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COK AMACLI GENETIiK ALGORITMALAR:
TEMELLERI VE UYGULAMALARI

0z

Bu ¢alismada topluluk tabanli bir optimizasyon yontemi olan genetik algoritmalar
(GA) incelenmektedir. Tezin ana amaci, ¢ok amagli genetik algoritmalarin (CAGA)
puanlama ve elitizm mekanizmalarimin iyilestirilmesidir. Bireylerin baskinlik giiclinden
yararlanan, ¢esitlilik i¢in farkli yontemler igeren, iki yeni CAGA yontemi (DOPGA+,
DOPGA?2) onerilmektedir. Bu yontemler daha 6nce onerilen DOPGA yonteminde bazi
degisiklikler yapilarak elde edilmistir. Onerilen yontemler literatiirde sik kullanilan
yontemlerle (SPEA ve SPEA2) vyakinsama ve cesitlilik Olgiitleri iizerinden
karsilagtirilmiglardir. Ayrica, literatiirde yer alan bazi yontemlerin (NSGA ve SPEA)
puanlama yetenegini artirmak i¢in, CAGA yontem iyilestirmeleri 6nerilmis ve bunlar
orjinal yontemlerle karsilagtirilmiglardir.

Bireylerin secilme baskisinin se¢gme mekanizmasindan Once degistirilerek,
CAGA’ larin basariminin artirilmasi icin gama diizeltmesi ile puan dlcekleme (GDPO)
yontemi Onerilmistir. Bu yontem, c¢esitli gama degerleri kullanilarak, tek amaclhi GA’ lar
ile literatiirde sik kullanilan ve yeni 6nerilen CAGA yoOntemlerine uygulanmistir. Sonug
olarak, GDPO ile yakinsama yeteneginin artirilabilecegi goriilmiistiir. Elitizm
mekanizmast GA’ larin basarimini Onemli Olgiide artirmaktadir. Bu calismada,
literatiirde yer alan pasif sakla/aktar yapidaki elitizm mekanizmasi, sakla/uyar/aktar
yapidaki etkin elitizm mekanizmasi ile yer degistirilerek, CAGA’ larin basariminin
artirillabilecegi goriilmiistiir. CAGA yOntemlerinin siralama (puan atama) yeteneklerinin
dl¢iilmesi igin Ceza ve Odiil basarim dlgiitleri tanimlannmustir. Bu iki 6lgiit ile bir CAGA
yontemi tarafindan segme mekanizmasina ne kadar nitelikli bilgi aktarildig sezgisel ve
istatistiksel olarak tespit edilebilmektedir.

Son olarak, onerilen ve literatiirde sik kullanilan CAGA yontemlerini iginde
barindiran bir kullanic1 arayilizii (MATGAT) tasarlanmistir. Bu arayliz sayesinde
kullanicilar istedikleri parametreleri, segme mekanizmasini ve test islevini, sectikleri

CAGA yontemine uygulayarak, basarimlarini 6l¢ebilmektedirler.

Anahtar Sézciikler: Genetik Algoritmalar, DOPGA, DOPGA+, DOPGAZ2, lyilestirme,
Puan Olgekleme, Etkin Elitizm, Odiil ve Ceza.
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MULTI-OBJECTIVE GENETIC ALGORITHMS:
FUNDAMENTALS AND APPLICATIONS

ABSTRACT

In this study, the genetic algorithm (a population-based optimization method) has
been investigated and improved. The main goal of the thesis is to improve the fitness
assignment and elitism mechanisms of the multi-objective genetic algorithms (MOGAs).
The proposed two MOGAs (DOPGA+, DOPGA 2) use the definition of domination
power of the individuals. Hence, they do not need extra parameter for promoting
diversity. The proposed methods are derived from the existing DOPGA method. The
proposed methods have been compared with some well-known methods (SPEA and
SPEA2) in terms of diversity and convergence properties. Furthermore, fitness
assignment capabilities of some existing methods (NSGA and SPEA) have been
modified and improved and the comparative simulation results have been reported.

To be able to change the selection pressures of the individuals before the selecting
mechanism, a gamma correction based fitness scaling method (GCFS) is proposed in
order to improve the performance of the MOGAs. This method is embedded into the
single objective GAs and newly proposed MOGAs using different gamma values. As a
result, the convergence ability of MOGAs with GCFS shown to be improved. The
presence of elitism can also significantly improve the performance of MOGAs. The
classical holding/sending back type passive elitism mechanism is replaced by the
proposed holding/exciting and sending back type effective elitism mechanism (EFE). It
is shown that the convergence performance of MOGAs can slighlty be improved by
using the EFE. The reward and punishment concept is introduced to measure fitness
assignment capabilities of MOGAs with the help of two proposed metrics. How much
useful information can be generated and passed into the selection mechanism by
MOGA methods can now be determined heuristically and statistically.

Finally, a graphical user interface (MATGAT) is designed for easy-use. Users can
measure the performance of selected MOGAs by implementing any parameters, any

selection mechanism and any test functions with MATGAT software.

Key Words: Genetic Algorithms, DOPGA, DOPGA+, DOPGA2, Modification, Fitness

Scaling, Effective Elitism, Reward and Punishment.
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1. GIRIS

Genel olarak, optimizasyon, daha iyi bir sonu¢ bulununcaya kadar olasi tiim
¢cOziimlerin amag islevine gére aranmasi ve karsilastirilmast islemidir. Optimizasyon
amag sayisi bakimindan; tek amagli ve ¢ok amacl olmak iizere ikiye ayrilir. Klasik
optimizasyon yontemleri tek bir benzetimde (adimda) tek bir ¢oziimiin bulunmasinda
iyidirler, ancak ¢ok amagli optimizasyon problemlerinin ¢6ziilmesi i¢in uygun
degildirler. Ancak, gercek diinya problemleri genelde birbirleriyle ¢elisen bir ¢ok
amagtan olusurlar. Bu yilizden ¢ok amacli optimizasyon yontemlerinin ¢oziilebilmesi
i¢in topluluk tabanli optimizasyon yontemleri (Genetik algoritmalar vb.) daha uygundur.
Bu yontemler, tek bir benzetimde (adimda) ¢ok sayida en iyi ¢oziimii bulabilirler.

Genetik algoritmalar (GA), en iyi ¢6ziimii arama islevini, biyolojik kdkenli bazi
islevleri (se¢me, ¢aprazlama, mutasyon, elitizm vb.) taklit ederek yapar. GA, dogal
evrimin dogrudan bir benzesimini kullanir. Genetik algoritmalarin diger optimizasyon
yontemlerinden ve klasik arama yontemlerinden en 6nemli farki, tek bir ¢6ziim yerine
her adimda ¢oziimlerden olusan bir topluluk kullanmasidir. Her adimda bir ¢6ziim
toplulugu kullanildig1 i¢cin, GA ile elde edilen sonuglar da bir ¢6ziim toplulugu olacaktir.
Bir problemin potansiyel bir ¢oziiml birey (kromozom) olarak adlandirilir. Bireyler
parametreleri temsil eder. Bu parametreler ise bir kromozomun genleri olarak
adlandirilir. Bu genler, ikili say1 veya gercel say1 dizileri kullanilarak olusturulabilir.
Problem ¢oziimiinde bir bireyin ya da kromozomun ne kadar iyi oldugu, amag islevinde
(kullanict tarafindan belirlenir) aldig1 degerle yakin iliskili olan puan (fitness) degerine
gbre belirlenir. Evrim kuramima gore iyi bir kromozomdan iyi kromozomlar elde
edilecegi soylenmektedir. GA’ da da en iyi bireylerden her zaman daha iyi bireyler
tiretilebilecegi beklenmektedir. Pratik bir GA uygulamasinda bireylerden olusan bir
topluluk (genellikle rasgele) olusturulur. Bu toplulugun boyutu, problemden probleme
degisebilir. Her bir GA adiminda, se¢gme mekanizmas: kullanilarak bir alt topluluk
secilir. Segilen bireylerden olusan bu alt topluluk, ebeveynler veya eslesme havuzu
olarak adlandirilir. Ebeveynlerin genleri ¢aprazlama islevi kullanilarak karistirilir ve
birlestirilerek bir sonraki nesil olusturulur. Bireylerin birbirinden farkli olmasim
saglamak ve ayni coziimlerin elde edilmesinden kurtulmak i¢in mutasyon islevi
uygulanir. Ayrica dogada en giicliilerin yasamini siirdiirmesinden esinlenilerek, GA’ da

da her adimda en iyi birey/bireyler saklanir ve bir sonraki topluluga eklenir. Bdylece en



1yi bireylerden en iyi ¢oziimler lretilmesi amaglanmaktadir. Bu isleme ise elitizm adi
verilir.

GA’ lar, Pareto cephesinin (bulunmasi istenen ¢oziim bolgesi) sekline ve siirekli
olup olmamasina c¢ok duyarli degillerdir. Bu yapilarindan dolayr ¢ok amach
optimizasyon i¢in 6nemli/uygun bir hesapsal yapay zeka yontemidir.

Holland’ 1n 1984 yilinda adin1 koymasindan sonra, GA’ lar konusunda 1990’ lara
kadar ¢ok fazla ¢aligma yapilmamustir. Ancak Goldberg’ in GA’ y1 gergek bir probleme
uygulamasi ve ¢igir agan kitab1 sayesinde GA’ lar konusuna olan ilgi giderek artmistir.
Her gegen yil, GA’ lar konusunda yeni ¢alismalar yapilmistir. Bu ¢alismalar; GA’ nin
basariminin artirilmasi, GA yontemlerinin karsilastirilmasi, test edilmesi vb. durumlarla
ilgilidir. Ayrica GA’ lar diger optimizasyon yontemleri ile hibrit hale getirilerek, gergek
diinya problemlerine uygulanmistir.

GA c¢oziimleri ararken, ¢ok fazla sayida isleme ve ¢ok fazla zamana ihtiyag
duymaktadir. Evrimsel algoritmalarin temelleri 1950 lere kadar uzanmasina ragmen,
son 15 yilda bu konudaki calismalarda 6nemli bir artis olmustur. Bunun nedeni, diigiik
maliyetli ve giiclii bilgisayarlarin iiretilmesidir. Bu sayede GA islemleri daha hizli bir
sekilde yapilabilmektedir.

Bu caligmada, gosterilimi daha kolay oldugu i¢in, genellikle iki amach
optimizasyon problemleri kullanilmistir. Ciinkii boyut sayis1 arttiginda ¢oziimlerin
gosterilmesi zorlagsmaktadir. Ayrica, kullanilan optimizasyon problemlerinin tamami en
kiigiikleme problemidir. Ancak sunu da belirtmek gerekir ki, ikililik prensibine gore, en
kiiciikleme problemlerini en biiyiikleme problemlerine ve en biiyiikleme problemlerini
de en kiiciikleme problemlerine doniistiirmek miimkiindiir.

Tezin ana boliimii ¢ok amachh genetik algoritmalardir (CAGA). CAGA
yontemlerinin iki ana oOzelligi saglamalar1 gerekir: i) Pareto-optimal (istenilen)
cOziimlerden olusan cepheye miimkiin oldugunca 1yi yakinsama saglanmalidir,
ii) bulunan Pareto bireyler bu cephe iizerinde diizgiin olarak dagilmalidir. Literatiirde
yer alan CAGA yontemleri, GA’ larin ¢alisma bi¢imi hakkinda ¢ok fazla fikir sahibi
olunmadan Onerilmislerdir. GA’ larin nasil c¢alistigt konusu analitik olarak
bilinmemektedir. Baslangi¢ toplulugunun bir nesilden digerine nasil hareket ettigi
sorusu da yanitlanmasi gereken temel bir sorudur. Ayrica, hangi birey ciftlerinin
caprazlanmasi ile daha iyi bireyler elde edilebilecegi de yanitlanmasi gereken 6nemli bir

konudur.



CAGA’ larda bir diger 6nemli konu ise puanlama mekanizmasindan se¢me
mekanizmasina nitelikli bilgi aktarilabilme yetenegidir. Nitelikli bilgi ile kastedilen bir
topluluktaki bireylerin en iyiden en kotilye dogru tekil bir bigcimde siralanip
siralanamadigidir.  Eger bu saglanabilirse, CAGA’ nin  basariminin  artmast
beklenmektedir. Clinkii bu sekilde, segme mekanizmasi en iyi bireyleri ayirt etmekte
zorlanmayacaktir. Bu amagla bir CAGA yontemi tarafindan bir topluluktaki bireylerin
ne kadar 1yi puanlandiginin belirlenmesi 6nemli olacaktir.

Su ana kadar, literatiirde miihendislik hesaplamalarindan ¢ok miihendislik
sezgilerine dayanilarak olusturulmus bircok CAGA yontemi Onerilmistir. Temel olarak,
bu yontemler birbirlerinden  puan atama mekanizmalar1 acisindan farkliliklar
gostermektedirler. Dogal olarak, ¢ok sayida CAGA yontemi bulunmaktadir ve bu
yontemlerle ilgili ayrintili bilgilere [Coello Coello, 1999; Deb, 2001; Coello Coello ve
ark., 2007] kaynaklarindan ulasilabilir. Cok sayida CAGA yoOnteminin olmasi, puan
atama konusunun ¢ok amacli genetik algoritmalar i¢in ucu ag¢ik bir soru oldugunu
gostermektedir. Bu kadar ¢ok sayida PAM (puan atama mekanizmasi) olmasinin bir
baska agiklamasi da, PAM yontemleri ile ¢cok amacin (veya ¢ok boyutun) tek bir puan
(fitness) degerine (ya da tek bir boyuta) doniistiiriilmesidir ve bu tiir bir boyut
azaltiminin basit ve tek bir yolu yoktur.

Elitizm mekanizmas1 CAGA’ larin basarimia 6nemli 6l¢lide etki etmektedir. Bu
mekanizmada yapilabilecek iyilestirmeler bagsarimda artisa neden olacaktir. Ciinkii en
iyi bireylerin saklanmasi ve ¢aprazlama islevine tabi tutulmasi ile olusacak bireylerin de
daha iyi olmas1 beklenmektedir.

CAGA yontemlerinin  puan atama mekanizmalar1 {izerinde bir takim
iyilestirmeler yapilarak basarimlarinda artis saglanabilir. Bu islem yapilirken,
yontemlerin iyi olan yonleri de kullanilabilir.

Tezin ilk boliimiinde optimizasyon ve oOzellikle ¢cok amaghi optimizasyon
hakkinda genel bilgiler verilmektedir. Cok amagli optimizasyon i¢in kullanilan topluluk
tabanli bazi optimizasyon yontemleri (PSO, DE, SA, ACO) kisaca incelenmektedir.
Tezin ana konusu olan genetik algoritmalar boliimii ise daha ayrintili olarak ele
alinmaktadir.

Genetik algoritmalar boliimiinde, ilk olarak, GA’ larin klasik optimizasyon
yontemlerinden farklar1 verilmektedir. Ikinci olarak, genetik algoritmalarm temel

islevleri olan ¢aprazlama, mutasyon ve se¢me islevleri incelenmektedir. Daha sonra tek



amacli bir optimizasyon problemi GA yardimiyla adim adim ¢6ziilmekte ve GA’ nin
daha iyi anlasilmasi saglanmaktadir. GA’ larda yerel en iyilere takilma 6nemli
sorunlardan biridir, bu sorunu gidermek amaciyla g¢esitli yontemler Onerilmistir. Bu
amagcla Onerilen paylasim, ayiklama ve eslesme kisitlamasi yontemleri incelenmekte ve
birer ornekle degerlendirme yapilmaktadir. Bir sonraki boliimde CAGA’ larin temel
kavramlar1 ayrintili olarak anlatilmaktadir. Son olarak ise, CAGA’ larla ilgili literatiirde
yer alan bazi gercek diinya uygulamalar listelenmistir.

Tezin ikinci boliimiinde, literatiirde yer alan Pareto tabanli ve Pareto tabanl
olmayan CAGA yontemleri ayrintili olarak incelenmekte, algoritmalar1 verilmekte ve
uygulama  Ornekleri  sunulmaktadir. Daha sonra CAGA  ydntemlerinin
karsilagtirilmalarinda ve basarimlarinin test edilmesinde kullanilan test islevleri
incelenmekte, grafikleri ve Pareto cepheleri verilmektedir. CAGA yontemlerinin
basarimlarinin 6l¢iilmesi igin literatiirde yer alan bazi basarim oOlgiitleri de ayrintili
olarak incelenmektedir.

Bulgular boliimde ise yeni Onerilen CAGA yontemleri, CAGA yoOntem
iyilestirmeleri, puan 6l¢ekleme yontemi, etkin elitizm mekanizmasi ve basarim ol¢iitleri
ayrintilt olarak anlatilmaktadir. Bu boliimde, ilk olarak daha dnce Onerilen DOPGA
(DOmination Power of an individual Genetic Algorithm) yontemi [Eminoglu, 2003]
derinlemesine incelenmektedir. DOPGA yontemi Pareto tabanli ve elitist bir yontemdir.
Baskilik giicii kavramimi kullanarak bir topluluktaki bireylere iki adimda puan atar.
Cesitlilik icin harici katsayr tahminine gereksinim duymaz, bu bilgi puanlama
mekanizmasinin i¢ine gomiiliidiir. Bu yoOntemin elitizm mekanizmasinda bazi
degisiklikler (ilk topluluk ile ikincil topluluk birlestirilmistir) yapilmis ve etkinligi
artirllmigtir. DOPGA yontemi daha 6nce, bagsarim o6lgiitleri kullanilarak literatiirde yer
alan CAGA yontemleri ile karsilastirilmamistir. Bu bolimde DOPGA, sik kullanilan
test islevleri ve basarim Olgiitleri kullanilarak literatiirde sik kullanilan CAGA
yontemleriyle (SPEA ve SPEA2) karsilagtinlmaktadir. Daha sonra, DOPGA
yonteminde baz1 degisiklikler yapilarak iki yeni yontem Onerisi (DOPGA+, DOPGA?2)
sunulmaktadir. DOPGA’ da puanlama mekanizmasi k. en yakin komsuluk bilgisi
eklenerek degistirilmis ve DOPGA+ yontemi Onerilmistir. DOPGA+ yonteminin
elitizm mekanizmas1 degistirilerek ise DOPGA2 yontemi Onerilmistir. Tiim bu
yontemler cesitli test islevleri iizerinde calistirllmig ve sonuglar verilmistir. Bu

yontemler literatiirde sik kullanilan SPEA ve SPEA2 yontemleri ile karsilastirilmiglardir



ve sonug olarak daha iyi yakinsama ve dagilim 6zelliklerine sahip olduklar1 goriilmiistiir.
SPEA ve SPEA2 yonteminin karsilagtirmalarda kullanilmak iizere seg¢ilmesinin
nedenleri sunlardir: i) her ikisi de Pareto tabanlidir, i7) her ikisi de harici bir katsay1
kullanmadan g¢esitlilik bilgisini puanlama mekanizmasinin i¢ine gémebilme yetenegine
sahiptir, 7ii) her ikisi de elitisttir, iv) her ikisi de son zamanlarda farkli yapay test
islevleri kullanilarak farkli CAGA yontemleriyle karsilagtirilmiglardir.

CAGA yontemlerinin puanlama mekanizmalarinda bir takim iyilestirmeler
yapilarak basarimlar1 artirilmistir. Bu iyilestirmeler NSGA ve SPEA yoOntemleri
lizerinde yapilmustir. lIyilestirmelerde, k. en yakin komsuluk ve baskinhk giicii
kavramlar1 kullanilmigtir. Tiim bu iyilestirmeler ve orjinal yontemler gesitli test islevleri
izerinde ¢alistirilmis ve sonug olarak yapilan iyilestirmelerin orjinal yontemlerden daha
iyi oldugu belirlenmistir.

Puan oOlgekleme genellikle tek amagli GA’ larda kullanilan bir yontemdir. Bu
yontemle, segme mekanizmasindan once bireylerin secilme baskis1 degistirilmekte ve
bdylece basarim artirilmaktadir. Bu tezde, yeni bir puan dlcekleme yontemi onerilerek,
hem tek amagli hem de ¢ok amacli genetik algoritmalara uygulanmistir. Bu yontem
gama diizeltmesi ile puan él¢ekleme (GDPO) olarak adlandirilmistir. Sonug olarak;
hem tek amacgli GA’ larda hem de literatiirde yer alan ve onerilen CAGA yontemlerinde
basarimin, fazladan hesapsal bir yiik getirmeden artirilabilecegi gdzlenmistir. GDPO
yonteminin etkisi ¢esitli secme mekanizmalari iizerinde de degerlendirilmistir. Sonug
olarak, GDPQO’ niin yalnizca puan orantili bir secme mekanizmasi (RWS veya SUS)
kullanildig1 zaman etkili oldugu, turnuva se¢imi kullanildigi zaman etkisiz oldugu
belirlenmistir.

Elitizm mekanizmasinin GA’ larin basarimin1 6nemli Olgiide etkiledigi daha
onceden yapilan ¢aligsmalarla belirlenmistir. Literatiirde onerilen elitizm mekanizmalari
pasif sakla/aktar bir yapidadir ve elit bireyler hicbir uyartima tabi tutulmadan bir
sonraki topluluga aktarilmaktadir. Bu ¢alismada ise bu yapi, sakla/uyar/aktar bir yapi
ile degistirilerek etkin elitizm mekanizmas: 6nerilmistir. Elit bireyler ¢6ziime en yakin
bireylerdir ve bunlarin bir takim islemlerle (¢aprazlama ve mutasyon) uyarilmasiyla
kendilerinden daha 1yi bireyler elde edilme olasilig1 diger bireylere oranla daha fazladir.
Etkin elitizm mekanizmasi bu saptamadan yola ¢ikilarak olusturulmustur. Etkin elitizm

mekanizmast CAGA yontemlerine uygulanmis ve orjinal yani pasif elitizm



mekanizmali bigimleri ile karsilastirilmislardir. Sonug¢ olarak, etkin elitizmin CAGA
yontemlerinin bagarimini artirdigi gézlenmistir.

CAGA yontemlerinin ne kadar nitelikli puanlama yaptiklarinin ve bdylece segcme
mekanizmasina ne kadar nitelikli bilgi gdnderebildiklerinin belirlenmesi i¢in ise ceza ve
odiil basarim Olgiitleri Onerilmektedir. Ceza Olgiitii, CAGA yontemlerinin bir
topluluktaki bireylere birbirinden farkli puanlar atayip atamadiklarina, yani bireyleri en
iyiden en kétitye dogru tekil olarak siralayip siralamadiklarina bakilarak belirlenir. Odiil
oOl¢iitii ise atanan puan degerlerinin ne kadar diizglin dagilip dagilmadigina bakilarak
belirlenir. Cezas1 ve 0diilii diisiik olan yontem, siralama yetenegi agisindan daha iyidir.
Benzetimler sonucunda, DOPGA yonteminin SPEA ydnteminden, DOPGA2
yonteminin ise SPEA2 yonteminden siralama yetenegi agisindan daha iyi oldugu
goriilmiistiir. Ceza ve 6diil Olciitleri ile bireylerin Pareto cephesine dagilimlar1 arasinda
dogrusal bir iligki vardir, yani ceza ve 6diilii diisiik olan yontem Pareto-optimal cephe
tizerinde daha iyi dagilan ¢oziimler elde edilmesini saglamaktadir. Ancak, ceza ve 6diil
arasinda DOPGA2 ve SPEA2 yontemleri i¢in yapilan benzetimlerde yakinsama
arasinda bir iliski bulunmadigi tespit edilmistir. Ayrica, se¢gme mekanizmasinin
olasiliksal olarak ¢alismasi nedeniyle, ¢aprazlamaya girecek bireyler, PAM’ dan ne
kadar nitelikli bilgi gelirse gelsin, rasgele ve olasiliksal olarak secilecektir. Hangi birey
ciftlerinin caprazlamaya tabi tutulacagi konusu kesin olarak bilinmemektedir. Bu
ylizden, PAM’ dan gelen nitelikli bilgiyi kullanabilecek uzman sistem tabanli bir se¢gme
mekanizmasi tasarlanmasi tartigsmaya acgilmistir.

En son olarak, onerilen ve literatiirde sik kullanilan CAGA yontemleri bir
GUI (Graphic User Interface, kullanici arayiizii)’ de toplanmis ve kullanicilarin kendi

parametreleri ile optimizasyon problemlerini ¢ézmeleri i¢in bir alt yap1 olusturulmustur.



2. GENEL BILGILER

Bu boélimde, optimizasyon kavrami aciklanmakta ve topluluk tabanli
optimizasyon yontemlerine iligkin genel kavramlara deginilmektedir. Tezin ana konusu
olan genetik algoritmalara iligkin genel kavramlar ise ayrintili olarak agiklanmaktadir.
Genetik algoritmalarin ortaya ¢ikma nedeni, amaci, temel islevleri, bu zamana kadar

yapilan ¢aligmalar ve uygulamalar1 hakkinda genel bilgiler verilmektedir.

2.1. Optimizasyon (En Iyileme) Nedir ?

Optimizasyon, daha iyi bir sonu¢ bulununcaya kadar olasi tiim ¢oziimlerin amag
islevine gore aranmasi ve Kkarsilastirilmast iglemidir. Optimizasyon konusundaki
arastirma ve uygulamalarin ¢ogu yalnizca tek bir amagla ilgilidir, ancak gercek diinya
problemlerinin ¢ogu tek amagtan daha fazlasimi gerektirmektedir. Birbiriyle celisen
birgok amacin olmasi (6rnegin bir otomobilin hem konforlu hem de ucuz olmasinin
istenmesi) ¢ogu problem i¢in dogaldir. Cok amacl bir problemde, bir tek en iyi sonug
yerine en 1yi sonuglardan olusan ve birbirlerine kars1 bir istiinliikleri olmayan bir en
tyiler kiimesi s6z konusu olacaktir. Klasik optimizasyon yontemleri tek bir benzetimde
(adimda) tek bir ¢oziimiin bulunmasinda iyidirler, ancak c¢ok amagli optimizasyon
problemlerinin ¢oziilmesi i¢in uygun degildirler. Diger taraftan, genetik algoritmalar vb.
topluluk tabanli yontemler, tek bir benzetimde (adimda) ¢ok sayida en iyi ¢dziimii
bulabilirler. Bu yiizden, ¢cok amagli optimizasyon yontemlerinin ¢dziimii i¢in en uygun
yontemler topluluk tabanli yontemlerdir.

Fiziksel bir sistemi modelleyen bir optimizasyon problemi yalnizca tek bir amag
islevi ile gosterilebiliyorsa, bu durumda en iyi ¢6ziimiin bulunmasi islemi tek amacglh
optimizasyon olarak adlandirilir. Eger bir optimizasyon problemi birden fazla amaci
icinde barindiriyorsa, bir veya daha fazla en iyi ¢6ziimiin bulunmasi islemine ise ¢ok
amagl optimizasyon denir. Optimizasyon problemlerinin ¢ogu ¢ok amaglidir. Tek bir
amacin yerine biitiin amaglar 6nemlidir. Farkli amaglarin olmas1 birbiriyle celisen farkl
¢coziimlerin elde edilmesini saglayacaktir. Bir amaca gore iyi olan bir ¢oziim diger bir
amaca gore kotii olabilir. Bu durumda, tek amacgli duruma goére en iyi ¢Ozlimiin

secilmesi zor olacaktir. Ornek olarak, bir otomobil satin alma isiyle ilgili karar verilmesi



gerekiyor olsun. Satin alinmak istenen otomobillerin fiyatlar1 20000 TL ile 250000 TL
arasinda olsun. Bu otomobillere iliskin fiyat-konfor grafigi Sekil 2.1° de
gosterilmektedir. En pahali otomobil 2 numarali ¢6ziim, en ucuz otomobil 1 numarali
¢cozlim olarak gosterilmektedir. Eger yalnizca fiyata gore bir karar verilirse, en iyi
¢Oziim 1 numarali ¢6ziim (otomobil) olacaktir. Eger bu durum tiim alicilar i¢in tek amag
ise, fabrikalar yalnmizca bir ¢esit otomobil (1 numarali ¢oziim) tliretecekler ve pahali
otomobil iiretmeyeceklerdir. Dogal olarak, bu tiirden bir karar verme islemi tek amach
olmayacaktir. Ucuz bir otomobilin daha az konfora sahip olacagi beklenmektedir.
Konfora daha fazla 6nem veren zengin miisteriler ise 2 numarali ¢6ziimii (otomobili)
sececeklerdir. Sekilde bu iki otomobil haricinde de ¢oziimler gosterilmektedir. Tiim bu
¢oziimler, birbirlerinden yalnizca tek bir amag i¢in iyi iken diger amag¢ s6z konusu
oldugunda iyi olmamaktadirlar. Bu durumda her iki amaci da 6nemseyen kisilerin karar

vermesi zor olacaktir.
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%30
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Sekil 2.1. Ornek bir optimizasyon problemi (otomobil satin alma)

Her iki amag ta dikkate alindiginda en iyi sonu¢ hangisi olacaktir? Bu sorunun

yaniti, hi¢gbir ¢6ziimiin digerinden iyi olmadigidir. Her iki amag¢ ta dikkate alinirsa,



¢Oziimlerin birbirlerine kars1 bir iistiinliigii yoktur. Yani ¢cok amagli optimizasyonda bir
tek en 1yi ¢oziim yerine birgok en iyi ¢6ziim bulunmaktadir. Bu durumda s6yle bir soru
daha akla gelebilir: Kisi bu ¢éztimlerden hangisini segmeli? Yukaridaki otomobil satin
alma problemini diisiiniirsek, hangi aracin satin alinacagini yanitlamak kolay degildir.
Bu durumda c¢esitli yontemler (cok amagli karar verme — multi objective decision
making) kullanilarak, kosullar g6z Oniine alinarak, tercih belirleme (preference
articulation) ya da uzman bilgisi (expert knowledge) kullanilarak bu ¢dziimlerden

bir tanesi segilebilir.

2.2. Topluluk Tabanh Optimizasyon Yontemleri

Cok amagli optimizasyon problemlerinin ¢dziimii i¢in birgok yontem Onerilmistir.
Bu yontemlerden son yillarda en dikkat ¢ekenleri dogal yasamda bazi hayvan/bocek
topluluklarinin birlikte hareket etmeleri ve istediklerine (yiyecek vb.) ulasmalarini taklit
eden topluluk tabanli optimizasyon yontemleridir. Bunlarin yani sira metallerin
sicakliklariin degistirilerek tavlanmasi (1sitip sogutarak sertligini alma) yoOntemiyle
benzesim kurularak ta ¢cok amacgli optimizasyon problemleri ¢oziilebilmektedir. Asagida
bu yontemlerden bazilar1 kisaca ele alinmakta, 6zellikleri, kisa program kodlari, artilari
ve eksileri belirtilmektedir. Bu yontemler arasinda yer alan genetik algoritmalar (GA)

ise tezin ana boliimiinii olusturdugu i¢in daha ayrintili bir sekilde incelenmektedir.

2.2.1. Parcacik Siirii Optimizasyonu (Particle Swarm Optimization, PSO)

J. Kennedy ve R. Eberhart tarafindan kus siiriilerinin ugus bicimlerinden
esinlenilerek Onerilmis bir topluluk tabanli bir optimizasyon yontemidir [Kennedy ve
Eberhart, 1995]. Bu yontemin ana fikri, yiyecek bulmaya calisan kus siiriilerinin (veya
topluluklarinin) hareketlerinin benzetimlerinin yapilmasidir. Sekil 2.2 de gercek bir kus
stirtisti goriilmektedir. Bu siirtide, en 6nde yer alan kusun hava akiminindan yararlanan
diger kuslar daha az yorularak daha fazla mesafe gidebilmektedirler. En 6ndeki kus

yorulunca onun yakinindaki kusla yer degistirmektedir. Boylece tiim kuslar yer
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degistirirler ve daha az yorularak tiim siirii daha fazla mesafe katederek yiyeceklere

ulasirlar.

Sekil 2.2. Ornek bir kus siiriisii

PSO kus siirtilerinin davranislarinin bir benzetimidir. Kuslarin yerini bilmedikleri
yiyecegi aramalari, bir problemin ¢6ziimiiniin aranmasi ile benzerdir. Kuslar yiyecek
ararken yiyecege en yakin olan kusu izlerler. PSO’ daki pargacik (particle) kavrami
stirtideki her bir kusu temsil etmektedir. Coziimiin her adiminda her bir parg¢acigin puan
(fitness) degeri, dolayisiyla yiyecege yani amaca ne kadar uzaklikta oldugu hesaplanir.
Her pargacik, GA’ lardaki elitizm mekanizmasinda oldugu gibi kendisine ait bilgileri
(hi1z1, puan1 ve koordinatlar1) saklamak zorundadir. Her bir program adiminda bir
pargacigin konumu, kendi en iyi konumuna ve komsularinin en iyi konumuna gore
degisir. PSO algoritmasi rasgele bir parcacik siiriisii veya toplulugu ile baslatilir ve her
adimda bir pargacigin konumu, kendi en 1yi konumu (peniyi) ve 0 anda topluluktaki en
1y1 ¢ozlimiin konumuna (geniyi) gore giincellenir.

Ornegin PSO algoritmasi, m adet parametreden olusan n adet parcacikla (¢oziimle)

baslatilsin. Bu durumda toplulugun pargacik matrisi soyle verilir:

xll X12 le
X21 X272 Xom
X=| e (2.1)

L Xnl Xn2 Xnm dyem
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Bu matriste i. pargacik x; = [x;1,%,2,...X;, | ile belirtilir. Onceki adimdaki en iyi

konumu ise gy =[p1, P2, s P 1le, i par¢aciin hizi ise v; = [Vi1s Vigseveeens Vi | ile

gosterilsin. Buna gore topluluktaki tiim parcaciklarin konumlari ve hizlari sirastyla

asagidaki formiillere gore gilincellenir:

k+1 k k k k k k k
v =V, +cjrasgele| '(peniyii - X; )+ cy.rasgeley .(gem-yl- - X; ) (2.2)
PARRIE LA (2.3)

Bu denklemlerde k& adim sayisim gostermektedir. ¢; ve c; ise Ogrenme
katsayilaridir. ¢; pargacigin kendi bilgilerine gore hareket etmesini, ¢, ise siiriinlin
bilgilerine gore hareket etmesini saglar. ¢; ve c, degerlerinin ¢ok iyi secilmesi
gerekmektedir. Diisiik secilmeleri uzak bolgelerde arama yapilmasina yol agar ve amaca
ulagilmasini geciktirebilir. Yiiksek se¢ilmeleri ise istenilen amaca ulagilamamasina yol
acabilir. Arastirmacilar c¢;=c,=2 se¢ilmesinin iyi sonucglar verdigini belirtmislerdir.

Genel bir PSO algoritmasinin kodu sdyle verilir [Tamer ve Karakuzu, 2006] :

For Her parcacik i¢in baslangi¢ kosullari
End
Do For Her parcacik i¢in puan degerini hesapla. Eger puan degeri,
Peniyi den daha 1yi ise; simdiki degeri yeni peniyi Olarak ayarla
End
Tiim pargaciklarin buldugu peniyi degerlerinin en iyisini, tiim pargaciklarin
Zeniyi 'S1 olarak ayarla
For her pargacik i¢in (2.2) denklemine gore pargacik hizini hesapla
(2.3) denklemine gore pargacik konumunu giincelle
End
While maksimum adim sayisina ulasilincaya veya minimum hata kosulu

saglanana kadar devam et
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PSO hem siirekli dogrusal olmayan, hem de ayrik ikili optimizasyonda basarili
olarak kullanilmistir [Kennedy ve Eberhart, 1995, 1997, 2001; Eberhart ve Shi, 1998;
Engelbrecht, 2003]. Bir parcacik ya da birey tarafindan bulunan en iyi sonuglarin
kaydinin tutulmasi, ge¢miste {iretilen bastirilamayan bireylerin saklanmasi ig¢in
kullanilabilir (bu agsama genetik algoritmalardaki elitizm mekanizmasiyla benzerdir).

Son yillarda, ¢cok amacli bircok PSO yontemi 6nerilmistir. Ray ve Liew, Pareto
baskinlik kavramini kullanan ve genetik algoritma tekniklerini PSO ile birlestiren bir
algoritma Onermiglerdir [Ray ve Liew, 2002]. Bu algoritma kalabaliklik yontemini
kullanarak cesitliligi saglamaktadir. Hu ve Eberhart ise bir kerede yalnizca bir amacin
en iyilenebilecegi dinamik komsuluk yaklasimini 6énermislerdir [Hu ve Eberhart, 2002].
Daha sonra Hu ve ark., ikincil topluluk ekleyerek dinamik komsuluk yaklasimli PSO
yonteminde bir takim iyilestirmeler yapmislardir. Coello Coello ise bir parcacigin ugus
(hareket) yoOniiniin belirlenmesi i¢in Pareto baskinlik kavramini kullanmistir ve karar
uzayinda daha iyi bir birey dagilimi elde edebilmek icin kiimeleme algoritmalariyla
stiriileri (ya da topluluklari) alt topluluklara bolmiistiir [Pulido ve Coello Coello, 2004].
Srinivasan ve Seow ise PSO’ yu evrimsel algoritma ile birlestiren Evrimsel
Algoritmadan esinlenen Parcacik Stirtisii (PS-EA) yontemini dnermislerdir [Srinivasan
ve Seow, 2003; 2005]. Bu algoritmada elit bireyler saklanmis ve birlestirme islevi
uygulanmamigtir. Raquel ve Naval ise kiiresel en iyinin secilmesi ve arsivdeki
bireylerin silinmesi i¢in kalabaliklik mesafesi kavramini kullanmiglardir [Raquel ve
Naval, 2005].

PSO’ nun en biiylik artis1, hem kavramsal olarak hem de uygulama agisindan ¢ok
basit olmasidir. Ayrica kullanimi basittir ve yiiksek bir yakinsama hizina sahiptir.

PSO’ nun en 6nemli eksigi ise ¢ok amacli optimizasyonda cesitliligin kontrol
edilmesinin zor olmasidir. Cok amacgli PSO yontemlerindeki cesitlilikteki azalma,
mutasyon (veya tiirbiilans) islevleri kullanilarak giderilmeye calisilir.

PSO ile ilgili bir¢ok calisma yapilmaya devam edilmektedir. Caligmalarda PSO
yonteminin iyilestirilmesi, bagka PSO yontemleri ile karsilastirma, diger ¢ok amach
optimizasyon yontemleriyle hibritlestirme ve PSO’ nun gergek diinya problemlerine
uygulanmasi baslica konulardir. PSO ile ilgili genel bilgi ve ayrintilara [Kennedy ve
Eberhart, 2001; Engelbrecht, 2003; Clerc 2006; Lazinika, 2009, Lim ve ark., 2009]
kaynaklarindan ulagilabilir. Son yillarda, PSO algoritmasina olan ilginin artmastyla, bu

konuyla ilgili kitap ve makale sayilarinda 6nemli bir artis gézlenmektedir. Bununla
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beraber PSO ile ilgili bir¢ok agik problem vardir ve yeni alanlara uygulanmasi da
gerekmektedir. Bu amacla, IEEE Transactions on Evolutionary Computation dergisi
2009 y1l1 Agustos ayinda PSO ve ACO’ yu da igeren siirii optimizasyonu yontemleri ile
ilgili 6zel bir say1 ¢ikarmistir. (Editorler: Andries Engelbrecht, Xiaodong Li, Martin
Middendorf, Luca Maria Gambardella, IEEE Trans. EvComp., Vol.13, No:4)

2.2.2. Karinca Kolonisi Optimizasyonu (Ant Colony Optimization, ACO)

ACO algoritmasi, gercek karincalarin yuvalari ile yiyecek noktalar1 arasindaki en
kisa yolu (feromon maddesi yardimiyla) bulma yeteneklerinden esinlenilerek
gelistirilmistir [Colorni ve ark., 1991; Dorigo ve ark., 1996; Dorigo ve Caro, 1999;
Dorigo ve Stiitzle, 2004]. Feromon karincalarin davranigini etkilemektedir, bu madde
karincalarin ¢ok miktarda feromon olan yerlere giden yollar1 (dolayisiyla en kisa yollar)
bulmasini saglamaktadir. Feromon izleri (kokular1), karincalar arasinda dogrusal
olmayan bir iletisim olarak goriilebilir.

Sekil 2.3, bir karinca kolonisinin tipik bir davranis Ornegini gostermektedir.
Karincalar yuvalarinin terk ederken, (1) rasgele yollar izlerler, (2) belirli bir zamandan
sonra ortak bir yolu izlemeye bagslarlar, (3,4) bir engelle karsilastiklar1 zaman bazilari
engelin sagina bazilar1 ise soluna dogru gitmeyi secerler, (5) belirli bir zamandan sonra
feromon maddesinden dolay1 tiim koloni ortak bir yolu (feromon maddesi ¢ok olan yolu
yani en kisa yolu) takip eder. Kisa olan yolda feromon miktar1 uzun yollara nispeten
daha fazla birikmektedir. Kisa olan yoldan ge¢is daha hizli gercekleseceginden, birim
zamanda gecis yapan karinca sayist uzun yola gore daha fazla olacaktir. Dolayisiyla
herhangi iki digliim arasindaki yol {izerinde bulunan feromon miktari, yolun

uzunluguyla ters orantilidir [Keskintiirk ve Soyler, 2006].
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Sekil 2.3. Bir karinca kolonisinin davranisi [Coello Coello ve ark., 2007]

Karinca kolonilerinden uyarlanan ACO algoritmasinda kullanilan {i¢ ana fikir

sOyledir:

1) Feromon izleri ile dogrusal olmayan iletigim,
i1) En kisa yollar feromon seviyesinin yiiksek oldugu yerlerdir,

ii1) Karincalar yliksek feromon olan yerleri tercih etmektedirler.

Ek olarak ACO algoritmasi gercek karinca kolonilerinde olmayan yeteneklere de

sahiptir. Ornegin:

1) Her karinca hedeften ne kadar uzak oldugunu tahmin edebilme yetenegine
sahiptir.
i1) Karincalar ¢evreleri hakkinda bilgiye sahiptir ve karar vermek i¢in bunu
kullanirlar. Bu yiizden, davranislar1 yalnizca uyarlanabilir (adaptif) degildir,
ayni zamanda detaylhidir.
ii1) Algoritmanin her adiminda yalnizca olasi sonuglarin iiretildiginden emin olmak

icin, karicalar bellek mekanizmasina sahiptirler.

ACO gezgin satic1 probleminin (traveling salesman problem-TSP) ¢oziimii i¢in
Onerilmistir [Dorigo ve ark., 1991]. Bu algoritma islem zamani ve ¢oziim kalitesi

acisindan diger sezgisel yontemlerden daha geride oldugundan algoritmanin basarimini
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artirmak ve daha iyi ¢éziimler elde etmek amaciyla calismalar yapilmistir [Keskintiirk
ve Soyler, 2006]. Gambardella ve Dorigo Ant-Q sistemini [Gambardella ve Dorigo,
1995], Bullnheimer ve arkadaslari Rank Temelli Karinca Sistemi (ASrank)’ni
[Bullnheimer ve ark., 1997], Dorigo ve Gambardella Karinca Koloni Sistemi (ACS)’ni
[Gambardella ve Dorigo, 1997], Stiitzle ve Hoos Max-Min Karinca Sistem (MMAS)’ni
[Stiitzle ve Hoos, 2000] ortaya koymuslardir. Ayrica birden ¢ok karinca kolonisi ile
calismay1 esas alan algoritmalar da gelistirilmistir [Tsai ve ark., 2004]. Bunlarin disinda
birgok calismada farkli alanlardaki uygulamalara yonelik, yontemin basarimini
arttirmak amagh degisiklikler ve eklemeler yapilmistir [Bullnheimer ve ark., 1999].
Genel Ant-Q algoritmasi Sekil 2.4° te gosterildigi gibi dort ana asamadan olusmaktadir
[Gambardella ve Dorigo, 1995].

1. Q(s,a) rasgele bir degerle baslatilir
2. Fori=I to N (N-boliim sayis1)
For i=1 to m (birey sayis1)
Her birey i¢in s=s( yap
Her bir boliim igin f'defa tekrarla
For i=1 to m
(2.4) esitligine gore a ve s’ yi belirle
a degerini uygula, r ve s’ degerlerin gozlemle
O(s,a) « O(s,a) + a|ymaks yO(s',a") - O(s,a) |
s <« s'
Dongliyti bitir
s sonlandirma kriterine ulagincaya kadar devam et
Dongiiyti bitir
3. Bulunan m adet sonucu karsilagtir ve en iyiyi se¢
En iyi ¢oziimdeki tiim Q(s,a)’ lar i¢in
0(s,a) « O(s,a)+ a[r + ymaks ,O(s',a'") - O(s, a)]
(o — 6grenme katsayist, y — azaltma carpanidir)
4. Dongiiyii bitir.

5. En iyi sonucu goster.

Sekil 2.4. Ant-Q program kodu
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Ik olarak, Q(s,a) islevleri baslatilir (sabit degerlerle baslatmak ta miimkiindiir).
Ikinci asamada her bir dagitictya (¢oziime) bir deger atanmasi ile baslar. Her adimda,
hareket se¢cme kuralina (2.4) bagli olarak her dagitict o andaki durumu ig¢in olasi

hareketlerden birini seger.

arg maks C(s,s') eger q <
S,:{ g maks ger g < gy 04

Srasgele aksi takdirde

q, [0,1] araliginda olusturulan bir rasgele sayidir. s ve s’, durumlar1 gostermektedir.
C(s,s’) birlestirilmis islevdir.

Her gecis noktasinda dagiticinin islev degeri asagidaki formiile gore giincellenir:
O(s,a) « O(s,a) + alymaks ,O(s',a") - O(s, )] (2.5)

Tiim dagiticilarin islev degerleri bulununcaya kadar devam eder. Ugiincii
asamada, ¢Ozlimler hesaplanir ve en iyi sonuglar ddillendirilir. Ayrica hareket degerleri

de asagidaki formiile gore giincellenir:
O(s.a) < O(s,a) + alr + maks, O(s'.a') - O(s. a)] (2.6)

Buradaki a ve y katsayilar1 kullanici tarafindan belirlenmelidir, bu katsayilarin
belirlenmesi deneme yanilma yoluyla olur. Son olarak, dordiincii adimda sonlandirma
kriterine gore algoritma sonlandirilir ve en iyi sonuglar belirlenir.

Mariano ve Morales, Ant-Q algoritmasinin ¢ok amag¢ i¢in kullanilan bir
versiyonunu (Multi-Objective Ant-Q, MOAQ) Onermislerdir [Mariano ve Morales,
1999a, 1999b]. ACO ile ilgili bir¢ok algoritma Onerilmis ve bunlar bazi ger¢ek diinya
problemlerinin ¢6zliimii i¢in kullanilmigtir. Karica kolonisi optimizasyonu ile ilgili
ayrintili bilgilere [Engelbrecht, 2003; Nabiyev, 2003; Dorigo ve Stiitzle, 2004;
Karaboga, 2004] kaynaklarindan ulasilabilir.
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2.2.3. Farksal Gelisim (Differential Evolution, DE)

Kenneth Price ve Rainer Storn tarafindan siirekli optimizasyon problemlerinin
¢Oziimii i¢in tasarlanmig nispeten yeni bir algoritmadir [Storn ve Price, 1995, 1997;
Price ve ark., 2005]. Bu algoritma Price’ m Tchebycheff polinomal uyarlama
problemini ¢dzmek i¢in Storn’ a danigmasi nedeniyle ortaya ¢ikmistir. Bu problemin
¢Oziimiinde Price, vektdr toplulugunu bozmak icin vektdr farklarmi kullanmayi
diisiinmiistiir. Daha sonra bunun uygulanmasi i¢in algoritma Onerilmis ve
iyilestirilmistir [Storn ve Price, 1995]. DE genellikle siirekli optimizasyon
problemlerinin ¢6zlimii i¢in kullanilan topluluk tabanli bir algoritmadir. DE, geleneksel
genetik algoritmalarla benzerliklere sahiptir. Bununla beraber, basit bir GA’ daki gibi
ikili kodlama kullanmaz. Bunun yerine DE, topluluktaki ¢dziimlerin dagilimina bagh
mutasyon uygular. Bu yolla, mutasyon degerlerinin hesaplanmasi i¢in, arama yonleri ve
bireylerin konumuna bagli olas1 adim boyutlari segilir.

DE, en giiclii olasiliksal gercel parametreli optimizasyon algoritmalarindan
biridir. Cok basit bir algoritmadir ve yalnizca birkag satirlik kodlarla programlanabilir.
Ek olarak, kullanimi kolaylastiran ¢ok az sayida kontrol parametresi kullanir. Buna
ragmen; dogruluk, yakinsama hizi, kararlilik ve giirbiiz olma durumlar1 agisindan ¢ok
amaghi ve ¢ok modlu islevlerin optimizasyonunda dikkate deger bir basarim
gostermektedir.

DE tek amagli optimizasyon problemlerin ¢éziimii i¢in ¢ok iyi bir algoritmadir ve
cok sayida arastirmaci ¢ok genis sayida optimizasyon probleminde (genellikle dogrusal
olmayan) DE’ nin ¢ok iyi oldugunu gostermislerdir [Storn ve Price, 1995; Mezura-
Montes ve ark., 2006]. Buna ragmen, DE’ nin ¢ok amacli optimizasyon ig¢in
kullanilmasi ile ilgili arastirmalar yeni yeni artmaktadir. DE, PSO’ ya benzer sekilde
ylksek bir yakinsama hizina sahiptir, ancak gercek Pareto cephesine ulagmakta
zorluklar yasamaktadir. Ayrica, ¢ok amaclhh DE ¢esitliligin saglanmasi i¢in ek
mekanizmalara (6rnegin kalabaliklik tabanli islevler veya mutasyon islevleri) ihtiyag
duymaktadir. DE yalnizca parametreleri gergel say1 olan problemler i¢in Onerilmistir,
diger kodlama cesitlerinde kullanilmasi i¢in yenilikler yapilmasi gerekmektedir.

DE algoritmasinin 6nemli parametreleri: NP (Number of population-topluluk
boyutu), CR (Crossover rate-¢aprazlama orani), F (Scaling factor-Olgekleme sabiti)

olarak sayilabilir. ilk olarak, NP adet baslangi¢ vektorii rasgele olusturulur. Daha sonra
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ise genetik algoritmalarda oldugu gibi caprazlama, mutasyon ve se¢me islevleri

uygulanir. DE algoritmasinin temel adimlar1 sdyle verilebilir [Yigit ve ark., 2007]:

Baslangi¢ toplulugunun olusturulmasi
Degerlendirme
Tekrarla
Mutasyon
Yeniden birlestirme / Caprazlama
Degerlendirme
Secme

Durdurma kriteri saglanincaya kadar

DE algoritmasi, diger biyolojik kokenli algoritmalardan mutasyon ve yeniden
birlestirme (¢aprazlama) asamalarinda farklilik gostermektedir. DE algoritmasi
toplulugu kanstirmak igin ¢oziim vektorleri arasindaki agirliklandirilmis farklari

kullanmaktadir:
UG+ =% c+K- (xr3,G - xi,G)+ F- (xrl,G - xr2,G) (2.7)

Burada r,m,13 € {1,2,...,71} ve n #nr #r; olmak lizere rasgele secilir. DE

algoritmasi, bir amag¢ vektoriine mutasyon islemini, rastgele seg¢ilmis amag¢ vektor
ciftinin agirliklandirilmis farkinin bu amacg vektoriine eklenmesiyle gergeklestirir.
Se¢me islemi, yeni liretilen vektorlerin hangi sartlar altinda topluluga girebilecegini
tanimlayan bir kriterdir. DE algoritmasinin se¢me isleminde, yeni iiretilen vektor
ebeveynine gore daha gelismis veya en azindan ayni gelisme seviyesinde degilse
ebeveyn vektdr en az bir adim daha toplulukta kalmaya devam etmekte ve bagka bir
vektorle yer degistirmemektedir. Yeniden birlestirme veya ¢aprazlama isleminin amact,
var olan amag¢ vektor parametrelerinden faydalanarak yeni vektorleri olusturmak
suretiyle arastirmanin basarili olmasi i¢in yardimci olmaktir [Yigit ve ark., 2007].

Son on yilda, DE algoritmasina olan ilginin artmasiyla, bu konuyla ilgili kitap ve
makale sayilarinda 6nemli bir artis gozlenmektedir. Bununla beraber, DE ile ilgili

bir¢ok acik problem vardir ve yeni alanlara uygulanmasi da gerekmektedir. Bu amagla,
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IEEE Transactions on Evolutionary Computation dergisi 2011 yilinda DE ile ilgili 6zel
bir say1 c¢ikaracaktir (Editorler: Swagatam Das, P. N. Suganthan, Carlos A. Coello
Coello). DE algoritmast ile ilgili ayrintili bilgilere [Engelbrecht, 2003; Karaboga, 2004;
Price ve ark., 2005; Das ve ark., 2008; Chakraborty, 2008] kaynaklarindan ulagilabilir.
Ayrica, veri kiimeleme yoOntemleri icin DE ve PSO’ nun kullanilmasi ve
DE ile ilgili ayrintili bilgilerin verildigi bir  video sunumu
http://videolectures.net/solomon_krink depso/ baglantis1 kullanilarak izlenebilir (Erisim

zamani: 05.08.2009).

2.2.4. Benzetimli Tavlama (Simulated Annealing, SA)

Benzetimli tavlama, metallerin tavlanmasi yani sitilip sogutularak sertliginin
alinmasi isleminden uyarlanan olasiliksal bir arama algoritmasidir. Tavlama islemi, bir
kat1 cismin (genelde metaller, 6rnegin c¢elik) sicakliginin atomlarinin serbest olarak
hareket edebilecegi bir noktaya kadar artirilmasi, daha sonra atomlarin daha diisiik
enerji seviyelerinde yeniden diizenlenmesini saglayacak bir sekilde sicakligin
diisiiriilmesi olayidir (6rnegin bir kristalizasyon islemi). Bu islem sirasinda metalin
serbest enerjisi digiiriiliir. Sogutma islemi hayati bir 6neme sahiptir. Eger metal ¢ok
hizli bir sekilde sogutulursa veya sistemin baslangi¢ sicakligt ¢ok diisiikse, bir kristal
elde edilemez, onun yerine metal yiiksek enerjili amorf (sekilsiz, kristal yapis1 olmayan)
bir duruma gelir. Bu durumda, sistem kiiresel en kiigiik (en diislik enerji durumu) yerine
yerel en kiiciik degere (yliksek enerji durumuna) ulasir [Dowsland, 1993]. Metropolis ve
ark., 1sitma kazanindaki kati bir cismin 1s1l dengeye ulasincaya kadar gecirdigi
degisimlerin benzetimini yapmak i¢in bir algoritma onermislerdir [Metropolis ve ark.,
1953]. Metropolis’ in bu yaklasimindan sonra, Kirkpatrick ve ark. [Kirkpatrick ve ark.,
1983] ve Cerny [Cerny, 1985] birbirlerinden bagimsiz olarak, tavlama islemi ile
optimizasyon arasindaki benzesime dikkat ¢cekmislerdir. Bu aragtirmacilar birkac adet
onemli benzesim onermislerdir: sistem durumu optimizasyon probleminin ¢oziimi ile
benzerdir, sistemin serbest enerjisi (azaltilacak) en iyilenecek amag islevinin aldigi
degerle ilgilidir, diizensizlik GA’ larda kullanilan mutasyon islevi ile benzesiktir,
sogutma iglemi arama algoritmasindaki denetim mekanizmasiyla ilgilidir ve son olarak

sistemin donma durumu arama algoritmasinin (topluluk boyutu bir oldugunda) son
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¢Ozlimiinii gostermektedir. Bu benzesimler kullanilarak benzetimli tavlama algoritmasi

gelistirilmistir. Benzetimli tavlamanin program kodu Sekil 2.5” de verilmektedir.

1. Bir baslangi¢ (olas1) ¢6zliimii secilir (so),
2. Bir baslangig sicakligr segilir (tp>0),
3. Bir sogutma ¢izelgesi (programi) segilir CS,
4. Tekrarla
Tekrarla

Rasgele bir s € N (sg) se¢ (N: komsuluk yapist)
0=f(s)—f(sg) (f: amag islevi)

Eger 6 <0 ise 0 zaman sj <— s

Aksi takdirde
Rasgele x degeri olustur [(0,1) araliginda diizgiin dagilim]
Eger x <exp(—0/t) ise 0 zaman s; <— s

ITER verilen adim sayisina ulagilincaya kadar
t < CS(1)

5. Sonladirma kriteri saglanincaya kadar devam et.

Sekil 2.5. Benzetimli tavlama program kodu [Dowsland, 1993].

Sekil 2.5° de verilen program kodunda en kiiclikleme problemi s6z konusudur.
Bu algoritma, o andaki durumun komsuluklarinda yerel hareketler olusturur ve yeni
durum o andaki sicakliga (t) bagli bir isleve gore belirlenir. Algoritmanin iki ana
parametresi, adim sayis1 (ITER) ve sogutma ¢izelgesi (CS)’ dir, ¢linkii bu parametreler
algoritmanin bagsarimina énemli derecede etki etmektedirler.

Benzetimli tavlamanin ¢ok amagl optimizasyon i¢in kullanimi ilk olarak Serafini
tarafindan Onerilmistir [Serafini, 1994]. Serafini, iki amach bir optimizasyon
probleminin ¢dziimii i¢in hedef-vektor yaklasimini kullanmistir. Serafini’ nin kullandig1
bu yontem MOSA (Multi-Objective Simulated Annealing, Cok Amagh Benzetimli
Tavlama) olarak adlandirilmistir. Ray ve ark., benzetimli tavlama kullanarak ¢ok amach
bir tasarim problemini agirlikli toplamla ¢ézmiistiir [Ray ve ark., 1995]. Ruiz-Torres ve
ark. iki amagli paralel makine ¢alisma cizelgesi problemini ¢6zmek i¢in Pareto tanimini
segme Kkriteri olarak kullanan bir benzetimli tavlama kullanmislardir [Ruiz-Torres,

1997]. Czyzak ve Jaszkiewicz ise Pareto Benzetimli Tavlama (PSA-Pareto Simulated
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Annealing) isimli bir yontem onermislerdir [Czyzak ve Jaszkiewicz, 1997a, 1997b]. Bu
yontemde, MOSA’ dan farkli olarak her adimda tek bir ¢6ziim yerine ¢oziimlerden
olusan bir topluluk kullanilmistir. Her iki yontemde de bastirilamayan c¢oziimler
saklanmigtir. PSA yontemi MOSA ile karsilagtirilmis ve Pareto cephesinde bir¢ok birey
tiretmigtir ve bu bireyler bu cephe iizerinde diizgiin dagilmiglardir. PSA birgok alana
uygulanmistir (6rnegin hemsire calisma ¢izelgesi problemi vb.).

Literatiirde ¢ok sayida ¢ok amacli benzetimli tavlama yontemi yer almaktadir. Bu
yontemlerden bazilar1 soyledir: SMOSA [Suppapitnarm ve ark., 2000], UMOSA
[Ulungu ve ark., 1995, 1997], WMOSA [Suman, 2002, 2003] ve AMOSA
[Bandyopadhyay ve ark., 2008]. Bu yontemler ¢esitli uygulamalar iizerinde
degerlendirilmis ve birbirleriyle karsilastirilmiglardir. Benzetimli tavlama hakkinda

daha ayrintili bilgilere [Karaboga, 2004; Tan, 2008] kaynaklarindan ulasilabilir.

2.2.5. Diger Yontemler

Literatiirde yukarida belirtilen yontemler haricinde de optimizasyon (6zellikle ¢ok
amacli) icin kullanilabilecek yontemler bulunmaktadir. Bu yoOntemlerden bazilar
sOyledir: Tabu algoritmas: (Tabu Search), yapay bagisiklik sistemleri (Artificial
Immune Systems), kiiltlirel algoritmalar (Cultural Algorithms) ve pekisik arama
(Cooperative Search). Bu yontemlerle ilgili ayrintili bilgilere [Nabiyev, 2003;
Engelbrecht, 2003; Karaboga, 2004; Coello, 2007] kaynaklarindan ulasilabilir.

2.3. Genetik Algoritmalar

Genetik algoritmalar (GA), en iyi ¢0ziimii arama islevini biyolojik kdkenli bazi
islevleri (se¢me, caprazlama, mutasyon, elitizm vb.) taklit ederek yapar. Genetik
algoritmalarin diger optimizasyon yontemlerinden ve klasik arama yontemlerinden en
onemli farki, tek bir ¢6ziim yerine her adimda c¢oziimlerden olagsan bir topluluk
kullanmasidir. Her adimda bir ¢oziim toplulugu kullanildig i¢in, genetik algoritmayla
elde edilen sonuglar da bir ¢éziim toplulugu olacaktir. Cok sayida en iyi ¢éziimiin tek

bir adimda (benzetimde) bulunabilmesi, genetik algoritmalarin en Onemli
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Ozelliklerinden biridir. Genetik algoritmalar, Pareto cephesinin (bulunmasi istenen
¢Ozlim bolgesi) sekline ve siirekli olup olmamasina ¢ok duyarli degillerdir (6rnegin
ayrik ve i¢gbiikey Pareto cephelerini kolaylikla bulabilmektedir) [Coello Coello, 1999].

Son yirmi yil i¢inde, degisik miihendislik konularinin bilgisayar araciligi ile
modellenmesi, benzetilmesi, en iyilenmesi (optimizasyon) ve gelecek davraniglarinin
tahmini i¢in dogal olaylarin isleyis ve davranis bigcimlerinden esinlenerek ilgi ¢ekici
yontemler gelistirilmistir. Bunlar arasinda canlilarin genetik davranis bi¢imleri, genetik
algoritmalarin (GA) ortaya ¢ikmasinda ¢ok dnemli rol oynamustir.

Genetik algoritmalar dogada var olan bir yarisma ortaminda, ancak daha iyi ve
daha kuvvetli olan bireylere kazanma sansiin verildigi biyolojik olaylara benzetilerek
gelistirilmis paralel ve kiiresel (global) bir arama teknigidir. Arama uzayinda ayni anda
bircok noktay1 degerlendirdigi icin kiiresel ¢oziime ulasma olasilig1 fazladir. Genetik
algoritmalar (GA) esasen kilavuzlanmis bir rasgele sayi iiretme teknigidir, yani
parametreler icin belirli sinirlar vardir. Genetik algoritmalar, ikili (veya gergel say1) dizi
yapilar1 i¢inde en iyi olanlarin yagayabilme sansi ile yapilandirilmis olsa da, rasgele
bilgi aligverisi olaylarmni birlestirerek bir arama algoritmasi olustururlar. Genetik
algoritmalar tiirevsel bir nitelige sahip olmadigindan analitik degildirler,
tekrarlandiginda ayni sonug alinmayabilir.

Michigan Universitesinde psikoloji ve bilgisayar bilimi uzmani olan John Holland
bu konuda ilk ¢aligmalar1 yapan kisidir (Holland, 1975). Mekanik 6grenme konusunda
calisan Holland, Darwin’in evrim kuramindan etkilenerek canlilarda yasanan genetik
sireci bilgisayar ortaminda gergeklestirmeyi diisiinmiistiir. Tek bir mekanik yapinin
o0grenme yetenegini gelistirmek yerine bdyle yapilardan olugan bir toplulugun ¢ogalma,
ciftlesme, mutasyon vb. genetik siireclerden gecerek basarili yeni Dbireyler
olusturabildigini gormiistiir. Arastirmalarini, arama ve en iyiyi bulma i¢in, dogal segme
ve genetik evrimden yola c¢ikarak yapmistir. Biyolojik sistemde bireyin bulundugu
cevreye uyum saglamasi Ornek almarak, en iyiyi bulma ve makine Ogrenme
problemlerinde bilgisayar yazilimi modellenmistir. Holland’ 1n ¢aligmalarinin sonucunu
acikladigi kitabinin 1975’ te yayinlanmasindan sonra gelistirdigi yontemin adi Genetik
Algoritmalar (ya da kisaca GA) olarak yerlesmistir.

Genetik algoritmalarla ilgili ilk gergek uygulama 1984 yilinda Holland’ 1n
Ogrencisi olan David Schaffer tarafindan yapilmistir (Schaffer, 1984). Schaffer

tarafindan Onerilen vektor hesaplamali genetik algoritma (VEGA), tek amacglh genetik
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algoritmanin basit bir iyilestirmesidir ve coklu c¢oziimleri genetik algoritmalarin
yalnizca birka¢ adimda bulabilecegini gostermistir. Bu c¢alismadan sonra, GA
arastirmacilart yaklastk 5 yil cok amach optimizasyon konularina fazla ilgi
gostermemislerdir. 1989 yilinda, David E. Goldberg yeni ufuklar acan kitabinda
(Goldberg, 1989) baskinlik kavramini kullanan 10 satirlik bir ¢ok amagli genetik
algoritma (CAGA) yontemi 6nermistir. Bu kitaptaki ipucglarinindan yararlanan ¢ok
sayida arastirmaci farklt CAGA yontemleri gelistirmeye baglamistir. Bunlarin arasinda
Srinivas ve Deb’ in NSGA (Non-dominated Sorting GA, 1994) yontemi, Fonseca ve
Fleming’ in MOGA (Multiple Objective GA) yontemi, Horn, Nafploitis ve Goldberg’ in
NPGA (Niched Pareto GA) yontemi ilk gelistirilen yontemlerdendir. Bu baskinlik
tabanli yontemler, birbirinden farkli gergek diinya problemleri iizerinde test edilmis ve
bu yontemlerin ¢ok amagli problemlerin ¢oziilebilmesini sagladigi goriilmiistiir. Bu
caligmalardan sonra, ¢cok amagli optimizasyon yontemlerinin ¢oziilebilmesi icin genetik
algoritmalar1 farkli bigimlerde kullanan yeni yontemler Onerilmistir. Bu yontemlere,
Kursawe’ nin es kalitsallik (diploidy) yaklasimi (Kursawe, 1990), Hajela ve Lin’ in
agirlik tabanli yaklagimi (Hajela ve Lin, 1992), Osyczka ve Kundu’ nun mesafe tabanl
GA’ s1 (Osyczka ve Kundu, 1995) 6rnek olarak verilebilir. Cok amagli optimizasyona
olan ilgini artmasiyla, GA dergileri yayimnlanmaya, bu konuyla ilgili uluslararasi
konferanslar diizenlenmeye baslamigtir. 2000’ 1i yillarda ise ¢ok sayida yeni CAGA
yontem Onerileri [PAES (Knowles ve Corne, 2000), PESA (Corne ve ark., 2000),
SPEA2 (Zitzler ve ark., 2001), NSGA-II (Deb ve ark., 2002b), DMOEA (Yen ve Lu,
2003) vb.] yapilmis ve bu yontemler cok amacli optimizasyon problemlerinin ¢éziimii
icin kullanilmiglardir. Son yillarda ise GA’ larla ilgili ¢alismalarla beraber diger bazi
topluluk tabanli optimizasyon yontemleri ile karsilastirmalar yapilmakta, yeni yapi
Onerileri verilmekte, onerilen veya onerilmis CAGA yontemleri test islevleri yardimiyla
karsilagtirilmaktadir.

Genetik algoritmalarin genel yapis1 Sekil 2.6° da verilmektedir. GA baslamadan
once optimizasyon problemini tanimlayan bir amag¢ iglevinin belirlenmesi
gerekmektedir. Bu islemden sonra, GA adimlari, ¢6ziim Onerilerini yani bireyleri iceren
bir baslangic toplulugunun belirlenmesiyle ve probleme iliskin parametrelerin
girilmesiyle baslar. Baslangi¢ toplulugu rasgele belirlenecegi gibi disaridan kullanici
tarafindan da girilebilir. Daha sonra, amag islevinin hesabi1 parametrelere ve girislere

gore yapilir. En 1yi birey/bireyler bellekte saklanir (elitizm). Segcme mekanizmasiyla
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(RWS, SUS veya TS) bir sonraki nesli yani ¢dziim Onerilerini iiretecek anne-baba
bireyler secilir. Caprazlama ile ¢ocuk bireyler (yeni ¢Oziim Onerileri) tretilir. Farkli
bireylerin olusturulmas: (gesitlilik) i¢in ise mutasyon islemi uygulanir. En iyi
birey/bireyler ¢oziimlere eklenir. Girilen adim sayisina ve sonlandirma kriterine gore

GA’ nin bir adimi tamamlanmis olur.

[ Adim 0 : Baslangig¢ ]

:

s N
. Kodlama
—»| Adim 1: Puan Atama/ [ Céziimler ]
Derecelendirme <
N ~/ Dekodlama l
p l N En lyi Céziimlerin
Adim 2: Giincellenmesi
Se¢me Mekanizmasi
N J v
l [ Adim 5: Elitizm Stratejisi]
Adim 3: Caprazlama

il

Adim 4: Mutasyon

&
Al
A

—[Adlm 6: Sonlandirma Testi]

{ En lyi Coziimler ]

Sekil 2.6. GA’ larin genel yapisi

Genetik algorimalar problem sayisina gore tek amach veya ¢ok amagli,
parametrelerin kodlanma bi¢imine gore gercel ya da ikili, problem tipine gore ise
kisitlamali  veya kisitlamasiz olarak adlandirilirlar. Bu tezde ikili kodlama
kullanan/kisitlamasiz/cok amagli genetik algoritmalar kullanilmistir.

CAGA’ larin bazi temel ve istenilen karakteristikleri soyle Ozetlenebilir:
1) birbiriyle ¢elisen ¢oklu amaclar1 kullanabilmelidir, 2) var olan kisitlamalar puan
atama mekanizmasina (PAM) eklenebilmelidir, 3) herhangi bir harici katsayiya
gereksinim duyulmadan ¢esitlilik bilgisi bir bireyin bagil konumu dikkate alinarak puan
atama mekanizmasina eklenebilmelidir, 4) elitizm mekanizmasi etkili bir bi¢cimde
kullanilmahdir, 5) PAM tarafindan farkli bireylere farkli puanlar atanabilmelidir,
boylece topluluktaki bireyler en ¢ok istenilenden en az istenilene dogru tekil bir bigimde

siralanabilir, 6) endiistri uygulamalarinda sik goriilen koti baslangic kosullarina
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hesapsal olarak dayanikli olmalidir, 7) ¢alisma zamanlar1 miimkiin oldugu kadar az
olmalidir, 8) GA kiiresel arama yontemidir ve ¢oziim/¢oziimleri kullanici tarafindan
belirlenen sinirlar igerisinde arar. GA’ larin buldugu sonuclara gore parametre sinirlari
artirthp azaltilarak bolgesel arama (region of interest) ¢Oziintirliigii degistirilebilir,
bdylece arama hizi ve bagarimi artirilabilir, 9) probleme bagli olarak CAGA
yontemlerinin melezlestirilmesi (hibritlestirilmesi) faydali olabilir, 10) puan 6lgekleme

CAGA yontemlerinin yakinsama 6zelliklerini iyilestirebilir.

2.3.1. Klasik Optimizasyon Yontemlerinden Farklar

Genetik algoritmalarin klasik optimizasyon yontemlerinden farklar1 sdyle

Ozetlenebilir:

* (A, ¢oziim uzaymda ayni anda genis bir alanda ¢ok sayida noktadan
arastirmaya baglar. Arama uzayinda, yerel (local) degil kiiresel (global)
arama yaparak sonuca ulagsmaya calisir. Bir tek noktadan degil, bir grup
¢Ozlim i¢inden arama yapar. Aramaya tek bir noktadan degil bir¢ok noktadan
baslamanin en biiyiik yarari; yerel en iyiye yakalanma olasiligini ortadan
kaldirmasidir. Klasik optimizasyon yontemleri aramaya tek bir noktadan
basladiklar1 i¢in, ilk bulduklar1 yerel en iyi noktasinda aramay1 sonlandirirlar.
Dolayisiyla ¢cok amagli optimizasyon i¢in uygun degillerdir.

* GA, arama uzayinda bireylerin puan degerlerini bulmak icin sadece
amag - uygunluk iglevi (objective - fitness function) ister. Boylelikle sonuca
ulagmak i¢in tiirev ve diferansiyel islemlere gerek duymaz.

» Bireyleri segme ve birlestirme asamalarinda belirgin kurallar yerine olasilik
kurallarin1 kullanir. Her ¢alismada, GA ¢oziime yakin ama birbirinden farkl
sonuglar tretir.

* Diger yontemlerde oldugu gibi dogrudan parametreler iizerinde c¢alismaz.
GA’ lar, optimize edilecek parametreleri kodlar ve parametreler iizerinde
degil, bu kodlar iizerinde islem yapar.

* Genetik algoritma, kor bir arama yontemidir. GA en iyilemeye calistig

problemle ilgili herhangi bir bilgiye ihtiya¢ duymaz. Sistemin matematik
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model bilgilerini gerektirmez. Karmagik matematik hesaplar1 yerine yalnizca
giris-cikis bilgilerine ihtiya¢ duyar.
* Olasilik kurallarina gore calisirlar. Programin ne kadar iyi ¢alistigi dnceden

kesin olarak belirlenemez. Ancak, olasilikla hesaplanabilir.

2.3.2. Genetik Algoritmalarin Temel Islevleri

GA’ larda ili¢ temel islev bulunmaktadir: segcme, caprazlama ve mutasyon.
Asagida bu islevler ayrintili bir sekilde ele alinmaktadir. Bu islevler disinda, genetik
algoritmalarda kullanilan bazi parametreler de vardir. Ornegin topluluk boyutu ya da
birey sayisi. Bu parametre probleme gore belirlenir ve cok iyi secilmesi gerekir.
Parametrelerin ¢oziiniirligii ya da bit sayisi ise GA’ nin basarimini etkileyen 6nemli bir
faktordiir. CAGA’ larda 6nemli olan bir faktor ise arsiv ya da ikincil topluluk boyutudur
ve problem tipine gore iyi ayarlanmas1 gerekmektedir. Tezde kullanilan GA programlari

kullanici tarafindan girilen maksimum nesil sayisina gore sonlandirilmaktadir.

2.3.2.1. Bireylerin (ya da Coziim Onerilerinin) Kodlanmasi

Genetik algoritmalarda bireylerin kodlanmasi ikili say1 kodlama, gercel say1
kodlamas1 veya gray kodlama big¢imlerinden birisi ile yapilir. Bu tezde, bireyler ikili
say1 bigiminde kodlanmistir. Verilen parametreler gercel say: ise, bu durumda gergel

sayilar ikili sayilara dontistiiriilerek kullanilmagtir.

2.3.2.2. Se¢me Mekanizmasi

Se¢me mekanizmasi, en basit sekilde, puan degerine bagli olarak, sonraki
toplulugun ebeveyn (anne-baba) adaylar1 arasindan bazi bireylerin se¢ilmesi olarak
tanimlanir. Diger bir deyisle, bir ebeveyn toplulugu bir segme mekanizmasi tarafindan
secilir. Boylece, hangi bireylerin ¢aprazlama ve mutasyon islevlerine ugrayacagi

belirlenmektedir. Burada sik kullanilan ii¢ segme mekanizmasindan bahsedilecektir:
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Rulet ¢arki secimi (Roulette Wheel Selection, RWS), stokastik evrensel drnekleme
(Stochastic Universal Sampling, SUS) ve turnuva se¢imi (Tournament Selection, TS).

Bu yontemlerden RWS ve SUS puan orantili segme mekanizmalaridir.

Rulet Carki Secimi (RWS): Bu yontem, puan orantili bir segme mekanizmasidir
ve puan degerlerine bagl olasilik dagilimina gore ebeveyn toplulugunu segmektedir.
Rulet carki, agagida belirtilen adimlar kullanilarak uygulanabilir (burada tek amaghh GA
icin uygulanma bi¢imi verilmektedir, CAGA’ larda bir bireyin puanina goére sec¢ilme

olasilig1 degismektedir):

Adim 1. Her birey ic¢in puan degerleri (puan(i)) hesaplanir (i=1,2,...,N). Burada N
topluluk boyutu ya da birey sayisidir.

Adim 2. Her bireyin puan degerleri birbirine eklenerek toplulugun toplam puam (7P)

hesaplanir:

N
TP =" puan (i) (2.8)
i=1

Adim 3. Her birey igin, se¢ilme olasihigi ( p;) hesaplanir:

P, = %P(") 2.9)

Adim 4. Her birey igin, toplam (kiimiilatif) olasilik (¢, ) hesaplanir:

4= (2.10)

Se¢me islemi rulet carkinin N kez donderilmesiyle baslar; her seferinde asagida

belirtilen sekilde tek bir birey yeni topluluk i¢in segilir.
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Adim 5. [0,1] araliginda rasgele bir » sayis1 olusturulur (rulet bir kez doniiyor).

Adim 6. Eger r <gq,, o zaman ilk bireyi se¢ (y, ); aksi takdirde k. birey v; (2<k < N)

qj_1 <r<qy ile segilir.

5. ve 6. adim, yeni toplulugu olusturmak i¢in N kez tekrarlanir. RWS biiyiik bir
secme hatasinin olugsmasina miisade etmektedir. Bu yontemde, ayni bireyin N kez
secilebilme olasiligt vardir. RWS’ nin gosterilimi (dort bireylik topluluk ig¢in)
Sekil 2.7a’ da verilmektedir.

Stokastik Evrensel Ornekleme (SUS): Rulet carkinin aksine SUS’ ta tek bir
cark doniisii kullanir. RWS’ deki Adim 1-4 aras1 ve Adim 6 aynen kullanilir. Asil fark
5. adimdadir. Cark, bir rulet ¢arki gibi olusturulur ve topluluk boyutuna esit sayida
isaretci ile doner. Carkin bir kez doniisii segilen bireyleri belirler. Sekil 2.7b, SUS
secme mekanizmasini (dort bireylik topluluk icin) gostermektedir. RWS’ deki ayni
bireyi N defa se¢gme olasilifindan kurtulmak i¢in, SUS kullanilir. Kag birey iiretilmek
isteniyorsa o kadar ok (isaret¢i) yerlestirilir ve bir seferde o kadar birey segilir. Burada
oklar arasindaki mesafe esit olmalidir. Ornegin 10 bireyden 8 tanesi segilmek
isteniyorsa, aralik 8 esit parcaya boliinlir ve 8 kez rasgele say1 iiretilir. SUS, genetik

algoritmalarda en ¢ok kullanilan se¢me mekanizmasidir.

4 x 1x
—_— —_—
q; q;
qz 612 '
q,4 Q 9,
q, q,
(a) (b)

Sekil 2.7. (a) Rulet ¢arki se¢imi (RWS),

(b) Stokastik evrensel 6rnekleme (SUS)
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Turnuva Secimi (TS): En cok kullanilan segme mekanizmalarindan birisi de
turnuva sec¢imidir. Turnuva se¢iminde, birka¢ adet birey o anki topluluktan rasgele
secilir ve bu bireylerden en iyisi (probleme gore en diisiik puanli ya da en yiiksek
puanli) yeni toplulukta yerini alir. Turnuvanin boyutu ayarlanarak, sec¢ilme baskisinin
miktar1 kontrol edilebilir ve bdylece yakinsama hizi ayarlanabilir. Turnuva se¢imi,
temel olarak her seferinde yalniz bir kazanan olacagini varsayar. Se¢me islemi, gelecek
toplulugun tamamlanmasina yetecek kadar sik tekrarlanir. Eger turnuva se¢imli basit bir
GA diisiiniiyorsaniz ve turnuvanin boyutu bireylerin sayisina esitse, o zaman segilen
birey o anki topluluktaki en iyi birey olacaktir. Ornegin, 100 bireyden 10 tanesi
secilecekse, rasgele olarak bir grup birey segilir (10 tane), bunlar bir torbaya konulur, bu
10 tane birey i¢inden en iyisi alinir ve 1. siraya konulur. Daha sonra ikinci bir 10 birey
secilir ve bunun en iyisi de 2. siraya konulur, bu islem bdyle devam eder. Olusturulacak
birey sayis1 kadar torba olur. Ancak torbadaki birey sayist degisebilir. Daha ¢ok
bireyden en iyisini se¢gmek en uygun olanidir. Turnuva se¢imi puan orantili bir segilme
olasilig1 kullanmaz, sadece o anda torbada bulunan en iyi birey segilir. Sekil 2.8 de, 10
bireylik bir topluluktaki bireylerin puanlari (bir en kiiciikleme probleminde) ve bu
bireyler arasindan ikili TS kullanilarak yapilan bir se¢me islemine iliskin 6rnek

verilmektedir.

Puan (1) =0.46
Puan (2) = 0.33
Puan (3) =0.91
Puan (4) = 0.72 —
Puan (5) =0.25
Puan (6) = 0.09
Puan (7) = 0.42-]
Puan (8) = 0.58
Puan (9) = 0.61
Puan (10)=0.05

Puan(4) =0.72
Puan(7) =0.42

En iyi birey
kazanir

Rasgele 2
birey seciliy

Puan(7) =0.42

Sekil 2.8. Ikili turnuva segimi 6rnegi (en kiiciikleme problemi)
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2.3.2.3. Caprazlama islevi

Caprazlama islevi, ebeveyn (eslesme) havuzundan segilen (se¢gme mekanizmasi
kullanilarak) bireylerden yeni bireyler (¢oziimler) iiretilmesi i¢in kullanilir. Literatiirde
bir ¢ok ¢aprazlama islevi onerilmistir, ancak hemen hemen tiim ¢aprazlama islevlerinde,
ebeveyn havuzundan rasgele secilen iki birey, ikili kodlar1 bir noktadan kesilerek
boliimlere ayrilir ve bu iki bireyin kodlar1 karsilikli olarak yer degistirilerek iki yeni
birey elde edilir. Caprazlama islemi tek noktadan, daha fazla noktadan, diizgiin (uniform)
veya karisik (shuffled) yapilabilir. Tek noktali ¢aprazlamada bireyler rasgele secilmis
bir noktadan ikiye ayrilir ve karsilikli ikili kodlar yer degistirilir. Bu tezde tek-noktali
caprazlama islemi kullanilmistir. Tek noktali ¢aprazlama islemine iligkin bir 6rnek

Sekil 2.9’ da verilmektedir.

Caprazlama Noktasi Caprazlama Noktas1

|

1. Ebeveyn : 110011010010

2. Ebeveyn : 010111010110

1. Cocuk 110011010110

2. Cocuk 010111010010

Sekil 2.9. Tek noktali ¢gaprazlama drnegi

Caprazlama islemi sonrasinda elde edilen bireylerin c¢aprazlamaya ugrayan
bireylerden daha iyi olmalar1 beklenmektedir, ancak bu her zaman miimkiin degildir.
Yani ebeveynlere kendilerinden daha iyi bireyler {iretebilme sans1 verilmektedir, ancak
bu her zaman miimkiin degildir. Eger kotii bireyler iiretilirse, bunlar zaten biiyiik
olasilikla bir sonraki GA adiminda eleneceklerdir. Eger c¢aprazlamaya ugrayacak
bireylerin ikili kodlar1 birbirine ¢ok benzerse, ¢aprazlamadan sonra elde edilen bireyler
de birbirine ¢ok benzeyecektir, bu da topluluktaki gesitliligi azaltacaktir. ikili kodlart
birbirinden farkli bireylerin caprazlamasi daha iyi sonuglar verebilir. Usta ve ark.,

birbirine benzemeyen ikili gdvdelere sahip ebeveyn bireylerin, birbirinden daha farkli
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(cesitlilik agisindan) bireyler olusturdugunu ve benzer olanlardan daha i1yi sonuglar
irettigini belirlemislerdir [Usta ve ark., 2008]. Cok amaghh durum s6z konusu
oldugunda, ayn1 Pareto cephesinde yer alan ve aralaridaki mesafe (Oklit mesafesi) en
biiyiik olan yani birbirine benzemeyen iki bireyden, ¢esitliligi daha yiiksek olan bireyler
elde edilmistir [Usta ve ark., 2008]. Eger caprazlamayla bireyler arasindaki benzerlik
degistirilemezse devreye mutasyon islevi girecektir. Eger caprazlama olasiligi p.=1
(%100) segilirse, bu muhtemelen tiim bireylerin ¢aprazlamaya ugrayacagin
gostermektedir. Caprazlama islevi birden ¢ok noktadan da uygulanabilir. Asagida ¢ok-

noktal1 bir ¢aprazlama 6rnegi verilmektedir.

Caprazlama Noktalari Caprazlama Noktalar1

Voo |

1. Ebeveyn @ 110011010011

2. Ebeveyn : 010111010110

1. Cocuk 110111010010

2. Cocuk 010011010111

-«
-«
-«

Sekil 2.10. Cok noktali caprazlama drnegi

2.3.2.4. Mutasyon Islevi

Mutasyon islevi de caprazlama islevi gibi genetik algoritmanin arama yoniinden
sorumludur. Bit-tabanli mutasyon ile, p,, mutasyon olasiligina bagh olarak bireyin ikili
kodundaki rasgele bir bit 0 ise 1, 1 ise 0 yapilir. Eger rasgele se¢ilmis say1, mutasyon
olasiligindan diisiik ise o takdirde mutasyon islemi uygulanir. Mutasyon islevi bir
toplulugun ¢esitliliginin saglanmasi igin gereklidir. Calismalar mutasyon olasiliginin
disiik segilmesi gerektigini gostermistir. Mutasyon olasiliginin yiiksek seg¢ilmesi
cesitliligi azaltmakta yani farkli bireylerin elde edilebilme olasiligin1 azaltmaktadir.
Genellikle mutasyon olasih@ 1/ikili dizi boyutu olarak segilir. Ornegin, 10 bit
uzunluklu 20 bireylik bir topluluk i¢in, mutasyon olasiligr 0.01 (%1) secilirse, bunun



anlami en azindan iki bitin mutasyona ugrayacagidir. Sekil 2.11° de mutasyon islevinin

nasil bir degisiklige yol actig1 gosterilmektedir.

Mutasyona Ugrayacak Bit Mutasyona Ugrayacak Bit

Mutasyondan
Sonra

0110111110101

Mo NN o ororrionod
nce

Sekil 2.11. Bit-tabanli mutasyon 6rnegi

Mutasyon iglevi ile toplulukta birbirinin ayni bireylerin olmasi engellenebilir.
Ayrica mutasyona ugratilan bireyden daha iyi puan degerine sahip bir birey elde
edilmesi de beklenmektedir. Literatiirde bircok mutasyon c¢esiti vardir. Bu tezde ise bit-
tabanli mutasyon islevi kullanilmistir. Ayrica, bireyler ikili kodlama yerine gercel
sayilarla da kodlanabilir ve gergcek sayilarla kodlanmis GA’ larda da bircok farkli

mutasyon islevi s6z konusudur (Deb, 2001).

2.3.2.5. Elitizm (Bellek) Mekanizmasi

Elit birey, bir toplulukta puani en iyi olan birey demektir. Elitizm ya da en iyi
birey/bireylerin saklanmasi ve bir sonraki topluluga eklenmesinin GA’ nin basarimini
onemli Olgiide etkiledigi goriilmistir [Zitzler, 1999a]. Ancak elitizmin dikkatli bir
bicimde uygulanmasi gerekir. Eger elitizm kontrollii bir bi¢imde uygulanmazsa
cesitlilik kayb1 s6z konusu olabilir. Tek amacli GA’ larda yalnizca bir tek en iyi birey
oldugu ic¢in elitizmin uygulanmasi kolaydir. Bu durumda elit birey saklandiktan sonra,
bir sonraki adimda ya en kotii bireyle yer degistirilmekte ya da basitge toplulugun en
sonundaki bireyle yer degistirilmektedir. Ancak cok amagli GA’ larda tek bir en iyi
birey yerine en iyi bireylerden olusan bir kiime s6z konusudur. Bu durumda elitizmin
uygulanmasi tek amacgli durumda oldugu gibi kolay ve tek bir bicimde degildir. CAGA’
larda elit bireyler arsiv veya ikincil topluluk denilen bir kiimede saklanmakta ve CAGA

yontemlerine gore farklilagan stratejilerle bir sonraki topluluga aktarilmaktadirlar.
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2.3.3. Tek Amach Genetik Algoritmalar

Tek amacl genetik algoritmalar tek amagli optimizasyon problemlerini kolaylikla
cozebilecek bir yapiya sahiptirler. Tek amacli genetik algoritmalarin dolayisiyla
GA’ larin nasil calistigini daha iyi anlatmak i¢in, bu bdliimde tek amacgli ancak iki
parametreli bir problem ayrintili olarak GA yardimiyla ¢oziilmektedir [Michalewicz,
1994; Gen ve ark., 1997]. Daha sonra bu problem cesitli GA parametreleri ile
calistirilarak ¢oziimler sunulmaktadir. Parametreler ikili say1 olarak kodlanmislardir.

Kisitlamasiz bir problem (Rastrigin islevi) analitik olarak asagidaki gibi verilmektedir:
min f(x1,x7) = (x? —10c0s(27 x1) +10) + (x5 —10cos(27 x7) +10)+5  (2.10)

Burada f amag islevinin minimumu (tek amac), genetik algoritma kullanilarak
bulunmak istenmektedir. f amac islevi iki parametreye baghdir (x; ve x;). Amag

islevinin grafigi Sekil 2.12” de gosterilmektedir.

——

''''''

f(x1,x2)

Sekil 2.12. Amag islevi 6rnegi (Rastrigin islevi)
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Sekle bakilirsa veya amag islevi analitik olarak ¢oziiliirse, bu islevin minimum
degerinin 5 oldugunu goriliir. Buna gore, tek amacli genetik algoritmanin bir adiminin

nasil oldugu asagida ayrintili bir sekilde verilmektedir.

2.3.3.1. Coziim Adaylarimin (Bireylerin) Gosterilimi

GA’ nin ilk asamasi karar degiskenlerinin ya da parametrelerin ikili say1 dizileri
seklinde kodlanmasidir (gergel say1 veya gray kodla da kodlama yapilabilir) [Eminoglu,
2003]. Eger bir x; parametresi i¢in istenilen kesinlik degeri biliniyorsa (6rnegin 1000), o

zaman gerekli bit sayis1 (m; olarak gosterelim) sdyle hesaplanabilir:
2" —1<(b; —a,)x10°<2" —1 (2.11)

Burada aj, b;; X; (x1,X2)’ lerin alt ve Ust sinirlaridir. Boylece 6 bitlik parametre
2°-1=63 araliga bolinmiis olur. ikili bir sayiy1 gercel saytya ¢evirmek i¢in asagidaki

islem yapilir (x; parametrelerdir):

) b,-a,
X, =a,+ondalik (x,)x > 1 (2.12)

Sinirlara gore temsil edilen bit sayis1 degismelidir. Siir biiyiikse daha fazla bit,
kiiciikse daha az bit parametrenin temsili i¢in kullanilir. Bu 6rnekte her parametre 6
bitlik ikili sayilar olarak kodlanmistir. Yalnizca iki parametre oldugu i¢in, bir bireyin

(ya da ¢oziim Onerisinin) boyutu toplam 12 bit olarak gosterilir:

|« 12 bit >|
v,=[0 1 0 1 0 1 0 1 1 0 0 0]

[e— (x1) 6bit —»| [«— (x2) 6 bit —>]|



35

x| ve X’ nin degerleri asagidaki gibidir:

Ikili Say1 Ondalik Say1
X, 0O 1 0 1 0 1 21
X, 0O 1.1 0 0 O 24

X1 ve X3’ nin gercek degerleri asagidaki gibi hesaplanir:

= —10421x9=C1D _ 53333 0424x102C1D _ h3g10 213
1 26_1 2 6 1

Bu hesaplamalar toplulugun geri kalan bireyleri i¢in de aynidir. Asagida basit bir

GA programinin yalnizca bir adimi (iterasyonu) gosterilmektedir.

Adim 1. Baslangi¢ toplulugu (10 bireyden olusan) asagidaki gibi rasgele olusturulur:

X1 X2
- > N | - R

vy =[0 1.0 1 0 1J0 1 I 0 0 0]
vp=[1 0 0 1 1 1}1 1 0 1 0 1]
v3y=[0 0 O 1 1 o1 I 1 0 0 1]
va=[0 1 1 0 1 1}1 0 O 1 0 0]
vs=[0 1 0 O 1 10 O0 1 1 1 1]
v=[1 0 1 0 1 130 0 O 1 1 1]
vy=[1 1 0 1 O Op1 O O 1 1 1]
w=[0 1 1 0 1 11 0 1 1 1 1]
vw=[0 0 0 0 O OfJ1 O0 1 1 0 0]
vip=[1 0 0 O0 O 111 O 1 1 1 0]
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Adim 2. Baslangi¢ toplulugundaki bireylerin ondalik degerleri hesaplanir:

vio = [x1>x21=121, 241 vop =[x, x21=[39, 53] v3p =[x, x21=[6, 57]
vao =[x, x2]1 =127, 36]  vso =[x, x2] =19, 151 veo=I[x1,x2]1=[43, 7]
v7o =[x1,x2]1=[52, 39]  wvgo =I[x1,x2]1=1[27, 47]  vgo=[x1,x2]1=[0, 44]
V100 = [x1,x2] =[33, 46]

Adim 3. Baslangi¢ toplulugundaki tiim parametrelerin gergek degerleri hesaplanir:

v1=[x1x2]=[-3.3333, -2.3810] va =[x1,x2]= [2.3810, 6.8254]
v3=[x1,x2] =[-8.0952, 8.0952] va=[x1,x2]= [-1.4286, 1.4286]
vs =[x1,x2] =[-3.9683, -5.2381] ve=lx1>x2]= [ 3.6508, -7.7778]
v7 =[x1,x2]=[6.5079, 2.3810] vg =[x1,x2]= [-1.4286, 4.9206]
vo =[x1,x2]=[-10.0000, 3.9683] vio=Ix1>x2]=[ 0.4762, 4.6032]

Adim 4. Tiim bireylerin amacg islevinde aldig1 degerler hesaplanir:

()= £(-3.3333, -23810)=49.1106  f(vp) = f(2.3810, 6.8254)=75.0234
f(v3) = f(-8.0952, 8.0952)=134.541  f(v,)=[f(-1.4286, 1.4286)=42.1010
F(vs)= f(-3.9683, -5.2381)=52.6357  f(ve)=f(3.6508, -7.7778)=97.9231
F(v7) = £(6.5079, 2.3810)=85.3403  f(yg) = f(-1.4286, 4.9206)= 46.4809
f(vo) = f(-10.000, 3.9683)=115.9453  f(v o) =f( 0.4762, 4.6032)=59.2756

Asil amag; f(xq,xp) > nin minimumunu ve rasgele olusturulan baslangic

toplulugunun en iyi ¢dziimiinii ( f(v4)=42.1010 ) bulmaktir. Ikinci asama ise,

bireylerin puanlariin bulunmasidir.
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Adwm 5. Bireylerin Puanlarinin Hesaplanmasi

Amag islevinin degeri puan degerine donistirtilir. f(v;)” nin en kiigiik degeri
tim topluluk i¢in en iyi ¢oziimdiir. Aslinda, f(v;) asagidaki gibi bir en biiyiikleme

problemine doniistiiriilebilir (Bdylece en yiliksek puana sahip birey bulunabilir ve
bireyler en iyiden en kotiiye dogru siralanabilir, en iyi bireyin puani yiiksek, en koti

bireyin puani ise diisiik olacaktir):

K1

fG))

Puan _j= + K> (2.14)

Burada K; =10 ve K, =0.1 se¢ilmistir. K, sifira bolme hatalarindan kurtulmak

icin kullanilmistir. Puan _j (her bir bireyin puani) asagidaki gibi hesaplanir:

(j=1-10)

Puan 1 =0.2032 Puan 6 =0.1020
Puan 2 =0.1331 Puan 7 =0.1170
Puan 3 =0.0743 Puan 8 =0.2147
Puan_4 =0.2370 Puan 9 =0.0862
Puan 5 =0.1896 Puan 10=0.1684

Adim 6. Puanlarin Normalize Edilmesi

Mutlak puan degerlerindense ( Puan j ) normalize puan degerlerinin
(Puan _j n) kullanilmasi daha uygun olur. Normalize puan degerleri asagidaki gibi

hesaplanir:

Puan _j
En_Yiiksek Puan _j

Puan j n= (2.15)

Burada En Yiiksek Puan_j , Puan_j ( j=1---10) ‘nin en yiiksek degeridir.

Buna gore bu 6rnege iligkin normalize puanlar soyledir:



38

Puan 1 n =0.8576 Puan 6 n =0.4305
Puan 2 n =0.5618 Puan 7 n =0.4939
Puan 3 n =0.3134 Puan 8 n =0.9060
Puan_4 n =1.0000 Puan 9 n =0.3637
Puan 5 n =0.8002 Puan 10 n=0.7107

Acikca goriilmektedir ki, v4 bireyi en gii¢lii, vy bireyi ise en zayif bireydir.
Bireylerin normalize puan degerleri onlarin ebeveyn olarak secilebilme sanslariyla
dogrudan iligkilidir (Bu, rulet carki benzeri bir oransal se¢im mekanizmasi kullanildigi
stirece gecerlidir). Bir bireyin bagil olasiligi (ebeveyn olarak segilmek icin) diger

bireylerlerle karsilastirilir, toplam puan degeri burada hayati bir 6l¢lim saglar.

Adim 7. Puanlarin Toplami
Puanlarin toplami1 asagidaki gibi hesaplanir:

10
Toplam_puan = ZPuan_j_n =6.4378 (2.16)
j=1

Adim 8. Her Bir Bireyin Secilme Olasiligt ve Toplam (kiimiilatif) Olasilig1

Her bir v, (=I....,10) bireyi i¢in se¢ilme olasthgi p; asagidaki formille

hesaplanir:

Puan j n

= 2.17
PiTT, oplam _Puan @17)
Buna gore birey puanlari soyle olur:
p;=0.1332 p,=0.0873 p,=0.0487  p,=0.1553 ps=0.1243

pe=0.0669 p,=0.0767 py=0.1407  p,=0.0565  p,=0.1104
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Her bir birey v; (=1....,10) i¢in, kiimilatif (toplanarak artan) olasiliklar

J
q;= z p; sOyledir:

g,=0.1332  ¢,=02205  ¢,=02692 ¢,=04245  ¢,=0.5488
g,=0.6157  ¢,=06924 ¢,=08331  ¢,=0889%6 ¢, =1

Kiimiilatif (toplanarak artan) olasiligin kullanilma nedeni; olasiliklar toplami 1
oldugu i¢in buna doniisiim yapilmasi gerekliligidir. Yani en biiyiik olasilik degeri 1 olur.
Se¢me mekanizmasindaki ¢arktaki dilim ne kadar biiyiik olursa, {iretilen rasgele saymin
bu dilime diisme olasilig1 daha yiiksek olacaktir. Boylece secilme olasilifi da yliksek

olacaktir.
Adim 9. Se¢cme Mekanizmast Olarak Rulet Carki Yontemi

Rulet carki 10 kez dondiiriiliir (10 birey oldugu icin) ve her seferinde yeni
topluluk i¢in (ebeveyn toplulugu) tek bir birey secilir. Rasgele 10 say1 dizisi, [O0,...,1]
araliginda Cizelge 2.1° deki gibi olusturulsun. Ilk rasgele say1 7, =0.7413, ¢,  den

biiytik, g’ den kiiciiktiir, bunun anlami vg kromozomu yeni topluluk i¢in secilmistir

demektir. lkinci rasgele sayr r, =0.0596 , ¢; ° den Kkiiciiktiir, bunun anlami v,

kromozomunun yeni topluluk i¢in segilecegidir ve bu boyle devam eder. Cizelge 2.1,
yeni topluluk i¢in segilen bireyleri gostermektedir.

Cark N (birey sayist ya da topluluk boyutu) defa dondiiriiliirken, 1. doniisten
sonra 2., sonra 3. seklinde doniis yapilir. Bu yontemin dezavantaji, ayni bireyi N defa
secme olasilig1 olmasidir. Bu da, ¢aprazlamaya ayni bireylerin girmesine, dolayisiyla da
aynmi bireylerin yeniden olusturulmasina neden olacaktir ve toplulugun cesitliligi
azalacaktir. Cesitliligin miimkiin oldugu kadar fazla olmasi gerekir. Ciinkii bu
saglanmazsa, arama yerel en iyilere takilacaktir, GA’ nin istenilen sonucu (kiiresel en

lyiyi) bulmasi miimkiin olmayacaktir.
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Cizelge 2.1. Rasgele sayilar ve segilen bireyler

Rasgele Say1 | Secilen Birey | Secilme Nedeni

r=0.7413 Vg q;<ri<gy
r, =0.0596 Vi r2<q,
r, =0.4673 Vs q4,<r3<(gs
r, =0.1363 V2 q9,<rs<q,
r; =0.9340 Vio q49<rs<d
r, =0.6286 V7 qs<re¢<4q;
r, =0.4983 Vs q4,<r7<(s
1, =0.5760 Ve qds<rs<ds
ry =0.9933 V1o 4o <r9<4q
1, =0.0542 Vi rio <4,

Adim10. Yeni toplulugun (veya ebeveyn toplulugunun) gosterilimi

=0 1 1 0 1 1 1 0 1 1 1 1](v)
w=[0 1 0 1 0 1 0 1 1 0 0 0](y)
=0 1 0 0 1 1 0 0 1 1 1 1](vs)
wa=[l 0 0 1 1 1 1 1 0 1 0 1](v)
vs=[1 0 0 0 0 1 1 0 1 1 1 0](vy)
ve=[l 1 0 1 0 0 1 0 0 1 1 1](v)
vi=[0 1 0 0 1 1 0 0 1 1 1 1](vs)
ve=[l 0 1 0 1 1 0 0 0 1 1 1](v)
vo=[1 0 0 0 0 1 1 0 1 1 1 0](vp)

vio=[0 1 0 1 0 1 0 1 1 0 0 0](y)

Yukaridan da goriilecegi iizere en giiglii birey (v4) rulet ¢arki mekanizmasiyla

se¢ilmemistir ve olusan yeni toplulukta 1., S. ve 10. bireylerden ikiser kez {iretilmistir.

Bu yiizden, bu topluluktan iiretilen bireyler de ayni olacaktir. Bu nedenle genetik
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islevlere basvurulur, boylece cesitlilik saglanir. En giiclii bireyin secilmemesi ise,
elitizmin (en giicli bireyin saklanmasi) gerekliliginin agiklanmasi i¢in ¢ok yararl

olacaktir.

Adim 11. Caprazlama Islevi

Simdi, ebeveyn toplulugundaki bireyler i¢in c¢aprazlama islevi uygulanabilir.

Caprazlama olasiifi  p. =1 segilsin, dolayisiyla topluluktaki tiim bireylerin

caprazlamaya ugrayacagii beklenmektedir. Caprazlama katsayis1 1 secilmez ise,
ornegin 0.8, 8 birey caprazlamaya girecek, toplulugun tamami icin geriye kalan 2
bireyin saklanmasi ve islem sokulmasi gerekecektir. Burada degisik bir ¢aprazlama
yontemi benimsenmistir. Rasgele sayilar ( » ) [0,...,1] aralifinda olusturulmus ve

caprazlama olasihig1 ( p.) ile karsilastirilmistir. Rasgele sayilarin olusturulmasi ve
karsilastirilmasi bireylerin yarisi igin tekrarlanmistir. Eger » < p. memnun edici ise, o

zaman ii¢ rasgele pozitif tamsay1 olusturulur. Ilk ikisi, ebeveyn kromozomlarini belirler
ve sonuncu rasgele tamsay1 ise ¢aprazlama noktasini gosterir. Her ebeveyn, kendi ikili
bicimini koruyarak iki ¢ocuk / birey olusturabilir.

Caprazlama sadece iki birey arasinda degil, daha fazla birey arasinda da olabilir.
Ayrica caprazlama birka¢c noktadan da yapilabilir. Burada tek noktali ¢aprazlama

kullanilmastir.

Cizelge 2.2. Ebeveyn bireyler, caprazlama noktas1 ve ¢ocuk bireyler

1. Ebeveyn | 2.Ebeveyn | Caprazlama Noktas1 | Cocuklar

3 (v3) 7 (v7) 8. bitten sonra Vi VE v,
8 (vs) 3(v3) 2. bitten sonra Vs VE vy
7 (vy) 8 (vg) 6. bitten sonra Vs VE v
2(v2) 8 (vs) 5. bitten sonra Vs VE vy

5(vs) 5(ys) 7. bitten sonra Vo V€ V1o
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Ikinci ebeveyn cifti vg' ve v3' ‘diir ve gaprazlama noktast 2. bitten sonradir.
Cocuklar ¢aprazlama sonucu elde edilir (v3"" ve v4'"). Ik gocuk (v3"), ilk iki bitini

ikinci ebeveynden (v3'), diger bitlerini ise ilk ebeveynden (vg') alir.

Caprazlama Noktasi
(2. bit)

vg=[l 0

|
w=0[1/0 0 1 1 0 0 1 1 1 1]
|

va=[I 010 0 1 1 0 0 1 1 1 1]

Benzer olarak ikinci ¢ocuk ta (v4'"), ilk iki bitini birinci ebeveynden (vg'), diger
bitlerini ise ikinci ebeveynden (v3') alir. Benzer olarak, ¢ocuklarin geri kalam da

olusturulur ve toplulugun su andaki bigimi (¢ocuk toplulugu) soyle olur :

wvi=[0 1 1 0 I I 0 0 0 1 1 I
wa=[I 0 0 0 1 1 0 0 1 1 1 1]

vs=[1 0 1 0 1 1 0 0 1 1 1 1]
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ve=[0 1 0 1 0 1 0 0 0 1 1 1]
vo=[1 0 0 0 0 1 1 0 1 1 1 0]

vio=[1 0 0 0 0 1 1 0 1 1 1 0]

Caprazlama olasilifi 1 olmasina ragmen (yani tiim bireyler caprazlamaya
ugramasina ragmen), hala ¢ocuk toplulugundaki bazi bireyler (1. ile 2. ve 9. ile 10.
bireyler) ayni bitleri tasimakta ve ebeveyn toplulugundan degisiklik olmadan
gelmektedir. Bu nedenle, mutasyon islevinin uygulanmasi gerekmektedir. Bir sonraki

asama, mutasyon islevinin toplulugu nasil degistirecegini gostermektedir.
Adim 12. Mutasyon Islevi

Cesitliligin fazla olmasi istendiginden, caprazlamadan sonra mutasyon islevi
kullanilir. Mutasyon orani diistik se¢ilir ( drnegin %1 gibi). Her adim sonucunda amaca
ne kadar yaklasildigina bakilmasi gerekir. Caprazlama ve mutasyon, daha iyi bir ¢6ziim
elde edilecegini garanti etmez. Mutasyon islevi, bit bit degisim temeline dayanir.
Mutasyon, mutasyon oranina esit bir olasilikla, bir veya daha fazla geni (biti) degistirir.
Cocuk toplulugundaki ikinci bireyin ( v,'") 11. geninin (bitinin) mutasyon i¢in
secildigini varsayalim. Eger gen 1 ise 0 olacaktir. Béylece, mutasyondan 6nce ve sonra

birey sOyle olacaktir:

w=[0 1 0 0 I 1 0 0 1 1\% 1] (mutasyondan énce)

w=[0 1 0 0 1 1 0 0 1 1 0 1] (mutasyondan sonra)

Mutasyon olasiligt p,, =0.1 (bu kasten boyle yiiksek bir deger secilmistir) ise,

buradan bitlerin %10’ unun mutasyona ugrayabilecegi anlasilmaktadir. Cocuk
toplulugunda 120 bit vardir (12 bit x 10 birey, bu ylizden topluluk basma 12 bitin
mutasyona ugrayacagl beklenmektedir). Her bit mutasyona ugramak icin ayni sansa

sahiptir. Bu yiizden [0,..,1] araliginda degisecek bir rasgele sayilar dizisi r; (=1,...,120)

olusturulmasi gerekmektedir. Kag bit varsa o kadar rasgele say1 iiretilir. Eger mutasyon
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olasilif1 j. rasgele sayidan daha biiyiikse ( p,, >r;), j. bit mutasyona ugrayacaktir.

Cocuk toplulugunun mutasyona ugramis bi¢imi asagidaki gibidir:

vi=[0 1 0 0 1 1 0 0 1 1 1 1]
vp=[0 1 0 0 1 1 0 0 1 1 0 1]
=0 1 1 0 1 1 1 0 0 1 1 1]
wa=[l 0 0 0 1 1 0 0 1 1 1 0
vs=[1 0 1 0 1 1 0 1 1 0 1 0
w=[0 1 0 1 1 1 0 0 0 1 1 0
vi=[1 0 1 1 1 1 1 1 1 0 0 0
ve=[0 1 0 1 0 0 0 0 0 1 0 O

vo=[l 0 0 0 O 1 1 0 0 1 1 0]

e
[
e
(e
—
—
[S5Y
—
—
—

vip=[1 1]

Koyu renk bitler mutasyona ugramistir. 120 bitten 14 tanesi mutasyona ugramstir.
Bu %10 olarak beklenen mutasyondan fazladir. Toplam 10 bireyden 9 tanesi mutasyona
ugramistir. Bazi1 bireylerde yalnizca bir bit, bazilarinda ise iki veya ii¢ bit mutasyona
ugramistir. Dikkat edilirse toplulugun mutasyona ugramis bigciminde ayni bireylerin

artik olmadig1 kolayca anlasilir. Her birey digerinden farkhidir, bdylece c¢esitlilik

saglanmistir.

Adim 13. Elitizm veya Bellek Mekanizmasi (En Iyi Bireyin Saklanmast)

Rasgele olusturulan birinci topluluktaki en gii¢lii bireyin (v4), ebeveyn olarak

secilmedigi goriilmektedir. Bu, biiyiik olasilikla, rulet ¢arki segme mekanizmasinin
olasilik tabanli 6rnekleme hatasina baglidir. Diger bir deyisle, buradaki segme
algoritmasi, tiim durumlarda en gii¢lii bireyin ebeveyn olarak seg¢ilmesini garanti
etmemektedir. Bir ebeveyn olarak se¢ilse bile, onun ¢ocugunun kendisinden daha giiclii

olacagmin garantisi yoktur. Bu yiizden, topluluktaki her en iyi bireyi ayr1 bir yerde
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saklamak gereklidir. Bellek olmasi, en iyilerin saklanmasi i¢indir. Genetik algoritmalar
belleksizdir, bu yiizden bellek eklenmesi gerekir. Elitizmin, GA’ nin basarimina etkisi

cok yiiksektir ve bu yiizden GA’ nin dogal bir parcasi olmast gerekir. ik topluluktaki

en gii¢lii birey (v, ), basitce mutasyona ugramis topluluktaki sonuncu bireyle (vivo) yer

degistirilir. Aslinda bunun en koétii bireyle yer degistirilmesi daha iyi olur ancak bu

algoritmaya ekstra bir ylik getirmektedir. Toplulugun simdiki durumu sdyledir:

vi=[00 1.0 0 1 1 0 0 1 1 1 1]
wv=[0 1 0 0 1 1 0 0 1 1 0 1]
v=[0 1 1 0 1 1 1 0 0 1 1 1]
wa=[l 0 0 0 1 1 0 0 1 1 1 0]
vi=[1 0 1 0 1 1 0 1 1 0 1 0]
ve=[0 1 0 1 1 1 0 0 0 1 1 0]
vi=[l 0 1 1 1 1 1 1 1 0 0 0
v=[0 1 0 1 0 0 0 0 0 1 0 0
vo=[1 0 0 0 0 1 1 0 0 1 1 0

vio=[0 1 1 0 1 1 1 0 0 1 0 0](vy)
Ustteki topluluk dekodlanir ve her bireyin gercek degeri asagidaki gibi hesaplanir:

f(v'l') =f(-3.9683, -5.2381) = 52.6357 f(v'i) =f(-3.9683, -5.8730) = 53.4553
f(v3) =f(-1.4286, 2.3810) = 44.0500 f(vy) =f(1.1111, -5.5556) = 53.8352
f(vg) =/f(3.6508, -1.7460) = 42.4637 f(v%) =f(-2.6984, -8.0952) = 87.7368
f(v%) =1(4.9206, 7.7778) = 94.1878 f(v'é) =/(-3.6508, -8.7302) = 116.6248

F(v9) =f(0.4762, 2.0635) = 25.1583 F(vio) =f(-1.4286, 1.4286) = 42.1010
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Hedef, f(x,xp) islevinin minimumunu bulmaktir. Yeni en giiglii birey (v; ), ilk

elit (en iyi) bireyden (v4 = vi'o) daha iyidir. Bu toplulugun en zayif bireyi de (vg ), ilk
topluluktaki en zayif bireyden (v3) daha iyidir.

Burada genetik algoritmanin bir adim1 tamamlanmistir. Girilen adim sayisina
gore program adimlari c¢alistirilacak ve yeni topluluklar elde edilecektir. Her bir
adimdan sonra daha iyi bireyler elde edildigi i¢in belli bir adim (nesil) sayis1 veya
sonlandirma kriterine gore istenilen sonuca ulasilacaktir.

Asagida birkag adet Ornekle tek amacli genetik algoritmanin basarimi

incelenmektedir.
Ornek-1: GA parametreleri soyle secilmistir; (elitizm var, SUS segme mekanizmas)

Birey Sayis1 : 20
Toplam Bit Sayis1 10
Caprazlama Olasilig1 : 1
Mutasyon Olasiligr  : 0.1
Adim (Nesil) Sayist : 100

I | | 1 | I | I
21 )| M 51 81 71 81 91 100
ADIM SAYISI

Sekil 2.13. Tek amagh GA uygulamasi (Ornek-1)
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Goriilecegi tlizere GA, 11. adimdan sonra 7.2824 degerine takilmis ve sonucu
bulamamistir. Bunun nedeni ¢oziiniirliik yani bit sayisinin az se¢ilmesidir. Eger bu
deger artirilirsa GA’ nin ¢oziime daha ¢abuk ve kesin olarak yaklasacagi

beklenmektedir.

Ornek-2: Bu 6rnek icin GA parametreleri sdyle secilmistir; (elitizm var, SUS segme

mekanizmasi)

Birey Sayisi :20
Toplam Bit Sayis1  : 20
Caprazlama Olasilig1 : 1
Mutasyon Olasiligr  : 0.1
Adim (Nesil) Sayist : 100

Bu 6rnekte GA, 21. adimda en kiigiik sonuca ulasmistir. Burada elde edilen sonug
5.0379° dur. Toplulukta yer alan bireylerin sayis1 veya bit sayis1 artirildiginda, GA’ nin
¢Oziime daha da ¢abuk yaklastig1 goriilmektedir. Bu degerler ¢ok artirilirsa GA’ nin

calisma siiresi de onemli dl¢iide artacaktir.

ORNEK-2
25 T T T T

fix1,x2)

0 I I i i ] | I i i
1 1 21 AN M 51 81 71 81 91 100
ADIM SAYISI

Sekil 2.14. Tek amacli GA uygulamast (Ornek-2)
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Ornek-3: Bu 6rnek icin GA parametreleri sdyle secilmistir; (elitizm var, SUS segme

mekanizmasi)

Birey Sayisi : 100

Toplam Bit Sayis1 : 30

Caprazlama Olasilig1 1

Mutasyon Olasilig :0.1

Adim (Nesil) Sayist : 100

ORNEK-3

14 . :

13 -
12 H -
M -
10 a
9 . —

o 8 | N
L |
5 -
4+ -
3 |
2F .
1+ o
01 1‘1 2|1 3‘1 4‘1 5‘1 6‘1 7‘1 8‘1 9‘1 100
ADIM SAYISI

Sekil 2.15. Tek amacli GA uygulamasi (Ornek-3)

Sekil 2.15° den goriilecegi iizere, GA 38. adimda sonuca ulagmistir. Bu durumda
GA tarafindan elde edilen en kii¢lik sonug 5.0000369° tur. GA, bu 6rneklerde belirli bir
adima gore sonlandirilmistir. Sonlandirma igin istenilen en kiigiik yaklasim (hata) da

kullanilabilir.

Ornek-4: Bu 6rnek i¢in GA parametreleri soyle secilmistir; (elitizm yok, SUS se¢gme

mekanizmasi)

Birey Sayis1 : 100
Toplam Bit Sayis1 130
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Caprazlama Olasilig1 o1
Mutasyon Olasiligi 0.1
Adim (Nesil) Sayist 2100

ORNEK-4

O =2 NGO~ ®OWLOo

ADIM SAYISI

Sekil 2.16. Tek amacli GA uygulamasi (Ornek-4)

Genetik algoritmalarda elitizm mekanizmasi ¢ok Onemlidir, ¢iinkii her adimda
bulunan elit bireyin saklanmasi ve bir sonraki adima (topluluga) aktarilmasi GA’ nin
basarimint etkilemektedir. Yukaridaki Ornekte, elitizm yoktur ve en iyi birey
saklanmadig1 i¢in istenilen sonuca ulasilsa bile bu sonu¢ bir diger adimda

kaybedilmektedir.

Ornek-5: GA esasen kilavuzlanmus bir rasgele sayi iiretme teknigidir. GA’ nin rasgele
say1 iretmeden farkini gostermek icin, rasgele sayr tiretimi ile ilgili bir program

yazilmig ve bu program asagidaki parametrelerle ¢alistirilmistir.

Birey Sayis1 : 20
Toplam Bit Sayis1 : 50
Adim Sayis1 : 10000
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ORNEK-S
T

ey
E-N

J e . =

® W O = N W
L T
R R

f(x1,%2)

0 =2 N W =B o o~
T
|

i I i i i i I i i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ADIM SAYISI

Sekil 2.17. Rasgele say1 iiretme (Ornek-5)

Sekilden de goriilecegi iizere rasgele sayr liretme algoritmasi yaklasik 4800.
adimda 5.07709 sonucuna ancak ulasabilmistir. Rasgele say1 {iiretimi ile yapilan
optimizasyonda ancak cok ileri adimlarda sonuca ulasilabilmektedir. Bu da GA’ nin
rasgele say1 iiretmeden farkin1 gostermektedir. GA esasen kilavuzlanmis bir rasgele say1
tiretme teknigidir. GA, sonuca rasgele sayi1 liretiminden daha kisa siirede ve daha iyi

yaklagmaktadir.

2.3.4. Cok Modluluk ve Cesitlilik Artiric1 Yontemler

Birbiriyle ayni olan bireylerin liretilmesi GA’ nin sonuca ulasmasini1 engeller.
Bunun i¢cin GA’ larda cesitliligin fazla olmasi1 gerekmektedir. Cesitlilik fazla olmazsa
GA yerel en iyilere takilacak ve kiiresel ya da genel en iyiyi bulamayacaktir. Cok modlu
islevlerde genel bir en iyinin yaninda birden ¢ok yerel en iyi degeri de bulunmaktadir.
Cok modluluk, GA’ nin gesitliligini test etmekte kullanilir. Normalde GA, bu yerel en
tyilere takilarak kiiresel en iyiyi bulamayabilir. Yani sonuglar yerel en iyiler civarinda
toplanabilir. Bu durum genetik siiriklenme olarak adlandirilir. Bu yiizden GA’ da
cesitliligi artirict yontemlere basvurulmast gerekmektedir. Asagida ¢esitlilik artirici bazi

yontemler a¢iklanmakta ve bunlara iliskin uygulama 6rnekleri verilmektedir.
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2.3.4.1. Paylasim (Sharing) Yontemi

Paylasim yonteminde, bir bireyin puami eger etrafinda benzer komsu bireyler
varsa, cezalandirilir (yani azaltilir veya artirilir) [Goldberg ve Richardson, 1987]. Bu
ylizden, kalabalik bir bolgede yer alan bir birey, en yiiksek cezay: alacaktir ve daha az
birey olusturacaktir. Yani, kalabalik yerde olan bireyin puani (amag islevinde aldig:
deger) yaricapa (niche) bagli olarak azaltilacaktir. Paylasim yontemi, toplulugun

yogunluguna bakarak, arama bolgesini degistirir. Tipik olarak, bir i bireyinin f;
paylagilmig puani, onun ilk puani f,’ nin yarigap sayisina bolimiyle bulunur. Bir

bireyin yarigap sayisi, onun topluluktaki diger bireyler arasindaki (kendisi de dahil)

paylasim iglevi degerlerinin toplamina esittir.

_ /i
fo =% (2.18)
Y. sh(d(i, j))

J

Burada N topluluk boyutunu gésterir. d(i, j) i. ve j. bireyler arasindaki Oklit

mesafesidir ve amag uzayinda soyle hesaplanir (m: amag sayisidir):

n( £ g0 2
d(l, )= | 2| ey (2.19)

=\ S Sk

% ve f;M sirastyla k. amag igin en biiyiik ve en kiigiik islev degerleridir.

Paylagim islevi, iki birey arasindaki benzerlik seviyesini Olger. Elemanlar aym ise 1

olarak doner, eger mesafeleri d(i, j) farklilik esiginden yiiksekse 0 olarak doner, orta

degerler ise farkliligin orta seviyelerindedir. Yaygin bir paylasim islevi asagidaki gibidir:

d o
sh(d) = l—() , eger d<gy, (2.20)

O s

sh(d) = {O, diger durumlarda,
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Burada farkliligin esigi o, gibi bir sabittir ve o ise paylasim islevini bi¢imini
degistiren bir sabittir (genelde 1 segilir). Bu hesaplamalara gore, kalabalik bir bolgede
yer alan bir bireyin puan1 azaltilarak baska bir bolgeye kaymasi saglanir. Cok modlu bir
islev ve bu isleve paylasim yontemi uygulanmasiyla elde edilen sonuglar Sekil 2.18” de

gosterilmektedir.

REF fanksiyonu adim sayisi:1 REF fanksiyanu adim sayisi 10

e .18. Yedi adet islevi ile olusturulan ¢ok modlu bir amag islevinin
Sekil 2.18. Yedi adet RBF islevi ile ol 1 k modlu bi islevini
paylasim yontemi ile en iyi degerinin bulunmasi

2.3.4.2. Ayiklama (Clearing) Yontemi

Ayiklama yontemi, paylasim yonteminin dogal bir uzantisidir (Petrowski, 1996).
Cezalandirma yoktur ve bireylerden biri saklanip, digerleri yok edilmektedir. Yani,
yarigap igerisindeki bireylerden en iyileri tutulur, digerlerini ise ortadan kaldirilir.
Boylece yarigap, secilen bireyler tarafindan temsil edilir. Burada, toplam birey sayisi

degismemektedir, bunu saglamak i¢in c¢ikan bireylerin yerine yeni bireyler eklenir.
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Amag; bireyleri diizgiin olarak dagitmaktir. Paylasim ydnteminde oldugu gibi,
ayiklama yontemi de bireylerin puami bulunduktan sonra ve seg¢me islemi
uygulanmadan once uygulanir. En basit ayiklama yontemi, ayni alt topluluktaki diger
tim bireylerin puani sifirlanirken, en iyi bireyin(lerin) puanini saklamaktir. Puan
paylasiminda oldugu gibi, tek bir alt topluluktaki tiim bireylere kaynaklari paylastirmak
yerine, ayiklama yontemi alt topluluktaki yalnizca en iyi bireylere dagitim yapar.
Pratikte, bir yaricapin k kapasitesi, yaricapin kabul edebilecegi en yiiksek eleman
sayisint belirler. Ayiklama yontemi, yarigapin ve yaricap kapasitesinin en dogru
hesaplanmasini saglayan en iyi yontemdir. Bununla birlikte, ayiklama ve paylagim
yontemlerinin her ikisi de ¢ok iyi tahmin edilmesi gereken bir yarigap bilgisi kullanirlar.
Her alt topluluk baskin bir bireye sahiptir ve yarigap, en yakin iki baskin birey
arasindaki mesafenin yarisindan daha kii¢iik olmalidir. Aksi takdirde, bir tepe kurali igin
(k=1 i¢in) bir birey atilir ve baskin bir birey i¢in birkag tepeli gosterim yetersiz olacaktir.
2-boyutlu bir problemde yaricapin belirlenmesi nispeten kolaydir, ancak boyutlar
arttiginda bu yarigapin belirlenmesi bir sorun teskil edecektir. Bu parametre disaridan
girilmesi gereken bir parametredir.

Sunu belirtmek gerekir ki, her birey i¢in ayr1 ayr1 yarigap belirlenir ve her bireyin
merkezde oldugu bir ¢cember vardir ve bu islem her bir birey icin yalmizca bir kez
yapilmaktadir. Bu iglemler birinci puanlamadan sonra (amag islevine yerlestirme
isleminden sonra) yapilir. Daha sonra bu yontemlere gore ikinci bir puanlama yapilir.
Yarigapin belirlenmesinde alan daraltilarak siiphelerin ortadan kaldirilmasi gerekir. Tabi
ki bunun i¢in Oncelikle ilk yaricap tahmininin yapilmasi: gerekir. Bunun GA’ ya
getirdigi dezavantaj ise ikincil puanlamadan dolay1 bir islem yiikiidiir. Burada goz
onlinde bulundurulmasi gereken diger bir husus ta, elitizm mekanizmasinin
degistirilmesi gerekliligidir. Ciinkii yarigcap kiictildiikge elit birey sayis1 da artacaktir. O
ylizden yarigapin ¢ok iyi belirlenmesi gerekir. Bu arada, GA’ nin da yerel en iyilere
takilmamas1 gerekir. Cok modlu bir islev ve bu isleve ayiklama yontemi

uygulanmasiyla elde edilen sonuclar Sekil 2.19” da gdsterilmektedir.
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REF fanksiyanu adim sayisi] REF fanksiyanu adim sayisi:10

Foy)

Fix.y)

Sekil 2.19. Yedi adet RBF islevi ile olusturulan ¢ok modlu bir amag islevinin
ayiklama yontemi ile en iyi degerinin bulunmasi

2.3.4.3. Eslesme Sinirlamasi (Mating Restriction)

Ilk olarak Goldberg tarafindan tek amacli optimizasyon problemlerinde kotii
bireylerin azaltilmasi veya Onlenmesi amaciyla kullanilmistir [Goldberg, 1989].
Eslesme kisitlamasi, GA’ nin basariminin artirilmasit amaciyla birey c¢iftlerinin
caprazlama islemi i¢in nasil secilecegini belirler. Goldberg eslesme kriteri olarak,
yapisal (genotip) benzerlik kullanan bir 6rnek vermistir. Deb ve Goldberg ise fenotip
mesafesini kullanan bir eslesme kisitlamas1 6nermislerdir [Deb ve Goldberg, 1989b].
Burada, iki birey ancak birbirlerine ¢ok benziyorlarsa ¢aprazlamaya gonderilmektedir
(Hesaplanan bir Gegiesme Olgiitlinden daha az mesafeye sahip bireyler birbirine ¢ok benzer
kabul edilmistir). Boylece birbirinden farkli bireylerin iiretilmesi amaglanmaktadir.
Bircok CAGA yonteminde eslesme kisitlamasi daha az istenilen bireylerin (6rnegin
Pareto olmayan bireylerin) azaltilmasi i¢in kullanilmaktadir. Eslesme kisitlamasi,

literatiirde farkli bicimlerde uygulanmustir. Ornegin, Lis ve Eiben yalnizca birbirinden
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farkli kodlara sahip bireylerin eslesmesine izin vermislerdir [Lis ve Eiben, 1996]. Bazi
arastirmacilar Gegesme = O olarak kullanmislardir, ancak bunun neden boyle segildigine
dair bir bilgi literatiirde bulunmamaktadir [Coello Coello ve ark., 2007]. Buradaki
onemli bir durum da, Gegesme katsayisinin tahmin edilmesi gerektigidir. Zitzler ve Thiele
ise farkll oegesme degerlerini kendi olusturduklar: test islevlerinde kullanmislar ancak,
eslesme kisitlamasi olmayan duruma gore herhangi bir iyilesme gormemislerdir [Zitzler

ve Thiele, 1998].

2.3.5. Cok Amach Genetik Algoritmalar (CAGA)

Miihendislik problemleri optimizasyona gereksinim duyar ve genelde c¢ok
amaglidir. Bu ¢ok amacli problemlerin ¢oziilmesi tek amagli duruma gore zordur. Bu
nedenle CAGA’ nin birgok bileseni vardir. Asagida bu bilesenler genel olarak
aciklanmaktadir. Ayrica CAGA’ larin uygulama alanlarina iliskin bazi Ornekler

verilmektedir.

2.3.5.1. Optimizasyon Parametreleri veya Karar Degiskenleri

Parametre veya karar vektorii x agagidaki gibi verilir:

x=[x1, %5 xy 1F (2.21)

Bu T tranpozu ifade etmekte, N ise parametre sayisini gdstermektedir. Her birey
bu parametrelerin birlesiminden olusmaktadir. Parametrelerin alt ve iist sinirlar
kullanic1 tarafindan ¢ok iyi belirlenmelidir. Eger parametre sinirlari yanlis segilirse
arama uzayi genisleyebilir ve arama islemi uzun siirebilir, ya da istenilen en iyi

¢Oziim/¢oziimlere ulagilamayabilir.
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2.3.5.2. Amagc Islevi

Hem dogrusal hem de dogrusal olmayan ¢ok amacgli optimizasyon problemleri

icin m amacl bir amag islevi soyle verilir:

F(x) =[A1(0), f2(X) e frn (0] (2.22)

Her amag islevi ya en kiigiiklenecek ya da en biiyliklenecektir. Karar ya da
parametre uzayma ek olarak, ¢ok amach uzayda bir de amag¢ uzayir s6z konusudur.
Parametre uzayindaki her x degerine karsilik, ama¢ uzayinda bir nokta bulunur ve bu
nokta f(x)=z olarak gosterilir. Sekil 2.20, her iki uzay1 ve bunlar arasindaki haritalamay1

gostermektedir.

Parametre Uzayt Amag Uzayr

Sekil 2.20. Parametre uzay1 ve amag uzayinin kavramsal gosterilimi

Bu tezde kisitlamasiz, iki amagl islevler kullanilmistir. Optimizasyon problemleri
ise en kiiciikleme (minimizasyon) problemleridir. Parametre sayilar1 kullanilan test

islevlerine gore degismektedir.
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2.3.5.3. Baskinhik Kavram ve Pareto-Optimalligi

Bu boliimde ¢ok amacli optimizasyonda gerekli olan bazi tanimlar (baskinlik,

Pareto-optimal, Pareto-optimal cephe) bir en kii¢iikleme problemi icin verilmektedir.

Tanim 1 (Baskinlik): Bir karar vektori (x), bir baska karar vektoriine (x;) yalniz ve

yalniz asagida verilen durumlar saglandiginda baskin olur (x; < x, olarak gosterilir):

b

» Xx; tiim amag¢ islevlerinde x;
Vk=1,..,m ve
" X, X den en azindan bir amag islevinde c¢ok iyi ise (6rnegin Ik =1,...,m :

Je(a) < fie(x2)

den 1iy1 ise (6rnegin f (x)) < fr(x2) ,

Benzer olarak, bir amag vektorii (f;) bir diger amag vektoriine (f>), tiim amaglarda
ondan daha iyi ise veya en azindan bir amag islevinde ondan ¢ok iyi ise baskin olur
(fi < f2). Sekil 2.21° de, bireyler arasindaki baskinlik iliskisi gosterilmektedir. Burada
D, E ve F bireylerinin hepsi G bireyinden baskindir. Ciinkii her iki amagta da ondan

tyidirler.

Tamim 2 (Pareto-optimal): Bir karar vektoriinde (x) baskin olan baska bir karar
vektorii yoksa Pareto-optimal olarak adlandirilir. Amag¢ vektori (f*(x)) ise, eger x
Pareto-optimal ise Pareto-optimaldir.

Pareto-optimalligi kavrami, ilk olarak Francis Ysidro Edgeworth tarafinan 6ne
siiriilen bu kavram gerceklestiren ve genelleyen italyan matematik¢i ve ekonomist

Vilfredo Pareto’ dan gelmektedir.

Tanim 3 (Pareto-optimal kiime): Pareto-optimal karar vektorleri veya Pareto-optimal

bireylerden olusan kiimedir. P” ile gosterilir.

Tanim 4 (Pareto-optimal cephe): Tiim amag islevleri dikkate alindiginda, baskin olan

tiim bireylerden / karar vektorlerinden olusan cephedir. PF ile gosterilir.

Tanim 5 (Tercih Edilen Céziim): Coziim kiimesi icerisinden, karar verici (decision

maker) tarafindan ek kriterler kullanilarak secilen baskin (Pareto) bir ¢oziimdiir.
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Sekil 2.21° de iki amacgl bir en kiiciikleme problemi iizerinde, Pareto-optimal
(veya kisaca Pareto) bireyler, bu bireylerden olusan P*Z{A,B,C,D,E,F} Pareto-optimal

kiime ve Pareto-optimal cephe gdsterilmektedir.

A Olasi ¢dziim
bolgesi
«

Pareto-optimal cephe

Sekil 2.21. Cizgili bolge Pareto-optimal cepheyi gostermektedir (bu bir en kiigiikleme
problemidir). Siyah noktalar Pareto bireyleri, gri noktalar Pareto olmayan bireyleri
gostermektedir. Ornegin, “G” bireyi, “D, E” ve “F” Pareto bireylerinin etki alanma
girmektedir

Tek amagli GA’ larda tek bir en iyi sonug vardir ve bireyler (¢oziim Onerileri) en
tyiden en kotiiye dogru tekil bir bicimde siralanabilir. Ancak CAGA’ larda tek bir en iy1
¢Oziim yerine bir grup en iyi ¢6ziim (Pareto-optimal ¢oziimler olarak adlandirilirlar)
vardir ve dolayisiyla en iyiden en kotiiye dogru bireylerin siralanmasi tekil degildir. Bu
ylizden, bircok CAGA yoOntemi gelistirilmis ve gelistirilmeye devam edilmektedir.
Siralama yapmanin amaci, bir sonraki nesildeki bireylerin (¢6ziim Onerilerinin) nasil
elde edilecegini belirleyen se¢cme mekanizmasina bilgi {iretmektir. Yani se¢me
mekanizmasindan dnce bir siralama yontemine iliskin hesaplamalar yer almaktadir.

Amaglar tek tek hesaba katildiginda bireylerin siralamasi farkli olacaktir, bir
amaca gore en iyl olan ¢oziim digerlerine gore en kotli olabilir. Ancak tiim amaglar
hesaba katildiginda Pareto-optimal cephedeki bireylerin birbirlerine goére bir iistiinliigii
olmayacaktir. Cok amagh optimizasyonun asil hedefi, Pareto-cephesini bulmak veya
ona yaklagmak ve bu cephe iizerinde diizgiin bir dagilim saglamaktir. Var olan tim

yontemler bunu saglamaya calismaktadirlar. Bu hedefler, Sekil 2.22° de bir en
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kiiciikleme problemi iizerinde gorsel olarak gosterilmektedir. Bu sekilde D-diizgiin
dagilim ya da cesitliligi, Y-yakinsamayi temsil etmektedir. Diizgiin dagilimin artirilmasi
icin, baslangi¢ toplulugu D ile gosterilen oklar yoniinde genisletilmelidir. Pareto
cephesine yakinsama i¢in ise baslangig toplulugu Y ile gosterilen ok yoniinde
ilerlemelidir. Diizgiin dagilim — yakinsama dengesi dogru olarak ayarlandigi zaman,
Sekil 2.22b’ de gosterildigi gibi iyi bir ¢éziim toplulugu bulunabilir. Bununla birlikte,
her problem ve her CAGA yontemine gore bdyle bir ¢oziimii bulmak kolay degildir
[Ishibuchi ve Shibata, 2004].

Baslangig Baslangic

A D% Toplulugu A Q Toplulugu

Pareto Cephesi Pareto Cephesi

(2) (b)

Sekil 2.22. (a) Baslangig toplulugu ve Pareto cephesi, (b) Istenilen GA durumu

2.3.5.4. Arama ve Karar Verme

Cok amacl optimizasyonda, Pareto tanimindan dolay:1 birden fazla en iyi ¢6ziim
bulunmaktadir. Bu yiizden, ¢ok amacli optimizasyon problemleri iki farkli durumdan
olusur: Pareto-optimal birey / ¢6zlim kiimesinin aranmasi ve ¢ok amagl karar verme
(Horn, 1997). Genellikle, bu iki durum ayr1 ayri degerlendirilir. Tek amach
optimizasyon ile genis ve karmasik arama uzaylarinin aranmasi zordur. Bu nedenle, cok
amagli optimizasyon yontemleri tanimlanmistir. Bu yontemler arasindaki temel farklar,

amac¢ fonksiyonlar1 ve puan atama mekanizmalandir. Bir topluluktaki (¢6zliim
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kiimesindeki) her bir bireye iliskin puanin nasil hesaplandig1 ve atandigina bagl olarak,
cok amaglh genetik algoritmalar Sekil 2.23° te gosterildigi gibi ii¢ kategoride

siniflandirilabilir.

COK AMACLI GENETIK ALGORITMA YONTEMLERI

Aramadan Once Karar Verme

Birlestirici Islevlerin Kullanim1

Karar Verme isleminden Once Arama

Pareto-tabanli Pareto-tabanli
Olmayan Y ontemler Yontemler

Arama Sirasinda Karar Verme

Sekil 2.23. Cok amacl genetik algoritmalarin siiflandirilmasi [Vazquez, 1999]

Aramadan Once Karar Verme: Cok amacli optimizasyon probleminin amaglari,
karar vericiden gelen tercih bilgisine (preference information) gore tek bir amacta
birlestirilir. Yani ¢cok amagl optimizasyon problemi, bu tiir genetik algoritmalarda bir
takim katsayilarla carpilip toplanarak tek bir amacta birlestirilir. Bu tiir genetik
algoritmalara 6rnek olarak CWOF (sabit agirlikli amag islevi) ve VWOJ (degisken
agirhikli amag islevi) yontemleri verilebilir. Bu tiir yontemler kolay uygulanabilir
olmalarina ragmen ¢ogu optimizasyon probleminde istenilen sonuglarin elde edilmesini
saglayamazlar.

Karar Verme Isleminden Once Arama: Optimizasyon, herhangi bir tercih bilgisi
verilmeden gergeklestirilir. Arama islemi sonucunda bir grup aday ¢6ziim (ideal olarak

Pareto-optimal ¢6ziimler) bulunur. Karar verici (KV) son se¢imini bu c¢oziimler
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arasindan yapar. Pareto-tabanli olmayan yontemler ve Pareto-tabanli yontemler bu tiir
cok amacl genetik algoritma yontemlerindendir. Pareto-tabanli olmayan yontemlere
ornek olarak Schaffer’ in Vektor Hesaplamali Genetik Algoritmasi (VEGA) 6rnek
olarak verilebilir. Pareto-tabanli yontemler ise Pareto tanimini kullanarak bireylere puan
atamaktadirlar. Bu yontemlere 6rnek olarak MOGA, NSGA, SPEA vb. verilebilir.
Arama Swrasinda Karar Verme:. Her bir optimizasyon adimindan sonra, aramaya
kilavuzluk edecek sekilde karar vericiden (KV) saglanan ayrintili tercih bilgisine gore
alternatif ¢ozlimler sunulur. Boylece arama uzay: Kkiiciiltilebilir. Bu tlir genetik
algoritmalara 6rnek olarak Fonseca ve Fleming’ in PAGA (Preference Articulation
Genetic Algorithm) yontemi Ornek olarak verilebilir [Fonseca ve ark., 1998]. Bu

yontemde, Pareto derecelendirmesi ile tercih belirleme yontemi birlestirilmektedir.

Su ana kadar, CAGA algoritmalarinda KV’ nin tercihlerinden yararlanilmasi
tizerinde ¢ok az ¢alisma yapilmistir. Bu tiir calismalar 6nemli yararlar saglayabilir. Cok
boyutlu problemlerin ¢éziimiinde hesapsal bir azaltim saglanabilir, ayrica KV’ ye daha
anlamli bilgi gonderilebilir. Tercih bilgisine gére arama uzayi daraltilarak daha iyi
sonuglarin bulunmasi saglanabilir. Tiim bu sorunlara ¢éziim saglamak amaciyla IEEE
Evolutionary Computation dergisi tarafindan, 2010 yilinda tercih belirleme tabanli
CAGA’ lar hakkinda 6zel bir say1 ¢ikarilacaktir (Editorler: Prof. Kalyanmoy Deb ve
Prof. Murat Koksalan).

2.3.5.5. Cok Amacgh Genetik Algoritmalarin Temel Bilesenleri

CAGA'’ larin temel bilesenleri sunlardir:

e Siralama / puan atama yontemleri (NSGA, MOGA, SPEA, PAES vb.)

e ikincil topluluk (arsiv) ve ydnetimi veya elitizm (ikincil toplulugun boyutu,
ikincil toplulugu giincelleme, birincil toplulugu giincelleme).

o (Cesitliligi siirdiirmek veya yarigap belirleme (niching) yontemleri (paylasim,
ayiklama, eslesme kisitlamasi vb.).

e Se¢me mekanizmalart (rulet carki secimi (RWS), stokastik evrensel 6rnekleme

(SUS), turnuva secimi (TS) vb.).
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e Parametrelerin kodlama teknikleri (ikili kodlama, gray kodlama, gergel sayi
kodlama vb.).

e Genetik islevlerin kullanimi1 ve bi¢imleri (¢aprazlama ve mutasyon).

e Topluluk boyutu (kullaniciya baglidir).

e Optimize edilecek parametrelerin alt ve iist sinirlart (problem hakkindaki

Ongoriiye baghdir).

2.3.6. Uygulama Alanlari

Klasik optimizasyon yontemlerinin farkli alanlardaki problemlerin ¢oziimii i¢in
kullanilmast 1950’ i yillara dayanmasina ragmen, GA’ larin endiistriyel problemlere
uygulanmasi 80’ li yillarin ortasin1 bulmaktadir. Bununla birlikte 1990’ dan sonra, GA’
larin gercek diinya problemlerine uygulanmasinda 6nemli bir artis olmustur. Bunun
nedenlerinden biri GA’ larin ¢ok amagli optimizasyon problemlerini ¢dzme yetenegidir.

Cok amacl bir genetik algoritma yontemi Onerilirken, bu yontemin iyi ve
kullanisli olup olmadigimin belirlenmesi ic¢in algoritma test islevleri iizerinde
denenmektedir ve bazi ¢ikarimlar1 buna gore yapilmaktadir. Diger taraftan, algoritmanin
pratikte de kullanilabilir oldugunun belirlenmesi igin, algoritmanin basariminin gergek
problemler iizerinde de test edilmesi gerekir. Cizelge 2.3’ te, ¢ok amagli genetik
algoritmalarin uygulandigi bazi1 gercek diinya problemleri ve bu uygulamay1 yapanlarin

bir listesi yer almaktadir. Bu uygulamalar {i¢ temel boliimde siniflandirilabilir:

I. Deneysel Uygulamalar: Varolan diger optimizasyon algoritmalarina karsi
GA’ nin ustiinliigiinii test etmek i¢in yapilan uygulamalardir. Gezgin Satici
Problemi, Knapsack Problemi, Grafik Bolme Problemi vb.

Il. Pratik Uygulamalar: Endiistride GA kullanilan uygulamalardir. Sayisal
Optimizasyon Problemleri, Cizelge/Planlama Problemleri, Yerlesim Problemleri,
Goriintii/Ses Isleme, Mikrodalga Eleman Tasarimi, Mekanik Bilesen Tasarimi,
Isaret Isleme, Siizge¢ Tasarimi, Kontrol Sistemi Tasarimi, Parametre ve Sistem
Tanimlama, Robotik, Miihendislik Tasarimi (VLSI vb.), Nonlinear Sistem
Tasarimi, Yapay Sinir Aglar1 ve Bulanik Mantiga Uyarlanma, Sekil (Parga)

Tasarimi vb.
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L. Stniflandirici  Sistemler: Bilgi elde edilmesi icin GA’ nin kullanildigi

uygulamalardir. Uzman sistemin bilgi tabaninin olusturulmasi i¢in GA kullanimi

vb.

Cizelge 2.3. Baz1t CAGA uygulamalari

Arastirmaci(lar) (Y1)

Uygulama Alam

A.D. Belegundu ve ark. (1994)

Levhali Seramik Alasimlar

T.J. Stanley ve T. Mudge (1995)

Mikroislemci Cip Tasarimi

C.S. Chang ve ark. (1995)

DC Demiryolu Sistemi

F. Jimenez ve J.L. Verdegay (1995)

Tasimacilik/Ulasim

C.A. Coello ve ark. (1995)

Bir Robot Kolun Kars1 Agirlik Dengelemesi

A.J. Chipperfield ve P.J. Fleming
(1996)

Gaz Tiirbin Motoru Denetleyici Tasarimi

T. Arslan ve ark. (1996)

VLSI Devre Tasarimi

S.Y. Hahn (1996)

Surekli Miknatisli Motor Tasarimi

D.S. Weile ve ark. (1996)

Genis Band Mikrodalga Sogurucu Tasarimi

D.S. Todd ve P. Sen (1997)

Yiik Gemileri I¢in Yiikleyici Tasarim

D. Lee (1997)

Deniz Araci Tasarimi

W. A. Crossley (1997)

Helikopter Tasarimi

E. Zitzler ve L. Thiele (1998)

Sayisal Donanim-Yazilim Coklu Islemci
Sistem Sentezi

K. Fujita ve ark. (1998)

Otomobil Motor Tasarimi

S. Obayashi ve ark. (1998)

Ugak Kanat Tasarimi

H.A. Giivenir ve E. Erel (1998)

Stok Siniflandirilmasi

D. Cvetkovic ve 1. Parmee (1998)

Ugak D1s Yiizey Tasarimi

C.M. Fonseca ve P.J. Fleming
(1998)

Gaz Turbin Motoru Tasarimi

B. Paechter ve ark. (1998)

Bir Universitenin Ders Programlarinin
Hazirlanmasi

M. S. Bright (1998)

DSP Sistem Tasarimi

E. Zitzler ve L. Thiele (1998)

Sayisal Donanim-Yazilim Coklu Islemci
Sistem Sentezi

K. Fujita ve ark. (1998)

Otomobil Motor Tasarimi
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Cizelge 2.3. (devam) Baz1t CAGA uygulamalari

T. Bagchi (1999)

Cok Olgiitlii Gezgin Satic1 Cizelgelemesi

C. Poloni ve ark. (2000)

Aerodinamik Sekil Tasarimi

E. Schlemmer ve ark. (2000)

Hidroelektrik Generator Tasarimi

P. di Barba ve ark. (2000)

Elektrostatik Mikromotor Tasarimi

L. Costa ve P. Oliveria (2000)

Levhali Alasim Sac Tasarimi

A.J. Blumel ve ark. (2000)

Otomatik Pilot Denetleyici Tasarimi

H. Meunier ve ark. (2000)

Radyo Ag1 Optimizasyonu

X. Li ve ark. (2000)

Tibbi Goriintii Isleme

M. Lahanas ve ark. (2001)

Doz Optimizasyonu

N. Laumanns ve ark. (2001)

Yolcu Tren Tasarimi

D. Sasaki ve ark. (2001)

Stipersonik Kanat Tasarimi

Ishibuchi ve ark. (2001)

Dilsel Kural Cikarimi1

S.-Y. Ho ve H.-L. Huang (2001)

Yiiz Modelleme ve Tanima

J. Wright ve ark. (2002)

Bir Binanin Is1 Sisteminin Tasarimi

H. A. Abbass (2002)

Goglis Kanseri Tanis1

R. Balling ve ark. (2003)

Sehir Planlama

X. Hu ve ark. (2004)

Otomobil Par¢a Tasarimi

J. Regnier ve ark. (2005)

Elektromekanik Sistem Tasarimi

M. Trefzer ve ark. (2005)

CMOS Islemsel Yiikselteg Sentezi

N. Nariman-Zadeh ve ark. (2005)

Aerodinamik Optimizasyon

J. Regnier ve ark. (2005)

Elektromekanik Sistem Tasarimi

R. Verschae ve ark. (2005)

Yiiz Modelleme ve Tanima

L. Araujo (2006)

Dogal Dil isleme

M. Calonder ve ark (2006)

Biyoinformatik

M. P. Kleeman ve ark. (2007)

Kuantum Kaskat Laser Tasarimi

C. Perales-Gravan ve ark. (2008)

AM Radyo Alic1 Tasarimi

E. Mininno ve ark. (2008)

Gomiilii Mikrodenetleyici Optimizasyonu

F. C.J. Allaire ve ark. (2008)

Gergek Zamanli Ugug Plan1 Uygulamasi

T. Siegfried ve ark., (2009)

Yer alt1 Suyu Yonetimi

J.G. Herrero ve ark. (2009)

Hava Trafik Kontroli
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3. MATERYAL VE YONTEM

Bu boliimde Pareto tabanli olmayan ve Pareto tabanli CAGA yontemleri
aciklanmakta, algoritmalari ile yontemlere iligkin 6rnekler verilmektedir. Tezde onerilen
CAGA yontemleri, bu boliimde verilen bazi iyi bilinen (state-of-art methods) CAGA

yontemleri ile sik kullanilan test islevleri kullanilarak karsilastirilmislardir.

3.1. Pareto Tabanh Olmayan CAGA Yontemleri

Bu béliimde, Pareto tanimini kullanmayan bazi ¢ok amacl genetik algoritma
yontemleri incelenmektedir. Tek amagli optimizasyondan farkli olarak, ¢ok amach
optimizasyonda bir toplulugun genetik algoritma tarafindan puanlanmasinin tek bir yolu
yoktur. Tek amacli genetik algoritmada, puanlama, probleme gore amag islevinde alinan
degerin biiylikten kii¢iige veya kiiciikten biiylige dogru siralanmasiyla yapilabilir.
Agirlikli toplam yaklasimlarindan Pareto-tabanli yaklasimlara kadar var olan puanlama
yontemleri, istenilen bireyler hakkinda ne kadar bilgi verdiklerine gore
sorgulanmaktadir. Bu yontemler arasindaki temel fark, onlarin bireylerin puanlarini
belirlerken kullandiklar1 yoldur. Diger bir deyisle, her yontem kendi mekanizmasina
gore bireyleri en iyiden en kotiiye dogru siralar. Bireyleri siralamanin veya puanlamanin
en iyi yolu hala ucu agik bir sorudur ve daha ¢ok arastirma yapilmasi gereklidir.

Cogu gercek diinya problemi i¢in, ¢oklu amaclarin anlik optimizasyonuna
gereksinim vardir. Tek amacl durumda, amacin ya en biiyiik ya da en kiigiik degerleri
aranmaktadir. Cok amaglh durumda ise, topluluktaki bireyler (ya da ¢6ziim Onerileri)
cok amacgh bir genetik algoritma yontemi (CAGA) tarafindan puanlanir. Temel olarak
bir CAGA, bir topluluktaki bireyleri puanlama islemine veya tanimina bagl olarak
siralamaktir.  Yani CAGA ile c¢oklu ama¢ wuzayi, tek bir puan degerine
donistiirilmektedir. Asagida bu yontemlerden Pareto taniminmi kullanmayan {i¢ tanesi
ayrintili olarak incelenmektedir.

Bu yontemlerden ikisi (CWOF ve VWOI) agirlikli toplam yaklasimlart olarak
adlandirilir, ¢iinkii bu yOntemler bireyleri puanlarken Pareto tanimii hesaba
katmamaktadirlar. CWOF ¢ok bilinen bir yaklagimdir ve amagclari birlestirmek i¢in bazi
on bilgilere gereksinim duyar (Michalewicz, 1994; Murata ve Ishibuchi, 1995).
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CWOF’ tan farkli olarak, VWOIJ sabit agirliklar1 degil rasgele iiretilmis agirliklar
kullanir (Murata ve Ishibuchi, 1995; Ishibuchi ve Murata, 1998). VEGA, ¢ok amacgh
genetik algoritmalar i¢in atilan ilk adim olarak bilinir ve karsilagtirma yapmak i¢in
standart bir arag¢ olarak kullanilir (Schaffer, 1985).

Bu yontemlerin incelenmesinde Schaffer’ in SCH1 test islevi kullanilmistir:

f@=x> ve  g0)=(x-2)° (3.1)

Bu yontemlerin bu test islevi ile ¢alistirilmasiyla elde edilen sonuglar Sekil 3.3,
Sekil 3.4, Sekil 3.5, Sekil 3.8 ve Sekil 3.11° de verilmektedir. Tiim uygulamalar igin

birey sayist 20, bit sayis1 20, adim sayis1 500, p, =0.1, p. =1, parametrenin alt sinir1

0, tist sinir1 ise 2 secilmistir.

3.1.1. Sabit Agirhkh Amag Islevi
(Constant Weight Objective Function, CWOF)

CWOF, temel olarak, birka¢ amag islevini agirliklandirarak tek bir amag islevinde
birlestirir ve ¢ok amacl problemi tek amacli probleme doniistiiriir (Michalewicz, 1994;
Murata ve Ishibuchi, 1995). Farkli agirliklar, farkli Pareto ¢coziimlerinin elde edilmesini
saglar. Birka¢ Pareto-optimal ¢6ziimiin bulunmasi i¢in, programin farkli agirliklarla
birkag kez calistirilmasi gerekir. CWOF klasik bir yaklasimdir, burada ¢ok amagli islev
f; tek bir amacgta F' birlestirilir :

F(x)=2 wif;(x) veya F(x)=wif1(x)++w, [, () (3.2)

i=1

Burada wy,...,w,, n adet amag¢ i¢in negatif olmayan agirliklardir ve bunlarin

arasindaki iliski asagidaki gibidir:

> wi=1 (3.3)
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Sabit agirliklar (w;) ayarlanarak, genetik algoritmanin arama yonii ayarlanabilir.

Bunun anlami; CWOF Pareto cephesindeki yalnizca bir veya birkag bireye yiiksek puan

vermekte (secime bagli olarak diisik puan) geri kalan bireyler ise diisiik puan

almaktadir, ¢linkii CWOF arama uzayinda belirli bir yonii tercih etmektedir. Sekil 3.1,

bu durumu gostermektedir. Eger iki amag tek bir amagcta birlestirilecekse ve ilk amag

digerine gore daha fazla 6nemli ise, o zaman F(x) (3.4) esitligindeki gibi olur. Eger

ikinci amag¢ daha 6nemliyse, F'(x) (3.5) esitligindeki gibi olur (en kiiclikleme problemi

s0z konusu ise). Eger her iki amagta ayn1 6neme sahipse, F'(x) (3.6) esitligindeki gibi

olur.

F(x)=0.75 f,(x) +0.25 £ (x)
F(x)=0.25 f,(x)+0.75 f 5 (x)

F(x)=0.5 f(x)+0.5/,(x)

(3.4)
(3.5)
(3.6)

> ]

Sekil 3.1. CWOF, arama uzayinda bir arama yoniine sahiptir ve yalnizca
A gibi bir birey bulabilir (veya birkag¢ Pareto ¢oziimii)

CWOF yalnizca birka¢ Pareto ¢dziimiinii bulur, Pareto ¢oziimlerinin tam bir

kiimesini bulamaz. Karmasik bir sistem tasarim problemi i¢in tipik bir CWOF 6rnegi

(Linkens ve Nyongesa, 1995)° de verilmektedir. CWOF yonteminin algoritmasi

Sekil 3.2 de verilmektedir.
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CWOF Algoritmasi

1) Baslangig toplulugu olusturulur (Rasgele veya disaridan girilerek)

2) Amaglarin 6nemine gore w; agirliklari belirlenir (w;’ lerin sayisi
amaglar kadardir)

3) F(x)=w f1(x)+wy fr(x)+w3 f3(x)+--
Amagclar sabit agirliklarla carpilir ve sonugta tek bir amacg (diger
amaglarin agirliklit toplami) olarak diistintiliir. Burada agirliklar
sabittir ve agirliklarin toplami 1”7 dir. Agirligr yiiksek olan amag daha
onemli olacaktir.

4) GA islevleri olan segcme (RWS veya SUS), ¢aprazlama ve mutasyon

uygulanir.

Sekil 3.2. CWOF algoritmasi

CWOF yonteminin, (3.4, 3.5 ve 3.6) esitliklerinde verilen ti¢ farkli durum igin
SCHI test islevinde calistirilmasiyla elde edilen sonuglar Sekil 3.3, Sekil 3.4 ve
Sekil 3.5’ te verilmektedir.

SCH1

Sekil 3.3. F(x)=0.5f(x)+0.5g(x) icin CWOF sonucu



a(x)

a(x)
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SCH1

Sekil 3.4. F(x)=0.25f(x)+0.75g(x) icin CWOF sonucu

SCH1

Sekil 3.5. F(x)=0.75f(x)+0.25g(x) i¢gin CWOF sonucu
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3.1.2. Degisken Agirhkli Amag Islevi
(Variable Weight Objective Function, VWQOJ)

Bu yontemde, ayarlanmis belirli agirliklardan ¢ok rasgele segilmis agirlik
kiimeleri kullanilir. VWOJ ilk kez (Murata ve Ishibuchi, 1995; Ishibuchi ve Murata,
1998)’ te CWOF’ taki eksikleri gidermek i¢in olusturulmustur. Bilindigi iizere, CWOF
arama uzayinda tek bir yonde arama yapmaktadir ve tiim Pareto ¢dziimlerini bulmak
icin yeterli degildir. Bunun nedeni, ¢ok amaghh uzayda farkli arama yoOnlerine
gereksinim olmasidir. Farkli arama yonlerini gergeklestirmek i¢in, rasgele belirlenmis
agirlik degerleri dnerilmistir (Murata ve Ishibuchi, 1995; Ishibuchi ve Murata, 1998 ).

VWOJ (3.2) ve (3.3) nolu esitlikleri kullanir ancak, agirliklar (3.7)” da verilen
esitligi de saglamalidirlar. Agirliklar artik sabit degildir ve GA’ da artik ¢ok amach
arama uzayinda tek bir yonde arama yapmayacaktir. VWOIJ farkli arama yonlerine
sahiptir (Bkz. Sekil 3.6). CWOF ve VEGA, VWOJ’ un 6zel durumlandir. (3.6)° daki
bicimdeki bir CWOF, 4 Pareto ¢6zliimiinii kolayca bulabilir ancak her iki kdsede yer
alan B ve C Pareto ¢oziimlerini bulmasi ise ¢cok zordur. VEGA, B ve C ¢oziimlerini
kolayca bulur; ¢iinkii B, 2. amacin C ise 1. amacin en iyi ¢dzlimleridir; ancak VEGA iki

amacin karigimi olan bir ¢6ziim olan A benzeri bir ¢6ziimii ise ¢ok zor bulacaktir.

rasgele;

= i=12,-n 3.7
i (rasgele| +---+ rasgele,) B.7)

;fl

Sekil 3.6. VWO] Pareto ¢6ziimlerini bulmak i¢in farkli yonlerde arama yapar
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VYWOJ Algoritmasi

1) Baslangi¢ toplulugu olusturulur (Rasgele veya disaridan girilerek)
2) w; agirliklar: rasgele belirlenir (w;’ lerin sayis1 amaglar kadardir)

rasgele;

Wi = i=1,2,....N
(rasgele,+---+ rasgele,)

3) F(x)=w f1(x)+wy fo(x)+w3 f3(x)+-
Yukaridaki formiille biitiin amaclar rasgele belirlenen agirliklarla
carpilarak, tek bir amag islevi olarak diisiiniiliir. Burada agirliklar
sabit degildir ve rasgele belirlenir. Ancak bu rasgele agirliklarin
toplam1 1 olmalhidir. Agirhigi yiiksek olan ama¢ daha Onemli

olacaktir.

4) GA islevleri olan se¢gme, caprazlama ve mutasyon uygulanir.

Sekil 3.7. VWOI algoritmast

VWOJ yonteminin SCHI1 test islevinde calistirilmasiyla elde edilen sonuglar
Sekil 3.8 de verilmektedir.

SCH1
T

g(x)

Sekil 3.8. VWOIJ 6rnegi
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3.1.3. Vektor Hesaplamali Genetik Algoritma
(Vector Evaluated Genetic Algorithm, VEGA)

VEGA, cok amagli bir GA tasarlanmasi i¢in atilan ilk adimdir (Schaffer, 1985).
VEGA’ nin arkasinda yatan temel diisiince, bir sonraki toplulugun alt kiimesinin tek bir
amagc tarafindan se¢ilmesi ve gelecek toplulugun olusturulmasi i¢in tiim alt kiimelerin
birlikte kullanilmasidir. Gelecek topluluk, her amacin en iyi bireylerinden olugmaktadir.

VEGA Pareto ¢oziimlerini bulurken her bir amact ayr1 ayr1 kullanir. Eger n adet
amag varsa, o zaman o anki topluluktan » adet alt topluluk secilmelidir. Her alt topluluk,
tek bir amag tarafindan secilir ve segilen her bir alt topluluk sonraki toplulugun yalnizca

bir boliimiinii olusturur. Bir sonraki adimdaki topluluk, alt topluluklarin birlesimidir.

f
Topluluk (t) Ebeveynler Topluluk (t+1) 4
| Alt-top-1 B. <
Topluluk ®
[
—{ Alt-top-n PY
A o
Alt Topluluklarin Karistirma + v
Secimi Genetik Islevler o .C
> f;
(a) (b)

Sekil 3.9. (a) VEGA blok diyagrami, (b) VEGA’ nin arama yonii

VEGA algoritmasi, (3.8) ifadesinde tanimlandig1 gibi, amag islevlerinin bir cesit
dogrusal birlesimi olarak ¢alisir. VEGA o andaki topluluktan alt topluluklar1 secerken
(3.8)’ de verilen esitlikleri kullanir. F'(x), her alt topluluk se¢imi igin tek bir amag

tarafindan belirlenir.

Fx)=1f(x)+---+0f, (%) (3.8a)
Fx)=0f1(x)+1f,(x)+---+0f, (x) (3.8b)
F(x)=0f1(x)+--+1f, 1 (x)+0 1, (x) (3.8¢)

F(x)=0/f;(x)+-+1f, (x) (3.8d)
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Belirli bir amag islevi tarafindan segilen her bir alt topluluk, daha sonra
birlestirilir ve klasik GA islevleri (¢aprazlama ve mutasyon) uygulanir. VEGA
Pareto-tabanl bir yaklagim degildir, bu yilizden ancak birkag¢ Pareto ¢oziimii bulabilir.
Sekil 3.9a’ da, VEGA’ nin blok diyagrami verilmektedir. Sekil 3.9b” den de goriilecegi
tizere, VEGA’ nin arama y0nlerinin hepsi amag¢ uzayinin bir eksenine paraleldir. VEGA

yonteminin algoritmasi ise Sekil 3.10” da verilmektedir.

VEGA Algoritmasi

1) Amag islevi sayicisin1 i=7/ ve qg=N/M ifadesi yap. (N: topluluk boyutu,
M: amag sayis1). Amag sayisi kadar alt topluluk elde edilecektir.

2) Amag islevleri ayr1 ayr1 kullanilarak bireylere iligkin puanlar hesaplanir.
3) Eger i=M ise, 4. adima gegilir. Aksi takdirde i bir artirilir ve 2. adima
doniiliir.

4) Her bir amag i¢in belirlenen alt topluluklar birlestirilir. Yani her bir amag
ile elde edilen bireyler tek bir birey havuzunda (P) birlestirilir. En iyi puana
sahip olan bireyler se¢me islemi ile belirlenir.

5) Yeni bir topluluk olusturmak i¢in birey havuzuna (P) ¢aprazlama ve

mutasyon islevleri uygulanir.

Sekil 3.10. VEGA algoritmasi

VEGA yonteminin SCHI test islevinde calistirilmasyla elde edilen sonuglar
Sekil 3.11° de verilmektedir.
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SCH1
T

glx)

Sekil 3.11. VEGA o6rnegi

3.2. Pareto Tabanh CAGA Yontemleri

Son yillarda ozellikle 1998 den sonra, evrimsel algoritmalar ile ¢ok amaclh
optimizasyon konusunda bir¢ok arastirma yapilmistir ve ¢ok iyi yontemler 6nerilmistir.
Bu yontemlerin ¢ogu Pareto tanimina dayanan puan atama yontemleri kullanmaktadirlar:
bastirilamayan siralama, baskinlik sayimi ve bastirilamayan ¢6ziimlerin tanimlanmasi
[Huband ve ark., 2006].

Puanlama (fitness assignment) hala ucu agik bir soru oldugu icin ve Pareto
tanimindan dolay1 literatiirde ¢ok sayida yontem mevcuttur [Coello Coello, 1999;
Deb, 2001; Ghosh ve Dehuri, 2004; Coello Coello ve ark., 2007] ve Onerilmeye de
devam edilmektedir. Bu bdliimde, tezde oOnerilen yontemlerin karsilagtirilmasinda
kullanilan ve literatiirde sik kullanilan CAGA yontemleri ayrintili bir bigimde
aciklanmaktadir. YoOntemlerin puanlama algoritmalari, elitizm/arsiv  yOntemi

mekanizmalar1 verilmektedir.
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3.2.1. MOGA (Multiple Objective Genetic Algorithm, Cok Amach Genetik
Algoritma)

MOGA, Fonseca ve Fleming tarafindan onerilmistir [Fonseca ve Fleming, 1993;
1995; 1998]. Pareto tabanl, elitist olmayan bir yontemdir. MOGA’ da bir bireyin puani
o andaki toplulukta o bireye baskin olan bireylerin sayisina 1 eklenmesiyle bulunur
(Sekil 3.13° de Adim 1). Bdylece baskin bireylerin puani, toplulukta onlara baskin olan
herhangi bir birey olmadigindan dolay1 1 olarak atanir. MOGA algoritmasinin ilk ii¢
adim1 su sorunun yanitint vermektedir: "bir topluluktaki bireylerin puani, onlara baskin
olan bireylerin sayisi (arti 1) kullanilarak belirlenebilir mi ? ".

Bu puanlama (alt topluluklara ayirma) islemi tamamlandiktan sonra, bir bireyin
ham puan1 onun puanina gore belirlenir. Bunu yapmak igin, ilk olarak puanlar azalan bir
sekilde siralanir. Daha sonra, her bireye dogrusal bir islev yardimiyla bir ham puan
atanir. Genellikle, bu islev, N (en iyi puanli birey icin) ile / (en kotii puanli birey igin)
arasinda bir puan atayacak bir sekilde secilir. Daha sonra, ayni alt topluluktaki bireyler
icin ham puanlarin ortalamasi hesaplanir (Sekil 3.13° de Adim 4). Bu islem, daha iyi
puanli bireylerin daha yiliksek bir atanmis puana sahip olmalarini garantiler. Pareto
(bastirllamayan) bireylerin ¢esitliliginin saglanmasi i¢in, Fonseca ve Fleming bir
paylasim yontemi Onermislerdir. Yaricap sayist hesaplandiktan sonra, bir bireyin
paylasilmis puan degeri, atanmis puaninin yarigap sayisina boliinmesi ile bulunur.
Atanmis puan degerinin yarigap sayisina (daima 1° e esit veya biiyiiktiir) boliinmesi
bireyin gercek puanini azaltir. Daha sonra bu puan degerleri Olgeklenir; boylece
ortalama paylasilmis puan degeri, ortalama atanmis puan degeri ile ayni olur
(Sekil 3.13° te Adim 5). Bu hesaplamalardan sonra, diger alt topluluklar igin
hesaplamalar tekrarlanir. Bu islemler tiim alt topluluklardaki bireyler puanlanana kadar
devam ettirilir [Fonseca ve Fleming, 1993; Deb, 2001].

Bireyleri MOGA tarafindan puanlanan Ornek bir topluluk Sekil 3.12° de
gosterilmektedir. Sekil 3.12a” ya gore bireylerin en ¢ok istenilenden en az istenilene
dogru siralamasi soyledir: A(1),B(1),C(1),D(1) > E(2),F(2) > G(3) > H(8). Bireylerin
ortalama puan degerleri Sekil 3.12b> de verilmektedir. Olgeklenmis puan degerleri ise
Sekil 3.12¢’ de verilmektedir ve buna gore topluluktaki bireylerin en ¢ok istenilenden

en az istenilene dogru siralamasi soyle olacaktir: D,C>B, A>E,F>G>H.
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Sekil 3.12. (a) MOGA tarafindan atanan ham puanlar
(b) MOGA tarafindan atanan ortalama puanlar

(c) MOGA tarafindan atanan dl¢eklenmis veya son puanlar (o, =1.3)

MOGA yonteminde ¢esitligin saglanmasi i¢in paylagim yontemi kullanilir.
Paylasim islevi amag uzayinda uygulanir. Paylagim yarigapinin (o) cok iyi secilmesi
gerekmektedir. Eger bu yaricap probleme gore iyi segilirse cesitlilik saglanabilir.
MOGA’ nin basarimi o’ in se¢imine 6nemli derecede baglidir. Fonseca ve Fleming,
paylasim yarigapimin dinamik olarak giincellenmesi i¢in bir yontem Onermislerdir,
bdylece program basinda sabit bir yarigap secilmesine (tahminine) gerek
kalmamaktadir. MOGA yontemi, Pareto-optimal cephenin bi¢imine ve arama

uzayindaki ¢oztimlerin yogunluguna ¢ok duyarlidir.
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MOGA Puan Atama Algoritmasi [Deb, 2001]

Adim 1: oy parametresi secilir. Tim olas1 dereceler icin p(j)=0 yapilir
[j=1,...,N (topluluk boyutu)]. Birey sayacini i=1 yap.

Adim 2: i bireyine baskin olan birey sayisi (n;) belirlenir. 7. bireyin derecesi
ri=1+n; formiilii ile hesaplanir. r; derecesine sahip bireylerin sayisini bir artir
p(ri)= p(ri)+1.

Adim 3: Eger 1 <N ise, i’ yi bir artir ve Adim 1° e git. Aksi taksirde Adim 4’ e
git.

Adim 4: pu(r;)>0 olan en biiyiik r; degerini kontrol ederek en yiiksek dereceyi (1)

belirle. Her birey i¢in ortalama puan degerini hesapla:
Fi =N - p(k)=0.50u(r;)-1) (3.9)

r;i=1 derecesine sahip her i bireyi i¢in, yukaridaki esitlik F; =N —0.5(u(1)—1)
olur. Derece sayicisini r=1 yap.

Adimm 5: r derecesine sahip her bir i bireyi i¢in ayni derecedeki bireyleri
kullanarak yarigap sayisini hesapla. F;’=Fj/nc; ile paylasilmis puani hesapla.
Ayni ortalama puani saglamak i¢in, paylasilmis puan asagidaki gibi bir

Olcekleme c¢arpant ile carpilir:

Fiu(r) L
r J 3.10
Z m( )Fk' (3.10)

k=1

L

J

Adim 6: Eger r < rise, r’ yi bir artir ve Adim 5 e git. Aksi takdirde islemi

sonlandir.

Sekil 3.13. MOGA puan atama algoritmasi
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3.2.2. NSGA (Non-Dominated Sorting Genetic Algorithm, Bastirillamayan

Siralamal Genetik Algoritma)

NSGA ilk olarak Goldberg tarafindan Onerilmistir [Goldberg, 1989], ancak
uygulamasi Srivinas ve Deb tarafindan yapilmistir [Srivinas ve Deb, 1994]. Pareto
tabanli, elitist olmayan bir yontemdir. NSGA ilk bastirilamayan bireylerden olusan
cepheye 1 puanini atar ve daha sonra bu bireyler o andaki topluluktan silinirler. Daha
sonra, azaltilmig topluluktaki ikinci bastirilamayan cephedeki bireylere 2 puani atanir.
Bu islem, tiim cephelerdeki bireylere puan atanana kadar devam eder.

NSGA su sorunun yamitimi verir: "bir topluluk birbirlerine baskin olmayan
bireylerin  olusturdugu alt topluluklara ayrilabilir mi?" (paylasim yOntemi
uygulanmadan). Bu sorunun sonucu olarak, NSGA birkag alt topluluk olusturur ve her
alt topluluk ayni puanlara sahip bireylerden olusur. NSGA algoritmasinin 2. adimina
gore puanlanmis bir topluluk Sekil 3.14a’ da gosterilmektedir. Sekil 3.14a’ da {i¢ adet
alt topluluk bulunmaktadur. Ilk alt topluluk {A(1),B(1),C(1) ve D(1)}, ikinci alt topluluk
{E(2),F(2) ve G(2)} ve lgiincii alt topluluk ise {H(3)} bireylerinden olusmaktadir.
Acikea goriilecegi iizere, ilk alt topluluk ikinciden, ikinci alt topluluk ise tigiinden daha
cok istenen bireylerden olusmaktadir. Eger bireyler ayni1 Pareto cephesine aitse, 6rnegin
ilkine, bu durumda hangi bireyin digerlerinden daha iyi olduguna karar vermek kolay
degildir. Buna gore, bu yontem ayni Pareto cephesine ait bireylerin ayirt edilmesi i¢in
hicbir bilgi vermemektedir. Bireyleri ¢esitliligini saglayabilmek i¢in, NSGA yontemine
paylagim yontemi eklenmistir [Deb, 2001; sayfa 149-160]. Orjinal NSGA paylasimi
parametre uzaymda uygularken, bu tezde karsilastirmalarda kullanilan NSGA’ da
paylasim MOGA yonteminde oldugu gibi amag uzayinda uygulanmstir.

Bireylerin paylasilmis puanlarinin bulunmasi i¢in su yol izlenir: ilk olarak; ilk
Pareto cephesine ait (cephe sayicisini 1 yap) tiim bireylerin puani topluluk boyutuna (N)
esitlenir. Bu, herhangi bir topluluktaki herhangi bir bireyin alabilecegi en biiyiik puan
degeridir. Paylasim yontemine gore, eger bir bireyin ayni cephede ¢ok sayida komsusu
varsa, o bireyin puani yarigap sayist kadar azaltilir ve paylasilmis puan (Sekil 3.15° te
Adim 3) kullanilarak hesaplanir. ilk cephedeki bireylerin puanlar1 hesaplandiktan sonra,
en kiiclik paylasilmis puan degeri belirlenir ve cephe sayicist bir artirilir (Sekil 3.15° te

Adim 4). Bundan sonra, ikinci cephedeki tiim bireylere birinci cephedeki en kiiclik
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paylasilmis puandan daha kiiclik bir puan degeri atanir. Bu islem, ikinci cephedeki
herhangi bir bireyin birinci cephedeki herhangi bir bireyden daha iyi bir paylagilmis
puan degeri almasim engeller. Paylasim yontemi daha sonra, ikinci cephedeki tiim
bireylere uygulanir ve paylasilmis puan degerleri hesaplanir. Bu islem, topluluktaki tim

bireylere paylasilmis puan degeri atanana kadar devam eder. Sekil 3.14b” de, o, =1.3

ve €=0.22 icin Ornek bir topluluktaki bireylerin paylagilmis puan degerleri

gosterilmektedir.
f2 f2
A H(3) A H(6.2921)
©GQ) I & G(6.5121) T
Al ]
,,,,,,,,,,,,,,,,,,, .( ) ,,,,,,,,,§,,(7.3287)
| F) ITS?'SIZI)
B (1 - B (7.3287)
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr Q EQ) - PUD E(7.1087)
c(y C (8,00)
® 5 ® 1 (3.00)
® ®
i > £ > fi
(a) (b)

Sekil 3.14. (a) NSGA ham puanlar
(b) NSGA paylasilmis puanlan (o =1.3 ve ¢ =0.22 igin)

Bu topluluktaki bireylerin en ¢ok istenilenden en az istenilene dogru siralamasi
Sekil 3.14a’ ya gore soyledir: A(1),B(1),C(1),D(1)>E(2),F(2),G(2)>H(3). Bu siralama
Sekil 3.14b’ ye gore ise soyle verilir: D,C>B,A>~E>~F,G>H.

NSGA yonteminde de Fonseca ve Fleming tarafindan Onerilen dinamik yarigap
giincellenmesi  kullanilabilir, bdylece yaricap tahmini ortadan kaldirilabilir.
NSGA’ da da MOGA’ da oldugu gibi yaricap se¢imi yontemin basarimina 6nemli

derecede etki etmektedir.
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NSGA Puan Atama Algoritmasi [Deb, 2001]

Adim 1: Paylasim yaricap: (o ) ile kiiglik pozitif bir say1 € segilir ve Fyin=N+¢
ile program baglatilir. Cephe sayici j=1 yapilir (N: topluluk boyutu),

Adim 2: P toplulugu baskinlik durumuna gore siniflandirilir:
(P1,Py,...,Py)=Sirala(P, <),

Adimm 3: Her g € P; bireyi i¢in

3a. Puan atanir F;(q)=F nin- €

N

3b. Yarigap sayisincq , nc; = ZSh(dij) formiiliine gore hesaplanir
j=1

3c. Paylasilmis puanlar hesaplanir: F’;(q)= F;(q)/ncq

Adim 4: Fpi,=min(F’;(q) : g€ P;) ve j=j+1 yapilir,

Adim 5: Eger j<p ise, Adim 3’ e gidilir. Aksi takdirde, islem tamamlanir.

Sekil 3.15. NSGA puan atama algoritmast

3.2.3. SPEA (Strength Pareto Evolutionary Algorithm, Pareto’ nun Giicii

Evrimsel Algoritma)

SPEA, Pareto tanimina dayali elitist bir CAGA yontemidir [Zitzler, 1999; Zitzler
ve Thiele, 1999]. Farkli bir kiimede (arsiv veya ikincil topluluk) saklanan elit bireylerin
sayisint, ¢Oziim kiimesinin karakteristigini bozmadan kiimeleme ydntemi kullanarak
azaltir. Arsivdeki tiim bireyler se¢me isleminde kullanilir. SPEA yoOnteminde, birey
puanlar1 iki asamada atanir: i) Pareto bireylerin puanlanmasi, ii) Pareto olmayan

bireylerin puanlanmasi.
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3.2.3.1. Pareto Bireylerin Puanlanmasi

Bir Pareto bireyin puani, baskin oldugu bireylerin sayisi ile orantilidir. n bir
Pareto bireyin baskin oldugu bireylerin sayist ve N de Pareto olmayan bireylerin (birinci

Pareto cephesi disindaki tiim bireylerin) toplam sayist olsun. Buna gore, bir Pareto

bireyin puani (ya da giicii, strength) su sekilde hesaplanir: f; = ﬁ Pareto bireylerin
_l’_

puanlar1 ayni zamanda giiglerine de esittir ( f; = s;). Bu durumda, eger iki Pareto birey

ayni sayida bireye baskin oluyorsa puanlari ayni olacaktir, bu durumda bu iki bireyi
segme mekanizmasinin ayirt etmesi zor olacaktir.

SPEA yonteminin birey puanlamasini daha iyi aciklamak i¢in Sekil 3.16° daki
ornegi inceleyelim. C bireyi, iki Pareto olmayan bireyden (£ ve H) baskindir, bu yiizden
n=2 olur ve toplulukta dort adet Pareto olmayan birey (E,F,G ve H) oldugundan
N=4’ tiir. Buna gore, C bireyinin puani n/(N+1)=2/5 olarak bulunur. Geriye kalan diger

Pareto bireylerin puanlar1 da ayn1 yontemle hesaplanir.

3.2.3.2. Pareto Olmayan Bireylerin Puanlanmasi

Ik adimda tiim Pareto bireyler puanlanmistir, ancak Pareto olmayan bireyler

puanlanmamistir (Bkz. Sekil 3.16a). Pareto olmayan bir bireyin puani; ona baskin olan

tiim Pareto bireylerin puanlari toplamina 1 eklenmesiyle bulunur ( f; =1+2s,~ ).

Sekil 3.16b’ de verilen E bireyi, yalnizca C Pareto bireyi tarafindan bastirilmaktadir ve
C bireyinin puanit da 2/5’ tir. Bu ylizden £ bireyini puani sdyle hesaplanir: 7+(2/5)=7/5.
Pareto olmayan diger bireylerin puanlar1 da bu sekilde hesaplanir. Bu puanlama
yontemi, en diisiik puan degerini en ¢ok istenilen bireye, en yiiksek puan degerini ise en
az istenilen bireye atar.

SPEA tarafindan puanlanmis ornek bir topluluk Sekil 3.16b° de verilmektedir.
Gortilecegi lizere, A ve C bireyleri ayn1 puana sahiptir. 4 ve C bireylerinin ayn1 puana
sahip olmalarinin nedeni, ikisinin de iki adet Pareto olmayan bireye baskin olmalaridir.
Bu durumda bu iki bireyin ayirt edilmesi zor olacaktir. Ayrica, eger bir grup Pareto

olmayan birey yalnizca bir Pareto bireye baskin olursa, bu durumda bunlar1 birbirinden
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ayirt etmenin higbir yolu yoktur. Sekil 3.16b” deki bireylerin en ¢ok istenilenden en az
istenilene dogru siralamasi soyledir:

D(1/5)= {A(2/5),C(2/5)} = B(3/5) = E(7/5) = F(8/5) = G(10/5) = H(13/5) .

f2 f2
A H A H(13/5)
AQQQG | Aggﬁqw” |
F e
B(3/5) B(3/5)
& ) E (Q ) E(7/5)
® @
C Q5 C Q5
® ;s ® s
o o
> f] > f)
(a) (b)

Sekil 3.16. (a) SPEA ile Pareto bireylerin puanlanmasi
(b) SPEA ile tiim bireylerin puanlanmasi

3.2.3.3. SPEA Elitizm Mekanizmasi

SPEA yoOnteminde, her bir adimda bulunan elit (ya da Pareto) bireyler arsiv olarak

adlandirilan ikinci bir toplulukta (P) saklanir. Arsiv boyutu sabittir. Daha sonra, her
adimda, yeni bulunan elit bireyler arsiv ile karsilastirilir ve baskin olanlar arsivde
saklanmaya devam eder, baskin olmayanlar ise silinirler. Ilerleyen adimlarda elit
bireylerin sayisinda artis olabilir. Bu durumda, yalniz arsiv boyut kadar birey arsivde
saklanir. Eger arsiv boyutu asilirsa, bir ¢esit kiimeleme yontemi kullanilarak kalabalik
bolgede olan elit bireyler arsiv boyutuna ulasilincaya kadar silinir, boylece ¢esitlilik te
saglanmis olur. Bu islem soyle yapilir: 1) ilk olarak, birbirine yakin bireyler kiimelenir,
i1) her kiime i¢cin o kiimeyi temsil eden bir birey secilir, iii) geriye kalan bireyler
kiimeden silinir. Bu kiimeleme islemi grafiksel olarak Sekil 3.17° de gosterilmektedir.
Orjinal SPEA’ da kiimeleme ama¢ uzayinda yapilmaktadir, ancak parametre uzayinda

da gergeklenebilir.
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Kiimeleme

fi

Sekil 3.17. SPEA cesitlilik islemi

SPEA yonteminde, topluluk boyutu ile arsiv boyutu arasindaki dengenin
saglanmasi basarima etki etmektedir. Eger arsiv boyutu g¢ok biiylik secilirse, elit
bireylerin sec¢ilme baskist da biiylik olacaktir ve bu durumda SPEA Pareto-optimal
cepheye yakinsayamayabilir. Diger taraftan, eg§er daha kiiciik bir arsiv kullanilirsa,
elitizmin etkisi kaybedilir. SPEA yontemini Onerenler arsiv boyutu ile topluluk boyutu
arasinda 1:4 oranim kullanmiglardir. Ayrica, arsivdeki bireyler segme mekanizmasinda
da kullanilir. Bir sonraki toplulugu olusturacak bireyler, arsiv + ana topluluk

birlesiminden segilir.

3.2.4. SPEA2 (Strength Pareto Evolutionary Algorithm 2, Pareto’ nun Giicii

Evrimsel Algoritma 2)

SPEA2, SPEA yonteminin gelistirilmig bir bicimdir. SPEA2, SPEA yoOntemine

gore daha 1yi bir puanlama mekanizmasi, bir yogunluk tahmin teknigi ve iyilestirilmis

bir arsiv (ikincil topluluk) yonetimi getirmektedir [Zitzler ve ark., 2001].

3.2.4.1. SPEA2 Puanlama Algoritmasi

Ayni arsiv iyeleri tarafindan bastirilan bireylerin puanlarin ayni olmasin

onlemek i¢in, SPEA2’ de her bir birey i¢in, hem baski altina alindigr hem de baskin
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oldugu bireyler dikkate alinmaktadir. Hem arsivdeki (P, ) hem de ana topluluktaki (P;)

her i bireyine, onu bastiran bireylerin sayisin1 gdsteren bir gii¢ (strength) degeri S(7)

atanir.
S@=|{jljeP+Fnix ) (3.11)

Burada + kiimelerin birlesimini, > sembolii ise Pareto baskinlik iliskisini
gostermektedir. Bir i bireyinin ham puami R(i), S degerlerine bagli olarak sdyle

hesaplanir:

RG)= .5()) (3.12)

JEP+B,,j>i

Bu deger, o bireyi hem arsivde hem de ana toplulukta bastiran bireylerin gii¢leri
kullanilarak belirlenir. Burada puan degerinin kii¢iik olmasi 6nemlidir, 6rnegin R(i)=0
ise bu birey bir Pareto bireydir, R(i) degerinin biiyiik olmasi ise, o bireyin bir¢ok birey
tarafindan bastirildig1 anlamina gelmektedir. Bu ham puan atama islemi her ne kadar
Pareto tanimina dayanan bir cesitlilik saglasa da, birgok bireyin birbirilerine baskin
olamadig1r durumlarda sikintilara yol agabilir. Bu yiizden, ayn1 ham puan degerlerine
sahip bireylerin ayirt edilebilmesi i¢in SPEA2’ de ek bir yogunluk bilgisi
kullanilmaktadir. SPEA2’ de kullanilan yogunluk tahmin teknigi k. en yakin komsuluk
yonteminden uyarlanmistir. Burada, yogunluk bilgisi £ en yakin komsu bireye olan
mesafenin bir (azalan) islevidir. SPEA2 yontemini Onerenler, basit olarak . en yakin
komsuya olan mesafenin tersini yogunluk bilgisi olarak kullanmiglardir. Her i bireyinin
arsivde ve o andaki ana toplulukta olan her j bireyine olan olan mesafesi (amag

uzayinda) hesaplanir ve bir listede saklanir. Bu liste artan bir sirada siralandiktan sonra,

k. eleman istenilen mesafeyi (le ) gosterir. Genellikle &, 6rnekleme oraninin karekdkii

olarak alamir, burada k =+ N + N * dir (N: topluluk boyutu, N : arsiv boyutu). Buna

gore, i bireyinin yogunlugu D(i) sOyle hesaplanir:
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D(i) =

T (3.13)
o; +2

i
Paydaya yogunluk degerinin sifirdan biiylik olmasini saglamak icin iki degeri
eklenmistir, boylece D(i) < 1 olur. Sonug olarak, bir i bireyinin son puam F(i), ham

puanina (R(#)) yogunluk bilgisinin (D(7)) eklenmesiyle bulunur:

F (i) = R() + D(@i) (3.14)

Ornek bir toplulugun SPEA2 yontemi tarafindan puanlanmasi, Sekil 3.18” de iki
adim olarak gosterilmektedir. 11k adimda, bireylerin giic degerleri hesaplanmaktadir.

Bir bireyin giicii, bu bireyin baskin oldugu bireylerin toplam sayisi ile belirlenir:

S(A)=2, S(B)=3, S(C)=2, S(D)=1, S(E)=1, S(F)=1, S(G)=1, S(H)=0 (3.15)

A bireyi iki bireye {G,H} baskin oldugu i¢in, 4 bireyinin giicii S(A)=2 olur.
H bireyi hicbir bireye baskin olmadig1 i¢in A bireyinin giicii S(H)=0 olur. Bir bireyin
giicii, onun bagil baskin olma yetenefini gosterir. lkinci adim, ham puanlarmn
belirlendigi adimdir. Bir bireyin ham puani, ona baskin olan bireylerin giicleri
toplamidir. Bu tanima gore, Pareto ya da baskin bireyler {4,B,C,D} *“ 0 ” ham puan
degerini alir. Ornegin A bireyinin ham puani higbir birey tarafindan bastirilamadig: igin
R(A)=0 olurken, H bireyi tiim bireyler tarafindan bastirildigr i¢in R(H)=11 olur.

Tiim bireylerin ham puanlar1 agagida verilmektedir:

R(A)=R(B)=R(C)=R(D)=0 (3.16a)
R(E)=S(C)=2 (3.16b)
R(F)=S(B)=3 (3.16¢)
R(G)=S(A}+S(B)=2+3=5 (3.16d)

R(H)=S(A)+S(B)+S(C)+S(D)+S(E)+S(F)+S(G)=2+3+2+1+1+1+1+0=11 (3.16¢)

Ugiincii adimda, her bireyin son puani; ham puanina yogunluk bilgisinin

eklenmesiyle bulunur. Sekil 3.18a, SPEA2 yontemi tarafindan atanan ham puan
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degerlerini gostermektedir, burada 4, B,C ve D bireyleri ayn1 puana sahiptir ve bireylerin
en cok istenilenden en az istenilene gore siralamasi soyledir: A,B,C,D>E>F>G>H.
Sekil 3.18b ise SPEA2 yontemi tarafindan atanan son puanlari gostemektedir ve
bireylerin en c¢ok istenilenden en az istenilene goére siralamasi ise sOyledir:

AD>-B>C>E>~F>G>H.

fz f2
I\ H(11) s H(11.1078)
"""""" AO)T\/ G(5) A(01019)£> G(5.1086)
F(3) F(3.1429)
® - B(0.1084)
B @ E@) E(2.1277)
)
C(0) C (0.1148)
° D (0) ® 1 0.1019)
® '
> ] > £
(a) (b)

Sekil 3.18. (a) SPEA2 ham puanlari
(b) SPEA2 son puanlari (arsiv boyutu=2, dolayisiyla k=3.1623)

3.2.4.2. SPEA2 Arsiv Yonetimi

SPEA?2 arsiv yonetiminde ilk olarak, arsivdeki veya ana topluluktaki puani birden

kiiciik olan tiim elit (Pareto) bireyler, bir sonraki neslin (adimin) arsivine kopyalanirlar

(P-ana topluluk, P -arsiv, N-topluluk boyutu, N -arsiv boyutu) :
Pyl = {i|iePt+ﬁt/\Puan (i)<1} (3.17)

Eger arsive kopyalanan Pareto birey sayisi, daha Onceden belirlenen arsiv

Prii|= N) artik secme mekanizmasina gecilebilir. Aksi takdirde, iki

boyutuna ulasirsa (

durum s6z konusu olacaktir: ya arsiv boyutununa ulasilamaz (‘F;H‘ < N) ya da arsiv
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boyutu asilmis olabilir (‘1_%4.1‘ >N). Eger arsiv boyutuna ulasilamazsa, bir 6nceki
adimdaki arsiv ve topluluktaki Pareto olmayan bireylerden en iyi N—‘I_)H-l‘ adedi

gelecek arsive kopyalanir. Bu islem soyle yapilir: arsiv ve ana topluluk ( 5 +Ft)
birlestirilir ve bireyler puan degerlerine gore siralanir. Siralanmis listeye gore puani
1’ den bilyiik veya 1’ e esit olan N—‘ﬁtﬂ‘ adet birey yeni arsive (;’t+1) kopyalanir.

Eger arsiv boyutu asilirsa yani Pareto bireylerin sayisi arsiv boyutundan fazla olursa, bu
durumda bir ¢esit arsiv giincelleme yontemi kullanilarak arsivdeki bireylerden bazilari
arsiv boyutuna ulasilincaya kadar silinirler. Silme isleminde bireylerin birbirlerine olan
mesafeleri goz oniine alinir. Bir bireye en yakin birey silinir. Eger en az mesafeye sahip
birkag birey varsa, bu durumda en yakin 2. birey silinir, bu islem bdylece devam eder.

Bu islemin nasil yapildigina dair grafiksel anlatim Sekil 3.19° da gosterilmektedir.

fz f2

fi

fi

Sekil 3.19. SPEA2 arsiv giincellemesi. Sag taraftaki sekilde Pareto bireylerin bir
kiimesi gosterilmektedir. Sol taraftaki sekilde ise giincelleme islevi
kullanilarak bireylerin silinmesi gosterilmektedir. Bu Ornekte arsiv
boyutu 5 se¢ilmistir

3.2.5. Diger Yontemler

Literatiirde c¢ok sayida CAGA yontemi Onerilmistir ve her gegcen giin bu
yontemlerin sayist artmaktadir. CAGA ile ¢ok boyutlu durumdan puanlama ile tek

boyuta inilmesinden dolayi, puanlama islemini yapmanin tek bir yolu yoktur. Bu
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nedenle CAGA yontemlerinin sayisi fazladir. Literatiirde onerilen ve sik kullanilan bazi
yontemler sdyledir: PAES (Knowles ve Corne, 2000), PESA (Corne ve ark., 2000),
NSGA-II (Deb ve ark., 2002b), DMOEA (Yen ve Lu, 2003) vb. Bu yontemler tezde
kullanilmadig icin ayrintilarina inilmeyecektir. Bu yontemlerin etkinlikleri, genellikle
test islevleri kullanilarak arastirilmistir. Bu yontemlerle ve GA’ larla ilgili bir¢cok
kaynaga internet lizerinden (http:/www.lania.mx/~ccoello/EMOOQO/, Erisim zamani:

10.10.2006) sitesinde ulasilabilir.

3.3. Cok Amach Genetik Algoritmalarda Kullanilan Test Islevleri

Literatiirde ¢ok sayida CAGA yontemi Onerilmistir ve Onerilmeye devam
edilmektedir. Bu kadar cok sayida yontemin olmasi, bu yontemlerden hangisi
digerlerinden daha iyidir seklinde bir soru sorulmasina yol agmaktadir. Ayrica, bir
yontemin etkinligini test etmek icin, o yontemin zor problemler {izerinde denenmesi
gereklidir. Bu amagla, CAGA yontemlerinin karsilastirma caligsmalarinda veya bir
CAGA yonteminin etkinliginin tespit edilmesinde kullanilmak iizere bir¢cok yapay test
islevi Onerilmistir ve bunlar karsilastirma ¢alismalarinda kullanilmislardir [Deb, 1999;
Deb, 2001; Huband ve ark., 2006; Coello Coello, 2007]. Bu test islevleri, genetik
algoritmalarin nasil ¢alistig1 konusunda ¢ok fazla bilgi sahibi olunmadan ortaya atilmig
analitik ifadelerdir. Bir CAGA’ da istenilen iki 6zellik vardir: Pareto-optimal cepheye
miimkiin oldugunca yakinsama ve bu cephe iizerinde ¢oziimlerin diizgiin dagilimi.
CAGA test islevleri, genellikle bu iki amaca ulasilmasini zorlastiracak bicimlerde
olusturulmustur. Ornegin, ¢cok modluluk, ayrik Pareto-optimal cepheler, icbiikeylik,
digbiikeylik, diizgiin dagilmamis Pareto-optimal cephe vb.

Kisitlamali ve kisitlamasiz ¢ok amagli genetik algoritmalar i¢in, bu tiir test
islevlerinin olusturulmasi amaciyla Deb tarafindan sistematik bir yol da &nerilmistir
[Deb, 1999]. Bu boliimde, kisitlamasiz test islevlerinden literatiirde en ¢ok kullanilanlar

verilmektedir.


http://www.lania.mx/%7Eccoello/EMOO/
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3.3.1. SCH1 Test islevi

Basit olmasina ragmen, en cok kullanilan tek parametreli (degiskenli) test
islevidir. Schaffer tarafindan Onerilmistir [Schaffer, 1984]. Bir en kiiclikleme

problemidir ve matematiksel ifadesi agsagidaki esitlikte verilmektedir:

fi(x)=x*
fr(x)=(x—2)? (3.18)
—A<x< A4

Buislev, x e [0,2] araliginda Pareto-optimal ¢éziimlere sahiptir ve Pareto-optimal
¢cozliim kiimesi 0< f] <4 aralifindadir. Parametre sinirlart i¢in (4), farkli ¢aligmalarda

farkli degerler kullanilmistir. 4 degeri yiikseldik¢e, Pareto-optimal cepheye olan
yakinsama zorlagsmaktadir. Bu test islevinin 4=6 degeri i¢in grafigi Sekil 3.20° de

verilmektedir.

SCH1 TestIslevi

24

22+

20

18 |

16 |

14 -

12 |-

10 |-

Sekil 3.20. SCH1 test islevi
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3.3.2. SCH2 Test islevi

Schaffer tarafindan Onerilmistir [Schaffer, 1984]. Bircok c¢alismada ve

uygulamada kullanilmistir. Bir en kiiciikleme problemidir ve matematiksel ifadesi

asagidaki esitlikte verilmektedir:

-X x<1
x—2 I<x<3
fﬁﬂ_ 4—x 3<x<H4
x—4 x>4
fox)=(x=5)
-5<x<10

(3.19a)

(3.19b)
(3.19¢)

Pareto-optimal cephe, iki ayrik bolgeden olusmaktadir: x e {[1,2 ]u [4,5 ] }.

Sekil 3.21, bu test islevinin grafigini gostermektedir. Bu problemin zorlugu, iki ayrik

bolgede yer alacak Pareto bireylerin ¢esitliliginin saglanmasidir.

SCH2 Test Islevi

100

20

80

70

60

50

40

30

20

10

Sekil 3.21. SCH2 test islevi
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3.3.3. FON Test Islevi

Fonseca ve Fleming tarafindan kullanilmis, n parametreli iki amaglh bir test

islevidir [Fonseca ve Fleming, 1995]. Bir en kiigiikleme problemidir ve matematiksel

ifadesi agagidaki esitlikte verilmektedir:

f( —1 exp( z_l(x \/; j (3.20a)

falx)=1- exp[l DR %)2 ] (3.20b)
n

—4<x; <4 i=12,..n (3.20¢)

Bu test islevinin Pareto-optimal cephesi x, e{—%,%} araligindadir.
n

Sekil 3.22° de 10 parametre i¢in, FON test islevinin grafigi gosterilmektedir.
Pareto-optimal cephe disbiikeydir. Bu ylizden bazi algoritmalar (agirlikli toplam
yaklasimi  gibi) Pareto-optimal bireylerin bu cepheye diizgiin dagilmasi

saglayamayabilirler.

FON Test Islevi
T T T

Sekil 3.22. FON test islevi
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3.3.4. POL Test islevi

Poloni tarafindan onerilmis, iki degiskenli ve iki amagh bir test islevidir [Poloni

ve ark., 2000]. Bir en kiiciikleme problemidir ve matematiksel ifadesi asagidaki esitlikte

verilmektedir:

fix)= [H (41— By P + (45 - 32)2}
fz(x)=[(x1 +3F +(x; +1)2}

A; =0.5sin1-2cosl+sin2—1.5cos2
Ay =1.5sinl—-cosl+2sin2—-0.5cos2
By =0.5sinx) —2cosx) +sinx, —1.5cosx,

By =1.5sinx; —cosxj +2sinx, —0.5cos x,

-r<(x,x)<rx

(3.21a)

(3.21b)

(3.21¢)
(3.21d)
(3.21¢)
(3.21)
(3.21g)

Bu test iglevi, Sekil 3.23° te gosterildigi gibi, igbilikey ve ayrik bir Pareto-optimal

cepheye sahiptir. Diger ayrik test problemlerinde oldugu gibi, ¢ogu ¢ok amacl

optimizasyon algoritmasinin Pareto-optimal cepheyi bulmasi zordur.

POL TestIslevi
T T

60

50 - i

40 4
w 30[ -

20| i

10 i

Se—
0 ! . . A ! !
0 10 20 30 40 50 60

Sekil 3.23. POL test islevi

70



93

3.3.5. Sik Kullanilan Diger Test Islevleri

Deb ve ark. tarafindan, sistematik olarak tasarlanmis cesitli test islevleri
Onerilmistir [Deb ve ark., 1999]. Bu test islevleri; i) Pareto-optimal cepheye yakinsama
ve ii) topluluk icerisinde ¢esitliligin saglanmas1 agisindan ¢ok amacli genetik algoritma
yontemleri i¢in zorluklara (sorunlara) yol agar. Ilk durum i¢in, ¢ok modluluk, aldaticilik
ve yalitilmis en iyi, en gok bilinen sorunlardir. Ikinci durum, diizgiin dagilmis bir Pareto
cephesi elde edilmesi i¢in Onemlidir. Bununla beraber, Pareto-optimal cephenin
karakteristikleri bir GA” nin diizgiin olarak dagilmis Pareto-optimal bireyler bulmasini
zorlastirabilir: disbiikeylik veya icbiikeylik, ayriklik ve diizglin olmayan dagilim.
Deb ve ark.’ larinin 6nerdigi yolun 15181 altinda 6 adet test islevi olusturulmus ve bunlar
CAGA yontemlerinin karsilastirilmast i¢in kullanilmiglardir [Zitzler ve ark., 2000,
Deb, 2002a]. Bu test islevlerinin hepsi en kiiciiklenme problemidir. Bu test islevleri

f,,g,h gibi ii¢ adet islevden olusmaktadirlar:

T =(f1(x)s f2(X)) (3.22a)
S1(0)=11Ga) (3.22b)
J2(0) = g(x250sxm) - A1 (X), & (25005 ) (3.22¢)
X =(X]eees X) (3.22d)

f7 islevi yalmzca ilk parametreye baghidir, g islevi ise geriye kalan m—1
parametreye bagl bir islevdir. 7 ise f| ve g’ nin islev degerlerine baghdir. Bu test

islevleri; bu {i¢ isleve, parametre sayisina ve bu parametrelerin aldiklar1 degerlere gore
birbirinden ayrilmaktadirlar.
Bu alt1 adet test islevi ZDT1, ZDT2, ZDT3, ZDT4, ZDT5 ve ZDT6 olarak
adlandirilir. ZDT adi 6neren kisilerin soyadlarinin bas harfleridir [Zitzler, Deb, Thiele].
ZDT test islevleri birgok CAGA karsilastirmasinda sik olarak kullanilmistir ve
kullanilmaya devam edilmektedirler [Zhang ve ark., 2006; Chen ve Lu, 2008; Gao,
2009; Wang ve ark., 2009]. Bu tezde de bu test islevlerinden dort tanesi yeni

yontemlerin karsilagtirilmasinda kullanilmak tizere se¢ilmistir.
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3.3.5.1. ZDT1 Test islevi

ZDT]1 test islevi digbiikey bir Pareto-optimal cepheye sahiptir:

S1x) = x (3.23a)

g(x2 e xy) =149- ) x;/(m=1) (3.23b)
i=2

fo(f1,9) =1-f/g (3.23¢)

Burada m=30 ve x; €[0,1] > dir. Pareto-optimal cephe g(x)=1 almarak

olusturulur. Bu test islevinin Pareto-optimal cephesi Sekil 3.24° te verilmektedir.

ZDT1 TestIslevi
T T T

0.8 -

0.7 -

06 -

04l .

03 -

0.2 -

0.1 -

Sekil 3.24. ZDT]1 test islevinin Pareto-optimal cephesi
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3.3.5.2. ZDT2 Test islevi

Bu test islevi, ZDT]1 test islevinin i¢biikey bir bi¢imidir:

fl(XI) =X

g(x25xm) =149 x;/(m—1)
i=2

f(f1.8) = 1_(f1/g)2

(3.24a)

(3.24b)

(3.24c¢)

Burada m=30 ve x; €[0,1] ° dir. Pareto-optimal cephe g(x)=1 alarak

olusturulur. Bu test islevinin Pareto-optimal cephesi Sekil 3.25” de verilmektedir.

ZDT2 Test Islevi
T T T

09

08

0.7

06

w05

0.4

03

0.2

0.1

Sekil 3.25. ZDT2 test islevinin Pareto-optimal cephesi

3.3.5.3. ZDT3 Test islevi

Bu test islevi ayrik bir islev 6zelligi gosterir, Pareto-optimal cephesi birkac¢ adet

stirekli olmayan (ayrik) digbiikey parcadan olusur:
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f1GD) = x

g(x25s ) = 179- Y x;/(m—1)
i=2

[2(f1.8) =1-4f1/g —(f1/8)sin(107 f})

(3.25a)

(3.25b)

(3.25¢)

Burada m=30 ve x; €[0,1] > dir. Pareto-optimal cephe g(x)=1 almarak

olusturulur. f, ifadesindeki siniis islevi Pareto-optimal cephede ayrikliga neden

olmaktadir. Bununla birlikte, parametre uzayinda higbir ayriklik yoktur. Bu test

islevinin grafigi Sekil 3.26° da verilmektedir.

ZDT3 Test Islevi
T T T

o8-

06

04

02+

0.1 02 03 04 05 06 07

Sekil 3.26. ZDT3 test islevi

3.3.5.4. ZDT4 Test islevi

08

09

Bu test islevi, 21° adet yerel Pareto-optimal cepheden olusur ve bu yiizden

CAGA’ larin ¢ok modluluga olan tepkisinin 6l¢iilebilmesi i¢in kullanilir:

f1(x) = x

(3.26a)
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2(x20esxyy) = 1+10(m —1) + i(xiz ~10cos(47 x;)) (3.26b)
=2
fH(f1.8) =1-f1/2 (3.26¢)

Burada m=10, x; €[0,1] ve x5,...,x,, €[-5,5]" tir. Kiiresel Pareto-optimal cephe
g(x)=1 alnarak olusturulur. En iyi yerel Pareto-optimal cephe ise g(x)=1.25

alinarak olusturulur. Sunu belirtmek gerekir ki; yerel Pareto-optimal cephelerin tamami
amag uzayinda ayirt edilemez. Bu test islevinin Pareto-optimal cephesi Sekil 3.27° de

verilmektedir.

ZDT4 Test Islevi
T T T

0.9 -

08 -

0.7 B

06 -

0.4 -

03 -

0.2 B

01 -

Sekil 3.27. ZDT4 test islevinin Pareto-optimal cephesi

3.3.5.5. ZDTS5 Test islevi

Bu test islevi CAGA’ lar1 aldatict bir problem olusturur ve diger test islevlerinden

parametrelerinin ikili say1 dizisi olmasi nedeniyle ayrilir:
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S1Ge) = T+ulxy) (3.27a)

g(x2 ""’xm) = ZV(M(xi)) (3.27b)
=2

L8 =1 f (3.27¢)

Burada u(x;), x, bit dizisindeki /” lerin sayisini verir.

2+u(x;) eger u(x;) <5

(3.28)
1 eger u(x;)=5

v(u(x;)) = {

Burada m=11, x 6{0,1}30 V€ X9 ,eees Xy, 6{0,1}5 > tir. Kiiresel Pareto-optimal
cephe g(x) =10 almarak olusturulur. g(x)=11 alinarak ise en iyi aldatici Pareto-

optimal cephe gorilebilir. Kiiresel Pareto-optimal cephe gibi yerel cepheler de

disbiikeydir. Bu test islevinin Pareto-optimal cephesi Sekil 3.28 de verilmektedir.

ZDTS Test Islevi
T T

Sekil 3.28. ZDTS5 test islevinin Pareto-optimal cephesi
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3.3.5.6. ZDT6 Test islevi

Bu test islevi diizgiin olmayan dagilima neden olan iki zorluk icermektedir: ilk
olarak, Pareto-optimal bireyler kiiresel Pareto-optimal cephe {izerinde diizgiin bir
bicimde dagilmamuslardir; ikinci olarak, Pareto-optimal cephe yakinlarinda bireylerin

yogunlugu en azdir, uzakta ise en fazladir:

S1(xp) = 1—exp(—4xp) sin® (677 x1) (3.29a)

2(x2mmtm) = 149-(3 ) f(m —1))025 (3.29b)
=2

(g =1-(f1/8)° (3.29¢)

Burada m=10, x; €[0,1]" tir. Pareto-optimal cephe g(x) =1 alinarak olusturulur

ve i¢bilikeydir. Bu test islevinin grafigi Sekil 3.29° da verilmektedir.

ZDT6 Test Islevi
T

09 -

08 -

0.7 -

06 B

0.4 -

03 B

0.2 -

0.1 -

Sekil 3.29. ZDT6 test islevi
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Literatirde CAGA yontemlerinin  karsilastirilmas1 i¢in  bir¢cok test islevi
onerilmistir. Huband ve ark., bu test islevlerini derleyerek, bir test islevi ara¢ kutusu
haline getirmislerdir. Ayrica, bu test islevlerinin 6zelliklerini ve problem tiplerini de
belirtmislerdir. Cizelge 3.1 de, literatiirde sik kullanilan baz1 kisitlamasiz test iglevleri,

parametre sinirlart ve problem tipleri verilmektedir.

Cizelge 3.1. CAGA test islevleri (m parametre sayisi)

Test m Parametre Amac islevieri Pareto
Islevi Sinirlari 13 Cephesi
(X)) = x;
H(X ) = X1 - 4/ / X
ZDT1 | 30 [0,1] Ja (X0 = 8l )En e (] Disbiikey
g(X)=1+ 9(2 xi}/(m -1)
i=2
fi(X) = x
f2(X) = g(X)[1=(x;/g(X)?] o
ZDT2 | 30 [0,1] . i¢biikey
g(X) = 1+9[Z x,-]/(m -1)
i=2
S1(X) = x
Jo(X)=g(X)[1-4/x1 /g(X) -
¥ Disbiikey
1 .
ZDT3 30 [0,1] 20 sin( 10 7zxy )] ve
g Siireksiz
g(X)=1+9[inJ/(m—l)
=2
X)) = x
x1 €[0,1] So(X)=g(X)1l-4/x;/g(X)]
ZDT4 10 | x5,,x, €[-5,5] | g(X) =1+10(m 1)+ Disbiikey
+ Zm (x7? 10 cos( 47 x;))
j=2
/i(X) =1-exp(~4x))sin® (671)) igbiikey
f2(X) =g =(/(X)/ g(X)?] ve
ZDT6 10 [0,1] 0.25 Diizgiin
x Dagitilma
g(X)=1+ 9{(5;@]/(;71 - 1)} i
MOPL 1 L0y | = Digbiik
(SCHI) e £ =(x-2) ighuey
o, Si@ e x,) =1=exp(=2 1 (x; = 1/n)%) -~
- -4, ¢biikey
MOP2 Sy (51 ) = 1=exp(=3 ", (x; = 1/4m)?)
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Cizelge 3.1. (devam) CAGA test islevleri(m parametre sayisi)

MOP3

Maks.fi(x1,xy) ==1= (41 = By)* = (4, - B,)*
Maks.f5(x1,x7) = —(x; +3)> = (x +1)°

A4; =0.5sin1-2cosl+sin2—1.5cos2

A, =1.5sin1—cos1+2sin2—-0.5cos2

By =0.5sinx; —2cosxy +sinx, —1.5cosx,

B, =1.5sinx; —cosx; + 2sinx, —0.5cos x,

Stireksiz

MOP4

3 [-5,5]

2 —0.2¢x? +x?
ﬁ(xl,xz,X3):Zi:1—loexp ! l+]

308 . .3
2 (axp,x3) =20 | +Ssin(x;)

Stireksiz

MOP5

2 [-30,30]

f1(x1,x) = 0.5(x2 + x3) +sin(x? +x3)

(Bx; —2x +4)2 (x;—x +1)2
1 2 + 1 2
8 27

1 2 2
f3(x1,x2)=#—l.lexp(—xl —Xz)
X1 +X2 +1

So(x1,x) =

Siireksiz

MOP6

S1(x1) =x

1+ 1OX2

2
So(x1,x2) =(1+10x;)
Xl .
—————sin(8xx
1+10x, (870))

Siireksiz

MOP7

2 [-400,400]

2 2
-2 ;)
2 13
(+x0 =37 (xtn+d)’
36 8
(31 +2x5 —1)? L Cx +2xy)%
175 17

J1(x1,xp) =

17

So(xp,xp) =

13

S3(xp,x) =

DTLZ1

- [0,1]

fi= (l+g)H?/=fl_lcos(y,~7z/2)

Fuvezaa -1 =+ @05 T w2 JA=vas i)

Sy =(1+2)0.5(1-y;)
g= 1oo[k + Zf.;l((zi ~0.5)% — cos(207(z; — 0.5)))]

Dogrusal

DTLZ2

- [0,1]

M—1
fi=01+g)0.5 o Vi

Feangs = @ TTS o082 sinry ey /2
Ju =(+g)sin(yz/2)

g=>" ((zl- —0.5)2)

Icbiikey

DTLZ3

- [0,1]

DTLZ2 ile ayni, yalnizca g ifadesi DTLZ1’ deki
ile degistirilir.

Icbiikey
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Cizelge 3.1. (devam) CAGA test islevleri (m parametre sayisi)

. . . o
DTL7Z4 i [0.1] DTLZ2 ile ayni, yalnizca, y; € y ifadesi y;" ile ichiikey

degistirilir (« >0’ dir)

DTLZ2 ile ayni, yalmizca y,,...,y3-1 € y ifadesi

DTLZS | - [0.1] 122801 itadesi ile degistirilir. )
2(1+g)

. . R LA A
DTLZ6 i [0.1] DTLZS ile ayni, yalnizca g ifadesi g = Zi=1zl

ile degistirilir.

Sm=t:M-1 = Vm

fur =(1+g)[M B Vi R sin(37_zf,-))D

I+g

1

DTLZ7 | - [0,1] Siireksiz

3.4. Cok Amach Genetik Algoritma Basarim Olgiitleri

Bir optimizasyon problemini ¢6zmek i¢in yeni bir yontem onerildiginde, dnerilen
yontemin calistifin1 gosteren gorsel bir tanimlama yeterlidir. Bu tiir yontemlerin
isleyisinin okuyucunun zihninde, bir resminin ¢izilebilmesi énemlidir. Bununla birlikte,
yontem popililer oldugunda ve bir¢ok farkli uygulamasi yapildiginda, basariminin
karsilastirilabilmesi igin gesitli test islevlerine verdigi tepkiler belirlenmelidir.

Cok onceleri, CAGA’ larin amag uzayinda bulduklar1 bastirilamayan bireyler ile
gercek Pareto-optimal bireylerin birlikte gosterilerek karsilastirma yapilmaktaydi. Bu
caligmalarda, bulunan sonuglarin gercek Pareto-optimal sonuglara ne kadar yaklastigi
vurgulanirdi. Farklit CAGA yontemlerinin onerilmesiyle birlikte, bu yontemlerin g¢esitli
test iglevleri lizerinde basarimlarinin karsilastirilmasi gerekli olmustur. Bir karsilastirma
calismas1 yapmadan Once, uygun bir test islevinin seg¢ilmesine ihtiya¢ vardir. Test
islevlerinin Pareto-optimal cephelerinin yerinin bilinmesi gereklidir (hem amag¢ hem de
parametre uzayinda).

Cok amacl optimizasyonun iki temel amaci vardir: (i) Pareto-optimal cepheye
(6nceden biliniyorsa) miimkiin oldugunca yakin ¢oziimler bulmak (yakinsama),
(i1) bulunan bastirilamayan bireylerin Pareto cephesinde miimkiin oldugunca diizgiin

dagilmasi (dagilim veya cesitlilik). 11k amag, Pareto-optimal bolgeye dogru bir aramaya



103

ihtiya¢ duyarken; ikinci amag, Pareto-optimal cephe boyunca bir aramaya ihtiya¢ duyar
(Bkz. Sekil 3.30a).

Cesitliligi fazla olan bir kiime, tiim Pareto-optimal cepheye diizgiin olarak
dagilmis bireylerden (¢ozlimlerden) olusur. Cesitlilik Olgiitii, ayn1 zamanda iki farkh
oOlgiite ayrilabilir: en ug bireylerin yayilimi ve dagilim (bireyler arasindaki bagil mesafe)

[Zitzler ve ark., 2000].

Arama Arama

[/Jzayl

Ikincil
Amag

Birincil
Amag

Pareto-optimal 2

Pareto-optimal
Coziimler

Cephe

(2) (b)

Sekil 3.30. (a) Cok amagli optimizasyonda ulasilmas istenen iki amag
(b) Ideal bir Pareto-optimal ¢6ziim kiimesi

Iyi bir CAGA yénteminin, gergek Pareto-optimal cepheye yakin ve bu cepheye
diizgiin olarak dagilmis ¢oziimler bulmasi gerekmektedir. Sekil 3.30b’ de o6rnek bir
problem {izerinde ideal bir CAGA’ nin basarimi gosterilmektedir. A¢ik¢a goriilecegi
lizere; bulunan Pareto bireyler Pareto-optimal cephe iizerinde yerlesmekte ve bu cephe
izerinde diizgiin olarak dagilmaktadirlar. Bununla birlikte, problemden gelen farkli
zorluklar ve segilen algoritmanin yetersizliginden dolayi, bu sekilde iyi yakinsamis ve
iyl dagilmis Pareto bireylerin bir CAGA tarafindan bulunmasi her zaman miimkiin
degildir. Sekil.31 (a) ve (b) ° de iki farkli algoritma tarafindan bulunmus Pareto-optimal
bireyler gosterilmektedir. 1. algoritma Pareto-optimal cepheye cok iyi yaklagsmasina
ragmen, bu cephede bireylerin dagilimi kotiidiir. Yani bu algoritma, Pareto-optimal
bolgenin orta kisimlari i¢in higbir bilgi saglayamamaktadir. Diger taraftan, 2. algoritma

bireyleri diizgiin bir sekilde dagitmasina ragmen, bulunan sonuglar ne yazik ki gercek
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Pareto-optimal cepheye yakin degildir. Pareto-optimal sonuglar bulunamamistir. Bu

ylizden, bu algoritmanin daha iyi olduguna dair kesin bir sonuca varmak zordur.

Pareto-optimal

O Pareto-optimal
bireyler OO

bireyler

(a) (b)

Sekil 3.31. (a) Yakinsama iyi, ancak dagilim kotii (1. Algoritma)
(b) Yakinsama kotii, ancak dagilim 1y1 (2. Algoritma)

Pareto-optimal cepheye yakinsama ve bu cephe iizerinde diizgiin dagilim
birbiriyle catisan iki farkli amag¢ oldugu i¢in, bir algoritmanin basarimina karar
verebilecek tek bir Olciit yoktur. 1. algoritma birinci amag i¢in iyiyken, 2. algoritma
ikinci amag icin iyidir. Eger, Pareto-optimal cepheye yakinsama ile ilgili bir olgiit
tanimlarsak ve bir diger Olgiitii de diizgiin dagilim i¢in tanimlarsak, iki algoritma
birbirini bastiramaz, yani birbirlerine karsi bir iistlinliikleri yoktur. Dolayisiyla, bu iki
amaci1 saglamak icin en azindan iki dlgiite ihtiyag vardir.

Sekil 3.32a’ da B algoritmasi tarafindan bulunan Pareto bireylere gore, 4
algoritmasi1 tarafindan bulunan Pareto bireyler Pareto-optimal cepheye daha yakindir.
Bu durumda, A algoritmasinin B algoritmasindan daha iyi oldugu agik¢a goriilmektedir.
Bununla birlikte, Sekil 3.32b’ de, 4 algoritmasinin buldugu bireylerden bazilari, B
algoritmasinin buldugu bireylerden bazilarini bastirmaktadir ve bunun tersi de s6z
konusudur. Bu durum, ¢ok amagli optimizasyon i¢in bir bagarim Olgiitii tasarlarken
dikkat edilmesi gereken bir zorluktur. Burada, iki algoritma da, yakinsama ve gesitlilik
acisindan birbirlerine benzerdirler. Bu tiir bir karsilastirmay1 yapabilmek i¢in, dl¢iitlerin

cok 1yi tanimlanmasi gereklidir.
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(a) (b)

Sekil 3.32. (a) A algoritmasi B algoritmasindan daha iyi
(b) 4 ve B algoritmalarini karsilagtirmak zor

Yukaridaki tartigmalara gore, iki veya daha fazla algoritmay1 karsilastirirken, en
azindan i1ki basarim Olgiltiiniin kullanilmas1 gerektigi ve basarim Olgiitlerinin
tanimlarinin ¢ok iyi yapilmasi gerektigi anlasilmaktadir. Asagida literatiirde kullanilan
basarim Ol¢iitlerinin bazilar1 iic farkli kategoride incelenmektedir: ilk bdliimde
Pareto-optimal cepheye olan yakinsamayir bulmak i¢in kullanilan Olgiitler, ikinci
boliimde c¢esitliligi veya dagilimi1 6lgmek i¢in kullanilan 6l¢iitler ve {i¢iincli boliimde her
iki amact da olgmek icin kullanilan o6lgiitler verilmektedir. Literatiirde cok sayida
basarim Olgiitii onerilmis ve Onerilmeye devam edilmektedir. Tezde yer almayan diger
basarim oOlgiitleri ile ilgili ayrintili bilgilere (Deb, 2001; Coello Coello ve ark., 2007)

kaynaklarindan ulasilabilir.

3.4.1. Yakinsama Icin Kullamlan Basarim Olgiitleri

Bu 6l¢iitler, 6nceden bilinen bir Pareto-optimal kiimeye (P*), CAGA yonteminin
buldugu N adet bireyden olusan bir Q kiimesinin yakinsamasini 6l¢mek i¢in kullanilir.
Farkli boyutlardaki bu iki farkli kiime arasindaki yakinsamay1 bulmak i¢in, ¢ok sayida
Ol¢iit tanimlanabilir. Asagida bu amag igin, literatiirde yer alan ve kullanilan dlgiitlerden
bazilar1 verilmektedir. Bu olgiitler, eger P kiimesi ¢ok elemanli segilirse (6rnegin 500

bireylik), yakinsama i¢in iyi bir tahmin saglayabilmektedirler.



106

3.4.1.1. Hata Oram (Error Ratio, ER)

Bu 6lg¢iit, basitce Q kiimesinde yer alan ¢6ziimlerden (bireylerden) kag¢ tanesinin
P Pareto-optimal kiimesinin iiyesi olmadigmimn sayilmasiyla hesaplanir [Veldhuzien,

1999] ve matematiksel olarak sdyle hesaplanir;

Q..
ER = it (3.30)
9

Burada eger i bireyi P~ kiimesinin elemam degilse e;=1, aksi takdirde ise e;=0
olur. Sekil 3.33" te P’ ve O kiimeleri gosterilmektedir. Buna gore O kiimesinde,
Pareto-optimal kiimeye ait olmayan 3 birey (4,B,D) ve toplamda 5 birey oldugu i¢in,
hata oran1 ER=3/5=0.6 olarak hesaplanir. (3.30) esitligine gore eger ER degeri kii¢lik bir
degerse, bunun anlami1 Pareto-optimal cepheye iyi bir yakinsama s6z konusu oldugudur.
ER olgiiti, 0 ile 1 arasinda degerler alir. ER=0 ise, tiim bireyler Pareto-optimal cepheye
aittir ve en 1yi yakinsama elde edilmistir, ER=1 ise hig¢bir birey Pareto-optimal cepheye

ait degildir ve yakinsama en kotiidiir ya da yoktur.

> f,

Sekil 3.33. Kareler: Pareto-optimal cepheyi olusturan bireyler (P*) ve
Daireler: CAGA yontemi tarafindan bulunan Pareto bireyler (Q)

Burada sunu da belirtmek gerekir ki; eger O’ nun bir eleman1 Pareto-optimal olup
eger P~ kiimesinde yer almiyorsa, bu durumda (3.30) esitliginde Pareto olmayan bir
¢oziim olarak diislintilmelidir. Bu ylizden, (3.30) esitliginde fazla sayida bireyden

olusan bir P kiimesi kullamlmalidir. Bu l¢iitiin bir baska eksikligi de, O’ nun higbir
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elemaninin Pareto-optimal kiimeye iliye olmamasi durumudur. Bu eksikliklerinden

dolayi, bu 6lgiit ¢cok fazla kullanilmamaktadir.

3.4.1.2. Kiime Kapsama Olgiitii (Set Coverage Metric, C)

Bu olgiit, Zitzler tarafindan 1999 yilinda sunulmustur [Zitzler, 1999; Zitzler ve
Thiele, 1999]. Bu olgiit, 4 ve B gibi iki ¢oziim kiimesindeki bireylerin bagil dagilin
hakkinda bir fikir elde etmek ic¢in kullanilir. Kiime kapsama olciiti C(4,B),
B kiimesinde yer olan bireylerden kag¢ tanesinin 4 kiimesinde yer alan bireyler

tarafindan bastirildiginin oranina bakilarak hesaplanir:

|{beB|EIaeA:aSb}|

C(A4,B) = A

(3.31)

C(A,B)=1 ise, B kiimesinin tiim elemanlari, 4 tarafindan bastirilmaktadir. Diger
taraftan C(4,B)=0 ise, B kiimesinin hi¢bir eleman1 A tarafindan bastirilamamaktadir.
Bastirma islevi, simetrik bir islev olmadigi icin C(4,B) olgiti, /-C(B,A)’ ya esit
olmayabilir. Bu yiizden, 4’ daki ka¢ bireyin B tarafindan veya B’ deki ka¢ bireyin 4
tarafindan kapsandigin1 anlamak i¢cin hem C(4,B) hem de C(B,A) Olgiitlerinin
hesaplanmas1 gereklidir.

Zitzler 1999 yilinda, bu dlgiitii iki algoritmay1 karsilastirmak i¢in kullanmis olsa
da, bu 6lgiit aym zamanda 4=P" ve B=Q kullanilarak, bir algoritmamin basarmminin
Olclilmesi icin de kullanilabilir. C(P*,Q) Olciitli, O’ da yer alan bireylerin P* “daki
bireyler tarafindan bastirilmasina bagli olarak hesaplanabilir. Sekil 3.33° teki P* ve Q
kiimeleri i¢in, C(P",Q)=3/5=0.6 olarak hesaplanir, ¢linkii ii¢ birey (4,B,D) P’ kiimesine
ait bireyler tarafindan bastirilmaktadirlar. C(Q,P”) ise sifir olacaktir, ¢iinkii P~ “in higbir

eleman1 Q tarafindan bastirilamamaktadir.



108

3.4.1.3. Nesilsel Mesafe (Generational Distance, GD)

Bu 6lgiit, O kiimesinde yer alan bireylerin P kiimesinde yer alan bireylere olan

ortalama mesafesini hesaplar [Deb, 2001; Deb ve ark., 2002b]:

1/
)"
l:l 1
GD = (3.32)

0]

p=2 yani iki amagh bir problem i¢in, O da yer alan bir i bireyinin, P" ‘da en

yakin oldugu bireyle arasindaki Oklit mesafesi sdyle hesaplanir:

p* M . (k) 2
d;=min | [f,ff) -t j (3.33)
k=1 m=1

Burada f,:;(k) , P° “n k. bireyinin m. amag islevinde aldigi degerdir. Sekil 3.33
i¢cin, bulunan c¢oziimlerden 4 bireyi / nolu Pareto-optimal ¢dzliime, B bireyi 3 nolu
Pareto-optimal ¢o6ziime, C bireyi 5 nolu Pareto-optimal ¢6ziime, D bireyi 7 nolu
Pareto-optimal ¢oziime ve E bireyi de 8 nolu Pareto-optimal ¢6ziime en yakin

mesafededir. Tim bireyler i¢in amag islevi degerleri Cizelge 3.2” de verilmektedir.

Cizelge 3.2. Ornek uygulama

Birey fi f, Birey f1 f,
1 1.0 7.5 8 8.4 1.2
2 1.1 55 A 1.2 7.8
3 2.0 5.0 B 2.8 5.1
4 3.0 4.0 C 4.0 2.8
5 4.0 2.8 D 7.0 2.2
6 5.5 2.5 E 8.4 1.2
7 6.8 2.0
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Buna gore bu bireyler arasindaki Oklit mesafeleri sdyle hesaplanabilir:

d g =+1.2-1.0 +(7.8-7.5)* =036 (3.34a)
dg3 =(2.8-2.01 +(5.1-5.0) =0.81 (3.34b)
des =(#.0-4.07 +(2.8— 2.8 =0.00 (3.34c)

dpyy =(7.0-6.8) +(22-2.0Y =0.28 (3.34d)

dpg =\(84—84) +(1.2-1.27 =0.00 (3.34¢)

(3.32) esitligine gore nesilsel mesafe GD=0.19 olarak hesaplanir. Daha kii¢iik GD
degerine sahip olan algoritma, yakinsama ac¢isindan daha iyidir. Bu dlgiitteki zorluk
sudur; eger mesafe degerleri arasinda biiyiik bir dalgalanmaya sahip bir Q kiimesi varsa,
bu 6lciit gercek mesafeyi veremeyebilir. Boyle bir durumda, GD 6lgiitliniin varyansinin
hesaplanmas1 gereklidir. Ayrica, eger amagc islevi degerleri genlik olarak farklilastyorsa,
mesafe hesab1 yapilmadan O6nce normalize edilmelidirler. Mesafe hesabinin giivenilir
olmasi isteniyorsa, P kiimesinin eleman sayisimn biiyik secilmesi (6rnegin 500)
gereklidir.

Bir¢cok makalede bu olgiit kullanilmistir [Zitzler ve Thiele, 1999; Deb, 2002b].

Baz1 makalelerde bu 6l¢iit y olarak adlandirilmis ve standart sapmasi da kullanilmistir.
Eger bu degerin standart sapmasi kiigiik olarak hesaplanmigsa, y degeri giivenilir olarak

kabul edilmektedir.

3.4.1.4. En Biiyiik Pareto-Optimal Cephe Hatas1 (Maximum Pareto-
Optimal Front Error,MFE)

Bu olgiit, O’ nun tiim elemanlar1 arasindaki en kotii d; mesafesini hesaplar
[Veldhuizen, 1999]. Sekil 3.33° teki problem icin, en koti mesafe yukaridaki
hesaplamalardan da goriilecegi lizere B bireyi tarafindan olusturulur ve MFE=0.81" dir.
Bu 6l¢iit yakinsama i¢in basit bir 6l¢iittiir, ancak bireylerin dagilimi i¢in yanlis bir bilgi

verebilir.
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3.4.2. Dagilim veya Cesitlilik I¢in Kullanilan Basarim Olgiitleri

CAGA tarafindan bulunan Pareto bireyler arasindaki ¢esitliligin / dagilimin
hesaplanmasi icin bir¢gok Olciit Onerilmistir. Asagida bunlardan birkag tanesi

agiklanmaktadir.

3.4.2.1. Aralik (Spacing)

Schott 1995 yilinda, bir CAGA yontemi tarafindan bulunan Pareto bireyler
kiimesinde, ardisil bireyler arasindaki bagil mesafenin hesaplanmasi i¢in bir oOlgiit

Onermistir [Schott, 1995]:

0
S_\/Lz(dl- _df (3.35)
25

. M
Burada, d; = min keQnk#i Zmzl

£l - fn’j‘ formiilinden hesaplanir. d bu

ifadenin ortalama degeridir ve soyle hesaplanir; d= Z‘g‘l d; /|Q| . Buradaki mesafe

hesab1 soyle yapilmaktadir: i. bireyle, Pareto-optimal kiimedeki diger tiim bireyler
arasindaki amag islevi degerlerinin mutlak deger olarak farklarinin en kii¢lik degeridir.
Burada suna dikkat edilmelidir ki; mesafe hesabu, iki birey arasindaki en kiigiik Oklit
mesafesinden farklidir.

Bu 06l¢iit, farkli d; degerleri arasindaki standart sapmalar1 6lgmektedir. Bireyler
birbirlerinden diizgiin araliklarla dagiliyorlarsa, dnerilen mesafe olgiitii kiiclik olacaktir.
Bu yiizden, Pareto bireyleri arasinda daha kiiciik bir aralik dl¢iitii veren yontem daha iyi
bir yontem olacaktir. Sekil 3.33° te verilen problem icin, dy mesafesinin hesabi soyle

yapilir;

d 4 =min((1.6+2.7),(2.8+5.0),(5.8+5.6),(7.2 +6.6)) = 4.3 (3.36)
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Benzer olarak, dg=3.5 , d¢=3.5 , dp=2.4 ve dg=2.4 olarak hesaplanir. Bu
sonuglara gore 4 ve E bireyleri arasinda hemen hemen diizglin bir dagilim oldugu

anlagilmaktadir. Bu ylizden, bulunan d; degerlerinin standart sapmas1 yiiksek ¢ikacaktir.

Buna gore, d =3.22 ve S=0.73 olarak bulunur. Ama¢ uzaymda rasgele yerlesmis
Pareto bireylerden olusan bir kiime i¢in, standart sapma daha kiigiik ¢ikacaktir.

Bu dlgiit, bulunan bastirilamayan bireylerin dagilimi hakkinda yararli bilgiler
saglamaktadir. Bir i bireyinin tiim diger bireylerle olan mesafesinin hesaplanmasi ve en
kiictigliniin (d;) bulunmasi1 nedeniyle islem sayisi fazladir. Bununla beraber, mesafe
hesabindaki simetriden yararlanilarak, hesaplamalarin yarisindan kurtulabilir, ancak
yine de islem sayis1 bulunan Pareto bireylerin sayisinin karesiyle orantili olacaktir. Deb,
ardigil bireyler arasindaki d; mesafesinin her amac¢ islevinde ayr1 ayri olarak
hesaplanmasi i¢in, bir yol onermistir [Deb ve ark., 2002b]. Bu yol soyledir: ilk olarak,
bulunan Pareto-optimal cephe, her amag islevindeki genlik degerine goére artan bir
sirada siralanir. Daha sonra, her bir ¢6zlim ya da birey i¢in, her bir amagcta en yakin iki
komsusu arasindaki amag islevi degerlerinin farkinin toplami alinir. Bu durumda mesafe
Olciim yontemi yukarida bahsedilen mesafe Olglimiinden daha hizlidir. Farkli amag
islevleri eklendiginde, (3.35) esitligini kullanmadan 6nce amacglar1 normalize etmek
onemlidir. Ayrica, bu 6lgiit, dagilimin boyutunu dikkate almamaktadir. Dagilim diizgiin

oldugu stirece, S 6l¢iitii kiiciik bir deger alacaktir.

3.4.2.2. Yayihm (Dagilim, Spread)

Deb, yukaridaki olgiitte belirtilen zorlugu gidermek igin yayilim Ol¢iitiini
Oonermistir [Deb ve ark., 2002b]:

T
zldm + 30 d; - d‘
A== — (3.37)
S d+lold

Burada, d; komsu bireyler arasindaki mesafeler ve d bu mesafelerin ortalama

degeridir. d; mesafeleri hesaplanirken; Oklit mesafe hesab1 veya kalabaliklik mesafe
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hesab1 [Schott, 1995] kullanilabilir. d; parametresi, m. amag islevi igin, P" ve 0
kiimelerinde en ug bireyler arasindaki mesafedir.

f
4  Enug birey

En ug
birey

Sekil 3.34. Bireyler arasindaki mesafeler

Sekil 3.34” te, iki amagli bir problem icin, d; ve d; en ug bireylere olan
mesafeler ve i. ve (i+1). ardisil bireyler arasindaki Oklit mesafeleri gosterilmektedir.

Sekilden de goriilecegi lizere, (3.37) esitligindeki |Q| terimi QQ|—1) terimi ile yer
degistirilebilir. Bu dlgiit; d7 =0 ve tim d; degerleri de ortalama degeri d’ ye gore ayni

olan ideal bir dagilim i¢in sifir degerini alacaktir. Buradaki ilk kosulun anlami; bulunan
Pareto bireylerin gercek Pareto cephesindeki en ug bireylerle ayni olmasi gerektigidir.
Ikinci kosul ise, bireyler arasindaki dagilimin diizgiin olmas1 gerektigini sdyler. Ideal
kiime, herhangi bir ¢ok amacgli genetik algoritma ile belirlenebilir. Bundan dolayi,
bireyler ideal olarak dagilmissa A =0 olacaktir. Bulunan Pareto bireylerin dagilimi

ideal olsun, ancak bireyler bir noktada kiimelenmis olsunlar. Béyle bir dagilimda tiim

d; —3‘ degerleri sifir olacaktir, ancak d; degerleri sifir olmayacaktir. Bu durumda,

A:z]\m/lzldé" /(zﬂm/[:ldf +QQ|—1)E) sekline dontisecektir. Bu deger de [0,1]

araliginda olacaktir. Payda, Pareto cephesine yaklagimin boyutunu olgtiiglinden, A
degeri d,, ile orantili olarak artacaktir. Bu yiizden, bireyler ideal dagilima ne kadar

yakin olarak kiimelenirse, A degeri de sifirdan bire dogru artacaktir. Eger

bastirilamayan bireyler diizglin olarak dagilmamissa, paydaki ikinci terim sifir
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olmayacagi i¢in A degeri daha da artacaktir. Bundan dolayi, kotii dagilimlar i¢in A
degeri 1’ den daha biiytik olabilir.
Ornegin, Sekil 3.34° te verilen 6rnek igin, Pareto cephesinin en ug¢ sagindaki

birey (8 nolu birey), Pareto bireylerin en ucundaki bireyle (E bireyi) aynidir. Bu ylizden,
d; =0 olacaktir. Pareto cephesindeki en ug¢ sol noktadaki bireyle ayni olan bir birey
bulunmadig1 i¢in d; =0.5 olarak Schott” un mesafe dl¢iimiiyle bulunur. Sekil 3.34” teki

d; degerleri sdyle bulunur: d,=4.3, d,=3.5, d3=3.5, d4=2.4. Buna gore d =3.43 olarak

hesaplanir. Yayilim o6lgiitli ise s0yle hesaplanir:

| _03+0+[43-343+[3.5-343+3.5-343|+[2.4-343
- 0.5+0+4x3.43

=0.18 (3.38)

Bulunan bu deger sifira yakin oldugu igin, dagilim ¢ok koti degildir. 4 bireyi, /
nolu bireyle ayni olsaydi, bu durumda A =0.15 olurdu, yani dagilim su andakinden
daha iyi olabilirdi. Bu yiizden, daha kiiclik bir A degeri bulabilen CAGA yontemi,

diizgiin dagilim agisindan daha iyi olacaktir.

3.4.2.3. En Biiyiik Yayillm (Maximum Spread)

Zitzler 1999 yilinda, bulunan bastirilamayan birey kiimesinin en uzak islev
degerlerini kullanarak olusturulan hiperkiipiin kdsegen uzunlugunu kullanan bir 6lgiit

onermistir [Zitzler ve Thiele, 1999]:

M[Q o T
D=, 37| max f;, ~min £, (3.39)

m=l1 i=1 1=

Iki amagcli problemler icin, bu &l¢iit, ama¢ uzayinda en uzak noktalarda yer alan

bireyler arasindaki Oklit mesafesine denk gelmektedir (bkz Sekil 3.35).
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Sekil 3.35. En biiyiik yayilim olgiiti

Bu 6lgiitiin normalize bigimi asagidaki gibidir:

2
o o
- | M| max o —min o
D= |— z i=1 i=1
M - Fr;nax _F’znin

(3.40)

Bu formiilde, 7™ ve F™" secilen Pareto-optimal cephenin (P*) m. amag

islevinde aldig1 en yiiksek ve en diisiik degerlerdir. Bu yiizden, bu 6l¢iitiin degeri / ise,

genis bir bicimde dagilmis bir bireyler kiimesi bulunur. Bununla beraber, ne D ne de

D aradaki bireyler i¢in dogru bir dagilim hesaplayamaz.

3.4.3. Yakinsamayi ve Dagihm Birlikte Hesaplayan Basarim Olgiitleri

Hem yakinsamay1 hem de diizglin dagilimi hesaplamak i¢in kullanilabilen bazi

Olciitler de bulunmaktadir. Boyle bir 6lgiit, yakinsama ve dagilim 6lgmeyi ayni anda

saglayabilir. Bununla birlikte, daha iyi bir sonu¢ alinmasi i¢in yukarida bahsi gecen

olgiitlerden biri ile kullanilmasi1 daha iyi olabilir.
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3.4.3.1. Hiperkiip (Hypervolume)

Bu 0l¢iit, tiim amag islevlerinin en kiigiik yapilmaya calisildigi problemler igin,
(@’ nun elemanlart (Sekil 3.36° da tarali alan) tarafindan kapsanan hacmi (amag
uzayinda) hesaplamak icin kullanilir [Zitzler ve Thiele, 1998]. Matematiksel olarak, her

i € Q bireyi igin, bir v; hiperkiipii ¥ refefans noktasi ile olusturulur ve bireyler de bu

hiperkiipiin kosegenleridir. Referans noktasi, en kotii amag islevi degerlerinden olusan
bir vektdr olusturulmasiyla kolayca bulunabilir. Bundan sonra, tiim hiperkiiplerin

birlesimi bulunur ve hiperkiip (HV) dl¢iitii hesaplanir:

HV = hacim (Uiglvi

N—

(3.41)

Arama Sinirlar1

L

Pareto-optimal cephe

N

Sekil 3.36. Pareto bireyler tarafindan olusturulan hiperkiip

Sekil 3.36, W referans noktasinin se¢imini gostermektedir. Hiperkiip tarali bolge
ile gosterilmektedir. Agikca goriilmektedir ki, biiylik bir HV degerine sahip olan bir
yontem istenmektedir. Hem HV 6l¢iitii secilen referans noktasina baghdir. Sekil 3.33” te

verilen 6rnek problem igin, W=(11.0,10.0)" olmak iizere hiperkiip soyle hesaplanir:
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HV =(11.0-8.4)x(10.0-1.2)+(8.4-7.0)x (10.0-2.2)
+(7.0-4.0)x(10.0-2.8)+(4.0-2.8)x(10.0-5.1)
+(2.8-1.2)x(10.0-7.8)

= 64.80

(3.42)

3.4.3.2. Basarim Yiizeyi Temelli istatistiksel Olciit
(Attainment Surface Based Statistical Metric)

Fonseca ve Fleming 1996 yilinda, ¢cok amagli optimizasyon icin basarim yiizeyi
kavramini 6nermislerdir [Fonseca ve Fleming, 1996]. Cogu calismada, bulunan Pareto
bireyler genellikle bunlar1 birlestiren bir egriyle gosterilirler. Boyle bir egri bir cephenin
1yl bir gosterilimini sagladigi halde, cephenin ortalarindaki bireylerin iyi gosterilimini
garanti etmez veya ortalarindaki bireylerin Pareto-optimal olduguna dair bir garanti
yoktur. Fonseca ve Fleming bulunan Pareto bireylerin bir egriyle gosterilmesi yerine,
arama uzayinda Pareto bireyler tarafindan bastirilan tiim bireylerin isaretlendigi bir zarf
olusturmuslardir. Sekil 3.37, Pareto bireyler tarafindan olusturulmus 6rnek bir zarfi
gostermektedir. Olusturulan bu zarf, basarim yiizeyi olarak adlandirilir ve hiperkiip (HV)
hesaplanmasi i¢in kullanilan ylizeyi belirler. Hiperkiip 6l¢iitiinde oldugu gibi, bagsarim

ylzeyi de yakinsama ve dagilimi birlikte belirleyen bir ol¢ittiir.

— Basarim yiizeyi

Sekil 3.37. Pareto bireyler tarafindan olusturulan basarim yiizeyi
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Pratikte, bir CAGA algoritmas1 ¢ok adim iizerinden c¢alistirilir ve her adimda
CAGA farkl bir baslangi¢ toplulugu ve farkli parametrelerle calisacaktir. Tiim adimlar
bittikten sonra, bulunan Pareto bireyler kullanilarak, her adim i¢in basarim yiizeyi
bulunabilir. Sekil 3.38a” da, ayn1 problem igin ayni algoritmayla ama farkli baslangic
topluluklariyla ¢alistirilmis, aynt CAGA’ nin ii¢ farkli adimi gosterilmektedir. Boyle bir
algoritma sonucunda basarimin adimlar ilerledikc¢e artmasi beklenmektedir. Bu yiizden,
boyle bir grafik gercek Pareto-optimal cephe hakkinda acik bir fikir vermemektedir. Iki
veya daha fazla yontem karsilastirilacagi zaman, Pareto-optimal cephe yakinlarina
y1gilmis bireyler hangi yontemin daha iyi oldugu konusunda bir fikir vermemektedirler.
Sekil 3.38b, Sekil 3.38a” da verilen cephelere iliskin basarim yiizeylerini gostermektedir,

bu yiizeyler algoritmalar1 karsilagtirmak i¢in bir dl¢iit tanimlamak icin kullanilabilir.

(a) (b)

Sekil 3.38. (a) Bir CAGA’ nin ii¢ farkli adiminda bulunan bastirilamayan bireyler
(b) Bulunan ti¢ farkli cepheye iliskin bagarim yiizeyleri

[lk olarak, tiim amaglarda yonelmeleri gdsteren sanal kdsegen hatlar secilir. Her
bir hat i¢in, tiim bagarim yiizeylerinin kesisim noktalar1 hesaplanir. Bu noktalar, segilen
hat iizerinde olacaktir ve bu yilizden bir frekans dagilimina sahip olacaktir. Bu noktalari
kullanarak, ornegin % 25, % 50 veya % 75 basarim ylizeyleri gibi birkag istatistiksel
deger tretilebilir. Sekil 3.39, bir capraz AB hattin1 ve buna bagl olarak ii¢ amag yiizeyi
icin kesisen noktalar1 gostermektedir. Frekans dagilimini belirlemek igin ¢ok sayida
basarim ylizeyi ile kesisen nokta tanimlanabilir. Burada yalnizca, 25,50 ve 75% basarim

ylizeyleri gosterilmektedir.
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Frekans Dagilimi

%257 %50 %75

Kesisim Hatt1

Sekil 3.39. Tipik bir kesisim hatt1 ve kesisim noktalari. Bu noktalara gore
frekans dagilimi veya histogram

3.4.3.3. Agirhklandirma Olgiitii (Weighted Metric)

Hem yakinsamayr hem de dagilimi1 6l¢mek ig¢in, bu degerleri ayr1 ayr1 dlgen

dlciitleri agirliklandirarak birlestirmek basit bir yoldur. Ornegin;

W = WlGD + WzA (342)

Burada w; ve w, agirliklardir ve w;+w,=1" dir. Burada yakinsamay1 hesaplamak
icin kullanilan nesilsel mesafe 6lgiitii (GD) ile dagilimi 6lgmek i¢in kullanilan yayilim
(A) olgiitii birlestirilmistir. Bilindigi tizere, GD degeri kiiciik olan yontem iyi bir
yakinsamaya sahiptir ve A degeri kiigiikk olan yontem de iyi bir dagilim saglar. Bu
ylzden, toplam olarak kiiciik bir /¥ degerine sahip olan yontem her iki acidan da iyi
olacaktir. Kullanici, iki 6lgiitii birlestirmek icin uygun agirliklar1 segebilir. Bununla
birlikte, bu 0Olciit kullanilacaksa, se¢ilen iki dl¢iitiin normalize olarak kullanilmasi daha

iyi olacaktir.
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3.4.3.4. Bastirllamayan Hesap Olgiitii (Non-Dominated Evaluation Metric)

Bir yontemin 6l¢iit degerleri diger yontemin degerlerinden daha iyi ise, 0 zaman o
yontem digerinden iyidir. Aksi takdirde, iki yontem arasinda hangisinin iyi oldugu
konusunda kesin bir sey sdylenemez. Sekil 3.40, bir problem i¢in iic CAGA yonteminin
basarimii gostermektedir. Sekil incelendiginde, 4 yonteminin B yontemine baskin
oldugu goriilmektedir. Yani 4 yontemi, B yOnteminden iyidir. Ancak, 4 veya C

yontemlerinden hangisinin iyi oldugu konusunda bir sey sdylenemez.

B
H— 1t o
= |
2 A
O [ *
2 | |
= | :
z | |

o | | C

----- ot @

v

Yakinsama Olgiitii

Sekil 3.40. Yakinsama ve c¢esitliligin birlikte degerlendirilmesi

Bu boliimde agiklanan Ol¢iitlerin disinda literatiirde bir¢ok Ol¢iit daha vardir ve
Onerilmeye devam edilmektedir. Bu o6l¢iitlerden bazilarina [Knowles ve Corne, 2000;

Knowles ve Corne, 2002; Coello Coello ve ark., 2007] kaynaklarindan ulasilabilir.
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4. BULGULAR

Bu béliim tezin ana boliimiidiir ve dnerilen yontemler bu boliimde verilmektedir.

Bu boliimde yapilan oneriler su sekilde siralanabilir:

e ilk olarak 2003 yilinda 6nerilen DOPGA (DOmination Power of an individual
Genetic Algorithm) yontemi [Eminoglu, 2003] derinlemesine incelenmektedir. Bu
yontemin elitizm mekanizmasinda baz1 degisiklikler yapilmis ve etkinligi artirilmistir.
DOPGA yontemi daha dnce, basarim Olgiitleri kullanilarak literatiirde yer alan CAGA
yontemleri ile karsilagtirllmamistir. Bu boliimde, DOPGA sik kullanilan test islevleri ve
basarim oOl¢iitleri kullanilarak literatiirde sik kullanilan CAGA yontemleriyle (SPEA ve
SPEA?2) karsilastirilmaktadir.

e DOPGA yonteminde bazi degisiklikler yapilarak iki yeni yontem Onerisi
(DOPGA+, DOPGA?2) sunulmaktadir. Bu degisiklikler, DOPGA yOnteminin puanlama

mekanizmasinda veya elitizm mekanizmasinda yapilmistir.

e Literatiirde yer alan bazi CAGA yontemlerinin (NSGA ve SPEA) puanlama

mekanizmalarinda bir takim iyilestirmeler yapilarak basarimlar1 artirilmastir.

e Yeni bir puan dlgekleme yontemi (gama diizeltmesi ile puan dlgekleme, GDPO)
onerilmektedir. Bu yontem CAGA yoOntemlerine ek islem yiikii getirmeden

uygulanmakta ve CAGA yOntemlerinin yakinsama basarimi artirilmaktadir.

e CAGA’ larda elitizm mekanizmasinin iyilestirilmesi i¢in etkin elitizm
mekanizmas1 Onerisi verilmektedir. Etkin elitizm mekanizmasi literatiirde yer alan ve

yeni Onerilen yontemlere uygulanarak, basarimlari artirilmistir.

¢ CAGA yontemlerinin siralama / nitelikli bilgi tiretme yeteneklerinin 6lgiilmesi

i¢in iki yeni basarim 6l¢iitii (ceza ve 6diil) tartismaya acilmaktadir.

e Son olarak ise CAGA yontemlerini (Onerilen ve var olan) igerisinde

bulunduran bir kullanici araytizii tasarimi ayrintili olarak agiklanmaktadir.
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4.1. Cok Amach Genetik Algoritma Yéntem Onerileri

Daha 6nce 2003 yilinda 6nerilmis olan DOPGA [Eminoglu, 2003] ydnteminde
birtakim degisiklikler yapilarak ¢esitli iyilestirmeler yapilmistir. Bu boliimde ilk olarak,
DOPGA yonteminin puanlama mekanizmasi ayrintili olarak verildikten sonra arsiv
yonetimi asamasi verilmekte ve yapilan birtakim iyilestirmeler gosterilmektedir.
DOPGA yonteminin puanlama mekanizmasi iyilestirilerek DOPGA+ yOntemi
onerilmektedir. Hem DOPGA hem de DOPGA+’ da arsiv ydnetimi, azaltimsal
(subtractive) kiimeleme yontemi kullanilarak saglanmaktadir. Son olarak, SPEA2
yonteminde kullanilan arsiv yonetimi bicimi DOPGA+ yontemine eklenerek DOPGA2
yontemi Onerilmektedir.

Bu ii¢ yontemin ayrintili puanlama algoritmalari, elitizm veya arsiv yOnetim
mekanizmalart ve ¢ok kullanilan bazi GA test islevleri ile ¢alistirilmalari neticesinde

elde edilen sonuglar asagida verilmektedir.

4.1.1. DOPGA (DOmination Power of an individual Genetic Algorithm,
Bireyin Baskinlik Giicii Genetik Algoritma)

DOPGA yontemi 2003 yilinda, ¢cok amagli optimizasyon i¢in Onerilmis Pareto
tabanl ve elitist bir CAGA yontemidir. DOPGA’ da bir bireyin puani iki asamada atanir.
Arsiv yonetimi ya da ikincil topluluk yonetimi igin ise azaltimsal (subtractive clustering)

kiimeleme yontemi kullanilmaktadir.

4.1.1.1. DOPGA Puanlama Mekanizmasi

DOPGA’ da bir bireyin puani iki asamada elde edilmektedir. Asagida bu iki
asama ayrintili olarak agiklanmakta ve daha sonra puanlama algoritmasi verilmektedir.
DOPGA ile bir bireyin ya da ¢dziim Onerisinin segme mekanizmasindan 6nce puani,
baskinlik giiciine gore belirlenmektedir. Bu kavramla, bireylerin puanlar1 birbirlerinden
daha 1iyi ayirt edilebilmekte ve se¢me mekanizmasina daha fazla bilgi

aktarilabilmektedir.
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Adim 1: 1lk olarak, topluluk MOGA [Fonseca ve Fleming, 1995; 1998] yontemi
kullanilarak 6n bir puanlama islemine tabi tutulur. Béylece, topluluk ayni puana sahip
birkac¢ bireyden olusan alt topluluklara boliiniir. Bu ilk puanlama ile 1 puanina sahip
bireylerden olusan ilk Pareto cephesi elde edilir ve diger cephelere ait bireylere artan
sekilde puan atamasi yapilir. DOPGA yoOnteminin ilk puanlama adimini daha iyi
aciklamak icin Sekil 4.1a’ da verilen 6rnek bir toplulugun puanlamasini inceleyelim. Bu
toplulukta, ilk Pareto cephesi dort bireyden olusmaktadir: {A(1),B(1),C(1),D(1)}.
A(1)’ in anlami; o bireyin ilk Pareto cephesine iliye oldugu ve hicbir birey tarafindan
bastirilamadigidir. ikinci Parero cephesi iki bireyden olusmaktadir: {E(2),F(2)} ve E
bireyi yalnizca bir birey tarafindan bastirilmaktadir. Diger bireylerde ayni sekilde

puanlanmistir. Bireylerin puan degerleri Sekil 4.1a’ da gosterilmektedir.

Adim 2: Bu adimda, her alt topluluk baskinlik giicii kavrami kullanilarak yeniden
puanlanir. Baskinlik giicli, bireylerin konumununa yani Pareto olup olmadigina
bakilmaksizin her bir bireye uygulanir. Ornegin Sekil 4.1a” daki B bireyini diisiinelim.

B bireyi toplulukta n adet bireye baskin olsun. Bu birey, B(1)+n olarak gosterilir ve bu

ornekte n=3’ tiir, ¢linkii B bireyi 3 adet bireye baskin olmaktadir. B bireyinin baskinlik
giicii, bu li¢ bireyin bagil puanlarinin toplami ile bulunur. Bu yolla, bireyler ayn1 puana
sahip olsa veya aym alt toplulukta olsalar bile, hangi bireyin digerinden daha fazla
istendigini belirlemek miimkiindiir. Ornegin Sekil 4.1a’ da ilk Pareto cephesindeki
bireylerin en diisik baskinlik giiclinden (en ¢ok istenilenden) en yiiksek
baskinlik giicine (en az istenilene) dogru siralamast su  sekildedir:
D()+1~A(1)+2~C(1)+2~B(1)+3. A ve C bireyleri iki adet bireye baskin olmalarina
ragmen, A bireyi C bireyinden daha fazla istenmektedir, ¢iinkii 4 bireyi daha az toplam
puanli bireylere baskin olmaktadir. D(1)+1, yalnizca H(8) bireyine baskin olmaktadir
ve bu yiizden diger bireylere gore en diisiik baskinlik giiciine sahiptir. Sekil 4.1b’ de
DOPGA tarafindan puanlanmis bir topluluk gosterilmektedir.
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Sekil 4.1. (a) DOPGA ham puanlari, (b) DOPGA son puanlari

Sekil 4.1b’ den de goriilecegi iizere, ilk Pareto cephesine ait bireyler birbirinden
farkli puanlar almistir ve bireylerin 6nem siras1 soyledir: D> A>C>B>E,F>G>H.
DOPGA puanlama mekanizmasinda bireylerin komsuluklar1 6zellikle dikkate alinir.
Ornegin, eger bir birey ayni alt topluluktaki diger bir bireyden daha yiiksek bir baskinlik
giicline sahipse, o zaman o birey kendi alt toplulugunda en az istenilen birey olacaktir.
Eger bir birey yliksek bir baskinlik giicline sahipse, bunun anlami o bireyin kalabalik bir
bolgede oldugudur, bu ylizden yakininda birkag benzer birey bulunmaktadir. DOPGA
boyle bir bireyi cezalandirir ve onu o alt toplulukta en az istenilen birey yapar. DOPGA,
yakin bir komsuyu uzak olandan ayirt edebilir, ¢iinkii yakin bir komsu uzak olan
komsudan daha yiiksek bir baskinlik giicline (daha az istenilen) sahiptir. Bu yiizden
DOPGA ¢esitlilik i¢in harici bir katsay1 tahminine gereksinim duymaz.

DOPGA yo6nteminin puanlama mekanizmasinin ayrintili algoritmas: Sekil 4.2” de

verilmektedir.
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DOPGA Puanlama Algoritmasi

Adim 1: Her bireye alt topluluk (a/t_top) numarasi ile ters orantili olan bir yapay

puan atanir (MOGA algoritmasi kullanilarak).

1
bi V= — 4.1
yp (birey _i) il 10 () 4.1)

i=1...n, burada n bireylerin toplam sayis1 ve j=1...m, m ise toplam alt topluluk

sayisidir.

Adim 2: Bireyin bagil baskinlik giicii hesaplanir. Bunun i¢in, kag tane bireyin bu
birey tarafindan bastirildigi belirlenir ve baskin olan bireylerin yapay puanlari

toplanir.

bbg (birey i) = Zr: yp (birey k) (4.2)

k=1
Burada k...r, i bireyinin baskin oldugu tiim bireyleri gostermektedir ve k...r#i.

Adim 3: Ayn alt topluluktaki tiim bireyler icin Adim 2 tekrar edilir. Ayn1 alt
topluluktaki tiim bireylerin bbg( )’ leri toplanir ve her alt topluluk icin toplam
baskinlik giicti asagidaki gibi hesaplanir:

thg (alt _top())) = ibbg (birey 1) (4.3)

Buradai...p, Alt top(j)’ de yer alan tiim bireylerdir.

Adim 4: i bireyinin gercek puani asagidaki formiil kullanilarak hesaplanir

(paydaya sifira bolme durumunda kurtulmak i¢in 1 eklenmistir):

bbg (i) (4.4)

gp (i) = alt_top (J) + thg (alt top (j)) +1

Adim 5: Topluluktaki tiim bireyler puanlanana kadar Adim 2 - Adim 4 arasi

tekrarlanir.

Sekil 4.2. DOPGA puanlama algoritmasi
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4.1.1.2. DOPGA Elitizm Mekanizmasi

DOPGA yonteminde kullanilan elitizm mekanizmasinin blok diyagranu
Sekil 4.3’ te verilmektedir. Secme mekanizmasindan once ana topluluktaki bireylerle,
ikincil topluluk yani arsivdeki bireyler birlestirilmektedir. Eger arsivdeki birey sayisi
daha 6nce kullanici tarafindan belirlenmis boyutu asarsa, azaltimsal kiimelemenin [Chiu,
1994] degistirilmis bir bigimi uygulanir ve azaltilmis topluluk (kullanici tarafindan
belirlenen boyuta diisiiriilmiis) elde edilir. Eger arsivin boyutu kullanici tarafindan
belirlenmis boyuta ulasmazsa, arsivdeki tiim bireyler ana toplulukla birlestirilir.

Azaltimsal kiimeleme algoritmasi, kiimeleri (veya kiime merkezlerini) bulmak
icin uygulanir. Bir sonraki asamada merkezler arasindaki en kiiciik mesafe bulunur.
Dogal olarak, kiimelerin merkezleri kalabalik bolgeleri temsil eder ve bu bdolgeler de
birbirlerine benzer bireylerden olugmaktadirlar. Kiime merkezlerini temsil eden bireyler
ve kiime merkezlerinden yeterli derecede uzak bireyler secilir. Boylece, kiimeleme
algoritmasi1 tarafindan secilmis bireyler arsive kopyalanir. Kiimeleme isleminin

grafiksel olarak ayrintili agiklamasi Sekil 4.4° te verilmektedir.
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Baglangi¢ Toplulugu (t)

v

Puanlama

v

Pareto bireyler belirlenir ve arsive
(veya ikincil topluluga) eklenir

v

Arsivdeki birey sayisi  kullanici
tarafindan belirlenen arsiv
boyutundan biiyiik mii?

Evet Havyir

v

Azaltimsal kiimeleme uygulanir
ve topluluk boyutu azaltilir

v v

[Ik topluluk ve arsiv birlestirilir

v

GA islevleri uygulanir

v

Son Topluluk (t+1)

Sekil 4.3. DOPGA elitizm mekanizmasinin blok diyagranu

fi f) fi
Sekil 4.4. Arsivdeki Pareto bireylerin azaltilma adimlari: i) Azaltimsal kiimeleme
kullanilarak merkezler bulunur, ii) Merkezler arasindaki en kiigiik mesafe bulunur (4, )
ve yeni bir mesafe tanimi yapilir dist =k xd;, (6rnegin £=0.9 olsun), merkezlerden

dist mesafesindan daha wuzak olan bireyler arsivde tutulur, digerleri silinir,
iii) Azaltilmis topluluk, bu bireyler ve merkezlerden olusur
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DOPGA yonteminin genel algoritmasi Sekil 4.5’ te verilmektedir.

DOPGA Genel Algoritmasi

1. P : Baslangi¢c Toplulugu (N boyutlu)
2. P: Arsiv (veya ikincil topluluk)
3. Sonlandirma kriter saglanana kadar
3.1. P toplulugundaki tiim bireylere puan ata,

3.2. Baskin bireyleri P* ya kopyala ve bastirilan bireyleri sil,

3.3. Eger

Pa‘ (boyutu) arsiv boyutunu asarsa, o zaman P* y1 kiimeleme

algoritmasi kullanarak azalt,

3.4. PU P%dan N adet bireyi se¢ ve segme mekanizmasina gonder

3.5. Caprazlama ve mutasyon islevlerini uygula.

Sekil 4.5. DOPGA genel algoritmast

4.1.1.3. DOPGA ve SPEA Yontemlerinin Gorsel Karsilastirmasi

Pareto Bireylerin Karsilastirilmasi: SPEA yontemi, topluluktaki Pareto bireylere
baskin olduklar1 birey sayisma gore puan atar. Ornek bir topluluk Sekil 4.6’ da
verilmektedir. Bu sekilden de goriilecegi lizere aynmi puana sahip bireyler olabilir.
SPEA puanlamasina gore 4 ve C bireyleri ayni1 puana sahip olacaktir, ¢iinkii ikisi de iki
adet Pareto olmayan bireye, sirasiyla (G,H) ve (E,H) bireylerine baskin olmaktadir.
DOPGA puanlamasinda ise bir Pareto (veya bir Pareto olmayan) bireyin baskin oldugu
bireylerin sayisi dnemlidir, ancak puan atama islemi toplam birey sayisindan ziyade
toplam puana gore yapilir (Bkz. Sekil 4.7). DOPGA puanlamasinda da 4 ve C bireyleri
sirastyla (G,H) ve (E,H) bireylerine baskin olmaktadir ancak, iki bireyin baskin oldugu
toplam puan ayni degildir (Bkz. Sekil 4.7). Bu yiizden, 4 ve C bireyleri kendi alt
topluluklarinda artik ayirt edilebilir.
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Sekil 4.6. SPEA’da, A ve C birbirinden ayirt edilemez
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Sekil 4.7. DOPGA’ da, 4 ve C birbirinden ayirt edilebilir

Pareto Olmayan Bireylerin Karsilagtirilmasi: Pareto olmayan bireylerin
karsilagtirilmas1 da bir diger 6nemli noktadir. SPEA’ da Pareto olmayan bir bireyin
puani, ona baskin olan Pareto bireylerin puanlar1 toplamina bir eklenmesiyle bulunur.
Bu nedenle, eger bir grup Pareto olmayan birey yalnizca bir Pareto birey tarafindan
bastirilirsa, o zaman hepsi de aym puana sahip olacaktir (Bkz. Sekil 4.8).
F, F1 ve F2 bireyleri yalnizca B bireyi tarafindan bastirilmaktadir ve bu ylizden SPEA
bu bireylere aym1 puani atar. DOPGA’ da ise, bu ii¢ birey [F(2), FI(3) ve F2(4)]
birbirinden kolaylikla ayirt edilebilir, ¢linkii Sekil 4.9° dan da goriilecegi lizere hepsi de
farkl1 alt topluluklara aittir. SPEA bu tip bireylere ayn1 puani atarken, DOPGA hepsine

farkli puan atayacaktir.
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Sekil 4.8. SPEA; F, FI ve F2 bireylerine ayn1 puani atar, ¢linkii
bu bireyler yalnizca B bireyi tarafindan bastirilmaktadir
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Sekil 4.9. DOPGA’ da ise F, F'I ve F2 bireyleri ayn1 alt topluluga ait
olmadiklari i¢in farkli puanlara sahiptirler

DOPGA yontemi; ZDT1, ZDT2, ZDT3 ve ZDT6 test islevleri tizerinde 300 adim
calistirillmus, Sekil 4.10 ve Sekil 4.11° de verilen sonuglar elde edilmistir. Benzetimlerde;
parametre sayist ZDT1, ZDT2 ve ZDT3’ te 30, ZDT6’ da 10, bit sayis1 30, birey sayisi
150, arsiv boyutu 100, caprazlama olasiligi 0.9, mutasyon olasilifi 0.01 sec¢ilmistir.
Tek noktali c¢aprazlama ve bit-tabanli mutasyon islevleri uygulanmistir. Seg¢me

mekanizmasi olarak SUS kullanilmistir.
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Sekil 4.10. DOPGA tarafindan bulunan sonuglar : (a) ZDT1, (b) ZDT2

-0.60

T3 2076
T T T T 14 ;
O Pareto Bireyler| - = —Pareto-optimal Cephe
12 4
O Pareto Bireyler
]
1 Em o i
m
4 % n
o
o
08 gl 4
] L.
W B
B
T 0 oy i
0o
o
4 DD E
04 & 4
o
4 h o
t
02 g
g
I I I | I | | % | ! | I I 1
01 02 03 04 05 06 07 08 08 ¥ 03 04 05 0§ 07 08 09 1

(a)

(b)

Sekil 4.11. DOPGA tarafindan bulunan sonuglar: (a) ZDT3, (b) ZDT6
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4.1.2. DOPGA+ (DOmination Power of an individual Genetic Algorithm +,
Bireyin Baskinlik Giicii Genetik Algoritma +)

4.1.2.1. DOPGA+ Puanlama Mekanizmasi

DOPGA+ yonteminde bir bireyin puani; DOPGA yontemi ile elde edilen
puanlara k. en yakin komsuluk yontemi ile elde edilen (SPEA2’ oldugu gibi [Zitzler ve
ark., 2001]) yogunluk bilgisinin eklenmesiyle bulunur. Buna gdre bir bireyin puani

sOyle hesaplanir:

puanpopG4+ () = puanpopc4(i)+ Dpopg4+ () i=1,2,....top_boyutu  (4.5)

Bu esitlikte D yogunluk bilgini gostermektedir ve (3.13) nolu esitlik kullanilarak
bulunur. DOPGA+ tarafindan puanlanan 6rnek bir topluluk Sekil 4.12 (a) ve (b)’ de
gosterilmektedir. Sekil 4.12b’ den de goriilecegi lizere, ilk Pareto cephesindeki bireyler

farkli puan degerlerine sahiptirler ve buna gore bireylerin 6nem siras1 sdyle olacaktir:

D>A>-C>=B>EF>G>H.

b f,
5 1 H(8.1354)
->Ga3>yy S,
| AQGOD (32) A1 @ G(3.3937)
F(2.1667) F(2.3738)
B(1.2955)
""""""""""""""" r 21667 0 T
C(1.7446) C(1.3983)
$ D(l'%gz . D(l.2‘10
> fl . fl
(a) (b)

Sekil 4.12. (a) DOPGA+ ham puanlar, (b) DOPGA+ son puanlar
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DOPGA+ yonteminde elitizm mekanizmasi olarak DOPGA yonteminde oldugu
gibi azaltimsal kiimeleme yontemi kullanilmaktadir. DOPGA+ yonteminin genel

algoritmasi Sekil 4.13’ te verilmektedir.

DOPGA+ Genel Algoritmasi

1. P : Basglangic Toplulugu (N boyutlu)

2. P*: Arsiv (veya ikincil topluluk)

3. Sonlandirma kriteri saglanana kadar
3.1. P toplulugundaki tiim bireylere (4.5) esitligini kullanarak puan ata,
3.2. Baskin bireyleri P* ya kopyala ve bastirilan bireyleri sil,

pa

3.3. Eger (boyutu) arsiv boyutunu asarsa, o zaman P* y1 kiimeleme

algoritmasi kullanarak azalt,

3.4. PUP%’ dan N adet bireyi se¢ ve segme mekanizmasia gonder

3.5. Caprazlama ve mutasyon iglevlerini uygula.

Sekil 4.13. DOPGA+ genel algoritmasi

DOPGA+ yontemi; ZDTI1, ZDT2, ZDT3 ve ZDT6 test islevleri lizerinde
300 adim galistirilmis, Sekil 4.14 ve Sekil 4.15° de verilen sonuglar elde edilmistir.
Benzetimlerde; parametre sayis1 ZDT1, ZDT2 ve ZDT3’ te 30, ZDT6’ da 10, bit say1s1
30, birey sayis1 150, arsiv boyutu 100, caprazlama olasiligi 0.9, mutasyon olasilig1 0.01
secilmistir. Tek noktali ¢aprazlama ve bit-tabanli mutasyon islevleri uygulanmstir.

Se¢me mekanizmasi olarak SUS kullanilmustir.
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Sekil 4.15. DOPGA+ tarafindan bulunan sonuglar: (a) ZDT3, (b) ZDT6
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4.1.3. DOPGA2 (DOmination Power of an individual Genetic Algorithm 2,
Bireyin Baskinlik Giicii Genetik Algoritma 2)

DOPGA2 yonteminde bir topluluktaki bireyler DOPGA puanlama algoritmasi
kullanilarak puanlanir. Ancak DOPGA2, DOPGA yontemine gore daha iyi bir arsiv

yoOnetimi saglayarak, elitizm mekanizmasini daha iyi kullanmaktadir.

4.1.3.1. DOPGA2 Arsiv Yonetimi

DOPGA?2 yonteminde, SPEA2 yonteminde oldugu gibi arsivde saklanan Pareto
bireylerin sayisi bir arsiv giincelleme yontemi kullanilarak azaltilir. Bu yonteme iliskin
ayrintili bilgi Boliim 3.2.4.2° de verilmektedir. Diger bireylere en yakin mesafedeki
birey ilk silinecek birey olarak segilir, eger ayn1 durumda birkag birey varsa bu durumda
ikinci en yakin birey silinir ve bu sekilde islemler devam eder. DOPGA2 ydnteminin

genel algoritmasi Sekil 4.16° da verilmektedir.

DOPGA?2 Genel Algoritmasi

1) t=0 ve P=Baslangi¢ Toplulugu. Bos bir arsivle basla (P*=Arsiv),
2) P, deki bireylere puan ata,

3) P, deki tiim Pareto bireyleri P ya kopyala. Eger ‘Pta‘ arsiv boyutundan
(N?) biiyiikse, o zaman P“ y1 giincelleme islevi kullanarak azalt. Eger ‘Pta‘

arsiv boyutundan kiigiikse, o zaman P y1 P, deki en iyi Pareto olmayan

bireylerle doldur,

4) Eger sonlandirma kriterine ulasildiysa algoritmay1 durdur,

5) P® daki bireyleri segme mekanizmasiyla segerek, bir P™ ebeveyn havuzu
olustur,

6) Caprazlama ve mutasyon islevleri ile yeni toplulugu (P ) olustur,

7) t=t+1yap ve Adim 2’ ye don.

Sekil 4.16. DOPGA2 genel algoritmast
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DOPGA2 yontemi; ZDT1, ZDT2, ZDT3 ve ZDT6 test islevleri lizerinde

300 adim calistirilmis, Sekil 4.17 ve Sekil 4.18” de verilen sonuglar elde edilmistir.
Benzetimlerde; parametre sayis1 ZDT1, ZDT2 ve ZDT3’ te 30, ZDT6’ da 10, bit sayis1

30, birey sayist 150, arsiv boyutu 100, ¢aprazlama olasilig1 0.9, mutasyon olasilig1 0.01

secilmigtir. Tek noktali ¢aprazlama ve bit-tabanli mutasyon iglevleri uygulanmistir.

Se¢me mekanizmasi olarak SUS kullanilmistir.
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Sekil 4.17. DOPGAZ2 tarafindan bulunan sonuglar: (a) ZDT1, (b) ZDT2
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Sekil 4.18. DOPGA2 tarafindan bulunan sonuglar: (a) ZDT3, (b) ZDT6
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4.2. Cok Amach Genetik Algoritma Yontemlerinin Puanlama

Mekanizmalarinin Iyilestirilmesi

CAGA yontemlerinde iki tiirlii iyilestirme yapmak miimkiindiir: i) puanlama
(puan atama) mekanizmalarinin iyilestirilmesi, i) elitizm mekanizmalarinin
tyilestirilmesi. Bu bdéliimde ilk tiir iyilestirme kullanilarak literatiirde yer alan bazi
yontemlerin puan atama mekanizmalar iyilestirilmis ve basarimlarinin (yakinsama ve
diizgiin dagilim acgisindan) degisip degismedigi incelenmistir. lyilestirmeler icin iki
temel kavram kullanilmustir. Birincisi, & en yakin komsuluk yonteminden yararlanilarak
eklenen yogunluk bilgisi, ikincisi ise baskinlik gilicii kavramidir. Bu bdliimde,
NSGA [Srinivas ve Deb, 1994] ve SPEA [Zitzler, 1999; Zitzler ve Thiele, 1999]
yontemlerine iligkin toplam 5 adet iyilestirme Onerilmektedir. Bu iyilestirmelerden bir
tanesi NSGA, dort tanesi ise SPEA yontemine iligskindir. Bu iyilestirmelerin yapilma
amaci, puan atama mekanizmalarinin iyilestirilmesiyle segme mekanizmasina daha iyi
ve nitelikli bilgi génderebilmesini saglamaktir. Ayrica, NSGA ydntemi ve iyilestirmesi
(NSGAmod) elitist bigime getirilmislerdir. lyilestirmeler, literatiirde stk kullanilan dort
test islevi kullanilarak orjinal yontemlerle karsilastirilmislardir. Karsilastirmalarda GD

(yakinsama i¢in) ve A (diizglin dagilim i¢in) basarim ol¢iitleri kullanilmistir.

4.2.1. k. En Yakin Komsuluk Yontemi Kullanilarak Olusturulan Yogunluk
Bilgisi

Bu boliimde kullanilan yogunluk tahmin teknigi, k. en yakin komsuluk yonteminin
bir uyarlamasidir ve herhangi bir bireyin yogunlugu k. en yakin komsusuna olan
mesafesinin azalan bir islevidir [Zitzler ve ark., 2001]. Daha iyi bir hesaplama i¢in,
herhangi bir i bireyinin arsivde veya o andaki topluluktaki tiim bireylere olan mesafesi

hesaplanir ve bir listede saklanir. Bu listenin artan bir sirada siralanmasindan sonra,
k. elemana olan mesafe istenilen mesafeyi verir, bu mesafe aik olarak gosterilir. Yaygin

olarak, k 6rnekleme oraninin karekokii olarak secilir £k =+ N+ N (N: topluluk boyutu,

N : arsiv boyutu). Boylece, i bireyinin yogunlugu D(i) sdyle hesaplanir:
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D(i) =

(4.6)
o; + 2

4.2.2. Baskinlk Giicii Kavram

Bir toplulukta yer alan bireylerin baskinlik gii¢cleri asagida verilen algoritma

kullanilarak bulunur. Bu bdliimde, ayrintili algoritma ve sayisal 6rnekler verilmektedir.

Baskinlik Giicii Algoritmasi

Adim 1: Her bireye alt topluluk (a/t_fop) numarasi ile ters orantili olan bir yapay puan

atanir (MOGA algoritmasi kullanilarak).

yp(birey i) = I

" alt _top()) “.7)

i=1...n, burada n bireylerin toplam sayist ve j=1...m, m ise toplam alt topluluk
sayisidir.

Sekil 3.12a’ da verilen Ornek topluluk icin yapay puanlar soyle hesaplanir:
(ic tane alt topluluk vardir ( {A,B,C,D},{E,F},{G},{H} ):

yp(A)=1 yp(B)=1 yp(C)=1 yp(D)=1
yp(E)=0.5 yp(F)=0.5 yp(G)=0.3333 yp(H)=0.25

Adim 2: Bireyin bagil baskinlik giicti hesaplanir. Bunun i¢in, kag tane bireyin bu birey

tarafindan bastirildig1 belirlenir ve baskin olan bireylerin yapay puanlari toplanir.
bbg(birey_i)=" yp(birey k) 4.8)
k=1

Burada £...r, i bireyinin baskin oldugu tiim bireyleri gostermektedir ve k...r=i.
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Ayni 6rnek topluluk i¢in bbg degerleri soyle hesaplanir:

bbg(A)=yp(G)+yp(H)=0.3333+0.25=0.5833
bbg (B)= yp(F)+yp(G)+yp (H)=0.5+0.3333+0. 25=1.0833
bbg (C)= yp(E)+yp(H)=0.5+0. 25=0.75

bbg (D)= yp(H)=0. 25

bbg (E)= bbg (F)= bbg (G)=0. 25

bdg (H)=0

Adim 3: Aym alt topluluktaki tiim bireyler i¢in Adim 2 tekrar edilir. Aymi alt
topluluktaki tiim bireylerin bbg’ leri toplanir ve her alt topluluk icin foplam baskinlik

giicii asagidaki gibi hesaplanir:
p
thg(alt _top(j)) =Y bbg(birey _i) (4.9)

Buradai...p, Alt top(j)’ de yer alan tiim bireylerdir. Ayn1 6rnek igin;

tbg(alt_top 1)=bbg(A)+bbg(B)+bbg(C)+bbg(D)=0.5833+1.0833+0.75+0.25=2.6666
tbg(alt_top 2)=bbg(E)+ bbg(F)=0.25+0.25=0.50

tbg(alt top 3)=Dbbg(G)=0.25

tbg(alt _top 4)=bbg(H)=0

Adim 4: i bireyinin Baskinlik Giicii (BG) asagidaki formiille hesaplanir (paydadaki 1

sifira b6lme hatasindan kurtulmak i¢in konulmustur):

L bbg (i)
BGW) = pgtati=top(j)) *1 (4.10)
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Ornek topluluktaki tiim bireylerin baskinlik gii¢leri séyle olacaktir:

BG (A)=0.5833/(2.6666+1)=0.1591 BG (E)=0.25/(0.50+1)=0.1667
BG (B)=1.0833/(2.6666+1)=0.2955 BG (F)=0.25/(0.50+1)=0.1667
BG (C)=0.75/(2.6666+1)=0.2045 BG (G)=0.25/(0.25+1)=0.2
BG (D)=0.25/(2.6666+1)=0.0682 BG (H)=0/(0+1)=0

Adim 5: Topluluktaki tiim bireylerin baskinlik giicli bulunana kadar Adim 2 - Adim 4

arasi tekrarlanir.

4.2.3. NSGA lyilestirmesi (NSGAmod)

NSGA yonteminde puanlama islemi gerceklestirildikten sonra, bireylerin
cesitliliginin saglanmasi i¢in paylasim yontemi (burada paylasim yontemi amag
uzayinda gergeklestirilmistir) uygulanmaktadir [Goldberg ve Richardson, 1987; Deb,
2001].

Yontemin bu iyilestirilmesinde ise, paylagim yontemi yerine yogunluk bilgisi
kullanilarak cesitlilik saglanmaktadir. NSGA iyilestirmesi (modification), NSGAmod
simgesiyle gosterilmektedir. Buna gére NSGAmod iyilestirmesinde bir i bireyinin puani

sOyle hesaplanir :

Frscamod (1) = NSGA _ puan(i) + D yg64m0a () 1=1,2,...top_boyut  (4.11)

Burada D yogunluk bilgisini gdstermektedir. Hem orjinal NSGA hem NSGAmod
elitist bir bi¢ime getirilmislerdir. NSGAmod ile puanlanan Ornek bir topluluk
Sekil 4.19° da gosterilmektedir. Buna gore, bireylerin en ¢ok istenilenden en az

istenilene dogru siralamasi soyledir: D> A,B,C>G>E,F>H.
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Sekil 4.19. NSGAmod puanlamasi: (a) ilk adim: NSGA puanlamasi, (b) ikinci adim:
yogunluk bilgisi, (c) NSGAmod tarafindan atanan son puan degerleri

4.2.4. SPEA’ min Birinci Iyilestirmesi (SPEAmod1)

Bu iyilestirmede, bir toplulukta diger bireylere gére daha énemli olan elit ya da
Pareto bireyler daha derinlemesine bir puanlamaya tabi tutulmaktadir. Oncelikle Pareto
bireyler baskinlik giicii kavrami kullanilarak puanlanmistir, Pareto olmayan bireyler ise
SPEA yontemi kullanilarak puanlamaya tabi tutulmustur. SPEAmodl ile puanlanan
ornek bir topluluk Sekil 4.20° de gosterilmektedir. Buna gore bireylerin en ¢ok

istenilenden en az istenilene dogru siralamasi soyledir: D> A>C>B>E>F>G>H.
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Sekil 4.20. SPEAmod]1 puanlamasi: (a) Ik adim: baskinlik giicii ile puanlama,
(b) SPEA ile Pareto olmayan bireylerin puanlanmasi

4.2.5. SPEA’ nin ikinci Iyilestirmesi (SPEAmod2)

Bu iyilestirmede SPEA yontemi ile elde edilen ham puan (raw fitness) degerlerine
k. en yakin komsuluk yonteminden yararlanilarak hesaplanan yogunluk bilgisi

eklenmektedir. Bu iyilestirmede bir i bireyinin puan degeri soyle hesaplanir:
Fsppamod2 () = Fsppa (D) + Dspgamod2(?) i=1,2,...top_boyut (4.12)
SPEAmod?2 ile puanlanan ornek bir topluluk Sekil 4.21° de gosterilmektedir.

Buna gore bireylerin en ¢ok istenilenden en az istenilene dogru siralamasi soyledir:

D>~AC>-B>=E>~F>G>H.
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Sekil 4.21. SPEAmod?2 puanlamast: (a) ilk adim: SPEA puanlamasi, (b) Ikinci adim:
yogunluk bilgisi, (c) SPEAmod?2 tarafindan atanan son puan degerleri

4.2.6. SPEA’ min Ugiincii Tyilestirmesi (SPEAmod3)

Bu yontem iyilestirme olarak gdriinmekle birlikte farkli kavramlar1 da igerisinde
barindirmaktadir. Burada, ilk olarak MOGA yontemi kullanilarak topluluk alt
topluluklarina aynistiritlir. Daha sonra her bir bireye (ya da sadece Pareto olmayan
bireylere) iliskin yapay puan degerleri bulunur (Baskinlik giicli algoritmasi, Adim-1).
Ikinci adimda Pareto bireylerin puani, baskin oldugu Pareto olmayan bireylerin yapay
puanlarina gore (4.13)’ te verilen formiile gore hesaplanir. Pareto olmayan bireylerin
puani ise, “bastirildiklart Pareto bireylerin puanlar: toplam: + 1” formiiliiyle bulunur.
Boylece Pareto olmayan bireylerde de bir farklilik (¢esitlilik) saglanabilir.

: PO(j
Pareto Bireyler Igin:  Puan P(i) = yp_POG)) (4.13)

Top yp PO+1
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Pareto Olmayan Bireyler icin:  Puan _PO(j)=Top Puan P(i)+1 (4.14)

(4.13) ve (4.14) ifadelerinde; i: Pareto bireylerin indeksi, j: Pareto olmayan
bireylerin indeksi, yp PO: Pareto bireyin baskin oldugu Pareto olmayan bireylere iliskin
sanal puanlar toplami, Top yp PO: Pareto olmayan tiim bireylere iligkin sanal puanlar
toplami, Puan P: Pareto bireylerin puanlari, Puan PO: Pareto olmayan bireylerin
puanidir. SPEAmod3 ile puanlanan 6rnek bir topluluk Sekil 4.22° de gosterilmektedir.
Buna gore bireylerin en cok istenilenden en az istenilene dogru siralamasi soyledir:

D-A>-C>-B>=E>~F>~G>H.

1 f;
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Sekil 4.22. SPEAmod3 puanlamast: (a) ilk adim: MOGA puanlamast, (b) Ikinci adim:
sanal puanlar, (¢) SPEAmod3 tarafindan atanan son puan degerleri

4.2.7. SPEA’ min Dordiincii iyilestirmesi (SPEAmod4)

Bu yontem, iyilestirme olarak goriinmekle birlikte farkli kavramlart da igerisinde

barindirmaktadir. Burada, ilk olarak MOGA yontemi kullanilarak topluluk, alt
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topluluklarina aynistiritlir. Daha sonra her bir bireye (ya da sadece Pareto olmayan
bireylere) iliskin yapay puan degerleri bulunur (Baskinlik giicii algoritmas ile). ikinci
adimda Pareto bireylerin puani, baskin oldugu Pareto olmayan bireylerin yapay

puanlarina gore asagida verilen formiile gore hesaplanir:

Puan _P(i) = p _POU)

(4.15)
Top yp PO+1

Pareto olmayan bireylerin puan1 ise MOGA algoritmasi1 [Fonseca ve Fleming,
1995] tarafindan bulunur. SPEAmod4 ile puanlanan 6rnek bir topluluk Sekil 4.23° te
gosterilmektedir. Buna gore bireylerin en cok istenilenden en az istenilene dogru

siralamasi sOyledir: D>~ A>~C>B>E,F>~G>H.

2 H(®) f H(1/8)
©GE) 1 o G(1/3)
Ay, Ay,
F(2) F(1/2)
® ®
“le E(2) e E(1/2)
c()_ | ciy_
® ® o
,,,,,,,, . (). e ().
|| ‘ > fl > f1
(@) (b)
f
N H(8)
gy 0
F(2)
B (1331)
@ EQ)
C(9/3?'
® [ (331)
L4
1 . £
(©)

Sekil 4.23. SPEAmod4 puanlamast: (a) Ilk adim: MOGA puanlamas, b) Ikinci adim:
sanal puanlar, c) SPEAmod4 tarafindan atanan son puan degerleri



145

4.2.8. Benzetim Sonuglari

Iyilestirmeler, orjinal yéntemlerle dort farkl test islevi (ZDT1, ZDT2, ZDT3,
ZDT6) kullanilarak karsilastirilmistir. Stokastik evrensel ornekleme (SUS), puanla
orantilt bir se¢me mekanizmasi olarak tiim yontemlerine uygulanmistir. Daha sonra 100
adim sonucunda elde edilen topluluklar kullanilarak, GD ve A o6l¢iitleri hesaplanmustir.
Tiim yontemler ve iyilestirmelerinin 20’ ser kez calistirilmalar1 sonrasinda elde edilen,
yakinsama Olgiitlerinin ortalama degerleri Cizelge 4.1 de ve dagilim (yayilim)
Ol¢iitlerinin ortalama degerleri ise Cizelge 4.2° de verilmektedir.

Benzetimlerde, tek noktali ¢aprazlama ve bit-tabanli mutasyon uygulanmistir.
Caprazlama olasihigi p. =09 , mutasyon olasihg p,, =1// (burada [/ dizi
uzunlugudur) olarak se¢ilmistir. Topluluk boyutu 100 birey, arsiv veya ikincil topluluk

boyutu ise 25 secilmistir. Her parametrenin kodlanmasi i¢in 30 bit kullanilmistir.

NSGA yontemi i¢in paylagim yarigap1 0.0158 se¢ilmistir.

Cizelge 4.1. Yakinsama 0lgiitiintin (GD) tiim yontemler ve iyilestirmeleri igin
tiim test islevlerinde elde edilen ortalama degerleri

GD ZDT1 | ZDT2 | ZDT3 | ZDTé6
Elitist NSGA 0.0241 | 0.0535 | 0.0133 | 1.2495
Elitist NSGAmod | 0.0213 | 0.0351 | 0.0129 | 0.9036

SPEA (orjinal) 0.1256 | 0.2432 | 0.1039 | 1.8338

SPEAmod1 0.0867 | 0.1050 | 0.0759 | 0.5331
SPEAmod2 0.0695 | 0.2195 | 0.0750 | 1.7353
SPEAmod3 0.0527 | 0.0859 | 0.0444 | 0.8190
SPEAmod4 0.0767 | 0.2168 | 0.0932 | 0.7108

Cizelge 4.2. Dagilim 6l¢iitiiniin (A) tiim yontemler ve iyilestirmeleri igin
tiim test islevlerinde elde edilen ortalama degerleri

A ZDT1 | ZDT2 | ZDT3 | ZDT6
Elitist NSGA 0.5930 | 0.6542 | 0.6068 | 0.8990
Elitist NSGAmod | 0.5886 | 0.5543 | 0.6046 | 0.8455

SPEA (orjinal) 0.6390 | 0.7280 | 0.6507 | 0.9182

SPEAmodl 0.6113 | 0.7635 | 0.6446 | 0.8239
SPEAmod2 0.6047 | 0.6537 | 0.5532 | 0.8957
SPEAmod3 0.8095 | 0.7190 ] 0.7586 | 0.8248

SPEAmod4 0.6640 | 0.8483 | 0.7893 | 0.9155
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4.2.9. Genel Sonuclar ve Degerlendirme

NSGA ve SPEA yontemlerinin puan atama mekanizmalari, orjinal yontemlerin
tirettiginden daha iyi ve nitelikli bilgi (puan) tiretebilmeleri amaciyla hesapsal ve yapisal
olarak degistirilmistir (iyilestirilmistir). Iyilestirmeler iki temel bicimde yapilmustir:
i) k. en yakin komsuluk yontemiyle tiretilen yogunluk bilgisi eklenmesi, ii) baskinlik
giicli kavrami.

Iyilestirme yapilmasindaki ana amag; bir topluluktaki bireyler hakkinda segme
mekanizmasina daha nitelikli bilgi ulastirmak, bodylece se¢me mekanizmasinin
yetenegini artirmaktir. Orjinal yontemler ve iyilestirmeleri dort farkli ve sik kullanilan
test islevi kullamlarak test edilmislerdir. Onerilen bes iyilestirme (NSGAmod,
SPEAmodl, SPEAmod2, SPEAmod3, SPEAmod4), orjinal yontemlere gore Pareto
cephesine daha fazla yakinsamakta ve bu cephe iizerinden bireylerin dagilimini1 daha
diizglin yapmaktadir.

Sonug olarak, literatiirde yer alan NSGA ve SPEA yoOntemlerinin puan atama (ya
da siralama) yetenekleri onemli derecede iyilestirilmistir. Ayrica, k. en yakin komsuluk
yontemiyle olusturulan yogunluk bilgisi teknigi, paylasim tabanl ¢esitlilik tekniginden
daha iyi basarim gostermektedir.

Literatiirde yer alan tiim yoOntemler iizerinde bazi iyilestirmeler yapilmasi
miimkiindiir. Béylece yontemlerin yakinsama ve/veya dagilim yetenekleri artirilabilir ve
yontemler daha etkin hale getirilebilir. Bu ¢alismada, yalnizca bes adet iyilestirme
verilmekle beraber daha ¢ok sayida iyilestirme yapilmasi da miimkiindiir. Yntemlerin
islem siirelerinin kisaltilmas1 i¢in de iyilestirmeler yapilmasi, gelecek calisma

alanlarindan birisi olacaktir.

4.3. Gama Diizeltmesi ile Puan Olcekleme Yontemi (GDPO) ve Genetik

Algoritmalarin Basarimina EtKisi

Literatiirde, yerel en iyiye hizli yakinsamanin Oniine ge¢mek i¢in bazi puan
Olcekleme yontemleri Onerilmistir. Bu yontemler, genel olarak tek amagli genetik
algoritmalara uygulanmigtir. Bu zamana kadar, bu puan o6lgekleme yontemlerinin

CAGA’ lara uygulanmasi goézden kagirilmistir. Bu boliimde, bir gesit iistel (power-law)
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puan Olcekleme [Gillies, 1985; Goldberg, 1989; Michalewicz, 1994] yoOntemi
kullanilarak genetik algoritmalarin yakinsamasinin / yakinsama hizinin iyilestirilip
tyilestirilemeyecegi incelenmektedir. Burada kullanilan yontem, gama (y) diizeltmesi
ile puan 6lcekleme (GDPO) olarak adlandirilmistir. Bu yontemin etkisi, ilk olarak tek
amacli GA iizerinde incelenmistir. Daha sonra ise, GDPO sik kullanilan bazi CAGA
yontemleri (SPEA ve SPEA2) ve yeni onerilen DOPGA ve DOPGA2 ydntemlerine
uygulanarak, etkisi incelenmistir.

GA’ larda puan atama blogunun c¢ikisi, se¢me mekanizmasinin girisini
olusturmaktadir. Segme mekanizmasinin ¢ikigi da segme mekanizmasinin puan atama
mekanizmasi tarafindan nasil beslendigi ile dogrudan iligkilidir. Bu yiizden, puan atama
yontemleri  segcme  mekanizmasinin  ¢ikisint  etkilemektedir. Eger  se¢me
mekanizmasindan Once bireylerin se¢ilme baskisi degistirilebilirse, tek amaghh GA’
larda yakinsama hizi ve CAGA yontemlerinde Pareto cephesine yakinsama artirilabilir.

Puan olgekleme, GA’ larin erken adimlarinda secilme baskisinin azaltilmasi i¢in
kullanilir ve bdylece tiim arama uzaymin taranmasi ve c¢esitliligin artirilmasi
saglanabilir. Tersine, son adimlara dogru, puan Ol¢ekleme se¢ilme baskisini artirir ve
boylece en iyi ¢oziime yakinsama saglanabilir [Hopgood ve Mierzejewska, 2008].
Literatiirde puan Olgeklemenin CAGA’ lara uygulanmasit ile ilgili eksikler
goziikmektedir. Bunun nedeni, CAGA ydntemlerinin genellikle en gelismis (state-of-art)
yontemler olarak goriilmesinden kaynaklamaktadir. Bu sinirlama, basit bir fikir olan
puan Olceklemenin CAGA’ lara uygulanmast Oniinde psikolojik bir engel
olusturmaktadir. Bu ylizden literatiirde bu konuda bir eksiklik s6z konusudur.

GDPO’ de bir CAGA ydntemi tarafindan {iretilen puan degerlerinin gama ()
iissii alinmakta ve topluluktaki bireylerin se¢ilme baskis1 degistirilebilmektedir. Boylece,
en iyi bireylerin se¢ilme olasilig1 artirilabilir ve en ¢ok istenilen ve en az istenilen
bireyler, segme mekanizmasina gonderilmeden nce daha iyi ayirt edilebilir. Ilerleyen

boliimlerde GDPO ayrintil olarak agiklanmakta ve benzetim sonuglari verilmektedir.

4.3.1. Gama Diizeltmesi ile Puan Ol¢ekleme Yontemi (GDPO)

Yerel en iyiye erken yakinsama genetik algoritmalar i¢in biiyiik bir sorundur.

Eger verilen toplulukta yiiksek puana sahip bir siiper birey bulunuyorsa, onun se¢ilme
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olasilig1 yiiksek olacaktir ve ¢esitlilik erken agsamada kaybedilecektir [Leclerc ve Potvin,
1995]. Sadjadi, 6lgeklemenin genetik ¢esitlilik ve yakinsamaya carpici bir etkisi oldugu
belirtmektedir [Sadjadi, 2004]. Buna gore, puan olgekleme yontemleri kullanilarak
GA’ larin basarimini artirmak miimkiindiir. Literatiirde bircok puan dlgekleme yontemi
Onerilmistir: dogrusal olgcekleme [Goldberg, 1989; Michalewicz, 1994], derece (rank)
Olcekleme [Goldberg, 1989], eksponansiyel dlgekleme [Hopfield, 1982; Kirkpatrick ve
ark., 1983; Gen ve ark., 1996], sigma Olcekleme [Goldberg, 1989; Michalewicz, 1994],
dontisiim (transform) derecelendirme [Hopgood ve Mierzejewska, 2008], Boltzman
6lcekleme [Hopgood, 2001] ve lstel (power-law) Ol¢ekleme [Gillies, 1985; Goldberg,
1989; Michalewicz, 1994]. Bu puan Olgekleme yOntemleri genel olarak tek amacl
GA’ lara uygulanmis ve CAGA’ lara olan etkisine simdiye kadar deginilmemistir.
Burada Onerilen gama diizeltmesi ile puan 6l¢ekleme yontemi, CAGA ydntemlerine
uygulanabilen bir ¢esit iistel puan Olgekleme yontemidir. Sayisal goriintii islemede
kullanilan gama diizeltme islevine tarihsel ve yapisal benzesiminden dolay1r bu isim
verilmistir. Ustel puan dlgeklemenin bir incelemesi ve SPEA yontemine SUS segcme
mekanizmasiyla uygulamasinin etkisi [Ergiil ve ark., 2009a] makalesinde rapor
edilmistir.

Bir sayisal goriintiiniin parlakligi, gama diizeltmesi ile kalitesi iyilestirilerek
degistirilebilir (Sekil 4.24a) [Gonzales ve Woods, 2008]. Boylece, kullanicilar igin
goriintli daha cazip / daha iyi bir duruma getirilir, daha anlasilir olur. Bir CAGA
yontemi tarafindan bir topluluktaki bireylere puan atanir, daha sonra bu puan degerleri
GDPO tarafindan degistirilerek yeni puan degerleri elde edilir ve bu puan degerleri
segme mekanizmasina gonderilir (Sekil 4.25). Temel olarak, GDPO dogrusal olmayan
basit bir islevdir ve secilen gama (y) degerine bagh olarak, puan atama blogundan 6nce
puan degerlerini (ve dolayistyla toplulugun secilme baskisini) degistirir. Eger gama (y)
degeri 1° den biiylikse, secilme baskisi artar. Eger gama (y) degeri 1’ den kiigiikse,
secilme baskis1 azalir (Sekil 4.24b). Bu sekilde, en iyi bireylerin secilebilme olasiligi
artirtlabilir ve en iyi ile en kotii bireyler arasindaki ayrim se¢gme mekanizmasindan dnce

daha iyi yapilabilir.
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Sekil 4.25. Se¢me mekanizmasindan énce GDPO kullanim1

Ustel (power-law) puan &lgekleme bir i bireyinin puanmi asagidaki formiile gore

degistirir:

fi(yeni y=(fi)"

(4.16)

Boylece, vy degerine gore en iyi ve en kotii bireylerin arasindaki fark ayarlanir.

Leclerc ve Potvin, tek amagli genetik algoritmalar i¢in y {is degerinin dinamik olarak

degistirildigi bir yontem onermislerdir [Leclerc ve Potvin, 1995].

Bu tezde &nerilen GDPO yoéntemi ile bir topluluktaki bireylerin puanlart

Sekil 4.26’ da verilen algoritmaya gore degistirilir.
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Gama Diizeltmesi ile Puan Olcekleme (GDPO)

1) CAGA yontemi tarafindan atanan puan degerleri normalize edilir,

(i=0,1,..,t0p _boyutu ):
Normalize ~ Puan = Puan (i)/ En Yiiksek _ Puan (4.17)

2) Gama (y) diizeltme islevi kullanilarak bireylerin yeni puan degerleri

hesaplanir:

Yeni _Puan (i) = Normalize _ Puan (i)” (4.18)

3) Yeni puan degerleri segme mekanizmasina gonderilir.

Sekil 4.26. GDPO genel algoritmast

4.3.2. Uyarlanabilir (Adaptif) Gama Diizeltmesi ile Puan Ol¢ekleme
(U_GDPO) Yontemi

Puan degerleri segme mekanizmasmin girig kiimesidir ve segme mekanizmast
giris kiimesinin icerigine bagli olarak bir ¢ikis kiimesi (gelecek nesili olusturacak
ebeveynler) olusturur. Sekil 4.27, bes farkli puan dagilimmi gostermektedir (burada
bireyler en 6énemliden en az 6nemliye dogru siralanmiglardir). Bu farkli puan dagilimlari
segme mekanizmasi ilizerinde farkli seviyede se¢ilme baskisi olusturur. Bir bagka
deyisle, bu bes farkli giris kiimesiyle beslenen se¢gme mekanizmasinin ¢ikist ayni
olmayacaktir. Sekil 4.27° de, puan degerleri y=1 ile iistel olarak degistirilirse, dagilim
diizgiin olur. Eger y>1 ise puan islevi i¢biikeydir ve ilk birkag¢ bireyin puani birbirlerine
cok yakindir, tersine son birka¢ bireyin puani birbire uzaktir. Benzer olarak, eger y<l
ise puan islevi digbiikey olur ve ilk birkag¢ bireyin puani birbirinden uzak iken, tersine

son birkag bireyin puani birbirine yakindir.
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Bireyler

Sekil 4.27. Bes farkli puan dagilim islevi

Herhangi bir problem i¢in, hangi y degerinin 1yi oldugu bilinmemektedir. Bunun
igin GDPO’ nin uyarlanabilir (adaptif) bir bicimi gerekmektedir, bdylece segilme
baskisinin bir nesilden diger nesile dinamik olarak kontrol edilmesi y degerinin
giincellenmesiyle saglanabilir. Gamma (y) degeri Sekil 4.28” de verilen uyarlanabilir
algoritmaya gore giincellenebilir. (4.19) nolu esitlikte verilen gama degeri ayrica

diizgiin dagilimin bir 6l¢iitiidiir.

Uyarlanabilir GDPO Algoritmasi

1) Puan degerleri O ile 1 arasina normalize edilir,

2) Normalize puan (NP) degerleri en Onemliden en az Onemliye dogru
siralanir,

3) Tim topluluk icin, ardisil bireyler arasindaki normalize puan farklar
(NPF) hesaplanir,

4) NPF’ lerin ortalama degeri ve standart sapmasi hesaplanir. Gama (y) degeri
(4.19) esitligindeki gibi hesaplanir ve nesilden nesile degisir.

NPF' lerin Standart Sapmas:
Gama(y) = - - (4.19)
NPF' lerin Ortalama Degeri

Sekil 4.28. Uyarlanabilir GDPO algoritmasi
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4.3.3. Tek Amach GA’ larda GDPO’ niin Etkisinin incelenmesi

ve Benzetimler

Tek amagh genetik algoritmlarda GDPO’ niin etkisinin belirlenmesi igin, iki adet
test islevi kullanilmigtir. Bu test iglevleri, Ackley islevi ve Rastrigin islevidir (ikisi de en
kiiciikleme problemidir). Ackley islevinin en kiigiik degeri 0, Rastrigin islevinin en
kiigiik degeri 5’ tir. Rastrigin islevinin matematiksel ifadesi (2.10) esitliginde, grafigi ise
Sekil 2.12° de verilmektedir. Ackley islevinin grafigi ise Sekil 4.29° da verilmektedir.

Ackley islevinin matematiksel ifadesi ise sOyledir:

F(xl,x2)=—20-exp{—0 }é Z j—exp[é icos(Zﬁ-x[)jJrZO%-e (4.20)
i=1 i=1

F(x1,X2)

Sekil 4.29. Ackley islevi ( x1,x2 =[-2,2] i¢in)

Bu test islevlerinde tek amach GA, alt1 farkli gama degeri (0.1, 0.2, 1, 2, 5 ve 10)
kullanilarak GDPO ile ¢alistirilmistir. GA parametreleri benzetimlerde soyle segilmistir:
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Birey sayisi 0 20
Bit sayis1 : 30
Adim (nesil) sayisi 2 300
Caprazlama olasihign  : 1
Mutasyon olasiligi 0 0.1

Parametrelerin alt sinir1 (Ackley) :-500
Parametrelerin iist sinir1 (Ackley) : 500
Parametrelerin alt sinir1 (Rastrigin) : -10

Parametrelerin st sinir1 (Rastrigin) : 10

Tek amacli GA’ nin yukarida verilen parametre ve test islevleriyle calistirilmasi

sonucu elde edilen sonuglar Sekil 4.30 ve Sekil 4.31° de verilmektedir.

Bu sonuclardan goriilecegi lizere gama degeri artirildigi zaman GA ¢oziime daha

az adimda ulagmaktadir. Her iki test islevinde de GA, y=10 i¢in en iyi sonuca daha hizli

yakinsamistir.
Ackley Test Islevi
22 T T T T T
20 T T Y=1 -
Iy Y=2
181 ! Y=10 .
11 ¥=5
16 1l ———-¥y=01 =
1 -——-Yy=02
L1l _
14 I
I
—~ 12F H _
x:_ ”1
£ 10} 11 .
_--'n
8F 4 l______ .
I
5 ~—~1--—"—""""""""1""""——q—"—=-——-- -
4+ T T TTTTTTTTT T A
______ | B,
|
2| e
o , . .
0 50 100 150 200 250 300
ADIM SAYISI

Sekil 4.30. Tek amagli GA’ da GDPO etkisi (Ackley islevi)
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Rastrigin Test Islevi

Y=10

——=-Y=02
———-Y=0.1

fix v xz)

1 1 1
0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
ADIM SAYISI

0 1

Sekil 4.31. Tek amagli GA” da GDPO etkisi (Rastrigin islevi)

4.3.4. CAGA’ larda GDPO’ niin Etkisinin Incelenmesi ve Benzetimler

GDPO yontemi, hesapsal olarak sik kullamlan SPEA ve SPEA2 yontemleri ile
onerilen DOPGA ve DOPGA?2 yontemlerine uygulanmistir. Bu CAGA yontemleri, ilk
olarak 12 farkli sabit gama degeri (0.1,0.5,1,2,3,4,5,6,7,8,9 ve 10) kullanilarak dort adet
sik kullanilan test islevi (ZDT1, ZDT2, ZDT3 ve ZDT6, [Zitzler ve ark., 2000]) ile
calistirilmiglardir. Daha sonra, uyarlanabilir GDPO uygulanarak tiim yéntemler ayni test
islevleri kullanilarak ¢aligtirilmastir.

SPEA ve SPEA2 yonteminin karsilastirmalarda kullanilmak iizere segilmesinin
nedenleri sunlardir: i) her ikisi de Pareto tabanlidir, ii) her ikisi de harici bir katsay1
kullanmadan g¢esitlilik bilgisini puanlama mekanizmasinin i¢ine gémebilme yetenegine
sahiptir, 7ii) her ikisi de elitisttir, iv) her ikisi de son zamanlarda farkli yapay test
islevleri kullanilarak farkli CAGA yontemleriyle karsilagtirilmiglardir. Benzetimlerde,
iki temel segme mekanizmasi, turnuva se¢imi (TS) ve stokastik evrensel drnekleme

(SUS) kullanilmistir ve bu mekanizmalarin etkinlikleri test edilip tartisilmastir.
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Daha o6nceden belirlenmis bir nesil (adim) sayis1 sonrasit (NS=100 segilmistir)
elde edilen topluluk kullanilarak yakinsamayir ve dagilimi Glgen ve literatiirde sik
kullanilan iki adet &l¢iit (GD ve A) hesaplanmistir [Deb, 2001; Deb ve ark., 2002b]. ilk
o6l¢iit GD, bilinen bir Pareto cepheye olan yakinsamayi dlgmektedir. Bunun i¢in test
islevlerinin Pareto cephelerine 500 adet diizglin dagilmig birey yerlestirilmis ve
yontemler tarafindan bulunan Pareto bireylerin bu bireylere olan Oklit mesafeleri
kullanilarak GD &lgiitii hesaplanmistir. Ikinci 6lgiit A, bulunan sonuglarin Pareto
cepheye ne kadar diizglin dagildigini belirlemektedir. Her iki Olgiitiin de degerinin
kiigiik olmasi istenilmektedir.

Tim yontemler 12 farkli gama degeri ile her bir test islevi i¢in 20’ ser kez
calistirilmislardir. Daha sonra, yakinsama ve dagilim olgiitlerinin ortalama degerleri ve

varyanslar1 hesaplanmaistir.

4.3.4.1. Sabit Gama Degerleri Kullanildiginda Benzetim Sonuclari

DOPGA ve DOPGA2 yontemleri, SPEA ve SPEA2 yontemleriyle dort farkli test
islevi kullanilarak karsilagtirilmistir. Stokastik evrensel oOrnekleme (SUS), puanla
orantil1 bir segme mekanzimasi olarak tim CAGA yontemlerine uygulanmigtir. Daha
sonra 100 adim sonucunda elde edilen topluluklar kullanilarak GD ve A o6lgiitleri
bulunmugtur. Tim yontemler 20’ ser kez calistirildiktan sonra, yakinsama igin
Cizelge 4.3 ve dagilim i¢in Cizelge 4.4’ te verilen sonuglar elde edilmistir. Sonuglarin
daha kolay anlasilmasi ve yorumlanmasi i¢in en iyi sonuclar koyu renkle belirtilmistir.

Cizelge 4.3° e gore, y=1 i¢cin DOPGA ve DOPGA2, SPEA ve SPEA2’ ye gore
Pareto-optimal cepheye daha iyi yakinsamaktadirlar. Daha sonra farkli gama degerleri
icin benzetimler tekrarlanmistir. Benzetimlerde, tek noktali ¢aprazlama ve bit-tabanl

mutasyon uygulanmistir. Caprazlama olasiligi p, = 0.9, mutasyon olasihigi p,, =1/1

(burada / dizi uzunlugudur) olarak secilmistir. Topluluk boyutu 100 birey, arsiv veya
ikincil topluluk boyutu ise SPEA ve DOPGA i¢in 25, SPEA2 ve DOPGA? igin ise 100

olarak se¢ilmistir. Her parametrenin kodlanmasi i¢in 30 bit kullanilmastir.
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Cizelge 4.3, tiim CAGA yontemleri igin farkli gama degerlerinde elde edilen
yakinsama 0l¢iit (GD) sonuglariin ortalama degerlerini géstermektedir. Cizelge 4.3 ve
Sekil 4.32° ye gore, SPEA yontemi y=7 ile tiim test islevlerinde diger gama degerlerine
gore daha iyi bir yakinsama saglamaktadir. Benzer olarak, SPEA2 ve DOPGA2
yontemleri y=2 ile tiim test islevlerinde diger gama degerlerine gore daha iyi yakinsama
saglamaktadirlar. DOPGA ise y=3 ile ZDT2, ZDT3 ve ZDT6 test islevlerinde, y=4 ile
ise ZDT]1 test islevinde diger gama degerlerine gore daha iyi yakinsama saglamaktadir.

Cizelge 4.4, tim CAGA yontemleri i¢in farkli gama degerlerinde elde edilen
dagilim o6l¢iit (A) sonuglarinin ortalama degerlerini gostermektedir. Cizelge 4.4 ve
Sekil 4.33” e gore, SPEA yontemi y=7 ile tiim test islevlerinde diger gama degerlerine
gore daha diizgiin bir dagilim saglamaktadir. SPEA2, DOPGA ve DOPGA?2 ydntemleri

ise farkli test iglevlerinde farkli gama degerlerinde iyi dagilim gostermektedirler.

Cizelge 4.3. Yakinsama 0l¢iitiiniin (GD) tim CAGA yontemleri i¢in tiim test
islevlerinde elde edilen ortalama degerleri

GD | y=0.1 | y=0.5 | y=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8 = v=10
ZDT1|0.1409 | 0.1061 | 0.1256 | 0.1034 | 0.0857 | 0.0667 | 0.0612 | 0.0630 | 0.0569 | 0.0624 | 0.0691 | 0.0613
7ZDT2|0.3430|0.2768 | 0.2432 | 0.2592 | 0.2824 | 0.2578 | 0.2700 | 0.2885 | 0.1989 | 0.2668 | 0.2348 | 0.1999
ZDT3|0.1299 | 0.1027]0.1039 | 0.1015] 0.0752 | 0.0728 | 0.0559 | 0.0580 | 0.0554 | 0.0587 | 0.0577 | 0.0563
ZDT6| 1.9760 | 1.9839 | 1.8338 | 1.8747|2.0126 | 1.8992 | 2.1623 | 2.0070 | 1.7277 | 2.4558 | 2.5922 | 1.7486

ZDT1|0.1163 | 0.0226 | 0.0141 | 0.0110 | 0.0144 | 0.0205 | 0.0285 | 0.0344 | 0.0450 | 0.0482 | 0.0555 | 0.0599
ZDT2|0.3809 | 0.0461 | 0.0223 | 0.0194 | 0.0267 | 0.0450 | 0.0643 | 0.0887 | 0.1164 | 0.1332]0.1611 | 0.1652
ZDT3|0.0974 | 0.0150 | 0.0081 | 0.0073 | 0.0080 | 0.0124 | 0.0181 | 0.0229 | 0.0360 | 0.0403 | 0.0435 | 0.0498
ZDT6| 2.2259 | 1.1805 | 1.0266 | 0.9406 | 1.0912 | 1.3590 | 1.4712 | 1.4737 | 1.7379 | 1.7874 | 1.9064 | 1.8775

ZDT1|0.1968 | 0.0324 | 0.0178 | 0.0114 | 0.0094 | 0.0085 | 0.0103 | 0.0139 | 0.0183 | 0.0248 | 0.0274 | 0.0423
ZDT2|0.4890 | 0.0531]0.0190 | 0.0117]0.0112 | 0.0126 | 0.0214 | 0.0279 | 0.0481 | 0.0555 | 0.0846 | 0.1080
ZDT3|0.1323 ] 0.0215]0.0099 | 0.0053 | 0.0046 | 0.0051 | 0.0062 | 0.0084 | 0.0126 | 0.0167 | 0.0209 | 0.0278
ZDT6|2.0913 | 1.1704 | 0.8041 | 0.6391 | 0.6309 | 0.7426 | 0.8146 | 0.9908 | 1.1321 | 1.2200 | 1.3314 | 1.3952

ZDT1|0.1063 [ 0.0217 | 0.0121 | 0.0084 | 0.0132 | 0.0219 | 0.0275 | 0.0364 | 0.0442 | 0.0529 | 0.0551 | 0.0598
7ZDT2|0.0438 | 0.0506 | 0.0176 | 0.0129 | 0.0246 | 0.0442 | 0.0608 | 0.0932 | 0.1215 | 0.1309 | 0.1671 | 0.1727
ZDT3|0.1046 | 0.0167 | 0.0074 | 0.0049 | 0.0085 | 0.0138 | 0.0183 | 0.0240 | 0.0355| 0.0418 | 0.0426 | 0.0433
ZDT6| 1.9609 | 1.2431 | 1.0344 | 0.8488 | 1.0331 | 1.2941 | 1.5147 | 1.5527 | 1.5622 | 1.6837 | 1.7429 | 1.8621

SPEA

SPEA2

DOPGA

DOPGA2
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Cizelge 4.4. Dagilim olg¢iitiiniin (A) tim CAGA yontemleri i¢in tiim test
islevlerinde elde edilen ortalama degerleri

A | y=0.1 | y=0.5 | v=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8 =9 | v=10
ZDT1|0.6210 | 0.6391 | 0.6092 | 0.6332 ] 0.5756 | 0.5884 | 0.6016 | 0.5808 | 0.5696 | 0.5805 | 0.5758 | 0.5908
ZDT2|0.7298 | 0.7230| 0.7280 | 0.6558 | 0.6968 | 0.6803 | 0.7044 | 0.6318 | 0.6187 | 0.6777 | 0.6359 | 0.6281
ZDT3|0.6793 | 0.6491 | 0.6191 | 0.6550 | 0.6125 | 0.6196 | 0.6104 | 0.6166 | 0.6000 | 0.6074 | 0.6324 | 0.6066
ZDT6|0.9186|0.9131]0.9182]0.9326|0.9119 | 0.8784 | 0.8801 | 0.9099 | 0.8737 | 0.9011 | 0.8976 | 0.8895

ZDT1|0.5831 | 0.5983]0.5916 | 0.5945]0.6073 | 0.5668 | 0.5854 | 0.5665 | 0.6053 | 0.5867 | 0.5761 | 0.6131
ZDT2|0.7357 | 0.5684 | 0.6167 | 0.5951 | 0.6061 | 0.5974 | 0.6539 | 0.6461 | 0.6657 | 0.6591 | 0.6708 | 0.6367
ZDT3| 0.6063 | 0.5696 | 0.6045 | 0.6172]0.6331 | 0.6280 | 0.6193 | 0.6121 | 0.5913 | 0.6021 | 0.5911 | 0.5982
ZDT6|0.9219 | 0.87490.8977 | 0.9017 | 0.8630 | 0.8911 | 0.9025 | 0.8957 | 0.9022 | 0.8260 | 0.9365 | 0.8773

ZDT1|0.5299 | 0.5573 | 0.5842 | 0.5775] 0.5923 | 0.5760 | 0.5782 | 0.5684 | 0.5623 | 0.5538 | 0.5701 | 0.6035
ZDT2|0.7582 1 0.5977 | 0.6142 | 0.6316 | 0.6070 | 0.5757 | 0.5726 | 0.5744 | 0.5752 | 0.6341 | 0.6116 | 0.6503
ZDT3|0.5705 | 0.5843 | 0.6109 | 0.6358 | 0.6035 | 0.5726 | 0.5850 | 0.6029 | 0.5810 | 0.6223 | 0.6252 | 0.5876
ZDT6| 0.8916 | 0.8216 | 0.7945 | 0.8479 | 0.8299 | 0.8232 | 0.8549 | 0.8454 | 0.8826 | 0.8690 | 0.8586 | 0.9004

ZDT1| 0.5552 | 0.6030 | 0.5970 | 0.5898 | 0.6270 | 0.5707 | 0.6047 | 0.5699 | 0.5874 | 0.6101 | 0.5726 | 0.6099
ZDT2|0.6342 | 0.5992 ] 0.5976 | 0.6248 | 0.6234 | 0.5994 | 0.6268 | 0.6513 | 0.6665 | 0.7027 | 0.6868 | 0.6314
ZDT3| 0.5750 | 0.6044 | 0.6244 | 0.6394 | 0.6499 | 0.6375]0.6168 | 0.6084 | 0.5880 | 0.5772]0.7196 | 0.6194
ZDT6| 0.9075 | 0.8723 | 0.8839 1 0.9176 | 0.8792 | 0.8821 | 0.8868 | 0.9152 | 0.8889 | 0.8989 | 0.8986 | 0.8891

SPEA

SPEA2

DOPGA

DOPGA2

Tim CAGA yoOntemlerinin tiim test islevlerinde elde edilen yakinsama ve dagilim

Olciitlerinin ortalama degerleri bar / siitun grafikleri olarak Sekil 4.32 ve Sekil 4.33° te

verilmektedir.
ZDT1 Test Fonksiyonu ZDT2 Test Fonksiyonu
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Sekil 4.32. Yakinsama oOl¢iitiiniin ortalama degerleri. Bu sekilde sayilar su yontemleri
simgelemektedir: 1-Orjinal SPEA, 2- y=7 ile SPEA, 3- Orjinal SPEA2, 4- y=2 ile
SPEA2, 5- Orjinal DOPGA, 6- y=3 ile DOPGA, 7- Orjinal DOPGA?2 and 8- y=2 ile
DOPGA2
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Sekil 4.33. Dagilim Olgiitiiniin ortalama degerleri. Bu sekilde sayilar su yontemleri
simgelemektedir: 1-Orjinal SPEA, 2- y=7 ile SPEA, 3- Orjinal SPEA2, 4- y=2 ile
SPEA2, 5- Orjinal DOPGA, 6- y=3 ile DOPGA, 7- Orjinal DOPGA2 and 8- y=2 ile
DOPGA2

Sekil 4.34, Sekil 4.35, Sekil 4.36 ve Sekil 4.37, gama degerindeki degisime
karsilk CAGA yontemlerinin Pareto-optimal cephelere olan yakinsamalarindaki

degisimlerin grafiklerini gostermektedir.
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Sekil 4.34. SPEA yontemi i¢in gama-yakinsama degisimi
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Sekil 4.35. SPEA2 yontemi i¢in gama-yakinsama degisimi
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Sekil 4.36. DOPGA yontemi i¢in gama-yakinsama degisimi
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Sekil 4.37. DOPGA?2 yontemi i¢in gama-yakinsama degisimi
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Sekil 4.38, Sekil 4.39, Sekil 4.40 ve Sekil 4.41, 100 adim sonunda ZDT1 ve
ZDT?2 test islevleri icin, SPEA, SPEA2, DOPGA ve DOPGA2 ydntemlerinin y=1 ve en
iyl gama degerleri i¢in secilmis Pareto bireyleri gostermektedir. Sekil 4.38” den de
acikca goriilecegi iizere, SPEA yontemi y=7 ile y=1" e gore daha iyi bir yakinsama
saglamaktadir. Benzer olarak, Sekil 4.39” da, SPEA2 yontemi y=2 ile y=1" e gore daha
1yi bir yakinsama saglamaktadir. Sekil 4.40° tan da goriilecegi lizere, DOPGA yontemi
v=3 ile y=1" e gore daha iyi bir yakinsama saglamaktadir. Son olarak, Sekil 4.41° de
DOPGA?2 yontemi y=2 ile y=1" e gore daha iyi bir yakinsama saglamaktadir.

ZDT1 ZDT2
e T 2 T T T
= Pareto Cephesi = Pareto Cephesi
O SPEA +Y=7 g SPEA + Y=7
£ B SPEA +Y=1 SPEA + Y=1
il b 2r
1]
Og
Og 00 00 0 O g _
15 1 18
2 0 °© 0 00 , ° :
N %0 e % 090 o
- Q Opn 0 - 8 .
1 ® 0 g 1 % o !
8 o o 0 v
8 oo
C o o
% o
05+ g 051
]

Sekil 4.38. y=1 ve y=7 i¢in SPEA yontemiyle ZDT1 ve ZDT?2 test islevlerinde
bulunan Pareto bireyler
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Sekil 4.39. y=1 ve y=2 i¢in SPEA2 yontemiyle ZDT1 ve ZDT?2 test islevlerinde

bulunan Pareto bireyler
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Sekil 4.40. y=1 ve y=3 i¢in DOPGA yontemiyle ZDT1 ve ZDT?2 test iglevlerinde

bulunan Pareto bireyler
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Sekil 4.41. y=1 ve y=2 i¢cin DOPGA?2 yontemiyle ZDT1 ve ZDT?2 test islevlerinde

bulunan Pareto bireyler

4.3.4.2. Uyarlanabilir GDPO Kullamldiginda Benzetim Sonuclar

Bu boliimde, uyarlanabilir GDPO (U GDPO) tim CAGA ydntemlerine

uygulanmistir. 20 galistirma sonucunda elde edilen yakinsama ve dagilim oSlgiitlerinin

ortalama degerleri Cizelge 4.5 ve Cizelge 4.6’ da verilmektedir. Cizelge 4.5 ten de

acikca gortilecegi lizere, DOPGA tiim test iglevlerinde diger yontemlerden daha iyi bir

yakinsama saglamaktadir. Dagilim i¢in ise kesin bir sey sdylenemektedir.

Cizelge 4.5. U_GDPO uygulamasi sonucunda hesaplanan yakisama &l¢iit sonuglari

GD- Yakinsama Ol¢iitii | ZDT1 | ZDT2 | ZDT3 | ZDT6
SPEA + U _GDPO 0.0592 | 0.1871 | 0.0548 | 1.6026
SPEA2 + U _GDPO 0.0183 | 0.0277 | 0.0118 | 1.1507
DOPGA + U_GDPO 0.0093 | 0.0109 | 0.0048 | 0.6189
DOPGA2 + U _GDPO | 0.0249 | 0.0414 | 0.0144 | 1.1453
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Cizelge 4.6. U _GDPO uygulamasi sonucunda hesaplanan dagilim 6l¢iit sonuglart

A- Dagilim Olgiitii ZDT1 | ZDT2 | ZDT3 | ZDT6
SPEA +U_GDPO 0.5614 | 0.6464 | 0.6540 | 0.8736
SPEA2 +U_GDPO 0.6121 | 0.6477 | 0.6303 | 0.8917
DOPGA + U_GDPO 0.5764 | 0.5700 | 0.6181 | 0.8053
DOPGA2 + U_GDPO 0.6010 | 0.6125 | 0.6115 | 0.8820

4.3.4.3. Turnuva Secimi (TS) Kullanildiginda Benzetim Sonuc¢lar:

Bu béliimde SPEA ve DOPGA yéntemleri GDPO ile turnuva segimi (ikili ve
dortlii turnuva) kullanilarak 20’ ser kez calistirilmislardir. Cizelge 4.7, se¢me
mekanizmasi olarak turnuva se¢imi kullanildiginda bes farkli gama degeriyle SPEA ve
DOPGA yontemlerinin yakinsama Ol¢iitiinlin ortalama degerlerini gostermektedir.
Cizelge 4.8 ise, secme mekanizmasi olarak turnuva se¢imi kullanildiginda bes farkl
gama degeriyle SPEA ve DOPGA yontemlerinin dagilim o&lgiitiiniin  ortalama
degerlerini gostermektedir. Benzetim sonuglarina gore, turnuva se¢imi kullanildiginda
GDPO etkili degildir. Ciinkii, turnuva se¢imi birey puanlariyla orantili olarak segme
yapan bir segme mekanizmasi degildir ve turnuvaya giren bireylerden yalnizca en
segmektedir. Farkl

lyisini gama degerlerinde yOntemlerin Pareto cephesine

yakinsamalari ve dagilimlar1 arasinda ¢ok biiyiik bir fark goriilmemistir.

Cizelge 4.7. TS-2 / TS-4 i¢in yakinsama 0l¢iit sonuglari

| 18 |

v=10 ‘

Y=2

y=1

v=0.5

v=0.1

ZDT1

0.0638/0.0648

0.0649 /0.0651

0.0646 / 0.0652

0.0655/0.0708

0.0673 /0.0693

ZDT2

0.2230/0.2305

0.2318/0.2360

0.2264 /0.2329

0.2306 / 0.2444

0.2642 /0.2352

SPEA

ZDT13

0.045870.0530

0.0504 / 0.0535

0.0503 /0.0565

0.0517/0.0538

0.0502 /0.0545

ZDTé6

ZDT1

2.4133/1.8219

0.0220/0.0359

2.4663 /2.0009

0.0210/0.0315

2.4561/2.1569

0.0218 /0.0330

2.4371/2.1423

0.0236/0.0343

2.6439/2.1117

0.0239/0.0329

ZDT2

0.0519/0.0919

0.050570.0709

0.0508 /0.0730

0.0536/0.0719

0.0554/0.0823

ZDT3

DOPGA

0.0153/0.0239

0.0137/0.0235

0.0144 /0.0262

0.0142 /0.0247

0.0169 /0.0258

ZDT6

1.1331/1.3783

1.1264/1.3397

1.1272/1.3856

1.1661/1.3670

1.1877/1.3529
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Cizelge 4.8. TS-2 / TS-4 i¢in dagilim 6l¢iit sonuglari

TS |

v=10 |

Y=2

y=1

v=0.5

v=0.1

ZDT1

0.6120/0.6184

0.6103 /0.6047

0.6023 /0.5990

0.6085 /0.6302

0.6168 /0.6145

ZDT2

0.6975 /0.6608

0.6993 /0.7046

0.6995 / 0.6565

0.6851/0.6316

0.6946 / 0.6980

SPEA

ZDT3

0.5889/0.5922

0.5904 / 0.6082

0.6034 /0.6225

0.5995/0.6019

0.5947/0.6026

ZDTé6

0.9076 /0.9075

0.8794 /0.8853

0.9114/0.9191

0.8804 /0.9363

0.9201/0.9058

ZDT1

0.5885/0.5804

0.6016 / 0.6054

0.5934/0.5664

0.5985 /7 0.6008

0.5817/0.5573

ZDT2

0.6133/0.6162

0.6178/0.6156

0.6095 /0.6035

0.6203 / 0.6082

0.5833/0.5558

DOPGA

ZDT3

0.6110/0.6062

0.6147/0.6202

0.6397/0.5971

0.6078 / 0.5787

0.6321/0.5728

ZDT6

0.9018 /0.9026

0.8662 /0.8890

0.8957/0.8658

0.8558/0.8532

0.8955/0.8511

4.3.4.4. 300 Adim Cahstirilma ile Elde Edilen Sonuclar

Olgiitler kullanilmadan tiim ydntemlerin temel yeteneklerinin gérsel olarak
goriilebilmesi igin, tiim ydntemler sabit gamali GDPO ve uyarlanabilir GDPO ile 300
adim calistirilmislardir. Benzetimlerde, GA parametreleri daha 6nceki benzetimlerde
kullanilanlarla ayni se¢ilmistir. Sekil 4.42 — Sekil 4.49 arasi; en iyi gama degerleri ve
uyarlanabilir GDPO kullamldig1 durumlarda SPEA, SPEA2, DOPGA ve DOPGA2
yontemleri tarafindan ZDT1 ve ZDT2 test islevlerinde bulunan Pareto bireyleri

gostermektedirler.

iyl

03 \Db 08t

06 08+
04f oo,
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(a) (b)
Sekil 4.42. y=7 ile SPEA tarafindan bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2



166

om mn2

Sekil 4.43. y=2 ile SPEA2 tarafindan bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2

ping! o
14 : 14 :
120 , 12 1
1 | o i i
08 , 08- d B
uN hN
08F . 08k 1
m
04F . 04k J
0z- f 02k ]
g
0 | | | | | | | | 0 L L L L L L L L L
0 01 02 03 04 05 0§ 01 08 09 1 0 01 02 03 04 05 0§ 07T 08 09 1
f1 f1
(a) (b)

Sekil 4.44. y=3 ile DOPGA tarafindan bulunan Pareto bireyler: (a) ZDTI, (b) ZDT2



167

Dm T2
14 T 14 T
12r 12F
1 i
oy
T,
081 081 T,
I

061 081

041 g 041 %
02r 02r

| | | | | | | | | | | |

Sekil 4.45. y=2 ile DOPGAZ2 tarafindan bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2
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Sekil 4.46. U_GDPO ile SPEA tarafindan bulunan Pareto bireyler: (a) ZDT1, (b) ZDT2
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Sekil 4.47. U_GDPO ile SPEA2 tarafindan bulunan Pareto bireyler: (a)ZDT]1, (b)ZDT2
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Sekil 4.48.U GDPO ile DOPGA tarafindan bulunan Pareto bireyler:(a) ZDT1,(b) ZDT2
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Sekil 4.49.U GDPO ile DOPGA2 tarafindan bulunan Pareto bireyler:a) ZDT1,b) ZDT2

4.3.5. Genel Sonuclar ve Degerlendirme

GDPO ilk olarak, tek amacli GA {izerinde iki test islevi kullanilarak
calistirilmistir. GDPO’ de alt1 farkli sabit gama degeri (0.1,0.2,1,2,5,10) kullanilmistir.
Sonug olarak, kullanilan iki test islevinde de y=10 secildiginde daha iyi ve daha hizli bir
yakinsama saglandigi gorilmiistiir.

Genel benzetim sonuglarina gére DOPGA ve DOPGA2 yontemleri, segme
mekanizmasi olarak SUS veya TS kullanilirsa dort test islevinde de SPEA ve SPEA2
yontemlerinden iyi sonuglar vermektedirler.

GDPO yénteminin bir topluluktaki bireylerin segilme baskisinin degistirebilecegi
dolayisiyla CAGA yontemlerinin yakinsama yetenegini artirabilecegi goriilmiistiir.
Sabit gama (y) degerleri kullanilarak GDPO yontemi, mevcut ve onerilen CAGA
yontemlerine uygulanmistir. Bu durumda elde edilen genel sonuglar sdyledir: i) CAGA
yontemlerinin bagarimi gama (y) degerine bagli olarak degigsmektedir, ii)) SPEA yontemi
v=7 1ile uygulanan basarim Olciitlerine goére en iyi yakinsamayr ve dagilimi
saglamaktadir, iii) y=2 ile SPEA2 ve DOPGAZ2, y=3 ile DOPGA (ZDT1’ de y=4 ile) en
iyl yakinsamay1 saglamaktadirlar, iv) y=1 ile yani orjinal sonuclarla tiim yontemler

degerlendirildiginde, DOPGA2 yonteminin ZDT1, ZDT2 ve ZDT3 test islevlerinde,
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DOPGA’ nin ise ZDT6 test islevinde en 1yi sonuglar1 verdigi goriilmiistiir, v) tiim gama
degerlerine gore degerlendirme yapildiginda ise, ZDT1 test islevinde y=2 ile DOPGAZ2;
ZDT2, ZDT3 ve ZDT6 test islevlerinde ise y=3 ile DOPGA tiim yontemler arasinda en
iyi sonuglar1 vermektedir, vi) dagilim (veya ¢esitlilik) farkli gama degerlerinde 6nemli
derecede degismemektedir, vii) GDPO yalnizca puan orantili bir segme mekanizmasi
(6rnegin SUS) kullamldig1 zaman etkilidir, viii) TS kullamldig1 zaman GDPO etkili
degildir.

Uyarlanabilir GDPO yo6ntemi (dinamik y degerleri) kullanildiginda SPEA (ZDT1
hari¢) ve DOPGA (ZDT1 ve ZDT3 hari¢) yontemleri sabit gama kullanildiginda elde
edilen sonuglardan daha iyi sonuglar vermistir. SPEA2 ve DOPGA2 ise sabit
durumdakinden iyi sonu¢ vermemislerdir. Hem uyarlanabilir hem de sabit GDPO
sonuglar1 dikkate alindiginda, ZDT2 ve ZDT6 test islevlerinde DOPGA + Adaptif
GDPO, ZDTI1 test islevinde DOPGA2, ZDT3 test islevinde ise DOPGA; tiim
yontemlerden daha iyi yakinsama sonuglar1 vermektedir.

Sonug olarak, GDPO blogu, herhangi bir ek islem yiikii getirmeden ve
yontemlerin yapilarmi degistirmeden literatiirde yer alan tim CAGA yontemlerine
uygulanabilir ve yontemlerin yakinsama basarimi artirilabilir. Ayrica, benzetim
sonuglarindan da anlasilacag1 tizere, tim CAGA yontemleri hala iyilestirmelere

aciktirlar.

4.4. Cok Amach Genetik Algoritmalar icin Etkin Elitizm Mekanizmasi

Onerisi

GA literatiiriinde yer alan klasik veya pasif elitizm mekanizmasi, sakla/aktar bir
yapiya sahiptir. Tek amag¢li GA’ larda her adimda yalnizca bir tek en iyi oldugu i¢in
elitizm mekanizmasi basittir ve klasik elitizm sdyle uygulanir: yalnizca topluluktaki en
iyi birey bir sonraki topluluga (nesile) aktarilir. Buna ragmen, CAGA’ larda elitizm
mekanizmasi tek amagli GA’ larda oldugundan daha karmasiktir, ancak temel yapi
aymdir. Bir tek en iyi bireyin yerine, bir grup en iyi birey se¢ilir ve bunlar arsiv veya
ikincil topluluk olarak adlandirilan bir toplulukta saklanir ve belirli kurallar
cercevesinde bu bireylerin hepsi veya secilen bir kismi1 sonraki nesile aktarilir. Ikincil

topluluk / arsiv yonetimi (veya genel olarak elitizm) CAGA’ larin bagarimini 6nemli
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Olclide etkilemektedir, ancak bu durum ¢ok iyi kontrol edilmelidir. Baz1 CAGA’ larda
arsiv boyutu dnceden tanimlanir ve yalnizca belirli sayida elit birey arsivde saklanabilir.
Arsive bazi durumlarda, elit bireylerin yaninda elit olmayan bireyler de dahil edilebilir.
Arsivde saklanan bireylerin cesitliligi de 6nemli bir konudur, eger arsiv birbirinin ayni
veya birbirine yakin elit bireylerden olusturulursa, cesitlilik azalir. Klasik elitizm

mekanizmasinin iki onemli asamasi vardir:

i) Saklama Asamasi: Hangi bireyler arsivde saklanacak ? Bu asamada, ilk (veya
ana) topluluktaki Pareto (bastirilamayan) bireyler arsive gonderilir ve orada saklanir.
Eger arsiv boyutuna ulagilamazsa, baz1 Pareto olmayan bireyler arsive kopyalanir. Eger

arsiv boyutu asilirsa, o zaman bazi elit bireyler arsivden silinir.

ii) Geri Gonderme Asamasi: Hangi bireyler ilk topluluga geri génderilecek?
Stratejilerden bir tanesi, o andaki topluluktaki tiim elit bireylerin bir sonraki topluluga
eklenmesidir. Bir diger strateji ise, yalnizca belli bir sayida elit bireyin bir sonraki
topluluga gonderilmesidir [Zitzler, 1999]. Se¢cme islemi, yalnizca arsivden veya ana

topluluk + arsivden yapilabilmektedir.

Literatiirde bircok elitist ve elitist olmayan CAGA yontemi Onerilmistir. Elitizmin
CAGA yontemlerinin bagarimini artiran etkili bir yol oldugu deneysel olarak
ispatlanmustir. [Zitzler, 1999; Zitzler ve Thiele, 1999] de iki farkli CAGA ydnteminin
elitist versiyonlarinin daha iyi basarim gosterdigi belirtilmistir. Rudolph, elitizm
oldugunda bazi test islevlerinde GA’ larin kiiresel en iyiye daha iyi yakinsadigini ispat
etmistir [Rudolph, 1996; 2001]. Ayrica, elit bireylerin varligi daha iyi nesillerin
iiretilebilme olasiligin1 artirmaktadir.

Yeni elit bireylerin arsive eklenmesi ve bastirilan elit bireylerin arsivden silinmesi
islemine arsiv giincellenmesi ad1 verilir. CAGA yodntemlerinde birgok arsiv gilincelleme
yontemi mevcuttur [Osyczka ve Kundu, 1995; Zitzler, 1999; Veldhuizen, 1999; Zitzler
ve ark., 2001; Deb ve ark., 2002b]. Sonu¢ olarak su sdylenebilir; tiim klasik elitizm
yontemlerinin ortak noktasi, elit bireylerin hi¢bir uyartim olmadan arsivde saklanmasi

ve daha sonra ana topluluga aktarilmasidir (elit saklama yordami / yontemi).
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4.4.1. Etkin Elitizm Mekanizmasi (Effective Elitism Mechanism, EFE)

Usta, arsivdeki bir grup elit bireyi kendilerinden daha iyi ve c¢esitlilik agisindan
farkl1 bireyler {retilebilmesi umuduyla genetik islevler (caprazlama / mutasyon)
kullanarak uyarmistir [Usta, 2007]. Daha sonra bu uygulamalar daha da gelistirilerek,
literatiirde sik kullanilan SPEA yontemine uygulanmis ve basarimi artirdigl tespit
edilmistir (Ergul ve ark., 2009b). Eger uyarilmis elitler orjinallerinden daha iyi ise, o
zaman arsiv, statik bir saklama yerinden ziyade etkin bir ¢dziim saglayici olarak
goriilebilir. Bu yaklasimin ardindaki ana motivasyon, elit bireylerin ¢éziime (herhangi
bir optimizasyon probleminde) en yakin bireyler olmalari ve bu bireylerin genetik
islevler tarafindan uyarilmasiyla daha uzaktaki bireylere gore daha iyi sonuclar elde
edilebilecegi iimididir. Iste bu yap etkin elitizm mekanizmasi olarak adlandiriimaktadir.

Etkin elitizm mekanizmasi, bir turbosarj lnitesi (veya turbodan) esinlenilerek
onerilmistir. Turbo, motora atmosferik basincin {izerinde hava vererek yani cebri
doldurum yaptirarak daha kiiciik hacimli motordan daha yiiksek gii¢ alinmasini
saglayan, hareketini egzoz gazimin disar1 ¢ikma basincindan alan bir ¢esit hava
pompasidir. Tiirbin ve kompresor olmak iizere iki adet pervaneye sahiptir. Tiirbin egzoz
tarafinda, kompresor emme tarafinda yer almaktadir. Egzoz gazinin ¢ikma basinciyla
donen tiirbin aradaki baglant1 milinin yardimiyla kompresor pervanesini dondiiriir. Bu
sayede motor silindirine 6nemli 6l¢iide artan bir hava girisi saglanir. Eger motora giren
hava yogunlugu artirilirsa, daha fazla giic tiretilebilir. Dolayistyla, bir turbo motorda ne
kadar uyartim yapilirsa (hava basilirsa), o kadar fazla gii¢ iiretilir (Bkz Sekil 4.50).
Benzer sekilde, GA’ larda da elit bireyler bir takim GA islevleri (caprazlama ve
mutasyon) uyarilirsa, GA’ nin bagarim artirilabilir. Ciinkii elit bireyler ¢6zliime en yakin
bireylerdir ve bunlarin GA islevleri ile uyarilmasi neticesinde daha iyi sonuclar elde

edilebilir.


http://tr.wikipedia.org/wiki/Egzoz_gaz%C4%B1
http://tr.wikipedia.org/wiki/Pompa
http://tr.wikipedia.org/wiki/T%C3%BCrbin
http://tr.wikipedia.org/wiki/Kompres%C3%B6r
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KOMPRESOR Tiirbin
KISMI Karteri
Kompresor

Karteri Eksoz Gazi

Cikist

b __ Eksoz Gazi Pervanesi
Basinglh Girisi TURBIN
Hava Cikist KISMI

Ham Hava .

Girisi "~ Kompresor

Pervanesi

Sekil 4.50. Turbosarj {initesi [http://auto.howstuffworks.com/turbo2.htm, 21.06.2009]

Tim elit bireylerin segilebilmesi ve segme mekanizmasina gonderilmesi her
zaman mimkiin degildir. Segilemeyen elit bireyler genetik islevler tarafindan
uyarilamaz ve yeni ¢oziimler liretemez. Bununla birlikte, etkin elitizm mekanizmasi tim
elit bireylere yeni ¢oziimler liretebilmeleri i¢in bir sans vermektedir. Etkin elitizm

mekanizmali bir CAGA’ nin blok diyagrami Sekil 4.51° de verilmektedir.

[ Adim 0 : Baslanglg ]
Adim I: Puan Atama K"dlama — ]
Mekamzmam Mma Coziimler
Ad1m 2: Secme Adim 5: Elit Bireylerin
Mekamzmam Uyaillmas1
[ Adim 3: Caprazlama ] [ Adim 6: Arsiv Yénetimi]
[ Adim 4: Mutasyon ]

Ad1m 7:
| Sonlandirma Testi
| :{ En lyi Coziimler ]

Sekil 4.51. Etkin elitizm mekanizmali CAGA blok diyagrami
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Etkin elitizm mekanizmasi CAGA yontemlerine iki bi¢imde uygulanabilir:

i) Elit bireylerin mutasyon islevi ile uyarilmasi,
ii) O andaki (veya adimdaki) elit bireylerin n adim 6nceki elit bireylerle

caprazlanmasi

Elit bireylerin mutasyon islevi ile uyarilmasina bir Ornek Sekil 4.52° de
gosterilmektedir. Tim elit bireyler yalnizca bir kez mutasyona ugratilmislardir.
(+) simgesi ile gosterilen bu mutantlardan bazilar1 orijinal elit bireylere gore Pareto
cephesine daha fazla yakinsamuslardir. Ornegin; Y, A bireyinin mutantidir ve Y bireyi
her iki amag¢ dikkate alindiginda 4 bireyine gore Pareto cephesine daha yakindir. Bu
ylizden Y bireyi arsivde A bireyi ile yer degistirilir. Z ise B bireyinin mutantidir ve B

bireyi hala Z bireyinden daha iyi oldugundan B bireyi arsivde kalmaya devam eder.
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Sekil 4.52. Etkin elitizmde elit bireylerin mutasyon islevi ile uyarilmasi (Yuvarlaklar
Pareto (elit) Bireyler, art1 ve eksiler elit bireylerin mutantlaridir)

Elit bireylerin caprazlama islevi ile uyarilmasina iliskin bir 6rnek Sekil 4.53” te
verilmektedir. Bu asamada, k. adimdaki elit bireylerle (k-n). adimdaki elit bireyler
caprazlama islemine tabi tutulur. Elit sayis1 esit degilse, en az elit sayis1 kadar bireyler
caprazlamaya tabi tutulur, caprazlamaya ugramayacak bireyler aynen saklanir.
Caprazlama islemi sonucunda bulunan bireyler Sekil 4.53 te “+” ile gosterilmektedir ve

bu bireyler k. adimdaki orjinal elit bireylerden daha iyidirler. Dolayisiyla, arsivdeki
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orjinal elitlerle yer degistirirler. “-” ler ise diger ¢apraz bireylerdir ve bunlar orjinal
elitlerden iyi olmadiklarindan higbir islem yapilmadan kalirlar. Eger uyartimla yani
caprazlama veya mutasyonla uyarilan bireyler orjinal elit bireylerden daha iyi degilse

arsiv degismeden kalacaktir.

Sekil 4.53. O andaki elit bireyler ile daha 6nceki adimdaki elit bireylerin
caprazlanmasi. Yuvarlaklar k. adimdaki elit bireyleri, kareler
(k-n). adimdaki elit bireyleri, art1 ve eksiler ise ¢aprazlama sonucu
elde edilen bireyleri gostermektedir

4.4.2. Benzetim Sonuclari

Literatiirde sik kullanilanan ¢ok amacli SPEA ve SPEA2 yontemleri ile onerilen
DOPGA ve DOPGA+ yontemleri hem pasif elitizm mekanizmasi hem de 6nerilen etkin
elitizm mekanizmast kullanilarak calistirilmis, pasif ve etkin elitizm karsilastirmasi
yapilmistir. Etkin elitizm mekanizmasi kullanan yontemlerin oniine EFE (EFfective
Elitist ) 6n eki getirilmistir.

CAGA karsilastirmalarinda sik kullanilan dort test islevi (ZDT1, ZDT2, ZDT3 ve
ZDT6) benzetimlerde kullanilmistir. Tek noktali ¢aprazlama ve bit-tabanli mutasyon

kullanmilmistir. Caprazlama olasilifi p. =0.9 ve mutasyon olasihigr p, =1/ ([ dizi

boyutudur) olarak se¢ilmistir. 100 adim (ya da nesil) sonucunda GD ve A metrikleri
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kullanilarak degerlendirmeler yapilmistir. Baslangic toplulugu boyutu 100 olarak
secilmistir. Arsiv boyutu ise SPEA ve DOPGA i¢in 25, SPEA2 ve DOPGA+ i¢in ise
100 olarak belirlenmistir. Tiim yontemler i¢in, son nesildeki ana topluluk ile arsivin
birlestirilmesi ile elde edilen birey toplulugu basarim Olgiitlerinin hesab1 i¢in
kullanilmistir. Her parametre 30 bit olarak kodlanmistir. ZDT2 ve ZDT6 test
islevlerinde 10 parametre kullanilmistir. Segme mekanizmasi olarak ikili turnuva se¢imi
kullanilmigtir. Etkin elitizm i¢in, etkin mutasyon olasilig1 0.05 secilmistir (deneysel
olarak bu olasiligin diisiik olmas1 gerektigi saptanmustir).

Tim etkin elitizm mekanizmali yontemlerde, elit bireyler 31. adima kadar
(deneysel olarak belirlenmistir) mutasyon islevi ile uyarilmislardir, 30. adimdan sonra
mutasyon islevi kullanilmamistir. Ciinkii mutasyon ile uyartim elit bireylerin Pareto
cephesine yakinsamasini saglarken, caprazlama ile uyartim ise diizgiin dagilim
saglamaktadir ve belli bir asamaya kadar bu iki islevin birlikte kullanilmasi
gerekmektedir. Eger elit bireylerin mutantlar1 kendilerinden iyi ise bunlar arsivde yer
degistirilmistir, aksi takdirde degismeden kalmiglardir. Hangi bireyin iyi olduguna amag
uzayinda hesaplanan Oklit mesafesine gore karar verilmistir. Ayni zamanda,
k. adimdaki elit bireylerle ondan 10 adim 6nceki elit bireyler ¢aprazlama islevine tabi
tutulmuslardir. Ornegin, 100. adimdaki elit bireylerle 90. adimdaki elit bireyler, 90.
adimdaki elit bireylerle 80. adimdaki elit bireyler vs. caprazlanmiglardir. Eger uyartim
sonucunda elde edilen capraz bireyler o andaki elit bireylerden iyi ise bunlar arsivde yer
degistirilmistir, aksi takdirde degismeden kalmiglardir. Daha sonra arsivdeki ve ana
topluluktaki bireyler birlestirilerek segme islevine tabi tutulmuslardir.

Tiim yoOntemler ve onlarin etkin elitizm mekanizmali versiyonlari, tim test
islevlerinde 20’ ser kez calistirilmiglardir ve sonu¢ olarak yakinsama ve dagilim
oOl¢iitlerinin ortalama degerleri ve varyanslar1 hesaplanmstir.

Cizelge 4.9, tim yontemler tarafindan bulunan bireylerin Pareto cephesine
yakinsamalarin1 gosteren yakinsama Olciitiiniin (GD) ortalama ve varyans degerlerini
gostermektedir. Cizelge 4.10, tiim yontemler tarafindan bulunan bireylerin Pareto
cephesinde diizglin dagilip dagilmadiklarini gosteren dagilim 6l¢iitiiniin (A) ortalama ve
varyans degerlerini gostermektedir.

Onerilen yontemin etkinliginin gosterilmesi i¢in ZDT1 ve ZDT?2 test islevlerinde
tim yoOntemlerin pasif ve etkin elitizm mekanizmali bigimleri i¢in elde edilen tipik

benzetim sonuglar1 Sekil 4.54 - Sekil 4.61 arasinda verilmektedir.
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Cizelge 4.9. Yakinsama 6lg¢iitiiniin (GD) ortalama (ilk satirlar) ve varyans
(ikinci satirlar) degerleri

ZDT1 ZDT2 7ZDT3 ZDTé6

SPEA 5 i [ 30 1ect | 2027 | 0291
EFESPEA | oinet [ atwted [Rateres | 019
SPEA2 553505 |5 102006 [25300 | 00250
EFE_SPEAZ | 750675 3 i5sdeg [ G S541e5 | 00410
DOPGA |53 5he s | Taidse [ 177505 0003
EFE_DOPGA |50, 5 | T2360e 7 [ 2406205 | 00059
DOPGA |5 3573 5 3597467 [ 3005705 | 0005
EFE_DOPGA® 75555, 5] To197e7 |5 s9550:5 | 00027

Cizelge 4.10. Dagilim 6lgiitliniin (A) ortalama (ilk satirlar) ve varyans
(ikinci satirlar) degerleri

ZDT1 ZDT2 ZDT3 ZDT6

SPEA o007 0005 00075 | 00079
EFESPEA |55 0056 | 0059|0000
SPEA2 | it 00053 00112 | 0006
EFE_SPEAZ |55 00051 | 00055 | 0089
DOPGA |04t 00057 | 00> | 0008
EFE_DOPGA | 35| 0001500097 | 0016
DOPGA* | (o055 | 00044 | 0000|0005
EFE_DOPGA* [ 50025 o o0s1 | 00057 | 00059
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Sekil 4.54. ZDT]1 test islevinde bulunan Pareto bireyler

(b)

 (a) SPEA, (b) EFE_SPEA
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Sekil 4.55. ZDT?2 test islevinde bulunan Pareto bireyler

(b)
 (a) SPEA, (b) EFE_SPEA
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Sekil 4.56. ZDT]1 test islevinde bulunan Pareto bireyler: (a) SPEA2, (b) EFE_SPEA2
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Sekil 4.57. ZDT?2 test islevinde bulunan Pareto bireyler: (a) SPEA2, (b) EFE_SPEA2
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Sekil 4.58. ZDT]1 test islevinde bulunan Pareto bireyler: (a) DOPGA, (b) EFE_ DOPGA
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Sekil 4.59. ZDT?2 test islevinde bulunan Pareto bireyler: (a) DOPGA, (b) EFE_ DOPGA
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Sekil 4.60.ZDT]1 test islevinde bulunan Pareto bireyler:(a) DOPGA+,(b)EFE_ DOPGA+
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Sekil 4.61. ZDT?2 test islevinde bulunan Pareto bireyler:(a)DOPGA+,(b)EFE_ DOPGA+
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4.4.3. Sonuclar ve Degerlendirme

Pasif elitizm mekanizmast Onerilen etkin elitizm mekanizmasiyla yer
degistirilmistir. Elit bireyler en iyi bireylerdir ve dolayisiyla ¢oziime en yakin
bireylerdir. Bu yiizden, arsivdeki elit bireylerin ¢aprazlama / mutasyon islevleri ile
uyarilmasi, kendilerinden yakinsama ve diizgiin dagilim ag¢isindan daha iyi bireyler
uretilebilmesini  saglayabilir. Bu amacla klasik sakla/aktar elitizm yapisi,
sakla/uyar/aktar bir etkin elitizm yapis1 kullanilarak iyilestirilmistir. Boylece, etkin
elitizm mekanizmasinda ilk topluluk ve arsivdeki bireyler ¢6ziim tiretebilmektedir.

Benzetimler sonucunda, EFE_SPEA yonteminin SPEA yonteminden yakinsama
ve dagilim acisindan daha iyi oldugu goriilmiistiir. Yalnizca, ZDT6 test islevinde SPEA
yontemi EFE_SPEA’ dan daha iyi bir dagilim saglamigtir.

EFE SPEA2 yonteminin SPEA2 yonteminden yakinsama agisindan daha iyi
oldugu gorilmiistiir. ZDT2 test islevi hari¢ tiim test islevlerinde, EFE_SPEA2 y6ntemi
SPEA2’ den daha diizgiin bir sekilde Pareto cephesine dagilmistir.

EFE DOPGA yontemi ZDT1 ve ZDT2’ de, DOPGA yontemi ise ZDT3 ve
ZDT6’ da daha iyi yakinsama saglamiglardir. DOPGA, EFE DOPGA’ dan daha iyi
dagilim olgiitlerine sahiptir.

EFE DOPGA+, tiim test islevlerinde DOPGA+ yonteminden iyi yakinsama
saglamaktadir. Ancak DOPGA+ tiim test islevlerinde dagilim agisindan daha iyidir.

Tiim pasif ve etkin elitizm mekanizmali yontemler birlikte degerlendildiginde;
ZDT1, ZDT3 ve ZDT6’ da EFE DOPGA+, ZDT2’ de ise EFE DOPGA diger
yontemlerden yakinsama agisindan daha iyidir. ZDT1, ZDT2 ve ZDT6’ da DOPGA+,
ZDT3’ te ise EFE SPEA2 yontemi diger tim yontemlerden daha iyi olarak Pareto
cephesine dagilan bireyler olusturmuslardir.

Etkin elitizm mekanizmasi {izerinden bir takim iyilestirmelere gereksinim
duyulmaktadir. Ozellikle, mutasyon ve caprazlama islevlerinin hangi anda devreye
gireceklerinin daha iyi belirlenmesi gerekebilir. Ayrica elit bireylerin ¢aprazlanmasi igin
bir algoritma kurulmasi daha iyi sonuclar elde edilmesini saglayabilir. Hangi elit
bireylerin hangi elit bireylerle ¢aprazlanacaginin daha i1yi saptanmasi, etkin elitizmin
yetenegini artirabilir. Bunun i¢in hangi bireylerin ¢aprazlamaya girecegine dair bilgi
veren bir kural tabaninin olusturulmasi gelecek calismalardan birisi olacaktir. Ayrica

etkin elitizm mekanizmasinin iglem yiikiiniin azaltilmas1 da bir ¢alisma konusudur.
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Bu boliimde oOnerilen etkin elitizm mekanizmasi literatiirde yer alan CAGA
yontemlerine uygulanarak, bu yontemlerin basarimi, genel yapilar1 degistirilmeden
artirilabilir. Etkin elitizm mekanizmasinin tek dezavantaji, CAGA ydntemlerinin islem

zamanlarinda artisa neden olmasidir.

4.5. CAGA Yontemlerinin Siralama Yeteneklerinin Olgiilmesi icin ki Yeni
Olciit Onerisi

CAGA yontemlerinin, bir topluluktaki birbirinden farkli bireylere farkli puan
atama yeteneginin olmasi gerekir. Bdylece, topluluk en c¢ok istenilen bireyden en az
istenilen bireye dogru tekil bir bicimde siralanabilir ve CAGA yontemi tarafindan
secme mekanizmasina daha nitelikli bilgi aktarimi saglanarak, genetik algoritmanin
basarimu artrilabilir. Bu amagla bu boliimde ilk olarak, CAGA yoOntemlerinin siralama
yeteneklerinin dl¢iilebilmesi icin Ceza (P) ve Odiil (R) basarim 6lgiitleri dnerilmektedir.
Bu o6l¢iitlerle bir CAGA’ nin se¢gme mekanizmasina (ya da karar vericiye) ne kadar
nitelikli bilgi aktarabildigi Olcililebilmektedir. Siralama yeteneginin analitik olarak
Olctlilebilmesi i¢in, puan dagilimlarinin tekil bir bigimde siralanip siralanmadigi ve
diizgiin dagilip dagilmadig1 g6z oniline alinmistir.

Tek amagli genetik algoritmada, bireyler en ¢ok istenilenden en az istenilene
dogru tekil bir bigimde siralanir. Ancak ¢ok amagli durumda, Pareto tanimindan dolay1
tekil bir siralama elde edilmesi her zaman miimkiin olmayabilir. ideal durumda, CAGA
yontemleri bir topluluktaki bireyleri en ¢ok istenilenden en az istenilene dogru tekil bir
bicimde siralamaya (bireyleri birbirinden ayirt etmeye) ¢aligirlar. Literatiirde yer alan
CAGA yontemleri, bir topluluktaki bireylere farkli farkli puanlar atamaktadirlar. Bunun
anlami, belirli bir topluluk farkli CAGA’ lar tarafindan farkli puan degerleri veya farkl
puan dagilimlariyla gosterilebilir. Puanlama mekanizmasinin ¢ikisi, karar vericinin veya
segme mekanizmasinin giris kiimesini olusturmaktadir. Segme mekanizmasinin ¢ikisi
ise CAGA yontemi tarafindan nasil beslenildigi ile iliskilidir. Bu yilizden, CAGA
puanlama yontemleri segme mekanizmasinin ¢ikigini etkilemektedir. Dogal olarak,
CAGA yontemi tarafindan ne kadar nitelikli bilgi iretildigi ve bunun ne kadarinin
secme mekanizmasina aktarildigt sorusu akla gelir. N adet farkli giris kiimesi

(topluluktaki bireylerin puanlarini gdsteren) ile se¢gme mekanizmasinin beslendigini
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diistinelim, benzer olarak se¢me mekanizmasi tarafindan da N adet farkli cikis
uretilecektir. Diger bir deyisle, N adet farkli puan, se¢gme mekanizmasina farkli
seviyelerde secilme baskis1 uygulayacaktir. Bu nedenle, var olan yontemlerin bireyleri
siralama yetenegi sayisal olarak hesaplanmalidir. Su ana kadar, literatiirde yer alan
CAGA yontemleri, genellikle bazi test islevleri ve basarim Olgiitleri kullanilarak
karsilastirilmiglardir. Var olan 6lglitler; Pareto cephesine yakinsama, bu cephede diizgiin
dagilim ve bulunan Pareto birey sayisin1 Olgmektedirler. [Zitzler ve ark., 2000]
makalesinde, bir CAGA yoOnteminin bagarimini dlgerken su li¢ konuya dikkat edilmesi
gerektigi belirtilmektedir: i) Bulunan Pareto bireylerin sayisi1 fazla olmalidir, ii) kiiresel
Pareto-optimal cepheye (biliniyorsa) miimkiin oldugu kadar yaklasilmalidir,
iii) bireylerin bu cephede dagilimi miimkiin oldugunca diizgiin olmalidir. [Deb, 1999]
makalesinde, test islevlerinin GA’ larin nasil ¢alisti§1 konusunda ¢ok fazla bilgi sahibi
olunmadan olusturuldugunu belirtmektedir. Benzer olarak, onerilen CAGA yontemleri
de miihendislik hesaplamalarindan daha ¢ok miihendislik sezgilerine dayanmaktadir. Bu
ylizden, literatiirde c¢ok sayida CAGA yontemi vardir ve Onerilmeye de devam
edilmektedir. Bu kadar ¢cok yontemin olmasi puanlama mekanizmasinin hala ucu agik
bir soru oldugunu gostermektedir.

Ceza olgiitii, bir CAGA yontemi tarafindan bir topluluktaki bireylere atanan
puanlarin ne kadar farkli oldugunu 6lger. Yani, ayni puana sahip bireyler ¢cok ise ceza da
cok olacaktir. Mantiksal olarak, en iyi bireylerin aym1 puana sahip olmasi en kotii
bireylerin ayni puanlara sahip olmasindan daha fazla ceza alinmasina neden olacaktir.
Eger bireyler en ¢ok istenilenden en az istenilene dogru tekil bir sekilde siralanabilirse,
yani hicbir birey ayn1 puana sahip degilse, o zaman se¢me mekanizmast hangi bireyin
digerinden daha iyi oldugu konusunda bir sikintiya girmeden karar verebilecektir. Bu
durumda, CAGA sanal olarak tek amagli bir GA gibi davranacaktir.

Odiil &lgiitii, bir topluluktaki bireylerin puan dagilimlarmm ne kadar diizgiin
dagildigin1 belirler. Ceza sifir olsa bile 6diil sifirdan farkli olabilir. Diizglin puan
dagilimi ideal bir durumdur. Puan dagiliminin kismi kalabalikliklart veya kismi
seyreklikleri siralamanin diizglin olmadig1 anlamina gelir.

Ideal bir durumda, yani bir CAGA yontemi farkli bireylere farkli puanlar
atamigsa, ceza sifir olur. Eger bireylerin puanlar1 en ¢ok istenilenden en az istenilene
dogru diizgiin bir bicimde dagiliyorsa, 6diil olciitii sifir olacaktir ve bu ideal bir

durumdur. Ideal bir CAGA yontemi, ayn1 anda hem sifir ceza hem de sifir 6diile sahip
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olmalidir. Yani, ceza ve odiil Olgiitlerinin en kiiclik olmasi istenmektedir. Eger birkag
CAGA yontemi karsilastiriliyorsa, en diisiik ceza ve ddiile sahip olanin en 1yi yontem
oldugu soylenebilir. Ancak, se¢me mekanizmasi olasiliksal olarak calistigi i¢in tam bir
degerlendirme yapmak miimkiin olmayabilir.

flerleyen béliimlerde ceza ve 6diil Olgiitleri ayrintili olarak agiklanmakta ve
literatiirde yer alan ve yeni Onerilen CAGA yontemleri bu Olgiitler kullanilarak

karsilastirilmasiyla elde edilen sonuclar verilmektedir.

4.5.1. Ceza ve Odiil Olgiitleri

Ceza ve odil kavramlarina gegmeden oOnce, CAGA yoOntemlerinin nasil
karsilagtirilabilecegine bakmak yararli olabilir. Literatiirde yer alan tipik bir

karsilastirma senaryosu asagida verilmektedir [Huband ve ark., 2006].

o Karsilastirilacak CAGA yontemleri belirlenir,

e Varolan test islevlerinden birkag1 se¢ilir veya yenileri olusturulur,

e (CAGA yontemi tarafindan elde edilen sonuglar1 karsilastirmak icin
birtakim basarim ol¢titleri segilir,

e Her bir test islevinde tiim CAGA yoOntemlerinin sonuglar1 bulunur,

e Sonuglar kullanilarak ol¢timler yapilir ve elde edilen veriler karsilastirilir,

e Sonuglar grafiksel olarak c¢izdirilir.

Ceza ve 0diil olgiitleri, bir CAGA yOnteminin puanlama mekanizmasinin gorevini
ne kadar iyi yaptig1 belirlemek i¢in kullanilirlar. Puanlama (siralama) yeteneginin
Ol¢iilmesi i¢in belirli bir 6l¢iit yoktur. Diger bir deyisle, puanlamanin ne kadar iyi
yapildigin1 dogrudan 6lgen bir Slgiit yoktur. Burada onerilen dlgiitler, problem tipinden
bagimsizdir ve Pareto-optimal cephenin Onceden bilinmesine de ihtiyag
duymamaktadirlar. CAGA yoOntemleri tarafindan bir topluluktaki bireylere atanan
puanlarin bilinmesiyle karsilastirma yapilabilir. Buradaki fikir, “bireylerin puanlarina
bakilarak topluluk hakkinda ne kadar bilgi edinilebilir’ sorusundan gelmektedir. Ayrica,

bu puan degerleri kullanilarak karar vericiye ya da se¢me mekanizmasina ne kadar



186

bilgi gonderilebilir? Bir topluluktaki bireylere puan atanmasi, aslinda bireylerin en ¢ok
istenilenden en az istenilene dogru siralanmasi islemidir. Bu sorulara yanit bulabilmek
i¢cin ceza ve 6diil Olciitleri onerilmektedir.

Prensip olarak, farkli bireyler ayni puana sahipse, bu durumda bir ceza degeri
olusturacaklardir. Ornegin, en ¢ok istenilen iki birey (iki Pareto birey gibi) ayn1 puana
sahipse, daha az istenilen iki bireye (iki Pareto olmayan birey gibi) gore daha fazla ceza
degeri tireteceklerdir. Yani daha 6nemli bireylerin ayni puana sahip olmasi daha fazla
ceza degeri lretir, bu nedenle ceza egrisi lstel bir bi¢imde azalan bir islev olmalidir.
Asagida bu duruma uygun bir ceza islevi verilmektedir. Bu islev, her bireyin konumu

veya énemi ile iligkilidir.

Ceza(i)= exp(— ;] i=1,2,....top_boyut (4.21)
top_boyut

Ceza degeri asagidaki algoritma kullanilarak hesaplanir:

1- CAGA yoOntemini ¢alistir ve bireylerin puan degerlerini al,

2- Puan degerlerini en Onemliden en az oOnemliye (CAGA ydntemine gore
degisebilir) dogru sirala,

3- Ayni puan degerlerine sahip olan bireyleri belirle,

4- Ceza islevine (esitlik 4.21) git ve Adim-3’ teki bireylerin ceza degerlerini belirle,

daha sonra bu ceza degerlerini topla,
Toplam Ceza = Z Ceza(m) (m: ayni puana sahip birey indisleri) (4.22)

Hesaplamalarin daha i1yi anlasilmasi i¢in asagida sayisal bir 6rnek verilmektedir.
Sekiz bireylik bir topluluga ait puan degerleri asagidaki gibi verilsin. Buna gore toplam

ceza s0yle hesaplanir:

1- Birey puanlar1 :[1216485 8]
2- Puanlar siralanir: [1 12456 8 §]

3- 1lk iki ve son iki birey ayni puanlara sahip,
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4- (4.21) numarali esitlige gore 8 bireylik bir ceza egrisi olusturulur (Sekil 4.62) ve

ayn1 puana sahip bireylerin ayr1 ayri ceza degeri hesaplanir:

ceza(l)=p(1)= exp(%lj =0.8825 ceza(2)=p(2)= exp(_?z) =0.7788  (4.23)

ceza(7) = p(7) = exp(%j —0.4169 ceza(8)=p(8) = exp(_?g) —03679 (4.24)

Toplam Ceza = ZCeza(m) = Zp(m) =p(l)+ p(2)+ p(7)+ p(8) (4.25)

Toplam Ceza =0.8825+0.7788 +0.4169+0.3679 = 2.4461 (4.26)

Ceza

o3l |
02l ................. ................. .................. U _

O b L 4

Bireyler

Sekil 4.62. Sekiz bireylik bir topluluk i¢in ceza islevi

Odiil élgiitii ise, tiim bireyler birbirinden farkli olsa veya topluluk sifir ceza
degerine sahip olsa bile, bireylerin puan dagiliminin ne kadar diizgiin oldugunun

belirlenmesinde kullanilir. Odiil 6l¢iitii s6yle hesaplanir:

[
]

Puan degerleri 0 ile 1 arasina normalize edilir,

(5]
1

Normalize puan degerleri en 6nemliden en az énemliye dogru siralanir,

w
1

Tiim toplulukta ardisil bireyler arasindaki normalize puan farklar1 (NPF)

hesaplanir,

=
1

Ardisil bireyler arasindaki normalize puan farklarinin standart sapmasi ve
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ortalama degeri bulunur ve buna gére Odiil dl¢iitii asagidaki gibi hesaplanir:

_ Standart Sapma(NPF)

Odil = Ortalama Deger(NPF)

(4.27)

Eger Sekil 4.63” te gosterildigi gibi 6diil degeri sifir olursa, puan dagilimi
kesinlikle diizglindiir. Burada 1 nolu birey en iyi birey, 8 nolu birey ise en kotii bireydir.
Bu ideal puan dagiliminda, bireyler esit araliklarla siralanmis ve puan degerleri

arasindaki farklar sabit oldugundan standart sapma sifir olacaktir.

Bireyler

Sekil 4.63. Ideal puan dagiliminda 6diil degeri sifir olur

CAGA yontemleri karsilastirildiginda, en diisilk ceza ve odiil (birlikte
diisiiniilmelidir) degerine sahip olan yontem siralama yetenegi agisindan en iyi yontem
olacaktir. Puan degerleri segme mekanizmasinin giris kiimesidir ve segme mekanizmasi
giris kiimesinin icerigine bagl olarak bir ¢ikis kiimesi olusturur. Sekil 4.64, birbirinden
farkli puan dagilimlar1 olan ancak hepsi de sifir ceza degerine sahip bes farkli toplulugu
gostermektedir. Cilinki, tim bu farklt puan dagilimlari segme mekanizmasi iizerinde
farkli seviyelerde seg¢ilme baskist olusturacaklardir. Bir baska deyisle, bu bes farkli
kiime ile beslendiginde, segme mekanizmasinin ¢ikislart (bir sonraki ebeveynler) ayni

olmayacaktir. Tiim bu dagilimlar sifir ceza degerine sahip olmalarina ragmen, 6diil
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tanimindan dolay1 6dil degerleri birbirinin aynis1 degildir. Sekil 4.64° ten goriilecegi
izere, puan degerinin y=1 ile lissii alinirsa, bu durumda puan dagilimi diizgiin olur. Eger
y degeri 1’ den biiyiik olursa, puan dagiliminin grafigi i¢cbiikey olur ve ilk birkag¢ bireyin
puani birbirine ¢ok yakin olurken, tersine son birkag¢ bireyin puan1 birbirinden uzak olur.
Benzer olarak, eger y degeri 1° den kiigiik ise, puan dagilimi disbiikey bir islev olur. Tlk
birka¢ bireyin puan degerleri birbirinden uzak yerlesirken, tersine son birka¢ bireyin
puani ¢cok yakin olur. Puan dagilimimin kismi seyreklikleri ve kismi kalabalikliklari,
stfirdan farkli bir 6diil degeri olmasina neden olur ve bu da dagilimin diizgiin olup
olmadigin1 gosterir. Tiim bu bes farkli puan dagilimi ve bunlara iliskin 6diil degerleri

Sekil 4.64 ve Cizelge 4.11° de verilmektedir.

Bireyler

Sekil 4.64. Bes farkli toplulugun puan dagilimlar

Cizelge 4.11. Sekil 4.64° teki puan dagilimlarinin 6diil degerleri

P“a‘.‘ﬁ:)gi‘glgf;‘“‘“ Odiil (R) Degeri
v=1 0
=2 0.6055
=5 13867
v=0.5 0.7981
v=0.2 1.8788
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4.5.2. Benzetim Sonuglari

Literartiirde sik kullamilan SPEA ve SPEA2 yontemleri ile tezde Onerilen
DOPGA ve DOPGA2 yontemlerinin siralama yeteneklerinin Olgiilmesi igin, sik
kullanilan dort test islevi (ZDT1, ZDT2, ZDT3, ZDT6) lizerinde bu ydntemler
calistirilmis ve her bir GA adiminda bireylere atadiklar1 puan degerleri ceza ve o6diil
Olciit degerlerinin hesaplanmasinda kullanilmistir. Tim CAGA yontemleri 20 ser kez
100 adim g¢aligtirilmistir. Her bir adimda bireylere atanan puan degerleri kullanilarak,
ceza ve 0diil 6l¢iitleri (20x100=2000 deger) hesaplanmistir. Daha sonra bu ceza ve 6diil
degerlerinin ortalamalar1 siralama yeteneklerinin karsilastirilmasinda kullanilmistir.
Ceza ve odil olgtiilerinin yani sira, yakinsama ve dagilim Olgiitleri de hesaplanarak
ortalama degerleri alinmistir.

Benzetimlerde, parametre sayisi 30, bit sayist ya da ¢oziiniirliik 30, birey sayisi
100, nesil sayis1 100, caprazlama olasiligi 0.9, mutasyon olasilig1 1/bit sayis1 olarak
secilmistir. Ikincil topluluk boyutu, SPEA ve DOPGA i¢in 25, SPEA2 ve DOPGA2 i¢in
100 olarak se¢ilmistir. Se¢gme mekanizmasi olarak SUS kullanilmistir.

Cizelge 4.12, SPEA ve DOPGA yontemleri i¢in elde edilen 6lgiit degerlerini
gostermektedir. Sekil 4.65° te ise SPEA ve DOPGA yoOntemlerinin ceza ve 0diil
degerlerine gore elde edilen boxplot gosterilimleri verilmektedir. Ceza ve odiil
Olciitlerine gore daha iyi olan yani hem ceza hem de 6diil 6lgiitii daha diisiikk olan
DOPGA yontemi, SPEA yontemine gore daha iyi siralama yetenegine sahiptir. Bu
sonuglara gore DOPGA yonteminin Pareto-optimal cepheye yakinsama ve bu cephe
tizerinde dagilim acisindan da SPEA yonteminde daha iyi olmasi beklenmektedir.
Yakinsama ve dagilim Olgiitlerinin sonuglarina gére de DOPGA ydntemi bagarim

acisindan SPEA yonteminden daha iyidir.
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Cizelge 4.12. SPEA ve DOPGA yontemleri i¢in 6l¢iit degerleri

CEZA (P) | ODUL (R) GD A
ZDTI1 60.9579 7.1189 0.1277 0.6184
é ZDT?2 61.2675 7.1624 0.3046 0.7556
?,3‘ ZDT3 62.9278 7.2240 0.0977 0.6228
ZDT6 61.1981 7.0937 2.0635 09112
e —
« ZDT] 31.9688 3.0415 0.0156 0.5797
%3 ZDT?2 14.4255 2.9271 0.0223 0.5922
8 ZDT3 34.4204 3.5166 0.0097 0.6111
ZDT6 6.6732 2.6472 0.8116 0.8334
& — 75 :
sl _— 7k L
55t 65F
50} i
5 i
= o §r
g af 54,5.
ﬁ 3b5r 3 4
3 20l 235¢
Q
0t 281
2,
151
15}
101 Al
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’ SPER DOPGA 0 SPER DoPGR
(@) (b)

Sekil 4.65. Boxplot gosterilimi: (a) Ceza 6lciitii, (b) Odiil dlgiitii

Cizelge 4.13, SPEA2 ve DOPGA?2 yontemleri i¢in elde edilen 6lgiit degerlerini
gostermektedir. Sekil 4.66° da ise SPEA2 ve DOPGA2 yontemlerinin ceza ve odiil
degerlerine gore elde edilen boxplot gosterilimleri verilmektedir. Ceza ve o6diil olgiit
degerlerine gore DOPGA2 yonteminin siralama yetenegi SPEA2 yonteminden daha
iyidir. Yakinsama olgiitleri agisindan ZDT6 test islevi harig, SPEA2 yontemi DOPGA?2
yonteminden daha iyidir. DOPGA2 yontemi, SPEA2 yontemine gore dagilim olgiiti
acisindan tiim test islevlerinde daha iyidir. Bu yontemler i¢in ceza ve 6diil l¢iitleri ile

yakinsama Olgiitii arasinda bir iliski olmadig1 goriilmektedir. CAGA yontemlerinin
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bireylere farkli puan atamalarinin yam sira, en iyi bireylere atadiklari puan da onemli
olabilir. Dagilim 6lgiitii ile ceza ve 6diil dlgiitleri arasinda bir paralellik vardir, yani ceza

ve Odilii diisiik olan yontem olan DOPGA2 yoéntemi, dagilim agisindan SPEA2

yonteminden daha iyi olmaktadir.

CEZA OLCUTU

o - ~ =] kS o =) ~ ) w0
T T T T T T T T T

Cizelge 4.13. SPEA2 ve DOPGA?2 yontemleri i¢in Olgiit degerleri

CEZA (P) | ODUL (R) GD A

ZDT1 4.3765 3.4980 0.0162 0.6157

< | zp12 8.6303 3.4804 0.0231 0.6338
g ZDT3 4.4925 3.8453 0.0071 0.6203
| ZDT6 | 11.9064 3.2777 0.9816 0.8733
T ZDTI 1.1955 2.9062 0.0181 0.5690
5 ZDT?2 2.2558 2.7662 0.0262 0.5784
5| ZD13 1.0540 3.3938 0.0109 0.5963
/)| ZDT6 3.0341 2.6191 0.8965 0.8262

=
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Sekil 4.66. Boxplot gosterilimi: (a) Ceza 6lciitii, (b) Odiil dlgiitii
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4.5.3. Genel Sonuglar ve Degerlendirme

Bu béliimde, CAGA yontemlerinin siralama yeteneklerinin 6l¢iilmesi i¢in iki yeni
basarim Ol¢iitli Onerilmistir. Bu Olgiitler kullanilarak, CAGA yontemlerinin bir
topluluktaki bireyleri en c¢ok istenilenden en az istenilene dogru siralama yetenekleri
tespit edilmistir. Ceza ve 6diil dlgiitleri en az olan yontem siralama yetenegi agisindan
daha iyidir. Boylece se¢gme mekanizmasina veya karar vericiye en fazla / nitelikli bilgiyi
iletmektedir. Bu olgiitler, test islevlerinden bagimsizdirlar ve daha 6nceden bilinse dahi
Pareto cephesini kullanmamaktadirlar.

SPEA ve DOPGA yontemleri ile SPEA2 ve DOPGA2 yontemleri ayri ayri
degerlendirilmislerdir. Bunun nedeni, SPEA2 ve DOPGA2 yontemlerinde 4. en yakin
komsuluk yontemi ile bulunan yogunluk bilgisinin puanlamaya dahil edilmesidir. Sonug
olarak, DOPGA ydnteminin SPEA ydntemine gore bireyleri en ¢ok istenilenden en az
istenilene dogru daha iyi siraladigi belirlenmistir. Yakinsama ve dagilim agisindan da
beklendigi lizere DOPGA yontemi daha iyidir. DOPGA2 yonteminin siralama yetenegi
acisindan SPEA2 yonteminden daha iyi oldugu goriilmiistiir. Ceza ve 6diil dlgiitleri ile
yakinsama Olgiitii arasinda bir bag bulunmamaktadir. Ancak, dagilim ile ceza-6diil
arasinda dogrusal bir iligki vardir, yani ceza ve odilii diisiik olan yontem dagilim
acisindan daha 1yi olmaktadir. Ayrica se¢me mekanizmasinin olasiliksal olarak
davranmasi nedeniyle, siralama bilgileri nitelikli bir bicimde kullanilmamaktadir. Yani
hangi birey ciftlerinin ¢aprazlamaya tabi tutulacagi kesin olarak bilinmediginden dolay1
olasiliksal bir secim yapilmaktadir. Bu da se¢me mekanizmasinin puanlama
mekanizmasindan gelen bilgileri kullanamadig1 anlamina gelir. Bu durumda, olasiliksal
olarak calisan segme mekanizmasi yerine uzman sistem veya kural tabanli bir segme
mekanizmasi kullanildiginda ceza ve 6diil dlgiitleri daha anlamli olacaktir. Yukaridaki
tutarsiz sonuglar1 degerlendirmeden 6nce, GA’nin dinamik davranis1 hakkinda genel bir
cergeve ¢izmek adina hayali bir futbol mag1 yapilsin.

GA’ larda bir toplulugun dinamik davranigini agiklamak zordur. Bu soruyu
yanitlamak i¢in hayali bir 6rnek verilsin [Eminoglu, 2003]. GA’ nin yapisindaki
rasgelelelikten dolayi, bir toplulugun bir nesilden bir nesile nasil hareket ettigini
belirlemek zordur. Bazen biiylik bir problem bazi varsayimlarla daha kiiciik bir
probleme indirgenebilir. Dolayisiyla, bir toplulugun hareketini incelemektense, bir ¢ift

bireyin hareketini incelemek daha kolay olabilir. Bu amagla, olasi bir 100 bireylik
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topluluk iki bireye (bir ¢ift ebeveyne) diisiirlilsiin. Boylece, ebeveynlerin rasgele
secilmesi islemine gerek kalmaz. ki bireyden olusan ana toplulugun, caprazlama ve
mutasyon islevleri ile bir nesilden diger nesile nasil hareket edecegini merak
edilmektedir. Bu bireyler, iki boyutlu bir ylizeye 6rnegin bir futbol sahasina rasgele
yerlestirilsin. Ornegin, bir birey penalti noktasinda, digeri de diger penalt: noktasinda
olsun. Her birey, sahanin x ve y eksenlerini gosteren iki degiskenden olugsun. Ayrica
her bireyin sahadaki herhangi bir noktaya gidebilme yetenegi olsun. Caprazlama ve
mutasyon iglevlerini sirasiyla 1 ve 0.1 olasilikla uygulansin ve bu hayali program
yeterince uzun bir siire (6rnegin bir milyon adim) ¢alistirilsin. Her adimda, bu bireyler
sahanin herhangi bir noktasina yerlesecek iki yeni birey iireteceklerdir. Sonug¢ olarak,
sahada iki milyon adet birey olacaktir. Hayali bir gozlemci (6rnegin hakem) sahaya
baktig1 zaman, ya diizenli olarak sahaya dagilmis bireyler ya da daginik bir bi¢imde
duran bireyler gorecektir. Yeterli siire verildiginde, ebeveynler istenilen bireyleri
iiretebilir. Tkinci bir durum, belirli bir diizenin olusmasidir. Bunun anlami, daha énceden
tanimlanan olasiliklara ragmen, yeni bireylerin olusturulmasinda ebeveynlerin
konumlarinin 6nemli bir rol oynadigidir. Eger bireylerin baslangi¢c konumlari, sonucun
elde edilmesinde belirleyici bir rol oynuyorsa, farkli konumlar kullanilarak bir ¢ok
hayali benzetim yapilabilir. Eger bu durum dogru ise, bu hayali oyunun ikinci
asamasina gegilebilir. iki birey sahaya rasgele yerlestirilsin ve ¢caprazlama ve mutasyon
islevlerini uygulansin. Elde edilen yeni bireyler, bir sonraki adimdaki bireyler (erkek
cocuk ve kiz ¢ocuk) olacaktir. Ik ebeveynleri silmeden dnce, baba ile ogulu sahada
birlestiren hayali bir kirmiz1 ¢izgi ve anne ile kiz1 birlestiren hayali mavi bir ¢izgi
cizilsin. Bu islem, bir milyon adim tekrarlansin. Sonug olarak, tiim kirmizi ve mavi
cizgiler birlestirilsin. Bu ¢izgiler bireylerin ilk nesilden son nesile dogru olan
hareketlerini gosterecektir.

Ucgiincii asama, basit bir amag fonksiyonu (bir en kiiciikleme problemi) ve bir ¢ift
bireyden olussun. Bu durumun farki, ebevenylerin iki erkek veya iki kiz ¢ocuk
olusturmalarma izin verilmesidir. Erkek bireyler ve kiz bireyler kendi aralarinda bir
sonraki nesildeki ebeveynler olabilmek i¢in amag¢ fonksiyonuna gore birbirleriyle
yarisacaktir. En gii¢clii (amag¢ fonksiyonuna gore en iyi) erkek ve kiz ¢ocuk bir sonraki
adimdaki ebeveynler olacaktir. Bu durumda baba ile kazanan erkek cocuk arasina
kirmiz1 bir ¢izgi, anne ile kazanan kiz ¢ocuk arasina da mavi bir ¢izgi ¢izilecektir. Bu

durumda hayali gézlemcinin bireylerin bir nesilden diger nesile nasil hareket ettigini
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anlamas1 ¢ok zor olacaktir. Bu sorunun yamitin1 vermek ¢ok zordur. ikinci ve iigiincii
asamada, gozlemci elde edilen ¢izgilerden bir sonug ¢ikarmakta oldukga zorlanacaktir.
Bu hayali oyun, (bir futbol sahasinda topu takim arkadasina atmaya calisan bir
futbolcu ve bu olaya gore karar veren bir hakem arasindaki benzesim kullanilarak)
yukarida belirtilen kisitlamalar olmadan bir toplulugun bir nesilden diger nesile nasil
hareket ettiginin (hangi birey ¢iftlerinin ¢aprazlama ve mutasyon islevlerine ugratilmasi

gerektiginin) belirlenmesinin zor oldugunu gdstermektedir.

4.6. CAGA’ lar Icin Kullanmic1 Arayiizii Tasarim

CAGA yontemlerini bir arada bulunduran bir kullanic1 arayiizii (graphic user
interface, GUI) tasarlanmigtir. GUI, Matlab paket programinda olusturulmustir. Bu GUI,
literatiirde yer alan ve bu tezde kullanilan CAGA yontemleri ile, tezde onerilen CAGA
yontemlerinin kullanicinin belirledigi parametrelere goére calistirilmasina ve islem
sonunda hesaplanan Olgiitler ile kullanicinin yontemleri karsilagtirmasina olanak
saglamaktadir. GUI 06zel olarak MATlab Genetic Algorithm Toolbox (MATGAT)
olarak adlandirilmistir.

GUI de yer alan 16 adet CAGA yontemi sirastyla soyledir: DOPGA, DOPGA+,
DOPGA2, SPEA, SPEA2, NSGA, MOGA, EFE DOPGA, EFE DOPGA+, EFE_SPEA,
EFE _SPEA2, NSGAmod, SPEAmodl, SPEAmod2, SPEAmod3, SPEAmod4.

Kullanicilar programi baglatmadan 6nce GA parametrelerini girmek zorundadirlar.
GUYI’ de kullanici tarafindan giris yapilacak GA parametreleri sunlardir: topluluk boyutu
(population size), parametre sayist (number of parameters), parametrelerin alt sinir1
(lower limit of parameters), parametrelerin iist sinir1 (upper limit of parameters), bit
sayisi (number of bits), arsiv boyutu (archive size), mutasyon olasiligi (mutation
probability), c¢aprazlama olasilifi (crossover probability), nesil / adim sayisi
(generation), yaricap boyutu (niche size, yalnizca NSGA ve MOGA igin), turnuva
boyutu (tournament size, yalnizca turnuva se¢imi kullanildiginda), gama degeri (gamma
value, GDPO kullamilmak istenirse girilir) ve etkin mutasyon olasilig1 (effective
mutation probability, yalnizca etkin elitizm i¢in kullanilir).

Kullanicilar, dort farkli ve sik kullanilan test islevini kullanabilirler. Ayrica,

literatlirde yer alan ii¢ segme mekanizmasindan (RWS, SUS, TS) birini segebilirler.



196

Parametreler girildikten sonra, CAGA yontemi, se¢gme mekanizmasi ve test islevi
ilgili mentiler kullanilarak secilir ve START tusuna basilir. Girilen adim sayis1 sonunda,
test iglevinin Pareto-optimal cephesi ve CAGA yoOntemi tarafindan bulunan Pareto
bireyler ekrana c¢izdirilir. Ayrica, bazi CAGA basarim Olgiitlerinin sonuglar1 ekranda
goriintiilenir. Boylece kullanict segtigi yontemin basarimi hakkinda bilgi sahibi olur. Bu
GUI’ de 6 adet basarim Olgiitii hesaplanmaktadir: GD (yakinsama Olgiitii),
A (gesitlilik/dagilim) 6lgiitii, tezde 6nerilen ceza (punishment) ve 6diil (reward) 6l¢iitleri,
IGD 6lg¢iitii [Zitzler ve ark., 2003] ve CAGA tarafindan bulunan Pareto birey sayisi.

Yeni bir benzetim yapilmadan 6nce CLEAR tusuna basilarak ekran temizlenebilir.
Elde edilen sonug grafigi kaydedilerek kullanilabilir.

Sekil 4.67 ve Sekil 4.68° de MATGAT v1.0 GUI sinin iki adet ekran goriintiisii
(calistirilmadan once ve calistirildiktan sonra) verilmektedir. Bu, GUI iizerinden
gelecekte cesitli gelistirmeler yapilacaktir. Yeni CAGA yontemleri, basarim olgiitleri ve
test islevleri (kisitlamali ve kisitlamasiz) eklenecektir. Ayrica, GA literatiiriinde
kullanilan gosterilim sekilleri (boxplot, basarim yiizeyi vb.) GUI’ ye eklenecektir.
Kullanicinin kendi problemini de kullanabilmesi i¢in alt programlar eklenecektir. Daha
sonra, GUI tiim topluluk tabanli yontemleri (PSO, DE, ACO vb.) igerisinde barindiran
bir yapiya dontistiiriilecektir.

Genetik algoritmalarla ilgili ticari baz1 yazilimlar da bulunmaktadir. Hartmut
Pohlheim tarafindan gelistirilmis Geatbx (Genetic and Evolutionary Algorithm Toolbox

for MATLAB) yazilimi, bunlara 6rnek olarak verilebilir (www.geatbx.com, Erisim

zamani: 04.01.2007). Bu yazilim ile tek amacli ve baz1 ¢cok amaglh genetik algoritma
yontemleri kullanilarak optimizasyon problemleri ¢oziilebilmektedir. Tezde gelistirilen
MATGAT programinin da gilincellenerek (farkli ozellikler ve programlar vb.

eklenmesiyle) ticari bir yazilim haline getirilmesi amag¢lanmaktadir.


http://www.geatbx.com/

) WATlab Genetic Alzarithm Toolhox

EFE

0.9

04

0.7

06

035

04

03

02

0.1

197

Convergence Metric

Diveraity Metric

Punishment Metric

Reward Wetric

Inverted Generational
Distance

Humber of Nondominated
Solutions

Simulation Results

IR

0.1 02

03

04 05 0.6

GA Parameters

Population Size

Number of
Parameters

Lower Limit of
Parameters

Upper Limit of
Parameters

Mumber of Bits

LI UL

0.7 0.8

09

Archive Size I:I
Mutation Probabilly |
CrnssuverPruhahilityl:I
Generation I:I

Niche Size

Tournament Size

Gamma Value

Effective Mutation
Probability

LI

Selection Mechanism

Roulette Wheel M

Test Functions

om i

MOEA Methods

START

CLEAR

DOPGA v

MATGAT v1.0

Sekil 4.67. MATGAT v1.0 ¢alistirilmadan 6nceki ekran goriintiisii



EFE

08

198

— Pareto-optimal Front
O Non-dorminated Salutions

Simulation Results

) MtTlab Genetic Algorithm Taolbox

Population Size

Number of
Parameters

Lower Limit of
Parameters

Upper Limit of
Parameters

Number of Bits

A Parameters
150 Archive Size 180
n Mutation Probability|  0.01
0 Crossover Probability 09
9 Generation | 300
a0

Niche Size

Tournament Size

Gamma Value

Effective Mutation
Probability

Convergence Metric | 10016795
Diveraity Metric 0,057
Punighment Metric 511467
Reward Wetric 3,386
Inverted Generational
Distance 00060607
Number of Nondominated
Solutiong 150
Selection Mechanism
Stochastic Univers. J
START
Test Functions
o |
CLEAR
MOEA Methods
DOPGA |
MATGAT v1.0

Sekil 4.68. MATGAT v1.0 ¢alistirildiktan sonra ekran goriintiisii



199

5. SONUC VE ONERILER

Bu tezde, iki yeni CAGA yontemi (DOPGA+ ve DOPGA2) o6nerilmektedir. Bu
yontemler daha once Onerilmis olan DOPGA [Eminoglu, 2003] yonteminde bazi
degisiklikler yapilarak elde edilmistir. Onerilen bu yontemlerin ana 6zelligi; bireylerin
baskinlik giiciinlin puanlama mekanizmasi i¢ine gomiilmesidir. Yontemler birbirinden
puanlama mekanizmalar1 veya elitizm mekanizmalar1  agisindan  farklilik
gostermektedirler. DOPGA yontemi, herhangi bir CAGA yontemi ile basarim ol¢iitleri
kullanilarak karsilagtirilmamistir. Bu tezde hem DOPGA, hem de DOPGA+ ve
DOPGA?2 ¢esitli test islevleri kullanilarak literatiirde sik kullanilan SPEA ve SPEA2
yontemleri ile karsilastirilmislardir. Sonug olarak, onerilen yontemlerin, mevcut SPEA
ve SPEA2 yontemlerinden Pareto-optimal cepheye yakinsama ve cesitlilik agisindan
daha iyi olduklar tespit edilmistir. Bu ii¢c yontemin literatiirde yer alan diger CAGA
yontemleriyle ayn1 parametreler altinda karsilagtirilmasi, {i¢c veya daha fazla amag igeren
problemlere uygulanmasi, kisitlamali test problemlerine uygulanmasi ve endiistriyel
problemlere uygulanmasi gelecek calisma alanlarindan bazilar1 olacaktir.

NFL (No Free Lunch) teoremine gore, higbir algoritma her zaman en iyi olamaz,
ya da bir algoritma her problemde en iyi olamaz [Wolpert ve Macready, 1997]. Yani
literatiirde olan yontemler ve bu tezde Onerilen yontemler, her test islevinde veya her
optimizasyon probleminde en iyi olamaz. Her yontemin diger yontemlerden daha iyi
olabilecegi bir problem vardir.

Bir topluluktaki bireylerin CAGA ydntemleri tarafindan puanlanmasinin bir¢ok
yolu vardir. Clinkii cok amacl bir diizlemdeki bir birey yalnizca bir puan degeri ile
temsil edilmektedir. Bu yiizden, literatiirde bircok CAGA yontemi Onerilmistir ve
onerilmeye devam edilmektedir. Onerilen yontemler iizerinde de birtakim iyilestirmeler
yapmak miimkiindiir. Bu calismada, NSGA ve SPEA yoOntemlerinin puan atama
mekanizmalari, orjinal yOntemlerin irettiginden daha iyi ve nitelikli bilgi (puan)
tiretebilmeleri amaciyla hesapsal ve yapisal olarak degistirilmistir (iyilestirilmistir).
Tyilestirmeler iki temel bigimde yapilmistir: i) k. en yakin komsuluk yéntemiyle iiretilen
yogunluk bilgisi eklenmesi, ii) baskinlik giicii kavrami. Yontemler ve iyilestirmeleri
dort farkli ve sik kullanilan test islevi kullanilarak test edilmislerdir. Onerilen bes
tyilestirme (NSGAmod, SPEAmodl, SPEAmod2, SPEAmod3, SPEAmod4) orjinal

yontemlere gore Pareto cephesine daha fazla yakinsamakta ve bu cephe iizerinde
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bireylerin daha diizgiin dagilmasin1 saglamaktadirlar. Ayrica, k. en yakin komsuluk
yontemiyle olusturulan yogunluk bilgisi teknigi, paylasim tabanli ¢esitlilik artirma
tekniginden daha iyi basarim gostermektedir. Yapisal olarak degistirilmis (uzman
sistem benzeri) bir segme mekanizmasi tasarimi gelecek calisma alanlarindan birisi
olacaktir. Boylece, iiretilen puan bilgilerinin daha nitelikli bir sekilde degerlendirmesi
miimkiin olabilir.

Literatiirde yer alan tiim yoOntemler iizerinde bazi iyilestirmeler yapilmasi
miimkiindiir. Boylece yontemlerin yakinsama ve/veya dagilim yetenekleri artirilabilir ve
yontemler daha etkin hale getirilebilir. Bu ¢alismada, yalnizca bes adet iyilestirme
verilmekle beraber daha ¢ok sayida iyilestirme yapilmasi da miimkiindiir. Y6ntemlerin
islem siirelerinin kisaltilmas1 i¢in de iyilestirmeler yapilmasi, gelecek calisma
alanlarindan birisi olabilir.

GA yontemlerinin  basarimmni artirmanin  bir baska yolu da segme
mekanizmasindan Once bireylerin secilme baskisinin degistirilmesidir. Bu amacla
literatiirde bir¢ok puan Olcekleme yontemi kullanilmistir. Bu calismada ise literatiirde
yer alan lstel puan Olgekleme yoOnteminin degistirilmis bir versiyonu olan, gama
diizeltmesi ile puan dlgekleme (GDPO) yontemi onerilmistir. Bu yontem ilk olarak, tek
amaclh bir GA’ da alt1 sabit gama degeri kullanilarak iki test islevi lizerinde
calistirilmistir. Sonug olarak, gama degerinin degismesiyle yakinsama hizinin degistigi
gbzlenmistir. Ayrica, her iki test iglevinde de y=10 secildiginde daha iyi ve daha hizli
bir yakinsama saglandigi goriilmiistiir.

GDPO yénteminin bir topluluktaki bireylerin segilme baskisinin degistirebilecegi
dolayisiyla CAGA yontemlerinin yakinsama yetenegini artirabilecegi goriilmiistiir.
Sabit gama (y) degerleri kullanilarak GDPO yéntemi, mevcut ve Onerilen CAGA
yontemlerine uygulanmistir. Bu durumda elde edilen genel sonuglar sdyledir: i) CAGA
yontemlerinin bagarimi gama (y) degerine bagh olarak degismektedir, i1) SPEA yontemi
v=7 ile uygulanan basarim O6lciitlerine gore en iyi yakinsamayr ve dagilimi
saglamaktadir, iii) y=2 ile SPEA2 ve DOPGA2, y=3 ile DOPGA (ZDT1’ de y=4 ile) en
iyl yakinsamay1 saglamaktadirlar, iv) y=1 ile yani orjinal sonuclarla tiim yontemler
degerlendirildiginde, DOPGA2 yodnteminin ZDT1, ZDT2 ve ZDT3 test islevlerinde,
DOPGA’ nin ise ZDT6 test islevinde en iyi sonuglar1 verdigi goriilmiistiir, v) tiim gama
degerlerine gore degerlendirme yapildiginda ise, ZDT1 test iglevinde y=2 ile DOPGAZ2;
ZDT2, ZDT3 ve ZDT6 test islevlerinde ise y=3 ile DOPGA tiim yontemler arasinda en
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1yi sonuglar1 vermektedir, vi) dagilim (veya cesitlilik) farkli gama degerlerinde 6nemli
derecede degismemektedir, vii) GDPO yalnizca puan orantili bir segme mekanizmasi
(6rnegin SUS) kullanildigi zaman etkilidir, viii) TS kullamldig1 zaman GDPO etkili
degildir.

Uyarlanabilir GDPO yo6ntemi (dinamik y degerleri) kullamldiginda SPEA (ZDT1
hari¢) ve DOPGA (ZDT1 ve ZDT3 hari¢) yontemleri sabit gama kullanildiginda elde
edilen sonuclardan daha iyi sonuglar vermistir. SPEA2 ve DOPGA2 ise sabit
durumdakinden iyi sonu¢ vermemislerdir. Hem uyarlanabilir hem de sabit GDPO
sonuclar1 dikkate alindiginda, ZDT2 ve ZDT6 test islevlerinde DOPGA + Adaptif
GDPO, ZDTI1 test islevinde DOPGA2, ZDT3 test islevinde ise DOPGA; tim
yontemlerden daha iyi yakinsama sonuglar1 vermektedir.

Sonu¢ olarak, GDPO blogu, herhangi bir ek islem vyiikii getirmeden ve
yontemlerin yapilarin1 degistirmeden literatiirde yer alan tim CAGA yontemlerine
uygulanabilir ve yontemlerin yakinsama basarimi artirilabilir. Ayrica, benzetim
sonuclarindan da anlagilacagi iizere, tim CAGA yontemleri hala iyilestirmelere
aciktirlar.

Elitizm mekanizmasi GA’ larin basarimini dnemli 6l¢iide etkilemektedir. Elitizm
mekanizmasi olan yontemler, olmayanlara gore daha iyi basarim gostermektedirler. Bu
nedenle, elitizm mekanizmasinda yapilabilecek en ufak bir iyilestirme bile, basarimi
etkileyecektir. Bu ¢aligmada, literatiirde yer alan pasif elitizm mekanizmasi Onerilen
etkin elitizm mekanizmasiyla degistirilmistir. Elit bireyler en iyi bireylerdir ve
dolayisiyla ¢oziime en yakin bireylerdir. Bu yiizden, arsivdeki elit bireylerin
caprazlama / mutasyon islevleri ile uyarilmasi neticesinde kendilerinden yakinsama ve
diizgiin dagilim agisindan daha 1iyi bireyler liretilebilmesi saglanabilir. Bu amagla klasik
sakla/aktar elitizm yapisi, sakla/uyar/aktar bir etkin elitizm yapist kullanilarak
tyilestirilmistir. Boylece, etkin elitizm mekanizmasinda ana topluluk ve ikincil
topluluktaki bireyler ¢6ziim iiretebilmektedir.

Etkin elitizm mekanizmasi, literatiirde yer alan SPEA ve SPEA2 yontemleriyle,
onerilen DOPGA ve DOPGA+ yoOntemlerine uygulanmistir. Benzetimler sonucunda,
EFE SPEA yonteminin SPEA yonteminden yakinsama ve diizgiin dagilim agisindan
daha iyi oldugu goriilmiistiir. Yalnizca, ZDT6 test islevinde SPEA yontemi EFE_SPEA’
dan daha iyi bir dagilim saglamistir. EFE SPEA2 yonteminin SPEA2 yonteminden

yakinsama agisindan daha iyi oldugu goriilmistiir. ZDT2 test islevi hari¢ tiim test
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islevlerinde EFE SPEA2 yontemi SPEA2’ den daha diizgiin bir sekilde Pareto
cephesine dagilmistir. EFE_ DOPGA yontemi ZDT1 ve ZDT2’ de, DOPGA yo6ntemi ise
ZDT3 ve ZDT6’ da daha i1yi yakinsama saglamislardir. DOPGA, EFE DOPGA’ dan
daha iyi diizgiin dagilim olgiitlerine sahiptir. EFE DOPGA+, tiim test islevlerinde
DOPGA+ yonteminden iyi yakinsama saglamaktadir. Ancak DOPGA+ tiim test
islevlerinde diizgiin dagilim agisindan daha iyidir.

Tiim pasif ve etkin elitizm mekanizmali yontemler birlikte degerlendildiginde;
ZDT1, ZDT3 ve ZDT6’ da EFE DOPGA+, ZDT2’ de ise EFE DOPGA diger
yontemlerden yakinsama agisindan daha iyidir. ZDT1, ZDT2 ve ZDT6’ da DOPGA+,
ZDT3’ te ise EFE SPEA2 yontemi diger tiim yontemlerden daha iyi olarak Pareto
cephesine dagilan bireyler olusturmuslardir.

Etkin elitizm mekanizmasi tiizerinden bir takim iyilestirmelere gereksinim
duyulmaktadir. Ozellikle, mutasyon ve c¢aprazlama islevlerinin hangi anda devreye
gireceklerinin daha iy1 belirlenmesi gerekebilir. Ayrica elit bireylerin caprazlanmasi i¢in
kural tabanli bir uzman sistemin karar verici olarak kullanilmasi daha iyi sonuglar elde
edilmesini saglayabilir. Hangi elit bireylerin hangi elit bireyler ¢aprazlanacaginin daha
iyi saptanmasi etkin elitizmin yetenegini artirabilir. Bunun i¢in hangi bireylerin
caprazlamaya girecegine dair bilgi veren bir kural tabaninin olusturulmasi gelecek
calismalardan birisi olacaktir. Ayrica etkin elitizm mekanizmasinin islem yiikiiniin
azaltilmas1 da bir calisma konusudur. Onerilen etkin elitizm mekanizmas literatiirde yer
alan CAGA yontemlerine uygulanarak, bu yontemlerin basarimi genel yapilar
degistirilmeden artirilabilir. Etkin elitizm mekanizmasinin tek dezavantaji CAGA
yontemlerinin islem zamanlarinda artisa neden olmasidir.

CAGA yontemlerinin siralama (puan atama) yeteneklerinin 6l¢lilmesi igin iki
yeni bagarim Olg¢iitii Onerilmistir. Bu oSlgiitler kullanilarak, CAGA yontemlerinin bir
topluluktaki bireyleri en ¢ok istenilenden en az istenilene dogru siralama yetenekleri
tespit edilmistir. Ceza ve 0diil Olciit degerleri en az olan yontem siralama yetenegi
acisindan daha iyidir. Boylece se¢me mekanizmasina veya karar vericiye en fazla /
nitelikli bilgiyi iletmektedir. Bu o6lgiitler, test islevlerinden bagimsizdirlar ve daha
onceden bilinse dahi Pareto cephesini kullanmamaktadirlar. CAGA karsilastirmalarinda
stk kullanilan SPEA yontemi ile DOPGA yoOntemlerinin siralama yetenekleri
karsilastirilmistir. Benzetimler sonucunda, DOPGA yonteminin ceza&ddiil degerlerinin

SPEA yo6nteminden daha diisiik oldugu, dolayisiyla da SPEA yontemine gore bireyleri



203

en ¢ok istenilenden en az istenilene dogru daha iyi siraladigi belirlenmistir. Yakinsama
ve dagilim agisindan da beklendigi tizere DOPGA yontemi daha iyidir.

Puan atama mekanizmalarinda £. en yakin komsuluk yonteminden yararlanilarak
olusturulan bir yogunluk bilgisi kullanan SPEA2 ve DOPGA2 yontemleri ise ayr1 ayri
degerlendirilmistir. DOPGA2 yoOnteminin siralama yetenegi agisindan SPEA2
yonteminden daha iyi oldugu goriilmiistiir. Ancak bu yontemler i¢in, ceza ve 6diil
Olciitleri ile yakinsama 0lgiitii arasinda bir bag bulunamamuistir. Pareto cephesi tizerinde
dagilim ile ceza&ddiil arasinda dogrusal bir iliski vardir, yani ceza ve ddiilii diisiik olan
yontem dagilim acisindan daha iyi olmaktadir, yani Pareto-optimal cephede daha
diizglin dagilmaktadir. Ayrica segme mekanizmasinin olasiliksal olarak davranmasi
nedeniyle, siralama bilgileri nitelikli bir bigimde kullanilmamaktadir. Yani hangi birey
ciftlerinin ¢aprazlamaya tabi tutulacagi kesin olarak bilinmediginden dolay: olasiliksal
bir se¢im yapilmaktadir. Bu da se¢gme mekanizmasinin puanlama mekanizmasindan
gelen bilgileri kullanamadigi anlamima gelir. Bu durumda, olasiliksal olarak calisan
secme mekanizmast yerine uzman sistem veya kural tabanli bir segme mekanizmasi
kullanildiginda ceza ve 6diil dl¢iitleri daha anlamli olacaktir.

Uzman sistem veya kural tabanli bir segme mekanizmasinin gelistirilmesi ile
hangi birey ciftlerinin caprazlama i¢in secgilecegi, dolayisiyla da hangi birey ¢iftlerinin
caprazlanmasiyla kendilerinden daha iyi bireyler elde edilebilecegi konusu agikliga
kavusturulabilir.

Bu c¢alismada, literatiirde sik kullanilan ve Onerilen CAGA yontemlerini
igerisinde barindiran ve MATLAB iizerinde calisabilen bir GUI (toolbox) tasarlanmustir.
GUI’ nin bu ilk versiyonunda, kullanicilar istedikleri CAGA yontemini, seg¢me
mekanizmasini, test islevini secerek ve kendi GA parametrelerinin girerek
degerlendirme yapabilmektedirler. GUI {izerinde gelecekte cesitli gelistirmeler
yapilacaktir. Yeni CAGA yontemleri, basarim olgiitleri ve test islevleri (kisitlamali ve
kisitlamasiz) eklenecektir. Ayrica, GA literatiirlinde kullanilan gosterilim sekilleri
(boxplot, basarim yiizeyi vb.) GUI’ ye eklenecektir. Kullanicinin kendi problemini de
kullanabilmesi igin alt programlar eklenecektir. Bu GUI, CAGA’ lar i¢in gelistirilmis
olsa da literatliirde yer alan diger topluluk tabanli yontemlerin de programlanarak
GUI’ ye eklenmesi optimizasyon ile ugrasan akademik ve endiistriyel kullanicilar i¢in
cok yararli olacaktir. MATGAT programimin giincellenerek ticari bir yazilim haline

getirilmesi amaglanmaktadir.
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Son olarak, GA’ larin isleyisini gelistirmek ve yapisini anlamak i¢in yapilabilecek

baz1 gelistirmeler / gelecek ¢alisma alanlar1 soyle siralanabilir:

1l

1il.

1v.

Vi.

Vil.

Viil.

iX.

xi.

Xil.

xiii.
Xiv.
XV.

XVi.

XVil.

GA toplulugunun dinamiklerini yani GA’ nin nasil ¢alistigin1 belirlemek, bu
sayede GA’ nin isleyis ve etkinligini degistirmek, bu amagla istatistiksel
teknikleri kullanmak,

Elitizm mekanizmasinin iyilestirilmesi,

Cok amaglt GA’ lar gergek diinya problemlerine (6riintli tanima, bilgisayarl
animasyon, hiicresel sistemler, sanal gerceklik, kriptografi, biyoinformatik,
veri madenciligi vb.) uygulamak,

Onerilen CAGA yontemlerini kisitlamali test problemlerine uygulamak,

GA’ larin islem siiresini ve bellek kullanimin1 azaltmak,

GA’ lan diger topluluk tabanli optimizasyon yontemleriyle (PSO, DE vb.)
melezlestirmek (hibritlestirmek),

Se¢me mekanizmasini degistirmek (en 1yi bireylerin se¢ilmesini saglamak),
Iki amactan daha fazla amagli optimizasyon problemlerine uygulamak,
Parametrelerin kontroliinii kendi kendine saglayan bir CAGA yontemi
tasarlamak (kullanici kendisi parametrelerini ayarlamayacak),

CAGA tarafindan bulunan ¢6ziim Onerilerinden en iyisinin secilmesi i¢in
yeni yontemler gelistirilmesi (¢ok amacl karar verme)

Hangi bireylerin ¢aprazlamaya girecegi ve hangi bireylerin eslesmesi
gerektigine iligkin kavramlarin gelistirilmesi,

Yeni basarim Olclitleri (6zellikle Pareto-optimal cephenin bilinmedigi
durumlarda da kullanilabilecek) gelistirilmesi,

CAGA yontemlerinin paralellestirilmesi,

Gergek say1 ile calisan GA’ larin kullanilmast,

Tercih belirleme (preference articulation) i¢in yeni yontemler gelistirilmesi,
CAGA yontemleri kullanilarak bulanik mantikla denetlenen veya
modellenen sistemlerin IF-THEN kurallarinin (merkez , genislik ve agirlik
gibi) ve RBF (radial basis functions) aglar1 vb. yapilarin son evre
optimizasyonunun yapilmasi,

Biyolojik kokenli yeni nesil topluluk tabanli siirii optimizasyonu

yontemlerinin (PSO, ACO, DE vb.) endiistriyel problemlere uygulanmasi.
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8. EK:
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