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OZET

Diferensiyel operatorlerin spektral teorisinde, spektral veriler kullanilarak potan-
siyel fonksiyonun bulunmasi problemi ters problem olarak adlandirilir. Eger bu ters
problemin spektral karekteristikleri, aralarindaki fark yeterince kiiciik olacak sekilde,
degistirildiginde potansiyellerinin farki da yeterince kiiciik kaliyorsa bu problem karar-
lidir denir.

Bu calisma beg boliimden olusmaktadir.

Birinci boliimde; Sturm-Liouville, Dirac ve difiizyon operatorlerinin spektral teorisinin
tarihgesi verilmigtir.

Ikinci boliimde; diferensiyel operatorlerin spektral teorisinde ve sunulan tezde sik
sik kullanilan baz1 temel tanim ve teoremler verilmistir.

Uciincii boliimde; Sturm-Liouville operatorii icin dzdeger ve dzfonksiyonlarin asimp-
totik formiilleri, 6zfonksiyonlarin ortogonalligi, tzdegerlerin reel oldugu ve doniisiim
operatorii gosterilmistir. Ayrica potansiyeller farki i¢in formiil verilmistir.

Dordiincii ve besinci boliimde; sirasiyla Dirac ve difiizyon operatorii igin ters prob-

lemin kararlihigini arastirilmig, potansiyel farklari i¢in bazi formiiller bulunmustur.

Anahtar Kelimeler: Spektrum, Ters Sturm-Liouville problemi, Dirac operatorii,

Difiizyon operatorii, Kararlilik.
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SUMMARY
Inverse Problem With Respect To Two Spectra For Regiiler And Singular

Differential Operators

In the spectral theory of differential operators, the problem of finding potential
function by using spectral datas is called inverse problem. In an inverse problem, if the
potential difference becames sufficiently small when the difference between the charec-
teristics was changed as suficiently small, this problem is called as stable(wellposed).

This study consists of five chapters.

In the first chapter, the history of spectral theory a Sturm-Liouville, Dirac and
diffusion operators are presented.

In the second chapter some fundamental definitions and theorem, often used in
spectral theory of differential operators, are given.

In the third chapter, the asymptotic formulas for eigenvalues and eigenfunctions,
the ortogonality of the eigenfunctions, the reality of the eigenvalues and transformation
operator for Sturm-Liouville operator are shown. In particular the formula is given for
difference of potantials.

In the fourth and fifth chapters, we investigated the stability of inverse problem for
Dirac and diffusion operators ,respectively. We obtained some formulas for potential

difference.

Keywords: Spectrum, Inverse Sturm-Liouville Problem, Dirac Operator, Diffusion

Operator, Stability(Wellposedness).
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SIMGELER LiSTESI

W(f,g) : Wronski determinant

Loy la,b] : Karesi integrallenbilen fonksiyonlar uzay1
Wy . Sobolev Uzay1

O . Ozfonksiyonlar

An . Ozdegerler

K (z,y) : Cekirdek fonksiyonu

q(x) : Potansiyel fonksiyon

p(N) . Spektral fonksiyon

P : Normlagtiric1 sayilar



1. GIRIS

Operatorlerin spektral teorisi matematik, fizik ve mekanigin gesitli alanlarinda genis
bir sekilde kullanilmaktadir. Lineer operatorlerin spektral teorisinin esas kaynaklari
bir yandan lineer cebir olmak tizere diger yandan titresim teorisinin problemleridir.
Lineer cebir problemleri ve titresim teorisi problemleri arasindaki benzerliklerin farkina
varilmasi cok eskilere dayanir. Integral denklemler teorisinde yapilan calismalarda bu
benzerliklerden siirekli faydalanan ilk olarak D. Hilbert olmustur. Bunlarin sonucu
olarak once [l uzayi, daha sonralari ise genel Hilbert uzay1 tanimlanmgtar.

Matematikte lo ve H soyut Hilbert uzay1 tamimlandiktan sonra H da lineer self-
adjoint operatorler teorisi hizla gelismeye baglamigtir. XIX.-XX. asirlarda bircok mate-
matikciler sayesinde bu teori miikemmel bir seviyeye ulagmstir. Ozel olarak bu calig-
malarda 6zdegerler, 6zfonksiyonlar, spektral fonksiyon, normlagtirici sayilar gibi spek-
tral veriler tanimlanmig ve farkli yontemlerle bunlar icin asimptotik formiiller bulun-
mustur. Ayrica, spektral teorinin tamaminda énemli bir yere sahip olan acilim teoremi
ispatlanmigtir. Belirli diferensiyel ve fark operatorleri icin spektral agilimin uygun
denklem ¢oziimleri vasitasiyla ifade edildigi aragtirilmigtir.

Regiiler ve singiiler olmak iizere iki tiir diferensiyel operatoér tanimlanmig ve bun-
larin spektral teorileri yapilandirilmigtir. Tanim boélgesi sinirh ve katsayilar: siirekli
fonksiyonlar olan diferensiyel operatorlere regiiler, tanim bolgesi sinirsiz veya kat-
sayilari(bazilar1 veya tamami) toplanabilir olmayan(veya her ikisi saglanacak bigimde)
diferensiyel operatorlere ise singiilerdir denir. Ikinci mertebeden regiiler operatorler
i¢in spektral teori giiniimiizde Sturm-Liouville teorisi olarak bilinir. XIX. asrin son-
larinda ikinci mertebeden diferensiyel operatorler icin sonlu aralikta regiiler sinir sart-
lar1 saglanacak sekilde keyfi mertebeden adi diferensiyel operatorlerin 6zdegerlerinin
dagilimi G. D. Birkoff tarafindan incelenmigtir. Diskret spektruma sahip ve uzayin
tamaminda tamimli operatorlerin 6zdegerlerinin dagilhim 6zellikle Kuantum mekanigi
i¢in ¢ok ilgingtir. Birinci mertebeden iki denklemin regiiler sistemleri daha sonraki yil-
larda ele alinmugir. Singiiler operatorler igin spektral teori ilk olarak H. Weyl tarafindan

incelenmigtir. Daha sonra F. Rietsz, J. Fon-Neumann, K. O. Friedrichs ve diger mate-



matikgiler tarafindan simetrik ve self-adjoint opeatorlerin genel spektral teorisi olus-
turulmustur. Hatirlatalim ki, simetrik operatorlerin tiim self-adjoint genislemelerinin
bulunmasi problemi Neumann tarafindan bir siire sonra yapilmigtir.

Ikinci mertebeden singiiler operatorlerin spektral teorisine yeni bir yaklagimi 1946

yilinda E. C. Titchmarsh vermigtir. Dogru ekseninde tanimh azalan(artan) potansiyelli
d2

da?

Sturm-Liouville operatorleri i¢in ¢zdegerlerin dagilimi formiilii Titchmarsh tarafin-

L= +q(x)

dan bulunmustur. Son yillarda bu operatore sik sik bir boyutlu ¢ (z) potansiyelli
Schrodinger operatorii de denir. Ayni zamanda bu ¢aligmada Schrodinger operatorii
icin 6zdegerlerin dagilim formiilii de verilmistir.

Singiiler diferensiyel operatorlerin incelenmesine iligkin ve diferensiyel operatorlerin
spektral teorisinde onemli bir yere sahip olan ¢aligmalar 1949 yilinda B. M. Levitan
tarafindan yapilmistir. Levitan bu ¢alismalarinda spektral teoriyi esaslandirmak igin
kendine has bir yontem vermistir. Farkli singiiler durumlarda diferensiyel operatorlerin
spektral teorisi, 6zellikle 6zdegerlerin, 6zfonksiyonlarin asimptotigine ve 6zfonksiyon-
larin tamligina iligkin konular R. Courant, T. Carleman, M. S. Birman, M. Z. Salamyak,
V. P. Maslov, M.V. Keldish gibi matematikgiler tarafindan geligtirilmistir.

Lineer diferensiyel operatorler teorisinde spektral analizin ters problemleri énemli
bir yere sahiptir. Diferensiyel operatorler icin ters problem asagidaki sekilde tanimlanir:

1. Hangi spektral verilere gore operatoriin kendisini bulmak (veya yapisini olugtur-
mak) miimkiindiir?

2. Spektral verilere gore operatorii birebir olarak tanimlamak miimkiin mii?

3. Bu verilere gore operatorlerin tanimlanmasi yontemlerinin bulunmasi.

Ters problemlerle ilgili ilk sonug V. A. Ambartsumyan|3] tarafindan elde edilmigtir.
Bu calismada Sturm-Liouville operatorleri igin ters probleme ait asagidaki teorem is-
patlanmgtar.

Teorem 1. ¢ (z), [0, 7] araliginda reel degerli siirekli bir fonksiyon olmak tizere
y'+{A-a@}y = 0 (0<z<m) (1.1)
y(0) = y(m)=0
probleminin 6zdegerleri {\g, A1, ..., Ay, ... folsun. Eger A\, =n? (n=0,1,...) ise ¢ (z) =
0 dir.



Bu sonuca ilk énce dikkati ceken Isve¢ matematikci G. Borg[6] olmustur. Borg,
genel durumda Sturm-Liouville oeratoriiniin bir spektrumla tanimlanmadigini goster-
migtir. Ayrica farkli simir sartlar saglanacak sekilde iki spektruma gore Sturm-Liouville
operatoriiniin birebir olarak tanimlandigin gostermistir. Dolayisiyla asagidaki teoremi
ispatlamigtir.

Teorem 2. X\, A1,...,\,, ... ler (1) diferensiyel denklemi ve

y (0)—hy(0) = 0 (1.2)
y(m)+Hy(m) = 0

siur kogullari ile verilen roblemin, iy, fi1,...sit,, ... ler ise (1) denklemi ve

y(0)—hy(0) = 0  (H#H) (1.3)
y (m)+ Hiy(m) = 0

siir kogullari ile verilen problemin 6zdegerleri olsun. O halde {\,} ve {u,,}, (n =0,1,...)
dizileri ¢ (z) fonksiyonunu ve sonlu h, H, H; sayilarim tek olarak belirtir.

Bu ¢alismadan sonra potansiyelin ¢ (7 —x) = ¢(x) simetriklik kogulunu sagla-
mas1 durumunda bir spektrumun Sturm-Liouville operatoriinii tanimladigini N. Levin-
son[35], [36] ispatlamugtir. Buna ilaveten, Levinson negatif 6zdegerlerin mevcut ol-
madig1 durumda, sac¢ilma fazinin potansiyeli birebir olarak tanimladigini gostermistir.

Sturm-Liouville denkleminin inceleme siirecinde kullanilan yontemlerden biri de
ters problemin ¢oziimlerinde 6nemli bir arac olan doniisiim operatorii kavramidir. Bu
kavram operatorlerin genellegtirilmis ttelemesi teorisinde J. Delsarte, J. Lions|8], [9]
ve B.M. Levitan[34] tarafindan verilmigtir. Keyfi Sturm-Liouville denklemleri i¢in
doniigiim operatoériiniin yapisini ilk olarak A. V. Povzner[51] caligmalarinda goster-
mistir.

Daha sonra ikinci mertebeden lineer diferensiyel operatorler icin ters problem-
ler teorisinde teklik problemiyle ilgili en énemli galigmalar A. N. Tichknof[60] ve V.
A. Marchenko[41] tarafindan yapilmigtir. Marchenko bu galigmasinda teklik problem-
lerinin ¢oziimiinde Sturm-Liouville operatoriiniin spektral fonksiyonundan yararlan-
migtir.

¢ (x,\) fonksiyonu (1.1) diferensiyel denkleminin

0 (0,\) =1, ¢ (0,\)=h (1.4)



baglangig kogullarini saglayan ¢oziimii, ¢ (x, \,,) = ¢,, (z) fonksiyonlar: ise bu problemin

ozfonksiyonlar1 olsun. Bu takdirde

™

a, = /@2 (x, \) dz (1.5)

0
verilen operatoriin normlastirici sayilari,

PN = L

e

ise bu operatoriin spektral fonksiyonu olmak iizere Marchenko yukarida bahsedilen
caligmada Borg'un ispatladigi teoremi p (\) spektral fonksiyonu yardimi ile vermistir.
Ayrica, bu ¢alismada p (A) spektral fonksiyonunun, Sturm-Liouville tipinde bir difer-
ensiyel operatoriiniin spektral fonksiyonu olmasi icin gerek ve yeter sart verilmistir.
Marchenko’nun galigmalari ile hemen hemen aym anda M. G. Krein[25], [26] galig-
malarinda, Sturm-Liouville tipindeki bir diferensiyel operatorii {\, } ve {p,, }, (n = 0,1, ...
dizilerine gore belirtmek igin etkili yontem verilmistir. Fakat bu ¢aligmalarda ve-
rilen gerek ve yeter sart, {\,} ve {u,} dizileri yardimiyla degil, bu dizilerden kurulan
yardimci fonksiyon kullanilarak verilmistir.

Spektral analizin ters problemler teorisinde temel caligma .M. Gelfand ve B. M.
Levitan[16] tarafindan yapilmigtir. Bu ¢alismada p (\) monoton fonksiyonunun Sturm-
Liouville operatoriiniin spektral fonksiyonu olmasi i¢in gerek ve yeter kosullar tanimlan-
mis olup, Sturm-Liouville operatoriiniin belirtilmesi igin 6nemli bir yéontem verilmistir.

Sturm-Liouville operatorii icin ters problemin iki spektruma gore tam ¢oziimii
1964 yilinda B. M. Levitan ve M. G. Gasimov([30] tarafindan yapilan bir galigmada
verilmigtir. Bu caligmada iki spektruma gore ters problemin coziimii icin gerek ve
yeter kogullar tanimlanmigtir.

Sturm-Liouville operatoriinii inceleme siirecinde 6zellikle XX. asrin ikinci yarisinda
kullanilan yontemler siirekli artmistir. 1967 yilinda bir grup Amerikan fizik¢i ve mate-
matik¢i G. S. Gardner, J. M. Greene, M.D. Kruskal, R. M. Miura[7] ve P.Lax[2§]
tarafindan bazi kismi tiirevli nonlineer evalusyon denklemleri ile Sturm-Liouville o-
peratoriiniin spektral teorisi arasindaki baglantilar bulunmustur. Bu konu ve jeofizikte
bir¢cok uygulamalar1 olan singiiler Sturm-Liouville operatorii i¢in kuantum teorisini

ters sacillma problemleri halen yogun bir gekilde fizik ve matematikciler tarafindan



aragtirilmaktadir. Kuantum sacgilma teorisinin ters problemleri ile ilgili tarihge detayl
bir gekilde L.D. Faddeev’in[11] ¢aligmasinda verilmistir.

Dirac operatoriiniin spektral analizi ile ilgili ilk ¢aligmalar fizikciler F. Prats, J.
Toll[52], H. E. Moses[45] ve digerleri tarafindan yapilmigtir. Dirac operatorii i¢in (0, 0o)
yar1 ekseninde spektral fonksiyona gore ters problem M. G. Gasimov ve B. M. Levi-
tan[13] tarafindan coziilmiigtiir. ki spektruma gore regiiler Dirac operatdriiniin be-
lirlenmesi problemi M. G. Gasymov ve C. Dzhabiev[14] tarafindan yapilan ¢alismada
verilmigtir. Dirac operatorii igin 6zvektor fonksiyonlarinin tamhgi, Cauchy problemi-
nin ¢oziimii, self-adjointlik durumunda spektrumun diskretligi ve siirekliligi, regiilerize
izin hesaplanmasi, periyodik ve anti periyodik problemler, acilim teoremleri, 6zvektor
fonksiyonlarinin asimptotigi, 2n-mertebeli Dirac denklemler sistemi i¢in ters sacilma
problemi, kismen gakigmayan iki spekturuma gore ters problem sirasi ile [1, 10, 15, 18,
22, 38, 43, 48, 53-57 | ¢aligmalarinda incelenmistir.

Daha sonraki yillarda H. Hochtadt[19], B. M. Levitan[33] ve E. S. Penahov[49]
kismen cakigmayan iki spektruma gore farkli yontemlerle Sturm-Liouville ve Dirac o-
peratorleri icin ters problemi incelemislerdir. Dirac operatorii icin kismen cakigmayan
iki spekturuma gore ters problem, singiiler Sturm-Liouville operatorii igin ters problem,
periyodik durumda ters poblem sirasiyla [4, 5, 21, 23] ¢aligmalarinda incelenmistir.

Dalga denkleminden bir ¢ok yonii ile farkli olan difiizyon denklemi kuantum fiz-
iginde onemli yere sahiptir. Bu sebeple bir boyutlu difiizyon denkleminin spektral
teorisi de detayli bir gsekilde incelenmistir. Bu denklemler i¢in sagilma problemleri ilk
olarak Fransiz matematikgileri M. Jaulent, C. Jean ve P. Sabatier tarafindan incelen-
migtir. Bu ¢aligmalara ait kaynaklar [55] verilmistir. Sonlu aralikta iki spektruma gore
difiizyon operatorii igin ters problem M. Gasymov ve G.Sh. Guseinov[12] tarafindan
¢oziilmiigtiir. Dogru eksende sacilma satlar1 saglanacak bicimde ters problem ise F.G.
Maksudov ve G. Sh. Guseinov [39] tarafindan incelenmigtir.

Daha sonra difiizyon denklemi i¢in farkli sekilde tanimlanmig ters problemler, teklik
teoremleri V. Yurko[65], G.Sh. Guseinov, E.S. Panakhov ve H. Koyunbakan[24] ve diger
matematikciler tarafindan aragtirilmistir.

Bu calismada, Dirac ve difiizyon operatorleri igin iki spektruma gére ters problem
incelenmistir. Ozel olarak 6zdegerler ve normlastirici sayilar icin belirli sartlar saglan-

mak tizere potansiyel farki ile ilgili teoremler ispatlanmigtir.



2. TEMEL TANIM VE TEOREMLER

2.1. Diferensiyel Operatérlerin Spektral Teorisinde Kullanilan Onemli

Kavramlar

Bu boliimde, sunulan tezde sik sik kullanilan énemli kavramlar ve teoremler ve-
rilmigtir.

Tanim 2.1.1. (ig Carpim Uzay1) C kompleks sayilar cismi iizerinde tanimlanmig
bir H lineer vektor uzayini goézoniine alahm. H daki her vektor ciftine bir say1 karsilik
getiren (,) : Hx H — C fonksiyoneli agagidaki kurallar1 sagladig takdirde bir i¢ ¢arpim
adini alir:

i) Her u,v € H icin,(u,v) = (v,u)

ii) Her u,v € H ve a € C igin (au,v) = a (u,v)

iii) Her u,v,w € H i¢in (u + v, w) = (u,w) + (v, w)

iv) Her u, € H,u # 0 igin (u,u) >0

Bir i¢ carpimla donatilmig bir lineer vektor uzayina i¢ carpim uzayi denir.
d(u,v) = |lu—v|| =+ (u—v,u—0v)

metrigine gore tam bir i¢ carpim uzayina Hilbert uzay1 denir[59].
Tamim 2.1.2. a <t < b olmak iizere L? [a, b] karesi integrallenebilen fonksiyonlar

uzayl

20, b] = x(t):/[x(t)]th<oo

seklinde, bu uzayda i¢ carpim ise

< f.g>= /f(:v)mdw

seklinde tanimlanir[27] .

Tanim 2.1.3. Tanmim ve deger ciimlesi vektor uzayi olan doniisiime operator denir.



Tamm 2.1.4. £, ve E, herhangi iki vektor uzay1 olmak tizere
1. 21,29 € E, i¢in L(x1+ z3) = Lzy + Lxo
2. x € E,,A € Rigin L (\z) = ALz
sartlarim saglayan L : E, — E, operatoriine lineer operator denir [46].
Tanim 2.1.5. X ve Y normlu uzaylar ve D (L) C X olmak iizere L : D (L) — Y

bir operator olsun.

[ L] < e |z

olacak gekilde bir ¢ > 0 reel sayis1 varsa L operatoriine sinirlidir denir[46].

Tanmim 2.1.6. L — A\ operatoriiniin smrh (L — A/ )71 tersinin mevcut olmadigi
Nlar ciimlesine L operatoriiniin spektrumu denir [46].

Tanim 2.1.7. Herhangi A i¢in L — A\l operatoriiniin tersi mevcut olacak sekilde
Ry = (L — M) ‘operatoriine (L — M) z = y denkleminin rezolvent operatérii denir.

Tanim 2.1.8. L operatorii D (L) tanmim bolgesinde siirh lineer operatér olmak

lizere

Ly =Xy

esitligini saglayan y (x) # 0 fonksiyonu mevcut ise A sayisina L operatoriiniin dzdegeri,

y (z, ) fonksiyonuna ise A'ya kargilik gelen 6zfonksiyon denir[32].

Tamim 2.1.9. Eger + — 0 (veya * — o0) iken % — 0 ise f(z) = o(g(z))

)

f(=
g(z)

seklinde, sirh ise f (z) = O(g(x)) seklinde gosterilir[47].

Tanim 2.1.10. [a,b], R’ nin kapal sinirli bir araligi ve (a1, b1) , ..., (an, b,)’ ler [a, ]

de acik araliklar olmak tizere Ve > 0 i¢in 36 > 0 vardir ki

n

> (bhi—a;) <o

=1

iken

n

Zlf(bi) — [w)] <e

=1

oluyorsa f : [a,b] — C fonksiyonu [a, b] de mutlak siireklidir denir.



Tanim 2.1.11. Bir f(z) kompleks fonksiyonu diizlemin keyfi bir zo noktasmin §
komgulugunun tiim noktalarinda diferensiyellenebiliyorsa f (z) fonksiyonuna z, nok-
tasinda analitiktir denir.

Tanim 2.1.13. f (z) kompleks fonksiyonu diizlemin tiim noktalarinda analitik ise
f (2)’e tam fonksiyon denir.

Tamim 2.1.14. f (x) ve g (x) siirekli, diferensiyellenebilir fonksiyonlar olmak iizere

f(z) g()
f'(x) g ()

seklinde tanimlanan determinanta Wronski determinanti denir.

Wo{f 9} =

Tanim 2.1.15.(Parseval Esitligi) f(z), g(x) € L?(a,b) olmak iizere

b b

/f(U)g(U)du=g;p—1n me)qs(u,An)du oo

a a

dir.
Tamim 2.1.16. (Minkowski Esitsizligi) 1 < p < oo olmak iizere Vz,y €
R"™(veya C™) icin

n 1/p n Up s n 1/p
(Z |75 + yk|p> < (Z |Ik|p) (Z |yk|p>
k=1 k=1 k=1

seklindeki esitsizlige Minkowski esitsizligi denir.
Tanim 2.1.17. (Cauchy-Bunjakowski Esitsizligi) (X, ||.||) bir normlu uzay

olmak tizere Vz,y € X i¢in

<z y > <]l lyl

dir.
Tanim 2.1.18. (Bessel Esitsizligi) (X, < .,.>) bir i¢ ¢arpim uzay1 ve (x,,) de

X ’de bir ortonormal dizi olmak iizere x € X igin

o0
Yo I<aa > < el
k=1

dir.



Tanim 2.1.19. (a,b) araliginda tamiml, (kK — 1). mertebeden tiirevleri mutlak
siirekli olan ve f, f", f" ..., f* € Ly[a,b] kosulunu saglayan fonksiyonlar uzayma
Sobolev uzay1 denir ve W¥ (a,b) ile gosterilir[2].

Tanim 2.1.20. K (z,y) karesel bir bolgede tanimli siirekli bir ¢ekirdek fonksiyonu

olmak {izere,
F@) =6+ [ Ko

integral denklemine ¢ () bilinmeyen fonksiyonuna gore ikinci tiir Volterra integral
denklemi denir[62].

Tanim 2.1.21. F lineer topolojik uzay, A ve Bde A: F — E, B: F — FE
seklinde tanimh iki lineer operator olsun. Fj ile Fy de E lineer uzayimin kapal alt
uzaylari olmak tizere F uzayimin tamaminda tamimh, £;’den Fs; ’ye doniisiim yapan ve
tersi lineer olan X operatorii,

i) X ve X loperatorleri £ uzaymda siireklidir,

ii) AX = XB

sartlarimi saglhyorsa, A ve B operator ifti igin doniigiim operatorii adini alir[31].

Teorem 2.1.1. (Green Teoremi) 2, xoy diizleminde bir bolge ve I' da bu
bolgeyi cevreleyen pozitif yonde yonlendirilmis bir egri olsun. P ve () fonksiyonlar: €2

iizerinde siirekli tiirevlere sahip fonksiyonlar ise

/ (x,y)dz+Q (z,y dy—//<@—8£>dxdy

Teorem 2.1.2. (Leibnitz Formiilii) Siirekli f (x,t) fonksiyonu,

dir.

{(z,t) :a <x <b, ¢c<t<d} dikdortgenini kapsayan bir bolgede surekh of + kismi

tiirevine sahip olsun. Bu takdirde ¢ <t < d igin
d / / 0
E/f(x,t)dx = /gf(x,t)d:r

Bu teoremin sonucu olarak; a (t) ve b(t), (¢,d) arahginda siirekli tiirevlere sahip

dir.



fonksiyonlar ise

& [1wode= [ Si@oder 700080 -7 @000

dir.
Teorem 2.1.3. (Hochstadt)

Lu=—u"+q(x)u= (2.1)
u(0)cosa+u (0)sina = 0 (2.2)
u(l)cosf+u (1)sinf = 0 (2.3)

probleminin spektrumu {\;}, (2.3) yerine
u(1)cosy+u' (1)siny =0 (2.4)

alinmasiyla elde edilen yeni problemin spektrumu ise {\;} olsun. Diger taraftan

Lu=—u"+q(z)u=Au (2.5)
u(0)cosa+u (0)sina = 0 (2.6)
u(l)cosf+u (1)sing = 0 (2.7)

probleminin spektrumu {5\1} , (2.5)-(2.6), (2.4) probleminin spektrumu ise {5\;} olsun.
Ayrica Ag, i # \; sartin1 saglayan sonlu ¢ lerin ciimlesi, A ise M\ = \; sartim saglayan

sonsuz ¢ lerin ciimlesi olsun. Bu durumda
qg—q= Z (gnwn)/
Ao

dir. Ayrica Ay bos ise ¢ = ¢ dir.
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3. STURM-LIOUVILLE PROBLEMI
L lineer operator, ¢ (x) de [a, b] araliginda siirekli ve reel degerli bir fonksiyon olmak

lizere

Ly = _&y +q(x)y=A (3.1)
y=——5+a(@)y=>, -
y(a)cosa+y (a)sina = 0 (3.2)

y(b)cosf+y (b)sing = 0

seklinde tanimlanan (3.1)-(3.2) smr-deger problemi Sturm-Liouville problemi olarak
adlandirihr. N'ya (3.1)-(3.2) probleminin 6zdegeri; y (x, \) ya ise A 6zdegerine kargilik
gelen ozfonksiyon denir.

A1 degeri igin (3.1)-(3.2) smur-deger probleminin y (x, A;) # 0 agikar olmayan bir
¢oziimii oldugunu kabul edelim. Bu durumda \; 6zdeger olarak adlandirilir ve y (z, A1),
(3.1)-(3.2) sinwr-deger probleminin 6zfonksiyonudur.

Lemma 3.1.[32] Farkl 6zdegerlere karsilik gelen y (z, A1) ve y (z, A2) dzfonksiyon-

lar1 ortogonaldir, yani

/y(x,A1>y<a:,A2>da: —0
0
dir.

Ispat.  f(z) ve g (x) siirekli, ikinci mertebeden tiirevleri mevcut fonksiyonlar

olmak iizere

Lf=[f"(z)=q(z) f(z)

olsun. [ Lf.g(x)dx— [ f(x).Lgdz ifadesi hesaplanrsa:
[ [
Lfg(x)dz— [ f(z).Lgdz = [ [f"(z)—q(z)f(2)].9(z)dx
0/ 0/ [



~ [ @

0

(x)dx — /f (z).9" (z)dx

olur. Esitligin sag tarafinda bulunan ifadelere kismi integrasyon uygulanirsa

7T

/Lf.g (z) dz — 7]” (z).Lodz —

0

fwwwmm—/fmmwax

—fm¢@M+/f@nﬂmw

fi(m) g (@) = f(0)g(0) = f(x) g (m) + £ (0) g (0)
WO{fvg}_WW{fvg}

[ Lrg(@)ds =W lsg) = Welfigh+ [ 1 (@) Lods (33)
elde edilir. Burada
Wil f.g) = f(x) g(2)
(@) ¢ (x)

dir. (3.2) smr sartlarmdan

f(0)cosa+ f'(0)sina = 0

g(0)cosa+g (0)sina = 0

elde edilir. Burada birinci denklem ¢ (0), ikinci denklem f (0) ile ¢arpilip ikinci esit-

likten birinci esitlik taraf tarafa ¢ikartilirsa;

f(0)g'(0) = f(0) g (0) =0

bulunur. Bu da Wy {f, g} = 0 olmasi demektir. Benzer gekilde

f(m)cosf+ f'(m)sin3 = 0

g(m)cosB+4¢ (r)sinf = 0

12



olup buradan da
WO{fag} = Wﬂ'{f7g} =0

elde edilir. (3.3) denkleminde f (z) yerine y (z, A1) ve g (x) yerine de y (x, A\2) yazilirsa

™ ™

/Ly (x,\) .y (z, Ae) dx — /y (x,\1) . Ly (z,X2) dz =0

0 0

elde edilir. Ly (x,\1) = Ay ve Ly (x, \y) = A2y oldugundan

/Ly (Z’, )\1) Y (‘Tu )\2) dx — /y(xa)\l)Ly (mv)\Q) dx
0 0

™

= (M=) /y(x,Al) y(z,Xo)dr =0

0

olur. \; # Ay oldugundan

/yxAl (x,\y)dx =0
0

elde edilir ki bu da lemmay ispatlar.

Lemma 3.2. (3.1)-(3.2) sir-deger probleminin 6zdegerleri reeldir.

Ispat. \; = u+ iv kompleks dzdeger olsun. ¢ (z) reel bir fonksiyon ve a, /3 sayilari
da reel oldugundan Ay = A\; = u — iv de 7 (z, \;) 6zfonksiyonuna karsihk gelen bir

ozdeger olur. Lemma 3.1 den

™

/ (A1) 7 (2, M) dx—/|y (2. \)Pdz = 0

0
elde edilir. Buradan y(z,A;) = 0 olur ki bu bir celigkidir. Dolayisiyla 6zdegerler

reeldir.
3.1. Ozdeger ve Ozfonksiyonlar Icin Asimptotik Formiiller

(3.2) smur sartlar

cotaw=—h, cotf=H

olmak {izere,



formunda yazlabilir. (3.1) denkleminin

0 (0,A) =1, ¢ (0,\) =h (3.5)
baglangig sartlarim saglayan ¢oziimii ¢ (z, A) ve aym denklemin

¥ (0,\) =0, P (0,\) =1 (3.6)

baglangig sartlarim saglayan ¢oziimii de v (z, A) olsun.

Lemma 3.1.1. ) = s? olsun. Bu takdirde

T

¢ (x,\) = cos sz + %sin ST + % /sin {s(x—=7)}q(T)p(r,\)dr, (3.7)
U (x,\) = sinssx + é /Sin {s(x—=7)}q(T) (T, dr (3.8)

0
dir.

Ispat. (3.7) denklemini ispatlayalim. ¢ (x, \) (3.1) denklemini sagladigindan (3.7)
denkleminde ¢ (7) ¢ (7, A) ifadesi yerine ¢”(7, A) + A (7, A) yazilabilir. Buradan

x x

/sin {s(z—7)}q(T)o(r,\)dr = /sin {s(x—7)}"(T,\) + Ap (1, ) dr

0 0
T

_ / sin {5 (z — 7)} (7, \)dr

0
T

+52 /Sin {s(x—=7)}o(r,\)dr

0

olur. Esitligin sag tarafinda bulunan ilk integrale iki kez kismi integrasyon uygulanir
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ve (3.5) sartlar yerine yazilirsa
x

/Sin{s(x—T)}q(T)gp(T,)\)dT = sin{s(z—T7)} ¢ (T, \)];

0
x

—l—s/cos {s(x—=7)} ¢ (1,\)dr

0
T

+5° /sin {s(x—=7)} (1, \)dr

0
= —sinsz.¢'(0,A) +scos{s(x —7)} ¢ (7, M),

T

—32/8111{5 (x—=7)} (T, N dr

0
T

—1—32/8111{3 (x—71)}p (T, A\)dr
0
= —hsinsz + sp (z,\) — scos sx

elde edilir. Son egitligin her iki tarafi s e boliinerek
hooo 1
o (x,\) = cos sz + ;smsx+ B /sm{s (x—7)}aq(m)p (T, \)dr
0
elde edilir. Benzer gekilde (3.8) denklemini ispatlayalim. 1 (x, A), (3.1) denklemini
sagladigindan (3.8) denkleminde ¢ (7) ¢ (7, \) ifadesi yerine " (7, \) + A\ (7, \) yazila-
bilir. Buradan

xT T

/sin{s (x—7)}q(M) (T, \)dr = /Sin{S(I—T)}(ZZJ”(T, A)+ A (T, M) dr

0 0
T

_ /sin {5 (x — )} ¢ (7, \)dr

0
T

+5? /sin {s(x—=7)}(r,\)dr

0
elde edilir. Esitligin sag tarafinda bulunan ilk integrale iki kez kismi integrasyon uygu-

lanir ve (3.6) sartlar1 yerine yazilirsa

x

/Sin {s(x—=7)}q(T) Y (1, \)dr = stp (x,\) —sin sz

0

15



elde edilir. Bu esitligin her iki tarafi s’e boliiniirse

X
sinsr 1

_|-g/sin{s(x—T)}Q(T)¢(T>)‘)d7

0

¥, A) =

S

elde edilir.
Lemma 3.1.2. ¢(z) € C(0,7) ve simrh tiireve sahip olmak iizere (3.1)-(3.4)

probleminin 6zdegerleri

sn:n+%+0(i> (3.9)

n2
formundadir.

Ispat. ¢ (x,A\) fonksiyonunun z ’e gore tiirevini hesaplayalim:

h 1
go(x,)\):cossx+—sinsx+—/sin{s(a}—T)}q(T)gp(T,)\)dT
s s
0

oldugundan

o (x,\) = —ssinsx—i—hcossx—l—/cos{s(:c—T)}q(T)go(T,)\)dT

0
xT
= —ssinsz + hcossz + / [cos sx. cos Tq + sinsz.sin sT] q () p (T, A) dT
0
elde edilir. x yerine 7 yazilirsa
¢ (m,\) = —ssinsm + hcos st + / [cos sm. cos Tq + sin sm.sin st q (1) @ (7, \) dT
0

bulunur.
(3.1) denkleminde bulunan ¢ (x) fonksiyonu siirh tiireve sahip olsun. Bu durumda
(3.7) esitligi ve ¢ (z,A)’ min x’e gore tiirevi (3.4) smur sartlarinin ikincisinde yerine

yazilirsa

[ H
A = h+H+/{COSST—f—?SinST}q(T)QO(T,A)dT,

hH [ H
B = T—F/{SinST—i—?}q(T)(p(T,)\)dT
0
olmak tizere
(—s+ B)sinsm + Acossm =0 (3.10)
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elde edilir. A ve B esitliklerinde ¢ (7, \) yerine cos sT + O (%) ifadesi yazilirsa

A = h—{—H—F/{COSST—FgSiHST}{COSST‘*’O(%)}Q(T)CZT
0

- - 1
— h+H+§/q(7)dT+§/q(7)c05257'd7'+0(—),
0 0

S
N 1
B = §/q(7)sm2s7'd7'+0<g).
0

bulunur. Hipotezden ¢ (x) sinirh tiireve sahip oldugundan kismi integrasyon uygula-

narak
[ | o, 1
q(T)cos2stdr = —q(7)sin2s7| — [ —¢ (7)sin2s7dr =0 | -
2s 0 2s s
0 0
roo 1 N 1
q(7)sin2stdr = ——q(7)cos2st| + [ —q (7)cos2stdT =0 | —
2s 0 2s 5
0 0

bulunur. Buradan

A = h+H+h1+O<§>, hy =

o)

elde edilir. Buradan (3.10) denklemi

DN —

] q(7)dr,

h+H+h+0(%)
s+0 ()

tan sm =

olup s, =n + 4, ve tanz in seri agihimindan dolay1

tanms, — M+O<i>

n n?
h+ H
5n — +—+h1+0<i2>
™ n

olur. ¢ =1 (h +H+3 [q(r) dT) olmak iizere son ifade
0

1
n n

formuna doniisiir.
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3.2. Sturm-Liouville Operatérii I¢in Doniisiim Operatorii

E, lineer topolojik uzay ve A, B : E — FE lineer operatorler olmak iizere F; ve
E>; C E kapal alt uzaylar: olsun.

Tanim 3.2.1. X : E; — FEj lineer siirekli operator olmak iizere

1. AX = BA,

2. X! mevcut ve siirekli olmasi sartlarmin saglanmasi halinde X operatoériine A

ve B operatorler ¢ifti i¢in doniigiim operatorii denir.

Lemma 3.2.1. ) 6zdegerine karsilik gelen B operatoriiniin 6zfonksiyonu ¢, € Fy,
yani
By = Ap,
olmak iizere, ayn1 A 6zdegerine karsilik gelen ¢/, = X¢,, A operatoriiniin 6zfonksi-

yonudur. Dolayisiyla
Ay = My
dr.
Ispat. AX = X B oldugundan

Ay = AXpy, = XBp, =X (/\90,\) = AXp) = A\,

olur. Bu da ispati tamamlar.

Lemma 3.2.2. Lineer topolojik E uzayinda A;, As ve As lineer operatorleri ve
E,, Es, E5 kapal alt uzaylar verilmis olsun. A; ve Ay operatorler ¢ifti igin Xy, 4,
doniisiim operatorii

XA1,A2 . EQ — E3
seklinde, A, ve Az operatorler ¢ifti igin X4, 4, doniigiim operatorii ise
XA27A3 . E1 — E2

seklinde tanimlansin. Bu durumda A; ve As operatorler ¢ifti igin X4, 4, doniigiim

operatori,

XALA?) . E1 — E3

seklinde olmak iizere

XA17A3 = XA17A2 XAz,Aa
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formiilii ile ifade edilir.

Ispat. Doniisiim operatoriiniin tanimindan dolay:

A1XA1,A2 - XALAzA?
AQXAZ,A?, = XAZ,A3A3

seklinde olup, ikinci denklemden Ay, = Xy, A3A3X2217 4, €lde edilir. Bu esitlik birinci

denklemde yerine yazilirsa
—1
AlXAhAz = XA17A2XA2,A3A3XA2,A3

veya

AlXAl,A2XA2,A3 = XA17A2XA2,A3A3

elde edilir. Bu da ispat1 tamamlar.
E kompleks degerli 0 < z < oo araliginda siirekli ve birinci mertebeden tiirevleri
siirekli fonksiyonlar uzay1 olsun. ¢ (z), r () 0 < x < oo araliginda kompleks degerli,

siirekli fonksiyonlar olmak {iizere

A=—5+q@), B=——gtr(r)

olsun. Fy, Fy C E ve hy, hy keyfi kompleks sayilar olmak iizere F; deki fonksiyonlar
icin
hif"(0) = ha f (0) (3.11)

sart1, Fy deki fonksiyonlar icin de
haf"(0) = haf (0) (3.12)

sart1 saglansin.

Teorem 3.2.1. X, p: By — B, doniisim operatoriiniin goriintiisii

Xf=f(x)+ / K, 0)f (t) dt (3.13)
0
seklindedir. Burada K(z,t) ¢ekirdegi
2 2
TROD gy k= TEED ) ke (3.14)
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diferensiyel denkleminin

K(z,x) :hQ—hl—l—%/Ox [q(s) —r(s)]ds,

{8—"( — th} =0
t=0

sartlarin saglayan ¢oziim fonksiyonudur.

Ispat. (3.13) bagintis1 z’e gore diferensiyellenirse

T

(X = I a) + Kwa)f @)+ [ Gof(e)d

0

olur. X f(z) € E5 oldugundan (3.17) de z = 0 yazilirsa

(X[m0 = [(0)+K(0,0)f(0)
haf (0) = hif(0)+ K(0,0)f(0)
(he —h1)f(0) = K(0,0)f(0)
K(0,0) = hy—Mhy
elde edilir.

0K

(XN)" = ["(2) + K'(2,2) f (2) + K(2,2) f' (z) + - f@)+

ox |,_

olur. Boylece

AXS) = —(XN)" +al@)(X])

_ @Ka(i,x) ) flz) — dKOE;:,:r)
~K()f' @)~ [ S5 @

0
T

Lalo)f () + / K (2.1) f(t)q () dt

LGN (I))

olur.
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Simdi X (B f)’i hesaplayalim:

X(Bf) = Bf+ / K@ t)(Bf)dt,  (Bf = —f"(x) + r(0)f(x))

T

= —f”(w)+7“($)f($)+/K($,t) [=f"(2) +r(x)f ()] dt

0

esitlikteki integrale kismi integrasyon uygulanirsa;

X(Bf) = —f"x)+r(@)f(x) - K(z,2)f () + K(z,0)f(0)

2 w2 o g T O] o @0
elde edilir. (3.19) ve (3.20) esitlenirse
PRD gk = ZEED k)
[%—f—hlf{]t_o = 0
D) @) (@)

elde edilir.

3.3. Iki Spektruma Gére Ters Sturm-Liouville Problemi
p(x) ve ¢(x), 0 < z < 7 araliginda reel degerli siirekli fonksiyonlar, h ve H reel

sayilar olmak tizere

v+ (A=q(x)y=0, O<z<m (3.21)

y'(0) —hy(0) = 0
y'(m) + Hy(r) = 0, (3.22)
v +(u—p(x)y=0, O<x<m (3.23)

seklindeki iki Sturm-Liouville problemini gizoniine alalim.
(3.21)-(3.22) probleminin 6zdegerleri {\, }, -, ve (3.23)-(3.22) probleminin 6zdeger-
leri de {y,}—olsun. (3.21)-(3.2) probleminin 6zfonksiyonu ¢ (z, A,), (3.23)-(3.22)
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probleminin 6zfonksiyonu da ¢ (z, p,,) olsun. (3.21)-(3.22) probleminin normlagtirict

say1ilari
b= [ e da
0

olacak gekilde 6zdeger ve normlagtirici sayilar: icin asimptotik formiiller

Van = n+%+0<i), (3.24)

n2
s 1

formundadir. Ayrica ¢ (z, A,) dzfonksiyonlar:

h . 1
¢ (2, \) = cos vV Az + 7 sin VAz + O (ﬁ) (3.26)

formundadir. Benzer sekilde (3.23)-(3.22) problemi igin de asimptotik formiiller
ag 1
Vi, = —+0|(—
L, n + - + (n2> )

s 1

Spektral verilere gore ¢ (z) potansiyelinin, A ve H sayilarinin bulunmasmma ters

seklindedir.

Sturm-Liouville problemi denir. Bu spektral veriler Sturm-Liouville operatériiniin
spektrumu, normlastiric sayilari, spektral fonksiyonu, nodal noktalar: olabilir.

q(z) € C'[0,7] reel degerli bir fonksiyon, h ve H "m bilinen reel sayilar oldugunu
kabul edelim. Ayrica (3.21)-(3.22) probleminin spektral karekteristikleri {\,, p,}oo
ler de verilsin. p(x) € C* [0, 7] bilinmeyeniyle (3.23)-(3.22) probleminin {u,,, 05},
farkli spektral karekteristiklerinin verildigini kabul edelim.

Lemma 3.2.1. A > 1 ve 0 <z < 7 olmak iizere

6 ()] + 2@y (3.27)

i
JXM@,A)M(@’@,A)‘ < M

olacak sekilde bir M > 0 sabiti vardir.
ispat.)\ > 1 oldugundan

¢(£,A)zcos@+%sin\/xz+0(%)
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alinabilir. (3.26) esitliginin z’e ve X'ya gore kismi tiirevleri alinirsa

Qﬁ/ (ZC,)\) = ¢:c (Z’,)\) = —\/Xsin \/X;L‘ + h cos \/X.T—F 10) <%)

¢(z,A) = o\ (x,)) =

sm\/_x+ COS\/_JZ
2f

sin vV Az + O <L>

h
2V Vo

(iﬁl(x,)\) = —2\1/Xsin\//_\x—§cosx/xm

%cos AL — %sin\/x$+0 (#)

elde edilir. —1 < cos Vz < 1, =1 < sin Vr < 1, 0 < z < 7 esitsizlikleri gbzoniine
alimarak ve yukarida elde edilen esitlikler (3.27) de yazilarak

& (@, )] + 16 (@, )] /VA < M,

Ao )] +[6' @] = M
elde edilir.

Teorem 3.2.1. Eger A= > /A, |on — p,| + |11, — An| yeterince kiigiik ise
n=0

max [p(r) —q ()] < C.A

o<zx<mw

dir. Burada C; h, H ve q(x) ’e bagh pozitif bir sabittir.

ispat .

T, ) (S, o, z,\n) ¢ (8, A
Z{ ) D (85 ) (@, A0) @ (8, An)

3.28
On Pn (3:28)

=0

olmak iizere F'(z, s) fonksiyonu 0 < x,s < 7 de siirekli, iki defa diferensiyellenebilirdir.

K(x,s)—l—/ K(z,t)F(t,s)dt + F(x,s) =0, 0<s<z<m (3.29)
0

esas integral denklemi ikinci tiir Volterra integral denklemidir ve her sabit x i¢in bir tek
siirekli K (x,s) ¢oziimiine sahiptir. Ayrica K(x,s) ¢ozimii 0 < s < x < 7 araliginda

ikinci mertebeden siirekli diferensiyellenebilirdir. Ayrica
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Ky —p(o) K = Ky — q () K, 0<z<m, (3.30)

diferensiyel denkleminin

lﬂ@@z%l%ﬂ@—ﬂMﬁ, 0<z<m (3.31)
K (z,0) — hK(z,0) =0, 0<z<m (3.32)

siur gartlarimi saglayan bir tek K (x, s) ¢oziim fonksiyonu vardir[58].

(3.29) integral denklemi ardigik yaklagimlar yontemiyle ¢ozelim. Bu denklemde
F(z, s) fonksiyonu bilinen bir fonksiyon olup K (z,s) ¢oziimii bulunacaktir.

Once F(s,t) i ele alahm ve asagidaki gibi F((s,t;2) (n = 1,2,3,...) fonksiyon-

larim olugturalim:

FO(s,t:2) = F(s,t), (3.33)
F(”“)(s,t;x) = /F(s,u)F(”)(u,t;x)du, n>1
0

/)/|F@0Fwﬁ<1 (3.34)
o Jo
olmak iizere K (x,s) ¢oziimii
K(z,s) = Z (=1)" F™ (z,5) 0<s<z<nm (3.35)
n=1

dir. (3.31) esitliginin 2’e gore diferensiyeli almarak

(4(2) ~ p(2)) =~ K () (3.36)

!
2
bulunur. (3.36) ifadesi (3.35) de yerine yazilirsa

S -pl) =~ (Z (1" P <x,z;x>)

n=1
= iF(x x)+ i(—l)"iF(”ﬂ)(x T;x) (3.37)
de — dx T

elde edilir. L F("*)(z, z; ) ’i hesaplayalm:
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d_F(n+1) (.I', z; I’) _ {F (n+1) F(n+l) + F(n-‘rl)}
xr

€T
T

i
= FS (u,t;x)du

0

—i—/ Fy(u, t)F™ (s, u; z)du + F"Y (s, t; 1)

S=T
t=x

= 2/ Ey(z,u)F™ (z,u; x du—i—ZFk) z, ;) FH =R (g 2 )
0

k=1

olup bu esitlik (3.37) de yerine yazilirsa

34 —p() = SFn)+2 [ Aok

+ Z(—l)” Z F®) (g, 2;2) FOHR) (1 20 )
=1 k=1

d 5 ’
= d—F( x) — K*(x, x)—|—2/0 Fo(z,u)K(x,u)du

elde edilir.

1
Ag = 3 ilgf P

alalim.

™

p,=%+0 (n—lz) asimptotik formiiliinden Ay 1 pozitif oldugu bulunur.

A=Y [Valow = pul + ity =Ml < 4g
n=0

olsun. Bu taktirde her bir n i¢in

Pn Z 2A0> On Z AO

elde edilir.

F(z,5) =Y {f/ﬁ(x,unif(s,un) B ¢(m,)\n;¢(5,)\n)}

egitliginin sag tarafi x ’ e gore diferensiyellenirse

n=0

i [ T ) G (s 10) @ (, AnW(S’An)}

n=0 On IOT'Z
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olur. Bu ifadeye % ifadesi eklenip cikarilirsa ve gerekli diizenlemeler yapilirsa

Fias) = 3 |Hetaolm)  Sn) ol

o On Pn
— [ (2, 11,) D (5,1,) ¢ (2, 00) 6 (5, M)
N ;{ o - Pn
VP65 M) 9 M) 65, M)
Onp On

=0 On  Pn
+0—1n (8 (@06 (s,0) + 6 (2,06 (5, 1)) dA}

elde edilir. Buradan

( L) 6 5 ) (50

1 [ (F e @ ben)a)

=0

+
n=0

olup (3.39), (3.40) ve lemma 3.2.1 den

[, )] < O3 [V halow = pal + = Mol | = €4

n=0
elde edilir. Buradan da

d
%F((L‘,fﬂ)

<2C'A (3.41)

olur. Benzer sekilde
Flz.s) = i [fb(x,unzcb(s,un) ~ cb(:c,/\nﬁ))qs(s,%)]
n=0 n n

o(z, )\n)(;S $,An)

olup bu esitlige ) ifadesi eklenip cikarilirsa

Flr,s) = i (£-LYowasir+ L [“6ensen ]
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olup buradan

o0

Fz,s)] < >

n=0
o0

+

(Ui —> 6 (2, M) 6 (5, M)

n

Ui/ (o) 95 ) 0N
_ i (%ﬂ—piﬁ(x,mcﬁ(s,m

n=0
oo

2o

n=0

L[ (60060 + 6600 ) dA‘

My —

Flo,s)| <3 [low—pul +
n=0

elde edilir. Burada C" ve C” sadece q(x), h ve H ’a bagh sabitlerdir.
0 <z < 7 oldugundan (3.33) esitliginden

/\n] <C"A (3.42)

‘F(z)(s,t;x)‘ = / F(s,u)F(l) (u,t;z) du S/ (C"A)2du§ (C”A)Qﬂ'
0 0
|FO(s,t;2)] = / F(s,u)F® (u, t;2) du]| < / (C"A)* du < (C"A)* x*
0 0
‘F(")(S,t;l’)‘ = /F(s,u)F("_l) (u,t;x) du S/ (C"A)" du
0 0
1
< —(C"An)" (3.43)
bulunur.

Eger mC" A yeteri kadar kiigiik ise yani 7C”A < 3 ise, bu durumda (3.43) esit-
sizliginden

[e.e]

Z(—l) (x,s;)

n=1

olur. A < min { Ay, (27TC”)_1} olmak tizere (3.41), (3.42) ve (3.44) esitsizlikleri (3.38)

|K (z,5)| = <Z (rC"A)" < 20" A (3.44)

denkleminde yerine yazilirsa

p(@) =g @) <3 [Vl = pul + I, = Al

elde edelir.
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4. DIRAC OPERATORU
4.1. Bir Boyutlu Dirac Sistemi
pir (z), (i,k =1,2), [0, 7] araliginda tanimh ve siirekli reel degerli fonksiyonlar

olmak iizere

P11 (JU) P12 (55)

L= ;D2 (z) = pa1 (@) (4.1)

pa1 (z) paa (7)

bir matris operatorii olsun. y (z) iki bilegenli bir vektor fonksiyonu

T 0 1 1 0
A ()  p- .
Y () -1 0 01
olmak {izere
BL L)~ A1)y =0 (4.2)
dx y= '

denklemi iki tane birinci mertebeden adi diferensiyel denklemden olusan

dyo

dr +pu @)y +pi2(T)ye = An (4.2")
d
_% +po1 (@) y1 +p22 ()Y = Ayo

denklem sistemine denktir.

Bu durumda V' (x) — potansiyel fonksiyon, m— zerrecigin kiitlesi olacak bicimde
P12 () = par () = 0, p11 (x) = V() +m ve p11 (x) = V (x) — m olurken relavistik
kuantum teorisinde (4.2) sistemi bir boyutlu stasyoner Dirac sistemi olarak bilinmek-
tedir.

2-boyutlu uzayin her diizgiin ortogonal doniigiimii

cosp (z) —sing (x)
sinp(x) cosy(x)

H (z) =

seklinde bir matris ile tamimlanir[32]. Ayrica



BH =HB

oldugu kolayca goriiliir. Gergekten

0 1 cosp(z) —sineg(x
o o) —sing (@
-1 0 sing (z) cose (z)
sinp(x) cosp(x)
—cosp(x) sinp(x)
ve
cosp(z) —sing(x 0 1
v [cosele) —sme(
sing (z) cose (z) -1 0

sinp(x) cosp(x)
—cosp (r) sing(x)
olup BH = HB dir.
y = Hz olacak sekilde (4.2) denkleminin her iki tarafim soldan H~! ile garparsak,

d
H‘lB% (H2) + H'LHz = \H 'Hz

veya

B% + H_lBiH +H'LH ) 2= )2 (4.3)
dx dx

elde ederiz.

d
Q=H'B—H+H 'LH
dx

olmak iizere () matrisini hesaplayalim. Bu taktirde

cosp(x) sing(z)

—sinp (z) cosyp ()
IR Hy(x)  —Hia(x)
det H (z) —Hy (z)  Hiyi(x)
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d —¢ () sing (z) = (x) cos ¢ (x)

du ¢ (z)cosp(x) —¢' (z)sing (z)
olmak {izere
gty cosp (z) sing(z) 0 1 —¢' (z)sinp (z) —¢'(x)cosp(z)
du —sing (z) cosp(z) -10 ¢ (z)cosp(x) —¢' (z)sing (z)
_ [ —sing(z)  cosp(z) —¢' (¥)sinp (z) —¢' (z) cosp ()
—cosp(z) —sinp(z) ¢ (x)cosp(x) —¢ (x)sing (z)
_ [ #@) 0
0 ¢ ()
e cosp () sing (z) pu(z) piz (@) cosp(x) —sing(z)
—singp (z) cosp(z) pa1 (z) poa () sinp () cosep ()
cos p () pu1 (7) +sing () par () cos g () prz () + sinp () pa2 (v)

—sin (z) p11 (x) + cos ¢ (z) pa (m) —sin ¢ (z) p1a (x) + cos ¢ (z) pag ()
cosp (r) —sing ()
sing () cosp(x)

P11 €082 0 + P12 sin 20 + pay sin? ©  Ppr2cos2p + % (p22 — p11) sin 2¢p
P12€os2¢ + 3 (P22 — p11)sin2¢  pyy 8in® @ — pro sin 2 + pag cos®

elde ederiz. Son iki esitlikten,

qi1 q12
Q =
21 422
B ¢’ () + pu1 cos® p + pra sin 2 + pag sin® ¢ P12.€08 20 + 5 (P22 — pu1) sin 2
P12c082¢ + 1 (pa2 — p11) sin 2 ¢ () 4 p11sin® ¢ — prasin 2 + pay cos? ¢

elde ederiz. g2 (x) = 0 olmak iizere ¢ (z) fonksiyonunu segelim. Bu taktirde

P12 cos 2p (x) + % {pa2 () — p11 (z)} sin2¢ () =0
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dir. Buradan

= 1a]rc an 2p12 ()
4 (:E) 2 ‘ P11 (90) — D22 (x)

elde edilir. @ (z) matrisinin goriintiisii

q11 () 0 p(x) 0
0 Go2 () 0 r(z)

seklinde olur. Buna gore (4.3) denklemi,

Q(z) =

0 1 x 0
d [ P@ c= (4.4)

~10 ) dv 0 r(x)

seklinde yazilabilir. Bu denkleme Dirac denkleminin I. kanonik formu denir.

Simdi 12Q () = qu1 (z) + g22 (x) = 0 olmak tizere bir ¢ (x) fonksiyonu segelim. Yani

2¢" (z) + p11 (@) + paa (z) =0

dir. Buradan

o)== [ (b () +p ()} iz

elde edilir. Buna gore (4.3) denklemini

0 1 d,z+ p(x) q(x)

= = 4.
I z= Az (4.5)

q(r) —p(z)

seklinde yazabiliriz. Bu denkleme Dirac denkleminin II. kanonik formu denir. (4.4) ve
(4.5) denklemlerine (4.2) sisteminin kanonik formlar1 da denir. (4.2) denklem sistem-
inin spektral teorisinin cesitli sorularimi incelerken bu veya diger kanonik formlardan
faydalanmak kolaylik saglar. Ornegin, 6zdegerlerin ve 6zvektor fonksiyonlarinin asimp-
totik davranmigi aragtirilirken ve keyfi vektor fonksiyonunun (0 ve 7 noktalarinda homo-
jen siur gsartlar saglandiginda) (4.2) denklem sisteminin 6zvektor fonksiyonlarina gore

acilimi incelenirken (4.4) kanonik denkleminden faydalanmak kolaylik saglar. Sonsuz
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aralikta verilmig (4.2) denklem sisteminin 6zdegerlerinin asimptotik davranigi ve ters
problem incelenirken de (4.5) kanonik denklemi kolaylik saglar.
(4.4) kanonik denklem sistemi i¢in p(x) ve r(x), [0, 7] arahginda reel degerli ve

siirekli fonksiyonlar olmak tizere

Yo+ {p(@) = AMyi=0 , y—{r(@)-Ayp=0 (4.6)
Y2 (0)cosa + 1 (0)sinaw = 0 (4.7)
Yo (M) cosa+ 1y (m)sina =0 (4.8)

sinirdeger problemini gézoniine alalim. Herhangi bir A\; degeri i¢cin bu problemin sifir-

. yi (@A) o 5o
dan farkh ¢oztimii y (z, A1) = olsun. Bu durumda \;’e 6zdeger, buna

Y2 (ZE ) )‘1)
kargilik gelen y (z, A1) * e de 6zvektor fonksiyonu denir.

Lemma 4.1.1. )\; # )\ olmak iizere \; ve \y 6zdegerlerine karsilik gelen y (x, A1)

ve z (x, Ag) 0zvektor fonksiyonlar: ortogonaldir, yani,

/{yl (2, \) 21 (2, X2) +y2 (2, A1) 22 (2, A2) }dx =0

dir.
Ispat: y (2, \1) ve z (2, \) 6zvektor fonksiyonlar: (4.6) sisteminin ¢oziimleri oldugun-

dan ,

— A}y (2, A
— M}ty (z, M
(
(

(, A1) )

vi (2 ) = {r (2 )
(2, Ao) X} (z,hg) = 0
(7, 20) = )

()
()
()
{r(z) = Ao} 22 (2, Mo

dir. Bu denklemleri sirasi ile z; (z, A2), —29 (2, A2), —y1 (2, A1) ve yo (z, A1) ile carpar

ve sonugclar1 toplarsak,

M) 22 2 h0) =3 (0, 0) 21 (2 )}
= ()\1 — )\2) {y1 (ZL‘, )\1) z1 (iL‘, /\2) + Y2 (ZE, )\1) Z9 (ZL‘, )\2)} =
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elde ederiz. Bu son esitligi x’e gore 0 'dan 7’ ye integrallersek

v = o) / (1 (2 M) 21 (2 h0) + 3 (A1) 22 (2, Aa)} de
= {on (@, A1) 22 (2, X2) — w2 (2, A1) 21 (2, A2) }g

bulunur. Buradan (A; — A3) # 0 oldugundan

/{yl (2, \) 21 (2, Ag) +y2 (2, A1) 22 (2, A2) }dx =0

veya
™

/yT (,\) 2z (x, A2)dx =0
0
olur. Bu da ispati tamamlar.

Lemma 4.1.2. (4.6)-(4.8) siurdeger probleminin 6zdegerleri reeldir.

Ispat: Aksini varsayalim. Yani A\; = u + iv kompleks 6zdeger olsun. p (z) ve r (z)
reel degerli fonksiyonlar ve «, 3 sayilar1 reel oldugundan Dirac operatoriiniin genel
denkleminde eslenigi alinirsa, Ay = A; = u — iv sayis1 da bir zdegerdir. Ay ’ ye karsiik

gelen 7 (z, Ag) 6zvektor fonksiyonudur. Bu taktirde lemma 4.1.1 den dolay:

(A=) /{y1 (2, ) T (2, Aa) + 2 (2, M) T (2, \a) } dx = 0

(A=) / [ (A2 + Jyo (2 M) do = 0

olur. A # X oldugundan y; (z, A1) = 0 ve ya (x, A1) = 0 olurki bu 6zvektor fonksiyon-
larinin sifir olmamasi gergegi ile geligir. O halde 6zdegerler kompleks olamaz. Boylece

ispat tamamlanmig olur.
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4.2. Kanonik Dirac Operatorii I¢in Matris Doniisiim Operatdrii
pi(x) ver;(z), (i =1,2), her sonlu aralikta (0 < 2 < b < 00) integrallenebilir reel

degerli fonksiyonlar olmak iizere

W (m@ 2 Y (0 e (mw o
L = _ “
—% r1 () —1 0 ) dx 0 r1 ()
d
- B—_ 4.
4o (4.9)
A, = pa () d% _ 0 1 i+ p2(z) O
—% o () 1 0 ) dzx 0 o ()
d
= B+ () (4.10)

operatorlerini gézoniine alalim. Keyfi sonlu reel hy reel sayisi icin
f2 (0) —hif1 (0) =0 (4~11)
smir gartini saglayan, [0, b) araliginda taniml, siirekli, diferensiyellenebilen

fi(z)
f2 (z)

vektor fonksiyonlarinin ciimlesi F; olsun. Keyfi sonlu reel hy sayisi icin

f(z) =

92 (0) — hg1 (0) =0 (4.12)
siur gartini saglayan, [0, b) araliginda taniml, siirekli, diferensiyellenebilen

g1 ()
g2 ()

g(z)=

vektor fonksiyonlarinin ciimlesi F5 olsun. X operatér matrisi, f (z) € E} igin

T

XU@HZRWf@+/K@@ﬂWB (4.13)

0
seklinde ifade edilir. Burada R (z) ve K(z,s) iki sonlu boyutlu veya 2x2 boyutlu kare

matrislerdir.

34



(4.9) ve (4.13) den,

A XA{f(x)} = BR'(z)f(x)+ BR(z) f (z)
+@Q1 (z) R(z) f (z) + BK(z,2)f (z)

+ [{BR(es) + Q@) K o)} fs)ds (414)
0
dir. Diger taraftan (4.10) ve (4.13) den dolay1

AX{f (@)} = R(x)Bf (1) + R(x) Qs (x) f ()
n / K(z,5) {BS' (3) + Qa2 (5) f(s)} ds

dir. Son denklemde kismi integrasyondan faydalanilarak

XA {f' ()} = R(z)Bf' (z)+ R(z) Q2 () f (2)
+K(z,2)Bf () — K(x,0)Bf (0)

+ / {K(x,8)Q2(s) — K.(x,s)B} f(s)ds (4.15)

elde edilir. f(z), F; uzaymnda keyfi vektor fonksiyonu oldugu igin A; X = XA, den
dolay1r f (x) ve f'(x) in katsayilar1 ve (4.14), (4.15) nin integral altindaki ifadelerinin

esit olmasi gerekir. Bu sebeple [’ (z) lerin katsayilar i¢in
BR(z) =R(x)B (4.16)

elde edilir. Eger

seklinde alimirsa (4.16) dan

oldugundan



bulunur, yani R (z) matrisinin goriintiisii

R(x)( () 6(33)) (4.17)

olur.
Simdi « (z) ve § () fonksiyonlarim hesaplayalim. Bunun igin (4.14) ve (4.15) de
f () in katsayilar esitlenirse R (x) matrisinin tanimlanmas: igin agagidaki denklem

elde edilir:

BR'(z) + Q1 (z) R (z) — R (2) @2 () = K(z,2)B — BK(z, z). (4.18)

K(z,s) = Ki(x,s) Kia(z,s)
; Ko (x,s) Ka(z,s)

olmak iizere @1 (x), Q2 (z), R(x) ve B matrislerinin goriintiilerinden faydalamlarak

(4.18) denklemi
—B (@) o@) ) m@al@) p(@)8@)
—a'(z) =B (z) —ri(x) B (x) r(z)a(r)

|
R
|

S
N~
-~ ]
N—
S~—

= 2
= =
=03
NN
]| 5
S—" N
S ™
| '
S~—
N—————

B Ko (z,2)  Kyp(z, )
—Ku(z,z) —Ki(z,2)

—0' (@) + [p1 (z) —p2 ()] a () ' () + [p1 (2) — 72 (2)] B ()
(@) + [p2 (2) =1 ()] B (x) =B (2) + [r1 (2) =72 (2)] ()
( 2

( [Kia(z,x) + Koy (x, )] Ku(%%; — Ka(z, ) ) (4.19)

veya

—o (z) +

Kii(x,x) — Koo(z,x)  Kya(x, ) + Koy (2, x)

seklinde yazilabilir. Burada sagdaki matrisin esas kosegen elemanlarinin sadece igaret-
leri farkhdir, diger kosegen iizerinde bulunan elemanlar ise egittir. Simdi matrislerin

egitliklerinden dolayi, bu ¢zellik sol taraftaki matris i¢inde saglanmalidir. Bu sebeple
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(4.19) denkleminden

o (@) +[p(z) —r2 ()] B(z) = —a' () +[p2(2) =1 (2)] B (w)
B (x) = [pr(2) =p2 ()] a(x) = —=F'(2) +[r1(z) =72 ()] o ()

bulunur, yani

20/ (1) +4() 8 () = 0 w0
=26 (2) +q(z)a(z) =0
dir. Burada
q(x) =p1(z) —p2 () +71 () — 12 (2) (4.21)

dir. (4.20) sisteminde bulunan birinci esitlik a () ile ikinci esitlik de 5 (x) ile garpilip,birinciden
ikinci gikartilarak

2a (z) o (x) + 28 (2) B (z) =0,
yani

(a® () + £ (x)) =0

elde edilir. Buradan

o (z) + 5% (z) = ® (0) + 52 (0) (4.22)

bulunur.
[0)=1, f(0)=mnh (4.23)
sartlar1 saglanmak iizere f(x) = fi(®) vektor fonksiyonu siirekli, diferensiyel-

x
lenebilir olsun. Bu takdirde f (z) in (fl(l)) simir kosulunu sagladig1 aciktir ve bu sebe-
ple f(x) € E; dir. Yine kabul edelim ki, g (z) = & Ex; vektor fonksiyonu, Esy
g2 (x

uzaymin elemani, dolayisiyla (4.12) sir garti saglanacak sekilde

XA{f (@)} =g(x) (4.24)

olsun. Bu taktirde z = 0 igin (4.24) esitliginden ve X matris operatoriiniin tammindan

dolay1, yani (4.13) ve (4.17) bagintilarina gore

XA{S(0)} = g(0) = R(0)f(0)
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veya

91(0) = a(0)f1(0) + 5(0)f2(0)
92(0) = —=p(0)£1(0) + (0) £2(0)
elde edilir. Bu denklemlerden (4.12) sinir sart1 ve (4.23) sartlari gézoniine alinmak

tizere son esitliklerin birincisi hy sayisi ile carpilip, daha sonra ikinciden g¢ikarilirsa

hi — hs

BO) = e ©
elde edilir.
a(0) =1 (4.25)
alinirsa,
5(0) = fl%hlhl; (4.26)
olur. Buna gore, 9 9
02 (0) 42 (0) = LHLOEI) s (420

(14 hihy)?
olur. Simdi (4.22), (4.25)-(4.27) esitliklerinden faydalanarak (4.20) sistemini ¢tzelim.
Eger,
a(x) = xsink (z), B (z) = cosk (z) (4.27)

olarak alinirsa,
o (z) = K'(z)x cosk (x), B (z) = =K' (z)sink (z)

bulunur. Bu degerler (4.20) de yerine yazilip elde edilen denklemlerden birincisi cos k (z)

ile ikincisi de sin k (x) ile ¢arpilip, elde edilen denklemler toplanirsa

x

1 1
k(x)= —§/q(z) dz+arcsin;
0

bulunur. Bu degerler (4.27") de yerine yazlirsa, ¢ (2) fonksiyonu (4.21) formiilii, x sayist

ise (4.26) formiilii ile tamimlanacak sekilde « () ve 3 (x) fonksiyonlar: igin

T

a(x) = xsin —% /q (2) dz + arcsin 1 (4.28)
g X
1] 1

B (x) = x cos ~3 /q (2) dz + arcsin N (4.29)

0
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ifadeleri bulunur. Simdi (4.14) ve (4.15) de integral altindaki ifadeler esitlenirse, K (z, s)

matris ¢ekirdegi icin,
Ky (z,s)B+ BK, (x,s) = K(x,5)Q2(s) — Q1 (s) K(z,s) (4.30)

matris denklemi veya

s o\ (o) (o 1) o
Ofn iz -1 0 -1 0 S SX
B (K11($,S) Klz(I,S)) (p2(3> 0 )
B Ko (x,s) Kooz, s) 0 m(s)
[ p (x) 0 Kii(x,s) Kia(z,s)
0 () Ko (x,s) Kaa(z,s)

__0Kio + OKoq 0K11 + OKoo

_ Js or Js ox
_OKo _ OKu1 O0Ka1 _ 0Kio
ds oz 0s oz

(p2(s) = p1 (@) Kua(x,8) (r2(s) — p1 (7)) Kia(z, 5)
(p2(s) =71 (2)) Kar(w,5) (r2(s) — 71 (7)) Kaa(w, s)

\
K2 | OKa — (py (s) — p1 (7)) Kua(w, 8)

p1(2)
2 4 92 — (1) (5) — py (x)) Kna(2, )
)

(4.30)
— 282 _ 0K — (p, (s) — 1y (2)) Ko (2, )
0821 — 0812 — (ry (s) — 11 (7)) Kaa(w, )

denklemler sistemi elde edilir. Sonug olarak (4.15) ifadesinde f(0) 1 igeren terim sifira

esit olur. Boylece,

K(z,0)Bf(0) =0

yani,

olur. Bu ise

Kia(2,0) f1(0) = Ku(z,0)f2(0)
Ky (z,0)f1(0) = Kau(z,0)f2(0)
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denklemler sistemine egdegerdir. (4.11) smir kogulundan dolay1
Ki2(x,0) = hi Ky1(x,0), Koo (x,0) = hy K2 (x,0) (4.31)
elde edilir. ¢ (x) ve ¢ (z) keyfi diferensiyellenebilir siirekli fonksiyonlar olacak bigimde,
Ki1(x,0) = ¢ (x), Ky (x,0) = (2) (4.32)

ele alinirsa (4.31) ve (4.32) sartlarl, K(z,s) matris ¢ekirdegi igin
x) hip(x
Ko 8)l, = | 717 M2 (4.33)
v () hit ()
sartin1 tammlar. Burada (4.33) sart1 (4.30) denklemi ile birlikte Cauchy problemini

tanimlar ve bu problem ¢oziilebilirdir[57].

Benzer sekilde Dirac operatoriiniin II. Kanonik formu icin
A - p1(2) &+
L =
i ta(@)  —pi(z)

_ 0 1 i N m(z) ¢ (x)
—1 0 | do ¢ () —p1(2)
d

= B% + Q1 ()

N ( P (2) d%+qz<x>)

—% +qa(r)  —p2 ()

_ 0 1 i+ pe ()  qo(x)
-1 0 dz QZ(I') —DP21 (JU)

d

olmak tizere (4.46) denklemini
(—ff’ (r) o (@) )+ (pl (1) (z) — g1 () B(x) pi (@)
—(2) —F ()
(p2<x>a<x>+q2<x>ﬁ<x> 0 (2)a (2) - pa (2) B () )
@ BE) —a@BE) - p@a)
) (Klg(x,x) Koz, 2) ) _( Foi(z,2)  Ko(x, 1) )

—KH(I, ZE) —Klg(x, I)
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veya,

(—ﬁ'(xm L (@) = pa (@) (2) — 01 (2) + g2 (2)] B ()
o (@) — @ (@) @ () + [ (2) + p» (2)] B ()

o (2) + a1 (2) — g2 (2)] @ (2) + [n ()+p2(-’75)]5())

—3 (1) + [ (1) = p1 ()] @ () + [ (2) + @2 (2)] B ()

B ( [Ka(z,7) + Koi(2,2)] Kui(@, @) — Kol @) )
Ky (z,2) — Koo(z,2) Kio(z,x) + Koy (2, 2)
seklinde yazilir. Burada sagdaki matrisin esas kogegen elemanlarimin sadece igaret-
leri farklhidir, diger kosegen iizerinde bulunan elemanlar ise egittir. Simdi matrislerin

egitliklerinden dolay1, bu 6zellik sol taraftaki matris icinde saglanmalidir. Bu sebeple

o (z) + g1 (2) — @2 (2)] @ () + [p1 (7) + pa (2)] B (2)
= —d () + ¢ () — @ (v)] () + [p1 (z) + p2 ()] B (x)

B (@) = [p1 (z) = p2 ()] o (2) + [a1 () + g2 ()] B ()
= =B (@) +[p2(2) = p1 (@] (2) + 1 (z) + g2 (2)] B ()

bulunur, yani
20/ (x) = 0, 28" (x) =0

dir. Buradan ¢; ve ¢y birer sabit olmak iizere

a(z)=c, Ba)=c

bulunur. Ayrica (4.30) denklemi

s (0 1) (0

X AT
. Kll('xa 8) K12<x7 S) D2 (S) q2 (S)
Ko (z,8) Kxn(z,s) %2 (s) —p2(s)

B m(z) ¢ (x) Kii(z,s) Kis(z,s)
¢ () —pi(2) Koi(z,5) Kx(,s)

0K11  9Ki2
or oxr
0Ko1  9Koa



veya

__0Kjs + 5K21 0Ky + 3K22

Js ox Js ox
__0Koo  0Kji1 0Ko1 _ 0Kio
0s ox 0s ox

(p2 (z) — p1 (7)) Kia(, 8) + g2 (8) Kiz(, s) — q1 () Kaa(x, 5)
—q1 (7) K1(z,8) + pa (8) Ka1(, 8) + (p1 () + p2 (5)) Kaa(w, 5)

%2 (s) Kz, s) — (p1 () + p2 (2)) Kra(z, s) — @1 (2) Kaa(z, 5)
—q1 (2) Ki2(z, 8) + g2 (s) Ka1 (2, 8) + (p1 (2) + p2 (5)) Kaa2(, )
seklindedir. Bu durumda agagidaki

3\

—O51 4 202 = (py (2) — p1 (@) Kui(,8) + 2 (5) Ko, 8) — ¢ (2) Kaa(, 5)
O + 952 = g5 (s) Ku(,5) — (1 () +p2 (2)) Kia(2, 5) — qu () Kaa(2, 5)
—% — 81 = —q (2) Ku1(x, 8) + pa (5) Ko (2, 8) + (1 (2) +pa () Kao(, 5)
o — % = —q1 (7) K12(7, 5) + g2 (5) Ka1 (7, 5) + (p1 (%) + p2 (5)) Kaa(, 5)

(4.33)
denklemler sistemi elde edilir. burada (4.33) sart1 (4.34) denklemi ile birlikte bir Cauchy

problemini tanmimlar ve bu problem c¢oziilebilirdir.

4.3. II. Kanonik Formda Dirac Operatorii icin Ters Problem
pi(x) ve ¢; (x) (i =1,2) , [0, 7] arahiginda stirekli fonksiyonlar olacak bigimde

Ql (CL‘) _ b1 (117) q1 (ZK) 7 Q2 (1‘) _ D2 (ZL’) qo (x)
7) @2 (z) —p2 (o)

olsun.

By + Qi (v)y = My, (4.34)
Y2 (0) = hy (0) = 0

Y2 (1) + Hy, () = 0
By +Qx(v)y = py, (4.35)
y2(0) = hy1 (0) = 0

y2 () + Hyy (1) = 0
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problemlerini ele alalim. (4.35) probleminin 6zdegerleri {\,} , (4.36) probleminin 6zdeger-
leri ise {u,, } olarak verilsin. (4.35)’in normlagtirici sayilari, ¢oziim fonksiyonu ¢ (z, A\,,) =
T, An
o1 ) olmak tizere
) (I ’ /\n)

™

ay = / [go? (z, \n) + 03 (, )\n)} dx

#1 (l’, /J’n>

seklindedir.(4.36)’in normlastiric sayilar ise ¢ziim fonksiyonu ¢ (z, i,,) =
P2 ('1’” :un>

olmak {izere
i

by — / 02 (2 1) + 2 (2, )] v

dir. Ayrica

olmak iizere

K(m,s)—I—F(x,s)—l—/K(x,t)F(t,s)dt:0 0<s<z<m)

0
esas integral denklemi saglayan bir tek. K(z,t) matris fonksiyonu vardir. K(x,t)

fonksiyonu

0K 0K
B% + Qs (z) K(x,8) = —gB + Q1 (s) K(x,s)

diferensiyel denklemini ve

BK(z,z) — K(z,z)B = Q2(z)— Q1 () (4.37)

Ky (2,0) = Kui(r,0)=0
kosullarim saglar. Ayrica ¢ (z, \,,) 6zfonksiyonu i¢in asimptotik formiil
1
pr(z,A) = cos{ir—a}+0 <X> (4.38)
1
ooz, A) = sin{dz—a}+0 (X)

seklindedir.
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Teorem 4.4.1. Eger A = > [|b, — an| + |11, — Anl|] yeterince kiigiik ise
n=0

max [py (¢) = pi (1) < CA
max |g () —q1 (z)] < C".A

0<z<mw
dir. Burada C" > 0 ve C” > 0 sabitlerdir.
ispat.

K(m,s)—I—F(x,s)—l—/K(x,t)F(t,s)dt:0 (0<s<z<m)

integral denklemini gozoniine alalm. Burada F'(x, s) bilinen fonksiyondur. Bu de-
nklemi ¢ozelim:

FWY (z,5) = F(x, s)

olmak tizere
X

F™ (s, t;2) = /F(S,U)F(n) (u,t;x)du  n > 1. (4.39)
0
itere fonksiyonlarini yazilabilir. Buradan K (z, s) matris fonksiyonu

K (s,t;x) => (=1)"F™ (s,8;z) (4.40)
n=1
dir. F(z,s) fonksiyonu
=~ [1 i 1 T
F(z,s) = ) 5P (@) @7 (5 10) = —@ (2, An) 7 (5, M)

[e.e]

1| el ) 1| ez, An)
= — (s, 1, o(8, 1) | —— (4.41)
20 | oyt o) eato) | =5 Pr( M)

L els A eals ) |

S8} 901(I’Hn)901(57p‘n) _ 901(I,)\n)<,01(8,)\n) 901($7/J‘77,)<p2(37ﬂn) _ 801($,)\n)@2(3,)\n)

_ E n an n an
502(:”’/’1‘71)501 (87/"%) _ 502(:”’)‘71)501(37)‘”) @2(1'7/"'n)502(37#n) _ 902(1'7)‘71)@2 (S’)‘n)

n=-00 bn, an bn Qan

olur.
FH(ZE, S) FH(ZE, S)

Fo(x,s) Fa(z,s)
alahm. (4.42) den

Fiy(z,s) = i {‘Pl(x,/inzfﬂsaﬂn) B (pl(x,)\na)fl(37 An)

n=—oo
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o0 r

SO] .CC, n SOQ S, n SO] l‘, )\n ()02 S, )\’I’L
> -SOQ .CC, SO] S, SOQ l‘, )\n (p] S )\n ]

yazilir. fi1(z, s) ’i hesaplayalim. (4.43) un sag tarafina £.&#)21(m) i degi cklenip

an

cikarilirsa:

Fll(x,S) — i |:901($,/Ln)g01(8,un) _ 901(1’,/1”)@1(57“”)

b a
N——o00 n n

+
Qn Qn

©1(Ts 1) 01(5, 1) wl(wakn)wl(sakn)]

- > (i - a—i) P1(Ts b )1 (8, 1) + a—ln (P1(@, 1) P1(8s 1) — ©1(2, An) (5, An))

= i (an ~ b") ©1(T5 1) 018, ) + ai 7(%(% A)p1(s, ) dA

anbn n

L n

olup buradan

oo

+ Y ai/(gﬁ(:c,x))‘cm

n
n=—oo
n

Pl < 3 |(250) e

anby,

n=—oo

elde edilir. (4.39) esitligi, —1 < cos <1, —1 <sin < 1 ve 0 < z < 7 oldugu gdzoniine

alimirsa
> b '
an_ n
Fuleo)l < 3 ‘( — )cl + [ e

n=—oo An
o0 Mn

< S b ael+ /CQdA
=T A

|Fii(z,z)] < C4 Z {1bn = an| + |, — Anl}

n=—oo

elde edilir. A = Z {6 — an| + |1, — An|} denirse

n=—oo
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olur. (4.40) den

Fglﬂ) (s,t;7) = /Fll(S,U)Fl(?) (u,t;x) du
0
olup buradan

x

F(Q) (s,t;x) = /Fll(s w)Fi1 (u, t;x) du < /
0

0

bulunur. 0 < z < 7 oldugundan
F® (s, t;z) < (C1.A)? 7

bulunur. Benzer gekilde devam edilerek

xT

Fl(f) (s, t;x) = /Fu(s,u)Fl(f) (u,t;z) du < /(C’l.A)?’ mdu < (Cy.A)* 72

0 0

(ClAT{')n

F (s,t;2) <
11 (57 7@ > -

elde edilir. (4.41) esitligiden
Ky (s,t2) = (=1)" F} (s,t;2)
n=1

yazilabilir. (4.45) esitligi gozoniine alinirsa

> Cl A. 7T) > (ClAﬂ')
K1 (z,2)] < z:: T = nz:; -
olur. C1. A < % alinirsa
> (CL.AT)"
| K1y (2,2)] < Z%:Cl.AJrﬁ(Cl.Aerﬁ? (C1.A)® +
n=1

IN

i 1\? 1\*
2 —
C’1A+7T(27T> + 7 (27?) + ...

|K11 (.CC, CL‘)| < 20114
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bulunur. Benzer sekilde

- P1\T, Uy ) P2\ S, Uy Y2 .I,)\ngp Sa)‘n
|Fra(,8)| = Z i b) a( ) _ %l 3 o )
= Z (b_ - a_> ©1(2, 1) P2 (S, ) + - (01(x, 1) 02(5, t1,) — 01 (2, M) 0o (5, An))
_O; ;
Ay — bn 1 .
= ( - >sol(x,un)%(s,un)+a—/(¢1(:p,A)¢2(s,A)) A
n=—o00 nen n}\n
o0 Mo,
Ay — bn 1 4
< > ‘( s )sol(:c,un)%(s,un) + a—/(cpl(x, A)y(s, A)) dA
) nzzoo ( Qb >%<x’“ el )
1 :LI’TL
+ a—/(sbl(x,A)sOQ(s,A)ﬂol(:r, A)@y(s, A)) dA
An

olup (4.39) esitlikleri, —1 < cos < 1, =1 < sin < 1 ve 0 < z < 7 oldugu gozoniine
alinirsa

|Fio(w,2)| < Co > {lbn — an| + |1, — M|} = C1.A (4.76)

n=—oo

(4.39),(4.40) ve (4.46) dan

bulunur. Benzer sekilde
‘Kgl (l’,l‘” S QCQA

esitsizlikleri elde edilir. Diger taraftan

0 1 k k k k 0 1
BK(r.7) — K(z.0)B — ki | 11 k2
-1 0 ko1 Foo ko1 Koo -1 0




olup (4.37) denkleminden

Ko+ Ky Kk — Kiy D2
Koy — K11 —Kia — Koy q2

@ () —q(z) pi(x)—p2(2)
olup buradan da
p2(z) —pi(z) = Kiz+ Kxn (4.49)
@) —q(z) = Kup—Kn (4.50)

bulunur. (4.49), (4.50) denklemleri ve (4.46)-(4.48) esitsizliklerinden

p2 (@) = pr (@) < C" D {lby—an| + |, — M|} =C'A

2 () =1 (@)] < C" Y {lba = anl + |, = Aal} = C"A

elde edilir. Bu esitsizlikler [0, 7] arahiginda bulunan tiim x degerleri igin saglandigindan

max [p; (z) —p1 (z)] < ' Z {lbn_anl_’_lﬂn_)\n”EC,A

0<z<mw —
max |g (1) = qu (@) < C" Y {lbe = anl + [, = M} = C"A

bulunur.
Boylece Dirac operatorii icin ters problemde; spektral karakteristikler arasindaki
fark azaldikca potansiyel farkininda kiiciildiigii goriiliir.

Bu teorem (0, c0) yar1 ekseni igin de benzer sekilde ispatlanabilir.
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5. DIFUZYON OPERATORU ICIN iKi SPEKTRUMA GORE TERS
PROBLEM
q(x) ve p(x) reel degerli fonksiyonlar ve ¢ (x) € Wi [0,7], p(z) € Wa* 1[0, 7]

(m >0), h, H reel sayilar olmak iizere (5.1) difiizyon denklemini gtzoniine alalim.

—y" + [2\p (z) + q (z)]y = X%y (5.1)
y' (0)—hy(0) = 0, (5.2)
y () +Hy(m) = 0 (5.3)

(5.1)-(5.3) iin 6zdegerleri (5.3) ikinci simir sartinin kokleridir. {\,} spektrumu igin

asimptotik formiil

1] )
- = d n : 5.4
0 = = [p@dn Ylanl <o (5.4
0
1 1] )
a = - h+H+§ [q (z) +p* (2)] dz |, (5.5)
0
olmak tizere
Ay =14 co+ = 4 L2 (5.6)
n n

formundadir. (5.1)-(5.3) probleminin normlagtiric1 sayilari

s 1 s
o= [ G@)dr =1 [p@) ¢ @) d
0 0

olup asimptotik formu

olmak {izere

n (5.7)



seklindedir. (5.1)-(5.2) denkleminin ¢oziimii ¢ (2, ) olsun. Bu taktirde

o (z,\) =cos[A\x — a (z)] + /A (x,t) cos \tdt + /B (x,t) sin Atdt, (5.8)
a(z) =zp(0) + 2/{A (&, §)sina (§) — B (£, §) cosa (§) } de. (5.9)

q(x) = —p*(z) + 2(% {A(z,z)cosa(z)+ B (x,x)sina(x)} (5.10)
A(0,0) = h, aAé‘f’t) =0, B(z,0)=0 (5.11)

Alw,—t) = 0, t>0 (5.12)

o () = / p () dt (5.13)

olmak iizere = ve t degigkenlerine gore (m+1). mertebeden karesi integrallenebilir

tiirevlere sahip A (x,t) ve B(x,t) fonksiyonlar1 mevcuttur ve

02A(z,t) 2p (ZL’) OB(xz,t) q (l’) A (ZL’, t) _ 9% A(z,t)

8218;::@ t) aA?; t) 62?(1 t) (5.14)
5 T 2p(2) =5~ — q(z) B (v,1) = =55

dir. Tersine eger A (z,t) ve B(x,t) fonksiyonlari, (5.14) denklemler sistemini ve (5.9)-
(5.11) kosullarimi saglayan ikinci mertebeden karesi integrallenebilir fonksiyonlar ise
(5.8) ile tanimh ¢ (x, \) fonksiyonu (5.2)-(5.3) sartlarm saglayan (5.1) denkleminin
¢oziimiidir.

Difiizyon operatorii i¢in ters problemin temel denklemi 0 < ¢ < z olmak {izere
\

Fiy (x,t)cosa(x) + Fia (z,t) sina (z) + A (z, t)

T xT

+/A@£Mh@ﬂ%+/Bwﬁﬁh%w%=0

0 0 (5.15)
Fy (z,t) cosa (x) + Foo (z,t) sina (z) + B (z, 1)

+/A@£Mh@ﬂ%+/3@£ﬁb@ﬂ%=0

0 0 )
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seklindedir. Burada

Fii (z,t) = % COS €T COS Cot

+ Z {ﬁ €08 A\, €08 Ayt — < cos (n + ¢o) @ cos (n + ¢o) t}

Fip (z,t) = £ sin ¢z cos cot

+ Z {ﬁ sin \,x cos \,t — % sin (n 4 ¢p) z cos (n + ¢o) t}
’ (5.16)

Fy (z,t) = + cos coz sin cot

+Z {i cos A,z sin \,t — %cos (n+ ¢o) zsin (n + ) t}
n

Fao (z,t) = % sin cox sin cot

+ Z {ﬁ sin A\, sin A\t — L sin (n + ¢) 2 sin (n + ¢o) t}

dir.
Her siirekli o (x) fonksiyonu i¢in (5.15) denklemler sistemi A (x,t) ve B(x,t)’ye gore
tek ¢oziime sahiptir. Bu ¢oztim
A(z,t) = Ag (z,t) cosa (x) + Ay (z,t) sin v () (5.17)
B (z,t) = By (x,t) cosa (x) + By (x,t) sina (x)
esitlikleri ile ifade edilir. Burada (5.15) sisteminde « (z) = 0 olacak bi¢imde bu sistemin
coziimleri Ao (z,t), B(z,t) dir. a(z) = § olacak bigimde ise A, (z,t), Bi(x,t) dir.
Simdi G (z) ve p(z) reel degerli, §(z) € Wi [0,7], p(z) € W3[0, 7] (m > 0)

olacak sekilde
—y" + 22 () +q(@)]y = Ny
y' (0) —hy(0) = 0, (5.18)

y(m)+Hy(m) = 0

="+ 2pp(x) +q(@)ly = p7y
Yy (0) —hy(0) = 0, (5.19)
Y (m)+ Hy(n) = 0
problemlerini ele alalim. (5.18) probleminin spektrumu {\,,a,}, (5.19) probleminin

{ftn; @n} ve (5.19) un ¢oziim fonksiyonu

@ (z, 1) = cos [px — & (x)] + /[1 (x,t) cos ptdt + /B (x,t) sin utdt.
0 0
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olsun.

Teorem 5.1. Eger M = Z {lantt, — anAn| + |1ty — Anl + @ — an|} yeterince

n=0
kiigiik ise

max [¢(r) —q(z)] < C.M

0<z<m
dir. Burada M > 0; h, H,q(x) ve p(x)’e bagh bir sabittir.
Ispat. (5.19) problemi igin

Fy (x,t) == cos Cox COS Cot

+ Z { COS [1, X COS Uyt — = cos (n + o) @ cos (n + ¢o) t}

Fio (x,t) = l sin cyx cos cot

+Z{ sin f1,,2 cos it — + sin (n + o) @ cos (n—i—co)t}

Fy (z,t) = £ cos coz sin cot

+Z{ COS [1, @ 8in 1,,t — L cos (n + ¢o)  sin (n—l—co)t}

Fy (z,t) = + sin coz sin cot

—i—Z{ sin 2 sin p,,t — L sin (n + ¢o) z sin (n + ¢o) t}
olmak {izere esas integral denklemi

11 (z,t) cosa (z) + Fio (z,t)sina (z) + A ()

Ae 9 Fu(€0ds+ [ B Fa(€t)dg =0
(z) + Fay (x,t)sina (z) + B (z,1)
(

T

91 (x,t) cos a

A('xaé:)ﬁbl f,t)d€+/é(l’,€)p22(§,t)d€:0

0 ),

F
o
0
P
[
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seklindedir. (5.10) esitliginden

q(@)—qz) = p*(2)—p*(x) + 2% [Z(m,x) cosa (z) + B (x,x)sin (x)}

_Qd%; [(A(z,z)cosa(x)+ B(z,z)sina(x))]

= 2 L%A (z,2)cosa (z) — o (z) sina (z) A (2, z)

d ~ . , ~
d_B (x,z)sina (x) + o (z) cosa (x) B (z, x)}

-2 [diA (x,x)cosa () —a (z)sina (z) A(x, x) (5.22)

d . '
+%B (x,x)sina(x) + o' (x)cosa(x) B (ff,x)}

= 2 {d%: (A (x,2) — A(x, x)) cosa(x) — ' (z)sina(x) (A (x,z) — A(x, :v))

+d%; (B (z,2) — B (x, :L‘)) sina (x) + o () cos a () (B (x,z) — B (z, :L‘))}

olur. Burada (5.17) esitliginden

A(x,x) — A(z,x) = [Z; (x,z) — Ag (x, .Tj)i| cos o (x

+ Plvl (x,z) — A4 (x,x)] sina ()

B(z,z) — B(xz,x) = [E; (z,x) — By (x, I)} cos « ()

+ [E (x,x) — By (x, x)] sin « ()
4 (Z(I,ZE) - A(x,:r)) = d%c Plvo (x,z) — A (x,:r)] cos « () (5.23)

—a/ (x)sina (z) [:47] (x,x) — Ag (x, x)}

—l—i [;4: (x,x) — A; (x, x)] .sin a ()

dx
+a’ (z) cos a (z) [:{: (x,x) — Ay (z, x)]
dix (E (x,z) — B (z, x)) = dix [E; (x,2) — By (x, x)] .cos o ()

—a (z) sin « () [fBS; (x,2) — By (x, x)}

+di:l£ [E (z,x) — By (x, :z')] sina ()

+a’ (x) cos a () [E (z,7) — By (z, x)]

elde edilir. (5.15) integral denkleminin ¢oziimii
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FY (s.t52) = Fu(s.t), (5.24)
(n+1) : _ (n) :
FOH (54 0) = / Fu(s,0) F (wt:2)du,  (n> 1) (1)
0
itere gekirdekler olmak {iizere

S(s,t;z) =Y ()" F} (s,t;7),

n

/(/|EM&QF@ﬁ<1,
0 0

Ao (,8) =S (z,;2) = (=1)" FY (,572) (5.25)

n=1

yazilabilir. Benzer sekilde

Y (st52) = Fu(sit), (5.26)

i (s,t2) = /Fn (s,u) X (u, t: 3) du, (n>1)

I
A (x,5)

~ 2
EM&Q‘@ﬁ<1,

)= ()" A (x,5:2) (5.27)
n=1
olur.Ayrica
L sowa) = LS (1" FY (2,5;) (5.28)
dll? ) d[)j - 11 el .
— ——F11 (z,2 ~|—Z F(nH) (z,7;7)
olup
d

d_Fl(ILH) (2, 2;7) = {F(n+1 + D Fggnﬂ)}
z S

—i—/FHt u t)Fl(l)(s w;z) du 4+ FMY (st x)s o=z
0

= 2/F11I x,u) F (x u;x alu—l—E:F11 T, T; x)F(nH_k)(x,:r;x)
0 k=1
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esitligi (5.28) de yazilirsa

x

d d
%AO (x,x) = —%Fll (x,x) + 2 / Fiiz (z,u) Ag (z,u) du
0

n k n+1—k
+3 D) FY (way2) FETY (2, 250)
n=1 k=1

T

= _%Fll ($,$)+2/F11:c (-Tyu)AO (x,u) du—AO (m7$)2 (529)
0

bulunur. Simdi A, (x,x) — Ap (x, x) ifadesini hesaplayalim:

1
— COS CoT Cos cyt
T

1
+Z {27% COS [, T COS [, t — — —cos (n 4 o) x cos (n + co)t}

P (2,1) — Fiy (m,t)‘ _

1
—— COS CyT Cos Cyt
7r

1 1
_Z{—cos)\nxcos)\ t— —Cos(n+co)xcos(n+co)t}‘
T

2ay,
1 1
= Z — X COS f1,,t — —— COS A\, T COS A\t
2a,, 2a,

1 1

— zﬂ: (Tin — E) COS [1,,T COS [,
1 1
+—— COS [4,,T COS j1,,t — —— COS A\, @ COS At
20,n 2an

1 1

< zn: (271” - %) COS [L,,T COS [t
i

+Z i/(cos)\xcos)\t)'dA

n X

< O Y n = an] + [, = Anl]

olur. Burada A = Z [|Gn — an| + |, — An|] denirse

Py (2,t) — P (x,t)‘ < 0> Man — anl + |1, — Mal] = C1A (5.29)

n

olur. Diger taraftan (5.20) da z ’e gore tiirev alinirsa

d -~ _
—Fy (z,t) = ﬂsmcoyccoscgt (5.30)

dx
(n+ co)
T

+ Z {  sin p, T €os fi,t + sin (n + ¢o) x cos (n + ¢o) t}

%)



bulunur. Buradan
d ~ d
‘@FM (Q],t) — —F11 (l‘, t)

dx
>

n

— Uy —\n

sin p,, T cos i, t — sin A, x cos A\t

2ay, an

< Gy Z lttnan — Andn| + |, — Anl] = C2B (5.31)

n

elde edilir. (5.24) esitliginden

B (@,2) - FY (a,2)| (5.32)

xT

= |/ (Fu.0) = Fu o) (B (wtio) = B (i) dul < (C1A)*

0
() (n) 1 n
‘Fll (z,x) — Fyy (%iﬁ)) < - (C1Am) (5.33)

olur buradan C1 Am < % olmak tizere

)Z;(x,x) — Ay (x,a:)‘ < Z

% (ClAw)"‘ <2014 (5.34)

elde edilir. Benzer sekilde

d ~ d
Td - d d - d
— / (%Fﬂ (x,z) — %FM (x, x)) (%Fl(ll) (u,t;x) — %Fl(ll) (u, t; a:)) du
0
S (CQB)Z’]T
d_zm) d (o) 1 n
elde edilir.
d — 1
214 Y } <N |2 (CyBr)"| < 205,B 5.36
& [ - )] | < |2 o] <20, (5:30

n
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Benzer yontemle

By (x,2) = By (a.2)| < 2044
d 1~
'% [Bo (x,x) — By (x, x)} < 204B
d%c Plvl (x,x) — A4 (x,x)] < 2CsB (5.37)
‘;lvl (r,z) — Ay (x,2)] < 2C6A
d 1~
— [Bi(e.0) = Bi(w,2)] < 208
‘E (x,2) — By (x,x)‘ < 2C5A

bulunur. (5.34)-(5.37) esitsizlikleri (5.23) te yerine yazilirsa ve elde edilen son esitsiz-

likte (5.22) denkleminde yazilirsa
¢ (z) —q(z)] < M. Z |@nfty, — @nAn| + |1y = Aul + |Gn — an

elde edilir. Bu egitsizlik her = € [0, 7] igin saglandigindan

0<z<m

max [§(x) — ¢ (2)] < M. |anpt, = Gnda| + |1, — Aal + [ — an
n

elde edilir.
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