........ccocuvieiiieiiiieeieee e 16
Figure 2.4 Illustration of likelihood and log-likelihood decoding algorithms........... 26

Figure 3.1 Performance comparison of log-likelihood and likelihood decoders for a
regular (576, 288) low-density parity-check codecccceevveeeviennnenn. 30
Figure 3.2 Performance comparison of log-likelihood and likelihood decoders for a
regular (896, 448) low-density parity-check codeccoeevveiieniinnnnn. 30
Figure 3.3 Performance comparison of log-likelihood and likelihood decoders for
regular (896, 448) and (896, 224) codes taken from [Uzunoglu-2007]. 32
Figure 3.4 Performance comparison of (576, 288), (896, 448), (1200, 600), (2100,
1050), (1800, 900) and (2700, 1350) regular (3, 6) codes....................... 33
Figure 3.5 Performance comparison of (576, 288) regular and irregular 2A codes,
where w, denotes the average variable node degree of the code............. 42
Figure 3.6 Performance comparison of (576, 288) regular and irregular 2A codes,
where w, denotes the average variable node degree of the code............. 43
Figure 3.7 Performance comparison of (896, 448) regular and irregular 2A codes,

where w, denotes the average variable node degree of the code............ 44

xil

Figure 3.8 Performance comparison of (1200, 600) regular and irregular 2A codes,
with the average variable node degrees w, = 3 and w, = 2.95,
TESPECLIVELY. 1.evtiiiiiieeiiee ettt e et e et e et e e et e e e reeesnaeeennseeens 45

Figure 3.9 Performance comparison of (1500, 750) regular and irregular 2A codes,
with the average variable node degrees w, = 3 and w, = 2.95,
TESPECLIVELY. 1.eviiiiiiieeiiee ettt e et e et e e et e e st e e e reeeenaeeennseeens 45

Figure 3.10 Performance comparison of (1800, 900) regular and irregular 2A codes,

with the average variable node degrees w, = 3 and w, = 2.95,
TESPECTIVELY. oeiiiiieiie ettt 46
Figure 3.11 Performance comparison of (2100, 1050) regular and irregular 2A
codes, with the average variable node degrees w, = 3 and w, = 2.95,
TESPECLIVELY. 1ttt e 46
Figure 3.12 Performance comparison of (2700, 1350) regular and irregular 2A
codes, with the average variable node degrees w, = 3 and w, = 2.95,
TESPECLIVELY. 1ttt e 47
Figure 3.13 Performance comparison of (3600, 1350) regular and irregular 2A

codes, with the average variable node degrees w, = 3 and w, = 2.95,

TESPECHIVELY. eviiiieiiiieiieeie ettt ettt et st b e e eee e 47
Figure 3.14 Performances of matrix-5 and matrix-6 of Table 3.7c.cccccvveennenne. 51
Figure 3.15 Performances of matrix-1 and matrix-10 of Table 3.7c.cccccvveennennn. 51
Figure 3.16 Performances of matrix-1 and matrix-10 of Table 3.7ccccoceevvnnenne. 52

Figure 3.17 Performance comparison of (576, 288) codes defined in Table 3.8....... 54
Figure 3.18 Performance comparison of (896, 488) codes defined in Table 3.8....... 54
Figure 3.19 Performance comparison of (576, 288) codes defined in Table 3.8 with

a second seed for random noise generationcoeceeeeveereeerveenneennne. 55
Figure 3.20 Performance comparison of (576, 288) codes defined in Table 3.8 with

a third seed for random noise generation...........ccceeecvveerveeeeieeerveeennnen. 55
Figure 3.21 Performance comparison of (896, 488) codes defined in Table 3.8 with

a second seed for random noise ENErationcccecceevveereeerveeneennnn. 56

xiil

Figure 3.22 Performance comparison of (896, 488) codes defined in Table 3.8 with a
third seed for random noise generation............cccueeeeuveeecuieescieeesiieeeeieens 56

Figure 3.23 Performances of the 1/3/5 codes defined in Table 3.9...........cccveeneee. 60

Figure 3.24 Generic structure of the pseudo-random irregular matrices of this

WOTK .ttt ettt ettt 62

Figure 3.25 Performances of the codes described in Table 3.11cccccoveiiiennnne. 63
Figure 3.26 Performances of many codes with the parameters described in Table
B L L e 65

Figure 3.27 Performances of 2/3/9 irregular codes that have average variable degrees
from 3.2 10 4.4 ..o 70

Figure 3.28 Performances of the irregular codes with weight-9 columns. The codes
whose performances are getting better with increasing average variable
node degree are shown in (a), and the codes whose performances are
getting worse are Shown in (b).......oocvveevciieeniiieiieccee e, 71

Figure 3.29 Total number of length-6 cycles after the generation of each column
of the parity-check matrix for the codes defined in Table 3.14. The

vertical axis is given in: (a) logarithmic scale, (b) linear

SCALL. 1.ttt sttt 74
Figure 3.30 Number of length-6 cycles introduced by each column of the parity
check matrix of the code 9-4.4.c.ccooiviiiiiiiniineee 76
Figure 3.31 Last part of the graph given in Figure 3.29 (b).....cccceevevievciieciiieeiee, 76

Figure 3.32 Performances of the 2/3/11 irregular codes. The codes whose
performances are getting better with increasing average variable node
degree are shown in (a), and the codes whose performances are getting
worse are ShOwn in (b). ..cc.eeeeviieiiiieieceee e 79

Figure 3.33 Performances of the 2/3/13 irregular codes. The codes whose
performances are getting better with increasing average variable node
degree are shown in (a), and the codes whose performances are

getting worse are Shown in (b).ooocvveeeiieeciieiiiieeeeee e 80

X1v

Figure 3.34 The change in the total number of length-6 cycles for the 2/3/11
irregular codes in Table 3.15 versus each new generated column.
Vertical axis is given in: (a) logarithmic scale (b) linear scale............ 82

Figure 3.35 Last part of the graph given in Figure 3.32 (b)....ccccevveenienenienieicneene 82

Figure 3.36 The change in the total number of length-6 cycles for the 2/3/13

irregular codes in Table 3.15 versus each new generated column.

Vertical axis is given in: (a) logarithmic scale (b) linear scale............. 84
Figure 3.37 Last part of the graph given in Figure 3.36 (b)....ccccovveeviiiiniiniiiinnnee. 84
Figure 3.38 Number of length-6 cycles versus average variable node degree, w,, of
2/3/9, 23/11 and 2/3/13 COACS. uuvrrrrriiieiiieeeieeeeeee et 86
Figure 3.39 Performances of the codes given in Table 3.16...........ccccevevvveeiirennnennne. 89

Figure 3.40 Performances of a regular code and an irregular 2/3/13 code of

codeword length 16000 together with the performance of a regular

code of codeword length 64800 used in DVB-S2 standard................. 90
Figure 3.41 Iteration histograms for the regular and irregular codes......................... 93
Figure 3.42 Check node degree distributions given in each row of Table 3.18......... 95
Figure 3.43 Check node degree distributions given in each row of Table 3.19......... 97
Figure 3.44 Check node degree distributions given in each row of Table 3.20........ 98

XV

LIST OF ABBREVIATIONS

APP A Posteriori Probability

AWGN Additive White Gaussian Noise

BCH Bose and Ray-Chaudhuri

BER Bit Error Ratio

BPSK Binary Phase-Shift Keying

DVB-S2 Second Generation Satellite Digital Video
GF Galois Field

ITU-T International Telecommunications Union-

Telecommunications Standardization Sector

JPL Jet Propulsion Laboratory

LDPC Low Density Parity Check

LL Log Likelihood

RS Reed-Solomon

RU Richardson-Urbanke

SNR Signal to Noise Ratio

WIMAX Worldwide Interoperability for Microwave Access
10GBase-T 10-Gigabit Ethernet over Twisted-Pair Cabling

Xvi

CHAPTER 1

INTRODUCTION

In digital communication systems, the main goal is to achieve errorless
communication between two points. When data is transmitted over an imperfect and
noisy communication channel, there is some probability that the received message
will not be identical to the transmitted message. To overcome the effect of noise and
reduce the error probability at the receiver, one can improve the physical
characteristics of the communication channel by using more reliable components or
higher transmission power. One can also use error control coding to detect and

correct the errors introduced by the channel.

In 1948, Shannon published his seminal paper [Shannon-1948] on the limits of
reliable transmission of data over unreliable channels, which established the roots of
information theory. Given a communication channel, Shannon proved that there
exists a parameter, called the capacity of the channel, such that reliable transmission
is possible for rates arbitrarily close to the capacity and not possible above it. The
researchers, who try to achieve communication rates close to the channel capacity,
discovered the first examples of error control codes, which in turn started the

development of coding theory.

Coding theory is concerned with the design of powerful error control codes, and
practical encoding and decoding systems. A powerful code is expected to detect and
correct as many errors at the receiver side as possible. First known error control
codes, which were capable of correcting single bit errors in each data block, were
introduced to the literature by Richard W. Hamming in 1950 [Hamming-1950].
Afterwards, different codes such as the convolutional codes [Elias-1955], and other

block codes like the BCH codes [Bose-Chaudhuri-1960], Reed-Solomon (RS)

codes [Reed-Solomon-1960], Kerdock codes [Kerdock-1972], Goethals Codes
[Goethals-1974], and Goppa Codes [Goppa-1982] were found. In 1993, turbo
codes, which were the first practical codes to closely approach the Shannon limit,

were invented [Berrou-Glavieux-Thitimajshima-1993].

All block codes mentioned above other than Kerdock codes and Goethals codes are
linear. Low-Density Parity-Check (LDPC) codes, which we are interested in this
work, are also linear block codes which were invented by Gallager in 1962

[Gallager-1962].

1.1 Definition and History of LDPC Codes

LPDC codes are linear block codes which are defined by low density parity-check

matrices. Let H be a binary (n—k)xn matrix with (n—k) linearly independent

rows. A linear block code C is defined as the set of vectors ¢ = (c,,...,c,) such that

Hc" =0. The matrix H is called a parity-check matrix for the code. The code C

defined by the parity-check matrix H is said to be an LDPC code if H is sparse
[Gallager-1962], i.e., has small number of nonzero elements. The sparsity of the
parity-check matrix is the key property that allows algorithmic efficiency of LDPC

codes.

Tanner graphs (or bipartite graphs), which are proposed to the literature by Michael
Tanner in [Tanner-1981], are used to visualize the parity-check matrices of LDPC
codes. In a Tanner graph, each column of the parity-check matrix is called a variable
node and each row is called a check node. The variable nodes are connected to the
check nodes with edges, which are drawn according to the positions of the nonzero

elements in the parity check matrix.

There are mainly two kinds of LDPC codes; the regular and irregular ones. A regular

LDPC code has a parity-check matrix H, in which every column has the same weight

w, and every row has the same weight w_. On the other hand, the columns and rows

of the parity-check matrix of an irregular LDPC code do not have uniform weight
distribution. In the literature, irregular LDPC codes have been shown to outperform

the regular ones.

The performance of an LDPC code is affected also by another important parameter,
called the cycle. In a Tanner graph, a cycle is defined as the series of connected edges
that starts from and ends at the same variable node. The length of a cycle is defined
as the number of edges that it contains. Small cycles, such as length-4 and length-6,

deteriorate the performance of a code.

The most widely used algorithms for decoding LDPC codes are message passing
algorithms, which are also known as iterative algorithms. These algorithms are
called iterative since messages are passed from variable nodes to check nodes, and
from check nodes to variable nodes at each round of the algorithm. The sparsity
property of LDPC codes lowers the complexity of the operations done in each

iteration and makes the iterative algorithms suitable for decoding of LDPC codes.

LDPC codes were invented by Robert Gallager in 1962 [Gallager-1962]. Due to the
requirement of high complexity computations, LDPC codes had been ignored for a
long time. Also at that time Reed-Solomon and convolutional codes were considered
to be perfectly suitable for error control coding, which was another reason for LDPC

codes to be neglected.

36 years after from its invention, the studies done by MacKay and Neil attracted the
attention of the communication society on LDPC codes again. In 1996, MacKay and
Neil [MacKay-Neal-1996] showed that optimally decoded LDPC codes can reach
information rates within 1 dB to the Shannon limit. MacKay and Neil's codes were
regular LDPC codes. In 1998, Luby et al. [Luby-Mitzenmacher-Shokrollahi-
Spielman-1998] proposed irregular LDPC code structures whose performances are

better than the regular ones. In 2001, an analytical way of designing irregular LDPC

codes, called density evolution, was developed by Richardson et al. [Richardson-
Shokrollahi-Urbanke-2001] to construct irregular LDPC codes which outperform
the regular ones and even turbo codes. Again in 2001, the best known LDPC code

was proposed by Chung et al. [Chung-Forney-Shokrollahi-Urbanke-2001]. The

code they proposed was an irregular LDPC code of rate %4, codeword length 107, and
of performance only 0.0045 dB away from the Shannon limit.

All codes mentioned above are binary codes. There also exist non-binary LDPC
codes introduced to the literature [Davey-MacKay-1998], [Davey-1999]. Figure 1.1,
which is given in [MacKay-2005], is a very good visualization to compare the
binary and non-binary regular and irregular LDPC codes with each other and also

with other outstanding error correcting codes such as turbo codes.

01 ¢ T T
~ I Luby Reg GF(2)
= 0.01 Irreg GF(2) e
] L
@
wl
8 I
o 0.001 ¢ \ r
E L
o I
= 0.0001 — E
o
5 le05 L]
E A Irreg GF(8) Reg GF(16) Gallileo
Turt:ucu
1e-06 | E
1 1 1
-0.4 02 0 0.2 Cl.4 D.E EI.E

Signal to Moise ratio (dB)

Figure 1.1 Comparison of regular binary Gallager codes with irregular codes, codes over

GF(q), and other outstanding codes of rate 1/4.

In Figure 1.1, Irreg GF(8) is an irregular LDPC code over GF(8),with codeword
length of 48,000 bits given in [Davey-1999]; Turbo is a JPL turbo code with
codeword length of 65,536 bits given in [MacKay-2005]; Reg GF(16) is a regular
LDPC code over GF(16) with codeword length of 24,448 bits given in [Davey-

4

MacKay-1998]; Irreg GF(2) is an irregular binary LDPC code with codeword length
of 16,000 bits given in [Davey-1999]; Luby is an irregular binary LDPC code with
codeword length of 64,000 bits given in [Luby-Mitzenmacher-Shokrollahi-
Spielman-1998]; Galileo is a JPL turbo code used in the space-craft Galileo, given in
[Swanson-1988]; Reg GF(2) is a regular binary LDPC code with codeword length of
40,000 bits given in [MacKay-1999].

Today, LDPC codes became one of the most important error correcting codes used in
several areas of communication. LDPC codes are the main codes used in very
important standards such as:

e IEEE WIMAX (Worldwide Inter-operability for Microwave Access) 802.16e

Standard

¢ Digital Video Broadcasting — Satellite - Second Generation (DVB-S2)

e 10GBase-T Ethernet Standard

e ITU-T G.hn/G.9960 Standard for networking over power lines, phone lines

and coaxial cable

¢ China National Standard for Digital Terrestrial TV Broadcasting standard

1.2 Aim and Organization of the Thesis

The aim of this thesis is the investigation of the performance of irregular LDPC
codes with different variable node degree distribution polynomials. We design
regular and irregular codes and analyze the circumstances under which the
performance of the codes improve or deteriorate. Specifically, we study the effects of
the average variable node degree and the number of length-6 cycles parameters on
the performance of the codes, and try to reveal the frade-off between these two

parameters.

In Chapter 2, we review the literature on Low-Density Parity-Check (LDPC) codes
after discussing the preliminaries of linear block codes and LDPC codes. We discuss
the regular and irregular code construction methods that are used in our work.
Finally, we explain the decoding algorithms that we employ to decode the LDPC

codes that we generate and use in the simulations.

In Chapter 3, we investigate the performances of the regular codes with variable

node degree w, =3 and the irregular codes generated by MacKay and Neil’s methods.

After verifying the correctness of the software that we develop for simulations, we
find the distribution of block errors in terms of wrongly decoded codewords and
decoding failures of the belief propagation decoding algorithm. We examine the
conditions that lead to wrong codewords and comment on the choice of the
maximum number of iterations to be used. We then study the performances of many
irregular LDPC codes that have different variable node degree distribution
polynomials. Properly designing these polynomials, we generate irregular codes with
desired properties. Using the generated codes, we investigate the effects of the
average variable node degree and the number of length-6 cycles on the performance.

Then, we design an irregular code of length 16,000 bits and compare its performance
with a capacity approaching commercial code which is used in DVB-S2 standard.
We also measure the decoding times needed for some irregular and regular codes to

understand the effect of average variable node degree on the decoding times.

In Chapter 4, we summarize our work and give suggestions for further studies.

CHAPTER 2

LOW DENSITY PARITY CHECK CODES

In this chapter, we review the literature on Low-Density Parity-Check (LDPC) codes
after discussing the preliminaries on linear block codes. Section 2.1 covers the
overview of linear block codes and LDPC codes. In Section 2.2, we give the Regular
Code Construction, Irregular 2A Code Construction and Irregular Pseudo-Random
Code Construction methods of MacKay and Neil that we have used in his work. In
Section 2.3, we discuss the encoding methods of LDPC codes. Finally, in Section
2.4, we give the details of the log-likelihood and the likelihood decoding algorithms

utilized in our simulations.

2.1 Overview of Linear Block Codes and LDPC Codes

LDPC codes are linear block codes that have parity-check matrices in which the
number of the nonzero elements is much less than the number of zero’s. Before
giving detailed information about LDPC codes, it will be better to briefly discuss the

main properties of linear block codes.

An (n, k) block code is a rule of converting a sequence of source symbols of length &
into a sequence of n, where n > k. The linear (n, k) code over GF(q) is a subspace C

of the vector space GF(g)" . The elements of C are n-dimensional vectors, called the
codewords. Let the source message m= (mo,ml,...,mkfl) be an arbitrary vector in
GF(q)k. By the linear transformation

k=1

c:mG:Zmigi:m0g0+m1gl+"'+mk—lgk—l7 (2.1)

i=0

one can generate all ¢* codewords c= (co,c1 ,...,cH) in C, provided that the & xn
matrix G is of rank k. Then, G is called the generator matrix of the code; because it

has k linearly independent row vectors g_l spanning the subspace C.

go

&

G = (2.2)

8

An (n, k) linear block code has the (n — k)x n parity-check matrix H, whose rows are

orthogonal to the rows of G, hence

GXHT :ka(nfk)' (23)
Therefore, the codeword ¢ = (¢o»¢ysnnc, ;) generated by (2.1) satisfies

exHT =0. (2.4)

The generator matrix of a linear block code in systematic form can be expressed as

go
G=| 5 |=[1, P] (2.5)

8

where [, 1s the kxk identity matrix and P is a kx(n—k) matrix. The

corresponding parity-check matrix in systematic form can be found using (2.3) as
H=[P" I4]. (2.6)

An important parameter of a block code is its rate k/n, that is the number of

information symbols divided by the number of codeword symbols. Consider a parity-

check matrix, H of an LDPC code whose size is mxn. If there are m parity check

symbols, k=n—m; so the code rate can also be expressed as

Rate =

k_nzm_,_m 2.7)
n

n n

Rate of a code plays an important role in its error correction performance. When the
rate is increased, the fraction, m/n, of the parity-check symbols is decreased in a
codeword. In this case, more information is sent with less number of parity-check
symbols. This may sound good since the speed of information transmission
increases. However, the error correction capability of the code is obviously hurt since
less number of parity-check equations exist to be used to correct the erroneous
symbols. This explains the trade-off between information density and the error
correction capability of the code. Therefore, the rate of a code is crucial and should

be chosen according to the characteristics of the communication channel.

After this brief review of linear block codes, we can now give some information
about low-density parity-check codes. A low-density parity-check (LDPC) code is a
linear block code that has a parity-check matrix, H, every row and column of which
is ‘sparse' [Gallager-1962]. As emphasized by the word ‘sparse’, an LDPC code
contains very small number of nonzero elements in the parity-check matrix H as

compared to its size.

There are mainly two kinds of LDPC codes; the regular and irregular ones. A regular
LDPC code has a parity-check matrix H, in which every column of H has the same

weight w, and every row has the same weight w,. On the other hand, the columns

and rows of the parity-check matrix of an irregular LDPC code do not have uniform

weight distribution.

Tanner graphs (or bipartite graphs), which are proposed to the literature by Michael
Tanner in [Tanner-1981], are used to visualize the parity-check matrices of LDPC

codes. In a Tanner graph, each column of the parity-check matrix is called a variable

node and each row is called a check node. The variable nodes are connected to the
check nodes with edges, which are drawn according to the positions of the nonzero
elements in the parity check matrix. The parity check matrix of a linear block code

and its corresponding Tanner graph is illustrated in Figure 2.1:

Variable Nodes

T
I
S = O =
_— o = O
—_— 0 O =
S = = O
—_— O = =
o o = O
—_ = O O
S O = =

Check Nodes

Figure 2.1 The parity-check matrix of a (8, 4) code and the corresponding Tanner graph

Each edge in a Tanner graph corresponds to a nonzero entry in the parity-check
matrix H. Therefore, in terms of edges, the weight of a column (row) is the number
of edges emanating from the corresponding variable (check) node. The number of
nonzero elements in a column (row) is said to be the degree of that variable (check)

node.

One way to express the weight distributions of variable and check nodes is to use
degree distribution polynomials. The variable node degree distribution polynomial of

an LDPC code is of the form
Alx)=> Ax" (2.8)

and the check node degree distribution polynomial is of the form

10

ple)=3 px" 2.9)

In these equations A, is the fraction of edges emanating from the variable nodes of
degree 7, and p; is the fraction of edges emanating from the check nodes of degree ;.
In other words, A, is the number of variable nodes of degree i divided by the total
number of the variable nodes, and p; is the number of check nodes of degree j

divided by the total number of the check nodes. d, and d. are the maximum variable

and check node degrees, respectively. Since 4;s and p;s denote the fraction of

variable and check node degrees, they must sum up to one. Hence,
(2.10)

The main properties of an LDPC code can be understood by looking at its degree
distribution polynomials. For an irregular LDPC code, the degrees of variable and
check nodes may differ from each other. In this case there exists more than one

coefficient 4, (or p,) in the variable (or check node) degree distribution

polynomials of the code. The variable and check node degree distribution

polynomials of the irregular LDPC code in Figure 2.1 are
ﬂ(x)zlx°+—x+lx , plx)==x +%x +lx . (2.11)

As can be seen, the given LDPC code has an irregular degree structure for both of its

variable and check nodes: 1/8 of the variable nodes have degree 1, 6/8 of them have

degree 2, and 1/8 of them have degree 3. The check node degree distribution of this

11

code is also irregular: 1/4 of the check nodes have degree 3, 2/4 of them have

degree 4, and 1/4 them have degree 5.

A regular LDPC code has all variable node degrees equal to some constant w,, and
all check node degrees equal to some constant w,. Therefore, there exist only one
coefficient 4, in the variable node degree distribution polynomial, and one
coefficient p, in the check node degree distribution equation of the code.
Considering (2.2) it is not difficult to see that both 4, and p, are equalto 1. As an
example, the degree distribution polynomials of a regular LDPC code with w, =3

and w, =6 are
Ax)=x%, p(x)=x". (2.12)

One can now define the rate of an LDPC code in terms of the coefficients A, and

p, . Consider an LDPC code with variable node degree distribution polynomial

d, d,
/l(x):z:/lixi’1 , and check node degree distribution polynomial p(x)= z p;X

i=1 j=1

i-1

Let E be the total number of edges in the Tanner graph of this code. Then the number

. . EA
of variable nodes which have degree i can be expressed as —-. Hence, the total
i
: o EA .
number of variable nodes is Z—’ Similarly the total number of check nodes is
i=l
dc

z . Therefore we can rewrite the rate of this code in terms of the coefficients
j=tJ

4, and p, as follows:

12

d, Eﬂi di
Rate m ;‘ i g‘i
ate—l—;—l— i Ep. =1-—= >
I ¥

j=1 J =1 J

(2.13)

We have mentioned earlier in this chapter that the rate of an LDPC code is crucial in
the error correcting capability of the code. The performance of an LDPC code is
affected also by another important parameter, called the cycle. In a Tanner graph, a
cycle is defined as the series of connected edges that starts from and ends at the same
variable node. The length of a cycle is defined as the number of edges that it
contains. As an example, consider the parity-check matrix H, and its Tanner graph
given in Figure 2.2. H has one cycle of length 4 created by its bold entries and the

bold edges in the Tanner graph are the ones that form the cycle.

Variable Nodes
Vi V2 V3 V4 Vs Vg
1011 10
H=11 101 0 0
0 1 0 0 1 1
C C2 C3
Check Nodes

Figure 2.2 A sample parity-check matrix for a (6, 3) code and its Tanner graph. The cycle of

length-4 is shown as bold entries in the matrix and bold edges in the graph

In a Tanner graph there may be several cycles of different length. Obviously, the
minimum length that a cycle can have is four. Especially the length-4 cycles,
deteriorate the decoding performance of LDPC codes; therefore, to avoid cycles of
length-4 is one of the most important things to take into account in the construction

of an LDPC code. Cycles with lengths greater than four also decrease the

13

performance of LDPC codes; however, their effect is not as significant as the length-

4 ones.

The smallest cycle length in the Tanner graph is called the girth of the code. LDPC
codes with larger girth values have been shown to result in better error correcting

performance.

2.2 MacKay & Neil Construction Methods for LDPC Codes

There are a great number of different LDPC code construction methods in the
literature such as quasi-cyclic construction [Tanner-2004], [Moura-2005], pseudo-
random construction [Moinian-2006], [Bonello-2008], combinatorial approach
[Krishnan-2007], [Johnson-2008], and finite geometry techniques [Kou-2000],
[Aly-2008]. In this section we will explain MacKay & Neil’s techniques that we

have used for constructing regular and irregular LDPC codes.

2.2.1 Regular LDPC Code Construction

In this work, we have used the MacKay and Neal’s Method for regular LDPC code
construction [MacKay-Neal-1996]. In this algorithm, construction of an mxn
parity-check matrix starts with forming the leftmost column of the matrix. At first

step, desired number of w, 1’s are placed randomly in the first column. After that,

the remaining columns are formed one-by-one from left to right. In the construction
of these remaining columns, two things are taken into account. Any column which
will be added should not have more than one overlap between any of the present
columns in order to avoid length-4 cycles. The second thing to be considered when
adding a new column is that, the positions of the 1’s of the column should be selected

from the rows with weights smaller than the desired row weight w, . By this

construction method, the parity check matrix of an mxnregular LDPC code that is

free from length-4 cycles can be obtained.

14

We have implemented a software which is capable of generating regular parity-check
matrices of any length and any rate using McKay and Neil’s method. In this work, all
the regular matrices we have used are constructed using this software. The software

we implemented for regular matrix generation is explained in Appendix A.

2.2.2 TIrregular LDPC Code Construction by 2A Method

The 2A method of constructing irregular LDPC codes was introduced to the
literature by MacKay and Neal [MacKay-Neal-1996]. The method has the following

rules for constructing the parity-check matrix:

e In the parity-check matrix of the code whose size is mxn, up to m/2 of the
columns are designated ‘weight-2 columns’, and these are constructed such
that there is zero overlap between any pair of columns.

e The remaining columns are made at random with weight-3, with the weight
per row as uniform as possible, and overlap between any two columns of the

entire parity-check matrix no greater than 1.

As can be understood from the above rules for construction, the parity-check matrix
generated by this method has some of its variable nodes with degree 2, and some of
them with degree 3. Therefore, the variable node degree distribution of such a matrix

can be written in generic form which is given in equation (2.14).

Ax)=Ax+ A,x°
(2.14)
A+, =1

The irregular codes generated by this method look very similar to regular codes. The
only difference of these irregular codes is that they have some of their columns with
weight-2 instead of weight-3. In the related paper of MacKay [MacKay-1999], it is

said that the weight-2 columns are introduced to the parity-check matrix because

15

they “guessed” that these columns may lead the code to a better performance than the

regular ones.

The part of the matrix with weight-2 columns has the important property that there
exist zero overlap between any pair of the columns. This property is quite essential to
avoid cycles of any length which may be caused by the weight-2 columns. For a
moment let us ignore this property and see what may happen. Let us consider the
below figure which is a part of the bipartite graph of an LDPC code which is

constructed randomly:

O
O
O
Variable x .
Nodes Vy
Cx
Vz Check
O Y Nodes
O ¢,
o O

Figure 2.3 A part of the bi-partite graph of an irregular LDPC code

which is constructed randomly

In Figure 2.3, it can be easily seen that the edges emanating from the variable nodes

v., v, and v, result in a cycle of length-6 which distorts the performance of the

code. However, if the actual proposed property of the 2A method was preserved,
there would be no chance to have any cycles generated by the degree-2 variable

nodes.

16

The performance of the irregular codes generated by the 2A method will be

investigated in detail in Section 3.3.

2.2.3 Irregular LDPC Code Construction by Pseudo-Random Method

This method works similar to the regular matrix construction method. However, in
this case all the columns do not have the same weight. The degrees of the variable
nodes are defined by the degree distribution polynomial of the code and there is more

than one degree value that a variable node can have.

In this method, as in the regular case, the columns of the irregular matrix are
constructed from left to right. The weights of the columns and number of columns
with each column weight are defined by the variable node degree distribution
polynomial. Starting from the leftmost column, first the columns with the smallest
weight are constructed, then the columns with next greater degree are constructed
and this process continues until all columns with each weight are constructed. All of
the columns are constructed such that the overlap between any two columns of the

matrix is not greater than one in order to avoid length-4 cycles.

In this work we have generated many different irregular parity-check matrices with
different lengths and different variable node degree distributions using these
methods. The performances of the irregular LDPC codes are analyzed in detail and

compared with the regular ones in the following chapters.

2.3 Encoding of LDPC Codes

Consider an LDPC code defined by the parity-check matrix H. As we have discussed
in Section 2.1, a codeword ¢ of this code is generated by ¢ :EG, where m is the

source message and G is the generator matrix. In this codeword generation process,
which is called encoding, the main point is to have low encoding complexity. The

parity-check matrix H is a sparse matrix. However, the generator matrix G, is not a

17

sparse matrix; hence, the encoding time by ¢ = mG is proportional to n*, where n is

the codeword length.

To reduce the encoding complexity, Richardson and Urbanke proposed a method
where the parity-check matrix H is directly used to encode codewords [Richardson-
Urbanke-2001]. In this method, which is called the RU algorithm, the parity-check
matrix is transformed into an approximate lower-triangular form, by performing
basic row and column operations only. The approximate lower-triangular form for an

mx n parity-check matrix is shown in Figure 2.4.

—— 1 —— —py M—g —»

| :h\l“\l 0 I
A B | \“1«\1 m—g
H= m I : 1 b *
c . D . E g
: f l
* Iy o

Figure 2.4 Example of a parity-check matrix in approximate lower triangular form

Suppose that m is a vector of message block. According to the RU algorithm, the
codeword after decoding is ¢ = (m, P> pz) where p, and p, are the parity parts. It is
shown that p, =-¢"' (— ET'A+ C)sT and p,) =-T"" (AST + BplT), where
¢=-ET'B+D. The encoding complexity of the algorithm is then shown to be

proportional to n+g®. Therefore, when n >> g, the encoding complexity is

proportional to 7.

18

The RU method works on the given parity-check matrices. In the literature, there are
other methods that use the idea of spending effort on the construction the LDPC
codes in order to have low encoding complexities. In [Mackay-Wilson-Davey-1999]
and [Xia-He-Xu-Cai-2008], design methods of LDPC codes are given such that the

encoding complexities of the codes are proportional to 7.

2.4 Decoding of LDPC Codes by Belief Propagation Algorithm

The most widely used algorithms for decoding LDPC codes are message passing
algorithms which are also known as iterative algorithms. These algorithms are called
iterative since messages are passed from variable nodes to check nodes, and from
check nodes to variable nodes at each round of the algorithm. The messages from
message nodes to check nodes are computed based on the observed value of the
message node and some of the messages passed from the neighbouring check nodes
to that message node [Shokrollahi-2003]. In this section we will investigate the most

commonly used decoding algorithm called the belief propagation algorithm.

Belief propagation algorithm is a message passing algorithm, in which the messages
passed between variable and check nodes at each round of the algorithm are random
variables. In this algorithm, the calculations of these random variables are done
separately assuming that they are statistically independent. This assumption would
be true for a code, which contains no cycles of any length. Almost every LDPC code
contains cycles. However, this algorithm works quite well for decoding LDPC codes

whose cycles are long enough [Shokrollahi-2003].

In our study, we have implemented the log-likelihood belief propagation decoding
and the likelihood belief propagation decoding. These two techniques are quite

similar to each other as explained below.

19

Likelihood Decoding

In likelihood decoding, the messages passed between variable and check nodes are

the likelihood values of these bits. The algorithm is composed of 4 steps.
First Step: Initialization

At the first step of decoding, the only messages to be sent are the messages from
variable nodes to check nodes which are calculated using the observed values of
these bits. This observed information for each bit is used to calculate the likelihood

ratio of each bit.

1-p.
Qi = P[,im’tial = B (2.15)

i

In (2.15), p, is the probability that the bit ¢, of the received codeword

c=[¢,c,...c,] is 1. Q, is the initial value for the message that is sent from the

i" variable node to its related check nodes. In an algorithmic manner, we will call the

message sent from ;" variable node to the j” variable node L, ; = p;, and the initial

value of Li’j =0Q,.

Second Step: Check Node Response

In this step, check nodes calculate their response messages R, (0) and R "y (1) to be

sent to the variable nodes.

(2.16)

20

Here, P(ci = O‘ y j) and P(ci = 1‘ y j) are the probabilities that the bit ¢; is 0 or 1 given

the conditional event y; that the j * parity-check equation is satisfied.

To be able to compute P(cl. :0‘ y_/.) and P(ci :1‘ y j), we will use an expression

which is proved by Gallager in his work [Gallager-1963]. Gallager showed that the
probability P(ci = 0‘ v j) that the j” parity-check equation is satisfied if the bit c, is

equal to 0 can be expressed as

P(cl. =0\yj)=%+% [Ta-2p,). (2.17)

i'eB i

where B, is the set of bits included in the ; * parity-check equation and p, is the

probability that the bit ¢, is equal to 1.

Then, the probability P (C,- = 1‘)’_,—) that the j” parity-check equation is satisfied if the

bit ¢, i1sequalto 1 is

1

Ple, =1y,)=1- P, =o\yj)=5—%£['('l—2p,)- (2.18)

Therefore, R, (0) and R ” (1) can be calculated as the following.

Rj,i(o):l+% [10-2p,)

2 i'eB, i

O ' (2.19)
R (1)=——— 1-2p.
=575 I

where B, is the set of bits included in the j™ parity-check equation.

21

The R, values are then sent from each check node to the variable nodes that are

connected to it, and the algorithm continues with the third step.
Third Step: Codeword Test

This step is the decision step of the algorithm. The check node responses together

with the initially observed information are used to decide whether the bit ¢, isa 1 or
0. For each bit i the following calculations are done.
D,(0)=k, (1= p,)[R,,(0) (2.20)
J'ed;

In the equations, the set A4, is the set of check nodes that are connected to the

variable node i, and the constants k, . are chosen such that D, (O)+ D. (l) =0. These

o

D,(0) and D,(1) values are then used in the inequalities given below to decide

whether the bit ¢; isa 1 or 0. Let the decided sequence be m= [mo m,..m_ |

{1 200500 .
0, else

If the vector m is a valid codeword, that is to say mH" =0, the algorithm

successfully terminates here, and outputs m as the decoded codeword. If m is not a

valid codeword, the algorithm continues with the fourth step.
Fourth Step: Variable Node Response

In this step, the first thing to be done is to increase the iteration number by one and

has been reached. If / __ has

max ? max

check if the maximum number of iterations, say /
been reached, the algorithm terminates with failure and outputs the last decided value

of m.

22

If I_. has not been reached yet, variable node responses are calculated using

equation (2.22), and these responses are sent form each variable node to the related

check nodes.

Li,j (0) = li,j (1 _pi) HRj',l (O)

J'€d;,j'#j

Li,j (l) = li,jpi H Rj',i(l)

J'€d;,]'#]

(2.22)

such that the constants /, ; are chosen to satisfy L, (0)+ L, (1)=1.

After the responses are sent to the variable nodes, the algorithm continues with the

second step.

Log-likelihood Decoding

This type of decoding is similar to the likelihood decoding. However, in this case, the
messages sent between variable nodes and check nodes are the log-likelihood ratios,
not the likelihood values, of these bits. The steps of log-likelihood decoding are same
as the likelihood decoding. In this section, we will mention the similarities and
differences of log-likelihood decoding compared to likelihood decoding and modify
the equations of likelihood decoding in order to suit the log-likelihood decoding.

First Step: Initialization

At this step, the messages to be sent from variable nodes to check nodes are

calculated using the following equation.

O, = LLR(P,)= ln[l;—p"] (2.23)

23

Similar to the likelihood decoding, we will call the message sent from i” variable

node to the j” variable node L, = ln(1 — p ’), and the initial value of L, ; =0,.
_ i

Second Step: Check Node Response

In this step, the check node responses are calculated using the following equation.

R-Jnf%jgk% (2.24)
Joi P c[_ 1‘ yj .

Similar to likelihood decoding, P(Ci :O‘ v j) and P(cl. :1‘ v j) are computed using

(2.17) and (2.18). Therefore, R;, can be expressed as

1
f+f (1- 2p)
P(c, =0|y,) ,ilﬂ
/,[:ln P(—l‘) =In 1 1 (225)
' i & =1y, - 1-2p.
» 72 1S n|

At this point the following identity of tangent hyperbolic and natural logarithm

functions will be used.

iln(l;x L /1 x_|x
_ 2 X
tanh(lln(1 XD =2 1 (1 L x =1-2x
2 X Eln(; 1—-x
e 1/ 1/

(2.26)

Also note that

1-p,
Ll.’j = ln(—} (2.27)

24

Then, R, can be calculated as

1+ J] tanh[WJ

\ L
i EB‘/- NES)

R.. =In

It :
1- H tanh(tanh(?"j / 2)]

i'eB i'i

(2.28)

Third Step: Codeword Test

Similar to likelihood decoding, this step is the decision step. In this step, firstly the

following calculation is done.

L=0+)R, (2.29)

Jed;

After this calculation, the decision for each bit is done using the following equation.

m. =

1

1, L, <0
(2.30)

0, L, >0

If the decided vector m is a valid codeword, the algorithm stops here. Else, the

algorithm continues with the fourth step.
Fourth Step: Variable Node Response

In this step, similar to likelihood decoding, iteration number is increased and checked
whether it has reached the value 7,,,. If so, the algorithm terminates with failure and
the last decided codeword is outputted. If not, the variable node responses are

calculated using the following equation.

L,=0+ DR, 231)

J'e4i,] =]

25

The responses of the variable nodes calculated using (2.31) are then sent to the check

nodes and the algorithm continues with the second step.

The steps of both likelihood decoding and log-likelihood decoding algorithms are

illustrated in Figure 2.5.

i™ variable
node

i™ variable
node

j™ check j™ check
node node
Step-1 Step-2
Initialization Check Node Response
i" variable
node
j™ check
node
invalid
codeword &
Step-4 1,4« not reached Step-3
. < .. «—
Variable Node Response Decision

valid

Success

invalid

codeword &
codeword 1., reached

Failure

Figure 2.5 Illustration of likelihood and log-likelihood decoding algorithms

26

CHAPTER 3

SIMULATION RESULTS

In this chapter, we mainly investigate the performance of regular and irregular LDPC
codes. Irregular LDPC codes with different variable node degree distribution
polynomials are generated and their bit error ratio (BER) versus input bit energy
divided by noise spectral density of the channel (E,/Ny) performance is compared

with that of the regular codes.

Section 3.1 is intended as a preliminary related to the understanding of the
fundamental concepts about LDPC codes and to the control of our implementation.
In Section 3.2, we examine two different types of errors made by the decoder;
failures and wrong decisions. We show that decoding failures are much more likely,
1.e., the decoder algorithm reaches to the end of iterations without deciding on any
codeword but still correcting some erroneous bits. The frequency of wrong decisions,
i.e., decisions on a wrong codeword different from the sent one is extremely small

and approaches to 0 for sufficiently long codes.

In the remaining sections, irregular LDPC codes are constructed using either of the
MacKay’s construction methods discussed in Section 2.2. The codes generated by
the 2A method are examined in Section 3.3 for various values of the average variable
node degree. Two different types of irregularities, having variable node degrees of
either 2/3/4 or 1/3/5 generated by pseudo-random construction, are investigated in
Sections 3.4 and 3.5, respectively. The effects of these kinds of irregularities on the

performance of irregular LDPC codes are discussed.

In Sections 3.6 and 3.7, we consider codes with variable node degrees 2/3/i, where

the highest degree i is chosen from the set {9, 11, 13, 19}. We have specifically

27

studied the trade-off between the average variable node degree and the number of

length-6 cycles in detail.

In Section 3.8, we design a 2/3/13 irregular code of length 16,000 bits and compare
its performance with a commercially used LDPC code of length 64,800 bits. Then, in
Section 3.9, we analyze the decoding times of some regular and irregular codes. We
investigate the effect of the average variable node degree on the decoding time of the

codes.

Section 3.10 deals with the check node degree distributions of the generated LDPC
codes, which occur randomly as a result of the construction algorithm. Section 3.11

is a summary of the work done.

The properties of the codes, the communication channel, and the decoder that are

used in the simulations are as described below.

e Code Properties: In each simulation, we use a randomly generated regular or

irregular LDPC code of specific length (576<n<1800), and of rate '

according to one of the construction methods described in Section 2.2.

e Communication Channel Properties: We use additive white Gaussian noise

(AWGN) channel with Binary Phase Shift Keying (BPSK) modulation in our

simulations. Each bit of a codeword to be sent is first modulated with BPSK,

then a random noise sample of given power is added.

e Decoder Properties: We use the log-likelihood decoding algorithm with the

maximum number of iterations, / chosen as 50. So, if the decoder cannot

max 2

decide on a valid codeword, it yields the vector that it arrives at the 50"

iteration as the decoder output.

In the simulations, for each Ey/Ny value, we count the block errors, almost all of
which are shown in Section 3.2 to occur as a result of decoding failures. The

simulation is stopped when 20 block errors are counted. Then we calculate the Bit

28

Error Ratio (BER) value for this level of Ey/Ny, and present the results in BER versus

E/Ng value curves.

We have used MATLAB as software development tool. In our work, we have done
many simulations all of which take long time. In order to shorten the time needed to
complete the simulations, we have worked on optimizing our decoder software and
also run our simulations in more than 4 computers in parallel. In Section 3.1, the
performances of two different decoders, namely log-likelihood and likelihood
decoders are compared. The time consumption of the log-likelihood decoder that we
worked on optimizing its software is less than that of the likelihood decoder.
Therefore, we may say that our optimization wok on the decoder software has been

useful.
3.1 Experimental Preliminaries and Software Control

In this section, we investigate the preliminaries related to the understanding of the
fundamental concepts about LDPC codes and control the correctness of our
implementation. Firstly, we compare the performance of two different decoders, /og-
likelihood and likelihood decoder. Then, we review the effect of the codeword length

of an LDPC code on its performance.
3.1.1 Decoder Comparison

In Section 2.4, we have described two types of decoding algorithms called likelihood
and log-likelihood decoding. Although the performance of the two algorithms is
expected to be the same, in [Uzunoglu-2007] the simulation results of these two
decoders were found to be not exactly the same. This is why we start by comparing

the performance of these decoders.

We have done decoding simulations of different length codes using both of the
decoders and obtained the graphs shown in Figure 3.1 for n=576 and in Figure 3.2
for n=896. It is seen that both of the decoders yield exactly the same results, which is

29

not surprising. The only difference that we have observed is the time consumption of

the two decoding softwares.

10

w— (57, 255) LDPC with Likelihood Decoder 1
-=BF- (576, 265) LDPC with Log-Likelihood Decoder []

BEFR

- -l _Jd_Laa1u___

-
-
in

[N

E kéNa (dB)

Figure 3.1 Performance comparison of log-likelihood and likelihood decoders for a regular

(576, 288) low-density parity-check code

TII220Y m— 05, 445) LDP C with Lik elihood Decoder |
==BF= (355, 445) LDP C with Likelihood Decoder |

BER

i
1 15 2
E kMo (4B

- -L-L1L

Figure 3.2 Performance comparison of log-likelihood and likelihood decoders for a regular

(896, 448) low-density parity-check code

30

The time spent for the simulations of (576, 288) and (896,448) codes with log-

likelihood and likelihood decoders are given in Table 3.1.

Table 3.1 Time consumptions of log-likelihood and likelihood decoders

LDPC Time Spent with Time Spent with

Code log-likelihood decoder | likelihood decoder
(576, 288) | 402.297 seconds 460.703 seconds
(896, 448) | 2933.02 seconds 3452.86 seconds

As can be seen from Table 3.1, our software for the likelihood decoder spends
approximately 15% more time than the log-likelihood decoder. This is an
optimization issue to be studied on the implementation of the decoder software. We
did not work on this optimization since both decoders give out the same results.

Instead, we decided to use the log-likelihood decoder in the rest of our simulations.

In [Uzunoglu-2007] the simulation results of these two decoders were not exactly
the same, the log-likelihood decoder consistently performing slightly worse than the
likelihood decoder. One possible reason for this erroneous result may be the
cumulative effect of the rounding errors in the software written for the log-likelihood
decoder. A related graph taken from [Uzunoglu-2007] is given in Figure 3.3, where
the abbreviation of “LL Decoders” stands for the log-likelihood decoder, and “APP

Decoder” stands for the likelihood decoder.

31

—&A— Rate 34 and Length 896 with LL Decoder
——— Rate 3'4 and Length 896 with APP Decoder
—HB— Rate 1/2 and Length 896 with LL Decoder
—&— Rate 1/2 and Length 896 with APP Decoder

BER

4 H

St 44

o
[y -

2.5 3 35 4
Eb/Mo (dB)

Figure 3.3 Performance comparison of log-likelihood and likelihood decoders for regular
(896, 448) and (896, 224) codes taken from [Uzunoglu-2007]

3.1.2 Effect of Codeword Length on the BER Performance

In the literature of LDPC codes, it is a well-known fact that the performances of
LDPC codes with long codeword lengths are better than those of the shorter length
codes. In this section, we observe the amount of performance improvement brought

by an increase in the length from 576 to 2700 bits, for rate % codes.

In the simulations, we randomly generate regular (3, 6) LDPC codes, i.e., the

variable node degree w, = 3 and the check node degree w,=6. A sample graph

containing the BER performances of rate !4 and regular (3, 6) LDPC codes with
different codeword lengths is given in Figure 3.4.

32

€

— -
|
|
|
|
|
-9
|
|
|
|

BER
S
TTT
LIl

F3 —e— (576, 288)
L] —3— (896, 448)
| —¥—(1200,600) |17 C T TTOTTT TN

N e R R R R N
M

===

+

- —<€— (2100, 1050) | - e T bt
| —A— (2700, 1350) [1T C T T r T
— -

10'5 ; ;
1 1.1 1.2 1.3 1.4 1.5

Eb/No (dB)

=T

[

-
[e]
N
~
N
o)
N
©
N

Figure 3.4 Performance comparison of (576, 288), (896, 448), (1200, 600), (2100, 1050),
(1800, 900) and (2700, 1350) regular (3, 6) codes

When the graph is examined, it is observed that if the worst performing (576, 288)
code is compared with others at the BER of 1072, (2700, 1350) code is 0.45 dB
better, and (1200, 600) code is 0.3 dB better. The performance gain of (2700, 1350)
code over (1200, 600) code is around 0.25 dB at the BER of 107°. It seems that
doubling the codeword length results in a performance gain like 0.2-0.3 dB for
BER’s around 10 % or 10",

3.2 Wrong Codewords at the Decoder Output

In this section, we analyze the codewords at the output of the decoder in terms of
their relation between the input codewords. We first give the definitions of different
situations that we may face at the decoder output and then we investigate the

conditions which lead to these different situations.

33

When a received sequence enters our decoder, we may have three different cases at

the output of the decoder. These cases are:

1) Success:

The situation that we call “Success” occurs when the output of the decoder is exactly
the same as the initially sent codeword. This means that our decoder has successfully

decoded the noisy input and obtained the transmitted codeword without any error.

2) Failure:

The situation that we call “Failure” occurs when the decoder is not able to find a
valid codeword for the related parity check matrix. In this case the maximum number
of iterations for the decoding algorithm is reached and the output has erroneous bits

as compared to the initially sent codeword.

3) Wrong Codeword:

The situation that we call “Wrong Codeword” occurs when the output of the decoder
is a valid codeword for the related parity check matrix, but it is different from the
transmitted codeword. In this case the decoding process ends up with an error vector

equal to the difference between the transmitted and wrongly decoded codewords.

We have made simulations on various codes with different code lengths to
investigate when we get wrong codewords at the output of the decoder. We have
used codes with codeword lengths of 50, 100, 200, 400, 600, 800, and 1000 bits. All
of the codes are regular with rate %, variable node degree 3 and check node degree 6;
i.e., regular (3, 6) codes. Random noise samples for each level of SNR in the set
{0.5, 1, 1.5, 2, 2.5, 3} dB are calculated and added to the sent codeword. The
maximum number of iterations /. 1S set to 50, so that the log-likelihood decoder
either finds a codeword (either correct or wrong) in less than 50 iterations or it fails

at the 50" iteration and yields an erroncous word. We have sent a thousand

34

codewords for each SNR level. The simulation is stopped either when 20 codeword

errors for each SNR level is reached or all the thousand codewords are sent.

The error distribution results of three simulations, each one using a different seed for
generating the random noise samples, are given in Table 3.2 where “S” (success)
refers to the number of codewords decoded successfully, “F” (failure) refers to the
number of decoding failures (which output encoded words with bit errors), and “W”
(wrong codeword) refers to the number of valid codewords, which are different from

the sent codeword.

35

9¢

Table 3.2 Distribution of 20 block errors (between decoding failures and wrong codewords) for rate 1/2 codes of different lengths, when

the maximum number of iterations is set to 50.

Codeword
Length 50 100 200 400 600 800 1000
1% Simulation
SNR | S F |W S F |W S F |W S F W S F W S F|W S F W
0.5dB 9| 18| 2 8| 19| 1 8| 20| O 1120| O 1120] O 0/20| O 0|20 O
1dB 18| 20| O 211 19| 1 14| 20| O 11120 O 6(20| O 12120 O 10/ 20| O
1.5dB 421 19| 1 39| 19| 1 52| 20| O 36|20| O 39(20| O 451 20| O 66| 20| O
2dB 123 19| 1 88| 19| 1 79| 20| O 2551 20| O 39320 O 981 19| O 984 | 16| O
2.5dB 156| 18| 2| 278 17| 3| 301| 19| 1 991 9| O 995| 5| 0| 1000| O| O 1000| O] O
3dB 195 20| O 627| 18| 2 991 9|1 0 999| 1| O 999 1] O 1000 O| O 1000 0| O
2" Simulation
SNR | S F |W S F |W S F |W S F W S F W S F|W S F W
0.5dB 18| 20| O 19| 20| O 8| 20| O 3/20| O 3120 0 0(20| O 0|20 O
1dB 151 17| 3 12| 19| 1 71 20| O 101 20| O 151 20| O 14120 O 16 20| O
1.5dB 21| 20| O 33| 18| 2 46| 20| O 311 20| O 34120| O 69| 20| O 83|20| O
2dB 106| 18| 2 791 20| O 162| 20| O 1501 20| O 4201 20| O 649| 20| O 984 | 16| O
2.5dB 195| 18| 2| 323| 18| 2| 282| 20| O 986 | 14| O 996 | 4| O 998 2| 0| 1000| O] O
3dB 1321 19| 1 654 | 19| 1 984 | 16| O 1000 O| O 1000 0| O 998| 1| O 1000 0| O
3" Simulation
SNR | S F |W S F |W S F |W S F W S F W S F|W S F W
0.5dB 16| 20| O 11 19| 1 5|/ 20| O 2120| O 1120| O 1120| O 0[/20| O
1dB 171 20| O 17| 20| O 14| 20| O 12120 O 5120 0 221 20| O 3120 0
1.5dB 46| 20| O 63| 18| 2 29| 20| O 591 20| O 54120 O 501 20| O 741 20| O
2dB 124 19| 1 130 20| O 94| 20| O 1911 20| O 2411 20| O 5441 20| O 983| 17| O
2.5dB 226 | 16| 4 263| 20| O 301 20| O 984 | 16| O 997| 3| O 999 1| O 999 1| O
3dB 170| 20| O| 590| 20| O| 987| 13| O 998| 2| 0| 1000| O| O| 1000| O| Of 1000| O] O

When Table 3.2 is investigated, it is seen that for codeword lengths of 50 and 100
bits, the decoder may output wrong codewords. However, for codeword lengths
greater than 200 bits, we never face any wrong codewords; i.e., all of the bit errors
occur as a result of decoding failures. Our simulations show that when the codeword
length is large enough and the maximum number of iterations is chosen suitably,
there is no wrong codeword at the decoder output. In LDPC coding, codeword
lengths are chosen very long for excellent performance, they are practically on the
order of thousands of bits; so all the bit errors are the result of decoding failures

arrived at the pre-specified maximum number of iterations.

In Table 3.2, the wrong codewords appear at the decoder output only for block
lengths shorter than 200. We suspect that this may be the result of the maximum
allowed number of iterations, /.x = 50, which is relatively high as compared to the
codeword length. In order to investigate the effect of this parameter on the number of
wrong codewords, we have made a similar simulation setting the maximum number

of iterations to 20, for codeword lengths of 50, 100 and 200. (see Table 3.3)

Table 3.3 Distribution of 20 block errors (between decoding failures and wrong codewords),
when maximum number of iterations is set to 20.

Codeword Length 50 100 200
1°' Simulation
SNR|| s |[F|lw|] s |[F|w|] s |[F|w
05dB| 13] 20| © 5] 20| 0 2[20] 0O
1dB| 20| 19] 1 14| 20| o] 10[20] ©
15dB| 45] 17| 3| 27| 18] 2] 40[20] ©
2dB| 110] 19| 1] 127 20| o] 98[20] ©
25dB| 135] 18] 2| 127] 20| 0] 241|20] ©
3dB| 173 16| 4| 559 20| 0] 993] 7| ©
2" Simulation
SNR| | S FIW/| S FIW| S |[F| W
05dB| 15| 18] 2 4] 20] 0 1]20] 0
1dB| 39| 20| 0] 13| 20| © 9/20] ©
15dB| 37| 20] o] 30] 19] 1 42[120] 0O
2dB| 53| 19] 1] 120] 19| o] 72[20] o
25dB| 190] 19] 1] 165] 20| 0] 381[20] ©
3dB| 407 18] 2| 488| 18] 2| 724[20] 0O

37

Table 3.3 (cont’d)
Codeword Length 50 100 200

3" Simulation

SNR| | S FIW/| S FIW| S |[F| W
0.5dB 18] 19| 1 3] 20] 0 6/20] 0O
1dB 18| 20| O 16| 19] 1 15[20] 0
15dB| 37| 17] 3| 42| 20| 0] 24[20] o©
2dB| 91| 20| o] 86| 19] 1 63[20] ©
25dB| 175| 17| 3| 155] 20| 0| 315[20] ©
3dB| 423 19| 1| 423]| 18] 2| 986[14] 0

Table 3.3 shows that the number of wrong codewords obtained at the output of the
decoder considerably reduces while /.« is decreased from 50 to 20. This is also not a
surprising result since decoding failures are more likely to occur when the algorithm
is allowed to perform less number of iterations. On the other hand, setting /;,.x equal
to 20 seems to be large enough for successful decoding of the transmitted codewords

for the codes of length shorter than 200.

After these observations, we wanted to compare the erroneously decoded vectors,
1.e., failures and wrong codewords, with the initial received vectors. In other words,
when a received vector is decoded to be a failure or wrong codeword at the decoder
output, we compared the bit errors of the received words before decoding with those

of the words after decoding.

We have used a rate 2 regular (3, 6) code with codeword length 50. Again, random
noise samples for each level of SNR in the set {0.5, 1, 1.5, 2, 2.5, 3} dB is added to
the sent codewords. This time, instead of 20 block errors, we stopped our simulations
when 200 block errors are counted for each SNR level. Table 3.4 shows the total
number of erroneous bits of the actual received words and that of the words which

are decided as failure or wrong decision at the decoder output.

38

Table 3.4 The number of erroneous bits of blocks, which are decided as failure or

wrong decision at the decoder, before and after they are decoded.

Failures=193 Wrong Codewords=7
Before After Before After
Decoding Decoding Decoding Decoding
0.5dB | 1604 1334 68 72
Failures=182 Wrong Codewords=18
Before After Before After
Decoding Decoding Decoding Decoding
1dB |1511 1239 133 127
Failures=183 Wrong Codewords=17
Before After Before After
Decoding Decoding Decoding Decoding
1.5dB | 1452 1170 123 125
Failures=172 Wrong Codewords=28
Before After Before After
Decoding Decoding Decoding Decoding
2dB [1299 1052 185 193
Failures=168 Wrong Codewords=32
Before After Before After
Decoding Decoding Decoding Decoding
25dB | 1207 1037 207 221
Failures=166 Wrong Codewords=34
Before After Before After
Decoding Decoding Decoding Decoding
3dB |1146 1084 196 242

When Table 3.4 is inspected, it can be seen that the number of bit errors introduced
by the communication channel is always reduced whenever there is a decoding
failure. However, for the case of wrong codewords, the number of erroneous bits is

either very close to the initial value or more than that.

In the last simulations, we collected all the wrong codewords and seen that the
number of 1’s of the codeword with minimum weight is 5. Considering that all-zero
word is a codeword for all block codes, one can say that the minimum distance
d;, of this code is smaller than or equal to 5. The smallness of d =5 value with
respect to 20 iterations is the main reason to have more wrong codewords at the

decoder output, as compared to higher length codes that have higher d_. values.

39

To sum up all the observations of this section, while decoding in 50 iterations, we
have detected wrongly decoded codewords at the decoder output only for codeword
length shorter than 200 bits. If the maximum number of iterations is reduced to 20,
wrongly decoded codewords disappear for length-200 codes and can only be seen for
codes of length smaller than 100 bits. So, as a handy rule of thumb, we can say that
wrong codewords do not occur if the maximum number of iterations parameter of the
decoding algorithm is less than one tenth of the block length. Useful LDPC codes are
chosen very long for excellent performance, which guarantees not having any
wrongly decoded codeword at the decoder output. So, practically all decoding errors

come from decoding failures.

Moreover, whenever a decoding failure occurs, i.e., a legitimate codeword cannot be
arrived at the decoder output, the number of bit errors seems to be reduced slightly at
the end of the maximum number of iterations of the message passing decoding

algorithm.

3.3 Irregular 2A Codes

In Section 2.2.2, we have described the 2A method of MacKay and Neil. In this
section, we investigate the BER performances of the LDPC codes with variable node
degrees varying between 2.75 and 3 are found by simulations. The LDPC codes we
use in this section are constructed using our software for constructing irregular 2A

codes, which is explained in Appendix A.

Using our software, we have generated different length irregular LDPC codes. For
each codeword length, five different irregular matrices with different average
variable node degree values are constructed. The performances of these irregular

codes and a regular code with the same length are compared.

The variable node degree distributions of the irregular 2A matrices that we have

constructed for each codeword length are given in Table 3.5.

40

Table 3.5 The variable node degree distributions of the irregular 2A matrices that we have

constructed for codeword lengths of 576 and 896

Matrix Number Average Variable Node | Variable Node Degree
Degree w, Distribution
1 2.75 2,(x)=0.25x +0.75x>
2 2.80 2,(x)=0.2x +0.8x
3 2.85 A,(x)=0.15x+0.85x’
4 2.90 2,(x)=0.1x+0.9x>
5 2.95 25(x)=0.05x +0.95x°

The reason of constructing five different irregular matrices for each codeword length
is to see the effect of the number of weight-2 columns in the parity-check matrix. By
this way, one can observe the performance of different irregular 2A matrices with

different average variable degrees.

In the simulations, we have first used parity check matrices of size 288x576; i.e., the
codeword length is 576 and the code rate is /2 . The simulation results for the five
(n, k)=(576, 288) irregular codes with different average variable node degrees,

Av{w,}= w,, close to 3; along with the performance of a (576, 288) regular (3, 6)

(i.e., (w,,w,)=(3, 6)) code are given in Figure 3.5.

41

_.”:I' _____________________ ! o~ ______ oo oss——ssoosso—soo—oo---—

__

EER

| —e— (576,288) W, =2.75
| —a— (576,288) W, =2.05
10— (576,288) W, =2.85 [
| —=— (576.288) Regular [-

| —8—(576,288) W =2.80

{ —p— (576,288) W,=2.90
10" ' !

1 15 2 25
Et/No (dB)

Figure 3.5 Performance comparison of (576, 288) regular and irregular 2A codes, where w,

denotes the average variable node degree of the code.

We should note here that the check node degrees of the 2A matrices are kept as

uniform as possible as it is mentioned in [MacKay-Neil-1996]. For a code with

average variable node degree w,, we have tried to make the degrees of the check

nodes close to the average check node degree value which is 2 w,=2w,. In
m

Appendix B, check node degree distribution of sample irregular 2A codes are

visualized.

When Figure 3.5 is investigated, it is seen that all irregular 2A codes having w,
values close to 3, and the regular (3, 6) code have similar performances.
Nevertheless, the irregular code with average node degree 2.90 seems to have the
best performance. To compare this irregular code with the regular one only these two

performance curves are given in Figure 3.6.

42

:: —f— (575 288) Regular -
| —p— (576,288} W =2.90 []

__

BER

EbiNo (dB)

Figure 3.6 Performance comparison of (576, 288) regular and irregular 2A codes, where w,

denotes the average variable node degree of the code.

Figure 3.6 shows that for rate 2 codes of length 588, the irregular 2A code with
average variable node degree 2.90 has slightly better performance than that of the
regular one with variable node degree 3. This result led us to simulate longer length
2A codes in order to see whether the irregularity of this type always improves the

performance of the code.

Secondly we have simulated the performance of (896, 448) regular and irregular

codes with average variable node degrees around 3 and obtained Figure 3.7.

43

o) —e— (895,448) W),=2.75
-] —g— (896, 448) W), =2.80
| —p— (896,448) W, =2.90

10 E-E +|:E.Eﬁ.44ﬂ} Regular |==z=z===zz==zz=z:=:=:z Z-zzzzzzzzz:
o) s (896,448) W, =85 |TIIIIIIIIIIIIIIIIIIIEIIIIAIIA AN

| | —— (896,448) W, =2.95

EbiNo (dB)

Figure 3.7 Performance comparison of (896, 448) regular and irregular 2A codes, where w,

denotes the average variable node degree of the code.

For codeword length of 896 bits, again we could not observe a noticeable
improvement in the performance of the code. After these observations, we have
decided to further increase the codeword length and see the effect of it on the
performance of the code. We have simulated codes with codeword lengths 1200,
1500, 1800, 2100, 2700 and 3600 bits. The simulation results for all of these
different codeword length codes are given in Figure 3.8 to Figure 3.13. In the graphs,
we included only the best performance irregular code together with the regular code

in order to see the difference clearly.

44

T T
[,
[=] '
= R Y | 1
(=1 1
!
| 2 !y
= 1
= :
= '
=2 o '
L= R T '
| =1 =1 !
SR "
— w 1 [
— ' [
' [
! [
1 [[e R
[[
[[
[[
[[
[[
' o I
- “r-r-- R
1 [[
' [[
' [[
1 [[
1 [[
' v [
a- -r-r-- Fa-a- -
1 [[
1 [[
' [[
' [[
1 [[
1 [[
“- e EEEE TR
' [[
1 [[
1 [[
[[
[[
[[
k== EEEE TR
[[
[[
[[
[[
[[
[[
IR IR Py p—
T [
[[
[[
[[
[[
[[
[Ep— [Eprpprp—
T [
[[
[[
[[
[[
[[
Lx] ..W ..m..
= = = =
A A - A

4349

13 1.4 15 1.6 1.7 1.8 189
EMo rdB)

1.2

1.1

Figure 3.8 Performance comparison of (1200, 600) regular and irregular 2A codes, with the

=3 and w, = 2.95, respectively.

average variable node degrees w,

e,
m o
=
[= T
K]
T =
i
==
[P V]
e ORI T T S
[]
=S
s R3]
.
._++
arrisisr -

Arre-r -
noina
INEN

U U U U Oty

o34

EMo (dB)

Figure 3.9 Performance comparison of (1500, 750) regular and irregular 2A codes, with the

respectively.

3and w,=2.95,

average variable node degrees w,

45

—ss--d------sk-----sF-----o

—®—(1300,900) Reqgular

295 |

—— (1300,900) w,

[--~"~""Fr~~"~"=="rF~~"~"~"==7-==-=-=71--===-=9=-=--=--==--=79--

434

EoMo (dB)

Figure 3.10 Performance comparison of (1800, 900) regular and irregular 2A codes, with the

average variable node degrees w, = 3 and w, = 2.95, respectively.

T T
' Ty '
Wm S 1
1 = i 1
TE= 1
of 20 1
L -} 44
T i
e 2 |
' '
=
e 2 i i
o WL 1 1
=i = L -
[I (] i
1 [1
He2 2 [1
ER=R= D _
oy [1
LI} . r 1
' 1 '
L aTtT L B
1 [1
1 [1
' [1
' o '
1 [1
1 [1
[a-T -
' o '
1 [1
1 [1
' [1
o '
[1
a-T 1--
[1
o '
[1
[1
[1
o '
H-+ 4--
[1
[1
o '
[1
[1
[1
EERS 4 - -
[1
[1
[1
o '
[1
[1
- Fp—
['
[1
[1
[1
o '
[1
d-u ey
['
o '
[1
[1
[1
o '
w
=
—

1.7 1.8 19

1.6

1.5

EoMo (dB)

14

13

1.2

11

Figure 3.11 Performance comparison of (2100, 1050) regular and irregular 2A codes, with

respectively.

b

the average variable node degrees w, = 3 and w, = 2.95

46

= (Z700,1350) Regular {

295

——(Z700,1350) W,

]
-
1
'
'
'
1
'
-
'
1
'
'
'
1
-
'
'
1
'
'
'
-
'
'
'
1
'
'
-
1
'
'
'
1
'
a
'
1
'
'
'
1
a
'
'
1
1
'
'
L

EMo (dB)

Figure 3.12 Performance comparison of (2700, 1350) regular and irregular 2A codes, with

2.95, respectively.

the average variable node degrees w, = 3 and w,

M=
[N T
=
N
N =
(=]|
[N}

0
o id =
"" i
I ==
N ==
n| OO 40
| o— =
Ml = =
Nl =2 o
] =]
o ™17
" L
"
__+ +
b1
"
"
[N}
I

i P [

EMo (dB)

Figure 3.13 Performance comparison of (3600, 1350) regular and irregular 2A codes, with

2.95, respectively.

the average variable node degrees w, = 3 and w,

47

When we examine Figures 3.8 to 3.13, we see that the codes with average variable
node degree of 2.95 have always slightly better performance than regular ones. At
first sight, the reason for this is not very clear. Also, in [MacKay-Neal-1996], the

authors do not give a lucid reason for using weight-2 columns in their design.

The codes with average variable node degree of 2.95 have almost regular structures,
where 95 % of the columns are weight-3 and 5 % are weight-2. Therefore, it does not
make much sense to claim that the irregularity of the code is the reason for the better
performance. After some thinking, we conjecture that one possible reason for the
better performance of the codes with average variable node degree of 2.95 may be
their local girth distribution. In Section 2.2.2, we have discussed that the non-
overlapping property of the degree-2 columns decreases the number of length-6
cycles. Therefore, the irregular codes constructed with the 2A method have less
number of length-6 cycles as compared to regular (3, 6) code. In Table 3.6, we
present the total number of length-6 cycles for the (1200, 600) regular (3, 6) codes
and (1200, 600) irregular codes that we construct by the 2A method.

Table 3.6 Total number of length-6 cycles for (1200, 600) regular and irregular codes
constructed by the 2A method

Matrix Average Variable | Variable Node Degree | Total Number of
Number Node degree Distribution Length-6 Cycles
1 2.75 2,(x)=0.25x +0.75x" 128
2 2.80 2,(x)=0.2x+0.8x 135
3 2.85 2,(x)=0.15x+0.85x’ 149
4 2.90 A,(x)=0.1x+0.9x 165
5 2.95 A5(x)=0.05x +0.95x> 184
6 3 A(x)=x* 203

48

In Table 3.6, it is seen that the regular code has the largest number of length-6 cycles,

which decreases with decreasing average variable node degree of the code.

If we consider only from the cycle point of view, we expect that the code with less
number of length-6 cycles has the best performance. However, there exists a trade-
off between the number of length-6 cycles and the average node degree of a code. As
the average variable node degree increases, each variable of the codeword is checked
by larger number of equations, which in turn improves the performance. On the other
hand, an increase in the average variable node degree also increases the 1’s of the
parity check matrix, hence the number of cycles, which degrades performance by
thwarting the correct decision process with repeated use of some variable bits in the
same check equations. For instance, a cycle of length 6 involves 3 variables, say V7,
V>, V3, used in 3 different check equations, Ci, C; and Cs in different pairs; say (/>,
V3) in the check equation Cy, (V1, V3) in Cy, and (V7, V>) in Cs (see Figure 2.3). So, if
all the variables Vi, V>, V3, were decoded incorrectly, the three check equations Cj,

C, and C; would all be satisfied and those three bit errors would be undetectable.

In order to see the effect of the number of length-6 cycles more closely, we have
generated many LDPC codes with identical parameters and investigated their
performances. From the parity-check matrices that we have generated, we have
selected five different (1200, 600) regular codes (with variable node degree 3), and
five different (1200, 600) irregular codes with average variable node degree of 2.95.
The total numbers of length-6 cycles for all of these regular and irregular matrices

are given in Table 3.7.

49

Table 3.7 Total number of length-6 cycles for (1200, 600) regular and irregular codes
constructed by the 2A method

Matrix Average Variable | Variable Node Degree | Total Number of
Number Node Degree Distribution Length-6 cycles
1 3 2, (x)=x 203
2 3 (x): x 181
3 3 A,(x)=x" 171
4 3 A, (x) x’ 157
S 3 A (x)=x 151
6 2.95 2, (x)=0.05x +0.95x7 174
7 2.95 2;(x)=0.05x +0.95x 172
8 2.95 Ag(x)=0.05x +0.95x” 167
9 2.95 A (x)=0.05x +0.95x> 149
10 2.95 Ao (x)=0.05x +0.95x 139

From the parity-check matrices given in Table 3.7, we have firstly selected and
simulated the performance of the regular matrix with the lowest number of length-6
cycles, which is matrix-5, and the performance of the irregular matrix with the
highest number of length-6 cycles, which is matrix-6. In Figure 3.14 that shows the
results of the simulations, we see that the regular code, which has less number of

length-6 cycles than the irregular one, has better performance.

50

—A— (1200, 600) Irregular with girth-6 number=174
—h— (1200, 600) Regular with girth-6 number=151

BER

Eb/No (dB)

Figure 3.14 Performances of matrix-5 and matrix-6 of Table 3.7

As the second example, we have compared the regular matrix with the highest
number of length-6 cycles (matrix-1), and the irregular matrix with the lowest
number of length-6 cycles (matrix-10). The performances of these codes are given in
Figure 3.15. In this case, the irregular matrix, which has less number of length-6

cycles than the regular one, has better performance than the regular one.

i —*— (1200, 600) Regular with girth-6 number=203
1 = (1200, 600) Irregular with girth-6 number=139

BER

Figure 3.15 Performances of matrix-1 and matrix-10 of Table 3.7

51

Finally, we have simulated the performances of the regular and irregular LDPC
codes having the same number of length-6 cycles, namely, matrix-3 & matrix-7 of
Table 3.7. In Figure 3.16 that presents the results, one can observe that the

performance of the regular matrix is slightly better than the irregular one.

—A— (1200, 600) Irregular with girth-6 number=172
—3%— (1200, 600) Regular with girth-6 number=171 i
]

[—

1 T I
[< el el T TTT T [t NG St Bty Bty
T [N e T
om | | | |
77777777777777777 e - ==
| | | |
| | | |
,,,,,,,,,,,,,,,,, S (U o
F--C-C-CCC---C-d--C--C-d--C--C-fC--C-C-CEbC-C-C-C-CD-C--C-d-z-ooodzzoNINSC--o]
————————————————— e e e e B e
*********** I e e e e
I e T T T T T T T T T T T T T T
””” e T e e e
777777 .. —..e: e
| | | | | | | | |
777777 IR i T e il S B i BRI
| | | | | | | | |
| | | | | | | | |
10_4 | | | | | | | | |
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Eb/No (dB)

Figure 3.16 Performances of matrix-1 and matrix-10 of Table 3.7

Considering all the cases that we have investigated, and comparing the (3, 6) regular
codes with the irregular 2A codes of average variable node degree 2.95, we can say
that the codes with less number of length-6 cycles have always better performances.
The number of 1’s in the parity check matrix of an irregular 2A code is smaller than
the number of 1’s in the parity-check matrix of a regular code. Therefore, it is a great
probability that a randomly chosen irregular 2A code has less number of length-6
cycles than a regular code. Because of this fact, the irregular 2A codes of average
variable node degree 2.95, which is almost equal to 3, have better performances than

the regular codes for most of the time.

52

3.4 Effect of 2/3/4 Irregularity

In this section, we investigate the effect of adding a slight pseudo-random
irregularity to regular (3, 6) codes. Instead of a parity check matrix with all the
variable nodes of degree-3, we randomly generate some columns with degree-2 and
some with degree-4. The number of columns of degree-2 is kept equal to the number
of columns of degree-4 in order to have average variable node degree equal to 3. To
construct the matrices, we use our software for constructing pseudo-random irregular

LDPC code generation, which is explained in Appendix A.

The variable node degree distribution polynomials of the constructed irregular
matrices are given in Table 3.8. As these 4 different polynomials indicate, the
percentage of the weight-2 and weight-4 columns are chosen as 5%, 10%, 20% and
33% respectively. All the remaining columns in the parity check matrices are of
weight 3. We name all these codes as 2/3/4 codes and corresponding irregularity as

2/3/4 irregularity.

Table 3.8 The variable node degree distributions of the 2/3/4 irregular matrices

Percentage of Degree-2 and Variable Node Degree
Degree-4 Variable Nodes Distribution
5% 2,(x)=0.05x +0.9x> +0.05x
10 % 2,(x)=0.1x+0.8x” +0.1x°
20 % 2,(x)=0.2x +0.6x* +0.2x°
33 % A,(x)=0.33x+0.34x> +0.33x’

In AWGN channel, we have simulated the BER performances of the codes defined

by the pseudo-randomly generated parity check matrices. We have used rate 2 codes

53

at two different lengths, to generate (576, 288) and (896, 448) codes. In Figure 3.17
and Figure 3.18, the BER versus SNR curves of the irregular codes and that of the

regular code are given for codeword lengths of 576 and 896 respectively.

10 ---------------—--t-------Z-Z-ZZZ-ZZ-Zffifz oo
S - - - - CCCCCITCICIITIITITIITITIIIIIICIY —A— (576,288) 33%
e 1] —=—(576,288) 20%

1 —e— (576,288) 5%
1 —%— (576,288) Regular]

102 —B— (576,288) 10%

(RN EGS M N ———
UJ ,,
)

10_3EEEEEEEEEEEEEEEEEE e e

fooIIIIIooooooooiooooiiiiiooooooooicooiiiiioooooooo W
| |

,,,,,,,,,,,,,,,,,,]

,,,,,,,,,,,,,,,,,, N
| |

10'4 ; ;

1 1.5 2

2.5
Eb/No (dB)

Figure 3.17 Performance comparison of (576, 288) codes defined in Table 3.8

—A— (896,448) 33%

—B— (896,448) 10%
(896,448) 20

—k— (896,448) Regular 1
(896,448) 5%

——

10°

BER

L

10°

2.5
Eb/No (dB)

Figure 3.18 Performance comparison of (896, 488) codes defined in Table 3.8

54

Figures 3.17 and 3.18 do not offer a clear idea about the effect of adding this slight
irregularity to the regular codes. In order to see whether there exists a repeatable
difference, we have done two more simulations for each of the codes. In these new
simulations, the are different random noise generation seeds from the first simulations.

The results are given in Figures 3.19, 3.20, 3.21 and 3.22.

—+— (576,288
576,288
576,288
576,288

576,288

20%
10%
5%
33%
Regular ||

— o~ o~ o~ —~
===

BER

(N ——_,—_,—,—,—,—,—,,Y,|| ...

10"

-
-
[&)]
NF--+-

2.5
Eb/No (dB)

Figure 3.19 Performance comparison of (576, 288) codes defined in Table 3.8 with a

second seed for random noise generation

576,288
288,576
576,288
576,288) 33%
576,288) 5%

10%
Regular ||
20%

RN AN NS AN

BER

Eb/No (dB)

Figure 3.20 Performance comparison of (576, 288) codes defined in Table 3.8 with

a third seed for random noise generation

55

~| —A— (896,448) 33%
—e— (896,448) 20%
—B— (896,448) 10%
_| —e— (896,448) 5%
-| —sk— (896,448) Regular

BER

Eb/No (dB)

Figure 3.21 Performance comparison of (896, 488) codes defined in Table 3.8 with

a second seed for random noise generation

| —A— (896,448) 33%
—E8— (896,448) 10%

BER

Figure 3.22 Performance comparison of (896, 488) codes defined in Table 3.8 with

—

——

(
(
(

896,448) Regular
896,448) 20%
896,448) 5%

Eb/No (dB)

a third seed for random noise generation

56

When all simulations results are investigated, we can say that for a given codeword
length, all codes have nearly the same BER performance. Because, the code that has
the best performance changes when noise generation seeds are changed. This change
cannot be the result of the different number of length-6 cycles mentioned in the
previous section, since in three different simulations that use different noise seeds,
the codes of Table 3.8 and the regular (3, 6) code are kept as the same as before, i.e.,

they are not regenerated.

Therefore we conclude that, the irregular codes of type 2/3/4 have almost the same
BER performance as a regular (3, 6) code of the same length. In the following
sections we will simulate the effect of different kinds of irregularity on the BER

performance of the codes.

3.5 Effect of 1/3/5 Irregularity

In this section, we investigate another irregular structure for MacKay and Neil’s
pseudo-randomly generated LDPC codes. In the parity-check matrix of the irregular
code, some variable nodes will have degree-1, some of them will have degree-3 and
some of them will have degree-5. In order to have the average degree equal to 3, we
will make the number of degree-1 variable nodes equal to that of the degree-5
variable nodes. To construct the matrices, we use our software for constructing

pseudo-random irregular LDPC code generation, which is explained in Appendix A.

To see the effect of the mentioned degree distribution on the performance of LDPC
codes and compare with the regular (3, 6) code, we have made simulations with four
different irregular codes. The variable node degree distribution polynomials of these
codes are given in Table 3.9, where the percentages of variable nodes with degrees
1&S5 are chosen as 5, 10, 20 and 33 percent respectively. We name all these codes as

1/3/5 codes and corresponding irregularity as 1/3/5 irregularity.

57

Table 3.9 The variable node degree distributions of the 1/3/5 irregular matrices

Percentage of
Degree-1 and
Parity-Check | Degree-5 Variable Variable Node

Matrix Nodes Degree Distribution
H576_5 5% 2,(x)=0.05x" + 0.9x* +0.05x"
H576_10 10 % 2,(x)=0.1x" + 0.8x% +0.1x*
H576_20 20 % A,(x)=0.2x" +0.6x” +0.2x"
H576_33 33 % 2,(x)=0.33x" +0.34x? +0.33x*

In our simulations we have only used 576 as the codeword length. Because, the
simulations for the codes with given degree distributions indicated an interesting
result. We have monitored that, it is so likely to have wrong decisions at the output

of the decoder.

After realizing that these codes having 1/3/5 irregularity are not successful examples
of the LDPC code design, we have run some simulations so as to present the results
given in Table 3.10, where “S” (success) refers to the number of codewords decoded
successfully by the decoder, “F” (failure) refers to the number of cases that the
decoder fails and yields blocks with errors and “W” (wrong codeword) refers to the
number of codewords that are wrongly decoded. The matrices H576 5, H576 10,
H576 20, H576 33 refer to the parity-check matrices of the (576, 288) irregular

codes that have the degree distributions given in Table 3.9.

58

Table 3.10 Simulation results for the irregular codes given in Table 3.9

Parity-Check

. H576_5 H576_10 H576_20 H576_33
Matrix

First Simulation
SNR S F | W S F | W S F W | S F | W

1dB 1] 19 1 18| 20| O 13| 14 6 1 8| 12
1.5dB 79| 201 0] 100| 20| O 36| 11 9] 4| 0] 20
2dB 482 17| 3| 429 8| 12| 73 2| 18] 9| 0] 20
2.5dB 2107 8] 12| 1338| 3| 17| 191 0| 20 12| 0] 20

Second Simulation
SNR S F | W S F | W S F W | S F | W

1dB| 22| 20| O 36| 18| 2 19| 12 8| 2| 9| 11
1.5dB| 64| 19| 1 115 19| 1 38 3| 17| 7 11 19
2dB| 244 13| 7| 397| 12| 8| 76 3| 17| 12 11 19
25dB|2484| 7| 13| 1172 3| 17| 136 11 19] 15| 0 20
Third Simulation

SNR S F|W S F|lW]| S F|IW|[S|F|W
1dB 17 18] 2 23| 20 O 19| 17 3| 2| 10| 10
1.5dB| 66| 18| 2 106| 17| 3| 53 7| 13| 10| 5| 15
2dB| 260 16| 4| 412 10| 10| 123 2| 18] 11 11 19
25dB|1967| 6| 14| 889| 0| 20| 185 0| 20 12| 0] 20

Investigation of Table 3.10 deepens the discussion given in Section 3.2 about the
distribution of wrong decisions versus decoding failures in 20 block errors made by
the decoder, by adding a new dimension: if the LDPC code (say, its variable node
degree distribution polynomial) is not chosen suitably, belief propagation algorithm
of the LDPC decoder is more likely to give wrong decisions rather than decoding
failures, especially at low noise levels. We see that the number of wrong decisions at
the output of the decoder is higher for the parity-check matrices with more number of
variable nodes of degree-1 and degree-5. Actually, this issue is related with the
variable nodes of degree-1 in these matrices. In a Tanner graph, a degree-1 variable
node is connected to a single check node and receives information only from this
single node. This fact increases the probability for a degree-1 variable node, to be
misguided by the wrong information coming from the check node that it is connected

to. Therefore, one should avoid variable nodes of degree-1 in LDPC code design.

59

In order to see the effect of the wrong codewords on the performances of the codes,
we have simulated the performances of the codes defined in Table 3.9. Figure 3.23

shows the results of the simulations.

BER

—b— (576,288) %33
107 | - | —— (576,288) %20
F~| —B— (576,288) %10
[©| —6—(576,288) %5
| | —e—(576,288)Regular |_ _ _ _ _ ___________]

7T

|

l
1 15 2 2.5
Eb/No (dB)

Figure 3.23 Performances of the 1/3/5 codes defined in Table 3.9

In Figure 3.23, we see that performances of the codes with more number of degree-1
nodes are worse than the codes with less number of degree-1 nodes. We can say that
the wrong decisions which are led by the degree-1 nodes distort the performance of
the codes. The performance loss occurring for the codes with more number of

degree-1 nodes is an obvious reason to avoid degree-1 nodes in LDPC code design.

3.6 High Degree Variable Nodes Connected to 9 or 19 Check

Equations

In the previous sections, we have seen that the performances of irregular codes,

which have average variable node degrees around 3, are not noticeably better than

60

the regular codes. Because of this fact, we have decided to increase the average
variable node degree w, of the constructed irregular codes by adding more high-

weight columns to the parity-check matrix.

The experiments we have done in previous sections also showed that having weight-
2 columns are helpful to improve the performance of the codes since they lower the
number of length-6 cycles. Considering this fact, we have decided to have some
weight-2 columns in our irregular parity-check matrices together with weight-3 and
higher-weight columns. Particularly, we have compared the performances of 2/3/9

irregular and 2/3/19 irregular codes.

We have constructed irregular LDPC codes with rate 1/2 and codeword length 1800.

In the parity-check matrices of the irregular codes, a fixed 20% of the columns are
chosen of weight-2. The remaining columns are composed of weight-3 and higher-
weight columns in such a way that the average variable node degree of the parity-
check matrix is equal to some specific value. This specific value, which is greater
than 3, is adjusted by changing the numbers of the weight-3 and higher-weight
columns. In some of the parity-check matrices, we have used weight-9 columns and
in some of them we have used weight-19 columns. In Figure 3.24, the generic

structure for the irregular matrices is given.

61

Weight-2 Weight-3 High Weight

Columns Columns Colutnng

Figure 3.24 The generic structure of the pseudo-random irregular matrices of this work

3.6.1 Effect of the Average Variable Node Degree

We have constructed the irregular codes given in Table 3.11, which shows the
variable node degree distributions, average variable node degrees, and the number of
higher weight columns. We name each code with 2/3/9 irregularity as 9-3.2, 9-3.4 or
9-3.6 and each code with 2/3/19 irregularity as 19-3.2, 19-3.4 or 19-3.6; where the
first number indicates the highest variable node degree and the second number shows
the average variable node degree. We have simulated the performance of these codes
in AWGN and obtained Figure 3.25, which also includes the performance of a

regular (3, 6) code for comparison.

In Figure 3.25, we see that the irregular code with the best performance is the Code
19-3.6 and the one with the worst performance is 19-3.2. However, all the irregular

codes have better performances than the regular one.

62

Table 3.11 The variable node degree distributions and the number of high weight columns of
2/3/9 and 2/3/19 irregular codes of rate /2 and length 1800, with average variable node
degrees of 3.2, 3.4 and 3.6

Average | Number of

Variable High
Code Variable Node Degree Distribution Node Weight

Abbreviation Polynomial /1(x), Degree w, | Columns
9-3.2 0.2x" +0.733x% +0.067x" 32 120
9-3.4 0.2x' +0.7x* +0.1x* 3.4 180
9-3.6 0.2x' +0.67x% +0.13x* 3.6 240
19-3.2 0.2x' +0.775x% +0.025x" 3.2 45
19-3.4 0.2x' +0.762x> +0.038x" 3.4 68
19-3.6 0.2x' +0.75x* +0.05x"* 3.6 90
10"

107 ks

1I:I-:-,EE§ EEEE g s TR E.—.E H i--.- : EEe YEE :;:::;

BER

10°

__

1':'-555? : £ L

-I
1

hl r T a
_______ Y U U U | U
[']]

I I I I

10°

Eb/Na (dB)

Figure 3.25 Performances of the codes described in Table 3.11

63

Looking at Figure 3.25, we can say that the performance of the irregular codes gets
better when their average variable node degrees are increased. This actually makes
sense because the codes with greater average variable node degrees have greater
number of high weight columns. These variable nodes defined by these high weight
columns are decoded correctly with high probability and the correct information
coming from these nodes helps the decoding of the other variable nodes which have

lower degrees.

At this point, it will be quite helpful to investigate the results of these simulations in

three different cases, where the average node degrees are 3.2, 3.4 and 3.6.

Case 1: Average Variable Node Degree is 3.2

In this case, the code 9-3.2 with weight-9 columns has a better performance than
Code 19-3.2 with weight-19 columns. Code 19-3.2 has 45 weight-19 columns,
whereas Code 9-3.2 has 120 weight-9 columns.

Case 2: Average Variable Node Degree is 3.4

In this case, as opposed to Case 1, Code 19-3.4 with weight-19 columns has a better
performance than Code 9-3.4 with weight -9 columns. Code 19-3.4 has 68 weight-19

columns, whereas Code 9-3.4 has 180 weight-9 columns.

Case 3: Average Variable Node Degree is 3.6

In this case, similar to Case 2, the code with weight-19 columns has a better
performance than the code with weight -9 columns. Code 19-3.6 has 90 weight-19

columns, whereas Code 9-3.6 has 240 weight-9 columns.

In all three cases, since the average node degree is kept constant, the number of
weight-9 columns is greater than the number of weight-19 columns. In Case 1, this
difference makes the performance of the matrix with weight-9 columns better.

However, when the average node degree is increased as in Cases 2 and 3, the codes

64

with weight-19 columns have better performances than the codes with weight-9
columns, because the variables connected to 19 check equations improve the
decoding performance more effectively than the variables checked by 9 equations.
However, we may say that this is possible when the number of such variables (or

weight-19 columns in the parity-check matrix) exceeds some threshold value.

After observing this data, we have constructed different matrices with the same
parameters given in Table 3.11, to see whether the results of Figure 3.25 are
repeatable. The resulting graph containing four different matrices for each parameter

set are given in Figure 3.26.

BER

N
N
N
N
N
N
w
N
~
N
o
N
o
N
u
N
[e)
N
©
N

Eb/No (dB)

Figure 3.26 Performances of many codes with the parameters described in Table 3.11

The results in Figure 3.26 are very similar to the results in Figure 3.24, which

confirms repeatability. The performances of different codes with the same

65

parameters vary by small amounts. For example, at the BER value of 107, the
performances of the 19-3.2 codes vary by approximately 0.1 dB. This variation in
performance may be due to the number of length-6 cycles contained in these codes.
To see whether this deduction is true, we have counted the number of length-6 cycles

for all the codes in Figure 3.26 and presented the results in the following section.

3.6.2 Effect of the Number of Length-6 Cycles

In order to have better perception about the effect of the number of length-6 cycles,
say N, on the code performance, we have counted the number of length-6 cycles for
the 24 different codes, whose performances are given in Figure 3.26. Those pseudo-
randomly generated codes possess either of the 6 groups of parameters given in
Table 3.11 (namely the groups 9-3.2, 9-3.4, 9-3.6 with 2/3/9 irregularity and groups
19-3.2, 19-3.4, 19-3.6 with 2/3/19 irregularity). Since we have constructed 4 codes
for each group of Table 3.11, there are 24 different codes and 24 different values for
the number of length-6 cycles.

Table 3.12 shows the total number of length-6 cycles for all the 24 codes in Figure

3.26. Ey/N, values required for a specific BER value (of 2 x 10) are also included
in ascending order for each group of code parameters, so that the performance within

the group is ranked in descending order in Table 3.12.

66

Table 3.12 The number of length-6 cycles of some 2/3/9 and 2/3/19 codes of rate > and
length 1800

Code Ep/N, for a BER | Number of Length-6 Cycles
Abbreviation of 2 x10™* Ng
1.85 952
1.86 987
9-32 1.87 975
1.89 1049
1.90 2216
1.92 2363
19-3.2 1.95 2558
1.97 2570
1.82 1911
1.83 1922
9-34 1.84 1954
1.87 1978
1.73 4976
1.76 5151
19-3.4 1.80 5274
1.81 5259
1.83 3254
1.84 3293
9-3.6 1.84 3341
1.87 3389
1.70 9159
1.72 9565
19-3.6 1.75 9894
1.76 9930

67

In Table 3.12, it is observed that within the set of codes with the same parameters,
increasing number of length-6 cycles leads to worse performance for almost all
cases. For instance, among the codes that has weight-19 columns and average
variable node degree 3.6, the worst performance code has 9159 length-6 cycles,

whereas the best performance code has 9930 length-6 cycles. This difference leads to

an improvement of 0.06 dB in the E,/N, value for the BER level of 2 x 10 . There
also exist some exceptions; for example, in the set of 19-3.2 codes, the code with 987
many length-6 cycles has a better performance than the code with 975 many length-6
cycles. However, the number of length-6 cycles for these two codes are very close,
and such a slight difference is not repeatable when the random noise samples are

initiated by a different seed.

From Table 3.12, we can also see that, for a given average variable node degree w,,
the 2/3/19 codes (that have degree-19 variable nodes) have much more length-6
cycles than the 2/3/9 codes (that have degree-9 variable nodes). For variable node
degrees of 3.4 and 3.6, even though the 2/3/19 codes have more length-6 cycles, they
have better performances than the 2/3/9 codes. This is a normal result since the
number of length-6 cycles is obviously not a primary comparison element for codes

with different parameters.

3.7 Joint Effect of Average Variable Node Degree and Length-6
Cycles

After observing the performances of codes with average variable node degrees 3.2,
3.4 and 3.6, we have decided to investigate the joint effect of the average variable
node degree (w,) and the number of length-6 cycles (Ng), on some codes that have
greater average variable node degree values. We have generated (1800, 900)
irregular codes with column weight distributions of 2/3/9, 2/3/11 and 2/3/13. We

have kept the ratio of weight-2 columns as 20% but adjusted the average variable

68

node degree between 3.2 and 4.4 by changing the ratio of high-weight columns to

weight-3 columns.

3.7.1 Codes with High Degree Variable Nodes of Degree 9

For this experiment, we have first used irregular codes that have degree-9 variable
nodes as high degree nodes. Table 3.13 shows the variable node degree distribution

polynomials and the number of high weight columns of these irregular matrices.

Table 3.13 Variable node degree distributions and the number of high weight columns of the
2/3/9 and 2/3/19 irregular codes of rate ¥ and length 1800, with average variable node
degrees of 3.8, 4, 4.2 and 4.4

Average
Variable Number of
Code Variable Node Degree Node Weight-9
Abbreviation | Distribution Polynomial /1(x) Degree w, Columns
9-3.8 0.2x' +0.633x* +0.167x" 3.8 300
9-4 0.2x' +0.6x> +0.2x* 4 360
9-4.2 0.2x' +0.567x> +0.233x° 4.2 420
9-4.4 0.2x' +0.533x> +0.267x* 4.4 480

In Figure 3.27, the performances of these codes together with the previously

generated codes with average variable node degree values 3.2, 3.4 and 3.6 are given.

69

BER

iy

P T ——

10 :

N
-
N
-
N
N
w
N
N
N
(&)
N
o))

Eb/No (dB)

Figure 3.27 Performances of 2/3/9 irregular codes that have average variable degrees

from 3.2 to 4.4

From Figure 3.27, we see that the performances of the irregular codes are getting
better up to the average variable node degree of 3.6. After this point, the
performances of the codes start to get worse. Here, it will be better to see the
performances of these codes in two separate graphs. The first graph, given in Figure
3.28 (a), includes the codes whose performances are getting better with increasing
average variable node degree, and the second graph, given in Figure 3.28 (b),
includes the codes whose performances are getting worse with increasing average

variable node degree.

70

—%— Regular

e
I i e B

Eb/No (dB)

Eb/No (dB)

(b)

Figure 3.28 Performances of the irregular codes with weight-9 columns. The codes whose

performances are getting better with increasing average variable node degree are shown in

(a), and the codes whose performances are getting worse are shown in (b).

71

Figure 3.28 (a) shows the performances of the irregular codes with average variable
node degrees of 3.2 and 3.4 together with the performance of a regular code of the
same codeword length. One can see that increasing the average variable node degree
from 3.2 to 3.4 improves the decoding performance of these codes. We should also
note that the irregular codes have better performances than the regular one. However,
in Figure 3.28 (b), where the average variable node degrees range from 3.4 to 4.4, we

see that the performance gets worse with increasing average variable node degree.

When the total number of high weight columns in an irregular matrix is increased,
one expects to have a better performance. However, we have seen in this example
that as the number of high-weight columns is increasing, the performance becomes
worse beyond some threshold value of the average node degree. The most important
reason behind this fact may be the number of length-6 cycles contained in the code.
In order to have a clear idea, we have counted the number of length-6 cycles of these
codes. Table 3.14 shows the number of length-6 cycles together with other necessary

information.

Table 3.14 Number of length-6 cycles of the 2/3/9 codes of rate '2 and length 1800, with

average variable node degrees from 3.2 to 4.4

Total

Code Average Number of Ey/N, for a Number of

Variable Weight-9 BER of Length-6

Abbreviation | Node Degree Columns 5x107° Cycles, Ng
9-3.2 3.2 120 1.50 975
9-3.4 34 180 1.43 1922
9-3.6 3.6 240 1.45 3293
9-3.8 3.8 300 1.46 4784
9-4 4 360 1.55 7164
9-4.2 4.2 420 1.59 10117
9-4.4 4.4 480 1.66 13755

72

Unsurprisingly, the number of length-6 cycles increases with increasing number of
weight-9 columns. However, an increase in the number of length-6 cycles up to
1922, which is observed for 180 many weight-9 columns, seems acceptable; since it
does not deteriorate the performance. When the number of weight-9 columns is
further increased to 240 and 300 the total number of length-6 cycles becomes 3293
and 4784, and the performance of the codes becomes slightly worse than the
previous cases. After this point adding new weight-9 columns leads to huge rises in
the number of length-6 cycles (Increasing the number of weight-9 columns from 300
to 360 makes the number of length-6 cycles 71264, from 360 to 420 makes it 10117,
and from 420 to 480 makes it 13755).

In the parity-check matrix construction method that we use, columns of the matrix
are formed one-by-one from left to right. Each new column introduces new length-6
cycles to the matrix that are added to the total number of length-6 cycles. Motivated
by this, we have counted the length-6 cycles introduced by each column for the
matrices given in Table 3.14 and obtained the graph given in Figure 3.29, where the
vertical axes in parts (a) and (b) show the number of length-6 cycles in logarithmic
and linear scales respectively. The horizontal axis shows the column number. For a
specific column x, the value shown on the vertical axis is the cumulative number of
length-6 cycles after the generation of column x, starting from the first column.
When x is the last column, the value shown on the vertical axis corresponds to the

overall number of length-6 cycles for the generated code.

73

881247 g-UibusT] Jo Jaguunp (B30 L

200 1000 1200 1400 1600 1800

600

Column Murmiber

(@)

1200

1600

| I

400

I

1200

L e e oo o

Lemmmm= =

i
1000
Column Mumber

P
I

i
800

A

i R e et el et e
L ey et B il R B

i
600

i
400

T
9-44

T
12000777 —ar— g 4

—p—0-40
—B—0-338
—3—g-34
—8—g-32

i
200

14000

10000 f----

8000 |- --

B

2000 |- ===~
0

sa|2A0 g-yifiusT] Jo Jagquunp |B0L

(b)

6 cycles after the generation of each column of the

Figure 3.29 The total number of length

check matrix for the codes defined in Table 3.14. The vertical axis is given in:

parity-

(b) linear scale.

b

(a) logarithmic scale

74

The number of length-6 cycles for all the matrices is zero up to the 600" column.
This is an expected result since the first 20 % of the columns are weight-2 columns
which have no overlap between each other. We have shown previously in this work
that zero-overlap weight-2 columns do not cause any length-6 cycles. After the last
weight-2 column, following columns are of weight-3. These weight-3 columns
slightly increase the number of length-6 cycles. However, length-6 cycles start to
increase in considerable amounts at the starting point of the construction of weight-9

columns.

In Figure 3.29 (a), these starting points for the weight-9 columns are seen very
clearly. For example, for the matrix with average variable node degree of 4.4, the
number of length-6 cycles starts to increase rapidly near the 1321* column which is

the first weight-9 column.

The important point here is that, the increase in the number of length-6 cycles
accelerates when more and more weight-9 columns are added. In other words, a
weight-9 column causes more and more length-6 cycles as the number of previously
added weight-9 columns increases. This situation is seen clearly in Figure 3.30,
where the horizontal axis again shows the column number, but the vertical axis
shows the number of length-6 cycles caused by each individual column instead of the
cumulative value. It is observed from Figure 3.30 that the number of length-6 cycles
introduced by a column increases with the column number. More specifically, the
number of length-6 cycles caused by each new weight-9 column increases almost
exponentially. Actually, this is the reason of rapid increase in the total number of
length-6 cycles as we observed in Figure 3.29. If we zoom the last part of the graph
given in Figure 3.29 (b), we clearly see the exponential increase in the number of

length-6 cycles in Figure 3.31, as the number of weight-9 columns is increased.

75

U U U

Nurmber of lengthd cydes intreduced by each column I

[

O [R N

[

e

L il R

Ammmm———

s P

Fm——————

e e e B Eh e e

-

O [| | U I

120

100 -"-I

sa|24A0 g-yibua Jo 1IBquinp

80 === -

B0 -------

$0-------

U0 ayl Ag pasnpoay

20p-------

400 g0a &00 1000 1200 1400 1500 1800

200

Column Number

Figure 3.30 The number of length-6 cycles introduced by each column of the parity-check

matrix of the code 9-4.4.

T I I I T
-t - - - - - - - . 1=~ I - -				
S I 1\ __N_				
R . N . . e				
ittt Sl S e M — = - -				
L				
e e e WA				
—r— t-——-—"—-"—"FF-"—=—~—FF—-— = -1I=-— - - - == = = - .				
e) A I — - _ _\				
L L				
¥ N9 © o < ! ! !				
< F F OO0 o ! ! !				
I A R .				
OO0 OO ” ” ”				
— = e l— = — =4 - - — =				
o o o o o o
o o o o o o
o o o o o o
I S D © < 5%
- -

$9|9AD 9-yjbus Jo Jaquinp [ejo |

1400 1450 1500 1550 1600 1650 1700 1750 1800

1350

Column Number

Figure 3.31 Last part of the graph given in Figure 3.29 (b)

76

When Figure 3.31 is more closely investigated, one sees that as the average variable
node degree is increased from 3.2 to 3.4, the numbers of length-6 cycles for the
matrices are fairly close to each other. However, as the increase in the average
variable node degree is continued from 3.6 to 4.4, the difference between the

numbers of the length-6 cycles of the generated codes gets larger.

Beyond the average node degree value of 3.4, the performances of the irregular codes
become worse as the number of weight-9 columns is increased. As we said earlier,
the weight-9 columns that are expected to improve the performance start to lead to
worse performance because of the huge increase in the number of length-6 cycles.
Below the average variable node degree of 3.4, the decoding performance
improvement supplied by the weight-9 columns suppresses the effect of length-6
cycles. However, above this average degree, the number of length-6 cycles increases
so much that the improvement supplied by the weight-9 columns can not cancel the

effect of the length-6 cycles.

3.7.2 Extension to High Variable Node Degrees of 11 and 13

In order to see whether this situation is a general case, we have repeated the same
experiments for other irregular LDPC codes which have weight-11 and weight-13
columns. Table 3.15 shows the properties of the new irregular codes that we have

generated.

77

Table 3.15 Variable node degree distributions and the number of high weight columns of of

the 2/3/11 and 2/3/13 irregular codes of rate %2 and length 1800

Average Number of
Code Variable Node Degree Distribution Variable High Weight
Abbreviation Polynomial ﬂ,(x) Node Degree Columns

11-3.6 0.2x" +0.7x> +0.1x" 3.6 180
11-3.8 0.2x' +0.675x% +0.125x" 3.8 225

11-4 0.2x' +0.65x +0.15x" 4.0 270
11-4.2 0.2x' +0.625x% +0.175x" 4.2 315
11-4.4 0.2x" +0.6x> +0.2x" 4.4 360
13-3.6 0.2x' +0.72x> +0.08x" 3.6 144
13-3.8 0.2x' +0.7x> +0.1x" 3.8 180
13-4.0 0.2x' +0.68x> +0.12x" 4.0 216
13-4.2 0.2x' +0.66x> +0.14x" 4.2 252
13-4.4 0.2x' +0.64x> +0.16x" 4.4 288

After constructing the matrices given in Table 3.15, we have simulated their

performances. Figure 3.32 and Figure 3.33 show the results of the simulations for the

codes with irregularities 2/3/11 and 2/3/13, respectively.

In Figure 3.32, where the performances of 2/3/11 irregular codes with different

average variable node degrees w, are shown, we see that in the range from 3.2 to 3.6,

increasing w, improves the performance. However, if w, further increases from 3.6 to

4.4, the performances of the codes get worse because of the rapidly increasing

number of length-6 cycles.

78

Eb/No (dB)

(@)

Eb/Me {dB)

434

(b)
Figure 3.32 Performances of the 2/3/11 irregular codes. The codes whose performances are
getting better with increasing average variable node degree are shown in (a), and the codes
whose performances are getting worse are shown in (b).

79

dB)

Eb/Mo

)

(a

—B— 124

mmm e e e d oLl Loo o
1 1

-

g S

g

--AanrTrr
i

il] T Tl T il el Sl

1.8

1.7

dB)

Eb/MNo

(b)

Figure 3.33 Performances of the 2/3/13 irregular codes. The codes whose performances are

getting better with increasing average variable node degree are shown in (a), and the codes

whose performances are getting worse are shown in (b).

80

In Figure 3.33, where the performances of the 2/3/13 irregular codes are shown, we
see that in the range from 3.2 to 3.8, increasing the average variable node degree w,
improves the performance. However, for w, growing between 3.8 and 4.4, the
performances of the codes get worse because of the rapidly increasing number of

length-6 cycles.

These results are quite similar to the case of 2/3/9 irregular codes. In order to
compare the rate of increase of length-6 cycles with the previous case, we have
counted the number of length-6 cycles at each step of column construction for these
new codes. The analyses results for 2/3/11 irregular codes are given in Figure 3.34

and Figure 3.35.

=+

[A

Total Number of Length-6 Cycles

H

o
-ttt =

Sh-+14+

1000 1200 1400 1600 1800
Column Number

(@

81

600 800 1000 1200 1400 {600 V 1800

400

Column Number

(b)

Figure 3.34 The change in the total number of length-6 cycles for the 2/3/11 irregular codes

in Table 3.15 versus each new generated column. Vertical axis is given in:

(a) logarithmic scale (b) linear scale.

o
L — kT B
I I I I I | |~
I I I I I I N |
I I 3 I £ I I g |
I I I I I I I I I |
I I ! I | I I | '\ ®
. U T A N T ' €
| | | | i |) ,‘_H
I I I ! I | I I |
I I I) I I I | |
I I I I | | | I A
I I I I I I | I |
I I I I I | | o
S O IR N VR ' W m
I I I I I I " -
I I I I I I I I I b
I I I I I I I I I
I I I I I I I I
I I I I I | d |
I I I I I I I I el
A st s A A N) it =1 | [R7e}
I I I I I I I I AW _1
I I I I I I I X I |
I I I I I I I |
I I I I I I I |
I I I I I I I I
R [Y) \,H,_m
| | | | | | | | | i 2
I I I I I I I I I
I I I I I I I I |
I I I I I I I I
I I I I I I I I |
I I I I I I I I A =)
it e e et e B 4 %
I I I I I I | | | -—
I I I I I I I | I ®
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
L | | | | | | | | | ._W
A T T T N B T3]
| | | | | ~
NS 9O N I I I I
T T T OO O M| | | | |
P N
- - o | ! ! ! ! \
N R =
L L L __J______¥Ywo
I I | I | A
I I I I I
I I I I I
I I I I I
I I I I
| | | | | | | | | W
e B e e Al e B o [3
| | L L | | L —
o o o o o o o o

$9J0AD 9-yibua Jo Jaquinp [ejo |

Column Mumber

Figure 3.35 Last part of the graph given in Figure 3.34 (b).

82

In Figure 3.35, we see that the numbers of length-6 cycles of the 2/3/11 irregular
codes with average variable node degree w, < 3.6, are fairly close to each other.
However, for the 2/3/11 irregular codes with w, larger than 3.6, the total number of
length-6 grows very hastily. This rapid increase in the number of length-6 cycles
again suppresses the performance improvement supplied by the weight-11 columns

and distorts the performance of the codes as shown in Figure 3.32 (b).

Finally, the number of length-6 cycles for the 2/3/13 irregular codes are given in
Figure 3.36 and Figure 3.37 for different values of w, between 3.2 and 4.4.

L0 e ———

T
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
Il
L.
Il
Il
Il
Il
Il
Il
Il
HH

I+

-
o
~

Number of Length-6 Cycles
)

Hi

Total

+

b — -+ H
=t

400 600 800 1000 1200 1400 1600 1800
Column Number

(@)

83

1200 1400 1600 1800

1000

Column Number

-

$9[0AD 9-yibua Jo JaquinN [B10 L

(b)

Figure 3.36 The change in the total number of length-6 cycles for the 2/3/13 irregular codes

in Table 3.15 versus each new generated column. Vertical axis is given in:

(a) logarithmic scale (b) linear scale.

®10

T T

\ \ I
\ \ \
\ \ |
\ \
\ |
\ I \
\ \ \
I, . . M Lo
))
\ \
\ \
\ \
\ \
1 1
\ \
! |
r===-=-=--" it - Falinlinlialililid r
\ I \ \ \
\ I \ \ \
\ I \ \ \
\ I \ \ \
\ I \ \ \
\ I \ \ \
\ I \ \ \
L. Hemmeems R, [[
) \ | , I
\ , \ . \
\ h \ h \
\ I \ \ \
\ I \ \ \
\ I \ \ \
\ I \ \ \
! , | h i
r===-=-=--" it - Falinlinlialililid F======7-=-=-
\ I \ \ \ \
\ I \ \ \ \
| I | | | |
1 1 1 1 1 1
1 1 1 1 1 1
Ll 1 Ll 1 Ll 1
1 1 1 1 1 1
F-=-=-=-=-- === I= === ——— Fem————- k=== T==-==-
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
P oo L ! L [I j A
T i \
\ \
' =+ 0l Qoo ' ‘
[o = o oMo [1
' oo ' '
\ B B B B I T \ \
\ A A A R R \ :
h---- e, | A— —
| | |
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ - - ; \ \
L, P L. | L A —
1 [} 1 1 1 1
| | \
I | I | [|
m '] [['5] - ['5]

] - o

s8[phn g-y1fuaT o Jaguinp) (el10 |

1500 1580 1800 1850 1700 1750 1800

1450

Column Murmber

Figure 3.37 Last part of the graph given in Figure 3.36 (b).

84

Similar to the previous cases, we observe that the rapid increase in the number of
length-6 cycles seems to start at some value of w,, which is around 3.8 for 2/3/13
irregular codes. This explains the performance curves in Figure 3.33, where we
identify that the performance improves as w, grows between 3.2 and 3.8, but further
increase of w, from 3.8 to 4.4 deteriorates the performance. This situation is again
similar to the codes with 2/3/9 and 2/3/11 irregularities. However, the critical point
for the average variable node degree w, seems to be around 3.4 for the 2/3/9 codes,
3.6 for the 2/3/11 codes and 3.8 for the 2/3/13 codes. This is understandable, since
compared to the weight-9 columns, less number of weight-11 columns are needed to
achieve a given value of the average variable node degree, w,. Similarly, less number
of weight-13 columns are needed to achieve a given w, compared to the weight-9
and weight-11 columns. When small number of high weight columns is added to a
matrix, the number of length-6 cycles that it introduces to the code is also small.
Therefore, it is a normal result for the codes with weight-13 columns to start losing
performance at a w, value greater than that of the codes with weight-11, and for the
codes with weight-11 columns to start losing performance at a w, value greater than
that of the codes with weight-9. Figure 3.38, we sketch the total number of length-6
cycles versus the average variable node degree, w,, for the mentioned three codes,

having the irregularities of 2/3/9, 2/3/11 and 2/3/13.

85

T T T T T 0
| | | | |
| | | | |
250 ... R [S
—©— Codes with degree-13 variable nodes | |
—P— Codes with degree-11 variable nodes | |
—7— Codes with degree-9 variable nodes | |
o S R — S /
l l l | >
% | | | | |
—_— | | | | |
o | | | | |
>‘ | | | | |
o | | | | |
© | | | | |
R e e A v
[@)] | | |
k5 | | | ‘ | f
‘G l | | | |
o | | | | |
s l l l : ‘
S | | : ‘ ‘
z | | ‘ | |
| | | |
| | ‘ |
| | |
05 ,,,,,,,,, L __ oY 7~ _ A I — |
| ‘ | | | |
| | |
| | |
| | | |
| | | | |
| | | | |
0 | | | | |
3.2 3.4 3.6 3.8 4 4.2 4.4

Average variable node degree, w,

Figure 3.38 Number of length-6 cycles versus average variable node degree, w,, of 2/3/9,
23/11 and 2/3/13 codes.

To sum up the results we have obtained in this section, we can say that adding high
weight columns improves the performance of the LDPC codes up to some point but
distorts the performance thereafter, because of the huge increases in the number of
length-6 cycles that start to occur. That rapid increase of length-6 cycles suppresses
and begins to cancel the decoding improvement brought by the high weight columns

of the parity-check matrix.

86

3.7.3 Some Codes with Fixed Number of Length-6 Cycles

In this section, we investigate the performance of some codes with different but close
codeword lengths n and average variable node degrees w,; but the same number of
length-6 cycles. In order to generate such codes, we have used Figure 3.29 (b), where
the distributions of the number of length-6 cycles of different 2/3/9 codes are given.
For the parent codes 9-4.4, 9-4.2, 9-4, 9-3.8, 9-3.6 and 9-3.4 with w,’s ranging from
3.4 to 4.4 (see Table 3.14), we have noted the number of columns value, say Co_4.4,
Co42, Coq, Co3s, Cos6, Co34, where the number of length-6 cycles is around 2000.
Using this information, we have obtained some new codes whose parity-check
matrices are formed by the first Ccode abbreviationy cOlumns of the parity-check matrices
of the original codes. (For example, the first Co44=1531 columns of the parity-check
matrix of the parent 9-4.4 code form the parity-check matrix of a new code of length
1531.) The new codes, which contain nearly the same number of length-6 cycles,
have codeword lengths ranging from 1531 to 1800 and w,’s between 3.4 and 3.59.
Since the number of check nodes remain the same as that of the parent code, the rate
k/n of each code is also different but close to 0.5. The parameters of the new codes

are given in Table 3.16.

87

Table 3.16 Parameters of the new codes obtained from the 2/3/9 irregular codes of rate %2

and length 1800, having the number of length-6 cycles around 2000

Average
Abbreviation Variable
Used for the | Node Degree Variable Node Total
New Code | w, & Rate | Size of the New | Degree Distribution | Number of
and Its k/n for the | Parity-Check | Polynomial A(x) for the | Length-6
Parent Code New Code Matrix New Code Cycles Ng
934 | 340 & 0.5 | 200x1800 02540752 40 15" 1922
& 9-3.4 (C,.,, =1800)
9-3.44 | 344 & 048 | J00XTAT 1 05t 0.686x7 +0.100x] 2006
& 9-3.6 (Cy 5 =1747)
9-3.48 3.48 & 0.47 001695 1 o 11k 0.673x% +0.116x7 1998
&9-3.8 (C9—3.8 = 1695)
9-351 | 351 & 045 | 00XI038 g 0658k 40.123x] 1993
&9-4.0 (C9—4.o = 1638)
9-3.54 3.54 & 0.43 0013831 25w+ 0.645x7 +0.130x] 1997
& 9-4.2 (C974.2 =1583)
9-3.59 3.59 & 041 9001531 0.234x +0.625x” +0.141x¥ 2007
& 9-4.4

(C974.4 =153 1)

As can be seen from Table 3.16, the codes with smaller codeword lengths and rates

have greater w,’s. We have shown in Section 3.1.2 that increasing codeword length

makes the performance of a code better. However, we have also shown in Section 3.3

that increasing the average variable node degree with fixed number of length-6

cycles also increases the performance. In Figure 3.39, we present the performances

of the codes given in Table 3.16.

88

|
|
|
|
|
|
=t
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ay
|
|
|
|
|
|
ay
|
|

BER

Eb/No (dB)

Figure 3.39 Performances of the codes given in Table 3.16.

It is observed that all the codes have nearly the same performance. This may be
considered as an expected result. Because, as the codeword length decreases from
1800 to 1531, the performance of the code gets worse; however, the average variable
node degree increases from 3.4 to 3.59 (and the rate decreases from 0.5 to 0.41) in
parallel, which in turn improves the performance. Combining these effects, it is not
surprising to see that the performance of a code with longer codeword length n and
lower w,, can be very similar to the performance of a code with shorter codeword
length and greater w,, whenever their number of length-6 cycles are comparable. In
Figure 3.39, one can examine the canceling effects of the codeword length » and the

average variable node degree w,.

89

3.8 Codes with Very Long Codeword Lengths

In this section, we investigate the performances of codes with very long codeword
lengths and compare them with some commercially used LDPC codes. We have
selected 16000 bits as the codeword length and constructed a regular (3, 6) code and
an irregular 2/3/13 code with average variable node degree w,=3.8, which was found
to be the optimum for the 2/3/13 codes. Figure 3.40 shows the performances of these
two codes together with the performance of a regular (64800, 32400) code which is
used in DVB-S2 standard.

10
10? N
5 10-3 == ===2
[a0]
o S SO
£ = =| —%— (16000,8000) Regular
[~ —e— (16000,8000) 13-3.8
10°L - -| —A— (64800,32400) DVB-S2
e ettt ettt sbebetatatate
6 ! |
10 w w

Figure 3.40 Performances of a regular code and an irregular 2/3/13 code of codeword length
16000 together with the performance of a regular code of codeword length 64800 used in
DVB-S2 standard

In Figure 3.40, we see that the code with codeword length of 64800 has the best
performance. This is normal since there is a great difference in the codeword lengths
64800 and 16000, which is the dominant factor in determining the performance in

this case. However, we also see that irregular 2/3/13 code has a performance

90

improvement of nearly 0.35 dB at the BER level of 10 compared to the regular code

of the same codeword length.

Considering these, we can say that, for very long codeword lengths, our irregular
code design leads quite an improvement in the performance. This performance
improvement helps to approach the performances of commercially used LDPC

codes.

3.9 Decoding Times for Regular and Irregular LDPC Codes

At each iteration of decoding, calculations are done according to the distribution of
the 1’s in the parity-check matrix. In this work, we have shown that the irregular
codes with average variable node degrees greater than 3 (w, > 3) have better
performances than the regular (3, 6) codes. However, greater w, means that there
exist more 1’s in the parity-check matrix, which implies that more calculations are
done at each iteration. In this section, we investigate the decoding times needed for

the regular and irregular codes that we have designed and used in this work.

In order to compare the decoding times needed for regular and irregular LDPC
codes, we have done decoding simulations for four different LDPC codes of
codeword length 1800 and rate 2. We have used a regular code, an irregular 2/3/11
code with w,=3.6, an irregular 2/3/13 code with w,=3.8 and an irregular 2/3/19 code
with w,=4. For each of the three irregular codes, we have kept the ratio of degree-2
nodes as 20%, and the relative distribution of degree-3 and higher degree nodes are
adjusted according to the specific w, value. In the simulations, we have sent 50000
words at the E/N, value of 1.6 dB. The value of 7, is set to 50. The results of the

simulations are given in Table 3.17.

91

Table 3.17 Simulation results for the decoding times of sample regular and irregular codes

Average Total
Time Decoding

Total Spent for Total Time

Number | Number | Number one Decoding Relative

Code of of of Iteration Time to

Abbreviation | Successes | Failures | Iterations | (seconds) (hours) Regular
Regular 46173 3827 900513 0.0391 9.7765 100%
11-3.6 49273 727 726086 0.0413 8.3225 85%
13-3.8 49588 412 683642 0.0419 7.9630 81%
19-4 49817 183 627862 0.0427 7.4493 76%

In Table 3.17, we see that the average time spent for each iteration increases with
increasing average variable node degree. This can be considered as a normal result
since more calculations are done at each step for the codes with greater w,’s.
However, we also see that, with increasing w,, the number of successes increases,

whereas total decoding time and total number of iterations decreases.

In [MacKay-2005], decoding time for an LDPC is code is said to be proportional to
the number of operations done at each iteration. Simply, we may think each iteration
as two steps. At first step, the variable nodes send information to the check nodes and

at the second step the check nodes send information back to the variable nodes. For a

. 1 . .
code of length n and rate R, the first step includes Ex w, operations per variable

1
node, so Ex w, xn operations in total and the second step includes w, operations

per check node so w, xnx(1—R) operations in total. Therefore, at each decoding

1+ R—R?

iteration, xnxw, operations are done. In our case, the code length and

the rate are constant. Hence, one may expect that the average time spent for one
iteration is proportional to w,. In Table 3.17, we see that average time spent for one
iteration is 0.0391 for the regular code for which w, =3. If we consider the 2/3/13

code with w, =3.8 (abbreviated as 13-3.8), we expect that the average time spent for

92

one iteration is 3—38 x0.0391 =0.0495. However, in Table 3.17, we see that this value

is actually 0.0419. This may be as a result of our implementation details. In our
implementation of the decoding algorithm, many operations are done at a time using
array structures. When the number of operations increases, the size of the array that
contains these operations gets larger. Because of that, the time spent for a specific
number of operations is not directly proportional to the number of equations but

slightly less than that.

As can be seen from the number of successes and failures, the code with the best
performance among the codes given in Table 3.17 is the 2/3/19 code with w,=4.
Although the average time spent for each iteration is the greatest for this code, total
decoding time is the smallest. Figure 3.41, which shows the iteration histograms for

the codes, will be helpful to understand the reason for this.

10000 [: ‘
|

9000 ! 194.0 |____|
13-3.8

8000 — 1136 |~

& 7000 Regular| |
(%] | |
[0} | |

[0

g 6000 ek R I
3 | |

9 5000 ‘ R EEE Lom oo
E | |

é 4000 | R Looo oo
| |

S 3000 \ R Lo
z ! | |
| |

2000 ek R I
| |

1000 / s R Looo o
| |

0
40 45 50

Iteration Number

Figure 3.41 Iteration histograms for the regular and irregular codes

In Figure 3.41, we see that that a success is more likely to occur at the 11" or 12"

iteration. As I, is set to 50, all decoding failures occur at the 50" jteration. Since

93

the total number of successes is the greatest and the number of failures is the smallest
for the 2/3/19 code, it is quite normal that the total number iterations and the total

decoding time for this code is the smallest.

Considering all the results, we can say that the average time spent for each iteration
is greater for the codes with greater w,’s. However, as these codes with greater w,’s
are designed to have better performances, the total number of iterations to decode

same number of words and the total decoding times are smaller for these codes.
3.10 Random Distribution of Check Node Degrees

As a final consideration, we will discuss the check node degree distributions of the
irregular codes that we generate for this work. Random construction algorithms we
have used, do not pay any attention to the check node degrees. Instead, they take the

required values of n, k and the given variable node degree polynomial /l(x) as input

and arrive at random number of variables entering each parity-check equation. So,
the check node degrees are established randomly as a result of the 2A or pseudo-
random construction algorithm. In this section, we explore the check node degree
distributions for some of the generated codes. As representatives of three different
groups, we choose i) five 2A codes of length 1200, ii) four 2/3/4 codes of length 576,
and iii) four 1/3/5 codes of length 576. In each case, we construct the codes
according to the desired variable node degree distribution polynomials, count the
frequency of resulting check node degrees and compare the check node degree

distributions within the group.
i) Irregular 2A Codes

Table 3.18 shows the number of check nodes at each degree (i.e., the number of rows
at each weight) for different codes with irregular 2A matrices of codeword length
1200 and average variable node degrees w, (i.e., the column weights), from 2.95 to

2.75.

94

The check node degree distributions given in Table 3.18 are sketched in Figure 3.42.
Notice that although the check node degrees are distributed randomly, their average
value (see the last column) is equal to 2w, , because the parity-check matrix is of size

600x1200.

Table 3.18 Number of rows at each weight for 600x1200 parity-check matrices of 2A

irregular codes, where w, shows the average column weight.

Average
Row Weight Row Weight |

Wa 2 3 4 5 6 7

2.95 - - 12 | 114 | 396 | 78 5.9
290 | 2 8 45 | 118 | 307 | 120 5.8
285 | 5 11 57 | 142 | 256 | 129 5.7
280 | 5 | 27 | 61 | 155 | 214 | 138 5.6
275 | 6 | 29 | 78 | 154 | 212 | 121 5.5

Number of Rows

Row Weight

Figure 3.42 Check node degree distributions given in each row of Table 3.18.

95

In Figure 3.42, it can be seen that the check node degrees of the codes are
concentrated around the degree value of 6, which shows that the check node degree
distributions of the matrices are nearly uniform. For codes with decreasing w,, the
number of nodes with degree 6 decreases because of the decreasing number of 1’s in

the parity-check matrices.

ii) Irregular 2/3/4 Codes

Table 3.19 shows the number of check nodes at each degree (i.e., the number of rows
at each weight) for different codes with irregular 2/3/4 matrices of codeword length
576 and average variable node degrees percentages of the degree-2 and degree-4
variable nodes of the code. The check node degree distributions given in Table 3.18

are sketched in Figure 3.43.

Table 3.19 Number of rows at each weight for 288%x576 parity-check matrices of the 2/3/4

irregular codes

Percentage of Degree-2 and Average

Degree-4 Variable Nodes Row Weight Row Weight
3 4 5 6 7

5% 2 2 11 250 |23 |6.0069

10 % 2 5 10 |244 |27 |6.0035

20 % 2 5 9 245 |27 |6.0069

33 % 1 4 13 |244 |26 |6.0069

96

300 !

—o6— (576, 288) 5%

250 --| —B&— (576, 288) 10% -~~~
)
)

—— (576, 288) 20%

—A— (576, 288) 33%
200 --L — TRl N

1

Number of Rows

11 e T B . O

BOf -

Row Weight

Figure 3.43 Check node degree distributions given in each row of Table 3.19.

In Figure 3.43, it can be seen that the check node degrees of the codes are again
concentrated around the degree value of 6, which shows that the check node degree
distributions of the matrices are nearly uniform. All of the codes have almost the
same check node degree distribution since they have the same number of 1’s in their
parity-check matrices. Since the average variable node degree w, is 3 for all the

codes of this group, average check node degree is very close to 6.

iii) Irregular 1/3/5 Codes

Table 3.20 shows the number of check nodes at each degree (i.e., the number of rows
at each weight) for different codes with irregular 1/3/5 matrices of codeword length
576 and average variable node degrees percentages of the degree-1 and degree-5
variable nodes of the code. The check node degree distributions given in Table 3.20

are sketched in Figure 3.44.

97

Table 3.20 Number of rows at each weight for 288576 parity-check matrices of the 1/3/5

irregular codes

Percentage of Degree-1 and Average
Degree-5 Variable Nodes Row Weight Row Weight
3 4 5 6 7
5% 1 5 10 |245 |27 |6.0139
10 % 1 2 15 |246 |24 |6.0069
20 % 2 2 13 | 244 |27 |6.0139
33 % 2 3 12 243 |28 |6.0139

300

T
|
|
|

o501 _| —6— (576, 288) 5%

—B— (576, 288) 10%
—7— (576, 288) 20%
200 - | —A— (576, 288) 33%

»
s
@) |
[v4 |
— |
8 150+----- - - ————-—-—- ity
[|
Qo
E |
=) |
Z 100 ------------- e m
|
|
|
0L A
|
|
0 2 —+
3 4

Row Weight

Figure 3.44 Check node degree distributions given in each row of Table 3.20.

In Figure 3.44, it can be seen that the check node degrees of the codes are
concentrated around the degree value of 6, which shows that the check node degree
distributions of the matrices are nearly uniform. All of the codes have almost the
same check node degree distribution since they have same number of 1’s in their
parity-check matrices. It is also interesting to observe that both of the 2/3/4 and 1/3/5
pseudo-randomly constructed codes have more impulse-like distribution for the

check node degrees as compared to the 2A construction.

98

3.11 Summary

Through simulations performed in this work on the performance of LDPC codes, the
conditions that lead to “wrong codewords” at the output of the message-passing
decoder are investigated in Section 3.2. When the “maximum number of iterations”
parameter /.x of the decoder is set to 50, all errors contributing to the output BER
come from the decoding failures for the codes with length »n larger than 200, and
there is no wrongly decoded codeword at all. On the other hand, when n< 200, one
may have a few wrong codewords at the decoder output. For short code lengths such
as 50 or 100, the probability of having wrong codewords decreases if /ax, Which is

initially chosen as 50, is set to a smaller value, like 20. Since d_, values of short

codes are quite small (say as small as 5 for a regular (3, 6) code of length 50), the
decoding algorithm may possibly force itself to decide on a wrong codeword in 20

iterations which is quite large as compared to d_. ; and this probability is even

higher when /.« is set to 50. However; in real cases, where the code length » and
minimum distance d_, are much larger than the maximum number of iterations

parameter of the decoding algorithm, /., the probability of a wrongly decoded

codeword approaches to 0.

In Section 3.3, we have compared the performances of the (1200, 600) irregular 2A
codes which have average variable node degree values slightly less than 3 with that

of the regular (3, 6) code. We have seen the surprising result that the irregular codes
with the variable node degree distribution polynomial A, (x) =0.05x+0.95x> (hence

the average variable node degree w,=2.95) have slightly better performance than the

regular codes with the variable node degree distribution polynomial /l(x):xz,

(hence the variable node degree 3). In order to explain this observation, we have
counted the number of length-6 cycles (Ng) of several codes. We have seen that the
codes with w, = 2.95 have in general less Ng than that of the regular (3, 6) code. In
order to be sure that this is the reason for better performance, we have generated

many different irregular codes with w, = 2.95, and many different regular codes of

99

variable node degree 3. Comparing the performance of all these codes, we have
found that the code with less Ng, has always better performance. Since there are less
number of 1’s in the parity-check matrix of an irregular code with w,=2.95, itis a
greater probability that the irregular code has less Ng than that of a regular (3,6) code.
This is the reason for irregular 2A codes with w, = 2.95 to have better performance in

most of the cases.

In the remaining sections, we have investigated the performance of pseudo-randomly
generated (1800, 900) irregular codes with different variable node degree distribution
polynomials. In Sections 3.4 and 3.5, we have generated irregular codes that have
average variable node degree 3. The 2/3/4 codes, for which the number of variable
nodes of degree-2 is chosen to be equal to number of variable nodes of degree-4 in
order to have w,= 3, are shown to have a performance that is almost the same as that
of the regular codes of the same length. Then, we have used degree-1 and degree-5
variable nodes instead of the degree-2 and degree-4 variable nodes, to generate 1/3/5
irregular codes. We have noticed that there exists an unacceptable number of wrong
codewords at the decoder output, resulting from degree-1 nodes. So we concluded
that degree-1 nodes (meaning variable nodes connected to single check equations)

should never be included in the design of powerful LDPC codes.

We have then generated (1800, 900) irregular codes with average variable node
degrees greater than 3 and investigated their performance in Sections 3.6 and 3.7. In
order to have average variable node degrees greater than 3, we have added high
weight columns to the parity-check matrices to construct 2/3/9, 2/3/11, 2/3/13 and
2/3/19 irregular codes. We have found that the codes with w, greater than 3 have
better performances with increasing w, up to some level; however, further increase in
w, distorts the performance. To explain the reason behind this performance loss, we
have counted the number of length-6 cycles, Ng, of the 2/3/9, 2/3/11 and 2/3/13 codes
that are generated. We have observed that up to some value of the average variable
node degree w,, the number of length-6 cycles of the codes remain fairly close to

each other. However, for larger w,, huge increases in the number of length-6 cycles

100

suppress the improving effect of the high degree variable nodes and distorts the code
performance. Therefore, the LDPC code designers should consider the trade-off
between the average variable node degree and the number of length-6 cycles and
explore the optimum value of w,, which may be different for different irregularities.
For the example codes of this work, the best performing 2/3/9 irregular code has the
average variable node degree w, =3.4, the best performing 2/3/11 irregular code has
w, =3.6 and the best performing 2/3/13 irregular code has w, =3.8. This is
understandable, since as compared to the weight-9 columns, less number of weight-
13 columns are needed to reach to w, = 3.8. Because the contribution of less number
of high degree variable nodes to N is smaller, the optimum w, for the 2/3/13 codes is
greater than that of the 2/3/9 codes. In Section 3.7.3, some codes with the same Ng,
but slightly different values of n and w, are compared and it is seen that their

performances are nearly identical.

Then, in order to see whether our irregular code design method leads to capacity
approaching performances for very long codeword lengths, we have designed a
2/3/13 irregular code of length 16,000 bits with average variable node degree w,=3.8.
We have compared the performance of this code with a commercially used code of
length 64,800 and observed that the performance of our 2/3/13 irregular code is very

close to that of the commercial one.

We have also measured the decoding times for a regular, and 2/3/11, 2/3/13 and
2/3/19 irregular codes of length 1800. We have observed that the average time spent
for one iteration is almost proportional to w,. However, the time spent for decoding
the same number of codewords decreases with increasing average variable node
degree. We have seen that at the time spent for decoding 50,000 codewords at
Ew/No,=1.6 dB for the 2/3/13 irregular code with w,=3.8 is 19% less than that of the
regular code. The main reason for this is found to be the smaller number of decoding

failures obtained for the irregular code.

101

As a final consideration, we have discussed the check node degree distributions of
some irregular codes that are used in this work, and shown that the utilized
construction methods create check node degree distributions, which remain close to
uniform, as long as the desired variable node degree distributions fed to the

construction algorithm are close to uniform.

102

CHAPTER 4

CONCLUSIONS

In this work, performances of randomly generated regular and irregular binary LDPC
codes are investigated and the effects which improve or deteriorate the performance
are analyzed. The performance of the codes, all of which are constructed as rate 2
codes that are free from length-4 cycles, are studied using “BER versus SNR” curves
obtained by the belief propagation decoding algorithm that employs the log-

likelihood function.

Using an optimal decoding algorithm, the performance of a regular LDPC would be
better with increasing variable node degree, w,. However, a code with large w, has
a dense Tanner graph in which the belief propagation algorithm makes poor progress.
Therefore, one expects that the optimum w, value is small. In fact, in [MacKay-
2005], it is shown that the optimum value of w, is 3. Considering this fact, we have
constructed all the regular matrices that we have used in this work with w, =3.
Since the rate of the codes are 2, their check node degrees are w, = 6. The irregular

codes that we generate also have average variable node degrees w, close to 3.

We have observed that, for short codes with small d, values, the decoder seldomly
decides on a wrong codeword, if the number of decoding iterations is sufficiently
larger than d_,,. So, as a handy rule of thumb, we conjecture that wrong codewords
do not occur if the maximum number of iterations parameter of the decoding
algorithm, L., is less than one tenth of the block length. In real cases, where the

code length #» and minimum distance d_, are much larger than /.., the probability

n

of a wrongly decoded codeword approaches to 0. Useful LDPC codes are chosen

103

very long for excellent performance, so practically all decoding errors come from

decoding failures.

We have compared the performances of many regular (3, 6) and irregular 2A codes

defined in [MacKay-Neil-1996] with w, =2.95. In all cases, we have seen that the

codes with less number of length-6 cycles have better performance, independent of
the regular or irregular structure. As compared to the regular (3, 6) code, there are
less number of 1’s in the parity-check matrix of an irregular code with w, = 2.95;
moreover, degree-2 variable nodes of the irregular 2A codes are designed in such a
way that they do not cause any length-6 cycles. Therefore, it is a greater probability
that the number of length-6 cycles of the irregular 2A code is less than that of a
regular (3, 6) regular code, which is the reason for the better performance of the

irregular code in most cases.

Knowing that the best performance of regular LDPC codes are obtained for w, =3,

we have constructed irregular codes that have average variable node degree w, = 3.
In case of the 2/3/4 codes, where the variable nodes are of degrees 2, 3 and 4, we
have seen that the performances of the irregular codes are almost the same as regular
codes. In case of the 1/3/5 codes, we have observed that wrong codewords occur at
the decoder output. We have also noticed that increasing number of degree-1 nodes
increases the number of wrong codewords at the decoder output. Because, degree-1
variable nodes rely only on the information coming from a single check node; and it
is quite probable in the decoding process that they lead to wrong codewords. Since
all 2/3/4 codes have nearly the same BER performance, we conclude that there is no
use in adding degree-4 columns to an irregular 2A code of average node degree 2.95.

One should also avoid variable nodes of degree-1 in LDPC code design.

As we could not obtain a performance improvement for irregular codes with w, = 3,
we decided to increase the value of w,. In the previous parts of this work, we have
shown that carefully designed weight-2 columns of a parity-check matrix lower the

number of length-6 cycles and therefore improve the performance. So, we have

104

included a fixed number of carefully designed weight-2 columns in the parity-check
matrices of the irregular codes and constructed the remaining columns as weight-3
and higher-weight columns in order to have 2/3/i codes (where i=9, 11, 13, 19) with

a desired w, value. For w, >3, we have seen that increasing w, up to some critical

level improves the performance, but further increase of w, deteriorates the
performance. To explain the reason for this behavior, we have counted the number of
length-6 cycles of the codes and shown that up to that critical value of w,, the
number of length-6 cycles increase slowly with increasing w,. However, for larger
w,, we have noticed an exponential increase in the number of length-6 cycles, which
suppresses the improvement brought by high degree variable nodes. This w, value,
which may be called the optimum average variable node degree, changes with the
weight of the higher weight columns in the parity-check matrix. For the 2/3/9, 2/3/11
and 2/3/13 codes of this work, the optimum w,’s have been shown to be around 3.4,
3.6 and 3.8, respectively. This increase in critical w, is normal, since the 2/3/i code
with larger i requires less number of high-degree columns in the parity-check matrix
to arrive at the same w, , which in turn contributes less to the total number of length-

6 cycles.

It is not right to pay more attention to the number of length-6 cycles than it deserves.
For example, at variable node degrees of 3.4 and 3.6, even though the 2/3/19 codes
have more cycles of length-6, they have better performance than the 2/3/9 codes.
This is normal, since the number of length-6 cycles is not a primary comparison

factor for the codes with different parameters.

In order to see the whether our design methods work well to approach capacity for
very long codeword lengths, we have designed an 2/3/13 irregular code of length
16,000 bits. We have observed that the performance of the 2/3/13 irregular code is
very close to that of a commercial DVB-S2 code of length 64,800.

We have also measured the decoding times for some regular and irregular codes of

codeword length 1800. We have observed that the decoding time per iteration

105

increases with increasing average variable node degree, w,, as expected. However,
we have also seen that the total time spent for a fixed number of codewords is much
less in the case of irregular codes, having high average variable node degrees. For
example, at E,/N,=1.6 dB, 50,000 codewords of 2/3/11 2/3/13 and 2/3/19 irregular
codes having w, values of 3.6, 3.8 and 4 respectively, are decoded in 85%, 81% and
76% of the time required for the regular (3, 6) code. This is mainly because of the
higher number of successes that are arrived at the 11"-12"™ jterations, and smaller
number of decoding failures that can only be decided upon at the last (i.e., SOth)

iteration of the decoding algorithm.

To sum up, one can improve the performance of an irregular LDPC code by avoiding
weight-1 columns, using a small percentage of carefully designed weight-2 columns
in the parity-check matrix and increasing the average variable node degree up to
some optimum value depending on the structure of the code. The performance of an
irregular code with the optimum average variable node degree may approach the
capacity for very large codeword lengths. Also, we measure the decoding times for
strong irregular codes as much less than that of the regular code with similar

parameters.

Future work may incorporate the design of irregular codes with special variable node
degree polynomials having smaller number of length-6 cycles than those presented in

this work, having much larger average variable node degrees.

106

REFERENCES

[Aly-2008] S.A. Aly, “A Class of Quantum LDPC Codes Constructed From

Finite Geometries”, IEEE Global Telecommunications Conference, 2008.

[Bonello-2008] N. Bonello, S. Chen, and L. Hanzo, “Multilevel Structured
Low-Density Parity-Check Codes” IEEE International Conference on

Communications, 2008.

[Chung-Forney-Shokrollahi-Urbanke-2001] S.-Y. Chung, G. D. Forney
Jr., T. Richardson, and R. Urbanke, “On the design of low-density
paritycheck codes within 0.0045 dB of the Shannon limit,” IEEE
Communications Letter, vol. 5, no. 2, pp. 58-60, Feb. 2001.

[Chung-Richardson-Urbanke-2001] S. Y. Chung, T. J. Richardson, R. L.
Urbanke, “Analysis of Sum-Product Decoding of Low-Density Parity-Check

Codes Using a Gaussian Approximation”, IEEE Transactions on Information

Theory, Vol. 47, No. 2, February 2001.

[Davey-1999] M. C. Davey, “Error-correction using Low-Density Parity-
Check Codes.”, Univ. of Cambridge PhD dissertation, 1999.

[Davey-MacKay-1998] M. C. Davey and D. J. C. MacKay, “Low density
parity check codes over GF(q).”, IEEE Communications Letters 2 (6):

165{167, 1998.

[Elias-1955] P. Elias, “Coding for Noisy Channels”, The 3rd London
Symposium , pp. 61-76, Sep. 1955.

107

[Gallager-1962] R. G. Gallager, “Low density parity check codes,” IRE
Trans. Inform. Theory, vol. IT-8, pp. 21-28, Jan. 1962.

[Gallager-1963] R. G. Gallager. “Low density Parity Check Codes”,
Cambridge, MA: MIT Press, 1963.

[Goethals-1974] P. Delsarte and J. M. Goethals, Alternating Bilinear Forms
over GF(q), J, Combinatorial Theory, Series A Vol. 19, 26-50, 1975.

[Goppa-1982] V. D. Goppa “Algebraico-Geometric Codes”, Math. USSR
Izoestiya, vol. 21, pp. 75-91, 1983.

[Johnson-2008] S.J Johnson, S.R Weller, “Combinatorial Interleavers for
Systematic Regular Repeat-Accumulate Codes”, IEEE Transactions on

Communications, 2008.

[Kerdock-1972] A. M. Kerdock “A Class of Low-Rate Nonlienar Binary
Codes”, Inform. Control Vol.20, 182-187, 1972.

[Kou-2000] Y. Kou, S.Lin, M.P.C. Fossorier, “Low density parity check
codes: construction based on finite geometries” IEEE Global

Telecommunications Conference, 2000.
[Krishnan-2007] K. M. Krishnan, R. Singh, L. S. Chandran, P. Shankar, “A
Combinatorial Family of Near Regular LDPC Codes”, IEEE International

Symposium on Information Theory, 2007.

[Leiner-2005] B. M. J. Leiner, “ LDPC Codes — A Brief Tutorial”, 2005.

108

[Luby-Mitzenmacher-Shokrollahi-Spielman-1998] M. Luby, M.
Mitzenmacher, A. Shokrollahi, and D. Spielman, “Analysis of low-density
codes and improved designs using irregular graphs.”, In Proc. 30th Annu.

Sym. Theory of Computing, pages 249-258, 1998

[MacKay - 2005] D. J. C. MacKay, “Information Theory, Inference, and
Learning Algorithms”, Cambridge University Press, 2003.

[MacKay-1999] D. J. C. MacKay, “Good Error-Correcting Codes Based on
Very Sparse Matrices”, IEEE Transactions on Information Theory, Vol. 45,
No. 2, March 1999.

[MacKay-Neal-1996] D. J. C. MacKay and R. M. Neal, “Near Shannon limit

performance of low density parity check codes”, Electronics Letters 1996.

[Mackay-Wilson-Davey-1999] D. J. C. Mackay, S. T. Wilson, and M. C.
Davey, “Comparison of constructions of irregular Gallager codes”, IEEE

Transactions on Communications, 47(10):1449-1454 October 1999.

[Moinian-2006] A. Moinian, B. Honary, E. Gabidulin, “Generalized quasi-
cyclic LDPC codes for wireless data transmission”, IET International

Conference on Wireless, Mobile and Multimedia Networks, 2006.

[Moura-2005] J. Lu, and J. M. F. Moura, “Partition-and-Shift LDPC Codes”,
IEEE Trans. on Magnetics, 2005.

[Richardson-Shokrollahi-Urbanke-2001] T. J. Richardson, M. A.
Shokrollahi, and R. Urbanke, “Design of capacity approaching irregular low-
density parity check codes”, IEEE Trans. Inform. Theory, vol. 47, no. 2, pp.
619-637, Feb. 2001.

109

[Richardson-Urbanke-2001] T. J. Richardson and R. Urbanke, “Efficient
Encoding of Low-Density Parity-Check Codes”, IEEE Trans. Inform.
Theory, vol. 47, no. 2, Feb. 2001.

[Shannon-1948] C. E. Shannon, “A mathematical theory of communication,"

Bell System Technical Journal, vol. 27, pp. 379{423, 1948.

[Shokrollahi-2003] A. Shokrollahi, “LDPC Codes: An Introduction”, Digital
Fountain, Inc. April 2, 2003.

[Swanson-1988] L. Swanson, “A new code for Galileo.”, In Proc. 1988 IEEE
International Symposium Info. Theory, pp. 94{95, 1988.

[Tanner-1981] R. M. Tanner, “A recursive approach to low complexity

codes,” IEEE Trans. Inform. Theory, vol. 27, no. 5, pp. 533-547, Sept. 1981.

[Tanner-2004] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J.
Costello, “LDPC Block and Convolutional Codes Based on Circulant
Matrices” IEEE Trans. On Info. Theory, 2004.

[Uzunoglu-2007] C. Uzunoglu, “Performance Comparison of Message
Passing Algorithms for Binary and Non-Binary Low Density Parity Check
(LDPC) Codes”, MSc. Thesis in Electrical and Electronics Engineering
Department, METU, 2007.

[Xia-He-Xu-Cai-2008] D. Xia, H. He, Y. Xu, Y. Cai, “A Novel Construction
Scheme with Linear Encoding Complexity for LDPC Codes”, 4t

International Conference on Wireless Communications, Networking and

Mobile Computing (WiCOM), 2008.

110

APPENDIX A

LDPC CODE CONSTRUCTION SOFTWARES

Regular Code Construction Software

Our software that constructs regular LDPC codes by the MacKay and Neil’s regular
LDPC code construction method takes the size mxn and the variable node degree
wy as the input parameter, and gives the parity-check matrix H of an regular (w,, w,)
LDPC code of rate m/n at the output. The algorithm of constructing the parity-check

matrix is given below

e Starting from the leftmost column, one-by-one construct weigth-3 columns.
e When constructing a new column, select the positions of the 1’s of the

column from the rows with weights smaller than the desired row weight w,.

e When constructing a new column, make sure that number of overlaps

between any two columns of the entire parity-check matrix no greater than 1.

Irregular 2A LDPC Code Construction Software

Our software that constructs irregular LDPC codes by the 2A method takes the size n

and the average variable node degree w, as the input parameters, and gives the

parity-check matrix H of an irregular LDPC code of rate 2 at the output. The

algorithm of constructing the parity-check matrix is given below

e Using the size of the matrix and the desired average node degree, calculate

the number of weight-2 columns, which cannot exceed n/4 for rate % codes.

111

e Construct the weight-2 columns of the parity-check matrix such that there is
zero overlap between any pair of columns

e Make the remaining columns with weight-3, with weight per row as uniform
as possible, and number of overlaps between any two columns of the entire

parity-check matrix no greater than 1.

Pseudo-Random Irregular Code Construction Software

Our software that constructs irregular LDPC codes by MacKay and Neil’s pseudo-

random construction method takes the size n, the average variable node degree w,,

and the desired variable node degree values as the input parameters, and gives the
parity-check matrix H of an irregular LDPC code of rate)2 at the output. The

algorithm of constructing the parity-check matrix is given below.

e Using the size of the matrix and the desired average node degrees, calculate
the number of columns with each weight.

e Starting from the leftmost column, construct the smallest weight columns
first, then construct the columns with next greater degree and continue this
process until the last column with the greatest weight is constructed.

e When constructing a column, make sure that the number of overlaps between

any two columns of the entire parity-check matrix no greater than 1.

112

