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Bu tez dort bolimden olugsmaktadir. Birinci boliimde gerekli temel tamim ve teoremleri
vererek bagladik. Ikinci boliimde 6énce C' cekirdekli integral operatorlerin 6zdegerlerinin

0(1/ n’ 2) oldugunu gosteren Weyl teoremi (Weyl 1912), sonra bu teoremi ¢ekirdegin pozitif
taniml1 olmasi durumunda o(l/nz) ye gelistiren Reade teoremi (Reade 1983) ispat edildi.

Uciincii boliimde C' ¢ekirdekli integral operatorler icin J.B.Reade’in bulmus oldugu sonuc,
T. Kiihn tarafindan kullanilan Banach uzaylar iizerinden carpanlara ayirma metodu ile ispat
edildi (Dikmen 2008). Son boliimde ise Cauchy integral formiilii ile matematiksel analizde
karsimiza cikan pozitif tamiml integral cekirdek ornekleri (Dikmen 2006) ile ilgilendik. Bu

orneklerden bir tanesi daha genel bir sekil kullanarak gelistirdik.

Anahtar Sozciikler: Pozitif integral operator, Weyl teoremi, Reade teoremi, tekil sayilar,

Cauchy integral formiilii

Bilim Kodu: 403.03.01.
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This thesis consist of four chapters. In the first chapter we begin with some necessary

definitions and teorems. In the second chapter we first proved the Weyl theorem (Weyl 1912)

which shows that eigenvalues of the integral operators with C' kernels is 0(1/ n"” ), then we

proved Reade’s theorem which improves this result to 0(1/?12) in the case the kernel is

positive definite (Reade 1983). In the third chapter the result of J.B. Reade’s for the operators
with C' kernels was proved with the method used by T. Kiihn which products the operator
through Banach spaces (Dikmen 2008). In the last chapter we dealed with the examples of
positive definite integral kernels coming from mathematical analysis using Cauchy integral

formula (Dikmen 2006). We improved one of these examples using more general figure.

Key Words: Positive integral operator, Weyl’s theorem, Reade’s theorem, singular numbers,

Cauchy integral Formula
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BOLUM 1
GIRIS

Bu boliime tezimizin amacina uygun olarak hazirlayici ¢n bilgiler vererek baslayacagiz.
Ikinci boliimde pozitif operatorler iizerinde durulacak ve K(z,t) integral cekirdegimiz
C1[0,1)? iken pozitif tanimh olmasi durumunda zdegerlerinin asimptotik olarak o(1/n?)
oldugu (Reade 1983) sonucunu Banach uzaylar iizerinden ¢arpanlara ayirma metodu
ile ispatlayacagiz (Dikmen 2008). Daha sonra porzitif operatorlere érnekler olugturan
yiiksek lisans tezindeki bir ¢rnegi genelleyecegiz (Dikmen 1997). Olugturdugumuz bu

ornekle tezimizi sonlandiracagiz.

1.1 BANACH VE HILBERT UZAYLARINDA OPERATORLER

Bu kisimda Fonksiyonel Analiz kitaplarinda bulunan tanim ve teoremleri kullanarak
hazirlayic1 6énbilgiler verecegiz.(Riesz and Nagy 1955, Young 1990, Suhubi 2001, Soykan
2008).

Tanim 1.1.1 V' bir vektor uzayp, @ # U C V olsun. U kendisi bir vektér uzay: ise U
ya V nin bir alt uzayr denir ve F, (F = C veya F = R) skaler bir cisim olmak tizere, her

a,B €F vex,yeU igin
ar+ pyelU
olma kosulu ile denktir.

Tamim 1.1.2 V' bir vektor uzayr olmak tizere bos olmayan bir M C V' kiimesi i¢in M
nin vektorlerinin tim sonlu lineer kombinasyonlarinan kiimesine M nin gereni (spant)
denir ve spanM ile gosterilir. k > 1 i¢in v = {vy,...,v} CV sonlu bir kiime ve v lineer
bagimsiz ve bir spana sahipse o zaman V nin her tabani ayni saynda elemana sahiptir.
Eger bu say k ise o zaman V nin k-boyutlu (ya da daha genel olarak, sonlu-boyutlu)
oldugu soylenir ve dim V' = k yazilir. Eger V béyle sonlu bir tabana sahip degilse V' ye

sonsuz-boyutludur denir.



Tanim 1.1.3 V ve W, aymi IF skaler cismi tizerinde vektor uzaylar: olsun. Bir'T :V — W

fonksiyonu (dénisimii) her o, 5 € F ve z,y € V igin

T(ax + Py) = oT'(z) + 6T(y)

ozelligini saglarsa veya buna denk olarak her o € F ve x,y € V i¢in
T(x+y)=T(x)+T(y) ve T(azx) = aT(x)

ozelligini saglarsa T ye bir lineer doéntigtiim adi verilir. Lineer déniisim yerine bazen
lineer operator kullanilwr. T : V' — W lineer doniisimlerinin tamamainin olusturdugu

kimeyi L(V, W) ile giosterecegiz. Eger V=W ise kisaca L(V) ile gésterecegiz.

Tamim 1.1.4 V. W wvektor uzaylars ve T € L(V, W) olsun.
T nin gorinti kimesi ImT = T(V) altuzayrder, T nin ranky gorinti uzayimin boyutu
yani rank(T) = dim(Im T') sayseder. Eger T nin gorinti uzayiman boyutu sonlu ise T ye

sonlu rankly operator denir.

Teorem 1.1.5 (Dini Teoremi)Her bir n € N ic¢in f,, : [a,b] — R stirekli bir fonksiyon
olsun ve her bir x € [a,b] i¢cin n — oo iken f,(x) nin f(z) e azalarak yakinsadigin

varsayalim. Bu durumda eger f stirekli ise n — oo tken diizgiin olarak f, — f dir.

Tanim 1.1.6 Bir X wvektor uzay tizerinde tamaml olup, bir © € X noktasindaki degeri
llz|| ile gdsterilen, her x, y € X ve a € F olmak tizere asagidaki ézellikleri gercekleyen
reel-degerli bir fonksiyona bir norm denir:

(N1) 2] > 0

(N2) ||z|| =0 <= =0

(N3) [lox]| = [e [

(N4) llz +yll < llzll + [yl (iigen esitsizligi).

Uzerinde bir norm tanvmlanmas bir X wvektor uzayina bir normlu uzay adi verilir.

Normlu uzaylar (X, ||.||) ya da kisaca X ile gésterilir.

Tanim 1.1.7 X bir normlu vektor uzay Y, X in bir altuzayr olsun. x € X i¢in
o — 2ol = inf{la — yl| - y € Y} = dist(x,Y)

yani her y € Y i¢in

[ = o < |z =yl



egitsizliging saglayan Y i¢indeki bir xy € Y elemanina x in bir en iyt yaklasima ade

verilir.

X n bir Y altuzay i¢in eger herbir x € X, Y idcinde bir en 1y yaklasima sahipse Y

altuzayina en iyt yaklasim 6zelligine sahiptir denar.

Tanim 1.1.8 Bir V wvektor uzay tizerinde i¢ ¢carpim, her x, y, z € V ve her A € F i¢in
(i) (x,x) >0, (z,2) =0 <= =0

(i) Az, y) = Mz, y)

(ii) (x,y) = (y, )

(w) (z+y,2) = (r,2) + (y, 2)

ozelliklerini saglayan bir (.,.) : V x V — F dontigimidir.

Mesela [0, 1] aralge tuzerinde tanimly sirekli fonksiyonlarin uzayr olan C'|0,1] karmagik

vektor uzayr tzerinde
1 —

() = | regtar

0
formiili bir i¢ carpym tamimlar.
Teorem 1.1.9 V dizerinde tanvmlanan bir i¢ ¢carpim, V dizerinde
2]l = v/ {z, z)
ile indirgenen bir norm tanimlar.

Tamm 1.1.10 Uzerindeki i¢ carpumn indirgedigi normdan iretilen metrige gore tam
olan bir i¢ carpim uzaypna Hilbert wzayr denir. Hilbert uzayr genelde H harfi ile

gosterilir.

Uyar1 1.1.11 Genel olarak, bir i¢ ¢arpim uzayinin Hilbert uzay: olmasy gerekmez fakat
fonksiyonel analizde bir temel teorem her X i¢ ¢arpim wuzayiman tamlanarak bir Hilbert
uzayr haline getirilebilmesini garanti eder. Béyle bir H Hilbert uzayima X in tamlanis

denir.

Tanim 1.1.12 (i) Reel eksen tzerinde (sonlu veya sonsuz) herhangi bir aralik I olsun.

Karesi integrallenebilir, yani

/ F@OPdt < oo



olan karmasik degerli Lebesgue olgiilebilir f : I — C  fonksiyonlarimin uzay L* (I) ile

gosterilir.

Her f,g € L*(I) i¢gin f ile g nin ¢carpim

(f.g) = /I £ () g @t

ile tanamlamar. f min normu ise

117 = [ 150R de < o

dur.

(i1) Verilen I, J araliklar: igin

// e (s, u) [ duds < oo
IJJ

olacak sekilde I x J tizerindeki tiim karesi integrallenebilir (Lebesque) ol¢iilebilir karmasik

degerli k fonksiyonlariman uzayr L* (I x J) ile gosterilir.

Tanim 1.1.13 H, H, Hilbert uzaylar, olsunlar. Verilen T : Hy — H swrhdir ancak ve

ancak IM € R éyleki Vf € Hy igin
ITfIl < M| f]

dir. Bu M simrlarmn en kigigine T lineer operatériiniin normu denir ve [T, _ 4

ya da kisaca ||T|| ile gosterilir. Operatér normunu aymi zamanda

1Tl = sup [ITf]

1<
ile tanamlayabiliriz.
H, den H ye biitiin sinarly lineer operatorlerin kiimesini B(Hy, H) ile gosterecegiz. B(Hy, H)

nin elemanlary ayrica streklidir.

Tanim 1.1.14 Verilen T : Hy — H operatéri kompakttir eger verilen (f,) C Hy sinarl

dizisi i¢in (yani sup || f,.|| < 00),

Tf, —g

olacak sekilde (f,) C (fn),g € H vardar.

H, den H ye biitin kompakt operatorlerin kimesini K(Hy, H) ile gosterecegiz.
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Uyar: 1.1.15 Bir kompakt operatér ayni zamanda siirekli olmasy gerekir. Aksi halde
T fnll — oo olacak sekilde (f,) C Hy vardwr, bu durumda (T f,) in yakinsak bir alt dizisi

olmayabilir.

Teorem 1.1.16 Eger T € B(H,, H) ise,

Tf.9g={/T"9)n,
olacak sekilde bir tek T* € B(H, Hy) operatori vardur.
Tanim 1.1.17 Yukaridaki sarty saglayan T* : H — Hy operatoriime T' operatoriniin

eslenigi adv verilir. Eger H = Hy ve T' = T" olur ise T ye 6z-eslenik veya stmetriktir

denir.

Tanmim 1.1.18 T nin kuadratik normu

IfFl1<1

seklinde tanimlanar.
Uyar1 1.1.19 Eger T simetrik ise o zaman kuadratik norm operator norma egittir.

Onerme 1.1.20 (Tf, f) seklindeki i¢ ¢carpym reel degerlidir ancak ve ancak T simetriktir.

Ispat. Gerek sart icin, (T'f, f) i¢ carpim reel degerli olsun, o zaman her 7" igin

T(f+9),f+9—T(f-9),f—9
+i (T (f +1ig), f +ig) —i(T(f —ig), f—ig)=4(Tf,g) (1.1)

dir. f ve g nin yerini degistirdigimizde ve kompleks esleniklerini aldigimizda ayrica

(f+9.T(f+9)—{f—9T(f—9)

+i(f+ig, T (f+ig)) —i(f—ig,T(f —ig)) =4([,Tg) (1.2)
dir. (Tf, f) reel degerli oldugundan (f,Tf) = (Tf,f) = (Tf, f) dir. Boylece, (1.1)
ve (1.2) denklemlerinin sol taraflar eittir. Sonug olarak, (T'f,g) = (f,Tg); ve boylece

T =T, yani T simetriktir.

Yeter sart i¢in, 7' simetrik bir operator olsun. O zaman, T* =T ve

(TL ) =T =T =T )

oldugundan (T'f, f) reel degerlidir.



Onerme 1.1.21 Eger T kompakt simetrik bir doniisiim ise, ||f|| = 1 olmak iizere bir f

vardir oyleki A = £ ||T|| olmak dizere Tf = \f dir.

Ispat. ||f.|| < 1 vardir, dyleki Tamim 1.1.18 den [(T'f,,, fu)| — [T, dur. Gerekli ise
(T fys foy)| alt dizisine gegerek A = & || T, = £ [|T[[,, olmak iizere Onerme 1.1.20 den

(Tfo, fn) — A
kabul edebiliriz. Simdi,
1T fo = Mall? = 1T fall? = 2XT f, fu) + X || fall?

<NTNZ, = 2MT fo, fu) + X
= 2X2 —2\(T'f,, f) — O

dizisini gz ontine alalim. Bir alt diziye gegerek, T'f,, — f olacak sekilde f bulabiliriz.

O halde, \f,, — f dir. Boylece, T'f = lim T (\f,,) = Alim T'f,, elde edilir.

Tamim 1.1.22 X bir i¢ carpim uzayr olsun. {e,}, X i¢inde bir dizi olsun. Her m,n € N
1¢in

1 , m=n ise
<€m>€n> = ]
0 , m+#n ise

saglamirsa {e,} dizisine ortonormal dizidir denir. Burada, m = n i¢in (e, e,) = 1

olmasu ||e,|| = 1 ile denktir.
Simdi bir kiimenin ortogonal tiimleyeni kavramini tanimlayalim.

Tanim 1.1.23 X bir i¢ ¢arpim uzay olsun ve A, X in bir altkimesi olsun. x1 A i

saglayan z € X lerin tamamwmn olusturdugu kiimeye yansi
At ={zec X :herac Aigin (z,a) =0}

kiimesine A nin ortogonal timleyeni denir.

O halde A+, A icindeki her vektore ortogonal olan X icindeki vektorlerin tamaminin

olusturdugu kiimedir (4 = & ise 0 zaman A+ = X dir).



Tanim 1.1.24 M ve N, bir V' vektér uzayinin alt uzaylari olsunlar. Eger M NN = {0}
ve V' nin her elemani, M ‘nin ve N 'nin bir elemaninin toplama seklinde ifade edilebiliyorsa

V' wzaywna M ve N uzaylarinin direkt toplama denir ve V.= M & N seklinde yazilir
Uyar1 1.1.25 X bir Banach uzay ve M kapaly alt uzay olsun, X /M bélim uzayin
r+M={zx+y:ye M}

kalan siniflarinin kiimest olarak tanimlariz.

Onerme 1.1.26 Ejer X Banach uzayinan bir kapals alt uzaye M C X ise, o zaman X /M
1M + all = inf Jly+ al

normuna gére bir Banach uzayidir

Ispat. Tek problem X /M nin tam oldugunu gostermektir.
D UM + 2, < 00
1

olsun. Keyfi n i¢in ||y, + z,|| < ||M + z,|| + 1/n? olacak sekilde y,, € M segelim.

Buradan,

> My +zall < o0
1

dur.

Boylece,

[e.9]

Z(yn + )

1
X te yakinsaktir.

Buradan,

[e.9] o

S Mty +an) =Y (M + )

1 1

X/M de yakinsaktr.

Tamim 1.1.27 M C X kapalr altuzayimin esboyutunu X /M nin boyutu olarak tanim-

larz ve codimM ile gosteririz.



Onerme 1.1.28 X in her kapaly altuzayr M, N i¢in
codim (M N N) < codimM + codimN

dir.

Ispat. (X/M) @ (X/N) nin boyutu m +n dir. X/(M N N) yi (X/M) @ (X/N) nin bir
alt uzay1 oldugunu gostermek istiyoruz.

I:X/(MNN)— (X/M)® (X/N) yi
Ie+MNN)=(x+M,z+N) e (X/M)® (X/N)

olarak tammlayalim. O zaman, [ nm (X/M) @ (X/N) alt uzaymnda bir izomorfizm

oldugunu gosterebiliriz.

I iyi tanimhdir: ¢linkii eger t + M NN =y + M N N ise, o zaman x —y € M N N dir.
Buradan, 2 + M =y + M, x + N =y + N dir.

I acikca lineerdir.

I bire-bir dir: ¢iinkii eger (z + M,z + N) = (y + M,y + N) ise, o zaman x —y € M,
x —y € N dir. Boylece, v —y € M NN dir. O zaman, z+ M NN =y+ M NN dir.

Onerme 1.1.29 Ejer T : X — Y ve N C Y nin sonlu esboyutu n ise, o zaman M =

T~Y(N) C X nin sonlu esboyutu < n dir.

Ispat. X/M yi Y/N nin alt uzay1 olarak tanmmlayalim. Eger I : X/M — Y/N olarak
tammmlanirsa, I(z + M) = Tx + N € Y/N dir. O zaman, I, Y/N nin bir alt uzaymda

izomorfizmdir.

I iyi tammhdir: Eger z + M = y+ M ise, o zaman x —y € M dir. Buradan, T'(z —y) =
Tx — Ty oldugundan T'(z — y) € N dir. Boylece, Tx + N = Ty + N dir.
Bu fikir ters yon i¢in; yani I nin bire-bir oldugunu gostermek icin de kullanilabilir. Ayrica

T lineer oldugundan / nin lineer oldugu aciktir.



Teorem 1.1.30 Eger T, H Hilbert uzayinda bir kompakt simetrik operatior ise, o zaman
T nin sifirdan farkle 6zdegerleri sifira yakinsayan bir (A\,)n>1 reel sayr dizisi olugturur.

Bunlara karsilik gelen (¢,,)n>1 0zfonksiyonlars H tzerinde ortogonal bir dizi olusturur.

Ispat. Onerme 1.1.21 den ||¢,| = 1 olacak sekilde ¢, vardir, dyleki A, = % ||T'|| olmak
tizere Ty = M\, dir. By = {a¢, : a« € C} ve My = Ei olsun. T simetrik oldugundan
M, iizerinde invaryanttir, boylece Onerme 1.1.21 ii tekrar uygulayarak |¢,|| = 1 olacak
sekilde ¢, € M, elde ederiz 6yleki Ay = & ||T'| s, || olmak iizere T'¢, = Ao¢py dir.

Tiimevarim ile (\,),>; reel dizisi ve (¢,,),>1 ortonormal dizisi vardir, dyleki T'¢,, = \,.¢,,

dir. Ve eger

E, = {a¢,:aecC},

Mn = (El@Ez@@En)J_7

ise, 0 zaman ¢, € M, ve \,11 = £ ||T'|as,|| dir. Buradan, My D M, D --- ve bu ytizden
|A1] > |A2| > -+ bulunur.

Burada iki miimkiin durum vardir:

Durum 1: M, tizerinde T' = 0 olacak sekilde n vardir. Bu durumda 7' sonlu ranka

sahipdir.

Durum 2: Her n i¢in 7|y, # 0 dir. Bu durumda her n icin A, # 0 dir. Ustelik n — oo

iken \,, — 0 oldugunu gosterebiliriz.

Oyle olmadigim farzedelim, o zaman her n > 1 icin |\,| > ¢ olacak sekilde ¢ > 0 var
olacaktir. Buradan, ||¢,,/A,|| sinirli olurdu ve boylece T' (¢, /A\n) = ¢,, yakinsak alt diziye

sahip olacaktir. (¢,,),>1 ortonormal oldugundan bunun olmas: miimkiin degildir.

Eger M = (D., En)Lise, o zaman M iizerinde T' = 0 oldugunu goriiniiz. Eger T' = 0 ol-
masaydi Onerme 1.1.21 den \ = = ||T'| /|| # 0 olmak iizere T¢ = ¢ olacak sekilde ¢ €
M var olmaliydi. Fakat bazi n ler igin |\, | < |A| olmahdir, bu ytizden ||T'|, || < [|T]as]]
olmalidir ve bu ise M, 2O M olmasi ile geligir. Buradan 7" nin her sifirdan farkli A
ozdegerinin )\, dizisi tarafindan igerilirdigi bulunur. Aksi halde T¢p = A¢ # 0 olacak
sekilde bir ¢ € M olmas1 gerekirdi.



Sonug 1.1.31 T nin sifirdan farkl her dzdegeri sonlu defa tekrarlanar.
Sonug 1.1.32 H =T (H) ® T~ (0) dur-

Kabul 1.1.33 (\,) dizisi bundan sonra mutlak degerce azalan yani
[M] > [Aa] > .

olarak alinacaktur.

Kabul 1.1.34 ¢ (n) bundan sonra ortonormal, yani ||¢ (n)|| = 1 olarak alinacaktur.

1.2 SONLU RANKLI OPERATORLER

H Hilbert uzay1 ve T' : H — H operatoriiniin ranki N olsun. ¢,,---,¢, ler T nin
goriintiistinti ve ¢, 1, @9, -+ ler T' nin ¢ekirdegini gerecek sekilde H nin bir ortonormal

tabani (¢,,),>1 olarak alabiliriz. Herhangi bir f € H igin
F=Y (f o0
1
N

N
Tf=Y (T}, 6.)6, = ([ T"0,)0,
1

1

dir. ¢, = T*¢, ve H = L?[0,1] olsun. Bu taktirde,

(f )

(/f
(s

i) 0,(2)
) o

D
Zjlv ¢, ()1, (t) = K(z,t) yazilirsa

s~ -[M= HMZ

Tf(z) = /0 K(x,t)f(t)dt

elde edilir.

K(w,t) =) 6,(x)0,(D)

1

tipindeki cekirdeklere dejenere c¢ekirdek adi verilir.
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Eger K (z,t) simetrik ise, ¢,, ler 6zfonksiyon olarak segilebilir. Eger A, ler de 6zdegerler

ise,

AT

elde edilir.

1.3 OZDEGER VE OZFONKSIiYONLAR

Onerme 1.3.1 Teorem 1.1.30 deki ¢ibi T : H — H kompakt simetrik operatoriin € N
olmak tizere X\, ézdegerlerine ve ¢, 6zfonksiyonlarina sahip olsun. O zaman her f € H

1¢in
Tf=Y il 0,00,

dir.

Ispat. T(¢,) = A\, (¢,) dir ve T nin sifir uzayr M nin ortonormal bir tabani (¢),,)n>1
olsun. O zaman «, = (f,¢,), 3, = (f,1¥,) olmak iizere her f € H

= Z O4n¢n + Z @ﬂﬂn
1 1

seklinde olmak zorundadir. Bu yiizden,

le (1.3)

dir. (1.3) operator 6zfonksiyon agilim adini alir.

Onerme 1.3.2 (¢,) ortonormal bir dizi, (\,) sifera yakimsayan reel bir dizi ve | \,| azalan

olsun, o zaman

Tf=> Mlf 000

An Ozdegerleri ve ¢,, 6zfonksiyonlarina sahip H den H ye kompakt simetrik bir T’ operatori

tanwmlar. Ayrica
1T = [l

dir.

11



ispat. ¢,, ortonormal ve

ZVM D

1

<AfI? < oo (Bessel esitsizligi)

oldugundan Y {° A\, (f, ¢,,) ¢, serisi H de yakmsaktir. T agik¢a lineerdir.
Eger || f|| <1 ise

7|1 ZAQ (f. o) <A22<f,¢n>29? 1F17 < AT

dir. O halde 7" simirhdir. Bu ayrica ||T|| < |A1] oldugunu ispatlar.

IT]| = |A\1| oldugunu gormek igin ||¢4]| = 1 ve || T || = ||M@y || = |A1] oldugunu goriiniiz.

T nin kompakt oldugunu gérmek icin N rankina sahip

N
Ryf=> Mlf. ¢,)0
1

ve

(T = Rn)f = Malfr 00)6

N+1
nin normunun ||7"— Ry|| = |Ay41| oldugu goriiliir. Buradan sonlu rankl operatorlerin
limiti 7" = limy_,o, Ry dir.

T nin simetrik oldugunu gérmek icin her f, g € H i¢in

(Tf.9) <ZA (f. 6, ¢n,g> = Mlf6,) (b0 9)
= <f,ZAn<g, ¢n>¢n> = (f,Tg)

dir. Agikca T'; A\, ozdegerli ve ¢, 6zfonksiyonlu olmak tizere her n icin T'¢,, = A\, ¢,, dir.

Onerme 1.3.3 K(x,t) € L?[0, 1] olmak tizere

_ /01 K (. 0)f(t)dt

ile tanimlanan her T' ¢ekirdek operatori eger K(t,x) = K(x,t) ise kompakt simetriktir.
Bu durumda, Teorem 1.1.30 deki gibi T' nin dzdegerleri A, ve T nin ozfonksiyonlar ¢,

ise, yakimsama L? normunda olmak dizere

=D M, (2)8,() (1.4)

12



dir. Ayrica

// K(x,t))* dedt = Zv (1.5)

dir.
(1.4) cekirdegin Ozfonksiyon acgilimz olarak adlandurilir. Bu tipteki T' operatorlere

Hilbert-Schmidt operatorler denir. (1.5) Parseval dzdesligi olarak adlanduirilar.

Ispat. Onerme 1.3.2 den her f € L?[0,1] igin

i) = > ([ 108,00 o,

1

dir. Integralin toplam ile yer degistirebilmesinin nedeni, L? normunda

> 0,(t) —

yakinsamasindan dolay1

< ¢n<t>,f> - <fj NG f>

yakinsamasinin olmasindandir.

Buradan

= At (2)6,(1)

dir. L?[0,1]? iizerinde ¢,,(x)¢,,(t) ortonormal oldugundan

// K(z,t))? dedt = Z)\Z

ozdesligi Pisagor Teoremidir.

Sonug 1.3.4 T operatorii

7 < \/ / 1 / (K (o 1))P ddt,

egitsizliging saglar.
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Tamim 1.3.5 T operatorinin Hilbert-Schmidt normu (1.5) den

1 1
ITlgs = \// / |K (,t)|* dadt
0 0
= i/\i
1

seklinde tanimlanar.

Bundan sonra 7" nin operatér normunu [|7'f|,,, seklinde gosterecegiz.

Onerme 1.3.6 Eger \, 6zdegerli T : L?[0,1] — L?[0,1] operatérii kompakt simetrik ve
SN2 < oo ise T bir Hilbert-Schmidt operatérdiir. Burada T nin cekirdegi

=S M (@)5

dir.

Ispat. L2[0,1]? iizerinde ¢, (z)®, (t) ortonormal olsun. Buradan L?[0,1]? iizerinde

D A, ()0, (1)

yakisaktir. O zaman her f € L?[0,1] igin,

/th t)dt = /(ZA,@ >f()dt
=Z<m /f 0 at)

S Mlf. 6,06, (1) = Tf ()

dir.

1.4 POZITiF OPERATORLER

Tanim 1.4.1 H Hilbert uzay tizerinde T bir dzeslenik lineer operatér olsun. Her f € H
icin eger (T'f, f) > 0 oluyor ise T ye pozitif operatér denir ve T > 0 yazilir. Eger
H kompleks uzay ve T sinirl ise yukaridak: tanwim i¢inde T nin ozeslenik olmast gerekli
degildir. Genel olarak, eger H tizerinde T ve S iki sinarly simetrik lineer operator ise, o
zaman T > S, T — S > 0 anlaminda tanimlanar. Eger —T pozitif ise T ye negatif denir

ve T < 0 yazilir.
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Bir H Hilbert uzay iizerinde T' bir simetrik operator olsun. Eger T' simetrik operatorii
pozitif ve bire bir ise T' operatoriine kesin pozitif denir ve T > 0 yazilir. Eger T aym
zamanda kompakt ise, pozitiflik ayni zamanda tiim 6zdegerlerin negatif olmayan oldugunu

soylemeye denktir.

Onerme 1.4.2 T pozitiftir ancak ve ancak her n icin T nin dzdegerleri A, > 0 dir.

Ispat. Herhangi bir T operatorii icin, Onerme 1.3.1 den

Tf=> Malf0.) 0
1

dir. Eger )\, > 0 ise
(TF,F) =Y A {f,00) (D f)

=S M6 >0

1
dir. Boylece T' pozitiftir. Eger T' pozitif ise her n ve ¢,, i¢in
oldugundan A\, > 0 dir.
Ornek 1.4.3
Vi) = [

0
olmak dizere VV* operatérii L2[0,1] dizerinde pozitiftir.

Genelde, herhangi bir kompakt 7" : H — H operatorii i¢in, T7T™* operatorii pozitiftir
T : L?0,1] — L?[0,1] T'f(x) = f_ll |z — t| f(t)dt operatorii ise pozitif degildir ¢iinkii agik
olarak negatif 6zdegerlere sahip oldugu (Dikmen 2000) de gosterilmistir.

Lemma 1.4.4 A, B,C operatérleri i¢in eger A < B, ve eger C' simetrik ise, o zaman
t.A+C<B+C

1w.CAC < CBC

dar.
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ispat.
ii.(CAC) f. f) = (ACf,Cf) < (BCf,Cf) = (CBC) f, f).

Tanim 1.4.5 Tf(z) = fol K (z,t) f (t)dt integral operatori eger
i. K (x,t) sirekli,

1. T simetrik ve pozitif yani her f icin (T'f, f) >0
sartlarin saglar ise bir Mercer operator denir.

Teorem 1.4.6 (Mercer Teoremi) Eger stirekli ve simetrik K (z,t) ¢ekirdegi ile tretilen
T operatori pozitif, yani her f icin (Tf, f) > 0 ya da denk bir ifade ile \; # 0 olmak

tizere eger T min her 6zdegeri pozitif ise, bu durumda T operatériniin ¢ekirdek acilima

> (@) 0

diizgiin yakinsaktur.

Ispat. Ik olarak K (x,t) cekirdegi siirekli oldugundan tiim

- /K(m,t)f(t)dt

goriintii fonksiyonlar1 da siireklidir. Boylece, 6zel olarak, biitiin ¢, (x) = —Tgb (x) 6z
fonksiyonlar1 siireklidir.

Sonug olarak (n =1,2,...) i¢in

Ko(z,t) = ZW

"kalan” fonksiyonlar: siirekli fonksiyonlardir. Ayrica L? yakimsaklik anlaminda,

= 3 Ae@)o,0)

1=n-+1

oldugundan, L? nin her f eleman: icin

b b

//Kn(x,t)f( f(z)dzdt = Z Mo, U, 6 >0 (1.6)

W a 1=n-+1
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dur.

Buradan K, (z,x) > 0 elde edilir. Aslinda, eger K,,(zo, xo) < 0 olsaydu, (zo, x¢) noktasmin
Top—0<x<x9+0, T9g—0<t<x9+0

komgulugunda siireklilikten dolay1 K, (x,t) < 0 olmaliydi.

To—0 < x < xy+ 0 i¢in f(x) = 0 ve diger yerlerde f(z) = 1 yazarsak (1.6) integrali
negatif olacaktir ki bu bir celigkidir.

Boylece (n =1,2,...) i¢in

Ko (2, 2) = K(z, ) — Z Aigi(x)¢y(x) = 0

dir. Buradan, pozitif terimli

serisinin yakinsak ve toplamin < K(z,z) oldugu sonucuna varilir.

K (z, ) siirekli fonksiyonunun maksimumunu M ile gosterirsek, Cauchy esitsizliginden

2 n n n
<D NIG@F Y Nl < MY Niley(a)? (1.7)

dir. Buradan x in her sabit degeri i¢in

> (@), 0 (1.9

serisi ¢t ye gore diizgiin yakinsaktir. Boylece(1.8) nin toplami B(z,t), t nin siirekli bir

fonksiyonudur ve siirekli her f(¢) fonksiyonu igin
b - b
[Ba0swn =3 o [aswa
i=1 ;
dir. Simdi ikinci ifadedeki seri T'f(x) e yakinsak oldugundan Boylece
b

/ B(2,t) — K(2,8)] f(t)dt = 0

a

dir ve 6zel olarak ( z in sabit bir degeri igin ) f(t) = B(z,t) — K(x,t) yazihrsa, a <t <b
i¢cin B(x,t) — K(z,t) = 0 dir. Bu ytiizden

K(@.x) = Ble.2) = 3 & oo
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dir. Bu serinin terimleri = in pozitif siirekli fonksiyonlar1 oldugu ve K (x, ) toplamu siirekli
bir fonksiyon oldugu i¢in, Dini’nin bilinen teoreminden seri diizgiin yakinsaktir. (1.7)
Cauchy esitsizligi tekrar uygulanirsa, buradan sonug olarak (1.8) deki serinin bagh oldugu

x ve t degiskenlerinin her birine gore diizgiin yakinsadiklar: gosterilmis olacagindan ispat

elde edilir.

Sonug 1.4.7 Eger K (x,t) ¢ekirdekli T' bir Mercer operatiori ise,

/OlK(x,x) d;v:i)\n (1.9)
dar.

Not: Her n igin A, > 0 dir, ¢iinkii 7" pozitiftir.(1.9) iz esitligi olarak adlandirilir.

Ispat. T acikca Hilbert-Schmidt’tir. Buradan, cekirdek acilimi

K,t) = > A6, (2)0,0)

dir. Boylece istenildigi gibi,

/1 K(z,z)dr = i/l A |, ()P do = i)\n
0 1 0 1
dir.

Tanim 1.4.8 T' Mercer operatorinin iz normu

1 [e%¢)
1

seklinde tanimlanar.

A = (An),>; dizisi olmak tizere

[RY( sup [An|, (A €1%)

A, = (| DA (Ael)
1

A1y

> Il (M el
1
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olmak tizere

1Tl = Ml s
1Tl ms = NIAl
170 = MIALL

oldugu goriiliir. Ayrica
1T op < TN s < IT1l,,

dur.

1.5 YAKLASIM TEOREMI

Simdi 7" ye sonlu rank operatorlerinin operator, Hilbert-Schmidt ve iz normu ile en iyi

yaklagimini bulmak istiyoruz. Bunun icin asagidaki teorem ile baglayacagiz.

Teorem 1.5.1 EgerT : H — H kompakt simetrik operator ise, o zaman rankt < N olan

operatorlerin operator normuyla T ye en iyt yakinsamas:

N
1

seklindedir. Ayrica |T' — Ryl|,, = [An+1] dir.

Ispat. Onerme 1.3.2 den ||T — Ry, = [An+1| oldugunu biliyoruz.

rank < N olacak gekilde her S icin [T — S|[,, > [An1| oldugunu gostermeye ihtiyacimiz
var. S nin {¢;, -, ¢y, } tizerinde bostan farkl sifir uzayi(cekirdegi) olmasi gerektigi
icin, S¢ = 0 olacak sekilde ¢ = Zjlvﬂ @, vardir oyleki ||¢|| = 1 dir.

Buradan

(T = S)ell” = I Tol”
N+1
Z an)\n¢n

1

N+1
= Z a2 )\2

1
N+1

2 2
Z /\N+1 Z an
1

2
= )‘?VH ||¢|| - )‘?V+1

2
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dir. Boylece, ||T"— S|[,, > [An41] dir.

Teorem 1.5.2 Teorem 1.5.1 deki Ry ayni zamanda rankt < N olan operatorlerin Hilbert-

Schmidt normuyla T ye en iyi yakinsamadir. Ayrica

IT - Ryllys =D _ A2
N+1

dir.

fspat. S nin ranki < N olsun. ||S — T} > 3% 1 A2 oldugunu gostermek zorundayiz.

S — T nin dzfonksiyon agilimi

olsun. Bu acilimin k. kismi toplami

k
Pf=> p, (000,
1

dir. O zaman ||S -T -U|,, = |tths1| = |ANsrsa] dir, giinkii S — P nin ranki < N + &
dir. Boylece istenildigi gibi

1S = Tlligs =Y 1= DX
1

N+1
dir.
Teorem 1.5.3 Teorem 1.5.1 deki Ry aynit zamanda rank: < N olan operatorlerin iz

normuyla T ye en iyi yakinsamadir. Ayrica

o

|T = Ryl = Z |An]

N+1
dir.

Ispat. Onceki teoremin ispatiyla benzerdir.

Onerme 1.5.4 (Bessel esitsizligi) H bir i¢ ¢arpim uzayr ve S bu uzayda bir ortonormal
kiime olsun. {gbl’qbQ, e ¢n} vektorler: S kiimesinin ayrik tyelerinin her hangi bir sonlu

toplulugu ise her v € H wvektori i¢in

> N 6 )P < lull? (1.10)
i=1

saglanar. (1.10) egitsizligine Bessel egitsizligi denir (Erdogan 2001).
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Teorem 1.5.5 (Riesz-Fischer teoremi) H bir Hilbert uzay ve S = (¢;) , H 'nin sayilabilir
bir ortonormal alt kiimesi olsun. (a;) skalerler dizisi ile olusturulan ;- | a;¢; serisi ancak

ve ancak

o0

Z |a;|* < oo

=1

kosulu saglanirsa yakinsaktur.

Ispat.(u,) vektor dizisi ile (s,) negatif olmayan reel sayilar dizisini

n n
2
Uy = Zakgbk, Sy, = Z lag|” > 0; n=1,2, ...
k=1 k=1

elemanlariyla tanimlayalim. Genellikten kaybetmeksizin n > m alirsak ortonormallik

bagintilarindan

Hun—umn2 = < Z AP Z al¢l>

k=m+1 l=m+1

= Z Z ayy (D, &)

k=m+1l=m+1
n

- Z |ak|2:sn_sma SnZSm
k=m+1

sonucunu buluruz. 3% |a;|* serisi yakinsaksa (s,) bir Cauchy dizisi olur. Dolayisiyla
(uy) dizisi bir Cauchy dizisidir. Buna gore w, dizisi bir v € H vektoriine yakinsar ve
u =Y .2, a;¢; yazilabilir. Tersine olarak » > a;¢,; serisi yakinsaksa (u,) bir Cauchy
dizisi, dolaywsiyla da (s,) bir Cauchy dizisidir ve bir s € F' sayisina yakimsar. Yani
> |ai\2 serisi yakinsak olur. Ortonormallik bagintilar: nedeniyle kismi toplamdan a; =
(Un, Pr) » 1 < k < n elde edilecegi kolayca goriiliir. u,, — w ise i¢ ¢arpimun siirekliliginden

serinin katsayilar a, = (u, ¢,,) seklinde belirlenir.

1.6 O VE o NOTASYONU

(an) ve (b,) reel sayilarin dizileri olsun. Yeterince biiyiik her n i¢in |a,| < K |b,| olacak
sekilde bir K sabiti varsa |a,| = O (b,) yazariz. Ay sekilde, yeterince biiyiik her n igin
la,| < €]b,| olacak gekilde bir € > 0 keyfi kiigiik reel sayis1 varsa |a,| = o(b,) yazariz.

Bu kullanimlar n — oo icin neler oldugu hakkinda bilgi vermektedir. Ornegin (a,,) dizisi
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“— nin

o(1) ise lim |a,| = 0 ve O(1) ise lim |a,| = K < oo demektir. Ayrica, O (1),
n— oo n— o0 n

en azindan sabit bir kati kadar hizla sifira yaklasmas1” demektir. o (%), “— nin sifira
n

yaklagsma hizindan daha hizhi sifira yaklagmasi” demektir.

Ayni notasyon bir reel degigkenli fonksiyonlar i¢in kullanilir. Bu nedenle z — oo davrangiyla

ilgilendigimizde a < z < oo i¢in
f ()] < Alg (2)]

olacak gekilde A > 0 ve a reel sabitlerinin var oldugunu ifade etmek i¢in

yazabiliriz. Benzer sekilde yukarida A yerine € gelirse egitlikte O yerine o yazilir.
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BOLUM 2

¢! CEKIiRDEKLi INTEGRAL OPERATORUN OZDEGER
YAKLASIMLARI

Bu boliimde 6nce C! gekirdekli integral operatorlerin dzdegerlerinin o(1/n%2) oldugunu
gosteren Weyl teoremi (Weyl 1912), sonra bu teoremi gekirdegin pozitif tanimli olmas

durumunda o(1/n?) ye gelistiren Reade teoremi (Reade 1983) ispat edilecektir.

2.1 WEYL TEOREMI
Teorem 2.1.1 Simetrik K (x,t) € C'[0,1]* verilsin.
1
Tf(e) = [ K@@
0
seklindeki T' nin X,, ozdegerleri
An = o(1/n/?)

dir.

Ispat. K(z,t) nin (reel) C* gekirdegi olmasi 0K /0x, 0K /Ot kismi tiirevlerinin var ve

siirekli olmas1 demektir. Eger K (x,t) simetrik ise

0K 0K
5o @) = == (t.2) (2.1)

dir. [0,1]? tizerinde 0K /dz,0K /Ot diizgiin siireklidirler. Boylece ¢ > 0 igin |z — y| <
1/N,|t —u| < 1/N oldugunda,

IR o K]
Bz oz c
OK 0K

S0 - ) <

olacak sekilde N vardir.
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Ty =1, =n/N (0<n<N)yazahm. E,,, karesi
Epn ={(z,t) t2p 1 <z <ty <t <t,}

olsun.

Sekil 2.1 E,,, karesi

FE,.., karesi iizerinde

0K 0K

R(z,t) = K(xpm,t,) + (. — :L‘m)a—x(xm,tn) + (t — tn)g(

T, tn) (2.2)

seklinde tanimlansin

Ry(z,t), = x,, ve y = t,, dogrular1 iizerinde tanimh degildir fakat bu dogrularin &lgiimii
sifir oldugundan 6nemli degildir.

Bu taktirde, ortalama deger teoremi K (x,t) ye uygulanirsa, x < y < x,, sartin1 saglayan

baz1 y ve t < u < t,, sartim saglayan bazi u lar i¢in

K(x,t) — K(zpm, tn) = (K(x,t) — K(zp, 1)) + (K(2m, t) — K(zm, tn))

— a4 (- 1) )

ox ot

elde edilir. Buradan (z,t) € E,,, igin

K(x,t)—R(z,t) = (x—x,,) <88—};(y, t) — aa—‘;((xm,tn)) +(t—t,) (%—l;(a:m, u) — %—];(a:m, tn))
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ve boylece
K (2,1) — R(x, )] < | 4|t = tole < —e+ —e = 2¢/N
x,t) — R(x T — T —tn —e+ —e=
) ; € € Ng N€ e
elde edilir. Buradan
|IK — R||s < 2¢/N,||K — R||gs < 2¢/N (2.3)
ve eger K bir Mercer cekirdegi ise, bu durumda

/0 |K(z,z) — R(z,z)| dx < 2¢/N

dir.

Simdi (2.2) ile tamimli R nin rankimin 2N oldugunu gosterelim.

(2.2) ile tamimh R(x,t)

oK 0K
Amn = K(mnw tn) - xm%(xmy tn) - tng(l‘ma tn)
0K 0K

- K(l‘mvxn) - Im%(mmaxn) - xna(mmvxn)

olmak iizere (2.1) den R(x,t) = tympn + byn® + Cmat seklindedir.

Boylece K(x,t) simetrik ise @, = apyp oldugu goriiliir.  Ayrica,(2.1) den eger K (z,t)

simetrik ise

oK oK
bmn - %(mmatn) - %(mmaxn)a
0K 0K
Crn = E(l"m,tn) = E(mmaxn)
0K
- %((’En,fﬂm) - bnm

dir. Buradan (x,t) € E,,, i¢in
R(z,t) = amp + bn® + byt

yazilabilir. Boylece eger K (x,t) simetrik ise R(x,t) de simetriktir.
n=1---,N icin,

1, egerz, 1 <z <z,

0, aksi halde

On() =
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ve

x, eger x,_1 < x < Ty

0, aksi halde

() =

olsun. Buradan,

N

R(z,t) = tmn®yl Z D ( Z DG ()10, (1)

m,n=1 m,n=1 m,n=1

yazilir. Bu ise R(z,t) nin rankimin 2N oldugunu gosterir.

R yi (2.2) deki gibi segelim. Teorem 1.5.2 ve (2.3) esitsizliginden A, reel ve mutlak degerce

azalan iken
> X <|IT - R|5s = o(1/N?)
2N+1

bulunur. Buradan A2 = o(1/n?) oldugunu gosterelim.

Eger € > 0 verilirse, her N > Nj i¢in,
Z 2\ < g/N?
2N+1

olacak sekilde Ny vardir.),, azalan oldugundan

3N
e/N? > 3 A2 > NAjy
2N+1

dir. Bu yiizden, her N > Ny igin, N3\;y < ¢ dur.
Boylece,

N3X3y — 0 (2.4)

dir.
Ayrica

332
N >\3N+1

IA

N3M3y — 0, (2.5)

N3 Xnie < N3y — 0, (2.6)

dur.

O zaman
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n = 3N, igin (2.4) den

(2) )~

n=3N + 1, igin (2.5) den

n—1\° 1\°
( 3 > Aim(§> (n®A2) — 0,

n = 3N + 2, i¢in (2.6) dan

n—2\° 1\?*
( 3 > Aim(§> (n®A2) — 0,

bulunur.

Boylece, her durumda n)\? — 0 dir. Sonug olarak
A = o(1/n)

dir. Dolayisiyla

[Aul = 0(1/n%)

elde edilir.

2.2 READE TEOREMIi
Teorem 2.2.1 Eger K (z,t) € C'[0,1]* ve

Tf(2) = /0 K (2,) f (1) dt
pozitif tanimly ise
A = o(1/n?)

dir.

Teorem 2.2.2 k(—t) = k(t) olacak sekilde 2m-periodik k € L'[—x, 7] igin
Tf(x)= / k(x —t)f(t)dt

konvoliisyon operatérii pozitiftir ancak ve ancak k min Fourier katsayilar:
27 o

k(t)e "™ dt

Cn

olmak tizere her n icin ¢, > 0 dir.
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Ispat. Eslenigi kendisine esit oldugundan tiim ¢, ler reeldir:

1 [T — .
e = — | k(t)e™dt
2 J .
1 " int
= — [ k(=t)emdt
2 ) .
1 " —int
= — k(t)e"™dt
2m ) .
= Cp.

Eger ¢, > 0 ise herhangi bir f € L? [, 7] icin
w5 = [ [ Ko nse T
_ /_ : /_ : i ere™ @D £ () F (@) dtd

dir. Boylece K pozitif taniml olur.

2
>0

/_ : f(t)e ™dt

Eger T > 0 ise ¢,,(t) = ™ igin

0<(To,, o, = / / k(x —t)e™e ™ dtdx

:/_W(/_Fk(u)e_m“du> dr  (u=x—t)

= 47°c,
dir. Boylece her n icin ¢, > 0 oldugu gortiliir.

2.2.1 En Iyi Yaklagim

Mercer teoremi (Teorem 1.4.6 ve Sonug 1.4.7), eger K (x,t) siirekli ve
1

Tf) = [ Kot

0
pozitif ise,

o0 1
1T, = Z)\n = / K(z,z)dx < o0

1 0
oldugunu soyler.
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Rank < N olacak gekilde sonlu rankli operatorler ile iz normunda 7' ye en iyi yaklagim

N
1
dir. (Teorem 1.5.3).

2.2.2 Karekokler

Teorem 2.2.3 Eger T : H — H pozitif tanaml ise S? = T olacak sekilde pozitif tek bir

S : H — H operatori vardar.

Ispat. Eger T nin 6zfonksiyon acilimi,

Tf=Y Mlf.¢,)0,
1

ise T" nin karekokii,

SF=Y N (f.0.) ¢n
1

dir ()\,1/2 > 0).

Onerme 2.2.4 Eger T : L*[0,1] — L?[0,1] bir Mercer operatorii ise (sirekli cekirdekli
ve pozitif tamml ), T nin S : L2[0,1] — L?[0, 1] karekéki C|0, 1] i¢inedir.

Ispat. Eger

Tf = fj A (f 00) 60

ise

Sf = fj A d0) Gu()

dir. Bu seri [0, 1] iizerinde diizgiin yakimsaktir ¢iinkii,

N

S N Af ) b (@)

M

< Mo @S 16,0
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dir. Sag taraftaki her iki toplam z e gore diizgiin olarak 0 a yakinsar c¢iinkii Mercer

teoreminden x e gore diizgiin olarak

S M6, (@) = K (x,)

ve Bessel esitsizliginden

Dol eal” < I3
1

dir.
|Rn —T|,, < € olacak sekilde sonlu rankli Ry operatorlerini bulmaya ihtiyacimiz var.

Eger,

1 9
WM:AKw@M=ZM
1

egitligini kullanmak istersek, Ry < T icin calismaliyiz. Ayrica Ry siirekli gekirdege
sahip olmalidir. Bu kosullar saglanirsa Mercer teoremini kullanabiliriz. Weyl tarafindan

kullanilan Ry bu 6zellige sahip degildir.

2.2.3 Yaklasik Birimler

Tanim 2.2.5 f,g € LY[—n, 7| i¢cin f ve g nin konvoliisyonu (convolution)

(Fra)) = [ fa Dty

ile tanimlanar.
Bu iglem L'[—x, 1] yi bir Banach cebirine dondistiiriir, fakat her f icin e * f = f olacak

sekilde bir e birim elemany yoktur.

Tamim 2.2.6 L'[—m, 7] de bir yaklagik birim (approzimate identity) her f € L}[—m, 7]

i¢in e, * f — f olacak sekilde bir (e,),~, dizisidir.

Tanim 2.2.7 N. Dirichlet ¢ekirdegi

N .
B it SIN(N +1/2)t
Dy(t) =D " ===

ile tanamlanar.
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N. Fejer cekirdegi

Filt) = % (Z emt) _ % sin?(N +1/2)t 2

sin?t/2

ile tanamlanar.
Ornek 2.2.8 Yukarida verilen Dy, Fy  cekirdekleri yaklasik birimlerdir.

Onerme 2.2.9 Eger,
DNf / DN Tr — t )d
Fxf(e) = [ Fulo - (0

seklinde alimirsa, 0 < Fy < Dy < I olur.

Ispat. Eger ¢, (t) = ™ ise,

N
Dnf=Y (f,¢.)¢
-N

dir. Boylece Bessel esitsizliginden

< (Dnf.f) = Z|f¢ W< 113

dir. Ayrica,

o — Do+ Dy+--+ Dy
N N

oldugundan

Fnf=> (1=|nl/N){f,6,) 6.,

ve boylece
N

(Exfof) = Y (L=In[/N)[(f 0.0
-N

< D Uf ) = (Dnf, f)

dir. Boylece istenildigi gibi 0 < Fy < Dy < I elde edilir.

Yukarida ilgilendigimiz Dy, Fy 6rnekleri bizim ispatlayacagimiz teorem igin yeterli degildir,

o yiizden asagidaki Ry c¢ekirdegini kullanmamiz gerekecek.
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Ornek 2.2.10 Eger z,, = t, = n/N (0<n<N), veegerl <n<N igin

]-7 Tp—1 S x S T
On () =

0, diger durumda

ve eger,
N
Ry(z,t) =N _ ¢,(x),(1)

1

1se, bu durumda
. Her N > 1 i¢in 0 < Ry < I dir.
it. Her f € L'[0,1] igin |[Rnf — f|l, — O dur.

Ry bir yaklasik birimdir; yani Ry — I kuvvetli yakinsaktar.

Ispat. Ilk olarak,

1
/ RN(JI,t)dt =1
0

oldugunu goriiriiz, ¢iinkii hemen hemen her z icin eger x,, | < x < x,, ise

1 1 tn
/ Ry(z,t)dt = N/ o, (t)dt = N/ dt =1
0 0 tn—1

dir. 0 < Ry <1 in ispat1 i¢in,

¢, () f (1) f () ddt

=
.
=
2
\
\
s

N 1
=N>_ f(t)¢n(t)dt
1 O
N tn 2
=N / f(t)dt
1 Wi
N o rtn tn
< NZ/ dt/ |f(t)|” dt (Schwartz esitsizligi)
1 tn—1 tn—1
= || £1l5
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yazabiliriz. Ayrica,

|Baf — fIl, = / i

/ Ry(a, t)F(£)dt — f(z)

dx

/ Ry(z,t) (f(t) — f(z)) dt

< / / R(w,8) | () = ()| dtda
j /t x)| dtdx

= NZ/
dir.
Eger f € C0,1] ise verilen € > 0 ve her |z —¢| < 1/N i¢in |f(t) — f(z)| < € olacak

sekilde AN vardir.

Buradan, tiim bu N ler i¢in

tn
IRy f — fll, < NZ/ / cdtdr — ¢
Tp—1 Jin—1

olur. Bu, stirekli f fonksiyonlar: i¢in ||.||; normunda Ry f — f oldugunu gosterir.

Eger f € L'[0,1] ise, € > 0 verildiginde |lg — f]|, < € olacak sekilde g € C|0, 1] segebiliriz.
Boylece, ||Rvg — Ry fl, < Il — fll, oldugundan

1RNg =gl < [1Bnvg = Ry flly + 1B f = flly +1f = glly < 3¢

dur. Gergekten, ||Ry|| < 1, L'0,1] — L'[0,1] seklinde bir operator olarak diisiiniiliir

clinkii

| Rnhll, = )2 ), (t)h(t)dt| dz
< [ [ S oo o s
—NZ/% /t  Ih(®) dodt
= Z/ (t)] dt
=l

diir
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Onerme 2.2.11 Eger T pozitif tansml ve S de onun pozitif karekokii ise ve eger I birim

operatori olmak tizere R
0<R<I

olacak sekilde sonlu rankly bir operator ise, bu durumda SRS nin stirekli ¢ekirdegi vardur

ve
0< SRS LT

dir. Bu ylizden SRS bir Mercer operatoridiir.

ispat. 0 < R < I oldugundan, Lemma 1.4.4 den
0< SRS <S?=

dir. Eger,

ise SRS nin ¢ekirdegi

G(z,t) = /0 1 /0 1 T(a, w) H (u, v)J (v, t)dudy

dir. Ayrica ¢, € L?[0,1] (1 <n < N) olmak iizere H(u,v) gekirdegi

=D U (Wi, (v)

seklindedir. Boylece,

/ / (z,w)tp, (u)i, (v)J(t, v)du
_ Z ( / v (u )du) ( /0 1 J(t,v)wn(v)dv>

Onerme 2.2.4 den z, t ye gore siireklidir.
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2.2.4 Reade Teoreminin Ispati

K(z,t) € C*0,1]? pozitif tammli olsun. O halde her ¢ > 0 icin, |z — y| < 1/N, |t —u| <
1/N kosulunu saglayan tiim z,y, t,u € [0, 1] ler igin

0K oK
‘%(%t) - %(%U) <e
0K oK
0 - G <

olacak sekilde N segebiliriz.

Ry yi, Ornek 2.2.10 de tanimlanan operator alalim. O zaman
0<Ry<IT

olur. Boylece, Onerme 2.2.11 den, SRy S nin siirekli bir cekirdegi vardir ve T' nin pozitif

karekokii S olmak tizere
0<SRNS<T

dir. Bu yiizden, Mercer teoremi ile,

1 1 1
ISRnS],, = / / / (1) Ry (1, 0)J (v, 2)dudvdz
0 0 0

:/Ol/olRN(u,v) (/01 J(x,u)J(v,x)dm) dudv
_ /Ol/olRN(u,v)K(v,u)dudv
_ /O 1 /0 R, 0) K (w, ) dudy

dir. Ayrica, hemen hemen her u igin

1
/ Ry (u,v)dv =1
0

oldugundan (Ornek 2.2.10 nin ispatia bakiniz)

i, = [
— /O/OK(u,u)RN(u,U)dudv
_ /O 1 /0 K (0, 0) R, 0)dudo

dir. Boylece,
T > SRyS
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oldugundan
IT — SRyS|,, = /01 /01 Rv(u,0) (K (u,0) — K(v,u)) dudv

_ /01 /01 Ruv(,v) (K (0, 0) — K (u, v)) dudo

_ %/01 /01 R (0, 0) [K (1, 0) + K (0,0) — K (v, 1) — K (u, v)] dudv
dir.

@) (wy) | @)

(u,u) (w,u) (v.u)

v

u \'

Sekil 2.2 [u,v])” karesi
Dikkat edilirse, ortalama deger teoreminden u < w < v, u < w’ < v olmak fiizere
oK oK
K(u,u) + K(v,v) — K(v,u) — K(u,v) = (a—(w,u) - — w’,v)) (u—w)
x x
dir. Boylece eger |u — v| < 1/N ise,
| K (u,u) + K(v,v) — K(v,u) — K(u,v)| <e/N
dir. Buradan,
e [t €
T — SRNS||,, < =— R dudv = —
7= SRSl < 57 | [ Rt oddudo = 5
bulunur. Bu ise
- 1
Ap=0|—=
> n=o(5)
oldugunu gosterir.
Simdi bu egitligin dogrulugunu gosterelim.
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Eger A, = o(1/n?) (A, > 0) ise, £ > 0 oldugunda her n > N’ igin \, < ¢/n? olacak
sekilde N'vardir. Bu yiizden her N > N’ icin

Z)\n <€Zl/n2 <5/ dx/z* = ¢/N

N+1 N+1 N

dir. Buradan,

(e o]

> A =o(1/N)

N+1

dir. Tersine eger,

oo

> M\ =o0(1/N)

N+1

verilir ise )\, nin azalan oldugu durumlarda A, = o(1/n?) oldugu goriiliir. Gergekten de

e > 0 verildiginde her N > N’ igin,

i/\n =¢/N

olacak gekilde N’ vardir.
Bu durumda N > N’ igin

2N

e/N > A= Ny

N+1

yazabiliriz. Bu ise bize,

(2N)*Xan < 4e,

(2N 4+ 1)* Doy 1 < (BN)* Aoy < 9e

oldugunu verir.
Bundan dolay istenildigi gibi n?\, — 0 dir.
O halde

1
o)

elde edilir.

Bu boliimii Reade’in bulmusg oldugu bu sonucun miimkiin en iyi sonug oldugunu gosterecek

bir C! ¢ekirdegi ornegi ile kapatacagiz.
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2.2.5 En Uygun Ornek

Simdi \,, 6zdegerlerinin o (1/n?) oldugu bir C'* gekirdegi bulundugunu gostererek Reade’in
bulmus oldugu sonucun miimkiin en iyi sonu¢ oldugunu gosterecegiz. Bunun i¢in agsagidaki

ornegi verelim.

Ornek 2.2.12 Her a > 2 icin

nO{

o0 2 .
K(z,t) = Z cos 2mn(x — t)
1
cekirdegi C* |0, 1]2 dedir ve buna karsihik gelen operator
1
7f() = [ k)0
0

An = 1/n® dzdegerlerine sahiptir.

Buradan, C! ¢ekirdekli pozitif tammh 7' nin \,(T) zdegerlerinin )\, = o(1/n?) yak-

lagiminin n nin kuvvetleri i¢in miimkiin en iyi sonug oldugunu gosterir.
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BOLUM 3

READE TEOREMININ CARPANLARA AYIRMA METODU
iLE iISPATI

Bu boliimde C? cekirdekli integral operatorler icin J.B. Reade’in bulmus oldugu sonug,
T.Kiihn tarafindan kullanilan Banach uzaylar iizerinden carpanlara ayirma metodu ile

ispatlanmistir.

H.Weyl (Weyl 1912) makalesinde K (z,t) € C*[0, 1]* olmak iizere

Tf(z) = /0 K (. 0)f(t)dt

seklindeki Fredholm integral operatoriiniin 6zdegerlerinin o(1/n%2) oldugunu géstermistir.
J.Reade (Reade 1983) makalesinde bu sonucu 7' nin pozitif olmasi durumunda o(1/n?)
ye geligtirmigtir. T.Kiithn (Kiihn 1987) makalesinde ¢ekirdek bir kompakt metrik uzay
tizerinde bir Lipschitz kogulunu saglamak iizere T' operatoriiniin 6zdegerlerinin O(1/n?)
oldugunu Banach uzaylar iizerinden carpanlara ayirma ile gostermigtir. Kiihn tarafindan
kullanilan metodu J.Reade’in buldugu sonucun yeni bir ispatini1 vermek icin kullaniyoruz.

Bu metodun avantaji genellegtirmeye uygun olmasidir.

3.1 TEKIL SAYILAR

T : H— H, H Hilbert uzayinda kompakt bir operator olsun.

O zaman T*T kompakt, simetrik ve pozitif tanimhdir. Boylece s, > 0 (s, — 0)
oldugunda s? ile gosterebilecegimiz pozitif 6zdegerler ve bu 6zdegerlere karsilik gelen

¢,, ozfonksiyonlar: vardir.

Tanmim 3.1.1 s, sayilarr T nin tekil degerleri (Singular numbers) olarak adlandirir.
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V,, =T¢, /s, olsun. O zaman 1,, ortonormaldir ¢iinki

<wm7 wn> - <T¢m7 T¢n>/sm8n
= (6. T"Thp)/smsn
= (D 510n)/Smn

-5
dir. Ayrica TT* wn ézfonksiyonlary 1, dir ¢linki
TT*, = TT'T¢,/s,
= T(s30n)/5n
= sptn
dir.

Onerme 3.1.2 1, ler TT* wn ssfurdan farkl 6zfonksiyonlaridur.

Ispat. 1, fonksiyonlar1 M uzaymin gereni olsun. M= in TT* m sifir uzay1 oldugunu
gostermemiz gerekir.

f € M+ olsun. O zaman T*7T nin sifir uzay1 7% f dir ¢iinkii
(T, 0n) = ([, Tp) = s (f, ¥n)

dir. Buradan T*TT*f =0, ve TT* f = 0 dir ¢iinkii
|TT*f|I* = (TT"f.TT* f) = (T"f, T"TT"f) = 0

dir.

Boylece asagidaki 6zfonksiyon agilimlarina sahibiz

T*Tf = Y si(f,6,) b

TTf = D st {f,0.) b,

1

Tf = > salfs 0¥ (3.1)
T = > salf )0, (32)

1
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Simdi(3.1) i gosterelim. Eger TT* m sifir uzaymm ortonormal tabami ¢, ise, her f € H

(S R0s)
- S (e Te, Y (16) 7Y,
= S sl o,

1

dir. Burada her n igin T¢; = 0 oldugunu kullandik ¢iinkii

dur.

= (16,,7¢,) = (T'T4,.6,) =

Benzer sekilde (3.2) ifadesi de gosterilebilir.
K(x,t) € L*[0,1] olmak iizere T : L?[0,1] — L?[0, 1] ¢ekirdek operatorii

_ /01 Ko ) f(t) dt

ile veriliyor, o zaman

_ /0 REDf) d

1
J(z,1) :/ K(z,u)K(x,u)du
0
olmak tizere
1
TT* f(x) = / J(x,t)f(t) dt
0
dir.
Her f € L?[0,1] igin

1

Ti@) = | K(o0)f(t)d

- / (anMwn<x>> f(t)dt
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dir. Buradan T icin ¢ekirdek acilimi

K(w,t) =) s, ()8,()

seklindedir. Benzer olarak 7™ icin ¢ekirdek acgilimi

K*(z,t) = Z $n P (), (¢)

dir. Ayrica T*T igin iz dzdegliginden (trace identity)

is;‘;:/ol /01|K(x,t)|2dx dt:/ol J(z, x)dx (3.3)

dir. Bu (3.3) 6zdesligine Parseval 6zdesligi adi verilir.

Ornek 3.1.3 L2[0,1] dizerinde

Tf(x) = / () di

ile tanamlanan T integral operatorinin

1
Sp=1/(n+ )7
2
tekil degerleri ve n > 0 ve ||d,]|*> = ||, ||> = 1/2 olmak iizere

o,(t) = cos(n—i—%)wt,

v, () = sin(n+%)7rt

ozfonksiyonlary vardar.
Tanim 3.1.4 X,Y Banach uzaylar: olmak tizere
s:B(X,Y) — R™
fonksiyonuna bir s-6lgiisti denir. T € B(X,Y) i¢in s(T') ninn. terimi s,,(T) olmak tizere
i. T kompakt, X =Y = H Hilbert uzay: oldugu taktirde s,(T) = n. tekil saysidur
it. s1(T) = ||T],
iii. 0 < sp41(T) < 50(T) (n>1),
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. Sm+n+1(T + U) S Sm+1(T> + Sn+1(U).

Ayrica W, X, Y ler Banach uzaylar ve T € B(X,Y),U € B(W, X) olmak iizere
V. Smint1(TU) < 8pp1(T)-5n11(U)
egitsizligt saglanir ise s—ol¢iisi ¢arpymsaldar deriz.
Yukardaki sekilde tanimly s—6l¢isii i¢in s,(T) sayilarina s—saylary denir.

Bu sayilara baz érnekler, a,(7") Yaklagim sayilari, x,,(7') Weyl sayilar1 ve ¢,(T") Gelfand

sayilaridir.

Tanim 3.1.5 X, Y Banach uzaylart arasindaki T : X — Y operatorinin a,(T) ile
gosterilen n incit yaklagym sayisi, infimum ranky < n olan tim R operatérler: tizerinde

alimmak tizere
a,(T) = inf |~ R|
ile tanimlanar.

Tanim 3.1.6 z,(T) ile gosterilen n inci Weyl sayiss H bir Hilbert uzay ve ||A| < 1

olmak tizere supremum tim A : H — X operatorleri tizerinde alinmak tizere

x,(T) = sgp a,(TA)

ile tanamlanar.

Bu sayillar X =Y = H bir Hilbert uzay1 olduklar1 durumda hepsi 6zdegerlere esittir.
Tanim 3.1.7 T : X — Y 1¢in esboyutu n den kiigik olan kapals M C X i¢in
u(T) = inf | T

olarak tanimlandiginda, buna Gelfand sayilar, denir.

Onerme 3.1.8 T : H — H kompakt simetrik oldugu taktirde,
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Ispat. T¢, = M\, Syleki \, reel ve sifira azalan, (¢,,$,) = O, oldugunu biliyoruz.

Boylece, her f € H i¢in T nin sifir uzayinin tabani (¢,,),>1 oldugunda
F=Y () bt > (L) 0,
dir. Ozfonksiyon acilimindan
Tf=> (f ¢.) Mo,
gorelim ki;
ITFIP = D Kf ol A,

< A [f )l

= A/
dir. Buradan, ||T|| < |\1| gercekte || T|| = |A1]| dir, giinkii T'¢; = A\ ¢, dir.
Simdi,

N-1

Rf = (f.d,) Mo,

1
ranki NV den biiyiiktiir ve

N

dir. Boylece,
1T = RI[ = [An].
dir. Buradan,
an(T) < [Aa(T)]
dir. Diger taraftan ranki N den biiyiik olan S verilsin, tyle ¢ = Zjlv |, = 1 vardir

oyleki S¢ = 0 dir.

Boylece,

N
T =S)ol* = |Tel* = lanl*Xy
1

v

N
)‘?VZ | |? = )‘?V
1
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dir. Buradan,
1T = S)1” > [An].
dir. Buradan,
an(T) > |Aa(T)]|

dir.

Simdi yaklagim sayilarinin alt-toplamsal ve alt-carpimsal olduklarini ispatlayalim.

Onerme 3.1.9 H Hilbert uzayindaki herhangi iki kompakt operator T, U igin

Umins1(T+U) < amya(T) + any1(U),

Amin1(TU) < amia(T)an1(U)

dir.

Ispat. Keyfi £ > 0 icin

IT = Rll,, < am(T) +¢

esitsizligi saglanacak gekilde R nin rankin1 m den kiiciik ya da esit,
1U = 5, < $nsa(U) +2

esitsizligi saglanacak sekilde S nin rankimida n den kiiciik ya da esit olacak sekilde
secebiliriz.
Simdi, R 4+ S nin ranki1 < m + n dir, ayrica,

Umins1(T+U) < |(T+U)—(R+S)

lop

IN

1T = Rll,p, + 1 = Sl

< i1 (T) + an1(U) + 2¢
dur. Boylece,

Amini1(T +U) < amya(T) + anga (U)
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dur. Ayrica,

(T—R)(U-S)=TU - (RU+TS — RS)
ve

TS+ RU — RS =RU+ (T —-R)S

nin ranki < m + n dir Boylece,

tmini1(TU) < |(T = R)(U ~ 5)

Hop

< T = Bllop [U = Sl

< (amia(T) + €)(ann(U) +€)
dir. Buradan,
amtn+1(TU) = a1 (T)an41(U).
dir.

Uyar: 3.1.10 Eger T : H — H kompakt operatir ise x,(T) i¢inde bu énerme dogrudur,
¢tinkt a,(T) = z,(T) dir.

3.2 KAREKOKLER
Her pozitif tammh K (x,t) € C*[0,1)* gekirdekli
Tf(z)= /1K(x,t)f(t)dt
0
Fredholm operatorii, tek bir pozitif J(x,t) € L?[0, 1]* gekirdekli
Sf(z) = /1 J(x, ) f(t)dt
0
kare koke sahiptir. Eger T" nin 6zdegerleri ve tzvektorleri A, ¢,, ise Mercer teoreminden
i Ap < 00
1

saglanir. Bu yiizden

(1) =D 00, (1)6,(1)
1
bir Hilbert-Schmidt cekirdegidir.
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Lemma 3.2.1 S: L?[0,1] — C'[0,1] olmak iizere

Sﬂ@zAJ@ﬁfwﬁ

ile tanamly S operatorinin yaklasgym saylart a,(S) = o(1/+/n) dir.

Ispat. ||f|, <1 ve e > 0 verirsin. Her |z —y| < 8, |t — u| < J icin
0K [0z (z,t) — 0K /0x(y,u)| < &

olacak sekilde § > 0 secelim.

[—7, m] araliginda Fejer ¢ekirdegi (2.7) ile caligarak, eger

Ruf@) = g [ IRy,

" 2mn . sin?t/2

alinirsa

RuSf(x) — Sf(x) = 1_/WS“I”“Q<Sfcv—t>—sw1x»dt

~2mn J_, sin®t/2

olur. Burada

L[J@mﬂ@jﬂu:K@ﬁ

oldugunu kullanarak

2

Wﬂx—w—sﬂﬂfzté(ﬂx—h@—J@m»ﬂmmt

§/0 |J(x—t,u)—J(x,u)|2du/o | f(u)]? du
gé(ﬂx—uM—J@m»U@—LM—J@me

:A(ﬂx—uw—J@mDUWw—ﬂ—J@ﬁD@

<|K(x—t,x—t)— K(z,x —t) — K(z — t,x) + K(z, )]
bulunur. Ustelik ortalama deger teoreminden baz1 0 < 0, 8 < 1 icin

|[K(z —t,x —t) — K(z,z —t) — K(x — t,x) + K(z,z)|

= |0K/0x(x — 0t,x — t) — OK/dx(x — 0't, z)| |t|
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oldugundan dolay1

e*t| ,

Sf(x)® <
2||0K [0z t],

|Sflz—1) -
elde edilir. Eger

R,Sf(x)—

yazilir ise, ikinci integral

1 /5 sin® nt /2
2mn J_5 sin®t/2

(Sf(a—1) - Sf(x))d ]

bulunur.

Ayrica tigiincii integral, yeterince biiyiik n

1 /”
2mn 5

sin? nt /2
sin?t/2

(Sf(x 1) - Sf(x)) dt‘

bulunur.

(L[ )5

[t| < ¢ ise
aksi halde

sin nt/2

sin®t/2 (5@ =1 =

Sf(x))dt

sin® nt /2

1 /9

27m/5 sin?t/2
% sin?nt /2

/_5 sin®t/2
™ sin® nt /2

/,r sin®t/2

™ Jo

[Sf(z —1t) = Sf(x)|dt

€

1t dt
2mn

c It/ dt

— 2mn
€
er (™ sin®nt/2

nfy 32
nm/2

dt

n Jo
sin?u
ud/2

ET

\/Zﬂ, 0

ET
2n 0

< sin?u
u3/2

du

icin
< 1 / ™ sin® nt/2
~ 2mn Js sin®t/2

2|[0K/0
< V2K,
Ve H8K/8x|

2mn sin® 0 /2

|Sf(z—1) =

" sin® nt /2
5 sin®t/2

/ 12t

Sf(z)|dt

2t

<_

vn
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Ik integralde iiciinciiye benzer sekilde

L[ sin?nt/2 - 1 [7sin®nt/2 NSt
[, Stz -0 -sste >>‘ | S 55 =0 = St

2mn sin?t/2 ~ 2mn sin?t/2
V2 aK 3} T sin® nt /2
s sin“t/2
Ww/aﬂ [ o
27 sin? §/2

<_

vn

ele alinarak istenen sonug elde edilir.

3.3 2-TOPLANABILIR DIZILER
X bir Banach uzay1 ve X deki bir dizi x = (z,),>1 € X olsun.
Tanim 3.3.1 Eger

[
D lzall® < o0
n=1

saglamar ise x e kuvvetli 2 — toplanabilir denir ve x € I? (X) ile gésterilir.

e.o]
2
n=1

normu ile [? (X) bir Banach uzaydar.

Tanim 3.3.2 Eger her x* € X* (X in dual uzayr igin)

saglanar ise x e zayrf 2 — toplanabilir denir ve x € w? (X)) ile gdsterilir.

Tamim 3.3.3 x € w? (X)) i¢in zayrf 2 — toplanabilir norm

ile tanamlanar.
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Tanim 3.3.4 XY Banach uzaylart olmak dizere T € B (X,Y) operatoriine, eger her

X = (Tn),5; € w? (X) igin
Tx = (Ty),s, € (V)
oluyor ise 2 — toplanabilir denir ve T € Ty (X,Y") yazilir.
Tanim 3.3.5 2 — toplanabilir T € B (X,Y) i¢in 2 — toplanabilir norm
Iy (T) = sup [Tl
[l <1

ile tanwymlanar.

Lemma 3.3.6 [ : C[0,1] — L?[0,1] birim operatori 2 — toplanabilir dir.

Ispat. ( Ja)ns1 € w?(C'[0,1]) olsun. Eger E;f = f(t) degerlendirme fonksiyoneli ise
E, € (C'[0,1])" ve||E|| = 1 dir. O halde,

SIB P = 3 1 OF < [t

n=1 n=1

dir. Boylece Lebesgue sinirhi yakinsaklik teoreminden

H(fn>n21HZ=Z/O \fn<t>|2dt=/0 ST OF dt < | (Fa)usillss

bulunur.

Lemma 3.3.7 Eger T : X — Y 2 — toplanabilir ise, x, (T) = O (1/y/n) dir

Ispat. n > 1 icin ||A|| < 1 olacak sekilde A : H — X olsun &yleki
an (TA) >z, (T) — ¢

saglansin. O halde

IN

na, (T'A) a1 (TA) 4+ ay (TA) + ...+ a, (TA)
< V@ (T + ot (0, (TA)*Vn
Vi@ @) + .+ (e (1)

I (T) v/n

A

IN

IN

20



dir.(Reade 1983 ve Reade 1984). Burada ¢, (T") ler Gelfand sayilaridir. Boylece istenildigi
gibi

2, (T) < (L (T) /v/n) +¢
elde edilir.

Lemma 3.3.8 Eger I : C'[0,1] — L2[0, 1] birim operatir ise, z,, (I) = O (1/y/n) dir.

Ispat. Lemma 3.3.6 den
I:C100,1] — L*[0,1] (3.4)

2- toplanabilirdir.

O halde(3.4) 2-toplanabilir oldugundan Lemma 3.3.7 den
z, (1) =0 (1/v/n)
dir.
Teorem 3.3.9 Eger K (x,t) € C'[0,1]° ve

1
Tf(e) = [ K@@

0

pozitif tanwmly ise
A, = 0(1/n?)

dir.

Ispat. Ispati C[0,1] Banach uzay: iizerinden S karekk operatoriinii carpanina ayirarak
K(z,t) € C'[0,1]? durumunda pozitif tanimh 7' nin A, 6zdegerlerinin o(1/n?) oldugunu

asagidaki sekilde gosteriyoruz.

Agik olarak S : L?[0,1] — ([0, 1] nin yaklagim sayilarmm a,(S) = o(1/4/n) oldugunu
Fejer ¢ekirdegi yardimi ile Lemma 3.2.1 de gosterdik. Daha sonra [ : C[0,1] — L?[0, 1]

birim operatoriiniin 2-toplanabilir oldugunu Lemma 3.3.6 da gosterdik. Benzer sekilde
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Weyl sayilarinin z,,(I) = O(1/y/n) oldugunu Lemma 3.3.8 de gosterdik. Buradan, tekil
sayilarin alt carpimsallig: ile )\}/ 2 = o(1/n) oldugunu géstermis oluyoruz. Dolayisiyla

istenilen \,, = o(1/n?) sonucunu elde etmis oluruz.

Yukarida kullandigimiz Banach uzaylar: {izerinden c¢ekirdegi carpanlara ayirma metodu

genellegtirilebilir olmas1 agisindan énemlidir.
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BOLUM 4

POZITIF TANIMLI INTEGRAL CEKIRDEK ORNEKLERI

Matematiksel analizde kargimiza cikan k cekirdeklerini kullanarak, pozitif tanmiml K
cekirdeklerinin rneklerini [Dikmen1997] ve [Kesmen 2008] vermislerdir. Cauchy inte-
gral formiilii ile kargimiza gikan k gekirdeklerini galigirken bazi durumlarda ozel sekiller
caligilmigtir. Biz bu 6zel sekillerden birini daha genel bir sekil ile degistirerek yeni bir

ornek verecegiz. Burada K, s ve t nin analitik ¢ekirdegi olacaktir.

Tanim 4.0.10 I,J C R arabklar ve k € L* (I x J), yani

//|k:(s,u)|2duds<oo
rJs

olsun. O zaman s € I, f € L?(J) olmak iizere;

Sf(s):/Jk:(s,u)f(u)du

formiilii L* (J) den L* (I) igine bir lineer kompakt S operatériini tanvmlar. S* : L* (I) —

L2 (J) eslenik operatorii

S*g (u) = /]g(t)k(t,u)dt

ile verilir. Boylece, eger f € L*(I) ise s,t € I igin
SS*g(u) = /S*g (u) k (s,u) du
J

_ /I/Jg(t)mk(s,u)dudt
_ /Ig(t)K(s,t)dt

dir. Burada K (s,t) = [, k(s,u)k(t,u)du dur. k € L*>(I x J) oldujundan integralin

sirasina degigtirmek miimkiindiir ve K € L? (I x I) dur.
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Sekil 4.1 SS* operatori

Teorem 4.0.11 T = SS* operatirii pozitiftir.

ispat. Burada,

(T9,9) 120 = (5579, 9) 12y = (579, ") 120y = 115 9lI720py = 0
oldugundan T pozitiftir.
O halde, k € L? (I x J) oldugu zaman T = SS* operatorii

K (s,1) = /Jk(s,u)k:(t,u)du

gekirdegi ile L? (I) iizerinde bir pozitif integral operatordiir.

Benzer gekilde S*S operatorii L? (J) iizerinde pozitiftir.

Uyar: 4.0.12 Eger k (s,u) =1 (s,u) h(u), |h(u)| =1 ise bu durumda
/Jk;(s,u)mdu = /Jl(s,u)mdu

dur. Yani, integralin ¢ekirdeginde mutlak degeri 1 olan kissm thmal edilebilir.

Uyar: 4.0.13 Teorem 4.0.11 nin sonucu J tzerinde Lebesque él¢iimi bir m pozitif sabiti
ile ¢arpildign zamanda dogrudur (genellikle % ). Bu durumda

57 (s) = | k(s.) f () ma)

oyle kis € I, f € L*(J) dir.

S (u) = [ RlEulg (1) e

I
oyle kiu e J, t € I vege L*(I) dir.

Tf(s)=SS*f /Kst

oyle ki K (s,t) = [, k( k (t,u) (mdu) dur.

o4



4.1 CAUCHY INTEGRAL FORMULUNDEN URETILEN ORNEK

Parametrik Cauchy Integral Formiiliinii hatirlayalim. Integrali z = ¢ (u) ile parametrik

yazariz.

A

Sekil 4.2 [a, b] araligr ve D bolgesi

Burada v bir pozitif yonlii dogrultulabilir Jordan egrisi ve D bunun i¢ bolgesidir. f, D

nin bir analitik komgulugunda tanimlh ve s € D olmak {iizere

Fls) = ff)

:27m/f L,

dur. Jimdi 6rnegimize gegelim.

Ornek 4.1.1 0 <60 < 5 olsun.
Di={zeC:-f0<argz<—0+7}

={zeC:0-—7m<argz <0}

ile ki yary dizlem tanymlayalim.
I =1la,bl,a>p eRise ] C DN Dy =0D1,vy =Dy olsun ve w = e, G = e

olsun.

u € R olmak tizere v, egrisini
p(u)=wu+p3=0+e"u
ile parametrik yazabiliriz.
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Sekil 4.3 Dy bolgesi

Boylece D; icin Cauchy Integral Formiiliinden

seklinde yazilabilir. Burada Uyar1 4.0.12 den(4.1) denkleminde E modiilii 1 oldugundan
i
ihmal edilebilir. Bu bize

sif(s)= [ S du

g B+ wu—s2m

ile tamml S; : L? (R) — L? (I) lineer operatoriinii énerir.O zaman

ky (s,u) = € L*(I xR)

f+wu—s
dir.Ciinkii

1 1
/ / b dsdu = / / , Sdsdu (4.2)
rJ1 |6+ @u — s |6—s+ucos«9 jusin b

= // ——dsdu
—3+uc056’) + (usinf)

//62+s2+u2c0526‘+2,8ucos€ 2s8—2su cos 0+u? sin?

dsdu

1
B /R/Iﬁg‘i‘52—25ﬁ+u2+2(ﬁ_8)ucosed3du
1
B dsdu
/R/I<S_5)2+“2_2(3—5)u0089

o6




s — [ > a oldugundan s = a + [ alinirsa

1 1
//—2dst = // 5 dsdu
RJ1 |+ Wu — s rRJr(s—p)" +u?—2(s—)ucosd
1
// 5 dsdu
rJ1 a®+ u? — 2aucosd

1
dsd
/R/I(I—COSH)(CL2+u2) sau
b—a 1

- (1 —cos?) /R (a2+u2)du =

IN

IN

bulunur. O halde

Lorm oo
r (B+ou—s)(f+wu—t)2m

K (s, t) =

- ! au
r(u—w(s—0))(u-—w(t—p))2r

Sekil 4.4 Ust yar1 diizlemdeki kutup noktasi w(s — f3)
dir. Ust yan diizlemdeki kutup noktast w (s — 3) dir.O zaman

K (s,t) = iRes(h(u),(w(s—p)))
1
w(s—pB)—w(—p)

w =cosf +isinf, w = cosf — isinf yazip, eslenigiyle carparsak

= 1

1
(s —t)cosO+i(s+t—20)sinb
1
(s+t—28)sinf —i(s—t)cosd
(s+t—208)sinf +i(s—t)cosh
(s+t—26)%sin?0 + (s — t)* cos? 6

= Ki(t,s9)

K (s,t) =

S7



dir.

O zaman K (t,s) gekirdegi L? (I x I) iizerinde simetrik ve pozitif tanimhdir.
Simdi Dy cekirdegi icin inga edelim.

u € R olmak iizere v, egrisini ¢ (u) = wu + f ile parametrik yazabiliriz.

Dy={2€C:0—7 <argz < 0} agk yar diizlemi

Sekil 4.5 Dy bolgesi

D, icin Cauchy Integral Formiiliinden

1 wf (wu + )

= d
2mi Jr B+wu—s "

f(s)

seklinde yazilir. Buradan

Saf (s) = /Rmf%d“

ile tammli S : L? (R) — L? (I) operatoriinii 6nerir.

Benzer gekilde

ko (s,u) = € L*(I x R)

b+ wu—s

elde edilir. Ciinkii

1 1
//—2d3du = // - 2dsdu
RJI |+ wu — s rRJ1|f— s+ ucosf + iusinb)

1
= / / 5 ——dsdu
rJr (B —s+wucosh)” + (usinh)
(4.2)denkleminin aymsidir ve(4.3) den dolay: yakinsaktir.
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O zaman

1 du
Ka(s:t) = /R(wuw—s)(wuw—t)%
- ! du
R (U= (s—0))(u-w(t-p))2r
dir.

Sekil 4.6 Ust yar diizlemdeki kutup noktast w(t — j3)

Ust yar1 diizlemdeki kutup noktasi w (t — 3) dir. O halde

Ky (s,t) = i.Res(h(u),w(t—7))
1

IO R Py

i
(t—s)cosf+i(t+s—23)sinb

1
(t+s—208)sinf —i(t — s)cosl

(t+s—20)sinf+i(t —s)cosd

(t+s—208)"sin?0 + (t — 5)* cos? 0

= K2 (t, 8)

olup, K5 (s,t) gekirdegi de L? (I x I) iizerinde simetrik ve pozitif tammhdir.

Simdi iki pozitif operatoriin toplaminin pozitif oldugu gercegini kullanalim;
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Sekil 4.7 Dy N Dy bolgesi

D = D; N Dy bolgesi olmak iizere bu bolgede K (s,t) ve K» (s,t) gekirdeklerinin toplami
olan L? (I x I) iizerinde tanimh K (s,t) pozitif tanmimh ¢ekirdegini agagidaki sekilde elde

ederiz.

K (s,t) = Ki(s,t)+ Ky (s,t)

1 1
B (s+t—26)sin0—i(s—t)cos¢9+ (s+t—208)sinf —i(t—s)cosf
1 1

(s+t—26)sin0—z’(s—t)cost9+ (s+t—208)sinf +i(s—t)cosd
(s+t—20)sinf+i(s—t)cosf+ (s+t—20)sinf —i(s—t)cosb
(s 4+t —208)"sin?0 + (s —t)* cos? 0
2(s+t—20)sind
(32 + 12 + 25t + 4% — 48s — 461&) sin?  + (s2 + t2 — 2st) cos2 )

2(s+t—20)sind
s? + 2 + 2st (sin® 0 — cos?§) + 48 (8 — s — t)sin® 6

Boylece L? (I x I) iizerinde tammli pozitif tamimh gekirdek elde ettik.

Sonug olarak basit halleri ile verilen egrilerin daha genel formdaki hallerini kullanarak
analitik cekirdekli pozitif tanmimli ¢ekirdek orneklerini vermemiz miimkiindiir. Diger
orneklerin daha genel halleri ve tezlerde kullanilmamig olan egrilerin kullanilmasi ile anal-
itik ¢ekirdekli pozitif tanimh g¢ekirdek orneklerini veren bir bagka yiiksek lisans tezinin

yapilabilecegini diigiiniiyoruz.
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