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ÖZET 

 

Biyomedikal sahada farklı çeĢitte birçok sinyal mevcuttur. Bu sinyaller uzmanlara 

hastalıkların yorumlanması esnasında hayat kurtarıcı bilgiler verirken aynı zamanda 

diğer sinyaller için doğal gürültü teĢkil etmesi sebebiyle hastalara ait teĢhislerin 

konulmasında zorlaĢtırıcı bir faktör olarak ortaya çıkabilmektedir. Örnek olarak, 

kasların elektriksel aktivitelerinin dalgasal formu olarak meydana gelen kas sinyali 

(EMG-Elektromiyogram) EKG (Elektrokardiyogram) sinyaline gürültü olarak 

karıĢmaktadır. Bu doğal bozulma genellikle beyaz Gaussian gürültü ile 

modellenmektedir. Fakat gerçek kas sinyalleri dürtü gürültüsüne benzer keskin ve 

durağan olmayan karakterli davranıĢlar sergiledikleri için Gaussian model yetersiz 

kalmaktadır. Bunun önüne geçilebilmesi için kas sinyalinin en iyi tanımlayabileceği α-

bağımlı gürültü ile modellenmesi gerekmektedir.  

 

Yapılan bu çalıĢmada EKG sinyaline karıĢan kas gürültüsü (EMG), doğrusal olmayan 

adaptif ağırlıklandırılmıĢ Myriad  ve Median süzgeç ile doğrusal adaptif FIR süzgeç 

kullanılarak bastırılmıĢ ve baĢarımları karĢılaĢtırılmıĢtır. Bu maksatla yüksek 

çözünürlüklü EKG iĢaretine gerçek zamanlı olarak kaydedilen EMG iĢareti ve α-

bağımlı yayılım ile modellenen yapay EMG iĢareti ayrı ayrı eklenmiĢ ve bu 

durumlardaki süzgeç performansları incelenmiĢtir. Yapılan benzetim çalıĢmalarına göre, 

Myriad süzgeç yapısının, Median ve FIR süzgeç yapısına göre daha iyi performans 

sergilediği gözlenmiĢtir.  

 

Anahtar Kelimeler: EKG, EMG, α-bağımlı gürültü, Myriad süzgeç, Median süzgeç, 

FIR süzgeç, ağırlıklandırılmıĢ Myriad süzgeç, ağırlıklandırılmıĢ Median süzgeç.  
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ABSTRACT 

 

Many different kinds of signal exist in biomedical environments. These signals give 

vital information about the interpretation of the disorders but at the same time these 

signals arise as a compulsive factor in diagnosis due to its natural noise function for 

other signals. For instance, a wave formed electrical activity of muscles EMG 

(Electromyogram) blends ECG (Electrocardiyogram) as a noise. This natural distortion 

is usually modeled with a white Gaussian noise. But such assumption is not always true 

because real life muscle noise has sometimes edged and non-stationary character like an 

impulsive noise. In order to eliminate these problems, muscle signal have to be modeled 

with α-stable noise which is the best identification.  

 

In this paper, the muscle noise blended into EKG signal, is suppressed and performed 

using non-linear adaptive weighted Myriad and Median filters with linear adaptive FIR 

filters. With this objective; to high resolution ECG signal, real time recorded EMG 

signal and artificial EMG signal modeled with α-stable distribution are added relatively. 

Moreover, filter performances in this case are analyzed. Through simulation studies, it 

is observed that Myriad filter model has preferable performance according to Median 

and FIR filter models.   

 

Keywords: ECG, EMG, α-Stable Noise, Myriad filter, Median filter, FIR 

Filter,Weighted Median Filter, Weighted Myriad Filter. 
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1.BÖLÜM 

GĠRĠġ 

 

 

1.1. GiriĢ 

 

EKG (Elektrokardiyografi) iĢaretleri, kalp hastalıklarının izlenmesi sürecinde sürekli 

kaydedilerek değerlendirilmeleri, uygun tanı ve tedavinin belirlenmesi ve uygulanan 

tedavinin izlenmesi, oluĢabilecek anormalliklerin ve komplikasyonların belirlenmesi 

açılarından oldukça önem taĢımaktadır.  

 

Biyomedikal sinyaller kaydedilirken birçok gürültü ortaya çıkabilir çünkü ortamda 

çeĢitli gürültüler mevcuttur ve EKG sinyali çoğu zaman bu gürültülerle bozulabilir. 

Tanı konulmasında yanlıĢlıklara neden olmamak için bu gürültülerin EKG sinyalinden 

arındırılması gerekmektedir. Bu gürültülere örnek olarak; iletim hatlarındaki kayıplar, 

50 Hz‟lik Ģebeke gerilimi, EMG (Elektromiyografi) iĢareti verilebilir. Aslında 

gürültülerin çoğu kararlı değildir. Yani gürültünün çeĢitliliği ile ölçülen gürültü gücü 

değiĢiklik gösterebilir [1].  

 

Ġstatistiksel iĢaret iĢleme problemlerinde, en iyi çözümü elde etmek için genel yaklaĢım, 

probleme ait belirli iĢaret ve gürültü modellerinin oluĢturulması Ģeklindedir. Ancak bu 

yaklaĢım kullanılarak elde edilen en iyi çözümde küçük sapmalar göz ardı edilmektedir. 

Klasik istatistiksel iĢaret iĢleme teorisinde istatistiksel karakteristiklerin 

modellemesinde Gauss modeller sıklıkla kullanılmaktadır. Gauss model bazı gerçek 

dünya iĢlemleri için geçerli olmaktadır. Ancak, gerçek hayatta birçok Gauss olmayan 

durum meydana gelmektedir. Örneğin, fiziksel iĢlemlerin büyük bir kısmı doğada dürtü 
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Ģeklinde olup Gauss olmayan dağılımlarla daha kesin bir Ģekilde modellenebilmektedir. 

Dürtü iĢaretleri ve gürültüleri, bir veri dizisi içerisinde, keskin, sivri veya arada sırada 

oluĢan durumlar Ģeklinde karakterize edilmektedir [2] 

 

Kas gürültüsü (EMG), EKG sinyaline karıĢan ve bastırılması gereken en zor gürültüdür. 

EMG sinyalleri, genellikle Merkezi Limit Teorisi temel alınarak beyaz Gauss gürültü ile 

modellenmektedir. Fakat kas gürültüsü çoğunlukla keskin ve dürtü Ģeklinde meydana 

geldiğinden Gauss model yetersiz kalmaktadır. Ayrıca, Gauss olmayan gürültülü 

durumlar Gaussian modellerle optimize edildiğinde performans düĢmesi meydana 

gelmektedir. Son yıllarda, dürtü gürültülü sinyallerin tam bir modeli olarak α-bağımlı 

dağılıma dayalı gürültü kabul edilmektedir. Bu sebeple kas gürültüsünü α-bağımlı 

dağılım ile modellemek gerekmektedir [3].  

 

Eğer gürültü ile EKG sinyalinin frekans bandı aynı ise band geçiren süzgeçler gibi 

geleneksel süzgeçleme yöntemleri kullanılamamaktadır. Bu gibi durumlarda, doğrusal 

olmayan süzgeçlemeye dayalı gürültü giderme yöntemleri doğrusal süzgeçleme 

yöntemlerine göre gürültü arındırmada daha baĢarılıdırlar [4]. Bu sebeple dürtü 

gürültüsü doğrusal olmayan süzgeçlerle bastırılabilir. Bu süzgeç yapılarından olan 

AğırlıklandırılmıĢ Myriad ve Median süzgeçler son zamanlarda dürtü gürültülü 

durumlarda güçlü süzgeçleme baĢarımına sahip oldukları için sıklıkla kullanılmaktadır 

[5,6].  

 

1.2. Literatür Ġncelemesi 

 

Sistemlerin modellenmesinde iki tür yöntem mevcuttur, bunlar; doğrusal ve doğrusal 

olmayan modellerdir. Sistemin giriĢ-çıkıĢ iliĢkisinin doğrusal eĢitliklerle ifade edildiği 

doğrusal modelleme, teorik altyapısının geliĢmiĢ olmasından yaygın bir Ģekilde 

kullanılmaktadır [7,8]. Gauss‟un 1809‟da [9] baĢlattığı araĢtırmalar sonucunda sistem 

modelleme kavramı ilk kez 1962‟de Lotfi Zadeh tarafından kullanılmıĢ ve Zadeh bu 

kavramı “Bir sistemi, giriĢ ve çıkıĢ iliĢkilerinden belirlemek” Ģeklinde tanımlamıĢtır 

[10]. Doğrusal sistemlerin kimliklendirilmesi için autoregressive (AR), moving average 

(MA) ve autoregressive moving average (ARMA) modeller kullanılmıĢtır[11,12]. 
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Biyomedikal çevrede, EMG sinyallerinin analizinde bu modellerle ilgili detaylı 

çalıĢmalar yapılmıĢtır. 

 

1975 yılında, Graupe ve Cline [13] EMG sinyallerini ARMA modeli ile 

kimliklendirmiĢtir. Graupe ve Cline‟nin deneysel sonuçları EMG‟ nin  kısa zamanlı 

aralıklarda değiĢken olarak düĢünülebileceğini göstermiĢtir. Sherif [14] 1980‟de bu 

modeli yenilemiĢtir. Çünkü medikal deltoid‟in elektriksel davranıĢları değiĢken değildir. 

Sherif bilimsel incelemesinde EMG‟ nin değiĢken özelliği üzerinde durmuĢ ve AR 

model kullanarak ARIMA (Integrated Moving Average) modeli bulmuĢtur. Bu sayede 

kas aktivitesinin farklı aĢamalarında EMG‟ nin değiĢken doğasını karakterize etmiĢtir.  

 

Doerschuk 1983 yılında [15] Graupe ve Cline‟nin karĢılaĢtığı benzer problemle 

karĢılaĢmıĢtır; bu ise protez araçların kontrolünde çoklu EMG sinyallerinde AR 

modelinin kullanılmasıdır. 1986 yılında, Zhou [16], ertelenmiĢ kas içi EMG 

sinyallerinin, giriĢ olması ile birlikte EMG‟yi AR modeli olarak göstermiĢtir. „Doku 

süzgeci‟ olarak adlandırılan model, yüzeysel EMG‟den kas içi EMG „nin formuna 

bağlıdır. Ayrıca kas içi sinyalleri yüzeysel sinyallere dönüĢtüren zaman serisi 

parametreleri de tanımlanmıĢtır. Tanımlanan model yüzeysel sinyalden kas içi sinyalleri 

hesaplamada kullanılır. Bu model gerçek EMG dalga formlarını kullanarak açıklamıĢtır. 

Hefftner 1988 yılında [17] daha önceki modelleri değerlendirmiĢ ve EMG sinyal analizi 

için AR modelini seçmiĢtir. Bernatos 1986 yılında [18] ARMA ile birlikte istatistiksel 

doğrusal olmayan bir model kullanmıĢtır .1992 yılında, Tohru, ARMA ve ARIMA gibi 

daha kusursuz modellerde, dinamik kas hareketlerinin gerekli olmadığı kanısına 

varmıĢlardır. ARIMA modelinin ölçüm maliyeti yüksek ve model sırasının belirlenmesi 

karıĢık ve bazen de zordur. Tohru [19] tarafından benzetimde problem olan ölçüm 

maliyetinden dolayı AR modeli seçmiĢtir.  

 

Halbuki gerçek hayatta karĢılaĢılan birçok sistem doğrusal olmayan davranıĢlara 

sahiptir. Bu tür sistemlerin kimliklendirilmesinde doğrusal modelleme yöntemleri 

yetersiz kalmakta ve Volterra, Bilinear ve polynomial autoregressive (PAR) gibi 

doğrusal olmayan modelleme yöntemlerinin kullanılması gerekmektedir [20,21]. 

Doğrusal olmayan modellemede, sistemin giriĢ-çıkıĢ iliĢkisi, diferansiyel denklemler, 

üstel ve logaritmik fonksiyonlar gibi doğrusal olmayan matematiksel ifadelerlerle 
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sağlanır. Biyomedikal sahasındaki araĢtırmalarda Volterra [22-31], Bilinear [32-41] ve 

PAR [42,43] modellerinin fazla geliĢim gösterememesi ve bazı sınırlamalarının 

olmasından dolayı çok fazla   kullanılmamaktadır. 

 

Pratik uygulamalarda kullanılan süzgeçleme algoritmalarının büyük bir çoğunluğu, 

dürtü yoğunluğunda ciddi performans kayıpları gösteren Gaussian gürültü veya 

doğrusal iĢlemlerle sınırlıdır. Biyomedikal sahada  EMG gibi ani değiĢen  dürtü 

sinyallerine uygulanabilen güçlü doğrusal olmayan süzgeçler için esnek bir teori 

ihtiyacı, biyolojik görüntü iĢleme sahalarında da ortaya çıkmıĢtır. Önemli araĢtırma 

çabaları, özelliklede görüntü iĢleme alanlarında, ani gürültülere karĢı güçlü ve  dirençli 

olan doğrusal süzgeçlere uygun alternatifler bulmaya odaklanmıĢtır[44]. Bu araĢtırmalar 

adaptif sistem modellemesinin keĢfiyle baĢlamıĢtır, adaptif sistem modelleme 1975 

yılında Widrow tarafından En Küçük Ortalama Kareler (Least Mean Square-LMS) 

algoritması ile baĢlamıĢtır [45]. LMS algoritması, ilk olarak 1985 yılında Koh ve 

Powers tarafından doğrusal olmayan sistemlerin kimliklendirilmesinde kullanılmıĢtır 

[46]. Adaptif sistem modellemede Ġçsel En Küçük Kareler (Recursive Least Square-

RLS) algoritmasının geliĢtirilmesi ile LMS algoritmasının sonuca yakınsamadaki 

yavaĢlığı aĢılmıĢ ve daha sonraları Mathews tarafından doğrusal olmayan sistemler için 

hızlı RLS algoritması geliĢtirilmiĢtir [47,48]. Medikal alanda EKG iĢareti için doğal 

dürtü gürültüsü teĢkil eden EMG sinyalinin giderilmesinde, Widrow öncülüğünde 

kullanılan adaptif süzgeç yapıları [49-74] zaman içinde geliĢmiĢtir. 

 

Dürtü gürültülü sinyalleri en iyi modelleyen yöntem olarak α-bağımlı yayılım kabul 

edilmektedir. Çünkü dürtü gürültüsü içerisinde Laplacian veya Gauss dağılımları 

bulundurabilmektedir. α, (0< α <2) yayılımın en önemli parametresi olan karakteristik 

katsayısıdır çünkü α, yayılım kanallarının ağırlığını kontrol etmektedir. (0< α <2) için, α 

bağımlı rastgele değiĢkenlerin sonsuz değiĢeni bulunmaktadır. α=1 olduğu durumlarda 

Cauchy dağılım özelliği gözlemlenirken, α=2 durumunda ise Gauss dağılım 

gözlemlenmektedir.  Myriad ve Median süzgeç yaklaĢımları son yıllarda, α-bağımlı 

gürültü ortamları için güçlü süzgeç yapıları olarak kullanılmaktadır. Bu süzgeç yapıları 

haberleĢme, iĢaret ve görüntü iĢleme alanlarına baĢarıyla uygulanmıĢtır [75]. Median ve 

Myriad süzgeçler ilk tasarlandıklarında alçak geçiren süzgeç tipinde gürültü giderme 

özelliğine sahiptiler [76,77]. Son zamanlarda bu süzgeçlere negatif ağırlıklandırma 



 5 

 

 

özelliği kazandırılarak daha güçlü süzgeçleme karakteristiği eklenmiĢtir [78-81]. Bu 

sayede süzgeçler alçak geçiren,yüksek geçiren, band durduran, band geçiren 

davranıĢları da sergileyebilmektedir. 

 

1970 yılında Tukey tarafından ortaya konulan median süzgeç,  görüntüler üzerindeki 

dürtü gürültülerinin giderilmesinde etkili bir yöntem olarak  kullanılmıĢ ve günümüze 

kadar gelmiĢtir. Bu süzgeç sıralı istatistik [82] temeline dayanmaktadır. Median süzgeç 

zaman içinde geliĢtirilerek çeĢitli türleri sırasıyla ortaya çıkmıĢtır bunlar; 

ağırlıklandırılmıĢ median (Weighted Median-WM) [83], merkezi ağırlıklandırlmıĢ 

median (Central Weighted Median-CWM) [84], son olarak Un ve Neuvo [85] ile 

Florencio ve Schafer [86] tarafından ortaya konulan anahtar temelli median (Switched 

Median-SM) süzgeçlerdir. 

 

Myriad süzgeç elektronik sistemler üzerinde, güçlü dürtü gürültüsü bastırma özelliğine 

sahiptir. 2000 yılından bugüne kadar Myriad süzgeç;  sinyal iĢlemleri [87], dijital video 

[88], endüstriyel kontrol sistemleri [89], görüntü süzme iĢlemleri [90] ve EKG 

sinyalinden dürtü gürültülerinin giderilmesi gibi farklı alanlarda baĢarıyla 

uygulanmıĢtır. Myriad süzgecin en önemli avantajı; Gauss yayılım olmayan gürültülü 

iĢaretlere, özellikle anlık değiĢim gösteren tetiklemeli gürültülere karĢı sistem 

parametrelerini doğru kestirebilmesidir. Ayrıca lineerlik katsayısına sahip olması, 

gürültü giderme iĢleminde Median süzgece göre daha baĢarılı olmasını sağlamaktadır. 

EKG sinyaline dürtü gürültüsü olarak karıĢan EMG sinyallerinin bastırılmasında Pander 

tarafından geliĢtirilen ağırlıklandırılmıĢ Myriad süzgeç (Weighted Myriad Filter-WMF) 

[91-94]  uygulamaları etkin olarak kullanılmaktadır.  

 

Raphisak ve Schuckers [95]  görüntü iĢleme alanında sıklıkla kullanılan Morfolojik 

süzgeci EKG iĢaretine karıĢan EMG sinyalini tespit etmek ve süzmek için kullanmıĢtır. 

Bu tip süzgeçler EMG gibi beklenmeyen yani ani Ģekilsel değiĢimler gösteren sinyalleri 

süzgeçleyebilme yeteneğine sahiptir. Süzgeçlerde kullanılan algoritma az kompleks 

hesaplama yöntemleri tercih edildiğinden hızlı geri bildirimler elde edilebilmektedir. 

Chen  ve arkadaĢları [96] ilerleyen zamanlarda  QRS tespiti için matematiksel morfoloji 

metodunu sunmuĢtur. Daha sonra Sun ve arkadaĢları [97] geliĢmiĢ bir morfolojik 

yaklaĢım ortaya koymuĢtur. 
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Gürültü giderilmesinde gün geçtikçe yeni yaklaĢımlar ortaya çıkmaktadır. Bu yeni 

yaklaĢımlardan biriside Wavelet teoremidir(WT). Waveletlerin Fourier DönüĢümleri 

Fourier‟in 1807 de ortogonal Fourier serilerini tanımlamasıyla baĢlayan süreç içerisinde 

yapılan çalıĢmalar, 1873‟de Fourier serileriyle baĢka bir değere yakınsanamayan bir 

fonksiyonun bulunmasına yol açmıĢtır . Bu problem Haar‟ın 1909‟da, herhangi bir  f(x) 

fonksiyonuna düzgün dağılımlı olarak yakınsanabilecek yeni bir ortogonal seri 

oluĢturmasına yol açmıĢtır. Haar serileri Fourier serilerinde karĢılaĢılan yakınsama 

güçlüğünü çözerken, fonksiyonlarda karĢılaĢılan eğimlerin ifade edilmesinde yetersiz 

kalmaktadır. Çünkü küçük bir eğim ancak çok sayıda taban fonksiyonu kullanılarak 

ifade edilebilmektedir. 

 

1980‟lere kadar matematikçiler Haar serilerinde karĢılaĢılan bu sorunu çözmeye 

çalıĢmıĢlar, 1980‟lerin sonlarında ise “dalgacık” kavramını ortaya atmıĢlardır. 

 

Dalgacık analizi, bir sinyale ait zaman ve frekansla tanımlı bölgelerde yer alan bilgileri 

eĢzamanlı olarak gösterdiği için sinyaldeki eğilimleri, çöküm noktalarını ve 

süreksizlikleri belirlemek açısından diğer dönüĢüm tekniklerine göre daha avantajlıdır. 

Biyolojik iĢaretlerin analizinde sıklıkla kullanılan bu analiz yönteminin sahip olduğu en 

önemli özelliği yüksek frekanslarda yüksek zaman ve düĢük frekans çözünürlüğü 

sağlarken alçak frekanslarda yüksek frekans ve düĢük zaman çözünürlüğü sağlamasıdır. 

Guglielminotti and Merletti [98] Ģunu teorikleĢtirmiĢlerdir; eğer wavelet analizi MUAP 

(Motor Unit Action Potential)‟ın Ģeklini eĢleĢtirmek için seçilmiĢse, sonuç  WT‟si 

zaman düzleminde maksimum enerji lokasyonunu sağlar. 1997 yılında, Lazerta ve 

Olmo WT‟ nin doğrusallık, çoklu çözünürlük sağlama ve karĢıt terimlerden etkilememe 

gibi avantajlarıyla diğer zaman frekans göstergelerine bir alternatif oluĢturmuĢtur. 

Belirle koĢullarda, EMG sinyali tek bir prototipin ölçeklenmiĢ ve ertelenmiĢ bir 

versiyonu olarak düĢünülebilir. Guglielminotti‟nin teorisine dayanarak, Lazerta ve 

Olmo [99] Wavelet analizini MUAP‟ ın Ģeklini eĢleĢtirmede kullanmıĢlardır. 1999 

yılında, Pattichis [100], WT‟nin farklı karar aĢamalarında sinyalleri analiz etmek için 

kullanılabileceğini de göstermiĢlerdir. Bu araĢtırmacılar, Wavelet katsayısı ve zaman 

frekans düzlemi arasında ki bağlantıyı da analiz etmiĢlerdir. 2003 yılında, Kumar, 

WT‟nin Wavelet Fonksiyonu(WF) denilen önermesiyle karĢımıza çıkmıĢtır. WF, 
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sEMG‟ nin zaman domeninde iki boyutlu karĢılıklı korelasyonu alınarak hem açıklanır 

hem de dönüĢtürülür. EKG sinyalinden gürültü giderilmesinde yakın zamanlarda  

Wavelet modeli [101-89] sıklıkla kullanılmaktadır. 

 

Nikolaev ve Gotchev [116-120]  EKG sinyalinin yüksek genlikli olması sebebiyle EMG 

sinyaline karıĢtığı anda  kas sinyalini bozucu yönde etki yaptığını tespit etmiĢtir. Bu 

sebeple  ECG sinyalinin arındırılması için , Wiener süzgeç metodunu önermiĢlerdir.  

 

Son 10 yılda bağımsız bileĢen analizine (ICA-Independent Component Analysis) dayalı 

sinyal ayırt etme metodları oldukça kullanıĢlı bir hale gelmiĢtir. Bu nedenle  bağımsız 

bileĢen analiz, EKG sinyali ile EMG sinyalini [121-125] ayrıĢtırmak amacıyla da 

kullanılmıĢtır.  

 

Son yıllarda yapılan çalıĢmalarda doğrusal yada doğrusal olmayan sistemlerin 

modellenmesinde ve parametrelerinin belirlenmesinde yapay zekaya dayalı yöntemler 

önem taĢımaktadır. Sistemlerin modellenmesinde, model yapısı ve istatistik değerlerin 

(model derecesi,giriĢ ve gürültünün dağılımı vb.) iyi bilinmesi halinde iyi çözümler 

sunar .Yapay sinir ağları (Artificial Neural Network-ANN)), model yapısının tam olarak 

bilinmesi zorunluluğu ortadan kaldırmaktadır [126]. Miyoelektrik sinyalleri 

(Myoelectric Signal) tanıyabilen  yapay sinir ağlarının gerçek zamanlı uygulamaları 

1994 yılında Del ve Park [127] tarafından önerilmiĢtir. Sinir ağ yapısı bazı avantajlar 

sunar; hastaya hızlı bir sistem uyarlaması ve sisteme daha iyi bir hasta adaptasyonudur. 

1996 yılında Cheron ve arkadaĢları tarafından ANN temelli yeni bir metod ortaya 

konmuĢtur. Bu metod, kol kineomatikleri ile kas EMG aktivitesi arasındaki bağlantıyı 

ifade etmek için yapay dinamik devirli sinir ağ ( Dynamical Recurrent Neural Network) 

(DRNN)‟lara dayanır.  AraĢtırmacının amacı, bu DRNN ifadesinin biyomekanik olarak 

inandırıcılığını kanıtlamaktır. EMG sinyalleri gibi biyomedikal sinyaller her zaman 

tekrarlanabilir değildir ve hatta bazen tutarsız olabilirler. Bu amaçla Kumar [128-130] 

EMG sinyaline karıĢan ECG sinyalini ayırt etmek için yapay zeka temeline dayanan 

çeĢitli yaklaĢımlar sunmuĢtur.  
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EMG sinyaline karıĢan ECG yi gerçek zamanlı olarak ayırt edebilmek son zamanlarda 

ortaya çıkan yüksek süzgeçleme baĢarımı gösteren Hybrid süzgeç [131-133]  metodu 

kullanılmaktadır .  

 

 

1.3. Tezin Amacı 

  

Bu çalıĢmada, EKG sinyaline doğal olarak bozucu etkide bulunan kas gürültüsü (EMG), 

son zamanlarda literatüre yeni katılan doğrusal olmayan sistem modellerinden adaptif 

ağırlıklandırılmıĢ Myriad ve Median süzgeçler ile bastırılmıĢtır. Bu yeni model 

yaklaĢımlarının performans baĢarımlarını gözlemlemek için, sonuçlar doğrusal adaptif 

FIR(Finite Impuls Response) süzgeç sonuçları ile karĢılaĢtırılmıĢtır. Bu amaçla, EKG 

iĢaretine gerçek zamanlı olarak kaydedilen EMG iĢareti ve α-bağımlı yayılım ile 

modellenen yapay EMG iĢareti ayrı ayrı eklenmiĢ ve bu durumlardaki süzgeç 

performansları incelenmiĢtir. Yapılan benzetim çalıĢmalarına göre, Myriad süzgeç 

yapısının, Median ve FIR süzgeç yapılarına göre daha iyi performans sergilediği 

gözlemlenmiĢtir.  

 

Tez çalıĢması bölümleri Ģu Ģekilde oluĢturulmuĢtur: Ġkinci bölümde, çalıĢmalarda 

sistemlere giriĢ verisi olarak kullanılan EKG ve EMG biyomedikal sinyallerinin analizi 

hakkında bilgi verilmiĢtir. Doğrusal olmayan sistem modellerinden AğırlıklandırılmıĢ 

Median ve Myriad süzgeçler ile doğrusal FIR süzgecin özellikleri ve bu modellerin 

eğitiminde kullanılan algoritmalar hakkında üçüncü bölümde bahsedilmiĢtir. Dördüncü 

bölümde, Sistem benzetim çalıĢmaları ve uygulamalara ait sonuçların karĢılaĢtırılmaları 

yapılmıĢtır. Son bölümde ise tez çalıĢmasında ulaĢılan sonuçlar değerlendirilmiĢtir.  

 



 

 

 

 

 

 

 

 

 

 

 

2.BÖLÜM 

BĠYOLOJĠK ĠġARETLER 

 
 

 

2.1. Aksiyon Potansiyeli 

 

Bütün canlı hücreler gibi kalp hücrelerinin iç yüzeylerinde hücrenin dıĢ yüzeyi ile 

kıyaslandığında negatif elektrik yükleri bulunur . Hücre membranlarının  iki yüzeyi 

arasında oluĢan bu voltaj farkı , membran potansiyeli olarak adlandırılır. Ġstirahat 

membran potansiyeli (Kalp hücrelerinde eksi 80mV ile 90mV arasındadır), negatif 

yüklü moleküllerin (iyon) hücre membranı içinde birikiminin bir sonucudur. 

 

Hücreler uyarıldıklarında hücre memranındaki küçük kanalcıklar ya da delikler birbirini 

izleyerek ardı ardına açılır ve kapanır. Bu kanalların açılması iyonların hücre memranı 

boyunca dıĢarı ve içeri düzenli bir Ģekilde hareketine izin verir ve böylece hücre 

memran potansiyeli değiĢir. Bu voltaj değiĢikliklerinin zamana karĢı grafiği çizildiğinde 

kardiyak aksiyon potansiyeli ortaya çıkar.  

 

Aksiyon potansiyeli tek bir kalp hücresinin elektriksel aktivitesinin Ģekil üzerinde 

yansımasıdır. Klasik olarak 5 faza ayrılan aksiyon potansiyeli ġekil 2.1‟de 

görülmektedir. Aksiyon potansiyelinin anlaĢılmasında en fazla yardımcı olan 3 genel 

faz ; depolarizasyon , repolarizasyon ve istirahat fazlarıdır[134]. 
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ġekil 2.1. Aksiyon Potansiyeli. 

 

Depolarizasyon : 

Depolarizasyon fazı (0. faz) akiyon potansiyelinin aksiyon fazıdır. Depolarizasyon 

hücre memranındaki hızla çalıĢan Na kanallarının uyarılarak açılmasıyla oluĢur. Bu 

kanallar açıldığında Na iyonları hücre içinde dolar ve hücre potansiyelinde hızlı ve 

pozitif yönde bir değiĢme olur. OluĢan voltaj değiĢikliği depolarizasyon olarak 

adlandırılır[135,136].  

 

Repolarizasyon: 

Bir hücre  depolarize olunca , depolarizasyon sırasında oluĢan iyonik giriĢler geri 

dönünceye kadar tekrar depolarize olamaz. Ġyonların baĢladıkları yere geri dönme 

iĢlemi “repolarizasyon” olarak adlandırılır. Kalp hücresinin repolarizasyonu, aksiyon 

potansiyelinin 1, 2 ve 3 . fazlarını oluĢturur. Repolarizasyon kardiyak aksiyon 

potansiyelini, istirahat memran potansiyeline döndürür. [137,138] 

 

Ġstirahat  : 

Çoğu kalp hücresi için istirahat fazı (4. Faz olarak ifade edilen, aksiyon potansiyelleri 

arasında zaman periyodu) pasif bir devredir ve hücre memranları iç ve dıĢ yüzeyleri 

arasında net bir iyon geçiĢi hareketi yoktur.  

 

Elektrik kökenli biyolojik iĢaretlerin algılanmasında kullanılan elektrokimyasal 

dönüĢtürücülere, biyopotansiyel elektrot veya sadece elektrot adı verilir. 

Vücudumuzdaki biyopotansiyeller, iyon hareketleri sonucunda oluĢurlar. Elektrotlar da 
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iyon akımlarını elektron akımlarına dönüĢtürerek, kimyasal enerjinin elektriksel 

enerjiye dönüĢmesini sağlarlar. Elektrotların iyon akımını elektron akımına dönüĢtürme 

iĢlemi, elektrotlar elektrolit içinde iken, elektroda yakın olan arayüzde gerçekleĢir[139-

141].  

 

2.2. Biyolojik ĠĢaretler 

 

En genel manada iĢaret, bilgi taĢıyan, zamana göre değiĢen veya değiĢmeyen 

büyüklükler olarak tanımlanabilir. Biyolojik iĢaret ise canlı vücudundan elektrotlar veya 

dönüĢtürücüler aracılığıyla algılanan, elektrik kökenli olan veya olmayan iĢaretlerdir. 

Biyolojik iĢaretlerin temelini, hücrelerdeki elektrokimyasal olayların sonucunda oluĢan 

aksiyon potansiyeli oluĢturur.  ġekil 2.2‟de biyolojik iĢaretler gösterilmiĢtir. 

 

 
 

ġekil 2.2. Biyolojik ĠĢaretler. 

 

Elektrik kökenli iĢaretler elektrotlar aracılığıyla canlı vücudundan algılanırlar ve yalıtım 

oldukça önemlidir, genlikleri küçüktür; (100 μV ile 1 mV arasında), spektrumu (0,1 Hz 

ile 2000 Hz arasında) alçak frekanslar bölgesinde fark iĢareti Ģeklinde bulunur. ġekil 

2.3‟de biyolojik iĢaretlere ait gerilim ve frekans seviyeleri gösterilmiĢtir. Ayrıca 

gürültülü iĢaretlerdir; temel gürültü kaynakları: ortak mod Ģeklindeki 50 Hz‟lik Ģebeke 

gürültüleri, fark iĢaret Ģeklinde bulunan diğer biyolojik iĢaret kaynakları ve elektronik 

eleman gürültüleri olarak sıralanabilir.  
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ġekil 2.3. Biyolojik ĠĢaretlere Ait Gerilim ve Frekans Seviyeleri. 

 

Biyolojik iĢaretlerden , ECG sinyali 0.5Hz ile 100Hz arasında frekans bandına ve 0mV 

ile 5mV arasında genlik değerine sahipken, EMG sinyali ise 50μV ile 5mV arasında 

genliklere  ve 10Hz ile 1kHz  arasında bir frekans bandına sahiptir[142].   

 

Biyolojik iĢaretler genellikle, yaĢayan organizmalardan ve çoğunlukla insanlardan 

alınır. Bu nedenle ölçme sistemi, ölçülen sisteme zarar ve acı vermeyecek Ģekilde 

olmalıdır. Bu Ģekilde elde edilecek iĢaretler direkt olarak kaynaktan değil de, dolaylı 

olarak vücut yüzeyinden alınacağı için iĢaretlerin daha zayıf ve gürültülü olacağı 

kesindir. 

 

ĠĢaret, bazen, direkt olarak orijinal bilgi kaynağından üretilir ve bu durumda, iĢarete 

bakarak kaynağın yapısı veya iĢleyiĢi hakkında bilgi elde edilebilir. Bazen de elde 

edilen iĢaret, direkt olarak istenen bilgiyi vermeyebilir bu durumda hem iĢaret üzerinden 

isteneni elde edebilmek için hemde yukarıda da bahsedilen gürültü oranını azaltmak için 

çeĢitli iĢlemler uygulanır [143].  

 

2.3. Elektrokardiyografinin Tanımı ve Önemi 

  

Ġnsan vücudu üzerinden algılanan ve kalbin elektriksel aktivitesinin sonucu olarak 

ortaya çıkan belli tipteki biyolojik iĢaretlere elektrokardiyografik (EKG)  iĢaret adı 
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verilir. EKG iĢaretinin gösterilmesini veya  kaydedilmesini sağlayan cihazlara  

“Elektrokardiyograf” ve EKG ile ilgili sistem ve olgulara da genel olarak 

“Elektrokardiyografi” denir. 

 

Kayıt edilen EKG‟lerin normal EKG‟lerle karĢılaĢtırılmasıyla, kalbin çalıĢmasıyla ilgili 

bazı normal dıĢı durumlar belirlenebilir. Bir doktorun hastada yapılmasını istediği temel 

ölçümlerden birisi EKG ve kalp vuru hızının ölçümüdür. EKG‟de her kalp atımının 

karĢılığı olan P,Q,R,S,T dalgalarından oluĢmuĢ bir iĢaret görülür[144].  

 

EKG ĠĢaretlerinin Önemi ; Atrial ve ventriküler iletim bozuklukları, Ritim 

bozukluklarının ojininin saptanması ve monitorize edlilmesi, Perikarditler, Kalbi 

etkileyen sistemik hastalıklar, Kardiyak pacemakerların fonksiyonlarının takibinde 

kullanılmasındandır. 

 

2.4. Kalbin Anatomisi ve ÇalıĢması 

 

 Kalbin sol tarafında temiz sağ tarafında ise kirli kan bulunur. Sol karıncıktan çıkan 

temiz kan Aort atar damarı ile vücuda besin taĢıyıp sağ kulakçığa gelir, buradan kan sağ 

karıncığa iner , sağ karıncıktan alt ve üst ana toplar damarlar ile temizlenmek üzere 

akciğerlere gelir oradan  da sol kulakçığa gelerek sol karıncığa geçer ve böylece 

dolaĢımını tamamlamıĢ olur. ġekil 2.4‟de kalp uyarı iletim sistemi gösterilmiĢtir. 

 
ġekil 2.4. Kalp Uyarı Ġletim Sistemi. 
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Alt ve üst ana toplar damarların sağ kulakçığa açıldığı ağızlar arasında yer alan ve kendi 

kendine uyarılan özel düğümsü dokuya Sinüs Düğümü (Sino Atrial  Node - SA) denir. 

Bu düğümün karĢısında sağ karıncığın hemen üstünde bir düğüm daha vardır. Bu 

düğüme ise Kulakçık Karıncık  Düğümü (Atrio Ventriküler Node - AV) denir. SA 

düğümünden uyarıyı AV düğümüne purkinje lifleri ulaĢtırır sonra uyarı his demeti ile 

yoluna devam eder .His demeti karıncıklarda sağ ve sol olmak üzere  iki kola ayrılır ve 

purkinje lifleri ile bütün karıncıklara dağılır[146].   

 

2.5.  Elektrokardiyogram ĠĢaretlerin OluĢması ve Analizi 
 

Bütün vücut kasları içinde bir tek kalp kası, otomatik kasılma yeteneğine sahiptir. 

Kalbin elektrik sistemi, her bir kalp atıĢı ile miyokardın ardı ardına kasılmasının 

devamlılığını sağlamak üzere düzenlenmiĢtir. Elektriksel uyarı AV oluğa doğru 

kulakçıklara yayıldığında kulakçıklar kasılır. AV düğüm tarafından sağlanan gecikme , 

elektriksel uyarıların karıncıklara ulaĢmasından önce kulakçıkların boĢalmalarını 

tamamlamasına izin verir. Uyarı akımları AV düğümü terk eder etmez , purkinje lifleri 

yoluyla hızla karıncık kasına yayılır ve böylece canlılık için gerekli düzenli karıncık 

kasılmaları sağlar.Bu elektriksel dürtüler vücut yüzeyinin çeĢitli bölgelerine konan 

elektrotlar aracılığı ile kayıt edilmektedir.  

 

Elektrokardiyogram iĢareti ġekil 2.5„de ve EKG temel bileĢenleri ġekil 2.6‟da 

görülmektedir.  Yüzüncü yıl üniversitesinin yaptığı bir araĢtırmaya göre [145] sigara 

içen ve içmeyen bireylere ( n; verilerin alındığı denek sayısını ifade etmektedir ) ait 

EKG iĢaret bileĢenlerinin değerleri Tablo 2.1‟de verilmiĢtir. Dalgalar arasındaki 

elektrokardiyogram parçasına SEGMENT (Parça), bir dalganın baĢlangıcı ile diğer 

dalganın baĢlangıcı arasındaki mesafeye ise INTERVAL(Aralık) denir. Dalgaların, 

segmentlerin ve intervallerin süreleri saniye cinsinden ifade edilir. 
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ġekil 2.5. EKG ĠĢareti. 

   

 

 

ġekil 2.6. EKG Temel BileĢenleri. 

 

Tablo 2.1. EKG Parametre KarĢılaĢtırması. 
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2.5.1. Elektrokardiyogram ĠĢaret BileĢenleri 

 

Eksen (Axis):  

Eksen, kalbe doğru olan elektriksel gücün genel yönüdür.  

•  AĢırı sapmalar normal değildir ve dal bloğu (bundle branch block), ventriküler 

hipertropi veya sağda ise  pulmonary embolism olduğunu belirtir[147].  

•  Kalbin yüzeyindeki dekstrokardi veya yönün ters dönmesini teĢhis edebilir. Aslında 

bu durum çok nadirdir ve genelde baĢka yollarda teĢhis edilir (göğüs röntgeni gibi). 

             

 P Dalgası : 

 

Bu dalga dalga elektrokardiyogamın ilk dalgası olup Kulakçıkların kasılmasına sebep 

olan sinüs kaynaklı uyarının atrium içinde yayılması ile oluĢur.Sinüs düğümünden çıkan 

uyarının AV düğümüne ulaĢması için geçen süre P dalgasının süresini belirler. P 

dalgasının genliği normalde 0.18 mV ile 0.22 mV arasındadır. Süresi de yaĢa göre 

değiĢmektedir[141]. Düzenli olmayan veya hiç olmayan P dalgaları ritm bozukluğunu  

gösterir.  

 

 

Q Dalgası :  

 

Normal Q dalgasının gerilim kriteri üzerinde otoriterler arasında fikir birliği yoktur.Süre 

kriteri üzerindeki anlaĢmazlıklar ise daha azdır. Süre kriterinin , gerilim kriterinden 

daha önemli olduğu kabul edilir. 

 

QRS Kompleksi :  

 

ġekil 2.5‟de görüldüğü gibi Q dalgası aĢağıya doğru olan ilk negatif dalgadır. Q dalgası, 

ortaya çıktığında, küçük yatay akımı (soldan sağa) temsil eder, çünkü  hareket 

potansiyeli karıncıklar arasındaki bölgede ilerler. Çok geniĢ ve derin Q dalgalarının 

septal baĢlangıcı yoktur, fakat çok derin  miyokardiyum içeren miyokardiyal enfarktüs  

belirtir. R dalgası yukarıya doğru olan ilk dalgadır. S dalgası ise R dalgasını izleyen ilk 

negatif dalgadır. R ve S dalgaları miyokardiyum kasılmasını belirtir.  QRS kompleksi, 

sol ve  sağ karıncığın kasılmasına neden olan akımı belirtir[147]. QRS kompleksindeki 

anormallikler tachycardia, ventriküler hipertropi ve bazı diğer karıncık anormalliklerini 
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gösterir.  Perikard iltihabında veya perikard efüzyonunda QRS genliği genelde 

küçüktür. 

   

ST Parçası: 

 

QRS kompleksinin sonu ile T dalgasının baĢlangıcı arasndaki bölüme ST parçası denir. 

ST  parçası normalde izo elektrik çizgidedir.Fakat anormal ST parçası izo elektrik 

çizgide olabileceği  gibi normal ST parçası de izo elektrik çizginin altında veya üstünde 

olabilir[141]. 

 

QT Parçası : 

Bu süre karıncıkların depolarizasyonu ve repolarizasyonu  için gerekli olan zamanın 

ifadesidir. QT aralığı yaĢ , cins , kalp hızına göre değiĢim gösterir  . YetiĢkinlerde 

genellikle 0,35 – 0,44 sn. arasındadır. QT aralığı QRS kompleksinin baĢlangıcından T 

dalgasının sonuna kadar geçen süredir. 

 

PR Parçası : 

P dalgasının bitiminden QRS kompleksinin ister Q , ister R olsun baĢlangıç dalgasına 

kadar sürer. 

 

 

PR  Aralığı : 

P dalgasının baĢlangıcından QRS kompleksinin baĢlangıcına kadar olan 

elektrokardiyogram bölümüne denir. Uyarının sinüs düğümünden karıncıklara iletilmesi 

için geçen süreyi gösterir. QRS kompleksi Q dalgası ile baĢladığı zaman PR aralığı 

yerine PQ aralığı deyimi kullanılabilir. PR aralığının süresi yaĢa ve kalp hızına göre 

değiĢmektedir. 

 

T  Dalgası  : 

 

Karıncıkların repolarizasyonunu belirtir. QRS kompleksi genelde kulakçık  

repolarizasyon dalgasını gizler, ve görünmez olur. Birçok derivasyonda, T  dalgası 

pozitiftir. T dalgası normalde hafifçe asimetriktir. Ġnen kol çıkan kola göre biraz daha 

diktir. Ters bir T dalgası (negatif) bir rahatsızlığın belirtisi olabilir. T dalgasındaki 

anormallikler,  hyperkalemia veya hypokalemia gibi  elektrolit rahatsızlıkları belirtisi 

olabilir.  
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U Dalgası : 

U dalgası her zaman görülmez. Oldukça küçüktür ve T dalgasını yakından takip eder. 

Belirgin U dalgaları, hypokalemia „da sık sık görülür. Ters çevrilmiĢ bir U dalgası 

miyokardiyal ischemia veya sol karıncık  hacminin aĢırı büyüdüğünü gösterir[147]. 

 

 

2.6.Elektromiyografi Hakkında Genel Bilgi 

 

Elektromiyogram (EMG), kasın kasılması sonucu ortaya çıkan biyopotansiyel  

iĢaretlerdir.  Ġğne veya yüzey elektrodlarla alınan, kasın hareketi esnasında oluĢan 

elektriksel iĢaretlere “Elektromiyogram” veya kısaca EMG denir. Büzülme ve gevĢeme 

gibi kas aktiviteleri her zaman sinir sistemi tarafından kontrol edilmektedir. Bu yüzden, 

EMG sinyali kasların anatomik ve fizyolojik özelliklerine bağlı olarak sinir sistemi 

tarafından kontrol edilen karmaĢık bir sinyaldir.  

 

Güçlü ve geliĢmiĢ metodolojiye sahip olan  EMG sinyalleri biyomedikal mühendislikte 

önemli bir gereksinim haline gelmiĢtir.  EMG sinyal analizlerine olan bu ilginin temel 

sebebi; klinik teĢhisler ve biyomedikal uygulamalardır. Bir diğer önemli uygulama alanı 

olarak da motor nöronları yetersizliklerindeki yönetim ve rehabilitasyon sahasıdır. 

Kasların kasılması, sinirler aracılığıyla beyinden iletilmiĢ olan uyarıcı potansiyellerin 

kaslarda oluĢturduğu Motor Ünite Aksiyon Potansiyelleri (MUAP) olarak bilinen 

elektriksel potansiyeller sayesinde olur. EMG sinyallerindeki MUAP‟ların Ģekli ve atıĢ 

oranları nöromaskular rahatsızlıkların teĢhisinde önemli bir bilgi kaynağı olarak 

kullanılmaktadır.  

 

Sinyal uygulamalarında ve matematiksel modellerdeki son ilerlemeler, EMG ölçümleri 

ve analiz tekniklerinin geliĢtirilmesine kolaylıklar sunmuĢtur. ÇeĢitli matematiksel 

teknikler ve Yapay Zeka (Artificial Intelligence -AI) geniĢ ilgi uyandırmaktadır. 

Matematiksel modeller Wavelet dönüĢümünü, zaman frekans yaklaĢımlarını, Fourier 

dönüĢümünü, Wigner-Ville Yayılımlarını (Wigner-Ville Distribution -WVD), istatiksel 

ölçümleri ve yüksek sıralı istatistikleri (Higher-Order Statistical -HOS) içermektedir. 

Sinyal tanımlamadaki yapay zeka yaklaĢımları ANN, DRNN ve bulanık mantık 
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sistemlerini kapsamaktadır. Genetik algoritmalar (GA) istenen el hareketlerini elde 

etmek için EMG giriĢlerini eĢleĢtirmek amacıyla  mikroçiplerde kullanılmaktadır[148]. 

 

 Yüzey EMG sinyalinin algılanması ve yüzeyde var olan doğrusal olmayan durumların 

karakterize edilmesinde hala sınırlamalar bulunmaktadır (sEMG, kas sinyal 

çalıĢmalarında özel bir teknik)[149,150]. Geleneksel yeniden sistem tanımlama 

algoritmalarında  sınırlamalar, sayısal zorluklar ve çeĢitli değiĢkenler bulunmaktadır. 

 

EMG sinyali, hastalık teĢhislerinde tedavi edici özelliğinin yanında farklı dokularda 

yayılırken diğer biyolojik sinyaller için  gürültü teĢkil ederek zarar veren bir özelliği de 

bulunmaktadır. Örnek olarak kas gürültüsü (EMG), EKG sinyaline karıĢan ve 

bastırılması gereken en zor gürültüdür.  Kas gürültüsü, kaslardaki aksiyon potansiyeli, 

EKG ve diğer sinyallere ait dalga formlarının çakıĢmasının bir sonucudur. EMG 

sinyalleri, genellikle Merkezi Limit Teorisi temel alınarak beyaz Gaussian gürültü ile 

modellenmektedir. Fakat kas gürültüsü çoğunlukla keskin ve dürtü Ģeklinde meydana 

geldiğinden Gaussian model yetersiz kalmaktadır. Ayrıca, Gaussian olmayan gürültülü 

durumlar Gaussian modellerle optimize edildiğinde performans düĢmesi meydana 

gelmektedir. Son yıllarda, dürtü gürültülü sinyallerin tam bir modeli olarak α-sabitli 

dağılıma dayalı gürültü kabul edilmektedir. Bu sebeple kas gürültüsünü α-sabitli 

dağılım ile modellemek gerekmektedir. 

 

 

2.7.EMG’ nin Anatomik ve Fizyolojik Altyapısı 

 

EMG, miyoelektrik aktivitesi olarak da tanımlanabilmektedir. Kas dokusu , sinirlerin 

yaptığına benzer Ģekilde elektrik potansiyeli üretir ve bu elektrik sinyallerine  verilen 

kas hareket potansiyeli denir. Yüzeysel EMG , bu kas hareket potansiyelinin bir çeĢit  

kayıt edilme metodudur. EMG sinyallerini belirlerken ve kaydederken, sinyalin 

gerçeğine uygunluğunu etkileyen iki Ģey vardır. Ġlki; sinyal - gürültü oranıdır yani, 

EMG sinyallerinin enerjisi ile gürültü sinyallerinin enerjisinin oranıdır. Genelde gürültü, 

istenilen EMG sinyalinin bir parçası olmayan elektrik sinyal olarak tanımlanır. Ġkincisi 

ise; sinyalin bozulmasıdır yani EMG sinyalindeki herhangi bir bileĢenin değiĢmesi veya 

dejenere olmasıdır. Kas sinyalini elde etmek için invasif ve invasif olmayan iki çeĢit 

elektrod kullanılır. EMG sinyali cilde doğrudan bağlanmıĢ bir elektrottan elde edildiği 

zaman, sinyal cildin altındaki kaslarda oluĢan bütün lif potansiyellerinin bir bileĢimi 
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olur. Bu hareket potansiyelleri rastgele aralıklarla oluĢur. Bu yüzden herhangi bir 

zamanda, EMG sinyali negatif ya da pozitif voltajda olabilir. Kas lif hareket 

potansiyelleri bazen kasa direkt yerleĢtirilen tel yada iğne elektrodları kullanarak elde 

edilebilir. MUAP; tek bir motor ünitesinin bütün kas liflerinden gelen potansiyel lif 

hareketlerinin bileĢimidir ki bu cilt yüzeyindeki elektrod (invasif olmayan) „la  yada 

kasın içine yerleĢtirilen iğne elektrod (invasif olan)„la  tespit edilebilir[151]. Denklem 

1‟de EMG sinyalinin basit bir modeli gösterilmektedir;  

1

0

 w(n)+r)-h(r)e(n)(
n

r

nx                                                                                 (1) 

 

Burada x(n); modellenen EMG sinyalini, e(n); ateĢleme dürtüsünü, h(r); MUAP‟ı, w(n); 

beyaz  Gaussian gürültüyü,   N; motor ünite sayısını ifade eder. 

 

Sinir sistemi, vücudun hem kontrol hem de iletiĢim sistemidir. Bu sistem nöron denilen 

vücüdun farklı bölgeleriyle elektrik sinyaller vasıtasıyla iletiĢim kurabilen çok sayıda 

uyarıcı hücreleri içermektedir.Nöronlar sinir sisteminin ana yapısal ünitesidir, boyut ve 

Ģekil olarak çeĢitlilik gösterir.  

 

Kas büzülebilen ve gevĢeyebilen hücre topluluğudur. Bu hücrelerin öncelikli 

fonksiyonu güç, hareket ve konuĢma yazma gibi ifade biçimleri üretmektir. Kas 

dokusunun açılabilme ve esneyebilme özelliği vardır. Uyarıcıları algılayabilir ve cevap 

verebilir ayrıca kısaltılabilir ya da büzülebilirler. Yapısal olarak, kasılabilme özelliği ve 

kontrol mekanizma farklılığına sahip üç çeĢit kas dokusu vardır; (i) iskelet kasları, (ii) 

yumuĢak kaslar ve (iii) kalp kaslarıdır. EMG iskelet kaslarının çalıĢmasını ilgilendirir. 

Ġskelet kas dokusu kemiğe tutturulmuĢtur ve büzülerek iskeleti hareket ettirir. Ġskelet 

kasının büzülmesi nöronların kası dürtmesiyle baĢlar ve genellikle istemli Ģekilde 

kontrol altındadır. Ġskelet kas liflerinin büzülmeleri nöronlar tarafından sağlanır. Bu 

nöronlara „motor nöron‟ adı verilir ve kas dokusuna yakındır, fakat kas dokusuyla direkt 

bağlı değildir. Bir motor nöronu genellikle birçok kas lifine dürtü sağlar.  

 

Ġnsan vücudu bütün olarak nötrdür; eĢit sayıda negatif ve pozitif yük vardır. Fakat 

istirahat aĢamasında, plazma zarındaki odaklanma ve iyonik birleĢimdeki farklılıklardan 

dolayı sinir hücre zarı kutuplaĢır. Hücre-içi ve hücre dıĢı sıvı arasında potansiyel bir 

farklılık ortaya çıkar. Nörondan gelen dürtüye cevap olarak lifler sinyali yüzey boyunca 
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yayarak kutuplaĢmayı ortadan kaldırır. Ġyonların hareketleriyle beraber ilerleyen 

kutuplaĢmayı ortadan kaldırma iĢlemi , her bir kas lifinin yakınında bir elektrik alan 

üretmesini sağlar. EMG sinyal, nöron dürtüsüne cevap veren kası göstererek Hareket 

Potansiyeli Motor Ünitesinin (MUAP) bir donanımı haline gelir.  

 

EMG sinyali gerçekte rastgele ve genellikle süzgeçlenmiĢ dürtü iĢlemi olarak 

modellenir ki burada süzgeç olarak  MUAP süzgeç kullanılır[151]. ġekil 2.7‟ de EMG 

sinyalinin elde edilme sürecini ve MUAP‟lardaki ayrıĢtırmayı gösterir. 

 

 
 

ġekil 2.7. EMG Sinyali ve MUAP‟ı AyrıĢtırma ĠĢlemi. 

 

 

 

 

2.8. EMG  Analiz Yöntemleri 

 

Son yıllarda hem kas içinden hem deri üzerinden alınan EMG sinyallerinin analizinde  

kullanılabilen bir çok metod geliĢtirildi.  EMG sinyalleri ne periyodik ne de  

deterministik bir sinyaldir [152]. BaĢka bir deyiĢle ayrı ayrı zamanlarda, keyfi olarak 

seçilecek  EMG sinyallerinin istatistiksel davranıĢı  tam olarak aynı değildir. Belirli 

zaman aralıklarında EMG sinyalleri kendilerini tekrarlamazlar ve tek bir matematiksel 

ifade, kayıt süresinin tamamı boyunca elde edilen EMG sinyalini temsil edemez.  

. 

2.8.1.Wavelet Modeli 

 

Wavelet analizi, bir sinyale ait zaman ve frekansla tanımlı bölgelerde yer alan bilgileri  

eĢzamanlı olarak gösterdiği için sinyaldeki eğilimleri, çöküm noktalarını ve  
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süreksizlikleri belirlemek açısından diğer dönüĢüm tekniklerine göre daha avantajlıdır.  

Fourier‟in 1807‟de ortogonal Fourier serilerini tanımlamasıyla baĢlayan süreç içerisinde  

yapılan çalıĢmalar, 1873‟de Fourier serileriyle baĢka bir değere yakınsanamayan bir  

fonksiyonun bulunmasına yol açmıĢtır [153]. 

 

Gabor tarafından 1946 [154] yılında yayımlanan bir hipotezde, tek  kutuplu bir sinyal 

tipik MUAP Ģekli Gaussain dağıtıcısının ikinci sıralı türevi olarak karĢımıza 

çıkmaktadır. Mexican Ģapka waveleti ve tipik tek kutupla MUAP Ģeklinin 

karĢılaĢtırılması ġekil 2.8‟de gösterilmiĢtir.  

 
  

ġekil 2.8. Meksika ġapka Wavelet ve Tipik MUAP ġekli. 

 

1998 yılında, Ismail ve Asfour [155], EMG‟ nin frekans spektrumunu belirlemedeki en 

yaygın metodların hızlı ve kısa zamanlı Fourier dönüĢümünün (FFT ve SFT) olduğu 

teorisiyle karĢımıza çıkarlar.  Fakat, bu araĢtırmacılar aynı zamanda bu dönüĢüm 

metodlarının en önemli dezavantajının bu sinyallerinin değiĢken olması olduğunu 

vurgulamıĢlardır.  

 

1999 yılında, Pattichis [100]  WT (Wavelet Transform)‟ nin her aĢamasının 

katsayılarının orijinal sinyale fonksiyonel olarak nasıl yaklaĢtığını açıklamıĢlardır. 

Sürekli zamanlı bir sinyaline ait x0,x1,x2,,, gibi giriĢ örnekleri aĢağıdaki ifade edilir; 

k

k ktxtf )()(0                                                                                                          (2) 

 

Burada xi ; ise giriĢ verilerini, )( kt ; ölçeklendirme fonksiyonu, f
0
(t); sürekli zamanlı 

sinyal değerlerini ifade eder. Bu kabule dayanarak sinyal örnekleri sürekli zaman 

sinyallerinin ağırlıklı ortalamasıdır denilmektedir. 
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2003 yılında, Kumar, WT‟nin Wavelet Fonksiyonu (WF) denilen önermesiyle karĢımıza 

çıkmıĢtır. sEMG (Surface EMG) WF ile zaman domenininde iki boyutlu karĢılıklı 

korelasyon alınarak hem açıklanır hem de dönüĢtürülür. Bu teknik, sinyalin zaman-

frekans varyasyonuyla alakalı olan bir bilgi sağlar. Yapılan bütün bu araĢtırmaların 

sonucunda, EMG ve Wavelet dönüĢümlerini kullanarak kas yorgunlukları belirlenebilir 

hale gelmiĢtir. ġekil 2.9‟da deneysel Wavelet prosedürü göstermektedir.   

   
 

ġekil 2.9. Deneysel Wavelet Prosedürü. 

 

 

2.8.2.AR Modeli 

 

AR zaman serileri modeli EMG sinyal çalıĢmalarında kullanılmıĢtır. Yüzeysel bir 

elektrod, kas içi EMG‟sinin hassas olduğu durumlarda, EMG aktivitesini aktif kaslardan 

toplayabilir. Bu yüzden, uygunluğu ve doğruluğu kombine etmek için kas içi EMG‟ yi 

ölçmek ve bunların yüzeysel ölçümlerdeki spektral özelliklerini belirlemek için bir 

teknik geliĢtirmek ihtiyacı doğmuĢtur. 

  

1975 yılında, Graupe ve Cline EMG sinyallerini ARMA modeli ile tanımlamıĢlardır. 

Graupe ve Cline‟nin deneysel sonuçları EMG ‟nin  kısa zaman aralıklarında değiĢken 

olarak düĢünülebileceğini göstermiĢtir. Sherif 1980‟de bu modeli yenilemiĢtir çünkü 

medikal deltoidin elektriksel davranıĢları değiĢken değildir. Sherif bilimsel 

incelemesinde EMG‟nin değiĢken özelliği üzerinde durmuĢ ve AR‟ı  kullanarak 

ARIMA„ yı bulmuĢtur. Bu sayede kas aktivitesinin farklı aĢamaları esnasında EMG‟ nin 

değiĢken doğasını karakterize etmiĢtir.  

 

Doerschuk 1983 yılında Graupe ve Cline‟nin karĢılaĢtığı benzer problemle; çoklu EMG 

sinyallerini AR modeli kullanılarak protez araçların kontrolünde karĢılaĢmıĢtır. 1986 

yılında, Zhou, ertelenmiĢ kas içi EMG sinyallerinin giriĢ olması ile birlikte yüzeysel 



 24 

EMG‟ yi AR modeli olarak göstermiĢtir. Tanımlanan bu model ile yüzeysel sinyalden 

kas içi sinyalleri hesaplamak mümkün hale gelmiĢtir. Hefftner 1988 yılında daha önceki 

modelleri değerlendirmiĢ ve EMG sinyal analizi için sayısal baĢarımından dolayı AR 

modelini seçmiĢ.  1992 yılında, Tohru ARMA ve ARIMA gibi daha kusursuz 

modellerde dinamik kas hareketlerinin daha baĢarılı analiz edilebildiği kanısına 

varmıĢlardır. ARIMA modelinin ölçüm maliyeti yüksektir ve model sırasının 

belirlenmesi karıĢık ve zor olabilmektedir. Tohru tarafından benzetimde problem olan 

ölçüm maliyetinden dolayı AR modeli seçmiĢtir. AraĢtırmaları AR model parametresine 

dayanır.  

 

2.8.3. Yapay Zeka Modeli 

 

Son yıllarda yapılan çalıĢmalarda doğrusal yada doğrusal olmayan sistemlerin 

modellenmesinde ve parametrelerinin belirlenmesinde yapay zekaya dayalı yöntemler 

önem taĢımaktadır. Sistemlerin modellenmesinde, model yapısı ve istatistik değerlerin 

(model derecesi,giriĢ ve gürültünün dağılımı vb.) iyi bilinmesi halinde iyi çözümler 

sunar .Yapay sinir ağları (Artificial Neural Network-ANN)), model yapısının tam olarak 

bilinmesi zorunluluğu ortadan kaldırmaktadır . 

 

Miyoelektrik sinyalleri (Myoelectric Signal-MSE) tanıyabilen  yapay sinir ağların 

gerçek zamanlı uygulamaları 1994 yılında Del ve Park tarafından önerilmiĢtir. 

Errorback yayılma (Errorback Estimation) metodunun geliĢtirilmesiyle sistem ağ giriĢ 

ve çıkıĢ setlerini haritalayabilmeyi öğrenmektedir.  

 

Bir diğer yaklaĢım 1996 yılında Cheron [156] tarafından yapılmıĢtır. Bu metod, kol 

kineomatikleri ile kas EMG aktivitesi arasındaki bağlantıyı ifade etmek için DRNN‟lara 

dayanır.AraĢtırmacının amacı, bu DRNN ifadesinin biyomekanik olarak inandırıcı 

olduğunu kanıtlamaktır.  

 

2001 yılında Belouchrani [157] tarafından önerilen Kör kaynak ayrımı (Blind Source 

Separation) metodu, öğrenme algoritmasında daha yüksek sıralı istatistiksel momentler 

kullanarak farklı sensörlerden alınan  değiĢken olmayan bağımsız kaynakların doğrusal 

harmanlamasının ayrımını ifade eder. 2004 yılında Farina [158] farklı kaslar tarafından 

üretilen EMG sinyallerinin zaman-frekans domenlerinde çakıĢtığını keĢfetmiĢtir. Bu 
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yüzden klasik doğrusal süzgeçleme yaklaĢımları kaynak ayrımı amacına uygun 

olmadığını savunmuĢtur.  

 

2.8.4.Yüksek Sıralı Ġstatistik Modeli 

 

Yüksek sıralı istatistikler (High Order Statistic -HOS) rastgele süreçlerin doğasını ve 

özelliklerini analiz eden bir tekniktir. HOS‟un konusu  beklenti teorisine dayanır. Bunun 

sebebi Ģu sınırlamalardır; 

 

 sEMG sinyallerinde mevcut olan doğrusal olmayıĢların tespiti ve özellikleri 

 AĢamaları değerlendirme 

 Normalizasyondan  kaynaklanan kesin bilgi 

 

Son zamanlarda, yüksek sıralı istatistik (HOS)‟leri kullanmaya olan  ilgi artmaktadır. 

1991 yılında, Giannakis ve Tsatsasis [159] EMG sinyal analizleri için HOS 

kullanmıĢlardır. 1995 yılında, Yana [160] MUAP dalga formlarını  ve bunların 

frekanslarını değerlendiren metodu genelleĢtirmiĢtir. Metod baĢlangıç MUAP dalga 

formlarının parametrik modelleriyle birlikte ikinci ve dördüncü sıralı momentlerini 

kullanmıĢtır. DüĢük sıralı modeller ikinci sıralı istatistikler (Second Order Statistics -

SOS) kullanılarak elde edilmiĢtir ve gerçek verilerin sınırlı  tanımlamasını 

yapabilmiĢtir. 

 

1987 yılından sonra HOS metodu, Nikias, Mendal, Raghuveer ve Petropulu gibi 

araĢtırmacılar tarafından geliĢtirilmiĢtir. 1990‟larda, Nikias [161,162] SOS‟e göre 

HOS‟un baĢlıca avantajının ; parametre değerlendirmesi ve sınıflandırmadaki Gaussian 

gürültüleri bastırabilmesi olduğunu keĢfetmiĢtir. 2000 yılında, Kaplanis [163] HOS 

kullanarak sEMG sinyal analizi teorilerini ortaya koymuĢtur. 

 

 

 



 

 

 

 

 

 

 

 

3.BÖLÜM 

 

SĠSTEM MODELLEME 

 

 

3.1. Sistem ve Model Tanımları 

 
Gerçek hayat ile kendi iç yapısı arasındaki iliĢkilendirmelerin yapıldığı yapılara sistem 

denir. Sistemin daha basit, genellikle matematiksel olarak hesaplanabilir yapıdaki 

gösterimine model adı verilir. Modelde herhangi bir olayı zaman ve mekan kısıtlaması 

yoktur. Fiziksel olayların modelini kurmak için gerçekte, bu olayları, bir takım 

matematiksel ifadelere dönüĢtürmek gerekmektedir. Sistem modelleme, deneysel yolla 

elde edilmiĢ verilerden faydalanarak sistemlerin modelinin ortaya çıkarılmasıdır. 

Modelemenin temel gayesi bilinmeyen bir sistemin giriĢi ile çıkıĢı arasındaki iliĢkiyi 

belirlemektir. 

 

ġekil 3.1 'de bir dinamik sistemin temel yapısı gösterilmiĢtir. Sistem, x(n) giriĢ iĢareti ve 

w(n) bozucu iĢaretinden etkilenerek y(n) çıkıĢ iĢareti üretir. 

 

ġekil 3.1. Dinamik Sistem Temel Yapısı. 

 

Herhangi bir sistemin modelinin elde edilmesi iĢlemi, x(n) ve w(n) iĢaretlerinden 

faydalanılarak, d(n) istenilen model çıkıĢ iĢareti elde etmektir. x çıkıĢ dizisinin n. 

Elemanı olan x[n] in değerini bulmak için daha önceki değerleri kullanılırsa, bu 

doğrusal kestirim yöntemi olmaktadır. Eğer sistemlerde giriĢ iĢareti bilinmiyorsa, çıkıĢ 

iĢareti kullanılarak modelleme yapılabilir. Kontrol edilecek sistemin matematik 
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modelinin bilinmesi zorunludur. Böylece sistemin modeli kullanılarak sistemin çıkıĢı, 

arzu edilen Ģekilde tasarlanabilir. 

 

ĠĢaret iĢlemenin bir çok uygulamasında kestirim, veri haberleĢmesi, ses iĢaretleri iĢleme 

ve elektrokardiyogram analizi gibi ele alınan veriler bazı yollarla ve yüksek geçiren, 

alçak geçiren, rezonans frekansının durumu gibi iĢaretlerin özelliklerini yansıtabilen iyi 

tasarlanmıĢ süzgeç yapıları ile süzgeçlenir. Spektral özelliklerinin belirlenmesi için 

iĢaretin modeline ihtiyaç duyulur . 

 

3.2. Modelleme ĠĢleminin Yöntemleri 

 

Model oluĢturmanın iki yolu vardır: 

l. Matematik Modelleme: Analitik bir yaklaĢımdır. Bir olayın veya bir iĢlemin 

davranıĢını tanımlamada örneğin Newton Kanunları gibi fiziğin temel kuralları temel 

alınır. 

2. Sistem Modelleme: Deneye dayalı bir yaklaĢımdır. Sisteme birçok deney uygulanır, 

sonrasında model, kaydedilen verilerle parametreler yardımıyla uygunlaĢtırılır. 

 

Bu iki model oluĢturma metodu karĢılaĢtırılacak olursa, sadece fiziksel kavramlar 

kullanılarak uygun model elde etmenin mümkün olmadığı birçok durumda bu iĢlemler 

çok karmaĢıktır. Bazı durumlarda, matematik modellemenin modelleme amaçlı 

kullanımı zordur. Bir çok model yapısı, fiziksel kanunlardan elde edilmiĢ dahi olsa, 

bilinmeyen birçok parametre değerine bağlıdır. Modelleme de amaç, bilinmeyen 

parametreleri tahmin etme uygulamasıdır. Sistem modelleme ile elde edilen modeller, 

matematik modellemeden farklı olarak aĢağıda sıralanan özelliklere sahiptir; 

 

• Sistem modelleme metodu matematik modellemeye göre daha kolay uygulanır ve daha 

kolay kullanılır. 

• Sistem modelleme metodunda çok küçük fiziksel kavramları ifade ederler, çünkü bir 

çok durumda model parametreleri fiziksel bir anlam ifade etmemektedir. Parametreler, 

sistemin davranıĢını iyi bir Ģekilde tanımlamak için bir araç olarak kullanılır. 

 

Modelleme, modelleme yapan kiĢi tarafından çok fazla etkilenmektedir. Bunun 

modelleme yapısına etkileri aĢağıda sıralanmıĢtır; 
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a) Modelleme yapılırken, uygun bir model yapısı bulunmak zorundadır. Eğer 

sistem dinamikleri doğrusal olmayan yapıda ise bu durum oldukça zorlaĢır. 

b) Gerçek hayattaki veriler kesinlikle mükemmel değildir. Gürültü tarafından 

bozulan veriler dikkate alınmak zorundadır. 

c) ĠĢlemler zamanla değiĢmektedir. Bunun sonucu olarak da, modelleri zamanla 

değiĢmeyen yapıda tanımlamak gerekmektedir. 

d) Modelin karakteristiğini ihtiva eden bazı iĢaretleri/değiĢkenleri ölçmek zor hatta 

imkansızdır [164]. 

 

3.3. Model ÇeĢitleri 

 

Literatürde bir çok model çeĢitleri mevcuttur. Dinamik ve Statik model bunlara örnek 

olarak verilebilir. Zaman, dinamik modellerin temel elemanıdır. Dinamik modellerde, 

statik olanların aksine, zaman, modelin temel elemanı olarak tanımlanır. Bir dinamik 

model, belli bir zamandaki sistemin durumu, bu andaki sistemi etkileyen dıĢ faktörleri 

ve bir sonraki duruma ulaĢmak için geçiĢ iliĢkilerini içerir. 

Tanımlayıcı modeller, sistemin çalıĢmasını, sistemin temel prensipleri kullanarak 

ortaya çıkarma amacıyla kullanılırlar. 

Açıklayıcı modeller, sistemin iç yapısının tanımlanması yerine, sistemin 

karakteristiğini elde etmek için kullanılırlar. 

Model parametreleri, modelin çalıĢması esnasında sabit kabul edilen matematik yapıda 

kullanılan sayılardır. Model verisi ise modelin durum değiĢtirmesini sağlayan giriĢ 

zaman serileridir. Bu veriler belli çalıĢma Ģartlarında modelin davranıĢını belirlemede 

kullanılırlar [165-167]. 

 

3.4. Modellerin Sınıflandırılması 

 

GiriĢ-çıkıĢ durumuna göre; 

a) SISO (Single Input Single Output): Tek giriĢi ve tek çıkıĢı olan modellerdir. 

b) MISO (Multi Input Single Output): Çok giriĢi tek çıkıĢı olan modellerdir. 

Zamana göre; 

a) Zamana bağlı modeller: Sistem zamanla değiĢiyorsa bu tip sistemlere zamana bağlı 

modeller denir. 
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b) Zamandan bağımsız modeller: Sistemin iç yapısı ve karakteristiği zamana göre 

değiĢmiyorsa bu tip modeller zamandan bağımsız olarak kullanılır. 

Domene göre; 

a) Zaman domeni: Diferansiyel veya fark denklemleri ile sistemlerin modellenmesinde 

kullanılır. 

b) Frekans domeni: Spektral yoğunluk veya Bode eğrisi gibi sistemin karakteristiğini 

frekans domeninde belirleyen modellerdir. 

Doğrusallık durumuna göre; 

a) Doğrusal modeller: Sistemin giriĢ-çıkıĢ iliĢkisinin doğrusal eĢitliklerle ifade edildiği 

modellerdir. 

b) Doğrusal olmayan modeller: Sistemin giriĢ-çıkıĢ iliĢkisi, diferansiyel denklemler, 

üstel ve logaritmik fonksiyonlar gibi doğrusal olmayan matematiksel eĢitliklerle ifade 

edildiği modellerdir. 

Bozucu etkilere göre; 

a) Deterministik modeller: Deterministik modellerde giriĢ bilinirse çıkıĢ tam olarak 

hesaplanabilir. 

b) Stokastik modeller: Sistemlerde dıĢ etkenlerin sonucunda oluĢan rastgele terimlerin 

yer aldığı modellerdir [167] 

 

3.5. Sistem Modellemenin Temel Basamakları 

 

AĢağıda genel olarak bir sistemin modellemesinin temel basamakları verilmektedir; 

a. Sistemin giriĢine herhangi bir iĢaret (darbe, basamak, sinüs veya rasgele iĢaretler) 

uygulanıp, sistemin bu iĢarete cevabı çıkıĢ iĢareti olarak kaydedilir. 

b. Sisteme uygun bir model yapısı tespit edilir. Bu model yapısı doğrusal olabileceği 

gibi, çoğu fiziksel sistemin davranıĢını gösteren doğrusal olmayan model yapısı da 

kullanılabilir. 

c. Elde edilen modelin parametreleri, bazı istatistiki veya tahmini yöntemlerle belirlenir. 

Modelleme iĢleminin en önemli aĢaması, bu parametrelerin doğru Ģekilde 

belirlenmesidir. 

d. Parametreleri belirlenen modelin giriĢine, sisteme uygulanmıĢ olan giriĢ iĢareti 

uygulanıp, modelden alınan çıkıĢ iĢareti ile sistemin gerçek çıkıĢı arasındaki fark 

bulunur. Eğer fark büyükse, baĢka bir model yapısı veya yeni bir parametre tespit 
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yöntemi belirlenmesi için b. basamaktaki iĢleme geri dönülür. Eğer fark çok küçükse bu 

model sistemi tanımlamak ve kontrol etmek için kullanılabilir . 

 

3.6. Adaptif Sistemler  

 

Adaptif sistemler değiĢen Ģartlara göre kendini en iyiye doğru kanalize eden 

sistemlerdir. Bu sistemler iĢaret iĢleme sahasında daha fazla kullanılmaktadır [168-170]. 

Adaptif sistemlerin en önemli özelliği zamanla değiĢen sistemlere rahatlıkla 

uygulanabilmesi ve yeni durumlara göre kendi kendini ayarlayabilmesidir. Doğrusal 

sistemlerde karĢılaĢılan, sadece belirli giriĢlere karĢı çıkıĢın istenen Ģekilde olması, 

diğer tür giriĢlerin uygulandığı durumlarda veya kontrol edilen sistemin zamanla, çevre 

Ģartlarından etkilenerek özelliklerinin değiĢmesi durumunda sistemin kararsız 

davranması durumu adaptif sistemlerde daha az gözlenmektedir. 

 

Adaptif sistemlerin ortak özellikleri aĢağıda sıralanmıĢtır; 

• Çevre Ģartlarının ve sistemden istenilen özelliklerin değiĢmesiyle, sistem kendi 

kendisini otomatik olarak ayarlayabilir. 

• Genellikle zamanla değiĢen sistemler olarak tanımlanır. 

• Çoğu zaman karmaĢık bir yapıya sahiptirler ve analiz edilmeleri adaptif olmayan 

sistemlere göre daha zordur. Fakat giriĢ iĢaretinin özellikleri bilinmediği veya zamanla 

değiĢtiği durumlarda yüksek performans elde edilmektedir. 

 

Adaptif sistemlerdeki temel yaklaĢım, modellenecek sistem parametrelerinin elde 

edilmesi aĢamasında, her bir iterasyon sonucunda oluĢan hata değerinin minimize 

edilmesi için sistem parametrelerini belirli bir Ģekilde değiĢtirmektir. Hata değerinin 

minimuma indirilmesi için genellikle sistemin amaç fonksiyonunun (hatayı veren 

fonksiyonun) türevi kullanılır. Bu türev değerini her iterasyonda sıfır yapan parametre 

değerleri adaptif olarak bulunur. Sistemin çıkıĢının arzu edilen Ģekilde olması için 

gereken adaptif kontrol sistemi tasarımı ġekil 3.2‟de gösterilmiĢtir. 
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ġekil 3.2. Adaptif Sistem Model Yapısı. 

 

Adaptif modelleme, sistem parametrelerini, hatayı sıfır yapacak Ģekilde ayarlamak için 

kullanılır [164-167]. 

 

3.7. Doğrusal Sistem Modelleme 

 

Doğrusal sistem modellemede AR , MA ve ARMA modelleri gibi klasik yöntemler 

kullanılmaktadır. 

 

3.7.1. AR Modelleme 

 

Bir çok ayrık zamanlı sistemlerde, veri olarak yalnızca çıkıĢ değerlerinin yardımıyla 

sistemin modellenmesi gerekir. Bu tür sistemler özbağlanımlı olarak modellenebilir. 

Sadece kutuplara sahip olan AR modeli; 

p

k

p nepnyanyanyany
1

k21 e[n] +k)-y(na)()(...)2()1()(  (3) 

Ģeklindedir. Denklem 3‟de y(n) çıkıĢ dizisini, e(n) gürültü dizisini, a(k) ise AR 

parametrelerini belirtmektedir. AR modellerde, sistem parametrelerinin ayarlanması, 

sistemden elde edilen çıkıĢ iĢaretinin eski değerlerini, bazı katsayılarla çarparak çıkıĢın 

istenilen özellikte olması iĢlemidir [171]. 
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3.7.2. MA Modelleme 

  

MA model yapısı kullanılarak yapılan modellemede veri olarak yalnızca giriĢ iĢareti 

değerleri kullanılır. Sadece sıfırlara sahip olan bu yapı denklem 4‟deki;  

q

k

q neqnxbnxbnxbny
1

k10 e[n] +k)-x(nb)()(...)1()()(             (4) 

Ģekildedir. Burada y(n) çıkıĢ dizisini, x(n) giriĢ dizisini ve bk ise MA parametrelerini 

belirtir. MA modellerde, sistem parametrelerinin ayarlanması, sisteme uygulanan giriĢ 

iĢaretinin o andaki ve geçmiĢ değerlerini bazı katsayılarla çarparak çıkıĢın istenilen 

özellikte olması iĢlemidir. 

 

3.7.3. ARMA Modelleme 

 

AR model yapısı sadece kutuplara sahip olan sistemlerin matematik modelinin 

oluĢturulmasında, MA model yapısı ise sadece sıfırlara sahip olan sistemlerin 

matematik modelini oluĢturmakta kullanılmaktadır. Çoğu fiziksel sistemin hem 

kutuplara hem de sıfırlara sahip olduğu gerçeği göz önüne alınırsa bu tekniklerin yeterli 

olamayacağı açıktır. Bu yüzden kutup ve sıfırlara sahip sistemlerin matematik 

modellenmesi için ARMA modelleme yöntemleri geliĢtirilmiĢtir. Genel olarak bu 

modellerde, giriĢ diziĢi x(n) ile, çıkıĢ diziĢi ise y(n) ile ifade edilir. Bu diziler arasında: 

 

q

k

p

k

ny
1

k

1

k k)-x(nbk)-y(na)(                                                                    (5) 

 

ġeklinde doğrusal fark denklemi yazılabilir, p, AR model derecesini, q ise MA model 

derecesini belirtmektedir[171]. 

 

3.8. Sistem Modelleme İçin Kullanılan Yöntem 

 
Sistemlerin modellenmesi için kullanılan en klasik algoritma LMS(Least Mean Square) 

yöntemidir [166]. En küçük kareler yöntemi kontrol, iletiĢim ve jeofizik iĢaret iĢleme 

gibi farklı uygulamalarda yaygın olarak kullanılır. Özyineli(recursive) ve adaptif 

süzgeçleme yeni deneysel kanıtların var olduğu, bilinmeyen süzgeç modelleri hakkında 

her zaman daha çok bilgi veren özel bir tasarımı kullanır[167,168]. 
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3.8.1. LMS Algoritması 

 

Sistem tanımlama algoritmaları; sistem dinamikleri hakkında yeterli bilgiyi veren 

bilinmeyen bir iĢletme modelinin, bir dizi parametrelerinin tahmini ile ilgilenir. 

Doğrusal sistem parametreleme; uygulamaların geniĢ bir alanıyla sistem modellemenin 

önemli bir sınıfıdır. Doğrusal model sınıfları arasında en yaygını FIR (Finite Impuls 

Response-Sonlu Darbe Cevaplı) yapılı olanıdır. Bu sınıflama ya fiziksel sistem 

modellemedeki esastır yada kestirimi iĢi basitleĢtirmek için kabul edilir ve gerçek 

zaman uygulamalarında hesaplama yükünü azaltmak için kullanılır. Statik ve dinamik 

FIR modellerinin her ikisi de geçmiĢi göz önünde bulundurur ve algoritmaların büyük 

bir çoğunluğu model parametrelerinde verimlilik kestirimi için önerilmiĢtir [171].LMS 

yönteminde parametreler her iterasyonda hatayı en aza indirecek Ģekilde değiĢmektedir. 

kkkkk eMAA 1  

Ģeklindeki ifade edilir.Burada; 

Ak  : k zamanındaki tahmini parametre vektörü 

Mk  :  algoritma kazancı 

 φk  : çıkıĢın önceki değerleri 

 ek     :  modelleme hatası 

olarak adlandırılır. 

3.8.2. RMS Algoritması 

 

Bu yöntemde, adaptif kazanç , kovaryans matrisi, P yardımıyla her iterasyon için 

ayarlanır ve aĢağıdaki Ģekilde ifade edilir; 
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Burada Pk ve P(0) değerleri, 
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P(0) = 1 

dir. Burada I birim matrisidir. Çoğunlukla RLS yöntemi LMS yöntemine göre daha hızlı 

yakınsar. Fakat baĢlangıç değerleri ve yuvarlatma hataları açısından LMS den daha 

hassastır[172]. 
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3.9. FIR Modeli 

 

Sistem modellemedeki esas kabul edilen FIR  kestirimi daha kolay ifade edebilmek ve 

gerçek zaman uygulamalarında hesaplama yükünü azaltmak için kullanılır. FIR 

modellerinin her ikisi de geçmiĢi göz önünde bulundurur ve algoritmaların büyük bir 

çoğunluğu model parametrelerinde verimlilik kestirimi için önerilmiĢtir 

 

FIR süzgeçlerin IIR süzgece göre birtakım avantajları vardır: 

1. Her zaman kararlıdır, 

2. Her zaman gerçeklenebilir, 

3. Kesin-Doğrusal faz elde edilmek için her zaman kullanılabilir. 

 

Üçüncü avantaj FIR süzgeci, gecikme gürültüsüz, fakat sabit gecikmeli uygulamalarda 

vazgeçilmez kılar. FIR süzgeç modeli;  

)()()()()(
1

kekxhkejkxhny T
n

j

j              (8) 

Ģeklinde ifade edilir ve e(k) çıkıĢa ilave edilen gürültü, y(n) çıkıĢı, 

T

nhhhh ....21               (9) 

FIR merkez değerleri, 

T
nkxkxkxkx )().....2(),1()(            (10) 

giriĢ vektörünü ifade eder. Bu özelliklerinden yararlanarak FIR modelin aynı MA model 

gibi giriĢ değerlerini kullandığı görülmektedir[173].  

3.10. Kas Sinyalinin  Modellenmesi 

 

Gerçek hayatta Gaussian model ile tanımlanamayacak sinyallere ve gürültülere sıkça 

rastlanır. Bunlara örnek olarak; endüstriyel mühendislik alanında geçiçi güç kesilmeleri 

ve telefon hatlarındaki rastlantısal kesilmeler, biyomedikal alanda ise EKG sinyaline 

karıĢan kas gürültüsü verilebilir. 

 

EMG sinyalleri, genellikle Merkezi Limit Teorisi temel alınarak beyaz Gaussian gürültü 

ile modellenmektedir. Ancak kas gürültüsü çoğu zaman dürtü Ģeklinde meydana 

geldiğinden Gaussian model yetersiz kalmaktadır. Ayrıca, Gaussian olmayan gürültülü 

durumlar Gaussian modellerle optimize edildiğinde performans düĢmesi meydana 
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gelmektedir. Son yıllarda, dürtü gürültülü sinyallerin tam bir modeli olarak α-bağımlı 

dağılıma dayalı gürültü kabul edilmektedir. Bu sebeple kas gürültüsünü α-bağımlı 

dağılım ile modellemek gerekmektedir. 

 

3.10.1. α-Bağımlı Gürültü  

 

Son yıllarda, dürtü gürültüsünü giderme iĢlemlerinde, uygun bir model olarak gösterilen 

α-bağımlı yayılım temelli sinyal iĢleme yöntemleri üzerinde kayda değer bir ilgi vardır. 

Ġstatistiksel bir model olarak α bağımlı yayılımın kullanımı iki özelliğinden dolayı 

teorikte doğrulanmaktadır. Bunların ilki, sabitlik özelliğidir; böylece iki bağımsız aynı 

katsayıya sahip sabit rastgele değiĢkenin toplamının aynı karakteristik katsayıyla 

sabitlenmesi sağlanabilmektedir. Ġkincisi ise, genelleĢtirilmiĢ merkezi limit teoremidir; 

eğer sonsuz sayıdaki bağımsız ve aynı Ģekilde dağıtılmıĢ rastgele değiĢkenler yayılımda 

bir araya gelirse, sınırlandırılmıĢ olan yayılım α-bağımlı olmaktadır. Bu yüzden, α-

bağımlı rasgele değiĢkenler Gaussian değiĢkenlerde olduğu gibi çok sayıda bağımsız 

yardımcı faktörün etkisi olarak fiziksel ortamlarda ortaya çıkabilmektedir . α-bağımlı 

yayılımın karakteristik fonksiyon  denklem  11‟de verilmektedir.  

 

φ(t) = exp (jµt – γ|t|
α
)                                                                                                    (11) 

 

Burada α, (0< α <2) yayılımın en önemli parametresi olan karateristik katsayısıdır 

çünkü α yayılım kanallarının ağırlığını kontrol etmektedir. Sabit rastgele bir değer 

gözlemlendiğinde α değeri büyüdükçe, merkezden uzak olan rastlantısal değerleri 

gözlemleme ihtimalide o oranda azalmaktadır. Ayrıca (0< α <2) için, α bağımlı rastgele 

değiĢkenlerin sonsuz değiĢeni bulunmaktadır. ġekil.3.3 „de gösterildiği gibi α=1 olduğu 

durumlarda Cauchy dağılım özelliği gözlemlenirken , α=2 durumunda ise Gaussian 

dağılım gözlemlenmektedir [1]. 
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ġekil 3.3. α-Bağımlı Yayılımın Grafiği. 

 

Denklemdeki, μ gerçek değerli lokasyon parametresi, γ yayılım dispersiyonudur (γ > 0, 

lokasyon parametresine ait yoğunluğun yayılımını belirler). 

 

3.11. Doğrusal Olmayan Sistem Modelleme 

 

Gerçek hayatta karĢılaĢılan birçok sistem doğrusal olmayan davranıĢlara sahiptir. Bu tür 

sistemlerin kimliklendirilmesinde doğrusal modelleme yöntemleri yetersiz kalmakta ve 

doğrusal olmayan modelleme yöntemlerinin kullanılması gerekmektedir [20-21]. 

Doğrusal olmayan modellemede, sistemin giriĢ-çıkıĢ iliĢkisi, diferansiyel denklemler, 

üstel ve logaritmik fonksiyonlar gibi doğrusal olmayan matematiksel ifadelerlerle 

sağlanır.  

 

Biyomedikal sahada  EMG gibi ani değiĢen sinyallere uygulanabilen güçlü doğrusal 

olmayan süzgeçler için esnek bir teori ihtiyacı, biyolojik görüntü iĢleme sahalarında da 

ortaya çıkmıĢtır. Önemli araĢtırma çabaları, özelliklede görüntü iĢleme alanlarında, ani 

gürültülere karĢı güçlü ve  dirençli olan doğrusal süzgeçlere uygun alternatifler bulmaya 

odaklanmıĢtır[44]. Bunların arasında, ağırlıklandırılmıĢ Myriad ve Median süzgeç 

yaklaĢımları son yıllarda, α-bağımlı gürültü ortamları için güçlü süzgeç yapıları olarak 

kullanılmaktadır. Bu süzgeç yapıları haberleĢme, iĢaret ve görüntü iĢleme alanlarına 

baĢarıyla uygulanmıĢtır [75].  
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Günümüzde Median süzgeç yapıları, ticari ürünlerin görüntü iĢleme uygulamalarında 

kullanılması gün geçtikçe artmaktadır. Bunların baĢka alanlarda kullanılmasını 

engelleyen en önemli eksiklik, çıkıĢların giriĢ penceresindeki örneklemlerden biriyle 

sınırlandırılmıĢ olmasıdır. Bu seçici özellik görüntü iĢleme alanlarında arzu edilen bir 

özellik olmasına rağmen, diğer bir çok pratik uygulama sahalarında kabul edilemeyecek 

kayıplara neden olmaktadır. Örneğin; Median, Gaussian çevrelerde lokasyon 

değerlendiricisi olarak kullanıldığında, ortalama örneklemde %40‟a yakın kayıplar 

verdiği bilinmektedir.  

 

Median temelli metodların pratik problemlerde kullanılamaması  gerçek hayattaki 

gürültü iĢlemlere olan uygunsuzluğu sebebinden kaynaklandığı tartıĢılabilmektedir. 

Pratikte görülen birçok gürültü çan tipindeki yoğunluk fonksiyonlarına benzetilirken, 

Laplacian model, bunu genellikle daha suni yapan  sivri bir yoğunluğa benzetir[44].   

 

Doğrusal süzgeçler kullanıldığında hem gürültü hem de EKG‟ nin yüksek frekans 

bileĢenleri atılmıĢ olduğundan EKG‟ nin bulanıklaĢmasına neden olmaktadır.Bu 

özelliklerinden dolayı Median model, sinyal iĢleme alanında pek kullanılmamıĢtır.Bu 

eksiklik Myriad süzgeç ile giderilmeye çalıĢılmıĢtır.Yukarıda verilen sınırlamalar 

doğrultusunda, Myriad süzgeç ailesi, çan Ģeklindeki dürtü yayılımları için yüksek 

istatistik yararı sağlayan süzgeçlemeler olarak önerilmiĢtir ki bu giderek daha da 

populer olan α-bağımlı gibi doğal olayların  pratikteki sonucu olarak görülebilmektedir. 

 

Bu çalıĢmada, EKG sinyaline doğal olarak bozucu etkide bulunan kas gürültüsü (EMG) 

ile α-bağımlı yayılım ile modellenen yapay EMG iĢareti, doğrusal olmayan 

ağırlıklandırılmıĢ Myriad ve Median süzgeçler ile doğrusal FIR süzgeç kullanılarak 

bastırılmıĢ ve baĢarımları karĢılaĢtırılmıĢtır. Süzgeç performanlarını artırmak için birçok 

adaptif öğrenme algoritması denenmiĢtir.  

 

3.11.1. AğırlıklandırılmıĢ Myriad Süzgeç 

 

Ġstatistiksel iĢaret iĢleme teorisi , iĢlemlerin temelini karakterize etmek için Gaussian 

model varsayımını kabul etmektedir.  Gaussian varsayımı, bir çok fiziksel öngörü için 

mantıklı bir model olduğundan bu kabul Merkezi  Limit teoremi kullanarak 

doğrulanmıĢtır. Dahası, bu model altındaki optimal süzgeçler doğrusal olduğundan 
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analitik olarak iĢlenebilmektedir. Fakat yinede Gaussian model ile çok iyi 

tanımlanamayan birçok sinyal mevcuttur. Örneğin; doğadaki gürültülerin birçoğu  dürtü 

Ģekilde meydana gelmektedir[91]. 

 

Myriad süzgeç yapısı son yıllarda, dürtü gürültülü ortamlar (özellikle α-bağımlı gürültü) 

için güçlü bir doğrusal olmayan süzgeç yapısı olarak kullanılmaktadır. Bu süzgeç yapısı 

haberleĢme, iĢaret ve görüntü iĢleme alanlarına baĢarıyla uygulanmıĢtır. Bunun sebebi 

ise kenar koruma ve aykırı değeri reddetme özelliklerine sahip olmasıdır.  

 

AğırlıklandırılmıĢ Myriad süzgeç (Weighted Myriad Filter –WMyF),  α bağımlı 

yayılımların özel bir durumu olan Cauchy yayılımlara dayanmaktadır. Bu ağır kuyruklu 

yayılımlar GenelleĢtirilmiĢ Merkezi Limit teoremine dayandırılmıĢ ve bu yayılımların 

dürtü gürültü iĢlemlerine uygunluğu da kanıtlanmıĢtır[174,175]. α-bağımlı yayılımlar 

0<α<2 oranıyla sınırlandırılmıĢ bir katsayıya sahiptir; daha küçük bir α daha ağır 

kuyruklu bir yayılım demektir. α=1 ve α=2 katsayı değerleri sırasıyla  Cauchy ve 

Gaussian yayılımları doğurur. Aslında; bunlar kapalı formlu açıklamalar olduğunda 

sadece simetrik α-bağımlı yayılımları ifade eder. α bağımlı gürültü 

e Ģeklinde bir karakteristik fonksiyona sahiptir ve  buradaki  γ dispersiyon 

parametresi ve α karakteristik değiĢkenini ifade eder[76]. 

 

3.11.1.1. Temel  Myriad  

 

Temel Mean ve Median yayılımları maksimum benzerlik (Maximum Likelihood -ML) 

yaklaĢımından türetilmiĢtir. Özellikle temel Mean , Gaussian yayılımının bir sonucu 

iken temel Median ise Laplacian yayılımın sonucu olarak ortaya çıkmıĢtır. Median‟ a ait  

geri bildirimlerden biriside Ģudur ; fiziksel olgular için Laplacian yayılımın iyi bir 

model olmadığıdır. Fakat Cauchy yayılım,  Gaussian ve Laplacian‟a göre daha ağır 

kuyruklara sahiptir ve pratikte oluĢan ani gürültülü durumları incelemede daha iyi bir 

model olarak kabul edilmektedir[174]. Temel Myriad, Cauchy yayılım lokasyonunun 

ML yaklaĢımı olarak tanımlanır. [x1,x2,,,,,xN] Ģeklinde bir veri dizisi içeren ,doğrusallık 

faktörü K olan Cauchy yayılım Ģu Ģekilde ifade edilir : 
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K
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Burada β; yayılımın lokasyon parametresidir. K  değeri likeli-hood fonksiyonu ile 

maksimize edilir: 

N
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iN xfxxxL
1

21 ),();,......,(                                                                                  (13) 

 

Bu eĢitlik ,  K>0 durumu varsayılarak minimize edilir ; 
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Genel olarak temel Myriad ; 
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Ģeklinde bir amaç (cost) fonksiyonuna sahiptir[91]. OluĢacak olan myriad değeri, 

fonksiyonu minimum yapan β değeridir. Burada N, süzgeç uzunluğu, xi giriĢ 

verilerinden alınan örnek veri değerleri, K ise doğrusallik faktörüdür. Burada K önemli 

bir faktördür, örneğin {3, 10, 1, -1, 6} Ģeklindeki bir veri setinin K=20, 2 ve 0.2 

değerleri için oluĢacak myriad değerleri β20 = 1.8, β2 = 0.1 ve β0.2 = 1 olmaktadır. Ġlginç 

bir gerçekte, K arttıkça, veriler daha kesin hale gelmektedir. 

 

3.11.1.2.AğırlıklandırılmıĢ Myriad  

 

AğırlıklandırılmıĢ Myriad süzgeç yapısı, bir önceki kısımda bahsedilen Myriad süzgeç 

yapısında yer alan giriĢ örneklerinin pozitif ağırlıklandırılması ile daha genel hale 

getirilmiĢ halidir. Bir dizi gözlem N

ixi 1}{ ve bir dizi süzgeç ağırlığı N

iwi 1}{ düĢünelim. 

Gözlem vektörünü Ģu Ģekilde tanımlanır[91];  x=[x1,x2,….,xN]
T
, ağırlık vektörü ise ;  

w=[w1,w2,…wN]
T
 Ģeklinde tanımlanır. Daha sonra K>0 kabul edilerek, 

ağırlıklandırılmıĢ Myriad süzgeç çıkıĢı Ģu Ģekilde  ifade edilir; 

),,(minarg)........,,;(),( 2211 xwGoxwoxwoxwKmyriadxw KNNK                     (17) 

Burada 
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 Burada (wi o xi) ağırlıklandırma konvolusyon iĢlemini belirtmektedir. Ġçerik açık 

olduğu zaman, K (w,x)‟, K  ya da sadece  olarak yazılmaktadır. Aynı Ģekilde, 

GK(β, w,x), GK(β) olarak ya da G(β) olarak yazılmaktadır. ML lokasyon yaklaĢımın, 

ağırlıklandırılmıĢ Myriad süzgeçlere ait formülde ağırlıkları negatif olmayan sınırlaması 

ile kısıtladığını belirtmek gerekir. Fakat ağırlıklandırılmıĢ Myriad süzgeç (17) ve 

(18)‟daki ifadeleri kullanarak negatif ağırlıklarla birlikte tanımlanabilmektedir. Fakat 

böyle bir durum süzgeçlerin potansiyel sabitsizliği Ģeklinde sonuçlanabilmektedir[91]. 

 

Genel olarak ağırlıklandırılmıĢ Myriad süzgeç; 

N

1i

2
ii

2
NN2211K xwKlogminarg)xw........,xw,xw;K(myriad        (19) 

Ģeklinde bir amaç fonksiyonuna sahiptir ve ġekil 3.4‟de tipik Myriad fonksiyonu 

gösterilmektedir. AğırlıklandırılmıĢ Myriad süzgeç yapısı daha çok adaptif yapıda 

kullanılır [74]. Yani ağırlık değerlerinin bulunabilmesi için adaptasyon algoritmalarına 

ihtiyaç duyar. 

 

 
  

ġekil 3.4. Tipik Myriad Fonksiyon. 

 

 

3.11.1.3. Adaptif AğırlıklandırılmıĢ Myriad Süzgeç Algoritması  

 

Burada benzetim çalıĢmalarında kullanılan ağırlıklandırılmıĢ Myriad süzgeç (WMyF) 

yapısı için [75] no‟lu referanstaki Kalluri ve Arce tarafından geliĢtirilmiĢ olan adaptif 

algoritmalardan bahsedilecektir. Süzgeç parametrelerinin optimizasyonu için daha 

önceki bölümde de bahsedildiği gibi sistem çıkıĢı ile istenilen çıkıĢ arasındaki farkın 



 41 

minimize edilmesi gerekmektedir. GiriĢ örnekleri x=[x1, x2, ….., xN]
T
, ağırlık vektörü 

w=[w1, w2, ….., wN]
T
 ve doğrusallik faktörü K ile birlikte WMyF yapısının çıkıĢı 

y=yK(w,x) olarak gösterilmektedir. Ġstenilen çıkıĢ ile süzgeç çıkıĢı arasındaki hata e=y-d 

Ģeklindedir. Hata optimizasyonu için ortalama mutlak hata (Mean Absolute Error - 

MAE) ve MSE (Mean Square Error)kriterleri kullanılabilir. MAE kriteri göz önüne 

alındığında J1(w,K)=E{|e|}=E{|yK(w,x)-d|} ve MSE kriteri göz önüne alındığında 

J2(w,K)=E{e
2
}=E{[yK(w,x)-d]

2
} Ģeklinde olur. Parametre optimizasyonu için bu hata 

fonksiyonlarının çıkıĢın ağırlığa göre türevi alınmalıdır. Bu durumda  
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Ģeklinde elde edilir.  

 

Optimal süzgeç parametrelerinin bulunabilmesi için literatürde sıkça kullanılan en dik 

iniĢ (steepest descent) metodu [80] 
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Ģeklindedir. Burada dJ1(w,K)/dwi kullanılırsa 
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bulunur, burada 
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Ģeklindedir. Denklem (23)‟de görüldüğü gibi dy/dwi (ağırlıklandırılmıĢ myriad süzgeç 

çıkıĢının parametre değerine göre türevi) değerine ihtiyaç duyulmaktadır. Bu durumda 
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Ģeklinde elde edilir. Böylelikle 
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olur. Burada a katsayısı kararlılık katsayısıdır. Algoritmanın payda kısmında bulunan 

fonksiyon çok küçük değerde olacağından, algoritma daha sade Ģekliyle 
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elde edilir [75].  

 

3.11.2. AğırlıklandırılmıĢ Median  Süzgeç 

 

100 yıl önce daha az kesin regresyon içeriği ile AğırlıklandırılmıĢ Median Smoother 

(Weighted Median Smoother-WMS)‟lar Edgemore tarafından ortaya konulmuĢtur[176]. 

Son 20 yıl içerisinde WMS ‟lar, sinyal iĢleme araĢtırmalarında önemli hale 

gelmiĢtir[82,83]. Bu yapıların sinyal uygulama literatüründe genelde süzgeç olarak 
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bilinmesine rağmen,  bu yapılar WMS olarak da adlandırılmaktadır. Son birkaç yıldır, 

WMS temelindeki teori hızla geliĢtirilmiĢ ve günümüzde görüntü iĢleme 

uygulamalarında da sıkça kullanılmaya baĢlanmıĢtır. Görüntü uygulamalarında median 

smootherların baĢarısı kendine özgü iki özelliğe dayanır; kenar koruma ve ani 

gürültülerin güç bastırımı ki bu özellikler geleneksel doğrusal süzgeçlerde 

bulunmamaktadır. WMS ile doğrusal FIR arasında birçok benzerlik bulunmaktadır. 

Ayrıca bunlar son derece sınırlı ve doğrusal FIR süzgeçlerden daha az güce 

sahiptirler[79].  

 

Mühendislik uygulamalarının büyük bir çoğunluğu “band geçiren” ya da “yüksek 

geçiren” frekans süzgeçleme özelliğine ihtiyaç duyar. Ters konvolusyon, kestirim ve 

sistem tanımlama “band geçiren” ya da “yüksek geçiren” özelliğinin çok önemli olduğu 

uygulamalara örnektir. Doğrusal FIR eĢitleyicileri sadece pozitif süzgeç ağırlıklarını 

kabul ederler. 

 

Doğrusal olmayan WMS „ler ilk tasarlandıklarında sadece pozitif ağırlıklandırmalar ile 

çalıĢabilirken son zamanlardaki geliĢmeler ([79] no‟lu referansta bahsedilen) median 

yapısının pozitif ve negatif ağırlıklandırmalar ile süzgeçleme  yeteneğine sahip olmasını 

sağlamıĢtır. Bu çalıĢmada AğırlıklandırılmıĢ Median süzgeç ağırlıklarının eğitimi 

esnasında Yinbo Li, Gonzalo R. Arce tarafından geliĢtirilen [178] no‟lu referanstaki 

adaptif öğrenme algoritması kullanılmıĢtır.  

 

Örnek 1 ; 
 

Pencere boyutu 5 , W=[1, -2, 3,-2, l] simetrik ağırlık vektörüne sahip ve  giriĢ verisi 

X(n)=[2, -6,9,1,12], olan  WM süzgeç çıkıĢı aĢağıdaki Ģekilde bulunmaktadır ; 

 

Y(n) = MEDIAN[ 1 ♦ 2, -2 ♦ -6 , 3 ♦ 9 , -2 ♦ 1, 1 ♦ 12 ] 

        = MEDIAN[ 1 ♦ 2 , 2 ♦ 6 , 3 ♦ 9 , 2 ♦ -1 , l ♦ 12] 

        = MEDIAN[ 2,6,6,9,9,9, -1, -1,12]                                          

        = MEDIAN[ - 1,-1,2,6,6,9,9,9,12] 

        = 6 

Median ağırlıklarda negatif değerler bulunduğunda bu ağırlıkların matematiksel 

iĢaretleri ile ağırlıklara karĢılık gelen giriĢ verileri çarpılır ve yeni giriĢ veri dizisi 

oluĢturulur . Mevcuttaki negatif değerli ağırlıkların mutlak değerleri alınarak pozitif 
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değerli ağırlıklar elde edilir. Daha sonra ağrılık değerleri adetinde giriĢ verileri 

tekrarlanarak yeni dizi oluĢturulur ve dizideki veriler küçükten büyüğe doğru sıralanır. 

Eğer dizideki veri sayısı tek ise dizinin tam ortanca değeri (altı çizili olan) veri dizinin 

medianı olur. Buda median süzgeç çıkıĢını ifade eder. 

 

Örnek 2; 
 

W = (1,-2,2,-2,l) tam sayı ağırlıklarına sahip, pencere boyutu 5 olan ve giriĢ örnek verisi  

X(n) = [5,5,5,5,5] pozitif ağırlıklara sahip dizi için WM süzgeç çıkıĢı aĢağıdaki Ģekilde 

bulunur; 

 

Y(n) = MEDIAN[ 1 ♦ 5 , -2 ♦ 5 , 2 ♦ 5 , -2 ♦ 5 , 1 ♦ 5 ] 

       = MEDIAN[ 1 ♦ 5 , 2 ♦ -5 , 2 ♦ 5 , 2 ♦ -5 , l ♦ 5 ] 

       = MEDIAN[ 5, -5, -5,5,5, -5, -5,5]                       

       = MEDIAN[ - 5, -5, -5, -5 , 5 , 5 , 5 , 5] 

       = 0, 

Median ağırlıklarda negatif değerler bulunduğunda bu ağırlıkların matematiksel 

iĢaretleri ile ağırlıklara karĢılık gelen giriĢ verileri çarpılır ve yeni giriĢ veri dizisi 

oluĢturulur . Mevcuttaki negatif değerli ağırlıkların mutlak değerleri alınarak pozitif 

değerli ağırlıklar elde edilir. Daha sonra ağırlık değerleri adetin de giriĢ verileri 

tekrarlanarak yeni dizi oluĢturulur ve dizideki veriler küçükten büyüğe doğru sıralanır. 

Eğer dizideki veri sayısı çift ise dizideki verilerin ortanca iki değerinin (altı çizili olan) 

ortalaması veri dizisinin medianı olur. Bu değer Median süzgeç çıkıĢını ifade eder[179]. 

 

Ağırlıkların tam sayı olmaması durumunda ağırlıklandırılmıĢ süzgeç çıkıĢı aĢağıdaki 

aĢamalarla hesaplanır: 

1. EĢik değer hesaplanır 
N

i

iWT
1

0
2

1
 

2.  Ağırlık katsayılarına ait iĢaretler hesaplanır ve her bir ağırlığa karĢılık gelen 

giriĢ verisi ile çarpıldıktan minimum değerden baĢlayıp maksimum değere kadar 

sıralanır ; sgn(Wi)Xi. 

 

3.  Daha sonra giriĢ verilerine karĢılık gelen ağırlık katsayılarının mutlak değerleri 

alındıktan sonra 2. aĢamada yeniden hesaplanarak sıralanan giriĢ veri sıralaması 
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baz alınarak sıralanır ve soldan baĢlayarak en sağa kadar ki bütün ağırlıklar 

toplanır benzer Ģekilde bir sağa kayarak bütün ağırlık değerleri elde edilir.  

 

4.  Median çıkıĢı;  eĢik değerinden büyük olan ilk ağırlığa karĢılık gelen giriĢ 

verisine eĢittir. Band ve yüksek geçiren süzgeç karakteristiği için çıkıĢ; eĢik 

değerinden büyük birinci ve ikinci  ağırlığa karĢılık gelen giriĢ verilerinin 

ortalamasına eĢittir. 

 

 

Örnek 3; 

 

Pencere boyutu 5 , gerçek ağırlık değerleri ( W1, W2, W3, W4, W5) = (0.1,0.2, 0.3, -0.2, 

0.l), gerçek giriĢ verileri  [X1,X2 , X3, X4, X5]= [-2, 2, -1, 3, 6]  sahip olan WMS çıkıĢı 

aĢağıdaki Ģekilde hesaplanır ;   

EĢik değeri hesaplanır ; 45.0
2

1 5

1

0

i

iWT daha sonra sırasıyla diğer iĢlemler 

yapılır; 

 

Gerçek giriĢ verileri     -2,     2,   - 1,     3,    6 

Gerçek ağırlıklar     0.1,  0.2,  0.3, -0.2, 0.1 

Yenilenen giriĢ verileri   -3,    -2,   -1,      2,    6 

ĠliĢkili ağırlık değerleri    0.2,  0.1,  0.3,  0.2,  0.1 

Ağırlık toplamları    0.9, 0 .7 , 0.6,  0.3,  0.1 

 

Süzgeç çıkıĢı ; eĢik değerinden büyük olan altı çizili ilk ağırlığa yani  0.6‟ya  karĢılık 

gelen giriĢ verisi olan -1‟e eĢittir. Band ve yüksek geçiren süzgeç çıkıĢı ise ; 0.45‟ den 

büyük olan ilk iki ağırlık yani 0.6 ve 0.7 „ ye karĢılık gelen giriĢ verileri -1 ve -2 nin 

ortalaması olan -1,5‟e eĢittir[179]. 

 

 

3.11.2.1. AğırlıklandırılmıĢ Median  Süzgeç Algoritması: 

 

Adaptif doğrusal ve adaptif Median süzgeçler, Gaussian ve Laplacian istatistikleri 

temelindeki lokasyonun ML yaklaĢımından doğmaktadır.Birbirinden bağımsız tek 

değiĢkenli giriĢ verisi {Xi} nin her birinin bir Gaussian yayılıma faklı bir varyans 
2

i  

ile uyduğunu düĢünelim .Lokasyonun ML yaklaĢımına ait amaç fonksiyonu aĢağıdadır ; 
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yazılabilir burada  0
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iiw dir. 31‟nolu ifade  denklemi 
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1

olan bir 

FIR süzgecin normalize edilmiĢ halini göstermektedir. 

Lokasyonun yeni cost fonksiyonu ; 

i

N
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XG
1

21

1
)(             (30) 

Ģeklinde ifade edilir. Negatif ağırlıklara sahip ağırlıklandırılmıĢ Median süzgeç ; 

))sgn(( 1i
N

iii XWWMEDY                                        (31) 

Sgn(x) =  1 , X>0 iken 

            = -1 , X<0 iken 

             =  0 , X= 0 iken  

Ģeklinde ifade edilir .Tez çalıĢmasında kullandığımız LMA (Least Mean Absolute 

Error) algoritmasını aĢağıdaki gibi kullanmalıyız;  

 

))()())(sgn(sgn()).()())((sgn()()1( nYnXnWnYnDnWinWnW iivii
 (32) 

 

Burada Y(n); çıkıĢ değerini, D(n); istenilen değeri, Wi; ağırlık değerlerini 

göstermektedir [178]. 

 

3.12. Spektral Analiz     

 

Periyodik sayısal bir iĢaret Fourier serileri ile temsil edilir ve bu iĢaret kendisinin 

Fourier katsayılarından yeniden elde edilir. Fourier dönüĢümü ile iĢaret , farklı 

frekanslardaki sinüzoidal sinyallerin toplamlı olarak ifade edilir. Sonlu uzunlukta olan 

bir sayısal iĢaretin Hızlı Fourier DönüĢümünü (HFD) almak için bu iĢaret 64,128,256 

gibi örnekler içeren çerçevelere ayrılır. Her bir çerçevenin frekans spektrumu 

hesaplanırken öncelikle pencereleme iĢlemi yapılır. Pencereleme iĢleminin amacı 
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gerçekte olmayan frekans bileĢeninin spektrumda ortaya çıkmasını önlemektir. 

Pencereleme iĢleminden sonra sayısal   iĢarete sıfır ekleme (zero padding) iĢlemi yapılır. 

Sıfır ekleme iĢlemi, spektrumda okunabilirliği artırmaktadır . 

Mühendislik uygulamaları açısından bir zorlamanın Fourier dönüĢümü  alınabilmesi 

için aĢağıdaki Ģartı sağlaması gerekmektedir . 

0)( dttx

                                                                                                                     (33) 

 

Bu eĢitlik klasik teorinin sadece t   sıfıra giden fonksiyonlar için  

kullanılabileceğini anlatır.  Eğer zorlama bu Ģartı sağlıyor ise fonksiyonun Fourier 

dönüĢümü; 

dtetxWX jwt)(2/1)(

                                                                                             (34)

 

Ģeklindedir ve bu zorlamaya sistemin cevabı 

)()()( wXwHwY                                                                                                         (35) 

Ģeklindedir. Sonucun ters dönüĢümü alınarak sistemin zaman bölgesindeki  cevabı 

aĢağıdaki Ģekilde bulunur, 

dwedtetxwHwX jwtjwt)(2/1)()(

                                                                    (36) 

Doğrusal sistemlerde aynı mantıkla güç spektral yoğunluğu tek giriĢ ve tek  çıkıĢ için 

)()()(
2

wSwHwS xy                                                                                                   (37)
 

ve çok giriĢ-tek çıkıĢ için  

N

r

xy wSwHwS
1

2
)()()(

                                                                                             (38)

 

Ģeklindedir[180,181]. 

  

3.13. Güç Spektral Yoğunluğunun Hesaplanması    

 

GeliĢigüzel ayrık sinyallerin güç spektral yoğunluklarının hesaplanması için  yapılan 

çalıĢmalar yaklaĢık 200 yıl önce Schuster‟ ın güneĢ  ıĢığı miktarı üzerine yaptığı 

çalıĢmalarla baĢlamıĢtır. GeliĢigüzel sinyallerin Fourier analizi, kovaryans ile güç 

spektrumu arasında iliĢki kuran Wiener- Khintchine teoreminin bulunmasıyla yeni bir 

döneme girmiĢtir. Son olarak bir ayrık Fourier dönüĢümü (AFD) algoritması olan hızlı 
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Fourier dönüĢümlerinin (HFD) keĢfi ve dijital bilgisayarların geliĢmesiyle parametrik 

olmayan klasik  yaklaĢımın temelleri atılmıĢtır.  

 

Bu sinyallerin spektral analizinde modern (parametrik) ve klasik (parametrik olmayan)  

Ģeklinde iki yaklaĢım kullanılmaktadır. Parametrik veya modernyaklaĢım, incelenen 

sürecin tam olarak veya yaklaĢık olarak seçilen bir model ile ifade edilebileceği 

temeline dayanır. Parametrik spektra hesaplama yaklaĢımı (1) modelin seçilmesi, (2) 

verilerden ve kovaryans gecikmelerinden model parametrelerinin hesaplanması ve (3) 

hesaplanan model kullanılarak spektral yoğunluğun hesaplanması olarak üç aĢamadan 

oluĢmaktadır. Model tabanlı bu metodun en önemli avantajı veriler pencereden 

geçirilmediği için yüksek frekans çözünürlüğüne ulaĢılabilmesidir. Bu yaklaĢımda 

öncelikle uygun model hesaplanıp buradan GSY(Güç Spektrum Yoğunluğu)‟na 

geçildiği için direkt olmayan bir yapıdadır [182].   

 
Klasik spektral analiz yaklaĢımı direkt ve direkt olmayan  Ģeklinde iki katagoriye 

ayrılmaktadır . ġekil 3.5 ‟ten de görülebileceği gibi direkt metod iĢlenmemiĢ verileri 

frekans bölgesine dönüĢtürmek ve sonucu oluĢturmak  Ģeklinde çalıĢmaktadır. Dolaylı 

metodta ise öncelikle kovaryans iĢlemi hesaplanmakta ve daha sonra bu frekans 

bölgesine dönüĢtürülmektedir. Yani dolaylı metod Wiener-Khintchine teoreminin bir 

uygulamasıdır [181,182].   

 
 

ġekil 3.5. Klasik (Parametrik olmayan) Spektral Hesap  

 

GeliĢigüzel  x(t)  süreci için otokorelasyon fonksiyonu,  x(t)x(t+τ)  çarpımının  

ortalamasıdır. Süreç durağan olduğu sürece bu değer  zamandan bağımsızdır ve sadece 

zaman gecikmesi τ‟ya bağlıdır. Buna göre 
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)()()]()([ tRtftxtxE x                                                                                        (39)
 

buradan spektral yoğunluk, 

)]([)( xx RAFDwS
                                                                                                    (40) 

Ģeklindedir [180,181]. Bu teknik gürültülü  spektral hesaplamalar vermeye meyillidir, 

fakat otokorelasyon genellikle  gecikme penceresi olarak adlandırılan bir pencere 

fonksiyonu,  W, ile  çarpılarak daha düzgün sonuçlar elde edilebilir. Pencere temel 

olarak  spektral kaçakları azaltır ve spektral yoğunluk hesabını geliĢtirir. Bu yöntemin  

blok diyagramı ġekil 3.6‟ da verilmiĢtir. 

 
 

ġekil 3.6. Korelasyon Metodu Blok Diyagramı  

 

Bu blok diyagramı aĢağıdaki Ģekilde özetlenebilir; 

 

1.  x(t)‟nin AFD‟nün hesaplanması, yani X(ω),  

2.  X(ω)‟nin konjugesiyle çarpılarak | X(ω)|
2
 nin elde edilmesi,  

3. TAFD ile kovaryansın elde edilmesi,  

4. Kovaryansın W(τ) gecikme penceresiyle çarpılması,  

5. Pencereden geçirilmiĢ kovaryansın AFD ile GSY‟nun hesaplanması, 

 

Direkt metod olarak adlandırılan periodogramın istatistiki özellikleri  korelasyon 

metoduyla aynıdır. Periodogram istatistikçiler tarafından gürültülü  veri kayıtlarındaki 

periyodik hareketleri tespit etmek için oluĢturulmuĢ bir  metodtur. Bu geliĢtirilmiĢ 

spektral hesap yöntemi   

wj
N

Nk

xx eRNwXNP
1

)1(

2 )(/1)]([/1

                                                                      (41) 
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Ģeklinde tanımlanmıĢtır. Periodogram metodu istatistiki ortalama ve  pencereyle 

düzgünleĢtirme yöntemleriyle daha da geliĢtirilebilir. Bu  geliĢtirilmiĢ metod Welch 

Metodu olarak adlandırılır.    

 

Welch Metodunun uygulanması için takibi gerekli basamaklar aĢağıda  sıralanmıĢtır ve 

ġekil 3.7‟ de Welch Metodunun blok diyagramı verilmiĢtir.   

 

1. Eldeki veriler, {x(t)},  t=1,....,N herbiri L uzunluğunda  K parçaya  bölünür, 

yani; 

LNK /  

1,...,0,,...,1)),1(()( LtKiiLtxtxi                                                          (42)
 

2. )()( tWtx ii
 elde etmek için veriler  pencereden geçirilir. 

3. AFD kullanılarak K adet periodogram hesaplanır, 

KitWtxAFTUiwP ii ,...,1,)]()([/1),(
2

                                                       (43)
 

Burada, 

1

0

2 )(/1
L

t

tWLU

                                                                                              (44) 

olarak ifade edilir. 

4. AĢağıdaki formül kullanılarak spektrum hesaplanır.  

K

i

x iwPKwS
1

),(/1)(

                                                                                      (45)

 

Bu hesaplanan spektrumun varyansı 1/K ile ve çözünürlük hatası  K/N ile orantılıdır. 

 
 

ġekil 3.7. Welch Metodu Blok Diyagramı  

 

 



 

 

 

 

 

 

 

 

 

4.BÖLÜM 

BENZETĠM ÇALIġMALARI 

 

Bu çalıĢmada EKG sinyaline karıĢan kas gürültüsü (EMG), doğrusal olmayan adaptif 

ağırlıklandırılmıĢ Myriad süzgeç, ağırlıklandırılmıĢ Median süzgeç ve doğrusal adaptif 

FIR süzgeç kullanılarak bastırılmıĢ ve süzgeç baĢarımları Matlab 6.5 kullanılarak 

karĢılaĢtırılmıĢtır. Bu maksatla EKG iĢaretine gerçek zamanlı olarak kaydedilen EMG 

iĢareti ve α-bağımlı yayılım ile modellenen yapay EMG iĢareti ayrı ayrı eklenmiĢ ve bu 

durumlardaki süzgeç performansları incelenmiĢtir. Yapılan benzetim çalıĢmalarında, 

EKG sinyalinden kas gürültüsünün adaptif süzgeç yapısı kullanılarak arındırılmasına 

yönelik iĢleme ait blok Ģema ġekil 4.1‟de verilmektedir.  

 

 
 

ġekil 4.1. Adaptif Süzgeç Yapısı 



 52 

Benzetim çalıĢmalarında kullanılan EKG ve EMG sinyalleri literatürde referans olarak 

gösterilen Physionet veri bankasında bulunan MIT-BIH Polysomnographic kayıtlar 

içerisinden seçilen (slp32, slp37, slp41, slp45, slp48) kayıtlar kullanılmıĢtır. Uyku 

bozukluklarının tanısı için “altın standart” yöntem olan “polisomnografi” , uyku 

sırasında, nörofizyolojik, kardiyorespiratuar, diğer fizyolojik ve fiziksel parametrelerin 

belli bir periyod, genellikle gece boyunca, eĢ zamanlı ve devamlı olarak kaydedilmesi 

Ģeklinde tanımlanmaktadır. Bu yöntemle uyku evreleri ve birçok fizyolojik parametre 

ayrıntılı olarak izlenmekte ve çeĢitli organ sistemlerinin fonksiyonu, uyku ve uyanıklık 

sırasındaki etkileĢimleri konusunda bilgi sağlanmaktadır. 

 MIT-BIH Polisomnografik veri bankasında, uyku esnasındaki çoklu fizyolojik 

sinyallerin toplu kayıtları bulunmaktadır. Sinyaller, kronik uyku apnesi sendromunu 

değerlendirmek  ve genellikle bu konudaki engelleri azaltmak için uygulanan sürekli 

pozitif hava baskılarının etkilerini test etmek için gözlemlenmektedir. 

 

Bu veritabanında, 16 deneğin hepsi erkek, 32 ile 56 yaĢ arasında, 89 ile 152 kilo 

arasındadır. Slp01a ve Slp01b kayıtları bir deneğin polisomnogramının  sekmeleridir ki 

bunlar yaklaĢık bir saatlik aralıklarla yapılmıĢtır. Slp02a ve Slp02b kayıtları 10 

dakikalık boĢluklara bölünmüĢ diğer deneklerin polysomnogram‟larıdır.  Geriye kalan 

14 kaydın hepsi farklı deneklerindir.  

 

Bütün kayıtlar; ECG sinyalleri, yayılan kan basıncı sinyalleri, EEG sinyali ve solunum 

verilerini içermektedir. Bazılarında ise ilave olarak, EOG, EMG (Çene bölgesinden 

alınan) , kalbe ait ses sinyali ve kulak memesi oksimetre sinyalini içermektedir[183]. 

 

Uygulamalarda giriĢ verisi olarak kullanılan EKG ve EMG sinyallerinin toplam kayıt 

süresi 1 dk olup örnekleme frekansları 250Hz ve rastgele örnek alma süreleri 0.004 

sn‟dir. Bu sinyallerin grafiksel olarak gösterimi ġekil 4.2‟de verilmektedir. Her iki 

sinyal 15000„er adet örnek veriden oluĢmakta ve 12 bitlik analog dijital çevirici 

çözünürlüğüne sahiptir. 
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ġekil 4.2. Benzetim çalıĢmalarında kullanılan EKG ve EMG  sinyalleri. 

 

Benzetim çalıĢmalarında ilk olarak gerçek zamanlı olarak kaydedilen EMG sinyalinin 

α-bağımlı gürültü modeli [184] no‟lu referansta geliĢtirilen metot temel alınarak 

oluĢturulmuĢtur. EMG iĢaretinin α=1.5 ve α=0.5 olarak seçilen α-bağımlı gürültü 

modelleri sırasıyla ġekil 4.3 (a) ve (b)‟de görülmektedir. α  değeri sıfıra yaklaĢtıkça 

sinyal daha keskin dürtülere sahip olmaktadır. ġekil 4.4 (a) ve (b)‟de ise bu modellere 

ait Güç Spektrum Yoğunlukları (GSY) görülmektedir.   

 
                            

 (a) α=1.5                                                                            (b) α=0.5 

 

ġekil 4.3. EMG iĢaretinin α-bağımlı gürültü modelleri. 
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(a) α=1.5 

 

(b) α=0.5 

ġekil 4.4.  EMG iĢaretinin α-bağımlı Gürültü modellerine ait GSY „ları 

 

Yapay EMG sinyalleri ile yapılan testlerde EMG sinyalinin modellenmesinde α-bağımlı 

modelin baĢarımının Gauss modeline göre daha baĢarılı olduğu ġekil 4.4 ve ġekil 4.5    

„te gösterilmektedir. Ayrıca  α değeri sıfıra yaklaĢtıkça  EMG sinyaline olan benzerliği 

daha da artmaktadır. ġekil 4.5 ‟de ise gerçek zamanlı olarak kayıt edilen EMG sinyali 

ve Gauss sinyallerine ait Güç Spektrum yoğunlukları gösterilmektedir. EMG sinyali ile 

Gauss sinyalinin frekans sahaları birbirine yakın fakat frekans karakteristikleri farklılık 

göstermektedir.  
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(a) Gerçek EMG Sinyali 

 

(b) Gauss Sinyali 

ġekil 4.5.  Gerçek EMG Sinyali ve  Gauss Sinyaline ait GSY‟ ları 

 

Benzetimlerde kullanılan EKG iĢareti olarak ġekil 4.2.„deki 15000 örnek verinin ilk 500 

örnek verisi istenilen iĢaret olarak kullanılmıĢ ve bu iĢaret ġekil 4.6‟da verilmiĢtir. 
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ġekil 4.6. Ġstenilen EKG iĢareti. 

 

ġekil 4.6 „da verilen EKG sinyaline ġekil 4.3 (a) ve (b) de verilen yapay EMG 

gürültüleri eklenmiĢtir. Eklenen gürültüler sonucu oluĢan bozuk EKG iĢaretleri sırasıyla 

ġekil 4.7 (a) ve (b)‟ de verilmiĢtir.  

 
 

(a)                                                                (b) 

ġekil 4.7. Yapay EMG iĢareti eklenen EKG iĢaretleri. 

 

ġekil 4.1 ‟de verilen blok yapı göz önüne alınarak gürültülü EKG iĢareti adaptif Myriad 

süzgeç , Median süzgeç ve FIR süzgeçten geçirilerek gürültüden arındırılması 

sağlanmıĢtır. Adaptif Myriad süzgeç optimizasyonunda öğrenme algoritması olarak [75] 

no‟lu referansta Kalluri ve Arce tarafından geliĢtirilen algoritma, adaptif Median süzgeç 

algoritması olarak [178] Yinbo Li „nin tasarladığı algoritma ve FIR süzgeç 
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optimizasyonunda ise LMAD algoritması kullanılmıĢtır [185]. ġekil 4.7 (a) ‟da ki 

gürültülü EKG iĢaretinin (α=1.5) adaptif Myriad süzgeç ,Median süzgeç ve FIR 

süzgeçten geçirildikten sonra oluĢan gürültüden arındırılmıĢ durumu sırasıyla ġekil 4.8. 

(a), (b) ve (c) ‟de verilmiĢtir. Elde edilen çıkıĢları, gürültüsüz EKG sinyali ile 

karĢılaĢtırdığımızda, FIR süzgeç çıkıĢındaki sinyalin, gürültüden tam olarak 

arındırılamadığı ve  sinyale ait P,Q,S,T bileĢenlerinin net olarak anlaĢılamadığı 

görülmektedir. Ayrıca Median süzgeç çıkıĢı incelendiğinde, FIR süzgeç çıkıĢına göre 

nispeten daha baĢarılı gürültü süzme yapmasına rağmen, R bileĢeninin genliğinde 

bozulmalar olduğu tespit edilmiĢtir. Myriad süzgeç çıkındaki sinyalin, P,Q,R,S,T 

bileĢenleri gürültüsüz EKG sinyali bileĢenlerine daha yakın değerler olduğu tespit 

edilmiĢtir.   

           
          

    (a) AğırlıklandırılmıĢ Myriad süzgeç çıkıĢı.              (b) FIR süzgeç çıkıĢı.  

 

 
                                 

                                     (c ) AğırlıklandırılmıĢ Median süzgeç çıkıĢı.   

 

 

ġekil 4.8. Yapay gürültülü (α=1.5) EKG „ye ait süzgeç çıkıĢları. 
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ÇıkıĢların Güç Spektrum yoğunlukları (GSY) ise ġekil 4.9 „da gösterilmektedir. 

Gürültüsüz EKG sinyali ile filtre çıkıĢlarının  aynı frekans sahası ve aynı frekans 

özelliklerine sahip olduğunu anlamak için GSY ‟ları incelenmiĢtir. Myriad ve FIR 

süzgeç çıkıĢları ile gürültüsüz EKG sinyalinin frekans sahaları yaklaĢık 32 Hz 

civarındadır yani hemen hemen aynı frekans sahası içinde bulunmaktadırlar.  Ancak  10 

ile 30 Hz arasındaki frekans değerlerinde FIR süzgece ait  frekans karakteristiğinin 

Myriad süzgeç cevabına göre daha baĢarısız olduğu tespit edilmiĢtir. Bu yüzden 

gürültüsüz EKG sinyalinin frekans karakteristiğine  en yakın davranıĢı Myriad süzgecin 

sergilediği sonucuna varılmıĢtır. Ayrıca Median süzgecin frekans sahasının yaklaĢık 26 

Hz olması  ve frekans karakteristiğinin farklılığı sebebiyle gürültüsüz EKG sinyalinin 

özelliklerine yakın davranıĢlar sergileyememiĢtir.   

 
(a)  
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(b) ġekil 4.9 (a) „nın Ayrıntılı Hali. 

 

ġekil 4.9.  (α=1.5) iken Süzgeç ÇıkıĢlarının GSY‟ları. 

 

 

Sistemde,  istenilen iĢaret olan gürültüsüz EKG sinyali ile filtre çıkıĢlarında elde edilen 

gürültüden arındırılmıĢ sinyaller karĢılaĢtırılarak, hata karakteristiği ,MSE (Mean 

Square Error ) yöntemiyle hesaplanmıĢtır. α =1,5 iken , Tablo 4.1 ‟de gösterildiği üzere 

bütün SNR ( Sinyal / Gürültü) değerlerinde AğırlıklandırılmıĢ Myriad süzgeç 

çıkıĢlarında elde edilen hata değerleri istenilen yani (MSE= 0 ) sıfıra daha yakın 

sonuçlar vermektedir. 

Tablo 4.1.  α =1,5 iken MSE değerleri. 

 

α 
SNR  
(dB) 

Mean Square Error (MSE) 

WMyriad 
Süzgeç 

WMedian 
Süzgeç 

FIR 
Süzgeç 

1,5 + 25dB 0,000505 0,0113 0,002 

1,5 + 20dB 0,0015 0,0154 0,0039 

1,5 + 15dB 0,0041 0,0160 0,0072 

1,5 + 10dB 0,0151 0,0171 0,0162 

1,5 + 5dB 0,0213 0,0233 0,0291 

1,5 + 0dB 0,0246 0,0271 0,0446 
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Aynı zamanda ġekil 4.7 (b)‟ deki gürültülü EKG iĢaretinin (α=0.5) süzgeçlerden 

geçirildikten sonraki durumu ise sırasıyla ġekil 4.10 (a),(b) ve (c) ‟de gösterilmiĢtir. FIR 

süzgeç çıkıĢındaki sinyalin, hala yoğun olarak dürtülü gürültü bileĢenleri içerdiği ve bu 

yüzden P ve T bileĢenlerinin net olarak anlaĢılamamaktadır. Median süzgeç çıkıĢı 

incelendiğinde, FIR süzgeç çıkıĢına göre daha baĢarılı gürültü süzme baĢarımı olmasına 

rağmen, R bileĢeninin genliğinde bozulmalar meydana getirdiği tespit edilmiĢtir. 

Myriad süzgeç çıkıĢındaki sinyalde azda olsa dürtü bileĢenleri bulunmasına rağmen bu 

durum P,Q,R,S,T bileĢenlerinin anlaĢılması için problem teĢkil etmemektedir. Ayrıca  

gürültüsüz EKG sinyal bileĢenlerine en  yakın değerler Myriad süzgeç çıkıĢında elde 

edilmiĢtir.   

            
 

(a) AğırlıklandırılmıĢ Myriad süzgeç çıkıĢı.                (b) FIR süzgeç çıkıĢı.  

 
  (c) AğırlıklandırılmıĢ Median süzgeç çıkıĢı 

 

ġekil 4.10. Yapay gürültülü (α=0.5) EKG‟ ye ait süzgeç çıkıĢları. 

 

ġekil 4.11 „de  gürültülü EKG iĢaretinin (α=0.5) süzgeçlerden geçirildikten sonra elde 

edilen çıkıĢlara ait Güç Spektrum yoğunlukları gösterilmektedir. Myriad ve FIR süzgeç 
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çıkıĢları ile gürültüsüz EKG sinyalinin frekans sahalarının yaklaĢık 33 Hz olmasına 

karĢın, gürültüsüz EKG sinyalinin frekans karakteristiğine  en yakın davranıĢı Myriad 

süzgeç  sergilemektedir. Ayrıca Median süzgecin frekans sahasının yaklaĢık 26 Hz ‟den 

olması ve frekans karakteristiğinin farklı olması sebebiyle gürültüsüz EKG sinyalinin 

özelliklerine benzerlik göstermemektedir.   

      
(a) 

 
(c) ġekil 4.11 (a) „ nın Ayrıntılı Hali. 

 

ġekil 4.11.  Yapay gürültülü (α=0.5) EKG‟ ye ait süzgeç çıkıĢlarının GSY „ları. 
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α = 0,5 iken, Tablo 4.2 ‟de gösterildiği gibi bütün SNR ( Sinyal/Gürültü) değerlerinde 

AğırlıklandırılmıĢ Myriad süzgeç çıkıĢlarında elde edilen hata değerlerinin en uygun 

sonuçları verdiği anlaĢılmaktadır. Ayrıca bu sonuçları, α = 1,5 olduğu zaman ki 

sonuçlarla karĢılaĢtırdığımızda bunların ideal değerlere (MSE = 0) daha yakın  oldukları 

tespit edilmiĢtir. 

Tablo 4.2.  α =0,5 iken MSE değerleri. 

 

α 
SNR  
(dB) 

Mean Square Error (MSE) 

WMyriad 
Süzgeç 

WMedian 
Süzgeç 

FIR 
Süzgeç 

0,5 + 25dB 0,0004 0,015 0,0019 

0,5 + 20dB 0,001 0,0151 0,0036 

0,5 + 15dB 0,0014 0,0156 0,007 

0,5 + 10dB 0,0025 0,0159 0,0102 

0,5 + 5dB 0,0109 0,0167 0,0203 

0,5 + 0dB 0,0171 0,0174 0,0453 

 

Yapılan bu çalıĢmaların yanı sıra, süzgeçlerin gerçek zamanlı olarak kaydedilen EMG 

ile bozulan EKG iĢaretinin gürültüden arındırılmasındaki baĢarımları da incelenmiĢtir. 

Bu maksatla ġekil 4.2 „deki 15000 örnek EMG verisinin ilk 500 verisi gürültü olarak 

kullanılmıĢ ve ġekil 4.12 (a) ‟da verilmiĢtir. Ayrıca, gerçek zamanlı olarak kaydedilen 

EMG gürültüsünün eklenmesi sonucu oluĢan gürültülü EKG iĢareti de ġekil 4.12 (b) ‟de 

verilmiĢtir. 

 
 

(a) Gerçek zamanlı olarak kaydedilen EMG iĢareti.       (b) Gürültülü EKG iĢareti.  

 

ġekil 4.12. Gerçek EMG sinyali ve EKG‟ye eklenmiĢ hali.   
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ġekil 4.12 (b) ‟deki gerçek gürültü ile bozulmuĢ EKG iĢareti sırasıyla adaptif Myriad 

süzgeç, Median süzgeç ve FIR süzgeçten geçirilmiĢtir. Süzgeç çıkıĢlarında elde edilen 

gürültüsüz EKG iĢaretleri ġekil 4.13 (a),(b),(c) ‟de gösterilmiĢtir. FIR süzgeç çıkıĢındaki 

sinyalin, hala EMG sinyal bileĢenleri içermesi sebebiyle P,Q,S,T bileĢenleri ayrıntılı 

olarak tanımlanamamaktadır. Median süzgeç çıkıĢında P,Q,S,T bileĢenlerinin daha 

anlaĢılır olmasına rağmen, genliklerinde azalmaların olması ve R bileĢeninde kısmen 

bastırılmasından dolayı iĢarette bozulmalar meydana gelmiĢtir. 

 
  

       (a) AğırlıklandırılmıĢ Myriad süzgeç çıkıĢı.             (b) FIR süzgeç çıkıĢı.  

 

 
 

(c) AğırlıklandırılmıĢ Median süzgeç çıkıĢı. 

 

ġekil 4.13. Gerçek EMG gürültülü EKG‟ ye ait süzgeç çıkıĢları. 

 

ġekil 4.12 (b) ‟deki gerçek gürültü ile bozulmuĢ EKG iĢaretinin süzgeç baĢarımları 

sonucunda ġekil 4.13 „de elde edilen çıkıĢlara ait Güç Spektrum yoğunlukları ġekil 

4.14‟ de gösterilmektedir.  
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Myriad ve FIR süzgeç çıkıĢları ile gürültüsüz EKG sinyalinin frekans sahalarının 

yaklaĢık 37 Hz  olmasına  rağmen Myriad süzgeç çıkıĢı,  FIR „a göre EKG sinyalinin 

frekans karakteristiğine daha çok benzemektedir. Diğer taraftan Median süzgecin 

frekans sahasının yaklaĢık 27 Hz olması ve frekans karakteristiğinin gürültüsüz EKG 

sinyalinin özelliklerinden uzak olması nedeniyle benzerlikler göstermemektedir 

 

 

(a) 
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(b) ġekil 4.14 (a) „nın Ayrıntılı Hali. 

ġekil 4.14. Gerçek EMG Gürültülü EKG Sinyaline ait Süzgeç ÇıkıĢlarının GSY‟ları. 

 

Gerçek EMG sinyalleri ile yapılan testlerde  Tablo 4.3 „de de gösterildiği üzere bütün 

SNR değerlerinde hata karakteristiği yönünden AğırlıklandırılmıĢ Myriad süzgeç , FIR 

süzgeç ve AğırlıklandırılmıĢ Median süzgece göre  daha iyi sonuçlar vermektedir.  

 

Tablo 4.3.  Gerçek EMG sinyali için MSE değerleri. 

 

Snr 
(dB) 

Mean Square Error (MSE) 

Wmyriad Süzgeç Wmedian Süzgeç FIR Süzgeç 

+ 25dB 0,00056 0,0153 0,0018 

+ 20dB 0,0012 0,0157 0,0034 

+ 15dB 0,0026 0,0166 0,006 

+ 10dB 0,0052 0,0184 0,0082 

+ 5dB 0,0148 0,0228 0,0151 

+ 0dB 0,0305 0,0341 0,0326 
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Yapılan çalıĢmalarda süzgeçleme baĢarımlarının tespiti amacıyla MSE ve GSY 

hesaplamalarının yanısıra EKG sinyal bileĢenlerinin voltaj ve süre olarak analizleride 

yapılmıĢtır. Bu amaçla farklı hastalardan alınan EKG sinyalleri içeren kayıtlar sisteme 

giriĢ verisi olarak uygulandığında çıkıĢlarda Tompkins algoritması [133]  ile  elde 

edilen sinyalin bileĢen değerleri hesaplanmaktadır.  

 

Tablo 4.1, Tablo 4.2, Tablo 4.3 „de görüldüğü üzere α değeri arttıkça, alınan 

sonuçlardaki hata baĢarım yüzdesinin azaldığı tespit edilmiĢtir. +0 ile +25 dB arasında 

bütün SNR (Sinyal/Gürültü) değerlerindeki filtre çıkıĢlarına ait MSE değerleri 

incelendiğinde Myriad süzgeç yapısı sonuçlarının  sıfıra daha yakın hata değerleri veren 

model olduğu görülmektedir. Ayrıca EKG bileĢen analizi için yapılan testlerde ise  α 

değeri arttıkça, EKG bileĢenlerinin ideal değerlerden [145] uzaklaĢtığı  görülmektedir. 

 

MIT-BIH veri bankasından alınan (slp32, slp37, slp41, slp45, slp48 ) EKG kayıtlarına,  

α değeri 0.5, 1.0, 1.5 seçilerek oluĢturulan yapay gürültüler ilave edilmiĢ ve bunlar  

sisteme giriĢ verisi olarak  uygulanmıĢtır. Bunlara karĢılık süzgeç çıkıĢlarından alınan 

sinyallere ait EKG bileĢenlerini, genlik (mV) ve süre (sn) cinsinden incelenmiĢtir. Tablo 

4.4, Tablo 4.5, Tablo 4.6 „da görüldüğü üzere bütün süzgeç çıkıĢlarındaki EKG bileĢen 

değerlerinin,  α değeri arttıkça ideal değerlerden uzaklaĢtığı  tespit edilmiĢtir. 

 

Ayrıca Yüzüncü yıl üniversitesinin EKG analizi  için yaptığı araĢtırma [145] ve [186] 

sonuçları temel alınarak,  süzgeç çıkıĢları  kendi aralarında karĢılaĢtırılmıĢtır. 

Sonuçlarda Myriad süzgeç yapısının Median ve FIR süzgeç yapılarına göre daha iyi 

baĢarımlar sergilediği tespit edilmiĢtir. Sonuçlara göre, lineer bir yapı olmasına rağmen 

FIR süzgeç yapısı,  Myriad süzgeç yapısından sonra en iyi sonuçları veren süzgeçtir.   
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Tablo 4.4. Myriad Süzgeç ÇıkıĢlarındaki EKG BileĢen Değerleri. 

 

MIT-
BIH  

Kayıt 
Tipi 

Giriş Datası 

MYRIAD SÜZGEÇ  ÇIKIŞI 

P1      
(mV) 

P2           
(mV) 

P_P          
Süre 
(sn) 

R1         
(mV) 

R2     
(mV) 

R_R   
Süre 
(sn) 

T1      
(mV) 

T2     
(mV) 

T_T          
Süre 
(sn) 

QRS 
(mV) 

QRS 
Süre(sn) 

Slp32 +         
Noise (@=0.5) 0,218 0,221 0,816 2,678 2,976 0,82 0,345 0,381 0,8240 0,960 0,08470 

Slp32 +           
Noise (@=1) 0,216 0,217 0,811 2,669 2,971 0,77 0,348 0,378 0,8236 0,952 0,08468 

Slp32 +               
Noise (@=1.5) 0,212 0,215 0,802 2,661 2,963 0,79 0,342 0,372 0,8233 0,948 0,08462 

          

 

Slp37 +            
Noise (@=0.5) 0,217 0,219 0,8 2,564 2,856 0,812 0,321 0,364 0,802 0,965 0,0843 

Slp37 +              
Noise (@=1) 0,215 0,216 0,798 2,551 2,844 0,811 0,318 0,352 0,793 0,952 0,08323 

Slp37 +                
Noise (@=1.5) 0,211 0,213 0,793 2,537 2,832 0,805 0,301 0,345 0,797 0,943 0,083 

                   

 

Slp41 +          
Noise (@=0.5) 0,231 0,203 0,81 2,789 3,171 0,767 0,371 0,394 0,804 0,941 0,0798 

Slp41 +            
Noise (@=1) 0,224 0,201 0,805 2,768 3,165 0,762 0,366 0,387 0,801 0,933 0,0796 

Slp41 +                
Noise (@=1.5) 0,221 0,205 0,809 2,756 3,143 0,756 0,345 0,379 0,793 0,927 0,0795 

                   

 

Slp45 +          
Noise (@=0.5) 0,212 0,215 0,798 2,545 2,744 0,801 0,345 0,366 0,797 0,966 0,0836 

Slp45 +            
Noise (@=1) 0,21 0,212 0,801 2,501 2,732 0,8 0,321 0,357 0,784 0,953 0,0827 

Slp45 +            
Noise (@=1.5) 0,199 0,201 0,799 2,489 2,702 0,798 0,312 0,351 0,760 0,944 0,0823 

                   

 

Slp48 +           
Noise (@=0.5) 0,202 0,207 0,8 2,571 2,632 0,802 0,311 0,337 0,794 0,963 0,0817 

Slp48 +              
Noise (@=1) 0,2 0,202 0,798 2,562 2,625 0,798 0,309 0,332 0,792 0,956 0,0813 

Slp48 +              
Noise (@=1.5) 0,198 0,199 0,796 2,56 2,615 0,792 0,302 0,329 0,79 0,946 0,0811 
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Tablo 4.5. MedianSüzgeç ÇıkıĢlarındaki EKG BileĢen Değerleri. 

 

MIT-BIH  
Kayıt 
Tipi 

Giriş Datası 

MEDIAN SÜZGEÇ  ÇIKIŞI 

P1      
(mV) 

P2           
(mV) 

P_P          
Süre 
(sn) 

R1         
(mV) 

R2     
(mV) 

R_R   
Süre 
(sn) 

T1      
(mV) 

T2     
(mV) 

T_T          
Süre 
(sn) 

QRS 
(mV) 

QRS 
Süre(sn) 

Slp32 +        
Noise (@=0.5) 0,163 0,169 0,801 2,178 2,196 0,79 0,221 0,231 0,8030 0,662 0,0620 

Slp32 +           
Noise (@=1) 0,154 0,163 0,794 2,15 2,188 0,786 0,215 0,224 0,783 0,660 0,0612 

Slp32 +            
Noise (@=1.5) 0,158 0,161 0,797 2,123 2,171 0,782 0,21 0,211 0,776 0,651 0,0603 

          

 

Slp37 +           
Noise (@=0.5) 0,178 0,172 0,799 2,181 2,178 0,8 0,271 0,291 0,778 0,683 0,0615 

Slp37 +          
Noise (@=1) 0,176 0,167 0,789  2,087 2,166 0,793  0,267 0,272 0,772  0,68 0,0609  

Slp37 +          
Noise (@=1.5) 0,165 0,161 0,8 2,066 2,152 0,787 0,251 0,281 0,769 0,677 0,0606 

                   

 

Slp41 +          
Noise (@=0.5) 0,162 0,168 0,793 2,121 2,197 0,792 0,255 0,261 0,789 0,675 0,0638 

Slp41 +           
Noise (@=1) 0,16 0,164 0,791 2,119 2,191 0,788 0,244 0,253 0,8 0,672 0,0624 

Slp41 +          
Noise (@=1.5) 0,158 0,16 0,795 2,11 2,18 0,785 0,24 0,251 0,795 0,667 0,063 

                   

 

Slp45 +            
Noise (@=0.5) 0,168 0,171 0,798 2,103 2,141 0,797 0,231 0,238 0,787 0,643 0,0603 

Slp45 +          
Noise (@=1) 0,166 0,167 0,793 2,101 2,132 0,793 0,224 0,234 0,782 0,641 0,0595 

Slp45 +          
Noise (@=1.5) 0,161 0,162 0,791 2,098 2,125 0,789 0,221 0,231 0,78 0,635 0,0602 

                   

 

Slp48 +           
Noise (@=0.5) 0,148 0,15 0,755 2,2 2,217 0,721 0,211 0,232 0,703 0,631 0,0635 

Slp48 +          
Noise (@=1) 0,144 0,147 0,751 2,16 2,201 0,716 0,202 0,226 0,695 0,624 0,0626 

Slp48 +            
Noise (@=1.5) 0,141 0,143 0,748 2,11 2,198 0,708 0,196 0,215 0,691 0,621 0,0614 
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Tablo 4.6. FIR Süzgeç ÇıkıĢlarındaki EKG BileĢen Değerleri. 

 

MIT-
BIH  

Kayıt 
Tipi 

Giriş Datası 

FIR  SÜZGEÇ  ÇIKIŞI 

P1      
(mV) 

P2           
(mV) 

P_P          
Süre 
(sn) 

R1         
(mV) 

R2     
(mV) 

R_R   
Süre 
(sn) 

T1      
(mV) 

T2     
(mV) 

T_T          
Süre 
(sn) 

QRS 
(mV) 

QRS 
Süre(sn) 

Slp32 +                 
Noise (@=0.5) 0,182 0,187 0,81 2,194 2,204 0,801 0,263 0,27 0,81 0,721 0,0722 

Slp32 +              
Noise (@=1) 0,179 0,174 0,807 2,188 2,199 0,8 0,254 0,262 0,8056 0,701 0,0717 

Slp32 +                 
Noise (@=1.5) 0,175 0,169 0,801 2,178 2,196 0,79 0,221 0,231 0,8030 0,662 0,071 

          

 

Slp37 +                 
Noise (@=0.5) 0,189 0,184 0,789 2,217 2,232 0,791 0,297 0,301 0,797 0,763 0,0714 

Slp37 +              
Noise (@=1) 0,188 0,183 0,782  2,201 2,211 0,794  0,291 0,296 0,782  0,759 0,0712  

Slp37 +                  
Noise (@=1.5) 0,185 0,178 0,802 2,198 2,203 0,804 0,288 0,291 0,794 0,742 0,0705 

                   

 

Slp41 +               
Noise (@=0.5) 0,177 0,183 0,799 2,236 2,343 0,786 0,275 0,289 0,795 0,747 0,0703 

Slp41 +                     
Noise (@=1) 0,173 0,18 0,802 2,229 2,302 0,8065 0,271 0,278 0,792 0,741 0,0701 

Slp41 +                
Noise (@=1.5) 0,171 0,178 0,801 2,221 2,297 0,802 0,265 0,271 0,789 0,735 0,0698 

                   

 

Slp45 +                 
Noise (@=0.5) 0,172 0,188 0,791 2,349 2,402 0,788 0,282 0,281 0,763 0,764 0,0723 

Slp45 +              
Noise (@=1) 0,17 0,183 0,795 2,301 2,386 0,783 0,279 0,273 0,761 0,761 0,0711 

Slp45 +                
Noise (@=1.5) 0,169 0,181 0,788 2,293 2,341 0,777 0,271 0,268 0,76 0,756 0,0704 

                   

 

Slp48 +               
Noise (@=0.5) 0,169 0,171 0,793 2,236 2,265 0,794 0,269 0,276 0,757 0,746 0,0701 

Slp48 +                     
Noise (@=1) 0,163 0,168 0,792 2,231 2,256 0,785 0,258 0,261 0,732 0,737 0,0699 

Slp48 +                   
Noise (@=1.5) 0,161 0,162 0,795 2,215 2,247 0,771 0,247 0,245 0,724 0,731 0,0695 

 

 

 



 

 

 

 

 

 

 

5.BÖLÜM 

 

SONUÇLAR 

 

Bu tez çalıĢmasında, EKG sinyaline karıĢan kas gürültüsünün (EMG), doğrusal 

olmayan adaptif  Myriad süzgeç ,  adaptif Median süzgeç ve doğrusal adaptif FIR 

süzgeç kullanılarak bastırılması amaçlanmıĢtır. Bu maksatla EKG iĢaretine hem gerçek 

zamanlı olarak kaydedilen EMG iĢareti hem de α-sabitli gürültü ile modellenen yapay 

EMG iĢareti ayrı ayrı eklenmiĢ ve bu durumlardaki süzgeç performansları incelenmiĢtir. 

Yapılan benzetim çalıĢmalarına göre, faklı α değerleri ile oluĢturulan yapay kas 

gürültülerin ve gerçek zamanlı kas gürültüsünün EKG iĢaretinden arındırılmasında 

Myriad, Median ve  FIR süzgeç yapıları gözlemlenmiĢtir. 

 

 

Yapay EMG sinyalleri ile yapılan testlerde EMG sinyalinin modellenmesinde α-bağımlı 

modelin baĢarımının, Gauss modeline göre daha baĢarılı olduğu gözlemlenmiĢtir. 

Ayrıca  α değeri sıfıra yaklaĢtıkça  EMG sinyaline olan yakınlığı daha da artmaktadır. 

Bu sonuç,   iĢaretlere ait GSY grafikleri  ile daha detaylı olarak görülmektedir.   

 

 

MIT-BIH veri bankasından alınan (slp32, slp37, slp41, slp45, slp48 ) EKG kayıtlarına,  

α değeri 0.5, 1.0, 1.5 seçilerek oluĢturulan yapay gürültüler ilave edilmiĢ ve bunlar  

sisteme giriĢ veri olarak  uygulanmıĢtır. Bunlara karĢılık süzgeç çıkıĢlarından alınan 

sinyallere ait EKG bileĢenlerini, genlik (mV) ve süre (sn) cinsinden incelenmiĢtir. 

Sonuçlarda görüldüğü üzere bütün süzgeç çıkıĢlarındaki EKG bileĢen değerlerinin,  α 

değeri arttıkça ideal değerlerden uzaklaĢtığı  tespit edilmiĢtir. 
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Genel olarak değerlendirildiğinde Myriad süzgeçlerin her türlü α-bağımlı gürültülü 

durumda giriĢ iĢaretinden gürültü iĢaretinin ayıklanması iĢleminde diğer süzgeçlere göre 

daha baĢarılı oldukları tespit edilmiĢtir. Yüzüncü yıl üniversitesinin EKG analizi  için 

yaptığı araĢtırma sonuçları temel alınarak,  süzgeç çıkıĢları MSE , GSY ve EKG bileĢen 

değerlerine göre  kendi aralarında karĢılaĢtırıldığında,   Myriad süzgeç yapısının Median 

ve FIR süzgeç yapılarına göre daha iyi baĢarımlar sağladığı ortaya çıkmaktadır. Ayrıca 

sonuçlar, lineer bir yapı olmasına rağmen FIR süzgeç yapısı,  Myriad süzgeç yapısından 

sonra en iyi sonuçları veren süzgeç yapısı olarak öne çıkmaktadır.   

 

Bu tez araĢtırması,  adaptif Myriad süzgeç performansının farklı öğrenme algoritmalar 

yardımıyla,  artırılmasına yönelik çalıĢmalarla devam etmektedir. 

 

 

 



 72 

 

 

 

KAYNAKLAR 

 

1. Pander, T., P., A Suppression of an Impulsive Noise in ECG Signal Processing, 

Proceedings of the 26th Annual International Conference of the IEEE EMBS, San 

Francisco, CA, USA, 2004. 

2. Kalluri, S., Nonlinear Adaptive Algorithms For Robust Signal Processing and 

Communications In Impulsive Environments, Doktora Tezi, University Of Delaware, 

1998. 

3. Zorlu, H., Özer, ġ., Bulanık Sinir Ağı Tabanlı Esnek Anahtarmalı Karma Süzgeç, 

ELECO 2006,  Elektrik - Bilgisayar, 244-247,2006. 

4. Tepe, C., Sezgin H., EKG Sinyallerinde Gürültü Gidermede Ayrık Dalgacık 

DönüĢümünde Farklı Ana Dalgacıkların ve AyrıĢtırma Seviyelerinin KarĢılaĢtırılması, 

Ulusal Kongre-2007. 

5. Gonzalez, J., G.,  Arce G., R., Optimality of the Myriad Filter in Practical Impulsive-

Noise Environments, IEEE Transactions on Signal  Processing, 49, 2,  2001. 

6. Kalluri, S., Arce, G.R., Adaptive Weighted Myriad Filter Algorithms For Robust Signal 

Processing In -Stable Noise Environments, IEEE Trans. on Signal Processing, 46, 

322-334, 1998. 

7. Töderstrom, S., System Identification, Prentice-Hall, 1989. 

8. Lim, Y.C., Parker, S.R., On The Identification Of Systems From Data Measurements 

Using ARMA Lattice Models, IEEE Trans. Assp, 4, 824-827, 1986.   

9. Gauss, K. F., Theory of the Motion of Heavenly Bodies, Dover, 1963. 

10. Zadeh, L.A., From Circuit Theory to System Theory, Proc IRE, 50, 856-865, 1962. 

11. Özer, ġ., TaĢpınar, N., Güney, K., ARMA Modeli ile Ayrık Zamanlı Lineer Sistemlerin 

Modellenmesi, Bilkent Üni. Elektrik-Elektronik ve Bilgisayar Mühendisliği Konferansı 

Bildiri kitabı, 195-198, 1991. 

12. Özer, ġ., Sağıroğlu, ġ., Kaplan, A., Performance Analysis of Algorithms on Linear 

ARMA Models, Proc. Of the Int. SymposIum Computer and InformatIon Science XVI, 

445-451, 2001. 

13. Graupe, D., Cline, WK., Functional Separation of EMG Signals via ARMA 

Identification. IEEE Trans. Syst. Man Cybern ;5, 252-259, 1975. 



 73 

 

 

14. Sherif, Mh., Stochastic Model of Myoelectric Signals for Movement Pattern 

Recognition in Upper Limb Prostheses, Ph.D. thesis, School of Engineering and 

Applied Sciences, University of California at Los Angeles, 1980. 

15. Doerschuk, PC., Gustafson, W., Upper Extremity Limb Function Discrimination Using 

EMG Signal Analysis, IEEE Trans. Biomed. Eng.; 30,18-38, 1983.  

16. Zhou, Y., Chellappa, R., Bekey, G., Estimation of Intramuscular EMG Signals From 

Surface EMG Signal Analysis, IEEE International Conference on Acoustics, Speech, 

and Signal Processing; 11,1805-1808, 1986. 

17. Hefftner, G., Zucchini, W., Jaros, G., The Electromyogram (EMG) as a Control Signal 

For Functional Neuro-muscular Stimulation Part 1: Autoregressive Modeling as a 

Means of EMG Signature Discrimination, IEEE Trans. Biomed. Eng. 35,230-237, 1988. 

18. Bernatos, L., Crago, P., Chizeck, H., A Discrete-time Model of Alectricity Stimulated 

Muscle, IEEE Trans. Biomed. Eng. 33,829-838,1986. 

19. Tohru, K., Investigation of Parametric Analysis of Dynamic EMG Signals by a Muscle-

structured Stimulation Study, IEEE Trans. Biomed. Eng. 39,280-288,1992. 

20. Widrow, B., Stearns, D., Adaptive Signal Processing, Prentice Hall, 1985. 

21. Rauf, F., Nonlinear Adaptive Filtering : A Unified Approach, Ph.D. Thesis, Boston 

University, Boston, 1993. 

22. Zhang, P.,Song Y.,Discrete Frequency-domain Modeling and Measuring of Mildly 

Nonlinear of Volterra Transfer Functions with a Set of Special Sinusoid Signals, IEEE 

Pacific Rim Conference on Communications, Computers and Signal Processing ,1989 . 

23. Ning, T., Shiming, A. N.,A Comparison of Linear and Nonlinear Modelling of The 

Hippocampal EEG, Biomedical Engineers  Proceedings of the 16th Annual 

International Conference of the IEEE  1,221 - 222, 1994. 

24. Stathaki, .T., Blind Volterra Signal Modelling, IEEE ICASSP-96 International 

Conference ,3,1601 - 1604, 1996. 

25. Xu, Y., L.,  Zhiang, Y., T.,   Identification of EMG-Force System Using the Second-

Order Volterra Model ,Engineering in Medicine and Biology Society,  Proceedings of 

the 18th Annual International Conference of the IEEE 2, 569 - 570, 1996. 

26. Stathaki, T., Two Dimensional Blind Volterra Signal Modelling for Texture Feature 

Extraction Using Nonlinear Constrained Optimisation ,Signals, Systems & Computers, 

1998. Conference Record of the Thirty-Second Asilomar Conference , 2,979 – 983, 

1998. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5216
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5216
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5216
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6069
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6069
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6069


 74 

 

 

27. Bardakjan, B., L., Karlson, P., and Courville, A., A Parallel Nonlinear-Linear Nueronal 

Model , Engineering in Medicine and Biology, 21st Annual Conf.,1, 397 , 1999. 

28. Hirafuji, Tanaka K., Hagan, S., Lotka-Volterra Machine for a General Model of 

Complex Biological Systems, Computer Aided Control System Design, Proceedings of  

the 1999 IEEE International Symposium 2,516 – 521, 1999. 

29. Jo, J., A., ark. , Detection  Of Autonomic Abnormality In Obstructive Sleep Apnea 

Using A Nonlinear  Model Of Heart-Rate Variablility, Engineering in Medicine and 

Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical 

Engineering Society] EMBS/BMES Conference,  2, 1554- 1555, 2002. 

30. Aoki, Y., ark., An Optimal Term Selection Scheme for The Volterra System Model 

Applied To The Analysis  Of Heart Rate Fluctuations,  Engineering in Medicine and 

Biology, 24th Annual Conference and the Annual Fall Meeting of the Biomedical 

Engineering Society] EMBS/BMES Conference, 1, 220- 221, 2002. 

31. Georgios, D., ark.,  Nonlinear Modeling of the Dynamic Effects of Arterial Pressure and 

CO2 Variations on Cerebral Blood Flow in Healthy Humans, IEEE Transaction on 

Biomedical Engineering, 51,11,2004. 

32. Mohler, R., R., Tang, Z., On Biliner Time-Series Modelling and Estimation, Decision 

and Control , Proceedings of the 27th IEEE Conference 2, 953-954 , 1988. 

33. David, J., C., ark., Application of Linear and Nonlinear Time Series Modeling to Heart 

Rate Dynamics Analysis,  Biomedical Engineering, IEEE Transactions 42,24-26, 1995 . 

34. Ito, K., ark., Compliance control of an EMG-controlled prosthetic forearm 

usingultrasonic motors , Intelligent Robots and Systems '94. 'Advanced Robotic 

Systems and the Real World', IROS '94. Proceedings of the IEEE/RSJ/GI International 

Conference 3,1816-1823 , 1994. 

35. Hazarika, N., Sergejew, T., A.,  Nonlinear Considerations in EEG Signal Classification  

Signal Processing, IEEE Transactions 45,33-35, 1995. 

36.  Isernia, T.,  Pascazio, V., Pierri, R., Tomographic Imaging Via Non Linear Estimation: 

A Bilinear Approach Geoscience and Remote Sensing, IEEE Transactions on  vol:35, 

1997.  

37. Ledzewicz, U.,  Schattler, H., Analysis of a Class of Optimal Control Problems Arising 

in Cancer Chemotherapy” Int. J. Appl. Math. Comput. Sci., 13, 357–368,2003. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6513
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6553
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(mohler%20%20r.%20r.%3cIN%3eau)&valnm=Mohler%2C+R.R.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20tang%20%20z.%3cIN%3eau)&valnm=+Tang%2C+Z.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=716
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=716
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=716
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(ito%20%20k.%3cIN%3eau)&valnm=Ito%2C+K.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3221
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3221
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3221
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3221
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(hazarika%20%20n.%3cIN%3eau)&valnm=Hazarika%2C+N.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20sergejew%20%20a.%20a.%3cIN%3eau)&valnm=+Sergejew%2C+A.A.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=78
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(isernia%20%20t.%3cIN%3eau)&valnm=Isernia%2C+T.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20pascazio%20%20v.%3cIN%3eau)&valnm=+Pascazio%2C+V.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20pierri%20%20r.%3cIN%3eau)&valnm=+Pierri%2C+R.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36


 75 

 

 

38. Ledzewicz, U. Schattler, H.”Optimal Control for a Bilinear Model with Recruiting 

Agent in Cancer Chemotherapy” Decision and Control, 2003. Proceedings. 42nd IEEE 

Conference 3, 2762- 2767, 2003 

39. Jain, S., Deshpande, G., Parametric Modeling of Brain Signals, Biotechnology and 

Bioinformatics, Proceedings. Technology for Life: North Carolina Symposium 4,85–91, 

2004. 

40. Fangzhi, G., ark., Application of Bilinear Quadrilateral Modeling to EM Scattering 

Problems, Microwave Conference Proceedings, APMC 2005. Asia-Pacific Conference 

Proceedings 2,3,2005. 

41. Dyrholm, M., Parra, L.C., Smooth Bilinear Classification of EEG, Engineering in 

Medicine and Biology Society, EMBS '06. 28th Annual International Conference of the 

IEEE 14,4249 – 4252, 2006. 

42. Christini, D.J.,  ark., Time Series Modeling of Heart Rate Dynamics, Biomedical 

Engineering IEEE Transactions on  42 ,134-136, 1995. 

43. Jain, S., Deshpande, G., Parametric Modeling of Brain Signals Biotechnology and 

Bioinformatics,  Proceedings. Technology for Life: North Carolina Symposium 3,85 – 

91, 2004. 

44. Gonzalez, J.G., Arce, G.R., Optimality of the Myriad Filter in Practical Impulsive-Noise 

Environments, IEEE Transactions on Signal  Processing, 49,2,2001. 

45. Khurram, M. U., Fast Learning Nonlinear Adaptive Filtering Structures, Ph.D. Thesis, 

University Of Boston, 1994. 

46. Koh, T., Powers, E. J., Scond Order Volterra Filtering and Its Application to nonlinear 

system identification, IEEE Trans. on ASSP, 33, 1445-1455, 1985. 

47. Mathews, V.J., A Fast Recursive Least Squares Adaptive Nonlinear Filter, Proceedings 

Of 21
st
 Asimolar Conference on Systems, Signals and Computers, Pacific Grove, 

California,1987.  

48. Haykin, S., Adaptive Fitler Theory, Prentice-Hall, 1986. 

49. Thakor , N.V,. Zhu , Y.S.,  Applications of adaptive filtering to ECG analysis : Noise 

cancellation and arrhythmia detection, IEEE Trans.Biomedical Engineering, 38,785-

794,1991. 

50. Hamilton , P.S., A Comparison of Adaptive and Nonadaptive Filters for Reduction of 

Power Line Interference in the ECG , IEEE Trans. Biomedical Engineering,43,105-109, 

1996. 

http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(ledzewicz%20%20u.%3cIN%3eau)&valnm=Ledzewicz%2C+U.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20schattler%20%20h.%3cIN%3eau)&valnm=+Schattler%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8969
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=8969
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9415
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9415
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9415
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10688
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=10688
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4028925
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4028925
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4028925
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4028925
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(christini%20%20d.%20j.%3cIN%3eau)&valnm=Christini%2C+D.J.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9415
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9415
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9415


 76 

 

 

51. Velasco, M., B., Weng , B., Barner K.E., A New ECG Tests,  in Proc. 2006 Computers 

in Cardiology conference,Valencia,Spain,3,917-920,2006. 

52. Wu,Y. F., Rangayyan, R.M., An Unbiased Linear Artificial Neural Network with 

Normalized Adaptive Coefficients for Filter in Noisy ECG Signals, in Proc.20th 

Canadian Conf.Electrical and Computer Eng.,Canada,2007. 

53. Olmos , S., and Laguna, P., Steady-state MSE Convergence of LMS adaptative Filters 

with Deterministic Reference Inputs with Applications to Biomedical Signals, IEEE 

Trans. Sign. Proces., 48,  2229-2241, 2000. 

54. Olmos , S., and Laguna, P., Symmo, L.,Block, LMS Adaptive Filter with Deterministic 

Reference Inputs for Event-related Signals, Proccedings of the 23rd Annual EMBS 

Interna- tional Conference, 23, 1828-1831, 2001. 

55. Haykin ,S., Adaptive Filter Theory. New Jersey: Prentice-Hall, 1996. 

56. Kepski , R., Cytowski , J., Buchner , T., Adaptive Filtering in Dynamically Changing 

High Resolution ECG, International Conference on Information, Communications and 

Signal Processing ICICS '97 Singapore, 1997. 

57. MejiaGarcia, Ark., Adaptive Cancellation of The ECG Interference in External 

Electroenterogram, Proceedings of the 25 Annual Intemational Conference of the IEEE 

EMBS Cancun, Mexico  September 25,17-21,2003. 

58. Yelderman, M., ECG Enhancement by Adaptive Cancellation of Electrosurgical 

Interference, IEEE Tran. on Biyomedikal  Engineering, 30, 7, 1983. 

59. Cyrill , D., McNames, J., Aboy , M., Adaptive Comb Filter for Quasi-Periodic 

Physiologic Signals, Proceedings of the 25" Annual Intemational Conference of the 

IEEE EMBS Cancun, Mexico September 25,17-21,2003. 

60. Weiting, Y.,  Runjing Z.,  An Improved Self-Adaptive Filter Based on LMS Algorithm 

for Filtering 50Hz Interference in ECG Signals The Eighth International Conference on 

Electronic Measurement and Instruments ICEMI ,2007. 

61. Philips, W., Adaptive Noise Removal from Biomedical signal Using Warped 

Polynomials”,IEEE Tran. On Biomedical Eng., 43,5, 1996. 

62. Jiyin, Z., Jianpo, Li., Application of Variable step LMS Algorithm Based on Iterative 

Time in ECG Signal, Abstraction Bioinformatics and Biomedical Engineering, ICBBE 

2008, The 2nd International Conference , 2,2266–2269,2008. 

63. Widrow  B., Adaptive Noise Cancelling  Principle and Applications , Proceding  of the 

IEEE ,63,1692-1716, 1975. 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4534879
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4534879


 77 

 

 

64. Raooof, K., Gumery, P. Y., Levy, P., Filtering of Nonstationary Electromyographic 

Signals of Respiratory Muscles,  Innovation et Technologie et Medicine, 13, 77-89, 

1992 

65. Valtino X. A., Tompkins, W. J., Nguyen, T. Q., Comparing Stress ECG  Enhancement 

Algorithms,   IEEE Engineering In Medicine and  Biology ,2, 739-751 , 1996  

66. Lee, A. G.,  Y. D., Chung , W. Y., ECG Signal Denoising with Signal Averaging and 

Filtering Algorithm, IEEE Third 2008 International Conference on Convergence and 

Hybrid Information Technology, 2008   

67. Yacoub, S., Gumery, P.,  Raoof, K., A Novel  Signal Processing Method For Multi-

Electrode Surface Electromyography , IEEE vol. 2,  pp. 1336-1337 , 1994 

68. Östlund, N., Wiklund, U., Yu, J., Karlsson, J.S.,  Adaptive  Spatio-Temporal Filtration 

of Bioelectrical Signal, IEEE Engineering in Medicine and Biology 27th Annual 

Conference , 2005  

69. Alty, S., Man W. D., Moxham, J., Lee, K. C., Denoising of Diaphragmatic 

Electromyogram Signals for Respiratory Control and Diagnostic Purpose, IEEE  30th 

Annual International EMBS Conference Vancouver, 30, 20-24, 2008 

70. Chang, F.C., Chang, C.K., Chi, K.Y.,  Lin, Y.D.,  Evaluation Measures for Adaptive 

PLI Filters in ECG Signal Processing , Computers in Cardiology ,34, 529−532, 2007 

71. Jane, R., Laguna, P., Caminal, P.,  Adaptive Baseline Wander Removal in The ECG;  

Comparative Analysis with Cubic Spline Technique, Computers in Cardiology, 143-

146, 1992. 

72. Kim, H.D., Min, C.H., Kim, T.S.,  Adaptable Noise Reduction of ECG Signals for 

Feature Extraction, Lecture Notes in Computer Science, 3973,586-591, 2006 

73.  Marque, C., Bisch, C., Dantas, R., Elayoubi, Brosse, V., Perot, C.,  Adaptive Filtering 

for ECG Rejection from Surface EMG Recordings, Journal of Electromyography and 

Kinesiology,15, 310-315, 2005 

74. Zhang, N.,  Investigation of Fault-Tolerant Adaptive Filtering for Noisy ECG Signals, 

in Proceedings of the 2007 IEEE Symposium on Computational Intelligence in Image 

and Signal Processing, 177-182, 2007 

75. Kalluri, S., Arce, G.R., Adaptive Weighted Myriad Filter Algorithms For Robust Signal 

Processing In -Stable Noise Environments, IEEE Trans. on Signal Processing, 46, 

322-334, 1998. 



 78 

 

 

76. Pitas , L., Venetsanopoulos, A., Order Statistic in Digital Image Processing , Proc.IEEE 

80,14-17,1992. 

77. Kalluri, S., Arce, G.R.,Fast Algorithms for Weighted Myriad Computation by Fixed- 

Point search, IEEE Trans. Signal Processing ,48,159-171,2000. 

78. Kalluri, S., Arce, G.R.,Robust Frequency Selective Filtering Using Weighted Myriad 

Filters Admitting Real valued weights, IEEE Trans.Signal Processing, 49,2721-

2733,2001.  

79. Arce, G.R., A General Weighted Median Filter Structure Admitting Negative Neights, 

IEEE Trans.Signal Processing,46,3195-3205,1998. 

80. Shmulevich , Arce ,G.R.,  Spectral Design of Weighted Median filters Admitting 

Negative Weights,  IEEE Trans.Signal Processing,8, 313-316,2001. 

81. Arce ,G.R. and Parades, J.L., Recursive Weighted Median Filters Admitting Negative 

Weights and Their Optimization, IEEE Trans.Signal Processing,48,768-779,2000. 

82. Yin , L., Yang ,R., Gabbouj ,M., Weighted Median Filters: A Tutorial “,IEEE Trans. 

Circuit System2 ,43,122-124,1996. 

83. Brownrigg , D., The Eighted Median Filter, Commun. Assoc.Computer, 807-818,1984. 

84. Ko ,S.J.,  Lee , S.J. ,,Center Weighted Median Filters and Their Applications to Image 

Enchancement, IEEE Trans. Circuit Sys. ,15,984-993,1991. 

85. Sun, T., Neuvo, Y., Detail-preserving Median Based Filters in Image Processing,Pattern 

Recognit.Lett ,15,341-347,1994 . 

86. Florencio, D.,  Schafer, R., Decision-based median fitler using local signal statistics, in 

Proc.Spie Int. Symp. Visual Communications Image Processing, 1994. 

87. Arce, G.R.,Nonlinear Signal Processing: A Statistical Approach,NewYork,2005. 

88. Hassouni ,M.E, Cherifi, H., Spatio Temporal Weighted Myriad Filter for Alpha Stable 

Noise Removal in Video Squences “ in ICSES04 Int. Conf.Signals and Electronic Syst. 

Poznan,2004. 

89. Ganguli ,R., Surender ,V.P., Adaptive Myriad Filter For Improved Gas Turbine 

Condition Monitoring Using Transient Data ,ASME Turbo Expo 2004,Vienna ,2004. 

90. Hamza ,A., Krim, H.,  Image Denoising : A Nonlinear Robust Statistical Approach, 

IEEE Trans. Signal Process. ,49,3045 -3054, 2001. 

91. Kalluri ,S., Arce, G.R., Adaptive Weighted Myriad Filter Optimization for Robust 

Signal Processing, in Proc. 1996 CISS, Princeton, NJ, 1996. 



 79 

 

 

92. PANDER, T., An  Application of Robust Filters in ECG Signal Processing , Journal of 

Medical Informatics  Technologies ,10,1642-6037,  2006 

93. PANDER, T., Application of Weighted Myriad Filters to Suppress Impulsive Noise., in 

Biomedical Signals Task Quarterly ,8, 199–216, 2004 

94. PANDER, T.,The Class of M-filters in the Application of ECG Signal Processing, 

Biocybernetics and Biomedical Engineering, 26,  3–13, 2006  

95. Raphisak, P., Schuckers, S.C., Jongh, A.,  An Algorithm for EMG Noise Dedection in 

Large ECG Data , Computers in Cardiology, 369- 372, 2004 

96. Chen, Y., Duan, H.,  A QRS Complex Detection Algorithm Based on Mathematical 

Morphology and Envelope, in Proceedings of the 27th IEEE Annual Conference on 

Engineering in Medicine and Biology, 4654-4657,  2005 

97. Sun, P., Wu, Q., Weindling, A.M., Finkelstein, A., Ibrahim, K., An Improved 

Morphological Approach to Background Normalization of ECG Signals, IEEE 

Transactions on Biomedical Engineering, 50, 117-121, 2003 

98. Guglielminotti, P., Merletti ,R., Effect of Electrode Location on Surface Myoelectric 

Signal Variables: a Simulation Study, 9th Int. Congress of ISEK; Florence, Italy, 1992. 

99. Laterza, F., Olmo, G., Analysis of EMG Signals by Means of The Matched Wavelet 

Transform. Electronics Letters; 33,357-359, 1997. 

100. Pattichis, C.S., Pattichis, M.S., Time-scale Analysis of Motor Unit Action Potentials, 

IEEE Trans Biomed Eng; 46,1320-1329, 1999. 

101. Mallat ,S., A Wavelet Tour of Signal Processing, Academic Press, 1999 

102. Nibhanupudi ,S., Signal Denoising Using Wavelets, Ph.D. dissertation, University of 

Cincinnati, 2003. 

103. Chmelka ,L. Kozumplík ,J., Wavelet-based Wiener Filter for Electrocardiogram Signal 

Denoising,. Computers in Cardiology, 32, 771-774, 2005. 

104. Agante, P.M.,  de Sá , J.P.M., ECG Noise Filtering Using Wavelets with Soft-

thresholding Methods,. Computers in Cardiology, 26,  535-538, 1999. 

105. Xu , L., Zhang , D., Wang ,K., .Wavelet-based Cascaded Adaptive Filter for Removing 

Baseline Drift impulse Waveforms, IEEE Trans. Biomed. Eng., 53, 1973-1975, 2005. 

106. Ye ,W., Yungfeng, W.,Yachao Z., Ruifan L. ,A Wavelet Method for the noise Redution 

in Electrocardiographic Signals, Proceedings of the 2007 International Conferenceon 

Wavelet Analysis and Pattern Recognition,China, 2007.  

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=9836


 80 

 

 

107. Elena, MM., Quero, JM., Borrego, I., An optimal Technique for ECG Noise Reduction 

in Real Time Application ,Computer in Cardiology  ,33,225-228, 2006. 

108. Eloumi, A.,
 
Lachiri, Z., 

 
Denoising Ecg Contaminated with Emg Components Cased on 

Pitch Synchronous Wavelet Analysis, In Proceedings of the IEEE International 

Conference on Industrial Technology, 3, 1660–1663, 2004 

109. Shantha, R., Kumari, S., Thilagamanimala, A.,Sadasivam, V.,  ECG Signal 

Ġnterferences Removal Using Wavelet Based CSTD Technique,  International 

Conference on Computational Intelligence and Multimedia Applications ,1, 530-534, 

2007. 

110. Taelman, J., Huffel, S. V., Wavelet Independent Component Analysis to Remove 

Electrocardiography Contamination in Surface Electromyography, 29th Annual 

International Conference of the IEEE Publication, 29, 682-685, 2007 

111. Conforto, S., Pignatelli, S., Optimal Rejection of Movement Artefacts form Myoeletric 

Signals by Means of A Wavelet Filtering Procedure. Journal of Electrophysiology and 

Kinesiology, 9, 47-57 , 1999 

112. Zhou, P., Kuiken, T. A.,  Elimination of ECG Artifacts from Myoelectric Control 

Signals Developed by Targeted Muscle  Reinnervation”, Physiol. Meas., 27, 1311–

1327, 2006. 

113. Singh, B.N., Tiwari, A.K.,  Optimal Selection of Wavelet Basis Function Applied to 

ECG Signal Denoising , Digital Signal Processing, 16, 275-287, 2006 

114. Zhang, J., Shou, G., Dai, G.,  Denoising of ECG Signals Based on Wavelet Transform, 

Journal of Northwestern Polytechnical University, 23, 11-14, 2005 

115. Zhang, D.,  Wavelet Approach for ECG Baseline Wander Correction and Noise 

Reduction , Annual International Conference of the IEEE Engineering in Medicine and 

Biology  Proceedings , 1212-1215 , 2005 

116. Bazhyna, A., Gotchev, A., Christov, I.,  Noninvasive His-Bundle Electrocardiogram 

Toward Beat-to-Beat  Electromyogram Noise Removal, Computers in Cardiology ,30 

,545-548 , 2003  

117. Nikolaev, N., Nikolov, Z., Gotchev, A., Wavelet Domain Wiener Filtering for ECG 

Denoising Using Improved Signal Estimate. Proceedings of Int. Conf. Acoustics, 

Speech and Simal Processing,  2210-2213, 2000 

118. Nikolaev, N., Gotchev, A., ECG Simal Denoisine Usine Wavelet Domain Wiener 

Filtering, PGeedings of the European Signal Processing Conf EUSIPCO, 5, 51-55, 2000 



 81 

 

 

119. Nikolaev, N., Nikolov, Z., Gotchev, A., Egiazarian, K., Wavelet Domain Wiener 

Filtering for ECG Denoising Using Improved Signal Estimate,  IEEE International 

Conference on Acoustics, Speech, and Signal Processing, 6 , 3578–3581, 2000 

120. Ghael, S.P., Sayeed, A.M., Baraniuk, R.G., Improved Wavelet Denoising via Empirical 

Wiener Filtering , In Proc. of SPIE, 3169 , 389–399, 1997 

121. Lee, T.W., Girolami, M., Sejnowski, T.J., Independent Component Analysis Using an 

Extended Algorithm for Mixed Subgaussian and Supergaussian Sources, Neural 

Computation ,11, 417-441, 2003 

122.  Djuwari, D., Kuamr, D.K., Ragupathy, S.C., Polus, B.,  Multi-Step Independent 

Component Analysis for Removing Cardiac Artefacts from Back SEMG Signals, Anziis 

, 35- 40, 2003 

123. Joseph, N.F., Hu, Y., Luk, K.D.K., ICA-Based ECG Removal from Surface 

Electromyography and Its Effect on Low Back Pain Assessment,  Proceedings of the 

3rd International IEEE EMBS Conference on Neural Engineering, 2007 

124. Cao, Y., Chen, C., Hu, Y., Application of Independent Component Analysis to ECG 

Cancellation in Surface Electromyography Measurement,  Journal Biomedical 

Engineering, 22, 686–689, 2005. 

125. Zhang, Z., Enomoto, T., Horihata, S., ICA Using Wavelet Transform and its 

Application to Biological Signals , Proceedings of the 2008 International Conference on 

Wavelet Analysis and Pattern Recognition, Hong Kong, 2008 

126. Zhang, J., and Morrıs, A.J., Fuzzy Neural Network for Nonlinear System Modelling. 

IEEE Proceedings, Control Theory Applications, 42, 551-561, 1995. 

127. Del Boca, A., Park, D.C., Myoelectric Signal Recognition Using Fuzzy Clustering and 

Artificial Neural Networks in Real Time, IEEE International Conference on Neural 

Networks and IEEE World Congress on Computational Intelligence, 5,3098-3103, 

1994. 

128. Vijila, C.K.S.,  Kumar, C.E.S.,  Cancellation of ECG in Electromyogram Using Back 

Propagation Network,  International Conference on Advances in Recent Technologies 

in Communication and Computing , 2009 

129. Kumar, D.K.,  Polus, B., Relationship of Magnitude of Electromyogram of the Lumbar 

Muscles  to Static Posture  Ragupathy,   Proceedings of the 26th Annual International 

Conference of the IEEE EMBS ,26,7803-7807, 2004 



 82 

 

 

130. Azzerboni, B., Carpentieri, M., Foresta, F.L.,  Morabito, F.C., Neural-ICA and Wavelet 

Transform for Artifacts Removal in EMG, in Proc. Of the IEEE International Joint 

Conference on Neural Networks, 4, 3223–3228, 2004 

131. Zhou, P., Lock, B., Kuiken, T.A., Real Time ECG Artifact Removal for Myoelectric 

Prosthesis Control, Physiological Measurement., 28, 397– 413, 2007. 

132. Rhou , B., Sawan, M.,  Desilets, T., Real-time Filtering Technique to Remove ECG 

Interference from Recorded Esophageal EMG , IEEE BioCAS , 2008. 

133. Pan, J., Tompkins, W.L.,  A Real-Time QRS Detection Algorithm,  in IEEE Biomedical 

Engineering , 32,  230–236, 1985 

134. Callaghan, Frank J., Automatic Function in Cardiac Pacing: Optimization of  Device 

and Patient Theraphy, IEEE Engineering in Medicine and Biology, 28-31, 1990. 

135. Smith, B., An Externally Powered, Multichannel , Implementable Stimulator-Telemeter 

for Control of Paralyzed Muscle, IEEE Transaction On Biomedical Engineering,45,463-

475,1998. 

136. Arabi, K., Sawan, M.A., Electronic Design of a Multichannel Programmable Implant 

for Neuromuscular Electrical Stimulation, IEEE Transactions On Rehabilitation 

Engineering,7 , 204-214,1999. 

137. Kaczmarek, K.A., A 16-Channel 8-Parameter Waveform Electrotactile Stimulation 

System , IEEE Transactions On Biomedical Engineering, 38, 933-942,1991. 

138. Jane, R., Caminal, P., Laguna ,P., Aligment  Methods  for Averaging of High-

Resolution Cardiac Signals : a Comparative Study of Performance, IEEE Transactions 

on Biomedical Engineering, 38 ,571-579, 1991. 

139. Cobbold, R. S. C., Transducers for Biomedical Measurements: Principles and 

Applications, John Wiley & Sons, Inc., New York, 1974. 

140. Welkowitz, W., Biomedical Instruments, Theory and Design, Academic Press, New 

York, 1976. 

141. Webster, J. G. (Ed.) ,Medical Instrumentation, Application and Design, Houghtoon 

Mifflin Company, Boston, 1978. 

142.  Chan, U.F., Chan, W.W., Pun, S.H., Vai, M.,  Mak P.U., Flexible Implementation of 

Front-end Bioelectric Signal Amplifier Using FPAA for Telemedicine System, Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society. 

IEEE Engineering in Medicine and Biology Society,  3721-3724, 2007. 

143. Korürek, M., Tıp Elektroniğinde Tasarım Ġlkeleri, Ġstanbul, ĠTÜ Yayınları,1996. 

https://www.researchgate.net/author/U+Fai+Chan
https://www.researchgate.net/author/Wai+Wong+Chan
https://www.researchgate.net/author/Sio+Hang+Pun
https://www.researchgate.net/author/Mang+I+Vai
https://www.researchgate.net/author/Peng+Un+Mak


 83 

 

 

144. Saxena , S.C., Kumar , V., Hamde , S.T., Feature Extraction from ECG Signals Using 

Wavelet Transforms for Disease Diagnostics,International Journal of Systems Science, 

33, 1073-1085, 2002. 

145. Bulduk, B.,  Kılıçalp, D.,  Sigara Ġçen  Erkeklerde Arteriyal Kan Basıncı, Kalp Atım 

Sayısı ve EKG Değerlerindeki DeğiĢikliklerin Belirlenmesi , Yüzüncü Yıl Üniversitesi, 

Sağlık Bilimleri Dergisi, Cilt 9, Sayı 2, Sayfa 68-74, 2006 

146. Kemaloğlu, S.,  Kalp Seslerinin EKG ĠĢareti ile EĢ Zamanlı Alınması ve Bilgisayarla 

Analizi , Erciyes Üni.Yüksek Lisans Tezi ,2001 

147. Kara , S., EKG ĠĢaretlerinin Algılanması ve Bilgisayar ile Görüntülenmesi, Erciyes Üni. 

Yüksek Lisan Tezi, 1991. 

148. Reaz , M. B. I., Hussain , M. S., Mohd-Yasin ,F., Techniques of EMG Signal Analysis: 

Detection, Processing, Classification and Applications Biol. Proced. Online 8, 11-

35,2006 

149. Shahid, S., Higher Order Statistics Techniques Applied to EMG Signal Analysis and 

Characterization, Ph.D. thesis, University of Limerick; Ireland, 2004. 

150. Nikias, CL., Raghuveer, MR., Bispectrum Estimation: A digital Signal Processing 

Framework, IEEE Proceedings on Communications and Radar; 75,869-891, 1987. 

151. Basmajian. JV., de Luca, CJ., Muscles Alive -The Functions Revealed by 

Electromyography, The Williams & Wilkins Company; Baltimore, 1985. 

152. Rodriguez, I., Malanda, A., Gila, L., et al., Filter design for cancellation of baseline – 

fluctuation in needle EMG recordings, Comput. Meth. and  Prog. in Biomed., 81, 79-93, 

2006. 

153. Okkesim ,ġ., Ortodontik Anormallikler Bulunan Hastalarda Kullanılan “Pre Ortodontik 

Trainer” Aparesinin Çene ve Ağız Çevresindeki Kaslara Olan Etkisini Emg Kayıtlarıyla 

Değerlendirilmesi, Erciyes Üniversitesi Yüksek Lisans Tez ,2006. 

154. Gabor, D., Theory of Communication, J. Inst. Elect. Eng. 93,429-457, 1946. 

155. Ismail, AR., Asfour, SS., Continuous Wavelet Transform Application to EMG Signals 

During Human Gait, Thirty-Second Asilomar Conference on Signals, Systems & 

Computers; 1,325-329, 1998. 

156. Cheron, G., Draye, JP., Bourgeios, M., A Dynamic Neural Network Identification of 

Electromyography and Trajectory Relationship During Complex Movements, IEEE 

Trans Biomed Eng; 43,552- 558, 1996. 



 84 

 

 

157. Belouchrani, A., Abed Meraim, K., Amin, MG., Joint-Antidiagonalization for Blind 

Source Separation, Procedures in ICASSP, 2789- 2792, 2001. 

158. Farina, D., Fevotte, C., Doncarli, C., Merletti, R., Blind Separation of Linear 

Instantaneous Mixtures of Nonstationary Surface Myoelectric Signals, IEEE Trans. 

Biomed. Eng., 51,1555-1567, 2004. 

159. Giannakis, GB., Tsatsanis, MK., HOS or SOS for parametric modeling Procedures, 

IEEE Int. Conf. Acoustics Speech Signal Process, 5,3097-3100, 1991. 

160. Yana, K., Mizuta, H., Kajiyama, R., Surface Electromyogram Recruitment Analysis 

Using Higher Order Spectrum, IEEE 17th Annual Conference on Engineering in 

Medicine and Biology Society,2,1345-1346, 1995. 

161. Nikias, CL., Petropulu, AP., Higher-Spectral Analysis: A Nonlinear Signal Processing 

Framework, Prentice Hall; New Jersey, 1993. 

162. Nikias, CL., Mendel, JM., Signal Processing with Higher-Order Spectra, IEEE Signal 

Processing Magazine, 10,10-37, 1993. 

163. Kaplanis, PA., Pattichis, CS., Hadjileontiadis, LJ., Bispectral Analysis of Surface EMG. 

10th Mediterranean Electrotechnical Conference, 2,770-773, 2000. 

164. Zorlu, H., Doğrusal Olmayan Sistemlerin Yapay Sinir Ağları Kullanılarak 

Modellenmesi, Yüksek Lisans Tezi, Erciyes Üniversitesi, Kayseri, 2004. 

165. Lee, J., Mathews, V.J., A Stability Condition For Certain Bilinear Systems, IEEE Trans. 

on Signal Processing, 42, 1871-1873, 1994. 

166. Takagi, T., Fuzzy Ġdentification of Systems and It‟s Application to Modelling and 

Control, IEEE Transactions, SMC,15, 116-132, 1985. 

167. Kaplan, A., Nümerik Tabu Arama Algoritması, Doktora Tezi, Erciyes Üni., Kayseri, 

2000. 

168. Candy, J.V., Signal Processing: The model-based Approach, Mc Graw Hill,1986. 

169. Cioffi, J,. Kailath, T., Fast Recursive Least Squares Transversal Filters for  Adaptive 

Processing, IEEE Trans. Acoust., Speech, Signal Processing, 34, 304- 307 ,1984.  

170. Honig, H.L., Messerschmitt, D.G., Adaptive Filters Structures, Algorithms and  

Apllications, Kluwer Academic Publishers, Berlin, 1995. 

171. Ljung, L., System Identification: Theory  For The User, Englewood Cliffs, NJ.,  Rentice 

Hall, 1987. 

172. Goodwin, K., Adaptive Filtering , Prediction and Control , Prentice-Hall, 1990 



 85 

 

 

173. Kim, P.S., Kwon, W.H., Forgetting least squares estimation FIR filters without noise 

covariance information, SICE 2000. Proceedings of the 39th SICE Annual Conference. 

International Session Papers,1-6, 2000 

174. Shao ,M., Nikias , C.L., Signal Processing with Fractional Lower Order Moments: 

Stable Processes and Their Applications Proceedings of the IEEE,81,33-37,1993. 

175. Zolotarev ,V., One Dimensional Stable Distributions , Providence R.I.American 

Mathematical Society,1986. 

176. Edgeworth , F.Y., A new Method of Reducing Observations Relating to Several 

Quantities, Phil. Mag. (Fifth Series), 24, 45-48, 1887. 

177. Lee , K.D.,  Lee , Y. H., Threshold boolean filters, IEEE Trans. Signal Processing,  

42,32-37,1994. 

178. Li.Y, Arce, G.,A., Fellow, Weighted Median Filters for Multichannel Signals ,IEEE 

Trans. on Signal Processing,  54, 12-15, 2006. 

179. Arce , G. R.,  Nonlinear Signal Processing A Statistical Approach, Book, 2005. 

180. Bendat, J.S., Piersol, A.G.,, Random Data Analysis And Measurement Procedures, John 

Wiley Sons, Inc., USA, 1986 

181. Newland, D.E., An Introduction To Random Vibrations, Spectral , Wavelet Analysis, 

Longman, UK, 1997. 

182. Candy, J.V., Signal Processing: The Modern Approach, McGraw-HillBook Co., USA, 

1988. 

183. www.physionet.org / Database. 

184. P.G. Georgiou, P. Tsakalides, Ch. Kyriakakis, Alpha-stable modeling of noise and 

robust  time-delay estimation in the presence of impulsive noise, IEEE Trans. On 

Multimedia, 1,291-301,1999. 

185. Galin, L., Messer, H., Robust Processing of Heavy Tails Signals-comparison of 

Approaches, Statistical Signal and Array Processing, Proceedings., 8th IEEE Signal 

Processing Workshop , 1996. 

186. Mitra S., Mitra M. , Chaudhuri, B., Pattern defined heuristic rules and directional 

histogram based online ECG parameter extraction , Science Direct,Measurement 42 , 

150-156, 2009. 

 

 

 

http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7141
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7141
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=7141
http://www.physionet.org/
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(galin%20%20l.%3cIN%3eau)&valnm=Galin%2C+L.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/search/searchresult.jsp?disp=cit&queryText=(%20messer%20%20h.%3cIN%3eau)&valnm=+Messer%2C+H.&reqloc%20=others&history=yes
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3799
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3799
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=3799


 86 

 

 

 

 

ÖZGEÇMĠġ 

 

Selçuk Mete, 1983 yılında Kayseri‟ de doğdu. Ġlk, orta ve lise öğrenimini Kayseri‟ de 

çeĢitli okullarda tamamladı. 2001 yılında girdiği Erciyes Üniversitesi Mühendislik 

Fakültesi Elektronik Mühendisliği Bölümü‟ nden 2006 yılında mezun olarak mühendis 

ünvanını kazandı. Aynı yıl Erciyes Üniversitesi Fen Bilimleri Enstitüsü Elektronik 

Anabilim Dalı‟ nda Yüksek Lisans öğrenimine baĢladı. 2006 yılı sonunda itibaren 

yaklaĢık 2,5 yıl  kadar özel bir firmada  Network ve Sistem Mühendisi olarak çalıĢtı ve 

2008 yılından itibaren Kayseri Türk Telekom‟un BiliĢim Ağları Müdürlüğü‟nde 

Network Mühendisi olarak görevine devam etmektedir.  

 

 

Tel  : 0 352 555 12 59  

E-posta : selcuk.mete@turktelekom.com.tr 

Adres  : Türk Telekom A.ġ / KAYSERĠ 

 

 


