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OZET
Yiiksek Lisans Tezi

YENI BIR NEWTONYEN OLMAYAN AKISKAN MODELININ BORU
ICERISINDEKI AKISININ INCELENMESI

EMINE CERYAN

Afyonkarahisar Kocatepe Universitesi
Fen Bilimleri Enstitiisii
Makine Egitimi Anabilim Dah

Damisman: Dog. Dr. Muhammet YURUSOY

Bu calismada, non-Newtonyen bir akigkan modelinin boru icerisindeki akisi
incelenmigtir. Silindirik koordinatlarda iiciincii derece akigkanlara ait genel hareket
denklemlerinden faydalanilarak boru icerisindeki tek boyutlu akis i¢cin momentum ve
enerji denklemleri elde edilmistir. Bulunan bu denklemler icin boru igerisindeki akisi
ifade eden smir sartlar1 belirlenmistir. Elde edilen denklemler boyutlu denklemler
olmakla birlikte daha genel olabilmesi amaciyla boyutsuz hale getirilmistir. Boylece,
silindirik koordinatlarda tek boyutlu akisi ifade eden adi diferansiyel denklem
sistemleri elde edilmistir. Bu denklem sistemlerinin yaklagik analitik ¢oziimleri i¢in
perturbasyon tekniklerinden yaya acilimi yontemi kullanilmistir. Coziimlerde viskozite
sabit alinmistir. Analitik ¢oziimlerin yani sira niimerik c¢oziimler de yapilmistir.
Niimerik ¢oziimlerin elde edilmesinde sonlu farklar yontemi kullanilmistir. Coziimler
diferansiyel denklemi ¢ozen bir program olan Matlab paket programi kullanilarak elde
edilmistir. Cesitli akiskan sabitlerinin hiz ve sicaklik profili {izerindeki etkisi

incelenmistir. Analitik ve niimerik sonuclar karsilagtirilmistir.

2010, 50 sayfa
Anahtar kelimeler: Newtonyen Olmayan Akiskanlar, Perturbasyon Teknigi, Sonlu

Farklar, Boru Igerisindeki Akis.



ABSTRACT

M.Sc. Thesis
INVESTIGATION OF FLOW IN A PIPE FOR A NEW NON-NEWTONYEN FLUID
MODEL

EMINE CERYAN

Afyon Kocatepe University
Graduate School of Natural and Applied Sciences
Department of Mechanical Education

Supervisor: Assoc. Prof. Muhammet YURUSOY

In this study, the flow of a kind of non-Newtonyen fluid model in a pipe is
investigated. By using the general equations of motion that have gained for cylindirical
coordinates, momentum and energy equations for one-dimensional flow in a pipe are
determined. For the determined equations the boundary conditions explaining flow in
pipe are established. Although these equations and boundary conditions are
dimensional equations, size is made to be more general. Thus, ordinary differential
equation systems that regard the one-dimensional flow in cylindrical coordinates are
achieved. Perturbation method, a pedestrian approach, is used for the approximate
solutions of these equations. In solutions, it is admitted that the viscosity is constants.
As well as approximate solutions, numerical solutions are done. Finite Differentiations
method is used to obtain the numerical solutions. Solutions are reached by using
Matlab packet program. The effect of various fluid constants on velocity and heat

profiles is investigated. Analytical and numerical solutions are compared.

2010, 50 pages
Keywords: Non-Newtonian Fluids, Perturbation Techniques, Finite Differentiations,

Pipe Flow.
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1. GIRIS

Akiskanlar mekanigi, nano Olcekli sistemlerden devasa yapilara kadar yasamin her
alaninda uygulama alan1 bulmus ve temelleri iyi oturmus bir konudur. Bu yoOniiyle
miihendislik béliimlerinin ¢ogunda vazgecilmez konulardan birisi olmustur. Akiskanlar
mekanigi, elektrik siipiirgesinden siipersonik ucaklar kadar giinliik hayatta ve gelismis
mithendislik sistemlerinin tasariminda yaygin olarak kullanilmaktadir. En basta
akigkanlar mekanigi insan viicudunda hayati bir rol oynar. Kalp, siirekli olarak
atardamarlar ve toplardamarlar ile insan viicudunun her yerine kan pompalar ve
akcigerler hava akis yOniiniin siirekli degistigi organlardir. Biitiin yapay kalpler,
solunum cihazlart ve diyaliz sistemleri akigkanlar dinamigi kullanilarak
tasarlanmaktadir. Siradan bir ev akigkanlar mekaniginin uygulamalar ile doludur. Bir
evin ve biitiin sehrin temiz su, dogal gaz ve atik su tesisatlar1 akigkanlar mekanigi
prensiplerine gore tasarlanmaktadir. Buzdolabinda sogutkan akigskanin; icerisine aktigi
borular, basin¢landirildigi kompresor, 1siy1 cektigi ve attifi 1s1 degistiriciler de
akigkanlar mekanigi kullanilarak yapilmaktadir. Akiskanlar mekaniginin sayisiz
uygulamasi otomobillerde de goriilmektedir. Yakiti depodan silindirlere kadar ulastiran
tiim parcalar, yakit borulari, yakit pompasi, karbiiratorler, silindirlerde yakit ve havanin
karigmasi, yanmis gazlarin egzoz borulari ile atilmasi1 akigkanlar mekanigi yardimiyla
incelenmektedir. Akiskanlar mekanigi, 1sitma ve klima sistemlerinin hidrolik frenlerin,
otomatik vitesin, yaglama sisteminin ve hatta lastiklerin tasarirminda da
kullanilmaktadir. Daha genel bir degerlendirme ile akigkanlar mekanigi; ugaklarin,
gemilerin, denizaltilarinin, biyomedikal cihazlarin yami sira, elektronik elemanlarin
sogutulmasi, su, ham petrol ve dogalgazin tasinmasi gibi uygulamalarin tasarim ve

incelenmesinde 6nemli bir yere sahiptir.

Yakin tarihe kadar akiskanlar mekanigi bilimi hidrolik adi altinda ele alinmaktaydi.
Hidroligin genel olarak su ile ilgilenmesi, icerdigi akiskan sorunlarinin sinirli kalmasi
ve matematiksel anlamda yetersiz kalmasi1 akiskanlar mekanigi konusundaki ¢aligsmalari
arttirmistir. Bilhassa, sinir tabakasi teorisinin gelistirilmesi ile beraber Navier-Stokes
denklemlerinin basit bir forma indirgenmesi ve c¢Oziime ulasilmast imkanina

ulasilmistir. Ozellikle diisiik molekiiler agirliga sahip akiskanlarin mekanik davranislari



Navier-Stokes yaklasimiyla dogru olarak belirlenmektedir. Hareketleri Navier-Stokes
teorisi ile ifade edilebilen ve diisiik molekiiler agirliga sahip olan akigkanlar Newtonyen
akigkanlar olarak adlandirilmaktadir. Aldigimiz nefes, hava, su, siit ve benzin
Newtonyen akiskanlara Ornek verilebilir. Non-Newtonyen akiskanlar ise yiiksek
molekiil agirliga sahip akiskanlardir. Ince camurumsu karisimlar, bal, hamur, mayonez,
boya, asfalt ve tutkal non-Newtonyen akigkanlardan bazilaridir. Non-Newtonyen
akigkanlarin Newtonyen akiskanlardan temel farki, kayma gerilmesi ile sekil degistirme
hiz1 yani hizin konuma bagli olarak degisimi arasinda dogrusal olmayan (non lineer) bir
iliski olmasidir. Bagka bir deyisle Newtonyen akiskanlarda viskozite olarak adlandirilan
kayma gerilmesi ile hiz gradyeni arasindaki orant1 katsayisi sabitken non-Newtonyen

akigkanlarda degiskendir.

Tabiatta bulunan akigkanlarin biiyiik bir kismi non-Newtonyen akiskan modeline
uymaktadir. Bazi non-Newtonyen akigkanlar, bir tiir hafiza 6zelligi tasir ve bunlarda
kayma gerilmesi sadece yerel sekil degistirme hizina degil ayrica gerilmenin onceki
degisimlerine de bagl olarak degismektedir. Uygulanan gerilme kaldirildiginda bagtaki
asil sekline donen akiskana viskoelastik denilmektedir. Baz1 non-Newtonyen akiskanlar,
sekil degistirme hizlar arttik¢a daha az viskoz duruma geldiklerinden incelen akigskanlar
veya sanki plastik akiskanlar olarak adlandirilmaktadir. Boya buna en iyi Ornektir.
Boya, kabindan dokiiliirken veya bir fircaya alimirken gerilme kiiciik oldugundan
oldukca viskozdur. Bununla birlikte boyayr duvara siirdiigiimiizde, firca ile duvar
arasindaki ince boya tabakasi yiiksek kayma gerilmesine maruz kalir ve daha az viskoz
hale gelir. Baz1 akigkanlar1 harekete gecirebilmek icin akma gerilmesi denilen sonlu bir
gerilmenin uygulanmasina ihtiya¢ vardir. Bu tiir akiskanlar Bingham plastik akiskanlari
olarak bilinmektedir. Cilt kremi ve dis macunu Bingham akiskana ornek verilebilir.
Eger dis macunu tiipiiniin agzinmi asagi dogru tutarsaniz yercekiminden dolayr bir
gerilme bulunmasina ragmen macun akmaz. Bununla birlikte eger tiipii sikarsaniz,

macun oldukca viskoz bir akiskan gibi akmaya baslar.



Cok cesitli alanlardan verilen bu oOrnekler non-Newtonyen akiskanlarin kullanim
alanlarin  genisliligi ve cesitliligini gostermektedir. Ozellikle son yillarda non-
Newtonyen akiskanlar iizerindeki caligmalar gelisme gostermistir. Non-Newtonyen

akigkanlara ve boru igerisindeki akisa ait yapilan ¢alismalar su sekildedir:

Malin (1997), power-law akiskanlarda piiriizsiiz boru i¢indeki tiirbiilansh akis1 sayisal
olarak incelemis ve deneysel sonuglarla karsilastirmistir. Wang et al.(1997), i¢ ice
gecmis iki boru arasindaki power law akigskanin kararsiz Couette akisini analiz
etmiglerdir. Burada icteki borunun hareketi s6z konusudur. Power law akiskana ait
hareket denklemi analitik olarak coziilmiistiir. Gupta (2001), power law modelindeki
non-Newtonyen akiskanin laminer akis i¢in yaklasik bir ¢oziimiinii dairesel boru ve diiz
kanal icin ortaya koymustur. Yiiriisoy ve Pakdemirli (1999), kaymali yataklarin
yaglanmasinda iiciincii dereceden non-Newtonyen akis modelini kullanmiglardir. Bu
calismada; iiciincii derece akigkan etkilerinin viskoz etkilerden daha kii¢iik oldugu kabul
edilmistir. Massoudi ve Christie (1995), boru icerisindeki iigiincii derece akigkanlar i¢in
hareket ve enerji denklemlerinin ¢6ziimlerini niimerik olarak yapmislardir. Bu
calismada da yine akigkanin viskozitesinin sicakliga gore degistigi goz oniine alinmaistir.
Yiiriisoy ve Pakdemirli (2002), borularda iiciincii derece akiskan akisini yeniden
incelemisglerdir. Massoudi ve Christie (1995)’nin calismasindan farklt olarak
perturbasyon yontemini kullanarak diferansiyel denklem sistemi icin analitik ¢oziimler

bulmuslardir.

Bu tez calismasinda genellestirilmis bir iigiincii derece non-Newtonyen akiskan
modeline ait boru igerisindeki akist incelenmistir. Silindirik koordinatlarda
genellestirilmis tigiincii derece akigkanlara ait momentum ve enerji denklemleri elde
edilmistir. Denklemlerin ¢ikarilisinda Rivlin-Ericksen tensorleri kullanilmistir. Boru
icerisindeki akisi ifade eden sinir sartlart belirlenmistir. Elde edilen momentum ve enerji
denklemleri ile sinir sartlar1 boyutlu parametrelerden olusmaktadir. Coziimlerin daha
genel olabilmesi i¢in denklemler boyutsuzlastirilmistir. Boylece, silindirik koordinatlar
icin tek boyutlu akis1 ifade eden adi diferansiyel denklem sistemleri elde edilmistir. Bu
denklem sistemlerinin yaklagik analitik ¢oziimleri yapilmistir. Denklemlerin analitik

¢Oziimii icin bir perturbasyon metodu olan yaya a¢ilimi kullanilmistir. Yaya acilimi



yapilarak hiz ve sicaklik profillerine ait denklemler, Newtonyen ve non-Newtonyen
kistmlara ayrilmistir. Oncelikle Newtonyen kismin, daha sonra da non-Newtonyen
kismin ¢oziimleri yapilmistir. Coziimlerde viskozite degeri sabit alinmistir. Bu acilim
sayesinde hiz ve sicaklik profillerinin yaklasik coziimleri bulunmustur. Tez
caligmasinda analitik ¢oziimlerin yani sira niimerik ¢oziimler de yapilmistir. Niimerik
coziimlerin elde edilmesinde sonlu farklar metodu kullanilmistir. En iyi yaklasimi veren
merkezi fark yaklasimi kullanilmigtir. Niimerik coziimler 100 diiglim noktasi igin
yapilmigtir. Yiiz diigiim noktasi icin elde edilen denklemler 6zel bir sonlu farklar
programi kullanilarak ¢oziilmiistiir. Daha sonra elde edilen analitik ¢oziimler cesitli
akiskan sabitleri i¢in cizdirilmistir. Bu fiziksel parametrelerin hiz ve sicaklik profilleri
tizerindeki etkileri agikca ortaya konmustur. Ayrica, bu tez kapsaminda analitik ve

niimerik ¢oziimlerin karsilastirilmasi da yapilmastir.



2. GENEL BILGILER

2.1 Akiskanlar Mekanigi Nedir

Maddelerin temel olarak {ii¢ fiziksel hali vardir. Bunlar kati, sivi ve gaz halleridir. S1vi
ve gaz halindeki madde akiskan olarak nitelendirilir. Mekanik, kuvvet ve hareket
bilimidir. Akiskanlar mekanigi de akiskanlarin hareketini ve etki eden kuvvetleri
inceleyen bilim dalidir. Zorlama etkisi altinda maddesel ortamlarda gerilmeler meydana
gelebilir. Gerilme, zorlamaya karsi direnmeyi sembolize eden bir biiyiikliiktiir. Bunlar
genellikle Normal (cekme veya basma) gerilme ve Tegetsel (kayma) gerilmelerdir. Bu
gerilme degerleri kati1 cisimlerde c¢ok yiiksek degerlere cikabildigi halde akiskan
maddelerde, basma gerilmesi hari¢, ¢ok kiigiiktiir. Kati, uygulanan kayma gerilmesine
bir miktar sekil degistirerek direnebilir. Aksine sivi, kayma gerilmesi ne kadar kiiciik
olursa olsun siirekli olarak sekil degistirir. Sivilar ve gazlar gerilmeye karsi farkli
davranis gostermektedirler. Sivilar normal dogrultudaki gerilmelere (basing) karsi bir
kat1 gibi diren¢ gosterirken, gazlar normal dogrultudaki gerilmelere de karsi
koyamazlar. Bundan dolay1 sivilar1 ve gazlar1 birbirinden ayiran en onemli ozellik,
sikistirtlabilme 6zelligidir. Teorik olarak sivilar sikistirilamayan akiskanlar olarak kabul

edilir. Gazlar ise ¢ok kolay sikistirilabilip genisleyebilirler (Yilmaz S., 2008).

2.2 Akiskanlarin Fiziksel Ozellikleri

Madde dogada genel olarak kati, sivi ve gaz olmak iizere ii¢ halde bulunmaktadir. Sivi
ve gaz halindeki maddeleri akigkan baghigi altinda ele alinmaktadir. Akiskanlarin
fiziksel ozelliklerinin temelini molekiiller arasi mesafenin uzaklifi olusturmaktadir.
Bunun bir sonucu olarak, akigkanlar konuldugu kabin seklini almaktadirlar.
Akiskanlarla ilgili bu tani, yercekiminin etkisi sonucu meydana gelmektedir.
Yercekiminin etkisinin olmadigi bir ortamda 6rnegin uzayda incelenilecek olursa,
konuldugu kabin seklini alma durumunun sivi akiskanlar igin gecerli olmadigi
goriilmektedir. Bu sebepten, akiskanlarla ilgili baz1 genel 6zelliklerin incelenmesi yarar

saglayacaktir (Cengel Y. A., Cimbala J.M. 2008).



2.2.1 Ozgiil Agirhk
Bir akigkanin 6zgiil agirligi, birim hacmini agirhigidir.

o AW
AV

Burada AW;AV elemanter hacmin agirhigidir.
AW = Amg

AW Amg
AY AV

Veya
Y =pg dir
2.2.2 Yogunluk

Yogunluk, birim hacimdeki kiitle miktaridir.
p= mn (kg /m’) seklinde ifade edilmektedir.
v

Burada, m; cismin kiitlesi, v; cismin hacmi olarak verilmektedir. Ozellik tablolari,
ozellikler hakkinda ¢cok dogru ve hassas bilgiler saglamaktadir, ancak bazen 6zellikler
arasinda yeterince genel ve dogru sonu¢ veren basit bagintilara gereksinim
duyulmaktadir. Bir maddenin basinci, sicakligi ve hacmi arasindaki bagintiya hal
denklemi denilmektedir. Gaz fazindaki maddeler icin en basit ve iyi bilinen hal

denklemi ideal gaz denklemi olup;



P.v=R-T  veya P=p-R-T seklinde ifade edilmektedir.

Burada P mutlak basinci, v 6zgiil hacmi, T mutlak sicaklifi, p yogunlugu ve R gaz

sabitini belirtmektedir. Gazlar icinde bulunduklar1 kabin seklini ve hacmini
almaktadirlar, yani kab1 daima doldurmaktadirlar. Gaz molekiilleri bir kap icerisinde
cok sikistirildigl durumlar haricinde, molekiillerin toplam hacmi gazin hacmi yaninda
yok sayilabilir ve aralarindaki cekim dikkate alinmayabilir. Boyle bir gaza ideal gaz
denilmektedir. Bir maddenin yogunlugu, genel anlamda sicaklik ve basinca bagli olarak
degismektedir. Genellikle sivilarin yogunlugu, sicaklikla degismesine karsin basingla
cok az degisir, gazlarin yogunlugu ise hem sicaklik hem de basing ile degismektedir

(Cengel Y. A., Cimbala J.M. 2008).

2.2.3 Basin¢

Basing, bir akigkan tarafindan birim alana uygulanan kuvvet olarak tanimlanmaktadir.
Basing sadece sivilar ve gazlar i¢in kullanilan bir tanimlamadir. Basincin katilardaki
karsilig1 normal gerilmedir. Verilen bir konumdaki gercek basinca mutlak basing denir
ve mutlak vakuma (mutlak sifir basinca) gore ol¢iilmektedir. Bununla birlikte basing
Olcme cihazlarinin ¢ogu atmosferde sifira kalibre edilmektedir. Dolayisiyla bu cihazlar
mutlak basing ile yerel atmosferik basing arasindaki farki gostermektedir. Bu fark etkin

basing olarak adlandirilmaktadir (Sogukoglu M., 1995).

2.2.4 Viskozite

Katilarin kayma gerilmelerine karsi direnclerinin biiyiilk olmasina ragmen akiskanlarin
gosterdigi diren¢ oldukca kiiciiktiir. En kiiclik kayma gerilmesi etkisi altinda bile
akigkan siirekli olarak sekil degistirmektedir. Dogadaki biitiin akiskanlar, akigkan
tabakalarinin birbirleri iizerinde hareket etmelerine karsi direng gostermektedirler. Bu
diren¢ akiskan viskozitesi olarak adlandirilmaktadir. Viskozite, komsu tabakalarin
birbirlerine gore hareketlerinde igsel direncin Olgiimii olan bir akigkan ozelligidir

(Cengel Y. A., Cimbala J.M. 2008).
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Sekil 2.1 iki Paralel Plaka Arasindaki Akiskanin Laminer Akis Davranist

Viskozite icin bir bagint1 elde etmek iizere aralarinda / kadar mesafe bulunan iki paralel
plaka arasindaki akiskan tabakasimi dikkate alalim (Sekil 2.1). Alttaki plaka sabit
tutulurken ustteki plakaya paralel sabit bir F kuvveti kuvvetinin uygulandigini
diisinelim. Uygulanan bu kuvvetin etkisiyle iistteki plakanin sabit bir V hiziyla hareket
ettigi gozlenir. Ustteki plakayla temas eden akiskan plaka yiizeyine yapisir ve onunla

ayn1 hizda hareket eder. Bu durumda akiskan tabakasina etki eden kayma gerilmesi;
F . . o
T= " ifadesiyle verilir.

Burada A, plaka ve akiskan arasindaki temas alamidir. Alttaki plaka ile temas halindeki
akigkani ise bu plakanin sifir olan hizina sahip oldugu kabul edilir. iki plaka arasindaki

akiskan hiz1 0’dan V’ ye dogrusal olarak degisir ve boylece hiz profili ve hiz gradyeni;

u(y)= Yy ve du =% olarak yazilir.

[ dy



Burada y alt plakadan olan diisey mesafedir. Diferansiyel bir df zaman araliginda,
akigkan pargaciklarinin kenarlar1 bir MN cizgisi boyunca diferansiyel bir df acist kadar
doner ve bu esnada iistteki plaka diferansiyel da=V.dt mesafesini alir. Bunun sonucunda

ortaya cikan agisal yer degistirme veya deformasyon;

-dt olarak ifade edilebilir.

dﬂztanﬂ:% Vedt _du
y

Tekrar diizenlemeyle kayma gerilmesinin etkisi altindaki deformasyon hizi;

4f_du
dt dy

halini alir.

Buna gore bir akigkan elemaninin deformasyon hizi, du/dy hiz gradyenine esittir. Ayrica
cogu akiskan icin deformasyon hizinin dogrudan kayma gerilmesi ile orantili oldugu

sonucuna vartlmaktadir:

T=—— veya e
dt dy

Deformasyon hizinin kayma gerilmesiyle orantili oldugu akiskanlara Newton tipi

akiskanlar denilmektedir. Bir boyutlu Newton tipi kayma akisinda kayma gerilmesi;

T=U" % ifade edilebilir.

Y
Buradaki oranti sabiti p, akiskanin viskozite katsayist veya dinamik viskozite olarak

adlandirilmaktadir. Akigkanlar mekaniginde dinamik viskozitenin yogunluga oraniyla

sikca karsilasilmaktadir. Bu orana kinematik viskozite denilmektedir ve

y= I olarak ifade edilmektedir.
P



2.3 NON-NEWTONYEN AKISKAN MODELLERI

Bu boliimde Newtonyen ve Non-Newtonyen akiskan tanimlamalar1 yapilacak ve ayni

zamanda Non-Newtonyen akiskanlar daha ayrintili olarak ele alinacaktir.

2.3.1 Newtonyen Akiskan Modeli

Aralarinda dy kadar mesafe bulunan sonsuz iki plaka arasinda Sekil 3.1°deki gibi x

ekseni boyunca dx kadar mesafeye yayilmig akiskan bulunsun.

— du

dx

& »
<« »

Sekil 2.2 iki Sonsuz Plaka Arasinda Durgun Akigkan

Ust plaka bir F kuvveti yardimi ile du hiziyla hareket ettirilsin ve dl kadar yer
degistirsin. Bu durum Sekil 2.2’de gosterilmistir.
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dy

dx

A
v

Sekil 2.3 iki Sonsuz Plaka Arasindaki Akiskan icin Ust Plakanin Hareket Ettigi Durum

Bu durumda deformasyon orani du / dy olarak ifade edilir. Kayma gerilmesi ise;

—— 2.1

seklinde yazilir. Buradaki p terimi akiskanin viskozitesi olarak adlandirilir.

Siirekli ortamlarin mekanigi incelenirken uygulanan kuvvetlere gore sekil degisimini
Olcen bazi katsayilar tanimlanmugstir. Kati siirekli ortamlar igin elastisite modiili,
poisson orani ve kayma modiilii gibi katsayilar (oranlar) vardir. Bir siirekli ortam olarak
akiskan icin de hacim modiilii ve viskozite katsayis1 gibi iki katsayr tanimlanmistir.
Bunlar akiskana bir kuvvet uygulandiginda yapacagi davranisi 6ngérmemizi saglarlar.
Denklem 2.1’de buldugumuz viskozitenin bdyle bir onemi vardir. Katilar igin,
akigskandaki viskoziteye karsilik gelen kayma modiilii, kayma gerilmesinin yer
degistirmeye orani olarak tanimlanirken akiskanda viskozite, kayma gerilmesinin hiz

gradyenine orani olarak tanimlanir.

11



Bir bagka tanimiyla viskozite hareket halindeki akiskandaki yerel gerilmelerle sekil
degistirme hiz1 arasindaki iligkiyi ortaya koyar. Newtonyen akigkanlar igin verilen
herhangi bir sicaklik icin viskozite sabittir. Newtonyen akiskanlarda viskozite, basing
arttikca cok az artar, sicaklik arttikca —sivilarda- azalir. Diisiik ve yiiksek viskozite
degerleri i¢cin Newtonyen akiskanlarin 6rnek grafigi Sekil 2.4’te verilmistir. Sekil 2.4’te
Newtonyen akiskanlarda kayma gerilmesi ile hiz gradyani arasinda lineer bir iligki
oldugu goriilmektedir. Viskozite degerinin diisiik veya yiiksek olmasi durumunda
kayma gerilmesi ile hiz gradyami arasindaki iligki degismemekte, dogrusal olarak

kalmaktadir (Akgiil M.B., 2008).

400

300

/ Yiiksek Viskoziteli
Newtonyen Akiskan

200 ____ Disiik Viskoziteli
Newtonyen Akiskan

100 / -

Kayma Gerilmesi (dyne/cmz)

0 200 400 600 800 1000
Hiz Gradyani (1/sec)

Sekil 2.4 Newtonyen Akiskanda Diisiik ve Yiiksek Viskozite Degerleri icin Kayma
Gerilmesi Hiz Gradyam Grafigi
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2.3.2 Non-Newtonyen Akiskanlara Ait Modeller

Non-Newtonyen akiskanlarin 6zellikleri ve siniflandirmasi “Reoloji” denilen bilim dal
dahilinde incelenmektedir. Reoloji, sekil degistirme — kuvvet iligkisiyle ugrasan bilim
dalhidir. Cisimlerin davranislarin1 sekil degistirme, kuvvet ve/veya zaman faktorleri

altinda ele alir (Akgiil M.B., 2008).

Boliim 1’de genel olarak bahsettigimiz gibi non-Newtonyen akigskanlarin Newtonyen
akigkanlardan farki, kayma gerilmesiyle hiz gradyeni arasinda dogrusal bir iligkinin
olmamasidir. Boliim 2.3.1’de Newtonyen akiskanlari denklem (2.1)’le matematiksel
olarak ifade ettik. Ancak boyle tek bir genel modeli non-Newtonyen akiskanlar i¢in
yazabilmek pek miimkiin degildir. Newtonyen olmayan davranis gosteren akiskanlar icin
bircok model ileri siiriilmiistiir. Akiskana ve akis biciminin degisimine gore
kullanilabilecek non-Newtonyen akigkan modelleri farklilik gosterir. Ciinkii her bir
modelin degisik sartlar icin uygun veya uygun olmayan yonleri mevcuttur. Bazi non-

Newtonyen akigkan modellerini siralayalim:

Power Law Modeli: T, = u(j—uj 2.2)
y

. du)

Hershell- Bulkley Modeli: T, =T+ },{d—j (2.3)

y

Prandtl Modeli: T, =Asin” (Mj 2.4)
c

Powell- Eyring Modeli: T, = I.Ld—u+isinh_1 (Mj (2.5)

dy B c
Williamson Modeli: 7 =y du, Adu/dy (2.6)

x t——
y dy B+du/dy

13



Akigkanlar1 en genel olarak Newtonyen akiskanlar ve non-Newtonyen akiskanlar olarak
iki gruba ayirdiktan sonra yukarida bazi 6rnek modellerini verdigimiz non-Newtonyen
akiskanlarin temel parametresi olan viskozitenin zamana bagliligina gore gruplamak
istersek iki gruba ayrabiliriz: i) Zamana bagimli akigkanlar, ii) Zamandan bagimsiz

akigkanlar (Akgiil M.B., 2008).
2.3.2.1 Zamana Bagimli Non-Newtonyen Akiskanlar

Tiksotropik ve Reopektik olarak adlandirilan akigkanlar bu gruba girer. Tiksotropik
akiskanlarin goriiniir viskozitesi kayma gerilmesiyle azalir. Zamanla incelirler ve azalan
gerilmeye ihtiya¢ duyarlar. Bir bagka deyisle sabit hiz gradyeni i¢in kayma gerilmesi
zamana bagli olarak azalir. Reopektik akiskanlarin goriiniir viskozitesi kayma
gerilmesiyle artar. Sabit sekil degistirme hizin1 koruyabilmek i¢in yavas¢a artan kayma
gerilmesine ihtiya¢c duyarlar. Sabit hiz gradyeni icin kayma gerilmesi zamana bagh
olarak artar. Tiksotropik akigskanlara Ornekler boya, bal, ketcap ve yogurt sayilabilir.
Reopektik akiskanlara 6rnek olarak ta temel mantig1 hareket eden iki yiizey arasindaki
sirtiinmeyi azaltan ve mekanik uygulama alanlar1 oldukca fazla olan yaglama maddeleri
verilebilir. Bitkisel, sentetik ve mineral yaglar bu gruba verilebilecek drneklerdir (Akgiil

M.B., 2008).
2.3.2.2 Zamana Bagh Olmayan Non-Newtonyen Akiskanlar

Baz1 besin grubu ve biyolojik sistemlerdeki akiskanlar bu gruba girer. Power

Law akigkanlar icin verilen modeli,
dy

T, = u(d—u] seklinde ifade etmistik. Burada,

n < 1 ise akigkan, al¢alan veya kayma incelmesi davranigi gosteren akiskan (shear
thinning) olarak tanimlanir. Bunlar Pseudeplastik akiskanlardir. Hiz gradyeni arttik¢a

goriiniir viskozitesi azalir. Sag sekillendirici joleler bu gruba 6rnek verilebilir.
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n > 1 ise kabaran veya kayma kalinlasmas1 davranisi gosteren akiskan (shear thickening)
olarak tamimlanir. Bunlar Dilatant akiskanlardir. Hiz gradyeni arttikga gOriiniir
viskozitesi artar. Su ve un karisimi bu gruba ornek verilebilir. Sekil 2.5°te Pseudeplastik
ve Dilatant akiskanlarin hiz gradyenine bagl olarak kayma gerilmesinin degisimi grafik
olarak gosterilmistir. Sekil 2.5’te Newtonyen akigskanlarda kayma gerilmesi ile sekil
degistirme hiz1 dogru orantilidir. Buna karsin non-Newtonyen akiskanlarda ise kayma
gerilmesi ile deformasyon hizi lineer olmayan bir iliski oldugu goriilmektedir (Akgiil

M.B., 2008).

Bingham
plastik

Sanki-plasuk

Newton tip

Kayma gerilmesi, 7

Dilatan

| S e
Deformasvon hizi, du/ch

Sekil 2.5 Newton ve non-Newtonyen Akiskanlar icin Kayma Gerilmesinin Deformasyon

Hiziyla Degisimi (Cengel Y. A., Cimbala J.M. 2008).
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3. MATERYAL VE METOT

3.1 Silindirik Koordinatlarda Genellestirilmis ﬁgi’mcﬁ Derece Akiskanlara Ait

Momentum ve Enerji Denklemleri

Bu boliimde silindirik koordinatlarda genellestirilmis iigiincii derece akiskanlara ait
momentum ve enerji denklemlerinin c¢ikisi yapilacaktir. Genellestirilmis {igiincii
dereceden non-Newtonyen akiskanlarin momentum ve enerji denklemlerinin
cikarihisinda Rivlin-Ericksen tensorleri kullanilacaktir. Bu boliimde elde edilen

momentum ve enerji denklemleri ii¢ boyutlu kararli akis i¢indir.

Genellestirilmis iiclincii derece akiskanlara ait biinye denklemini asagidaki gibi

yazabiliriz.
T =-pl1+I1""” [(uAf +OL AL +0,A )+ B(rA )Af] (3.1

Burada p basing, p viskozite, a;, o, ve P akigkan sabitleri A; ve A, ilk iki Rivlin-

Ericksen tensorleridir. Bu tensorler su sekilde tantmlanmaktadir:

A =L +L"

a, , AL +L7A;

*

A=

1 )
I1 :Etr(Alz)

* S

L =Vy (3.2)
Lineer momentum denklemi asagidaki gibidir.
. ov
divT =p— 3.3
P (3.3)
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Denklem (3.1) ve (3.2)’deki ifadeler denklem (3.3)’e yerlestirilip gerekli islemler

yapilirsa;

m/2
p(%grad|v|2 + X vj = —gradp + grad {(%‘Al Zj }[uv*zv + BAf.grad‘Af‘z + B‘Alr .V*zv}

(3.4)

genellestirilmis {iciincli dereceden akiskanlara ait en genel hareket denklemi, denklem

(3.4)’teki gibi elde edilmis olur.

Genellestirilmis iiclincii derece akigkanlara ait enerji denkleminin en genel hali

asagidaki gibidir.

de I 2 B
E—gradlz(E‘Al +E‘A1

m/2
T o

Burada ¢ i¢ enerji, k 1s1 iletim katsayini, f iiclincii derece akiskan terimini ifade

4 )
+kV v (3.5)

etmektedir.
3.2 Hiz ve Sicaklik Profilleri icin Analitik Céziimlerin Bulunmasi

Bu boliimde; silindirik koordinatlarda tek boyutlu akis i¢in elde edilen denklemlerin
coziimii yapilacaktir. Bu denklemler icin siir sartlar1 belirlenecektir. Elde edilen
denklemler boyutsuz denklemlerdir. Sonuclarin genellestirilebilmesi amaciyla
denklemler boyutsuz hale getirilecektir. Bu boliimde denklemlerin yaklasik analitik
coziimleri bulunacaktir. Analitik ¢oziimlerin elde edilmesinde bir cesit seri a¢ilim olan
perturbasyon yoOnteminin yaya ac¢ilimi metodundan yararlanilacaktir. Coziimler
sonucunda hiz ve sicaklik profilleri elde edilecektir. Hiz ve sicakliga ait ¢oziimler

Matlab programi kullanilarak grafiksel olarak elde edilecektir.
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&

Sekil 3.1 Boru Icerisindeki Akisin Sematik Gosterimi

Bu tez calismasinda r ve 0 yoniindeki hizlar sifir kabul edilmistir. Hareketin sadece z
yoniinde oldugu ve r’ye bagli olarak degistigi kabulii yapilmistir. Bu tanimlama asagida

matematiksel olarak ifade edilmistir.

v.=0 , ¥V,=0 , ¥,=V,(%) (3.6)

Denklem (3.4), (3.5) ve (3.6)’dan yararlanilarak boru icerisindeki genellestirilmis

ticiincii derece akigkana ait denklemler elde edilmistir:

v )" &V 1dv)_ AN v 1dv)| dP
d’® kdb (dv)"|_ . (dvY
v(r)=0, d—Y(O)ZO , 8(1)=0, d—?(O)ZO (3.9)
dr dr

Denklem (3.7) momentum denklemini, denklem (3.8) enerji denklemini ve denklem
(3.9) ise probleme ait sinir sartlarini ifade etmektedir. Yapilan tez ¢calismasinda p yani

viskozite sabit olarak kabul edilecek ve degeri 1 olarak alinacaktir. Verilen bu
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denklemlerdeki ifadeler boyutlu ifadelerdir. Coziimlerin genellestirilebilmesi igin
boyutsuz olarak ifade edilmeleri gerekmektedir. Boyutsuzlastirma icin kullanilan
doniistimler asagida verilmistir.

i3 o=2"% (3.10)

v

u:

Denklem (3.10)’daki v( referans hizini, po referans viskoziteyi, 0, ortalama akiskan

sicakligini ve 0y, cidar sicakligini ifade etmektedir.

Oncelikle denklem (3.7) ve (3.8) icin boyutsuzlastirma islemi yapilacaktir. Daha sonra
boyutsuz hale gelen denklemlere ait perturbatif ¢oziimler detayli olarak verilecektir.
Coziimlerde p=1 olarak alinacaktir. Denklem (3.9)’daki ifadeler denklem (3.7) ve
(3.8)’de yerine yerlestirilirse boyutsuz denklemler asagidaki gibi elde edilir.

dv )" d*v ldv av Y’ d’v ldv

— m+1)—+-— |[U+A| — m+3)—+—||=C 3.11

(drj K( )dr2 rerM (drj (( )drz rdr]:l ( )

2 m+2 2

d_‘j+ld_9+p(ﬁj u+A(ﬁj =0 (3.12)

dr* rdr dr dr

v()=06(1)=0 ﬂ(O):@(O)zo (3.13)
dr dr

Denklemlerde v boyutsuz akiskan hizini, 8 boyutsuz sicaklig ifade etmektedir.

2 D 2 m m+2
A= o P _GRUR Y Mo (3.14)
MR dz HoVo \ Vo R™(8,,-6,)k

Denklem (3.14)’te C; eksenel yondeki basin¢ degisimini, A boyutsuz non-Newtonyen

akiskan katsayisi, § boyutlu iiciincii derece akiskan katsayisini, I Brinkman sayisini ve
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k 1s1 iletim katsayisimi ifade etmektedir. Bundan sonraki asamada elde edilen boyutsuz

denklemlerin perturbatif ¢oziimleri yapilacaktir.

Momentum ve enerji denklemlerindeki hiz ve sicakligin yaya acilimlar1 asagidaki

gibidir.
V=V, +E&v, (3.15)
0=0,+¢€6, (3.16)

Burada ¢ perturbasyon parametresidir. Ayrica ¢oziimlerde non-Newtonyen katsayis1 A,

asagidaki gibi sec¢ilmistir.
A=¢gl (3.17)

Yani denklem (3.17)’deki tamimlama ile A, € mertebesinde kabul edilmistir. Yapilan
tanimlama ve kabullerden sonra denklem (3.15) ve (3.17), denklem (3.11) ve (3.13)’e

yerlestirilirse;

’ ’ ” ” 1 ’ ’
(v, +ev,)" K(m+l)(vo +ev, )+;(v0 +ev, )j
+£7u(v0/ +£—:v1,)2 ((m+3)(v0” + svl”) +l(v0’ + svl/)ﬂ =C
r

(3.18)

elde edilir. (VO,+€V1’)m ifadesini €’ye gore seriye agarak yazarsak denklem asagidaki

sekli alir:

((VO/)m + Emvo’(m"”vl/) H(m + 1)(v0” + i—:vl”) + 1 (VO, + i—:vf)j
Tr
(3.19)
+eMv, +ev,)? ((m+ 3)(v, +ev,) +1(v0’ +£V1')H =C
r
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Denklem (3.19) momentum denklemine uygulanan yaya agilimini ifade etmektedir.
Benzer sekilde enerji denkleminde de yaya aciliminit uygulamak i¢in denklem (3.15),
(3.16) ve (3.17)’deki tanimlamalar denklem (3.12) ve (3.13)’e yerlestirildiginde;

(8, +€0,)+ M + (v, )™ +&(m+2)(v, )™ v,)

+TeM(v,) )™ +e(m+4)(v, )" v,)=0

(3.20)

elde edilir. Elde edilen denklem (3.19) ve (3.20)’deki ifadelerden 1 ve & mertebeleri

dikkate alinacaktir. Bu mertebeler yazilir ise;

1 Mertebesi

(v )" {vo”(m+1)+v—°} =Cr (3.21)
r

’

0, Sy L(v,)™?=0 (3.22)
r

Sinir sartlart asagidaki gibi olur.

vo()=8,(D=0 v, (0)=6,(0)=0 (3.23)
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£ Mertebesi

v, (m+D(v,)" + (v, )™ +mr(m+1)v, Vv, +mvy)™) = -A(vy )™ {vo”(m +3) +V—°}
T r

(3.24)
0, +97f +D(m+2)(v,)™ v, +TA(v, )™ =0 (3.25)
€ mertebesine gore sinir sartlar agagida verilmistir.
v)=6,1)=0 v, (0)=6,(0)=0 (3.26)

Simdi bulunan bu denklemlerin ayrintili olarak c¢oziimleri yapilacaktir. Denklem

(3.21)i ele alalim. Islemi kolaylastirmak igin denklem (3.21)’de V0’=K olarak

yazarsak;

K + K C

-~ K™ (3.27)
r(m+1) m+1

seklinde Bernoulli diferansiyel denklemi olusur. Buradan,
7 = K1+m (3.28)

bagintisina ulasilir. Buna gore denklem (3.27)’yi diizenlersek;
1
z+-z=C (3.29)

denklemi elde edilir. Denklemin sadece sol tarafin1 dikkate alarak sifira esitlersek;

22



.2, (3.30)
dr r

ayrisabilen denklemi elde edilir. Integral alirsak;

dz__pdr_,  _G (3.31)
VA T T

olur. C, =C,(r) olsun. Bu durumda;

Z= ve Z=——— (3.32)

haline gelir. Denklem (3.32)’deki tanimlamalar1 denklem (3.29)’da yerine yazarsak;

2
C, :CTTJrCZ (3.33)
elde edilir. Bu ifadeyi denklem (3.32)’deki ifadede yerine yerlestirirsek;
=, G (3.34)
2 r

olarak elde edilir. (3.34)’teki ifadeyi denklem (3.28)’de yerine yazdigimizda, K yani

v, "in degeri elde edilir:

1 1

Vo’ =2 m+ (Cr+%)m+1 (3.35)

Denklem (3.23)’te verilen sinir sartlart denklem (3.35)’te uygularsak;
v, (0)=0=C, =0 (3.36)

olur. C, =0 alindiginda denklem (3.35)’1 yeniden diizenlersek;
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1 1

v, =2 ™ (Cr)m (3.37)

haline gelir. Integral alirsak;

1 1

m+1 ('m+1 M
_2menmth iy, (3.38)
(m+2)

Vo

elde edilir. (3.23)’teki sinir sartinin denklem (3.38)’de uygulanmasi sonucu;

1 1

B 2 m+1 Cm+1 (m + 1)
(m+2)

C, = (3.39)

olarak bulunur. C; integral sabitidir. Denklem (3.39)’da buldugumuz Cj; sabitini
denklem (3.38)’de yerine yazarsak;

1 1

" m+l (‘m+l m+2
_2me " 2(“‘ D (et _y (3.40)
m

Vo

hiz ifadesinin lineer kismi elde edilmis olur. € mertebesindeki ¢oziimler icin asagidaki

denklemlerden yararlanilacaktir.

1 1 1

Vo/ = m+l Omtlpmel (3.41)

1 1

» 2 m+1 C m+1 _m

(r ™) (3.42)
m+1

Vo

Bu denklemlerden yaralanilarak v, degeri elde edilecektir. Denklem (3.41) ve

(3.42)’deki ifadeler denklem (3.24)’te yerlerine yazilip gerekli islemler yapildiginda;
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4 3 2-m m-2 m+2
\Z (m+1)+—(1+2m)——k(Cm“r”“HZ‘“”)( j (3.43)
m+1

esitligi elde edilir. Islem kolayli agisindan Vl/ =z olarak kabul edelim. Buna gore

denklem (3.43)’1i yeniden diizenlersek;

LN )
z (m+1)+ (14 2m) = —A(Cm+lpm+l 2 mel )( j (3.44)
m+1
Elde edilen esitligin sol tarafin1 dikkate alarak sifira esitlersek;

Zm+D+Z1+2m)=0 (3.45)
T

lineer denklemine ulasilir. Biitiin denklemi (m+1) ifadesine bolersek;

%+E(1+2mj20 (3.46)
dr r{ m+l

haline gelir. Denklemi diizenlersek;

dz dr(l+2mj 0 (3.47)
Z m+1
ifadesi elde edilir. Burada (H—ZTJ =K olarak alirsak denklem (3.47) asagidaki gibi
m—+
olur.
dz dre _o (3.48)
Z T

Integral aldigimiz takdirde;
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i
I_k

z=C,

olur. C;=C;(r) olsun. Bu durumda;

, C/r*—Kr*'C,
7 =
(r*)*

z= Cl(r)ik ve
r

olur. Denklem (3.50)’deki ifadeleri denklem (3.44)’te yerine yerlestirirsek;

3 3

“mHl (Cm+l 3
S LI
(m+1)

elde edilir. Denklem (3.51)’1 denklem (3.49)’da yerine yerlestirirsek;

3 3 3

, )\‘Cm+1rm+1 2 m+1
vV, =—
m+1

+C,

Denklem (3.26)’daki sinir sartlar1 denklem (3.52)’ye uygulanirsa;

v, (0)=0=C, =0

olarak bulunur. (3.53)’e gore denklem (3.52)’yi yeniden yazarsak;

3 3 3

, }\’C m+1rm+1 2 m+1
vV, =—
m+1

1

haline gelir. Integre edersek;

3 3 m+4

}\12 m+1 Cm+lr m+1
v, =— +C,
m+4
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elde edilir. Denklem (3.26)’da verilen sinir sartin1 denklem (3.55)e uygularsak;

3 3

_ A2 miCm

C
} m+4

(3.56)

olarak bulunur. Denklem (3.56)’da buldugumuz C; integral sabitini denklem (3.56)’da

yerine yazdigimizda;

3 3
TmHl (Cm+l W4

\Z =7M2—C(rnr1+1 -1 (3.57)
m+4

Denklem (3.57)’deki gibi v, ifadesine ulasilir. Elde edilen denklem (3.40) ve (3.57),
denklem (3.15)’te yerine yerlestirildigi takdirde;

m+D)™fC ™2 myfes

)= A (™ 1 3.58
(m+2)"Y2 =D (m+4)"Y3 ey 329

hiz profili tam olarak elde edilmis olunur. Simdi de Denklem (3.22) ve (3.25)’in

coziimleri yapilacaktir. Denklem (3.22)’yi ele alalim. Oncelikle daha 6nce elde edilen
denklem (3.41)’deki VO, tanimini1 denklem (3.22)” de yerine yerlestirirsek;
m+2

C m+1 m+2

rmHt (3.59)

’

0, S p
T

m+2
2 m+1

halini alir. Gerekli ¢oziimlerin yapilmasi ve denklem (3.23)’teki sinir sartlarinin

denklem (3.59)’a uygulanmasi sonucu 6, asagidaki gibi elde edilir.

m+1/ ~m+2 2 3m+4
o =r—C [t Y (3.60)
0 m+1/2m+2 3m + 4
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Boylece, sicaklik profilinin lineer kismi elde edilmis olur. Denklem (3.25)’in ¢6ziimii

icin denklem (3.41) ve (3.54), denklem (3.25)’ te yerine yazilirsa;

m+4

” ’ E M
91 r+91 :LMI' m+ (3.61)
(m+1)2m+

seklinde yazilir. Gerekli islemlerin yapilmasi ve denklem (3.26)’daki sinir sartinin

uygulanmasi sonucunda;

0, (3.62)

B 1—17\‘111+1[Cm+4 rn+1 r3:11_:—16 _1
m+1/2m+4 Bm+ 6)2

elde edilir. Denklem (3.60) ve (3.62), denklem (3.16)’daki ifadede yerine
yerlestirildiginde;

0 (3.63)

l—*m+llcm+2 m+ 1 2 . FAmW m +1 3m+6
= (1 -1 ) + r m+l __ 1
m+1[2m+2 3m + 4 m+1[2m+4 (3m + 6)2

sicaklik profili tam olarak elde edilmis oldu.

Bu boliimde; tez ¢alismasinda kullanilan kayma gerilmesi modeli verilmistir. Bu kayma
gerilmesi modeline gore momentum ve enerji denklemleri elde edilmistir. Elde edilen
denklemler boyutlu denklemlerdir. Denklemler boyutsuz hale getirilerek ¢oziimlerin
genellestirilebilmesi amaclanmistir. Denklemlerin yaklasik analitik ¢oziimleri yaya
acilimi metodu kullanilarak elde edilmistir. Coziimler sonucunda hiz ve sicaklik
profilleri elde edilmistir. m=0 degeri i¢in c¢oziimler, Yiirtisoy ve Pakdemirli (2002)
makalesindeki sonuglarla aymidir. Bu da elde edilen sonuglarin dogru oldugunu
gostermektedir. Bundan sonraki bolimde ise denklemlerin niimerik ¢6ziimleri
yapilacaktir. Niimerik coOziimlerin elde edilmesinde sonlu farklar yOntemi

kullanilacaktir.
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4. SONLU FARKLAR METODU

Bu boliimde onceki boliimde elde edilen genellestirilmis iiclincii derece akiskanlara ait
momentum ve enerji denklemlerinin niimerik ¢oziimleri yapilacaktir. Niimerik ¢oziimler

icin sonlu farklar yonteminden yararlanilacaktir.

Sonlu farklar; fiziksel, miihendislik problemlerinin bilgisayar yardimi ile ¢oziimiinde,
kismi diferansiyel denklemleri bilgisayar tarafindan hesaplanabilir kilan, Taylor serisi

acilimi yardimiyla tiiretilmis bir yontemdir.

Sonlu farklar yaklasimi sayisal tiirev alma islemine dayanmaktadir. Tiim fark

yaklasimlari;

f’(a)
21

f(x)=f(a)+f'(a)(x—a)+ fg('a )

(x—a) +..+

(x—a)’ + 7@ 4 ay 4.1)
n!

seklinde tanimlanan Taylor seri a¢ilimi1 yardimiyla elde edilir.
4.1 fleri Farklar ve A Operatorii

Bir f(x) fonksiyonunun Xx; noktasinda f, , x,, noktasinda f,, degeri aldigim

i+h

varsayalim. Bu halde f,,, —f, farkina f fonksiyonunun x, noktasindaki ileri farki denir

ve A ile gosterilir.

Af(x)=f(x+h)—f(x)
Af, =1, —f; 4.2)

Buradaki h’a fark araligi veya adim denir. Benzer sekilde ikinci dereceden ileri fark

tanimu asagidaki gibi yazilabilir.

A’ =f,_, —2f

i+l

+f, (4.3)
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Fonksiyonun birinci mertebeden tiirevinin, ileri farklar yardimiyla nasil
hesaplanabilecegini 6grenmek i¢in f(x) fonksiyonunun Taylor seri a¢ilimini géz 6niine

alirsak;

2
f,=f g Dpry (4.4)
12

yazilabilir. Boylece,

hZ

2!

f. —f =hf/ +—f +... (4.5)

elde edilir. h degerinin ¢ok kiiciik olmasi durumunda h*’li ve daha sonraki terimler

ihmal edilerek ,

;£ —f
f =" O(h

Birinci mertebeden tiirevin ileri farklar kullanilarak coziimii elde edilir. Ikinci

mertebeden tiirev icin ileri fark denklemi benzer islemler yapilarak asagidaki gibi

yazilabilir.
7 _ fi+2 - 2fi+1 +fi 2
N @.7)
4.2 Geri Farklar ve V Operatorii
Geriye fark operatorii V’dir. f fonksiyonunun x, noktasindaki geri farki;
VI =f, —f, (4.8)
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seklinde gosterilir. Tkinci mertebeden geri farklar1 benzer sekilde tanimlayabiliriz.
Vi, =f_, —2f_ +f, (4.9)

Geri farklar ile fonksiyonun tiirevleri arasindaki iligkiyi yazmak icin Taylor seri

acilimini goz Oniine alirsak;

2
£ =f —%fi’—%fi” . (4.10)

elde edilir. (4.10)’u diizenlersek;

2
f—f,_ =Efi’+h—fi” +... (4.11)
no2l

seklinde yazilir. h*’li ve sonraki terimler ihmal edilerek;

£ = %+ 0(h) (4.12)

1

Birinci mertebeden tiirev icin geri farklar denklemi (4.12)deki gibi elde edilir. Ikinci

mertebeden tiirev benzer sekilde asagidaki gibi elde edilir.

7 = f -2t +f.,

; e +0(h*) (4.13)
4.3 Merkezi Farklar ve 8 Operatorii
Bir f(x) fonksiyonunda, bagimsiz degiskenin yarim adim ilerisindeki deger ile yarim

adim gerisindeki deger arasindaki fark merkezi fark olarak bilinir ve d ile sembolize

edilir.
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= (4.14)

&f, = a(f —f ] (4.15)

seklinde yazilabilir. Denklem (4.4) ve denklem (4.11)’deki Taylor seri agilimlar1 goz

Oniine alinarak taraf tarafa ¢cikarma islemi yapilirsa;

f —f_, =2hf +%h3fi”' +... (4.16)

elde edilir. Boylece,

, £, —f
f, =114+ 0(h 4.17
i h () (4.17)

Birinci dereceden tiirev icin merkezi fark yaklasimi elde edilmis olur. Merkezi fark

denklemi ikinci mertebeden tiirev i¢in asagidaki gibi yazilir.

f. =

7 fi+1 - 2fi + fi—l
e

+0(h*) (4.18)

Bu denklemlerdeki O(h)’lar hatanin mertebesini ifade etmektedir. Denklem (4.6), (4.12)
ve (4.17) karsilastirlldiginda, O(h) kiiciildiikce yapilacak hatanin, denklem (4.17)’de
diger iki denkleme nazaran daha hizl kii¢tildiigii goriiliir.

4.4 Momentum ve Enerji Denklemlerinin Sonlu Farklarla Tamimlanmasi

Bu tez asamasinda niimerik ¢oziimlerin elde edilmesinde hata oranin az olmasindan

dolay1 merkezi fark denklemleri kullanilmistir. 100 diigtim i¢in, h degeri 0.01 olarak
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almarak coziimler elde edilecektir. Denklem (3.11) i¢cin merkezi farklart uygulayalim.

Oncelikle denklemdeki tiirevlerin merkezi fark doniisiimlerini yazarsak;

dv f,, —f
= = i+l i—1 41
[5)-(5) w9

2 —
(jrj J:(fm 2 +fi_1j (420)

ifadeleri ede edilir. Denklem (4.19) ve (4.20)’yi denklem (3.11)’de yerlerine yazarsak;

£, —f " K !
(#j {((m+1)?(fi+1 —2f +1) +E(fi+1 _fi—l)j

f'+ _fi— ’ I‘1 1
+A(—1 12h lj ((m+3)ﬁ(fi+1_2fi+f1—1)+g(fi+1_fi—1)j:lzcri

(4.21)

elde edilir. Denklem (3.13)’te verilen sinir sartlarini gbz Oniine alarak (4.17) ve (4.18)’te

uygularsak;
f=f, . f0=0 , f,=f, — (4.22)

ifadeleri elde edilir. Denklem (4.22)’deki ifadeleri denklem (4.21)’de yerine

yerlestirerek ilk ve son diigiimlere ait denklemleri yazabiliriz.

m

h’a h’a
fz—fl'i‘i 1 f f hza 001 f2_f1+7
_ < + —f, - +
2h (m+D| £t == 15 2h
. 2 (4.23)
fz—fl+hza 22 0.01 fz—f1+h;1
A ——2 | | (m+3)| £, —f,— —+ —0.01C
2h 2 | h 2h
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Denklem (4.23)’de denklem (4.21)’in ilk diigiim icin merkezi fark denklemi verilmistir.

Son diigiim i¢in merkezi fark denklemi ise asagidaki gibi olur.

£ ) _ 0.99 (fy
(E) K(m+l)( 2f99+f98)—h2 (2}1)]

fy ) _ 099 (1t ))|_
+A(2hj ((m+3)( 26y +F05) . +(2hm_0.99c

(4.24)

Denklem (3.12) icin merkezi farklar1 uygulamak icin denklemdeki tiirevleri merkezi

farklara uygularsak;

(d_(’j _ (Mj (4.25)
dr 2h

d’e g.1—2g,+g.lj
_| &« i T8 4.26
( dr? j ( h? ( )
elde edilir. Denklem (4.25) ve (4.26)’y1 denklem (3.12)’de yerlerine yazarsak;
m+2 2
gin— 2g1 +gi + giv —8in +T fi+1 _fi—l 1+ A fi+1 — fi—l =0 (427)
h* 2hr, 2h 2h

Denklem (3.12) merkezi farklara uygun olarak elde edilmis olur. Denklem (3.13)’te

verilen sinir sartlar1 goz Oniine alinarak (4.17) ve (4.18)’te uygularsak;

(4.28)

h’b
g=84 > €100 =0 g0:g17

ifadeleri elde edilir. Denklem (4.28)’deki ifadeleri kullanarak denklem (4.27) i¢in ilk ve

son diigiimlere ait denklemleri elde edebiliriz.
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h’b h’b h’a )"
&8~ | [&m&t L-fi+= L-fi+=r

. 4 4T ———2 | [14A ——2 | |=0

h 2h0.01 2h 2h

(4.29)

Denklem (4.29), denklem (4.27)’in ilk diiglim i¢in yazimini ifade etmektedir. (4.27)’1

son diiglim i¢in yazimi asagida verilmistir.

m+2 2
(_2g99 + 8 j+( —8os j_,_r(_f%j 1+A(ﬁj =0 (4.30)
h? 2h0.99 2h 2h

Boylelikle, genellestirilmis {igiincii derece akiskanlara ait momentum ve enerji

denklemlerinin niimerik ¢oziimleri sonlu farklar yontemi kullanilarak elde edilmistir.
Sonuglardaki hata oranin diisiik olmasi acisindan merkezi fark yaklagimi kullanilmagtir.
Momentum ve enerji denklemleri sinir sartlar1 dikkate alinarak merkezi fark
denklemlerine uygulanmistir. Elde edilen (4.21), (4.23) ve (4.24) ile denklem (4.27),
(4.29) ve (4.30) Matlab Paket programina aktarilmistir. Boylece niimerik coziimler,
sonlu farklar yaklasimiyla yazilarak Matlab programi yardimiyla ¢oziilmiistiir. Bundan
sonraki boliimde {iciincli kisimda elde edilen analitik ¢oziimler grafiksel olarak ifade
edilecektir. Denklemlerdeki katsayilarin hiz ve sicaklik profilleri iizerindeki etkileri

gozlemlenecektir. Ayrica, analitik ve nlimerik ¢coziimlerin karsilastirilmasi yapilacaktir.
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5. ANALITIiK ve NUMERIK COZUMLER

Bu bolimde iigiincii kisimda elde edilen hiz ve sicakliga ait analitik ¢oziimlerin
grafiksel olarak ifadesi yer alacaktir. Analitik ¢oziimlerin grafikleri Matlab paket
programi kullanilarak elde edilmistir. Grafikler denklemdeki sabitlerin farkli degerleri
icin cizilmistir. Farkli degerlerde hiz ve sicaklik degisimi incelenmistir. Bunun yani sira
yine Matlab paket programi yardimiyla ve Sonlu Farklar yonteminden yaralanilarak hiz
ve sicaklia ait niimerik ¢oziimler elde edilmistir. Analitik ve niimerik ¢oziimden elde

edilen sonuclarin karsilastirilmasi yapilacaktir.

0.8+ A

0.6 A=0 |
A=0.3

0.4 A=0.5

0.2+ A

0.2} -

-0.6

_1 1 l |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Sekil 5.1 Cesitli A degerleri i¢in hiz profilleri (m=0.2, I'=1, C=-1)
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0.8F A=0 .

0.6 A=0.5 |
0.4} .

0.2 -

0.41 1

-0.8

_1 1 l l l l 1 l 1 l
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0
Sekil 5.2 Cesitli A degerleri icin sicaklik profilleri (m=0.2, I'=1, C=-1)

Sekil .51 ve Sekil 5.2°de degisik non-Newtonyen katsayilari (A) icin hiz ve sicaklik
profillerinin degisimi gosterilmistir. A=0 olmas: akiskanin Newtonyen akiskan
oldugunu belirtmektedir. Sekil 5.1’de non-Newtonyen katsayisi arttirildiginda hizin
azaldig goriilmektedir. Sekil 5.2’de de non-Newtonyen katsayisi arttiginda sicakligin

azaldig gozlemlenmektedir.
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0.8+ 8

m=0.2
m=0.1

045 m=0 |

0.2+ 8

1 l |
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Sekil 5.3 Cesitli pozitif m degerleri i¢in hiz profilleri (A=0.01, I'=1, C=-1 )

1 l l l l 1 l 1 l
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

Sekil 5.4 Cesitli pozitif m degerleri i¢in sicaklik profilleri (A=0.01, I'=1, C=-1)
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Sekil 5.3 ve 5.4’te farklt m degerlerinin pozitif olmasinin hiz ve sicaklik {izerindeki
etkisi verilmistir. Buna gore; Sekil 5.3’te pozitif m degerleri arttikga hizin da arttigi
goriilmektedir. Aynmi sekilde, Sekil 5.4’te de sicakligin pozitif m degerleriyle dogru

orantil1 bir bicimde degisimi sz konusudur.

0.8+ i

0.4+ .

-0.2+ R

0.4+ .

-0.6 - R

-0.8+ R

|
0 0.05 0.1 0.15 0.2 0.25
v

Sekil 5.5 Cesitli negatif m degerleri icin hiz profilleri ( A=0.01, I'=1, C=-1)
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0.8 m=0

0.6 ‘ m=-0.2

0.4

0.2 B

0.41 .

-0.6

-0.8 B

_1 | l l l l l 1
0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

Sekil 5.6 Cesitli negatif m degerleri icin sicaklik profilleri ( A=0.01, I'=1, C=-1)

Sekil 5.5 ve Sekil 5.6’da degisik m degerlerinin negatif olmasinin hiz ve sicaklik
degisimine etkisi goriilmektedir. Sekil 5.5’e gore negatif m degerleri azaldik¢a hiz da
azalmaktadir. Sekil 5.6’y1 inceledigimizde de m’in negatif degerlerinin azalmasi

sicaklig azalttigr goriilmektedir.
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C=-0.6
0.6+ C=-0.55 i

0.4r ’ -

0.2+ R

0.4} .

-0.8 :

l l l l l 1 l 1
0 0.02 004 006 008 01 012 0.14 0.16 0.18 0.2
\

Sekil 5.7 Cesitli C degerleri i¢in hiz profilleri ( A=0.01, I'=1, m=0.2 )

0.6

T
@)
|
©
(6}
1

0.4 -

0.2+ i

0.4 .

-0.8+ -

-3
0 x 10
Sekil 5.8 Cesitli C degerleri i¢in sicaklik profilleri (A=0.01, I'=1, m=0.2)
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Sekil 5.7 ve Sekil 5.8’de farkli degerlerdeki C ( Basing farki ) parametresi i¢in hiz ve
sicaklik profillerinin degisimi sirastyla gosterilmistir. Sekil 5.7°de C degerinin mutlak
olarak artmasiyla hizin arttigr goriilmektedir. Sekil 5.8’de C’nin mutlak degerce

artisinin sicakligl da arttirdigl gozlemlenmektedir.

0.8 -

=3
0.4} .
=1

0.2f .

0.41 1

-0.6 a

-0.8

_1 [ l l l l 1 l 1 l
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

dSekil 5.9 Cesitli I degerleri i¢in sicaklik profilleri (A=0.01, C=-1, m=0.2)

Sekil 5.9°da degisik I'" degerlerinin sicakligin degisimine etkisini gostermektedir. Sekil

5.9’u inceledigimizde I" degerinin artmasinin sicaklik degerini arttirdig1 anlagilmaktadir.
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— - Niimerik
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0.004

0.006

0.008
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0.01

0.012

0.014  0.016  0.018
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Sekil 5.11 Analitik ve niimerik sicaklik profilleri (A=0.01, C=-1, m=0.2 , I'=1)
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Sekil 5.10 ve Sekil 5.11 ise bize yaptigimiz analitik ve niimerik ¢oziimlerin
karsilastirma grafiklerini vermektedir. Niimerik ¢oziimlerin elde edilmesinde Sonlu
Farklar yontemi ve Matlab paket programindan yararlanilmistir. Katsayr ve
parametrelerin belirtilen degerleri i¢in niimerik ve analitik ¢oziimler grafiksel olarak
belirtilmigtir. Kesik cizgilerle verilen grafik niimerik sonuglari, diiz cizgilerle verilen
grafik ise analitik sonuclar ifade etmektedir. Sekil 5.10 analitik ve niimerik ¢éziimlerin
hiz agisindan karsilastirilmasi verilmistir. Sekil 5.11°de ise sicaklik analitik ve niimerik
coziimler bakimindan kiyaslanmistir. Buna gore; her iki sekilde de sonuglarin birbirine
oldukca yakin oldugu goriilmektedir. Bu da tezde yapmis oldugumuz analitik

coziimlerin dogru oldugu anlamina gelmektedir.
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5. SONUCLAR

Yapilan caligmada boru igerisindeki genellestirilmis ligiincii dereceden non- Newtonyen
akiskan akisinda hareket ve enerji degisimi incelenmistir. ik olarak silindirik
koordinatlarda genellestirilmis {iclincii derece akigkanlara ait momentum ve enerji
denklemleri elde edilmistir. Denklemlerin c¢ikarilisinda Rivlin-Ericksen tensorleri
kullanilmistir. Bu denklem icin boru igerisindeki akis1 ifade eden smur sartlar
belirlenerek c¢oziimlerin daha genel olabilmesi i¢in denklemler boyutsuz hale
getirilmistir. Sonucta, silindirik koordinatlar icin tek boyutlu akisi ifade eden adi
diferansiyel denklem sistemleri elde edilmistir. Bu denklem sistemlerinin yaklasik
analitik ¢oziimleri yapilmistir. Denklemlerin analitik ¢6ziimii i¢in bir perturbasyon
metodu olan yaya acilimi kullanilmistir. Yaya acgilimi yapilarak hiz ve sicaklik
profillerine ait denklemler Newtonyen ve non-Newtonyen kisimlara ayrilmistir.
Oncelikle Newtonyen kismun, daha sonra da non-Newtonyen kismin c¢oziimleri
yapilmistir. Coziimlerde viskozite degeri sabit olarak kabul edilmistir. Analitik
coziimlerin yani sira niimerik c¢oziimler de yapilmistir. Niimerik ¢oziimlerin elde
edilmesinde sonlu farklar metodu kullanilmistir. Hata oraninin az olmasi sebebiyle
sonlu fark yaklagimlarindan merkezi farklardan yararlanilmistir. Niimerik ¢oziimler, 100
diigiim icin h degeri 0.01 alinarak elde edilmistir. Elde edilen denklemler Matlab paket
programi yardimiyla ¢oziilmiistiir. Son olarak elde edilen analitik coziimler grafiksel
olarak agiklanmistir. Denklemlerdeki katsayilarin degisiminin hiz ve sicaklik iizerindeki
etkisi aragtinlmistir. Ayrica, analitik ve niimerik ¢Oziimler grafiksel olarak

karsilastirilmistir.

Yapilan ¢calismalar neticesinde non-Newtonyen parametre (A) arttifinda hiz ve sicaklik
degerinin azaldig1 gézlemlenmistir. m sabitinin pozitif degerinin arttirilmasini ile hiz ve
sicakligin da dogru orantili olarak arttigi goriilmektedir. m sabitinin negatif olmasi
durumu incelenmistir. Negatif m degerlerinin azalmasi hiz ve sicaklik degerlerini
disiirmektedir. C (basing farki) degerindeki artisin hizi ve sicakligi arttirdig
goriilmektedir. I' (Brinkman sayisi)’nin artmast hizin degerini degistirmemektedir.

Sicaklik ise I' arttig1 miiddetge artmaktadir.
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EK-1 Niimerik Coziimlerin Matlab Programina Aktarilmasi i¢cin Olusturulan M-File
Dosyast

clear all

L=0.01;
m=0.2;
a=0.0001;
b=-0.0001;
C=1;

A=1;

£f0=[0:1/98:1 0:1/98:171;

options=optimset ('Display', "iter', 'TolFun',le-
3, '"MaxFunEvals',1le8, '"MaxIter',40, 'TolX"', le-
3, 'LargeScale', 'on', '"PrecondBandWidth', inf) ;
[f,fval,exitflag, output,JAC] = fsolve(@emine, f0,options,L,m,a,b,A,C);

for i=1:100
T1(1l,i)=£(1,1);
end
1(1,100)=0;
T11(1,1)=0;
for 1i=1:99

T11(1,i+1)=T1(1,100-1);
end

for i=100:198
T2(1,1i-99)=£(1,1);
end

2(1,100)=0;

T22(1,1)=0;

for i=1:99
T22(1,1+1)=T2(1,100-1);

end
r=0:0.01:1;
r1=-1:0.01:0;
V=(((m+1)*(C)"(1/(m+1))*((abs(r.”((m+2)/(m+1))) )~

1)))/((m+2) 27 (1/ (m+1)))-L*(C)"(3/(m+1))*((abs(r.” ((m+4)/ (m+l))))~
1)/ ((m+4)*8~(1/(m+1)));
Q=(A*( ((m+2)/(m+l)))*(l—
abs(r.”4))* ((m+1)/(3*m+4)) "2/ (2" ((m+2) / (m+1))) -

(L*A* (C* ((m+4) / (m+1))) * (1-

abs (r.” ((3*m+6)/ (m+1))))* ((m+1)/(3*m+6 2/ ( m+4)/(m+1)))));
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t1=0:0.01:0.99;

£t2=-0.99:0.01:0;

for i=1:101
M(1,1i)=V(1,102-1);
end

for i=1:101
M1(1,i)=0Q(1,102-1);
end

figure (1)
plot (-T1,t1,'--k',-T11l,t2,'--k")
hold on
plot(-V,r, 'k"',-M,rl, 'k")
hold on

figure (2)

plot (T2,t1,'—-k',T22,t2,"'-—-k")
hold on

plot(Q,r, 'k',M1,rl, 'k")

hold on



