AUTOMATIC ROOF PLANE EXTRACTION FROM LIDAR
DATA USING RANSAC ALGORITHM

RANSAC ALGORITMASI KULLANARAK LIiDAR
VERISINDEN OTOMATIK CATI DUZLEMI CIKARILMASI

KHALIL KARBALAI MOHAMMADZADEH

PROF. DR. MUSTAFA TURKER

Supervisor

Submitted to Institute of Sciences of Hacettepe University as a
Partial Fulfillment of the Requirements
for the Award of the Degree of Master

in Geomatics Engineering

Jun 2018



This work named “AUTOMATIC ROOF PLANE EXTRACTION FROM LIDAR
DATA  USING RANSAC ALGORITHM’ by KHALIL KARBALAI
MOHAMMADZADEH has been approved as a thesis for the degree of MASTER OF
SCIENCE IN GEOMATICS ENGINEERING by the below mentioned Examining

Committee Members.

Assoc. Prof. Dr. Mehmet Ali HINDISTAN
Head

Prof. Dr. Mustafa TURKER

Supervisor

Asst. Prof. Dr. Kamil TEKE
Member

Asst. Prof. Dr. Berk ANBAROGLU
Member

Asst. Prof. Dr. Baran USLU
Member

This thesis has been approved as a thesis for the Degree of MASTER OF SCIENCE IN
GEOMATICS ENGINEERING by Board of Directors of the institute for Graduate studies

in Science and Engineering

Prof. Dr. Menemse GUMUSDERELIOGLU
Director of the Institute of

Graduate School of Science and Engineering



YAYINLAMA VE FiKRi MULKIYET HAKLARI BEYANI

Enstitld tarafindan onaylanan lisansiisti tezimin/raporumun tamamini veya
herhangi bir kismini, basili (kagit) ve elektronik formatta arsivleme ve asagida
verilen kosullarla kullanima acma iznini Hacettepe Universitesine verdigimi
bildiririm. Bu izinle Universiteye verilen kullanim haklari digindaki tim fikri
milkiyet haklarim bende kalacak, tezimin tamaminin ya da bir boélimiinin
gelecekteki calismalarda (makale, kitap, lisans ve patent vb.) kullanim haklarn
bana ait olacaktir.

Tezin kendi orijinal alismam oldugunu, baskalarinin haklarini ihlal etmedigimi ve
tezimin tek yetkili sahibi oldugumu beyan ve taahhiit ederim. Tezimde yer alan
telif hakki bulunan ve sahiplerinden vyazili izin alinarak kullanmas zorunlu
metinlerin yazili izin alarak kullandigimi ve istenildiginde suretlerini Universiteye
teslim etmeyi taahhiit ederim.

0l Tezimin/Raporumun tamami diinya capinda erisime agilabilir ve bir
kismi veya tamaminin fotokopisi alinabilir.
(Bu segenekle teziniz arama motorlarinda indekslenebilecek, daha sonra
tezinizin erigim statlstiniin degistirilmesini talep etseniz ve kutlphane bu
talebinizi yerine getirse bile, tezinin arama motorlarinin énbelleklerinde

&/@Imaya devam edebilecektir.)

! Tezimin/Raporumun 30.07.2019 tarihine kadar erisime acgilmasini ve
fotokopi alinmasini (i¢ Kapak, Ozet, icindekiler ve Kaynakga harig)
istemiyorum.

(Bu slirenin sonunda uzatma icin bagvuruda bulunmadigim taktirde,
tezimin/raporumun tamami her yerden erisime acilabilir, kaynak
gosterilmek sartiyla bir kismi ve ya tamaminin fotokopisi alinabilir)

U Tezimin/Raporumun ............. tarihine kadar erisime agilmasini
istemiyorum, ancak kaynak gosterilmek sartiyla bir kismi veya
tamaminin fotokopisinin alinmasini onayliyorum.

[l Serbest Segenek/Yazarin Segimi

o9.. /Q_;r/ 2ald

Khalil Karbalai Mohammadzadeh



ETHICS

In this thesis study, prepared in accordance with the spelling rules of Institute of Graduate
Studies in Science of Hacettepe University,

I declare that

e all the information and documents have been obtained in the base of the academic rules,

e all audio-visual and written information and results have been presented according to
the rules of scientific ethics,

e in case of the using other Works, related studies have been presented according the
scientific standards,

e all cited studies have been fully referenced,

e [ did not do any distortion in the data set,

e And any part of this thesis has not been presented as another thesis study at this or any

other university.

r 3F/9l2018

Khalil Karbalai Mohammadzadeh



To My Parents



ABSTRACT

AUTOMATIC ROOF PLANE EXTRACTION FROM LIDAR
DATA USING RANSAC ALGORITHM

Khalil Karbalai Mohammadzadeh
Master of Science, Department of Geomatics Engineering
Supervisor: Prof. Dr. Mustafa TURKER
Jun 2018, 70 pages

Automatic image processing and object extraction from airborne data have become an
important topic of research in the field of photogrammetry and remote sensing. The aerial
laser scanning system, also known as LIDAR, has become the dominant technology for
acquiring 3D spatial data from the earth surface with high speed and density. LiDAR’s
output is an unclassified and unstructured point cloud dataset. Thus, the main process to be
performed on this dataset is to classify it into distinct classes. Then, the classified LIDAR
data can be used as input to create 3D city models. This data has a number of unique
properties that play a fundamental part in their classification process. The main properties
include the geometric properties that are obtained through the processes carried out on 3D
positions of the points in the cloud. Among these processes is the plane extraction, which
is carried out through the most commonly used methods of RANSAC (Random Sample

Consensus), Region growing, and Hough Transform.



In this study, the RANSAC algorithm was used to extract planes from building rooftops.
The aim is to apply RANSAC on LIiDAR point cloud data to extract planes from rooftops.
The first and most important step in the extraction process of the planes from rooftops is to
identify and distinguish buildings from the other features, such as terrain and vegetation.
The second step is to apply the RANSAC algorithm on the point cloud data of the
individual buildings. Based on the geometric position and the points’ distance to the plane,
the least squares method is used to cross the best plane through the candidate points that

form the plane.

The experiments were carried out on the selected study areas located in the city of
Bergama, Turkey using LiDAR point cloud data collected by the Reigl airborne scanner.
The results show that RANSAC’s performance is quite good for buildings which have
complex roofs and also it has the ability to extract small planes in high density point
clouds. Furthermore, the best extracted planes are properly adjusted to the raw point cloud

data sets.



OZET

RANSAC Algoritmasi Kullanmilarak LIDAR Verisinden

Otomatik Cat1 Diizlemi Cikarilmasi

Khalil Karbalai Mohammadzadeh
Yiiksek Lisans, Geomatik Miithendisligi Boliimii
Tez Damismani: Prof. Dr. Mustafa TURKER

Haziran 2018, 70 sayfa

Hava verilerinden otomatik goriintli isleme ve nesne ¢ikarimi fotogrametri ve uzaktan
algilama alanlarinda 6nemli bir arastirma konusu haline gelmistir. LIDAR olarak da bilinen
hava lazer tarama sistemi, yer yiizeyinden yiiksek hiz ve yogunlukta 3D uzamsal verilerin
elde edilmesinde kullanilan en temel teknolojidir. LIDAR 1n ¢iktilari, siniflandirilmamais ve
yapilandirilmamis nokta bulutudur. Dolayisiyla, bu veriler iizerinde gergeklestirilecek
temel islem, onlar1 ayr1 kategoriler halinde siniflandirmaktir. Sonra, siniflandirilan LiDAR
verileri 3B sehir modellerini olusturmada giridi verisi olarak kullanilabilir. Bu veriler,
smiflandirma siirecinde kilit rol oynayan benzersiz Ozelliklere sahiptir. En temel
ozellikleri, bulut noktalarinin 3D konumlarinda gergeklestirilen siirecler yoluyla elde
edilen geometrik 6zellikleridir. RANSAC (Random Sample Consensus — Rastgele
Ornekleme Konsensiisl), bolge biyiutme ve Hough doniisiimii gibi ¢esitli ydntemler

yoluyla yiiriitiilen diizlemsel ¢ikarim, bu siiregler arasinda yer almaktadir.



Bu ¢alismada, bina catilarindan diizlem c¢ikarmada hizli ve etkili bir algoritma olan
RANSAC kullanilmistir. Calismanin amaci, bina catilarindan diizlem ¢ikarmada
RANSAC’1, LiDAR nokta bulut verisi tizerinde uygulamaktir. Sehir modellerinin 6nemli
bilesenlerinden olan bina ¢atilarinin ¢ikariminin ilk ve en énemli adimi, binalar1 arazi ve
bitki ortiisii gibi diger yapilardan ayirip tespit etmektir. Ikinci adim, RANSAC
algoritmasii tekil bina nokta bulutu verisine uygulamaktir. Geometrik konuma ve
noktalarin diizleme olan mesafelerine dayali olarak, en kiigiik kareler yontemi kullanilarak,

diizlemi olusturan aday noktalar yoluyla en iyi diizlem olusturulur.

Tiirkiye’nin Bergama kentinden segilen ¢alisma alanlarinda Reigl tarayici ile toplanan
LiDAR nokta bulut verileri kullanilarak testler gerceklestirilmistir. Elde edilen sonuglar
RANSAC’1n performansinin, kompleks ¢at1 yapisina sahip binalarda ve yiiksek yogunluklu
nokta bulutlarinda kiigiik dlzlemleri ¢ikarma becerisi agisindan iyi oldugunu
gostermektedir. Ayrica, en iyi ¢ikarimi yapilan dizlemler, ham nokta bulutu veri setlerine

dogru sekilde uyarlanmistir.
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1. Introduction

LIDAR (Light Detection and Ranging) congregates laser distance meter, IMU (Inertial
Measurement Unit), and DGPS (Differential GPS) in a single combined unit [1].
Technology provides us with innovative solutions to obtain 3D real-time location data as
well as novel ways of gaining high definition space-time territorial location data. In
addition to promptly acquiring altitude information, LIDAR introduces several
technological innovations in Remote Sensing mapping and other application areas. It bears
a great potential of contributing to fields such as terrain surveying and mapping, city

planning, environmental monitoring, oceanology, geology, planet science etc. [1]

LIDAR incorporates distinct assets. LIDAR has an operating laser pulse sensor and it
keeps away from the impact of sun's shadow angle by diminishing their effect on obtaining
information. If LIDAR is contrasted with photogrammetry, it is apparent that LIDAR has
certain advantages, such as keeping all necessary data (from 3D to 2D), having precise
altitude detection, and gaining multi-beam echo to obtain high-density data. Also, it makes
considerable attenuation in ground control survey, aviation routes may immediately adapt,
enhances the degree of mechanization, and swiftly and serially generate digital elevation
models (DEM), digital surface models (DSM) and digital Ortho-photo maps (DOM) [1].

Two of the crucial functions of most surveying fields are rapidly gaining 3D data and self-
regulating administration of data. Airborne laser scanning systems produce 3D data with
perfect precision, high speed and density. Therefore, this method is predominantly applied
in urban areas. There are two consecutive procedures for building up 3D urban models [2].
The initial procedure is automatic segmentation of the point cloud into three categories as
terrain, buildings and vegetation. After the partitioning of the urban cloud, the modelling of
buildings may be passed on.

Two methods, data-driven and model-driven exist in the doctrine in terms of building
modelling. The model-driven methods basically review a database of basic building
models to find out the most convenient one [3]. According to [3], there are a number of
parameters to identify a basic building. Implicit in this assumption is the measurement of
these parameters prior to building up the 3D model. When it comes to data-driven method,
it attempts to generate the most accurate and closest multifaceted model by reproducing

every single section of the buildings point cloud [1]. One of the most important functions



in the data-driven methods that generates more comprehensive models is the automatic
detection of planes. Several techniques, including but not limited to growing, 3D Hough-
transform and RANSAC (Random Sample Consensus), have been suggested to implement
this process.

Although being rather straightforward, Region-Growing techniques have issues with
segmentation and are over-responsive to data noise as well as being time consuming [4]. It
gets challenging to identify a termination criterion in region-based techniques in the event

that changes over across regions occurs easily [5].

The Hough transform technique is used for identifying parameterized objects as well as
discovering flat and circular shapes in 2D circumstances. In terms of 3D point-cloud plane
segmentation, each position in Hough space is associated with a plane in the space of the
entity. The Hough transform technique is very successful in detecting shapes even in bad
datasets. Nevertheless, this method entails a great deal of memory and CPU allocation [4].

The RANSAC (Random Sample Consensus) algorithm [6], which is a straightforward and
robust method, is generally administered for identifying model parameters through data
which might be distorted by extreme values. RANSAC is a convenient technique to deal
with problems of robust estimation because it can perform well in the presence of large
amounts of extreme values [7]. According to Tarsh-Kurdi et al. [2], RANSAC is a more

powerful technique in comparison to Hough transform.

1.1. Thesis Objectives
The main objectives of the thesis are as follows:

e To extract roof planes of complex geometries using the RANSAC algorithm;

e To extract roof planes of complex buildings with polyhedral roofs by optimizing
the threshold value of the RANSAC algorithm;

e To apply the algorithm in the selected test areas in Bergama, Izmir using the
LIDAR point cloud data,

e To apply the Least Square estimation algorithms to LIDAR point cloud data sets



1.2. Study areas
1.2.1. The first study area

The first study area (Figure 1.1) was selected from the residential region of Bergama,
which is located in the north of the city of Izmir. In Turkey, this is the only place where
airborne LiDAR point cloud data exist. The LIDAR point cloud data was collected by the
RIEGL scanner with 18.77 points density per square meter. The center coordinates of this
study area are as follows: 39° 05' 57" N and 29° 09' 25" E.

Figure 1.1. The first study area Google Earth image.

The size of this study area is about 24858 square meters. Additionally, this area contains
466609 points (Figure 1.2) and regarding the return numbers, they can be categorized as
given in Table 1. An emitted laser pulse in the LIDAR system can have up to five returns
based on the features it is reflected. The first return will be denoted as the return number

one, the second as the return number two, and so on.

Table 1. For the first study area, the number of points according to return numbers.

Return Number Number of Points
1 return 412512
2" return 48220
3" return 5543
4" return 322
5" return 12




Vegetation 4
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Figure 1.2. The point cloud of the first study area.

The area is an old residential region (Figure 1.3) and situated in the south of Bergama.
Based on the Google earth pictures, there are 23 buildings with different roofing models in

this study area.

P
2%

Figure 1.3. Three street level sample pictures regarding the study area taken
from the Google Earth Images.



1.2.2. The second study area

The second study area (Figure 1.4) was also selected from the residential part of the
Bergama and is situated in the southwest part of Bergama. The LiDAR data was collected

using the Reigle scanner. The center coordinates of this test area are as follows: 39° 06'
28" N and 27° 09' 55" E.
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Figure 1.4. The location of the second study area on Google Earth Images.

This test area consists of 367512 points (Figure 1.5) with 19.28 point density per square
meter and regarding the return numbers they can be categorized as shown in Table 2.
Further, the size of this study are is about 19121 square meter.

Table 2. For the second study area, the number of points according to return numbers.

Return Number Number of Points
1% return 319353
2" return 43920
3" return 4038
4™ return 192
5" return 9
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Figure 1.5. The point cloud of the second study area.

This area consists of 43 buildings with various shapes. Several views taken from Google

Earth Images are illustrated in Figure.1.6.

Figure 1.6. A, B and C represent three views of the second study area
taken from Google Earth Images.



1.3. Thesis Outline

The remaining part of this thesis is categorized in four sections. Chapter 2 represents the
review of the methods used for the extraction of roof planes from point cloud data sets
using the RANSAC algorithm. Chapter 3 refers to the methodology used in the present
case to extract building roof planes using the RANSAC algorithm. In Chapter 4, the results
obtained from the experiments carried out on the study areas and discussions regarding the
implementation of the RANSAC algorithm are given. Finally, in Chapter 5, the

conclusions of this thesis study are provided.
1.4. Software
The software used to conduct this study are as follows:

e The RANSAC algorithm was implemented through a program written in the
MATLAB programming environment.

e The ground filtering and point cloud classification operations were carried out
using varies functions of the LASTOOLSs software.

e The point cloud data sets were separated to sub-clouds using the Cloud Compare

software.



2. The Literature Review

2.1. Related to RANSAC

Region growing segmentation algorithms are not always intelligible and are not
implemented on a regular basis. For that reason, in a study carried out by [2], 3D Hough
transform and RANSAC algorithm were used to automatically establish 3D roof planes
from LIDAR point cloud data. Since Hough-transform is very delicate to segmentation
parameter values, the extended RANSAC algorithm was used to segment the building
planes. It was observed that the extended approach gives satisfying results for weak point
density and different levels of building complexity.

In the work of [8], the boundary of a lake was automatically extracted from LIDAR point
cloud data. To do that water surface was established using the RANSAC algorithm. It was
suggested that since lake areas are mostly planar their areas can be easily established using
the RANSAC algorithm.

In a study conducted by [9] to establish plain floor surface or details of any building etc.,
best candidates for planes that fix the buildings and land surfaces were determined by
implementing the RANSAC algorithm, which is a more efficient technique than the other
methods. The results obtained by the RANSAC algorithm were reported to be satisfactory.

In a study carried out by [10], the surface of shapes such as a plane, cone, cylinder and ball
that takes place in 3D topographic LIDAR cluster were automatically established through
RANSAC algorithm. To test the validity of the process, the manually and automatically
extracted surfaces were compared. It was concluded that the RANSAC algorithm is very
efficient in automatically establishing the surfaces from 3D topographic LIDAR point
cluster data. It was suggested that the RANSAC algorithm can be successfully used in

establishing planes of the objects that contain plane surfaces.



2.2. Related to LIDAR point cloud segmentation and classification

In a study carried out by[11], segmentation problems, such as losing data during the
transformation of irregular point clouds into other models were resolved and the high

computational cost was reduced by optimization.

In the work of [12] , the planes were extracted by means of segmentation over the point
cloud dataset. It was stated that the method can simultaneously extract multiple roof planes
and the spatial relationship between data points is intended.

In the work of [13], building regions were determined automatically. Then, curvature-
based segmentation technique was used to establish the roof planes. To construct many-
sided structural models, the shapes of boundaries of roof planes were determined by
grouping the roof planes. In addition, in order to enhance the reconstructed models'
geometric quality, they examined the subject of integrating air images for the

reconstruction process.

In the work of [14], a new approach that involves roof segmentation and roof model
reconstruction process were developed to establish roof planes from LiDAR point cloud
data. As segmentation is effective in establishing the geometric structure of roofs,
reconstruction was observed to be better in determining the contiguity and integrity of the
roofs. The multiphase level set method was tested on two laser data sets. The study
concludes that, if sufficient amount of points do not exist to represent roof structures,
segmentation will not express the objects adequately. The study further mentions that the
suggested approach can be tested using the data of different roof structures and
complicated buildings.

In a study carried out by [15], 3D roof models were constructed using the LIDAR data
only. Based on the results achieved it was suggested that higher quality results can be

obtained by incorporating 3D lines established through using the images.
2.3. Related to ground filtering

The study conducted by [16] presents algorithms for the ground filtering to generate
ground surface, the classification of the non-ground points, and the generation of DEMs.
This study also identifies the ground points from the point cloud data using the Minimum
Description Length criterion parameter, which is declared to be an important parameter to
identify ground points. The advantages of the algorithms presented in their work were that,



(i) the ground surface was created from the connected points in a TIN, (ii) the points of
low ground surface were always contained and (iii) the original data points were used in

the creation of the surface.

In a study conducted by [17], several analyses were carried out by defining three search
windows at small, medium, and large scales over the threshold elevation difference to filter
terrain points. This method is said to be robust to different problems such as resolution of

data, objects complexity and diversity slopes.
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3. Methodology

The goal of this research study was to extract roof planes from LIiDAR point cloud data.
The steps followed in the methodology are shown in a flowchart in Figure 3.1. The raw
LiDAR point cloud data to be processed is available in .Laz or .txt format. First, the ground
points are identified and separated from the point cloud data. Then, the remaining non-
ground points are classified into buildings and tall trees. Next, the building class that
includes integrated information about all buildings is extracted through a classification
process. Since the building information is required separately the building class is divided

into sub-building cloud points therefore.

The MATLAB scripts code reads the data points separately, one-by-one. The roof planes
are extracted from the point cloud as follows: Three random points are chosen to form an
imaginary plane to which the distances from all points are computed. By comparing the
distances with the specified threshold, the points closer than the threshold to the imaginary
plane are found and saved. The best estimation for the plane with the highest number of
points is approximated and these points are extracted from the raw dataset. The process is
repeated until less than three points remain in the data set and the roof planes are saved

with the building number as the final result.
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Figure 3.1. The flowchart of the proposed plane extraction method.
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3.1. The Ground filtering principle

Detecting the ground points is the first step in this study. To extract objects and render a
Digital Elevation Model (DEM), the LIDAR data points are classified into two classes.
The first class consists of the ground points, which are extracted from point cloud data and
are categorized as ground. Then, the remaining points are categorized as vegetation and

building.

A surface is generated below to the randomly distributed laser points using the triangulated
irregular network (TIN) processing. Statistics characterizing the distance to the TIN facets
are computed for all data points [16]. Based on the computed statistics, seed points are

chosen, such as the red points shown in the example in Figures 3.2 and 3.3.

Figure 3.2. The seed points.

Figure 3.3. A TIN surface generated over the seed points.
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In the next stage, new points join the terrain class and the surface, based on the selected
threshold values, is iteratively densified. There are two threshold parameters to be used for
this densification process: (i) angle to the nodes, and (ii) distance to the TIN faces [16]

(Figure 3.4). At the end, the final TIN that represents the ground is achieved (Figure 3.5).

Figure 3.4. a;, a, , a3, are the angles between the nodes of the triangle and the point being

considered and B, , B, , B; are TIN nodes.

Figure 3.5. The TIN surface that represents ground.
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In this study, the ground filtering process was carried out using the LasGround function of

the LasTools Software [18]. Completely, the LasGround function consists of four

important parameters that control the filtering results [19].

The first and important parameter is the step size. This parameter is defined
according to the region type and the object dimensions in the area to be filtered.
The default step size is 5 meters which is most suitable for mountains and forest
areas. For urban areas or flat terrains, this value is increased to 10 meters. In the
present case, after several trials it was explored that the value of 25 meters gives
excellent results for urban areas and warehouses. Therefore, in this study, the step
size parameter value was taken as 25 meters.

The second parameter is the spike value. This parameter has two sub-parameters
that are up-spike and down-spike. In the coarsest TIN, these parameters remove the

points that stay above and below the defined threshold values.

The third parameter is the Maximum offset. This parameter defines an offset

distance from the ground surface over which the points are not included.

The fourth parameter is the Standard Deviation. This parameter defines the

maximum standard deviation in centimeter for the planar patches.

All of these parameters can be set manually. However, they can also be predefined using

the default strategies defined as follow:

v" Forest or hills

v" Town or flats

v City or warehouses
v

Metropolis

Parameters for these strategies are set based on the practices carried out for various land

cover types. Furthermore, there are five standards describing the violence of the terrain that

might be used irrespective of the strategy. These five standards are defined as two groups.

The first group simplifies the search and is suitable for the flat terrains ( 'Coarse’ or 'Extra

coarse' ), while the second group amplifies the search for initial ground points and is used

for the very inclined hills ('Fine', 'Extra fine' or 'Ultra fine").

15



Therefore, for the test areas, after selecting the required suitable parameter values for the
LasGround function, the ground points were detected from the point cloud.

3.2. Ground filtering and classifying non-ground points

In this step, first the ground points are eliminated from the point cloud data sets using the
Las2Las function with the ‘Dropping with classification number’ option [20]. Then, the

non-ground points are classified into different classes using the LasClassify function.

In general, categorizing non-ground points into different classes that include vegetation
(tall trees) or buildings is quite challenging. To classify non-ground point cloud, LIDAR
data rely on a geometrical parameter that allows one to measure the roughness of planar
and ruggedness objects, including buildings and trees. Moreover, the planarity of the
neighboring points (x;) around a point, x, can be estimated using the principle components
analysis (PCA) based on surface points with covariance matrix [21]. A positive, semi-

definite covariance matrix is computed as follows [22]:
C= 2?:1(xi —X)(x; — f)T i=1,..,k 1)

Where, C denotes the mean of x (cloud points). The PCA of matrix C generates real
eigenvalues 1, < 4, < 1, with the corresponding Eigen vectors v, , v; and v, on an
orthogonal basis of R3. The eigenvalue 1, evaluates the variance of x; in v, direction, and
v, approximates the surface normal of x;. A constant surface changes of the k-nearest

neighbors in point cloud data sets is given by [22]:

__ %
T Aot A+,

()

Where, [ denotes the planarity and A,, 14,1, represent the Eigen values. With a plane
terrain surface 1, < (1; = 1,), the parameter [ is close to zero. Therefore, it is necessary
to select a suitable threshold (T) to extract the planar and rugged surfaces accurately. For
example, points where [ > T can be identified as trees. The threshold is a function of

surface roughness and noise in the data and changes for different sets of data.
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Although the threshold value is proven to work for extracting buildings, it may fail to
identify pruned trees in urban areas. For example, trimming the trees near overhead power
lines changes the shape of their canopies and consequently, their roughness. That is
contingent upon LIDAR classification criteria assuming trees as rugged surfaces.

Furthermore, large trees with small surface roughness may be identified as buildings.

The LasClassify function classifies buildings and tall trees into the las/laz file [23]. This
requires ground points and the elevation of each point from the ground, calculated in
LasHeight. The function attempts to identify the neighboring points at 2 meter above the
ground. By default, planarity and rugged values are 0.1 and 0.4, respectively. Furthermore,
the elevation threshold can be changed via ground offset. In case of noisy data, identifying
planar surfaces is difficult; therefore, ‘planarity’ is changed according to the regional

conditions to extract better results.

Moreover, a low point density leads to inaccurate results and LasClassify to fail. In other
words, the minimum number of pulses required to identify a building roof is 2 per square
meter. That is, if pulses per square meter are less than 2, the search window value, which is
2 m by default, is increased to 4 m [23].

The function is run after selecting the best parameters. With this operation, the points that
belong to buildings are classified as building class and are given the class number of 6

based on the default values of the LasTools software.
3.3. Extracting the building class

The Las2Las function reads and writes LIDAR data in Laz, Las, and ACSII formats to
filter, project, transform, thin, etc. on point cloud data [20]. One of the most used option in
this study is filter. The filter option includes two types of flags. These flags are defined
based on the classification number, return number, and point cloud features and the data set
is classified based on these flags. For example, keeping or dropping the building points
using the ‘keep/drop with the classification number’ flags. Some of the other examples for

the Keep/drop flags are as follow;

= The points that are inside a defined rectangle,
= The Points which are between determined height,
= The points that are a certain return, and

» The points that scale angle has above certain threshold or between some intensity.
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As a result, in this study, the points that belong to building class were separated from the
previously classified non-ground points by using the ‘Keep with classification number’
option. To do that the default class numbers of the LasClassify Function of the LasTools

software were used (Table 3).

Table 3. The ASPRS Standard LIDAR Point Classes that are used in LasClassify [24].

Class Type Class Class Type Class
No. No.
Never Classified 0 Water 9
Unclassified 1 Rail 10
Ground 2 Road Surface 11
Low Vegetation 3 Overlap 12
Medium Vegetation 4 Wire Guard 13
Height Vegetation 5 Wire Conductor 14
Building 6 Tower 15
Noise 7 Wire Connector 16
Key point 8 Bridge deck 17

3.4. ldentifying the individual buildings

Next, the integrated point cloud dataset corresponding to buildings are separated to
individual building’s points by the ‘Label connected component’ function of the Cloud
Compare software. In this tool, there are two parameters [25]. Of these parameters, the first

and important one is the Octree level.

Octree is a regular and recursive subdivision in three dimensional space. The cubical box
that belongs to points set is divided into 8 similar cubes. This operation is recursively
performed for each cube. The process stops when no points are in the cube or predefined
threshold level is reached. Such a structure gives, the capability to quickly determine what
points is in a determined cube and in its surrounding cubes. Hence, the nearest neighbors

derivation and equivalent processes become very fast [26].
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It is possible to assort selected point cloud by the Octree which consists of many groups of
points adequately distant from the others. This common algorithm is normally utilized in
2D binary but has been extended to 3D binary grid. The function exports one entity for
each sub cloud of points that belong to building. The higher level of Octree will produce
smaller distance threshold, subsequently more subgroups will be extracted. More memory
is needed for the larger octree levels. Therefore, the octree level is a sensitive parameter
and is difficult to adjust priori, regardless of the experience. Hence, it is necessary to reach

an approach by trial and error.

Bounding cube

_%---*féj'- 01234567
__0”-%Tﬁf§' 01234567

Figure 3.6. The octree subdivision principle [26].

The second important parameter is the minimum number of points for each component. If
the number of points in a portion of the defined value is lower than defined value, they are
extracted as a separate building. Moreover, the minimum number of points is determined

according to the density of the points and the dimensions of the smallest building.

Further, the Random Colors option describes the cloud compare to provide random colors
to each new cloud. At the end, the point cloud data sets that belong to individual buildings

are extracted and saved separately with different colors [25].
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Color Legend

Il R_C#01 - Cloud
R_C#02 - Cloud
R_C#03 - Cloud
R_Ci#04 - Cloud
R_CH05 - Cloud
R_CH06 - Cloud
R_CHO7 - Cloud
R_C#08 - Cloud

B R_C#09 - Cloud

M R_CK10 - Cloud

M R_CH11 - Cloud
R_C#12 - Cloud

M R_C#13 - Cloud

M R_C#14 - Cloud

Il R_C#15 - Cloud

Il R_C#16 - Cloud

M R_CK17 - Cloud
R_Ci#18 - Cloud
R_C#19 - Cloud

- Cloud
- Cloud
- Cloud
- Cloud

Figure 3.7. The separated building’s points with different colors.

3.5. The RANSAC Algorithm

In this section, the RANSAC algorithms was applied on building point cloud data, one
building at a time, to extract the roof planes. Ficher and Bolles [6] introduced the
RANSAC algorithm, which is a general robust approach in order to estimate model
parameters. To achieve an initial solution, instead of utilizing a number of data and then try
to remove invalid points, RANSAC applies the smallest possible data set, such as the point
cloud of a building, and from this data set, the possible large planes are crossed. The steps
for the extraction of the roof planes using the RANSAC algorithm are as follows [27]:

¢ It randomly selects planar surfaces P from the LIDAR data points S and maintains
a number of points where the Euclidean distance from the plane is less than the
critical distance d,.

e The Least Square Estimation of the final plane ( pfinq; ) is performed along the set
of supporters maximum cardinal ( M).

e The set My, is eliminated from the initial point cloud S.

e The algorithm operates as long ascard (S) < 3, where card(S) is the set S

cardinal.
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Theoretically, the assured best plane is drawn at each repetition, every triplets of S should
be tried. Therefore, N,, can be defined as (Eq. 3) [27]:

i Card (S)!
T 31(Card(S)-3)!

©)

Where, S refers to data points.

Furthermore, the detection of the planes can be highly time consuming. Mostly, it is not
feasible to apply all possible draws. In other words, the probability of drawing t a correct
plane P (which is three points without outlier), considering all points are inlier (w3 for 3
points), the probability w can be maximized. A relationship between t, w and N can be

computed using Eq. 4 [27] as follows:

log (1-t)

— = N _
1-0=A-wH' o N=E=5

(4)

Therefore, the number of draws N might be directly calculated from t andw. If t is
constant as 0.99, w has to be estimated with a former knowledge. The general idea of this
approach is to enhance the efficiency of performance of a classical RANSAC approach
with the focus on the drawing of triplets over previously separated point cloud data. In this
study, the directions of the extracted major planes correspond to roof planes orientations.
The RANSAC algorithms are given below.
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Begin
Repeat

# Select the sets of the supports

Whilen < N do

Randomly select a plane P (3 points)

# Selecting points within a critical distance of the plane

M, ={meS/Ilm-P(m)lI*?°<d,}

L ++n
# Select the set of the highest cardinal

aK < vﬁ < N,card(Mg) > card(My)

#Estimation of the final plane over all planes
Pfinal = argminp, ZmaxMK I m— P,(m) 112

#Removing previous supports from the main point cloud

S « S\My

Until card(Mg) < 3

End

Figure 3.8. Classical RANSAC for detecting roof facets.

In order to implement the algorithm, a code was written in MATLAB programming
environment. In this algorithm, the distance threshold is an important and sensitive
parameter and directly effects the results. The working mechanism of the RANSAC
algorithm is illustrated in Figure 3.9. In Figure 3.9 (A), the threshold value is very low. In
this case, a new parallel plane can be formed with the assumption plane, In Figure 3.9(B),
the threshold value is defined very high, in this situation. The normal vector of the

extracted plane is not due to the normal vector of the building roof in the same direction
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because it approximates a wide range of points to the plane, and finally in Figure 3.9(C),
the distance threshold between points and the plane is determined according to the
structure of the building roof and density of the points. In this study, the threshold value is

determined based on the method of trial and error.

Figure 3.9. The working mechanism of the RANSAC algorithm. The distance threshold

from the assumption plane in a test point cloud data.

For a building, the RANSAC MATLAB script performs the following steps to extract
planes of the building.
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3.5.1. Plane equation

First, three random points are selected from the point cloud data set and a plane crosses
from these points. The properties of the extracted plane such as normal vector and distance
to the origin of the coordinate system are also computed. This operation is carried out N
times for the point cloud that belong to a building being considered. The iteration number
Is computed using the equation given in Eq. 4

The Cartesian equation of a plane which crosses through three non-collinear points-

P1(X1,Y1,21) » P2(X2, Y2, Z2) P3(X3,¥3,23), is shown as follows [28];

ax+b-y+c-z+d =0 (5)

Where, (a, b, c) are the normal vector N elements and d denotes the distance to origin of
the coordinate system. Three points (p;,p2, p3) can label two distinct vectors p;p,
and p;ps. As the two vectors is on the plane, their cross product can be used as the normal

to the plane
3.5.2. Distance from a point to a plane

After computing the plane elements, the shortest distance from each point to the detected
plane are calculated. For a point p; = (x4,y4,2;) that is out of the plane P(ax + by +
cz + d = 0), the shortest distance D from p; to plane P (Figure 3.10) is computed as
follows [29]:

__lax1+by;+cz;+d]|

. 6
VaZ+b2rc? ©)

D

The point, p; lies in the defined plane, P if and only if D = 0. If Va?+b?+c?2=1

which means that a, b and ¢ are normalized and then the equation becomes

D = |ax; + by, + cz; +d|. (7)
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Figure 3.10. The shortest distance D from point p (Px, P, PZ) to plane P (a, b, c)

Next, the computed distances are compared based on the previously defined threshold
value. Then, the points whose distances are below the threshold value are selected as the
inlier points. This operation is carried out N times. Finally, the plane which includes the
most inlier points and its number of inlier points are extracted as the candidate points to

implement the Least Square estimation algorithms.
3.5.3. Least Square Estimation

After extracting the inliers points that belong to a roof plane, the next processing step is to
approximate the best fitting plane. This is carried out using the least square estimation,
which is a method for estimating the parameters by minimizing the squared discrepancies
between the points that belong to the plane. The objective is to adjust the parameters of a
model function to achieve the best fit for the point cloud data set. In this study, the data set
consists of n points with x, y, z coordinates, (i = 1,..., n), where, x; and y; are
independent variables and z; is a dependent variable the value of which is computed from

the raw point cloud.

First, the mean values X,Y and Z are computed from the x;, y; and z; coordinates of the
points that belong to plane. Next, the variance-covariance matrix C; is compute for each

data point using Eq. 8 [22].
P.(Pet,Pyi, Pyi) » PXY,Z)

G =1 (P = PY(P = P P=12 0k ®

(9)

C; = |cov (Yuxi) cov (¥yy) cov (yuz)| = |Tyx Oyy Tyz

cov (x;,%;)  cov (x,y;) cov (¥, ;) rxx Ty sz]
cov (z;,x;) cov(z,y;) cov(zi,z;)
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Where, P; is a data point with x;, y;, z; coordinates, P (X,Y, Z) is the mean vector of all

points, and k is the number of data points.

Next, the eigenvector is computed. To do that a total variance-covariance matrix, Cp is

computed by summing up the previously calculated variance-covariance matrices.
Cp = ?:1 Ci (10)

Oxx Txy Txz
Cr=ox T T (11)

Tox Tzy Ozz

Then, the eigenvector matrix is computed from the calculated total variance-
covariance matrix. The first column of this eigenvector matrix represents the normal of the
plane which best approximates the data points. The number 2 is an eigenvalue of Cp if and

only if Cp — Al is singular [30].

det(Cp —A) =0 (12)

The Eigen values 1;,4,, 15 are computed of solve equation (12).Also an Eigen vector, is

extracted of solve the (Cp, — AI)X = 0 for each (1,15, 13) .

X
Figure 3.11. Point cloud in two different coordinate systems.

As shown in Figure 3.11, e%, = 1, = N(a,b,c) , €%, = A, ,e¥; = A3, and o denotes the
origin of the Cartesian coordinate system, and d is the distance between the origin of the

Cartesian coordinate system and origin P of the rotated coordinate system X’Y’Z’.
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Next, the distance d from, P (X ,Y, Z) to the origin of the coordinate system is computed

using the inner multiplication of the normal vector N and P. Then, the x and y coordinates

are kept constant and the z coordinates are calculated from the plane equation (Eq. 14).

X
y

Z

d=N+*P >d=[a b c]* (13)

Thus, according to the plane equation (Eg. 5) the new Z values can be calculated as [29]:

Zi _ —(a*x;+b*y;+d) (14)

c

After computed the new Z values for the point cloud data sets, the best plane coordinates

are extracted as (Py;, Py;, Py; ).
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4. Results and Analysis

4.1. The result of the first study area
4.1.1. Detection of the Ground Points

The first step in the extraction of building plane is the detection of the ground points. The
detection of ground points was carried out using the LasGround function of the LasTools
LiDAR data processing software. As described inspection 3.1, the detection of the ground
points depends on several parameters that are determined by default based on the

characteristics of the study area and its topography.

The selected first study area is asmall part of the city of Bergama and with smooth
terrain. The LasGround function produces better results in the towns with smaller building
dimensions rather than their step size. Due to the existence of large size of buildings in this
area, the value of the step size parameter has been changed. Besed on this knowledge, the
Town and Flat options of LasGround were selected for the detection of ground points.
Furthermore, the height of every single point was calculated from the ground with the
Compute Z flag or LasHeight function [19]. The extracted ground points in this study area
are illustrated in Figure 4.1.

Figure 4.1. The filtered ground points of the first study area.
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4.1.2 Ground filtering and classifying the non-ground points

The cloud points were divided into two groups, which are (i) ground and (ii) non-ground
after identifying them. Based on the LasTools software [18], the first group (ground) was
labeled as class 2, while the second group (non-ground) was classified as buildings, tall
trees etc. The filtering of the points can be carried out with “filter with drop classification
number’ flag in Las2Las script [20]. Therefore, with the use of this function, the ground

points were filtered and extracted from the dataset as shown in Figure 4.2.

Figure 4.2. The separated non-ground points.

Next, the non-ground points were classified as buildings and tall trees. As mentioned in
section 3.1, the classification of non-ground points (carried out using the LasClassify

function of LasTools) depends on the below given several important parameters [23]:

1) The parameter ‘search area size’ detects neighboring points that are located at the
minimum defined from the ground. If the density of the points is less than two
pulses per square meter, the default value of this parameter is increased to 4 meters.
Since in the first study area the density of the points is more than two pulses per
square meter, the value for this parameter was not changed.

2) The second parameter is ‘planarity’. This parameter computes standard deviation
for the point cloud data sets in order to extract the roughness of the surface. For this
study area, the value for this parameter was increased due to terrain characteristics
and the point density. Moreover, good results were achieved for the planer surfaces
when the parameter value for the planarity was selected as 0.2.
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3) The third parameter is ‘forest ruggedness’. The value for this parameter varies with

the amount of vegetation and tall trees. Due to low density and low number of trees

present in this study area, the value for this parameter was not modified in order to

detect and classify the plants that fall in this area.

4) Accurate determination of the value for the parameter ‘ground offset’ reduces the

duration of the classification and increases the classification accuracy. Based on the

calculations in LasHeight function, the roof of buildings in this study area is higher

than the pre-defined value for this parameter. Therefore, to achieve satisfactory

results, the value of this parameter was chosen close to the heights of the buildings.

Therefore, after conducting several trials, the most appropriate classification parameter

values for the first study area were determined as given in Table 4.

Table 4. The parameter values used for the trials conducted. The parameter values of the

3rd trial have been defined to provide the optimum value set.

TRIAL 1 2 3 4 5
SEARCH AREASIZE (M) | 15 2 2 3 2
BUILDING PLANARITY 0.1 0.1 0.2 0.1 03
FOREST RUGGEDNESS 0.4 0.2 0.4 06 0.4
GROUND OFFSET (M) 2 2 3 2 1

After determining the best parameter values for the LasClassify function, the non-ground

points were classified as shown in Figure 4.3. Next, the building class was separated from

the classified non-ground points. The separated final building class is shown in Figure

4.4,
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Class number

Figure 4.3. The non-ground points classified as high vegetation and buildings.

Class Number

E-.

Figure 4.4. The points classified as buildings only.

4.1.3 Identifying the individual buildings

In the extracted building class dataset, the buildings are not separate and all are stored as
integrated. However, to extract roof planes of the buildings the building point cloud dataset
should be processed one building at a time in order to effectively apply the RANSAC
algorithm. To do that the point cloud that belongs to each building was separated from the
building point cloud dataset. This was performed using the Cloud Compare software. To
do that, the ‘Label connected component’ option of the Cloud Compare software was used
[25]. This option has two parameters that are the ‘octree level” and the ‘minimum points

per component’.
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The parameter ‘Octree Level” defines the minimal threshold between the compact sub-
clouds. In the Cloud Compare software, based on the point density and sample size, the
first level of this parameter was calculated. The variation of the Octree level has a direct
relationship with the number of identified sub-clouds [25]. In other words, the number of
the extracted sub-clouds is increased if the value of the octree level increases. In this study
area, the point density is 18.77 points per square meter and also the sample size is
computed automatically. Based on this knowledge therefore, the eight octree level was
found to be the most suitable level for the extraction of individual buildings in this study
area (Figure 4. 6). Also the first and fourth octree levels were calculated for the illustrative

purpose Figure 4. 5

Figure 4.5. A, the first octree level (cell size=71.7365), B, The fourth (4™) octree level
(cell size=8.96706).

Figure 4.6. The eighth (8") Octree level (cell size=0.560441).

The minimum number of points per component is denoted by the ‘Min. points per
components’ parameter. If this value is lower than the defined threshold, which is

previously computed based on the dimensions of the buildings that fall in the study
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area, the sub-cloud points cannot be detected as separate buildings. For example, if the
minimum dimensions of the buildings to be separated are 2 m x 3 m then, the number
of points to be extracted for each building would be about 100 (18.77 points X 3 m x 2
m).Therefore, for this study area, the minimum number of points for each component
was selected to be 100. And, the extracted individual buildings were saved separately
with the use of this parameter value, as shown in Figure 4.7.

Figure 4.7. The separated buildings that were stored individually.

4.1.4. The extraction of the roof planes using the RANSAC algorithm

The point cloud dataset that belongs to each individual building was imported to the
developed MATLAB script for the RANSAC algorithm. There are three important
parameters for the RANSAC algorithm written in the MATLAB script, that are the
threshold, probability of drawing the correct plane, and the probability of choosing an
inlier [27].

e The first parameter is ‘Threshold’, which refers to Euclidean distance from each
point to the plane. The point density is the most important factor for defining the
value for this parameter. For this study area, the RANSAC algorithm was run using

two threshold values of 10 cm and 20 cm.
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Figure 4.8. The comparison of the raw data and RANSAC results obtained using two

different threshold values (10 cm and 20 cm) for building # 3.

34



RANSAC would be applied as the best approximation on the points that they have the
same normal vector in the defined threshold tolerance. As for the shape of the buildings
and different planes intersection with the increasing the value of threshold, the probability
of applying approximation for points that in the same direction is high. The extracted roof
planes of building #3 using the threshold values of 10 cm and 20 cm are shown in Figure
4.8. As seen in the figure, the threshold value of 20 cm extracts the planes incorrectly due
to high approximation of the tolerance. In other words, if a high threshold values is used
the number of inliers and the distribution area increase causing therefore the wrong plane

Cross.

The threshold value to be selected depends on several factors, including the roof materials,
chimneys and the other objects that are located on the roofs as well as the edges of the

buildings as shown in Figure 4.9.

Figure 4.9. Different objects on the roofs

e The second parameter is the probability of drawing the correct plane which is
denoted by ‘t’. For this study area, the value for this parameter was selected as
0.99.[27]

e The third parameter is the probability of choosing an inlier. This parameter is
represented by ‘w’. The time for plane extraction from the point clouds depends on
this parameter. The value for this parameter was obtained based on the trial and

error method. For this study area, the value for this parameter was chosen as 0.3.

As shown in the below given Figure 4.10, due to the solar panels and chimneys on the
roofs of the buildings, the threshold value of 20 cm produced better results than the

threshold value of 10 cm.
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Figure 4.10. Comparison of the raw data and RANSAC results obtained using two
different threshold values (10 cm and 20 cm) for building #20.
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Therefore, the RANSAC algorithm was applied on the point cloud dataset of each of the
separated buildings and, for each building point cloud dataset, the planes were extracted.
The top and side views of the extracted planes of all buildings (#1-#23) are show in Figure
4.11.

Roof

Top view Side view
Code

37



38



39



40



Figure 4.11. The RANSAC results.
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According to the raw data and the results achieved using the RANSAC algorithm, there are
several effective issues with regard to the analysis of 23 individual buildings in this study

area.

A chimney is evident in Figure 4.12.A, which is associated with building #4. On the other
hand, in Figure 4.12.C, the same chimney is represented as an empty region (i.e. a gap) in
the results of the extracted plane using the RANSAC algorithm. The results show that
depending on their dimensions the chimneys on building roofs are detected as either empty

regions or a plane.

(A) Google Earth’s Picture (B) RANSAC Result (C) Chimney gap

Figure 4.12. The Google Earth’s picture and RANSAC results for building #4.

Similar to chimneys, solar panels also affect the results. Figure 4.13.C shows the plane of a
solar panel (Figure 4.13.A and B) extracted by the RANSAC algorithm. Such objects, if
located at the same level as the building edge and/or other objects that are present on the
roof, may affect the RANSAC results and trick the algorithm into detecting unnecessary

planes along inappropriate directions.

(A) Google Earth’s Picture (B) RANSAC Result (C) Solar panel region

Figure 4.13. The Google Earth’s picture and RANSAC results for building #20
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Trees and tall plants are also among the main factors that affect the plane extraction
process. Some trees are at the same height as buildings and therefore they effect the
classification of non-ground points. This means that the buildings may be classified as
trees and trees may be classified as buildings. This problem causes either to have an empty
region or the formation of irregular shapes in the extracted planes. For building #8, the
effect of trees located close to the building in roof extraction process is illustrated in Figure
4.14.

(A) Google Earth’s Picture (B) RANSAC Result (C) Tree gap region

Figure 4.14. The Google Earth’s picture and RANSAC results for building #8

The extracted building roofs were classified into different types. The RANSAC results
obtained in this study area indicate that the buildings are not of gable type as they are
composed of three planes. If the inner angle between the adjacent two planes is large then
it may be difficult for the algorithms to extract these planes as separate. However, the
developed script correctly extracts the planes in such conditions. As an example, the

correctly extracted planes of building #23 are shown in Figure 4.15.C.

(A) Google Earth’s Picture (B) Original data (C) RANSAC Result

Figure 4.15. The Google Earth’s picture and RANSAC results for building #23.
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4.2. Second study area

4.2.1. Detection of the ground points

Similar to first study area the first step of data processing was to extract ground points
from the point cloud dataset. For this process, several parameters were used. According to
topography and the density of high vegetation in this study area, the ground extraction
parameters of the LasGround function were changed. Furthermore, in the predefined
parameters for ground extraction, the ‘nature’ flag was selected. The obtained result is

shown in Figure 4.16.

Figure 4.16. The ground points of the second study area.

4.2.2. Ground points filtering and non-ground points classifying

After detecting the ground points, they were separated from the point cloud dataset and
then the non- ground points were classified into two distinct classes that are buildings and
tall trees. As shown in Figure 4.17 the non-ground points, before classification, were stored

as one class. Next, the classification process of the non-ground points was carried out.

1,000000 .

Figure 4.17. The non-ground points of the second study area.
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There are four factors in classifying the non-ground points into two classes [19];

1) The search area size depends on the density of points. Due to the, point density

in this test area (19.22 points per square meter), the dimensions of search area

window was not changed;

2) From the geometric point of view, the point cloud is divided into planer and

non - planer classes according to the value of the standard deviation and

predefined threshold value. As to this classification, the buildings are in the

first class and the tall trees are in the second class. In some wrong cases, the

trees due to smooth cutting can be identified as building. Accurate

determination of these parameters in the point cloud -classification is

important. In this test area the value for this parameter was selected as 0.1;

3) The third parameter in the classification is ‘ruggedness vegetation’ parameter.

Tall trees and plants are identified with this parameter. There are many tall

trees the building level in this test area. Therefore, to get the best results, the

value of this parameter was increased to 0.8;

4) The buildings average height in the second test area based on the LasHeight

calculation, is closer to the default value of this parameter. Therefore, the

‘ground offset ' remained unchanged.

In this study, the classification parameter values were defined by trial and error and are

shown in Table 5. The parameter values for trial 4 was found to be the best and used for

the following processing operations.

Table 5. The classification parameters defined

TRIAL 1 2 3 4 5
SEARCH AREA SIZE (M) 1.5 2 2 2 2
BUILDING PLANARITY 0.1 0.3 0.1 0.1 0.1
FOREST RUGGEDNESS 0.4 0.4 0.2 0.8 0.3

GROUND OFFSET (M) 2 2 2 2 3

Next, by using the best parameter values set and the classification function, the non-ground

points were classified as shown in Figure 4.18.
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Class number

Figure 4.18. The non-ground classified points.

After classifying the non-ground points, the point cloud that belongs to building class was

separated and saved as a different class as shown in Figure 4.19.

Class Number

E-.

Figure 4.19. The classified building points.

4.2.3. Identifying the individual buildings

The previously extracted point cloud data set that belongs to building class was saved as
one file. However, the developed RANSAC MATLAB script requires that the point cloud
that belongs to building class should be processed one building at a time. Therefore, to
separate the point clouds of individual buildings the ‘Label connected component’ function
of the Cloud Compare software was used [25]. There are two important parameters for

building separation in the Cloud Compare software.
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1) The first parameter is ‘Octree Level’. The shortest distance between the sub-clouds
depends on the density of the points. Similarly, the grid size and the number of sub-
clouds change with the increase of the octree level. As shown in Figures 4.20 and
4.21, the value of the first level of the octree parameter and the grid size, based on
the point cloud statistics, were automatically computed in the Cloud Compare

software.

-‘——-L,-.,_

-
ﬂ-"‘-ﬂ?‘-:f!g -
e T Wy o e B T i

Figure 4.20. A, The first octree level (cell size=75.9458), B, 5™ octree level (cell
Size=4.74661).

Figure 4.21. A, Second test area 9™ octree level (cell size=0.296663).

2) The ‘Minimum points per component’ is the second parameter. For this study area,
the octree level based on the minimum dimensions of the buildings present in this
region was computed as 9. Fits it, the cell size was computed automatically in the CC

software (Figure 4.22).
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Figure 4.22. The separated buildings that were stored individually.

4.2.4. The extraction of the roof planes using RANSAC

In this step, the RANSAC algorithm was used to extract roof planes of the buildings. There
are three important parameters in the developed RANSAC MATLAB script. The first
parameter is the Euclidian distance threshold. The point cloud data set for this study area
has been collected using the same scanner as the first study area. However, there are
different roof types in this study area. Therefore, this caused the value of threshold to be
increased until that supported the roof roughness. For this study area, the value of distance
threshold was selected as 15 centimeters. The second parameter is ‘t’, which refers to
probability of the drawing the correct plane in the RANSAC algorithms. This parameter
was also used in Eq. 4. For the extraction of the number of the iterations, the default value
of 0.99 was used for this parameter [27]. Finally, the third parameters is ‘w’, which
denotes to probability of being the inlier points in the RANSAC algorithms. The value of
this parameter was defined based on the trial and error method. For this study area, the
value of this parameter was selected as 0.3. Furthermore, this parameter also depends on
the duration of the RANSAC calculation.

After selecting the suitable parameters, the RANSAC algorithms was applied on the point
clouds of individual buildings to extract the planes. The side view and the top view of the

extracted building planes are shown in Figure 4.23.
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Figure 4.23. The side view and top view of the building planes extracted through the
RANSAC algorithm.
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Several important factors affect the results achieved for this study area.

e An example of a roof of a building with the chimney is shown in Figure 4.24. As
can be seen in the figure, the chimney was also extracted. Therefore, objects such

as the chimney on the roofs generate gaps on the planes.

Figure 4.24. The illustration of the planes extracted for Building #1.

e In some cases, the RANSAC algorithm extracts a plane parallel to the main roof
plane due to roof materials used in the buildings as shown in Figure 4.25. This
problems usually occur for the galvanized roofs with a sinusoidal model. Since
some of the buildings in the Bergama region have galvanized roofs with sinusoidal
patterns of long amplitudes, in some of the results, an extra plane parallel to the
main plane was extracted. On the other hand, since only a limited number of
buildings are of this type and a single threshold should be applied to all buildings,
the threshold was not significantly modified to match the few aforementioned

buildings.
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Figure 4.25. A, building (Building #10) with the extracted parallel planes
(the plane of white data points and the plane of red data points).

e Similar to first study area, the building roofs in this study region also include solar
panels that affect the results (Fig. 4.10). As can be seen in Figure 4.26, the gap
inside the plane of yellow color data points shows that the solar panel on the roof

was not detected as a plane.

Figure 4.26. The planes extracted from Building #19. The gap within

inside the plane of yellow color data points show the location

of a solar panel which was not extracted as a roof plane.
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In this study area, the building roofs are very diverse and have up to 4 roof planes,
as shown in Figure 4.27. B. Moreover, some building roofs contain dorms,
receivers etc. If the sizes of the planes of these objects are smaller than the
predefined threshold value then, these planes are not extracted and therefore gaps
occur in the point cloud of the corresponding positions. As shown in Figure 4.27.
A, the planes of the dorm of building #28 were not extracted causing a gap in

RANSAC results.

Figure 4.27. B, the building # 14 with four facets type.

Dense vegetation and tall trees that exist in this study area were taken into
consideration when performing the classification of the non-ground points. In this
study area, the buildings are located on slopes, enabling tall trees to cover the roofs
of some of the buildings. As it was mentioned previously in the first test area, the
overlapping of trees and building roofs leads to incorrect classification, which in
turn causes problems in the extraction of the planes. Figure 4.28 shows examples
for the overlapping of trees and building roofs, where the plane associated with the

building roof is incorrectly and irregularly extracted.
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Figure 4.28. Buildings #22, #28, and #7 with the neighboring tall trees that

partially occlude the roofs.
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5. Conclusions and Recommendations

5.1. Conclusions

In this study, building roof planes were automatically extracted from airborne LIDAR
point cloud data using the RANSAC algorithm, which is known to be one of the most
powerful plane extraction algorithms available. To do that a script was developed in the
MATLAB programming environment. As the inputs, the algorithm receives a distance
threshold between the points, the number of iterations, and dimensions of the smallest
plane to be extracted from the point cloud being processed. The raw LIiDAR data is
initially pre-processed. The pre-processing includes ground filtering, classify the non-
ground points and separet the building class to individual data sets. The final plane is
obtained by applying the least square estimation method on candidate points that form a
plane in the RANSAC algorithm. For the experiments, two study sites with different
characteristics were selected from the city of Bergama. The LIDAR point cloud data sets
used were collected through the Riegl scanner. The results achieved for both study areas
are quite promissing. Most of the roof planes were correctly extracted using the proposed

method. The conclusions reached during this research study are as follows:

The conclusions reached from the processings of the point cloud data sets in the first study

area are as follows:

e It was concluded that the plane extraction process is affected by the large-sized
diverse objects such as solar panels, chimney, and satellite dishes that are present
on rooftops. For instance, a solar panel can be identified as a plane if located at the
same level as one of the planes on the roof. Moreover, the panel can be extracted as
a void if it has a smaller size.

e The number of extracted planes is dependent on the distance threshold between the
planes and the points. In this study, two thresholds values of 10 cm and 20 cm were
tested. When a larger threshold value is used, the intersection angle between two
planes becomes large and therefore, two planes are wrongly extracted as one single
plane. It should be noted that a single threshold value of 10 cm was used in this
study for the processing of point cloud data sets for all buildings. However, it was
found that using a single threshold value for all buildings does not always produce

satisfactory results. For example, in the case of the procesing of the point cloud
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data for Building #20 in the first study area, the use of 20-cm threshold value
produced better results than that of the results achieved using the 10-cm threshold
value. This was due to the type of the roof material used for Building #20.

e For the gable roofs, if a large distance threshold between the plane and data points
is selected then, at the intersection of the neighboring planes, the plane identified
for a roof surface may incorrectly include points from the intersecting other plane.
Therefore, this problem can be solved by properly selecting the distance threshold

limit.

The conclusions reached from the processings of the point cloud data sets in the second

study area are as follows:

e It was found that due to roof materials of some of the buildings a false plane was
extracted parallel to the main one. However, in the study areas used the number of
buildings with such rooftops were limited, and therefore the use of single threshod
value of 10 cm for all buildings did not be quite affect the results in the present
case.

e It was found that the results are affected by tall trees that partially occlude the roofs
of the buildings that are in particular located on slopes. It was observed that parts of
the tall trees neigboring to buildings were identified as the extension of the roof
planes or as voids on the roofs. However, this problem can be some how solved by
excluding all points that belong to trees by means of an appropriate classification of
the non-ground points. In the plane extraction stage, a parameter value regarding
the minimum number of points that a plane must contain is needed to be defined to
avoid the extraction of small planes. It should be noted that this parameter value
must be defined based on the density of the point could dataset as the the point
density affects the results.

e |t was found that those buildings that share a single roof generate a single plane and
this matter affects the results. The separation of the roof planes in such conditions
can be dane either using additional data sets, such as high resolution imagery or by
visiting the site.

e The developed script in the MATLAB programming environment for the extraction
of the roof planes from a point cloud dataset that belongs to a building is quite
effcient. For example, it takes about 161 seconds for the extraction of the planes
from the point cloud data set of building #01 which consists of 1994 points. The
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processing times compued for several buildings using a computer with the
specifications “Intel(R) Xenon(R) CPU E5-1620 V2 3.70 GHz, RAM: 32 GB” are

given in Table 6.

Table 6. The processing time for RANSAC results.

Building Study Number of Distance Prpcessing
area planes treshold (cm) time (s)

#01 1 1994 10 161.3005
#16 1 3435 10 322.312
#38 2 5051 10 354.653
#30 2 4063 15 293.218
#02 2 2162 15 212.466
#17 1 2391 15 284.308

By assessing the extracted results and visually comparing them with both
theoriginal point cloud data and the Google Earth imagery it can be concluded that,
to a great extent, a close aggreement is evident between the extracted planes and
the original roof planes. Thus, this indicates that the approach used in this study is
quite robust in the extraction of building roof planes from airborne LiDAR data.
For buildings #1 and #8, the comparison of the raw data and the extracted planes
are shown in Figure 5.1.The information about the extracted planes such as the
area, perimeter, normal of the plane, etc would be quite useful for the generatiion of
3D building models.

Based on the results achieved in this study, the extracted planes is useful for setting

roof solar system on rooftop of the building.
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Figure 5.1. The comparison of the raw data (A) and RANSAC result (B) for buildings #1
and #8
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5.2. Recommendations

Based on the results obtained and the observations made in this study, the followings are

recommended for future studies:

1. In this research study, the developed RANSAC approch was tested on the point
cloud data sets one building at a time. It is recommended that the efficiency of the
approch can be increased by processing all the buildings at the same time.

2. The RANSAC algorithm selects three random points to cross the plane iteratively.
It is recommended that an approach is developed that selects the points intuitively
according the data features.

3. It is recommended the approach used in this study should be used in disaster

monitoring and in damage detection.
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