
i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SİNGÜLER HOMOLOJİ TEORİ 

Selim ÇETİN 

Yüksek Lisans Tezi 

Matematik  Anabilim Dalı 

Mart – 2010 

 

  



ii 

SİNGÜLER HOMOLOJİ TEORİ 

 

 

 

 

 

Selim ÇETİN 

 

 

 

 

 

Dumlupınar Üniversitesi 

Fen Bilimleri Enstitüsü 

Lisansüstü Yönetmeliği Uyarınca 

Matematik  Anabilim Dalında 

YÜKSEK LİSANS TEZİ 

Olarak Hazırlanmıştır. 

 

 

 

 

 

Danışman : Yrd.DoçDr. Tufan Sait KUZPINARI 

 

Mart 2010 



iii 

KABUL ve ONAY SAYFASI 

 Selim ÇETİN'nin YÜKSEK LİSANS tezi olarak hazırladığı “Singüler Homoloji Teori” 

başlıklı bu çalışma, jürimizce lisansüstü yönetmeliğin ilgili maddeleri uyarınca 

değerlendirilerek kabul edilmiştir. 

                                                                                                              

Üye  : Yrd.DoçDr. .................................................................................. 

Üye  : Yrd.DoçDr.................................................................................... 

Üye  : Yrd.DoçDr. ......................................................................... 

 

 

Fen Bilimleri Enstitüsün Yönetim Kurulu'nun  ....../...../..... gün ve ............. sayılı 

kararıyla onaylanmıştır. 

 

                                                     .                   Prof.Dr.Atalay KÜÇÜKBURSA 

                                                                         Fen Bilimleri Enstitüsü Müdürü 

 

 

 

                                               

 

 

 

 



iv 

SİNGÜLER HOMOLOJİ TEORİ 

Selim Çetin 

Matematik, Yüksek Lisans Tezi, 2010 

Tez Danışmanı: YrdDoç.Dr.Tufan Sait Kuzpınarı 

ÖZET 

 Bu tez 4 bölümden oluşmaktadır. Birinci bölümde tezde kullanılacak olan ve tezin kolay 

anlaşılmasını sağlayacak bazı matemateksel tanımlar lema ve denklem yer almaktadır. İkinci 

bölümde  yine tezde kullanılacak olan simpleksler , simpleksel kompleks , yönlü simpleksler , 

sınır operatörü , sınır gruplarını , zincirlerin oluşturduğu serbest abelyan gruplarının devir 

grubunu ve buradan da n-homoloji gruplarını tanımladık. 

 

Üçüncü bölümde ise homeomorfik iki uzayın gruplarının izomorf olacağı kaidesiyle 

homoloji teorinin bazı ortaya çıkan teorem ve lemmalarını verip örnekledik. Son bölümde bu 

homolojik özellikleri ( homoloji gruplarının özelliğini ) cebirde uyguladık. 

 

Genel olarak tezde euler’ in yüzeyler için karakteristik denkleminden yararlanmak için 

verilen yüzeye homeomorfik olmasını istediğimiz simpleksleri inşaa ettik. Dolayısıyla her bir 

objenin kenar, köşe ve yüzlerin sayısını hesaplayıp objeleri abelyan grup yapısına atamayı 

mümkün kıldık. 

 

Anahtar Kelimeler : Simpleksler, Simpleksel Kompleksler, Yönlü Simpleks, Zincir, Devir ve  

Sınır Grup, Sınır Operatörü, Homoloji Grup, Üçgenleştirme, Homolojik Cebir, Bağlı Homoloji,  

Bir Çiftin Tam Homolji Dizisi.  
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SİNGULAR HOMOLOGY THEORY 

Selim Çetin 

Mathematics, M.S.Thesis, 2010 

Thesis Supervisor:Assist.Prof.Tufan Sait Kuzpınarı  

SUMMARY 

 This thesis consists of 4 chapters. In the first chapter, mathematical definitions, lemma 

and equations which will be used in the thesis and will ease the understanding  take place. In the 

second chapter, we made the definitions of simplexes,simplicial complexes, oriented simplexes, 

boundary operator, chain groups,cycle group and boundary group, and hence homology groups 

which will be used in the thesis again. 

 In the third chapter, with the formula of the fact that the groups of two spaces are 

isomorphic, we gave and examplified the theories and lemma of homology theory. In the last 

chapter, we aplicate these homological properties ( properties of homology goups) on the 

algebra. 

 In general, in the thesis, to benefit from the Euler characteristic equation of surfaces, we 

constructed the desired simplexes to make the surface of the house to homeomorphic. So, by 

computing the numbers of edges, vertices, faces. We enabled the objects to link to abelian 

groups.  

Keywords: Simplexes,Simplicial Complexes, Oriented Simplexes, Boundary Operator, Chain 

Groups,Cycle Group and Boundary Group, Homology Group, Triangulation, Homolgical 

Algebra, Relative Homolgy, The Exact Homolgy Sequence of a Pair. 
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1.GİRİŞ 

Bu kısımda tezin içinde geçen bazı kavramların tanımları verilip anlaşılmayı kolaylaştırmak için 

tanımlar örneklerle desteklenecektir.  Her ne kadar bu kavramlar çoğu kişi tarafından bilinse de 

biz hatırlatma amaçlı bu kavramları kısa kısa vereceğiz. 

1.1.Tanım: A bir cümle olmak üzere  g : A                   A  fonksiyonu  birebir ve örten ise g 

fonksiyonuna  A nın bir permütasyonu denir. N elemanlı bir küme kendisi üzerine tüm birebir 

fonksiyonları bileşke işlemi altında bir grup oluşturur. Bu gruba permütasyon grubu denir. N 

elemanlı bir kümenin n! tane permütasyonu olacağı açıktır. 

1.2.Tanım: A kümesi sonlu ve g, A üzerinde tanımlı bir permütasyon olsun. aאA için gk(a) = a 

olacak şekilde bir kאԺ vardır. Bu durumda (a,g(a),g2(a), … ,gk-1(a)) şeklinde tanımlanan k-lıya 

bir k-devir denir. 

Bunu bir örnekle açıklayacak olursak A={1,2,3,4} olmak üzere  

g1  =  ൫ ଵ  ଶ  ଷ  ସ 
 ଶ  ଷ  ସ  ଵ ൯     g2 = ൫ ଵ  ଶ  ଷ  ସ 

 ଷ  ସ  ଵ  ଶ ൯  permütasyonlarının devirsel gösterimi  

g1
0(1)=1 ,  g1

1(1)=2 ,  g1
2(1)= g1(g1(1))= g1(2)=3 ,  g1

3(1)= g1(g1
2(1))= g1(3)=4 ,  g1

4(1)=  

g1(g1
3(1))= g1(4)=1 olup  g1=(1,2,3,4) ve benzer olarak  g2=(1,3)(2,4) dür.  

1.3.Tanım: Uzunluğu iki olan devire transpozisyon denir. 

Bir başka değişle bir transpozisyon herhangi iki sayının yerlerini değiştirir, diğerlerini sabit 

bırakır. Buna göre bir transpozisyon ; A={1,2,…,n} olmak üzere a,bאA için g(a)=b ve g(b)=a ; 

a,b≠c için g(c)=c şartını sağlar. 

1.4.Örnek: A={a,b,c,d,e,f} ve g=ቀ ௔  ௕  ௖  ௗ  ௘  ௙ 
 ௖  ௗ  ௔  ௕  ௘  ௙ ቁ olsun. Bu permütasyon g=(a,c)(b,d) şeklinde 

gösterilebilir. g(e)=e ve g(f)=f olduğundan görüntüleri yine kendisi olan elemanlar devirlerde 

gösterilmezler.  
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1.5.Tanım: Eğer herhangi bir permütasyon tek sayıda transpozisyonların çarpımı şeklinde 

yazılabiliyorsa tek permütasyon ; çift  sayıda transpozisyonların çarpımı şeklinde yazılabiliyorsa 

çift permütasyon denir. 

f= (1,8)(3,6,4)(5,7) permütasyonu f= (1,8)(3,6,4)(5,7)=(1,8)(3,4)(3,6)(5,7) buda dört tane 

transpozisyonun çarpımı şeklinde olup çift permütasyon iken  

g=(1,4,5,6)(2,3,7) permütasyonu , g=(1,4,5,6)(2,3,7)=(1,6)(1,5)(1,4)(2,7)(2,3) olup  beş tane 

transpozisyonun çarpımı şeklinde yazılmış olup tek permütasyondur. 

1.6.Tanım: A={b0 , b1 , … , bm } = m ; (m+1) tane  b0 , b1 , … , bm noktalarından oluşmuş küme 

olmak üzere b0b1 , … , b0bm  vektörleri  doğrusal bağımsız ise A kümesine afin bağımsız küme 

denir. 

1.7.Tanım: Simpleksin bulunduğu hiperdüzlemde bulunması gerekmeyen n+1 tane Pi noktası 

yardımıyla simpleksin bir x noktasını x = ∑ ௜ߣ ௜ܲ
௡
௜ୀଵ   biçiminde ifade etmeye yarayan ૃi  

sayılarına barisentrik koordinatlar denir. Burada  ∑ ௜ ௡ߣ
௜ୀଵ =1 dir.  

1.8.Heine-Borel Lemması: A kümesi En uzayının sınırlı alt kümesi ise bu kümenin açık 

kümelerden oluşan her sonsuz örtüsünden A kümesini örten sonlu sayıda kümeler (açık örtü) 

seçilebilir. Başka bir anlatımla, En uzayının her kapalı sınırlı alt kümesi kopmaktır. 

1.9Euler karakteristiği: Euler formülünün küreden farklı olan topolojik yüzeylere 

genişletilmiştir. Yüzey için bu formül;  

“Köşelerin sayısı + Yüzlerin sayısı – Ayrıtların sayısı = Sabit sayı” dır.  
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2.TEMEL NOTASYONLAR 

Öncelikle öklidyen 3-uzay  Թ3 de n=0,1,2 ve 3 için yönlü n-simpleks tanımını inceleyeceğiz. 

Yönlü 0-simpleks bir tek p noktasıdır. Yönlü 1-simpleks p1 ve p2 noktalarını birleştiren p1p2 

doğru parçasıdır. Ve p1 den p2 ye hareket şeklinde görülür. Bu bağlamda p1p2 ≠ p2p1 dir fakat 

aralarındaki benzerliği p1p2 ≠ -p2p1 şeklinde göstereceğiz. Yönlü 2-simpleks   

                                                                     p3     

 

 

                           

 

                            

                              p1                                                                   p2                    

 

şekildeki gibi bir p1p2p3 üçgensel bölgesi ile birlikte üçgen etrafında yönü belirli bir harekettir. 

Bu harekette sıralama önemlidir ve sıra p1p2p3  şeklindedir. Bu sıralama yukarıdaki şekilde ok 

ile gösterilmiştir. Dikkat edileceği üzere p1p2p3; p2p3p1 ve p3p1p2 sıralamalarıyla aynı olup 

p1p3p2, p3p2p1 , p2p1p3  sıralamalarının tersidir.  

Bu durum p1p2p3= p2p3p1 = p3p1p2 = - p1p3p2 = - p3p2p1 = - p2p1p3  şeklinde ifade edilir. 

Dikkat edileceği üzere pipjpk ;  

൬1 2 3
݅ ݆ ݇൰  

permütasyonunun tek veya çift olması durumuna göre sırasıyla p1p2p3 veya - p1p2p3 yapısına 

eşittir.  
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Belirtmeliyiz ki n=0,1,2 için yönlü n-simpleks n boyutlu bir objedir. 

 Yönlü 3-simpleks köşelerinin sırası p1p2p3p4 olan dört köşeli tetrahedrondur(burada 3-

simpleks tetrahedronun sınırladığı bölgenin tamamıdır).                                             

                                                                            

P1 

                                         P2 p4 

                                                                      P3 

Yönlendirme 2-simplekste olduğu gibidir. 

൬ 1    2 3    4 
 ݅    ݆      ൰ ݏ    ݎ

Permütasyonunun çift veya tek olması durumuna göre  

p1p2p3p4 = - pipjprps dir. 

Benzer tanımlar n>3 için yapılabilir fakat görselleştiremediğimiz için n>3 için tanımları 

vermeyeceğiz. Şimdiye kadar verdiğimiz simplekslerin tamamı yönlü yani köşelerinin 

yazımındaki sıralanışa göre farklılıklar gösterir, köşeler aynı olmasına rağmen sıralamaya göre 

yönlü simpleksler farklı olabilir. Bundan sonraki tüm simpleksler yönlü olacaktır. 
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 Şimdi n=1,2,3 için bir n-simpleksin sınır tanımını vereceğiz. Bir 0-simpleksin sınırı boş 

simpleks olup bu durum  

“߲0(p)=0” 

Şeklinde gösterilecektir. 

p1p2 1-simpleksnin sınırı  

“߲1(p1p2)= p2- p1” 

Şeklinde, p1p2p3 2-simpleksinin sınırı  

“߲2(p1p2p3)= p2p3- p1p3+ p1p2” 

Ve benzer şekilde p1p2p3p4 3-simpleksinin sınırı ise  

“߲3(p1p2p3p4)= p2p3p4- p1p3p4+ p1p2p4- p1p2p3” 

Şeklinde ifade edilir. Sınır tanımlarında toplamı oluşturan her bir bileşene simpleksin yüzeyi 

(face) denir. Mesela p2p3p4 , p1p2p3p4 simpleksinin bir yüzeyi olup p1p3p4 bir yüzey değildir. Ne 

var ki   p1p4p3= - p1p3p4 , p1p2p3p4 simpleksinin bir yüzeyidir. 

 Şimdi yukarıda şekli verilen tetrahedronu düşünelim. Bu tetrahedronun dış yüzünde 

(surface) , bazı 0-simpleksler (köşeler) , 1-simpleksler (kenarlar) , bazı 2-simpleksler (içi dolu 

üçgenler) vardır. genel bir ifadeyle bir uzayın tam olarak simplekslere bölünebilmesi için 

aşağıdakilerin doğru olması gerekir. 

a- Uzaydaki her bir nokta en az bir simpleks içinde olmalı 

b- Uzaydaki her bir nokta sonlu sayıda simpleks içinde olabilir 

c- İki farklı simpleksin ya ortak noktaları yoktur, ya da ortak noktaları birbirinin yüzeyidir. 
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Örneğin  

                                                                                                                                                                                     

                                         

 

 

 

 

Uzayları üçüncü şartı sağlamamaktadır. Fakat                          

 

 

 

 

 

Uzayı üçüncü şartı sağlamaktadır. 

 Verilen üç şarta uygun biçimde simplekslere ayrılabilen bir uzaya simpleksel kompleks 

denir. 

 Şimdi buraya kadar sezgisel olarak anlatmaya çalıştığımız yönlü simpleksler ve yönlü 

simplekslerin sınırı ve simpleksel kompleks tanımlarını ve bunlarla ilgili bazı örnekleri verelim. 

2.1.1.Tanım: AكԹk olsun. 0≤ti , 

 t0 + t1 + … + tn = 1      

olmak üzere herhangi bir aאA noktası , bazı a0 , a1 , … , an אA için  

a= t0a0 + t1a1 + …+ tnan  
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biçiminde bir tek yazılabiliyorsa A alt kümesine bir n-simpleks denir. Bu durumda A simpleksi 

a0 , a1 , … , an tarafından geriliyor denir  ve  

t0 , t1 , … , tn sayılarına a= t0a0 + t1a1 + …+ tnan noktasının barisentrik koordinatları denir. a0 , a1 

, … , an noktalarına ise A nın köşeleri (vertices) denir. 

Kısaca simpleks tanımını şu şekilde yapabiliriz. 

2.1.2Tanım: a0 , a1 , … , an אԹn noktaları afin anlamında lineer bağımsız olsun. 

 conv { a0 , a1 , … , an } konveks çatısına , köşeleri a0 , a1 , … , an  olan n-simpleks denir. 

 Her simpleks kapalı ve sınırlı olup Heine-Borel lemması gereğince kompakttır. 

                    P1                                            p1                                                             p4 

                                                                                                                    a                                                                            a 

 

 

 P2                               p3   p2                                     p3   p5                                      p6  

 

p1p2p3 bir simpleks olup p1p2p3-{a} ve p4p5p6-{a} kümeleri konveks değildir, yani simpleks 

değildir. 

R3 de temel simpleksler olan 0,1,2,3-simpleksleri  

 

                                                                                                                p1 

    P0       p1                    p2                 p1                                     

                                                                                                  p2              P3                                p4     

                                                  

                                               P2                         p3                              p3                       
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şeklinde resmedebiliriz.  

2.2.Simplekslerin yönlendirilmesi 

Bu kısım [Bozüyük] den alınmıştır. Bir m-simpleks p0 , p1 , …, pm noktaları ile belirlenir. 

Verilen simpleks tanımına göre bu noktaların sıralaması önemli değildir. Fakat bazı özel 

amaçlar için köşelerin sırasını dikkate almak gerekir. 

Bu amaçlar nelerdir? 

p0 , p1 , …, pm noktaları ile elde edilen m-simpleksi σm ile gösterelim. σm nin bir permütasyonu, 

basitçe köşelerinin sıralamasının bir permütasyonudur. Bundan dolayı σm nin (m+1)! mümkün 

permütasyonu vardır. iki permütasyonun ikisi de çift veya ikisi de tek ise  bu iki permütasyon 

birbirine denktir denir, aksi halde yani biri tek diğeri çift permütasyon ise bu iki permütasyon 

birbirinin zıt işaretlisidir denir. 

 Bu σm nin permütasyonları kümesi üzerinde bir denklik bağıntısı oluşturur ve bu 

kümenin permütasyonların tek veya çift olması bağıntısına göre iki denklik sınıfı oluşur. Bu 

sınıflara σm in yönlendirmeleri denir. Verilen bir m-simpleks bu yönlendirmelerden biri ile bir 

yönlendirilmiş m-simpleks olur. yani her bir m-simpleks yardımıyla iki tane yönlendirilmiş m-

simpleks elde edilir. 

2.2.1Tanım: A bir n simpleks ve a0 , a1 , … , an bu simpleksin köşeleri olsun. 

{ a0 , a1 , … , an} nin bir alt kümesi { ai0 , ai1 , … , aik} tarafından gerilen simplekse, A nın k 

boyutlu bir yüzü (face) denir. 

Örneğin A nın köşeleri A nın 0 boyutlu yüzleridir. 

1 boyutlu yüzlere verilen simpleksin kenarı (edge) denir. 

N boyutlu simpleksin (n-1) boyutlu yüzüne verilen simpleksin facet i denir. 

 Farklı bir anlatımla n-simpleksin yüzü; k≤n olmak üzere bu simpleksin alt kümesi olan 

k boyutlu simpleksler olarak tanımlanabilir. 
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2.2.2.Tanım:A bir n-simpleks olsun boyutu n den küçük olan tüm yüzlerin birleşimine A nın 

sınırı denir ve ߲(A) şeklinde gösterilir. 

Bir simpleksin sınırının tüm facelerinin birleşiminden meydana geldiğini görmek kolaydır yani 

bir başka değişle bir simpleksin içinde bulunan simpleksin boyutundan bir eksik boyutlu 

yüzlerin bileşkesi simpleksin sınırını verir. 

2.2.3.Tanım: Sonlu bir m için K={ σm
 Թm |m=1,2,…,p } ailesi Թm deki bazı m-simplekslerin ك

bir sonlu ailesi olsun. Eğer her σi , σj אK için  

Sim1: σi ځ σj , σi nin hem de σj nin bir yüzü, 

Sim2: K deki bir simpleksin her yüzü yine K da bir simpleks ise K ya simpleksel kompleks 

denir. 

 

                                                                                                       

                                                                                                     

 

                                 

(a)                                                    (b)                                                   (c)  

                           

 

 

 

                    (d)                                                            (e) 

 

(a), (b), (c) birer simpleksel kompleks olup (d) ve (e) sim1 şartını sağlamadığından simpleksel 

kompleks değildir. 
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2.3.Zincirler, Devirler ve Sınırlar 

 Bu kısımla beraber amaçladığımız hedefe doğru yaklaşmaya başlayacağız. Yani belli 

şartları sağlayan bir topolojik uzaya karşılık bazı grup yapıları elde edilecek. 

2.3.1.Tanım: K bir simpleksel kompleks olsun. K nın n-simplekslerinin kümesi tarafından 

üretilen serbest abel grubuna K nın n zincirlerinin oluşturduğu grup denir ve Cn(K) ile gösterilir. 

 Tanımdan anlaşılacağı üzere Cn(K) nın her bir elemanı; σi , K nın bir n-simpleksi ve 

kiאԺ i=1,2,3,…,p olmak üzere ∑kiσi şeklinde bir sonlu toplam biçiminde ifade edilir. Burada 

toplama giren her bileşene bir n-zincir denir. 

2.3.2.Örnek: K p1p2p3p4 tetrahedronunun dış yüzeyinden oluşan simpleksel kompleks olsun. bu 

durumda C2(K) da ki bir eleman k1,k2,k3,k4אԺ olmak üzere  

k1p1p2p3 + k2p1p2p4 + k3p1p3p4 + k4p2p3p4  

formunda olup C1(K) da ki bir eleman k1,k2,k3,k4,k5k6אԺ olmak üzere  

k1p1p2 + k2p1p3 + k3p1p4 + k4p2p3p4 + k5p2p4 + k6p3p4  

formunda olup benzer şekilde C0(K) da ki bir eleman k1,k2,k3,k4אԺ olmak üzere  

k1p1 + k2p2 + k3p3 + k4p4  

formunda ifade edilir.  

 Şimdi elde ettiğimiz Cn(K) grubuyla ilgili bazı özelliklerden bahsedelim. 

 K bir simpleksel kompleks ve K nın n-simpleksleri i=1,2,3,…,k için σi olsun. mi,zi אԺ 

olmak üzere ∑miσi , ∑ziσi אCn(K) için  

∑miσi + ∑ziσi = ∑(mi+zi)σi  
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Şeklindedir. Tam sayılarda toplama işleminin kapalılık, birleşme ve değişme özelliği 

olduğundan Cn(K) üzerinde yukarıda tanımlanan işlemin de benzer özellikleri vardır. i=1,2,…,k 

için ti=0 olmak üzere ∑tiσi , Cn(K) nın birim elemanı olup ∑miσi elemanının tersi ∑(-mi)σi 

biçiminde tanımlanır.  

 Şimdi bir K simpleksel kompleksi yardımıyla tanımlanan Cn(K) grupları arasındaki özel 

bir homeomorfizmayı tanımlayacağız. 

 X ve Y , F(X) ve F(Y) serbest abel gruplarının üreteç kümeleri olsun. 

F:X                 Y 

fonksiyonu yardımıyla F(X) den F(Y) ye bir homeomorfizma tanımlanır ve bu tanımlama tek 

türlü yapılabilir. Bir I indis kümesi için xiאX ve miאԺ olsun. ∑mixiאF(X) olup  

f(∑mixi) = ∑mif(xi) şeklinde tanımlansın. Bu tanımlama ile birlikte f, F(X) ten F(Y) ye bir 

homeomorfizmadır. Gerçekten mi,ziאԺ için  

f(∑mixi + ∑zixi) = f(∑(mi+zi)xi) 

     =∑(mi+zi)f(xi) 

     =∑mif(xi) + ∑zif(xi) 

     = f(∑mixi) + f(∑zixi) 

dir. Şimdi bu bilginin ışığı altında aşağıdaki tanımı verebiliriz. 

2.3.3.Tanım: K bir simpleksel kompleks olsun. ߲n sınır dönüşümü Cn(K) dan Cn-1(K) ya bir grup 

homeomorfizmasıdır. Bu dönüşüme sınır homeomorfizması (boundary homomorphism) denir, 

ve ∑mikiאCn(K) için  

߲n(∑miki) = ∑mi߲n(ki) 
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Şeklinde tanımlanır.  

 Burada elbette ߲0 sınır dönüşümü için C-1(K) yı tanımlamak gerekir. C-1(K) bundan 

böyle tek elemanlı {0} aşikâr grubu olarak alınacaktır. 

2.3.4.Örnek: K simpleksel kompleksini  

                                                                           a 

                                                                        

                                                                    

                                                    

                                                   

                                                       b                                c   

şeklinde resmedelim. 

ξ=2ab+3bc+4ca şeklinde tanımlansın (ξאC2(K) dır). 

߲2(ξ)= ߲2(2ab+3bc+4ca) 

       = 2߲2(ab)+3 ߲2(bc)+4߲2(ca) 

       = 2(b-a)+3(c-b)+4(a-c) 

       =2a+(-1)b+(-1)c 

       =2a-b-c  

Olur. 

 Şimdide sınır homeomorfizminin çekirdeği(kernel) ve görüntü(image) kümelerini 

araştırıp aralarındaki ilişkiye değineceğiz.  
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2.3.5.Tanım: ߲n:Cn(K)                Cn-1(K) sınır homeomorfizmasının çekirdeğinin elemanlarına n-

devir(n-cycle), çek(߲n) ye ise n-devirler grubu denir ve bu grup Zn(K) ile gösterilir. 

2.3.6.Örnek: Son örnekteki K kompleksini ele alalım. 

λ=ab+ca+bc אC1(K) dır. 

߲1(λ)=߲1(ab+ca+bc) 

       = ߲1(ab)+ ߲1(ca)+ ߲1(bc) 

       =(b-a)+(a-c)+(c-b) 

       =0 

Olduğundan λאçek(߲1)=Z1(K) olup λ bir 1-devirdir. Fakat  

t=2ab+bc+ca  olarak alırsak 

߲1(t) = ߲1(2ab+bc+ca) 

        = 2߲1(ab)+߲1(bc)+߲1(ca)  

        = 2(b-a)+(c-b)+(a-c) 

        = b-a ≠ 0  

olup tבZ1(K) dır. 

2.3.7.Tanım: ߲n:Cn(K)                 Cn-1(K) sınır homeomorfizması olmak üzere ߲n(Cn(K)) ya (n-

1)-sınırların oluşturduğu grup denir ve bu grup Bn-1(K) ile gösterilir. 

2.3.8.Örnek: Y simpleksel kompleksini                
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                                                                              a 

                                                                   ๶                    e 

                                                            ๻        ๿                                                                                           

                                                                                d 

                                                       b         ๸   c    

 

şeklinde resmedelim. 

x=(abc+adc+abd+bcd)אC2(K) olsun. 

߲2(x) = ߲2(abc+adc+abd+bcd) 

        = ߲2(abc)+߲2(adc)+߲2(abd)+߲2(bcd) 

        = ab+bc+ca+ad+dc+ca+ab+bd+da+bc+cd+db 

         =2ab+2bc+2ca 

         =2(ab+bc+ca)  

olup  bu ifade 1-sınırdır ve B1(Y) nin elemanıdır. 

2.3.9.Örnek: S kompleksi; yönlendirmesi tetrahedronun dışından bakıldığında her üçgende saat 

hareketi yönünde olması şartıyla 

                                                                               P1 

  

                                                              P2                           p4  

                                                                           P3     
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tetrahedronunun yüzeyi olsun. Şimdi n=0,1,2 için Zn(S) ve Bn(S) gruplarını hesaplayalım. 

Öncelikle C3(S)=0 olduğundan B2(S)=߲3(C3(S))=0 dır. 

C-1(S)=0 olduğundan  

Z0(S)=ker(߲0)=C0(S) dir  

Böylece Z0(S) p1,p2,p3 ve p4 üreteçleri üzerinde tanımlanan serbest abel gruptur. Bir grubun 

homeomorfizma altındaki görüntüsü bu grubun üreteçlerinin homeomorfizma altındaki 

görüntülerinin ürettiği gruptur. 

Böylece C1(S); p1p2 , p1p3 , p1p4 , p2p3 , p2p4 ve p3p4 tarafından üretildiğinden B0(S) yani 0-

sınırlar grubu p2-p1 , p3-p1 , p4-p1 , p3-p2 , p4-p2 , p4-p3 tarafından üretilir. 

Ne var ki; B0(S) ,bu üreteçler üzerinde serbest abelyan değildir. Örneğin ,  p3-p2 = (p3-p1)-(p2-p1) 

dir. kolayca görüleceği üzere B0(S) grubu p2-p1 , p3-p1 ve p4-p1 üzerinde serbest abel gruptur. 

(dikkat edileceği üzere , p3-p2 , p4-p2 , p4-p3 elemanları B0(S) nin üreteçleri tarafından 

üretilebilir.) 

 Şimdi Z1(S) yi hesaplayalım. C1(S) deki bir c elemanı , pipj kenarlarının integral 

katlarının normal toplamı biçimindedir. Z1(S) nin üreteçleri  

Z1= p2p3+ p3p4 + p4p2 

Z2= p1p4+ p4p3 + p3p1 

Z3= p1p2+ p2p4 + p4p1 

Z4= p1p3+ p3p2 + p2p1  dir. 

Benzer hesaplamalarla  

Z1(S)= B1(S) 

olup Z2(S) nin üreteçleri  
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p2p3p4+ p3p1p4 + p1p2p4 + p2p1p3       olur. 

2.4.Homoloji Gruplarının Hesaplanması 

2.4.1.Teorem: X bir simpleksel kompleks ve n=0,1,2,3 için Cn(X) , X in n-zincirleri olsun. her 

cאCn(X) için  ߲n-1߲n(c) = 0 dır. 

İspat: Homeomorfizmalar üreteçler yardımıyla tanımlandığından üreteçler için verilen ifadenin 

doğru olduğunu göstermek yeterlidir. 

߲1߲2 (p1p2p3) = ߲1(p2p3 + p3p1 + p1p2) 

                      = (p3 – p2) + (p1 – p3) + (p2 – p1) 

                      =0 

2.4.2.Sonuç: n=0,1,2,3 için   Zn(X)ل Bn(X) tir.  

bא Bn(X) olsun. ߲n+1(c) = b olacak biçimde cא Cn+1(X) vardır.    

߲n-1߲n(c) = 0 olduğundan ߲n(b) = 0 olup bאçek߲n= Zn(X) tir. 

2.4.3.Tanım: X bir simpleksel kompleks olsun. Hn=Zn/Bn bölüm grubuna X in n boyutlu 

homoloji grubu denir. 

2.4.4.Örnek: S tetrahedron yüzeyini oluşturan simpleksel kompleks olsun. 

C3(S)=0 olduğundan Z3(S) ve B3(S) ile aynıdır. Dolayısıyla H3(S)=0 olur. 

C2(S) sonsuz devirli ( yani Ժ ye izomorf ) ve B2(S)=0 olduğundan H2(S)؄Ժ dir. 

Z1(S)= B1(S) olduğundan Z1(S)/B1(S) grubu aşikâr grup olduğundan H1(S)=0 dır. 

Benzer hesaplamalarla H0(S)؄Ժ dir.  
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2.4.5.Örnek: M={ p0 } olsun. 0-zincir C0(M)={ ip0 | iאԺ } dir. Kesinlikle B0(M)={0} ve 

C0(M)=Z0(M)؄Ժ dir(߲0p0 = 0 ve p0 hiçbir şeyin bir sınırı olamaz.). Dolayısıyla  

H0(M)=Z0(M)/ B0(M)؄Ժ dir. 

2.4.6.Örnek: L={ p0 , p1 } iki 0-simpleksten meydana gelen bir simplisel kompleks olsun.0-

zincir C0(L)={ ip0 + jp1 | i,jאԺ } dir. Kesinlikle B0(L)={0} ve C0(L)=Z0(L)؄ԺْԺ dir. 

Dolayısıyla  H0(L)=Z0(L)/ B0(L)؄ԺْԺ dir.  

2.4.7.Örnek: T={ p0 , p1 , p0p1 } olsun. Biz C0(T)={ ip0 + jp1 | i,jאԺ } dir. C1(T)={ kp0p1 | kאԺ } 

sahibiz. p0p1 T deki herhangi bir simpleksin sınırı olmadığı için  kesinlikle B1(T)={0} ve 

H1(T)=Z1(T)/ B1(T)= Z1(T) dir.  

Eğer z=mp0p1אZ1(T) ise ߲1z = m ߲1(p0p1)=m{ p1 – p0 } = mp0 - mp1 =0 olur. Bu yüzden m yok 

edilebilir ve Z1(T)=0 dolayısıyla H1(T)=0  olur.  H0(T) ye gelince biz Z0(T)= C0(T)={ ip0 + jp1 | 

i,jאԺ } ve B0(T)=görüntü߲1={߲1ip0p1|iאԺ} ={i(p1 – p0)|iאԺ}  

F(ip0 +jp1)=i+j ile f: Z0(T)            Ժ  bir örten homeomorfizm tanımlayalım. O zaman biz 

çekf=f-1(0) = B0(T) buluruz.  

Buradan H0(T)=Z0(T)/ B0(T)؄Ժ veya H0(T)=Z0(M)/ çekirdekf؄görüntüf؄Ժ buluruz. 

2.4.8.Örnek: K={ p0 , p1 , p2 , p0p1 , p1p2 , p2p0 } olsun. 

 

                                                    P0 

                   

 

                             P1                                       P2 

 Bu S1 in üçgenleştirilmesidir. K nın içinde 2-simpleksler olmadığı için biz B1(K)=0 ve 

H1(K)=Z1(K)/ B1(K)= Z1(K) ya sahibiz. z= ip0p1 + jp1p2 + k p2p0 א Z1(K) i,j,kאԺ olsun.   
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߲1z=i(p1 – p0) + j(p2 – p1) + k(p0 – p2) = (k-i)p0 + (i-j)p1 + (j-k)p2 = 0 olması gerekir. Bu sadece 

i=j=k olduğunda sağlanır. Bu yüzden biz  

Z1(K)={i{ p0p1 + p1p2 + p2p0 } | iאԺ }  

olduğunu buluruz bu Z1(K) nın Ժ ye izeomorfik olduğunu ve H1(K)= Z1(K)؄Ժ olduğunu 

gösterir.   

H0(K) yı hesaplayalım. Biz Z0(K)= C0(K) ve  

B0(K) = {߲1[ lp0p1 + mp1p2 +np2p0 ] | l,m,nאԺ } 

            = {(n-l)p0 + (l-m)p1 + (m-n)p2 | l,m,nאԺ } ye sahibiz. 

 F(ip0 + jp1 + kp2) = i + j + k ile   

f : Z0(K)          Ժ  ye bir örten homeomorfizm tanımlayalım. Çekf = f-1(0) = B0(K) ; 

Z0(K)/Çekirdekf  ؄ görüntüf ൌ Ժ veya   H0(K) = Z0(K)/B0(K)؄Ժ olduğunu doğrulayalım. K , S1 

dairesinin bir üçgenleştirmesi olur ve H0(K) = Z0(K)/B0(K)؄Ժ ve H1(K) = Z1(K)؄Ժ S1 in 

homoloji  gruplarıdır.  

2.4.9.Örnek: A={ p0 , p1 , p2 , p0p1 , p1p2 , p2p0 , p0p1p2} olsun.   

                                                   P0 

                   

 

                               P1                                   P2 

 0-simpleksler ve 1-simplekslerin yapısı  B1(A)=0 ve H1(A)=Z1(A)/ B1(A)= Z1(A) ya sahibiz.    

z= ip0p1 + jp1p2 + k p2p0 א Z1(A) i,j,kאԺ olsun.  ߲1z=i(p1 – p0) + j(p2 – p1) + k(p0 – p2) = (k-i)p0 

+ (i-j)p1 + (j-k)p2 = 0 olması gerekir. Bu sadece i=j=k olduğunda sağlanır. Bu yüzden biz  
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Z1(A)={i{ p0p1 + p1p2 + p2p0 } | iאԺ }  

olduğunu buluruz bu Z1(A) nın Ժ ye izeomorfik olduğunu ve H1(A)= Z1(A)؄Ժ olduğunu 

gösterir.   

H0(A) yı hesaplayalım.  Z0(A)= C0(A) ve  

B0(A) = {߲1[ lp0p1 + mp1p2 +np2p0 ] | l,m,nאԺ } 

            = {(n-l)p0 + (l-m)p1 + (m-n)p2 | l,m,nאԺ } ye sahibiz. 

 g(ip0 + jp1 + kp2) = i + j + k ile   

g: Z0(A)           Ժ  ye bir örten homeomorfizm tanımlayalım. Çekirdekg = g-1(0) = B0(A) ; 

Z0(A)/Çekirdekg  ؄ görüntüg ൌ Ժ veya   H0(A) = Z0(A)/B0(A)؄Ժ olduğunu doğrulayalım. A  , S1 

dairesinin bir üçgenleştirmesi olur ve H0(A) = Z0(A)/B0(A)؄Ժ ve H1(A) = Z1(A)؄Ժ  S1 in 

homoloji  gruplarıdır. Ayrıca  A da 3‐simpleks olmadığı için B2ሺAሻ ൌ ሼ0ሽ  dır. o zaman H2(A) 

= Z2(A)/B2(A)= Z2(A) dır.  z= mp0p1p2  א Z2(A)  mאԺ olsun.  ߲2z=mሼ(p1p2) - (p0p2) + (p0p1)ሽ  =  

0 olduğu için m yok sayılmalı . dolayısıyla Z1(A) = ሼ0ሽ ve   Z2(A)  H2(A) = ሼ0ሽ dir.    
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3.SİNGÜLER HOMOLOJİ TEORİ 

Bu kısım [James W. Vick] ten alınmıştır. Bu kısmın amacı keyfi bir topolojik uzayda singüler 

homoloji teoriyi sunmaktır. Homotopi değişmezliğinin bir ispatı ve takip eden tanımlar (Teorem 

3.1.14 de ) gerekli hesaplama sonucunda çıkan verilerle elde edilir. Homotopi değişmezliğinin 

ispatı onun karmaşık bölümleriyle kesintiye uğramaması için Ek 1 e ertelendi. Mayer- Vietoris 

dizisi bu teoremin acil bir sonucu olarak tanınmıştır ve o zaman kürelerin homoloji gruplarını 

hesaplamaya uygulandı. Bu sonuçlar klasik teoremlerin sayısının ispatına uygulandı: Bir diskin 

kendi sınırları üzerine geri dönüştürülemeyebileceği, Brouwer ‘in sabit nokta teoremi, eş 

boyutlu kürelerde vektör alanlarının olmayışı, Jordan- Brouwer ayırma teoremi ve bölgelerin 

değişmezliği üzerinde Brouwer teoremi.  

 Eğer x ve y Rn in noktaları ise { (1-t)x+ty|:0≤t≤1} olacak şekilde x den y ye bölümünü 

tanımlayalım. Eğer C de verilen x ve y için yukarıdaki x den y ye bölümü tamamıyla C de 

kalıyorsa, CكRn alt kümesi konvekstir. Konveks kümelerin keyfi bir keşi siminde konveks 

olduğu belirtilmektedir. Eğer AكRn ise A yı içeren Rn deki tüm konveks kümelerin kesişimi A 

nın konveks gövdesi olur.  

 Rn de bir s p-simpleksi x1-x0,xp -x0 şeklinde bir lineer bağımsız küme oluşturan Rn de 

{x0,…,xp} (p+1) lisinin bir koleksiyonunun konveks gövdesi olur. Bunun x0 noktasının 

gösteriminden bağımsız olduğu belirtilmelidir.  

3.1.1.Önerme: {x0,…,xp}كRn olsun. O zaman aşağıdakiler eşittir. 

(a) x1-x0, xp -x0 lineer bağımsızdırlar. 

(b) eğer ∑sifi = ∑tixi  ve ∑si = ∑ti  ise o zaman i=0,…,p için si = ti  dir. 

İspat: (a) ่(b): eğer ∑sixi = ∑tixi  ve ∑si = ∑ti  ise o zaman 0=∑  ௜ୀ௣
௜ୀ଴ (si-ti) xi 

=∑  ௜ୀ௣
௜ୀ଴ (si-ti) xi-[∑  ௜ୀ௣

௜ୀ଴ (si-ti)] x0 =∑  ௜ୀ௣
௜ୀ଴ (si-ti)(xi-x0) 
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x1-x0, …, xp -x0 lineer bağımsız olduğundan son ifade i=1,…,p için si = ti  olduğu anlamına gelir. 

Son olarak bu ∑si = ∑ti   olduğu için s0 = t0 anlamına gelir.   

(b) ่(a): eğer ∑  ௜ୀ௣
௜ୀ଴ (ti) (xi-x0)=0 ise o zaman  ∑  ௜ୀ௣

௜ୀ଴ ti xi =(∑  ௜ୀ௣
௜ୀ଴ ti) x0  ve (b ile birlikte 

düşünülerek  t1, t2, …,tn tümü sıfır olmalı. Bu lineer bağımsızlığı ispatlar.  

 s Rn de bir p-simpleksi olsun ve her bir i için ti ≥ 0 ve ∑ ti=1 olmak üzere  

t0 x0+ t1 x1+…+tpxp formunun tüm noktalarının kümesini düşünelim. Bunun {x0,…,xp} kümesinin 

konveks gövdesi olduğu belirtilmeli ve dolayısıyla önerme 3.1.1 den biz aşağıdaki önermeye 

sahibiz.  

3.1.2. Önerme: Eğer s p-simpleksi {x0,…,xp} nin konveks gövdesi ise o zaman s in her noktası 

tüm i ler için ti≥0 ve ∑ ti=1 olmak üzere ∑tixi formunda bir tek belirgin gösterime sahiptir.  

 Xi noktaları s nin köşeleri olsun. Bu önerme ti koordinatlarının uygun seçimiyle  

(t0, t1,…,tp) (p+1) lisi ile s nin noktaları arasında bir bağıntı kurabilmemize izin verir. 

 y s de bir nokta olsun. O zaman y s nin bir köşesidir. Ancak ve ancak y s de uzanan herhangi 

bir bölümün iç noktası değildir.  

 Eğer s nin köşeleri kesin bir sıra ile verilirse o zaman s bir sıralı simplekstir. Böylece s 

x0, x1 ,…,xp köşeleri ile bir sıralı simpleks olsun. Her bir i için  ti≥0 ve ∑ ti=1 ile (t0, t1,…,tp) א 

Rp+1 tüm noktaların kümesi olan σp yi tanımlayalım. Eğer f:σpืs bir  fonksiyon f(t0, t1,…,tp)= ∑ 

tixi ile verilirse o zaman f süreklidir. Buna ek olarak gösterimlerin tekliğinden aslında σ,s 

kompakt hausdorf uzaylarıdır ki buda f bir homeomorfizim demektir. Bu yüzden her bir sıralı p-

simpleksi σp nin doğal bir homeomorfik görüntüsü olur. x0’=(1,0,…,0), x1’=(0,1,0,…,0), …, 

xp’=(0,0,…,1) tepe noktaları ile σp bir p-simpleks olduğu belirtilmelidir. σp doğal sıralanışı ile 

standart p-simpleks olarak adlandırılır.  
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 X bir topolojik uzay olsun. X de bir singüler p-simpleks Φ:σpืX bir sürekli fonksiyon 

olur.  

 

 

 

Singular 0-simpleks X in noktaları ile belirlenmiş olduğu belirtilmelidir. Singular 1-simpleks X 

in yolu ile. Ve diğerleri de buna benzer şekildedir.  

 Eğer Φ singüler 1p-simpleks ve i 0≤i≤p aralığında bir tamsayı  ߲i(ߔ) X de bir singüler 

(p-1)-simpleks ߲ ߔ (t0,..., tp-1)= Φ (t0,t1,..., ti-1,0,ti,…,tp-1), şeklinde tanımlayalım. ߲i(Φ) Φnin i ‘nci 

görüntüsü olsun. 

 Örneğin X de singüler bir 2-simpleks olsun. (Şekil 1.1) O zaman  ߲1(ߔ) şekil 1.2 de 

bileşke gösterimi ile verildi. Yani ߲i(Φ) hesaplamak için köşe noktalarının genel sıralanışı 

kullanılan ve Φ vasıtasıyla X içine giden i’ nci köşeye karşı σp içine σp-1 i gömdük.  
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 Eğer f: X ื Y ye bir sürekli fonksiyon ve ߔ X de f# (ߔ)=fo ߔ ile Y de f# (ߔ)  bir singüler 

p-simpleks tanımlar. Eğer g: Y ื W ya sürekli ve id : X ื X e özdeşlik (birim) dönüşüm 

olsun. (gof) # (ߔ)=g#(f#( ߔ)) ve (id) #( ߔ)= Φ dir. 

G keyfi bir abel grubu eğer A ك G olacak şekilde bir alt kümesi var. Öyle ki her bir gאG 

g=∑ ݊௫א஺ x.x olacak şekilde bir tek gösterime sahiptir. Burada nx bir tamsayı ve A da çoğu sonlu 

x için 0 a eşit ama tümü değil. A kümesi G için bir taban olur.  

            Verilen keyfi bir A kümesinden biz aşağıdaki yöntemlerle  A tabanı ile serbest bir abel 

grup inşa edebiliriz. F (A) A dan tamsayılar içine tüm f fonksiyonlarının kümesi olsun. Öyle ki 

f(x) ≠0 yalnız Anın elemanlarının sonlu sayısı için. (f+g)(x)=f(x)+g(x) ile F(A) da bir işlem 

tanımlayalım. O zaman F(A) bir abel grup olur. Herhangi bir a א A için  F(A) da bir fa 

fonksiyonunu tanımlayalım. Eğer x=a ise fa(x)=1, aksi durumlarda sıfır. O zaman {fa |aאA} 

serbest bir abel grup olarak F(A) için bir taban olur. fa  ile belirlenmiş a, yapıyı tamamlar. 

 Örneğin G={(n1,n2,…)|ni bir tamsayı, nihayet sıfır}, o zaman G koordinat yönünde 

toplama altında bir abel gruptur. Ve buna ek olarak  (1,0,…), (0,1,0,…),… tabanı ile serbesttir. 

Eğer G=0 ise o halde G boş taban ile serbest bir abel grup olduğunu kolaylıkla söyleyebiliriz.  

 G A tabanı ile bir serbest abel grup ve H bir abel grup ise o zaman her f: AืH 

fonksiyonunu bir homeomorfizim genişletilmişi olduğu belirtilmelidir.  

Eğer X bir topolojik uzay Sn (X) ile serbest abel grubun  tabanı olan X in tüm singüler n 

simplekslerinin kümesini tanımlayalım. Sn  (X) in bir elemanı X in singüler n- zinciri olarak 

adlandırılır ve nΦ  bir tamsayı Φ nin sonlu elemanlı tümü sıfıra eşit olabilmek şartıyla ∑  ݊ థ  .  ߔ

Φ formuna sahiptir. 

 ߲i   i’nci dönüşüm operatörü singüler n simplekslerin kümesinden singüler (n-1) 

simplekslerin kümesine bir fonksiyon olduğundan dolayı  ߲i  (∑  ݊ థ ∑ = (ߔ .(  ߔ  ݊ థ  ߔ i߲ .  ߔ
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ile verilen ߲i: Sn (X) ื Sn-1 (X) bir homeomorfizim için tekbir genişlemesi vardır. ߲ = ߲0 – ߲1 + 

߲2 +…+(-1)n ߲n =∑ ሺെ1ሻ௡
௜ୀ଴

i  ߲i    ile verilen ߲: Sn (X) ื Sn-1 (X) homeomorfizimi ile sınır 

operatörü tanımlayalım. 

3.1.3. Önerme: Sn (X) ื Sn-1 (X)  ื Sn-2 (X) de ߲o߲ bileşkesi sıfırdır. 

 Geometrik olarak bu ifade yalnızca herhangi bir n- zincirin sınırı (n-1)- zincirin sınırına 

sahip olmadığını söyler. Bu temel özellik homoloji gruplarının tanımında bize yol gösterecek. C 

 =Sn  (X) elemanı bir n sınırdır. Eğer d א Sn  (X) elemanı bir n- devir olur. eğer ߲ (C) =0 ise d א

߲(e) bazı e א Sn +1(X) için. ߲ bir homeomorfizim olduğundan dolayı onun çekirdeği tüm n- 

devirlerin kümesi Zn (X) ile ifade edilen Sn (X) de ߲ nın görüntüsü tüm n- sınırların Bn  (X) alt 

grubu olur.  

 Önerme 1.3. de Bn (X) ك Zn (X) in bir alt grup olduğu anlamına geldiği belirtilmelidir.  

Hn(X)=Zn(X)/Bn(X) bölüm grubu X in n’ inci singüler homoloji grubu olur. Bu cebirsel yapı için 

geometrik olarak yorumlanabileceği açıktır. Biz topolojik uzaylarda devir çalışmayı arzu 

ediyoruz. Ama kullanılan singüler devirler, antolojisinin tümünde etkin bir şekilde çalışılmış 

olması çok muazzam olur. Doğal yöntem, eğer bir boyut yükseğinin bir zincirinin sınırının 

uyuşmayan biçimleri ise, iki devirin denk olduğu ilişki altında devirlerin denklik sınıfları için 

dikkatimizi sınırlamak olur.  

 Bu cebirsel teknik homolojik cebir içinde standart bir yapı olur. Bir G sınıflanmış abel 

grubu tamamı üzerinde işlem ile tamsayılar ile indekslenmiş {Gi} abel gruplarının 

koleksiyonudur. Eğer G ve G’ sınıflandırılmış abel gruplar ise f:GืG’ homeomorfizimi bazı r 

sabit tamsayıları için fi:GiืG’i+r {fi} homeomorfizmlerinin bir koleksiyonu olur. r f in derecesi 

olarak adlandırılır. Sınıflandırılmış bir abel grubunun bir HكG alt grubu bir {Hi} sınıflandırılmış 

grubu olur burada Hi Gi nin bir alt grubudur. G/H bölüm grubu {Gi/Hi} nin sınıflandırılmış 

grubudur.  
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 Abel gruplarının bir dizisi olan bir zincir kompleksi ve her bir n için ߲n-1o߲n=0 bileşkesi 

olacak şekilde  

…
   డ೙శభ   
ሱۛ ۛۛ ሮۛCn

       డ೙      ሱۛ ۛۛ ۛሮCn-1
   డ೙షభ   ሱۛ ۛۛ ሮۛ… 

Homeomorfizimler olur. Benzer şekilde bir zincir kompleksi ߲:CืC homeomorfizimi ile 

birlikte derecesi -1 olan C={Ci} bir sınıflandırılmış gruptur öyle ki ߲o߲=0 dır. Eğer C ve C’ ߲ 

ve ߲’ sınır operatörleri ile zincir kompleksleri ise C den C’ ye bir zincir dönüşümü Φ:CืC’ 

sıfırıncı dereceden bir homeomorfizim olur öyle ki her bir n için ߲’o ߔn= ߔn-1o߲ dır. (Φ nin 

derecesinin sıfır olması şart değildir, bu özelliğin tüm zincir dönüşümleri için kolaylıkla 

söylenebileceği burada belirtildi.) Zכ(C) ve Bכ (C) ile ifade edilen ߲ nın görüntüsü ve çekirdeği 

sırasıyla C nin homolojileri Hכ (C)= Zכ (C)/Bכ(C) sınıflandırılmış grubudur. Eğer Φ bir zincir 

dönüşümü ise ߔ (Zכ (C))ك Zכ (C’) ve  Φ (Bכ (C))ك Bכ (C’) olur. bu yüzden ߔ : כ ߔ  ߔ (Hכ 

(C))ื Hכ (C’) homoloji grupları üzerinde bir homeomorfizim meydana getirir.  

 Bu anlamda Sכ (X)= { Si (X)} sınıflandırılmış grubu ߲ sınır operatörü altında bir zincir 

kompleksi olur. öyle ki X in homoloji grupları bu zincir kompleksinin homolojisi olur. Eğer 

f:XืY bir sürekli fonksiyon ve ߔ X de bir singüler n-simpleks ise Y de f# (ߔ)=fo ߔ singular n- 

simpleksi vardır. Her bir n için f#  : Sn  (X)ืSn (Y) homeomorfizimi için bu tek genişleme olur. 

f#  Sכ (X)den Sכ (Y) ye bir zincir dönüşümü olduğunu göstermek için aşağıdaki dikdörtgen şema 

kontrol edilmelidir.  

                                          

                                                                       f# 

                                                                                    Sn(X)  ۛۛۛۛۛۛۛۛۛۛื    Sn (Y) 

                                                   ↓  ߲                                    ↓ ߲ 

                                                                       f# 

                                               Sn-1(X)  ۛۛۛۛۛۛۛۛۛۛื    Sn-1 (Y) 
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İlk olarak singüler Φ n simpleksler üzerinde bunun doğru olduğunu kontrol etmek yeterli olur ve 

ikinci olarakta ߲if# (Φ)= f#߲i(Φ)olduğunu göstermek için yeterli gözlem yapılmalıdır. Şimdi 

߲if#(Φ)( t0,..., tp-1)= f(Φ(t0,t1,..., ti-1,0,ti,…,tp-1)) ve  

߲if#(Φ)( t0,..., tp-1)= f#(Φ)(t0,t1,..., ti-1,0,ti,…,tp-1) 

                                                 = f(Φ(t0,t1,..., ti-1,0,ti,…,tp-1)). 

Bu yüzden f#  : Sכ  (X)ืSכ(Y) bir zincir dönüşümü olur ve fכ : Hכ  (X)ืHכ(Y) sıfırıncı  

dereceden bir homeomorfizmini meydana getirir. Bu uygun bir funktorsal anlam içinde g:YืW 

bir sürekli fonksiyonu için  ve id:XืX birim, (gof)כ=gכofכ ve idכ birim(özdeşlik) 

homeomorfizimidir.  

 İlk örnek olarak X i tek nokta olarak alalım o zaman her bir p≥0 için Φp:ߪpืX singüler 

p- simpleksi tek olarak var olmalı öyle ki p>0 için ߲iΦp=Φp-1 dir. Öyleyse 

…ืS2(pt)ืS1(pt)ืS0(pt)ื0 

zincir kompleksini düşünelim. Her bir Sn(pt) Φn ile üretilmiş sonsuz devirli bir gruptur. Sınır 

operatörü ߲Φn=∑ ሺെ1ሻ௡
௜ୀ଴

i  ߲iΦn=∑ ሺെ1ሻ௡
௜ୀ଴

i  Φn-1 ile verildi. Bu yüzden n>0 için   ߲Φ2n=Φ2n-1  

ve Φ2n-1=0 dır. Uygulanan bu zincir kompleksinde n>0 için Zn(pt)= Bn(pt) olduğu açıktır. Ama 

Z0(pt)= S0(pt) sonsuz devirli olur. oysa B0(pt)=0 dır. Böylece biz bir noktanın homoloji 

gruplarının  

Hn(pt)=൜ ܼ       ݁ğ݁ݎ ݊ ൌ 0
 0        ݁ğ݁ݎ ݊ ൐ 0  

verildiği sonucunu çıkartabiliriz.  

 X bir yol bağlantılı uzay olsun. x,yאX ve Ψ:[0,1]ืX Ψ(0)=x ve Ψ(1)=y olacak şekilde 

bir sürekli fonksiyon var ise 1ߪ i [0,1] yerine kullanabiliriz.  
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 X in bir yol bağlantılı uzay olduğunu varsayalım. Ve S1(X) 
డ
՜ S0(X)ื 0 ile verilen X in 

singüler zincir kompleksinin bölümünü düşünelim. Şimdi S0(X)= Z0(X) öyle ki X in noktaları ile 

üretilmiş serbest abel grupları olarak değerlendirelim. Yani Z0(X)=F(X). Dolayısıyla Z0(X) in bir 

y elemanı y=∑ ݊௫א௑ x .x formuna sahiptir. Burada nx bir tamsayı bazıları sıfıra eşit olabilir ama 

hepsi değil.  

Diğer bir taraftan S1(X) X deki tüm yolların kümesi ile üretilen serbest abel grup olarak 

değerlendirilebilir. Eğer 1ߪ in köşeleri v0 ve v1 ve ߶ X de singüler 1-simpleks ise o zaman 

߲Φ=Φ(v1)-Φ(v0)אZ0(X) dir.  

 S0(X)ืZ ye bir homeomorfizim  tanımlayalım. Eğer X boştan:ࢻ nx  ile∑ =(nx .x∑)ࢻ 

farklı ise o zaman ࢻ bir epimorfizm olur. X de Φ bazı singüler 1-simpleksler için 

 nın çekirdeğinde içerildiği sonucu ࢻ 0 olduğundan dolayı B0(X) in= (Φ(v1)-Φ(v0))ࢻ=(Φ߲)ࢻ

çıkarılabilir.  

 Tersine , ∑ni =0 ile n1x1+n2x2+…+nkxkאZ0(X) olduğunu varsayalım. xאX herhangi bir 

noktasını seçelim ve her bir i için ߲1(Φi)=x ve ߲0(Φi)=xi olacak şekilde Φi:1ืߪX singüler 1- 

simpleks var olsun. S1(X) de alınan ∑niΦi singüler 1-zincirinde ߲(∑niΦi)= ∑nixi-(∑ni)x= ∑nixi 

özelliğine sahibiz. Böylece ࢻ nın çekirdeği B0(X) de içerilir. Bu ࢻ nın çekirdeğinin B0(X) e eşit 

olduğunu ispatlar. Ve biz aşağıdaki sonucu çıkarabiliriz.  

3.1.4.Önerme: Eğer X boştan farklı yol bağlantılı grup ise o zaman H0(X)ൎZ dir.  

 A bir küme ve her bir אࢻA için Gࢻ bir abel grubu verilmiş olsun. ∑ ஺אఈܩ  bir abel ࢻ

grubunu aşağıdaki gibi tanımlayalım. Elemanları f:Aืڂ ஺אఈܩ  şeklindeki tüm fonksiyonlar ࢻ

olsun öyle ki f(ࢻ)אGࢻ her bir ࢻ için ve אࢻA bazı elemanları fakat sonlu sayıda f(ࢻ)=0 dır, 

buradaki işlem (f+g)(ࢻ)=f(ࢻ)+g(ࢻ) ile tanımlandı. Verilen g(ࢻ)=f(ࢻ)אGࢻ yı biz f=(gאࢻ : ࢻA) 
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şeklinde yazarız ve gࢻ ları  f in bileşenleri olarak adlandırırız. ∑ Gࢻ grubu Gࢻ ların direkt kuvvet 

toplamları veya direkt kuvvet çarpımları olur ve ∏ ஺אఈܩ   .ile ifade edilir ࢻ

 Eğer G bir abel grup ve {Gࢻ}אࢻA G nin alt gruplarının bir ailesi öyle ki gאG gאࢻGࢻ ile 

g=∑ ݃ఈא஺  0=ࢻların tümü için ama çoğu sonlu g ࢻ şeklinde tek bir gösterime sahip ve burada ࢻ

ise o zaman G  ∑ ஺אఈܩ  ࢻA için bir Cאࢻ ya izomorfik olduğu belirtilmelidir. Şimdi her bir ࢻ

zincir kompleksine sahip olduğumuzu varsayalım.  

...
డఈ
ሱሮCࢻp

డఈ
ሱሮCࢻp-1

డఈ
ሱሮ… 

∑ ஺אఈܥ  p kabul edildi veࢻp=∑C(ࢻC∑) bir zincir kompleksi tanımlayalım, burada  ࢻ

߲(cאࢻ:ࢻA)=(߲߲Cאࢻ:ࢻA) ile verildi. 

3.1.5. Lema: Hk(∑Cࢻ)≈∑ ఈܪ k(Cࢻ) dır. 

İspat:∑Cࢻ zincir kompleksinin tanımı ile biz Zk(∑Cࢻ)=∑(Z k(Cࢻ)) ve Bk(∑Cࢻ)=∑(B k(Cࢻ)) ya 

sahibiz. Böylece Hk(∑Cࢻ)= Zk(∑Cࢻ)/ Bk(∑Cࢻ)= ∑(Z k(Cࢻ))/ ∑(B k(Cࢻ)) 

≈∑(Z k(Cࢻ)/B k(Cࢻ))= ∑H k(Cࢻ) dır.  

 X bir topolojik uzay ve x,yאX için x׽y küme, eğer X de x den y ye bir yol var ise ׽ nın 

bir denklik bağıntısı olduğu açıktır, yani X deki tüm x,y,z noktaları için  

(1) x׽x 

(2) x׽y ve y׽z ise x׽z anlamına gelir 

(3) x׽y ise y׽x anlamına gelir.  

Böyle bir bağıntı X in alt kümelerinin bir koleksiyonu şeklinde X i denklik sınıflarına ayırır. 

Burada x ve y aynı denklik sınıfındadır ancak ve ancak x׽y dir. X de bu kesin bağıntı için 

denklik sınıfları X in yol bileşenleri olarak adlandırılır. Eğer xאX  x i içeren X in yol bileşeni x i 

içeren X in maksimal yol bağlantılı alt kümesi olur. 
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3.1.6.Önerme: Eğer X bir uzay, ve { Xאࢻ :ࢻA } X in yol bileşenleri ise o zaman 

Hk(X)≈ ∑ ஺אఈܪ k(Xࢻ) dır. 

İspat: Ψ((∑ ݊థఈ ∑=Aאࢻ: ࢻΦ .(( ࢻ,ߔ ሺ∑ ݊థఈఈא஺ ∑:ile verilen Ψ (ࢻΦࢻ,ߔ ܵఈא஺ k(Xࢻ)ืSk(X) doğal 

bir homeomorfizim vardır. Yer alan gruplar serbest abel gruplar olduğu için Ψ bir monomorfizm 

olmalı. Ψ nin aynı zamanda bir epimorfizm olduğu yorumunda bulunmak için ilk olarak dikkat 

edilmesi gereken eğer Φ:ߪkืX bir singüler k- simpleks ise o zaman Φ(ߪk) bazı Xࢻ larda içerilir 

çünkü ߪk yol bağlantılıdır. Dolayısıyla herhangi bir böyle Φ için bağdaştırılan Ψ(Φࢻ)=Φ ile 

ΦאࢻSk(Xࢻ)  bir tek olmalı. Bu yüzden Ψ herhangi bir k için bir izomorfizmdir. Ayrıca Ψ zincir 

kompleksleri arasında bir zincir dönüşümüdür öyle ki Hk(X)≈Hk( ∑ ܵఈא஺  dır. Sonuç olarak ((ࢻX)כ

lema 3,1.5 den Hk( ∑ ܵఈא஺   .Hk(X) ile ispatın tamamlandığı anlamına gelir ≈((ࢻX)כ

 Bu önerme singüler homoloji teorinin özünde var olan toplama özelliğini oluşturur. Bir 

uzayın homolojik özellikleri onun yol bileşenleri ile tam olarak kararlı olduğu ve herhangi bir 

yol bileşenin homolojik özellikleri diğer herhangi bir yol bileşenin özelliklerinden bağımsız 

olduğu için biz dikkatimizi yol bağlantılı uzayların çalışması ile sınırlayabiliriz.  

 Önerme 3.1.6 ve 3.1.4 den X in yol bileşenleri ile birebir eşleşmesinde H0(X) abel 

grubunun bir tabanı olduğu anlamına geldiğine dikkat edilmelidir. 

3.1.7.Teorem: Eğer f:XืY bir homeomorfizim ise o zaman fכ:Hp(X)ืHp(Y) her bir p için 

izomorfizmdir.  

 Aslında bu terem, singüler homoloji gruplarının topoloji değişmezliğini, singüler 

homoloji teori kullanımının büyük avantajlarından biri olduğu kolayca görülebilir.  

3.1.8.Teorem: Eğer X Rn in konveks bir alt kümesi ise o zaman p>0 için Hp(X)=0 dır. 

İspat: X≠׎ olduğunu varsayalım ve xאX  p≥0 için Φ:ߪpืX bir p-simpleks olsun o zaman 

aşağıdaki gibi θ:ߪp+1ืX bir singüler (p+1)-simpleks tanımlayalım. 
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Θ( t0,..., tp+1)  simpleksi  t0=1 durumunda x t0<1 için (1-t0)ߔ ೟భ
భష೟బ , … , ೟೛శభ

భష೟బ+t0x dir. Yani biz Θ( 

t0,..., tp+1)= Φ( t0,..., tp+1)  ve Φ(1,0,…,0)=x o zaman alınan doğru parçaları t0 dan t0 ın karşıdaki 

resmine doğrusal olarak X de karşılık gelen doğru parçasını koyuyoruz.(Şekil 1.3). Bu yapı X 

konveks olduğu için mümkündür. 

 

                                                                    Şekil 1.3 

 Θ nin tanımından muhtemelen (1,0,…,0) hariç süreklidir. Sürekli olup olmadığını 

kontrol etmek için limt0ื1צθ(t0,…,tp+1)-x0=צ olduğunu göstermeliyiz. Şimdi 

limt0ื1צθ(t0,…,tp+1)-xצ= limt0ื1צ(1-t0)(Φ(t1/(1-t0),…, tp+1/(1-t0)))-(1-t0)xצ  

≤ limt0ื1(1-t0)(צΦ(t1/(1-t0),…,tp+1/(1-t0))צ+צxצ) 

Φ(ߪp) kompakt olduğu için  (צΦ(t1/(1-t0),…, tp+1/(1-t0))צ+צxצ) sınırlıdır. Bu yüzden bitiş 

limiti sıfırdır çünkü  limt0ื1(1-t0)=0, ve buradan θ nin sürekli olduğu ortaya çıkar. 

 ߲0(θ)=Φ olduğu yapıdan açıktır. k≥0 için herhangi bir singüler k-simplekse bu prosedür 

uygulanabileceği için T:Sk(X)ื Sk+1(X) homeomorfizmine bir tek genişlemesi vardır öyle ki 

߲0oT=birim dir. Daha genel olarak biz Φ singüler k-simpleksi için  

 ߲i(T(Φ))(t0,…,tk)=T(Φ)(t0,…,ti-1,0,ti,…,tk) =(1-t0)(Φ(t1/(1-t0),…,tp+1/(1-t0)))+t0x 

Diğer bir taraftan T(߲i-1(Φ))( t0,…,tk)=(1-t0)( ߲i-1Φ(t1/(1-t0),…,tp+1/(1-t0))+t0x)  
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=(1-t0).Φ(t1/(1-t0),…,tp+1/(1-t0))+t0x. Bu yüzden 1≤i≤k+1 için ߲iTΦ=T(߲i-1Φ) dir. 

 Şimdi Φ herhangi bir k-simpleks olsun.  

߲TΦ= ߲0TΦ+∑ ሺെ1ሻ௞ାଵ
௜ୀଵ

i ߲iT(Φ) 

=߲0TΦ+∑ ሺെ1ሻ௞ାଵ
௜ୀଵ

i ߲iT(Φ)-[∑ ሺെ1ሻ௞ାଵ
௜ୀଵ

i ߲i-1(Φ)+ ∑ ሺെ1ሻ௞
௝ୀ଴

j T߲jΦ]=Φ-T߲Φ. 

Bu yüzden her zaman k≥1 için Sk(X) üzerinde ߲T+T߲ birim homeomorfizimi olduğu özelliği ile 

T: Sk(X)ื Sk+1(X) bir homeomorfizim yapısına sahibiz.  

 Şimdi z Zp(X) in bir elemanı olsun. yukarda sözü edilenden p>0 için (߲T+T߲)z=z dir. 

Şimdi z bir devir olduğu için T߲z=0 dır. Bu yüzden z=߲(Tz) ve z Bp(X) de olur. bu tüm p>0 için 

Hp(X)=0 olduğu anlamına gelir. 

 Teorem 3.1.8 in ispatında kullanılan yapı zincir kompleksleri arasındaki zincir 

homotopisinin özel bir durumudur. C={Ci,߲} ve C’={C’i,߲’} zincir kompleksleri ve T:CืC’ 

birinci dereceden derecelendirilmiş grupların bir homeomorfizimi olsun( ama illede bir zincir 

dönüşümü olmayabilir). O zaman ߲’T+T߲:CืC’ sıfırıncı dereceden homeomorfik olarak 

düşünelim. Bu bir zincir dönüşümü olacaktır çünkü ߲’(߲’T+T߲) 

= ߲’߲’T+߲’T߲=߲’T߲= ߲’T߲+T߲߲=( ߲’T+ T߲)߲ dır.   

Bu (߲’T+T߲) zincir dönüşümü her bir p için (߲’T+T߲)כ:Hp(C)ื Hp(C’) homolojisine 

bir homeomorfizim meydana getirir. Şimdi eğer zאZp(C) , Bp(C) de ( ߲’T+ T߲)(z)=߲’T(z) olur. 

Bu yüzden ( ߲’T+ T߲)כ her bir p için sıfır homeomorfizim olur. 

f  ve g :CืC’ verilen zincir dönüşümleri f ve g zincir homotopileri olur eğer   

߲’T+ T߲=f-g ile derecesi bir olan T:CืC’ homeomorfizimi var ise. 

3.1.9.Önerme: Eğer f ve g:CืC’ zincir homotopilerinin zincir dönüşümleri ise o zaman  
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fכ =gכ  Hכ(C) den Hכ(C’) ne homeomorfizimler olur. 

İspat: Eğer T:CืC’ f  ve g arasında zincir homotopisi ise o zaman 0=( ߲’T+T߲)כ= (f-g)כ = fכ -

gכ  olduğu için doğrudan doğruya bu sonuç çıkar. Bir özel durum olarak f# ve g#:Sכ(X)ืSכ(Y) f 

ve g:XืY dönüşümleri olduğunu kabul edelim. Eğer T f# ve g# arasında bir zincir homotopisi  

ise o zaman T aşağıdaki yol içinde geometrik olarak yorumlanabilir.  

 Φ X de bir singüler n-simpleks olsun. o zaman T(Φ)  f#(Φ) nin  g#(Φ) içine sürekli bir 

şekil korumayan dönüşümü olarak değerlendirilebilir. Şekil 1.4 den T(Φ) T(߲Φ) kenarları ve 

f#(Φ) ve g#(Φ) uçları ile bir prizma gibi görünür. Bu yüzden T nin bir zincir homotopisi olması 

için cebirsel koşul ߲T(Φ)= f# (Φ)- g#(Φ)-T(߲Φ) ifadesidir. 

Eğer c=∑miΦi zinciri X de bir n döngü ise o zaman f#(c) ve g#(c) Y de n döngüler 

olurlar. T(c) böyle prizmaların integral katlarının koleksiyonu olur ve ߲c=0 olduğu için 

kenarların cebirsel toplamı sıfır olmalıdır. Bu yüzden T(c) nin sınırları f#(c) - g#(c) şeklindeki 

prizmaların uçlarının cebirsel toplamı olur burada f#(c) ve g#(c) Y de homolog döngülerdir. 

 

 

                          Şekil 1.4  
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 Verilen X ve Y uzaylarında f0,f1:XืY iki dönüşüm homotopik olurlar, eğer X deki tüm x 

ler için F(x,0)=f0(x) ve F(x,1)=f1(x) ile F:XxIืY ,I=[0,1] bir dönüşümü var ise. F dönüşümü f0 

ve f1 arasında homotopidir. Benzer şekilde t ile sürekli olarak değişiklik gösteren X den Y ye 

{ft}0≤t≤1 dönüşümlerinin bir ailesi homotopi olur. Homotopi bağıntısının X den Y ye tüm 

dönüşümlerin kümesi üzerinde bir denklik bağıntısı olduğu açıktır. Dönüşümlerin homotopi 

sınıflarının kümesi genellikle [X,Y] ile ifade edilecektir.  

3.1.10.Teorem:Eğer f0,f1:XืY homotopik dönüşümler ise o zaman Hכ(X) den Hכ(Y) ye 

homeomorfizimler olarak f0כ=f1כ dır. 

İspat: İspatın amacı oldukça basittir: Eğer z X de bir devir ise o zaman f0 ve f1 altında z nin 

görüntüsü Y de devirler olacaktır. f0 f1 içine sürekli olacak şekilde şekil korumayan bir 

dönüşümü olacağından f0 altında z nin görüntüsünü f1 altında z nin görüntüsü içine benzer 

sürekli bir şekil korumayan dönüşümü kabul edeceğiz. Bu iki görüntünün homolog devirler 

olduğu anlamına gelir. Biz şimdi yaygın cebir temelleri içine bu geometrik düşünceleri 

koymaya devam edeceğiz. 

 Önerme3.1.9 göz önüne alınarak f0#,f1#: Sכ(X)ืSכ(Y) zincir dönüşümlerinin zincir 

homotopileri olduğunu göstermek yeterli olacaktır. F:XxIืY f0 ve f1 arasında bir homotopi 

olsun. g0(x)=(x,0) ve g1(x)=(x,1) ile g0 , g1:XืXxI görüntülerini tanımlayalım. O zaman 

aşağıdaki çizerek her bir üçgen değişmelidir, yani f0=Fog0 ve f1=Fog1 dir. 

                                                                        X 

                                                                       g0↓         բf0 

                                                                            XxI       
ி
՜       Y 

                                                                      g1↓         աf1 

                                                                       X 
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 Şimdi g0# ve g1# nin Sכ(X) den Sכ(XxI) ya zincir dönüşümleri olarak zincir homotopileri 

olduğunu varsayalım. Bu ߲T + T߲=g0#-g1# ile derecesi bir olan  

T:Sכ(X)ื Sכ(XxI) bir homeomorfizim var olduğu anlamına geldi. İki tarafada F# uygularsak 

F#(߲T + T߲)= F#(g0#-g1#) veya ߲(F#T)+( F#T)߲=f0#-f1# yi verir. O zaman F#T f0# ve f1# arasında 

bir zincir homotopisi ve birinci dereceden Sכ(X) den  Sכ(Y) ye bir homeomorfizim olur. Bu 

yüzden g0# ve g1# nin zincir homotopileri olduğunu göstermek yeterli olacaktır.  

 ile ifade (nߪ)Snאn standart n-simpleksi için birim dönüşüm ile simgelenen elemanlar ߬nߪ 

edilir. Eğer Φ: ߪnืX X de her hangi bir n-simpleks ise o zaman Φ#:Sn(ߪn)ืSn(X) meydana 

getirilen homeomorfizim Φ#(߬n) =Φ sahip olduğu belirtilmelidir. X de singüler her simpleksin 

bu tarzda ߬n in görüntüsü olarak sergilenebileceği açıktır. İspatımızın yönteminden gerekli ߬n 

yapısı ilk olarak verilecek ve yukarıdaki yaklaşım ile Sn(X) in tümü için genişletilecek. 

 Biz zincir gruplarının boyutları üzerinde tüme varım yöntemiyle g0# ve g1# arasında bir 

T zincir homotopisini inşa ettik. Tümevarım yapmak için ilk adım n>0 ve tüm X uzayları için 

i<n tamsayıları T:Si(X)ื Si+1(XxI) bir homeomorfizimi var öyle ki  

߲T + T߲=g0#-g1# olduğunu varsayalım. Daha ilerisi uzayların h:XืW verilen herhangi bir 

dönüşümünün var olduğunu var saydık ki bu olağandır. Tüm i<n için diyagramda değişmeliliğe 

sahip olduğunu varsayalım.  

          T:Si(X)         
்௫
ሱሮ         Si+1(XxI) 

            ↓h#                         ↓(hxid)# 

       T:Si(W)         
்௪
ሱሮ         Si+1(WxI) 

 X in n zincirleri üzerinde T tanımlamak için singüler n simpleksler üzerinde T 

tanımlamak yeterli olur. Bu yüzden Φ: ߪnืX singüler n simpleks olsun ve Φ#(߬n) =Φ 

olduğunu hatırlayalım. Böylelikle Tߪn:Sn(ߪn)ืSn+1(ߪnxI) ile tanımlanan yapının doğallığı 

Tx(Φ)= Tx(Φ#(߬n))=(Φxid)#( Tߪn(߬n)) olmasını gerektirecek. Bu yüzden Tx tanımı için Sn(ߪn) de 

Tߪn tanımlamak yeterli olur.  
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 d ߪn içinde bir singüler n-simpleks olsun ve Sn-1(ߪn) de olan ߲d için tümevarım hipotezi 

ile tanımlanan c= g0#(d)-g1#(d)- Tߪn(߲d) , ile verilen Sn(ߪnxI) deki zinciri düşünelim. Önden 

gelen tartışmadan ߪn deki belli bir prizmanın sınırlarına karşılık gelen c belirtilmelidir. O zaman  

߲c= ߲g0#(d)-߲g1#(d)- ߲Tߪn(߲d)= g0#(߲d)-g1#(߲d)- [g0#(߲d)-g1#(߲d)- Tߪn߲(߲d)]=0. Böylece c ߪnxI 

konveks kümesinde n boyutlu bir devir olur. Teorem4.8 den c nin aynı zamanda bir sınır olduğu 

sonucu çıkarılabilir. Bu yüzden ߲b=c ile bא Sn+1(ߪnxI) olsun. Geometrik olarak b sınırı c olan 

içi dolu prizmadır. O zaman Tߪn(d)=b yi tanımlayalım ve ߲T(d)+T߲(d)= g0#(d)-g1#(d) olduğunu 

gözlemleyelim.  

 Şimdi herhangi bir Φ: : ߪnืX singüler n simpleksini tanımlamak için ilk olarak  

Tx(Φ)= (Φxid)#( Tߪn(߬n)) tanımlayalım. Böylelikle üreteç üzerinde tanımlanan  

Tx:Sn(X)ื Sn+1(XxI) bir homeomorfizim için bir tek genişleme vardır. Bu tümevarımsal yapı 

sıfır zincirler üzerinde T için uygun tanımı gösterir. 0ߪ ın bir nokta olduğunu hatırlatalım ve c= 

g0#(߬0)-g1#(߬0) ile verilen S0(0ߪxI) deki c zincirini düşünelim. T(0߬)0ߪ=b tanımlayalım ve g0#(߬0)-

g1#(߬0) sınırı ile 0ߪxI da singüler bir b 1-simpleksini alalım. Bu aynı teknik ile 0-zincirler 

üzerinde T tanımlar. 

 Sonuç olarak X in n-zincirleri üzerinde Tx için verilen tanımda ߲ Tx+ Tx߲= g0#-g1# ve 

h:XืW dönüşümleri ile ilgili olarak uygun doğal yapı olduğu belirtilmelidir. Eğer Φ X de 

singüler bir n-simpleks ise g0#(Φ)= g0#Φ#(߬n)=(Φxid)#( g0# (߬n)) ve benzer şekilde g1#(Φ)= 

g1#Φ#(߬n)=(Φxid)#( g1# (߬n)) olduğu belirtilmelidir. Şimdi  

߲T(Φ)+T߲(Φ)= ߲TΦ #(߬n)+T߲Φ #(߬n)= ߲(Φxid) #T(߬n)+TΦ #߲(߬n) 

= (Φxid) #߲T(߬n)+(Φxid) #T߲(߬n)= (Φxid) #( g0# (߬n)- g1# (߬n)) = g0#(Φ)- g1#(Φ). Doğal olarak 

benzer sonuçlar çıkarılır. Böylece Tx  g0# ve g1# arasında bir zincir homotopisi verir ve biz f0כ=f1כ 

olduğunun ispatını tamamlamış olduk.  
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 Bunun teorem4.8 deki yönteme genelleştirildiği belirtilmelidir. Orada biz X konveks 

olduğu için birim dönüşümün x noktasının içine X in tüm gönderimlerinin homotopik olduğu 

gerçeğini kullandık. Bu nedenle pozitif boyutlarda birim homeomorfizim ve trivial(aşikâr) 

homeomorfizm ile çakışır ve X in pozitif boyutlu homolojisi trivial(aşikâr) dır.  

 f:XืY ve g:YืX topolojik uzayların dönüşümleri olsun. Eğer fog ve gof bileşkeleri 

kendi birim dönüşümüne her biri homotopik olursa o zaman f ve g birbirinin homotopi tersleri 

olurlar. f:XืY bir homotopi özdeşlik dönüşümü eğer f bir homotopi tersine sahipse bu 

durumda X ve Y nin aynı homotopi tipine sahip olduğu söylenir. 

3.1.11.Önerme: Eğer f:XืY ye bir homotopi özdeşliği ise o zaman fכ: Hn(X) ื Hn(Y) her bir 

n için bir izomorfizmdir. 

İspat: Eğer g f için bir homotopi ters ise o zaman teorem3.1.10 ile fכogכ=(fog)כ=birim ve 

gכofכ=(gof)כ=birim öyle ki gכ= כ݂
ିଵ ve fכ bir izomorfizmdir.  

 i:AืX  X in A alt uzayının içerme gönderimi olduğunu varsayalım. g:XืA bir 

dönüşüm öyle ki A da birim olan goi X in A üstüne bir geri gönderimi olur. Eğer üstelik iog 

:XืX bileşkesi birime homotopik ise o zaman g şekil korumayan geri gönderimi olur ve A, X 

in şekil korumayan bir geri gönderimidir. Bu durumda i nin bir homotopi özdeşliği olduğu 

belirtilmelidir.  

3.1.12.Sonuç: Eğer i:AืX, X in A geri gönderiminin kapsaması ise o zaman  

iכ: Hכ(A) ื Hכ(X) bir direkt toplam üzerinde bir monomorfizmdir. Eğer A, X in şekil 

korumayan geri dönüşümü ise o zaman iכ bir izomorfizmdir. 

İspat: İkinci ifade önerme 3.11 den doğrudan doğruya gösterilebilir. İlkinin ispatı için g:XืA 

bir geri gönderim olsun o zaman Hכ(A)  üzerinde fכogכ=(fog)כ=birim dir. Dolayısıyla iכ 

monomorfizmdir. 
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 G1= iכ ın görüntüsü G2=çekirdek gכ ile Hכ(X) in alt gruplarını tanımlayalım. אࢻG1∩G2 

olsun öyle ki ࢻ= i(ࢼ)כ bazı אࢼ Hכ(A)   için g0=(ࢻ)כ. 

0= g(ࢻ)כ= gכiࢼ=(ࢼ)כ öyle ki iࢻ=(ࢼ)כ sıfır olmalı. Diğer taraftan אࢽ Hכ(X) olsun. o zaman ࢽ= 

iכg(ࢽ)כ+(ࢽ- iכg(ࢽ)כ) G1 içindeki bir eleman ve G2 içindeki bir elemanın toplamı olarak ࢽ yi ifade 

ettik. Bu yüzden Hכ(X)≈ G1ْG2 ve ispat tamamlanmış oldu. 

 C
௙
՜ ܦ

௚
՜E abel grubunun bir üçlüsü ve kesin homeomorfizm olurlar eğer   

görüntü f=çekirdek g ise . 

…ืG1
௙భ՜G2

௙మ՜G3
௙య՜…

௙೙షభሱۛ ሮGn
௙೙՜… 

Abel gruplarının bir dizisi ve homeomorfizimler kesindir eğer her bir üçlü kesin ise.  

0ืC
௙
՜D

௚
՜  0ืܧ

bir tam dizi kısa tam olarak adlandırılır. Bu h:G1ืG1 bir izomorfizmdir ancak ve ancak  

0ืG1
௛
՜G2ื0 tam olduğu anlayışı içinde izomorfizm kavramının bir genelleştirmesi olur. 

 Yukarıda kısa bir tam dizi içinde C’كD alt grup ile C özdeşleştirildiği ve f in bir 

monomorfizm olduğunu belirtelim. Hem de C’ çekirdeği ile g bir epimorfizmdir. Bu yüzden 

izomorfizme kadar dizi henüz 0ืC’
௜

՜D
గ
՜D/C’ื0 dır.  

 Şimdi C={Cn} ,D={Dn} ve E={En} zincir kompleksleri olduğunu ve 0ืC
௙
՜D

௚
՜  0ืܧ

nin f ve g sıfırıncı dereceden zincir dönüşümleri olmak üzere bir kısa tam dizi olduğunu 

varsayalım. Dolayısıyla, her bir p için homoloji gruplarının bir eşlenik üçlüsü 

Hp(C)
௙כ՜Hp(D)

௚כ՜Hp(E) vardır. Biz simdi kısa tam olan bu bölünmenin nasıl olduğunu tam olarak 

incelemek istiyoruz. 
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 Bu yüzden biz satırları kısa tam diziler olan ve her bir karesi değişmeli olan sonsuz bir 

diyagrama sahip olduğumuzu varsayalım. 

 

 

 ڭ                           ڭ                       ڭ                                  

                          ↓                        ↓                          ↓ 

         0———ืCn
                 ௙                    
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮDn

                    ௚                 
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮEn———ื0 

                       ↓ ߲                       ↓  ߲                       ↓߲ 

         0———ืCn-1
              ௙                 
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮDn-1

                 ௚              
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮ  n-1———ื0ܧ

                        ↓ ߲                     ↓  ߲                       ↓߲ 

 ڭ                             ڭ                        ڭ                        

 

zאZn(E) olsun, yani zאEn ve ߲z=0 dır. g bir epimorfizm olduğu için g(d)=z ile dאDn bir 

elemanı vardır. g nin bir zincir dönüşümü olduğu gerçeğinden biz g(߲d)=߲(g(d))=߲z=0 a 

sahibiz. Tamlık f in görüntüsü içinde ߲d olduğu böylece f(c)=߲d ile cאCn-1 olduğu anlamına 

gelir. cאZn-1(C) ve߲c sıfır olmalı, f bir monomorfizm olduğu için ve f(߲c)=߲f(c)=߲(߲d)=0 

olduğunu belirtelim.  

Zn(E) nin Zn-1(C) içine zืc gönderimi yapı içindeki mümkün seçenekler sayılar olduğu 

için devirlerden devirlere iyi tanımlı bir fonksiyon değildir. Ama, biz şimdi homoloji grupları 

üzerinde eşlenik gönderiminin iyi tanımlı bir homeomorfizim olduğunu göstereceğiz. 

z,z’א Zn(E) nin homolojik devirleri olsun. Böylece ߲(e)=z-z’ ile eאEn+1 elemanı vardır. 

g(d)=z ,g(d’)=z’ ile d,d’אDn ve f(c’)=߲d’ ,f(c)=߲d ile c,c’אCn-1 olsun. Biz c ve c’ nün homolog 

döngüler olduğunu göstermeliyiz.  
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g(a)=e ile aאDn+1 olacak şekilde bir elemanı vardır. Değişme özelliği ile 

g(߲a)=߲g(a)=߲e=z-z’ , böylece biz (d-d’)-߲a nın g nin çekirdeğinde olduğunu dolayısıyla hem 

de f in görüntüsünde olduğunu gözleyelim. F(b)=(d-d’)-߲a ile bאCn olsun. Şimdi biz 

f(߲b)=߲f(b)=߲((d-d’)-߲a)=߲d-߲d’=f(c)-f(c’)=f(c-c’) ye sahibiz. f birebir olduğu için c-c’=߲b ve 

c ve c’ homolog devirler olduğu anlamına gelir. Böylece, homoloji grupları üzerinde meydana 

getirilen gönderim iyi tanımlanmış oldu ve açık bir şekilde homeomorfizim olmalıdır.    

Bu homeomorfizim ઢ: Hn(E)ื Hn-1(C) ile ifade edildi ve 0ืC
௙
՜D

௚
՜  0ืܧ

Kısa tam dizisi için bağlantı homeomorfizimi olarak adlandırılır. 

3.1.13.Teorem: Eğer 0ืC
௙
՜D

௚
՜  zincir komplekslerinin bir kısa tam dizisi ve zincir 0ืܧ

dönüşümlerinin derecesi sıfır ise o zaman 

…
        ௙כ       
ሱۛ ۛۛ ۛۛ ሮ Hn(D) 

        ௚כ       
ሱۛ ۛۛ ۛۛ ሮ Hn(E)

       ᇞ        
ሱۛ ۛۛ ۛሮ Hn-1(C)

      ௙כ      
ሱۛ ۛۛ ሮ Hn-1(D) 

        ௚כ       
ሱۛ ۛۛ ۛۛ ሮ… 

Uzun tam dizisi tamdır. 

 Bağlantı homeomorfizminin uygun doğal yapısının belirtilmesi önemlidir, yani  

0———ืC
                 ௙                    
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛሮD

                    ௚                 
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮE———ื0 

 ࢽ↓                       ࢼ↓                       ࢻ↓   

0———ืC’
               ௙ᇲ                 
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮD’

                  ௚ᇲ              
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ  0ื———’ܧ

Eğer zincir kompleksinin bir diyagramı olan ve satırlar tam, dikdörtgenler değişmeli derecesi 

sıfır olan zincir dönüşümleri ise o zaman özdeşlik diyagramının her bir dikdörtgeninde değişme 

özelliği geçerlidir. 

…—ืHn(D) 
        ௚כ       
ሱۛ ۛۛ ۛۛ ሮ Hn(E)

       ᇞ        
ሱۛ ۛۛ ۛሮ Hn-1(C)

      ௙כ      
ሱۛ ۛۛ ሮ Hn-1(D)—ื… 

                        כࢼ↓                              כࢻ↓                כࢽ↓                   כࢼ↓           

…—ืHn(D’) 
       ௚כ

ᇲ      
ሱۛ ۛۛ ሮۛ Hn(E’)

      ᇞᇲ       
ሱۛ ۛۛ ۛሮ Hn-1(C’)

    ௙כ
ᇲ     

ሱۛ ۛۛ ሮ Hn-1(D’)—ื… 
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 X bir topolojik uzay ve AكX bir alt uzayı olsun. A nın içi (IntA) A da ihtiva edilen X in 

tüm açık alt kümelerinin birleşimi olur veya benzer şekilde X de açık olan A nın maksimal alt 

kümesidir. X in alt kümelerinin ࣯ koleksiyonu X in bir örtümü olur eğer Xڂك ܷ௨࣯א  verilen bir 

࣯ koleksiyonunda Int࣯ ࣯ nun elemanlarının içlerinin koleksiyonu olsun. Biz bu ࣯ lar içinde X 

in bir örtümü olan Int࣯ ile ilgileneceğiz. 

 X in her hangi bir ࣯ örtümü için ܵ௡
࣯(X) ile bazı U࣯א de içerilen Φ(σn)(Ԅ:σnืX) 

singüler n-simpleksleri ile üretilen Sn(X) in alt grubunu ifade edeceğiz. O zaman her bir i için  

     görüntü߲iԄكgörüntüԄ  

yani tam sınırlı  

    ߲: ܵ௡
࣯(X)ื ܵ௡ିଵ

࣯ (X)  

böylece X’ in herhangi bir ࣯ örtümü ile özdeşleşen  ܵכ
࣯(X) bir zincir kompleksi var ve doğal 

kapsaması i: ܵכ
࣯(X)ื ܵכ(X) bir zincir dönüşümüdür. Eğer ࣰ V uzayının bir örtümü ise f:XืY 

bir dönüşüm öyle ki her bir U࣯א için f(U) ࣰ nin en az bir V kümesinde içeriliyorsa o zaman 

f#: ܵכ
࣯(X) ืܵכ

ࣰ(Y) bir zincir dönüşümü var ve f#oix = iyof# olduğunu dikkat edilmelidir. 

 Biz şimdi uzayların homoloji gruplarının içinde çalışılan asıl hesaplamasal aletler olarak 

teoremi sunmaya hazırız. 

3.1.14.Teorem: Eğer ࣯  X’in alt kümelerinin bir ailesi öyle ki Int࣯ X’in bir örtümü ise o zaman 

iכ:Hn(ܵכ
࣯(X)) ืHn(X) her bir n için izomorfizmdir.  

 İspat makalenin uzun süren kesintisinden kaçınmak için ek’e bırakıldı. Bu ispatın, konu 

dışı veya ilgi çekici olmadığı anlamına geldiği varsayılmamalıdır. Aslında bu tez homotopi teori  

ve homoloji teori arasındaki temel farkın ayırt edici özelliği olmaktadır. Sezgisel olarak bu 

teoremin ispatının yöntemi açıktır. X de verilen bir c zincirinden biz X den bir c’ zincirini inşa 
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etmeliyiz. öyle ki c’ i’nin görüntüsündedir ve ߲c=߲c’ dür. Ayrıca eğer c bir devir ise bir c’ nün 

c ye homolog olmasını  isteyeceğiz. Bu sonuçlanan zincir istenen c’ oluncaya kadar c zincirinin 

tekrar tekrar  “alt bölünmesi” ile yapılır. Alt bölünme tekniği homoloji teoride mümkündür. 

Çünkü bir  n-simpleks daha küçük n simplekslerin bir koleksiyonuna bölümlenmiş olabilir. Ama 

kürenin alt bölümü daha küçük kürelerin bir koleksiyonu sonucunda elde edilemez. Böyle bir 

yapının yokluğu bir küre olarak basit şekilde uzaylar için homotopi gruplarını hesaplamasını 

son derece zor yapar.  

 Int࣯ nun X i kapsamasının gereli olduğu koşulunu görmek için X=S1, x0אS1 ve 

࣯={{x0},S1-{x0}} olsun o zaman ଵܵ
࣯(S1) de herhangi bir c zinciri S1-{x0} da bir c2 zinciri ve {x0} 

da c1 zincirinin toplamı olarak tek olarak yazılabilmeli. Ayrıca c2 nin görüntüsü  

S’-{x0} ın kompakt bir alt kümesinde içerildiği için c bir devir olacaktır. Ancak ve ancak c1 ve c2 

her biri devirler olmalıdır. Şimdi hem c1 hem de c2  aynı zamanda sınırlı olacağından dolayısıyla 

H1 (ܵכ
࣯(S1))= 0 olur. Ama o H1 (S1)≈ Z olduğunu hemen göstermiş olacak. 

 Teorem 3.14 ün ilk uygulaması X in bir ࣯ örtüsünün parçalarının homoloji bakımından 

bir X uzayının homolojisini çalışmak için bir tekniğin geliştirilmesi olacak. Aşikâr olmayan en 

basit durumda ࣯ örtümü IntUU IntV=X olacak şekilde U ve V iki alt kümesini içermektedir. 

Kolaylık için U deki tüm singüler n simplekslerin kümesi A’ , V deki tüm n simplekslerinin 

kümesi de  A” olsun. O zaman Sn (U)=F(A’) , Sn(V)=F(A”) dür. h(ai ’ , aj”)=ai’+sj ”ile  verilen 

h:F(A’)۩F(A”)ืF(A’UA”)  doğal bir  homeomorfizim var olduğu belirtilmektedir. h ın bir 

epimorfizm olduğunu görmek zor değildir. Diğer yandan g(bi)=( bi , -bi) ile verilen g: 

F(A’ځA”) ื F(A’)۩F(A”) hog=0 ve g nin bir monomorfizm olduğu hemen çıkarılabilir. 

Şimdi h(ߑniai , ߑmjaj”)=0 olduğunu varsayalım. 

Yani ߑniai + ߑmjaj”=0 dır. 
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Bunlar serbest abel grupları olduğu için ni  lerin her biri sıfırdan farklı olduğu için en az bir tane 

j için ai’= aj” ve ayrıca mj =-ni olur. 

Sıfırdan farklı tüm mj katsayıları bu tarzda görünmeli.Bu tüm ai’ lerin A’ځA” de olduğu 

anlamına gelir ve eğer x=ߑniai , ise o zaman ߑmjaj”=-x dir. Dolayısıyla xאF(A’ځA”) ve 

g(x)=(ߑniai , ߑmjaj”) dür. Bu h’ın  çekirdeğinin  g nin görüntüsü  tarafından içerildiğinin ispatı 

olur ve zincir grupları bakımından yorumlanan bu  gerçekler her bir n için bir kısa tam bir dizi 

verir. 

0 —ืSn(UځV)
      ௚#     
ሱۛ ۛۛ ሮۛ Sn(U) ۩ Sn(V) 

      ௛#     
ሱۛ ۛۛ ሮۛ ܵ௡

࣯(X) —ื 0 

(Sכ(U) ۩ Sכ(V))n = Sn(U) ۩ Sn(V) de oturan ve sınır operatörleri her bir bileşeni üzerinde  olağan 

sınırlar olan Sכ(U) ۩ Sכ(V) zincir kompleksini tanımlayalım. 

Yukarıdaki diziden zincir komplekslerinin kısa tam bir dizisi olur ve zincir dönüşümlerinin 

dereceleri sıfır olur. 

 Teorem3.1.13 den homoloji gruplarının uzun tam bir dizisi eşleniği vardır. 

 …
       ᇞ        
ሱۛ ۛۛ ۛሮHn(UځV)

      ௚כ     
ሱۛ ۛۛ ሮ Hn(Sכ(U) ۩ Sכ(V)) 

      ௛כ     
ሱۛ ۛۛ ሮ כ௡ሺܵܪ

࣯(X)) 
       ᇞ        
ሱۛ ۛۛ ۛሮ   …ื— (VځU) ௡ିଵܪ

zincir  kompleksinin tanımından Hn(Sכ(U) ۩ Sכ(V))≈ Hn(U) ۩ Hn(V), olduğu açıktır ve  

teorem 3.1.14  ile biz ܪ௡ሺܵכ
࣯(X))≈ Hn(X) eşitliğine sahibiz.Uzun  tam dizi içine dâhil edilen bu 

izomorfizmlerle biz aşağıdaki Mayer-Vietoris dizisini kuruyoruz. 

…
       ᇞ        
ሱۛ ۛۛ ۛሮHn(UځV)

      ௚כ     
ሱۛ ۛۛ ሮ Hn(U) ۩ Hn(V) 

      ௛כ     
ሱۛ ۛۛ ሮ  ௡(X)ܪ

       ᇞ        
ሱۛ ۛۛ ۛሮ  …ื— (VځU) ௡ିଵܪ

Eğer bir kendi içerme gönderimlerini 
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                                                                      U 

                                                          i ա                բ k 

                                                  UځV                       UڂV=X 

                                                          jբ                   աl 

                                                                      V 

 

İle tanımlarsak o zaman  gכ(x)=(iכ(x), - jכ(x)) ve hכ(y,z)=kכ(y)+ lכ(z) olduğunu belirtmeliyiz. ᇞ 

bağlantı homeomorfizimi geometrik olarak aşağıdaki gibi yorumlanabilir. H୬(X) de herhangi bir 

w homoloji sınıfı c U da bir zincir d de V de bir zincir olmak üzere c+d deviri ile sunulabilir. 

(bu teorem 3.1.14 den çıkartılabilir) o zaman ᇞ(w) UځV de V de ߲c deviri ile sunuldu. 

 Mayer- Vietoris dizisinin yapısında eğer X’ bir uzay IntU’ ڂ IntV’=X’ ile U’ ve V’ alt 

kümeler ve f:XืX’  f(U)كU’ ve F(V)كV’ olacak şekilde bir dönüşüm ise o zaman diyagramın 

her bir dikdörtgeni içinde değişmeli olduğu doğal bir durumdur. 

  …
       ᇞ        
ሱۛ ۛۛ ۛሮHn(UځV)

      ௚כ     
ሱۛ ۛۛ ሮ Hn(U) ۩ Hn(V) 

      ௛כ     
ሱۛ ۛۛ ሮ  ௡(X)ܪ

       ᇞ        
ሱۛ ۛۛ ۛሮ  …ื— (VځU) ௡ିଵܪ

                                   ↓fכ                          ↓fכ۩ fכ                   ↓fכ                                              

…
       ᇞᇱ        
ሱۛ ۛۛ ۛۛ ሮHn(U’ځV’)

      ೒כᇲ
    

ሱۛ ۛۛ ሮ Hn(U’) ۩ Hn(V’) 
      ೓כᇲ

     
ሱۛ ۛۛ ሮ  ௡(X’)ܪ

       ᇞᇱ        
ሱۛ ۛۛ ۛۛ ሮ  …ื— (’Vځ’U) ௡ିଵܪ

3.1.15.Örnek:X=S1 olsun ve z ve z’ ile sırasıyla kuzey ve güney kutupları ifade edilsin. x,y 

ekvator üzerindeki noktalar olsun. (Şekil 1.5) U=S1-{z’} ve V=S1 -{z} olsun.O zaman Mayer – 

Vietoris dizisinde  bu örtüme eşdeğer olarak biz   

 H1(U) ۩ H1(V) 
      ௛כ     
ሱۛ ۛۛ ሮ  ଵ(S1)ܪ

       ᇞ        
ሱۛ ۛۛ ۛሮ ଴ܪ  (UځV) 

      ௚כ     
ሱۛ ۛۛ ሮ H0(U) ۩ H0(V) ye sahibiz.  
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                                                                                         z 

                                                                                                                                                                        

                                                           

                                                                    x                                                       y                                                      

                                                                                                                                                                 

                                                                                             …                                                                                    

                                                                                      z’ 

                                                                                Şekil 1.5 

 İlk terim U ve V kısıtlanabilir olduğundan sıfırdır. Bu yüzden ᇞ bir monomorfizmdir ve 

H1(S1) gכ ın  çekirdeği =ᇞ in görüntüsüne izomorfik olacaktır. H0(UځV)≈Z۩Z nin bir elemanı a 

ve b tam sayılar olmak üzere ax + by  formunda yazılabilir.  

 Şimdi gכ(ax+by)=( iכ(ax+by),- jכ(ax+by))dir. U ve V  yol bağlantılı olduğu için 

iכ(ax+by)=0 Ancak ve ancak a=-b ve jכ içinde aynı şekildedir. Böylece gכ ın  çekirdeği  ax-ay 

formunun tüm elemanlarının içerildiği H0(UځV) nin alt grubu olur. Bu x-y ile üretilen sonsuz 

devirli bir alt grup olur. Bu yüzden biz H1(S1)≈Z olduğu sonucuna varırız.  Bu grup için bir w 

üretecini geometrik olarak vermek için ߲(c)=x-y=-߲d ve d V de c de U da c+d  iki zincirinin 

toplamı ile w yi sunmalıyız 
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                                                                               c 

                                                                                       .z. 

                                                                                                                                                                       

                                                           x                                      y                                                                               

                                                                                                                                                                 

d 

Şekil 1.6 

c ve d zincirleri  şekil 1.6 da gösterildiği gibi seçilmiş olduğu için n>1 herhangi bir tam sayısı 

için Mayer-Vietoris dizisinin bölümünde iki uçtaki terimler sıfıra eşit olduğundan dolayısıyla 

Hn(S1) = 0 dır. 

Hn(U) ۩ Hn(V) 
      ௛כ     
ሱۛ ۛۛ ሮ  ௡(S1)ܪ

       ᇞ        
ሱۛ ۛۛ ۛሮ  (VځU) ௡ିଵܪ

Bu S1 homolojisinin belirlenmesini sağlar. Biz şimdi  her bir n için Sn in homolojisini 

tümevarım ile hesaplayarak ilerleyeceğiz. 

Sn ={(x1,…,xn+1) |xi אR ݔߑ௜
ଶ=1}كRn+1   olduğunu hatırlayalım. (x1,…,xn,0) formunun 

tüm noktaları olarak genel moda içinde RnكRn+1 düşünelim. Bu Sn-1كSn kapsaması altında 

“ekvator” olarak z=(0,…,0,1) ve z’=(0,…,0,-1) ile Sn in kuzey ve güney kutuplarını ifade 

edelim. O zaman Sn-{z} steroğrafik izdüşümü Rn e homeomorfiktir.  

Sn-{z’}  içinde benzer şekildedir. Bu yüzden Sn-{zڂz’} Rn-{orijin} e homeomorfiktir. 

  Sn-1 in Rn-{orijin} şekil korumayan geri dönüşümü olduğu açıktır. 

 Şimdi U= Sn-{z} V= Sn-{z’} öyle ki UځV= Sn-{zڂz’} olsun, o zaman yukarıdaki 

alıştırma ve yorumlar ile bu örtüm için Mayer-Vietoris dizisi 

Hm(Rn) ۩ Hm(Rn) 
      ௛כ     
ሱۛ ۛۛ ሮ  ௠(Sn)ܪ

       ᇞ        
ሱۛ ۛۛ ۛሮ  ௠ିଵ (Sn-1)ܪ

      ௚כ     
ሱۛ ۛۛ ሮ Hm-1(Rn) ۩ Hm-1(Rn) 
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Olur. m>1 için uçtaki terimler sıfır öyle ki ᇞ bir izomorfizmdir.m=1 ve n>1 için gכ ve ᇞ ikisi 

de monomorfizm olmalıdır, öyle ki H1(Sn)=0 dır. Bu aşağıdaki ispatta tümevarım adımını 

oluşturur. 

3.1.16.Teorem: n൒0 her hangi bir tamsayısı için כܪ(Sn) iki üreteçli bir serbest abel gruptur ve 

biri sıfır boyutlu biri n boyutludur. 

3.1.17.Sonuç: n≠m için Sn ve Sm aynı homotopi tipine sahip değildir. 

Sadece bizim geliştirdiğimiz aletleri kullanarak (Şekil 1.7 ) deki iki kulpu ile iki kürenin 

homolojisini hesaplanabilir. 

 

                                                                 Şekil.1.7 

Dn ={(x1,…,xn)אRn| ݔߑ௜
ଶ≤1} olması için Rn de n disk tanımlayalım. Sn-1كDn onun sınırı olduğu 

belirtilmelidir. 

3.1.18.sonuç:   Dn in Sn-1 üzerine geri dönüşümü yoktur. 

İspat: n=1 için D1 bağlantılı ve S0 olmadığı için bu açıktır. n>1 ve f:DnืSn-1 bir dönüşüm öyle 

ki foi=birim , burada i Sn-1 in Dn içine kapsaması olduğunu varsayalım. Bu meydana getirilen 

homeomorfizmlerin değişmeli olduğu ve homoloji gruplarının aşağıdaki diyagramı anlamına 

gelir. 
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Ama bu sonsuz devirli bir grup boyunca sıfır olması mümkün olmayan birimin bir 

çarpanlamasını verir. Bu yüzden böyle bir f geri dönüşümü yoktur. 

 

                         

                                                                                  g(x) 

 

 

 

                                                   

                                            Şekil.1.8 

 

3.1.19.Sonuç:(Brouwer Sabit Nokta Teoremi) f:Dn  ืDn verilen bir dönüşümde f(x)=x olacak 

şekilde Dn de bir x vardır. 

İspat: f:DnืDn sabit noktaların olmadığını varsayalım. g:DnืSn-1 e aşağıdaki gibi bir 

fonksiyon tanımlayalım. xא Dn için f(x) de başlayan ve x den geçen iyi tanımlanmış bir ışın 

vardır. bu ışının Sn-1 i kestiği yer olacak şekilde g(x) noktasını tanımlayalım (şekil 1.8). O zaman 

g:DnืSn-1 süreklidir ve  Sn-1 de tüm x ler için g(x)=x dir. Ama böyle bir g dönüşümünün varlığı 

sonuç 3.17 ile çelişir. Böylece f sabit bir noktaya sahip olmalıdır. 

                                   

                          X 

    f(x) 
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 Sonuç 3.1.18 ; Sonuç 3.1.17 ile aynı anlama gelir. 

 n൒1 ve f:SnืSn bir dönüşüm olduğunu varsayalım. Hn(Sn)≈Z nin bir ࢻ üretecini 

seçelim ve Hn(Sn) üzerinde f ile meydana getirilen homeomorfizimin en az bir tane m tamsayısı 

için f(ࢻ)כ=m.ࢻ özelliğine sahip olduğunu belirtelim. Bu tamsayı  

f(ࢻ-)כ= -f(ࢻ)כ=-m.ࢻ=m.(-ࢻ) olduğu için üretecin seçiminden bağımsız olur. m tamsayısı f in 

derecesi olur ve d(f) ile gösterilir. Bu sık L.E.J.Brouwer in çalışmasının sonuçları olarak 

Brouwer derecesi olarak söz ediliyor. Bir dönüşümün derecesi devirden, sıfırdan farklı 

kompleks sayılar içine bir dönüşüm ile eşlenik “winding sayısı” nın direkt genelleştirilmesi olur. 

 bir dönüşümün derecesinin aşağıdaki temel özellikleri bir önceki sonuçların acil 

sonuçları olur. 

(a) d(birim)=1 

(b) eğer f ve g: SnืSn dönüşümler ise, d(fog)=d(f).d(g)  

(c) d(sabit dönüşüm)=0 

(d) Eğer f ve g homotopik ise o zaman d(f)=d(g)  

(e) Eğer f bir homotopi denkliği ise o zaman d(f)=േ1 dir. 

Azıcık daha az açık özellik (gelecek alıştırma) n>0 olduğunda her zaman Sn üzerinde herhangi 

bir integral derecesinin dönüşümlerinin var olduğudur. Tüm bu özellikler homoloji teorinin 

sonuçlarıdır ve aslında kolayca elde edilebilir.  Daha çok fazla karmaşık özellik (d) özelliğinin 

karşıtı olan Hopf’ un homotopi teoriktik sonuçlarıdır. Eğer d(f)=d(g) ise o zaman f ve g 

homotopik olur. Bu yüzden, derece Sn den Sn e dönüşümlerin, çalışılan homotopi sınıfları için 

tam bir cebirsel sabit olur.  
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                                                                     z 

 

                                                        

                                                     x                                                  

                                                                z      z’ 

                                                                      Şekil1.9 

3.1.20.Önerme: n>0 olsun ve f(x1,x2,…,xn+1)= (-x1,x2,…,xn+1) ile f:SnืSn tanımlansın. O zaman 

d(f)=1 dir. 

İspat: ilk olarak n=1 durumunu düşünelim (şekil 1.9). öncelikli olarak z=(0,1) z’=(0,-1) ve 

x=(-1,0) y=(1,0) olsun. U=S1-{z’} ve V= S1-{z} örtümleri f(U)كU ve f(V)كV özelliğine sahiptir. 

 Böylece Mayer-Vietoris dizisinin doğal yapısından diyagram 

 

 ଵ(S1)ܪ0ۛۛۛื
       ᇞ        
ሱۛ ۛۛ ۛሮ ଴ܪ  (UځV) 

      ↓fכ                                         ↓f3*   

 ଵ(S1)ܪ0ۛۛۛื
       ᇞ        
ሱۛ ۛۛ ۛሮ ଴ܪ  (UځV) 

tam satırlara sahip ve dikdörtgen değişmeli burada f3* , f  in geri gönderimi olur.  

߲c=x-y=-߲d olmak üzere c+d deviri ile sunulan   ܪଵ(S1) in ࢻ üretecini adlandıracağız. Ve ᇞ(ࢻ) 

x-y ile sunulacak. Şimdi ᇞf(ࢻ)כ= f3*ࢻ(x)=f3*(x-y)=y-x=-ᇞ(ࢻ)= ᇞ(-ࢻ) dır. ᇞ bir monomorfizm 

olduğu için d(f)=1 dir.  

 Şimdi sonucun n-1൒1 boyutu içinde doğru olduğunu varsayalım, ve ilk olarak  

Sn-1كSn düşünelim. Sn de alınan U ve V sırasıyla güney ve kuzey kutuplarının tümleyenleri 

olduğu için i:Sn-1ืUځV içermesi bir homotopi denkliğidir. n൒2 olduğu için Mayer-Vietoris 

dizisinin bağlantı homeomorfizimi bir izomorfizmdir. Bu yüzden diyagramda her bir dikdörtgen  

  

             f  
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                                  Hn(Sn)  ᇞ
      ൎ    

ืHn-1(UځV)← ௜כ
      ൎ            

Hn-1(Sn-1)                                                       

                               ↓fכ                                         ↓f3*                        ↓fכ                                          

                               Hn(Sn)  ᇞ
      ൎ    

ืHn-1(UځV)← ௜כ
      ൎ            

Hn-1(Sn-1)         

Değişmeli ve yatay homeomorfizimler izomorfizmdir. Eğer ࢻ , Hn(Sn) in bir üreteci ise  

 f(ࢻ)כ=ᇞ-1 f3*ᇞ(ࢻ)= ᇞ-1iכ fכiכ
-1ᇞ(ࢻ)=- ᇞ-1iכ iכ

-1ᇞ(ࢻ)=-ࢻ     olur. bu tümevarımsal adımı verir ve 

ispat tamamlanır. 

 

                                                                   Şekil 1.10 

 n൒0 için f:SnืSn verilen bir dönüşüm için g:Sn+1ืSn+1 eşlenik olan bir dönüşüm 

vardır, ve f in askıya alınmışı olarak adlandırılır. Ve ߑf ile ifade edilir. Sezgisel olarak amaç Sn+1 

deki ekvatora (Sn) geri dönüşümünün f olması gerektiği ve ekvatora paralel Sn+1 deki her bir 

dilimin f ile istenilen Şekilde tekabül eden dilim içine haritalanması 

gerektiğidir(şekikl1.10).özel olarak Sn+1ك Rn+2كRn+1xR öyle ki Sn+1 in noktaları xא Rn+1 tא R1 ve 

ԡݔԡ2+|1=2|ݐ olmak üzere (x,t) formunun olduğunu düşünelim. O zaman  

f(x,t)=൝ߑ
ሺݔ, ݔ ݎሻ                                   ݁ğ݁ݐ ൌ 0
ሺԡݔԡ. ݂ ቀ ௫

ԡ௫ԡቁ , ݔ ݎሻ               ݁ğ݁ݐ ് 0 
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Tanımlayalım. ߑf sürekli olduğunu ve istenilen karakteristiğe sahip olduğunu görmek zor 

değildir. Önerme3. 1.19 un ispatında kullanılan teknik aşağıdakinin ispatı için uygulanabilir. 

3.1.21.Önerme: eğer n൒1 için f:SnืSn bir dönüşüm o zaman d(ߑf)=d(f) dir. 

 Eğer f(x1,x2,…,xn+1)= (-x1,x2,…,xn+1) ve g(x1,x2,…,xn+2)= (-x1,x2,…,xn+2) ise o zaman 

g=ߑf ve 3.1.19 önerme 3.1.20 önermenin özel bir durumu olduğu belirtilmelidir. 

3.1.22.Sonuç:Eğer f:SnืSn f(x1,x2,…,xn+1)= (-x1,…,-xi,…,xn+1) ile verilirse o zaman d(f)=1 dir. 

İspat: h:SnืSn i. koordinat ve 1. koordinatın değiştiği bir dönüşüm olsun. O zaman h bir 

homeomorfizimdir(h-1=h). Böylece d(h)=േ1 dir. g(x1,x2,…,xn+1)= (-x1,x2,…,xn+1) öyle ki d(g)= - 

1 olsun. o zaman d(f)=d(hogoh)=d(h)2d(g)=(േ1)2(-1)=-1 olur. 

3.1.23.Sonuç: A(x1,…,xn)= (-x1,…,-xn) ile tanımlanan A:SnืSn antipodal dönüşüm  

d(A)=(-1)n+1 özelliğine sahiptir. 

İspat:Sonuç 3.1.21 den A , tümünün derecesi -1 olan (n+1) dönüşümlerin bileşkesidir. 

n>0 için ve her hangi bir tamsayısı için derecesi m olan f:SnืSn dönüşümü vardır. 

3.1.24.Önerme: Eğer f,g:SnืSn  Sn deki tüm x ler için f(x)്g(x) ile dönüşümler ise o zaman g 

Aof e homotopiktir. 

İspat: Grafiksel olarak fikir aşağıdaki gibidir: f(x)്g(x) olduğu için Af(x) den g(x) e Rn+1 de 

bölüm orijin boyunca geçmez. Bu yüzden Af(x) ve g(x) arasında Sn de orijin dışından yansıyan 

küre alanı üzerinde bir yoldur. İstenen homotopiyi üreten yollar bunlardır. Özellikle biz açıkça 

homotopi veren  

F(x,t)= ሺଵି௧ሻ஺௙ሺ௫ሻା௧.௚ሺ௫ሻ
ԡሺଵି௧ሻ஺௙ሺ௫ሻା௧.௚ሺ௫ሻԡ   

İle F:SnxIืSn bir fonksiyon tanımlayacağız. 



52 

 

                                                         Şekil 1.11 

3.1.25.Sonuç: Eğer f:S2nืS2n bir dönüşüm ise o zaman f(x)=x ile S2n de bir x veya f(y)=-y ile 

S2n de bir y vardır. 

İspat:Eğer tüm x ler için f(x)്x ise o zaman önerme 3.1.23 ile f A ya homotopiktir. Diğer 

yandan eğer tüm x ler için f(x)്-x=A(x) ise o zaman f AoA= birim e homotopiktir. 

 Bu iki şart birlikte ele alındığında d(A)=d(f)=d(birim) elde ederiz. Ama, d(A)=(-

1)2n+1=-1 ve d(birim)=-1 , iki koşulda aynı zamanda gerçekleşmeyebilir. 

3.1.26. Sonuç: Tüm x ler için f(x) ortogonal olmak şartıyla f:S2nืS2n sürekli bir dönüşüm 

yoktur. 

 Bu fikirlerin tanımlanmış olmamasına rağmen Sn n boyutlu bir manifolddur. Yani Sn 

bulunduğu bölgede Rn e homeomorfiktir. Aslında Sn Sn deki her bir x noktasında  

T(Sn,x) bir tanjant uzayına sahiptir. Sn ile özdeşleştirilen Rn+1 deki birim küre ile  T(Sn,x) x de Sn 

e teğet olan Rn+1 de n boyutlu bir hiper yüzey olur. (şekil 1.12) 
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                                           Şekil 1.12 

Biz x vektörüne ortogonal n boyutlu alt uzayların olduğu orijine bu hiper yüzeyi taşıyacağız. 

Elbette Sn üzerinde x farklılaşarak, bu alt uzaylar ona göre değişecek. Sn üzerinde bir vektör 

alanı, karşılık gelen lineer alt uzayda bir vektör Sn de her bir x e sürekli bir fonksiyon atayacak. 

Eğer Sn de her bir x için Φ(x)=0 ise o zaman  Φ vektör alanı sıfırdan farklı olur. 

3.1.27.Sonuç: S2n üzerinde sıfırdan farklı vektör alanı yoktur. 

İspat:Eğer S2n de sıfır olmayan bir vektör alanı var ise o zaman  de sıfır olmayan bir vektör 

alanı var ise o zaman ࣒(x)= థሺ௫ሻ
ԡథሺ௫ሻԡ birim uzunluklu S2n üzerinde bir vektör alanı olur. bu yüzden 

࣒:S2nืS2n her bir x için x e ortogonal olan ࣒(x) dönüşümü olur. Ama bu sonuç 3.1.25 den 

mümkün değildir. Dolayısıyla böyle bir vektör alanı yoktur. 

 Sıfırdan farklı vektör alanları tek boyutlu küreler üzerinde daima vardır. eğer Sn de her 

bir x için Φ1(x),…, Φk(x) vektörleri lineer bağımsız ise, Sn üzerinde Φ1,…, Φk vektör alanlarının 

koleksiyonu lineer bağımsız olur. Matematikte ki meşhur problem n in her bir değeri için S2n+1 

üzerinde var olan lineer bağımsız vektör alanlarının maksimum sayısının belirlenmesidir. 

Hurwitz  ve Radonun çalışması (Eckmann 1942 ye bakınız) güçlü olumlu bir sonuç verdi. Yani, 

lineer bağımsız vektör alanlarının kesin sayısı (kürenin boyutları ile değişen) var olduğu 
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gösterildi. Problemin çözümü Adams tarafından [1962] bu olumlu sonuçların mümkün olan en 

iyi sonuçlar olduğunun gösterilmesi ile tanımlandı.  

 Daha ileri uygulama ile devam etmeden önce biz bazı gerekli cebirsel fikirleri sunmak 

için konu dışına çıkacağız. Yönlendirilmiş bir ࢫ kümesi ≤ bir kısmi sıralama bağıntısı  olan bir 

kümedir öyle ki ࢫ de verilen a ve b elemanları için a≤c ve b≤c olacak şekilde ࢫ de bir c elemanı 

var olmalı. Kümelerin bir direkt sistemi {Xa}aࢫא kümelerin bir ailesidir, burada ࢫ bir yönlü küme 

ve her zaman a≤b olmak üzere ௔݂
௕:XaืXb aşağıdaki şartları yerine getiren fonksiyonlardır. 

(i)Xa üzerinde her bir aࢫא için ௔݂
௔=(birim) dir. 

(ii)Eğer a≤b≤c ise o zaman ௔݂
௖= ௕݂

௖o ௔݂
௕ dir. 

              Bizi ilgilendiren özel durum Xa ların abel grupları olduğu ve ௔݂
௕ lerin 

homeomorfizimler olduğudur. Bu yüzden { Xa, ௔݂
௕} abel gruplarının ve homeomorfizmlerin 

direkt sistemi olsun. Aşağıdaki gibi ߑaXa nın bir R alt grubunu tanımlayalım.  

R={∑ ܺ௔೔
௡
௜ୀଵ | tüm i ler için c൒ai a,cࢫא var ve ∑ ௔݂భ

௖௡
௜ୀଵ (ܺ௔೔)=0}  o zaman { Xa, ௔݂

௕} sisteminin 

direkt limiti ݈݅݉௔  ܺ a=∑ ܺ௔ a/R gruptur. 

Eğer xa   Xa dadır ve xb   Xb de ise o zaman onların direkt limitleri de eşit olacaktır. Eğer ࢫ de 

bazı c ler için c൒a ve c൒b ve ௔݂
௖(Xa)= ௕݂

௖(Xb) ise. 

3.1.28. Lema : X bir uzay olsun ve {Xa} ile X in kısmi sıralama içermesi ile homeomorfizmlerde 

{Hכ( Xa )} formlarının bir direkt sistemi grupların ailesi kapsama dönüşümleri ile üretilir o 

zaman ݈݅݉௔  .dir (X)כH≈( Xa )כܪ

İspat: her bir  Xa  için ga*: Hכ( Xa)ื Hכ(X) homeomorfizimi kapsama dönüşümü ile üretilmiş 

olsun. O zaman g=∑ ݃௔ a*:∑ ௔ܪ  .i koyalım (X)כH ื(Xa )כ
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İspat: k üzerinde tümevarımla ilerlersek eğer k=0 ise o zaman A bir noktadır ve Sn-A nın Rn e 

homeomorfik olduğu sonucu çıkar. k<m için sonucun doğru olduğunu varsayalım. ve h:AืIm 

bir homeomorfizim olsun. Im m küpü I+={(x1,x2,…,xm)א Im |x1൒0} ve  

I-={(x1,x2,…,xm)א Im |x1≤0} koyulacak şekilde iki yarıya ayıralım. Böylece I+ځ I- , Im-1 e 

homeomorfik olur. A nın ayrışımına karşılık geldiği için A+=h-1(I+) ve A-=h-1(I-) ile ifade 

edeceğiz. Sn-(A+ځA-) kümesi Mayer-Vietoris dizisinin tatmin edici koşulları  

(Sn-(A+))ڂ( Sn-(A-)) iki kümenin birleşimi olarak yazılabilir. Bu yüzden  

Hj+1(Sn-(A+ځA-))ื Hj(Sn-A)ื Hj(Sn-A+)ْ Hj(Sn-A-)ื Hj(Sn-(A+ځA-)) 

bir tam dizisi vardır. Tümevarım hipotezi ile j>0 için uç terimlerin ikisi de sıfırdır. Bu alanlar 

ikisi de bir izomorfizmdir 

Hj(Sn-A)     ൎ    
     ௜כ

శْ௜כ
షื Hj(Sn-A+)ْ Hj(Sn-A-). 

Bu yüzden eğer xא Hj(Sn-A) ve x്0 ise o zaman ya ݅כ
ା(x)്0 veya  ݅כ

ି(x)്0 dır. ݅כ
ା(x)്0 

olduğunu varsayalım. şimdi A+  ayrılması ile iki parçanın kesişiminin Im-1 e homeomorfik 

olduğu prosedürünü hatırlayalım. Bu tavır içinde Sn in alt kümelerinin bir dizisi  

Sn-AكSn-Ak  kapsaması Hj(Sn-Ak) nın sıfırdan farklı bir elemanı içine alınan x homolojisi üzerine 

bir homeomorfizim meydana getirdiği ve ayrıca ځi Ai Im-1 e homeomorfik olduğu  

A=A1ل A2ل A3ل… sahip olunan özelliği inşasını yapabilir. 

 Şimdi (Sn-ځi Ai) nin bir kompakt alt kümesi en az bir (Sn-Ak) içinde içerilecek. Bu 

yüzden lema 3.1.27 nin izomorfizm etkenleri boyunca direkt limit  

݈݅݉
ೖ
՜  j(Sn-Ak)ܪ

Öyle ki bu direkt limit Hj(Sn-ځi Ai) ye izomorfik de olmalıdır. x ile sunulan bu direkt limitin 

eleman yapısı ile sıfırdan farklıdır. Ama tümevarım hipoteziyle Hj(Sn-ځi Ai) grubu sıfıra eşit 

olur. Bu çelişki böyle bir x elemanının var olmadığı ve Hj(Sn-A)=0 olduğu anlamına gelir. 
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 j=0 durumu için Mayer-Vietoris dizisi alanları bir monomorfizmden daha ziyade bir 

izomorfizmdir. Eğer H0(Sn-A) da (x-y)്0 ile Sn-A da x ve y noktaları ise o zaman üst sav H0(Sn-

 .i Ai) de (x-y) sıfırdan farklı olması anlamına geleceği için aynısı tekrar edilir. Bu bir çelişkidirځ

3.1.30.Sonuç : Eğer Bك Sn bir alt kümesi Sk ya homeomorfik ise (0≤k≤n-1 için) o zaman Hכ(Sn-

B) iki üreteci ile bir serbest abel gruptur, biri sıfır boyut içinde biride n-k-1 boyut içindedir. 

İspat: k üzerinde yeniden tümevarım ile k=0 için Sk nın iki nokta olduğunu ve Sn-B Sn-1 in 

homotopi tipine sahip olduğunu belirtelim.  Hכ(Sn-1) tanımı yeterli olduğu için k=0 için sonuç 

doğrudur. Sonucun k-1 için doğru olduğunu varsayalım ve B= B+ڂ B- yazalım. Burada B+ ve B- 

Sk içinde kapalı yarı kümelere homeomorfiktirler ve B+ځ B- , Sk-1 e homeomorfiktir. Sn-(B+ځB-

)=(Sn-B+)ڂ( Sn-B-) örtümünün  Mayer-Vietoris dizisi  

Hj+1(Sn-B+)ْ Hj+1(Sn-B-)ื Hj+1(Sn-(B+ځB-))ื Hj(Sn-B)ื Hj(Sn-B+)ْ Hj(Sn-B-) 

Formuna sahiptir. j>0 için lema 3.1.28 den uçlardaki terimlerin her ikisi de sıfır olur. Sonuç 

izomorfizminde gerekli tümevarım adımları sıralanarak ispat tamamlanır. 

 Bu sonuç aşağıdaki meşhur teoremin ispatı için uygulanacak.  

3.1.31.Teorem(Jordan-Brouwer Ayırma Teoremi): Sn içinde gömülmüş bir (n-1) küre Sn i iki 

bölüme ayırır ve o her bir bölümün sınırıdır. 

İspat: Bك Sn  Sn-1 in gömülmüş kopyası olsun. O zaman sonuç 3.1.29 ile Hכ(Sn-B) iki temel 

elemanı ile serbest abel olur. Boyutların ikisi de sıfırdır. Bu yüzden Sn-B iki yol bileşenine 

sahiptir. B kapalıdır böylece Sn-B açıktır ve dolayısıyla bulunduğu bölgede yol bağlantılıdır. Bu 

yol bileşenlerinin bileşenleri olduğu anlamına gelir. C1 ve C2 Sn-B nin bölümleri olsun C1ڂB 

kapalı olduğu için C1 in sınırı B de içerilir. (Burada biz C1 in sınırı ile ߲ C1= ܥଵതതത - C1 in  içi  

kümesini kastettik ) B߲ك C1 olduğunu gösterdiğimiz zaman ispat tamamlanacak  

xאB ve Sn de U x in komşuluğu olsun. B Sn-1 in gömülmüş bir kopyası olduğu için xאK ile UځB 

nin bir K alt kümesi var ve B-K , Dn-1 e homeomorfiktir (şekil 1.13). 
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                                                       Şekil 1.13 

 Şimdi lema 3.1.28 ile Hכ(Sn-(B-K))≈Z sıfır boyutlu üreteci ile. Böylece Sn-(B-K) bir yol 

bileşenine sahiptir. p1א C1 p2א C2 ve  ߛ p1 ve p2 arasında Sn-(B-K) da bir yol olsun. C1 ve C2  

Sn-B de farklı yol bileşenleri olduğu için ߛ yolu K yı kesmeli. Sonuç olarak K ܥଵതതത ve ܥଶതതത nin 

noktalarını içerir.  

Biz x in keyfi bir komşuluğunun hem ܥଵതതത hem de  ܥଶതതത  nin noktalarını içerdiğini gösterdik. 

Dolayısıyla x C1 in sınırları içersindedir ve ispat tamamlanır. 

Bir bitirme uygulaması domainlerin değişmezliği üzerinde Brouwer teoremidir. 

3.1.32.Teorem : U1 ve U2 , Sn in alt kümeleri ve h: U1 ื U2 homeomorfizim olduğunu 

varsayalım. O zaman eğer U1 açık ise U2 de açıktır. 

Not: Bunun aşikâr olmayan bir gerçek olduğu gözlemlenebilir. Tabi ki açık kapalı ile yer 

değiştirdiğinde veya homeomorfizimin Sn in tümü üzerinde tanımlanmış olduğu varsayıldığında 

doğruluğu açıktır. Bu genel olarak uzaylarda doğru olmayabilir. Örneğin w1=(ଵ
ଶ
,1] ve w2=(0, ଵ

ଶ
] 

[0,1] in alt kümeleri olsun. Eğer h: w1ื w2 h(x)=x -  ଵ
ଶ
 ile verildiğinde o zaman h bir 
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homeomorfizimdir. w1 açıktır ama w2 açık değildir. Kendi kendi üzerine [0,1] in bir 

homeomorfizimi h ın genişlemesinin olmadığı açıktır. 

İspat : x2=h(x1) U2 de herhangi bir nokta olsun. V1 Sn-1 e homeomorfik ߲V1 ve Dn e 

homeomorfik V1 ile U1 içinde x1 in bir komşuluğu olsun V2=h(V1) koyar ve  ߲V2=h(߲V1) 

anlamına gelsin öyle ki ߲V2 Sn-1 e homeomorfik  Sn in bir alt kümesidir (şekil 1.14 ). 

 O zaman lema 3.1.28 ile Sn- V2 bağlantılıdır. Teorem 3.1.30 ile Sn- ߲V2 iki bileşene 

sahiptir. Böylece Sn- ߲V2 , Sn- V2 ve V2 - ߲V2 nin ayrık bileşimidir. İkisi de bağlantılıdır. 

Dolayısıyla onlar Sn- ߲V2 nin bölümleridir. Bu V2 - ߲V2  nin açık, U2 de bağlantılı ve  

x2א V2 - ߲V2 olduğu anlamına gelir. Dolayısıyla U2 açıktır. 

 

                                                                         Şekil 1.14 
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  4.HOMOLOJİK CEBİR 

4.1.Zincir yapıları ve dönüşümler: 

Cebirsel topolojinin konusu cebirde yeni bir doğrultuda ilerlemeler sağlamıştır. X simplisel 

yapısını ele aldığımızda doğal olarak 

߲k-1߲k = 0  

Olacak şekilde gösterildiği gibi  

Cn(X)       ߲n            Cn-1(X)       ߲n-1               …         ߲2        C1(X)       ߲1     C0(X)      ߲0       0 

Böylece bu ifadenin tamamen cebirsel parçasını özetleyebiliriz, ve her k≥1 için ߲k-1߲k = 0 olacak 

şekilde ߲k : Ak                        Ak-1 homeomorfizmleri ve Ak abelyan gruplarının dizisini düşünebiliriz. 

߲k-1߲k = 0 da her zaman k≥1 olmak zorunda olmadığından her kאԺ için Ak gruplarının “çift 

sonsuz” dizilerini seçmek daha uygundur. Uygulamalarda genellikle k<0 ve k>n için Ak=0 dır. 

Bu diziler ve bu dizilerin dönüşümleri üzerine çalışmalar homolojiksel cebirin bir konusudur. 

4.1.1.Tanım:Bir zincir yapısı denilen <A,߲> ߲k-1߲k = 0 ve ߲k :Ak             Ak-1 olacak şekilde 

homeomorfizmlerin ߲ = {߲k |kאԺ} koleksiyonu ile birlikte Ak abelyan gruplarının  

A={ … , A2 , A1 , A0 , A-1 , A-2 , … } 

Bir çift sonsuz dizidir. 

Grup teorideki gösterimimize benzer olarak kolaylık sağlaması için  şimdi bir önceki 

bölümümüzdeki yapılarımızı ve tanımlarımızı tamamen cebirsel yapılar için uygulayabiliriz. 

4.1.2.Teorem: A bir zincir yapısı ise ߲k altındaki görüntü ߲k-1 in çekirdeğinin bir alt grubudur. 

İspat: Ak      ߲k                      Ak-1      ߲k-1                       Ak-2  yi ele alalım. 
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A bir zincir yapısı olduğundan ߲k-1߲k = 0 dır. yani ߲k-1 [߲k[Ak]] = 0 dır. Bu da ߲k [Ak] nın  ߲k-1 in 

çekirdeğinde olduğunu gösterir ki bu da istediğimiz ispattır.  

4.1.3.Tanım: A bir zincir yapısı ise ߲k nın çekirdeği Zk(A) k-devirlerinin grubudur, ve görüntü 

Bk(A) = ߲k+1[Ak+1] k-sınırlarının grubudur. 

Hk(A) = Zk(A) / Bk(A) bölüm grubu A nın k. homoloji grubudur. 

Son bölümde x ve Y simplisel yapıları için Hk(X) den Hk(Y) ye bir homeomorfizm üreten, X den 

Y ye bir f sürekli dönüşümü belirttik. Homoloji gruplarının dönüşümü sırada belirtilen yolla 

oluşturulur. X ve Y nin uygun üçgenleştirilmesi için f dönüşümü, önemli bir özellik olan ߲k ile 

değişme yani ߲k fk = fk-1߲k özelliğine sahip Ck(X) den Ck(Y) ye fk homeomorfizmini oluşturur. 

Şimdi tamamen cebirsel duruma dönelim. Ve bunun homoloji gruplarının dönüşümünü nasıl 

ürettiğini görelim.  

4.1.4.Teorem (Temel önerme): A ve A’ , homeomorfizmlerin ߲ ve ߲’ koleksiyonları ile birlikte 

zincir yapıları ve homeomorfizmlerin bir f koleksiyonu  

fk : Ak               Ak-1  

şekilde gösterileceği gibi olsun;  

 

… 
        డೖశమ       
ሱۛ ۛۛ ۛۛ ۛۛ ሮ Ak+1 

        డೖశభ       
ሱۛ ۛۛ ۛۛ ۛۛ ሮ Ak 

        డೖ       
ሱۛ ۛۛ ۛۛ ሮ Ak-1 

        డೖషభ       
ሱۛ ۛۛ ۛۛ ۛۛ ሮ … 

 

 

 

… 
      డᇱೖశమ     
ሱۛ ۛۛ ۛۛ ሮۛ A’k+1 

      డᇱೖశభ      
ሱۛ ۛۛ ۛۛ ۛሮ A’k 

      డᇱೖ      
ሱۛ ۛۛ ۛۛ ሮ A’k-1 

       డᇱೖషభ      
ሱۛ ۛۛ ۛۛ ۛۛ ሮ …   

Dahası her k için her kare değişmelidir, yani  
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 fk-1߲k = ߲’k fk  dır. 

Bu durumda fk bir doğal homeomorfizm olan  

f*k : Hk(A)              Hk(A’)  

yi oluşturur. 

İspat: z א Zk(A) olsun. 

߲’k (fk (z)) = fk-1(߲k(z)) = fk-1(0) = 0 dır. 

f*k(z+Bk(A)) = fk(z) + Bk(A’)   ……..     (1)         olacak şekilde  

f*k : Hk(A)               Hk(A’)  yi tanımlamaya çalışalım. Öncelikle f*k  nın iyi tanımlı olduğu yani 

z+Bk(A) nın gösteriminin bizim seçimimizden bağımsız olduğunu göstermeliyiz. 

z1 א (z+Bk(A)) olduğunu varsayalım. bu durumda (z1-z)אBk(A) dır, böylece z1-z = ߲k+1(c) olacak 

şekilde cאAk+1 vardır. 

Fakat buradan  

fk (z1) - fk(z) = fk (z1-z) = fk (߲k+1(c)) = ߲’k+1(fk+1(c)) dir  

ve bu son terim ߲’k+1[A’k+1] = Bk(A’) nün bir elemanıdır. Böylece fk(z1)א(fk(z) + Bk(A’)) dir.  

Böylece Hk(A) = Zk(A) / Bk(A) da ki aynı cosetin iki temsilcisi  

Hk(A’) = Zk(A’) / Bk(A’) da ki sadece bir cosetin temsilcilerine dönüştürüldüler. Bu da  

f*k : Hk(A)             Hk(A’)  nın (1) eşitliğiyle iyi tanımlanmış olduğunu gösterir. 

Şimdi cosetlerin temsilcileri için fk yi alarak f*k hesaplayacağız ve cosetlerin temsilcilerine 

orijinal grubun grup işlemini uygulayarak bir bölüm grubunun grup işlemini tanımlayacağız. fk 

nın Zk(A) üzerine etkisi Zk(A) dan Zk(A’) ne bir homeomorfizm olduğunda, f*k Hk(A) dan Hk(A’) 

ne bir homeomorfizm olduğu elde edilir.  

f, ߲ ve ߲’ dönüşümlerinin koleksiyonu, Teorem 4.1.4 de verilen karelerin değişmeli olması 

özelliğini sağlıyorsa f ߲ ile değişmelidir. 
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Bir tane daha tanımdan sonra, Teorem 4.1.4 ün görünüşte aşikâr olan ama oldukça önemli olan 

bir gösterimini vereceğiz. 

4.1.5.Tanım: her k için A’k Ak nın bir alt grubu ve her cאA’k için ߲’k(c)=߲k(c) ise bir <A’,߲’> 

zincir yapısı <A,߲> nın zincir yapısının bir alt yapısıdır. 

Yani ߲’k ve ߲k , Ak nın A’k alt grubunun elemanları üzerinde aynı etkiye sahiptir. 

4.1.6.Örnek: A bir zincir yapısı ve A’ , A nın bir alt yapısı olsun. her cאA’k için ik(c)=c olacak 

şekilde ik:A’k            Ak içine dönüşümlerin bir koleksiyonu i olsun, i nin ߲ ile değişmeli olduğu 

açıktır. Böylece  

i*k : Hk(A’)              Hk(A)  homeomorfizmlerini oluşturduk. Doğal olarak i*k nın Hk(A’) den 

Hk(A) ya izomorfik  bir dönüşüm olduğu düşünülebilir. Ama illaki böyle olması gerekmez. 

Örneğin S2 2-küreyi E3 3-boyutun bir alt yapısı olarak ele alalım. Bu   

İ2 : C2(S2)             C2(E3)  ve i*2 : H2(S2)           H2(E3) yi oluşturur. 

Fakat H2(E3)=0 olduğunda H2(S2)؄Ժ olduğunu gördük. Bu yüzden i*2 nin izeomofik bir 

dönüşüm olması mümkün değildir. 

4.2.Bağlı Homoloji 

A’ , A zincir yapısının bir alt yapısı olsun. Buradan ortaya çıkan topolojik durum bir X simplisel 

yapısının, bir Y simplisel alt yapısını ele almasıdır. Böylece doğal olarak , Ak nın bir A’k alt 

grubunu ele aldığımızdaki cebirsel durumda olduğu gibi Ck(X) in bir alt grubu Ck(Y) yi ele 

alabiliriz. Buradan açıkça  

߲k[Ck(Y)] = Ck-1(Y) elde ederiz. 

Şimdi cebirsel durumla ilgilenelim ve bunun her zaman topolojik duruma uygulanabileceğini 

hatırlayalım.  
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A’ , A zincir yapısının bir alt yapısı olmak üzere Ak/A’k bölüm gruplarının A/A’ koleksiyonunu 

oluşturabiliriz. İddiamız şudur ki A/A’ doğal bir yol ile bir zincir yapısı oluşturur ve ߲’k-1߲’k = 0 

olacak şekilde  

߲’k:( Ak/A’k)               (Ak-1/A’k-1)  

homeomorfizmlerinin bir ߲’ koleksiyonunu göstermeliyiz. Uğraşımız için ߲’k nın tanımı açıktır. 

yani cאAk için 

߲’k:( c+A’k)  = ߲k (c) + A’k-1  

tanımlayalım. Üç şeyi göstermeliyiz; ߲’k nın iyi tanımlı olduğunu , bir homeomorfizm olduğunu  

ve  ߲’k-1߲’k = 0 olduğunu.  

İlk olarak ߲’k nın iyi tanımlı olduğunu göstermek için c1א(c+A’k) olsun , bu durumda  

(c1-c)אA’k buradanda ߲k(c1-c)אA’k-1 dır. ayrıca  

߲k(c1)א(߲k(c)+A’k-1 dir.  

Buda ߲’k nın iyi tanımlı olduğunu gösterir.  

߲’k(( c1+A’k)  + (c2 + A’k))= ߲’k(( c1+c2 )+ A’k) 

                                           = ߲k( c1+c2 )+ A’k-1 

                                           =(߲k(c1)+߲k(c2 ))+ A’k-1 

                                           = ߲’k( c1+A’k)  +߲’k(c2 + A’k) 

eşitliği ߲’k nın bir homeomorfizm olduğunu gösterir.  

Son olarak;  

߲’k-1(߲’k(c+A’k))  = ߲’k-1( ߲k(c ) + A’k-1) 
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                              = ߲k-1( ߲k(c ))+ A’k-2 

                              = 0 + A’k-2  

Buradan da  ߲’k-1߲’k = 0 olduğunu buluruz. 

Buraya kadar bahsedilen ifadeler homolojiksel cebirciler için; nasıl ki size tamsayılarda toplama 

ve çarpma rutin işlemlerse onlar içinde tipik rutin hesaplamalardır. Boyutu araştırmada biraz 

dikkatli olunmalıdır, yani çıkarımların araştırmasında dikkat edilmelidir. 

Aslında, homolojiksel cebirde uzman olan birisi genellikle bu tanımların çoğunu yazmaz ama 

her zaman hangi gruplarla çalıştığını bilir. Biz bütün tanımları vereceğiz böylece hangi 

grupların ele alındığını takip edebilirsiniz. Yukarıdaki işlemleri bir teoremle özetleyebiliriz.  

Teorem4.2.1:  A’ , A  zincir yapısının bir alt yapısı olsun. her cאAk için  

߲’k (c+A’k) = ߲k(c) + A’k-1  

İle tanımlı ߲’k homeomorfizmlerinin ߲’ koleksiyonu ile birlikte Ak/A’k bölüm gruplarının A/A’ 

koleksiyonuda bir zincir yapısıdır. 

A/A’ bir zincir yapısı olduğundan Hk(A/A’) homoloji gruplarını oluşturabiliriz. 

4.2.2.Tanım: Hk(A/A’) homoloji grubu A’ modül A nın k. bağlı homoloji grubudur. 

Y nin bir X simplisel yapısının alt yapısı olduğu topolojiksel durumumuzda,  topolojistlerin 

genel gösterimine uymalıyız ve C(X) zincir yapısının C(Y) alt yapısında oluşturulan k. bağlı 

homoloji grubunu  “Hk(X,Y)”  ile gösterelim. Y nin bütün zincirleri böylece {0} tek noktalı 

kümesine eşittir. Geometrik olarak bu ifade Y nin bir noktaya çökmesidir. 
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4.2.3.Örnek:                            p3 

                      

                                                 ๸ 

                   

                      p1                                            p2                 

şekildeki üçgenin kenarlarında (içi hariç) oluşan simplisel yapı  ve Y de p2p3 kenarından oluşan 

alt yapı olsun H1(X)؄H1(S1)؄Ժ olduğunu görmüştük.   

p2p3  ü bir noktaya dönüştürmek  

        

            p1                                         p2=p3  

 

olduğundan üçgenin eğimli yapısı bozulmuş olur. 

Sonuçta yine de S1 ile topolojik olarak aynıdır. Böylece yine H1(X,Y)؄Ժ olmasını umabiliriz.  

C1(X) için üreteçler p1p2 , p2p3 , p3p1 dir. p2p3 אC1(Y) olduğundan C1(X)/ C1(Y) nin üreteçlerinin 

p1p2 +C1(Y) ve p3p1 +C1(Y) olduğu görülür. Z1(X,Y) yi bulmak için p1 ,p2 , p3 אC0(Y) olduğundan  

߲’1(n p1p2 + mp3p1 + C1(Y)) = ߲1(n p1p2)+߲1(mp3p1)+ C0(Y)  

                                               = n(p2 – p1)+m(p1 – p3)+ C0(Y) 

                                               = (m - n)p1+ C0(Y) 

hesaplarız. Böylece bir çember için m=n olmalıdır, buradan Z1(X,Y) nin bir üreteci  

 (p1p2 + p3p1)+ C1(Y) dir. 

B1(X,Y)=0 olduğunda H1(X,Y)=Ժ olduğunda görülür. 

p1+ C0(Y) , Z0(X,Y) ürettiğinden ve  
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߲’1( p2p1+ C1(Y)) = (p1 - p0) + C0(Y) = p1 + C0(Y) olduğundan H0(X,Y)=0 olduğunu görürüz.  

Bu bağlantılı simplisel yapılar için 0 boyutlu bağlı homoloji gruplarının karakteristik özelliğidir.  

4.2.4.Örnek: E2 nin bir alt yapısı(sınırı) olarak S1 i ele alalım. Ve H2(E2,S1) i hesaplayalım. E2 

nin bir dairesel disk olduğunu hatırlayalım. Böylece aşağıdaki gibi S1 onun bir sınırı olarak da 

düşünülebilir.  

                                                                         S1  

                                                      

 

                                                  E2 

 S1 in bir noktaya çökmesini canlandırmak için dairesel bir parça kumaşın etrafını bir 

iple çevreleyip ipi çekebiliriz böylece çemberin eğimli yüzü bir noktaya toplanır. Elde edilen 

uzay kapalı bir kese ya da S2 dir. böylece H2(E2)=0 olduğunda E2 bağlantılı uzay olduğundan 

H2(E2,S1)=Ժ olmasını umabiliriz. 

 Hesaplamanın amaçları için E2 topolojik olarak yukarıdaki içi dolu p1p2 p3 üçgensel 

alanını ve S1 i de üçgenin dairesel çerçevesi olarak olarak kabul edebiliriz. Bu durumda  

C2(E2,S1) , p1p2p3 +C2(S1) ile üretilmiştir. Ve  

߲’2( p1p2p3+ C2(S1)) = ߲’2( p1p2p3)+ C1(S1)  

                                 =(p2p3 - p1p3 + p1p2 ) + C1(S1) 

Fakat (p2p3 - p1p3 + p1p2 ) א C1(S1) dir , böylece  

߲’2( p1p2p3+ C2(S1)) =0 elde ederiz. Buradan p1p2p3+ C2(S1) , Z2(E2,S1) in bir elemanıdır. 

B2(E2,S1)=0 olduğundan, beklediğimiz gibi H2(E2,S1)؄Ժ elde ederiz.  
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4.3.Bir Çiftin Tam homoloji Dizisi 

Şimdi bir çiftin tam homoloji sınıfını tanımlayıp bir örnek vereceğiz. Hesaplamaların bütün 

ayrıntılarını göstereceğiz, çünkü hesaplamalar açık ve doğrudandır. Önemli bütün tanımları 

verip konuyu bitireceğiz.  

4.3.1.Önerme: A’ bir zincir yapısı olan A nın bir alt yapısı olsun. J de 

 Jk : Ak             (Ak/A’k)  

doğal homeomorfizmlerinin bir koleksiyonu olsun. bu durumda Jk-1߲k = ߲’kJk dır, yani J ile ߲ 

değişmelidir. 

4.3.2.Teorem: Yukarıdaki Jk dönüşümü bir doğal homeomorfizm olan  

J*k : Hk(A)             Hk(A/A’)  yı üretir. 

İspat: önerme 3.11 ve teorem3.4 den kolayca elde edilir.  

A’ bir zincir yapısı olan a nın bir alt yapısı olsun. hא Hk(A/A’)  olmak üzere zא Zk(A/A’) için h= 

z + Bk(A/A’) dür ve herhangi bir cאAk için z= c + A’k  olur. 

(dikkat edilirse gösterimlerin uygun iki seçimiyle birlikte h den c ye ulaştık.) Böylece ߲’k(z)=0 

dır, bu da  ߲k(c)אA’k-1 olmasını gerektirir. Bu da ߲k-1߲k = 0 olmasıyla birlikte ߲k(c)אZk-1(A’) 

olduğunu gösterir. 

߲*k (h) = ߲k(c)+Bk-1(A’) olacak şekilde  ߲*k : Hk(A/A’)            Hk-1(A’) yü tanımlayalım.߲*k  nın bu 

tanımı oldukça karmaşık gözükmektedir. Bunu şu şekilde düşünelim Hk(A/A’) nün bir 

elemanıyla başlayalım. Böyle bir eleman bir bağlı k-devir A’ modül ile gösterilir. Bunun bir 

bağlı k-devir A’ modül olduğunu söylemek sınırının A’k-1 de olduğunu söylemek demektir. Bu 

elemanın sınırı A’k-1 de ve Ak de bir şeyin sınırı olduğu için bu sınır A’k-1 de bir (k-1)-devir 

olmalıdır. böylece hא Hk(A/A’) ile başlayarak Hk-1(A’) de bir homoloji sınıfını gösteren bir (k-1)-

devire ulaşmış olduk. 
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4.3.3.Önerme: şimdi tanımladığımız ߲*k : Hk(A/A’)                Hk-1(A’) dönüşümü iyi tanımlıdır 

ve Hk(A/A’)  den Hk-1(A’) ne bir homeomorfizmdir. 

İ*k örnek 3.6 deki dönüşüm olsun. bu durumda aşağıdaki diyagramı oluştura biliriz. 

… 
        డכೖశభ       
ሱۛ ۛۛ ۛۛ ۛۛ ሮۛ Hk(A’) 

        ௜כೖ       
ሱۛ ۛۛ ۛۛ ሮ Hk(A) 

        ௝כೖ       
ሱۛ ۛۛ ۛۛ ሮۛ Hk(A/A’) 

     డכೖ      
ሱۛ ۛۛ ۛሮ Hk-1(A’) 

      ௜כೖషభ     
ሱۛ ۛۛ ۛۛ ሮۛ Hk-1(A) 

      ௝כೖషభ     
ሱۛ ۛۛ ۛۛ ሮۛ Hk-1(A/A’) 

     డכೖషభ    
ሱۛ ۛۛ ۛۛ ሮ … (1) 

4.3.4.Önerme: (1) diyagramındaki gruplar verilen dönüşümlerle birlikte bir zincir yapısı 

oluştururlar. 

Bu önermenin ispatı için sadece ardışık iki dönüşümün dizisinin her zaman 0 olduğunu 

göstermek her zaman yeterlidir.  

Yukarıda ki diyagram bir zincir yapısı oluşturduğundan bu zincir yapısının homoloji gruplarını 

araştırabilir miyiz? Bu sorudaki cevabın aslında oldukça kolay olduğunu biz biliyoruz. Bu zincir 

yapısındaki bütün homoloji grupları 0 dır. böyle bir zincir yapısının ilgi çekici olmadığını 

düşünebilirsiniz. Tam aksine bu tarz bir zincir yapısının özel bir adı dahi vardır.  

4.3.5.Tanım:  Bir zincir yapısı oluşturan Ak gruplarının ve ߲k homeomorfizmlerinin bir dizisine 

, zincir  yapısındaki bütün homoloji grupları 0 ise , yani her k için ߲k altındaki görüntü ߲k-1 in 

çekirdeğine eşit oluyorsa bir tam dizi denir. 

Tam dizilerin topolojide büyük önemi vardır. bunların bazı temel özelliklerini vereceğiz. 

4.3.6.Teorem: (1) diyagramındaki zincir yapısının grupları ve dönüşümleri bir tam dizi 

oluştururlar. 

4.3.7.Tanım:  (1) diyagramındaki tam diziye (A,A’) çiftinin tam homoloji dizisi denir. 

4.3.8.Örnek: teorem 4.3.6 nın topoloji uygulamasına bir örnek verelim. İspatsız olarak, 

Hn(,Sn)؄Ժ ve H0(,Sn)؄Ժ dir fakat k≠0,n olduğunda Hk(Sn)؄0 olduğuna değinmiştik. Ayrıca En 
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bağlantılı olduğunda k≠0 için Hk(En)؄0 olduğunuda ispatsız olarak vermiştik. En için ele alalım 

Sn için sonuca varalım.  

Sn , simplisel yapı olan En+1 in bir alt yapısı olarak ele alabiliriz; örneğin En+1 topolojik olarak 

bir (n+1)-simpleks  e denktir ve Sn topolojik olarak sınırına denktir. (En+1,Sn) çiftinin tam 

homoloji dizisini oluşturalım. 1≤k≤n için  

Hn+1(Sn) 
      ௜כ೙శభ     
ሱۛ ۛۛ ۛۛ ሮۛ Hn+1(En+1) 

      ௝כ೙శభ     
ሱۛ ۛۛ ۛۛ ሮۛ Hn+1(En+1,Sn) 

     డכ೙శభ    
ሱۛ ۛۛ ۛۛ ሮۛ 

   =0                         =0                          ؄Ժ  

Hn(Sn) 
      ௜כ೙     
ሱۛ ۛۛ ሮۛ Hn(En+1) 

      ௝כ೙     
ሱۛ ۛۛ ሮۛ Hn(En+1,Sn) 

     డכ೙    
ሱۛ ۛۛ ሮۛ…

      ௝כೖశభ     
ሱۛ ۛۛ ۛۛ ሮۛ 

 =0                   =0                        =0  

Hk+1(En+1,Sn) 
      డכೖశభ     
ሱۛ ۛۛ ۛۛ ۛሮ Hk(Sn) 

      ௜כೖ     
ሱۛ ۛۛ ሮۛ Hk(En+1) 

     ௝כೖ    
ሱۛ ۛۛ ሮ…      (2) 

       =0                          =?                  =0  

dir. En+1 in bağlantılı olmasından k≥1 için Hk(En+1)=0 elde edilir. Bunu diyagram (2) den elde 

ettik. En+1 bir (n+1)-simpleks ve Sn sınırı olmak kaydıyla k≤n için Hk(En+1,Sn)=0 dır. bunu da 

yine diyagram (2) den elde ettik. 

Örnek 4.3.8 de olduğu gibi bir üretilmiş homoloji sınıfı  

p1p2 …pn+2 + Cn+1(Sn) temsilcisini içererek Hn+1(En+1,Sn)؄Ժ olduğu gösterilebilir. 

1≤k<n için diyagram (2) nin son satırındaki tam diziden Hk(Sn)=0 olduğunu ve Hk(En+1)=0 dan 

(çekirdek i*k ) = Hk(Sn) olduğunu görürüz. Fakat Hk+1(En+1,Sn)=0 olduğunda (görüntü ߲*k+1) = 0 

olur . Tamlıktan dolayı (çekirdek i*k )= (görüntü ߲*k+1) dir böylece  

1≤k<n için Hk(Sn)=0 dır.  

Aşağıdaki zincir kurallarında Hn(Sn)؄Ժ olmasını doğurur. Yukarıdaki diyagram (2) ile ilişkili 

olarak 
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1. Hn+1(En+1)=0 olduğundan (görüntü j*n+1) = 0 dır. 

2. Tamlıktan dolayı (çekirdek ߲*n+1 )= (görüntü j*n+1)=0 olur yani ߲*n+1 bir izomorfik 

dönüşümdür. 

3. Böylece (görüntü ߲*n+1)؄Ժ dir. 

4. Hn(En+1)=0 olduğundan (çekirdek i*n ) = Hn(Sn) dir.  

5. Tamlıktan dolayı (çekirdek i*n )= (görüntü ߲*n+1) ve böylece Hn(Sn)؄Ժ dir. 

Böylece 1≤k<n için Hn(Sn)؄Ժ ve Hk(Sn)=0 olduğunu gördük. Sn bağlantılı olduğundan 

H0(Sn)؄Ժ dir. bu sonuca  

H1(En+1,Sn) 
      డכభ     
ሱۛ ۛۛ ሮۛ H0(Sn) 

      ௜כబ     
ሱۛ ۛۛ ሮۛ H0(En+1) 

     ௝כబ    
ሱۛ ۛۛ ሮH0(En+1,Sn) 

       =0                                               ؄Ժ                      =0  

tam dizisinden de ulaşılabilir.    
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