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OZET

R iLE SOSYAL MEDYA MADENCILIGIi

Bu caligmada, sosyal media web uygulamalarindan veri ¢ikartma, veri hazirlama veya
diizeltme, tokenizasyon, kelime siklig1 tahminleme, kelime yigininin duygu analizi ve
gorsellestirilmesi  gibi birgok sosyal media madencilik teknigi R ortaminda
uygulanmistir. Bu teknikler i¢in R fonksiyonlar: olusturularak, bu fonksiyonlar Tirk
Hava Yollar1 vaka ¢alismasinda uygulanmistir. Sosyal media web uygulamalarindan R
programlama dili kullanilarak, s6z konusu sirkete ait Facebook ve TripAdvisor web
sayfasinda yer alan yorum ve gorlisleri kapsayan sosyal media verisi alinmistir.
Facebook ve TripAdvisor’dan veri temini i¢in R paketleri kullanilmistir. Bir sonraki
asamada, kompleks veri yapist ve gereksiz siitunlar iceren daginik ham veri, biri
Facebook digeri TripAdvisor i¢in, dataframe yapisinda iki farkli diizenli veri setine
donistiiriilmiistiir. Calismanin devaminda yorum ve goriislerden olusan veri seti
tokenize teknigi ile climlelere ve ardindan s6zciiklere indirgenmistir. Bunu yanisira, veri
seti iginde yer alan ge¢cmis zaman ve simdiki zaman fiilleri de kok fiil haline
doniistliriilmiistiir. Calismanin son asamasinda, tokenize edilmis olan Facebook
yorumlart ve TripAdvisor gorisleri lizerinde; kelime siklik sayimi, duygu analizi ve

kelime y1gin1 gorsellestirmesi gibi ¢esitli metin analiz teknikleri uygulanmaistir.
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ABSTRACT

SOCIAL MEDIA MINING WITH R

In this research study, many social media mining techniques, such as data extraction,
data wrangling or tidying, tokenization, estimation of word frequency, sentiment
analysis and visualization of word cloud, have been applied in R environment. The study
builds R functions for these techniques. Later, these functions are used in the case study
on Turkish Airlines. TurkishAirlines’ social media data, i.e. comments posted by
TurkishAirlines” Facebook followers and reviews posted by the customers on
TripAdvisor Website, are scraped from the social media web applications using R
programming language. R packages, built for web scraping, are used to retrieve data
from Facebook and TripAdvisor. Afterward, the messy extracted data, with the complex
data structure and unnecessary columns, are converted into two different tidy datasets,
one for Facebook and other for TripAdvisor. Subsequently, the responses, either
comments or reviews, are tokenized into sentence and words. The tokenized data have
been cleaned by extracting NA values and stop words. Moreover, the verbs in different
forms, such as present simple, present participle, past simple and past participle, are
converted into the base form of verbs. Lastly, text analysis techniques such as word
frequency count, sentiment analysis, and word cloud visualization are applied to

tokenized Facebook comments and TripAdvisor reviews.
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1. INTRODUCTION

With the rise in social media popularity, the trend of writing reviews and feedback on
social media websites has increased dramatically. These reviews posted by the existing
customers strongly influence the buying behavior of potential customers. Consequently,
the consumer brands have started investing in social media branding and advertising
campaigns. In contrast to other mediums of advertisements, social media advertisement
not only results in huge response by fans and followers, but also benefits the companies
by generating leads. A powerful social media marketing campaign with an effective
strategy would develop positive brand image among consumers, whereas a campaign
with an ineffectual strategy would result in negative responses by the potential or
existing consumers.

An effective social media marketing strategy cannot be devised without having an up-to-
the-minute information about consumers’ perception on the brand and its customer
services. A deep understanding of consumers’ and potential customers’ perception can
only be obtained from their feedback, reviews, criticisms or comments on the social
media marketing campaigns. By using the latest data mining and particularly text mining
techniques, the big data of customers’ reviews and comments can be successfully used
to get a strong insight into consumers’ perception towards customer services of any
company.

There are number of programming frameworks that can be used to extract consumers’
reviews and comments from different social media web applications, such as Python,
PHP and Perl. The study used statistical software environment R and R programming
language to extract and analyze data from social media web applications, like Facebook
and TripAdvisor. The open source R software, developed for efficient data handling,

data analysis, is based on the S language. Ross lThaka & Robert Gentleman wrote an



experimental R to be used in their teaching laboratory. Upon receiving positive
feedback, they release R source code as “free software” in June of 1995. With the rise in
interest in R, the developers introduce the mailing list and people started porting
applications to it (Thaka 1998).

Today, despite being outside the conventional programming language, R is the most
famous statistical software used by a large community of programmers. One of the
reasons for R’s popularity is its package system. R packages encapsulate the user-
contributed code, data, functions, tests and documentation together. More than 6,000
packages are available on the CRAN (Comprehensive R Archive Network) system. It is
as a public clearing house for packages built in R (Wickham, R packages: organize, test,
document, and share your code 2015). The huge variety of easily accessible and useful
packages is one of the reasons why R is so successful. The study used famous R
packages such as Rfacebook, rvest, dplyr, ggplot2, tidyr and tidytext for
different data mining techniques. These packages when loaded in an R environment
provide a number of beneficial functions that save time for programmers while writing
complex codes. This study thoroughly explains how to use these functions effectively
for social media mining. Furthermore, to avoid code redundancy, the study provides new
functions that effectively deal with Facebook and TripAdvisors data at a same time.

These functions are used to clean and analyze Turkish Airlines’ social media data.



2. Text Mining

One of the rapidly growing, exciting and new areas of computer science research is text
mining. It aims to deal with information overload by using multiple techniques such as
data mining, information retrieval, natural language processing and machine learning. In
this section, the study provides an overview of different text mining technique along
with their real-world applications for businesses in various fields, such as social media
analytics, marketing and brand management.

In general, we can define text mining as an information-intensive process in which a
user interacts with a collection of documents through various analysis tools. As similar
to data mining process, text mining aims to retrieve beneficial information from text data
sources through identification and exploration of words used in the text documents.
Furthermore, this mining methodology seeks to identify and discover interesting patterns
in text documents to extract valuable knowledge efficiently. Indeed, text mining derives
its way and motivation from influential research on data mining. Therefore, architectural
similarities can be observed in text mining and data mining system, such as
preprocessing techniques, prediction and pattern discovery algorithms and visualization
techniques (Feldman and Sanger 2007).

In contrast to data mining system where data is stored in structured format, the
document based text data are initially stored in weekly or relatively less structured
format. Therefore, the text data are first transformed from weekly structured format into
a more structured format using some preprocessing techniques, which are not related to
data mining system (Feldman and Sanger 2007). In addition to the methodologies and
techniques derived from data mining system, text mining derives many techniques from
different areas, such as natural language processing, information retrieval, and corpus-

based computational linguistics.



The study below explains some of the famous text mining techniques. Although the
research study does not implement all of the techniques mentioned in this section, the
study aims to provide the summary of text mining techniques and their applicability in

the real world.

2.1 Collection of Document

The key component of text mining is a collection of documents. In simple words, a collection of
documents is a grouping of similar text-based documents (Feldman and Sanger 2007). The total
number of documents in a collection can reach from many thousands to many millions. Most
text mining techniques aim to extract patterns from these collections and analyze these patterns
to get valuable insights. For instance, a collection of research papers in the field of marketing
can be considered as a document collection. Similarly, the reviews of a tourism brand altogether
become a collection of documents, when a single review is considered as a document.

The text mining techniques are not implemented on unprepared and unstructured documents. A
considerate amount of time and emphasis is devoted in preprocessing procedures. These
preprocessing methods include data extraction, data wrangling, tokenization and linguistic

research methodologies.

2.2 Document

Document is another basic component in text mining. Document can be defined as that unit of
document collection that correlates, not necessarily, with some other real-life published
document, such as an article, e-mail, news, reviews, research paper and social media posts. In
other words, document is a collection of words that represents a similar type of units within a
document collection. It cannot be inferred that a document can only exists within one specific
collection, however, document can be a member of many different types of collections (Feldman
and Sanger 2007). For instance, considering this research study as a document, the study can be
a member of more than one document collections, such as text mining, information retrieval, and

natural language processing.



2.2.1 Document Structure

In contrary to the misleading tag that document is an unstructured data, it can be seen as a
somewhat structured object. According to a linguist’s point of view, even a simple document has
a fair amount of syntactic and semantic structure. With the help of typographical elements, such
as capitalization, punctuation marks, spacing, underlining and tables, we can identify
document’s components and subcomponents such as titles, paragraphs, table records and author
names (Feldman and Sanger 2007). Furthermore, a sequence of words can also be considered as
a meaningful dimension of document structure. Documents, including business reports, news
articles or stories, legal communications, are considered to be weekly structured documents as
they do not have strong typographical or layout marks to define structure. Whereas, HTML
pages, emails and PDF document having style-sheet, HTML tags, and heavy typographical

elements are usually considered as semi structured documents.

2.3 Document Features

To explore the implicit structure of documents and convert the implicit representation of
document structure to an explicit representation, it is important to identify the document features
that represent documents as a whole. The design, approach and even performance of text mining
preprocessing techniques are based on the document’s features. Some of the commonly used
document features discussed in this section are characters — the building block- words, terms and
concepts. The aim of text mining is to identify the document features; moreover, normalize and
validate these features against dictionaries or other vocabulary sources, such as lexicon or

thesauri.

2.3.1 Characters

As mentioned above, characters are the building block of other higher-level semantic document
features, i.e. words and terms. The characters include basic-level letters, numbers, special
characters and even spaces. The character is the most basic document feature and that is why it

offers very limited benefit in the application of text mining techniques. The main advantage of



characters, especially special characters and spacing, is to identify the positions of a word, a

sentence, or a set of different words (bigrams or trigrams).

2.3.2 Words

Word-level feature is one of the basic level features of a document. This feature has more
semantic richness than character and that is why it is more meaningful for text mining analysis.
The focus of this research study is on word-level text mining analytics. A word in a document is
also known as a linguistic token. The word level representation of a document or a document
collection usually contains hundreds and thousands of distinct words. The process of
representing a document in words is also known as tokenization. Some level of optimization is
required before optimal word-level representation of document, such as extraction of stop-

words, numbers and characters.

2.3.3 Terms

Single words (unigram) and multiword (n-gram) phrases are the terms that are extracted from
the collection of documents using term-extraction techniques. Term-level representation of a
document contains a subset of all the terms existing in the document. For example, a documents
contains the sentence “They have a nice inflight entertainment system and the high speed Wi-Fi
was free for Business Class and very reasonable for economy class”. Some of single word form
terms that will be included to represent the document will include, “nice”, “inflight”, and “Wi-
Fi”. Moreover, the terms will also include n-gram words such as “Business Class” and
“economy class” and “entertainment system”. Term extraction techniques are more sophisticated
than tokenization (or word extraction) techniques. The raw text document is represented in
normalized terms, i.e. sequence of tokens connected with different parts of speech. These term
extraction methodologies, like term normalization are not explained and employed in this

research study.



2.3.4 Concepts

In comparison with the three above mentioned document features, concepts feature is more
sophisticated feature, and therefore requires highly advanced text mining techniques to be
extracted from the documents. The concepts in a document are usually extracted manually;
however, using statistical, hybrid categorization, rule-based and other complex preprocessing
techniques, they can be identified from documents (Feldman and Sanger 2007). For instance, a
review of airline industry may not necessarily include “entertainment” or “aircraft” but these
concepts might be found among the list of concepts required to represent the document
collection.

As compare to other features explained above, terms and concepts are the most expressive
features of the document with higher semantic value. However, the study emphasizes on the
word level and character level features, since; other features require more advanced techniques.
In this section, the study explains some of the text mining techniques that are not implemented in
this study. The application of these analysis techniques is high when there are more than one
documents and the aim is to explore the association of words between different documents.
These text mining techniques include vector models, in which a word is represented as a vector.
These vector models are most commonly used for semantic similarity, which is the similarity

between different words, sentences and documents.

2.4 Term Document Matrix

The term documents matrix is a two dimensional table in which each row represents a specific
word in the vocabulary while each column signifies a document. Furthermore, each cell of a
term document matrix indicates the frequency of words in a specific document — represented by
a column. In the ficld of information retrieval, the term document matrix was defined as a vector
space model (Salton 1972). A vector is an array of number, while a vector space is a collection
of vectors that have particular dimensions. The position of each vector element represents a

particular dimension, therefore; the sequence of elements in a vector is not arbitrary.



2.5 Semantic Similarity

As mentioned, the vector space models help to find the semantic similarity between different
documents. The documents are represented by column vectors in vector space model or term
documents matrix (Jurafsky and Martin, Speech and Language Processing 2017). The spatial
visualization of these vectors can help to explore the semantic similarity between documents. In
a spatial visualization, the vectors nearer to each other are more similar than the vectors distant
from each other. Generally, the vectors have tens of thousands of elements and therefore it is
impossible to visualize that highly dimensional vectors and visualize the similarity. The problem

of finding the similarity between high dimensional vectors is addressed in the subsection below.

2.5.1 Similarity Measurement
One of the widely used semantic similarity metric is the cosine, similar to most of the vector
similarity measures used in the field of natural language processing. The cosine methodology is

based on the linear algebra operation, i.e. inner product or dot product.
N
dot — product(v,w) = v.w = z ViW; = W + Uaw, + o uywy
i=1

The cosine method or inner product serves as the similarity metric because it will give a large
value when the two vectors are close to each other or there is high similarity between each other.
Alternatively, a low value of dot product indicates that there is high level of dissimilarity
between vectors. If the dot product results in value zero, it means that the vectors are orthogonal
vectors and completely dissimilar to each other.

There are number of other similarity metrics, such as Jaccard (Jaccard 1912), Dice (Curran
2003) Kullback-Leibler divergence or relative entropy (Kullback and Leibler 1951) and Janson-

Shannon divergence (Lee 1999).
In the next two sub sections, the two major types of classification techniques, supervised

and unsupervised, are discussed briefly.



2.6 Supervised Classification

In this section, supervised classification techniques and their application in text mining are
discussed briefly. These techniques are used to assign labels to tokens, terms, and documents.
The categorization labels, like positive, negative, and spam detection labels, are drawn from a
set of labeled lexicon or training dataset. The supervised classification techniques use these
lexicon and training dataset and classify test data into different labels. When the analysis is
conducted at word-level document feature, the tokens or words can be classified by comparing
them with different lexicons as conducted in this study. However, in a term-level document
feature analysis, when the aim is to label a sentence or a whole paragraph, more advanced
supervised classification machine learning techniques can be applied, such as naive Bayes,
logistic regression, support vector machine (SVM), random forests and neural networks. The
goal of supervised classification of terms, i.e. n-gram tokens, is to classify the term into one of a
set of different classes. These machine-learning algorithms build classifier model of each class
using training dataset. The training dataset is made using human intelligence and each word in a
training dataset is categorized and labeled. Subsequently, when classifier models are applied to
the observations, the algorithms return the label or a class that has most likely generated each
observation. For instance, in the case of Bayesian classification, the classifier model for each
class is made using Bayes’ rule. To apply the Bayes classifier, word position in a term is
considered by simply indexing every word position in a document. Subsequently, the occurrence
probability of a term in each class is estimated (Jurafsky and Martin, Speech and Language
Processing 2017). Finally, the term (n-gram) with the highest probability of occurring in a

specified class is categorized in that class.

2.7 Unsupervised Classification

In the case of huge textual datasets, when it is difficult and expensive to label each word for its
topic or sense, an unsupervised approach is used to induce the sense of each word without
human interaction. This unsupervised text mining approach is also known as word sense

induction (WSI) (Jurafsky and Martin, Speech and Language Processing 2017). Most of the



techniques of unsupervised classification required clustering algorithm. In word sense induction,
first the data is trained in four steps: first, document is tokenized into words; second, a context
vector — defines the presence of word in a particular dependency - is computed for each word;
third, the tokens are classified into different clusters using clustering technique; last, the vector
centroid of each cluster is computed that represent the sense or topic of that cluster. Furthermore,
using the clustering algorithm and the distance metric between context vectors, the tokens are

classified into right clusters (Schutze 1992).

2.7.1 Agglomerative Clustering

Agglomerative clustering is one of the major unsupervised classification techniques. In this
clustering technique, each training case is initially assigned to its own cluster. Subsequently,
new clusters are made in a bottom-up manner by continuous merging of two different but most
similar clusters. The clustering process continues until either an optimal value of a global
measure is achieved or some specified number of clusters is made. In the case of large training
dataset that is making the agglomerative technique very expensive, random sampling technique
can be implemented on the training dataset to obtain same results (Jurafsky and Martin, Speech

and Language Processing 2017).

2.8 Social Media Mining

In past ten years, social media has been widely used as a major channel of
communication that allows users and businesses to connect and interact on a worldwide
level (Xu 2016). The most popular social media website, Facebook, has over one billion
active members and more than 890 million active users everyday (Carlsson et al. 2015).
Twitter is another dominant micro-blogging social media network that has more than
330 million monthly active users (Statista, Facebook - Statistics & Facts 2018).
According to Statista, TripAdvisor has become top ranked tourism website with 7
million listings for hotels, airlines, restaurants and attractions, and over 460 million user

opinions and reviews on the listings Statis (Statista, TripAdvisor - Statistics & Facts
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2018). With the advancement of technology, the social media websites are enabled to
manage, store and analyze a significant amount of user-generated data (Kleindienst et al.
2015). The rapidly growing usage social media and the user generated data, in the form
of texts, images, video and geographical locations, provides an opportunity for business
enterprises to extract business and customer insights (Schreck and Keim 2013). The
enormous social media data can play major role in modern business strategy making
processes, since they provide a unique opportunity to gain insight on customer
perception and maintain leverage over the competitors (Chen et al. 2012). A survey
carried out in November 2016 - asking individuals about the affect of customers’
reviews on their opinion about businesses - found that online customer reviews play a
vital role in shaping people’s opinion about brands, such as a positive review make them
trust a business more (Statista, How do online customer reviews affect your opinion of a
local business? 2017).

Web scraping is a data mining technique to extract data from Internet through various
means (Pereira and T 2015) With the help of web scraping services, the unstructured
data is converted into structured data and stored into a data bank. Renita and Vanitha in
their paper considers web scraping as the primary step to transform useful user
generated data into business asset (Pereira and T 2015)

It is said that 80 percent of data analysis effort is spend in the process of preparing and
tidying data (Dasu and Johnson 2003). Hadley Wickham (2014) in his paper “Tidy
Data” provides an efficient process of data tidying, i.e. structuring data sets to facilitate
analysis. The paper provides a standard way to organize data values in a data table. The
core principles of tidy data are based on Codd’s relational algebra (Codd 1990) and
relational database. However, the principles are framed in a language known to

statisticians (Wickham, Tidy Data 2014).
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In text mining, tidying dataset includes tokenization of document. Therefore, a tidy text
format is defined as being a dataset with one-token-per-row (Silge and Robinson, Text
Mining with R - A Tidy Approach 2018). Tokenization is the process of identification of
tokens, a meaningful unit of a text, i.e. word or a sentence. A foremost step for
information retrieval is tokenization and token indexing on the basis of some parameters
(Dong, Husain and E. Chang 2008). The main advantage of tokenization is that it allows
us to use storage place effectively (Wong et al. 1985). Furthermore, in addition to the
identification of tokens, tokenization includes the estimation of token or word count
(Singh and Saini 2014).

Sentiment analysis (also known as opinion mining) is the method of analyzing people’s
emotions, opinions, and sentiments toward an object (Ahmadi 2017). According to most
of the resources, sentiment analysis and opinion mining have exactly the same meaning;
however, some consider opinion mining to be different from sentiment analysis (Ahmadi
2017). Opinion mining is the way of extracting people’s opinion from the document,
whereas sentiment analysis explores the sentiments of the given text document (Ahmadi

2017).
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3. METHODOLOGY
This section describes a complete methodology to retrieve data from social media
websites, including Facebook, Twitter and TripAdvisor. Furthermore, the process of
extracting useful information from raw data has also been explained in this section. The

section is divided into five major sub sections as shown in Figure 1 below:

DATA * FaFeAbgo.k
EXTRACTION  *TripAdvisor
o Twitter
DATA

WRANGLING « Converting Messy Data into Tidy Data

« Converting Texts into Words and
TOKENIZATION = Sentences

« Extracting Stop Words

DATA ¢ Extracting Non-Latin Words
CLEANING

* Word Frequency
ANALYSIS « Sentiment Analysis
* Wordcloud

Figure 1: Methodology Flowchart

3.1 Data Extraction

The first and foremost step in social media mining is data extraction from social media
web applications. Social media web applications are the websites that people use to
interact with other people and to build social relationships or social networks with other
people who share similar career or personal interests, experiences, mutual connections
and activities.

The data is extracted using a technique called “Web Scraping” (also termed as Screen
Scraping and Web Harvesting). Using this technique, a large amount of data is extracted
from multiple pages of websites that can easily be saved into a local file in a computer

or a database in a table format (WebHarvy 2017).
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Among many other web scraping software, the study used statistical software
environment R and R programming language to extract data from social media web
applications, like Facebook, TripAdvisor and Twitter. Three different R packages are
employed to extract data from above mentioned three different social media websites. R
packages are the fundamental units of reproducible R code. These packages include
reusable R functions, sample data and the documentation that explains how to use the
built-in functions (Wickham, R Packages: Organize, Test, Document, and Share Your
Code 2015).

R Package Rfacebook provides an interphase to the Facebook API through which
Facebook data is extracted and stored as a dataframe or lists in R software
environment (Barbera, et al. 2017). Before extracting data from Facebook, an App is
created on the Facebook platform by logging into www.developers.facebook.com. The
App is used to connect to the Facebook API. The Facebook App has its own App ID and
App Secret that is used to connect to the R session. Rfacebook provides an easy
function, fbOAuth(), to build a connection. The function requires two parameters, i.e.
fboAuth(app_id, app_secret). After the authentication of the connection between
Facebook and R session is successful, the reusable auth_fb object is saved for next time
use. The auth_fb object contains the app details, like ID and secret, and authentication

details, which are the only requirements when the connection is made next time.

library(Rfacebook)

# Fb Authorization

auth_fb <- Rfacebook: :fbOAuth(
app_id="1380496555352781",
app_secret="eb3abc42d1e00536e6f4e37e58fcob5d",
extended_permissions = TRUE)

# Saving variable auth_fb in a file and loading it

save(auth_fb, file="auth fb")

load("auth_fb")
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Subsequently, Rfacebook function, getPage() is used to extract the data related to
posts, such as Facebook post content, number of likes, shares and comments. The
function requires three parameters, page, token and n. The page refers to the pageID

# Extract posts from turkish airlines page
turkishairlines <- Rfacebook::getPage(page = "turkishairlines",

token = auth_fb, n = 100)

Furthermore, the function getPost() is used to extract the user comments and their
reactions along with their display names. Earlier, Facebook allows all Apps to extract all
kind of data from public pages, however; due to recent changes in Facebook policies, the
App who has been given access to the public page by page’s admin can extract posts and
comments.

Another R package, rvest, helps to extract data from html webpages. The study used
the package to scrape the data from TripAdvisor web application. TripAdvisor is a travel
and restaurant website company providing hotel, airlines and restaurant reviews and
other travel specific content. The author of rvest, Hadley Wickham, provides complete
code to scrape review data and reviews’ ids from TripAdvisor (Wickham, hadley/rvest
2015). The study mainly used Hadley’s code to extract data from TripAdvisor. As the
reviews are posted on more than one webpage, for loop was added to the code to
generate multiple URLs and to extract data from multiple pages at a time. The only input
required for data extraction is the URL of the desired webpage. Three main functions of
rvest that are employed during the extraction are readhtml(), html_node() and
html_attr() (Wickham, rvest: Easily Harvest (Scrape) Web Pages 2016).

library("rvest")
df_total = data.frame()
for (i in seq(@, 6940, 10))
{
if (i == 90) {

url <- "https://www.tripadvisor.com/Airline_Review-d8729174-Review
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s-Turkish-Airlines"
}
else {
url <- paste(
"https://www.tripadvisor.com/Airline_Review-d8729069-Reviews-or"
,i,"-Turkish-Airlines#REVIEWS",
sep = "")
}
reviews <- url %>%
read_html() %>%
html_nodes ("#REVIEWS .innerBubble")
id <- reviews %>%
html_node(".quote a") %>%
html_attr("id")
quote <- reviews %>%
html_node(".quote span") %>%
html_text()
rating <- reviews %>%
html_node(".rating .rating s fill") %>%
html_attr("alt") %>%
gsub(" of 5 stars”, "", .) %>%
as.integer()
date <- reviews %>%
html_node(".rating .ratingDate") %>%
html_attr("title") %>%
strptime("%b %d, %Y") %>%
as.POSIXct()
review <- reviews %>%
html_node(".entry .partial_entry") %>%
html_text()
df <- data.frame(id, quote, rating, date, review, stringsAsFactors =
FALSE)
df_total <- rbind(df_total, df)
}
# Save an object to a file

saveRDS (df_total, file = "tripadvisor_turkishairlines6846.rds")
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R package twitteR is used to scrape the tweets, retweets and favorites of any Twitter
user. In similar to Facebook web scraping, a twitter App is created after logging into
www.apps.twitter.com. The function of twitteR package, setup_twitter_oauth(),
with four parameters consumer_key, consumer_secret, access_token, and
access_secret, builds connection between R session and twitter App. The values of
the above mentioned parameters are obtained after the twitter App is created.
Subsequently, userTimeline() and retweets() functions are employed to scrape the

tweets and retweets of any specific tweet respectively (Gentry 2015).

# Load Requried Package

library("twitteR")

# Authonitical keys

consumer_key <- 'tAyROLyhATfD90aA7Ft1Zfj3I'

consumer_secret <- 'vX1RHgHHDpnmNOgqrGPMVnmnQjQvG98X3x1B7T7zv4hKcvj7tVv
access_token <- '2572842085-vExbB4HNVN57zmQhoQdbmutCl6a4kdMdhixVta5'
access_secret <- '"HtTHSeAOz1WPcUX8nfW5ddwZ1TbXZGFB4pSHUGIZ3agvA'"

twitteR::setup_twitter_oauth(consumer_key, consumer_secret,
access_token, access_secret)

tweets <- userTimeline("turkishairlines", n=200)

3.2 Data Wrangling
The extracted social media data is in raw format and huge amount of effort is required to
clean before getting it ready for analysis. Through effective data wrangling, the data is
converted from raw format to another format that is easy to clean, manipulate, model
and visualize. Hadley Wickham (2014) in his paper “Tidy Data” provides an effective
way of data wrangling data through which messy datasets are converted into tidy
datasets by using only small set of tools. The tidy datasets have a specific data structure:
each variable is a column, each observation is a row, and each type of observational unit

is a table (Wickham, Tidy Data 2014). Tidy data sets are obtained and manipulated
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through a set of tidy tools, including famous packages dplyr (Wickham et al. 2017),
ggplot2 (Wickham, ggplot2: Elegant Graphics for Data Analysis 2009), tidyr
(Wickham and Henry, tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions
2018), and broom (Robinson 2018). Hence, the study converts the raw social media data
into tidy data so that transition between the packages for manipulation, interpretation,

and visualization purposes becomes smooth.

3.3 Tokenization

The tokenization is a process of converting a text into meaning unit of text, such as a
word, n words (or n-gram), sentence or paragraph. The social media data is in the raw
text format. In order to convert the untidy text data into tidy data, tokenization process is
employed that split text into tokens. The table with a tidy text structure contains a one
token in each row. Usually, the token in tidy dataset is a single word, but it can be an n-
gram (collection of words), sentence, or paragraph.

The R package tidytext (Silge and Robinson, tidytext: Text Mining and Analysis
Using Tidy Data Principles in R 2016) is used to tokenize the social media texts, like
posts, comments, reviews and tweets, and convert them into one-token-each-row format.
The study used tidytext’s unnest_token() function. The function requires two basic
functions, one is the output column that is created when the text is tokenized and other is
the input column that the input text for tokenization. An additional benefit of
unnest_tokens() is that it converts the tokens to lowercase, which makes them more
comparable with other datasets.

tokenize <- function(file, data_type) {
data_tibble <- readRDS(file = file) %>%
tibble::as_tibble()
data_vector <- data_tibble 7%>%
dplyr::pull(data_type) %>%

iconv(from = "UTF-8", to = "Latinl")

18



tokens <- tibble::as_tibble(data_vector) %>%
dplyr::filter(!is.na(value)) %>%
dplyr: :mutate(response_number = rownames(.)) %>%
dplyr::select(response_number, value) %>%
tidytext: :unnest_tokens(word, value)

tokens

The tokenize function converts text into tokens into following steps: first, the data is
stored into a dataframe. Second, the untokenized text data is saved into a vector with
character format, where each element of a vector is a sentence or paragraph. Third, the
encodings of the character vector is converted to Latinl. Fourth, the vector is again
transformed into a dataframe and NA values are filtered out. Fifth, the numbers are
assigned to each sentence or paragraph using:

mutate(line = rownames(.))

Subsequently, the desired column in tokenized into words using unnest_tokens
function. The value column is the input column argument and word is the output
column argument of unnest_tokens. The column is named value automatically in R
when the vector is converted into a dataframe. These steps are shows in Figure 2 as a

flowchart.
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Figure 2: Tokenization Process Flowchart

3.3.1 N-gram Tokenization
The unnest_token() function provides an option to specify the type of token, i.e. by
word, or n-gram — succeeding sequence of words. Sometimes, tokenization by n-gram,
especially bigram (two words) is useful for sentiment and frequency analysis. For
instance, when examining pairs of two succeeding words, an additional parameter,
token = ngrams and n = 2, is added to unnest_tokens(), as it examines two
consecutive words, also known as bigrams (Jurafsky and Martin 2017). Words, such as
“not good”, “not bad”, and “along with” are the examples of bigrams as they are usually

used consecutively in a text document.

3.3.2 Sentence Tokens
Until now, the study has used unigram or word tokens for frequency visualization and
sentiment analysis. However, in addition to word tokens, there is another form of token,
i.e. sentence tokens (Silge and Robinson, Text Mining with R - A Tidy Approach 2018).
The sentence token in a tidy data set considers a sentence in a text as a token. In the

function tidytext::unnest_tokens(), there is an argument token which requires
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either a “words” or “sentences” as an input. In order to use “sentences” as a token,
the data must be have a tidy format and the character vector must be encoded in 1latini
encoding. Following are the steps in the construction of sentence_tokens function as
given below. First, the review or comment data is tokenized into words. Second, using
dplyr::filter(), the words in English dictionary are selected or filtered out. The
English dictionary is obtained from the package qdapDictionaries. Third, with the
help of comments and reviews id, the tokens are combined into sentences, using paste
function, and saved into column named sentence.

paste(word, collapse = " ")

Fourth, the encodings of the characters inside the sentence column is converted from
UTF8 to latini. Lastly, after grouping the dataframe by id, the sentence column is

tokenized into sentences.

sentence_tokens <- function(data = untidy_response_facebook,
response_column = "comments",
group_by = "comment_number") {
# English Dictionary
gdapDictionaries: :DICTIONARY[,1]

en_word_comments <- data %>%
dplyr::ungroup() %>%
tidytext: :unnest_tokens_("word", response_column) %>%

dplyr::filter(word %in% qdapDictionaries::DICTIONARY[,1])

en_word_sentence_comments <- en_word_comments %>%

dplyr::group_by ("id", group_by) %>%

dplyr::mutate(sentence = paste(word, collapse = " ")) %>%
dplyr::distinct(sentence, .keep_all = TRUE) %>%
dplyr::as_data_frame() %>%

dplyr::mutate(sentence = iconv(sentence, to = 'latinl')) %>%

dplyr: :ungroup()
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# Sentence as tokens with post number and comment number
en_word_sentence_comments %>%
dplyr::select_("id", group_by, "sentence") %>%
dplyr::ungroup() %>%

tidytext: :unnest_tokens(sentences, sentence, token="sentences")

3.4 Stop Words
The tokens in the tidy data structure often contains frequent but less informative words.
These words do not add value in the analytics therefore they are removed from the data
and thus known as stop words (Jurafsky and Martin 2017). For example, “I”, “he”,
“they’ll” are some of the English stop words. The study used a list of stop words from
the “tm” package that contains 174 stop words. Furthermore, new words can be added to
the stop words lists using c() function. For instance, the study added “miss”, “airlines”,
“flight”, and “turkish” to the stop words by writing this code: c(“miss”, “airlines”,
“flight”, “turkish”, stopwords(“en”)). These stop words are eliminated from

the tidytext dataset with a dplyr function, i.e. anti_join().

data(stop_words)

# Custom stop words
custom_stop_words <- data.frame(word = c("miss", "flight", "tukish",
"airlines", "flights",
"airline", "turkish"),
lexicon = c("custom")) %>%

rbind(stop_words)

3.5 Multiple Verb Forms
The tokens include multiple forms of verbs that are considered different words during
analysis. The study aims to convert verbs in different forms, including present simple,
past simple, present participle and past participle into base form of verbs. According to

the research, there is not any specific package in R that deals with the issue of
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converting verbs from different forms into basic forms. The study develops its own
lexicon of verbs with its other forms of verbs. The lexicon is named as
sahban_base_lexicon and saved along with other datasets in the .rda format. The
lexicon contains a total of 2,154 different verbs. The lexicon data have two columns,
base column, refers to the base form of verbs, and non_base column, refers to all forms
of verbs other than base form. Furthermore, the study provides a function
extract_non_base that converts the other verb forms tokens into base form verbs. The
function takes data as an argument. The dataset is the output of the function
unnest_tokens that contains a column named word.

extract_non_base <- function(data) {
data %>%

dplyr::rename(non_base = word) %>%
dplyr::left_join(readRDS("sahban_base lexicon"), by = "non_base")

%>%
dplyr::mutate(base = ifelse(is.na(base), non_base, base)) %>%
dplyr::rename(word = base) %>%
dplyr::select(-one_of('"non_base"))

}

The study also provides a way to augment sahban_base_lexicon by adding new verbs
and their forms. The new verbs are added using the function dplyr::bind_rows. As
seen in an example below, the verb travel is added to the list with its past simple and
present participle. Although, the verb was included in the list, many users have used
double “1” in the word travelled and travelling instead of single “1”. In order to increase

accuracy of analysis, the study included misspelled verbs in the lexicon.

# Adding words manually to the lexicon
sahban_base_lexicon <- readRDS("sahban_base lexicon") %>%
dplyr::bind_rows(data.frame(base = c("travel”, "travel"),
non_base = c("travelled", "travelling")))

saveRDS (sahban_base_lexicon, "sahban_base lexicon")
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3.6 Plural Nouns
The tokens include plural nouns that are considered different words than their respective
singular nouns during analysis. The study aims to convert plural nouns into singular
form of nouns. According to the research, there is not any specific package in R that
deals with the issue of converting nouns from plural to singular form. The study
develops its own lexicon of nouns with its plural forms. The lexicon is named as
sahban_noun_lexicon and saved along with other datasets in the .rda format. The
lexicon contains a total of 4,489 different nouns. The lexicon data have two columns,
noun column, refers to the singular form of nouns, and plural column, which refers to
plural form of nouns. Furthermore, the study provides a function extract_plural that
converts the plural noun tokens into singular form. Similar to the extract_non_base
function, the function takes data as an argument. The dataset is the output of the

function unnest_tokens that contains a column named word.

# Convert Plural Nouns to Singular Nouns

extract_plural <- function(data) {
data %>%
dplyr::rename(plural = word) %>%
dplyr::left_join(readRDS("sahban_noun_lexicon"), by = "plural") %>

dplyr::mutate(noun = ifelse(is.na(noun), plural, noun)) %>%
dplyr::rename(word = noun) %>%
dplyr::select(-one_of("plural™))

3.7 Word Frequency
The most basic and common task in social media mining is to find word frequencies.
Although computing word frequencies is a simple analytical technique, reasonable and
intuitive word frequencies can lead to deep insights and logical findings from the data,

especially while comparing word frequencies among different texts. The study
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employed tidy tools to compute frequencies smoothly and intuitively. In this study, the
dplyr function count() is used to find the frequency of each token in the text.
Afterwards, highly frequent words, having frequency of more than specific limit, and
their frequencies are selected from the tidy datasets.

word_count <- function(data) {
readRDS (data) %>%
dplyr::anti_join(custom_stop_words, by = "word") %>%
dplyr::count(word, sort = TRUE) %>%
tibble::as_tibble()

These frequent words and their frequencies have been plotted using a package
ggplot2() and its function ggplot(). In addition to the data as an input, minimum
number of words to be included in a bar chart plot is provided as an input to a newly
built function word_count_plot. The function is based on the code provided by Julia
Silge and David Robinson in their book “Text Mining with R” (Silge and Robinson,
Text Mining with R - A Tidy Approach 2018).

word_count_plot <- function(data, min_count) {

tokens_count <- readRDS(data)

tokens_count %>%
dplyr::filter(n > min_count) %>%
dplyr::mutate(word = reorder(word, n)) %>%
ggplot2::ggplot(mapping = ggplot2::aes(word, n)) +
ggplot2::geom_col() +
ggplot2::xlab("Most Frequent Words") +
ggplot2::coord_f1lip()

3.8 Sentiment Analysis
In the previous sections, the study explained the method of tidying the raw data and
explained how can tidy tools be used to tokenize the texts. This tokenization helped to

compute and compare word frequencies. In this section, the study aims to further
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analyze the tokens, extracted from texts, by using sentiment analysis or opinion mining
technique. When humans read a text, they infer whether a token of text is positive,
negative or characterized by some other emotion like anger or joy. The study employed
text-mining tools to find out the emotions in the text programmatically.

The study considers text as a combination of its individual tokens or words and the
overall sentiment score of the text is basically the sum of the sentiment score of
individual tokens. This sentiment analysis approach is easy to implement while using

tidy data principles as tidy datasets has one token in each row.

In R programming, in contrast to the method of removing stop words where
anti_join() function is used, the sentiment scores of unigrams in a tidy dataset are
evaluated using dplyr’s function inner_join(). After the tokenization of the texts
using unnest_tokens(), in order to keep track of which posts and comment of the
posts each token comes from, the study used group_by and mutate functions in dplyr
package.

As mentioned above, the unnest_tokens() requires to parameters, input column and
output column. The study chose the name word for the output column as the lexicon
datasets and stop words datasets have columns with the name word; thus, making
inner joins and anti joins simpler.

The next step after removing stop words and scoring the tokens, the study counts how
many negative and positive tokens are there in each comment, review or tweet. The
study then uses dplyr: :spread() to have positive and negative sentiment scores in
separate columns. Finally, the net sentiment score is calculated by subtracting
negative score from the positive for each comment, review and tweet. The overall
sentiment score of a review or a comment ease the way of finding the undesirable

comments and negative reviews.
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3.8.1 Sentiment Lexicons
There are a variety of datasets or sentiment lexicons that specify the sentiment content of
tokens in a text. The study used three popular general-purpose sentiment lexicons to
evaluate the emotion in text, i.e. AFINN, Opinion Lexicon and Emolex. All of these

lexicons are based on single word tokens, i.e. unigrams.

AFINN

AFINN is one of the three sentiment datasets used in this study. AFINN is a list of
English words valued for opinions or emotions with an integer between minus five (-5)
to plus five (+5), where negative score indicates negative emotions and positive score
indicates positive emotions. Finn Arup Nielsen in 2009-2011 manually labeled the list of
2477 words and phrases (Nielsen 2011).

A general function sentiments_afinn is made that takes tidy data as an argument and
provides a sentiment score of a post, a sentence or a paragraph. First, the function uses
inner_join() function to assign a score to each word that is in the data and that also
exits in the afinn lexicon. After grouping by post_number, the score of each word in a
post is added to get a total sentiment of a post.

#afinn
sentiments_afinn <- function(data) {
data %>%
dplyr::inner_join(tidytext::get_sentiments("afinn"), by = "word")
%>%
dplyr::group_by(id, response_number) %>%

dplyr::summarise(score = sum(score))

Opinion Lexicon
Another general-purpose sentiment lexicon used in this research study is “Opinion

Lexicon”, developed by Bing Liu and collaborators (Hu and Liu 2004). The lexicon is a
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list English positive or negative opinions or sentiment words. The total number of words
in this opinion lexicon is six thousand eight hundred words. Bing’s lexicon is obtained
from the R package tidytext where it is named as bing. It categorizes the tokens in a

binary fashion, either positive or negative category (Hu and Liu 2004).

Emolex

NRC Word Emotion Association Lexicon, also known as “Emolex”, is the third emotion
lexicon used in this study (Mohammad and Turney 2013). The lexicon is the list of
English words and their association with two sentiments, positive and negative, and
eight main emotions, i.e. surprise, anger, sadness, fear, trust, anticipation, joy, and
disgust. In similar to other two above-mentioned lexicons, Emolex is also based on
single words, i.e. unigrams. The lexicon was constructed through crowdsourcing on
Amazon Mechanical Turk, a marketplace for work where developers hire humans for
the tasks requiring human intelligence (Mohammad and Turney 2013).

These lexicons are accessed through tidytext by using its function get_sentimens().
The names of these AFINN, Opinion Lexicon and Emolex in tidytext sentiment datasets
are AFINN, bing and nrc respectively. The lexicons are validated either through
crowdsourcing or through social media data, such as Twitter data or restaurant reviews.
They assign a score to each word in a text and subsequently the scores of are added up to
find the sentiment score of a whole text. As most of the English words are neutral, the
lexicons contain only those words that indicate some opinion or emotion.

The function, response_sentiments, is valid for two sentiment lexicons, Opinion
Lexicon (bing) and Emlox (NRC). As these two lexicon treats positive and negative
sentiments separately, the function is able to subtract negative sentiment score from
positive sentiment score to give an overall score to a sentence or paragraph. The body of

the function response_sentiments is given below:
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response_sentiments <- function(data, lexicon, group by = sentiment) {
data %>%
dplyr::inner_join(get_sentiments(lexicon), by = "word") %>%
dplyr::count(response_number, sentiment) %>%
tidyr::spread(sentiment, n, fill = @) %>%
dplyr::mutate(sentiment = positive - negative) %>%

dplyr: :ungroup()

3.8.2 Most Frequent Sentiments

Using the above mentioned three lexicons, tokens are classified into sentiments. The
next step of analysis is to find out the most frequent sentiments in a document. The most
common sentiment helps businesses to have an insight about overall sentiment of
consumers. For instance, if positive sentiment count outweighs the negative sentiment
count, it can be supposed that the consumers have overall positive attitude toward the
company. A simple R function to estimate most frequent sentiments in a tidy dataset is
given below:

frequent_sentiments <- function(data) {
data %>%
dplyr::inner_join(tidytext::get_sentiments("bing")) %>%
dplyr::ungroup() %>%

dplyr::count(word, sentiment, sort = TRUE)

3.8.3 Plot Frequent Sentiments Counts
In subsequent to the estimation of frequent sentiments in a text, the study plots the
frequency of sentiments using flipped bar charts. A function plot_sentiment_count is
made that takes a tidy dataset as its only input and gives two bar charts with most
frequent positive and negative sentiments respectively. The function is based on the

code provided in the book Text Mining with R by Julia Silge and David Robinson (Silge
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and Robinson, tidytext: Text Mining and Analysis Using Tidy Data Principles in R

2016).

plot_sentiment_count <- function(data) {
data %>%

dplyr::group_by(sentiment) %>%
dplyr::top_n(10) %>%
dplyr::ungroup() %>%
dplyr::mutate(word = reorder(word, n)) %>%
ggplot2::ggplot(ggplot2::aes(word, n, fill = sentiment)) +
ggplot2::geom_col(show.legend = FALSE) +
ggplot2::facet_wrap(~sentiment, scales = "free y") +

ggplot2::labs(y

"Sentiments”,

X

"Frequency”) +

ggplot2::coord_f1lip()

3.8.4 Sentiments to All Words Ratio
Although the total number of positive or negative sentiments depicts the overall
sentiment content in a sentence or a paragraph, the numerical value is lacking; since, the
total number of words in the sentence (or paragraph) is not taken into account. For
instance, while comparing the negative sentiment content of two different sentences,
only the total number of negative words in a sentence would not give us a complete
picture, instead a ratio of negative word count to total word count provide a better
comparison. The study provides an R function that takes a tokenized tidy dataset and
sentiment_type, positive or negative, as an input and returns a dataframe with top 10

most negative or positive user generated responses.
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sentiment_token_ratio <- function(data, sentiment_type = "negative") {
negative_sentiment <- get_sentiments("bing") %>%

dplyr::filter(sentiment == sentiment_type)

wordcounts <- data %>%
dplyr::group_by(response_number) %>%

dplyr::summarize(word = n())

data %>%
dplyr::semi_join(negative_sentiment) %>%
dplyr::group_by(id, response_number) %>%
dplyr::summarize(negativewords = n()) %>%
dplyr::left_join(wordcounts, by = c("response number")) %>%
dplyr::mutate(ratio = negativewords/word) %>%
dplyr::top_n(10) %>%
dplyr::ungroup() %>%
dplyr::arrange(desc(ratio))

3.9 Word Cloud

WordCloud is a visualization technique that gives word cloud, an image made-up of
words used in a document or text. In a word cloud, the size of each word specifies the
importance and frequency of the word. Word cloud of emotions or opinions provides
insights about user perception about the target subject, such as a brand or a product.

In R programming, the wordcloud package is used to build a word cloud that indicates
the most frequent sentiments in the comments and reviews. The word_cloud function,
as given below, requires two arguments: first, a dataset with a column containing tokens
and another column with tokens’ frequency; second, a numerical value indicating the

maximum number of words to be visualized in a word cloud.
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library(wordcloud)

word_cloud <- function(data, max_words) {
data %>%
dplyr::count(word) %>%

with(wordcloud: :wordcloud(word, n, max.words = 50))

3.9.1 Sentiment Cloud

Furthermore, an interesting wordcloud can be obtained after labeling the tokens into
positive and negative sentiments. First, sentiment analysis is done and tokens are labeled
as positive or negative by using inner join(). Afterwards, the data structure of tidy
dataset is converted from dataframe to matrix using acast() function of reshape2
package. Finally, comparison.cloud() function is used to get a word cloud that compares
the most frequent positive and negative sentiments. The visualization helps us to figure
out the most important negative and positive sentiments in a text, however, the size of
the words cannot be compared across sentiments. A general sentiment_cloud function
is made to avoid code redundancy. The function gives a cloud of sentiments when a tidy
data, having a tokenized column with a name word, is passed through its dataset
argument. The function is based on the code provided by Julia Silge and David
Robinson in their book “Text Mining with R” (Silge and Robinson, Text Mining with R
- A Tidy Approach 2018).

library(reshape2)

sentiment_cloud <- function(dataset) {
dataset %>%
dplyr::inner_join(tidytext::get_sentiments("bing")) %>%
dplyr::count(word, sentiment, sort = TRUE) %>%
reshape2::acast(word ~ sentiment, value.var = "n", fill = @) %>%
wordcloud: : comparison.cloud(colors = c("#F8766D", "#0OBFC4"),

max.words = 100)
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4. DATA

The study aims to conduct social media mining of Turkish international company that
use English language as a medium of communication on Social Media web applications.
In the research, the study finds out that Turkish Airlines “Tiirk Hava Yollar1” is one of
the most famous Turkish brands worldwide. The company is actively manages its social
media accounts and interacts with its fans and followers on social media websites in
English language. Furthermore, it has large number of followers in all over the world
and thousands of people who have travelled through Turkish Airlines have posted their
reviews on social media websites.

The Turkish Airlines social media branding campaign is highly effective on Facebook.
Its fan page has more than 10 million likes and followers. For research purposes, the
study scraped data from company’s Facebook page as mentioned in the methodology
section. Firstly, Facebook posts and total number of comments, likes and shares are
extracted for six months, i.e. from 15 March 2017 to 15 October 2017. The data is stored
in a dataframe, which is named as “posts data”. Furthermore, a post-specific ID is used
to scrape content of each comment in every Facebook post. The comment dataset has a
complicated “list” data structure. The list of comment dataset contains three hundred
(300) lists for each post. Each post-specific list contains three lists, each containing a
dataframe that provides details about posts, comments and reactions respectively. The
list structure is converted into a dataframe that contains the content of three hundred
(300) posts and their comments. The study named this dataframe as “comments data”.
Although the conversion from list to dataframe resulted in post-specific data
redundancy, it eases our way in data cleaning and tokenization through tidy tools. The
comment dataset contains six thousand five hundred and sixty four rows (6.564), which
means on average there are 22 comments on each Facebook post in last six months.

After tokenization, the number of rows in a dataset is extended to more than thirty two
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thousand rows (32,000). There are total thirty two thousand one hundred and fifty seven
(32,157) words in six thousand five hundred and sixty four (6,564) comments of total
300 posts.

The Facebook data were retrieved in the month of October 2017 and the permission
from the admin of Turkish Airlines’ page was not required. However, after Facebook
took initiatives to reform its privacy policy on 28" March 2018, the data extraction from
Facebook page requires access to the page’s data from the admin (Jenkins 2018).

In addition to the Facebook comment data, the study also scrapes reviews from another
social media web application, TripAdvisor. There are more than six thousand eight
hundred reviews of Turkish airlines on TripAdvisor. As TripAdvisor is a review based
website, the website provides a user-friendly interface with tips for writing a great
review. Therefore, most of the genuine customers’ reviews are written in proper English
language. The study aims to take advantage of these well-written reviews and explore
the customers’ perception about brands through sentiment analysis. The study extracted
reviews of last two and a half years, i.e. from January 2016 to April 2018. There are
total reviews of 6,846 extracted from 686 pages. The review dataset includes id for each

review, quotes and reviews.
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5. Case Study — Turkish Airlines

This research thesis conducts a case study on Turkish Airlines social media data posted
by its followers or customers in different social media forums. As explained under the
data extraction section in methodology, the data is extracted from the two main web
applications, Facebook and TripAdvisor. In this section, the study explains the structure
of data extracted and the use of R packages and function that are required to clean the
messy data and make it useful for analysis. Furthermore, the after converting the data in
an appropriate tidy format, the sentiment analysis is conducted along with sentiment

word clouds for the visualization of customers’ perception about Turkish Airlines.

5.1 Extracting Facebook Posts
The Facebook ID of the Turkish Airlines’ page is “turkishairlines”. Using the page id,
Facebook authentication, and getPage() function, the data of recent 300 posts is

extracted.

# Extract posts from turkish airlines page
data_turkishairlines <- Rfacebook::getPage(page = "turkishairlines",

token = auth_fb, n = 300)
The scraped data has multiple columns, such as id, from_id, from_name, message,
type, likes_count, comments_count, and shares_count etc. These data is viewed in
the form of tibble, a data structure type that prints data in r console in an easily
readable format. As seen in the table below, the from_id column is the id of Turkish
Airlines pages, the type column denotes the type of the posts, either photo or video.
Furthermore, the message column specifies the message posted by Turkish Airliness
along with the photo or video. Each row in the table below provides information about

one specific Facebook post.

# Viewing limited variables and rows

data_turkishairlines %>%
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dplyr::select(from_id, likes_count, type, comments_count,
shares_count, message, id) %>%

tibble::as_tibble() %>%

head(5)

After saving the data into data_turkishairlines variable, the data can be reused for
printing. The function dplyr::select() is used to select and sequence selected
columns of a tidy dataframe. Using head() function, only first five rows are printed as
shown below:

## # A tibble: 5 x 7

H#t from_id likes_count type comments_count shares_count
#it <chr> <dbl> <chr> <dbl> <dbl>
## 1 90430042759 254 photo 12 18
## 2 90430042759 300 photo 132 92
## 3 90430042759 869 photo 39 43
## 4 90430042759 261 photo 9 7
## 5 90430042759 227 photo 13 11
## # ... with 2 more variables: message <chr>, id <chr>

As the space is limited for all of the columns to be printed, the tibble() function
doesn’t show all of the columns’ data. Instead, the name of the columns and their data
type is printed at the end, like message and id. Furthermore, user can view a specific
column’s content using dplyr::select() as shown in the code below:

# Viewing one recent post’s message

data_turkishairlines %>%
dplyr::select(message) %>%
tibble::as_tibble() %>%
head(2)

The code gives first two values of a message column, corresponds to the latest two posts

on Turkish Airlines Facebook page.

## # A tibble: 2 x 1

## message
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#it <chr>
## 1 Our flights to Samarkand start on March 16th, 2018!
## 2 "We are looking for new pilots! Join us at Turkish Airlines

it Pilot Roadshow

5.2 Extracting Facebook Comments

In converse to the Facebook post extraction, the comment data extraction is quite
complicated. The Rfacebook: :getPost() is used to extract the comments for specified
posts. As comment extraction requires the related posts id, this process becomes quite
complex. As shown below, the getPost function requires post’s id, number of
comments, and Facebook authentication.

get _comments <- getPost(post = post_id, n = 50000, token=auth_fb,

comments = TRUE, reactions = TRUE)

The getPost() only extracts comments of one post at a time, however, the study
requires comments of 300 different posts in one go. In order to scrape all of the
comments, the study used the function lapply() that runs the same code three hundred
times with 300 different post ids. The post ids are store in a separate R vector using $
sign as shown. The $ sign is used to index the content in the id column that exists in
data_turkishairlines variable.

data_turkishairlines_id <- data_turkishairlines$id

The vector is then passed as the first argument of lapply function and following the
getPost function name and the values of all the arguments of getPost function except
first. The lapply function is applying the vector of ids to the getPost function in a
loop.

threehundred_posts <- data_turkishairlines_id[1:300] %>%
lapply(getPost, n = 50000, token=auth_fb,

comments = TRUE, reactions = TRUE)
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All the comments data of 300 posts is stored inside a list which contains 300 sub lists.

Inside each sub list, there are three sub-sub-lists containing data related to posts,

comments and reactions in a dataframe respectively. The data structure of the lists is

shown in the image given below. The complex list structure contains numerous kinds of

data that is out of the scope for this research study, like names of the people who shared

the posts and reacted to the posts in anyway. In this study, the comments posted by the

followers are only required for this study. It can be seen in the image below, the

comments content is saved inside a message column under the list with the name

comments.

9.
© [

© post
from_id
from_name
message
created_time
type
link
id
likes_count
comments_count
shares_count

© comments
from_id
from_name
message
created_time
likes_count
comments_count
id

© reactions
from_name
from_type

from_id

list [300]

list [3]

list [1 x 10] (S3: data.frame)
character (1]
character [1]
character [1]
character [1]
character [1]
character [1]
character [1]
double [1]
double [1]
double [1]
list [16 x 7] (S3: data.frame)
character [16)
character [16]
character [16)
character [16]
double [16]
double [16]
character [16]

List of length 300

List of length 3

A data.frame with 1 rows and 10 columns

'90430042759'

‘Turkish Airlines'

'Our flights to Samarkand start on March 16th, 2018!"

'2017-10-05T13:18:42+0000"

‘photo’

‘https:/ /www.facebook.com/turkishairlines/photos/a.139834532759.108963.904300427 ...
'90430042759_10155756389097760"

386

19

27

A data.frame with 16 rows and 7 columns

'225824657952395' '1632755516768474' '180280422540950''1959942017617076' '10155 ...
‘Maria Molloy' ‘Nicholas Manolache' 'Usman Iftikhar' 'Solim Abalo-tchamie' '"Moni ...

'Direct flight from Ireland to bodrum badly needed even twice a week in summerw ...
'2017-10-06T05:25:23+0000' '2017-10-05T720:38:22+0000' '2017-10-06T02:16:49+0000" ...
010030..

111110...

'10155756389097760_10155758293812760' '10155756389097760_10155757403607760' '101 ...

list [416 x 3] (S3: data.frame) A data.frame with 416 rows and 3 columns

character [416]
character [416]
character [416)

‘Melih Dura’ 'Dmitri Krushev' '"Murat Buyukdag' 'Umit Talas' 'Abdurehman Mohammed ...
'LIKE' "LIKE' "LIKE" "LIKE' "LIKE" "LIKE' ...
'139578700116485' '378109095942622' '10210916885539717' '1460987083949979' '4815 ...

Figure 3: Data Structure of Facebook Comments

The comments are extracted from the list through three level indexing. First, each post-

specific list is indexed; second, comments list is indexed using $ sign; last, the message

column is indexed as given in the code.
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# Saving comments for first post in new variable

full _comments <- threehundred_posts[[1]]$comments$message %>%
as.data.frame() %>%
setNames ("comments") %>%

dplyr::mutate(id = data_turkishairlines_id[1])
The above code extract and saves the comments of first post in a variable named
full_comments. However, to extract all posts data, a loop is required to index each
post’s list one by one. In each loop, the comments of one post is extracted and saved
first in a variable comment and later the data from comment is saved into a variable

full_comments using rbind() function, which binds rows of two dataframes.

# Saving comments of all 306 posts.
for (i in 1:299) {
comment <- threehundred posts[[i+1]]$comments$message %>%
as.data.frame() %>%
setNames ("comments") %>%
dplyr::mutate(id = data_turkishairlines id[i+1])

full _comments = rbind(full_comments, comment)

In the above loop, along with the comments’ message, the post’s ids are also added in
the dataset in order to keep track of the columns as to which post does the comment
belong. Later, the post ids are used to merge the posts data and comment data, i.e.
data_turkishairlines and full_comments respectively.

# Assigning the post ids to its comments.
# The posts ids are repeated when there are more than one comment.
full comment_post <- full comments %>%

dplyr::left_join(data_turkishairlines, by = "id")
As it can be seen in the dataframe printed below using tibble(), there are total 11
columns that include all the columns of posts data and one new column of comments. As
there are more than one comments in a single post, there are more than one row for a

single post due to numerous comments, therefore the post-specific data is redundant.

39



full comment_post %>%
tibble::as_tibble() %>%
head(3)

## # A tibble: 3 x 11

H#t from_id

#it <chr>

## 1 90430042759

## 2 90430042759

## 3 90430042759

## # ... with 10 more variables: comments <fctr>, id <chr>, from_name
<chr>, message <chr>, created_time <chr>, type <chr>, link <chr>, stor

y <chr>, likes_count <dbl>, comments_count <dbl>

For analysis purposes, a subset dataset can be made by selecting the required columns
dplyr::select(). For example, the post’s id and comments can only be selected in a
subset dataset. Later, the rest of the columns can be added to the subset dataset using
dplyr::leftjoin(). In an example below, two of the top comments of a post are
printed. The head() function, with an argument valued two, selects the top two rows of
a dataframe which has only comments as a single column.

full comment_post %>%
dplyr::select(comments) %>%
tibble::as_tibble() %>%
head(2)

## # A tibble: 2 x 1

## comments

##  <fctr>

## 1 Direct flight from Ireland to bodrum badly needed even twice a
##  week

## 2 Just curious you do flights to Tbilisi?
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5.3 Extracting TripAdvisor Reviews

TripAdvisor is the best web application that allows the companies in tourism and
transport industry to explore their consumers’ perception about their services using the
big data of reviews and ratings. The study leverages reviews posted by Turkish Airlines’
customers on TripAdvisor website. The method for extracting reviews data is mentioned
in the section methodology. The data is stored in a .rda file format so that it can be
accessed whenever needed, without scarping it from TripAdvisor repeatedly. Firstly,
using readRDS function, the dataset is read and stored in a new variable
trip_turkishairlines.

trip_turkishairlines <- readRDS(file = "tripadvisor_turkishairlines684

6.rds")

The review dataset contains five variables, id, data, quote, rating, and review. The
two main variables, id and review are used in the study for analysis. In contrast to the
Facebook’s extracted data, the data is already clean as the TripAdvsior’s data structure is

not as complex as Facebook’s data structure.

trip_turkishairlines %>%
dplyr::select(id, date, quote, rating, review) %>%
tibble::as_tibble() %>%
head(3)

## # A tibble: 3 x 5

#it id date

#it <chr> <dttm>

## 1 rn575914601 2018-04-26

## 2 rn575863809 2018-04-26

## 3 rn575859234 2018-04-26

## # ... with 3 more variables: quote <chr>, rating <int>,

## # review <chr>

As seen above, the printed table above doesn’t show the content of quote, rating and

review. The tibble format prints the dataframe in a tidy way by minimizing the
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column with outsized data; furthermore, all of the columns after that minimized column
are also suppressed. In order to view a review, the column review is selected first using
dplyr::select and then head function is used to print the first review only. It can be
seen below that the review is negative and the customer is complaining about customer

service.

trip_turkishairlines %>%
dplyr::select(review) %>%
tibble::as_tibble() %>%
dplyr::sample_n(1)

## # A tibble: 1 x 1

## review

##  <chr>

## 2 Turkish airlines is the best airline I have had the pleasure of
flying with. We flew from Dublin to Istanbul & Istanbul to Sharm el
sheikh and returned with them. The cabin crew are extremely pleasant
and always have a smile on there faces.we had meals included no

charge and very nice too TV on all flights and very enjoyable...

5.4 Tokenization

The next step after extracting the data and cleaning it is tokenization of texts, i.e.
comments and reviews. As mentioned in the methodology section, tokenization is the
conversion of texts in to single words (unigram) or multiple words (n-grams). In this
case, the texts tokenized into single words and saved into a dataframe. Each row of a
dataframe contains a single word. The process of tokenization is briefly explained in the
methodology section. The study created a function tokenize that takes dataframe and

the column, which needs to be tokenized, as an arguments.

facebook_tokens <- tokenize("300 posts comments", "comments")

facebook_tokens %>%

tibble::as_tibble()
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## # A tibble: 32,157 x 2

## response_number word
#it <chr> <chr>
#t 1 1 direct
# 2 1 flight
#t 3 1 from
#t 4 1 ireland
## 5 1 to
##t 6 1 bodrum
# 7 1 badly
#t 8 1 needed
## 9 1 even
## 10 1 twice
## # ... with 32,147 more rows

It can be seen in the table above, one of the comments is parsed into words and all of the
words are included as tokens. The comment, “Direct flight from Ireland to bodrum badly
needed even twice a week”, is tokenized into words. Furthermore, capital letters of all
the word are converted into small letters to simplify the analysis.

tripadvisor_tokens <- tokenize("tripadvisor_ turkishairlines6846.rds",

"review"

tripadvisor_tokens 7%>%

tibble::as_tibble()

The response_number in the table refers to the comment number in case of Facebook data
and review number in the case of TripAdvisor data. The total number of words in
TripAdvisor data is ten times the number of words in Facebook data. The tokenized

sample TripAdvisor data is given below:

## # A tibble: 325,179 x 2

## response_number word
#it <chr> <chr>
## 1 1 to
## 2 1 start
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## 3 1 with
## 4 1 me
##t 5 1 and
## 6 1 my
#t 7 1 sister
## 8 1 had
## 9 1 a
#i# 10 1 connection
## # ... with 325,169 more rows

5.4.1 Indexed Response Function
The tokenize function helps to convert text into sentences; however, the function does
not keep track of the post and the comments from which the word is extracted. If the
company aims to track a specific word, i.e. tries to locate the whole comment or the
particular post under which the specific word is used, only tokenize function will not
be helpful. To solve this issue, the study develops a new function,
numbered_response_tokens that is used to get a resultant dataset with post_number
and comment_number columns to track tokens. It requires two arguments, one is non-
tokenized dataset and the other is the response column, either review or comments.
First, the function converts the encoding of characters in a response column from UTF-8
to Latinl. Second, a new column is made with the name post_number, assigining

numbers to each review of Facebook Post.
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numbered_response_tokens <- function(file, response_type) {

dataset <- readRDS(file = file)

dataset %>%
tibble::as_tibble() %>%
dplyr: :mutate(response_type =
iconv(pull(., response_type),
from = "UTF-8", to = "Latinl")) %>%
dplyr: :mutate(post _number = as.numeric(factor(id))) %>%
dplyr::group_by(id) %>%

dplyr::mutate_if(is.factor, as.character)

Facebook tokens require tracking on multiple levels, i.e. at post level and comment
level, tracked by post_number and comment_number respectively. However, the
TripAdvisor tokens are tracked using review numbers only. The column that refers to
review number is named as post_number so that a function that deals with both
Facebook and TripAdvisor data can be made. The tokenization of Facebook comments
is done after a new column response_number is added to the dataset. Consequently, the

custom_stop_words are taken out from the data using dplyr::anti_join().

tidy_response_facebook <-
numbered_response_tokens("300 posts_comments"”, "comments") %>%
dplyr::mutate(response_number = row_number()) %>%
tidytext: :unnest_tokens(word, comments) %>%

dplyr::anti_join(custom_stop_words)

tidy_response_facebook %>%
tibble::as_tibble() %>%

dplyr::select(post_number, response_number, word, type)
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## # A tibble: 24,007 x 4

## post_number response_number word type
#it <dbl> <int> <chr> <chr>
## 1 2 2 seniyorumtiirkiye video
#t 2 3 2 waaw link
## 3 4 29 kettani photo
#H 4 4 27 daba photo
#H# 5 4 27 yaba photo
## # ... with 24,002 more rows

An extra step of adding comment_number is not taken while tokenizing reviews. As
mentioned earlier, it requires single level indexing and the post numbers have already
been assigned in the function numbered_response_tokens.

tidy_response_tripadvisor <-
numbered_response_tokens (
"tripadvisor_turkishairlines6846.rds", "review") %>%
tidytext: :unnest_tokens(word, review) %>%

dplyr::anti_join(custom_stop_words)
The table below shows different tokens and their review numbers. The data is sorted
with respect to response_number column in the table. It can be seen that two different
words “promised” and “the” are considered to be a single word as the review writer did
not place any space before and after full stop. While comparing the words with English
dictionary, the token “promised.the” will be considered as a noise and therefore it will

be eliminated from the data.

tidy_response_tripadvisor %>%
tibble::as_tibble() %>%
dplyr::select(id, response_number, word, quote)

dplyr::arrange(response_number)
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## # A tibble: 124,757 x 3
## # Groups: id [6,846]

##
##
##
##
##
##
##
##
##
##

O 00 N OO0 U1 A W N BB

##
## 10

Ht # ...

id response_number

<chr> <dbl>

rn342674723
rn342674723
rn342674723
rn342674723
rn342674723
rn342674723
rn342674723
rn342674723
rn342674723
rn342674723

with 124,747 more rows

5.4.2 Sentence Tokens

R R R R R R R R R R

word

<chr>
ticket
receive
promised.the
connection
istanbul
leave
immediately
dubai
arrive

grind

The comments and review texts are tokenized using the function sentence_tokens as

explained in the methodology section. The function requires three arguments, an untidy

dataset - data, the column that needs to be tokenized - response_column, and the

column which is used for grouping — group_by. In Facebook comments dataset the

response_column is comments and the data is grouped by comment_number. It means

that each comment is considered as a sentence in this study.

facebook_sentence_tokens <-

sentence_tokens(data = untidy_ response_facebook,

response_column

= "comments",

group_by = "comment_number")
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facebook_sentence_tokens %>%

head(3)

## # A tibble: 3 x 3

H#t id comment_number
#it <chr> <int>
## 1 90430042759 _10155125620582760 1
## 2 90430042759 _10155125620582760 2
## 3 90430042759 _10155125620582760 3
## # ... with 1 more variables: sentences <chr>

In the case of TripAdvisor’s sentence tokenization, each review is considered to be a
sentence. The post_number seen in the code given below is the review number and the
reponse_column is review that contains review content. Since the function
sentence_tokens is constructed to take data from both Facebook and TripAdvisor as
an argument, a more general word “response” is used instead of comments or reviews.
First three rows of the sentence tokenized data set is shown below. As the sentences
variable has too many characters, it is minimized by R.

tripadvisor_sentence_tokens <-
sentence_tokens(data = untidy_response_tripadvisor,
response_column = "review",

group_by = "post_number")

tripadvisor_sentence_tokens %>%

head(3)

## # A tibble: 3 x 3

H#t id post_number
#it <chr> <dbl>
## 1 rn342674723 1
## 2 rn342740773 2
## 3 rn342772345 3
## # ... with 1 more variables: sentences <chr>
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As previously mentioned, select and head functions are used to select the tokenized
column and print the first row of the column in R console. One of the reviews from
TripAdvisor can be seen in the sentence tokenized form. It can be seen that not all of the
words in the review are included in the token due to spelling errors or punctuation marks
next to the word.

tripadvisor_sentence_tokens %>%
dplyr::select(sentences) %>%
head(1)

## # A tibble: 1 x 1

## sentences

##  <chr>

## 1 what it on the the ticket is not what you are going to receive
## as flight from leaves when the flight from the ground staff off
##  er over night stay as a matter of course just another routine
##  day

5.5 Word Count

After tokenization of customers’ feedback, the simplest analysis that can be conducted
on tokens is counting the frequency of each distinct word used in the text. As explained
in methodology section, the function word_count is used to find out the most frequent

words in Facebook comments and TripAdvisor reviews.

facebook_word_count <- word_count("facebook tokens")

facebook_word_count

## # A tibble: 7,622 x 2

## word n
## <chr> <int>
## 1 fly 236
## 2 love 224
## 3 istanbul 185
## 4 nice 141
## 5 service 96
## 6 travel 89
## 7 day 84
## 8 3 82
## 9 time 79
## 10 world 70
## # ... with 7,612 more rows
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In Facebook comments, the most frequent word is “fly”. In 7,947 English words, 236
times word “fly” is used. The most frequent use of word fly and love shows that most of
the followers have positive sentiments about Turkish Airlines. Furthermore, the use of
word “istanbul” shows that most of the followers commenting on Facebook posts are
Istanbul’s fans as well. Eithers these followers have used Turkish Airlines to travel
Istanbul or they are willing to travel Istanbul in future. One can also say that one of the
words that come into people’s mind when they hear about Turkish Airlines is “Istanbul”.
In the light of this analysis, Turkish Airlines can introduce an offer in which it provides
one or two day visits to connecting-flight Turkish Airlines’ passengers having stay in
Istanbul. Therefore, passengers wishing to visit Istanbul will prefer Turkish Airlines to
other Airlines even at higher fare.

tripadvisor_word_count <- word_count("tripadvisor_ tokens™)

tripadvisor_word_count

## # A tibble: 8,819 x 2

#it word n
#it <chr> <int>
## 1 service 3067
## 2 food 3042
## 3 istanbul 2531
## 4 fly 2431
## 5 time 2310
## 6 seat 1991
## 7 staff 1419
## 8 travel 1223
## 9 class 1167
## 10 plane 1025
## # ... with 8,809 more rows

The word frequency of TripAdvisor’s reviews depicts a different picture than the word

frequency of Facebook comments. As seen in the table above, out of 10,463 distinct
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tokens in 6,846 reviews, the customers most frequently use the word “service” and
“food”. The usage shows that the major concern of the passengers travelling in Turkish
Airlines is food. Although it cannot be claimed whether customers have positive
sentiments about food or negative, the passengers are very particular regarding food
served in the Airlines. The second major concern of the customers is customer service. It
can be said that customers are more particular about food than the time (delays), staff
attitude and seats, as food is at the top of the list followed by time staff and seats.

In the list of top ten most frequent words, most of the words are common in Facebook
and TripAdvisor data, i.e. “love”, “istanbul”, “travel”, “fly”” and “service”. It means that
a large number of users either commenting on Facebook posts or writing reviews on
TripAdvisor data have similar concerns and identical perception about Turkish Airlines.
Although the above word frequency tables specifies the list of most frequent words, a
visualization technique, horizontal bar chart, displays relative word frequencies. This
technique helps to figure out the frequency of one word relative to other related word.
For instance, it can be seen that positive sentiments, such as “wow”, “beautiful”,
“happy” and “amaze” are very near to each other and their bar charts have almost equal
lengths, showing similar frequencies of these sentiments. The bar charts in the Figure 2
and Figure 3 are made using word_count_plot function, i.e. built for the purpose of

this study. The two arguments required by the functions are the tokenized dataset and

the minimum number of tokens to be shown in the bar chart.

51



word_count_plot("tokens_count 300", 25)
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Figure 4: Facebook Most Frequent Word Count Plot
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The function word_count_plot requires two arguments, i.e. dataset and minimum
frequency of the word. The word with frequency less than the minimum frequency will
not be plotted in the bar chart. As the total number of words in reviews is comparatively
more than total words in comments, the minimum frequency value for TripAdvisor
tokens is 10 times of the minimum frequency for comments, i.e. 25. A huge difference
in minimum frequency level is due to the fact that the noise, grammatical and spelling
errors, in Facebook comments is higher than the noise in TripAdvisor reviews.
Furthermore, it can also be assumed that the comments data has more variance than the
review data, as the frequency level of most frequent words in reviews is 10 times higher
than the frequency level of most frequent words in comments. In the most frequent word

2% ¢

frequency plot above, it can be seen that words like “entertainment,” “movie”, and
“meal” are frequently used by the customers. As entertainment is a great deal for

customers, Turkish Airlines should focus on its customers’ entertainment to make their

travelling experience more pleasant.

5.6 Sentiment Analysis

The simple analysis technique such as word count and word count visualization explore
the most common words in a text; however, they include a number of neutral words that
do not add value to the analysis. To make analysis more meaningful, another analysis
technique, sentiment analysis, is employed that deals with sentiment, opinion or
emotions, tokens or words. As mentioned in the methodology section, out of all the
words, the words with either positive or negative sentiments are selected for analysis.

Three different sentiment lexicons are used in this study: bing, nrc and AFINN.
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Bing

Using response_sentiments function, the total number of positive and negative words
in a response, a comment or a review, is figured out. Sentiment score of a response is
calculated by subtracting the negative words count from the count of positive words. A
negative score shows that negative words are more than positive; hence, the response is
a negative response. On the other hand, positive response has positive sentiment score.

# bing

facebook_sentiments_bing <-
response_sentiments(tidy_response_ facebook, "bing")

facebook_sentiments_bing %>%
dplyr::select(response_number, negative, positive, sentiment)

## # A tibble: 1,572 x 4

H#t response_number negative positive sentiment
#it <int> <dbl> <dbl> <dbl>
## 1 1 0 1 1
## 2 2 0 1 1
## 3 3 0 1 1
## 4 3 1 1 0
## 5 4 0 1 1
## # ... with 1,567 more rows

The dataset and the sentiment - bing - are two arguments of the function. The table
above specifies the sentiment scores of ten comments on Facebook. The comments that
do not have any sentiments are discarded from the analysis. There are total of 1,562
comments with sentiments out of 6,564 total comments in 300 posts, i.e. 23.7% of the
total comments. The table shown above has more than one comments with similar
response number. For instance, the response number 3 is repeated twice in the above
dataset. The dataset is grouped by post ids. The two responses with a response number
“3” correspond to two different posts. As Facebook ids are very lengthy, the id column
is minimized using select function. Furthermore, all of the comments in the table are

positive except the response listed in 7™ row. There is a majority of positive comments
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in Facebook that shows the followers of Turkish Airlines have positive perception about
the brand.

tripadvisor_sentiments_bing <-

response_sentiments(tidy_response_tripadvisor, "bing")
tripadvisor_sentiments_bing

## # A tibble: 6,393 x 5

H#t id response_number negative positive sentiment
#it <chr> <dbl> <dbl> <dbl> <dbl>
## 1 rn342740773 2 1 3 2
## 2 rn342772345 4 1 -3
## 3 rn342937701 4 0 3 3
## 4 rn343011985 5 1 1 0
## 5 rn343117108 6 0 1 1
## # ... with 6,388 more rows

In similar to the sentiment analysis of Facebook comments, the sentiment analysis on
TripAdvisor reviews is also conducted. There are total of 6,393 reviews with sentiments
out of 6,836 total reviews, i.e. 93.5% of total reviews. The percentage of sentiment
content in TripAdvisor is roughly four times higher than the percentage of sentiment
content in Facebook. It shows that the TripAdvisor review data is more valuable for
analysis than the comments’ data. This analysis technique helps to figure out the
negative and positive reviews without effort. The positive reviews can be separated from
the negative reviews and further analysis can be conducted on two different datasets.
Furthermore, the sentiment score helps to compare the sentiment content between

reviews, i.e. which review is more positive or negative than the other review.
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NRC

NRC (Emolex) lexicon is more comprehensive lexicon that indicates the type of positive
and negative sentiments in a response, such as anger, anticipation, disgust, fear, joy,
sadness, surprise and trust. The sentiment analysis is conducted on Facebook comments
using response_sentiments function as given below:

facebook_sentiments_nrc <-

response_sentiments(tidy response_ facebook, "nrc"

The tidy_response_facebook is a tokenized Facebook comment dataframe that has
post_number and response_number and word as three main columns. These dataset is
compared with nrc lexicon as mentioned in the methodology to get the table as printed
below:

facebook_sentiments_nrc

## # A tibble: 1,807 x 13

H#t id response_number anger anticipation
#it <chr> <int> «<dbl> <dbl>
## 1 90430042759 10155125620582760 1 0 0
## 2 90430042759 10155125620582760 2 0 0
## 3 90430042759 10155125620582760 3 0 0
## 4 90430042759 10155125620582760 4 0 0
## 5 90430042759 10155126945012760 1 0 1
## # ... with 1,802 more rows, and 9 more variables: disgust <dbl>,

## #  fear <dbl>, joy <dbl>, negative <dbl>, positive <dbl>,

#it # sadness <dbl>, surprise <dbl>, trust <dbl>, sentiment <dbl>

The number of comments having nrc sentiment words, i.e. 1,572, is more than the
number of comments having bing sentiment words, i.e. 1807. It shows that nrc lexicon
has power to analyze more words than bing lexicon. It is because of the fact that nrc
use many different emotions rather than just two, positive or negative. Furthermore,
sentiment analysis through nrc lexicon is more suitable to analyze consumers’

perception as it specifies the types of negative emotions, like disgust, fear, anger and
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sadness, as well as the types of positive emotions, like surprise, trust and anticipation. It
can be seen in the table below that customers have commonly used the words of anger,
disgust and fear in their reviews in TripAdvisor. Furthermore, there is a sentiment

column that gives an overall sentiment score of the review.
tripadvisor_sentiments_nrc <-

response_sentiments(tidy response_tripadvisor, "nrc"
tripadvisor_sentiments_nrc

## # A tibble: 6,765 x 13

H#t id response_number anger anticipation disgust fear
#it <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 rn342674723 1 0 1 0 0
## 2 rn342740773 2 1 1 1 2
## 3 rn342772345 3 2 0 2 2
## 4 rn342937701 4 0 1 0 1
## 5 rn343011985 5 1 2 1 1
## # ... with 6,760 more rows, and 6 more variables: joy <dbl>,

#it # negative <dbl>, positive <dbl>, sadness <dbl>, surprise <dbl>,

## #  trust <dbl>, sentiment <dbl>

AFINN
As mentioned in the methodology, the sentiments_afinn function while using the
afinn lexicon assigns a sentiment score to each word in a response. These scores are

added to get the sentiment score of a response.

facebook_sentiments_afinn <-

sentiments_afinn(tidy_response_facebook)

facebook_sentiments_afinn
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## # A tibble: 1,634 x 3

## id response_number score

#it <chr>
## 1 90430042759 10155125620582760
## 2 90430042759 10155125620582760
## 3 90430042759 10155125620582760
## 4 90430042759 10155125620582760
## 5 90430042759 10155126945012760
## # ... with 1,629 more rows

<int> <int>

1 5

w N w N
N N W W

A negative score indicates a negative comment or review while positive score shows

that the response have over positive sentiment content in it. For instance, in the table

given below, the third, fifth and eighth review of TripAdvisor are negative and

comparatively 8" review is more negative than 5", while 5™ is more negative than 3™

review.

tripadvisor_sentiments_afinn <-

sentiments_afinn(tidy_response_tripadvisor)

tripadvisor_sentiments_afinn

## # A tibble: 6,095 x 2

## response_number score
#it <dbl> <int>
## 1 1 1
## 2 2 7
## 3 3 -2
# 4 4 3
## 5 5 -3
## 6 6 2
## 7 7 3
## 8 8 -5
## 9 9 4
## 10 10 7
## # ... with 6,085 more rows
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5.6.1 Most Frequent Sentiments

Frequency of sentiments helps determine the overall sentiment score of a text. By
looking at the most frequent sentiments, useful insight can be drawn that can be used to
evaluate consumers’ view of the company. Most frequent sentiments from the comments
data of Turkish Airline’s Facebook are reported below. It can be seen that the top 10
most frequent sentiments are positive which shows that most frequent user response to

the company’s Facebook posts is positive.

facebook_frequent_sentiments <- frequent_sentiments(tidy_response_ face
book)

facebook_frequent_sentiments

## # A tibble: 384 x 3

#it word sentiment n
#it <chr> <chr> <int>
## 1 love positive 328
## 2 nice positive 155
## 3 beautiful positive 87
## 4 congratulations positive 83
## 5 wow positive 80
## 6 amaze positive 73
## 7 free positive 72
## 8 happy positive 69
## 9 bless positive 45
## 10 super positive 37
## # ... with 374 more rows

Most frequent sentiments from the reviews data of TripAdvisor are presented below. It
can be seen that most of the words are positive. However, the word “bad” appears in the
top 10 most frequent sentiment words. The most frequent words can help the company
draw useful insight about the areas of improvement as well as the areas that are

important for the consumer experience. For example, the words ‘“comfortable,”
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“friendly” and “helpful” indicate the importance of the behavior of the airline staff with
the passengers. However, most frequent words do not represent the overall sentiment
score.

tripadvisor_frequent_sentiments <- frequent_sentiments(tidy response_t

ripadvisor)
tripadvisor_frequent_sentiments

## # A tibble: 1,317 x 3

#it word sentiment n
#it <chr> <chr> <int>
## 1 comfortable positive 1026
## 2 excellent positive 927
## 3 nice positive 816
## 4 friendly positive 700
## 5 delay negative 552
## 6 helpful positive 472
## 7 clean positive 406
## 8 free positive 399
## 9 bad negative 324
## 10 recommend positive 318
## # ... with 1,307 more rows

5.6.2 Plot Frequent Sentiments Counts

The Figure 4 shows a horizontal bar chart of frequent words side by side which enables
one to compare the frequency of most frequent negative words and that of most frequent
positive words. The frequency of top positive words is much higher than that of negative
words, indicating that the overall positive sentiment score of the Facebook comments is

higher than the negative sentiment score.
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plot_sentiment_count(facebook_ frequent_sentiments)
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Figure 6: Facebook Most Frequent Sentiment Count Plot

Similarly, the frequency plot of most frequent positive and negative words in
TripAdvisor review data is presented below. Unlike in the Facebook comments, the use
of negative words is more frequent in the TripAdvisor reviews. Nevertheless, the use of
positive words is much more common as compared to the use of negative words which
indicates the overall sentiment score. Moreover, the nature of negative words indicates

EEANTY

the concerns of consumers. For instance, “delay,” “miss”, and “lose” indicate that most
of the negative comments are related to a bad experience of the consumer and the

company can focus on these areas to reduce future negative reviews.
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plot_sentiment_count(tripadvisor_frequent_sentiments)
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Figure 7: TripAdvisor Most Frequent Sentiment Count Plot

5.6.3 Sentiments to All Words Ratio

The ratio of sentiment count to all words count gives us an insight about how important
is that sentiment in a comment or review. If the negative words are excessively used in a
comment, it means that the response is highly negative. The study calculates the ratio by

using sentiment_token_ratio function as explained in the methodology section.

facebook_negative_sentiment_ratio <-

sentiment_token_ratio(tidy_response_facebook, "negative")
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facebook_negative sentiment_ratio

## # A tibble: 10 x 4

H#t response_number negativewords word ratio
#it <int> <int> <int> <dbl>
## 1 281 1 2 0.50000000
## 2 805 1 2 0.50000000
## 3 661 1 3 0.33333333
## 4 687 1 3 0.33333333
## 5 358 1 6 0.16666667
## 6 314 1 7 0.14285714
## 7 157 1 8 0.12500000
## 8 475 1 10 0.10000000
## 9 503 1 11 0.09090909
## 10 102 1 18 0.05555556

In Facebook comments, the most negative comments contains only two or three words
that result in higher sentiment to all words ratio. It shows that some of the followers
have just posted two words with at least one negative word. Furthermore, the last row of
the table shows that in response “102” of a certain post has one negative word in total 18
words. Please note that in the above table the post ids are minimized for better
visualization of table.

In the case of TripAdvisor reviews, the frequency of negative words as compare to the
total words count in top 10 negative words is higher than frequency of negative word in
Facebook comments. The high frequency of negative words shows the level of negative
sentiment content in negative comments. The sentiment-to-all-word-ratio also helps to
rank the reviews based on sentiment content. Thus, analysts can figure out the comments
with highest negative sentiment content. Consequently, the analysts can find common
concerns and complaints of consumers.

tripadvisor_negative_sentiment_ratio <-

sentiment_token_ratio(tidy response_tripadvisor, “negative")
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tr

##
##
##
##
##
##
##
##
##
##
##
##
##

ipadvisor_negative_sentiment_ratio
# A tibble: 13 x 4
response_number negativewords word
<dbl> <int> <int>
1 4976 5 7 0
2 3008 4 8 0
3 4705 4 8 0
4 4794 5 10 ©
5 4384 5 11 o
6 3993 4 90
7 2284 9 21 o
8 5965 3 7 0
9 6477 3 7 0
10 3296 3 8 0

ratio

<dbl>

. 7142857
.5000000
.5000000
.5000000
.4545455
.4444444
.4285714
.4285714
.4285714
.3750000

In the example above, the TripAdvisor review with the highest ratio is “4976”. The

study finds out the most negative review using the code given below. The required

review is selected using filter function from dplyr package. Subsequently, the

review column is selected using select. The review shows that the word “bad” is used

five times in the comments, showing extreme consumer dissatisfaction. Furthermore, it

can be seen that the word “food”

consumer’s biggest concern.

1s used twice in the comment that demonstrates

The importance of indexed tokenization is evident from the example discussed. Without

proper indexing, it would have been impossible to find a specific review with a certain

level of sentiment content.

nu

mbered_response_tokens(

"tripadvisor_turkishairlines6846.rds", "review") %>%

dplyr::select(id, response number = post_n
quote, rating, date) %>%
dplyr::filter(response_number == 4976) %>%

dplyr::select(review, id)

umber,

review,
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## # A tibble: 1 x 2
review

<chr>

## 1 the flight was very bad and the food very bad it so bad and i wou

1d not flight with now on so bad the food so bad i not flight with not

from soon

5.7 Word Cloud

Word cloud is a very interesting technique to visually consolidate information in a large

amount of text. The following figure represents a word cloud constructed from the data

of Turkish Airline’s Facebook page. The word cloud represents fifty words that appear

most frequently in response, i.e. comments, to official posts by the company. The size of

the words depicts the importance and frequency of its usage. For example, it can be seen

that the word “fly” and “love” are the first and second most frequent words respectively.

As already discussed in the section “Word Count,”

in the comments of Facebook page.

word_cloud(tidy response_facebook, max_words = 50)
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Figure 8 Facebook Word Cloud

these words appear most frequently
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Moreover, as the word cloud shows most frequent words, it gives an idea of the user’s

perception about the company’s services and social media campaign. The words

29 e 1’3 (13

“congratulations,” “beautiful,” “super,” “wonderful,” “wow” and “happy” show that
most of the users have a positive brand image of the company. It also indicates that users
tend to like the Facebook posts of the company. In other words, the word cloud gives an
insight into the brand image of the company and the success of the social media

campaign.

word_cloud(tidy_response_tripadvisor, max_words = 75)
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Figure 9: TripAdvisor Word Cloud

Similarly, the above word cloud is constructed using the data of reviews about Turkish
Airlines on TripAdvisor. Again, it shows the most frequent seventy-five words that were
used in the reviews. Unlike the Facebook word cloud, the word cloud of TripAdvisor
data shows that most of the users talk about the services provided by the company. This

can give useful insight to the company when it comes to improving their services. As
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already mentioned before, TripAdvisor data provides an insight into the mindset of

9% ¢

Turkish Airline’s existing or potential customers. The words such as “crew,” “cabin,”

EE T3

“staff,” “seat,” “attendant,” “movie,” “plane,” “lounge,” etc. show that the reviews
provide feedback to the company which can help them to improve their services. It can
be deduced that users value the quality of food and service much more than they value
movies or seats which shows that the company can increase retention rate or repeat
customers through good quality service during the flight. Moreover, the words

b 19

“friendly,” “excellent,” “helpful” and “nice” show that users’ feedback about the

company’s services is generally positive.

5.7.1 Sentiment Cloud

A sentiment cloud is a word cloud that is obtained after labeling the tokens (i.e.
words) as positive and negative. As already mentioned, the size and number of the
positive words cannot be compared with that of negative words. Nevertheless, it
provides another interesting visual technique to get an overview of the user-
response. The following sentiment cloud is constructed from the comment data of

Turkish Airlines Facebook page and reviews data of TripAdvisor.
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sentiment_cloud(tidy_response_facebook)

negative

positive
Figure 10: Facebook Sentiment Cloud

While the word cloud showed that the dominating sentiments in Facebook
comments and TripAdvisor reviews were largely positive, the sentiment cloud also
enables the company to see the prevalent negative comments and reviews so that
they can deduce constructive criticism from them. This will enable the company to
work towards improving their services and modifying their social media campaign

to satisfy the users who had a negative experience with the company. For instance,

» o« » o« » o«

words like “delay,” “lose,” “miss,” “rude,” “fault,” “broken,” “error” and “awful”
clearly show negative experiences of the users that can tarnish the brand image of
the company in eyes of potential consumers. This highlights areas of focus for the

company when evaluating its services.
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sentiment_cloud(tidy_response_tripadvisor)
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Figure 11: TripAdvisor Sentiment Cloud

It is important to notice here that the positive sentiments in fact dominate the user
response for Turkish Airlines in our analysis. Nonetheless, the negative responses are
still valuable for a complete analysis to avoid a faulty and incomplete conclusion.
Therefore, sentiment cloud proves to be very useful here as it provides an all-inclusive

overview of the response by showing both negative and positive words.
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6. CONCLUSION, IMPLICATIONS AND LIMITATIONS

6.1 Conclusion

The study employs various text mining techniques to retrieve useful information from
Facebook and TripAdvisor, including web scraping, data cleaning, data wrangling,
indexed tokenization, word frequency count, sentiment analysis, visualization of
sentiment count and world cloud. Using several packages in R, comments on the
Facebook page of Turkish Airlines and reviews about Turkish Airlines on TripAdvisor
have been retrieved. The text in comments and reviews has been tokenized, i.e.
converted into independent words, and the data has been cleaned for noise. The
tokenized text has then been used for various analyses as an example of potential
application of the data.

A number of interesting findings have been obtained during the information retrieval
process. The customers’ reviews on TripAdvisor website are less noisy, i.e. they have
less spelling and grammatical errors, than Facebook comments. Facebook and
TripAdvisor contain user generated data, providing insight into consumers’ perception
about brands and their customer service. Airlines, such as Turkish Airlines, can get
valuable information and feedback from the text posted by their consumers.

For instance, the case study on Turkish Airlines social media data provides various
handy findings. First, the brand perception of Turkish Airlines on consumers and
potential consumers’ minds is generally positive. Second, the major concerns of the
consumers travelling through Turkish Airlines are food, timeliness and entertainment.
Furthermore, the techniques of sentiment analysis rank the consumer responses from
most negative to less negative response through indexed tokenization. Lastly, word
cloud and sentiment cloud provides a complete overview of the users’ perception,

opinion, emotions and sentiments regarding a brand.
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6.2 Implications for Future Research

The research study has a number of implications for future research in the field of social
media analysis to find consumers’ perception about brands. The study provides a
complete process to scrape data from three different social media web applications,
Facebook, Twitter and TripAdvisor. Especially in the case of TripAdvisor, despite of the
fact that multiple URLs are required to retrieve all of the reviews, the study gives a code
to extract all reviews at once. The reviews are a great source of information for research
analysts and modern businesses who want to assess the brands’ worth in the eyes of
existing and potential consumers. Furthermore, researchers can conduct competitive
analysis and make a perceptual map that specifies the position of a company relative to
other companies in a same industry. Moreover, pairwise correlation analysis can be
conducted on the indexed and tokenized responses of different companies to find out the
most frequent co-occurring words.

The study provides a complete guideline for converting raw textual data, in weak
structured form, into more structured dataset. The analysis of structured form of textual
data is less expensive as compare to the unstructured form. Although the study
emphasized on word-level feature or unigram tokens, it paves the way to extract more
advanced level features, like terms or concepts, by providing more structured format of
documents. Furthermore, the indexed tokenization of documents would help in
evaluating the semantic similarity and applying supervised or unsupervised clustering

techniques.
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6.3 Limitations

It is to be noted that the sentiment analysis technique does not take qualifiers into
account, for instance, negated texts like “not good” or “not comfortable”. The lexicon-
based technique is based on single words only; therefore, negated texts are not being
considered appropriately for analysis.

Another drawback of lexicon-based sentiment analysis methodology is that the size of
the text has an impact on the analysis. While adding up the tokens’ sentiment score in a
larger text, positive and negative sentiment score can be averaged out to be zero. The
sentiment score obtained through this technique is more accurate when texts are
paragraph-sized or sentence-sized (Silge and Robinson, tidytext: Text Mining and
Analysis Using Tidy Data Principles in R 2016). However, the research study considers
each Facebook’s comment or post, Twitter’s tweet and TripAdvisor’s review as a text
and finds their sentiment score. As the size of comments, tweets and reviews is not

large, there is minimal effect of text size on sentiment analysis.
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8. APPENDIX

Facebook Data Extraction
library(Rfacebook)

# Fb Authorization

fb_oauth <- Rfacebook: :fbOAuth(
app_id="1380496555352781",
app_secret="eb3abc42d1e00536e6f4e37e58fcob5d",
extended_permissions = TRUE)

# Saving variable fb_oauth in a file and loading it
save(fb_oauth, file="fb oauth")
load("fb_oauth")

# Extract posts from turkish airlines page
turkishairlines <- Rfacebook::getPage(page = "turkishairlines",
token = fb_oauth, n = 2000)

# Save the posts in R data file
saveRDS (turkishairlines, "turkishairlines 2000")

library(dplyr)

#it
## Attaching package: 'dplyr’

## The following objects are masked from 'package:stats’:

##

H#t filter, lag

## The following objects are masked from 'package:base':
##

it intersect, setdiff, setequal, union

# Read R data file and store in new variable
data_turkishairlines <- readRDS("turkishairlines 2000")

# Storing the post ids in a new variable
data_turkishairlines_id <- data_turkishairlines$id

# Viewing Limited variables and rows
data_turkishairlines %>%
dplyr::select(from_id, likes_count, type, comments_count,
shares_count, message) %>%
tibble::as_tibble() %>%

head(5)
## # A tibble: 5 x 6
##  from_id likes_count type comments_count shares_count message
#it <chr> <dbl> <chr> <dbl> <dbl> <chr>
## 1 90430042759 254 photo 12 18 Our flights t..
## 2 90430042759 300 photo 132 92 "We are looki..

## 3 90430042759 869 photo 39 43 The most plea..



## 4 90430042759 261 photo 9 7 Famous actor ..
## 5 90430042759 227 photo 13 11 Within the sc..

data_turkishairlines %>%
dplyr::select(message) %>%
tibble::as_tibble() %>%
head(2)

## # A tibble: 2 x 1

## message

##  <chr>

## 1 Our flights to Samarkand start on March 16th, 2018!

## 2 "We are looking for new pilots! Join us at Turkish Airlines Pilot Roads..

# Extracting comments and reactions from the extracted posts
# The comments are extracted using post 1ids. Therefore, 1id variable
# 1s used.
all posts <- data_turkishairlines_id[1:300] %>%
lapply(getPost, n = 50000, token=fb_oauth,
comments = TRUE, reactions = TRUE)

# Save first 300 posts comments in a R data file.
saveRDS(all posts, "300 posts")

Converting Facebook lists data into dataframe

# Reading the saved RDS file instead of applying getPost function repeatedly.

# The resultant variable is a List which includes a post specific Llist.
# Within each post specific List there are post comments and reactions.
threehundred_posts <- readRDS("300 posts")

# Saving comments for first post in new variable

full _comments <- threehundred_posts[[1]]$comments$message %>%
as.data.frame() %>%
setNames ("comments") %>%
dplyr::mutate(id = data_turkishairlines_id[1])

# Expanding full _comments by adding comments of remaining posts.
for (i in 1:299) {
comment <- threehundred posts[[i+1]]$comments$message %>%
as.data.frame() %>%
setNames ("comments") %>%
dplyr::mutate(id = data_turkishairlines id[i+1])
full _comments = rbind(full_comments, comment)

}

# Assigning the post ids to its comments.

# The posts ids are repeated when there are more than one comment.

full comment_post <- full comments %>%
dplyr::left_join(data_turkishairlines, by = "id")

# Saving the comments of posts in R data file.
saveRDS (full comment_post, "300 posts comments™)

readRDS ("300 posts_comments") %>%
subset(select = ¢(3,1,2,4,5,6,7,8,9,10,11)) %>%
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tibble::as_tibble() %>%

head(5)
## # A tibble: 5 x 11
##  from_id comments id from_name message created_time type 1link story
##  <chr> <fct> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 9043004.. Direct .. 9043.. Turkish .. Our fl.. 2017-10-05T.. photo http.. <NA>
## 2 9043004.. Just cu.. 9043.. Turkish .. Our fl.. 2017-10-05T.. photo http.. <NA>
## 3 9043004.. What ab.. 9043.. Turkish .. Our fl.. 2017-10-05T.. photo http.. <NA>
## 4 9043004.. What ab.. 9043.. Turkish .. Our fl.. 2017-10-05T.. photo http.. <NA>
## 5 9043004.. Very in.. 9043.. Turkish .. Our fl.. 2017-10-05T.. photo http.. <NA>
## # ... with 2 more variables: likes_count <dbl>, comments_count <dbl>

readRDS ("300 posts_comments") %>%
dplyr::select(comments) %>%
tibble::as_tibble() %>%
head(2)

## # A tibble: 2 x 1

## comments

##  <fct>

## 1 Direct flight from Ireland to bodrum badly needed even twice a week in ..
## 2 Just curious you do flights to Tbilisi?

Twitter Data Extraction

# Load Requried Packages
library("SnowballC")
library("tm")
library("twitteR")
library("syuzhet")

# Authonitical keys

consumer_key <- 'tAyROLyhATfD90aA7Ft1Zfj3I'

consumer_secret <- 'vX1RHgHHDpnmNOgrGPMVnmnQjQvG98X3x1B7T7zv4hKcvj7tVv'
access_token <- '2572842085-vExbB4HNVN57zmQhoQdbmutCl6adkdMdhlxVta5'
access_secret <- 'HtTHSeA0z1WPcUX8nfW5ddwZ1TbXZGFB4pSHUOIZ3agvA'

twitteR::setup_twitter_oauth(consumer_key, consumer_secret,
access_token, access_secret)

tweets <- userTimeline("turkishairlines", n=200)
Trip Advisor Data Extraction
library("rvest")
url <- "https://www.tripadvisor.com/Airline_Review-d8729174-Reviews-Turkish-Air
lines"
url <- "https://www.tripadvisor.com/Airline_Review-d8729174-Reviews-0or20-Turkis
h-Airlines#REVIEWS"
df_total = data.frame()
for (i in seq(9, 20050, 10))

{
if (i == @) {
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url <- "https://www.tripadvisor.com/Airline_Review-d8729069-Reviews-Emirate

S

}

else {
url <- paste(

"https://www.tripadvisor.com/Airline_Review-d8729069-Reviews-or",i,"-Emir

ates#REVIEWS",
Sep = IIII)

}

reviews <- url %>%
read_html() %>%
html_nodes ("#REVIEWS .innerBubble")

id <- reviews %>%
html_node(".quote a") %>%
html_attr("id")

quote <- reviews %>%
html_node(".quote span") %>%
html_text()

rating <- reviews %>%
html_node(".rating .rating_ s fill") %>%
html_attr("alt") %>%
gsub(" of 5 stars”, "", .) %>%
as.integer()

date <- reviews %>%
html_node(".rating .ratingDate") %>%
html_attr("title") %>%
strptime("%b %d, %Y") %>%
as.POSIXct()

review <- reviews %>%
html_node(".entry .partial_entry") %>%
html_text()

df <- data.frame(id, quote, rating, date, review, stringsAsFactors = FALSE)
df_total <- rbind(df_total, df)

}

# Save an object to a file
saveRDS (df_total, file = "tripadvisor_turkishairlines6846.rds")

trip_turkishairlines <- readRDS(file = "tripadvisor_turkishairlines6846.rds")

trip_turkishairlines %>%
dplyr::select(id, date, quote, review) %>%
tibble::as_tibble() %>%
dplyr::sample_n(4)

## # A tibble: 4 x 5

##  id date quote review

## <chr> <dttm> <chr> <chr>

## 1 rn575863809 2018-04-26 00:00:00 Istanbul.. Turkish airlines is..
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## 2 rn575859234 2018-04-26 00:00:00 Broke my.. Travelled from Atat..
## 3 rn575854758 2018-04-26 00:00:00 comforta.. it is amazing trave..
## 4 rn575817214 2018-04-26 00:00:00 Despite .. Always like travell..

trip_turkishairlines %>%
dplyr::select(review) %>%
tibble::as_tibble() %>%
head(2)

## # A tibble: 2 x 1

##  review

##  <chr>

## 1 "To start with me and my sister had a connection in Istanbul where th..
## 2 "Turkish airlines is the best airline I have had the pleasure of flyi..

Tokenization

library(tidytext)
data(stop_words)

# Custom stop words
custom_stop_words <- data.frame(word = c("miss", "flight", "tukish",
"airlines", "flights",
"airline", "turkish", "de"),
lexicon = c("custom")) %>%
rbind(stop_words)

tokenize <- function(file, data_type) {
data_tibble <- readRDS(file = file) %>%
tibble::as_tibble()

data_vector <- data_tibble %>%
dplyr::pull(data_type) %>%
iconv(from = "UTF-8", to = "Latinl")

tokens <- tibble::as_tibble(data_vector) %>%
dplyr::filter(!is.na(value)) %>%
dplyr::mutate(response_number = rownames(.)) %>%
dplyr::select(response_number, value) %>%
tidytext: :unnest_tokens(word, value)

tokens

}

# Convert non_base verbs into base verbs

extract_non_base <- function(data) {
data %>%
dplyr::rename(non_base = word) %>%
dplyr::left_join(readRDS("sahban_base lexicon"), by = "non_base") %>%
dplyr::mutate(base = ifelse(is.na(base), non_base, base)) %>%
dplyr::rename(word = base) %>%
dplyr::select(-one_of("non_base"))
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# Convert Plurals to Singular Noun

extract_plural <- function(data) {
data %>%

dplyr::rename(plural = word) %>%
dplyr::left_join(readRDS("sahban_noun_lexicon"), by = "plural") %>%
dplyr: :mutate(noun = ifelse(is.na(noun), plural, noun)) %>%
dplyr::rename(word = noun) %>%
dplyr::select(-one_of("plural™))

}

facebook_tokens <- tokenize("300 posts comments", "comments") %>%
extract_non_base() %>%
extract_plural()

tripadvisor_tokens <- tokenize("tripadvisor_ turkishairlines6846.rds", "review"

%>%
extract_non_base() %>%
extract_plural()

saveRDS (tokens_count, "tokens count 300")
saveRDS (tokens_count, "TA_ tokens_count 6846")

facebook_tokens %>%
tibble::as_tibble()

## # A tibble: 32,200 x 2

## response_number word

## <chr> <chr>
## 11 direct
# 21 flight
## 31 from

## 41 ireland
## 51 to

## 6 1 bodrum
# 71 badly
## 8 1 need

## 91 even

## 10 1 twice
## # ... with 32,190 more rows

tripadvisor_tokens %>%
tibble::as_tibble()

## # A tibble: 326,163 x 2

## response_number word
## <chr> <chr>
## 1 1 to

## 21 start
## 31 with
## 4 1 me

## 5 1 and
## 6 1 my

## 7 1 sister
## 8 1 had
## 9 1 a
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## 10 1 connection
## # ... with 326,153 more rows

Word Count

word_count <- function(data) {
readRDS (data) %>%
dplyr::anti_join(custom_stop_words, by = "word") %>%
dplyr::count(word, sort = TRUE) %>%
tibble::as_tibble()
}

facebook_word_count <- word_count("facebook tokens")

## Warning: Column “word™ joining character vector and factor, coercing into
## character vector

tripadvisor_word_count <- word_count("tripadvisor_ tokens™)

## Warning: Column “word™ joining character vector and factor, coercing into
## character vector

facebook_word_count

## # A tibble: 7,622 x 2

## word n
it <chr> <int>
## 1 fly 236
## 2 love 224
## 3 istanbul 185
## 4 nice 141
## 5 service 96
## 6 travel 89
## 7 day 84
## 8 3 82
## 9 time 79
## 10 world 70
## # ... with 7,612 more rows

tripadvisor_word_count

## # A tibble: 8,819 x 2

## word n
it <chr> <int>
## 1 service 3067
## 2 food 3042
## 3 istanbul 2531
## 4 fly 2431
## 5 time 2310
## 6 seat 1991
## 7 staff 1419
## 8 travel 1223
## 9 class 1167
## 10 plane 1025
## # ... with 8,809 more rows
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Word Count Plot

word_count_plot <- function(data, min_count) {
tokens_count <- readRDS(data)

tokens_count %>%
dplyr::anti_join(custom_stop_words) %>%
dplyr::filter(n > min_count) %>%
dplyr::mutate(word = reorder(word, n)) %>%
ggplot2::ggplot(mapping = ggplot2::aes(word, n)) +
ggplot2::geom_col() +
ggplot2::xlab("Most Frequent Words") +
ggplot2::coord_f1lip()

}
word_count_plot("tokens_count 300", 25)
## Joining, by = "word"

## Warning: Column “word™ joining character vector and factor, coercing into
## character vector

Most Frequent Words

' '
100 150 200
n

%2
o

Figure 12: Facebook Word Count Plot - Appendix
word_count_plot("TA tokens_count 6846", 300)

## Joining, by = "word"
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Figure 13: TripAdvisor Word Count Plot - Appendix

# Adding words manually to the Llexicon
sahban_base_lexicon <- readRDS("sahban_base lexicon") %>%
dplyr::bind_rows(data.frame(base = c("travel”, "travel"),

non_base = c("travelled", "travelling")))

saveRDS (sahban_base_lexicon, "sahban_base lexicon")

Indexed Response Function
numbered_response_tokens <- function(file, response_type) {
dataset <- readRDS(file = file)

dataset %>%
tibble::as_tibble() %>%
dplyr: :mutate(response_type =
iconv(pull(., response_type),
from = "UTF-8", to = "Latinl")) %>%
dplyr: :mutate(post number = as.numeric(factor(id))) %>%
dplyr::group_by(id) %>%
dplyr::mutate_if(is.factor, as.character)

# Convert non_base verbs into base verbs

extract_non_base <- function(data) {
data %>%
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dplyr::rename(non_base = word) %>%
dplyr::left_join(readRDS("sahban_base lexicon"), by = "non_base") %>%
dplyr::mutate(base = ifelse(is.na(base), non_base, base)) %>%
dplyr::rename(word = base) %>%

dplyr::select(-one_of('"non_base"))

Indexed Tokenization

The numbererd_response_function() is used to find out numbered tokenization.

tidy_response_facebook <-

numbered_response_tokens("300 posts_comments", "comments") %>%

dplyr::mutate(comment_number = row_number()) %>%

dplyr::select(id, post_number, response_number = comment_number,
comments, created_time, type, likes_count, comments_count,
shares_count) %>%

tidytext: :unnest_tokens(word, comments) %>%

dplyr::anti_join(custom_stop_words) %>%

extract_non_base() %>%

extract_plural()

## Joining, by = "word"

## Warning: Column “word™ joining character vector and factor, coercing into
## character vector

tidy_response_tripadvisor <-
numbered_response_tokens("tripadvisor_turkishairlines6846.rds", "review") %>%

dplyr::select(id, response number = post_number, review, quote, rating, date)
%>%

tidytext: :unnest_tokens(word, review) %>%

dplyr::anti_join(custom_stop_words) %>%

extract_non_base() %>%

extract_plural()

## Joining, by = "word"

tidy_response_facebook %>%
tibble::as_tibble() %>%
dplyr::select(post_number, response_number, word, type) %>%
subset(select = ¢(2,3,4,5))

## Adding missing grouping variables: “id"

## # A tibble: 23,953 x 4

## post_number response_number word type

#it <dbl> <int> <chr> <chr>
## 1 293 1 direct photo
H##t 2 293 1 ireland photo
#H# 3 293 1 bodrum photo
#H# 4 293 1 badly photo
## 5 293 1 week photo
## 6 293 1 summer photo
H##t 7 293 1 fantastic photo
## 8 293 2 curious photo
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## 9 293 2 tbilisi photo
## 10 293 3 fligths photo
## # ... with 23,943 more rows

tidy_response_tripadvisor %>%
tibble::as_tibble() %>%
dplyr::select(id, response_number, word) %>%
dplyr::arrange(response_number)

## # A tibble: 125,065 x 3
## # Groups: id [6,846]

## id response_number word

## <chr> <dbl> <chr>

## 1 rn342674723 1 ticket

## 2 rn342674723 1 receive

## 3 rn342674723 1 promised.the
## 4 rn342674723 1 connection
## 5 rn342674723 1 istanbul

## 6 rn342674723 1 leave

## 7 rn342674723 1 immediately
## 8 rn342674723 1 dubai

## 9 rn342674723 1 arrive

## 10 rn342674723 1 grind

## # ... with 125,055 more rows

Sentence Tokenization

untidy_response_facebook <-
numbered_response_tokens("300 posts_comments", "comments") %>%
dplyr::mutate(comment_number = row_number()) %>%
dplyr::select(id, post_number, comment_number, comments,
created_time, type, likes_count, comments_count,
shares_count)

untidy_response_tripadvisor <-
numbered_response_tokens("tripadvisor_turkishairlines6846.rds", "review") %>%

dplyr::select(id, post number, review, quote, rating, date)

sentence_tokens <- function(data = untidy_response_facebook,
response_column = "comments",
group_by = "comment_number") {
# English Dictionary
gdapDictionaries: :DICTIONARY[,1]

en_word_comments <- data %>%
dplyr::ungroup() %>%
tidytext: :unnest_tokens_("word", response_column) %>%
dplyr::filter(word %in% qdapDictionaries::DICTIONARY[,1])

en_word_sentence_comments <- en_word_comments %>%
dplyr::group_by ("id", group_by) %>%
dplyr::mutate(sentence = paste(word, collapse = " ")) %>%
dplyr::distinct(sentence, .keep_all = TRUE) %>%
dplyr::as_data_frame() %>%
dplyr::mutate(sentence = iconv(sentence, to = 'latinl')) %>%
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dplyr: :ungroup()
# Sentence as tokens with post number and comment number

en_word_sentence_comments %>%
dplyr::select_("id", group_by, "sentence") %>%
dplyr::ungroup() %>%
tidytext: :unnest_tokens(sentences, sentence, token = "sentences")

}

facebook_sentence_tokens <-
sentence_tokens(data = untidy response_facebook,
response_column = "comments",
group_by = "comment_number")

tripadvisor_sentence_tokens <-
sentence_tokens(data = untidy_response_tripadvisor,
response_column = "review",
group_by = "post_number")

facebook_sentence_tokens
tripadvisor_sentence_tokens

tripadvisor_sentence_tokens
dplyr::select(sentences)

Response sentiments

response_sentiments <- function(data, lexicon, group by = sentiment) {
data %>%

dplyr::inner_join(get_sentiments(lexicon), by = "word") %>%
dplyr::count(response_number, sentiment) %>%
tidyr::spread(sentiment, n, fill = @) %>%
dplyr::mutate(sentiment = positive - negative) %>%
dplyr: :ungroup()

}

# bing
facebook_sentiments_bing <- response_sentiments(tidy response_ facebook, "bing")
tripadvisor_sentiments_bing <- response_sentiments(tidy response_tripadvisor, "
bing")

# nrc

facebook_sentiments_nrc <- response_sentiments(tidy_ response_ facebook, "nrc"
tripadvisor_sentiments_nrc <- response_sentiments(tidy_response_tripadvisor, "n
rc"

#afinn
sentiments_afinn <- function(data) {
data %>%
dplyr::ungroup() %>%
dplyr::inner_join(tidytext::get_sentiments("afinn"), by = "word") %>%
dplyr::group_by(id, response_number) %>%
dplyr::summarise(score = sum(score))
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facebook_sentiments_afinn <- sentiments_afinn(tidy_response_facebook)

tripadvisor_sentiments_afinn <- sentiments_afinn(tidy_response_tripadvisor)

facebook_sentiments_bing %>%

dplyr::select(response_number, negative, positive, sentiment)

## # A tibble: 1,588 x 4

## response_number negative positive sentiment
#it <int> <dbl> <dbl> <dbl>
#t 1 1 0 1 1
#it 2 2 0 1 1
#t 3 3 0 1 1
#t 4 3 1 0 -1
## 5 4 0 1 1
##t 6 2 0 1 1
#t 7 3 3 1 -2
#t 8 18 0 1 1
##t 9 21 0 2 2
#it 10 23 0 1 1
## # ... with 1,578 more rows

tripadvisor_sentiments_bing

## # A tibble: 6,426 x 5

## id response_number negative
#it <chr> <dbl> <dbl>
## 1 rn342674723 1 1
## 2 rn342740773 2 1
## 3 rn342772345 3 4
## 4 rn342937701 4 0
## 5 rn343011985 5 1
## 6 rn343117108 6 0
## 7 rn343117743 7 0
## 8 rn343141565 8 4
## 9 rn343168849 9 0
## 10 rn343189478 10 0
## # ... with 6,416 more rows

facebook_sentiments_nrc

## # A tibble: 1,895 x 13

it id

## <chr> <int> «dbl
## 1 904300.. 1

## 2 904300.. 2

## 3 904300.. 3

## 4 904300.. 4

## 5 904300.. 1

## 6 904300.. 4

## 7 904300.. 2

## 8 904300.. 3

## 9 904300.. 4

## 10 904300.. 5

## # ... with 1,885 more rows, and
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<dbl>
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5 more variables: positive <dbl>,
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tripadvisor_sentiments_nrc

## # A tibble: 6,796 x 13
id response_number anger anticipation disgust fear
<dbl> <dbl>

##
##
##
##
##
##
##
##
##
##

VCoNOATUVTE, WNBR

H* H
H* H
=
()

##t #

<chr> <dbl> <dbl>
rn3426...
rn3427..
rn3427..
rn3429..
rn3430..
rn3431..
rn3431..
rn3431..
rn3431..
rn3431.. 10

. with 6,786 more rows, and

=
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<dbl>

N

W KRk WNMNNMNNMNODN

2
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(4]
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joy negative

<dbl>

()
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5 more variables: positive <dbl>,

sadness <dbl>, surprise <dbl>, trust <dbl>, sentiment <dbl>

facebook_sentiments_afinn

## # A tibble: 1,647 x 3

## # Groups: id [?]

it id

## <chr>

## 1 90430042759 10155125620582760
## 2 90430042759 10155125620582760
## 3 90430042759 10155125620582760
## 4 90430042759 10155125620582760
## 5 90430042759 10155126945012760
## 6 90430042759 10155126945012760
## 7 90430042759 10155129495572760
## 8 90430042759 10155129495572760
## 9 90430042759 10155129495572760
## 10 90430042759 10155129495572760
## # ... with 1,637 more rows

tripadvisor_sentiments_afinn

## # A tibble: 6,139 x 3

response_number score
<int> <int>

## # Groups: id [?]

## id response_number score
#it <chr> <dbl> <int>
## 1 rn342674723 1 0
## 2 rn342740773 2 7
## 3 rn342772345 3 -2
## 4 rn342937701 4 5
## 5 rn343011985 5 -3
## 6 rn343117108 6 2
## 7 rn343117743 7 5
## 8 rn343141565 8 -5
## 9 rn343168849 9 6
## 10 rn343189478 10 7
## # ... with 6,129 more rows

1

O, WNPWNWN

(I

P RPWWMNMNNDMNDNWW

5

<dbl>

N

OO P~POOROWOE®

&9



Sentiments to All Words Ratio

sentiment_token_ratio <- function(data, sentiment_type = "negative") {

negative_sentiment <- get_sentiments("bing") %>%
dplyr::filter(sentiment == sentiment_type)

wordcounts <- data %>%
dplyr::group_by(response_number) %>%
dplyr::summarize(word = n())

data %>%
dplyr::semi_join(negative_sentiment) %>%
dplyr::group_by(id, response_number) %>%
dplyr::summarize(negativewords = n()) %>%
dplyr::left_join(wordcounts, by = c("response number")) %>%
dplyr::mutate(ratio = negativewords/word) %>%
dplyr::top_n(10) %>%
dplyr::ungroup() %>%
dplyr::arrange(desc(ratio))

}

facebook _negative_sentiment_ratio <-
sentiment_token_ratio(tidy_response_facebook, "negative")

## Joining, by = "word"
## Selecting by ratio

tripadvisor_negative_sentiment_ratio <-
sentiment_token_ratio(tidy response_tripadvisor, "negative")

## Joining, by = "word"
## Selecting by ratio

facebook_positive_sentiment_ratio <-
sentiment_token_ratio(tidy_response_facebook, "positive")

## Joining, by = "word"
## Selecting by ratio

tripadvisor_positive_sentiment_ratio <-
sentiment_token_ratio(tidy response_tripadvisor, "positive")

## Joining, by = "word"
## Selecting by ratio

facebook_negative sentiment_ratio

## # A tibble: 192 x 5

H#t id response_number negativewords word ratio
#it <chr> <int> <int> <int> <dbl>
## 1 90430042759 _101551815520227.. 281 1 2 0.5

## 2 90430042759 _101551815520227.. 805 1 2 0.5

## 3 90430042759 _101551815520227.. 661 1 3 0.333

## 4 90430042759 _101551815520227.. 687 1 3 0.333

## 5 90430042759 _101551815520227.. 503 2 11 0.182
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## 6 90430042759 _101551815520227.. 358 1 6 0.167
## 7 90430042759 _101551815520227.. 314 1 7 0.143
## 8 90430042759 _101551815520227.. 157 1 8 0.125
## 9 90430042759 _101551815520227.. 475 1 10 0.1
## 10 90430042759 101551815520227.. 69 2 30 0.0667
## # ... with 182 more rows
tripadvisor_negative_sentiment_ratio
## # A tibble: 3,389 x 5
H#it id response_number negativewords word ratio
#it <chr> <dbl> <int> <int> <dbl>
## 1 rn541387435 4976 5 7 0.714
## 2 rnd465760178 3008 4 8 0.5
## 3 rn525881971 4705 4 8 0.5
## 4 rn518927507 4384 5 11 0.455
## 5 rn513737468 3993 4 9 0.444
## 6 rnd425622278 2284 9 21 0.429
## 7 rn557983424 5965 3 7 0.429
## 8 rn569818446 6477 3 7 0.429
## 9 rn530267095 4794 4 10 0.4
## 10 rn547414313 5547 4 10 0.4
## # ... with 3,379 more rows
numbered_response_tokens (

"tripadvisor_turkishairlines6846.rds", "review") %>%

dplyr::select(id, response number = post _number, review,

quote, rating, date) %>%

dplyr::filter(response_number == 4976) %>%

dplyr::select(review, id)
## # A tibble: 1 x 2
## # Groups: id [1]
##  review id
##  <chr> <chr>

## 1 "the flight was very bad and the food very bad it so bad and .. rn5413..

Most Frequent Sentiments

frequent_sentiments <- function(data) {
data %>%
dplyr::inner_join(tidytext::get_sentiments("bing")) %>%
dplyr::ungroup() %>%
dplyr::count(word, sentiment, sort = TRUE)

}

facebook_frequent_sentiments <-
frequent_sentiments(tidy_response_facebook)

## Joining, by = "word"

tripadvisor_frequent_sentiments <-
frequent_sentiments(tidy response_tripadvisor)
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## Joining, by = "word"

facebook_frequent_sentiments

## # A tibble: 383 x 3

#it word sentiment n
#it <chr> <chr> <int>
## 1 love positive 328
## 2 nice positive 155
## 3 beautiful positive 87
## 4 congratulations positive 83
## 5 wow positive 80
## 6 amaze positive 73
## 7 free positive 72
## 8 happy positive 69
## 9 bless positive 45
## 10 super positive 37
## # ... with 373 more rows

tripadvisor_frequent_sentiments

## # A tibble: 1,310 x 3

#it word sentiment n
#it <chr> <chr> <int>
## 1 comfortable positive 1026
## 2 excellent positive 927
## 3 nice positive 816
## 4 friendly positive 700
## 5 delay negative 552
## 6 helpful positive 472
## 7 clean positive 406
## 8 free positive 399
## 9 bad negative 324
## 10 recommend positive 318
## # ... with 1,300 more rows

Plot Frequent Sentiments Counts

plot_sentiment_count <- function(data) {
data %>%

dplyr::group_by(sentiment) %>%
dplyr::top_n(10) %>%
dplyr::ungroup() %>%
dplyr::mutate(word = reorder(word, n)) %>%
ggplot2::ggplot(ggplot2::aes(word, n, fill = sentiment)) +
ggplot2::geom_col(show.legend = FALSE) +

ggplot2::facet_wrap(~sentiment, scales = "free y") +
ggplot2::1labs(y = "Frequent Sentiments",
x = "Frequency") +

ggplot2::coord_f1lip()
}

plot_sentiment_count(facebook_ frequent_sentiments)



## Selecting by n
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Figure 14: Facebook Sentiment Count Plot - Appendix

plot_sentiment_count(tripadvisor_frequent_sentiments)

## Selecting by n



positive

250 500 750

negative
delay - - comfortable -
bad- - excellent -
grind - . nice -
miss = . friendly -
g, :
o |lose helpful
>
8' issue - . clean -
S
w
worst = . free =
poor = . recommend -
rude - . amaze -
lie - I pleasant -
0 250 500 750 1000 0
Frequent Sentiments
Figure 15: TripAdvisor Sentiment Count Plot - Appendix
Word Cloud
library(wordcloud)

## Loading required package: RColorBrewer

word_cloud <- function(data, max_words) {
data %>%
dplyr::ungroup() %>%
dplyr::count(word) %>%

with(wordcloud: :wordcloud(word, n, max.words =

}

word_cloud(tidy_response_facebook, max_words

50)

max_words))

1000
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Figure 16: Facebook Wordcloud - Appendix

word_cloud(tidy response_tripadvisor, max_words = 75)
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Figure 17: TripAdvisor Wordcloud - Appendix
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Sentiment Cloud

library(reshape2)

sentiment_cloud <- function(dataset) {

dataset %>%

dplyr::inner_join(tidytext::get_sentiments("bing")) %>%
dplyr::count(word, sentiment, sort = TRUE) %>%

reshape2:

wordcloud:

}

:acast(word ~ sentiment, value.var = "n", fill = @) %>%
:comparison.cloud(colors = c("#F8766D", "#OOBFC4"),
max.words = 100)

sentiment_cloud(tidy_ response_facebook)

## Joining, by = "word"
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Figure 18: Facebook Sentiment Cloud - Appendix
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## Joining, by = "word"
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Figure 19: TripAdvisor Sentiment Cloud - Appendix

STy

97



