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TESEKKUR
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oldugunun yorumlanmasinda emegi gecen Erciyes Universitesi Tip Fakiiltesi

Kardiyoloji Béliimii doktoru Sayin Saban KELESOGLU’ na tesekkiirlerimi sunarim.



EKG SINYALLERININ DOGRUSAL OLMAYAN SUZGECLER
YARDIMIYLA GURULTUDEN ARINDIRILMASI

Selcuk METE
Erciyes Universitesi, Fen Bilimleri Enstitiisii
Yiiksek Lisans Tezi, Aralhik 2009
Tez Damisman: Doc. Dr. Saban OZER

OZET

Biyomedikal sahada farkli cesitte bir¢ok sinyal mevcuttur. Bu sinyaller uzmanlara
hastaliklarin yorumlanmasi esnasinda hayat kurtarici bilgiler verirken ayni zamanda
diger sinyaller i¢in dogal giriiltii teskil etmesi sebebiyle hastalara ait teshislerin
konulmasinda zorlastirict bir faktdr olarak ortaya c¢ikabilmektedir. Ornek olarak,
kaslarin elektriksel aktivitelerinin dalgasal formu olarak meydana gelen kas sinyali
(EMG-Elektromiyogram) EKG (Elektrokardiyogram) sinyaline giiriiltii olarak
karigmaktadir. Bu dogal bozulma genellikle beyaz Gaussian girilti ile
modellenmektedir. Fakat gercek kas sinyalleri diirtii giirtiltiisiine benzer keskin ve
duragan olmayan karakterli davraniglar sergiledikleri i¢in Gaussian model yetersiz
kalmaktadir. Bunun oniine gecilebilmesi i¢in kas sinyalinin en iyi tanimlayabilecegi a-

bagimli giiriiltii ile modellenmesi gerekmektedir.

Yapilan bu ¢alismada EKG sinyaline karisan kas giiriiltiisii (EMG), dogrusal olmayan
adaptif agirliklandirilmis Myriad ve Median siizge¢ ile dogrusal adaptif FIR silizgeg
kullanilarak bastirilmis ve basarimlar1 karsilastirllmigtir.  Bu maksatla  yiiksek
coziinlirliklii EKG isaretine ger¢ek zamanli olarak kaydedilen EMG isareti ve a-
bagimli yayilim ile modellenen yapay EMG isareti ayr1 ayri eklenmis ve bu
durumlardaki siizge¢ performanslart incelenmistir. Yapilan benzetim ¢aligmalarina gore,
Myriad siizge¢ yapisinin, Median ve FIR siizge¢ yapisina gore daha iyi performans

sergiledigi gozlenmistir.

Anahtar Kelimeler: EKG, EMG, a-bagimh giiriiltii, Myriad siizgeg, Median siizgeg,
FIR stizgeg, agirliklandirilmis Myriad siizgeg, agirliklandirilmig Median siizgeg.



DENOISING ECG SIGNALS BY USING NONLINEAR FILTERING
METHOD

Sel¢uk METE
Erciyes University, Graduate School of Natural and Applied Sciences
M.Sc.Thesis, December 2009
Thesis Supervisor: Assoc. Prof. Saban OZER

ABSTRACT

Many different kinds of signal exist in biomedical environments. These signals give
vital information about the interpretation of the disorders but at the same time these
signals arise as a compulsive factor in diagnosis due to its natural noise function for
other signals. For instance, a wave formed electrical activity of muscles EMG
(Electromyogram) blends ECG (Electrocardiyogram) as a noise. This natural distortion
is usually modeled with a white Gaussian noise. But such assumption is not always true
because real life muscle noise has sometimes edged and non-stationary character like an
impulsive noise. In order to eliminate these problems, muscle signal have to be modeled

with a-stable noise which is the best identification.

In this paper, the muscle noise blended into EKG signal, is suppressed and performed
using non-linear adaptive weighted Myriad and Median filters with linear adaptive FIR
filters. With this objective; to high resolution ECG signal, real time recorded EMG
signal and artificial EMG signal modeled with a-stable distribution are added relatively.
Moreover, filter performances in this case are analyzed. Through simulation studies, it
is observed that Myriad filter model has preferable performance according to Median
and FIR filter models.

Keywords: ECG, EMG, o-Stable Noise, Myriad filter, Median filter, FIR
Filter,Weighted Median Filter, Weighted Myriad Filter.
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1.BOLUM
GIRIS

1.1. Giris

EKG (Elektrokardiyografi) isaretleri, kalp hastaliklarinin izlenmesi siirecinde siirekli
kaydedilerek degerlendirilmeleri, uygun tani ve tedavinin belirlenmesi ve uygulanan
tedavinin izlenmesi, olusabilecek anormalliklerin ve komplikasyonlarin belirlenmesi

acilarindan oldukc¢a 6nem tasimaktadir.

Biyomedikal sinyaller kaydedilirken bir¢cok giiriiltii ortaya cikabilir ¢linkii ortamda
cesitli giiriiltiiler mevcuttur ve EKG sinyali cogu zaman bu giiriiltiilerle bozulabilir.
Tan1 konulmasinda yanligliklara neden olmamak i¢in bu giiriiltilerin EKG sinyalinden
arindirilmas1 gerekmektedir. Bu giirtiltiilere 6rnek olarak; iletim hatlarindaki kayiplar,
50 Hz’lik sebeke gerilimi, EMG (Elektromiyografi) isareti verilebilir. Aslinda
giiriiltiilerin ¢cogu kararli degildir. Yani giiriltiiniin cesitliligi ile o6l¢iilen giirtiltii giicli

degisiklik gosterebilir [1].

Istatistiksel isaret isleme problemlerinde, en iyi ¢dziimii elde etmek igin genel yaklagim,
probleme ait belirli isaret ve giiriiltii modellerinin olusturulmasi seklindedir. Ancak bu
yaklagim kullanilarak elde edilen en iyi ¢o6ziimde kii¢iik sapmalar g6z ardi edilmektedir.
Klasik istatistiksel isaret isleme teorisinde istatistiksel karakteristiklerin
modellemesinde Gauss modeller siklikla kullanilmaktadir. Gauss model bazi gergek
diinya islemleri i¢in gecerli olmaktadir. Ancak, gercek hayatta bircok Gauss olmayan

durum meydana gelmektedir. Ornegin, fiziksel islemlerin biiyiik bir kism1 dogada diirtii



seklinde olup Gauss olmayan dagilimlarla daha kesin bir sekilde modellenebilmektedir.
Diirtii isaretleri ve giriiltiileri, bir veri dizisi igerisinde, keskin, sivri veya arada sirada

olusan durumlar seklinde karakterize edilmektedir [2]

Kas giirtiltiisii (EMG), EKG sinyaline karigan ve bastirilmasi gereken en zor giiriiltiidiir.
EMG sinyalleri, genellikle Merkezi Limit Teorisi temel alinarak beyaz Gauss giiriiltii ile
modellenmektedir. Fakat kas giirtiltiisii ¢ogunlukla keskin ve diirtii seklinde meydana
geldiginden Gauss model yetersiz kalmaktadir. Ayrica, Gauss olmayan giiriiltiili
durumlar Gaussian modellerle optimize edildiginde performans diismesi meydana
gelmektedir. Son yillarda, diirtii giiriiltiilii sinyallerin tam bir modeli olarak a-bagimli
dagilima dayal giiriiltii kabul edilmektedir. Bu sebeple kas giiriiltiisiinii a-bagiml

dagilim ile modellemek gerekmektedir [3].

Eger giriiltii ile EKG sinyalinin frekans bandi ayni ise band gegiren siizgecler gibi
geleneksel siizgegleme yontemleri kullanilamamaktadir. Bu gibi durumlarda, dogrusal
olmayan slizgeclemeye dayali giiriiltii giderme yontemleri dogrusal siizgecleme
yontemlerine gore giirilti arindirmada daha basarihidirlar [4]. Bu sebeple diirtii
giiriiltiisii dogrusal olmayan siizgeglerle bastirilabilir. Bu siizge¢ yapilarindan olan
Agirliklandirilmis Myriad ve Median silizgegler son zamanlarda diirtii giirtiltiilii

durumlarda giiclii slizgecleme basarimina sahip olduklar1 i¢in siklikla kullanilmaktadir
[5,6].

1.2. Literatiir incelemesi

Sistemlerin modellenmesinde iki tiir yontem mevcuttur, bunlar; dogrusal ve dogrusal
olmayan modellerdir. Sistemin giris-¢ikis iliskisinin dogrusal esitliklerle ifade edildigi
dogrusal modelleme, teorik altyapisinin gelismis olmasindan yaygin bir sekilde
kullanilmaktadir [7,8]. Gauss’un 1809°da [9] baslattig1 arastirmalar sonucunda sistem
modelleme kavrami ilk kez 1962°de Lotfi Zadeh tarafindan kullanilmis ve Zadeh bu
kavrami1 “Bir sistemi, giris ve ¢ikis iliskilerinden belirlemek™ seklinde tanimlamistir
[10]. Dogrusal sistemlerin kimliklendirilmesi igin autoregressive (AR), moving average

(MA) ve autoregressive moving average (ARMA) modeller kullanilmistir[11,12].



Biyomedikal c¢evrede, EMG sinyallerinin analizinde bu modellerle ilgili detaylh

caligmalar yapilmistir.

1975 yilinda, Graupe ve Cline [13] EMG sinyallerini ARMA modeli ile
kimliklendirmistir. Graupe ve Cline’nin deneysel sonuglart EMG’ nin kisa zamanl
araliklarda degisken olarak diisiiniilebilecegini gostermistir. Sherif [14] 1980°de bu
modeli yenilemistir. Clinkli medikal deltoid’in elektriksel davranislar1 degisken degildir.
Sherif bilimsel incelemesinde EMG’ nin degisken 6zelligi iizerinde durmus ve AR
model kullanarak ARIMA (Integrated Moving Average) modeli bulmustur. Bu sayede

kas aktivitesinin farkli asamalarinda EMG’ nin degisken dogasini karakterize etmistir.

Doerschuk 1983 yilinda [15] Graupe ve Cline’nin karsilastigi benzer problemle
karsilagsmistir; bu ise protez araglarin kontroliinde ¢oklu EMG sinyallerinde AR
modelinin kullanilmasidir. 1986 yilinda, Zhou [16], ertelenmis kas i¢ci EMG
sinyallerinin, giris olmasi ile birlikte EMG’yi AR modeli olarak gostermistir. ‘Doku
slizgeci’ olarak adlandirilan model, yiizeysel EMG’den kas i¢ci EMG ‘nin formuna
baglidir. Ayrica kas i¢i sinyalleri ylizeysel sinyallere doniistiiren zaman serisi
parametreleri de tanimlanmistir. Tanimlanan model yiizeysel sinyalden kas i¢i sinyalleri
hesaplamada kullanilir. Bu model gergek EMG dalga formlarini kullanarak agiklamistir.
Hefftner 1988 yilinda [17] daha 6nceki modelleri degerlendirmis ve EMG sinyal analizi
icin AR modelini segmistir. Bernatos 1986 yilinda [18] ARMA ile birlikte istatistiksel
dogrusal olmayan bir model kullanmigtir .1992 yilinda, Tohru, ARMA ve ARIMA gibi
daha kusursuz modellerde, dinamik kas hareketlerinin gerekli olmadigi kanisina
varmiglardir. ARIMA modelinin 6l¢iim maliyeti yiiksek ve model sirasinin belirlenmesi
karisik ve bazen de zordur. Tohru [19] tarafindan benzetimde problem olan &lgiim

maliyetinden dolay1 AR modeli se¢mistir.

Halbuki ger¢ek hayatta karsilasilan birgok sistem dogrusal olmayan davranislara
sahiptir. Bu tiir sistemlerin kimliklendirilmesinde dogrusal modelleme yontemleri
yetersiz kalmakta ve Volterra, Bilinear ve polynomial autoregressive (PAR) gibi
dogrusal olmayan modelleme yontemlerinin kullanilmasi gerekmektedir [20,21].
Dogrusal olmayan modellemede, sistemin giris-¢ikis iligkisi, diferansiyel denklemler,

istel ve logaritmik fonksiyonlar gibi dogrusal olmayan matematiksel ifadelerlerle



saglanir. Biyomedikal sahasindaki arastirmalarda Volterra [22-31], Bilinear [32-41] ve
PAR [42,43] modellerinin fazla gelisim gOsterememesi Ve bazi Siirlamalarinin

olmasindan dolay1 ¢ok fazla kullanilmamaktadir.

Pratik uygulamalarda kullanilan siizgecleme algoritmalarinin biiylik bir cogunlugu,
diirti yogunlugunda ciddi performans kayiplar1 gosteren Gaussian giiriiltii veya
dogrusal islemlerle smirlidir. Biyomedikal sahada EMG gibi ani degisen diirtii
sinyallerine uygulanabilen giiclii dogrusal olmayan siizgecler i¢in esnek bir teori
ihtiyac1, biyolojik goriintii isleme sahalarmda da ortaya ¢ikmistir. Onemli arastirma
cabalar1, ozelliklede goriintii isleme alanlarinda, ani giiriiltiilere kars1 giiclii ve direngli
olan dogrusal slizgeglere uygun alternatifler bulmaya odaklanmistir[44]. Bu arastirmalar
adaptif sistem modellemesinin kesfiyle baglamistir, adaptif sistem modelleme 1975
yilinda Widrow tarafindan En Kii¢iik Ortalama Kareler (Least Mean Square-LMS)
algoritmasi ile baslamigtir [45]. LMS algoritmasi, ilk olarak 1985 yilinda Koh ve
Powers tarafindan dogrusal olmayan sistemlerin kimliklendirilmesinde kullanilmistir
[46]. Adaptif sistem modellemede I¢sel En Kiigiik Kareler (Recursive Least Square-
RLS) algoritmasinin gelistirilmesi ile LMS algoritmasinin sonuca yakinsamadaki
yavagligt asilmis ve daha sonralart Mathews tarafindan dogrusal olmayan sistemler igin
hizli RLS algoritmasi gelistirilmistir [47,48]. Medikal alanda EKG isareti i¢in dogal
diirtii giirtiltiisti teskil eden EMG sinyalinin giderilmesinde, Widrow oOnciiliigiinde

kullanilan adaptif siizge¢ yapilar1 [49-74] zaman i¢inde geligmistir.

Diirtli giiriiltiilii sinyalleri en iyi modelleyen yontem olarak a-bagimli yayilim kabul
edilmektedir. Ciinkii diirtii giirtiltiisii i¢erisinde Laplacian veya Gauss dagilimlar
bulundurabilmektedir. a, (0< a <2) yayilimin en 6nemli parametresi olan karakteristik
katsayisidir ¢linkii o, yayilim kanallarinin agirligini kontrol etmektedir. (0< a <2) i¢in, o
bagiml rastgele degiskenlerin sonsuz degiseni bulunmaktadir. o=1 oldugu durumlarda
Cauchy dagilim ozelligi go6zlemlenirken, o=2 durumunda ise Gauss dagilim
gozlemlenmektedir. Myriad ve Median siizge¢ yaklasimlart son yillarda, a-bagimh
glirtiltii ortamlar i¢in giiclii siizgec yapilar olarak kullanilmaktadir. Bu siizgec yapilar
haberlesme, isaret ve goriintii isleme alanlarina basartyla uygulanmistir [75]. Median ve
Myriad stizgecler ilk tasarlandiklarinda algak gegiren siizgeg tipinde giiriiltii giderme

Ozelligine sahiptiler [76,77]. Son zamanlarda bu siizgeglere negatif agirliklandirma



ozelligi kazandirilarak daha giiglii siizgecleme karakteristigi eklenmistir [78-81]. Bu
sayede siizgecler alcak geciren,yiiksek geciren, band durduran, band geciren

davraniglar1 da sergileyebilmektedir.

1970 yilinda Tukey tarafindan ortaya konulan median siizge¢, goriintiiler iizerindeki
diirtii giirtiltilerinin giderilmesinde etkili bir yontem olarak kullanilmis ve giiniimiize
kadar gelmistir. Bu slizge¢ sirali istatistik [82] temeline dayanmaktadir. Median siizgeg
zaman i¢inde gelistirilerek ¢esitli tiirleri sirasiyla ortaya c¢ikmistir bunlar;
agirliklandirilmis median (Weighted Median-WM) [83], merkezi agirliklandirlmis
median (Central Weighted Median-CWM) [84], son olarak Un ve Neuvo [85] ile
Florencio ve Schafer [86] tarafindan ortaya konulan anahtar temelli median (Switched

Median-SM) siizgeclerdir.

Mpyriad siizgeg elektronik sistemler iizerinde, giliglii diirtii giiriiltiisii bastirma 6zelligine
sahiptir. 2000 yilindan bugiine kadar Myriad siizgeg; sinyal islemleri [87], dijital video
[88], endiistriyel kontrol sistemleri [89], goriintii siizme islemleri [90] ve EKG
sinyalinden diirti  giiriiltiilerinin ~ giderilmesi gibi farkli alanlarda basariyla
uygulanmistir. Myriad siizgecin en 6nemli avantaji; Gauss yayilim olmayan giirtltiilii
isaretlere, Ozellikle anlik degisim gosteren tetiklemeli giiriiltillere karst sistem
parametrelerini dogru kestirebilmesidir. Ayrica lineerlik katsayisina sahip olmasi,
giiriltii giderme isleminde Median siizgece gore daha basarili olmasini1 saglamaktadir.
EKG sinyaline diirtii giirtiltiisii olarak karisan EMG sinyallerinin bastirilmasinda Pander
tarafindan gelistirilen agirliklandirilmig Myriad siizgeg (Weighted Myriad Filter-WMF)
[91-94] uygulamalari etkin olarak kullanilmaktadir.

Raphisak ve Schuckers [95] goriintii isleme alaninda siklikla kullanilan Morfolojik
siizgeci EKG isaretine karisan EMG sinyalini tespit etmek ve siizmek i¢in kullanmustir.
Bu tip siizgegler EMG gibi beklenmeyen yani ani sekilsel degisimler gosteren sinyalleri
stizgegleyebilme yetenegine sahiptir. Siizgeclerde kullanilan algoritma az kompleks
hesaplama yontemleri tercih edildiginden hizli geri bildirimler elde edilebilmektedir.
Chen ve arkadaglar1 [96] ilerleyen zamanlarda QRS tespiti i¢in matematiksel morfoloji
metodunu sunmustur. Daha sonra Sun ve arkadaslari [97] gelismis bir morfolojik

yaklasim ortaya koymustur.



Giiriilti giderilmesinde glin gectikce yeni yaklasimlar ortaya ¢ikmaktadir. Bu yeni
yaklasimlardan biriside Wavelet teoremidir(WT). Waveletlerin Fourier Dontistimleri
Fourier’in 1807 de ortogonal Fourier serilerini tanimlamasiyla baslayan siire¢ icerisinde
yapilan caligmalar, 1873’de Fourier serileriyle bagka bir degere yakinsanamayan bir
fonksiyonun bulunmasina yol agmistir . Bu problem Haar’in 1909°da, herhangi bir f(x)
fonksiyonuna diizgiin dagilimli olarak yakinsanabilecek yeni bir ortogonal seri
olusturmasina yol agmistir. Haar serileri Fourier serilerinde karsilasilan yakinsama
giicliigiinii ¢ozerken, fonksiyonlarda karsilagilan egimlerin ifade edilmesinde yetersiz

kalmaktadir. Ciinkii kii¢iik bir egim ancak c¢ok sayida taban fonksiyonu kullanilarak

ifade edilebilmektedir.

1980’lere kadar matematikciler Haar serilerinde karsilasilan bu sorunu ¢ozmeye

calismislar, 1980’lerin sonlarinda ise “dalgacik” kavramini ortaya atmiglardir.

Dalgacik analizi, bir sinyale ait zaman ve frekansla tanimli bolgelerde yer alan bilgileri
eszamanli olarak gosterdigi icin sinyaldeki egilimleri, ¢Okiim noktalarint ve
stireksizlikleri belirlemek agisindan diger doniisiim tekniklerine gore daha avantajlidir.
Biyolojik isaretlerin analizinde siklikla kullanilan bu analiz yonteminin sahip oldugu en
onemli Ozelligi yiiksek frekanslarda yliksek zaman ve diisiik frekans c¢oziintirligi
saglarken algak frekanslarda yliksek frekans ve diisiik zaman ¢oziintirliigli saglamasidir.
Guglielminotti and Merletti [98] sunu teoriklestirmislerdir; eger wavelet analizi MUAP
(Motor Unit Action Potential)’in seklini eslestirmek i¢in se¢ilmisse, sonug WT’si
zaman diizleminde maksimum enerji lokasyonunu saglar. 1997 yilinda, Lazerta ve
OIlmo WT’ nin dogrusallik, ¢oklu ¢6ziiniirlikk saglama ve karsit terimlerden etkilememe
gibi avantajlariyla diger zaman frekans gostergelerine bir alternatif olusturmustur.
Belirle kosullarda, EMG sinyali tek bir prototipin Olgeklenmis ve ertelenmis bir
versiyonu olarak diisiiniilebilir. Guglielminotti’nin teorisine dayanarak, Lazerta ve
Olmo [99] Wavelet analizini MUAP’ 1n seklini eslestirmede kullanmiglardir. 1999
yilinda, Pattichis [100], WT nin farkli karar asamalarinda sinyalleri analiz etmek i¢in
kullanilabilecegini de gdstermiglerdir. Bu arastirmacilar, Wavelet katsayis1 ve zaman
frekans diizlemi arasinda ki baglantiyr da analiz etmislerdir. 2003 yilinda, Kumar,

WT’nin Wavelet Fonksiyonu(WF) denilen onermesiyle karsimiza c¢ikmistir. WF,



SEMG’ nin zaman domeninde iki boyutlu karsilikli korelasyonu alinarak hem agiklanir
hem de donistiriilir. EKG sinyalinden giiriiltii giderilmesinde yakin zamanlarda
Wavelet modeli [101-89] siklikla kullanilmaktadir.

Nikolaev ve Gotchev [116-120] EKG sinyalinin yiiksek genlikli olmasi sebebiyle EMG
sinyaline karistig1 anda kas sinyalini bozucu yonde etki yaptigini tespit etmistir. Bu

sebeple ECG sinyalinin arindirilmasi igin , Wiener slizge¢ metodunu 6nermislerdir.

Son 10 yilda bagimsiz bilesen analizine (ICA-Independent Component Analysis) dayali
sinyal ayirt etme metodlar1 oldukca kullanigh bir hale gelmistir. Bu nedenle bagimsiz
bilesen analiz, EKG sinyali ile EMG sinyalini [121-125] ayristirmak amaciyla da

kullanilmastir.

Son yillarda yapilan ¢alismalarda dogrusal yada dogrusal olmayan sistemlerin
modellenmesinde ve parametrelerinin belirlenmesinde yapay zekaya dayali yontemler
Oonem tagimaktadir. Sistemlerin modellenmesinde, model yapist ve istatistik degerlerin
(model derecesi,giris ve giiriiltiiniin dagilimi1 vb.) iyi bilinmesi halinde iyi ¢oziimler
sunar .Yapay sinir aglar1 (Artificial Neural Network-ANN)), model yapisinin tam olarak
bilinmesi zorunlulugu ortadan kaldirmaktadir [126]. Miyoelektrik sinyalleri
(Myoelectric Signal) taniyabilen yapay sinir aglarinin gercek zamanl uygulamalart
1994 yilinda Del ve Park [127] tarafindan Onerilmistir. Sinir ag yapisi bazi avantajlar
sunar; hastaya hizli bir sistem uyarlamasi ve sisteme daha iyi bir hasta adaptasyonudur.
1996 yilinda Cheron ve arkadaglari tarafindan ANN temelli yeni bir metod ortaya
konmustur. Bu metod, kol kineomatikleri ile kas EMG aktivitesi arasindaki baglantiyi
ifade etmek i¢in yapay dinamik devirli sinir ag ( Dynamical Recurrent Neural Network)
(DRNN)’lara dayanir. Arastirmacinin amact, bu DRNN ifadesinin biyomekanik olarak
inandiricihigini kanitlamaktir. EMG sinyalleri gibi biyomedikal sinyaller her zaman
tekrarlanabilir degildir ve hatta bazen tutarsiz olabilirler. Bu amagla Kumar [128-130]
EMG sinyaline karisan ECG sinyalini ayirt etmek i¢in yapay zeka temeline dayanan

cesitli yaklagimlar sunmustur.



EMG sinyaline karisan ECG yi gercek zamanli olarak ayirt edebilmek son zamanlarda
ortaya ¢ikan yiiksek siizgegleme basarimi gosteren Hybrid stizge¢ [131-133] metodu

kullanilmaktadir .

1.3. Tezin Amaci

Bu calismada, EKG sinyaline dogal olarak bozucu etkide bulunan kas giiriiltiisii (EMG),
son zamanlarda literatlire yeni katilan dogrusal olmayan sistem modellerinden adaptif
agirliklandirilmis Myriad ve Median siizgecler ile bastirilmigtir. Bu yeni model
yaklagimlarinin performans basarimlarini gézlemlemek i¢in, sonuclar dogrusal adaptif
FIR(Finite Impuls Response) siizge¢ sonuglart ile karsilastirilmistir. Bu amagla, EKG
isaretine gercek zamanli olarak kaydedilen EMG isareti ve a-bagimli yayilim ile
modellenen yapay EMG isareti ayr1 ayri eklenmis ve bu durumlardaki silizgeg
performanslart incelenmistir. Yapilan benzetim c¢alismalarima goére, Myriad siizgeg
yapisinin, Median ve FIR siizge¢ yapilarina gore daha iyi performans sergiledigi

gozlemlenmistir.

Tez calismasi béliimleri su sekilde olusturulmustur: Ikinci béliimde, calismalarda
sistemlere giris verisi olarak kullanilan EKG ve EMG biyomedikal sinyallerinin analizi
hakkinda bilgi verilmistir. Dogrusal olmayan sistem modellerinden Agirliklandirilmis
Median ve Myriad siizgecler ile dogrusal FIR silizgecin 6zellikleri ve bu modellerin
egitiminde kullanilan algoritmalar hakkinda ii¢lincli boliimde bahsedilmistir. Dordiincii
boliimde, Sistem benzetim ¢alismalar1 ve uygulamalara ait sonuglarin karsilagtirilmalari

yapilmistir. Son boliimde ise tez ¢alismasinda ulasilan sonuglar degerlendirilmistir.



2.BOLUM
BiYOLOJIK ISARETLER

2.1. Aksiyon Potansiyeli

Biitiin canli hiicreler gibi kalp hiicrelerinin i¢ ylizeylerinde hiicrenin dis yiizeyi ile
kiyaslandiginda negatif elektrik yiikleri bulunur . Hiicre membranlarinin iki yiizeyi
arasinda olusan bu voltaj farki , membran potansiyeli olarak adlandirilir. Istirahat
membran potansiyeli (Kalp hiicrelerinde eksi 80mV ile 90mV arasindadir), negatif

yiiklii molekiillerin (iyon) hiicre membrani i¢inde birikiminin bir sonucudur.

Hiicreler uyarildiklarinda hiicre memranindaki kiigiik kanalciklar ya da delikler birbirini
izleyerek ardi ardina agilir ve kapanir. Bu kanallarin agilmasi iyonlarin hiicre memrani
boyunca digart ve iceri diizenli bir sekilde hareketine izin verir ve bdylece hiicre
memran potansiyeli degisir. Bu voltaj degisikliklerinin zamana kars1 grafigi ¢izildiginde

kardiyak aksiyon potansiyeli ortaya ¢ikar.

Aksiyon potansiyeli tek bir kalp hiicresinin elektriksel aktivitesinin sekil lizerinde
yansimasidir. Klasik olarak 5 faza ayrilan aksiyon potansiyeli Sekil 2.1°de
goriilmektedir. Aksiyon potansiyelinin anlagilmasinda en fazla yardimci olan 3 genel

faz ; depolarizasyon , repolarizasyon ve istirahat fazlaridir[134].
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Sekil 2.1. Aksiyon Potansiyeli.

Depolarizasyon :

Depolarizasyon fazi (0. faz) akiyon potansiyelinin aksiyon fazidir. Depolarizasyon
hiicre memranindaki hizla ¢alisan Na kanallarinin uyarilarak acilmasiyla olusur. Bu
kanallar acildiginda Na iyonlar1 hiicre i¢inde dolar ve hiicre potansiyelinde hizli ve
pozitif yonde bir degisme olur. Olusan voltaj degisikligi depolarizasyon olarak

adlandirtlir[135,136].

Repolarizasyon:

Bir hiicre depolarize olunca , depolarizasyon sirasinda olusan iyonik girisler geri
doniinceye kadar tekrar depolarize olamaz. Iyonlarm basladiklar1 yere geri dénme
islemi “repolarizasyon” olarak adlandirilir. Kalp hiicresinin repolarizasyonu, aksiyon
potansiyelinin 1, 2 ve 3 . fazlarim olusturur. Repolarizasyon kardiyak aksiyon

potansiyelini, istirahat memran potansiyeline dondiiriir. [137,138]

Istirahat :
Cogu kalp hiicresi i¢in istirahat fazi1 (4. Faz olarak ifade edilen, aksiyon potansiyelleri
arasinda zaman periyodu) pasif bir devredir ve hiicre memranlar1 i¢ ve dis yiizeyleri

arasinda net bir iyon gegisi hareketi yoktur.

Elektrik kokenli biyolojik isaretlerin algilanmasinda kullanilan elektrokimyasal
dontstiiriiciilere, biyopotansiyel elektrot veya sadece elektrot adi verilir.

Viicudumuzdaki biyopotansiyeller, iyon hareketleri sonucunda olusurlar. Elektrotlar da
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iyon akimlarini elektron akimlarina doniistiirerek, kimyasal enerjinin elektriksel
enerjiye doniismesini saglarlar. Elektrotlarin iyon akimini elektron akimina déniistiirme
islemi, elektrotlar elektrolit i¢inde iken, elektroda yakin olan araylizde gergeklesir[139-
141].

2.2. Biyolojik Isaretler

En genel manada isaret, bilgi tasiyan, zamana gore degisen veya degismeyen
bliytikliikler olarak tanimlanabilir. Biyolojik isaret ise canli viicudundan elektrotlar veya
dontstiiriiciiler araciligiyla algilanan, elektrik kokenli olan veya olmayan isaretlerdir.
Biyolojik isaretlerin temelini, hiicrelerdeki elektrokimyasal olaylarin sonucunda olusan

aksiyon potansiyeli olusturur. Sekil 2.2’de biyolojik isaretler gosterilmistir.

Elektrik Koékenli Olanlar Elektrik Ko6kenli Olmavanlar

EKG . JII~'~ ‘l Kan Basinci A

EMG Mw Kalp Sesleri M

EEG et Viicut Sicakhd °C

Sekil 2.2. Biyolojik Isaretler.

Elektrik kokenli isaretler elektrotlar araciligiyla canli viicudundan algilanirlar ve yalitim
oldukga 6nemlidir, genlikleri kiigliktiir; (100 pV ile 1 mV arasinda), spektrumu (0,1 Hz
ile 2000 Hz arasinda) algak frekanslar bolgesinde fark isareti seklinde bulunur. Sekil
2.3’de biyolojik isaretlere ait gerilim ve frekans seviyeleri gosterilmistir. Ayrica
gurtltili isaretlerdir; temel giiriiltii kaynaklari: ortak mod seklindeki 50 Hz’lik sebeke
giiriiltiileri, fark isaret seklinde bulunan diger biyolojik isaret kaynaklar1 ve elektronik

eleman giiriiltiileri olarak siralanabilir.



12

Volt(V)
A

1 —
10 L —_ _
102 DC Potansivel

—TAA
ol R [ V'R
EKG |

10°H | —[—EEG i{
1o¢| L +—EOG

¥ ¥y ¥ L ¥ Y 1 »Frekans(Hz)
0.1 1 10 100 1000 10000

Sekil 2.3. Biyolojik Isaretlere Ait Gerilim ve Frekans Seviyeleri.

Biyolojik isaretlerden , ECG sinyali 0.5Hz ile 100Hz arasinda frekans bandina ve 0OmV
ile 5SmV arasinda genlik degerine sahipken, EMG sinyali ise 50uV ile SmV arasinda
genliklere ve 10Hz ile 1kHz arasinda bir frekans bandina sahiptir[ 142].

Biyolojik isaretler genellikle, yasayan organizmalardan ve c¢ogunlukla insanlardan
alinir. Bu nedenle 6lgme sistemi, Olgiilen sisteme zarar ve aci vermeyecek sekilde
olmalidir. Bu sekilde elde edilecek isaretler direkt olarak kaynaktan degil de, dolayl
olarak viicut ylizeyinden alinacagi i¢in isaretlerin daha zayif ve giriiltiilii olacag:

kesindir.

Isaret, bazen, direkt olarak orijinal bilgi kaynagindan iiretilir ve bu durumda, isarete
bakarak kaynagin yapisi veya isleyisi hakkinda bilgi elde edilebilir. Bazen de elde
edilen isaret, direkt olarak istenen bilgiyi vermeyebilir bu durumda hem isaret iizerinden
isteneni elde edebilmek i¢in hemde yukarida da bahsedilen giiriilti oranin1 azaltmak i¢in

cesitli islemler uygulanir [143].

2.3. Elektrokardiyografinin Tanim ve Onemi

Insan viicudu iizerinden algilanan ve kalbin elektriksel aktivitesinin sonucu olarak

ortaya ¢ikan belli tipteki biyolojik isaretlere elektrokardiyografik (EKG) isaret adi
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verilir. EKG isaretinin gosterilmesini veya  kaydedilmesini saglayan cihazlara
“Elektrokardiyograf” ve EKG ile ilgili sistem ve olgulara da genel olarak
“Elektrokardiyografi” denir.

Kayit edilen EKG’lerin normal EKG’lerle karsilastiriimasiyla, kalbin ¢alismasiyla ilgili
bazi normal dis1 durumlar belirlenebilir. Bir doktorun hastada yapilmasini istedigi temel
Olctimlerden birisi EKG ve kalp vuru hizinin 6lgiimiidiir. EKG’de her kalp atiminin

karsiligi olan P,Q,R,S, T dalgalarindan olusmus bir isaret goriiliir[144].

EKG Isaretlerinin Onemi ; Atrial ve ventrikiler iletim bozukluklar;, Ritim
bozukluklarinin ojininin saptanmasit ve monitorize edlilmesi, Perikarditler, Kalbi
etkileyen sistemik hastaliklar, Kardiyak pacemakerlarin fonksiyonlarinin takibinde

kullanilmasindandir.

2.4. Kalbin Anatomisi ve Calismasi

Kalbin sol tarafinda temiz sag tarafinda ise kirli kan bulunur. Sol karinciktan ¢ikan
temiz kan Aort atar damari ile viicuda besin tasiyip sag kulak¢iga gelir, buradan kan sag
karmciga iner , sag karinciktan alt ve iist ana toplar damarlar ile temizlenmek tizere
akcigerlere gelir oradan da sol kulakg¢iga gelerek sol karinciga gecger ve bdylece

dolasimini tamamlamais olur. Sekil 2.4’de kalp uyar iletim sistemi gosterilmistir.

sag Kulakeils

Siniis Diigiinnil
EKulakalk-EKarmeilk Diiginni

His Demeti ] ¢{
Sag Dah

His Demetinin Sol Dah

ol Karmcik

Sekil 2.4. Kalp Uyari Iletim Sistemi.
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Alt ve iist ana toplar damarlarin sag kulak¢iga agildigi agizlar arasinda yer alan ve kendi
kendine uyarilan 6zel diigiimsii dokuya Siniis Diigiimii (Sino Atrial Node - SA) denir.
Bu diiglimiin karsisinda sag karincigin hemen {stiinde bir diigiim daha vardir. Bu
digiime ise Kulak¢ik Karincik Diigiimii (Atrio Ventrikiiler Node - AV) denir. SA
diigiimiinden uyariyt AV diiglimiine purkinje lifleri ulastirir sonra uyart his demeti ile
yoluna devam eder .His demeti karinciklarda sag ve sol olmak tlizere iki kola ayrilir ve

purkinje lifleri ile biitiin karinciklara dagilir[146].

2.5. Elektrokardiyogram Isaretlerin Olusmasi ve Analizi

Biitiin viicut kaslar1 i¢inde bir tek kalp kasi, otomatik kasilma yetenegine sahiptir.
Kalbin elektrik sistemi, her bir kalp atis1 ile miyokardin ardi ardina kasilmasinin
devamliligin1 saglamak iizere diizenlenmistir. Elektriksel uyar1 AV oluga dogru
kulakg¢iklara yayildiginda kulakgiklar kasilir. AV diigiim tarafindan saglanan gecikme ,
elektriksel uyarilarin karinciklara ulagmasindan once kulakgiklarin  bosalmalarini
tamamlamasina izin verir. Uyar1 akimlar1 AV diiglimi terk eder etmez , purkinje lifleri
yoluyla hizla karincik kasina yayilir ve boylece canlilik i¢in gerekli diizenli karincik
kasilmalar1 saglar.Bu elektriksel diirtiiller viicut yiizeyinin cesitli bolgelerine konan

elektrotlar araciligi ile kayit edilmektedir.

Elektrokardiyogram isareti Sekil 2.5‘de ve EKG temel bilesenleri Sekil 2.6’da
gorilmektedir. Yiiziincii yil {iniversitesinin yaptigi bir aragtirmaya gore [145] sigara
icen ve igmeyen bireylere ( n; verilerin alindigi denek sayisini ifade etmektedir ) ait
EKG isaret bilesenlerinin degerleri Tablo 2.1°de verilmistir. Dalgalar arasindaki
elektrokardiyogram parcasina SEGMENT (Parga), bir dalganin baslangici ile diger
dalganin baslangic1 arasindaki mesafeye ise INTERVAL(Aralik) denir. Dalgalarin,

segmentlerin ve intervallerin siireleri saniye cinsinden ifade edilir.
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Sekil 2.5. EKG Isareti.
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Sekil 2.6. EKG Temel Bilesenleri.

Tablo 2.1. EKG Parametre Karsilastirmasi.

Olgiilen Parametreler Kontrol (Sigara i¢gmeyen) | Deneme (Sigara igen)
grubu (n=10) grubu (n=20)
P (sn) 0.09 £ 0.00 0.09 = 0.00
P (mV) 0.20 £ 0.02 018001
P-R (sn) 0.16 £0.01 0.15+0.00
QRS (sn) 0.08 = 0.00 0.09+0.01
QRS (mV) 0.90 £0.02 0.90 = 0.00
T (sn) 0.21 £0.01 020002
T (mv) 0.40 £ 0.01 0.39+0.01
Q-T (sn) 0.36 £0.02 032001
Kalp Atim Saywist | 62.7 £ 10 90315
(Atm/dk)
Elektiriksel Eksen () +70 £ 10.33 +68 £+ 15.10
Arteriyel Kan Basimnc
(mm/Hg)
Sistolik 1104 +5 128.1 £ 10
Diyastolik 703 +£6 80.3 =10
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2.5.1. Elektrokardiyogram Isaret Bilesenleri

Eksen (Axis):

Eksen, kalbe dogru olan elektriksel giiciin genel yoniidiir.

* Asirt sapmalar normal degildir ve dal blogu (bundle branch block), ventrikiiler
hipertropi veya sagda ise pulmonary embolism oldugunu belirtir[147].

+ Kalbin yiizeyindeki dekstrokardi veya yoniin ters donmesini teshis edebilir. Aslinda

bu durum ¢ok nadirdir ve genelde baska yollarda teshis edilir (goglis rontgeni gibi).

P Dalgas: :

Bu dalga dalga elektrokardiyogamin ilk dalgasi olup Kulakg¢iklarin kasilmasina sebep
olan siniis kaynakli uyarinin atrium i¢inde yayilmasi ile olusur.Siniis diigiimiinden ¢ikan
uyarinin AV diiglimiine ulasmasi i¢in gegen siire P dalgasinin siiresini belirler. P
dalgasinin genligi normalde 0.18 mV ile 0.22 mV arasindadir. Siiresi de yasa gore
degismektedir[141]. Diizenli olmayan veya hi¢ olmayan P dalgalar1 ritm bozuklugunu

gosterir.

Q Dalgasi :

Normal Q dalgasinin gerilim kriteri tizerinde otoriterler arasinda fikir birligi yoktur.Siire
kriteri lizerindeki anlagsmazliklar ise daha azdir. Siire kriterinin , gerilim kriterinden

daha 6nemli oldugu kabul edilir.

QRS Kompleksi :

Sekil 2.5°de goriildiigii gibi Q dalgas1 asagiya dogru olan ilk negatif dalgadir. Q dalgasi,
ortaya c¢iktiginda, kiiclik yatay akimi (soldan saga) temsil eder, ¢iinkii hareket
potansiyeli karinciklar arasindaki bolgede ilerler. Cok genis ve derin Q dalgalarinin
septal baslangic1 yoktur, fakat ¢ok derin miyokardiyum igeren miyokardiyal enfarktiis
belirtir. R dalgas1 yukariya dogru olan ilk dalgadir. S dalgasi ise R dalgasini izleyen ilk
negatif dalgadir. R ve S dalgalar1 miyokardiyum kasilmasini belirtir. QRS kompleksi,
sol ve sag karincigin kasilmasina neden olan akimi belirtir[147]. QRS kompleksindeki

anormallikler tachycardia, ventrikiiler hipertropi ve bazi diger karincik anormalliklerini
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gosterir.  Perikard iltihabinda veya perikard efiizyonunda QRS genligi genelde
kiictktiir.

ST Parcasi:

QRS kompleksinin sonu ile T dalgasinin baslangict arasndaki boliime ST pargasi denir.
ST pargasi normalde izo elektrik ¢izgidedir.Fakat anormal ST pargasi izo elektrik

cizgide olabilecegi gibi normal ST pargasi de izo elektrik ¢izginin altinda veya iistiinde
olabilir[141].

QT Pargasi :

Bu siire karinciklarin depolarizasyonu ve repolarizasyonu i¢in gerekli olan zamanin
ifadesidir. QT aralig1 yas , cins , kalp hizina gore degisim gosterir . Yetiskinlerde
genellikle 0,35 — 0,44 sn. arasindadir. QT araligi QRS kompleksinin baslangicindan T

dalgasinin sonuna kadar gecen siiredir.

PR Pargasi :
P dalgasinin bitiminden QRS kompleksinin ister Q , ister R olsun baslangi¢ dalgasina

kadar stirer.

PR Arahg :

P dalgasmmin baslangicindan QRS  kompleksinin  baslangicina  kadar olan
elektrokardiyogram boliimiine denir. Uyarinin siniis diiglimiinden karinciklara iletilmesi
icin gegen siireyi gosterir. QRS kompleksi Q dalgasi ile bagladigi zaman PR araligi
yerine PQ araligi deyimi kullanilabilir. PR araliginin siiresi yasa ve kalp hizina gore

degismektedir.

T Dalgas: :

Karinciklarin ~ repolarizasyonunu  belirtir. QRS  kompleksi genelde kulakgik
repolarizasyon dalgasini gizler, ve goériinmez olur. Bir¢ok derivasyonda, T dalgasi
pozitiftir. T dalgas1 normalde hafifce asimetriktir. Inen kol gikan kola gore biraz daha
diktir. Ters bir T dalgas1 (negatif) bir rahatsizligin belirtisi olabilir. T dalgasindaki
anormallikler, hyperkalemia veya hypokalemia gibi elektrolit rahatsizliklar1 belirtisi
olabilir.
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U Dalgas: :
U dalgas1 her zaman goriilmez. Oldukca kiicliktiir ve T dalgasini yakindan takip eder.
Belirgin U dalgalari, hypokalemia ‘da sik sik goriiliir. Ters c¢evrilmis bir U dalgasi

miyokardiyal ischemia veya sol karncik hacminin asir1 biiytidiigiinii gosterir[147].

2.6.Elektromiyografi Hakkinda Genel Bilgi

Elektromiyogram (EMG), kasin kasilmast sonucu ortaya ¢ikan biyopotansiyel
isaretlerdir. igne veya yiizey elektrodlarla alinan, kasin hareketi esnasinda olusan
elektriksel isaretlere “Elektromiyogram” veya kisaca EMG denir. Biiziilme ve gevseme
gibi kas aktiviteleri her zaman sinir sistemi tarafindan kontrol edilmektedir. Bu yiizden,
EMG sinyali kaslarin anatomik ve fizyolojik 6zelliklerine bagli olarak sinir sistemi

tarafindan kontrol edilen karmasik bir sinyaldir.

Giiclii ve gelismis metodolojiye sahip olan EMG sinyalleri biyomedikal miihendislikte
onemli bir gereksinim haline gelmistir. EMG sinyal analizlerine olan bu ilginin temel
sebebi; klinik teshisler ve biyomedikal uygulamalardir. Bir diger 6nemli uygulama alani
olarak da motor noronlar1 yetersizliklerindeki yonetim ve rehabilitasyon sahasidir.
Kaslarin kasilmasi, sinirler araciligiyla beyinden iletilmis olan uyarici potansiyellerin
kaslarda olusturdugu Motor Unite Aksiyon Potansiyelleri (MUAP) olarak bilinen
elektriksel potansiyeller sayesinde olur. EMG sinyallerindeki MUAP’larin sekli ve atig
oranlari noéromaskular rahatsizliklarin teshisinde 6nemli bir bilgi kaynagi olarak

kullanilmaktadir.

Sinyal uygulamalarinda ve matematiksel modellerdeki son ilerlemeler, EMG 0Sl¢iimleri
ve analiz tekniklerinin gelistirilmesine kolayliklar sunmustur. Cesitli matematiksel
teknikler ve Yapay Zeka (Artificial Intelligence -Al) genis ilgi uyandirmaktadir.
Matematiksel modeller Wavelet doniistimiinii, zaman frekans yaklasimlarini, Fourier
doniistimiint, Wigner-Ville Yayilimlarin1 (Wigner-Ville Distribution -WVD), istatiksel
Olgtimleri ve yiiksek sirali istatistikleri (Higher-Order Statistical -HOS) icermektedir.
Sinyal tamimlamadaki yapay zeka yaklasimlart ANN, DRNN ve bulanik mantik
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sistemlerini kapsamaktadir. Genetik algoritmalar (GA) istenen el hareketlerini elde

etmek i¢in EMG girislerini eslestirmek amaciyla mikrogiplerde kullanilmaktadir[148].

Yiizey EMG sinyalinin algilanmasi ve yiizeyde var olan dogrusal olmayan durumlarin
karakterize edilmesinde hala sinirlamalar bulunmaktadir (SEMG, kas sinyal
calismalarinda 6zel bir teknik)[149,150]. Geleneksel yeniden sistem tanimlama

algoritmalarinda sinirlamalar, sayisal zorluklar ve cesitli degiskenler bulunmaktadir.

EMG sinyali, hastalik teshislerinde tedavi edici 6zelliginin yaninda farkli dokularda
yayilirken diger biyolojik sinyaller i¢in giiriiltii teskil ederek zarar veren bir 6zelligi de
bulunmaktadir. Ornek olarak kas giiriiltiisi (EMG), EKG sinyaline karigan ve
bastirilmast gereken en zor giiriiltiidiir. Kas giiriiltiisti, kaslardaki aksiyon potansiyeli,
EKG ve diger sinyallere ait dalga formlarinin c¢akigmasinin bir sonucudur. EMG
sinyalleri, genellikle Merkezi Limit Teorisi temel alinarak beyaz Gaussian giiriiltii ile
modellenmektedir. Fakat kas giiriiltiisii ¢cogunlukla keskin ve diirtii seklinde meydana
geldiginden Gaussian model yetersiz kalmaktadir. Ayrica, Gaussian olmayan giirtltiilii
durumlar Gaussian modellerle optimize edildiginde performans diigmesi meydana
gelmektedir. Son yillarda, dirtii giiriiltiiliic sinyallerin tam bir modeli olarak a-sabitli
dagilima dayali giiriiltii kabul edilmektedir. Bu sebeple kas giiriiltiisiinii a-sabitli

dagilim ile modellemek gerekmektedir.

2.7.EMG’ nin Anatomik ve Fizyolojik Altyapisi

EMG, miyoelektrik aktivitesi olarak da tanimlanabilmektedir. Kas dokusu , sinirlerin
yaptigina benzer sekilde elektrik potansiyeli tiretir ve bu elektrik sinyallerine verilen
kas hareket potansiyeli denir. Yiizeysel EMG , bu kas hareket potansiyelinin bir cesit
kayit edilme metodudur. EMG sinyallerini belirlerken ve kaydederken, sinyalin
gercegine uygunlugunu etkileyen iki sey vardir. Ilki; sinyal - giiriiltii oramdir yani,
EMG sinyallerinin enerjisi ile giiriiltii sinyallerinin enerjisinin oranidir. Genelde giiriiltd,
istenilen EMG sinyalinin bir parcasi olmayan elektrik sinyal olarak tanimlanir. Ikincisi
ise; sinyalin bozulmasidir yani EMG sinyalindeki herhangi bir bilesenin degismesi veya
dejenere olmasidir. Kas sinyalini elde etmek igin invasif ve invasif olmayan iki ¢esit
elektrod kullanilir. EMG sinyali cilde dogrudan baglanmis bir elektrottan elde edildigi

zaman, sinyal cildin altindaki kaslarda olusan biitiin lif potansiyellerinin bir bilesimi
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olur. Bu hareket potansiyelleri rastgele araliklarla olusur. Bu ylizden herhangi bir
zamanda, EMG sinyali negatif ya da pozitif voltajda olabilir. Kas lif hareket
potansiyelleri bazen kasa direkt yerlestirilen tel yada igne elektrodlar1 kullanarak elde
edilebilir. MUAP; tek bir motor iinitesinin biitin kas liflerinden gelen potansiyel lif
hareketlerinin bilesimidir ki bu cilt yiizeyindeki elektrod (invasif olmayan) ‘la yada
kasin igine yerlestirilen igne elektrod (invasif olan)‘la tespit edilebilir[151]. Denklem

1’de EMG sinyalinin basit bir modeli gosterilmektedir;

x(n) = ni h(r)e(n - r) + w(n) @

Burada x(n); modellenen EMG sinyalini, e(n); atesleme diirtiisiindi, h(r); MUAP’1, w(n);

beyaz Gaussian giirliltiiyli, N; motor {inite sayisini ifade eder.

Sinir sistemi, viicudun hem kontrol hem de iletisim sistemidir. Bu sistem néron denilen
viictidun farkli bolgeleriyle elektrik sinyaller vasitastyla iletisim kurabilen ¢ok sayida
uyarici hiicreleri igermektedir.Noronlar sinir sisteminin ana yapisal iinitesidir, boyut ve

sekil olarak cesitlilik gdsterir.

Kas biiziilebilen ve gevseyebilen hiicre toplulugudur. Bu hiicrelerin 6ncelikli
fonksiyonu gii¢, hareket ve konusma yazma gibi ifade bigimleri iretmektir. Kas
dokusunun agilabilme ve esneyebilme 6zelligi vardir. Uyaricilar algilayabilir ve cevap
verebilir ayrica kisaltilabilir ya da biiziilebilirler. Yapisal olarak, kasilabilme 6zelligi ve
kontrol mekanizma farkliligina sahip ti¢ ¢esit kas dokusu vardir; (1) iskelet kaslari, (i1)
yumusak kaslar ve (iii) kalp kaslaridir. EMG iskelet kaslarinin ¢alismasini ilgilendirir.
Iskelet kas dokusu kemige tutturulmustur ve biiziilerek iskeleti hareket ettirir. iskelet
kasmnin biiziilmesi ndronlarin kasi diirtmesiyle baglar ve genellikle istemli sekilde
kontrol altindadir. Iskelet kas liflerinin biiziilmeleri ndronlar tarafindan saglamr. Bu
noronlara ‘motor noron’ ad1 verilir ve kas dokusuna yakindir, fakat kas dokusuyla direkt

bagli degildir. Bir motor néronu genellikle bir¢ok kas lifine diirtii saglar.

Insan viicudu biitiin olarak nétrdiir; esit sayida negatif ve pozitif yiik vardir. Fakat
istirahat asamasinda, plazma zarindaki odaklanma ve iyonik birlesimdeki farkliliklardan
dolayi sinir hiicre zar1 kutuplasir. Hiicre-i¢i ve hiicre dist sivi arasinda potansiyel bir

farklilik ortaya ¢ikar. Norondan gelen diirtiiye cevap olarak lifler sinyali ylizey boyunca
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yayarak kutuplasmay1 ortadan kaldirir. Iyonlarmn hareketleriyle beraber ilerleyen
kutuplasmay1 ortadan kaldirma islemi , her bir kas lifinin yakininda bir elektrik alan
iiretmesini saglar. EMG sinyal, néron diirtlisiine cevap veren kasi gostererek Hareket

Potansiyeli Motor Unitesinin (MUAP) bir donanimi haline gelir.

EMG sinyali gercekte rastgele ve genellikle siizgeclenmis diirtii islemi olarak
modellenir ki burada siizge¢ olarak MUAP siizgeg¢ kullanilir[ 151]. Sekil 2.7 de EMG

sinyalinin elde edilme siirecini ve MUAP’lardaki ayristirmay1 gosterir.

Ham EMG Sinyali
/—\. ‘4;:] 1-_-“‘;. y '-.'._--'\._-'-I"l‘."‘ '_i.,l-‘fl ._,\I':-;“. q-'.:t.rf‘"l'l‘
(] Vol ; | v

) f it |

Flektrod — l
Kas —
Aynistnma
Motorniéron — +

Bubuomden ayrlims Motor
TUmite Aksivon Potansiyvel

Dizileri (MUAPTS5)

Sekil 2.7. EMG Sinyali ve MUAP’1 Ayristirma Islemi.

2.8. EMG Analiz Yontemleri

Son yillarda hem kas i¢inden hem deri {izerinden alinan EMG sinyallerinin analizinde
kullanilabilen bir ¢ok metod gelistirildi. EMG sinyalleri ne periyodik ne de
deterministik bir sinyaldir [152]. Baska bir deyisle ayr1 ayr1 zamanlarda, keyfi olarak
segilecek EMG sinyallerinin istatistiksel davranigt tam olarak ayni degildir. Belirli
zaman araliklarinda EMG sinyalleri kendilerini tekrarlamazlar ve tek bir matematiksel

ifade, kayit siiresinin tamami boyunca elde edilen EMG sinyalini temsil edemez.

2.8.1.Wavelet Modeli

Wavelet analizi, bir sinyale ait zaman ve frekansla tanimli bolgelerde yer alan bilgileri

eszamanli olarak gosterdigi icin sinyaldeki egilimleri, ¢6kiim noktalarin1 ve
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stireksizlikleri belirlemek agisindan diger doniisiim tekniklerine gore daha avantajlidir.
Fourier’in 1807’de ortogonal Fourier serilerini tanimlamasiyla baslayan siire¢ igerisinde
yapilan ¢alismalar, 1873’de Fourier serileriyle baska bir degere yakinsanamayan bir

fonksiyonun bulunmasina yol agmistir [153].

Gabor tarafindan 1946 [154] yilinda yayimlanan bir hipotezde, tek kutuplu bir sinyal
tipik MUAP sekli Gaussain dagiticisimin ikinci sirali tlirevi olarak karsimiza
cikmaktadir. Mexican sapka waveleti ve tipik tek kutupla MUAP seklinin
karsilastirilmast Sekil 2.8’de gosterilmistir.

Genlik
1)
;- e
I

-10 0 10
Zaman

Sekil 2.8. Meksika Sapka Wavelet ve Tipik MUAP Sekli.

1998 yilinda, Ismail ve Asfour [155], EMG’ nin frekans spektrumunu belirlemedeki en
yaygin metodlarin hizli ve kisa zamanli Fourier doniisiimiiniin (FFT ve SFT) oldugu
teorisiyle karsimiza cikarlar. Fakat, bu arastirmacilar ayn1 zamanda bu doniisiim
metodlarinin en 6nemli dezavantajinin bu sinyallerinin degisken olmasi oldugunu

vurgulamiglardir.

1999 yilinda, Pattichis [100] WT (Wavelet Transform)’ nin her asamasinin
katsayilarinin orijinal sinyale fonksiyonel olarak nasil yaklastigini agiklamislardir.

Siirekli zamanli bir sinyaline ait Xo,X1,X2,,, gibi giris 6rnekleri asagidaki ifade edilir;

fO(t) =D X, p(t — k) (2)

Burada X; ; ise giris verilerini, ¢(t—k); 6lgeklendirme fonksiyonu, £2(t); siirekli zamanl
sinyal degerlerini ifade eder. Bu kabule dayanarak sinyal ornekleri siirekli zaman

sinyallerinin agirlikli ortalamasidir denilmektedir.
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2003 yilinda, Kumar, WT nin Wavelet Fonksiyonu (WF) denilen 6nermesiyle karsimiza
cikmistir. SEMG (Surface EMG) WF ile zaman domenininde iki boyutlu karsilikli
korelasyon alinarak hem agiklanir hem de doniistiiriiliir. Bu teknik, sinyalin zaman-
frekans varyasyonuyla alakali olan bir bilgi saglar. Yapilan biitiin bu arastirmalarin
sonucunda, EMG ve Wavelet doniisiimlerini kullanarak kas yorgunluklar1 belirlenebilir

hale gelmistir. Sekil 2.9°da deneysel Wavelet prosediirii gostermektedir.

Wavelet
——  EKatsavim

'ﬁwl —» WO —p I} - Gig

sEMG

Sekil 2.9. Deneysel Wavelet Prosediirti.

2.8.2.AR Modeli

AR zaman serileri modeli EMG sinyal ¢alismalarinda kullanilmistir. Yiizeysel bir
elektrod, kas i¢i EMG’sinin hassas oldugu durumlarda, EMG aktivitesini aktif kaslardan
toplayabilir. Bu yiizden, uygunlugu ve dogrulugu kombine etmek i¢in kas i¢i EMG’ yi
6lgmek ve bunlarin yiizeysel oOlgtimlerdeki spektral 6zelliklerini belirlemek igin bir

teknik gelistirmek ihtiyaci dogmustur.

1975 yilinda, Graupe ve Cline EMG sinyallerini ARMA modeli ile tanimlamislardir.
Graupe ve Cline’nin deneysel sonuglart EMG ’nin kisa zaman araliklarinda degisken
olarak diisiiniilebilecegini gostermistir. Sherif 1980°de bu modeli yenilemistir ¢iinkii
medikal deltoidin elektriksel davraniglar1 degisken degildir. Sherif bilimsel
incelemesinde EMG’nin degisken 0ozelligi iizerinde durmus ve AR’1  kullanarak
ARIMA‘ y1 bulmustur. Bu sayede kas aktivitesinin farkli asamalar1 esnasinda EMG’ nin

degisken dogasini karakterize etmistir.

Doerschuk 1983 yilinda Graupe ve Cline’nin karsilastig1 benzer problemle; ¢oklu EMG
sinyallerini AR modeli kullanilarak protez araglarin kontroliinde karsilasmistir. 1986

yilinda, Zhou, ertelenmis kas i¢ci EMG sinyallerinin giris olmasi ile birlikte ylizeysel
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EMG’ yi AR modeli olarak gostermistir. Tanimlanan bu model ile yiizeysel sinyalden
kas i¢i sinyalleri hesaplamak miimkiin hale gelmistir. Hefftner 1988 yilinda daha 6nceki
modelleri degerlendirmis ve EMG sinyal analizi i¢in sayisal basarimindan dolayr AR
modelini segmis. 1992 yilinda, Tohru ARMA ve ARIMA gibi daha kusursuz
modellerde dinamik kas hareketlerinin daha basarili analiz edilebildigi kanisina
varmiglardir. ARIMA modelinin 06l¢lim maliyeti yiiksektir ve model sirasinin
belirlenmesi karisik ve zor olabilmektedir. Tohru tarafindan benzetimde problem olan
Olctim maliyetinden dolayr AR modeli se¢mistir. Arastirmalart AR model parametresine

dayanr.

2.8.3. Yapay Zeka Modeli

Son yillarda yapilan ¢alismalarda dogrusal yada dogrusal olmayan sistemlerin
modellenmesinde ve parametrelerinin belirlenmesinde yapay zekaya dayali yontemler
onem tagimaktadir. Sistemlerin modellenmesinde, model yapist ve istatistik degerlerin
(model derecesi,giris ve giiriiltiiniin dagilim1 vb.) iyi bilinmesi halinde iyi ¢6ziimler
sunar .Yapay sinir aglar1 (Artificial Neural Network-ANN)), model yapisinin tam olarak

bilinmesi zorunlulugu ortadan kaldirmaktadir .

Miyoelektrik sinyalleri (Myoelectric Signal-MSE) taniyabilen yapay sinir aglarin
gercek zamanli uygulamalari 1994 yilinda Del ve Park tarafindan oOnerilmistir.
Errorback yayilma (Errorback Estimation) metodunun gelistirilmesiyle sistem ag giris

ve ¢ikis setlerini haritalayabilmeyi 6grenmektedir.

Bir diger yaklagim 1996 yilinda Cheron [156] tarafindan yapilmistir. Bu metod, kol
kineomatikleri ile kas EMG aktivitesi arasindaki baglantiy1 ifade etmek icin DRNN’lara
dayanir.Arastirmacinin amaci, bu DRNN ifadesinin biyomekanik olarak inandirict

oldugunu kanitlamaktir.

2001 yilinda Belouchrani [157] tarafindan onerilen Kor kaynak ayrimi (Blind Source
Separation) metodu, 6grenme algoritmasinda daha yiiksek sirali istatistiksel momentler
kullanarak farkli sensorlerden alinan degisken olmayan bagimsiz kaynaklarin dogrusal
harmanlamasinin ayrimini ifade eder. 2004 yilinda Farina [158] farkli kaslar tarafindan

tiretilen EMG sinyallerinin zaman-frekans domenlerinde g¢akistigin1 kesfetmistir. Bu
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yizden klasik dogrusal siizgecleme yaklagimlari kaynak ayrimi amacina uygun

olmadigini savunmustur.

2.8.4.Yiiksek Sirah istatistik Modeli

Yiiksek sirali istatistikler (High Order Statistic -HOS) rastgele siireclerin dogasini ve
Ozelliklerini analiz eden bir tekniktir. HOS un konusu beklenti teorisine dayanir. Bunun

sebebi su sinirlamalardir;

e sSEMG sinyallerinde mevcut olan dogrusal olmayislarin tespiti ve 6zellikleri
e Asamalar1 degerlendirme

e Normalizasyondan kaynaklanan kesin bilgi

Son zamanlarda, yiiksek sirali istatistik (HOS)’leri kullanmaya olan ilgi artmaktadir.
1991 yilinda, Giannakis ve Tsatsasis [159] EMG sinyal analizleri i¢in HOS
kullanmiglardir. 1995 yilinda, Yana [160] MUAP dalga formlarini ve bunlarin
frekanslarin1 degerlendiren metodu genellestirmistir. Metod baslangic MUAP dalga
formlarinin parametrik modelleriyle birlikte ikinci ve dordiincii sirali momentlerini
kullanmistir. Diigiik sirali modeller ikinci sirali istatistikler (Second Order Statistics -
SOS) kullanilarak elde edilmistir ve gercek verilerin smirl tanimlamasini

yapabilmistir.

1987 yilindan sonra HOS metodu, Nikias, Mendal, Raghuveer ve Petropulu gibi
arastirmacilar tarafindan gelistirilmistir. 1990’larda, Nikias [161,162] SOS’e gore
HOS’un baslica avantajinin ; parametre degerlendirmesi ve siniflandirmadaki Gaussian
girtiltileri bastirabilmesi oldugunu kesfetmistir. 2000 yilinda, Kaplanis [163] HOS

kullanarak SEMG sinyal analizi teorilerini ortaya koymustur.



3.BOLUM

SiISTEM MODELLEME

3.1. Sistem ve Model Tanimlari

Gergek hayat ile kendi i¢ yapisi arasindaki iliskilendirmelerin yapildigi yapilara sistem
denir. Sistemin daha basit, genellikle matematiksel olarak hesaplanabilir yapidaki
gosterimine model ad1 verilir. Modelde herhangi bir olay1 zaman ve mekan kisitlamasi
yoktur. Fiziksel olaylarin modelini kurmak icin gercekte, bu olaylari, bir takim
matematiksel ifadelere doniistiirmek gerekmektedir. Sistem modelleme, deneysel yolla
elde edilmis verilerden faydalanarak sistemlerin modelinin ortaya c¢ikarilmasidir.
Modelemenin temel gayesi bilinmeyen bir sistemin girisi ile ¢ikigi arasindaki iligkiyi

belirlemektir.

Sekil 3.1 'de bir dinamik sistemin temel yapis1 gosterilmistir. Sistem, x(n) giris isareti ve

w(n) bozucu isaretinden etkilenerek y(n) ¢ikis isareti iiretir.

Wi{n}

X{h}
[

Sekil 3.1. Dinamik Sistem Temel Yapist.

Herhangi bir sistemin modelinin elde edilmesi islemi, x(n) ve w(n) isaretlerinden
faydalanilarak, d(n) istenilen model c¢ikis isareti elde etmektir. x ¢ikis dizisinin n.
Eleman: olan x[n] in degerini bulmak i¢in daha onceki degerleri kullanilirsa, bu
dogrusal kestirim yontemi olmaktadir. Eger sistemlerde giris isareti bilinmiyorsa, ¢ikis

isareti kullanilarak modelleme yapilabilir. Kontrol edilecek sistemin matematik
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modelinin bilinmesi zorunludur. Boylece sistemin modeli kullanilarak sistemin ¢ikist,

arzu edilen sekilde tasarlanabilir.

Isaret islemenin bir cok uygulamasinda kestirim, veri haberlesmesi, ses isaretleri isleme
ve elektrokardiyogram analizi gibi ele alinan veriler bazi yollarla ve yiiksek geciren,
alcak geciren, rezonans frekansinin durumu gibi isaretlerin 6zelliklerini yansitabilen iyi
tasarlanmis slizge¢ yapilan ile siizgeclenir. Spektral 6zelliklerinin belirlenmesi igin

isaretin modeline ihtiya¢ duyulur .

3.2. Modelleme Isleminin Yéntemleri

Model olusturmanin iki yolu vardir:

I. Matematik Modelleme: Analitik bir yaklasimdir. Bir olaymn veya bir islemin
davranigini tanimlamada 6rnegin Newton Kanunlar1 gibi fizigin temel kurallar1 temel
alinir.

2. Sistem Modelleme: Deneye dayali bir yaklagimdir. Sisteme birgok deney uygulanir,

sonrasinda model, kaydedilen verilerle parametreler yardimiyla uygunlastirilir.

Bu iki model olusturma metodu karsilastirilacak olursa, sadece fiziksel kavramlar
kullanilarak uygun model elde etmenin miimkiin olmadig1 bir¢cok durumda bu islemler
¢ok karmasiktir. Bazi durumlarda, matematik modellemenin modelleme amach
kullanim1 zordur. Bir ¢ok model yapisi, fiziksel kanunlardan elde edilmis dahi olsa,
bilinmeyen bir¢ok parametre degerine baglidir. Modelleme de amag, bilinmeyen
parametreleri tahmin etme uygulamasidir. Sistem modelleme ile elde edilen modeller,

matematik modellemeden farkli olarak asagida siralanan 6zelliklere sahiptir;

* Sistem modelleme metodu matematik modellemeye gore daha kolay uygulanir ve daha
kolay kullanilir.

* Sistem modelleme metodunda ¢ok kiicilik fiziksel kavramlar1 ifade ederler, ¢linkii bir
¢ok durumda model parametreleri fiziksel bir anlam ifade etmemektedir. Parametreler,

sistemin davranigini iy1 bir sekilde tanimlamak i¢in bir ara¢ olarak kullanilir.

Modelleme, modelleme yapan kisi tarafindan c¢ok fazla etkilenmektedir. Bunun

modelleme yapisina etkileri agagida siralanmastir;
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a) Modelleme yapilirken, uygun bir model yapist bulunmak zorundadir. Eger
sistem dinamikleri dogrusal olmayan yapida ise bu durum oldukga zorlasir.

b) Gergek hayattaki veriler kesinlikle miikemmel degildir. Giiriltii tarafindan
bozulan veriler dikkate alinmak zorundadir.

¢) Islemler zamanla degismektedir. Bunun sonucu olarak da, modelleri zamanla
degismeyen yapida tanimlamak gerekmektedir.

d) Modelin karakteristigini ihtiva eden bazi isaretleri/degiskenleri 6lgmek zor hatta

imkansizdir [164].

3.3. Model Cesitleri

Literatiirde bir cok model ¢esitleri mevcuttur. Dinamik ve Statik model bunlara 6rnek
olarak verilebilir. Zaman, dinamik modellerin temel elemanidir. Dinamik modellerde,
statik olanlarin aksine, zaman, modelin temel elemani olarak tanimlanir. Bir dinamik
model, belli bir zamandaki sistemin durumu, bu andaki sistemi etkileyen dis faktorleri
ve bir sonraki duruma ulagmak icin geg¢is iliskilerini igerir.

Tanimlayic1 modeller, sistemin c¢aligmasini, sistemin temel prensipleri kullanarak
ortaya ¢ikarma amaciyla kullanilirlar.

Aciklayict  modeller, sistemin i¢ yapisinin tanimlanmasi yerine, sistemin
karakteristigini elde etmek i¢in kullanilirlar.

Model parametreleri, modelin ¢aligmasi esnasinda sabit kabul edilen matematik yapida
kullanilan sayilardir. Model verisi ise modelin durum degistirmesini saglayan girig
zaman serileridir. Bu veriler belli ¢calisma sartlarinda modelin davranisin1 belirlemede

kullanilirlar [165-167].

3.4. Modellerin Siniflandirilmasi

Giris-¢cikis durumuna gore;

a) SISO (Single Input Single Output): Tek girisi ve tek ¢ikist olan modellerdir.

b) MISO (Multi Input Single Output): Cok girisi tek ¢ikisi olan modellerdir.

Zamana gore;

a) Zamana bagli modeller: Sistem zamanla degisiyorsa bu tip sistemlere zamana bagl

modeller denir.
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b) Zamandan bagimsiz modeller: Sistemin i¢ yapist ve karakteristigi zamana gore
degismiyorsa bu tip modeller zamandan bagimsiz olarak kullanilir.

Domene gore;

a) Zaman domeni: Diferansiyel veya fark denklemleri ile sistemlerin modellenmesinde
kullanilir.

b) Frekans domeni: Spektral yogunluk veya Bode egrisi gibi sistemin karakteristigini
frekans domeninde belirleyen modellerdir.

Dogrusallik durumuna gore;

a) Dogrusal modeller: Sistemin giris-¢ikis iliskisinin dogrusal esitliklerle ifade edildigi
modellerdir.

b) Dogrusal olmayan modeller: Sistemin giris-¢ikis iliskisi, diferansiyel denklemler,
istel ve logaritmik fonksiyonlar gibi dogrusal olmayan matematiksel esitliklerle ifade
edildigi modellerdir.

Bozucu etkilere gore;

a) Deterministik modeller: Deterministik modellerde giris bilinirse ¢ikis tam olarak
hesaplanabilir.

b) Stokastik modeller: Sistemlerde dis etkenlerin sonucunda olusan rastgele terimlerin

yer aldig1 modellerdir [167]

3.5. Sistem Modellemenin Temel Basamaklari

Asagida genel olarak bir sistemin modellemesinin temel basamaklar1 verilmektedir;

a. Sistemin girisine herhangi bir isaret (darbe, basamak, siniis veya rasgele isaretler)
uygulanip, sistemin bu isarete cevabi ¢ikis isareti olarak kaydedilir.

b. Sisteme uygun bir model yapisi tespit edilir. Bu model yapisi dogrusal olabilecegi
gibi, cogu fiziksel sistemin davranigini gosteren dogrusal olmayan model yapisi da
kullanilabilir.

c. Elde edilen modelin parametreleri, bazi istatistiki veya tahmini yontemlerle belirlenir.
Modelleme isleminin en Onemli asamasi, bu parametrelerin dogru sekilde
belirlenmesidir.

d. Parametreleri belirlenen modelin girigine, sisteme uygulanmis olan giris isareti
uygulanip, modelden alinan ¢ikis isareti ile sistemin gerg¢ek ¢ikisi arasindaki fark

bulunur. Eger fark biiyiikse, baska bir model yapis1 veya yeni bir parametre tespit
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yontemi belirlenmesi i¢in b. basamaktaki isleme geri doniiliir. Eger fark ¢ok kiigiikse bu

model sistemi tanimlamak ve kontrol etmek i¢in kullanilabilir .

3.6. Adaptif Sistemler

Adaptif sistemler degisen sartlara gore kendini en iyiye dogru kanalize eden
sistemlerdir. Bu sistemler isaret isleme sahasinda daha fazla kullanilmaktadir [168-170].
Adaptif sistemlerin en Onemli Ozelligi zamanla degisen sistemlere rahatlikla
uygulanabilmesi ve yeni durumlara gore kendi kendini ayarlayabilmesidir. Dogrusal
sistemlerde karsilasilan, sadece belirli girislere karsi cikisin istenen sekilde olmasi,
diger tiir girislerin uygulandigir durumlarda veya kontrol edilen sistemin zamanla, ¢evre
sartlarindan etkilenerek oOzelliklerinin degismesi durumunda sistemin kararsiz

davranmasi durumu adaptif sistemlerde daha az gozlenmektedir.

Adaptif sistemlerin ortak 6zellikleri asagida siralanmistir;

* Cevre sartlarinin ve sistemden istenilen ozelliklerin degismesiyle, sistem kendi
kendisini otomatik olarak ayarlayabilir.

* Genellikle zamanla degisen sistemler olarak tanimlanir.

* Cogu zaman karmagsik bir yapiya sahiptirler ve analiz edilmeleri adaptif olmayan
sistemlere gore daha zordur. Fakat giris isaretinin 6zellikleri bilinmedigi veya zamanla

degistigi durumlarda yiiksek performans elde edilmektedir.

Adaptif sistemlerdeki temel yaklasim, modellenecek sistem parametrelerinin elde
edilmesi asamasinda, her bir iterasyon sonucunda olusan hata de§erinin minimize
edilmesi i¢in sistem parametrelerini belirli bir sekilde degistirmektir. Hata degerinin
minimuma indirilmesi i¢in genellikle sistemin amag¢ fonksiyonunun (hatayr veren
fonksiyonun) tiirevi kullanilir. Bu tiirev degerini her iterasyonda sifir yapan parametre
degerleri adaptif olarak bulunur. Sistemin ¢ikisinin arzu edilen sekilde olmasi igin

gereken adaptif kontrol sistemi tasarimi Sekil 3.2°de gosterilmistir.
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Sekil 3.2. Adaptif Sistem Model Yapist.

Adaptif modelleme, sistem parametrelerini, hatay1 sifir yapacak sekilde ayarlamak i¢in
kullanilir [164-167].

3.7. Dogrusal Sistem Modelleme

Dogrusal sistem modellemede AR , MA ve ARMA modelleri gibi klasik yontemler

kullanilmaktadir.

3.7.1. AR Modelleme

Bir ¢ok ayrik zamanl sistemlerde, veri olarak yalnizca ¢ikis degerlerinin yardimiyla
sistemin modellenmesi gerekir. Bu tiir sistemler 6zbaglanimli olarak modellenebilir.
Sadece kutuplara sahip olan AR modeli;
p
y(n)=-a,y(n-1)-a,y(n-2)-..—a,y(n- p) +e(n) == > a,y(n-k) +efn] ©)
k=1
seklindedir. Denklem 3’de y(n) c¢ikis dizisini, e(n) giiriiltii dizisini, a(k) ise AR
parametrelerini belirtmektedir. AR modellerde, sistem parametrelerinin ayarlanmasi,
sistemden elde edilen ¢ikis isaretinin eski degerlerini, baz1 katsayilarla carparak ¢ikisin

istenilen 6zellikte olmasi islemidir [171].
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3.7.2. MA Modelleme

MA model yapist kullanilarak yapilan modellemede veri olarak yalnizca giris isareti

degerleri kullanilir. Sadece sifirlara sahip olan bu yap1 denklem 4’deki;
q

y(n) = byx(n) +b,x(n—1) +...+ b, x(n —q) +e(n) =Z b, x(n - K) +e[n] 4
k=1

sekildedir. Burada y(n) ¢ikis dizisini, x(n) giris dizisini ve by ise MA parametrelerini
belirtir. MA modellerde, sistem parametrelerinin ayarlanmasi, sisteme uygulanan giris
isaretinin o andaki ve gecmis degerlerini bazi katsayilarla ¢arparak c¢ikisin istenilen

Ozellikte olmasi islemidir.

3.7.3. ARMA Modelleme

AR model yapist sadece kutuplara sahip olan sistemlerin matematik modelinin
olusturulmasinda, MA model yapist ise sadece sifirlara sahip olan sistemlerin
matematik modelini olusturmakta kullanilmaktadir. Cogu fiziksel sistemin hem
kutuplara hem de sifirlara sahip oldugu gergegi géz Oniine alinirsa bu tekniklerin yeterli
olamayacag1 aciktir. Bu yiizden kutup ve sifirlara sahip sistemlerin matematik
modellenmesi icin ARMA modelleme yontemleri gelistirilmistir. Genel olarak bu

modellerde, giris dizisi x(n) ile, ¢ikis dizisi ise y(n) ile ifade edilir. Bu diziler arasinda:
p q

y(n) == a,y(n-k)+> bxn-k (®)
k=1 k=1

Seklinde dogrusal fark denklemi yazilabilir, p, AR model derecesini, q ise MA model
derecesini belirtmektedir[171].

3.8. Sistem Modelleme igin Kullanilan Yéntem

Sistemlerin modellenmesi i¢in kullanilan en klasik algoritma LMS(Least Mean Square)
yontemidir [166]. En kiiciik kareler yontemi kontrol, iletisim ve jeofizik isaret isleme
gibi farkli uygulamalarda yaygin olarak kullanilir. Ozyineli(recursive) ve adaptif
stizgecleme yeni deneysel kanitlarin var oldugu, bilinmeyen siizge¢c modelleri hakkinda

her zaman daha ¢ok bilgi veren 6zel bir tasarimi kullanir[167,168].
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3.8.1. LMS Algoritmasi

Sistem tanimlama algoritmalari; sistem dinamikleri hakkinda yeterli bilgiyi veren
bilinmeyen bir isletme modelinin, bir dizi parametrelerinin tahmini ile ilgilenir.
Dogrusal sistem parametreleme; uygulamalarin genis bir alaniyla sistem modellemenin
onemli bir sinifidir. Dogrusal model siniflar1 arasinda en yaygini FIR (Finite Impuls
Response-Sonlu Darbe Cevapli) yapili olanidir. Bu smiflama ya fiziksel sistem
modellemedeki esastir yada kestirimi isi basitlestirmek igin kabul edilir ve gercek
zaman uygulamalarinda hesaplama yiikiinii azaltmak icin kullanilir. Statik ve dinamik
FIR modellerinin her ikisi de ge¢misi goz oniinde bulundurur ve algoritmalarin biiyiik
bir ¢ogunlugu model parametrelerinde verimlilik kestirimi i¢in onerilmistir [171].LMS
yonteminde parametreler her iterasyonda hatayi en aza indirecek sekilde degigsmektedir.

Aca = A+ M +4e

seklindeki ifade edilir.Burada;

Ay : k zamanindaki tahmini parametre vektorii

My . algoritma kazanci

¢k : ¢ikisin Onceki degerleri

ek . modelleme hatasi

olarak adlandirilir.

3.8.2. RMS Algoritmasi

Bu yontemde, adaptif kazan¢ , kovaryans matrisi, P yardimiyla her iterasyon ig¢in
ayarlanir ve agagidaki sekilde ifade edilir;

Pe1 &
1+ 4, P s
Burada Py ve P(0) degerleri,

P P
P =P — w (7)
I +¢ P1dy

P(0)=1

A = A+ fos A (6)

dir. Burada I birim matrisidir. Cogunlukla RLS yontemi LMS ydntemine gore daha hizli
yakinsar. Fakat baslangi¢ degerleri ve yuvarlatma hatalar1 agisindan LMS den daha
hassastir[172].
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3.9. FIR Modeli

Sistem modellemedeki esas kabul edilen FIR kestirimi daha kolay ifade edebilmek ve
gercek zaman uygulamalarinda hesaplama yiikiinii azaltmak i¢in kullanilir. FIR
modellerinin her ikisi de gecmisi gbz Oniinde bulundurur ve algoritmalarin biiyiik bir

¢ogunlugu model parametrelerinde verimlilik kestirimi i¢in onerilmistir

FIR siizgeclerin IIR slizgece gore birtakim avantajlar1 vardir:
1. Her zaman kararlidir,
2. Her zaman gerceklenebilir,

3. Kesin-Dogrusal faz elde edilmek i¢in her zaman kullanilabilir.

Uciincii avantaj FIR siizgeci, gecikme giiriiltiisiiz, fakat sabit gecikmeli uygulamalarda

vazgecilmez kilar. FIR silizge¢ modeli;

y(n) = Z hyx(k - J)+e(k) = h'x(k) +e(k) (8)
-1

seklinde ifade edilir ve e(k) ¢ikisa ilave edilen giiriiltii, y(n) ¢ikisi,

h=jh,..h * (9)

FIR merkez degerleri,

x(k) = k(k =1),x(k=2)....x(k =n) " (10)

giris vektoriinti ifade eder. Bu 6zelliklerinden yararlanarak FIR modelin aynt MA model

gibi giris degerlerini kullandig1 gériilmektedir[173].
3.10. Kas Sinyalinin Modellenmesi

Gergek hayatta Gaussian model ile tanimlanamayacak sinyallere ve giiriiltiilere sikca
rastlanir. Bunlara 6rnek olarak; endiistriyel miithendislik alaninda gegigi gii¢ kesilmeleri
ve telefon hatlarindaki rastlantisal kesilmeler, biyomedikal alanda ise EKG sinyaline

karisan kas giiriiltiisii verilebilir.

EMG sinyalleri, genellikle Merkezi Limit Teorisi temel alinarak beyaz Gaussian giiriiltii
ile modellenmektedir. Ancak kas giirtiltiisii ¢ogu zaman diirtii seklinde meydana
geldiginden Gaussian model yetersiz kalmaktadir. Ayrica, Gaussian olmayan giiriiltiilii

durumlar Gaussian modellerle optimize edildiginde performans diismesi meydana
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gelmektedir. Son yillarda, diirtii giiriiltiilii sinyallerin tam bir modeli olarak a-bagiml
dagilima dayali giiriiltii kabul edilmektedir. Bu sebeple kas giiriiltiisiinii a-bagimli

dagilim ile modellemek gerekmektedir.

3.10.1. a-Bagimh Giiriiltii

Son yillarda, diirtii giiriiltiisiinii giderme islemlerinde, uygun bir model olarak gosterilen
a-bagimli yayilim temelli sinyal isleme yontemleri lizerinde kayda deger bir ilgi vardir.
Istatistiksel bir model olarak o bagimli yayilimm kullamimi iki 6zelliginden dolayi
teorikte dogrulanmaktadir. Bunlarin ilki, sabitlik 6zelligidir; boylece iki bagimsiz ayni
katsayiya sahip sabit rastgele degiskenin toplaminin ayni karakteristik katsayiyla
sabitlenmesi saglanabilmektedir. ikincisi ise, genellestirilmis merkezi limit teoremidir;
eger sonsuz sayidaki bagimsiz ve ayni sekilde dagitilmis rastgele degiskenler yayilimda
bir araya gelirse, sinirlandirilmis olan yayilim a-bagimli olmaktadir. Bu ylizden, a-
bagiml rasgele degiskenler Gaussian degiskenlerde oldugu gibi ¢ok sayida bagimsiz
yardimer faktoriin etkisi olarak fiziksel ortamlarda ortaya g¢ikabilmektedir . a-bagimli

yayilimin karakteristik fonksiyon denklem 11°de verilmektedir.

o(t) = exp (jut —yIt) (11)

Burada a, (0< o <2) yayilimin en onemli parametresi olan karateristik katsayisidir
clinkii a yayilim kanallarinin agirligini kontrol etmektedir. Sabit rastgele bir deger
gozlemlendiginde o degeri biiyiidilkce, merkezden uzak olan rastlantisal degerleri
gozlemleme ihtimalide 0 oranda azalmaktadir. Ayrica (0< o <2) i¢in, a bagimli rastgele
degiskenlerin sonsuz degiseni bulunmaktadir. Sekil.3.3 ‘de gosterildigi gibi a=1 oldugu
durumlarda Cauchy dagilim o6zelligi gézlemlenirken , 0=2 durumunda ise Gaussian

dagilim gozlemlenmektedir [1].
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Sekil 3.3. a-Bagimli Yayilimin Grafigi.

Denklemdeki, p gergek degerli lokasyon parametresi, y yayilim dispersiyonudur (y > 0,

lokasyon parametresine ait yogunlugun yayilimini belirler).

3.11. Dogrusal Olmayan Sistem Modelleme

Gergek hayatta karsilasilan bircok sistem dogrusal olmayan davranislara sahiptir. Bu tiir
sistemlerin kimliklendirilmesinde dogrusal modelleme yontemleri yetersiz kalmakta ve
dogrusal olmayan modelleme yontemlerinin kullanilmasi gerekmektedir [20-21].
Dogrusal olmayan modellemede, sistemin giris-¢ikis iliskisi, diferansiyel denklemler,
tistel ve logaritmik fonksiyonlar gibi dogrusal olmayan matematiksel ifadelerlerle

saglanir.

Biyomedikal sahada EMG gibi ani degisen sinyallere uygulanabilen giiclii dogrusal
olmayan siizgegler igin esnek bir teori ihtiyaci, biyolojik goriintii isleme sahalarinda da
ortaya ¢cikmustir. Onemli arastirma cabalar1, 6zelliklede goriintii isleme alanlarinda, ani
guriiltiilere kars1 gii¢lii ve direngli olan dogrusal siizgeglere uygun alternatifler bulmaya
odaklanmistir[44]. Bunlarin arasinda, agirliklandirilmis Myriad ve Median siizgeg
yaklagimlart son yillarda, a-bagimli giiriiltii ortamlar i¢in giiglii siizge¢ yapilar olarak
kullanilmaktadir. Bu siizge¢ yapilar1 haberlesme, isaret ve goriintii isleme alanlarina

basartyla uygulanmistir [75].
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Giliniimiizde Median siizge¢ yapilari, ticari triinlerin goriintii isleme uygulamalarinda
kullanilmas1 giin gectikce artmaktadir. Bunlarin bagska alanlarda kullanilmasin
engelleyen en Onemli eksiklik, ¢ikislarin giris penceresindeki orneklemlerden biriyle
siirlandirilmis olmasidir. Bu segici 6zellik goriintii isleme alanlarinda arzu edilen bir
ozellik olmasina ragmen, diger bir ¢ok pratik uygulama sahalarinda kabul edilemeyecek
kayiplara neden olmaktadir. Ornegin; Median, Gaussian cevrelerde lokasyon
degerlendiricisi olarak kullanildiginda, ortalama 6rneklemde %40’a yakin kayiplar

verdigi bilinmektedir.

Median temelli metodlarin pratik problemlerde kullanilamamasi ger¢ek hayattaki
giiriiltii islemlere olan uygunsuzlugu sebebinden kaynaklandigi tartisilabilmektedir.
Pratikte goriilen bir¢ok giiriiltii ¢can tipindeki yogunluk fonksiyonlarna benzetilirken,

Laplacian model, bunu genellikle daha suni yapan sivri bir yogunluga benzetir[44].

Dogrusal siizgegler kullanildiginda hem giiriiltii hem de EKG’ nin yiiksek frekans
bilesenleri atilmig oldugundan EKG’ nin bulaniklasmasina neden olmaktadir.Bu
ozelliklerinden dolayr Median model, sinyal isleme alaninda pek kullanilmamistir.Bu
eksiklik Myriad siizge¢ ile giderilmeye ¢alisilmistir.Yukarida verilen simirlamalar
dogrultusunda, Myriad siizge¢ ailesi, ¢an seklindeki diirtii yayilimlari igin yiiksek
istatistik yarar1 saglayan siizgeglemeler oOlarak Onerilmistir ki bu giderek daha da

populer olan a-bagimli gibi dogal olaylarin pratikteki sonucu olarak goriilebilmektedir.

Bu ¢alismada, EKG sinyaline dogal olarak bozucu etkide bulunan kas giiriiltiisii (EMG)
ile oa-bagimli yayilim ile modellenen yapay EMG isareti, dogrusal olmayan
agirhiklandirilmis Myriad ve Median siizgegler ile dogrusal FIR siizge¢ kullanilarak
bastirilmis ve basarimlar1 karsilastirilmistir. Siizge¢ performanlarini artirmak i¢in bircok

adaptif 6grenme algoritmasi denenmistir.

3.11.1. Agirhklandirilmis Myriad Siizgec

Istatistiksel isaret isleme teorisi , islemlerin temelini karakterize etmek icin Gaussian
model varsayimini kabul etmektedir. Gaussian varsayimi, bir ¢ok fiziksel 6ngorii i¢in
mantikli bir model oldugundan bu kabul Merkezi  Limit teoremi kullanarak

dogrulanmistir. Dahasi, bu model altindaki optimal siizgegler dogrusal oldugundan
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analitik olarak islenebilmektedir. Fakat yinede Gaussian model ile ¢ok iyi
tanimlanamayan bir¢ok sinyal mevcuttur. Ornegin; dogadaki giiriiltiilerin bircogu diirtii

sekilde meydana gelmektedir[91].

Myriad silizgec yapist son yillarda, diirtii giiriiltiilii ortamlar (6zellikle a-bagiml giiriiltii)
icin gii¢lii bir dogrusal olmayan siizge¢ Yyapisi olarak kullanilmaktadir. Bu siizgeg yapist
haberlesme, isaret ve goriintii isleme alanlarina basariyla uygulanmigtir. Bunun sebebi

ise kenar koruma ve aykir1 degeri reddetme 6zelliklerine sahip olmasidir.

Agirliklandirilmis Myriad stizgeg (Weighted Myriad Filter —-WMyF), o bagimh
yayilimlarin 6zel bir durumu olan Cauchy yayilimlara dayanmaktadir. Bu agir kuyruklu
yayilimlar Genellestirilmis Merkezi Limit teoremine dayandirilmis ve bu yayilimlarin
dirtii glrilti islemlerine uygunlugu da kanitlanmistir[174,175]. a-bagimli yayilimlar
0<a<2 orantyla smnirlandirilmig bir katsayiya sahiptir; daha kiiclik bir a daha agir
kuyruklu bir yayilim demektir. o=1 ve a=2 katsay1 degerleri sirasiyla Cauchy ve
Gaussian yayilimlart dogurur. Aslinda; bunlar kapali formlu agiklamalar oldugunda

sadece simetrik a-bagimli  yayilimlarnt ifade eder. o bagimhi  girilti

D (o::efy‘(’"a seklinde bir karakteristik fonksiyona sahiptir ve buradaki y dispersiyon

parametresi ve o karakteristik degiskenini ifade eder[76].

3.11.1.1. Temel Myriad

Temel Mean ve Median yayilimlart maksimum benzerlik (Maximum Likelihood -ML)
yaklasimindan tiiretilmistir. Ozellikle temel Mean , Gaussian yayilimmin bir sonucu
iken temel Median ise Laplacian yayilimin sonucu olarak ortaya ¢ikmistir. Median’ a ait
geri bildirimlerden biriside sudur ; fiziksel olgular i¢in Laplacian yayilimin iyi bir
model olmadigidir. Fakat Cauchy yayilim, Gaussian ve Laplacian’a gore daha agir
kuyruklara sahiptir ve pratikte olusan ani giiriiltiilii durumlar1 incelemede daha iyi bir
model olarak kabul edilmektedir[174]. Temel Myriad, Cauchy yayilim lokasyonunun
ML yaklasimi olarak tanimlanir. [x1,X2,,,,,Xn] Seklinde bir veri dizisi igeren ,dogrusallik

faktorii K olan Cauchy yayilim su sekilde ifade edilir :

f (X,ﬁ){gjm 12)
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Burada B; yayilimin lokasyon parametresidir. ﬁﬁK degeri likeli-hood fonksiyonu ile

maksimize edilir:

L(Xy, Xy e Xy 1 B) = ﬁ f(x;,0) (13)

Bu esitlik , K>0 durumu varsayilarak minimize edilir ;

GK(ﬁ)zﬂI [K2+€-p5°] (14)

i=1
Genel olarak temel Myriad ;

EK(xl,xz,....,xN)=argminﬂGK(,B) (15)

la) N ~ N ~N
B =myriad (K; X, X,,....... xy)=argmin [] K*+ € -p° =argmin ) log |(2+(i—,82A (16)
A=l i=1

seklinde bir amag¢ (cost) fonksiyonuna sahiptir[91]. Olusacak olan myriad degeri,
fonksiyonu minimum yapan [ degeridir. Burada N, siizge¢ uzunlugu, x; giris
verilerinden alinan 6rnek veri degerleri, K ise dogrusallik faktoriidiir. Burada K 6nemli
bir faktordiir, 6rnegin {3, 10, 1, -1, 6} seklindeki bir veri setinin K=20, 2 ve 0.2
degerleri icin olusacak myriad degerleri P2 = 1.8, B2= 0.1 ve Po2 = 1 olmaktadir. Ilging
bir gergekte, K arttikca, veriler daha kesin hale gelmektedir.

3.11.1.2. Agirhklandirilmis Myriad

Agirliklandirilmig Myriad siizgeg yapisi, bir 6nceki kisimda bahsedilen Myriad siizgeg
yapisinda yer alan giris Orneklerinin pozitif agirliklandirilmasi ile daha genel hale
getirilmis halidir. Bir dizi gozlem {xi}", ve bir dizi siizge¢ agirhg {wi}', diisiinelim.
Gozlem vektoriinii su sekilde tanimlanir[91]; X:[Xl,Xg,....,XN]T, agirlik vektori ise ;
W=[W1,Wo,...wn]'T  seklinde tamimlanir. Daha sonra K>0 kabul edilerek,

agirliklandirilmis Myriad stizgeg ¢ikisi su sekilde ifade edilir;

pTK (w, x)=myriad (K; W,0X;, W,0X,,.......\W, 0X,, ) = argmin G, (4, w, X) a7)
Burada
G (Bw ) =] [K*+€-p] (18)
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Burada (wi o xi) agirhiklandirma konvolusyon islemini belirtmektedir. icerik acik

oldugu zaman, ,BmK (w,x)’, ,BmK ya da sadece % olarak yazilmaktadir. Ayn1 sekilde,
Gk(B, wW,X), Gk(B) olarak ya da G(B) olarak yazilmaktadir. ML lokasyon yaklagimin,

agirliklandirilmis Myriad siizgeglere ait formiilde agirliklar1 negatif olmayan sinirlamasi
ile kisitladigimi belirtmek gerekir. Fakat agirliklandirilmis Myriad stizgee (17) ve
(18)’daki ifadeleri kullanarak negatif agirliklarla birlikte tanimlanabilmektedir. Fakat

bdyle bir durum slizgeclerin potansiyel sabitsizligi seklinde sonuglanabilmektedir[91].

Genel olarak agirliklandirilmis Myriad stizgeg;
N ~
By =myriad (K; Wy 0 X;, W, 0 Xy,....... W o X ) =argmin > log |(2 +w; € -2 . (19)
i=L
seklinde bir amag¢ fonksiyonuna sahiptir ve Sekil 3.4’de tipik Myriad fonksiyonu
gosterilmektedir. Agirliklandirilmis Myriad slizgeg yapist daha c¢ok adaptif yapida
kullanilir [74]. Yani agirlik degerlerinin bulunabilmesi i¢in adaptasyon algoritmalarina

ihtiyag duyar.

X, X,

X, X, X. B

L]

.l‘:“
H“

Sekil 3.4. Tipik Myriad Fonksiyon.

3.11.1.3. Adaptif Agirhklandirilmis Myriad Siizge¢ Algoritmasi

Burada benzetim caligsmalarinda kullanilan agirliklandirilmis Myriad siizge¢ (WMyF)
yapist i¢in [75] no’lu referanstaki Kalluri ve Arce tarafindan gelistirilmis olan adaptif
algoritmalardan bahsedilecektir. Siizge¢ parametrelerinin optimizasyonu i¢in daha

onceki boliimde de bahsedildigi gibi sistem ¢ikist ile istenilen ¢ikis arasindaki farkin
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minimize edilmesi gerekmektedir. Giris Ornekleri x=[x1, X, ....., XN]T, agirlik vektorii
W=[W1, Wy, ..., wn]' ve dogrusallik faktdrii K ile birlikte WMyF yapisinin ¢ikist
y=yk(w,x) olarak gosterilmektedir. Istenilen ¢ikis ile siizge¢ ¢ikis1 arasindaki hata e=y-d
seklindedir. Hata optimizasyonu i¢in ortalama mutlak hata (Mean Absolute Error -
MAE) ve MSE (Mean Square Error)kriterleri kullanilabilir. MAE kriteri gz Oniine
alindiginda J(w,K)=E{|e[}=E{|yx(w,X)-d|} ve MSE kriteri g6z Oniine alindiginda
Jo(w,K)=E{e’}=E{[y«(w,x)-d]*} seklinde olur. Parametre optimizasyonu i¢in bu hata

fonksiyonlarinin ¢ikisin agirliga gore tiirevi alinmalidir. Bu durumda

dJ,(w,K) d 3 dy
= E w,Xx)—d| 5Essgn(y —d)—— 20
o dwi|%4 )-d| 5 {g(y ) dw (20)
ve
AL (W,K) e (y_d)ﬂ 1)
dw; dw;
seklinde elde edilir.

Optimal siizge¢ parametrelerinin bulunabilmesi i¢in literatiirde sik¢a kullanilan en dik

inis (Steepest descent) metodu [80]

Wy (1) =W, (M) - (n) (22)

seklindedir. Burada dJi(w,K)/dw; kullanilirsa

wi(n+1)=w; (n)_H%(n):P{Wi (n)—usgn[e(n)]%(n)} (23)

bulunur, burada

P[u] :{; u> 0} (24)

, u<o

seklindedir. Denklem (23)’de goriildiigii gibi dy/dw; (agirliklandirilmis myriad siizgeg

c¢ikisinin parametre degerine gore tlirevi) degerine ihtiya¢ duyulmaktadir. Bu durumda
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—(y—Xx;)
W 2
|:1+;(y_xi)2:|
dy _ K (25)
dw;
W X )2
<. N&. _F(y_ i)
2 2
i Wj 2
{1+K2(y—xj) }
seklinde elde edilir. Boylelikle
— X
|:1+ Kiz (y_Xi)2:|
w, (n+1)= P| w, (n)+ xsgn[e(n)] (26)
_ﬂ(y_x )2
N w. 2 j
K?.qa+> L. K )
= Wi 2
{1+K2(y—xj) }

olur. Burada a katsayis1 kararlilik katsayisidir. Algoritmanin payda kisminda bulunan

fonksiyon ¢ok kiiciik degerde olacagindan, algoritma daha sade sekliyle

w,(n +1)=P| w;(n)+psgnfe(mll — VX Lin) 27)
W; 2
[1+K£(y—xi) }

elde edilir [75].

3.11.2. Agirhklandirilmis Median Siizge¢

100 y1l 6nce daha az kesin regresyon igerigi ile Agirliklandirilmis Median Smoother
(Weighted Median Smoother-WMS)’lar Edgemore tarafindan ortaya konulmustur[176].
Son 20 yil igerisinde WMS ’lar, sinyal isleme arastirmalarinda Onemli hale

gelmistir[82,83]. Bu yapilarin sinyal uygulama literatiiriinde genelde siizge¢ olarak
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bilinmesine ragmen, bu yapilar WMS olarak da adlandirilmaktadir. Son birka¢ yildir,
WMS temelindeki teori hizla gelistirilmis ve glniimiizde goriintii  isleme
uygulamalarinda da sikc¢a kullanilmaya baglanmistir. Goriintli uygulamalarinda median
smootherlarin basaris1 kendine 06zgii iki Ozellie dayanir; kenar koruma ve ani
giriiltiilerin  giic bastirim1 ki bu 0Ozellikler geleneksel dogrusal siizgeclerde
bulunmamaktadir. WMS ile dogrusal FIR arasinda birgok benzerlik bulunmaktadir.
Ayrica bunlar son derece smirli ve dogrusal FIR siizgeclerden daha az giice

sahiptirler[79].

Miihendislik uygulamalariin biiyiik bir ¢ogunlugu “band geciren” ya da “yiliksek
geciren” frekans silizgegleme 6zelligine ihtiyag duyar. Ters konvolusyon, kestirim ve
sistem tanimlama “band gegiren” ya da “yiiksek geciren” 6zelliginin ¢ok dnemli oldugu
uygulamalara Ornektir. Dogrusal FIR esitleyicileri sadece pozitif siizge¢ agirliklarini

kabul ederler.

Dogrusal olmayan WMS ‘ler ilk tasarlandiklarinda sadece pozitif agirliklandirmalar ile
calisabilirken son zamanlardaki gelismeler ([79] no’lu referansta bahsedilen) median
yapisinin pozitif ve negatif agirliklandirmalar ile siizge¢leme yetenegine sahip olmasini
saglamistir. Bu calismada Agirliklandirilmis Median siizge¢ agirliklariin egitimi
esnasinda Yinbo Li, Gonzalo R. Arce tarafindan gelistirilen [178] no’lu referanstaki

adaptif 6grenme algoritmasi kullanilmistir.

Ornek 1;

Pencere boyutu 5, W=[1, -2, 3,-2, 1] simetrik agirlik vektoriine sahip ve giris verisi
X(n)=[2, -6,9,1,12], olan WM siizgeg ¢ikis1 asagidaki sekilde bulunmaktadir ;

Y(N)=MEDIAN[142,-2¢-6,3¢9,-2¢1,1¢12]
=MEDIAN[ 1 462,24¢6,349,2¢-1,1¢12]
= MEDIAN] 2,6,6,9,9,9, -1, -1,12]
= MEDIANI[ - 1,-1,2,6,6,9,9,9,12]
=6
Median agirliklarda negatif degerler bulundugunda bu agirliklarin matematiksel
isaretleri ile agirliklara karsilik gelen giris verileri carpilir ve yeni giris veri dizisi

olusturulur . Mevcuttaki negatif degerli agirliklarin mutlak degerleri alinarak pozitif
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degerli agirliklar elde edilir. Daha sonra agrilik degerleri adetinde giris verileri
tekrarlanarak yeni dizi olusturulur ve dizideki veriler kii¢iikten biiylige dogru siralanir.
Eger dizideki veri sayisi tek ise dizinin tam ortanca degeri (alt1 ¢izili olan) veri dizinin

mediani olur. Buda median siizge¢ ¢ikisini ifade eder.

Ornek 2;

W = (1,-2,2,-2,1) tam say1 agirliklarina sahip, pencere boyutu 5 olan ve giris drnek verisi
X(n) =[5,5,5,5,5] pozitif agirliklara sahip dizi icin WM siizge¢ ¢ikist asagidaki sekilde

bulunur;

Y(n) =MEDIAN[1¢5,-245,2¢5,-2¢5,1¢5]

=MEDIAN[1¢5,2¢-5,2¢5,2¢-51¢5]

= MEDIAN[5, -5, -5,5,5, -5, -5,5]

= MEDIAN[-5,-5,-5,-5,5,5,5, 5]

=0,
Median agirliklarda negatif degerler bulundugunda bu agirliklarin matematiksel
isaretleri ile agirliklara karsilik gelen giris verileri ¢arpilir ve yeni giris veri dizisi
olusturulur . Mevcuttaki negatif degerli agirliklarin mutlak degerleri alinarak pozitif
degerli agirliklar elde edilir. Daha sonra agirlik degerleri adetin de giris verileri
tekrarlanarak yeni dizi olusturulur ve dizideki veriler kiigiikten biiyiige dogru siralanir.
Eger dizideki veri sayisi ¢ift ise dizideki verilerin ortanca iki degerinin (alt1 ¢izili olan)

ortalamasi veri dizisinin mediani olur. Bu deger Median siizge¢ ¢ikigini ifade eder[179].

Agirliklarin tam sayr olmamasi durumunda agirliklandirilmis stizgeg ¢ikist asagidaki

asamalarla hesaplanir:
1 N
1. Esik deger hesaplanir T, = 5 > W
i=1

2. Agirlik katsayilarina ait isaretler hesaplanir ve her bir agirliga karsilik gelen
giris verisi ile carpildiktan minimum degerden baslayip maksimum degere kadar

siralanir ; sgn(W;i)Xi.

3. Daha sonra giris verilerine karsilik gelen agirlik katsayilariin mutlak degerleri

alindiktan sonra 2. asamada yeniden hesaplanarak siralanan giris veri siralamast
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baz alinarak siralanir ve soldan baglayarak en saga kadar ki biitiin agirliklar

toplanir benzer sekilde bir saga kayarak biitiin agirlik degerleri elde edilir.

4. Median cikisi; esik degerinden biiyiikk olan ilk agirliga karsilik gelen giris
verisine esittir. Band ve yiiksek geciren silizgec karakteristigi i¢in ¢ikis; esik
degerinden biiyiik birinci ve ikinci agirliga karsilik gelen giris verilerinin

ortalamasina esittir.

Ornek 3;

Pencere boyutu 5, gergek agirlik degerleri ( W1, Wo, W3, W4, Ws) = (0.1,0.2, 0.3, -0.2,
0.1), gercek giris verileri [X1,Xz , X3, X4, Xs]=[-2, 2, -1, 3, 6] sahip olan WMS ¢ikis1
asagidaki sekilde hesaplanir ;

. : 13 i
Esik degeri hesaplanir ; T, = > Z [\N,| = 0.45 daha sonra sirasiyla diger islemler
i1

yapilir;

Gercek giris verileri 2, 2, -1, 3, 6
Gergek agirhklar 0.1, 0.2, 0.3,-0.2,0.1
Yenilenen giris verileri -3, -2, -1, 2, 6
iliskili agirhk degerleri 0.2, 0.1, 0.3, 0.2, 0.1
Agirhik toplamlar: 09,0.7,0.6, 0.3, 0.1

Siizgec cikist ; esik degerinden biiylik olan alt1 ¢izili ilk agirhiga yani 0.6’ya karsilik
gelen girig verisi olan -1’e esittir. Band ve yliksek geciren siizgec ¢ikist ise ; 0.45° den
biiyiik olan ilk iki agirlik yani 0.6 ve 0.7 ¢ ye karsilik gelen girig verileri -1 ve -2 nin

ortalamasi olan -1,5’e esittir[179].

3.11.2.1. Agirhklandirilmis Median Siizge¢ Algoritmasi:

Adaptif dogrusal ve adaptif Median siizgegler, Gaussian ve Laplacian istatistikleri

temelindeki lokasyonun ML yaklasimindan dogmaktadir.Birbirinden bagimsiz tek
degiskenli giris verisi {X;} nin her birinin bir Gaussian yayilima fakli bir varyans o; ?

ile uydugunu diistinelim .Lokasyonun ML yaklagimina ait amag fonksiyonu asagidadir ;
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G, (1) =Y~ (X, —)° 28)
Ve,
_ i W; X,
== (29)

2.W,

i1
> N
yazilabilir burada W, = o;” > Odir. 31’nolu ifade denklemi Y =ZWi X, olan bir
i=1
FIR siizgecin normalize edilmis halini gostermektedir.

Lokasyonun yeni cost fonksiyonu ;

G (1)) =D 5%, — 4 (30)

i=1 O-i

seklinde ifade edilir. Negatif agirliklara sahip agirliklandirilmis Median siizgeg ;

Y = MED(W,|osgn(W,) X;|"i-1) (31)
Sgn(x) = 1, X>0 iken

=-1, X<0 iken

= 0, X=0iken

seklinde ifade edilir .Tez ¢alismasinda kullandigimiz LMA (Least Mean Absolute

Error) algoritmasini asagidaki gibi kullanmaliy1z;

W, (n +1) =W, (n) + £4, sgnWi(n))(D(n) Y (n)).sgn(sgn(W; (n)) X; (n) - Y (n)) (32)

Burada Y(n); ¢ikis degerini, D(n); istenilen degeri, W;; agirlik degerlerini
gostermektedir [178].

3.12. Spektral Analiz

Periyodik sayisal bir isaret Fourier serileri ile temsil edilir ve bu isaret kendisinin
Fourier katsayilarindan yeniden elde edilir. Fourier doniisimii ile isaret , farkl
frekanslardaki siniizoidal sinyallerin toplamli olarak ifade edilir. Sonlu uzunlukta olan
bir sayisal isaretin Hizli Fourier Doniisiimiinii (HFD) almak i¢in bu isaret 64,128,256
gibi Ornekler iceren ¢ercevelere ayrilir. Her bir ¢ercevenin frekans spektrumu

hesaplanirken oncelikle pencereleme islemi yapilir. Pencereleme isleminin amaci
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gercekte olmayan frekans bileseninin spektrumda ortaya ¢ikmasmi Onlemektir.

Pencereleme isleminden sonra sayisal isarete sifir ekleme (zero padding) islemi yapilir.

Sifir ekleme islemi, spektrumda okunabilirligi artirmaktadir .

Miihendislik uygulamalar1 agisindan bir zorlamanin Fourier doniisiimii alinabilmesi

icin agagidaki sart1 saglamasi1 gerekmektedir .

[Ix@dtko

— (33)

Bu esitlik klasik teorinin sadece t-—>o0 sifira giden fonksiyonlar ig¢in

kullanilabilecegini anlatir. Eger zorlama bu sart1 sagliyor ise fonksiyonun Fourier

dontisiimii;

X(W)=1/2 j x(t)e ™dt
-0 (34)

seklindedir ve bu zorlamaya sistemin cevabi
Y (W) = HW)X () (35)
seklindedir. Sonucun ters doniislimii alinarak sistemin zaman bdlgesindeki cevabi

asagidaki sekilde bulunur,

X (W) = j H (W){l/ 2 j x(t)ej“"dt}e " Gy
- - (36)

Dogrusal sistemlerde ayn1 mantikla gii¢ spektral yogunlugu tek giris ve tek ¢ikis icin

S, (W) =[HW)["S, (w)

(37)
ve ¢ok giris-tek ¢ikis icin
N
S, (W) =Y [HW)"S, (w)
r=1 (38)

seklindedir[180,181].

3.13. Gii¢ Spektral Yogunlugunun Hesaplanmasi

Gelisigiizel ayrik sinyallerin gii¢ spektral yogunluklarinin hesaplanmasi i¢in yapilan
caligmalar yaklasik 200 yil 6nce Schuster’ n glines 15181 miktar1 iizerine yaptig
calismalarla baslamistir. Gelisigiizel sinyallerin Fourier analizi, kovaryans ile gii¢
spektrumu arasinda iliski kuran Wiener- Khintchine teoreminin bulunmasiyla yeni bir

doneme girmistir. Son olarak bir ayrik Fourier doniisiimii (AFD) algoritmasi olan hizl
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Fourier dontisiimlerinin (HFD) kesfi ve dijital bilgisayarlarin gelismesiyle parametrik

olmayan klasik yaklasimin temelleri atilmustr.

Bu sinyallerin spektral analizinde modern (parametrik) ve klasik (parametrik olmayan)
seklinde iki yaklasim kullanilmaktadir. Parametrik veya modernyaklasim, incelenen
siirecin tam olarak veya yaklasik olarak segilen bir model ile ifade edilebilecegi
temeline dayanir. Parametrik spektra hesaplama yaklagimi (1) modelin se¢ilmesi, (2)
verilerden ve kovaryans gecikmelerinden model parametrelerinin hesaplanmasi ve (3)
hesaplanan model kullanilarak spektral yogunlugun hesaplanmasi olarak ii¢c asamadan
olusmaktadir. Model tabanli bu metodun en Onemli avantaji veriler pencereden
gecirilmedigi icin yliksek frekans coziiniirliigline ulasilabilmesidir. Bu yaklasimda
oncelikle uygun model hesaplanip buradan GSY(Gii¢ Spektrum Yogunlugu)’na
gecildigi icin direkt olmayan bir yapidadir [182].

Klasik spektral analiz yaklasimi direkt ve direkt olmayan seklinde iki katagoriye
ayrilmaktadir . Sekil 3.5 ’ten de goriilebilecegi gibi direkt metod islenmemis verileri
frekans bolgesine doniistiirmek ve sonucu olusturmak seklinde ¢alismaktadir. Dolayli
metodta ise Oncelikle kovaryans islemi hesaplanmakta ve daha sonra bu frekans
bolgesine doniistiiriilmektedir. Yani dolayli metod Wiener-Khintchine teoreminin bir
uygulamasidir [181,182].

Gelisiglzel sinyal
xit)

Direkt

GSY
R.k) S/e)

Sekil 3.5. Klasik (Parametrik olmayan) Spektral Hesap

Gelisiglizel x(t) slireci i¢cin otokorelasyon fonksiyonu, x(t)x(t+t) c¢arpiminin
ortalamasidir. Siire¢ duragan oldugu siirece bu deger zamandan bagimsizdir ve sadece

zaman gecikmesi t’ya baglidir. Buna gore
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EIx@Ox(t+7)]= f(t) =R, (1) (39)
buradan spektral yogunluk,
S, (w) = AFDIR, (7)] (40)

seklindedir [180,181]. Bu teknik giiriiltiilii spektral hesaplamalar vermeye meyillidir,
fakat otokorelasyon genellikle gecikme penceresi olarak adlandirilan bir pencere
fonksiyonu, W, ile c¢arpilarak daha diizgiin sonuglar elde edilebilir. Pencere temel
olarak spektral kacaklar1 azaltir ve spektral yogunluk hesabini gelistirir. Bu yontemin

blok diyagrami Sekil 3.6’ da verilmistir.

®(t) Xw)
— | AFD TAFD L -

Sekil 3.6. Korelasyon Metodu Blok Diyagrami

Bu blok diyagrami asagidaki sekilde 6zetlenebilir;

1. x(t)’nin AFD’niin hesaplanmasi, yani X(o),

2. X(o)’nin konjugesiyle ¢arpilarak | X(w)[® nin elde edilmesi,
3. TAFD ile kovaryansin elde edilmesi,

4. Kovaryansin W(t) gecikme penceresiyle carpilmasi,

5. Pencereden gecirilmis kovaryansin AFD ile GSY 'nun hesaplanmasi,

Direkt metod olarak adlandirilan periodogramin istatistiki ozellikleri  korelasyon
metoduyla aynidir. Periodogram istatistikgiler tarafindan giiriiltiilii veri kayitlarindaki
periyodik hareketleri tespit etmek i¢in olusturulmus bir metodtur. Bu gelistirilmis
spektral hesap yontemi

P, =1/ N[X(W)]> =1/N NZ4RX(r)ei“N
k=—(N-1) (41)
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seklinde tanimlanmistir. Periodogram metodu istatistiki ortalama ve pencereyle
diizglinlestirme yontemleriyle daha da gelistirilebilir. Bu gelistirilmis metod Welch

Metodu olarak adlandirilir.

Welch Metodunun uygulanmasi i¢in takibi gerekli basamaklar agagida siralanmistir ve

Sekil 3.7 de Welch Metodunun blok diyagrami verilmistir.

1. Eldeki veriler, {x(t)}, t=1,...,N herbiri L uzunlugunda K par¢aya bdliiniir,
yani;

K=N/L

X () =x(t+L(@i-1),i=1..Kt=0,.,L-1 (42)

2. X (t)W, (t) elde etmek i¢in veriler pencereden gecirilir.

3. AFD kullanilarak K adet periodogram hesaplanir,
P(w,i) = 1/U|AFT[x, (W, ©)] i =1..., K 43)
Burada,

U=1/ wa 2(t) "

olarak ifade edilir.

4. Asagidaki formiil kullanilarak spektrum hesaplanir.

S, (W) =1/Ki P(W, i) )

Bu hesaplanan spektrumun varyansi 1/K ile ve ¢6ziiniirliik hatas1 K/N ile orantilidir.

S w)
Ortalama :

AFD

Sekil 3.7. Welch Metodu Blok Diyagrami



4.BOLUM

BENZETIM CALISMALARI

Bu calismada EKG sinyaline karisan kas giiriiltiisii (EMQG), dogrusal olmayan adaptif
agirliklandirilmis Myriad siizgeg, agirliklandirilmis Median siizge¢ ve dogrusal adaptif
FIR siizge¢ kullanilarak bastirilmis ve siizge¢ basarimlari Matlab 6.5 kullanilarak
karsilastirilmistir. Bu maksatla EKG isaretine ger¢cek zamanli olarak kaydedilen EMG
isareti ve a-bagimli yayilim ile modellenen yapay EMG isareti ayr1 ayr1 eklenmis ve bu
durumlardaki silizge¢ performanslari incelenmistir. Yapilan benzetim c¢aligmalarinda,
EKG sinyalinden kas giiriiltiisiinlin adaptif siizge¢ yapist kullanilarak arindirilmasina

yonelik igleme ait blok sema Sekil 4.1°de verilmektedir.

s(n)
Sistem
EEG

Smyali _
Istenilen | dn)
Sinyal
+ v x(n) * Agmwhklandmihms Myriad Siizgec v
( ) * Agmwhklanduihms Median Sizg )
Giris gnhklanduthms Median Siizgec Cilas
Sinyvah * FIR Siizoec Sinyah
Hata | e(n)
EMG wvin}
Sinyah
Adaptif Algoritma |

Sekil 4.1. Adaptif Siizge¢ Yapist
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Benzetim ¢aligmalarinda kullanilan EKG ve EMG sinyalleri literatiirde referans olarak
gosterilen Physionet veri bankasinda bulunan MIT-BIH Polysomnographic kayitlar
igerisinden segilen (slp32, slp37, slp4l, slp45, slp48) kayitlar kullanilmistir. Uyku
bozukluklarinin tanist i¢in “altin standart” yontem olan “polisomnografi” , uyku
sirasinda, ndrofizyolojik, kardiyorespiratuar, diger fizyolojik ve fiziksel parametrelerin
belli bir periyod, genellikle gece boyunca, es zamanli ve devamli olarak kaydedilmesi
seklinde tanimlanmaktadir. Bu yontemle uyku evreleri ve bir¢ok fizyolojik parametre
ayrintili olarak izlenmekte ve ¢esitli organ sistemlerinin fonksiyonu, uyku ve uyaniklik

sirasindaki etkilesimleri konusunda bilgi saglanmaktadir.

MIT-BIH Polisomnografik veri bankasinda, uyku esnasindaki ¢oklu fizyolojik
sinyallerin toplu kayitlar1 bulunmaktadir. Sinyaller, kronik uyku apnesi sendromunu
degerlendirmek ve genellikle bu konudaki engelleri azaltmak i¢in uygulanan siirekli

pozitif hava baskilarinin etkilerini test etmek i¢in gozlemlenmektedir.

Bu veritabaninda, 16 denegin hepsi erkek, 32 ile 56 yas arasinda, 89 ile 152 kilo
arasindadir. SlpOla ve Slp01b kayitlar1 bir denegin polisomnograminin sekmeleridir ki
bunlar yaklagik bir saatlik araliklarla yapilmistir. Slp02a ve Slp02b kayitlart 10
dakikalik bosluklara boliinmiis diger deneklerin polysomnogram’laridir. Geriye kalan

14 kaydin hepsi farkli deneklerindir.

Biitiin kayitlar; ECG sinyalleri, yayilan kan basinci sinyalleri, EEG sinyali ve solunum
verilerini igermektedir. Bazilarinda ise ilave olarak, EOG, EMG (Cene bolgesinden

alinan) , kalbe ait ses sinyali ve kulak memesi oksimetre sinyalini igermektedir[183].

Uygulamalarda giris verisi olarak kullanilan EKG ve EMG sinyallerinin toplam kayit
stiresi 1 dk olup ornekleme frekanslar1 250Hz ve rastgele ornek alma siireleri 0.004
sn’dir. Bu sinyallerin grafiksel olarak gosterimi Sekil 4.2°de verilmektedir. Her iki
sinyal 15000°‘er adet Ornek veriden olusmakta ve 12 bitlik analog dijital g¢evirici

¢Oziiniirliigline sahiptir.
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Sekil 4.2. Benzetim c¢aligsmalarinda kullanilan EKG ve EMG sinyalleri.

Benzetim ¢aligmalarinda ilk olarak gergek zamanli olarak kaydedilen EMG sinyalinin
a-bagimli giiriilti modeli [184] no’lu referansta gelistirilen metot temel alinarak
olusturulmustur. EMG isaretinin o=1.5 ve a=0.5 olarak sec¢ilen a-bagimli giiriiltii
modelleri sirasiyla Sekil 4.3 (a) ve (b)’de goriilmektedir. o degeri sifira yaklastikca
sinyal daha keskin diirtiilere sahip olmaktadir. Sekil 4.4 (a) ve (b)’de ise bu modellere
ait Gli¢ Spektrum Yogunluklar1 (GSY) goriilmektedir.

0.4 T T T T T T T T 08
03p 1 06F
02} B 0.4F
x 01 X 02f
= 2
w 0 w 0
o o
01+ 1 D2F
02t 5 04F
03F g 061
04 L L L L 1 ! L L L 08 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
ARNEK SAYISI ORNEK SAYISI
(@ o=1.5 (b) 0=0.5

Sekil 4.3. EMG isaretinin o-bagiml giiriiltii modelleri.
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(b) 0=0.5
Sekil 4.4. EMG isaretinin a-bagimh Giiriiltii modellerine ait GSY ‘lar1

Yapay EMG sinyalleri ile yapilan testlerde EMG sinyalinin modellenmesinde a-bagiml
modelin bagsariminin Gauss modeline gére daha basarili oldugu Sekil 4.4 ve Sekil 4.5
‘te gosterilmektedir. Ayrica o degeri sifira yaklastikca EMG sinyaline olan benzerligi
daha da artmaktadir. Sekil 4.5 de ise ger¢ek zamanl olarak kayit edilen EMG sinyali
ve Gauss sinyallerine ait Gii¢ Spektrum yogunluklar1 gosterilmektedir. EMG sinyali ile
Gauss sinyalinin frekans sahalar1 birbirine yakin fakat frekans karakteristikleri farklilik

gostermektedir.



55

w10
12
1 L 4
T
T
o
= 08 .
=
=3
=
=
2 0G6 R
£
k=
2 04 i
[¥a]
(&}
=
o
0.2 .
) MMWWWMNMM
0 20 40 B0 a0 100 120 140
Frekans (Hz)
(@) Ger¢ek EMG Sinyali
0025
ooz 1
rd
T
o
=
=
ERQNit 1
=
=
o
[
-
=
AT r m -
-
[ak]
=
[¥x)
(]
=
“ noost 1
D 1 1 1 1 1 1
0 20 40 e T 100 120 140

Frekans (Hz)

(b) Gauss Sinyali
Sekil 4.5. Ger¢cek EMG Sinyali ve Gauss Sinyaline ait GSY’ lar

Benzetimlerde kullanilan EKG isareti olarak Sekil 4.2.‘deki 15000 6rnek verinin ilk 500

ornek verisi istenilen isaret olarak kullanilmis ve bu isaret Sekil 4.6’da verilmistir.
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Sekil 4.6. Istenilen EKG isareti.

Sekil 4.6 ‘da verilen EKG sinyaline Sekil 4.3 (a) ve (b) de verilen yapay EMG

guriiltiileri eklenmistir. Eklenen giiriiltiiler sonucu olusan bozuk EKG isaretleri sirasiyla

Sekil 4.7 (a) ve (b)’ de verilmistir.

GENLIK

25

Ty

ahih

ol

L
0 50

L L L L L L L L
100 150 200 250 300 350 400 450 500

ORNEK SAYISI

(@)

NN

L
1) 50

L L L L L L L L
100 150 200 250 300 350 400 450 500

ORNEK SAYISI

(b)

Sekil 4.7. Yapay EMG isareti eklenen EKG isaretleri.

Sekil 4.1 °de verilen blok yap1 gbz oniine alinarak giiriiltiilii EKG isareti adaptif Myriad

stizge¢ , Median siizge¢ ve FIR siizgecten gecirilerek giiriiltiiden armndirilmasi

saglanmigtir. Adaptif Myriad siizge¢ optimizasyonunda dgrenme algoritmasi olarak [75]

no’lu referansta Kalluri ve Arce tarafindan gelistirilen algoritma, adaptif Median siizge¢

algoritmas:1 olarak [178] Yinbo Li ‘nin tasarladigi algoritma ve FIR siizgec
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optimizasyonunda ise LMAD algoritmasi kullanilmistir [185]. Sekil 4.7 (a) ’da ki
giriltili EKG isaretinin (0=1.5) adaptif Myriad slizge¢ ,Median siizge¢ ve FIR
siizgecten gegcirildikten sonra olusan giirtiltiiden arindirilmis durumu sirasiyla Sekil 4.8.
(@), (b) ve (c¢) ’de verilmistir. Elde edilen ¢ikislari, giiriltiisiz EKG sinyali ile
karsilastirdigimizda, FIR siizge¢ c¢ikisindaki sinyalin, giiriiltiden tam olarak
arindirilamadigr ve  sinyale ait P,Q,S,T bilesenlerinin net olarak anlasilamadigi
gorilmektedir. Ayrica Median siizgeg cikisi incelendiginde, FIR siizge¢ ¢ikisina gore
nispeten daha basarili giiriiltii slizme yapmasina ragmen, R bileseninin genliginde
bozulmalar oldugu tespit edilmistir. Myriad siizge¢ c¢ikindaki sinyalin, P,Q,R,S,T
bilesenleri giiriiltiistiz EKG sinyali bilesenlerine daha yakin degerler oldugu tespit

edilmistir.
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(c) Agirliklandirilmis Median siizgeg ¢ikisi.

Sekil 4.8. Yapay giiriiltiilii (o=1.5) EKG °‘ye ait slizge¢ ¢ikislart.
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Cikislarin Gii¢ Spektrum yogunluklar1 (GSY) ise Sekil 4.9 ‘da gosterilmektedir.
Giirtiltiistiz EKG sinyali ile filtre ¢ikiglarinin  ayni1 frekans sahasit ve ayni frekans
ozelliklerine sahip oldugunu anlamak i¢in GSY ’lar1 incelenmistir. Myriad ve FIR
siizge¢ cikiglart ile giiriiltiisiz EKG sinyalinin frekans sahalar1 yaklasik 32 Hz
civarindadir yani hemen hemen ayni1 frekans sahasi i¢inde bulunmaktadirlar. Ancak 10
ile 30 Hz arasindaki frekans degerlerinde FIR siizgece ait frekans karakteristiginin
Myriad siizge¢ cevabmna gore daha basarisiz oldugu tespit edilmistir. Bu yiizden
giiriiltiisiiz EKG sinyalinin frekans karakteristigine en yakin davranisi Myriad siizgecin
sergiledigi sonucuna varilmistir. Ayrica Median siizgecin frekans sahasinin yaklasik 26
Hz olmasi ve frekans karakteristiginin farkliligi sebebiyle giiriiltiisiiz EKG sinyalinin

ozelliklerine yakin davranislar sergileyememistir.
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(b) Sekil 4.9 (a) ‘nin Ayrintili Hali.

Sekil 4.9. (0=1.5) iken Siizge¢ Cikislarinin GSY ’lart.

Sistemde, istenilen isaret olan giiriiltisiiz EKG sinyali ile filtre ¢ikislarinda elde edilen
girtltiden arindirilmis sinyaller karsilastirilarak, hata karakteristigi ,MSE (Mean
Square Error ) yontemiyle hesaplanmistir. o =1,5 iken , Tablo 4.1 ’de gosterildigi tizere
biitin SNR ( Sinyal / Giiriiltii) degerlerinde Agirliklandirilmis Myriad  siizgeg
cikislarinda elde edilen hata degerleri istenilen yani (MSE= 0 ) sifira daha yakin
sonuclar vermektedir.

Tablo 4.1. a=1,5 iken MSE degerleri.

SNR Mean Square Error (MSE)
o (dB) WI_\_/Iyriad WI\_/_Iedian FIR
Siizgeg Siizgeg Siizgeg
15|+ 25dB| 0,000505 0,0113 0,002
15|+ 20dB| 0,0015 0,0154 0,0039
15|+ 15dB| 0,0041 0,0160 0,0072
15|+ 10dB| 10,0151 0,0171 0,0162
15|+ 5dB 0,0213 0,0233 0,0291
15|+ 0dB 0,0246 0,0271 0,0446
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Ayni1 zamanda Sekil 4.7 (b)’ deki giiriiltili EKG isaretinin (a=0.5) siizge¢lerden
gecirildikten sonraki durumu ise sirasiyla Sekil 4.10 (a),(b) ve (¢) *de gosterilmistir. FIR
stizge¢ cikisindaki sinyalin, hala yogun olarak diirtiilii giiriiltii bilesenleri igerdigi ve bu
yiizden P ve T bilesenlerinin net olarak anlagilamamaktadir. Median siizge¢ ¢ikisi
incelendiginde, FIR siizgeg ¢ikigina gore daha basarili giiriiltii siizme basarimi olmasina
ragmen, R bileseninin genliginde bozulmalar meydana getirdigi tespit edilmistir.
Myriad siizge¢ ¢ikisindaki sinyalde azda olsa diirtii bilesenleri bulunmasina ragmen bu
durum P,Q,R,S,T bilesenlerinin anlasilmasi i¢in problem teskil etmemektedir. Ayrica

giiriiltiisiiz EKG sinyal bilesenlerine en yakin degerler Myriad siizge¢ ¢ikisinda elde

edilmistir.
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(c) Agirliklandirilmis Median siizgeg ¢ikist

Sekil 4.10. Yapay giiriiltiilii (¢=0.5) EKG’ ye ait siizge¢ ¢ikislari.

Sekil 4.11 ‘de giirtltili EKG isaretinin (0a=0.5) siizge¢lerden gegirildikten sonra elde
edilen cikislara ait Gii¢ Spektrum yogunluklar1 gosterilmektedir. Myriad ve FIR siizgec
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cikislan ile giiriiltiisiiz EKG sinyalinin frekans sahalarinin yaklasik 33 Hz olmasina
karsin, giirtiltiistiz EKG sinyalinin frekans karakteristifine en yakin davranisi Myriad
siizge¢ sergilemektedir. Ayrica Median siizgecin frekans sahasinin yaklasik 26 Hz den
olmasi ve frekans karakteristiginin farkli olmasi sebebiyle giiriiltiisiiz EKG sinyalinin

ozelliklerine benzerlik gostermemektedir.

ooieH Enma ; Ginaltisuz EKG |
Sivah ; Median Cias
0.016 H Yesil ; Myniad Cilas )

Mavi ; Fu Cilas

% 0014 H d
g
= 0012 4
JE[I
=
w0 B
=
E 0.008 B
g0
<
% 0006 .
© 0.004 4
0.002 b
o 40 50 B0 70
Frekans (Hz)
(@)
x10°
10f 0 A ]
H Kumn ; Giwiiltiisiz FKG
9t | Sivah ; Median Cilas 4
= i Yesil ; Myriad Cilas
E al Mavi ; Fur Cikas i
g
& 7l ]
=
g
o gl _
'>-|
=
g
[
£ 5
2
“ 4t 1
Z
3F -
2r i
1F A 4
1 1 I LY 1 = \“t-'l-.-.
0 5 10 15 20 25 30 35

Frelans (Hz)
(c) Sekil 4.11 (a) * nin Ayrintili Hali.

Sekil 4.11. Yapay giiriiltiilii (0=0.5) EKG’ ye ait siizge¢ cikislarinin GSY ‘lar.
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a = 0,5 iken, Tablo 4.2 *de gosterildigi gibi biitiin SNR ( Sinyal/Giiriiltli) degerlerinde
Agirliklandirilmis Myriad siizgec c¢ikislarinda elde edilen hata degerlerinin en uygun
sonuglart verdigi anlagilmaktadir. Ayrica bu sonuglari, a = 1,5 oldugu zaman ki
sonuglarla karsilastirdigimizda bunlarin ideal degerlere (MSE = 0) daha yakin olduklar1
tespit edilmistir.

Tablo 4.2. a.=0,5 iken MSE degerleri.

SNR Mean Square Error (MSE)
%1 (@B) WMyriad WMedian FIR
Siizgeg Siizgeg Siizgeg
0,5|+ 25dB 0,0004 0,015 0,0019
0,5|+ 20dB 0,001 0,0151 0,0036
0,5|+ 15dB 0,0014 0,0156 0,007
0,5|+ 10dB 0,0025 0,0159 0,0102
05|+ 5dB 0,0109 0,0167 0,0203
0,5|+ 0dB 0,0171 0,0174 0,0453

Yapilan bu ¢alismalarin yani sira, siizgeglerin gercek zamanli olarak kaydedilen EMG
ile bozulan EKG isaretinin giiriiltiiden arindirilmasindaki basarimlari da incelenmistir.
Bu maksatla Sekil 4.2 ‘deki 15000 6rnek EMG verisinin ilk 500 verisi giiriiltii olarak
kullanilmis ve Sekil 4.12 (a) ’da verilmistir. Ayrica, gergek zamanl olarak kaydedilen
EMG giiriiltiisliniin eklenmesi sonucu olusan giiriiltiilii EKG isareti de Sekil 4.12 (b) *de

verilmistir.
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(a) Gergek zamanl olarak kaydedilen EMG isareti.  (b) Giiriiltiilii EKG isareti.

Sekil 4.12. Ger¢cek EMG sinyali ve EKG’ye eklenmis hali.
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Sekil 4.12 (b) ’deki gergek giiriiltii ile bozulmus EKG isareti sirasiyla adaptif Myriad
stizgeg, Median siizge¢ ve FIR silizgecten gecirilmistir. Siizge¢ cikislarinda elde edilen
giiriiltiisiiz EKG isaretleri Sekil 4.13 (a),(b),(c) *de gosterilmistir. FIR siizgeg ¢ikisindaki
sinyalin, hala EMG sinyal bilesenleri i¢germesi sebebiyle P,Q,S,T bilesenleri ayrintili
olarak tanimlanamamaktadir. Median siizge¢ ¢ikisinda P,Q,S,T bilesenlerinin daha
anlasilir olmasina ragmen, genliklerinde azalmalarin olmasi ve R bileseninde kismen

bastirilmasindan dolay: isarette bozulmalar meydana gelmistir.
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(c) Agirliklandirilmis Median siizgec ¢ikisi.

Sekil 4.13. Gergek EMG giiriiltiili EKG’ ye ait slizgec ¢ikislari.

Sekil 4.12 (b) ’deki gergek giiriiltii ile bozulmus EKG isaretinin siizge¢ basarimlari
sonucunda Sekil 4.13 ‘de elde edilen cikislara ait Giic Spektrum yogunluklar: Sekil
4.14° de gosterilmektedir.
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Myriad ve FIR siizgeg cikiglar ile giiriiltiisiiz EKG sinyalinin frekans sahalarimin
yaklasik 37 Hz olmasma ragmen Myriad siizge¢ ¢ikisi, FIR ‘a géore EKG sinyalinin
frekans karakteristigine daha c¢ok benzemektedir. Diger taraftan Median siizgecin
frekans sahasinin yaklasik 27 Hz olmasi ve frekans karakteristiginin giiriiltiisiiz EKG

sinyalinin 6zelliklerinden uzak olmasi nedeniyle benzerlikler gostermemektedir
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(b) Sekil 4.14 (a) ‘nin Ayrintili Hali.
Sekil 4.14. Ger¢cek EMG Giiriiltiilit EKG Sinyaline ait Stizge¢ Cikislarinin GSY’lari.

Gercek EMG sinyalleri ile yapilan testlerde Tablo 4.3 ‘de de gosterildigi lizere biitiin
SNR degerlerinde hata karakteristigi yoniinden Agirliklandirilmis Myriad stizgeg , FIR

sizge¢ ve Agirliklandirilmis Median siizgece gore daha iyi Sonuglar vermektedir.

Tablo 4.3. Ger¢ek EMG sinyali igin MSE degerleri.

Mean Square Error (MSE)
Ssnr
(dB)
Wmyriad Suzge¢ | Wmedian Siizgeg FIR Siizgeg

+ 25dB 0,00056 0,0153 0,0018
+ 20dB 0,0012 0,0157 0,0034
+ 15dB 0,0026 0,0166 0,006
+ 10dB 0,0052 0,0184 0,0082
+ 5dB 0,0148 0,0228 0,0151
+ 0dB 0,0305 0,0341 0,0326
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Yapilan calismalarda silizge¢leme basarimlarinin tespiti amaciyla MSE ve GSY
hesaplamalarinin yanisira EKG sinyal bilesenlerinin voltaj ve slire olarak analizleride
yapilmistir. Bu amagla farkli hastalardan alinan EKG sinyalleri igeren kayitlar sisteme
giris verisi olarak uygulandiginda ¢ikiglarda Tompkins algoritmasi [133] ile elde

edilen sinyalin bilesen degerleri hesaplanmaktadir.

Tablo 4.1, Tablo 4.2, Tablo 4.3 ‘de goriildiigii lizere o degeri arttik¢a, alinan
sonuclardaki hata basarim yiizdesinin azaldig1 tespit edilmistir. +0 ile +25 dB arasinda
biitin SNR (Sinyal/Giiriiltii) degerlerindeki filtre ¢ikiglarina ait MSE degerleri
incelendiginde Myriad siizge¢ yapist sonuglarinin sifira daha yakin hata degerleri veren
model oldugu goriilmektedir. Ayrica EKG bilesen analizi i¢in yapilan testlerde ise o

degeri arttikca, EKG bilesenlerinin ideal degerlerden [145] uzaklastigi goriilmektedir.

MIT-BIH veri bankasindan alinan (SIp32, slp37, slp4l, slp45, slp48 ) EKG kayitlarina,
a degeri 0.5, 1.0, 1.5 secilerek olusturulan yapay giiriiltiiler ilave edilmis ve bunlar
sisteme girig verisi olarak uygulanmistir. Bunlara karsilik siizge¢ ¢ikislarindan alinan
sinyallere ait EKG bilesenlerini, genlik (mV) ve siire (sn) cinsinden incelenmistir. Tablo
4.4, Tablo 4.5, Tablo 4.6 ‘da goriildiigii lizere biitiin slizgec ¢ikislarindaki EKG bilegen

degerlerinin, o degeri arttik¢a ideal degerlerden uzaklastig1 tespit edilmistir.

Ayrica Yiiziincii yil tniversitesinin EKG analizi igin yaptigi arastirma [145] ve [186]
sonuclart temel alinarak, silizge¢c c¢ikislar1  kendi aralarinda karsilastirilmistir.
Sonuglarda Myriad silizgeg¢ yapisinin Median ve FIR siizge¢ yapilarina gore daha iyi
basarimlar sergiledigi tespit edilmistir. Sonuglara gore, lineer bir yap1 olmasina ragmen

FIR siizge¢ yapisi, Myriad slizgec yapisindan sonra en iy sonuglari veren siizgegtir.
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Tablo 4.4. Myriad Siizge¢ Cikislarindaki EKG Bilesen Degerleri.

MYRIAD SUZGEC CIKISI

Giris Datasi
P1 P2 P..'P R1 R2 R..'R T1 T2 T..'T QRS QRS
Siire Siire Siire "

MIT- (mV) (mvV) (sn) (mvV) (mV) (sn) (mV) (mV) (sn) (mV) | Siire(sn)
BIH
Kayit | SIp32 +
Tipi Noise (@=0.5) 0,218 0,221 0,816 2,678 2,976 0,82 0,345 | 0,381 0,8240 | 0,960 0,08470

Slp32 +

Noise (@=1) 0,216 0,217 0,811 2,669 2,971 0,77 0,348 | 0,378 0,8236 | 0,952 0,08468

Slp32 +

Noise (@=1.5 0,212 0,215 0,802 2,661 | 2,963 0,79 0,342 | 0,372 | 0,8233 | 0,948 | 0,08462

SIp37 +
Noise (@=0.5) 0,217 0,219 0,8 2,564 | 2,856 0,812 | 0,321 | 0,364 0,802 | 0,965 0,0843
Slp37 +
Noise (@=1) 0,215 0,216 0,798 2,551 | 2,844 | 0,811 | 0,318 | 0,352 0,793 |0,952 | 0,08323
Slp37 +

Noise (@=1.5) 0,211 0,213 0,793 | 2,537 | 2,832 | 0,805 | 0,301 | 0,345 0,797 |0,943 0,083

Slp41 +
Noise (@=0.5) 0,231 0,203 0,81 2,789 | 3,171 | 0,767 | 0,371 | 0,394 0,804 | 0,941 0,0798
Slp41 +
Noise (@=1) 0,224 0,201 0,805 2,768 | 3,165 | 0,762 | 0,366 | 0,387 0,801 | 0,933 0,0796
Slp41 +

Noise (@=1.5) 0,221 0,205 0,809 | 2,756 | 3,143 | 0,756 | 0,345 | 0,379 0,793 |0,927 0,0795

SIpd5 +
Noise (@=0.5) 0,212 0,215 0,798 2,545 2,744 | 0,801 0,345 | 0,366 0,797 | 0,966 0,0836
SIpd5 +
Noise (@=1) 0,21 0,212 0,801 2,501 2,732 0,8 0,321 | 0,357 0,784 0,953 0,0827
SIpd5 +

Noise (@=1.5 0,199 0,201 0,799 2,489 | 2,702 | 0,798 | 0,312 | 0,351 0,760 | 0,944 0,0823

Slp48 +
Noise (@=0.5) 0,202 0,207 0,8 2,571 | 2,632 | 0,802 | 0,311 | 0,337 0,794 | 0,963 0,0817
Slp48 +
Noise (@=1) 0,2 0,202 0,798 2,562 | 2,625 | 0,798 | 0,309 | 0,332 0,792 | 0,956 0,0813
Slp48 +

Noise (@=1.5) 0,198 0,199 0,796 2,56 2,615 | 0,792 | 0,302 | 0,329 0,79 0,946 0,0811
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Tablo 4.5. MedianSiizge¢ Cikislarindaki EKG Bilesen Degerleri.

MEDIAN SUZGEC CIKISI

Giris Datasi P1 P2 :&Z R1 R2 :ii_r': T1 T :u-; QRS QRs
(mv) (mV) (sn) (mV) (mVv) (sn) (mV) (mv) (sn) (mv) Siire(sn)

MIT-BIH
Kayit | SIp32 +
Tipi Noise (@=0.5) 0,163 0,169 0,801 2,178 2,196 | 0,79 0,221 | 0,231 | 0,8030 | 0,662 0,0620

SIp32 +
Noise (@=1) 0,154 0,163 0,794 2,15 2,188 | 0,786 | 0,215 | 0,224 | 0,783 | 0,660 0,0612

SIp32 +
Noise (@=1.5 0,158 0,161 0,797 2,123 2,171 | 0,782 0,21 0,211 | 0,776 | 0,651 0,0603

SIp37 +
Noise (@=0.5) 0,178 0,172 0,799 2,181 2,178 0,8 0,271 | 0,291 | 0,778 | 0,683 0,0615
Slp37 +
Noise (@=1) 0,176 0,167 0,789 2,087 2,166 | 0,793 0,267 | 0,272 | 0,772 | 0,68 0,0609
Slp37 +

Noise (@=1.5) 0,165 0,161 0,8 2,066 2,152 | 0,787 | 0,251 | 0,281 | 0,769 | 0,677 0,0606

Slp41 +
Noise (@=0.5) 0,162 0,168 0,793 2,121 2,197 | 0,792 | 0,255 | 0,261 | 0,789 | 0,675 0,0638
Slp41 +
Noise (@=1) 0,16 0,164 0,791 2,119 2,191 | 0,788 | 0,244 | 0,253 0,8 0,672 0,0624
Slp41 +
Noise (@=1.5 0,158 0,16 0,795 2,11 2,18 0,785 0,24 0,251 | 0,795 | 0,667 0,063

Slp45 +
Noise (@=0.5) 0,168 0,171 0,798 2,103 2,141 | 0,797 | 0,231 | 0,238 | 0,787 | 0,643 0,0603
Slp45 +
Noise (@=1) 0,166 0,167 0,793 2,101 2,132 | 0,793 | 0,224 | 0,234 | 0,782 | 0,641 0,0595
Slp45 +

Noise (@=1.5) 0,161 0,162 0,791 2,098 2,125 | 0,789 | 0,221 | 0,231 0,78 |0,635 0,0602

Slp48 +
Noise (@=0.5) 0,148 0,15 0,755 2,2 2,217 | 0,721 | 0,211 | 0,232 | 0,703 | 0,631 0,0635
Slp48 +
Noise (@=1) 0,144 0,147 0,751 2,16 2,201 | 0,716 | 0,202 | 0,226 | 0,695 | 0,624 0,0626
Slp48 +

Noise (@=1.5) 0,141 0,143 0,748 2,11 2,198 | 0,708 | 0,196 | 0,215 | 0,691 | 0,621 0,0614
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Tablo 4.6. FIR Siizge¢ Cikislarindaki EKG Bilesen Degerleri.

MIT-
BIH
Kayit
Tipi

FIR SUZGEG CIKISI

Giris Datasl P1 P2 : i.i_r: R1 R2 :ﬁ_r': T T2 sTu_rL QRS | QRS
(mv) | (mV) (sn) (mv) (mv) (sn) (mVv) (mV) (sn) (mV) | Siire(sn)
SIp32 +
Noise (@=0.5) 0,182 | 0,187 0,81 2,194 2,204 0,801 | 0,263 0,27 0,81 |0,721 0,0722
SIp32 +
Noise (@=1) 0,179 | 0,174 0,807 2,188 2,199 0,8 0,254 0,262 | 0,8056 | 0,701 0,0717
SIp32 +
Noise (@=1.5 0,175 | 0,169 0,801 2,178 2,196 0,79 0,221 0,231 | 0,8030 | 0,662 0,071

SIp37 +
Noise (@=0.5) 0,189 | 0,184 0,789 2,217 2,232 0,791 | 0,297 0,301 0,797 | 0,763 0,0714
Slp37 +
Noise (@=1) 0,188 | 0,183 | 0,782 2,201 2,211 0,794 | 0,291 0,296 | 0,782 | 0,759 0,0712
Slp37 +
Noise (@=1.5) 0,185 | 0,178 0,802 2,198 2,203 0,804 | 0,288 0,291 0,794 | 0,742 0,0705
Slp41 +
Noise (@=0.5) 0,177 | 0,183 0,799 2,236 2,343 0,786 | 0,275 0,289 0,795 [ 0,747 0,0703
Slp41 +
Noise (@=1) 0,173 0,18 0,802 2,229 2,302 0,8065 | 0,271 0,278 0,792 [ 0,741 0,0701
Slp41 +
Noise (@=1.5 0,171 | 0,178 0,801 2,221 2,297 0,802 | 0,265 0,271 0,789 [ 0,735 0,0698

Slp45 +
Noise (@=0.5) 0,172 | 0,188 0,791 2,349 2,402 0,788 | 0,282 0,281 0,763 | 0,764 0,0723
Slp45 +
Noise (@=1) 0,17 0,183 0,795 2,301 2,386 0,783 | 0,279 0,273 0,761 | 0,761 0,0711
Slp45 +
Noise (@=1.5) 0,169 | 0,181 0,788 2,293 2,341 0,777 | 0,271 0,268 0,76 | 0,756 0,0704
Slp48 +
Noise (@=0.5) 0,169 | 0,171 0,793 2,236 2,265 0,794 | 0,269 0,276 0,757 | 0,746 0,0701
Slp48 +
Noise (@=1) 0,163 | 0,168 0,792 2,231 2,256 0,785 | 0,258 0,261 0,732 | 0,737 0,0699
Slp48 +
Noise (@=1.5) 0,161 | 0,162 0,795 2,215 2,247 0,771 | 0,247 0,245 0,724 | 0,731 0,0695




5.BOLUM

SONUCLAR

Bu tez calismasinda, EKG sinyaline karisan kas giiriltiisiiniin (EMG), dogrusal
olmayan adaptif Myriad siizge¢ , adaptif Median siizge¢ ve dogrusal adaptif FIR
stizgec kullanilarak bastirilmasi amacglanmistir. Bu maksatla EKG isaretine hem gercek
zamanl olarak kaydedilen EMG isareti hem de o-sabitli giiriiltii ile modellenen yapay
EMG isareti ayr1 ayr1 eklenmis ve bu durumlardaki siizgeg performanslari incelenmistir.
Yapilan benzetim calismalarina gore, fakli o degerleri ile olusturulan yapay kas
giiriiltiilerin ve ger¢ek zamanli kas giiriiltiisiinlin EKG isaretinden arindirilmasinda

Myriad, Median ve FIR siizgec yapilart gézlemlenmistir.

Yapay EMG sinyalleri ile yapilan testlerde EMG sinyalinin modellenmesinde a-bagiml
modelin basariminin, Gauss modeline gore daha basarili oldugu gdzlemlenmistir.
Ayrica o degeri sifira yaklastikca EMG sinyaline olan yakinligi daha da artmaktadir.
Bu sonug, isaretlere ait GSY grafikleri ile daha detayli olarak goriilmektedir.

MIT-BIH veri bankasindan alinan (slp32, slp37, slp41, slp45, slp48 ) EKG kayitlarina,
a degeri 0.5, 1.0, 1.5 segilerek olusturulan yapay giiriiltiiler ilave edilmis ve bunlar
sisteme girig veri olarak uygulanmistir. Bunlara karsilik siizgec cikislarindan alinan
sinyallere ait EKG bilesenlerini, genlik (mV) ve siire (sn) cinsinden incelenmistir.
Sonuglarda goriildiigli ilizere biitlin siizge¢ ¢ikislarindaki EKG bilesen degerlerinin, o

degeri arttikca ideal degerlerden uzaklastig1 tespit edilmistir.



71

Genel olarak degerlendirildiginde Myriad silizgeglerin her tiirli o-bagimli giiriiltiilii
durumda giris isaretinden giiriiltii isaretinin ayiklanmasi isleminde diger siizgeclere gore
daha basarili olduklar1 tespit edilmistir. Yiiziincl yil tiniversitesinin EKG analizi i¢in
yaptig1 arastirma sonuglar1 temel alinarak, siizge¢ ¢ikigslart MSE , GSY ve EKG bilesen
degerlerine gore kendi aralarinda karsilagtirildiginda, Myriad slizge¢ yapisinin Median
ve FIR silizgeg¢ yapilarina gore daha i1yi basarimlar sagladigi ortaya ¢ikmaktadir. Ayrica
sonuglar, lineer bir yap1 olmasina ragmen FIR siizgec yapisi, Myriad siizge¢ yapisindan

sonra en iyi sonuglar1 veren siizge¢ yapisi olarak 6ne ¢ikmaktadir.

Bu tez aragtirmasi, adaptif Myriad slizge¢ performansinin farkli 6grenme algoritmalar

yardimiyla, artirilmasina yonelik ¢aligmalarla devam etmektedir.
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