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ÖZET 

 

KÜRESEL ÇEKİRDEKLERDE BETA BOZUNMASININ FERMİ 

MATRİS ELEMANLARININ HESAPLANMASI 

 
ÇALIK, Abdullah Engin 

 
Doktora Tezi, Fizik Bölümü 

Tez Yöneticileri: Doç. Dr. Murat GERÇEKLİOĞLU 

             Doç. Dr. Cevat SELAM 

Temmuz 2009, 212 sayfa 

 

 Bu çalışmada, Cabibbo Kobayashi Maskawa (CKM) karışım 

matrisinin üniterliği, çift-çift çekirdeklerin taban durumlarında izospin 

karışımları, izobar analog rezonans (IAR) durumların izospin yapısı ve 

 değerleri  süperizinli Fermi beta geçişleri üzerinde 

çalışılarak incelendi. CKM karışım matrisinin  elemanının sayısal 

değeri standart prosedür izlenerek hesaplandı. Daha önceki çalışmalardan 

farklı bir metot kullanılarak, Coulomb kuvvetlerine bağlı izospin 

bozulması daha doğru bir şekilde elde edildi. İzospin bozulmasından 

dolayı kabuk modeli Pyatov metodu ile restore edildi ve geçiş matris 

elemanları Rastgele Faz Yaklaşımı (RPA) aracılığıyla bulundu. 

Ft ++ → 00

udV

 

Anahtar Sözcükler: Süperizinli beta geçişleri, beta geçiş matris 

elemanları, izospin bozulması, CKM matrisi, izospin karışımı. 
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ABSTRACT 

 

CALCULATION OF THE FERMI MATRIX ELEMENTS OF THE 

BETA DECAY IN SPHERICAL NUCLEI 

 
ÇALIK, Abdullah Engin 

 
PhD in Physics 

Supervisors: Assoc.Prof. Dr. Murat GERÇEKLİOĞLU 

   Assoc.Prof. Dr. Cevat SELAM 

July 2009, 212 pages 

 
 In this study, the unitarity of the Cabibbo Kobayashi Maskawa 

(CKM) mixing matrix, the isospin admixtures in the nuclear ground 

states of the even-even nuclei, the isospin structure of the isobar analog 

resonance (IAR) states and the  values have been investigated by 

studying on the  superallowed Fermi Beta decays. The 

numerical value of the  element of the CKM mixing matrix has been 

calculated following the standart procedure. Using a different method 

from the those of the previous studies, the effect of the isospin breaking 

due to the Coulomb forces has been evaluated more accurately. Here, the 

shell model has been modified by Pyatov’s restoration because of the 

isospin breaking and the transition matrix elements have been found by 

means of the Random Phase Approximation (RPA).  

Ft
++ → 00

udV

 

Keywords: Superallowed beta decays, beta decay matrix elements 

isospin breaking, CKM matrix, isospin mixing. 
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1. GİRİŞ 

 

Beta ( β ) bozunmaları, alfa ve gama bozunmaları ile birlikte 

nükleer fizik çalışmalarının başlamasında ve sürdürülmesinde büyük rol 

oynamışlardır. Aynı zamanda beta bozunmaları çekirdek yapısının temel 

olarak anlaşılmasında da  çok önemlidir. Beta bozunmaları ilk gözlenen 

radyoaktif olaylardan biri olmasına rağmen hâlâ güncelliğini 

korumaktadır. Gerek deneysel, gerekse teorik çalışmalar tüm hızıyla 

günümüzde de devam etmektedir. 

 Çekirdeklerdeki beta geçişleri teorik olarak incelendiğinde, bu 

geçişlere sebep olan etkin etkileşme kuvvetleri olarak nükleonlar 

arasındaki spin ve izospin etkileşme kuvvetleri alınır. Genellikle, bu etkin 

etkileşme kuvvetlerinin gücü, kuplaj sabiti denilen bir keyfi parametre 

aracılığıyla temsil edilir. Söz konusu parametreler beta geçişlerine ait 

olan teorik ve deneysel değerlerin birbirleri ile karşılaştırılması ile 

bulunur. 

 Çekirdek kuvvetlerinin etkisi nükleonların proton veya nötron 

olup olmamasına bağlı olmadığı için nükleer kuvvetler yükten 

bağımsızdır (Krane, 2001). Nötron ve proton tek bir parçacığın (nükleon) 

iki değişik görüntüsü gibi düşünülüp, izospin (izotopik spin) kuantum 

sayısı ile gösterilmektedir. Buna göre çekirdek kuvvetleri izotopik 

invaryanttır. Fakat bazı çekirdeklerde izospin simetrisi bozulur, izospin 

karışımları meydana gelir. İzospin simetrisinin bozulması protonlar 

arasındaki karşılıklı elektromanyetik etkileşmenin sonucu ortaya çıkar. 

Daha doğrusu buna Coulomb potansiyelinin çekirdek boyunca değişmesi 

neden olur (Bohr and Mottelson, 1969). Özellikle izospin yasaklı beta 
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geçişlerini açıklamak için uygun çekirdeklerin taban durumlarının 

izospin karışımlarının hesaplanması gerekir. Çünkü bu tür geçişlerin 

varlığına bu karışımlar sebep olur.  

Çekirdekteki izospin karışımlarının bilinmesi, parçacık fiziğinin 

temelini oluşturan standart model (SM) içindeki kuark karışımlarının 

elde edilmesinde; taban durumlarının izospin karışımlarının bilinmesi de 

beta geçişlerinde elde edilen zayıf etkileşme sabitinin bulunmasında, 

izobar analog durumların (IAR) seviyelerinin enerjilerinin ve enerji 

genişliğinin bulunmasında, izomultiplet seviyelerin enerjilerinin elde 

edilmesinde çok önemli rol oynamaktadırlar (Pyatov et al., 1979). 

 Çekirdeklerin taban durumlarındaki izospin karışımları bir çok 

farklı modelde hesaplanmıştır. Çekirdeklerin hidrodinamik modeline 

veya çekirdek kabuk modeline dayanarak hesaplamalar yapılmıştır. 

Kabuk modeline göre yapılan çalışmalarda nükleonlar arasındaki kuvvet 

ortalama potansiyele bağlı seçilmiştir. Aksi takdirde sistemin başlangıçta 

izotopik invaryant olan Hamilton operatörünün çekirdek kuvvetleri ile 

ilgili kısmının izotopik invaryantlıktan çıktığı görülmüştür. Bu sebepten 

çekirdek taban durumlarında istenmeyen izospin kirliliği meydana 

gelmiştir. Dolayısıyla izotopik invaryansın bozulmasını önlemek için 

serbest bir parametre ilave edilmiştir (Pyatov et al., 1979). 

 Benzer şekilde IAR (İzobar Analog Rezonans) için de bir çok 

çalışma yapılmıştır (Pyatov et al., 1979; Ikeda et al., 1963). Teorik olarak 

elde edilen değerler deneysel değerlerin çok altında kalmış ve bir IAR 

elde edilememiştir. Teorik sonuçlar ile deneysel sonuçların uyum içinde 

olması için serbest bir parametre ilave edilmiştir (Ikeda et al., 1963). 
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 Ortaya konulacak bu çalışmanın önemi; Pyatov yöntemi 

kullanılarak, bozulmuş izospin simetrisini restore edecek etkin 

etkileşmenin formunu ve güç parametresini ortalama alan potansiyeli ile 

ilişkili olarak belirlemektir. Ayrıca, bu yöntemle söz konusu etkileşme 

parametresi, keyfiyete yer bırakmayacak şekilde, teorik olarak 

hesaplanabilecektir. Bu yöntem ile daha önce yapılan çalışmalar, 

yöntemin güvenilirliğini ortaya koymuştur. Yöntemin detayları (Pyatov 

and Salamov, 1977)’da verilmiştir. Parçacık bazındaki ilk uygulaması da 

(Pyatov et al., 1979)’da yapılmıştır. Dönme invaryansı üzerine olan 

uygulaması (Kuliev et al., 2002)’de; çift etkileşme de gözönüne alınarak   

yapılan hesapların ayrıntıları ve Sb124112−  ve Sn124100−  izotopları üzerine 

olan hesaplamalar  (Babacan et al., 2004)’de; 208=A  olan çekirdeklerin 

incelenmesi (Küçükbursa et al., 2004)’de; Bi208  çekirdeğinde +1  

durumlarının Gamow-Teller geçişlerinin incelenmesi (Babacan et al., 

2005)’de; orta ve ağır kütleli çekirdekler üzerine hesaplamalar (Salamov 

et al., 2006)’da; ZN =  olan ve 10050 −=A  arasında değişen 

çekirdeklerin taban durumlarındaki izospin karışımları (Babacan et al., 

2007)’de; nötron bakımından zengin Te ve Sn izotopları için beta geçiş 

özellikleri de (Salamov et al., 2007)’de incelenmiştir. Ayrıca yöntem, 

nükleer yapı fiziğinde diğer simetrilere de uygulanmıştır (Cwiok et al., 

1984; Nojarov and Faessler, 1988; Faessler and Nojarov, 1990; 

Civitarese and Licciardo, 1990; Sakamoto and Kishimoto, 1990; Cwiok 

et al., 1990; Civitarese et al., 1999; Magierski and Wyss, 2000; Kuliev et 

al., 2004; Shoji and Shimizu, 2008). 

 Bu çalışmada, Woods-Saxon ortalama alanına dayanan kabuk 

(shell) modeli kullanılacaktır. Bu modelin verdiği tek parçacık enerjileri 
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ve dalga fonksiyonları beta geçişlerinin özelliklerini incelerken temel 

oluşturacaktır. Daha sonra parçacık ve kuaziparçacık temsilinde kolektif 

uyarılmaların fiziksel özellikleri Rastgele Faz Yöntemi (RPA) ve 

Kuaziparçacık Rastgele Faz Yöntemi (QRPA) ile analiz edilecektir. 

Ayrıca bu yöntem çerçevesi içinde çekirdek hamiltoniyeninin bozuk 

simetrileri Pyatov yöntemi ile restore edilecektir. Nümerik hesaplamalar 

yapılırken Fortran programlama dili kullanılacaktır.  

 Bu çalışmada, kabuk (shell) modeli potansiyelinin izovektör 

kısmı tarafından oluşturulan izospin kırılması ayrıştırılmış ve etkisi 

Pyatov restorasyon metodu ile yok edilmiştir (Pyatov and Salamov, 

1977). Bunun bir uygulaması olarak parçacık fiziğindeki en önemli 

problemlerden bir tanesi olan CKM matrisinin üniterliği araştırılmıştır. 

Bu matrisin üniterliğini test etmek için varolan birkaç yoldan bir tanesi 

de süperizinli ++ → 00πJ  Fermi beta geçişleridir. Süperizinli Fermi beta 

geçişi yapan oniki çekirdek incelenmiş, bunların geçiş matris elemanları 

sözü edilen yöntem dahilinde restore edilerek bulunmuştur. Ayrıca bu 

çekirdeklerin taban durumu izospin safsızlıkları ve IAR izospin yapıları 

hem çift etkileşmeli hem de çift etkileşmesiz olarak incelenmiştir. 

 Bu çalışmanın 2. bölümünde izospin, izobarik analog durumlar, 

RPA, BCS gibi bazı temel kavram, teori ve yöntemler kısaca 

anlatılmıştır. 3. bölümde Fermi’nin beta bozulma teorisi ve yukarıda adı 

geçen süperizinli ve izospin yasaklı beta geçişlerinin genel özellikleri 

incelenmiştir. 4. bölümde Pyatov yöntemi ile yapılan restorasyonun hem 

parçacık hem de kuaziparçacık bazında nasıl yapıldığı ayrıntılı bir 

biçimde çıkarılmış, özdeğerlerin, özfonksiyonların ve matris 

elemanlarının nasıl elde edildikleri de detaylı bir biçimde incelenmiştir. 
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Ayrıca bu bölümde izospin karışımlarının ve IAR izospin yapısının nasıl 

bulundukları da ayrıntılı bir şekilde gösterilmiştir. 5. Bölümde CKM 

matrisinin üniterliğinin nasıl bulunduğu, burada süperizinli beta 

geçişlerinin neden ve nasıl kullanıldıkları ve düzeltme terimleri 

anlatılmıştır. Son bölüm olan 6. bölümde ise elde ettiğimiz sonuçlar 

literatürdeki diğer sonuçlarla birlikte verilmiştir.  
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2. BAZI TEMEL KAVRAM, TEORİ VE YÖNTEMLER  

 

 Bu bölümde sırasıyla izospin ve izobarik analog rezonans 

kavramları ile Rastgele Faz Yaklaşımı (RPA) ve Barden Cooper 

Schrieffer (BCS) Teorisi’nin genel özellikleri kısaca anlatılacaktır. 

 
 
2.1 İzospin (İzotopik Spin) 

 

 Çekirdeği meydana getiren nükleonlar arasındaki çekim 

kuvvetleri yüke bağlı değildir. Yani nötron-nötron, proton-proton ve 

nötron-proton arasındaki kuvvetler birbirlerine eşittir. Nükleer 

kuvvetlerin yükten bağımsız olduğunu ifade etmek için yeni bir katsayıya 

(yeni bir kuantum sayısına) ihtiyaç vardır. O halde, nötrona ve protona, 

nükleon adı verilen aynı bir taneciğin farklı iki durumu gibi bakılabilir. 

Matematik olarak nükleon, iki farklı durumda bulunabilen ve ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1
0

π  ve 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0
1

υ  baz vektörleriyle temsil edilen 2-boyutlu bir uzayda temsil 

edilebilir. Nükleonun spin yukarı ve spin aşağı olmasını temsil edecek 

yani nötronla proton arasındaki farkı anlamak için taneciğin yükü 

izotopik spin veya izospin adı verilen bir vektöre benzetilmiştir (Ring 

and Schuck, 1980). Protonla nötron arasındaki yük farkı, tıpkı bir spin 

vektörünün bir alan içindeki uzay kuantumlanmasına benzer şekilde, 

izospin vektörünün (bizim hayal edip düşündüğümüz) izospin uzayında 

kuantumlanması şeklinde kendini gösterir. 

 



 7 

 T  veya I  izospin kuantum sayısını ifade eder. A nükleona sahip 

bir çekirdeğin toplam izotopik spini, 

 

 ∑=
A

i

itT         (2.1) 

 

şeklindedir. Bileşenleri ( )321 ,, TTTT  veya ( )zyx TTTT ,,  şeklinde gösterilir. 

Ayrıca 03 TTT z ==  şeklinde de ifade edilebilir. Bu aynı J  (toplam 

açısal momentum) sayısına benzemektedir. Ayırt edici olan 0T  

bileşenidir (Soloviev, 1976); 

 

 210 −=T       (proton için), 

 210 =T   (nötron için). 

 

Bazı kaynaklarda 210 −=T  nötron için, 210 =T  proton için 

alınmaktadır. 

 Çekirdeğin  toplam yükünü proton belirler. Çekirdekte Z  tane 

proton olduğuna göre çekirdek yükü Ze  kadardır. Aynı zamanda 

çekirdek yükünün çekirdekteki tüm nükleonların yükleri toplamı olduğu 

da düşünülebilir. Yani; 

 

∑ ∑
= =

−−==
A

t

A

i

i
i teqZe

1 1
0 )

2
1(        

∑ ∑
= =

+−=
A

i

A

i

i eetZe
1 1

0 2
1  
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)
2
1( 0

1
ATeqZe

A

t
i +−== ∑

=

     (2.2) 

 

şeklindedir. Buradan hareket ederek, 

 

 ATZ
2
1

0 +−= , 

ZZNZAT −+=−= )(
2
1

2
1

0 ,  

)(
2
1

0 ZNT −=       (2.3) 

 

olarak elde edilir.  

 Ayrıca,  )
2
1( 0 −−= Teq  olduğundan hareketle, 

 Proton için 
2
1

0 −=T  olduğundan eeq =−−−= )
2
1

2
1( , 

 Nötron için 
2
1

0 =T  olduğundan 0)
2
1

2
1( =−−= eq  

olduğu rahatlıkla gösterilebilir. 

 Toplam T ’yi bulmak için, herbir nükleonun T ’sinin vektörel 

olarak toplanması gerekir. Bunu yapmak çok zordur. Nükleonların hepsi 

izotopik uzayda paralel ise;  

 

AT
2
1

=         (2.4) 
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olur. T  kendi bileşeninden daha küçük değerler alamayacağına göre, 

T ’nin en küçük değeri, 

 

 )(
2
1

min ZNT −=       (2.5) 

 

 olur. T ’nin alabileceği değer aralığı, 

 

 ( )
22
ATZN

≤≤
−        (2.6) 

 

olur  (Ring and Schuck, 1980). Bu denkleme göre =A çift ise 

=T tamsayı, =A tek ise =T yarım tamsayı olur. 

 T , izotopik uzayda herhangi bir yöne yönebilir. Yani, izotopik 

uzayda bir dönme invaryansı vardır. Sistem herhangi bir dönmeye karşı 

değişmezdir. Yani [ ] 0ˆ,ˆ =TH n  dır. ( nĤ , güçlü etkileşme) 

 T  değeri için 12 +T  tane hal vardır. Yani 12 +T  tane 

dejenerasyon vardır. 

 Nükleonlar arasında yalnız güçlü etkileşme olsa, nötron ve 

protonun aynı kütleye sahip olması gerekirdi. Ancak, gerçek durumda 

çekirdekte nükleonlar arası güçlü etkileşme harici, nükleonlar arası 

elektromanyetik etkileşme de vardır. Bu elektromanyetik etkileşme 

izospin uzayının izotropisini bozar, simetri bozulur; [ ] 0ˆ,ˆˆ ≠+ THH emn . 

Bu durum gerçek duruma karşılık gelir. Hatırlanırsa, adi uzayda 

manyetik alan izotropiyi bozarken, izotopik uzayda elektromanyetik 

etkileşme izotropiyi bozmaktadır.  
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 Şekil 2.1 İzomultiplet yapı. 

 

Şekil 2.1’den görüldüğü gibi 
2
1

=T  halinde )12( +T  katlı dejenerasyon 

olur. Elektromanyetik etkileşme varsa bu dejenerasyon ortadan kalkar 

(gerçek durum budur). Her bir alt durum, 0T ’ın tek bir değeri ile 

karakterize edilir ve farklı izobarlarda görülür. Elektromanyetik 

etkileşme yeterince küçükse 1
2

<<
c

Ze
=

 ise reel nükleer haller T  ile 

gösterilecek şekilde olur. Yani dejenere hale doğru gidilir. Ağır 

çekirdeklerde bu koşul (elektromanyetik etkileşmenin küçük olması) 

sağlanmamasına rağmen, T  bu hallere atanabilir. Bu hallere izobarik 

analog haller denir.  

 

 

 

 

 

T =1/2 

ΔE

Eem 

        

      

       

Hem yok Hem var 
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2.2 İzobar Analog Durumlar (Isobar Analogue Resonance-IAR) 

 

 İzospinin önemi izobar çekirdekler incelendiğinde açıkça 

görülmektedir. İzobar çekirdekler aynı A ’ya , farklı Z  ve N ’ye sahip 

olan çekirdeklerdir. Kütle numaraları; 11=A , 16=A  ve 21=A  olan 

çekirdeklerin spektrumları Şekil 2.2 ve Şekil 2.3’deki gibidir.  

 Bu çekirdekler birbirlerinin ayna çekirdeğidir. 11=A  ve 21=A  

olan çekirdekler incelendiğinde spektrumların ne kadar birbirine 

benzediği daha rahat görülür. 16=A  olan izobar çekirdeklere bakılırsa; 

N16 ’nın nötron sayısı 9=N  ve proton sayısı 7=Z ’dir. Taban izospini 

1=T  ve 10 −=T ’dir. Eğer N16 ’nin taban durum dalga fonksiyonuna +T  

izospin yükseltme operatörü uygulanırsa  

 

)0,1(),()1,1(),( 00 =→−= TTTT  

 

durumu elde edilir.  

 Bu durum O16 ’nun )8( == ZN  bir durumudur. O16 ’nun taban 

durumunun izospini 0=T  olduğuna göre, +T  operatörünün N16 ’nin 

taban durumuna uygulanması ile O16 ’nun uyarılmış bir durumu elde 

edilmiştir. İzospin arttırma operatörü nötronu protona dönüştürmekten 

başka bir değişiklik yapmaz. Bundan başka, nükleer kuvvetlerin yükten 

bağımsız olmasından dolayı bu durum nükleer hamiltoniyenin bir 

özdurumudur ve O16 ’nun bir durumuna karşılık gelir. 
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 Şekil 2.2 11=A  ve 21=A  olan izobar çekirdeklerin spektrumlarının  

                  karşılaştırılması (Wong, 1998). 

 
 
Bu durum N16 ’nin taban durumu ile benzer özellikler gösterir ve 0T  

hariç dalga fonksiyonları özdeştir. Bu iki durum izospin yükseltme ve 

alçaltma operatörleri ile birbirine dönüşebilir. Bu gibi durumlara 

birbirlerinin izobar analog durumları denir  (Wong, 1998). 

 

 

 

 

 

 



 13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 Şekil 2.3 16=A  olan izobar çekirdekler. Kesikli çizgiler izobar analog  

                  durumları göstermektedir  (Wong, 1998). 
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2.3 BCS (Bardeen, Cooper, Schrieffer) Teorisi 
 

 Bardeen, Cooper ve Schrieffer’in 1957’de süperiletkenliğin 

açıklanması için geliştirmiş oldukları BCS teorisi Bohr, Mottelson ve 

Pines (1958), Belyaev (1959) ve Migdal (1959) tarafından çekirdek 

fiziğine uygulanmıştır (Nilsson and Ragnarsson, 1993). Kabuk 

modelinde herhangi bir nükleonun, diğer nükleonların oluşturdukları 

ortalama alanda hareket ettikleri kabul edilmektedir. Nükleonlar arası çift 

etkileşme etkisi hesaba katılmamıştır. BCS teorisinde çift etkileşme de 

gözönüne alınmıştır. Bu durumda Hamiltoniyen; 

  

 pairav HHH +=0       (2.7) 

 

şeklindedir. Ortalama alan potansiyeli Woods-Saxon veya Nilsson 

potansiyelidir (Soloviev, 1976).  

 Toplam hamiltoniyen nötron ve proton sistemleri için iki kısma 

ayrılabilir; 

 

 )()( 000 pHnHH += .     (2.8) 

 

 Çift etkileşme etkisi nötron ve proton için iki parametre ile 

belirlenir. NG  katsayısı nötron sistemi için, ZG  katsayısı proton sitemi 

için kullanılır. Bunlara göre Hamiltoniyen; 
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∑ ∑

∑ ∑

′
+′−′

+
−

+
+′

+

′
+′−′

+
−

+
+

+

−−=

−−=

σ
σσ

σ
σσ

λ

λ

r rr
rrrrZrrp

s ss
ssssNssn

aaaaGaarEpH

aaaaGaasEnH

,
00

,
00

))(()(

))(()(
 (2.9) 

 

şeklinde olur (Soloviev, 1976). )(0 sE  ve )(0 rE  tek parçacık enerjileridir. 

Burada parçacık sayısı korunmamaktadır. Bu olumsuzluğu gidermek için 

parçacık sayısının ortalaması alınır; 

 

 ∑ +=
σ

σσ
s

ss aaN  ve ∑ +=
σ

σσ
r

rr aaZ . 

 

Buradaki Lagrange çarpanları parçacık sayısının en azından ortalama 

olarak korunmasını sağlar. Lagrange çarpanları nλ  ve pλ  kimyasal 

potansiyel olarak adlandırılır (Soloviev, 1976). 

 Yukarıda verilen Hamiltoniyenler içinde verilen +
σsa  ve σsa  

sırasıyla parçacık yaratma ve yoketme operatörleridir. Bunlar arasındaki 

antikomutasyon bağıntıları; 

 

 { } σσσσ δδ ′′
+ = ssss aa ,   ,  { } 0, =′′σσ ss aa   ,

 { } 0, =+
′′

+
σσ ss aa  

 

şeklindedir (Soloviev, 1976).  

 Parçacık tasvirinden kuaziparçacık tasvirine geçiş Bogolyubov 

dönüşümleri ile küresel çekirdeklerde şu şekilde olur (Nilsson and 

Ragnarsson, 1993); 
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+
−

−

−
−++

−+=

−+=

mjj
mj

jmjjm

mjj
mj

jmjjm

VUa

VUa

αα

αα

)1(

)1(
.    (2.10) 

  

Bu dönüşümler altında küresel çekirdeklerde nötron sisteminin 

hamiltoniyeni ve taban durum dalga fonksiyonu (Soloviev, 1976); 

 

 
∑ ∑

∑

′
′′′−′

+
−

+

′

′+′−−

+

−−

−−=

jj
mjmjmjjm

mm

mjmjN

mj
jmjmn

aaaa
G

aajEnH

, ,

,
00

)1()1(
4

))(()( λ

(2.11) 

 

 ( )( ) 00
0,

0 1 ψψ ∏
>

+
−

+−−+=
mj

mjjmj
mj

j aaVU    (2.12) 

 

olur. Gap parametresi (Soloviev, 1976); 

 

 ∑ ⎟
⎠
⎞

⎜
⎝
⎛ +=Δ

j
jjN VUjGn

2
1      (2.13) 

 

şeklindedir. Ayrıca jU , jV  ve )( jε  m’ye bağlı değildir. 

 

 
( )

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

j
jE

V n
j ε

λ
1

2
12  , 22 1 jj VU −=  

 ( )( )22)( njEnj λε −+Δ=  
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şeklindedir. Buradaki ( )jε  kuaziparçacık enerjileridir. Böylece, bağımsız 

kuaziparçacıklar teorisi temel denklemleri (Soloviev, 1976); 

 

 
( )( )

12
1

2 22
=

−+Δ

+
∑

j n

N

jEn

jG

λ
    (2.14) 

 

 
( )

( )( )
∑ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+Δ

−
−⎟

⎠
⎞

⎜
⎝
⎛ +=

j n

n

jEn

jE
jN

22
1

2
1

λ

λ
   (2.15) 

 

şeklindedir. 

 
 
2.4 Rastgele Faz Yaklaşımı (Random Phase Approxımatıon-RPA) 

 

 İkinci kuantumlanma (Ek.1’de genel özellikleri anlatılmıştır) ilk 

defa Bogolyubov tarafından önerilmiştir. Metod genellikle çeşitli çok-

parçacık problemlerinin çözümünde kullanılır. Bu metodun iki temel 

değişik şekli vardır. Bunlardan bir tanesi Tamm-Dancoff (TD) metodu 

diğeri de Rastgele Faz Yaklaşımı (RPA) metodudur. TD metodunun ilk 

defa Tamm tarafından kuantum alan teorisinden formulasyonu 

yapılmıştır. Daha sonra Dancoff tarafından geliştirilmiştir. Metodun 

matematik bazı da Fock tarafından geliştirilmiştir. TD metodu 

kuaziparçacık etkileşmelerini uyarılmış durumlar için hesaba katar, fakat 

etkileşmeler taban duruma bir katkıda bulunmazlar. Burada bahsedilen 

çift-çift çekirdeklerin taban durumu kuaziparçacık vakumudur. TD’deki 
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bu eksiklik RPA tarafından giderilmiştir. RPA’da kuaziparçacık 

etkileşmeleri bütün durumlarda olmaktadır (Soloviev, 1976).  

 RPA’da kullanılan kuaziparçacık çift etkileşme operatörleri 

(Soloviev, 1976); 

 

 
∑

∑
+
′

+
−

+

−′

=′

=′

σ
σσ

σ
σσ

ασα

ασα

qq

qq

qqA

qqA

2
1),(

,
2

1),(
    (2.16) 

 

şeklindedir. Bunlar arasındaki komutasyon bağıntıları (Soloviev, 1976); 

  

 

[ ]

[ ] [ ] 0),(),,(),(),,(

),;,;,(

),(),,(

2222

,
,

22

22 2222

=′′=′′

′′′′′′

++=′′

++

′′′′′
′′′′′

′′′′′′
+

′′′′

′′′′
+

∑

qqAqqAqqAqqA

qqqqqql

qqAqqA

qq
qq

qqqqqqqq

σσ

σσ αα

δδδδ

 (2.17) 

 

şeklindedir. Buradaki l  Kronecker δ  fonksiyonunun bir ifadesidir.  

 Kuaziparçacık etkileşmeleri çift-çift çekirdeklerin taban 

durumlarına tesir ederler. Taban durumu dalga fonksiyonu, kuaziparçacık 

vakumu dalga fonksiyonuna eşit değildir, kuaziparçacık sayısından farklı 

(fakat her zaman çift sayıda) küçük bileşenlere sahiptir. Öyle durumlar 

kabul edilir ki taban durumda kuaziparçacık sayısının ortalaması küçük 

olur. Yani matematiksel olarak; 

 

 0=′′
+

σσ αα qq  
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olur. Bu temel kabul olur. Bu kullanılırsa yukarıda tanımlanan birinci 

komutasyon bağıntısının en sağındaki terim ihmal edilir ve ),( qqA ′  

operatörleri bozon komutasyon bağıntılarını tanımlar. Bu metoda 

kuazibozon yaklaşımı denir (Soloviev, 1976). Bu durumda yukarıdaki 

komutasyon ifadesi; 

 

 [ ]
2222

),(),,( 22 qqqqqqqqqqAqqA ′′′′
+ +=′′ δδδδ    (2.18) 

 

olur. Yeni operatörler, yani fononlar şu şekilde tanımlanır (Soloviev, 

1976); 

 

 ( )∑
′

+
′′ ′−′=

qq

i
qq

i
qqi qqAqqAQ

,

)(),(
2
1 ϕψ  

         (2.19) 

 ( )∑
′

′
+

′
+ ′−′=

qq

i
qq

i
qqi qqAqqAQ

,
)(),(

2
1 ϕψ . 

 

Buradaki i=1,2,3,… bir fonon durumuna karşılık gelir. i
qq ′ψ  ve i

qq ′ϕ  kare 

matristir. 

 Çift-çift çekirdeğin taban durumu bir fonon vakumu olarak 

tanımlanır; 

 

 0=ψiQ .       (2.20) 
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Bu bütün i durumları için geçerlidir. Uyarılmış durumlarda bir fonon 

durumu ψ+
iQ , iki fonon durumu ψ++

ii QQ  …vb. şeklinde ifade edilir 

(Soloviev, 1976).  

 Fonon operatörleri Bose tipi komutasyon bağıntılarına uyarlar 

(Soloviev, 1976); 

 

 [ ] iiii QQ ′
+
′ = δ,   , [ ] [ ] 0,, == ′

+
′

+
iiii QQQQ . 

 

Çift-çift bir sistemin taban durumunun dalga fonksiyonu da şu 

formdadır (Soloviev, 1976); 
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Buradaki 
N
1  normalizasyon faktörüdür.  
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3. BETA BOZUNMASI 

 
Bu bölümde sırasıyla beta bozunmalarının genel özellikleri,  

Fermi’nin beta bozunma teorisi, beta geçişlerinin seçim kuralları, Fermi 

ve Gammow-Teller tipi beta geçişlerinin ne oldukları, süperizinli beta 

geçişleri ve isospin yasaklı beta geçişleri anlatılacaktır. 

 
 
3.1 Fermi’nin Beta Bozunma Teorisi 

 

Bilinen temel beta bozunmaları en basit haliyle şu şekilde verilebilir; 

 
−β  bozunması: −+++→ −

+ β
νβ QYX e

A
Z

A
Z 1   

+β  bozunması: ++++→ +
− β

νβ QYX e
A

Z
A
Z 1  

Elektron yakalaması: YXe A
Z

A
Z 1−

− →+  
−β  bozunmasında açığa çıkan enerji: 2

1 )( cMMQ A
Z

A
Z +−=−β

 

+β  bozunmasında açığa çıkan enerji: 2
1 )2( cmMMQ e
A

Z
A
Z −−= −+β

 

Elektron yakalamasında açığa çıkan enerji: K
A

Z
A
ZK EcMMQ −−= −

2
1 )(  

(Buradaki KE ,  K tabakasındaki bir elektronun bağlanma enerjisi). 

 Beta bozunmasında alfa bozunmalardan farklı olarak önceden 

çekirdek içinde bulunmayan tanecikler (elektron ve nötrino) 

yayınlanmaktadır. Bu sebeple beta bozunması yarı klasik kavramlarla 

açıklanamaz (Tanyel, 1994). 

 Fermi, gama yayınlanmasında elektromanyetik alanın oynadığı 

role benzer bir elektron-nötrino alanını kabul etmek suretiyle, kuantum 
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teorisine dayanan beta bozunma teorisini öne sürmüştür. Bu teoride, 

elektronların elektromanyetik alanda etkileşmesine benzer şekilde, beta 

ve nötrinoların çekirdekteki nükleonlarla bir çiftlenme etkileşmesi yaptığı 

öne sürülür. Elektromanyetik etkileşmedeki k  çiftlenme sabitine benzer, 

bir FG  yavaş etkileşme çiftlenme sabiti ileri sürülür. Fermi teorisinde, 

elektron ve nötrino, çekirdekte bir nötronun proton haline dönüşümü 

sırasında meydana gelir. Bu olay, bir çekirdekte gama yayınlanmasına 

benzetilebilir. Gama fotonu da önceden çekirdekte olmadığı halde geçiş 

sırasında meydana gelmektedir (Tanyel, 1994). 

 Beta geçişlerinde, beta geçiş ihtimali zamana bağlı pertürbasyon 

teorisi ile bulunur. Uyarılmış bir i seviyesinden beta yayınlayarak s 

seviyesine geçişi incelenirse, Ferminin altın kuralına göre geçiş olasılığı 

(Krane, 2001); 

 

dE
dndH is

22
∫ ∗= τψψπλ β=

     (3.1) 

 

şeklindedir. Burada βH  geçişe sebep olan hamiltoniyen operatörüdür. 

sψ  son seviye, iψ  ilk seviye dalga fonksiyonu, 
dE
dn  birim enerji başına 

düşen hallerin sayısıdır. Geçiş matris elemanı,  

 

∫ ∗== dxdydzHMH isis ψψ ββ       (3.2) 

 

olmak üzere; 

 



 23 

dE
dnM

22
β

πλ
=

=        (3.3) 

 

olarak elde edilir. 

Fermi’ye göre nötron, proton ve −β  bozunmasında 

elektromanyetik alan yerine elektron-nötrino alanı etkisiyle beta 

yayınlanmaktadır. Bu etkileşme çok zayıftır ve kısa zamanda oluşur. 

Bunun için beta bozunmasından zayıf etkileşme sorumludur. 

 Momentumu βP  ile ββ dPP +  arasında olan ve yayınlanan 

betaların birim zamandaki geçiş olasılığı veya geçiş hızı; 

 

ββββπ
λ dPEEPiHs

c
2

max
22

373 )(
2

1
−=

=
  (3.4) 

 

şeklindedir (Krane, 2001). 

Beta parçacıkları yayınlandıktan sonra çekirdeğin potansiyelinden 

dolayı oluşan Coulomb etkileşmesi ile karşılaşır. Çekirdeğin yükü Ze  

olduğuna göre, Ze  yüklü çekirdek, çekirdekten yayınlanan +β ’ları 

hızlandırır fakat −β ’leri yavaşlatır. Öyleyse yukarıda verilen birim 

zamanda yayınlanan parçacık sayısının bu etkileşmeleri de hesaba 

katması gerekir. Bunun için bağıntının Coulomb düzeltme terimi 

( )[ ]βEZF ,  ile çarpılması gerekir. Bu fonksiyona Fermi fonksiyonu veya 

Coulomb düzeltmesi denir. Bu F ’nin işareti −β ve +β ’ya göre değişir. 

Bu durumda; 
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βββββπ
λ dPEEPEZFiHs

c
2

max
22

373 )(),(
2

1
−=

=
  (3.5) 

 

olur. 

πηβ
πη

21
2),( −−

=
e

EZF       ve         
ν

η
h
Ze2

∓=   

 

olur. (3.5)  denklemindeki integral çözülürse; momentumun ve enerjinin 

boyutsuz olması için 2mc
PP = , 2mc

EE =  alınarak; 

 

),()(
)(

),( 2
22

max
2

/

0

max

β
βββ

β EZf
mc
dP

mc
E

mc
E

mc
P

EZF
mcP

=−∫ , (3.6) 

 

fcmdPEEPEZF
mcP

752
max

2
/

0

)(),(
max

=−∫ ββ    (3.7) 

 

elde edilir. Elde edilen bu sonuç (3.5)’te yerine yazılırsa; 

 

 fcmM
cT

752

373
21 2

12ln1
βπτ

λ
=

===    (3.8) 

 

 olur. Buradan ; 

 

245

73

21
12ln2

β

π

Mcm
fT =

=      (3.9) 
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ve 

221

βM

sabitfT =        (3.10) 

 

olur. Buna “ ft ” fonksiyonu denir.  

 Elektronlar ve yüklü parçacıklar elektrostatik etkileşme 

yaptıklarından ve elektrostatik alanda etkileşme sabiti k  ile 

gösterildiğinden, çekirdek içerisinde beta bozunması zayıf etkileşme 

gösterdiği için beta bozunmasında k  sabiti yerine “ FG ” zayıf etkileşme 

sabiti kullanılır. Öyleyse; 

 

∫ ∗= dvHGM isF ψψ ββ      (3.11) 

 

 ve 

 

βββββπ
λ dPEEPEZFM

c
GF 2

max
22

373 )(),(
2

−=
=

   (3.12) 

 

olur. 

 

Beta geçişlerinde seçim kuralları; 

(3.10) denkleminde, 2
βM

sabitft =  olarak elde edilmişti. Görüldüğü 

gibi ft  fonksiyonu matris elemanının karesi ile ters orantılıdır. 
2

βM  ne 
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kadar büyük olursa, ft  de o kadar küçük olur. Yani beta geçiş olasılığı o 

kadar mümkün olur. Buna izinli geçiş denir. 
2

βM  ne kadar küçük 

olursa, ft ’de o kadar büyük olur. Bu durumda geçiş de o kadar 

imkansızdır. Buna da yasaklı geçiş denir. O halde beta geçişleri matris 

elemanının karesine bağlı olmaktadır (Tanyel, 1994).  

 Beta geçişleri için ft  değerleri 103 ile 1020 s arasında değişir. Bu 

nedenle sık sık “log ft ” değeri kullanılır. En küçük log ft  (3-4) değerine 

sahip bozunmalara süperizinli bozunmalar denir (Krane, 2001). 

 βM ’nin büyüklüğü, elektron-nötrino çiftinin çekirdekten alıp 

götürdüğü βL  (yörüngesel açısal momentum) değerine bağlıdır. βL ’nin 

1 birim artması ile 
2

βM  değerinin yaklaşık   10-2-10-4 kadar küçülür, 

geçiş ihtimali azalır (Tanyel, 1994). 

 βL =0 (süperizinli geçiş) 

 βL =1 (birinci yasaklı geçiş) 

 βL =2 (ikinci yasaklı geçiş) denir. 

 Beta geçişlerinde parite korunmamaktadır. 

 Beta bozunmasında açısal momentum korunmalıdır; 

ββ SJJJ üa

GGGG
++=  olmalıdır. Burada eşitliğin sağındaki terim ana 

çekirdeğin açısal momentumunu, eşitliğin solundaki ilk terim ürün 

çekirdeğin açısal momentumunu, ikinci terim yayınlanan beta ve nötrino 

çiftinin toplam açısal momentumunu, üçüncü terim de yayınlanan beta ve 

nötrino çiftinin toplam spin açısal momentumu ifade etmektedir. 



 27 

 Eğer yayınlanan β ’nın ve nötrinonun spinleri anti-paralel ise bu 

geçişe Fermi geçişi denir. O halde toplam spin 0=+= νββ ssS GGG
 olur. 

Eğer yayınlana β ’nın ve nötrinonun spinleri paralel ise bu geçişe de 

Gamow-Teller geçişi denir.Toplam spin 1
2
1

2
1

=+=+= νββ ssS GGG
 

olur. 

 Daha önce genel haliyle verilen β  bozunma hamiltoniyeni 

nükleer teoride, relativistik olarak Fermi ve Gamow-Teller terimlerinin 

toplanması şeklinde verilir (Soloviev, 1976); 

 

⎭
⎬
⎫

⎩
⎨
⎧

++

⎭
⎬
⎫

⎩
⎨
⎧

+=

∑

∑

+

+

i
ei

iA

i
ei

iV

rrTG

rrT
G

H

))()1()(()(
2

))()1()(()(
2

55

5

νμμ

νμμβ

ψγγψγγ

ψγγψγ
 (3.13) 

 

Burada iT+ ,  i. nötronu protona dönüştüren izospin vektör bileşeni, Gv ve 

GA  kuplaj sabitli vektör ve aksiyal vektör, μγ  ve 5γ  Dirac öperatörlerinin 

matris elemanları, νψψ ,e  sırasıyla elektron ve nötrinoya ait operatör 

dalga fonksiyonlarıdır. Son ve ilk seviyeler arasındaki β  geçişlerini 

tanımlayan matris elemanı da şöyle ifade edilir (Soloviev, 1976);  

  

 AV MMiHsM +== ββ  .     (3.14) 
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Buradaki VM  Fermi, AM  Gamow-Teller matris elemanlarını temsil 

eder. Ayrıca ft  fonksiyonu, Fermi ve Gamow-Teller matris elemanlarına 

bağlı olarak (Blin-Stoyle,1969); 

 

 222245

73 12ln2

AAVV MGMGcm
ft

+
=

=π    (3.15) 

 

şeklinde ifade edilir. 

Seçim kurallarından biri de açısal momentumun korunmasının 

yanında izospin vektörünün de korunmasıdır. İzospin seçim kuralları 

oldukça önemlidir. Seçim kuralları; 1,0 ±=ΔT  ve 10 ±=ΔT  dir 

(Soloviev, 1976). İzinli Fermi geçişlerinin matris elemanın şekli; 

 

iTfittf
i

i
y

i
x ±=±∑       (3.16) 

 

olur ve bunun karesi 

 

s
z

i
z

i

i
y

i
x TTTTittf −+±∑ )1(~

2

     (3.17) 

 

olur. Buradaki ±T  operatörü toplam izospini değiştirmez. Böylece Fermi 

geçişlerindeki seçim kuralı; 0=ΔT  ve 10 ±=ΔT  olur (Soloviev, 1976). 
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3.2 Süperizinli Fermi Beta Geçişi 

 

 Süperizinli beta geçişleri aynı izospin multipletin bileşenleri olan 

durumlar arasında (birbirinin izobar analog durumları arasında) 

gerçekleşir. Geçiş ++ →= 00πJ  durumları arasında meydana gelir. 

Geçiş sadece Fermi matris elemanı olan VM ’ye bağlıdır. Gamow-Teller 

matris elemanı AM ’ya bağlı değildir. Seçim kurallarına göre açısal 

momentumu 0=iJ  olan halden 0=fJ  olan hale Gamow-Teller geçişi 

yasak olduğu için 0=AM ’dır Geçiş sadece Fermi matris elemanına bağlı 

olduğu için bu matris elemanı nükleer dalga fonksiyonunun ayrıntılarına 

başvurulmadan doğru bir şekilde hesaplanabilir. Bu nedenle, (3.15) 

denklemi göz önüne alındığında, bir geçişin ft  değerleri doğru bir 

şekilde verilirse VG  değerleri büyük bir güvenirlikle bulunabilir (Blin-

Stoyle,1969).  

 Zayıf etkileşme teorileri için VG ’nin çok önemli olmasından 

dolayı bu geçişler için deneysel ve teorik çalışmalar birbirlerine bağlı bir 

şekilde yapılırlar (Blin-Stoyle,1969). 

 Şimdi bir ++ →= 00πJ  olan, +0  ve 1=T  izospinli O14 ’nun 

taban durumundan, +0 ve 1=T  izospinli N14 ’nin birinci uyarılmış 

durumuna süperizinli +β  geçişine bakılırsa; 

İlk ve son durumlar şu şekilde ifade edilir; 

 

 1,1,0: 0
14 −==== + TTJOi     (3.18) 

 0,1,0: 0
14 ==== + TTJNf . 
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Şekil 3.1  14O’nun süperizinli +β  geçişi (Blin- Stoyle,1969). 

 

Fermi geçiş matris elemanı; 

 

1,1,0:0,1,0: 0
14

0
14 −======= +

+
+ TTJOTTTJNMV  (3.19) 

 

şeklinde olur. Dikkat edilecek olursa bu matris elemanındaki her iki 

durumda aynı izospin multipletin bileşenleridir. Bunların sadece 0T  

değerleri farklıdır.  

 

1,)1)((, 0000 ±+±=± TTTTTTTTT ∓    (3.20) 

 

olduğuna göre, 
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( )( ) ( )( )

2

101011111

1110

=

+−+−−=

−=

=

+

+

T

iTfM V

   (3.21) 

 

bulunur. Bu sonuç, ilk ve son durumun izospin durumlarının saf olduğu 

zaman geçerlidir. ft  ve VG  değerleri arasında aşağıdaki şekilde bir ilişki 

kurulabilir; 

 

 45732 )2ln( −−−= cmGft V =π .     (3.22) 

 

1=T  multipletlerinde ++ → 00  süperizinli geçişleri için hesaplanan ft  

değerlerinin özdeş olmaları gerektiği yukarıdaki formülden açıkça 

görülmektedir ve VG  buradan hesaplanabilir (Blin-Stoyle,1969). 

 (3.21) denkleminde matris elemanının karesi 2 olarak olarak 

hesaplanmıştır. Süperizinli Fermi beta geçişleri izobar analog haller 

arasında olduğu için matris elemanın değeri hangi çekirdeğin ana 

çekirdek olmasına bağlı değildir. İzobar analog haller arasındaki Femi 

geçişleri için matris elemanının karesi (Bohr and Motellson, 1969); 

 

 )1)(()1,( 0000
2 +±=±→ TTTTTTTTMV ∓      (3.23) 

 

şeklindedir. Şekil 3.2’de gösterilen çekirdekler arasındaki geçiş matris 

elemanı her iki durum için de hesaplanırsa; 
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  (a)     (b) 

  

Şekil 3.2 SCl 3434 →  ve ClS 3434 →  için izobar analog haller arasındaki süperizinli  

                  Fermi beta geçişi. 

 

 

 Şekil 3.2-(a)’da )0,1( 0 == TT ilk durumundan )1,1( 0 == TT son 

durumuna, izobar analog haller arasındaki +β  geçişi gösterilmiştir. Bu 

durum için (3.23) bağıntısından matris elemanının karesi hesaplanırsa; 

 

 )101)(01()110,1(2 ++−=→VM , 

 

 2)110,1(2 =→VM ,      (3.24) 

 

olarak elde edilir.  

 Şekil 3.2-(b)’de )1,1( 0 == TT ilk durumundan )0,1( 0 == TT son 

durumuna, izobar analog haller arasındaki −β  geçişi gösterilmiştir. Bu 

durum için de (3.23) bağıntısından matris elemanının karesi hesaplanırsa; 

 

+0  

+0  

+0  

+0  

Cl34  

S34  

)0,1( 0 == TT  

)1,1( 0 == TT  

+β  )0,1( 0 == TT  
Cl34  

S34  
)1,1( 0 == TT  

−β  
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 )111)(11()101,1(2 +−+=→VM , 

 

 2)101,1(2 =→VM ,      (3.25) 

 

olur. (3.24) ve (3.25) bağıntılarından da görüldüğü gibi izobar analog 

haller arasında olan Fermi geçişleri için, SCl 3434 →  geçişi ile  ClS 3434 →  

geçişinin geçiş matris elemanları özdeştir. 

   
 
3.3 İzospin Yasaklı Beta Geçişleri 

 

 Yukarıdaki bölümde incelenen süperizinli geçişler saf Fermi 

geçişleri olup aynı izospin multipletin iki bileşeni arasında olmaktaydı. 

Bu bölümde ise iki farklı izospin multipletin bileşenleri arasında olan 

Fermi geçişi incelenmiştir. Yüke bağlı etkilerin olmadığı bir durum 

alınırsa geçiş matris elemanının sıfır olması gerekir. Eğer matris elemanı 

sıfır değil ise izospin saf değildir, diğer hallerden katkı var demektir 

(Blin-Stoyle,1969). Bunun için Şekil 3.3’e bakılırsa; I. durum −β ve, II. 

durum +β  geçişini göstermektedir. 

İlk durumdaki çekirdek P  ile gösterilmiştir ve şu şekilde temsil 

edilir; 

 

 0,,: TTJPi π= .     (3.26) 
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Şekil 3.3  İzospin yasaklı −β  ve +β  geçişler (Blin-Stoyle,1969). 

 

 

Geçişin olduğu durum <T  ile gösterilmiştir ve  

 

 1,,: 0 −′= < TTJTf π      (3.27) 

 

şeklinde temsil edilir. A  durumu P ’nin analog durumudur ve  

 

 00 ,,:1,,: TTJPTTTJA ππ
−=−     (3.28) 

 

olur.  

Fermi geçiş matris elemanı iTfM V −=  olduğuna ve 
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 1,)1)((, 0000 ±+±=± TTTTTTTTT ∓   

 

olduğuna göre; 

 

 
0

1,1,)1)((

,1,

0000

00

=

±−′+−+=

−′= −

TTTTTTTT

TTTTTMV

  (3.29) 

 

olur. Yani izospine göre incelendiğinde geçişin olmaması gerekmektedir. 

Ancak, deneysel olarak incelendiğinde bu haller arasında beta geçişleri 

tespit edilmiştir. Dolayısıyla ilk ve son durumların izospinleri temiz 

değildir. A  analog durumundan <T  durumuna katkı vardır. Bu durumda 

(3.27) denklemi; 

 

 1,,:1,,: 00 −+−′= < TTJATTJTf ππ α   (3.30) 

  

halini alır. Fermi geçiş matris elemanı; 
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)1)((
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+−+=
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−
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α

 (3.31) 

 

olur. Görüldüğü gibi, bu durumda geçiş vardır. İzospine göre 

incelendiğinde, ilk ve son hal dalga fonksiyonlarına temiz olarak 
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bakıldığında geçiş yokmuş gibi görünen fakat gerçekte geçişlerin olduğu 

bu geçişlere izospin yasaklı geçişler denir.  

 Yukarıdaki örnekte de görüldüğü gibi, izospin yasaklı geçişler 

izobar anolog durumlar arasında olmamaktadır. Geçişin olduğu ilk ve son 

durumun T  değerleri birbirlerinden farklıdır. Bunlar farklı izospin 

multipletlere ait hallerdir. Fakat geçişin olduğu son hale, ilk halin izobar 

analog durumundan izospin katkısı gelmektedir. Bu katkı sayesinde geçiş 

meydana gelmektedir. Benzer şekilde II. durum da incelenebilir (Blin-

Stoyle,1969). 
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4. PYATOV YÖNTEMİ 

 

 Çok parçacıklı sistemlerin kuantum teorisi ile ilgilenirken en sık 

karşılaşılan problemlerden bir tanesi sistemi temsil eden Hamiltoniyenin, 

bazı simetrileri ihlal etmesidir. Bozulan bu simetriler belirli fiziksel 

büyüklüklerin korunumu ile ilgilidir. Kapalı bir sistem için; 

 0]ˆ,ˆ[ =PH  , 0]ˆ,ˆ[ =JH , 

 0]ˆ,ˆ[ =TH   , 0]ˆ,ˆ[ =NH    

olmalıdır. Burada P  çizgisel momentum, J  açısal momentum, T  

izotopik spin ve N  parçacık sayısıdır. 

Eğer, 

 0]ˆ,ˆ[ ≠PH  , 0]ˆ,ˆ[ ≠JH , 

 0]ˆ,ˆ[ ≠TH   , 0]ˆ,ˆ[ ≠NH    

şeklinde olursa simetride bozulma var demektir. Bu simetrilerin 

bozulması nükleer modelden kaynaklanmaktadır. Yani, kullanılan model 

dahilinde, restore edilebilmesi gerekmektedir (Ring and Schuck, 1980). 

 Bilindiği gibi tek parçacık shell model potansiyeli şu şekildedir; 

 

)()()()( 1100 rVtrfUrfUrU cz ++−= .    (4.1) 

 

(4.1) denkleminde, )(0 rf  and )(1 rf  izoskaler ve izovektör 

potansiyellerinin radyal fonksiyonlarıdır, 0U  and 1U  parametredir ve 

)(rVc  de Coulomb potansiyelidir. 
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Denklem (4.1) ile verilen potansiyelin izospin simetrisini, 

izovektör ve Coulomb terimlerinin bozduğu açıktır. Burada, 

elektromanyetik etkileşmeler izospin simetrisini bozdukları için, 

Coulomb kuvvetlerinin izospin bozulmasına neden olması doğaldır. 

Diğer taraftan, nükleonlar arası güçlü etkileşmeleri temsil eden izoskaler 

ve izovektör kısımlar yükten bağımsız olmalıdırlar. İzovektör kısmın 

simetriyi bozan etkisi bir metot kullanılarak düzeltilmelidir. Burada 

kullanılan metod, Pyatov’un restorasyon yöntemidir. Pyatov metoduna 

göre, kullanılan model hamiltoniyeninin bozulan simetrisi, hamiltoniyene 

bir rezidüel kuvvet eklenerek restore edilir. Bu rezidüel etkileşme olan ĥ  

şu duruma karşılık gelir; 

 

 [ ] 0ˆ,ˆ)(ˆ =+− ThrVH c .      (4.2) 

 

Pyatov ĥ ’nin şu formda olacağını göstermiştir; 

 

[ ] [ ]TrVHTrVHh cc
ˆ),(ˆˆ),(ˆ

2
1ˆ −−=

+

γ
.    (4.3) 

 

Metodun detayları ve ilk uygulaması sırasıyla (Pyatov and  Salamov, 

1977) ve (Pyatov et al., 1979)’da verilmiştir. Son uygulamaları olan 

izotopik invaryans (Babacan et al., 2004; Küçükbursa, et al., 2004; 

Babacan et al., 2005; Babacan et al., 2007)’de ve dönme invaryansı 

(Kuliev et al., 2002)’de verilmiştir. 
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 Bu bölümde parçacık bazında ve kuazi-parçacık bazında Pyatov 

Yöntemi  kullanılarak izotopik spin simetrisinin nasıl restore edileceği ve 

yukarıdaki (4.3) denkleminin nasıl çıkarılacağı gösterilecektir. Daha 

sonra restore edilen hamiltoniyenin özdeğer ve özvektörleri bulunacak, 

geçiş matris elemanları elde edilecektir. Matris elemanlarının 

doğruluğunu gösteren Fermi toplam kuralı anlatılacak ve taban 

durumunun izospin safsızlığı ve IAR izospin yapısı incelenecektir. 

 
 
4.1 Parçacık Bazında Pyatov Yöntemi ile Bozulan Simetrinin  

      Restorasyonu 

 
−β  geçişine neden olan −T  operatörü parçacık tasvirinde (Bu operatörün 

elde edilişi Ek.2’de verilmiştir) 

 

∑ +
−− =

pn

pn

nnpp

jj
mm

mjmjnnpp aamjtmjT
,
,

   (4.4) 

 

şeklinde yazılır. Wigner-Eckart teoremi kullanılırsa; 

 

  

 ∑ +
−

+
=

pn
pn

nnpp

jj
mm

mjmj
p

pnppnn aa
j

jjmjmj
T

,
, 12

00
   (4.5) 

 

olur. Burada 
pnpn jjmmppnn mjmj δδ=00  şeklindedir ve jjj pn ==  olursa 
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 ∑ ∑ +
−

+
=

j m
jmjm napa

j

njpj
T )()(

12

,,
    (4.6) 

 

şeklinde olur. Bozon operatörleri (Pyatov et al., 1979); 

 

 
∑

∑

++

+

+
=

+
=

m
jmjmj

m
jmjmj

pana
j

npA

napa
j

npA

)()(
12

1),(

)()(
12

1),(

    (4.7) 

 

şeklindedir. Bunlara göre (4.6) denklemi yeniden yazılırsa; 

 

 ∑=−
j

j npAnjpjT ),(,,      (4.8) 

 

ve ( )+
−+ = TT  olduğuna göre, 

 

 ∑ +
+ =

j
j npAnjpjT ),(,,      (4.9) 

olur. 

 

 (4.7) denklemi ile verilen bozon operatörlerinin komutasyonları 

(Pyatov et al., 1979); 

 

 [ ] ))()((),(),,( pNnNnpAnpA jjjjjj −= ′′
+ δ    (4.10) 
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şeklindedir. Burada )(nN j nötron parçacık sayısı, )( pN j  proton parçacık 

sayısıdır. Ayrıca tek parçacık hamiltoniyeni; 

 

 ∑∑ ++ +=
mj

jmjmj
mj

jmjmjsp nananpapapH
,,

)()()()()()( εε  (4.11) 

 

şeklindedir.  

 Şimdi [ ] ?, =+TH sp  komutasyonuna bakılırsa; 

 

[ ]

⎥
⎦

⎤
′′

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

∑

∑∑

+
′

++
+

j
j

mj
jmjmj

mj
jmjmjsp

npAnjpj

nananpapapTH

),(,,

,)()()()()()(,
,,

εε

 
[ ]

[ ] njpjnpAnanan

njpjnpApapap

mjj
jjmjmj

mjj
jjmjmj

,,),(),()()(

,,),(),()()(

,,

,,

′′

+′′=

∑

∑

′

+
′

+

′

+
′

+

ε

ε

(4.12) 

 

olur. ),( npAj
+
′  (4.7) denkleminden alınıp yerine yazılırsa; 

            

[ ]

[ ]∑

∑

′
′

′′
+

′′
+

′
′

′′
+

′′
+

+′

′′

+
+′

′′
=

mm
jj

mjmjjmjm
j

mm
jj

mjmjjmjm
j

pananana
j

njpjn

panapapa
j

njpjp

,
,,

,
,,

)()(),()(
12

,,)(

)()(),()(
12

,,)(

ε

ε

 (4.13) 

 

olur. (4.13) denklemi iki kısma ayrılıp çözülebilir.  
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[ ] =+
p

sp TH , [ ]∑
′

′
′′

+
′′

+

+′

′′

mm
jj

mjmjjmjm
j panapapa

j

njpjp

,
,,

)()(),()(
12

,,)(ε
    (4.14) 

 

protona bağlı kısım, 

 

[ ] [ ]∑
′

′
′′

+
′′

+
+

+′

′′
=

mm
jj

mjmjjmjm
jn

sp pananana
j

njpjn
TH

,
,,

)()(),()(
12

,,)(
,

ε
     (4.15) 

 

nötrona bağlı kısım. 

 

Önce protona bağlı olan (4.14) denklemi çözülürse; 

 

Bu kısımdaki komutasyon, 

 

[ ]
)()()()(

)()()()()()(),()(

papapana

panapapapanapapa

jmjmmjmj

mjmjjmjmmjmjjmjm

+
′′

+
′′

′′
+

′′
+

′′
+

′′
+

−

=
 

 

= )())()()(()()()()( papapanapanapapa jmmjjmmmjjmjmjmjjmjm ′′
+

′′
+

′′′′
+

′′
+ −− δδ  

 

)()()()(

)()()()()()(

papapana

panapanapapa

jmmjjmmj

mmjjjmmjmjmjjmjm

′′
++

′′

′′
+

′′′′
+

′′
+

+

−= δδ
 

 

)()()()(

)()()()()()(

papanapa

panapanapapa

jmmjmjjm

mmjjjmmjmjmjjmjm

′′
+

′′
+

′′
+

′′′′
+

′′
+

−

−= δδ
 

{ }
{ }
{ } αββα

βα

βα

δ=

=

=

+

++

aa

aa

aa

,

0,

0,
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)()()()(

)()()()()()(

papanapa

panapanapapa

mjjmmjjm

mmjjjmmjmjmjjmjm

′′
+

′′
+

′′
+

′′′′
+

′′
+

+

−= δδ
 

 

)()()()(

)()()()()()(

panapapa

panapanapapa

mjmjjmjm

mmjjjmmjmjmjjmjm

′′
+

′′
+

′′
+

′′′′
+

′′
+

−

−= δδ
 

 

= mmjjjmmj pana ′′
+

′′− δδ)()(       (4.16) 

 

olur. Bu sonuç (4.13) denkleminin birinci kısmında yerine yazılırsa; 

 

 [ ] =+
p

sp TH , ∑
′

′
′′

+
′′

+′

′′
−

mm
jj

mmjjjmmj
j pana

j

njpjp

,
,,

)()(
12

,,)(
δδ

ε
 (4.17) 

 

olur. mm ′=  ve jj ′=  alınırsa, 

 

 [ ] =+
p

sp TH , ∑ +

+
−

j
jmjmj pana

j
njpjp )()(

12
1,,)(ε  

 

 [ ] =+
p

sp TH , ),(,,)( npAnjpjp j
j

j
+∑− ε    (4.18) 

 

olur. Şimdi de (4.13) denkleminin ikinci kısmı olan (4.15) denklemi 

çözülürse, buradaki komutasyon; 
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[ ]
)()()()()()()()(

)()(),()(

nanapanapananana

pananana

jmjmmjmjmjmjjmjm

mjmjjmjm
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′′

+
′′′′

+
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+

′′
+

′′
+

−

=

 

= )()()()()()()()( napananapananana jmmjjmmjmjmjjmjm ′′
++

′′′′
+

′′
+ +  

 

= )()()()()()()()( napananapananana jmmjmjjmmjmjjmjm ′′
+

′′
+

′′
+

′′
+ −  

 

= )()()()()()()()( panananapananana mjjmmjjmmjmjjmjm ′′
+

′′
+

′′
+

′′
+ +  

 

= )())()()(()()()()( panananapananana mjmjjmmmjjjmmjmjjmjm ′′
+

′′′′
+

′′
+

′′
+ −+ δδ  

 

)()()()(

)()()()()()(

pananana

panapananana

mjmjjmjm

mmjjmjjmmjmjjmjm

′′
+

′′
+

′′′′
+

′′
+

′′
+

−

+= δδ
 

 

= mmjjmjjm pana ′′′′
+ δδ)()(       (4.19) 

 

olur. Bu sonuç (4.13) denkleminin ikinci kısmında yerine yazılırsa; 

 

 

 [ ] ∑
′

′
′′′′

+
+

+′

′′
=

mm
jj

mmjjmjjm
jn

sp pana
j

njpjn
TH

,
,,

)()(
12

,,)(
, δδ

ε
 (4.20) 

 

olur. mm ′=  ve jj ′=  alınırsa, 
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 [ ] ∑ +
+

+
=

j
jmjmj

n
sp pana

j
njpjnTH )()(

12
1,,)(, ε  

 

 [ ] ∑ +
+ =

j
jj

n
sp npAnjpjnTH ),(,,)(, ε    (4.21) 

 

olur. (4.18) ve (4.21) denklemleri (4.13)’de yerlerine yazılırsa; 

 

 [ ] ∑ +
+ −=

j
jjjsp npAnjpjpnTH ),(,,))()((, εε   (4.22) 

olur. 

 

 [ ] [ ] [ ] [ ]−−
++

+
+

+ −=== THHTHTTH spspspsp ,,,,   

 

olduğuna göre; 

 

 [ ] [ ]+
+− −= THTH spsp ,,   

 

olur. Öyleyse; 

 

 [ ] ∑ −−=−
j

jjjsp npAnjpjpnTH ),(,,))()((, εε   (4.23) 

 

olur. 
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 Coulomb potansiyeli şu şekilde tanımlanır; 

 

 ))(
2
1)((

1
∑

=

−=
A

k
zcC ktkvV      (4.24) 

 

Ayrıca; 

 

 ∑
=

−− =
A

i

itT
1

        ve       ∑
=

++ =
A

i

itT
1

 

 

 [ ] −− −= LLLz ,    ;       [ ] ++ = LLLz ,  

 

 [ ] −− −= ttt z ,        ;        [ ] ++ = ttt z ,  

 

olduğuna göre; 

 

[ ] ∑ ⎥⎦
⎤

⎢⎣
⎡ −= ++

A

ik
zcC itktkvTV

,
)()),(

2
1()(,  

 

[ ] [ ]∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎥⎦

⎤
⎢⎣
⎡= +++

A

ik
zcC itktitkvTV

,
)(),()(,

2
1)(,  

 

 [ ] [ ]∑ ++ −=
A

ik
zcC itktkvTV

,
)(),()(,  
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 [ ] ∑ ++ −=
A

ik
cC itkvTV

,
)()(,      (4.25) 

 

olur. (4.9) denkleminden +T  alınıp yerine yazılırsa; 

 

 [ ] ∑ +
+ −=

j
jcC npAnjvpjTV ),(,,,     (4.26) 

 

olur. Benzer şekilde; 

 

 [ ] ∑ ⎥⎦
⎤

⎢⎣
⎡ −= −−

A

ik
zcC itktkvTV

,
)()),(

2
1()(,  

 

[ ] [ ]∑ −− −=
A

ik
zcC itktkvTV

,
)(),()(,  

 

 [ ] ∑ −− =
A

ik
cC itkvTV

,
)()(,       (4.27) 

 

olur. (4.8) denkleminden −T  alınıp yerine yazılırsa; 

 

 [ ] ∑=−
j

jcC npAnjvpjTV ),(,,,     (4.28) 

 

olur. 
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 njvpjV cnp ,,≡  tanımlaması yapılırsa; 

  

 
[ ]

[ ] ∑

∑

=

−=

−

+
+

j
jnpC

j
jnpC

npAVTV

npAVTV

),(,

),(,
     (4.29) 

 

şeklinde yazılabilir. 

 

 Şimdi de [ ] ?, =− +TVH Csp  komutasyonuna bakılırsa; 

 

 [ ] [ ] [ ]+++ −=− TVTHTVH CspCsp ,,,   

 

olur. (4.22) ve (4.29) denklemleri yerlerine yazılırsa; 

 

[ ] ∑∑ ++
+ +−=−

j
jnp

j
jjjCsp npAVnpAnjpjpnTVH ),(),(,,))()((, εε  

 

[ ] ),(,,))()((, npAVnjpjpnTVH jnp
j

jjCsp
+

+ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=− ∑ εε  

 

olur. Burada  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−≡ ∑∑ np

j
jj

j
j VnjpjpnpnE ,,))()((),( εε  tanımlaması 

yapılırsa; 

 

 [ ] ),(),(, npApnETVH j
j

jCsp
+

+ ∑=−     (4.30) 
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olur. Benzer şekilde; 

 

 [ ] [ ] [ ]−−− −=− TVTHTVH CspCsp ,,,  

 

olur. (4.23) ve (4.29) denklemleri yerlerine yazılırsa; 

 

[ ] ∑∑ −−−=− −
j

jnp
j

jjjCsp npAVnpAnjpjpnTVH ),(),(,,))()((, εε  

 

[ ] ),(,,))()((, npAVnjpjpnTVH jnp
j

jjCsp ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−=− ∑− εε  

 

[ ] ),(),(, npApnETVH j
j

jCsp ∑−=− −      (4.31) 

 

olur. (4.30) ve (4.31) denklemlerinden görüldüğü gibi  [ ] 0, ≠− μTVH Csp  

)( ∓=μ  şeklindedir. Böylece toplam spH  nin izotopik invaryantlığının 

bozulduğu gösterilmiştir. Bunu restore etmek için hamiltoniyene ek bir ĥ  

teriminin eklenmesi gerekmektedir. Bu terim eklenince; 

 

 [ ] 0, =−+ μTVhH Csp       (4.32) 

 

olur (Ek.4’te bunun doğruluğu gösterilmiştir). Pyatov seçtikleri bu ĥ ’nin 

şu şekilde olması gerektiğini öne sürmüştür; 
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 [ ] [ ]∑
=

+ −−=
∓μ

μμγ
TVHTVHh CspCsp ,,

2
1    (4.33) 

 

 [ ] [ ] [ ] [ ]( )−
+

−+
+

+ −−+−−= TVHTVHTVHTVHh CspCspCspCsp ,,,,
2
1
γ

 

 

olur. Bu arada (4.30) dekleminden  

 

 [ ] ),(),(, npApnETVH j
j

jCsp
+

+ ∑=−  

 

olduğuna göre; 

 

 [ ] ),(),(, npApnETVH j
j

jCsp ∑=− +
+     (4.34) 

 

olur. Benzer şekilde (4.31) denkleminden; 

 

 [ ] ),(),(, npApnETVH j
j

jCsp ∑−=− −  

 

olduğuna göre, 

 

 [ ] ),(),(, npApnETVH j
j

jCsp
++

− ∑−=−    (4.35) 

 

olur. (4.30), (4.31), (4.34) ve (4.35) denklemleri (4.33) denkleminde 

yerlerine yazılırsa; 
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jj
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+
′

′
′ += ∑γ

 (4.36) 

 

olur. 

 Şimdi de γ  yı bulalım; 

 

( ) ( )μμ −
+ = TT  ve ( ) ( )−

+
+ = TT  olduklarını da gözönünde bulunduralım.  

 

 [ ] 0, =−+ μTVhH Csp  

 

olduğuna göre, 

 

 [ ] [ ] 0,, =+− μμ ThTVH Csp , 

 

 [ ] [ ]μμ ThTVH Csp ,, −=−      (4.37) 
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olur. (4.33) denkleminden ĥ  (4.37)’de  yerine yazılırsa; 

 

[ ] [ ] [ ][ ] μμ
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[ ] [ ][ ](
[ ][ ] [ ]) μμμμμ

μ
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′
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+−−= ∑
TVHTTVH

TTVHTVH
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,,,

,,,
2
1

 

 

olur. Eğer μμ ′−=′  ve [ ][ ] sbtTTVHC Csp =−= ′− μμ ,,  ise; 

 

 [ ] [ ]{ }CTVHTVH CspCsp ,,
2
1, μμ γ

−=−  

 

 [ ] [ ] [ ]( )μμμ γ
TVHCCTVHTVH CspCspCsp ,,

2
1, −+−=−  

 

 [ ] [ ]μμγ TVHCTVH CspCsp ,2,2 −=−  
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 [ ][ ]μμγ TTVHC Csp ,, −−=≡      (4.38) 

 

olur  (Ek.5’te verilmiştir).  

+=μ  için; 

 

 [ ][ ]+−−= TTVH Csp ,,γ       (4.39) 

 

olur. (4.31) ve (4.9) denklemleri (4.39)’da yerlerine yazılırsa; 

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′′−= ∑∑

′

+
′

j
jj

j
j npAnjpjnpApnE ),(,,),,(),(γ  

 

 [ ]),(),,(,,),(
,

npAnpAnjpjpnE jj
jj

j
+
′

′
∑ ′′−=γ   (4.40) 

 

olur. [ ] [ ]jjjj AAAA ,, +
′

+
′ −=  olduğuna göre  (4.10) denklemi (4.40)’da  

yerine yazılırsa; 

 

 ))()((,,),( pNnNnjpjpnE jj
j

j −= ∑γ    (4.41) 

 

olur. Benzer şekilde, 

−=μ  için; 

  

 [ ][ ]−+−= TTVH Csp ,,γ       (4.42) 
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olur. (4.30) ve (4.8) denklemleri (4.42)’de yerlerine yazılırsa; 

  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
′′= ∑∑

′
′

+

j
jj

j
j npAnjpjnpApnE ),(,,,),(),(γ  

 

 [ ]),(,),(,,),(
,

npAnpAnjpjpnE jj
jj

j ′
+

′
∑ ′′=γ    (4.43) 

 

olur. (4.10) denklemi (4.43)’te yerine yazılırsa; 

 

 ))()((,,),( pNnNnjpjpnE jj
j

j −= ∑γ    (4.44) 

 

olur. 

 
 
4.2 Parçacık Bazında Restore Edilen Hamiltoniyenin Özdeğer ve  

       Özvektörlerinin Bulunması 

 

 Tek parçacık hamiltoniyeninin özfonksiyonu 

 

∑=+

j
jji npAnpQ ),(),(ψ      (4.45) 

  

şeklindedir. Bunun eşleniği de; 

 

 ∑ +=
j

jji npAnpQ ),(),(ψ      (4.46) 
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şeklindedir. Hareket denklemi ise şu şekildedir (Ek.6’da ispatı 

verilmiştir); 

 

 [ ] ++ = iii QQH ω, .      (4.47) 

 

(4.45) denklemi ile tanımlanan özfonksiyonun ortonormalizasyon 

koşulunu sağlayıp sağlamadığına bakılırsa; 

 

 [ ] [ ]∑
′

′′
++ =

jj
jjjjii npAnpnpAnpQQ

,
),(),(),,(),(, ψψ  

 

 [ ] [ ]∑
′

′
+

′
+ =

jj
jjjjii npAnpAnpnpQQ

,
),(),,(),(),(, ψψ   (4.48) 

 

olur. (4.10) denklemi (4.48)’de yerine yazılırsa; 

 

 [ ] ( )∑
′

′′
+ −=

jj
jjjjjjii pNnNnpnpQQ

,
)()(),(),(, δψψ  

 

[ ] ( )∑ −=+

j
jjjii nppNnNQQ ),()()(, 2ψ  “birinci denklem” (4.49) 

 

olur. (4.45) denklemi (4.47)’de yerine yazılırsa; 

  

 ∑=+

j
ji npAQ ),(ψ  
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 [ ] ∑∑ =
j

jji
j

jj npAnpnpAnpH ),(),(),(),(, ψωψ   (4.50) 

 

olur. Soldan ),( npAj
+  ile komutasyonuna bakılırsa; 

 

[ ][ ]( ) [ ]∑∑
′

+
′

′

+
′ =

jj
jjji

jj
jjj npAnpAnpnpAHnpAnp

,,
),(),,(),(),(,,),(),( ψωψ  

 

olur. (4.10) denklemini yerine yazılırsa; 

 

[ ][ ]( ) ( )∑∑
′

′
′

+
′ −=

jj
jjjjji

jj
jjj pNnNnpnpAHnpAnp

,,
)()(),(),(,,),(),( δψωψ  

 

olur.  

 [ ][ ]),(,,),( npAHnpA jjjj
+
′′ ≡ρ       (4.51) 

 

olarak tanımlanırsa; 

 

( ) ( ))()(),(),( pNnNnpnp jjji
j

jjj −=∑ ′ ψωψρ “ikinci denklem” (4.52) 

 

olur. 

 (4.50) denklemi soldan ),( npAj  ile çarpılırsa;  

 

[ ][ ]( ) [ ]∑∑
′

′
′

′ =
jj

jjji
jj

jjj npAnpAnpnpAHnpAnp
,,

),(),,(),(),(,,),(),( ψωψ  
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olur. 

 

  [ ][ ]),(,,),( npAHnpA jjjj ′′ ≡η       (4.53) 

 

olarak tanımlanırsa ve [ ] 0),(),,( =′ npAnpA jj  olduğu gözönünde 

bulundurulursa; 

 

 0=′jjη         (4.54) 

 

olur.  

 Şimdi de yukarıda (4.51) denklemiyle tanımlanan jj ′ρ çözülürse; 

 hHH sp +=   ifadesi (4.51)’de yerine yazılırsa; 

 

 [ ][ ]),(),(,),( npAhHnpA jspjjj += +
′′ρ  

 

[ ][ ] [ ][ ]),(,,),(),(,,),( npAhnpAnpAHnpA jjjspjjj
+
′

+
′′ +=ρ  (4.55) 

 

olur. Bu denklem iki kısma ayrılıp çözülebilir; 

 

 [ ][ ]),(,,),( npAHnpA jspj
sp
jj

+
′′ ≡ρ      (4.56) 

 

denklemi tek parçacık hamiltoniyenine bağlı kısım, 

 

 [ ][ ]),(,,),( npAhnpA jj
h
jj

+
′′ ≡ρ      (4.57) 
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denklemi restore etmek için eklenen ĥ ’ye bağlı kısım olarak tanımlansın. 

Ayrıca; 

 

 
[ ] ( )
[ ] ( ) ),()()(),(,

),()()(),(,

npApnnpAH

npApnnpAH

jjjjsp

jjjjsp

εε

εε

−−=

−= ++

   (4.58) 

 

oldukları hatırlanırsa, (4.55) denkleminin birinci kısmı olan (4.56) 

denklemiyle ifade edilen sp
jj ′ρ  yi çözelim. 

 (4.58) denklemi (4.56)’da yerine yazılırsa; 

 

 ( )[ ]),()()(,),( npApnnpA jjjj
sp
jj εερ −−= +

′′  

 

 ( )[ ]),(,),()()( npAnpApn jjjj
sp
jj

+
′′ −−= εερ    (4.59) 

 

olur. (4.10) denklemi de (4.59)’da yerine yazılırsa; 

 

 ( )( ) jjjjjj
sp
jj pNnNnp ′′ −−= δεερ )()()()(    (4.60) 

 

olur. Şimdide (4.55) denkleminin ikinci kısmı olan (4.57) ile ifade edilen 
h
jj ′ρ  yi çözelim. 

 (4.36) denklemi (4.57)’de yerine yazılırsa; 
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( )[ ][ ]),(,),(),(),(),(,),(

),(),(
2
1

2121

,

npAnpAnpAnpAnpAnpA

pnEpnE

jjjjjj

jj
jj

h
jj

+++
′

′
′′

+

= ∑γ
ρ

(4.61) 

 

olur.  

 (4.61) denkleminin sağındaki komutasyonun içteki olanı 

çözülürse, yani; 

 

( )[ ] [ ] [ ]jjjjjjjjjjj AAAAAAAAAAA ,,,
21212121

++++ +=+  

 

( )[ ] [ ] [ ] [ ] [ ]
212121212121

,,,,, jjjjjjjjjjjjjjjjj AAAAAAAAAAAAAAAAA ++++++ +++=+  

 

 Eşitliğin sağ tarafındaki ikinci ve üçüncü komutasyon ifadesi 

sıfırdır. Birinci ve dördüncü komutasyonlarda da (4.10) denklemi yerine 

yazılırsa; 

 

 
( )[ ] ( )

( )
21

212121

)()(

)()(,

jjjjj

jjjjjjjjjj

ApNnN

pNnNAAAAAA

δ

δ

−+

−=+ ++

 (4.62) 

 

olur. Bu ifade (4.61) denklemindeki komutasyonda yerine yazılırsa; 

 

( )[ ][ ] ( )[
( ) ]

21

212121

)()(

)()(,,,

jjjjj

jjjjjjjjjjjj

ApNnN

pNnNAAAAAAAA

δ

δ

−

+−=+ +
′

+++
′  

 

( ) [ ] ( ) [ ]
2112

,)()(,)()( jjjjjjjjjjjj AApNnNAApNnN +
′

+
′ −+−= δδ  
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( ) ( )
( ) ( )

21

12

)()()()(

)()()()(

jjjjjjjj

jjjjjjjj

pNnNpNnN

pNnNpNnN

′

′

−−

+−−=

δδ

δδ
 

 

olur. jjjj ′,,, 21  üzerinden toplam alınırsa; 

 

 ( )2)()(2 pNnN jj −=       (4.63) 

 

olur.  

 Elde edilen (4.63) denklemi (4.61)’de yerine yazılırsa; 

 

( )( ))()()()(2),(),(
2
1

,
pNnNpNnNpnEpnE jjjj

jj
jj

h
jj ′′

′
′′ −−= ∑γ

ρ  (4.64) 

 

olur. (4.60) ve (4.64) denklemleri (4.55)’te yerlerine yazılırsa; 

 

( )( )
( )( ))()()()(),(),(1

)()()()(

,

pNnNpNnNpnEpnE

pNnNnp

jjjj
jj

jj

jjjjjjjj

′′
′

′

′′

−−

+−−=

∑γ

δεερ
 (4.65) 

 

olur. (4.65) denklemi “ikinci denklem” olarak adlandırılan (4.52) 

denkleminde yerine yazılırsa; 
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( )( )(

( )( )

( ))()(),(

)()()()(1

)()()()(),(

,

pNnNnp

pNnNpNnNEE

pNnNnpnp

jjji

jjjj
jj

jj

j
jjjjjjj

′′′

′′
′

′

′

−=

⎟⎟
⎠

⎞
−−

+−−

∑

∑

ψω

γ

δεεψ

 

 

olur. jj ′=  den toplam alınırsa; 

 

( )( )

( ) ( )

( ))()(),(

)()()()(

),()()()()(

pNnNnp

pNnNEpNnN
E

nppNnNnp

jjji

j
jjjjjj

j

jjjjj

′′′

′′
′

′′′′′

−=

−−

+−−

∑

ψω

ψ
γ

ψεε

 

olur. Burada ( ))()(),( npnp jjj ′′′ −≡ εεε  tanımlaması yapılırsa; 

 

( ) ( )
( ))()(),()),((

),()()()()(

pNnNnpnp

nppNnNEpNnN
E

jjjji

j
jjjjjj

j

′′′′

′′
′

−−=

−− ∑
ψεω

ψ
γ  

 

( ) ),()),((),()()(),(
),(

npnpnppNnNpnE
pnE

jji
j

jjjj
j

′′
′ −=−∑ ψεωψ
γ

 

 

( ) ),()()(),(
)),((

),(
),( nppNnNpnE

np
pnE

np
j

jjjj
ji

j
j ∑ −

−
=

′

′
′ ψ

εωγ
ψ  (4.66) 

 

olur.  
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 ( ) ),()()(),( nppNnNpnEX
j

jjjj∑ −≡ ψ              (4.67) 

 

tanımlaması yapılırsa; 

 

 X
np

pnE
np

ji

j
j )),((

),(1),(
εωγ

ψ
−

=      (4.68) 

 

olur. (4.68) denklemi, (4.67)’de yerine yazılırsa; 

 

 
( )

∑ −

−
=

j ji

jjj X
np

pNnNpnE
X

)),((
)()(),(1 2

εωγ
    (4.69) 

 

elde edilir. Bu denklem “sekuler denklem”dir. Bu denklemin katsayıları 

sıfıra eşitlenirse; 

 

 
( )

0
)),((

)()(),(2

=
−

−
− ∑

j ji

jjj

np
pNnNpnE

εω
γ     (4.70) 

 

olur. (4.41) denklemi (4.70)’de yerine yazılırsa; 

 

( )
0

)),((
)()(),(

))()((,,),(
2

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−

−
−−∑

j ji

jjj
jjj np

pNnNpnE
pNnNnjpjpnE

εω
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( ) 0
)),((

1)()(),(

)),())(()((,,),(

2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−−∑

np
pNnNpnE

nppNnNnjpjpnE

ji
jjj

j
jijjj

εω

εω

 

 

( )

( ) 0
)),((

1)()(

),(),(,,,,),(

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−−∑

np
pNnN

pnEnpnjpjnjpjpnE

ji
jj

j
jjij

εω

εω

 (4.71) 

olur. 

Daha önce ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−≡ ∑∑ np

j
jj

j
j VnjpjpnpnE ,,))()((),( εε  şeklinde 

tanımlanmıştı. Bu yerine yazılırsa; 

 

(

( ))( ) 0
)),((

1)()(,,))()((

),(,,,,),(

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−+−

−−∑

np
pNnNVnjpjpn

npnjpjnjpjpnE

ji
jjnpjj

j
jij

εω
εε

εω

 

 

(

( ))( ) 0
)),((

1)()(,,),(

),(,,,,),(

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−+−

−−∑

np
pNnNVnjpjnp

npnjpjnjpjpnE

ji
jjnpj

j
jij

εω
ε

εω

 

 

( )( )
0

)),((
)()(,,),(

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−−
∑

j ji

jjnpij

np
pNnNVnjpjpnE

εω
ω

  (4.72) 
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olarak elde edilir.  

 

Normalizasyon koşuluna bakılacak olursa, (4.49) denklemden; 

 

 [ ] ( )∑ −=+

j
jjjii nppNnNQQ ),()()(, 2ψ  

 

olduğu bilinmekdedir. [ ] ijii QQ δ=+,  olması için; 

 

 ( ) 1),()()( 2 =−∑
j

jjj nppNnN ψ     (4.73) 

 

olmalı. (4.68) denklemi (4.73)’de yerine yazılırsa; 

 

 ( ) 1
)),((

),(
)()( 2

2

2

2

=
−

−∑ γεω
X

np

pnE
pNnN

j ji

j
jj    (4.74) 

 

olur. 

 

 ( ))()(
)),((

),(
)( 2

2

pNnN
np

pnE
Z jj

ji

j
i −

−
≡

εω
ω    (4.75) 

 

tanımlaması yapılırsa; 

 

 ( ) 1
2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
γ

ω XZ i       (4.76) 
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olur. Bu denklemden hareketle; 

 

 
( )iZ

X
ωγ

1
=        (4.77) 

 

olur. Bu denklem de (4.68)’de yerine yazılırsa; 

 

 
( )iji

j
j

Znp
pnE

np
ωεω

ψ 1
)),((

),(
),(

−
=     (4.78) 

 

olarak elde edilir. 

 

 

4.3 Kuazi-parçacık Bazında Pyatov Yöntemi ile Bozulan Simetrinin  

       Restorasyonu 

 

 −β  geçişine neden olan −T  operatörü parçacık tasvirinde yazılırsa 

(Bu operatörün elde edilişi Ek.2’de verilmiştir); 

 

 ∑ +
−− =

np

np

nnpp

jj
mm

mjmjnnpp aamjtmjT
,
,

    (4.79) 

 

şeklinde olur. Wigner-Eckart teoremi kullanılarak bu operatör şu şekilde 

yazılabilir; 
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 ∑ +
−

+
=

np

np

nnpp

jj
mm

mjmj
p

npnnnp aa
j

mjmjjj
T

,
, 12

00
.  (4.80) 

 

Buradaki Clebsh-Gordon katsayısı npnn mjmj 00 =1 dir. 

 

Wigner-Eckart Teoremi şu şekildedir (Wong , 1998); 

 

 JTJ
J

JMkqMJ
MJTJM k

k
kq ′

+

′′
−=′′

12
)1( 2 . 

 

Bogolyubov Dönüşümleri (Nilsson and Ragnarsson , 1993); 

 

 mjj
mj

jmjjm VUa −
−++ −+= αα )1(  

 +
−

−−+= mjj
mj

jmjjm VUa αα )1(  

 

şeklindedir. Bu dönüşümler uygulanarak (4.80) numaralı denklem şu 

şekilde yazılabilir; 

 

[ ]

[ ]+
−

−

−
−+

−

−+

−+
+

= ∑

nnn

nn

nnn

np

np

ppp

pp

ppp

mjj
mj

mjj

jj
mm

mjj
mj

mjj
p

np

VU

VU
j

jj
T

αα

αα

)1(

)1(
12

,
,  
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(

)+
−−

−+−
−

−

+
−

+−+
−

−+−+

−+
+

= ∑

nnppnp

nnpp

nnpppn

pp

np

np

nnppnp

nn

nnppnp

mjmjjj
mjmj

mjmjjj
mj

jj
mm

mjmjjj
mj

mjmjjj
p

np

VVVU

VUUU
j

jj
T

αααα

αααα

)1()1(

)1(
12

,
, (4.81) 

 

(4.81) numaralı denklemde parantez içindeki 1. ve 4. terimler daha sonra 

işimize yaramayacağı için şimdiden çıkarılabilir. Buna kuazibozon 

yaklaşımı (Soloviev, 1976) denir. Burada çift-çift çekirdekler 

inceleneceği için bunlara gerek yoktur. Bu durumda; 

 

(

⎟
⎟

⎠

⎞

+

−

+
+

−
=

∑

∑ ∑

−
−

+
−

+−

−

np

nnpp

pp

pn

np

nnpp

nn

np

mm p

mjmj
mj

jj

mm p

mjmj
mj

jjnp

j
VU

j
VUjjT

,

,

12

)1(

12

)1(

αα

αα

 

 

(

⎟
⎟

⎠

⎞
−

+
+

−
+

=

∑

∑∑

−
−

+
−

+−
−

np

nnpp

pp

pn

np

nnpp

nn

np

mm
mjmj

mj

p
jj

mm
mjmj

mj

p
jjnp

j
VU

j
VUjjT

,

,

)1(
12

1

)1(
12

1

αα

αα

 

 

∑∑

∑∑

−
−

+
−

+−
−

−
+

+

−
+

=

np

nnpp

pp

pn

np

nnpp

nn

np

mm
mjmj

mj

p
jjnp

mm
mjmj

mj

p
jjnp

j
VUjj

j
VUjjT

,

,

)1(
12

1

)1(
12

1

αα

αα

   (4.82) 
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olur. Bu denklemde şu şekilde kısaltmalar yapılabilir; 

 

npjjnp jjVUb
np

≡ = npnp jjVU  

npjjnp jjVUb
pn

≡ = nppn jjVU  

∑ +
−

+−+ −
+

≡
np

nnpp

nn

mm
mjmj

mj

p
np j

A
,

)1(
12

1 αα  

∑ −
−−

+
≡

np

nnpp

pp

mm
mjmj

mj

p
np j

A
,

)1(
12

1 αα  

 

Yazılan bu +
npA  ve npA ’ye sırasıyla nötron-proton üretme ve 

yoketme bozon operatörleri (Soloviev, 1976) adı verilir (Ek.3’te bu 

operatörlerin elde edilişi verilmiştir). Bunlara göre (4.82) numaralı 

denklem; 

 

 ( )∑ += +
−

np
npnpnpnp AbAbT      (4.83) 

 

olarak yazılır. 

 Ayrıca bozon operatörlerinin komutasyonları (Soloviev, 1976); 

 

 [ ]
21212211

, ppnnpnpn AA δδ=+  , [ ] 0,
2211

=pnpn AA  , [ ] 0,
2211

=++
pnpn AA  

 

şeklindedir. 

 +
+− = )(TT  olduğuna göre +β  geçişine neden olan +T  izospin 

operatörü; 
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 ( )∑ +
+ +=

np
npnpnpnp AbAbT      (4.84) 

 

olur. 

Aşağıda verilen tanımlar (Ring and Schuck, 1980; Soloviev, 

1976) hatırlanacak olursa; 

 

 ∑
=

++ =
A

i

itT
1

   ,   ∑
=

−− =
A

i

itT
1

   ,   ∑
=

=
A

i

i
zz tT

1
   ,   

 yx iTTT +=+    ,   yx iTTT −=− , 

 +
+− = )(TT    ,   +

−+ = )(TT    ,   ρρ ρ TT =+)(  

 

şeklindedir. 

 +T  ve −T  hermitik değildirler. Bu nedenle şöyle yazılabilir; 

 

 
⎩
⎨
⎧

−=
=

=+= −+ 1
1

)(
2
1

ρ
ρ

ρρ

y

x

iT
T

TTT  .   (4.85) 

 

 (4.83) ve (4.84) denklemleri (4.85)’de yerlerine yazılırsa; 

 

 ( ) ( )( )∑ +++= ++

np
npnpnpnpnpnpnpnp AbAbAbAbT ρρ

2
1  

  

 ( ) ( )( )∑ +++= +

np
npnpnpnpnpnp AbbAbbT ρρρρ

2
1  
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 ( )( )∑ ++= +

np
npnpnpnp AAbbT ρρρ

2
1  

 

 ( )npnpnp bbB ρρ +≡        (4.86) 

 

tanımlaması yapılırsa, 

 

 ( )∑ += +

np
npnpnp AABT ρρρ

2
1      (4.87) 

 

olur.  

 

 Coulomb potansiyeli şu şekilde verilir (Pyatov et al., 1979); 

 

 ))(
2
1)((

1
∑

=

−=
A

i
zcC itivV . 

 

Ayrıca ∑
=

−− =
A

i

itT
1

 ve [ ] −− −= LLLz ,  olduğuna göre; 

 

 [ ] [ ]∑ −− −=
ij

zcC jtitivTV )(),()(,   

 

 [ ] ∑ −− =
i

cC itivTV )()(,      (4.88) 
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olur. (4.83) denklemi yerine yazılırsa; 

 

 [ ] ( )∑ += +
−

np
npnppnnpnpnpcC AjjVUAjjVUvTV ,  

[ ] ( )∑ += +
−

np
npncppnnpncpnpC AjvjVUAjvjVUTV ,  

 

olur. 

 

ncppnnp

ncpnpnp

jvjVUV

jvjVUV

≡

≡
     (4.89) 

 

şeklinde tanımlanırsa, 

 

[ ] ( )∑ += +
−

np
npnpnpnpC AVAVTV ,     (4.90) 

 

olur. Aynı şekilde ∑
=

++ =
A

i

itT
1

  ve [ ] ++ = LLLz , olduğuna göre; 

 

 [ ] [ ] ∑∑ +++ −=−=
i

c
ij

zcC itivjtitivTV )()()(),()(,   (4.91) 

 

olur. (4.84) denklemi yerine yazılırsa; 
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 [ ] ( )∑ +
+ +−=

i
npnppnnpnpnpcC AjjVUAjjVUvTV ,  

 

 [ ] ( )∑ +
+ +−=

i
npncppnnpncpnpC AjvjVUAjvjVUTV ,  

 

 [ ] ( )∑ +
+ +−=

np
npnpnpnpC AVAVTV ,     (4.92) 

 

olur. 

 Şimdi de [ ]ρTVC , =? bulalım. (4.85) denkleminden ρT  yerine 

yazılırsa; 

 

 [ ] [ ]−+ += TTVTV CC ρρ ,
2
1,  

 

 [ ] [ ] [ ]{ }−+ += TVTVTV CCC ,,
2
1, ρρ  

 

olur. (4.90) ve (4.92) denklemleri yerlerine yazılırsa; 

 

 [ ] ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−= ∑∑ ++

npnpnpnpnpnpnpnpC AVAVAVAVTV ρρ

2
1,  

 

 [ ] ( )∑ ++−−= ++

np
npnpnpnpnpnpnpnpC AVAVAVAVTV ρρρ

2
1,  
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 [ ] ( )( )npnp
np

npnpC AAVVTV ρρρ −−= +∑2
1,    (4.93) 

 

olur. 

 Şimdi de [ ] ?, =−THsqp  bulalım. Bunun için [ ] ++ = npnpnpsqp AAH ε,  

ve [ ] npnpnpsqp AAH ε−=,  (Soloviev, 1976) komutasyonları kullanılır. 

 Hamiltoniyen olarak ∑ +=
σ

σσσ
ααε

,j
jjjsqpH  alınır (Landau and 

Lifchitz, 1967) ve (4.83) dekleminden faydalanılarak; 

 

 [ ] ( )[ ]∑ += +
−

np
npnpnpnpsqpsqp AbAbHTH ,,  

 

 [ ] [ ] [ ]( )∑ += +
−

np
npnpsqpnpnpsqpsqp AbHAbHTH ,,,  

 

 [ ] [ ] [ ]( )∑ += +
−

np
npsqpnpnpsqpnpsqp AHbAHbTH ,,,  

 

 [ ] ( )∑ −= +
−

np
npnpnpnpnpnpsqp AbAbTH εε,  

[ ] ( )∑ −= +
−

np
npnpnpnpnpsqp AbAbTH ε,     (4.94) 

 

olarak elde edilir. 

 

 [ ] [ ]+
−+ −= THTH sqpsqp ,,  olduğuna göre; 
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 [ ] ( )∑ +
+ −−=

np
npnpnpnpnpsqp AbAbTH ε,    (4.95) 

 

olur.  

 Bunlar bulduktan sonra şimdi de [ ]ρTH sqp , =? bulalım. Bunun 

için (4.85) denkleminden faydalanılırsa; 

 

 [ ] [ ])(,
2
1, −+ += TTHTH sqpsqp ρρ  

 

 [ ] [ ] [ ]( )−+ += THTHTH sqpsqpsqp ,,
2
1, ρρ  

 

olur. (4.94) ve (4.95) denklemleri yerlerine konulursa; 

 

 [ ] ( ) ( )( )∑ −+−−= ++

np
npnpnpnpnpnpnpnpnpnpsqp AbAbAbAbTH ρεερ

2
1,  

 

 [ ] ( )∑ −++−= ++

np
npnpnpnpnpnpnpnpnpsqp AbAbAbAbTH ρρερ

2
1,  

 

 [ ] ( ) ( )( )∑ +−+= +

np
npnpnpnpnpnpnpsqp AbbAbbTH ρρρερ

2
1,  

 

 [ ] ( )( )( )∑ −+= +

np
npnpnpnpnpsqp AAbbTH ρρερ

2
1,   (4.96) 
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elde edilir. 

 Şimdi de [ ] ?, =− ρTVH Csqp  bulalım. 

 

 [ ] [ ] [ ]ρρρ TVTHTVH CsqpCsqp ,,, −=−  

 

olur. (4.93) ve (4.96) burada yerlerine yazılırsa; 

 

[ ] ( )( )( )

( )( )npnp
np

npnp

np
npnpnpnpnpCsqp

AAVV

AAbbTVH

ρρ

ρρερ

−−

−−+=−

+

+

∑

∑

2
1

2
1,

 

 

[ ] ( ) ( )( )( )( )∑ −−−+=− +

np
npnpnpnpnpnpnpCsqp AAVVbbTVH ρρρερ

2
1,  

 

olur. Burada , 

 

( ) ( )( )npnpnpnpnpnp VVbbjE −−+≡ ρρερ

2
1)(    (4.97) 

 

olarak tanımlanırsa; 

 

[ ] ( )∑ −=− +

np
npnpnpCsqp AAjETVH ρρρ )(,    (4.98) 

 

olur. 
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 Görüldüğü gibi [ ] 0, ≠− ρTVH Csqp olarak bulunur. Böylece 

toplam hamiltoniyenin izotopik invaryantlığının bozulduğu 

gösterilmiştir. Bunu restore etmek için hamiltoniyene ek bir h  teriminin 

eklenmesi gerekir. Bu terim eklenince; 

 

 [ ] 0, =−+ ρTVhH Csqp  

 

olarak elde edilir (Ek.4’te bunun doğruluğu gösterilmiştir). 

 Pyatov seçtikleri h  nin şu şekilde olması gerektiğini öne 

sürmüştür (Pyatov and  Salamov, 1977); 

 

 [ ] [ ]∑
±=

+
−−=

ρ

ρρ

ργ
TVHTVHh CsqpCsqp ,,

4
1    (4.99) 

 

 (4.98) denkleminden [ ] ( )∑ −=− +

np
npnpnpCsqp AAjETVH ρρρ )(,  

olarak bulunmuştu.  

 

 [ ] ( )
+

++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=− ∑

np
npnpnpCsqp AAjETVH ρρρ )(,  

 

 [ ] ( )∑ ++
−=−

np
npnpnpCsqp AAjETVH ρρρ )(,    (4.100) 

 

olur. (4.98) ve (4.100) denklemleri (4.99)’da yerlerine yazılırsa; 
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( )( )( )∑ −−= ++
222211112211

)()(
4

1
pnpnpnpnpnpn AAAAjEjEh ρρ

γ
ρρ

ρ

  (4.101) 

 

olur. 

 (4.99)’da verilen ργ  parametresi aşağıdaki şekildedir (Pyatov and  

Salamov, 1977) (Ek.5’te elde edilmiştir); 

 

 [ ][ ] 0,,
2

0 ρρ
ρ

ργ TTVH Csqp −≡ .    (4.102) 

 

Komutasyon içindeki ifadeler (4.87) ve (4.98) denklemlerinden alınıp 

yerlerine yazılırsa; 

 

 ( ) ( )( )⎥
⎦

⎤
⎢
⎣

⎡
++−= ∑∑ ++

np
npnpnpnp

np
npnpnp AAbbAAjE ρρρργ ρ

ρ 2
1,)(

2
 

 

 ( ) ( ) ( )[ ]npnpnpnp
np

npnpnp AAAAbbjE ρρρργ ρ
ρ +−+= ++∑ ,

2
1)(

2
 

 

( )

[ ] [ ] [ ] [ ]( )npnpnpnpnpnpnpnp

np
npnpnp

AAAAAAAA

bbjE

,,,,

)(
4

2ρρρ

ρργ ρ
ρ

−−+

+=

++++

∑
 

 

olur. 1.ve 4. terimler komüttür. Buna göre düzenleme yapılırsa; 
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( ) [ ]( )∑ +−+=
np

npnpnpnpnp AAbbjE ,2)(
4

ρρργ ρ
ρ  

 

[ ]+
npnp AA , =1 olduğuna göre; 

 

 ( )∑ +−=
np

npnpnp bbjE ρργ ρ
ρ )(

2

2

 

 

 ( )∑ +−=
np

npnpnp bbjE ργ ρ
ρ )(

2
1     (4.103) 

 

olur. Burada; 

 

  ( )npnppn bbjb ρρ +≡
2
1)(      (4.104) 

 

olarak tanımlanırsa; 

 

 ∑=−=
np

nppn jEjb )()( ρρ
ρρ γχ      (4.105) 

 

olur. Görüldüğü gibi Pyatov-Salamov’un seçtikleri h  teriminin içindeki 

ρχ  parametresi, diğer modellerdekiler gibi deneyle belirlenmemekte, 

teorinin içinden kendisi bulunabilmektedir (Pyatov and  Salamov, 1977) . 

 

 



 79 

4.4 Kuazi –Parçacık Bazında Restore Edilen Hamiltoniyenin   

       Özdeğer ve Özvektörlerinin Bulunması 

 

 ( )∑ −= ++

np
np

i
npnp

i
npi AAQ ϕψ      (4.106) 

 

Yukarıda yazılan (4.106) numaralı denklem H ’nin özfonksiyonu 

olarak alınır (Soloviev, 1976). Bu özfonksiyon için sqpH ’nın 

özfonksiyonlarının süperpozisyonu alınır. +
npA  ve npA , sqpH ’nın 

özfonksiyonlarıdır. 

 Hareket denklemi de şu şekilde tanımlanır (Ek.6’da ispatı 

verilmiştir) (Soloviev, 1976), 

 

 [ ] ++ = iii QQH ω, .      (4.107) 

 

Önce (4.106) ile tanımlanan özfonksiyonun ortonormalizasyon 

koşulunu sağlayıp sağlamadığına bakılırsa; 

 

[ ] [ ]∑∑
′′

′′′′
+

′′′′
++ −−=

np pn
pn

i
pnpn

i
pnnp

i
npnp

i
npji AAAAQQ ϕψϕψ ,,  

 

[ ] [ ] [ ](

[ ] [ ])pn
i

pnnp
i
nppn

i
pnnp

i
np

np pn
pn

i
pnnp

i
nppn

i
pnnp

i
npji

AAAA

AAAAQQ

′′′′
++

′′′′
+

′′
′′′′

+
′′′′

+

+

−−= ∑∑
ϕϕψϕ

ϕψψψ

,,

,,,
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[ ] [ ] [ ](

[ ] [ ])pnnp
i

pn
i
nppnnp

i
pn

i
np

np pn
pnnp

i
pn

i
nppnnp

i
pn

i
npji

AAAA

AAAAQQ

′′
+

′′
+

′′
+

′′

′′
′′′′

+
′′′′

+

+

−−= ∑∑
,,

,,,

ϕϕψϕ

ϕψψψ
 

 

olur. Burada ikinci ve üçüncü komütatörler sıfırdır. 

 

[ ] ( )∑∑
′′

′′′′′′′′
+ −=

np pn
ppnn

i
pn

i
npppnn

i
pn

i
npji QQ δδϕϕδδψψ,  

 

[ ] ( ) ( )( )∑ −=+

np
ij

i
np

i
npji QQ δϕψ

22,  “1. Denklem”  (4.108) 

 

olur. Burada ortonormalizasyon şartı [ ] ijji QQ δ=+,  olması için; 

 

 ( ) ( )( )∑ =−
np

i
np

i
np 122

ϕψ      (4.109) 

 

olmalıdır. Hareket denklemini veren (4.107)’de (4.106) yerine yazılırsa; 

 

 [ ] ( )∑∑ −=− ++

np
np

i
npnp

i
npi

np
np

i
npnp

i
np AAAAH ϕψωϕψ,  

 

 [ ] [ ]( ) ( )∑∑ −=− ++

np
np

i
npnp

i
npi

np
np

i
npnp

i
np AAAHAH ϕψωϕψ ,, . (4.110) 

 

olur. Soldan pnA ′′  ile komutasyonuna bakılırsa; 
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[ ][ ] [ ][ ]( )

[ ] [ ]( )∑

∑

′′
+

′′

′′
+

′′

−=

−

np
nppn

i
npnppn

i
npi

np
nppn

i
npnppn

i
np

AAAA

AHAAHA

,,

,,,,

ϕψω

ϕψ
 

 

olur. Burada, 

 

 
[ ][ ]
[ ][ ]nppnnppn

nppnnppn

AHA

AHA

,,

,,

′′′′

+
′′′′

≡

≡

η

ρ
       (4.111) 

 

olarak tanımlanırsa; 

 

 ( ) ∑∑ ′′′′′′ =−
np

ppnn
i
npi

np
nppn

i
npnppn

i
np δδψωηϕρψ  

 

 ( ) i
pni

np

i
npnppn

i
npnppn ′′′′′′ =−∑ ψωϕηψρ  “2. Denklem”  (4.112) 

 

olarak elde edilir. 

 Şimdi de (4.110) denkleminin soldan +
′′pnA  ile komutasyonuna 

bakılırsa; 

 

[ ][ ] [ ][ ]( )

[ ] [ ]( )∑

∑
+

′′
++

′′

+
′′

++
′′

−=

−

np
nppn

i
npnppn

i
npi

np
nppn

i
npnppn

i
np

AAAA

AHAAHA

,,

,,,,

ϕψω

ϕψ
 

 [ ][ ] [ ][ ]( ) [ ]∑∑ +
′′

+
′′

++
′′ =−

np
nppn

i
npi

np
nppn

i
npnppn

i
np AAAHAAHA ,,,,, ϕωϕψ  
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 [ ][ ] [ ][ ]( ) i
pni

np
nppn

i
npnppn

i
np AHAAHA ′′

+
′′

++
′′ =−∑ ϕωϕψ ,,,,   (4.113) 

 

olur. Daha önce; 

 

 [ ][ ]nppnnppn AHA ,′′′′ =η  olarak tanımlanmıştı. Bunun eşleniğine 

bakılırsa;  

 

 [ ][ ]+
′′

+
′′ = nppnnppn AHA ,η  

 

[ ][ ] [ ][ ] [ ][ ]
[ ][ ]( )++

′′

++
′′

+
′′

++
′′

++
′′

−−=

−===

nppn

nppnpnnppnnpnppn

AHA

HAAAHAAAH

,,

,,,,,,η
 

 [ ][ ]++
′′

+
′′ = nppnnppn AHA ,,η  

 

ve sonuç olarak; 

 

 ( ) [ ][ ]++
′′

+
′′

+
′′ == nppnnppnnppn AHA ,,ηη     (4.114) 

 

olur.  

Aynısı nppn ′′ρ  için de yapılırsa; 

 

 ( ) [ ][ ]nppnnppnnppn AHA ,,+
′′

+
′′

+
′′ == ρρ     (4.115) 

 

olur. 
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 (4.114) ve (4.115) denklemleri, (4.113)’de yerlerine yazılırsa; 

 

 ( ) i
pni

np
nppn

i
npnppn

i
np ′′′′′′ =−∑ ϕωρϕηψ  “3. Denklem”  (4.116) 

 

olur. 

 Şimdi sırasıyla nppn ′′ρ  ve nppn ′′η ’yi bulalım. Önce nppn ′′ρ ’yi 

bulalım; 

 Yukarıda (4.111) denkleminde [ ][ ]+
′′′′ = nppnnppn AHA ,,ρ  olarak 

tanımlanmıştı. hHH sqp +=  olduğuna göre; 

 

[ ][ ] [ ][ ] [ ][ ]+
′′

+
′′

+
′′′′ +=+= nppnnpsqppnnpsqppnnppn AhAAHAAhHA ,,,,,,ρ  (4.117) 

 

olur. Burada, 

 

 [ ][ ]+
′′′′ ≡ npsqppn

sqp
nppn AHA ,,ρ   

ve         (4.118)  

 [ ][ ]+
′′′′ ≡ nppn

h
nppn AhA ,,ρ   

 

olarak tanımlansın. Şimdi sırasıyla bunları bulalım; 

 

 [ ][ ]+
′′′′ = npsqppn

sqp
nppn AHA ,,ρ  
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[ ] ++ += nppnnpsqp AAH )(, εε      ve     [ ] nppnnpsqp AAH )(, εε +−=  oldukları 

hatırlanırsa (Soloviev, 1976); 

 

 [ ]+
′′′′ += nppnpn

sqp
nppn AA ,)( εερ  

 

 ppnnpn
sqp

nppn ′′′′ += δδεερ )(      (4.119) 

 

olur. 

 (4.118) denkleminde [ ][ ]+
′′′′ = nppn

h
nppn AhA ,,ρ  şeklinde 

tanımlanmıştı. Burada (4.101) denklemi yerine yazılırsa; 

 

 

( )( )[ ][ ]+++
′′

′′

−−

= ∑

nppnpnpnpnpn

pn
pn

pnpn
h

nppn

AAAAAA

jEjE

,,

)()(
4

1

22221111

22
11

2211

ρρ

γ
ρ

ρ

ρρ

ρ  (4.120) 

 

olur. 

Burada dikkat edilecek olan nokta, eşitliğin solundaki ρ  ile 

eşitliğin sağındaki toplam sembolünün altındaki ρ ’nun aynı 

olmamasıdır. 

 Önce eşitliğin sağındaki komutasyondan içteki olanı hesaplanırsa; 

 

( )( )[ ]
( )[ ]+++++

+++

+−−=

−−

nppnpnpnpnpnpnpnpn

nppnpnpnpn

AAAAAAAAA

AAAAA

,

,

2211221122112211

22221111

2ρρρ

ρρ
 

 



 85 

( )( )[ ]
[ ] [ ] [ ] [ ]++++++++

+++

+−−=

=−−

nppnpnnppnpnnppnpnnppnpn

nppnpnpnpn

AAAAAAAAAAAA

AAAAA

,,,,

,

2211221122112211

22221111

ρρ

ρρ

 

 

( )( )[ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

22112211

221122112211

221122112211

22221111

,,

,,,

,,,

,

pnnppnnppnpn

pnnppnnppnpnpnnppn

nppnpnnppnpnpnnppn

nppnpnpnpn

AAAAAA

AAAAAAAAA

AAAAAAAAA

AAAAA

++++

+++++++

+++++

+++

++

−−−

−+=

−−

ρρρ

ρ

ρρ

 

olur. Eşitliğin sağındaki 2., 5., 6. ve 8. komutatörler sıfırdır. 

 

( )( )[ ]
++

+++

++−=

−−

1122112222112211

22221111

)(

,

pnppnnpnppnnpnppnnpnppnn

nppnpnpnpn

AAAA

AAAAA

δδδδδδρδδ

ρρ
 (4.121) 

 

olur. (4.121) denklemi, (4.120)’deki komutasyon bağıntısında yerine 

yazılırsa; 

 

( )( )[ ][ ]
( )[ ]++

′′

+++
′′

++−=

−−

1122112222112211

22221111

)(,

,,

pnppnnpnppnnpnppnnpnppnnpn

nppnpnpnpnpn

AAAAA

AAAAAA

δδδδδδρδδ

ρρ
 

 

( )( )[ ][ ]
[ ] [ ](

[ ]) [ ]+
′′′′

′′
+

′′

+++
′′

++

+−=

=−−

11221122

22112211

22221111

,,

,,

,,

pnpnppnnpnpnppnn

pnpnppnnpnpnppnn

nppnpnpnpnpn

AAAA

AAAA

AAAAAA

δδδδ

δδρδδ

ρρ

 (4.122) 

 

olur. Buradaki 2. ve 3. komütatörler sıfırdır. 
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( )( )[ ][ ]
11222211

22221111
,,

ppnnppnnppnnppnn

nppnpnpnpnpn AAAAAA

′′′′

+++
′′

+=

−−

δδδδδδδδ

ρρ
 (4.123) 

 

elde edilir. (4.123) denklemi, (4.120)’de yerine yazılırsa; 

 

)()()(
4

1
11222211

22
11

2211 ppnnppnnppnnppnn

pn
pn

pnpn
h

nppn jEjE ′′′′′′ += ∑ δδδδδδδδ
γ

ρ

ρ

ρρ

ρ

 

 

olur ve 2121 ,,, ppnn  üzerinden toplam alınırsa; 

 

 ( )∑ ′′′′′′ +=
ρ

ρρρρ

ργ
ρ nppnpnnp

h
nppn EEEE

4
1  

 ( )∑ ′′′′ =
ρ

ρρ

ργ
ρ pnnp

h
nppn EE

2
1      (4.124) 

 

olur. (4.119) ve (4.124), (4.117)’de yerine yazılırsa; 

 

 += ′′′′ ppnnnpnppn δδερ ( )∑ ′′
ρ

ρρ

ργ pnnp EE
2

1    (4.125) 

 

olarak elde edilir. 

 Benzer şekilde şimdi de nppn ′′η  bulunursa; 

(4.111) denkleminden [ ][ ]nppnnppn AHA ,,′′′′ =η  ve hHH sqp +=  oldukları 

hatırlanırsa; 
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[ ][ ] [ ][ ] [ ][ ]nppnnpsqppnnpsqppnnppn AhAAHAAhHA ,,, ′′′′′′′′ +=+=η  (4.126) 

 

olur. Burada; 

 

  [ ][ ]npsqppn
sqp

nppn AHA ,′′′′ ≡η     

ve         (4.127)    

 [ ][ ]nppn
h

nppn AhA ,′′′′ ≡η   

 

olarak tanımlansın. Şimdi sırasıyla (4.127) denklemindeki ifadeleri 

bulalım; 

 

 [ ][ ]npsqppn
sqp

nppn AHA ,′′′′ =η  ve [ ] npnpnpsqp AAH ε−=,  olduğuna göre; 

 

 [ ]nppnnp
sqp

nppn AA ,′′′′ −= εη =0     (4.128) 

 

olur. 

Şimdi de [ ][ ]nppn
h

nppn AhA ,′′′′ =η ’ yi hesaplayalım. h ’nin değeri 

(4.101)’den alınıp yerine yazılırsa; 

 

 

( )( )[ ][ ]nppnpnpnpnpn

pn
pn

pnpn
h

nppn

AAAAAA

jEjE

,,

)()(
4

1

22221111

22
11

2211

ρρ

γ
η

ρ

ρρ

ρ

−−

=

++
′′

′′ ∑
 (4.129) 

 

olur. Önce eşitliğin sağındaki komutasyondan içte olanı hesaplanırsa; 
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( )( )[ ]
( )[ ]nppnpnpnpnpnpnpnpn

nppnpnpnpn

AAAAAAAAA

AAAAA

,

,

2211221122112211

22221111

2 ++++

++

+−−=

−−

ρρρ

ρρ
 

 

( )( )[ ]
[ ] [ ] [ ] [ ]nppnpnnppnpnnppnpnnppnpn

nppnpnpnpn

AAAAAAAAAAAA

AAAAA

,,,,

,

2211221122112211

22221111

++++

++

+−−=

−−

ρρ

ρρ
 

 

( )( )[ ]
[ ] [ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

22112211

221122112211

221122112211

22221111

,,

,,,

,,,

,

pnnppnnppnpn

pnnppnnppnpnpnnppn

nppnpnnppnpnpnnppn

nppnpnpnpn

AAAAAA

AAAAAAAAA

AAAAAAAAA

AAAAA

++

++++

++

++

++

−−−

−+=

−−

ρρρ

ρ

ρρ

 

olur. Eşitliğin sağındaki 1., 3., 4. ve 7. komütatörler sıfırdır. 

 

( )( )[ ]
22112211

1122112222221111
,

pnppnnpnppnn

pnppnnpnppnnnppnpnpnpn

AA

AAAAAAA

δδδρδ

δρδδδρρ

−+

+−=−−
+

+++

(4.130) 

 

olur. (4.130) denklemi, (4.129)’daki komutasyon bağıntısında yerine 

yazılırsa; 

 

( )( )[ ][ ]
( )[ ]

2211221111221122

22221111

,

,,

pnppnnpnppnnpnppnnpnppnnpn

nppnpnpnpnpn

AAAAA

AAAAAA

δδδρδδρδδδ

ρρ

−++−=

=−−
++

′′

++
′′
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( )( )[ ][ ]
[ ] [ ] [ ]

[ ]
2211

221111221122

22221111

,

,,,

,,

pnpnppnn

pnpnppnnpnpnppnnpnpnppnn

nppnpnpnpnpn

AA

AAAAAA

AAAAAA

′′

+
′′

+
′′′′

++
′′

−

++−=

=−−

δδ

δρδδρδδδ

ρρ

 

olur. Buradaki 1. ve 4. komütatörler sıfırdır. 

 

( )( )[ ][ ]
22111122

22221111

(

,,

ppnnppnnppnnppnn

nppnpnpnpnpn AAAAAA

′′′′

+++
′′

+=

−−

δδδδδδδδρ

ρρ
 (4.131) 

 

olur. (4.131) denklemi, (4.129)’ da yerine yazılırsa; 

 

22111122

22
11

2211
()()(

4
1

ppnnppnnppnnppnn

pn
pn

pnpn
h

nppn jEjE ′′′′′′ += ∑ δδδδδδδδρ
γ

η

ρ

ρρ

ρ

 

 

olur ve 2121 ,,, ppnn  üzerinden toplam alınırsa; 

 

 ( )∑ ′′′′′′ +=
ρ

ρρρρ

ργ
ρη nppnpnnp

h
nppn EEEE

4
 

 

 ( )∑ ′′′′ =
ρ

ρρ

ργ
ρη pnnp

h
nppn EE

2
     (4.132) 

 

olur. (4.128) ve (4.132) denklemleri, (4.126)’da yerine yazılırsa; 

 

 =′′ nppnη ( )∑ ′′
ρ

ρρ

ργ
ρ

pnnp EE
2

     (4.133) 
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olarak bulunur. 

 Şimdi de (4.106) numaralı denklem ile tanımlanan H ’nin 

özfonksiyonu içinde olan i
npψ  ve i

npϕ ’yi bulalım. Bunun için daha önce 

bulunan ve “2. Denklem” adı verilen (4.112) numaralı denklemde az 

önce elde edilen (4.125). ve (4.133). denklemler yerlerine yazılırsa; 

 

 ( ) i
pni

np

i
npnppn

i
npnppn ′′′′′′ =−∑ ψωϕηψρ    “2. Denklem” 

 

( ) ( ) i
pni

np
pnnp

i
nppnnpppnnnp

i
np EEEE ′′′′′′′′ =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑ ∑∑ ψω

γ
ρϕ

γ
δδεψ

ρ

ρρ

ρρ

ρρ

ρ 22
1

 

olur. nn ′=  ve pp ′=  üzerinden toplam alınırsa; 

 

 i
pni

np
pnnp

i
np

i
nppnnp

i
pnpn EEEE ′′′′′′′′′′ =−+ ∑ ∑∑ ψω

γ
ρϕψ

γ
ψε

ρ

ρρ

ρρ

ρρ

ρ 2
1

2
1  

 

 ( ) i
pni

np

i
np

i
npnppn

i
pnpn EE ′′′′′′′′ =−+ ∑∑ ψωρϕψ

γ
ψε ρ

ρ

ρ

ρ2
1  

 

olur. Burada; 

 

 ( )∑ −≡Γ
np

i
np

i
npnpi E ρϕψρρ      (4.134) 

 

olarak tanımlanırsa; 
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 ( ) i
pnpniipnE ′′′′′′ −=Γ∑ ψεω

γ
ρ

ρ

ρ

ρ2
1  

 

 ( )∑ Γ
−

=
′′

′′
′′

ρ

ρ
ρ

ρ εωγ
ψ i

pni

pni
pn

E
2

1      (4.135) 

 

olur. Fakat burada dikkat edilmesi gereken nokta; ρ
iΓ ’nun içinde ρ  

olduğu ve bulunan (4.135) numaralı denklemde de ρ  üzerinden toplam 

alındığıdır. Bu ρ  ların karışmaması için toplam ρ′  den alınırsa; 

 

 ( )∑
′

′

′′

′
′′

′
′′ Γ

−
=

ρ

ρ
ρ

ρ εωγ
ψ i

pni

pni
pn

E
2

1     (4.136) 

 

olur. 

 Şimdide “3. Denklem” olarak adlandırılan (4.116). denklemden 
i
npϕ ’yi bulalım. Bunun için (4.116). denklemde (4.125). ve (4.133). 

denklemler yerlerine yazılırsa; 

 

 ( ) i
pni

np
nppn

i
npnppn

i
np ′′′′′′ =−∑ ϕωρϕηψ    “3. Denklem” 

 

( ) i
pni

np
pnnpppnnnp

i
nppnnp

i
np EEEE ′′′′′′′′ =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ ∑∑ ϕω

γ
δδεϕ

γ
ρψ

ρ

ρρ

ρρ

ρρ

ρ 2
1

2
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olur. nn ′=  ve pp ′=  üzerinden toplam alınırsa; 

 

 ( ) i
pni

np

i
np

i
npnppn

i
pnpn EE ′′′′′′′′ =−+− ∑∑ ϕωϕρψ

γ
ϕε ρ

ρ

ρ

ρ2
1  

 

 ( ) i
pni

np

i
np

i
npnppn

i
pnpn EE ′′′′′′′′ =−+− ∑∑ ϕωρϕψ

γ
ρϕε ρ

ρ

ρ

ρ2
 

 

olur. (4.134)’te yapılan tanım kullanılırsa; 

 

 ( ) i
pnpniipnE ′′′′′′ +=Γ∑ ϕεω

γ
ρ ρ

ρ

ρ

ρ2
 

 

 ( )
ρ

ρ

ρ

ρ εωγ
ρϕ i

pni

pni
pn

E
Γ

+
= ∑

′′

′′
′′ 2

     (4.137) 

 

olur. ρ
iΓ ’nun içindeki ρ  ile toplamdaki ρ ’nun karışmaması için; 

 

 ( )
ρ

ρ

ρ

ρ εωγ
ρϕ ′

′′

′
′′

′
′′ Γ

+
′

= ∑ i
pni

pni
pn

E
2

     (4.138) 

 

olarak yazılabilir. 

 Elde edilen (4.136) denklemi ve (4.138) denklemi (4.134)’te 

yerine yazılırsa; 
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( ) ( )∑ ∑ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Γ

+
′

−Γ
−

=Γ
′

′
′

′

′
′

′np
i

npi

np
i

npi

np
npi

EE
E

ρ

ρ
ρ

ρ

ρ
ρ

ρ

ρρ

εωγ
ρρ

εωγ 22
1  (4.139) 

 

olur. Eşitliğin sağındaki ifadeyi sola geçirilip sonuç sıfıra eşitlenirse; 

 

( ) ( )∑ ∑∑ =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
Γ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
′

−
−

−Γ
′

′

′

′

′
′

′

np
i

npinpi

np
npi

E
E 01

2ρ

ρ

ρ

ρ
ρ

ρ
ρρ

ρ

εω
ρρ

εωγ
δ  

 

( ) ( ) 01
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
′

−
−

−Γ∑ ∑
′ ′

′

′
′

ρ ρ

ρρ

ρρ
ρ

εω
ρρ

εωγ
δ

np npinpi

npnp
i

EE
  (4.140) 

 

olur. Burada ∓=ρ  ve ∓=′ρ  değerlerini alır. Buna göre +=ρ  için 

+=′ρ  ve – değerleri için (4.140). denklem şu şekilde yazılır; 

 

( )
( ) ( )

( ) ( ) .011
2

11
2

1
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

−
Γ

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−
−Γ

∑

∑

−

−+
−

+

+
+

np npinpi

npnp
i

np npinpi

np
i

EE

E

εωεωγ

εωεωγ
 (4.141) 

 

−=ρ  için −=′ρ  ve + değerleri için (4.140). denklem şu şekilde yazılır; 
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( )
( ) ( )

( ) ( ) 011
2

11
2

1
2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
+

−
Γ−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

−
−Γ

∑

∑

+

+−
+

−

−
−

np npinpi

npnp
i

np npinpi

np
i

EE

E

εωεωγ

εωεωγ
. (4.142) 

 

(4.141) ve (4.142) denklemleri düzenlenirse; 

 

( )
( ) ( ) 01 2222

2

=
−

Γ−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−Γ ∑∑

−

−+
−

+

+
+

np npi

inpnp
i

np npi

npnp
i

EEE
εω

ω
γεω

ε
γ

 (4.143) 

 

( )
( )

( ) 01 22

2

22 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−Γ+

−
Γ− ∑∑

−

−
−

+

+−
+

np npi

npnp
i

np npi

inpnp
i

EEE
εω

ε
γεω

ω
γ

 (4.144) 

 

elde edilir. (4.143) ve (4.144) denklemlerinden de görüldüğü gibi iki tane 

sıfıra eşit, lineer denklem elde edilir. Bu denklem sisteminin bir çözümü 

olabilmesi için katsayılar determinantının sıfır olması gerekir. Yani 

(4.143) ve (4.144) denklemleri; 

 
0
0

2221

1211

=+−
=−

yaxa
yaxa

   

şeklinde lineer denklemlerdir. Bu sistemin çözümü için; 

 0
2221

1211 =
−

−
aa
aa

 

olmalıdır. Öyleyse (4.143) ve (4.144) denklemleri için katsayılar 

determinantı; 
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( )
( ) ( )

( )
( )

( )
0

1

1

22

2

22

2222

2

=

−
−

−
−

−
−

−
−

∑∑

∑∑

−

−

+

+−
−

−+

+

+

np npi

npnp

np npi

inpnp

np npi

inpnp

np npi

npnp

EEE

EEE

εω
ε

γεω
ω

γ

εω
ω

γεω
ε

γ
 (4.145) 

 

olur. Buna “Sekular Denklem” adı verilir. Bu determinantın çözümünden 

(4.107) denklemi ile verilen hareket denklemindeki iω  özdeğerleri elde 

edilir. Bu hesaplamalar bilgisayarda yapılacaktır. 

 Şimdi daha önce bulunan (4.136) denklemine geri dönülür ve 

bundan hareketle i
npψ  çözümlenirse; 

 

 ( )∑
′

′
′

′

Γ
−

=
ρ

ρ
ρ

ρ εωγ
ψ i

npi

npi
np

E
2

1   

 

olur. Burada ρ ′Γi  bilinmemektedir. 

 

 ( ) ( )
−

−

−

+
+

+

Γ
−

+Γ
−

= i
npi

np
i

npi

npi
np

EE
εωγεωγ

ψ
2
1

2
1  

 

 ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ
Γ

−
+

−
Γ= +

−−

−

+

+

+

i

i

npi

np

npi

np
i

i
np

EE
εωγεωγ

ψ
2
1

2
1   (4.146) 

 

olur. Şimdi (4.143) denkleminden +

−

Γ
Γ

i

i  ifadesi elde edilirse; 
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( )

( ) ( )∑∑ −
Γ=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−Γ

−

−+
−

+

+
+

np npi

inpnp
i

np npi

npnp
i

EEE
2222

2

1
εω

ω
γεω

ε
γ

 

 

 ( )

( )
( )

( )∑

∑

−

−
−

=
Γ
Γ

≡

−

−+

+

+

+

−

np npi

inpnp

np npi

npnp

i

i
i EE

E

L

22

22

2

1

εω
ω

γ

εω
ε

γ
ω    (4.147) 

 

olur. (4.147) denklemi (4.146)’da yerine yazılırsa; 

 

 ( ) ( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−
Γ=

−

−

+

+

+
i

npi

np

npi

np
i

i
np L

EE
ω

εωγεωγ
ψ

2
1

2
1   (4.148) 

 

olarak elde edilir. 

 Aynı şekilde (4.138)’den i
npϕ  çözülürse; 

 

 ( )
ρ

ρ

ρ

ρ εωγ
ρϕ ′

′

′

Γ
+

′
= ∑ i

npi

npi
np

E
2

 

 

 ( ) ( )
−

−

−

+
+

+

Γ
+

−Γ
+

= i
npi

np
i

npi

npi
np

EE
εωγεωγ

ϕ
2
1

2
1  
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( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Γ
Γ

+
−

+
Γ= +

−−

−

+

+

+

i

i

npi

np

npi

np
i

i
np

EE
εωγεωγ

ϕ
2
1

2
1   (4.149) 

 

olur. (4.147) deki tanım (4.149)’da yerine yazılırsa; 

 

 ( ) ( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

+
Γ=

−

−

+

+

+
i

npi

np

npi

np
i

i
np L

EE
ω

εωγεωγ
ϕ

2
1

2
1   (4.150) 

 

olur. 

 (4.148) ve (4.150) denklemleri artık tek bilinmeyenli birer 

denklem olmuştur. Önceden hem +Γi  hem de −Γi  bilinmiyordu. Şimdi tek 

bilinmeyen +Γi ’dir. +Γi ’yi bulmak için daha önce “1. Denklem” olarak 

adlandırılan (4.109) denklemi kullanılır. Bu deklem; 

 

 ( ) ( )( )∑ =−
np

i
np

i
np 122

ϕψ  

 

şeklindeydi. Bu denklemde (4.148) ve (4.150) yerlerine yazılırsa; 

 

( ) ( )

( ) ( ) ( ) 1
22

1

22
1

2
2

2

=Γ
⎟⎟
⎟

⎠

⎞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

⎜⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−

+

−

−

+

+

−

−

+

+

∑

ii
npnp

npi

np
i

npnp

npi

L
EE

L
EE

ω
γγεω

ω
γγεω

 (4.151) 
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olur. (4.151)’de şöyle bir tanımlama yapılırsa; 

( ) ( ) ( )

( ) ( )
⎟⎟
⎟

⎠

⎞

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+

⎜⎜
⎜

⎝

⎛
−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
≡

−

−

+

+

−

−

+

+

∑

2

2

22
1

22
1

i
npnp

npi

np
i

npnp

npi
i

L
EE

L
EE

Z

ω
γγεω

ω
γγεω

ω

 (4.152) 

 

olur. Bu durumda (4.151) denklemi; 

 

 ( )iZ ω ( )2+Γi =1      (4.153) 

 

olur ve buradan; 

 

( )i
i Z ω

1
=Γ+        (4.154) 

 

olarak elde edilir. 

 Bulunan bu (4.154) denklemi (4.148) ve (4.150)’de yerlerine 

yazılırsa; 

 
( ) ( ) ( )⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
+

−
=

−

−

+

+

i
npnp

npii

i
np L

EE

Z
ω

γγεωω
ψ

22
11   (4.155) 

 

 
( ) ( ) ( )⎟⎟

⎠

⎞
⎜
⎜
⎝

⎛
−

+
=

−

−

+

+

i
npnp

npii

i
np L

EE

Z
ω

γγεωω
ϕ

22
11    (4.156) 

olur. 
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4.5 Matris Elemanlarının Hesaplanması 

 

 

 

 

 

 

 

 

Şekil 4.1 Ana çekirdekten yapılan −β  ve +β  geçişleri. 

 

Şekil 4.1’den görüldüğü gibi ana çekirdekten sağ tarafa olan −β  

geçişleri 0+
iQ  ile ana çekirdekten sol tarafa olan +β  geçişleri 0iQ  ile 

temsil edilir.  
−β  geçişi şu şekilde ifade edilir; 

 

 00 +
− −= i

i QMT
β

      (4.157) 

 

Buradaki iM −β
, (N,Z) ana çekirdeğinin taban seviyesinden (N-1,Z+1) 

çekirdeğinin seviyelerindeki izobar 0+ seviyelerine −β  Fermi geçiş 

matris elemanıdır. (4.157) denkleminin soldan iQ0  ile komutasyonuna 

bakılırsa; 

 

 0000 +
− −= ii

i
i QQMTQ

β
 

 
 

Ana Çekirdek 
       (N,Z) 

(N-1,Z+1) (N+1,Z-1) 

−β+β  
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olur. 

 0iQ =0  olduğu için yukarıdaki ifadeye bunu içeren terimler 

eklenebilir. Sonuç değişmez; 

 

 0000 iiii
i

ii QQQQMQTTQ ++
−− −=− −β

 

 

 [ ] [ ] 0,00,0 +
− −= ii

i
i QQMTQ

β
    (4.158) 

 

olur. Parçacık bazında, 

 

 [ ] [ ]∑
′

′
+

′
+ =

jj
jjjjii npAnpAnpnpQQ

,
),(),,(),(),(, ψψ  

( ) 1),()()( 2 =−= ∑
j

jjj nppNnN ψ  

 

olarak (4.49) denklemiyle elde edilmişti. Öyleyse; (4.158) denkleminde 

[ ] 1, =+
ii QQ  olduğuna göre; 

 

 [ ] 0,0 −=− TQM i
i
β

      (4.159) 

 

olur.  

 (4.45) denkleminden ∑=+

j
jji npAnpQ ),(),(ψ  ve (4.8) 

denkleminden ∑=−
j

j npAnjpjT ),(,,  olduğuna göre bunlar (4.159) 

denkleminde yerlerine yazılırsa; 
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⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑∑

′
′

+
−

j
j

j
jj

i npAnjpjnpAnpM ),(,,,),(),(ψβ  

 

 [ ]),(),,(,,),(
,

npAnpAnjpjnp jj
jj

j ′
+

′
∑= ψ   (4.160) 

 

olur. Burada (4.10) denklemi yerine yazılırsa, parçacık bazında −β  geçiş 

matris elemanı 

 

( ))()(,,),( pNnNnjpjnpM jj
j

j
i −= ∑− ψβ    (4.161) 

 

olarak bulunur.  

 Kuazi-parçacık bazında da [ ] iiii QQ ′
+ = δ, ve ii ′=  olduğuna göre 

[ ] 1, =+
ii QQ ’dir. Buna göre (4.158) denkleminden  

 

 [ ] i
i MTQ −=− β

0,0       (4.162) 

 

olarak matris elemanı elde edilir. Bu parçacık bazında elde edilen  

(4.159) denklemiyle aynıdır. 

 Özfonksiyon (4.106) denkleminde şu şekilde ifade edilmişti; 

 

 ( )∑ −= ++

np
np

i
npnp

i
npi AAQ ϕψ . 

 

Buna göre; 
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 ( ) ( )∑ +++ −==
np

np
i
npnp

i
npii AAQQ ϕψ     (4.163) 

 

olur.  

 −T  operatörü de (4.83) denkleminde aşağıdaki gibi elde edilmişti; 

 

 ( )∑
′′

′′′′
+

′′′′− +=
pn

pnpnpnpn AbAbT . 

 

(4.163) ve (4.83) denklemleri (4.162)’de yerlerine yazılırsa; 

 

 ( ) ( ) 0,0 ⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑∑

′′
′′′′

+
′′′′

+
−

pn
pnpnpnpn

np
np

i
npnp

i
np

i AbAbAAM ϕψ
β

 

 

[ ] [ ] [ ](

[ ]) 00,

,,,

pnnp
i
nppn

np pn
pnnp

i
nppnpnnp

i
nppnpnnp

i
nppn

i

AAb

AAbAAbAAbM

′′
+

′′

′′

+
′′

+
′′′′′′

+
′′′′∑∑ −−+=−

ϕ

ϕψψ
β

 

 

( )∑∑
′′

′′′′′′′′ +=−

np pn
ppnn

i
nppnppnn

i
nppn

i bbM δδϕδδψ
β

 

 

 ( )∑ +=−

np

i
npnp

i
npnp

i bbM ϕψ
β

 

 

olur. Kuzai-parçacık bazında −β  geçiş matris elemanı aşağıdaki gibi elde 

edilmiş olur; 
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 [ ] ( )∑ +== −−

np

i
npnp

i
npnpi

i bbTQM ϕψ
β

0,0  .  (4.164) 

 

 iM +β
 , (N,Z) ana çekirdeğinin taban seviyesinden (N+1,Z-1) 

çekirdeğindeki izobar 0+ seviyelerine +β  Fermi geçiş matris elemanıdır. 
+β  geçişi şu şekilde ifade edilir ; 

 

 00 +
+ += i

i QMT
β

      (4.165) 

 

Bu ifadenin soldan iQ0  ile komutasyonuna bakılır ve yukarıda yapılan  

benzer işlemler tekrar edilirse; 

 

 [ ] [ ] 0,00,0 +
+ += ii

i
i QQMTQ

β
 

 

 [ ] 0,0 +=+ TQM i
i
β

      (4.166) 

 

olur.  Yalnız burada dikkat edilecek olan nokta parçacık bazında  

 

∑ ++ =
j

jji npAnpQ ),(),(ψ    

 ∑=
j

jji npAnpQ ),(),(ψ  

 

olarak kabul edilmelidir. 
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∑=
j

jji npAnpQ ),(),(ψ  ve (4.9)’dan ∑ +
+ =

j
j npAnjpjT ),(,,  olduğuna 

göre bunlar (4.166) denkleminde yerlerine yazılırsa; 

 

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑∑

′

+
′+

j
j

j
jj

i npAnjpjnpAnpM ),(,,,),(),(ψβ  

 [ ]),(),,(,,),(
,

npAnpAnjpjnp jj
jj

j
+
′

′
∑= ψ  

 

olur. Burada (4.10) denklemi yerine yazılırsa, parçacık bazında +β  

geçişine neden olan matris elemanı, 

 

( ))()(,,),( pNnNnjpjnpM jj
j

j
i −−= ∑+ ψβ   (4.167) 

 

olarak bulunur. 

 

 Kuazi-parçacık bazı için (4.163) ve (4.84) denklemleri (4.166)’da 

yerlerine yazılırsa; 

 

 ( ) ( ) 0,0 ⎥
⎦

⎤
⎢
⎣

⎡
+−= ∑∑

′′

+
′′′′′′′′

+
+

pn
pnpnpnpn

np
np

i
npnp

i
np

i AbAbAAM ϕψ
β

 

 

[ ] [ ] [ ](

[ ]) 00,

,,,

+
′′

+
′′

′′
′′

+
′′

+
′′′′′′′′

−

−+= ∑∑+

pnnp
i
nppn

np pn
pnnp

i
nppnpnnp

i
nppnpnnp

i
nppn

i

AAb

AAbAAbAAbM

ϕ

ϕψψ
β
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( )∑∑
′′

′′′′′′′′ +=+

np pn
ppnn

i
nppnppnn

i
nppn

i bbM δδϕδδψ
β

 

( )∑ +=+

np

i
npnp

i
npnp

i bbM ϕψ
β

 

 

olur. Kuazi-parçacık bazında +β  geçişine neden olan matris elemanı 

 

 [ ] ( )∑ −== ++

np

i
npnp

i
npnpi

i bbTQM ϕψ
β

0,0    (4.168) 

 

olarak elde edilir. Özetlenecek olursa; 

 

Parçacık bazında matris elemanları (4.161) ve (4.167) denklemlerinden;  

 

 ( ))()(,,),( pNnNnjpjnpM jj
j

j
i −= ∑− ψβ  

 ( ))()(,,),( pNnNnjpjnpM jj
j

j
i −−= ∑+ ψβ , 

 

Kuazi parçacık bazında matris elemanları (4.164) ve (4.168) 

denklemlerinden; 

 

 ( )∑ +=−

np

i
npnp

i
npnp

i bbM ϕψ
β

 

 ( )∑ −=+

np

i
npnp

i
npnp

i bbM ϕψ
β

 

 

olarak elde edilir. 
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4.6 Fermi Toplam Kuralı 

 

 Açısal momentum için [ ] zLLL 2, =−+  şeklindedir.  Aynısı izospin 

vektörü için de geçerlidir; [ ] zTTT 2, =−+   ve  
2

ZNTz
−

=  olduğuna göre; 

 

 [ ] ZNTT −=−+ ,       (4.169) 

 

olur. Parçacık bazında, (4.8) ve (4.9) denklemlerinden; 

 

 ∑=−
j

j npAnjpjT ),(,,      

 ∑ +
+ =

j
j npAnjpjT ),(,,  

 

oldukları hatırlanırsa; 

 

 [ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑∑

′
′

+
−+

j
j

j
j npAnjpjnpAnjpjTT ),(,,,),(,,,  

 

 [ ] [ ]),(),,(,,, 2 npAnpAnjpjTT jj
j j

′
+

′
−+ ∑∑=    

  

 [ ] ( ) ZNpNnNnjpjTT
j

jj −=−= ∑−+ )()(,,,
2

  (4.170) 
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olur. Aynı şekilde kuazi-parçacık bazında (4.83) ve (4.84) 

denklemlerinden; 

 

 ( )∑
′′

′′′′
+

′′′′− +=
pn

pnpnpnpn AbAbT  

 

 ( )∑ +
+ +=

np
npnpnpnp AbAbT  

 

oldukları hatırlanırsa bunlara göre; 

 

 [ ] ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
++= ∑∑

′′
′′′′

+
′′′′

+
−+

pn
pnpnpnpn

np
npnpnpnp AbAbAbAbTT ,,  

 

[ ] [ ] [ ] [ ](

[ ])pnnppnnp

np pn
pnnpnppnpnnppnnppnnppnnp

AAbb

AAbbAAbbAAbbTT

′′
+

′′

′′

+
′′

+
′′′′′′

+
′′′′−+

+

++= ∑∑
,

,,,,
 

 [ ] ( )∑∑
′′

′′′′′′′′−+ −=
np pn

ppnnpnnpppnnpnnp bbbbTT δδδδ,  

 

 [ ] ( )∑ −=−=−+
np

npnp ZNbbTT 22,     (4.171) 

 

olur. Buradaki npb  ve npb  sqp matris elemanlarıdır. Bu yapılan hesapların 

bir kontrolüdür. Hesapla mutlaka parçacık bazında (4.170), kuazi-

parçacık bazında (4.171) denklemi sağlanmalıdır. 
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 [ ] +−−+−+ −= TTTTTT ,   

 

olduğuna göre; 

 

 ZNTTTT −=− +−−+  

 

olur. Bunların ortalaması alınırsa; 

 

 00)(00 ZNTTTT −=− +−−+  

 

olur. Burada iQi =+ 0  olmak üzere, 1=ii  ve 1=ii  şeklindedir. 

Bunlardan ii  +−TT  arasına ve ii   de −+TT  arasına yazılırsa; 

 

 { } ZNTiiTTiiT
i

−=−∑ +−−+ 0000   (4.172) 

 

olur. (4.172) denkleminin birinci terimi incelenecek olursa; 

 

 ( ) 00 −
+

+ = TiiT  

 

olur. Buna göre; 

 

 
2

000 −−+ = TiTiiT  
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yazılabilir. Ayrıca iQi =+ 0  ve iQi =0  olmak üzere; 

 

 000 −− = TQTi i  

 

olur. 00 =iQ  olduğu için bu ifadeden iQT− ’yi çıkarmak sonucu 

değiştirmez. 

 

 000 ii QTTQTi −−− −=  

 [ ] 0,00 −− = TQTi i  

 

(4.159) ve (4.162) denklerinden [ ] i
i MTQ −=− β

0,0  olduğu hatırlanırsa, 

 

 iMTi −=− β
0       (4.173) 

 

olur. Benzer şekilde (4.172)’nin ikinci terimi; 

 

 ( ) 00 +
+

− = TiiT  

 

olur. Öyleyse; 

 

 
2

000 ++− = TiTiiT      (4.174) 

 

yazılabilir.Buradan; 
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 000 ++ = TQTi i , 

 000 ii QTTQTi +++ −= , 

 [ ] 0,00 ++ = TQTi i  

 

olur. (4.166) denkleminden [ ] 0,0 +=+ TQM i
i
β

 olduğu hatırlanırsa; 

 

 iMTi +=+ β
0       (4.175) 

 

olur. (4.173)ve (4.175)’i (4.172)’de yerlerine yazarsak; 

 

 0

22
2TZNMM

i

ii =−=
⎭
⎬
⎫

⎩
⎨
⎧ −∑ +− ββ

    (4.176) 

 

olur. 

 Bu hesapların sonunda yapılacak olan kontroldür. Matris 

elemanları doğru hesaplanmış iseler (4.176) denklemi sağlanmalıdır. 

 Özetleyecek olursak (4.170) ve (4.171) denklemlerinden 

hareketle, 

 

Parçacık bazında; 

 

( ) ZNpNnNnjpjMM
j

jj
i

ii −=−=
⎭
⎬
⎫

⎩
⎨
⎧ − ∑∑ +− )()(,,

222

ββ , 
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Kuazi-parçacık bazında; 

 

( ) 0
22

22
2TZNbbMM

np
npnp

i

ii =−=−=
⎭
⎬
⎫

⎩
⎨
⎧ − ∑∑ +− ββ

 

 

olarak elde edilmelidir. 

 

 

4.7 Ana Çekirdeğin Taban Durumunun İzospin Safsızlığı 

 

 Ana çekirdek üzerindeki izotopik spin saf değildir. Sağdaki ve 

soldaki çekirdeklerden bu çekirdeğe geçişler olabilir. Bu geçişler 

safsızlığı bozar. Fakat sağdan yani ( )10 −T ’den ( )0T  haline katkı olmaz. 

Geçişler ( )10 +T ’den ( )0T ’a; ( )20 +T ’den ( )0T ’a ...vs olur. Herbir 

geçişten katkı gelebilir. 

 Geçişin olmayacağı )1( 0 −T  izotopik spinine sahip hal, 

00 ,1 TT −  olarak ifade edilir. İlk terim toplam izotopik spini, ikinci 

terim ise bunun üçüncü bileşenini yani zT  bileşenini temsil eder. Burada 

0T , 10 −T ’in zT  bileşenidir. Dolayısıyla böyle bir hal olamaz. Çünkü 

hiçbir zaman izdüşümü kendisinden daha büyük olan bir vektör yoktur. 

Yani zT  bileşeni toplam izotopik spinden daha büyük olamaz. 

 Ana çekirdek aşağıdaki gibi ifade edilebilir; 

 

 
1

...,2,1,,0
22

000000

=+

+++++==

ba

TTcTTbTTaZN
 (4.177) 
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 Şekil 4.2 ),( ZN  Ana çekirdeğin taban seviyesine gelen katkıların   

                     şematik gösterimi. 

   

Burada eşitliğin sağındaki üçüncü terim ve sonrasından gelen katkı çok 

küçük olduğu için ihmal edilir. Ayrıca bu denklemdeki b  katsayısı 

izospin safsızlığı olarak adlandırılır. 

 Taban haldeki komşu çekirdeklerin izospinlerinin karelerinin 

beklenen değeri şöyle hesaplanabilir; 

 

( ) ( )0000
2

0000
2 ,1,,,100 TTbTTaTTTaTTbT ++++= . (4.178) 

 

Açısal momentum için; 

 

 ( ) LL LMLLLML 12 +=  

 

olduğuna göre; 

T0 
(N,Z) 

T0+1 
(N+1,Z-1) 

T0+2 
(N+2,Z-2) 

T0-1 
(N-1,Z+1) 

IAR 

IAR 

IAR 
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 ( ) 00
2 1 TTTTTTT +=  

 

olur. Öyleyse; 

 

00
2

0000
2

00
2

00
2

00
2

00
2

00
2

,1,,,

,1,1,,100

TTTTTabTTTTTa

TTTTTbTTTTTbaT

+++

++++=
, 

 

( )
( )( ) ( )

( )( ) 000000

000000
2

000000
2

000000
2

,1,21

,,1,1,121

,,1100

TTTTTTab

TTTTTTaTTTTTTb

TTTTTbaTT

++++

+++++++

++=

 

 

( ) ( )( )21100 00
2

00
22 ++++= TTbTTaT  

 

olur. (4.177)’den  22 1 ba −=  olduğuna göre; 

 

 ( ) ( ) ( )( )211100 00
2

00
22 ++++−= TTbTTbT  

 

 ( ) ( )( )000
2

00
2 21100 TTTbTTT −++++=  

 

 ( ) ( )12100 0
2

00
2 +++= TbTTT     (4.179) 

 

olur. Diğer taraftan; ZZ LLLLL ++= +−
22  olduğuna göre izotopik spin 

içinde benzer bağıntı 0
2

0
2 TTTTT ++= +−  olur. Buna göre; 
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 0000 0
2

0
2 TTTTT ++= +−  

 

olur. 1=∑
i

ii  olduğuna göre +−TT  arasına ∑
i

ii  yazılabilir.. 

 

 00000000 0
2

0
2 TTTTT ++= +−  

 

 00000000 0
2

0
2 TTTiiTT ++= +−  

 

 ( )10000 00
2 ++= +− TTTiiTT  

 

olur. (4.174) ve (4.175)’ten; 

 

 ∑ +=+−
i

iMTiiT
2

00
β

. 

 

olduğu bilinmektedir. Bu yerine yazılırsa; 

 

 ( )100 00

2
2 ++= ∑ + TTMT

i

i
β

    (4.180) 

 

olur. (4.179) ve (4.180)  eşitlenirse; 

 

 ( ) ( ) ( )1121 00

2

0
2

00 ++=+++ ∑ + TTMTbTT
i

i
β
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 ( ) ( )12
1

0

2

2
0 +

==+
∑ +

T

M
bTP i

i
β

     (4.181) 

 

olur. (4.181) denklemi )1,1( −+ ZN  çekirdeğinin izobarik seviyelerinden 

),( ZN  ana çekirdeğinin taban seviyesine gelen katkıyı ifade eder. 

 
 
4.8 IAR İzospin Yapısı 

 

 −T  operatörü kullanılarak, )1,1( +− ZN  çekirdeğindeki bütün 

Fermi geçişlerinin tek bir hal üzerinde toplandığı hal olan kolektif analog 

hal durumu şöyle ifade edilir ; 

 

 000 2
1

−

−

−+= TTTA .     (4.182) 

 

(4.182) denklemi iki parçaya ayrılıp çözülebilir. Önce 0−T  

çözümlenirse; 

 

 0000 ,1,0 TTbTTTaTT ++= −−−     (4.183) 

olur. Açısal momentum için tanımlanan 

 

 1)1)(( −+−+=− LMMLMLLML  

 

ifade kullanılırsa,  (4.183) denkleminin birinci kısmı; 
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 ( )( ) 1,1, 00000000 −+−+=− TTTTTTTTT  

 

 1,2, 00000 −=− TTTTTT      (4.184) 

 

olur. (4.183) denkleminin ikinci kısmı; 

 

 ( )( ) 1,1111,1 00000000 −++−+++=+− TTTTTTTTT  

 

 ( ) 1,1122,1 00000 −++=+− TTTTTT    (4.185) 

 

olur.  (4.184) ve (4.185) denklemleri  (4.183)’de yerlerine konulursa; 

 

 ( ) 1,11221,20 000000 −+++−=− TTTbTTTaT  (4.186) 

 

olur. 

  (4.182)’nin diğer kısmı olan 2
1

00
−

−+TT  ifadesinin çözümüne 

bakılırsa;  ZZ LLLLL −+= −+
22  olduğuna göre 0

2
0

2 TTTTT −+= −+  olur. 

Buradan hareket edilirse; 

 

 0
2

0
2 TTTTT +−=−+       (4.187) 

 

olur. Bu ifade 2
1

00
−

−+TT ’nin iç kısmında yerine yazılırsa; 
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( ) ( )00000000 ,1,,,100 TTbTTaTTTTaTTbTT ++++= −+−+  

 

0000
2

0000

00000000
2

,1,1,,1

,1,,,00

TTTTTTbTTTTTTba

TTTTTTabTTTTTTaTT

+++++

++=

−+−+

−+−+−+  

 

0000
2

0000
2 ,1,1,,00 TTTTTTbTTTTTTaTT +++= −+−+−+  

 

olur. Bu ifadede (4.187) denklemi  yerine yazılırsa; 

 

000
2

0
2

00
2

000
2

0
2

00
2

,1,1

,,00

TTTTTTTb

TTTTTTTaTT

++−++

+−=−+  

 

( )
(

)00000

0000
2

000
2

00
2

000000000
2

000
2

00
2

,1,1

,1,1,1,1

,,,,,,00

TTTTT

TTTTTTTTTTb

TTTTTTTTTTTTTTTaTT

+++

++−+++

+−=−+

 

( )( ) ( )( )( )0
2

000
2

0
2

000
2 21100 TTTTbTTTTaTT +−++++−+=−+  

 

( )122200 0
22

0 ++=−+ TbaTTT     (4.188) 

 

elde edilir. (4.186) ve (4.188) denklemleri  (4.182)’de yerlerine yazılırsa; 

 

( )
( )( )1,11221,2

1222
1

000000

0
22

0

−+++−

++
=

TTTbTTTa

TbaT
A
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olur. Bu düzenlenir ve 22 1 ba −=  olarak yazılırsa; 

 

 
( )

( ) ( )( )1212

1,11221,2

0
22

0

000000

++−

−+++−
=

TbbT

TTTbTTTa
A  

 

( )
( )

( )
1,1

1

12
1,

1
00

0
2

0

0
00

0
2

0

0 −+
++

+
+−

++
= TT

TbT

Tb
TT

TbT

Ta
A  (4.189) 

 

olur. 

 Izobar analog hal durumu olan 0+
IARQ  durumuna katkı 10 −T , 

0T , 10 +T  ve 20 +T  durumlarından gelebilir (Şekil 4.3). 0+
IARQ  

durumu; 

 

 

 

 

 

 

 

 

 

 

 

Şekil 4.3 Geçişin yapıldığı )1,1( +− ZN  ürün çekirdeğindeki IAR durumlarına  

                diğer çekirdeklerin taban durumlarından gelen katkılar. 

T0 
(N,Z) 

T0+1 
(N+1,Z-1) 

T0+2 
(N+2,Z-2) 

T0-1 
(N-1,Z+1) 

IAR 

IARγ  
IARα  IARβ  

IARΔ  
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1,21,1

1,1,10

0000

0000

−+Δ+−++

−+−−=+

TTTT

TTTTQ

IARIAR

IARIARIAR

β

αγ
     (4.190) 

 

 12222 =Δ+++ IARIARIARIAR βαγ      (4.191) 

 

şeklinde ifade edilir.  

A  durumu ile IARQ  durumu arasındaki örtüşme aşağıdaki 

şekildedir; 

 

AQIARIAR 0=δ .      (4.192) 

 

 ( ) IARIAR QQ 00 =
++  olduğuna göre (4.189) ve (4.190) 

denklemleri (4.192)’de yerlerine yazılırsa; 

 

(
)

( )
( )

( ) ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−+

++

+
+−

++

−+Δ+−++

−+−−=

1,1
1

12
1,

1

1,21,1

1,1,1

00

0
2

0

0
00

0
2

0

0

0000

0000

TT
TbT

Tb
TT

TbT

Ta

TTTT

TTTT

IARIAR

IARIARIAR

β

αγδ

 

 

( )
( )

( )
1,11,1

1

12

1,11,1
1

0000

0
2

0

0

0000

0
2

0

0

−+−+
++

+
+

−−−−
++

=

TTTT
TbT

Tb

TTTT
TbT

Ta

IAR

IARIAR

β

αδ
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( )
( )1

12

0
2

0

00

++

++
=

TbT

TbTa IARIAR
IAR

βα
δ     (4.193) 

 

olur. 

 (4.188) ifadesi (4.182)’de verilen 000 2
1

−

−

−+= TTTA  

ifadesinde  yerine yazılırsa; 

 

 
( )

0
1

1

0
2

0

−
++

= T
TbT

A      (4.194) 

 

olur. (4.194), (4.192)’de yerine yazılırsa; 

 

 
( )1

00

0
2

0 ++
= −

TbT

TQIAR
IARδ      (4.195) 

 

olur. 0IARQ =0 olduğuna göre bu ifade (4.195)’den çıkarılırsa sonuç 

değişmez; 

 

 
( )1

00

0
2

0 ++

−
= −−

TbT

QTTQ IARIAR
IARδ  

 

 
[ ]

( )1

0,0

0
2

0 ++
= −

TbT

TQIAR
IARδ      (4.196) 
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olur. (4.162)’den  bilinen [ ] −

=−
β
IARi MTQ 0,0  ifadesi  (4.196)’da yerine 

yazılırsa; 

 

 
( )10

2
0 ++

=
−

TbT

M IAR
IAR

β

δ      (4.197) 

 

olur. (4.193) ile (4.197) denklemleri  karşılaştırılırsa; 

 

 
( )

( ) ( )11

12

0
2

00
2

0

00

++
=

++

++
−

TbT

M

TbT

TbTa IARIARIAR
ββα

 

 ( )12 00 ++=
−

TbTaM IARIARIAR βαβ    

 (4.198) 

 

olur. Böylece ana çekirdeğin taban seviyesinden )1,1( +− ZN  

çekirdeğinin seviyeleri arasında bulunan izobar analog hale geçiş matris 

elemanı bulunmuş olur. 

 Tekrar (4.192) ve (4.197) deklemlerine bakılacak olursa; 

 

 
( )1

0
0

2
0 ++

==
−

TbT

M
AQ IAR

IARIAR

β

δ  

 

olur. Bu ifade  sağdan A  ile çarpılırsa; 
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( )

A
TbT

M
AAQ IAR

IAR
1

0
0

2
0 ++

=
−β

          (4.198) 

 

olur. AA =1 şeklindedir. Yukarıdaki ifadenin  hermitik eşleniğini 

alınırsa; 

 

 
( )

A
TbT

M
Q IAR

IAR
1

0
0

2
0 ++

=
−

+
β

 

 

olur. Burada 0+
IARQ  ve A  sırasıyla (4.190) ve (4.189)’dan alınıp 

yerlerine yazılırsa; 

( ) ( )

( )
( ) ⎟
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olur. Bu eşitliğin sağlanması ile; 
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ifadeleri elde edilir. 
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5. CKM MATRİSİNİN ÜNİTERLİĞİ 

 

 Çekirdekte, süperizinli ++ → 00πJ  Fermi beta geçişleri, 

elektrozayıf  standart modelin sonuçlarını ve öngörülerini test eden 

önemli bir araçtır. Süperizinli geçişler son yıllarda bir çok önemli 

çalışmaların konusunu oluşturmuştur (Blin-Stoyle, 1969; Towner and 

Hardy, 1973; Wilkinson, 1976; Hardy and Towner, 1975; Towner,  

Hardy and Harvey, 1977; Ormand and Brown, 1989; Barker, 1992; 

Barker, 1994; Wilkinson, 1993; Ormand and Brown;1995, Sagawa, Van 

Giai and Suzuki, 1996; Navrátil, Barrett and Ormand, 1997; Wilkinson, 

2002; Towner and Hardy, 2002). CKM (Cabibbo-Kobayashi-Maskawa) 

matrisinin üniterliği, parçacık fiziğindeki en önemli problemlerden bir 

tanesidir. Parçacık ve nükleer fizikte bu matrisin üniterliğini test etmek 

için birkaç yol vardır. Nükleer fizik kısmında, serbest nötron geçişi, pion 

beta geçişi ve süperizinli Fermi beta geçişi bulunmaktadır. Süperizinli 

Fermi beta geçişiyle CKM matrisinin ilgili ve hesaplanacak elemanı 

udV ’dir. 

 Bu bölümde sırasıyla önce standart model, zayıf etkileşmeler ve 

W bozonları, CKM matrisi ve üniterliği, radyatif düzeltmeler ve izospin 

simetrisindeki kırılma düzeltmesi anlatılmıştır. 

 
 
5.1 Standart Model  

 

 Standart Model (SM), gözlemlenen maddeyi oluşturan, şimdiye 

kadar bulunmuş temel parçacıkları ve bunların etkileşmesinde önemli 
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olan 3 temel kuvveti açıklayan kuramdır. Standart Modele göre temel 

parçacıklar kuarklar ve leptonlar olarak isimlendirilen iki aileye ayrılırlar. 

Bu ailelerin her biri altı parçacıktan oluşur ve birinci nesil en hafif 

üçüncü nesil en ağır olmak üzere üç nesle ayrılır. Parçacıklar arasında da 

etkileşmeyi sağlayan dört farklı kuvvet ve kuvvet taşıyıcıları vardır. 

Aşağıdaki tabloda bu üç nesil ve kuvvet taşıyıcıları görülmektedir. 

 
 Tablo 5.1  Standart Modelin temel parçacıkları. 

 

 

 

 

 

 

 

  

 

 

 

 

Herbir parçacığa karşı gelen bir anti parçacık vardır. Anti 

parçacıklar gerçek parçacıklardır. Parçacık ve onun anti parçacığı 

arasındaki temel fark sadece yüklerinin ters işaretli olmasıdır.  

Kuarklar tek başlarına  gözlemlenemez. Kuarklar "hadron" olarak 

bilinen parçacıklar içerisinde hapsolmuşlardır. Protondaki ve 

elektrondaki gibi kuarklar elektrik yüküne sahiptir. Kuarkların elektrik 
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yükleri kesirlidir (2/3 veya -1/3, -2/3 ve 1/3 anti kuarklar için). Kuarklar, 

parçacıkların yükü tamsayı olacak biçimde bir araya gelirler. Bu yüzden 

kuarkların her türlü kombinasyonu mümkün değildir. Hadronların iki 

şekli vardır, baryonlar ve mezonlar. Üç kuarkın bir araya gelmesi ile 

baryonlar, bir kuark ve bir anti kuarkın bir araya gelmesi ile mezonlar 

oluşur. Baryonlara iki örnek proton ve nötrondur. 
 

 

  Proton 

Proton iki yukarı kuark ve bir aşağı kuarkın bir araya gelmesi ile oluşur. 

Şekilden görüldüğü gibi her bir kuarkın yükü toplanıp proton için yük +1 

elde edilir.  

 )1
3
1

3
2

3
2( +=−+=++ duu  

    

  Nötron  

Nötron iki aşağı kuark ve bir yukarı kuarktan meydana gelir. Kuarkların 

yükleri toplanırsa 0 olan nötronun yüküne ulaşılır.  

 )0
3
2

3
1

3
1( =+−−=++ udd  

 

u 
u 
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d 
d 
u 
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  Pion 

Mezon için bir örnek piondur. Pion bir yukarı bir de aşağı anti kuarkın 

bir araya gelmesi ile oluşur. Mezonlar parçacık ve anti parçacık 

kombinasyonu olduğundan kararsız bir yapı gösterirler ve çok hızlı 

bozulurlar. 

 
 
5.2 Zayıf Etkileşme 

 

Doğada dört tür etkileşim veya dört çeşit kuvvet vardır: güçlü, 

elektromanyetik, zayıf, ve kütleçekimi. Bilinen tüm diğer kuvvetler bu 

dört temel kuvvetin çeşitli varyasyonlarıdır. 

Zayıf etkileşim, ağır kuark ve leptonların daha hafif kuark ve 

leptonlara bozunmasından sorumludur. Bozunma sürecinde, ilgili temel 

parçacık kaybolmakta ve ortaya iki veya daha fazla sayıda farklı parçacık 

çıkmaktadır. Toplam kütle ve enerji korunur. Fakat bozunan parçacığın 

kütlesinin bir kısmı, ortaya çıkan parçacıkların kinetik enerjisine 

dönüşür. Dolayısıyla, bozunma ürünlerinin kütlelerinin toplamı, 

başlangıçtaki kütleden daha az olmaktadır. Bir kuark veya lepton 

bozunduğunda, 'çeşni'si değişir ve bütün 'çeşni' değişimleri, zayıf 

etkileşim sayesinde veya nedeniyle gerçekleşmektedir. Etkileşim; 

elektrik yükü taşıyan ve birbirinin karşıtı olan +W , −W  parçacıkları ile, 

yüksüz 0Z  parçacığı tarafından taşınır. Bu üçüne 'vektör bozonlar' adı 

verilir. 

u d 
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W  ve Z  bozonları, zayıf etkileşmeye aracılık eden temel 

parçacıklardır.  

W  parçacığının adı, zayıf nükleer kuvvetten (weak nuclear force) 

gelir. Z  parçacığı ise, yükünün sıfır (zero) olmasından dolayı  bu şekilde 

isimlendirilmiştir. 

 W  bozonunun iki türü +1 ve -1 elektrik yüklerine sahiptir. +W  

bozonu −W  bozonunun antiparçacığıdır. Z  bozonu (veya 0Z ) elektriksel 

olarak yüksüzdür ve kendisinin antiparçacığıdır. Her üç parçacığın da 

yarı ömürleri çok kısadır. Bu yüzden bu parçacıklar dedektörler ile direkt 

olarak gözlemlenemez, ancak bozunum ürünleri ölçülebilir.  

W  ve Z  parçacıkları bir protona göre yaklaşık 100 kat daha 

ağırdır. Bu bozonların kütleleri önemlidir; çünkü bunlar zayıf nükleer 

kuvvetin menzilini sınırlar. Elektromanyetik kuvvetin menzili sonsuzdur; 

çünkü bu kuvvetin bozonu (foton) kütlesizdir. 

Her üç türün de spini 1'dir. 
+W  veya −W  bozonlarının salınımı, salınımı yapan parçacığın 

elektrik yükünü 1 birim artırır veya azaltır, ayrıca spini de 1 birim 

değiştirir. Aynı şekilde bir W  bozonu parçacığın neslini de değiştirir; 

örneğin garip kuarkı, yukarı kuarka dönüştürür. Z  bozonu, parçacığın 

elektrik yükünü veya başka herhangi bir yükünü (acayiplik gibi) 

değiştirmez, sadece spin ve momentumda etkilidir. Bu yüzden o salınımı 

yapan parçacığın neslini veya çeşnisini asla değiştirmez. 

 Fotonun elektromanyetik kuvvetin taşıyıcı parçacığı olması gibi 

W  ve Z  bozonları da zayıf nükleer kuvvete aracılık eden taşıyıcı 

parçacıklardır. W  bozonunun radyoaktif bozunumdaki rolü önemlidir. 

http://tr.wikipedia.org/wiki/Spin
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Örneğin süperizinli Fermi beta bozunması yapan çekirdeklerden bir 

tanesi Magnezyum-26 için beta bozunumu şöyledir: 

 

 eeAlMg ν++→ −26
13

26
12  

 

Nötron, elektron ve nötrino yayımlayarak bir protona (beta parçacığı) 

dönüşür. 

 eepn ν++→ −  

 

 

 

 

 

 

 

 

 

 

 

 

 
Şekil 5.1 Beta bozunumunun Feynman diagramı. 

 

 

Peki bu bozunma acaba nasıl gerçekleşmektedir: Nötron temel parçacık 

değildir; bir yukarı kuark ve iki aşağı kuarkın birleşiminden oluşur 

 

http://tr.wikipedia.org/w/index.php?title=Feynman_diagram%C4%B1&action=edit&redlink=1
http://tr.wikipedia.org/wiki/Resim:Beta_Negative_Decay.svg
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)(udd . Gerçekte protonun )(uud  formuna geçiş için aşağı kuarklardan 

( d ) biri beta bozunumunda etkileşime girerek yukarı kuarka (u ) 

dönüşür. En temel seviyede zayıf kuvvet tek kuarkın çesnisini değiştirir. 

Aşağı kuarkın ( d ) yukarı kuarka  (u ) dönüşümü sırasında bir ara vektör 

( −W ) bozonu yayınlanır.  

  
−+→ Wud  

 

Yayınlanan bu bozonun ömrü çok kısadır ve bu bozonda aşağıdaki 

şekilde bozunur; 

 

eeW ν+→ −− . 

 

Böylece eepn ν++→ −  bozunması gerçekleşmiş olur. Bu bozunmanın 

şematik gösterimi Şekil 5.1’de verilmiştir. 

1950’lerde kuantum elektrodinamiğinin olağanüstü başarısını 

takip eden süreçte, deneyler zayıf nükleer kuvvete benzer bir teorinin 

formüle edilmesi gerektiğini göstermiştir. 1968’de Sheldon Glashow, 

Steven Weinberg ve Abdus Salam elektromanyetizma ve zayıf 

etkileşimin birleşik teorisini öne sürmüşlerdir. Glashow, Weinberg ve 

Salam bu çalışmaları ile 1979'da Nobel Fizik Ödülü'ne layık 

görülmüşlerdir.  Onların elektrozayıf teorisi, beta bozunumunu açıklamak 

için W  bozonuna ek olarak ayrıca, o zamana kadar henüz 

gözlemlenmemiş olan Z  bozonunun da varolması gerektiğini 

öngörüyordu. 
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Fotonlar kütlesiz iken W  ve Z  bozonlarının kütle sahibi olması 

elektrozayıf teorinin gelişimi yönündeki büyük engellerden biriydi. Bu 

parçacıklar SU(2) ayar teorisi tarafından doğru bir şekilde tanımlandı, 

ancak gauge teorisindeki bozonlar kütlesiz olmalıydı. Bu noktada 

fotonlar kütlesizdir; çünkü, elektromanyetizma U(1) gauge teorisi 

tarafından tanımlanır. W  ve Z  bozonlarına kütle kazandırılabilmesi için, 

SU(2) simetrisinin kırılmasını sağlayacak bir mekanizma gereklidir. 

Açıklamalardan biri 1960’ların sonunda Peter Higgs tarafından öne 

sürülen, Standart Model'in öngördüğü temel parçacıklara kütle 

kazandırmak amacıyla tasarlanmış olan Higgs mekanizmasıdır. Bu 

açıklama ayrıca yeni bir parçacık Higgs bozonunun da varlığını 

öngörmektedir. 

SM'in varlığını öngörduğu ama henüz keşfedilmemiş bir parçacık 

olan Higgs bozonu halen yüksek enerjili parçacık çarpışmalarının 

yapıldığı deneyler ile aranmaktadır. Higgs bozonu teorik olarak temel 

parçacıklar ile kütleli kuvvet taşıyıcılarının kütle kazanması için gerekli 

bir parçacıktır.  

 
 
5.3 CKM Matrisi ve Üniterliği 

 

 Standart modelde karşılaşılan bir küçük zorluk, farklı ailelerde 

aynı yerde olan kuarkların birbirlerine karışmalarıdır. Mesela d, s ve b 

birbirine karışırlar. Bu karışım matematiksel olarak 3x3 bir üniter 

matrisle ifade edilir. 2 aileli durum için ilk defa Nicola Cabibbo 

(Cabibbo, 1963) tarafından yazılan bu matris, 3 aileli duruma Makoto 

Kobayashi ve Toshihide Maskawa (Kobayashi and Maskawa, 1973) 

http://tr.wikipedia.org/w/index.php?title=Ayar_teorisi&action=edit&redlink=1
http://tr.wikipedia.org/w/index.php?title=Higgs_mekanizmas%C4%B1&action=edit&redlink=1
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tarafından genelleştirdiği için onların isimlerinin baş harfleri ile anılır: 

“CKM matrisi”. 

 CKM kuark karışım matrisi, güçlü etkileşmeli kuark özdurumları 

ile zayıf etkileşmeli kuark özdurumları arasındaki dönüşümü temsil eder 

ve şu şekli alır; 
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 CKM matrisi üç tane karışım açısı ve bir CP-bozucu faz 

tarafından parametrize edilir. Birçok olası parametrizasyon vardır. Bu 

parametrizasyonlardan standart olanı ( Gilman, 2004); 
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şeklindedir. Burada ijijs θsin= , ijijc θcos=  yi temsil eder. Ayrıca, δ , 

standart modelde çeşni değişim prosesindeki bütün CP-bozucu 

olaylardan sorumlu KM fazı olarak adlandırılır (Kobayashi and 

Maskawa, 1973). ijθ  açıları birinci bölgeden seçilebildiğinden, 0, ≥ijij cs  

olur. 

 Deneysel olarak 1122313 <<<<<< sss  olduğu bilindiğinden bu 

sıralamayı Wolfenstein parametrizasyonunda kullanmak uygundur. 13s , 
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23s  ve 12s  şu şekilde tanımlanır (Wolfenstein, 1983; Buras et al., 1994; 

Charles et al., 2005); 
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Bu terimler, )/()()( ∗∗−=+ cbcdubud VVVViηρ  ifadesinin faz kuralından 

bağımsız olmasını sağlarlar. Ayrıca, λ , A , ρ  ve η  terimleri cinsinden 

yazılan CKM matrisi λ ’nın bütün mertebeleri için üniter olmaktadır. ρ  

ve η  tanımları literatürdeki bütün yaklaşım sonuçlarından tekrar elde 

edilebilirler. Yani )21( 2 …+−= λρρ şeklindedir ve CKMV , 4λ  mertebe 

terimlere kadar ya ρ ve η  terimleri ile ya da çok kullanılan şekliyle; 

 

)(
1)1(

21
)(21

4

23

22

32

λ
ληρλ

λλλ
ηρλλλ

O
AiA

A
iA

VCKM +
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−−
−−

−−
=  (5.4) 

 

şeklinde yazılabilir. 

 CKM matrisinin elemanları standart modelin temel 

parametreleridir ve dolayısıyla bunların tam çözümlenmesi önemlidir. 
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CKM matrisinin üniterliği jk
i

ikijVV δ=∑ ∗  ve ik
j

kjijVV δ=∑ ∗  şeklinde 

gösterilir. Bunlardan, değerleri sıfır olan altı kombinasyon üçgenler ile 

komplex düzlemde temsil edilebilir ve her biri komşu satırlar veya 

sütunların skaler çarpımı ile elde edilenleri neredeyse dejeneredir.  

 

 

 

 

 

 

 

 

 

 

 
   Şekil 5.2 Üniterlik üçgeni (Yao, 2006). 

 

  

En çok kullanılan üniterlik üçgeni,  
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ifadesinin her bir tarafının, en iyi bilinen ∗
cbcdVV ’ ye bölünmesiyle elde 

edilir (Şekil 5.2). Bu üçgenin köşeleri, (0,0), (1,0) ve (5.3) denkleminde 

tanımlanan ( ρ ,η ) şeklindedir. Kuark fiziğinin önemli amaçlarından biri 
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CKM matris elemanlarına kısıtlama getirmektir. Birçok ölçüm  ρ , η  

düzleminde uygun bir biçimde gösterilebilir ve kıyaslanabilir. 

 CKM matrisinin üniterliğinin test edilmesi şuan ki standart 

modelin temel parçacıklarının da doğruluğunun test edilmesidir. Bu 

matrisin dokuz elemanı arasında birçok değişik ilişki vardır ve bunlar 

deneylerle test edilmektedir. Burada udV  sadece birinci jenerasyondaki 

kuarklara bağlıdır ve büyük doğrulukla belirlenebilmektedir. Beta 

geçişlerinde aşağı ve yukarı kuark arasındaki geçiş incelendiği için 

yukarı-aşağı kuark geçişlerini temsil eden matris elemanı udV ’dir. Bu 

matrisin üniterliğini test etmek için en üst satırdaki elemanların 

karelerinin toplamını almak yeterlidir. Üniterlik koşulu (Cabibbo, 1963; 

Kobayashi and Maskawa, 1973); 

 

 1222 =++ ubusud VVV       (5.6) 

 

şeklindedir. Eğer sonuç bu şekildeyse matris üniterdir. Bu sonucun 

sağlanmasında bu üç terim içinden en büyük katkı udV ’den gelmektedir. 

Dolayısıyla udV  ne kadar doğru hesaplanırsa, yukarıdaki matrisin de 

üniterlik şartını şağlayıp sağlamadığı o kadar doğru bir şekilde 

yapılabilir. udV ’nin değeri üç yolla bulunabilir: birincisi nükleer 

süperizinli Fermi beta geçişleri; ikincisi serbest nötron geçişi ve 

üçüncüsü de pion beta geçişidir. Önce kısaca sırasıyla serbest nötron ve 

pion beta geçişlerine bakılırsa; 
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 a-) Serbest Nötron Geçişi : Serbest nötron geçişinin nükleer 

yapıya bağlı düzeltme terimleri olmadığı için süperizinli beta geçişine 

göre avantajları vardır. Fakat diğer taraftan süperizinli beta geçişine göre 

deneysel sonuçlardan kaynaklanan üç kat daha büyük hata bandı vardır 

(Towner and Hardy, 2003). Örneğin süperizinli beta geçişine göre; 

 0005.09740.0 ±=udV  

şeklinde hesaplanırken serbest nötron geçişine göre; 

 0016.09745.0 ±=udV  

şeklinde hesaplanmaktadır (Towner and Hardy, 2003). 

 

 b-) Pion Beta Geçişi : eve++ → 0ππ  şeklindedir. Elektrik yüklü 

+π ve −π   )( du  ve )( ud çiftlerinden, yüksüz 0π  ise 2/)( dduu −  

birleşimi şeklinde kuark, karşıt-kuark çiftlerinden oluşur (Cottingham 

and Greenwood, 2001). Pion beta geçişi de aynı serbest nötron geçişinde 

olduğu gibi nükleer  yapıya bağlı düzeltme terimlerinin olmaması 

nedeniyle avantajlıdır. Fakat pion beta geçişinin hata bandı serbest nötron 

geçişinden daha da büyüktür.  

 0161.09670.0 ±=udV  

şeklindedir (Towner and Hardy, 2003). 

 

c-) Süperizinli Beta Geçişi: Bölüm 3.2 de süperizinli beta geçişleri 

detaylı bir şekilde anlatılmıştı. (3.15) denklemini süperizninli beta 

geçişleri için ( 0=AG  olur) tekrar yazacak olursak; 
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 22
FV MG

Kft =       (5.7) 

 

şeklindedir. Burada, 

 

sGeVcmcK e
4105236 10)012.0271.8120()/(2ln2)/( −−×±== == π , 

 

değerini alır. Bu denklem, düzeltme terimleri gözönüne alınarak ve 

yukarıdaki halinden farklı olarak (Towner and Hardy, 1998) aşağıdaki 

gibi ifade edilmiştir. Çekirdeğe bağlı düzeltmeler deneysel ft  değerinden 

elde edilmelidir. Düzeltme terimlerinin eklenmesiyle modifiye edilen ft  

değerleri; 

 

 
)1(2

)1)(1( 2 V
RV

CR G
KftFt

Δ+
=−+≡ δδ    (5.8) 

 

şeklindedir. Burada, Ft  düzeltilmiş ft , f istatistiksel oran fonksiyonu 

ve t  de geçişin yarı ömrüdür. Cδ , Rδ  ve V
RΔ  sırasıyla, izospin 

simetrisindeki kırılma düzeltmesi, radyatif düzeltme ve çekirdekten 

bağımsız radyatif düzeltmedir. Radyatif düzeltme iki kısma ayrılabilir; 

 

 NSRR δδδ +′= .      (5.9) 

 

Buradaki birinci terim Rδ ′ , elektronun maksimum enerjisinin bir 

fonksiyonu olup nükleer yapıdan bağımsızdır. İkinci terim, NSδ , nükleer 
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yapıya bağlıdır. Bu terimler kullanılarak (5.8) denkleminin sol tarafı şu 

şekilde yazılabilir; 

 

 )1)(1( CNSRftFt δδδ −+′+≡ .    ( 5.10) 

 

 (5.10) denkleminin birinci kısmı nükleer yapıdan bağımsız, ikinci kısmı 

ise nükleer yapıya bağlıdır.  

 Elektrozayıf teoride, Fermi ve vektör çiftlenim sabitleri arasında  

 

 udFV VGG =        (5.11) 

 

şeklinde bir ilişki vardır. Fermi çiftlenim sabiti, FG , müon beta 

geçişinden elde edilir ve değeri; 

 

 
( )

25
3 1016639.1 −−×= GeV

c
GF

=
 

 

şeklindedir.  (5.8) ve (5.10) denklemlerinden udV  matris elemanının 

karesi  şu şekilde elde edilir; 

 

 
FtFtG

KV
F

ud
)6(38.2984

2 2
2 == .     (5.12) 
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5.4 Radyatif (Işınsal) Düzeltmeler 

 

 Radyatif düzeltmeler, bozunan nükleon ve yayınlanan pozitronun 

dış elektromanyetik alan ile etkileşmesinden kaynaklanmaktadır. 

Radyatif düzeltmeler, αZ  cinsinden bir pertürbasyon serisi ile 

açıklanabilir. Bu serideki nmZ α ’lı terimlerde nm ≤  şeklindedir. En 

büyük düzeltmeler, istatistiksel oran fonksiyonu f  ve izospin 

kırılmasının düzeltmesi Cδ  içindedir. Bunların dışında var olan 

düzeltmeler de Rδ  ve V
RΔ  içindedir. Bu düzeltmelerin nedenini 

açıklamak ve hesaplarda nasıl bir öneme sahip olduklarını anlamak için 

Şekil 5.3’ü incelemek gerekir. 

 Elektromanyetik etkileşmelerin ihmal edildiği, beta bozunma 

süreci (proton, nötron, pozitron ve nötrino içeren) Şekil 5.3-(a)’da 

gösterilmiştir. Bunu takip eden diğer şekiller (b, c, d ve e) 

elektromanyetik etkileşmelerden dolayı meydana gelen modifikasyonları 

anlatırlar.  

Şekil 5.3-(b) ve Şekil 5.3-( b′ ) , pozitronun ürün çekirdeğin statik 

Coulomb alanı ile etkileşmesinin düzeltmesini ifade eder. Bu etkiler 

sırasıyla αZ , 22Z α  mertebesindedir. Hem bu iki mertebedeki etki hem 

de daha yüksek mertebeden nmZ α  ile orantılı etkiler, uygun Coulomb 

alanında bir pozitron için Dirac denkleminin çözülmesiyle elde edilen 

pozitron dalga fonksiyonunun kullanımıyla hesaplanan f ’ye dahil 

edilmiştir.  

 Şekil 5.3 (c) ve Şekil 5.3 ( c′ ), statik Coulomb alanı ile bozunan 

nükleon arasındaki etkileşmeler için benzer düzeltmeleri gösterir. Bu 
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düzeltmeler genellikle nükleer yapı hesaplarının bir parçası olarak alınır 

ve Cδ  düzeltme terimini oluşturur. Gerçekten, Fermi etkileşmesinin 

doğasından dolayı, 22Z α  mertebesindeki terimin Cδ ’nin en etkili terimi 

olması sonucu Şekil 5.3 (c)’nin katkısı sıfırdır.  

 Şekil 5.3 (d)’de gösterilen, α  mertebesinde olan düzeltme, 

radyatif düzeltmelerin en büyük bileşeni olan Rδ  ve V
RΔ  düzeltmelerine 

katkı yapar. Burada gösterilen hem bir Z  vektör bozonun hem de bir 

fotonun hadron ve pozitron arasındaki değiş-tokuşudur (Sirlin, 1974). Bu 

iki etkinin toplamının yapılabilmesi için, sadece müon ve nükleer beta 

bozunmasının radyatif düzeltmelerinin arasındaki farkın hesaplanmasına 

gerek vardır. Çünkü sonuç olarak bu iki bozunma, evrenselliğin bir testi 

olarak karşılaştırılacaktır.  α  mertebesindeki radyatif düzeltme; 

 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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⎠

⎞
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⎝

⎛
+=

A

Z

P
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m m

m
m
m

EEgR ρ
π

αα 3ln3,
2

  (5.13) 

 

şeklindedir. Buradaki ( )mEEg ,  ifadesi, Sirlin tarafından gösterilen 

evrensel bir fonksiyondur (Sirlin, 1967; denklem 20b). Bu fonksiyon 

bütün elektronların enerjisi E  üzerinden ortalamadır ve sadece mE  

maksimum enerjiye bağlıdır. Burada Zm , Z vektör bozonun kütlesidir. 
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Şekil 5.3 Beta bozunmasında, radyatif düzeltmelerin Feynman Diyagramları ile  

  gösterilmesi (Hardy and Towner, 1975). 
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Şekil 5.3 Beta bozunmasında, radyatif düzeltmelerin Feynman Diyagramları ile  

   gösterilmesi (Hardy and Towner, 1975) (devamı). 

 

Yukarıdaki denklemin üçüncü terimi aksiyal-vektör akımından elde edilir 

ve modele bağlıdır. ρ  parametresi kuark modelin yapısına bağlıdır (dört 

kuarkın tamsayı yükleri için ρ =1 ve üç renkli dörtlüler için  31=ρ ). 

Am  değiş-tokuş aksiyal-vektör mezonunun kütlesidir. 

 α  mertebesinde radyatif düzeltmelere katkı getirebilen birçok 

şekil çizilebilir. Bu düzeltmeler diğerlerine dahil edilmemişlerdir. Çünkü 

bunlar, ya müon bozunmasına özdeş düzeltmeler yaparlar (yani foton, ara 

vektor bozon ve pozitron arasında değiş-tokuş edilir), yada katkıları 

(d) 

(e) 

eυ  

+e  

 

x 

eυ  

+e  

 

eυ  

+e  x 
+ + . . . 

( e′ ) 
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ihmal edilir (yani ara vektör bozonu statik Coulomb alanı ile 
2)( WP mmZα mertebesinde etkileşmeye neden olur). 

 Yüksek mertebeden düzeltmelere bakılacak olursa; 2αZ  

mertebesndeki en büyük katkı Şekil 5.3 (e)’de gösterilmiştir. Bu 

mertebedeki ve 32αZ  mertebesinde benzer şekiller Jaus (Jaus, 1972) 

tarafından elde edilmiştir. 

 α , 2αZ  ve 32αZ  mertebesinden radyatif düzeltmeler; 

 

 
322 ααα δδδδ Z

R
Z
RRR ++=  ,     (5.14) 

 

 
π

αδ α

2
=R ( )mEEg , ,      (5.15) 
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şeklindedir (Hardy and Towner, 1975). α  ertebesindeki düzeltmenin αδ R  

ve V
RΔ ’ye ayrılması ile çekirdeğe bağımlı bütün terimler Rδ  içinde 

gruplandırılabilir. 

 2αZ  ve 32αZ  mertebesindeki en büyük düzeltmeler eklenmesine 

rağmen, fotonun hadron veya ara bozon ile etkileşmesini gösteren bu 

mertebedeki şekiller açık bir şekilde hesaplanamaz. Bu nedenle 

hesaplanan radyatif düzeltmelere 2αZ  mertebesindeki düzeltmeler dahil 

edilmeyebilir. 

 Bir önceki bölümde (5.9) denklemiyle radyatif düzeltmenin 

 

 NSRR δδδ +′=  

 

şeklinde ikiye ayrıldığı anlatılmıştı. Buradaki  Rδ ′  düzeltmesi, sadece 

elektronun enerjisine ve ürün çekirdeğin yüküne bağlı bir fonksiyon olup, 

nükleer beta geçişine bağlı fakat nükleer yapıdan bağımsız radyatif 

düzeltme olarak adlandırılır. V
RΔ  düzeltmesi ise çekirdekten bağımsız 

düzeltme olarak adlandırılır. Marciano ve Sirlin bu düzeltmeleri biraz 

daha geliştirmişlerdir (Marciano and Sirlin, 1984; Marciano and Sirlin, 

1986); 

 ( )[ ]322
δδ

π
αδ ++=′ mR Eg ,     (5.19) 

 

büyük mE  için, 
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şeklinde ifade etmişlerdir. Çekirdekten bağımsız düzeltme için; 
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şeklinde ifade etmişlerdir. Burada mE , beta bozunması için maksimum 

elektron enerjisi,  Wm , Pm ve Zm  sırasıyla W  bozon, proton ve Z  

bozonun kütlesidir. 2δ  ve 3δ  ise sırasıyla 2αZ  ve 32αZ  mertebesindeki 

düzeltmeleri temsil eder.  

C  ise, düşük enerji bileşeni olarak adlandırılır ve  Born yaklaşımı 

gibidir; 

 

 885.0))(266.0(3 =+=→ npABorn gCC μμ .   (5.23) 

 

Burada Ag =1.26, aksiyal vektör çiftlenim sabiti; )( np μμ + =0.88, 

nükleon izoskaler manyetik momentidir. 

 gA  ise küçük bir pertürbatif düzeltmeye karşılık gelir ve şu değeri 

alır (Marciano and Sirlin, 1986); 
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 gA =-0.34.       (5.24) 

 

 Çekirdekten bağımsız düzeltme teriminin değeri ise (Marciano 

and Sirlin, 1986; Sirlin, 1994); 

 

 V
RΔ =2.40(8)%       (5.25) 

 

olur. 

 Daha sonra Towner ve Hardy, radyatif düzeltmeler üzerinde bazı 

terimlerde ayırmalar yaparak Rδ ′  terimini şu şekilde ifade etmişlerdir 

(Towner and Hardy, 2008); 

 

 ( )[ ]2322 α
δδδ

π
αδ +++=′ mR Eg .    (5.26) 

 

Bu yeni eklenen 2α
δ  terimi ile çekirdekten bağımsız düzeltme teriminin 

yeni değerini de şu şekilde elde etmişlerdir (Towner and Hardy, 2008); 

 

 V
RΔ =2.361(38)%.      (5.27) 

 

 (5.9) denklemine tekrar bakılacak olursa; 

 

 NSRR δδδ +′= , 
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buradaki birinci terimin nükleer yapıdan bağımsız radyatif düzeltme 

olduğu ve (5.20) denklemindeki şekliyle ifade edildiği yukarıda 

anlatılmıştır. İkinci terim olan NSδ  terimi ise radyatif düzeltmelerin 

nükleer yapıya bağlı terimi olarak adlandırılır. Süperizinli geçişler için 
+0 durumları arasındaki saf vektör etkileşmelerden bahsedilmesine 

rağmen, aksiyal-vektör etkileşmeleri radyatif düzeltmelerde rol oynar. 

Bir aksiyal-vektör etkileşmesi bir nükleonun spinini çevirir ve bunu 

elektromanyetik etkileşmenin spini tekrar eski haline çevirmesi izler. C  

ile gösterilen bu aksiyal katkı, aynı nükleon veya ayrık iki nükleonda 

meydana gelen ister zayıf isterse elektromanyetik etkileşmelere bağlı iki 

kısma ayrılabilir (Towner and Hardy, 2002);  

 

 NSBorn CCC += ,      (5.28) 

 

 NSNS C
π
αδ = .       (5.29) 

 

Buradaki BornC  terimi, Born grafiğinde gösterilen, aynı nükleonda 

meydana gelen aksiyal vektör ve elektromanyetik etkileşmeleri temsil 

eder. Bu terim evrenseldir, yani bütün nükeonlar için sabittir (denklem 

5.23). Dolayısıyla,  NSδ  terimi içinde yer almaz fakat denklem 5.22’de 

görüldüğü gibi çekirdekten bağımsız radyatif düzeltme , V
RΔ  içinde yer 

alır. NSC  terimi, farklı nükleonlarda meydana gelen aksiyal vektör ve 

elektromanyetik etkileşmeleri temsil eder. Bu terimin hesapları, nükleer 

yapının detaylarına bağlıdır. 
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5.5 Cδ , İzospin Simetrisindeki Kırılma Düzeltmesi 

 

 Süperizinli beta geçişleri için, ana ve ürün çekirdek aynı izotopik 

spinin bileşenleridir ve herhangi bir Coulomb veya yüke bağlı nükleer 

etkilerin bulunmadığı durumda bunların dalga fonksiyonları özdeştir. 

Uygulamada, Coulomb kuvveti nükleer durumların izospin safsızlığını 

bozar ve nükleer matris elemanında değişiklik yapar. Bu değişiklikler 

aşağıdaki gibi bir düzeltme ile temsil edilir (Blin-Stoyle,1969; Towner 

and Hardy, 1973); 

 

 )1(22
CFM δ−= .      (5.30) 

 

Cδ ,  izospin simetrisindeki kırılma düzeltmesi olarak adlandırılır ve 

22αZ  mertebesindedir. Bölüm 3.2’de (3.21) denkleminde saf süperizinli 

Fermi beta geçişleri için matris elemanının karesinin değerinin 2 olduğu 

gösterilmiştir. Buradaki Cδ , bu 2 değerinden olan farklanmanın bir 

düzeltmesidir. 

 Fermi matris elemanı, Bölüm 4’te gösterildiği gibi ikinci 

kuantumlanma formunda ilk durum ( i ) ve son durum ( f ) olan izobar 

analog haller arasında tekrar yazılacak olursa (Towner and Hardy, 2008); 

 

 ifM F ±= τ ∑ ±
+

βα
βα βτα

,
iaaf ,   (5.31) 
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olur. Burada; +
αa , α   kuantum durumunda bir nötron yaratma operatörü, 

βa , β  kuantum durumunda bir proton yok etme operatörüdür. Tek 

parçacık matris elemanı βτα ± , bir radyal integral olup (Towner and 

Hardy, 2008); 

 

 ∫
∞

± ≡=
0 ,

2
, )()( αβαβαβα δδβτα rdrrrRrR pn   (5.32) 

 

şeklindedir. Eğer nötron ve proton radyal fonksiyonları )(rRn
α  ve 

)(rR p
β özdeş ise, radyal integral normalizasyon integraline indirgenir ve 

değeri αr =1 olur. 

 (5.28) denklemi )1( −A  parçacıklı bir sistem , π , için (Towner 

and Hardy, 2008); 

 

 ∑ +=
βπ

π
ααα ππ

,

riaafM F     (5.33) 

 

şeklinde yazılablir.  

 Eğer kesin bir izospin simetrisi varsa, yaratma ve yoketme 

operatörlerinin matris elemanları Hermitik olmalıdır; 
∗+= ππ αα afia .  

 İzospin simetrisindeki kırılma FM  matris elemanının değerine iki 

şekilde girdirilebilir; ya αa  ve +
αa ’nın matris elemanları Hermitik 

değildir, ya da radyal integrallerin değeri 1’e eşit değildir. Bu iki 



 150 

durumunda etkisi küçüktür.  İzospin simetrisindeki kırılma düzeltmesi şu 

şekilde yazılabilir (Towner and Hardy, 2008); 

 

 21 CCC δδδ += .      (5.34) 

 

Burada, 1Cδ , Coulomb ve diğer yüke bağlı nükleer kuvvetlerin etkisini 

temsil eder ki bu da ana ve geçişin yapıldığı çekirdeğin +0  durumlarının 

dalga fonksiyonlarının karışımına sebep olur. 2Cδ  ise Coulomb 

etkileşmesinin diğer etkisini içerir yani, nötron ve protonun uyarılma 

enerjileri arasındaki farka karşılık gelir.  

 1Cδ ’de radyal integrallerin değeri 1’e eşittir fakat matris 

elemanları Hermitik değildir, 2Cδ ’de ise matris elemanları Hermitiktir 

fakat radyal integrallerin değeri 1’den farklıdır.  

 Yüke bağlı düzeltmeleri temsil eden 1Cδ ’e bu düzeltmeler üç 

şekilde girdirilebilir. Birincisi, proton orbitallerinin tek parçacık enerjileri 

nötronlara göre yukarı veya aşağı kaydırılır. İkincisi, valans protonları 

arasına iki parçacık Coulomb etkileşmesi girdirilir ve böylece yüke bağlı 

düzeltmenin gücü ayarlanır. Üçüncüsü, 1=T  olan bütün proton- nötron 

matris elemanlarının değerini nötron-nötron matris elemanlarına göre %2 

arttıran bir yüke bağlı nükleer etkileşme tanımlanır. 

 Deneysel sonuçlar yukarıda anlatılanlardan farklı bir yol daha 

olduğunu göstermiştir. Eğer izospin kesin bir simetriye sahipse, ana 

çekirdekten +0 (T=1), ürün çekirdekteki ana çekirdeğin izobar analog 

haline geçiş olur, ürün çekirdekteki diğer +0  hallere geçişler yasaklıdır. 
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Fakat, izospin simetrisindeki kırılmasıyla diğer +0  hallere de geçişler 

olabilir. Bu durumda analog haller arasındaki Fermi geçiş matris 

elemanını karesi (Towner and Hardy, 2008); 

 

 )1(2 1
2

CFM δ−=       (5.35) 

 

değerini alır. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 152 

6. SONUÇLAR 

 
 
6.1 CKM Matrisinin Üniterliği 

 

 Parçacık fiziğindeki en önemli problemlerden bir tanesi, daha 

önceki bölümde de belirtildiği gibi, CKM matrisinin üniterliğidir. 

Parçacık fiziğinde standart modelin ötesi çok ilgi çeken, sıcak bir 

konudur (Gilman, 2001). Süperizinli Fermi beta geçişleri, zayıf 

etkileşmelerin özelliklerinin çok iyi bir şekilde açıklanmasını 

sağlamaktadır. Özellikle Cabibbo-Kobayashi-Maskawa (CKM) 

matrisinin, yukarı-aşağı (up-down) kuarklarla ilgili olan udV  elemanının 

hesaplanmasını sağlayan en iyi yollardan bir tanesidir.  

 Beta geçişlerinde geçiş, izobar çekirdekler arasında olmaktadır. 

Yani bir nötron protona veya bir proton nötrona dönüşmektedir. Nötron 

ve protonun iç yapılarına bakıldığında protonun 2 yukarı-1 aşağı 

)(uud kuarktan, nötronun ise 2 aşağı-1 yukarı )(ddu  kuarktan oluştuğu 

bilinmektedir. Dolayısıyla beta geçişleri incelendiğinde aslında bir yukarı 

kuarkın bir aşağı kuarka veya bir aşağı kuarkın bir yukarı kuarka 

dönüşmesi incelenmiş olur.  

 Bizim burada yaptığımız nükleer fiziğin parçacık fiziğine 

uygulanmasıdır. Amacımız, CKM matrisinin bir elemanı olan udV ’yi 

bulurken süperizinli beta geçişlerini kullanmak ve bu geçişlerde kırılan 

izotopik spin simetrisini de Pyatov Yöntemini (Pyatov and  Salamov, 

1977; Pyatov et al., 1979) kullanarak restore etmektir.   
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 Günümüze kadar, ±W  ara bozonların neden olduğu radyatif 

terimler iyi bir şekilde anlaşılmıştır (Sirlin, 1978; Marciano and Sirlin, 

1986). udV ’nin hesaplanmasındaki araştırmaların en önemli kısmı, 

modele bağlı olan geçiş matris elemanının hesaplanmasındaki izospin 

kırılmasının etkisi veya başka bir ifadeyle nükleer uyumsuzluktur. 

 Bu alanda, izospin kırılmasının düzeltilmesi konusunda birkaç 

aktif grup çalışmalarda bulunmaktadır. Towner-Hardy, Woods-Saxon 

dalga fonksiyonuna sahip kabuk modeli kullanarak izospin kırılması 

düzeltme teriminin değeri için bir çok hesaplama yapmıştır (Towner and 

Hardy, 1973; Hardy and Towner, 1975; Towner et al., 1977; Towner and 

Hardy, 2002). Ormand ve Brown, izospin kırılması için kabuk model ve 

Hartree-Fock hesaplamaları yapmıştır (Ormand and Brown, 1989; 

Ormand and Brown, 1995). Başka bir metot da Barker tarafından yapılan 

ve R-matris teorisine dayanan hesaplamalardır (Barker, 1992; Barker, 

1994). Başka bir çalışma da, Hartree-Fock hesaplarına eklenerek yapılan 

ve yük simetrisi ile yük bağımsızlığı düzeltmelerini RPA ile hesaplayan 

Sagawa ve arkadaşlarının yaptığı çalışmadır (Sagawa et al., 1996). 

Bunları, geniş shell model hesapları kullanılarak 10=A  olan çekirdek 

için Navrátil ve arkadaşlarının yaptığı çalışma izlemiştir (Navrátil et al., 

1997). Son olarak, Wilkinson, deneysel dataya bakarak elde ettiği  

ZFt −  grafiğinde, 0≈Z olacak şekilde ekstrapole ederek udV  hesabı 

için gerekli saf zayıf etkileşmeyi elektromanyetik etkileşmeden ayırmaya 

çalışmıştır (Wilkinson, 1993; Wilkinson, 2002-a) ve Wilkinson, CKM 

matrisinin üniterliğini göstermek için farklı grupların datalarını 

kullanarak bir çok çalışma yapmıştır (Wilkinson, 2002-b; Wilkinson, 

2003; Wilkinson, 2004; Wilkinson, 2005-a; Wilkinson, 2005-b). 
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Bir önceki bölümde, (5.12) denklemi ile udV ’nin aşağıdaki gibi 

olduğu gösterilmişti; 

 

 
Ft

Vud
)6(38.29842 = .      (6.1) 

 

Buradaki Ft ’nin  düzeltilmiş ft  değeri olarak adlandırıldığı ve aşağıdaki 

şekilde tanımlandığı da belirtilmişti (Towner and Hardy, 1998); 

 

 )1)(1( CNSRftFt δδδ −+′+≡ .    (6.2) 

 

 Amacımız, Pyatov Yöntemini kullanarak geçiş matris elemanı 

olan FM ’yi hesaplamak ve  )1(22
CFM δ−=  bağıntısından hareketle 

“izospin simetrisinin kırılma düzeltmesi” olan Cδ ’yi bulmaktır. 

Bulduğumuz bu sonucu önce (6.2) denkleminde yerine koyup Ft ’yi 

bulmak ve bulduğumuz bu sonucu da (6.1) denkleminde yerine yazarak 

udV ’yi elde etmektir. Daha sonra elde ettiğimiz sonucu (5.6) denkleminde 

yerine koyarak CKM matrisinin üniterliğini incelemektir. 

Hesaplamalarda Woods-Saxon potansiyeli için Chepurnov 

parametizasyonu (Soloviev, 1976) kullanılmıştır. Radyal kuantum 

numarası n ’nin 3,2,1,0=Δn  durumları için bütün nötron-proton 

geçişlerini içeren hesaplamalar baz alınmıştır. Hesaplamalar bilinen oniki 

süperizinli beta geçişi için yapılmıştır. 

 Önceki bölümlerde bahsedildiği gibi, izovektör teriminin neden 

olduğu izospin simetrisinin kırılmasının etkisi yok edilmelidir. Şu ana 
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kadar daha önceki çalışmalarda bu konuya değinilmemiştir. İzospin 

simetrisinin kırılmasının etkisi olan 1Cδ  şu şekilde hesaplanır; 

 

 )1(2 1
2

CFM δ−= .      (6.3) 

 

Bu hesapta  izovektör teriminin neden olduğu izospin kırılmasının etkisi 

mevcut değildir. Bu nedenle bu hesapla elde edilen sonuçlar güvenilir 

değerler olmayabilir. 1Cδ  için güvenilir sonuçlar elde etmek için, nükleer 

potansiyelin izovektör bileşeninin etkisinin arındırılması gerekmektedir. 

 Bahsedilen problemi çözmek için, bu çalışmada, Pyatov metodu 

kullanılmıştır. Matris elemanları, restore edilen hamiltoniyenler 

kullanılarak hesaplanmıştır. Böylece, denklem (6.3)’de verilen 1Cδ , 

sadece Coulomb etkileşmelerini içerecek şekilde elde edilmiştir. 

 Tablo 6.1’de süperizinli beta geçişi yapan oniki çekirdek için 

Pyatov yöntemi kullanılarak elde edilen matris elemanları hem çift 

etkileşmeli hem de çift etkileşmesiz olarak verilmiştir. Matris 

elemanlarının karelerinin değerleri (3.21) denkleminde gösterildiği gibi 2 

civarındadır. Tam 2’ye eşit olmaması doğaldır. Çünkü, sonucun tam 2 

olması ilk ve son durumun izospin durumları saf olduğu zaman 

geçerlidir. 

Tablo 6.2’de, bu çalışmada hesaplanan 1Cδ  değerleri ile daha 

önceki çalışmalarda hesaplanan sonuçlar karşılaştırma yapmak için 

verilmiştir. Tablo 6.2, (4.1) denklemindeki potansiyelin, izovektör 

teriminin etkisinin yok edilmesi ile ilgili bizim iddiamızı 
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doğrulamaktadır. Bu sonuca göre, elde edilen 1Cδ  değerleri, daha önceki 

çalışmalardakilerden nicelik ve nitelik olarak farklıdır.  

 

 Tablo 6.1 
2

IARM  için elde edilen sonuçlar. 

Geçişler 2
IARM  

 Çift Etkileşmesiz Çift Etkileşmeli 

BC 1010 →  1.97200 - 

NO 1414 →  1.98800 - 

MgAl 2626 →  1.99664 1.9918 

SCl 3434 →  1.99966 1.9898 

ArK 3838 →  2.00300 1.9850 

CaSc 4242 →  2.00284 1.9849 

TiV 4646 →  2.00438 1.9786 

CrMn 5050 →  2.00898 1.9726 

FeCo 5454 →  2.00490 1.9578 

ZnGa 6262 →  1.98568 1.8886 

GeAs 6666 →  1.99104 1.8576 

KrRb 7474 →  1.98968 1.8550 

 

 

Tablo 6.2’den görüldüğü gibi 1Cδ  negatif değerler de 

alabilmektedir. Buradaki süperizinli beta geçişleri açısal momentumları 
+0 ve izospinleri 1=T  olan izobar analog haller arasında olmaktadır.  
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Tablo 6.2 (%)1Cδ ’in değerinin literatürdeki hesaplar ile karşılaştırılması. 

Izobarlar (a) 

(%)1Cδ  

 

(b) 

(%)1Cδ
 

(c) 

(%)1Cδ
 

(d) 

(%)1Cδ
 

(e) 

(%)Cδ
 

(f) 

(%)1Cδ
 

BC 1010 →  1.399 - 0.070 0.008 -0.01 0.010 

NO 1414 →  0.578 0.01 0.050 0.038 0.22 0.050 

MgAl 2626 →  0.168 0.01 0.011 -0.002 0.27 0.040 

SCl 3434 →  0.017 0.06 0.049 0.002 0.34 0.105 

ArK 3838 →  -0.150 0.11 0.060 0.271 0.32 0.100 

CaSc 4242 →  -0.142 0.11 0.012 0.314 0.43 0.060 

TiV 4646 →  -0.219 0.01 0.022 0.006 - 0.095 

CrMn 5050 →  -0.449 0.004 0.009 0.002 - 0.055 

FeCo 5454 →  -0.245 0.005 0.015 0.011 0.46 0.040 

ZnGa 6262 →  0.716 - - - 1.56 0.330 

GeAs 6666 →  0.448 - - - 0.78 0.250 

KrRb 7474 →  0.516 - - - 0.70 0.130 
 
(a) (Çalık, Gerçeklioğlu and Salamov, 2009), 
(b) (Ormand and Brown, 1989), 
(c) (Barker, 1994), R-matris teorisi kullanılarak bulunan (%)1Cδ değerleri, 
(d) (Barker, 1994), sadece saf Coulomb CD (charge-dependent, yüke bağlı)  
     etkileşmesi kullanılarak bulunan (%)1Cδ değerleri, 
(e) (Sagawa et al., 1996), (%)1Cδ ’in tek başına değil, 21(%) CCC δδδ +=   
      değerleri, 

  (f) (Towner and Hardy, 2002). 
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Blin-Stoyle, Cδ  düzeltmesinin pozitif olması gerektiğini öne sürmüştür 

(Blin-Stoyle, 1969). Fakat Tablo 6.2’de bazı negatif değerler de elde 

edilmiştir (Çalık et al., 2009). Ancak,  Blin–Stoyle 4. bölümde anlatılan 

ve  (4.176) denklemiyle verilen toplam kuralını göz önüne almamıştır. 

Onun görüşü sadece kabuk ve Fermi gaz modeli ile sınırlıdır. Yani, 

kolektif etkileşmeleri düşünmemiştir. Bu çalışmada, ĥ  ile gösterilen ve 

(4.3) denklemiyle verilen restorasyon terimi, rezidüel kolektif kuvvetleri 

temsil etmektedir. Toplam kuralına göre iki tane sonuç çıkarabiliriz. 

Birincisi, Fermi beta geçişlerinin matris elemanları keyfi değerler alamaz 

yani, toplam kuralı matris elemanlarının değerini sınırlar. İkincisi, −β  ve 
+β  geçişleri birbirlerinden bağımsız düşünülemez, toplam kuralı her 

ikisini de içerir; 

 

0

22
2TMM

i

ii =
⎭
⎬
⎫

⎩
⎨
⎧ −∑ +− ββ

 

∑∑ +− +=
i

i

i

i MTM
2

0

2
2

ββ
.     (6.4) 

 

Toplam kuralına göre, süperizinli Fermi geçişlerinin matris 

elemanları 0T ’dan daha büyük değerlere sahip olabilir (Pyatov et al., 

1979), bu da  1Cδ ’in negatif değerler alabileceği anlamına gelir. Daha 

açık bir şekilde ifade etmek gerekirse; biz  )1(2 1
2

CFM δ−=  ifadesinden 

1Cδ  değerini hesaplıyoruz. Yani, 
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2
2 2

1
F

C

M−
=δ   

      

olmaktadır. Eğer bulduğumuz matris elemanının karesi 2’den büyükse 

1Cδ  değerimiz negatif değer almaktadır. (6.4) denklemine tekrar bakacak 

olursak, oradaki matris elemanlarının kareleri, olası bütün geçişlerin 

matris elemanlarının kareleri toplamıdır. Burada ana çekirdeğimiz için 

10 =T  olduğuna göre eşitliğin sağ tarafı  ∑ ++
i

iM
2

2
β

 halini alır. Ana 

çekirdekten +β  bozulması da olacağından, (6.4) denkleminin sağ tarafı 

2’den büyük olur. Dolayısıyla olası −β  geçişleri içinden en izinli 

olanının matris elemanının karesi de 2’den büyük olabilir. Bu durumda 

1Cδ   negatif değerler alabilir. Tablo 6.2’den görüldüğü gibi literatürdeki 

değerlerde de negatif sonuçlar vardır (Barker, 1994; Sagawa et al., 1996). 

(Sagawa et al., 1996)’da sadece toplam Cδ ( 21 CCC δδδ += ) değerleri 

verilmiştir. Bu da bize BC 1010 →  geçişindeki 1Cδ  değerinin negatif 

olduğunu göstermektedir. Bununla birlikte, Pyatov (Pyatov et al.,1979) 

CrMn 5050 →  ve FeCo 5454 →  geçişlerinde 1Cδ ’i negatif olarak bulmuştur. 

Deneysel ft  değerleri, Rδ ′ , NSδ , 1Cδ , 2Cδ  ve Ft  değerleri Tablo 

6.3’te listelenmiştir. Ft  değerleri denklem (5.10) kullanılarak 

hesaplanmıştır. 

 Tablo 6.3’deki onbir datanın ortalama Ft  değeri Şekil 6.1’de de 

gösterildiği gibi, 
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Tablo 6.3 Süperizinli Fermi beta geçişi yapan onbir çekirdeğin Ft  değerleri. ft , 

(%)Rδ ′ , (%)NSδ , (%)2Cδ  ve =Δv
R (2.361∓ 0.038)% değerleri (Towner and 

Hardy, 2008)’den alınmıştır. V
RΔ ’nin değeri, Ft ’yi ifade eden (5.10) denklemine 

eklenmiştir. 

 
Ana 

Çekirdek 
ft  (s) (%)Rδ ′   (%)NSδ  (%)1Cδ

 
(%)2Cδ  Ft (s) 

C10  3039.5(47) 1.679(4) -0.345(35) 1.399 0.165(15) 3103.0(51) 

O14  3042.5(27) 1.543(8) -0.245(50) 0.578 0.275(15) 3127.7(34) 

Alm26  3037.0(11) 1.478(20) 0.005(20) 0.168 0.280(15) 3140.7(19) 

Cl34  3050.0(11) 1.443(32) -0.085(15) 0.017 0.550(45) 3146.4(24) 

Km38  3051.1(10) 1.440(39) -0.100(15) -0.150 0.550(55) 3152.3(27) 

Sc42  3046.4(14) 1.453(47) 0.035(20) -0.142 0.645(55) 3148.8(30) 

V46  3049.6(16) 1.445(54) -0.035(10) -0.219 0.545(55) 3155.3(32) 

Mn50  3044.4(12) 1.445(62) -0.040(10) -0.449 0.610(50) 3155.0(30) 

Co54  3047.6(15) 1.443(71) -0.035(10) -0.245 0.720(60) 3148.4(35) 

Ga62  3075.5(14) 1.459(87) -0.045(20) 0.716 1.20(20) 3131.4(72) 

Rb74  3084.3(80) 1.50(12) -0.075(30) 0.516 1.50(25) 3137.5(132) 

    Ortalama Ft 3140.6(9) 

 

 

 )9(6.3140=Ft  s, 

 

olarak elde edilir (Çalık et al., 2009). Bu sonucu (6.1) denkleminde 

yerine yazarsak, 
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 )8(9502.02 =udV   

 

olur ve bunun da karakökü alınırsa 

 

)4(9748.0=udV  

 

olarak elde edilir (Çalık et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Şekil 6.1 Hesaplanan Ft  değerlerinin Z  ile değişimi. 
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Tablo 6.4 CKM  matrisinin  ( 222
ubusud VVV ++ ) üniterliği.  

 

( udV ) 

(Çalık et al., 2009) 

( usV ) ( ubV ) 

Elde Edilen 

Üniterlik 

( 222
ubusud VVV ++ ) 

0.9748(4) 0.2196(23) 
(a) 

0.0036(10) 
(a) 0.9985(13) 

0.9748(4) 0.2234(18) 
(b) 

0.00361(47) 
(b) 1.0001(11) 

0.9748(4) 0.2259(18) 
(c) 

0.00367(47) 
(c) 1.0013(11) 

0.9748(4) 0,2257(21) 
(d) 

0,00431(30) 
(d) 1.0012(12) 

 (a) (Towner and Hardy, 2003), 
 (b) (Wilkinson, 2005-a) 
 (c) (Hardy and Towner, 2005) 
 (d) (Yao, 2006) 

 

 

CKM  matrisinin  ( 222
ubusud VVV ++ ) üniterliği Tablo 6.4’te 

gösterilmiştir. Üniterlik için, ubV  ve usV ’nin sayısal değerleri (Towner 

and Hardy, 2003), (Wilkinson, 2005-a), (Hardy and Towner, 2005), 

(Yao, 2006)’dan alınmıştır. Herhangi bir keyfiyet katmamak için, CKM 

matrisinin üniterliğinin hesaplanmasında ubV  ve usV  elemanları için farklı 

datalar kullanılmıştır.   

 Tablo 6.4’ten elde edilen sonuçların ortalaması;  

 

=++ 222
ubusud VVV 1.0003(12)     (6.5) 
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Z

0 10 20 30 40

Ft

3090
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26mAl

34Cl

38mK 42Sc
46V

50Mn

54Co

62Ga

74Rb

14O

10C

şeklindedir (Çalık et al., 2009). Bu sonuç (Towner and Hardy, 2008)’deki 

sonuçla neredeyse aynıdır. 

Burada önemli olan bir nokta vardır; bu matris elemanları 

üzerinde parçacık fiziğinde kabul edilmiş ortak bir fikir yoktur. Farklı 

gruplar farklı dataları kullanmaktadır. Parçacık fiziğindeki bu datalar 

üzerindeki uyumsuzluk, üniterlik problemini doğrudan etkilemektedir. 

Denklem (5.6)’nın en büyük parçası udV ’dir, yani, üniterlik durumu daha 

çok udV ’nin hassaslığına bağlıdır. 

 Tablo 6.3’den görüldüğü gibi, bu çalışmadaki sonuçlar (Ormand 

and Brown, 1989)’daki gibi CVC (Conserved Vector Current-Korunumlu 

Vektör Akımı) hipotezi ile 0.06% seviyesinde uyumluluk göstermektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Şekil 6.2 Hesaplanan Ft  değerlerinin Z  ile kuadratik değişimi. 
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Şekil 6.3 Wilkinson’nun 
deneysel ft  değerlerin Z  ile 
değişimi (Wilkinson, 2002-a). 

Şekil 6.4 Cδ  ( Cδ  lerin 
ortalaması) düzeltmesi 
yapıldıktan sonraki  ft ’lerin 
Z  ile değişimi (Wilkinson, 
2002-a). 
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Bulduğumuz bu sonuçlar CVC hipotezi ile uyuşmakla birlikte, 

Tablo 6.3 ve Şekil 6.2, Ft  değerlerinin Z ’ye göre değişiminin, 

Wilkinson’un öngördüğü gibi (Wilkinson, 1993; Wilkinson, 2002-a), 

kuadratik bir şekilde değiştiğini göstermektedir. Wilkinson deneysel ft  

sonuçlarının Z  ile kuadratik olarak değiştiğini elde etmiştir (Şekil 6.3). 

Wilkinson nükleer uyumsuzluk düzeltmesini yaptıktan sonra da Ft ’nin 

kuadratik bir değişim izlediğini elde etmiştir, bu çok önemlidir. Fakat 

Wilkinson, Ft ’nin Z ’ye göre kuadratik bir şekilde davrandığını her 

çekirdek için elde ettiği Cδ  değerlerini doğrudan kullanmayarak elde 

etmiştir (Wilkinson, 2002-a). Nükleer uyumsuzluk için ilk önce ortalama 

değer kullanmış (Şekil 6.4), ikinci olarak da fluktasyon değerlerini 

Şekil 6.5 Cfδ  (fluktasyon 
değerlerinin  ortalaması) 
düzeltmesi yapıldıktan 
sonraki  ft ’lerin Z  ile 
değişimi (Wilkinson, 2002-a). 
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kullanmıştır (Şekil 6.5). Sonuç olarak, Wilkinson nükleer uyumsuzluk 

düzeltmesi için kendi hesapladığı değerleri doğrudan kullanmış olsaydı, 

Ft ’nin Z ’ye göre değişimini kuadratik olarak elde edemeyecekti. Bu 

çalışmada ise, herbir çekirdek için kendi nükleer uyumsuzluk düzeltmesi  

değerleri doğrudan kullanılmıştır. Bu durum, burada kullanılan metodun 

güvenilirliğini arttırmaktadır. 

 

 
 

 

 

 
Şekil 6.6 Bu çalışmadaki sonuçlar ile (Towner and Hardy, 2008)’deki sonuçların 

karşılaştırılması. 
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 Şekil 6.6’da, (Towner and Hardy, 2008) ve bu çalışmada 

hesaplanan Ft  değerleri karşılaştırma yapmak amacıyla birlikte 

verilmiştir. Yukarıda da bahsedildiği gibi 2Cδ  değerleri (Towner and 

Hardy, 2008)’den alınmıştır. Şekil 6.6, bizim 1Cδ  değerlerimizin Ft ’nin 

Z ile değişimini kuadratik hale getirdiğini göstermektedir. Sonuç olarak, 

buradaki önemli nokta 2Cδ ’yi değil, 1Cδ ’i doğru olarak hesaplamaktır. 

Çünkü, nükleer uyumsuzluğun hesaplanmasında, (Towner and Hardy, 

2008) ile bu çalışma arasındaki tek fark 1Cδ ’in sayısal değerleridir. 

 Burada ilginç olan başka bir nokta da, sadece (Towner and Hardy, 

2008)’de değil, diğer bir çok çalışmada da (Ormand and Brown, 1989; 

Barker, 1994; Ormand and Brown, 1995; Sagawa et al., 1996) 

kuadratiklikten bahsedilmemesidir.  

 Sonuç olarak, nükleer uyumsuzluk düzeltmesi için farklı bir metot 

kullanılarak farklı sayısal değerler elde edilmiştir. Böylece, nükleer 

kabuk potansiyelin izovektör kısmının etkisinin izolasyonun Pyatov 

metotu ile yapılmasının ne kadar önemli olduğu nükleer uyumsuzluk 

düzeltmesi hesaplarında görülmüştür. 
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6.2 Ana Çekirdeğin Taban Durumunun İzospin Safsızlığı ve IAR  

      Durumlarının İzospin Özellikleri 

 

 Bu bölümde, süperizinli Fermi beta geçişi yapan 10C, 14O, 26Al, 
34Cl, 38K, 42Sc, 46V, 50Mn, 54Co, 62Ga, 66As, 74Rb oniki çekirdeğin, ana 

çekirdeklerinin taban durumlarının izospin karışımları, IAR durumlarının 

izospin yapısı ve bu süperizinli geçişlerin Ft  değerleri çekirdekler 

arasındaki çift etkileşme (pairing) etkisi de gözönünde bulundurularak ve 

Fermi etkin etkileşme terimi özuyumlu bir biçimde eklenerek elde 

edilmiştir. 

Süperizinli beta geçişlerinden yararlanarak CKM matrisinin udV  

matris elemanının bulunmasının önemi bir önceki bölümde anlatılmıştır. 

Bundan başka, süperizinli beta geçişleri yapan çekirdeklerde IAR 

durumlarının izospin özelliklerinin belirlenmesi ve ana çekirdek taban 

durumunda izospin karışımının incelenmesi de oldukça önemlidir.  

İzospin karışımlarının etkileri, süperizinli Fermi beta geçişlerinde 

zayıf etkileşme sabiti VG ’nin bulunmasında, izobar analog rezonans 

durumların enerjisinin ve enerji genişliğinin bulunmasında ve 

izomultiplet seviyelerin enerjilerinin bulunmasında çok önemli rol 

oynamaktadır (Blin-Stoyle, 1973; Raman et al., 1975; Auerbach et al., 

1972; Lane and  Mekjian, 1973). İzospin karışımlarının doğru bir 

biçimde belirlenmesinin oldukça önemli olduğu açıktır. İzospin 

karışımına Coulomb potansiyeli neden olmaktadır. İzotopik invaryansın 

bozulması protonlar arasındaki karşılıklı elektromanyetik etkileşmenin 

sonucu ortaya çıkar. Daha doğrusu buna Coulomb potansiyelinin 

çekirdek boyunca değişmesi neden olur. Bu değişme çok küçük olduğu 
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için bütün çekirdeklerin düşük enerjili seviyelerinin izospin terimi iyi bir 

kuantum sayısıdır (Bohr and Mottelson,1969).   

Çekirdeklerin taban durumlarının izospin karışımları birçok farklı 

modelde hesaplanmıştır. Bunlardan bir tanesi 10 += TT  izospinli 

kolektif izovektör monopol uyarılmış durumlarının enerjilerini bulmak 

için kullanılan hidrodinamik modeldir (Bohr, Damgaard and Mottelson, 

1967). Bu modelde, izospin karışım oranları ZN =  olan çekirdeklerde, 
38Z  ile orantılı bir şekilde artmaktadır. Kabuk model kullanılarak 

yapılan hesaplar (Towner and  Hardy, 1973; Khadkikar and Warke, 

1969; Sliv and Kharitomov, 1965) büyüklük bakımından  Bohr and 

Mottelson’un öngördüğünden biraz daha büyük değerler almaktadır. 

İzospin karışımları üzerine teorik hesaplamalar  Hartree-Fock ve RPA 

veya Tamm-Dankoff  yaklaşımı yapılarak da yapılmıştır (Hamamoto and 

Sagawa, 1993; Colo et al., 1995). 

İzobar analog durumların özellikleri üzerine yapılan çalışmalar  

(Zaretskii and Urin, 1967; Gaponov and Lyutostanskii, 1972; . Fajans, 

1971; Birbrair and Sadovnikova, 1974; Sagawa et al., 1998)’de 

verilmiştir. (Zaretskii and Urin, 1967; Gaponov and Lyutostanskii, 1972; 

Fajans, 1971; Birbrair and Sadovnikova, 1974)’de IAR özellikleri, sonlu 

Fermi sistemi teorisi ile incelenmiştir. (Sagawa et al., 1998)’de ise 

IAR’nin genişliği ve izospin karışım oranları Feshbach izdüşüm metodu 

ile incelenmiştir. 

Yukarıdaki bahsedilen çalışmalarda, rezidüel etkileşme kabuk 

model potansiyeline özuyumlu bir şekilde bağlı değildir. Ortalama 

potansiyelde izovektör teriminin olması, rezidüel etkileşmenin onunla 

bağlı seçilmesini zorunlu kılar. Aksi taktirde sistemin başlangıçta izotop 
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invaryant olan Hamilton operatörünün çekirdek kuvvetleri ile ilgili 

kısmının izotopik invaryansı bozulur. Bu yüzden çekirdeklerin taban 

durumlarında istenmeyen izospin kirliliği meydana gelir. 

 Burada, başlangıçta ele alınan nükleer Hamiltoniyenin 

(elektromanyetik etkileşmeler olmadan) izotopik invaryansı restore 

edilecektir. 

 (Pyatov et al., 1979) ve (Babacan et al., 2004)’de Pyatov 

yöntemine (Pyatov and Salamov; 1977) dayanarak çekirdek 

hamiltoniyeninin izospin simetrisi restore edilmiş ve bu nedenle Fermi 

etkin etkileşme sabiti ortalama alan potansiyeli ile ilgili bir biçimde 

bulunmuştur. (Pyatov et al., 1979)’de çift etkileşme gözönüne alınmadan, 

çift-çift çekirdeklerin taban durumlarında Coulomb izospin karışımları 

hesaplanmıştır. (Babacan et al., 2004) ve (Kucukbursa, et al., 2004)’de 

ise Coulomb izospin karışımı ve IAR durumlarının izospin yapısı çift 

etkileşme gözönüne alınarak Pyatov yöntemi uygulanarak hesaplanmıştır. 

Bu çalışmada ise, çift etkileşme de gözönüne alınarak ve  Pyatov yöntemi 

uygulanarak, süperizinli Fermi beta geçişi yapan çekirdeklerde ana 

çekirdeğin taban durumunun Coulomb izospin karışımları, IAR 

durumlarının izomultiplet yapısı ve süperizinli beta geçiş Ft  değerleri 

incelenmiştir. Hesaplama sonuçları literatürdeki deneysel ve teorik 

değerler ile karşılaştırılmıştır.  

 Yukarıda isimleri belirtilen süperizinli Fermi beta geçişi yapan 

çekirdeklerin taban durumlarındaki 10 +T  isospin karışımlarının sözü 

edilen yöntemle hesaplanan değerleri Şekil 6.7’de hidrodinamik model 

hesaplamaları ile karşılaştırılmıştır. Şekilde homojen eğri ile çift 

etkileşmesiz hesaplama sonuçları, noktalı eğri ile ise çift etkileşme göz 
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önüne alınarak yapılan hesaplama sonuçları gösterilmiştir. Şekildeki 

diğer eğri ise hidrodinamik model sonuçlarını göstermektedir. Şekilden 

de görüldüğü gibi her üç durumda da (%)2b değeri Z  arttıkça 

artmaktadır. A ’sı küçük olan çekirdeklerde çift etkileşmesiz değerler ile 

çift etkileşmeli değerler bibirine çok yakındır. A  değeri arttıkça çift 

etkileşmesiz değerler ile çift etkileşmeli değerler arasındaki fark 

artmaktadır. İlk beş çekirdekte (C, O, Mg, S, Ar) her iki değer de 

neredeyse aynı iken Ca’dan sonraki değerlerde farklanma 

gözlemlenmektedir. Bu doğal bir sonuçtur. Burada etkili olan coulomb, 

izovektör ve çift etkileşme potansiyelleridir. İzovektör potansiyeli 

AZN /)( −  ile orantılıdır. A  değeri küçük olduğunda izovektor 

potansiyeli çift etkileşme potansiyelinden büyüktür. A  değeri arttıkça 

izovektor potansiyeli azaldığı (burada bütün çekirdekler için 

=− ZN sabittir) için çift etkileşme potansiyeli daha etkili hale gelir. 

IAR’nın izospin bileşenleri 0T , 10 +T  ve 10 −T ’ı temsil eden 

(%)(%),(%), 222 γβα  nin hesaplanan değerleri sırasıyla Şekil 6.8, Şekil 

6.9 ve Şekil 6.10’da verilmiştir. Bütün şekillerde düz çizgi çift 

etkileşmesiz hesapları, kesikli çizgi ise çift etkileşmeli hesapları temsil 

eder. 

 IAR durumuna 0T  izospin durumundan gelen katkıyı ifade eden 

(%)2α  büyüklüğünün Z ’ye göre değişim grafiği Şekil 6.8’de 

verilmiştir. İncelenen çekirdeklerin IAR durumlarına en büyük katkı  

(%)2α ’den gelmektedir. Bütün çekirdekler için, (%)2α ’den 90-99 %  

oranında katkı gelmektedir. Hem çift etkileşmesiz hem de çift etkileşmeli  
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Şekil 6.8 (%)2α ’nin Z ile değişimi. 

Şekil 6.7 (%)2b ’nin Z ile değişimi. 
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Şekil 6.9 (%)2β ’nin  Z ile değişimi. 
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Şekil 6.10 (%)2γ ’nin Z ile değişimi. 
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hesaplarda Z  arttıkça (%)2α ’nin değeri azalmaktadır. Bilindiği gibi 

Coulomb kuvvet 2Z  ile orantılıdır. Z arttıkça coulomb kuvvetinin değeri 

ve dolayısıyla etkisi arttığı için (%)2α nin azalması doğaldır. Şekilden de 

görüldüğü gibi, çift etkileşme göz önüne alındığında (%)2α değerleri çift 

etkileşmesiz değerlere göre bir miktar azalmaktadır. Bu sonuç, çift 

etkileşme göz önüne alındığında durum sayısının artması ve −β  geçiş 

gücünün bu durumlar arasında yeniden dağılımı sonucunda IAR 

değerinin azalması (bazı durumlarda ise bir birine yakın iki duruma 

bölünebilir) ile açıklanabilir.  

Şekillerden de görüldüğü gibi Şekil 6.7 ve Şekil 6.9 birbirinin 

aynısıdır. Eşitlik (4.181)’den görülebileceği gibi, (%)2b  yani, taban 

durumunun izospin karışımına 10 +T ’den katkı (%)2β  ile orantılı 

olduğu için bu sonuç doğaldır. Bizim sonuçlarımızda bu benzerliği 

doğrulamaktadır. Böylece, (%)2b  için geçerli olan fiziksel nicelikler 

(%)2β  için de geçerlidir. (%)2β ’den gelen katkı 0.1-4.5 % arasında 

değişmektedir. (%)2β  değerleri (%)2α  ve (%)2γ  değerlerine göre 

oldukça küçüktür.  

IAR durumuna 10 −T  izospin durumundan gelen katkıyı ifade 

eden (%)2γ  büyüklüğünün Z’ye göre değişim grafiği Şekil 6.10’da 

verilmiştir. (%)2γ  değerleri, (%)2α değerlerinden oldukça küçüktür. 

(%)2γ ’den gelen katkı 0.3-8 % arasında değişmektedir. (%)2γ değerleri 

Z arttkça hem çift etkileşmesiz hemde çift etkileşmeli durumda 

artmaktadır. Çift etkileşmenin göz önüne alınmasıyla hesaplanmış 
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(%)2γ  değerlerinin çift etkileşmesiz sonuçlara göre daha büyük olduğu 

şekilden açıkça görülmektedir. 

Şimdi de, yukarıda belirtilen  süperizinli beta geçişleri için Tablo 

6.1’de verilen matris elemanlarının doğrudan kullanılmasıyla ft  

değerlerinin, Bölüm 6.1’de anlatılandan farklı bir şekilde nasıl 

hesapladığını inceleyelim. 

 Deneysel ft ’nin  zayıf vektör çiftlenim sabiti VG ’ye şu şekilde 

bağlı olduğu (5.2) bölümünden bilinmektedir; 

 

 22
FV MG

Kft = .      (6.6) 

 

Burada, 

 

sGeVcmcK e
4105236 10)012.0271.8120()/(2ln2)/( −−×±== == π , 

 

 udFV VGG = ,       (6.7) 

ve 

 
( )

25
3 1016639.1 −−×= GeV

c
GF

=
 

 

oldukları da tekrar hatırlanacak olursa; 

 

 222
FudF MVG

Kft =       (6.8) 
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olur. udV ’nin değeri de  

 

 97418.0=udV  

  

(Towner and Hardy, 2008)’den yukarıdaki gibi alınır ve diğer ifadeler de 

(6.8)’de yerlerine yazılırsa; 

  

 2

33.6289

IARM
ft = .       (6.9)  

 

olur. 

Süperizinli Fermi beta geçişleri için hesaplanan ft  değerleri 

Tablo 6.5’de verilmiştir. ft  değerleri denklem (6.9) kullanılarak 

hesaplanmıştır. İkinci ve üçüncü sütunlar çift etkileşmeli ve çift 

etkileşmesiz olarak bizim yaptığımız hesapları göstermektedir. Diğer 

sütunlar, literatürdeki diğer hesaplamaları göstermektedir.  Tablo 6.1, çift 

etkileşmeli nükleer matris elemanın değerinin çift etkileşmesiz sonuçlara 

göre daha küçük olduğunu göstermekteydi. Böylece, Tablo 6.5’de verilen 

çift etkileşmeli ft  değerlerinin, çift etkileşmesiz değerlere göre daha 

büyük olduğu görülmektedir. Bu beklenen bir sonuçtur. Çünkü (6.9) 

denklemine göre 2
FM nin değeri azalırsa, ft ’nin artması doğaldır. 

 Atomik çekirdeklerin mikroskopik teorisinde, nükleer 

Hamiltoniyenin bazı önemli simetrileri kullanılan model tarafından 

kırılır. Bu çalışmada, izotopik simetri yani, nükleer kuvvetlerin yük 

bağımsızlığı Coulomb kuvvetleri tarafından kırılmaktadır. Bununla 
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birlikte, nükleer kabuk model Hamiltoniyenindeki izovektör terimi de 

izotopik invaryanslığı kırar. Bu kırılma doğal değildir ve bunun dalga 

fonksiyonlarındaki ve matris elemanlarındaki etkisinin giderilmesi 

gerekmektedir. Bu nokta literatürdeki çalışmalarda vurgulanmamıştır. 

Sözü edilen düzeltme, Pyatov restorasyon metodu kullanılarak 

gerçekleştirilmiştir. Bu restorasyon metodu, kabuk model potansiyeline 

ve rezidüel etkileşmenin ayrılabilirliğinin kabul edilmesine dayanır. 

Restorasyondan sonra model keyfi parametrelere bağlı kalmaz.  

 Tablo 6.1’den görüldüğü gibi, rezidüel kuvvetlerin (kolektif 

etkilerin) hesaba alınmasıyla, Coulomb karışımından dolayı geçiş matris 

elemanının karesinin değeri 2’den büyük olur. Yani, 1Cδ  negatif değerler 

alabilir. Bununla birlikte, bu sonuçlar sadece çift etkileşmesiz 

hesaplamalarda görülür. Çift etkileşmenin etkisi göz önüne alınınca, 1Cδ  

değerleri pozitif olacaktır.  

Tablo 6.5’ten görüldüğü gibi, çift etkileşmesiz hesaplardaki ft  

değerlerinin daha önceki çalışmalarla aynı mertebede olmasına rağmen, 

çift etkileşmeli ft  değerleri bunlardan daha büyük çıkmıştır. Sonuç 

olarak, çift etkileşmenin göz önüne alınması izobar analog haller 

arasındaki geçiş olasılığını azaltır.  

   

 

 



 169

Tablo 6.5 Süperizinli Fermi beta geçişleri için hesaplanan ft  değerleri. 

 Bu çalışma (a) (b) (c) (d) (e) (f) 

Geçişler Çift 

Etkileşmesiz 

Çift 

Etkileşmeli 
      

BC 1010 →  3189,28 - 3147.09 3146.75 3146.45 3154.4 3149.7 3125.8 

NO 1414 →  3162,95 - 3144.12 3145.63 3143.07 3142.0 3146.4 3144.1 

MgAl 2626 →  3149,96 3157,61 3145.04 3146.65 3145.11 3146.0 3148.3 3155.5 

SCl 3434 →  3145,20 3160,79 3143.81 3145.42 3144.29 3153.5 3148.9 3163.4 

ArK 3838 →  3139,96 3168,43 3144.22 3145.93 3144.60 3153.0 3147.8 3161.9 

CaSc 4242 →  3140,21 3168,59 3143.71 3149.41 3149.52 3150.8 3154.8 3158.6 

TiV 4646 →  3137,79 3178,68 3145.96 3148.49 3148.19 - 3153.5 3161.9 

CrMn 5050 →  3130,61 3188,35 3139.31 3144.81 3146.65 - 3153.1 3157.7 

FeCo 5454 →  3136,98 3212,45 3139.10 3144.91 3145.83 3147.6 3152.5 3165.8 

ZnGa 6262 →  3167,34 3330,15 3145.55 3131.39 - - - - 

GeAs 6666 →  3158,82 3385,73 - - - - - - 

KrRb 7474 →  3160,98 3390,47 3149.65 3156.99 - - - - 

178 
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(a) (Hardy and Towner,2005), 
(b) (Towner and  Hardy, 2008), 
(c) (Towner and  Hardy, 2002), 
(d) (Sagava, Van Giai, and Suzuki, 1996), 
(e) (Ormand and  Brown, 1995), 
(f) (Barker, 1994). 
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EKLER 

 

Ek.1 İkinci Kuantumlama 

 

 Özdeş parçacıklar birbirlerinin benzeri olduklarından, kendilerine 

özgü özelliklerinden birisiyle birbirlerinden ayırtedilemezler. Klasik 

mekanikte herhangi bir halde özdeş parçacıkları sıralamak olasıdır ve 

parçacıklar yörüngelerine göre ayırtedilebilirler. Fakat kuantum 

mekaniğinde yörünge kavramı yoktur. Parçacıkları birbirlerinde 

ayırtetmek olanaksızlaşır. Kuantum mekaniğinde özdeş parçacıkları 

birbirlerinden ayırtetmek için sistemin dalga fonksiyonundan yararlanılır 

(Erbil H.H., 1990). N  tane özdeş parçacıktan oluşan bir sistem, 

 

 ),,...,,,,( 2211 NNrrr σσσψψ =      (E1) 

 

şeklinde ifade edilir. Burada ),...,2,1( Niri =  yervektörleri, 

),...,2,1( Nii =σ  spinleri temsil eder. 1 ve 2 numaralı parçacıklar 

yerdeğiştirirse, 

 

 ),,...,,,,( 1122 NNrrr σσσψψ ′=′     (E2) 

 

olur. Yani; 

 

 ψψ P̂=′   

 



 181 

olur. Burada P̂ , 1 ve 2 numaralı parçacıkların yerlerini değiştiren 

operatördür. Bu operatörün üniter olduğu kabul edilir ve daha genel 

olarak parite operatörü olarak isimlendirilirse, 

 

 ψψψ ∓pP =ˆ       (E3) 

 

olur. Eğer 1+=p  ise böyle bir dalga fonksiyonuna çift pariteli veya 

simetrik fonksiyon adı verilir. Bu özelliklere uyan parçacıklar tamsayı 

spinlidir ve bozon ( foton, α parçacığı,…) olarak adlandırılır. Eğer 

1−=p  ise böyle bir dalga fonksiyonuna tek pariteli veya anti-simetrik 

fonksiyon denir. Bu özelliklere uyan parçacıklar ise yarım-tamsayı 

spinlidir ve fermiyon (elektron, proton, nötron…) olarak isimlendirilir 

(Erbil H.H., 1990). 

 N  tane parçacıktan oluşan bir sistemde herbir parçacığın dalga 

fonksiyonları φ  ile temsil edilirse toplam dalga fonksiyonu, 

 

 ( ) )()...2()1(,...,2,1 NN υβα φφφψ =     (E4) 

 

olur. Burada α , β , …, υ  sırasıyla 1, 2, …, N. parçacığın bulunduğu 

halleri temsil eder. (E4) denklemi aşağıdaki gibi de yazılabilir. 

 

 ( ) )()...2()1()1(
!

1,...,2,1 N
N

N
p

p
υβα φφφψ ∑ −=   (E5) 

 

ve 
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 (E6) denklemi “Slater” determinantı olarak isimlendirilir. 

Sistemde iki parçacığın yerdeğiştirmesi (E6) determinantındaki iki 

sütunun terdeğiştirmesine karşılık gelir. Bu ise determinantın işaret 

değiştirmesine neden olur (Erbil H.H., 1990). Bu determinantı daha basit 

görmek için iki parçacıklı bir sistem için yazılırsa; 

 

 ( )
)2()1(
)2()1(

!2
12,1

ββ

αα

φφ
φφ

ψ =  

  (
2

1
= )1(αφ )2(βφ - 2(αφ ) )1(βφ ) 

 

olur. 

 İkinci kuantumlama çok parçacıklı sistemler için oldukça 

kullanışlı bir yöntemdir. Yukarıda tanımlanan Slater determinantında 

birçok gereksiz bilgi vardır. Kuantum mekaniğinde özdeş parçacıkların 

ayırtedilememesinden dolayı ikinci kuantumlanmada dalga fonksiyonu 

yerine parçacık sayısı kullanılır. Dolayısıyla önemli olan, herbir )(kiφ  

),...,,( υβα=i , ),...,2,1( Nk =  durumunda kaç tane parçacık 

bulunacağıdır. Buda parçacık sayısı “ in ” ile temsil edilir. (E5)’teki dalga 

fonksiyonu, 
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 Annn ,...,, 21=ψ       (E7) 

 

olur. Fermiyonlar için 1,0=in  ve bozonlar için ∞= ,...,2,1,0in  

değerlerini alır. Dalga fonksiyonu yerine artık n  parçacık sayısı 

kullanılabilir. Burada ihtiyaç olan n ’nin sayısını değiştirecek olan bir 

operatördür; 

 

 1ˆ −= nna .       (E8) 

 

Bu durumlar normalize edilirse, 

 

 1ˆˆ11 ==−− + naannn  

 

olur. Yani aa ˆˆ + ’nin özdeğeri 1’dir. Fakat 0=n  olunca, 

 

 10ˆ −=a  

 

olur. Bu durum fiziksel olarak anlamlı olmaz. Dolayısıyla, 

 

 00ˆ =a  

 

olur. Fakat bu durumda da 

 

 00ˆˆ0 =+ aa  
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özdeğerine sahip olur. Bu da anlamlı olmaz. Öyleyse, 

 

 
11ˆ

1ˆ

++=

−=
+ nnna

nnna
      (E9) 

 

olur. Yukarıda tanımlanan â  operatörüne “parçacık yoketme 

operatörü” denir. Benzer şekilde +â  operatörüne de “parçacık yaratma 

operatörü” adı verilir. Bu operatörler arasındaki ilişkiler aşağıdaki 

şekildedir, 

 

 
[ ]
[ ]
[ ] 0ˆ,ˆ

0ˆ,ˆ
1ˆ,ˆ

=

=
=

++

+

aa
aa
aa

       (E10) 

 

ve 

 

 

{ }
{ }
{ } 0ˆ,ˆ

0ˆ,ˆ

ˆ,ˆ

=

=

=

++

+

ji

ji

ijji

aa

aa

aa δ

.       (E11) 

 

Bozonlar için; 

 

 Parçacık sayı operatörü; 

 

 aan ˆˆˆ +=        (E12) 
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şeklindedir. Ayrıca, 

 

 

11ˆ

1ˆ

ˆ

++=

−=

=

nnna

nnna

nnnn

      (E13) 

 

özellikleri vardır. 

 0=n  olan duruma “vakum” durumu denir. 00ˆ =a  şeklindedir. 

Ayrıca, 

 

 ( ) 0ˆ
!

1 na
n

n +=  

 

şeklinde verilir. Yaratma ve yoketme operatörleri arasında da  

 

 [ ] [ ] [ ] 0ˆ,ˆ,0ˆ,ˆ,ˆ,ˆ === +++
jijiijji aaaaaa δ (E14)  

 

bağıntıları geçerlidir. iii aan ˆˆˆ +=  olarak alınırsa, dalga fonksiyonu, 

 

 
( )∏

+

=
i i

n
i

i n
a

nnn
i

0
!

ˆ
,...,...,, 21  

 

olur. Ayrıca, 
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 ,...1,...,,,...,...,,ˆ 2121 −= iiii nnnnnnna  

 

 ,...1,...,,1,...,...,,ˆ 2121 ++=+
iiii nnnnnnna  

 

şeklinde ifade edilebilir. 

 

Fermiyonlar için; 

 

 Parçacık sayı operatörü bozonlardaki gibi; 

 

 aan ˆˆˆ +=   

 

şeklindedir. Diğer özellikler aşağıdaki gibidir. 

 

 
01ˆ,01ˆ,11ˆ

00ˆ,10ˆ,00ˆ

===

===
+

+

aan

aan
. (E15) 

 

 ,...1,...,,)1(,...,...,,ˆ 2121 −−= iiiii nnnnnnna σ , 

 

 ,...1,...,,,...,...,,ˆ 2121 +=+
iiiii nnnnnnna σ , 

 

 ( )∑−=
−

=

1

11
i

j
jn

iσ . 
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Ek.2 – −T̂  Operatörünün Elde Edilmesi  

 

 −β  geçişine neden olan −T̂  operatörü parçacık tasvirinde (4.4) ve 

(4.79) denklemlerinde aşağıdaki gibi ifade edilmişti.  

 

 ∑ +
−− =

pn

pn

nnpp

jj
mm

mjmjnnpp aamjtmjT
,
,

ˆˆˆˆ  

 

Bu denklemin nasıl elde edildiğini inceleyelim: 

 

 ∑=
n

nna ψψ        (E16) 

 

olan bir fonksiyon ve 

 

 ∫ ∗= dqff ψψ ˆ       (E17) 

 

gelişigüzel bir f  büyüklüğünün ortalaması ele alınsın (Landau and 

Lifchitz, 1963). (E16) eşitliği (E17)’de yerine yazılırsa; 

 

 ∫ ∑∑ ∗∗= dqafaf
m

mm
n

nn ψψ ˆ  

 

 ∫∑∑ ∗∗= dqfaaf mn
n m

mn ψψ ˆ  
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olur. Burada ∫ ∗≡ dqff mnnm ψψ ˆ  tanımlaması yapılırsa, 

 

 nm
n m

mn faaf ∑∑ ∗=       (E18) 

 

olarak elde edilir. Buradaki herbir nmf  değerine n  durumundan m  

durumuna geçişe karşılık gelen matris elemanı denir. 

 Şimdi de, 

 

 ∑=
a

afF ˆˆ        (E19) 

 

gibi bir fiziksel operatör ele alınsın (Landau and Lifchitz, 1963). Ayrıca, 

 

 ( ) ( ) ( )∑⎟
⎠
⎞

⎜
⎝
⎛= NPPP

N
NNN NN N

NNN
ξψξψξψψ ...

!
!!...!

21

2
1

21
,...,, 21121

  

 

olsun. iiN ψψ =  olur. (E19)’da yazılan ifadenin büyüklüğünün 

ortalaması; 

 

 ∫ ∗= ξψψ dfF ˆ  

 

 ∫ ∗= ξψψ dNfNF kkii
ˆ  
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 ( ) ( )∫ ∗= ξξψξψ dfNNF kiki
ˆ  

 

olur. ( ) ( )∫ ∗≡ ξξψξψ dff kiik
ˆ  tanımlaması yapılırsa, 

 

 kiik NNfF =       (E20) 

 

olur. Bu köşegen üzerinde olmayan matris elemanlarına karşılık gelir. 

Köşegen üzerindeki matris elemanları için; 

 

 iiii NfF =  

 

olarak elde edilir. 

 İkinci kuantumlama yaratma ve yoketme operatörleri tekrar 

hatırlanacak olursa; 

 

 1ˆ −= nnnai , 

 11ˆ ++=+ nnnai   

 =+ naa ii ˆˆ nn . 

 

Ayrıca, 

 iii Naa =+        ve        1+=+
iii Naa  
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şeklindedir. Bu operatörler kullanılırsa yukarıda elde edilen (E20) 

denklemi, 

 

  kiik aafF +=        (E21) 

 

ve (E19) denklemi, 

 

 ∑ +=
ki

kiik aafF
,

ˆ       (E22) 

 

olur. Bulunan bu sonuç kullanılarak aradığımız −T̂  operatörünü elde 

edelim; (E22) ifadesi 

 

 
2211

21
21

ˆˆˆˆ
22

,
,

11 mjmj

mm
jj

aamjfmjF ∑=     (E23) 

 

şeklinde yazılırsa ve burada alınan keyfi f̂  yerine −t̂  yazılırsa 

( ∑
=

−− =
A

i
itT

1
)(ˆˆ olduğuna göre F̂  operatörü de −T̂  olur); 

 

 
22112

21

21
21

1
ˆˆ,ˆ,ˆ

2222

,
,
,

1111 mjmjz

TT
mm
jj

z aaTTmjsltTTmjslT

zz

−− ∑=   (E24) 

 

olur. (E24)’teki T  toplam izotopik spindir ve değeri 
2
1 ’dir. Buna göre, 
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22112

21

21
21

1
ˆˆ

2
1,ˆ

2
1,ˆ

2222

,
,
,

1111 mjmjz

TT
mm
jj

z aaTmjsltTmjslT

zz

−− ∑=  

 

 
22112

21

21
21

121212121
ˆˆ

2
1ˆ

2
1ˆ

,
,
,

mjmjz

TT
mm
jj

zmmjjssll aaTtTT

zz

−− ∑= δδδδ   (E25) 

 

olur. Burada 
22

1ˆ
zTt− ifadesi incelenirse, 

 

 1
2
1)(

2
1ˆ

22
−=− zz TsabitTt   

 

olur. Eğer 
2
1

2
−=zT  olursa, 

2
31

2
−=−zT  olur. Bunun olması imkansızdır. 

Çünkü ZT  bileşeni  ya 
2
1

−  (proton) yada 
2
1

+ (nötron) olmalıdır. Buna 

göre 
2
1

2
=zT  olmalıdır. Yani, 

 

 
2
1

2
11

2
1

2
1)(

2
1ˆ

2
−=−=− sabitTt z  

 

olur. Öyleyse, 
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2
1

2
1

1
−== pTz  , 

2
1

2
1

2
== nTz  

 

olur. Yani (E24) denklemindeki proton→1  ve nötron→2 ’a karşılık 

gelir. Bu durumda (E24) denklemi, 

 

 ∑ +
−− =

pn

pn

nnpp

jj
mm

mjmjnnpp aamjtmjT
,
,

ˆˆ     (E26) 

 

olur. Görüldüğü gibi (E26) denklemi bizim aradığımız (4.4) ve (4.79) 

denklemlerinin aynısıdır. 
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Ek.3  Anp Bozon Operatörünün Elde Edilmesi 

 

 Kuazi-parçacık bazında restorasyon yaparken (4.82) denklemiyle 

elde edilen −T̂  operatöründe bazı kısaltmalar yaparken aşağıda yazılan  
+
npA  ve npA ’ye sırasıyla nötron-proton üretme ve yoketme bozon 

operatörleri (Soloviev, 1976) adı verilir. 

 

 ∑ +
−

+−+ −
+

≡
np

nnpp

nn

mm
mjmj

mj

p
np j

A
,

)1(
12

1 αα    (E27) 

 ∑ −
−−

+
≡

np

nnpp

pp

mm
mjmj

mj

p
np j

A
,

)1(
12

1 αα    (E28) 

 

 Buradaki amaç, (E27) denkleminden faydalanarak (E28) 

denklemini elde etmektir. ( )++= npnp AA  olduğuna göre; 

 

 

+

+
−

+−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

+
= ∑

np

nnpp

nn

mm
mjmj

mj

p
np j

A
,

)1(
12

1 αα  

 

         ∑ −
−−

+
−=

np

nnpp

nn

mm
mjmj

mj

pj ,
)1(

12
1 αα  

 

olur. Bu son denklemin önündeki negatiflik işareti operatörlerin 

antikomütatif olmasından dolayı gelir. np jj =  ve np mm =  olduğuna 

göre, 
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         ∑ −
−−

+
−=

np

nnpp

pp

mm
mjmj

mj

pj ,
)1(

12
1 αα  

 

olur. Bütün pm  ve nm ’lerin üzerinden toplam alındığı için pm  yerine 

pm−  ve nm  yerine de nm−  yazılabilir; 

 

         ∑ −
+−

+
−=

np

nnpp

pp

mm
mjmj

mj

pj ,
)1(

12
1 αα  

 

        ∑ −
−++−

+
−=

np

nnpp

pppp

mm
mjmj

mmmj

pj ,
)1(

12
1 αα  

      ∑ −
+−−

+
−=

np

nnpp

ppp

mm
mjmj

mmj

pj ,

2)1(
12

1 αα  

 

olur. ( ) 11 2 −=− pm ’dir. Çünkü pm yarımtamsayı olduğuna göre pm2  tek 

tamsayı olur. Bu (-1) baştaki (-)’liği yok eder ve sonuç; 

 

 ∑ −
−−

+
=

np

nnpp

pp

mm
mjmj

mj

p
np j

A
,

)1(
12

1 αα  

 

olarak elde edilir. 
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Ek.4  [Hsqp+h-VC ,Tρ]=0 Olduğunun Doğrulanması  

 

 (4.98) denklemiyle [ ] 0, ≠− ρTVH Csqp ’nin olduğu gösterilmiştir. 

Hamiltoniyene ek bir h  teriminin eklenmesiyle  

 

 [ ] 0, =−+ ρTVhH Csqp       (E29) 

 

olmaktadır. Öyleyse, 

 

 [ ] [ ] 0,, =+− ρρ ThTVH Csqp      (E30) 

 

olur. (4.98) denkleminden  

 

 [ ] ( )∑ −=− +

np
npnpnpCsqp AAjETVH ρρρ )(,  

 

olduğuna göre bu denklem (E30)’da yerine yazılırsa, (E29) eşitliğinin 

doğru olması için, 

 

 [ ] ( )∑ −−= +

np
npnpnp AAjETh ρρρ )(,     (E31) 

 

olmalıdır. Şimdi (E31) denkleminin bu şekilde olduğunu ispatlamaya 

çalışalım. 

 Pyatov seçtikleri h  nin şu şekilde olması gerektiğini öne 

sürmüştür (Pyatov and  Salamov, 1977); 
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 [ ] [ ]∑
±=

+
−−=

ρ

ρρ

ργ
TVHTVHh CsqpCsqp ,,

4
1 . 

 

Bu denklemde aşağıdaki gibi kısaltmalar yapılırsa,   

 

 

[ ] ( )

[ ] ( )∑

∑
+++

+

−=−≡

−=−≡

np
npnpnpCsqp

np
npnpnpCsqp

AAjETVHD

AAjETVHD

ρ

ρ

ρρ

ρρ

)(,

)(,

  (E32) 

 

 ∑
±=

+=
ρ ργ

DDh
4

1       (E33) 

 

olur.  

 

 

[ ] [ ]

[ ] [ ]( )∑

∑

±=

++

±=

+

+=

=

ρ

ρρ

ρ

ρ

ρ

ρ

ρ

γ

γ

DTDTDD

TDDTh

,,
4

1

,
4

1,

   (E34) 

 

olur. (4.87) denkleminden 

 

 ( )∑ += +

np
npnpnp AABT ρρρ

2
1  

 

olur. (4.87) ve (E32), (E34)’de yerlerine yazılrsa, 
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[ ] ( )

( ) ( )

( ) ( ) ( )⎟⎟
⎠

⎞
−⎥

⎦

⎤
⎢
⎣

⎡
+−+

⎥
⎦

⎤
⎢
⎣

⎡
+−

⎜⎜
⎝

⎛
−=

∑∑∑

∑∑

∑ ∑

+++

++

±=

+

np
npnpnp

np
npnpnp

np
npnpnp

np
npnpnp

np
npnpnp

np
npnpnp

AAjEAABAAjE

AABAAjE

AAjETh

ρρρ

ρρ

ρ
γ

ρρρ

ρρ

ρ

ρ

ρ

ρ

)(
2
1,)(

2
1,)(

)(
4

1,

 

 

( ( ) ( ) [ ]( [ ]
[ ] [ ])

( ) [ ]( [ ]
[ ] [ ])( ))npnpnpnpnpnp

npnp
np

npnp
npnp

npnpnpnp

npnp
np

npnpnpnp
npnp

AAAAAA

AAAA
BjE

AAAA

AAAAAA
BjE

ρρρ

ρ

ρρ

ρρ
γ

ρρ

ρρ

ρ ρ

−−−

++

−−

+−=

++++

+

+

++++

±=

∑

∑∑

,,

,,
2
)(

,,

,,
2
)(

4
1

2

2

2

2

 

 

( ( ) ( )( )

( ) ( ))npnp
np

npnp

np
npnp

npnp

AA
BjE

AA
BjE

ρ

ρρ
γ

ρρ

ρρ

ρ ρ

−+

−−=

+

+

±=

∑

∑∑

2
2
)(

2
2
)(

4
1

2

2

 

 

( ( ) ( )

( ) ( ))npnp
np

npnp

np
npnpnpnp

AABjE

AABjE

ρ

ρρ
γ

ρρ

ρρ

ρ ρ

−+

−−=

+

+

±=

∑

∑∑
2

2

)(

)(
4

1

 

 

 ( ) ( )∑∑ −++−= ++

±= np
npnpnpnpnpnp AAAABjE ρρρ

γ
ρρ

ρ ρ

22)(
4

1  
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 ( ) ( )( )∑∑ −= +

±= np
npnpnpnp AABjE ρ

γ
ρρ

ρ ρ

2)(
4

1 2  

 

 ( ) ( )∑∑
±=

+ −=
ρ

ρρ

ρ

ρ
γnp

npnpnpnp AABjE 2)(
2
1     (E35) 

 

olur. (4.103) denkleminde  

 

 ( ) ∑∑ −=+−=
np

npnp
np

npnpnp BjEbbjE ρρρ
ρ ργ )(

2
1)(

2
1  

 

olduğu gösterilmiştir. (4.103) denklemi (E35)’te yerine yazılırsa, 

 

 ( ) ( )∑∑
∑±=

+ −
−

=
ρ

ρρ

ρρ
ρ

np
npnpnpnp

np
npnp

AABjE
BjE

2)(
))(

2
1(2

1  

 

olur. Gerekli sadeleştirmeler yapılırsa, 

 

 [ ] ( )∑ −−= +

np
npnpnp AAjETh ρρρ )(,  

 

olarak istenilen sonuca ulaşılmış olur. 
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Ek.5   γρ’nun Bir Sabite Eşit Olduğunun Gösterilmesi 

 

 (4.102) denklemi ile verilen  

 

 [ ][ ] 0,,
2

0 ρρ
ρ

ργ TTVH Csqp −≡  

 

ifadesinin bir sabite eşit olduğu gösterilecektir. Pyatov’un önerdiği h  

aşağıdaki gibi genel bir şekilde ifade edilebilir. 

 

 [ ] [ ]FHFHh ,,
2
1 +=
γ

      (E36) 

 

 [ ] 0, =+ FhH  

 

 [ ] [ ] 0,, =+ FhFH  

 

olur. (E36) yukarıdaki denklemde yerine yazılırsa, 

 

 [ ] [ ] [ ][ ] 0,,,
2
1, =+ + FFHFHFH
γ

 

 

 [ ] [ ] [ ][ ] [ ][ ][ ]( ) 0,,,,,,
2
1, =++ ++ FHFFHFFHFHFH
γ

 

 

 [ ] [ ]HFFH ,, −=+  olduğuna göre, 
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 [ ] [ ] [ ][ ] [ ][ ][ ]( ) 0,,,,,,
2
1, =−+−+ FHFFHFFHFHFH
γ

 

 

 [ ] [ ] [ ][ ]{ } 0,,,,
2
1, =− FFHFHFH
γ

    (E37) 

 

olur. Eğer, 

 

 [ ][ ] cFFH ≡,,        (E38) 

 

gibi bir sabit olursa, 

 

  [ ] [ ]{ }cFHFH ,,
2
1,
γ

= , 

 

 [ ] [ ] [ ]FHccFHFH ,,,2 +=γ , 

 

 [ ] [ ]FHcFH ,2,2 =γ , 

 

 [ ][ ]FFHc ,,=≡γ      (E39) 

 

olarak elde edilir.    
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Ek.6 Hareket Denkleminin Elde Edilişi 

 

 nnn EH ψψ =  

 

 ψψψψ HQHQHQHQ nnnn
++++ +−=  

 

yukarıdaki denklemde olduğu gibi ψHQn
+ ’yi ekleyip çıkarmak sonucu 

değiştirmez. 

 

 [ ] ψψψ HQQHHQ nnn
+++ += ,  

 

Soldan  nQψ  ile çarpılırsa, 

 

 [ ] ψψψψψψ HQQQHQHQQ nnnnnn
+++ += ,  

 

olur. nHnHQQ nn =+ ψψ  ve 1=+
nnQQ  olduğuna göre, 

 

 [ ] ψψψψ HQHQnHn nn += +, , 

 

 [ ]ψψψψ +=− nn QHQHnHn ,  

 

olur. Eşirliğin sol tarafı nω  ile ifade edilirse, 

 



 202 

 [ ]ψψω += nnn QHQ ,  

 

olur. Eşitliğin her iki tarafı ψ+
nQ  ile çarpılırsa, 

 

 [ ]ψψψψω +++ = nnnnn QHQQQ , , 

 

 [ ]ψψω ++ = nnn QHQ , , 

 

 [ ]++ = nnn QHQ ,ω  

 

olarak elde edilir. 
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