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BÖLÜM 1

G·IR·IŞ

Bu bölüme tezimizin amac¬na uygun olarak haz¬rlay¬c¬ön bilgiler vererek başlayaca¼g¬z.

·Ikinci bölümde pozitif operatörler üzerinde durulacak ve K(x; t) integral çekirde¼gimiz

C1[0; 1]2 iken pozitif tan¬ml¬olmas¬durumunda özde¼gerlerinin asimptotik olarak o(1=n2)

oldu¼gu (Reade 1983) sonucunu Banach uzaylar¬ üzerinden çarpanlara ay¬rma metodu

ile ispatlayaca¼g¬z (Dikmen 2008). Daha sonra pozitif operatörlere örnekler oluşturan

yüksek lisans tezindeki bir örne¼gi genelleyece¼giz (Dikmen 1997). Oluşturdu¼gumuz bu

örnekle tezimizi sonland¬raca¼g¬z.

1.1 BANACH VE H·ILBERT UZAYLARINDA OPERATÖRLER

Bu k¬s¬mda Fonksiyonel Analiz kitaplar¬nda bulunan tan¬m ve teoremleri kullanarak

haz¬rlay¬c¬önbilgiler verece¼giz.(Riesz and Nagy 1955, Young 1990, Şuhubi 2001, Soykan

2008).

Tan¬m 1.1.1 V bir vektör uzay¬, ? 6= U � V olsun. U kendisi bir vektör uzay¬ ise U

ya V nin bir alt uzay¬denir ve F; (F = C veya F = R) skaler bir cisim olmak üzere, her

�; � 2 F ve x; y 2 U için

�x+ �y 2 U

olma koşulu ile denktir.

Tan¬m 1.1.2 V bir vektör uzay¬ olmak üzere boş olmayan bir M � V kümesi için M

nin vektörlerinin tüm sonlu lineer kombinasyonlar¬n¬n kümesine M nin gereni (span¬)

denir ve spanM ile gösterilir. k � 1 için v = fv1; :::; vkg � V sonlu bir küme ve v lineer

ba¼g¬ms¬z ve bir spana sahipse o zaman V nin her taban¬ayn¬say¬da elemana sahiptir.

E¼ger bu say¬ k ise o zaman V nin k-boyutlu (ya da daha genel olarak, sonlu-boyutlu)

oldu¼gu söylenir ve dimV = k yaz¬l¬r. E¼ger V böyle sonlu bir tabana sahip de¼gilse V ye

sonsuz-boyutludur denir.
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Tan¬m 1.1.3 V veW , ayn¬F skaler cismi üzerinde vektör uzaylar¬olsun. Bir T : V ! W

fonksiyonu (dönüşümü) her �; � 2 F ve x; y 2 V için

T (�x+ �y) = �T (x) + �T (y)

özelli¼gini sa¼glarsa veya buna denk olarak her � 2 F ve x; y 2 V için

T (x+ y) = T (x) + T (y) ve T (�x) = �T (x)

özelli¼gini sa¼glarsa T ye bir lineer dönüşüm ad¬verilir. Lineer dönüşüm yerine bazen

lineer operatör kullan¬l¬r. T : V ! W lineer dönüşümlerinin tamam¬n¬n oluşturdu¼gu

kümeyi L(V;W ) ile gösterece¼giz. E¼ger V = W ise k¬saca L(V ) ile gösterece¼giz.

Tan¬m 1.1.4 V;W vektör uzaylar¬ve T 2 L(V;W ) olsun.

T nin görüntü kümesi ImT = T (V ) altuzay¬d¬r, T nin rank¬ görüntü uzay¬n¬n boyutu

yani rank(T ) = dim(ImT ) say¬s¬d¬r. E¼ger T nin görüntü uzay¬n¬n boyutu sonlu ise T ye

sonlu rankl¬operatör denir.

Teorem 1.1.5 (Dini Teoremi)Her bir n 2 N için fn : [a; b] ! R sürekli bir fonksiyon

olsun ve her bir x 2 [a; b] için n ! 1 iken fn (x) nin f (x) e azalarak yak¬nsad¬¼g¬n¬

varsayal¬m. Bu durumda e¼ger f sürekli ise n!1 iken düzgün olarak fn ! f dir.

Tan¬m 1.1.6 Bir X vektör uzay¬üzerinde tan¬ml¬olup, bir x 2 X noktas¬ndaki de¼geri

kxk ile gösterilen, her x, y 2 X ve � 2 F olmak üzere aşa¼g¬daki özellikleri gerçekleyen

reel-de¼gerli bir fonksiyona bir norm denir:

(N1) kxk � 0

(N2) kxk = 0 () x = 0

(N3) k�xk = j�j kxk

(N4) kx+ yk � kxk+ kyk(üçgen eşitsizli¼gi).

Üzerinde bir norm tan¬mlanm¬̧s bir X vektör uzay¬na bir normlu uzay ad¬ verilir.

Normlu uzaylar (X; k:k) ya da k¬saca X ile gösterilir.

Tan¬m 1.1.7 X bir normlu vektör uzay Y; X in bir altuzay¬olsun. x 2 X için

kx� x0k = inffkx� yk : y 2 Y g = dist(x; Y )

yani her y 2 Y için

kx� x0k � kx� yk
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eşitsizli¼gini sa¼glayan Y içindeki bir x0 2 Y eleman¬na x in bir en iyi yaklaş¬m¬ad¬

verilir.

X in bir Y altuzay¬ için e¼ger herbir x 2 X; Y içinde bir en iyi yaklaş¬ma sahipse Y

altuzay¬na en iyi yaklaş¬m özelli¼gine sahiptir denir.

Tan¬m 1.1.8 Bir V vektör uzay¬üzerinde iç çarp¬m, her x; y; z 2 V ve her � 2 F için

(i) hx; xi � 0; hx; xi = 0 () x = 0

(ii) h�x; yi = �hx; yi

(iii) hx; yi = hy; xi

(iv) hx+ y; zi = hx; zi+ hy; zi

özelliklerini sa¼glayan bir h:; :i : V � V ! F dönüşümüdür.

Mesela [0; 1] aral¬¼g¬üzerinde tan¬ml¬ sürekli fonksiyonlar¬n uzay¬olan C [0; 1] karmaş¬k

vektör uzay¬üzerinde

hf; gi =
Z 1

0

f(t)g(t)dt

formülü bir iç çarp¬m tan¬mlar.

Teorem 1.1.9 V üzerinde tan¬mlanan bir iç çarp¬m, V üzerinde

kxk =
p
hx; xi

ile indirgenen bir norm tan¬mlar.

Tan¬m 1.1.10 Üzerindeki iç çarp¬m¬n indirgedi¼gi normdan üretilen metri¼ge göre tam

olan bir iç çarp¬m uzay¬na Hilbert uzay¬ denir. Hilbert uzay¬ genelde H har� ile

gösterilir.

Uyar¬1.1.11 Genel olarak, bir iç çarp¬m uzay¬n¬n Hilbert uzay¬olmas¬gerekmez fakat

fonksiyonel analizde bir temel teorem her X iç çarp¬m uzay¬n¬n tamlanarak bir Hilbert

uzay¬haline getirilebilmesini garanti eder. Böyle bir H Hilbert uzay¬na X in tamlan¬̧s¬

denir.

Tan¬m 1.1.12 (i) Reel eksen üzerinde (sonlu veya sonsuz) herhangi bir aral¬k I olsun.

Karesi integrallenebilir, yaniZ
jf(t)j2 dt <1
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olan karmaş¬k de¼gerli Lebesgue ölçülebilir f : I �! C fonksiyonlar¬n¬n uzay¬L2 (I) ile

gösterilir.

Her f; g 2 L2 (I) için f ile g nin çarp¬m¬

hf; gi =
Z
I

f (t) g (t)dt

ile tan¬mlan¬r. f nin normu ise

kfk2 =
Z
jf(t)j2 dt <1

dur.

(ii) Verilen I; J aral¬klar¬içinZ
I

Z
J

jk (s; u)j2 duds <1

olacak şekilde I�J üzerindeki tüm karesi integrallenebilir (Lebesgue) ölçülebilir karmaş¬k

de¼gerli k fonksiyonlar¬n¬n uzay¬L2 (I � J) ile gösterilir.

Tan¬m 1.1.13 H;H1 Hilbert uzaylar¬olsunlar. Verilen T : H1 ! H s¬n¬rl¬d¬r ancak ve

ancak 9M 2 R öyleki 8f 2 H1 için

kTfk �M kfk

dir. Bu M s¬n¬rlar¬n¬n en küçü¼güne T lineer operatörünün normu denir ve kTkH1!H
ya da k¬saca kTk ile gösterilir. Operatör normunu ayn¬zamanda

kTk = sup
kfk�1

kTfk

ile tan¬mlayabiliriz.

H1 denH ye bütün s¬n¬rl¬lineer operatörlerin kümesini B(H1; H) ile gösterece¼giz. B(H1; H)

nin elemanlar¬ayr¬ca süreklidir.

Tan¬m 1.1.14 Verilen T : H1 ! H operatörü kompaktt¬r e¼ger verilen (fn) � H1 s¬n¬rl¬

dizisi için (yani sup kfnk <1),

Tfnr ! g

olacak şekilde (fnr) � (fn) ; g 2 H vard¬r.

H1 den H ye bütün kompakt operatörlerin kümesini K(H1; H) ile gösterece¼giz.
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Uyar¬1.1.15 Bir kompakt operatör ayn¬ zamanda sürekli olmas¬ gerekir. Aksi halde

kTfnk ! 1 olacak şekilde (fn) � H1 vard¬r, bu durumda (Tfn) in yak¬nsak bir alt dizisi

olmayabilir.

Teorem 1.1.16 E¼ger T 2 B(H1; H) ise,

hTf; giH = hf; T �giH1

olacak şekilde bir tek T � 2 B(H;H1) operatörü vard¬r.

Tan¬m 1.1.17 Yukar¬daki şart¬ sa¼glayan T � : H ! H1 operatörüne T operatörünün

eşleni¼gi ad¬verilir. E¼ger H = H1 ve T = T � olur ise T ye öz-eşlenik veya simetriktir

denir.

Tan¬m 1.1.18 T nin kuadratik normu

kTkku = sup
kfk�1

jhTf; fij

şeklinde tan¬mlan¬r.

Uyar¬1.1.19 E¼ger T simetrik ise o zaman kuadratik norm operatör norma eşittir.

Önerme 1.1.20 hTf; fi şeklindeki iç çarp¬m reel de¼gerlidir ancak ve ancak T simetriktir.

·Ispat. Gerek şart için, hTf; fi iç çarp¬m¬reel de¼gerli olsun, o zaman her T için

hT (f + g) ; f + gi � hT (f � g) ; f � gi

+ i hT (f + ig) ; f + igi � i hT (f � ig) ; f � igi = 4 hTf; gi (1.1)

dir. f ve g nin yerini de¼gi̧stirdi¼gimizde ve kompleks eşleniklerini ald¬¼g¬m¬zda ayr¬ca

hf + g; T (f + g)i � hf � g; T (f � g)i

+ i hf + ig; T (f + ig)i � i hf � ig; T (f � ig)i = 4 hf; Tgi (1.2)

d¬r. hTf; fi reel de¼gerli oldu¼gundan hf; Tfi = hTf; fi = hTf; fi dir. Böylece, (1.1)

ve (1.2) denklemlerinin sol tara�ar¬eşittir. Sonuç olarak, hTf; gi = hf; Tgi; ve böylece

T = T �, yani T simetriktir.

Yeter şart için, T simetrik bir operatör olsun. O zaman, T � = T ve

hTf; fi = hf; T �fi = hf; Tfi = hTf; fi

oldu¼gundan hTf; fi reel de¼gerlidir.
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Önerme 1.1.21 E¼ger T kompakt simetrik bir dönüşüm ise, kfk = 1 olmak üzere bir f

vard¬r öyleki � = �kTk olmak üzere Tf = �f dir.

·Ispat. kfnk � 1 vard¬r, öyleki Tan¬m 1.1.18 den jhTfn; fnij �! kTkku dur. Gerekli ise

jhTfnk ; fnkij alt dizisine geçerek � = �kTkop = �kTkku olmak üzere Önerme 1.1.20 den

hTfn; fni ! �

kabul edebiliriz. Şimdi,

kTfn � �fnk2 = kTfnk2 � 2�hTfn; fni+ �2 kfnk2

� kTk2op � 2�hTfn; fni+ �2

= 2�2 � 2�hTfn; fni ! 0

dizisini göz önüne alal¬m. Bir alt diziye geçerek, Tfnk ! f olacak şekilde f bulabiliriz.

O halde, �fn ! f dir. Böylece, Tf = limT (�fn) = � limTfn elde edilir.

Tan¬m 1.1.22 X bir iç çarp¬m uzay¬olsun. feng; X içinde bir dizi olsun. Her m;n 2 N

için

hem; eni =

8<: 1 ; m = n ise

0 ; m 6= n ise

sa¼glan¬rsa feng dizisine ortonormal dizidir denir. Burada, m = n için hem; eni = 1

olmas¬kenk = 1 ile denktir.

Şimdi bir kümenin ortogonal tümleyeni kavram¬n¬tan¬mlayal¬m.

Tan¬m 1.1.23 X bir iç çarp¬m uzay¬ olsun ve A; X in bir altkümesi olsun. x?A y¬

sa¼glayan x 2 X lerin tamam¬n¬n oluşturdu¼gu kümeye yani

A? = fx 2 X : her a 2 A için hx; ai = 0 g

kümesine A n¬n ortogonal tümleyeni denir.

O halde A?; A içindeki her vektöre ortogonal olan X içindeki vektörlerin tamam¬n¬n

oluşturdu¼gu kümedir (A = ? ise o zaman A? = X dir).
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Tan¬m 1.1.24 M ve N , bir V vektör uzay¬n¬n alt uzaylar¬olsunlar. E¼ger M \N = f0g

ve V �nin her eleman¬,M �nin ve N �nin bir eleman¬n¬n toplam¬şeklinde ifade edilebiliyorsa

V uzay¬na M ve N uzaylar¬n¬n direkt toplam¬denir ve V =M �N şeklinde yaz¬l¬r

Uyar¬1.1.25 X bir Banach uzay¬ve M kapal¬alt uzay olsun, X=M bölüm uzay¬n¬

x+M = fx+ y : y 2Mg

kalan s¬n¬�ar¬n¬n kümesi olarak tan¬mlar¬z.

Önerme 1.1.26 E¼ger X Banach uzay¬n¬n bir kapal¬alt uzay¬M � X ise, o zaman X=M

kM + xk = inf
y2M

ky + xk

normuna göre bir Banach uzay¬d¬r

·Ispat. Tek problem X=M nin tam oldu¼gunu göstermektir.

1X
1

kM + xnk <1

olsun. Key� n için kyn + xnk < kM + xnk+ 1=n2 olacak şekilde yn 2M seçelim.

Buradan,

1X
1

kyn + xnk <1

dur.

Böylece,

1X
1

(yn + xn)

X te yak¬nsakt¬r.

Buradan,

1X
1

(M + yn + xn) =

1X
1

(M + xn)

X=M de yak¬nsakt¬r.

Tan¬m 1.1.27 M � X kapal¬altuzay¬n¬n eşboyutunu X=M nin boyutu olarak tan¬m-

lar¬z ve codimM ile gösteririz.
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Önerme 1.1.28 X in her kapal¬altuzay¬M; N için

codim (M \N) � codimM + codimN

dir.

·Ispat. (X=M)� (X=N) nin boyutu m + n dir. X=(M \N) yi (X=M)� (X=N) nin bir

alt uzay¬oldu¼gunu göstermek istiyoruz.

I : X=(M \N) ! (X=M)� (X=N) yi

I(x+M \N) = (x+M;x+N) 2 (X=M)� (X=N)

olarak tan¬mlayal¬m. O zaman, I n¬n (X=M) � (X=N) alt uzay¬nda bir izomor�zm

oldu¼gunu gösterebiliriz.

I iyi tan¬ml¬d¬r: çünkü e¼ger x +M \N = y +M \N ise, o zaman x � y 2 M \N dir.

Buradan, x+M = y +M; x+N = y +N dir.

I aç¬kça lineerdir.

I bire-bir dir: çünkü e¼ger (x +M;x + N) = (y +M; y + N) ise, o zaman x � y 2 M;

x� y 2 N dir. Böylece, x� y 2M \N dir. O zaman, x+M \N = y +M \N dir.

Önerme 1.1.29 E¼ger T : X ! Y ve N � Y nin sonlu eşboyutu n ise, o zaman M =

T�1(N) � X nin sonlu eşboyutu � n dir.

·Ispat. X=M yi Y=N nin alt uzay¬olarak tan¬mlayal¬m. E¼ger I : X=M ! Y=N olarak

tan¬mlan¬rsa, I(x +M) = Tx + N 2 Y=N dir. O zaman, I; Y=N nin bir alt uzay¬nda

izomor�zmdir.

I iyi tan¬ml¬d¬r: E¼ger x+M = y+M ise, o zaman x� y 2M dir. Buradan, T (x� y) =

Tx� Ty oldu¼gundan T (x� y) 2 N dir. Böylece, Tx+N = Ty +N dir.

Bu �kir ters yön için; yani I n¬n bire-bir oldu¼gunu göstermek için de kullan¬labilir. Ayr¬ca

T lineer oldu¼gundan I n¬n lineer oldu¼gu aç¬kt¬r.
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Teorem 1.1.30 E¼ger T , H Hilbert uzay¬nda bir kompakt simetrik operatör ise, o zaman

T nin s¬f¬rdan farkl¬ özde¼gerleri s¬f¬ra yak¬nsayan bir (�n)n�1 reel say¬ dizisi oluşturur.

Bunlara karş¬l¬k gelen (�n)n�1 özfonksiyonlar¬H üzerinde ortogonal bir dizi oluşturur.

·Ispat. Önerme 1.1.21 den k�1k = 1 olacak şekilde �1 vard¬r, öyleki �1 = �kTk olmak

üzere T�1 = �1�1 dir. E1 = f��1 : � 2 Cg ve M1 = E?1 olsun. T simetrik oldu¼gundan

M1 üzerinde invaryantt¬r, böylece Önerme 1.1.21 ü tekrar uygulayarak k�2k = 1 olacak

şekilde �2 2M1 elde ederiz öyleki �2 = �kT jM1k olmak üzere T�2 = �2�2 dir.

Tümevar¬m ile (�n)n�1 reel dizisi ve (�n)n�1 ortonormal dizisi vard¬r, öyleki T�n = �n�n

dir. Ve e¼ger

En = f��n : � 2 Cg ;

Mn = (E1 � E2 � � � � � En)
?;

ise, o zaman �n+1 2Mn ve �n+1 = �kT jMnk dir. Buradan,M1 �M2 � � � � ve bu yüzden

j�1j � j�2j � � � � bulunur.

Burada iki mümkün durum vard¬r:

Durum 1: Mn üzerinde T = 0 olacak şekilde n vard¬r. Bu durumda T sonlu ranka

sahipdir.

Durum 2: Her n için T jMn 6= 0 d¬r. Bu durumda her n için �n 6= 0 d¬r. Üstelik n!1

iken �n ! 0 oldu¼gunu gösterebiliriz.

Öyle olmad¬¼g¬n¬farzedelim, o zaman her n � 1 için j�nj � " olacak şekilde " > 0 var

olacakt¬r. Buradan, k�n=�nk s¬n¬rl¬olurdu ve böylece T (�n=�n) = �n yak¬nsak alt diziye

sahip olacakt¬r. (�n)n�1 ortonormal oldu¼gundan bunun olmas¬mümkün de¼gildir.

E¼gerM = (
L1

n=1En)
?ise, o zamanM üzerinde T = 0 oldu¼gunu görünüz. E¼ger T = 0 ol-

masayd¬Önerme 1.1.21 den � = �kT jMk 6= 0 olmak üzere T� = �� olacak şekilde 9� 2

M var olmal¬yd¬. Fakat baz¬n ler için j�nj < j�j olmal¬d¬r, bu yüzden kT jMnk < kT jMk

olmal¬d¬r ve bu ise Mn � M olmas¬ ile çeli̧sir. Buradan T nin her s¬f¬rdan farkl¬ �

özde¼gerinin �n dizisi taraf¬ndan içerilirdi¼gi bulunur. Aksi halde T� = �� 6= 0 olacak

şekilde bir � 2M olmas¬gerekirdi.
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Sonuç 1.1.31 T nin s¬f¬rdan farkl¬her özde¼geri sonlu defa tekrarlan¬r.

Sonuç 1.1.32 H = T (H)� T�1 (0) d¬r.

Kabul 1.1.33 (�n) dizisi bundan sonra mutlak de¼gerce azalan yani

j�1j � j�2j � :::

olarak al¬nacakt¬r.

Kabul 1.1.34 � (n) bundan sonra ortonormal, yani k� (n)k = 1 olarak al¬nacakt¬r.

1.2 SONLU RANKLI OPERATÖRLER

H Hilbert uzay¬ ve T : H ! H operatörünün rank¬N olsun. �1; � � � ; �N ler T nin

görüntüsünü ve �N+1; �N+2; � � � ler T nin çekirde¼gini gerecek şekilde H nin bir ortonormal

taban¬(�n)n>1 olarak alabiliriz. Herhangi bir f 2 H için

f =
1X
1

hf; �ni�n;

T f =
NX
1

hTf; �ni�n =
NX
1

hf; T ��ni�n

dir.  n = T ��n ve H = L2[0; 1] olsun. Bu taktirde,

Tf(x) =
NX
1

hf;  ni�n(x)

=
NX
1

�Z 1

0

f(t) n(t)dt

�
�n(x)

=

Z 1

0

 
NX
1

�n(x) n(t)

!
f(t)dt

PN
1 �n(x) n(t) = K(x; t) yaz¬l¬rsa

Tf(x) =

Z 1

0

K(x; t)f(t)dt

elde edilir.

K(x; t) =

NX
1

�n(x) n(t)

tipindeki çekirdeklere dejenere çekirdek ad¬verilir.
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E¼ger K (x; t) simetrik ise, �n ler özfonksiyon olarak seçilebilir. E¼ger �n ler de özde¼gerler

ise,

K(x; t) =

NX
n=1

�n�n(x)�n(t)

elde edilir.

1.3 ÖZDE¼GER VE ÖZFONKS·IYONLAR

Önerme 1.3.1 Teorem 1.1.30 deki gibi T : H ! H kompakt simetrik operatörü n 2 N

olmak üzere �n özde¼gerlerine ve �n özfonksiyonlar¬na sahip olsun. O zaman her f 2 H

için

Tf =

1X
1

�nhf; �ni�n

dir.

·Ispat. T (�n) = �n (�n) dir ve T nin s¬f¬r uzay¬M nin ortonormal bir taban¬( n)n�1

olsun. O zaman �n = hf; �ni; �n = hf;  ni olmak üzere her f 2 H

f =
1X
1

�n�n +
1X
1

�n n

şeklinde olmak zorundad¬r. Bu yüzden,

Tf =
1X
1

�n�n�n

=
1X
1

�nhf; �ni�n (1.3)

dir. (1.3) operatör özfonksiyon aç¬l¬m¬ad¬n¬al¬r.

Önerme 1.3.2 (�n) ortonormal bir dizi, (�n) s¬f¬ra yak¬nsayan reel bir dizi ve j�nj azalan

olsun, o zaman

Tf =
1X
1

�nhf; �ni�n

�n özde¼gerleri ve �n özfonksiyonlar¬na sahipH denH ye kompakt simetrik bir T operatörü

tan¬mlar. Ayr¬ca

kTk = j�1j

dir.
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·Ispat. �n ortonormal ve
1X
1

�2nhf; �ni2 � �21

1X
1

hf; �ni2

� �21 kfk
2 <1 (Bessel eşitsizli¼gi)

oldu¼gundan
P1

1 �nhf; �ni�n serisi H de yak¬nsakt¬r. T aç¬kça lineerdir.

E¼ger kfk � 1 ise

kTfk2 =
1X
1

�2n jhf; �nij
2 � �21

1X
1

hf; �ni2 � �21 kfk
2 � �21

dir. O halde T s¬n¬rl¬d¬r. Bu ayr¬ca kTk � j�1j oldu¼gunu ispatlar.

kTk = j�1j oldu¼gunu görmek için k�1k = 1 ve kT�1k = k�1�1k = j�1j oldu¼gunu görünüz.

T nin kompakt oldu¼gunu görmek için N rank¬na sahip

RNf =
NX
1

�nhf; �ni�n

ve

(T �RN)f =
1X
N+1

�nhf; �ni�n

nin normunun kT �RNk = j�N+1j oldu¼gu görülür. Buradan sonlu rankl¬operatörlerin

limiti T = limN!1RN dir.

T nin simetrik oldu¼gunu görmek için her f; g 2 H için

hTf; gi =
* 1X

1

�nhf; �ni�n; g
+
=

1X
1

�nhf; �nih�n; gi

=

*
f;

1X
1

�nhg; �ni�n

+
= hf; Tgi

dir. Aç¬kça T ; �n özde¼gerli ve �n özfonksiyonlu olmak üzere her n için T�n = �n�n dir.

Önerme 1.3.3 K(x; t) 2 L2[0; 1]2 olmak üzere

Tf(x) =

Z 1

0

K(x; t)f(t)dt

ile tan¬mlanan her T çekirdek operatörü e¼ger K(t; x) = K(x; t) ise kompakt simetriktir.

Bu durumda, Teorem 1.1.30 deki gibi T nin özde¼gerleri �n ve T nin özfonksiyonlar¬�n

ise, yak¬nsama L2 normunda olmak üzere

K(x; t) =

1X
1

�n�n(x)�n(t) (1.4)
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dir. Ayr¬caZ 1

0

Z 1

0

(K(x; t))2 dxdt =

1X
1

�2n (1.5)

dir.

(1:4) çekirde¼gin özfonksiyon aç¬l¬m¬ olarak adland¬r¬l¬r. Bu tipteki T operatörlere

Hilbert-Schmidt operatörler denir. (1:5) Parseval özdeşli¼gi olarak adland¬r¬l¬r.

·Ispat. Önerme 1.3.2 den her f 2 L2[0; 1] için

Tf(x) =
1X
1

�n

�Z 1

0

f(t)�n(t)dt

�
�n(x)

=

Z 1

0

 1X
1

�n�n(t)�n(x)

!
f(t) dt

dir. ·Integralin toplam ile yer de¼gi̧stirebilmesinin nedeni, L2 normunda

NX
1

�n(t)!
1X
1

�n(t)

yak¬nsamas¬ndan dolay¬*
NX
1

�n(t); f

+
!
* 1X

1

�n(t); f

+
yak¬nsamas¬n¬n olmas¬ndand¬r.

Buradan

K(x; t) =
1X
1

�n�n(x)�n(t)

dir. L2[0; 1]2 üzerinde �n(x)�n(t) ortonormal oldu¼gundanZ 1

0

Z 1

0

(K(x; t))2 dxdt =
1X
1

�2n

özdeşli¼gi Pisagor Teoremidir.

Sonuç 1.3.4 T operatörü

kTk �

sZ 1

0

Z 1

0

(K (x; t))2 dxdt:

eşitsizli¼gini sa¼glar.
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Tan¬m 1.3.5 T operatörünün Hilbert-Schmidt normu (1:5) den

kTkHS =

sZ 1

0

Z 1

0

jK(x; t)j2 dxdt

=

vuut 1X
1

�2n

şeklinde tan¬mlan¬r.

Bundan sonra T nin operatör normunu kTkop şeklinde gösterece¼giz.

Önerme 1.3.6 E¼ger �n özde¼gerli T : L2[0; 1] ! L2[0; 1] operatörü kompakt simetrik veP1
1 �

2
n <1 ise T bir Hilbert-Schmidt operatördür. Burada T nin çekirde¼gi

K(x; t) =
1X
1

�n�n(x)�n(t)

dir.

·Ispat. L2[0; 1]2 üzerinde �n(x)�n(t) ortonormal olsun. Buradan L2[0; 1]2 üzerinde
1X
1

�n�n(x)�n(t)

yak¬nsakt¬r. O zaman her f 2 L2[0; 1] için,Z 1

0

K(x; t)f(t)dt =

Z 1

0

 1X
1

�n�n(x)�n(t)

!
f(t) dt

=
1X
1

�
�n�n(x)

Z 1

0

f(t)�n(t) dt

�
=

1X
1

�nhf; �ni�n (x) = Tf (x)

dir.

1.4 POZ·IT·IF OPERATÖRLER

Tan¬m 1.4.1 H Hilbert uzay¬üzerinde T bir özeşlenik lineer operatör olsun. Her f 2 H

için e¼ger hTf; fi � 0 oluyor ise T ye pozitif operatör denir ve T � 0 yaz¬l¬r. E¼ger

H kompleks uzay ve T s¬n¬rl¬ise yukar¬daki tan¬m içinde T nin özeşlenik olmas¬gerekli

de¼gildir. Genel olarak, e¼ger H üzerinde T ve S iki s¬n¬rl¬simetrik lineer operatör ise, o

zaman T � S, T � S � 0 anlam¬nda tan¬mlan¬r. E¼ger �T pozitif ise T ye negatif denir

ve T � 0 yaz¬l¬r.
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Bir H Hilbert uzay¬üzerinde T bir simetrik operatör olsun. E¼ger T simetrik operatörü

pozitif ve bire bir ise T operatörüne kesin pozitif denir ve T > 0 yaz¬l¬r. E¼ger T ayn¬

zamanda kompakt ise, poziti�ik ayn¬zamanda tüm özde¼gerlerin negatif olmayan oldu¼gunu

söylemeye denktir.

Önerme 1.4.2 T pozitiftir ancak ve ancak her n için T nin özde¼gerleri �n � 0 d¬r.

·Ispat. Herhangi bir T operatörü için, Önerme 1.3.1 den

Tf =
1X
1

�n hf; �ni�n

dir. E¼ger �n � 0 ise

hTf; fi =
1X
1

�n hf; �ni h�n; fi

=
1X
1

�n jhf; �nij
2 � 0

d¬r. Böylece T pozitiftir. E¼ger T pozitif ise her n ve �n için

0 � hT�n; �ni = h�n�n; �ni = �n

oldu¼gundan �n � 0 d¬r.

Örnek 1.4.3

V f(x) =

Z x

0

f(t)dt

olmak üzere V V � operatörü L2[0; 1] üzerinde pozitiftir.

Genelde, herhangi bir kompakt T : H ! H operatörü için, TT � operatörü pozitiftir

T : L2[0; 1]! L2[0; 1] Tf(x) =
R 1
�1 jx� tj f(t)dt operatörü ise pozitif de¼gildir çünkü aç¬k

olarak negatif özde¼gerlere sahip oldu¼gu (Dikmen 2000) de gösterilmi̧stir.

Lemma 1.4.4 A;B;C operatörleri için e¼ger A � B, ve e¼ger C simetrik ise, o zaman

i.A+ C � B + C

ii.CAC � CBC

dir.
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·Ispat.

i.h(A+ C) f; fi = hAf; fi+ hCf; fi � hBf; fi+ hCf; fi.

ii.h(CAC) f; fi = hACf;Cfi � hBCf;Cfi = h(CBC) f; fi.

Tan¬m 1.4.5 Tf(x) =
R 1
0
K (x; t) f (t) dt integral operatörü e¼ger

i. K (x; t) sürekli,

ii. T simetrik ve pozitif yani her f için hTf; fi � 0,

şartlar¬n¬sa¼glar ise birMercer operatör denir.

Teorem 1.4.6 (Mercer Teoremi) E¼ger sürekli ve simetrik K (x; t) çekirde¼gi ile üretilen

T operatörü pozitif, yani her f için hTf; fi � 0 ya da denk bir ifade ile �i 6= 0 olmak

üzere e¼ger T nin her özde¼geri pozitif ise, bu durumda T operatörünün çekirdek aç¬l¬m¬

1X
i=1

�i�i(x)�i(t)

düzgün yak¬nsakt¬r.

·Ispat. ·Ilk olarak K(x; t) çekirde¼gi sürekli oldu¼gundan tüm

Tf(x) =

bZ
a

K(x; t)f(t)dt

görüntü fonksiyonlar¬da süreklidir. Böylece, özel olarak, bütün �i (x) =
1

�i
T�i (x) öz-

fonksiyonlar¬süreklidir.

Sonuç olarak (n = 1; 2; :::) için

Kn(x; t) = K(x; t)�
nX
i=1

�i�i(x)�i(t)

�kalan�fonksiyonlar¬sürekli fonksiyonlard¬r. Ayr¬ca L2 yak¬nsakl¬k anlam¬nda

Kn(x; t) =
1X

i=n+1

�i�i(x)�i(t)

oldu¼gundan, L2 nin her f eleman¬için

bZ
a

bZ
a

Kn(x; t)f(t)f(x)dxdt =

1X
i=n+1

�ih�i; fihf; �ii � 0 (1.6)
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d¬r.

BuradanKn(x; x) � 0 elde edilir. Asl¬nda, e¼gerKn(x0; x0) < 0 olsayd¬, (x0; x0) noktas¬n¬n

x0 � � < x < x0 + �; x0 � � < t < x0 + �

komşulu¼gunda süreklilikten dolay¬Kn(x; t) < 0 olmal¬yd¬.

xo � � < x < xo + � için f(x) = 0 ve di¼ger yerlerde f(x) = 1 yazarsak (1:6) integrali

negatif olacakt¬r ki bu bir çeli̧skidir.

Böylece (n = 1; 2; :::) için

Kn(x; x) = K(x; x)�
nX
i=1

�i�i(x)�i(x) � 0

d¬r. Buradan, pozitif terimli
1X
i=1

�i�i(x)�i(x)

serisinin yak¬nsak ve toplam¬n � K(x; x) oldu¼gu sonucuna var¬l¬r.

K(x; x) sürekli fonksiyonunun maksimumunu M ile gösterirsek, Cauchy eşitsizli¼ginden�����
nX
i=m

�i�i(x)�i(t)

�����
2

�
nX
i=m

�i j�i(x)j
2

nX
i=m

�i j�i(t)j
2 �M

nX
i=m

�i j�i(x)j
2 (1.7)

dir. Buradan x in her sabit de¼geri için
1X
i=1

�i�i(x)�i(t) (1.8)

serisi t ye göre düzgün yak¬nsakt¬r. Böylece(1.8) nin toplam¬B(x; t); t nin sürekli bir

fonksiyonudur ve sürekli her f(t) fonksiyonu için

bZ
a

B(x; t)f(t)dt =

1X
i=1

�i�i(x)

bZ
a

�i(t)f(t)dt

dir. Şimdi ikinci ifadedeki seri Tf(x) e yak¬nsak oldu¼gundan Böylece

bZ
a

[B(x; t)�K(x; t)] f(t)dt = 0

d¬r ve özel olarak ( x in sabit bir de¼geri için ) f(t) = B(x; t)�K(x; t) yaz¬l¬rsa, a � t � b

için B(x; t)�K(x; t) = 0 d¬r. Bu yüzden

K(x; x) = B(x; x) =
1X
i=1

�i j�i(x)j
2
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dir. Bu serinin terimleri x in pozitif sürekli fonksiyonlar¬oldu¼gu veK(x; x) toplam¬sürekli

bir fonksiyon oldu¼gu için, Dini�nin bilinen teoreminden seri düzgün yak¬nsakt¬r. (1.7)

Cauchy eşitsizli¼gi tekrar uygulan¬rsa, buradan sonuç olarak (1.8) deki serinin ba¼gl¬oldu¼gu

x ve t de¼gi̧skenlerinin her birine göre düzgün yak¬nsad¬klar¬gösterilmi̧s olaca¼g¬ndan ispat

elde edilir.

Sonuç 1.4.7 E¼ger K (x; t) çekirdekli T bir Mercer operatörü ise,Z 1

0

K (x; x) dx =
1X
1

�n (1.9)

dir.

Not: Her n için �n � 0 d¬r, çünkü T pozitiftir.(1.9) iz eşitli¼gi olarak adland¬r¬l¬r.

·Ispat. T aç¬kça Hilbert-Schmidt�tir. Buradan, çekirdek aç¬l¬m¬

K(x; t) =
1X
1

�n�n(x)�n(t)

dir. Böylece istenildi¼gi gibi,Z 1

0

K(x; x)dx =
1X
1

Z 1

0

�n j�n(x)j
2 dx =

1X
1

�n

dir.

Tan¬m 1.4.8 T Mercer operatörünün iz normu

kTktr =
Z 1

0

K(x; x)dx =
1X
1

�n

şeklinde tan¬mlan¬r.

� = (�n)n�1 dizisi olmak üzere

k�k1 = sup
n
j�nj ; (� 2 l1)

k�k2 =

vuut 1X
1

�2n;
�
� 2 l2

�
k�k1 =

1X
1

j�nj ;
�
� 2 l1

�
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olmak üzere

kTkop = k�k1 ;

kTkHS = k�k2 ;

kTktr = k�k1 ;

oldu¼gu görülür. Ayr¬ca

kTkop � kTkHS � kTktr

dur.

1.5 YAKLAŞIM TEOREM·I

Şimdi T ye sonlu rank operatörlerinin operatör, Hilbert-Schmidt ve iz normu ile en iyi

yaklaş¬m¬n¬bulmak istiyoruz. Bunun için aşa¼g¬daki teorem ile başlayaca¼g¬z.

Teorem 1.5.1 E¼ger T : H ! H kompakt simetrik operatör ise, o zaman rank¬� N olan

operatörlerin operatör normuyla T ye en iyi yak¬nsamas¬

RNf =
NX
1

�nhf; �ni�n

şeklindedir. Ayr¬ca kT �RNkop = j�N+1j dir.

·Ispat. Önerme 1.3.2 den kT �RNkop = j�N+1j oldu¼gunu biliyoruz.

rank � N olacak şekilde her S için kT � Skop � j�N+1j oldu¼gunu göstermeye ihtiyac¬m¬z

var. S nin f�1; � � � ; �N+1g üzerinde boştan farkl¬s¬f¬r uzay¬(çekirde¼gi) olmas¬gerekti¼gi

için, S� = 0 olacak şekilde � =
PN+1

1 �n�n vard¬r öyleki k�k = 1 dir.

Buradan

k(T � S)�k2 = kT�k2

=







N+1X
1

�n�n�n







2

=

N+1X
1

�2n�
2
n

� �2N+1

N+1X
1

�2n

= �2N+1 k�k
2 = �2N+1
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dir. Böylece, kT � Skop � j�N+1j dir.

Teorem 1.5.2 Teorem 1.5.1 deki RN ayn¬zamanda rank¬� N olan operatörlerin Hilbert-

Schmidt normuyla T ye en iyi yak¬nsamad¬r. Ayr¬ca

kT �RNk2HS =
1X
N+1

�2n

dir.

·Ispat. S nin rank¬� N olsun. kS � Tk2HS �
P1

N+1 �
2
n oldu¼gunu göstermek zorunday¬z.

S � T nin özfonksiyon aç¬l¬m¬

(S � T ) f =
1X
1

�n hf;  ni n

olsun. Bu aç¬l¬m¬n k: k¬smi toplam¬

Pf =
kX
1

�n hf;  ni n

dir. O zaman kS � T � Ukop =
���k+1�� � j�N+k+1j dir, çünkü S � P nin rank¬� N + k

d¬r. Böylece istenildi¼gi gibi

kS � Tk2HS =
1X
1

�2n �
1X
N+1

�2n

dir.

Teorem 1.5.3 Teorem 1.5.1 deki RN ayn¬ zamanda rank¬� N olan operatörlerin iz

normuyla T ye en iyi yak¬nsamad¬r. Ayr¬ca

kT �RNktr =
1X
N+1

j�nj

dir.

·Ispat. Önceki teoremin ispat¬yla benzerdir.

Önerme 1.5.4 (Bessel eşitsizli¼gi) H bir iç çarp¬m uzay¬ve S bu uzayda bir ortonormal

küme olsun.
�
�1;�2; :::; �n

	
vektörleri S kümesinin ayr¬k üyelerinin her hangi bir sonlu

toplulu¼gu ise her u 2 H vektörü için
1X
i=1

jhu; �iij
2 � kuk2 (1.10)

sa¼glan¬r. (1:10) eşitsizli¼gine Bessel eşitsizli¼gi denir (Erdo¼gan 2001).
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Teorem 1.5.5 (Riesz-Fischer teoremi) H bir Hilbert uzay¬ve S = (�i) ; H�nin say¬labilir

bir ortonormal alt kümesi olsun. (ai) skalerler dizisi ile oluşturulan
P1

i=1 ai�i serisi ancak

ve ancak

1X
i=1

jaij2 <1

koşulu sa¼glan¬rsa yak¬nsakt¬r.

·Ispat.(un) vektör dizisi ile (sn) negatif olmayan reel say¬lar dizisini

un =

nX
k=1

ak�k; sn =
nX
k=1

jakj2 � 0; n = 1; 2; :::

elemanlar¬yla tan¬mlayal¬m. Genellikten kaybetmeksizin n � m al¬rsak ortonormallik

ba¼g¬nt¬lar¬ndan

kun � umk2 =

*
nX

k=m+1

ak�k;
nX

l=m+1

al�l

+

=
nX

k=m+1

nX
l=m+1

akal h�k; �li

=
nX

k=m+1

jakj2 = sn � sm; sn � sm

sonucunu buluruz.
P1

i=1 jaij
2 serisi yak¬nsaksa (sn) bir Cauchy dizisi olur. Dolay¬s¬yla

(un) dizisi bir Cauchy dizisidir. Buna göre un dizisi bir u 2 H vektörüne yak¬nsar ve

u =
P1

i=1 ai�i yaz¬labilir. Tersine olarak
P1

i=1 ai�i serisi yak¬nsaksa (un) bir Cauchy

dizisi, dolay¬s¬yla da (sn) bir Cauchy dizisidir ve bir s 2 F say¬s¬na yak¬nsar. YaniP1
i=1 jaij

2 serisi yak¬nsak olur. Ortonormallik ba¼g¬nt¬lar¬nedeniyle k¬smi toplamdan ak =

hun; �ki ; 1 � k � n elde edilece¼gi kolayca görülür. un ! u ise iç çarp¬m¬n süreklili¼ginden

serinin katsay¬lar¬ak = hu; �ki şeklinde belirlenir.

1.6 O VE o NOTASYONU

(an) ve (bn) reel say¬lar¬n dizileri olsun. Yeterince büyük her n için janj � K jbnj olacak

şekilde bir K sabiti varsa janj = O (bn) yazar¬z. Ayn¬şekilde, yeterince büyük her n için

janj � " jbnj olacak şekilde bir " > 0 key� küçük reel say¬s¬varsa janj = o (bn) yazar¬z.

Bu kullan¬mlar n!1 için neler oldu¼gu hakk¬nda bilgi vermektedir. Örne¼gin (an) dizisi

21



o (1) ise lim
n!1

janj = 0 ve O (1) ise lim
n!1

janj = K < 1 demektir. Ayr¬ca, O
�
1
n

�
, �
1

n
nin

en az¬ndan sabit bir kat¬kadar h¬zla s¬f¬ra yaklaşmas¬� demektir. o
�
1
n

�
, �
1

n
nin s¬f¬ra

yaklaşma h¬z¬ndan daha h¬zl¬s¬f¬ra yaklaşmas¬�demektir.

Ayn¬notasyon bir reel de¼gi̧skenli fonksiyonlar için kullan¬l¬r. Bu nedenle x!1 davran¬̧s¬yla

ilgilendi¼gimizde a < x <1 için

jf (x)j � A jg (x)j

olacak şekilde A > 0 ve a reel sabitlerinin var oldu¼gunu ifade etmek için

f (x) = O (g (x))

yazabiliriz. Benzer şekilde yukar¬da A yerine " gelirse eşitlikte O yerine o yaz¬l¬r.
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BÖLÜM 2

C1 ÇEK·IRDEKL·I ·INTEGRAL OPERATÖRÜN ÖZDE¼GER

YAKLAŞIMLARI

Bu bölümde önce C1 çekirdekli integral operatörlerin özde¼gerlerinin o(1=n3=2) oldu¼gunu

gösteren Weyl teoremi (Weyl 1912), sonra bu teoremi çekirde¼gin pozitif tan¬ml¬olmas¬

durumunda o(1=n2) ye geli̧stiren Reade teoremi (Reade 1983) ispat edilecektir.

2.1 WEYL TEOREM·I

Teorem 2.1.1 Simetrik K (x; t) 2 C1 [0; 1]2 verilsin.

Tf (x) =

Z 1

0

K (x; t) f (t) dt

şeklindeki T nin �n özde¼gerleri

�n = o(1=n3=2)

dir.

·Ispat. K(x; t) nin (reel) C1 çekirde¼gi olmas¬@K=@x; @K=@t k¬smi türevlerinin var ve

sürekli olmas¬demektir. E¼ger K(x; t) simetrik ise

@K

@x
(x; t) =

@K

@t
(t; x) (2.1)

dir. [0; 1]2 üzerinde @K=@x; @K=@t düzgün süreklidirler. Böylece " > 0 için jx � yj <

1=N; jt� uj < 1=N oldu¼gunda,����@K@x (x; t)� @K

@x
(y; u)

���� < "����@K@t (x; t)� @K

@t
(y; u)

���� < "

olacak şekilde N vard¬r.
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xn = tn = n=N (0 � n � N) yazal¬m. Emn karesi

Emn = f(x; t) : xm�1 � x � xm; tn�1 � t � tng

olsun.

0
…

…

…

…

…

…

1mx−

…

…

…

…
mx

1nt−

nt
mnE

M

M

M

M

M

M

1

1

Şekil 2.1 Emn karesi

Emn karesi üzerinde

R(x; t) = K(xm; tn) + (x� xm)
@K

@x
(xm; tn) + (t� tn)

@K

@t
(xm; tn) (2.2)

şeklinde tan¬mlans¬n

RN(x; t); x = xm ve y = tn do¼grular¬üzerinde tan¬ml¬de¼gildir fakat bu do¼grular¬n ölçümü

s¬f¬r oldu¼gundan önemli de¼gildir.

Bu taktirde, ortalama de¼ger teoremi K(x; t) ye uygulan¬rsa, x < y < xm şart¬n¬sa¼glayan

baz¬y ve t < u < tn şart¬n¬sa¼glayan baz¬u lar için

K(x; t)�K(xm; tn) = (K(x; t)�K(xm; t)) + (K(xm; t)�K(xm; tn))

= (x� xm)
@K

@x
(y; t) + (t� tn)

@K

@t
(xm; u)

elde edilir. Buradan (x; t) 2 Emn için

K(x; t)�R(x; t) = (x�xm)
�
@K

@x
(y; t)� @K

@x
(xm; tn)

�
+(t�tn)

�
@K

@t
(xm; u)�

@K

@t
(xm; tn)

�
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ve böylece

jK(x; t)�R(x; t)j < jx� xmj"+ jt� tnj" <
1

N
"+

1

N
" = 2"=N

elde edilir. Buradan

kK �Rk1 < 2"=N; kK �RkHS < 2"=N (2.3)

ve e¼ger K bir Mercer çekirde¼gi ise, bu durumdaZ 1

0

jK(x; x)�R(x; x)j dx < 2"=N

dir.

Şimdi (2.2) ile tan¬ml¬R nin rank¬n¬n 2N oldu¼gunu gösterelim.

(2.2) ile tan¬ml¬R(x; t)

amn = K(xm; tn)� xm
@K

@x
(xm; tn)� tn

@K

@t
(xm; tn)

= K(xm; xn)� xm
@K

@x
(xm; xn)� xn

@K

@t
(xm; xn)

olmak üzere (2.1) den R(x; t) = amn + bmnx+ cmnt şeklindedir.

Böylece K(x; t) simetrik ise amn = anm oldu¼gu görülür. Ayr¬ca,(2.1) den e¼ger K(x; t)

simetrik ise

bmn =
@K

@x
(xm; tn) =

@K

@x
(xm; xn);

cmn =
@K

@t
(xm; tn) =

@K

@t
(xm; xn)

=
@K

@x
(xn; xm) = bnm

dir. Buradan (x; t) 2 Enm için

R(x; t) = amn + bmnx+ bnmt

yaz¬labilir. Böylece e¼ger K(x; t) simetrik ise R(x; t) de simetriktir.

n = 1; � � � ; N için,

�n(x) =

8<: 1; e¼ger xn�1 � x � xn

0; aksi halde
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ve

 n(x) =

8<: x; e¼ger xn�1 � x � xn

0; aksi halde

olsun. Buradan,

R(x; t) =

NX
m;n=1

amn�m(x)�n(t) +
NX

m;n=1

bmn m(x)�n(t) +
NX

m;n=1

bnm�m(x) n(t)

yaz¬l¬r. Bu ise R(x; t) nin rank¬n¬n 2N oldu¼gunu gösterir.

R yi (2.2) deki gibi seçelim. Teorem 1.5.2 ve (2.3) eşitsizli¼ginden �n reel ve mutlak de¼gerce

azalan iken
1X

2N+1

�2n � kT �Rk2HS = o(1=N2)

bulunur. Buradan �2n = o(1=n3) oldu¼gunu gösterelim.

E¼ger " > 0 verilirse, her N > N0 için,

1X
2N+1

�2n < "=N2

olacak şekilde N0 vard¬r.�n azalan oldu¼gundan

"=N2 >
3NX
2N+1

�2n � N�23N

dir. Bu yüzden, her N > N0 için, N3�23N < " dur.

Böylece,

N3�23N ! 0 (2.4)

d¬r.

Ayr¬ca

N3�23N+1 � N3�23N ! 0; (2.5)

N3�23N+2 � N3�23N ! 0; (2.6)

d¬r.

O zaman
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n = 3N , için (2.4) den�
1

3

�3 �
n3�2n

�
! 0;

n = 3N + 1, için (2.5) den�
n� 1
3

�3
�2n v

�
1

3

�3 �
n3�2n

�
! 0;

n = 3N + 2, için (2.6) dan�
n� 2
3

�3
�2n v

�
1

3

�3 �
n3�2n

�
! 0;

bulunur.

Böylece, her durumda n3�2n ! 0 d¬r. Sonuç olarak

�2n = o(1=n3)

dir. Dolay¬s¬yla

j�nj = o(1=n3=2)

elde edilir.

2.2 READE TEOREM·I

Teorem 2.2.1 E¼ger K (x; t) 2 C1 [0; 1]2 ve

Tf (x) =

Z 1

0

K (x; t) f (t) dt

pozitif tan¬ml¬ise

�n = o(1=n2)

dir.

Teorem 2.2.2 k(�t) = k(t) olacak şekilde 2�-periodik k 2 L1[��; �] için

Tf(x) =

Z �

��
k(x� t)f(t)dt

konvolüsyon operatörü pozitiftir ancak ve ancak k n¬n Fourier katsay¬lar¬

cn =
1

2�

Z �

��
k(t)e�intdt

olmak üzere her n için cn � 0 d¬r.
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·Ispat. Eşleni¼gi kendisine eşit oldu¼gundan tüm cn ler reeldir:

cn =
1

2�

Z �

��
k(t)eintdt

=
1

2�

Z �

��
k(�t)eintdt

=
1

2�

Z �

��
k(t)e�intdt

= cn:

E¼ger cn � 0 ise herhangi bir f 2 L2 [��; �] için

hTf; fi =
Z �

��

Z �

��
k(x� t)f(t)f(x)dtdx

=

Z �

��

Z �

��

1X
�1

cne
in(x�t)f(t)f(x)dtdx

=
1X
�1

cn

����Z �

��
f(t)e�intdt

����2 � 0
d¬r. Böylece K pozitif tan¬ml¬olur.

E¼ger T � 0 ise �n(t) = eint için

0 � hT�n; �ni =
Z �

��

Z �

��
k(x� t)einte�inxdtdx

=

Z �

��

�Z �

��
k (u) e�inudu

�
dx (u = x� t)

= 4�2cn

dir. Böylece her n için cn � 0 oldu¼gu görülür.

2.2.1 En ·Iyi Yaklaş¬m

Mercer teoremi (Teorem 1.4.6 ve Sonuç 1.4.7), e¼ger K(x; t) sürekli ve

Tf(x) =

Z 1

0

K(x; t)f(t)dt

pozitif ise,

kTktr =
1X
1

�n =

Z 1

0

K(x; x)dx <1

oldu¼gunu söyler.
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Rank � N olacak şekilde sonlu rankl¬operatörler ile iz normunda T ye en iyi yaklaş¬m

RNf =
NX
1

�n hf; �ni�n

dir. (Teorem 1.5.3).

2.2.2 Karekökler

Teorem 2.2.3 E¼ger T : H ! H pozitif tan¬ml¬ise S2 = T olacak şekilde pozitif tek bir

S : H ! H operatörü vard¬r.

·Ispat. E¼ger T nin özfonksiyon aç¬l¬m¬,

Tf =
1X
1

�n hf; �ni�n

ise T nin karekökü,

Sf =
1X
1

�1=2n hf; �ni�n

dir
�
�1=2n > 0

�
.

Önerme 2.2.4 E¼ger T : L2[0; 1] ! L2[0; 1] bir Mercer operatörü ise (sürekli çekirdekli

ve pozitif tan¬ml¬), T nin S : L2[0; 1]! L2[0; 1] karekökü C[0; 1] içinedir.

·Ispat. E¼ger

Tf =
1X
1

�n hf; �ni�n

ise

Sf =

1X
1

�1=2n hf; �ni�n(x)

dir. Bu seri [0; 1] üzerinde düzgün yak¬nsakt¬r çünkü,�����
NX
M

�1=2n hf; �ni�n(x)
�����
2

�
NX
M

�n j�n(x)j
2
NX
M

jhf; �nij
2
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dir. Sa¼g taraftaki her iki toplam x e göre düzgün olarak 0 a yak¬nsar çünkü Mercer

teoreminden x e göre düzgün olarak

1X
1

�n j�n(x)j
2 = K(x; x)

ve Bessel eşitsizli¼ginden

1X
1

jhf; �nij
2 � kfk22

dir.

kRN � Tktr < " olacak şekilde sonlu rankl¬RN operatörlerini bulmaya ihtiyac¬m¬z var.

E¼ger,

kTktr =
Z 1

0

K(x; x)dx =

1X
1

�n

eşitli¼gini kullanmak istersek, RN � T için çal¬̧smal¬y¬z. Ayr¬ca RN sürekli çekirde¼ge

sahip olmal¬d¬r. Bu koşullar sa¼glan¬rsa Mercer teoremini kullanabiliriz. Weyl taraf¬ndan

kullan¬lan RN bu özelli¼ge sahip de¼gildir.

2.2.3 Yaklaş¬k Birimler

Tan¬m 2.2.5 f; g 2 L1[��; �] için f ve g nin konvolüsyonu (convolution)

(f � g)(x) =
Z �

��
f(x� t)g(t)dt

ile tan¬mlan¬r.

Bu işlem L1[��; �] yi bir Banach cebirine dönüştürür, fakat her f için e � f = f olacak

şekilde bir e birim eleman¬yoktur.

Tan¬m 2.2.6 L1[��; �] de bir yaklaş¬k birim (approximate identity) her f 2 L1[��; �]

için en � f ! f olacak şekilde bir (en)n�1 dizisidir.

Tan¬m 2.2.7 N: Dirichlet çekirde¼gi

DN(t) =

NX
�N

eint =
sin(N + 1=2)t

sin t=2

ile tan¬mlan¬r.
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N: Fejer çekirde¼gi

FN(t) =
1

N

 
NX
�N

eint

!2
=
1

N

sin2(N + 1=2)t

sin2 t=2
(2.7)

ile tan¬mlan¬r.

Örnek 2.2.8 Yukar¬da verilen DN ; FN çekirdekleri yaklaş¬k birimlerdir.

Önerme 2.2.9 E¼ger,

DNf(x) =

Z �

��
DN(x� t)f(t)dt;

FNf(x) =

Z �

��
FN(x� t)f(t)dt;

şeklinde al¬n¬rsa, 0 � FN � DN � I olur.

·Ispat. E¼ger �n(t) = eint ise,

DNf =
NX
�N
hf; �ni�n

dir. Böylece Bessel eşitsizli¼ginden

0 � hDNf; fi =
NX
�N
jhf; �nij

2 � kfk22

dir. Ayr¬ca,

FN =
D0 +D1 + � � �+DN�1

N

oldu¼gundan

FNf =
NX
�N
(1� jnj =N) hf; �ni�n;

ve böylece

hFNf; fi =

NX
�N
(1� jnj =N) jhf; �nij

2

�
NX
�N
jhf; �nij

2 = hDNf; fi

dir. Böylece istenildi¼gi gibi 0 � FN � DN � I elde edilir.

Yukar¬da ilgilendi¼gimizDN ; FN örnekleri bizim ispatlayaca¼g¬m¬z teorem için yeterli de¼gildir,

o yüzden aşa¼g¬daki RN çekirde¼gini kullanmam¬z gerekecek.
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Örnek 2.2.10 E¼ger xn = tn = n=N (0 � n � N); ve e¼ger 1 � n � N için

�n(x) =

8<: 1; xn�1 � x � xn

0; di¼ger durumda

ve e¼ger,

RN(x; t) = N

NX
1

�n(x)�n(t)

ise, bu durumda

i. Her N � 1 için 0 � RN � I dir:

ii. Her f 2 L1[0; 1] için kRNf � fk1 ! 0 d¬r.

RN bir yaklaş¬k birimdir; yani RN ! I kuvvetli yak¬nsakt¬r.

·Ispat. ·Ilk olarak,Z 1

0

RN(x; t)dt = 1

oldu¼gunu görürüz, çünkü hemen hemen her x için e¼ger xn�1 � x � xn iseZ 1

0

RN(x; t)dt = N

Z 1

0

�n(t)dt = N

Z tn

tn�1

dt = 1

dir. 0 � RN � 1 in ispat¬için,

0 � hRNf; fi = N

Z 1

0

Z 1

0

NX
1

�n(x)�n(t)f(t)f(x)dxdt

= N

NX
1

Z 1

0

f(t)�n(t)dt

Z 1

0

�n(x)f(x)dx

= N
NX
1

����Z 1

0

f(t)�n(t)dt

����2
= N

NX
1

����Z tn

tn�1

f(t)dt

����2
� N

NX
1

Z tn

tn�1

dt

Z tn

tn�1

jf(t)j2 dt (Schwartz eşitsizli¼gi)

= kfk22
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yazabiliriz. Ayr¬ca,

kRNf � fk1 =
Z 1

0

����Z 1

0

RN(x; t)f(t)dt� f(x)

���� dx
=

Z 1

0

����Z 1

0

RN(x; t) (f(t)� f(x)) dt

���� dx
�
Z 1

0

Z 1

0

RN(x; t) jf(t)� f(x)j dtdx

= N

NX
1

Z xn

xn�1

Z tn

tn�1

jf(t)� f(x)j dtdx

dir.

E¼ger f 2 C[0; 1] ise verilen " > 0 ve her jx� tj < 1=N için jf(t)� f(x)j < " olacak

şekilde 9N vard¬r.

Buradan, tüm bu N ler için

kRNf � fk1 < N
NX
1

Z xn

xn�1

Z tn

tn�1

"dtdx = "

olur. Bu, sürekli f fonksiyonlar¬için k:k1 normunda RNf ! f oldu¼gunu gösterir.

E¼ger f 2 L1[0; 1] ise; " > 0 verildi¼ginde kg � fk1 < " olacak şekilde g 2 C[0; 1] seçebiliriz.

Böylece, kRNg �RNfk1 � kg � fk1 oldu¼gundan

kRNg � gk1 � kRNg �RNfk1 + kRNf � fk1 + kf � gk1 < 3"

dur. Gerçekten, kRNk � 1; L1[0; 1] ! L1[0; 1] şeklinde bir operatör olarak düşünülür

çünkü

kRNhk1 = N

Z 1

0

�����
Z 1

0

NX
1

�n(x)�n(t)h(t)dt

����� dx
� N

Z 1

0

Z 1

0

NX
1

�n(x)�n(t) jh(t)j dxdt

= N

NX
1

Z xn

xn�1

Z tn

tn�1

jh(t)j dxdt

=

NX
1

Z xn

xn�1

jh(t)j dt

= khk1

dür
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Önerme 2.2.11 E¼ger T pozitif tan¬ml¬ve S de onun pozitif karekökü ise ve e¼ger I birim

operatörü olmak üzere R

0 � R � I

olacak şekilde sonlu rankl¬bir operatör ise, bu durumda SRS nin sürekli çekirde¼gi vard¬r

ve

0 � SRS � T

dir. Bu yüzden SRS bir Mercer operatörüdür.

·Ispat. 0 � R � I oldu¼gundan, Lemma 1.4.4 den

0 � SRS � S2 = T

d¬r. E¼ger,

Tf =

Z 1

0

K(x; t)f(t)dt;

Sf =

Z 1

0

J(x; t)f(t)dt;

Rf =

Z 1

0

H(x; t)f(t)dt;

ise SRS nin çekirde¼gi

G(x; t) =

Z 1

0

Z 1

0

J(x; u)H(u; v)J(v; t)dudv

dir. Ayr¬ca  n 2 L2[0; 1] (1 � n � N) olmak üzere H(u; v) çekirde¼gi

H(u; v) =

NX
1

 n(u) n(v)

şeklindedir. Böylece,

G(x; t) =

NX
1

Z 1

0

Z 1

0

J(x; u) n(u) n(v)J(t; v)du

=

NX
1

�Z 1

0

J(x; u) n(u)du

� Z 1

0

J(t; v) n(v)dv

!

Önerme 2.2.4 den x; t ye göre süreklidir.
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2.2.4 Reade Teoreminin ·Ispat¬

K(x; t) 2 C1[0; 1]2 pozitif tan¬ml¬olsun. O halde her " > 0 için, jx� yj < 1=N; jt� uj <

1=N koşulunu sa¼glayan tüm x; y; t; u 2 [0; 1] ler için����@K@x (x; t)� @K

@x
(y; u)

���� < "����@K@t (x; t)� @K

@t
(y; u)

���� < "

olacak şekilde N seçebiliriz.

RN yi; Örnek 2.2.10 de tan¬mlanan operatör alal¬m. O zaman

0 � RN � I

olur. Böylece, Önerme 2.2.11 den, SRNS nin sürekli bir çekirde¼gi vard¬r ve T nin pozitif

karekökü S olmak üzere

0 � SRNS � T

dir. Bu yüzden, Mercer teoremi ile,

kSRNSktr =
Z 1

0

Z 1

0

Z 1

0

J(x; u)RN(u; v)J(v; x)dudvdx

=

Z 1

0

Z 1

0

RN(u; v)

�Z 1

0

J(x; u)J(v; x)dx

�
dudv

=

Z 1

0

Z 1

0

RN(u; v)K(v; u)dudv

=

Z 1

0

Z 1

0

RN(u; v)K(u; v)dudv

dir. Ayr¬ca, hemen hemen her u içinZ 1

0

RN(u; v)dv = 1

oldu¼gundan (Örnek 2.2.10 nin ispat¬na bak¬n¬z)

kTktr =

Z 1

0

K(u; u)du

=

Z 1

0

Z 1

0

K(u; u)RN(u; v)dudv

=

Z 1

0

Z 1

0

K(v; v)RN(u; v)dudv

dir. Böylece,

T � SRNS
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oldu¼gundan

kT � SRNSktr =
Z 1

0

Z 1

0

RN(u; v) (K(u; u)�K(v; u)) dudv

=

Z 1

0

Z 1

0

RN(u; v) (K(v; v)�K(u; v)) dudv

=
1

2

Z 1

0

Z 1

0

RN(u; v) [K(u; u) +K(v; v)�K(v; u)�K(u; v)] dudv

dir.

( ),uω

( )' ,vω ( ),v v

( ),v u( ),u u

u v

u

v
( ),u v

Şekil 2.2 [u; v]2 karesi

Dikkat edilirse, ortalama de¼ger teoreminden u � w � v; u < w0 < v olmak üzere

K(u; u) +K(v; v)�K(v; u)�K(u; v) =

�
@K

@x
(w; u)� @K

@x
(w0; v)

�
(u� v)

dir. Böylece e¼ger ju� vj < 1=N ise,

jK(u; u) +K(v; v)�K(v; u)�K(u; v)j < "=N

dir. Buradan,

kT � SRNSktr <
"

2N

Z 1

0

Z 1

0

RN(u; v)dudv =
"

2N

bulunur. Bu ise

1X
N+1

�n = o

�
1

N

�
oldu¼gunu gösterir.

Şimdi bu eşitli¼gin do¼grulu¼gunu gösterelim.
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E¼ger �n = o(1=n2) (�n > 0) ise, " > 0 oldu¼gunda her n > N
0
için �n < "=n2 olacak

şekilde N
0
vard¬r. Bu yüzden her N > N 0 için

1X
N+1

�n < "

1X
N+1

1=n2 < "

Z 1

N

dx=x2 = "=N

dir. Buradan,

1X
N+1

�n = o(1=N)

dir. Tersine e¼ger,

1X
N+1

�n = o(1=N)

verilir ise �n nin azalan oldu¼gu durumlarda �n = o(1=n2) oldu¼gu görülür. Gerçekten de

" > 0 verildi¼ginde her N > N 0 için,

1X
N+1

�n = "=N

olacak şekilde N 0 vard¬r.

Bu durumda N > N 0 için

"=N >
2NX
N+1

�n � N�2N

yazabiliriz. Bu ise bize,

(2N)2�2N � 4";

(2N + 1)2�2N+1 � (3N)2�2N < 9"

oldu¼gunu verir.

Bundan dolay¬istenildi¼gi gibi n2�n ! 0 dir.

O halde

�n = o

�
1

n2

�
elde edilir.

Bu bölümü Reade�in bulmuş oldu¼gu bu sonucun mümkün en iyi sonuç oldu¼gunu gösterecek

bir C1 çekirde¼gi örne¼gi ile kapataca¼g¬z.
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2.2.5 En Uygun Örnek

Şimdi �n özde¼gerlerinin o (1=n2) oldu¼gu bir C1 çekirde¼gi bulundu¼gunu göstererek Reade�in

bulmuş oldu¼gu sonucun mümkün en iyi sonuç oldu¼gunu gösterece¼giz. Bunun için aşa¼g¬daki

örne¼gi verelim.

Örnek 2.2.12 Her � > 2 için

K(x; t) =

1X
1

cos 2�n(x� t)

n�

çekirde¼gi C1 [0; 1]2 dedir ve buna karş¬l¬k gelen operatör

Tf(x) =

1Z
0

k(x; t)f(t)dt

�n = 1=n
� özde¼gerlerine sahiptir.

Buradan, C1 çekirdekli pozitif tan¬ml¬T nin �n(T ) özde¼gerlerinin �n = o (1=n2) yak-

laş¬m¬n¬n n nin kuvvetleri için mümkün en iyi sonuç oldu¼gunu gösterir.
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BÖLÜM 3

READE TEOREM·IN·IN ÇARPANLARA AYIRMA METODU

·ILE ·ISPATI

Bu bölümde C1 çekirdekli integral operatörler için J.B. Reade�in bulmuş oldu¼gu sonuç,

T.Kühn taraf¬ndan kullan¬lan Banach uzaylar¬üzerinden çarpanlara ay¬rma metodu ile

ispatlanm¬̧st¬r.

H.Weyl (Weyl 1912) makalesinde K(x; t) 2 C1[0; 1]2 olmak üzere

Tf(x) =

Z 1

0

K(x; t)f(t)dt

şeklindeki Fredholm integral operatörünün özde¼gerlerinin o(1=n3=2) oldu¼gunu göstermi̧stir.

J.Reade (Reade 1983) makalesinde bu sonucu T nin pozitif olmas¬durumunda o(1=n2)

ye geli̧stirmi̧stir. T.Kühn (Kühn 1987) makalesinde çekirdek bir kompakt metrik uzay

üzerinde bir Lipschitz koşulunu sa¼glamak üzere T operatörünün özde¼gerlerinin O(1=n2)

oldu¼gunu Banach uzaylar¬üzerinden çarpanlara ay¬rma ile göstermi̧stir. Kühn taraf¬ndan

kullan¬lan metodu J.Reade�in buldu¼gu sonucun yeni bir ispat¬n¬vermek için kullan¬yoruz.

Bu metodun avantaj¬genelleştirmeye uygun olmas¬d¬r.

3.1 TEK·IL SAYILAR

T : H ! H; H Hilbert uzay¬nda kompakt bir operatör olsun.

O zaman T �T kompakt, simetrik ve pozitif tan¬ml¬d¬r. Böylece sn > 0 (sn ! 0)

oldu¼gunda s2n ile gösterebilece¼gimiz pozitif özde¼gerler ve bu özde¼gerlere kaŗs¬l¬k gelen

�n özfonksiyonlar¬vard¬r.

Tan¬m 3.1.1 sn say¬lar¬ T nin tekil de¼gerleri (Singular numbers) olarak adland¬r¬l¬r.
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 n = T�n=sn olsun. O zaman  n ortonormaldir çünkü

h m;  ni = hT�m; T�ni=smsn

= h�m; T �T�ni=smsn

= h�m; s2n�ni=smsn

= �mn

dir. Ayr¬ca TT � ¬n özfonksiyonlar¬ n dir çünkü

TT � n = TT �T�n=sn

= T (s2n�n)=sn

= s2n n

dir.

Önerme 3.1.2  n ler TT
� ¬n s¬f¬rdan farkl¬özfonksiyonlar¬d¬r.

·Ispat.  n fonksiyonlar¬M uzay¬n¬n gereni olsun. M? in TT � ¬n s¬f¬r uzay¬oldu¼gunu

göstermemiz gerekir.

f 2M? olsun. O zaman T �T nin s¬f¬r uzay¬T �f dir çünkü

hT �f; �ni = hf; T�ni = sn hf;  ni

d¬r. Buradan T �TT �f = 0 , ve TT �f = 0 d¬r çünkü

kTT �fk2 = hTT �f; TT �fi = hT �f; T �TT �fi = 0

d¬r.

Böylece aşa¼g¬daki özfonksiyon aç¬l¬mlar¬na sahibiz

T �Tf =

1X
1

s2n hf; �ni�n;

TT �f =

1X
1

s2n hf;  ni n;

T f =

1X
1

snhf; �ni n; (3.1)

T �f =

1X
1

snhf;  ni�n: (3.2)
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Şimdi(3.1) ü gösterelim. E¼ger TT � ¬n s¬f¬r uzay¬n¬n ortonormal taban¬�
0

n ise, her f 2 H

için

Tf = T

 1X
1

hf; �ni�n +
1X
1

D
f; �

0

n

E
�
0

n

!

=

1X
1

hf; �niT�n +
1X
1

D
f; �

0

n

E
T�

0

n

=

1X
1

snhf; �ni n

d¬r. Burada her n için T�
0

n = 0 oldu¼gunu kulland¬k çünkü


T�0n


2 = DT�0n; T�0nE = DT �T�0n; �0nE = 0
d¬r.

Benzer şekilde (3.2) ifadesi de gösterilebilir.

K(x; t) 2 L2 [0; 1] olmak üzere T : L2 [0; 1]! L2 [0; 1] çekirdek operatörü

Tf(x) =

Z 1

0

K(x; t)f(t) dt

ile veriliyor, o zaman

T �f(x) =

Z 1

0

K(x; t)f(t) dt

ve

J(x; t) =

Z 1

0

K(x; u)K(x; u)du

olmak üzere

TT �f(x) =

Z 1

0

J(x; t)f(t) dt

dir.

Her f 2 L2 [0; 1] için

Tf(x) =

Z 1

0

K(x; t)f(t)dt

=
1X
1

snhf; �ni n (x)

=

1X
1

sn

Z 1

0

f(t)�n(t)dt n(x)

=

Z 1

0

 1X
1

sn�n(t)  n(x)

!
f(t)dt
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dir. Buradan T için çekirdek aç¬l¬m¬

K(x; t) =
1X
1

sn n(x)�n(t)

şeklindedir. Benzer olarak T � için çekirdek aç¬l¬m¬

K�(x; t) =
1X
1

sn�n(x) n(t)

dir. Ayr¬ca T �T için iz özdeşli¼ginden (trace identity)

1X
1

s2n =

Z 1

0

Z 1

0

jK(x; t)j2 dx dt =
Z 1

0

J(x; x)dx (3.3)

dir. Bu (3:3) özdeşli¼gine Parseval özdeşli¼gi ad¬verilir.

Örnek 3.1.3 L2[0; 1] üzerinde

Tf(x) =

Z x

0

f(t) dt

ile tan¬mlanan T integral operatörünün

sn = 1=(n+
1

2
)�

tekil de¼gerleri ve n � 0 ve k�nk2 = k nk2 = 1=2 olmak üzere

�n(t) = cos(n+
1

2
)�t;

 n(t) = sin(n+
1

2
)�t

özfonksiyonlar¬vard¬r.

Tan¬m 3.1.4 X;Y Banach uzaylar¬olmak üzere

s : B(X; Y ) �! R1

fonksiyonuna bir s-ölçüsü denir. T 2 B(X; Y ) için s(T ) nin n: terimi sn(T ) olmak üzere

i. T kompakt, X = Y = H Hilbert uzay¬oldu¼gu taktirde sn(T ) = n: tekil say¬s¬d¬r

ii. s1(T ) = kTk ;

iii. 0 � sn+1(T ) � sn(T ) (n � 1);
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iv. sm+n+1(T + U) � sm+1(T ) + sn+1(U):

Ayr¬ca W;X; Y ler Banach uzaylar¬ve T 2 B(X;Y ); U 2 B(W;X) olmak üzere

v. sm+n+1(TU) � sm+1(T ):sn+1(U)

eşitsizli¼gi sa¼glan¬r ise s�ölçüsü çarp¬msald¬r deriz.

Yukar¬daki şekilde tan¬ml¬s�ölçüsü için sn(T ) say¬lar¬na s�say¬lar¬denir.

Bu say¬lara baz¬örnekler, an(T ) Yaklaş¬m say¬lar¬, xn(T ) Weyl say¬lar¬ve cn(T ) Gelfand

say¬lar¬d¬r.

Tan¬m 3.1.5 X; Y Banach uzaylar¬ aras¬ndaki T : X ! Y operatörünün an(T ) ile

gösterilen n inci yaklaş¬m say¬s¬, in�mum rank¬< n olan tüm R operatörleri üzerinde

al¬nmak üzere

an(T ) = inf
R
kT �Rk

ile tan¬mlan¬r.

Tan¬m 3.1.6 xn(T ) ile gösterilen n inci Weyl say¬s¬H bir Hilbert uzay ve kAk � 1

olmak üzere supremum tüm A : H ! X operatörleri üzerinde al¬nmak üzere

xn(T ) = sup
A
an(TA)

ile tan¬mlan¬r.

Bu say¬lar X = Y = H bir Hilbert uzay¬olduklar¬durumda hepsi özde¼gerlere eşittir.

Tan¬m 3.1.7 T : X �! Y için eşboyutu n den küçük olan kapal¬M � X için

cn(T ) = inf
M
kT jMk

olarak tan¬mland¬¼g¬nda, buna Gelfand say¬lar¬denir.

Önerme 3.1.8 T : H ! H kompakt simetrik oldu¼gu taktirde,

an(T ) = j�n(T )j

dir.
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·Ispat. T�n = �n�n; öyleki �n reel ve s¬f¬ra azalan; h�m; �ni = �mn oldu¼gunu biliyoruz.

Böylece, her f 2 H için T nin s¬f¬r uzay¬n¬n taban¬( n)n�1 oldu¼gunda

f =
X
n

hf; �ni�n +
X
n

hf;  ni n

dir. Özfonksiyon aç¬l¬m¬ndan

Tf =
X
n

hf; �ni�n�n

görelim ki;

kTfk2 =
X
n

jhf; �nij
2 �2n

� �21
X
n

jhf; �nij
2

= �21 kfk
2

dir. Buradan, kTk � j�1j gerçekte kTk = j�1j dir, çünkü T�1 = �1�1dir.

Şimdi,

Rf =
N�1X
1

hf; �ni�n�n

rank¬N den büyüktür ve

(T �R)f =
1X
N

hf; �ni�n�n:

dir. Böylece,

kT �Rk = j�N j:

dir. Buradan,

an(T ) � j�n(T )j

dir. Di¼ger taraftan rank¬N den büyük olan S verilsin, öyle � =
PN

1 j�nj2 = 1 vard¬r

öyleki S� = 0 d¬r.

Böylece,

k(T � S)�k2 = kT�k2 =
NX
1

j�nj2�2N

� �2N

NX
1

j�nj2 = �2N
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dir. Buradan,

kT � Sk2 � j�N j:

dir. Buradan,

an(T ) � j�n(T )j

dir.

Şimdi yaklaş¬m say¬lar¬n¬n alt-toplamsal ve alt-çarp¬msal olduklar¬n¬ispatlayal¬m.

Önerme 3.1.9 H Hilbert uzay¬ndaki herhangi iki kompakt operatör T; U için

am+n+1(T + U) � am+1(T ) + an+1(U);

am+n+1(TU) � am+1(T )an+1(U)

dir.

·Ispat. Key� " > 0 için

kT �Rkop < am+1(T ) + "

eşitsizli¼gi sa¼glanacak şekilde R nin rank¬n¬m den küçük ya da eşit,

kU � Skop < sn+1(U) + "

eşitsizli¼gi sa¼glanacak şekilde S nin rank¬n¬da n den küçük ya da eşit olacak şekilde

seçebiliriz.

Şimdi, R + S nin rank¬� m+ n dir, ayr¬ca,

am+n+1(T + U) � k(T + U)� (R + S)kop

� kT �Rkop + kU � Skop

< am+1(T ) + an+1(U) + 2"

dur. Böylece,

am+n+1(T + U) � am+1(T ) + an+1(U)
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dur. Ayr¬ca,

(T �R)(U � S) = TU � (RU + TS �RS)

ve

TS +RU �RS = RU + (T �R)S

nin rank¬� m+ n dir Böylece,

am+n+1(TU) � k(T �R)(U � S)kop

� kT �Rkop kU � Skop

< (am+1(T ) + ")(an+1(U) + ")

dir. Buradan,

am+n+1(TU) = am+1(T )an+1(U):

dir.

Uyar¬3.1.10 E¼ger T : H ! H kompakt operatör ise xn(T ) içinde bu önerme do¼grudur,

çünkü an(T ) = xn(T ) dir.

3.2 KAREKÖKLER

Her pozitif tan¬ml¬K(x; t) 2 C1[0; 1]2 çekirdekli

Tf(x) =

Z 1

0

K(x; t)f(t)dt

Fredholm operatörü, tek bir pozitif J(x; t) 2 L2[0; 1]2 çekirdekli

Sf(x) =

Z 1

0

J(x; t)f(t)dt

kare köke sahiptir. E¼ger T nin özde¼gerleri ve özvektörleri �n; �n ise Mercer teoreminden

1X
1

�n <1

sa¼glan¬r. Bu yüzden

J(x; t) =
1X
1

�1=2n �n(x)�n(t)

bir Hilbert-Schmidt çekirde¼gidir.
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Lemma 3.2.1 S : L2 [0; 1] �! C [0; 1] olmak üzere

Sf (x) =

Z 1

0

J (x; t) f (t) dt

ile tan¬ml¬S operatörünün yaklaş¬m say¬lar¬an(S) = o(1=
p
n) dir.

·Ispat. kfk2 � 1 ve " > 0 verirsin. Her jx� yj < �; jt� uj < � için

j@K=@x(x; t)� @K=@x(y; u)j < "2

olacak şekilde � > 0 seçelim.

[��; �] aral¬¼g¬nda Fejer çekirde¼gi (2.7) ile çal¬̧sarak, e¼ger

Rnf(x) =
1

2�n

Z �

��

sin2 nt=2

sin2 t=2
f(x� t)dt;

al¬n¬rsa

RnSf(x)� Sf(x) =
1

2�n

Z �

��

sin2 nt=2

sin2 t=2
(Sf(x� t)� Sf(x)) dt

olur. BuradaZ 1

0

J(x; u)J(u; t)du = K(x; t)

oldu¼gunu kullanarak

jSf(x� t)� Sf(x)j2 =
����Z 1

0

(J(x� t; u)� J(x; u)) f(u)du

����2
�
Z 1

0

jJ(x� t; u)� J(x; u)j2 du
Z 1

0

jf(u)j2 du

�
Z 1

0

(J(x� t; u)� J(x; u)) (J(x� t; u)� J(x; u))du

=

Z 1

0

(J(x� t; u)� J(x; u)) (J(u; x� t)� J(u; x)) du

� jK(x� t; x� t)�K(x; x� t)�K(x� t; x) +K(x; x)j

bulunur. Üstelik ortalama de¼ger teoreminden baz¬0 < �; �
0
< 1 için

jK(x� t; x� t)�K(x; x� t)�K(x� t; x) +K(x; x)j

=
���@K=@x(x� �t; x� t)� @K=@x(x� �

0
t; x)

��� jtj
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oldu¼gundan dolay¬

jSf(x� t)� Sf(x)j2 <

8<: "2jtj ; jtj < � ise

2k@K=@xk1jtj; aksi halde

elde edilir. E¼ger

RnSf(x)� Sf(x) =
1

2�n

�Z ��

��
+

Z �

��
+

Z �

�

�
sin2 nt=2

sin2 t=2
(Sf(x� t)� Sf(x)) dt

yaz¬l¬r ise, ikinci integral

���� 12�n
Z �

��

sin2 nt=2

sin2 t=2
(Sf(x� t)� Sf(x)) dt

���� � 1

2�n

Z �

��

sin2 nt=2

sin2 t=2
jSf(x� t)� Sf(x)j dt

<
"

2�n

Z �

��

sin2 nt=2

sin2 t=2
jtj1=2 dt

� "

2�n

Z �

��

sin2 nt=2

sin2 t=2
jtj1=2 dt

=
"

�n

Z �

0

sin2 nt=2

sin2 t=2
t1=2dt

� "�

n

Z �

0

sin2 nt=2

t3=2
dt

� "�p
2n

Z n�=2

0

sin2 u

u3=2
du

� "�p
2n

Z 1

0

sin2 u

u3=2
du

bulunur.

Ayr¬ca üçüncü integral, yeterince büyük n için

���� 12�n
Z �

�

sin2 nt=2

sin2 t=2
(Sf(x� t)� Sf(x)) dt

���� � 1

2�n

Z �

�

sin2 nt=2

sin2 t=2
jSf(x� t)� Sf(x)j dt

<

p
2 k@K=@xk1
2�n

Z �

�

sin2 nt=2

sin2 t=2
t1=2dt

<

p
2 k@K=@xk1
2�n sin2 �=2

Z �

0

t1=2dt

<
"p
n

bulunur.
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·Ilk integralde üçüncüye benzer şekilde���� 12�n
Z ��

��

sin2 nt=2

sin2 t=2
(Sf(x� t)� Sf(x)) dt

���� � 1

2�n

Z �

�

sin2 nt=2

sin2 t=2
jSf(x� t)� Sf(x)j dt

<

p
2 k@K=@xk1
2�n

Z �

�

sin2 nt=2

sin2 t=2
t1=2dt

<

p
2 k@K=@xk1
2�n sin2 �=2

Z �

0

t1=2dt

<
"p
n

ele al¬narak istenen sonuç elde edilir.

3.3 2-TOPLANAB·IL·IR D·IZ·ILER

X bir Banach uzay¬ve X deki bir dizi x = (xn)n�1 � X olsun.

Tan¬m 3.3.1 E¼ger

1X
n=1

kxnk2 <1

sa¼glan¬r ise x e kuvvetli 2� toplanabilir denir ve x 2 l2 (X) ile gösterilir.

kxnkS =

vuut 1X
n=1

kxnk2

normu ile l2 (X) bir Banach uzay¬d¬r.

Tan¬m 3.3.2 E¼ger her x� 2 X�(X in dual uzay¬için)

1X
n=1

jhx�; xnij2 <1

sa¼glan¬r ise x e zay{f 2� toplanabilir denir ve x 2 w2 (X) ile gösterilir.

Tan¬m 3.3.3 x 2 w2 (X) için zay{f 2� toplanabilir norm

kxkW = sup
kx�k�1

vuut 1X
n=1

jhx�; xnij2

ile tan¬mlan¬r.
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Tan¬m 3.3.4 X;Y Banach uzaylar¬ olmak üzere T 2 B (X; Y ) operatörüne, e¼ger her

x = (xn)n�1 2 w2 (X) için

Tx = (Txn)n�1 2 l2 (Y )

oluyor ise 2� toplanabilir denir ve T 2 �2 (X; Y ) yaz¬l¬r.

Tan¬m 3.3.5 2� toplanabilir T 2 B (X;Y ) için 2� toplanabilir norm

�2 (T ) = sup
kxkW�1

kTxkS

ile tan¬mlan¬r.

Lemma 3.3.6 I : C [0; 1] �! L2 [0; 1] birim operatörü 2� toplanabilir dir.

·Ispat. (fn)n�1 2 w2 (C [0; 1]) olsun. E¼ger Etf = f (t) de¼gerlendirme fonksiyoneli ise

Et 2 (C [0; 1])� vekEtk = 1 dir. O halde,
1X
n=1

jEt (fn)j2 =
1X
n=1

jfn (t)j2 �


(fn)n�1

2W

dir. Böylece Lebesgue s¬n¬rl¬yak¬nsakl¬k teoreminden



(fn)n�1

2S = 1X
n=1

Z 1

0

jfn (t)j2 dt =
Z 1

0

1X
n=1

jfn (t)j2 dt �


(fn)n�1

2W

bulunur.

Lemma 3.3.7 E¼ger T : X �! Y 2� toplanabilir ise, xn (T ) = O (1=
p
n) dir

·Ispat. n � 1 için kAk � 1 olacak şekilde A : H �! X olsun öyleki

an (TA) > xn (T )� "

sa¼glans¬n. O halde

nan (TA) � a1 (TA) + a2 (TA) + :::+ an (TA)

�
q
(a1 (TA))

2 + :::+ (an (TA))
2pn

�
q
(c1 (T ))

2 + :::+ (cn (T ))
2pn

� �2 (T )
p
n
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dir.(Reade 1983 ve Reade 1984). Burada cn (T ) ler Gelfand say¬lar¬d¬r. Böylece istenildi¼gi

gibi

xn (T ) <
�
�2 (T ) =

p
n
�
+ "

elde edilir.

Lemma 3.3.8 E¼ger I : C [0; 1]! L2 [0; 1] birim operatör ise, xn (I) = O (1=
p
n) dir.

·Ispat. Lemma 3.3.6 den

I : C [0; 1]! L2 [0; 1] (3.4)

2- toplanabilirdir.

O halde(3.4) 2-toplanabilir oldu¼gundan Lemma 3.3.7 den

xn (I) = O
�
1=
p
n
�

dir.

Teorem 3.3.9 E¼ger K (x; t) 2 C1 [0; 1]2 ve

Tf (x) =

Z 1

0

K (x; t) f (t) dt

pozitif tan¬ml¬ise

�n = o(1=n2)

dir.

·Ispat. ·Ispat¬C[0; 1] Banach uzay¬üzerinden S karekök operatörünü çarpan¬na ay¬rarak

K(x; t) 2 C1[0; 1]2 durumunda pozitif tan¬ml¬T nin �n özde¼gerlerinin o(1=n2) oldu¼gunu

aşa¼g¬daki şekilde gösteriyoruz.

Aç¬k olarak S : L2[0; 1] ! C[0; 1] nin yaklaş¬m say¬lar¬n¬n an(S) = o(1=
p
n) oldu¼gunu

Fejer çekirde¼gi yard¬m¬ile Lemma 3.2.1 de gösterdik. Daha sonra I : C[0; 1] ! L2[0; 1]

birim operatörünün 2-toplanabilir oldu¼gunu Lemma 3.3.6 da gösterdik. Benzer şekilde
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Weyl say¬lar¬n¬n xn(I) = O(1=
p
n) oldu¼gunu Lemma 3.3.8 de gösterdik. Buradan, tekil

say¬lar¬n alt çarp¬msall¬¼g¬ ile �1=2n = o(1=n) oldu¼gunu göstermi̧s oluyoruz. Dolay¬s¬yla

istenilen �n = o(1=n2) sonucunu elde etmi̧s oluruz.

Yukar¬da kulland¬¼g¬m¬z Banach uzaylar¬üzerinden çekirde¼gi çarpanlara ay¬rma metodu

genelleştirilebilir olmas¬aç¬s¬ndan önemlidir.
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BÖLÜM 4

POZ·IT·IF TANIMLI ·INTEGRAL ÇEK·IRDEK ÖRNEKLER·I

Matematiksel analizde kaŗs¬m¬za ç¬kan k çekirdeklerini kullanarak, pozitif tan¬ml¬K

çekirdeklerinin örneklerini [Dikmen1997] ve [Kesmen 2008] vermi̧slerdir. Cauchy inte-

gral formülü ile kaŗs¬m¬za ç¬kan k çekirdeklerini çal¬̧s¬rken baz¬durumlarda özel şekiller

çal¬̧s¬lm¬̧st¬r. Biz bu özel şekillerden birini daha genel bir şekil ile de¼gi̧stirerek yeni bir

örnek verece¼giz. Burada K, s ve t nin analitik çekirde¼gi olacakt¬r.

Tan¬m 4.0.10 I; J � R aral¬klar ve k 2 L2 (I � J), yaniZ
I

Z
J

jk (s; u)j2 duds <1

olsun. O zaman s 2 I; f 2 L2 (J) olmak üzere;

Sf (s) =

Z
J

k (s; u) f (u) du

formülü L2 (J) den L2 (I) içine bir lineer kompakt S operatörünü tan¬mlar. S� : L2 (I)!

L2 (J) eşlenik operatörü

S�g (u) =

Z
I

g (t) k (t; u)dt

ile verilir. Böylece, e¼ger f 2 L2 (I) ise s; t 2 I için

SS�g (u) =

Z
J

S�g (u) k (s; u) du

=

Z
I

Z
J

g (t) k (t; u)k (s; u) dudt

=

Z
I

g (t)K (s; t) dt

dir. Burada K (s; t) =
R
J
k (s; u) k (t; u)du dur. k 2 L2 (I � J) oldu¼gundan integralin

s¬ras¬n¬de¼giştirmek mümkündür ve K 2 L2 (I � I) d¬r.
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2( )L J

2( )L I
2( )L I

t T SS∗=

S∗ S

s

g

S g∗ f

Sf

Şekil 4.1 SS� operatörü

Teorem 4.0.11 T = SS� operatörü pozitiftir.

ispat. Burada,

hTg; giL2(I) = hSS�g; giL2(I) = hS�g; S�giL2(J) = kS�gk
2
L2(J) � 0

oldu¼gundan T pozitiftir.

O halde, k 2 L2 (I � J) oldu¼gu zaman T = SS� operatörü

K (s; t) =

Z
J

k (s; u) k (t; u)du

çekirde¼gi ile L2 (I) üzerinde bir pozitif integral operatördür.

Benzer şekilde S�S operatörü L2 (J) üzerinde pozitiftir.

Uyar¬4.0.12 E¼ger k (s; u) = l (s; u)h (u), jh (u)j = 1 ise bu durumdaZ
J

k (s; u) k (t; u)du =

Z
J

l (s; u) l (t; u)du

dur. Yani, integralin çekirde¼ginde mutlak de¼geri 1 olan k¬s¬m ihmal edilebilir.

Uyar¬4.0.13 Teorem 4.0.11 nin sonucu J üzerinde Lebesgue ölçümü bir m pozitif sabiti

ile çarp¬ld¬¼g¬zamanda do¼grudur (genellikle 1
2�
). Bu durumda

Sf (s) =

Z
J

k (s; u) f (u) (mdu)

öyle ki s 2 I; f 2 L2 (J) dir.

S�g (u) =

Z
I

k (t; u)g (t) dt

öyle ki u 2 J , t 2 I ve g 2 L2 (I) dir.

Tf (s) = SS�f (s) =

Z
I

K (s; t) g (t) dt

öyle ki K (s; t) =
R
J
k (s; u) k (t; u) (mdu) dur.
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4.1 CAUCHY ·INTEGRAL FORMÜLÜNDEN ÜRET·ILEN ÖRNEK

Parametrik Cauchy ·Integral Formülünü hat¬rlayal¬m. ·Integrali z = ' (u) ile parametrik

yazar¬z.

D

j

( )uj

a bu

g
£

f

Şekil 4.2 [a; b] aral¬¼g¬ve D bölgesi

Burada 
 bir pozitif yönlü do¼grultulabilir Jordan e¼grisi ve D bunun iç bölgesidir. f;D

nin bir analitik komşulu¼gunda tan¬ml¬ve s 2 D olmak üzere

f (s) =
1

2�i

Z



f (z)

z � s
dz

=
1

2�i

Z b

a

f (' (u))'0 (u)

' (u)
du

dur. Şimdi örne¼gimize geçelim.

Örnek 4.1.1 0 < � < �
2
olsun.

D1 = fz 2 C : �� < arg z < �� + �g

D2 = fz 2 C : � � � < arg z < �g

ile iki yar¬düzlem tan¬mlayal¬m.

I = [a; b] ; a > � 2 R ise I � D1 \ D2.
1 = @D1; 
2 = @D2 olsun ve ! = ei�; ! = e�i�

olsun.

u 2 R olmak üzere 
1 e¼grisini

' (u) = !u+ � = � + e�i�u

ile parametrik yazabiliriz.

55



a b
θ−

β

s

I

1D

¡

ϕ

Şekil 4.3 D1 bölgesi

Böylece D1 için Cauchy ·Integral Formülünden

f (s) =
1

2�i

Z
R

!f (!u+ �)

� + !u� s
du (4.1)

şeklinde yaz¬labilir. Burada Uyar¬4.0.12 den(4:1) denkleminde
!

i
modülü 1 oldu¼gundan

ihmal edilebilir. Bu bize

S1f (s) =

Z
R

f (u)

� + !u� s

du

2�

ile tan¬ml¬S1 : L2 (R)! L2 (I) lineer operatörünü önerir.O zaman

k1 (s; u) =
1

� + !u� s
2 L2 (I � R)

dir.Çünkü

Z
R

Z
I

1

j� + !u� sj2
dsdu =

Z
R

Z
I

1

j� � s+ u cos � � iu sin �j2
dsdu (4.2)

=

Z
R

Z
I

1

(� � s+ u cos �)2 + (u sin �)2
dsdu

=

Z
R

Z
I

1
�2+s2+u2 cos2 �+2�u cos ��2s��2su cos �+u2 sin2 �dsdu

=

Z
R

Z
I

1

�2 + s2 � 2s� + u2 + 2 (� � s)u cos �
dsdu

=

Z
R

Z
I

1

(s� �)2 + u2 � 2 (s� �)u cos �
dsdu
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s� � > a oldu¼gundan s = a+ � al¬n¬rsaZ
R

Z
I

1

j� + !u� sj2
dsdu =

Z
R

Z
I

1

(s� �)2 + u2 � 2 (s� �)u cos �
dsdu

�
Z
R

Z
I

1

a2 + u2 � 2au cos �dsdu

�
Z
R

Z
I

1

(1� cos �) (a2 + u2)
dsdu

=
b� a

(1� cos �)

Z
R

1

(a2 + u2)
du <1 (4.3)

bulunur. O halde

K1 (s; t) =

Z
R

1

(� + !u� s) (� + !u� t)

du

2�

=

Z
R

1

(u� ! (s� �)) (u� ! (t� �))

du

2�

•()w sb-

()tω β−

Şekil 4.4 Üst yar¬düzlemdeki kutup noktas¬w(s� �)

dir. Üst yar¬düzlemdeki kutup noktas¬! (s� �) dir.O zaman

K1 (s; t) = iRe s (h (u) ; (! (s� �)))

= i
1

! (s� �)� ! (t� �)

! = cos � + i sin �; ! = cos � � i sin � yaz¬p, eşleni¼giyle çarparsak

K1 (s; t) =
1

(s� t) cos � + i (s+ t� 2�) sin �

=
1

(s+ t� 2�) sin � � i (s� t) cos �

=
(s+ t� 2�) sin � + i (s� t) cos �

(s+ t� 2�)2 sin2 � + (s� t)2 cos2 �

= K1 (t; s)
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dir.

O zaman K1 (t; s) çekirde¼gi L2 (I � I) üzerinde simetrik ve pozitif tan¬ml¬d¬r.

Şimdi D2 çekirde¼gi için inşa edelim.

u 2 R olmak üzere 
2 e¼grisini ' (u) = !u+ � ile parametrik yazabiliriz.

D2 = fz 2 C : � � � < arg z < �g aç¬k yar¬düzlemi

a b

θ
β

s

I

2D

¡

ϕ

Şekil 4.5 D2 bölgesi

D2 için Cauchy ·Integral Formülünden

f (s) =
1

2�i

Z
R

!f (!u+ �)

� + !u� s
du

şeklinde yaz¬l¬r. Buradan

S2f (s) =

Z
R

f (u)

� + !u� s
du

ile tan¬ml¬S2 : L2 (R)! L2 (I) operatörünü önerir.

Benzer şekilde

k2 (s; u) =
1

� + !u� s
2 L2 (I � R)

elde edilir. ÇünküZ
R

Z
I

1

j� + !u� sj2
dsdu =

Z
R

Z
I

1

j� � s+ u cos � + iu sin �j2
dsdu

=

Z
R

Z
I

1

(� � s+ u cos �)2 + (u sin �)2
dsdu

(4:2)denkleminin ayn¬s¬d¬r ve(4:3) den dolay¬yak¬nsakt¬r.
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O zaman

K2 (s; t) =

Z
R

1

(!u+ � � s) (!u+ � � t)

du

2�

=

Z
R

1

(u� ! (s� �)) (u� ! (t� �))

du

2�

dir.

•()w tb-

()sω β−

Şekil 4.6 Üst yar¬düzlemdeki kutup noktas¬!(t� �)

Üst yar¬düzlemdeki kutup noktas¬! (t� �) dir. O halde

K2 (s; t) = i:Re s (h (u) ; ! (t� �))

=
i

! (t� �)� ! (s� �)

=
i

(t� s) cos � + i (t+ s� 2�) sin �

=
1

(t+ s� 2�) sin � � i (t� s) cos �

=
(t+ s� 2�) sin � + i (t� s) cos �

(t+ s� 2�)2 sin2 � + (t� s)2 cos2 �

= K2 (t; s)

olup, K2 (s; t) çekirde¼gi de L2 (I � I) üzerinde simetrik ve pozitif tan¬ml¬d¬r.

Şimdi iki pozitif operatörün toplam¬n¬n pozitif oldu¼gu gerçe¼gini kullanal¬m;
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a b

I

D

θ

θ−

β

s

Şekil 4.7 D1 \D2 bölgesi

D = D1\D2 bölgesi olmak üzere bu bölgede K1 (s; t) ve K2 (s; t) çekirdeklerinin toplam¬

olan L2 (I � I) üzerinde tan¬ml¬K (s; t) pozitif tan¬ml¬çekirde¼gini aşa¼g¬daki şekilde elde

ederiz.

K (s; t) = K1 (s; t) +K2 (s; t)

=
1

(s+ t� 2�) sin � � i (s� t) cos �
+

1

(s+ t� 2�) sin � � i (t� s) cos �

=
1

(s+ t� 2�) sin � � i (s� t) cos �
+

1

(s+ t� 2�) sin � + i (s� t) cos �

=
(s+ t� 2�) sin � + i (s� t) cos � + (s+ t� 2�) sin � � i (s� t) cos �

(s+ t� 2�)2 sin2 � + (s� t)2 cos2 �

=
2 (s+ t� 2�) sin ��

s2 + t2 + 2st+ 4�2 � 4�s� 4�t
�
sin2 � + (s2 + t2 � 2st) cos2 �

=
2 (s+ t� 2�) sin �

s2 + t2 + 2st
�
sin2 � � cos2 �

�
+ 4� (� � s� t) sin2 �

:

Böylece L2 (I � I) üzerinde tan¬ml¬pozitif tan¬ml¬çekirdek elde ettik.

Sonuç olarak basit halleri ile verilen e¼grilerin daha genel formdaki hallerini kullanarak

analitik çekirdekli pozitif tan¬ml¬ çekirdek örneklerini vermemiz mümkündür. Di¼ger

örneklerin daha genel halleri ve tezlerde kullan¬lmam¬̧s olan e¼grilerin kullan¬lmas¬ile anal-

itik çekirdekli pozitif tan¬ml¬çekirdek örneklerini veren bir başka yüksek lisans tezinin

yap¬labilece¼gini düşünüyoruz.

60



 61 

 
 
 
 
 

KAYNAKLAR 
 

 
Dikmen C M (1997) Positive Integral Operators with Analytical Kernels. M.Sc. Thesis, 

University of Manchester., pp. 13-30. 
 
Dikmen C M (2000) Hille Tamarkin Programme. PhD. Thesis, University of Manchester, pp 

66-78. 
 
Dikmen C M (2006) Positive Operators With Analytic Kernels. Çankaya Üniversitesi Fen 

Edebiyat Fakültesi, Journal of Arts and Sciences Sayı 6. 
 
Dikmen C M (2008) Positive definite integral operators. Archiv Der Mathematik, 91, 339-

343 Birkhauser Verlag. 
 
Kesmen Y (2008) Analitik Çekirdekli Pozitif Integral Operatörler. Yüksek Lisans Tezi 

(Yayımlanmamış), Zonguldak Karaelmas Üniversitesi, s.26-32. 
 
Kühn T (1987) Eigenvalues of Integral Operators with Smooth Positive Kernels. Arch. Math. 

Vol. 49, pp. 525-534. 
 
Reade J B (1983) Eigenvalues of Positive Definite Kernels I. Siam J. Math. Anal., Vol. 14, 

No.1, pp. 152-157. 
 
Reade J B (1984) Eigenvalues of Positive Definite Kernels II. Siam J. Math. Anal., Vol. 15, 

No.1, pp. 137-142 
 
Riesz F and Nagy B (1955) Functional Analysis. Ungar, New York, pp 195-208, 242-247. 
 
Soykan Y (2008) Fonksiyonel Analiz. Nobel Yayınları, s.151-170. 
 
Şuhubi E S (2001) Fonksiyonel Analiz. İTÜ Vakfı Yayınları, s. 474-478. 
 
Weyl H (1912) Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller      

Differentialgleichungen. Matematische Annalen, Vol. 71, pp. 441-479.    
 
Young N (1990) An Introduction to Hilbert Space. Cambridge University Press., reprinted,     

pp. 21-28. 
 
 
 
 
 
 
 



 62 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 63 

 

 

 

ÖZGEÇMİŞ 

 

Fuat YENER 17 Kasım 1980’de Kdz. Ereğli’de doğdu; ilköğretimini Alaplı’da ortaöğretimini 

Düzce Anadolu Öğretmen Lisesinde tamamladı. 1998 yılında Konya Selçuk Üniversitesi (SÜ) 

Eğitim Fakültesi Matematik Öğretmenliği Bölümü’ne girdi. 2003 yılında mezun olduktan 

sonra aynı yıl Milli Eğitim Bakanlığında Matematik Öğretmeni olarak göreve başladı Şu an 

Kozlu İmam Hatip Lisesinde Matematik Öğretmeni olarak görev yapmaktadır. 

 

ADRES BİLGİLERİ 

 

Adres:  19 Mayıs Mah. Kasapgil Sok. Elmas Evler Sit. 
  A/2 Blok D:10                  Kozlu 
  67600         Zonguldak 
   

 

Tel:  0 505 748 45 26  

E-posta: fuatyener67@hotmail.com 

 

 

 

 

 

 

 

 

 

FuatYENER 


	img135.pdf
	img136.pdf
	ön kısımlar.pdf
	tezfuat.pdf



