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ANKASTRE MENSETLĐ DĐKDÖRTGEN KESĐTLĐ PLAKLARIN SAYISAL 
YÖNTEMLERLE ANALĐZĐ 

ÖZET 

Günümüzde pek çok alanda plaklar yaygın olarak kullanımaktadır. Makine, inşaat, 
silah teknolojileri, deniz teknolojileri, havacilik, uzay teknolojileri ve reklamcılık 
gibi alanlar bunlardan bazılarıdır.Birçok makinenin tasarımında kullanılan plakalar, 
genellikle gövde elemanı olarak kullanılmaktadır. Bu sebepten dolayı dış kuvvetlerin 
etkisine maruz kalmaktadırlar. Örneğin hava taşıtlarında ve deniz taşıtlarında 
kullanılan plaka elemanları yayılı yük etkisine maruz kalmaktadırlar. Burada ele 
alınacak problem ankastre mesnetli plakaların düzgün yayılı yük etkisi altında küçük 
sehimlerinin incelenmesidir. Bahsi geçen plaka sabit bir kalınlığa ve homojen bir 
yapıya sahiptir. Dört kenarından ankastre mesnetli olan plaka düzgün yayılı yük etksi 
altında incelenmiştir. Yukleme plaka normali dogrultusunda meydana gelmektedir. 
Sadece statik yukleme hali goz onune alinmistir. Isıl gerilemer ve dinamik yukler göz 
önüne alınmamıştır. Plaka malzemesi olarak çelik seçilmiştir. Đlk olarak konunun 
genel teorisi incelenecek, ardından ilgili nümerik hesaplama yöntemleri tanıtılacak 
ve bazı numuneler icin hem bu nümerik yöntemlerle, hemde sonlu elemanlar 
yöntemiyle analiz edilecektir. Kullanılacak sonlu eleman programı Ansys 11 paket 
programıdır. Bu numunelerin düzgün yayılı yük etkisi altında mekanik davranışlarını 
veren grafikler oluşturulmuştur. Bu numuneler farkli kenar oranlarinda ve farkli 
kalinliklarda secilmistir. Ayrica plakanin kullanim alanlarida bu calismada yer 
almaktadir. Sonuç bölümünde ise her iki yöntemle elde edilmiş sonuçlar 
karşılaştırılacak ve sonlu elemanlar yönteminin ankastre mesnetli dikdortgen kesitli 
plaklardaki güvenilirliği araştırılacaktır 
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ANALYSIS OF CLAMPED RECTANGULAR PLATE WITH NUMERICAL 
METHODS 

SUMMARY 

Plate conponents use in many areas. For instance, plates use in machine industry, 
building industry, weapon technologies, marine techonologies, aircharft industry and 
advertising industry. Plate structure have been used in many manchine design so far. 
In generaly , this structure are used as a body component. In this case, the machine 
part are exposed to external forces. For instance, plate strucures are exposed to 
extarnel or internal pressure in aircrafts and ships. This study concern with clamped 
rectangular subjected to uniformly loaded for small displacement. The plate has 
uniform thickness and homogeneous structure. Four edges of plate are fixed and 
subejected to uniform loading. In this case the structure is examined in displacement. 
Loads are through to normal of plate. The calculation is only done for static loading. 
Thermal stress and dynamic force are neglected for the problem.Steel is selected as a 
plate material in this problem.When the plates are subjected to uniform loading, The 
graphs are created to observe mechanical behaviors. These samples are identify in 
different thickness and ratios of edge. In the study firstly, general plate theory are 
given and calculation method for this situation. Also usage areas of plate takes place 
in the study.  Secondly, some sample plate are solved by numerical method and finite 
element method.In order to solve this plates, Ansys11/ CAE software is used. At the 
end of the study it has been comparing results of analitical calculation with the 
results that were obtained by finite element method. 
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1.  GĐRĐŞ 

Geçmişten günümüze yapılan birçok mekanik tasarımda levha paneller gerek gövde 

gerekse taşıyıcı eleman gibi çeşitli amaçlar doğrultusunda kullanılmış ve kullanımına 

devam edilmektedir. Yapılan bu çalışmada plaka yada kabuk olarak tanımlanmış 

konstrüksiyon elemanın özel bir hali olan dikdörtgen kesitli plakanın tüm 

kenarlarının ankastre mesnetli durumda, düzgün yayılı yük altında mekanik davranışı 

incelenecektir. Plaka tanımı yapılacak ve buradan hareketle genel plaka teorisi 

tanıtılacaktır. Dikdörtgen kesitli plakanın hangi sınır koşullarında nasıl davrandığı 

verilecek ve basit mesnetli ve ankastre mesnetli durumlar için plakanın diferansiyel 

denklemi çözülecektir. Düzgün yayılı yük altındaki ankastre mesnetli dikdörtgen 

plakanın sehimi bu bahsedilen sınır koşullarında belli numuneler için çift seri Fourier 

açılımı, tek seri Forurier açılımından türetilen iki değişik yaklaşık çözüm methodu 

kullanılarak hesaplanacaktır. Bu çözümlere ek olarak bahsedilen numuneler sonlu 

elemanlar prensibiyle çalışan bir analiz programı (Ansys) sayesinde sehimi 

hesaplanacaktır. Son olarak elde edilen veriler yapılan deney sonuçlarıyla 

karşılaştırılacaktır. 

Plaka iki sınır yüzey eğrisi ve bunların arasındaki uzaklık ile ifade edilen bir 

konstrüksiyon elemanıdır. Bahsedilen uzaklık plakanın kalınlığını oluşturmaktadır. 

Bu kalınlık plakanın diğer geometrik ölçülerine nazaran oldukça küçük boyutta 

olmalıdır. Đki sınır yüzey eğrisine eş uzaklıktaki yüzeye orta yüzey denilmektedir. 

Birçok yapının tasarımında örneğin; basınçlı kaplar uçaklar gemi güverte ve 

bölmeleri, denizaltı gövde ve bölmeleri çatılar roketler ve köprü uygulamaları gibi 

değişik alanlarda bahsi geçen plakalardan yararlanılmaktadır. Bu konstrüksiyon 

bileşeni kimi tasarımlarda sadece bir gövde elemanı kimi tasarımlarda ise taşıyıcı 

eleman olarak kullanılmaktadır. Bunların dışında reklamcılık sektöründe dahi 

plakalardan faydalanılmaktadır. Bahsi geçen sektörde yapının her hangi bir mekanik 

işlevi olmamasına karşın diğer bileşenler nedeniyle ve doğal etkenler sebebiyle 

örneğin rüzgar yükleri gibi zorlayıcı etkenlere maruz kalmaktadır. Bir diğer 
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uygulama alanı olan inşaat sektöründe taşıyıcı eleman olmaktan daha ziyade 

yardımcı eleman olarak çeşitli yüklerin etkisi altında kalmaktadır. 

Havacılık sanayi gibi kritik uygulama alanlarında konstrüksiyonun parçalarından 

beklenen ağırlık dayanım oranın yüksekliği sebebiyle plaka ve kabuk elemanların 

önemi büyüktür. Özetle iç ve dış ortamı bir birinden ayıran plakaların oluşturduğu 

gövde tasarımları basınç farkından doğan zorlama etkisi altında gerek havacılık, 

gerek denizcilik gerekse uzay endüstrisinde yayılı yük etkisi altında hayati görevleri 

yerine getirmektedirler.  

Bu sebeplerden dolayıdır ki bahsi geçen problemin çözümünün yeterli kesinlikte ve 

doğrulukta olması hayati önem taşır. 
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2.  TEORĐ 

2.1 Plaka Tanımı 

Bir yapının plaka yada kabuk olarak tanımlanması için aşağıdaki kabullere uyması 

gerekir [1]; 

1) Plakanın kalınlığı olan h değerinin en azından orta yüzeyin eğrilik yarıçapı 

olan R değerinden az olması gerekir.                                                                                    

2) Sehimin değeri yapının diğer geometrik ölçülerinin yanında ihmal 

edilebilecek düzeyde küçük olması gerekir. 

3) Orta yüzeye dik etkiyen gerilme bileşenin diğer gerilme bileşenlerine nazaran 

küçük ve gerilme-genleme ilişkisinde ihmal edilebilir düzeyde olması 

gerekir. 

4) Orta yüzeyin normali plakanın deforme olmuş hali için bile yüzeye dik 

kalmalıdır. Bu enine oluşan kayma gerilmelerinin ihmal edildiğini 

göstermektedir. 

Novozhilov’ a göre bir yapının ince plaka olarak adlandırılabilmesi için ; en fazla 

kalınlık eğrilik yarıçapının yirmide biri olması gerekir. Aksi taktirde yapı kalın 

plakadır. 

 Naghdi tarafından türetilen enine kayma gerilmelerini içeren iztoropik ince kabuk 

teorisinde ise orta yüzeyin normalinin deformasyondan sonra yüzeye dik kalması 

gerekmiyordu. 

Vlasov’ a göre ise eğer orta yüzey tüm noktaların iz düşümünü üstünde barındıracak 

kadar düz ise yapı yüzeysel bir kabuktur ve bunun şartı kısa kenarın plaka kalınlığına 

oranı ile ifade edilir [1]. 
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2.2 Plaka Genel Teorisi 

2.2.1 Deformasyon Sehim Đlişkisi 

Bu ilişkiyi geometrik yapıya bakarak kurabiliriz. Aşağı doğru olan çökme hali pozitif 

alınacaktır.  Şekil 2.1 ve Şekil 2.2 bu ilişkiyi göstermektedir [2]. 

 

Şekil 2.1 : Sonsuz küçük plaka elemanı [2]. 

 

Şekil 2.2 : Sonsuz küçük elemanın deformasyonu [2]. 

Orta yüzeyden z kadar uzaktaki bir noktanın yer değişimi aşağıdaki şekilde bulunur  [2]; 

x

x x

dxdx

r r z

+ ε
=

+
                                                                                                            (2.1) 

dx: X eksenindeki sonsu küçük uzunluk 

xε : X eksenindeki yer değişimi 

xr : Orta yüzeyin X eksenine göre eğrilik yarı çapı 

z: Noktanın orta yüzeye olan uzaklığı 
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Denklem (2.1) sadeleştirildiği taktirde aşağıdaki eşitlik elde edilir. 

x

x

z

r
ε =                                                                                                                      (2.2) 

X eksenindeki eğrilik yarı çapını 
1

x

x

x
r

=   şeklinde gösterirsek denklem (2.2) 

aşağıdaki formda olur. 

x xx zε = ⋅                                                                                                                  (2.3) 

Benzer şekilde y eksenindeki yer değişimi; 

y

y

z

r
ε =                                                                                                                      (2.4) 

y yx zε = ⋅                                                                                                                  (2.5) 

xx  eğrilik yarı çapı değeri sehim w ve eğim 
dw

dx
 ile alakalıdır.  

3
2 22

2
1x

d w dw
x

dx dx

  
= − ⋅ +  

   
 

Buradaki terimin başındaki negatiflik orijinden uzaklaştıkça eğimin azaldığını 

göstermektedir. 

Küçük deplasmanlar için eğimin karesi ihmal edilebilir ve eşitlik aşağıdaki şeklini 

alır. 

 
2

2x

d w
x

dx
= −                                                                                                              (2.6) 

 
2

2y

d w
x

dy
= −                                                                                                              (2.7) 

Denklem (2.6) ve (2.7) sırasıyla, denklem (2.3) ve (2.5)’ te yerlerine koyulursa; 

 
2

2x

d w
x z

dx
= − ⋅                                                                                                           (2.8) 

 
2

2y

d w
x z

dy
= − ⋅                                                                                                           (2.9) 
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Kayma şekil değiştirmesi ve deformasyon arasındaki ilişki aşağıdaki Şekil 2.3 

vasıtasıyla  görülebilir [2]. 

 

Şekil 2.3 : Sonsuz küçük elemanda açısal deformasyon [2]. 

 

 

Şekil 2.4 : Sonsuz küçük elemanda kayma deformasyonu [2]. 

Sonsuz küçük dx ve sonsuz küçük bir dy enine sahip elemanda kayma deformasyonu 

şekil 2.4’te görülebilir. 

Çarpılma açıları olan α  ve β aşağıdaki aşağıdaki eşitliklerden hesaplanabilir; 
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sin

1

u
dy

y

dy
y

∂
⋅

∂
α ≈ α ≈

 ∂ν
+ ⋅ ∂ 

 çok küçük kayma açıları için 
u

y

∂
α =

∂
’ dir. 

  Benzer şekilde β  açısı; 

sin

1

dx
x

u
dx

x

∂υ
⋅

∂β ≈ β ≈
∂ 

+ ⋅ 
∂ 

  çok küçük kayma açıları için 
x

∂υ
β =

∂
’dir. 

Böylece kayma şekil değiştirmesi; 

xy

u v

y x

∂ ∂
γ = α + β = +

∂ ∂
                                                                                            (2.10) 

u: x eksenindeki yer değişimi 

v: y eksenindeki yer değişimi 

xyγ : kayma şekil değiştirmesi 

,
u v

y x

∂ ∂
 
∂ ∂

: eğilmeden kaynaklanan kayme şekil değiştirmesi 

Orta yüzeyin dönme miktarı:
w

x

∂

∂
 

Bu dönmeden dolayı herhangi bir noktanın orta yüzeye uzaklığı; 

. tan .u z z= θ ≈ θ    .
w

u z
x

∂
= −

∂
 ve .

w
v z

y

∂
= −

∂
   

Denklem (2.11) vasıtasıyla; 

2

.xy

w
z

x y

∂
γ = −2

∂ ∂
                                                                                                     (2.11) 
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Denklem (2.8), (2.9) ve (2.11) matris şeklinde yazılırsa; 

2

2

2

2

2

1 0 0

. 0 1 0 .

0 0 2

x

y

xy

w

x

w
z

y

w

x y

 ∂
 

∂  ε  
   ∂ 

ε = −      ∂   
γ      ∂

  ∂ ∂ 

                                                                            (2.12)     

2.2.2 Gerilme Birim Şekil Değiştirme Đlişkisi 

Gerilme ile birim şekil değiştirme arasındaki bağıntı termal yükleme olmaksızın üç 

boyutlu homojen uzayda izotropik eleman için Şekil 2.5 yardımıyla yazılabilir [2]. 

 

Şekil 2.5 : Sonsuz küçük hacimde oluşan gerilmeler [2]. 

( )
( )

( )

1 0 0 0

0 0 0

0 0 01
. .

0 0 2. 1 0 0

0 0 0 2. 1 0

0 0 0 0 2. 1

x x

y y

z z

xy xy

yzyz

zxzx

E

ε  −µ −µ σ   
     ε −µ 1 −µ σ     
   ε  −µ −µ 1 σ
  =    

γ 0 + µ τ     
     0 + µ τγ     
  0 + µ τ  γ    

                     (2.13) 

ε : eksenel biri şekil değiştirme 

σ: eksenel gerilme 

τ : kayma gerilmesi 

E: elastisite modülü 



 
9 

µ : poisson oranı 

  
( )2. 1

E

+ µ
 kayma modülüdür ve G harfi ile gösterilir. 

zσ  değeri diğer gerilme bileşenlerine nazaran oldukça küçük olduğu için ihmal edilir. 

Bunun yanında yzτ  ve zxτ  gerilme bileşenlerine iki boyutlu plaka 

formülüzasyonunda ihtiyaç yoktur. 

  Bu durumda denklem aşağıdaki halini alır; 

( )
2

0

. 1 0 .
1

0 0
2

x x

y y

xy xy

E

 
    σ 1 µ ε
    

σ = − µ ε    − µ     τ γ1− µ    
  

                                                               (2.14) 

Denklem (2.13), (2.15) ‘ te yerine yazılırsa; 

( )

2

2

2

2 2

2

0
.

. 1 0 .
1

0 0

x

y

xy

w

x

E z w

y

w

x y

 ∂
 

∂  σ 1 µ 
 ∂   

σ = − µ     − µ ∂    τ 1− µ    ∂
 
∂ ∂  

                                                            (2.15) 

2.2.3 Moment Gerilme Đlişkisi 

Moment değerlerinin bulunması istenirse denklem (2.15)’ ten yararlanılabilir. Çünkü 

plakanın diferansiyel denkleminin çözümünde kenarlarda oluşan momentin sınır 

koşullarıyla belirtilmesi gerekir.  Bahsi geçen ilişki aşağıdaki Şekil 2.6 yardımıyla 

kurulabilir [2]. 
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Şekil 2.6 : Tarafsız eksen etrafında oluşan momentler [2]. 

Tarafsız eksen etrafında oluşan içsel kuvvetlerin toplamı momentleri meydana 

getiren dış kuvvetlerin toplamıyla eşittir. 

2

2

. .

t
x x

y y
t

xy xy

M

M z dz

M −

   σ
   

= σ   
   − τ   

∫  

( )

2

2

2

2

2

0

. 1 0 .

0 0

x

y

xy

w

x
M

w
M D

y
M

w

x y

 ∂
 

∂   1 µ 
 ∂   

= − µ      ∂    − 1− µ    ∂
 
∂ ∂  

                                                          (2.16) 

( )

3

2

.

12. 1

E t
D =

− µ
 veya .D E I=                                                                          (2.17) 



 
11

2.2.4 Plakanın Diferansiyel Denklemi 

Bir kirişin eğilme fonksiyonu aşağıdaki gibidir[2]; 

( )2

2 .

M xd w

E Id x
= −                                                                                                  (2.18)  

Momente göre verilmiş bu denklemi türetirsek, yapılan yükleme cinsinden eğriliği 

elde edebiliriz. 

( )4

4 .

p xd w

E Id x
=                                                                                                       (2.19) 

Plakanın eğilime denklemide benzer şekilde yazılabilir. Fakat bu denklem 

kirşinkinden hem x ve hem de y ekseninde eğilme bileşenleri içereceğinden daha 

karmaşıktır. 

Plakanın eğimi için ilk diferansiyel denklem Lagrange tarafından 1811’de 

yazılmıştır. 

Şekil 2.7 yardımıyla, bir dx dy sonsuz küçük elemanı için p yükü etkisi altında 

dikdörtgen bir plaka görünmektedir.  

 

Şekil 2.7 : P Yükü Etkisi Altında Sonsuz Küçük Elemanın Gösterimi [2]. 

Daha önce bahsi geçen ve p yükü etkisi altında şekilde verilmiş plakada oluşan 

kuvvetler ve bunların gösterimi Şekil 2.8 yardımıyla gösterilmiştir. 
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Şekil 2.8 : Sonsuz küçük eleman üstünde oluşan kuvvetler ve momentler [2]. 

Bu şekilden hareketle [2]; 

1.) z yönündeki kuvvetlerin dengesi; 

( ), . . . . . . . . 0
yx

x x y y

QQ
p x y dx dy Q dy Q dx dy Q dx Q dy dx

x y

∂ ∂ 
− + + − + + =  ∂ ∂   

 

Gerekli sadeleştirmeler sonucu denklem; 

( ), 0
yx

QQ
p x y

x y

∂∂
+ + =

∂ ∂
                                                                                      (2.20) 

2.) x ekseni etrafında oluşan momentlerin dengesi; 

. ( . ). . . .

. . . . . . . . . . . 0
2 2 2

y xy

y y xy xy

y x
y x x

M M
M dx M dy dx M dy M dx dy

y x

Q Qdy dy dy
Q dy dx dy Q dy Q dx dy p dx dy

y x

∂ ∂ 
− + − + + 

∂ ∂ 

∂  ∂ 
+ + − + + + =   ∂ ∂  

 

Gerekli sadeleştirmeler sonucunda denklem[2]; 

1 1
. . . 0

2 2
xy y y x

y

M M Q Q
Q p dy

x y y x

∂ ∂ ∂ ∂
+ − + + + = 

∂ ∂ ∂ ∂ 
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Burada parantez içindeki terim sonsuz küçüklükteki bir dy terimi ile çarpıldığı için 

ihmal edilebilir ve denklemin her iki yanı dy ile bölünürse aşağıdaki denklem elde 

edilir. 

2 2

2

y y xyQ M M

y x yy

∂ ∂ ∂
= −

∂ ∂ ∂∂
                                                                                          (2.21) 

Benzer şekilde y ekseni etrafında oluşan moment dengesi aşağıdaki gibi bulunur. 

22

2

yxx x
MQ M

x x yx

∂∂ ∂
= −

∂ ∂ ∂∂
                                                                                          (2.22)   

   Denklem (2.21) ve (2.22), denklem (2.20)’de yerine yazıldığında aşağıdaki 

denklemi elde ederiz. 

2 22

2 2
( , ) 2. 0

xy yx
M MM

p x y
x yx y

∂ ∂∂
+ − + =

∂ ∂∂ ∂
                                                               (2.23) 

Bu plaka kayma gerilmeleri xy yxτ = −τ  eşit olduğundan, momentler xy yxM M=  eşit 

kabul edilmiştir. 

Denklem (2.17), denklem (2.24)’te yerine koyulduğu zaman; 

4 4 4

4 2 2 4

( , )
2.

w w w p x y

Dx x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
                                                                         (2.24) 

Diğer bir gösterimle;  

2 2 4 ( , )p x y
w w

D
∇ ∇ = ∇ =  veya 

2 2
2

2 2

w w
w

x y

∂ ∂
∇ = +

∂ ∂
 

4 4 4
4

4 2 2 4
2.

w w w
w

x x y y

∂ ∂ ∂
∇ = + +

∂ ∂ ∂ ∂
                                                                              (2.25) 

Böylece plakanın diferansiyel denklemini elde etmiş oluruz. Bu denklemin çözümü 

sehim değerini verir. 

Momentler sehim denkleminin, denklem (2.17)’de yerine konulmasıyla bulunabilir. 

Kayma gerilmeleri ise denklem (2.22) ve (2.23)’ün  (2.17)’de yerine yazılmasıyla 

aşağıdaki gibi elde edilir. 
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3 3

3 2
.x

w w
Q D

x x y

 ∂ ∂
= − + 

∂ ∂ ∂ 
                                                                                      (2.26) 

 
3 3

2 3
.y

w w
Q D

x y y

 ∂ ∂
= − + 

∂ ∂ ∂ 
                                                                                     (2.27) 

2.2.5 Sınır Koşulları 

Genellikle karşılaşılan sınır koşulları kirişlerde karşılaşılan sınır koşullarıyla aynıdır. 

Bahsi geçen sınır koşulları Şekil 2.9 yardımıyla görülebilmektedir [2]. 

 

Şekil 2.9 : Plaka üzerinde sınır şartlarının gösterimi [2]. 

Ankastre Mesnetli Kenar Đçin Sınır Koşulları; 

Burada sehim ve eğim değerleri sıfırdır. 

0
0

y
w

=
=                                                                                                           (2.28) 

    0
y b

w

y
=

∂
=

∂
                                                                                                         (2.29) 

Basit Mesnetli Kenar Đçin Sınır Koşulları; 

Burada sehim ve moment değerleri sıfırdır. 

0
0

y
w

=
=                                                                                                           (2.30)   
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(2.30) ve denklem (2.17)’den moment değeri; 

2 2

2 20
0

. . 0y y
y

w w
M D

y x=
=

 ∂ ∂
= − + µ = 

∂ ∂ 
                                                             (2.31) 

2

2

w

x

∂

∂
 terimi eğimin basit mesnetlenmiş kenar üzerindeki değişim oranını 

göstermektedir ancak burada eğim sıfır olduğu için bu terimde sıfırdır. Denklem 

bu bilginin ışığında yeniden düzenlenirse; 

2

20
0

0y y
y

w
M

y=
=

∂
= =

∂
                                                                                      (2.32) 

Serbest Kenar Đçin Sınır Koşulları; 

Burada moment ve kayma gerilme değerleri sıfırdır. 

0x xy xx a x ax a
M M Q

= ==
= = =  

Đlk sınır koşulu ve eşitlik (2.17)’den aşağıdaki denkleme ulaşırız. 

2 2

2 2
. 0

x a

w w

x y
=

 ∂ ∂
+ µ = 

∂ ∂ 
                                                                                         (2.33) 

Diğer iki sınır koşulunu tek bir ifadede birleştirirsek; 

'
xy

x a

M
Q

y
=

∂ 
= − 

∂ 
 

Kayma gerilmesi eşitliğinde 'Q , xQ ’e eklenmesi gerekir. Böylece serbest kenardaki 

kayma gerilmesi 'Q ve eşitlik (2.27) yardımıyla aşağıdaki gibi bulunur. 

0
xy

x x

x a

M
V Q

y
=

∂ 
= − = 

∂ 
  xQ  ve xyM  değerleri denklem (2.27)’den bulunur ve 

denklem (2-17)’de yerine koyulursa; 

( )
3 3

3 3
2 . 0

x a

w w

x x
=

 ∂ ∂
+ − µ = 

∂ ∂ 
                                                                                (2.34) 
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Kısmen Mesnetlenmiş Kenar Đçin Sınır Koşulları;  

Bu durum plaka ya da plaka kiriş bağlantıları arasında oluşur. Bu bağlantı Şekil 

2.10 yardımıyla gösterilmiştir. 

 

Şekil 2.10 : Kiriş plaka kombinasyonunda meydana gelen kuvvetler [2]. 

Plaka Kiriş
V V=  

( )
3 3 4

3 2 4

0 0

. 2 . .
x x

w w w
D E I

x x y y
= =

   ∂ ∂ ∂
+ − µ =   

∂ ∂ ∂ ∂   
                                                      (2.35) 

2.2.6 Fourier Serisi Açılımı 

Periyodik bir fonksiyon olarak Whylie tarafından 1960’da seri olarak ifade 

edilmiştir. Serinin açılımı aşağıdaki gibidir[2]. 

( ) 0 1 2

1 2

0,5. .cos .cos 2 ..... .cos

.sin .sin 2 .... sin

m

m

f x A A x A x A mx

B x B x B mx

= + + + +

+ + + +
 

( ) 0
1 1

0,5. .cos .sinm m
m m

f x A A mx B mx
∞ ∞

= =

= + +∑ ∑                                                      (2.36) 

Yukarıdaki eşitlik ile verilen seri Fourier serisi olarak adlandırılmaktadır. Buradaki 

mA  ve mB  sabitleri denklem (2.36)’de 2π  periyodunda verilen verilen herhangi bir d 

noktasından başlar. 
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0A  sabitinin değeri denklem (2.36)’in x d=  ile 2.x d π= +  arasında integralinin 

alınmasıyla bulunur. 

( )
2. 2. 2.

0 10,5. cos ... cos
d d d d

m

d d d d

f x dx A dx A xdx A mxdx
π π π π+ + + +

= + + +∫ ∫ ∫ ∫  

2. 2.

1 ... sin
d d

m

d d

B sinxdx B mxdx
π π+ +

+ + +∫ ∫  

Denklemin sağ tarafındaki birinci terim 0 .A π  olarak elde edilir ve diğer terimler 

aşağıdaki gibidir. 

2.

cos 0
d

d

mxdx
π+

=∫   0m ≠  

2.

sin 0
d

d

mxdx
π+

=∫  

  Buradan hareketle 0A  terimi; 

( )
2.

0

1 d

d

A f x dx
π

π

+

= ∫                                                                                                (2.37) 

(2.37) denklemindeki mA  terimi,  bu denklemin her iki yanın cos mx  terimiyle 

çarpımından ortaya çıkan yeni denklemden elde edilir. 

( )
2. 2. 2.

0 1

2. 2. 2.

1

1
cos . cos cos .cos ...

2

cos .cos sin .cos ... cos .sin

d d d

d d d

d d d

m m

d d d

f x mxdx A mxdx A x mxdx

A mx mxdx B x mxdx B mx mxdx

π π π

π π π

+ + +

+ + +

= + +

+ + + +

∫ ∫ ∫

∫ ∫ ∫

  (2.38) 

Bu denklemin sağ tarafındaki terimler; 

2.

cos .cos 0
d

d

mx nxdx
π+

=∫  m n≠  koşulu ile, 

2.

cos 2
d

d

mxdx
π

π
+

=∫   m n≠  koşulu ile, 

2.

cos .sin 0
d

d

mx nxdx
π+

=∫  
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  Böylece (2.38) denklemi aşağıdaki şeklini alır; 

( )
2.

cos .
d

m

d

f x mxdx A
π

π
+

=∫  buradan mA  sabiti aşağıdaki gibi bulunur; 

        ( )
2.1

.cos
d

m

d

A f x mxdx
π

π

+

= ∫                                                                           (2.39) 

Benzer şekilde eşitliğin her iki yanı sin mx terimi ile çarpılarak mB  terimide 

bulunabilir. 

2.

sin .sin 0
d

d

mx nxdx
π+

=∫   m n≠  koşulu ile, 

2.
2sin

d

d

mxdx
π

π
+

=∫  buradan hareketle mB  sabiti; 

( )
2.1

sin
d

m

d

B f x mxdx
π

π

+

= ∫                                                                               (2.40) 

Böylece periyodik fonksiyon denklem (2.36) vasıtasıyla Fourier serisine açılabilir. 

Buradaki sabitler (2.37), (2.39) ve (2.40) denklemleri vasıtasıyla bulunabilir[2]. 

Bir örnekleme ile işlemleri daha açık bir şekilde ifade edebiliriz; 

 

Şekil 2.11 : Periyodik dikdörtgen fonksiyonun grafiği [2]. 
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( ) 0f x =   0xπ− < <    ve  ( ) 0f x P=    0 x π< <   buradaki grafikten (şekil 2.11) 

görüldüğü üzere 0 0A P= ’dır. 

mA  sabiti bulmak için denklem (2.39)’ten yararlanarak; 

0

0

1
.cosmA P mxdx

π

π
= ∫   0mA =  

mB  sabitini bulmak için denklem (2.41)’den yararlanarak; 

( ) ( )0 0
0

0 0

1
.cos cos . cos 1

. .m

P P
B P mxdx mx m

m m

ππ

π
π π π

= = − = − −∫    

m bir tek sayı değerini aldığında; 

02.

.
m

P
B

mπ
=  

m bir çift sayı değerini aldığında; 

0mB =  

Böylece bu periyodik fonksiyonun forurier açılımı; 

( ) 0
0

1,3,..

2. 1
0,5. sin

m

P
f x P mx

mπ

∞

=

= + ∑  bu şekilde yazılabilir. 

Aralık Değişimi[2]; 

   Fourier serisi açılımı plaka yada kabuk problemlerinin çözümüne uygulandığında 

deişim aralığını 2π yerine 2p ile göstermek daha uygun olacaktır.  

Buradan hareketler (2.37), (2.39) ve (2.40) denklemleri yeniden yazılırsa; 

( )
2

0

1
d p

d

A f x dx
p

+

= ∫                                                                                               (2.41)      

( )
2

1 . .
.cos

d p

m

d

m x
A f x dx

p p

π
+

= ∫                                                                              (2.42) 

( )
2

1 . .
.sin

d p

m

d

m x
B f x dx

p p

π
+

= ∫                                                                              (2.43) 

burada 2p fonksiyon periyodudur. 
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Böylece Fourier serisi açılımı; 

( ) 0
1 1

1 . . . .
. .cos .sin

2 m m
m m

m x m x
f x A A B

p p

π π∞ ∞

= =

= + +∑ ∑                                               (2.44) 

 

Şekil 2.12 : Periyodik simetrik olmayan sinüsodial fonksiyonun grafiği [2]. 

Simetrik olmayan bu periyodik fonksiyonun değişim aralığı 2p, π  değerine eşittir. 

2
p

π
=  ve 

2
d

π
= − ’dir. 

 Buradan hareketler 0A  sabiti; 

2

0

2

2 4
cosA xdx

π

ππ π
−

= =∫  şeklinde bulunur. 

mA  sabiti; 

( )
12

2
1

2

12 . . 4
cos .cos

4. 1
2

m

m
m

m x
A x dx

m

π

π

π

ππ π

+
∞

=
−

−
= =

−
∑∫     

0mB =  

 Yarım Seri Açılımı; 

Eğer bir fonksiyon herhangi bir eksene göre simetrik olarak değişiyor ise katsayılar 

integrali yarım periyot üstünden alınabilir. Bu integral çift veya tek bir fonksiyonun 

integrali olabilir.(şekil 2.13) 
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( )0

0

2
.

p

A f x dx
p

= ∫     ( )
0

2 . .
.cos

p

m

m x
A f x dx

p p

π
= ∫    0mB =                                   (2.45) 

 

Şekil 2.13 : Soldan sağa, tek, çift ve tek periyodik simetrik fonksiyonlar. 

     Tek fonksiyon için; 

       0A = 0mA =  

( )
0

2 . .
.sin

p

m

m x
B f x dx

p p

π
= ∫                                                                                   (2.46) 

Fark edilmelidir ki tek ve çift fonksiyonlar denklem (2.45) ve (2.46) ile ifade 

edilebilirler. 

Bu durumu örnekleyerek daha iyi bir şekilde açıklayabiliriz; 

 

Şekil 2.14 : 2y x x= −  fonksiyonunun grafiği. 

Yukarıdaki grafikte görülen eğri .(1 )y x x= −  fonksiyonuna aittir. Đlk amacımız 

burada fonksiyonun 1 1y− < <  aralığında Fourier sersine açmak ve grafiğini 

çimektir. 

1d = −  ve 2 2p =   
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( )( )
1

0

1

2
. 1

3
A x x dx

−

= − = −∫    ( )( )
1

2 2
1

4.cos
. 1 .cos

.
m

m
A x x m xdx

m

π
π

π
−

= − = −∫  

( )( )
1

1

2.cos
. 1 .sinm

m
B x x m xdx

m

π
π

π
−

= − = −∫  

( )
1 1

1 4.cos 2.sin
.cos .sin

3 . .m m

m m
f x m x m x

m m

π π
π π

π π

∞ ∞

= =

= − − −∑ ∑  

          
( ) ( )

2 2 2
1 1

1 11 4 2
.cos .sin

3

m m

m m

m x m x
m m

π π
ππ

∞ ∞

= =

− −
= − − −∑ ∑  

 

Şekil 2.15 : Sürekli fonksiyon [2]. 

Đkinci olarak bir çift seri olarak fonksiyonu Fourier serisine açıp grafiğini çizilicektir. 

( )( )
1

0

0

1
2 1

3
A x x dx= − =∫    ( )( )

( )1

2 2
0

2. 1 cos
1 .cos

.
m

m
A x x m xdx

m

π
π

π

+
= − = −∫  

0mB =     ( )
( )

2 2
1

2. 1 cos1
.cos

6 .m

m
f x m x

m

π
π

π

∞

=

+
= −∑  

 

Şekil 2.16 : Çift fonksiyonun grafiği [2]. 

Son olarak tek fonksiyonun 0 1y< <  aralığında Fourier serisi açılımı ve bunun 

grafiği verilmiştir. 
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0 0mA A= =  

( )( )
( )1

3 3
0

4. 1 cos
2 . 1 .sin

.
m

m
B x x m xdx

m

π
π

π

−
= − =∫  

( )
( )

3 3
1

4. 1 cos
.sin

.m

m
f x m x

m

π
π

π

∞

=

−
=∑  

 

Şekil 2.17 : Tek fonksiyonun grafiği [2]. 

Çift Fourier Serisi Açılımı [2]; 

Dikdörtgen kesitli plaka probleminin çözümünün de, bu plakaya uygulanan kuvveti 

tek veya çift Fourier serisi ile ifade edilebilir. Bahsi geçen plakanın uzun kenarının 

uzunluğu c, kısa kenarının uzunluğu d olarak kabul edilirse; çift seri açılımı bir tek 

fonksiyon açılımı olarak yarım periyot değişim aralığı 0 ve c diğer kenar için ise 0 ve 

d arasında alınabilir. 

  Bu açıklamalar ışığın seri açılı aşağıdaki gibidir; 

( )
1 1

. . . .
, .sin .sinmn

m n

m x n y
f x y B

c d

π π∞ ∞

= =

=∑∑                                                               (2.47) 

( )
0 0

4 . . . .
, .sin .sin

.

d c

mn

m x n x
B f x y dxdy

c d c d

π π
= ∫ ∫                                                      (2.48) 

  Kenar uzunlukları c ve d olan dikdörtgen plakanın düzgün yayılı yük etkisi altında 

basıncın Fourier serisi yardımıyla ifadesi aşağıdaki gibidir. 
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Şekil 2.18 : Dikdörtgen plaka. 

Denklem (2.48)’den; 

0 0
2

0 0

4. 16.. . . .
sin .sin

. . . .

d c

mn

p pm x n y
B dxdy

c d c d m n

π π

π
= =∫ ∫   burada ki m ve n değerleri tek 

pozitif tamsayı değerleridir. 

  Böylece Fourier serisi açılımı; 

( ) 0

2
1,3,.. 1,3,..

16. 1 . . . .
, .sin .sin

.m n

p m x n y
f x y

m n c d

π π

π

∞ ∞

= =

= ∑ ∑  
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3.  DÖRT KENARINDAN BASĐT MESNETLENMĐŞ DĐKDÖRTGEN 

KESĐTLĐ PLAKANIN DÜZGÜN YAYILI YÜK ETKĐSĐ ALTINDA 

ÇÖZÜMÜ 

Esas amacımız olan ankastre mesnetli halin çözümü için bu basit mesnetli durumdaki 

çözüm yöntemleri burada açıklanacaktır. Esas itibariyle iki adet çözüm yöntemi 

mevcuttur. Bunlar Çift Foruier Serisi açılımıyla ve Tek Foruier Serisi açılımıyla  elde 

edilir. 

3.1 Çift Fourier Serisi Açılımı Đle Probemin Çözümü 

Düzgün yayılı yük etkisi altında dikdörtgen plakanın sehimini ilk olarak Navier basit 

mesnetli hal için 1820 yılında hesaplamıştır. Kullandığı hesap yöntemi denklem (2-

26)’ nın Çift Foruiersi açılımına dayanmaktadır. 

Probleme ait diferansiyel denklem[2]; 

4 4 4

4 2 2 4

( , )
2.

w w w p x y

Dx x y y

∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
 

Sınır Koşulları; 

0w = ,  
2

2
0

w

x

∂
=

∂
  (x=0 ve x=a için)    0w = , 

2

2
0

w

y

∂
=

∂
   (y=0 ve y=b için)   

1 1

. . . .
( , ) .sin .sinmn

m n

m x n y
p x y p

a b

π π∞ ∞

= =

=∑∑                                                                   (3.1)  

mnp  değeri aşağıdaki denklemden bulunabilir; 

0 0

4 . . . .
( , ).sin .sin

.

b a

mn

m x n y
p f x y dxdy

a b a b

π π
= ∫ ∫                                                         (3.2)  

f(x,y) fonksiyonu yüklemenin şeklini göstermektedir. 

Benzer şekilde sehim denklemi aşağıdaki gibi verilebilir; 
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1 1

. . . .
( , ) .sin .sinmn

m n

m x n y
w x y w

a b

π π∞ ∞

= =

=∑∑                                                                  (3.3)  

Basit mesnetli plaka için sınır koşullarında denklem yazılarak buradan mnw  katsayısı 

gösterilebilir. Dikdörtgen plakanın çözümü denklem (3.1)’ dan elde edilebilir. 

Bilinmeyen katsayı mnw  ise (3.1) ve (3.3)’ in denklem (2.26)’da yerine yazılmasıyla 

elde edilebilir. 

   Maksimum eğilme momenti[2]; 

Daha önce bahsettiğimiz yükleme fonksiyonu olan f(x,y), düzgün yayılı yük 

durumunda tüm plaka yüzeyine homojen olarak etkidiği için bir 0p  sabiti olarak 

alınabilir. 

0

0 0

4. . . . .
sin .sin

.

b a

mn

p m x n y
p dxdy

a b a b

π π
= ∫ ∫  denklemin integrali alınarak sabit bulunur. 

( ) ( )0 0

2 2

4. 16.
. cos . 1 . cos . 1

. . . .
mn

p p
p m n

m n m n
π π

π π
= − − =  buradaki m ve n değerleri 1,3,5 

gibi tek sayı değerlerini alırlar. 

  Denklem (3.1)’da mnp  değeri yerine yazılırsa; 

0
2

1 1

16. . . . .
.sin .sin

. .m n

p m x n y
p

a bm n

π π

π

∞ ∞

= =

=∑∑  denklemi elde edilir. 

mnw  değerini bulman için denklem (3.3)’i denklem (2.25)’da yerine yazarsak; 

0
22 2

6

16.

. . . .

mn

p
w

m n
m n d

a b
π

=
    

+    
     

 buradaki m ve ne değerleri 1,3,5 gibi tek sayı 

değerlerini alırlar. 

 Sonuç olarak sehim denklemide aşağıdaki formda olur. 

0
2 22 2

1 1

. . . .
sin .sin

16.

.
. .

m n

m x n y
p a bw
D m n

m n
a b

π π

π

∞ ∞

= =

=
    

+    
     

∑∑  m ve n değerleri tek sayı değerlerini alırlar. 

Denklem (2.17)’den kenarlardaki eğilme momentleri aşağıdaki gibi bulunur. 

Yazılan tüm denklemler için m ve n değerleri pozitif tek sayı değerlerini alırlar. 
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0
4

1 1

16. . . . .
. sin .sinx mn

m n

p m x m y
M F

a b

π π

π

∞ ∞

= =

 
=  

 
∑∑  

0
4

1 1

16. . . . .
. sin .siny mn

m n

p m x m y
M G

a b

π π

π

∞ ∞

= =

 
=  

 
∑∑  

( )0

4
1 1

16. . 1 . . . .
. cos .cosxy mn

m n

p m x m y
M H

a b

π π

π

∞ ∞

= =

− µ  
=  

 
∑∑  

2 2

22 2

.

. .

mn

m n

a b
F

m n
m n

a b

   
+ µ   

   =
    

+    
     

 

 

2 2

22 2

.

. .

mn

m n

a b
G

m n
m n

a b

   
µ +   
   =
    

+    
     

 

22 2

1

. .

mnH
m n

a b
a b

=
    

+    
     

 

Plakanın simetrisinden dolayı maksimum sehim ve momentler 
2

a
x =  ve

2

b
y =  

değerlerinde oluşacaktır. 

3.2 Tek Fourier Serisi Açılımıyla Problemin Çözümü 

Levy  (Timoshenko 1983) çeşitli yük etkisi altında basit mesnetlenmiş plaka 

problemi için  Tek Foruier Serisini kullanarak 1900 yılında sehimi hesaplamıştır. Bu 

method Navier’ in çözümünden daha praktiktir[2]. 

Çözüm iki elmandan oluşur birisi homojen diğeri ise özel çözümdür; 

*h p
w w w= +                                                                                                             (3.4)  

( )
1

. .
.sinh m

m

m y
w f y

a

π∞

=

=∑                                                                                         (3.5)  
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Buradaki mf  sadece y’nin bir fonksiyonudur.  

x=0 ve x=a daki sınır koşulları diferansiyel denklemde yerine konulduğu zaman; 

( )
( ) ( )4 2 2 4

2 4

. . . .
. 2. . .sin 0m m

m

d f y d f ym m m x
f y

a a ady dy

π π π    
− + =    

     
 

Parantez içindeki terim sıfır iken çözüm aşağıdaki gibidir; 

( )
( ) ( )4 2 2 4

2 4

. .
. 2. . 0m m

m

d f y d f ym m
f y

a a dy dy

π π   
− + =   

   
                                           (3.6)  

Bu diferansiyel denklemin çözümü aşağıdaki gibidir; 

( ) . myR

m mf y f e=                                                                                                        (3.7)  

Denklem (3.7), (3.6)’te yerine yazıldığında; 

2 4

4 2. .
2 . 0m m

m m
R R

a a

π π   
− + =   

   
 

Denklemin kökleri; 

. .
,m

m m
R

a a

π π
= ± ±   

Denklem (3.6)’ ün çözümü; 

( )
. . . . . . . .

sinh cosh . .sinh . .sinhm m m m m

m y m y m y m y
f y A B C y D y

a a a a

π π π π
= + + +  

buradan homojen çözüm; 

1

. . . . . . . . . .
( sinh cosh . .sinh . .sinh ).sinh m m m m

m

m y m y m y m y m x
w A B C y D y

a a a a a

π π π π π∞

=

= + + +∑
Burada büyük harf ve m indisleriyle belirtilen sabitler sınır koşullarında bulunabilir. 

Denklem (3.3)’ de yer alan özel çözüm; 

( )
1

. .
.sinp m

m

m x
w k y

a

π∞

=

=∑                                                                                         (3.8)  

( ) ( )
1

. .
, .sinm

m

m x
p x y p y

a

π∞

=

=∑                                                                                 (3.9)  

( )
0

2 . .
( , ).sin .

a

m

m x
p y p x y dx

a a

π
= ∫                                                                          (3.10)  
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Denklem (3.8) ve (3.9) plakanın diferansiyel denkleminde yerine yazılırsa; 

( )2 44 2

4 2

. .
2. . . mm m

m

p yd k d km m
k

a a Ddy dy

π π   
− + =   

   
                                               (3.11) 

   

Denklem (3.10)’dan 

( )0 0 0

0

2. 2. 4.. .
( ) sin cosh . 1

. .

a

m

p p pm x
p y dx m

a a m m

π
π

π π
= = − =∫    m=1,3,5... 

 Sonuç olarak denklem (3.11) aşağıdaki şekli alır. 

2 44 2
0

4 2

4.. .
2. . .

. .
m m

m

d k d k pm m
k

a a m Ddy dy

π π

π

   
− + =   

   
 

  Bu denklemin özel çözümündeki mk  ise denklem (3.1)’den; 

4
0

5 5

4. .

. .
m

a p
k

m Dπ
=   m=1,3,5... 

 Denklemin özel çözümü aşağıdaki gibi yazılabilir; 

4
0

5 5
1

4. . 1 . .
. sin

.
p

m

a p m x
w

aD m

π

π

∞

=

= ∑   m=1,3,5... 

  Aşağıdaki şekilden faydalanarak görülüyor ki; denklem (3.8)’deki mA  ve mB  

terimleri y eksenindeki çökmenin x eksenine göre simetrik olmasından dolayı 

sıfırdır. 

 

Şekil 3.1 : Basit mesnetli dikdörtgen plaka [2]. 

 Homojen çözümü bu bilgiler ışığında aşağıdaki gibi yazabiliriz. 

1,3...

. . . . . .
cosh sinh .sinh m m

m

m x n y m x
w B C

a b a

π π π∞

=

 
= + 

 
∑  
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 Özel ve homojen çözümleri toplayarak çözüme ulaşabiliriz. 

4
0

5 5
1,3...

4. .. . . . . .
cosh sinh .sin

. .
m m

m

a pm x n y m x
w B C

a b am D

π π π

π

∞

=

 
= + + 

 
∑  

   Y ekseni boyunca sınır koşulları; 

0w =    
2

b
y = ±   ve  

2

2
0

w

y

∂
=

∂
  

2

b
y = ±  

Đlk sınır koşulundan; 

4
0

5 5

4. .. . . .
cosh . sinh 0

2. 2 2. . .
m m

a pm b b m b
B C

a a m D

π π

π
+ + =  

Đkinci sınır koşulundan; 

. . . . . . .
. . .cosh . sinh 0

2 2. 2m m m

m m b m b m b
B b c C

a a a a

π π π π  
+ + =  

  
 

Bu iki denklemin beraberce çözümünden sabitler; 

3
0

4 4

2. .

. .
. . .cosh

2.

m

a p
C

m b
m D

a

π
π

= , 

4 3
0 0

5 5

. .
4. . . . . . . tanh

2.
. .

. . .cosh
2.

m

m b
p a m a b p

aB
m b

m D
a

π
π

π
π

+
=  
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4.  DĐKDÖRTGEN KESĐTLĐ DÖRT KENARINDAN ANKASTRE 

MESNETLĐ IZOTROPĐK ĐNCE PLAKANIN DÜZGUN YAYILI YÜK 

ETKSĐSĐ ALTINDA SEHĐMĐNĐN HESAPLANMASI 

4.1 Çözüm Yöntemi 1 

Dikdörtgen plakanın ankastre mesnetli halde düzgün yayılı yük etkisi altında 

diferansiyel denkleminin kesin sonuçlarının incelenmesi bir çok sebepten dolayı 

önemlidir. Bu çözüm yönteminde plakanın diferansiyel denklemi bir sayısal method 

ile trigonometrik ve hiperbolik fonksiyon şeklinde verilecektir. Son olarak görsel bir 

örnek verilecek ve sonuçlar daha önceki çözüm yöntemleriyle elde edilmiş sonuçlar 

ile karşılaştırılacaktır [3]. 

Burkulma ve eğilme konusundaki çalışmalar bir yüz yıldan beri devam etmekte olup 

bu çalışmalar Timoshenko’nun Monograph’ın bulunmaktadır. Fakat dört kenarından 

ankastre mesnetli hal için ince plakanın sehimi için kesin bir yöntem mümkün 

gözükmemektedir. Bu hal için yaklaşık çözümler önerilmektedir fakat bu 

yöntemlerde sonuçtan kayda değer sapmalar gözlenmektedir. Henckey 1913, 

Wojtaszak 1937, Timoshenko 1938, Evans 1939, Young, Hutchinson 1992, 

Wangetal 2002 , Taylor ve Govindjee tarafından plakanın sehimi bir çok kez farklı 

yöntemler ile hesaplamıştır. Bunlar bazıları yaklaşık yöntemlerdir. 

Düzgün yayılı yük etkisi altında dört kenarından ankastre olarak mesnetlenmiş 

dikdörtgen plakanın sehimi için önerilen iki temel hesap yöntemi vardır. Bunlar çift 

kosinüs serisi açılımı ve Henckey’nin çözümünün süper pozisyon yöntemiyle 

genelleştirilmiş hali olan yöntemdir. Đlk sayısal yöntemlerden sonra Henckey 

tarafından bu alanda ilerleme kaydedilmiştir. Henckey’in geliştirdiği yöntem bilinen 

en kolay yakınsayan metottur ancak hiperbolik ve trigonometrik fonksiyonların 

değerlendirilmesinde yaşanan sorunlardan dolayı bazı sakıncaları vardır. Burada 

serinin açılımındaki ilk teri kare plaka için tüm seriyi domine eder ama kenar oranı 

birden uzaklaştıkça seri bu özelliği yitirmeye başlar. 
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Hutchinson düzgün yayılı yük altında ankastre mesnetli izotropik ince plaka için 

Timoshenko veWoinowsky-Krieger tarafından oluşturulmuş tablolardan çözümünde 

yararlanmıştır. Değişik kenar oranları için dikdörtgen ankastre mesnetli plakanın 

probleminin çözümünde Timoshenko’nun yönteminden yararlanmıştır. Bu metot 

prensip olarak karşılıklı kenar çiftlerinin bir moment etkisi altında eğilmesi sonucu 

oluşan ve dikdörtgen plakanın ankastre mesnetli halinde düzgün yayılı yük etkisi 

altındaki durmunun çözümünün beraberce kombine edilmesine dayanır. 

Araştırmacılar son yaptıkları çalışmalar neticesinde tek kosinüs serisi açılımını 

önermektedirler. Burada bahsi geçen problem için kapsamlı bir çözüm yöntemi 

önerilecektir. Dörtkenarından ankastre mesnetli plakanın sehiminin çözüm 

fonksiyonu üç terime sahiptir. Bu terimlerden ilki şerit durumundaki deplasmanın 

fonksiyonunu, diğer iki terim ise kenar etkilerini göstermektedir. Bu terimlerdeki 

bilinmeyen katsayılar denklemlerin sınır koşulları için yazılmasıyla çeşitli kenar 

oranları için bulunabilir. Plaka merkezindeki deplasmanın fonksiyonunda ilk terim 

seriyi domine ettiği için seri kolayca yakınsayabilecektir [3]. 

4.1.1 Problemin Tanımı 

Klasik eğilme teorisine göre, küçük sehimler plaka kalınlığına oranla küçük yer 

değiştirmeler olarak tanımlanmıştır. Genel olarak küçük sehim durumlarındaki, 

yükleme deplasman arasındaki ilişki aşağıdaki diferansiyel denklem ile ifade 

edilmiştir. 

4 4 4
4

4 2 2 4
.( 2. )

w w w
D w D q

x x y y

∂ ∂ ∂
∇ = + + =

∂ ∂ ∂ ∂
 

W burada orta yüzeydeki küçük deplasmanı, D eğilme rijitliğini, q ise birim alana 

gelen plaka normali doğrultusunda etkiyen yüklemeyi göstermektedir. 2 2 ( 2∇ ≡ ∇ ∇)  

bi harmonik peratörü ve 2∇  ise Laplace operatörünü göstermektedir. Boyu a, 

genişliği b, elastisite modülü E ve Poisson oranı ν  olan plaka için hesaplamalar 

yapılacaktır [3]. 

4.1.2 Sınır Koşulları 

Dikdörtgen izotropik ankastre mesnetli plaka için sınır koşulları [3]; 

a b≥  için 0w = , x a= ±  ve 0w =  y b= ±      0
w

x

∂
=

∂
 x a= ±  ve 0

w

y

∂
=

∂
 y b= ±  
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4.1.3 Çözüm 

Bu problemin çözümü düzgün yayılı yük etkisi altında verilen sınır koşullarına göre 

Taylor ve Govindjee tarafından  bulunmuştur. Çözümde ilk başta basit mesnetlenmiş 

plakanın düzgün yayılı yük etkisi altında sehim fonksiyonu bulunmuş ve sonra 

ankastre kenarların etkisini gösterilerek süper pozisyon yöntemi ile çözüme 

ulaşılmıştır. Burada hesap yapılırken serinin açılımında oldukça fazla terim göz 

önüne alınmıştır [3]. 

  Serinin formu [3]; 

24 2

2
1,3..

. .
cos

. . . . .2( , ) 1 . cosh . sinh
. .24. 2 2cosh
2

m m
m

m y
a b y m x x m xbw x y A B

m yD b a bb
b

π
π π

π

∞

=


   

= − + +   
  



∑  

1,3,...

. .
cos

. . . . . .2. . .sinh .tanh .cosh
. . 2 2 2.cosh
2

m
m

m x
m y m b m yaC y b

m b a a a
b

a

π
π π π

π

∞

=


 

+ −  
 



∑                    (4.1)  

Buradaki ilk terim b y b− ≤ ≤  arasındaki şerit durum için sehim fonksiyonunu 
vermektedir. 
  , ,m m mA B C  sabitlerini denklemleri sınır koşulları için düzenleyerek bulabiliriz. 

1
8 2

3 3 2 5

. . 2 ( 1) 1 12
tanh .

2 .

m

m m

m a
A B

b m n m

π

π

−

−  
+ + = −  

                                                 (4.2)        

( )
2

2

22
1,3,...

2

. 1 . . . . . . ( 1)
. . tanh tanh 0

4 2 2 2
8. . 1

m r

m m r
r

m m m a b m a m
A B C

b b a b a
r

b

π π π π

π

+ −

∞

=

− − 
+ + + = 

   
+ 

 

∑  

                                                                                                                                 (4.3) 

2

2

2 2 2
21,3,...

. .
2. . ( 1) . . . . . . 2.. . tanh . . tanh

. .2 2.. . cosh
2.

m r

r m
r

m b
a b r m r a a m b aB C

m bb b aa b b m
a

π
π π

π

+ −

∞

=

 
 −

− + 
+   

 

∑

2

2

2 2 2
1,3,...

2. . ( 1) . .
. 0

. .

m r

r
r

a b r m
A

a b b m

+ −

∞

=

−
+ =

+
∑                                                                              (4.4)                                                                                                      

Denklem (4.2), (4.3) ve (4.4)’ ü, denklem (4.1)’ de sınır koşullarında yerine yarsak; 
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4

0
0 21,3,...

. .
sinh

1 2. 1 .
. . . .24. cosh cosh
2 2

x m m
y m

m b
qb aw A C

m a m aD

b b

π

π π

∞

=
= =

  
  

= + −  
  

    

∑                                (4.5)  

Sınır koşullarından mB =0 bulunur. Bu katsayının dikdörtgen plakanın geometri 

merkezindeki çökme değerine hiçbir etkisi  yoktur. 

Bu serinin açımlı hızlı bir şekilde yakınsar ve yeterli derece kesinlik sağlar. Buradaki 

hesaplama serinin ilk terimi göz önüne alınarak yapılmıştır. Plakanın kenar oranları 

sonsuza yakınsadığı zaman geometri merkezinin sehimide 
4.

0,0026017.
q b

D
 değerine 

yakınsamaktadır. 

Ulaşılan sonuçlar Evans  ve Taylor-Govindjee  çalışmalarındaki sonuçlara yakındır 
[3]. 

4.1.4 Kare Plaka Đçin Problemin Çözümü 

Denklem (2-52), (2-53) ve (2-54)’ ü kare plaka için serinin ilk iki terimini göz önüne 

alarak çözersek aşağıdaki katsayılara ulaşırız [3]. 

1 3

1 3

2,96987, 0,7630

0,585102, 0.2540

A A

C C

= − = −

= − =
 

 Aşağıdaki çizelgede düzgün yayılı yük etkisi altında ankastre mesnetli kare plakanın 

sehimi için nümerik faktörler yer almaktadır. 

Çizelge 4.1 : Kare plaka için bulunmuş nümerik sehim faktörleri [3].                                             

Araştırmacı Tarih ( )
4

0,0

.

w

p a

D

α =
 
 
 

 

Nümerik Faktör 
Đmrak ve Gerdemeli 2007 0,00126401  
Timoshenko, Woinowsk,Krieger 1959 0,00126 
Evans 1940 0,00126 
Wojtaszak 1937 0,0012637 

 

Burada sehim değerleri elde edilirken serinin ikinci temrinin ihmal edildiği ve ilk 

terime göre hesaplamaların yapıldığı görülmektedir [3]. 
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Çizelge 4.2 : Dikdörtgen plaka için farklı kenar oranlarında bulunmuş sehim 
faktörler  [3].                                        

b/a Đmrak ve 
Gerdemeli 

( )α  

Evans ( )α  Taylor ve  
Govindjee 

( )α  

1 0,00126725 0,00126 0,00216532 
1,2 0,00172833 0,00172 0,00172487 
1,4 0,00207217 0,00207 0,00206814 
1,6 0,00230399 0,00230 0,00229997 
1,8 0,00244989 0,00245 0,00244616 
2 0,00253625 0,00254 0,00253297 

∞  0,00260417 0,00260 0,002604170 

Yukarıdaki tablo farklı kenar oranlarında sehim için nümerik faktörleri içermektedir. 

4.2 Çözüm Yöntemi 2 

Bu makalede ankastre mesnetli dikdörtgen plaka için etkin ve kesin bir çözüm 

sunulacaktır. Bahsi geçen çözüm metodu çift kosinüs serisi açılımına dayanmaktadır. 

Çözüm yönteminde Sherman-Morisson-Woodburry formülüzasyanundan 

yararlanılacaktır. Bu serinin açılımı x ve y eksen takımları üzerindeki M ve N 

terimlerini içermektedir. Bu yüzden klasik çözüm metodu (MN)x(MN) denkleminin 

çözüm takımını içermektedir. Önerilen denklem M<N halinde MxN temrini içericek 

şekilde ihmal ve kısıtlamalar yapılmasıdır. Burada çeşitli kenar oranları için nümerik 

sonuçlar elde edilecek ve Henckey’nin çözümündeki nümerik değerler ile 

karşılaştırılacaktır. Klasik çözüm yöntemindeki  düzeltmeler ve ek basamaklar sonlu 

elemanlar yaklaşımı için verilecektir [4]. 

Yeni sonlu eleman modeli geliştirilirken, Reissner-Mindlin terosine dayanan plaka 

probleminde, ince plakanın limitlerinin kontrol edilmesi plaka davranışının 

anlaşılabilmesi için gereklidir. Burada tüm sınır koşullarında kesin kısıtlamalar 

verilmiştir ve buda plakanın ankastre mesnetli halini gerektirmektedir. Fakat ankastre 

mesnetli plaka için kesin bir çözüm yöntemi mümkün gözükmemektedir. Bu problem 

için yaklaşık bir yöntem vererek farklı kenar oranları için bir tablo oluşturacağız. 

Bahsi geçen problemin çözümü için plakanın diferansiyel denkleminin çözümüne 

ihitiyaç vardır [4]. 

Plakanın diferansiyel denklemi [4]; 

4D w q∇ =                                                                                                              (4.6)  
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Sınır koşulları[4]; 

0w =         0
w

n

∂
=

∂
                                                                                                  (4.7)  

( )

3

2

.

12 1

E h
D =

− ν
                                                                                                        (4.8)    

Burada 4∇  bi harmonik operatörü, q planın normali doğrultusunda etkiyen yükü 

göstermektedir. D eğilme rijitliğidir ve (4.8) şeklinde formülüze edilir. Denlemdeki E 

elastisite sabiti, ν  Poisson oranı, h plakanın kalınğıdır  [4]. 

Yaklaşık çözüm sonlu elemanlar yöntemiyle elde edilebilir ama yakınsama oranlarını 

bulmak için çok kesin çözümlerin bilinmesi gerekmektedir. Bu aşamada iki temel 

çözüm yöntemi önerilir. Bunlar çift kosinüs serisi açılımı ve Henckey’nin çözüm 

yöntemidir. Henckey’nin çözümü kolayca yakınsar fakat bazı sakıncaları da 

beraberinde getirir. Çift kosinüs serisi yöntemi ise yavaş yakınsamaktadır. Bu 

durumda bahsi geçen yavaş yakınsamayı ortadan kaldıracak etkili bir çözüm yöntemi 

düşünmemiz gerekir. Đçinde birçok terimi barındıran serinin açılımı aşağıdaki gibidir 

[4]. 

1 1

( , ) 1 cos 2. . . . 1 cos 2. . . . mn
m n

x y
w x y m n w

a b
π π

∞ ∞

= =

   
= − −   

   
∑∑                                         (4.9)  

Denklemdeki a ve b sabitleri kenar uzunlukları göstermektedir ve mnw  ise bir 

parametredir. Bahsi geçen bu parametre, Ritz veya alternatif olarak Galerkin 

metoduyla bir fonsiyon şeklinde verilebilir [4]; 

( )
241

. . min
2 q

A A

w D w dA w dA = ∇ − = ∏ ∫ ∫                                                          (4.10)  

  Çözüm için aşağıdaki dönüşümü yapmak gerekmektedir. 

.

. ;0

x a

y b

= ξ;0 ≤ ξ ≤ 1

= η ≤ η ≤ 1
 fonksiyonu yeniden 

^

.a b

∏
∏ = şeklinde yazarsak; 

  ( )
221 1 1 12 2^

4 2 2
0 0 0 0

1
. . . . min

2

D w a w
w dA w qd

ba

 ∂ ∂ 
∏ = + − ξ =  

∂ξ ∂η   
∫ ∫ ∫ ∫                          (4.11.a) 
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Denklem (4.10)’u, (4.9)’de yerine yazar ve integralini alırsak sembolik olarak 

aşağıdaki gibi ifade edebiliriz; 

.K w b=                                                                                                             (4.11.b) 

Bilinmeyen parametrelerin düzenlenmesi ile aşağıdaki denkleme ulaşırız [4]. 

( )11 21 1 12 22, ,......, , , ,.....,
T

m mnw w w w w w w=                                                           (4.12) 

K içinde yer alan ve değeri sıfır olmayan terimler; 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

22
1 2 2

2 4

4
3

. ; . 1

2 ; . 1 , 1 ; 1, 2....,

2 . ; . 1 , 1 ; 1,2....,

ii

ij

ij

a
K m n i M n m

b

K m i M n m j M p m p N

a
K n i M n m j M p m p M

b

  
= + = − +  

   

= = − + = − + =

 
= = − + = − + = 

 

                  (4.13) 

Toplam K değeri [4]; 

( ) ( ) ( )1 2 3K K K K= + +                                                                                           (4.14) 

  Böylece denklemin sağ tarafı aşağıdaki terime eşit olmaktadır [4]; 

4
*

4

.
.

. .

q a
b e

a Dπ
=                                                                                                        (4.15) 

*e : parça boyunca oluşan vektör. 

4.2.1 Çözüm  

Yukardaki serinin çözümü çok yavaş yakınsamaktadır ve moment, deplasman, 

gerekli enerji değerlerini hesaplamak için sonlu elemanların yakınsama durmunu 

değerlendirmek gerekmektedir. Bunun için ise yaklaşık 1 milyon terimi göz önünde 

bulundurmak gerekmektedir. Bu durumda dağınık matris yapısından faydalanmak 

için Sherman-Morisson-Woodbury formülünün simetrik yapısını kullanacağız [4]. 

. . TK A U DU= +                                                                                                 (4.16)  
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Burada A ve D diyagonel matris, U ise dikdörtgen matristir. 

( ) ( ). )

1 0 0

0 1 0

0 1 1
M N x M N

I

I
U

I
+

 
 
 =
 
 
 

L

L

M M O M M

L

                                                                        (4.17) 

 Burada 1 değeri M teriminin uzunluğunun birim sütun vektörüdür, 0 M teriminin 

uzunluğunun birim sıfır birim vektörüdür ve I ise MxM kare matrisidir[4]. 

  Yukarıdaki yapıyla birlikte , parametreler için çözüm aşağıdaki formda 

gösterilebilir; 

( ). . .TA U DU w b+ =                                                                                              (4.18) 

Sherman-Morisson-Woodbury formülünün simetrik yapısını kullanarak çözüm; 

( )
11 1 1 1 1. . . . . .T Tw A A U D U A U U A b

−− − − − − = − +  
 

Çözüm adımları [4]; 

1) Kurulum 

2) Dağınık U matrisin transpozesi ile çarpılması 

0 0.Tv U w=  

      3) 1v  için denklemin çözümü; 

      ( )1 1
1 0. . .TD U A U v v− −+ =  

4) Dağınık U matrisi ile çarpımı; 

  1 1.w U v=  

5) Çözümün toplamı 

  1
0 1.w w A w−= −  

Yukarıdaki çözüm adımları iki diyagonel matrisin inversiyonunu içerir. Bir vektörün 

U ile çarpımı ve bunun transpozesi (MN)x(M+N) büyüklüğünü verir. Sistemin 

büyüklüğü (MN)x(MN) değerini de içerir [4]. 
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Denklem sisteminin basit bir dağınık matrisin doğal yapısından yararlanarak 

çözümü; 

11

2

. .T

T

D G
U A U

G D
−  

=  
 

                                                                                         (4.19) 

Burada 1D  ve 2D  diyagonel matrisleri N ve M uzunluklarının dizisidir, G is NxM 

şeklinde bir matristir [4]. 

Denklem çiftinin çözümünü, birim diyagonel matris ile çarpımıyla buluruz; 

( )1 1 *
1 0. . . . .TS D U A S v S v− −+ =  

Buradaki S diyagonel matrisi göstermektedir.  

1

2
1

2

0

0

D
S

D

−

 
=  
 

 

Çözüm vektörü yeniden yazılırsa; 

*
1 1.v S v=  

Sonuç katsayılar matrisi bir büyütme çarpımıyla birlikte oldukça az terim ihtiva ettiği 

açıkça görülebilmektedir [4]. 

  Yukarıdaki denklemin çözümü aşağıdaki yapıları kullanarak elde edilebilir. 

1
0

2

.
v

S v
v

 
=  
 

 ve 1*
1

2

x
v

x

 
=  
 

 

  Bu sayede aşağıdaki denklem çifti elde edilebilir; 

1 2 1

1
2 1 2

.

.

x G x v

x G x v−

+ =

+ =
 , ikinci denklem birincide yerine koyulduğunda bir NxN terimi 

eldedilir. 

1 1 2. . .TI G G x v G v − = −  , 1x  hesaplandıktan sonra, 2x  ikinci denklemde yerine 

yazılmasıyla elde edilebilir. 

Bir kez 1v  hesaplandıktan sonra, herhangi bir noktadaki çökmeyi bulmak için 

denklem (4.13) deki serinin toplamı alınabilir. 
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( )
2 2 2

2

2 2 2 2
1 1

1 4.
. . .cos 2. . . cos 2. . . . ,mn

m n

w w
m m n w

x a a

π
π π

∞ ∞

= =

∂ ∂
= = ξ 1− η

∂ ∂ξ
∑∑  

( )
2 2 2

2

2 2 2 2
1 1

1 4.
. . . cos 2. . . .cos 2. . . . ,

M N

mn
m n

w w
n m n w

y b b

π
π π

= =

∂ ∂
= = 1− ξ η

∂ ∂η
∑∑  

2 2 2

1 1

1 4.
. . . .sin 2. . . sin 2. . . . ,

. .

M N

mn
m n

w w
m n m n w

x y a b a b

π
π π

= =

∂ ∂
= = ξ. η

∂ ∂ ∂ξ∂η
∑∑  

Bu denklemlerden hareketle momentler aşağıdaki şekilde bulunur [4]; 

( )

2 2

2 2

2 2

2 2

2

. ,

. ,

1 . ,

x

y

xy

w w
M D v

x y

w w
M D v

y x

w
M D v

x y

 ∂ ∂
= − + 

∂ ∂ 

 ∂ ∂
= − + 

∂ ∂ 

∂
= − −

∂ ∂

 

Yapılan işi ya da sarf edilen enerji miktarını sehim denkleminin integralini alarak 

bulabiliriz [4]; 

1 1

. .( , ) . .
M N

mn
m nA

E q w x y dA a b w
= =

= = ∑∑∫  

Yukarıdaki çözümü kare plaka için uyguladığımızda, M değeri N değerine eşit olur 

ve artış gösteren değeri M değeri olarak seçersek plaka merkezindeki çökmeyi ve 

aynı zamanda kenarlarda oluşan maksimum momenti, ayrıca gerekli olan işi veren 

bir tablo oluşturabiliriz [4]. 

Çizelge 4.3 : Dikdörtgen plaka için farklı kenar oranlarında bulunmuş sehim, kenar, 
merkez moment ve enerji nümerik faktörleri [4]. 

M Merkez sehim 

( )
3

4 .10
.

D
q a

 

( )xM kenar 

( )
2

2
10

.q a
 

( )xM merkez 

( )
2

2
10

.q a
 

(E) iş 

( )
4

2 4 .10
.

D
q a

 

No. k 

200 1,265319036 -5.111075630 2.290436770 3.891200386 3.9208 
400 1,265319081 -5.22212116 2.290490957 3.891200726 4.0035 
600 1,265319086 -5.125930478 2.290501018 3.891200761 4.00442 
800 1,265319087 -5.27790817 2.290504543 3.891200769 4.0702 
1000 1,265319087 -5.128907392 2.290506175 3.891200772 4.0890 
1200 1,265319087 -5.129651929 2.290507062 3.891200773  
1400 1,265319087 -5.130183817 2.290507597 3.891200774  
1600 1,265319087 -5.131141375 2.290507944 3.891200774  
1800 1,265319087 -5.130893100 2.290508352 3.891200774  
2000 1,265319087 -5.13337648 2.290509078 3.891200775  
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Yukarıdaki tabloda kare plaka için plaka merkezindeki sehim, kenar momentleri ve 

gerekli iş miktarı verilmiştir [4]. 

Aşağıdaki tabloda çift kosinüs serisinin açılımı ve Hencky yöntemiyle elede edilen 

farklı kenar oranlarındaki dikdörtgen ankastre mesnetli plakanın düzgün yayılı yük 

etkisi altındaki plaka merkezindeki sehim, kenarlarda oluşan momentler ve gerekli 

olan iş miktarı verilmiştir [4]. 

Çizelge 4.4 : Farklı kenar oranları için çift kosinüs serisi ve Hencky yönteminin 
karşılaştırması [4]. 

b/a Yöntem Merkez 
sehim 

( )

3

4

.10

.

D

q a
 

 

( )xM ken

ar 

( )

2

2

10

.q a
 

( )yM  

kenar 

( )

2

2

10

.q a
 

( )xM  

merkez 

( )

2

2

10

.q a
 

( )yM  

merkez 

( )

2

2

10

.q a
 

(E) iş 

( )

4

2 4

.10

.

D

q a
 

1.2 Çift 
Kosinüs  
Hencky 

1.724870503 
1.724870503 

-6.38 
-6.3897878 

-5.5 
-5.5407598 

2.99715 
2.9971587 

2.284043 
2.2840439 

6.41537043 
6.41537043 

1.4 Çift 
Kosinüs  
Hencky 

2.068143209 
2.068143209 

-7.25 
-7.2591841 

-5.6 
-5.6802526 

3.49740 
3.4974095 

2.12663 
2.1266331 

9.14890620 
9.14890620 

1.6 Çift 
Kosinüs  
Hencky 

2.29996697 
2.299966977 

-7.80 
-7.8033766 

-5.70 
-5.709889 

3.81817 
3.8181737 

1.9250 
1.9250601 

11.94175880 
11.94175880 

1.8 Çift 
Kosinüs  
Hencky 

2.446162656 
2.446162656 

-8.11 
-8.1185893 

-5.70 
-5.7066637 

4.00944 
4.0094462 

1.753576 
1.75357682 

14.73958338 
14.73958338 

2 Çift 
Kosinüs  
Hencky 

2.532955769 
2.532955769 

-8.28 
-8.2866062 

-5.69 
-5.698664 

4.11549 
4.1154990 

1.58080 
1.5808029 

1.753009520 
1.753009520 

20 Çift 
Kosinüs 
Hencky 

2.6041666 
2.6041666 

-8.33 
-8.33333 

-5.6 
-5.68862 

4.1666 
4.16666667 

1.25 
1.25000000 

267.5393 
267.5393518 

 

Şekil 4.1 : Dikdörtgen plaka için faktör değişimi [4]. 
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4.3 Çeşitli Numunelerin Sehimin Hesaplanması 

Hesaplanacak plakanın malzemesinin cinsi çelik olup izotropik plakadır. Düzgün 

yayılı yükleme kum vasıtasıyla bir dikdörtgen kılavuz prizmasının içine yapılacaktır. 

Plakanın davranışı ilk olarak aynı kenar oranı, aynı yük ve aynı etki alanında farklı 

kalınlıklardaki sehimi göz önüne alınarak incelenecektir. Diğer incelemede tüm 

karakteristik özellikler sabit tutularak uygulanan yük değişken olarak alınacaktır. Son 

inceleme ise plakanın diğer tüm karakteristik özellikleri sabit tutularak nümerik 

kenar oranı faktörü değişken olarak alınacaktır. 

4.3.1 Kalınlık Değişimine Göre Davranışın Đncelenmesi 

b: uzun kenar, a: kısa kenar. 

 Kenar oranı 1
b

a
=  olan kare plakanın incelenmesi; 

Kumun yoğunluğu: 6
32,707.10 kg

mm
− , Çeliğin yoğunluğu: 6

37,85.10 kg
mm

−  

Levha 1; 

 Numunenin boyutları; 

En (a): 500mm, Boy (b):500mm, Kalınlık ( )1t : 1.5 mm 

Ağırlık: 6
1 1. . . 7,85.10 .500.500.1,5 2,94375Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6
1. . . 2,707.10 .500.500.30 20,3025kum kumm a b h kg−= ρ = =  

  Yükleme; 

1 1( ). (2,94375 20,3025).9,807 227,9759738Levha kumP m m g N= + = + =  

  Yayılı yük; 

41 1
201 2

227,9759738
9,11903895.10

. 500

P P Np
mmA a b

−= = = =  

0,00126725α = , kare plaka için nümerik faktör, 2200000 NE
mm

=  plakanın 

elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 
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( ) ( )

3 3
1

1 2 2

. 200000.1,5
61813,18681

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 4 4
01 1

1

1

. 9,11903895.10 .500
(0,0) . 0,00126725.

61813,18681

p b
w

D

−

= α =   

1 1,168450324w mm=  

Levha 2; 

 Numunenin boyutları; 

En (a): 500mm, Boy (b):500mm, Kalınlık ( )2t : 2 mm 

Ağırlık: 6
2 2. . . 7,85.10 .500.500.2 3,925Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6. . . 2,707.10 .500.500.30 20,3025kum kumm a b h kg−= ρ = =  

  Yükleme; 

2 2( ). (3,925 20,3025).9,807 237,5990925levha kumP m m g N= + = + =  

  Yayılı yük; 

42 2
202 2

237,5990925
9,5039637.10

. 500

P P Np
mmA a b

−= = = =  

0,00126725α = , kare plaka için nümerik faktör, 2200000 NE
mm

=  plakanın 

elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 

( ) ( )

3 3
2

2 2 2

. 200000.2
146520,1465

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 4 4
02 2

2

2

. 9,5039637.10 .500
(0,0) . 0,00126725.

146520,1465

p b
w

D

−

= α =  

2 0,5137475241 w mm=  

Levha 3; 

 Numunenin boyutları; En (a): 500mm, Boy (b):500mm, Kalınlık ( )3t : 2.5 mm 
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Ağırlık: 6
3 3. . . 7,85.10 .500.500.2.5 4.90625Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6. . . 2,707.10 .500.500.30 20,3025kum kumm a b h kg−= ρ = =  

  Yükleme; 

3 3( ). (4.90625 20,3025).9,807 247,2222113levha kumP m m g N= + = + =  

  Yayılı yük; 

43 3
203 2

247, 2222113
9,88888845.10

. 500

P P Np
mmA a b

−= = = =  

0,00126725α = , kare plaka için nümerik faktör, 2200000 NE
mm

=  plakanın 

elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 

( ) ( )

3 3
3

3 2 2

. 200000.2,5
286172,1612

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 4 4
03 3

3

3

. 9,88888845.10 .500
(0,0) . 0,00126725.

286172,1612

p b
w

D

−

= α =  

3 0, 27369211945 w mm=  

Levha 4; 

 Numunenin boyutları; 

En (a): 500mm, Boy (b):500mm, Kalınlık ( )4t : 3 mm 

Ağırlık: 6
4 4. . . 7,85.10 .500.500.3 5,8875Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6. . . 2,707.10 .500.500.30 20,3025kum kumm a b h kg−= ρ = =  

  Yükleme; 

4 4( ). (5,8875 20,3025).9,807 256,84533levha kumP m m g N= + = + =  
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Yayılı yük; 

34 4
204 2

256,84533
1,02738132.10

. 500

P P Np
mmA a b

−= = = =  

0,00126725α = , kare plaka için nümerik faktör, 2200000 NE
mm

=  plakanın 

elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 

( ) ( )

3 3
4

4 2 2

. 200000.3
494505.4945

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 3 4
04 4

4

4

. 1,02738132.10 .500
(0,0) . 0,00126725.

494505.4945

p b
w

D

−

= α =  

4 0,1645518655 w mm=  

Çizelge 4.5 : Kare plaka için değişik kenar oranlarında sehim değerleri. 

Levha 
Numarası 

Kalınlık(t) 
mm 

Yayılı Yük(p) pa Sehim mm 

1 1,5  49,11903895.10−  1,168450324  

2  2  49,5039637.10−  0,5137475241

 
3  2,5  49,88888845.10−  0, 27369211945

 
4  3  31,02738132.10−  0,164551865  

 

Şekil 4.2 : Kare plaka için sehimin plaka kalınlığına bağlı değişimi. 
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Şekil 4.2’de verilen tablo için karakteristikler; 

k: uygulanan dış kuvvet, t: plaka kalınlığı, 
212.(1 )

E
r =

− µ
,µ : poission oranı, E: 

elastisite modülü, j: bir birim kalınlıktaki plakanın ağırlığından oluşan kuvvet,  

a: plakanın kısa kenarı, b: plakanın uzun kenarı 

Grafik Mathcad paket programında oluşturulmuştur, y ekseni sehimi gösterirken, x 

ekseni kalınlığı göstermektedir. Kalınlık değişiminin uygulanan basınca plakanın 

ağırlığının değişiminden meydana gelmektedir. Bu etkiyi göstermek için r değeri 

tanımlanmıştır. Grafik kenar oranı bir olan kare plaka içindir. 

Kenar oranı 2
b

a
=  olan kare plakanın incelenmesi; 

Kumun yoğunluğu: 6
32,707.10 kg

mm
− , Çeliğin yoğunluğu: 6

37,85.10 kg
mm

−  

Levha 5 

 Numunenin boyutları; 

En (a): 250mm, Boy (b):500mm, Kalınlık ( )2t : 2 mm 

Ağırlık: 6
5 5. . . 7,85.10 .250.500.2 1,9625Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6. . . 2,707.10 .250.500.30 10,15125kum kumm a b h kg−= ρ = =  

  Yükleme; 

5 5( ). (1,9625 10,15125).9,807 118,7995463levha kumP m m g N= + = + =  

  Yayılı yük; 

45 5
205

237,5990925
9,5039637.10

. 500.250

P P Np
mmA a b

−= = = =  

0,002536252α = , kare plaka için nümerik faktör, 2200000 NE
mm

=  plakanın 

elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 
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( ) ( )

3 3
2

2 2 2

. 200000.2
146520,1465

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 4 4
05 5

5

5

. 9,5039637.10 .250
(0,0) . 0,00253625.

146520,1465

p b
w

D

−

= α =  

5 0,0642678151w mm=  

Levha 6; 

 Numunenin boyutları; 

En (a): 250mm, Boy (b):500mm, Kalınlık ( )3t : 2.5 mm 

Ağırlık: 6
6 6. . . 7,85.10 .250.500.2,5 2,453125Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6. . . 2,707.10 .250.500.30 10,15125kum kumm a b h kg−= ρ = =  

  Yükleme; 

6 6( ). (2,453125 10,15125).9,807 123,6111056levha kumP m m g N= + = + =  

  Yayılı yük; 

46 6
206

123,6111056
9,88888845.10

. 250.500

P P Np
mmA a b

−= = = =  

0,002536252α =  dikdörtgen plaka için nümerik faktör, 2200000 NE
mm

=  

plakanın elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 

( ) ( )

3 3
3

3 2 2

. 200000.2,5
286172,1612

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 4 4
03 6

6

6

. 9,88888845.10 .250
(0,0) . 0,00253625.

286172,1612

p b
w

D

−

= α =  

6 0,03423514375w mm=  

Levha 7; 

 Numunenin boyutları; En (a): 250mm, Boy (b):500mm, Kalınlık ( )7t : 3 mm 
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Ağırlık: 6
7 7. . . 7,85.10 .250.500.3 2,94375Levha çelikm a b t kg−= ρ = =  

 Kumun kütlesi;  

6. . . 2,707.10 .250.500.30 10,15125kum kumm a b h kg−= ρ = =  

  Yükleme; 

7 7( ). (2,94375 10,15125).9,807 128,422665levha kumP m m g N= + = + =  

  Yayılı yük; 

37 7
207

128,422665
1,02738132.10

. 250.500

P P Np
mmA a b

−= = = =  

0,002536252α =  dikdörtgen plaka için nümerik faktör, 2200000 NE
mm

=  

plakanın elastisite modülü, 0,3µ =  plaka malzemesine ait poission oranı. 

( ) ( )

3 3
7

7 2 2

. 200000.3
494505.4945

12. 1 12. 1 0,3

E t
D = = =

− µ −
 

4 3 4
07 7

7

7

. 1,02738132.10 .250
(0,0) . 0,00253625.

494505.4945

p b
w

D

−

2= α =     

7 0,02058318789w mm=    

Çizelge 4.6 : 2 kenar oranı için farklı kalınlıklarda sehim değerleri. 

Levha 
numarası 

Kalınlık(t) 
mm 

Yayılı Yük(p) pa Sehim mm 

5  2  49,5039637.10−  0,0642678151  

6  2,5  49,88888845.10−  0,03423514375  

7  3  31,02738132.10−  0,02058313789  
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Şekil 4.3 : Kenar oranı 2 olan plaka için sehimin plaka kalınlığına 
bağlı değişimi. 

Şekil 4.3’de verilen tablo için karakteristikler; 

Kenar oranı 2 olan plaka için greafik Mathcad programında oluşturulmuştur. 

k: uygulanan dış kuvvet, t: plaka kalınlığı, 
212.(1 )

E
r =

− µ
,µ : poission oranı, E: 

elastisite modülü, j: bir birim kalınlıktaki plakanın ağırlığından oluşan kuvvet,  

a: plakanın kısa kenarı, b: plakanın uzun kenarı 

Grafikteki y ekseni sehimi gösterirken, x ekseni kalınlığı göstermektedir. Kalınlık 

değişiminin uygulanan basınca plakanın ağırlığının değişiminden meydana 

gelmektedir. Bu etkiyi göstermek için r değeri tanımlanmıştır. 

4.3.2 Kenar Oranlarının Değişimine Göre Davranışın Đncelenmesi 

Bu incelemede yüzeye etki eden basınç, plaka kalınlığı ve plakanın uzun kenarı sabit 

tutularak kenar oranın değişimine göre sehimin nasıl değiştiği incelenicektir. 

Sabitler karakteristikler; 

Uzun kenar (a): 500 mm, Plaka kalınlığı (t): 3 mm,  

Yüzeye etki eden basınç ( 0p ): 3
21,02738132.10 N

mm
−  

( ) ( )

3 3

2 2

. 200000.3
494505.4945

12. 1 12. 1 0,3

E t
D = = =

− µ −
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Değişkenler ( Plaka kenar oranları 
b

a
); 

Lehva 8 

1
b

a
=  için nümerik faktör 1 0,00126725α = , 500a mm=  

Levha 9 

1,2
b

a
=  için nümerik faktör 2 0,00172833α = , 600a mm=  

Levha 10 

1.4
b

a
=  için nümerik faktör 3 0,0020717α = , 700a mm=  

Levha 11 

1,6
b

a
=  için nümerik faktör 4 0,00230399α = , 800a mm=  

Levha 12 

1,8
b

a
=  için nümerik faktör 5 0,00244989α = , 900a mm=  

Levha 13 

2
b

a
=  için nümerik faktör 6 0,00253625α = , 1000a mm=  

Bu kenar oranları için diğer tüm değişkenleri sabit tutarak, kenar oranına bağlı sehim 

faktörüyle sehim arasındaki ilişki incelenmiştir. 

Levha 8 için; 

1 0,00126725α =   

4 3 4
0

8

. 1,02738132.10 .500
(0,0) . 0,00126725.

494505.4945

p b
w

D

−

1= α =  

8 0,1645518847w mm=  

Levha 9 için; 

2 0,00172833α =   
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4 3 4
0

9

. 1,02738132.10 .500
(0,0) . 0,00172833.

494505.4945

p b
w

D

−

2= α =  

9 0,2244229307w mm=  

Levha 10 için; 

3 0,0020717α =   

4 3 4
0

10 3

. 1,02738132.10 .500
(0,0) . 0,0020717.

494505.4945

p b
w

D

−

= α =  

10 0,2690093821w mm=  

 

Levha 11 için; 

4 0,00230399α =   

4 3 4
0

11 4

. 1,02738132.10 .500
(0,0) . 0,00230399.

494505.4945

p b
w

D

−

= α =  

11 0,2991721419w mm=  

Levha 12 için; 

5 0,00244989α =   

4 3 4
0

12 5

. 1,02738132.10 .555.556
(0,0) . 0,00244989.

494505.4945

p b
w

D

−

= α =  

12 0,3181171961w mm=  

Levha 13 için; 

6 0,00253625α =   

4 3 4
0

13 6

. 1,02738132.10 .500
(0,0) . 0,00253625.

494505.4945

p b
w

D

−

= α =    

13 0,3293310062w mm=  
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Çizelge 4.7 : 3 mm kalınlığında plakanın farklı kenar oranları için sehim değerleri. 

Levha 
numarası 

Kenar 
oranı(b/a) 

Kalınlık(t) 
mm 

Yayılı Yük(p) pa Sehim mm 

8  1 3  31,02738132.10−  0,1645518847  

9  1,2  3  31,02738132.10−  0, 2244229307  

10  1,4  3  31,02738132.10−  0,2690093821  

11 1,6  3  31,02738132.10−  0, 2991721419  

12  1,8  3  31,02738132.10−  0,3181171961  

13  2  3  31,02738132.10−  0,3293310062  

 

Şekil 4.4 : 3 mm kalınlığında plakanın farklı kenar oranları için 
sehim karekteristiği. 

Şekil 4.4’teki grafik karekteristikleri; 

a: plakanın kısa kenarı, D: eğilme rijitliği, p: plaka yüzeyine etki eden basınç. 
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5.  SONLU ELEMANLAR METODU 

Çözülmesi uzun zaman alan karmaşık problemlerin, daha basit ve kısa zamanda 

çözmek için bu problemlere eşdeğer ancak daha basit hale getirilmiş problemlerin 

çözüme gidilmesi sonlu elemanlar metodunun temelindeki fikirdir. Genellikle, 

basitleştirmeye gidilmesi sonucunda doğru sonuç yerine, yaklaşık bir sonuç 

bulunmaktadır. Günümüzde, sonlu elemanlar metotların bilgisayarlarda uygulanması 

sonucunda hemen her problem istenilen ölçüler arasında yaklaşık sonuçlar elde 

edilmektedir [5]. 

Sonlu elemanlar metodunda, çözüm bölgesinin çok sayıda sonlu ve birbirine bağlı 

elemanlardan oluşmaktadır. Çözüme gidilirken, sonlu elemanların hepsi çeşitli 

teoriler kullanılarak, sınır koşul ve denge denklemlerin tanımlanmasıyla yaklaşık 

sonuçlar bulunmaktadır [5]. 

5.1 Sonlu Elemanlar Metodunun Kısa Tarihi 

Günümüzde sonlu elemanlar metodu olarak bilinen çözüm metotlarının arkasında 

bulunan temel fikirler yüzyıllar öncesine dayanmaktadır. Örneğin, yüzyıllar 

öncesinde bilim adamları çemberin çevre uzunluğunu bulmak için çemberin 

etrafından poligonlar çizerek bulmaktaydılar. Köşe sayısı arttırılan poligon, sonuca 

daha fazla yaklaştırmaktaydı [5].  

Yakın tarihimizde, sonlu elemanlar metoduna benzer bir yöntem Courant tarafından 

1943’ te ilk kez ortaya atılmıştır. Bu yöntemde, üçgensel bölgeler üzerinde parçasal 

sürekli fonksiyonlar tanımlanmaktadır. 

Günümüzde bilinen sonlu elemanlar metodu ise, 1956 yılında Turner, Clough, 

Martin ve Top tarafından sunulmuştur. Bu çalışmada, perçin bağlantılı profil ve 

üçgensel iç gerilmeli tabaka şeklindeki sonlu elemanların bir uçağın analizinde 

kullanımı ele alınmıştır.  
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Çağımızın en büyük teknolojik gelişme olarak bilinen bilgisayar teknolojisinin 

gelişmesi, bu yönteme çok büyük katkı sağlamıştır. Günümüzün bilgisayarları, 

çözülmesi aylar bulunan problemleri, en kısa zamanda çözmekte ve gerçek sonuçlara 

çok yakın yaklaşık sonuçlar verebilmekteler [5]. 

5.2 Uygulama Alanları 

Sonlu elemanlar metodunun uygulama alanları özdeğer, denge ve yayılma 

problemleridir. Kısaca yukarıda bahsi geçen alanların kısaca tarifleri aşağıda 

açıklanmıştır [5].  

Denge problemlerinin bir uzantısı olan özdeğer grubuna giren problemler arasında 

yapıların stabilitesi ve titreşimleri, lineer viskoelastik sönümleme, burkulma, katı ve 

esnek kaplarda akışkanların çalkalanması gibi problemler en çok bilinenleridir. 

Kararlı hal problemleri olarak bilinen denge problemlere makine ve inşaat 

yapılarının gerilme analizleri, katılarda ve sıvılarda kararlı sıcaklık dağılımları, 

sürekli akış problemleri gibi problemler örnek verilebilir. 

Yayılma problemleri ise zamana bağlı olan problem grubuna giren problemler 

arasında yapılarda gerilme dalgaları, yapıların darbelere karşı davranışı, viskoelastik 

problemler, zeminlerden suyun geçişi, katılarda ve sıvılarda ısı geçişi, kararlı 

olmayan akış problemleri örnek verilebilir. 

Mühendislik açısından sonlu elemanlar metodunun en geniş uygulama alanı gerilme 

analizi problemidir. Gerilme analizi problemlerinde yer değişim, kuvvet ve karma 

yöntem gibi üç yaklaşım dikkate alınmaktadır.  

Yer değişim yönteminde yer değişimler, dönmeler ve deformasyonlar; kuvvet 

yöntemi yaklaşımında kuvvetler ve gerilmeler; karma yönteminde ise bilinmeyen 

veya serbest değişkenler işlenmektedir [5].  

5.3 Problemlere Uygulanması 

 Elastik ve sürekli ortamlara SEM’ in uygulanmasında yapının parçalara ayrılması,  

uygun bir interpolasyon seçimi, rijitlik matrislerinin ve yük vektörlerin, eleman 

denklemlerinin birleştirilmesiyle toplam denge denklemlerin elde edilmesi, 
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bilinmeyen düğümsel (nodal) yer değişimleri için çözüm yöntemlerinin kullanılması 

ve sonuçların bulunması adımları uygulanır [5]. 

5.4 Sonlu Elemanlar Yönteminin Eleman Tipleri 

Analizi yapılacak bir parçada doğru sonuçlar alınabilmesi için en uygun bir şekilde 

sonlu elemanlara bölünmelidir. Sonlu elemanlara bölme işleminde sürekli ortamın 

boyutuna ve parçanın geometrisine en uygun elemanın şekli seçilmelidir. Seçilen 

sonlu elemanlar bir, iki veya üç boyutlu olabilirler. Genelde, sonlu elemanın sınırları 

düzgün olarak seçilebilir ya da, bazı durumlarda eğri sınırlı elemanlarında 

kullanılması gerekebilir [5]. 

Ortam geometrisi, malzeme özellikleri, yükleri ve yer değişimleri bir bağımsız uzay 

koordinatı cinsinden ifade edilebiliyorsa, Şekil 4.1’ de örneği verilen bir boyutlu 

sonlu elemanlar tercih edilir [5]. 

 

Şekil 5.1 : Bir boyutlu sonlu eleman [5]. 

Birçok problem, yaklaşık olarak, iki boyutlu sonlu elemanlarla çözülebilir. Đki 

boyutlu eleman tipleri arasında en basiti Şekil 5.2’ de görülen üçgen tipi sonlu 

elemanıdır. 

 

Şekil 5.2 : Üçgen tipi sonlu eleman [5]. 

Birçok problemlerde iki boyutlu dikdörtgen, iki üçgenli dikdörtgen, dörtgen elemanı 

ve dört üçgenli dörtgen elemanı tipi sonlu elemanlar da kullanılmaktadır. Şekil 4.3’te 

yukarıda bahsi geçen değişik iki boyutlu dörtgen sonlu eleman tiplerine örnekler 

soldan sağa doğru verilmiştir [5]. 
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Şekil 5.3 : Üç boyutlu değişik tiplerde dikdörtgen sonlu elemanlar [5]. 

5.5 Plaka Ve Kabuk Yapılarında Sonlu Elemanlar Yönteminin Uygulanması 

Sonlu elemanlar yöntemi karmaşık plaka ve kabuk yapılarının analizinde kullanışlı 

bir hesaplama yöntemidir. Bu yöntem verilen geometrinin daha küçük elemanlara 

bölünmesiyle uygulanır. Matematiksel formülüzasyonu her bir küçük elemanın sınır 

koşullarında çözümünün kombinasyonundan yararlanarak oluşturulur. Yaklaşımın 

kesinliği ve doğru sonuç vermesi yapının kaç alt elemana bölündüğü, bu elemanların 

şekli ve sınır koşullarına göre değişir [2].   

 

Şekil 5.4 : Tek boyutlu sonlu eleman örneği [2].   

Şekildeki bir boyutlu eleman iki nod ile tanımlanmıştır. 

δ  harfi ile ifade edilen matris şekil içindeki yer değişimini gösterir. Bu matrisin 

yapısı düşünülen elemanın karmaşıklık derecesine bağlıdır [2]. 

ix

jx

q
q

q
=    

ix

jx

F
F

F
=                                                                                                   (5.1) 

Buradaki q matrisi F matrisi ile verilen yük etkisi altında meydana gelen yer 

değişimini göstermektedir.  

Benzer şekilde iki boyutlu eleman için kuvvet ve sehim matrisleri aşağıdaki gibidir. 
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Şekil 5.5 : Đki boyutlu sonlu eleman örneği [2].   

Şekilden de görüldüğü üzere iki boyutlu eleman üç nod ile tanımlanır[2]. 

ix

iy

jx

jy

kx

ky

q

q

q
q

q

q

q

=                                                                                                              (5.2.a) 

ix

iy

jx

jy

kx

ky

F

F

F
F

F

F

F

=                                                                                                                (5.2.b) 

Şekil matrisi olarak tanımlanan N matrisi üzerindeki fonksiyon ile eleman 

içerisindeki aynı fonksiyonun ilişkisini göstermektedir[2]. 

[ ][ ]i

i j
j

q
N N N q

q

 
 δ = =  

 
  

Đki boyutlu elemanda noktasal yer değişimi ve genel yer değişimi arasında  aşağıdaki 

gibi bir ilişki vardır [2]. 
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0 0 0

0 0 0

ix

iy

i j k jx

i j k jy

kx

ky

q

q

N N N qu

N N N qv

q

q

=           

[ ] [ ][ ]N qδ =                                                                                                             (5.3) 

  Birim şekil değişimi ve deplasman arasındaki ilişki aşağıda verilmiştir. 

[ ] [ ][ ]dε = δ                                                                                                              (5.4)   

  Bu ilişkiyi nodal deplasman açısından ifade etmek için denklem (5.3)’ü, denklem 

(5.4)’te yerine yazarak eldebiliriz. 

[ ] [ ][ ][ ]d qε = Ν                                                                                                        (5.5) 

  Aynı zamanda bu ilişki aşağıdaki şekilde de yazılabilir. 

[ ] [ ][ ]B qε =                                                                                                              (5.6) 

[ ] [ ][ ]B d N=                                                                                                            (5.7) 

  Birim şekil değişimi ve gerilme arasındaki ilişki ise; 

[ ] [ ][ ] [ ][ ] [ ][ ][ ] [ ][ ]0 0D D D B Dσ = ε − ε = ε − ε                                                         (5.8)    

Buradaki 0ε  değeri başlangıç değeri iken ε  değeri son değerdir. 

Bu bilgiler ışığında sonlu elemanlar denklemi [2]; 

 

Şekil 5.6 : Sonsuz küçük hacim [2]. 

Yukarıdaki sonuz küçük hacim; 

. .dv dx dy dz=  
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  Sonsuz küçük hacim için enerji denklemi[2]; 

[ ] [ ] [ ] [ ]
1 1

. . . .
2 2

T T
du 0= ε σ − ε σ                                                                                (5.9)    

  Toplam enerji; 

[ ] [ ] [ ] [ ]( )1
. .

2

T T

v

u dv0= ε σ − ε σ∫                                                                             (5.10)  

Denklem (5.8), denklem (5.10)’da yerine yazılırsa; 

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( )0 0 0

1
. . . . . 2. . . . . .

2

T T T T T
u q B D B q q B D D dv= − ε + ε ε        (5.11) 

Dış kuvvetlerden dolayı meydana genel iş; 

1.Nodal kuvvetten meydana gelen 

[ ] [ ].
T

FW F q=                                                                                                       (5.12)      

2.Yüzey basıncından meydana gelen 

[ ] [ ]( ).PW u p ds=   yada  [ ] [ ] [ ]( ). .
T T

P

s

W q N p ds= ∫                                            (5.13) 

Elemanların sahip olduğu potansiyel enerji; 

( )f pU w wΠ = − +  

 

Tüm sistemin sahip olduğu potansiyel enerji; 

( )
1

E
e

f p
e

U w w
=

 Π = − + ∑                                                                                      (5.14) 

Buradaki e harfi eleman numarasını ifade etmektedir. 

Minimum potansiyel enerji; 

0
q

∂Π
=

∂
  

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]0
1

. . . . . . 0
E

T T

e e e e e e e e
e v v s

B D B dV q B D dV N p ds F
q =

 ∂Π
= − ε − − = 

∂  
∑ ∫ ∫ ∫   

                                                                                                                               (5.15)                    
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[ ] [ ] [ ]. .
T

e e eB D B dV  terimi elemanın rijitlik matrisi olarak adlandırılır, 

[ ] [ ] [ ] [ ]. .
T

e e e e

v

K B D B dV= ∫                                                                                  (5-16) 

Bu denklemler ışığında sonlu elemanlar eşitliği; 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]0
1 1

. . . .
E E

T T

e e e e e e
e e v s

K q B D dV N p ds F
= =

 
= ε + + 

 
∑ ∑ ∫ ∫                            (5-17) 

Denklem (5.17) sadeleştirilirse; 

[ ][ ] [ ]eK q F=                                                                                                        (5-18) 

  Burada bahse geçen F uygulanan kuvveti göstermektedir. 

  Denklem (5.17) temel sonlu elemanlar denklemidir [2]. 

5.5.1 Tek Boyutlu Eleman 

Sonlu eleman denklemi yazılırken, eleman şekli ile birlikte uygulanan kuvvet, sehim, 

birim şekil değiştirme ve gerilme değerleri bir polinom ile yaklaşık olarak 

hesaplanabilir. Bu polinomun terim sayısı noda, istenilen kesinlik miktarındaki 

serbestlik derecesine bağlıdır. Tek boyutlu eleman için sehim denklemi aşağıdaki 

gibidir [2]. 

1C  ve 2C  birer sabittir. 

x: x ekseni boyunca değişen uzunluktur. 

1 2 .C C xδ = +                                                                                                        (5.19) 

Denklem (5.19) ile verilen polinom iki matrisin bir fonksiyonu olarak yazılanilir. 

[ ][ ]g Cδ =  yada 1

2

1
C

x
C

δ =                                                                            (5.20) 

Bu denklemi nodal bir ix  ve jx  noktası için yeniden yazarsak; 
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1

2

1

1
i i

j j

q x C

q x C
=                                                                                                   (5.21) 

1

1
i

j

x
h

x
=    [ ][ ]i

j

q
h C

q

 
= 

 
 

Katsayılar matrisinin çözümü; 

[ ]
11

2

i

j

qC
h

qC

−   
=   

   
 buradan 1

2

1

1 1

ij i

ji j

qC x x

qC x x

−     
=     −−     

                               (5.22) 

Denklem (5.20)’den her hangi bir nokta için; 

[ ][ ]
1 i

j

q
g h

q

−  
δ =  

 
 yada ( ) ( )

1
.

i

j i
jj i

q
x x x x

qx x

 
 δ = − − +   −  

                            (5.23) 

Yukarıdaki denklemde bulunan [ ][ ]
1

g h
−

 teriminin büyüklüğü o noktadaki elemanın 

sehimi ile ilişkilidir. Şekil fonksiyonunu N olarak gösterirsek[2]; 

[ ] [ ][ ]
1

N g h
−

=                                                                                                      (5.24) 

Denklem (5.23)’ü yeniden düzenlersek; 

[ ] i

j

q
N

q

 
δ =  

 
                                                                                                        (5.25)  

buradan N; 

[ ] ( ) ( )
1

.j i

j i

N x x x x
x x

 = − − + −
                                                                      (5.26) 

Şekil fonksiyonu lineer bir eleman için düzenlendiğinde, denklem (5.18)’de verilen 

rijitlik matrisi yazılabilir. Böylece tek boyutlu eleman için genel sehim denklemi 

eşitlik (5.19), şekil fonksiyonu (5-26) ile ifade edilebilir. Hook kanunundan 

hareketle, eksen üzerindeki birim şekil değiştirme aşağıdaki gibi yazılabilir[2]. 

d
u

dx
ε =  denklem (5-5) ve (5-6)’dan hareketle; 

[ ] [ ][ ]
d

N q
dx

ε =  yada [ ] [ ] i

j

q
B

q

 
ε =  

 
                                                                    (5.27) 
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[ ]
[ ]

[ ]
1 1 1

1 1
j i

B
x x L

−
= = −

−
 

 Ön gerilmesiz tek esksenli gerilme hali için; 

[ ] [ ][ ]Eσ = ε  böylece; [ ] [ ]D E=  

Denklem (5.17)’den hareketle rijitlik matrisi K [2]; 

[ ]
1 1.

1 1

A E
K

L

− 
=  − 

                                                                                             (5.28) 

Denklem (5.17)’deki sağ tarafta bulunan ilk terim termal etkiyi gösterir [2]; 

1
. . .( ).

1
E A T

− 
α ∆  

 
                                                                                                   (5.29) 

Denklem (5-17)’deki sağ tarafta bulunan ikinci terim yüzeysel yükleme içindir. Bu 

durumda yüzeysel yükleme sadece i ve j noktalarına uygulanmış kabul edilebilir. 

Böylece xp  i noduna uygulandığında [2]; 

[ ] [ ]
1 1

.
0 0

T

x x x i

s

N p ds p ds p A
   

= =   
   

∫ ∫                                                               (5.30)  

xp  j noduna uygulandığında; 

[ ] [ ]
1

. .
0

T

x x i

s

N p ds p A
 

=  
 

∫                                                                                      (5.31) 

Tek boyutlu eleman için sonlu elemanlar denkleminin tümü, eşitlik (5.28) ve 

(5.31)’in kombinasyonundan yazılabilir [2]. 

( )
1 1 1 1 1.

. . . .
1 1 1 0 0

i

i x j
j

qA E
E A T A p A px F

qL

− −        
= α ∆ + + +        −        

  

 [ ][ ] [ ]K q F=                                                                                                         (5.32) 

Gerilme değeri ise denklem (5.8)’den; 

[ ][ ][ ] [ ] ( )1 1 .
i

j

qE
E B q E

qL

 
σ = = − − α. ∆Τ 

 
                                                        (5.33)  
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5.5.2 Lineer Üçgen Eleman 

Şelik 5.5’de görüldüğü üzere eleman üç nod ile belirtilmiştir. Bahse geçen nodlar iki 

serbestlik dercesine sahiptir. Bu sayede eleman üzerindeki delasmanlar aşağıdaki 

denklemler ile verilebilir [2]. 

1 2 3. .u C C x C y= + +  ve 4 5 6. .v C C x C y= + +                                                      (5.34) 

Burada verilen u ve v deplasmanları, x ve y eksenlerinde meydana gelen yer 

değişimlerini göstermektedir. Bu denklemleri matris formunda yazarsak [2]; 

[ ][ ]
u

g c
v

 
= 

 
   [ ]

1 0 0 0

0 0 0 1

x y
g

x y

 
=  
 

 ve 

1

2

3

4

5

6

C

C

C
C

C

C

C

 
 
 
 

=  
 
 
 
  

                                 (5.35) 

  Şekil matrisi N denklem (5.24)’ten yararlanarak; 

[ ]
0 0 0

0 0 0
i j k

i j k

N N N
N

N N N

 
=  
 

                                                                (5-36) 

Buradaki verilen iN , jN , kN  değerleri [2]; 

( )
1

. .
2i i i iN a b x c y= + +

∆
, 

( )1
. .

2j j j jN a b x c y= + +
∆

, 

( )
1

. .
2k k k kN a b x c y= + +

∆
 

. .i i k k ia x y x y= − , i i kb y y= − , i k jc x x= −  

. .j k i i ka x y x y= − , j k ib y y= − , j i kc x x= −  

. .k i j j ia x y x y= − , k i jb y y= − , k j ic x x= −  

1
1

1
2

1

i i

j j

k k

x y

x y

x y

∆ =    
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2∆ değeri i ix y , j jx y , k kx y  koordinatları ile verilmiş üçgenin alanını göstermektedir. 

u ve v ise; 

[ ]

ix

iy

jx

jy

kx

ky

q

q

qu
N

qv

q

q

 
 
 
  

=   
   

 
 
  

 

  Birim şekil değişimi deplasman arasındaki ilişki denklem (5.24) yardımıyla; 

0

0
x

y

xy

x
u

vy

x y

 ∂
 
∂  ε
   ∂ 

ε =      ∂    γ   ∂ ∂
 
∂ ∂ 

                                                                                         (5-37) 

Birim şekil değişimi [2];[ ] [ ] [ ][ ][ ]
u

d d N q
v

 
ε = = 

 
 yada [ ] [ ][ ]B qε =  ve 

[ ] [ ][ ]
0 0 0

1
0 0 0

2

i j k

i j k

i i j i k k

b b b

B d N c c c

c b c b c b

= =
∆

                                                       (5.38) 

Aşağıda verilen denklem vasıtası ile düzlemsel gerilme formülündeki rijitlik matrisi 

türetilebilir [2]. 

2

2

1 0

0
1

1
0 0

2

x x

y y

xy xy

E

 
    σ µ ε
    

σ = µ 1 ε    − µ     τ γ− µ    
 

 

 Rijitlik matrisi [ ]D ; 

[ ] 2

2

1 0

0
1

1
0 0

2

E
D

 
 µ
 

= µ 1 
− µ  − µ 

 
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  Düzlemsel birim şekil değişimi denklem aşağıdaki denklem vasıtasıyla; 

( )
( )

( )

1 0 0 0

0 0 0

0 0 01
. .

0 0 2. 1 0 0

0 0 0 2. 1 0

0 0 0 0 2. 1

x x

y y

z z

xy xy

yzyz

zxzx

E

ε  −µ −µ σ   
     ε −µ 1 −µ σ     
   ε  −µ −µ 1 σ
  =    

γ 0 + µ τ     
     0 + µ τγ     
  0 + µ τ  γ    

 

0x yz xzε = γ = γ =  

[ ]
( )

( ) ( )

1 0
1

. 1
1 0

1 . 1 2

0 0
2.(1

E
D

µ 
 − µ
 − µ

= µ 
+ µ − µ  1− 2µ 

− µ)  

                                                      (5.39) 

  Denklem (5.16) yardımıyla rijitlik matrisi [2]; 

11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 35 54 55 56

16 26 36 55 56 66

.

4

k k k k k k

k k k k k k

k k k k k kE t
K

k k k k k k

k k k k k k

k k k k k k

 
 
 
 

=  
∆  
 
 
  

                                                             (5.40) 

( ) ( )
2 2

11 1 2 3 3 3 2k k y y k x x= − + − , ( )( ) ( )( )12 2 3 2 2 3 3 3 2 2 3k k x x y y k x x y y= − − + − − , 

( )( ) ( )( )13 1 2 3 3 1 3 3 2 1 3k k y y y y k x x x x= − − + − − ,

( )( ) ( )( )14 2 1 3 2 3 3 3 2 3 1k k x x y y k x x y y= − − + − − , 

( )( ) ( )( )15 1 1 2 2 3 3 2 3 3 2k k y y y y k x x x x= − − + − − , 

( )( ) ( )( )16 2 2 1 2 3 3 3 2 1 2k k x x y y k x x y y= − − + − − , 

( ) ( )
2 2

22 1 3 2 3 2 3k k x x k y y= − + − , ( )( ) ( )( )23 2 3 2 3 1 3 1 3 2 3k k x x y y k x x y y= − − + − − , 

( )( ) ( )( )24 1 3 2 1 3 3 2 3 3 1k k x x x x k y y y y= − − + − − , 

( )( ) ( )( )25 2 3 2 1 2 3 2 1 2 3k k x x y y k x x y y= − − + − − , 
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( )( ) ( )( )26 1 2 1 3 2 3 1 2 2 3k k x x x x k y y y y= − − + − − , 

( ) ( )
2 2

33 1 3 1 3 1 3k k y y k x x= − + − , ( )( ) ( )( )34 1 1 3 3 1 3 1 3 3 1k k x x y y k x x y y= − − + − − , 

( )( ) ( )( )35 1 1 2 3 1 3 1 3 2 1k k y y y y k x x x x= − − + − − , 

( )( ) ( )( )36 2 2 1 3 1 3 1 3 1 2k k x x y y k x x y y= − − + − − , 

( ) ( )
2 2

44 1 1 3 3 3 1k k x x k y y= − + − , ( )( ) ( )( )45 2 1 3 1 2 3 2 1 3 1k k x x y y k x x y y= − − + − − , 

( )( ) ( )( )46 1 1 3 2 1 3 1 2 3 1k k x x x x k y y y y= − − + − − , 

( ) ( )
2 2

55 1 1 2 3 2 1k k y y k x x= − + − , ( )( ) ( )( )56 2 2 1 1 2 3 2 1 1 2k k x x y y k x x y y= − − + − − , 

( ) ( )
2 2

66 1 2 1 3 1 2k k x x k y y= − + −  

Düzlemsel Gerilme Đçin; 

1 2

1

1
k =

− µ
, 2 21

k
µ

=
− µ

, 
( )3

1

2. 1
k =

+ µ
 

Düzlemsel Birim Şekil Değişimi; 

( ) ( )1

1

1 . 1 2
k

− µ
=

+ µ − µ
, 

( ) ( )2 1 . 1 2
k

µ
=

+ µ − µ
, 

( )3

1

2. 1
k =

+ µ
 

5.5.3 Asimetrik Üçgen Eleman 

Bir çok plaka yada kabuk konstrüksiyonunda sonlu elemanlar ile modelleme 

asimetrik üçgen eleman ile yapılmaktadır. Aşağıdaki şekilde gösterilen asimetrik 

elemanın şekil matrisi N denklem (5.41)’de verilen ile aynıdır. Gerilme birim şekil 

değiştirme arasındaki bağıntı denklem (5.42)’nin asimetrik elemana uyarlanmasıyla 

aşağıdaki gibi elde edilebilir [2]. 
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Şekil 5.7 : Asimetrik üçgen elemanın gösterimi [2]. 

0

0

1
0

r

z

rz

r

ur
v

r

z r

θ

∂ 
 ∂
 ε  ∂  ε    ∂  =     ε      γ 
 ∂ ∂
 
∂ ∂ 

                                                                                           (5.41)   

[ ]

0 0 0

0 0 0
1

22 2
2 0 0 0

i j k

i j k

ji k

i i j j k k

b b b

c c c

B

r r r
c b c b c b

 
 
 
 = ∆Ν∆Ν ∆Ν

∆  
 
  

                                                (5.42) 

[ ]

ir

izr

jrz

jz

krrz

kz

q

q

q
B

q

q

q

θ

 
 ε   

   ε  =  
 ε  
   γ 

 
  

                                                                                                  (5.43)  
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  Buradan hareketle gerilme birim şekil değiştirme arasındaki ilişki [2]; 

[ ]
( )

( ) ( )

1 0
1 1

1 0
. 1 1 1

1 . 1 2
1 0

1 1

0 0 0
2.(1

E
D

µ µ 
 − µ − µ
 

µ µ 
 − µ − µ − µ
 =

µ µ+ µ − µ  
 − µ − µ
 

1− 2µ 
 − µ) 

                                      (5.44) 

  Rijitlik matrisi denklem (5.16) yardımıyla; 

[ ] [ ] [ ][ ]
T

e e e e

v

K B D B dV= ∫  

( )TB DB dV  integral alırken işlemi kolaylaştırmak için dV  terimi 2. . .r Aπ
− 

 
 

 olarak 

yazabiliriz. Burada r
−

 sentroidin merkezindeki yarı çaptır. A ise bahsi geçen 

elemanın alanını göstermektedir. Böylece rijitlik matrisi [2]; 

[ ] [ ] [ ][ ].2. .
T

K B D B r A
−

=                                                                                     (5.45) 

5.6 Ansys Paket Programı 

ANSYS yazılımı mühendislerin mukavemet, titreşim, akışkanlar mekaniği ve ısı 

transferi ile elektromanyetik alanlarında fiziğin tüm disiplinlerinin birbiri ile olan 

interaksiyonunu simule etmekte kullanılabilen genel amaçlı bir sonlu elemanlar 

yazılımıdır. Bu sayede gerçekleştirilen testlerin ya da çalışma şartlarının simule 

edilmesine olanak sağlayan ANSYS, ürünlerin henüz prototipleri üretilmeden sanal 

ortamda test edilmelerine olanak sağlar. Ayrıca sanal ortamdaki 3 boyutlu 

simulasyonlar neticesinde yapıların zayıf noktalarının tespiti ve iyileştirilmesi ile 

ömür hesaplarının gerçekleştirilmesi ve muhtemel problemlerin öngörülmesi 

mümkün olmaktadır. ANSYS yazılımı hem dışarıdan CAD datalarını alabilmekte 

hem de içindeki “preprocessing“ imkanları ile geometri oluşturulmasına izin 

vermektedir. Gene aynı preprocessr içinde hesaplama için gerekli olan sonlu 

elemanlar modeli yani mesh de oluşturulmaktadır. Yüklerin tanımlanmasından sonra 

ve gerçekleştirilen analiz neticesinde sonuçlar sayısal ve grafiksel olarak elde 
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edilebilir. Genel olarak, ANSYS kullanılarak sonlu elemanlar analizleri üç kademede 

gerçekleştirilir [6]; 

Preprocessing(Problemin tanımlanması): Preprocessing ana kademeleri aşağıda 

verildiği gibidir: 

• Anahtar nokta/çizgi/alan/hacimlerin tanımlanması 

• Eleman tipi ve malzeme/geometri özelliklerinin tanımlanması 

• Çizgi/alan/hacimlerin sonlu elemanlara bölünmesi. 

Solution(Yüklerin ve sınır şartlarının atanması ve çözümün gerçekleştirilmesi): 

Bu kademede yükler (noktasal veya basınç) belirlenir, sınır şartları tanımlanır ve 

sonuçta çözüme gidilir. Yük ve sınır şartları preprocessing kademesinde de 

tanımlanabilir. 

Postprocessing(Sonuçların değerlendirilmesi): Bu kademede şunlar yapılabilir 

a. Düğüm noktası yer değiştirmelerinin listelenmesi 

b. Eleman kuvvet ve momentlerinin izlenmesi 

c. Yer değiştirme çizimleri, gerilme diyagramları 

Her hangi bir isleme başlamadan önce analizin planlanması çok önemlidir ve 

simulasyonun başarısına direk etkisi vardır. Bir sonlu elemanlar analizinin amacı 

bilinen yükler altında sistem davranışının modellenmesidir. Analizin doğruluk 

derecesi planlama kademesine oldukça bağlıdır. Her bir işlemcide yapılacakları daha 

detaylı olarak sonraki bölümlerde inceleyeceğiz. Ancak yine de özetleyecek olursak; 

Preprocessing kademesi aşağıdakileri içerir [6]: 

• Başlığın belirlenmesi: Problemin sonraki dönemde rahat erişilebilir olması 

amacıyla yaptığımız ise bir isim isim verilmesi diye düşünülebilir. Bu seçenek 

özellikle aynı temel model üzerinde farklı yükleme seçenekli çözümler 

gerçekleştirilmesi durumunda çok faydalıdır. 

• Modelin oluşturulması: Model genellikle 2D veya 3D uzayında uygun birimler 

(m, mm, inç, vb.) kullanılarak çizilir. Model ANSYS ön işlemcisi kullanılarak 

oluşturulabileceği gibi başka bir CAD paketinde hazırlanmış bir dosyanın (IGES, 

STEP gibi) ANSYS ön işlemcisi tarafından okunması ile de sağlanabilir. Modelin 
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oluşturulması esnasında dikkat edilmesi gereken konulardan biri çizimde kullanılan 

birim ile malzeme özellikleri ve uygulanan yük birimlerinin uyumlu olmasıdır. 

Örneğin; model mm olarak çizildi ise, malzeme özellikleri SI birimi ile tanımlandığı 

şekilde olmalıdır[6]. 

• Eleman tipinin belirlenmesi: Eleman seçimi modelin geometrisine bağlı olarak 

1D, 2D veya 3D olabileceği gibi yapılması düşünülen analizin tipine de bağlıdır 

(örneğin termal analiz gerçekleştirebilmek için termal eleman kullanımı) [6]. 

• Malzeme özelliklerinin girilmesi: Malzeme özellikleri (elastisite modülü, poisson 

oranı, yoğunluk ve gerekli olduğunda termal genlesme katsayısı, termal iletkenlik, 

özgül ısı vb) tanımlamalarının gerçekleştirilmesi [6]. 

• Modelin elemanlara bölünmesi: Modelin elemanlara bölünmesi işlemi, model 

sürekliliğinin belirli sayıdaki ayrı parçalara veya diğer bir ifade ile sonlu elemanlara 

bölünmesidir. Daha çok sayıda eleman genel olarak daha iyi sonuçlar fakat daha 

uzun analiz zamanı demektir. Modelin elemanlara bölünmesi kullanıcı tarafından tek 

tek tanımlanarak yapılabileceği gibi ANSYS tarafından uygun seçenekler 

kullanılarak otomatik olarak da yapılabilir. Kullanıcı tarafından tek tek tanımlayarak 

elamanlara bölme işlemi uzun ve zor bir işlemken otomatik olarak elamanlara bölme 

işleminde gerekli tek şey model kenarları boyunca eleman yoğunluğunun veya 

eleman büyüklüğünün belirlenmesidir. Ayrıca kullanılan elemanın tipine bağlı olarak 

eleman özelliklerinin de (gerçek sabitler) tanımlanması gerekir [6]. 

Solution kademesi aşağıdakileri içerir [6]: 

• Analiz tipinin belirlenmesi: Çözümde kullanılmak üzere statik, modal, transient 

gibi analiz tipleri belirlenir [6]. 

• Sınır şartlarının tanımlanması: Eğer modele bir yük uygulanırsa, model 

bilgisayarın sanal dünyasında sonsuza kadar ivmelenir. Bu ivmelenme bir sınırlılık 

veya bir sınır şartı uygulanana kadar devam eder. Yapısal sınır şartları genellikle sıfır 

yer değiştirme, termal sınır şartları belirlenmiş bir sıcaklık, akışkan sınır şartları için 

bir basınç olarak tanımlanır. Bir sınır şartı bütün yönlerde (x,y,z) uygulanabileceği 

gibi yalnızca belirli bir yönde de tanımlanabilir. Sınır şartları anahtar noktalarda, 

düğüm noktalarında, çizgi veya alanlarda tanımlanabilir. Sınır şartı, simetri veya 

antisimetri tipinde de olabilir. 
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• Yüklerin uygulanması: Yüklemeler gerilme analizlerinde noktasal bir basınç veya 

yer değiştirme, termal analizlerde sıcaklık, akışkan analizlerinde hız formunda 

olabilir. Yükler bir noktaya, bir kenara, bir yüzeye ve hatta toplam cisme 

uygulanabilir. Yükler model geometrisi ve malzeme özelliklerinde kullanılan birim 

cinsinden tanımlanmalıdır. 

• Çözüm: Bu kısım tamamen otomatiktir. Genel olarak bir sonlu elemanlar çözücüsü 

üçe ayrılır. Bunlar ön-çözücü, matematik motoru ve son-çözücüdür. Ön-çözücü 

modeli okur ve modeli matematiksel şekilde formülüze eder. Preprocessing 

kademesinde tanımlanan bütün parametreler ön-çözücü tarafından kontrol edilir ve 

herhangi bir şeyin eksik bırakıldığını bulursa matematik motorunun devreye 

girmesini engeller. Model doğruysa, çözücü devreye girerek eleman direngenlik 

matrisini oluşturur ve yer değiştirme, basınç gibi sonuçları üreten matematik 

motorunu çalıştırır. Matematik motoru tarafından üretilen sonuçlar son-çözücü 

kullanılarak düğüm noktaları için deformasyon miktarı, gerilme, hız gibi değerler 

üretilir [6].  

Postprocessing kademesi aşağıdakileri içerir: 

• Bu bölüm; sonuçların okunduğu ve yorumlandığı bölümdür. Sonuçlar; tablo 

seklinde, kontur çizimler seklinde veya deforme olmuş cisim biçiminde sunulabilir. 

Ayrıca animasyon yardımı ile modelin yük altındaki davranışı gözler önüne 

sunulabilir. Yapısal tipteki problemlerin sunulmasında kontur grafikler genellikle en 

etkin yöntem olarak kullanılır. Postprocessor, x, y, z koordinatlarında hatta koordinat 

ekseninde belli bir açıdaki gerilme ve birim şekil değiştirmelerin hesaplanmasında 

kullanılabilir. Etkin gerilme ve birim şekil değiştirme sonuçları ile akma gerilmesi ve 

şekil değiştirme sonuçlarını da görmek mümkündür. Bunun dışında birim şekil 

değiştirme enerjisi, plastik şekil değiştirme miktarı da kolaylıkla görsel olarak elde 

edilebilir. Sonuçlar görsel olarak çok etkileyici bir biçimde kontur grafikler olarak 

rahatlıkla elde edilebilse de sonuçların kalitesi modelin fiziksel problemi gerçekte ne 

kadar yansıttığına ve dolayısıyla analizi yapılan modelin kalitesine bağlıdır. Başarılı 

bir analiz için dikkatli bir planlamanın yapılması zorunluluğu göz ardı edilmemelidir. 
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5.6.1 Ansys Ara Yüzü 

 

Şekil 5.8 : Ansys ana ekranı. 

Araç Menüsü: ANSYS oturumu süresince kullanılabilir olan dosya kontrolü, 

seçimler, grafik kontrolleri ve parametreler gibi fonksiyonlar içerir. 

Ana Menü: Preprocessor, solution, postprocessor ve dizayn optimizeri tarafından 

organize edilen temel ANSYS fonksiyonlarını içerir. Bu menüde en önemli 

modelleme komutları bulunur [7]. 

Komut Satırı: Bu pencereden komutların direk olarak girilebilmesine imkan tanınır 

ANSYS Toolbar: Bu bölüm çok sık olarak kullanılan ANSYS komut ve fonksiyon 

düğmelerini içerir ve özellestirilebilir. 

Grafik Alan: Grafiklerin gösterildiği ve grafiksel işaretlemenin yapıldığı yerdir. Bu 

pencerede modelin oluşturulması esnasında yapının farklı kademelerdeki durumları 

izlenebilir. Aynı zamanda, analiz sonuçlarının grafiksel olarak verildiği yerdir. 

Çıktı Penceresi: Verilerin listelenmesi gibi programdan çıkan text formatındaki 

bilgilerin gösterildiği yerdir. Genellikle açılısta grafiksel kullanıcı arayüzünün 

arkasında ortaya çıkar ancak istenirse ön tarafa çekilebilir. 
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Standard Araç Menüsü: Sık olarak kullanılan ANSYS komutları düğmelerini içerir. 

Analiz Durum Bilgisi: Grafiksel kullanıcı arayünün alt tarafına yerlesmistir ve 

analizin durumu hakkında bilgiler içerir [6]. 

5.6.2 Ansys Dosyaları 

Genel olarak dosya adları su sekilde olusturulur: (ðs Adı).(Dosya Tip Eki) 

Dosya Adı Tip Açıklama 

file.db Binary Veri tabanı dosyası 

file.dbb Binary Veri tabanı dosyası yedeği 

file.log ASCII ANSYS oturumu süresince kullanılmıs komutların listesi 

file.err ASCII Hata ve uyarı mesajlarının listesi 

file.out ASCII ANSYS islemlerinin çıkıs listesi 

file.rst Binary Yapısal veya ikili analiz sonuç dosyası 

file.rth Binary Termal analiz sonuç dosyası 

file.rmg Binary Manyetik analiz sonuç dosyası 

file.emat Binary Eleman matrisleri dosyası 

5.6.3 Ansys Menüleri 

5.6.3.1 Araç Menüsü 

Bu menü, aşağıda açıklanan şekilde alt menülerden oluşmuştur [6]. 

• File: 

Bu kısımda yeni bir çalışmaya başlama, daha önceden kaydedilmiş dosyaları 

çağırma, yapılan yeni çalışmayı kaydetme ve farklı bir yere kaydetme, çalışmanın 

adını değiştirme, diğer CAD programlarında tasarlanmış dosyaların açılabilmesi gibi 

işlemler yapılmaktadır. 
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Şekil 5.9 : File menüsü. 

• Select: 

Model üzerinde çalışırken bazen bazı kısımların (alanlar, hacimler v.b.) genel 

görünümden ayrı olarak incelenmesi gerekir. Ayrı görüntülenmesini istediğimiz 

kısımları buradan seçebiliriz. 

 

Şekil 5.10 : Select menüsü. 

• • • • List: 

Bu menü sayesinde hazırlanan model üzerindeki nokta, çizgi, alan, hacim, eleman, 

kuvvet, basınç, malzeme özellikleri ve ana serbestlik dereceleri yani sonuçların 

okunması ve dökümü buradan elde edilir. 
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Şekil 5.11 : List menüsü. 

• Plot: 

Modelin nokta, çizgi, alan gibi elemanlarının gösterilmesi sağlanır. 

 

Şekil 5.12 : Plot menüsü. 

• Plot Controls: 

Modelin grafik ekrandaki görünüm açısının değişimi, perspektif görüntü veya 

istenilen şekillerde animasyon ve görüntüleri alınması sağlar. Ayrıca ANSYS' in 

çeşitli renk ve görüntü ayarlan buradan yapılır. 
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Şekil 5.13 : Plot control menüsü. 

Pan / Zoom/ Rotate: Grafik penceresinde mevcut olan modeli ya da geometriyi 

küçültüp büyütebilmemizi sağa sola hareket ettirebilmemizi ve döndürebilmemizi 

sağlar. Bu özellik, istediğimiz özelliklerin daha detaylı görülebilmesini sağlar. 

 

Şekil 5.14 : Pan, zoom, otate paneli. 

Numbering: Buradan açılan pencerede keypoint’ lere, line’lara, area’lara, volume’ 

lere, node’lara numara verilerek istenilen keypoint, line, area, volume, node’ un 

seçilerek detaylı görüntülenmesi sağlanabilir. 
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Style: Bu menünün altındaki komutlarla ekranın arka rengini, modelin rengini, 

pencere rengini, modelin yüzey rengini, grafik rengini, yük ve kuvvet renklerini 

buradan değiştirebiliriz. 

• Work Plane: 

Başlangıçta kullanılan kartezyen koordinat sistemi bu menü yardımıyla kutupsal 

veya kullanıcı eksen takımlarına dönüştürülebilir. 

 

Şekil 5.15 : Work plane menüsü. 

• Menu Controls: 

Ekranda kullanılan pencerelerin ayarlanmasına, kullanılmayanların gizlenmesine 

olanak sağlar. 

 

Şekil 5.16 : Help menüsü. 
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• Help: 

Programın her bölümü için bilgi içeren yardım menüsüdür. 

 

Şekil 5.17 : Help menüsü. 

5.6.3.2 Ansys Ana Menü 

• Preferences 

Analiz tipi belirlenir. Böylece bundan sonra karsımıza bu analiz ile bilgiler 

gelecektir. Belirlenmezse tüm bilgiler gelir [6]. 

 

Şekil 5.18 : Preferences menüsü. 
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• Preprocessor 

Geometrik modelin oluşturulması, eleman tiplerinin malzeme özelliklerinin ve birim 

sisteminin belirlenmesinde, sınır şartlarının oluşturulması ve elemanlara ayırma gibi 

işlemler yapılır. 

 

Şekil 5.19 : Preporcessor menüsü. 

• Solution 

Oluşturulan modeli mesnetleme, modele basınç, kuvvet, moment, sıcaklık, ısı akısı 

gibi sınır şartları verilir ve çözümlenmesi yapılır. 

 

Şekil 5.20 : Solution menüsü. 

• General Postprocessing 

Elde edilen sonuçlar değerlendirilir. Gerilme, sıcaklık gibi dağılımlar hem model 

üzerinde hem de grafiksel olarak görülebileceği menüdür. 
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Şekil 5.21 : General postprocessing menüsü. 

5.6.3.3 Elemanlara Bölme 

Sonlu elemanlar çözümünün gerçekleştirilebilmesi için eleman ve düğüm noktalına 

noktalarına ihtiyaç duyarız. Elemanlara bölme işlemi de katı modelin eleman ve 

düğüm noktaları ile doldurulması işlemidir.  

Burada geometri için uygun sayıda alt elemana böleme işlemi gerçekleştirilir. 

Önemli olan nokta analizi yapılan yapının ne kadar homojen olduğudur. Yapıyı 

mümkün olduğunca daha fazla parçaya bölmek sonucun doğruluk derecesinde 

iyileşme sağlar fakat işlem hızını düşürür ve daha yüksek donanıma ihtiyaç 

duyulmasını gerektirir. Bu sebepten dolayı öncelikler göz önüne alınarak uygun 

sayıda parçaya bölünmelidir. 

Diğer bir husus ise alt elemanların geometrisinin tüm parçayı düzgün bir şekilde 

kapsaması gerekmektedir. 

Đlgili menü; 

 

Şekil 5.22 : Mesh menüsü. 
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5.6.3.4 Ansys Paket Programıyla Bir Kabuk Elemanının Analizi 

Bu bölümde ankastre mesnetli ince, iztropik plakanın, düzgün yayılı yük etkisi 

altında sehim ve gerilme analizleri yapılacaktır. Numune ve özellerikleri bölüm 

4.3’te verilmiştir. Analiz çıktıları ek A’da yer almaktadır. Burada analizin 

adımlarının gösterilmesinin ardından sadece sonuçlar tabloda verilecektir. 

1) Programın Çalıştırılması; 

programı başlatmak için başlat menüsünden Ansys 11.0 sekmesine gelinir ve burdan 

Ansys sekmesi seçilir. 

 

Şekil 5.23 : Program çalıştırma menüsü. 

2) Eleman tipinin belirlenmesi; 

Ekranın sol tarafında bulunan menüden preprocessor seçilerek, özellik atama 

penceresinin açılması için add/edit/delete seçeneği tıklanır. Burada sonlu eleman 

atamanın yanı sıra atanmış eleman üstünde değişiklik ve silme işlemleri menüdende 

görüleceği üzere yapılabilmektedir. 

 

Şekil 5.24 : Eleman tipi seçim menüsü. 



 
82 

Paket programın eleman arşivinde bulunan elemanlardan analiz edeceğimiz yapı ince 

bir plaka olduğu için shell elemanı seçilerek burdan alt seçeneklere ulaşılır. Burada 

problem için en uygun eleman elastic 4node 63 yapısıdır. 

 

Şekil 5.25 : Eleman tipi seçim penceresi. 

Shell 63; 

Bu eleman hem eğilme hemde membran özelliklerine sahiptir. Eleman plaka normali 

doğrultusundaki yüklemelere uygundur. Her bir nodun x,y ve z eksenlerinde öteleme, 

ayrıca bu eksenlerde dönme rijitliğine sahip için altı serbestlik derecesini bünyesinde 

barınırmaktadır. Aynı zamanda yüksek sehim değerlerinin hesabında da 

kullanılabilme imkanı vardır. 

Aşağıdaki şekilde elemanın geometrisi ve koordinat eksenleri gösterilmiştir. Eleman 

dört nod, dört kalın, rijitliği ve orthotopik özellikleriyle tanımlanır. Ortotropik 

özellikler elemanın sahip olduğu koordinat eksenleri doğrultusunda değişen 

özelliklerdir. 

Kalın ifade edilirken eğer parçanın koordinat eksenleri doğrultusunda kalınlık değeri 

değişmiyorsa sadece TK(I) değerine kalınlığı girmek yeterlidir. Ancak parça 

değişken bir kalınlığa sahip ise dört kalınlık değerinide girmek zorunludur.  

Yükleme nod veya elemanlar üstünde olabilmektedir. Eğer yükleme durumu kenarlar 

üzerinde gerçekleşiyorsa birim kenar uzunluk basına düşen kuvvet girilmelidir. 

Yükleme plakanın yüzen alanına etkiyorsa buarada oluşan basınç değerini girmek 

gerekir. 
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Şekil 5.26 : Shell 63 elemanı ve koordinat eksenleri. 

3) Kabuk elemanın kalınlığının tanımlanması; 

Sonlu eleman tipi seçildikten sonra bu elemana ait karakteristik özelliklerin girdisi 

için şekil 5.29’da görüldüğü üzere menüden ilgili seçenek tıklanır ve özellik 

tanımlama penceresine ulaşılır. 

 

Şekil 5.27 : Kalınlık tanımlama menüsü. 

Shell 63 elemanın özelliklerinde belirtildiği üzere, analizi yapılacak parçanın 

kalınlığı sabit olduğu için sadece TK(I)’ya kalınlık değerini atamak yeterlidir. Şekil 

5.30’da ilgili pencere ve atama değeri verilmektedir. 
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Şekil 5.28 : Kalınlık tanımlama penceresi. 

4) Malzeme özelliklerinin tanımlanması; 

Malzemenin mekanik yada termal özelliklerini tanımlamak için malzeme özellikleri 

menüsünden (metarial properties) malzeme modeli oluşturmak için malzeme modeli 

(metarial models) seçeneği seçilerek özellik atama penceresine ulaşılır. Şekil 5.31 

malzeme özellikleri menüsünü göstermektedir. 

 

Şekil 5.29 : Malzeme özellikleri tanımlama menüsü. 
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Şekil 5.30 : Eleman özellikleri tanımlama penceresi. 

Şekil 5.32’de görüldüğü üzere çelik için elastisite modülü ve poission oranları SI 

birim sistemine göre girilir. 

5) Geometrinin tanımlanması; 

Burada oluşturulacak geometri dikdörtgen bir plakadır. Daha önce üçüncü boyuttaki 

malzeme kalınlığılığı elemana atandığı için kabuk elemanın yüzey alanını 

oluşturmak geometrisinin elde edilmesi için yeterli olcaktır. Şekil 5.33’te görüldüğü 

üzere ilgili menüden köşegen noktaları oluşturma seçeneği tıklanarak şekil 5.34’teki 

tanımlama penceresine ulaşılır. 

 

Şekil 5.31 : Geometri oluşturma menüsü. 
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Şekil 5.32 : Geometri oluşturma penceresi. 

Kenar uzunlukları ve başlangıç referans noktası pencerede ilgili kutulara girilerek 

istenilen plaka şekli oluşturulur. 

6) Geometrinin alt elemanlara bölünmesi; 

Sonlu elemanlar prensibi gereği analizi yapılacak yapının daha küçük alt elemanlara 

bölünmesi gerekmektedir. Bu alt elemanların büyüklüğü ve şekli sonuçları direk 

olarak etkilemektedir. Şekil 5.35’te alt eleman büyüklüğümü ayarlamak ile ilgili 

menü verilmektedir. Buradan tüm çizgiler komutu (all line) seçilerek kenar 

uzunlukları 10 olan daha küçük parçalara bölme işlemi gerçekleştirilmiştir. Dana 

sonra şekil 5.36’daki menü vasıtasıyla anlt elemanlara bölünecek yapı yüzey alanı 

olduğu için alan komutu (areas) yardımıyla, 10 birim boyutundaki küçük doğru 

parçalarına bölünmüş kenarlar bölünme yerlerinden birleştirilerek düğüm noktaları 

oluşturulmuştur. Böylece alt elemanlara bölünme işlemi yüzeye uygun bir biçimde 

gerçekleştirilmiştir. 
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Şekil 5.33 : Alt eleman boyutu tanımlama menüsü. 

 

Şekil 5.34 : Alt elemanlara bölme menüsü. 

7) Mesnetlerin tanımlanması; 

Şekil 5.37’teki ilgili menüden mesnet türü ve yeri atanmaktadır. Đlk olarak mesnet 

yeri kenar boyunca olduğu için kenar boyunca (on lines) komutu seçilerek tanımlama 

yapılmış ve ardından şekil 5.38’de gösterilen mesnet türü tanımlama peneceresinden, 

tüm kenarlar ankastre mesnetli olduğu için all dof komutu seçilerek mesnetler 

oluşturulmuştur. 
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Şekil 5.35 : Mesnet tanımlama menüsü. 

 

Şekil 5.36 : Mesnet tanımlama penceresi. 

8) Yüklerin tanımlanması; 

Bu problemdeki yükleme hali plakanın yüzey normali doğrultusunda etkiyen düzgün 

dağlımlı yayılı yüktür. Şekil 5.39’daki ilgili menüden basınç (pressure) seçeneği 

seçilerek şekil 5.40’taki yük tanımlama penceresine ulaşılır ve yükleme yapılır. 
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Şekil 5.37 : Mesnet tanımlama penceresi. 

 

Şekil 5.38 : Yük tanımlama penceresi. 

9) Yapının çözdürülmesi; 

Şekil 5.41 de görülen menüden current ls komutu ile yapı çözdürülür. Çözüm hızı 

yapının karmaşıklığına, içinde barındırdığı alt eleman sayısına ve bilgisayarın 

performansına bağlıdır. 
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Şekil 5.39 : Çözüm menüsü. 

10) Sonuçların Alınması; 

Şekil 5.42’deki menü vasıtasıyla sonuçların çıktıları ekrana alınabilir. Burdaki 

menüde abartılı bir gösterimle yükleme öncesi ve sonrası geometrideki değişim ve 

sehim değerleri verilmiştir. 

 

Şekil 5.40 : Sonuç izlem menüsü (deformasyon). 
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Şekil 5.41 : Şekil değişimi sonuç çıktısı. 

Şekil 5.44 ise plaka üzerinde oluşan gerilmeleri görmek için kullanıcalacak menüyü 

göstermektedir. Buradan görülmek istemen gerilme bileşenleri seçilir. Burada bileşik 

gerilme hali için Von Mises teoremini seçilmiştir. 

 

Şekil 5.42 : Gerilme sonuçları için kriter seçim menüsü. 

Şeklil 5.45 Von Mises teoremine göre gerilme dağılımını farklı renkler ile plaka 

üzerinde göstermektedir.Kırmızıdan yeşile doğru değişen bölge kritikten daha az 

krıtik bölgeye doğru değerleri görsel olarak vermektedir. Kırmızı en kritik bölge 

yeşil ise gerilme yönünden en rahat bölgedir. 
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Şekil 5.43 : Gerilme sonuç çıktısı (von misses teoremine göre). 

Yukarıda anlatılan işlem prosedürene göre bölüm 4.3’te verilen plakaların sonlu 

elemanlar yöntemiyle elde edilmiş sehim değerleri aşağıdaki tablolarda verilmiştir. 

Çizelge 5.1 : Kare plaka için farklı kalınlıkarda SEM yöntemiyle elde edilen semin 
değerleri. 

Levha 

Numarası 

Kalınlık(t) 

mm 

Yayılı Yük(p) pa Sehim mm 

1 1,5  49,11903895.10−  1,167  

2  2  49,5039637.10−  0,513244  

3  2,5  49,88888845.10−  0,273424  

4  3  31,02738132.10−  0,164391  

Çizelge 5.1’de kenar oranı bir olan plakanın diğer tüm değişkenleri sabit tutularak 

sehim değerinin kalınlığa göre değişimi verilmiştir. Burada yükleme değerindeki 
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küçük artımlar kalınlığın artımıyla meydana gelen plaka ağırlığının değişmesinden 

kaynaklanmaktadır. 

Çizelge 5.2 : Kenar oranı 2 olan plaka için farklı kalınlarda SEM yöntemiyle elde 
edilen semih değerleri. 

Levha 
numarası 

Kalınlık(t) 
mm 

Yayılı Yük(p) pa Sehim mm 

5  2  49,5039637.10−  0,064039  

6  2,5  49,88888845.10−  0,034114  

7  3  31,02738132.10−  0,02051  

Çizelge 5.2’de kenar oranı iki olan plakanın diğer tüm değişkenleri sabit tutularak 

sehim değerinin kalınlığa göre değişimi verilmiştir. Burada yükleme değerindeki 

küçük artımlar kalınlığın artımıyla meydana gelen plaka ağırlığının değişmesinden 

kaynaklanmaktadır. 

Çizelge 5.3 : 3 mm kalınlığında plakanın farklı kenar oranları için SEM yöntemiyle 
elde edilen sehim değerleri. 

Levha 
numarası 

Kenar 
oranı(b/a) 

Kalınlık(t) 
mm 

Yayılı Yük(p) pa Sehim mm 

8  1 3  31,02738132.10−  0,164391  

9  1,2  3  31,02738132.10−  0,224074  

10  1,4  3  31,02738132.10−  0,268647  

11 1,6  3  31,02738132.10−  0, 298743  

12  1,8  3  31,02738132.10−  0,3177717  

13  2  3  31,02738132.10−  0,328979  

Çizelge 5.3 te farklı kenar oranlarında, diğer tüm özellikler sabit tutularak sehimin 

kenar oranına göre değişimi incelenmiştir. 
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6.  SONUÇ VE ÖNERĐLER 

Çizelge 6.1 ile verilen değerler kalınlık hariç diğer özellikler sabit tutularak nümerik 

ve sonlu elemanlar yöntemiyle ve nümerik yöntemler ile hesaplanmıştır. Buradan 

görüldüğü üzere değerler arasındaki fark hesaplanan sehime oranla oldukça küçük 

kalmaktadır. Tutarlılık mertebesini tanımlamak için nümerik çözüm ile elde edilmiş 

sonuc ve sonlu elemanlar ile elde edilmiş sonuç arasındaki oranı dikkate aldığmızda 

değerler 0,999 mertebesinde çıkmatadır. Buda sonlu elemanlar yönteminin bu halde 

sonucu nerdeyse birebir temsil ettiğini göstermektedir. 

Çizelge 6.1 : Kare plaka için farklı kalınlıklarda nümerik ve SEM yöntemiyle elde 
edilen değerlerin karşılaştırması. 

Levha 
numarası 

Nümerik Çözüm SEM  Fark 

1 1,168450324  1,167  31,450324.10−  

2  0,513745241  0,513244  45,01241.10−  

3  0, 27369211945  0,273424  42,6811945.10−  

4  0,164551865  0,164391  41,60865.10−  

Çizelge 6.2’de yapılan karşılaştırmada ise yine değerler birine çok yakındır. Yakınlık 

oranına bakıldığında 0,996 mertebesinde sonlu elemanlar yöntemi nümerik çözümü 

temsil etmektedir. 

Çizelge 6.2 : Kenar oranı 2 olan plaka için farklı kalınlıklarda nümerik ve SEM 
yöntemiyle elde edilen değerlerin karşılaştırması. 

Levha 
numarası 

Nümerik 
Çözüm 

SEM  Fark 

5  0,0642678151  0,064039  42,288151.10−  

6  0,03423514375  0,034114  41, 2114375.10−  

7  0,02058313789  0,02051  57,31378910−  

Çizelge 6.3’de yapılan karşılaştırmada yakınlık oranı elde edilen ilk sonuçta 0,999 

mertebesindedir, son karşılaştırmada ise 0,998 mertbesine düşmüstür. Fakat yinede 

mükemmel bir şekilde nümerik çözümü temsil etmektedir. 
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Çizelge 6.3 : 3 mm kalınlığında plakanın farklı kenar oranları için nümerik ve SEM 
yöntemiyle elde edilen sehim değerlerinin karşılaştırması. 

Levha 
numarası 

Nümerik 
Çözüm 

SEM Sehim mm 

8  0,1645518847  0,164391  41,608847.10−  

9  0, 2244229307  0,224074  43.489307.10−  
10  0,2690093821  0,268647  43,623281.10−  

11 0, 2991721419  0, 298743 44,291419.10−  

12  0,3181171961  0,3177717  43,454961.10−  

13  0,3293310062  0,328979  43,520062.10−  

Çizelge 6.1 ve Çizelge 6.2 ile elde edilen veriler, Çizelge 6.3 ile verilen değerlere 

yakınlık göstermektedir. Bu durumda değişkenin kenar oranları olması halinde de 

sonlu elemanlar yöntemi güvenilir bir çözüm yöntemidir. 

Mühendislik kabulleri çerçevesinde sonlu elemanlar yönteminin bu problem için 

uygulanmasına herhangi bir sakınca yoktur. 
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EK A.1  

 

Şekil A.1 : Levha 1 için sehim analizi. 

 

Şekil A.2 : Levha 1 için gerilme analizi. 
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Şekil A.3 : Levha 2 için sehim analizi. 

 

Şekil A.4 : Levha 2 için gerilme analizi. 
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Şekil A.5 : Levha 3 için sehim analizi. 

 

Şekil A.6 : Levha 3 için gerilme analizi. 
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Şekil A.7 : Levha 4 için sehim analizi. 

 

Şekil A.8 : Levha 4 için gerilme analizi. 
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Şekil A.9 : Levha 5 için sehim analizi. 

 

Şekil A.10 : Levha 5 için gerilme analizi. 
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Şekil A.11 : Levha 6 için sehim analizi. 

 

Şekil A.12 : Levha 6 için gerilme analizi. 
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Şekil A.13 : Levha 7 için sehim analizi. 

 

Şekil A.14 : Levha 7 için sehim analizi. 
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Şekil A.15 : Levha 8 için sehim analizi. 

 

Şekil A.16 : Levha 8 için gerilme analizi. 
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Şekil A.17 : Levha 9 için sehim analizi. 

 

Şekil A.18 : Levha 9 için gerilme analizi. 
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Şekil A.19 : Levha 10 için sehim analizi. 

 

Şekil A.20 : Levha 10 için gerilme analizi. 
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Şekil A.21 : Levha 11 için sehim analizi. 

 

Şekil A.22 : Levha 11 için gerilme analizi. 
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Şekil A.23 : Levha 12 için sehim analizi. 

 

Şekil A.24 : Levha 12 için gerilme analizi. 
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Şekil A.25 : Levha 13 için sehim analizi. 

 

Şekil A.26 : Levha 13 için gerilme analizi. 
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