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ÖZET 

Yüksek Lisans Tezi 

 

 YENİ BİR NEWTONYEN OLMAYAN AKIŞKAN MODELİNİN BORU 

İÇERİSİNDEKİ AKIŞININ İNCELENMESİ 

EMİNE CERYAN 

Afyonkarahisar Kocatepe Üniversitesi 
Fen Bilimleri Enstitüsü 

Makine Eğitimi Anabilim Dalı 

Danışman: Doç. Dr. Muhammet YÜRÜSOY 

 

 

Bu çalışmada, non-Newtonyen bir akışkan modelinin boru içerisindeki akışı 

incelenmiştir. Silindirik koordinatlarda üçüncü derece akışkanlara ait genel hareket 

denklemlerinden faydalanılarak boru içerisindeki tek boyutlu akış için momentum ve 

enerji denklemleri elde edilmiştir. Bulunan bu denklemler için boru içerisindeki akışı 

ifade eden sınır şartları belirlenmiştir. Elde edilen denklemler boyutlu denklemler 

olmakla birlikte daha genel olabilmesi amacıyla boyutsuz hale getirilmiştir. Böylece, 

silindirik koordinatlarda tek boyutlu akışı ifade eden adi diferansiyel denklem 

sistemleri elde edilmiştir. Bu denklem sistemlerinin yaklaşık analitik çözümleri için 

perturbasyon tekniklerinden yaya açılımı yöntemi kullanılmıştır. Çözümlerde viskozite 

sabit alınmıştır. Analitik çözümlerin yanı sıra nümerik çözümler de yapılmıştır. 

Nümerik çözümlerin elde edilmesinde sonlu farklar yöntemi kullanılmıştır. Çözümler 

diferansiyel denklemi çözen bir program olan Matlab paket programı kullanılarak elde 

edilmiştir. Çeşitli akışkan sabitlerinin hız ve sıcaklık profili üzerindeki etkisi 

incelenmiştir. Analitik ve nümerik sonuçlar karşılaştırılmıştır. 

 
 
 
 
2010, 50 sayfa 

Anahtar kelimeler: Newtonyen Olmayan Akışkanlar, Perturbasyon Tekniği, Sonlu 

Farklar, Boru İçerisindeki Akış.                       
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INVESTIGATION OF FLOW IN A PIPE FOR A NEW NON-NEWTONYEN FLUID 
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Supervisor: Assoc. Prof. Muhammet YÜRÜSOY 

 

In this study,  the flow of a kind of non-Newtonyen fluid model in a pipe is 

investigated. By using the general equations of motion that have gained for cylindirical 

coordinates, momentum and energy equations for one-dimensional flow in a pipe are 

determined. For the determined equations the boundary conditions explaining flow in 

pipe are established. Although these equations and boundary conditions are 

dimensional equations, size is made to be more general. Thus, ordinary differential 

equation systems that regard the one-dimensional flow in cylindrical coordinates are 

achieved. Perturbation method, a pedestrian approach, is used for the approximate 

solutions of these equations. In solutions, it is admitted that the viscosity is constants.  

As well as approximate solutions, numerical solutions are done. Finite Differentiations 

method is used to obtain the numerical solutions. Solutions are reached by using 

Matlab packet program. The effect of various fluid constants on velocity and heat 

profiles is investigated. Analytical and numerical solutions are compared. 

 

2010, 50 pages 

Keywords: Non-Newtonian Fluids, Perturbation Techniques, Finite Differentiations, 

Pipe Flow. 
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1. GİRİŞ 
 

Akışkanlar mekaniği, nano ölçekli sistemlerden devasa yapılara kadar yaşamın her 

alanında uygulama alanı bulmuş ve temelleri iyi oturmuş bir konudur. Bu yönüyle 

mühendislik bölümlerinin çoğunda vazgeçilmez konulardan birisi olmuştur. Akışkanlar 

mekaniği, elektrik süpürgesinden süpersonik uçaklar kadar günlük hayatta ve gelişmiş 

mühendislik sistemlerinin tasarımında yaygın olarak kullanılmaktadır. En başta 

akışkanlar mekaniği insan vücudunda hayati bir rol oynar. Kalp, sürekli olarak 

atardamarlar ve toplardamarlar ile insan vücudunun her yerine kan pompalar ve 

akciğerler hava akış yönünün sürekli değiştiği organlardır. Bütün yapay kalpler, 

solunum cihazları ve diyaliz sistemleri akışkanlar dinamiği kullanılarak 

tasarlanmaktadır. Sıradan bir ev akışkanlar mekaniğinin uygulamaları ile doludur. Bir 

evin ve bütün şehrin temiz su, doğal gaz ve atık su tesisatları akışkanlar mekaniği 

prensiplerine göre tasarlanmaktadır. Buzdolabında soğutkan akışkanın; içerisine aktığı 

borular, basınçlandırıldığı kompresör, ısıyı çektiği ve attığı ısı değiştiriciler de 

akışkanlar mekaniği kullanılarak yapılmaktadır. Akışkanlar mekaniğinin sayısız 

uygulaması otomobillerde de görülmektedir. Yakıtı depodan silindirlere kadar ulaştıran 

tüm parçalar, yakıt boruları, yakıt pompası, karbüratörler, silindirlerde yakıt ve havanın 

karışması, yanmış gazların egzoz boruları ile atılması akışkanlar mekaniği yardımıyla 

incelenmektedir. Akışkanlar mekaniği, ısıtma ve klima sistemlerinin hidrolik frenlerin, 

otomatik vitesin, yağlama sisteminin ve hatta lastiklerin tasarımında da 

kullanılmaktadır. Daha genel bir değerlendirme ile akışkanlar mekaniği; uçakların, 

gemilerin, denizaltılarının, biyomedikal cihazların yanı sıra, elektronik elemanların 

soğutulması, su, ham petrol ve doğalgazın taşınması gibi uygulamaların tasarım ve 

incelenmesinde önemli bir yere sahiptir. 

 

Yakın tarihe kadar akışkanlar mekaniği bilimi hidrolik adı altında ele alınmaktaydı. 

Hidroliğin genel olarak su ile ilgilenmesi, içerdiği akışkan sorunlarının sınırlı kalması 

ve matematiksel anlamda yetersiz kalması akışkanlar mekaniği konusundaki çalışmaları 

arttırmıştır. Bilhassa, sınır tabakası teorisinin geliştirilmesi ile beraber Navier-Stokes 

denklemlerinin basit bir forma indirgenmesi ve çözüme ulaşılması imkânına 

ulaşılmıştır. Özellikle düşük moleküler ağırlığa sahip akışkanların mekanik davranışları 
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Navier-Stokes yaklaşımıyla doğru olarak belirlenmektedir. Hareketleri Navier-Stokes 

teorisi ile ifade edilebilen ve düşük moleküler ağırlığa sahip olan akışkanlar Newtonyen 

akışkanlar olarak adlandırılmaktadır. Aldığımız nefes, hava, su, süt ve benzin 

Newtonyen akışkanlara örnek verilebilir. Non-Newtonyen akışkanlar ise yüksek 

molekül ağırlığa sahip akışkanlardır. İnce çamurumsu karışımlar, bal, hamur, mayonez, 

boya, asfalt ve tutkal non-Newtonyen akışkanlardan bazılarıdır. Non-Newtonyen 

akışkanların Newtonyen akışkanlardan temel farkı, kayma gerilmesi ile şekil değiştirme 

hızı yani hızın konuma bağlı olarak değişimi arasında doğrusal olmayan (non lineer) bir 

ilişki olmasıdır. Başka bir deyişle Newtonyen akışkanlarda viskozite olarak adlandırılan 

kayma gerilmesi ile hız gradyeni arasındaki orantı katsayısı sabitken non-Newtonyen 

akışkanlarda değişkendir.  

 

Tabiatta bulunan akışkanların büyük bir kısmı non-Newtonyen akışkan modeline 

uymaktadır. Bazı non-Newtonyen akışkanlar, bir tür hafıza özelliği taşır ve bunlarda 

kayma gerilmesi sadece yerel şekil değiştirme hızına değil ayrıca gerilmenin önceki 

değişimlerine de bağlı olarak değişmektedir. Uygulanan gerilme kaldırıldığında baştaki 

asıl şekline dönen akışkana viskoelastik denilmektedir. Bazı non-Newtonyen akışkanlar, 

şekil değiştirme hızları arttıkça daha az viskoz duruma geldiklerinden incelen akışkanlar 

veya sanki plastik akışkanlar olarak adlandırılmaktadır. Boya buna en iyi örnektir. 

Boya, kabından dökülürken veya bir fırçaya alınırken gerilme küçük olduğundan 

oldukça viskozdur. Bununla birlikte boyayı duvara sürdüğümüzde, fırça ile duvar 

arasındaki ince boya tabakası yüksek kayma gerilmesine maruz kalır ve daha az viskoz 

hale gelir. Bazı akışkanları harekete geçirebilmek için akma gerilmesi denilen sonlu bir 

gerilmenin uygulanmasına ihtiyaç vardır. Bu tür akışkanlar Bingham plastik akışkanları 

olarak bilinmektedir. Cilt kremi ve diş macunu Bingham akışkana örnek verilebilir. 

Eğer diş macunu tüpünün ağzını aşağı doğru tutarsanız yerçekiminden dolayı bir 

gerilme bulunmasına rağmen macun akmaz. Bununla birlikte eğer tüpü sıkarsanız, 

macun oldukça viskoz bir akışkan gibi akmaya başlar.  
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Çok çeşitli alanlardan verilen bu örnekler non-Newtonyen akışkanların kullanım 

alanlarının genişliliği ve çeşitliliğini göstermektedir. Özellikle son yıllarda non-

Newtonyen akışkanlar üzerindeki çalışmalar gelişme göstermiştir. Non-Newtonyen 

akışkanlara ve boru içerisindeki akışa ait yapılan çalışmalar şu şekildedir: 

 

Malin (1997), power-law akışkanlarda pürüzsüz boru içindeki türbülanslı akışı sayısal 

olarak incelemiş ve deneysel sonuçlarla karşılaştırmıştır. Wang et al.(1997), iç içe 

geçmiş iki boru arasındaki power law akışkanın kararsız Couette akışını analiz 

etmişlerdir. Burada içteki borunun hareketi söz konusudur. Power law akışkana ait 

hareket denklemi analitik olarak çözülmüştür. Gupta (2001), power law modelindeki 

non-Newtonyen akışkanın laminer akış için yaklaşık bir çözümünü dairesel boru ve düz 

kanal için ortaya koymuştur. Yürüsoy ve Pakdemirli (1999), kaymalı yatakların 

yağlanmasında üçüncü dereceden non-Newtonyen akış modelini kullanmışlardır. Bu 

çalışmada; üçüncü derece akışkan etkilerinin viskoz etkilerden daha küçük olduğu kabul 

edilmiştir. Massoudi ve Christie (1995), boru içerisindeki üçüncü derece akışkanlar için 

hareket ve enerji denklemlerinin çözümlerini nümerik olarak yapmışlardır. Bu 

çalışmada da yine akışkanın viskozitesinin sıcaklığa göre değiştiği göz önüne alınmıştır. 

Yürüsoy ve Pakdemirli (2002), borularda üçüncü derece akışkan akışını yeniden 

incelemişlerdir. Massoudi ve Christie (1995)’nin çalışmasından farklı olarak 

perturbasyon yöntemini kullanarak diferansiyel denklem sistemi için analitik çözümler 

bulmuşlardır.  

 

Bu tez çalışmasında genelleştirilmiş bir üçüncü derece non-Newtonyen akışkan 

modeline ait boru içerisindeki akışı incelenmiştir. Silindirik koordinatlarda 

genelleştirilmiş üçüncü derece akışkanlara ait momentum ve enerji denklemleri elde 

edilmiştir. Denklemlerin çıkarılışında Rivlin-Ericksen tensörleri kullanılmıştır. Boru 

içerisindeki akışı ifade eden sınır şartları belirlenmiştir. Elde edilen momentum ve enerji 

denklemleri ile sınır şartları boyutlu parametrelerden oluşmaktadır. Çözümlerin daha 

genel olabilmesi için denklemler boyutsuzlaştırılmıştır. Böylece, silindirik koordinatlar 

için tek boyutlu akışı ifade eden adi diferansiyel denklem sistemleri elde edilmiştir. Bu 

denklem sistemlerinin yaklaşık analitik çözümleri yapılmıştır. Denklemlerin analitik 

çözümü için bir perturbasyon metodu olan yaya açılımı kullanılmıştır. Yaya açılımı 
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yapılarak hız ve sıcaklık profillerine ait denklemler, Newtonyen ve non-Newtonyen 

kısımlara ayrılmıştır. Öncelikle Newtonyen kısmın, daha sonra da non-Newtonyen 

kısmın çözümleri yapılmıştır. Çözümlerde viskozite değeri sabit alınmıştır. Bu açılım 

sayesinde hız ve sıcaklık profillerinin yaklaşık çözümleri bulunmuştur. Tez 

çalışmasında analitik çözümlerin yanı sıra nümerik çözümler de yapılmıştır. Nümerik 

çözümlerin elde edilmesinde sonlu farklar metodu kullanılmıştır. En iyi yaklaşımı veren 

merkezi fark yaklaşımı kullanılmıştır. Nümerik çözümler 100 düğüm noktası için 

yapılmıştır. Yüz düğüm noktası için elde edilen denklemler özel bir sonlu farklar 

programı kullanılarak çözülmüştür.  Daha sonra elde edilen analitik çözümler çeşitli 

akışkan sabitleri için çizdirilmiştir. Bu fiziksel parametrelerin hız ve sıcaklık profilleri 

üzerindeki etkileri açıkça ortaya konmuştur. Ayrıca, bu tez kapsamında analitik ve 

nümerik çözümlerin karşılaştırılması da yapılmıştır. 
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2. GENEL BİLGİLER 

 

2.1 Akışkanlar Mekaniği Nedir 

 

Maddelerin temel olarak üç fiziksel hali vardır. Bunlar katı, sıvı ve gaz halleridir. Sıvı 

ve gaz halindeki madde akışkan olarak nitelendirilir. Mekanik, kuvvet ve hareket 

bilimidir. Akışkanlar mekaniği de akışkanların hareketini ve etki eden kuvvetleri 

inceleyen bilim dalıdır. Zorlama etkisi altında maddesel ortamlarda gerilmeler meydana 

gelebilir. Gerilme, zorlamaya karşı direnmeyi sembolize eden bir büyüklüktür. Bunlar 

genellikle Normal (çekme veya basma) gerilme ve Teğetsel (kayma) gerilmelerdir. Bu 

gerilme değerleri katı cisimlerde çok yüksek değerlere çıkabildiği halde akışkan 

maddelerde, basma gerilmesi hariç, çok küçüktür. Katı, uygulanan kayma gerilmesine 

bir miktar şekil değiştirerek direnebilir. Aksine sıvı, kayma gerilmesi ne kadar küçük 

olursa olsun sürekli olarak şekil değiştirir. Sıvılar ve gazlar gerilmeye karşı farklı 

davranış göstermektedirler. Sıvılar normal doğrultudaki gerilmelere (basınç) karşı bir 

katı gibi direnç gösterirken, gazlar normal doğrultudaki gerilmelere de karşı 

koyamazlar. Bundan dolayı sıvıları ve gazları birbirinden ayıran en önemli özellik, 

sıkıştırılabilme özelliğidir. Teorik olarak sıvılar sıkıştırılamayan akışkanlar olarak kabul 

edilir. Gazlar ise çok kolay sıkıştırılabilip genişleyebilirler (Yılmaz S., 2008). 

 

2.2 Akışkanların Fiziksel Özellikleri 

 

Madde doğada genel olarak katı, sıvı ve gaz olmak üzere üç halde bulunmaktadır. Sıvı 

ve gaz halindeki maddeleri akışkan başlığı altında ele alınmaktadır. Akışkanların 

fiziksel özelliklerinin temelini moleküller arası mesafenin uzaklığı oluşturmaktadır. 

Bunun bir sonucu olarak, akışkanlar konulduğu kabın şeklini almaktadırlar. 

Akışkanlarla ilgili bu tanı, yerçekiminin etkisi sonucu meydana gelmektedir. 

Yerçekiminin etkisinin olmadığı bir ortamda örneğin uzayda incelenilecek olursa, 

konulduğu kabın şeklini alma durumunun sıvı akışkanlar için geçerli olmadığı 

görülmektedir. Bu sebepten, akışkanlarla ilgili bazı genel özelliklerin incelenmesi yarar 

sağlayacaktır (Cengel Y. A., Cimbala J.M. 2008). 
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2.2.1 Özgül Ağırlık 

 

Bir akışkanın özgül ağırlığı, birim hacmini ağırlığıdır. 

 

∀∆

∆
=γ

W
 

 

Burada ∀∆∆ ;W  elemanter hacmin ağırlığıdır.  

 

mgW ∆=∆  

 

g
mgW

ρ=
∀∆

∆
=

∀∆

∆
=γ  

 

Veya 

 

gρ=γ ’dir   

 

2.2.2 Yoğunluk 

 

Yoğunluk, birim hacimdeki kütle miktarıdır. 

 

3( / )
m

kg m
v

ρ =             şeklinde ifade edilmektedir. 

 

Burada, m; cismin kütlesi, ν; cismin hacmi olarak verilmektedir. Özellik tabloları, 

özellikler hakkında çok doğru ve hassas bilgiler sağlamaktadır, ancak bazen özellikler 

arasında yeterince genel ve doğru sonuç veren basit bağıntılara gereksinim 

duyulmaktadır. Bir maddenin basıncı, sıcaklığı ve hacmi arasındaki bağıntıya hal 

denklemi denilmektedir. Gaz fazındaki maddeler için en basit ve iyi bilinen hal 

denklemi ideal gaz denklemi olup; 
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Ρ ⋅ = ⋅v R T       veya        R TρΡ = ⋅ ⋅           şeklinde ifade edilmektedir. 

 

Burada P mutlak basıncı, v  özgül hacmi, T mutlak sıcaklığı, ρ  yoğunluğu ve R gaz 

sabitini belirtmektedir. Gazlar içinde bulundukları kabın şeklini ve hacmini 

almaktadırlar, yani kabı daima doldurmaktadırlar. Gaz molekülleri bir kap içerisinde 

çok sıkıştırıldığı durumlar haricinde, moleküllerin toplam hacmi gazın hacmi yanında 

yok sayılabilir ve aralarındaki çekim dikkate alınmayabilir. Böyle bir gaza ideal gaz 

denilmektedir. Bir maddenin yoğunluğu, genel anlamda sıcaklık ve basınca bağlı olarak 

değişmektedir. Genellikle sıvıların yoğunluğu, sıcaklıkla değişmesine karşın basınçla 

çok az değişir, gazların yoğunluğu ise hem sıcaklık hem de basınç ile değişmektedir 

(Cengel Y. A., Cimbala J.M. 2008). 

 

2.2.3 Basınç 

 

Basınç, bir akışkan tarafından birim alana uygulanan kuvvet olarak tanımlanmaktadır. 

Basınç sadece sıvılar ve gazlar için kullanılan bir tanımlamadır. Basıncın katılardaki 

karşılığı normal gerilmedir. Verilen bir konumdaki gerçek basınca mutlak basınç denir 

ve mutlak vakuma (mutlak sıfır basınca) göre ölçülmektedir. Bununla birlikte basınç 

ölçme cihazlarının çoğu atmosferde sıfıra kalibre edilmektedir. Dolayısıyla bu cihazlar 

mutlak basınç ile yerel atmosferik basınç arasındaki farkı göstermektedir. Bu fark etkin 

basınç olarak adlandırılmaktadır (Soğukoğlu M., 1995). 

 

2.2.4 Viskozite 

 

Katıların kayma gerilmelerine karşı dirençlerinin büyük olmasına rağmen akışkanların 

gösterdiği direnç oldukça küçüktür. En küçük kayma gerilmesi etkisi altında bile 

akışkan sürekli olarak şekil değiştirmektedir. Doğadaki bütün akışkanlar, akışkan 

tabakalarının birbirleri üzerinde hareket etmelerine karşı direnç göstermektedirler. Bu 

direnç akışkan viskozitesi olarak adlandırılmaktadır. Viskozite, komşu tabakaların 

birbirlerine göre hareketlerinde içsel direncin ölçümü olan bir akışkan özelliğidir 

(Cengel Y. A., Cimbala J.M. 2008). 
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Şekil 2.1 İki Paralel Plaka Arasındaki Akışkanın Laminer Akış Davranışı 

 

Viskozite için bir bağıntı elde etmek üzere aralarında l kadar mesafe bulunan iki paralel 

plaka arasındaki akışkan tabakasını dikkate alalım (Şekil 2.1). Alttaki plaka sabit 

tutulurken üstteki plakaya paralel sabit bir F kuvveti kuvvetinin uygulandığını 

düşünelim. Uygulanan bu kuvvetin etkisiyle üstteki plakanın sabit bir V hızıyla hareket 

ettiği gözlenir. Üstteki plakayla temas eden akışkan plaka yüzeyine yapışır ve onunla 

aynı hızda hareket eder. Bu durumda akışkan tabakasına etki eden kayma gerilmesi;  

 

F

A
τ =            ifadesiyle verilir.  

 

Burada A, plaka ve akışkan arasındaki temas alanıdır. Alttaki plaka ile temas halindeki 

akışkanın ise bu plakanın sıfır olan hızına sahip olduğu kabul edilir. İki plaka arasındaki 

akışkan hızı 0’dan V’ ye doğrusal olarak değişir ve böylece hız profili ve hız gradyeni; 

 

( )
y

u y V
l

= ⋅     ve   
du V

dy l
=     olarak yazılır.  

 
 
 
 
 
 



 

9 
 

 

Burada y alt plakadan olan düşey mesafedir. Diferansiyel bir dt zaman aralığında, 

akışkan parçacıklarının kenarları bir MN çizgisi boyunca diferansiyel bir dβ açısı kadar 

döner ve bu esnada üstteki plaka diferansiyel da=V.dt mesafesini alır. Bunun sonucunda 

ortaya çıkan açısal yer değiştirme veya deformasyon;  

 

tan
da V dt du

d dt
l l dy

β β
⋅

≈ = = = ⋅     olarak ifade edilebilir.  

 

Tekrar düzenlemeyle kayma gerilmesinin etkisi altındaki deformasyon hızı; 

 

d du

dt dy

β
=        halini alır.  

 

Buna göre bir akışkan elemanının deformasyon hızı, du/dy hız gradyenine eşittir. Ayrıca 

çoğu akışkan için deformasyon hızının doğrudan kayma gerilmesi ile orantılı olduğu 

sonucuna varılmaktadır:          

 

≈
d

dt

β
τ     veya     

du

dy
τ ∝      

 

Deformasyon hızının kayma gerilmesiyle orantılı olduğu akışkanlara Newton tipi 

akışkanlar denilmektedir. Bir boyutlu Newton tipi kayma akışında kayma gerilmesi; 

 

du

dy
τ µ= ⋅           ifade edilebilir.  

 

Buradaki orantı sabiti µ, akışkanın viskozite katsayısı veya dinamik viskozite olarak 

adlandırılmaktadır. Akışkanlar mekaniğinde dinamik viskozitenin yoğunluğa oranıyla 

sıkça karşılaşılmaktadır. Bu orana kinematik viskozite denilmektedir ve   

 

v
µ

ρ
=            olarak ifade edilmektedir. 
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2.3 NON-NEWTONYEN AKIŞKAN MODELLERİ  

 

Bu bölümde Newtonyen ve Non-Newtonyen akışkan tanımlamaları yapılacak ve aynı 

zamanda Non-Newtonyen akışkanlar daha ayrıntılı olarak ele alınacaktır. 

 

2.3.1 Newtonyen Akışkan Modeli  

 

Aralarında dy kadar mesafe bulunan sonsuz iki plaka arasında Şekil 3.1’deki gibi x 

ekseni boyunca dx kadar mesafeye yayılmış akışkan bulunsun. 

 

    du 

                                                                                                                           F 

 

 

    dy 

   

 

 

 

                                                                 dx 

                                                  

Şekil 2.2 İki Sonsuz Plaka Arasında Durgun Akışkan 

 

Üst plaka bir F kuvveti yardımı ile du hızıyla hareket ettirilsin ve dl kadar yer 

değiştirsin. Bu durum Şekil 2.2’de gösterilmiştir. 
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                                                                                                                              F 

 

 

        dy 

 

 

 

 

                                                                    dx 

 

Şekil 2.3 İki Sonsuz Plaka Arasındaki Akışkan için Üst Plakanın Hareket Ettiği Durum 

 

Bu durumda deformasyon oranı du / dy olarak ifade edilir. Kayma gerilmesi ise; 

 

yx

du

dy
τ = µ                                                                                                                     (2.1) 

 

şeklinde yazılır. Buradaki  µ terimi akışkanın viskozitesi olarak adlandırılır. 

 

Sürekli ortamların mekaniği incelenirken uygulanan kuvvetlere göre şekil değişimini 

ölçen bazı katsayılar tanımlanmıştır. Katı sürekli ortamlar için elastisite modülü, 

poisson oranı ve kayma modülü gibi katsayılar (oranlar) vardır. Bir sürekli ortam olarak 

akışkan için de hacim modülü ve viskozite katsayısı gibi iki katsayı tanımlanmıştır. 

Bunlar akışkana bir kuvvet uygulandığında yapacağı davranışı öngörmemizi sağlarlar. 

Denklem 2.1’de bulduğumuz viskozitenin böyle bir önemi vardır. Katılar için, 

akışkandaki viskoziteye karşılık gelen kayma modülü, kayma gerilmesinin yer 

değiştirmeye oranı olarak tanımlanırken akışkanda viskozite, kayma gerilmesinin hız 

gradyenine oranı olarak tanımlanır. 
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Bir başka tanımıyla viskozite hareket halindeki akışkandaki yerel gerilmelerle şekil 

değiştirme hızı arasındaki ilişkiyi ortaya koyar. Newtonyen akışkanlar için verilen 

herhangi bir sıcaklık için viskozite sabittir. Newtonyen akışkanlarda viskozite, basınç 

arttıkça çok az artar, sıcaklık arttıkça –sıvılarda- azalır. Düşük ve yüksek viskozite 

değerleri için Newtonyen akışkanların örnek grafiği Şekil 2.4’te verilmiştir. Şekil 2.4’te 

Newtonyen akışkanlarda kayma gerilmesi ile hız gradyanı arasında lineer bir ilişki 

olduğu görülmektedir. Viskozite değerinin düşük veya yüksek olması durumunda 

kayma gerilmesi ile hız gradyanı arasındaki ilişki değişmemekte, doğrusal olarak 

kalmaktadır (Akgül M.B., 2008). 
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Şekil 2.4 Newtonyen Akışkanda Düşük ve Yüksek Viskozite Değerleri İçin Kayma 

Gerilmesi Hız Gradyanı Grafiği  
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2.3.2 Non-Newtonyen Akışkanlara Ait Modeller 

 

Non-Newtonyen akışkanların özellikleri ve sınıflandırması “Reoloji” denilen bilim dalı 

dahilinde incelenmektedir. Reoloji, şekil değiştirme – kuvvet ilişkisiyle uğraşan bilim 

dalıdır. Cisimlerin davranışlarını şekil değiştirme, kuvvet ve/veya zaman faktörleri 

altında ele alır (Akgül M.B., 2008). 

 

Bölüm 1’de genel olarak bahsettiğimiz gibi non-Newtonyen akışkanların Newtonyen 

akışkanlardan farkı, kayma gerilmesiyle hız gradyeni arasında doğrusal bir ilişkinin 

olmamasıdır. Bölüm 2.3.1’de Newtonyen akışkanları denklem (2.1)’le matematiksel 

olarak ifade ettik. Ancak böyle tek bir genel modeli non-Newtonyen akışkanlar için 

yazabilmek pek mümkün değildir. Newtonyen olmayan davranış gösteren akışkanlar için 

birçok model ileri sürülmüştür. Akışkana ve akış biçiminin değişimine göre 

kullanılabilecek non-Newtonyen akışkan modelleri farklılık gösterir. Çünkü her bir 

modelin değişik şartlar için uygun veya uygun olmayan yönleri mevcuttur. Bazı non-

Newtonyen akışkan modellerini sıralayalım: 

 

Power Law Modeli:                     

n

yx

du

dy

 
τ = µ  

 
                                                           (2.2) 

 

Hershell- Bulkley Modeli:          

n

yx 0

du

dy

 
τ = τ + µ  

 
                                                    (2.3) 

 

Prandtl Modeli:                           1
yx

du / dy
Asin

c
−  

τ =  
 

                                             (2.4) 

 

Powell- Eyring Modeli:               1
yx

du 1 du / dy
sinh

dy B c
−  

τ = µ +  
 

                               (2.5) 

 

Williamson Modeli:                     yx

du Adu / dy

dy B du / dy
τ = µ +

+
                                          (2.6) 

 
 
 
 
 



 

14 
 

 

Akışkanları en genel olarak Newtonyen akışkanlar ve non-Newtonyen akışkanlar olarak 

iki gruba ayırdıktan sonra yukarıda bazı örnek modellerini verdiğimiz non-Newtonyen 

akışkanların temel parametresi olan viskozitenin zamana bağlılığına göre gruplamak 

istersek iki gruba ayırabiliriz: i) Zamana bağımlı akışkanlar, ii) Zamandan bağımsız 

akışkanlar (Akgül M.B., 2008). 

 

2.3.2.1 Zamana Bağımlı Non-Newtonyen Akışkanlar 

 

Tiksotropik ve Reopektik olarak adlandırılan akışkanlar bu gruba girer. Tiksotropik 

akışkanların görünür viskozitesi kayma gerilmesiyle azalır. Zamanla incelirler ve azalan 

gerilmeye ihtiyaç duyarlar. Bir başka deyişle sabit hız gradyeni için kayma gerilmesi 

zamana bağlı olarak azalır. Reopektik akışkanların görünür viskozitesi kayma 

gerilmesiyle artar. Sabit sekil değiştirme hızını koruyabilmek için yavaşça artan kayma 

gerilmesine ihtiyaç duyarlar. Sabit hız gradyeni için kayma gerilmesi zamana bağlı 

olarak artar. Tiksotropik akışkanlara örnekler boya, bal, ketçap ve yoğurt sayılabilir. 

Reopektik akışkanlara örnek olarak ta temel mantığı hareket eden iki yüzey arasındaki 

sürtünmeyi azaltan ve mekanik uygulama alanları oldukça fazla olan yağlama maddeleri 

verilebilir. Bitkisel, sentetik ve mineral yağlar bu gruba verilebilecek örneklerdir (Akgül 

M.B., 2008). 

 

2.3.2.2 Zamana Bağlı Olmayan Non-Newtonyen Akışkanlar 

 

Bazı besin grubu ve biyolojik sistemlerdeki akışkanlar bu gruba girer. Power 

Law akışkanlar için verilen modeli, 

 

n

yx

du

dy

 
τ = µ  

 
        şeklinde ifade etmiştik. Burada, 

 

n < 1 ise akışkan, alçalan veya kayma incelmesi davranışı gösteren akışkan (shear 

thinning) olarak tanımlanır. Bunlar Pseudeplastik akışkanlardır. Hız gradyeni arttıkça 

görünür viskozitesi azalır. Saç şekillendirici jöleler bu gruba örnek verilebilir. 

 
 
 
 
 



 

15 
 

 

n > 1 ise kabaran veya kayma kalınlaşması davranışı gösteren akışkan (shear thickening) 

olarak tanımlanır. Bunlar Dilatant akışkanlardır. Hız gradyeni arttıkça görünür 

viskozitesi artar. Su ve un karışımı bu gruba örnek verilebilir. Şekil 2.5’te Pseudeplastik 

ve Dilatant akışkanların hız gradyenine bağlı olarak kayma gerilmesinin değişimi grafik 

olarak gösterilmiştir. Şekil 2.5’te Newtonyen akışkanlarda kayma gerilmesi ile şekil 

değiştirme hızı doğru orantılıdır. Buna karşın non-Newtonyen akışkanlarda ise kayma 

gerilmesi ile deformasyon hızı lineer olmayan bir ilişki olduğu görülmektedir (Akgül 

M.B., 2008).  

 

 

Şekil 2.5 Newton ve non-Newtonyen Akışkanlar için Kayma Gerilmesinin Deformasyon 

Hızıyla Değişimi  (Cengel Y. A., Cimbala J.M. 2008). 
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3. MATERYAL VE METOT 

 

3.1 Silindirik Koordinatlarda Genelleştirilmiş Üçüncü Derece Akışkanlara Ait 

Momentum ve Enerji Denklemleri 

 

Bu bölümde silindirik koordinatlarda genelleştirilmiş üçüncü derece akışkanlara ait 

momentum ve enerji denklemlerinin çıkışı yapılacaktır. Genelleştirilmiş üçüncü 

dereceden non-Newtonyen akışkanların momentum ve enerji denklemlerinin 

çıkarılışında Rivlin-Ericksen tensörleri kullanılacaktır. Bu bölümde elde edilen 

momentum ve enerji denklemleri üç boyutlu kararlı akış içindir. 

 

Genelleştirilmiş üçüncü derece akışkanlara ait bünye denklemini aşağıdaki gibi 

yazabiliriz. 

 

* * m / 2 * * *2 *2 *
1 1 2 2 1 1 1p ( ) (tr ) = − + Π µ + α + α + β T l A A A A A                                               (3.1) 

 

Burada p basınç, µ viskozite, α1, α2 ve β akışkan sabitleri A1 ve A2 ilk iki Rivlin-

Ericksen tensörleridir. Bu tensörler şu şekilde tanımlanmaktadır: 

 

* * *T
1 = +A L L  

*
* * * *T *1
2 1 1*

d

dt
= + +

A
A A L L A  

*2
1

1
tr( )

2
Π = A  

* * *= ∇L v                                                                                                                      (3.2) 

 

Lineer momentum denklemi aşağıdaki gibidir. 

 

div
∂

= ρ
∂

v
T

t
                                                                                                                  (3.3) 
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Denklem (3.1) ve (3.2)’deki ifadeler denklem (3.3)’e yerleştirilip gerekli işlemler 

yapılırsa; 

  

m / 2
2 2 22 * *2 * * * *2

1 1 1 1

1 1
grad gradp grad .grad .

2 2

      ρ + ω× = − + µ∇ + β + β ∇            
v v A v A A A v   

                                                                                                                                      (3.4)      

 

genelleştirilmiş üçüncü dereceden akışkanlara ait en genel hareket denklemi, denklem 

(3.4)’teki gibi elde edilmiş olur. 

 

Genelleştirilmiş üçüncü derece akışkanlara ait enerji denkleminin en genel hali 

aşağıdaki gibidir. 

 

m / 2
2 2 4* * * *2

1 1 1

d 1 1
grad k

dt 2 2 2

 ε β   
= µ + + ∇    

     
A A A v                                                 (3.5) 

 

Burada ε iç enerji, k ısı iletim katsayını, β üçüncü derece akışkan terimini ifade 

etmektedir.  

 

3.2 Hız ve Sıcaklık Profilleri İçin Analitik Çözümlerin Bulunması 

 

Bu bölümde; silindirik koordinatlarda tek boyutlu akış için elde edilen denklemlerin 

çözümü yapılacaktır. Bu denklemler için sınır şartları belirlenecektir. Elde edilen 

denklemler boyutsuz denklemlerdir. Sonuçların genelleştirilebilmesi amacıyla 

denklemler boyutsuz hale getirilecektir. Bu bölümde denklemlerin yaklaşık analitik 

çözümleri bulunacaktır. Analitik çözümlerin elde edilmesinde bir çeşit seri açılım olan 

perturbasyon yönteminin yaya açılımı metodundan yararlanılacaktır. Çözümler 

sonucunda hız ve sıcaklık profilleri elde edilecektir. Hız ve sıcaklığa ait çözümler 

Matlab programı kullanılarak grafiksel olarak elde edilecektir.   
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Şekil 3.1 Boru İçerisindeki Akışın Şematik Gösterimi  

 

Bu tez çalışmasında r ve θ yönündeki hızlar sıfır kabul edilmiştir. Hareketin sadece z 

yönünde olduğu ve r’ye bağlı olarak değiştiği kabulü yapılmıştır. Bu tanımlama aşağıda 

matematiksel olarak ifade edilmiştir.  

 

r 0=v    ,     0θ =v    ,      z z ( )=v v r                                                                           (3.6)  

 

Denklem (3.4), (3.5) ve (3.6)’dan yararlanılarak boru içerisindeki genelleştirilmiş 

üçüncü derece akışkana ait denklemler elde edilmiştir: 

 

m 22 2

2 2
m m

dv d v 1 dv dv d v 1 dv dP
( 1) 2 ( 3)

dr dr r dr dr dr r dr dz

       
+ + µ + β + + =       

        
                    (3.7) 

 

m 2 22

2

d k d dv dv
k 0

dr r dr dr dr

+  θ θ    
+ + µ + β =    

     
                                                                 (3.8) 

 

v( r ) 0=  ,  
dv

(0) 0
dr

=  ,   ( r ) 0θ =  ,     
d

(0) 0
dr

θ
=                                                     (3.9)     

 
 
 

Denklem (3.7) momentum denklemini, denklem (3.8) enerji denklemini ve denklem 

(3.9) ise probleme ait sınır şartlarını ifade etmektedir. Yapılan tez çalışmasında µ yani 

viskozite sabit olarak kabul edilecek ve değeri 1 olarak alınacaktır. Verilen bu 
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denklemlerdeki ifadeler boyutlu ifadelerdir. Çözümlerin genelleştirilebilmesi için 

boyutsuz olarak ifade edilmeleri gerekmektedir. Boyutsuzlaştırma için kullanılan 

dönüşümler aşağıda verilmiştir. 

 

r
r

R
=           

0

v
v

v
=           

0

µ
µ =

µ
          w

m w

θ − θ
θ =

θ − θ
                                               (3.10) 

 

Denklem (3.10)’daki v0 referans hızını, µ0 referans viskoziteyi, θm ortalama akışkan 

sıcaklığını ve θw cidar sıcaklığını ifade etmektedir. 

 

Öncelikle denklem (3.7) ve (3.8) için boyutsuzlaştırma işlemi yapılacaktır. Daha sonra 

boyutsuz hale gelen denklemlere ait perturbatif çözümler detaylı olarak verilecektir. 

Çözümlerde µ=1 olarak alınacaktır. Denklem (3.9)’daki ifadeler denklem (3.7) ve 

(3.8)’de yerine yerleştirilirse boyutsuz denklemler aşağıdaki gibi elde edilir. 

 

m 22 2

2 2
m m

dv d v 1 dv dv d v 1 dv
( 1) ( 3) C

dr dr r dr dr dr r dr

       
+ + µ + Λ + + =       

        
                       (3.11) 

 

m 2 22

2

d 1 d dv dv
0

dr r dr dr dr

+  θ θ    
+ + Γ µ + Λ =    

     
                                                                (3.12) 

 

v(1) (1) 0= θ =         
dv d

(0) (0) 0
dr dr

θ
= =                                                                       (3.13) 

 

Denklemlerde v boyutsuz akışkan hızını, θ boyutsuz sıcaklığı ifade etmektedir. 

 

2
0
2

0

2 v

R

β
Λ =

µ
   1

dP
C

dz
=    

m2
1

0 0 0

C R R
C

v v

 
=  

µ  
 

m 2
0 0

m
m w

v

R ( )k

+µ
Γ =

θ − θ
                                  (3.14) 

 

 

Denklem (3.14)’te C1 eksenel yöndeki basınç değişimini, Λ boyutsuz non-Newtonyen 

akışkan katsayısı, β boyutlu üçüncü derece akışkan katsayısını, Γ Brinkman sayısını ve 
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k ısı iletim katsayısını ifade etmektedir. Bundan sonraki aşamada elde edilen boyutsuz 

denklemlerin perturbatif çözümleri yapılacaktır.  

 

Momentum ve enerji denklemlerindeki hız ve sıcaklığın yaya açılımları aşağıdaki 

gibidir. 

 

0v v 1= + εv                                                                                                                 (3.15) 

 

0 1θ = θ + εθ                                                                                                                  (3.16) 

 

Burada ε perturbasyon parametresidir. Ayrıca çözümlerde non-Newtonyen katsayısı Λ, 

aşağıdaki gibi seçilmiştir. 

 

Λ = ελ                                                                                                                         (3.17) 

 

Yani denklem (3.17)’deki tanımlama ile Λ, ε mertebesinde kabul edilmiştir. Yapılan 

tanımlama ve kabullerden sonra denklem (3.15) ve (3.17), denklem (3.11) ve (3.13)’e 

yerleştirilirse; 

 

m
0 1 0 1 0 1

2
0 1 0 1 0 1

m

m

1
(v v ) ( 1)(v v ) (v v )

r

1
(v v ) ( 3)(v v ) (v v ) C

r

 ′ ′ ′′ ′′ ′ ′+ ε + + ε + + ε 
 

 ′ ′ ′′ ′′ ′ ′+ελ + ε + + ε + + ε = 
 

 

                                                                                                                                    (3.18) 

 

elde edilir. m
0 1(v v )′ ′+ ε  ifadesini ε’ye göre seriye açarak yazarsak denklem aşağıdaki 

şekli alır: 

 

m (m 1)
0 0 1 0 1 0 1

2
0 1 0 1 0 1

m

m

1
((v ) mv v ) ( 1)(v v ) (v v )

r

1
(v v ) ( 3)(v v ) (v v ) C

r

−  ′ ′ ′ ′′ ′′ ′ ′+ ε + + ε + + ε 
 

 ′ ′ ′′ ′′ ′ ′+ελ + ε + + ε + + ε = 
 

                                      (3.19) 
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Denklem (3.19) momentum denklemine uygulanan yaya açılımını ifade etmektedir. 

Benzer şekilde enerji denkleminde de yaya açılımını uygulamak için denklem (3.15), 

(3.16) ve (3.17)’deki tanımlamalar denklem (3.12) ve (3.13)’e yerleştirildiğinde; 

 

m 2 m 10 1
0 1 0 0 1

m 4 m 3
0 0 1

m

m

( )
( ) ((v ) ( 2)(v ) v )

r

((v ) ( 4)(v ) v ) 0

+ +

+ +

′ ′θ + εθ′′ ′′ ′ ′ ′θ + εθ + + Γ + ε +

′ ′ ′+Γελ + ε + =

 

                                                                                                                                    (3.20) 

 

elde edilir. Elde edilen denklem (3.19) ve (3.20)’deki ifadelerden 1 ve ε mertebeleri 

dikkate alınacaktır. Bu mertebeler yazılır ise; 

 

1 Mertebesi 

 

m 0
0 0 m

v
(v ) v ( 1) Cr

r

 ′
′ ′′ + + = 

  
                                                                                    (3.21) 

 

m 20
0 0(v ) 0

r
+

′θ′′ ′θ + + Γ =                                                                                             (3.22) 

 

Sınır şartları aşağıdaki gibi olur. 

 

0 0v (1) (1) 0= θ =          0 0v (0) (0) 0′ ′= θ =                                                                   (3.23)  
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ε Mertebesi           

 

m m (m 1) m (m 2) 01
1 0 0 0 0 0 0 0

vv
v (m 1)(v ) ((v ) mr(m 1)v v m(v ) ) (v ) v (m 3)

r r
− +

 ′′
′′ ′ ′ ′ ′′ ′ ′ ′′+ + + + + = −λ  + + 

 
 

                                

 

                                                                                                                                    (3.24) 

 

m 1 m 41
1 o 1 0m( 2)(v ) v (v ) 0

r
+ +

′θ′′ ′ ′ ′θ + + Γ + + Γλ =                                                           (3.25) 

 

ε mertebesine göre sınır şartları aşağıda verilmiştir. 

 

1 1v (1) (1) 0= θ =         1 1v (0) (0) 0′ ′= θ =                                                                      (3.26) 

 

Şimdi bulunan bu denklemlerin ayrıntılı olarak çözümleri yapılacaktır. Denklem 

(3.21)’i ele alalım. İşlemi kolaylaştırmak için denklem (3.21)’de 0v K′ =  olarak 

yazarsak;  

 

m

m m

K C
K K

r( 1) 1
−′ + =

+ +
                                                                                          (3.27) 

 

şeklinde Bernoulli diferansiyel denklemi oluşur. Buradan, 

 

1 mz K +=                                                                                                                      (3.28) 

 

bağıntısına ulaşılır. Buna göre denklem (3.27)’yi düzenlersek; 

 

1
z z C

r
′ + =                                                                                                                  (3.29) 

 

denklemi elde edilir.  Denklemin sadece sol tarafını dikkate alarak sıfıra eşitlersek; 
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dz z
0

dr r
+ =                                                                                                                   (3.30) 

 

ayrışabilen denklemi elde edilir. İntegral alırsak; 

 

1Cdz dr
z

z r r
= − ⇒ =∫ ∫                                                                                                (3.31) 

 

olur. 1 1C C (r)=  olsun. Bu durumda;         

 

1C (r)
z

r
=       ve     1 1

2

C r C
z

r

′ −
′ =                                                                                (3.32) 

 

haline gelir. Denklem (3.32)’deki tanımlamaları denklem (3.29)’da yerine yazarsak; 

 

2

1 2

Cr
C C

2
= +                                                                                                              (3.33) 

elde edilir. Bu ifadeyi denklem (3.32)’deki ifadede yerine yerleştirirsek; 

2CCr
z

2 r
= +                                                                                                                (3.34) 

 

olarak elde edilir. (3.34)’teki ifadeyi denklem (3.28)’de yerine yazdığımızda, K yani 

0v ′ ’ın değeri elde edilir: 

 

1 1
2m 1 m 1

0

C
v 2 (Cr )

r

−
+ +′ = +                                                                                              (3.35) 

 

Denklem (3.23)’te verilen sınır şartları denklem (3.35)’te uygularsak; 

 

0 2v (0) 0 C 0′ = ⇒ =                                                                                                    (3.36) 

 

olur. 2C 0= alındığında denklem (3.35)’i yeniden düzenlersek; 
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1 1

m 1 m 1
0v 2 (Cr)

−
+ +′ =                                                                                                       (3.37) 

haline gelir. İntegral alırsak; 

 

1 1
m 2m 1 m 1
m 1

0 3

m

m

2 C ( 1)
v r C

( 2)

− ++ +
+

+
= +

+
                                                                                (3.38) 

 

elde edilir. (3.23)’teki sınır şartının denklem (3.38)’de uygulanması sonucu; 

 

1 1

m 1 m 1

3

m

m

2 C ( 1)
C

( 2)

−
+ + +

= −
+

                                                                                            (3.39) 

 

olarak bulunur. C3 integral sabitidir. Denklem (3.39)’da bulduğumuz C3 sabitini 

denklem (3.38)’de yerine yazarsak; 

 

1 1
m 2m 1 m 1
m 1

0

m

m

2 C ( 1)
v (r 1)

2

− ++ +
+

+
= −

+
                                                                                (3.40) 

 

hız ifadesinin lineer kısmı elde edilmiş olur. ε mertebesindeki çözümler için aşağıdaki 

denklemlerden yararlanılacaktır. 

 

1 1 1

m 1 m 1 m 1
0v 2 C r

−
+ + +′ =                                                                                                     (3.41) 

 

1 1
mm 1 m 1

m 1
0

m

2 C
v (r )

1

−
+ + −

+′′ =
+

                                                                                             (3.42) 

 

Bu denklemlerden yaralanılarak 1v  değeri elde edilecektir. Denklem (3.41) ve 

(3.42)’deki ifadeler denklem (3.24)’te yerlerine yazılıp gerekli işlemler yapıldığında; 
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3 2 m m 2
1 m 1 m 1 m 1

1

m
m m

m

v 2
v ( 1) (1 2 ) (C r 2 )

r 1

− −

+ + +
′ + ′′ + + + = −λ  

+ 
                                                (3.43) 

 

eşitliği elde edilir. İşlem kolaylı açısından 1v z′ =  olarak kabul edelim. Buna göre 

denklem (3.43)’ü yeniden düzenlersek; 

 

3 2 m m 2

m 1 m 1 m 1
m

m m
m

z 2
z ( 1) (1 2 ) (C r 2 )

r 1

− −

+ + +
+ 

′ + + + = −λ  
+ 

                                                    (3.44) 

 

Elde edilen eşitliğin sol tarafını dikkate alarak sıfıra eşitlersek; 

 

m m
z

z ( 1) (1 2 ) 0
r

′ + + + =                                                                                             (3.45) 

 

lineer denklemine ulaşılır. Bütün denklemi (m+1) ifadesine bölersek; 

 

m

m

dz z 1 2
0

dr r 1

+ 
+ = 

+ 
                                                                                                    (3.46)   

 

haline gelir. Denklemi düzenlersek; 

 

m

m

dz dr 1 2
0

z r 1

+ 
+ = 

+ 
                                                                                                  (3.47) 

 

ifadesi elde edilir. Burada 
m

m

1 2
K

1

+ 
= 

+ 
 olarak alırsak denklem (3.47) aşağıdaki gibi 

olur. 

 

dz dr
K 0

z r
+ =                                                                                                              (3.48) 

 

İntegral aldığımız takdirde; 
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1 k

1
z C

r
=                                                                                                                     (3.49) 

 

olur. C1=C1(r) olsun. Bu durumda; 

 

1 k

1
z C (r)

r
=    ve   

k K 1
1 1

k 2

C r Kr C
z

(r )

−′ −
′ =                                                                      (3.50) 

 

olur. Denklem (3.50)’deki ifadeleri denklem (3.44)’te yerine yerleştirirsek; 

 

3 3
3m 1 m 1

m 1
1 2

m

2 C
C r C

( 1)

− −+ +
+

λ
= − +

+
                                                                                      (3.51) 

 

elde edilir. Denklem (3.51)’i denklem (3.49)’da yerine yerleştirirsek; 

 

m m m

1 2
m

C r 2
v C

1

3 3 3
−

+1 +1 +1λ′ = − +
+

                                                                                       (3.52)  

 

Denklem (3.26)’daki sınır şartları denklem (3.52)’ye uygulanırsa;  

 

1 2v (0) 0 C 0′ = ⇒ =                                                                                                     (3.53) 

 

olarak bulunur. (3.53)’e göre denklem (3.52)’yi yeniden yazarsak; 

 

m m m

1
m

C r 2
v

1

3 3 3
−

+1 +1 +1λ′ = −
+

                                                                                              (3.54) 

 

haline gelir. İntegre edersek; 

 

3 3 m 4

m 1 m 1 m 1

1 3
m

2 C r
v C

4

+
−

+ + +λ
= − +

+
                                                                                       (3.55) 
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elde edilir. Denklem (3.26)’da verilen sınır şartını denklem (3.55)’e uygularsak; 

 

3 3

m 1 m 1

3
m

2 C
C

4

−
+ +λ

=
+

                                                                                                       (3.56) 

 

olarak bulunur. Denklem (3.56)’da bulduğumuz C3 integral sabitini denklem (3.56)’da 

yerine yazdığımızda; 

 

3 3
m 4m 1 m 1
m 1

1
m

2 C
v (r 1)

4

− ++ +
+

λ
= −

+
                                                                                         (3.57) 

 

Denklem (3.57)’deki gibi v1 ifadesine ulaşılır. Elde edilen denklem (3.40) ve (3.57), 

denklem (3.15)’te yerine yerleştirildiği takdirde; 

 

m mm+1 3m 1
m m

m 1 m 1

m

m m

( 1) C C
v (r 1) (r 1)

( 2) 2 ( 4) 8

+2 +4+

+1 +1

+ +

+
= − − Λ −

+ +
                                                 (3.58) 

 

hız profili tam olarak elde edilmiş olunur. Şimdi de Denklem (3.22) ve (3.25)’in 

çözümleri yapılacaktır. Denklem (3.22)’yi ele alalım. Öncelikle daha önce elde edilen 

denklem (3.41)’deki 0v ′   tanımını denklem (3.22)’ de yerine yerleştirirsek; 

 

m 2
m 2m 1

0 m 1
0 m 2

m 1

C
r

r
2

+
++
+

+

+

′θ′′θ + = −Γ                                                                                        (3.59) 

 

halini alır. Gerekli çözümlerin yapılması ve denklem (3.23)’teki sınır şartlarının 

denklem (3.59)’a uygulanması sonucu 0θ aşağıdaki gibi elde edilir. 

 

2 3m 4m 2m 1

m 1
0 m 1 m 2

m

m

C 1
(1 r )

3 42

+++

+

+ +

+ 
θ = Γ − 

+ 
                                                                         (3.60) 

 

 



 

28 
 

 

Böylece, sıcaklık profilinin lineer kısmı elde edilmiş olur. Denklem (3.25)’in çözümü 

için denklem (3.41) ve (3.54), denklem (3.25)’ te yerine yazılırsa; 

m 4
2m 5m 1
m 1

1 1 m 4

m 1m

C
r r

( 1)2

+
++
+

+

+

Γλ′′ ′θ + θ =

+

                                                                                       (3.61) 

şeklinde yazılır. Gerekli işlemlerin yapılması ve  denklem (3.26)’daki sınır şartının 

uygulanması sonucunda; 

 

3m 6m 4m 1

m 1
1 2m 1 m 4

m

m

C 1
r 1

(3 6)2

+++

+

+ +

 Γλ +
θ = − 

+  
                                                                       (3.62) 

 

elde edilir. Denklem (3.60) ve (3.62), denklem (3.16)’daki ifadede yerine 

yerleştirildiğinde; 

 

( )
2 3m 6m 2 m 4m 1 m 1

4 m 1
2m 1 m 1m 2 m 4

m m

m m

C 1 C 1
1 r r 1

3 4 (3 6)2 2

++ ++ +

+

+ ++ +

 Γ + ΓΛ + 
θ = − + −  

+ +   
                        (3.63) 

 

sıcaklık profili tam olarak elde edilmiş oldu. 

 

Bu bölümde; tez çalışmasında kullanılan kayma gerilmesi modeli verilmiştir. Bu kayma 

gerilmesi modeline göre momentum ve enerji denklemleri elde edilmiştir. Elde edilen 

denklemler boyutlu denklemlerdir. Denklemler boyutsuz hale getirilerek çözümlerin 

genelleştirilebilmesi amaçlanmıştır. Denklemlerin yaklaşık analitik çözümleri yaya 

açılımı metodu kullanılarak elde edilmiştir. Çözümler sonucunda hız ve sıcaklık 

profilleri elde edilmiştir. m=0 değeri için çözümler, Yürüsoy ve Pakdemirli (2002) 

makalesindeki sonuçlarla aynıdır. Bu da elde edilen sonuçların doğru olduğunu 

göstermektedir. Bundan sonraki bölümde ise denklemlerin nümerik çözümleri 

yapılacaktır. Nümerik çözümlerin elde edilmesinde sonlu farklar yöntemi 

kullanılacaktır. 
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4. SONLU FARKLAR METODU  

 

Bu bölümde önceki bölümde elde edilen genelleştirilmiş üçüncü derece akışkanlara ait 

momentum ve enerji denklemlerinin nümerik çözümleri yapılacaktır. Nümerik çözümler 

için sonlu farklar yönteminden yararlanılacaktır.  

 

Sonlu farklar; fiziksel, mühendislik problemlerinin bilgisayar yardımı ile çözümünde, 

kısmi diferansiyel denklemleri bilgisayar tarafından hesaplanabilir kılan, Taylor serisi 

açılımı yardımıyla türetilmiş bir yöntemdir.  

 

Sonlu farklar yaklaşımı sayısal türev alma işlemine dayanmaktadır. Tüm fark 

yaklaşımları; 

 

n
2 3 nf (a) f (a) f (a)

f (x) f (a) f (a)(x a) (x a) (x a) ... (x a)
2! 3! n!

′′ ′′′
′= + − + − + − + + −             (4.1)  

 

şeklinde tanımlanan Taylor seri açılımı yardımıyla elde edilir.  

 

4.1 İleri Farklar ve ∆ Operatörü 

 

Bir f(x) fonksiyonunun ix  noktasında if  , i hx +  noktasında i 1f +  değeri aldığını 

varsayalım. Bu halde i 1 if f+ −  farkına f fonksiyonunun ix  noktasındaki ileri farkı denir 

ve ∆ ile gösterilir. 

 

f (x) f (x h) f (x)∆ = + −  

i i 1 if f f+∆ = −                                                                                                                  (4.2) 

 

Buradaki h’a fark aralığı veya adım denir. Benzer şekilde ikinci dereceden ileri fark 

tanımı aşağıdaki gibi yazılabilir. 

 

2
i i 2 i 1 if f 2f f+ +∆ = − +                                                                                                      (4.3) 
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Fonksiyonun birinci mertebeden türevinin, ileri farklar yardımıyla nasıl 

hesaplanabileceğini öğrenmek için f(x) fonksiyonunun Taylor seri açılımını göz önüne 

alırsak; 

 

2

i 1 i i i

h h
f f f f ...

1! 2!+
′′′= + + +                                                                                              (4.4) 

 

yazılabilir. Böylece, 

 

2

i 1 i i i

h
f f hf f ...

2!+
′′′− = + +                                                                                               (4.5) 

 

elde edilir. h değerinin çok küçük olması durumunda 2h ’li ve daha sonraki terimler 

ihmal edilerek , 

 

i 1 i
i

f f
f 0(h)

h
+ −′ = +

                                                                                                       (4.6) 

 

Birinci mertebeden türevin ileri farklar kullanılarak çözümü elde edilir. İkinci 

mertebeden türev için ileri fark denklemi benzer işlemler yapılarak aşağıdaki gibi 

yazılabilir. 

 

2i 2 i 1 i
i 2

f 2f f
f 0(h )

h
+ +− +′′ = +

                                                                                          (4.7) 

 

4.2 Geri Farklar ve ∇∇∇∇ Operatörü 

 

Geriye fark operatörü ∇’dır.  f fonksiyonunun ix noktasındaki geri farkı; 

 

i i i 1f f f −∇ = −                                                                                                                  (4.8) 
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şeklinde gösterilir. İkinci mertebeden geri farkları benzer şekilde tanımlayabiliriz. 

 

2
i i 2 i 1 if f 2f f− −∇ = − +                                                                                                     (4.9) 

 

Geri farklar ile fonksiyonun türevleri arasındaki ilişkiyi yazmak için Taylor seri 

açılımını göz önüne alırsak; 

 

2

i 1 i i i

h h
f f f f ...

1! 2!−
′′′= − − −                                                                                            (4.10) 

 

elde edilir. (4.10)’u düzenlersek; 

 

2

i i 1 i i

h h
f f f f ...

1! 2!−
′′′− = + +                                                                                            (4.11) 

 

şeklinde yazılır. 2h ’li ve sonraki terimler ihmal edilerek; 

 

i i 1
i

f f
f 0(h)

h
−−′ = +                                                                                                      (4.12) 

 

Birinci mertebeden türev için geri farklar denklemi (4.12)’deki gibi elde edilir. İkinci 

mertebeden türev benzer şekilde aşağıdaki gibi elde edilir. 

 

2i i 1 i 2
i 2

f 2f f
f 0(h )

h
− +− +′′ = +                                                                                         (4.13) 

 

4.3 Merkezi Farklar ve δδδδ Operatörü 

 

Bir f(x) fonksiyonunda, bağımsız değişkenin yarım adım ilerisindeki değer ile yarım 

adım gerisindeki değer arasındaki fark merkezi fark olarak bilinir ve δ ile sembolize 

edilir.  
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i 1 1
i i

2 2

f f f
+ −

δ = −                                                                                                             (4.14) 

 

İkinci mertebeden merkezi farklar; 

 

2
i 1 1

i i
2 2

f f f
+ −

 
δ = δ − 

 
                                                                                                    (4.15) 

 

şeklinde yazılabilir. Denklem (4.4) ve denklem (4.11)’deki Taylor seri açılımları göz 

önüne alınarak taraf tarafa çıkarma işlemi yapılırsa;  

 

3
i 1 i 1 i i

1
f f 2hf h f ...

3+ −
′ ′′′− = + +                                                                                      (4.16) 

 

elde edilir. Böylece,  

 

i 1 i 1
i

f f
f 0(h)

2h
+ −−′ = +                                                                                                  (4.17) 

 

Birinci dereceden türev için merkezi fark yaklaşımı elde edilmiş olur. Merkezi fark 

denklemi ikinci mertebeden türev için aşağıdaki gibi yazılır. 

 

2i 1 i i 1
i 2

f 2f f
f 0(h )

h
+ −− +′′ = +                                                                                         (4.18) 

 

Bu denklemlerdeki 0(h)’lar hatanın mertebesini ifade etmektedir. Denklem (4.6), (4.12) 

ve (4.17) karşılaştırıldığında, 0(h) küçüldükçe yapılacak hatanın, denklem (4.17)’de 

diğer iki denkleme nazaran daha hızlı küçüldüğü görülür.  

 

4.4 Momentum ve Enerji Denklemlerinin Sonlu Farklarla Tanımlanması 

 

Bu tez aşamasında nümerik çözümlerin elde edilmesinde hata oranın az olmasından 

dolayı merkezi fark denklemleri kullanılmıştır. 100 düğüm için, h değeri 0.01 olarak 
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alınarak çözümler elde edilecektir. Denklem (3.11) için merkezi farkları uygulayalım. 

Öncelikle denklemdeki türevlerin merkezi fark dönüşümlerini yazarsak; 

i 1 i 1f fdv

dr 2h
+ −−  

=   
   

                                                                                                    (4.19) 

 

2
i 1 i i 1

2 2

f 2f fd v

dr h
+ −

  − + 
=   
  

                                                                                          (4.20) 

 

ifadeleri ede edilir. Denklem (4.19) ve (4.20)’yi denklem (3.11)’de yerlerine yazarsak; 

 

m

i 1 i 1 i
i 1 i i 1 i 1 i 12

2

i 1 i 1 i
i 1 i i 1 i 1 i 1 i2

m

m

f f r 1
( 1) (f 2f f ) (f f )

2h h 2h

f f r 1
( 3) (f 2f f ) (f f ) Cr

2h h 2h

+ −
+ − + −

+ −
+ − + −

−    
+ − + + −   

   

−   
+Λ + − + + − =   

   

 

                                                                                                                                    (4.21) 

 

elde edilir. Denklem (3.13)’te verilen sınır şartlarını göz önüne alarak (4.17) ve (4.18)’te 

uygularsak; 

 

1 1f f−=    ,          100f 0=    ,          
2

0 1

h a
f f

2
= −                                                            (4.22) 

 

ifadeleri elde edilir. Denklem (4.22)’deki ifadeleri denklem (4.21)’de yerine 

yerleştirerek ilk ve son düğümlere ait denklemleri yazabiliriz. 

 

m2 2

22 1 2 1

2 1 2

22 2

22 1 2 1

2 1 2

m

m

h a h a
f f f fh a 0.012 2( 1) f f

2h 2 h 2h

h a h a
f f f fh a 0.012 2( 3) f f 0.01C

2h 2 h 2h

    
− + − +     

 + − − +    
             

    
− + − +      

 +Λ + − − + =    
             

           (4.23) 
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Denklem (4.23)’de denklem (4.21)’in ilk düğüm için merkezi fark denklemi verilmiştir. 

Son düğüm için merkezi fark denklemi ise aşağıdaki gibi olur. 

 

m

98 98
99 98 2

2

98 98
99 98 2

m

m

f f0.99
( 1)( 2f f )

2h h 2h

f f0.99
( 3)( 2f f ) 0.99C

2h h 2h

    
+ − + −    

    

    
+Λ + − + + =    

    

 

                                                                                                                                    (4.24) 

 

Denklem (3.12) için merkezi farkları uygulamak için denklemdeki türevleri merkezi 

farklara uygularsak; 

 

i 1 i 1g gd

dr 2h
+ −−θ   

=   
   

                                                                                                   (4.25) 

 

2
i 1 i i 1

2 2

g 2g gd

dr h
+ −

  − +θ  
=   
  

                                                                                         (4.26) 

 

elde edilir. Denklem (4.25) ve (4.26)’yı denklem (3.12)’de yerlerine yazarsak; 

 

m 2 2

i 1 i i 1 i 1 i 1 i 1 i 1 i 1 i 1
2

i

g 2g g g g f f f f
1 0

h 2hr 2h 2h

+

+ − + − + − + −
  − + − − −   

+ + Γ + Λ =      
       

                 (4.27) 

 

Denklem (3.12) merkezi farklara uygun olarak elde edilmiş olur. Denklem (3.13)’te 

verilen sınır şartları göz önüne alınarak (4.17) ve (4.18)’te uygularsak; 

 

g g=
1 -1

   ,          g 0=
100

   ,           
2h b

g g
2

=
0 1

                                                         (4.28) 

 

ifadeleri elde edilir. Denklem (4.28)’deki ifadeleri kullanarak denklem (4.27) için ilk ve 

son düğümlere ait denklemleri elde edebiliriz. 

 

 

 



 

35 
 

 

 

m 2 22 2 2 2

2 1 2 1 2 1 2 1

2

h b h b h a h a
g g g g f f f f

2 2 2 21 0
h 2h0.01 2h 2h

+         
− − − + − + − +        

 + + Γ + Λ =       
                        

 

                                                                                                                                    (4.29) 

 

Denklem (4.29), denklem (4.27)’in ilk düğüm için yazımını ifade etmektedir. (4.27)’i 

son düğüm için yazımı aşağıda verilmiştir. 

 

m 2 2

99 98 98 98 98
2

2g g g f f
1 0

h 2h0.99 2h 2h

+  − + − − −       
+ + Γ + Λ =        

         
                                    (4.30) 

 

Böylelikle, genelleştirilmiş üçüncü derece akışkanlara ait momentum ve enerji 

denklemlerinin nümerik çözümleri sonlu farklar yöntemi kullanılarak elde edilmiştir. 

Sonuçlardaki hata oranın düşük olması açısından merkezi fark yaklaşımı kullanılmıştır. 

Momentum ve enerji denklemleri sınır şartları dikkate alınarak merkezi fark 

denklemlerine uygulanmıştır. Elde edilen (4.21), (4.23) ve (4.24) ile denklem (4.27), 

(4.29) ve (4.30) Matlab Paket programına aktarılmıştır. Böylece nümerik çözümler, 

sonlu farklar yaklaşımıyla yazılarak Matlab programı yardımıyla çözülmüştür. Bundan 

sonraki bölümde üçüncü kısımda elde edilen analitik çözümler grafiksel olarak ifade 

edilecektir. Denklemlerdeki katsayıların hız ve sıcaklık profilleri üzerindeki etkileri 

gözlemlenecektir. Ayrıca, analitik ve nümerik çözümlerin karşılaştırılması yapılacaktır. 
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5. ANALİTİK ve NÜMERİK ÇÖZÜMLER 

 

Bu bölümde üçüncü kısımda elde edilen hız ve sıcaklığa ait analitik çözümlerin 

grafiksel olarak ifadesi yer alacaktır. Analitik çözümlerin grafikleri Matlab paket 

programı kullanılarak elde edilmiştir. Grafikler denklemdeki sabitlerin farklı değerleri 

için çizilmiştir. Farklı değerlerde hız ve sıcaklık değişimi incelenmiştir. Bunun yanı sıra 

yine Matlab paket programı yardımıyla ve Sonlu Farklar yönteminden yaralanılarak hız 

ve sıcaklığa ait nümerik çözümler elde edilmiştir. Analitik ve nümerik çözümden elde 

edilen sonuçların karşılaştırılması yapılacaktır.  

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Λ=0 

Λ=0.3 

Λ=0.5 

r 

v 

 

Şekil 5.1 Çeşitli Λ değerleri için hız profilleri (m=0.2, Γ=1, C=-1) 
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Şekil 5.2 Çeşitli Λ değerleri için sıcaklık profilleri (m=0.2, Γ=1, C=-1) 

 

 

Şekil .51 ve Şekil 5.2’de değişik non-Newtonyen katsayıları (Λ) için hız ve sıcaklık 

profillerinin değişimi gösterilmiştir. Λ=0 olması akışkanın Newtonyen akışkan 

olduğunu belirtmektedir. Şekil 5.1’de non-Newtonyen katsayısı arttırıldığında hızın 

azaldığı görülmektedir. Şekil 5.2’de de non-Newtonyen katsayısı arttığında sıcaklığın 

azaldığı gözlemlenmektedir.  
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Şekil 5.3 Çeşitli pozitif m değerleri için hız profilleri (Λ=0.01, Γ=1, C=-1  ) 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m=0.2 

m=0.1 

m=0 

r 

θ 

Şekil 5.4 Çeşitli pozitif m değerleri için sıcaklık profilleri (Λ=0.01, Γ=1, C=-1) 
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Şekil 5.3 ve 5.4’te farklı m değerlerinin pozitif olmasının hız ve sıcaklık üzerindeki 

etkisi verilmiştir. Buna göre; Şekil 5.3’te pozitif m değerleri arttıkça hızın da arttığı 

görülmektedir. Aynı şekilde, Şekil 5.4’te de sıcaklığın pozitif m değerleriyle doğru 

orantılı bir biçimde değişimi söz konusudur. 
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Şekil 5.5 Çeşitli negatif m değerleri için hız profilleri ( Λ=0.01, Γ=1, C=-1 ) 
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Şekil 5.6 Çeşitli negatif m değerleri için sıcaklık profilleri ( Λ=0.01, Γ=1, C=-1 ) 

 

Şekil 5.5 ve Şekil 5.6’da değişik m değerlerinin negatif olmasının hız ve sıcaklık 

değişimine etkisi görülmektedir. Şekil 5.5’e göre negatif m değerleri azaldıkça hız da 

azalmaktadır. Şekil 5.6’yı incelediğimizde de m’in negatif değerlerinin azalması 

sıcaklığı azalttığı görülmektedir. 
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Şekil 5.7 Çeşitli C değerleri için hız profilleri ( Λ=0.01, Γ=1, m=0.2 ) 
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Şekil 5.8 Çeşitli C değerleri için sıcaklık profilleri (Λ=0.01, Γ=1, m=0.2) 
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Şekil 5.7 ve Şekil 5.8’de farklı değerlerdeki C ( Basınç farkı ) parametresi için hız ve 

sıcaklık profillerinin değişimi sırasıyla gösterilmiştir. Şekil 5.7’de C değerinin mutlak 

olarak artmasıyla hızın arttığı görülmektedir. Şekil 5.8’de C’nin mutlak değerce 

artışının sıcaklığı da arttırdığı gözlemlenmektedir.    
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dŞekil 5.9 Çeşitli Γ değerleri için sıcaklık profilleri (Λ=0.01, C=-1, m=0.2) 

 

Şekil 5.9’da değişik Γ değerlerinin sıcaklığın değişimine etkisini göstermektedir. Şekil 

5.9’u incelediğimizde Γ değerinin artmasının sıcaklık değerini arttırdığı anlaşılmaktadır.  
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Şekil 5.10 Analitik ve nümerik hız profilleri (Λ=0.01, C=-1, m=0.2 , Γ=1) 
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Şekil 5.11 Analitik ve nümerik sıcaklık profilleri (Λ=0.01, C=-1, m=0.2 , Γ=1) 
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Şekil 5.10 ve Şekil 5.11 ise bize yaptığımız analitik ve nümerik çözümlerin 

karşılaştırma grafiklerini vermektedir. Nümerik çözümlerin elde edilmesinde Sonlu 

Farklar yöntemi ve Matlab paket programından yararlanılmıştır. Katsayı ve 

parametrelerin belirtilen değerleri için nümerik ve analitik çözümler grafiksel olarak 

belirtilmiştir. Kesik çizgilerle verilen grafik nümerik sonuçları, düz çizgilerle verilen 

grafik ise analitik sonuçları ifade etmektedir. Şekil 5.10 analitik ve nümerik çözümlerin 

hız açısından karşılaştırılması verilmiştir. Şekil 5.11’de ise sıcaklık analitik ve nümerik 

çözümler bakımından kıyaslanmıştır. Buna göre; her iki şekilde de sonuçların birbirine 

oldukça yakın olduğu görülmektedir. Bu da tezde yapmış olduğumuz analitik 

çözümlerin doğru olduğu anlamına gelmektedir.  
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5. SONUÇLAR 

 

Yapılan çalışmada boru içerisindeki genelleştirilmiş üçüncü dereceden non- Newtonyen 

akışkan akışında hareket ve enerji değişimi incelenmiştir. İlk olarak silindirik 

koordinatlarda genelleştirilmiş üçüncü derece akışkanlara ait momentum ve enerji 

denklemleri elde edilmiştir. Denklemlerin çıkarılışında Rivlin-Ericksen tensörleri 

kullanılmıştır. Bu denklem için boru içerisindeki akışı ifade eden sınır şartları 

belirlenerek çözümlerin daha genel olabilmesi için denklemler boyutsuz hale 

getirilmiştir. Sonuçta, silindirik koordinatlar için tek boyutlu akışı ifade eden adi 

diferansiyel denklem sistemleri elde edilmiştir. Bu denklem sistemlerinin yaklaşık 

analitik çözümleri yapılmıştır. Denklemlerin analitik çözümü için bir perturbasyon 

metodu olan yaya açılımı kullanılmıştır. Yaya açılımı yapılarak hız ve sıcaklık 

profillerine ait denklemler Newtonyen ve non-Newtonyen kısımlara ayrılmıştır. 

Öncelikle Newtonyen kısmın, daha sonra da non-Newtonyen kısmın çözümleri 

yapılmıştır. Çözümlerde viskozite değeri sabit olarak kabul edilmiştir. Analitik 

çözümlerin yanı sıra nümerik çözümler de yapılmıştır. Nümerik çözümlerin elde 

edilmesinde sonlu farklar metodu kullanılmıştır. Hata oranının az olması sebebiyle 

sonlu fark yaklaşımlarından merkezi farklardan yararlanılmıştır. Nümerik çözümler, 100 

düğüm için h değeri 0.01 alınarak elde edilmiştir.  Elde edilen denklemler Matlab paket 

programı yardımıyla çözülmüştür. Son olarak elde edilen analitik çözümler grafiksel 

olarak açıklanmıştır. Denklemlerdeki katsayıların değişiminin hız ve sıcaklık üzerindeki 

etkisi araştırılmıştır. Ayrıca, analitik ve nümerik çözümler grafiksel olarak 

karşılaştırılmıştır.  

 

Yapılan çalışmalar neticesinde non-Newtonyen parametre (Λ) arttığında hız ve sıcaklık 

değerinin azaldığı gözlemlenmiştir. m sabitinin pozitif değerinin arttırılmasını ile hız ve 

sıcaklığın da doğru orantılı olarak arttığı görülmektedir. m sabitinin negatif olması 

durumu incelenmiştir. Negatif m değerlerinin azalması hız ve sıcaklık değerlerini 

düşürmektedir. C (basınç farkı) değerindeki artışın hızı ve sıcaklığı arttırdığı 

görülmektedir. Γ (Brinkman sayısı)’nın artması hızın değerini değiştirmemektedir. 

Sıcaklık ise Γ arttığı müddetçe artmaktadır.  
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EK-1 Nümerik Çözümlerin Matlab Programına Aktarılması için Oluşturulan M-File 
Dosyası 
 
clear all 

  
L=0.01; 
m=0.2; 
a=0.0001; 
b=-0.0001; 
C=1; 
A=1; 

  
f0=[0:1/98:1 0:1/98:1]; 

  
options=optimset('Display','iter','TolFun',1e-

3,'MaxFunEvals',1e8,'MaxIter',40,'TolX',1e-

3,'LargeScale','on','PrecondBandWidth',inf); 
[f,fval,exitflag,output,JAC] = fsolve(@emine,f0,options,L,m,a,b,A,C); 

  

  
for i=1:100 
     T1(1,i)=f(1,i); 
end 

  
T1(1,100)=0; 

  
T11(1,1)=0; 

  
for i=1:99 
    T11(1,i+1)=T1(1,100-i); 
end 

  

  
 for i=100:198 
     T2(1,i-99)=f(1,i); 
 end 

  
 T2(1,100)=0; 

  
  T22(1,1)=0; 

   
 for i=1:99 
    T22(1,i+1)=T2(1,100-i); 
end                  

  

  
r=0:0.01:1; 
r1=-1:0.01:0; 
V=(((m+1)*(C)^(1/(m+1))*((abs(r.^((m+2)/(m+1))))-

1)))/((m+2)*2^(1/(m+1)))-L*(C)^(3/(m+1))*((abs(r.^((m+4)/(m+1))))-

1)/((m+4)*8^(1/(m+1))); 
Q=(A*(C^((m+2)/(m+1)))*(1-

abs(r.^4))*((m+1)/(3*m+4))^2/(2^((m+2)/(m+1)))-

(L*A*(C^((m+4)/(m+1)))*(1-

abs(r.^((3*m+6)/(m+1))))*((m+1)/(3*m+6))^2/(2^((m+4)/(m+1))))); 
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t1=0:0.01:0.99; 

  
 t2=-0.99:0.01:0; 

  

  
for i=1:101 
     M(1,i)=V(1,102-i); 
end 

  
for i=1:101 
     M1(1,i)=Q(1,102-i); 
end 

  

  

  
figure(1) 
 plot(-T1,t1,'--k',-T11,t2,'--k') 
 hold on 
plot(-V,r,'k',-M,r1,'k') 
hold on 

  
figure(2) 
plot(T2,t1,'--k',T22,t2,'--k') 
hold on 
plot(Q,r,'k',M1,r1,'k') 
hold on 

 


