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İKİ SPEKTRUMA GÖRE TERS PROBLEM

DOKTORA TEZİ
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ÖZET

Diferensiyel operatörlerin spektral teorisinde, spektral veriler kullanılarak potan-

siyel fonksiyonun bulunması problemi ters problem olarak adlandırılır. Eğer bu ters

problemin spektral karekteristikleri, aralarındaki fark yeterince küçük olacak şekilde,

deği̧stirildiğinde potansiyellerinin farkı da yeterince küçük kalıyorsa bu problem karar-

lıdır denir.

Bu çalı̧sma beş bölümden oluşmaktadır.

Birinci bölümde; Sturm-Liouville, Dirac ve difüzyon operatörlerinin spektral teorisinin

tarihçesi verilmi̧stir.

İkinci bölümde; diferensiyel operatörlerin spektral teorisinde ve sunulan tezde sık

sık kullanılan bazı temel tanım ve teoremler verilmi̧stir.

Üçüncü bölümde; Sturm-Liouville operatörü için özdeğer ve özfonksiyonların asimp-

totik formülleri, özfonksiyonların ortogonalliği, özdeğerlerin reel olduğu ve dönüşüm

operatörü gösterilmi̧stir. Ayrıca potansiyeller farkı için formül verilmi̧stir.

Dördüncü ve beşinci bölümde; sırasıyla Dirac ve difüzyon operatörü için ters prob-

lemin kararlılığını araştırılmı̧s, potansiyel farkları için bazı formüller bulunmuştur.

Anahtar Kelimeler: Spektrum, Ters Sturm-Liouville problemi, Dirac operatörü,

Difüzyon operatörü, Kararlılık.
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SUMMARY

Inverse Problem With Respect To Two Spectra For Regüler And Singular

Differential Operators

In the spectral theory of differential operators, the problem of finding potential

function by using spectral datas is called inverse problem. In an inverse problem, if the

potential difference becames sufficiently small when the difference between the charec-

teristics was changed as suficiently small, this problem is called as stable(wellposed).

This study consists of five chapters.

In the first chapter, the history of spectral theory a Sturm-Liouville, Dirac and

diffusion operators are presented.

In the second chapter some fundamental definitions and theorem, often used in

spectral theory of differential operators, are given.

In the third chapter, the asymptotic formulas for eigenvalues and eigenfunctions,

the ortogonality of the eigenfunctions, the reality of the eigenvalues and transformation

operator for Sturm-Liouville operator are shown. In particular the formula is given for

difference of potantials.

In the fourth and fifth chapters, we investigated the stability of inverse problem for

Dirac and diffusion operators ,respectively. We obtained some formulas for potential

difference.

Keywords: Spectrum, Inverse Sturm-Liouville Problem, Dirac Operator, Diffusion

Operator, Stability(Wellposedness).
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SİMGELER LİSTESİ

W (f, g) : Wronski determinantı

L2 [a, b] : Karesi integrallenbilen fonksiyonlar uzayı

W 1
2 : Sobolev Uzayı

ϕn : Özfonksiyonlar

λn : Özdeğerler

K (x, y) : Çekirdek fonksiyonu

q (x) : Potansiyel fonksiyon

ρ (λ) : Spektral fonksiyon

ρn : Normlaştırıcı sayılar
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1. GİRİŞ

Operatörlerin spektral teorisi matematik, fizik ve mekaniğin çeşitli alanlarında geni̧s

bir şekilde kullanılmaktadır. Lineer operatörlerin spektral teorisinin esas kaynakları

bir yandan lineer cebir olmak üzere diğer yandan titreşim teorisinin problemleridir.

Lineer cebir problemleri ve titreşim teorisi problemleri arasındaki benzerliklerin farkına

varılması çok eskilere dayanır. İntegral denklemler teorisinde yapılan çalı̧smalarda bu

benzerliklerden sürekli faydalanan ilk olarak D. Hilbert olmuştur. Bunların sonucu

olarak önce l2 uzayı, daha sonraları ise genel Hilbert uzayı tanımlanmı̧stır.

Matematikte l2 ve H soyut Hilbert uzayı tanımlandıktan sonra H da lineer self-

adjoint operatörler teorisi hızla geli̧smeye başlamı̧stır. XIX.-XX. asırlarda birçok mate-

matikçiler sayesinde bu teori mükemmel bir seviyeye ulaşmı̧stır. Özel olarak bu çalı̧s-

malarda özdeğerler, özfonksiyonlar, spektral fonksiyon, normlaştırıcı sayılar gibi spek-

tral veriler tanımlanmı̧s ve farklı yöntemlerle bunlar için asimptotik formüller bulun-

muştur. Ayrıca, spektral teorinin tamamında önemli bir yere sahip olan açılım teoremi

ispatlanmı̧stır. Belirli diferensiyel ve fark operatörleri için spektral açılımın uygun

denklem çözümleri vasıtasıyla ifade edildiği araştırılmı̧stır.

Regüler ve singüler olmak üzere iki tür diferensiyel operatör tanımlanmı̧s ve bun-

ların spektral teorileri yapılandırılmı̧stır. Tanım bölgesi sınırlı ve katsayıları sürekli

fonksiyonlar olan diferensiyel operatörlere regüler, tanım bölgesi sınırsız veya kat-

sayıları(bazıları veya tamamı) toplanabilir olmayan(veya her ikisi sağlanacak biçimde)

diferensiyel operatörlere ise singülerdir denir. İkinci mertebeden regüler operatörler

için spektral teori günümüzde Sturm-Liouville teorisi olarak bilinir. XIX. asrın son-

larında ikinci mertebeden diferensiyel operatörler için sonlu aralıkta regüler sınır şart-

ları sağlanacak şekilde keyfi mertebeden adi diferensiyel operatörlerin özdeğerlerinin

dağılımı G. D. Birkoff tarafından incelenmi̧stir. Diskret spektruma sahip ve uzayın

tamamında tanımlı operatörlerin özdeğerlerinin dağılımı özellikle Kuantum mekaniği

için çok ilginçtir. Birinci mertebeden iki denklemin regüler sistemleri daha sonraki yıl-

larda ele alınmı̧sır. Singüler operatörler için spektral teori ilk olarak H. Weyl tarafından

incelenmi̧stir. Daha sonra F. Rietsz, J. Fon-Neumann, K. O. Friedrichs ve diğer mate-



matikçiler tarafından simetrik ve self-adjoint opeatörlerin genel spektral teorisi oluş-

turulmuştur. Hatırlatalım ki, simetrik operatörlerin tüm self-adjoint geni̧slemelerinin

bulunması problemi Neumann tarafından bir süre sonra yapılmı̧stır.

İkinci mertebeden singüler operatörlerin spektral teorisine yeni bir yaklaşımı 1946

yılında E. C. Titchmarsh vermi̧stir. Doğru ekseninde tanımlı azalan(artan) potansiyelli

L = − d2

dx2
+ q (x)

Sturm-Liouville operatörleri için özdeğerlerin dağılımı formülü Titchmarsh tarafın-

dan bulunmuştur. Son yıllarda bu operatöre sık sık bir boyutlu q (x) potansiyelli

Schrödinger operatörü de denir. Aynı zamanda bu çalı̧smada Schrödinger operatörü

için özdeğerlerin dağılım formülü de verilmi̧stir.

Singüler diferensiyel operatörlerin incelenmesine ili̧skin ve diferensiyel operatörlerin

spektral teorisinde önemli bir yere sahip olan çalı̧smalar 1949 yılında B. M. Levitan

tarafından yapılmı̧stır. Levitan bu çalı̧smalarında spektral teoriyi esaslandırmak için

kendine has bir yöntem vermi̧stir. Farklı singüler durumlarda diferensiyel operatörlerin

spektral teorisi, özellikle özdeğerlerin, özfonksiyonların asimptotiğine ve özfonksiyon-

ların tamlığına ili̧skin konular R. Courant, T. Carleman, M. S. Birman, M. Z. Salamyak,

V. P. Maslov, M.V. Keldish gibi matematikçiler tarafından geli̧stirilmi̧stir.

Lineer diferensiyel operatörler teorisinde spektral analizin ters problemleri önemli

bir yere sahiptir. Diferensiyel operatörler için ters problem aşağıdaki şekilde tanımlanır:

1. Hangi spektral verilere göre operatörün kendisini bulmak (veya yapısını oluştur-

mak) mümkündür?

2. Spektral verilere göre operatörü birebir olarak tanımlamak mümkün mü?

3. Bu verilere göre operatörlerin tanımlanması yöntemlerinin bulunması.

Ters problemlerle ilgili ilk sonuç V. A. Ambartsumyan[3] tarafından elde edilmi̧stir.

Bu çalı̧smada Sturm-Liouville operatörleri için ters probleme ait aşağıdaki teorem is-

patlanmı̧stır.

Teorem 1. q (x), [0, π] aralığında reel değerli sürekli bir fonksiyon olmak üzere

y00 + {λ− q (x)} y = 0 (0 ≤ x ≤ π) (1.1)

y0 (0) = y0 (π) = 0

probleminin özdeğerleri {λ0, λ1, ..., λn, ...}olsun. Eğer λn = n2 (n = 0, 1, ...) ise q (x) =

0 dır.
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Bu sonuca ilk önce dikkati çeken İsveç matematikçi G. Borg[6] olmuştur. Borg,

genel durumda Sturm-Liouville oeratörünün bir spektrumla tanımlanmadığını göster-

mi̧stir. Ayrıca farklı sınır şartları sağlanacak şekilde iki spektruma göre Sturm-Liouville

operatörünün birebir olarak tanımlandığını göstermi̧stir. Dolayısıyla aşağıdaki teoremi

ispatlamı̧stır.

Teorem 2. λ0, λ1,...,λn, ... ler (1) diferensiyel denklemi ve

y0 (0)− hy (0) = 0 (1.2)

y0 (π) +Hy (π) = 0

sınır koşulları ile verilen roblemin, µ0, µ1,...,µn, ... ler ise (1) denklemi ve

y0 (0)− hy (0) = 0 (H 6= H1) (1.3)

y0 (π) +H1y (π) = 0

sınır koşulları ile verilen problemin özdeğerleri olsun. O halde {λn} ve {µn}, (n = 0, 1, ...)

dizileri q (x) fonksiyonunu ve sonlu h, H, H1 sayılarını tek olarak belirtir.

Bu çalı̧smadan sonra potansiyelin q (π − x) = q (x) simetriklik koşulunu sağla-

ması durumunda bir spektrumun Sturm-Liouville operatörünü tanımladığını N. Levin-

son[35], [36] ispatlamı̧stır. Buna ilaveten, Levinson negatif özdeğerlerin mevcut ol-

madığı durumda, saçılma fazının potansiyeli birebir olarak tanımladığını göstermi̧stir.

Sturm-Liouville denkleminin inceleme sürecinde kullanılan yöntemlerden biri de

ters problemin çözümlerinde önemli bir araç olan dönüşüm operatörü kavramıdır. Bu

kavram operatörlerin genelleştirilmi̧s ötelemesi teorisinde J. Delsarte, J. Lions[8], [9]

ve B.M. Levitan[34] tarafından verilmi̧stir. Keyfi Sturm-Liouville denklemleri için

dönüşüm operatörünün yapısını ilk olarak A. V. Povzner[51] çalı̧smalarında göster-

mi̧stir.

Daha sonra ikinci mertebeden lineer diferensiyel operatörler için ters problem-

ler teorisinde teklik problemiyle ilgili en önemli çalı̧smalar A. N. Tichknof[60] ve V.

A. Marchenko[41] tarafından yapılmı̧stır. Marchenko bu çalı̧smasında teklik problem-

lerinin çözümünde Sturm-Liouville operatörünün spektral fonksiyonundan yararlan-

mı̧stır.

ϕ (x, λ) fonksiyonu (1.1) diferensiyel denkleminin

ϕ (0, λ) = 1, ϕ0 (0, λ) = h (1.4)
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başlangıç koşullarını sağlayan çözümü, ϕ (x, λn) = ϕn (x) fonksiyonları ise bu problemin

özfonksiyonları olsun. Bu takdirde

αn =

πZ
0

ϕ2 (x, λn) dx (1.5)

verilen operatörün normlaştırıcı sayıları,

ρ (λ) =
X
λn<λ

1

αn

ise bu operatörün spektral fonksiyonu olmak üzere Marchenko yukarıda bahsedilen

çalı̧smada Borg’un ispatladığı teoremi ρ (λ) spektral fonksiyonu yardımı ile vermi̧stir.

Ayrıca, bu çalı̧smada ρ (λ) spektral fonksiyonunun, Sturm-Liouville tipinde bir difer-

ensiyel operatörünün spektral fonksiyonu olması için gerek ve yeter şart verilmi̧stir.

Marchenko’nun çalı̧smaları ile hemen hemen aynı anda M. G. Krein[25], [26] çalı̧s-

malarında, Sturm-Liouville tipindeki bir diferensiyel operatörü {λn} ve {µn}, (n = 0, 1, ...)

dizilerine göre belirtmek için etkili yöntem verilmi̧stir. Fakat bu çalı̧smalarda ve-

rilen gerek ve yeter şart, {λn} ve {µn} dizileri yardımıyla değil, bu dizilerden kurulan

yardımcı fonksiyon kullanılarak verilmi̧stir.

Spektral analizin ters problemler teorisinde temel çalı̧sma I.M. Gelfand ve B. M.

Levitan[16] tarafından yapılmı̧stır. Bu çalı̧smada ρ (λ) monoton fonksiyonunun Sturm-

Liouville operatörünün spektral fonksiyonu olması için gerek ve yeter koşullar tanımlan-

mı̧s olup, Sturm-Liouville operatörünün belirtilmesi için önemli bir yöntem verilmi̧stir.

Sturm-Liouville operatörü için ters problemin iki spektruma göre tam çözümü

1964 yılında B. M. Levitan ve M. G. Gasimov[30] tarafından yapılan bir çalı̧smada

verilmi̧stir. Bu çalı̧smada iki spektruma göre ters problemin çözümü için gerek ve

yeter koşullar tanımlanmı̧stır.

Sturm-Liouville operatörünü inceleme sürecinde özellikle XX. asrın ikinci yarısında

kullanılan yöntemler sürekli artmı̧stır. 1967 yılında bir grup Amerikan fizikçi ve mate-

matikçi G. S. Gardner, J. M. Greene, M.D. Kruskal, R. M. Miura[7] ve P.Lax[28]

tarafından bazı kismi türevli nonlineer evalusyon denklemleri ile Sturm-Liouville o-

peratörünün spektral teorisi arasındaki bağlantılar bulunmuştur. Bu konu ve jeofizikte

birçok uygulamaları olan singüler Sturm-Liouville operatörü için kuantum teorisini

ters saçılma problemleri halen yoğun bir şekilde fizik ve matematikçiler tarafından
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araştırılmaktadır. Kuantum saçılma teorisinin ters problemleri ile ilgili tarihçe detaylı

bir şekilde L.D. Faddeev’in[11] çalı̧smasında verilmi̧stir.

Dirac operatörünün spektral analizi ile ilgili ilk çalı̧smalar fizikçiler F. Prats, J.

Toll[52], H. E. Moses[45] ve diğerleri tarafından yapılmı̧stır. Dirac operatörü için (0,∞)

yarı ekseninde spektral fonksiyona göre ters problem M. G. Gasimov ve B. M. Levi-

tan[13] tarafından çözülmüştür. İki spektruma göre regüler Dirac operatörünün be-

lirlenmesi problemi M. G. Gasymov ve C. Dzhabiev[14] tarafından yapılan çalı̧smada

verilmi̧stir. Dirac operatörü için özvektör fonksiyonlarının tamlığı, Cauchy problemi-

nin çözümü, self-adjointlik durumunda spektrumun diskretliği ve sürekliliği, regülerize

izin hesaplanması, periyodik ve anti periyodik problemler, açılım teoremleri, özvektör

fonksiyonlarının asimptotiği, 2n-mertebeli Dirac denklemler sistemi için ters saçılma

problemi, kısmen çakı̧smayan iki spekturuma göre ters problem sırası ile [1, 10, 15, 18,

22, 38, 43, 48, 53-57 ] çalı̧smalarında incelenmi̧stir.

Daha sonraki yıllarda H. Hochtadt[19], B. M. Levitan[33] ve E. S. Penahov[49]

kısmen çakı̧smayan iki spektruma göre farklı yöntemlerle Sturm-Liouville ve Dirac o-

peratörleri için ters problemi incelemi̧slerdir. Dirac operatörü için kısmen çakı̧smayan

iki spekturuma göre ters problem, singüler Sturm-Liouville operatörü için ters problem,

periyodik durumda ters poblem sırasıyla [4, 5, 21, 23] çalı̧smalarında incelenmi̧stir.

Dalga denkleminden bir çok yönü ile farklı olan difüzyon denklemi kuantum fiz-

iğinde önemli yere sahiptir. Bu sebeple bir boyutlu difüzyon denkleminin spektral

teorisi de detaylı bir şekilde incelenmi̧stir. Bu denklemler için saçılma problemleri ilk

olarak Fransız matematikçileri M. Jaulent, C. Jean ve P. Sabatier tarafından incelen-

mi̧stir. Bu çalı̧smalara ait kaynaklar [55] verilmi̧stir. Sonlu aralıkta iki spektruma göre

difüzyon operatörü için ters problem M. Gasymov ve G.Sh. Guseinov[12] tarafından

çözülmüştür. Doğru eksende saçılma şatları sağlanacak biçimde ters problem ise F.G.

Maksudov ve G. Sh. Guseinov [39] tarafından incelenmi̧stir.

Daha sonra difüzyon denklemi için farklı şekilde tanımlanmı̧s ters problemler, teklik

teoremleri V. Yurko[65], G.Sh. Guseinov, E.S. Panakhov ve H. Koyunbakan[24] ve diğer

matematikçiler tarafından araştırılmı̧stır.

Bu çalı̧smada, Dirac ve difüzyon operatörleri için iki spektruma göre ters problem

incelenmi̧stir. Özel olarak özdeğerler ve normlaştırıcı sayılar için belirli şartlar sağlan-

mak üzere potansiyel farkı ile ilgili teoremler ispatlanmı̧stır.
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2. TEMEL TANIM VE TEOREMLER

2.1. Diferensiyel Operatörlerin Spektral Teorisinde Kullanılan Önemli

Kavramlar

Bu bölümde, sunulan tezde sık sık kullanılan önemli kavramlar ve teoremler ve-

rilmi̧stir.

Tanım 2.1.1. (İç ÇarpımUzayı) C kompleks sayılar cismi üzerinde tanımlanmı̧s

bir H lineer vektör uzayını gözönüne alalım. H daki her vektör çiftine bir sayı kaŗsılık

getiren (, ) : H×H → C fonksiyoneli aşağıdaki kuralları sağladığı takdirde bir iç çarpım

adını alır:

i) Her u, v ∈ H için,(u, v) = (v, u)

ii) Her u, v ∈ H ve α ∈ C için (αu, v) = α (u, v)

iii) Her u, v, w ∈ H için (u+ v, w) = (u,w) + (v, w)

iv) Her u,∈ H,u 6= 0 için (u, u) > 0

Bir iç çarpımla donatılmı̧s bir lineer vektör uzayına iç çarpım uzayı denir.

d (u, v) = ku− vk =
p
(u− v, u− v)

metriğine göre tam bir iç çarpım uzayına Hilbert uzayı denir[59].

Tanım 2.1.2. a ≤ t ≤ b olmak üzere L2 [a, b] karesi integrallenebilen fonksiyonlar

uzayı

L2 [a, b] =

⎧⎨⎩x (t) :

bZ
a

[x (t)]2 dt <∞

⎫⎬⎭
şeklinde, bu uzayda iç çarpım ise

< f, g >=

bZ
a

f (x) g (x)dx

şeklinde tanımlanır[27] .

Tanım 2.1.3. Tanım ve değer cümlesi vektör uzayı olan dönüşüme operatör denir.



Tanım 2.1.4. Ex ve Ey herhangi iki vektör uzayı olmak üzere

1. x1, x2 ∈ Ex için L (x1 + x2) = Lx1 + Lx2

2. x ∈ Ex, λ ∈ R için L (λx) = λLx

şartlarını sağlayan L : Ex −→ Ey operatörüne lineer operatör denir [46].

Tanım 2.1.5. X ve Y normlu uzaylar ve D (L) ⊂ X olmak üzere L : D (L) −→ Y

bir operatör olsun.

kLxk ≤ c. kxk

olacak şekilde bir c > 0 reel sayısı varsa L operatörüne sınırlıdır denir[46].

Tanım 2.1.6. L − λI operatörünün sınırlı (L− λI)−1 tersinin mevcut olmadığı

λ’lar cümlesine L operatörünün spektrumu denir [46].

Tanım 2.1.7. Herhangi λ için L − λI operatörünün tersi mevcut olacak şekilde

Rλ = (L− λI)−1operatörüne (L− λI)x = y denkleminin rezolvent operatörü denir.

Tanım 2.1.8. L operatörü D (L) tanım bölgesinde sınırlı lineer operatör olmak

üzere

Ly = λy

eşitliğini sağlayan y (x) 6= 0 fonksiyonu mevcut ise λ sayısına L operatörünün özdeğeri,

y (x, λ) fonksiyonuna ise λ’ya kaŗsılık gelen özfonksiyon denir[32].

Tanım 2.1.9. Eğer x −→ 0 (veya x −→ ∞) iken f(x)
g(x)
−→ 0 ise f (x) = o(g(x))

şeklinde,
¯̄̄
f(x)
g(x)

¯̄̄
sınırlı ise f (x) = O(g(x)) şeklinde gösterilir[47].

Tanım 2.1.10. [a, b], R’ nin kapalı sınırlı bir aralığı ve (a1, b1) , ..., (an, bn)’ ler [a, b]

de açık aralıklar olmak üzere ∀ε > 0 için ∃δ > 0 vardır ki

nX
i=1

(bi − ai) < δ

iken

nX
i=1

|f (bi)− f (ai)| < ε

oluyorsa f : [a, b] −→ C fonksiyonu [a, b] de mutlak süreklidir denir.
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Tanım 2.1.11. Bir f (z) kompleks fonksiyonu düzlemin keyfi bir z0 noktasının δ

komşuluğunun tüm noktalarında diferensiyellenebiliyorsa f (z) fonksiyonuna z0 nok-

tasında analitiktir denir.

Tanım 2.1.13. f (z) kompleks fonksiyonu düzlemin tüm noktalarında analitik ise

f (z)’e tam fonksiyon denir.

Tanım 2.1.14. f (x) ve g (x) sürekli, diferensiyellenebilir fonksiyonlar olmak üzere

Wx {f, g} =

¯̄̄̄
¯̄ f (x) g (x)

f 0 (x) g0 (x)

¯̄̄̄
¯̄

şeklinde tanımlanan determinanta Wronski determinantı denir.

Tanım 2.1.15.(Parseval Eşitliği) f (x) , g (x) ∈ L2 (a, b) olmak üzere

bZ
a

f (u) g (u) du =
∞X
n=0

1

ρn

⎛⎝ bZ
a

f (u)φ (u, λn) du

⎞⎠⎛⎝ bZ
a

g (u)φ (u, λn) du

⎞⎠
dir.

Tanım 2.1.16. (Minkowski Eşitsizliği) 1 ≤ p < ∞ olmak üzere ∀x, y ∈

Rn(veya Cn) için

Ã
nX

k=1

|xk + yk|p
!1/p

≤
Ã

nX
k=1

|xk|p
!1/pÃ nX

k=1

|yk|p
!1/p

şeklindeki eşitsizliğe Minkowski eşitsizliği denir.

Tanım 2.1.17. (Cauchy-Bunjakowski Eşitsizliği) (X, k.k) bir normlu uzay

olmak üzere ∀x, y ∈ X için

|< x, y >| ≤ kxk . kyk

dir.

Tanım 2.1.18. (Bessel Eşitsizliği) (X,< ., . >) bir iç çarpım uzayı ve (xn) de

X ’de bir ortonormal dizi olmak üzere x ∈ X için

∞X
k=1

|< x, xk >|2 ≤ kxk2

dir.
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Tanım 2.1.19. (a, b) aralığında tanımlı, (k − 1). mertebeden türevleri mutlak

sürekli olan ve f, f 00, f 000, ..., f (k) ∈ L2 [a, b] koşulunu sağlayan fonksiyonlar uzayına

Sobolev uzayı denir ve W k
2 (a, b) ile gösterilir[2].

Tanım 2.1.20. K (x, y) karesel bir bölgede tanımlı sürekli bir çekirdek fonksiyonu

olmak üzere,

f (x) = φ (x) + λ

xZ
a

K (x, y)φ (y) dy

integral denklemine φ (x) bilinmeyen fonksiyonuna göre ikinci tür Volterra integral

denklemi denir[62].

Tanım 2.1.21. E lineer topolojik uzay, A ve B de A : E → E, B : E → E

şeklinde tanımlı iki lineer operatör olsun. E1 ile E2 de E lineer uzayının kapalı alt

uzayları olmak üzere E uzayının tamamında tanımlı, E1’den E2 ’ye dönüşüm yapan ve

tersi lineer olan X operatörü,

i) X ve X−1operatörleri E uzayında süreklidir,

ii) AX = XB

şartlarını sağlıyorsa, A ve B operatör çifti için dönüşüm operatörü adını alır[31].

Teorem 2.1.1. (Green Teoremi) Ω, xoy düzleminde bir bölge ve Γ da bu

bölgeyi çevreleyen pozitif yönde yönlendirilmi̧s bir eğri olsun. P ve Q fonksiyonları Ω

üzerinde sürekli türevlere sahip fonksiyonlar ise

Z
Γ

P (x, y) dx+Q (x, y) dy =

Z Z
Ω

µ
∂Q

∂x
− ∂P

dy

¶
dxdy

dir.

Teorem 2.1.2. (Leibnitz Formülü) Sürekli f (x, t) fonksiyonu,

{(x, t) : a ≤ x ≤ b, c ≤ t ≤ d} dikdörtgenini kapsayan bir bölgede sürekli ∂f
dt
kısmi

türevine sahip olsun. Bu takdirde c ≤ t ≤ d için

d

dt

bZ
a

f (x, t) dx =

bZ
a

∂

∂t
f (x, t) dx

dir.

Bu teoremin sonucu olarak; a (t) ve b (t), (c, d) aralığında sürekli türevlere sahip
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fonksiyonlar ise

d

dt

b(t)Z
a(t)

f (x, t) dx =

b(t)Z
a(t)

∂

∂t
f (x, t) dx+ f (b (t) , t) b0 (t)− f (a (t) , t) a0 (t)

dir.

Teorem 2.1.3. (Hochstadt)

Lu = −u00 + q (x)u = λu (2.1)

u (0) cosα+ u0 (0) sinα = 0 (2.2)

u (1) cosβ + u0 (1) sinβ = 0 (2.3)

probleminin spektrumu {λi}, (2.3) yerine

u (1) cos γ + u0 (1) sin γ = 0 (2.4)

alınmasıyla elde edilen yeni problemin spektrumu ise {λ0i} olsun. Diğer taraftan

Lu = −u00 + q̃ (x)u = λu (2.5)

u (0) cosα+ u0 (0) sinα = 0 (2.6)

u (1) cosβ + u0 (1) sinβ = 0 (2.7)

probleminin spektrumu
n
λ̃i
o
, (2.5)-(2.6), (2.4) probleminin spektrumu ise

n
λ̃
0
i

o
olsun.

Ayrıca Λ0, λ̃i 6= λi şartını sağlayan sonlu i lerin cümlesi, Λ ise λ̃i = λi şartını sağlayan

sonsuz i lerin cümlesi olsun. Bu durumda

q − q̃ =
X
Λ0

(ỹnwn)
0

dir. Ayrıca Λ0 boş ise q = q̃ dır.
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3. STURM-LIOUVILLE PROBLEMİ

L lineer operatör, q (x) de [a, b] aralığında sürekli ve reel değerli bir fonksiyon olmak

üzere

Ly = −d
2y

dx2
+ q (x) y = λy, (3.1)

y (a) cosα+ y0 (a) sinα = 0 (3.2)

y (b) cosβ + y0 (b) sinβ = 0

şeklinde tanımlanan (3.1)-(3.2) sınır-değer problemi Sturm-Liouville problemi olarak

adlandırılır. λ’ya (3.1)-(3.2) probleminin özdeğeri; y (x, λ) ya ise λ özdeğerine kaŗsılık

gelen özfonksiyon denir.

λ1 değeri için (3.1)-(3.2) sınır-değer probleminin y (x, λ1) 6= 0 aşikar olmayan bir

çözümü olduğunu kabul edelim. Bu durumda λ1 özdeğer olarak adlandırılır ve y (x, λ1),

(3.1)-(3.2) sınır-değer probleminin özfonksiyonudur.

Lemma 3.1.[32] Farklı özdeğerlere kaŗsılık gelen y (x, λ1) ve y (x, λ2) özfonksiyon-

ları ortogonaldir, yani
πZ
0

y (x, λ1) y (x, λ2) dx = 0

dır.

İspat. f (x) ve g (x) sürekli, ikinci mertebeden türevleri mevcut fonksiyonlar

olmak üzere

Lf = f 00 (x)− q (x) f (x)

olsun.

πZ
0

Lf.g (x) dx−
πZ
0

f (x) .Lgdx ifadesi hesaplanırsa:

πZ
0

Lf.g (x) dx−
πZ
0

f (x) .Lgdx =

πZ
0

[f 00 (x)− q (x) f (x)] .g (x) dx

−
πZ
0

f (x) . [g00 (x)− q (x) g (x)] dx



=

πZ
0

f 00 (x) .g (x) dx−
πZ
0

q (x) f (x) g (x) dx

−
πZ
0

f (x) .g00 (x) dx+

πZ
0

q (x) f (x) g (x) dx

=

πZ
0

f 00 (x) .g (x) dx−
πZ
0

f (x) .g00 (x) dx

olur. Eşitliğin sağ tarafında bulunan ifadelere kısmi integrasyon uygulanırsa

πZ
0

Lf.g (x) dx−
πZ
0

f (x) .Lgdx = f 0 (x) g (x)|π0 −
πZ
0

f 0 (x) .g0 (x) dx

− f (x) g0 (x)|π0 +
πZ
0

f 0 (x) .g0 (x) dx

= f 0 (π) g (π)− f 0 (0) g (0)− f (π) g0 (π) + f (0) g0 (0)

= W0 {f, g}−Wπ {f, g}
πZ
0

Lf.g (x) dx =W0 {f, g}−Wπ {f, g}+
πZ
0

f (x) .Lgdx (3.3)

elde edilir. Burada

Wx {f, g} =

¯̄̄̄
¯̄ f (x) g (x)

f 0 (x) g0 (x)

¯̄̄̄
¯̄

dir. (3.2) sınır şartlarından

f (0) cosα+ f 0 (0) sinα = 0

g (0) cosα+ g0 (0) sinα = 0

elde edilir. Burada birinci denklem g (0) , ikinci denklem f (0) ile çarpılıp ikinci eşit-

likten birinci eşitlik taraf tarafa çıkartılırsa;

f (0) g0 (0)− f 0 (0) g (0) = 0

bulunur. Bu da W0 {f, g} = 0 olması demektir. Benzer şekilde

f (π) cos β + f 0 (π) sinβ = 0

g (π) cosβ + g0 (π) sinβ = 0
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olup buradan da

W0 {f, g} =Wπ {f, g} = 0

elde edilir. (3.3) denkleminde f (x) yerine y (x, λ1) ve g (x) yerine de y (x, λ2) yazılırsa

πZ
0

Ly (x, λ1) .y (x, λ2) dx−
πZ
0

y (x, λ1) .Ly (x, λ2) dx = 0

elde edilir. Ly (x, λ1) = λ1y ve Ly (x, λ2) = λ2y olduğundan

πZ
0

Ly (x, λ1) .y (x, λ2) dx−
πZ
0

y (x, λ1) .Ly (x, λ2) dx

= (λ1 − λ2)

πZ
0

y (x, λ1) .y (x, λ2) dx = 0

olur. λ1 6= λ2 olduğundan

πZ
0

y (x, λ1) .y (x, λ2) dx = 0

elde edilir ki bu da lemmayı ispatlar.

Lemma 3.2. (3.1)-(3.2) sınır-değer probleminin özdeğerleri reeldir.

İspat. λ1 = u+ iv kompleks özdeğer olsun. q (x) reel bir fonksiyon ve α, β sayıları

da reel olduğundan λ2 = λ1 = u − iv de y (x, λ1) özfonksiyonuna kaŗsılık gelen bir

özdeğer olur. Lemma 3.1 den

πZ
0

y (x, λ1) .y (x, λ1) dx =

πZ
0

|y (x, λ1)|2 dx = 0

elde edilir. Buradan y (x, λ1) ≡ 0 olur ki bu bir çeli̧skidir. Dolayısıyla özdeğerler

reeldir.

3.1. Özdeğer ve Özfonksiyonlar İçin Asimptotik Formüller

(3.2) sınır şartları

cotα = −h, cotβ = H

olmak üzere,

y0 (0)− hy (0) = 0, (3.4)

y0(π) +Hy(π) = 0
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formunda yazılabilir. (3.1) denkleminin

ϕ (0, λ) = 1, ϕ0 (0, λ) = h (3.5)

başlangıç şartlarını sağlayan çözümü ϕ (x, λ) ve aynı denklemin

ψ (0, λ) = 0, ψ0 (0, λ) = 1 (3.6)

başlangıç şartlarını sağlayan çözümü de ψ (x, λ) olsun.

Lemma 3.1.1. λ = s2 olsun. Bu takdirde

ϕ (x, λ) = cos sx+
h

s
sin sx+

1

s

xZ
0

sin {s (x− τ)} q (τ)ϕ (τ , λ) dτ, (3.7)

ψ (x, λ) =
sin sx

s
+
1

s

xZ
0

sin {s (x− τ)} q (τ)ψ (τ , λ) dτ (3.8)

dir.

İspat. (3.7) denklemini ispatlayalım. ϕ (x, λ) (3.1) denklemini sağladığından (3.7)

denkleminde q (τ)ϕ (τ , λ) ifadesi yerine ϕ00(τ , λ) + λϕ (τ , λ) yazılabilir. Buradan

xZ
0

sin {s (x− τ)} q (τ)ϕ (τ , λ) dτ =

xZ
0

sin {s (x− τ)} (ϕ00(τ , λ) + λϕ (τ , λ)) dτ

=

xZ
0

sin {s (x− τ)}ϕ00(τ , λ)dτ

+s2
xZ
0

sin {s (x− τ)}ϕ (τ , λ) dτ

olur. Eşitliğin sağ tarafında bulunan ilk integrale iki kez kısmi integrasyon uygulanır
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ve (3.5) şartları yerine yazılırsa

xZ
0

sin {s (x− τ)} q (τ)ϕ (τ, λ) dτ = sin {s (x− τ)}ϕ0(τ , λ)|x0

+s

xZ
0

cos {s (x− τ)}ϕ0 (τ , λ) dτ

+s2
xZ
0

sin {s (x− τ)}ϕ (τ , λ) dτ

= − sin sx.ϕ0(0, λ) + s cos {s (x− τ)}ϕ0 (τ , λ)|x0

−s2
xZ
0

sin {s (x− τ)}ϕ (τ , λ) dτ

+s2
xZ
0

sin {s (x− τ)}ϕ (τ , λ) dτ

= −h sin sx+ sϕ (x, λ)− s cos sx

elde edilir. Son eşitliğin her iki tarafı s ’e bölünerek

ϕ (x, λ) = cos sx+
h

s
sin sx+

1

s

xZ
0

sin {s (x− τ)} q (τ)ϕ (τ , λ) dτ

elde edilir. Benzer şekilde (3.8) denklemini ispatlayalım. ψ (x, λ), (3.1) denklemini

sağladığından (3.8) denkleminde q (τ)ψ (τ , λ) ifadesi yerine ψ00(τ , λ)+λψ (τ , λ) yazıla-

bilir. Buradan

xZ
0

sin {s (x− τ)} q (τ)ϕ (τ , λ) dτ =

xZ
0

sin {s (x− τ)} (ψ00(τ , λ) + λψ (τ , λ)) dτ

=

xZ
0

sin {s (x− τ)}ψ00(τ , λ)dτ

+s2
xZ
0

sin {s (x− τ)}ψ (τ , λ) dτ

elde edilir. Eşitliğin sağ tarafında bulunan ilk integrale iki kez kısmi integrasyon uygu-

lanır ve (3.6) şartları yerine yazılırsa

xZ
0

sin {s (x− τ)} q (τ)ψ (τ , λ) dτ = sψ (x, λ)− sin sx
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elde edilir. Bu eşitliğin her iki tarafı s’e bölünürse

ψ (x, λ) =
sin sx

s
+
1

s

xZ
0

sin {s (x− τ)} q (τ)ψ (τ , λ) dτ

elde edilir.

Lemma 3.1.2. q (x) ∈ C (0, π) ve sınırlı türeve sahip olmak üzere (3.1)-(3.4)

probleminin özdeğerleri

sn = n+
c

n
+O

µ
1

n2

¶
(3.9)

formundadır.

İspat. ϕ (x, λ) fonksiyonunun x ’e göre türevini hesaplayalım:

ϕ (x, λ) = cos sx+
h

s
sin sx+

1

s

xZ
0

sin {s (x− τ)} q (τ)ϕ (τ , λ) dτ

olduğundan

ϕ0 (x, λ) = −s sin sx+ h cos sx+

xZ
0

cos {s (x− τ)} q (τ)ϕ (τ , λ) dτ

= −s sin sx+ h cos sx+

xZ
0

[cos sx. cos τq + sin sx. sin sτ ] q (τ)ϕ (τ , λ) dτ

elde edilir. x yerine π yazılırsa

ϕ0 (π, λ) = −s sin sπ + h cos sπ +

πZ
0

[cos sπ. cos τq + sin sπ. sin sτ ] q (τ)ϕ (τ , λ) dτ

bulunur.

(3.1) denkleminde bulunan q (x) fonksiyonu sınırlı türeve sahip olsun. Bu durumda

(3.7) eşitliği ve ϕ (x, λ)’ nın x’e göre türevi (3.4) sınır şartlarının ikincisinde yerine

yazılırsa

A = h+H +

πZ
0

½
cos sτ +

H

s
sin sτ

¾
q (τ)ϕ (τ , λ) dτ,

B =
hH

s
+

πZ
0

½
sin sτ +

H

s

¾
q (τ)ϕ (τ , λ) dτ

olmak üzere

(−s+B) sin sπ +A cos sπ = 0 (3.10)
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elde edilir. A ve B eşitliklerinde ϕ (τ , λ) yerine cos sτ +O
¡
1
s

¢
ifadesi yazılırsa

A = h+H +

πZ
0

½
cos sτ +

H

s
sin sτ

¾½
cos sτ +O

µ
1

s

¶¾
q (τ) dτ

= h+H +
1

2

πZ
0

q (τ) dτ +
1

2

πZ
0

q (τ) cos 2sτdτ +O

µ
1

s

¶
,

B =
1

2

πZ
0

q (τ) sin 2sτdτ +O

µ
1

s

¶
.

bulunur. Hipotezden q (x) sınırlı türeve sahip olduğundan kısmi integrasyon uygula-

narak
πZ
0

q (τ) cos 2sτdτ =
1

2s
q (τ) sin 2sτ

¯̄̄̄π
0

−
πZ
0

1

2s
q0 (τ) sin 2sτdτ = O

µ
1

s

¶
πZ
0

q (τ) sin 2sτdτ = − 1
2s
q (τ) cos 2sτ

¯̄̄̄π
0

+

πZ
0

1

2s
q0 (τ) cos 2sτdτ = O

µ
1

s

¶

bulunur. Buradan

A = h+H + h1 +O

µ
1

s

¶
, h1 =

1

2

πZ
0

q (τ) dτ,

B = O

µ
1

s

¶
.

elde edilir. Buradan (3.10) denklemi

tan sπ =
h+H + h1 +O

¡
1
s

¢
s+O

¡
1
s

¢
olup sn = n+ δn ve tanx in seri açılımından dolayı

tanπδn =
h+H + h1

n
+O

µ
1

n2

¶
δn =

h+H + h1
πn

+O

µ
1

n2

¶

olur. c = 1
π

µ
h+H + 1

2

πR
0

q (τ) dτ

¶
olmak üzere son ifade

sn = n+
c

n
+O

µ
1

n2

¶
formuna dönüşür.
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3.2. Sturm-Liouville Operatörü İçin Dönüşüm Operatörü

E, lineer topolojik uzay ve A, B : E → E lineer operatörler olmak üzere E1 ve

E2 ⊂ E kapalı alt uzayları olsun.

Tanım 3.2.1. X : E1 → E2 lineer sürekli operatör olmak üzere

1. AX = BA2

2. X−1 mevcut ve sürekli olması şartlarının sağlanması halinde X operatörüne A

ve B operatörler çifti için dönüşüm operatörü denir.

Lemma 3.2.1. λ özdeğerine kaŗsılık gelen B operatörünün özfonksiyonu ϕλ ∈ E1,

yani

Bϕλ = λϕλ

olmak üzere, aynı λ özdeğerine kaŗsılık gelen ψλ = Xϕλ, A operatörünün özfonksi-

yonudur. Dolayısıyla

Aψλ = λψλ

dır.

İspat. AX = XB olduğundan

Aψλ = AXϕλ = XBϕλ = X (λϕλ) = λXϕλ = λψλ

olur. Bu da ispatı tamamlar.

Lemma 3.2.2. Lineer topolojik E uzayında A1, A2 ve A3 lineer operatörleri ve

E1, E2, E3 kapalı alt uzayları verilmi̧s olsun. A1 ve A2 operatörler çifti için XA1,A2

dönüşüm operatörü

XA1,A2 : E2 → E3

şeklinde, A2 ve A3 operatörler çifti için XA2,A3 dönüşüm operatörü ise

XA2,A3 : E1 → E2

şeklinde tanımlansın. Bu durumda A1 ve A3 operatörler çifti için XA1,A3 dönüşüm

operatörü,

XA1,A3 : E1 → E3

şeklinde olmak üzere

XA1,A3 = XA1,A2XA2,A3
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formülü ile ifade edilir.

İspat. Dönüşüm operatörünün tanımından dolayı

A1XA1,A2 = XA1,A2A2

A2XA2,A3 = XA2,A3A3

şeklinde olup, ikinci denklemden A2 = XA2,A3A3X
−1
A2,A3

elde edilir. Bu eşitlik birinci

denklemde yerine yazılırsa

A1XA1,A2 = XA1,A2XA2,A3A3X
−1
A2,A3

veya

A1XA1,A2XA2,A3 = XA1,A2XA2,A3A3

elde edilir. Bu da ispatı tamamlar.

E kompleks değerli 0 ≤ x < ∞ aralığında sürekli ve birinci mertebeden türevleri

sürekli fonksiyonlar uzayı olsun. q (x) , r (x) 0 ≤ x < ∞ aralığında kompleks değerli,

sürekli fonksiyonlar olmak üzere

A = − d2

dx2
+ q (x) , B = − d2

dx2
+ r (x)

olsun. E1, E2 ⊂ E ve h1, h2 keyfi kompleks sayılar olmak üzere E1 deki fonksiyonlar

için

h1f
0 (0) = h1f (0) (3.11)

şartı, E2 deki fonksiyonlar için de

h2f
0 (0) = h2f (0) (3.12)

şartı sağlansın.

Teorem 3.2.1. XA,B : E1 → E2 dönüşüm operatörünün görüntüsü

Xf = f (x) +

xZ
0

K(x, t)f (t) dt (3.13)

şeklindedir. Burada K(x, t) çekirdeği

∂2K(x, t)

∂x2
− q (x)K(x, t) =

∂2K(x, t)

∂t2
− r (t)K(x, t) (3.14)
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diferensiyel denkleminin

K(x, x) = h2 − h1 +
1

2

Z x

0

[q (s)− r (s)] ds, (3.15)

∙
∂K

∂x
− h1K

¸
t=0

= 0 (3.16)

şartlarını sağlayan çözüm fonksiyonudur.

İspat. (3.13) bağıntısı x’e göre diferensiyellenirse

(Xf)0 = f 0 (x) +K(x, x)f (x) +

xZ
0

∂K

∂x
f (t) dt (3.17)

olur. Xf(x) ∈ E2 olduğundan (3.17) de x = 0 yazılırsa

(Xf 0)x=0 = f 0 (0) +K(0, 0)f (0)

h2f (0) = h1f (0) +K(0, 0)f (0)

(h2 − h1)f (0) = K(0, 0)f (0)

K(0, 0) = h2 − h1 (3.18)

elde edilir.

(Xf)00 = f 00 (x) +K 0(x, x)f (x) +K(x, x)f 0 (x) +
∂K

∂x

¯̄̄̄
t=x

f (x) +

xZ
0

∂2K

∂x2
f (t) dt

olur. Böylece

A(Xf) = − (Xf)00 + q(x)(Xf)

= −f 00 − ∂K (x, x)

∂x

¯̄̄̄
t=x

f(x)− dK (x, x)

dx
f(x)

−K(x, x)f 0 (x)−
xZ
0

∂2K

∂x2
f (t) dt

+q(x)f (x) +

xZ
0

K (x, t) f(t)q (x) dt

= −f 00 −
µ
∂K

∂x

¯̄̄̄
t=x

+
dK (x, x)

dx
− q(x)

¶
f(x) (3.19)

−K(x, x)f 0 (x)−
xZ
0

∙
∂2K

∂x2
− q(x)K

¸
f(t)dt

olur.
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Şimdi X(Bf)’i hesaplayalım:

X(Bf) = Bf +

xZ
0

K(x, t)(Bf)dt, (Bf = −f 00(x) + r(x)f(x))

= −f 00(x) + r(x)f(x) +

xZ
0

K(x, t) [−f 00(x) + r(x)f(x)] dt

eşitlikteki integrale kısmi integrasyon uygulanırsa;

X(Bf) = −f 00(x) + r(x)f(x)−K(x, x)f 0 (x) +K(x, 0)f 0 (0)

+
∂K

∂t

¯̄̄̄
t=x

f(x)− ∂K

∂t

¯̄̄̄
t=0

f(0)−
xZ
0

∙
∂2K

∂t2
− r (t)K

¸
f(t)dt (3.20)

elde edilir. (3.19) ve (3.20) eşitlenirse

∂2K(x, t)

∂x2
− q (x)K(x, t) =

∂2K(x, t)

∂t2
− r (t)K(x, t)∙

∂K

∂x
− h1K

¸
t=0

= 0

2
dK (x, x)

dx
= q (x)− r (x)

elde edilir.

3.3. İki Spektruma Göre Ters Sturm-Liouville Problemi

p (x) ve q (x), 0 ≤ x ≤ π aralığında reel değerli sürekli fonksiyonlar, h ve H reel

sayılar olmak üzere

y00 + (λ− q (x)) y = 0, 0 < x < π (3.21)

y0(0)− hy(0) = 0

y0(π) +Hy(π) = 0, (3.22)

y00 + (µ− p (x)) y = 0, 0 < x < π (3.23)

şeklindeki iki Sturm-Liouville problemini gözönüne alalım.

(3.21)-(3.22) probleminin özdeğerleri {λn}∞n=0 ve (3.23)-(3.22) probleminin özdeğer-

leri de {µn}∞n=0olsun. (3.21)-(3.2) probleminin özfonksiyonu φ (x, λn), (3.23)-(3.22)
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probleminin özfonksiyonu da φ (x, µn) olsun. (3.21)-(3.22) probleminin normlaştırıcı

sayıları

ρn =

Z π

0

φ2 (x, λn) dx

olacak şekilde özdeğer ve normlaştırıcı sayıları için asimptotik formüller

p
λn = n+

a0
n
+O

µ
1

n2

¶
, (3.24)

ρn =
π

2
+O

µ
1

n2

¶
(3.25)

formundadır. Ayrıca φ (x, λn) özfonksiyonları

φ (x, λ) = cos
√
λx+

h√
λ
sin
√
λx+O

µ
1√
λ

¶
(3.26)

formundadır. Benzer şekilde (3.23)-(3.22) problemi için de asimptotik formüller

√
µn = n+

a00
n
+O

µ
1

n2

¶
,

σn =
π

2
+O

µ
1

n2

¶
şeklindedir.

Spektral verilere göre q (x) potansiyelinin, h ve H sayılarının bulunmasına ters

Sturm-Liouville problemi denir. Bu spektral veriler Sturm-Liouville operatörünün

spektrumu, normlaştırıcı sayıları, spektral fonksiyonu, nodal noktaları olabilir.

q (x) ∈ C1 [0, π] reel değerli bir fonksiyon, h ve H ’ın bilinen reel sayılar olduğunu

kabul edelim. Ayrıca (3.21)-(3.22) probleminin spektral karekteristikleri {λn, ρn}∞n=0
’ler de verilsin. p (x) ∈ C1 [0, π] bilinmeyeniyle (3.23)-(3.22) probleminin {µn, σn}∞n=0
farklı spektral karekteristiklerinin verildiğini kabul edelim.

Lemma 3.2.1. λ ≥ 1 ve 0 ≤ x ≤ π olmak üzere

|φ (x, λ)|+ |φ
0 (x, λ)|√

λ
≤ M, (3.27)

√
λ
¯̄̄
φ̇ (x, λ)

¯̄̄
+
¯̄̄
φ̇
0
(x, λ)

¯̄̄
≤ M

olacak şekilde bir M > 0 sabiti vardır.

İspat.λ ≥ 1 olduğundan

φ (x, λ) = cos
√
λx+

h√
λ
sin
√
λx+O

µ
1√
λ

¶
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alınabilir. (3.26) eşitliğinin x’e ve λ’ya göre kısmi türevleri alınırsa

φ0 (x, λ) = φx (x, λ) = −
√
λ sin

√
λx+ h cos

√
λx+O

µ
1√
λ

¶

φ̇ (x, λ) = φλ (x, λ) = −
x

2
√
λ
sin
√
λx+

hx

2λ
cos
√
λx

− h

2
√
λλ
sin
√
λx+O

µ
1√
λ3

¶

φ̇
0
(x, λ) = − 1

2
√
λ
sin
√
λx− x

2
cos
√
λx

+
h

2λ
cos
√
λx− hx

2
√
λ
sin
√
λx+O

µ
1√
λ3

¶
elde edilir. −1 ≤ cos

√
λx ≤ 1, −1 ≤ sin

√
λx ≤ 1, 0 ≤ x ≤ π eşitsizlikleri gözönüne

alınarak ve yukarıda elde edilen eşitlikler (3.27) de yazılarak

|φ (x, λ)|+ |φ0 (x, λ)| /
√
λ ≤ M,

√
λ
¯̄̄
φ̇ (x, λ)

¯̄̄
+
¯̄̄
φ̇
0
(x, λ)

¯̄̄
≤ M

elde edilir.

Teorem 3.2.1. Eğer A ≡
∞P
n=0

√
λn |σn − ρn|+ |µn − λn| yeterince küçük ise

max
o≤x≤π

|p (x)− q (x)| ≤ C.A

dır. Burada C; h, H ve q (x) ’e bağlı pozitif bir sabittir.

İspat.

F (x, s) =
∞X
n=0

∙
φ (x, µn)φ (s, µn)

σn
− φ (x, λn)φ (s, λn)

ρn

¸
(3.28)

olmak üzere F (x, s) fonksiyonu 0 ≤ x, s ≤ π de sürekli, iki defa diferensiyellenebilirdir.

K(x, s) +

Z x

0

K(x, t)F (t, s)dt+ F (x, s) = 0, 0 ≤ s ≤ x ≤ π (3.29)

esas integral denklemi ikinci tür Volterra integral denklemidir ve her sabit x için bir tek

sürekli K(x, s) çözümüne sahiptir. Ayrıca K(x, s) çözümü 0 ≤ s ≤ x ≤ π aralığında

ikinci mertebeden sürekli diferensiyellenebilirdir. Ayrıca
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Kxx − p (x)K = Kss − q (s)K, 0 ≤ x ≤ π, (3.30)

diferensiyel denkleminin

K(x, x) =
1

2

Z x

0

(p (t)− q (t)) dt, 0 ≤ x ≤ π, (3.31)

Ks(x, 0)− hK(x, 0) = 0, 0 ≤ x ≤ π (3.32)

sınır şartlarını sağlayan bir tek K(x, s) çözüm fonksiyonu vardır[58].

(3.29) integral denklemi ardı̧sık yaklaşımlar yöntemiyle çözelim. Bu denklemde

F (x, s) fonksiyonu bilinen bir fonksiyon olup K(x, s) çözümü bulunacaktır.

Önce F (s, t) ’i ele alalım ve aşağıdaki gibi F (n)(s, t;x) ( n = 1, 2, 3, ...) fonksiyon-

larını oluşturalım:

F (1)(s, t;x) = F (s, t), (3.33)

F (n+1)(s, t;x) =

Z x

0

F (s, u)F (n) (u, t;x) du, n ≥ 1

Z π

0

Z π

0

|F (s, t)|2 dsdt < 1 (3.34)

olmak üzere K(x, s) çözümü

K(x, s) =
∞X
n=1

(−1)n F (n) (x, s) 0 ≤ s ≤ x ≤ π (3.35)

dir. (3.31) eşitliğinin x’e göre diferensiyeli alınarak

1

2
(q (x)− p (x)) = − d

dx
K(x, x) (3.36)

bulunur. (3.36) ifadesi (3.35) de yerine yazılırsa

1

2
(q (x)− p (x)) = − d

dx

Ã ∞X
n=1

(−1)n F (n) (x, x;x)

!

=
d

dx
F (x, x) +

∞X
n=1

(−1)n d

dx
F (n+1)(x, x;x) (3.37)

elde edilir. d
dx
F (n+1)(x, x;x) ’i hesaplayalım:
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d

dx
F (n+1)(x, x;x) =

n
F (n+1)
s + F

(n+1)
t + F (n+1)

x

o
s=x
t=x

=

Z x

0

Fs(s, u)F
(n)(u, t;x)du

+

Z x

0

Ft(u, t)F
(n)(s, u;x)du+ F (n+1)

x (s, t;x)s=x
t=x

= 2

Z x

0

Fx(x, u)F
(n)(x, u;x)du+

nX
k=1

F (k)(x, x;x)F (n+1−k)(x, x;x)

olup bu eşitlik (3.37) de yerine yazılırsa

1

2
(q (x)− p (x)) =

d

dx
F (x, x) + 2

Z x

0

Fx(x, u)K(x, u)du

+
∞X
n=1

(−1)n
nX

k=1

F (k)(x, x;x)F (n+1−k)(x, x;x)

=
d

dx
F (x, x)−K2(x, x) + 2

Z x

0

Fx(x, u)K(x, u)du (3.38)

elde edilir.

A0 =
1

2
inf
n
ρn

alalım.

ρn =
π
2
+O

¡
1
n2

¢
asimptotik formülünden A0 ın pozitif olduğu bulunur.

A ≡
∞X
n=0

hp
λn |σn − ρn|+ |µn − λn|

i
≤ A0 (3.39)

olsun. Bu taktirde her bir n için

ρn ≥ 2A0, σn ≥ A0 (3.40)

elde edilir.

F (x, s) =
∞X
n=0

∙
φ (x, µn)φ (s, µn)

σn
− φ (x, λn)φ (s, λn)

ρn

¸
eşitliğinin sağ tarafı x ’ e göre diferensiyellenirse

Fx(x, s) =
∞X
n=0

∙
φ0 (x, µn)φ (s, µn)

σn
− φ0 (x, λn)φ (s, λn)

ρn

¸
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olur. Bu ifadeye φ0(x,λn)φ(s,λn)
σn

ifadesi eklenip çıkarılırsa ve gerekli düzenlemeler yapılırsa

Fx(x, s) =
∞X
n=0

∙
φ0 (x, µn)φ (s, µn)

σn
− φ0 (x, λn)φ (s, λn)

ρn

¸
=

∞X
n=0

∙
φ0 (x, µn)φ (s, µn)

σn
− φ0 (x, λn)φ (s, λn)

ρn

+
φ0 (x, λn)φ (s, λn)

σn
− φ0 (x, λn)φ (s, λn)

σn

¸
=

∞X
n=0

∙µ
1

σn
− 1

ρn

¶
φ0 (x, λn)φ (s, λn)

+
1

σn
(φ0 (x, µn)φ (s, µn)− φ0 (x, λn)φ (s, λn))

¸
=

∞X
n=0

∙µ
1

σn
− 1

ρn

¶
φ0 (x, λn)φ (s, λn) +

1

σn

Z µn

λn

(φ0 (x, λ)φ (s, λ))
·
dλ

¸
=

∞X
n=0

∙µ
1

σn
− 1

ρn

¶
φ0 (x, λn)φ (s, λn)

+
1

σn

Z µn

λn

³
φ̇
0
(x, λ)φ (s, λ) + φ0 (x, λ) φ̇ (s, λ)

´
dλ

¸
elde edilir. Buradan

|Fx(x, s)| ≤
∞X
n=0

¯̄̄̄µ
σn − ρn
σnρn

¶
φ0 (x, λn)φ (s, λn)

¯̄̄̄
+

∞X
n=0

¯̄̄̄
1

σn

Z µn

λn

³
φ̇
0
(x, λ)φ (s, λ) + φ0 (x, λ) φ̇ (s, λ)

´
dλ

¯̄̄̄
olup (3.39), (3.40) ve lemma 3.2.1 den

|Fx(x, s)| ≤ C 0
∞X
n=0

hp
λn |σn − ρn|+ |µn − λn|

i
≡ C 0A

elde edilir. Buradan da ¯̄̄̄
d

dx
F (x, x)

¯̄̄̄
≤ 2C 0A (3.41)

olur. Benzer şekilde

F (x, s) =
∞X
n=0

∙
φ (x, µn)φ (s, µn)

σn
− φ (x, λn)φ (s, λn)

ρn

¸
olup bu eşitliğe φ(x,λn)φ(s,λn)

σn
ifadesi eklenip çıkarılırsa

F (x, s) =
∞X
n=0

∙µ
1

σn
− 1

ρn

¶
φ (x, λn)φ (s, λn) +

1

σn

Z µn

λn

(φ (x, λ)φ (s, λ))· dλ

¸
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olup buradan

|F (x, s)| ≤
∞X
n=0

¯̄̄̄µ
1

σn
− 1

ρn

¶
φ (x, λn)φ (s, λn)

¯̄̄̄
+

∞X
n=0

¯̄̄̄
1

σn

Z µn

λn

(φ (x, λ)φ (s, λ))· dλ

¯̄̄̄
=

∞X
n=0

¯̄̄̄µ
1

σn
− 1

ρn

¶
φ (x, λn)φ (s, λn)

¯̄̄̄
+

∞X
n=0

¯̄̄̄
1

σn

Z µn

λn

³
φ̇ (x, λ)φ (s, λ) + φ̇ (s, λ)φ (x, λ)

´
dλ

¯̄̄̄

|F (x, s)| ≤
∞X
n=0

h
|σn − ρn|+

¯̄̄√
µn −

p
λn

¯̄̄i
≤ C 00A (3.42)

elde edilir. Burada C 0 ve C 00 sadece q(x), h ve H ’a bağlı sabitlerdir.

0 ≤ x ≤ π olduğundan (3.33) eşitliğinden¯̄
F (2)(s, t;x)

¯̄
=

¯̄̄̄Z x

0

F (s, u)F (1) (u, t;x) du

¯̄̄̄
≤
Z x

0

(C 00A)
2
du ≤ (C 00A)

2
π¯̄

F (3)(s, t;x)
¯̄
=

¯̄̄̄Z x

0

F (s, u)F (2) (u, t;x) du

¯̄̄̄
≤
Z x

0

(C 00A)
3
du ≤ (C 00A)

3
π2

... =
...¯̄

F (n)(s, t;x)
¯̄
=

¯̄̄̄Z x

0

F (s, u)F (n−1) (u, t;x) du

¯̄̄̄
≤
Z x

0

(C 00A)
n
du

≤ 1

π
(C 00Aπ)

n (3.43)

bulunur.

Eğer πC 00A yeteri kadar küçük ise yani πC 00A < 1
2
ise, bu durumda (3.43) eşit-

sizliğinden

|K(x, s)| =
¯̄̄̄
¯
∞X
n=1

(−1)nF (n)(x, s;x)

¯̄̄̄
¯ ≤

∞X
n=1

1

π
(πC 00A)

n ≤ 2C 00A (3.44)

olur. A ≤ min
©
A0, (2πC

00)−1
ª
olmak üzere (3.41), (3.42) ve (3.44) eşitsizlikleri (3.38)

denkleminde yerine yazılırsa

|p (x)− q (x)| ≤ C
∞X
n=0

hp
λn |σn − ρn|+ |µn − λn|

i
elde edelir.
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4. DIRAC OPERATÖRÜ

4.1. Bir Boyutlu Dirac Sistemi

pik (x), (i, k = 1, 2), [0, π] aralığında tanımlı ve sürekli reel değerli fonksiyonlar

olmak üzere

L =

⎛⎝ p11 (x) p12 (x)

p21 (x) p22 (x)

⎞⎠ , p12 (x) = p21 (x) (4.1)

bir matris operatörü olsun. y (x) iki bileşenli bir vektör fonksiyonu

y (x) =

⎛⎝ y1 (x)

y2 (x)

⎞⎠ , B =

⎛⎝ 0 1

−1 0

⎞⎠ , I =

⎛⎝ 1 0

0 1

⎞⎠
olmak üzere

µ
B

d

dx
+ L (x)− λI

¶
y = 0 (4.2)

denklemi iki tane birinci mertebeden adi diferensiyel denklemden oluşan

dy2
dx

+ p11 (x) y1 + p12 (x) y2 = λy1 (4.20)

−dy1
dx

+ p21 (x) y1 + p22 (x) y2 = λy2

denklem sistemine denktir.

Bu durumda V (x)− potansiyel fonksiyon, m− zerreciğin kütlesi olacak biçimde

p12 (x) = p21 (x) ≡ 0, p11 (x) = V (x) + m ve p11 (x) = V (x) − m olurken relavistik

kuantum teorisinde (4.2) sistemi bir boyutlu stasyoner Dirac sistemi olarak bilinmek-

tedir.

2-boyutlu uzayın her düzgün ortogonal dönüşümü

H (x) =

⎛⎝ cosϕ (x) − sinϕ (x)

sinϕ (x) cosϕ (x)

⎞⎠
şeklinde bir matris ile tanımlanır[32]. Ayrıca



BH = HB

olduğu kolayca görülür. Gerçekten

BH =

⎛⎝ 0 1

−1 0

⎞⎠⎛⎝ cosϕ (x) − sinϕ (x)

sinϕ (x) cosϕ (x)

⎞⎠
=

⎛⎝ sinϕ (x) cosϕ (x)

− cosϕ (x) sinϕ (x)

⎞⎠
ve

HB =

⎛⎝ cosϕ (x) − sinϕ (x)

sinϕ (x) cosϕ (x)

⎞⎠⎛⎝ 0 1

−1 0

⎞⎠
=

⎛⎝ sinϕ (x) cosϕ (x)

− cosϕ (x) sinϕ (x)

⎞⎠
olup BH = HB dir.

y = Hz olacak şekilde (4.2) denkleminin her iki tarafını soldan H−1 ile çarparsak,

H−1B
d

dx
(Hz) +H−1LHz = λH−1Hz

veya

B
dz

dx
+

µ
H−1B

d

dx
H +H−1LH

¶
z = λz (4.3)

elde ederiz.

Q = H−1B
d

dx
H +H−1LH

olmak üzere Q matrisini hesaplayalım. Bu taktirde

H−1 (x) =

⎛⎝ cosϕ (x) sinϕ (x)

− sinϕ (x) cosϕ (x)

⎞⎠ ,

H−1 (x) =
1

detH (x)

⎛⎝ H22(x) −H12(x)

−H21(x) H11(x)

⎞⎠
29



d

dx
H =

⎛⎝ −ϕ0 (x) sinϕ (x) −ϕ0 (x) cosϕ (x)
ϕ0 (x) cosϕ (x) −ϕ0 (x) sinϕ (x)

⎞⎠
olmak üzere

H−1B
d

dx
H =

⎛⎝ cosϕ (x) sinϕ (x)

− sinϕ (x) cosϕ (x)

⎞⎠⎛⎝ 0 1

−1 0

⎞⎠⎛⎝ −ϕ0 (x) sinϕ (x) −ϕ0 (x) cosϕ (x)
ϕ0 (x) cosϕ (x) −ϕ0 (x) sinϕ (x)

⎞⎠
=

⎛⎝ − sinϕ (x) cosϕ (x)

− cosϕ (x) − sinϕ (x)

⎞⎠⎛⎝ −ϕ0 (x) sinϕ (x) −ϕ0 (x) cosϕ (x)
ϕ0 (x) cosϕ (x) −ϕ0 (x) sinϕ (x)

⎞⎠
=

⎛⎝ ϕ0 (x) 0

0 ϕ0 (x)

⎞⎠

H−1LH =

⎛⎝ cosϕ (x) sinϕ (x)

− sinϕ (x) cosϕ (x)

⎞⎠⎛⎝ p11 (x) p12 (x)

p21 (x) p22 (x)

⎞⎠⎛⎝ cosϕ (x) − sinϕ (x)

sinϕ (x) cosϕ (x)

⎞⎠
=

⎛⎝ cosϕ (x) p11 (x) + sinϕ (x) p21 (x) cosϕ (x) p12 (x) + sinϕ (x) p22 (x)

− sinϕ (x) p11 (x) + cosϕ (x) p21 (x) − sinϕ (x) p12 (x) + cosϕ (x) p22 (x)

⎞⎠ .

.

⎛⎝ cosϕ (x) − sinϕ (x)

sinϕ (x) cosϕ (x)

⎞⎠
=

⎛⎝ p11 cos
2 ϕ+ p12 sin 2ϕ+ p22 sin

2 ϕ p12 cos 2ϕ+
1
2
(p22 − p11) sin 2ϕ

p12 cos 2ϕ+
1
2
(p22 − p11) sin 2ϕ p11 sin

2 ϕ− p12 sin 2ϕ+ p22 cos
2 ϕ

⎞⎠
elde ederiz. Son iki eşitlikten,

Q =

⎛⎝ q11 q12

q21 q22

⎞⎠
=

⎛⎝ ϕ0 (x) + p11 cos
2 ϕ+ p12 sin 2ϕ+ p22 sin

2 ϕ p12 cos 2ϕ+
1
2
(p22 − p11) sin 2ϕ

p12 cos 2ϕ+
1
2
(p22 − p11) sin 2ϕ ϕ0 (x) + p11 sin

2 ϕ− p12 sin 2ϕ+ p22 cos
2 ϕ

⎞⎠
elde ederiz. q12 (x) = 0 olmak üzere ϕ (x) fonksiyonunu seçelim. Bu taktirde

p12 cos 2ϕ (x) +
1

2
{p22 (x)− p11 (x)} sin 2ϕ (x) = 0
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dir. Buradan

ϕ (x) =
1

2
arctan

2p12 (x)

p11 (x)− p22 (x)

elde edilir. Q (x) matrisinin görüntüsü

Q (x) =

⎛⎝ q11 (x) 0

0 q22 (x)

⎞⎠ ≡
⎛⎝ p (x) 0

0 r (x)

⎞⎠
şeklinde olur. Buna göre (4.3) denklemi,

⎛⎝ 0 1

−1 0

⎞⎠ dz

dx
+

⎛⎝ p (x) 0

0 r (x)

⎞⎠ z = λz (4.4)

şeklinde yazılabilir. Bu denkleme Dirac denkleminin I. kanonik formu denir.

Şimdi IzQ (x) = q11 (x)+ q22 (x) = 0 olmak üzere bir ϕ (x) fonksiyonu seçelim.Yani

2ϕ0 (x) + p11 (x) + p22 (x) = 0

dır. Buradan

ϕ (x) = −1
2

xZ
0

{p11 (z) + p22 (z)} dz

elde edilir. Buna göre (4.3) denklemini

⎛⎝ 0 1

−1 0

⎞⎠ dz

dx
+

⎛⎝ p (x) q (x)

q (x) −p (x)

⎞⎠ z = λz (4.5)

şeklinde yazabiliriz. Bu denkleme Dirac denkleminin II. kanonik formu denir. (4.4) ve

(4.5) denklemlerine (4.2) sisteminin kanonik formları da denir. (4.2) denklem sistem-

inin spektral teorisinin çeşitli sorularını incelerken bu veya diğer kanonik formlardan

faydalanmak kolaylık sağlar. Örneğin, özdeğerlerin ve özvektör fonksiyonlarının asimp-

totik davranı̧sı araştırılırken ve keyfi vektör fonksiyonunun (0 ve π noktalarında homo-

jen sınır şartları sağlandığında) (4.2) denklem sisteminin özvektör fonksiyonlarına göre

açılımı incelenirken (4.4) kanonik denkleminden faydalanmak kolaylık sağlar. Sonsuz
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aralıkta verilmi̧s (4.2) denklem sisteminin özdeğerlerinin asimptotik davranı̧sı ve ters

problem incelenirken de (4.5) kanonik denklemi kolaylık sağlar.

(4.4) kanonik denklem sistemi için p (x) ve r (x), [0, π] aralığında reel değerli ve

sürekli fonksiyonlar olmak üzere

y02 + {p (x)− λ} y1 = 0 , y01 − {r (x)− λ} y2 = 0 (4.6)

y2 (0) cosα+ y1 (0) sinα = 0 (4.7)

y2 (π) cosα+ y1 (π) sinα = 0 (4.8)

sınırdeğer problemini gözönüne alalım. Herhangi bir λ1 değeri için bu problemin sıfır-

dan farklı çözümü y (x, λ1) =

⎛⎝ y1 (x, λ1)

y2 (x, λ1)

⎞⎠ olsun. Bu durumda λ1’e özdeğer, buna

kaŗsılık gelen y (x, λ1) ’ e de özvektör fonksiyonu denir.

Lemma 4.1.1. λ1 6= λ2 olmak üzere λ1 ve λ2 özdeğerlerine kaŗsılık gelen y (x, λ1)

ve z (x, λ2) özvektör fonksiyonları ortogonaldir, yani,

πZ
0

{y1 (x, λ1) z1 (x, λ2) + y2 (x, λ1) z2 (x, λ2)} dx = 0

dir.

İspat: y (x, λ1) ve z (x, λ2) özvektör fonksiyonları (4.6) sisteminin çözümleri olduğun-

dan ,

y02 (x, λ1) + {p (x)− λ1} y1 (x, λ1) = 0

y01 (x, λ1)− {r (x)− λ1} y2 (x, λ1) = 0

z02 (x, λ2) + {p (x)− λ2} z1 (x, λ2) = 0

z02 (x, λ2)− {r (x)− λ2} z2 (x, λ2) = 0

dir. Bu denklemleri sırası ile z1 (x, λ2) , −z2 (x, λ2) , −y1 (x, λ1) ve y2 (x, λ1) ile çarpar

ve sonuçları toplarsak,

d

dx
{y1 (x, λ1) z2 (x, λ2)− y2 (x, λ1) z1 (x, λ2)}

= (λ1 − λ2) {y1 (x, λ1) z1 (x, λ2) + y2 (x, λ1) z2 (x, λ2)} = 0
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elde ederiz. Bu son eşitliği x’e göre 0 ’dan π’ ye integrallersek

(λ1 − λ2)

πZ
0

{y1 (x, λ1) z1 (x, λ2) + y2 (x, λ1) z2 (x, λ2)} dx

= {y1 (x, λ1) z2 (x, λ2)− y2 (x, λ1) z1 (x, λ2)}|π0

bulunur. Buradan (λ1 − λ2) 6= 0 olduğundan

πZ
0

{y1 (x, λ1) z1 (x, λ2) + y2 (x, λ1) z2 (x, λ2)} dx = 0

veya
πZ
0

yT (x, λ1) z (x, λ2) dx = 0

olur. Bu da ispatı tamamlar.

Lemma 4.1.2. (4.6)-(4.8) sınırdeğer probleminin özdeğerleri reeldir.

İspat: Aksini varsayalım. Yani λ1 = u+ iv kompleks özdeğer olsun. p (x) ve r (x)

reel değerli fonksiyonlar ve α, β sayıları reel olduğundan Dirac operatörünün genel

denkleminde eşleniği alınırsa, λ2 = λ1 = u− iv sayısı da bir özdeğerdir. λ2 ’ ye kaŗsılık

gelen y (x, λ2) özvektör fonksiyonudur. Bu taktirde lemma 4.1.1 den dolayı

¡
λ− λ

¢ πZ
0

{y1 (x, λ1) y1 (x, λ2) + y2 (x, λ1) y2 (x, λ2)} dx = 0

ve

¡
λ− λ

¢ πZ
0

©
|y1 (x, λ1)|2 + |y2 (x, λ1)|2

ª
dx = 0

olur. λ 6= λ olduğundan y1 (x, λ1) = 0 ve y2 (x, λ1) = 0 olurki bu özvektör fonksiyon-

larının sıfır olmaması gerçeği ile çeli̧sir. O halde özdeğerler kompleks olamaz. Böylece

ispat tamamlanmı̧s olur.
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4.2. Kanonik Dirac Operatörü İçin Matris Dönüşüm Operatörü

pi (x) ve ri (x) , (i = 1, 2) , her sonlu aralıkta (0 ≤ x ≤ b <∞) integrallenebilir reel

değerli fonksiyonlar olmak üzere

A1 =

⎛⎝ p1 (x)
d
dx

− d
dx

r1 (x)

⎞⎠ =

⎛⎝ 0 1

−1 0

⎞⎠ d

dx
+

⎛⎝ p1 (x) 0

0 r1 (x)

⎞⎠
= B

d

dx
+Q1 (x) (4.9)

A2 =

⎛⎝ p2 (x)
d
dx

− d
dx

r2 (x)

⎞⎠ =

⎛⎝ 0 1

−1 0

⎞⎠ d

dx
+

⎛⎝ p2 (x) 0

0 r2 (x)

⎞⎠
= B

d

dx
+Q2 (x) (4.10)

operatörlerini gözönüne alalım. Keyfi sonlu reel h1 reel sayısı için

f2 (0)− h1f1 (0) = 0 (4.11)

sınır şartını sağlayan, [0, b) aralığında tanımlı, sürekli, diferensiyellenebilen

f (x) =

⎛⎝ f1 (x)

f2 (x)

⎞⎠
vektör fonksiyonlarının cümlesi E1 olsun. Keyfi sonlu reel h2 sayısı için

g2 (0)− h2g1 (0) = 0 (4.12)

sınır şartını sağlayan, [0, b) aralığında tanımlı, sürekli, diferensiyellenebilen

g (x) =

⎛⎝ g1 (x)

g2 (x)

⎞⎠
vektör fonksiyonlarının cümlesi E2 olsun. X operatör matrisi, f (x) ∈ E1 için

X {f (x)} = R (x) f (x) +

xZ
0

K(x, s)f(s)ds (4.13)

şeklinde ifade edilir. Burada R (x) ve K(x, s) iki sonlu boyutlu veya 2x2 boyutlu kare

matrislerdir.
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(4.9) ve (4.13) den,

A1X {f (x)} = BR0 (x) f (x) +BR (x) f 0 (x)

+Q1 (x)R (x) f (x) +BK(x, x)f (x)

+

xZ
0

{BK 0
x(x, s) +Q1 (x)K(x, s)} f(s)ds (4.14)

dir. Diğer taraftan (4.10) ve (4.13) den dolayı

A2X {f 0 (x)} = R (x)Bf 0 (x) +R (x)Q2 (x) f (x)

+

xZ
0

K(x, s) {Bf 0 (s) +Q2 (s) f(s)} ds

dir. Son denklemde kısmi integrasyondan faydalanılarak

XA2 {f 0 (x)} = R (x)Bf 0 (x) +R (x)Q2 (x) f (x)

+K(x, x)Bf (x)−K(x, 0)Bf (0)

+

xZ
0

{K(x, s)Q2 (s)−K 0
s(x, s)B} f(s)ds (4.15)

elde edilir. f (x), E1 uzayında keyfi vektör fonksiyonu olduğu için A1X = XA2 den

dolayı f (x) ve f 0 (x) in katsayıları ve (4.14), (4.15) nin integral altındaki ifadelerinin

eşit olması gerekir. Bu sebeple f 0 (x) lerin katsayıları için

BR (x) = R (x)B (4.16)

elde edilir. Eğer

R (x) =

⎛⎝ α (x) β (x)

γ (x) δ (x)

⎞⎠
şeklinde alınırsa (4.16) dan ⎛⎝ 0 1

−1 0

⎞⎠⎛⎝ α (x) β (x)

γ (x) δ (x)

⎞⎠
=

⎛⎝ α (x) β (x)

γ (x) δ (x)

⎞⎠⎛⎝ 0 1

−1 0

⎞⎠
olduğundan

δ (x) = α (x) , γ (x) = −β (x)
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bulunur, yani R (x) matrisinin görüntüsü

R (x) =

⎛⎝ α (x) β (x)

−β (x) α (x)

⎞⎠ (4.17)

olur.

Şimdi α (x) ve β (x) fonksiyonlarını hesaplayalım. Bunun için (4.14) ve (4.15) de

f (x) in katsayıları eşitlenirse R (x) matrisinin tanımlanması için aşağıdaki denklem

elde edilir:

BR0 (x) +Q1 (x)R (x)−R (x)Q2 (x) = K(x, x)B −BK(x, x). (4.18)

K(x, s) =

⎛⎝ K11(x, s) K12(x, s)

K21(x, s) K22(x, s)

⎞⎠
olmak üzere Q1 (x), Q2 (x), R (x) ve B matrislerinin görüntülerinden faydalanılarak

(4.18) denklemi ⎛⎝ −β0 (x) α0 (x)

−α0 (x) −β0 (x)

⎞⎠+
⎛⎝ p1 (x)α (x) p1 (x)β (x)

−r1 (x)β (x) r1 (x)α (x)

⎞⎠
−

⎛⎝ p2 (x)α (x) r2 (x)β (x)

−p2 (x)β (x) r2 (x)α (x)

⎞⎠
=

⎛⎝ −K12(x, x) K11(x, x)

−K22(x, x) K21(x, x)

⎞⎠
−

⎛⎝ K21(x, x) K22(x, x)

−K11(x, x) −K12(x, x)

⎞⎠
veya ⎛⎝ −β0 (x) + [p1 (x)− p2 (x)]α (x) α0 (x) + [p1 (x)− r2 (x)]β (x)

−α0 (x) + [p2 (x)− r1 (x)]β (x) −β0 (x) + [r1 (x)− r2 (x)]α (x)

⎞⎠
=

⎛⎝ − [K12(x, x) +K21(x, x)] K11(x, x)−K22(x, x)

K11(x, x)−K22(x, x) K12(x, x) +K21(x, x)

⎞⎠ (4.19)

şeklinde yazılabilir. Burada sağdaki matrisin esas köşegen elemanlarının sadece i̧saret-

leri farklıdır, diğer köşegen üzerinde bulunan elemanlar ise eşittir. Şimdi matrislerin

eşitliklerinden dolayı, bu özellik sol taraftaki matris içinde sağlanmalıdır. Bu sebeple
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(4.19) denkleminden

α0 (x) + [p1 (x)− r2 (x)]β (x) = −α0 (x) + [p2 (x)− r1 (x)]β (x)

β0 (x)− [p1 (x)− p2 (x)]α (x) = −β0 (x) + [r1 (x)− r2 (x)]α (x)

bulunur, yani

2α0 (x) + q (x)β (x) = 0

−2β0 (x) + q (x)α (x) = 0

⎫⎬⎭ (4.20)

dir. Burada

q (x) = p1 (x)− p2 (x) + r1 (x)− r2 (x) (4.21)

dir. (4.20) sisteminde bulunan birinci eşitlik α (x) ile ikinci eşitlik de β (x) ile çarpılıp,birinciden

ikinci çıkartılarak

2α (x)α0 (x) + 2β (x)β0 (x) = 0,

yani ¡
α2 (x) + β2 (x)

¢0
= 0

elde edilir. Buradan

α2 (x) + β2 (x) = α2 (0) + β2 (0) (4.22)

bulunur.

f1 (0) = 1, f2 (0) = h1 (4.23)

şartları sağlanmak üzere f (x) =

⎛⎝ f1 (x)

f2 (x)

⎞⎠ vektör fonksiyonu sürekli, diferensiyel-

lenebilir olsun. Bu takdirde f (x) in (4.11) sınır koşulunu sağladığı açıktır ve bu sebe-

ple f (x) ∈ E1 dir. Yine kabul edelim ki, g (x) =

⎛⎝ g1 (x)

g2 (x)

⎞⎠ vektör fonksiyonu, E2

uzayının elemanı, dolayısıyla (4.12) sınır şartı sağlanacak şekilde

X {f (x)} = g(x) (4.24)

olsun. Bu taktirde x = 0 için (4.24) eşitliğinden ve X matris operatörünün tanımından

dolayı, yani (4.13) ve (4.17) bağıntılarına göre

X {f (0)} = g(0) = R(0)f(0)

37



veya

g1(0) = α(0)f1(0) + β(0)f2(0)

g2(0) = −β(0)f1(0) + α(0)f2(0)

elde edilir. Bu denklemlerden (4.12) sınır şartı ve (4.23) şartları gözönüne alınmak

üzere son eşitliklerin birincisi h2 sayısı ile çarpılıp, daha sonra ikinciden çıkarılırsa

β(0) =
h1 − h2
1 + h1h2

α (0)

elde edilir.

α (0) = 1 (4.25)

alınırsa,

β(0) =
h1 − h2
1 + h1h2

(4.26)

olur. Buna göre,

α2 (0) + β2 (0) =
(1 + h21)

2
(1 + h22)

2

(1 + h1h2)
2 = χ2 (4.27)

olur. Şimdi (4.22), (4.25)-(4.27) eşitliklerinden faydalanarak (4.20) sistemini çözelim.

Eğer,

α (x) = χ sin k (x) , β (x) = cos k (x) (4.270)

olarak alınırsa,

α0 (x) = k0(x)χ cos k (x) , β0 (x) = −k0(x) sin k (x)

bulunur. Bu değerler (4.20) de yerine yazılıp elde edilen denklemlerden birincisi cos k (x)

ile ikincisi de sin k (x) ile çarpılıp, elde edilen denklemler toplanırsa

k (x) = −1
2

xZ
0

q (z) dz + arcsin
1

χ

bulunur. Bu değerler (4.270) de yerine yazlırsa, q (z) fonksiyonu (4.21) formülü, χ sayısı

ise (4.26) formülü ile tanımlanacak şekilde α (x) ve β (x) fonksiyonları için

α (x) = χ sin

⎧⎨⎩−12
xZ
0

q (z) dz + arcsin
1

χ

⎫⎬⎭ (4.28)

β (x) = χ cos

⎧⎨⎩−12
xZ
0

q (z) dz + arcsin
1

χ

⎫⎬⎭ (4.29)
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ifadeleri bulunur. Şimdi (4.14) ve (4.15) de integral altındaki ifadeler eşitlenirse,K(x, s)

matris çekirdeği için,

Ks(x, s)B +BKx (x, s) = K(x, s)Q2 (s)−Q1 (s)K(x, s) (4.30)

matris denklemi veya⎛⎝ ∂K11

∂s
∂K12

∂s

∂K21

∂s
∂K22

∂s

⎞⎠⎛⎝ 0 1

−1 0

⎞⎠+
⎛⎝ 0 1

−1 0

⎞⎠⎛⎝ ∂K11

∂x
∂K12

∂x

∂K21

∂x
∂K22

∂x

⎞⎠
=

⎛⎝ K11(x, s) K12(x, s)

K21(x, s) K22(x, s)

⎞⎠⎛⎝ p2 (s) 0

0 r2 (s)

⎞⎠
−

⎛⎝ p1 (x) 0

0 r1 (x)

⎞⎠⎛⎝ K11(x, s) K12(x, s)

K21(x, s) K22(x, s)

⎞⎠

=

⎛⎝ −∂K12

∂s
+ ∂K21

∂x
∂K11

∂s
+ ∂K22

∂x

−∂K22

∂s
− ∂K11

∂x
∂K21

∂s
− ∂K12

∂x

⎞⎠
=

⎛⎝ (p2 (s)− p1 (x))K11(x, s) (r2 (s)− p1 (x))K12(x, s)

(p2 (s)− r1 (x))K21(x, s) (r2 (s)− r1 (x))K22(x, s)

⎞⎠
−∂K12

∂s
+ ∂K21

∂x
= (p2 (s)− p1 (x))K11(x, s)

∂K11

∂s
+ ∂K22

∂x
= (r2 (s)− p1 (x))K12(x, s)

−∂K22

∂s
− ∂K11

∂x
= (p2 (s)− r1 (x))K21(x, s)

∂K21

∂s
− ∂K12

∂x
= (r2 (s)− r1 (x))K22(x, s)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.300)

denklemler sistemi elde edilir. Sonuç olarak (4.15) ifadesinde f(0) ı içeren terim sıfıra

eşit olur. Böylece,

K(x, 0)Bf(0) = 0

yani, ⎛⎝ −K12(x, 0) K11(x, 0)

−K22(x, 0) K21(x, 0)

⎞⎠ f(0) = 0

olur. Bu ise

K12(x, 0)f1(0) = K11(x, 0)f2(0)

K22(x, 0)f1(0) = K21(x, 0)f2(0)
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denklemler sistemine eşdeğerdir. (4.11) sınır koşulundan dolayı

K12(x, 0) = h1K11(x, 0), K22(x, 0) = h1K21(x, 0) (4.31)

elde edilir. ϕ (x) ve ψ (x) keyfi diferensiyellenebilir sürekli fonksiyonlar olacak biçimde,

K11(x, 0) = ϕ (x) , K21(x, 0) = ψ (x) (4.32)

ele alınırsa (4.31) ve (4.32) şartları, K(x, s) matris çekirdeği için

K(x, s)|s=0 =

⎛⎝ ϕ (x) h1ϕ (x)

ψ (x) h1ψ (x)

⎞⎠ (4.33)

şartını tanımlar. Burada (4.33) şartı (4.30) denklemi ile birlikte Cauchy problemini

tanımlar ve bu problem çözülebilirdir[57].

Benzer şekilde Dirac operatörünün II. Kanonik formu için

A1 =

⎛⎝ p1 (x)
d
dx
+ q1 (x)

− d
dx
+ q1 (x) −p1 (x)

⎞⎠
=

⎛⎝ 0 1

−1 0

⎞⎠ d

dx
+

⎛⎝ p1 (x) q1 (x)

q1 (x) −p1 (x)

⎞⎠
= B

d

dx
+Q1 (x)

A2 =

⎛⎝ p2 (x)
d
dx
+ q2 (x)

− d
dx
+ q2 (x) −p2 (x)

⎞⎠
=

⎛⎝ 0 1

−1 0

⎞⎠ d

dx
+

⎛⎝ p2 (x) q2 (x)

q2 (x) −p21 (x)

⎞⎠
= B

d

dx
+Q2 (x)

olmak üzere (4.46) denklemini⎛⎝ −β0 (x) α0 (x)

−α0 (x) −β0 (x)

⎞⎠+
⎛⎝ p1 (x)α (x)− q1 (x)β (x) p1 (x)β (x) + q1 (x)α (x)

q1 (x)α (x) + p1 (x)β (x) q1 (x) β (x) + p1 (x)α (x)

⎞⎠
−

⎛⎝ p2 (x)α (x) + q2 (x)β (x) q2 (x)α (x)− p2 (x)β (x)

−p2 (x)β (x) −q2 (x)β (x)− p2 (x)α (x)

⎞⎠
=

⎛⎝ −K12(x, x) K11(x, x)

−K22(x, x) K21(x, x)

⎞⎠−
⎛⎝ K21(x, x) K22(x, x)

−K11(x, x) −K12(x, x)

⎞⎠
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veya ⎛⎝ −β0 (x) + [p1 (x)− p2 (x)]α (x)− [q1 (x) + q2 (x)]β (x)

−α0 (x) + [q1 (x)− q2 (x)]α (x) + [p1 (x) + p2 (x)]β (x)

α0 (x) + [q1 (x)− q2 (x)]α (x) + [p1 (x) + p2 (x)]β (x)

−β0 (x) + [p2 (x)− p1 (x)]α (x) + [q1 (x) + q2 (x)]β (x)

⎞⎠

=

⎛⎝ − [K12(x, x) +K21(x, x)] K11(x, x)−K22(x, x)

K11(x, x)−K22(x, x) K12(x, x) +K21(x, x)

⎞⎠
şeklinde yazılır. Burada sağdaki matrisin esas köşegen elemanlarının sadece i̧saret-

leri farklıdır, diğer köşegen üzerinde bulunan elemanlar ise eşittir. Şimdi matrislerin

eşitliklerinden dolayı, bu özellik sol taraftaki matris içinde sağlanmalıdır. Bu sebeple

α0 (x) + [q1 (x)− q2 (x)]α (x) + [p1 (x) + p2 (x)]β (x)

= −α0 (x) + [q1 (x)− q2 (x)]α (x) + [p1 (x) + p2 (x)]β (x)

β0 (x)− [p1 (x)− p2 (x)]α (x) + [q1 (x) + q2 (x)]β (x)

= −β0 (x) + [p2 (x)− p1 (x)]α (x) + [q1 (x) + q2 (x)]β (x)

bulunur, yani

2α0 (x) = 0, 2β0 (x) = 0

dır. Buradan c1 ve c2 birer sabit olmak üzere

α (x) = c1, β (x) = c2

bulunur. Ayrıca (4.30) denklemi⎛⎝ ∂K11

∂s
∂K12

∂s

∂K21

∂s
∂K22

∂s

⎞⎠⎛⎝ 0 1

−1 0

⎞⎠+
⎛⎝ 0 1

−1 0

⎞⎠⎛⎝ ∂K11

∂x
∂K12

∂x

∂K21

∂x
∂K22

∂x

⎞⎠
=

⎛⎝ K11(x, s) K12(x, s)

K21(x, s) K22(x, s)

⎞⎠⎛⎝ p2 (s) q2 (s)

q2 (s) −p2 (s)

⎞⎠
−

⎛⎝ p1 (x) q1 (x)

q1 (x) −p1 (x)

⎞⎠⎛⎝ K11(x, s) K12(x, s)

K21(x, s) K22(x, s)

⎞⎠
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veya ⎛⎝ −∂K12

∂s
+ ∂K21

∂x
∂K11

∂s
+ ∂K22

∂x

−∂K22

∂s
− ∂K11

∂x
∂K21

∂s
− ∂K12

∂x

⎞⎠
=

⎛⎝ (p2 (x)− p1 (x))K11(x, s) + q2 (s)K12(x, s)− q1 (x)K22(x, s)

−q1 (x)K11(x, s) + p2 (s)K21(x, s) + (p1 (x) + p2 (s))K22(x, s)

q2 (s)K11(x, s)− (p1 (x) + p2 (x))K12(x, s)− q1 (x)K22(x, s)

−q1 (x)K12(x, s) + q2 (s)K21(x, s) + (p1 (x) + p2 (s))K22(x, s)

⎞⎠
şeklindedir. Bu durumda aşağıdaki

−∂K12

∂s
+ ∂K21

∂x
= (p2 (x)− p1 (x))K11(x, s) + q2 (s)K12(x, s)− q1 (x)K22(x, s)

∂K11

∂s
+ ∂K22

∂x
= q2 (s)K11(x, s)− (p1 (x) + p2 (x))K12(x, s)− q1 (x)K22(x, s)

−∂K22

∂s
− ∂K11

∂x
= −q1 (x)K11(x, s) + p2 (s)K21(x, s) + (p1 (x) + p2 (s))K22(x, s)

∂K21

∂s
− ∂K12

∂x
= −q1 (x)K12(x, s) + q2 (s)K21(x, s) + (p1 (x) + p2 (s))K22(x, s)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(4.33)

denklemler sistemi elde edilir. burada (4.33) şartı (4.34) denklemi ile birlikte bir Cauchy

problemini tanımlar ve bu problem çözülebilirdir.

4.3. II. Kanonik Formda Dirac Operatörü İçin Ters Problem

pi (x) ve qi (x) (i = 1, 2) , [0, π] aralığında sürekli fonksiyonlar olacak biçimde

Q1 (x) =

⎡⎣ p1 (x) q1 (x)

q1 (x) −p1 (x)

⎤⎦ , Q2 (x) =

⎡⎣ p2 (x) q2 (x)

q2 (x) −p2 (x)

⎤⎦
olsun.

By0 +Q1 (x) y = λy, (4.34)

y2 (0)− hy1 (0) = 0

y2 (π) +Hy1 (π) = 0

By0 +Q2 (x) y = µy, (4.35)

y2 (0)− hy1 (0) = 0

y2 (π) +Hy1 (π) = 0
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problemlerini ele alalım. (4.35) probleminin özdeğerleri {λn} , (4.36) probleminin özdeğer-

leri ise {µn} olarak verilsin. (4.35)’in normlaştırıcı sayıları, çözüm fonksiyonu ϕ (x, λn) =⎡⎣ ϕ1 (x, λn)

ϕ2 (x, λn)

⎤⎦ olmak üzere
an =

πZ
0

£
ϕ21 (x, λn) + ϕ22 (x, λn)

¤
dx

şeklindedir.(4.36)’in normlaştırıcı sayıları ise çözüm fonksiyonu ϕ (x, µn) =

⎡⎣ ϕ1 (x, µn)

ϕ2 (x, µn)

⎤⎦
olmak üzere

bn =

πZ
0

£
ϕ21 (x, µn) + ϕ22 (x, µn)

¤
dx

dir. Ayrıca

F (x, s) =
∞X

n=−∞

½
1

bn
ϕ (x, µn)ϕ

T (s, µn)−
1

an
ϕ (x, λn)ϕ

T (s, λn)

¾
(4.36)

olmak üzere

K(x, s) + F (x, s) +

xZ
0

K(x, t)F (t, s)dt = 0 (0 ≤ s ≤ x ≤ π)

esas integral denklemi sağlayan bir tek. K(x, t) matris fonksiyonu vardır. K(x, t)

fonksiyonu

B
∂K

∂x
+Q2 (x)K(x, s) = −

∂K

∂s
B +Q1 (s)K(x, s)

diferensiyel denklemini ve

BK(x, x)−K(x, x)B = Q2 (x)−Q1 (x) (4.37)

K21(x, 0) = K11(x, 0) = 0

koşullarını sağlar. Ayrıca ϕ (x, λn) özfonksiyonu için asimptotik formül

ϕ1(x, λ) = cos {λx− α}+O

µ
1

λ

¶
(4.38)

ϕ2(x, λ) = sin {λx− α}+O

µ
1

λ

¶
şeklindedir.
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Teorem 4.4.1. Eğer A ≡
∞P
n=0

[|bn − an|+ |µn − λn|] yeterince küçük ise

max
0≤x≤π

|p2 (x)− p1 (x)| ≤ C 0.A

max
0≤x≤π

|q2 (x)− q1 (x)| ≤ C 00.A

dir. Burada C 0 > 0 ve C 00 > 0 sabitlerdir.

İspat.

K(x, s) + F (x, s) +

xZ
0

K(x, t)F (t, s)dt = 0 (0 ≤ s ≤ x ≤ π)

integral denklemini gözönüne alalım. Burada F (x, s) bilinen fonksiyondur. Bu de-

nklemi çözelim:

F (1) (x, s) = F (x, s)

olmak üzere

F (n) (s, t;x) =

xZ
0

F (s, u)F (n) (u, t;x) du n ≥ 1. (4.39)

itere fonksiyonlarını yazılabilir. Buradan K(x, s) matris fonksiyonu

K (s, t;x) =
∞X
n=1

(−1)n F (n) (s, t;x) (4.40)

dir. F (x, s) fonksiyonu

F (x, s) =
∞X

n=−∞

½
1

bn
ϕ (x, µn)ϕ

T (s, µn)−
1

an
ϕ (x, λn)ϕ

T (s, λn)

¾

=
∞X

n=−∞

1

bn

⎡⎣ ϕ1(x, µn)

ϕ2(x, µn)

⎤⎦ h ϕ1(s, µn) ϕ2(s, µn)
i
− 1

an

⎡⎣ ϕ1(x, λn)

ϕ2(x, λn)

⎤⎦ (4.41)

·
h
ϕ1(s, λn) ϕ2(s, λn)

i
=

∞X
n=−∞

⎧⎨⎩
⎡⎣ ϕ1(x,µn)ϕ1(s,µn)

bn
− ϕ1(x,λn)ϕ1(s,λn)

an

ϕ1(x,µn)ϕ2(s,µn)
bn

− ϕ1(x,λn)ϕ2(s,λn)
an

ϕ2(x,µn)ϕ1(s,µn)
bn

− ϕ2(x,λn)ϕ1(s,λn)
an

ϕ2(x,µn)ϕ2(s,µn)
bn

− ϕ2(x,λn)ϕ2(s,λn)
an

⎤⎦⎫⎬⎭
olur.

F (x, s) =

⎡⎣ F11(x, s) F11(x, s)

F21(x, s) F22(x, s)

⎤⎦
alalım. (4.42) den

F11(x, s) =
∞X

n=−∞

∙
ϕ1(x, µn)ϕ1(s, µn)

bn
− ϕ1(x, λn)ϕ1(s, λn)

an

¸
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F12(x, s) =
∞X

n=−∞

∙
ϕ1(x, µn)ϕ2(s, µn)

bn
− ϕ1(x, λn)ϕ2(s, λn)

an

¸
F21(x, s) =

∞X
n=−∞

∙
ϕ2(x, µn)ϕ1(s, µn)

bn
− ϕ2(x, λn)ϕ1(s, λn)

an

¸
(4.42)

F22(x, s) =
∞X

n=−∞

∙
ϕ2(x, µn)ϕ2(s, µn)

bn
− ϕ2(x, λn)ϕ2(s, λn)

an

¸

yazılır. f11(x, s) ’i hesaplayalım. (4.43) un sağ tarafına
ϕ1(x,µn)ϕ1(s,µn)

an
ifadesi eklenip

çıkarılırsa:

F11(x, s) =
∞X

n=−∞

∙
ϕ1(x, µn)ϕ1(s, µn)

bn
− ϕ1(x, µn)ϕ1(s, µn)

an

+
ϕ1(x, µn)ϕ1(s, µn)

an
− ϕ1(x, λn)ϕ1(s, λn)

an

¸
=

∞X
n=−∞

∙µ
1

bn
− 1

an

¶
ϕ1(x, µn)ϕ1(s, µn) +

1

an
(ϕ1(x, µn)ϕ1(s, µn)− ϕ1(x, λn)ϕ1(s, λn))

¸

=
∞X

n=−∞

⎡⎣µan − bn
anbn

¶
ϕ1(x, µn)ϕ1(s, µn) +

1

an

µnZ
λn

(ϕ1(x, λ)ϕ1(s, λ))
· dλ

⎤⎦
olup buradan

|F11(x, x)| ≤
∞X

n=−∞

¯̄̄̄µ
an − bn
anbn

¶
ϕ21(x, µn)

¯̄̄̄
+

∞X
n=−∞

¯̄̄̄
¯̄ 1an

µnZ
λn

¡
ϕ21(x, λ)

¢·
dλ

¯̄̄̄
¯̄

elde edilir. (4.39) eşitliği, −1 ≤ cos ≤ 1, −1 ≤ sin ≤ 1 ve 0 ≤ x ≤ π olduğu gözönüne

alınırsa

|F11(x, x)| ≤
∞X

n=−∞

⎧⎨⎩
¯̄̄̄µ

an − bn
anbn

¶
c1

¯̄̄̄
+

¯̄̄̄
¯̄ 1an

µnZ
λn

c2dλ

¯̄̄̄
¯̄
⎫⎬⎭

≤
∞X

n=−∞

⎧⎨⎩|(bn − an) c1|+

¯̄̄̄
¯̄
µnZ

λn

c2dλ

¯̄̄̄
¯̄
⎫⎬⎭

|F11(x, x)| ≤ C1

∞X
n=−∞

{|bn − an|+ |µn − λn|}

elde edilir. A ≡
∞X

n=−∞
{|bn − an|+ |µn − λn|} denirse

|F11(x, x)| ≤ C1.A (4.43)
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olur. (4.40) den

F
(n+1)
11 (s, t;x) =

xZ
0

F11(s, u)F
(n)
11 (u, t;x) du

olup buradan

F
(2)
11 (s, t;x) =

xZ
0

F11(s, u)F11 (u, t;x) du ≤
xZ
0

(C1.A)
2 du

bulunur. 0 ≤ x ≤ π olduğundan

F
(2)
11 (s, t;x) ≤ (C1.A)

2 .π

bulunur. Benzer şekilde devam edilerek

F
(3)
11 (s, t;x) =

xZ
0

F11(s, u)F
(2)
11 (u, t;x) du ≤

xZ
0

(C1.A)
3 πdu ≤ (C1.A)3 .π2(4.44)

... =
...

F
(n)
11 (s, t;x) ≤

(C1.A.π)
n

π

elde edilir. (4.41) eşitliğiden

K11 (s, t;x) =
∞X
n=1

(−1)n F (n)
11 (s, t;x) (4.45)

yazılabilir. (4.45) eşitliği gözönüne alınırsa

|K11 (x, x)| ≤
∞X
n=1

¯̄̄̄
(−1)n (C1.A.π)

n

π

¯̄̄̄
=

∞X
n=1

¯̄̄̄
(C1.A.π)

n

π

¯̄̄̄
olur. C1.A.π ≤ 1

2
alınırsa

|K11 (x, x)| ≤
∞X
n=1

(C1.A.π)
n

π
= C1.A+ π (C1.A)

2 + π2 (C1.A)
3 + ...

≤ C1.A+ π

µ
1

2π

¶2
+ π2

µ
1

2π

¶3
+ ...

|K11 (x, x)| ≤ 2C1.A (4.46)
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bulunur. Benzer şekilde

|F12(x, s)| =
∞X

n=−∞

¯̄̄̄
ϕ1(x, µn)ϕ2(s, µn)

bn
− ϕ1(x, λn)ϕ2(s, λn)

an

¯̄̄̄

=
∞X

n=−∞

¯̄̄̄µ
1

bn
− 1

an

¶
ϕ1(x, µn)ϕ2(s, µn) +

1

an
(ϕ1(x, µn)ϕ2(s, µn)− ϕ1(x, λn)ϕ2(s, λn))

¯̄̄̄

=
∞X

n=−∞

¯̄̄̄
¯̄µan − bn

anbn

¶
ϕ1(x, µn)ϕ2(s, µn) +

1

an

µnZ
λn

(ϕ1(x, λ)ϕ2(s, λ))
· dλ

¯̄̄̄
¯̄

≤
∞X

n=−∞

⎡⎣¯̄̄̄µan − bn
anbn

¶
ϕ1(x, µn)ϕ2(s, µn)

¯̄̄̄
+

¯̄̄̄
¯̄ 1an

µnZ
λn

(ϕ1(x, λ)ϕ2(s, λ))
· dλ

¯̄̄̄
¯̄
⎤⎦

=
∞X

n=−∞

¯̄̄̄µ
an − bn
anbn

¶
ϕ1(x, µn)ϕ2(s, µn)

¯̄̄̄

+

¯̄̄̄
¯̄ 1an

µnZ
λn

(ϕ̇1(x, λ)ϕ2(s, λ) + ϕ1(x, λ)ϕ̇2(s, λ)) dλ

¯̄̄̄
¯̄

olup (4.39) eşitlikleri, −1 ≤ cos ≤ 1, −1 ≤ sin ≤ 1 ve 0 ≤ x ≤ π olduğu gözönüne

alınırsa

|F12(x, x)| ≤ C2

∞X
n=−∞

{|bn − an|+ |µn − λn|} ≡ C1.A (4.76)

(4.39),(4.40) ve (4.46) dan

|K12 (x, x)| ≤ 2C2.A (4.47)

bulunur. Benzer şekilde

|K21 (x, x)| ≤ 2C2.A

|K22 (x, x)| ≤ 2C1.A (4.48)

eşitsizlikleri elde edilir. Diğer taraftan

BK(x, x)−K(x, x)B =

⎛⎝ 0 1

−1 0

⎞⎠⎛⎝ k11 k12

k21 k22

⎞⎠−
⎛⎝ k11 k12

k21 k22

⎞⎠⎛⎝ 0 1

−1 0

⎞⎠
=

⎛⎝ K21 K22

−K11 −K12

⎞⎠−
⎛⎝ −K12 K11

−K22 K21

⎞⎠
=

⎛⎝ K12 +K21 K22 −K11

K22 −K11 −K12 −K21

⎞⎠
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olup (4.37) denkleminden⎛⎝ K12 +K21 Kk22 −K11

K22 −K11 −K12 −K21

⎞⎠ =

⎛⎝ p2 (x) q2 (x)

q2 (x) −p2 (x)

⎞⎠−
⎛⎝ p1 (x) q1 (x)

q1 (x) −p1 (x)

⎞⎠
=

⎛⎝ p2 (x)− p1 (x) q2 (x)− q1 (x)

q2 (x)− q1 (x) p1 (x)− p2 (x)

⎞⎠
olup buradan da

p2 (x)− p1 (x) = K12 +K21 (4.49)

q2 (x)− q1 (x) = K22 −K11 (4.50)

bulunur. (4.49), (4.50) denklemleri ve (4.46)-(4.48) eşitsizliklerinden

|p2 (x)− p1 (x)| ≤ C 0
∞X

n=−∞
{|bn − an|+ |µn − λn|} ≡ C 0A

|q2 (x)− q1 (x)| ≤ C 00
∞X

n=−∞
{|bn − an|+ |µn − λn|} ≡ C 00A

elde edilir. Bu eşitsizlikler [0, π] aralığında bulunan tüm x değerleri için sağlandığından

max
0≤x≤π

|p2 (x)− p1 (x)| ≤ C 0
∞X

n=−∞
{|bn − an|+ |µn − λn|} ≡ C 0A

max
0≤x≤π

|q2 (x)− q1 (x)| ≤ C 00
∞X

n=−∞
{|bn − an|+ |µn − λn|} ≡ C 00A

bulunur.

Böylece Dirac operatörü için ters problemde; spektral karakteristikler arasındaki

fark azaldıkça potansiyel farkınında küçüldüğü görülür.

Bu teorem (0,∞) yarı ekseni için de benzer şekilde ispatlanabilir.
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5. DİFÜZYON OPERATÖRÜ İÇİN İKİ SPEKTRUMA GÖRE TERS

PROBLEM

q (x) ve p (x) reel değerli fonksiyonlar ve q (x) ∈ Wm
2 [0, π], p (x) ∈ Wm+1

2 [0, π]

(m ≥ 0), h, H reel sayılar olmak üzere (5.1) difüzyon denklemini gözönüne alalım.

−y00 + [2λp (x) + q (x)] y = λ2y (5.1)

y0 (0)− hy (0) = 0, (5.2)

y0 (π) +Hy (π) = 0 (5.3)

(5.1)-(5.3) ün özdeğerleri (5.3) ikinci sınır şartının kökleridir. {λn} spektrumu için

asimptotik formül

c0 =
1

π

πZ
0

p (x) dx,
X

|c1,n|2 <∞, (5.4)

c1 =
1

π

⎛⎝h+H +
1

2

πZ
0

£
q (x) + p2 (x)

¤
dx

⎞⎠ , (5.5)

olmak üzere

λn = n+ c0 +
c1
n
+

c1,n
n

, (5.6)

formundadır. (5.1)-(5.3) probleminin normlaştırıcı sayıları

an =

πZ
0

ϕ2n (x) dx−
1

λn

πZ
0

p (x)ϕ2n (x) dx,

olup asimptotik formu

α1 = −
π

2
.p (0) ,

X
|α1,n|2 <∞.

olmak üzere

an =
π

2
+

α1
n
+

α1,n
n

, (5.7)



şeklindedir. (5.1)-(5.2) denkleminin çözümü ϕ (x, λ) olsun. Bu taktirde

ϕ (x, λ) = cos [λx− α (x)] +

xZ
0

A (x, t) cosλtdt+

xZ
0

B (x, t) sinλtdt, (5.8)

α (x) = xp (0) + 2

xZ
0

{A (ξ, ξ) sinα (ξ)−B (ξ, ξ) cosα (ξ)} dξ. (5.9)

q (x) = −p2 (x) + 2 d

dx
{A (x, x) cosα (x) +B (x, x) sinα (x)} (5.10)

A (0, 0) = h,
∂A (x, t)

∂t

¯̄̄̄
t=0

= 0, B (x, 0) = 0 (5.11)

A(x,−t) = 0, t > 0 (5.12)

B(x, t) = 0, t > x

α (x) =

xZ
0

p (t) dt (5.13)

olmak üzere x ve t deği̧skenlerine göre (m+1). mertebeden karesi integrallenebilir

türevlere sahip A (x, t) ve B(x, t) fonksiyonları mevcuttur ve

∂2A(x,t)
∂x2

− 2p (x) ∂B(x,t)
∂t
− q (x)A (x, t) = ∂2A(x,t)

∂t2

∂2B(x,t)
∂x2

+ 2p (x) ∂A(x,t)
∂t
− q (x)B (x, t) = ∂2B(x,t)

∂t2

⎫⎬⎭ (5.14)

dir. Tersine eğer A (x, t) ve B(x, t) fonksiyonları, (5.14) denklemler sistemini ve (5.9)-

(5.11) koşullarını sağlayan ikinci mertebeden karesi integrallenebilir fonksiyonlar ise

(5.8) ile tanımlı ϕ (x, λ) fonksiyonu (5.2)-(5.3) şartlarını sağlayan (5.1) denkleminin

çözümüdür.

Difüzyon operatörü için ters problemin temel denklemi 0 ≤ t ≤ x olmak üzere

F11 (x, t) cosα (x) + F12 (x, t) sinα (x) +A (x, t)

+

xZ
0

A (x, ξ)F11 (ξ, t) dξ +

xZ
0

B (x, ξ)F12 (ξ, t) dξ = 0

F21 (x, t) cosα (x) + F22 (x, t) sinα (x) +B (x, t)

+

xZ
0

A (x, ξ)F21 (ξ, t) dξ +

xZ
0

B (x, ξ)F22 (ξ, t) dξ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.15)
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şeklindedir. Burada

F11 (x, t) =
1
π
cos c0x cos c0t

+
X
n

n
1
2an
cosλnx cosλnt− 1

π
cos (n+ c0)x cos (n+ c0) t

o
F12 (x, t) =

1
π
sin c0x cos c0t

+
X
n

n
1
2an
sinλnx cosλnt− 1

π
sin (n+ c0)x cos (n+ c0) t

o
F21 (x, t) =

1
π
cos c0x sin c0t

+
X
n

n
1
2an
cosλnx sinλnt− 1

π
cos (n+ c0)x sin (n+ c0) t

o
F22 (x, t) =

1
π
sin c0x sin c0t

+
X
n

n
1
2an
sinλnx sinλnt− 1

π
sin (n+ c0)x sin (n+ c0) t

o

(5.16)

dir.

Her sürekli α (x) fonksiyonu için (5.15) denklemler sistemi A (x, t) ve B(x, t)’ye göre

tek çözüme sahiptir. Bu çözüm

A (x, t) = A0 (x, t) cosα (x) +A1 (x, t) sinα (x)

B (x, t) = B0 (x, t) cosα (x) +B1 (x, t) sinα (x)
(5.17)

eşitlikleri ile ifade edilir. Burada (5.15) sisteminde α (x) = 0 olacak biçimde bu sistemin

çözümleri A0 (x, t), B(x, t) dir. α (x) = π
2
olacak biçimde ise A1 (x, t), B1(x, t) dir.

Şimdi q̃ (x) ve p (x) reel değerli, q̃ (x) ∈ Wm
2 [0, π], p (x) ∈ Wm+1

2 [0, π] (m ≥ 0)

olacak şekilde

−y00 + [2λp (x) + q (x)] y = λ2y

y0 (0)− hy (0) = 0, (5.18)

y0 (π) +Hy (π) = 0

−y00 + [2µp (x) + eq (x)] y = µ2y

y0 (0)− hy (0) = 0, (5.19)

y0 (π) +Hy (π) = 0

problemlerini ele alalım. (5.18) probleminin spektrumu {λn, an}, (5.19) probleminin

{µn,ean} ve (5.19) un çözüm fonksiyonu

ϕ̃ (x, µ) = cos [µx− α̃ (x)] +

xZ
0

Ã (x, t) cosµtdt+

xZ
0

B̃ (x, t) sinµtdt.
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olsun.

Teorem 5.1. Eğer M ≡
∞X
n=0

{|anµn − eanλn|+ |µn − λn|+ |ean − an|} yeterince

küçük ise

max
0≤x≤π

|eq (x)− q (x)| ≤ C.M

dir. Burada M > 0; h,H, q(x) ve p(x)’e bağlı bir sabittir.

İspat. (5.19) problemi için

F̃11 (x, t) =
1
π
cos c0x cos c0t

+
X
n

n
1
2ãn
cosµnx cosµnt− 1

π
cos (n+ c0)x cos (n+ c0) t

o
F̃12 (x, t) =

1
π
sin c0x cos c0t

+
X
n

n
1
2ãn
sinµnx cosµnt− 1

π
sin (n+ c0)x cos (n+ c0) t

o
F̃21 (x, t) =

1
π
cos c0x sin c0t

+
X
n

n
1
2ãn
cosµnx sinµnt− 1

π
cos (n+ c0)x sin (n+ c0) t

o
F̃22 (x, t) =

1
π
sin c0x sin c0t

+
X
n

n
1
2ãn
sinµnx sinµnt− 1

π
sin (n+ c0)x sin (n+ c0) t

o

(5.20)

olmak üzere esas integral denklemi

F̃11 (x, t) cosα (x) + F̃12 (x, t) sinα (x) + Ã (x, t)

+

xZ
0

Ã (x, ξ) F̃11 (ξ, t) dξ +

xZ
0

B̃ (x, ξ) F̃12 (ξ, t) dξ = 0

F̃21 (x, t) cosα (x) + F̃22 (x, t) sinα (x) + B̃ (x, t)

+

xZ
0

Ã (x, ξ) F̃21 (ξ, t) dξ +

xZ
0

B̃ (x, ξ) F̃22 (ξ, t) dξ = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.21)
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şeklindedir. (5.10) eşitliğinden

eq (x)− q (x) = p2 (x)− ep2 (x) + 2 d

dx

h eA (x, x) cosα (x) + eB (x, x) sinα (x)i
−2 d

dx
[(A (x, x) cosα (x) +B (x, x) sinα (x))]

= 2

∙
d

dx
eA (x, x) cosα (x)− α0 (x) sinα (x) eA (x, x)

+
d

dx
eB (x, x) sinα (x) + α0 (x) cosα (x) eB (x, x)¸

−2
∙
d

dx
A (x, x) cosα (x)− α0 (x) sinα (x)A (x, x) (5.22)

+
d

dx
B (x, x) sinα (x) + α0 (x) cosα (x)B (x, x)

¸
= 2

½
d

dx

³ eA (x, x)−A (x, x)
´
cosα (x)− α0 (x) sinα (x)

³ eA (x, x)−A (x, x)
´

+
d

dx

³ eB (x, x)−B (x, x)
´
sinα (x) + α0 (x) cosα (x)

³ eB (x, x)−B (x, x)
´¾

olur. Burada (5.17) eşitliğinden

eA (x, x)−A (x, x) =
hfA0 (x, x)−A0 (x, x)

i
cosα (x)

+
hfA1 (x, x)−A1 (x, x)

i
sinα (x)eB (x, x)−B (x, x) =

hfB0 (x, x)−B0 (x, x)
i
cosα (x)

+
hfB1 (x, x)−B1 (x, x)

i
sinα (x)

d

dx

³ eA (x, x)−A (x, x)
´
=

d

dx

hfA0 (x, x)−A0 (x, x)
i
cosα (x) (5.23)

−α0 (x) sinα (x)
hfA0 (x, x)−A0 (x, x)

i
+

d

dx

hfA1 (x, x)−A1 (x, x)
i
. sinα (x)

+α0 (x) cosα (x)
hfA1 (x, x)−A1 (x, x)

i
d

dx

³ eB (x, x)−B (x, x)
´
=

d

dx

hfB0 (x, x)−B0 (x, x)
i
. cosα (x)

−α0 (x) sinα (x)
hfB0 (x, x)−B0 (x, x)

i
+

d

dx

hfB1 (x, x)−B1 (x, x)
i
. sinα (x)

+α0 (x) cosα (x)
hfB1 (x, x)−B1 (x, x)

i
elde edilir. (5.15) integral denkleminin çözümü
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F
(1)
11 (s, t;x) = F11 (s, t) , (5.24)

F
(n+1)
11 (s, t;x) =

xZ
0

F11 (s, u)F
(n)
11 (u, t;x) du, (n ≥ 1) (1)

itere çekirdekler olmak üzere

S (s, t;x) =
X
n

(−1)n F (n)
11 (s, t;x) ,Z x

0

Z x

0

|F11 (s, t)|2 dsdt < 1,

A0 (x, s) = S (x, x;x) =
X
n=1

(−1)n F (n)
11 (x, s;x) (5.25)

yazılabilir. Benzer şekilde

F̃
(1)
11 (s, t;x) = F̃11 (s, t) , (5.26)

F̃
(n+1)
11 (s, t;x) =

xZ
0

F̃11 (s, u) F̃
(n)
11 (u, t;x) du, (n ≥ 1)

Z x

0

Z x

0

¯̄̄
F̃11 (s, t)

¯̄̄2
dsdt < 1,

Ã0 (x, s) =
X
n=1

(−1)n F̃ (n)
11 (x, s;x) (5.27)

olur.Ayrıca

d

dx
A0 (x, x) =

d

dx

ÃX
n

(−1)n F (n)
11 (x, x;x)

!
(5.28)

= − d

dx
F11 (x, x) +

∞X
n=1

(−1)n F (n+1)
11 (x, x;x)

olup

d

dx
F
(n+1)
11 (x, x;x) =

n
F (n+1)
s + F

(n+1)
t + F (n+1)

x

o
s=x
t=x

=

xZ
0

F11s (s, u)F
(n)
11 (u, t;x) du

+

xZ
0

F11t (u, t)F
(n)
11 (s, u;x) du+ F (n+1)

x (s, t;x)s=x
t=x

= 2

xZ
0

F11x (x, u)F
(n)
11 (x, u;x) du+

∞X
k=1

F
(k)
11 (x, x;x)F

(n+1−k)
11 (x, x;x)
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eşitliği (5.28) de yazılırsa

d

dx
A0 (x, x) = − d

dx
F11 (x, x) + 2

xZ
0

F11x (x, u)A0 (x, u) du

+
∞X
n=1

(−1)n
∞X
k=1

F
(k)
11 (x, x;x)F

(n+1−k)
11 (x, x;x)

= − d

dx
F11 (x, x) + 2

xZ
0

F11x (x, u)A0 (x, u) du−A0 (x, x)
2 (5.29)

bulunur. Şimdi fA0 (x, x)−A0 (x, x) ifadesini hesaplayalım:¯̄̄
F̃11 (x, t)− F11 (x, t)

¯̄̄
=

¯̄̄̄
1

π
cos c0x cos c0t

+
X
n

½
1

2ãn
cosµnx cosµnt−

1

π
cos (n+ c0)x cos (n+ c0) t

¾
−1
π
cos c0x cos c0t

−
X
n

½
1

2an
cosλnx cosλnt−

1

π
cos (n+ c0)x cos (n+ c0) t

¾¯̄̄̄
¯

=
X
n

¯̄̄̄
1

2ãn
cosµnx cosµnt−

1

2an
cosλnx cosλnt

¯̄̄̄
=

X
n

¯̄̄̄µ
1

2ãn
− 1

2an

¶
cosµnx cosµnt

+
1

2an
cosµnx cosµnt−

1

2an
cosλnx cosλnt

¯̄̄̄
≤

X
n

¯̄̄̄µ
1

2ãn
− 1

2an

¶
cosµnx cosµnt

¯̄̄̄

+
X
n

¯̄̄̄
¯̄ 12an

µnZ
λn

(cosλx cosλt)· dλ

¯̄̄̄
¯̄

≤ C1
X
n

[|ãn − an|+ |µn − λn|]

olur. Burada A ≡
X
n

[|ãn − an|+ |µn − λn|] denirse¯̄̄
F̃11 (x, t)− F11 (x, t)

¯̄̄
≤ C1

X
n

[|ãn − an|+ |µn − λn|] = C1A (5.29)

olur. Diğer taraftan (5.20) da x ’e göre türev alınırsa

d

dx
F̃11 (x, t) =

−c0
π
sin c0x cos c0t (5.30)

+
X
n

½
−µn
2ãn

sinµnx cosµnt+
(n+ c0)

π
sin (n+ c0)x cos (n+ c0) t

¾
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bulunur. Buradan ¯̄̄̄
d

dx
F̃11 (x, t)−

d

dx
F11 (x, t)

¯̄̄̄
=

X
n

¯̄̄̄
−µn
2ãn

sinµnx cosµnt−
−λn
2an

sinλnx cosλnt

¯̄̄̄
≤ C2

X
n

[|µnan − λnãn|+ |µn − λn|] ≡ C2B (5.31)

elde edilir. (5.24) eşitliğinden¯̄̄
F̃
(2)
11 (x, x)− F

(2)
11 (x, x)

¯̄̄
(5.32)

=

¯̄̄̄
¯̄
xZ
0

³
F̃11 (x, x)− F11 (x, x)

´³
F̃
(1)
11 (u, t;x)− F

(1)
11 (u, t;x)

´
du

¯̄̄̄
¯̄ ≤ (C1A)2 π

¯̄̄
F̃
(n)
11 (x, x)− F

(n)
11 (x, x)

¯̄̄
≤ 1

π
(C1Aπ)

n (5.33)

olur buradan C1Aπ < 1
2
olmak üzere¯̄̄fA0 (x, x)−A0 (x, x)

¯̄̄
≤
X
n

¯̄̄̄
1

π
(C1Aπ)

n

¯̄̄̄
≤ 2C1A (5.34)

elde edilir. Benzer şekilde¯̄̄̄
d

dx
F̃
(2)
11 (x, x)−

d

dx
F
(2)
11 (x, x)

¯̄̄̄

=

¯̄̄̄
¯̄
xZ
0

µ
d

dx
F̃11 (x, x)−

d

dx
F11 (x, x)

¶µ
d

dx
F̃
(1)
11 (u, t;x)−

d

dx
F
(1)
11 (u, t;x)

¶
du

¯̄̄̄
¯̄

≤ (C2B)
2 π ¯̄̄̄

d

dx
F̃
(n)
11 (x, x)−

d

dx
F
(n)
11 (x, x)

¯̄̄̄
≤ 1

π
(C2Bπ)

n (5.35)

elde edilir. ¯̄̄̄
d

dx

hfA0 (x, x)−A0 (x, x)
i¯̄̄̄
≤
X
n

¯̄̄̄
1

π
(C2Bπ)

n

¯̄̄̄
≤ 2C2B (5.36)
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Benzer yöntemle ¯̄̄fB0 (x, x)−B0 (x, x)
¯̄̄
≤ 2C3A¯̄̄̄

d

dx

hfB0 (x, x)−B0 (x, x)
i¯̄̄̄
≤ 2C4B

d

dx

hfA1 (x, x)−A1 (x, x)
i
≤ 2C5B (5.37)¯̄̄fA1 (x, x)−A1 (x, x)

¯̄̄
≤ 2C6A

d

dx

hfB1 (x, x)−B1 (x, x)
i
≤ 2C7B¯̄̄fB1 (x, x)−B1 (x, x)

¯̄̄
≤ 2C8A

bulunur. (5.34)-(5.37) eşitsizlikleri (5.23) te yerine yazılırsa ve elde edilen son eşitsiz-

likte (5.22) denkleminde yazılırsa

|eq (x)− q (x)| ≤M.
X
n

|anµn − eanλn|+ |µn − λn|+ |ãn − an|

elde edilir. Bu eşitsizlik her x ∈ [0, π] için sağlandığından

max
0≤x≤π

|eq (x)− q (x)| ≤M.
X
n

|anµn − eanλn|+ |µn − λn|+ |ãn − an|

elde edilir.
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