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ÖZET 
 

R İLE SOSYAL MEDYA MADENCİLİĞİ  
 

Bu çalışmada, sosyal media web uygulamalarından veri çıkartma, veri hazırlama veya 

düzeltme, tokenizasyon, kelime sıklığı tahminleme, kelime yığınının duygu analizi ve 

görselleştirilmesi gibi birçok sosyal media madencilik tekniği R ortamında 

uygulanmıştır. Bu teknikler için R fonksiyonları oluşturularak, bu fonksiyonlar Türk 

Hava Yolları vaka çalışmasında uygulanmıştır. Sosyal media web uygulamalarından R 

programlama dili kullanılarak, söz konusu şirkete ait Facebook ve TripAdvisor web 

sayfasında yer alan yorum ve görüşleri kapsayan sosyal media verisi alınmıştır. 

Facebook ve TripAdvisor’dan veri temini için R paketleri kullanılmıştır. Bir sonraki 

aşamada, kompleks veri yapısı ve gereksiz sütunlar içeren dağınık ham veri, biri 

Facebook diğeri TripAdvisor için, dataframe yapısında iki farklı düzenli veri setine 

dönüştürülmüştür. Çalışmanın devamında yorum ve görüşlerden oluşan veri seti 

tokenize tekniği ile cümlelere ve ardından sözcüklere indirgenmiştir. Bunu yanısıra, veri 

seti içinde yer alan geçmiş zaman ve şimdiki zaman fiilleri de kök fiil haline 

dönüştürülmüştür. Çalışmanın son aşamasında, tokenize edilmiş olan Facebook 

yorumları ve TripAdvisor görüşleri üzerinde; kelime sıklık sayımı, duygu analizi ve 

kelime yığını görselleştirmesi gibi çeşitli metin analiz teknikleri uygulanmıştır.  
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ABSTRACT 
 

SOCIAL MEDIA MINING WITH R  
 

In this research study, many social media mining techniques, such as data extraction, 

data wrangling or tidying, tokenization, estimation of word frequency, sentiment 

analysis and visualization of word cloud, have been applied in R environment. The study 

builds R functions for these techniques. Later, these functions are used in the case study 

on Turkish Airlines. TurkishAirlines’ social media data, i.e. comments posted by 

TurkishAirlines’ Facebook followers and reviews posted by the customers on 

TripAdvisor Website, are scraped from the social media web applications using R 

programming language. R packages, built for web scraping, are used to retrieve data 

from Facebook and TripAdvisor. Afterward, the messy extracted data, with the complex 

data structure and unnecessary columns, are converted into two different tidy datasets, 

one for Facebook and other for TripAdvisor. Subsequently, the responses, either 

comments or reviews, are tokenized into sentence and words. The tokenized data have 

been cleaned by extracting NA values and stop words. Moreover, the verbs in different 

forms, such as present simple, present participle, past simple and past participle, are 

converted into the base form of verbs. Lastly, text analysis techniques such as word 

frequency count, sentiment analysis, and word cloud visualization are applied to 

tokenized Facebook comments and TripAdvisor reviews.  
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1. INTRODUCTION 
 
With the rise in social media popularity, the trend of writing reviews and feedback on 

social media websites has increased dramatically. These reviews posted by the existing 

customers strongly influence the buying behavior of potential customers. Consequently, 

the consumer brands have started investing in social media branding and advertising 

campaigns. In contrast to other mediums of advertisements, social media advertisement 

not only results in huge response by fans and followers, but also benefits the companies 

by generating leads. A powerful social media marketing campaign with an effective 

strategy would develop positive brand image among consumers, whereas a campaign 

with an ineffectual strategy would result in negative responses by the potential or 

existing consumers.  

An effective social media marketing strategy cannot be devised without having an up-to-

the-minute information about consumers’ perception on the brand and its customer 

services. A deep understanding of consumers’ and potential customers’ perception can 

only be obtained from their feedback, reviews, criticisms or comments on the social 

media marketing campaigns. By using the latest data mining and particularly text mining 

techniques, the big data of customers’ reviews and comments can be successfully used 

to get a strong insight into consumers’ perception towards customer services of any 

company.  

There are number of programming frameworks that can be used to extract consumers’ 

reviews and comments from different social media web applications, such as Python, 

PHP and Perl. The study used statistical software environment R and R programming 

language to extract and analyze data from social media web applications, like Facebook 

and TripAdvisor. The open source R software, developed for efficient data handling, 

data analysis, is based on the S language. Ross Ihaka & Robert Gentleman wrote an 
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experimental R to be used in their teaching laboratory. Upon receiving positive 

feedback, they release R source code as “free software” in June of 1995. With the rise in 

interest in R, the developers introduce the mailing list and people started porting 

applications to it (Ihaka 1998).  

Today, despite being outside the conventional programming language, R is the most 

famous statistical software used by a large community of programmers. One of the 

reasons for R’s popularity is its package system. R packages encapsulate the user-

contributed code, data, functions, tests and documentation together. More than 6,000 

packages are available on the CRAN (Comprehensive R Archive Network) system. It is 

as a public clearing house for packages built in R (Wickham, R packages: organize, test, 

document, and share your code 2015). The huge variety of easily accessible and useful 

packages is one of the reasons why R is so successful. The study used famous R 

packages such as Rfacebook, rvest, dplyr, ggplot2, tidyr and tidytext for 

different data mining techniques. These packages when loaded in an R environment 

provide a number of beneficial functions that save time for programmers while writing 

complex codes. This study thoroughly explains how to use these functions effectively 

for social media mining. Furthermore, to avoid code redundancy, the study provides new 

functions that effectively deal with Facebook and TripAdvisors data at a same time. 

These functions are used to clean and analyze Turkish Airlines’ social media data.  
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2. Text Mining 

One of the rapidly growing, exciting and new areas of computer science research is text 

mining. It aims to deal with information overload by using multiple techniques such as 

data mining, information retrieval, natural language processing and machine learning. In 

this section, the study provides an overview of different text mining technique along 

with their real-world applications for businesses in various fields, such as social media 

analytics, marketing and brand management.  

In general, we can define text mining as an information-intensive process in which a 

user interacts with a collection of documents through various analysis tools. As similar 

to data mining process, text mining aims to retrieve beneficial information from text data 

sources through identification and exploration of words used in the text documents. 

Furthermore, this mining methodology seeks to identify and discover interesting patterns 

in text documents to extract valuable knowledge efficiently. Indeed, text mining derives 

its way and motivation from influential research on data mining. Therefore, architectural 

similarities can be observed in text mining and data mining system, such as 

preprocessing techniques, prediction and pattern discovery algorithms and visualization 

techniques (Feldman and Sanger 2007).  

In contrast to data mining system where data is stored in structured format, the 

document based text data are initially stored in weekly or relatively less structured 

format. Therefore, the text data are first transformed from weekly structured format into 

a more structured format using some preprocessing techniques, which are not related to 

data mining system (Feldman and Sanger 2007). In addition to the methodologies and 

techniques derived from data mining system, text mining derives many techniques from 

different areas, such as natural language processing, information retrieval, and corpus-

based computational linguistics.  
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The study below explains some of the famous text mining techniques. Although the 

research study does not implement all of the techniques mentioned in this section, the 

study aims to provide the summary of text mining techniques and their applicability in 

the real world. 

2.1 Collection of Document 

The key component of text mining is a collection of documents. In simple words, a collection of 

documents is a grouping of similar text-based documents (Feldman and Sanger 2007). The total 

number of documents in a collection can reach from many thousands to many millions. Most 

text mining techniques aim to extract patterns from these collections and analyze these patterns 

to get valuable insights. For instance, a collection of research papers in the field of marketing 

can be considered as a document collection. Similarly, the reviews of a tourism brand altogether 

become a collection of documents, when a single review is considered as a document.  

The text mining techniques are not implemented on unprepared and unstructured documents. A 

considerate amount of time and emphasis is devoted in preprocessing procedures. These 

preprocessing methods include data extraction, data wrangling, tokenization and linguistic 

research methodologies.  

2.2 Document 

Document is another basic component in text mining. Document can be defined as that unit of 

document collection that correlates, not necessarily, with some other real-life published 

document, such as an  article, e-mail, news, reviews, research paper and social media posts.  In 

other words, document is a collection of words that represents a similar type of units within a 

document collection. It cannot be inferred that a document can only exists within one specific 

collection, however, document can be a member of many different types of collections (Feldman 

and Sanger 2007).  For instance, considering this research study as a document, the study can be 

a member of more than one document collections, such as text mining, information retrieval, and 

natural language processing.  
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2.2.1 Document Structure 

In contrary to the misleading tag that document is an unstructured data, it can be seen as a 

somewhat structured object. According to a linguist’s point of view, even a simple document has 

a fair amount of syntactic and semantic structure. With the help of typographical elements, such 

as capitalization, punctuation marks, spacing, underlining and tables, we can identify 

document’s components and subcomponents such as titles, paragraphs, table records and author 

names (Feldman and Sanger 2007). Furthermore, a sequence of words can also be considered as 

a meaningful dimension of document structure. Documents, including business reports, news 

articles or stories, legal communications, are considered to be weekly structured documents as 

they do not have strong typographical or layout marks to define structure. Whereas, HTML 

pages, emails and PDF document having style-sheet, HTML tags, and heavy typographical 

elements are usually considered as semi structured documents.  

2.3 Document Features 

To explore the implicit structure of documents and convert the implicit representation of 

document structure to an explicit representation, it is important to identify the document features 

that represent documents as a whole. The design, approach and even performance of text mining 

preprocessing techniques are based on the document’s features. Some of the commonly used 

document features discussed in this section are characters – the building block- words, terms and 

concepts. The aim of text mining is to identify the document features; moreover, normalize and 

validate these features against dictionaries or other vocabulary sources, such as lexicon or 

thesauri.  

2.3.1 Characters 

As mentioned above, characters are the building block of other higher-level semantic document 

features, i.e. words and terms. The characters include basic-level letters, numbers, special 

characters and even spaces. The character is the most basic document feature and that is why it 

offers very limited benefit in the application of text mining techniques. The main advantage of 
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characters, especially special characters and spacing, is to identify the positions of a word, a 

sentence, or a set of different words (bigrams or trigrams).  

2.3.2 Words 

Word-level feature is one of the basic level features of a document. This feature has more 

semantic richness than character and that is why it is more meaningful for text mining analysis. 

The focus of this research study is on word-level text mining analytics.  A word in a document is 

also known as a linguistic token. The word level representation of a document or a document 

collection usually contains hundreds and thousands of distinct words. The process of 

representing a document in words is also known as tokenization. Some level of optimization is 

required before optimal word-level representation of document, such as extraction of stop-

words, numbers and characters.  

2.3.3 Terms 

Single words (unigram) and multiword (n-gram) phrases are the terms that are extracted from 

the collection of documents using term-extraction techniques. Term-level representation of a 

document contains a subset of all the terms existing in the document. For example, a documents 

contains the sentence “They have a nice inflight entertainment system and the high speed Wi-Fi 

was free for Business Class and very reasonable for economy class”. Some of single word form 

terms that will be included to represent the document will include, “nice”, “inflight”, and “Wi-

Fi”. Moreover, the terms will also include n-gram words such as “Business Class” and 

“economy class” and “entertainment system”. Term extraction techniques are more sophisticated 

than tokenization (or word extraction) techniques. The raw text document is represented in 

normalized terms, i.e. sequence of tokens connected with different parts of speech. These term 

extraction methodologies, like term normalization are not explained and employed in this 

research study.  
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2.3.4 Concepts 

In comparison with the three above mentioned document features, concepts feature is more 

sophisticated feature, and therefore requires highly advanced text mining techniques to be 

extracted from the documents. The concepts in a document are usually extracted manually; 

however, using statistical, hybrid categorization, rule-based and other complex preprocessing 

techniques, they can be identified from documents (Feldman and Sanger 2007). For instance, a 

review of airline industry may not necessarily include “entertainment” or “aircraft” but these 

concepts might be found among the list of concepts required to represent the document 

collection. 

As compare to other features explained above, terms and concepts are the most expressive 

features of the document with higher semantic value. However, the study emphasizes on the 

word level and character level features, since; other features require more advanced techniques.  

In this section, the study explains some of the text mining techniques that are not implemented in 

this study. The application of these analysis techniques is high when there are more than one 

documents and the aim is to explore the association of words between different documents. 

These text mining techniques include vector models, in which a word is represented as a vector. 

These vector models are most commonly used for semantic similarity, which is the similarity 

between different words, sentences and documents.  

2.4 Term Document Matrix 

The term documents matrix is a two dimensional table in which each row represents a specific 

word in the vocabulary while each column signifies a document. Furthermore, each cell of a 

term document matrix indicates the frequency of words in a specific document – represented by 

a column. In the field of information retrieval, the term document matrix was defined as a vector 

space model (Salton 1972). A vector is an array of number, while a vector space is a collection 

of vectors that have particular dimensions. The position of each vector element represents a 

particular dimension, therefore; the sequence of elements in a vector is not arbitrary.   
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2.5 Semantic Similarity 

As mentioned, the vector space models help to find the semantic similarity between different 

documents. The documents are represented by column vectors in vector space model or term 

documents matrix (Jurafsky and Martin, Speech and Language Processing 2017). The spatial 

visualization of these vectors can help to explore the semantic similarity between documents. In 

a spatial visualization, the vectors nearer to each other are more similar than the vectors distant 

from each other. Generally, the vectors have tens of thousands of elements and therefore it is 

impossible to visualize that highly dimensional vectors and visualize the similarity. The problem 

of finding the similarity between high dimensional vectors is addressed in the subsection below.  

2.5.1 Similarity Measurement 

One of the widely used semantic similarity metric is the cosine, similar to most of the vector 

similarity measures used in the field of natural language processing. The cosine methodology is 

based on the linear algebra operation, i.e. inner product or dot product.  

𝑑𝑜𝑡 − 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑣,𝑤 =  𝑣 .𝑤 =  𝑣!

!

!!!

𝑤! =  𝑣!𝑤! +  𝑣!𝑤! +⋯+ 𝑣!𝑤! 

The cosine method or inner product serves as the similarity metric because it will give a large 

value when the two vectors are close to each other or there is high similarity between each other. 

Alternatively, a low value of dot product indicates that there is high level of dissimilarity 

between vectors. If the dot product results in value zero, it means that the vectors are orthogonal 

vectors and completely dissimilar to each other.  

There are number of other similarity metrics, such as Jaccard (Jaccard 1912), Dice (Curran 

2003) Kullback-Leibler divergence or relative entropy (Kullback and Leibler 1951) and Janson-

Shannon divergence (Lee 1999).  

In the next two sub sections, the two major types of classification techniques, supervised 

and unsupervised, are discussed briefly.  
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2.6 Supervised Classification 

In this section, supervised classification techniques and their application in text mining are 

discussed briefly. These techniques are used to assign labels to tokens, terms, and documents. 

The categorization labels, like positive, negative, and spam detection labels, are drawn from a 

set of labeled lexicon or training dataset.  The supervised classification techniques use these 

lexicon and training dataset and classify test data into different labels.  When the analysis is 

conducted at word-level document feature, the tokens or words can be classified by comparing 

them with different lexicons as conducted in this study. However, in a term-level document 

feature analysis, when the aim is to label a sentence or a whole paragraph, more advanced 

supervised classification machine learning techniques can be applied, such as naive Bayes, 

logistic regression, support vector machine (SVM), random forests and neural networks. The 

goal of supervised classification of terms, i.e. n-gram tokens, is to classify the term into one of a 

set of different classes. These machine-learning algorithms build classifier model of each class 

using training dataset. The training dataset is made using human intelligence and each word in a 

training dataset is categorized and labeled. Subsequently, when classifier models are applied to 

the observations, the algorithms return the label or a class that has most likely generated each 

observation. For instance, in the case of Bayesian classification, the classifier model for each 

class is made using Bayes’ rule. To apply the Bayes classifier, word position in a term is 

considered by simply indexing every word position in a document. Subsequently, the occurrence 

probability of a term in each class is estimated (Jurafsky and Martin, Speech and Language 

Processing 2017). Finally, the term (n-gram) with the highest probability of occurring in a 

specified class is categorized in that class. 

2.7 Unsupervised Classification 

In the case of huge textual datasets, when it is difficult and expensive to label each word for its 

topic or sense, an unsupervised approach is used to induce the sense of each word without 

human interaction. This unsupervised text mining approach is also known as word sense 

induction (WSI) (Jurafsky and Martin, Speech and Language Processing 2017). Most of the 
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techniques of unsupervised classification required clustering algorithm. In word sense induction, 

first the data is trained in four steps: first, document is tokenized into words; second, a context 

vector – defines the presence of word in a particular dependency - is computed for each word; 

third, the tokens are classified into different clusters using clustering technique; last, the vector 

centroid of each cluster is computed that represent the sense or topic of that cluster. Furthermore, 

using the clustering algorithm and the distance metric between context vectors, the tokens are 

classified into right clusters (Schutze 1992).  

2.7.1 Agglomerative Clustering 

Agglomerative clustering is one of the major unsupervised classification techniques. In this 

clustering technique, each training case is initially assigned to its own cluster. Subsequently, 

new clusters are made in a bottom-up manner by continuous merging of two different but most 

similar clusters. The clustering process continues until either an optimal value of a global 

measure is achieved or some specified number of clusters is made. In the case of large training 

dataset that is making the agglomerative technique very expensive, random sampling technique 

can be implemented on the training dataset to obtain same results (Jurafsky and Martin, Speech 

and Language Processing 2017).  

2.8 Social Media Mining 

In past ten years, social media has been widely used as a major channel of 

communication that allows users and businesses to connect and interact on a worldwide 

level (Xu 2016). The most popular social media website, Facebook, has over one billion 

active members and more than 890 million active users everyday (Carlsson et al. 2015). 

Twitter is another dominant micro-blogging social media network that has more than 

330 million monthly active users (Statista, Facebook - Statistics & Facts 2018). 

According to Statista, TripAdvisor has become top ranked tourism website with 7 

million listings for hotels, airlines, restaurants and attractions, and over 460 million user 

opinions and reviews on the listings Statis (Statista, TripAdvisor - Statistics & Facts 
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2018). With the advancement of technology, the social media websites are enabled to 

manage, store and analyze a significant amount of user-generated data (Kleindienst et al. 

2015). The rapidly growing usage social media and the user generated data, in the form 

of texts, images, video and geographical locations, provides an opportunity for business 

enterprises to extract business and customer insights (Schreck and Keim 2013). The 

enormous social media data can play major role in modern business strategy making 

processes, since they provide a unique opportunity to gain insight on customer 

perception and maintain leverage over the competitors (Chen et al. 2012). A survey 

carried out in November 2016 - asking individuals about the affect of customers’ 

reviews on their opinion about businesses - found that online customer reviews play a 

vital role in shaping people’s opinion about brands, such as a positive review make them 

trust a business more (Statista, How do online customer reviews affect your opinion of a 

local business? 2017).   

Web scraping is a data mining technique to extract data from Internet through various 

means (Pereira and T 2015) With the help of web scraping services, the unstructured 

data is converted into structured data and stored into a data bank. Renita and Vanitha in 

their paper considers web scraping as the primary step to transform useful user 

generated data into business asset (Pereira and T 2015) 

It is said that 80 percent of data analysis effort is spend in the process of preparing and 

tidying data (Dasu and Johnson 2003). Hadley Wickham (2014) in his paper “Tidy 

Data” provides an efficient process of data tidying, i.e. structuring data sets to facilitate 

analysis. The paper provides a standard way to organize data values in a data table. The 

core principles of tidy data are based on Codd’s relational algebra (Codd 1990) and 

relational database. However, the principles are framed in a language known to 

statisticians (Wickham, Tidy Data 2014).  
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In text mining, tidying dataset includes tokenization of document. Therefore, a tidy text 

format is defined as being a dataset with one-token-per-row (Silge and Robinson, Text 

Mining with R - A Tidy Approach 2018). Tokenization is the process of identification of 

tokens, a meaningful unit of a text, i.e. word or a sentence. A foremost step for 

information retrieval is tokenization and token indexing on the basis of some parameters 

(Dong, Husain and E. Chang 2008). The main advantage of tokenization is that it allows 

us to use storage place effectively (Wong et al. 1985). Furthermore, in addition to the 

identification of tokens, tokenization includes the estimation of token or word count 

(Singh and Saini 2014). 

Sentiment analysis (also known as opinion mining) is the method of analyzing people’s 

emotions, opinions, and sentiments toward an object (Ahmadi 2017). According to most 

of the resources, sentiment analysis and opinion mining have exactly the same meaning; 

however, some consider opinion mining to be different from sentiment analysis (Ahmadi 

2017). Opinion mining is the way of extracting people’s opinion from the document, 

whereas sentiment analysis explores the sentiments of the given text document (Ahmadi 

2017). 
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3. METHODOLOGY 
 
This section describes a complete methodology to retrieve data from social media 

websites, including Facebook, Twitter and TripAdvisor. Furthermore, the process of 

extracting useful information from raw data has also been explained in this section. The 

section is divided into five major sub sections as shown in Figure 1 below: 

 

 
Figure 1: Methodology Flowchart 

3.1 Data Extraction 

The first and foremost step in social media mining is data extraction from social media 

web applications. Social media web applications are the websites that people use to 

interact with other people and to build social relationships or social networks with other 

people who share similar career or personal interests, experiences, mutual connections 

and activities.   

The data is extracted using a technique called “Web Scraping”  (also termed as Screen 

Scraping and Web Harvesting). Using this technique, a large amount of data is extracted 

from multiple pages of websites that can easily be saved into a local file in a computer 

or a database in a table format (WebHarvy 2017).   
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Among many other web scraping software, the study used statistical software 

environment R and R programming language to extract data from social media web 

applications, like Facebook, TripAdvisor and Twitter. Three different R packages are 

employed to extract data from above mentioned three different social media websites. R 

packages are the fundamental units of reproducible R code. These packages include 

reusable R functions, sample data and the documentation that explains how to use the 

built-in functions (Wickham, R Packages: Organize, Test, Document, and Share Your 

Code 2015).   

R Package Rfacebook provides an interphase to the Facebook API through which 

Facebook data is extracted and stored as a dataframe or lists in R software 

environment (Barbera, et al. 2017). Before extracting data from Facebook, an App is 

created on the Facebook platform by logging into www.developers.facebook.com. The 

App is used to connect to the Facebook API. The Facebook App has its own App ID and 

App Secret that is used to connect to the R session. Rfacebook provides an easy 

function, fbOAuth(), to build a connection. The function requires two parameters, i.e. 

fb0Auth(app_id,	app_secret). After the authentication of the connection between 

Facebook and R session is successful, the reusable auth_fb object is saved for next time 

use.  The auth_fb object contains the app details, like ID and secret, and authentication 

details, which are the only requirements when the connection is made next time.   

library(Rfacebook)	

#	Fb	Authorization	

auth_fb	<-	Rfacebook::fbOAuth(	

		app_id="1380496555352781",	

		app_secret="eb3abc42d1e00536e6f4e37e58fc0b5d",	

		extended_permissions	=	TRUE)	

#	Saving	variable	auth_fb	in	a	file	and	loading	it	

save(auth_fb,	file="auth_fb")	

load("auth_fb")	
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Subsequently, Rfacebook function, getPage() is used to extract the data related to 

posts, such as Facebook post content, number of likes, shares and comments. The 

function requires three parameters, page, token and n. The page refers to the pageID  

#	Extract	posts	from	turkish	airlines	page	

turkishairlines	<-	Rfacebook::getPage(page	=	"turkishairlines",		

																																						token	=	auth_fb,	n	=	100)	

Furthermore, the function getPost() is used to extract the user comments and their 

reactions along with their display names. Earlier, Facebook allows all Apps to extract all 

kind of data from public pages, however; due to recent changes in Facebook policies, the 

App who has been given access to the public page by page’s admin can extract posts and 

comments.  

Another R package, rvest, helps to extract data from html webpages. The study used 

the package to scrape the data from TripAdvisor web application. TripAdvisor is a travel 

and restaurant website company providing hotel, airlines and restaurant reviews and 

other travel specific content. The author of rvest, Hadley Wickham, provides complete 

code to scrape review data and reviews’ ids from TripAdvisor (Wickham, hadley/rvest 

2015).  The study mainly used Hadley’s code to extract data from TripAdvisor. As the 

reviews are posted on more than one webpage, for	loop was added to the code to 

generate multiple URLs and to extract data from multiple pages at a time. The only input 

required for data extraction is the URL of the desired webpage. Three main functions of 

rvest that are employed during the extraction are readhtml(), html_node() and 

html_attr() (Wickham, rvest: Easily Harvest (Scrape) Web Pages 2016).  

library("rvest")	

df_total	=	data.frame()	

for	(i	in	seq(0,	6940,	10))	

{	

		if	(i	==	0)	{	

				url	<-	"https://www.tripadvisor.com/Airline_Review-d8729174-Review
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s-Turkish-Airlines"	

		}	

		else		{	

				url	<-	paste(	

						"https://www.tripadvisor.com/Airline_Review-d8729069-Reviews-or"

,i,"-Turkish-Airlines#REVIEWS",		

						sep	=	"")	

		}	

		reviews	<-	url	%>%	

				read_html()	%>%	

				html_nodes("#REVIEWS	.innerBubble")	

		id	<-	reviews	%>%	

				html_node(".quote	a")	%>%	

				html_attr("id")	

		quote	<-	reviews	%>%	

				html_node(".quote	span")	%>%	

				html_text()	

		rating	<-	reviews	%>%	

				html_node(".rating	.rating_s_fill")	%>%	

				html_attr("alt")	%>%	

				gsub("	of	5	stars",	"",	.)	%>%	

				as.integer()	

		date	<-	reviews	%>%	

				html_node(".rating	.ratingDate")	%>%	

				html_attr("title")	%>%	

				strptime("%b	%d,	%Y")	%>%	

				as.POSIXct()	

		review	<-	reviews	%>%	

				html_node(".entry	.partial_entry")	%>%	

				html_text()	

		df	<-	data.frame(id,	quote,	rating,	date,	review,	stringsAsFactors	=

	FALSE)	

		df_total	<-	rbind(df_total,	df)	

}	

#	Save	an	object	to	a	file	

saveRDS(df_total,	file	=	"tripadvisor_turkishairlines6846.rds")	
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R package twitteR is used to scrape the tweets, retweets and favorites of any Twitter 

user. In similar to Facebook web scraping, a twitter App is created after logging into 

www.apps.twitter.com. The function of twitteR package, setup_twitter_oauth(), 

with four parameters consumer_key, consumer_secret, access_token, and 

access_secret, builds connection between R session and twitter App. The values of 

the above mentioned parameters are obtained after the twitter App is created. 

Subsequently, userTimeline() and retweets() functions are employed to scrape the 

tweets and retweets of any specific tweet respectively (Gentry 2015). 

#	Load	Requried	Package	

library("twitteR")	

#	Authonitical	keys	

consumer_key	<-	'tAyR9LyhATfD90aA7Ft1Zfj3I'	

consumer_secret	<-	'vX1RHqHHDpnmNOqrGPMVnmnQjQvG98X3xlB7T7zv4hKcvj7tVv	

access_token	<-	'2572842085-vExbB4HNvN57zmQhoQdbmutC16a4kdMdh1xVta5'	

access_secret	<-	'HtTHSeAOz1WPcUX8nfW5ddwZ1TbXZGFB4pSHU0IZ3agvA'	

	

twitteR::setup_twitter_oauth(consumer_key,	consumer_secret,		

																													access_token,	access_secret)	

tweets	<-	userTimeline("turkishairlines",	n=200)	

3.2 Data Wrangling 

The extracted social media data is in raw format and huge amount of effort is required to 

clean before getting it ready for analysis. Through effective data wrangling, the data is 

converted from raw format to another format that is easy to clean, manipulate, model 

and visualize. Hadley Wickham (2014) in his paper “Tidy Data” provides an effective 

way of data wrangling data through which messy datasets are converted into tidy 

datasets by using only small set of tools. The tidy datasets have a specific data structure: 

each variable is a column, each observation is a row, and each type of observational unit 

is a table (Wickham, Tidy Data 2014).  Tidy data sets are obtained and manipulated 
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through a set of tidy tools, including famous packages dplyr (Wickham et al. 2017), 

ggplot2 (Wickham, ggplot2: Elegant Graphics for Data Analysis 2009), tidyr 

(Wickham and Henry, tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions 

2018), and broom (Robinson 2018). Hence, the study converts the raw social media data 

into tidy data so that transition between the packages for manipulation, interpretation, 

and visualization purposes becomes smooth.  

3.3 Tokenization 

The tokenization is a process of converting a text into meaning unit of text, such as a 

word, n words (or n-gram), sentence or paragraph. The social media data is in the raw 

text format. In order to convert the untidy text data into tidy data, tokenization process is 

employed that split text into tokens. The table with a tidy text structure contains a one 

token in each row. Usually, the token in tidy dataset is a single word, but it can be an n-

gram (collection of words), sentence, or paragraph.  

The R package tidytext (Silge and Robinson, tidytext: Text Mining and Analysis 

Using Tidy Data Principles in R 2016) is used to tokenize the social media texts, like 

posts, comments, reviews and tweets, and convert them into one-token-each-row format.  

The study used tidytext’s unnest_token() function. The function requires two basic 

functions, one is the output column that is created when the text is tokenized and other is 

the input column that the input text for tokenization. An additional benefit of 

unnest_tokens() is that it converts the tokens to lowercase, which makes them more 

comparable with other datasets.  

tokenize	<-	function(file,	data_type)	{	

		data_tibble	<-	readRDS(file	=	file)	%>%		

				tibble::as_tibble()	

		data_vector	<-	data_tibble	%>%		

				dplyr::pull(data_type)	%>%		

				iconv(from	=	"UTF-8",	to	=	"Latin1")	
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		tokens	<-	tibble::as_tibble(data_vector)	%>%		

				dplyr::filter(!is.na(value))	%>%		

				dplyr::mutate(response_number	=	rownames(.))	%>%		

				dplyr::select(response_number,	value)	%>%		

				tidytext::unnest_tokens(word,	value)	

		tokens	

}	

 

The tokenize function converts text into tokens into following steps: first, the data is 

stored into a dataframe. Second, the untokenized text data is saved into a vector with 

character format, where each element of a vector is a sentence or paragraph. Third, the 

encodings of the character vector is converted to Latin1. Fourth, the vector is again 

transformed into a dataframe and NA values are filtered out. Fifth, the numbers are 

assigned to each sentence or paragraph using:  

mutate(line	=	rownames(.))	

Subsequently, the desired column in tokenized into words using unnest_tokens 

function. The value column is the input column argument and word is the output 

column argument of unnest_tokens.  The column is named value automatically in R 

when the vector is converted into a dataframe. These steps are shows in Figure 2 as a 

flowchart.  
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Figure 2: Tokenization Process Flowchart 

3.3.1 N-gram Tokenization 
 
The unnest_token() function provides an option to specify the type of token, i.e. by 

word, or n-gram – succeeding sequence of words. Sometimes, tokenization by n-gram, 

especially bigram (two words) is useful for sentiment and frequency analysis. For 

instance, when examining pairs of two succeeding words, an additional parameter, 

token	=	ngrams and n = 2, is added to unnest_tokens(), as it examines two 

consecutive words, also known as bigrams (Jurafsky and Martin 2017). Words, such as 

“not good”, “not bad”, and “along with” are the examples of bigrams as they are usually 

used consecutively in a text document.  

3.3.2 Sentence Tokens 
 
Until now, the study has used unigram or word tokens for frequency visualization and 

sentiment analysis. However, in addition to word tokens, there is another form of token, 

i.e. sentence tokens (Silge and Robinson, Text Mining with R - A Tidy Approach 2018). 

The sentence token in a tidy data set considers a sentence in a text as a token. In the 

function tidytext::unnest_tokens(), there is an argument token which requires 
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either a “words” or “sentences” as an input.  In order to use “sentences” as a token, 

the data must be have a tidy format and the character vector must be encoded in latin1 

encoding.  Following are the steps in the construction of sentence_tokens function as 

given below. First, the review or comment data is tokenized into words. Second, using 

dplyr::filter(), the words in English dictionary are selected or filtered out. The 

English dictionary is obtained from the package qdapDictionaries. Third, with the 

help of comments and reviews id, the tokens are combined into sentences, using paste 

function, and saved into column named sentence.  

paste(word,	collapse	=	"	")	

Fourth, the encodings of the characters inside the sentence column is converted from 

UTF8 to latin1. Lastly, after grouping the dataframe by id, the sentence column is 

tokenized into sentences.  

 
sentence_tokens	<-	function(data	=	untidy_response_facebook,		

																												response_column	=	"comments",		

																												group_by	=	"comment_number")	{	

		#	English	Dictionary	

		qdapDictionaries::DICTIONARY[,1]	

			

		en_word_comments	<-	data	%>%		

				dplyr::ungroup()	%>%		

				tidytext::unnest_tokens_("word",	response_column)	%>%		

				dplyr::filter(word	%in%	qdapDictionaries::DICTIONARY[,1])	

			

		en_word_sentence_comments	<-	en_word_comments	%>%		

				dplyr::group_by_("id",	group_by)	%>%		

				dplyr::mutate(sentence	=	paste(word,	collapse	=	"	"))	%>%	

				dplyr::distinct(sentence,	.keep_all	=	TRUE)	%>%		

				dplyr::as_data_frame()	%>%		

				dplyr::mutate(sentence	=	iconv(sentence,	to	=	'latin1'))	%>%		

				dplyr::ungroup()	
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		#	Sentence	as	tokens	with	post	number	and	comment	number	

		en_word_sentence_comments	%>%		

				dplyr::select_("id",	group_by,	"sentence")	%>%	

				dplyr::ungroup()	%>%		

				tidytext::unnest_tokens(sentences,	sentence,	token="sentences")	

}	

3.4 Stop Words 

The tokens in the tidy data structure often contains frequent but less informative words. 

These words do not add value in the analytics therefore they are removed from the data 

and thus known as stop words (Jurafsky and Martin 2017). For example, “I”, “he”, 

“they’ll” are some of the English stop words. The study used a list of stop words from 

the “tm” package that contains 174 stop words. Furthermore, new words can be added to 

the stop words lists using c() function. For instance, the study added “miss”, “airlines”, 

“flight”, and “turkish” to the stop words by writing this code: c(“miss”,	“airlines”,	

“flight”,	“turkish”,	stopwords(“en”)).  These stop words are eliminated from 

the tidytext dataset with a dplyr function, i.e. anti_join().  

data(stop_words)	

	

#	Custom	stop	words	

custom_stop_words	<-	data.frame(word	=	c("miss",	"flight",	"tukish",		

																																									"airlines",	"flights",		

																																									"airline",	"turkish"),		

																																lexicon	=	c("custom"))	%>%	

		rbind(stop_words)	

3.5 Multiple Verb Forms 

The tokens include multiple forms of verbs that are considered different words during 

analysis. The study aims to convert verbs in different forms, including present simple, 

past simple, present participle and past participle into base form of verbs. According to 

the research, there is not any specific package in R that deals with the issue of 
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converting verbs from different forms into basic forms. The study develops its own 

lexicon of verbs with its other forms of verbs. The lexicon is named as 

sahban_base_lexicon and saved along with other datasets in the .rda format. The 

lexicon contains a total of 2,154 different verbs. The lexicon data have two columns, 

base column, refers to the base form of verbs, and non_base column, refers to all forms 

of verbs other than base form. Furthermore, the study provides a function 

extract_non_base that converts the other verb forms tokens into base form verbs. The 

function takes data as an argument. The dataset is the output of the function 

unnest_tokens that contains a column named word.   

extract_non_base	<-	function(data)	{	
		data	%>%	
				dplyr::rename(non_base	=	word)	%>%	
				dplyr::left_join(readRDS("sahban_base_lexicon"),	by	=	"non_base")	
%>%	
				dplyr::mutate(base	=	ifelse(is.na(base),	non_base,	base))	%>%	
				dplyr::rename(word	=	base)	%>%	
				dplyr::select(-one_of("non_base"))		
}	

The study also provides a way to augment sahban_base_lexicon by adding new verbs 

and their forms. The new verbs are added using the function dplyr::bind_rows. As 

seen in an example below, the verb travel is added to the list with its past simple and 

present participle. Although, the verb was included in the list, many users have used 

double “l” in the word travelled and travelling instead of single “l”. In order to increase 

accuracy of analysis, the study included misspelled verbs in the lexicon.  

#	Adding	words	manually	to	the	lexicon	

sahban_base_lexicon	<-	readRDS("sahban_base_lexicon")	%>%		

		dplyr::bind_rows(data.frame(base	=	c("travel",	"travel"),		

																													non_base	=	c("travelled",	"travelling")))	

saveRDS(sahban_base_lexicon,	"sahban_base_lexicon")	
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3.6 Plural Nouns 

The tokens include plural nouns that are considered different words than their respective 

singular nouns during analysis. The study aims to convert plural nouns into singular 

form of nouns. According to the research, there is not any specific package in R that 

deals with the issue of converting nouns from plural to singular form. The study 

develops its own lexicon of nouns with its plural forms. The lexicon is named as 

sahban_noun_lexicon and saved along with other datasets in the .rda format. The 

lexicon contains a total of 4,489 different nouns. The lexicon data have two columns, 

noun column, refers to the singular form of nouns, and plural column, which refers to 

plural form of nouns. Furthermore, the study provides a function extract_plural that 

converts the plural noun tokens into singular form. Similar to the extract_non_base 

function, the function takes data as an argument. The dataset is the output of the 

function unnest_tokens that contains a column named word.  

 
#	Convert	Plural	Nouns	to	Singular	Nouns	
	
extract_plural	<-	function(data)	{	
		data	%>%		
				dplyr::rename(plural	=	word)	%>%		
				dplyr::left_join(readRDS("sahban_noun_lexicon"),	by	=	"plural")	%>
%		
				dplyr::mutate(noun	=	ifelse(is.na(noun),	plural,	noun))	%>%		
				dplyr::rename(word	=	noun)	%>%		
				dplyr::select(-one_of("plural"))	
}	
	

 

3.7 Word Frequency 

The most basic and common task in social media mining is to find word frequencies. 

Although computing word frequencies is a simple analytical technique, reasonable and 

intuitive word frequencies can lead to deep insights and logical findings from the data, 

especially while comparing word frequencies among different texts. The study 



 

25 
 

employed tidy tools to compute frequencies smoothly and intuitively.  In this study, the 

dplyr function count() is used to find the frequency of each token in the text. 

Afterwards, highly frequent words, having frequency of more than specific limit, and 

their frequencies are selected from the tidy datasets.  

word_count	<-	function(data)	{	

		readRDS(data)	%>%		

				dplyr::anti_join(custom_stop_words,	by	=	"word")	%>%		

				dplyr::count(word,	sort	=	TRUE)	%>%		

				tibble::as_tibble()	

}	

These frequent words and their frequencies have been plotted using a package 

ggplot2() and its function ggplot(). In addition to the data as an input, minimum 

number of words to be included in a bar chart plot is provided as an input to a newly 

built function word_count_plot. The function is based on the code provided by Julia 

Silge and David Robinson in their book “Text Mining with R” (Silge and Robinson, 

Text Mining with R - A Tidy Approach 2018).  

word_count_plot	<-	function(data,	min_count)	{	

		tokens_count	<-	readRDS(data)	

		tokens_count	%>%		

				dplyr::filter(n	>	min_count)	%>%	

				dplyr::mutate(word	=	reorder(word,	n))	%>%	

				ggplot2::ggplot(mapping	=	ggplot2::aes(word,	n))	+	

				ggplot2::geom_col()	+	

				ggplot2::xlab("Most	Frequent	Words")	+		

				ggplot2::coord_flip()	

}	

3.8 Sentiment Analysis 

In the previous sections, the study explained the method of tidying the raw data and 

explained how can tidy tools be used to tokenize the texts. This tokenization helped to 

compute and compare word frequencies.  In this section, the study aims to further 
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analyze the tokens, extracted from texts, by using sentiment analysis or opinion mining 

technique. When humans read a text, they infer whether a token of text is positive, 

negative or characterized by some other emotion like anger or joy. The study employed 

text-mining tools to find out the emotions in the text programmatically.  

The study considers text as a combination of its individual tokens or words and the 

overall sentiment score of the text is basically the sum of the sentiment score of 

individual tokens. This sentiment analysis approach is easy to implement while using 

tidy data principles as tidy datasets has one token in each row.  

In R programming, in contrast to the method of removing stop words where 

anti_join() function is used, the sentiment scores of unigrams in a tidy dataset are 

evaluated using dplyr’s function inner_join(). After the tokenization of the texts 

using unnest_tokens(), in order to keep track of which posts and comment of the 

posts each token comes from, the study used group_by and mutate functions in dplyr 

package.  

As mentioned above, the unnest_tokens() requires to parameters, input column and 

output column. The study chose the name word for the output column as the lexicon 

datasets and stop words datasets have columns with the name word; thus, making 

inner joins and anti joins simpler. 

The next step after removing stop words and scoring the tokens, the study counts how 

many negative and positive tokens are there in each comment, review or tweet. The 

study then uses dplyr::spread() to have positive and negative sentiment scores in 

separate columns. Finally, the net sentiment score is calculated by subtracting 

negative score from the positive for each comment, review and tweet. The overall 

sentiment score of a review or a comment ease the way of finding the undesirable 

comments and negative reviews.  
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3.8.1 Sentiment Lexicons 
 
There are a variety of datasets or sentiment lexicons that specify the sentiment content of 

tokens in a text. The study used three popular general-purpose sentiment lexicons to 

evaluate the emotion in text, i.e. AFINN, Opinion Lexicon and Emolex. All of these 

lexicons are based on single word tokens, i.e. unigrams.  

AFINN 
 
AFINN is one of the three sentiment datasets used in this study. AFINN is a list of 

English words valued for opinions or emotions with an integer between minus five (-5) 

to plus five (+5), where negative score indicates negative emotions and positive score 

indicates positive emotions. Finn Årup Nielsen in 2009-2011 manually labeled the list of 

2477 words and phrases (Nielsen 2011). 

A general function sentiments_afinn is made that takes tidy data as an argument and 

provides a sentiment score of a post, a sentence or a paragraph. First, the function uses 

inner_join() function to assign a score to each word that is in the data and that also 

exits in the afinn lexicon. After grouping by post_number, the score of each word in a 

post is added to get a total sentiment of a post.     

#afinn	

sentiments_afinn	<-	function(data)	{	

		data	%>%		

				dplyr::inner_join(tidytext::get_sentiments("afinn"),	by	=	"word")	

%>%		

				dplyr::group_by(id,	response_number)	%>%		

				dplyr::summarise(score	=	sum(score))		

}	

Opinion Lexicon 
 
Another general-purpose sentiment lexicon used in this research study is “Opinion 

Lexicon”, developed by Bing Liu and collaborators (Hu and Liu 2004). The lexicon is a 
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list English positive or negative opinions or sentiment words. The total number of words 

in this opinion lexicon is six thousand eight hundred words. Bing’s lexicon is obtained 

from the R package tidytext where it is named as bing.  It categorizes the tokens in a 

binary fashion, either positive or negative category (Hu and Liu 2004).  

Emolex 
 
NRC Word Emotion Association Lexicon, also known as “Emolex”, is the third emotion 

lexicon used in this study (Mohammad and Turney 2013). The lexicon is the list of 

English words and their association with two sentiments, positive and negative, and 

eight main emotions, i.e. surprise, anger, sadness, fear, trust, anticipation, joy, and 

disgust. In similar to other two above-mentioned lexicons, Emolex is also based on 

single words, i.e. unigrams. The lexicon was constructed through crowdsourcing on 

Amazon Mechanical Turk, a marketplace for work where developers hire humans for 

the tasks requiring human intelligence (Mohammad and Turney 2013).    

These lexicons are accessed through tidytext by using its function get_sentimens(). 

The names of these AFINN, Opinion Lexicon and Emolex in tidytext sentiment datasets 

are AFINN, bing and nrc respectively. The lexicons are validated either through 

crowdsourcing or through social media data, such as Twitter data or restaurant reviews. 

They assign a score to each word in a text and subsequently the scores of are added up to 

find the sentiment score of a whole text. As most of the English words are neutral, the 

lexicons contain only those words that indicate some opinion or emotion.  

The function, response_sentiments, is valid for two sentiment lexicons, Opinion 

Lexicon (bing) and Emlox (NRC). As these two lexicon treats positive and negative 

sentiments separately, the function is able to subtract negative sentiment score from 

positive sentiment score to give an overall score to a sentence or paragraph. The body of 

the function response_sentiments is given below: 
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response_sentiments	<-	function(data,	lexicon,	group_by	=	sentiment)	{	

		data	%>%		

				dplyr::inner_join(get_sentiments(lexicon),	by	=	"word")	%>%		

				dplyr::count(response_number,	sentiment)	%>%		

				tidyr::spread(sentiment,	n,	fill	=	0)	%>%		

				dplyr::mutate(sentiment	=	positive	-	negative)	%>%		

				dplyr::ungroup()	

}	

3.8.2 Most Frequent Sentiments 
 
Using the above mentioned three lexicons, tokens are classified into sentiments. The 

next step of analysis is to find out the most frequent sentiments in a document. The most 

common sentiment helps businesses to have an insight about overall sentiment of 

consumers. For instance, if positive sentiment count outweighs the negative sentiment 

count, it can be supposed that the consumers have overall positive attitude toward the 

company. A simple R function to estimate most frequent sentiments in a tidy dataset is 

given below: 

frequent_sentiments	<-	function(data)	{	

		data	%>%		

				dplyr::inner_join(tidytext::get_sentiments("bing"))	%>%		

				dplyr::ungroup()	%>%	

				dplyr::count(word,	sentiment,	sort	=	TRUE)		

}	

3.8.3 Plot Frequent Sentiments Counts 

In subsequent to the estimation of frequent sentiments in a text, the study plots the 

frequency of sentiments using flipped bar charts. A function plot_sentiment_count	is 

made that takes a tidy dataset as its only input and gives two bar charts with most 

frequent positive and negative sentiments respectively. The function is based on the 

code provided in the book Text Mining with R by Julia Silge and David Robinson (Silge 
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and Robinson, tidytext: Text Mining and Analysis Using Tidy Data Principles in R 

2016).  

 
plot_sentiment_count	<-	function(data)	{	

		data	%>%		

				dplyr::group_by(sentiment)	%>%		

				dplyr::top_n(10)	%>%		

				dplyr::ungroup()	%>%		

				dplyr::mutate(word	=	reorder(word,	n))	%>%		

				ggplot2::ggplot(ggplot2::aes(word,	n,	fill	=	sentiment))	+	

				ggplot2::geom_col(show.legend	=	FALSE)	+	

				ggplot2::facet_wrap(~sentiment,	scales	=	"free_y")	+	

				ggplot2::labs(y	=	"Sentiments",	

																		x	=	"Frequency”)	+	

				ggplot2::coord_flip()	

}	

3.8.4 Sentiments to All Words Ratio  
 
Although the total number of positive or negative sentiments depicts the overall 

sentiment content in a sentence or a paragraph, the numerical value is lacking; since, the 

total number of words in the sentence (or paragraph) is not taken into account. For 

instance, while comparing the negative sentiment content of two different sentences, 

only the total number of negative words in a sentence would not give us a complete 

picture, instead a ratio of negative word count to total word count provide a better 

comparison. The study provides an R function that takes a tokenized tidy dataset and 

sentiment_type, positive or negative, as an input and returns a dataframe with top 10 

most negative or positive user generated responses.  
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sentiment_token_ratio	<-	function(data,	sentiment_type	=	"negative")	{	

		negative_sentiment	<-	get_sentiments("bing")	%>%		

				dplyr::filter(sentiment	==	sentiment_type)	

	

		wordcounts	<-	data	%>%		

				dplyr::group_by(response_number)	%>%	

				dplyr::summarize(word	=	n())	

			

		data	%>%	

				dplyr::semi_join(negative_sentiment)	%>%	

				dplyr::group_by(id,	response_number)	%>%	

				dplyr::summarize(negativewords	=	n())	%>%	

				dplyr::left_join(wordcounts,	by	=	c("response_number"))	%>%	

				dplyr::mutate(ratio	=	negativewords/word)	%>%	

				dplyr::top_n(10)	%>%	

				dplyr::ungroup()	%>%		

				dplyr::arrange(desc(ratio))		

}	

 

3.9 Word Cloud 

WordCloud is a visualization technique that gives word cloud, an image made-up of 

words used in a document or text. In a word cloud, the size of each word specifies the 

importance and frequency of the word. Word cloud of emotions or opinions provides 

insights about user perception about the target subject, such as a brand or a product.  

In R programming, the wordcloud package is used to build a word cloud that indicates 

the most frequent sentiments in the comments and reviews. The word_cloud function, 

as given below, requires two arguments: first, a dataset with a column containing tokens 

and another column with tokens’ frequency; second, a numerical value indicating the 

maximum number of words to be visualized in a word cloud.   
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library(wordcloud)	

word_cloud	<-	function(data,	max_words)	{	

		data	%>%	

				dplyr::count(word)	%>%	

				with(wordcloud::wordcloud(word,	n,	max.words	=	50))	

}	

3.9.1 Sentiment Cloud 

Furthermore, an interesting wordcloud can be obtained after labeling the tokens into 

positive and negative sentiments. First, sentiment analysis is done and tokens are labeled 

as positive or negative by using inner_join(). Afterwards, the data structure of tidy 

dataset is converted from dataframe to matrix using acast() function of reshape2 

package. Finally, comparison.cloud() function is used to get a word cloud that compares 

the most frequent positive and negative sentiments. The visualization helps us to figure 

out the most important negative and positive sentiments in a text, however, the size of 

the words cannot be compared across sentiments. A general sentiment_cloud function 

is made to avoid code redundancy. The function gives a cloud of sentiments when a tidy 

data, having a tokenized column with a name word, is passed through its dataset 

argument. The function is based on the code provided by Julia Silge and David 

Robinson in their book “Text Mining with R” (Silge and Robinson, Text Mining with R 

- A Tidy Approach 2018). 

library(reshape2)	

sentiment_cloud	<-	function(dataset)	{	

		dataset	%>%	

				dplyr::inner_join(tidytext::get_sentiments("bing"))	%>%	

				dplyr::count(word,	sentiment,	sort	=	TRUE)	%>%	

				reshape2::acast(word	~	sentiment,	value.var	=	"n",	fill	=	0)	%>%	

				wordcloud::comparison.cloud(colors	=	c("#F8766D",	"#00BFC4"),	

																																max.words	=	100)	

}	 	
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4. DATA 
 
The study aims to conduct social media mining of Turkish international company that 

use English language as a medium of communication on Social Media web applications. 

In the research, the study finds out that Turkish Airlines “Türk Hava Yolları” is one of 

the most famous Turkish brands worldwide. The company is actively manages its social 

media accounts and interacts with its fans and followers on social media websites in 

English language. Furthermore, it has large number of followers in all over the world 

and thousands of people who have travelled through Turkish Airlines have posted their 

reviews on social media websites.   

The Turkish Airlines social media branding campaign is highly effective on Facebook. 

Its fan page has more than 10 million likes and followers. For research purposes, the 

study scraped data from company’s Facebook page as mentioned in the methodology 

section. Firstly, Facebook posts and total number of comments, likes and shares are 

extracted for six months, i.e. from 15 March 2017 to 15 October 2017. The data is stored 

in a dataframe, which is named as “posts data”. Furthermore, a post-specific ID is used 

to scrape content of each comment in every Facebook post. The comment dataset has a 

complicated “list” data structure. The list of comment dataset contains three hundred 

(300) lists for each post. Each post-specific list contains three lists, each containing a 

dataframe that provides details about posts, comments and reactions respectively. The 

list structure is converted into a dataframe that contains the content of three hundred 

(300) posts and their comments. The study named this dataframe as “comments data”.  

Although the conversion from list to dataframe resulted in post-specific data 

redundancy, it eases our way in data cleaning and tokenization through tidy tools. The 

comment dataset contains six thousand five hundred and sixty four rows (6.564), which 

means on average there are 22 comments on each Facebook post in last six months. 

After tokenization, the number of rows in a dataset is extended to more than thirty two 
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thousand rows (32,000). There are total thirty two thousand one hundred and fifty seven 

(32,157) words in six thousand five hundred and sixty four (6,564) comments of total 

300 posts. 

The Facebook data were retrieved in the month of October 2017 and the permission 

from the admin of Turkish Airlines’ page was not required. However, after Facebook 

took initiatives to reform its privacy policy on 28th March 2018, the data extraction from 

Facebook page requires access to the page’s data from the admin (Jenkins 2018). 

In addition to the Facebook comment data, the study also scrapes reviews from another 

social media web application, TripAdvisor. There are more than six thousand eight 

hundred reviews of Turkish airlines on TripAdvisor. As TripAdvisor is a review based 

website, the website provides a user-friendly interface with tips for writing a great 

review. Therefore, most of the genuine customers’ reviews are written in proper English 

language. The study aims to take advantage of these well-written reviews and explore 

the customers’ perception about brands through sentiment analysis. The study extracted 

reviews of last two and a half years, i.e. from January 2016 to April 2018. There are 

total reviews of 6,846 extracted from 686 pages. The review dataset includes id for each 

review, quotes and reviews. 
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5. Case Study – Turkish Airlines 

This research thesis conducts a case study on Turkish Airlines social media data posted 

by its followers or customers in different social media forums. As explained under the 

data extraction section in methodology, the data is extracted from the two main web 

applications, Facebook and TripAdvisor. In this section, the study explains the structure 

of data extracted and the use of R packages and function that are required to clean the 

messy data and make it useful for analysis. Furthermore, the after converting the data in 

an appropriate tidy format, the sentiment analysis is conducted along with sentiment 

word clouds for the visualization of customers’ perception about Turkish Airlines. 

5.1 Extracting Facebook Posts 

The Facebook ID of the Turkish Airlines’ page is “turkishairlines”. Using the page id, 

Facebook authentication, and getPage() function, the data of recent 300 posts is 

extracted.  

#	Extract	posts	from	turkish	airlines	page	

data_turkishairlines	<-	Rfacebook::getPage(page	=	"turkishairlines",	

																																							 token	=	auth_fb,	n	=	300)	

The scraped data has multiple columns, such as id, from_id, from_name, message,	

type, likes_count, comments_count, and shares_count etc. These data is viewed in 

the form of tibble, a data structure type that prints data in r console in an easily 

readable format.  As seen in the table below, the from_id column is the id of Turkish 

Airlines pages, the type column denotes the type of the posts, either photo or video. 

Furthermore, the message column specifies the message posted by Turkish Airliness 

along with the photo or video. Each row in the table below provides information about 

one specific Facebook post.  	

#	Viewing	limited	variables	and	rows	

data_turkishairlines	%>%		
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		dplyr::select(from_id,	likes_count,	type,	comments_count,		

																shares_count,	message,	id)	%>%		

		tibble::as_tibble()	%>%		

		head(5)	

After saving the data into data_turkishairlines variable, the data can be reused for  

printing. The function dplyr::select()	 is used to select and sequence selected 

columns of a tidy dataframe. Using head() function, only first five rows are printed as 

shown below:	

##	#	A	tibble:	5	x	7	

##							from_id	likes_count		type	comments_count	shares_count	

##									<chr>							<dbl>	<chr>										<dbl>								<dbl>	

##	1	90430042759									254	photo													12											18	

##	2	90430042759									300	photo												132											92	

##	3	90430042759									869	photo													39											43	

##	4	90430042759									261	photo														9												7	

##	5	90430042759									227	photo													13											11	

##	#	...	with	2	more	variables:	message	<chr>,	id	<chr>	

As the space is limited for all of the columns to be printed, the tibble() function 

doesn’t show all of the columns’ data. Instead, the name of the columns and their data 

type is printed at the end, like message and id.  Furthermore, user can view a specific 

column’s content using dplyr::select()	as shown in the code below: 

#	Viewing	one	recent	post’s	message	

data_turkishairlines	%>%		 	

		dplyr::select(message)	%>%		

		tibble::as_tibble()	%>%		

		head(2)	

The code gives first two values of a message column, corresponds to the latest two posts 

on Turkish Airlines Facebook page. 

##	#	A	tibble:	2	x	1	

##				message	
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##					<chr>	

##	1		Our	flights	to	Samarkand	start	on	March	16th,	2018!	

##	2	"We	are	looking	for	new	pilots!	Join	us	at	Turkish	Airlines					

##				Pilot	Roadshow	

5.2 Extracting Facebook Comments 

In converse to the Facebook post extraction, the comment data extraction is quite 

complicated. The Rfacebook::getPost() is used to extract the comments for specified 

posts. As comment extraction requires the related posts id, this process becomes quite 

complex. As shown below, the getPost function requires post’s id, number of 

comments, and Facebook authentication.  

get_comments	<-	getPost(post	=	post_id,	n	=	50000,	token=auth_fb,		

										 	 	 comments	=	TRUE,	reactions	=	TRUE)	

The getPost() only extracts comments of one post at a time, however, the study 

requires comments of 300 different posts in one go. In order to scrape all of the 

comments, the study used the function lapply() that runs the same code three hundred 

times with 300 different post ids. The post ids are store in a separate R vector using $ 

sign as shown. The $ sign is used to index the content in the id column that exists in 

data_turkishairlines variable.  

data_turkishairlines_id	<-	data_turkishairlines$id	

The vector is then passed as the first argument of lapply function and following the 

getPost function name and the values of all the arguments of getPost function except 

first. The lapply function is applying the vector of ids to the getPost function in a 

loop.  

threehundred_posts	<-	data_turkishairlines_id[1:300]	%>%		

			 	 	 lapply(getPost,	n	=	50000,	token=auth_fb,		

										 	 comments	=	TRUE,	reactions	=	TRUE)	
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All the comments data of 300 posts is stored inside a list which contains 300 sub lists. 

Inside each sub list, there are three sub-sub-lists containing data related to posts, 

comments and reactions in a dataframe respectively. The data structure of the lists is 

shown in the image given below. The complex list structure contains numerous kinds of 

data that is out of the scope for this research study, like names of the people who shared 

the posts and reacted to the posts in anyway. In this study, the comments posted by the 

followers are only required for this study. It can be seen in the image below, the 

comments content is saved inside a message column under the list with the name 

comments.  

 

Figure 3: Data Structure of Facebook Comments 

The comments are extracted from the list through three level indexing. First, each post-

specific list is indexed; second, comments list is indexed using $ sign; last, the message 

column is indexed as given in the code.  
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#	Saving	comments	for	first	post	in	new	variable	

full_comments	<-	threehundred_posts[[1]]$comments$message	%>%	

		as.data.frame()	%>%		

		setNames("comments")	%>%	

		dplyr::mutate(id	=	data_turkishairlines_id[1])	

The above code extract and saves the comments of first post in a variable named 

full_comments. However, to extract all posts data, a loop is required to index each 

post’s list one by one. In each loop, the comments of one post is extracted and saved 

first in a variable comment and later the data from comment is saved into a variable 

full_comments using rbind() function, which binds rows of two dataframes.  

#	Saving	comments	of	all	300	posts.		

for	(i	in	1:299)	{	

		comment	<-	threehundred_posts[[i+1]]$comments$message	%>%		

				as.data.frame()	%>%		

				setNames("comments")	%>%	

				dplyr::mutate(id	=	data_turkishairlines_id[i+1])	

		full_comments	=	rbind(full_comments,	comment)	

}	

In the above loop, along with the comments’ message, the post’s ids are also added in 

the dataset in order to keep track of the columns as to which post does the comment 

belong. Later, the post ids are used to merge the posts data and comment data, i.e. 

data_turkishairlines and full_comments respectively.  

#	Assigning	the	post	ids	to	its	comments.		

#	The	posts	ids	are	repeated	when	there	are	more	than	one	comment.			

full_comment_post	<-	full_comments	%>%		

		dplyr::left_join(data_turkishairlines,	by	=	"id")	

As it can be seen in the dataframe printed below using tibble(), there are total 11 

columns that include all the columns of posts data and one new column of comments. As 

there are more than one comments in a single post, there are more than one row for a 

single post due to numerous comments, therefore the post-specific data is redundant.  
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full_comment_post	%>%		

		tibble::as_tibble()	%>%		

		head(3)	

##	#	A	tibble:	3	x	11	

##							from_id	

##									<chr>	

##	1	90430042759	

##	2	90430042759	

##	3	90430042759	

##	#	...	with	10	more	variables:	comments	<fctr>,	id	<chr>,	from_name	

<chr>,	message	<chr>,	created_time	<chr>,	type	<chr>,	link	<chr>,	stor

y	<chr>,	likes_count	<dbl>,	comments_count	<dbl>	

For analysis purposes, a subset dataset can be made by selecting the required columns 

dplyr::select(). For example, the post’s id and comments can only be selected in a 

subset dataset. Later, the rest of the columns can be added to the subset dataset using 

dplyr::leftjoin().  In an example below, two of the top comments of a post are 

printed. The head() function, with an argument valued two, selects the top two rows of 

a dataframe which has only comments as a single column.  

full_comment_post	%>%		

		dplyr::select(comments)	%>%		

		tibble::as_tibble()	%>%		

		head(2)	

##	#	A	tibble:	2	x	1	

##			comments	

##			<fctr>	

##	1	Direct	flight	from	Ireland	to	bodrum	badly	needed	even	twice	a		

##			week	

##	2	Just	curious	you	do	flights	to	Tbilisi?	
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5.3 Extracting TripAdvisor Reviews 

TripAdvisor is the best web application that allows the companies in tourism and 

transport industry to explore their consumers’ perception about their services using the 

big data of reviews and ratings. The study leverages reviews posted by Turkish Airlines’ 

customers on TripAdvisor website. The method for extracting reviews data is mentioned 

in the section methodology. The data is stored in a .rda file format so that it can be 

accessed whenever needed, without scarping it from TripAdvisor repeatedly.  Firstly, 

using readRDS function, the dataset is read and stored in a new variable 

trip_turkishairlines.  

trip_turkishairlines	<-	readRDS(file	=	"tripadvisor_turkishairlines684

6.rds")	

The review dataset contains five variables, id, data, quote, rating, and review. The 

two main variables, id and review are used in the study for analysis. In contrast to the 

Facebook’s extracted data, the data is already clean as the TripAdvsior’s data structure is 

not as complex as Facebook’s data structure.  

trip_turkishairlines	%>%	

		dplyr::select(id,	date,	quote,	rating,	review)	%>%		

		tibble::as_tibble()	%>%		

		head(3)	

##	#	A	tibble:	3	x	5	

##												id							date	

##									<chr>					<dttm>	

##	1	rn575914601	2018-04-26	

##	2	rn575863809	2018-04-26	

##	3	rn575859234	2018-04-26	

##	#	...	with	3	more	variables:	quote	<chr>,	rating	<int>,		

##	#	review	<chr>	

As seen above, the printed table above doesn’t show the content of quote, rating and 

review. The tibble format prints the dataframe in a tidy way by minimizing the 
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column with outsized data; furthermore, all of the columns after that minimized column 

are also suppressed.  In order to view a review, the column review is selected first using 

dplyr::select and then head function is used to print the first review only. It can be 

seen below that the review is negative and the customer is complaining about customer 

service.   

 
trip_turkishairlines	%>%		

		dplyr::select(review)	%>%		

		tibble::as_tibble()	%>%		

		dplyr::sample_n(1)	

##	#	A	tibble:	1	x	1	

##		review	

##		<chr>	

##	2	Turkish	airlines	is	the	best	airline	I	have	had	the	pleasure	of		

	flying	with.	We	flew	from	Dublin	to	Istanbul	&	Istanbul	to	Sharm	el		

	sheikh	and	returned	with	them.	The	cabin	crew	are	extremely	pleasant	

	and	always	have	a	smile	on	there	faces.we	had	meals	included	no		

	charge	and	very	nice	too	TV	on	all	flights	and	very	enjoyable...	

5.4 Tokenization 

The next step after extracting the data and cleaning it is tokenization of texts, i.e. 

comments and reviews. As mentioned in the methodology section, tokenization is the 

conversion of texts in to single words (unigram) or multiple words (n-grams). In this 

case, the texts tokenized into single words and saved into a dataframe. Each row of a 

dataframe contains a single word. The process of tokenization is briefly explained in the 

methodology section. The study created a function tokenize that takes dataframe and 

the column, which needs to be tokenized, as an arguments.  

	
facebook_tokens	<-	tokenize("300_posts_comments",	"comments")	

facebook_tokens	%>%		

		tibble::as_tibble()	
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##	#	A	tibble:	32,157	x	2	

##				response_number				word	

##														<chr>			<chr>	

##		1															1		direct	

##		2															1		flight	

##		3															1				from	

##		4															1	ireland	

##		5															1						to	

##		6															1		bodrum	

##		7															1			badly	

##		8															1		needed	

##		9															1				even	

##	10															1			twice	

##	#	...	with	32,147	more	rows	

It can be seen in the table above, one of the comments is parsed into words and all of the 

words are included as tokens. The comment, “Direct flight from Ireland to bodrum badly 

needed even twice a week”, is tokenized into words. Furthermore, capital letters of all 

the word are converted into small letters to simplify the analysis.  

tripadvisor_tokens	<-	tokenize("tripadvisor_turkishairlines6846.rds",	

"review")	

tripadvisor_tokens	%>%		

		tibble::as_tibble()	

The response_number in the table refers to the comment number in case of Facebook data 

and review number in the case of TripAdvisor data. The total number of words in 

TripAdvisor data is ten times the number of words in Facebook data. The tokenized 

sample TripAdvisor data is given below: 

 
##	#	A	tibble:	325,179	x	2	

##				response_number							word	

##														<chr>						<chr>	

##		1															1									to	

##		2															1						start	
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##		3															1							with	

##		4															1									me	

##		5															1								and	

##		6															1									my	

##		7															1					sister	

##		8															1								had	

##		9															1										a	

##	10															1	connection	

##	#	...	with	325,169	more	rows	

5.4.1 Indexed Response Function 
 
The tokenize function helps to convert text into sentences; however, the function does 

not keep track of the post and the comments from which the word is extracted. If the 

company aims to track a specific word, i.e. tries to locate the whole comment or the 

particular post under which the specific word is used, only tokenize function will not 

be helpful. To solve this issue, the study develops a new function, 

numbered_response_tokens that is used to get a resultant dataset with post_number 

and comment_number columns to track tokens. It requires two arguments, one is non-

tokenized dataset and the other is the response column, either review or comments. 

First, the function converts the encoding of characters in a response column from UTF-8 

to Latin1. Second, a new column is made with the name post_number, assigining 

numbers to each review of Facebook Post.  
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numbered_response_tokens	<-	function(file,	response_type)	{	

			

		dataset	<-		readRDS(file	=	file)	

			

		dataset	%>%		

				tibble::as_tibble()	%>%		

				dplyr::mutate(response_type	=		

																				iconv(pull(.,	response_type),		

																										from	=	"UTF-8",	to	=	"Latin1"))	%>%		

				dplyr::mutate(post_number	=	as.numeric(factor(id)))	%>%		

				dplyr::group_by(id)	%>%		

				dplyr::mutate_if(is.factor,	as.character)	

}	

 
Facebook tokens require tracking on multiple levels, i.e. at post level and comment 

level, tracked by post_number and comment_number respectively. However, the 

TripAdvisor tokens are tracked using review numbers only. The column that refers to 

review number is named as post_number so that a function that deals with both 

Facebook and TripAdvisor data can be made. The tokenization of Facebook comments 

is done after a new column response_number is added to the dataset. Consequently, the 

custom_stop_words are taken out from the data using dplyr::anti_join().  

 
tidy_response_facebook	<-		

		numbered_response_tokens("300_posts_comments",	"comments")	%>%		

		dplyr::mutate(response_number	=	row_number())	%>%	 	 	 		

		tidytext::unnest_tokens(word,	comments)	%>%		

		dplyr::anti_join(custom_stop_words)	

tidy_response_facebook	%>%		

		tibble::as_tibble()	%>%		

		dplyr::select(post_number,	response_number,	word,	type)	
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##	#	A	tibble:	24,007	x	4	

##				post_number	response_number													word		type	

##										<dbl>											<int>												<chr>	<chr>	

##		1											2															2	seniyorumtürkiye	video	

##		2											3															2													waaw		link	

##		3											4														29										kettani	photo	

##		4											4														27													daba	photo	

##		5											4														27													yaba	photo	

##	#	...	with	24,002	more	rows	

An extra step of adding comment_number is not taken while tokenizing reviews. As 

mentioned earlier, it requires single level indexing and the post numbers have already 

been assigned in the function numbered_response_tokens.  

tidy_response_tripadvisor	<-		

		numbered_response_tokens(	

												"tripadvisor_turkishairlines6846.rds",	"review")	%>%	

		tidytext::unnest_tokens(word,	review)	%>%		

		dplyr::anti_join(custom_stop_words)	

The table below shows different tokens and their review numbers. The data is sorted 

with respect to response_number column in the table. It can be seen that two different 

words “promised” and “the” are considered to be a single word as the review writer did 

not place any space before and after full stop. While comparing the words with English 

dictionary, the token “promised.the” will be considered as a noise and therefore it will 

be eliminated from the data.  

 
tidy_response_tripadvisor	%>%		

		tibble::as_tibble()	%>%		

		dplyr::select(id,	response_number,	word,	quote)		

		dplyr::arrange(response_number)	
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##	#	A	tibble:	124,757	x	3	

##	#	Groups:			id	[6,846]	

##				id										response_number	word									

##				<chr>																	<dbl>	<chr>								

##		1	rn342674723															1	ticket							

##		2	rn342674723															1	receive						

##		3	rn342674723															1	promised.the	

##		4	rn342674723															1	connection			

##		5	rn342674723															1	istanbul					

##		6	rn342674723															1	leave								

##		7	rn342674723															1	immediately		

##		8	rn342674723															1	dubai								

##		9	rn342674723															1	arrive							

##	10	rn342674723															1	grind								

##	#	...	with	124,747	more	rows	

5.4.2 Sentence Tokens 

The comments and review texts are tokenized using the function sentence_tokens as 

explained in the methodology section. The function requires three arguments, an untidy 

dataset - data, the column that needs to be tokenized - response_column, and the 

column which is used for grouping – group_by. In Facebook comments dataset the 

response_column is comments and the data is grouped by comment_number. It means 

that each comment is considered as a sentence in this study.   

facebook_sentence_tokens	<-		

		sentence_tokens(data	=	untidy_response_facebook,	

																		response_column	=	"comments",	

																		group_by	=	"comment_number")	
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facebook_sentence_tokens	%>%		

		head(3)	

##	#	A	tibble:	3	x	3	

##																														id	comment_number	

##																											<chr>										<int>	

##	1	90430042759_10155125620582760														1	

##	2	90430042759_10155125620582760														2	

##	3	90430042759_10155125620582760														3	

##	#	...	with	1	more	variables:	sentences	<chr>	

In the case of TripAdvisor’s sentence tokenization, each review is considered to be a 

sentence. The post_number seen in the code given below is the review number and the 

reponse_column is review that contains review content. Since the function 

sentence_tokens is constructed to take data from both Facebook and TripAdvisor as 

an argument, a more general word “response” is used instead of comments or reviews. 

First three rows of the sentence tokenized data set is shown below. As the sentences 

variable has too many characters, it is minimized by R.  

tripadvisor_sentence_tokens	<-		

		sentence_tokens(data	=	untidy_response_tripadvisor,	

																		response_column	=	"review",	

																		group_by	=	"post_number")	

tripadvisor_sentence_tokens	%>%		

		head(3)	

##	#	A	tibble:	3	x	3	

##												id	post_number	

##									<chr>							<dbl>	

##	1	rn342674723											1	

##	2	rn342740773											2	

##	3	rn342772345											3	

##	#	...	with	1	more	variables:	sentences	<chr>	
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As previously mentioned, select and head functions are used to select the tokenized 

column and print the first row of the column in R console. One of the reviews from 

TripAdvisor can be seen in the sentence tokenized form. It can be seen that not all of the 

words in the review are included in the token due to spelling errors or punctuation marks 

next to the word.  

tripadvisor_sentence_tokens	%>%		

		dplyr::select(sentences)	%>%		

		head(1)	

##	#	A	tibble:	1	x	1	
##			sentences	
##			<chr>	
##	1	what	it	on	the	the	ticket	is	not	what	you	are	going	to	receive		
##			as	flight	from	leaves	when	the	flight	from	the	ground	staff	off	
##			er	over	night	stay	as	a	matter	of	course	just	another	routine			
##			day	

5.5 Word Count 

After tokenization of customers’ feedback, the simplest analysis that can be conducted 

on tokens is counting the frequency of each distinct word used in the text. As explained 

in methodology section, the function word_count is used to find out the most frequent 

words in Facebook comments and TripAdvisor reviews.  

facebook_word_count	<-	word_count("facebook_tokens")	

facebook_word_count	

##	#	A	tibble:	7,622	x	2	
##				word									n	
##				<chr>				<int>	
##		1	fly								236	
##		2	love							224	
##		3	istanbul			185	
##		4	nice							141	
##		5	service					96	
##		6	travel						89	
##		7	day									84	
##		8	3											82	
##		9	time								79	
##	10	world							70	
##	#	...	with	7,612	more	rows	
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In Facebook comments, the most frequent word is “fly”. In 7,947 English words, 236 

times word “fly” is used. The most frequent use of word fly and love shows that most of 

the followers have positive sentiments about Turkish Airlines. Furthermore, the use of 

word “istanbul” shows that most of the followers commenting on Facebook posts are 

Istanbul’s fans as well. Eithers these followers have used Turkish Airlines to travel 

Istanbul or they are willing to travel Istanbul in future. One can also say that one of the 

words that come into people’s mind when they hear about Turkish Airlines is “Istanbul”. 

In the light of this analysis, Turkish Airlines can introduce an offer in which it provides 

one or two day visits to connecting-flight Turkish Airlines’ passengers having stay in 

Istanbul. Therefore, passengers wishing to visit Istanbul will prefer Turkish Airlines to 

other Airlines even at higher fare.  

tripadvisor_word_count	<-	word_count("tripadvisor_tokens")	

tripadvisor_word_count		

##	#	A	tibble:	8,819	x	2	

##				word									n	

##				<chr>				<int>	

##		1	service			3067	

##		2	food						3042	

##		3	istanbul		2531	

##		4	fly							2431	

##		5	time						2310	

##		6	seat						1991	

##		7	staff					1419	

##		8	travel				1223	

##		9	class					1167	

##	10	plane					1025	

##	#	...	with	8,809	more	rows	

The word frequency of TripAdvisor’s reviews depicts a different picture than the word 

frequency of Facebook comments. As seen in the table above, out of 10,463 distinct 
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tokens in 6,846 reviews, the customers most frequently use the word “service” and 

“food”. The usage shows that the major concern of the passengers travelling in Turkish 

Airlines is food. Although it cannot be claimed whether customers have positive 

sentiments about food or negative, the passengers are very particular regarding food 

served in the Airlines. The second major concern of the customers is customer service. It 

can be said that customers are more particular about food than the time (delays), staff 

attitude and seats, as food is at the top of the list followed by time staff and seats.  

In the list of top ten most frequent words, most of the words are common in Facebook 

and TripAdvisor data, i.e. “love”, “istanbul”, “travel”, “fly” and “service”. It means that 

a large number of users either commenting on Facebook posts or writing reviews on 

TripAdvisor data have similar concerns and identical perception about Turkish Airlines.  

Although the above word frequency tables specifies the list of most frequent words, a 

visualization technique, horizontal bar chart, displays relative word frequencies. This 

technique helps to figure out the frequency of one word relative to other related word. 

For instance, it can be seen that positive sentiments, such as “wow”, “beautiful”, 

“happy” and “amaze” are very near to each other and their bar charts have almost equal 

lengths, showing similar frequencies of these sentiments. The bar charts in the Figure 2 

and Figure 3 are made using word_count_plot function, i.e. built for the purpose of 

this study. The two arguments required by the functions are the tokenized dataset and 

the minimum number of tokens to be shown in the bar chart.  
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word_count_plot("tokens_count_300",	25) 

 

Figure 4: Facebook Most Frequent Word Count Plot 

word_count_plot("TA_tokens_count_6846",	250)	

 

Figure 5: TripAdvisor Most Frequent Word Count Plot 
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The function word_count_plot requires two arguments, i.e. dataset and minimum 

frequency of the word. The word with frequency less than the minimum frequency will 

not be plotted in the bar chart. As the total number of words in reviews is comparatively 

more than total words in comments, the minimum frequency value for TripAdvisor 

tokens is 10 times of the minimum frequency for comments, i.e. 25. A huge difference 

in minimum frequency level is due to the fact that the noise, grammatical and spelling 

errors, in Facebook comments is higher than the noise in TripAdvisor reviews. 

Furthermore, it can also be assumed that the comments data has more variance than the 

review data, as the frequency level of most frequent words in reviews is 10 times higher 

than the frequency level of most frequent words in comments. In the most frequent word 

frequency plot above, it can be seen that words like “entertainment,” “movie”, and 

“meal” are frequently used by the customers. As entertainment is a great deal for 

customers, Turkish Airlines should focus on its customers’ entertainment to make their 

travelling experience more pleasant.  

5.6 Sentiment Analysis 

The simple analysis technique such as word count and word count visualization explore 

the most common words in a text; however, they include a number of neutral words that 

do not add value to the analysis. To make analysis more meaningful, another analysis 

technique, sentiment analysis, is employed that deals with sentiment, opinion or 

emotions, tokens or words. As mentioned in the methodology section, out of all the 

words, the words with either positive or negative sentiments are selected for analysis. 

Three different sentiment lexicons are used in this study: bing, nrc and AFINN.   
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Bing 
 
Using response_sentiments function, the total number of positive and negative words 

in a response, a comment or a review, is figured out. Sentiment score of a response is 

calculated by subtracting the negative words count from the count of positive words. A 

negative score shows that negative words are more than positive; hence, the response is 

a negative response. On the other hand, positive response has positive sentiment score.  

 
#	bing	
facebook_sentiments_bing	<-		
											response_sentiments(tidy_response_facebook,	"bing")	

facebook_sentiments_bing	%>%		
		dplyr::select(response_number,	negative,	positive,	sentiment)	

##	#	A	tibble:	1,572	x	4	
##				response_number	negative	positive	sentiment	
##														<int>				<dbl>				<dbl>					<dbl>	
##		1															1								0								1									1	
##		2															2								0								1									1	
##		3															3								0								1									1	
##		4															3								1								1									0	
##		5															4								0								1									1	
##	#	...	with	1,567	more	rows	

The dataset and the sentiment - bing - are two arguments of the function. The table 

above specifies the sentiment scores of ten comments on Facebook. The comments that 

do not have any sentiments are discarded from the analysis. There are total of 1,562 

comments with sentiments out of 6,564 total comments in 300 posts, i.e. 23.7% of the 

total comments. The table shown above has more than one comments with similar 

response number. For instance, the response number 3 is repeated twice in the above 

dataset. The dataset is grouped by post ids. The two responses with a response number 

“3” correspond to two different posts. As Facebook ids are very lengthy, the id column 

is minimized using select function. Furthermore, all of the comments in the table are 

positive except the response listed in 7th row. There is a majority of positive comments 
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in Facebook that shows the followers of Turkish Airlines have positive perception about 

the brand. 

tripadvisor_sentiments_bing	<-		

											response_sentiments(tidy_response_tripadvisor,	"bing")	

tripadvisor_sentiments_bing	

##	#	A	tibble:	6,393	x	5	

##													id	response_number	negative	positive	sentiment	

##										<chr>											<dbl>				<dbl>				<dbl>					<dbl>	

##		1	rn342740773															2								1								3									2	

##		2	rn342772345															3								4								1								-3	

##		3	rn342937701															4								0								3									3	

##		4	rn343011985															5								1								1									0	

##		5	rn343117108															6								0								1									1	

##	#	...	with	6,388	more	rows	

In similar to the sentiment analysis of Facebook comments, the sentiment analysis on 

TripAdvisor reviews is also conducted. There are total of 6,393 reviews with sentiments 

out of 6,836 total reviews, i.e. 93.5% of total reviews. The percentage of sentiment 

content in TripAdvisor is roughly four times higher than the percentage of sentiment 

content in Facebook. It shows that the TripAdvisor review data is more valuable for 

analysis than the comments’ data. This analysis technique helps to figure out the 

negative and positive reviews without effort. The positive reviews can be separated from 

the negative reviews and further analysis can be conducted on two different datasets. 

Furthermore, the sentiment score helps to compare the sentiment content between 

reviews, i.e. which review is more positive or negative than the other review.  
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NRC 
 
NRC (Emolex) lexicon is more comprehensive lexicon that indicates the type of positive 

and negative sentiments in a response, such as anger, anticipation, disgust, fear, joy, 

sadness, surprise and trust. The sentiment analysis is conducted on Facebook comments 

using response_sentiments function as given below: 

facebook_sentiments_nrc	<-		

										 response_sentiments(tidy_response_facebook,	"nrc")	

The tidy_response_facebook is a tokenized Facebook comment dataframe that has 

post_number and response_number and word as three main columns.  These dataset is 

compared with nrc lexicon as mentioned in the methodology to get the table as printed 

below: 

facebook_sentiments_nrc	

##	#	A	tibble:	1,807	x	13	

##																															id	response_number	anger	anticipation	

##																												<chr>											<int>	<dbl>								<dbl>	

##		1	90430042759_10155125620582760															1					0												0	

##		2	90430042759_10155125620582760															2					0												0	

##		3	90430042759_10155125620582760															3					0												0	

##		4	90430042759_10155125620582760															4					0												0	

##		5	90430042759_10155126945012760															1					0												1	

##	#	...	with	1,802	more	rows,	and	9	more	variables:	disgust	<dbl>,	

##	#			fear	<dbl>,	joy	<dbl>,	negative	<dbl>,	positive	<dbl>,		

##	#			sadness	<dbl>,	surprise	<dbl>,	trust	<dbl>,	sentiment	<dbl>	

The number of comments having nrc sentiment words, i.e. 1,572, is more than the 

number of comments having bing sentiment words, i.e. 1807. It shows that nrc lexicon 

has power to analyze more words than bing lexicon. It is because of the fact that nrc 

use many different emotions rather than just two, positive or negative. Furthermore, 

sentiment analysis through nrc lexicon is more suitable to analyze consumers’ 

perception as it specifies the types of negative emotions, like disgust, fear, anger and 
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sadness, as well as the types of positive emotions, like surprise, trust and anticipation. It 

can be seen in the table below that customers have commonly used the words of anger, 

disgust and fear in their reviews in TripAdvisor. Furthermore, there is a sentiment 

column that gives an overall sentiment score of the review.  

 
tripadvisor_sentiments_nrc	<-		

												response_sentiments(tidy_response_tripadvisor,	"nrc")	

tripadvisor_sentiments_nrc	

##	#	A	tibble:	6,765	x	13	

##													id	response_number	anger	anticipation	disgust		fear		

##										<chr>											<dbl>	<dbl>								<dbl>			<dbl>	<dbl>		

##		1	rn342674723															1					0												1							0					0					

##		2	rn342740773															2					1												1							1					2					

##		3	rn342772345															3					2												0							2					2					

##		4	rn342937701															4					0												1							0					1					

##		5	rn343011985															5					1												2							1					1					

##	#	...	with	6,760	more	rows,	and	6	more	variables:	joy	<dbl>,		

##	#			negative	<dbl>,	positive	<dbl>,	sadness	<dbl>,	surprise	<dbl>,	

##	#			trust	<dbl>,	sentiment	<dbl>	

AFINN 
 
As mentioned in the methodology, the sentiments_afinn function while using the 

afinn lexicon assigns a sentiment score to each word in a response. These scores are 

added to get the sentiment score of a response. 

 
facebook_sentiments_afinn	<-		

															sentiments_afinn(tidy_response_facebook)	

facebook_sentiments_afinn	
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##	#	A	tibble:	1,634	x	3	

##																															id	response_number	score	

##																												<chr>											<int>	<int>	

##		1	90430042759_10155125620582760															1					5	

##		2	90430042759_10155125620582760															2					3	

##		3	90430042759_10155125620582760															3					3	

##		4	90430042759_10155125620582760															7					2	

##		5	90430042759_10155126945012760															3					2	

##	#	...	with	1,629	more	rows	

 
A negative score indicates a negative comment or review while positive score shows 

that the response have over positive sentiment content in it. For instance, in the table 

given below, the third, fifth and eighth review of TripAdvisor are negative and 

comparatively 8th review is more negative than 5th, while 5th is more negative than 3rd 

review.  

 
tripadvisor_sentiments_afinn	<-		

															sentiments_afinn(tidy_response_tripadvisor)	

tripadvisor_sentiments_afinn	

##	#	A	tibble:	6,095	x	2	

##				response_number	score	

##														<dbl>	<int>	

##		1															1					1	

##		2															2					7	

##		3															3				-2	

##		4															4					3	

##		5															5				-3	

##		6															6					2	

##		7															7					3	

##		8															8				-5	

##		9															9					4	

##	10														10					7	

##	#	...	with	6,085	more	rows	
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5.6.1 Most Frequent Sentiments 
 
Frequency of sentiments helps determine the overall sentiment score of a text. By 

looking at the most frequent sentiments, useful insight can be drawn that can be used to 

evaluate consumers’ view of the company. Most frequent sentiments from the comments 

data of Turkish Airline’s Facebook are reported below. It can be seen that the top 10 

most frequent sentiments are positive which shows that most frequent user response to 

the company’s Facebook posts is positive. 

 
facebook_frequent_sentiments	<-	frequent_sentiments(tidy_response_face

book)	

facebook_frequent_sentiments	

##	#	A	tibble:	384	x	3	

##				word												sentiment					n	

##				<chr>											<chr>					<int>	

##		1	love												positive				328	

##		2	nice												positive				155	

##		3	beautiful							positive					87	

##		4	congratulations	positive					83	

##		5	wow													positive					80	

##		6	amaze											positive					73	

##		7	free												positive					72	

##		8	happy											positive					69	

##		9	bless											positive					45	

##	10	super											positive					37	

##	#	...	with	374	more	rows	

Most frequent sentiments from the reviews data of TripAdvisor are presented below. It 

can be seen that most of the words are positive. However, the word “bad” appears in the 

top 10 most frequent sentiment words. The most frequent words can help the company 

draw useful insight about the areas of improvement as well as the areas that are 

important for the consumer experience. For example, the words “comfortable,” 
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“friendly” and “helpful” indicate the importance of the behavior of the airline staff with 

the passengers. However, most frequent words do not represent the overall sentiment 

score.  

tripadvisor_frequent_sentiments	<-	frequent_sentiments(tidy_response_t

ripadvisor)	

tripadvisor_frequent_sentiments	

##	#	A	tibble:	1,317	x	3	

##				word								sentiment					n	

##				<chr>							<chr>					<int>	

##		1	comfortable	positive			1026	

##		2	excellent			positive				927	

##		3	nice								positive				816	

##		4	friendly				positive				700	

##		5	delay							negative				552	

##		6	helpful					positive				472	

##		7	clean							positive				406	

##		8	free								positive				399	

##		9	bad									negative				324	

##	10	recommend			positive				318	

##	#	...	with	1,307	more	rows	

5.6.2 Plot Frequent Sentiments Counts 
 
The Figure 4 shows a horizontal bar chart of frequent words side by side which enables 

one to compare the frequency of most frequent negative words and that of most frequent 

positive words. The frequency of top positive words is much higher than that of negative 

words, indicating that the overall positive sentiment score of the Facebook comments is 

higher than the negative sentiment score. 
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plot_sentiment_count(facebook_frequent_sentiments) 

 

Figure 6: Facebook Most Frequent Sentiment Count Plot 

Similarly, the frequency plot of most frequent positive and negative words in 

TripAdvisor review data is presented below. Unlike in the Facebook comments, the use 

of negative words is more frequent in the TripAdvisor reviews. Nevertheless, the use of 

positive words is much more common as compared to the use of negative words which 

indicates the overall sentiment score. Moreover, the nature of negative words indicates 

the concerns of consumers. For instance, “delay,” “miss”, and “lose” indicate that most 

of the negative comments are related to a bad experience of the consumer and the 

company can focus on these areas to reduce future negative reviews.  
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plot_sentiment_count(tripadvisor_frequent_sentiments) 

 

Figure 7: TripAdvisor Most Frequent Sentiment Count Plot 

5.6.3 Sentiments to All Words Ratio  

The ratio of sentiment count to all words count gives us an insight about how important 

is that sentiment in a comment or review. If the negative words are excessively used in a 

comment, it means that the response is highly negative. The study calculates the ratio by 

using sentiment_token_ratio function as explained in the methodology section.  

 
facebook_negative_sentiment_ratio	<-		

		sentiment_token_ratio(tidy_response_facebook,	"negative")	
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facebook_negative_sentiment_ratio	

##	#	A	tibble:	10	x	4	

##				response_number	negativewords		word						ratio	

##														<int>									<int>	<int>						<dbl>	

##		1													281													1					2	0.50000000	

##		2													805													1					2	0.50000000	

##		3													661													1					3	0.33333333	

##		4													687													1					3	0.33333333	

##		5													358													1					6	0.16666667	

##		6													314													1					7	0.14285714	

##		7													157													1					8	0.12500000	

##		8													475													1				10	0.10000000	

##		9													503													1				11	0.09090909	

##	10													102													1				18	0.05555556	

In Facebook comments, the most negative comments contains only two or three words 

that result in higher sentiment to all words ratio. It shows that some of the followers 

have just posted two words with at least one negative word. Furthermore, the last row of 

the table shows that in response “102” of a certain post has one negative word in total 18 

words. Please note that in the above table the post ids are minimized for better 

visualization of table.  

In the case of TripAdvisor reviews, the frequency of negative words as compare to the 

total words count in top 10 negative words is higher than frequency of negative word in 

Facebook comments. The high frequency of negative words shows the level of negative 

sentiment content in negative comments. The sentiment-to-all-word-ratio also helps to 

rank the reviews based on sentiment content. Thus, analysts can figure out the comments 

with highest negative sentiment content. Consequently, the analysts can find common 

concerns and complaints of consumers. 

tripadvisor_negative_sentiment_ratio	<-		

		sentiment_token_ratio(tidy_response_tripadvisor,	“negative")	
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tripadvisor_negative_sentiment_ratio		

##	#	A	tibble:	13	x	4	

##				response_number	negativewords		word					ratio	

##														<dbl>									<int>	<int>					<dbl>	

##		1												4976													5					7	0.7142857	

##		2												3008													4					8	0.5000000	

##		3												4705													4					8	0.5000000	

##		4												4794													5				10	0.5000000	

##		5												4384													5				11	0.4545455	

##		6												3993													4					9	0.4444444	

##		7												2284													9				21	0.4285714	

##		8												5965													3					7	0.4285714	

##		9												6477													3					7	0.4285714	

##	10												3296													3					8	0.3750000	

In the example above, the TripAdvisor review with the highest ratio is “4976”. The 

study finds out the most negative review using the code given below. The required 

review is selected using filter function from dplyr package. Subsequently, the 

review column is selected using select. The review shows that the word “bad” is used 

five times in the comments, showing extreme consumer dissatisfaction. Furthermore, it 

can be seen that the word “food” is used twice in the comment that demonstrates 

consumer’s biggest concern.  

The importance of indexed tokenization is evident from the example discussed. Without 

proper indexing, it would have been impossible to find a specific review with a certain 

level of sentiment content.  

numbered_response_tokens(	

		"tripadvisor_turkishairlines6846.rds",	"review")	%>%		

		dplyr::select(id,	response_number	=	post_number,	review,		

																quote,	rating,	date)	%>%		

		dplyr::filter(response_number	==	4976)	%>%		

		dplyr::select(review,	id)	
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##	#	A	tibble:	1	x	2	

						review																																																										

							<chr>	

##	1	the	flight	was	very	bad	and	the	food	very	bad	it	so	bad	and	i	wou

ld	not	flight	with	now	on	so	bad	the	food	so	bad	i	not	flight	with	not

from	soon	

5.7 Word Cloud 

Word cloud is a very interesting technique to visually consolidate information in a large 

amount of text. The following figure represents a word cloud constructed from the data 

of Turkish Airline’s Facebook page. The word cloud represents fifty words that appear 

most frequently in response, i.e. comments, to official posts by the company. The size of 

the words depicts the importance and frequency of its usage. For example, it can be seen 

that the word “fly” and “love” are the first and second most frequent words respectively. 

As already discussed in the section “Word Count,” these words appear most frequently 

in the comments of Facebook page. 

word_cloud(tidy_response_facebook,	max_words	=	50)	

 

Figure 8 Facebook Word Cloud 
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Moreover, as the word cloud shows most frequent words, it gives an idea of the user’s 

perception about the company’s services and social media campaign. The words 

“congratulations,” “beautiful,” “super,” “wonderful,” “wow” and “happy” show that 

most of the users have a positive brand image of the company. It also indicates that users 

tend to like the Facebook posts of the company. In other words, the word cloud gives an 

insight into the brand image of the company and the success of the social media 

campaign.  

word_cloud(tidy_response_tripadvisor,	max_words	=	75)	

 

Figure 9: TripAdvisor Word Cloud 

Similarly, the above word cloud is constructed using the data of reviews about Turkish 

Airlines on TripAdvisor. Again, it shows the most frequent seventy-five words that were 

used in the reviews. Unlike the Facebook word cloud, the word cloud of TripAdvisor 

data shows that most of the users talk about the services provided by the company. This 

can give useful insight to the company when it comes to improving their services. As 
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already mentioned before, TripAdvisor data provides an insight into the mindset of 

Turkish Airline’s existing or potential customers. The words such as “crew,” “cabin,” 

“staff,” “seat,” “attendant,” “movie,” “plane,” “lounge,” etc. show that the reviews 

provide feedback to the company which can help them to improve their services. It can 

be deduced that users value the quality of food and service much more than they value 

movies or seats which shows that the company can increase retention rate or repeat 

customers through good quality service during the flight. Moreover, the words 

“friendly,” “excellent,” “helpful” and “nice” show that users’ feedback about the 

company’s services is generally positive.  

 

5.7.1 Sentiment Cloud 

A	 sentiment	 cloud	 is	 a	word	 cloud	 that	 is	 obtained	 after	 labeling	 the	 tokens	 (i.e.	

words)	as	positive	and	negative.	As	already	mentioned,	the	size	and	number	of	the	

positive	words	 cannot	be	 compared	with	 that	 of	 negative	words.	Nevertheless,	 it	

provides	 another	 interesting	 visual	 technique	 to	 get	 an	 overview	 of	 the	 user-

response.	The	following	sentiment	cloud	is	constructed	from	the	comment	data	of	

Turkish	Airlines	Facebook	page	and	reviews	data	of	TripAdvisor.		
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sentiment_cloud(tidy_response_facebook)	

 

Figure 10: Facebook Sentiment Cloud 

While	 the	 word	 cloud	 showed	 that	 the	 dominating	 sentiments	 in	 Facebook	

comments	and	TripAdvisor	reviews	were	largely	positive,	the	sentiment	cloud	also	

enables	the	company	to	see	the	prevalent	negative	comments	and	reviews	so	that	

they	can	deduce	constructive	criticism	from	them.		This	will	enable	the	company	to	

work	towards	improving	their	services	and	modifying	their	social	media	campaign	

to	satisfy	the	users	who	had	a	negative	experience	with	the	company.	For	instance,	

words	 like	 “delay,”	 “lose,”	 “miss,”	 “rude,”	 “fault,”	 “broken,”	 “error”	 and	 “awful”	

clearly	show	negative	experiences	of	the	users	that	can	tarnish	the	brand	image	of	

the	company	in	eyes	of	potential	consumers.	This	highlights	areas	of	focus	for	the	

company	when	evaluating	its	services.		
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sentiment_cloud(tidy_response_tripadvisor)	

 

Figure 11: TripAdvisor Sentiment Cloud 

It is important to notice here that the positive sentiments in fact dominate the user 

response for Turkish Airlines in our analysis. Nonetheless, the negative responses are 

still valuable for a complete analysis to avoid a faulty and incomplete conclusion. 

Therefore, sentiment cloud proves to be very useful here as it provides an all-inclusive 

overview of the response by showing both negative and positive words. 
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6. CONCLUSION, IMPLICATIONS AND LIMITATIONS 
 

6.1 Conclusion 

The study employs various text mining techniques to retrieve useful information from 

Facebook and TripAdvisor, including web scraping, data cleaning, data wrangling, 

indexed tokenization, word frequency count, sentiment analysis, visualization of 

sentiment count and world cloud. Using several packages in R, comments on the 

Facebook page of Turkish Airlines and reviews about Turkish Airlines on TripAdvisor 

have been retrieved. The text in comments and reviews has been tokenized, i.e. 

converted into independent words, and the data has been cleaned for noise. The 

tokenized text has then been used for various analyses as an example of potential 

application of the data. 

A number of interesting findings have been obtained during the information retrieval 

process. The customers’ reviews on TripAdvisor website are less noisy, i.e. they have 

less spelling and grammatical errors, than Facebook comments. Facebook and 

TripAdvisor contain user generated data, providing insight into consumers’ perception 

about brands and their customer service. Airlines, such as Turkish Airlines, can get 

valuable information and feedback from the text posted by their consumers.  

For instance, the case study on Turkish Airlines social media data provides various 

handy findings. First, the brand perception of Turkish Airlines on consumers and 

potential consumers’ minds is generally positive. Second, the major concerns of the 

consumers travelling through Turkish Airlines are food, timeliness and entertainment. 

Furthermore, the techniques of sentiment analysis rank the consumer responses from 

most negative to less negative response through indexed tokenization. Lastly, word 

cloud and sentiment cloud provides a complete overview of the users’ perception, 

opinion, emotions and sentiments regarding a brand.  



 

71 
 

6.2 Implications for Future Research 

The research study has a number of implications for future research in the field of social 

media analysis to find consumers’ perception about brands. The study provides a 

complete process to scrape data from three different social media web applications, 

Facebook, Twitter and TripAdvisor. Especially in the case of TripAdvisor, despite of the 

fact that multiple URLs are required to retrieve all of the reviews, the study gives a code 

to extract all reviews at once. The reviews are a great source of information for research 

analysts and modern businesses who want to assess the brands’ worth in the eyes of 

existing and potential consumers. Furthermore, researchers can conduct competitive 

analysis and make a perceptual map that specifies the position of a company relative to 

other companies in a same industry. Moreover, pairwise correlation analysis can be 

conducted on the indexed and tokenized responses of different companies to find out the 

most frequent co-occurring words.  

The study provides a complete guideline for converting raw textual data, in weak 

structured form, into more structured dataset.  The analysis of structured form of textual 

data is less expensive as compare to the unstructured form. Although the study 

emphasized on word-level feature or unigram tokens, it paves the way to extract more 

advanced level features, like terms or concepts, by providing more structured format of 

documents. Furthermore, the indexed tokenization of documents would help in 

evaluating the semantic similarity and applying supervised or unsupervised clustering 

techniques.  
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6.3 Limitations 

It is to be noted that the sentiment analysis technique does not take qualifiers into 

account, for instance, negated texts like “not good” or “not comfortable”. The lexicon-

based technique is based on single words only; therefore, negated texts are not being 

considered appropriately for analysis. 

Another drawback of lexicon-based sentiment analysis methodology is that the size of 

the text has an impact on the analysis. While adding up the tokens’ sentiment score in a 

larger text, positive and negative sentiment score can be averaged out to be zero. The 

sentiment score obtained through this technique is more accurate when texts are 

paragraph-sized or sentence-sized (Silge and Robinson, tidytext: Text Mining and 

Analysis Using Tidy Data Principles in R 2016). However, the research study considers 

each Facebook’s comment or post, Twitter’s tweet and TripAdvisor’s review as a text 

and finds their sentiment score. As the size of comments, tweets and reviews is not 

large, there is minimal effect of text size on sentiment analysis.  
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8. APPENDIX 

Facebook Data Extraction 

library(Rfacebook)	
	
#	Fb	Authorization	
fb_oauth	<-	Rfacebook::fbOAuth(	
		app_id="1380496555352781",	
		app_secret="eb3abc42d1e00536e6f4e37e58fc0b5d",	
		extended_permissions	=	TRUE)	
	
#	Saving	variable	fb_oauth	in	a	file	and	loading	it	
save(fb_oauth,	file="fb_oauth")	
load("fb_oauth")	
	
#	Extract	posts	from	turkish	airlines	page	
turkishairlines	<-	Rfacebook::getPage(page	=	"turkishairlines",		
																																						token	=	fb_oauth,	n	=	2000)	
	
#	Save	the	posts	in	R	data	file	
saveRDS(turkishairlines,	"turkishairlines_2000")	

library(dplyr)	

##		
##	Attaching	package:	'dplyr'	

##	The	following	objects	are	masked	from	'package:stats':	
##		
##					filter,	lag	

##	The	following	objects	are	masked	from	'package:base':	
##		
##					intersect,	setdiff,	setequal,	union	

#	Read	R	data	file	and	store	in	new	variable	
data_turkishairlines	<-	readRDS("turkishairlines_2000")	
	
#	Storing	the	post	ids	in	a	new	variable	
data_turkishairlines_id	<-	data_turkishairlines$id	
	
#	Viewing	limited	variables	and	rows	
data_turkishairlines	%>%		
		dplyr::select(from_id,	likes_count,	type,	comments_count,		
																shares_count,	message)	%>%		
		tibble::as_tibble()	%>%		
		head(5)	

##	#	A	tibble:	5	x	6	
##			from_id					likes_count	type		comments_count	shares_count	message								
##			<chr>													<dbl>	<chr>										<dbl>								<dbl>	<chr>										
##	1	90430042759									254	photo													12											18	Our	flights	t…	
##	2	90430042759									300	photo												132											92	"We	are	looki…	
##	3	90430042759									869	photo													39											43	The	most	plea…	
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##	4	90430042759									261	photo														9												7	Famous	actor	…	
##	5	90430042759									227	photo													13											11	Within	the	sc…	

data_turkishairlines	%>%		
		dplyr::select(message)	%>%		
		tibble::as_tibble()	%>%		
		head(2)	

##	#	A	tibble:	2	x	1	
##			message																																																																		
##			<chr>																																																																				
##	1	Our	flights	to	Samarkand	start	on	March	16th,	2018!																						
##	2	"We	are	looking	for	new	pilots!	Join	us	at	Turkish	Airlines	Pilot	Roads…	

#	Extracting	comments	and	reactions	from	the	extracted	posts	
#	The	comments	are	extracted	using	post	ids.	Therefore,	id	variable	
#	is	used.		
all_posts	<-	data_turkishairlines_id[1:300]	%>%		
		lapply(getPost,	n	=	50000,	token=fb_oauth,		
									comments	=	TRUE,	reactions	=	TRUE)	
	
#	Save	first	300	posts	comments	in	a	R	data	file.	
saveRDS(all_posts,	"300_posts")	

Converting Facebook lists data into dataframe 

#	Reading	the	saved	RDS	file	instead	of	applying	getPost	function	repeatedly.	
#	The	resultant	variable	is	a	list	which	includes	a	post	specific	list.	
#	Within	each	post	specific	list	there	are	post	comments	and	reactions.	
threehundred_posts	<-	readRDS("300_posts")		
	
#	Saving	comments	for	first	post	in	new	variable	
full_comments	<-	threehundred_posts[[1]]$comments$message	%>%	
		as.data.frame()	%>%		
		setNames("comments")	%>%	
		dplyr::mutate(id	=	data_turkishairlines_id[1])	
	
#	Expanding	full_comments	by	adding	comments	of	remaining	posts.		
for	(i	in	1:299)	{	
		comment	<-	threehundred_posts[[i+1]]$comments$message	%>%		
				as.data.frame()	%>%		
				setNames("comments")	%>%	
				dplyr::mutate(id	=	data_turkishairlines_id[i+1])	
		full_comments	=	rbind(full_comments,	comment)	
}	
	
#	Assigning	the	post	ids	to	its	comments.		
#	The	posts	ids	are	repeated	when	there	are	more	than	one	comment.			
full_comment_post	<-	full_comments	%>%		
		dplyr::left_join(data_turkishairlines,	by	=	"id")	
	
#	Saving	the	comments	of	posts	in	R	data	file.		
saveRDS(full_comment_post,	"300_posts_comments")	

readRDS("300_posts_comments")	%>%		
		subset(select	=	c(3,1,2,4,5,6,7,8,9,10,11))	%>%		
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		tibble::as_tibble()	%>%		
		head(5)	

##	#	A	tibble:	5	x	11	
##			from_id		comments	id				from_name	message	created_time	type		link		story	
##			<chr>				<fct>				<chr>	<chr>					<chr>			<chr>								<chr>	<chr>	<chr>	
##	1	9043004…	Direct	…	9043…	Turkish	…	Our	fl…	2017-10-05T…	photo	http…	<NA>		
##	2	9043004…	Just	cu…	9043…	Turkish	…	Our	fl…	2017-10-05T…	photo	http…	<NA>		
##	3	9043004…	What	ab…	9043…	Turkish	…	Our	fl…	2017-10-05T…	photo	http…	<NA>		
##	4	9043004…	What	ab…	9043…	Turkish	…	Our	fl…	2017-10-05T…	photo	http…	<NA>		
##	5	9043004…	Very	in…	9043…	Turkish	…	Our	fl…	2017-10-05T…	photo	http…	<NA>		
##	#	...	with	2	more	variables:	likes_count	<dbl>,	comments_count	<dbl>	

readRDS("300_posts_comments")	%>%		
		dplyr::select(comments)	%>%		
		tibble::as_tibble()	%>%		
		head(2)	

##	#	A	tibble:	2	x	1	
##			comments																																																																	
##			<fct>																																																																				
##	1	Direct	flight	from	Ireland	to	bodrum	badly	needed	even	twice	a	week	in	…	
##	2	Just	curious	you	do	flights	to	Tbilisi?	

Twitter Data Extraction 

#	Load	Requried	Packages	
library("SnowballC")	
library("tm")	
library("twitteR")	
library("syuzhet")	
	
#	Authonitical	keys	
consumer_key	<-	'tAyR9LyhATfD90aA7Ft1Zfj3I'	
consumer_secret	<-	'vX1RHqHHDpnmNOqrGPMVnmnQjQvG98X3xlB7T7zv4hKcvj7tVv'	
access_token	<-	'2572842085-vExbB4HNvN57zmQhoQdbmutC16a4kdMdh1xVta5'	
access_secret	<-	'HtTHSeAOz1WPcUX8nfW5ddwZ1TbXZGFB4pSHU0IZ3agvA'	
	
twitteR::setup_twitter_oauth(consumer_key,	consumer_secret,		
																													access_token,	access_secret)	
	
tweets	<-	userTimeline("turkishairlines",	n=200)	

Trip Advisor Data Extraction 

library("rvest")	
	
url	<-	"https://www.tripadvisor.com/Airline_Review-d8729174-Reviews-Turkish-Air
lines"	
url	<-	"https://www.tripadvisor.com/Airline_Review-d8729174-Reviews-or20-Turkis
h-Airlines#REVIEWS"	
	
df_total	=	data.frame()	
	
for	(i	in	seq(0,	20050,	10))	
{	
		if	(i	==	0)	{	
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				url	<-	"https://www.tripadvisor.com/Airline_Review-d8729069-Reviews-Emirate
s"	
		}	
			
		else		{	
				url	<-	paste(	
						"https://www.tripadvisor.com/Airline_Review-d8729069-Reviews-or",i,"-Emir
ates#REVIEWS",		
						sep	=	"")	
		}	
			
		reviews	<-	url	%>%	
				read_html()	%>%	
				html_nodes("#REVIEWS	.innerBubble")	
			
		id	<-	reviews	%>%	
				html_node(".quote	a")	%>%	
				html_attr("id")	
			
		quote	<-	reviews	%>%	
				html_node(".quote	span")	%>%	
				html_text()	
			
		rating	<-	reviews	%>%	
				html_node(".rating	.rating_s_fill")	%>%	
				html_attr("alt")	%>%	
				gsub("	of	5	stars",	"",	.)	%>%	
				as.integer()	
			
		date	<-	reviews	%>%	
				html_node(".rating	.ratingDate")	%>%	
				html_attr("title")	%>%	
				strptime("%b	%d,	%Y")	%>%	
				as.POSIXct()	
			
		review	<-	reviews	%>%	
				html_node(".entry	.partial_entry")	%>%	
				html_text()	
			
		df	<-	data.frame(id,	quote,	rating,	date,	review,	stringsAsFactors	=	FALSE)	
		df_total	<-	rbind(df_total,	df)	
}	
	
#	Save	an	object	to	a	file	
saveRDS(df_total,	file	=	"tripadvisor_turkishairlines6846.rds")	

trip_turkishairlines	<-	readRDS(file	=	"tripadvisor_turkishairlines6846.rds")	
	
trip_turkishairlines	%>%	
		dplyr::select(id,	date,	quote,	review)	%>%		
		tibble::as_tibble()	%>%		
		dplyr::sample_n(4)	

##	#	A	tibble:	4	x	5	
##			id										date																quote		 	review																		
##			<chr>							<dttm>														<chr>			 	<chr>																			
##	1	rn575863809	2018-04-26	00:00:00	Istanbul…		Turkish	airlines	is…	
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##	2	rn575859234	2018-04-26	00:00:00	Broke	my…		Travelled	from	Atat…	
##	3	rn575854758	2018-04-26	00:00:00	comforta…		it	is	amazing	trave…	
##	4	rn575817214	2018-04-26	00:00:00	Despite	…		Always	like	travell…	

trip_turkishairlines	%>%		
		dplyr::select(review)	%>%		
		tibble::as_tibble()	%>%		
		head(2)	

##	#	A	tibble:	2	x	1	
##			review																																																																			
##			<chr>																																																																				
##	1	"To	start	with	me	and	my	sister	had	a	connection	in	Istanbul	where	th…	
##	2	"Turkish	airlines	is	the	best	airline	I	have	had	the	pleasure	of	flyi…	

Tokenization 

library(tidytext)	
data(stop_words)	
	
#	Custom	stop	words	
custom_stop_words	<-	data.frame(word	=	c("miss",	"flight",	"tukish",		
																																									"airlines",	"flights",		
																																									"airline",	"turkish",	"de"),		
																																lexicon	=	c("custom"))	%>%	
		rbind(stop_words)	
	
tokenize	<-	function(file,	data_type)	{	
		data_tibble	<-	readRDS(file	=	file)	%>%		
				tibble::as_tibble()	
			
		data_vector	<-	data_tibble	%>%		
				dplyr::pull(data_type)	%>%		
				iconv(from	=	"UTF-8",	to	=	"Latin1")	
			
		tokens	<-	tibble::as_tibble(data_vector)	%>%		
				dplyr::filter(!is.na(value))	%>%		
				dplyr::mutate(response_number	=	rownames(.))	%>%		
				dplyr::select(response_number,	value)	%>%		
				tidytext::unnest_tokens(word,	value)	
			
		tokens	
}	
	
#	Convert	non_base	verbs	into	base	verbs	
	
extract_non_base	<-	function(data)	{	
		data	%>%	
				dplyr::rename(non_base	=	word)	%>%	
				dplyr::left_join(readRDS("sahban_base_lexicon"),	by	=	"non_base")	%>%	
				dplyr::mutate(base	=	ifelse(is.na(base),	non_base,	base))	%>%	
				dplyr::rename(word	=	base)	%>%	
				dplyr::select(-one_of("non_base"))		
}	
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#	Convert	Plurals	to	Singular	Noun	
	
extract_plural	<-	function(data)	{	
		data	%>%		
				dplyr::rename(plural	=	word)	%>%		
				dplyr::left_join(readRDS("sahban_noun_lexicon"),	by	=	"plural")	%>%		
				dplyr::mutate(noun	=	ifelse(is.na(noun),	plural,	noun))	%>%		
				dplyr::rename(word	=	noun)	%>%		
				dplyr::select(-one_of("plural"))	
}	
	
facebook_tokens	<-	tokenize("300_posts_comments",	"comments")	%>%		
		extract_non_base()	%>%		
		extract_plural()	
	
tripadvisor_tokens	<-	tokenize("tripadvisor_turkishairlines6846.rds",	"review")
	%>%		
		extract_non_base()	%>%		
		extract_plural()	

saveRDS(tokens_count,	"tokens_count_300")	
saveRDS(tokens_count,	"TA_tokens_count_6846")	

facebook_tokens	%>%		
		tibble::as_tibble()	

##	#	A	tibble:	32,200	x	2	
##				response_number	word				
##				<chr>											<chr>			
##		1	1															direct		
##		2	1															flight		
##		3	1															from				
##		4	1															ireland	
##		5	1															to						
##		6	1															bodrum		
##		7	1															badly			
##		8	1															need				
##		9	1															even				
##	10	1															twice			
##	#	...	with	32,190	more	rows	

tripadvisor_tokens	%>%		
		tibble::as_tibble()	

##	#	A	tibble:	326,163	x	2	
##				response_number	word							
##				<chr>											<chr>						
##		1	1															to									
##		2	1															start						
##		3	1															with							
##		4	1															me									
##		5	1															and								
##		6	1															my									
##		7	1															sister					
##		8	1															had								
##		9	1															a										
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##	10	1															connection	
##	#	...	with	326,153	more	rows	

Word Count 

word_count	<-	function(data)	{	
		readRDS(data)	%>%		
				dplyr::anti_join(custom_stop_words,	by	=	"word")	%>%		
				dplyr::count(word,	sort	=	TRUE)	%>%		
				tibble::as_tibble()	
}	
	
facebook_word_count	<-	word_count("facebook_tokens")	

##	Warning:	Column	`word`	joining	character	vector	and	factor,	coercing	into	
##	character	vector	

tripadvisor_word_count	<-	word_count("tripadvisor_tokens")	

##	Warning:	Column	`word`	joining	character	vector	and	factor,	coercing	into	
##	character	vector	

facebook_word_count	

##	#	A	tibble:	7,622	x	2	
##				word									n	
##				<chr>				<int>	
##		1	fly								236	
##		2	love							224	
##		3	istanbul			185	
##		4	nice							141	
##		5	service					96	
##		6	travel						89	
##		7	day									84	
##		8	3											82	
##		9	time								79	
##	10	world							70	
##	#	...	with	7,612	more	rows	

tripadvisor_word_count	

##	#	A	tibble:	8,819	x	2	
##				word									n	
##				<chr>				<int>	
##		1	service			3067	
##		2	food						3042	
##		3	istanbul		2531	
##		4	fly							2431	
##		5	time						2310	
##		6	seat						1991	
##		7	staff					1419	
##		8	travel				1223	
##		9	class					1167	
##	10	plane					1025	
##	#	...	with	8,809	more	rows	
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Word Count Plot 

word_count_plot	<-	function(data,	min_count)	{	
		tokens_count	<-	readRDS(data)	
			
		tokens_count	%>%		
				dplyr::anti_join(custom_stop_words)	%>%		
				dplyr::filter(n	>	min_count)	%>%	
				dplyr::mutate(word	=	reorder(word,	n))	%>%	
				ggplot2::ggplot(mapping	=	ggplot2::aes(word,	n))	+	
				ggplot2::geom_col()	+	
				ggplot2::xlab("Most	Frequent	Words")	+		
				ggplot2::coord_flip()	
}	
	
word_count_plot("tokens_count_300",	25)	

##	Joining,	by	=	"word"	

##	Warning:	Column	`word`	joining	character	vector	and	factor,	coercing	into	
##	character	vector	

 

Figure 12: Facebook Word Count Plot - Appendix 
word_count_plot("TA_tokens_count_6846",	300)	

##	Joining,	by	=	"word"	
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Figure 13: TripAdvisor Word Count Plot - Appendix 
#	Adding	words	manually	to	the	lexicon	
sahban_base_lexicon	<-	readRDS("sahban_base_lexicon")	%>%		
		dplyr::bind_rows(data.frame(base	=	c("travel",	"travel"),		
																														non_base	=	c("travelled",	"travelling")))	
saveRDS(sahban_base_lexicon,	"sahban_base_lexicon")	

Indexed Response Function 

numbered_response_tokens	<-	function(file,	response_type)	{	
			
		dataset	<-		readRDS(file	=	file)	
			
		dataset	%>%		
				tibble::as_tibble()	%>%		
				dplyr::mutate(response_type	=		
																				iconv(pull(.,	response_type),		
																										from	=	"UTF-8",	to	=	"Latin1"))	%>%		
				dplyr::mutate(post_number	=	as.numeric(factor(id)))	%>%		
				dplyr::group_by(id)	%>%		
				dplyr::mutate_if(is.factor,	as.character)	
}	

	

#	Convert	non_base	verbs	into	base	verbs	
	
extract_non_base	<-	function(data)	{	
		data	%>%	
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				dplyr::rename(non_base	=	word)	%>%	
				dplyr::left_join(readRDS("sahban_base_lexicon"),	by	=	"non_base")	%>%	
				dplyr::mutate(base	=	ifelse(is.na(base),	non_base,	base))	%>%	
				dplyr::rename(word	=	base)	%>%	
				dplyr::select(-one_of("non_base"))		
}	

Indexed Tokenization 

The numbererd_response_function() is used to find out numbered tokenization. 

tidy_response_facebook	<-		
		numbered_response_tokens("300_posts_comments",	"comments")	%>%		
		dplyr::mutate(comment_number	=	row_number())	%>%		
		dplyr::select(id,	post_number,	response_number	=	comment_number,		
																comments,	created_time,	type,	likes_count,	comments_count,		
																shares_count)	%>%		
		tidytext::unnest_tokens(word,	comments)	%>%		
		dplyr::anti_join(custom_stop_words)	%>%		
		extract_non_base()	%>%		
		extract_plural()	

##	Joining,	by	=	"word"	

##	Warning:	Column	`word`	joining	character	vector	and	factor,	coercing	into	
##	character	vector	

tidy_response_tripadvisor	<-		
		numbered_response_tokens("tripadvisor_turkishairlines6846.rds",	"review")	%>%
		
		dplyr::select(id,	response_number	=	post_number,	review,	quote,	rating,	date)
	%>%		
		tidytext::unnest_tokens(word,	review)	%>%		
		dplyr::anti_join(custom_stop_words)	%>%		
		extract_non_base()	%>%		
		extract_plural()	

##	Joining,	by	=	"word"	

tidy_response_facebook	%>%		
		tibble::as_tibble()	%>%		
		dplyr::select(post_number,	response_number,	word,	type)	%>%		
		subset(select	=	c(2,3,4,5))	

##	Adding	missing	grouping	variables:	`id`	

##	#	A	tibble:	23,953	x	4	
##				post_number	response_number	word						type		
##										<dbl>											<int>	<chr>					<chr>	
##		1									293															1	direct				photo	
##		2									293															1	ireland			photo	
##		3									293															1	bodrum				photo	
##		4									293															1	badly					photo	
##		5									293															1	week						photo	
##		6									293															1	summer				photo	
##		7									293															1	fantastic	photo	
##		8									293															2	curious			photo	
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##		9									293															2	tbilisi			photo	
##	10									293															3	fligths			photo	
##	#	...	with	23,943	more	rows	

tidy_response_tripadvisor	%>%		
		tibble::as_tibble()	%>%		
		dplyr::select(id,	response_number,	word)	%>%		
		dplyr::arrange(response_number)	

##	#	A	tibble:	125,065	x	3	
##	#	Groups:			id	[6,846]	
##				id										response_number	word									
##				<chr>																	<dbl>	<chr>								
##		1	rn342674723															1	ticket							
##		2	rn342674723															1	receive						
##		3	rn342674723															1	promised.the	
##		4	rn342674723															1	connection			
##		5	rn342674723															1	istanbul					
##		6	rn342674723															1	leave								
##		7	rn342674723															1	immediately		
##		8	rn342674723															1	dubai								
##		9	rn342674723															1	arrive							
##	10	rn342674723															1	grind								
##	#	...	with	125,055	more	rows	

Sentence Tokenization 

untidy_response_facebook	<-		
		numbered_response_tokens("300_posts_comments",	"comments")	%>%		
		dplyr::mutate(comment_number	=	row_number())	%>%		
		dplyr::select(id,	post_number,	comment_number,	comments,		
																created_time,	type,	likes_count,	comments_count,		
																shares_count)	
	
untidy_response_tripadvisor	<-		
		numbered_response_tokens("tripadvisor_turkishairlines6846.rds",	"review")	%>%
		
		dplyr::select(id,	post_number,	review,	quote,	rating,	date)	
	
	
sentence_tokens	<-	function(data	=	untidy_response_facebook,		
																												response_column	=	"comments",		
																												group_by	=	"comment_number")	{	
		#	English	Dictionary	
		qdapDictionaries::DICTIONARY[,1]	
			
		en_word_comments	<-	data	%>%		
				dplyr::ungroup()	%>%		
				tidytext::unnest_tokens_("word",	response_column)	%>%		
				dplyr::filter(word	%in%	qdapDictionaries::DICTIONARY[,1])	
			
		en_word_sentence_comments	<-	en_word_comments	%>%		
				dplyr::group_by_("id",	group_by)	%>%		
				dplyr::mutate(sentence	=	paste(word,	collapse	=	"	"))	%>%	
				dplyr::distinct(sentence,	.keep_all	=	TRUE)	%>%		
				dplyr::as_data_frame()	%>%		
				dplyr::mutate(sentence	=	iconv(sentence,	to	=	'latin1'))	%>%		
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				dplyr::ungroup()	
			
		#	Sentence	as	tokens	with	post	number	and	comment	number	
			
		en_word_sentence_comments	%>%		
				dplyr::select_("id",	group_by,	"sentence")	%>%	
				dplyr::ungroup()	%>%		
				tidytext::unnest_tokens(sentences,	sentence,	token	=	"sentences")	
}	
	
facebook_sentence_tokens	<-		
		sentence_tokens(data	=	untidy_response_facebook,	
																		response_column	=	"comments",	
																		group_by	=	"comment_number")	
	
tripadvisor_sentence_tokens	<-		
		sentence_tokens(data	=	untidy_response_tripadvisor,	
																		response_column	=	"review",	
																		group_by	=	"post_number")	
	
facebook_sentence_tokens		
	
tripadvisor_sentence_tokens	
	
tripadvisor_sentence_tokens	
		dplyr::select(sentences)		

Response sentiments 

response_sentiments	<-	function(data,	lexicon,	group_by	=	sentiment)	{	
		data	%>%		
				dplyr::inner_join(get_sentiments(lexicon),	by	=	"word")	%>%		
				dplyr::count(response_number,	sentiment)	%>%		
				tidyr::spread(sentiment,	n,	fill	=	0)	%>%		
				dplyr::mutate(sentiment	=	positive	-	negative)	%>%		
				dplyr::ungroup()	
}	
	
#	bing	
facebook_sentiments_bing	<-	response_sentiments(tidy_response_facebook,	"bing")	
tripadvisor_sentiments_bing	<-	response_sentiments(tidy_response_tripadvisor,	"
bing")	
	
#	nrc	
facebook_sentiments_nrc	<-	response_sentiments(tidy_response_facebook,	"nrc")	
tripadvisor_sentiments_nrc	<-	response_sentiments(tidy_response_tripadvisor,	"n
rc")	
	
#afinn	
sentiments_afinn	<-	function(data)	{	
		data	%>%		
				dplyr::ungroup()	%>%		
				dplyr::inner_join(tidytext::get_sentiments("afinn"),	by	=	"word")	%>%		
				dplyr::group_by(id,	response_number)	%>%		
				dplyr::summarise(score	=	sum(score))		
}	
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facebook_sentiments_afinn	<-	sentiments_afinn(tidy_response_facebook)	
tripadvisor_sentiments_afinn	<-	sentiments_afinn(tidy_response_tripadvisor)	
	
facebook_sentiments_bing	%>%		
		dplyr::select(response_number,	negative,	positive,	sentiment)		

##	#	A	tibble:	1,588	x	4	
##				response_number	negative	positive	sentiment	
##														<int>				<dbl>				<dbl>					<dbl>	
##		1															1								0								1									1	
##		2															2								0								1									1	
##		3															3								0								1									1	
##		4															3								1								0								-1	
##		5															4								0								1									1	
##		6															2								0								1									1	
##		7															3								3								1								-2	
##		8														18								0								1									1	
##		9														21								0								2									2	
##	10														23								0								1									1	
##	#	...	with	1,578	more	rows	

tripadvisor_sentiments_bing		

##	#	A	tibble:	6,426	x	5	
##				id										response_number	negative	positive	sentiment	
##				<chr>																	<dbl>				<dbl>				<dbl>					<dbl>	
##		1	rn342674723															1								1								0								-1	
##		2	rn342740773															2								1								3									2	
##		3	rn342772345															3								4								1								-3	
##		4	rn342937701															4								0								3									3	
##		5	rn343011985															5								1								1									0	
##		6	rn343117108															6								0								1									1	
##		7	rn343117743															7								0								2									2	
##		8	rn343141565															8								4								2								-2	
##		9	rn343168849															9								0								4									4	
##	10	rn343189478														10								0								3									3	
##	#	...	with	6,416	more	rows	

facebook_sentiments_nrc		

##	#	A	tibble:	1,895	x	13	
##				id						response_number	anger	anticipation	disgust		fear			joy	negative	
##				<chr>													<int>	<dbl>								<dbl>			<dbl>	<dbl>	<dbl>				<dbl>	
##		1	904300…															1					0												0							0					0					2								0	
##		2	904300…															2					0												0							0					0					1								0	
##		3	904300…															3					0												0							0					0					1								0	
##		4	904300…															4					0												0							0					0					0								0	
##		5	904300…															1					0												1							0					0					0								1	
##		6	904300…															4					0												0							0					0					0								0	
##		7	904300…															2					1												2							0					1					1								0	
##		8	904300…															3					0												0							0					0					0								3	
##		9	904300…															4					0												0							0					1					0								0	
##	10	904300…															5					0												1							0					0					0								0	
##	#	...	with	1,885	more	rows,	and	5	more	variables:	positive	<dbl>,	
##	#			sadness	<dbl>,	surprise	<dbl>,	trust	<dbl>,	sentiment	<dbl>	
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tripadvisor_sentiments_nrc		

##	#	A	tibble:	6,796	x	13	
##				id						response_number	anger	anticipation	disgust		fear			joy	negative	
##				<chr>													<dbl>	<dbl>								<dbl>			<dbl>	<dbl>	<dbl>				<dbl>	
##		1	rn3426…															1					0												2							0					0					0								2	
##		2	rn3427…															2					1												2							1					2					3								0	
##		3	rn3427…															3					2												0							2					1					0								3	
##		4	rn3429…															4					0												2							0					0					3								0	
##		5	rn3430…															5					1												2							1					1					1								1	
##		6	rn3431…															6					0												2							0					0					1								0	
##		7	rn3431…															7					0												3							0					0					4								0	
##		8	rn3431…															8					1												1							1					2					2								4	
##		9	rn3431…															9					0												3							0					0					3								0	
##	10	rn3431…														10					1												2							0					1					2								0	
##	#	...	with	6,786	more	rows,	and	5	more	variables:	positive	<dbl>,	
##	#			sadness	<dbl>,	surprise	<dbl>,	trust	<dbl>,	sentiment	<dbl>	

facebook_sentiments_afinn		

##	#	A	tibble:	1,647	x	3	
##	#	Groups:			id	[?]	
##				id																												response_number	score	
##				<chr>																																			<int>	<int>	
##		1	90430042759_10155125620582760															1					5	
##		2	90430042759_10155125620582760															2					3	
##		3	90430042759_10155125620582760															3					3	
##		4	90430042759_10155125620582760															7					2	
##		5	90430042759_10155126945012760															3					2	
##		6	90430042759_10155126945012760															4					2	
##		7	90430042759_10155129495572760															2					3	
##		8	90430042759_10155129495572760															3				-3	
##		9	90430042759_10155129495572760														11				-1	
##	10	90430042759_10155129495572760														18					1	
##	#	...	with	1,637	more	rows	

tripadvisor_sentiments_afinn	

##	#	A	tibble:	6,139	x	3	
##	#	Groups:			id	[?]	
##				id										response_number	score	
##				<chr>																	<dbl>	<int>	
##		1	rn342674723															1					0	
##		2	rn342740773															2					7	
##		3	rn342772345															3				-2	
##		4	rn342937701															4					5	
##		5	rn343011985															5				-3	
##		6	rn343117108															6					2	
##		7	rn343117743															7					5	
##		8	rn343141565															8				-5	
##		9	rn343168849															9					6	
##	10	rn343189478														10					7	
##	#	...	with	6,129	more	rows	
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Sentiments to All Words Ratio 

sentiment_token_ratio	<-	function(data,	sentiment_type	=	"negative")	{	
			
		negative_sentiment	<-	get_sentiments("bing")	%>%		
				dplyr::filter(sentiment	==	sentiment_type)	
			
		wordcounts	<-	data	%>%		
				dplyr::group_by(response_number)	%>%	
				dplyr::summarize(word	=	n())	
			
		data	%>%	
				dplyr::semi_join(negative_sentiment)	%>%	
				dplyr::group_by(id,	response_number)	%>%	
				dplyr::summarize(negativewords	=	n())	%>%	
				dplyr::left_join(wordcounts,	by	=	c("response_number"))	%>%	
				dplyr::mutate(ratio	=	negativewords/word)	%>%	
				dplyr::top_n(10)	%>%	
				dplyr::ungroup()	%>%		
				dplyr::arrange(desc(ratio))	
			
}	
	
facebook_negative_sentiment_ratio	<-		
		sentiment_token_ratio(tidy_response_facebook,	"negative")	

##	Joining,	by	=	"word"	

##	Selecting	by	ratio	

tripadvisor_negative_sentiment_ratio	<-		
		sentiment_token_ratio(tidy_response_tripadvisor,	"negative")	

##	Joining,	by	=	"word"	
##	Selecting	by	ratio	

facebook_positive_sentiment_ratio	<-		
		sentiment_token_ratio(tidy_response_facebook,	"positive")	

##	Joining,	by	=	"word"	
##	Selecting	by	ratio	

tripadvisor_positive_sentiment_ratio	<-		
		sentiment_token_ratio(tidy_response_tripadvisor,	"positive")	

##	Joining,	by	=	"word"	
##	Selecting	by	ratio	

facebook_negative_sentiment_ratio	

##	#	A	tibble:	192	x	5	
##				id																											response_number	negativewords		word		ratio	
##				<chr>																																		<int>									<int>	<int>		<dbl>	
##		1	90430042759_101551815520227…													281													1					2	0.5				
##		2	90430042759_101551815520227…													805													1					2	0.5				
##		3	90430042759_101551815520227…													661													1					3	0.333		
##		4	90430042759_101551815520227…													687													1					3	0.333		
##		5	90430042759_101551815520227…													503													2				11	0.182		
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##		6	90430042759_101551815520227…													358													1					6	0.167		
##		7	90430042759_101551815520227…													314													1					7	0.143		
##		8	90430042759_101551815520227…													157													1					8	0.125		
##		9	90430042759_101551815520227…													475													1				10	0.1				
##	10	90430042759_101551815520227…														69													2				30	0.0667	
##	#	...	with	182	more	rows	

	

	

tripadvisor_negative_sentiment_ratio	

##	#	A	tibble:	3,389	x	5	
##				id										response_number	negativewords		word	ratio	
##				<chr>																	<dbl>									<int>	<int>	<dbl>	
##		1	rn541387435												4976													5					7	0.714	
##		2	rn465760178												3008													4					8	0.5			
##		3	rn525881971												4705													4					8	0.5			
##		4	rn518927507												4384													5				11	0.455	
##		5	rn513737468												3993													4					9	0.444	
##		6	rn425622278												2284													9				21	0.429	
##		7	rn557983424												5965													3					7	0.429	
##		8	rn569818446												6477													3					7	0.429	
##		9	rn530267095												4794													4				10	0.4			
##	10	rn547414313												5547													4				10	0.4			
##	#	...	with	3,379	more	rows	

numbered_response_tokens(	
		"tripadvisor_turkishairlines6846.rds",	"review")	%>%		
		dplyr::select(id,	response_number	=	post_number,	review,		
																quote,	rating,	date)	%>%		
		dplyr::filter(response_number	==	4976)	%>%		
		dplyr::select(review,	id)	

##	#	A	tibble:	1	x	2	
##	#	Groups:			id	[1]	
##			review																																																											id						
##			<chr>																																																												<chr>			
##	1	"the	flight	was	very	bad	and	the	food	very	bad	it	so	bad	and	…	rn5413…	

Most Frequent Sentiments 

frequent_sentiments	<-	function(data)	{	
		data	%>%		
				dplyr::inner_join(tidytext::get_sentiments("bing"))	%>%		
				dplyr::ungroup()	%>%		
				dplyr::count(word,	sentiment,	sort	=	TRUE)	
}	
	
facebook_frequent_sentiments	<-		
										frequent_sentiments(tidy_response_facebook)	

##	Joining,	by	=	"word"	

tripadvisor_frequent_sentiments	<-		
										frequent_sentiments(tidy_response_tripadvisor)	
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##	Joining,	by	=	"word"	

	

	

facebook_frequent_sentiments	

##	#	A	tibble:	383	x	3	
##				word												sentiment					n	
##				<chr>											<chr>					<int>	
##		1	love												positive				328	
##		2	nice												positive				155	
##		3	beautiful							positive					87	
##		4	congratulations	positive					83	
##		5	wow													positive					80	
##		6	amaze											positive					73	
##		7	free												positive					72	
##		8	happy											positive					69	
##		9	bless											positive					45	
##	10	super											positive					37	
##	#	...	with	373	more	rows	

tripadvisor_frequent_sentiments	

##	#	A	tibble:	1,310	x	3	
##				word								sentiment					n	
##				<chr>							<chr>					<int>	
##		1	comfortable	positive			1026	
##		2	excellent			positive				927	
##		3	nice								positive				816	
##		4	friendly				positive				700	
##		5	delay							negative				552	
##		6	helpful					positive				472	
##		7	clean							positive				406	
##		8	free								positive				399	
##		9	bad									negative				324	
##	10	recommend			positive				318	
##	#	...	with	1,300	more	rows	

Plot Frequent Sentiments Counts 

plot_sentiment_count	<-	function(data)	{	
		data	%>%		
				dplyr::group_by(sentiment)	%>%		
				dplyr::top_n(10)	%>%		
				dplyr::ungroup()	%>%		
				dplyr::mutate(word	=	reorder(word,	n))	%>%		
				ggplot2::ggplot(ggplot2::aes(word,	n,	fill	=	sentiment))	+	
				ggplot2::geom_col(show.legend	=	FALSE)	+	
				ggplot2::facet_wrap(~sentiment,	scales	=	"free_y")	+	
				ggplot2::labs(y	=	"Frequent	Sentiments",	
																		x	=	"Frequency")	+	
				ggplot2::coord_flip()	
}	
	
plot_sentiment_count(facebook_frequent_sentiments)	
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##	Selecting	by	n	

 

Figure 14: Facebook Sentiment Count Plot - Appendix 
plot_sentiment_count(tripadvisor_frequent_sentiments)	

##	Selecting	by	n	
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Figure 15: TripAdvisor Sentiment Count Plot - Appendix 

Word Cloud 

library(wordcloud)	

##	Loading	required	package:	RColorBrewer	

word_cloud	<-	function(data,	max_words)	{	
		data	%>%	
				dplyr::ungroup()	%>%		
				dplyr::count(word)	%>%	
				with(wordcloud::wordcloud(word,	n,	max.words	=	max_words))	
}	
	
word_cloud(tidy_response_facebook,	max_words	=	50)	
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Figure 16: Facebook Wordcloud - Appendix 
word_cloud(tidy_response_tripadvisor,	max_words	=	75)	

 

Figure 17: TripAdvisor Wordcloud - Appendix 
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Sentiment Cloud 

library(reshape2)	
	
sentiment_cloud	<-	function(dataset)	{	
		dataset	%>%	
				dplyr::inner_join(tidytext::get_sentiments("bing"))	%>%	
				dplyr::count(word,	sentiment,	sort	=	TRUE)	%>%	
				reshape2::acast(word	~	sentiment,	value.var	=	"n",	fill	=	0)	%>%	
				wordcloud::comparison.cloud(colors	=	c("#F8766D",	"#00BFC4"),	
																																max.words	=	100)	
}	
	
sentiment_cloud(tidy_response_facebook)	

##	Joining,	by	=	"word"	

 

Figure 18: Facebook Sentiment Cloud - Appendix 
sentiment_cloud(tidy_response_tripadvisor)	

##	Joining,	by	=	"word"	
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Figure 19: TripAdvisor Sentiment Cloud - Appendix 

 
 

 
 


