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ÇOK AMAÇLI GENETİK ALGORİTMALAR: 

TEMELLERİ VE UYGULAMALARI 

 

ÖZ  

 

          Bu çalışmada topluluk tabanlı bir optimizasyon yöntemi olan genetik algoritmalar 
(GA) incelenmektedir. Tezin ana amacı, çok amaçlı genetik algoritmaların (ÇAGA) 
puanlama ve elitizm mekanizmalarının iyileştirilmesidir. Bireylerin baskınlık gücünden 
yararlanan, çeşitlilik için farklı yöntemler içeren, iki yeni ÇAGA yöntemi (DOPGA+, 
DOPGA2) önerilmektedir. Bu yöntemler daha önce önerilen DOPGA yönteminde bazı 
değişiklikler yapılarak elde edilmiştir. Önerilen yöntemler literatürde sık kullanılan 
yöntemlerle (SPEA ve SPEA2) yakınsama ve çeşitlilik ölçütleri üzerinden 
karşılaştırılmışlardır. Ayrıca, literatürde yer alan bazı yöntemlerin (NSGA ve SPEA) 
puanlama yeteneğini artırmak için, ÇAGA yöntem iyileştirmeleri önerilmiş ve bunlar 
orjinal yöntemlerle karşılaştırılmışlardır.  
          Bireylerin seçilme baskısının seçme mekanizmasından önce değiştirilerek, 
ÇAGA’ ların başarımının artırılması için gama düzeltmesi ile puan ölçekleme (GDPÖ) 
yöntemi önerilmiştir. Bu yöntem, çeşitli gama değerleri kullanılarak, tek amaçlı GA’ lar 
ile literatürde sık kullanılan ve yeni önerilen ÇAGA yöntemlerine uygulanmıştır. Sonuç 
olarak, GDPÖ ile yakınsama yeteneğinin artırılabileceği görülmüştür. Elitizm 
mekanizması GA’ ların başarımını önemli ölçüde artırmaktadır. Bu çalışmada, 
literatürde yer alan pasif sakla/aktar yapıdaki elitizm mekanizması, sakla/uyar/aktar 
yapıdaki etkin elitizm mekanizması ile yer değiştirilerek, ÇAGA’ ların başarımının 
artırılabileceği görülmüştür. ÇAGA yöntemlerinin sıralama (puan atama) yeteneklerinin 
ölçülmesi için Ceza ve Ödül başarım ölçütleri tanımlanmıştır. Bu iki ölçüt ile bir ÇAGA 
yöntemi tarafından seçme mekanizmasına ne kadar nitelikli bilgi aktarıldığı sezgisel ve 
istatistiksel olarak tespit edilebilmektedir.  
          Son olarak, önerilen ve literatürde sık kullanılan ÇAGA yöntemlerini içinde 
barındıran bir kullanıcı arayüzü (MATGAT) tasarlanmıştır. Bu arayüz sayesinde 
kullanıcılar istedikleri parametreleri, seçme mekanizmasını ve test işlevini, seçtikleri 
ÇAGA yöntemine uygulayarak, başarımlarını ölçebilmektedirler. 
 

Anahtar Sözcükler: Genetik Algoritmalar, DOPGA, DOPGA+, DOPGA2, İyileştirme, 
Puan Ölçekleme, Etkin Elitizm, Ödül ve Ceza. 
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MULTI-OBJECTIVE GENETIC ALGORITHMS: 

FUNDAMENTALS AND APPLICATIONS  
 

ABSTRACT  
 

          In this study, the genetic algorithm (a population-based optimization method) has 
been investigated and improved. The main goal of the thesis is to improve the fitness 
assignment and elitism mechanisms of the multi-objective genetic algorithms (MOGAs). 
The proposed two MOGAs (DOPGA+, DOPGA 2) use the definition of domination 
power of the individuals. Hence, they do not need extra parameter for promoting 
diversity. The proposed methods are derived from the existing DOPGA method. The 
proposed methods have been compared with some well-known methods (SPEA and 
SPEA2) in terms of diversity and convergence properties. Furthermore, fitness 
assignment capabilities of some existing methods (NSGA and SPEA) have been 
modified and improved and  the comparative simulation results have been reported. 
          To be able to change the selection pressures of the individuals before the selecting 
mechanism, a gamma correction based fitness scaling method (GCFS) is proposed in 
order to improve the performance of the MOGAs. This method is embedded into the 
single objective GAs and newly proposed MOGAs using different gamma values. As a 
result, the convergence ability of MOGAs with GCFS shown to be improved. The 
presence of elitism can also significantly improve the performance of MOGAs. The 
classical holding/sending back type passive elitism mechanism is replaced by the 
proposed holding/exciting and sending back type effective elitism mechanism (EFE). It 
is shown that the convergence performance of MOGAs can slighlty be improved by 
using the EFE. The reward and punishment concept is introduced to measure fitness 
assignment capabilities of MOGAs with the help of two proposed metrics. How much 
useful information can be generated and passed into the selection mechanism by 
MOGA methods can now be determined heuristically and statistically. 
          Finally, a graphical user interface (MATGAT) is designed for easy-use. Users can 

measure the performance of selected MOGAs by implementing any parameters, any 

selection mechanism and any test functions with MATGAT software. 

  

Key Words: Genetic Algorithms, DOPGA, DOPGA+, DOPGA2, Modification, Fitness 

Scaling, Effective Elitism, Reward and Punishment.  
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1. GİRİŞ  

 

          Genel olarak, optimizasyon, daha iyi bir sonuç bulununcaya kadar olası tüm 

çözümlerin amaç işlevine göre aranması ve karşılaştırılması işlemidir. Optimizasyon 

amaç sayısı bakımından; tek amaçlı ve çok amaçlı olmak üzere ikiye ayrılır. Klasik 

optimizasyon yöntemleri tek bir benzetimde (adımda) tek bir çözümün bulunmasında 

iyidirler, ancak çok amaçlı optimizasyon problemlerinin çözülmesi için uygun 

değildirler. Ancak, gerçek dünya problemleri genelde birbirleriyle çelişen bir çok 

amaçtan oluşurlar. Bu yüzden çok amaçlı optimizasyon yöntemlerinin çözülebilmesi 

için topluluk tabanlı optimizasyon yöntemleri (Genetik algoritmalar vb.) daha uygundur. 

Bu yöntemler, tek bir benzetimde (adımda) çok sayıda en iyi çözümü bulabilirler.  

          Genetik algoritmalar (GA), en iyi çözümü arama işlevini, biyolojik kökenli bazı 

işlevleri (seçme, çaprazlama, mutasyon, elitizm vb.) taklit ederek yapar. GA, doğal 

evrimin doğrudan bir benzeşimini kullanır. Genetik algoritmaların diğer optimizasyon 

yöntemlerinden ve klasik arama yöntemlerinden en önemli farkı, tek bir çözüm yerine 

her adımda çözümlerden oluşan bir topluluk kullanmasıdır. Her adımda bir çözüm 

topluluğu kullanıldığı için, GA ile elde edilen sonuçlar da bir çözüm topluluğu olacaktır. 

Bir problemin potansiyel bir çözümü birey (kromozom) olarak adlandırılır. Bireyler 

parametreleri temsil eder. Bu parametreler ise bir kromozomun genleri olarak 

adlandırılır. Bu genler, ikili sayı veya gerçel sayı dizileri kullanılarak oluşturulabilir. 

Problem çözümünde bir bireyin ya da kromozomun ne kadar iyi olduğu, amaç işlevinde 

(kullanıcı tarafından belirlenir) aldığı değerle yakın ilişkili olan puan (fitness) değerine 

göre belirlenir. Evrim kuramına göre iyi bir kromozomdan iyi kromozomlar elde 

edileceği söylenmektedir. GA’ da da en iyi bireylerden her zaman daha iyi bireyler 

üretilebileceği beklenmektedir. Pratik bir GA uygulamasında bireylerden oluşan bir 

topluluk (genellikle rasgele) oluşturulur. Bu topluluğun boyutu, problemden probleme 

değişebilir. Her bir GA adımında, seçme mekanizması kullanılarak bir alt topluluk 

seçilir. Seçilen bireylerden oluşan bu alt topluluk, ebeveynler veya eşleşme havuzu 

olarak adlandırılır. Ebeveynlerin genleri çaprazlama işlevi kullanılarak karıştırılır ve 

birleştirilerek bir sonraki nesil oluşturulur. Bireylerin birbirinden farklı olmasını 

sağlamak ve aynı çözümlerin elde edilmesinden kurtulmak için mutasyon işlevi 

uygulanır. Ayrıca doğada en güçlülerin yaşamını sürdürmesinden esinlenilerek, GA’ da 

da her adımda en iyi birey/bireyler saklanır ve bir sonraki topluluğa eklenir. Böylece en 
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iyi bireylerden en iyi çözümler üretilmesi amaçlanmaktadır. Bu işleme ise elitizm adı 

verilir.  

          GA’ lar, Pareto cephesinin (bulunması istenen çözüm bölgesi) şekline ve sürekli 

olup olmamasına çok duyarlı değillerdir. Bu yapılarından dolayı çok amaçlı 

optimizasyon için önemli/uygun bir hesapsal yapay zeka yöntemidir.  

          Holland’ ın 1984 yılında adını koymasından sonra, GA’ lar konusunda 1990’ lara 

kadar çok fazla çalışma yapılmamıştır. Ancak Goldberg’ in GA’ yı gerçek bir probleme 

uygulaması ve çığır açan kitabı sayesinde GA’ lar konusuna olan ilgi giderek artmıştır. 

Her geçen yıl, GA’ lar konusunda yeni çalışmalar yapılmıştır. Bu çalışmalar; GA’ nın 

başarımının artırılması, GA yöntemlerinin karşılaştırılması, test edilmesi vb. durumlarla 

ilgilidir. Ayrıca GA’ lar diğer optimizasyon yöntemleri ile hibrit hale getirilerek, gerçek 

dünya problemlerine uygulanmıştır. 

          GA çözümleri ararken, çok fazla sayıda işleme ve çok fazla zamana ihtiyaç 

duymaktadır. Evrimsel algoritmaların temelleri 1950’ lere kadar uzanmasına rağmen, 

son 15 yılda bu konudaki çalışmalarda önemli bir artış olmuştur. Bunun nedeni, düşük 

maliyetli ve güçlü bilgisayarların üretilmesidir. Bu sayede GA işlemleri daha hızlı bir 

şekilde yapılabilmektedir. 

          Bu çalışmada, gösterilimi daha kolay olduğu için, genellikle iki amaçlı 

optimizasyon problemleri kullanılmıştır. Çünkü boyut sayısı arttığında çözümlerin 

gösterilmesi zorlaşmaktadır. Ayrıca, kullanılan optimizasyon problemlerinin tamamı en 

küçükleme problemidir. Ancak şunu da belirtmek gerekir ki, ikililik prensibine göre, en 

küçükleme problemlerini en büyükleme problemlerine ve en büyükleme problemlerini 

de en küçükleme problemlerine dönüştürmek mümkündür.    

          Tezin ana bölümü çok amaçlı genetik algoritmalardır (ÇAGA). ÇAGA 

yöntemlerinin iki ana özelliği sağlamaları gerekir: i) Pareto-optimal (istenilen) 

çözümlerden oluşan cepheye mümkün olduğunca iyi yakınsama sağlanmalıdır,               

ii) bulunan Pareto bireyler bu cephe üzerinde düzgün olarak dağılmalıdır. Literatürde 

yer alan ÇAGA yöntemleri, GA’ ların çalışma biçimi hakkında çok fazla fikir sahibi 

olunmadan önerilmişlerdir. GA’ ların nasıl çalıştığı konusu analitik olarak 

bilinmemektedir. Başlangıç topluluğunun bir nesilden diğerine nasıl hareket ettiği 

sorusu da yanıtlanması gereken temel bir sorudur. Ayrıca, hangi birey çiftlerinin 

çaprazlanması ile daha iyi bireyler elde edilebileceği de yanıtlanması gereken önemli bir 

konudur.  
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          ÇAGA’ larda bir diğer önemli konu ise puanlama mekanizmasından seçme 

mekanizmasına nitelikli bilgi aktarılabilme yeteneğidir. Nitelikli bilgi ile kastedilen bir 

topluluktaki bireylerin en iyiden en kötüye doğru tekil bir biçimde sıralanıp 

sıralanamadığıdır. Eğer bu sağlanabilirse, ÇAGA’ nın başarımının artması 

beklenmektedir. Çünkü bu şekilde, seçme mekanizması en iyi bireyleri ayırt etmekte 

zorlanmayacaktır. Bu amaçla bir ÇAGA yöntemi tarafından bir topluluktaki bireylerin 

ne kadar iyi puanlandığının belirlenmesi önemli olacaktır. 

          Şu ana kadar, literatürde mühendislik hesaplamalarından çok mühendislik 

sezgilerine dayanılarak oluşturulmuş birçok ÇAGA yöntemi önerilmiştir. Temel olarak, 

bu yöntemler birbirlerinden  puan atama mekanizmaları açısından farklılıklar 

göstermektedirler. Doğal olarak, çok sayıda ÇAGA yöntemi bulunmaktadır ve bu 

yöntemlerle ilgili ayrıntılı bilgilere [Coello Coello, 1999; Deb, 2001; Coello Coello ve 

ark., 2007] kaynaklarından ulaşılabilir. Çok sayıda ÇAGA yönteminin olması, puan 

atama konusunun çok amaçlı genetik algoritmalar için ucu açık bir soru olduğunu 

göstermektedir. Bu kadar çok sayıda PAM (puan atama mekanizması) olmasının bir 

başka açıklaması da,  PAM yöntemleri ile çok amacın (veya çok boyutun) tek bir puan 

(fitness) değerine (ya da tek bir boyuta) dönüştürülmesidir ve bu tür bir boyut 

azaltımının basit ve tek bir yolu yoktur. 

          Elitizm mekanizması ÇAGA’ ların başarımına önemli ölçüde etki etmektedir. Bu 

mekanizmada yapılabilecek iyileştirmeler başarımda artışa neden olacaktır. Çünkü en 

iyi bireylerin saklanması ve çaprazlama işlevine tabi tutulması ile oluşacak bireylerin de 

daha iyi olması beklenmektedir. 

ÇAGA yöntemlerinin puan atama mekanizmaları üzerinde bir takım 

iyileştirmeler yapılarak başarımlarında artış sağlanabilir. Bu işlem yapılırken, 

yöntemlerin iyi olan yönleri de kullanılabilir.  

          Tezin ilk bölümünde optimizasyon ve özellikle çok amaçlı optimizasyon 

hakkında genel bilgiler verilmektedir. Çok amaçlı optimizasyon için kullanılan topluluk 

tabanlı bazı optimizasyon yöntemleri (PSO, DE, SA, ACO) kısaca incelenmektedir. 

Tezin ana konusu olan genetik algoritmalar bölümü ise daha ayrıntılı olarak ele 

alınmaktadır. 

          Genetik algoritmalar bölümünde, ilk olarak, GA’ ların klasik optimizasyon 

yöntemlerinden farkları verilmektedir. İkinci olarak, genetik algoritmaların temel 

işlevleri olan çaprazlama, mutasyon ve seçme işlevleri incelenmektedir. Daha sonra tek 
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amaçlı bir optimizasyon problemi GA yardımıyla adım adım çözülmekte ve GA’ nın 

daha iyi anlaşılması sağlanmaktadır. GA’ larda yerel en iyilere takılma önemli 

sorunlardan biridir, bu sorunu gidermek amacıyla çeşitli yöntemler önerilmiştir. Bu 

amaçla önerilen paylaşım, ayıklama ve eşleşme kısıtlaması yöntemleri incelenmekte ve 

birer örnekle değerlendirme yapılmaktadır. Bir sonraki bölümde ÇAGA’ ların temel 

kavramları ayrıntılı olarak anlatılmaktadır. Son olarak ise, ÇAGA’ larla ilgili literatürde 

yer alan bazı gerçek dünya uygulamaları listelenmiştir. 

         Tezin ikinci bölümünde, literatürde yer alan Pareto tabanlı ve Pareto tabanlı 

olmayan ÇAGA yöntemleri ayrıntılı olarak incelenmekte, algoritmaları verilmekte ve 

uygulama örnekleri sunulmaktadır. Daha sonra ÇAGA yöntemlerinin 

karşılaştırılmalarında ve başarımlarının test edilmesinde kullanılan test işlevleri 

incelenmekte, grafikleri ve Pareto cepheleri verilmektedir. ÇAGA yöntemlerinin 

başarımlarının ölçülmesi için literatürde yer alan bazı başarım ölçütleri de ayrıntılı 

olarak incelenmektedir. 

          Bulgular bölümde ise yeni önerilen ÇAGA yöntemleri, ÇAGA yöntem 

iyileştirmeleri, puan ölçekleme yöntemi, etkin elitizm mekanizması ve başarım ölçütleri 

ayrıntılı olarak anlatılmaktadır. Bu bölümde, ilk olarak daha önce önerilen DOPGA 

(DOmination Power of an individual Genetic Algorithm) yöntemi [Eminoğlu, 2003] 

derinlemesine incelenmektedir. DOPGA yöntemi Pareto tabanlı ve elitist bir yöntemdir. 

Baskınlık gücü kavramını kullanarak bir topluluktaki bireylere iki adımda puan atar. 

Çeşitlilik için harici katsayı tahminine gereksinim duymaz, bu bilgi puanlama 

mekanizmasının içine gömülüdür. Bu yöntemin elitizm mekanizmasında bazı 

değişiklikler (ilk topluluk ile ikincil topluluk birleştirilmiştir) yapılmış ve etkinliği 

artırılmıştır. DOPGA yöntemi daha önce, başarım ölçütleri kullanılarak literatürde yer 

alan ÇAGA yöntemleri ile karşılaştırılmamıştır. Bu bölümde DOPGA, sık kullanılan 

test işlevleri ve başarım ölçütleri kullanılarak literatürde sık kullanılan ÇAGA 

yöntemleriyle (SPEA ve SPEA2) karşılaştırılmaktadır. Daha sonra, DOPGA 

yönteminde bazı değişiklikler yapılarak iki yeni yöntem önerisi (DOPGA+, DOPGA2)  

sunulmaktadır. DOPGA’ da puanlama mekanizması k. en yakın komşuluk bilgisi 

eklenerek değiştirilmiş ve DOPGA+ yöntemi önerilmiştir. DOPGA+ yönteminin 

elitizm mekanizması değiştirilerek ise DOPGA2 yöntemi önerilmiştir. Tüm bu 

yöntemler çeşitli test işlevleri üzerinde çalıştırılmış ve sonuçlar verilmiştir. Bu 

yöntemler literatürde sık kullanılan SPEA ve SPEA2 yöntemleri ile karşılaştırılmışlardır 
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ve sonuç olarak daha iyi yakınsama ve dağılım özelliklerine sahip oldukları görülmüştür. 

SPEA ve SPEA2 yönteminin karşılaştırmalarda kullanılmak üzere seçilmesinin 

nedenleri şunlardır: i) her ikisi de Pareto tabanlıdır, ii) her ikisi de harici bir katsayı 

kullanmadan çeşitlilik bilgisini puanlama mekanizmasının içine gömebilme yeteneğine 

sahiptir, iii) her ikisi de elitisttir, iv) her ikisi de son zamanlarda farklı yapay test 

işlevleri kullanılarak farklı ÇAGA yöntemleriyle karşılaştırılmışlardır. 

          ÇAGA yöntemlerinin puanlama mekanizmalarında bir takım iyileştirmeler 

yapılarak başarımları artırılmıştır. Bu iyileştirmeler NSGA ve SPEA yöntemleri 

üzerinde yapılmıştır. İyileştirmelerde, k. en yakın komşuluk ve baskınlık gücü 

kavramları kullanılmıştır. Tüm bu iyileştirmeler ve orjinal yöntemler çeşitli test işlevleri 

üzerinde çalıştırılmış ve sonuç olarak yapılan iyileştirmelerin orjinal yöntemlerden daha 

iyi olduğu belirlenmiştir. 

          Puan ölçekleme genellikle tek amaçlı GA’ larda kullanılan bir yöntemdir. Bu 

yöntemle, seçme mekanizmasından önce bireylerin seçilme baskısı değiştirilmekte ve 

böylece başarım artırılmaktadır. Bu tezde, yeni bir puan ölçekleme yöntemi önerilerek, 

hem tek amaçlı hem de çok amaçlı genetik algoritmalara uygulanmıştır. Bu yöntem 

gama düzeltmesi ile puan ölçekleme (GDPÖ) olarak adlandırılmıştır. Sonuç olarak; 

hem tek amaçlı GA’ larda hem de literatürde yer alan ve önerilen ÇAGA yöntemlerinde 

başarımın, fazladan hesapsal bir yük getirmeden artırılabileceği gözlenmiştir. GDPÖ 

yönteminin etkisi çeşitli seçme mekanizmaları üzerinde de değerlendirilmiştir. Sonuç 

olarak, GDPÖ’ nün yalnızca puan orantılı bir seçme mekanizması (RWS veya SUS) 

kullanıldığı zaman etkili olduğu, turnuva seçimi kullanıldığı zaman etkisiz olduğu 

belirlenmiştir.  

          Elitizm mekanizmasının GA’ ların başarımını önemli ölçüde etkilediği daha 

önceden yapılan çalışmalarla belirlenmiştir. Literatürde önerilen elitizm mekanizmaları 

pasif sakla/aktar bir yapıdadır ve elit bireyler hiçbir uyartıma tabi tutulmadan bir 

sonraki topluluğa aktarılmaktadır. Bu çalışmada ise bu yapı, sakla/uyar/aktar bir yapı 

ile değiştirilerek etkin elitizm mekanizması önerilmiştir. Elit bireyler çözüme en yakın 

bireylerdir ve bunların bir takım işlemlerle (çaprazlama ve mutasyon) uyarılmasıyla 

kendilerinden daha iyi bireyler elde edilme olasılığı diğer bireylere oranla daha fazladır. 

Etkin elitizm mekanizması bu saptamadan yola çıkılarak oluşturulmuştur. Etkin elitizm 

mekanizması ÇAGA yöntemlerine uygulanmış ve orjinal yani pasif elitizm 
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mekanizmalı biçimleri ile karşılaştırılmışlardır. Sonuç olarak, etkin elitizmin ÇAGA 

yöntemlerinin başarımını artırdığı gözlenmiştir. 

          ÇAGA yöntemlerinin ne kadar nitelikli puanlama yaptıklarının ve böylece seçme 

mekanizmasına ne kadar nitelikli bilgi gönderebildiklerinin belirlenmesi için ise ceza ve 

ödül başarım ölçütleri önerilmektedir. Ceza ölçütü, ÇAGA yöntemlerinin bir 

topluluktaki bireylere birbirinden farklı puanlar atayıp atamadıklarına, yani bireyleri en 

iyiden en kötüye doğru tekil olarak sıralayıp sıralamadıklarına bakılarak belirlenir. Ödül 

ölçütü ise atanan puan değerlerinin ne kadar düzgün dağılıp dağılmadığına bakılarak 

belirlenir. Cezası ve ödülü düşük olan yöntem, sıralama yeteneği açısından daha iyidir. 

Benzetimler sonucunda, DOPGA yönteminin SPEA yönteminden, DOPGA2 

yönteminin ise SPEA2 yönteminden sıralama yeteneği açısından daha iyi olduğu 

görülmüştür. Ceza ve ödül ölçütleri ile bireylerin Pareto cephesine dağılımları arasında 

doğrusal bir ilişki vardır, yani ceza ve ödülü düşük olan yöntem Pareto-optimal cephe 

üzerinde daha iyi dağılan çözümler elde edilmesini sağlamaktadır. Ancak, ceza ve ödül 

arasında DOPGA2 ve SPEA2 yöntemleri için yapılan benzetimlerde yakınsama 

arasında bir ilişki bulunmadığı tespit edilmiştir. Ayrıca, seçme mekanizmasının 

olasılıksal olarak çalışması nedeniyle, çaprazlamaya girecek bireyler, PAM’ dan ne 

kadar nitelikli bilgi gelirse gelsin, rasgele ve olasılıksal olarak seçilecektir. Hangi birey 

çiftlerinin çaprazlamaya tabi tutulacağı konusu kesin olarak bilinmemektedir. Bu 

yüzden, PAM’ dan gelen nitelikli bilgiyi kullanabilecek uzman sistem tabanlı bir seçme 

mekanizması tasarlanması tartışmaya açılmıştır.  

          En son olarak, önerilen ve literatürde sık kullanılan ÇAGA yöntemleri bir       

GUI (Graphic User Interface, kullanıcı arayüzü)’ de toplanmış ve kullanıcıların kendi 

parametreleri ile optimizasyon problemlerini çözmeleri için bir alt yapı oluşturulmuştur.  
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          2. GENEL BİLGİLER 

     

          Bu bölümde, optimizasyon kavramı açıklanmakta ve topluluk tabanlı 

optimizasyon yöntemlerine ilişkin genel kavramlara değinilmektedir. Tezin ana konusu 

olan genetik algoritmalara ilişkin genel kavramlar ise ayrıntılı olarak açıklanmaktadır. 

Genetik algoritmaların ortaya çıkma nedeni, amacı, temel işlevleri, bu zamana kadar 

yapılan çalışmalar ve uygulamaları hakkında genel bilgiler verilmektedir. 

  

 

          2.1. Optimizasyon (En İyileme) Nedir ? 

        

          Optimizasyon, daha iyi bir sonuç bulununcaya kadar olası tüm çözümlerin amaç 

işlevine göre aranması ve karşılaştırılması işlemidir. Optimizasyon konusundaki 

araştırma ve uygulamaların çoğu yalnızca tek bir amaçla ilgilidir, ancak gerçek dünya 

problemlerinin çoğu tek amaçtan daha fazlasını gerektirmektedir. Birbiriyle çelişen 

birçok amacın olması (örneğin bir otomobilin hem konforlu hem de ucuz olmasının 

istenmesi) çoğu problem için doğaldır. Çok amaçlı bir problemde, bir tek en iyi sonuç 

yerine en iyi sonuçlardan oluşan ve birbirlerine karşı bir üstünlükleri olmayan bir en 

iyiler kümesi söz konusu olacaktır. Klasik optimizasyon yöntemleri tek bir benzetimde 

(adımda) tek bir çözümün bulunmasında iyidirler, ancak çok amaçlı optimizasyon 

problemlerinin çözülmesi için uygun değildirler. Diğer taraftan, genetik algoritmalar vb. 

topluluk tabanlı yöntemler, tek bir benzetimde (adımda) çok sayıda en iyi çözümü 

bulabilirler. Bu yüzden, çok amaçlı optimizasyon yöntemlerinin çözümü için en uygun 

yöntemler topluluk tabanlı yöntemlerdir.  

          Fiziksel bir sistemi modelleyen bir optimizasyon problemi yalnızca tek bir amaç 

işlevi ile gösterilebiliyorsa, bu durumda en iyi çözümün bulunması işlemi tek amaçlı 

optimizasyon olarak adlandırılır. Eğer bir optimizasyon problemi birden fazla amacı 

içinde barındırıyorsa, bir veya daha fazla en iyi çözümün bulunması işlemine ise çok 

amaçlı optimizasyon denir. Optimizasyon problemlerinin çoğu çok amaçlıdır. Tek bir 

amacın yerine bütün amaçlar önemlidir. Farklı amaçların olması birbiriyle çelişen farklı 

çözümlerin elde edilmesini sağlayacaktır. Bir amaca göre iyi olan bir çözüm diğer bir 

amaca göre kötü olabilir. Bu durumda, tek amaçlı duruma göre en iyi çözümün 

seçilmesi zor olacaktır. Örnek olarak, bir otomobil satın alma işiyle ilgili karar verilmesi 
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gerekiyor olsun. Satın alınmak istenen otomobillerin fiyatları 20000 TL ile 250000 TL 

arasında olsun. Bu otomobillere ilişkin fiyat-konfor grafiği Şekil 2.1’ de 

gösterilmektedir. En pahalı otomobil 2 numaralı çözüm, en ucuz otomobil 1 numaralı 

çözüm olarak gösterilmektedir. Eğer yalnızca fiyata göre bir karar verilirse, en iyi 

çözüm 1 numaralı çözüm (otomobil) olacaktır. Eğer bu durum tüm alıcılar için tek amaç 

ise, fabrikalar yalnızca bir çeşit otomobil (1 numaralı çözüm) üretecekler ve pahalı 

otomobil üretmeyeceklerdir. Doğal olarak, bu türden bir karar verme işlemi tek amaçlı 

olmayacaktır. Ucuz bir otomobilin daha az konfora sahip olacağı beklenmektedir. 

Konfora daha fazla önem veren zengin müşteriler ise 2 numaralı çözümü (otomobili) 

seçeceklerdir. Şekilde bu iki otomobil haricinde de çözümler gösterilmektedir. Tüm bu 

çözümler, birbirlerinden yalnızca tek bir amaç için iyi iken diğer amaç söz konusu 

olduğunda iyi olmamaktadırlar. Bu durumda her iki amacı da önemseyen kişilerin karar 

vermesi zor olacaktır.  

 

 

 

 

 

 

 

 

 

 

 

           

    

 

 
 

Şekil 2.1. Örnek bir optimizasyon problemi (otomobil satın alma) 

                         

          Her iki amaç ta dikkate alındığında en iyi sonuç hangisi olacaktır? Bu sorunun 

yanıtı, hiçbir çözümün diğerinden iyi olmadığıdır. Her iki amaç ta dikkate alınırsa, 
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çözümlerin birbirlerine karşı bir üstünlüğü yoktur. Yani çok amaçlı optimizasyonda bir 

tek en iyi çözüm yerine birçok en iyi çözüm bulunmaktadır. Bu durumda şöyle bir soru 

daha akla gelebilir: Kişi bu çözümlerden hangisini seçmeli? Yukarıdaki otomobil satın 

alma problemini düşünürsek, hangi aracın satın alınacağını yanıtlamak kolay değildir. 

Bu durumda çeşitli yöntemler (çok amaçlı karar verme – multi objective decision 

making) kullanılarak, koşullar göz önüne alınarak, tercih belirleme (preference 

articulation) ya da uzman bilgisi (expert knowledge) kullanılarak bu çözümlerden       

bir  tanesi seçilebilir.                                                                                                             

 

 

          2.2. Topluluk Tabanlı Optimizasyon Yöntemleri 

  

          Çok amaçlı optimizasyon problemlerinin çözümü için birçok yöntem önerilmiştir. 

Bu yöntemlerden son yıllarda en dikkat çekenleri doğal yaşamda bazı hayvan/böcek 

topluluklarının birlikte hareket etmeleri ve istediklerine (yiyecek vb.) ulaşmalarını taklit 

eden topluluk tabanlı optimizasyon yöntemleridir. Bunların yanı sıra metallerin 

sıcaklıklarının değiştirilerek tavlanması (ısıtıp soğutarak sertliğini alma) yöntemiyle 

benzeşim kurularak ta çok amaçlı optimizasyon problemleri çözülebilmektedir. Aşağıda 

bu yöntemlerden bazıları kısaca ele alınmakta, özellikleri, kısa program kodları, artıları 

ve eksileri belirtilmektedir. Bu yöntemler arasında yer alan genetik algoritmalar (GA) 

ise tezin ana bölümünü oluşturduğu için daha ayrıntılı bir şekilde incelenmektedir. 

         

 

          2.2.1. Parçacık Sürü Optimizasyonu (Particle Swarm Optimization, PSO) 

 

          J. Kennedy ve R. Eberhart tarafından kuş sürülerinin uçuş biçimlerinden 

esinlenilerek önerilmiş bir topluluk tabanlı bir optimizasyon yöntemidir [Kennedy ve 

Eberhart, 1995]. Bu yöntemin ana fikri, yiyecek bulmaya çalışan kuş sürülerinin (veya 

topluluklarının) hareketlerinin benzetimlerinin yapılmasıdır. Şekil 2.2’ de gerçek bir kuş 

sürüsü görülmektedir. Bu sürüde, en önde yer alan kuşun hava akımınından yararlanan 

diğer kuşlar daha az yorularak daha fazla mesafe gidebilmektedirler. En öndeki kuş 

yorulunca onun yakınındaki kuşla yer değiştirmektedir. Böylece tüm kuşlar yer 
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değiştirirler ve daha az yorularak tüm sürü daha fazla mesafe katederek yiyeceklere 

ulaşırlar. 
 

 
 

Şekil 2.2. Örnek bir kuş sürüsü 

     

          PSO kuş sürülerinin davranışlarının bir benzetimidir. Kuşların yerini bilmedikleri 

yiyeceği aramaları, bir problemin çözümünün aranması ile benzerdir. Kuşlar yiyecek 

ararken yiyeceğe en yakın olan kuşu izlerler. PSO’ daki parçacık (particle) kavramı 

sürüdeki her bir kuşu temsil etmektedir. Çözümün her adımında her bir parçacığın puan 

(fitness) değeri, dolayısıyla yiyeceğe yani amaca ne kadar uzaklıkta olduğu hesaplanır. 

Her parçacık, GA’ lardaki elitizm mekanizmasında olduğu gibi kendisine ait bilgileri 

(hızı, puanı ve koordinatları) saklamak zorundadır. Her bir program adımında bir 

parçacığın konumu, kendi en iyi konumuna ve komşularının en iyi konumuna göre 

değişir. PSO algoritması rasgele bir parçacık sürüsü veya topluluğu ile başlatılır ve her 

adımda bir parçacığın konumu, kendi en iyi konumu (peniyi) ve o anda topluluktaki en 

iyi çözümün konumuna (geniyi) göre güncellenir. 

          Örneğin PSO algoritması, m adet parametreden oluşan n adet parçacıkla (çözümle) 

başlatılsın. Bu durumda topluluğun parçacık matrisi şöyle verilir: 

 

                                  (2.1) 

nxmnmnn

m

m

xxx

xxx
xxx

x

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

21

22221

11211

...............

...............
......
......
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          Bu matriste i. parçacık [ ]imiii xxxx ,...., 21=  ile belirtilir. Önceki adımdaki en iyi 

parçacığın konumu  ile, her adımdaki en iyi parçacığın 

konumu ise  ile, i. parçacığın hızı ise 

[ imiieniyi pppp ,.....,, 21= ]

].....,,[ ,21 meniyi pppg = [ ]imiii vvvv ,......,, 21=  ile 

gösterilsin. Buna göre topluluktaki tüm parçacıkların konumları ve hızları sırasıyla 

aşağıdaki formüllere göre güncellenir: 

 

               ( ) ( )k
i

k
eniyi

kk
i

k
ieniyi

kk
i

k
i xgrasgelecxprasgelecvv −+−+=+ .... 2211

1               (2.2) 

                            (2.3)   11 ++ += k
i

k
i

k
i vxx

 

          Bu denklemlerde k adım sayısını göstermektedir. c1 ve c2 ise öğrenme 

katsayılarıdır. c1 parçacığın kendi bilgilerine göre hareket etmesini, c2 ise sürünün 

bilgilerine göre hareket etmesini sağlar. c1 ve c2 değerlerinin çok iyi seçilmesi 

gerekmektedir. Düşük seçilmeleri uzak bölgelerde arama yapılmasına yol açar ve amaca 

ulaşılmasını geciktirebilir. Yüksek seçilmeleri ise istenilen amaca ulaşılamamasına yol 

açabilir. Araştırmacılar c1=c2=2 seçilmesinin iyi sonuçlar verdiğini belirtmişlerdir. 

Genel bir PSO algoritmasının kodu şöyle verilir [Tamer ve Karakuzu, 2006] : 

 

                  For    Her parçacık için başlangıç koşulları 

                  End 

                  Do  For  Her parçacık için puan değerini hesapla. Eğer puan degeri,  

                                 peniyi  den daha iyi ise; şimdiki değeri yeni peniyi  olarak ayarla 

                         End 

                  Tüm parçacıkların bulduğu peniyi  değerlerinin en iyisini, tüm parçacıkların 

                  geniyi  'si olarak ayarla 

                         For her parçacık için (2.2) denklemine göre parçacık hızını hesapla 

                                (2.3) denklemine göre parçacık konumunu güncelle 

                         End 

                  While maksimum adım sayısına ulaşılıncaya veya minimum hata koşulu 

                             sağlanana kadar devam et 
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           PSO hem sürekli doğrusal olmayan, hem de ayrık ikili optimizasyonda başarılı 

olarak kullanılmıştır [Kennedy ve Eberhart, 1995, 1997, 2001; Eberhart ve Shi, 1998; 

Engelbrecht, 2003]. Bir parçacık ya da birey tarafından bulunan en iyi sonuçların 

kaydının tutulması, geçmişte üretilen bastırılamayan bireylerin saklanması için 

kullanılabilir (bu aşama genetik algoritmalardaki elitizm mekanizmasıyla benzerdir).   

          Son yıllarda, çok amaçlı birçok PSO yöntemi önerilmiştir. Ray ve Liew, Pareto 

baskınlık kavramını kullanan ve genetik algoritma tekniklerini PSO ile birleştiren bir 

algoritma önermişlerdir [Ray ve Liew, 2002]. Bu algoritma kalabalıklık yöntemini 

kullanarak çeşitliliği sağlamaktadır. Hu ve Eberhart ise bir kerede yalnızca bir amacın 

en iyilenebileceği dinamik komşuluk yaklaşımını önermişlerdir [Hu ve Eberhart, 2002]. 

Daha sonra Hu ve ark., ikincil topluluk ekleyerek dinamik komşuluk yaklaşımlı PSO 

yönteminde bir takım iyileştirmeler yapmışlardır. Coello Coello ise bir parçacığın uçuş 

(hareket) yönünün belirlenmesi için Pareto baskınlık kavramını kullanmıştır ve karar 

uzayında daha iyi bir birey dağılımı elde edebilmek için kümeleme algoritmalarıyla 

sürüleri (ya da toplulukları) alt topluluklara bölmüştür [Pulido ve Coello Coello, 2004]. 

Srinivasan ve Seow ise PSO’ yu evrimsel algoritma ile birleştiren Evrimsel 

Algoritmadan esinlenen Parçacık Sürüsü (PS-EA) yöntemini önermişlerdir [Srinivasan 

ve Seow, 2003; 2005]. Bu algoritmada elit bireyler saklanmış ve birleştirme işlevi 

uygulanmamıştır. Raquel ve Naval ise küresel en iyinin seçilmesi ve arşivdeki 

bireylerin silinmesi için kalabalıklık mesafesi kavramını kullanmışlardır [Raquel ve 

Naval, 2005].           

          PSO’ nun en büyük artısı, hem kavramsal olarak hem de uygulama açısından çok 

basit olmasıdır. Ayrıca kullanımı basittir ve yüksek bir yakınsama hızına sahiptir.  

          PSO’ nun en önemli eksiği ise çok amaçlı optimizasyonda çeşitliliğin kontrol 

edilmesinin zor olmasıdır. Çok amaçlı PSO yöntemlerindeki çeşitlilikteki azalma, 

mutasyon (veya türbülans) işlevleri kullanılarak giderilmeye çalışılır.  

          PSO ile ilgili birçok çalışma yapılmaya devam edilmektedir. Çalışmalarda PSO 

yönteminin iyileştirilmesi, başka PSO yöntemleri ile karşılaştırma, diğer çok amaçlı 

optimizasyon yöntemleriyle hibritleştirme ve PSO’ nun gerçek dünya problemlerine 

uygulanması başlıca konulardır. PSO ile ilgili genel bilgi ve ayrıntılara [Kennedy ve 

Eberhart, 2001; Engelbrecht, 2003; Clerc 2006; Lazinika, 2009, Lim ve ark., 2009] 

kaynaklarından ulaşılabilir. Son yıllarda, PSO algoritmasına olan ilginin artmasıyla, bu 

konuyla ilgili kitap ve makale sayılarında önemli bir artış gözlenmektedir. Bununla 
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beraber PSO ile ilgili birçok açık problem vardır ve yeni alanlara uygulanması da 

gerekmektedir. Bu amaçla, IEEE Transactions on Evolutionary Computation dergisi 

2009 yılı Ağustos ayında PSO ve ACO’ yu da içeren sürü optimizasyonu yöntemleri ile 

ilgili özel bir sayı çıkarmıştır. (Editörler: Andries Engelbrecht, Xiaodong Li, Martin 

Middendorf, Luca Maria Gambardella, IEEE Trans. EvComp., Vol.13, No:4) 

 

 

          2.2.2. Karınca Kolonisi Optimizasyonu (Ant Colony Optimization, ACO) 

 

          ACO algoritması, gerçek karıncaların yuvaları ile yiyecek noktaları arasındaki en 

kısa yolu (feromon maddesi yardımıyla) bulma yeteneklerinden esinlenilerek 

geliştirilmiştir [Colorni ve ark., 1991; Dorigo ve ark., 1996; Dorigo ve Caro, 1999; 

Dorigo ve Stützle, 2004]. Feromon karıncaların davranışını etkilemektedir, bu madde 

karıncaların çok miktarda feromon olan yerlere giden yolları (dolayısıyla en kısa yolları) 

bulmasını sağlamaktadır. Feromon izleri (kokuları), karıncalar arasında doğrusal 

olmayan bir iletişim olarak görülebilir.  

          Şekil 2.3, bir karınca kolonisinin tipik bir davranış örneğini göstermektedir. 

Karıncalar yuvalarının terk ederken, (1) rasgele yollar izlerler, (2) belirli bir zamandan 

sonra ortak bir yolu izlemeye başlarlar, (3,4) bir engelle karşılaştıkları zaman bazıları 

engelin sağına bazıları ise soluna doğru gitmeyi seçerler, (5) belirli bir zamandan sonra 

feromon maddesinden dolayı tüm koloni ortak bir yolu (feromon maddesi çok olan yolu 

yani en kısa yolu) takip eder. Kısa olan yolda feromon miktarı uzun yollara nispeten 

daha fazla birikmektedir. Kısa olan yoldan geçiş daha hızlı gerçekleşeceğinden, birim 

zamanda geçiş yapan karınca sayısı uzun yola göre daha fazla olacaktır. Dolayısıyla 

herhangi iki düğüm arasındaki yol üzerinde bulunan feromon miktarı, yolun 

uzunluğuyla ters orantılıdır [Keskintürk ve Söyler, 2006]. 
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Şekil 2.3. Bir karınca kolonisinin davranışı [Coello Coello ve ark., 2007] 
           

          Karınca kolonilerinden uyarlanan ACO algoritmasında kullanılan üç ana fikir 

şöyledir: 

 

          i) Feromon izleri ile doğrusal olmayan iletişim, 

         ii) En kısa yollar feromon seviyesinin yüksek olduğu yerlerdir, 

        iii) Karıncalar yüksek feromon olan yerleri tercih etmektedirler.   

 

          Ek olarak ACO algoritması gerçek karınca kolonilerinde olmayan yeteneklere de 

sahiptir. Örneğin: 

 

          i) Her karınca hedeften ne kadar uzak olduğunu tahmin edebilme yeteneğine   

              sahiptir. 

         ii) Karıncalar çevreleri hakkında bilgiye sahiptir ve karar vermek için bunu  

              kullanırlar. Bu yüzden, davranışları yalnızca uyarlanabilir (adaptif) değildir,  

              aynı zamanda detaylıdır. 

        iii) Algoritmanın her adımında yalnızca olası sonuçların üretildiğinden emin olmak  

             için, karıncalar bellek mekanizmasına sahiptirler.    

            

          ACO gezgin satıcı probleminin (traveling salesman problem-TSP) çözümü için 

önerilmiştir [Dorigo ve ark., 1991]. Bu algoritma işlem zamanı ve çözüm kalitesi 

açısından diğer sezgisel yöntemlerden daha geride olduğundan algoritmanın başarımını 

Yuva

Yuva

Yuva 

Yuva 

Yuva 

Yiyecek Yiyecek

Yiyecek Yiyecek 

Yiyecek
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artırmak ve daha iyi çözümler elde etmek amacıyla çalışmalar yapılmıştır [Keskintürk 

ve Söyler, 2006]. Gambardella ve Dorigo Ant-Q sistemini [Gambardella ve Dorigo, 

1995], Bullnheimer ve arkadaşları Rank Temelli Karınca Sistemi (ASrank)’ni 

[Bullnheimer ve ark., 1997], Dorigo ve Gambardella Karınca Koloni Sistemi (ACS)’ni 

[Gambardella ve Dorigo, 1997], Stützle ve Hoos Max-Min Karınca Sistem (MMAS)’ni 

[Stützle ve Hoos, 2000] ortaya koymuşlardır. Ayrıca birden çok karınca kolonisi ile 

çalışmayı esas alan algoritmalar da geliştirilmiştir [Tsai ve ark., 2004]. Bunların dışında 

birçok çalışmada farklı alanlardaki uygulamalara yönelik, yöntemin başarımını 

arttırmak amaçlı değişiklikler ve eklemeler yapılmıştır [Bullnheimer ve ark., 1999]. 

Genel Ant-Q algoritması Şekil 2.4’ te gösterildiği gibi dört ana aşamadan oluşmaktadır 

[Gambardella ve Dorigo, 1995]. 
 

 

5. En iyi sonucu göster. 

4. Döngüyü bitir. 

          (α – öğrenme katsayısı, γ – azaltma çarpanıdır)       

          En iyi çözümdeki tüm Q(s,a)’ lar için  

                 [ ]),()','(),(),( ' asQasQmaksrasQasQ a −++← γα  

3. Bulunan m adet sonucu karşılaştır ve en iyiyi seç 

         Döngüyü bitir 

             s sonlandırma kriterine ulaşıncaya kadar devam et 

                   Döngüyü bitir 

                        '  ss ←

                  a değerini uygula, r ve s’ değerlerin gözlemle 

                  [ ]),()','(),(),( ' asQasQmaksasQasQ a −+← γα  

                  (2.4) eşitliğine göre a ve s’ yi belirle 

             For i=1 to m 

       Her bir bölüm için f defa tekrarla 

       Her birey için s=s0 yap 

   For i=1 to m (birey sayısı) 

2. For i=1 to N (N-bölüm sayısı) 

1. Q(s,a) rasgele bir değerle başlatılır 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 2.4. Ant-Q program kodu 
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          İlk olarak, Q(s,a) işlevleri başlatılır (sabit değerlerle başlatmak ta mümkündür). 

İkinci aşamada her bir dağıtıcıya (çözüme) bir değer atanması ile başlar. Her adımda, 

hareket seçme kuralına (2.4) bağlı olarak her dağıtıcı o andaki durumu için olası 

hareketlerden birini seçer. 

  

              (2.4)        
takdirde aksi                          s

qq eger         ssCmaks 
s

rasgele

0s

⎪⎩

⎪
⎨
⎧ ≤

=
)',(arg

' '

 

q, [0,1] aralığında oluşturulan bir rasgele sayıdır. s ve s’, durumları göstermektedir. 

C(s,s’) birleştirilmiş işlevdir. 

          Her geçiş noktasında dağıtıcının işlev değeri aşağıdaki formüle göre güncellenir: 

 

[ ]),()','(),(),( ' asQasQmaksasQasQ a −+← γα       (2.5) 

           

          Tüm dağıtıcıların işlev değerleri bulununcaya kadar devam eder. Üçüncü 

aşamada, çözümler hesaplanır ve en iyi sonuçlar ödüllendirilir. Ayrıca hareket değerleri 

de aşağıdaki formüle göre güncellenir: 

 

  [ ]),()','(),(),( ' asQasQmaksrasQasQ a −++← γα                       (2.6) 

 

          Buradaki α ve γ katsayıları kullanıcı tarafından belirlenmelidir, bu katsayıların 

belirlenmesi deneme yanılma yoluyla olur. Son olarak, dördüncü adımda sonlandırma 

kriterine göre algoritma sonlandırılır ve en iyi sonuçlar belirlenir.  

          Mariano ve Morales, Ant-Q algoritmasının çok amaç için kullanılan bir 

versiyonunu (Multi-Objective Ant-Q, MOAQ) önermişlerdir [Mariano ve Morales, 

1999a, 1999b]. ACO ile ilgili birçok algoritma önerilmiş ve bunlar bazı gerçek dünya 

problemlerinin çözümü için kullanılmıştır. Karıca kolonisi optimizasyonu ile ilgili 

ayrıntılı bilgilere [Engelbrecht, 2003; Nabiyev, 2003; Dorigo ve Stützle, 2004; 

Karaboğa, 2004] kaynaklarından ulaşılabilir. 
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          2.2.3. Farksal Gelişim (Differential Evolution, DE)  

 

          Kenneth Price ve Rainer Storn tarafından sürekli optimizasyon problemlerinin 

çözümü için tasarlanmış nispeten yeni bir algoritmadır [Storn ve Price, 1995, 1997; 

Price ve ark., 2005]. Bu algoritma Price’ ın Tchebycheff polinomal uyarlama 

problemini çözmek için Storn’ a danışması nedeniyle ortaya çıkmıştır. Bu problemin 

çözümünde Price, vektör topluluğunu bozmak için vektör farklarını kullanmayı 

düşünmüştür. Daha sonra bunun uygulanması için algoritma önerilmiş ve 

iyileştirilmiştir [Storn ve Price, 1995]. DE genellikle sürekli optimizasyon 

problemlerinin çözümü için kullanılan topluluk tabanlı bir algoritmadır. DE, geleneksel 

genetik algoritmalarla benzerliklere sahiptir. Bununla beraber, basit bir GA’ daki gibi 

ikili kodlama kullanmaz. Bunun yerine DE, topluluktaki çözümlerin dağılımına bağlı 

mutasyon uygular. Bu yolla, mutasyon değerlerinin hesaplanması için, arama yönleri ve 

bireylerin konumuna bağlı olası adım boyutları seçilir.  

          DE, en güçlü olasılıksal gerçel parametreli optimizasyon algoritmalarından 

biridir. Çok basit bir algoritmadır ve yalnızca birkaç satırlık kodlarla programlanabilir. 

Ek olarak, kullanımı kolaylaştıran çok az sayıda kontrol parametresi kullanır. Buna 

rağmen; doğruluk, yakınsama hızı, kararlılık ve gürbüz olma durumları açısından çok 

amaçlı ve çok modlu işlevlerin optimizasyonunda dikkate değer bir başarım 

göstermektedir.  

          DE tek amaçlı optimizasyon problemlerin çözümü için çok iyi bir algoritmadır ve 

çok sayıda araştırmacı çok geniş sayıda optimizasyon probleminde (genellikle doğrusal 

olmayan) DE’ nin çok iyi olduğunu göstermişlerdir [Storn ve Price, 1995; Mezura-

Montes ve ark., 2006]. Buna rağmen, DE’ nin çok amaçlı optimizasyon için 

kullanılması ile ilgili araştırmalar yeni yeni artmaktadır. DE, PSO’ ya benzer şekilde 

yüksek bir yakınsama hızına sahiptir, ancak gerçek Pareto cephesine ulaşmakta 

zorluklar yaşamaktadır. Ayrıca, çok amaçlı DE çeşitliliğin sağlanması için ek 

mekanizmalara (örneğin kalabalıklık tabanlı işlevler veya mutasyon işlevleri) ihtiyaç 

duymaktadır. DE yalnızca parametreleri gerçel sayı olan problemler için önerilmiştir, 

diğer kodlama çeşitlerinde kullanılması için yenilikler yapılması gerekmektedir.  

          DE algoritmasının önemli parametreleri: NP (Number of population-topluluk 

boyutu), CR (Crossover rate-çaprazlama oranı), F (Scaling factor-Ölçekleme sabiti) 

olarak sayılabilir. İlk olarak, NP adet başlangıç vektörü rasgele oluşturulur. Daha sonra 
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ise genetik algoritmalarda olduğu gibi çaprazlama, mutasyon ve seçme işlevleri 

uygulanır. DE algoritmasının temel adımları şöyle verilebilir [Yiğit ve ark., 2007]: 

 

Başlangıç topluluğunun oluşturulması  

Değerlendirme 

Tekrarla 

       Mutasyon 

       Yeniden birleştirme / Çaprazlama 

       Değerlendirme 

       Seçme 

Durdurma kriteri sağlanıncaya kadar 

 

          DE algoritması, diğer biyolojik kökenli algoritmalardan mutasyon ve yeniden 

birleştirme (çaprazlama) aşamalarında farklılık göstermektedir. DE algoritması 

topluluğu karıştırmak için çözüm vektörleri arasındaki ağırlıklandırılmış farkları 

kullanmaktadır: 
  

     ( ) ( )GrGrGiGrGiGi xxFxxKxu ,2,1,,3,1; −⋅+−⋅+=+          (2.7) 

           

          Burada { }nrrr ,...,2,1,, 321 ∈  ve 321 rrr ≠≠  olmak üzere rasgele seçilir. DE 

algoritması, bir amaç vektörüne mutasyon işlemini, rastgele seçilmiş amaç vektör 

çiftinin ağırlıklandırılmış farkının bu amaç vektörüne eklenmesiyle gerçekleştirir. 

Seçme işlemi, yeni üretilen vektörlerin hangi şartlar altında topluluğa girebileceğini 

tanımlayan bir kriterdir. DE algoritmasının seçme işleminde, yeni üretilen vektör 

ebeveynine göre daha gelişmiş veya en azından aynı gelişme seviyesinde değilse 

ebeveyn vektör en az bir adım daha toplulukta kalmaya devam etmekte ve başka bir 

vektörle yer değiştirmemektedir. Yeniden birleştirme veya çaprazlama işleminin amacı, 

var olan amaç vektör parametrelerinden faydalanarak yeni vektörleri olusturmak 

suretiyle araştırmanın başarılı olması için yardımcı olmaktır [Yiğit ve ark., 2007]. 

          Son on yılda, DE algoritmasına olan ilginin artmasıyla, bu konuyla ilgili kitap ve 

makale sayılarında önemli bir artış gözlenmektedir. Bununla beraber, DE ile ilgili 

birçok açık problem vardır ve yeni alanlara uygulanması da gerekmektedir. Bu amaçla, 
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IEEE Transactions on Evolutionary Computation dergisi 2011 yılında DE ile ilgili özel 

bir sayı çıkaracaktır (Editörler: Swagatam Das, P. N. Suganthan, Carlos A. Coello 

Coello). DE algoritması ile ilgili ayrıntılı bilgilere [Engelbrecht, 2003; Karaboğa, 2004; 

Price ve ark., 2005; Das ve ark., 2008; Chakraborty, 2008] kaynaklarından ulaşılabilir. 

Ayrıca, veri kümeleme yöntemleri için DE ve PSO’ nun kullanılması ve                     

DE ile ilgili ayrıntılı bilgilerin verildiği bir video sunumu 

http://videolectures.net/solomon_krink_depso/ bağlantısı kullanılarak izlenebilir (Erişim 

zamanı: 05.08.2009).    

          
 
          2.2.4. Benzetimli Tavlama (Simulated Annealing, SA)  
 

          Benzetimli tavlama, metallerin tavlanması yani ısıtılıp soğutularak sertliğinin 

alınması işleminden uyarlanan olasılıksal bir arama algoritmasıdır. Tavlama işlemi, bir 

katı cismin (genelde metaller, örneğin çelik) sıcaklığının atomlarının serbest olarak 

hareket edebileceği bir noktaya kadar artırılması, daha sonra atomların daha düşük 

enerji seviyelerinde yeniden düzenlenmesini sağlayacak bir şekilde sıcaklığın 

düşürülmesi olayıdır (örneğin bir kristalizasyon işlemi). Bu işlem sırasında metalin 

serbest enerjisi düşürülür. Soğutma işlemi hayati bir öneme sahiptir. Eğer metal çok 

hızlı bir şekilde soğutulursa veya sistemin başlangıç sıcaklığı çok düşükse, bir kristal 

elde edilemez, onun yerine metal yüksek enerjili amorf (şekilsiz, kristal yapısı olmayan) 

bir duruma gelir. Bu durumda, sistem küresel en küçük (en düşük enerji durumu) yerine 

yerel en küçük değere (yüksek enerji durumuna) ulaşır [Dowsland, 1993]. Metropolis ve 

ark., ısıtma kazanındaki katı bir cismin ısıl dengeye ulaşıncaya kadar geçirdiği 

değişimlerin benzetimini yapmak için bir algoritma önermişlerdir [Metropolis ve ark., 

1953]. Metropolis’ in bu yaklaşımından sonra, Kirkpatrick ve ark. [Kirkpatrick ve ark., 

1983] ve Cerny [Cerny, 1985] birbirlerinden bağımsız olarak, tavlama işlemi ile 

optimizasyon arasındaki benzeşime dikkat çekmişlerdir. Bu araştırmacılar birkaç adet 

önemli benzeşim önermişlerdir: sistem durumu optimizasyon probleminin çözümü ile 

benzerdir, sistemin serbest enerjisi (azaltılacak) en iyilenecek amaç işlevinin aldığı 

değerle ilgilidir, düzensizlik GA’ larda kullanılan mutasyon işlevi ile benzeşiktir, 

soğutma işlemi arama algoritmasındaki denetim mekanizmasıyla ilgilidir ve son olarak 

sistemin donma durumu arama algoritmasının (topluluk boyutu bir olduğunda) son 

http://videolectures.net/solomon_krink_depso/
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çözümünü göstermektedir. Bu benzeşimler kullanılarak benzetimli tavlama algoritması 

geliştirilmiştir. Benzetimli tavlamanın program kodu Şekil 2.5’ de verilmektedir. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  5. Sonladırma kriteri sağlanıncaya kadar devam et. 
        )(tCSt ←  
         ITER verilen adım sayısına ulaşılıncaya kadar 

                  Eğer )/exp( tx δ−<  ise o zaman  ss ←0  
                  Rasgele x değeri oluştur [(0,1) aralığında düzgün dağılım] 
            Aksi takdirde 

            Eğer 0<δ   ise o zaman ss ←0  

            )()( 0sfsf −=δ    (f: amaç işlevi) 

            Rasgele bir  seç (N: komşuluk yapısı)  )( 0s  Ns∈
         Tekrarla  
  4. Tekrarla 
  3. Bir soğutma çizelgesi (programı) seçilir CS,  
  2. Bir başlangıç sıcaklığı seçilir (t0>0), 
  1. Bir başlangıç (olası) çözümü seçilir (s0), 

    Şekil 2.5. Benzetimli tavlama program kodu [Dowsland, 1993]. 

 

            Şekil 2.5’ de verilen program kodunda en küçükleme problemi söz konusudur. 

Bu algoritma, o andaki durumun komşuluklarında yerel hareketler oluşturur ve yeni 

durum o andaki sıcaklığa (t) bağlı bir işleve göre belirlenir. Algoritmanın iki ana 

parametresi, adım sayısı (ITER) ve soğutma çizelgesi (CS)’ dir, çünkü bu parametreler 

algoritmanın başarımına önemli derecede etki etmektedirler. 

          Benzetimli tavlamanın çok amaçlı optimizasyon için kullanımı ilk olarak Serafini 

tarafından önerilmiştir [Serafini, 1994]. Serafini, iki amaçlı bir optimizasyon 

probleminin çözümü için hedef-vektör yaklaşımını kullanmıştır. Serafini’ nin kullandığı 

bu yöntem MOSA (Multi-Objective Simulated Annealing, Çok Amaçlı Benzetimli 

Tavlama) olarak adlandırılmıştır. Ray ve ark., benzetimli tavlama kullanarak çok amaçlı 

bir tasarım problemini ağırlıklı toplamla çözmüştür [Ray ve ark., 1995]. Ruiz-Torres ve 

ark. iki amaçlı paralel makine çalışma çizelgesi problemini çözmek için Pareto tanımını 

seçme kriteri olarak kullanan bir benzetimli tavlama kullanmışlardır [Ruiz-Torres, 

1997]. Czyzak ve Jaszkiewicz ise Pareto Benzetimli Tavlama (PSA-Pareto Simulated 
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Annealing) isimli bir yöntem önermişlerdir [Czyzak ve Jaszkiewicz, 1997a, 1997b]. Bu 

yöntemde, MOSA’ dan farklı olarak her adımda tek bir çözüm yerine çözümlerden 

oluşan bir topluluk kullanılmıştır. Her iki yöntemde de bastırılamayan çözümler 

saklanmıştır. PSA yöntemi MOSA ile karşılaştırılmış ve Pareto cephesinde birçok birey 

üretmiştir ve bu bireyler bu cephe üzerinde düzgün dağılmışlardır. PSA birçok alana 

uygulanmıştır (örneğin hemşire çalışma çizelgesi problemi vb.). 

          Literatürde çok sayıda çok amaçlı benzetimli tavlama yöntemi yer almaktadır. Bu 

yöntemlerden bazıları şöyledir: SMOSA [Suppapitnarm ve ark., 2000], UMOSA 

[Ulungu ve ark., 1995, 1997], WMOSA [Suman, 2002, 2003] ve AMOSA 

[Bandyopadhyay ve ark., 2008]. Bu yöntemler çeşitli uygulamalar üzerinde 

değerlendirilmiş ve birbirleriyle karşılaştırılmışlardır. Benzetimli tavlama hakkında 

daha ayrıntılı bilgilere [Karaboğa, 2004; Tan, 2008] kaynaklarından ulaşılabilir. 

 

 

          2.2.5. Diğer Yöntemler 

 

          Literatürde yukarıda belirtilen yöntemler haricinde de optimizasyon (özellikle çok 

amaçlı) için kullanılabilecek yöntemler bulunmaktadır. Bu yöntemlerden bazıları 

şöyledir: Tabu algoritması (Tabu Search), yapay bağışıklık sistemleri (Artificial 

Immune Systems), kültürel algoritmalar (Cultural Algorithms) ve pekişik arama 

(Cooperative Search). Bu yöntemlerle ilgili ayrıntılı bilgilere [Nabiyev, 2003; 

Engelbrecht, 2003; Karaboğa, 2004; Coello, 2007] kaynaklarından ulaşılabilir. 

 

 

          2.3. Genetik Algoritmalar 

 

          Genetik algoritmalar (GA), en iyi çözümü arama işlevini biyolojik kökenli bazı 

işlevleri (seçme, çaprazlama, mutasyon, elitizm vb.) taklit ederek yapar. Genetik 

algoritmaların diğer optimizasyon yöntemlerinden ve klasik arama yöntemlerinden en 

önemli farkı, tek bir çözüm yerine her adımda çözümlerden olaşan bir topluluk 

kullanmasıdır. Her adımda bir çözüm topluluğu kullanıldığı için, genetik algoritmayla 

elde edilen sonuçlar da bir çözüm topluluğu olacaktır. Çok sayıda en iyi çözümün tek 

bir adımda (benzetimde) bulunabilmesi, genetik algoritmaların en önemli 
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özelliklerinden biridir. Genetik algoritmalar, Pareto cephesinin (bulunması istenen 

çözüm bölgesi) şekline ve sürekli olup olmamasına çok duyarlı değillerdir (örneğin 

ayrık ve içbükey Pareto cephelerini kolaylıkla bulabilmektedir) [Coello Coello, 1999].  

          Son yirmi yıl içinde, değişik mühendislik konularının bilgisayar aracılığı ile 

modellenmesi, benzetilmesi, en iyilenmesi (optimizasyon) ve gelecek davranışlarının 

tahmini için doğal olayların işleyiş ve davranış biçimlerinden esinlenerek ilgi çekici 

yöntemler geliştirilmiştir. Bunlar arasında canlıların genetik davranış biçimleri, genetik 

algoritmaların (GA) ortaya çıkmasında çok önemli rol oynamıştır. 

          Genetik algoritmalar doğada var olan bir yarışma ortamında, ancak daha iyi ve 

daha kuvvetli olan bireylere kazanma şansının verildiği biyolojik olaylara benzetilerek 

geliştirilmiş paralel ve küresel (global) bir arama tekniğidir. Arama uzayında aynı anda 

birçok noktayı değerlendirdiği için küresel çözüme ulaşma olasılığı fazladır. Genetik 

algoritmalar (GA) esasen kılavuzlanmış bir rasgele sayı üretme tekniğidir, yani 

parametreler için belirli sınırlar vardır. Genetik algoritmalar, ikili (veya gerçel sayı) dizi 

yapıları içinde en iyi olanların yaşayabilme şansı ile yapılandırılmış olsa da, rasgele 

bilgi alışverişi olaylarını birleştirerek bir arama algoritması oluştururlar. Genetik 

algoritmalar türevsel bir niteliğe sahip olmadığından analitik değildirler, 

tekrarlandığında aynı sonuç alınmayabilir. 

          Michigan Üniversitesinde psikoloji ve bilgisayar bilimi uzmanı olan John Holland 

bu konuda ilk çalışmaları yapan kişidir (Holland, 1975). Mekanik öğrenme konusunda 

çalışan Holland, Darwin’in evrim kuramından etkilenerek canlılarda yaşanan genetik 

süreci bilgisayar ortamında gerçekleştirmeyi düşünmüştür. Tek bir mekanik yapının 

öğrenme yeteneğini geliştirmek yerine böyle yapılardan oluşan bir topluluğun çoğalma, 

çiftleşme, mutasyon vb. genetik süreçlerden geçerek başarılı yeni bireyler 

oluşturabildiğini görmüştür. Araştırmalarını, arama ve en iyiyi bulma için, doğal seçme 

ve genetik evrimden yola çıkarak yapmıştır. Biyolojik sistemde bireyin bulunduğu 

çevreye uyum sağlaması örnek alınarak, en iyiyi bulma ve makine öğrenme 

problemlerinde bilgisayar yazılımı modellenmiştir. Holland’ ın çalışmalarının sonucunu 

açıkladığı kitabının 1975’ te yayınlanmasından sonra geliştirdiği yöntemin adı Genetik 

Algoritmalar (ya da kısaca GA) olarak yerleşmiştir.  

          Genetik algoritmalarla ilgili ilk gerçek uygulama 1984 yılında Holland’ ın 

öğrencisi olan David Schaffer tarafından yapılmıştır (Schaffer, 1984). Schaffer 

tarafından önerilen vektör hesaplamalı genetik algoritma (VEGA), tek amaçlı genetik 
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algoritmanın basit bir iyileştirmesidir ve çoklu çözümleri genetik algoritmaların 

yalnızca birkaç adımda bulabileceğini göstermiştir. Bu çalışmadan sonra, GA 

araştırmacıları yaklaşık 5 yıl çok amaçlı optimizasyon konularına fazla ilgi 

göstermemişlerdir. 1989 yılında, David E. Goldberg yeni ufuklar açan kitabında 

(Goldberg, 1989) baskınlık kavramını kullanan 10 satırlık bir çok amaçlı genetik 

algoritma (ÇAGA) yöntemi önermiştir. Bu kitaptaki ipuçlarınından yararlanan çok 

sayıda araştırmacı farklı ÇAGA yöntemleri geliştirmeye başlamıştır. Bunların arasında 

Srinivas ve Deb’ in NSGA (Non-dominated Sorting GA, 1994) yöntemi, Fonseca ve 

Fleming’ in MOGA (Multiple Objective GA) yöntemi, Horn, Nafploitis ve Goldberg’ in 

NPGA (Niched Pareto GA) yöntemi ilk geliştirilen yöntemlerdendir. Bu baskınlık 

tabanlı yöntemler, birbirinden farklı gerçek dünya problemleri üzerinde test edilmiş ve 

bu yöntemlerin çok amaçlı problemlerin çözülebilmesini sağladığı görülmüştür. Bu 

çalışmalardan sonra, çok amaçlı optimizasyon yöntemlerinin çözülebilmesi için genetik 

algoritmaları farklı biçimlerde kullanan yeni yöntemler önerilmiştir. Bu yöntemlere, 

Kursawe’ nin eş kalıtsallık (diploidy) yaklaşımı (Kursawe, 1990), Hajela ve Lin’ in 

ağırlık tabanlı yaklaşımı (Hajela ve Lin, 1992), Osyczka ve Kundu’ nun mesafe tabanlı 

GA’ sı (Osyczka ve Kundu, 1995) örnek olarak verilebilir. Çok amaçlı optimizasyona 

olan ilgini artmasıyla, GA dergileri yayınlanmaya, bu konuyla ilgili uluslararası 

konferanslar düzenlenmeye başlamıştır. 2000’ li yıllarda ise çok sayıda yeni ÇAGA 

yöntem önerileri [PAES (Knowles ve Corne, 2000), PESA (Corne ve ark., 2000), 

SPEA2 (Zitzler ve ark., 2001), NSGA-II (Deb ve ark., 2002b), DMOEA (Yen ve Lu, 

2003) vb.] yapılmış ve bu yöntemler çok amaçlı optimizasyon problemlerinin çözümü 

için kullanılmışlardır. Son yıllarda ise GA’ larla ilgili çalışmalarla beraber diğer bazı 

topluluk tabanlı optimizasyon yöntemleri ile karşılaştırmalar yapılmakta, yeni yapı 

önerileri verilmekte, önerilen veya önerilmiş ÇAGA yöntemleri test işlevleri yardımıyla 

karşılaştırılmaktadır. 

          Genetik algoritmaların genel yapısı Şekil 2.6’ da verilmektedir. GA başlamadan 

önce optimizasyon problemini tanımlayan bir amaç işlevinin belirlenmesi 

gerekmektedir. Bu işlemden sonra, GA adımları, çözüm önerilerini yani bireyleri içeren 

bir başlangıç topluluğunun belirlenmesiyle ve probleme ilişkin parametrelerin 

girilmesiyle başlar. Başlangıç topluluğu rasgele belirleneceği gibi dışarıdan kullanıcı 

tarafından da girilebilir. Daha sonra, amaç işlevinin hesabı parametrelere ve girişlere 

göre yapılır. En iyi birey/bireyler bellekte saklanır (elitizm). Seçme mekanizmasıyla 



 24

(RWS, SUS veya TS) bir sonraki nesli yani çözüm önerilerini üretecek anne-baba 

bireyler seçilir. Çaprazlama ile çocuk bireyler (yeni çözüm önerileri) üretilir. Farklı 

bireylerin oluşturulması (çeşitlilik) için ise mutasyon işlemi uygulanır. En iyi 

birey/bireyler çözümlere eklenir. Girilen adım sayısına ve sonlandırma kriterine göre 

GA’ nın bir adımı tamamlanmış olur.  

 
Adım 0 : Başlangıç   

 

 

 

 

 

 

 

 

 

 

 
 

Şekil 2.6. GA’ ların genel yapısı 

 

          Genetik algorimalar problem sayısına göre tek amaçlı veya çok amaçlı, 

parametrelerin kodlanma biçimine göre gerçel ya da ikili, problem tipine göre ise 

kısıtlamalı veya kısıtlamasız olarak adlandırılırlar. Bu tezde ikili kodlama 

kullanan/kısıtlamasız/çok amaçlı genetik algoritmalar kullanılmıştır. 

          ÇAGA’ ların bazı temel ve istenilen karakteristikleri şöyle özetlenebilir:              

1) birbiriyle çelişen çoklu amaçları kullanabilmelidir, 2) var olan kısıtlamalar puan 

atama mekanizmasına (PAM) eklenebilmelidir, 3) herhangi bir harici katsayıya 

gereksinim duyulmadan çeşitlilik bilgisi bir bireyin bağıl konumu dikkate alınarak puan 

atama mekanizmasına eklenebilmelidir, 4) elitizm mekanizması etkili bir biçimde 

kullanılmalıdır, 5) PAM tarafından farklı bireylere farklı puanlar atanabilmelidir, 

böylece topluluktaki bireyler en çok istenilenden en az istenilene doğru tekil bir biçimde 

sıralanabilir, 6) endüstri uygulamalarında sık görülen kötü başlangıç koşullarına 

Adım 1: Puan Atama / 
Derecelendirme 

Adım 2: 
Seçme Mekanizması 

Adım 3: Çaprazlama 

Adım 4: Mutasyon 

Adım 6: Sonlandırma Testi 

En İyi Çözümler 

Adım 5: Elitizm Stratejisi 

En İyi Çözümlerin 
Güncellenmesi 

Çözümler 
Kodlama

Dekodlama
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hesapsal olarak dayanıklı olmalıdır, 7) çalışma zamanları mümkün olduğu kadar az 

olmalıdır, 8) GA küresel arama yöntemidir ve çözüm/çözümleri kullanıcı tarafından 

belirlenen sınırlar içerisinde arar. GA’ ların bulduğu sonuçlara göre parametre sınırları 

artırılıp azaltılarak bölgesel arama (region of interest) çözünürlüğü değiştirilebilir, 

böylece arama hızı ve başarımı artırılabilir, 9) probleme bağlı olarak ÇAGA 

yöntemlerinin melezleştirilmesi (hibritleştirilmesi) faydalı olabilir, 10) puan ölçekleme 

ÇAGA yöntemlerinin yakınsama özelliklerini iyileştirebilir.    

 

 

          2.3.1. Klasik Optimizasyon Yöntemlerinden Farkları 

 

          Genetik algoritmaların klasik optimizasyon yöntemlerinden farkları şöyle 

özetlenebilir: 

 

 GA, çözüm uzayında aynı anda geniş bir alanda çok sayıda noktadan 

araştırmaya başlar. Arama uzayında, yerel (local) değil küresel (global) 

arama yaparak sonuca ulaşmaya çalışır. Bir tek noktadan değil, bir grup 

çözüm içinden arama yapar. Aramaya tek bir noktadan değil birçok noktadan 

başlamanın en büyük yararı; yerel en iyiye yakalanma olasılığını ortadan 

kaldırmasıdır. Klasik optimizasyon yöntemleri aramaya tek bir noktadan 

başladıkları için, ilk buldukları yerel en iyi noktasında aramayı sonlandırırlar. 

Dolayısıyla çok amaçlı optimizasyon için uygun değillerdir.  

 GA, arama uzayında bireylerin puan değerlerini bulmak için sadece       

amaç - uygunluk işlevi (objective - fitness function) ister. Böylelikle sonuca 

ulaşmak için türev ve diferansiyel işlemlere gerek duymaz. 

 Bireyleri seçme ve birleştirme aşamalarında belirgin kurallar yerine olasılık 

kurallarını kullanır. Her çalışmada, GA çözüme yakın ama birbirinden farklı 

sonuçlar üretir. 

 Diğer yöntemlerde olduğu gibi doğrudan parametreler üzerinde çalışmaz. 

GA’ lar, optimize edilecek parametreleri kodlar ve parametreler üzerinde 

değil, bu kodlar üzerinde işlem yapar.  

 Genetik algoritma, kör bir arama yöntemidir. GA en iyilemeye çalıştığı 

problemle ilgili herhangi bir bilgiye ihtiyaç duymaz. Sistemin matematik 
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model bilgilerini gerektirmez. Karmaşık matematik hesapları yerine yalnızca 

giriş-çıkış bilgilerine ihtiyaç duyar. 

 Olasılık kurallarına göre çalışırlar. Programın ne kadar iyi çalıştığı önceden  

kesin olarak belirlenemez. Ancak, olasılıkla hesaplanabilir. 

 

 

          2.3.2. Genetik Algoritmaların Temel İşlevleri  

 

          GA’ larda üç temel işlev bulunmaktadır: seçme, çaprazlama ve mutasyon. 

Aşağıda bu işlevler ayrıntılı bir şekilde ele alınmaktadır. Bu işlevler dışında, genetik 

algoritmalarda kullanılan bazı parametreler de vardır. Örneğin topluluk boyutu ya da 

birey sayısı. Bu parametre probleme göre belirlenir ve çok iyi seçilmesi gerekir. 

Parametrelerin çözünürlüğü ya da bit sayısı ise GA’ nın başarımını etkileyen önemli bir 

faktördür. ÇAGA’ larda önemli olan bir faktör ise arşiv ya da ikincil topluluk boyutudur 

ve problem tipine göre iyi ayarlanması gerekmektedir. Tezde kullanılan GA programları 

kullanıcı tarafından girilen maksimum nesil sayısına göre sonlandırılmaktadır.  

 

 

          2.3.2.1. Bireylerin (ya da Çözüm Önerilerinin) Kodlanması 

 

          Genetik algoritmalarda bireylerin kodlanması ikili sayı kodlama, gerçel sayı 

kodlaması veya gray kodlama biçimlerinden birisi ile yapılır. Bu tezde, bireyler ikili 

sayı biçiminde kodlanmıştır. Verilen parametreler gerçel sayı ise, bu durumda gerçel 

sayılar ikili sayılara dönüştürülerek kullanılmıştır.  

 

 

          2.3.2.2. Seçme Mekanizması 

 

          Seçme mekanizması, en basit şekilde, puan değerine bağlı olarak, sonraki 

topluluğun ebeveyn (anne-baba) adayları arasından bazı bireylerin seçilmesi olarak 

tanımlanır. Diğer bir deyişle, bir ebeveyn topluluğu bir seçme mekanizması tarafından 

seçilir. Böylece, hangi bireylerin çaprazlama ve mutasyon işlevlerine uğrayacağı 

belirlenmektedir. Burada sık kullanılan üç seçme mekanizmasından bahsedilecektir: 
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Rulet çarkı seçimi (Roulette Wheel Selection, RWS), stokastik evrensel örnekleme 

(Stochastic Universal Sampling, SUS) ve turnuva seçimi (Tournament Selection, TS). 

Bu yöntemlerden RWS ve SUS puan orantılı seçme mekanizmalarıdır. 

 

          Rulet Çarkı Seçimi (RWS): Bu yöntem, puan orantılı bir seçme mekanizmasıdır 

ve puan değerlerine bağlı olasılık dağılımına göre ebeveyn topluluğunu seçmektedir. 

Rulet çarkı, aşağıda belirtilen adımlar kullanılarak uygulanabilir (burada tek amaçlı GA 

için uygulanma biçimi verilmektedir, ÇAGA’ larda bir bireyin puanına göre seçilme 

olasılığı değişmektedir): 

 

Adım 1. Her birey için puan değerleri (puan(i)) hesaplanır (i=1,2,…,N). Burada N 

topluluk boyutu ya da birey sayısıdır.  

 

Adım 2. Her bireyin puan değerleri birbirine eklenerek topluluğun toplam puanı (TP) 

hesaplanır: 

 

                        (2.8)  
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ipuanTP

1
)(

Adım 3. Her birey için, seçilme olasılığı ( ) hesaplanır: pi

 

    
TP

ipuanp i
)(

=           (2.9)   

  

Adım 4. Her birey için, toplam (kümülatif) olasılık ( ) hesaplanır: qi

 

            (2.10)  

   

∑
=

=
k

j
ji pq

1

Seçme işlemi rulet çarkının N kez dönderilmesiyle başlar; her seferinde aşağıda 

belirtilen şekilde tek bir birey yeni topluluk için seçilir. 
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Adım 5.  [0,1] aralığında rasgele bir r sayısı oluşturulur (rulet bir kez dönüyor).  

 

Adım 6. Eğer  qr 1≤ , o zaman ilk bireyi seç ( ); aksi takdirde k. birey v1 )2( Nkvk ≤≤  

 ile seçilir. qrq kk <<−1

 

5. ve 6. adım, yeni topluluğu oluşturmak için N kez tekrarlanır. RWS büyük bir 

seçme hatasının oluşmasına müsade etmektedir. Bu yöntemde, aynı bireyin N kez 

seçilebilme olasılığı vardır. RWS’ nin gösterilimi (dört bireylik topluluk için)          

Şekil 2.7a’ da verilmektedir.  

 

          Stokastik Evrensel Örnekleme (SUS): Rulet çarkının aksine SUS’ ta tek bir 

çark dönüşü kullanır. RWS’ deki Adım 1-4 arası ve Adım 6 aynen kullanılır. Asıl fark 

5. adımdadır. Çark, bir rulet çarkı gibi oluşturulur ve topluluk boyutuna eşit sayıda 

işaretçi ile döner. Çarkın bir kez dönüşü seçilen bireyleri belirler. Şekil 2.7b, SUS 

seçme mekanizmasını (dört bireylik topluluk için) göstermektedir. RWS’ deki aynı 

bireyi N defa seçme olasılığından kurtulmak için, SUS kullanılır. Kaç birey üretilmek 

isteniyorsa o kadar ok (işaretçi) yerleştirilir ve bir seferde o kadar birey seçilir. Burada 

oklar arasındaki mesafe eşit olmalıdır. Örneğin 10 bireyden 8 tanesi seçilmek 

isteniyorsa, aralık 8 eşit parçaya bölünür ve 8 kez rasgele sayı üretilir. SUS, genetik 

algoritmalarda en çok kullanılan seçme mekanizmasıdır. 

 

 

 

 

 

 

 

 

 

 
    

             (a)          (b)  

Şekil 2.7.  (a) Rulet çarkı seçimi (RWS),  (b) Stokastik evrensel örnekleme (SUS) 

q1  

q2  
q3  

q4  

×4  

q1  

q2  
q3  

×1  

q4  
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          Turnuva Seçimi (TS): En çok kullanılan seçme mekanizmalarından birisi de 

turnuva seçimidir. Turnuva seçiminde, birkaç adet birey o anki topluluktan rasgele 

seçilir ve bu bireylerden en iyisi (probleme göre en düşük puanlı ya da en yüksek 

puanlı) yeni toplulukta yerini alır. Turnuvanın boyutu ayarlanarak, seçilme baskısının 

miktarı kontrol edilebilir ve böylece yakınsama hızı ayarlanabilir. Turnuva seçimi, 

temel olarak her seferinde yalnız bir kazanan olacağını varsayar. Seçme işlemi, gelecek 

topluluğun tamamlanmasına yetecek kadar sık tekrarlanır. Eğer turnuva seçimli basit bir 

GA düşünüyorsanız ve turnuvanın boyutu bireylerin sayısına eşitse, o zaman seçilen 

birey o anki topluluktaki en iyi birey olacaktır. Örneğin, 100 bireyden 10 tanesi 

seçilecekse, rasgele olarak bir grup birey seçilir (10 tane), bunlar bir torbaya konulur, bu 

10 tane birey içinden en iyisi alınır ve 1. sıraya konulur. Daha sonra ikinci bir 10 birey 

seçilir ve bunun en iyisi de 2. sıraya konulur, bu işlem böyle devam eder. Oluşturulacak 

birey sayısı kadar torba olur. Ancak torbadaki birey sayısı değişebilir. Daha çok 

bireyden en iyisini seçmek en uygun olanıdır. Turnuva seçimi puan orantılı bir seçilme 

olasılığı kullanmaz, sadece o anda torbada bulunan en iyi birey seçilir. Şekil 2.8’ de, 10 

bireylik bir topluluktaki bireylerin puanları (bir en küçükleme probleminde) ve bu 

bireyler arasından ikili TS kullanılarak yapılan bir seçme işlemine ilişkin örnek 

verilmektedir. 

 

 

 

 

 

 

 

 

 

Puan (1) = 0.46 
Puan (2) = 0.33 
Puan (3) = 0.91 
Puan (4) = 0.72 

 
Şekil 2.8. İkili turnuva seçimi örneği (en küçükleme problemi) 

 

 

 

 

Puan (5) = 0.25 
Puan (6) = 0.09 
Puan (7) = 0.42 
Puan (8) = 0.58 
Puan (9) = 0.61 
Puan (10) = 0.05 

Rasgele 2 
birey seçilir 

En iyi birey 
kazanır 

Puan(4) = 0.72
Puan(7) = 0.42

Puan(7) = 0.42
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          2.3.2.3. Çaprazlama İşlevi  

  

          Çaprazlama işlevi, ebeveyn (eşleşme) havuzundan seçilen (seçme mekanizması 

kullanılarak) bireylerden yeni bireyler (çözümler) üretilmesi için kullanılır. Literatürde 

bir çok çaprazlama işlevi önerilmiştir, ancak hemen hemen tüm çaprazlama işlevlerinde, 

ebeveyn havuzundan rasgele seçilen iki birey, ikili kodları bir noktadan kesilerek 

bölümlere ayrılır ve bu iki bireyin kodları karşılıklı olarak yer değiştirilerek iki yeni 

birey elde edilir. Çaprazlama işlemi tek noktadan, daha fazla noktadan, düzgün (uniform) 

veya karışık (shuffled) yapılabilir. Tek noktalı çaprazlamada bireyler rasgele seçilmiş 

bir noktadan ikiye ayrılır ve karşılıklı ikili kodlar yer değiştirilir. Bu tezde tek-noktalı 

çaprazlama işlemi kullanılmıştır. Tek noktalı çaprazlama işlemine ilişkin bir örnek  

Şekil 2.9’ da verilmektedir. 

 
 Çaprazlama Noktası 

 

 

 

 

 

   

 

 

Şekil 2.9. Tek noktalı çaprazlama örneği 

 

          Çaprazlama işlemi sonrasında elde edilen bireylerin çaprazlamaya uğrayan 

bireylerden daha iyi olmaları beklenmektedir, ancak bu her zaman mümkün değildir. 

Yani ebeveynlere kendilerinden daha iyi bireyler üretebilme şansı verilmektedir, ancak 

bu her zaman mümkün değildir. Eğer kötü bireyler üretilirse, bunlar zaten büyük 

olasılıkla bir sonraki GA adımında eleneceklerdir. Eğer çaprazlamaya uğrayacak 

bireylerin ikili kodları birbirine çok benzerse, çaprazlamadan sonra elde edilen bireyler 

de birbirine çok benzeyecektir, bu da topluluktaki çeşitliliği azaltacaktır. İkili kodları 

birbirinden farklı bireylerin çaprazlaması daha iyi sonuçlar verebilir. Usta ve ark., 

birbirine benzemeyen ikili gövdelere sahip ebeveyn bireylerin, birbirinden daha farklı 

1. Ebeveyn : 

beveyn : 

Çocuk     : 

Çocuk     : 

0  1  0  1  1  1  0  1  0  1  1  0

Çaprazlama Noktası 

1 1 0 0 1 1  0  1  0  0  1  0

1 1 0 0 1 1 

0  1  0  0  1  0

2. E

 0  1  0  1  1  0

0  1  0  1  1  1  

1. 

2. 
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(çeşitlilik açısından) bireyler oluşturduğunu ve benzer olanlardan daha iyi sonuçlar 

ürettiğini belirlemişlerdir [Usta ve ark., 2008]. Çok amaçlı durum söz konusu 

olduğunda, aynı Pareto cephesinde yer alan ve aralarındaki mesafe (Öklit mesafesi) en 

büyük olan yani birbirine benzemeyen iki bireyden, çeşitliliği daha yüksek olan bireyler 

elde edilmiştir [Usta ve ark., 2008].  Eğer çaprazlamayla bireyler arasındaki benzerlik 

değiştirilemezse devreye mutasyon işlevi girecektir. Eğer çaprazlama olasılığı pc=1 

(%100) seçilirse, bu muhtemelen tüm bireylerin çaprazlamaya uğrayacağını 

göstermektedir. Çaprazlama işlevi birden çok noktadan da uygulanabilir. Aşağıda çok-

noktalı bir çaprazlama örneği verilmektedir.  

 

 
Çaprazlama Noktaları 

 

 

 

 

 

 

 

 
    

Şekil 2.10. Çok noktalı çaprazlama örneği 
 

 

          2.3.2.4. Mutasyon İşlevi  

 

          Mutasyon işlevi de çaprazlama işlevi gibi genetik algoritmanın arama yönünden 

sorumludur. Bit-tabanlı mutasyon ile, pm
 mutasyon olasılığına bağlı olarak bireyin ikili 

kodundaki rasgele bir bit 0 ise 1, 1 ise 0 yapılır. Eğer rasgele seçilmiş sayı, mutasyon 

olasılığından düşük ise o takdirde mutasyon işlemi uygulanır. Mutasyon işlevi bir 

topluluğun çeşitliliğinin sağlanması için gereklidir. Çalışmalar mutasyon olasılığının 

düşük seçilmesi gerektiğini göstermiştir. Mutasyon olasılığının yüksek seçilmesi 

çeşitliliği azaltmakta yani farklı bireylerin elde edilebilme olasılığını azaltmaktadır. 

Genellikle mutasyon olasılığı 1/ikili_dizi_boyutu olarak seçilir. Örneğin, 10 bit 

uzunluklu 20 bireylik bir topluluk için, mutasyon olasılığı 0.01 (%1) seçilirse, bunun 

1. Ebeveyn : 

2. Ebeveyn : 

1. Çocuk     : 

2. Çocuk     : 

0  1  0  1  1  1  0  1  0  1  1  0

Çaprazlama Noktaları 

1 1 0 0 1  1  0  1  0  0  1 1

1 1 0  1  0  0  1

0 0 1  1  1

0  1  1  1  0

0  1   0  1  0  1  1 
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anlamı en azından iki bitin mutasyona uğrayacağıdır. Şekil 2.11’ de mutasyon işlevinin 

nasıl bir değişikliğe yol açtığı gösterilmektedir.   
 

 

 

 

 

 

 
 

Şekil 2.11. Bit-tabanlı mutasyon örneği 

 

          Mutasyon işlevi ile toplulukta birbirinin aynı bireylerin olması engellenebilir. 

Ayrıca mutasyona uğratılan bireyden daha iyi puan değerine sahip bir birey elde 

edilmesi de beklenmektedir. Literatürde birçok mutasyon çeşiti vardır. Bu tezde ise bit-

tabanlı mutasyon işlevi kullanılmıştır. Ayrıca, bireyler ikili kodlama yerine gerçel 

sayılarla da kodlanabilir ve gerçek sayılarla kodlanmış GA’ larda da birçok farklı 

mutasyon işlevi söz konusudur (Deb, 2001). 

 

 

          2.3.2.5. Elitizm (Bellek) Mekanizması  

 

          Elit birey, bir toplulukta puanı en iyi olan birey demektir. Elitizm ya da en iyi 

birey/bireylerin saklanması ve bir sonraki topluluğa eklenmesinin GA’ nın başarımını 

önemli ölçüde etkilediği görülmüştür [Zitzler, 1999a]. Ancak elitizmin dikkatli bir 

biçimde uygulanması gerekir. Eğer elitizm kontrollü bir biçimde uygulanmazsa 

çeşitlilik kaybı söz konusu olabilir. Tek amaçlı GA’ larda yalnızca bir tek en iyi birey 

olduğu için elitizmin uygulanması kolaydır. Bu durumda elit birey saklandıktan sonra, 

bir sonraki adımda ya en kötü bireyle yer değiştirilmekte ya da basitçe topluluğun en 

sonundaki bireyle yer değiştirilmektedir. Ancak çok amaçlı GA’ larda tek bir en iyi 

birey yerine en iyi bireylerden oluşan bir küme söz konusudur. Bu durumda elitizmin 

uygulanması tek amaçlı durumda olduğu gibi kolay ve tek bir biçimde değildir. ÇAGA’ 

larda elit bireyler arşiv veya ikincil topluluk denilen bir kümede saklanmakta ve ÇAGA 

yöntemlerine göre farklılaşan stratejilerle bir sonraki topluluğa aktarılmaktadırlar.  

Mutasyondan 
Önce 

Mutasyondan 
Sonra 

Mutasyona Uğrayacak Bit 

0  1  1  0  1  0  1  1  1  0  1  0  1 

Mutasyona Uğrayacak Bit 

10  1  1  0  1    1  1  1  0  1  0  1 
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          2.3.3. Tek Amaçlı Genetik Algoritmalar 

 

          Tek amaçlı genetik algoritmalar tek amaçlı optimizasyon problemlerini kolaylıkla 

çözebilecek bir yapıya sahiptirler. Tek amaçlı genetik algoritmaların dolayısıyla       

GA’ ların nasıl çalıştığını daha iyi anlatmak için, bu bölümde tek amaçlı ancak iki 

parametreli bir problem ayrıntılı olarak GA yardımıyla çözülmektedir [Michalewicz, 

1994; Gen ve ark., 1997]. Daha sonra bu problem çeşitli GA parametreleri ile 

çalıştırılarak çözümler sunulmaktadır. Parametreler ikili sayı olarak kodlanmışlardır. 

Kısıtlamasız bir problem (Rastrigin işlevi) analitik olarak aşağıdaki gibi verilmektedir: 

 

          min     (2.10)

  

5)10)2cos(10()10)2cos(10(),( 2
2
21

2
121 ++−++−= xxxxxxf ππ

          Burada f amaç işlevinin minimumu (tek amaç), genetik algoritma kullanılarak 

bulunmak istenmektedir. f amaç işlevi iki parametreye bağlıdır (x1 ve x2). Amaç 

işlevinin grafiği Şekil 2.12’ de gösterilmektedir. 
                             

             

f(
x 1

,x
2)

 

x2 x1 

 

Şekil 2.12. Amaç işlevi örneği (Rastrigin işlevi) 
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          Şekle bakılırsa veya amaç işlevi analitik olarak çözülürse, bu işlevin minimum 

değerinin 5 olduğunu görülür. Buna göre, tek amaçlı genetik algoritmanın bir adımının 

nasıl olduğu aşağıda ayrıntılı bir şekilde verilmektedir. 

 

 

          2.3.3.1. Çözüm Adaylarının (Bireylerin) Gösterilimi 

 

          GA’ nın ilk aşaması karar değişkenlerinin ya da parametrelerin ikili sayı dizileri 

şeklinde kodlanmasıdır (gerçel sayı veya gray kodla da kodlama yapılabilir) [Eminoğlu, 

2003]. Eğer bir xj parametresi için istenilen kesinlik değeri biliniyorsa (örneğin 1000), o 

zaman gerekli bit sayısı (mj olarak gösterelim) şöyle hesaplanabilir: 

 

1210)(12 3 −≤×−<− jj m
jj

m ab         (2.11) 

 

          Burada aj, bj ; xj (x1,x2)’ lerin alt ve üst sınırlarıdır. Böylece 6 bitlik parametre    

26-1=63 aralığa bölünmüş olur. İkili bir sayıyı gerçel sayıya çevirmek için aşağıdaki 

işlem yapılır (xj parametrelerdir): 

 

12
)(

−
−

×+=
jm

jj
jjj

ab
xondalikax         (2.12) 

 

          Sınırlara göre temsil edilen bit sayısı değişmelidir. Sınır büyükse daha fazla bit, 

küçükse daha az bit parametrenin temsili için kullanılır. Bu örnekte her parametre 6 

bitlik ikili sayılar olarak kodlanmıştır. Yalnızca iki parametre olduğu için, bir bireyin 

(ya da çözüm önerisinin) boyutu toplam 12 bit olarak gösterilir:  

 

 

     12  bit

  = [  0     1     0     1     0     1     0     1     1     0     0     0  ] jv

 ( ) 6 bit x2 ( x1 ) 6 bit 
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          x1 ve x2’ nin değerleri aşağıdaki gibidir: 

 

                İkili Sayı                  Ondalık Sayı 

1x  0     1     0     1     0     1  21 

2x  0     1     1     0     0     0  24 

 

          x1 ve x2’ nin gerçek değerleri aşağıdaki gibi hesaplanır: 

 

  3333.3
12

)10(102110 61 −=
−
−−×+−=x     3810.2

12
)10(102410 62 −=

−
−−×+−=x         (2.13) 

 

          Bu hesaplamalar topluluğun geri kalan bireyleri için de aynıdır. Aşağıda basit bir 

GA programının yalnızca bir adımı (iterasyonu) gösterilmektedir. 

 

Adım 1. Başlangıç topluluğu (10 bireyden oluşan) aşağıdaki gibi rasgele oluşturulur:  

 
x1 

 

        = [0     1     0     1     0     1     0     1     1     0     0     0] v1

       = [1     0     0     1     1     1     1     1     0     1     0     1] v2

       = [0     0     0     1     1     0     1     1     1     0     0     1] v3

      = [0     1     1     0     1     1     1     0     0     1     0     0] v4

       = [0     1     0     0     1     1     0     0     1     1     1     1] v5

       = [1     0     1     0     1     1     0     0     0     1     1     1] v6

       = [1     1     0     1     0     0     1     0     0     1     1     1] v7

      = [0     1     1     0     1     1     1     0     1     1     1     1] v8

      = [0     0     0     0     0     0     1     0     1     1     0     0] v9

           v = [1     0     0     0     0     1     1     0     1     1     1     0] 10

x2 
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Adım 2. Başlangıç topluluğundaki bireylerin ondalık değerleri hesaplanır: 
 

== ],[ 211 xxv o [21,   24]      == ],[ 212 xxv o [39,   53]     == ],[ 213 xxv o [6,     57] 

== ],[ 214 xxv o [27,   36]   == ],[ 215 xxv o [19,   15]   == ],[ 216 xxv o [43,     7]        

== ],[ 217 xxv o [52,   39]      == ],[ 218 xxv o [27,   47]     == ],[ 219 xxv o [0,     44]      

== ],[ 2110 xxv o [33,  46]  

 

Adım 3. Başlangıç topluluğundaki tüm parametrelerin gerçek değerleri hesaplanır: 

 

== ],[ 211 xxv [-3.3333,   -2.3810]     == ],[ 212 xxv  [ 2.3810,    6.8254] 

== ],[ 213 xxv [-8.0952,    8.0952]     == ],[ 214 xxv  [-1.4286,    1.4286] 

== ],[ 215 xxv [-3.9683,   -5.2381]     == ],[ 216 xxv  [ 3.6508,   -7.7778] 

== ],[ 217 xxv [6.5079,     2.3810]     == ],[ 218 xxv  [-1.4286,    4.9206] 

== ],[ 219 xxv [-10.0000,  3.9683]     == ],[ 2110 xxv [  0.4762,   4.6032] 

 

Adım 4.  Tüm bireylerin amaç işlevinde aldığı değerler hesaplanır: 

 

=)( 1vf  f (-3.3333,   -2.3810)= 49.1106    =)( 2vf  f ( 2.3810,    6.8254)= 75.0234 

=)( 3vf  f (-8.0952,    8.0952)= 134.541    =)( 4vf  f (-1.4286,    1.4286)= 42.1010 

=)( 5vf  f (-3.9683,   -5.2381)= 52.6357    =)( 6vf  f ( 3.6508,   -7.7778)= 97.9231 

=)( 7vf  f (6.5079,     2.3810)= 85.3403    =)( 8vf  f (-1.4286,    4.9206)= 46.4809 

=)( 9vf  f (-10.000,    3.9683)= 115.9453    =)( 10vf f ( 0.4762,     4.6032)= 59.2756 

 

          Asıl amaç; ’ nin minimumunu ve rasgele oluşturulan başlangıç 

topluluğunun en iyi çözümünü (

),( 21 xxf

1010.42)( 4 =vf ) bulmaktır. İkinci aşama ise, 

bireylerin puanlarının bulunmasıdır. 
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Adım 5. Bireylerin Puanlarının Hesaplanması 

 

          Amaç işlevinin değeri puan değerine dönüştürülür. ’ nin en küçük değeri 

tüm topluluk için en iyi çözümdür. Aslında,  aşağıdaki gibi bir en büyükleme 

problemine dönüştürülebilir (Böylece en yüksek puana sahip birey bulunabilir ve 

bireyler en iyiden en kötüye doğru sıralanabilir, en iyi bireyin puanı yüksek, en kötü 

bireyin puanı ise düşük olacaktır): 

)(vf j

)(vf j

 

K
vf

KjPuan
j

2
1

)(
_ +=             (2.14) 

 

          Burada  ve  seçilmiştir.  sıfıra bölme hatalarından kurtulmak 

için kullanılmıştır.  (her bir bireyin puanı) aşağıdaki gibi hesaplanır: 

( ) 

101 =K 1.02 =K 2K

jPuan _

101 ⋅⋅⋅=j

 

     Puan_1   = 0.2032      Puan_6   = 0.1020 

   Puan_2   = 0.1331    Puan_7   = 0.1170 

   Puan_3   = 0.0743      Puan_8   = 0.2147 

   Puan_4  = 0.2370    Puan_9   = 0.0862 

   Puan_5   = 0.1896    Puan_10 = 0.1684 

 

Adım  6. Puanların Normalize Edilmesi 

 

Mutlak puan değerlerindense (  ) normalize puan değerlerinin 

( ) kullanılması daha uygun olur. Normalize puan değerleri aşağıdaki gibi 

hesaplanır: 

jPuan _

njPuan __

 

jPuanYüksekEn
jPuannjPuan

___
___ =        (2.15) 

 

          Burada En_Yüksek_Puan_ j , Puan_ j  ( 101 ⋅⋅⋅=j ) ‘nin en yüksek değeridir. 

Buna göre bu örneğe ilişkin normalize puanlar şöyledir:  
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            Puan_1_n   = 0.8576   Puan_6_n   = 0.4305 

         Puan_2_n   = 0.5618   Puan_7_n   = 0.4939 

         Puan_3_n   = 0.3134   Puan_8_n   = 0.9060 

         Puan_4_n  = 1.0000   Puan_9_n   = 0.3637 

         Puan_5_n   = 0.8002   Puan_10_n = 0.7107 

        

          Açıkça görülmektedir ki,  bireyi en güçlü,  bireyi ise en zayıf bireydir. 

Bireylerin normalize puan değerleri onların ebeveyn olarak seçilebilme şanslarıyla 

doğrudan ilişkilidir (Bu, rulet çarkı benzeri bir oransal seçim mekanizması kullanıldığı 

sürece geçerlidir). Bir bireyin bağıl olasılığı (ebeveyn olarak seçilmek için) diğer 

bireylerlerle karşılaştırılır, toplam puan değeri burada hayati bir ölçüm sağlar. 

4v 3v

  

Adım 7. Puanların Toplamı 
 

          Puanların toplamı aşağıdaki gibi hesaplanır: 
 

Toplam_puan =  = 6.4378       (2.16) ∑
=

10

1
__

j
njPuan

 

Adım 8. Her Bir Bireyin Seçilme Olasılığı ve Toplam (kümülatif) Olasılığı   

 

          Her bir  (j=1,…,10) bireyi için seçilme olasılığı  aşağıdaki formülle 

hesaplanır: 

jv jp

 

PuanToplam
njPuanp j _

__
=           (2.17) 

 

          Buna göre birey puanları şöyle olur: 
 

                  1332.01 =p 0873.02 =p 0487.03 =p       1553.04 =p         1243.05 =p

                      0669.06 =p 0767.07 =p 1407.08 =p       0565.09 =p         1104.010 =p
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          Her bir birey  (j=1,…,10) için, kümülatif (toplanarak artan) olasılıklar 

 şöyledir:  

jv

∑=
j

jj pq

 

1332.01 =q               2205.02 =q 2692.03 =q       4245.04 =q                                

             

5488.05 =q

6157.06 =q 6924.07 =q 8331.08 =q        8896.09 =q         110 =q

 

          Kümülatif (toplanarak artan) olasılığın kullanılma nedeni; olasılıklar toplamı 1 

olduğu için buna dönüşüm yapılması gerekliliğidir. Yani en büyük olasılık değeri 1 olur. 

Seçme mekanizmasındaki çarktaki dilim ne kadar büyük olursa, üretilen rasgele sayının 

bu dilime düşme olasılığı daha yüksek olacaktır. Böylece seçilme olasılığı da yüksek 

olacaktır. 

 

Adım 9.  Seçme Mekanizması Olarak Rulet Çarkı Yöntemi  

 

          Rulet çarkı 10 kez döndürülür (10 birey olduğu için) ve her seferinde yeni 

topluluk için (ebeveyn topluluğu) tek bir birey seçilir. Rasgele 10 sayı dizisi,  [0,…,1] 

aralığında Çizelge 2.1’ deki gibi oluşturulsun. İlk rasgele sayı , ’ den 

büyük, ’ den küçüktür, bunun anlamı  kromozomu yeni topluluk için seçilmiştir 

demektir. İkinci rasgele sayı 

7413.01 =r 7q

8q 8v

0596.02 =r , ’ den küçüktür, bunun anlamı  

kromozomunun yeni topluluk için seçileceğidir ve bu böyle devam eder. Çizelge 2.1, 

yeni topluluk için seçilen bireyleri göstermektedir.  

1q 1v

          Çark N (birey sayısı ya da topluluk boyutu) defa döndürülürken, 1. dönüşten 

sonra 2., sonra 3. şeklinde dönüş yapılır. Bu yöntemin dezavantajı, aynı bireyi N defa 

seçme olasılığı olmasıdır. Bu da, çaprazlamaya aynı bireylerin girmesine, dolayısıyla da 

aynı bireylerin yeniden oluşturulmasına neden olacaktır ve topluluğun çeşitliliği 

azalacaktır. Çeşitliliğin mümkün olduğu kadar fazla olması gerekir. Çünkü bu 

sağlanmazsa, arama yerel en iyilere takılacaktır, GA’ nın istenilen sonucu (küresel en 

iyiyi) bulması mümkün olmayacaktır.  
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Çizelge 2.1. Rasgele sayılar ve seçilen bireyler 
 

Rasgele Sayı Seçilen Birey Seçilme Nedeni 
7413.01 =r  v8  qrq 817 <<  

0596.02 =r  v1  qr 12 <  

4673.03 =r  v5  qrq 534 <<  

1363.04 =r  v2  qrq 241 <<  

9340.05 =r  v10  qrq 1059 <<  

6286.06 =r  v7  qrq 766 <<  

4983.07 =r  v5  qrq 574 <<  

5760.08 =r  v6  qrq 685 <<  

9933.09 =r  v10  qrq 1099 <<  

0542.010 =r  v1  qr 110 <  

 

Adım10. Yeni topluluğun (veya ebeveyn topluluğunun) gösterilimi  
 

      [0     1     1     0     1     1     1     0     1     1     1     1] ( ) =v '
1 v8

      [0     1     0     1     0     1     0     1     1     0     0     0] ( ) =v '
2 v1

      [0     1     0     0     1     1     0     0     1     1     1     1] (  =v '
3 )5v

      [1     0     0     1     1     1     1     1     0     1     0     1] (  =v '
4 )2v

      [1     0     0     0     0     1     1     0     1     1     1     0] ( ) =v '
5 v10

      [1     1     0     1     0     0     1     0     0     1     1     1] ( ) =v '
6 v7

      [0     1     0     0     1     1     0     0     1     1     1     1] ( ) =v '
7 v5

      [1     0     1     0     1     1     0     0     0     1     1     1] ( ) =v '
8 v6

      [1     0     0     0     0     1     1     0     1     1     1     0] ( ) =v '
9 v10

      [0     1     0     1     0     1     0     1     1     0     0     0] ( ) =v '
10 v1

           

          Yukarıdan da görüleceği üzere en güçlü birey ( ) rulet çarkı mekanizmasıyla 

seçilmemiştir ve oluşan yeni toplulukta 1., 5. ve 10. bireylerden ikişer kez üretilmiştir. 

Bu yüzden, bu topluluktan üretilen bireyler de aynı olacaktır. Bu nedenle genetik 

4v
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işlevlere başvurulur, böylece çeşitlilik sağlanır. En güçlü bireyin seçilmemesi ise, 

elitizmin (en güçlü bireyin saklanması) gerekliliğinin açıklanması için çok yararlı 

olacaktır.  

 

Adım 11. Çaprazlama İşlevi 

 

          Şimdi, ebeveyn topluluğundaki bireyler için çaprazlama işlevi uygulanabilir. 

Çaprazlama olasılığı 1  seçilsin, dolayısıyla topluluktaki tüm bireylerin 

çaprazlamaya uğrayacağını beklenmektedir. Çaprazlama katsayısı 1 seçilmez ise, 

örneğin 0.8, 8 birey çaprazlamaya girecek, topluluğun tamamı için geriye kalan 2 

bireyin saklanması ve işlem sokulması gerekecektir. Burada değişik bir çaprazlama 

yöntemi benimsenmiştir. Rasgele sayılar (

=cp

r ) [0,…,1] aralığında oluşturulmuş ve 

çaprazlama olasılığı ( ) ile karşılaştırılmıştır. Rasgele sayıların oluşturulması ve 

karşılaştırılması bireylerin yarısı için tekrarlanmıştır. Eğer 

cp

cpr <  memnun edici ise, o 

zaman üç rasgele pozitif tamsayı oluşturulur. İlk ikisi, ebeveyn kromozomlarını belirler 

ve sonuncu rasgele tamsayı ise çaprazlama noktasını gösterir. Her ebeveyn, kendi ikili 

biçimini koruyarak iki çocuk / birey oluşturabilir. 

          Çaprazlama sadece iki birey arasında değil, daha fazla birey arasında da olabilir. 

Ayrıca çaprazlama birkaç noktadan da yapılabilir. Burada tek noktalı çaprazlama 

kullanılmıştır. 

 

      Çizelge 2.2. Ebeveyn bireyler, çaprazlama noktası ve çocuk bireyler 

 
1. Ebeveyn 2.Ebeveyn Çaprazlama Noktası Çocuklar 

3 ( ) v '
3 7 ( ) v '

7 8. bitten sonra v ''
1  ve  v ''

2

8 ( ) v '
8 3 ( ) v '

3 2. bitten sonra v ''
3  ve  v ''

4

7 ( ) v '
7 8 ( ) v '

8 6. bitten sonra v ''
5  ve  v ''

6

2 ( ) v '
2 8 ( ) v '

8 5. bitten sonra v ''
7  ve  v ''

8

5 ( ) v '
5 5 ( ) v '

5 7. bitten sonra   ve  v ''
9 v ''

10
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          İkinci ebeveyn çifti  ve  ‘dür ve çaprazlama noktası 2. bitten sonradır. 

Çocuklar çaprazlama sonucu elde edilir (  ve ' ). İlk çocuk ( ), ilk iki bitini 

ikinci ebeveynden ( ' ), diğer bitlerini ise ilk ebeveynden ( ' ) alır. 

'8v '3v

''3v '4v ''3v

3v 8v

 

  

 

      [1     0     1     0     1     1     0     0     0     1     1     1] =v '
8

      [0     1     0     0     1     1     0     0     1     1     1     1] =v '
3

 

       [0    1     1     0     1     1     0     0     0     1     1     1] =v ''
3

Çaprazlama Noktası 
(2. bit) 

 

 

      [1     0     1     0     1     1     0     0     0     1     1     1] =v '
8

      [0     1     0     0     1     1     0     0     1     1     1     1] =v '
3

 

       [1   0     0     0     1     1     0     0     1     1     1     1] =v ''
4

 

          Benzer olarak ikinci çocuk ta ( ' ), ilk iki bitini birinci ebeveynden ( ), diğer 

bitlerini ise ikinci ebeveynden ( ) alır. Benzer olarak, çocukların geri kalanı da 

oluşturulur ve topluluğun şu andaki biçimi (çocuk topluluğu) şöyle olur :  

'4v '8v

'3v

 

        [0     1     0     0     1     1     0     0     1     1     1     1] =v ''
1

        [0     1     0     0     1     1     0     0     1     1     1     1] =v ''
2

        [0     1     1     0     1     1     0     0     0     1     1     1] =v ''
3

        [1     0     0     0     1     1     0     0     1     1     1     1] =v ''
4

        [1     0     1     0     1     1     0     0     1     1     1     1] =v ''
5

        [0     1     0     0     1     1     0     0     0     1     1     1] =v ''
6

        [1     0     1     0     1     1     0     1     1     0     0     0] =v ''
7
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        [0     1     0     1     0     1     0     0     0     1     1     1] =v ''
8

        [1     0     0     0     0     1     1     0     1     1     1     0] =v ''
9

       [1     0     0     0     0     1     1     0     1     1     1     0] =v ''
10

           

          Çaprazlama olasılığı 1 olmasına rağmen (yani tüm bireyler çaprazlamaya 

uğramasına rağmen), hala çocuk topluluğundaki bazı bireyler (1. ile 2. ve 9. ile 10. 

bireyler) aynı bitleri taşımakta ve ebeveyn topluluğundan değişiklik olmadan 

gelmektedir. Bu nedenle, mutasyon işlevinin uygulanması gerekmektedir. Bir sonraki 

aşama, mutasyon işlevinin topluluğu nasıl değiştireceğini göstermektedir. 

 

 Adım 12. Mutasyon İşlevi 

 

          Çeşitliliğin fazla olması istendiğinden, çaprazlamadan sonra mutasyon işlevi 

kullanılır. Mutasyon oranı düşük seçilir ( örneğin %1 gibi). Her adım sonucunda amaca 

ne kadar yaklaşıldığına bakılması gerekir. Çaprazlama ve mutasyon, daha iyi bir çözüm 

elde edileceğini garanti etmez. Mutasyon işlevi, bit bit değişim temeline dayanır. 

Mutasyon, mutasyon oranına eşit bir olasılıkla, bir veya daha fazla geni (biti) değiştirir. 

Çocuk topluluğundaki ikinci bireyin ( ) 11. geninin (bitinin) mutasyon için 

seçildiğini varsayalım. Eğer gen 1 ise 0 olacaktır. Böylece, mutasyondan önce ve sonra 

birey şöyle olacaktır: 

''2v

 

=v ''
2  [0     1     0     0     1     1     0     0     1     1     1     1] (mutasyondan önce) 

=v ''
2  [0     1     0     0     1     1     0     0     1     1     0     1] (mutasyondan sonra) 

 

          Mutasyon olasılığı 1  (bu kasten böyle yüksek bir değer seçilmiştir) ise, 

buradan bitlerin %10’ unun mutasyona uğrayabileceği anlaşılmaktadır. Çocuk 

topluluğunda 120 bit vardır (12 bit x 10 birey, bu yüzden topluluk başına 12 bitin 

mutasyona uğrayacağı beklenmektedir). Her bit mutasyona uğramak için aynı şansa 

sahiptir. Bu yüzden [0,..,1] aralığında değişecek bir rasgele sayılar dizisi  (j=1,…,120) 

oluşturulması gerekmektedir. Kaç bit varsa o kadar rasgele sayı üretilir. Eğer mutasyon 

.0=mp

jr
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olasılığı j. rasgele sayıdan daha büyükse ( ), j. bit mutasyona uğrayacaktır.  

Çocuk topluluğunun mutasyona uğramış biçimi aşağıdaki gibidir: 

jm rp >

 

        [0     1     0     0     1     1     0     0     1     1     1     1] =v ''
1

       [0     1     0     0     1     1     0     0     1     1     0     1] =v ''
2

        [0     1     1     0     1     1     1     0     0     1     1     1] =v ''
3

       [1     0     0     0     1     1     0     0     1     1     1     0] =v ''
4

        [1     0     1     0     1     1     0     1     1     0     1     0] =v ''
5

        [0     1     0     1     1     1     0     0     0     1     1     0] =v ''
6

        [1     0     1     1     1     1     1     1     1     0     0     0] =v ''
7

        [0     1     0     1     0     0     0     0     0     1     0     0] =v ''
8

        [1     0     0     0     0     1     1     0     0     1     1     0] =v ''
9

       [1     0     1     0     0     1     1     1     1     1     1     1] =v ''
10

 

          Koyu renk bitler mutasyona uğramıştır. 120 bitten 14 tanesi mutasyona uğramıştır. 

Bu %10 olarak beklenen mutasyondan fazladır. Toplam 10 bireyden 9 tanesi mutasyona 

uğramıştır. Bazı bireylerde yalnızca bir bit, bazılarında ise iki veya üç bit mutasyona 

uğramıştır. Dikkat edilirse topluluğun mutasyona uğramış biçiminde aynı bireylerin 

artık olmadığı kolayca anlaşılır. Her birey diğerinden farklıdır, böylece çeşitlilik 

sağlanmıştır.  

 

Adım 13. Elitizm veya Bellek Mekanizması (En İyi Bireyin Saklanması) 

 

          Rasgele oluşturulan birinci topluluktaki en güçlü bireyin ( ), ebeveyn olarak 

seçilmediği görülmektedir. Bu, büyük olasılıkla, rulet çarkı seçme mekanizmasının 

olasılık tabanlı örnekleme hatasına bağlıdır. Diğer bir deyişle, buradaki seçme 

algoritması, tüm durumlarda en güçlü bireyin ebeveyn olarak seçilmesini garanti 

etmemektedir. Bir ebeveyn olarak seçilse bile, onun çocuğunun kendisinden daha güçlü 

olacağının garantisi yoktur. Bu yüzden, topluluktaki her en iyi bireyi ayrı bir yerde 

4v
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saklamak gereklidir. Bellek olması, en iyilerin saklanması içindir. Genetik algoritmalar 

belleksizdir, bu yüzden bellek eklenmesi gerekir. Elitizmin, GA’ nın başarımına etkisi 

çok yüksektir ve  bu yüzden GA’ nın doğal bir parçası olması gerekir. İlk topluluktaki 

en güçlü birey ( ), basitçe mutasyona uğramış topluluktaki sonuncu bireyle ( ) yer 

değiştirilir. Aslında bunun en kötü bireyle yer değiştirilmesi daha iyi olur ancak bu 

algoritmaya ekstra bir yük getirmektedir. Topluluğun şimdiki durumu şöyledir: 

4v ''
10v

 

        [0     1     0     0     1     1     0     0     1     1     1     1] =v ''
1

       [0     1     0     0     1     1     0     0     1     1     0     1] =v ''
2

    [0     1     1     0     1     1     1     0     0     1     1     1] =v ''
3

     [1     0     0     0     1     1     0     0     1     1     1     0] =v ''
4

  [1     0     1     0     1     1     0     1     1     0     1     0] =v ''
5

  [0     1     0     1     1     1     0     0     0     1     1     0] =v ''
6

  [1     0     1     1     1     1     1     1     1     0     0     0] =v ''
7

  [0     1     0     1     0     0     0     0     0     1     0     0] =v ''
8

  [1     0     0     0     0     1     1     0     0     1     1     0] =v ''
9

  [0     1     1     0     1     1     1     0     0     1     0     0] ( ) =v ''
10 4v

 

          Üstteki topluluk dekodlanır ve her bireyin gerçek değeri aşağıdaki gibi hesaplanır: 

 

  = f (-3.9683, -5.2381) = 52.6357         = f (-3.9683, -5.8730) =  53.4553 )( ''
1vf )( ''

2vf

  = f (-1.4286,  2.3810) =  44.0500          = f (1.1111,  -5.5556)  =  53.8352 )( ''
3vf )( ''

4vf

  = f (3.6508,  -1.7460) =  42.4637         = f (-2.6984,  -8.0952) =  87.7368 )( ''
5vf )( ''

6vf

  = f (4.9206,  7.7778) =  94.1878         = f (-3.6508, -8.7302) =  116.6248 )( ''
7vf )( ''

8vf

  = f (0.4762,  2.0635) =  25.1583        = f (-1.4286,  1.4286) =  42.1010 )( ''
9vf )( ''

10vf
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          Hedef,  işlevinin minimumunu bulmaktır. Yeni en güçlü birey ( ), ilk 

elit (en iyi) bireyden ( ) daha iyidir. Bu topluluğun en zayıf bireyi de ( ), ilk 

topluluktaki en zayıf bireyden ( ) daha iyidir. 

),( 21 xxf ''
9v

''
104 vv = ''

8v

3v

          Burada genetik algoritmanın bir adımı tamamlanmıştır. Girilen adım sayısına 

göre program adımları çalıştırılacak ve yeni topluluklar elde edilecektir. Her bir 

adımdan sonra daha iyi bireyler elde edildiği için belli bir adım (nesil) sayısı veya 

sonlandırma kriterine göre istenilen sonuca ulaşılacaktır. 

          Aşağıda birkaç adet örnekle tek amaçlı genetik algoritmanın başarımı 

incelenmektedir.  

 

Örnek-1: GA parametreleri şöyle seçilmiştir; (elitizm var, SUS seçme mekanizması) 

 

     Birey Sayısı  : 20 

     Toplam Bit Sayısı : 10 

                 Çaprazlama Olasılığı : 1 

       Mutasyon Olasılığı : 0.1    

      Adım (Nesil) Sayısı : 100  

     

 
 

Şekil 2.13. Tek amaçlı GA uygulaması  (Örnek-1) 
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          Görüleceği üzere GA, 11. adımdan sonra 7.2824 değerine takılmış ve sonucu 

bulamamıştır. Bunun nedeni çözünürlük yani bit sayısının az seçilmesidir. Eğer bu 

değer artırılırsa GA’ nın çözüme daha çabuk ve kesin olarak yaklaşacağı 

beklenmektedir. 

 

Örnek-2:  Bu örnek için GA parametreleri şöyle seçilmiştir; (elitizm var, SUS seçme 

mekanizması) 

 

 Birey Sayısı  : 20 

     Toplam Bit Sayısı : 20 

                 Çaprazlama Olasılığı : 1 

       Mutasyon Olasılığı : 0.1    

      Adım (Nesil) Sayısı : 100  

 

          Bu örnekte GA, 21. adımda en küçük sonuca ulaşmıştır. Burada elde edilen sonuç 

5.0379’ dur. Toplulukta yer alan bireylerin sayısı veya bit sayısı artırıldığında, GA’ nın 

çözüme daha da çabuk yaklaştığı görülmektedir. Bu değerler çok artırılırsa GA’ nın 

çalışma süresi de önemli ölçüde artacaktır. 

 

 

 
Şekil 2.14. Tek amaçlı GA uygulaması (Örnek-2) 
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Örnek-3:  Bu örnek için GA parametreleri şöyle seçilmiştir; (elitizm var, SUS seçme 

mekanizması) 

 

     Birey Sayısı  : 100 

     Toplam Bit Sayısı  : 30 

                Çaprazlama Olasılığı : 1 

      Mutasyon Olasılığı : 0.1  

        Adım (Nesil) Sayısı : 100  

 

 

 
Şekil 2.15. Tek amaçlı GA uygulaması (Örnek-3) 

 

          Şekil 2.15’ den görüleceği üzere, GA 38. adımda sonuca ulaşmıştır. Bu durumda 

GA tarafından elde edilen en küçük sonuç 5.0000369’ tur. GA, bu örneklerde belirli bir 

adıma göre sonlandırılmıştır. Sonlandırma için istenilen en küçük yaklaşım (hata) da 

kullanılabilir. 

 

Örnek-4: Bu örnek için GA parametreleri şöyle seçilmiştir; (elitizm yok, SUS seçme 

mekanizması) 

  

                Birey Sayısı  : 100 

     Toplam Bit Sayısı  : 30 
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                Çaprazlama Olasılığı : 1 

      Mutasyon Olasılığı : 0.1  

        Adım (Nesil) Sayısı : 100  

 

 
 

Şekil 2.16. Tek amaçlı GA uygulaması (Örnek-4) 

 

          Genetik algoritmalarda elitizm mekanizması çok önemlidir, çünkü her adımda 

bulunan elit bireyin saklanması ve bir sonraki adıma (topluluğa) aktarılması GA’ nın 

başarımını etkilemektedir. Yukarıdaki örnekte, elitizm yoktur ve en iyi birey 

saklanmadığı için istenilen sonuca ulaşılsa bile bu sonuç bir diğer adımda 

kaybedilmektedir. 

 

Örnek-5: GA esasen kılavuzlanmış bir rasgele sayı üretme tekniğidir. GA’ nın rasgele 

sayı üretmeden farkını göstermek için, rasgele sayı üretimi ile ilgili bir program 

yazılmış ve bu program aşağıdaki parametrelerle çalıştırılmıştır.  

 

         Birey Sayısı  : 20 

     Toplam Bit Sayısı  : 50 

     Adım Sayısı             : 10000 
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Şekil 2.17. Rasgele sayı üretme (Örnek-5) 

 

          Şekilden de görüleceği üzere rasgele sayı üretme algoritması yaklaşık 4800. 

adımda 5.07709 sonucuna ancak ulaşabilmiştir. Rasgele sayı üretimi ile yapılan 

optimizasyonda ancak çok ileri adımlarda sonuca ulaşılabilmektedir. Bu da GA’ nın 

rasgele sayı üretmeden farkını göstermektedir. GA esasen kılavuzlanmış bir rasgele sayı 

üretme tekniğidir. GA, sonuca rasgele sayı üretiminden daha kısa sürede ve daha iyi 

yaklaşmaktadır. 

 

 

          2.3.4. Çok Modluluk ve Çeşitlilik Artırıcı Yöntemler 

 

          Birbiriyle aynı olan bireylerin üretilmesi GA’ nın sonuca ulaşmasını engeller. 

Bunun için GA’ larda çeşitliliğin fazla olması gerekmektedir. Çeşitlilik fazla olmazsa 

GA yerel en iyilere takılacak ve küresel ya da genel en iyiyi bulamayacaktır. Çok modlu 

işlevlerde genel bir en iyinin yanında birden çok yerel en iyi değeri de bulunmaktadır. 

Çok modluluk, GA’ nın çeşitliliğini test etmekte kullanılır. Normalde GA, bu yerel en 

iyilere takılarak küresel en iyiyi bulamayabilir. Yani sonuçlar yerel en iyiler civarında 

toplanabilir. Bu durum genetik sürüklenme olarak adlandırılır. Bu yüzden GA’ da 

çeşitliliği artırıcı yöntemlere başvurulması gerekmektedir. Aşağıda çeşitlilik artırıcı bazı 

yöntemler açıklanmakta ve bunlara ilişkin uygulama örnekleri verilmektedir. 
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          2.3.4.1. Paylaşım (Sharing) Yöntemi 

 

          Paylaşım yönteminde, bir bireyin puanı eğer etrafında benzer komşu bireyler 

varsa, cezalandırılır (yani azaltılır veya artırılır) [Goldberg ve Richardson, 1987]. Bu 

yüzden, kalabalık bir bölgede yer alan bir birey, en yüksek cezayı alacaktır ve daha az 

birey oluşturacaktır. Yani, kalabalık yerde olan bireyin puanı (amaç işlevinde aldığı 

değer) yarıçapa (niche) bağlı olarak azaltılacaktır. Paylaşım yöntemi, topluluğun 

yoğunluğuna bakarak, arama bölgesini değiştirir. Tipik olarak, bir i bireyinin  

paylaşılmış puanı, onun ilk puanı ’ nin yarıçap sayısına bölümüyle bulunur. Bir 

bireyin yarıçap sayısı, onun topluluktaki diğer bireyler arasındaki (kendisi de dahil) 

paylaşım işlevi değerlerinin toplamına eşittir.  
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∑
= N

j

i
si

jidsh

f
f

)),((
            (2.18)

       

          Burada N topluluk boyutunu gösterir.   i. ve j. bireyler arasındaki Öklit 

mesafesidir ve amaç uzayında şöyle hesaplanır (m: amaç sayısıdır): 
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           sırasıyla k. amaç için en büyük ve en küçük işlev değerleridir.          

Paylaşım işlevi, iki birey arasındaki benzerlik seviyesini ölçer. Elemanlar aynı ise 1 

olarak döner, eğer mesafeleri  farklılık eşiğinden yüksekse 0 olarak döner, orta 

değerler ise farklılığın orta seviyelerindedir. Yaygın bir paylaşım işlevi aşağıdaki gibidir:  
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{ ,0)( =dsh         diğer durumlarda,     
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          Burada farklılığın eşiği σ s  gibi bir sabittir ve α  ise paylaşım işlevini biçimini 

değiştiren bir sabittir (genelde 1 seçilir). Bu hesaplamalara göre, kalabalık bir bölgede 

yer alan bir bireyin puanı azaltılarak başka bir bölgeye kayması sağlanır. Çok modlu bir 

işlev ve bu işleve paylaşım yöntemi uygulanmasıyla elde edilen sonuçlar Şekil 2.18’ de 

gösterilmektedir. 

 

 
 

Şekil 2.18.  Yedi adet RBF işlevi ile oluşturulan çok modlu bir amaç işlevinin 
                             paylaşım yöntemi ile en iyi değerinin bulunması 
 

 

          2.3.4.2. Ayıklama (Clearing) Yöntemi 

 

          Ayıklama yöntemi, paylaşım yönteminin doğal bir uzantısıdır (Petrowski, 1996). 

Cezalandırma yoktur ve bireylerden biri saklanıp, diğerleri yok edilmektedir. Yani, 

yarıçap içerisindeki bireylerden en iyileri tutulur, diğerlerini ise ortadan kaldırılır. 

Böylece yarıçap, seçilen bireyler tarafından temsil edilir. Burada, toplam birey sayısı 

değişmemektedir, bunu sağlamak için çıkan bireylerin yerine yeni bireyler eklenir. 
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Amaç; bireyleri düzgün olarak dağıtmaktır. Paylaşım yönteminde olduğu gibi,  

ayıklama yöntemi de bireylerin puanı bulunduktan sonra ve seçme işlemi 

uygulanmadan önce uygulanır. En basit ayıklama yöntemi, aynı alt topluluktaki diğer 

tüm bireylerin puanı sıfırlanırken, en iyi bireyin(lerin) puanını saklamaktır. Puan 

paylaşımında olduğu gibi, tek bir alt topluluktaki tüm bireylere kaynakları paylaştırmak 

yerine, ayıklama yöntemi alt topluluktaki yalnızca en iyi bireylere dağıtım yapar. 

Pratikte, bir yarıçapın k kapasitesi, yarıçapın kabul edebileceği en yüksek eleman 

sayısını belirler. Ayıklama yöntemi, yarıçapın ve yarıçap kapasitesinin en doğru 

hesaplanmasını sağlayan en iyi yöntemdir. Bununla birlikte, ayıklama ve paylaşım 

yöntemlerinin her ikisi de çok iyi tahmin edilmesi gereken bir yarıçap bilgisi kullanırlar. 

Her alt topluluk baskın bir bireye sahiptir ve yarıçap, en yakın iki baskın birey 

arasındaki mesafenin yarısından daha küçük olmalıdır. Aksi takdirde, bir tepe kuralı için 

(k=1 için) bir birey atılır ve baskın bir birey için birkaç tepeli gösterim yetersiz olacaktır. 

2-boyutlu bir problemde yarıçapın belirlenmesi nispeten kolaydır, ancak boyutlar 

arttığında bu yarıçapın belirlenmesi bir sorun teşkil edecektir. Bu parametre dışarıdan 

girilmesi gereken bir parametredir.  

          Şunu belirtmek gerekir ki, her birey için ayrı ayrı yarıçap belirlenir ve her bireyin 

merkezde olduğu bir çember vardır ve bu işlem her bir birey için yalnızca bir kez 

yapılmaktadır. Bu işlemler birinci puanlamadan sonra (amaç işlevine yerleştirme 

işleminden sonra) yapılır. Daha sonra bu yöntemlere göre ikinci bir puanlama yapılır. 

Yarıçapın belirlenmesinde alan daraltılarak şüphelerin ortadan kaldırılması gerekir. Tabi 

ki bunun için öncelikle ilk yarıçap tahmininin yapılması gerekir. Bunun GA’ ya 

getirdiği dezavantaj ise ikincil puanlamadan dolayı bir işlem yüküdür. Burada göz 

önünde bulundurulması gereken diğer bir husus ta, elitizm mekanizmasının 

değiştirilmesi gerekliliğidir. Çünkü yarıçap küçüldükçe elit birey sayısı da artacaktır. O 

yüzden yarıçapın çok iyi belirlenmesi gerekir. Bu arada, GA’ nın da yerel en iyilere 

takılmaması gerekir. Çok modlu bir işlev ve bu işleve ayıklama yöntemi 

uygulanmasıyla elde edilen sonuçlar Şekil 2.19’ da gösterilmektedir. 
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Şekil 2.19.  Yedi adet RBF işlevi ile oluşturulan çok modlu bir amaç işlevinin 
                            ayıklama yöntemi ile en iyi değerinin bulunması 

 

 

          2.3.4.3. Eşleşme Sınırlaması (Mating Restriction) 

 
          İlk olarak Goldberg tarafından tek amaçlı optimizasyon problemlerinde kötü 

bireylerin azaltılması veya önlenmesi amacıyla kullanılmıştır [Goldberg, 1989]. 

Eşleşme kısıtlaması, GA’ nın başarımının artırılması amacıyla birey çiftlerinin 

çaprazlama işlemi için nasıl seçileceğini belirler. Goldberg eşleşme kriteri olarak, 

yapısal (genotip) benzerlik kullanan bir örnek vermiştir. Deb ve Goldberg ise fenotip 

mesafesini kullanan bir eşleşme kısıtlaması önermişlerdir [Deb ve Goldberg, 1989b]. 

Burada, iki birey ancak birbirlerine çok benziyorlarsa çaprazlamaya gönderilmektedir 

(Hesaplanan bir σeşleşme ölçütünden daha az mesafeye sahip bireyler birbirine çok benzer 

kabul edilmiştir). Böylece birbirinden farklı bireylerin üretilmesi amaçlanmaktadır. 

Birçok ÇAGA yönteminde eşleşme kısıtlaması daha az istenilen bireylerin (örneğin 

Pareto olmayan bireylerin) azaltılması için kullanılmaktadır. Eşleşme kısıtlaması, 

literatürde farklı biçimlerde uygulanmıştır. Örneğin, Lis ve Eiben yalnızca birbirinden 



 55

farklı kodlara sahip bireylerin eşleşmesine izin vermişlerdir [Lis ve Eiben, 1996]. Bazı 

araştırmacılar σeşleşme = σs olarak kullanmışlardır, ancak bunun neden böyle seçildiğine 

dair bir bilgi literatürde bulunmamaktadır [Coello Coello ve ark., 2007]. Buradaki 

önemli bir durum da, σeşleşme katsayısının tahmin edilmesi gerektiğidir. Zitzler ve Thiele 

ise farklı σeşleşme değerlerini kendi oluşturdukları test işlevlerinde kullanmışlar ancak, 

eşleşme kısıtlaması olmayan duruma göre herhangi bir iyileşme görmemişlerdir [Zitzler 

ve Thiele, 1998]. 

 

 

          2.3.5. Çok Amaçlı Genetik Algoritmalar (ÇAGA) 

 

          Mühendislik problemleri optimizasyona gereksinim duyar ve genelde çok 

amaçlıdır. Bu çok amaçlı problemlerin çözülmesi tek amaçlı duruma göre zordur. Bu 

nedenle ÇAGA’ nın birçok bileşeni vardır. Aşağıda bu bileşenler genel olarak 

açıklanmaktadır. Ayrıca ÇAGA’ ların uygulama alanlarına ilişkin bazı örnekler 

verilmektedir. 

 

 

          2.3.5.1. Optimizasyon Parametreleri veya Karar Değişkenleri 

  

          Parametre veya karar vektörü x aşağıdaki gibi verilir:  

   

                                      (2.21)

   

T
Nxxxx ],.....,,[ 21=

          Bu T tranpozu ifade etmekte, N ise parametre sayısını göstermektedir. Her birey 

bu parametrelerin birleşiminden oluşmaktadır. Parametrelerin alt ve üst sınırları 

kullanıcı tarafından çok iyi belirlenmelidir. Eğer parametre sınırları yanlış seçilirse 

arama uzayı genişleyebilir ve arama işlemi uzun sürebilir, ya da istenilen en iyi 

çözüm/çözümlere ulaşılamayabilir. 
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         2.3.5.2. Amaç İşlevi 

 

          Hem doğrusal hem de doğrusal olmayan çok amaçlı optimizasyon problemleri 

için m amaçlı bir amaç işlevi şöyle verilir: 

  

               (2.22) T
m xfxfxfxF )](),....,(),([)( 21=

 

          Her amaç işlevi ya en küçüklenecek ya da en büyüklenecektir. Karar ya da 

parametre uzayına ek olarak, çok amaçlı uzayda bir de amaç uzayı söz konusudur. 

Parametre uzayındaki her x değerine karşılık, amaç uzayında bir nokta bulunur ve bu 

nokta f(x)=z olarak gösterilir. Şekil 2.20, her iki uzayı ve bunlar arasındaki haritalamayı 

göstermektedir.  
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Şekil 2.20. Parametre uzayı ve amaç uzayının kavramsal gösterilimi 

 

          Bu tezde kısıtlamasız, iki amaçlı işlevler kullanılmıştır. Optimizasyon problemleri 

ise en küçükleme (minimizasyon) problemleridir. Parametre sayıları kullanılan test 

işlevlerine göre değişmektedir. 
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          2.3.5.3. Baskınlık Kavramı ve Pareto-Optimalliği 

     

          Bu bölümde çok amaçlı optimizasyonda gerekli olan bazı tanımlar (baskınlık, 

Pareto-optimal, Pareto-optimal cephe) bir en küçükleme problemi için verilmektedir. 

 

Tanım 1 (Baskınlık): Bir karar vektörü (x1), bir başka karar vektörüne (x2) yalnız ve 

yalnız aşağıda verilen durumlar sağlandığında baskın olur (x1 p  x2 olarak gösterilir): 

 
 x1 tüm amaç işlevlerinde x2’ den iyi ise (örneğin )( , 

m  ve 
)( 21 xfxf kk ≤

k ,...,1=∀
 x1 , x2’ den en azından bir amaç işlevinde çok iyi ise (örneğin m : 

)(  
k ,...,1=∃

)( 21 xfxf kk <
 

          Benzer olarak, bir amaç vektörü (f1) bir diğer amaç vektörüne (f2), tüm amaçlarda 

ondan daha iyi ise veya en azından bir amaç işlevinde ondan çok iyi ise baskın olur 

(f1 p  f2). Şekil 2.21’ de, bireyler arasındaki baskınlık ilişkisi gösterilmektedir. Burada 

D, E ve F bireylerinin hepsi G bireyinden baskındır. Çünkü her iki amaçta da ondan 

iyidirler. 

 

Tanım 2 (Pareto-optimal): Bir karar vektöründe (x*) baskın olan başka bir karar 

vektörü yoksa Pareto-optimal olarak adlandırılır. Amaç vektörü (f*(x)) ise, eğer x 

Pareto-optimal ise Pareto-optimaldir.  

          Pareto-optimalliği kavramı, ilk olarak Francis Ysidro Edgeworth tarafınan öne 

sürülen bu kavramı gerçekleştiren ve genelleyen İtalyan matematikçi ve ekonomist 

Vilfredo Pareto’ dan gelmektedir. 

 

Tanım 3 (Pareto-optimal küme): Pareto-optimal karar vektörleri veya Pareto-optimal 

bireylerden oluşan kümedir. P* ile gösterilir. 

 

Tanım 4 (Pareto-optimal cephe): Tüm amaç işlevleri dikkate alındığında, baskın olan 

tüm bireylerden / karar vektörlerinden oluşan cephedir. PF* ile gösterilir.  

  

Tanım 5 (Tercih Edilen Çözüm): Çözüm kümesi içerisinden, karar verici (decision 

maker) tarafından ek kriterler kullanılarak seçilen baskın (Pareto) bir çözümdür. 
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          Şekil 2.21’ de iki amaçlı bir en küçükleme problemi üzerinde, Pareto-optimal 

(veya kısaca Pareto) bireyler, bu bireylerden oluşan P*={A,B,C,D,E,F} Pareto-optimal 

küme ve Pareto-optimal cephe gösterilmektedir. 
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Şekil 2.21. Çizgili  bölge Pareto-optimal cepheyi göstermektedir (bu bir en küçükleme 
problemidir). Siyah noktalar Pareto bireyleri, gri noktalar Pareto olmayan bireyleri 
göstermektedir. Örneğin, “G” bireyi, “D, E” ve “F” Pareto bireylerinin etki alanına 
girmektedir 
 

          Tek amaçlı GA’ larda tek bir en iyi sonuç vardır ve bireyler (çözüm önerileri) en 

iyiden en kötüye doğru tekil bir biçimde sıralanabilir. Ancak ÇAGA’ larda tek bir en iyi 

çözüm yerine bir grup en iyi çözüm (Pareto-optimal çözümler olarak adlandırılırlar) 

vardır ve dolayısıyla en iyiden en kötüye doğru bireylerin sıralanması tekil değildir. Bu 

yüzden, birçok ÇAGA yöntemi geliştirilmiş ve geliştirilmeye devam edilmektedir. 

Sıralama yapmanın amacı, bir sonraki nesildeki bireylerin (çözüm önerilerinin) nasıl 

elde edileceğini belirleyen seçme mekanizmasına bilgi üretmektir. Yani seçme 

mekanizmasından önce bir sıralama yöntemine ilişkin hesaplamalar yer almaktadır.      

          Amaçlar tek tek hesaba katıldığında bireylerin sıralaması farklı olacaktır, bir 

amaca göre en iyi olan çözüm diğerlerine göre en kötü olabilir. Ancak tüm amaçlar 

hesaba katıldığında Pareto-optimal cephedeki bireylerin birbirlerine göre bir üstünlüğü 

olmayacaktır. Çok amaçlı optimizasyonun asıl hedefi, Pareto-cephesini bulmak veya 

ona yaklaşmak ve bu cephe üzerinde düzgün bir dağılım sağlamaktır. Var olan tüm 

yöntemler bunu sağlamaya çalışmaktadırlar. Bu hedefler, Şekil 2.22’ de bir en 
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küçükleme problemi üzerinde görsel olarak gösterilmektedir. Bu şekilde D-düzgün 

dağılım ya da çeşitliliği, Y-yakınsamayı temsil etmektedir. Düzgün dağılımın artırılması 

için, başlangıç topluluğu D ile gösterilen oklar yönünde genişletilmelidir. Pareto 

cephesine yakınsama için ise başlangıç topluluğu Y ile gösterilen ok yönünde 

ilerlemelidir. Düzgün dağılım – yakınsama dengesi doğru olarak ayarlandığı zaman, 

Şekil 2.22b’ de gösterildiği gibi iyi bir çözüm topluluğu bulunabilir. Bununla birlikte, 

her problem ve her ÇAGA yöntemine göre böyle bir çözümü bulmak kolay değildir 

[Ishibuchi ve Shibata, 2004].  
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Şekil 2.22. (a) Başlangıç topluluğu ve Pareto cephesi, (b) İstenilen GA durumu 

 

 

          2.3.5.4. Arama ve Karar Verme  

 

          Çok amaçlı optimizasyonda, Pareto tanımından dolayı birden fazla en iyi çözüm 

bulunmaktadır. Bu yüzden, çok amaçlı optimizasyon problemleri iki farklı durumdan 

oluşur: Pareto-optimal birey / çözüm kümesinin aranması ve çok amaçlı karar verme 

(Horn, 1997). Genellikle, bu iki durum ayrı ayrı değerlendirilir. Tek amaçlı 

optimizasyon ile geniş ve karmaşık arama uzaylarının aranması zordur. Bu nedenle, çok 

amaçlı optimizasyon yöntemleri tanımlanmıştır. Bu yöntemler arasındaki temel farklar, 

amaç fonksiyonları ve puan atama mekanizmalarıdır. Bir topluluktaki (çözüm 
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kümesindeki) her bir bireye ilişkin puanın nasıl hesaplandığı ve atandığına bağlı olarak, 

çok amaçlı genetik algoritmalar Şekil 2.23’ te gösterildiği gibi üç kategoride 

sınıflandırılabilir.  

 

 ÇOK AMAÇLI GENETİK ALGORİTMA YÖNTEMLERİ 

 

 
Aramadan Önce Karar Verme  

 

 Birleştirici İşlevlerin Kullanımı 

 

 
Karar Verme İşleminden Önce Arama 

 

 

 Pareto-tabanlı  
Olmayan Yöntemler 

Pareto-tabanlı  
Yöntemler  

 

 Arama Sırasında Karar Verme 
 

Şekil 2.23. Çok amaçlı genetik algoritmaların sınıflandırılması [Vazquez, 1999] 

 

          Aramadan Önce Karar Verme: Çok amaçlı optimizasyon probleminin amaçları, 

karar vericiden gelen tercih bilgisine (preference information) göre tek bir amaçta 

birleştirilir. Yani çok amaçlı optimizasyon problemi, bu tür genetik algoritmalarda bir 

takım katsayılarla çarpılıp toplanarak tek bir amaçta birleştirilir. Bu tür genetik 

algoritmalara örnek olarak CWOF (sabit ağırlıklı amaç işlevi) ve VWOJ (değişken 

ağırlıklı amaç işlevi) yöntemleri verilebilir. Bu tür yöntemler kolay uygulanabilir 

olmalarına rağmen çoğu optimizasyon probleminde istenilen sonuçların elde edilmesini 

sağlayamazlar. 

          Karar Verme İşleminden Önce Arama: Optimizasyon, herhangi bir tercih bilgisi 

verilmeden gerçekleştirilir. Arama işlemi sonucunda bir grup aday çözüm (ideal olarak 

Pareto-optimal çözümler) bulunur. Karar verici (KV) son seçimini bu çözümler 
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arasından yapar. Pareto-tabanlı olmayan yöntemler ve Pareto-tabanlı yöntemler bu tür 

çok amaçlı genetik algoritma yöntemlerindendir. Pareto-tabanlı olmayan yöntemlere 

örnek olarak Schaffer’ in Vektör Hesaplamalı Genetik Algoritması (VEGA) örnek 

olarak verilebilir. Pareto-tabanlı yöntemler ise Pareto tanımını kullanarak bireylere puan 

atamaktadırlar. Bu yöntemlere örnek olarak MOGA, NSGA, SPEA vb. verilebilir.  

          Arama Sırasında Karar Verme:. Her bir optimizasyon adımından sonra, aramaya 

kılavuzluk edecek şekilde karar vericiden (KV) sağlanan ayrıntılı tercih bilgisine göre 

alternatif çözümler sunulur. Böylece arama uzayı küçültülebilir. Bu tür genetik 

algoritmalara örnek olarak Fonseca ve Fleming’ in PAGA (Preference Articulation 

Genetic Algorithm) yöntemi örnek olarak verilebilir [Fonseca ve ark., 1998]. Bu 

yöntemde, Pareto derecelendirmesi ile tercih belirleme yöntemi birleştirilmektedir. 

   

          Şu ana kadar, ÇAGA algoritmalarında KV’ nin tercihlerinden yararlanılması 

üzerinde çok az çalışma yapılmıştır. Bu tür çalışmalar önemli yararlar sağlayabilir. Çok 

boyutlu problemlerin çözümünde hesapsal bir azaltım sağlanabilir, ayrıca KV’ ye daha 

anlamlı bilgi gönderilebilir. Tercih bilgisine göre arama uzayı daraltılarak daha iyi 

sonuçların bulunması sağlanabilir. Tüm bu sorunlara çözüm sağlamak amacıyla IEEE 

Evolutionary Computation dergisi tarafından, 2010 yılında tercih belirleme tabanlı 

ÇAGA’ lar hakkında özel bir sayı çıkarılacaktır (Editörler: Prof. Kalyanmoy Deb ve 

Prof. Murat Köksalan). 

 

 

          2.3.5.5. Çok Amaçlı Genetik Algoritmaların Temel Bileşenleri  

 

          ÇAGA’ ların temel bileşenleri şunlardır: 

 

• Sıralama / puan atama yöntemleri (NSGA, MOGA, SPEA, PAES vb.)  

• İkincil topluluk (arşiv) ve yönetimi veya elitizm (ikincil topluluğun boyutu, 

ikincil topluluğu güncelleme, birincil topluluğu güncelleme). 

• Çeşitliliği sürdürmek veya yarıçap belirleme (niching) yöntemleri (paylaşım, 

ayıklama, eşleşme kısıtlaması vb.).  

• Seçme mekanizmaları (rulet çarkı seçimi (RWS), stokastik evrensel örnekleme 

(SUS), turnuva seçimi (TS) vb.). 



 62

• Parametrelerin kodlama teknikleri (ikili kodlama, gray kodlama, gerçel sayı 

kodlama vb.). 

• Genetik işlevlerin kullanımı ve biçimleri (çaprazlama ve mutasyon). 

• Topluluk boyutu (kullanıcıya bağlıdır). 

• Optimize edilecek parametrelerin alt ve üst sınırları (problem hakkındaki 

öngörüye bağlıdır). 

 

 

          2.3.6. Uygulama Alanları 

 

          Klasik optimizasyon yöntemlerinin farklı alanlardaki problemlerin çözümü için 

kullanılması 1950’ li yıllara dayanmasına rağmen, GA’ ların endüstriyel problemlere 

uygulanması 80’ li yılların ortasını bulmaktadır. Bununla birlikte 1990’ dan sonra, GA’ 

ların gerçek dünya problemlerine uygulanmasında önemli bir artış olmuştur. Bunun 

nedenlerinden biri GA’ ların çok amaçlı optimizasyon problemlerini çözme yeteneğidir. 

          Çok amaçlı bir genetik algoritma yöntemi önerilirken, bu yöntemin iyi ve 

kullanışlı olup olmadığının belirlenmesi için algoritma test işlevleri üzerinde 

denenmektedir ve bazı çıkarımları buna göre yapılmaktadır. Diğer taraftan, algoritmanın 

pratikte de kullanılabilir olduğunun belirlenmesi için, algoritmanın başarımının gerçek 

problemler üzerinde de test edilmesi gerekir. Çizelge 2.3’ te, çok amaçlı genetik 

algoritmaların uygulandığı bazı gerçek dünya problemleri ve bu uygulamayı yapanların 

bir listesi yer almaktadır. Bu uygulamalar üç temel bölümde sınıflandırılabilir: 

 
I. Deneysel Uygulamalar: Varolan diğer optimizasyon algoritmalarına karşı    

GA’ nın üstünlüğünü test etmek için yapılan uygulamalardır. Gezgin Satıcı 

Problemi, Knapsack Problemi, Grafik Bölme Problemi vb. 

II. Pratik Uygulamalar: Endüstride GA kullanılan uygulamalardır. Sayısal 

Optimizasyon Problemleri, Çizelge/Planlama Problemleri, Yerleşim Problemleri, 

Görüntü/Ses İşleme, Mikrodalga Eleman Tasarımı, Mekanik Bileşen Tasarımı, 

İşaret İşleme, Süzgeç Tasarımı, Kontrol Sistemi Tasarımı, Parametre ve Sistem 

Tanımlama, Robotik, Mühendislik Tasarımı (VLSI vb.), Nonlinear Sistem  

Tasarımı, Yapay Sinir Ağları ve Bulanık Mantığa Uyarlanma, Şekil (Parça) 

Tasarımı vb. 
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III. Sınıflandırıcı Sistemler: Bilgi elde edilmesi için GA’ nın kullanıldığı 

uygulamalardır. Uzman sistemin bilgi tabanının oluşturulması için GA kullanımı 

vb. 

 

Çizelge 2.3. Bazı ÇAGA uygulamaları 
 

Araştırmacı(lar)   (Yıl) Uygulama Alanı 

A.D. Belegundu ve ark. (1994) Levhalı Seramik Alaşımlar 

T.J. Stanley ve T. Mudge (1995) Mikroişlemci Çip Tasarımı 

C.S. Chang ve ark. (1995) DC Demiryolu Sistemi 

F. Jimenez ve J.L. Verdegay (1995) Taşımacılık/Ulaşım 

C.A. Coello ve ark. (1995) Bir Robot Kolun Karşı Ağırlık Dengelemesi 

A.J. Chipperfield ve P.J. Fleming 
(1996) 

Gaz Türbin Motoru Denetleyici Tasarımı 

T. Arslan ve ark. (1996) VLSI Devre Tasarımı 

S.Y. Hahn (1996) Sürekli Mıknatıslı Motor Tasarımı 

D.S. Weile ve ark. (1996) Geniş Band Mikrodalga Soğurucu Tasarımı 

D.S. Todd ve P. Sen (1997) Yük Gemileri İçin Yükleyici Tasarımı 

D. Lee (1997) Deniz Aracı Tasarımı 

W. A. Crossley (1997) Helikopter Tasarımı 

E. Zitzler ve L. Thiele (1998) Sayısal Donanım-Yazılım Çoklu İşlemci 
Sistem Sentezi 

K. Fujita ve ark. (1998) Otomobil Motor Tasarımı 

S. Obayashi ve ark. (1998) Uçak Kanat Tasarımı 

H.A. Güvenir ve E. Erel (1998) Stok Sınıflandırılması 

D. Cvetkovic ve I. Parmee (1998) Uçak Dış Yüzey Tasarımı 

C.M. Fonseca ve P.J. Fleming 
(1998) 

Gaz Türbin Motoru Tasarımı 

B. Paechter ve ark. (1998) Bir Üniversitenin Ders Programlarının 
Hazırlanması 

M. S. Bright  (1998)  DSP Sistem Tasarımı 

E. Zitzler ve L. Thiele (1998) Sayısal Donanım-Yazılım Çoklu İşlemci 
Sistem Sentezi 

K. Fujita ve ark. (1998) Otomobil Motor Tasarımı 
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Çizelge 2.3. (devamı) Bazı ÇAGA uygulamaları 
 

T. Bagchi (1999) Çok Ölçütlü Gezgin Satıcı Çizelgelemesi 

C. Poloni ve ark. (2000) Aerodinamik Şekil Tasarımı 

E. Schlemmer ve ark. (2000) Hidroelektrik Generatör Tasarımı 

P. di Barba ve ark. (2000) Elektrostatik Mikromotor Tasarımı 

L. Costa ve P. Oliveria (2000) Levhalı Alaşım Sac Tasarımı 

A.J. Blumel ve ark. (2000) Otomatik Pilot Denetleyici Tasarımı 

H. Meunier ve ark. (2000) Radyo Ağı Optimizasyonu 

X. Li ve ark. (2000) Tıbbi Görüntü İşleme 

M. Lahanas ve ark. (2001) Doz Optimizasyonu 

N. Laumanns ve ark. (2001) Yolcu Tren Tasarımı 

D. Sasaki ve ark. (2001) Süpersonik Kanat Tasarımı 

Ishibuchi ve ark. (2001) Dilsel Kural Çıkarımı 

S.-Y. Ho ve H.-L. Huang (2001) Yüz Modelleme ve Tanıma 

J. Wright  ve ark. (2002) Bir Binanın Isı Sisteminin Tasarımı 

H. A. Abbass (2002) Göğüs Kanseri Tanısı 

R. Balling ve ark.  (2003) Şehir Planlama 

X. Hu ve ark. (2004) Otomobil Parça Tasarımı 

J. Regnier ve ark. (2005) Elektromekanik Sistem Tasarımı 

M. Trefzer ve ark. (2005) CMOS İşlemsel Yükselteç Sentezi 

N. Nariman-Zadeh ve ark. (2005) Aerodinamik Optimizasyon 

J. Regnier ve ark. (2005) Elektromekanik Sistem Tasarımı 

R. Verschae ve ark. (2005) Yüz Modelleme ve Tanıma 

L. Araujo (2006) Doğal Dil İşleme 

M. Calonder ve ark (2006) Biyoinformatik 

M. P. Kleeman ve ark. (2007) Kuantum Kaskat Laser Tasarımı 

C. Perales-Gravan ve ark. (2008) AM Radyo Alıcı Tasarımı 

E. Mininno ve ark. (2008) Gömülü Mikrodenetleyici Optimizasyonu 

F. C. J. Allaire ve ark. (2008) Gerçek Zamanlı Uçuş Planı Uygulaması 

T. Siegfried ve ark., (2009) Yer altı Suyu Yönetimi 

J.G. Herrero ve ark. (2009) Hava Trafik Kontrolü 
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          3. MATERYAL VE YÖNTEM 

 

          Bu bölümde Pareto tabanlı olmayan ve Pareto tabanlı ÇAGA yöntemleri 

açıklanmakta, algoritmaları ile yöntemlere ilişkin örnekler verilmektedir. Tezde önerilen 

ÇAGA yöntemleri, bu bölümde verilen bazı iyi bilinen (state-of-art methods) ÇAGA 

yöntemleri ile sık kullanılan test işlevleri kullanılarak karşılaştırılmışlardır.  

 

 

          3.1. Pareto Tabanlı Olmayan ÇAGA Yöntemleri 

    

          Bu bölümde, Pareto tanımını kullanmayan bazı çok amaçlı genetik algoritma 

yöntemleri incelenmektedir. Tek amaçlı optimizasyondan farklı olarak, çok amaçlı 

optimizasyonda bir topluluğun genetik algoritma tarafından puanlanmasının tek bir yolu 

yoktur. Tek amaçlı genetik algoritmada, puanlama, probleme göre amaç işlevinde alınan 

değerin büyükten küçüğe veya küçükten büyüğe doğru sıralanmasıyla yapılabilir. 

Ağırlıklı toplam yaklaşımlarından Pareto-tabanlı yaklaşımlara kadar var olan puanlama 

yöntemleri, istenilen bireyler hakkında ne kadar bilgi verdiklerine göre 

sorgulanmaktadır. Bu yöntemler arasındaki temel fark, onların bireylerin puanlarını 

belirlerken kullandıkları yoldur. Diğer bir deyişle, her yöntem kendi mekanizmasına 

göre bireyleri en iyiden en kötüye doğru sıralar. Bireyleri sıralamanın veya puanlamanın 

en iyi yolu hala ucu açık bir sorudur ve daha çok araştırma yapılması gereklidir.  

          Çoğu gerçek dünya problemi için, çoklu amaçların anlık optimizasyonuna 

gereksinim vardır. Tek amaçlı durumda, amacın ya en büyük ya da en küçük değerleri 

aranmaktadır. Çok amaçlı durumda ise, topluluktaki bireyler (ya da çözüm önerileri) 

çok amaçlı bir genetik algoritma yöntemi (ÇAGA) tarafından puanlanır. Temel olarak 

bir ÇAGA, bir topluluktaki bireyleri puanlama işlemine veya tanımına bağlı olarak 

sıralamaktır. Yani ÇAGA ile çoklu amaç uzayı, tek bir puan değerine 

dönüştürülmektedir. Aşağıda bu yöntemlerden Pareto tanımını kullanmayan üç tanesi 

ayrıntılı olarak incelenmektedir. 

Bu yöntemlerden ikisi (CWOF ve VWOJ) ağırlıklı toplam yaklaşımları olarak 

adlandırılır, çünkü bu yöntemler bireyleri puanlarken Pareto tanımını hesaba 

katmamaktadırlar. CWOF çok bilinen bir yaklaşımdır ve amaçları birleştirmek için bazı 

ön bilgilere gereksinim duyar (Michalewicz, 1994; Murata ve Ishibuchi, 1995).   
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CWOF’ tan farklı olarak, VWOJ sabit ağırlıkları değil rasgele üretilmiş ağırlıkları 

kullanır (Murata ve Ishibuchi, 1995; Ishibuchi ve Murata, 1998). VEGA, çok amaçlı 

genetik algoritmalar için atılan ilk adım olarak bilinir ve karşılaştırma yapmak için 

standart bir araç olarak kullanılır (Schaffer, 1985).  

          Bu yöntemlerin incelenmesinde Schaffer’ in SCH1 test işlevi kullanılmıştır: 

 

    ve                     (3.1) 2)( xxf = 2)2()( −= xxg

 

          Bu yöntemlerin bu test işlevi ile çalıştırılmasıyla elde edilen sonuçlar Şekil 3.3, 

Şekil 3.4, Şekil 3.5, Şekil 3.8 ve Şekil 3.11’ de verilmektedir. Tüm uygulamalar için 

birey sayısı 20, bit sayısı 20, adım sayısı 500, 1.0=mp , 1=cp , parametrenin alt sınırı 

0, üst sınırı ise 2 seçilmiştir. 
 

 

3.1.1. Sabit Ağırlıklı Amaç İşlevi  

                      (Constant Weight Objective Function, CWOF) 

 

          CWOF, temel olarak, birkaç amaç işlevini ağırlıklandırarak tek bir amaç işlevinde 

birleştirir ve çok amaçlı problemi tek amaçlı probleme dönüştürür (Michalewicz, 1994; 

Murata ve Ishibuchi, 1995). Farklı ağırlıklar, farklı Pareto çözümlerinin elde edilmesini 

sağlar. Birkaç Pareto-optimal çözümün bulunması için, programın farklı ağırlıklarla 

birkaç kez çalıştırılması gerekir. CWOF klasik bir yaklaşımdır, burada çok amaçlı işlev 

 tek bir amaçta if F  birleştirilir :    
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          Burada , n adet amaç için negatif olmayan ağırlıklardır ve bunların 

arasındaki ilişki aşağıdaki gibidir:  
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          Sabit ağırlıklar ( ) ayarlanarak, genetik algoritmanın arama yönü ayarlanabilir. 

Bunun anlamı; CWOF Pareto cephesindeki yalnızca bir veya birkaç bireye yüksek puan 

vermekte (seçime bağlı olarak düşük puan) geri kalan bireyler ise düşük puan 

almaktadır, çünkü CWOF arama uzayında belirli bir yönü tercih etmektedir. Şekil 3.1, 

bu durumu göstermektedir. Eğer iki amaç tek bir amaçta birleştirilecekse ve ilk amaç 

diğerine göre daha fazla önemli ise, o zaman  (3.4) eşitliğindeki gibi olur. Eğer 

ikinci amaç daha önemliyse,  (3.5) eşitliğindeki gibi olur (en küçükleme problemi 

söz konusu ise). Eğer her iki amaçta aynı öneme sahipse,  (3.6) eşitliğindeki gibi 

olur. 

iw

)(xF

)(xF

)(xF

 

)(25.0)(75.0)( 21 xfxfxF +=                                                                                          (3.4) 

)(75.0)(25.0)( 21 xfxfxF +=            (3.5)  

)(5.0)(5.0)( 21 xfxfxF +=            (3.6) 

 

 
 
 
 
 
 
 
 
 
 
 A 

B 

C 

f2 

f1 

 
 
 
 
 
Şekil 3.1.  CWOF, arama uzayında bir arama yönüne sahiptir ve yalnızca  
                  A gibi bir birey bulabilir (veya birkaç Pareto çözümü)   
 

          CWOF yalnızca birkaç Pareto çözümünü bulur, Pareto çözümlerinin tam bir 

kümesini bulamaz. Karmaşık bir sistem tasarım problemi için tipik bir CWOF örneği 

(Linkens ve Nyongesa, 1995)’ de verilmektedir. CWOF yönteminin algoritması      

Şekil 3.2’ de verilmektedir. 
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      uygulanır. 

4) GA işlevleri olan seçme (RWS veya SUS), çaprazlama ve mutasyon 

Amaçlar sabit ağırlıklarla çarpılır ve sonuçta tek bir amaç (diğer 

amaçların ağırlıklı toplamı) olarak düşünülür. Burada ağırlıklar 

sabittir ve ağırlıkların toplamı 1’ dir. Ağırlığı yüksek olan amaç daha 

önemli olacaktır. 

3) L+++= )()()()( 332211 xfwxfwxfwxF   

      amaçlar kadardır) 

2) Amaçların önemine göre wi ağırlıkları belirlenir (wi’ lerin sayısı 

1) Başlangıç topluluğu oluşturulur (Rasgele veya dışarıdan girilerek) 

 

CWOF Algoritması 

 
Şekil 3.2. CWOF algoritması 

 

          CWOF yönteminin, (3.4, 3.5 ve 3.6) eşitliklerinde verilen üç farklı durum için 

SCH1 test işlevinde çalıştırılmasıyla elde edilen sonuçlar Şekil 3.3, Şekil 3.4 ve      

Şekil 3.5’ te verilmektedir. 

 

 
 

Şekil 3.3. )(5.0)(5.0)( xgxfxF +=  için CWOF sonucu 
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Şekil 3.4. )(75.0)(25.0)( xgxfxF +=  için CWOF sonucu 
 

 

 

 
 

Şekil 3.5. )(25.0)(75.0)( xgxfxF +=  için CWOF sonucu 
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          3.1.2. Değişken Ağırlıklı Amaç İşlevi  

                    (Variable Weight Objective Function, VWOJ) 

 

          Bu yöntemde, ayarlanmış belirli ağırlıklardan çok rasgele seçilmiş ağırlık 

kümeleri kullanılır. VWOJ ilk kez (Murata ve Ishibuchi, 1995; Ishibuchi ve Murata, 

1998)’ te CWOF’ taki eksikleri gidermek için oluşturulmuştur. Bilindiği üzere, CWOF 

arama uzayında tek bir yönde arama yapmaktadır ve tüm Pareto çözümlerini bulmak 

için yeterli değildir. Bunun nedeni, çok amaçlı uzayda farklı arama yönlerine 

gereksinim olmasıdır. Farklı arama yönlerini gerçekleştirmek için, rasgele belirlenmiş 

ağırlık değerleri önerilmiştir (Murata ve Ishibuchi, 1995; Ishibuchi ve Murata, 1998 ). 

          VWOJ (3.2) ve (3.3) nolu eşitlikleri kullanır ancak, ağırlıklar (3.7)’ da verilen 

eşitliği de sağlamalıdırlar. Ağırlıklar artık sabit değildir ve GA’ da artık çok amaçlı 

arama uzayında tek bir yönde arama yapmayacaktır. VWOJ farklı arama yönlerine 

sahiptir (Bkz. Şekil 3.6). CWOF ve VEGA, VWOJ’ un özel durumlarıdır. (3.6)’ daki 

biçimdeki bir CWOF, A Pareto çözümünü kolayca bulabilir ancak her iki köşede yer 

alan B ve C Pareto çözümlerini bulması ise çok zordur. VEGA, B ve C çözümlerini 

kolayca bulur; çünkü B, 2. amacın C ise 1. amacın en iyi çözümleridir; ancak VEGA iki 

amacın karışımı olan bir çözüm olan A benzeri bir çözümü ise çok zor bulacaktır.  
 

                  
)( 1 rasgelerasgele

rasgele
w

n

i
i +⋅⋅⋅+
=                         ni ,,2,1 ⋅⋅⋅=                  (3.7) 

         
 f2  

C 

B 

A 

 
 
 
 
 
 
 
 
 
 
 f1 

 
Şekil 3.6. VWOJ Pareto çözümlerini bulmak için farklı yönlerde arama yapar 
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4) GA işlevleri olan seçme, çaprazlama ve mutasyon uygulanır. 

Yukarıdaki formülle bütün amaçlar rasgele belirlenen ağırlıklarla  

çarpılarak, tek bir amaç işlevi olarak düşünülür. Burada ağırlıklar 

sabit değildir ve rasgele belirlenir. Ancak bu rasgele ağırlıkların 

toplamı 1 olmalıdır. Ağırlığı yüksek olan amaç daha önemli 

olacaktır. 

3)  L+++= )()()()( 332211 xfwxfwxfwxF   

     
)( 1 rasgelerasgele

rasgele
w

n

i
i +⋅⋅⋅+
=              i=1,2,…,N 

2)  wi ağırlıkları rasgele belirlenir (wi’ lerin sayısı amaçlar kadardır) 

1)  Başlangıç topluluğu oluşturulur (Rasgele veya dışarıdan girilerek) 

VWOJ Algoritması 

 

 
Şekil 3.7. VWOJ algoritması 

 

          VWOJ yönteminin SCH1 test işlevinde çalıştırılmasıyla elde edilen sonuçlar 

Şekil 3.8’ de verilmektedir. 
 

 
    

Şekil 3.8. VWOJ örneği 
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          3.1.3. Vektör Hesaplamalı Genetik Algoritma  

                    (Vector Evaluated Genetic Algorithm, VEGA) 

 

          VEGA, çok amaçlı bir GA tasarlanması için atılan ilk adımdır (Schaffer, 1985). 

VEGA’ nın arkasında yatan temel düşünce, bir sonraki topluluğun alt kümesinin tek bir 

amaç tarafından seçilmesi ve gelecek topluluğun oluşturulması için tüm alt kümelerin 

birlikte kullanılmasıdır. Gelecek topluluk, her amacın en iyi bireylerinden oluşmaktadır.  

          VEGA Pareto çözümlerini bulurken her bir amacı ayrı ayrı kullanır. Eğer n adet 

amaç varsa, o zaman o anki topluluktan n adet alt topluluk seçilmelidir. Her alt topluluk, 

tek bir amaç tarafından seçilir ve seçilen her bir alt topluluk sonraki topluluğun yalnızca 

bir bölümünü oluşturur. Bir sonraki adımdaki topluluk, alt toplulukların birleşimidir. 

 

 

 Topluluk (t) Ebeveynler

 

 

 

 

B Alt-top-1

Alt-top-n
A 

 Karıştırma + 
Genetik İşlevle C r

 

(a)                   (b) 

Alt Toplulukların 
Seçimi 

Topluluk (t+1)

Topluluk … 

f2 

f1 

 

Şekil 3.9.  (a) VEGA blok diyagramı, (b) VEGA’ nın arama yönü 

 

          VEGA algoritması, (3.8) ifadesinde tanımlandığı gibi, amaç işlevlerinin bir çeşit 

doğrusal birleşimi olarak çalışır. VEGA o andaki topluluktan alt toplulukları seçerken 

(3.8)’ de verilen eşitlikleri kullanır. , her alt topluluk seçimi için tek bir amaç 

tarafından belirlenir.  

)(xF

 

)(0)(1)( 1 xfxfxF n+⋅⋅⋅+=       (3.8a) 

)(0)(1)(0)( 21 xfxfxfxF n+⋅⋅⋅++=      (3.8b) 

)(0)(1)(0)( 11 xfxfxfxF nn ++⋅⋅⋅+= −      (3.8c) 

)(1)(0)( 1 xfxfxF n+⋅⋅⋅+=       (3.8d) 
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          Belirli bir amaç işlevi tarafından seçilen her bir alt topluluk, daha sonra 

birleştirilir ve klasik GA işlevleri (çaprazlama ve mutasyon) uygulanır. VEGA     

Pareto-tabanlı bir yaklaşım değildir, bu yüzden ancak birkaç Pareto çözümü bulabilir.         

Şekil 3.9a’ da, VEGA’ nın blok diyagramı verilmektedir. Şekil 3.9b’ den de görüleceği 

üzere, VEGA’ nın arama yönlerinin hepsi amaç uzayının bir eksenine paraleldir. VEGA 

yönteminin algoritması ise Şekil 3.10’ da verilmektedir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) Yeni bir topluluk oluşturmak için birey havuzuna (P) çaprazlama ve 

mutasyon işlevleri uygulanır. 

4) Her bir amaç için belirlenen alt topluluklar birleştirilir. Yani her bir amaç 

ile elde edilen bireyler tek bir birey havuzunda (P) birleştirilir. En iyi puana 

sahip olan bireyler seçme işlemi ile belirlenir. 

3) Eğer i=M ise, 4. adıma geçilir. Aksi takdirde i bir artırılır ve 2. adıma 

dönülür. 

2) Amaç işlevleri ayrı ayrı kullanılarak bireylere ilişkin puanlar hesaplanır.  

1) Amaç işlevi sayıcısını i=1 ve q=N/M ifadesi yap. (N: topluluk boyutu,  

M: amaç sayısı). Amaç sayısı kadar alt topluluk elde edilecektir. 

 

VEGA Algoritması 

 
Şekil 3.10. VEGA algoritması 

           

          VEGA yönteminin SCH1 test işlevinde çalıştırılmasyla elde edilen sonuçlar   

Şekil 3.11’ de verilmektedir. 
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Şekil 3.11. VEGA örneği 

 

 

          3.2. Pareto Tabanlı ÇAGA Yöntemleri 

 

          Son yıllarda özellikle 1998’ den sonra, evrimsel algoritmalar ile çok amaçlı 

optimizasyon konusunda birçok araştırma yapılmıştır ve çok iyi yöntemler önerilmiştir. 

Bu yöntemlerin çoğu Pareto tanımına dayanan puan atama yöntemleri kullanmaktadırlar: 

bastırılamayan sıralama, baskınlık sayımı ve bastırılamayan çözümlerin tanımlanması 

[Huband ve ark., 2006]. 

          Puanlama (fitness assignment) hala ucu açık bir soru olduğu için ve Pareto 

tanımından dolayı literatürde çok sayıda yöntem mevcuttur [Coello Coello, 1999;     

Deb, 2001; Ghosh ve Dehuri, 2004; Coello Coello ve ark., 2007] ve önerilmeye de 

devam edilmektedir. Bu bölümde, tezde önerilen yöntemlerin karşılaştırılmasında 

kullanılan ve literatürde sık kullanılan ÇAGA yöntemleri ayrıntılı bir biçimde 

açıklanmaktadır. Yöntemlerin puanlama algoritmaları, elitizm/arşiv yöntemi 

mekanizmaları verilmektedir.  
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          3.2.1. MOGA (Multiple Objective Genetic Algorithm, Çok Amaçlı Genetik  

                    Algoritma) 

 

          MOGA, Fonseca ve Fleming tarafından önerilmiştir [Fonseca ve Fleming, 1993; 

1995; 1998]. Pareto tabanlı, elitist olmayan bir yöntemdir. MOGA’ da bir bireyin puanı 

o andaki toplulukta o bireye baskın olan bireylerin sayısına 1 eklenmesiyle bulunur 

(Şekil 3.13’ de Adım 1). Böylece baskın bireylerin puanı, toplulukta onlara baskın olan 

herhangi bir birey olmadığından dolayı 1 olarak atanır. MOGA algoritmasının ilk üç 

adımı şu sorunun yanıtını vermektedir: "bir topluluktaki bireylerin puanı, onlara baskın 

olan bireylerin sayısı (artı 1) kullanılarak belirlenebilir mi ? ".   

          Bu puanlama (alt topluluklara ayırma) işlemi tamamlandıktan sonra, bir bireyin 

ham puanı onun puanına göre belirlenir. Bunu yapmak için, ilk olarak puanlar azalan bir 

şekilde sıralanır. Daha sonra, her bireye doğrusal bir işlev yardımıyla bir ham puan 

atanır. Genellikle, bu işlev, N (en iyi puanlı birey için) ile 1 (en kötü puanlı birey için) 

arasında bir puan atayacak bir şekilde seçilir. Daha sonra, aynı alt topluluktaki bireyler 

için ham puanların ortalaması hesaplanır (Şekil 3.13’ de Adım 4). Bu işlem, daha iyi 

puanlı bireylerin daha yüksek bir atanmış puana sahip olmalarını garantiler. Pareto 

(bastırılamayan) bireylerin çeşitliliğinin sağlanması için, Fonseca ve Fleming bir 

paylaşım yöntemi önermişlerdir. Yarıçap sayısı hesaplandıktan sonra, bir bireyin 

paylaşılmış puan değeri, atanmış puanının yarıçap sayısına bölünmesi ile bulunur. 

Atanmış puan değerinin yarıçap sayısına (daima 1’ e eşit veya büyüktür) bölünmesi 

bireyin gerçek puanını azaltır. Daha sonra bu puan değerleri ölçeklenir; böylece 

ortalama paylaşılmış puan değeri, ortalama atanmış puan değeri ile aynı olur          

(Şekil 3.13’ te Adım 5). Bu hesaplamalardan sonra, diğer alt topluluklar için 

hesaplamalar tekrarlanır. Bu işlemler tüm alt topluluklardaki bireyler puanlanana kadar 

devam ettirilir [Fonseca ve Fleming, 1993; Deb, 2001]. 

         Bireyleri MOGA tarafından puanlanan örnek bir topluluk Şekil 3.12’ de 

gösterilmektedir. Şekil 3.12a’ ya göre bireylerin en çok istenilenden en az istenilene 

doğru sıralaması şöyledir: A(1),B(1),C(1),D(1) E(2),F(2) G(3) H(8). Bireylerin 

ortalama puan değerleri Şekil 3.12b’ de verilmektedir. Ölçeklenmiş puan değerleri ise 

Şekil 3.12c’ de verilmektedir ve buna göre topluluktaki bireylerin en çok istenilenden 

en az istenilene doğru sıralaması şöyle olacaktır: D,CfB, A E,F G H.  

f f f

f f f
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           (a)                                (b)    

      

 
 
 
 
 
 
 
 
 
 
 
 
 

A (6.1084)

F(3.50)

B (6.1084)

C (6.8916)
D (6.8916)

E(3.50)

G(2.00)

H(1.00)

F(2) 

B (1) 

C (1) 
D (1) 

E(2) 

G(3) 

H(8)
 

A(1) 

F(3.5)

B (6.5)

C (6.5) 
D (6.5) 

E(3.5) 

G(2)

H(1) 

A(6.5) 

f1 

f1 f1 

f2 

f2 f2 

     (c) 
 

       Şekil 3.12. (a) MOGA tarafından atanan ham puanlar  
               (b) MOGA tarafından atanan ortalama puanlar 
                          (c) MOGA tarafından atanan ölçeklenmiş veya son puanlar ( sσ =1.3)  
 

          MOGA yönteminde çeşitliğin sağlanması için paylaşım yöntemi kullanılır. 

Paylaşım işlevi amaç uzayında uygulanır. Paylaşım yarıçapının ( sσ ) çok iyi seçilmesi 

gerekmektedir. Eğer bu yarıçap probleme göre iyi seçilirse çeşitlilik sağlanabilir. 

MOGA’ nın başarımı sσ ’ in seçimine önemli derecede bağlıdır. Fonseca ve Fleming, 

paylaşım yarıçapının dinamik olarak güncellenmesi için bir yöntem önermişlerdir, 

böylece program başında sabit bir yarıçap seçilmesine (tahminine) gerek 

kalmamaktadır. MOGA yöntemi, Pareto-optimal cephenin biçimine ve arama 

uzayındaki çözümlerin yoğunluğuna çok duyarlıdır. 
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MOGA Puan Atama Algoritması  [Deb, 2001] 

 

Adım 1: sσ  parametresi seçilir. Tüm olası dereceler için μ(j)=0 yapılır  

[j=1,…,N (topluluk boyutu)]. Birey sayacını i=1 yap. 

Adım 2: i bireyine baskın olan birey sayısı (ni) belirlenir. i. bireyin derecesi 

ri=1+ni formülü ile hesaplanır. ri derecesine sahip bireylerin sayısını bir artır 

μ(ri)= μ(ri)+1. 

Adım 3: Eğer i < N ise, i’ yi bir artır ve Adım 1’ e git. Aksi taksirde Adım 4’ e 

git. 

Adım 4: μ(ri)>0 olan en büyük ri değerini kontrol ederek en yüksek dereceyi (r*) 

belirle. Her birey için ortalama puan değerini hesapla: 

 

∑
−

=
−−−=

1

1
)1)((5.0)(

ir

k
ii rkNF μμ    (3.9) 

 

ri=1 derecesine sahip her i bireyi için, yukarıdaki eşitlik )1)1((5.0 −−= μNFi  

olur. Derece sayıcısını r=1 yap. 

Adım 5: r derecesine sahip her bir i bireyi için aynı derecedeki bireyleri 

kullanarak yarıçap sayısını hesapla. Fj’=Fj/nci ile paylaşılmış puanı hesapla. 

Aynı ortalama puanı sağlamak için, paylaşılmış puan aşağıdaki gibi bir 

ölçekleme çarpanı ile çarpılır: 
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∑ μ

=

μ
=

                         (3.10) 

 

Adım 6: Eğer r < r* ise , r’ yi bir artır ve Adım 5’ e git. Aksi takdirde işlemi 

sonlandır. 

Şekil 3.13. MOGA puan atama algoritması 
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          3.2.2. NSGA (Non-Dominated Sorting Genetic Algorithm, Bastırılamayan 

                    Sıralamalı Genetik Algoritma) 

 

          NSGA ilk olarak Goldberg tarafından önerilmiştir [Goldberg, 1989], ancak 

uygulaması Srivinas ve Deb tarafından yapılmıştır [Srivinas ve Deb, 1994]. Pareto 

tabanlı, elitist olmayan bir yöntemdir. NSGA ilk bastırılamayan bireylerden oluşan 

cepheye 1 puanını atar ve daha sonra bu bireyler o andaki topluluktan silinirler. Daha 

sonra, azaltılmış topluluktaki ikinci bastırılamayan cephedeki bireylere 2 puanı atanır. 

Bu işlem, tüm cephelerdeki bireylere puan atanana kadar devam eder.  

          NSGA şu sorunun yanıtını verir: "bir topluluk birbirlerine baskın olmayan 

bireylerin oluşturduğu alt topluluklara ayrılabilir mi?" (paylaşım yöntemi 

uygulanmadan). Bu sorunun sonucu olarak, NSGA birkaç alt topluluk oluşturur ve her 

alt topluluk aynı puanlara sahip bireylerden oluşur. NSGA algoritmasının 2. adımına 

göre puanlanmış bir topluluk Şekil 3.14a’ da gösterilmektedir. Şekil 3.14a’ da üç adet 

alt topluluk bulunmaktadır. İlk alt topluluk {A(1),B(1),C(1) ve D(1)}, ikinci alt topluluk 

{E(2),F(2) ve G(2)} ve üçüncü alt topluluk ise {H(3)} bireylerinden oluşmaktadır. 

Açıkça görüleceği üzere, ilk alt topluluk ikinciden, ikinci alt topluluk ise üçünden daha 

çok istenen bireylerden oluşmaktadır. Eğer bireyler aynı Pareto cephesine aitse, örneğin 

ilkine, bu durumda hangi bireyin diğerlerinden daha iyi olduğuna karar vermek kolay 

değildir. Buna göre, bu yöntem aynı Pareto cephesine ait bireylerin ayırt edilmesi için 

hiçbir bilgi vermemektedir. Bireyleri çeşitliliğini sağlayabilmek için, NSGA yöntemine 

paylaşım yöntemi eklenmiştir [Deb, 2001; sayfa 149-160]. Orjinal NSGA paylaşımı 

parametre uzayında uygularken, bu tezde karşılaştırmalarda kullanılan NSGA’ da 

paylaşım MOGA yönteminde olduğu gibi amaç uzayında uygulanmıştır.  

          Bireylerin paylaşılmış puanlarının bulunması için şu yol izlenir: ilk olarak; ilk 

Pareto cephesine ait (cephe sayıcısını 1 yap) tüm bireylerin puanı topluluk boyutuna (N) 

eşitlenir. Bu, herhangi bir topluluktaki herhangi bir bireyin alabileceği en büyük puan 

değeridir. Paylaşım yöntemine göre, eğer bir bireyin aynı cephede çok sayıda komşusu 

varsa, o bireyin puanı yarıçap sayısı kadar azaltılır ve paylaşılmış puan (Şekil 3.15’ te 

Adım 3) kullanılarak hesaplanır. İlk cephedeki bireylerin puanları hesaplandıktan sonra, 

en küçük paylaşılmış puan değeri belirlenir ve cephe sayıcısı bir artırılır (Şekil 3.15’ te 

Adım 4). Bundan sonra, ikinci cephedeki tüm bireylere birinci cephedeki en küçük 
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paylaşılmış puandan daha küçük bir puan değeri atanır. Bu işlem, ikinci cephedeki 

herhangi bir bireyin birinci cephedeki herhangi bir bireyden daha iyi bir paylaşılmış 

puan değeri almasını engeller. Paylaşım yöntemi daha sonra, ikinci cephedeki tüm 

bireylere uygulanır ve paylaşılmış puan değerleri hesaplanır. Bu işlem, topluluktaki tüm 

bireylere paylaşılmış puan değeri atanana kadar devam eder. Şekil 3.14b’ de,  3.1=sσ  

ve  için örnek bir topluluktaki bireylerin paylaşılmış puan değerleri 

gösterilmektedir. 

0.22ε =

 

 

           

 

 

 

 

 

      (a)            (b) 

A (7.3287)

F(6.5121) 

B (7.3287)

C (8.00) 
D (8.00) 

E(7.1087) 

G(6.5121) 

H(6.2921)

A (1) 

F(2) 
B (1) 

C (1) 
D (1)

E(2) 

G(2) 

H(3) 
f2 f2 

f1 f1 

       Şekil 3.14. (a) NSGA ham puanları  
    (b) NSGA paylaşılmış puanları ( 3.1=sσ  ve  için)  0.22ε =

 

 

          Bu topluluktaki bireylerin en çok istenilenden en az istenilene doğru sıralaması 

Şekil 3.14a’ ya göre şöyledir: A(1),B(1),C(1),D(1) E(2),F(2),G(2)fH(3). Bu sıralama  

Şekil 3.14b’ ye göre ise şöyle verilir: D,C B,AfE F,G H . 

f

f f f

          NSGA yönteminde de Fonseca ve Fleming tarafından önerilen dinamik yarıçap 

güncellenmesi kullanılabilir, böylece yarıçap tahmini ortadan kaldırılabilir.          

NSGA’ da da MOGA’ da olduğu gibi yarıçap seçimi yöntemin başarımına önemli 

derecede etki etmektedir. 
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Adım 5:   Eğer j ρ ise, Adım 3’ e gidilir. Aksi takdirde, işlem tamamlanır. ≤

Adım 4:   Fmin=min(F’j(q) : jPq∈ ) ve j=j+1 yapılır, 

                3c. Paylaşılmış puanlar hesaplanır:  F’j(q)= Fj(q)/ncq 

                3b. Yarıçap sayısı ncq ,  formülüne göre hesaplanır ∑
=

=
N

j
iji dshnc

1
)(

                3a. Puan atanır Fj(q)=Fmin- ε 

Adım 3:   Her  bireyi için jPq∈

                (P1,P2,…,Pρ)=Sırala(P,≤ ), 

Adım 2: P topluluğu baskınlık durumuna göre sınıflandırılır: 

                ile program başlatılır. Cephe sayıcı j=1 yapılır (N: topluluk boyutu), 

Adım 1:   Paylaşım yarıçapı ( sσ ) ile küçük pozitif bir sayı ε  seçilir ve Fmin=N+ε 

 

NSGA Puan Atama Algoritması  [Deb, 2001] 

 
Şekil 3.15. NSGA puan atama algoritması 

 

 

          3.2.3. SPEA (Strength Pareto Evolutionary Algorithm, Pareto’ nun Gücü  

                    Evrimsel Algoritma) 

 

          SPEA, Pareto tanımına dayalı elitist bir ÇAGA yöntemidir [Zitzler, 1999; Zitzler 

ve Thiele, 1999]. Farklı bir kümede (arşiv veya ikincil topluluk) saklanan elit bireylerin 

sayısını, çözüm kümesinin karakteristiğini bozmadan kümeleme yöntemi kullanarak 

azaltır. Arşivdeki tüm bireyler seçme işleminde kullanılır. SPEA yönteminde, birey 

puanları iki aşamada atanır: i) Pareto bireylerin puanlanması, ii) Pareto olmayan 

bireylerin puanlanması.  
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          3.2.3.1. Pareto Bireylerin Puanlanması  

 

          Bir Pareto bireyin puanı, baskın olduğu bireylerin sayısı ile orantılıdır. n bir 

Pareto bireyin baskın olduğu bireylerin sayısı ve N de Pareto olmayan bireylerin (birinci 

Pareto cephesi dışındaki tüm bireylerin) toplam sayısı olsun. Buna göre, bir Pareto 

bireyin puanı (ya da gücü, strength) şu şekilde hesaplanır: 
1+

=
N

nfi . Pareto bireylerin 

puanları aynı zamanda güçlerine de eşittir ( ii sf = ). Bu durumda, eğer iki Pareto birey 

aynı sayıda bireye baskın oluyorsa puanları aynı olacaktır, bu durumda bu iki bireyi 

seçme mekanizmasının ayırt etmesi zor olacaktır. 

          SPEA yönteminin birey puanlamasını daha iyi açıklamak için Şekil 3.16’ daki 

örneği inceleyelim. C bireyi, iki Pareto olmayan bireyden (E ve H) baskındır, bu yüzden 

n=2 olur ve toplulukta dört adet Pareto olmayan birey (E,F,G ve H) olduğundan      

N=4’ tür. Buna göre, C bireyinin puanı n/(N+1)=2/5 olarak bulunur. Geriye kalan diğer 

Pareto bireylerin puanları da aynı yöntemle hesaplanır. 

 

 

          3.2.3.2. Pareto Olmayan Bireylerin Puanlanması 

 

          İlk adımda tüm Pareto bireyler puanlanmıştır, ancak Pareto olmayan bireyler 

puanlanmamıştır (Bkz. Şekil 3.16a). Pareto olmayan bir bireyin puanı; ona baskın olan 

tüm Pareto bireylerin puanları toplamına 1 eklenmesiyle bulunur ( ).          

Şekil 3.16b’ de verilen E bireyi, yalnızca C Pareto bireyi tarafından bastırılmaktadır ve 

C bireyinin puanı da 2/5’ tir. Bu yüzden E bireyini puanı şöyle hesaplanır: 1+(2/5)=7/5. 

Pareto olmayan diğer bireylerin puanları da bu şekilde hesaplanır. Bu puanlama 

yöntemi, en düşük puan değerini en çok istenilen bireye, en yüksek puan değerini ise en 

az istenilen bireye atar.   

∑+= ij sf 1

          SPEA tarafından puanlanmış örnek bir topluluk Şekil 3.16b’ de verilmektedir. 

Görüleceği üzere, A ve C bireyleri aynı puana sahiptir. A ve C bireylerinin aynı puana 

sahip olmalarının nedeni, ikisinin de iki adet Pareto olmayan bireye baskın olmalarıdır. 

Bu durumda bu iki bireyin ayırt edilmesi zor olacaktır. Ayrıca, eğer bir grup Pareto 

olmayan birey yalnızca bir Pareto bireye baskın olursa, bu durumda bunları birbirinden 
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ayırt etmenin hiçbir yolu yoktur. Şekil 3.16b’ deki bireylerin en çok istenilenden en az 

istenilene doğru sıralaması şöyledir:  

D(1/5)f {A(2/5),C(2/5)}fB(3/5) E(7/5)f F(8/5)fG(10/5) H(13/5) . f f

 

 

      

 

 

 

 

 

A (2/5) 

F(8/5)

B (3/5) 

C (2/5) 
D (1/5)

E(7/5)

G(10/5) 

H(13/5)

A (2/5)

F

B (3/5)

C (2/5)
D (1/5)

E

G

H
f2 f2 

f1 f1 

      (a)       (b) 

Şekil 3.16. (a) SPEA ile Pareto bireylerin puanlanması 
       (b) SPEA ile tüm bireylerin puanlanması 

 

 

          3.2.3.3. SPEA Elitizm Mekanizması 

 

          SPEA yönteminde, her bir adımda bulunan elit (ya da Pareto) bireyler arşiv olarak 

adlandırılan ikinci bir toplulukta ( P ) saklanır. Arşiv boyutu sabittir. Daha sonra, her 

adımda, yeni bulunan elit bireyler arşiv ile karşılaştırılır ve baskın olanlar arşivde 

saklanmaya devam eder, baskın olmayanlar ise silinirler. İlerleyen adımlarda elit 

bireylerin sayısında artış olabilir. Bu durumda, yalnız arşiv boyut kadar birey arşivde 

saklanır. Eğer arşiv boyutu aşılırsa, bir çeşit kümeleme yöntemi kullanılarak kalabalık 

bölgede olan elit bireyler arşiv boyutuna ulaşılıncaya kadar silinir, böylece çeşitlilik te 

sağlanmış olur. Bu işlem şöyle yapılır: i) ilk olarak, birbirine yakın bireyler kümelenir, 

ii) her küme için o kümeyi temsil eden bir birey seçilir, iii) geriye kalan bireyler 

kümeden silinir. Bu kümeleme işlemi grafiksel olarak Şekil 3.17’ de gösterilmektedir. 

Orjinal SPEA’ da kümeleme amaç uzayında yapılmaktadır, ancak parametre uzayında 

da gerçeklenebilir. 
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           f2 

 

 

 

 

 

 

 

 
Şekil 3.17. SPEA çeşitlilik işlemi 

 

          SPEA yönteminde, topluluk boyutu ile arşiv boyutu arasındaki dengenin 

sağlanması başarıma etki etmektedir. Eğer arşiv boyutu çok büyük seçilirse, elit 

bireylerin seçilme baskısı da büyük olacaktır ve bu durumda SPEA Pareto-optimal 

cepheye yakınsayamayabilir. Diğer taraftan, eğer daha küçük bir arşiv kullanılırsa, 

elitizmin etkisi kaybedilir. SPEA yöntemini önerenler arşiv boyutu ile topluluk boyutu 

arasında 1:4 oranını kullanmışlardır. Ayrıca, arşivdeki bireyler seçme mekanizmasında 

da kullanılır. Bir sonraki topluluğu oluşturacak bireyler, arşiv + ana topluluk 

birleşiminden seçilir.  

   

 

          3.2.4. SPEA2 (Strength Pareto Evolutionary Algorithm 2, Pareto’ nun Gücü 

                    Evrimsel Algoritma 2) 

 

          SPEA2, SPEA yönteminin geliştirilmiş bir biçimdir.  SPEA2, SPEA yöntemine 

göre daha iyi bir puanlama mekanizması, bir yoğunluk tahmin tekniği ve iyileştirilmiş 

bir arşiv (ikincil topluluk) yönetimi getirmektedir [Zitzler ve ark., 2001]. 

 

 

          3.2.4.1. SPEA2 Puanlama Algoritması 

 

          Aynı arşiv üyeleri tarafından bastırılan bireylerin puanların aynı olmasını 

önlemek için, SPEA2’ de her bir birey için, hem baskı altına alındığı hem de baskın 

f1 

f2 

f1

f2

f1

Kümeleme Seçme Silme 
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olduğu bireyler dikkate alınmaktadır. Hem arşivdeki ( tP ) hem de ana topluluktaki (Pt) 

her i bireyine, onu bastıran bireylerin sayısını gösteren bir güç (strength) değeri S(i) 

atanır. 

 

              }|{)( jiPPjjiS tt f∧+∈=              (3.11) 

 

          Burada + kümelerin birleşimini,  sembolü ise Pareto baskınlık ilişkisini 

göstermektedir. Bir i bireyinin ham puanı R(i), S değerlerine bağlı olarak şöyle 

hesaplanır:   

f

 

   ∑
+∈

=
ijPPj tt

jSiR
f,

)()(                      (3.12) 

 

          Bu değer, o bireyi hem arşivde hem de ana toplulukta bastıran bireylerin güçleri 

kullanılarak belirlenir. Burada puan değerinin küçük olması önemlidir, örneğin R(i)=0 

ise bu birey bir Pareto bireydir, R(i) değerinin büyük olması ise, o bireyin birçok birey 

tarafından bastırıldığı anlamına gelmektedir. Bu ham puan atama işlemi her ne kadar 

Pareto tanımına dayanan bir çeşitlilik sağlasa da, birçok bireyin birbirilerine baskın 

olamadığı durumlarda sıkıntılara yol açabilir. Bu yüzden, aynı ham puan değerlerine 

sahip bireylerin ayırt edilebilmesi için SPEA2’ de ek bir yoğunluk bilgisi 

kullanılmaktadır. SPEA2’ de kullanılan yoğunluk tahmin tekniği k. en yakın komşuluk 

yönteminden uyarlanmıştır. Burada, yoğunluk bilgisi k. en yakın komşu bireye olan 

mesafenin bir (azalan) işlevidir. SPEA2 yöntemini önerenler, basit olarak k. en yakın 

komşuya olan mesafenin tersini yoğunluk bilgisi olarak kullanmışlardır. Her i bireyinin 

arşivde ve o andaki ana toplulukta olan her j bireyine olan olan mesafesi (amaç 

uzayında) hesaplanır ve bir listede saklanır. Bu liste artan bir sırada sıralandıktan sonra, 

k. eleman istenilen mesafeyi ( ) gösterir. Genellikle k, örnekleme oranının karekökü 

olarak alanır, burada 

k
iσ

NNk += ’ dir (N: topluluk boyutu, N : arşiv boyutu). Buna 

göre, i bireyinin yoğunluğu D(i) şöyle hesaplanır:  
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2
1)(
+

= k
i

iD
σ

        (3.13) 

 

          Paydaya yoğunluk değerinin sıfırdan büyük olmasını sağlamak için iki değeri 

eklenmiştir, böylece D(i) < 1 olur. Sonuç olarak, bir i bireyinin son puanı F(i), ham 

puanına (R(i)) yoğunluk bilgisinin (D(i)) eklenmesiyle bulunur:  

 

)()()( iDiRiF +=         (3.14) 

 

          Örnek bir topluluğun SPEA2 yöntemi tarafından puanlanması, Şekil 3.18’ de iki 

adım olarak gösterilmektedir. İlk adımda, bireylerin güç değerleri hesaplanmaktadır.  

Bir bireyin gücü, bu bireyin baskın olduğu bireylerin toplam sayısı ile belirlenir:  

 

S(A)=2, S(B)=3, S(C)=2, S(D)=1, S(E)=1, S(F)=1, S(G)=1, S(H)=0    (3.15) 

 

          A bireyi iki bireye {G,H} baskın olduğu için, A bireyinin gücü S(A)=2 olur.        

H bireyi hiçbir bireye baskın olmadığı için H bireyinin gücü S(H)=0 olur.  Bir bireyin 

gücü, onun bağıl baskın olma yeteneğini gösterir. İkinci adım, ham puanların 

belirlendiği adımdır. Bir bireyin ham puanı, ona baskın olan bireylerin güçleri 

toplamıdır. Bu tanıma göre, Pareto ya da baskın bireyler {A,B,C,D}  “ 0 ” ham puan 

değerini alır. Örneğin A bireyinin ham puanı hiçbir birey tarafından bastırılamadığı için 

R(A)=0 olurken, H bireyi tüm bireyler tarafından bastırıldığı için R(H)=11 olur.       

Tüm bireylerin ham puanları aşağıda verilmektedir: 

 

          R(A)=R(B)=R(C)=R(D)=0        (3.16a) 

          R(E)=S(C)=2          (3.16b) 

          R(F)=S(B)=3          (3.16c) 

          R(G)=S(A)+S(B)=2+3=5        (3.16d) 

          R(H)=S(A)+S(B)+S(C)+S(D)+S(E)+S(F)+S(G)=2+3+2+1+1+1+1+0=11   (3.16e) 

 

          Üçüncü adımda, her bireyin son puanı; ham puanına yoğunluk bilgisinin 

eklenmesiyle bulunur. Şekil 3.18a, SPEA2 yöntemi tarafından atanan ham puan 
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değerlerini göstermektedir, burada A,B,C ve D bireyleri aynı puana sahiptir ve bireylerin 

en çok istenilenden en az istenilene göre sıralaması şöyledir: A,B,C,DfE FfG H. 

Şekil 3.18b ise SPEA2 yöntemi tarafından atanan son puanları göstemektedir ve 

bireylerin en çok istenilenden en az istenilene göre sıralaması ise şöyledir: 

A,D B C E F GfH.  

f f

f f f f f

 

 

 

 

 

 

 

 

 

  

A (0)

F(3)

B (0)

C (0)
D (0)

E(2) 

G(5) 

H(11) 

f1 

A (0.1019) 

F(3.1429) 

B (0.1086)

C (0.1148) 
D (0.1019) 

E(2.1277) 

G(5.1086) 

H(11.1078) 

f1 

f2 f2 

 

             (a)            (b)  

                  
                  Şekil 3.18. (a) SPEA2  ham puanları  

             (b) SPEA2 son puanları (arşiv boyutu=2, dolayısıyla k=3.1623) 
 

 

          3.2.4.2. SPEA2 Arşiv Yönetimi 

 

          SPEA2 arşiv yönetiminde ilk olarak, arşivdeki veya ana topluluktaki puanı birden 

küçük olan tüm elit (Pareto) bireyler, bir sonraki neslin (adımın) arşivine kopyalanırlar 

(P-ana topluluk, P -arşiv, N-topluluk boyutu, N -arşiv boyutu) : 

  

          { }1)(|1 <∧+∈=+ iPuanPPiiP ttt         (3.17) 

 

          Eğer arşive kopyalanan Pareto birey sayısı, daha önceden belirlenen arşiv 

boyutuna ulaşırsa ( NPt =+1 ) artık seçme mekanizmasına geçilebilir. Aksi takdirde, iki 

durum söz konusu olacaktır: ya arşiv boyutununa ulaşılamaz ( NPt <+1 ) ya da arşiv 



 87

boyutu aşılmış olabilir ( NPt >+1 ). Eğer arşiv boyutuna ulaşılamazsa, bir önceki 

adımdaki arşiv ve topluluktaki Pareto olmayan bireylerden en iyi 1+− tPN  adedi 

gelecek arşive kopyalanır. Bu işlem şöyle yapılır: arşiv ve ana topluluk ( tt PP + ) 

birleştirilir ve bireyler puan değerlerine göre sıralanır. Sıralanmış listeye göre puanı     

1’ den büyük veya 1’ e eşit olan 1+− tPN  adet birey yeni arşive ( 1+tP ) kopyalanır. 

Eğer arşiv boyutu aşılırsa yani Pareto bireylerin sayısı arşiv boyutundan fazla olursa, bu 

durumda bir çeşit arşiv güncelleme yöntemi kullanılarak arşivdeki bireylerden bazıları 

arşiv boyutuna ulaşılıncaya kadar silinirler. Silme işleminde bireylerin birbirlerine olan 

mesafeleri göz önüne alınır. Bir bireye en yakın birey silinir. Eğer en az mesafeye sahip 

birkaç birey varsa, bu durumda en yakın 2. birey silinir, bu işlem böylece devam eder. 

Bu işlemin nasıl yapıldığına dair grafiksel anlatım Şekil 3.19’ da gösterilmektedir.  

 
f2  

 

 

 

 

 

 

    
 

 
     

    Şekil 3.19. SPEA2 arşiv güncellemesi. Sağ taraftaki şekilde Pareto bireylerin bir 
                        kümesi gösterilmektedir. Sol taraftaki şekilde ise güncelleme işlevi 
                        kullanılarak bireylerin silinmesi gösterilmektedir. Bu örnekte arşiv 
                        boyutu 5 seçilmiştir 
 

 

          3.2.5. Diğer Yöntemler  

 

          Literatürde çok sayıda ÇAGA yöntemi önerilmiştir ve her geçen gün bu 

yöntemlerin sayısı artmaktadır. ÇAGA ile çok boyutlu durumdan puanlama ile tek 

boyuta inilmesinden dolayı, puanlama işlemini yapmanın tek bir yolu yoktur. Bu 

f1 f1 

f2 

3 

2 

1 
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nedenle ÇAGA yöntemlerinin sayısı fazladır. Literatürde önerilen ve sık kullanılan bazı 

yöntemler şöyledir: PAES (Knowles ve Corne, 2000), PESA (Corne ve ark., 2000), 

NSGA-II (Deb ve ark., 2002b), DMOEA (Yen ve Lu, 2003) vb. Bu yöntemler tezde 

kullanılmadığı için ayrıntılarına inilmeyecektir. Bu yöntemlerin etkinlikleri, genellikle 

test işlevleri kullanılarak araştırılmıştır. Bu yöntemlerle ve GA’ larla ilgili birçok 

kaynağa internet üzerinden (http://www.lania.mx/~ccoello/EMOO/, Erişim zamanı: 

10.10.2006) sitesinde ulaşılabilir. 

 

  

          3.3. Çok Amaçlı Genetik Algoritmalarda Kullanılan Test İşlevleri 

 

          Literatürde çok sayıda ÇAGA yöntemi önerilmiştir ve önerilmeye devam 

edilmektedir. Bu kadar çok sayıda yöntemin olması, bu yöntemlerden hangisi 

diğerlerinden daha iyidir şeklinde bir soru sorulmasına yol açmaktadır. Ayrıca, bir 

yöntemin etkinliğini test etmek için, o yöntemin zor problemler üzerinde denenmesi 

gereklidir. Bu amaçla, ÇAGA yöntemlerinin karşılaştırma çalışmalarında veya bir 

ÇAGA yönteminin etkinliğinin tespit edilmesinde kullanılmak üzere birçok yapay test 

işlevi önerilmiştir ve bunlar karşılaştırma çalışmalarında kullanılmışlardır [Deb, 1999; 

Deb, 2001; Huband ve ark., 2006; Coello Coello, 2007]. Bu test işlevleri, genetik 

algoritmaların nasıl çalıştığı konusunda çok fazla bilgi sahibi olunmadan ortaya atılmış 

analitik ifadelerdir. Bir ÇAGA’ da istenilen iki özellik vardır: Pareto-optimal cepheye 

mümkün olduğunca yakınsama ve bu cephe üzerinde çözümlerin düzgün dağılımı. 

ÇAGA test işlevleri, genellikle bu iki amaca ulaşılmasını zorlaştıracak biçimlerde 

oluşturulmuştur. Örneğin, çok modluluk, ayrık Pareto-optimal cepheler, içbükeylik, 

dışbükeylik, düzgün dağılmamış Pareto-optimal cephe vb. 

          Kısıtlamalı ve kısıtlamasız çok amaçlı genetik algoritmalar için, bu tür test 

işlevlerinin oluşturulması amacıyla Deb tarafından sistematik bir yol da önerilmiştir 

[Deb, 1999]. Bu bölümde, kısıtlamasız test işlevlerinden literatürde en çok kullanılanları 

verilmektedir. 

 

 

 

 

http://www.lania.mx/%7Eccoello/EMOO/
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          3.3.1. SCH1 Test İşlevi 

 

          Basit olmasına rağmen, en çok kullanılan tek parametreli (değişkenli) test 

işlevidir. Schaffer tarafından önerilmiştir [Schaffer, 1984]. Bir en küçükleme 

problemidir ve matematiksel ifadesi aşağıdaki eşitlikte verilmektedir: 

 

( )
( ) ( )

AxA
xxf

xxf

≤≤−
−=

=
2

2

2
1

2                                (3.18)

  

          Bu işlev,  aralığında Pareto-optimal çözümlere sahiptir ve Pareto-optimal 

çözüm kümesi 

[ 2,0∈x ]
40 1 ≤≤ f  aralığındadır. Parametre sınırları için (A), farklı çalışmalarda 

farklı değerler kullanılmıştır. A değeri yükseldikçe, Pareto-optimal cepheye olan 

yakınsama zorlaşmaktadır. Bu test işlevinin A=6 değeri için grafiği Şekil 3.20’ de 

verilmektedir. 

 

 
 

Şekil 3.20. SCH1 test işlevi 
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          3.3.2. SCH2 Test İşlevi 

 

          Schaffer tarafından önerilmiştir [Schaffer, 1984]. Birçok çalışmada ve 

uygulamada kullanılmıştır. Bir en küçükleme problemidir ve matematiksel ifadesi 

aşağıdaki eşitlikte verilmektedir: 

 

     (3.19a) ( )

⎪
⎪
⎩

⎪
⎪
⎨

⎧

>−
≤<−
≤<−

≤−

=

4x                   4x
                  4x3                   x4

       3x1                   2x
1x                      x

xf1

         (3.19b) ( ) ( )22 5−= xxf

          (3.19c) 105 ≤≤− x

          

          Pareto-optimal cephe, iki ayrık bölgeden oluşmaktadır: [ ] [ ]{ } 4,51,2 x ∪∈  .  

Şekil 3.21, bu test işlevinin grafiğini göstermektedir. Bu problemin zorluğu, iki ayrık 

bölgede yer alacak Pareto bireylerin çeşitliliğinin sağlanmasıdır.  

 

 
 

Şekil 3.21. SCH2 test işlevi 

         

 



 91

          3.3.3. FON Test İşlevi 

 

          Fonseca ve Fleming tarafından kullanılmış, n parametreli iki amaçlı bir test 

işlevidir [Fonseca ve Fleming, 1995]. Bir en küçükleme problemidir ve matematiksel 

ifadesi aşağıdaki eşitlikte verilmektedir: 
 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−= ∑ =

n
i i n

xxf 1
2

1 )1(1exp1         (3.20a)                 

                       ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−= ∑ =

n
i i n

xxf 1
2

2 )1(1exp1     (3.20b)  

                              44 ≤≤− ix ni ,...,2,1=       (3.20c) 

 

          Bu test işlevinin Pareto-optimal cephesi ⎥⎦

⎤
⎢⎣

⎡−∈
nn

xi
1,1  aralığındadır.         

Şekil 3.22’ de 10 parametre için, FON test işlevinin grafiği gösterilmektedir.        

Pareto-optimal cephe dışbükeydir. Bu yüzden bazı algoritmalar (ağırlıklı toplam 

yaklaşımı gibi) Pareto-optimal bireylerin bu cepheye düzgün dağılmasını 

sağlayamayabilirler. 

 
 

 
 

Şekil 3.22. FON test işlevi 
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          3.3.4. POL Test İşlevi 

 

          Poloni tarafından önerilmiş, iki değişkenli ve iki amaçlı bir test işlevidir [Poloni 

ve ark., 2000]. Bir en küçükleme problemidir ve matematiksel ifadesi aşağıdaki eşitlikte 

verilmektedir: 
 

  ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −+−+= 2

22
2

111 1 BABAxf     (3.21a) 

  ( ) ( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ +++= 2

2
2

12 13 xxxf      (3.21b) 

  2cos5.12sin1cos21sin5.01 −+−=A     (3.21c) 

  2cos5.02sin21cos1sin5.12 −+−=A     (3.21d)  

  22111 cos5.1sincos2sin5.0 xxxxB −+−=                 (3.21e) 

22112 cos5.0sin2cossin5.1 xxxxB −+−=     (3.21f) 

ππ ≤≤− ),( 21 xx        (3.21g) 
 

          Bu test işlevi, Şekil 3.23’ te gösterildiği gibi, içbükey ve ayrık bir Pareto-optimal 

cepheye sahiptir. Diğer ayrık test problemlerinde olduğu gibi, çoğu çok amaçlı 

optimizasyon algoritmasının Pareto-optimal cepheyi bulması zordur. 
 

 
 

Şekil 3.23. POL test işlevi 
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          3.3.5. Sık Kullanılan Diğer Test İşlevleri   

 

          Deb ve ark. tarafından, sistematik olarak tasarlanmış çeşitli test işlevleri 

önerilmiştir [Deb ve ark., 1999]. Bu test işlevleri; i) Pareto-optimal cepheye yakınsama 

ve ii) topluluk içerisinde çeşitliliğin sağlanması açısından çok amaçlı genetik algoritma 

yöntemleri için zorluklara (sorunlara) yol açar. İlk durum için, çok modluluk, aldatıcılık 

ve yalıtılmış en iyi, en çok bilinen sorunlardır. İkinci durum, düzgün dağılmış bir Pareto 

cephesi elde edilmesi için önemlidir. Bununla beraber, Pareto-optimal cephenin 

karakteristikleri bir GA’ nın düzgün olarak dağılmış Pareto-optimal bireyler bulmasını 

zorlaştırabilir: dışbükeylik veya içbükeylik, ayrıklık ve düzgün olmayan dağılım.      

Deb ve ark.’ larının önerdiği yolun ışığı altında 6 adet test işlevi oluşturulmuş ve bunlar 

ÇAGA yöntemlerinin karşılaştırılması için kullanılmışlardır [Zitzler ve ark., 2000,    

Deb, 2002a]. Bu test işlevlerinin hepsi en küçüklenme problemidir. Bu test işlevleri 

 gibi üç adet işlevden oluşmaktadırlar: hgf ,,1

 

                  )(xrτ =( )        (3.22a) )(),( 211 xfxf
r

                    (3.22b) )()( 111 xfxf =

            )),...,(),((),...,()( 2122 xxgxfhxxgxf mm ⋅=
r      (3.22c)

                     (3.22d)            ),...,( 1 xxx m=
r

      

           işlevi yalnızca ilk parametreye bağlıdır,  işlevi ise geriye kalan f 1 g 1−m  

parametreye bağlı bir işlevdir.  ise  ve h f 1 g ’ nin işlev değerlerine bağlıdır. Bu test 

işlevleri; bu üç işleve, parametre sayısına ve bu parametrelerin aldıkları değerlere göre 

birbirinden ayrılmaktadırlar.  

          Bu altı adet test işlevi ZDT1, ZDT2, ZDT3, ZDT4, ZDT5 ve ZDT6 olarak 

adlandırılır. ZDT adı öneren kişilerin soyadlarının baş harfleridir [Zitzler, Deb, Thiele]. 

          ZDT test işlevleri birçok ÇAGA karşılaştırmasında sık olarak kullanılmıştır ve 

kullanılmaya devam edilmektedirler [Zhang ve ark., 2006; Chen ve Lu, 2008; Gao, 

2009; Wang ve ark., 2009]. Bu tezde de bu test işlevlerinden dört tanesi yeni 

yöntemlerin karşılaştırılmasında kullanılmak üzere seçilmiştir.  
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          3.3.5.1. ZDT1 Test İşlevi 

 

          ZDT1 test işlevi dışbükey bir Pareto-optimal cepheye sahiptir: 

 

    =            (3.23a) )( 11 xf 1x

   = ),...,( 2 xxg m ∑
=

−⋅+
m

i
i mx

2
)1(91                    (3.23b) 

   = ),( 12 gff gf 1−1                   (3.23c) 

        

          Burada m=30 ve ’ dir. Pareto-optimal cephe ]1,0[∈ix 1)( =xg r  alınarak 

oluşturulur. Bu test işlevinin Pareto-optimal cephesi Şekil 3.24’ te verilmektedir.  

 

 

 

 

      Şekil 3.24. ZDT1 test işlevinin Pareto-optimal cephesi 
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          3.3.5.2. ZDT2 Test İşlevi 

 

          Bu test işlevi, ZDT1 test işlevinin içbükey bir biçimidir: 

 

    =                     (3.24a) )( 11 xf 1x

   = ),...,( 2 xxg m ∑
=

−⋅+
m

i
i mx

2
)1(91      (3.24b) 

   = ),( 12 gff )(1 1
2

gf−       (3.24c) 

 

          Burada m=30 ve ’ dir. Pareto-optimal cephe ]1,0[∈ix 1)( =xg r  alınarak 

oluşturulur. Bu test işlevinin Pareto-optimal cephesi Şekil 3.25’ de verilmektedir.  

 

 
 

       Şekil 3.25. ZDT2 test işlevinin Pareto-optimal cephesi 

 

 

          3.3.5.3. ZDT3 Test İşlevi 

 

          Bu test işlevi ayrık bir işlev özelliği gösterir, Pareto-optimal cephesi birkaç adet 

sürekli olmayan (ayrık) dışbükey parçadan oluşur: 
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   =         (3.25a) )( 11 xf x1

   = 1+),...,( 2 xxg m ∑
=

−⋅
m

i
i mx

2
)1(9      (3.25b) 

   = ),( 12 gff )10sin()(1 111 fgfgf π−−               (3.25c) 

 

          Burada m=30 ve ’ dir. Pareto-optimal cephe ]1,0[∈ix 1)( =xg r  alınarak 

oluşturulur.  ifadesindeki sinüs işlevi Pareto-optimal cephede ayrıklığa neden 

olmaktadır. Bununla birlikte, parametre uzayında hiçbir ayrıklık yoktur. Bu test 

işlevinin grafiği Şekil 3.26’ da verilmektedir.  

2f

 

 
 

Şekil 3.26. ZDT3 test işlevi 

 

 

          3.3.5.4. ZDT4 Test İşlevi 

 

          Bu test işlevi, 219 adet yerel Pareto-optimal cepheden oluşur ve bu yüzden 

ÇAGA’ ların çok modluluğa olan tepkisinin ölçülebilmesi için kullanılır: 

 

   =         (3.26a) )( 11 xf 1x
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   =   (3.26b)  ),...,( 2 xxg m ))4cos(10()1(101
2

2 xxm i
m

i
i π−+−+ ∑

=

   = ),( 12 gff gf 1−1       (3.26c) 

 

          Burada m=10,  ve ]1,0[∈ix ]5,5[,...,2 −∈mxx ’ tir. Küresel Pareto-optimal cephe 

1)( =xg r  alınarak oluşturulur. En iyi yerel Pareto-optimal cephe ise 25.1)( =xg r  

alınarak oluşturulur. Şunu belirtmek gerekir ki; yerel Pareto-optimal cephelerin tamamı 

amaç uzayında ayırt edilemez. Bu test işlevinin Pareto-optimal cephesi Şekil 3.27’ de 

verilmektedir.  

 

 
 

        Şekil 3.27. ZDT4 test işlevinin Pareto-optimal cephesi 

 

 

          3.3.5.5. ZDT5 Test İşlevi 

 

          Bu test işlevi ÇAGA’ ları aldatıcı bir problem oluşturur ve diğer test işlevlerinden 

parametrelerinin ikili sayı dizisi olması nedeniyle ayrılır:  
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   = 1        (3.27a) )( 11 xf )( 1xu+

   =       (3.27b) ),...,( 2 xxg m ))((
2
∑
=

m

i
ixuv

   = ),( 12 gff f 11        (3.27c) 

 

          Burada ,  bit dizisindeki 1’ lerin sayısını verir. )( ixu ix

 

    eger   =))(( xuv i
⎩
⎨
⎧ +
1

)(2 xu i eger
5)(
5)(

=
<

xu
xu

i

i                  (3.28) 

 

          Burada m=11,  ve ’ tir. Küresel Pareto-optimal 

cephe 

30
1 }1,0{∈x 5

2 }1,0{,..., ∈mxx

10)( =xg r  alınarak oluşturulur. 11)( =xg r  alınarak ise en iyi aldatıcı Pareto-

optimal cephe görülebilir. Küresel Pareto-optimal cephe gibi yerel cepheler de 

dışbükeydir. Bu test işlevinin Pareto-optimal cephesi Şekil 3.28’ de verilmektedir. 

 

 

 
 

           Şekil 3.28. ZDT5 test işlevinin Pareto-optimal cephesi 
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          3.3.5.6. ZDT6 Test İşlevi 

 

          Bu test işlevi düzgün olmayan dağılıma neden olan iki zorluk içermektedir: ilk 

olarak, Pareto-optimal bireyler küresel Pareto-optimal cephe üzerinde düzgün bir 

biçimde dağılmamışlardır; ikinci olarak, Pareto-optimal cephe yakınlarında bireylerin 

yoğunluğu en azdır, uzakta ise en fazladır:   

   

   = 1      (3.29a) )( 11 xf )6(sin)4exp( 1
6

1 xx π−−

)/( 1
2gf−

   =     (3.29b) ),...,( 2 xxg m ∑
=

−⋅+
m

i
i mx

2

25.0))1/()((91

   = 1       (3.29c)               ),(2 1 gff

 

          Burada m=10, ’ tir. Pareto-optimal cephe ]1,0[∈ix 1)( =xg r  alınarak oluşturulur 

ve içbükeydir. Bu test işlevinin grafiği Şekil 3.29’ da verilmektedir. 

 

 

 
 

Şekil 3.29. ZDT6 test işlevi 
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          Literatürde ÇAGA yöntemlerinin karşılaştırılması için birçok test işlevi 

önerilmiştir. Huband ve ark., bu test işlevlerini derleyerek, bir test işlevi araç kutusu 

haline getirmişlerdir. Ayrıca, bu test işlevlerinin özelliklerini ve problem tiplerini de 

belirtmişlerdir. Çizelge 3.1’ de, literatürde sık kullanılan bazı kısıtlamasız test işlevleri, 

parametre sınırları ve problem tipleri verilmektedir. 

 
 

Çizelge 3.1. ÇAGA test işlevleri  (m parametre sayısı)  
 

Test 
İşlevi 

m Parametre 
Sınırları Amaç İşlevleri Pareto 

Cephesi 

ZDT1 30 [0,1] 
( )1/91)(

])(/1)[()(

)(

2

12

11

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

−=

=

∑
=

mxXg

XgxXgXf

xXf

m

i
i

 
Dışbükey 

ZDT2 30 [0,1] 
( )1/91)(

]))(/(1)[()(

)(

2

2
12

11

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

−=

=

∑
=

mxXg

XgxXgXf

xXf

m

i
i

 
İçbükey 

ZDT3 30 [0,1] 

( )1/91)(

)]10sin(
)(

)(/1)[()(

)(

2

1
1

12

11

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

−−=

=

∑
=

mxXg

x
Xg

x
 -             

XgxXgXf

xXf

m

i
i

π  
Dışbükey 

ve 
Süreksiz 

ZDT4 10 ]5,5[,.,2 −∈mxx
]1,0[1 ∈x

 ))4cos(10(

)1(101)(
])(/1)[()(

)(

2

2

12

11

xx            

mXg
XgxXgXf

xXf

i
m

i
i π−+

+−+=

−=

=

∑
=

 Dışbükey 

ZDT6 10 [0,1] 

( )
25.0

2

2
12

1
6

11

1/91)(

]))(/)((1)[()(

)6(sin)4exp(1)(

⎥
⎥
⎦

⎤

⎢
⎢
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İçbükey 
ve 

Düzgün 
Dağıtılma

mış 

MOP1 
(SCH1) 1 [-105, 105] 

2
1 xf =  

2
2 )2( −= xf  

Dışbükey 

 
MOP2 - [-4,4] 

∑
∑

=

=

−−−=

−−−=

n
i in

n
i in

nxxxf

nxxxf

1
2

12

1
2

11

))/1(exp(1),...,(

))/1(exp(1),...,(
 İçbükey 
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Çizelge 3.1. (devamı) ÇAGA test işlevleri(m parametre sayısı)  
 

MOP3 2 [-π, π] 

22112

22111

2

1

2
2

2
1212

2
22

2
11211

cos5.0sin2cossin5.1
cos5.1sincos2sin5.0
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∑
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MOP5 2 [-30,30] 
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1
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İçbükey 

DTLZ3 - [0,1] DTLZ2 ile aynı, yalnızca g ifadesi DTLZ1’ deki 
ile değiştirilir. İçbükey 
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Çizelge 3.1. (devamı) ÇAGA test işlevleri (m parametre sayısı)  
 

DTLZ4 - [0,1] DTLZ2 ile aynı, yalnızca, yyi ∈  ifadesi  ile 
değiştirilir (

α
iy

0>α ’ dır) 
İçbükey 

DTLZ5 - [0,1] 
DTLZ2 ile aynı, yalnızca yyy M ∈−12 ,...,  ifadesi 

)1(2
21

g
gyi
+

+
 ifadesi ile değiştirilir. - 

DTLZ6 - [0,1] DTLZ5 ile aynı, yalnızca g ifadesi  
ile değiştirilir. 
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))3sin(1(
1

)1( π  
Süreksiz 

 

           

          3.4. Çok Amaçlı Genetik Algoritma Başarım Ölçütleri  

 

          Bir optimizasyon problemini çözmek için yeni bir yöntem önerildiğinde, önerilen 

yöntemin çalıştığını gösteren görsel bir tanımlama yeterlidir. Bu tür yöntemlerin 

işleyişinin okuyucunun zihninde, bir resminin çizilebilmesi önemlidir. Bununla birlikte, 

yöntem popüler olduğunda ve birçok farklı uygulaması yapıldığında, başarımının 

karşılaştırılabilmesi için çeşitli test işlevlerine verdiği tepkiler belirlenmelidir.  

          Çok önceleri, ÇAGA’ ların amaç uzayında buldukları bastırılamayan bireyler ile 

gerçek Pareto-optimal bireylerin birlikte gösterilerek karşılaştırma yapılmaktaydı. Bu 

çalışmalarda, bulunan sonuçların gerçek Pareto-optimal sonuçlara ne kadar yaklaştığı 

vurgulanırdı. Farklı ÇAGA yöntemlerinin önerilmesiyle birlikte, bu yöntemlerin çeşitli 

test işlevleri üzerinde başarımlarının karşılaştırılması gerekli olmuştur. Bir karşılaştırma 

çalışması yapmadan önce, uygun bir test işlevinin seçilmesine ihtiyaç vardır. Test 

işlevlerinin Pareto-optimal cephelerinin yerinin bilinmesi gereklidir (hem amaç hem de 

parametre uzayında).  

 Çok amaçlı optimizasyonun iki temel amacı vardır: (i) Pareto-optimal cepheye 

(önceden biliniyorsa) mümkün olduğunca yakın çözümler bulmak (yakınsama),          

(ii) bulunan bastırılamayan bireylerin Pareto cephesinde mümkün olduğunca düzgün 

dağılması (dağılım veya çeşitlilik). İlk amaç, Pareto-optimal bölgeye doğru bir aramaya 
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ihtiyaç duyarken; ikinci amaç, Pareto-optimal cephe boyunca bir aramaya ihtiyaç duyar 

(Bkz. Şekil 3.30a). 

          Çeşitliliği fazla olan bir küme, tüm Pareto-optimal cepheye düzgün olarak 

dağılmış bireylerden (çözümlerden) oluşur. Çeşitlilik ölçütü, aynı zamanda iki farklı 

ölçüte ayrılabilir: en uç bireylerin yayılımı ve dağılım (bireyler arasındaki bağıl mesafe) 

[Zitzler ve ark., 2000].  

 

 

 

 

   

 

 

 

 

 

   (a)         (b)        
 
                Şekil 3.30.  (a) Çok amaçlı optimizasyonda ulaşılması istenen iki amaç               

            (b) İdeal bir Pareto-optimal çözüm kümesi 
 
 
  İyi bir ÇAGA yönteminin, gerçek Pareto-optimal cepheye yakın ve bu cepheye 

düzgün olarak dağılmış çözümler bulması gerekmektedir. Şekil 3.30b’ de örnek bir 

problem üzerinde ideal bir ÇAGA’ nın başarımı gösterilmektedir. Açıkça görüleceği 

üzere; bulunan Pareto bireyler Pareto-optimal cephe üzerinde yerleşmekte ve bu cephe 

üzerinde düzgün olarak dağılmaktadırlar. Bununla birlikte, problemden gelen farklı 

zorluklar ve seçilen algoritmanın yetersizliğinden dolayı, bu şekilde iyi yakınsamış ve 

iyi dağılmış Pareto bireylerin bir ÇAGA tarafından bulunması her zaman mümkün 

değildir. Şekil.31 (a) ve (b) ’ de iki farklı algoritma tarafından bulunmuş Pareto-optimal 

bireyler gösterilmektedir. 1. algoritma Pareto-optimal cepheye çok iyi yaklaşmasına 

rağmen, bu cephede bireylerin dağılımı kötüdür. Yani bu algoritma, Pareto-optimal 

bölgenin orta kısımları için hiçbir bilgi sağlayamamaktadır. Diğer taraftan, 2. algoritma 

bireyleri düzgün bir şekilde dağıtmasına rağmen, bulunan sonuçlar ne yazık ki gerçek 

İkincil 
Amaç 

Birincil 
Amaç 

f1 

f2 

Pareto-optimal 
Çözümler 

f1 

f2 

Arama 
Uzayı

Arama 
Uzayı 

Pareto-optimal 
Cephe 
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Pareto-optimal cepheye yakın değildir. Pareto-optimal sonuçlar bulunamamıştır. Bu 

yüzden, bu algoritmanın daha iyi olduğuna dair kesin bir sonuca varmak zordur. 

 

 

 

 

 

 

 

 

 

 
 
   (a)         (b)          

 
Şekil 3.31. (a) Yakınsama iyi, ancak dağılım kötü (1. Algoritma) 

                (b) Yakınsama kötü, ancak dağılım iyi (2. Algoritma) 
                            

          Pareto-optimal cepheye yakınsama ve bu cephe üzerinde düzgün dağılım 

birbiriyle çatışan iki farklı amaç olduğu için, bir algoritmanın başarımına karar 

verebilecek tek bir ölçüt yoktur. 1. algoritma birinci amaç için iyiyken, 2. algoritma 

ikinci amaç için iyidir. Eğer, Pareto-optimal cepheye yakınsama ile ilgili bir ölçüt 

tanımlarsak ve bir diğer ölçütü de düzgün dağılım için tanımlarsak, iki algoritma 

birbirini bastıramaz, yani birbirlerine karşı bir üstünlükleri yoktur. Dolayısıyla, bu iki 

amacı sağlamak için en azından iki ölçüte ihtiyaç vardır.  

 Şekil 3.32a’ da B algoritması tarafından bulunan Pareto bireylere göre, A 

algoritması tarafından bulunan Pareto bireyler Pareto-optimal cepheye daha yakındır. 

Bu durumda, A algoritmasının B algoritmasından daha iyi olduğu açıkça görülmektedir. 

Bununla birlikte, Şekil 3.32b’ de, A algoritmasının bulduğu bireylerden bazıları, B 

algoritmasının bulduğu bireylerden bazılarını bastırmaktadır ve bunun tersi de söz 

konusudur. Bu durum, çok amaçlı optimizasyon için bir başarım ölçütü tasarlarken 

dikkat edilmesi gereken bir zorluktur. Burada, iki algoritma da, yakınsama ve çeşitlilik 

açısından birbirlerine benzerdirler. Bu tür bir karşılaştırmayı yapabilmek için, ölçütlerin 

çok iyi tanımlanması gereklidir.  
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 f2 f2 

 

 

 

 

 

 

 
 

   (a)      (b) 
           
                        Şekil 3.32. (a) A algoritması B algoritmasından daha iyi  

       (b) A ve B algoritmalarını karşılaştırmak zor 
 

          Yukarıdaki tartışmalara göre, iki veya daha fazla algoritmayı karşılaştırırken, en 

azından iki başarım ölçütünün kullanılması gerektiği ve başarım ölçütlerinin 

tanımlarının çok iyi yapılması gerektiği anlaşılmaktadır. Aşağıda literatürde kullanılan 

başarım ölçütlerinin bazıları üç farklı kategoride incelenmektedir: ilk bölümde     

Pareto-optimal cepheye olan yakınsamayı bulmak için kullanılan ölçütler, ikinci 

bölümde çeşitliliği veya dağılımı ölçmek için kullanılan ölçütler ve üçüncü bölümde her 

iki amacı da ölçmek için kullanılan ölçütler verilmektedir. Literatürde çok sayıda  

başarım ölçütü önerilmiş ve önerilmeye devam edilmektedir. Tezde yer almayan diğer 

başarım ölçütleri ile ilgili ayrıntılı bilgilere (Deb, 2001; Coello Coello ve ark., 2007) 

kaynaklarından ulaşılabilir.  

 

 

          3.4.1. Yakınsama İçin Kullanılan Başarım Ölçütleri 

 

          Bu ölçütler, önceden bilinen bir Pareto-optimal kümeye (PP

*), ÇAGA yönteminin 

bulduğu N adet bireyden oluşan bir Q kümesinin yakınsamasını ölçmek için kullanılır. 

Farklı boyutlardaki bu iki farklı küme arasındaki yakınsamayı bulmak için, çok sayıda 

ölçüt tanımlanabilir. Aşağıda bu amaç için, literatürde yer alan ve kullanılan ölçütlerden 

bazıları verilmektedir. Bu ölçütler, eğer P* 
P kümesi çok elemanlı seçilirse (örneğin 500 

bireylik), yakınsama için iyi bir tahmin sağlayabilmektedirler. 

f1 

A 
B B

A 

f1 
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          3.4.1.1. Hata Oranı (Error Ratio, ER)  

 

          Bu ölçüt, basitçe Q kümesinde yer alan çözümlerden (bireylerden) kaç tanesinin 

PP

* Pareto-optimal kümesinin üyesi olmadığının sayılmasıyla hesaplanır [Veldhuzien, 

1999] ve matematiksel olarak şöyle hesaplanır; 

 

    
Q

e
ER

Q
i i∑ == 1         (3.30) 

 

          Burada eğer i bireyi PP

* kümesinin elemanı değilse e =1, aksi takdirde ise e =0 

olur. Şekil 3.33’ te P* 

i i

P ve Q kümeleri gösterilmektedir. Buna göre Q kümesinde,            

Pareto-optimal kümeye ait olmayan 3 birey (A,B,D) ve toplamda 5 birey olduğu için, 

hata oranı ER=3/5=0.6 olarak hesaplanır. (3.30) eşitliğine göre eğer ER değeri küçük bir 

değerse, bunun anlamı Pareto-optimal cepheye iyi bir yakınsama söz konusu olduğudur. 

ER ölçütü, 0 ile 1 arasında değerler alır. ER=0 ise, tüm bireyler Pareto-optimal cepheye 

aittir ve en iyi yakınsama elde edilmiştir, ER=1 ise hiçbir birey Pareto-optimal cepheye 

ait değildir ve yakınsama en kötüdür ya da yoktur.  
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Şekil 3.33. Kareler: Pareto-optimal cepheyi oluşturan bireyler (PP

*) ve  
                  Daireler: ÇAGA yöntemi tarafından bulunan Pareto bireyler (Q)  
 

          Burada şunu da belirtmek gerekir ki; eğer Q’ nun bir elemanı Pareto-optimal olup 

eğer PP

* kümesinde yer almıyorsa, bu durumda (3.30) eşitliğinde Pareto olmayan bir 

çözüm olarak düşünülmelidir. Bu yüzden, (3.30) eşitliğinde fazla sayıda bireyden 

oluşan bir P* 
P kümesi kullanılmalıdır. Bu ölçütün bir başka eksikliği de, Q’ nun hiçbir 
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elemanının Pareto-optimal kümeye üye olmaması durumudur. Bu eksikliklerinden 

dolayı, bu ölçüt çok fazla kullanılmamaktadır.  

 

 

          3.4.1.2. Küme Kapsama Ölçütü (Set Coverage Metric, C) 

 

          Bu ölçüt, Zitzler tarafından 1999 yılında sunulmuştur [Zitzler, 1999; Zitzler ve 

Thiele, 1999]. Bu ölçüt, A ve B gibi iki çözüm kümesindeki bireylerin bağıl dağılımı 

hakkında bir fikir elde etmek için kullanılır. Küme kapsama ölçütü C(A,B),                    

B kümesinde yer olan bireylerden kaç tanesinin A kümesinde yer alan bireyler 

tarafından bastırıldığının oranına bakılarak hesaplanır: 

 

  
{ }

B
baAaBb

BAC
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=
:|

),(         (3.31) 

 

          C(A,B)=1 ise, B kümesinin tüm elemanları, A tarafından bastırılmaktadır. Diğer 

taraftan C(A,B)=0 ise, B kümesinin hiçbir elemanı A tarafından bastırılamamaktadır. 

Bastırma işlevi, simetrik bir işlev olmadığı için C(A,B) ölçütü, 1-C(B,A)’ ya eşit 

olmayabilir. Bu yüzden, A’ daki kaç bireyin B tarafından veya B’ deki kaç bireyin A 

tarafından kapsandığını anlamak için hem C(A,B) hem de C(B,A) ölçütlerinin 

hesaplanması gereklidir.  

          Zitzler 1999 yılında, bu ölçütü iki algoritmayı karşılaştırmak için kullanmış olsa 

da, bu ölçüt aynı zamanda A=P* ve B=Q kullanılarak, bir algoritmanın başarımının 

ölçülmesi için de kullanılabilir. C(P*,Q) ölçütü, Q’ da yer alan bireylerin PP

* ‘daki 

bireyler tarafından bastırılmasına bağlı olarak hesaplanabilir. Şekil 3.33’ teki P* 
P ve Q 

kümeleri için, C(P*,Q)=3/5=0.6 olarak hesaplanır, çünkü üç birey (A,B,D) PP

* kümesine 

ait bireyler tarafından bastırılmaktadırlar. C(Q,P*) ise sıfır olacaktır, çünkü P*
P  ‘ın hiçbir 

elemanı Q tarafından bastırılamamaktadır. 
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          3.4.1.3. Nesilsel Mesafe (Generational Distance, GD) 

 

          Bu ölçüt, Q kümesinde yer alan bireylerin PP

* kümesinde yer alan bireylere olan 

ortalama mesafesini hesaplar [Deb, 2001; Deb ve ark., 2002b]: 

 

   
Q

d
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        (3.32) 

 

          p=2 yani iki amaçlı bir problem için, Q’ da yer alan bir i bireyinin, PP

* ‘da en 

yakın olduğu bireyle arasındaki Öklit mesafesi şöyle hesaplanır: 
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          Burada , P
)(* k

mf P

*  ‘ın k. bireyinin m. amaç işlevinde aldığı değerdir. Şekil 3.33 

için, bulunan çözümlerden A bireyi 1 nolu Pareto-optimal çözüme, B bireyi 3 nolu 

Pareto-optimal çözüme, C bireyi 5 nolu Pareto-optimal çözüme, D bireyi 7 nolu   

Pareto-optimal çözüme ve E bireyi de 8 nolu Pareto-optimal çözüme en yakın 

mesafededir. Tüm bireyler için amaç işlevi değerleri Çizelge 3.2’ de verilmektedir. 

 

Çizelge 3.2. Örnek uygulama 
 

Birey f1 f2 Birey f1  f2

1 1.0 7.5 8 8.4 1.2 

2 1.1 5.5 A 1.2 7.8 

3 2.0 5.0 B 2.8 5.1 

4 3.0 4.0 C 4.0 2.8 

5 4.0 2.8 D 7.0 2.2 

6 5.5 2.5 E 8.4 1.2 

7 6.8 2.0    
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          Buna göre bu bireyler arasındaki Öklit mesafeleri şöyle hesaplanabilir: 

 

      ( ) ( ) 36.05.78.70.12.1 22
1 =−+−=Ad     (3.34a)        

    ( ) ( ) 81.00.51.50.28.2 22
3 =−+−=Bd     (3.34b) 

  ( ) ( ) 00.08.28.20.40.4 22
5 =−+−=Cd            (3.34c) 

  ( ) ( ) 28.00.22.28.60.7 22
7 =−+−=Dd     (3.34d) 

  ( ) ( ) 00.02.12.14.84.8 22
18 =−+−=Ed     (3.34e) 

  

          (3.32) eşitliğine göre nesilsel mesafe GD=0.19 olarak hesaplanır. Daha küçük GD 

değerine sahip olan algoritma, yakınsama açısından daha iyidir. Bu ölçütteki zorluk 

şudur; eğer mesafe değerleri arasında büyük bir dalgalanmaya sahip bir Q kümesi varsa, 

bu ölçüt gerçek mesafeyi veremeyebilir. Böyle bir durumda, GD ölçütünün varyansının 

hesaplanması gereklidir. Ayrıca, eğer amaç işlevi değerleri genlik olarak farklılaşıyorsa, 

mesafe hesabı yapılmadan önce normalize edilmelidirler. Mesafe hesabının güvenilir 

olması isteniyorsa, PP

* kümesinin eleman sayısının büyük seçilmesi (örneğin 500) 

gereklidir. 

          Birçok makalede bu ölçüt kullanılmıştır [Zitzler ve Thiele, 1999; Deb, 2002b]. 

Bazı makalelerde bu ölçüt γ  olarak adlandırılmış ve standart sapması da kullanılmıştır. 

Eğer bu değerin standart sapması küçük olarak hesaplanmışsa, γ  değeri güvenilir olarak 

kabul edilmektedir. 

 

 

          3.4.1.4. En Büyük Pareto-Optimal Cephe Hatası (Maximum Pareto- 

                       Optimal Front Error,MFE) 

 

          Bu ölçüt, Q’ nun tüm elemanları arasındaki en kötü di mesafesini hesaplar 

[Veldhuizen, 1999]. Şekil 3.33’ teki problem için, en kötü mesafe yukarıdaki 

hesaplamalardan da görüleceği üzere B bireyi tarafından oluşturulur ve MFE=0.81’ dir. 

Bu ölçüt yakınsama için basit bir ölçüttür, ancak bireylerin dağılımı için yanlış bir bilgi 

verebilir. 
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          3.4.2. Dağılım veya Çeşitlilik İçin Kullanılan Başarım Ölçütleri 

 

          ÇAGA tarafından bulunan Pareto bireyler arasındaki çeşitliliğin / dağılımın 

hesaplanması için birçok ölçüt önerilmiştir. Aşağıda bunlardan birkaç tanesi 

açıklanmaktadır. 

 

 

          3.4.2.1. Aralık (Spacing)  

 

          Schott 1995 yılında, bir ÇAGA yöntemi tarafından bulunan Pareto bireyler 

kümesinde, ardışıl bireyler arasındaki bağıl mesafenin hesaplanması için bir ölçüt 

önermiştir [Schott, 1995]: 

 

   ( )∑
=

−=
Q

i
i dd

Q
S

1

21         (3.35) 

 

          Burada, ∑ =≠∧∈ −= M
m

k
m

i
mikQki ffd 1min  formülünden hesaplanır. d  bu 

ifadenin ortalama değeridir ve şöyle hesaplanır; ∑ == Q
i i Qdd 1 /  . Buradaki mesafe 

hesabı şöyle yapılmaktadır: i. bireyle, Pareto-optimal kümedeki diğer tüm bireyler 

arasındaki amaç işlevi değerlerinin mutlak değer olarak farklarının en küçük değeridir. 

Burada şuna dikkat edilmelidir ki; mesafe hesabı, iki birey arasındaki en küçük Öklit 

mesafesinden farklıdır.  

          Bu ölçüt, farklı di değerleri arasındaki standart sapmaları ölçmektedir. Bireyler 

birbirlerinden düzgün aralıklarla dağılıyorlarsa, önerilen mesafe ölçütü küçük olacaktır. 

Bu yüzden, Pareto bireyleri arasında daha küçük bir aralık ölçütü veren yöntem daha iyi 

bir yöntem olacaktır. Şekil 3.33’ te verilen problem için, dA mesafesinin hesabı şöyle 

yapılır; 

 

  ( ) ( ) ( ) ( )( ) 3.46.62.7,6.58.5,0.58.2,7.26.1min =++++=Ad     (3.36) 
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          Benzer olarak, dB=3.5 , dC=3.5 , dD=2.4 ve dE=2.4 olarak hesaplanır. Bu 

sonuçlara göre A ve E bireyleri arasında hemen hemen düzgün bir dağılım olduğu 

anlaşılmaktadır. Bu yüzden, bulunan di değerlerinin standart sapması yüksek çıkacaktır. 

e, Buna gör 22.3=d  ve S=0.73 olarak bulunur. Amaç uzayında rasgele yerleşmiş 

Pareto bireylerden oluşan bir küme için, standart sapma daha küçük çıkacaktır. 

          Bu ölçüt, bulunan bastırılamayan bireylerin dağılımı hakkında yararlı bilgiler 

sağlamaktadır. Bir i bireyinin tüm diğer bireylerle olan mesafesinin hesaplanması ve en 

küçüğünün (di) bulunması nedeniyle işlem sayısı fazladır. Bununla beraber, mesafe 

hesabındaki simetriden yararlanılarak, hesaplamaların yarısından kurtulabilir, ancak 

yine de işlem sayısı bulunan Pareto bireylerin sayısının karesiyle orantılı olacaktır. Deb, 

ardışıl bireyler arasındaki di mesafesinin her amaç işlevinde ayrı ayrı olarak 

hesaplanması için, bir yol önermiştir [Deb ve ark., 2002b]. Bu yol şöyledir: ilk olarak, 

bulunan Pareto-optimal cephe, her amaç işlevindeki genlik değerine göre artan bir 

sırada sıralanır. Daha sonra, her bir çözüm ya da birey için, her bir amaçta en yakın iki 

komşusu arasındaki amaç işlevi değerlerinin farkının toplamı alınır. Bu durumda mesafe 

ölçüm yöntemi yukarıda bahsedilen mesafe ölçümünden daha hızlıdır. Farklı amaç 

işlevleri eklendiğinde, (3.35) eşitliğini kullanmadan önce amaçları normalize etmek 

önemlidir. Ayrıca, bu ölçüt, dağılımın boyutunu dikkate almamaktadır. Dağılım düzgün 

olduğu sürece, S ölçütü küçük bir değer alacaktır.  

 

 

          3.4.2.2. Yayılım (Dağılım, Spread)  

 

          Deb, yukarıdaki ölçütte belirtilen zorluğu gidermek için yayılım ölçütünü 

önermiştir [Deb ve ark., 2002b]: 
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          Burada, di komşu bireyler arasındaki mesafeler ve d  bu mesafelerin ortalama 

değeridir. di mesafeleri hesaplanırken; Öklit mesafe hesabı veya kalabalıklık mesafe 
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hesabı [Schott, 1995] kullanılabilir.  parametresi, m. amaç işlevi için, Pe
md P

* ve Q  

kümelerinde en uç bireyler arasındaki mesafedir.  

 

    
f2 

 

 

 

 

 

 

 

         
Şekil 3.34. Bireyler arasındaki mesafeler 

 

          Şekil 3.34’ te, iki amaçlı bir problem için,  ve  en uç bireylere olan 

mesafeler ve i. ve (i+1). ardışıl bireyler arasındaki Öklit mesafeleri gösterilmektedir. 

Şekilden de görüleceği üzere, (3.37) eşitliğindeki 

ed1
ed2

Q  terimi ( )1−Q  terimi ile yer 

değiştirilebilir. Bu ölçüt;  ve tüm d0=e
jd i değerleri de ortalama değeri d ’ ye göre aynı 

olan ideal bir dağılım için sıfır değerini alacaktır. Buradaki ilk koşulun anlamı; bulunan 

Pareto bireylerin gerçek Pareto cephesindeki en uç bireylerle aynı olması gerektiğidir. 

İkinci koşul ise, bireyler arasındaki dağılımın düzgün olması gerektiğini söyler. İdeal 

küme, herhangi bir çok amaçlı genetik algoritma ile belirlenebilir. Bundan dolayı, 

bireyler ideal olarak dağılmışsa 0=Δ  olacaktır. Bulunan Pareto bireylerin dağılımı 

ideal olsun, ancak bireyler bir noktada kümelenmiş olsunlar. Böyle bir dağılımda tüm 

ddi −  değerleri sıfır olacaktır, ancak  değerleri sıfır olmayacaktır. Bu durumda, e
md

( )∑ ∑= = ⎟
⎠
⎞⎜

⎝
⎛ −+=Δ M

m
M
m

m
e

m
e dQdd1 1 1/  şekline dönüşecektir. Bu değer de [0,1] 

aralığında olacaktır. Payda, Pareto cephesine yaklaşımın boyutunu ölçtüğünden, Δ  

değeri  ile orantılı olarak artacaktır. Bu yüzden, bireyler ideal dağılıma ne kadar 

yakın olarak kümelenirse, 

e
md

Δ  değeri de sıfırdan bire doğru artacaktır. Eğer 

bastırılamayan bireyler düzgün olarak dağılmamışsa, paydaki ikinci terim sıfır 
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olmayacağı için Δ  değeri daha da artacaktır. Bundan dolayı, kötü dağılımlar için Δ  

değeri 1’ den daha büyük olabilir. 

 Örneğin, Şekil 3.34’ te verilen örnek için, Pareto cephesinin en uç sağındaki 

birey (8 nolu birey), Pareto bireylerin en ucundaki bireyle (E bireyi) aynıdır. Bu yüzden, 

 olacaktır. Pareto cephesindeki en uç sol noktadaki bireyle aynı olan bir birey 

bulunmadığı için  olarak Schott’ un mesafe ölçümüyle bulunur. Şekil 3.34’ teki 

d

02 =
ed

5.01
ed =

i değerleri şöyle bulunur: d1=4.3, d2=3.5, d3=3.5, d4=2.4. Buna göre 43.3=d  olarak 

hesaplanır. Yayılım ölçütü ise şöyle hesaplanır: 

 

          18.0
43.3405.0

43.34.243.35.343.35.343.33.405.0
=

×++
−+−+−+−++

=Δ     (3.38)

  

          Bulunan bu değer sıfıra yakın olduğu için, dağılım çok kötü değildir. A bireyi, 1 

nolu bireyle aynı olsaydı, bu durumda 15.0=Δ  olurdu, yani dağılım şu andakinden 

daha iyi olabilirdi. Bu yüzden, daha küçük bir Δ  değeri bulabilen ÇAGA yöntemi, 

düzgün dağılım açısından daha iyi olacaktır. 

 

 

          3.4.2.3. En Büyük Yayılım (Maximum Spread) 

 

          Zitzler 1999 yılında, bulunan bastırılamayan birey kümesinin en uzak işlev 

değerlerini kullanarak oluşturulan hiperküpün köşegen uzunluğunu kullanan bir ölçüt 

önermiştir [Zitzler ve Thiele, 1999]: 
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          İki amaçlı problemler için, bu ölçüt, amaç uzayında en uzak noktalarda yer alan 

bireyler arasındaki Öklit mesafesine denk gelmektedir (bkz Şekil 3.35). 
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 f2 
 

 

 

 
D  

 

 

 f1 

 
Şekil 3.35. En büyük yayılım ölçütü 

     

          Bu ölçütün normalize biçimi aşağıdaki gibidir: 
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          Bu formülde,  ve  seçilen Pareto-optimal cephenin (Pmax
mF min

mF P

*) m. amaç 

işlevinde aldığı en yüksek ve en düşük değerlerdir. Bu yüzden, bu ölçütün değeri 1 ise, 

geniş bir biçimde dağılmış bir bireyler kümesi bulunur. Bununla beraber, ne D  ne de 

 aradaki bireyler için doğru bir dağılım hesaplayamaz. D

 

 

          3.4.3. Yakınsamayı ve Dağılımı Birlikte Hesaplayan Başarım Ölçütleri 

 

          Hem yakınsamayı hem de düzgün dağılımı hesaplamak için kullanılabilen bazı 

ölçütler de bulunmaktadır. Böyle bir ölçüt, yakınsama ve dağılım ölçmeyi aynı anda 

sağlayabilir. Bununla birlikte, daha iyi bir sonuç alınması için yukarıda bahsi geçen 

ölçütlerden biri ile kullanılması daha iyi olabilir. 
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          3.4.3.1. Hiperküp (Hypervolume) 

 

          Bu ölçüt, tüm amaç işlevlerinin en küçük yapılmaya çalışıldığı problemler için, 

Q’ nun elemanları (Şekil 3.36’ da taralı alan) tarafından kapsanan hacmi (amaç 

uzayında) hesaplamak için kullanılır [Zitzler ve Thiele, 1998]. Matematiksel olarak, her 

 bireyi için, bir vQi∈ i hiperküpü W refefans noktası ile oluşturulur ve bireyler de bu 

hiperküpün köşegenleridir. Referans noktası, en kötü amaç işlevi değerlerinden oluşan 

bir vektör oluşturulmasıyla kolayca bulunabilir. Bundan sonra, tüm hiperküplerin 

birleşimi bulunur ve hiperküp (HV) ölçütü hesaplanır: 

 

                         ⎟
⎠
⎞⎜

⎝
⎛= = i

Q
i vUhacimHV 1       (3.41) 

 

 

     

 

 

 

 

 

 

 

 

Şekil 3.36. Pareto bireyler tarafından oluşturulan hiperküp 

 

          Şekil 3.36, W referans noktasının seçimini göstermektedir. Hiperküp taralı bölge 

ile gösterilmektedir. Açıkça görülmektedir ki, büyük bir HV değerine sahip olan bir 

yöntem istenmektedir. Hem HV ölçütü seçilen referans noktasına bağlıdır. Şekil 3.33’ te 

verilen örnek problem için, W=(11.0,10.0)T olmak üzere hiperküp şöyle hesaplanır: 

 

f1 

f2 

A 

B

C D

E

Arama Sınırları
W 

Pareto-optimal cephe 
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( ) ( ) ( ) ( )
( ) ( ) ( ) (
( ) ( )
80.64

8.70.102.18.2
1.50.108.20.48.20.100.40.7

2.20.100.74.82.10.104.80.11

=
−×−+

−×−+−×−+ )
−×−+−×−=HV

      (3.42) 

 

 

          3.4.3.2. Başarım Yüzeyi Temelli İstatistiksel Ölçüt  

(Attainment Surface Based Statistical Metric) 

 

          Fonseca ve Fleming 1996 yılında, çok amaçlı optimizasyon için başarım yüzeyi 

kavramını önermişlerdir [Fonseca ve Fleming, 1996]. Çoğu çalışmada, bulunan Pareto 

bireyler genellikle bunları birleştiren bir eğriyle gösterilirler. Böyle bir eğri bir cephenin 

iyi bir gösterilimini sağladığı halde, cephenin ortalarındaki bireylerin iyi gösterilimini 

garanti etmez veya ortalarındaki bireylerin Pareto-optimal olduğuna dair bir garanti 

yoktur. Fonseca ve Fleming bulunan Pareto bireylerin bir eğriyle gösterilmesi yerine, 

arama uzayında Pareto bireyler tarafından bastırılan tüm bireylerin işaretlendiği bir zarf 

oluşturmuşlardır. Şekil 3.37, Pareto bireyler tarafından oluşturulmuş örnek bir zarfı 

göstermektedir. Oluşturulan bu zarf, başarım yüzeyi olarak adlandırılır ve hiperküp (HV) 

hesaplanması için kullanılan yüzeyi belirler. Hiperküp ölçütünde olduğu gibi, başarım 

yüzeyi de yakınsama ve dağılımı birlikte belirleyen bir ölçüttür.  

 

 

    
f2 

Başarım yüzeyi

 

 

 

 

 

 

 f1 

 
Şekil 3.37. Pareto bireyler tarafından oluşturulan başarım yüzeyi 
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          Pratikte, bir ÇAGA algoritması çok adım üzerinden çalıştırılır ve her adımda 

ÇAGA farklı bir başlangıç topluluğu ve farklı parametrelerle çalışacaktır. Tüm adımlar 

bittikten sonra, bulunan Pareto bireyler kullanılarak, her adım için başarım yüzeyi 

bulunabilir. Şekil 3.38a’ da, aynı problem için aynı algoritmayla ama farklı başlangıç 

topluluklarıyla çalıştırılmış, aynı ÇAGA’ nın üç farklı adımı gösterilmektedir. Böyle bir 

algoritma sonucunda  başarımın adımlar ilerledikçe artması beklenmektedir. Bu yüzden, 

böyle bir grafik gerçek Pareto-optimal cephe hakkında açık bir fikir vermemektedir. İki 

veya daha fazla yöntem karşılaştırılacağı zaman, Pareto-optimal cephe yakınlarına 

yığılmış bireyler hangi yöntemin daha iyi olduğu konusunda bir fikir vermemektedirler. 

Şekil 3.38b, Şekil 3.38a’ da verilen cephelere ilişkin başarım yüzeylerini göstermektedir, 

bu yüzeyler algoritmaları karşılaştırmak için bir ölçüt tanımlamak için kullanılabilir.  

 

    f
 

 

 

 

 

 

 

 
   (a)      (b)  
       
    Şekil 3.38.  (a) Bir ÇAGA’ nın üç farklı adımında bulunan bastırılamayan bireyler 
             (b) Bulunan üç farklı cepheye ilişkin başarım yüzeyleri 
 

          İlk olarak, tüm amaçlarda yönelmeleri gösteren sanal köşegen hatları seçilir. Her 

bir hat için, tüm başarım yüzeylerinin kesişim noktaları hesaplanır. Bu noktalar, seçilen 

hat üzerinde olacaktır ve bu yüzden bir frekans dağılımına sahip olacaktır. Bu noktaları 

kullanarak, örneğin % 25, % 50 veya % 75 başarım yüzeyleri gibi birkaç istatistiksel 

değer üretilebilir. Şekil 3.39, bir çapraz AB hattını ve buna bağlı olarak üç amaç yüzeyi 

için kesişen noktaları göstermektedir. Frekans dağılımını belirlemek için çok sayıda 

başarım yüzeyi ile kesişen nokta tanımlanabilir. Burada yalnızca, 25,50 ve 75% başarım 

yüzeyleri gösterilmektedir. 

f1 

2 f2 

f1 
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f2 

Frekans Dağılımı 

A B 
   %25     %50     %75 

 

 

A 

B 

 

 

 
Kesişim Hattı

 f1 

 
Şekil 3.39. Tipik bir kesişim hattı ve kesişim noktaları. Bu noktalara göre    

                         frekans dağılımı veya histogram 
 

 

          3.4.3.3. Ağırlıklandırma Ölçütü (Weighted Metric) 

 

          Hem yakınsamayı hem de dağılımı ölçmek için, bu değerleri ayrı ayrı ölçen 

ölçütleri ağırlıklandırarak birleştirmek basit bir yoldur. Örneğin; 

 

   Δ+= 21 wGDwW          (3.42) 

 

          Burada w1 ve w2 ağırlıklardır ve w1+w2=1’ dir. Burada yakınsamayı hesaplamak 

için kullanılan nesilsel mesafe ölçütü (GD) ile dağılımı ölçmek için kullanılan yayılım 

( ) ölçütü birleştirilmiştir. Bilindiği üzere, GD değeri küçük olan yöntem iyi bir 

yakınsamaya sahiptir ve Δ  değeri küçük olan yöntem de iyi bir dağılım sağlar. Bu 

yüzden, toplam olarak küçük bir W değerine sahip olan yöntem her iki açıdan da iyi 

olacaktır. Kullanıcı, iki ölçütü birleştirmek için uygun ağırlıkları seçebilir. Bununla 

birlikte, bu ölçüt kullanılacaksa, seçilen iki ölçütün normalize olarak kullanılması daha 

iyi olacaktır. 

Δ
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          3.4.3.4. Bastırılamayan Hesap Ölçütü (Non-Dominated Evaluation Metric)   

 

          Bir yöntemin ölçüt değerleri diğer yöntemin değerlerinden daha iyi ise, o zaman o 

yöntem diğerinden iyidir. Aksi takdirde, iki yöntem arasında hangisinin iyi olduğu 

konusunda kesin bir şey söylenemez. Şekil 3.40, bir problem için üç ÇAGA yönteminin 

başarımını göstermektedir. Şekil incelendiğinde, A yönteminin B yöntemine baskın 

olduğu görülmektedir. Yani A yöntemi, B yönteminden iyidir. Ancak, A veya C  

yöntemlerinden hangisinin iyi olduğu konusunda bir şey söylenemez.  

 

 

 

 
A 

B 

C 

Yakınsama Ölçütü 

Ç
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      Şekil 3.40. Yakınsama ve çeşitliliğin birlikte değerlendirilmesi 

 

          Bu bölümde açıklanan ölçütlerin dışında literatürde birçok ölçüt daha vardır ve 

önerilmeye devam edilmektedir. Bu ölçütlerden bazılarına [Knowles ve Corne, 2000; 

Knowles ve Corne, 2002; Coello Coello ve ark., 2007] kaynaklarından ulaşılabilir.  
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          4. BULGULAR 

 

          Bu bölüm tezin ana bölümüdür ve önerilen yöntemler bu bölümde verilmektedir. 

Bu bölümde yapılan öneriler şu şekilde sıralanabilir: 

 

• İlk olarak 2003 yılında önerilen DOPGA (DOmination Power of an individual 

Genetic Algorithm) yöntemi [Eminoğlu, 2003] derinlemesine incelenmektedir. Bu 

yöntemin elitizm mekanizmasında bazı değişiklikler yapılmış ve etkinliği artırılmıştır. 

DOPGA yöntemi daha önce, başarım ölçütleri kullanılarak literatürde yer alan ÇAGA 

yöntemleri ile karşılaştırılmamıştır. Bu bölümde, DOPGA sık kullanılan test işlevleri ve 

başarım ölçütleri kullanılarak literatürde sık kullanılan ÇAGA yöntemleriyle (SPEA ve 

SPEA2) karşılaştırılmaktadır.  
 

• DOPGA yönteminde bazı değişiklikler yapılarak iki yeni yöntem önerisi 

(DOPGA+, DOPGA2) sunulmaktadır. Bu değişiklikler, DOPGA yönteminin puanlama 

mekanizmasında veya elitizm mekanizmasında yapılmıştır. 
 

•  Literatürde yer alan bazı ÇAGA yöntemlerinin (NSGA ve SPEA) puanlama 

mekanizmalarında bir takım iyileştirmeler yapılarak başarımları artırılmıştır.  

 

• Yeni bir puan ölçekleme yöntemi (gama düzeltmesi ile puan ölçekleme, GDPÖ) 

önerilmektedir. Bu yöntem ÇAGA yöntemlerine ek işlem yükü getirmeden 

uygulanmakta ve ÇAGA yöntemlerinin yakınsama başarımı artırılmaktadır. 
 

• ÇAGA’ larda elitizm mekanizmasının iyileştirilmesi için etkin elitizm 

mekanizması önerisi verilmektedir. Etkin elitizm mekanizması literatürde yer alan ve 

yeni önerilen yöntemlere uygulanarak, başarımları artırılmıştır. 
 

• ÇAGA yöntemlerinin sıralama / nitelikli bilgi üretme yeteneklerinin ölçülmesi 

için iki yeni başarım ölçütü (ceza ve ödül) tartışmaya açılmaktadır. 
 

• Son olarak ise ÇAGA yöntemlerini (önerilen ve var olan) içerisinde 

bulunduran bir kullanıcı arayüzü tasarımı ayrıntılı olarak açıklanmaktadır. 
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          4.1. Çok Amaçlı Genetik Algoritma Yöntem Önerileri 

 

          Daha önce 2003 yılında önerilmiş olan DOPGA [Eminoğlu, 2003] yönteminde 

birtakım değişiklikler yapılarak çeşitli iyileştirmeler yapılmıştır. Bu bölümde ilk olarak, 

DOPGA yönteminin puanlama mekanizması ayrıntılı olarak verildikten sonra arşiv 

yönetimi aşaması verilmekte ve yapılan birtakım iyileştirmeler gösterilmektedir. 

DOPGA yönteminin puanlama mekanizması iyileştirilerek DOPGA+ yöntemi 

önerilmektedir. Hem DOPGA hem de DOPGA+’ da arşiv yönetimi, azaltımsal 

(subtractive) kümeleme yöntemi kullanılarak sağlanmaktadır. Son olarak, SPEA2 

yönteminde kullanılan arşiv yönetimi biçimi DOPGA+ yöntemine eklenerek DOPGA2 

yöntemi önerilmektedir.  

          Bu üç yöntemin ayrıntılı puanlama algoritmaları, elitizm veya arşiv yönetim 

mekanizmaları ve çok kullanılan bazı GA test işlevleri ile çalıştırılmaları neticesinde 

elde edilen sonuçlar aşağıda verilmektedir.       

 

 

          4.1.1. DOPGA (DOmination Power of an individual Genetic Algorithm, 

                    Bireyin Baskınlık Gücü Genetik Algoritma) 

 

          DOPGA yöntemi 2003 yılında, çok amaçlı optimizasyon için önerilmiş Pareto 

tabanlı ve elitist bir ÇAGA yöntemidir. DOPGA’ da bir bireyin puanı iki aşamada atanır. 

Arşiv yönetimi ya da ikincil topluluk yönetimi için ise azaltımsal (subtractive clustering) 

kümeleme yöntemi kullanılmaktadır.  

 

 

          4.1.1.1. DOPGA Puanlama Mekanizması 

  

          DOPGA’ da bir bireyin puanı iki aşamada elde edilmektedir. Aşağıda bu iki 

aşama ayrıntılı olarak açıklanmakta ve daha sonra puanlama algoritması verilmektedir. 

DOPGA ile bir bireyin ya da çözüm önerisinin seçme mekanizmasından önce puanı, 

baskınlık gücüne göre belirlenmektedir. Bu kavramla, bireylerin puanları birbirlerinden 

daha iyi ayırt edilebilmekte ve seçme mekanizmasına daha fazla bilgi 

aktarılabilmektedir.  
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          Adım 1: İlk olarak, topluluk MOGA [Fonseca ve Fleming, 1995; 1998] yöntemi 

kullanılarak ön bir puanlama işlemine tabi tutulur. Böylece, topluluk aynı puana sahip 

birkaç bireyden oluşan alt topluluklara bölünür. Bu ilk puanlama ile 1 puanına sahip 

bireylerden oluşan ilk Pareto cephesi elde edilir ve diğer cephelere ait bireylere artan 

şekilde puan ataması yapılır. DOPGA yönteminin ilk puanlama adımını daha iyi 

açıklamak için Şekil 4.1a’ da verilen örnek bir topluluğun puanlamasını inceleyelim. Bu 

toplulukta, ilk Pareto cephesi dört bireyden oluşmaktadır: {A(1),B(1),C(1),D(1)}.    

A(1)’ in anlamı; o bireyin ilk Pareto cephesine üye olduğu ve hiçbir birey tarafından 

bastırılamadığıdır. İkinci Parero cephesi iki bireyden oluşmaktadır: {E(2),F(2)} ve E 

bireyi yalnızca bir birey tarafından bastırılmaktadır. Diğer bireylerde aynı şekilde 

puanlanmıştır. Bireylerin puan değerleri Şekil 4.1a’ da gösterilmektedir. 

 

          Adım 2: Bu adımda, her alt topluluk baskınlık gücü kavramı kullanılarak yeniden 

puanlanır. Baskınlık gücü, bireylerin konumununa yani Pareto olup olmadığına 

bakılmaksızın her bir bireye uygulanır. Örneğin Şekil 4.1a’ daki B bireyini düşünelim.  

B bireyi toplulukta n adet bireye baskın olsun. Bu birey, nB +)1(  olarak gösterilir ve bu 

örnekte n=3’ tür, çünkü B bireyi 3 adet bireye baskın olmaktadır. B bireyinin baskınlık 

gücü, bu üç bireyin bağıl puanlarının toplamı ile bulunur. Bu yolla, bireyler aynı puana 

sahip olsa veya aynı alt toplulukta olsalar bile, hangi bireyin diğerinden daha fazla 

istendiğini belirlemek mümkündür. Örneğin Şekil 4.1a’ da ilk Pareto cephesindeki 

bireylerin en düşük baskınlık gücünden (en çok istenilenden) en yüksek             

baskınlık gücüne (en az istenilene) doğru sıralaması şu şekildedir: 

D(1)+1 A(1)+2 C(1)+2 B(1)+3. A ve C bireyleri iki adet bireye baskın olmalarına 

rağmen, A bireyi C bireyinden daha fazla istenmektedir, çünkü A bireyi daha az toplam 

puanlı bireylere baskın olmaktadır. D(1)+1, yalnızca H(8) bireyine baskın olmaktadır 

ve bu yüzden diğer bireylere göre en düşük baskınlık gücüne sahiptir. Şekil 4.1b’ de 

DOPGA tarafından puanlanmış bir topluluk gösterilmektedir. 

f f f
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      (a)          (b)    

A (1.1591)

F(2.1667)

B (1.2955)

C (1.2046)
D (1.0682)

E(2.1667)

G(3.2)

H(8)
f2 

A (1)+2

F(2)+1

B (1)+3

C (1)+2
D (1)+1

E(2)+1

G(3)+1

H(8)+0 
f2 

f1 f1 

 
Şekil 4.1. (a) DOPGA ham puanları, (b) DOPGA son puanları 

 

          Şekil 4.1b’ den de görüleceği üzere, ilk Pareto cephesine ait bireyler birbirinden 

farklı puanlar almıştır ve bireylerin önem sırası şöyledir: DfA C B E,F G H. 

DOPGA puanlama mekanizmasında bireylerin komşulukları özellikle dikkate alınır. 

Örneğin, eğer bir birey aynı alt topluluktaki diğer bir bireyden daha yüksek bir baskınlık 

gücüne sahipse, o zaman o birey kendi alt topluluğunda en az istenilen birey olacaktır. 

Eğer bir birey yüksek bir baskınlık gücüne sahipse, bunun anlamı o bireyin kalabalık bir 

bölgede olduğudur, bu yüzden yakınında birkaç benzer birey bulunmaktadır. DOPGA 

böyle bir bireyi cezalandırır ve onu o alt toplulukta en az istenilen birey yapar. DOPGA, 

yakın bir komşuyu uzak olandan ayırt edebilir, çünkü yakın bir komşu uzak olan 

komşudan daha yüksek bir baskınlık gücüne (daha az istenilen) sahiptir. Bu yüzden 

DOPGA çeşitlilik için harici bir katsayı tahminine gereksinim duymaz.  

f f f f f

          DOPGA yönteminin puanlama mekanizmasının ayrıntılı algoritması Şekil 4.2’ de 

verilmektedir.    
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Adım 5: Topluluktaki tüm bireyler puanlanana kadar Adım 2 - Adım 4 arası 
tekrarlanır.  

 

                        
1))(_(

)()(_)(
+

+=
jtopalt

ijtopaltigp
tbg

bbg     (4.4) 

 

Adım 4: i bireyinin gerçek puanı aşağıdaki formül kullanılarak hesaplanır 
(paydaya sıfıra bölme durumunda kurtulmak için 1 eklenmiştir): 

 

Burada i…p,  Alt_top(j)’ de yer alan tüm bireylerdir.  
 

                 (4.3) ∑=
p

i
ibireyjtopalttbg )_())(_( bbg

 

Adım 3: Aynı alt topluluktaki tüm bireyler için Adım 2 tekrar edilir. Aynı alt 
topluluktaki tüm bireylerin bbg( )’ leri toplanır ve her alt topluluk için toplam 
baskınlık gücü aşağıdaki gibi hesaplanır:  
 

∑
=

=
r

k
kbireyibireybbg

1
)_()_( yp      (4.2) 

 

Burada k…r, i bireyinin baskın olduğu tüm bireyleri göstermektedir ve  k…r i. ≠

 

i=1…n, burada n bireylerin toplam sayısı ve  j=1…m, m ise toplam alt topluluk 
sayısıdır.  
 

Adım 2: Bireyin bağıl baskınlık gücü hesaplanır. Bunun için, kaç tane bireyin bu 
birey tarafından bastırıldığı belirlenir ve baskın olan bireylerin yapay puanları 
toplanır.  

 

)(_
1)_(

jtopalt
ibireyyp =         (4.1) 

 

Adım 1: Her bireye alt topluluk (alt_top) numarası ile ters orantılı olan bir yapay 
puan atanır (MOGA algoritması kullanılarak).  

 
DOPGA Puanlama Algoritması 

Şekil 4.2. DOPGA puanlama algoritması 
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          4.1.1.2. DOPGA Elitizm Mekanizması 

 

          DOPGA yönteminde kullanılan elitizm mekanizmasının blok diyagramı         

Şekil 4.3’ te verilmektedir. Seçme mekanizmasından önce ana topluluktaki bireylerle, 

ikincil topluluk yani arşivdeki bireyler birleştirilmektedir. Eğer arşivdeki birey sayısı 

daha önce kullanıcı tarafından belirlenmiş boyutu aşarsa, azaltımsal kümelemenin [Chiu, 

1994] değiştirilmiş bir biçimi uygulanır ve azaltılmış topluluk (kullanıcı tarafından 

belirlenen boyuta düşürülmüş) elde edilir. Eğer arşivin boyutu kullanıcı tarafından 

belirlenmiş boyuta ulaşmazsa, arşivdeki tüm bireyler ana toplulukla birleştirilir.  

          Azaltımsal kümeleme algoritması, kümeleri (veya küme merkezlerini) bulmak 

için uygulanır. Bir sonraki aşamada merkezler arasındaki en küçük mesafe bulunur. 

Doğal olarak, kümelerin merkezleri kalabalık bölgeleri temsil eder ve bu bölgeler de 

birbirlerine benzer bireylerden oluşmaktadırlar. Küme merkezlerini temsil eden bireyler 

ve küme merkezlerinden yeterli derecede uzak bireyler seçilir. Böylece, kümeleme 

algoritması tarafından seçilmiş bireyler arşive kopyalanır. Kümeleme işleminin 

grafiksel olarak ayrıntılı açıklaması Şekil 4.4’ te verilmektedir. 
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 Başlangıç Topluluğu (t) 

 
Puanlama  

 
Pareto bireyler belirlenir ve arşive 
(veya ikincil topluluğa) eklenir  

 
Arşivdeki birey sayısı kullanıcı 
tarafından belirlenen arşiv  

 

 

 

 

 

 

 

 

 

    

 
Şekil 4.3. DOPGA elitizm mekanizmasının blok diyagramı 

 

 

 

 

 

 

 

 

 

 
Şekil 4.4. Arşivdeki Pareto bireylerin azaltılma adımları:  i) Azaltımsal kümeleme 
kullanılarak merkezler bulunur, ii) Merkezler arasındaki en küçük mesafe bulunur ( ) 
ve yeni bir mesafe tanımı yapılır 

d min

dkdist min×=  (örneğin k=0.9 olsun), merkezlerden 
 mesafesindan daha uzak olan bireyler arşivde tutulur, diğerleri silinir,                   

iii) Azaltılmış topluluk, bu bireyler ve merkezlerden oluşur  
dist

 

boyutundan büyük mü?

Evet Hayır

Azaltımsal kümeleme uygulanır 
ve topluluk boyutu azaltılır 

İlk topluluk ve arşiv birleştirilir 

GA işlevleri uygulanır 

Son Topluluk (t+1) 

f2 

f1

dmin 

f2

f1

f2

x x x 

x 
x 

dist 

f1
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          DOPGA yönteminin genel algoritması Şekil 4.5’ te verilmektedir.  

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

DOPGA Genel Algoritması 

 

1. P : Başlangıç Topluluğu (N boyutlu) 

2. PP

a : Arşiv (veya ikincil topluluk) 

3. Sonlandırma kriter sağlanana kadar  

      3.1. P topluluğundaki tüm bireylere puan ata,  

3.2. Baskın bireyleri Pa ya kopyala ve bastırılan bireyleri sil,  

3.3. Eğer aP  (boyutu) arşiv boyutunu aşarsa, o zaman Pa yı kümeleme 

       algoritması kullanarak azalt,  

3.4. aPP∪ dan N adet bireyi seç ve seçme mekanizmasına gönder 

3.5. Çaprazlama ve mutasyon işlevlerini uygula. 

 
Şekil 4.5. DOPGA genel algoritması 

 

 

          4.1.1.3. DOPGA ve SPEA Yöntemlerinin Görsel Karşılaştırması 

 

          Pareto Bireylerin Karşılaştırılması: SPEA yöntemi, topluluktaki Pareto bireylere  

baskın oldukları birey sayısına göre puan atar. Örnek bir topluluk Şekil 4.6’ da 

verilmektedir. Bu şekilden de görüleceği üzere aynı puana sahip bireyler olabilir.   

SPEA puanlamasına göre A ve C bireyleri aynı puana sahip olacaktır, çünkü ikisi de iki 

adet Pareto olmayan bireye, sırasıyla (G,H) ve (E,H) bireylerine baskın olmaktadır. 

DOPGA puanlamasında ise bir Pareto (veya bir Pareto olmayan) bireyin baskın olduğu 

bireylerin sayısı önemlidir, ancak puan atama işlemi toplam birey sayısından ziyade 

toplam puana göre yapılır (Bkz. Şekil 4.7). DOPGA puanlamasında da A ve C bireyleri 

sırasıyla (G,H) ve (E,H) bireylerine baskın olmaktadır ancak, iki bireyin baskın olduğu 

toplam puan aynı değildir (Bkz. Şekil 4.7). Bu yüzden, A ve C bireyleri kendi alt 

topluluklarında artık ayırt edilebilir. 
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A (2/5)

F(8/5)

B (3/5)

C (2/5)
D (1/5)

E(7/5)

G(10/5)

H(13/5)f2 

f1 

 

 

 

 

 

 

             

 
Şekil 4.6.  SPEA’da,  A ve C birbirinden ayırt edilemez 

 

 

 

 

 

 

    

 

 
 

A (1)+2

F(2)+1

B (1)+3

C (1)+2
D (1)+1

E(2)+1

G(3)+1

H(8)+0f2 

f1 

 
Şekil 4.7.  DOPGA’ da , A ve C birbirinden ayırt edilebilir  

 

          Pareto Olmayan Bireylerin Karşılaştırılması: Pareto olmayan bireylerin 

karşılaştırılması da bir diğer önemli noktadır. SPEA’ da Pareto olmayan bir bireyin 

puanı, ona baskın olan Pareto bireylerin puanları toplamına bir eklenmesiyle bulunur. 

Bu nedenle, eğer bir grup Pareto olmayan birey yalnızca bir Pareto birey tarafından 

bastırılırsa, o zaman hepsi de aynı puana sahip olacaktır (Bkz. Şekil 4.8).                       

F, F1 ve F2 bireyleri yalnızca B bireyi tarafından bastırılmaktadır ve bu yüzden SPEA 

bu bireylere aynı puanı atar. DOPGA’ da ise, bu üç birey [F(2), F1(3) ve F2(4)] 

birbirinden kolaylıkla ayırt edilebilir, çünkü Şekil 4.9’ dan da görüleceği üzere hepsi de 

farklı alt topluluklara aittir. SPEA bu tip bireylere aynı puanı atarken, DOPGA hepsine 

farklı puan atayacaktır. 
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f2 

C(2/7)
D(1/7)

E(9/7)
F1(12/7)

A(2/7)

F(12/7)B(5/7)

G(14/7)

H(17/7)

F2(12/7)

f1 

 

 

 

 

 

 

 

 

 
Şekil 4.8. SPEA; F, F1 ve F2 bireylerine aynı puanı atar, çünkü 

                     bu bireyler yalnızca B bireyi tarafından bastırılmaktadır 
 

 

 

A(1)+2

F(2)+3B(1)+5

C(1)+2
D(1)+1

E(2)+1

G(3)+1

H(10)+0

F1(3)+2
F2(4)+1

f2 

f1 

 

 

 

 

 

 

 

 
 
Şekil 4.9. DOPGA’ da ise F, F1 ve F2 bireyleri aynı alt topluluğa ait 
                olmadıkları için farklı puanlara sahiptirler   

 

          DOPGA yöntemi; ZDT1, ZDT2, ZDT3 ve ZDT6 test işlevleri üzerinde 300 adım 

çalıştırılmış, Şekil 4.10 ve Şekil 4.11’ de verilen sonuçlar elde edilmiştir. Benzetimlerde; 

parametre sayısı ZDT1, ZDT2 ve ZDT3’ te 30, ZDT6’ da 10, bit sayısı 30, birey sayısı 

150, arşiv boyutu 100, çaprazlama olasılığı 0.9, mutasyon olasılığı 0.01 seçilmiştir.   

Tek noktalı çaprazlama ve bit-tabanlı mutasyon işlevleri uygulanmıştır. Seçme 

mekanizması olarak SUS kullanılmıştır.  
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(a) (b)  
 

Şekil 4.10. DOPGA tarafından bulunan sonuçlar : (a) ZDT1, (b) ZDT2 
 

 

 

   
                       

(a) (b)  
 

Şekil 4.11. DOPGA tarafından bulunan sonuçlar: (a) ZDT3, (b) ZDT6 
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          4.1.2. DOPGA+ (DOmination Power of an individual Genetic Algorithm +,  

                    Bireyin Baskınlık Gücü Genetik Algoritma +) 

 

 

          4.1.2.1. DOPGA+ Puanlama Mekanizması  

 

          DOPGA+ yönteminde bir bireyin puanı; DOPGA yöntemi ile elde edilen 

puanlara k. en yakın komşuluk yöntemi ile elde edilen (SPEA2’ olduğu gibi [Zitzler ve 

ark., 2001]) yoğunluk bilgisinin eklenmesiyle bulunur. Buna göre bir bireyin puanı 

şöyle hesaplanır:  

    

    (i)D(i)uanp(i)uanp DOPGADOPGADOPGA ++ +=          i=1,2,…,top_boyutu       (4.5) 

 

          Bu eşitlikte D yoğunluk bilgini göstermektedir ve (3.13) nolu eşitlik kullanılarak 

bulunur. DOPGA+ tarafından puanlanan örnek bir topluluk Şekil 4.12 (a) ve (b)’ de 

gösterilmektedir. Şekil 4.12b’ den de görüleceği üzere, ilk Pareto cephesindeki bireyler 

farklı puan değerlerine sahiptirler ve buna göre bireylerin önem sırası şöyle olacaktır: 

D A C B E,F GfH. f f f f f

 

  

 

 

 

 

 

 

 

 

A(1.3528)

F(2.3738)

B(1.4892)

C(1.3983)
D(1.2110) 

E(2.3738)

G(3.3937)

H(8.1354)
f2 

f1 

A(1.1591)

F(2.1667)

B(1.2955) 

C(1.2046)
D(1.0682)

E(2.1667)

G(3.2)

H(8)
f2 

f1 

(a)            (b)    
 

Şekil 4.12. (a) DOPGA+ ham puanlar, (b) DOPGA+ son puanlar 
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          DOPGA+ yönteminde elitizm mekanizması olarak DOPGA yönteminde olduğu 

gibi azaltımsal kümeleme yöntemi kullanılmaktadır. DOPGA+ yönteminin genel 

algoritması Şekil 4.13’ te verilmektedir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOPGA+ Genel Algoritması 

 

1. P : Başlangıç Topluluğu (N boyutlu) 

2. PP

a : Arşiv (veya ikincil topluluk) 

3. Sonlandırma kriteri sağlanana kadar  

      3.1. P topluluğundaki tüm bireylere (4.5) eşitliğini kullanarak puan ata,  

3.2. Baskın bireyleri Pa ya kopyala ve bastırılan bireyleri sil,  

3.3. Eğer aP  (boyutu) arşiv boyutunu aşarsa, o zaman Pa yı kümeleme 

       algoritması kullanarak azalt,  

3.4. aPP∪ ’ dan N adet bireyi seç ve seçme mekanizmasına gönder 

3.5. Çaprazlama ve mutasyon işlevlerini uygula. 

 
Şekil 4.13. DOPGA+ genel algoritması 

 

 

          DOPGA+ yöntemi; ZDT1, ZDT2, ZDT3 ve ZDT6 test işlevleri üzerinde          

300 adım çalıştırılmış, Şekil 4.14 ve Şekil 4.15’ de verilen sonuçlar elde edilmiştir. 

Benzetimlerde; parametre sayısı ZDT1, ZDT2 ve ZDT3’ te 30, ZDT6’ da 10, bit sayısı 

30, birey sayısı 150, arşiv boyutu 100, çaprazlama olasılığı 0.9, mutasyon olasılığı 0.01 

seçilmiştir. Tek noktalı çaprazlama ve bit-tabanlı mutasyon işlevleri uygulanmıştır. 

Seçme mekanizması olarak SUS kullanılmıştır. 
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          (a)            (b)  

 
Şekil 4.14. DOPGA+ tarafından bulunan sonuçlar: (a) ZDT1, (b) ZDT2 

 

 

 

   
                                 (a)            (b)  
 

Şekil 4.15. DOPGA+ tarafından bulunan sonuçlar: (a) ZDT3, (b) ZDT6 
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          4.1.3. DOPGA2 (DOmination Power of an individual Genetic Algorithm  2, 

                    Bireyin Baskınlık Gücü Genetik Algoritma 2) 

 

          DOPGA2 yönteminde bir topluluktaki bireyler DOPGA puanlama algoritması 

kullanılarak puanlanır. Ancak DOPGA2, DOPGA yöntemine göre daha iyi bir arşiv 

yönetimi sağlayarak, elitizm mekanizmasını daha iyi kullanmaktadır. 

 
 

          4.1.3.1. DOPGA2 Arşiv Yönetimi  

 

          DOPGA2 yönteminde, SPEA2 yönteminde olduğu gibi arşivde saklanan Pareto 

bireylerin sayısı bir arşiv güncelleme yöntemi kullanılarak azaltılır. Bu yönteme ilişkin 

ayrıntılı bilgi Bölüm 3.2.4.2’ de verilmektedir. Diğer bireylere en yakın mesafedeki 

birey ilk silinecek birey olarak seçilir, eğer aynı durumda birkaç birey varsa bu durumda 

ikinci en yakın birey silinir ve bu şekilde işlemler devam eder. DOPGA2  yönteminin 

genel algoritması Şekil 4.16’ da verilmektedir. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

DOPGA2  Genel Algoritması 
 

1) t=0 ve Pt=Başlangıç Topluluğu. Boş bir arşivle başla (Pa=Arşiv), 

2) Pt deki bireylere puan ata, 

3) Pt deki tüm Pareto bireyleri  ya kopyala. Eğer a
tP a

tP  arşiv boyutundan 

(Na) büyükse, o zaman  yı güncelleme işlevi kullanarak azalt.  Eğer a
tP a

tP  

arşiv boyutundan küçükse, o zaman P  yı Pa
t t deki en iyi Pareto olmayan 

bireylerle doldur, 

4) Eğer sonlandırma kriterine ulaşıldıysa algoritmayı durdur,  

5) PP

a daki bireyleri seçme mekanizmasıyla seçerek, bir Pm ebeveyn havuzu 

oluştur,  

6) Çaprazlama ve mutasyon işlevleri ile yeni topluluğu (Pt+1) oluştur, 

7)  t=t+1 yap ve Adım 2’ ye dön. 

Şekil 4.16. DOPGA2  genel algoritması 
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          DOPGA2 yöntemi; ZDT1, ZDT2, ZDT3 ve ZDT6 test işlevleri üzerinde          

300 adım çalıştırılmış, Şekil 4.17 ve Şekil 4.18’ de verilen sonuçlar elde edilmiştir. 

Benzetimlerde; parametre sayısı ZDT1, ZDT2 ve ZDT3’ te 30, ZDT6’ da 10, bit sayısı 

30, birey sayısı 150, arşiv boyutu 100, çaprazlama olasılığı 0.9, mutasyon olasılığı 0.01 

seçilmiştir. Tek noktalı çaprazlama ve bit-tabanlı mutasyon işlevleri uygulanmıştır. 

Seçme mekanizması olarak SUS kullanılmıştır. 

 

      
           (a)            (b)  

Şekil 4.17. DOPGA2 tarafından bulunan sonuçlar: (a) ZDT1, (b) ZDT2 

         

      
           (a)            (b)  

Şekil 4.18. DOPGA2 tarafından bulunan sonuçlar: (a) ZDT3, (b) ZDT6 



 136

          4.2. Çok Amaçlı Genetik Algoritma Yöntemlerinin Puanlama  

                 Mekanizmalarının İyileştirilmesi 

 

          ÇAGA yöntemlerinde iki türlü iyileştirme yapmak mümkündür: i) puanlama 

(puan atama) mekanizmalarının iyileştirilmesi, ii) elitizm mekanizmalarının 

iyileştirilmesi. Bu bölümde ilk tür iyileştirme kullanılarak literatürde yer alan bazı 

yöntemlerin puan atama mekanizmaları iyileştirilmiş ve başarımlarının (yakınsama ve 

düzgün dağılım açısından) değişip değişmediği incelenmiştir. İyileştirmeler için iki 

temel kavram kullanılmıştır. Birincisi, k. en yakın komşuluk yönteminden yararlanılarak 

eklenen yoğunluk bilgisi, ikincisi ise baskınlık gücü kavramıdır. Bu bölümde,        

NSGA [Srinivas ve Deb, 1994] ve SPEA [Zitzler, 1999; Zitzler ve Thiele, 1999] 

yöntemlerine ilişkin toplam 5 adet iyileştirme önerilmektedir. Bu iyileştirmelerden bir 

tanesi NSGA, dört tanesi ise SPEA yöntemine ilişkindir. Bu iyileştirmelerin yapılma 

amacı, puan atama mekanizmalarının iyileştirilmesiyle seçme mekanizmasına daha iyi 

ve nitelikli bilgi gönderebilmesini sağlamaktır. Ayrıca, NSGA yöntemi ve iyileştirmesi 

(NSGAmod) elitist biçime getirilmişlerdir. İyileştirmeler, literatürde sık kullanılan dört 

test işlevi kullanılarak orjinal yöntemlerle karşılaştırılmışlardır. Karşılaştırmalarda GD 

(yakınsama için) ve Δ (düzgün dağılım için) başarım ölçütleri kullanılmıştır.  

  

 

          4.2.1. k. En Yakın Komşuluk Yöntemi Kullanılarak Oluşturulan Yoğunluk 

                   Bilgisi             

 

          Bu bölümde kullanılan yoğunluk tahmin tekniği, k. en yakın komşuluk yönteminin 

bir uyarlamasıdır ve herhangi bir bireyin yoğunluğu k. en yakın komşusuna olan 

mesafesinin azalan bir işlevidir [Zitzler ve ark., 2001]. Daha iyi bir hesaplama için, 

herhangi bir i bireyinin arşivde veya o andaki topluluktaki tüm bireylere olan mesafesi 

hesaplanır ve bir listede saklanır. Bu listenin artan bir sırada sıralanmasından sonra,       

k. elemana olan mesafe istenilen mesafeyi verir, bu mesafe  olarak gösterilir. Yaygın 

olarak, k örnekleme oranının karekökü olarak seçilir 

k
iσ

NNk +=  (N: topluluk boyutu, 

N : arşiv boyutu). Böylece, i bireyinin yoğunluğu D(i) şöyle hesaplanır: 
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+

= k
i

iD
σ

        (4.6) 

 

 

          4.2.2. Baskınlık Gücü Kavramı 

 

          Bir toplulukta yer alan bireylerin baskınlık güçleri aşağıda verilen algoritma  

kullanılarak bulunur. Bu bölümde, ayrıntılı algoritma ve sayısal örnekler verilmektedir. 

 

Baskınlık Gücü Algoritması 

 

Adım 1: Her bireye alt topluluk (alt_top) numarası ile ters orantılı olan bir yapay puan 

atanır (MOGA algoritması kullanılarak).  

 

)(_
1)_(

jtopalt
ibireyyp =           (4.7) 

 

i=1…n, burada n bireylerin toplam sayısı ve  j=1…m, m ise toplam alt topluluk 

sayısıdır.  

         Şekil 3.12a’ da verilen örnek topluluk için yapay puanlar şöyle hesaplanır:          

(üç tane alt topluluk vardır ( {A,B,C,D},{E,F},{G},{H} ): 

 

   yp(A)=1   yp(B)=1    yp(C)=1   yp(D)=1 

yp(E)=0.5   yp(F)=0.5    yp(G)=0.3333  yp(H)=0.25 

 

Adım 2: Bireyin bağıl baskınlık gücü hesaplanır. Bunun için, kaç tane bireyin bu birey 

tarafından bastırıldığı belirlenir ve baskın olan bireylerin yapay puanları toplanır.  

 

∑
=

=
r

k
kbireyibireybbg

1
)_()_( yp            (4.8) 

 

          Burada k…r, i bireyinin baskın olduğu tüm bireyleri göstermektedir ve  k…r ≠ i.  
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          Aynı örnek topluluk için bbg değerleri şöyle hesaplanır: 

 

bbg(A)=yp(G)+yp(H)=0.3333+0.25=0.5833 

bbg (B)= yp(F)+yp(G)+yp (H)=0.5+0.3333+0. 25=1.0833 

bbg (C)= yp(E)+yp(H)=0.5+0. 25=0.75 

bbg (D)= yp(H)=0. 25 

bbg (E)= bbg (F)= bbg (G)= 0. 25       

bdg (H)=0 

 

Adım 3: Aynı alt topluluktaki tüm bireyler için Adım 2 tekrar edilir. Aynı alt 

topluluktaki tüm bireylerin bbg’ leri toplanır ve her alt topluluk için toplam baskınlık 

gücü aşağıdaki gibi hesaplanır:  

 

                     (4.9) ∑=
p

i
ibireyjtopalttbg )_())(_( bbg

 

Burada i…p,  Alt_top(j)’ de yer alan tüm bireylerdir. Aynı örnek için; 

 

    tbg(alt_top_1)= bbg(A)+bbg(B)+bbg(C)+bbg(D)=0.5833+1.0833+0.75+0.25=2.6666 

    tbg(alt_top _2)= bbg(E)+ bbg(F)=0.25+0.25=0.50 

    tbg(alt_top _3)= bbg(G)=0.25 

    tbg(alt_top _4)= bbg(H)=0 

 

Adım 4: i bireyinin Baskınlık Gücü (BG) aşağıdaki formülle hesaplanır (paydadaki 1 

sıfıra bölme hatasından kurtulmak için konulmuştur):  

 

1))((
)()(

+−
= jtopaltbg

ibgiBG t
b          (4.10) 
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          Örnek topluluktaki tüm bireylerin baskınlık güçleri şöyle olacaktır: 

 

BG (A)=0.5833/(2.6666+1)=0.1591            BG (E)=0.25/(0.50+1)=0.1667 

BG (B)=1.0833/(2.6666+1)=0.2955             BG (F)=0.25/(0.50+1)=0.1667 

BG (C)=0.75/(2.6666+1)=0.2045                 BG (G)=0.25/(0.25+1)=0.2 

BG (D)=0.25/(2.6666+1)=0.0682                 BG (H)=0/(0+1)=0 

 

Adım 5: Topluluktaki tüm bireylerin baskınlık gücü bulunana kadar Adım 2 - Adım 4 

arası tekrarlanır. 

 

 

          4.2.3. NSGA İyileştirmesi (NSGAmod) 

 

          NSGA yönteminde puanlama işlemi gerçekleştirildikten sonra, bireylerin 

çeşitliliğinin sağlanması için paylaşım yöntemi (burada paylaşım yöntemi amaç 

uzayında gerçekleştirilmiştir) uygulanmaktadır [Goldberg ve Richardson, 1987; Deb, 

2001].  

         Yöntemin bu iyileştirilmesinde ise, paylaşım yöntemi yerine yoğunluk bilgisi 

kullanılarak çeşitlilik sağlanmaktadır. NSGA iyileştirmesi (modification), NSGAmod 

simgesiyle gösterilmektedir. Buna göre NSGAmod iyileştirmesinde bir i bireyinin puanı 

şöyle hesaplanır :  

 

          )()(_)( modmod iDipuanNSGAiF NSGANSGA +=     i=1,2,…top_boyut     (4.11) 

 

          Burada D yoğunluk bilgisini göstermektedir. Hem orjinal NSGA hem NSGAmod 

elitist bir biçime getirilmişlerdir. NSGAmod ile puanlanan örnek bir topluluk           

Şekil 4.19’ da gösterilmektedir. Buna göre, bireylerin en çok istenilenden en az 

istenilene doğru sıralaması şöyledir: D A,B,CfG E,F H. f f f
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             (a)          (b)    

       

    

 

 

 

 

 

 

A (1.1937)

F(2.2071)

B (1.1937)

C (1.1937)
D (1.1429)

E(2.2071)

G(2.1937)

H(3.1354)

A(1) 
F(2) 

B(1) 

C(1) 
D(1) 

E(2) 

G(2) 

H(3)

A(0.1937)

F(0.2071) 
B(0.1937) 

C (0.1937) 
D(0.1429) 

E(0.2071) 

G(0.1937) 

H(0.1354) 

f1 

f1 f1 

f2 f2 

f2 

       (c)  

 
    Şekil 4.19. NSGAmod puanlaması: (a) İlk adım: NSGA puanlaması, (b) İkinci adım: 
                       yoğunluk bilgisi, (c) NSGAmod tarafından atanan son puan değerleri 
 

 

          4.2.4. SPEA’ nın Birinci İyileştirmesi (SPEAmod1)  

 

          Bu iyileştirmede, bir toplulukta diğer bireylere göre daha önemli olan elit ya da 

Pareto bireyler daha derinlemesine bir puanlamaya tabi tutulmaktadır. Öncelikle Pareto 

bireyler baskınlık gücü kavramı kullanılarak puanlanmıştır, Pareto olmayan bireyler ise 

SPEA yöntemi kullanılarak puanlamaya tabi tutulmuştur. SPEAmod1 ile puanlanan 

örnek bir topluluk Şekil 4.20’ de gösterilmektedir. Buna göre bireylerin en çok 

istenilenden en az istenilene doğru sıralaması şöyledir: D AfCfBfE FfG H. f f f
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A(1.1591)

F(1.6000) 
B (1.2955)

C(1.2046) 
D (1.0682) 

E(1.4000) 

G(2.0000) 

H(2.6000) 

A (1.1591) 

B (1.2955)

C (1.2046) 
D (1.0682)

f2 f2 

f1 f1 

 

 

 

 

 

 
 

(a) (b) 

 
       Şekil 4.20. SPEAmod1 puanlaması: (a) İlk adım: baskınlık gücü ile puanlama,  
                         (b) SPEA ile Pareto olmayan bireylerin puanlanması  
            

 

          4.2.5. SPEA’ nın İkinci İyileştirmesi (SPEAmod2)  

 

          Bu iyileştirmede SPEA yöntemi ile elde edilen ham puan (raw fitness) değerlerine 

k. en yakın komşuluk yönteminden yararlanılarak hesaplanan yoğunluk bilgisi 

eklenmektedir. Bu iyileştirmede bir i bireyinin puan değeri şöyle hesaplanır: 

 

)()()( 2mod2mod iDiFiF SPEASPEASPEA +=   i=1,2,…top_boyut         (4.12) 

 

          SPEAmod2 ile puanlanan örnek bir topluluk Şekil 4.21’ de gösterilmektedir. 

Buna göre bireylerin en çok istenilenden en az istenilene doğru sıralaması şöyledir: 

D A,C B E F GfH. f f f f f
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       (a)                       (b)    

  

 

 

 

 

 

 

    (c)  

A0.1937)

F(0.2071) 
B(0.1937) 

C(0.1937) 
D(0.3429) 

E(0.2071) 

G(0.1937) 

H(0.1354)

A (0.5937)

F(1.8071)

B (0.7937)

C (0.5937)
D (0.3429)

E(1.6071)

G(2.1937)

H(2.7354)

A(0.4000) 
F(1.6000) 

B (0.6000)

C(0.4000) 
D (0.2000)

E(1.4000) 

G(2.0000) 

H(2.6000)
f2 f2 

f2 

f1 f1 

f1 

 
Şekil 4.21. SPEAmod2 puanlaması: (a) İlk adım: SPEA puanlaması, (b) İkinci adım: 
                   yoğunluk bilgisi, (c) SPEAmod2 tarafından atanan son puan değerleri 
 

 

 

          4.2.6. SPEA’ nın Üçüncü İyileştirmesi (SPEAmod3) 

 

          Bu yöntem iyileştirme olarak görünmekle birlikte farklı kavramları da içerisinde 

barındırmaktadır. Burada, ilk olarak MOGA yöntemi kullanılarak topluluk alt 

topluluklarına ayrıştırılır. Daha sonra her bir bireye (ya da sadece Pareto olmayan 

bireylere) ilişkin yapay puan değerleri bulunur (Baskınlık gücü algoritması, Adım-1). 

İkinci adımda Pareto bireylerin puanı, baskın olduğu Pareto olmayan bireylerin yapay 

puanlarına göre (4.13)’ te verilen formüle göre hesaplanır. Pareto olmayan bireylerin 

puanı ise, “bastırıldıkları Pareto bireylerin puanları toplamı + 1” formülüyle bulunur. 

Böylece Pareto olmayan bireylerde de bir farklılık (çeşitlilik) sağlanabilir. 
 

Pareto Bireyler İçin:     
1__

)(_)(_
+

=
POypTop

jPOypiPPuan         (4.13)  
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Pareto Olmayan Bireyler İçin:    1)(__)(_ += iPPuanTopjPOPuan                 (4.14) 
 

          (4.13) ve (4.14) ifadelerinde; i: Pareto bireylerin indeksi, j: Pareto olmayan 

bireylerin indeksi, yp_PO: Pareto bireyin baskın olduğu Pareto olmayan bireylere ilişkin 

sanal puanlar  toplamı, Top_yp_PO: Pareto olmayan tüm bireylere ilişkin sanal puanlar 

toplamı, Puan_P: Pareto bireylerin puanları, Puan_PO: Pareto olmayan bireylerin 

puanıdır. SPEAmod3 ile puanlanan örnek bir topluluk Şekil 4.22’ de gösterilmektedir. 

Buna göre bireylerin en çok istenilenden en az istenilene doğru sıralaması şöyledir: 

D A C B E F GfH. f f f f f f

 

 

 

           

 

 

 

 

   (a)              (b)  

 

 

 

 

 

 

 

           (c) 

A (7/31)

F(44/31)

B (13/31)

C (9/31)
D (3/31)

E(40/31)

G(51/31)

H(63/31)

A(1)

F(1/2) 
B(1) 

C(1)  
D(1)  

E(1/2) 

G(1/3) 

H(1/8) 

A(1) 
F(2) 

B (1) 

C(1)  
D (1) 

E(2) 

G(3) 

H(8)

f1 f1 

f1 

f2 

f2 f2 

 
  Şekil 4.22. SPEAmod3 puanlaması: (a) İlk adım: MOGA puanlaması, (b) İkinci adım: 
                     sanal puanlar, (c) SPEAmod3 tarafından atanan son puan değerleri 
 

 

          4.2.7. SPEA’ nın Dördüncü İyileştirmesi (SPEAmod4) 

 

          Bu yöntem, iyileştirme olarak görünmekle birlikte farklı kavramları da içerisinde 

barındırmaktadır. Burada, ilk olarak MOGA yöntemi kullanılarak topluluk, alt 
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topluluklarına ayrıştırılır. Daha sonra her bir bireye (ya da sadece Pareto olmayan 

bireylere) ilişkin yapay puan değerleri bulunur (Baskınlık gücü algoritması ile). İkinci 

adımda Pareto bireylerin puanı, baskın olduğu Pareto olmayan bireylerin yapay 

puanlarına göre aşağıda verilen formüle göre hesaplanır:         

 

1__
)(_)(_
+

=
POypTop

jPOypiPPuan          (4.15) 

 

          Pareto olmayan bireylerin puanı ise MOGA algoritması [Fonseca ve Fleming, 

1995] tarafından bulunur. SPEAmod4 ile puanlanan örnek bir topluluk Şekil 4.23’ te 

gösterilmektedir. Buna göre bireylerin en çok istenilenden en az istenilene doğru 

sıralaması şöyledir: D AfCfBfE,FfG H. f f

 

 

 

 

 

 

 

 

       (a)                       (b)    

  

 

 

 

 

 

 
 

                               (c) 
 

   Şekil 4.23. SPEAmod4 puanlaması: (a) İlk adım: MOGA puanlaması, b) İkinci adım:  
                      sanal puanlar, c) SPEAmod4 tarafından atanan son puan değerleri 

 

A (7/31)

F(2)

B (13/31)

C (9/31)
D (3/31)

E(2)

G(3)

H(8)

A(1)

F(1/2) 
B(1) 

C(1)  
D(1)  

E(1/2) 

G(1/3) 

H(1/8) 

(1) 
F(2) 

B (1) 

C(1)  
D (1) 

A

E(2) 

G(3) 

H(8)
f2 f2 

f2 

f1 f1 

f1 
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          4.2.8. Benzetim Sonuçları 
 

          İyileştirmeler, orjinal yöntemlerle dört farklı test işlevi (ZDT1, ZDT2, ZDT3, 

ZDT6) kullanılarak karşılaştırılmıştır. Stokastik evrensel örnekleme (SUS), puanla 

orantılı bir seçme mekanizması olarak tüm yöntemlerine uygulanmıştır. Daha sonra 100 

adım sonucunda elde edilen topluluklar kullanılarak, GD ve Δ ölçütleri hesaplanmıştır. 

Tüm yöntemler ve iyileştirmelerinin 20’ şer kez çalıştırılmaları sonrasında elde edilen, 

yakınsama ölçütlerinin ortalama değerleri Çizelge 4.1’ de ve dağılım (yayılım) 

ölçütlerinin ortalama değerleri ise Çizelge 4.2’ de verilmektedir. 

          Benzetimlerde, tek noktalı çaprazlama ve bit-tabanlı mutasyon uygulanmıştır. 

Çaprazlama olasılığı 9 , mutasyon olasılığı .0=cp lpm /1=  (burada  dizi 

uzunluğudur) olarak seçilmiştir. Topluluk boyutu 100 birey, arşiv veya ikincil topluluk 

boyutu ise 25 seçilmiştir. Her parametrenin kodlanması için 30 bit kullanılmıştır.  

NSGA yöntemi için paylaşım yarıçapı 0.0158 seçilmiştir. 

l

 

  Çizelge 4.1. Yakınsama ölçütünün (GD) tüm yöntemler ve iyileştirmeleri için 
                               tüm test işlevlerinde elde edilen ortalama değerleri 
 

GD ZDT1 ZDT2 ZDT3 ZDT6 
Elitist NSGA  0.0241 0.0535 0.0133 1.2495 
Elitist NSGAmod 0.0213 0.0351 0.0129 0.9036 
     

SPEA (orjinal) 0.1256 0.2432 0.1039 1.8338 
SPEAmod1 0.0867 0.1050 0.0759 0.5331 
SPEAmod2 0.0695 0.2195 0.0750 1.7353 
SPEAmod3 0.0527 0.0859 0.0444 0.8190 
SPEAmod4 0.0767 0.2168 0.0932 0.7108 

 

  Çizelge 4.2. Dağılım ölçütünün (Δ) tüm yöntemler ve iyileştirmeleri için 
                                 tüm test işlevlerinde elde edilen ortalama değerleri  
 

Δ ZDT1 ZDT2 ZDT3 ZDT6 
Elitist NSGA  0.5930 0.6542 0.6068 0.8990 
Elitist NSGAmod 0.5886 0.5543 0.6046 0.8455 
     

SPEA (orjinal) 0.6390 0.7280 0.6507 0.9182 
SPEAmod1 0.6113 0.7635 0.6446 0.8239 
SPEAmod2 0.6047 0.6537 0.5532 0.8957 
SPEAmod3 0.8095 0.7190 0.7586 0.8248 
SPEAmod4 0.6640 0.8483 0.7893 0.9155 
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          4.2.9. Genel Sonuçlar ve Değerlendirme 

 

          NSGA ve SPEA yöntemlerinin puan atama mekanizmaları, orjinal yöntemlerin 

ürettiğinden daha iyi ve nitelikli bilgi (puan) üretebilmeleri amacıyla hesapsal ve yapısal 

olarak değiştirilmiştir (iyileştirilmiştir). İyileştirmeler iki temel biçimde yapılmıştır:       

i) k. en yakın komşuluk yöntemiyle üretilen yoğunluk bilgisi eklenmesi, ii) baskınlık 

gücü kavramı.                             

          İyileştirme yapılmasındaki ana amaç; bir topluluktaki bireyler hakkında seçme 

mekanizmasına daha nitelikli bilgi ulaştırmak, böylece seçme mekanizmasının 

yeteneğini artırmaktır. Orjinal yöntemler ve iyileştirmeleri dört farklı ve sık kullanılan 

test işlevi kullanılarak test edilmişlerdir. Önerilen beş iyileştirme (NSGAmod, 

SPEAmod1, SPEAmod2, SPEAmod3, SPEAmod4), orjinal yöntemlere göre Pareto 

cephesine daha fazla yakınsamakta ve bu cephe üzerinden bireylerin dağılımını daha 

düzgün yapmaktadır.  

          Sonuç olarak, literatürde yer alan NSGA ve SPEA yöntemlerinin puan atama (ya 

da sıralama) yetenekleri önemli derecede iyileştirilmiştir. Ayrıca, k. en yakın komşuluk 

yöntemiyle oluşturulan yoğunluk bilgisi tekniği, paylaşım tabanlı çeşitlilik tekniğinden 

daha iyi başarım göstermektedir. 

          Literatürde yer alan tüm yöntemler üzerinde bazı iyileştirmeler yapılması 

mümkündür. Böylece yöntemlerin yakınsama ve/veya dağılım yetenekleri artırılabilir ve 

yöntemler daha etkin hale getirilebilir. Bu çalışmada, yalnızca beş adet iyileştirme 

verilmekle beraber daha çok sayıda iyileştirme yapılması da mümkündür. Yöntemlerin 

işlem sürelerinin kısaltılması için de iyileştirmeler yapılması, gelecek çalışma 

alanlarından birisi olacaktır.         

          

           

          4.3. Gama Düzeltmesi ile Puan Ölçekleme Yöntemi (GDPÖ) ve Genetik 

                 Algoritmaların Başarımına Etkisi 

 

          Literatürde, yerel en iyiye hızlı yakınsamanın önüne geçmek için bazı puan 

ölçekleme yöntemleri önerilmiştir. Bu yöntemler, genel olarak tek amaçlı genetik 

algoritmalara uygulanmıştır. Bu zamana kadar, bu puan ölçekleme yöntemlerinin 

ÇAGA’ lara uygulanması gözden kaçırılmıştır. Bu bölümde, bir çeşit üstel (power-law) 
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puan ölçekleme [Gillies, 1985; Goldberg, 1989; Michalewicz, 1994] yöntemi 

kullanılarak genetik algoritmaların yakınsamasının / yakınsama hızının iyileştirilip 

iyileştirilemeyeceği incelenmektedir. Burada kullanılan yöntem, gama (γ) düzeltmesi 

ile puan ölçekleme (GDPÖ) olarak adlandırılmıştır. Bu yöntemin etkisi, ilk olarak tek 

amaçlı GA üzerinde incelenmiştir. Daha sonra ise, GDPÖ sık kullanılan bazı ÇAGA 

yöntemleri (SPEA ve SPEA2) ve yeni önerilen DOPGA ve DOPGA2 yöntemlerine 

uygulanarak, etkisi incelenmiştir.  

          GA’ larda puan atama bloğunun çıkışı, seçme mekanizmasının girişini 

oluşturmaktadır. Seçme mekanizmasının çıkışı da seçme mekanizmasının puan atama 

mekanizması tarafından nasıl beslendiği ile doğrudan ilişkilidir. Bu yüzden, puan atama 

yöntemleri seçme mekanizmasının çıkışını etkilemektedir. Eğer seçme 

mekanizmasından önce bireylerin seçilme baskısı değiştirilebilirse, tek amaçlı GA’ 

larda yakınsama hızı ve ÇAGA yöntemlerinde Pareto cephesine yakınsama artırılabilir.    

          Puan ölçekleme, GA’ ların erken adımlarında seçilme baskısının azaltılması için 

kullanılır ve böylece tüm arama uzayının taranması ve çeşitliliğin artırılması 

sağlanabilir. Tersine, son adımlara doğru, puan ölçekleme seçilme baskısını artırır ve 

böylece en iyi çözüme yakınsama sağlanabilir [Hopgood ve Mierzejewska, 2008]. 

Literatürde puan ölçeklemenin ÇAGA’ lara uygulanması ile ilgili eksikler 

gözükmektedir. Bunun nedeni, ÇAGA yöntemlerinin genellikle en gelişmiş (state-of-art) 

yöntemler olarak görülmesinden kaynaklamaktadır. Bu sınırlama, basit bir fikir olan 

puan ölçeklemenin ÇAGA’ lara uygulanması önünde psikolojik bir engel 

oluşturmaktadır. Bu yüzden literatürde bu konuda bir eksiklik söz konusudur. 

          GDPÖ’ de bir ÇAGA yöntemi tarafından üretilen puan değerlerinin gama (γ)  

üssü alınmakta ve topluluktaki bireylerin seçilme baskısı değiştirilebilmektedir. Böylece, 

en iyi bireylerin seçilme olasılığı artırılabilir ve en çok istenilen ve en az istenilen 

bireyler, seçme mekanizmasına gönderilmeden önce daha iyi ayırt edilebilir. İlerleyen 

bölümlerde GDPÖ ayrıntılı olarak açıklanmakta ve benzetim sonuçları verilmektedir. 

 

 

          4.3.1. Gama Düzeltmesi ile Puan Ölçekleme Yöntemi (GDPÖ)      

 

          Yerel en iyiye erken yakınsama genetik algoritmalar için büyük bir sorundur. 

Eğer verilen toplulukta yüksek puana sahip bir süper birey bulunuyorsa, onun seçilme 
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olasılığı yüksek olacaktır ve çeşitlilik erken aşamada kaybedilecektir [Leclerc ve Potvin, 

1995]. Sadjadi, ölçeklemenin genetik çeşitlilik ve yakınsamaya çarpıcı bir etkisi olduğu 

belirtmektedir [Sadjadi, 2004]. Buna göre, puan ölçekleme yöntemleri kullanılarak   

GA’ ların başarımını artırmak mümkündür. Literatürde birçok puan ölçekleme yöntemi 

önerilmiştir: doğrusal ölçekleme [Goldberg, 1989; Michalewicz, 1994], derece (rank) 

ölçekleme [Goldberg, 1989], eksponansiyel ölçekleme [Hopfield, 1982; Kirkpatrick ve 

ark., 1983; Gen ve ark., 1996], sigma ölçekleme [Goldberg, 1989; Michalewicz, 1994], 

dönüşüm (transform) derecelendirme [Hopgood ve Mierzejewska, 2008], Boltzman 

ölçekleme [Hopgood, 2001] ve üstel (power-law) ölçekleme [Gillies, 1985; Goldberg, 

1989; Michalewicz, 1994]. Bu puan ölçekleme yöntemleri genel olarak tek amaçlı     

GA’ lara uygulanmış ve ÇAGA’ lara olan etkisine şimdiye kadar değinilmemiştir. 

Burada önerilen gama düzeltmesi ile puan ölçekleme yöntemi, ÇAGA yöntemlerine 

uygulanabilen bir çeşit üstel puan ölçekleme yöntemidir. Sayısal görüntü işlemede 

kullanılan gama düzeltme işlevine tarihsel ve yapısal benzeşiminden dolayı bu isim 

verilmiştir. Üstel puan ölçeklemenin bir incelemesi ve SPEA yöntemine SUS seçme 

mekanizmasıyla uygulamasının etkisi [Ergül ve ark., 2009a] makalesinde rapor 

edilmiştir.  

          Bir sayısal görüntünün parlaklığı, gama düzeltmesi ile kalitesi iyileştirilerek 

değiştirilebilir (Şekil 4.24a) [Gonzales ve Woods, 2008]. Böylece, kullanıcılar için 

görüntü daha cazip / daha iyi bir duruma getirilir, daha anlaşılır olur. Bir ÇAGA 

yöntemi tarafından bir topluluktaki bireylere puan atanır, daha sonra bu puan değerleri 

GDPÖ tarafından değiştirilerek yeni puan değerleri elde edilir ve bu puan değerleri 

seçme mekanizmasına gönderilir (Şekil 4.25). Temel olarak, GDPÖ doğrusal olmayan 

basit bir işlevdir ve seçilen gama (γ)  değerine bağlı olarak, puan atama bloğundan önce 

puan değerlerini (ve dolayısıyla topluluğun seçilme baskısını) değiştirir. Eğer gama (γ) 

değeri 1’ den büyükse, seçilme baskısı artar. Eğer gama (γ) değeri 1’ den küçükse, 

seçilme baskısı azalır (Şekil 4.24b). Bu şekilde, en iyi bireylerin seçilebilme olasılığı 

artırılabilir ve en iyi ile en kötü bireyler arasındaki ayrım seçme mekanizmasından önce 

daha iyi yapılabilir. 
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(a) (b) 

 
Şekil 4.24. (a) Sayısal görüntü işlemede gama düzeltmesi  

           (b) Genetik algoritmalarda gama düzeltmesi  
 

 

 

 

 
   
   

 
 

Şekil 4.25. Seçme mekanizmasından önce GDPÖ kullanımı 

 

          Üstel (power-law) puan ölçekleme bir i bireyinin puanını aşağıdaki formüle göre 

değiştirir:  

 

                                  (4.16) ( ) γ fyenif ii =)(

 

          Böylece, γ değerine göre en iyi ve en kötü bireylerin arasındaki fark ayarlanır. 

Leclerc ve Potvin, tek amaçlı genetik algoritmalar için γ üs değerinin dinamik olarak 

değiştirildiği bir yöntem önermişlerdir [Leclerc ve Potvin, 1995]. 

          Bu tezde önerilen GDPÖ yöntemi ile bir topluluktaki bireylerin puanları        

Şekil 4.26’ da verilen algoritmaya göre değiştirilir. 
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Gama Düzeltmesi ile Puan Ölçekleme (GDPÖ) 
 
 

1) ÇAGA yöntemi tarafından atanan puan değerleri normalize edilir, 

( ): boyututopi _,..,1,0=

  
                 PuanYüksekEniPuanPuanNormalize __/)(_ =                       (4.17) 

 
2) Gama (γ) düzeltme işlevi kullanılarak bireylerin yeni puan değerleri 

hesaplanır: 

                
                 Yeni                                     (4.18) γ)(_)(_ iPuanNormalizeiPuan =

 
3) Yeni puan değerleri seçme mekanizmasına gönderilir.  

 
Şekil 4.26. GDPÖ genel algoritması  

 

 

          4.3.2. Uyarlanabilir (Adaptif) Gama Düzeltmesi ile Puan Ölçekleme 

                    (U_GDPÖ) Yöntemi 

 

          Puan değerleri seçme mekanizmasının giriş kümesidir ve seçme mekanizması 

giriş kümesinin içeriğine bağlı olarak bir çıkış kümesi (gelecek nesili oluşturacak 

ebeveynler) oluşturur. Şekil 4.27, beş farklı puan dağılımını göstermektedir (burada 

bireyler en önemliden en az önemliye doğru sıralanmışlardır). Bu farklı puan dağılımları 

seçme mekanizması üzerinde farklı seviyede seçilme baskısı oluşturur. Bir başka 

deyişle, bu beş farklı giriş kümesiyle beslenen seçme mekanizmasının çıkışı aynı 

olmayacaktır. Şekil 4.27’ de, puan değerleri γ=1 ile üstel olarak değiştirilirse, dağılım 

düzgün olur. Eğer γ>1 ise puan işlevi içbükeydir ve ilk birkaç bireyin puanı birbirlerine 

çok yakındır, tersine son birkaç bireyin puanı birbire uzaktır. Benzer olarak, eğer γ<1 

ise puan işlevi dışbükey olur ve ilk birkaç bireyin puanı birbirinden uzak iken, tersine 

son birkaç bireyin puanı birbirine yakındır.  
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Şekil 4.27. Beş farklı puan dağılım işlevi  

 
 

          Herhangi bir problem için, hangi γ değerinin iyi olduğu bilinmemektedir. Bunun 

için GDPÖ’ nin uyarlanabilir (adaptif) bir biçimi gerekmektedir, böylece seçilme 

baskısının bir nesilden diğer nesile dinamik olarak kontrol edilmesi γ değerinin 

güncellenmesiyle sağlanabilir. Gamma (γ) değeri Şekil 4.28’ de verilen uyarlanabilir 

algoritmaya göre güncellenebilir. (4.19) nolu eşitlikte verilen gama değeri ayrıca 

düzgün dağılımın bir ölçütüdür.  

    

 

 

 

 

 

 

 

 

 

 

 
 Degeri Ortalama  lerin NPF'
    Sapmas ı  Standartlerin NPF'amaG =)(γ              (4.19) 

 

4) NPF’ lerin ortalama değeri ve standart sapması hesaplanır. Gama (γ) değeri 
(4.19) eşitliğindeki gibi hesaplanır ve nesilden nesile değişir.  

3) Tüm topluluk için, ardışıl bireyler arasındaki normalize puan farkları 
(NPF) hesaplanır,  

1) Puan değerleri 0 ile 1 arasına normalize edilir,  
2) Normalize puan (NP) değerleri en önemliden en az önemliye doğru 

sıralanır,  

 
Uyarlanabilir GDPÖ Algoritması 

Şekil 4.28. Uyarlanabilir GDPÖ algoritması  
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          4.3.3. Tek Amaçlı GA’ larda GDPÖ’ nün Etkisinin İncelenmesi 

                     ve Benzetimler 

           

          Tek amaçlı genetik algoritmlarda GDPÖ’ nün etkisinin belirlenmesi için, iki adet 

test işlevi kullanılmıştır. Bu test işlevleri, Ackley işlevi ve Rastrigin işlevidir (ikisi de en 

küçükleme problemidir). Ackley işlevinin en küçük değeri 0, Rastrigin işlevinin en 

küçük değeri 5’ tir. Rastrigin işlevinin matematiksel ifadesi (2.10) eşitliğinde, grafiği ise 

Şekil 2.12’ de verilmektedir. Ackley işlevinin grafiği ise Şekil 4.29’ da verilmektedir. 

Ackley işlevinin matematiksel ifadesi ise şöyledir:  

 

 

                                                                                                                                     (4.20) ( ) e++xcos1expx1exp=xxF
1=i

i
1=i

2
i 202

22
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F(
x 1

,x
2)

 

x2 

x1 

    

Şekil 4.29. Ackley işlevi ( x1,x2 =[-2,2] için) 

 

          Bu test işlevlerinde tek amaçlı GA, altı farklı gama değeri (0.1, 0.2, 1, 2, 5 ve 10) 

kullanılarak GDPÖ ile çalıştırılmıştır. GA parametreleri benzetimlerde şöyle seçilmiştir: 
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                       Birey sayısı                     :  20 

                       Bit sayısı     :  30 

                       Adım (nesil) sayısı         :  300 

                       Çaprazlama olasılığı      :  1 

                       Mutasyon olasılığı          :  0.1 

                       Parametrelerin alt sınırı (Ackley)    : -500 

                       Parametrelerin üst sınırı (Ackley)   :  500 

                       Parametrelerin alt sınırı (Rastrigin) : -10 

                       Parametrelerin üst sınırı (Rastrigin) :  10 

 

          Tek amaçlı GA’ nın yukarıda verilen parametre ve test işlevleriyle çalıştırılması 

sonucu elde edilen sonuçlar Şekil 4.30 ve Şekil 4.31’ de verilmektedir. 

          Bu sonuçlardan görüleceği üzere gama değeri artırıldığı zaman GA çözüme daha 

az adımda ulaşmaktadır. Her iki test işlevinde de GA, γ=10 için en iyi sonuca daha hızlı 

yakınsamıştır. 

 

 
 

Şekil 4.30. Tek amaçlı GA’ da GDPÖ etkisi (Ackley işlevi) 
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     Şekil 4.31. Tek amaçlı GA’ da GDPÖ etkisi (Rastrigin işlevi) 

 

 

          4.3.4. ÇAGA’ larda GDPÖ’ nün Etkisinin İncelenmesi ve Benzetimler  

 

          GDPÖ yöntemi, hesapsal olarak sık kullanılan SPEA ve SPEA2 yöntemleri ile 

önerilen DOPGA ve DOPGA2 yöntemlerine uygulanmıştır. Bu ÇAGA yöntemleri, ilk 

olarak 12 farklı sabit gama değeri (0.1,0.5,1,2,3,4,5,6,7,8,9 ve 10)  kullanılarak dört adet 

sık kullanılan test işlevi (ZDT1, ZDT2, ZDT3 ve ZDT6, [Zitzler ve ark., 2000]) ile 

çalıştırılmışlardır. Daha sonra, uyarlanabilir GDPÖ uygulanarak tüm yöntemler aynı test 

işlevleri kullanılarak çalıştırılmıştır.  

          SPEA ve SPEA2 yönteminin karşılaştırmalarda kullanılmak üzere seçilmesinin 

nedenleri şunlardır: i) her ikisi de Pareto tabanlıdır, ii) her ikisi de harici bir katsayı 

kullanmadan çeşitlilik bilgisini puanlama mekanizmasının içine gömebilme yeteneğine 

sahiptir, iii) her ikisi de elitisttir, iv) her ikisi de son zamanlarda farklı yapay test 

işlevleri kullanılarak farklı ÇAGA yöntemleriyle karşılaştırılmışlardır. Benzetimlerde, 

iki temel seçme mekanizması, turnuva seçimi (TS) ve stokastik evrensel örnekleme 

(SUS) kullanılmıştır ve bu mekanizmaların etkinlikleri test edilip tartışılmıştır.  
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          Daha önceden belirlenmiş bir nesil (adım) sayısı sonrası (NS=100 seçilmiştir) 

elde edilen topluluk kullanılarak yakınsamayı ve dağılımı ölçen ve literatürde sık 

kullanılan iki adet ölçüt (GD ve Δ)  hesaplanmıştır [Deb, 2001; Deb ve ark., 2002b]. İlk 

ölçüt GD, bilinen bir Pareto cepheye olan yakınsamayı ölçmektedir. Bunun için test 

işlevlerinin Pareto cephelerine 500 adet düzgün dağılmış birey yerleştirilmiş ve 

yöntemler tarafından bulunan Pareto bireylerin bu bireylere olan Öklit mesafeleri 

kullanılarak GD ölçütü hesaplanmıştır. İkinci ölçüt Δ, bulunan sonuçların Pareto 

cepheye ne kadar düzgün dağıldığını belirlemektedir. Her iki ölçütün de değerinin 

küçük olması istenilmektedir. 

          Tüm yöntemler 12 farklı gama değeri ile her bir test işlevi için 20’ şer kez 

çalıştırılmışlardır. Daha sonra, yakınsama ve dağılım ölçütlerinin ortalama değerleri ve 

varyansları hesaplanmıştır. 

 

 

          4.3.4.1. Sabit Gama Değerleri Kullanıldığında Benzetim Sonuçları 

 

          DOPGA ve DOPGA2 yöntemleri, SPEA ve SPEA2 yöntemleriyle dört farklı test 

işlevi kullanılarak karşılaştırılmıştır. Stokastik evrensel örnekleme (SUS), puanla 

orantılı bir seçme mekanziması olarak tüm ÇAGA yöntemlerine uygulanmıştır. Daha 

sonra 100 adım sonucunda elde edilen topluluklar kullanılarak GD ve Δ ölçütleri 

bulunmuştur. Tüm yöntemler 20’ şer kez çalıştırıldıktan sonra, yakınsama için      

Çizelge 4.3 ve dağılım için Çizelge 4.4’ te verilen sonuçlar elde edilmiştir. Sonuçların 

daha kolay anlaşılması ve yorumlanması için en iyi sonuçlar koyu renkle belirtilmiştir. 

          Çizelge 4.3’ e göre, γ=1 için DOPGA ve DOPGA2, SPEA ve SPEA2’ ye göre 

Pareto-optimal cepheye daha iyi yakınsamaktadırlar. Daha sonra farklı gama değerleri 

için benzetimler tekrarlanmıştır. Benzetimlerde, tek noktalı çaprazlama ve bit-tabanlı 

mutasyon uygulanmıştır. Çaprazlama olasılığı 9.0=cp , mutasyon olasılığı lpm /1=  

(burada  dizi uzunluğudur) olarak seçilmiştir. Topluluk boyutu 100 birey, arşiv veya 

ikincil topluluk boyutu ise SPEA ve DOPGA için 25, SPEA2 ve DOPGA2 için ise 100 

olarak seçilmiştir. Her parametrenin kodlanması için 30 bit kullanılmıştır. 

l
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          Çizelge 4.3, tüm ÇAGA yöntemleri için farklı gama değerlerinde elde edilen 

yakınsama ölçüt (GD) sonuçlarının ortalama değerlerini göstermektedir. Çizelge 4.3 ve 

Şekil 4.32’ ye göre, SPEA yöntemi γ=7 ile tüm test işlevlerinde diğer gama değerlerine 

göre daha iyi bir yakınsama sağlamaktadır. Benzer olarak, SPEA2 ve DOPGA2 

yöntemleri γ=2 ile tüm test işlevlerinde diğer gama değerlerine göre daha iyi yakınsama 

sağlamaktadırlar. DOPGA ise γ=3 ile ZDT2, ZDT3 ve ZDT6 test işlevlerinde, γ=4 ile 

ise ZDT1 test işlevinde diğer gama değerlerine göre daha iyi yakınsama sağlamaktadır. 

          Çizelge 4.4, tüm ÇAGA yöntemleri için farklı gama değerlerinde elde edilen 

dağılım ölçüt (Δ) sonuçlarının ortalama değerlerini göstermektedir. Çizelge 4.4 ve  

Şekil 4.33’ e göre, SPEA yöntemi γ=7 ile tüm test işlevlerinde diğer gama değerlerine 

göre daha düzgün bir dağılım sağlamaktadır. SPEA2, DOPGA ve DOPGA2 yöntemleri 

ise farklı test işlevlerinde farklı gama değerlerinde iyi dağılım göstermektedirler.        

            

 

       Çizelge 4.3. Yakınsama ölçütünün (GD) tüm ÇAGA yöntemleri için tüm test 
                            işlevlerinde elde edilen ortalama değerleri  
 
 

GD γ=0.1 γ=0.5 γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 
ZDT1 0.1409 0.1061 0.1256 0.1034 0.0857 0.0667 0.0612 0.0630 0.0569 0.0624 0.0691 0.0613
ZDT2 0.3430 0.2768 0.2432 0.2592 0.2824 0.2578 0.2700 0.2885 0.1989 0.2668 0.2348 0.1999
ZDT3 0.1299 0.1027 0.1039 0.1015 0.0752 0.0728 0.0559 0.0580 0.0554 0.0587 0.0577 0.0563SP

E
A

 

ZDT6 1.9760 1.9839 1.8338 1.8747 2.0126 1.8992 2.1623 2.0070 1.7277 2.4558 2.5922 1.7486
      

ZDT1 0.1163 0.0226 0.0141 0.0110 0.0144 0.0205 0.0285 0.0344 0.0450 0.0482 0.0555 0.0599
ZDT2 0.3809 0.0461 0.0223 0.0194 0.0267 0.0450 0.0643 0.0887 0.1164 0.1332 0.1611 0.1652
ZDT3 0.0974 0.0150 0.0081 0.0073 0.0080 0.0124 0.0181 0.0229 0.0360 0.0403 0.0435 0.0498SP

E
A

2 

ZDT6 2.2259 1.1805 1.0266 0.9406 1.0912 1.3590 1.4712 1.4737 1.7379 1.7874 1.9064 1.8775
      

ZDT1 0.1968 0.0324 0.0178 0.0114 0.0094 0.0085 0.0103 0.0139 0.0183 0.0248 0.0274 0.0423
ZDT2 0.4890 0.0531 0.0190 0.0117 0.0112 0.0126 0.0214 0.0279 0.0481 0.0555 0.0846 0.1080
ZDT3 0.1323 0.0215 0.0099 0.0053 0.0046 0.0051 0.0062 0.0084 0.0126 0.0167 0.0209 0.0278

D
O

PG
A

 

ZDT6 2.0913 1.1704 0.8041 0.6391 0.6309 0.7426 0.8146 0.9908 1.1321 1.2200 1.3314 1.3952
      

ZDT1 0.1063 0.0217 0.0121 0.0084 0.0132 0.0219 0.0275 0.0364 0.0442 0.0529 0.0551 0.0598
ZDT2 0.0438 0.0506 0.0176 0.0129 0.0246 0.0442 0.0608 0.0932 0.1215 0.1309 0.1671 0.1727
ZDT3 0.1046 0.0167 0.0074 0.0049 0.0085 0.0138 0.0183 0.0240 0.0355 0.0418 0.0426 0.0433

D
O

PG
A

2 

ZDT6 1.9609 1.2431 1.0344 0.8488 1.0331 1.2941 1.5147 1.5527 1.5622 1.6837 1.7429 1.8621
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         Çizelge 4.4. Dağılım ölçütünün (Δ) tüm ÇAGA yöntemleri için tüm test 
                              işlevlerinde elde edilen ortalama değerleri 
  
 

Δ γ=0.1 γ=0.5 γ=1 γ=2 γ=3 γ=4 γ=5 γ=6 γ=7 γ=8 γ=9 γ=10 
ZDT1 0.6210 0.6391 0.6092 0.6332 0.5756 0.5884 0.6016 0.5808 0.5696 0.5805 0.5758 0.5908
ZDT2 0.7298 0.7230 0.7280 0.6558 0.6968 0.6803 0.7044 0.6318 0.6187 0.6777 0.6359 0.6281
ZDT3 0.6793 0.6491 0.6191 0.6550 0.6125 0.6196 0.6104 0.6166 0.6000 0.6074 0.6324 0.6066SP

E
A

 

ZDT6 0.9186 0.9131 0.9182 0.9326 0.9119 0.8784 0.8801 0.9099 0.8737 0.9011 0.8976 0.8895
      

ZDT1 0.5831 0.5983 0.5916 0.5945 0.6073 0.5668 0.5854 0.5665 0.6053 0.5867 0.5761 0.6131
ZDT2 0.7357 0.5684 0.6167 0.5951 0.6061 0.5974 0.6539 0.6461 0.6657 0.6591 0.6708 0.6367
ZDT3 0.6063 0.5696 0.6045 0.6172 0.6331 0.6280 0.6193 0.6121 0.5913 0.6021 0.5911 0.5982SP

E
A

2 

ZDT6 0.9219 0.8749 0.8977 0.9017 0.8630 0.8911 0.9025 0.8957 0.9022 0.8260 0.9365 0.8773
      

ZDT1 0.5299 0.5573 0.5842 0.5775 0.5923 0.5760 0.5782 0.5684 0.5623 0.5538 0.5701 0.6035
ZDT2 0.7582 0.5977 0.6142 0.6316 0.6070 0.5757 0.5726 0.5744 0.5752 0.6341 0.6116 0.6503
ZDT3 0.5705 0.5843 0.6109 0.6358 0.6035 0.5726 0.5850 0.6029 0.5810 0.6223 0.6252 0.5876

D
O

PG
A

 

ZDT6 0.8916 0.8216 0.7945 0.8479 0.8299 0.8232 0.8549 0.8454 0.8826 0.8690 0.8586 0.9004
      

ZDT1 0.5552 0.6030 0.5970 0.5898 0.6270 0.5707 0.6047 0.5699 0.5874 0.6101 0.5726 0.6099
ZDT2 0.6342 0.5992 0.5976 0.6248 0.6234 0.5994 0.6268 0.6513 0.6665 0.7027 0.6868 0.6314
ZDT3 0.5750 0.6044 0.6244 0.6394 0.6499 0.6375 0.6168 0.6084 0.5880 0.5772 0.7196 0.6194

D
O

PG
A

2 

ZDT6 0.9075 0.8723 0.8839 0.9176 0.8792 0.8821 0.8868 0.9152 0.8889 0.8989 0.8986 0.8891
 

          Tüm ÇAGA yöntemlerinin tüm test işlevlerinde elde edilen yakınsama ve dağılım 

ölçütlerinin ortalama değerleri bar / sütun grafikleri olarak Şekil 4.32 ve Şekil 4.33’ te 

verilmektedir. 
 

         
 

Şekil 4.32. Yakınsama ölçütünün ortalama değerleri. Bu şekilde sayılar şu yöntemleri 
simgelemektedir: 1-Orjinal SPEA, 2- γ=7 ile SPEA, 3- Orjinal SPEA2, 4- γ=2 ile 
SPEA2, 5- Orjinal DOPGA, 6- γ=3 ile DOPGA, 7- Orjinal DOPGA2 and 8- γ=2 ile 
DOPGA2 
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Şekil 4.33. Dağılım ölçütünün ortalama değerleri. Bu şekilde sayılar şu yöntemleri 
simgelemektedir: 1-Orjinal SPEA, 2- γ=7 ile SPEA, 3- Orjinal SPEA2, 4- γ=2 ile 
SPEA2, 5- Orjinal DOPGA, 6- γ=3 ile DOPGA, 7- Orjinal DOPGA2 and 8- γ=2 ile 
DOPGA2 
 
   

          Şekil 4.34, Şekil 4.35, Şekil 4.36 ve Şekil 4.37, gama değerindeki değişime 

karşılık ÇAGA yöntemlerinin Pareto-optimal cephelere olan yakınsamalarındaki 

değişimlerin grafiklerini göstermektedir.  

 



 159

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

Gama

G
D

ZDT1

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Gama

G
D

ZDT2

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

Gama

G
D

ZDT3

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Gama

G
D

ZDT6

     
Şekil 4.34. SPEA yöntemi için gama-yakınsama değişimi 
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Şekil 4.35. SPEA2 yöntemi için gama-yakınsama değişimi 
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Şekil 4.36. DOPGA yöntemi için gama-yakınsama değişimi 
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Şekil 4.37. DOPGA2 yöntemi için gama-yakınsama değişimi 
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           Şekil a ZDT1 ve 

      

4.38, Şekil 4.39, Şekil 4.40 ve Şekil 4.41, 100 adım sonund

ZDT2 test işlevleri için, SPEA, SPEA2, DOPGA ve DOPGA2 yöntemlerinin γ=1 ve en 

iyi gama değerleri için seçilmiş Pareto bireyleri göstermektedir. Şekil 4.38’ den de 

açıkça görüleceği üzere, SPEA yöntemi γ=7 ile γ=1’ e göre daha iyi bir yakınsama 

sağlamaktadır. Benzer olarak, Şekil 4.39’ da, SPEA2 yöntemi γ=2 ile γ=1’ e göre daha 

iyi bir yakınsama sağlamaktadır. Şekil 4.40’ tan da görüleceği üzere,  DOPGA yöntemi 

γ=3 ile γ=1’ e göre daha iyi bir yakınsama sağlamaktadır. Son olarak, Şekil 4.41’ de 

DOPGA2 yöntemi γ=2 ile γ=1’ e göre daha iyi bir yakınsama sağlamaktadır. 

 

 

ZDT2 

 

 
 

Şekil 4.38. γ=1 ve γ=7 için SPEA yöntemiyle ZDT1 ve ZDT2 test işlevlerinde 
       

 

ZDT1 

           Pareto Ceph
           SPEA + Y=7 
           SPEA + Y=1 

esi           Pareto Cephesi
           SPEA + Y=7 

SPEA + Y=1            

                    bulunan Pareto bireyler   
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Şekil 4.39. γ=1 ve γ=2 için SPEA2 yöntemiyle ZDT1 ve ZDT2 test işlevlerinde 
                         bulunan Pareto bireyler   
 

 

     
 

Şekil 4.40. γ=1 ve γ=3 için DOPGA yöntemiyle ZDT1 ve ZDT2 test işlevlerinde 
                         bulunan Pareto bireyler   
 
 
 
 

           Pareto Cephesi
           DOPGA + Y=3
           DOPGA + Y=1

           Pareto Cephesi
           DOPGA + Y=3
           DOPGA + Y=1
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Şekil 4.41. γ=1 ve γ=2 için DOPGA2 yöntemiyle ZDT1 ve ZDT2 test işlevlerinde 
                        bulunan Pareto bireyler   
 
            

              

          4.3.4.2. Uyarlanabilir GDPÖ Kullanıldığında Benzetim Sonuçları 

 

          Bu bölümde, uyarlanabilir GDPÖ (U_GDPÖ) tüm ÇAGA yöntemlerine 

uygulanmıştır. 20 çalıştırma sonucunda elde edilen yakınsama ve dağılım ölçütlerinin 

ortalama değerleri Çizelge 4.5 ve Çizelge 4.6’ da verilmektedir. Çizelge 4.5’ ten de 

açıkça görüleceği üzere, DOPGA tüm test işlevlerinde diğer yöntemlerden daha iyi bir 

yakınsama sağlamaktadır. Dağılım için ise kesin bir şey söylenemektedir.  

 

Çizelge 4.5. U_GDPÖ uygulaması sonucunda hesaplanan yakınsama ölçüt sonuçları  

 
GD- Yakınsama Ölçütü ZDT1 ZDT2 ZDT3 ZDT6 

  SPEA  + U_GDPÖ 0.0592 0.1871 0.0548 1.6026 
  SPEA2  + U_GDPÖ 0.0183 0.0277 0.0118 1.1507 
  DOPGA + U_GDPÖ 0.0093 0.0109 0.0048 0.6189 
  DOPGA2 + U_GDPÖ 0.0249 0.0414 0.0144 1.1453 
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Çizelge 4.6. U_GDPÖ uygulaması sonucunda hesaplanan dağılım ölçüt sonuçları 

 
Δ- Dağılım Ölçütü ZDT1 ZDT2 ZDT3 ZDT6 

  SPEA  + U_GDPÖ 0.5614 0.6464 0.6540 0.8736 

  SPEA2  + U_GDPÖ 0.6121 0.6477 0.6303 0.8917 

  DOPGA + U_GDPÖ 0.5764 0.5700 0.6181 0.8053 

  DOPGA2 + U_GDPÖ 0.6010 0.6125 0.6115 0.8820 
 

 

          4.3.4.3. Turnuva Seçimi (TS) Kullanıldığında Benzetim Sonuçları 

 

          Bu bölümde SPEA ve DOPGA yöntemleri GDPÖ ile turnuva seçimi (ikili ve 

dörtlü turnuva) kullanılarak 20’ şer kez çalıştırılmışlardır. Çizelge 4.7, seçme 

mekanizması olarak turnuva seçimi kullanıldığında beş farklı gama değeriyle SPEA ve 

DOPGA yöntemlerinin yakınsama ölçütünün ortalama değerlerini göstermektedir. 

Çizelge 4.8 ise, seçme mekanizması olarak turnuva seçimi kullanıldığında beş farklı 

gama değeriyle SPEA ve DOPGA yöntemlerinin dağılım ölçütünün ortalama 

değerlerini göstermektedir. Benzetim sonuçlarına göre, turnuva seçimi kullanıldığında 

GDPÖ etkili değildir. Çünkü, turnuva seçimi birey puanlarıyla orantılı olarak seçme 

yapan bir seçme mekanizması değildir ve turnuvaya giren bireylerden yalnızca en 

iyisini seçmektedir. Farklı gama değerlerinde yöntemlerin Pareto cephesine 

yakınsamaları ve dağılımları arasında çok büyük bir fark görülmemiştir.  

  

Çizelge 4.7. TS-2 / TS-4 için yakınsama ölçüt sonuçları 
 

T γ γ γ γ γS =10 =2 =1 =0.5 =0.1 
ZDT1 0.0638 / 0.0648 0.0649 / 0.0651 0.0646 / 0.0652 0.0655 / 0.0708 0.0673 / 0.0693
ZDT2 0.2230 / 0.2305 0.2318 / 0.2360 0.2264 / 0.2329 0.2306 / 0.2444 0.2642 / 0.2352
ZDT3 0.0458 / 0.0530 0.0504 / 0.0535 0.0503 / 0.0565 0.0517 / 0.0538 0.0502 / 0.0545SP

E
A

 

ZDT6 2.4133 / 1.8219 2.4663 / 2.0009 2.4561 / 2.1569 2.4371 / 2.1423 2.6439 / 2.1117
 

ZDT1 0.0220 / 0.0359 0.0210 / 0.0315 0.0218 / 0.0330 0.0236 / 0.0343 0.0239 / 0.0329
ZDT2 0.0519 / 0.0919 0.0505 / 0.0709 0.0508 / 0.0730 0.0536 / 0.0719 0.0554 / 0.0823
ZDT3 0.0153 / 0.0239 0.0137 / 0.0235 0.0144 / 0.0262 0.0142 / 0.0247 0.0169 / 0.0258

D
O

PG
A

 

ZDT6 1.1331 / 1.3783 1.1264 / 1.3397 1.1272 / 1.3856 1.1661 / 1.3670 1.1877 / 1.3529
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Çizelge 4.8. TS-2 / TS-4 için dağılım ölçüt sonuçları 
 

T γ γ γ γ γS =10 =2 =1 =0.5 =0.1 
ZDT1 0.6120 / 0.6184 0.6103 / 0.6047 0.6023 / 0.5990 0.6085 / 0.6302 0.6168 / 0.6145
ZDT2 0.6975 / 0.6608 0.6993 / 0.7046 0.6995 / 0.6565 0.6851 / 0.6316 0.6946 / 0.6980
ZDT3 0.5889 / 0.5922 0.5904 / 0.6082 0.6034 / 0.6225 0.5995 / 0.6019 0.5947 / 0.6026SP

E
A

 

ZDT6 0.9076 / 0.9075 0.8794 / 0.8853 0.9114 / 0.9191 0.8804 / 0.9363 0.9201 / 0.9058
 

ZDT1 0.5885 / 0.5804 0.6016 / 0.6054 0.5934 / 0.5664 0.5985 / 0.6008 0.5817 / 0.5573
ZDT2 0.6133 / 0.6162 0.6178 / 0.6156 0.6095 / 0.6035 0.6203 / 0.6082 0.5833 / 0.5558
ZDT3 0.6110 / 0.6062 0.6147 / 0.6202 0.6397 / 0.5971 0.6078 / 0.5787 0.6321 / 0.5728D

O
PG

A
 

ZDT6 0.9018 / 0.9026 0.8662 / 0.8890 0.8957 / 0.8658 0.8558 / 0.8532 0.8955 / 0.8511
 
 

          4.3.4.4. 300 Adım Çalıştırılma ile Elde Edilen Sonuçlar 

 

          Ölçütler kullanılmadan tüm yöntemlerin temel yeteneklerinin görsel olarak 

görülebilmesi için, tüm yöntemler sabit gamalı GDPÖ ve uyarlanabilir GDPÖ ile 300 

adım çalıştırılmışlardır. Benzetimlerde, GA parametreleri daha önceki benzetimlerde 

kullanılanlarla aynı seçilmiştir. Şekil 4.42 – Şekil 4.49 arası; en iyi gama değerleri ve 

uyarlanabilir GDPÖ kullanıldığı durumlarda SPEA, SPEA2, DOPGA ve DOPGA2 

yöntemleri tarafından ZDT1 ve ZDT2 test işlevlerinde bulunan Pareto bireyleri 

göstermektedirler. 
 

                    
(a) (b) 

Şekil 4.42. γ=7 ile SPEA tarafından bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2 
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(a) (b) 
 

Şekil 4.43. γ=2 ile SPEA2 tarafından bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2 
 

 

      
(a) (b) 
  

Şekil 4.44. γ=3 ile DOPGA tarafından bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2 
 

 



 167

      
(a) (b)  

 
Şekil 4.45. γ=2 ile DOPGA2 tarafından bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2 

 

 

 

      
(a) (b)  
   

Şekil 4.46. U_GDPÖ ile SPEA tarafından bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2 
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(a) (b)  
   

Şekil 4.47. U_GDPÖ ile SPEA2 tarafından bulunan Pareto bireyler: (a)ZDT1, (b)ZDT2 
 

 

 

      
(a) (b)  
   

Şekil 4.48.U_GDPÖ ile DOPGA tarafından bulunan Pareto bireyler:(a) ZDT1,(b) ZDT2 
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(a) (b) 
    

Şekil 4.49.U_GDPÖ ile DOPGA2 tarafından bulunan Pareto bireyler:a) ZDT1,b) ZDT2 
 

 

          4.3.5. Genel Sonuçlar ve Değerlendirme 

 

          GDPÖ ilk olarak, tek amaçlı GA üzerinde iki test işlevi kullanılarak 

çalıştırılmıştır. GDPÖ’ de altı farklı sabit gama değeri (0.1,0.2,1,2,5,10) kullanılmıştır. 

Sonuç olarak, kullanılan iki test işlevinde de γ=10 seçildiğinde daha iyi ve daha hızlı bir 

yakınsama sağlandığı görülmüştür.  

          Genel benzetim sonuçlarına göre DOPGA ve DOPGA2 yöntemleri, seçme 

mekanizması olarak SUS veya TS kullanılırsa dört test işlevinde de SPEA ve SPEA2 

yöntemlerinden iyi sonuçlar vermektedirler. 

          GDPÖ yönteminin bir topluluktaki bireylerin seçilme baskısının değiştirebileceği 

dolayısıyla ÇAGA yöntemlerinin yakınsama yeteneğini artırabileceği görülmüştür. 

Sabit gama (γ) değerleri kullanılarak GDPÖ yöntemi, mevcut ve önerilen ÇAGA 

yöntemlerine uygulanmıştır. Bu durumda elde edilen genel sonuçlar şöyledir: i) ÇAGA 

yöntemlerinin başarımı gama (γ) değerine bağlı olarak değişmektedir, ii) SPEA yöntemi  

γ=7 ile uygulanan başarım ölçütlerine göre en iyi yakınsamayı ve dağılımı 

sağlamaktadır, iii) γ=2 ile SPEA2 ve DOPGA2, γ=3 ile DOPGA (ZDT1’ de γ=4 ile) en 

iyi yakınsamayı sağlamaktadırlar, iv) γ=1 ile yani orjinal sonuçlarla tüm yöntemler 

değerlendirildiğinde, DOPGA2 yönteminin ZDT1, ZDT2 ve ZDT3 test işlevlerinde, 
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DOPGA’ nın ise ZDT6 test işlevinde en iyi sonuçları verdiği görülmüştür, v) tüm gama 

değerlerine göre değerlendirme yapıldığında ise, ZDT1 test işlevinde γ=2 ile DOPGA2; 

ZDT2, ZDT3 ve ZDT6 test işlevlerinde ise γ=3 ile DOPGA tüm yöntemler arasında en 

iyi sonuçları vermektedir, vi) dağılım (veya çeşitlilik) farklı gama değerlerinde önemli 

derecede değişmemektedir, vii) GDPÖ yalnızca puan orantılı bir seçme mekanizması 

(örneğin SUS) kullanıldığı zaman etkilidir, viii) TS kullanıldığı zaman GDPÖ etkili 

değildir.  

          Uyarlanabilir GDPÖ yöntemi (dinamik γ değerleri) kullanıldığında SPEA (ZDT1 

hariç) ve DOPGA (ZDT1 ve ZDT3 hariç) yöntemleri sabit gama kullanıldığında elde 

edilen sonuçlardan daha iyi sonuçlar vermiştir. SPEA2 ve DOPGA2 ise sabit 

durumdakinden iyi sonuç vermemişlerdir. Hem uyarlanabilir hem de sabit GDPÖ 

sonuçları dikkate alındığında, ZDT2 ve ZDT6 test işlevlerinde DOPGA + Adaptif 

GDPÖ, ZDT1 test işlevinde DOPGA2, ZDT3 test işlevinde ise DOPGA; tüm 

yöntemlerden daha iyi yakınsama sonuçları vermektedir. 

          Sonuç olarak, GDPÖ bloğu, herhangi bir ek işlem yükü getirmeden ve 

yöntemlerin yapılarını değiştirmeden literatürde yer alan tüm ÇAGA yöntemlerine 

uygulanabilir ve yöntemlerin yakınsama başarımı artırılabilir. Ayrıca, benzetim 

sonuçlarından da anlaşılacağı üzere, tüm ÇAGA yöntemleri hala iyileştirmelere 

açıktırlar. 

 

 

          4.4. Çok Amaçlı Genetik Algoritmalar İçin Etkin Elitizm Mekanizması 

                 Önerisi 

 

          GA literatüründe yer alan klasik veya pasif elitizm mekanizması, sakla/aktar bir 

yapıya sahiptir. Tek amaçlı GA’ larda her adımda yalnızca bir tek en iyi olduğu için 

elitizm mekanizması basittir ve klasik elitizm şöyle uygulanır: yalnızca topluluktaki en 

iyi birey bir sonraki topluluğa (nesile) aktarılır. Buna rağmen, ÇAGA’ larda elitizm 

mekanizması tek amaçlı GA’ larda olduğundan daha karmaşıktır, ancak temel yapı 

aynıdır. Bir tek en iyi bireyin yerine, bir grup en iyi birey seçilir ve bunlar arşiv veya 

ikincil topluluk olarak adlandırılan bir toplulukta saklanır ve belirli kurallar 

çerçevesinde bu bireylerin hepsi veya seçilen bir kısmı sonraki nesile aktarılır. İkincil 

topluluk / arşiv yönetimi (veya genel olarak elitizm) ÇAGA’ ların başarımını önemli 
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ölçüde etkilemektedir, ancak bu durum çok iyi kontrol edilmelidir. Bazı ÇAGA’ larda 

arşiv boyutu önceden tanımlanır ve yalnızca belirli sayıda elit birey arşivde saklanabilir. 

Arşive bazı durumlarda, elit bireylerin yanında elit olmayan bireyler de dahil edilebilir. 

Arşivde saklanan bireylerin çeşitliliği de önemli bir konudur, eğer arşiv birbirinin aynı 

veya birbirine yakın elit bireylerden oluşturulursa, çeşitlilik azalır. Klasik elitizm 

mekanizmasının iki önemli aşaması vardır:  

 

          i) Saklama Aşaması: Hangi bireyler arşivde saklanacak ? Bu aşamada, ilk (veya 

ana) topluluktaki Pareto (bastırılamayan) bireyler arşive gönderilir ve orada saklanır. 

Eğer arşiv boyutuna ulaşılamazsa, bazı Pareto olmayan bireyler arşive kopyalanır. Eğer 

arşiv boyutu aşılırsa, o zaman bazı elit bireyler arşivden silinir.  

  

          ii) Geri Gönderme Aşaması: Hangi bireyler ilk topluluğa geri gönderilecek? 

Stratejilerden bir tanesi, o andaki topluluktaki tüm elit bireylerin bir sonraki topluluğa 

eklenmesidir. Bir diğer strateji ise, yalnızca belli bir sayıda elit bireyin bir sonraki 

topluluğa gönderilmesidir [Zitzler, 1999]. Seçme işlemi, yalnızca arşivden veya ana 

topluluk + arşivden yapılabilmektedir. 

 

          Literatürde birçok elitist ve elitist olmayan ÇAGA yöntemi önerilmiştir. Elitizmin 

ÇAGA yöntemlerinin başarımını artıran etkili bir yol olduğu deneysel olarak 

ispatlanmıştır. [Zitzler, 1999; Zitzler ve Thiele, 1999]’ de iki farklı ÇAGA yönteminin 

elitist versiyonlarının daha iyi başarım gösterdiği belirtilmiştir. Rudolph, elitizm 

olduğunda bazı test işlevlerinde GA’ ların küresel en iyiye daha iyi yakınsadığını ispat 

etmiştir [Rudolph, 1996; 2001]. Ayrıca, elit bireylerin varlığı daha iyi nesillerin 

üretilebilme olasılığını artırmaktadır. 

          Yeni elit bireylerin arşive eklenmesi ve bastırılan elit bireylerin arşivden silinmesi 

işlemine arşiv güncellenmesi adı verilir. ÇAGA yöntemlerinde birçok arşiv güncelleme 

yöntemi mevcuttur [Osyczka ve Kundu, 1995; Zitzler, 1999; Veldhuizen, 1999; Zitzler 

ve ark., 2001; Deb ve ark., 2002b]. Sonuç olarak şu söylenebilir; tüm klasik elitizm 

yöntemlerinin ortak noktası, elit bireylerin hiçbir uyartım olmadan arşivde saklanması 

ve daha sonra ana topluluğa aktarılmasıdır (elit saklama yordamı / yöntemi).  
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          4.4.1. Etkin Elitizm Mekanizması (Effective Elitism Mechanism, EFE)      

 

          Usta, arşivdeki bir grup elit bireyi kendilerinden daha iyi ve çeşitlilik açısından 

farklı bireyler üretilebilmesi umuduyla genetik işlevler (çaprazlama / mutasyon) 

kullanarak uyarmıştır [Usta, 2007]. Daha sonra bu uygulamalar daha da geliştirilerek, 

literatürde sık kullanılan SPEA yöntemine uygulanmış ve başarımı artırdığı tespit 

edilmiştir (Ergul ve ark., 2009b). Eğer uyarılmış elitler orjinallerinden daha iyi ise, o 

zaman arşiv, statik bir saklama yerinden ziyade etkin bir çözüm sağlayıcı olarak 

görülebilir. Bu yaklaşımın ardındaki ana motivasyon, elit bireylerin çözüme (herhangi 

bir optimizasyon probleminde) en yakın bireyler olmaları ve bu bireylerin genetik 

işlevler tarafından uyarılmasıyla daha uzaktaki bireylere göre daha iyi sonuçlar elde 

edilebileceği ümididir. İşte bu yapı etkin elitizm mekanizması olarak adlandırılmaktadır.    

          Etkin elitizm mekanizması, bir turboşarj ünitesi (veya turbodan) esinlenilerek 

önerilmiştir. Turbo, motora atmosferik basıncın üzerinde hava vererek yani cebri 

doldurum yaptırarak daha küçük hacimli motordan daha yüksek güç alınmasını 

sağlayan, hareketini egzoz gazının dışarı çıkma basıncından alan bir çeşit hava 

pompasıdır. Türbin ve kompresör olmak üzere iki adet pervaneye sahiptir. Türbin egzoz 

tarafında, kompresör emme tarafında yer almaktadır. Egzoz gazının çıkma basıncıyla 

dönen türbin aradaki bağlantı milinin yardımıyla kompresör pervanesini döndürür. Bu 

sayede motor silindirine önemli ölçüde artan bir hava girişi sağlanır. Eğer motora giren 

hava yoğunluğu artırılırsa, daha fazla güç üretilebilir. Dolayısıyla, bir turbo motorda ne 

kadar uyartım yapılırsa (hava basılırsa), o kadar fazla güç üretilir (Bkz Şekil 4.50). 

Benzer şekilde, GA’ larda da elit bireyler bir takım GA işlevleri (çaprazlama ve 

mutasyon) uyarılırsa, GA’ nın başarımı artırılabilir. Çünkü elit bireyler çözüme en yakın 

bireylerdir ve bunların GA işlevleri ile uyarılması neticesinde daha iyi sonuçlar elde 

edilebilir. 

 

http://tr.wikipedia.org/wiki/Egzoz_gaz%C4%B1
http://tr.wikipedia.org/wiki/Pompa
http://tr.wikipedia.org/wiki/T%C3%BCrbin
http://tr.wikipedia.org/wiki/Kompres%C3%B6r
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Şekil 4.50. Turboşarj ünitesi [http://auto.howstuffworks.com/turbo2.htm, 21.06.2009] 

 

          Tüm elit bireylerin seçilebilmesi ve seçme mekanizmasına gönderilmesi her 

zaman mümkün değildir. Seçilemeyen elit bireyler genetik işlevler tarafından 

uyarılamaz ve yeni çözümler üretemez. Bununla birlikte, etkin elitizm mekanizması tüm 

elit bireylere yeni çözümler üretebilmeleri için bir şans vermektedir. Etkin elitizm 

mekanizmalı bir ÇAGA’ nın blok diyagramı Şekil 4.51’ de verilmektedir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Şekil 4.51. Etkin elitizm mekanizmalı ÇAGA blok diyagramı 

Adım 0 : Başlangıç  

Adım 1: Puan Atama 
Mekanizması 

Adım 2: Seçme 
Mekanizması 

Adım 3: Çaprazlama 

Adım 4: Mutasyon 

Adım 7: 
Sonlandırma Testi 

En İyi Çözümler 

Adım 6: Arşiv Yönetimi 

Çözümler 
Kodlama 

Dekodlama 

Adım 5: Elit Bireylerin 
Uyarılması 

Kompresör 
Pervanesi 

Türbin 
Karteri 

Kompresör 
Karteri 

Basınçlı 
Hava Çıkışı

Eksoz Gazı 
Girişi 

Ham Hava 
Girişi 

KOMPRESÖR 
KISMI 

Eksoz Gazı 
Çıkışı 

TÜRBİN 
KISMI 

Türbin 
Pervanesi 
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          Etkin elitizm mekanizması ÇAGA yöntemlerine iki biçimde uygulanabilir:  

 

i)  Elit bireylerin mutasyon işlevi ile uyarılması,   

 ii)  O andaki (veya adımdaki) elit bireylerin n adım önceki elit bireylerle 

       çaprazlanması  

 

         Elit bireylerin mutasyon işlevi ile uyarılmasına bir örnek Şekil 4.52’ de 

gösterilmektedir. Tüm elit bireyler yalnızca bir kez mutasyona uğratılmışlardır.            

(+) simgesi ile gösterilen bu mutantlardan bazıları orijinal elit bireylere göre Pareto 

cephesine daha fazla yakınsamışlardır. Örneğin; Y,  A bireyinin mutantıdır ve Y bireyi 

her iki amaç dikkate alındığında A bireyine göre Pareto cephesine daha yakındır. Bu 

yüzden Y bireyi arşivde A bireyi ile yer değiştirilir. Z ise B bireyinin mutantıdır ve B 

bireyi hala Z bireyinden daha iyi olduğundan B bireyi arşivde kalmaya devam eder. 

 

 

 
f2 

A 

Y 

B

Z

+ 

+ 
+ 

-

-
-

+ 

 

 

 

 

 

 

 

 f1 

 
  Şekil 4.52. Etkin elitizmde elit bireylerin mutasyon işlevi ile uyarılması (Yuvarlaklar 

      Pareto (elit) Bireyler, artı ve eksiler elit bireylerin mutantlarıdır) 
 

          Elit bireylerin çaprazlama işlevi ile uyarılmasına ilişkin bir örnek Şekil 4.53’ te 

verilmektedir. Bu aşamada, k. adımdaki elit bireylerle (k-n). adımdaki elit bireyler 

çaprazlama işlemine tabi tutulur. Elit sayısı eşit değilse, en az elit sayısı kadar bireyler 

çaprazlamaya tabi tutulur, çaprazlamaya uğramayacak bireyler aynen saklanır. 

Çaprazlama işlemi sonucunda bulunan bireyler Şekil 4.53’ te “+” ile gösterilmektedir ve 

bu bireyler k. adımdaki orjinal elit bireylerden daha iyidirler. Dolayısıyla, arşivdeki 
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orjinal elitlerle yer değiştirirler. “-” ler ise diğer çapraz bireylerdir ve bunlar orjinal 

elitlerden iyi olmadıklarından hiçbir işlem yapılmadan kalırlar. Eğer uyartımla yani 

çaprazlama veya mutasyonla uyarılan bireyler orjinal elit bireylerden daha iyi değilse 

arşiv değişmeden kalacaktır.   

 

 
f2 

 

 

 

 

 

 

 

k. adım 

(k-n). adım  

 

 

 

Şekil 4.53. O andaki elit bireyler ile daha önceki adımdaki elit bireylerin 
                      çaprazlanması. Yuvarlaklar k. adımdaki elit bireyleri, kareler  
                            (k-n). adımdaki elit bireyleri, artı ve eksiler ise çaprazlama sonucu 
                                 elde edilen bireyleri göstermektedir   
   

   

          4.4.2. Benzetim Sonuçları 

 

          Literatürde sık kullanılanan çok amaçlı SPEA ve SPEA2 yöntemleri ile önerilen 

DOPGA ve DOPGA+ yöntemleri hem pasif elitizm mekanizması hem de önerilen etkin 

elitizm mekanizması kullanılarak çalıştırılmış, pasif ve etkin elitizm karşılaştırması 

yapılmıştır. Etkin elitizm mekanizması kullanan yöntemlerin önüne EFE (EFfective 

Elitist ) ön eki getirilmiştir. 

          ÇAGA karşılaştırmalarında sık kullanılan dört test işlevi (ZDT1, ZDT2, ZDT3 ve 

ZDT6) benzetimlerde kullanılmıştır. Tek noktalı çaprazlama ve bit-tabanlı mutasyon 

kullanılmıştır. Çaprazlama olasılığı 9.0=cp  ve mutasyon olasılığı  (  dizi 

boyutudur) olarak seçilmiştir. 100 adım (ya da nesil) sonucunda GD ve Δ metrikleri 

lpm /1= l

f1 

+ 
+ 

+ 
+ 

+ 
+ 

- 
- 

- 
- 

- 
- 
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kullanılarak değerlendirmeler yapılmıştır. Başlangıç topluluğu boyutu 100 olarak 

seçilmiştir. Arşiv boyutu ise SPEA ve DOPGA için 25, SPEA2 ve DOPGA+ için ise 

100 olarak belirlenmiştir. Tüm yöntemler için, son nesildeki ana topluluk ile arşivin 

birleştirilmesi ile elde edilen birey topluluğu başarım ölçütlerinin hesabı için 

kullanılmıştır. Her parametre 30 bit olarak kodlanmıştır. ZDT2 ve ZDT6 test 

işlevlerinde 10 parametre kullanılmıştır. Seçme mekanizması olarak ikili turnuva seçimi 

kullanılmıştır. Etkin elitizm için, etkin mutasyon olasılığı 0.05 seçilmiştir (deneysel 

olarak bu olasılığın düşük olması gerektiği saptanmıştır). 

          Tüm etkin elitizm mekanizmalı yöntemlerde, elit bireyler 31. adıma kadar 

(deneysel olarak belirlenmiştir) mutasyon işlevi ile uyarılmışlardır, 30. adımdan sonra 

mutasyon işlevi kullanılmamıştır. Çünkü mutasyon ile uyartım elit bireylerin Pareto 

cephesine yakınsamasını sağlarken, çaprazlama ile uyartım ise düzgün dağılımı 

sağlamaktadır ve belli bir aşamaya kadar bu iki işlevin birlikte kullanılması 

gerekmektedir. Eğer elit bireylerin mutantları kendilerinden iyi ise bunlar arşivde yer 

değiştirilmiştir, aksi takdirde değişmeden kalmışlardır. Hangi bireyin iyi olduğuna amaç 

uzayında hesaplanan Öklit mesafesine göre karar verilmiştir. Aynı zamanda,                  

k. adımdaki elit bireylerle ondan 10 adım önceki elit bireyler çaprazlama işlevine tabi 

tutulmuşlardır. Örneğin, 100. adımdaki elit bireylerle 90. adımdaki elit bireyler, 90. 

adımdaki elit bireylerle 80. adımdaki elit bireyler vs. çaprazlanmışlardır. Eğer uyartım 

sonucunda elde edilen çapraz bireyler o andaki elit bireylerden iyi ise bunlar arşivde yer 

değiştirilmiştir, aksi takdirde değişmeden kalmışlardır. Daha sonra arşivdeki ve ana 

topluluktaki bireyler birleştirilerek seçme işlevine tabi tutulmuşlardır.  

          Tüm yöntemler ve onların etkin elitizm mekanizmalı versiyonları, tüm test 

işlevlerinde 20’ şer kez çalıştırılmışlardır ve sonuç olarak yakınsama ve dağılım 

ölçütlerinin ortalama değerleri ve varyansları hesaplanmıştır.  

          Çizelge 4.9, tüm yöntemler tarafından bulunan bireylerin Pareto cephesine 

yakınsamalarını gösteren yakınsama ölçütünün (GD) ortalama ve varyans değerlerini 

göstermektedir. Çizelge 4.10, tüm yöntemler tarafından bulunan bireylerin Pareto 

cephesinde düzgün dağılıp dağılmadıklarını gösteren dağılım ölçütünün (Δ) ortalama ve 

varyans değerlerini göstermektedir.  

          Önerilen yöntemin etkinliğinin gösterilmesi için ZDT1 ve ZDT2 test işlevlerinde 

tüm yöntemlerin pasif ve etkin elitizm mekanizmalı biçimleri için elde edilen tipik 

benzetim sonuçları Şekil 4.54 - Şekil 4.61 arasında verilmektedir.   
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            Çizelge 4.9. Yakınsama ölçütünün (GD) ortalama (ilk satırlar) ve  varyans 
         (ikinci satırlar) değerleri  

 
 ZDT1 ZDT2 ZDT3 ZDT6 

0.0627 0.0133 0.0517 1.2824 SPEA 
2.1822e-4 2.3891e-4 2.5627e-4 0.2391 

0.0549 0.0086 0.0488 1.1638 EFE_SPEA 
1.3940e-4 3.3388e-5 8.4167e-5 0.1942 

0.0327 0.0044 0.0441 0.7672 SPEA2 2.5225e-5 5.1226e-6 2.5372e-4 0.0232 
0.0293 0.0031 0.0345 0.7238 EFE_SPEA2 1.7667e-5 2.8834e-6 6.5541e-5 0.0410 
0.0223 0.0016 0.0152 0.2864 DOPGA 3.3784e-5 1.4443e-6 4.1772e-5 0.0030 
0.0208 0.0010 0.0167 0.3902 EFE_DOPGA 1.5020e-5 1.2260e-7 2.4062e-5 0.0259 
0.0219 0.0013 0.0148 0.3201 DOPGA+ 3.3813e-5 2.3274e-7 2.2227e-5 0.0059 
0.0198 0.0011 0.0143 0.2892 EFE_DOPGA+ 1.3532e-5 1.9397e-7 5.5985e-5 0.0027 

 
 
 
 
            Çizelge 4.10. Dağılım ölçütünün (Δ) ortalama (ilk satırlar) ve varyans 
                                  (ikinci satırlar) değerleri  
 

 ZDT1 ZDT2 ZDT3 ZDT6 
0.6170 0.6189 0.6320 0.8425 SPEA 
0.0047 0.0032 0.0073 0.0079 
0.5945 0.6062 0.6148 0.8761 EFE_SPEA 
0.0055 0.0056 0.0059 0.0070 
0.5895 0.6115 0.6080 0.8285 SPEA2 0.0041 0.0033 0.0112 0.0060 
0.5761 0.6322 0.5874 0.8147 EFE_SPEA2 0.0038 0.0031 0.0095 0.0089 
0.5869 0.5894 0.6172 0.7168 DOPGA 0.0041 0.0037 0.0099 0.0083 
0.5971 0.6082 0.6504 0.8015 EFE_DOPGA 0.0028 0.0019 0.0097 0.0167 
0.5289 0.5703 0.5895 0.7063 DOPGA+ 0.0055 0.0044 0.0050 0.0052 
0.6026 0.6142 0.6119 0.7308 EFE_DOPGA+ 0.0028 0.0021 0.0057 0.0059 
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(a) (b) 
 

Şekil 4.54. ZDT1 test işlevinde bulunan Pareto bireyler: (a) SPEA, (b) EFE_SPEA  
 

 
 
 
 

      
             (a)      (b) 

Şekil 4.55. ZDT2 test işlevinde bulunan Pareto bireyler: (a) SPEA, (b) EFE_SPEA  
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(a) (b) 

 
Şekil 4.56. ZDT1 test işlevinde bulunan Pareto bireyler: (a) SPEA2, (b) EFE_SPEA2  

 
 
 
 

      
(a) (b) 

 
Şekil 4.57. ZDT2 test işlevinde bulunan Pareto bireyler: (a) SPEA2, (b) EFE_SPEA2  

 

 

 



 180

  
(a)  (b) 

 
Şekil 4.58. ZDT1 test işlevinde bulunan Pareto bireyler: (a) DOPGA, (b) EFE_DOPGA  
 

 

 

      
(a) (b) 
 

Şekil 4.59. ZDT2 test işlevinde bulunan Pareto bireyler: (a) DOPGA, (b) EFE_DOPGA  
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(a) (b) 
 

Şekil 4.60.ZDT1 test işlevinde bulunan Pareto bireyler:(a) DOPGA+,(b)EFE_DOPGA+ 
 
 

 

 

                  
(a)                            (b) 

 
Şekil 4.61. ZDT2 test işlevinde bulunan Pareto bireyler:(a)DOPGA+,(b)EFE_DOPGA+ 
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          4.4.3. Sonuçlar ve Değerlendirme  

 

          Pasif elitizm mekanizması önerilen etkin elitizm mekanizmasıyla yer 

değiştirilmiştir. Elit bireyler en iyi bireylerdir ve dolayısıyla çözüme en yakın 

bireylerdir. Bu yüzden, arşivdeki elit bireylerin çaprazlama / mutasyon işlevleri ile 

uyarılması, kendilerinden yakınsama ve düzgün dağılım açısından daha iyi bireyler 

üretilebilmesini sağlayabilir. Bu amaçla klasik sakla/aktar elitizm yapısı, 

sakla/uyar/aktar bir etkin elitizm yapısı kullanılarak iyileştirilmiştir. Böylece, etkin 

elitizm mekanizmasında ilk topluluk ve arşivdeki bireyler çözüm üretebilmektedir.   

          Benzetimler sonucunda, EFE_SPEA yönteminin SPEA yönteminden yakınsama 

ve dağılım açısından daha iyi olduğu görülmüştür. Yalnızca, ZDT6 test işlevinde SPEA 

yöntemi EFE_SPEA’ dan daha iyi bir dağılım sağlamıştır.  

          EFE_SPEA2 yönteminin SPEA2 yönteminden yakınsama açısından daha iyi 

olduğu görülmüştür. ZDT2 test işlevi hariç tüm test işlevlerinde, EFE_SPEA2 yöntemi 

SPEA2’ den daha düzgün bir şekilde Pareto cephesine dağılmıştır. 

          EFE_DOPGA yöntemi ZDT1 ve ZDT2’ de, DOPGA yöntemi ise ZDT3 ve 

ZDT6’ da daha iyi yakınsama sağlamışlardır. DOPGA, EFE_DOPGA’ dan daha iyi 

dağılım ölçütlerine sahiptir. 

          EFE_DOPGA+, tüm test işlevlerinde DOPGA+ yönteminden iyi yakınsama 

sağlamaktadır. Ancak DOPGA+ tüm test işlevlerinde dağılım açısından daha iyidir. 

          Tüm pasif ve etkin elitizm mekanizmalı yöntemler birlikte değerlendildiğinde; 

ZDT1, ZDT3 ve ZDT6’ da EFE_DOPGA+, ZDT2’ de ise EFE_DOPGA diğer 

yöntemlerden yakınsama açısından daha iyidir. ZDT1, ZDT2 ve ZDT6’ da DOPGA+, 

ZDT3’ te ise EFE_SPEA2 yöntemi diğer tüm yöntemlerden daha iyi olarak Pareto 

cephesine dağılan bireyler oluşturmuşlardır.  

          Etkin elitizm mekanizması üzerinden bir takım iyileştirmelere gereksinim 

duyulmaktadır. Özellikle, mutasyon ve çaprazlama işlevlerinin hangi anda devreye 

gireceklerinin daha iyi belirlenmesi gerekebilir. Ayrıca elit bireylerin çaprazlanması için 

bir algoritma kurulması daha iyi sonuçlar elde edilmesini sağlayabilir. Hangi elit 

bireylerin hangi elit bireylerle çaprazlanacağının daha iyi saptanması, etkin elitizmin 

yeteneğini artırabilir. Bunun için hangi bireylerin çaprazlamaya gireceğine dair bilgi 

veren bir kural tabanının oluşturulması gelecek çalışmalardan birisi olacaktır. Ayrıca 

etkin elitizm mekanizmasının işlem yükünün azaltılması da bir çalışma konusudur.   
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          Bu bölümde önerilen etkin elitizm mekanizması literatürde yer alan ÇAGA 

yöntemlerine uygulanarak, bu yöntemlerin başarımı, genel yapıları değiştirilmeden 

artırılabilir. Etkin elitizm mekanizmasının tek dezavantajı, ÇAGA yöntemlerinin işlem 

zamanlarında artışa neden olmasıdır.    

 

 

          4.5. ÇAGA Yöntemlerinin Sıralama Yeteneklerinin Ölçülmesi İçin İki Yeni 

                 Ölçüt Önerisi   

 

          ÇAGA yöntemlerinin, bir topluluktaki birbirinden farklı bireylere farklı puan 

atama yeteneğinin olması gerekir. Böylece, topluluk en çok istenilen bireyden en az 

istenilen bireye doğru tekil bir biçimde sıralanabilir ve ÇAGA yöntemi tarafından 

seçme mekanizmasına daha nitelikli bilgi aktarımı sağlanarak, genetik algoritmanın 

başarımı artrılabilir. Bu amaçla bu bölümde ilk olarak, ÇAGA yöntemlerinin sıralama 

yeteneklerinin ölçülebilmesi için Ceza (P) ve Ödül (R) başarım ölçütleri önerilmektedir. 

Bu ölçütlerle bir ÇAGA’ nın seçme mekanizmasına (ya da karar vericiye) ne kadar 

nitelikli bilgi aktarabildiği ölçülebilmektedir. Sıralama yeteneğinin analitik olarak 

ölçülebilmesi için, puan dağılımlarının tekil bir biçimde sıralanıp sıralanmadığı ve 

düzgün dağılıp dağılmadığı göz önüne alınmıştır. 

          Tek amaçlı genetik algoritmada, bireyler en çok istenilenden en az istenilene 

doğru tekil bir biçimde sıralanır. Ancak çok amaçlı durumda, Pareto tanımından dolayı 

tekil bir sıralama elde edilmesi her zaman mümkün olmayabilir. İdeal durumda, ÇAGA 

yöntemleri bir topluluktaki bireyleri en çok istenilenden en az istenilene doğru tekil bir 

biçimde sıralamaya (bireyleri birbirinden ayırt etmeye) çalışırlar. Literatürde yer alan 

ÇAGA yöntemleri, bir topluluktaki bireylere farklı farklı puanlar atamaktadırlar. Bunun 

anlamı, belirli bir topluluk farklı ÇAGA’ lar tarafından farklı puan değerleri veya farklı 

puan dağılımlarıyla gösterilebilir. Puanlama mekanizmasının çıkışı, karar vericinin veya 

seçme mekanizmasının giriş kümesini oluşturmaktadır. Seçme mekanizmasının çıkışı 

ise ÇAGA yöntemi tarafından nasıl beslenildiği ile ilişkilidir. Bu yüzden, ÇAGA 

puanlama yöntemleri seçme mekanizmasının çıkışını etkilemektedir. Doğal olarak, 

ÇAGA yöntemi tarafından ne kadar nitelikli bilgi üretildiği ve bunun ne kadarının 

seçme mekanizmasına aktarıldığı sorusu akla gelir. N adet farklı giriş kümesi 

(topluluktaki bireylerin puanlarını gösteren) ile seçme mekanizmasının beslendiğini 
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düşünelim, benzer olarak seçme mekanizması tarafından da N adet farklı çıkış 

üretilecektir. Diğer bir deyişle, N adet farklı puan, seçme mekanizmasına farklı 

seviyelerde seçilme baskısı uygulayacaktır. Bu nedenle, var olan yöntemlerin bireyleri 

sıralama yeteneği sayısal olarak hesaplanmalıdır. Şu ana kadar, literatürde yer alan 

ÇAGA yöntemleri, genellikle bazı test işlevleri ve başarım ölçütleri kullanılarak 

karşılaştırılmışlardır. Var olan ölçütler; Pareto cephesine yakınsama, bu cephede düzgün 

dağılım ve bulunan Pareto birey sayısını ölçmektedirler. [Zitzler ve ark., 2000] 

makalesinde, bir ÇAGA yönteminin başarımını ölçerken şu üç konuya dikkat edilmesi 

gerektiği belirtilmektedir: i) Bulunan Pareto bireylerin sayısı fazla olmalıdır, ii) küresel 

Pareto-optimal cepheye (biliniyorsa) mümkün olduğu kadar yaklaşılmalıdır,                 

iii) bireylerin bu cephede dağılımı mümkün olduğunca düzgün olmalıdır. [Deb, 1999]  

makalesinde, test işlevlerinin GA’ ların nasıl çalıştığı konusunda çok fazla bilgi sahibi 

olunmadan oluşturulduğunu belirtmektedir. Benzer olarak, önerilen ÇAGA yöntemleri 

de mühendislik hesaplamalarından daha çok mühendislik sezgilerine dayanmaktadır. Bu 

yüzden, literatürde çok sayıda ÇAGA yöntemi vardır ve önerilmeye de devam 

edilmektedir. Bu kadar çok yöntemin olması puanlama mekanizmasının hala ucu açık 

bir soru olduğunu göstermektedir. 

          Ceza ölçütü, bir ÇAGA yöntemi tarafından bir topluluktaki bireylere atanan 

puanların ne kadar farklı olduğunu ölçer. Yani, aynı puana sahip bireyler çok ise ceza da 

çok olacaktır. Mantıksal olarak, en iyi bireylerin aynı puana sahip olması en kötü 

bireylerin aynı puanlara sahip olmasından daha fazla ceza alınmasına neden olacaktır.          

Eğer bireyler en çok istenilenden en az istenilene doğru tekil bir şekilde sıralanabilirse, 

yani hiçbir birey aynı puana sahip değilse, o zaman seçme mekanizması hangi bireyin 

diğerinden daha iyi olduğu konusunda bir sıkıntıya girmeden karar verebilecektir. Bu 

durumda, ÇAGA sanal olarak tek amaçlı bir GA gibi davranacaktır.  

          Ödül ölçütü, bir topluluktaki bireylerin puan dağılımlarının ne kadar düzgün 

dağıldığını belirler. Ceza sıfır olsa bile ödül sıfırdan farklı olabilir. Düzgün puan 

dağılımı ideal bir durumdur. Puan dağılımının kısmi kalabalıklıkları veya kısmi 

seyreklikleri sıralamanın düzgün olmadığı anlamına gelir.                                                                        

          İdeal bir durumda, yani bir ÇAGA yöntemi farklı bireylere farklı puanlar 

atamışsa, ceza sıfır olur. Eğer bireylerin puanları en çok istenilenden en az istenilene 

doğru düzgün bir biçimde dağılıyorsa, ödül ölçütü sıfır olacaktır ve bu ideal bir 

durumdur. İdeal bir ÇAGA yöntemi, aynı anda hem sıfır ceza hem de sıfır ödüle sahip 
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olmalıdır. Yani, ceza ve ödül ölçütlerinin en küçük olması istenmektedir. Eğer birkaç 

ÇAGA yöntemi karşılaştırılıyorsa, en düşük ceza ve ödüle sahip olanın en iyi yöntem 

olduğu söylenebilir. Ancak, seçme mekanizması olasılıksal olarak çalıştığı için tam bir 

değerlendirme yapmak mümkün olmayabilir.            

          İlerleyen bölümlerde ceza ve ödül ölçütleri ayrıntılı olarak açıklanmakta ve 

literatürde yer alan ve yeni önerilen ÇAGA yöntemleri bu ölçütler kullanılarak 

karşılaştırılmasıyla elde edilen sonuçlar verilmektedir. 

 

 

          4.5.1. Ceza ve Ödül Ölçütleri 

          

          Ceza ve ödül kavramlarına geçmeden önce, ÇAGA yöntemlerinin nasıl 

karşılaştırılabileceğine bakmak yararlı olabilir. Literatürde yer alan tipik bir 

karşılaştırma senaryosu aşağıda verilmektedir [Huband ve ark., 2006]. 

 

• Karşılaştırılacak ÇAGA yöntemleri belirlenir, 

• Varolan test işlevlerinden birkaçı seçilir veya yenileri oluşturulur,  

• ÇAGA yöntemi tarafından elde edilen sonuçları karşılaştırmak için 

birtakım başarım ölçütleri seçilir,  

• Her bir test işlevinde tüm ÇAGA yöntemlerinin sonuçları bulunur,  

• Sonuçlar kullanılarak ölçümler yapılır ve elde edilen veriler karşılaştırılır,  

• Sonuçlar grafiksel olarak çizdirilir. 

 

          Ceza ve ödül ölçütleri, bir ÇAGA yönteminin puanlama mekanizmasının görevini 

ne kadar iyi yaptığı belirlemek için kullanılırlar. Puanlama (sıralama) yeteneğinin 

ölçülmesi için belirli bir ölçüt yoktur. Diğer bir deyişle, puanlamanın ne kadar iyi 

yapıldığını doğrudan ölçen bir ölçüt yoktur. Burada önerilen ölçütler, problem tipinden 

bağımsızdır ve Pareto-optimal cephenin önceden bilinmesine de ihtiyaç 

duymamaktadırlar. ÇAGA yöntemleri tarafından bir topluluktaki bireylere atanan 

puanların bilinmesiyle karşılaştırma yapılabilir. Buradaki fikir, “bireylerin puanlarına 

bakılarak topluluk hakkında ne kadar bilgi edinilebilir” sorusundan gelmektedir. Ayrıca, 

bu puan değerleri kullanılarak karar vericiye ya da seçme mekanizmasına ne kadar 
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bilgi gönderilebilir? Bir topluluktaki bireylere puan atanması, aslında bireylerin en çok 

istenilenden en az istenilene doğru sıralanması işlemidir. Bu sorulara yanıt bulabilmek 

için ceza ve ödül ölçütleri önerilmektedir.   

          Prensip olarak, farklı bireyler aynı puana sahipse, bu durumda bir ceza değeri 

oluşturacaklardır. Örneğin, en çok istenilen iki birey (iki Pareto birey gibi) aynı puana 

sahipse, daha az istenilen iki bireye (iki Pareto olmayan birey gibi) göre daha fazla ceza 

değeri üreteceklerdir. Yani daha önemli bireylerin aynı puana sahip olması daha fazla 

ceza değeri üretir, bu nedenle ceza eğrisi üstel bir biçimde azalan bir işlev olmalıdır. 

Aşağıda bu duruma uygun bir ceza işlevi verilmektedir. Bu işlev, her bireyin konumu 

veya önemi ile ilişkilidir. 

 

                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

top_boyut
iexp) i ( Ceza             i=1,2,…,top_boyut                    (4.21)       

 

          Ceza değeri aşağıdaki algoritma kullanılarak hesaplanır: 

 

1- ÇAGA yöntemini çalıştır ve bireylerin puan değerlerini al,  

2- Puan değerlerini en önemliden en az önemliye (ÇAGA yöntemine göre 

değişebilir) doğru sırala,  

3- Aynı puan değerlerine sahip olan bireyleri belirle,  

4- Ceza işlevine (eşitlik 4.21) git ve Adım-3’ teki bireylerin ceza değerlerini belirle, 

daha sonra bu ceza değerlerini topla,  

 

        (m: aynı puana sahip birey indisleri)         (4.22) ∑= Ceza(m)aToplam_Cez

 

          Hesaplamaların daha iyi anlaşılması için aşağıda sayısal bir örnek verilmektedir. 

Sekiz bireylik bir topluluğa ait puan değerleri aşağıdaki gibi verilsin. Buna göre toplam 

ceza şöyle hesaplanır: 

 

1- Birey puanları    : [1 2 1 6 4 8 5 8]  

2- Puanlar sıralanır : [1 1 2 4 5 6 8 8] 

3- İlk iki ve son iki birey aynı puanlara sahip,  
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4- (4.21) numaralı eşitliğe göre 8 bireylik bir ceza eğrisi oluşturulur (Şekil 4.62) ve 

aynı puana sahip bireylerin ayrı ayrı ceza değeri hesaplanır:  

  

          0.88258
1expp(1)ceza(1) =⎟
⎠
⎞⎜

⎝
⎛ −==    7788.08

2expp(2)ceza(2) =⎟
⎠
⎞⎜

⎝
⎛ −==       (4.23) 

          4169.08
7expp(7)ceza(7) =⎟
⎠
⎞⎜

⎝
⎛ −==    0.36798

8expp(8)ceza(8) =⎟
⎠
⎞⎜

⎝
⎛ −==      (4.24) 

          ∑ ∑ +++=== p(8)p(7)p(2)p(1)p(m)Ceza(m)aToplam_Cez       (4.25) 

          2.44610.36790.41690.77880.8825aToplam_Cez =+++=                          (4.26) 

 

 
         

      Şekil 4.62. Sekiz bireylik bir topluluk için ceza işlevi  

 

          Ödül ölçütü ise, tüm bireyler birbirinden farklı olsa veya topluluk sıfır ceza 

değerine sahip olsa bile, bireylerin puan dağılımının ne kadar düzgün olduğunun 

belirlenmesinde kullanılır. Ödül ölçütü şöyle hesaplanır:  

 

1-   Puan değerleri 0 ile 1 arasına normalize edilir,  

2- Normalize puan değerleri en önemliden en az önemliye doğru sıralanır,  

3- Tüm toplulukta ardışıl bireyler arasındaki normalize puan farkları (NPF) 

      hesaplanır,  

4- Ardışıl bireyler arasındaki normalize puan farklarının standart sapması ve 
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      ortalama değeri bulunur ve buna göre Ödül ölçütü aşağıdaki gibi hesaplanır: 

  

 Deger(NPF) Ortalama
  Sapma(NPF)Standart Ödül =        (4.27) 

 

          Eğer Şekil 4.63’ te gösterildiği gibi ödül değeri sıfır olursa, puan dağılımı 

kesinlikle düzgündür. Burada 1 nolu birey en iyi birey, 8 nolu birey ise en kötü bireydir. 

Bu ideal puan dağılımında, bireyler eşit aralıklarla sıralanmış ve puan değerleri 

arasındaki farklar sabit olduğundan standart sapma sıfır olacaktır.  

 

 
 

Şekil 4.63. İdeal puan dağılımında ödül değeri sıfır olur 

 

          ÇAGA yöntemleri karşılaştırıldığında, en düşük ceza ve ödül (birlikte 

düşünülmelidir) değerine sahip olan yöntem sıralama yeteneği açısından en iyi yöntem 

olacaktır. Puan değerleri seçme mekanizmasının giriş kümesidir ve seçme mekanizması 

giriş kümesinin içeriğine bağlı olarak bir çıkış kümesi oluşturur. Şekil 4.64, birbirinden 

farklı puan dağılımları olan ancak hepsi de sıfır ceza değerine sahip beş farklı topluluğu 

göstermektedir. Çünkü, tüm bu farklı puan dağılımları seçme mekanizması üzerinde 

farklı seviyelerde seçilme baskısı oluşturacaklardır. Bir başka deyişle, bu beş farklı 

küme ile beslendiğinde, seçme mekanizmasının çıkışları (bir sonraki ebeveynler) aynı 

olmayacaktır. Tüm bu dağılımlar sıfır ceza değerine sahip olmalarına rağmen, ödül 
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tanımından dolayı ödül değerleri birbirinin aynısı değildir. Şekil 4.64’ ten görüleceği 

üzere, puan değerinin γ=1 ile üssü alınırsa, bu durumda puan dağılımı düzgün olur. Eğer 

γ değeri 1’ den büyük olursa, puan dağılımının grafiği içbükey olur ve ilk birkaç bireyin 

puanı birbirine çok yakın olurken, tersine son birkaç bireyin puanı birbirinden uzak olur. 

Benzer olarak, eğer γ değeri 1’ den küçük ise, puan dağılımı dışbükey bir işlev olur. İlk 

birkaç bireyin puan değerleri birbirinden uzak yerleşirken, tersine son birkaç bireyin 

puanı çok yakın olur. Puan dağılımının kısmi seyreklikleri ve kısmi kalabalıklıkları, 

sıfırdan farklı bir ödül değeri olmasına neden olur ve bu da dağılımın düzgün olup 

olmadığını gösterir. Tüm bu beş farklı puan dağılımı ve bunlara ilişkin ödül değerleri 

Şekil 4.64  ve  Çizelge 4.11’ de verilmektedir.   

 

 
 

Şekil 4.64. Beş farklı topluluğun puan dağılımları  

 

Çizelge 4.11. Şekil 4.64’ teki puan dağılımlarının ödül değerleri 
 

Puan Dağılımının 
Üs Değeri Ödül (R) Değeri

γ=1 0 
γ=2 0.6055 
γ=5 1.3867 
γ=0.5 0.7981 
γ=0.2 1.8788 
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          4.5.2. Benzetim Sonuçları  

 

          Literartürde sık kullanılan SPEA ve SPEA2 yöntemleri ile tezde önerilen 

DOPGA ve DOPGA2 yöntemlerinin sıralama yeteneklerinin ölçülmesi için, sık 

kullanılan dört test işlevi (ZDT1, ZDT2, ZDT3, ZDT6) üzerinde bu yöntemler 

çalıştırılmış ve her bir GA adımında bireylere atadıkları puan değerleri ceza ve ödül 

ölçüt değerlerinin hesaplanmasında kullanılmıştır. Tüm ÇAGA yöntemleri 20’ şer kez 

100 adım çalıştırılmıştır. Her bir adımda bireylere atanan puan değerleri kullanılarak, 

ceza ve ödül ölçütleri (20x100=2000 değer) hesaplanmıştır. Daha sonra bu ceza ve ödül 

değerlerinin ortalamaları sıralama yeteneklerinin karşılaştırılmasında kullanılmıştır. 

Ceza ve ödül ölçtülerinin yanı sıra, yakınsama ve dağılım ölçütleri de hesaplanarak 

ortalama değerleri alınmıştır. 

          Benzetimlerde, parametre sayısı 30, bit sayısı ya da çözünürlük 30, birey sayısı 

100, nesil sayısı 100, çaprazlama olasılığı 0.9, mutasyon olasılığı 1/bit_sayısı olarak 

seçilmiştir. İkincil topluluk boyutu, SPEA ve DOPGA için 25, SPEA2 ve DOPGA2 için 

100 olarak seçilmiştir. Seçme mekanizması olarak SUS kullanılmıştır. 

          Çizelge 4.12, SPEA ve DOPGA yöntemleri için elde edilen ölçüt değerlerini 

göstermektedir. Şekil 4.65’ te ise SPEA ve DOPGA yöntemlerinin ceza ve ödül 

değerlerine göre elde edilen boxplot gösterilimleri verilmektedir. Ceza ve ödül 

ölçütlerine göre daha iyi olan yani hem ceza hem de ödül ölçütü daha düşük olan 

DOPGA yöntemi, SPEA yöntemine göre daha iyi sıralama yeteneğine sahiptir. Bu 

sonuçlara göre DOPGA yönteminin Pareto-optimal cepheye yakınsama ve bu cephe 

üzerinde dağılım açısından da SPEA yönteminde daha iyi olması beklenmektedir. 

Yakınsama ve dağılım ölçütlerinin sonuçlarına göre de DOPGA yöntemi başarım 

açısından SPEA yönteminden daha iyidir.  
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Çizelge 4.12. SPEA ve DOPGA yöntemleri için ölçüt değerleri 
 

 
 CEZA (P) ÖDÜL (R) GD Δ 

ZDT1 60.9579 7.1189 0.1277 0.6184 
ZDT2 61.2675 7.1624 0.3046 0.7556 
ZDT3 62.9278 7.2240 0.0977 0.6228 
ZDT6 61.1981 7.0937 2.0635 0.9112 

      

ZDT1 31.9688 3.0415 0.0156 0.5797 
ZDT2 14.4255 2.9271 0.0223 0.5922 
ZDT3 34.4204 3.5166 0.0097 0.6111 

D
O

PG
A

 

ZDT6 6.6732 2.6472 0.8116 0.8334 

SP
E

A
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
          (a)      (b) 

 
Şekil 4.65. Boxplot gösterilimi: (a) Ceza ölçütü, (b) Ödül ölçütü 

 
 
          Çizelge 4.13, SPEA2 ve DOPGA2 yöntemleri için elde edilen ölçüt değerlerini 

göstermektedir. Şekil 4.66’ da ise SPEA2 ve DOPGA2 yöntemlerinin ceza ve ödül 

değerlerine göre elde edilen boxplot gösterilimleri verilmektedir. Ceza ve ödül ölçüt 

değerlerine göre DOPGA2 yönteminin sıralama yeteneği SPEA2 yönteminden daha 

iyidir. Yakınsama ölçütleri açısından ZDT6 test işlevi hariç, SPEA2 yöntemi DOPGA2 

yönteminden daha iyidir. DOPGA2 yöntemi, SPEA2 yöntemine göre dağılım ölçütü 

açısından tüm test işlevlerinde daha iyidir. Bu yöntemler için ceza ve ödül ölçütleri ile 

yakınsama ölçütü arasında bir ilişki olmadığı görülmektedir. ÇAGA yöntemlerinin 
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bireylere farklı puan atamalarının yanı sıra, en iyi bireylere atadıkları puan da önemli 

olabilir. Dağılım ölçütü ile ceza ve ödül ölçütleri arasında bir paralellik vardır, yani ceza 

ve ödülü düşük olan yöntem olan DOPGA2 yöntemi, dağılım açısından SPEA2 

yönteminden daha iyi olmaktadır. 

 

Çizelge 4.13. SPEA2 ve DOPGA2 yöntemleri için ölçüt değerleri 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 CEZA (P) ÖDÜL (R) GD Δ 
ZDT1 4.3765 3.4980 0.0162 0.6157 
ZDT2 8.6303 3.4804 0.0231 0.6338 
ZDT3 4.4925 3.8453 0.0071 0.6203 

SP
E

A
2 

ZDT6 11.9064 3.2777 0.9816 0.8733 
      

ZDT1 1.1955 2.9062 0.0181 0.5690 
ZDT2 2.2558 2.7662 0.0262 0.5784 
ZDT3 1.0540 3.3938 0.0109 0.5963 

D
O

PG
A

2 

ZDT6 3.0341 2.6191 0.8965 0.8262 
 

 

      
(a) (b) 
 

Şekil 4.66. Boxplot gösterilimi: (a) Ceza ölçütü, (b) Ödül ölçütü 
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          4.5.3. Genel Sonuçlar ve Değerlendirme  

 

          Bu bölümde, ÇAGA yöntemlerinin sıralama yeteneklerinin ölçülmesi için iki yeni 

başarım ölçütü önerilmiştir. Bu ölçütler kullanılarak, ÇAGA yöntemlerinin bir 

topluluktaki bireyleri en çok istenilenden en az istenilene doğru sıralama yetenekleri 

tespit edilmiştir. Ceza ve ödül ölçütleri en az olan yöntem sıralama yeteneği açısından 

daha iyidir. Böylece seçme mekanizmasına veya karar vericiye en fazla / nitelikli bilgiyi 

iletmektedir. Bu ölçütler, test işlevlerinden bağımsızdırlar ve daha önceden bilinse dahi 

Pareto cephesini kullanmamaktadırlar.  

          SPEA ve DOPGA yöntemleri ile SPEA2 ve DOPGA2 yöntemleri ayrı ayrı 

değerlendirilmişlerdir. Bunun nedeni, SPEA2 ve DOPGA2 yöntemlerinde k. en yakın 

komşuluk yöntemi ile bulunan yoğunluk bilgisinin puanlamaya dahil edilmesidir. Sonuç 

olarak, DOPGA yönteminin SPEA yöntemine göre bireyleri en çok istenilenden en az 

istenilene doğru daha iyi sıraladığı belirlenmiştir. Yakınsama ve dağılım açısından da 

beklendiği üzere DOPGA yöntemi daha iyidir. DOPGA2 yönteminin sıralama yeteneği 

açısından SPEA2 yönteminden daha iyi olduğu görülmüştür. Ceza ve ödül ölçütleri ile 

yakınsama ölçütü arasında bir bağ bulunmamaktadır. Ancak, dağılım ile ceza-ödül 

arasında doğrusal bir ilişki vardır, yani ceza ve ödülü düşük olan yöntem dağılım 

açısından daha iyi olmaktadır. Ayrıca seçme mekanizmasının olasılıksal olarak 

davranması nedeniyle, sıralama bilgileri nitelikli bir biçimde kullanılmamaktadır. Yani 

hangi birey çiftlerinin çaprazlamaya tabi tutulacağı kesin olarak bilinmediğinden dolayı 

olasılıksal bir seçim yapılmaktadır. Bu da seçme mekanizmasının puanlama 

mekanizmasından gelen bilgileri kullanamadığı anlamına gelir. Bu durumda, olasılıksal 

olarak çalışan seçme mekanizması yerine uzman sistem veya kural tabanlı bir seçme 

mekanizması kullanıldığında ceza ve ödül ölçütleri daha anlamlı olacaktır.  Yukarıdaki 

tutarsız sonuçları değerlendirmeden önce, GA’nın dinamik davranışı hakkında genel bir 

çerçeve çizmek adına hayali bir futbol maçı yapılsın. 

          GA’ larda bir topluluğun dinamik davranışını açıklamak zordur. Bu soruyu 

yanıtlamak için hayali bir örnek verilsin [Eminoğlu, 2003]. GA’ nın yapısındaki 

rasgelelelikten dolayı, bir topluluğun bir nesilden bir nesile nasıl hareket ettiğini 

belirlemek zordur. Bazen büyük bir problem bazı varsayımlarla daha küçük bir 

probleme indirgenebilir. Dolayısıyla, bir topluluğun hareketini incelemektense, bir çift 

bireyin hareketini incelemek daha kolay olabilir. Bu amaçla, olası bir 100 bireylik 
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topluluk iki bireye (bir çift ebeveyne) düşürülsün. Böylece, ebeveynlerin rasgele 

seçilmesi işlemine gerek kalmaz. İki bireyden oluşan ana topluluğun, çaprazlama ve 

mutasyon işlevleri ile bir nesilden diğer nesile nasıl hareket edeceğini merak 

edilmektedir. Bu bireyler, iki boyutlu bir yüzeye örneğin bir futbol sahasına rasgele 

yerleştirilsin. Örneğin, bir birey penaltı noktasında, diğeri de diğer penaltı noktasında 

olsun. Her birey, sahanın x ve y eksenlerini gösteren iki değişkenden oluşsun. Ayrıca 

her bireyin sahadaki herhangi bir noktaya gidebilme yeteneği olsun. Çaprazlama ve 

mutasyon işlevlerini sırasıyla 1 ve 0.1 olasılıkla uygulansın ve bu hayali program 

yeterince uzun bir süre (örneğin bir milyon adım) çalıştırılsın. Her adımda, bu bireyler 

sahanın herhangi bir noktasına yerleşecek iki yeni birey üreteceklerdir. Sonuç olarak, 

sahada iki milyon adet birey olacaktır. Hayali bir gözlemci (örneğin hakem) sahaya 

baktığı zaman, ya düzenli olarak sahaya dağılmış bireyler ya da dağınık bir biçimde 

duran bireyler görecektir. Yeterli süre verildiğinde, ebeveynler istenilen bireyleri 

üretebilir. İkinci bir durum, belirli bir düzenin oluşmasıdır. Bunun anlamı, daha önceden 

tanımlanan olasılıklara rağmen, yeni bireylerin oluşturulmasında ebeveynlerin 

konumlarının önemli bir rol oynadığıdır. Eğer bireylerin başlangıç konumları, sonucun 

elde edilmesinde belirleyici bir rol oynuyorsa, farklı konumlar kullanılarak bir çok 

hayali benzetim yapılabilir. Eğer bu durum doğru ise, bu hayali oyunun ikinci 

aşamasına geçilebilir. İki birey sahaya rasgele yerleştirilsin ve çaprazlama ve mutasyon 

işlevlerini uygulansın. Elde edilen yeni bireyler, bir sonraki adımdaki bireyler (erkek 

çocuk ve kız çocuk) olacaktır. İlk ebeveynleri silmeden önce, baba ile oğulu sahada 

birleştiren hayali bir kırmızı çizgi ve anne ile kızı birleştiren hayali mavi bir çizgi 

çizilsin. Bu işlem, bir milyon adım tekrarlansın. Sonuç olarak, tüm kırmızı ve mavi 

çizgiler birleştirilsin. Bu çizgiler bireylerin ilk nesilden son nesile doğru olan 

hareketlerini gösterecektir.  

          Üçüncü aşama, basit bir amaç fonksiyonu (bir en küçükleme problemi) ve bir çift 

bireyden oluşsun. Bu durumun farkı, ebevenylerin iki erkek veya iki kız çocuk 

oluşturmalarına izin verilmesidir. Erkek bireyler ve kız bireyler kendi aralarında bir 

sonraki nesildeki ebeveynler olabilmek için amaç fonksiyonuna göre birbirleriyle 

yarışacaktır. En güçlü (amaç fonksiyonuna göre en iyi) erkek ve kız çocuk bir sonraki 

adımdaki ebeveynler olacaktır. Bu durumda baba ile kazanan erkek çocuk arasına 

kırmızı bir çizgi, anne ile kazanan kız çocuk arasına da mavi bir çizgi çizilecektir. Bu 

durumda hayali gözlemcinin bireylerin bir nesilden diğer nesile nasıl hareket ettiğini 
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anlaması çok zor olacaktır. Bu sorunun yanıtını vermek çok zordur. İkinci ve üçüncü 

aşamada, gözlemci elde edilen çizgilerden bir sonuç çıkarmakta oldukça zorlanacaktır.  

          Bu hayali oyun, (bir futbol sahasında topu takım arkadaşına atmaya çalışan bir 

futbolcu ve bu olaya göre karar veren bir hakem arasındaki benzeşim kullanılarak) 

yukarıda belirtilen kısıtlamalar olmadan bir topluluğun bir nesilden diğer nesile nasıl 

hareket ettiğinin (hangi birey çiftlerinin çaprazlama ve mutasyon işlevlerine uğratılması 

gerektiğinin) belirlenmesinin zor olduğunu göstermektedir.   

 

 

          4.6. ÇAGA’ lar İçin Kullanıcı Arayüzü Tasarımı 

 

          ÇAGA yöntemlerini bir arada bulunduran bir kullanıcı arayüzü (graphic user 

interface, GUI) tasarlanmıştır. GUI, Matlab paket programında oluşturulmuştır. Bu GUI, 

literatürde yer alan ve bu tezde kullanılan ÇAGA yöntemleri ile, tezde önerilen ÇAGA 

yöntemlerinin kullanıcının belirlediği parametrelere göre çalıştırılmasına ve işlem 

sonunda hesaplanan ölçütler ile kullanıcının yöntemleri karşılaştırmasına olanak 

sağlamaktadır. GUI özel olarak MATlab Genetic Algorithm Toolbox (MATGAT) 

olarak adlandırılmıştır.  

          GUI’ de yer alan 16 adet ÇAGA yöntemi sırasıyla şöyledir: DOPGA, DOPGA+, 

DOPGA2, SPEA, SPEA2, NSGA, MOGA, EFE_DOPGA, EFE_DOPGA+, EFE_SPEA, 

EFE_SPEA2, NSGAmod, SPEAmod1, SPEAmod2, SPEAmod3, SPEAmod4.  

          Kullanıcılar programı başlatmadan önce GA parametrelerini girmek zorundadırlar. 

GUI’ de kullanıcı tarafından giriş yapılacak GA parametreleri şunlardır: topluluk boyutu 

(population size), parametre sayısı (number of parameters), parametrelerin  alt sınırı 

(lower limit of parameters), parametrelerin  üst sınırı (upper limit of parameters), bit 

sayısı (number of bits), arşiv boyutu (archive size), mutasyon olasılığı (mutation 

probability), çaprazlama olasılığı (crossover probability), nesil / adım sayısı 

(generation), yarıçap boyutu (niche size, yalnızca NSGA ve MOGA için), turnuva 

boyutu (tournament size, yalnızca turnuva seçimi kullanıldığında), gama değeri (gamma 

value, GDPÖ kullanılmak istenirse girilir) ve etkin mutasyon olasılığı (effective 

mutation probability, yalnızca etkin elitizm için kullanılır). 

          Kullanıcılar, dört farklı ve sık kullanılan test işlevini kullanabilirler. Ayrıca, 

literatürde yer alan üç seçme mekanizmasından (RWS, SUS, TS) birini seçebilirler. 
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          Parametreler girildikten sonra, ÇAGA yöntemi, seçme mekanizması ve test işlevi 

ilgili menüler kullanılarak seçilir ve START tuşuna basılır. Girilen adım sayısı sonunda, 

test işlevinin Pareto-optimal cephesi ve ÇAGA yöntemi tarafından bulunan Pareto 

bireyler ekrana çizdirilir. Ayrıca, bazı ÇAGA başarım ölçütlerinin sonuçları ekranda 

görüntülenir. Böylece kullanıcı seçtiği yöntemin başarımı hakkında bilgi sahibi olur. Bu 

GUI’ de 6 adet başarım ölçütü hesaplanmaktadır: GD (yakınsama ölçütü),                     

Δ (çeşitlilik/dağılım) ölçütü, tezde önerilen ceza (punishment) ve ödül (reward) ölçütleri, 

IGD ölçütü [Zitzler ve ark., 2003] ve ÇAGA tarafından bulunan Pareto birey sayısı.   

          Yeni bir benzetim yapılmadan önce CLEAR tuşuna basılarak ekran temizlenebilir. 

Elde edilen sonuç grafiği kaydedilerek kullanılabilir.  

          Şekil 4.67 ve Şekil 4.68’ de MATGAT v1.0 GUI’ sinin iki adet ekran görüntüsü 

(çalıştırılmadan önce ve çalıştırıldıktan sonra) verilmektedir. Bu, GUI üzerinden 

gelecekte çeşitli geliştirmeler yapılacaktır. Yeni ÇAGA yöntemleri, başarım ölçütleri ve 

test işlevleri (kısıtlamalı ve kısıtlamasız) eklenecektir. Ayrıca, GA literatüründe 

kullanılan gösterilim şekilleri (boxplot, başarım yüzeyi vb.) GUI’ ye eklenecektir. 

Kullanıcının kendi problemini de kullanabilmesi için alt programlar eklenecektir. Daha 

sonra, GUI tüm topluluk tabanlı yöntemleri (PSO, DE, ACO vb.) içerisinde barındıran 

bir yapıya dönüştürülecektir. 

          Genetik algoritmalarla ilgili ticari bazı yazılımlar da bulunmaktadır. Hartmut 

Pohlheim tarafından geliştirilmiş Geatbx (Genetic and Evolutionary Algorithm Toolbox 

for MATLAB) yazılımı, bunlara örnek olarak verilebilir (www.geatbx.com, Erişim 

zamanı: 04.01.2007). Bu yazılım ile tek amaçlı ve bazı çok amaçlı genetik algoritma 

yöntemleri kullanılarak optimizasyon problemleri çözülebilmektedir. Tezde geliştirilen 

MATGAT programının da güncellenerek (farklı özellikler ve programlar vb. 

eklenmesiyle) ticari bir yazılım haline getirilmesi amaçlanmaktadır. 

 

 

 

 

 

 

 

 

http://www.geatbx.com/
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Şekil 4.67. MATGAT v1.0 çalıştırılmadan önceki ekran görüntüsü  
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Şekil 4.68. MATGAT v1.0 çalıştırıldıktan sonra ekran görüntüsü  
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          5. SONUÇ VE ÖNERİLER  

 

          Bu tezde, iki yeni ÇAGA yöntemi (DOPGA+ ve DOPGA2) önerilmektedir. Bu 

yöntemler daha önce önerilmiş olan DOPGA [Eminoğlu, 2003] yönteminde bazı 

değişiklikler yapılarak elde edilmiştir. Önerilen bu yöntemlerin ana özelliği; bireylerin 

baskınlık gücünün puanlama mekanizması içine gömülmesidir. Yöntemler birbirinden 

puanlama mekanizmaları veya elitizm mekanizmaları açısından farklılık 

göstermektedirler. DOPGA yöntemi, herhangi bir ÇAGA yöntemi ile başarım ölçütleri 

kullanılarak karşılaştırılmamıştır. Bu tezde hem DOPGA, hem de DOPGA+ ve 

DOPGA2 çeşitli test işlevleri kullanılarak literatürde sık kullanılan SPEA ve SPEA2 

yöntemleri ile karşılaştırılmışlardır. Sonuç olarak, önerilen yöntemlerin, mevcut SPEA 

ve SPEA2 yöntemlerinden Pareto-optimal cepheye yakınsama ve çeşitlilik açısından 

daha iyi oldukları tespit edilmiştir. Bu üç yöntemin literatürde yer alan diğer ÇAGA 

yöntemleriyle aynı parametreler altında karşılaştırılması, üç veya daha fazla amaç içeren 

problemlere uygulanması, kısıtlamalı test problemlerine uygulanması ve endüstriyel 

problemlere uygulanması gelecek çalışma alanlarından bazıları olacaktır.  

          NFL (No Free Lunch) teoremine göre, hiçbir algoritma her zaman en iyi olamaz, 

ya da bir algoritma her problemde en iyi olamaz [Wolpert ve Macready, 1997]. Yani 

literatürde olan yöntemler ve bu tezde önerilen yöntemler, her test işlevinde veya her 

optimizasyon probleminde en iyi olamaz. Her yöntemin diğer yöntemlerden daha iyi 

olabileceği bir problem vardır. 

          Bir topluluktaki bireylerin ÇAGA yöntemleri tarafından puanlanmasının birçok 

yolu vardır. Çünkü çok amaçlı bir düzlemdeki bir birey yalnızca bir puan değeri ile 

temsil edilmektedir. Bu yüzden, literatürde birçok ÇAGA yöntemi önerilmiştir ve 

önerilmeye devam edilmektedir. Önerilen yöntemler üzerinde de birtakım iyileştirmeler 

yapmak mümkündür. Bu çalışmada, NSGA ve SPEA yöntemlerinin puan atama 

mekanizmaları, orjinal yöntemlerin ürettiğinden daha iyi ve nitelikli bilgi (puan) 

üretebilmeleri amacıyla hesapsal ve yapısal olarak değiştirilmiştir (iyileştirilmiştir). 

İyileştirmeler iki temel biçimde yapılmıştır: i) k. en yakın komşuluk yöntemiyle üretilen 

yoğunluk bilgisi eklenmesi, ii) baskınlık gücü kavramı. Yöntemler ve iyileştirmeleri 

dört farklı ve sık kullanılan test işlevi kullanılarak test edilmişlerdir. Önerilen beş 

iyileştirme (NSGAmod, SPEAmod1, SPEAmod2, SPEAmod3, SPEAmod4) orjinal 

yöntemlere göre Pareto cephesine daha fazla yakınsamakta ve bu cephe üzerinde 
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bireylerin daha düzgün dağılmasını sağlamaktadırlar. Ayrıca, k. en yakın komşuluk 

yöntemiyle oluşturulan yoğunluk bilgisi tekniği, paylaşım tabanlı çeşitlilik artırma 

tekniğinden daha iyi başarım göstermektedir. Yapısal olarak değiştirilmiş (uzman 

sistem benzeri) bir seçme mekanizması tasarımı gelecek çalışma alanlarından birisi 

olacaktır. Böylece, üretilen puan bilgilerinin daha nitelikli bir şekilde değerlendirmesi 

mümkün olabilir.  

          Literatürde yer alan tüm yöntemler üzerinde bazı iyileştirmeler yapılması 

mümkündür. Böylece yöntemlerin yakınsama ve/veya dağılım yetenekleri artırılabilir ve 

yöntemler daha etkin hale getirilebilir. Bu çalışmada, yalnızca beş adet iyileştirme 

verilmekle beraber daha çok sayıda iyileştirme yapılması da mümkündür. Yöntemlerin 

işlem sürelerinin kısaltılması için de iyileştirmeler yapılması, gelecek çalışma 

alanlarından birisi olabilir.         

          GA yöntemlerinin başarımını artırmanın bir başka yolu da seçme 

mekanizmasından önce bireylerin seçilme baskısının değiştirilmesidir. Bu amaçla 

literatürde birçok puan ölçekleme yöntemi kullanılmıştır. Bu çalışmada ise literatürde 

yer alan üstel puan ölçekleme yönteminin değiştirilmiş bir versiyonu olan, gama 

düzeltmesi ile puan ölçekleme (GDPÖ) yöntemi önerilmiştir. Bu yöntem ilk olarak, tek 

amaçlı bir GA’ da altı sabit gama değeri kullanılarak iki test işlevi üzerinde 

çalıştırılmıştır. Sonuç olarak, gama değerinin değişmesiyle yakınsama hızının değiştiği 

gözlenmiştir. Ayrıca, her iki test işlevinde de γ=10 seçildiğinde daha iyi ve daha hızlı 

bir yakınsama sağlandığı görülmüştür.  

          GDPÖ yönteminin bir topluluktaki bireylerin seçilme baskısının değiştirebileceği 

dolayısıyla ÇAGA yöntemlerinin yakınsama yeteneğini artırabileceği görülmüştür. 

Sabit gama (γ) değerleri kullanılarak GDPÖ yöntemi, mevcut ve önerilen ÇAGA 

yöntemlerine uygulanmıştır. Bu durumda elde edilen genel sonuçlar şöyledir: i) ÇAGA 

yöntemlerinin başarımı gama (γ) değerine bağlı olarak değişmektedir, ii) SPEA yöntemi  

γ=7 ile uygulanan başarım ölçütlerine göre en iyi yakınsamayı ve dağılımı 

sağlamaktadır, iii) γ=2 ile SPEA2 ve DOPGA2, γ=3 ile DOPGA (ZDT1’ de γ=4 ile) en 

iyi yakınsamayı sağlamaktadırlar, iv) γ=1 ile yani orjinal sonuçlarla tüm yöntemler 

değerlendirildiğinde, DOPGA2 yönteminin ZDT1, ZDT2 ve ZDT3 test işlevlerinde, 

DOPGA’ nın ise ZDT6 test işlevinde en iyi sonuçları verdiği görülmüştür, v) tüm gama 

değerlerine göre değerlendirme yapıldığında ise, ZDT1 test işlevinde γ=2 ile DOPGA2; 

ZDT2, ZDT3 ve ZDT6 test işlevlerinde ise γ=3 ile DOPGA tüm yöntemler arasında en 



 201

iyi sonuçları vermektedir, vi) dağılım (veya çeşitlilik) farklı gama değerlerinde önemli 

derecede değişmemektedir, vii) GDPÖ yalnızca puan orantılı bir seçme mekanizması 

(örneğin SUS) kullanıldığı zaman etkilidir, viii) TS kullanıldığı zaman GDPÖ etkili 

değildir.  

          Uyarlanabilir GDPÖ yöntemi (dinamik γ değerleri) kullanıldığında SPEA (ZDT1 

hariç) ve DOPGA (ZDT1 ve ZDT3 hariç) yöntemleri sabit gama kullanıldığında elde 

edilen sonuçlardan daha iyi sonuçlar vermiştir. SPEA2 ve DOPGA2 ise sabit 

durumdakinden iyi sonuç vermemişlerdir. Hem uyarlanabilir hem de sabit GDPÖ 

sonuçları dikkate alındığında, ZDT2 ve ZDT6 test işlevlerinde DOPGA + Adaptif 

GDPÖ, ZDT1 test işlevinde DOPGA2, ZDT3 test işlevinde ise DOPGA; tüm 

yöntemlerden daha iyi yakınsama sonuçları vermektedir. 

          Sonuç olarak, GDPÖ bloğu, herhangi bir ek işlem yükü getirmeden ve 

yöntemlerin yapılarını değiştirmeden literatürde yer alan tüm ÇAGA yöntemlerine 

uygulanabilir ve yöntemlerin yakınsama başarımı artırılabilir. Ayrıca, benzetim 

sonuçlarından da anlaşılacağı üzere, tüm ÇAGA yöntemleri hala iyileştirmelere 

açıktırlar. 

          Elitizm mekanizması GA’ ların başarımını önemli ölçüde etkilemektedir. Elitizm 

mekanizması olan yöntemler, olmayanlara göre daha iyi başarım göstermektedirler. Bu 

nedenle, elitizm mekanizmasında yapılabilecek en ufak bir iyileştirme bile, başarımı 

etkileyecektir. Bu çalışmada, literatürde yer alan pasif elitizm mekanizması önerilen 

etkin elitizm mekanizmasıyla değiştirilmiştir. Elit bireyler en iyi bireylerdir ve 

dolayısıyla çözüme en yakın bireylerdir. Bu yüzden, arşivdeki elit bireylerin   

çaprazlama / mutasyon işlevleri ile uyarılması neticesinde kendilerinden yakınsama ve 

düzgün dağılım açısından daha iyi bireyler üretilebilmesi sağlanabilir. Bu amaçla klasik 

sakla/aktar elitizm yapısı, sakla/uyar/aktar bir etkin elitizm yapısı kullanılarak 

iyileştirilmiştir. Böylece, etkin elitizm mekanizmasında ana topluluk ve ikincil 

topluluktaki bireyler çözüm üretebilmektedir.   

          Etkin elitizm mekanizması, literatürde yer alan SPEA ve SPEA2 yöntemleriyle, 

önerilen DOPGA ve DOPGA+ yöntemlerine uygulanmıştır. Benzetimler sonucunda, 

EFE_SPEA yönteminin SPEA yönteminden yakınsama ve düzgün dağılım açısından 

daha iyi olduğu görülmüştür. Yalnızca, ZDT6 test işlevinde SPEA yöntemi EFE_SPEA’ 

dan daha iyi bir dağılım sağlamıştır. EFE_SPEA2 yönteminin SPEA2 yönteminden 

yakınsama açısından daha iyi olduğu görülmüştür. ZDT2 test işlevi hariç tüm test 
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işlevlerinde EFE_SPEA2 yöntemi SPEA2’ den daha düzgün bir şekilde Pareto 

cephesine dağılmıştır. EFE_DOPGA yöntemi ZDT1 ve ZDT2’ de, DOPGA yöntemi ise 

ZDT3 ve ZDT6’ da daha iyi yakınsama sağlamışlardır. DOPGA, EFE_DOPGA’ dan 

daha iyi düzgün dağılım ölçütlerine sahiptir. EFE_DOPGA+, tüm test işlevlerinde 

DOPGA+ yönteminden iyi yakınsama sağlamaktadır. Ancak DOPGA+ tüm test 

işlevlerinde düzgün dağılım açısından daha iyidir. 

          Tüm pasif ve etkin elitizm mekanizmalı yöntemler birlikte değerlendildiğinde; 

ZDT1, ZDT3 ve ZDT6’ da EFE_DOPGA+, ZDT2’ de ise EFE_DOPGA diğer 

yöntemlerden yakınsama açısından daha iyidir. ZDT1, ZDT2 ve ZDT6’ da DOPGA+, 

ZDT3’ te ise EFE_SPEA2 yöntemi diğer tüm yöntemlerden daha iyi olarak Pareto 

cephesine dağılan bireyler oluşturmuşlardır.  

          Etkin elitizm mekanizması üzerinden bir takım iyileştirmelere gereksinim 

duyulmaktadır. Özellikle, mutasyon ve çaprazlama işlevlerinin hangi anda devreye 

gireceklerinin daha iyi belirlenmesi gerekebilir. Ayrıca elit bireylerin çaprazlanması için 

kural tabanlı bir uzman sistemin karar verici olarak kullanılması daha iyi sonuçlar elde 

edilmesini sağlayabilir. Hangi elit bireylerin hangi elit bireyler çaprazlanacağının daha 

iyi saptanması etkin elitizmin yeteneğini artırabilir. Bunun için hangi bireylerin 

çaprazlamaya gireceğine dair bilgi veren bir kural tabanının oluşturulması gelecek 

çalışmalardan birisi olacaktır. Ayrıca etkin elitizm mekanizmasının işlem yükünün 

azaltılması da bir çalışma konusudur. Önerilen etkin elitizm mekanizması literatürde yer 

alan ÇAGA yöntemlerine uygulanarak, bu yöntemlerin başarımı genel yapıları 

değiştirilmeden artırılabilir. Etkin elitizm mekanizmasının tek dezavantajı ÇAGA 

yöntemlerinin işlem zamanlarında artışa neden olmasıdır. 

          ÇAGA yöntemlerinin sıralama (puan atama) yeteneklerinin ölçülmesi için iki 

yeni başarım ölçütü önerilmiştir. Bu ölçütler kullanılarak, ÇAGA yöntemlerinin bir 

topluluktaki bireyleri en çok istenilenden en az istenilene doğru sıralama yetenekleri 

tespit edilmiştir. Ceza ve ödül ölçüt değerleri en az olan yöntem sıralama yeteneği 

açısından daha iyidir. Böylece seçme mekanizmasına veya karar vericiye en fazla / 

nitelikli bilgiyi iletmektedir. Bu ölçütler, test işlevlerinden bağımsızdırlar ve daha 

önceden bilinse dahi Pareto cephesini kullanmamaktadırlar. ÇAGA karşılaştırmalarında 

sık kullanılan SPEA yöntemi ile DOPGA yöntemlerinin sıralama yetenekleri 

karşılaştırılmıştır. Benzetimler sonucunda, DOPGA yönteminin ceza&ödül değerlerinin 

SPEA yönteminden daha düşük olduğu, dolayısıyla da SPEA yöntemine göre bireyleri 
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en çok istenilenden en az istenilene doğru daha iyi sıraladığı belirlenmiştir. Yakınsama 

ve dağılım açısından da beklendiği üzere DOPGA yöntemi daha iyidir.  

          Puan atama mekanizmalarında k. en yakın komşuluk yönteminden yararlanılarak 

oluşturulan bir yoğunluk bilgisi kullanan SPEA2 ve DOPGA2 yöntemleri ise ayrı ayrı 

değerlendirilmiştir. DOPGA2 yönteminin sıralama yeteneği açısından SPEA2 

yönteminden daha iyi olduğu görülmüştür. Ancak bu yöntemler için, ceza ve ödül 

ölçütleri ile yakınsama ölçütü arasında bir bağ bulunamamıştır. Pareto cephesi üzerinde 

dağılım ile ceza&ödül arasında doğrusal bir ilişki vardır, yani ceza ve ödülü düşük olan 

yöntem dağılım açısından daha iyi olmaktadır, yani Pareto-optimal cephede daha 

düzgün dağılmaktadır. Ayrıca seçme mekanizmasının olasılıksal olarak davranması 

nedeniyle, sıralama bilgileri nitelikli bir biçimde kullanılmamaktadır. Yani hangi birey 

çiftlerinin çaprazlamaya tabi tutulacağı kesin olarak bilinmediğinden dolayı olasılıksal 

bir seçim yapılmaktadır. Bu da seçme mekanizmasının puanlama mekanizmasından 

gelen bilgileri kullanamadığı anlamına gelir. Bu durumda, olasılıksal olarak çalışan 

seçme mekanizması yerine uzman sistem veya kural tabanlı bir seçme mekanizması 

kullanıldığında ceza ve ödül ölçütleri daha anlamlı olacaktır.  

          Uzman sistem veya kural tabanlı bir seçme mekanizmasının geliştirilmesi ile 

hangi birey çiftlerinin çaprazlama için seçileceği, dolayısıyla da hangi birey çiftlerinin 

çaprazlanmasıyla kendilerinden daha iyi bireyler elde edilebileceği konusu açıklığa 

kavuşturulabilir. 

          Bu çalışmada, literatürde sık kullanılan ve önerilen ÇAGA yöntemlerini 

içerisinde barındıran ve MATLAB üzerinde çalışabilen bir GUI (toolbox) tasarlanmıştır. 

GUI’ nin bu ilk versiyonunda, kullanıcılar istedikleri ÇAGA yöntemini, seçme 

mekanizmasını, test işlevini seçerek ve kendi GA parametrelerinin girerek 

değerlendirme yapabilmektedirler. GUI üzerinde gelecekte çeşitli geliştirmeler 

yapılacaktır. Yeni ÇAGA yöntemleri, başarım ölçütleri ve test işlevleri (kısıtlamalı ve 

kısıtlamasız) eklenecektir. Ayrıca, GA literatüründe kullanılan gösterilim şekilleri 

(boxplot, başarım yüzeyi vb.) GUI’ ye eklenecektir. Kullanıcının kendi problemini de 

kullanabilmesi için alt programlar eklenecektir. Bu GUI, ÇAGA’ lar için geliştirilmiş 

olsa da literatürde yer alan diğer topluluk tabanlı yöntemlerin de programlanarak     

GUI’ ye eklenmesi optimizasyon ile uğraşan akademik ve endüstriyel kullanıcılar için 

çok yararlı olacaktır. MATGAT programının güncellenerek ticari bir yazılım haline 

getirilmesi amaçlanmaktadır. 
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          Son olarak, GA’ ların işleyişini geliştirmek ve yapısını anlamak için yapılabilecek 

bazı geliştirmeler / gelecek çalışma alanları şöyle sıralanabilir:  

     

i. GA topluluğunun dinamiklerini yani GA’ nın nasıl çalıştığını belirlemek, bu 

        sayede GA’ nın işleyiş ve etkinliğini değiştirmek, bu amaçla istatistiksel  

        teknikleri kullanmak, 

ii. Elitizm mekanizmasının iyileştirilmesi, 

iii. Çok amaçlı GA’ ları gerçek dünya problemlerine (örüntü tanıma, bilgisayarlı 

animasyon, hücresel sistemler, sanal gerçeklik, kriptografi, biyoinformatik, 

veri madenciliği vb.) uygulamak, 

iv. Önerilen ÇAGA yöntemlerini kısıtlamalı test problemlerine uygulamak, 

v. GA’ ların işlem süresini ve bellek kullanımını azaltmak, 

vi. GA’ ları diğer topluluk tabanlı optimizasyon yöntemleriyle (PSO, DE vb.) 

melezleştirmek (hibritleştirmek), 

vii. Seçme mekanizmasını değiştirmek (en iyi bireylerin seçilmesini sağlamak), 

viii. İki amaçtan daha fazla amaçlı optimizasyon problemlerine uygulamak, 

ix. Parametrelerin kontrolünü kendi kendine sağlayan bir ÇAGA yöntemi 

tasarlamak (kullanıcı kendisi parametrelerini ayarlamayacak), 

x. ÇAGA tarafından bulunan çözüm önerilerinden en iyisinin seçilmesi için 

yeni yöntemler geliştirilmesi (çok amaçlı karar verme)  

xi. Hangi bireylerin çaprazlamaya gireceği ve hangi bireylerin eşleşmesi  

        gerektiğine ilişkin kavramların geliştirilmesi, 

xii. Yeni başarım ölçütleri (özellikle Pareto-optimal cephenin bilinmediği  

        durumlarda da kullanılabilecek) geliştirilmesi,  

xiii. ÇAGA yöntemlerinin paralelleştirilmesi, 

xiv. Gerçek sayı ile çalışan GA’ ların kullanılması, 

xv. Tercih belirleme (preference articulation) için yeni yöntemler geliştirilmesi, 

xvi. ÇAGA yöntemleri kullanılarak bulanık mantıkla denetlenen veya 

modellenen sistemlerin IF-THEN kurallarının  (merkez , genişlik ve ağırlık 

gibi) ve RBF (radial basis functions) ağları vb. yapıların son evre 

optimizasyonunun yapılması,  

xvii. Biyolojik kökenli yeni nesil topluluk tabanlı sürü optimizasyonu 

yöntemlerinin (PSO, ACO, DE vb.) endüstriyel problemlere uygulanması. 
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8. EK:  

 

          Tüm ÇAGA yöntemlerinin puanlama mekanizmalarının anlatımında kullanılan 

örnek topluluktaki bireylerin amaç işlevlerinde aldıkları değerler aşağıdaki çizelgede 

verilmektedir. 

 

 A B C D E F G H 

f1 1 2 5 7 6 4 3 8 
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