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OZET

KURESEL CEKIRDEKLERDE BETA BOZUNMASININ FERMI
MATRIS ELEMANLARININ HESAPLANMASI

CALIK, Abdullah Engin

Doktora Tezi, Fizik Bolimii
Tez Yéneticileri: Dog. Dr. Murat GERCEKLIOGLU
Dog. Dr. Cevat SELAM
Temmuz 2009, 212 sayfa

Bu calisgmada, Cabibbo Kobayashi Maskawa (CKM) karigim
matrisinin tniterligi, cift-¢ift ¢ekirdeklerin taban durumlarinda izospin
karisimlari, izobar analog rezonans (IAR) durumlarin izospin yapisi ve
Ft degerleri 0" — 0" siiperizinli Fermi beta gecisleri {izerinde
calisilarak incelendi. CKM karigim matrisinin 7, elemaninin sayisal

degeri standart prosediir izlenerek hesaplandi. Daha 6nceki ¢aligmalardan
farkli bir metot kullanilarak, Coulomb kuvvetlerine bagli izospin
bozulmas1 daha dogru bir sekilde elde edildi. izospin bozulmasindan
dolay1r kabuk modeli Pyatov metodu ile restore edildi ve gecis matris

elemanlar1 Rastgele Faz Yaklasimi (RPA) araciligtyla bulundu.

Anahtar Sozciikler: Siiperizinli beta gecisleri, beta gecis matris

elemanlari, izospin bozulmasi, CKM matrisi, izospin karigimi.



VI



VI

ABSTRACT

CALCULATION OF THE FERMI MATRIX ELEMENTS OF THE
BETA DECAY IN SPHERICAL NUCLEI

CALIK, Abdullah Engin

PhD in Physics
Supervisors: Assoc.Prof. Dr. Murat GERCEKLIOGLU
Assoc.Prof. Dr. Cevat SELAM
July 2009, 212 pages

In this study, the unitarity of the Cabibbo Kobayashi Maskawa
(CKM) mixing matrix, the isospin admixtures in the nuclear ground
states of the even-even nuclei, the isospin structure of the isobar analog
resonance (IAR) states and the Ft values have been investigated by
studying on the 0" — 0" superallowed Fermi Beta decays. The

numerical value of the V, element of the CKM mixing matrix has been

calculated following the standart procedure. Using a different method
from the those of the previous studies, the effect of the isospin breaking
due to the Coulomb forces has been evaluated more accurately. Here, the
shell model has been modified by Pyatov’s restoration because of the
isospin breaking and the transition matrix elements have been found by

means of the Random Phase Approximation (RPA).

Keywords: Superallowed beta decays, beta decay matrix elements

isospin breaking, CKM matrix, isospin mixing.
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1. GIRiS

Beta (/) bozunmalari, alfa ve gama bozunmalari ile birlikte

niikleer fizik caligmalarinin baslamasinda ve siirdiiriilmesinde biiyiik rol
oynamislardir. Ayn1 zamanda beta bozunmalar1 ¢ekirdek yapisinin temel
olarak anlasilmasinda da ¢ok onemlidir. Beta bozunmalar ilk gézlenen
radyoaktif olaylardan biri olmasina ragmen hala giincelligini
korumaktadir. Gerek deneysel, gerekse teorik calismalar tiim hiziyla
giiniimiizde de devam etmektedir.

Cekirdeklerdeki beta gecisleri teorik olarak incelendiginde, bu
gecislere sebep olan etkin etkilesme kuvvetleri olarak niikleonlar
arasindaki spin ve izospin etkilesme kuvvetleri alinir. Genellikle, bu etkin
etkilesme kuvvetlerinin giicii, kuplaj sabiti denilen bir keyfi parametre
aracilifiyla temsil edilir. S6z konusu parametreler beta gecislerine ait
olan teorik ve deneysel degerlerin birbirleri ile karsilastirilmasi ile
bulunur.

Cekirdek kuvvetlerinin etkisi niikleonlarmm proton veya nétron
olup olmamasina bagli olmadigi icin niikleer kuvvetler yiikten
bagimsizdir (Krane, 2001). Notron ve proton tek bir pargacigin (niikleon)
iki degisik goriintiisii gibi disiiniiliip, izospin (izotopik spin) kuantum
sayis1 ile gosterilmektedir. Buna gore c¢ekirdek kuvvetleri izotopik
invaryanttir. Fakat baz1 ¢ekirdeklerde izospin simetrisi bozulur, izospin
karisimlar1 meydana gelir. Izospin simetrisinin bozulmasi protonlar
arasindaki karsilikli elektromanyetik etkilesmenin sonucu ortaya cikar.
Daha dogrusu buna Coulomb potansiyelinin ¢ekirdek boyunca degismesi

neden olur (Bohr and Mottelson, 1969). Ozellikle izospin yasakli beta



2

gecislerini aciklamak icin uygun ¢ekirdeklerin taban durumlarinin
izospin karigimlarinin hesaplanmasi gerekir. Ciinkii bu tiir gecislerin
varligina bu karisimlar sebep olur.

Cekirdekteki izospin karigimlarinin bilinmesi, parcacik fiziginin
temelini olusturan standart model (SM) ig¢indeki kuark karisimlarinin
elde edilmesinde; taban durumlarinin izospin karigimlarinin bilinmesi de
beta gecislerinde elde edilen zayif etkilesme sabitinin bulunmasinda,
izobar analog durumlarin (IAR) seviyelerinin enerjilerinin ve enerji
genisliginin bulunmasinda, izomultiplet seviyelerin enerjilerinin elde
edilmesinde ¢ok dnemli rol oynamaktadirlar (Pyatov et al., 1979).

Cekirdeklerin taban durumlarindaki izospin karisimlari bir ¢ok
farkli modelde hesaplanmistir. Cekirdeklerin hidrodinamik modeline
veya cekirdek kabuk modeline dayanarak hesaplamalar yapilmistir.
Kabuk modeline gore yapilan ¢alismalarda niikleonlar arasindaki kuvvet
ortalama potansiyele bagli secilmistir. Aksi takdirde sistemin baslangigta
izotopik invaryant olan Hamilton operatoriiniin ¢ekirdek kuvvetleri ile
ilgili kisminin izotopik invaryantliktan ¢iktig1 goriilmiistiir. Bu sebepten
cekirdek taban durumlarinda istenmeyen izospin Kkirliligi meydana
gelmigtir. Dolayisiyla izotopik invaryansin bozulmasini Onlemek igin
serbest bir parametre ilave edilmistir (Pyatov et al., 1979).

Benzer sekilde IAR (izobar Analog Rezonans) icin de bir ¢ok
calisma yapilmistir (Pyatov et al., 1979; Ikeda et al., 1963). Teorik olarak
elde edilen degerler deneysel degerlerin ¢ok altinda kalmis ve bir IAR
elde edilememistir. Teorik sonuglar ile deneysel sonuglarin uyum iginde

olmasi i¢in serbest bir parametre ilave edilmistir (Ikeda et al., 1963).
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Ortaya konulacak bu c¢aligmanin Onemi; Pyatov yontemi
kullanilarak, bozulmus izospin simetrisini restore edecek etkin
etkilesmenin formunu ve giic parametresini ortalama alan potansiyeli ile
iligkili olarak belirlemektir. Ayrica, bu yontemle s6z konusu etkilesme
parametresi, keyfiyete yer birakmayacak sekilde, teorik olarak
hesaplanabilecektir. Bu yontem ile daha oOnce yapilan c¢alismalar,
yontemin giivenilirligini ortaya koymustur. Yontemin detaylar1 (Pyatov
and Salamov, 1977)’da verilmistir. Parcacik bazindaki ilk uygulamasi da
(Pyatov et al., 1979)’da yapilmigtir. Donme invaryansi lizerine olan
uygulamasi (Kuliev et al., 2002)’de; ¢ift etkilesme de gdzoniine alinarak
yapilan hesaplarin ayrintilar1 ve '*7**Sh ve '"7*Sn izotoplar iizerine

olan hesaplamalar (Babacan et al., 2004)’de; A = 208 olan ¢ekirdeklerin
incelenmesi (Kiigiikbursa et al., 2004)’de; *®Bi ¢ekirdeginde 17

durumlarinin Gamow-Teller gecislerinin incelenmesi (Babacan et al.,
2005)’de; orta ve agir kiitleli ¢ekirdekler {izerine hesaplamalar (Salamov
et al., 2006)’da; N=Z olan ve A4=50-100 arasinda degisen
cekirdeklerin taban durumlarindaki izospin karigimlar1 (Babacan et al.,
2007)’de; notron bakimindan zengin Te ve Sn izotoplari i¢in beta gecis
ozellikleri de (Salamov et al., 2007)’de incelenmistir. Ayrica yOntem,
niikleer yap1 fiziginde diger simetrilere de uygulanmistir (Cwiok et al.,
1984; Nojarov and Faessler, 1988; Faessler and Nojarov, 1990;
Civitarese and Licciardo, 1990; Sakamoto and Kishimoto, 1990; Cwiok
et al., 1990; Civitarese et al., 1999; Magierski and Wyss, 2000; Kuliev et
al., 2004; Shoji and Shimizu, 2008).

Bu c¢alismada, Woods-Saxon ortalama alanina dayanan kabuk

(shell) modeli kullanilacaktir. Bu modelin verdigi tek parcacik enerjileri
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ve dalga fonksiyonlar1 beta gegislerinin 6zelliklerini incelerken temel
olusturacaktir. Daha sonra pargacik ve kuazipargacik temsilinde kolektif
uyarilmalarin fiziksel Ozellikleri Rastgele Faz Yontemi (RPA) ve
Kuaziparcacik Rastgele Faz Yontemi (QRPA) ile analiz edilecektir.
Ayrica bu yontem ¢ercevesi iginde g¢ekirdek hamiltoniyeninin bozuk
simetrileri Pyatov yontemi ile restore edilecektir. Niimerik hesaplamalar
yapilirken Fortran programlama dili kullanilacaktir.

Bu calismada, kabuk (shell) modeli potansiyelinin izovektor
kismi tarafindan olusturulan izospin kirilmast ayristirilmis ve etkisi
Pyatov restorasyon metodu ile yok edilmistir (Pyatov and Salamov,
1977). Bunun bir uygulamasi olarak parcacik fizigindeki en Onemli
problemlerden bir tanesi olan CKM matrisinin {initerligi arastirilmistir.
Bu matrisin tiniterligini test etmek i¢in varolan birka¢ yoldan bir tanesi
de stiperizinli J”0" — 0" Fermi beta gegisleridir. Siiperizinli Fermi beta
gecisi yapan oniki ¢ekirdek incelenmis, bunlarin gecis matris elemanlart
s0zl edilen yontem dahilinde restore edilerek bulunmustur. Ayrica bu
cekirdeklerin taban durumu izospin safsizliklar1 ve IAR izospin yapilar
hem ¢ift etkilesmeli hem de ¢ift etkilesmesiz olarak incelenmistir.

Bu calismanin 2. boliimiinde izospin, izobarik analog durumlar,
RPA, BCS gibi bazi temel kavram, teori ve yontemler kisaca
anlatilmistir. 3. boliimde Fermi’nin beta bozulma teorisi ve yukarida adi
gecen siiperizinli ve izospin yasakli beta gegislerinin genel 6zellikleri
incelenmistir. 4. boéliimde Pyatov yontemi ile yapilan restorasyonun hem
parcactk hem de kuaziparcacik bazinda nasil yapildigi ayrintili bir
bicimde ¢ikarilmis, Ozdegerlerin, Ozfonksiyonlarin ve  matris

elemanlarinin nasil elde edildikleri de detayli bir bigimde incelenmistir.
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Ayrica bu boliimde izospin karisimlarinin ve IAR izospin yapisinin nasil
bulunduklar1 da ayrintili bir sekilde gosterilmistir. 5. Bolimde CKM
matrisinin iiniterliginin nasil bulundugu, burada siiperizinli beta
gecislerinin  neden ve nasil kullanildiklar1 ve diizeltme terimleri
anlatilmistir. Son boliim olan 6. bolimde ise elde ettigimiz sonuglar

literatiirdeki diger sonuclarla birlikte verilmistir.
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2. BAZI TEMEL KAVRAM, TEORi VE YONTEMLER

Bu bolimde sirasiyla izospin ve izobarik analog rezonans
kavramlar1 ile Rastgele Faz Yaklasimi (RPA) ve Barden Cooper

Schrieffer (BCS) Teorisi’nin genel 6zellikleri kisaca anlatilacaktir.

2.1 izospin (Izotopik Spin)

Cekirdegi meydana getiren niikleonlar arasindaki ¢ekim
kuvvetleri ylike bagl degildir. Yani ndtron-ndtron, proton-proton ve
ndtron-proton  arasindaki  kuvvetler birbirlerine esittir.  Niikleer
kuvvetlerin yiikten bagimsiz oldugunu ifade etmek i¢in yeni bir katsayiya
(yeni bir kuantum sayisina) ihtiya¢ vardir. O halde, nétrona ve protona,

niikleon adi verilen ayn bir tanecigin farkli iki durumu gibi bakilabilir.

Matematik olarak niikleon, iki farkli durumda bulunabilen ve 7 = (J ve

L= (0] baz vektorleriyle temsil edilen 2-boyutlu bir uzayda temsil

edilebilir. Niikleonun spin yukar1 ve spin asagi olmasini temsil edecek
yani notronla proton arasindaki farki anlamak i¢in tanecigin yiki
izotopik spin veya izospin adi verilen bir vektore benzetilmistir (Ring
and Schuck, 1980). Protonla ndtron arasindaki yiik farki, tipki bir spin
vektoriiniin bir alan icindeki uzay kuantumlanmasina benzer sekilde,
izospin vektdriiniin (bizim hayal edip diislindiigiimiiz) izospin uzayinda

kuantumlanmas seklinde kendini gosterir.
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T veya I izospin kuantum sayisini ifade eder. A niikleona sahip

bir ¢ekirdegin toplam izotopik spini,

T=>X1 2.1
seklindedir. Bilesenleri 7(7},T,,T}) veya T (T Y Z) seklinde gosterilir.
Ayrica T, =T, =T, seklinde de ifade edilebilir. Bu ayn1 J (toplam

acisal momentum) sayisina benzemektedir. Ayirt edici olan 7

bilesenidir (Soloviev, 1976);

T,=-1/2  (proton igin),

T,= 1/2  (ndtron i¢in).

Bazi kaynaklarda 7, =-1/2 nétron igin, 7, = 1/2 proton igin
alinmaktadir.

Cekirdegin toplam yiikiinii proton belirler. Cekirdekte Z tane
proton olduguna gore cekirdek yiikii Ze kadardir. Aynmi zamanda
cekirdek yiikiiniin ¢ekirdekteki tiim niikleonlarin yiikleri toplami oldugu

da diisiiniilebilir. Yani;



A

Ze=Yq,=e(-T, + %A) (2.2)

t=1

seklindedir. Buradan hareket ederek,

Z=-T, +1A,
2
T, —lA—z—l(N+Z)—z
L) 2 ’
1
TO:E(N—Z) (2.3)

olarak elde edilir.

Ayrica, g =—e(T, - %) oldugundan hareketle,
.. 1 . 1
Proton i¢in 7, = _5 oldugundan ¢ = _e(_E —)=e,

Nétron i¢in 7, = % oldugundan ¢ = —e(% — %) =0

oldugu rahatlikla gosterilebilir.
Toplam 7 ’yi bulmak ig¢in, herbir niikleonun 7 ’sinin vektorel
olarak toplanmasi gerekir. Bunu yapmak ¢ok zordur. Niikleonlarin hepsi

izotopik uzayda paralel ise;

T=-4 (2.4)
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olur. 7" kendi bileseninden daha kiiciik degerler alamayacagina gore,

T ’nin en kiiciik degeri,
1

olur. 7 ’nin alabilecegi deger araligi,

V-2)
2

<T<

A
> (2.6)
olur (Ring and Schuck, 1980). Bu denkleme gore A =gift ise
T =tamsay1, A =tek ise 7 =yarim tamsay1 olur.

T, izotopik uzayda herhangi bir yone yonebilir. Yani, izotopik
uzayda bir donme invaryansi vardir. Sistem herhangi bir donmeye kars1
degismezdir. Yani l]:I ) ,f J: 0 dir. (1:1 . » guclii etkilesme)

T degeri icin 27 +1 tane hal vardir. Yani 27 +1 tane
dejenerasyon vardir.

Niikleonlar arasinda yalnz giiclii etkilesme olsa, ndtron ve
protonun ayni kiitleye sahip olmasi1 gerekirdi. Ancak, ger¢cek durumda
cekirdekte niikleonlar arasi giiclii etkilesme harici, niikleonlar arasi
elektromanyetik etkilesme de vardir. Bu elektromanyetik etkilesme
T J #0.

izospin uzayinin izotropisini bozar, simetri bozulur; lH .t H

Bu durum ger¢ek duruma karsilik gelir. Hatirlanirsa, adi uzayda
manyetik alan izotropiyi bozarken, izotopik uzayda elektromanyetik

etkilesme izotropiyi bozmaktadir.
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T=1/2 4
Hem yOk Heln var

Sekil 2.1 izomultiplet yapu.

Sekil 2.1°den goriildigi gibi T =% halinde (27 +1) katli dejenerasyon

olur. Elektromanyetik etkilesme varsa bu dejenerasyon ortadan kalkar

(gergek durum budur). Her bir alt durum, 7,’m tek bir degeri ile

karakterize edilir ve farkli izobarlarda goriiliir. Elektromanyetik

2
<< 1 ise reel niikleer haller T ile

etkilesme yeterince kiiciikse -
c

gosterilecek sekilde olur. Yani dejenere hale dogru gidilir. Agir
cekirdeklerde bu kosul (elektromanyetik etkilesmenin kiigiik olmasi)
saglanmamasina ragmen, 7° bu hallere atanabilir. Bu hallere izobarik

analog haller denir.



11

2.2 izobar Analog Durumlar (Isobar Analogue Resonance-IAR)

[zospinin &nemi izobar ¢ekirdekler incelendiginde agikga
goriilmektedir. Izobar ¢ekirdekler aym A’ya , farkli Z ve N ’ye sahip
olan ¢ekirdeklerdir. Kiitle numaralari;; 4=11, 4=16 ve A=21 olan
cekirdeklerin spektrumlar: Sekil 2.2 ve Sekil 2.3’deki gibidir.

Bu cekirdekler birbirlerinin ayna ¢ekirdegidir. 4 =11 ve 4 =21
olan c¢ekirdekler incelendiginde spektrumlarin ne kadar birbirine

benzedigi daha rahat goriiliir. 4 =16 olan izobar ¢ekirdeklere bakilirsa;
' N ’nin nétron sayist N =9 ve proton sayis1 Z = 7 *dir. Taban izospini
T =1 ve T, =—1"dir. Eger '°N ’nin taban durum dalga fonksiyonuna T

izospin yiikseltme operatorii uygulanirsa

(T.7,) = (,-1) = (T,T;) = (1,0)

durumu elde edilir.

Bu durum '°O’nun (N =Z =8) bir durumudur. '°O 'nun taban
durumunun izospini 7 =0 olduguna gére, 7, operatdriiniin '°N “nin

taban durumuna uygulanmasi ile '°O ’nun uyarilmis bir durumu elde
edilmistir. Izospin arttirma operatdrii nétronu protona déniistiirmekten
baska bir degisiklik yapmaz. Bundan baska, niikleer kuvvetlerin yiikten
bagimsiz olmasindan dolayr bu durum niikleer hamiltoniyenin bir

6zdurumudur ve '°O *nun bir durumuna karsilik gelir.
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Sekil 2.2 A =11 ve 4 =21 olan izobar ¢ekirdeklerin spektrumlarinin
kargilagtirilmasi (Wong, 1998).

Bu durum '°N ’nin taban durumu ile benzer ozellikler gosterir ve T,

hari¢ dalga fonksiyonlart 6zdestir. Bu iki durum izospin yiikseltme ve
alcaltma operatorleri ile birbirine doniigebilir. Bu gibi durumlara

birbirlerinin izobar analog durumlari denir (Wong, 1998).
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E /__ //// %
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'/, [1239) O :T=I
16N oy tye) | 165
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Sekil 2.3 A =16 olan izobar ¢ekirdekler. Kesikli ¢izgiler izobar ana

durumlart gostermektedir (Wong, 1998).

log
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2.3 BCS (Bardeen, Cooper, Schrieffer) Teorisi

Bardeen, Cooper ve Schrieffer’in 1957’de siiperiletkenligin
aciklanmasi i¢in gelistirmis olduklar1 BCS teorisi Bohr, Mottelson ve
Pines (1958), Belyaev (1959) ve Migdal (1959) tarafindan cekirdek
fizigine uygulanmistir (Nilsson and Ragnarsson, 1993). Kabuk
modelinde herhangi bir niikleonun, diger niikleonlarin olusturduklari
ortalama alanda hareket ettikleri kabul edilmektedir. Niikleonlar arasi ¢ift
etkilesme etkisi hesaba katilmamustir. BCS teorisinde ¢ift etkilesme de
g6zoniine alimmistir. Bu durumda Hamiltoniyen;

Hy=H, +H (2.7)

pair

seklindedir. Ortalama alan potansiyeli Woods-Saxon veya Nilsson
potansiyelidir (Soloviev, 1976).
Toplam hamiltoniyen ndtron ve proton sistemleri i¢in iki kisma

ayrilabilir;

Hy=H,(n)+H,(p). (2.8)

Cift etkilesme etkisi notron ve proton icin iki parametre ile

belirlenir. G, katsayis1 notron sistemi i¢in, G, katsayisi proton sitemi

icin kullanilir. Bunlara gére Hamiltoniyen;
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HO (n) = Z(EO (S) - /ln )a:aasa - GNza;ra;—as'—as'Jr

. .. (2.9)
HO (p) = Z(EO (V) - /lp )aro-aro— - GZ Zar’Jrar—ar'—ar'Jr

seklinde olur (Soloviev, 1976). E (s) ve E,(r) tek pargacik enerjileridir.

Burada pargacik sayis1 korunmamaktadir. Bu olumsuzlugu gidermek igin

parcacik sayisinin ortalamasi alinir;

).

+
aI”O'aI”O'

> ve Z:rzal<

Buradaki Lagrange carpanlari parcacik sayisinin en azindan ortalama

olarak korunmasini saglar. Lagrange carpanlart 4, ve A, kimyasal
potansiyel olarak adlandirilir (Soloviev, 1976).
Yukarida verilen Hamiltoniyenler iginde verilen a. ve a,

sirastyla parcacik yaratma ve yoketme operatorleridir. Bunlar arasindaki

antikomutasyon bagintilari;

+ _ —
{aso ” aso‘ } - 5ss'5cfo" > {asa > as'o" } - O >

+ + _
{am N7 }— 0

seklindedir (Soloviev, 1976).
Parcacik tasvirinden kuaziparcacik tasvirine geg¢is Bogolyubov
doniigsiimleri ile kiiresel c¢ekirdeklerde su sekilde olur (Nilsson and

Ragnarsson, 1993);
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L =Ual, + ()",
. =U,a,, +()""V.al,

J j m

—m

(2.10)

Bu doniisimler altinda kiiresel c¢ekirdeklerde nétron sisteminin

hamiltoniyeni ve taban durum dalga fonksiyonu (Soloviev, 1976);

Hy(n)= (E())~4,)a,a,, -

Jj.m

(2.11)
ik ;mZm:( D), a e,
W, = jl;!o(Uj 0Vt al, ) v (2.12)
olur. Gap parametresi (Soloviev, 1976);
An:GN;(j%Ujij (2.13)

seklindedir. Ayrica U, V; ve &(j) m’ye bagh degildir.
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seklindedir. Buradaki 5( J ) kuaziparcacik enerjileridir. Boylece, bagimsiz

kuazipargaciklar teorisi temel denklemleri (Soloviev, 1976);

=1 (2.14)

N=Z(j+lj 1- E()-4, (2.15)
j 2 \/Anz )
seklindedir.

2.4 Rastgele Faz Yaklasimi1 (Random Phase Approximation-RPA)

Ikinci kuantumlanma (Ek.1’de genel &zellikleri anlatilmustir) ilk
defa Bogolyubov tarafindan Onerilmistir. Metod genellikle c¢esitli ¢ok-
pargacik problemlerinin ¢ézliimiinde kullanilir. Bu metodun iki temel
degisik sekli vardir. Bunlardan bir tanesi Tamm-Dancoff (TD) metodu
digeri de Rastgele Faz Yaklagimi (RPA) metodudur. TD metodunun ilk
defa Tamm tarafindan kuantum alan teorisinden formulasyonu
yapilmistir. Daha sonra Dancoff tarafindan gelistirilmistir. Metodun
matematik bazi da Fock tarafindan gelistirilmistir. TD metodu
kuazipargacik etkilesmelerini uyarilmis durumlar i¢in hesaba katar, fakat
etkilesmeler taban duruma bir katkida bulunmazlar. Burada bahsedilen

cift-cift ¢ekirdeklerin taban durumu kuazipargacik vakumudur. TD’deki
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bu eksiklik RPA tarafindan giderilmistir. RPA’da kuaziparcacik
etkilesmeleri biitiin durumlarda olmaktadir (Soloviev, 1976).

RPA’da kullanilan kuazipargacik ¢ift etkilesme operatorleri
(Soloviev, 1976);

A(qQ)_ Zo-aqa qo-a
2% (2.16)

A (q,9") = \/—Zdaqa vo

seklindedir. Bunlar arasindaki komutasyon bagintilar1 (Soloviev, 1976);

[A(q q'), A (q2’q2)] qqz qqz 5‘1‘12551‘12
S U440 230" e (2.17)

"o
q N’q m
o",o

[A+ (9.9"), 4" (qz,qé)] =[4(q.9"), 4(q,.45)]= 0

seklindedir. Buradaki / Kronecker ¢ fonksiyonunun bir ifadesidir.
Kuaziparcacik  etkilesmeleri  ¢ift-¢ift ¢ekirdeklerin  taban
durumlarina tesir ederler. Taban durumu dalga fonksiyonu, kuazipargacik
vakumu dalga fonksiyonuna esit degildir, kuaziparcacik sayisindan farkli
(fakat her zaman cift sayida) kiiciik bilesenlere sahiptir. Oyle durumlar
kabul edilir ki taban durumda kuazipargacik sayisinin ortalamasi kiigiik

olur. Yani matematiksel olarak;

)

.
Ay Xy

I
e
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olur. Bu temel kabul olur. Bu kullanilirsa yukarida tanimlanan birinci

komutasyon bagintisinin en sagindaki terim ihmal edilir ve A4(q,q")

operatorleri bozon komutasyon bagintilarint tanimlar. Bu metoda
kuazibozon yaklagimi denir (Soloviev, 1976). Bu durumda yukaridaki

komutasyon ifadesi;
[A(% q),4"(q,,95 )] = 6‘]‘12 5q’q'z + 5qq’z 5q’qz (2.18)

olur. Yeni operatorler, yani fononlar su sekilde tanimlanir (Soloviev,

1976);

1 A _
0, :EZ(V/ZN/A(Q»C]')—(/’;q'A+(C]C]’))
q.9'

(2.19)

+ 1 i + ’ i 4
0" =32 iy 4" (@.4) - piy Alag).
9.4

Buradaki i=1,2,3,... bir fonon durumuna karsilik gelir. l//;q, ve (p;q, kare

matristir.
Cift-cift ¢ekirdegin taban durumu bir fonon vakumu olarak

tanimlanir;

Oy =0. (2.20)
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Bu biitiin 1 durumlan i¢in gegerlidir. Uyarilmis durumlarda bir fonon
durumu Q'w, iki fonon durumu Q'Q;w ...vb. seklinde ifade edilir
(Soloviev, 1976).

Fonon operatorleri Bose tipi komutasyon bagintilarina uyarlar

(Soloviev, 1976);
0.0/ =5, . lerorl=lo o ]=0.

Cift-cift bir sistemin taban durumunun dalga fonksiyonu da su

formdadir (Soloviev, 1976);

Buradaki L normalizasyon faktoriidiir.

NG
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3. BETA BOZUNMASI

Bu bolimde sirasiyla beta bozunmalarinin genel 6zellikleri,
Fermi’nin beta bozunma teorisi, beta gegislerinin secim kurallari, Fermi
ve Gammow-Teller tipi beta gegislerinin ne olduklari, siiperizinli beta

gecisleri ve isospin yasakli beta gecisleri anlatilacaktir.

3.1 Fermi’nin Beta Bozunma Teorisi

Bilinen temel beta bozunmalar1 en basit haliyle su sekilde verilebilir;

B~ bozunmast: ;X —, Y+ +V,+0,

B bozunmast: ; X— 1Y+ " +v, + 0,

Elektron yakalamast: e +/X—, 1Y

B~ bozunmasinda aciga ¢ikan enerji: O . =(J M-, M)c’

B* bozunmasinda agiga ¢ikan enerji: O o = IM—, 1M —2m,)c?

Elektron yakalamasinda agiga cikan enerji: Q, =(;M—, M)c* —E,
(Buradaki E, , K tabakasindaki bir elektronun baglanma enerjisi).

Beta bozunmasinda alfa bozunmalardan farkli olarak o6nceden
cekirdek icinde bulunmayan tanecikler (elektron ve ndtrino)
yayimlanmaktadir. Bu sebeple beta bozunmasi yar1 klasik kavramlarla
aciklanamaz (Tanyel, 1994).

Fermi, gama yayinlanmasinda elektromanyetik alanin oynadigi

role benzer bir elektron-nétrino alanini kabul etmek suretiyle, kuantum
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teorisine dayanan beta bozunma teorisini One slirmiistiir. Bu teoride,
elektronlarin elektromanyetik alanda etkilesmesine benzer sekilde, beta
ve notrinolarin ¢ekirdekteki niikleonlarla bir ¢iftlenme etkilesmesi yaptigi
one siiriiliir. Elektromanyetik etkilesmedeki & c¢iftlenme sabitine benzer,

bir G, yavas etkilesme ciftlenme sabiti ileri siiriiliir. Fermi teorisinde,
elektron ve notrino, cekirdekte bir ndtronun proton haline doniisiimii
sirasinda meydana gelir. Bu olay, bir ¢ekirdekte gama yayimlanmasina
benzetilebilir. Gama fotonu da 6nceden ¢ekirdekte olmadig1 halde gecis
sirasinda meydana gelmektedir (Tanyel, 1994).

Beta gecislerinde, beta gecis ihtimali zamana bagl pertiirbasyon
teorisi ile bulunur. Uyarilmis bir i seviyesinden beta yayinlayarak s
seviyesine gecisi incelenirse, Ferminin altin kuralina gore gecis olasiligi
(Krane, 2001);

2 dn

d
e 3.1)

A:%Uw:HﬂWidT E

seklindedir. Burada H, gecise sebep olan hamiltoniyen operatoriidiir.

w, son seviye, y, ilk seviye dalga fonksiyonu, 3—2 birim enerji bagina

diisen hallerin sayisidir. Geg¢is matris elemani,
H, =M, = j ! H yy dxdydz (3.2)

olmak tizere;
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A= 2_7[ M ? ﬂ (3.3)
h dE
olarak elde edilir.
Fermi’ye gore ndtron, proton ve S~  bozunmasinda

elektromanyetik alan yerine elektron-ndtrino alanmi etkisiyle beta
yayinlanmaktadir. Bu etkilesme ¢ok zayiftir ve kisa zamanda olusur.
Bunun i¢in beta bozunmasindan zayif etkilesme sorumludur.

Momentumu P, ile P, +dP, arasinda olan ve yayinlanan

betalarin birim zamandaki gecis olasiligi veya ge¢is hizi;

1

B 2707 ¢’

A

(5[ 5|8 P (E ey — E,)* P (3.4)

seklindedir (Krane, 2001).
Beta pargaciklar1 yayinlandiktan sonra ¢ekirdegin potansiyelinden

dolay1 olusan Coulomb etkilesmesi ile karsilasir. Cekirdegin yiikii Ze
olduguna gore, Ze yikli ¢ekirdek, ¢ekirdekten yayinlanan S ’lar
hizlandirir fakat B~ ’leri yavaslatir. Oyleyse yukarida verilen birim

zamanda yayinlanan parcacik sayisinin bu etkilesmeleri de hesaba
katmas1 gerekir. Bunun igin bagintinin Coulomb diizeltme terimi

[F (Z E, )J ile ¢arpilmasi gerekir. Bu fonksiyona Fermi fonksiyonu veya

Coulomb diizeltmesi denir. Bu F ’nin isareti S ve [ ’ya gore degisir.

Bu durumda;
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1 NE , X
ﬂ - WKS |Hﬂ|l>‘ F(Z’Eﬂ )Pﬂ (Emax _Eﬁ) dPﬂ (35)
olur.
27n 7e?
F Z’E = ve =T
( ﬁ) 1_6727177 77 + hV

olur. (3.5) denklemindeki integral ¢oziiliirse; momentumun ve enerjinin

boyutsuz olmasi i¢in P = iz , E= E2 alinarak;
mc mc

o by E Ey , dPy
[F2,Ep) Lo (me - =Ly =L = f(Z,E,),  (36)
7 (mc)” mc~  mc mc

Pmax/mc
[F(z,E,)P(E,, ~E,)dP=m' f (3.7)
0

elde edilir. Elde edilen bu sonug (3.5)’te yerine yazilirsa;

1 In2 1
/2 Th'c

M| e f (3.8)

olur. Buradan ;

272°H In2 1
le/2 = 5 4

m c

_ (3.9)
M,
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ve

sabit
2

b,

Ty = (3.10)

olur. Buna “ f¢” fonksiyonu denir.

Elektronlar ve yiiklii parcaciklar elektrostatik etkilegsme
yaptiklarindan ve elektrostatik alanda etkilesme sabiti £ ile
gosterildiginden, c¢ekirdek icerisinde beta bozunmasi zayif etkilesme
gosterdigi igin beta bozunmasinda k sabiti yerine “ G, zayif etkilesme

sabiti kullanilir. Oyleyse;

My =G, [y Hyydv (3.11)
Ve
G, 2 2 >
=5 ‘Mﬂ‘ F(Z,E)P;(E . —E;) dPy (3.12)
olur.

Beta gecislerinde se¢im kurallart;

sabit
2

B

(3.10) denkleminde, ft =

olarak elde edilmisti. Goriildigii

o . . .. 2
gibi ft fonksiyonu matris elemaninin karesi ile ters orantilidir. ‘M ﬂ‘ ne
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kadar biiyiik olursa, f# de o kadar kii¢iik olur. Yani beta gegis olasiligi o

kadar miimkiin olur. Buna izinli gecis denir. ‘M ﬁ‘z ne kadar kiigiik

olursa, f¢’de o kadar biyiik olur. Bu durumda gecis de o kadar
imkansizdir. Buna da yasaklh gecis denir. O halde beta gecisleri matris
elemaninin karesine bagli olmaktadir (Tanyel, 1994).

Beta gegisleri icin f# degerleri 10 ile 10* s arasinda degisir. Bu
nedenle sik sik “log f#” degeri kullanilir. En kiigiik log f# (3-4) degerine
sahip bozunmalara siiperizinli bozunmalar denir (Krane, 2001).

M, nin buyuklugi, elektron-notrino ¢iftinin ¢ekirdekten alip

goturdugi L, (yoriingesel agisal momentum) degerine baghdir. L, nin

1 birim artmasi ile ‘M ﬁ‘z degerinin yaklasik 102-10" kadar kiigiilir,
gecis ihtimali azalir (Tanyel, 1994).

L ;=0 (stiperizinli gegis)

L,=1 (birinci yasakh gegis)

L ,=2 (ikinci yasakli ge¢is) denir.

Beta gegislerinde parite korunmamaktadir.

Beta  bozunmasinda  ag¢isal momentum  korunmalidir;

—

J, =J, +J 2 +S ; olmaldir. Burada esitligin sagindaki terim ana

cekirdegin agisal momentumunu, esitligin solundaki ilk terim (iriin
cekirdegin agisal momentumunu, ikinci terim yayinlanan beta ve notrino
ciftinin toplam a¢isal momentumunu, tigiincii terim de yayinlanan beta ve

ndtrino ¢iftinin toplam spin agisal momentumu ifade etmektedir.
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Eger yaymlanan [ ’nin ve notrinonun spinleri anti-paralel ise bu

5,|=0 olur.

gecise Fermi gecisi denir. O halde toplam spin ‘S’ ﬂ‘ = ‘*

Eger yayinlana [ ’nin ve ndtrinonun spinleri paralel ise bu gegise de

Gamow-Teller gecisi denir.Toplam spin ‘5 ﬁ‘ = ‘E ﬁ‘ + |§V| = % +% =1

olur.

Daha once genel haliyle verilen [ bozunma hamiltoniyeni

niikleer teoride, relativistik olarak Fermi ve Gamow-Teller terimlerinin

toplanmasi seklinde verilir (Soloviev, 1976);

H, JHZT A AT <r)>}
(3.13)

+%{ZT: (7,75): (. (), A+ 7w, <r>)}

Burada 7/, i. ndtronu protona doniistiiren izospin vektor bileseni, Gy ve
Ga kuplaj sabitli vektor ve aksiyal vektor, y, vey; Dirac dperatorlerinin
matris elemanlar, y_,y  sirasiyla elektron ve noétrinoya ait operator

dalga fonksiyonlaridir. Son ve ilk seviyeler arasindaki [ gecislerini

tanimlayan matris eleman1 da sdyle ifade edilir (Soloviev, 1976);

M, =(s|Hli)=M, +M, . (3.14)
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Buradaki M, Fermi, M P Gamow-Teller matris elemanlarini temsil

eder. Ayrica f¢ fonksiyonu, Fermi ve Gamow-Teller matris elemanlarina

bagli olarak (Blin-Stoyle,1969);

PRELY 1
m’c*  GM, " +G:M |’

(3.15)

seklinde ifade edilir.
Secim kurallarindan biri de agisal momentumun korunmasinin
yaninda izospin vektdriiniin de korunmasidir. Izospin se¢im kurallari

olduk¢a oOnemlidir. Se¢im kurallar;; AT =0,=1 ve AT, ==x1 dir

(Soloviev, 1976). izinli Fermi gecislerinin matris elemanin sekli;
(12t xa]i) = (fIL]3) (3.16)

olur ve bunun karesi

2

~T(T+1)-T'T’ (3.17)

Izl

olur. Buradaki 7, operatdrii toplam izospini degistirmez. Boylece Fermi

gecislerindeki se¢im kurali; AT =0 ve AT, = %1 olur (Soloviev, 1976).
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3.2 Siiperizinli Fermi Beta Gegisi

Siiperizinli beta gecisleri ayn1 izospin multipletin bilesenleri olan
durumlar arasinda (birbirinin izobar analog durumlar1 arasinda)
gergeklesir. Gegis J” =07 — 0" durumlar1 arasinda meydana gelir.
Gegis sadece Fermi matris elemani olan M, ’ye baglidir. Gamow-Teller
matris elemant M ,’ya bagl degildir. Se¢im kurallarina goére acisal

momentumu J, =0 olan halden J, =0 olan hale Gamow-Teller gegisi

yasak oldugu icin M , = 0’dir Gegis sadece Fermi matris elemanina baglh
oldugu i¢in bu matris elemani niikleer dalga fonksiyonunun ayrintilarina
bagvurulmadan dogru bir sekilde hesaplanabilir. Bu nedenle, (3.15)
denklemi goz Ontine alindiginda, bir gegisin fi degerleri dogru bir
sekilde verilirse G, degerleri biiyiik bir giivenirlikle bulunabilir (Blin-
Stoyle,1969).

Zayif etkilesme teorileri i¢in G, 'nin ¢ok Onemli olmasindan

dolay1 bu gecisler icin deneysel ve teorik ¢alismalar birbirlerine bagli bir
sekilde yapilirlar (Blin-Stoyle,1969).

Simdi bir J*=0" = 0" olan, 0" ve T =1 izospinli ‘O "nun
taban durumundan, 0"ve T =1 izospinli '*N ’nin birinci uyarilmis
durumuna siiperizinli S* gegisine bakilirsa;

[k ve son durumlar su sekilde ifade edilir;

i)=["0:7=0",T=1,T, =-1) (3.18)

| f)=|"“N:J=0"T=1T,=0).
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=07, T=1,T, =1

‘IAO

Superizinli

Sekil 3.1 '*O’nun siiperizinli 3" gegisi (Blin- Stoyle,1969).
Fermi gecis matris elemant;

M, =(“N:J=0"T=1T,=0

T+

Y0:J=0"T=1T,=-1) (3.19)

seklinde olur. Dikkat edilecek olursa bu matris elemanindaki her iki

durumda ayni izospin multipletin bilesenleridir. Bunlarin sadece T

degerleri farklidir.

Ti

T.T,) =T FT,XT T, +1)|T,T, £1) (3.20)

olduguna gore,



31

My =(fIT. |3
=(10|T.|1-1)

+

= (1= (=1))1+(-1)+1)(10]10)
=2

(3.21)

bulunur. Bu sonug, ilk ve son durumun izospin durumlarinin saf oldugu

zaman gegerlidir. fi ve G, degerleri arasinda asagidaki sekilde bir iligki

kurulabilir;

fi=(G 2’ n2)h m7 ™. (3.22)

T =1 multipletlerinde 0" — 0" siiperizinli gegisleri i¢in hesaplanan ft
degerlerinin 6zdes olmalar1 gerektigi yukaridaki formiilden agik¢a
goriilmektedir ve G, buradan hesaplanabilir (Blin-Stoyle,1969).

(3.21) denkleminde matris elemaninin karesi 2 olarak olarak
hesaplanmistir. Siiperizinli Fermi beta gecisleri izobar analog haller
arasinda oldugu i¢in matris elemanin degeri hangi ¢ekirdegin ana
cekirdek olmasmna bagl degildir. izobar analog haller arasindaki Femi

gecisleri i¢in matris elemaninin karesi (Bohr and Motellson, 1969);

M) (T, T, > TT,+1)=(TFT,) T +T, +1) (3.23)

seklindedir. Sekil 3.2°de gosterilen c¢ekirdekler arasindaki gegis matris

elemani her iki durum i¢in de hesaplanirsa;
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0+

0+

34CZ
(T=1,T, =0)

34Cl
(Ir'=LT,=0)

0" 0"

34S 34S
(T=1T, =1) (T=1T, =1)

(@) (b)

Sekil 3.2 **CI—>*S ve **S—>*CI igin izobar analog haller arasmdaki siiperizinli

Fermi beta gecisi.

Sekil 3.2-(a)’da (T'=1,7, =0)ilk durumundan(7 =1,7; =1)son
durumuna, izobar analog haller arasindaki S ge¢isi gosterilmistir. Bu

durum i¢in (3.23) bagitisindan matris elemaninin karesi hesaplanirsa;

M;1,0>11)=1-0)1+0+1),

M;1,0>11)=2, (3.24)

olarak elde edilir.
Sekil 3.2-(b)’de (' =1,T, =1)ilk durumundan(7 =1,7, = 0) son
durumuna, izobar analog haller arasindaki S~ gecisi gosterilmistir. Bu

durum i¢in de (3.23) bagmtisindan matris elemaninin karesi hesaplanirsa;
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M2I(11>10)=(1+1)(1-1+1),
M2(11—>10)=2, (3.25)

olur. (3.24) ve (3.25) bagintilarindan da goriildiigli gibi izobar analog
haller arasinda olan Fermi gegisleri igin, **CI—>*S gecisi ile **S—**CI

gecisinin gecis matris elemanlar1 6zdestir.

3.3 izospin Yasakh Beta Gegisleri

Yukaridaki boliimde incelenen siiperizinli gecisler saf Fermi
gecisleri olup aynm izospin multipletin iki bileseni arasinda olmaktaydi.
Bu boliimde ise iki farkli izospin multipletin bilesenleri arasinda olan
Fermi geg¢isi incelenmistir. Yiike bagh etkilerin olmadigr bir durum
alinirsa gegis matris elemaninin sifir olmasi gerekir. Eger matris elemant

sifir degil ise izospin saf degildir, diger hallerden katki var demektir
(Blin-Stoyle,1969). Bunun i¢in Sekil 3.3’e bakilirsa; I. durum £~ ve, IL
durum S gegisini gostermektedir.

[lk durumdaki ¢ekirdek P ile gosterilmistir ve su sekilde temsil

edilir;

iy=|P:J".T,T,). (3.26)
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; ST -1 ®

}‘,J{E+‘I,N-‘I:I

I. Dwmm IT. D

Sekil 3.3 izospin yasakli ~ ve " gegisler (Blin-Stoyle,1969).

Gegisin oldugu durum 7. ile gosterilmistir ve

/)=

T :J".T'.T, —1> (3.27)
seklinde temsil edilir. 4 durumu P ’nin analog durumudur ve
A:J7T.T,-1)=T|P:J".T.T,) (3.28)

olur.

Fermi gec¢is matris eleman1 M, = < f |T _|i> olduguna ve
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T, T,T, £1)

T.T,) =T FT,(T +T, +1)

olduguna gore;

M, =(T".T,-1|T"|T.T,)
= (T +T (T -T, +)(T".T, -1
=0

T,T, 1) (3.29)

olur. Yani izospine gore incelendiginde gecisin olmamasi gerekmektedir.
Ancak, deneysel olarak incelendiginde bu haller arasinda beta gegisleri
tespit edilmistir. Dolayisiyla ilk ve son durumlarin izospinleri temiz

degildir. 4 analog durumundan 7. durumuna katki vardir. Bu durumda

(3.27) denklemi;

|f)y=|1. 20 1T, 1)+ e 427, T,T, - 1) (3.30)

halini alir. Fermi gegis matris elemant;

M, =(1".7, -1|+a(T,T, - 1T |T.T,)
=(1".T, -1|T_|T.T,)+ (T, T, - 1|T
=0+ (T +T,(T -T, +)(T.,T, -1
=aJ(T+T )T T, +1)

T.T,)

331
T,T,-1) (3D

olur. Goriildiigii gibi, bu durumda gecis vardir. Izospine gore

incelendiginde, ilk ve son hal dalga fonksiyonlarma temiz olarak
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bakildiginda gecis yokmus gibi goriinen fakat gercekte gegislerin oldugu
bu gecislere izospin yasakli gecisler denir.

Yukaridaki ornekte de gorildiigii gibi, izospin yasakli gegisler
izobar anolog durumlar arasinda olmamaktadir. Gegisin oldugu ilk ve son
durumun 7 degerleri birbirlerinden farklidir. Bunlar farkli izospin
multipletlere ait hallerdir. Fakat ge¢isin oldugu son hale, ilk halin izobar
analog durumundan izospin katkis1 gelmektedir. Bu katki sayesinde gecis
meydana gelmektedir. Benzer sekilde II. durum da incelenebilir (Blin-

Stoyle,1969).
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4. PYATOV YONTEMI

Cok parcacikli sistemlerin kuantum teorisi ile ilgilenirken en sik
karsilagilan problemlerden bir tanesi sistemi temsil eden Hamiltoniyenin,
bazi simetrileri ihlal etmesidir. Bozulan bu simetriler belirli fiziksel

biiytikliiklerin korunumu ile ilgilidir. Kapali bir sistem i¢in;

[A,P1=0 [H,J]=0,

[H,T]=0 [H,N]=0
olmalidir. Burada P ¢izgisel momentum, J acisal momentum, 7
izotopik spin ve N pargacik sayisidir.
Eger,

[H,P1=0 [H,J]#0,

[H,T]#0 [H,N]1#0
seklinde olursa simetride bozulma var demektir. Bu simetrilerin
bozulmasi niikleer modelden kaynaklanmaktadir. Yani, kullanilan model

dahilinde, restore edilebilmesi gerekmektedir (Ring and Schuck, 1980).
Bilindigi gibi tek pargacik shell model potansiyeli su sekildedir;

Ur)==Uyfo(M+U fi(ne, +V.(r). (4.1)

(4.1) denkleminde, f,(r) and f,(r) izoskaler ve izovektor
potansiyellerinin radyal fonksiyonlaridir, U, and U, parametredir ve

V_(r) de Coulomb potansiyelidir.
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Denklem (4.1) ile verilen potansiyelin izospin simetrisini,
izovektor ve Coulomb terimlerinin bozdugu agiktir. Burada,
elektromanyetik etkilesmeler izospin simetrisini bozduklar1 igin,
Coulomb kuvvetlerinin izospin bozulmasina neden olmasi dogaldir.
Diger taraftan, niikleonlar aras1 gii¢lii etkilesmeleri temsil eden izoskaler
ve izovektdr kisimlar yiikten bagimsiz olmalidirlar. izovektdr kismin
simetriyli bozan etkisi bir metot kullanilarak diizeltilmelidir. Burada
kullanilan metod, Pyatov’un restorasyon yontemidir. Pyatov metoduna

gore, kullanilan model hamiltoniyeninin bozulan simetrisi, hamiltoniyene

bir rezidiiel kuvvet eklenerek restore edilir. Bu rezidiiel etkilesme olan h

su duruma karsilik gelir;

[ -v.()+hT|=0. (4.2)

Pyatov h’nin su formda olacagini gostermistir;

h= % A v ). T [ -v.). 7). (4.3)

Metodun detaylar1 ve ilk uygulamasi sirasiyla (Pyatov and Salamov,
1977) ve (Pyatov et al., 1979)’da verilmistir. Son uygulamalar1 olan
izotopik invaryans (Babacan et al., 2004; Kiiciikbursa, et al., 2004;
Babacan et al., 2005; Babacan et al., 2007)’de ve donme invaryansi

(Kuliev et al., 2002)’de verilmistir.
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Bu béliimde parcacik bazinda ve kuazi-pargacik bazinda Pyatov
Yontemi kullanilarak izotopik spin simetrisinin nasil restore edilecegi ve
yukaridaki (4.3) denkleminin nasil c¢ikarilacagi gosterilecektir. Daha
sonra restore edilen hamiltoniyenin 6zdeger ve 6zvektorleri bulunacak,
gecis matris elemanlar1 elde edilecektir. Matris elemanlarinin
dogrulugunu gosteren Fermi toplam kurali anlatilacak ve taban

durumunun izospin safsizlig1 ve IAR i1zospin yapisi incelenecektir.

4.1 Parcacik Bazinda Pyatov Yontemi ile Bozulan Simetrinin

Restorasyonu

f~ gecisine neden olan T operatdrii parcacik tasvirinde (Bu operatoriin

elde edilisi Ek.2’de verilmistir)

T = Z <jpmp ‘t_

mn
Jurdp

j.m,)

@ i) (4.4)

seklinde yazilir. Wigner-Eckart teoremi kullanilirsa;

ool e

roy (j,m, 00(j,m, ), Jp>a7m . 45)
m"’mp 2jp +1 JpUtp n'tn

Jud

m,m

olur. Burada (j,m, 00|jpmp>:5 /8, seklindedir ve j, =, = olursa
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Jjon)

. :Z(J’,p

_ - Za-/‘—m (p)ajm (l’l)

seklinde olur. Bozon operatorleri (Pyatov et al., 1979);

ﬁ S al (p)a (1)
1

m ;ajm (n)ajm (p)

Aj(p’n)z

AT (pym) =

seklindedir. Bunlara gore (4.6) denklemi yeniden yazilirsa;

T =2{j.pljsm)4;(p.m)

J
ve T, =(T_)" olduguna gore,

T.=>(jp

J

Jom)A; (p,n)

olur.

(4.6)

(4.7)

(4.8)

(4.9)

(4.7) denklemi ile verilen bozon operatorlerinin komutasyonlari

(Pyatov et al., 1979);

4 (o), 4, (pom)|= 6, (N, (1) = N, ()

(4.10)
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seklindedir. Burada N, (n)ndtron pargacik sayisi, N,(p) proton pargacik

sayisidir. Ayrica tek parcacik hamiltoniyeni;

H, = z ¢;(p)a;, (p)a,,(p) +Z ¢;(maj, (na,,(n) (4.11)

seklindedir.

Simdi [H ] ? komutasyonuna bakilirsa;

spo T+

J.m

m,.1.]= Kzs <p>a,,,,<p>aj,,,(p)+ze (n)a,m(ma,m(n)]

z<fzp||fzn>A;<p,n>}

= Yo, (P (). A7 (o} p] )+
e (4.12)
Y& wlal, (ma,, (., 4 (.} p| j'.n)

JsJ'sm

olur. 4 (p,n) (4.7) denkleminden alinip yerine yazilirsa;

Z g (P\)/<2J'_P||1] > [ ;'m (p)ajm (p), a;,m, (n)aj'm’ (p)]+

4.13)
Z g] (nj/<2j—l:'||lj > [ }rm (n)ajm (n)7 a;’m' (n)aj'm' (p)]

olur. (4.13) denklemi iki kisma ayrilip ¢oziilebilir.
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[Hsp s T+ ]p - Z 8] (p\)/<2]'7p”1] : > [ 7”1 (p)ajm (p)7 a;—'m' (n)aj’m' (p)] (4 14)

mm

protona bagli kisim,

[, J”—Z‘g’(nﬁzj,—p"l] Dt s mama ()] (@15)

notrona bagli kisim.

Once protona bagli olan (4.14) denklemi ¢oziiliirse;

{a;’aﬂ}

0
Bu kisimdaki komutasyon, {aa ,ag } 0
{aa ) “ﬁ} Sup

la%, (p)a,, (p).a (ma,, (P))= a, (P)a, (Pas (0)a (P
~ (M, (p)a, (p)a,, (p)

= a;'m (p)ajm (p)a_;‘r'm' (n)aj'm' (p) - a_j m' (}’Z)(é‘” 5mm a;'m (p)aj'm' (p))a/m (p)

= a;—m (p)ajm (p)a;'—’m' (n)aj'm’ (p) - a;'m' (n)ajm (p)§]j’5mm'
+a;,, (na,(p)a;,.(p)a,,(p)

= a;—m (p)ajm (p)a;’—'m' (n)aj'm' (p) - a;’m' (n)a]m (p)gjj'gmm'
- a;'m (p)a_;‘r'm' (n)a_j'm' (p)ajm (p)
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=a;,(p)a,,(p)a;, (ma,, (p)-aj, (ma,,(p)s;0d,,
+a;, (p)ay, (ma,, (p)a, (p)

= 3, (P)a,, (D) (W)a (D) = a5 (1), (P)S 5,
— a3, (), (P’ (1) (p)

- /m (n)a/m(p) Y mm (416)

olur. Bu sonug (4.13) denkleminin birinci kisminda yerine yazilirsa;

e, (p)Jj. |/, )
[Hsp’T+ ]1’ - z ! \/ﬁ /m (n)a/m (p) Ji' mm (417)
olur. m=m' ve j=j' alinirsa,
. . 1 .
l,,.1. ) = - e, )il on) T (P
[t,. 1.} ==& (). p| j.n)4 (o) (4.18)
J

olur. Simdi de (4.13) denkleminin ikinci kism1 olan (4.15) denklemi

coziiliirse, buradaki komutasyon;
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a3, (ma,, (0,05, (W, (p)]=

@3, (1)1, (1) (M), (D) = @y (1)1, (P}, (M), ()
= 1} (1)1 (1) (1) (D) + @ (1) (1) g (D) ()
= (1)1 (1) 5 (1) (D)~ 3 (M) (1) (D) ()
= (1) (1) 5 (1) (D) + @y (W) (1) 3 (M) 1)
= 1 (1)1 (1) (1) (D) + @ (1B 1 = 3 (M) (1)) ()

+

;'rm (n)ajm (n)a;'r’m' (n)aj'm’ (p) + ajm (n)aj’m' (p)5jj’5mm'
=, (1) (M) (1)t ()

=da

:a;m (n)aj'm' (p)é‘jj’é‘mm' (419)

olur. Bu sonug (4.13) denkleminin ikinci kisminda yerine yazilirsa;

n g‘( ) .'a .,a +
[Hsp’TJr] = Z - ! <J ,p”] n> ajm (n)aj'm' (p)611'5mm' (4'20)
JsJ

A2j +1

olur. m=m' ve j=j' alinirsa,
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. 1.] =, opl i) ﬁa;m(nwjm(p)

11, 7. ) =3 2,000 p | jsn) 45 (o) @21)

olur. (4.18) ve (4.21) denklemleri (4.13)’de yerlerine yazilirsa;

1,1, ]- Z(a m)—&,(pjp

J-n)A; (p,n) (4.22)

olur.

=l [, J= 1 ]

[H sp? + ] -
olduguna gore;
[HSP ’ ] _[Hsp > + ]

olur. Oyleyse;

[#,,.7_|==3 2,0 - 2, (o) p

Js n>A/. (p,n) (4.23)

olur.
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Coulomb potansiyeli su sekilde tanimlanir;

A
Ve = (G~ 1. () (4.24)
=1

Ayrica;

[t J=—t.

olduguna gore;

ve T, :itj
i=1

;o [L.L]=L,

5 [tzat+]:t+

A
[VC’T+ ]= Zvc (k)|:(% - tz (k))’tJr (Z):l
ki

Ve.1.]=3v. (k)[B,a (z’)} ~[t. ()., (i)]}
ki

Ve, T ]==Y v . (0)t. (k) ()]
ki



Ve, T, ]==> v, (k). ()
ki

olur. (4.9) denkleminden 7, alinip yerine yazilirsa;

[VC’T+]:_Z<j’p

J

Jsm) A7 (p,n)

v,

olur. Benzer sekilde;

Ve.1.1=3v, (k){(%—zz (k)1 (z‘)}
ki
Ve.T =2 v 0. (k)1 ()]

A
Ve T 1= v (k) (i)
ki

olur. (4.8) denkleminden 7 alinip yerine yazilirsa;

Vc j,n>Aj(p,n)

[VC=T7]:Z<J}P

olur.

47

(4.25)

(4.26)

(4.27)

(4.28)
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Js n> tanimlamasi yapilirsa;

Vnp E<j,p Ve

[VC’T+]: _Z VnpA;—(p’n)
/ 4.29
[VC’T—]:ZVnij(p’n) ( )

seklinde yazilabilir.

Simdi de [H » Ve T J=? komutasyonuna bakilirsa;

+

lH _VC’T+J=lHSp’T+J_[VC’T+]

sp

olur. (4.22) ve (4.29) denklemleri yerlerine yazilirsa;

|7, - Vc,T+]=Z(8j(n) =&, (P 2| Jsm) A (p.m) + 2V, 47 ()

[, - VC,T+]=[Z (e, (0 =2, (PNJj- | 1m) +,, JA; (pm)

olur. Burada Y E,(n, p) 5(2(5 s(my—e,(p)(j.p|j.n) +VWJ tanimlamasi
J j

yapilirsa;

[#1, Ve 7= 2 B, 00 p)4; () (430)
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olur. Benzer sekilde;

7, -ve. 1 |=|H,,.7.|-[Ve.T ]

olur. (4.23) ve (4.29) denklemleri yerlerine yazilirsa;

[#1,, = Ve, T |==3 (e, 0 =2, (2N Pl jom) 4, (p.m) = XV, 4, (pm)

J

[Hsp ~Ve.T = —[Z(S,- () =&, (P J, p| Jsm)+V,, JAj (p,n)

[Hsp—VC,T_]=—ZEj(n,p)Aj(p,n) (4.31)

olur. (4.30) ve (4.31) denklemlerinden gériildiigii gibi |H,, —V,.,T,|#0

(u=7%) seklindedir. Boylece toplam H , nin izotopik invaryantliginin

bozuldugu gosterilmistir. Bunu restore etmek i¢in hamiltoniyene ek bir h

teriminin eklenmesi gerekmektedir. Bu terim eklenince;

|7, +h-V.,T,|=0 (4.32)

olur (Ek.4’te bunun dogrulugu gosterilmistir). Pyatov sectikleri bu h "nin

su sekilde olmas1 gerektigini 6ne siirmiistiir;
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Ly, -ver, i, -ver,] (4.33)
27 u=s
! ([H —v..T [|H VC,T+]+[HSP—VC,T_]*[HSP—VC,T_])

olur. Bu arada (4.30) dekleminden

(1, Ve, . 1= X B, 01, 947 ()

olduguna gore;

[HSp _VC’T+]Jr =ZEj(I’l,p)Aj(p,n) (4.34)

olur. Benzer sekilde (4.31) denkleminden;

[t,, ~Ve T J==3 B, 0, p)4,(pm)

olduguna gore,

[, -v..T ] = =X E, (. p)A;] (p.n) (4.35)

olur. (4.30), (4.31), (4.34) ve (4.35) denklemleri (4.33) denkleminde

yerlerine yazilirsa;
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h= i(z E;(n.p)A,;(p.m) Y E;(n. p)A; (p.n) +

[_ Z’Ej' (7’1, p)A;’ (pa n)j{_ ZE] (I’l, p)AJ (pa n)]}

1 +
h= Z[z E,(n,p)E;(n,p)A4,(p,n)A; (p,n) +
JJ

ZEj’ (nap)Ej (nap)A;' (pan)AJ (pﬁn)j

JsJ'

= %ZE (n, PYE, (m, A, (p,m) AT (pom) + A (pm) A, (pom)  (4.36)

olur.
Simdi de y y1 bulalim;
(r,) =(r.,) ve (T.)" =(T_) olduklarmi da gézéniinde bulunduralim,

|7, +h-ve,T,|=0

olduguna gore,

|7, -ve.1, |+ |01, ]=0,

|z, -ve.1,|=-|n1,] (4.37)
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olur. (4.33) denkleminden h (4.37)’de yerine yazilirsa;

[HSP _VC’T#]z_ig[[Hsp _VC’Y—;I']+[HSP _VC’T#’]’TA]5##’

:_ig:([Hsp _VC’T/J']+[[HSP _VC’T#']’T/‘]+

[[HSP _VC’T#']+’T/J:|[HSP —VC,T#,])5##,

_52(_[H5p _VC’T—#'][ [Hsp _VC’T;J']’T#]_

P
[[Hsp _VC’T—;/]’T/J][Hsp _VcﬂTy’])aﬂ'

A A A A
,,

2y
7, -ver )t ]H=, -V, )5,

olur. Eger y'=-u' ve C=<[[HSP —VC,T_#,],TH]>=sbt ise;
[Hsp _VC=T;1]:${[HW _VC’Tle}

[HSP _VC’Tﬂ]zi([HSp _VC’Tﬂ]C_"C[HSp _VC’T,U])

2y|H,, - Ve T, |=20lH,, -V, T, |



53

y=c=(lu, -v..r,l1,) (4.38)

olur (Ek.5’te verilmistir).

U=+ igin;
y=\a,, -ve. 1|1, ] (4.39)

olur. (4.31) ve (4.9) denklemleri (4.39)’da yerlerine yazilirsa;

y=|=2E,0up)4;(pm), 3 (i | i'sm) 45 (pom)

j', n)[Aj (p,m), 4; (p, n)] (4.40)

y==Y E.(n,p)j".p

JsJ'

olur. [d,,4%]|=-]47,4,] olduguna gére (4.10) denklemi (4.40)’da

yerine yazilirsa;

=2 E;(n.p)J.p|j:n)(N;(m) = N ;(p)) (4.41)

olur. Benzer sekilde,

p=— igin;

y=|a, -ve. 1.7 (4.42)
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olur. (4.30) ve (4.8) denklemleri (4.42)’de yerlerine yazilirsa;
V= ZE/ (nap)A;r (p:n) ,z<j,,p||j’>n>Aj’(pan)
j J

7= B, p) 7 p /)] (o) (po)] (4.43)

olur. (4.10) denklemi (4.43)’te yerine yazilirsa;

7= ZEj (n, X j, p|| J,n)(N; (n) = N, (p)) (4.44)

olur.

4.2 Parcacik Bazinda Restore Edilen Hamiltoniyenin Ozdeger ve

Ozvektorlerinin Bulunmasi

Tek parcacik hamiltoniyeninin 6zfonksiyonu

0/ =X v, (P, (p.n) (4.45)

seklindedir. Bunun eslenigi de;

0, =2, (p.mA; (p.n) (4.46)
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seklindedir. Hareket denklemi ise su sekildedir (Ek.6’da ispati

verilmistir);
.07 ]- 00 (4.47)

(4.45) denklemi ile tanimlanan Ozfonksiyonun ortonormalizasyon

kosulunu saglayip saglamadigina bakilirsa;

0,07 =3 lv; (o7 (pm)wr () A, (po)]

(0.0 =3 w ,(p.mwr (0w 47 (pom), 4, (p, )] (4.48)
7.

olur. (4.10) denklemi (4.48)’de yerine yazilirsa;

[Qi»Qi+]= ZWj (pan)Wj’ (P, n)(Nj (n) ~ Nj (p))éjj'

0,07 =3 (N, (1)~ N, (p) 2 (p,m) “birinci denklem”  (4.49)

J

olur. (4.45) denklemi (4.47)’de yerine yazilirsa;

0 =Yy, (p.n)
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S|H.w, (pm 4, (pam] =0, 3w, (p.m)4, (pm) (4.50)

olur. Soldan 47 (p,n) ile komutasyonuna bakilirsa;

> v, oz o 1.4, (o)) 0, T v (ol (oo, 4, (pow)]

g
olur. (4.10) denklemini yerine yazilirsa;

JsJ'

>, ol oo 1,4, .= 0, X v oV, 00 - N ()

olur.

Pj = [A} (p.n).|H. 4 (P, n)]] (4.51)

olarak tanimlanirsa;

J

S (o, (pm)=0w , (p,m)N,(n) = N, (p))“ikinci denklem”  (4.52)

olur.

(4.50) denklemi soldan 4, (p,n) ile ¢arpilirsa;

JsJ'

>l emlay (oo |14, (p.m)= 0, X v, (pamla, (pw. 4, (pm)
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olur.
0y =4, (pon) [H. 4, (p.m) (4.53)

olarak tanimlanirsa ve [Aj,(p,n),A_/(p,n)Jzo oldugu go6zoniinde

bulundurulursa;

;=0 (4.54)
olur.

Simdi de yukarida (4.51) denklemiyle tanimlanan p . ¢6zilirse;

H=H, +h ifadesi (4.51)de yerine yazilirsa;
py =l Jir, + .4, (p.m]

py =4 [t 4, oo+ 4 (oum) 4, (pm)] (459)
olur. Bu denklem iki kisma ayrilip ¢oziilebilir;

pl=lap o) [H,. 4,(0.m)] (4.56)
denklemi tek pargacik hamiltoniyenine bagl kisim,

Pl = [A} (p.n). [, 4;(p, n)]] (4.57)
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denklemi restore etmek icin eklenen h ’ye bagl kisim olarak tanimlansin.

Ayrica;

[H,,.4; (p.m)]= (e, (0~ &, ()] (p.n)

4.58
[H,,4,(p,m)|=(e;(m) — &, ()4, (p,m) (%:38)

olduklar1 hatirlanirsa, (4.55) denkleminin birinci kismi olan (4.56)

denklemiyle ifade edilen pj yi ¢ozelim.

(4.58) denklemi (4.56)’da yerine yazilirsa;

P =45 o) (e, 0 £, (M, ()]

p=—le; ()~ e, (P45 (p.m). 4, (p.m)] (4.59)
olur. (4.10) denklemi de (4.59)’da yerine yazilirsa;

P =l -2, N, 0= N, (p)5,; (4.60)
olur. Simdide (4.55) denkleminin ikinci kismi1 olan (4.57) ile ifade edilen

P yi ¢ozelim.

(4.36) denklemi (4.57)’de yerine yazilirsa;
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A 1
pl,=—> E.(n,p)E . (n,p)
i 2y ]ZJ: J 4 (4.61)

[43(p.m) [(4, (o) 47 (o) + 4; (pum) 4, (pm)) A, (pom)]

olur.

(4.61) denkleminin sagindaki komutasyonun icteki olani

¢oziiliirse, yani;

(4, 47 +ara, La,|=[a, a7, 4, ]+ |44, ,4,]

J177 )2 Ji7 2 J2277)
[(A./, A5, +4; A./zlA./]zAj] [A.Z’AJ]JF[A_/]’A/ ]Afz +4; [A./Z’A./]JF[A;’A/ ]Ajz
Esitligin sag tarafindaki ikinci ve liglincii komutasyon ifadesi

sifirdir. Birinci ve dordiincii komutasyonlarda da (4.10) denklemi yerine

yazilirsa;

[(Ajl A5, + 45 4;, )’AJ ] =4, (N j(m =N, (p))éjzj

4.62
+(Nj (n)=N, (p))ém 4;, (462

olur. Bu ifade (4.61) denklemindeki komutasyonda yerine yazilirsa;

[A/+ ’[(Ajl Aj, + 474, )>Aj ]] = [A; .4 (N ;M =N, (p ))51'21 +
(Nj (n) =N, (p))éjlejz ]

= (N./ (n)=N; (1’))5./21 [Aj =y ]+ (N_/ (n)=N; (1’))5./]/ [Aj A, ]
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= (NJ (n)-N, (p)bjzj (Nj (n)—-N, (p))é/ffl +
N, =N (), (N, () -N (),

olur. j,,j,,J,j  tizerinden toplam alinirsa;
=2V, () - N, (p)) (4.63)

olur.

Elde edilen (4.63) denklemi (4.61)’de yerine yazilirsa;
1
Pl =5, 2 E, (1 p)E (0 2N )= N (N ()= N () (464
JsJ

olur. (4.60) ve (4.64) denklemleri (4.55)’te yerlerine yazilirsa;

Py = (‘9_/ (p)-¢; (”))(Nj (n)=N;, (p))5_z/' +

3 E D) 1 N, )N (N 0= ()

JsJ'

(4.65)

olur. (4.65) denklemi “ikinci denklem” olarak adlandirilan (4.52)

denkleminde yerine yazilirsa;
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Zl//,(pan)((gj(p)_g](n)XN,(n)_Nj(p) Ji' +

%ZEj'Ej(Nj(n)_Nj(p)XNj’(n)_Nj’(p))j

= o (p.m)N, (1) =N, (p))
olur. j=j' den toplam alinirsa;

(e, () -, )N, (1) =N, (P, (p.n)+
E.
7"(er (n)=N, (p))z E, (Nj (n)=N; (p))/’/

=oy ,(p, n)(N s(m)=N, (p))

olur. Burada ¢, (p,n) = (g (- (n)) tanimlamas1 yapilirsa;

E.,
W =N PIZE N, 0= N )y ()

= (@, — &, (p.mW , (PN, ()~ N, (p))

E(/’ (n7 P)

Y E (. p)N, 0 =N, (D), (pm) = (@, — &, (pm) . (p.n)

1P S g )N ) =N () (pom) (4:66)

V) e ()

olur.
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X = ZE L. p) N, (=N, (P, (p) (4.67)

tanimlamasi yapilirsa;

1 E;(np)
(pon)=—— I 4.68
VP o=, ) (369
olur. (4.68) denklemi, (4.67)’de yerine yazilirsa;
2 —
yoly B ()N, () =N, (p) (469)
75 (@, —&;(p,n))

elde edilir. Bu denklem “sekuler denklem”dir. Bu denklemin katsayilar1

sifira esitlenirse;

EX(n.,p)(N;(n) - N ,(p))
— / / / =0 4.70
! Z/: (0, —€;(p,n)) ( )

olur. (4.41) denklemi (4.70)’de yerine yazilirsa;

EX(n, p)\N.(n)- N,
o) - - LN D))
(@, &,(pon)

Z(E_,- (n, p)(j, p

J
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ZEj(nap)<jap||jan>(Nj(n)_Nj(p))(wi _gj(pﬁn))_

2 — S, -
Ej(”sp)(Nf(n) Nj(p){(a)i_gj(p’n))J "

ZE](n,p)(a)l<],p||],n>—<],p||],n>€J(p,n)—E](n,p))

@.71)
| J: 0

N.(n)—-N, _
(v, ) ,(p>{ e

olur.
Daha 6nce ) E (n,p) E(Z(Sj (m)—&,(p){j. p|j.n) +V,,pj seklinde
j j

tanimlanmisti. Bu yerine yazilirsa;

ZEJ(n,p)(a)l<],p||],n>—<],p||],n>8](p,n)—

- 1 ~
((gj(n)_gj(p))<]ap||]an>+Vnp)xNj(n)_Nj(p){m] =0

ZEJ(n,p)(a),<j,p||],n>—<],p||],n>£](p,n)—

. . 1 =
(&, (p.m)j. pljun) +7,, )XN;(n)-NAP){m]“’

Ej (n,p)(a), <./’p|| j,l’l> - Vnp XNJ (l’l) B Nj (p)) =0 (472)
(a)j _8j(p:n))

2

J
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olarak elde edilir.

Normalizasyon kosuluna bakilacak olursa, (4.49) denklemden;

0.0/ =3 (v, - N, ()l 2 (po)

J

oldugu bilinmekdedir. [Qi,Qi*]z o, olmast igin;

V=N () () =1

J

olmali. (4.68) denklemi (4.73)’de yerine yazilirsa;

E?(n, 2
S (V0 -N,(p) fwmzécl
; (@, —¢,(p.m) 7

olur.

2
Ej (nnp)

(0, — & (1)) ;0= (»)

Z(w;)=

tanimlamasi yapilirsa;

(4.73)

(4.74)

(4.75)

(4.76)
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olur. Bu denklemden hareketle;

X1 (4.77)
4 A (a)i
olur. Bu denklem de (4.68)’de yerine yazilirsa;
E;(n,
mp) (4.78)

VP e (o) Y20

olarak elde edilir.

4.3 Kuazi-parcacik Bazinda Pyatov Yontemi ile Bozulan Simetrinin

Restorasyonu

L~ gecisine neden olan 7 operatdrii pargacik tasvirinde yazilirsa

(Bu operatoriin elde edilisi Ek.2’de verilmistir);

T =3 (j,ml-

m,.,m,

JpsJu

j.m, >a+ a (4.79)

JpMp " Jnly

seklinde olur. Wigner-Eckart teoremi kullanilarak bu operator su sekilde

yazilabilir;
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o li)sm,000i,m,)
= Aim, A jm, - (4.80)
;,I:Zj:m m Ty @ jm,

Buradaki Clebsh-Gordon katsayis1 < j,m, 00‘ jpmn>=1 dir.

Wigner-Eckart Teoremi su sekildedir (Wong , 1998);

(J'Mkgq| M) ,
|7 ).

(JIMI|T,|JM")y=(-1)*

Bogolyubov Doniistimleri (Nilsson and Ragnarsson , 1993);

L=U,a, +(-1)"V,a,

7 j-m
—U a; .+ (= 1)/ mV]aJ .

seklindedir. Bu doniisiimler uygulanarak (4.80) numarali denklem su

sekilde yazilabilir;

<Jp Jn>
s \2j, +1

Jprin

[U at (=1 V, o, ]

Jp " pMp

U, a,, +vmvar |

Jn?y
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il
T = —<"_ >(UUa a,, +C)"UL Y e, a
7p,;,1n 2]p +1 (4.81)
‘p—mp jp—merj”—mn +
+(=D"""U, Vo e, +(=1) Vi Vi@ m “_/,,—'n,,)

(4.81) numarali denklemde parantez i¢indeki 1. ve 4. terimler daha sonra
isimize yaramayacagl i¢in simdiden ¢ikarilabilir. Buna kuazibozon
yaklagimi  (Soloviev, 1976) denir. Burada c¢ift-¢ift c¢ekirdekler

incelenecegi i¢in bunlara gerek yoktur. Bu durumda;

(_l)jn—mn a at

_ . . L S
T = Z<J,, Jn>(Uf,; v, mz;n 2j, +1 "
-""a,_,a,
Uj,, pr m,zm 2 Jp +1
r =Sl F?f Ve
my, o a

(2];; +1m ~ Jp=my 7 Juy

+

R Jﬁ Z( . ) (4.82)
+> (10,7, Ji 2( 1y’

P
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olur. Bu denklemde su sekilde kisaltmalar yapilabilir;

bnp EU./‘pV./,,<]p Jn>:Uan<]p ]n>
b, =U,V, (7, ]5)=U.7,{j,li.)

mmzm( b i i
e I

Yazilan bu A4, ve A4, ’ye sirastyla nétron-proton iiretme ve

yoketme bozon operatorleri (Soloviev, 1976) adi verilir (Ek.3’te bu

operatorlerin elde edilisi verilmistir). Bunlara goére (4.82) numaral

denklem;

np““np np“~np

T,:Z(b AL +b,A,) (4.83)

olarak yazilir.

Ayrica bozon operatorlerinin komutasyonlari (Soloviev, 1976);

[Anlpl ? A;zpz ]: 5’71”2 51711'2 ’ lAnlpl ? A”zpz J 0 [ ;rlpl A:lrzpz ]: 0

seklindedir.
T =(T.)" olduguna gore A" gecisine neden olan T izospin

operator;
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T, =3 (b, 4, +b,4) (4.84)

np ““np np ““np
np

olur.

Asagida verilen tanimlar (Ring and Schuck, 1980; Soloviev,
1976) hatirlanacak olursa;

r=T) , I.=T)" , I") =pI”

seklindedir.
T ve T hermitik degildirler. Bu nedenle sdyle yazilabilir;

1 T, =1
T°"=—T, +pT )=+ o . (4.85)
2 ir, p=-1

(4.83) ve (4.84) denklemleri (4.85)’de yerlerine yazilirsa;

"= %Z ((bnp Anp + l;np A;rp )+ ,O(b,,p A'J'rp + Z;”P A”” ))

np

1 = %6, + pb, M, 4 06, + o1, 4,)
np
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=—Z(b +,0banA+ +pAnp)

np

B2 =(b,, +pb,,)

(4.86)
tanimlamas1 yapilirsa,
, :%ZB; (47, + pa,,) (4.87)
np

olur.

Coulomb potansiyeli su sekilde verilir (Pyatov et al., 1979);

A
1 )
Ve =2 v ~1.0).
i=1
A .
Ayrica T = Zti ve [LZ ,L_]= —L_ olduguna gore;
i=1

V.. ]= Zv@b@ruﬂ

Ve,r ] ZV ()t_ (i) (4.88)
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olur. (4.83) denklemi yerine yazilirsa;

Vet 1= 3w (0,7, 13,4, + 0,7, 0,17, 4,,)
np
[VC,T_]:Z(Uan<jp velin) 4y, + UV, (G, . 'n>Anp)
np
olur.
?p = Uan<Jp Vc Jn> (489)
np EUan<.]p Vc Jn>
seklinde tanimlanirsa,
Ve, r 1=, 4; +7, 4, ) (4.90)
np
olur. Ayni sekilde 7, Zt L, +] L, olduguna gore;
i=1
v..1.]= ZV . (.1, ()]= ZV (e, (0) (4.91)

olur. (4.84) denklemi yerine yazilirsa;
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[VC9T+]: _Zvc (Uan <]p ”]n >Anp + Uan<jp||jn >A;p)

Vet ==X, (i A, + U7, (G i, )4 )

i

Ve.r.]=->, 4, +7,4;) (4.92)

np

olur.
Simdi de [VC,T r ]=? bulalim. (4.85) denkleminden 77 yerine

yazilirsa;

[VC,T"]:%[VC,E +pT ]

1
[Vc’Tp]:E{[chTJ"' p[Vc»T—]}
olur. (4.90) ve (4.92) denklemleri yerlerine yazilirsa;

o3-Sl Tt e Mty 7, )

[VC’TP]:%Z(_ V”PA”P _IZ’PA’-;’ +'0V”PA”’+P +p7”PA”P)

np
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e =S 2o, -7, X4, - pa,,) (493

np

olur.

Simdi de [qup,T_J=? bulalim. Bunun igin [qup,A,:'p]=gnpA+

np

ve [H I ]= -¢,,4,, (Soloviev, 1976) komutasyonlar1 kullanilir.

Hamiltoniyen olarak H, 6 = Zg ,a; a, almr (Landau and
J,o

Lifchitz, 1967) ve (4.83) dekleminden faydalanilarak;

[H sqp T ]= Z [H sqp (bnp A;p + b_np Anp )]

np
[qup T ]: Z Enp (bnp A;p - Enp Anp ) (4.94)
np

olarak elde edilir.

[qup T, ] = —[qup T ]+ olduguna gore;
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a,,.17.]=->¢, 0,4, -b,4;) (4.95)

np

olur.

Bunlar bulduktan sonra simdi de [H Y ]:? bulalim. Bunun

icin (4.85) denkleminden faydalanilirsa;

[qup’Tp]:%[qup’(T+ +pT-)]

ESRGE %([HW T+ plH,,.T )

olur. (4.94) ve (4.95) denklemleri yerlerine konulursa;

[qup T’ ] = %Z (_ Emp (bnpAnp - Enp An; )+ P&y (bnpAw; - l;npAnp ))

np
|, 77]= %Zgnp (~b,,4,, +b, A’ +pb, 4’ — pb, 4, )
np

[qup 4 r” ] = %Z Ep ((l;np + pbnp )A;p - p(l;np + pbnp )Anp )
np

[qup T’ ] = %Z & ((Enp + 'Obnp XA;p a pAnp )) (4.96)
np
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elde edilir.
Simdi de |H,, ~V.,T”|=? bulalm,

[qup _VC’TP]:[Hqu’Tp]_ [VC’TP]

olur. (4.93) ve (4.96) burada yerlerine yazilirsa;

Ve =150, (6, 8, Nt - )
np

%%(pV”P _ZPXA’; _pA”P)

[qup - VC > r” ] = %Z ((gnp (Enp + pbnp )_ (anp - I7np )XA;; - pAnp ))

np

olur. Burada ,
£, (D=5, 6, + o, )= (o7, -7,) (497)

olarak tanimlanirsa;

., -V, 17 |= S B ()4, - ) (4.98)
np

olur.
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Gorildugi  gibi [H -V., 1" ];éOolarak bulunur. Boylece

sqp
toplam  hamiltoniyenin  izotopik  invaryanthiginin  bozuldugu
gosterilmistir. Bunu restore etmek i¢in hamiltoniyene ek bir 4 teriminin

eklenmesi gerekir. Bu terim eklenince;
., +h-V.,T7]=0

olarak elde edilir (Ek.4’te bunun dogrulugu gosterilmistir).
Pyatov sectikleri /4 nin su sekilde olmasi gerektigini One

stirmiistlir (Pyatov and Salamov, 1977);

h= Z%[HW v, |H,, -V, ] (4.99)

p=t 7/p

(4.98) denkleminden |H,, ~V..T”|= S E ()45, - p4,,)
np

olarak bulunmustu.

1o ] = Se50(a; -0,
np

[ ~Ve Tp] —ZE,,’;(J)( —pA+) (4.100)

olur. (4.98) ve (4.100) denklemleri (4.99)’da yerlerine yazilirsa;
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h=2. 4; (B2, DEZ, (DA, —p45, kAL, —p4,.,.) (4.101)

P

olur.

(4.99)°da verilen y, parametresi asagidaki sekildedir (Pyatov and

Salamov, 1977) (Ek.5te elde edilmistir);
7/3 E<0|§[[qup_VC’Tp]an]|0>- (4102)

Komutasyon i¢indeki ifadeler (4.87) ve (4.98) denklemlerinden alinip

yerlerine yazilirsa;

=2l - V6 o, N 0, )]

I;ZE»Z;(J) (b +pbnp)[(A* —pAnp)’(A+ +pA,,,,)]

np

- 25 £, ()b, + pb,)
np

(I:A’ZU’AJr ]+p[Anp’ np]_p[Anp’ np] P [Anp’Anp

olur. 1.ve 4. terimler komdittlir. Buna gore diizenleme yapilirsa;
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=23 L + b N-2004,)
np

[A A;p]ZI olduguna gore;

np >

2 —
S R R
np

y, = —%%E,; ()b, +pb,,) (4.103)
olur. Burada;

b2 (j) = %(Enp +pb,) (4.104)
olarak tanimlanirsa;

Xp ==, =2 b0 (DES () (4.105)

olur. Goriildiigii gibi Pyatov-Salamov’un segtikleri 4 teriminin igindeki

X, parametresi, diger modellerdekiler gibi deneyle belirlenmemekte,

teorinin i¢inden kendisi bulunabilmektedir (Pyatov and Salamov, 1977) .
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4.4 Kuazi —Parcacik Bazinda Restore Edilen Hamiltoniyenin

Ozdeger ve Ozvektorlerinin Bulunmasi

0; Z( LA -l A,) (4.106)

Yukarida yazilan (4.106) numarali denklem H ’nin &zfonksiyonu

olarak alimir (Soloviev, 1976). Bu 6zfonksiyon i¢in H  ’nin

ozfonksiyonlarinin ~ siiperpozisyonu ahmr. 4, ve A4,, H  ’'nmn

ozfonksiyonlaridir.
Hareket denklemi de su sekilde tanimlanir (Ek.6’da ispati
verilmistir) (Soloviev, 1976),

1,07 |= 0,0 (4.107)

Once (4.106) ile tammlanan 6zfonksiyonun ortonormalizasyon

kosulunu saglayip saglamadigina bakilirsa;

0,07 |- ZZ[W,W N A A

np n'p’'

0.0 =SS A, vl 4, -l A, 004, -

np n'p’

[¢np Anp > '//np ]+ [(/)np Anp > (pnp A"'P'
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[Qi s Q; ] = Z Z (V/:ipwli’p’ [Anp ’ A;’p’ ]_ V/lip ¢'l;'p' [Anp ’ Aﬂ’p’ ]_

¢);ip ‘//li’p’ [A;p > Al:’p’ ]+ ¢'ip (D:t’p’ [A;p > An’p’ D

np n'p

olur. Burada ikinci ve tiglincii komiitatorler sifirdir.

[Qi ’ Q;r ] = Z Z (W;p l/ljt'p'é‘nn'é‘pp' - ¢}l’lp w;'p'é‘nn'é‘pp' )
np n'p

0.0 -5} b, ekt 1o
np

olur. Burada ortonormalizasyon sarti [Qi 07 ] =8, olmas igin;

Z((l//ip ) -, )2)=1 (4.109)

np

olmalidir. Hareket denklemini veren (4.107)’de (4.106) yerine yazilirsa;

Z [Hi l/lzlqp A;p - wilp Anp ] =0, Z (y/llap A;p - ¢;1p Anp )
np np

ol a4, )= 02,4, -0,4,) @110

np np

olur. Soldan 4, ile komutasyonuna bakilirsa;
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Z (‘//:ip [An’p' > [H’ Ar; ]] o ¢;ip [An’p’ > [H’ Anp ]])

np
=, Z (Wrilp [An’p' > Arfp ]_ (Dlip [An’p' > A"P ])
np

olur. Burada,

Prpnp = [An'p' > [H’ A’; ]]

(4.111)
M = Ao lH. 4, ]
olarak tanimlanirsa;
Z (l//rip Prupmp ~ (D;pnn'p'np ) =, Zl//;p5n"1 5p'p
np np
z (pn’p’np l//;p - nn'p’np (Dllap ) = a)il//;i’p' “2' Denklem,’ (4 1 12)

np

olarak elde edilir.

Simdi de (4.110) denkleminin soldan 4, ile komutasyonuna

bakilirsa;

z (lf//rip [A;’p’ > [H’ A;p ]] - wrizp [A:'p' > [H’ Anp ]])

np
=0 X[, -0 40,4, )
np

Z (l//jtp [A;'p' > [H’ AI; ]]_ (D:IP [A;'p’ > [H’ Anp ]]) =w; Z (0,2[, [A;'p' ’ Anp ]
np

np
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Z (l//;p [A;’p' ° [H’ Ar-;) ]] - ¢;l1p [A;’p’ > [H’ Anp ]]) = a)i¢lfl’p’ (4 1 13)
np

olur. Daha once;

Mty =[An,p, [H ,Anp“ olarak tanimlanmisti. Bunun eslenigine

bakilirsa;
s o L
n;p'np = |.[H’ Anp ]+ > Af:r'p’ J = [[A;p ’H]’ A;'p’ ] = _[Ar:r’p' > [A:trp ’ H]]
=(-laiy o 4,])
M = A0 |4,
ve sonug olarak;

(nn’p’np )+ = nr:r'p'ﬂp = [A;’p' ’ [H’ A;p ]] (4'1 14)

olur.

Aynist p,,,, i¢in de yapilirsa;

(pn’p'np )+ = p;’p'np - [A':’p' > [H’ Anp ]] (4.115)

olur.
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(4.114) ve (4.115) denklemleri, (4.113)’de yerlerine yazilirsa;

Z (‘//;pnn'p'np - ¢rlzp pn'p'np ) = wi¢jt’p' “3' Denklem” (4 1 16)

np

olur.
Simdi sirasiyla p,,,, ve 17, °yi bulalim. Once p,, ’yi
bulalim;

[H LA ]] olarak

np

Yukarida (4.111) denkleminde p,,,, = [A

n'p'

tammlanmuisti. H = H, +h olduguna gore;

Pupmp = [An’p' > [qup T h’ A;p ]]: [An'p’ > [ sqp > A;p ]]+ [An'p' > [h’ A:trp ]] (4‘1 17)
olur. Burada,

P ;f;p’np = [An'p' > [H sqp A;p ]]
ve (4.118)

pr}ll'p’np = [An'p' > [h’ Ar-t; ]]
olarak tanimlansin. Simdi sirastyla bunlar1 bulalim;

psg)'np = [An'p' ’ [qup > A;p ]]
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[H A ]=(8n +e,)4, ve [H

sqp ° “"np np

4,, ]= —(¢, +¢,)4,, olduklari

sqp

hatirlanirsa (Soloviev, 1976);
p:f;p'np = (8n + gp )[An'p' ’ Aner ]
Py =(€,+8,)0,,0,, (4.119)

olur.
. h + .
4.118)  denkleminde  p/, =[d,.|1 45 ]| seklinde

tanimlanmisti. Burada (4.101) denklemi yerine yazilirsa;

1 : .
Pivm = 2= B (DEL,, ()
gy (4.120)

p
[An’p' > [(Anlpl - pA’:pl XAr:rzpz - pA’lsz )> A:trp ]]

olur.

Burada dikkat edilecek olan nokta, esitligin solundaki p ile
esitligin  sagindaki toplam semboliiniin altindaki p’nun ayni

olmamasidir.

Once esitligin sagindaki komutasyondan igteki olan1 hesaplanirsa;

[(Anlpl B pA':pl XAI:;pz B pAnzpz )A; ]
|4, 47 —pd, A —pd, 47

2 4+ )} +]
nypa mpyT T mps mpy- mps +p A”lplA”sz A"P
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[(A”ll’l B 'DA':pl XA’:;Pz - pAnzpz )>A,,+p ] =
B [An'p' A;pz ’ A;p ]_ p[A"'p‘ A"ZPZ ’ A;P ]_ p[A;m] A;2p2 ’ Al:p ]+ [A;.p] An2p2 ’ A'; ]

(4, - a7, XAz, - A, ) 4;,]
=, 44, 40, 40 - o4, (4,040
ol an W, - o, Lar, 4 - lAy, 4 4,
vdy 4, 4]+ lar, 4 s,

olur. Esitligin sagindaki 2., 5., 6. ve 8. komutatorler sifirdir.

A, —pAl \AS - pA, )AL
[( mpy P mpy X Jrnzl’z P P2 ) np] . (4 121)
= 5n’l1 51’171 A’lzpz - p(é‘"”] 5[’1’1 A”sz T 5””2 5[’1’2 A”]Pl ) + 6””2 5PP2 Anlpl

olur. (4.121) denklemi, (4.120)’deki komutasyon bagintisinda yerine

yazilirsa;

[An'p' > [(Anl n P A:':pl XA;pz P Anzpz )’ Al:p ]]
= [A ' (5nn1 5pp1 A;zpz -P (5nn1 5pp1 A”sz + 5"”2 §PP2 Anm )+ 5%2 §PP2 A;lpl )]

np's
[An’p’ ’ [(Anm - pA;lpl XA;sz - pA”sz l Ar:v ]] =

= 5% §pp| [An’p' 4 A;zpz ]_ P (5,,,11 5pp1 [An'p’ ? A”zpz ]+ (4' 122)
+ 5nn2 5pp2 [An’p’ ’ Anlpl ])+ 5nnz 517172 [An'p' > An+1pl ]

olur. Buradaki 2. ve 3. komiitatorler sifirdir.
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[An'p”[( np npl xAnzp pAnp )’A+ ]]
=06,10 0,000y, +0,,0,,0,,0,

nny = pp; “n'ny 7 p'py ppy Cn'n 7 p'py

(4.123)

elde edilir. (4.123) denklemi, (4.120)’de yerine yazilirsa;

Pripinp z_ Zpl (J)Efzpz (])(5'"!1 5pp1 5'1 n, 5pp + 5 517112 5}7 m 5171'1 )

mp
np;
P

olur ve n,,n,, p,, p, lizerinden toplam alinirsa;

p:’p’np 2241 (EV/;Efp +Ep E;Z?)

p o
1
Pl =S — . (E2E2,) (4.124)
p “lp

olur. (4.119) ve (4.124), (4.117)’de yerine yazilirsa;

pn’p’np_gnp nn' pp 227 (E,;Efp) (4.125)
P

olarak elde edilir.

Benzer gekilde simdi de 7,,,, bulunursa;

(4.111) denkleminden 7,,,,, =lA lH A, JJ ve H=H_, +h olduklan

n'p'>

hatirlanirsa;
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Mo = A [H oy + 1 Ay |2 [ A [H s Ay |+ |4 |14, | (4126

olur. Burada;

o =i H 4,

nnp np sqp

ve (4.127)

= I:An'p' [h’ Anp

nn'p'np

olarak tanimlansin. Simdi sirasiyla (4.127) denklemindeki ifadeleri

bulalim;
Moy = [An'pf [H aps A 1| VE [H > Aup ] ¢,,4,, olduguna gore;
i =g, 4,4, =0 (4.128)
olur.

Simdi de n,f,p,np =[An,p, [h,A p]]’ yi hesaplayalim. /4 ’nin degeri

(4.101)’den alinip yerine yazilirsa;

z_ fﬁpl (']) ’sz ('])
w47, (4.129)

n P
P

np 'np

[Anp > [( mpy 'OA;lpl XAnzpz o pAnzpz )’ Anp ]]

olur. Once esitligin sagindaki komutasyondan igte olan1 hesaplanirsa;
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[(An1p1 - pA;’:pl XA:zpz - pAnzpz )>Anp ]
- [(Anlpl A’:;Pz - pAnm A”sz - pA;lpl A;zpz + pZA;lpl A”zpz )’ Anp ]

[(Anlpl a 'OA;M XA’:rsz - pA”QPz )>Anp]
= [Anlm Ai:rzpz ’ Anp ]_ p[Anm A”sz ’ Anp ]_ p[A':pl A':—zpz ’ A"P ]+ [A’:M A"zpz ? A"P ]

(4., = o1, X, = P4, , ) 4, ]
4,4, b5, w4, 140, .4, ]-p4,,[4,,.4,]
~pla,, 4,14, -1, [4:,.4,]-ola;, 4,47,
vy, 4,4, 40,04, 14,

olur. Esitligin sagindaki 1., 3., 4. ve 7. komiitatorler sifirdir.

[(A”1P1 - pA’:M XA’:—zpz - pA”sz )’ A"P ] = _5"”2 5PP2 A"lpl + p§”"2 517172 A;lpl (4 130)
tp §nn1 517171 A’:—zpz - 5%1 517171 A"zpz

olur. (4.130) denklemi, (4.129)’daki komutasyon bagintisinda yerine

yazilirsa;

[An’p' > [(Anlpl - pA;lpl XA;zPZ - pA"sz )Anp ]] =
= [An'p’ ’ (_ §nn2 5pp2 Ampl tp 5””2 6PP2 Ar: n TP 5%1 5/7;71 A;zpz - 5rm1 5pp] A"sz )]
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[A [( mpy _pA;lpl XAV’sz _pAnzpz)’ ”P ]]
5,5, (44, T+ 05,5 |4, 47, 1+ p5,5, [4,.47, ]
5,5, [4,,.4

nny - ppy n'p's ” 2D> ]

olur. Buradaki 1. ve 4. komiitatorler sifirdir.

[An’p’ ’ [(A pAn 1P XA’:zpz - pAnzpz )’A+ ]]
=p, 6 0,0, +0 O 0.0,

nny = ppy, ~n'n < p'py nny ~ ppy~n'ny 7 p'p,

(4.131)

olur. (4.131) denklemi, (4.129)’ da yerine yazilirsa;

77:’17%11 Z nlpl (] )E nyp; (J )/0 (511'72 517172 5'1 n 51717 + 5 51)1?1 5n ny 517172

mpy
np;
P

olur ven,,n,, p,, p, lizerinden toplam alinirsa;

77:’17’1117 = z 4p (Elgi Enpp EiP'E'I; )

p Tp
7 :Zz” (E2EZ,) (4.132)
> 27,

olur. (4.128) ve (4.132) denklemleri, (4.126)’da yerine yazilirsa;

Moy = D5 ER ) (4.133)

p “lp
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olarak bulunur.

Simdi de (4.106) numarali denklem ile tanimlanan H ’nin
0zfonksiyonu i¢inde olan y/;p ve (p}ip ’yi bulalim. Bunun i¢in daha 6nce
bulunan ve “2. Denklem” adi verilen (4.112) numarali denklemde az

once elde edilen (4.125). ve (4.133). denklemler yerlerine yazilirsa;

> LWy = iy @iy )= Oy “2. Denklem”

np

np P P

Z (l//ip {gnp nn' 5171) + z ( np )] (pnp Zﬁ (En’jv Enpp )} = a)il//'i’p'

olur. n=n" ve p = p' lizerinden toplam alinirsa;

; 1
3,,,,‘//,,,, +ZZ_E@ annp pgﬂépzz—EZ,Efp _anp

npp p P P
i 1 Ep Ep ( i i )_ i
Sn'p'l//n'p' + 22_ n'p' Z np np pwnp - a)il//n'p'
p <Yy np

olur. Burada;

/= ZEnp vi - ppi) (4.134)

olarak tanimlanirsa;
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1 .
P TP _ i
E C E, T = (a)l. = Ey Wty
p <Yp

. 1 Ey,
L= rr 4.135
Vo Zp:zyp (wi _SW) i ( )

olur. Fakat burada dikkat edilmesi gereken nokta; I'”’nun icinde p

oldugu ve bulunan (4.135) numarali denklemde de p {izerinden toplam

alindigidir. Bu p larin karismamasi igin toplam p’ den alinirsa;

wi, = L Ey r’” (4.136)
0 27p’ (a)i _811'12')

olur.
Simdide “3. Denklem” olarak adlandirilan (4.116). denklemden
(pip ’yi bulalim. Bunun i¢in (4.116). denklemde (4.125). ve (4.133).

denklemler yerlerine yazilirsa;

Z (‘// ,ipﬂnpfnp - (Df,,, Puipnp ) = a)iga,i,p, “3. Denklem”

np

i i 1 !
Z [l/lnp [Z 2L Er:; Er?p' } - Can (811p5n11'5pp' + z 2_ (E;:; E}?p' )]} = a)i(on'p'
y P ]/p

np p “lp
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olur. n=n" ve p = p' lizerinden toplam alinirsa;

—Ewp (an +Z_E ZEnp(anp _(an) ,§0np

eyt B T~ p0L)- 00,
P

P np

olur. (4.134)’te yapilan tanim kullanilirsa;

P e e _ i
zzypEon, (a)+5 '

E”,
P LA (4.137)

i =
Prip > 27, (a)l. +€W),

olur. I/ ’nun i¢indeki p ile toplamdaki p 'nun karigmamast i¢in;

o EL
LA (4.138)
P 27p’ (a)i +gn'p')l

i_
Py =

olarak yazilabilir.
Elde edilen (4.136) denklemi ve (4.138) denklemi (4.134)’te

yerine yazilirsa;
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P 27/p’ (a)i _gnp) 27,0' (a)i + gnp)

Ef , ' ED ,
I’ = ZE’; {Z( 1 LI PP w7 JJ (4.139)
np

olur. Esitligin sagindaki ifadeyi sola gecirilip sonug sifira esitlenirse;

ol '
zripyé‘pp’ _ZE;;[Z E"P [(a) ! - Jrip} =0

, o 2V

p np

' E” EP' ’
Zl"ip [5'0'0, _ Z np~— np [(a) 1 _ PP )]] — O (4140)
P i

" Zyp, ‘—gnp) (a)i+gnp

olur. Burada p=7F ve p'=7F degerlerini alir. Buna goére p =+ igin

p' =+ ve — degerleri igin (4.140). denklem su sekilde yazilir;

or S et
ri_zE;pE,;, [(w 1 1 ]—o.

np 2}/—

(4.141)

p =—igin p'=— ve + degerleri i¢in (4.140). denklem su sekilde yazilir;
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. (4.142)
E,E, 1 1
-’ L + =0
i ; 27/+ ((a)l — &‘np) (a),. + & )
(4.141) ve (4.142) denklemleri diizenlenirse;
r{l—z(E;” P j I ZE;”E”_” Z =0 (4.143)
l np }/+ (wi gnp) np 7— (a) - 8 )

+ E"_PE’; a)i ( np) n _
-y o e )+r (1 > J_ 0 (4.144)

v 7 v 7 ol -e)

elde edilir. (4.143) ve (4.144) denklemlerinden de goriildiigii gibi iki tane
sifira esit, linecer denklem elde edilir. Bu denklem sisteminin bir ¢6zimii
olabilmesi i¢in katsayilar determinantinin sifir olmasi gerekir. Yani
(4.143) ve (4.144) denklemleri;
xa,, —ya,, =0
—Xa,, +ya,, =0
seklinde lineer denklemlerdir. Bu sistemin ¢6ziimii i¢in;

a;;  —dp

=0

—ay A4y

olmalidir. Oyleyse (4.143) ve (4.144) denklemleri igin katsayilar

determinanti;



(ELF & E}E,
1— np np _ np ' np
2 ) & aa w=s1)
Ean;p w; En—pz Ep
— 1—
L o) T )

=0
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(4.145)

olur. Buna “Sekular Denklem” ad1 verilir. Bu determinantin ¢éziimiinden

(4.107) denklemi ile verilen hareket denklemindeki o, 6zdegerleri elde

edilir. Bu hesaplamalar bilgisayarda yapilacaktir.

Simdi daha 6nce bulunan (4.136) denklemine geri doniiliir ve

bundan hareketle y,, ¢oziimlenirse;

i Z% (—_8)

olur. Burada '/’ bilinmemektedir.

olur. Simdi (4.143) denkleminden % ifadesi elde edilirse;

i

(4.146)
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Lw)=tr = ””+ ’ (w ~2u) (4.147)
r ZEannp o
= 7 (e -2))

v :r;[ ! w | id )L(a),. )] (4.148)
L — o, —

olarak elde edilir.

Ayni sekilde (4.138)’den (p,ip coziiliirse;

i np o
¢np - 2}/p’ (a),- e )rl

,_ 1 E, 1 E,
¢”P 27/+ (a)i + 8l1p )rl 27— (a)i + gnp)ri
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i _ 7T+ 1 E;P _ 1 E':P F;
(an = F,‘ [2}/+ (a)i +5np) 277 (a)[ +8”p)1—«i+J (4149)

olur. (4.147) deki tanim (4.149)’da yerine yazilirsa;

i _ 7t 1 Er; _ 1 En_p
o =1L [2% (o, +£n,,) 27 o, +8np)L(wi)j (4130

olur.
(4.148) ve (4.150) denklemleri artik tek bilinmeyenli birer

denklem olmustur. Onceden hem I hem de I bilinmiyordu. Simdi tek

bilinmeyen I ’dir. T’ ’yi bulmak i¢in daha once “1. Denklem” olarak

adlandirilan (4.109) denklemi kullanilir. Bu deklem;

S,V (oL, ))=1

np

seklindeydi. Bu denklemde (4.148) ve (4.150) yerlerine yazilirsa;

(el et -

(4.151)
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olur. (4.151)’de sOyle bir tanimlama yapilirsa;

L (E, E, |
Z(a)i)EZ ((wi_gnp)[zer +27/7 L(CU;)JJ _

np

olur. Bu durumda (4.151) denklemi;

2(0) (=1

1

olur ve buradan;

olarak elde edilir.

(4.152)

(4.153)

(4.154)

Bulunan bu (4.154) denklemi (4.148) ve (4.150)’de yerlerine

yazilirsa;

(o1 L
‘//np (Z(a)i) (a),' _5,11,)(2%, + 27_ (a)i )J

;1 I £, E,
Ppp = \/ZQT,; (0),- +€np)(2]/+ 2 L((l)z‘ )]

olur.

(4.155)

(4.156)
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4.5 Matris Elemanlarinin Hesaplanmasi

(N+1,Z-1) Ana Cekirdek (N-1,Z+1)
(N.Z)

Sekil 4.1 Ana gekirdekten yapilan ~ ve [ " gegisleri.

Sekil 4.1°’den goriildiigli gibi ana ¢ekirdekten sag tarafa olan £~
gecisleri Ql.+|0> ile ana ¢ekirdekten sol tarafa olan S gegisleri Q, |0> ile
temsil edilir.

L~ gecisi su sekilde ifade edilir;

T0)=M, Of

0) (4.157)

Buradaki M ;,,, (N,Z) ana ¢ekirdeginin taban seviyesinden (N-1,Z+1)

cekirdeginin seviyelerindeki izobar 0° seviyelerine B~ Fermi gegis
matris elemanidir. (4.157) denkleminin soldan <0|Q,. ile komutasyonuna

bakilirsa;

(0lQ710) =41, (00,07]0)
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olur.

0, |0> =0 oldugu icin yukaridaki ifadeye bunu igeren terimler

eklenebilir. Sonug degismez;
(olor -1 00)=M, (00,0 -0700)
(oflo,. 1|0y =, (0]|0,.0; ||0) (4.158)
olur. Pargacik bazinda,

(0..07 |- v, (v (0| (o), 4, ()]

= Z(N_,- () =N, (P (p.m)=1

olarak (4.49) denklemiyle elde edilmisti. Oyleyse; (4.158) denkleminde

[Q,— ,OF ]= 1 olduguna gore;
M, =(0[lo,.7_]|0) (4.159)

olur.

(4.45)  denkleminden Q] =)y ;(p,n)4,(p,n) ve (4.8)
j

denkleminden 7_=>(j,p
7

| j,n)4,(p,n) olduguna gbre bunlar (4.159)

denkleminde yerlerine yazilirsa;
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= ij(p’n)A;(pvn)aZ<a 5 >Aj'(p,n)
=2.v, (P, A (pon), 4, (pom)] (4.160)

olur. Burada (4.10) denklemi yerine yazilirsa, pargacik bazinda £~ gecis

matris elemani

=Y, (p.)j.p| )N, () - N, (p) (4.161)
J

olarak bulunur.

Kuazi-pargacik bazinda da [Qi,Q;]: 0, ve i=1i" olduguna gore
[Qi O ] =1 ’dir. Buna gore (4.158) denkleminden

(0llo,,7 ]|0)y =M, (4.162)

olarak matris elemani elde edilir. Bu parcacik bazinda elde edilen
(4.159) denklemiyle aynidir.
Ozfonksiyon (4.106) denkleminde su sekilde ifade edilmisti;

Q Z (Wnp Anp - (an np )

Buna gore;
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0 =) =X 4,9, 4) (4.163)

olur.

T_ operatorii de (4.83) denkleminde asagidaki gibi elde edilmisti;

n'p'“*n'p' n'p"“*n'p’

T :Z(b A+, A,
(4.163) ve (4.83) denklemleri (4.162)’de yerlerine yazilirsa;

- <0| Z(V/;’PAHP _w’f’PA;P)’Z(b”P A”J'rp +b”P AV’P ) |O>

np

ZZZ(Z)"'P'W:IP[AW’ ]+ban/np[Anp’Anp] bnpwnp[Ay;ﬁA+ ]

np n'p' B
bn'p’(olip [A;p ’ An'p’ ])<0| | 0>

Z z (bnp l//np 6nn w T En’p’(o;zp 5nn 5pp )

np n'p'

Ml =Y (b, +b,0),)

np

olur. Kuzai-pargacik bazinda S~ gecis matris eleman1 asagidaki gibi elde

edilmis olur;
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Ml =(oo.T1|0)=> (b, +b,0,) - (4.164)

np

M } , (N,Z) ana cekirdeginin taban seviyesinden (N+1,Z-1)
¢ekirdegindeki izobar 0" seviyelerine * Fermi gecis matris elemanidar.

B gecisi su sekilde ifade edilir ;
T.[0)=M.0;|0) (4.165)

Bu ifadenin soldan <0|Qi ile komutasyonuna bakilir ve yukarida yapilan

benzer iglemler tekrar edilirse;

<O|[QnT+]|O> = M;+ <0||:Qi7Qi+]|O>

M =(0flo.T.]|0) (4.166)
olur. Yalniz burada dikkat edilecek olan nokta parcacik bazinda

0/ =X v, (p.m)4; (pm)

0, zzl//j(pan)Aj(pan)

olarak kabul edilmelidir.
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,n)A} (p,n) olduguna

0=, 8 (o) ve 497 n 7. <.

gore bunlar (4.166) denkleminde yerlerine yazilirsa;

n) A% (p,n)

= Zg//j(p,n)Aj(P»”)=Z< £

jo) A4, (p.n). 43 (p.m)]

=Z(//j(p,n)<j,p
i’

olur. Burada (4.10) denklemi yerine yazilirsa, par¢acik bazinda S*

gecisine neden olan matris elemant,

)N, () = N, () (4.167)

M;+ Z_Zl//j(p’nx .9

olarak bulunur.

Kuazi-pargacik bazi i¢in (4.163) ve (4.84) denklemleri (4.166)’da

yerlerine yazilirsa;

np

0] ity -0 A S B >}|o>

:ZZ(IDH/P'I/IIL [Anp’An'p']_'_En’p'l//)l;p [Anp’ np] bnp gﬁnp[ np’A ]
np n'p
45, 47, )Xol 0)

n 'p gonp np
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M;* - Z Z (l;n'p’l//'l;p 5nn'5pp' + bn’p'(o;;p é‘rm'é‘pp’ )

np n'p'

Ml =Y (b, +b,0),)

np

olur. Kuazi-pargacik bazinda " geg¢isine neden olan matris eleman1

M, =(o[o.7.]|0)=X,v, ~b,0,,) (4.168)

np
olarak elde edilir. Ozetlenecek olursa;

Parcacik bazinda matris elemanlar1 (4.161) ve (4.167) denklemlerinden;

My =3y (p.n)j.p|J. N, - N, ()

jm)N;(m) =N, (p)),

M;ﬁ :_Zl//j(p9n)<j’p
J

Kuazi pargcactk bazinda matris elemanlart (4.164) ve (4.168)

denklemlerinden;

My =X b,y +b,0),)
np

M;ﬁ = Z (bnpl//:lp - bnpgp'ip)

np

olarak elde edilir.
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4.6 Fermi Toplam Kurah

Acgisal momentum igin [L+,L_]: 2L seklindedir. Aynisi izospin

vektoril igin de gegerlidir; [T, |=2T. ve T, = N- olduguna gore;

[1,,T]=N-Z (4.169)
olur. Pargacik bazinda, (4.8) ve (4.9) denklemlerinden;

T.=2.(J>p|j:n)4;(p,m)

J

T, =>(j.p

J

Jsn) 4] (p,n)
olduklar1 hatirlanirsa;

1.2 1 S0 o St o

J

47 (pom), 4, (pm)

7.7 1= 3 3| pll )’

r.7]=3 jn) (N, (=N (p))=N-Z (4.170)

J

(j.,p



107

olur. Aym sekilde kuazi-parcacitk bazinda (4.83) ve (4.84)

denklemlerinden;

I= Z(b,,,p,A;p, + En'p'An'p')

n'p'
= Z (bnp A”P T bnp A;P )

olduklar1 hatirlanirsa bunlara gore;

[T+’T—]: Z(bnpAnp +bnpAr;lZ(bnr’A;p’ +En’p’An'p’ )}
n'p

np

[T+’T—]:ZZ(bnp np [Anp’A;'p’]+bnp n'p' [Anp’An'p’]—l—an ”P[A;P’A+ ]

np n'p'
np np [Anp’
T ] - Z Z (bnpbnp 5”” 5PP b"P b”P 5’"’ 5PP )
np n'p
[7.7]=X (b2 -b2)=N-Z 4.171)

np

olur. Buradaki b,, ve b,, sqp matris elemanlaridir. Bu yapilan hesaplarin

bir kontroliidiir. Hesapla mutlaka parcacik bazinda (4.170), kuazi-
parcacik bazinda (4.171) denklemi saglanmalidir.
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[r.r]=17T -TT,

olduguna gore;
T -TT,=N-Z

olur. Bunlarin ortalamasi alinirsa;
(0|T,T_ —T.T,|0)=(N-Z)(0|0)

olur. Burada Qi+|0>=i olmak iizere, <i |i>=1 ve |i><i | =1 seklindedir.

Bunlardan <i |1> T'T, arasina ve |l><l| de 7.7 arasina yazilirsa;

> (ol el |o) (ol i)ilr, |o}}= N~ 2 @1m)

1

olur. (4.172) denkleminin birinci terimi incelenecek olursa;
(ofr.|8))" = ir o)
olur. Buna gore;

(O [a)alr[0) = il |o)f

T+
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yazilabilir. Ayrica Q;

0> = |l> ve <O|Ql. = <l| olmak tizere;

(i[7]0) = {0loT|0)

olur. Q. |0>:0 oldugu i¢in bu ifadeden 7 Q.’yi cikarmak sonucu

degistirmez.

(ir o) = olor -7 0o)
(i )= (ofle..7 1o}

(4.159) ve (4.162) denklerinden (0[[0,,7 ]|0) = M ! oldugu hatirlanirsa,
{i[T|0)=M) (4.173)
olur. Benzer sekilde (4.172)’nin ikinci terimi;
(ol )" = Iz |o)
olur. Oyleyse;
(o[ [i)i[r.|o) = il o) @174)

yazilabilir.Buradan;
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(ilr.|0) =(0|Q,T,|0),
T, >=<0|QT ~T.0[0),
(ir.[0)=(0ll,.T.]0)

olur. (4.166) denkleminden M } = <O|[Ql, N ]|O> oldugu hatirlanirsa;

T

+

(i

0) =M, (4.175)
olur. (4.173)ve (4.175)’1 (4.172)’de yerlerine yazarsak;

Z{‘M;r“M}r}:N—ZﬂTO (4.176)

olur.
Bu hesaplarin sonunda yapilacak olan kontroldiir. Matris
elemanlar1 dogru hesaplanmis iseler (4.176) denklemi saglanmalidir.
Ozetleyecek olursak (4.170) ve (4.171) denklemlerinden
hareketle,

Parcacik bazinda;

Sy =P [ =Sl ol o0 -3, 00)=3 2.
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Kuazi-pargacik bazinda;

Z{‘M;r _‘M;*‘z}ZZ(bHZP _Eni):N_Z =2T,

np

olarak elde edilmelidir.

4.7 Ana Cekirdegin Taban Durumunun izospin Safsizhg

Ana c¢ekirdek tlizerindeki izotopik spin saf degildir. Sagdaki ve
soldaki c¢ekirdeklerden bu c¢ekirdege gecisler olabilir. Bu gecisler
safsizligi bozar. Fakat sagdan yani (7, —1)’den (7, ) haline katki olmaz.
Gegisler (7, +1)’den (7})’a; (7, +2)’den (7,)’a ..vs olur. Herbir
gecisten katki gelebilir.

Gegisin  olmayacag (7, —1) izotopik spinine sahip hal,
|T0 —1,T0> olarak ifade edilir. Ik terim toplam izotopik spini, ikinci
terim ise bunun {i¢iincii bilesenini yani 7, bilesenini temsil eder. Burada
T,, T,—1’in T bilesenidir. Dolayisiyla bdyle bir hal olamaz. Ciinkii
hi¢bir zaman izdiisiimii kendisinden daha biiyiik olan bir vektoér yoktur.
Yani 7, bileseni toplam izotopik spinden daha biiyiik olamaz.

Ana ¢ekirdek asagidaki gibi ifade edilebilir;

0)=|N,Z)=d|T,,T,) +b|T, + LT, ) + | T, +2,T, ) +...

g (4.177)
a’+b° =
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IAR

IAR \ IAR

\

Tot+2 Tot+1 To To-1
(N+2.Z-2) (N+1,Z-1) (N.Z) (N-1.Z+1)

Sekil 4.2 (N, Z) Ana gekirdegin taban seviyesine gelen katkilarin

sematik gosterimi.

Burada esitligin sagindaki iigiincii terim ve sonrasindan gelen katki ¢ok

kiigiik oldugu i¢in ihmal edilir. Ayrica bu denklemdeki b katsayisi

izospin safsizlig1 olarak adlandirilir.

Taban haldeki komsu c¢ekirdeklerin izospinlerinin karelerinin

beklenen degeri soyle hesaplanabilir;

(0[7%0) = (B(T, + 1, T, | + a(T,, T, |)T*(a| T, T;) + B| T, + 1, T,)).  (4.178)

Agisal momentum igin;
L|LM,)=L(L+1)LM )

olduguna gore;



113

T*|TT,)=T(T +1)TT,)
olur. Oyleyse;

(0|72(0) = ba(T, +1,T,|T*|T,, T, )+ b*(T, +1,T,|T°|T, +1,T,)
a’(T,,1, || T,.T,) + ab(T,,T,|T*|T, +1,T,)

(0[72|0) = baT, (T, +1XT, +1,T,|T,.T,)
+b7(T, +1NT, + 2XT, + LT, |T, + 1.T,) + &’ T, (T, +1)T,. T, |T,. T, )
+ab(T, + I\T, +2XT,.T,|T, +1.T,)
(0[7%]0) = a’T, (T, +1)+ b*(T, +1)T, +2)
olur. (4.177)’den a’ =1-5b" olduguna gore;
(0[72[0) = (1= 5 )T, (T, +1)+ b*(T, +1)T, +2)
(0[7?[0) =T, (T, +1)+ b7 (T, +1)T, +2-T,)

(0[7[0) = T, (T, +1)+2b*(T, +1) (4.179)

olur. Diger taraftan; L’ =L_L, +L, +L, olduguna gére izotopik spin

iginde benzer bagint1 7> =TT, + T, + T, olur. Buna gore;
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(0|720) =(0|T.T, + T +T,|0)
olur. Z|1><z| =1 olduguna gore 7' T, arasina Z|z><z | yazilabilir..

(0[72|0) = (0[7-7.10) +{0[7|0) +(0[; 0)

(0[7?|0)

(O|T_|i)i|T.|0) +T;(0]0) + T,(0]0)
(0[72|0) = (0|7 [i){i[T.|0) + 7,(7; +1)
olur. (4.174) ve (4.175) ten;
<0|T_|i><i|T+|0>=Z‘M;+‘2 .
oldugu bilinmektedir. Bu yerine yazilirsa;
<O|T2|O>:Z‘M;+‘2+TO(TO +1) (4.180)
olur. (4.179) ve (4.180) esitlenirse;

T,(T, +1)+2b*(T, +1)= Z‘M;r +7,(1, +1)
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.12
Z‘M’ﬁ
P(T, +1)=b> =——— — 4.181
(7, +1) T (4.181)

olur. (4.181) denklemi (N +1,Z —1) ¢ekirdeginin izobarik seviyelerinden

(N,Z) ana cekirdeginin taban seviyesine gelen katkiy1 ifade eder.

4.8 IAR Izospin Yapisi

T operatori kullanilarak, (N —-1,Z+1) cekirdegindeki biitiin

Fermi gecislerinin tek bir hal iizerinde toplandig1 hal olan kolektif analog

hal durumu s6yle ifade edilir ;

| 4) =0 T+T_|0>‘% T|0). (4.182)

(4.182) denklemi iki parcaya ayrihp c¢oziilebilir. Once Tf|0>

¢cOzlimlenirse;

T_|0)=aT |T,,T,)+bT |T, +1,T,) (4.183)

olur. Agisal momentum i¢in tanimlanan

L |LM)=\(L+M)L-M +1)|LM -1)

ifade kullanilirsa, (4.183) denkleminin birinci kismi;
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T|7,.7,) = (T, + T, )T, - T, +1)|T,,T, - 1)

T |T,.T,) =2T,|T,,T, -1) (4.184)

olur. (4.183) denkleminin ikinci kismi;

T|T, +LT,) = (T, +1+ T, T +1, = T, +1)|T, + LT, - 1)

T|T, +11,) = 2Q2T, +1)|T, + LT, - 1) (4.185)

olur. (4.184) ve (4.185) denklemleri (4.183)’de yerlerine konulursa;

T]0)=a\2T,|T,,T, 1)+ b\22T, +1)|T, +1,T, 1) (4.186)

olur.
(4.182)’nin diger kismi olan KO|T+T7|O>‘7% ifadesinin ¢oziimiine

bakilirsa; > =L,L +L, —L, olduguna gére 7> =T, T_+T, —T, olur.

Buradan hareket edilirse;

T.T =T°-T; +T, (4.187)

olur. Bu ifade KO|T T _| 0>‘_% ‘nin i¢ kisminda yerine yazilirsa;



117

0|7,7|0) = (b(T, + 1,7, | + a(T,. T, ||T.T |(a|T,. T,) + 8| T, +1,T;,))

(0|7.7]0) = a*(T,, T, |T.T| T}, T, ) + ab(T,, T, |T,T_|T, +1,T,)
+ba(T, +1,T,|T.T_|T,,T,) + b*(T, + LT, |T,T | T, +1,T,)

(0|1, T|0)y=a’(T,.T,|T.T_|T,,T,) + b*(T, + LT, |T.T_|T, + 1, T,)

olur. Bu ifadede (4.187) denklemi yerine yazilirsa;

(0|7, T|0) = a’(T,.T,|T* - T3 +T,|T,.T,)
+b* (T, + LT, |T* =T} +T,|T, +1,T,)

(0|1,710) = a*(T,. 7, |T*|T,. T, ) - T2 (T, T, |T,. T, ) + T (T, T, | T, )
+b2(<T0 +1L,T,|T?|T, +1,T,) - T, (T, +1.7,|T, +1,T,)
+T,(T, + 1,1, |T, +1,T,))

(0|7, T |0) = > (7, (T, +1)-T¢ + T, )+ b*((T, +1XT, +2)- T3 +T,)
(0|7, T |0) = 2T,a* +2b° (2T, +1) (4.188)

elde edilir. (4.186) ve (4.188) denklemleri (4.182)’de yerlerine yazilirsa;

1
ara? +2b2 (21, +1)

(aﬁ| T,,T, = 1)+b\22T, +1)|T, + 1T, —1))

|4)
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olur. Bu diizenlenir ve a® =1-b? olarak yazilirsa;

) _ a2T,|T,.T, ~1) +5,2027, +1)| T, +1.T, ~1)
J2(( et +1)

ol LD 7171 4189)

JT +b° T +1 ,/T +b* T +1

olur.

Izobar analog hal durumu olan Q;‘R|0> durumuna katk1 7, -1,

I,, T,+1 ve T;+2 durumlarindan gelebilir (Sekil 4.3). Q;R|0>

durumu;

J/IAR

Tot2 Tot1 To To-1
(N+2,Z-2) (N+1,Z-1) (N,Z) (N-1,Z+1)

Sekil 4.3 Gegisin yapildigi (N —1,Z +1) iiriin gekirdegindeki IAR durumlarina

diger ¢ekirdeklerin taban durumlarindan gelen katkilar.
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QIJ;IR|0>:71AR|TO -LT, _1>+alAR|T09TO _1>

(4.190)
+ B |Ty + LT, = D+ A | Ty +2,T, 1)

712,4R +a12AR + :H12AR +A21AR =1 (4.191)

seklinde ifade edilir.

|A> durumu ile Q,,, durumu arasindaki Ortiisme asagidaki

sekildedir;
Op = <O|QIAR| A>' (4.192)

(074]0)) =(0Q,r olduguna gbre (4.189) ve (4.190)

denklemleri (4.192)’de yerlerine yazilirsa;

51AR = (71AR<T0 _laTo _1|+alAR<T0’T0 _1|
+ BTy + 1T, =1+ A (T, +2,T, ~1])

\/_ by(2T, +1 |T+1T >
VA +b° T+1 JT +b° T+1

T
Or = Apig a\/_o <To_laT0_l|To_laTo_1>

T, +b*(T, +1)
by(2T, +1
T, +b*(T, +1)

+ IAR

(T, +1,T, -1|T, +1,T, 1)
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_ alARa\/T_0+ Brrby 2T, +1

5, = (4.193)
" JT, +b*(T, +1)

olur.
(4.188) ifadesi (4.182)’de verilen |A>=\<0|T+T_|o>\‘%T_|o>

ifadesinde yerine yazilirsa;

| 4) = 1 T |0) (4.194)

T, +b*(T, +1)

olur. (4.194), (4.192)’de yerine yazilirsa;

(010, T[0)
JTy +b*(T, +1)

(4.195)

5IAR =

olur. Q,AR|O> =0 olduguna gore bu ifade (4.195)’den ¢ikarilirsa sonug

degismez;

<O|Q[ART— - T—QIAR|0>

o =
. \/TO +b*(T, +1)

5~ 0007 ]0) (4.196)

AT, +1)
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olur. (4.162)’den bilinen (0|[Q,,T_]|0) = M, ifadesi (4.196)’da yerine

yazilirsa;

oy
IAR
\/TO +b*(T, +1)

(4.197)

olur. (4.193) ile (4.197) denklemleri karsilastirilirsa;

apaTy + Bt QT +1) M,
JT, + b7 (T, +1) JT, + b7 (T, +1)

MI/Z? :alARa\/T_0+ B (2T, +1)

(4.198)

olur. Boylece ana c¢ekirdegin taban seviyesinden (N —-1,Z+1)

cekirdeginin seviyeleri arasinda bulunan izobar analog hale gecis matris
eleman1 bulunmus olur.

Tekrar (4.192) ve (4.197) deklemlerine bakilacak olursa;

oy
\/TO +b*(T, +1)

Oug = <0 |Q1AR| A>

olur. Bu ifade sagdan <A| ile ¢arpilirsa;
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B
M[AR

A 4.198
\/T0+b2(T0+1)< | ( :

<O|QIAR | A><A| -

olur. |A><A|=1 seklindedir. Yukaridaki ifadenin hermitik eslenigini

alinirsa;

07| 0) =21l )
T, +b7(T, +1)

olur. Burada Q;,|0) ve |4) sirasiyla (4.190) ve (4.189)’dan almip

yerlerine yazilirsa;
71AR|T0 _15T0 _1>+alAR|T09TO _1>+ :BIAR|T0 +1:To - 1>
+A | Ty +2.T, -1) =

M T 17,7, -1)
) b

) JT + 07 (T, +1) | T, +7(T, +1

by(2T, +1)

T, +1,T —1
1/TO+132(T0+1)| ’ ’ >J

+

olur.

71AR|T0 -LT, _1>+a1AR|TO’T0 _1>+ﬂ1AR|TO +1aTo_1>
+A | Ty +2.T, 1) =

|To+1,T01>}

by (2T, +1)M 2,
T, +b*(T, +1)

ayT, M

= |0’0_>

| T, +b2(T, +1)
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olur. Bu esitligin saglanmasi ile;

ayJT, My,

T, +b*(T, +1)

_byJT, +1)M [, (4.199)

MR b3 (T, +1)

Ayr =

712AR :1_(0‘?“ +ﬂ1im)

ifadeleri elde edilir.
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5. CKM MATRISININ UNITERLIGI

Cekirdekte, stiperizinli J"0" — 0" Fermi beta gegisleri,
elektrozayif standart modelin sonuclarini ve Ongdriilerini test eden
onemli bir aragtir. Siiperizinli gecisler son yillarda bir ¢ok Onemli
calismalarin konusunu olusturmustur (Blin-Stoyle, 1969; Towner and
Hardy, 1973; Wilkinson, 1976; Hardy and Towner, 1975; Towner,
Hardy and Harvey, 1977; Ormand and Brown, 1989; Barker, 1992;
Barker, 1994; Wilkinson, 1993; Ormand and Brown;1995, Sagawa, Van
Giai and Suzuki, 1996; Navratil, Barrett and Ormand, 1997; Wilkinson,
2002; Towner and Hardy, 2002). CKM (Cabibbo-Kobayashi-Maskawa)
matrisinin initerligi, parcacik fizigindeki en 6nemli problemlerden bir
tanesidir. Parcacik ve niikleer fizikte bu matrisin {initerligini test etmek
icin birkag¢ yol vardir. Niikleer fizik kisminda, serbest nétron gecisi, pion
beta gecisi ve siiperizinli Fermi beta gecisi bulunmaktadir. Siiperizinli
Fermi beta gegisiyle CKM matrisinin ilgili ve hesaplanacak elemani
V,, dir.

Bu boliimde sirasiyla 6nce standart model, zayif etkilesmeler ve
W bozonlari, CKM matrisi ve lniterligi, radyatif diizeltmeler ve izospin

simetrisindeki kirilma diizeltmesi anlatilmistir.

5.1 Standart Model

Standart Model (SM), gozlemlenen maddeyi olusturan, simdiye

kadar bulunmus temel parcaciklart ve bunlarin etkilesmesinde Snemli
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olan 3 temel kuvveti agiklayan kuramdir. Standart Modele goére temel
parcaciklar kuarklar ve leptonlar olarak isimlendirilen iki aileye ayrilirlar.
Bu ailelerin her biri alti pargaciktan olusur ve birinci nesil en hafif
ticlincii nesil en agir olmak tizere ii¢ nesle ayrilir. Parcaciklar arasinda da
etkilesmeyi saglayan dort farkli kuvvet ve kuvvet tasiyicilari vardir.

Asagidaki tabloda bu ii¢ nesil ve kuvvet tastyicilar1 goriilmektedir.

Tablo 5.1 Standart Modelin temel pargaciklari.

Elektrik Elektrik Elektrik
yikii yiikii yiikii
u 2 ¢ 2 t 2 g
= up - charm - top - gluon
= k 3 kici 3 list 3
= (yukari) (cekici) (list)
= d 1 J 1 b Y
~ down -= strange —— | bottom | — foton
(asag) | O | (acayip) | S | (alt)
Ve Vp V¢ A\%Y%
E elektron | —1 muon -1 tau bozon
g notrino notrino notrino
~—
= e 1] T Z
= | elektron 0 muon 0 tau bozon
I. Nesil II. Nesil II1.Nesil

Herbir parcaciga karsi gelen bir anti parcacik vardir. Anti
parcaciklar gercek parcaciklardir. Pargacik ve onun anti pargacigi
arasindaki temel fark sadece yiiklerinin ters isaretli olmasidir.

Kuarklar tek baslarina gdzlemlenemez. Kuarklar "hadron" olarak

bilinen parcaciklar igerisinde hapsolmuslardir.  Protondaki ve

elektrondaki gibi kuarklar elektrik yiikiine sahiptir. Kuarklarin elektrik
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yiikleri kesirlidir (2/3 veya -1/3, -2/3 ve 1/3 anti kuarklar i¢in). Kuarklar,
parcaciklarin yiikii tamsay1 olacak bigimde bir araya gelirler. Bu yilizden
kuarklarin her tiirlii kombinasyonu miimkiin degildir. Hadronlarin iki
sekli vardir, baryonlar ve mezonlar. U¢ kuarkin bir araya gelmesi ile
baryonlar, bir kuark ve bir anti kuarkin bir araya gelmesi ile mezonlar

olusur. Baryonlara iki 6rnek proton ve ndtrondur.

G

Proton iki yukar1 kuark ve bir asagi kuarkin bir araya gelmesi ile olusur.
Sekilden goriildiigli gibi her bir kuarkin yiikii toplanip proton igin yiik +1
elde edilir.

(u+u+d:g+%—l:+l)
3 3 3

T
QB Notron

Notron iki asag1 kuark ve bir yukar1 kuarktan meydana gelir. Kuarklarin

yiikleri toplanirsa 0 olan nétronun yiikiine ulagilir.

(d+d+u:—l—l+g:0)
3 3 3
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A~
ea Pion

N

Mezon i¢in bir 6rnek piondur. Pion bir yukar1 bir de asagi anti kuarkin
bir araya gelmesi ile olusur. Mezonlar parcacik ve anti parcacik
kombinasyonu oldugundan kararsiz bir yap1 gosterirler ve ¢ok hizh

bozulurlar.

5.2 Zayif Etkilesme

Dogada dort tiir etkilesim veya dort ¢esit kuvvet vardir: giiclii,
elektromanyetik, zayif, ve kiitlecekimi. Bilinen tiim diger kuvvetler bu
dort temel kuvvetin ¢esitli varyasyonlaridir.

Zayif etkilesim, agir kuark ve leptonlarin daha hafif kuark ve
leptonlara bozunmasindan sorumludur. Bozunma siirecinde, ilgili temel
parcacik kaybolmakta ve ortaya iki veya daha fazla sayida farkli parcacik
cikmaktadir. Toplam kiitle ve enerji korunur. Fakat bozunan parcacigin
kiitlesinin bir kismi, ortaya c¢ikan parcaciklarin kinetik enerjisine
dontisiir. Dolayisiyla, bozunma {iriinlerinin kiitlelerinin  toplama,
baslangigtaki kiitleden daha az olmaktadir. Bir kuark veya lepton
bozundugunda, 'cesni'si degisir ve biitiin 'cesni' degisimleri, zayif
etkilesim sayesinde veya nedeniyle gergeklesmektedir. Etkilesim;

elektrik yiikii tagiyan ve birbirinin karsit1 olan W™, W~ pargaciklari ile,

yiiksiiz Z° parcacig1 tarafindan tasmir. Bu iigiine 'vektdr bozonlar' ad

verilir.



128

W ve Z bozonlari, zayif etkilesmeye aracilik eden temel
pargaciklardir.

W pargacigimin adi, zayif niikleer kuvvetten (weak nuclear force)
gelir. Z pargacigi ise, yiikiiniin sifir (zero) olmasindan dolay1 bu sekilde
isimlendirilmistir.

W bozonunun iki tiiri +1 ve -1 elektrik yiiklerine sahiptir. W™
bozonu W~ bozonunun antipargacigidir. Z bozonu (veya Z°) elektriksel
olarak yiikslizdiir ve kendisinin antiparcacigidir. Her ii¢ parc¢acigin da
yar1 Omiirleri ¢ok kisadir. Bu yiizden bu parcaciklar dedektorler ile direkt
olarak gbzlemlenemez, ancak bozunum iirlinleri dl¢iilebilir.

W ve Z parcaciklar1 bir protona gore yaklasik 100 kat daha
agirdir. Bu bozonlarin kiitleleri 6nemlidir; ¢ilinkii bunlar zayif niikleer
kuvvetin menzilini sinirlar. Elektromanyetik kuvvetin menzili sonsuzdur;
c¢linkii bu kuvvetin bozonu (foton) kiitlesizdir.

Her ¢ tiirtin de spini 1'dir.

W™ veya W~ bozonlarinin salimimi, salinimi yapan pargacigin
elektrik yiikiinii 1 birim artirir veya azaltir, ayrica spini de 1 birim
degistirir. Ayn1 sekilde bir W bozonu pargacigin neslini de degistirir;
ornegin garip kuarki, yukar kuarka doniistiirtir. Z bozonu, parcacigin
elektrik yiikiinii veya baska herhangi bir yiikiinii (acayiplik gibi)
degistirmez, sadece spin ve momentumda etkilidir. Bu yiizden o salinimi
yapan parcacigin neslini veya ¢esnisini asla degistirmez.

Fotonun elektromanyetik kuvvetin tasiyici parcacigi olmasi gibi
W ve Z bozonlarnn da zayif niikleer kuvvete aracilik eden tasiyici

pargaciklardir. W bozonunun radyoaktif bozunumdaki rolii dnemlidir.


http://tr.wikipedia.org/wiki/Spin
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Ornegin siiperizinli Fermi beta bozunmasi yapan ¢ekirdeklerden bir

tanesi Magnezyum-26 icin beta bozunumu sdyledir:
PMg—UAl+e +V,
Notron, elektron ve ndtrino yayimlayarak bir protona (beta parcacigi)

dontstir.

n—>pt+e +v,

Sekil 5.1 Beta bozunumunun Feynman diagrami.

Peki bu bozunma acaba nasil gerceklesmektedir: Notron temel parcacik

degildir; bir yukar1 kuark ve iki asagi kuarkin birlesiminden olusur


http://tr.wikipedia.org/w/index.php?title=Feynman_diagram%C4%B1&action=edit&redlink=1
http://tr.wikipedia.org/wiki/Resim:Beta_Negative_Decay.svg
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(udd) . Gergekte protonun (uud) formuna gegis i¢in asagi kuarklardan

(d) biri beta bozunumunda etkilesime girerek yukar1 kuarka (u)
doniigiir. En temel seviyede zayif kuvvet tek kuarkin ¢esnisini degistirir.

Asagi kuarkin (d ) yukar kuarka (u ) doniisiimii sirasinda bir ara vektor

(W ™) bozonu yaynlanir.

d—->u+W~

Yayimlanan bu bozonun O6mrii ¢ok kisadir ve bu bozonda asagidaki

sekilde bozunur;

W —e +v,.

Boylece n — p+e” +v, bozunmasi gerceklesmis olur. Bu bozunmanin

sematik gosterimi Sekil 5.1°de verilmistir.

1950’lerde kuantum elektrodinamiginin olaganiistii basarisini
takip eden siirecte, deneyler zayif niikleer kuvvete benzer bir teorinin
formiile edilmesi gerektigini gostermistir. 1968’de Sheldon Glashow,
Steven Weinberg ve Abdus Salam elektromanyetizma ve zayif
etkilesimin birlesik teorisini 6ne sirmiislerdir. Glashow, Weinberg ve
Salam bu ¢aligmalart ile 1979'da Nobel Fizik Odiili'ne layik
goriilmiislerdir. Onlarin elektrozayif teorisi, beta bozunumunu agiklamak
icin W bozonuna ek olarak ayrica, o zamana kadar heniiz
gozlemlenmemis olan Z bozonunun da varolmasi gerektigini

ongoriiyordu.
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Fotonlar kiitlesiz iken W ve Z bozonlarinin kiitle sahibi olmasi
elektrozayif teorinin gelisimi yoniindeki biiyiik engellerden biriydi. Bu
pargaciklar SU(2) ayar teorisi tarafindan dogru bir sekilde tanimlandi,
ancak gauge teorisindeki bozonlar kiitlesiz olmaliydi. Bu noktada
fotonlar kiitlesizdir; ¢iinkii, elektromanyetizma U(1) gauge teorisi
tarafindan tanimlanir. W ve Z bozonlarina kiitle kazandirilabilmesi igin,
SU(2) simetrisinin kirilmasini saglayacak bir mekanizma gereklidir.
Aciklamalardan biri 1960’larin sonunda Peter Higgs tarafindan ©ne
stiriilen, Standart Model'in  6ngordiigii temel parcaciklara kiitle
kazandirmak amaciyla tasarlanmis olan Higgs mekanizmasidir. Bu
aciklama ayrica yeni bir pargacik Higgs bozonunun da varligini
Oongdrmektedir.

SM'in varligin1 6ngérdugu ama heniiz kesfedilmemis bir pargacik
olan Higgs bozonu halen yiiksek enerjili parcacik carpismalarinin
yapildig1 deneyler ile aranmaktadir. Higgs bozonu teorik olarak temel
parcaciklar ile kiitleli kuvvet tasiyicilarinin kiitle kazanmasi icin gerekli

bir parcaciktir.

5.3 CKM Matrisi ve Uniterligi

Standart modelde karsilasilan bir kiigiik zorluk, farkli ailelerde
ayni yerde olan kuarklarin birbirlerine karigmalaridir. Mesela d, s ve b
birbirine karigirlar. Bu karisim matematiksel olarak 3x3 bir tniter
matrisle ifade edilir. 2 aileli durum igin ilk defa Nicola Cabibbo
(Cabibbo, 1963) tarafindan yazilan bu matris, 3 aileli duruma Makoto
Kobayashi ve Toshihide Maskawa (Kobayashi and Maskawa, 1973)


http://tr.wikipedia.org/w/index.php?title=Ayar_teorisi&action=edit&redlink=1
http://tr.wikipedia.org/w/index.php?title=Higgs_mekanizmas%C4%B1&action=edit&redlink=1
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tarafindan genellestirdigi i¢in onlarin isimlerinin bas harfleri ile anilir:
“CKM matrisi”.

CKM kuark karisim matrisi, giiclii etkilesmeli kuark 6zdurumlari
ile zayif etkilesmeli kuark 6zdurumlar arasindaki doniisiimii temsil eder

ve su sekli alir;

d’ Vud us Vub d
S' = Vcd cs Vcb S (51)
b’ I/td ts I/tb b

CKM matrisi ii¢ tane karisim agist ve bir CP-bozucu faz
tarafindan parametrize edilir. Birgok olas1 parametrizasyon vardir. Bu

parametrizasyonlardan standart olan1 ( Gilman, 2004);

—id

Ci2C3 S12€C3 Si3€
_ i5 is
Vekr =| = S12€23 = C12853513€ C2Co3 = S12853813€ $23C13 (5.2)
is is
S12823 — €pC3513€ T Cip853 T 82C3513€ CxCi3

seklindedir. Burada s; =sin6,, ¢, =cos@; yi temsil eder. Ayrica, &,

standart modelde c¢esni degisim prosesindeki biitiin CP-bozucu
olaylardan sorumlu KM faz1 olarak adlandirilir (Kobayashi and

Maskawa, 1973). 6, agilar1 birinci bolgeden segilebildiginden, s,,c; >0

olur.

Deneysel olarak s,;, <<s,, <<s,, <<1 oldugu bilindiginden bu

siralamay1 Wolfenstein parametrizasyonunda kullanmak uygundur. s,
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s,, ve s, su sekilde tanimlanir (Wolfenstein, 1983; Buras et al., 1994;

Charles et al., 2005);
vV V
S, = A= % > Sy = A//iz =4 Cb (53)
Vud + VMS °
3, — L= 2 14
spe’ =V = AV (p+in) = AL p+ipNi-4 4 (5.3)

Vi- 21— 422 (p+im)]

Bu terimler, (p+in)=-(V,V,)/(V.,V,) ifadesinin faz kuralindan
bagimsiz olmasii saglarlar. Ayrica, A, 4, p ve 17 terimleri cinsinden
yazilan CKM matrisi A ’'nin biitiin mertebeleri i¢in iiniter olmaktadir. p
ve 17 tanimlan literatiirdeki biitiin yaklasim sonuclarindan tekrar elde
edilebilirler. Yani p = p(1- 2 / 2 +...) seklindedir ve V,,,,, A mertebe

terimlere kadar ya pve 1 terimleri ile ya da ¢ok kullanilan sekliyle;

1-22/2 A AX (p—in)
Ve = _y) 1-22/2 AR +0(1h) (5.4)
AP (A= p—in) —AX 1
seklinde yazilabilir.

CKM  matrisinin  elemanlart  standart modelin  temel

parametreleridir ve dolayisiyla bunlarin tam ¢déziimlenmesi onemlidir.
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CKM matrisinin {initerligi ZVz/Vzk =0, ve ZV Vi =0, seklinde

gosterilir. Bunlardan, degerleri sifir olan alti kombinasyon ti¢cgenler ile
komplex diizlemde temsil edilebilir ve her biri komsu satirlar veya

stitunlarin skaler carpimu ile elde edilenleri neredeyse dejeneredir.

(p.77)

(0,0) (1,0)

Sekil 5.2 Uniterlik iicgeni (Yao, 2006).

En ¢ok kullanilan tiniterlik tiggeni,
Vud Vu: + Vcd Vc; + th Vt; = O (55)

ifadesinin her bir tarafinin, en iyi bilinen ¥V’ ye bolinmesiyle elde

edilir (Sekil 5.2). Bu ii¢cgenin kdoseleri, (0,0), (1,0) ve (5.3) denkleminde

tanimlanan ( p,7 ) seklindedir. Kuark fiziginin 6nemli amaglarindan biri
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CKM matris elemanlaria kisitlama getirmektir. Birgok ol¢im p, 77
diizleminde uygun bir bicimde gosterilebilir ve kiyaslanabilir.

CKM matrisinin {niterliginin test edilmesi suan ki standart
modelin temel pargaciklarimin da dogrulugunun test edilmesidir. Bu
matrisin dokuz elemani arasinda bircok degisik iliski vardir ve bunlar
deneylerle test edilmektedir. Burada V,, sadece birinci jenerasyondaki
kuarklara baghdir ve biiylik dogrulukla belirlenebilmektedir. Beta
gecislerinde asagr ve yukar1 kuark arasindaki gecis incelendigi icin
yukari-asag1 kuark gecislerini temsil eden matris eleman1 V,,’dir. Bu
matrisin Uniterligini test etmek icin en iist satirdaki elemanlarin
karelerinin toplamii almak yeterlidir. Uniterlik kosulu (Cabibbo, 1963;
Kobayashi and Maskawa, 1973);

V2 +V:i+V: =1 (5.6)

seklindedir. Eger sonu¢ bu sekildeyse matris iiniterdir. Bu sonucun
saglanmasinda bu {i¢ terim i¢inden en biiyiik katki V,,’den gelmektedir.
Dolayisiyla V,, ne kadar dogru hesaplanirsa, yukaridaki matrisin de
initerlik sartim1 saglaylp saglamadigi o kadar dogru bir sekilde
yapilabilir. ¥V ,’nin degeri ii¢ yolla bulunabilir: birincisi niikleer
siiperizinli Fermi beta gegisleri; ikincisi serbest ndtron gecisi ve
ficiinciisii de pion beta gecisidir. Once kisaca sirastyla serbest ndtron ve

pion beta gecislerine bakilirsa;
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a-) Serbest Notron Gecisi : Serbest notron gecisinin niikleer
yapiya bagl diizeltme terimleri olmadig1 i¢in siiperizinli beta gegisine
gore avantajlar1 vardir. Fakat diger taraftan siiperizinli beta gegigine gore
deneysel sonuglardan kaynaklanan {i¢ kat daha biiyiik hata bandi1 vardir
(Towner and Hardy, 2003). Ornegin siiperizinli beta gecisine gore;

V., =0.9740 £ 0.0005

seklinde hesaplanirken serbest nétron gecisine gore;

V., =0.9745+0.0016

seklinde hesaplanmaktadir (Towner and Hardy, 2003).

b-) Pion Beta Gegisi : 7 — 7’¢*v, seklindedir. Elektrik yiiklii

z've 7~ (ud) ve (di)giftlerinden, yiiksiz z° ise (uit —dd)/ V2
birlesimi seklinde kuark, karsit-kuark c¢iftlerinden olusur (Cottingham
and Greenwood, 2001). Pion beta gecisi de ayn1 serbest ndtron gecisinde
oldugu gibi niikleer yapiya bagli diizeltme terimlerinin olmamasi
nedeniyle avantajlidir. Fakat pion beta gecisinin hata band1 serbest ndtron
gecisinden daha da biiytiktiir.

V., =0.9670£0.0161

Uu

seklindedir (Towner and Hardy, 2003).

c-) Siiperizinli Beta Gegisi: Bolim 3.2 de siiperizinli beta gecisleri
detayli bir sekilde anlatilmisti. (3.15) denklemini siiperizninli beta

gecisleri icin (G, = 0 olur) tekrar yazacak olursak;
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K

=
% GIM |’

(5.7)

seklindedir. Burada,
K [(he)® =27°hIn2/(m,c*)’ = (8120.271£0.012)x10™""  GeV s,

degerini alir. Bu denklem, diizeltme terimleri gézoniine alinarak ve
yukaridaki halinden farkli olarak (Towner and Hardy, 1998) asagidaki
gibi ifade edilmistir. Cekirdege bagl diizeltmeler deneysel f# degerinden

elde edilmelidir. Diizeltme terimlerinin eklenmesiyle modifiye edilen f#

degerleri;

K

Fi=fll+6)0=00) =7 o 3

(5.8)

seklindedir. Burada, Ft diizeltilmis f#, f istatistiksel oran fonksiyonu
ve ¢ de gegisin yar1 omridir. §., 8, ve A% sirasiyla, izospin

simetrisindeki kirilma diizeltmesi, radyatif diizeltme ve c¢ekirdekten

bagimsiz radyatif diizeltmedir. Radyatif diizeltme iki kisma ayrilabilir;
Og =0 + 0. (5.9)

Buradaki birinci terim J,, elektronun maksimum enerjisinin bir

fonksiyonu olup niikleer yapidan bagimsizdir. ikinci terim, &, , niikleer
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yapiya baglidir. Bu terimler kullanilarak (5.8) denkleminin sol tarafi su
sekilde yazilabilir;

Ft=fil+8,)(1+8, —5,). (5.10)

(5.10) denkleminin birinci kismi niikleer yapidan bagimsiz, ikinci kismi
ise niikleer yapiya baghdir.

Elektrozayif teoride, Fermi ve vektor ciftlenim sabitleri arasinda

G, =GpV,, (5.11)

seklinde bir iligki vardir. Fermi ¢iftlenim sabiti, G,, miion beta

gecisinden elde edilir ve degeri;

Gr__ 1.16639x107° GeV

()

seklindedir. (5.8) ve (5.10) denklemlerinden V,, matris elemaninin

karesi su sekilde elde edilir;

, K 2984.38(6)
“ 2GiFt Ft

(5.12)
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5.4 Radyatif (Isinsal) Diizeltmeler

Radyatif diizeltmeler, bozunan niikleon ve yayinlanan pozitronun
dis elektromanyetik alan ile etkilesmesinden kaynaklanmaktadir.
Radyatif diizeltmeler, Za cinsinden bir pertiirbasyon serisi ile
aciklanabilir. Bu serideki Z"a"’Ii terimlerde m <n seklindedir. En

biiyiik diizeltmeler, istatistiksel oran fonksiyonu f ve izospin

kirilmasinin  diizeltmesi o, i¢indedir. Bunlarmn disinda var olan

diizeltmeler de &, ve A, igindedir. Bu diizeltmelerin nedenini
aciklamak ve hesaplarda nasil bir 6neme sahip olduklarini anlamak i¢in
Sekil 5.3’1 incelemek gerekir.

Elektromanyetik etkilesmelerin ihmal edildigi, beta bozunma
stireci (proton, nétron, pozitron ve notrino igeren) Sekil 5.3-(a)’da
gosterilmistir. Bunu takip eden diger sekiller (b, ¢, d ve e)
elektromanyetik etkilesmelerden dolayr meydana gelen modifikasyonlari
anlatirlar.

Sekil 5.3-(b) ve Sekil 5.3-(b") , pozitronun iiriin ¢ekirdegin statik
Coulomb alami ile etkilesmesinin diizeltmesini ifade eder. Bu etkiler

sirastyla Za, Z’a® mertebesindedir. Hem bu iki mertebedeki etki hem

de daha yiiksek mertebeden Z" " ile orantili etkiler, uygun Coulomb
alaninda bir pozitron i¢in Dirac denkleminin ¢oziilmesiyle elde edilen
pozitron dalga fonksiyonunun kullanimiyla hesaplanan f’ye dabhil
edilmistir.

Sekil 5.3 (c) ve Sekil 5.3 (¢"), statik Coulomb alan1 ile bozunan

niikleon arasindaki etkilesmeler i¢in benzer diizeltmeleri gosterir. Bu
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diizeltmeler genellikle niikleer yap1 hesaplariin bir pargasi olarak alinir

ve O, diizeltme terimini olusturur. Gergekten, Fermi etkilesmesinin

dogasindan dolay1, Z’a® mertebesindeki terimin J,.’nin en etkili terimi

olmas1 sonucu Sekil 5.3 (c¢)’nin katkisi sifirdir.
Sekil 5.3 (d)’de gosterilen, o« mertebesinde olan diizeltme,
radyatif diizeltmelerin en biiyiik bileseni olan 5, ve A', diizeltmelerine

katk1 yapar. Burada gosterilen hem bir Z vektér bozonun hem de bir
fotonun hadron ve pozitron arasindaki degis-tokusudur (Sirlin, 1974). Bu
iki etkinin toplaminin yapilabilmesi i¢in, sadece miion ve niikleer beta
bozunmasinin radyatif diizeltmelerinin arasindaki farkin hesaplanmasina
gerek vardir. Clinkii sonug olarak bu iki bozunma, evrenselligin bir testi

olarak karsilagtirilacaktir. a mertebesindeki radyatif diizeltme;

R" = i{( g(E.E,)+3 h{ﬁ] +3 p(ﬁﬂ (5.13)
2r mp m,

seklindedir. Buradaki <g(E, E, )> ifadesi, Sirlin tarafindan gosterilen

evrensel bir fonksiyondur (Sirlin, 1967; denklem 20b). Bu fonksiyon

biitiin elektronlarin enerjisi £ lizerinden ortalamadir ve sadece FE,

maksimum enerjiye baglidir. Burada m, , Z vektor bozonun kiitlesidir.
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(b) (b")

(© (c")

Sekil 5.3 Beta bozunmasinda, radyatif diizeltmelerin Feynman Diyagramlari ile

gosterilmesi (Hardy and Towner, 1975).
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(d)

Sekil 5.3 Beta bozunmasinda, radyatif diizeltmelerin Feynman Diyagramlari ile

gosterilmesi (Hardy and Towner, 1975) (devamu).

Yukaridaki denklemin {i¢iincti terimi aksiyal-vektor akimindan elde edilir
ve modele baghdir. p parametresi kuark modelin yapisina baghdir (dort
kuarkin tamsayi yiikleri i¢in p=1 ve {i¢ renkli dortliler igin p =1/3).
m , degis-tokus aksiyal-vektor mezonunun kiitlesidir.

a mertebesinde radyatif diizeltmelere katki getirebilen birgok
sekil cizilebilir. Bu diizeltmeler digerlerine dahil edilmemislerdir. Cilinkii

bunlar, ya miion bozunmasina 6zdes diizeltmeler yaparlar (yani foton, ara

vektor bozon ve pozitron arasinda degis-tokus edilir), yada katkilari
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thmal edilir (yani ara vektor bozonu statik Coulomb alani ile
Zo(m,, / m,, )” mertebesinde etkilesmeye neden olur).

Yiiksek mertebeden diizeltmelere bakilacak olursa; Za?
mertebesndeki en biiyiik katki Sekil 5.3 (e)’de gosterilmistir. Bu

mertebedeki ve Z’a’ mertebesinde benzer sekiller Jaus (Jaus, 1972)

tarafindan elde edilmistir.

a, Za® ve Z’a® mertebesinden radyatif diizeltmeler;

S, =08 +8% 157 (5.14)
5 === (o(E.E,), (5.15)
27[ m
57 =Za21n[ﬁj+..., (5.16)
me
2 .3
57w L (31n2—3+17z2j1n LN (5.17)
V4 2 3 m,

N - ﬂ{s l(m_jg,{m_ﬂ (5.18)
2r mp m,
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seklindedir (Hardy and Towner, 1975). a ertebesindeki diizeltmenin &,

ve A,’ye ayrilmasi ile gekirdege bagimli biitiin terimler &, iginde
gruplandirilabilir.
Za® ve Z’a’ mertebesindeki en biiyiik diizeltmeler eklenmesine

ragmen, fotonun hadron veya ara bozon ile etkilesmesini gosteren bu

mertebedeki sekiller agik bir sekilde hesaplanamaz. Bu nedenle

hesaplanan radyatif diizeltmelere Za® mertebesindeki diizeltmeler dahil
edilmeyebilir.

Bir dnceki boliimde (5.9) denklemiyle radyatif diizeltmenin
O =0g + 05

seklinde ikiye ayrildigi anlatilmigti. Buradaki &, diizeltmesi, sadece

elektronun enerjisine ve iirlin ¢ekirdegin yiikiine bagli bir fonksiyon olup,

niikleer beta gecisine bagli fakat niikleer yapidan bagimsiz radyatif
diizeltme olarak adlandirilir. A', diizeltmesi ise g¢ekirdekten bagimsiz

diizeltme olarak adlandirilir. Marciano ve Sirlin bu diizeltmeleri biraz
daha gelistirmiglerdir (Marciano and Sirlin, 1984; Marciano and Sirlin,

1986);

5y = |&(E,)+ 8, +.], (5.19)
T

biiylik £, i¢in,
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2
51 =% 3| e | 8L AT s s, (5.20)
277 \2E ) 10 3

seklinde ifade etmislerdir. Cekirdekten bagimsiz diizeltme icin;

A= 3m em ™ oc—am ™y g |, (5.21)
272._ mp mA mZ

Ny=ZamZz e o014, |, (5.22)
2 my, m,

seklinde ifade etmislerdir. Burada E, , beta bozunmas: igin maksimum
elektron enerjisi, my,, m,ve m, swrastyla W bozon, proton ve Z
bozonun kiitlesidir. 5, ve J, ise sirasiyla Za® ve Z’a’ mertebesindeki

diizeltmeleri temsil eder.
C ise, diisiik enerji bileseni olarak adlandirilir ve Born yaklagimi
gibidir;

C— C,,, =32,(0.266)(u, + p1,) = 0.885. (5.23)

Born

Burada g,=1.26, aksiyal vektor ciftlenim sabiti; (u, +4,)=0.88,

niikleon izoskaler manyetik momentidir.

4, ise kiigik bir pertiirbatif diizeltmeye karsilik gelir ve su degeri

alir (Marciano and Sirlin, 1986);
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4,=-0.34. (5.24)

Cekirdekten bagimsiz diizeltme teriminin degeri ise (Marciano

and Sirlin, 1986; Sirlin, 1994);
N, =2.40(8)% (5.25)
olur.

Daha sonra Towner ve Hardy, radyatif diizeltmeler {izerinde bazi

terimlerde ayirmalar yaparak o, terimini su sekilde ifade etmislerdir

(Towner and Hardy, 2008);

S5 = 2i 2(E,)+5,+5,+5 .. (5.26)
VA

Bu yeni eklenen §a2 terimi ile ¢ekirdekten bagimsiz diizeltme teriminin

yeni degerini de su sekilde elde etmislerdir (Towner and Hardy, 2008);
N, =2.361(38)%. (5.27)
(5.9) denklemine tekrar bakilacak olursa;

Or =0z +0ys,
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buradaki birinci terimin niikleer yapidan bagimsiz radyatif diizeltme
oldugu ve (5.20) denklemindeki sekliyle ifade edildigi yukarida
anlatilmistir. Ikinci terim olan &,  terimi ise radyatif diizeltmelerin
niikleer yapiya bagh terimi olarak adlandirilir. Siiperizinli gecisler icin
0" durumlar1 arasindaki saf vektor etkilesmelerden bahsedilmesine
ragmen, aksiyal-vektor etkilesmeleri radyatif diizeltmelerde rol oynar.
Bir aksiyal-vektor etkilesmesi bir niikleonun spinini g¢evirir ve bunu
elektromanyetik etkilesmenin spini tekrar eski haline ¢evirmesi izler. C
ile gosterilen bu aksiyal katki, ayni niikleon veya ayrik iki niikleonda
meydana gelen ister zayif isterse elektromanyetik etkilesmelere bagl iki

kisma ayrilabilir (Towner and Hardy, 2002);

C= CBorn + CNS 4 (528)
a
Ons =—Cls- (5.29)
7
Buradaki C,,, terimi, Born grafiginde gosterilen, ayni niikleonda

meydana gelen aksiyal vektor ve elektromanyetik etkilesmeleri temsil
eder. Bu terim evrenseldir, yani biitiin niikeonlar icin sabittir (denklem
5.23). Dolayisiyla, o, terimi i¢inde yer almaz fakat denklem 5.22’de
goriildiigii gibi cekirdekten bagimsiz radyatif diizeltme , A’, iginde yer
alir. C,¢ terimi, farkli niikleonlarda meydana gelen aksiyal vektor ve

elektromanyetik etkilesmeleri temsil eder. Bu terimin hesaplari, niikleer

yapinin detaylarina baglhdir.
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5.5 8., Izospin Simetrisindeki Kirllma Diizeltmesi

Stiperizinli beta gegisleri icin, ana ve iiriin ¢ekirdek ayn1 izotopik
spinin bilesenleridir ve herhangi bir Coulomb veya yiike bagl niikleer
etkilerin bulunmadigi durumda bunlarin dalga fonksiyonlar1 6zdestir.
Uygulamada, Coulomb kuvveti niikleer durumlarin izospin safsizligin
bozar ve niikleer matris elemaninda degisiklik yapar. Bu degisiklikler
asagidaki gibi bir diizeltme ile temsil edilir (Blin-Stoyle,1969; Towner
and Hardy, 1973);

M} =2(1-6,). (5.30)

0., 1zospin simetrisindeki kirilma diizeltmesi olarak adlandirilir ve

Z’a’ mertebesindedir. Boliim 3.2°de (3.21) denkleminde saf siiperizinli
Fermi beta gecisleri icin matris elemaninin karesinin degerinin 2 oldugu
gosterilmistir. Buradaki 6., bu 2 degerinden olan farklanmanin bir
diizeltmesidir.

Fermi matris elemani, Bolim 4’te gosterildigi gibi ikinci
kuantumlanma formunda ilk durum (| i>) ve son durum (| f >) olan izobar

analog haller arasinda tekrar yazilacak olursa (Towner and Hardy, 2008);

i) D (flazaglifelr.| ), (5.31)

a.p

M, :<f

Ty
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olur. Burada; a,, ¢ kuantum durumunda bir nétron yaratma operatori,

o

ay, f kuantum durumunda bir proton yok etme operatoridir. Tek

parcacik matris elemani <a|z'i| /3), bir radyal integral olup (Towner and

Hardy, 2008);

< |r+|,6’ aﬁJ. R’ (r)Rp(r)rzdr—é' 5l (5.32)
seklindedir. Eger notron ve proton radyal fonksiyonlart R)(r) ve
R} (r) 6zdes ise, radyal integral normalizasyon integraline indirgenir ve
degeri r,=1 olur.

(5.28) denklemi (A —1) pargacikli bir sistem ,

7r> , icin (Towner

and Hardy, 2008);

My = 2\ laalmhmlaiyrd (533)

seklinde yazilablir.
Eger kesin bir izospin simetrisi varsa, yaratma ve yoketme

operatorlerinin matris elemanlari Hermitik olmalidir;
. + *
(wlag|i)=(flaclz) -
[zospin simetrisindeki kirilma M , matris elemanmin degerine iki
sekilde girdirilebilir; ya @, ve a,’nin matris elemanlart Hermitik

degildir, ya da radyal integrallerin degeri 1’e esit degildir. Bu iki
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durumunda etkisi kiigiiktiir. Izospin simetrisindeki kirilma diizeltmesi su

sekilde yazilabilir (Towner and Hardy, 2008);

8o =00 +0p, . (5.34)

Burada, J.,, Coulomb ve diger yiike bagl niikleer kuvvetlerin etkisini

temsil eder ki bu da ana ve ge¢isin yapildigi ¢ekirdegin 0 durumlarinin
dalga fonksiyonlarmin karigtmimna sebep olur. 6., ise Coulomb
etkilesmesinin diger etkisini igerir yani, ndtron ve protonun uyarilma
enerjileri arasindaki farka karsilik gelir.

0., ’de radyal integrallerin degeri 1’e esittir fakat matris
elemanlar1 Hermitik degildir, J.,’de ise matris elemanlar1 Hermitiktir

fakat radyal integrallerin degeri 1’den farkhidir.

Yiike bagli diizeltmeleri temsil eden O, ’e bu diizeltmeler ii¢

sekilde girdirilebilir. Birincisi, proton orbitallerinin tek pargacik enerjileri
notronlara gore yukarr veya asagi kaydirilir. ikincisi, valans protonlart
arasina iki parcacik Coulomb etkilesmesi girdirilir ve boylece yiike bagl
diizeltmenin giicii ayarlanir. Ugiinciisii, 7 =1 olan biitiin proton- ndtron
matris elemanlarinin degerini ndtron-nétron matris elemanlaria gore %2
arttiran bir yiike bagh niikleer etkilesme tanimlanir.

Deneysel sonuglar yukarida anlatilanlardan farkli bir yol daha
oldugunu gostermistir. Eger izospin kesin bir simetriye sahipse, ana

cekirdekten 0" (T=1), tiriin ¢ekirdekteki ana gekirdegin izobar analog

haline gegis olur, tiriin ¢ekirdekteki diger 0" hallere gegisler yasaklidir.
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Fakat, izospin simetrisindeki kirilmasiyla diger 0" hallere de gegisler
olabilir. Bu durumda analog haller arasindaki Fermi gecis matris

elemanini karesi (Towner and Hardy, 2008);

M2 =2(1-5,.) (5.35)

degerini alir.
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6. SONUCLAR

6.1 CKM Matrisinin Uniterligi

Pargacik fizigindeki en onemli problemlerden bir tanesi, daha
onceki bolimde de belirtildigi gibi, CKM matrisinin Uniterligidir.
Parcacik fiziginde standart modelin Gtesi ¢ok ilgi g¢eken, sicak bir
konudur (Gilman, 2001). Siiperizinli Fermi beta gecisleri, zayif
etkilesmelerin ~ 6zelliklerinin  ¢ok iyl bir sekilde agiklanmasini

saglamaktadir.  Ozellikle  Cabibbo-Kobayashi-Maskawa  (CKM)

matrisinin, yukari-asagi (up-down) kuarklarla ilgili olan ¥, elemaninin

hesaplanmasini saglayan en iyi yollardan bir tanesidir.

Beta gecislerinde gecis, izobar ¢ekirdekler arasinda olmaktadir.
Yani bir ndtron protona veya bir proton ndtrona doniismektedir. Notron
ve protonun i¢ yapilarina bakildiginda protonun 2 yukari-1 asagi
(uud) kuarktan, ndtronun ise 2 asagi-1 yukart (ddu) kuarktan olustugu
bilinmektedir. Dolayisiyla beta gecisleri incelendiginde aslinda bir yukari
kuarkin bir asagi kuarka veya bir asagi kuarkin bir yukar1 kuarka
doniismesi incelenmis olur.

Bizim burada yaptigimiz niikleer fizigin parcacik fizigine
uygulanmasidir. Amacimiz, CKM matrisinin bir elemani olan V, yi
bulurken siiperizinli beta ge¢islerini kullanmak ve bu gegislerde kirilan

izotopik spin simetrisini de Pyatov Yontemini (Pyatov and Salamov,

1977; Pyatov et al., 1979) kullanarak restore etmektir.
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Giiniimiize kadar, W* ara bozonlarin neden oldugu radyatif
terimler iyi bir sekilde anlasilmigtir (Sirlin, 1978; Marciano and Sirlin,

1986). V ,’nin hesaplanmasindaki arastirmalarin en Onemli kismu,

modele bagli olan gecis matris elemaninin hesaplanmasindaki izospin
kirilmasinin etkisi veya baska bir ifadeyle niikleer uyumsuzluktur.

Bu alanda, izospin kirilmasiin diizeltilmesi konusunda birkag
aktif grup c¢alismalarda bulunmaktadir. Towner-Hardy, Woods-Saxon
dalga fonksiyonuna sahip kabuk modeli kullanarak izospin kirilmast
diizeltme teriminin degeri icin bir ¢ok hesaplama yapmistir (Towner and
Hardy, 1973; Hardy and Towner, 1975; Towner et al., 1977; Towner and
Hardy, 2002). Ormand ve Brown, izospin kirilmasi i¢in kabuk model ve
Hartree-Fock hesaplamalar1 yapmistir (Ormand and Brown, 1989;
Ormand and Brown, 1995). Baska bir metot da Barker tarafindan yapilan
ve R-matris teorisine dayanan hesaplamalardir (Barker, 1992; Barker,
1994). Baska bir ¢alisma da, Hartree-Fock hesaplarina eklenerek yapilan
ve yiik simetrisi ile yiik bagimsizlig1 diizeltmelerini RPA ile hesaplayan
Sagawa ve arkadaglarimin yaptigi calismadir (Sagawa et al., 1996).
Bunlari, genis shell model hesaplar1 kullanilarak 4 =10 olan ¢ekirdek
icin Navratil ve arkadaslarinin yaptig1 calisma izlemistir (Navratil et al.,
1997). Son olarak, Wilkinson, deneysel dataya bakarak elde ettigi
Ft—Z grafiginde, Z ~0olacak sekilde ekstrapole ederek V , hesabi

icin gerekli saf zayif etkilesmeyi elektromanyetik etkilesmeden ayirmaya
calismistir (Wilkinson, 1993; Wilkinson, 2002-a) ve Wilkinson, CKM
matrisinin  Uniterligini gostermek icin farkli gruplarin datalarin
kullanarak bir ¢ok c¢alisma yapmistir (Wilkinson, 2002-b; Wilkinson,
2003; Wilkinson, 2004; Wilkinson, 2005-a; Wilkinson, 2005-b).
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Bir onceki boliimde, (5.12) denklemi ile ¥V ,’nin asagidaki gibi

oldugu gosterilmisti;

2984.38(6)

V. =
u Ft

(6.1)

Buradaki F?’nin diizeltilmis f# degeri olarak adlandirildig1 ve asagidaki
sekilde tanimlandig1 da belirtilmisti (Towner and Hardy, 1998);

Ft= fil+8)(1+8, —5,). (6.2)

Amacimiz, Pyatov Yontemini kullanarak gecis matris elemant
olan M .’yi hesaplamak ve |M F|2 =2(1-0,) bagmtisindan hareketle
“izospin simetrisinin kirilma diizeltmesi” olan J.’yi bulmaktir.

Buldugumuz bu sonucu 6nce (6.2) denkleminde yerine koyup F? ’yi
bulmak ve buldugumuz bu sonucu da (6.1) denkleminde yerine yazarak

V. yi elde etmektir. Daha sonra elde ettigimiz sonucu (5.6) denkleminde

yerine koyarak CKM matrisinin tiniterligini incelemektir.
Hesaplamalarda Woods-Saxon potansiyeli i¢in Chepurnov
parametizasyonu (Soloviev, 1976) kullanilmistir. Radyal kuantum
numarast #n’nin  An=0,1,2,3 durumlar1 i¢in biitin noétron-proton
gecislerini igeren hesaplamalar baz alinmistir. Hesaplamalar bilinen oniki
stiperizinli beta gecisi i¢in yapilmistir.
Onceki boliimlerde bahsedildigi gibi, izovektor teriminin neden

oldugu izospin simetrisinin kirilmasinin etkisi yok edilmelidir. Su ana



155

kadar daha onceki calismalarda bu konuya deginilmemistir. izospin

simetrisinin kirtlmasinin etkisi olan J,, su sekilde hesaplanir;
2
M [ =2(1-5,). (6.3)

Bu hesapta izovektor teriminin neden oldugu izospin kirilmasinin etkisi
mevcut degildir. Bu nedenle bu hesapla elde edilen sonuglar giivenilir

degerler olmayabilir. ., i¢in giivenilir sonuglar elde etmek i¢in, niikleer

potansiyelin izovektdr bileseninin etkisinin arindirilmasi gerekmektedir.
Bahsedilen problemi ¢ézmek icin, bu ¢alismada, Pyatov metodu
kullanilmistir. Matris elemanlari, restore edilen hamiltoniyenler

kullanilarak hesaplanmistir. Bdylece, denklem (6.3)’de verilen o,

sadece Coulomb etkilesmelerini icerecek sekilde elde edilmistir.

Tablo 6.1°de siiperizinli beta gecisi yapan oniki ¢ekirdek i¢in
Pyatov yontemi kullanilarak elde edilen matris elemanlar1 hem ¢ift
etkilesmeli hem de ¢ift etkilesmesiz olarak verilmistir. Matris
elemanlarinin karelerinin degerleri (3.21) denkleminde gosterildigi gibi 2
civarindadir. Tam 2’ye esit olmamas1 dogaldir. Ciinkii, sonucun tam 2
olmast ilk ve son durumun izospin durumlar1 saf oldugu zaman
gegerlidir.

Tablo 6.2°de, bu calisgmada hesaplanan o, degerleri ile daha

onceki caligmalarda hesaplanan sonuglar karsilastirma yapmak ig¢in
verilmistir. Tablo 6.2, (4.1) denklemindeki potansiyelin, izovektor

teriminin  etkisinin yok edilmesi ile ilgili bizim iddiamiz1
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dogrulamaktadir. Bu sonuca gore, elde edilen J., degerleri, daha onceki

calismalardakilerden nicelik ve nitelik olarak farklidir.

2. .
Tablo 6.1 |M 4 R| i¢in elde edilen sonuglar.

|2

Gegisler |M LR

Cift Etkilesmesiz ~ Cift Etkilesmeli

weo_lp 1.97200 -
“OUN 1.98800 -

% 41> Mg 1.99664 1.9918
o/ G 1.99966 1.9898
B3 gy 2.00300 1.9850

“2Sc—*Ca 2.00284 1.9849
“op_ydoy 2.00438 1.9786

0 Mn— > Cr 2.00898 1.9726

*Co—Fe 2.00490 1.9578

2Ga—27n 1.98568 1.8886

5 45— Ge 1.99104 1.8576

" Rb—TKr 1.98968 1.8550

Tablo 6.2°den goriildigii gibi o, negatif degerler de
alabilmektedir. Buradaki siiperizinli beta gegisleri agisal momentumlari

0" ve izospinleri 7 =1 olan izobar analog haller arasinda olmaktadir.
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Tablo 6.2 5, (%) ’in degerinin literatiirdeki hesaplar ile karsilastirilmas.

Izobarlar (a) (b) (©) (d) (e) ®
0c1(%) 061 (%) 6¢1(%) 66(%) (%) 61 (%)
Cc-"B 1.399 - 0.070  0.008 -0.01 0.010
“O-MN 0.578  0.01 0.050 0.038 022 0.050
%Al-*Mg  0.168  0.01 0.011 -0.002 027  0.040
HCl-MS 0.017 0.06 0.049 0.002 034 0.105
BE S¥4p <0150  0.11  0.060 0271 032  0.100
2Se—2Cq  -0.142 011 0.012 0314 043  0.060
Y T -0219 0.0l 0.022 0.006 - 0.095
YMn—PCr  -0.449  0.004 0.009 0.002 - 0.055
“Co—>Fe  -0.245  0.005 0.015 0.011 046 0.040
“Ga—*"Zn 0.716 - - - 1.56  0.330
“As—>*Ge 0.448 - - - 0.78  0.250
“Rb—"Kr 0.516 - - - 0.70  0.130

@ (Calik, Gergeklioglu and Salamov, 2009),

® (Ormand and Brown, 1989),
© (Barker, 1994), R-matris teorisi kullanilarak bulunan 01 (%) degerleri,
@ (Barker, 1994), sadece saf Coulomb CD (charge-dependent, yiike baglr)

etkilesmesi kullanilarak bulunan O, (%) degerleri,

© (Sagawa et al., 1996), O, (%) *in tek basma degil, O (%) = O, + I,

degerleri,

® (Towner and Hardy, 2002).
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Blin-Stoyle, o, diizeltmesinin pozitif olmas1 gerektigini 6ne slirmiistiir
(Blin-Stoyle, 1969). Fakat Tablo 6.2’de bazi negatif degerler de elde
edilmistir (Calik et al., 2009). Ancak, Blin—Stoyle 4. boliimde anlatilan
ve (4.176) denklemiyle verilen toplam kuralin1 géz Oniine almamustir.
Onun goriisii sadece kabuk ve Fermi gaz modeli ile sinirhdir. Yani,
kolektif etkilesmeleri diisinmemistir. Bu c¢alismada, h ile gosterilen ve
(4.3) denklemiyle verilen restorasyon terimi, rezidiiel kolektif kuvvetleri
temsil etmektedir. Toplam kuralina gore iki tane sonug ¢ikarabiliriz.
Birincisi, Fermi beta gecislerinin matris elemanlar1 keyfi degerler alamaz

yani, toplam kurali matris elemanlarinin degerini siirlar. ikincisi, 8~ ve

B gecisleri birbirlerinden bagimsiz disiiniilemez, toplam kurali her

ikisini de igerir;

; 2 ; 2
Z{‘Mﬂ‘ _‘Mﬂ* }z 21,

Z‘MHZ =27, + 3 |m), ’ (6.4)

Toplam kuralina gore, stiperizinli Fermi gecislerinin matris

elemanlari \/T_O ’dan daha biiyiik degerlere sahip olabilir (Pyatov et al.,
1979), bu da o, ’in negatif degerler alabilecegi anlamina gelir. Daha
acik bir sekilde ifade etmek gerekirse; biz |M F|2 =2(1-0,,) ifadesinden

O, degerini hesapliyoruz. Yani,
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2-|m |
§C1: |2 F|

olmaktadir. Eger buldugumuz matris elemanimin karesi 2’den biiyiikse
O, degerimiz negatif deger almaktadir. (6.4) denklemine tekrar bakacak
olursak, oradaki matris elemanlarinin kareleri, olas1 biitiin gegislerin

matris elemanlarmin kareleri toplamidir. Burada ana ¢ekirdegimiz i¢in

.12
T, =1 olduguna gore esitligin sag tarafi 2+ Z‘M ;‘ halini alir. Ana

cekirdekten A" bozulmasi da olacagindan, (6.4) denkleminin sag tarafi

2’den biiylik olur. Dolayisiyla olast S~ gecisleri iginden en izinli
olaninin matris elemaninin karesi de 2’den biiyiik olabilir. Bu durumda
0. negatif degerler alabilir. Tablo 6.2°den goriildiigii gibi literatiirdeki
degerlerde de negatif sonuglar vardir (Barker, 1994; Sagawa et al., 1996).
(Sagawa et al.,, 1996)’da sadece toplamd.(d,. =0, +J.,) degerleri

verilmistir. Bu da bize '"'C—'""B gecisindeki &, degerinin negatif
oldugunu gostermektedir. Bununla birlikte, Pyatov (Pyatov et al.,1979)
YMn—"Cr ve *Co—>Fe gegislerinde 0., '1 negatif olarak bulmustur.

Deneysel fi degerleri, 0y, O\, Oy, 0o, Ve Ft degerleri Tablo

6.3’te listelenmistir. Ft degerleri denklem (5.10) kullanilarak
hesaplanmustir.

Tablo 6.3°deki onbir datanin ortalama Fr degeri Sekil 6.1°de de
gosterildigi gibi,
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Tablo 6.3 Siiperizinli Fermi beta gegisi yapan onbir ¢ekirdegin Ft degerleri. f7,
0 (%),0,5 (%), O0-,(%) ve A, =(2361F0.038)% degerleri (Towner and

Hardy, 2008)’den alinmigtir. AI; 'nin degeri, Ft’yi ifade eden (5.10) denklemine

eklenmistir.

Ana ft (s) 51; (%) 5NS (%) (%) 6., (%) Ft (s)
Cekirdek

0C 3039.547)  1.679(4)  -0.34535) 1399 0.165(15) 3103.0(51)
YO 3042.5Q27) 1.543(8) -0.245(50) 0.578 0.275(15) 3127.7(34)
2m 4] 3037.0(11) 1.478(20)  0.005(20) 0.168 0.280(15)  3140.7(19)
MOl 3050.0(11)  1.443(32) -0.085(15) 0.017  0.550(45) 3146.4(24)
Bmpe o 3051.1(10)  1.440(39) -0.100(15) -0.150 0.550(55) 3152.3(27)
26c 3046.4(14) 1.453(47)  0.035(20) -0.142 0.645(55) 3148.8(30)
S 3049.6(16)  1.445(54) -0.035(10) -0.219 0.545(55) 3155.3(32)
OMn 3044.4(12)  1.445(62) -0.040(10) -0.449 0.610(50)  3155.0(30)
“Co  3047.6(15) 1.443(71) -0.035(10) -0.245 0.720(60) 3148.4(35)
2Ga  3075.5(14) 1.45987) -0.045(20) 0.716  1.20(20)  3131.4(72)

Rb  30843(80)  1.50(12) -0.075(30) 0.516  1.50(25) 3137.5(132)

Ortalama Ft 3140.6(9)

Ft =3140.6(9) s,

olarak elde edilir (Calik et al., 2009). Bu sonucu (6.1) denkleminde

yerine yazarsak,



V2 =0.9502(8)

olur ve bunun da karakoki alinirsa

V., =0.9748(4)

olarak elde edilir (Calik et al., 2009).

Ft

3300

3250

3200

3150

3100

3050

3000

161

T T T
38m 50,
© y K 5cq Mn 74Rb
C O ZGmAI
L . «s T ¥ LI X ¥ T
3140.6 * 1 1
- < 340 g By o 4
Ga
1 1 1
10 20 30
4

Sekil 6.1 Hesaplanan F? degerlerinin Z ile degisimi.

40
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Tablo 6.4 CKM matrisinin (¥, + V> + V. ) tiniterligi.

ui

Flde Edilen
(V) V) v.,) Uniterlik
(Calik et al., 2009) Ve +Vi+V.0)
0.2196(23)  0.0036(10)
0.9748(4 0.9985(13
4) (@) (@) (13)
0.2234(18)  0.00361(47)
0.9748(4 1.0001(11
0.2259(18)  0.00367(47)
0.9748(4 1.0013(11
4) © ©) (11)
0,2257(21)  0,00431(30)
0.9748(4 1.0012(12

@ (Towner and Hardy, 2003),
® (Wilkinson, 2005-a)

© (Hardy and Towner, 2005)
@ (Yao, 2006)

CKM  matrisinin (V) +V,. +V,) dniterligi Tablo 6.4’te

gosterilmistir. Uniterlik igin, ¥, ve V, ’nin sayisal degerleri (Towner

us

and Hardy, 2003), (Wilkinson, 2005-a), (Hardy and Towner, 2005),
(Yao, 2006)’dan alinmistir. Herhangi bir keyfiyet katmamak i¢in, CKM

matrisinin tiniterliginin hesaplanmasinda ¥, ve V elemanlar i¢in farklh

datalar kullanilmustir.

Tablo 6.4’ten elde edilen sonuglarin ortalamast;

V24172 +1V2 =1.0003(12 6.5
ud us ub
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seklindedir (Calik et al., 2009). Bu sonu¢ (Towner and Hardy, 2008)’deki
sonugla neredeyse aynidir.

Burada oOnemli olan bir nokta vardir; bu matris elemanlari
iizerinde parcacik fiziginde kabul edilmis ortak bir fikir yoktur. Farkli
gruplar farkli datalar1 kullanmaktadir. Parcacik fizigindeki bu datalar
tizerindeki uyumsuzluk, iiniterlik problemini dogrudan etkilemektedir.

Denklem (5.6)’nin en biiyiik pargas1 V,, dir, yani, iiniterlik durumu daha
cok ¥, 'nin hassasligina baglhdir.

Tablo 6.3’den goriildiigii gibi, bu ¢aligmadaki sonuglar (Ormand
and Brown, 1989)’daki gibi CVC (Conserved Vector Current-Korunumlu
Vektor Akimi) hipotezi ile 0.06% seviyesinde uyumluluk gostermektedir.

3170

3160 -

3150 -

3140 A

3130 A

Ft

3120 ~

3110 ~

3100 ~

3090 T T T
0 10 20 30 40

z

Sekil 6.2 Hesaplanan Ft degerlerinin Z ile kuadratik degisimi.
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3170

3165

3160

Sy
o o
o o
T

(ft)] sec

&
~

w
I

3140

3135

3130 1

(tt), = ft(1+4%)
(ft)5=3136.1:8.2 sec.

10 15 20

25 30

«

D

o
I

(ft)2 sec

3140

3135

3130t L

(ft), = ft(1+A)(1-5,)
(ft),,=3136.3:6.2 sec.

15 20
Z;

25 30

Sekil 6.3 Wilkinson’nun
deneysel ft degerlerin Z ile
degisimi (Wilkinson, 2002-a).

Sekil 6.4 0. (O lerin
ortalamasi) diizeltmesi
yapildiktan sonraki f7 *lerin

Z ile degisimi (Wilkinson,
2002-a).
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3170 .
3165 - .
3160 |- 7 Sekil 6.5 gc/' (fluktasyon
o degerlerinin ortalamast)
4 3155 1 diizeltmesi yapildiktan
x O sonraki ft’lerin Z ile
& 3150 1 desisimi (Wilkinson, 2002-a).
31451/ (fth=tt(1+a)(1-Gg)

(ft),e=3134.8:5.0 sec. _

3140
3135 _4—*- =
(fth
3130 & ] | ] ] 1 -
0 5 10 15 20 25 30

Zg

Buldugumuz bu sonuglar CVC hipotezi ile uyusmakla birlikte,
Tablo 6.3 ve Sekil 6.2, Ft degerlerinin Z’ye gore degisiminin,
Wilkinson’un 6ngordiigii gibi (Wilkinson, 1993; Wilkinson, 2002-a),
kuadratik bir sekilde degistigini gostermektedir. Wilkinson deneysel f
sonuclarinin Z ile kuadratik olarak degistigini elde etmistir (Sekil 6.3).
Wilkinson niikleer uyumsuzluk diizeltmesini yaptiktan sonra da F? 'nin
kuadratik bir degisim izledigini elde etmistir, bu ¢ok onemlidir. Fakat
Wilkinson, Ft’nin Z’ye gore kuadratik bir sekilde davrandigimi her

cekirdek icin elde ettigi 6. degerlerini dogrudan kullanmayarak elde

etmistir (Wilkinson, 2002-a). Niikleer uyumsuzluk i¢in ilk 6nce ortalama

deger kullanmis (Sekil 6.4), ikinci olarak da fluktasyon degerlerini
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kullanmistir (Sekil 6.5). Sonug olarak, Wilkinson niikleer uyumsuzluk
diizeltmesi i¢in kendi hesapladigi degerleri dogrudan kullanmis olsaydi,
Ft’nin Z’ye gore degisimini kuadratik olarak elde edemeyecekti. Bu
calismada ise, herbir ¢ekirdek i¢in kendi niikleer uyumsuzluk diizeltmesi
degerleri dogrudan kullanilmistir. Bu durum, burada kullanilan metodun

giivenilirligini arttirmaktadir.

3170
50 T
3160 - N AL
104 K *Sc E }
54 —_
3150 4 % 145 26mp 30| E % fo ul
7oz 33ds :
3140 - 4 § { 1
T 4
iC 3130 - E -
62
3120 - Ga 20
3110 +
3100 A { A (Bu Galisma)
O  (Towner and Hardy, 2008)
3090 T T T
0 10 20 30 40
Z

Sekil 6.6 Bu calismadaki sonuglar ile (Towner and Hardy, 2008)’deki sonuglarin

kargilagtirilmasi.
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Sekil 6.6’da, (Towner and Hardy, 2008) ve bu c¢alismada
hesaplanan Ft degerleri karsilastirma yapmak amaciyla birlikte

verilmigtir. Yukarida da bahsedildigi gibi o, degerleri (Towner and
Hardy, 2008)’den alinmustir. Sekil 6.6, bizim 6, degerlerimizin Ff ’nin

Z ile degisimini kuadratik hale getirdigini gostermektedir. Sonug olarak,

buradaki 6nemli nokta o, yi degil, o, 1 dogru olarak hesaplamaktir.

Ciinkii, niikleer uyumsuzlugun hesaplanmasinda, (Towner and Hardy,

2008) ile bu ¢aligma arasindaki tek fark o, ’in sayisal degerleridir.

Burada ilging olan baska bir nokta da, sadece (Towner and Hardy,
2008)’de degil, diger bir ¢ok calismada da (Ormand and Brown, 1989;
Barker, 1994; Ormand and Brown, 1995; Sagawa et al, 1996)
kuadratiklikten bahsedilmemesidir.

Sonug olarak, niikleer uyumsuzluk diizeltmesi i¢in farkli bir metot
kullanilarak farkli sayisal degerler elde edilmistir. Boylece, niikleer
kabuk potansiyelin izovektdr kisminin etkisinin izolasyonun Pyatov
metotu ile yapilmasinin ne kadar énemli oldugu niikleer uyumsuzluk

diizeltmesi hesaplarinda goriilmiistiir.
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6.2 Ana Cekirdegin Taban Durumunun izospin Safsizhg ve IAR

Durumlarinin izospin Ozellikleri

Bu boliimde, siiperizinli Fermi beta gegisi yapan '°C, 0, *°Al,
34Cl, 38K, 4280, 46V, 50Mn, 54C0, 62Gal, 66As, "Rb oniki cekirdegin, ana
cekirdeklerinin taban durumlarinin izospin karigimlari, IAR durumlariin
izospin yapist ve bu siiperizinli gegislerin Ft degerleri ¢ekirdekler
arasindaki ¢ift etkilesme (pairing) etkisi de gézoniinde bulundurularak ve
Fermi etkin etkilesme terimi 6zuyumlu bir bi¢cimde eklenerek elde
edilmistir.

Siiperizinli beta gecislerinden yararlanarak CKM matrisinin V,,

matris elemaninin bulunmasinin énemi bir dnceki boliimde anlatilmistir.
Bundan bagka, siiperizinli beta gecisleri yapan ¢ekirdeklerde AR
durumlarinin izospin Ozelliklerinin belirlenmesi ve ana ¢ekirdek taban
durumunda izospin karisiminin incelenmesi de olduk¢a énemlidir.
[zospin karisimlarinin etkileri, siiperizinli Fermi beta gecislerinde

zayif etkilesme sabiti G, ’nin bulunmasinda, izobar analog rezonans

durumlarin  enerjisinin ve enerji genisliginin bulunmasinda ve
izomultiplet seviyelerin enerjilerinin bulunmasinda ¢ok Onemli rol
oynamaktadir (Blin-Stoyle, 1973; Raman et al., 1975; Auerbach et al.,
1972; Lane and Mekjian, 1973). izospin karisimlarmin dogru bir
bicimde belirlenmesinin olduk¢a &nemli oldugu agiktir. Izospin
karisimma Coulomb potansiyeli neden olmaktadir. Izotopik invaryansin
bozulmasi protonlar arasindaki karsilikli elektromanyetik etkilesmenin
sonucu ortaya cikar. Daha dogrusu buna Coulomb potansiyelinin

cekirdek boyunca degismesi neden olur. Bu degisme ¢ok kiigiik oldugu
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icin biitiin ¢ekirdeklerin diisiik enerjili seviyelerinin izospin terimi iyi bir
kuantum sayisidir (Bohr and Mottelson,1969).
Cekirdeklerin taban durumlarinin izospin karigimlari birgok farkli

modelde hesaplanmistir. Bunlardan bir tanesi 7 =7,+1 izospinli

kolektif izovektér monopol uyarilmis durumlarinin enerjilerini bulmak
icin kullanilan hidrodinamik modeldir (Bohr, Damgaard and Mottelson,

1967). Bu modelde, izospin karisim oranlart N = Z olan ¢ekirdeklerde,

Z% ile orantill bir sekilde artmaktadir. Kabuk model kullanilarak
yapilan hesaplar (Towner and Hardy, 1973; Khadkikar and Warke,
1969; Sliv and Kharitomov, 1965) biiyiiklik bakimindan Bohr and
Mottelson’un 6ngordiigiinden biraz daha biiylik degerler almaktadir.
Izospin karigimlari {izerine teorik hesaplamalar Hartree-Fock ve RPA
veya Tamm-Dankoff yaklasimi yapilarak da yapilmistir (Hamamoto and
Sagawa, 1993; Colo et al., 1995).

Izobar analog durumlarin 6zellikleri iizerine yapilan galigmalar
(Zaretskii and Urin, 1967; Gaponov and Lyutostanskii, 1972; . Fajans,
1971; Birbrair and Sadovnikova, 1974; Sagawa et al., 1998)’de
verilmistir. (Zaretskii and Urin, 1967; Gaponov and Lyutostanskii, 1972;
Fajans, 1971; Birbrair and Sadovnikova, 1974)’de IAR o6zellikleri, sonlu
Fermi sistemi teorisi ile incelenmistir. (Sagawa et al., 1998)’de ise
IAR’nin genisligi ve izospin karisim oranlar1 Feshbach izdiisiim metodu
ile incelenmistir.

Yukaridaki bahsedilen caligsmalarda, rezidiiel etkilesme kabuk
model potansiyeline 6zuyumlu bir sekilde bagli degildir. Ortalama
potansiyelde izovektor teriminin olmasi, rezidiiel etkilesmenin onunla

bagli se¢ilmesini zorunlu kilar. Aksi taktirde sistemin baslangigta izotop
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invaryant olan Hamilton operatoriiniin ¢ekirdek kuvvetleri ile ilgili
kisminin izotopik invaryansi bozulur. Bu yiizden ¢ekirdeklerin taban
durumlarinda istenmeyen izospin kirliligi meydana gelir.

Burada, baslangigta ele alman niikleer Hamiltoniyenin
(elektromanyetik etkilesmeler olmadan) izotopik invaryansi restore
edilecektir.

(Pyatov et al., 1979) ve (Babacan et al.,, 2004)’de Pyatov
yontemine (Pyatov and Salamov; 1977) dayanarak ¢ekirdek
hamiltoniyeninin izospin simetrisi restore edilmis ve bu nedenle Fermi
etkin etkilesme sabiti ortalama alan potansiyeli ile ilgili bir bigimde
bulunmustur. (Pyatov et al., 1979)’de ¢ift etkilesme gézoniine alinmadan,
cift-cift ¢ekirdeklerin taban durumlarinda Coulomb izospin karisimlari
hesaplanmistir. (Babacan et al., 2004) ve (Kucukbursa, et al., 2004)’de
ise Coulomb izospin karigimi ve TAR durumlarinin izospin yapisi ¢ift
etkilesme gozoniine alinarak Pyatov yontemi uygulanarak hesaplanmistir.
Bu ¢alismada ise, ¢ift etkilesme de gozoniine alinarak ve Pyatov yontemi
uygulanarak, siiperizinli Fermi beta gegisi yapan ¢ekirdeklerde ana
cekirdegin taban durumunun Coulomb izospin karigimlari, TAR
durumlarimin izomultiplet yapis1 ve siiperizinli beta gecis Ft degerleri
incelenmistir. Hesaplama sonuglar1 literatiirdeki deneysel ve teorik
degerler ile karsilastirilmistir.

Yukarida isimleri belirtilen siiperizinli Fermi beta gecisi yapan
cekirdeklerin taban durumlarindaki 7}, +1 isospin karisimlarinin sozii
edilen yontemle hesaplanan degerleri Sekil 6.7°de hidrodinamik model

hesaplamalar1 ile karsilastinnlmistir. Sekilde homojen egri ile ¢ift

etkilesmesiz hesaplama sonuglari, noktali egri ile ise ¢ift etkilesme goz
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Oniline almarak yapilan hesaplama sonuglari gosterilmistir. Sekildeki
diger egri ise hidrodinamik model sonuclarint gostermektedir. Sekilden
de goriildiigii gibi her ii¢ durumda da b°(%)degeri Z arttikca
artmaktadir. A ’s1 kiigiik olan ¢ekirdeklerde ¢ift etkilesmesiz degerler ile
cift etkilesmeli degerler bibirine ¢ok yakindir. A4 degeri arttikca cift
etkilesmesiz degerler ile c¢ift etkilesmeli degerler arasindaki fark
artmaktadir. Ik bes ¢ekirdekte (C, O, Mg, S, Ar) her iki deger de
neredeyse aymi iken Ca’dan sonraki degerlerde farklanma
gozlemlenmektedir. Bu dogal bir sonugtur. Burada etkili olan coulomb,
izovektor ve ¢ift etkilesme potansiyelleridir. Izovektdr potansiyeli
(N-Z)/ A ile orantihidir. A degeri kiiciik oldugunda izovektor
potansiyeli ¢ift etkilesme potansiyelinden biiyiiktiir. 4 degeri arttikca
izovektor potansiyeli azaldigt (burada biitiin ¢ekirdekler igin
N — Z =sabittir) i¢in ¢ift etkilesme potansiyeli daha etkili hale gelir.

IAR’nin izospin bilesenleri 7,, 7, +1 ve T, -1’1 temsil eden

a’ (%), B> (%), 7 (%) nin hesaplanan degerleri sirasiyla Sekil 6.8, Sekil
6.9 ve Sekil 6.10’da verilmigtir. Biitiin sekillerde diiz ¢izgi ¢ift
etkilesmesiz hesaplari, kesikli ¢izgi ise ¢ift etkilesmeli hesaplart temsil
eder.

IAR durumuna 7, izospin durumundan gelen katkiy: ifade eden
a’(%) biyikliginin Z’ye gore degisim grafigi Sekil 6.8°de
verilmistir. Incelenen cekirdeklerin IAR durumlarma en biiyiik katki
a’ (%) den gelmektedir. Biitiin ¢ekirdekler icin, a’(%) den 90-99 %

oraninda katki gelmektedir. Hem c¢ift etkilesmesiz hem de ¢ift etkilesmeli
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P(T, +1) (%)

b* =

o (%)
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1,4
1,2
1,0
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0,6
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Sekil 6.8 o 2 (%) *nin Z ile degisimi.
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Z
Sekil 6.7 b* (%) *nin Z ile degisimi.
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- | —@— cift etkilesmesiz O .
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5 T T T T T T T
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Sekil 6.9 (%) nin Z ile degisimi.
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Sekil 6.10 »° (%) *nin Z ile degisimi.
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hesaplarda Z arttikga «”(%) ’nin degeri azalmaktadir. Bilindigi gibi

Coulomb kuvvet Z* ile orantilidir. Z arttikga coulomb kuvvetinin degeri
ve dolayisiyla etkisi arttig1 i¢in a” (%) nin azalmasi dogaldir. Sekilden de
goriildiigii gibi, ¢ift etkilesme gdz dniine alindiginda o (%) degerleri cift
etkilesmesiz degerlere gore bir miktar azalmaktadir. Bu sonug, ¢ift
etkilesme goz Oniine alindiginda durum sayisinin artmast ve S~ gecis
giiciiniin bu durumlar arasinda yeniden dagilimi sonucunda IAR
degerinin azalmasi (bazi durumlarda ise bir birine yakin iki duruma
boliinebilir) ile agiklanabilir.

Sekillerden de goriildiigi gibi Sekil 6.7 ve Sekil 6.9 birbirinin
aymsidir. Esitlik (4.181)’den goriilebilecegi gibi, 5*(%) yani, taban
durumunun izospin karigimma 7T, +1°den katki S*(%) ile orantili
oldugu i¢in bu sonu¢ dogaldir. Bizim sonug¢larimizda bu benzerligi
dogrulamaktadir. Boylece, b’(%) igin gegerli olan fiziksel nicelikler
S (%) icin de gegerlidir. B°(%)’den gelen katki 0.1-4.5 % arasinda
degismektedir. S°(%) degerleri a’(%) ve y°(%) degerlerine gore
oldukea kiigiiktiir.

IAR durumuna 7 —1 izospin durumundan gelen katkiyr ifade
eden (%) biiyiikliigiiniin Z’ye gore degisim grafigi Sekil 6.10°da
verilmistir. »°(%) degerleri, a’(%)degerlerinden oldukea kiigiiktiir.
7 (%) ’den gelen katk1 0.3-8 % arasinda degismektedir. y*(%)degerleri

Z arttkca hem ¢ift etkilesmesiz hemde c¢ift etkilesmeli durumda

artmaktadir. Cift etkilesmenin g6z Oniine alinmasiyla hesaplanmis
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7> (%) degerlerinin ift etkilesmesiz sonuglara gére daha biiyiik oldugu

sekilden agike¢a goriilmektedir.

Simdi de, yukarida belirtilen siiperizinli beta gegisleri i¢cin Tablo
6.1’de verilen matris elemanlarinin dogrudan kullanilmasiyla f
degerlerinin, Bolim 6.1°de anlatilandan farkli bir sekilde nasil
hesapladigini inceleyelim.

Deneysel ft’nin zayif vektor ciftlenim sabiti G, ’ye su sekilde

bagli oldugu (5.2) boliimiinden bilinmektedir;

K

f=——. 6.6
G| (6.6)

Burada,

K /(he)® =272°hIn2/(m c?)® = (8120.271+0.012)x10™*  GeV' s,

GV = GF Vud > (6.7)

veE

Gr__ 1.16639x107° GeV 2

(he)

olduklar1 da tekrar hatirlanacak olursa;

K

M,

S (6.8)
GV,

Jt
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olur. ¥V, 'nin degeri de
V., =097418

(Towner and Hardy, 2008)’den yukaridaki gibi alinir ve diger ifadeler de

(6.8)’de yerlerine yazilirsa;

6289.33

fi = .
M |

(6.9)

olur.
Stiperizinli Fermi beta gecisleri i¢in hesaplanan ft degerleri
Tablo 6.5’de verilmistir. f¢ degerleri denklem (6.9) kullanilarak

hesaplanmistir. Ikinci ve iigiincii siitunlar ¢ift etkilesmeli ve cift
etkilesmesiz olarak bizim yaptigimiz hesaplar1 gostermektedir. Diger
stitunlar, literatiirdeki diger hesaplamalar1 gostermektedir. Tablo 6.1, ¢ift
etkilesmeli niikleer matris elemanin degerinin ¢ift etkilesmesiz sonuglara
gore daha kiiciik oldugunu gostermekteydi. Boylece, Tablo 6.5’de verilen

cift etkilesmeli f# degerlerinin, c¢ift etkilesmesiz degerlere gore daha
biliylik oldugu goriilmektedir. Bu beklenen bir sonugtur. Ciinkii (6.9)
denklemine gore |M r |2 nin degeri azalirsa, f# ’nin artmasi dogaldir.
Atomik  ¢ekirdeklerin  mikroskopik  teorisinde, niikleer
Hamiltoniyenin bazi onemli simetrileri kullanilan model tarafindan

kirilir. Bu caligmada, izotopik simetri yani, niikleer kuvvetlerin yiik

bagimsizligt Coulomb kuvvetleri tarafindan kirilmaktadir. Bununla
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birlikte, niikleer kabuk model Hamiltoniyenindeki izovektor terimi de
izotopik invaryanshigi kirar. Bu kirilma dogal degildir ve bunun dalga
fonksiyonlarindaki ve matris elemanlarindaki etkisinin giderilmesi
gerekmektedir. Bu nokta literatiirdeki ¢alismalarda vurgulanmamistir.
Sozii  edilen diizeltme, Pyatov restorasyon metodu kullanilarak
gerceklestirilmigtir. Bu restorasyon metodu, kabuk model potansiyeline
ve rezidiiel etkilesmenin ayrilabilirliginin kabul edilmesine dayanir.
Restorasyondan sonra model keyfi parametrelere baglh kalmaz.

Tablo 6.1’den goriildiigi gibi, rezidiiel kuvvetlerin (kolektif
etkilerin) hesaba alinmasiyla, Coulomb karisimindan dolay1 gecis matris
elemaninin karesinin degeri 2’den biiylik olur. Yani, o, negatif degerler
alabilir. Bununla birlikte, bu sonuglar sadece ¢ift -etkilesmesiz
hesaplamalarda goriiliir. Cift etkilesmenin etkisi géz oniine alininca, o,
degerleri pozitif olacaktir.

Tablo 6.5’ten goriildiigii gibi, cift etkilesmesiz hesaplardaki ft
degerlerinin daha onceki ¢alismalarla ayn1 mertebede olmasina ragmen,
cift etkilesmeli f# degerleri bunlardan daha biiyiik ¢ikmistir. Sonug
olarak, ¢ift etkilesmenin g6z Oniine alinmasi izobar analog haller

arasindaki gecis olasiligini azaltir.



Tablo 6.5 Siiperizinli Fermi beta gegisleri i¢in hesaplanan f# degerleri.

Bu ¢alisma (a) (b) (© (d) (e ®
Gegisler cif cif
Etkilesmesiz Etkilesmeli
0o _10p 3189,28 - 3147.09 3146.75 314645 31544 3149.7 3125.8
“Bo 4N 3162,95 - 3144.12 3145.63 3143.07 3142.0 3146.4 3144.1
26A]_>26Mg 314996 3157,61 3145.04 3146.65 3145.11 3146.0 3148.3 3155.5
HolHs 314520 3160,79 3143.81 314542 314429 31535 3148.9 3163.4
BE_B Ay 3139,96 3168,43 3144.22 314593 3144.60 3153.0 3147.8 3161.9
Do ycy 314021 316859 314371 314941 314952  3150.8 31548  3158.6
o1 _4oTy 3137,79 3178,68 314596 3148.49 3148.19 - 3153.5 3161.9
Orvm—Ccr  3130,61 3188,35 3139.31 3144.81 3146.65 - 3153.1 3157.7
HCooMFe 313698 321245 3139.10 314491 314583 3147.6 3152.5 3165.8
2Gamz, 316734 333015 314555 3131.39 - - ; ;
% 4s—%Ge  3158,82 3385,73 - - - - - -
“RbTKr 316098 3390,47 3149.65 3156.99 - - - -

8LI1
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(a) (Hardy and Towner,2005),

(b) (Towner and Hardy, 2008),

(c) (Towner and Hardy, 2002),

(d) (Sagava, Van Giai, and Suzuki, 1996),
(e) (Ormand and Brown, 1995),

(f) (Barker, 1994).
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EKLER

EKk.1 ikinci Kuantumlama

Ozdes parcaciklar birbirlerinin benzeri olduklarindan, kendilerine
Ozgli Ozelliklerinden birisiyle birbirlerinden ayirtedilemezler. Klasik
mekanikte herhangi bir halde 6zdes parcaciklari siralamak olasidir ve
parcaciklar yoriingelerine gore ayirtedilebilirler. Fakat kuantum
mekaniginde yoriinge kavrami yoktur. Parcaciklar1 birbirlerinde
ayirtetmek olanaksizlagir. Kuantum mekaniginde o6zdes parcaciklari
birbirlerinden ayirtetmek i¢in sistemin dalga fonksiyonundan yararlanilir

(Erbil H.H., 1990). N tane 6zdes pargaciktan olusan bir sistem,

l//:l//(}ﬁlao-larZaO-Za'--arNaO-N) (El)

seklinde ifade edilir. Burada r(i=12,.,N) yervektorleri,

o,(i=12,..,N) spinleri temsil eder. 1 ve 2 numarali parcaciklar

yerdegistirirse,
W' =y'(1,,0,,1,01,..1y,0) (E2)
olur. Yani;
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olur. Burada P, 1 ve 2 numaral parcaciklarin yerlerini degistiren
operatordiir. Bu operatoriin iiniter oldugu kabul edilir ve daha genel

olarak parite operatorii olarak isimlendirilirse,

A

Ply)=ply)F|v) (E3)

olur. Eger p=+1 ise boyle bir dalga fonksiyonuna cift pariteli veya

simetrik fonksiyon adi verilir. Bu 6zelliklere uyan pargaciklar tamsay1
spinlidir ve bozon ( foton, « pargacigi,...) olarak adlandirilir. Eger

p =-—1 ise boyle bir dalga fonksiyonuna tek pariteli veya anti-simetrik

fonksiyon denir. Bu 06zelliklere uyan parcaciklar ise yarim-tamsayi
spinlidir ve fermiyon (elektron, proton, notron...) olarak isimlendirilir
(Erbil H.H., 1990).

N tane parcaciktan olusan bir sistemde herbir parcacigin dalga

fonksiyonlar1 ¢ ile temsil edilirse toplam dalga fonksiyonu,

w(12,...N)=4,(D@;(2)..4,(N) (E4)

olur. Burada a, £, ..., v swrastyla 1, 2, ..., N. parcacigin bulundugu

halleri temsil eder. (E4) denklemi asagidaki gibi de yazilabilir.
1
L,2,...,N)=—=) (-D"¢,(D@,;(2)..4,(N) (ES)
P12 N)= 20800 2

veE
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.0 4,2) - 4,(N)
w(1,2,.,N)= \/%%:(1) ¢/3<2> ¢/3(:N>.

(E6)

9, (1) ¢(2) 4, (N)

(E6) denklemi “Slater” determinanti olarak isimlendirilir.
Sistemde iki parcacigin yerdegistirmesi (E6) determinantindaki iki
siitunun terdegistirmesine karsilik gelir. Bu ise determinantin isaret
degistirmesine neden olur (Erbil H.H., 1990). Bu determinant1 daha basit

gormek icin iki pargacikli bir sistem i¢in yazilirsa;

9. (1) 4,(2)
9 () 9(2)

w(l2)= %

:%(M) 4,(2)-4,2)8,(1))

olur.

Ikinci kuantumlama c¢ok pargacikli sistemler igin oldukga
kullanigh bir yontemdir. Yukarida tanimlanan Slater determinantinda
bir¢cok gereksiz bilgi vardir. Kuantum mekaniginde 6zdes pargaciklarin
ayirtedilememesinden dolay1 ikinci kuantumlanmada dalga fonksiyonu

yerine pargacik sayisi kullanilir. Dolayistyla énemli olan, herbir ¢, (k)
=a,pf,.,0), (k=12,.,N) durumunda ka¢ tane pargacik
bulunacagidir. Buda pargacik sayist “n,” ile temsil edilir. (E5)’teki dalga

fonksiyonu,
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|y/>:|n1,n2,...,nA> (E7)

olur. Fermiyonlar icin »n, =01 ve bozonlar icin n, =0,12,...,0
degerlerini alir. Dalga fonksiyonu yerine artik |n> parcacik sayisi

kullanilabilir. Burada ihtiya¢ olan #» ’nin sayisin1 degistirecek olan bir

operatordiir;
aln)y=|n-1). (E8)
Bu durumlar normalize edilirse,

<n—1|n—l> =<n|&+fz

n>:1

olur. Yani a”a ’nin 6zdegeri 1’dir. Fakat n = 0 olunca,

A

i0)=|-1

olur. Bu durum fiziksel olarak anlamli olmaz. Dolayisiyla,

olur. Fakat bu durumda da

A4 A

a a

(0

0)=0
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6zdegerine sahip olur. Bu da anlamli olmaz. Oyleyse,

) =aln-1)
n>zﬁ|n+l>

a

(E9)

At

olur. Yukarida tanimlanan & operatdrine “parcacik yoketme

operatorii” denir. Benzer sekilde a* operatoriine de “pargacik yaratma
operatorii” adi verilir. Bu operatorler arasindaki iligkiler asagidaki

sekildedir,
[a,a]=0 (E10)
ve

LA =0 . (E11)
J

Bozonlar icin;

Pargacik say1 operatorti,

(E12)

S
Il
QD>
QD>
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seklindedir. Ayrica,

n)=+/n|n—1) (E13)
&|n> =\/E|n+l>

a

Ozellikleri vardir.

n =0 olan duruma “vakum” durumu denir. &| O> =0 seklindedir.

Ayrica,

[Ai’d/+]=5ﬁ ’ [&i,&j]=0 ’ [A;"A’;]:O(EM)

bagmtilar1 gecerlidir. 7, = a;"a, olarak alinirsa, dalga fonksiyonu,

olur. Ayrica,
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al.|n1 ,nz,...,ni,...> =./n, |nl My ey 1 — 1,...>
At
a; |n1,n2,...,ni,...> =n, +1|n1,n2,...,ni +1,...>

seklinde ifade edilebilir.

Fermiyonlar i¢in;

Parcacik say1 operatorii bozonlardaki gibi;

S
Il
QD>
SN

seklindedir. Diger 6zellikler asagidaki gibidir.

(E15)
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Ek2- T Operatoriiniin Elde Edilmesi

[_ gegisine neden olan T operatorii pargacik tasvirinde (4.4) ve

(4.79) denklemlerinde asagidaki gibi ifade edilmisti.

i

=% (o, [i-m,)
Ju

a, a
jpm[r JnTMy

P

Bu denklemin nasil elde edildigini inceleyelim:

v = Z ay, (E16)
olan bir fonksiyon ve

f=|v fwdq (E17)

gelisiglizel bir f biylikliiglinliin ortalamas:1 ele alinsin (Landau and

Lifchitz, 1963). (E16) esitligi (E17)’de yerine yazilirsa;

f=[Xaw.f> a.w,dg

f=YYaa,[v./v.dg
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olur. Burada f,

nm

J.l//: f v, dq tanimlamasi yapilirsa,
f=2.2aa,f, (E18)

olarak elde edilir. Buradaki herbir f,, degerine n durumundan m

durumuna gegise karsilik gelen matris elemani denir.

Simdi de,
P=>"f. (E19)

gibi bir fiziksel operatdr ele alinsin (Landau and Lifchitz, 1963). Ayrica,

YN,NyNy = (sz Z Vp 51 )//P21 (52) Yp, (‘fN)

olsun. w =,/N,y;, olur. (E19)’da yazilan ifadenin biiyiikligiiniin

ortalamasi;
F =y fydé

F =[Ny Ny, dé
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F = INN, v, &)y, (£)dé

olur. f, j l//l fy/k d§ tanimlamasi yapilirsa,

F = [N N, (E20)

olur. Bu kosegen ilizerinde olmayan matris elemanlarina karsilik gelir.

Kosegen tlizerindeki matris elemanlart igin;
F = SNy

olarak elde edilir.
Ikinci kuantumlama yaratma ve yoketme operatorleri tekrar

hatirlanacak olursa;
i) =l -1).

n>zﬁ|n+l>
n) = nn).

a’a,=N, ve a,a; =N, +1
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seklindedir. Bu operatorler kullanilirsa yukarida elde edilen (E20)
denklemi,

F = fyala (E21)
ve (E19) denklemi,
F= Zfikafak (E22)
ik

A

olur. Bulunan bu sonu¢ kullanilarak aradigimiz 7 operatoriinii elde

edelim; (E22) ifadesi

= Y (im |f]iam,)a, ., (E23)
JisJ2

A

seklinde yazilirsa ve burada alman keyfi f yerine 7 yazilirsa

A
(T = Z (7) olduguna gore F operatorii de 7_ olur);

j f_‘lzsz Jomy, TT, > (E24)

I = z<1151]1m1,
11?12
ny,my
I,.T,

Jimy 12’"2

olur. (E24)’teki T toplam izotopik spindir ve degeri % ’dir. Buna gore,
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~ . 1
T = z <Ils]]1ml,ETz1

R . 1 A A
t_|lys,j,m, ’ETZZ jim 4 jym,

1 ~ 1 ~ ~
Z b, 5152 Jl]z mlmz <§Tzl t_ ETzz >af|m| afz’"z (EZS)
JisJa
my ,nty

LT,

olur. Burada 7

—T, > ifadesi incelenirse,

:

olur. Eger T, = —% olursa, 7, —1= —% olur. Bunun olmasi imkansizdir.

1 1
—T V=(sabit)|—T
> zz> ( )2 i

{

Ciinkii 7, bileseni ya —% (proton) yada +%(n6tron) olmalidir. Buna

gore T :% olmalidir. Yani,

g

1
2

i |-

> (sabit)

olur. Oyleyse,
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olur. Yani (E24) denklemindeki 1— proton ve 2 — nétron’a karsilik
gelir. Bu durumda (E24) denklemi,
i

a a > (E26)

JpMp " Jutty

=% {jm,|iljm,)
i

P

olur. Goriildiigii gibi (E26) denklemi bizim aradigimiz (4.4) ve (4.79)

denklemlerinin aynisidir.



193

Ek.3 A,, Bozon Operatoriiniin Elde Edilmesi

Kuazi-parcacik bazinda restorasyon yaparken (4.82) denklemiyle

elde edilen 7 operatdriinde bazi kisaltmalar yaparken asagida yazilan
+ Py . .
4,, ve A, ’ye sirasiyla notron-proton iretme ve yoketme bozon

operatorleri (Soloviev, 1976) ad1 verilir.

at (E27)

2D @,
Jﬁ

— 2 D",
,/ )

(E28)

Buradaki amag, (E27) denkleminden faydalanarak (E28)

denklemini elde etmektir. 4,, = ( s )+ olduguna gore;

)jm +

2

( n"ay,

olur. Bu son denklemin Oniindeki negatiflik isareti operatorlerin

antikomiitatif olmasindan dolay1 gelir. j, =j, ve m, =m, olduguna

gore,
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p

T I

olur. Biitin m, ve m,’lerin lizerinden toplam alindig1 i¢in m, yerine

—m, ve m, yerine de —m, yazilabilir;

L% m,

ﬁ - D
Z

Jp—my+2m,
2. (=1 iyomy im,

J +1m T,

olur. (1" =—1"dir. Ciinkii m , yarimtamsay1 olduguna gore 2m, tek

tamsay1 olur. Bu (-1) bastaki (-)’ligi yok eder ve sonug;

olarak elde edilir.
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Ek.4 [Hy,th- Ve, T']=0 Oldugunun Dogrulanmasi

(4.98) denklemiyle [H wp Ve T ];t 0 ’nin oldugu gosterilmistir.

Hamiltoniyene ek bir /4 teriminin eklenmesiyle
|7, +h-v.,17]=0 (E29)
olmaktadir. Oyleyse,

|7, V.7 |+ |nT7]=0 (E30)

/4

olur. (4.98) denkleminden

i1y, Ve 17 |= 2 EL (4, - pa,,)
np

olduguna gore bu denklem (E30)’da yerine yazilirsa, (E29) esitliginin

dogru olmasi igin,

.77 |= -> Ep D)4, - pA,,) (E31)

np

olmalidir. Simdi (E31) denkleminin bu sekilde oldugunu ispatlamaya
calisalim.
Pyatov sectikleri %~ nin su sekilde olmasi gerektigini One

siirmiistiir (Pyatov and Salamov, 1977);
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hzz ! [qup _VC’Tp]+[qup _VC’Tp]'

=tV p
Bu denklemde asagidaki gibi kisaltmalar yapilirsa,

DE[qup _VC’TpJ:ZE:;(j)(A’; _pA”p)
np

! (E32)
D" = [qup _VC’TP] :ZE};(]')(AW, —pA,;)
np
p=t 7p
olur.
)= ¥ —[pn17]
p=tp (E34)
-y L (o*[p.77])+[p*.77]p)
p:ir47p

olur. (4.87) denkleminden
1 N
=28, (4 +p4,)
np

olur. (4.87) ve (E32), (E34)’de yerlerine yazilrsa,
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)30 (ZE:; (4, = p4,)

p\

SO, o T8 a0,
+{§E;(;)(A —pA+), ZBP (47 + pa, )}ZPIE,;(]')(A;—/JA@)J

Ep Bp
(5! (’)) 2 (4, - ot W5 3 1 ol 4, ]

pZ; 47p p
_p[Anp’Ar;]_pz[Anp’Anp])
E? (N} B”
+ Z% (4,4 ]+ pl4,,.4,]
np
ol 4, - o745, 4, s, - 4, )
Ey(j)) B .
BN p e LIV
p=t T/ p mp
,
OB, )
np
- ()] By ol4,, - p;,)
p=% np

+Z(E” () B (45, - pA,, )

= 24; > (E5 () By, (- pa,, + 7 4, + 41, = A,

p=t p np
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-3 S (e ) Bl - o, )
=X - ( L) By 4, - pa,,) (E35)

olur. (4.103) denkleminde

_ ——ZE};(])(bP +pb, )= ——ZE,Z,(J) .

np np

oldugu gosterilmistir. (4.103) denklemi (E35)’te yerine yazilirsa,

-y ! (e ()) B2 (45, - pa,,)
p= 2(—*ZE£,(J) o)

np

olur. Gerekli sadelestirmeler yapilirsa,

[ 77]= XL, 4y, - pd,, )

olarak istenilen sonuca ulagilmis olur.
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EK.5 7y, nun Bir Sabite Esit Oldugunun Goésterilmesi

(4.102) denklemi ile verilen
=020, ~ver)r7]o)

ifadesinin bir sabite esit oldugu gosterilecektir. Pyatov’un onerdigi /4

asagidaki gibi genel bir sekilde ifade edilebilir.

h= i[H,F]+ [H,F] (E36)
2y

[H+nF]=0
[H,F]+[n,F]=0

olur. (E36) yukaridaki denklemde yerine yazilirsa,

[H,F]+ %[[H,FT [H,F],F]: 0

[H,F]+ 2—17([H,F]+ [H,F]F]+ [[H,F]+,FIH,F]): 0

[H,F]" =-[F,H] olduguna gore,
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[H,F]+$(— (1. FI[H.FLF]+[-[H. FLF]H. F]) =0

[t7.F]- A FM[. FLFl} =0 (E37)
v
olur. Eger,

([[H.FLF])=c (E38)

gibi bir sabit olursa,

(1, F)= ([, F].c ),

2y
2y[H. Fl=[H.Fle+c[H.F),

2y[H . Fl=2¢[H. F),

y=c=([H.F}F]) (E39)

olarak elde edilir.
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Ek.6 Hareket Denkleminin Elde Edilisi

H

v,)=E,|v,)

HO,

y)=HQ,

w)=0, Hlw)+ 0, Hly)

yukaridaki denklemde oldugu gibi O, H | z//> ’yi ekleyip ¢ikarmak sonucu

degistirmez.

HO! ly)=|H,0; |w)+0; H]y)

Soldan <1//|Qn ile carpilirsa,

0,HO; 0,11.0; lv)+(y

v)=(vw

(w 0,0, H|y)

olur. <w Q,HO; l//> = <n |H | n> ve 0,0, =1 olduguna gore,

(nlH[m)=(w[0,[H.0; [y) +{y |H]w).

0,1.0; |v)

(n|H|n) = (v |Hv) = {y

olur. Esirligin sol tarafi @, ile ifade edilirse,
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0,|H.0; |w)

o, = (v

olur. Esitligin her iki tarafi Q;|W> ile ¢arpilirsa,

®,0; 0,170 |w).

w)=0,

v ) v

0,0;|v)=|H,0; |w),

,0; =|H,0; ]

olarak elde edilir.
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