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ABSTRACT 
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SKILL LEVELS THROUGH SURGEONS’ HAND MOVEMENT 

BEHAVIORS 

Topallı, Damla 

Ph.D., Software Engineering Department 

Supervisor: Assoc. Prof. Dr. Nergiz Ercil Çağıltay  

March 2018, 105 pages 

 

 

Today, endoscopic surgeries have become an alternative for open procedures 

whenever possible. In this technique, the surgeon performs the operation by using a 

camera and light source, called „endoscope‟, and special operational tools in order to 

operate through small entry points. For such types of operations, surgeons are 

required to gain several skills, whose development needs hands-on practice in them 

which is a challenge in surgical education programs. Several technology-enhanced 

training environments have been developed to improve current surgical education 

programs. However, in order to better integrate these technologies into the traditional 

methods, it is critical to understand the skill levels and prepare appropriate content 

according to the trainees‟ requirements. In other words, the trainees‟ skill levels need 

to be assessed regularly for better preparing the content and the sequence of the 

training program according to their individual requirements. The current skill level 

assessment techniques are mainly based on expert observations which are criticized 

as expensive and subjective. In this respect, the present study aims to evaluate the 

surgical skills objectively by using hand movement metrics through computer-based 

simulation software in Neurosurgery. This study is conducted with 28 surgical 
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residents who were considered as intermediate or novice in their education. The 

evaluations are mainly concentrated on the hand movements of the trainees on 

computer simulated surgical training software. Accordingly, first an estimation of 

skill levels of intermediate and novice surgeons by using classification methods 

through performance metrics is performed. Secondly, velocity-based hand metrics 

are calculated using the hand movement data for classifying intermediate and novice 

surgeons. After that, by adapting BIT algorithm, which is an open source eye-event 

classification algorithm, to the hand movement data, new hand movement event 

metrics are proposed. Through these metrics, the participants‟ eye and hand 

movement events are analyzed. Finally, the results of the classification by using 

these newly introduced metrics are presented. As a conclusion, this thesis study 

attempts to better classify the intermediate and novice surgical residents‟ skill levels 

through their hand-movement events. The results are very promising showing that 

the proposed metrics potentially improve the accuracy of the classification. The 

researchers believe that, in the future by using the performance metrics together with 

hand- and eye- movement events metrics in a combined manner, the level of the 

accuracy may even be improved.  

 

Keywords: virtual simulation environment, surgical education, skill-based training, 

eye-hand coordination, hand movement event metrics, feature selection, 

classification  
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ÖZ 

 

SINIFLANDIRMA ALGORİTMALARININ CERRAHLARIN EL 

HAREKETİ DAVRANIŞLARI ÜZERİNDEN BECERİ SEVİYELERİNİN 

TAHMİNİNDE KULLANIMI 

Topallı, Damla 

Doktora, Yazılım Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Nergiz Ercil Çağıltay 

Mart 2018, 105 sayfa 

    

Günümüzde endoskopik ameliyatlar uygulanması mümkün olduğunda açık ameliyat 

yerine tercih edilen bir alternatif haline gelmiştir. Bu operasyonlarda cerrah, 

'endoskop' adı verilen bir kamera ve ışık kaynağı ve özel operasyonel araçları 

kullanarak işlemi gerçekleştirir. Bu tür ameliyatları gerçekleştirebilmek için 

cerrahların sürekli pratik yaparak gerekli becerileri kazanmaları gerekmektedir. 

Dolayısıyla bu becerilerin geliştirilmesi günümüzdeki eğitim programları açısından 

önemli bir hedeftir. Mevcut cerrahi eğitim programlarını iyileştirmek üzere çeşitli 

teknolojiler ile zenginleştirilmiş eğitim programları geliştirilmektedir. Ancak, bu 

teknolojileri geleneksel yöntemlere daha iyi entegre edebilmek için, cerrahların 

beceri düzeylerini anlamak ve gereksinimlerine göre uygun içerik hazırlamak 

önemlidir. Diğer bir deyişle, eğitim programının içeriğinin ve sırasının eğitim alan 

kişilerin bireysel ihtiyaçlarına uygun bir şekilde hazırlanması için, beceri 

düzeylerinin düzenli olarak değerlendirilmesi gerekmektedir. Mevcut beceri seviyesi 

değerlendirme teknikleri, çoğunlukla pahalı ve öznel olması nedeniyle eleştirilen 

uzman gözlemlerine dayanmaktadır. Bu bağlamda, bu çalışma, nöroşirürjide 
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bilgisayar tabanlı simülasyon yazılımı ile el hareket ölçütlerini kullanarak cerrahi 

becerilerin objektif olarak değerlendirmesini amaçlamaktadır. Bu çalışma cerrahi 

eğitim alan 28 öğrenci ile gerçekleştirilmiştir. Değerlendirmeler temel olarak 

katılımcıların bilgisayara dayalı benzetim yazılımı üzerindeki el hareketleri esas 

alınarak gerçekleştirilmiştir. Buna göre, öncelikle benzetim tabanlı bir cerrahi eğitim 

yazılımı ortamından alınan performans ölçütleri kullanılarak öznitelikler çıkarılmış, 

çeşitli sınıflandırma algoritmaları ile orta ve acemi düzey cerrahların beceri düzeyleri 

tahmin edilmiştir. İkinci olarak benzetim ortamında el hareketlerine dayalı hız tabanlı 

ölçütler hesaplanmış, bu ölçütler orta ve acemi düzey cerrahları sınıflandırmak için 

kullanılmıştır. Daha sonra, açık kaynaklı bir göz hareketi sınıflandırması algoritması 

olan BIT algoritmasını, el hareketleri verisine uyarlayarak, yeni el hareketi ölçütleri 

önerilmiştir. Bu önerilen ölçütler ile, katılımcıların göz ve el hareketi verileri analiz 

edilerek, orta ve acemi düzey cerrahların el-göz davranışlarındaki farklılıklar 

anlaşılmıştır. Son olarak, bu çalışmada önerilen el hareket ölçütleri kullanılarak 

öznitelikler çıkarılmış ve sınıflandırma algoritmaları kullanılarak orta ve acemi 

düzey cerrahların beceri düzeyleri tahmin edilmiştir. Sonuç olarak, bu çalışmada, el 

hareketi verilerinden elde edilen ölçütler kullanılarak, acemi ve orta düzeydeki 

cerrahların beceri seviyelerinin daha iyi anlaşılması hedeflenmiştir. Sonuçlar, 

önerilen özniteliklerin tahminlerin doğruluğunu potansiyel olarak arttırdığını 

göstermektedir. Araştırmacılar, gelecekte, el ve göz özniteliklerinin bir arada 

kullanılması ile performans değerlendirmelerinin doğruluk seviyesinin daha da 

iyileştirilebileceğine inanmaktadırlar. 

 

Anahtar Kelimeler— sanal benzetim ortamları; cerrahi eğitim; beceriye dayalı 

eğitim; el-göz koordinasyonu; el hareketi ölçütleri; öznitelik seçimi; sınıflandırma 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Classification is an important concept that people use very often in their daily lives. 

Classification helps people to better recognize and group things. For instance the 

types of animals, plants and everything can be better organized and studied through 

classification. In order to classify objects and things their common behaviors and 

features are detected and based on these rules the classification is implemented. In 

the world of computer-based analysis, classification techniques have been used to 

automatically differentiate the events, things and objects. Several classification 

algorithms have been developed to improve the accuracy level of the classification 

that can be used in several fields. Recently, the classification algorithms are being 

used to analyze data and create support in different types of information systems, 

such as music mood detection (Bhat, Amith, Prasad, & Mohan, 2014), face 

recognition (Larrain, Bernhard, Mery, & Bowyer, 2017), predicting diabetes (Kaur & 

Chhabra, 2014) and heart disease (Kumar & Sahoo, 2015). 

 

With the technological developments in the field of surgery, minimally invasive 

surgical (MIS) techniques have become the standard of surgical care for many 

patients. With this technology, surgical fields now incorporate video imaging with 

the help of camera and miniature surgical devices rather than fingers (Minna 

Silvennoinen, Helfenstein, Ruoranen, & Saariluoma, 2012). Yet, despite its several 

benefits for better treatment of patients, it is known that MIS operation techniques 

are difficult to learn and more than 30 procedures for the learning curves have been 
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reported (Dankelman, Grimbergen, & Stassen, 2007; Moore & Bennett, 1995). The 

number of procedures required can be even increased to 100 procedures depending 

on the type of the operation (Lehmann et al., 2005). Schreuder (2011) mentioned in 

his study that a problem is the pressure on reducing the operation time in order to be 

not only cost-effective, but also ethically considered (Schreuder, Oei, Maas, Borleffs, 

& Schijven, 2011). Studies show that MIS is more demanding and requires more 

preparation than open surgery (Gomoll, O'toole, Czarnecki, & Warner, 2007; Panait, 

Bell, Roberts, & Duffy, 2008; Tuijthof et al., 2010). For this reason, strengthening 

and training of the required skills is essential for surgical candidates in the early 

training phase of MIS. Traditional skills do not guarantee success in MIS (Tuijthof et 

al., 2010; Waxberg, Goodell, Avgerinos, Schwaitzberg, & Cao, 2004). Hence, each 

individual needs to master the surgical skill before operating on actual patients 

(Schreuder et al., 2011). A large part of surgical skills are gained in the operating 

room while operating on patients (Dankelman & Di Lorenzo, 2005). Hence, 

developing these skills before entering an operating room provides a more focused 

and efficient performance, reduces the time spent in the operating room, and 

enhances patient safety (Waxberg et al., 2004). 

Unlike open surgery, MIS is, by nature, a technique that is very suitable for 

simulation based training (Schreuder et al., 2011). The specific psychomotor skills 

and eye–hand coordination needed for this type of surgery can be developed easily 

through simulation (Derossis et al., 1998; Grantcharov, Bardram, Funch-Jensen, & 

Rosenberg, 2003). For skills training, box trainers or computer-enhanced trainers 

may be used, but in the past decade, new virtual reality (VR) trainers have been 

introduced for minimally invasive techniques and purposes. Nowadays, simulation 

training, often enhanced by VR techniques, is used for a wide range of training 

purposes: laparoscopy (Gurusamy, Aggarwal, Palanivelu, & Davidson, 2008), robot-

assisted surgery (Kenney, Wszolek, Gould, Libertino, & Moinzadeh, 2009), 

endoscopy (Bittner, Mellinger, Imam, Schade, & MacFadyen, 2010), cystoscopy 

(Schout et al., 2010), hysteroscopy (Bajka et al., 2010), and intervention radiology 

(Ahmed et al., 2010). 

Earlier studies show that it is possible to transfer the skills learned on a simulator to 

real operations, leading to fewer errors and shorter operating time (Larsen et al., 
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2009; Thijssen & Schijven, 2010). Recently, e-learning programs and „„serious 

games‟‟ for MIS embedded in training curricula, step-by-step approaches 

encouraging the making and solving of mistakes, and a diversity of storylines have 

been introduced (Verdaasdonk et al., 2009). However, simulator training cannot 

stand on its own and needs to be part of a training curriculum. The way the surgical 

simulator is used in a particular teaching curriculum determines its validity for the 

cause. Studies show that proficiency-based skill training lead to fewer errors in the 

operating room and reduce the operating time. In that concern, several simulation 

systems have been developed to further support the surgical education (Robb, 

Aharon, & Cameron, 1997; Rudman et al., 1998). However, studies in the literature 

show that the research conducted for the surgery education is very limited when it 

comes to technical skills assessment (Derossis, DaRosa, Dutta, & Dunnington, 

2000). According to Andersen, simulation applications that allow the assessment and 

learning of expert intra-operative judgment should include the following outline: 

 Cognitive task analysis (CTA) of the operative steps and potential points of 

risk for each surgical procedure. 

 The ability to detect the situational awareness of the performer and the 

options considered to avoid error at critical steps. 

 An assessment (scoring) of options considered or attempted. 

 Immediate evaluation feedback to inform improved performance. 

 A program of deliberate practice in which progressively more challenging 

scenarios can be introduced, based on the trainee‟s demonstrated skills 

(Andersen, 2012). 

In that concern, the classification methods may improve the surgical education 

programs by providing more objective and cheaper assessment based on the data 

collected through computer-simulation software.  

 

This study attempts to better understand the skill differences of intermediate and 

novice surgical residents through their hand movements. For this, through haptic user 

interfaces the hand movement‟s data of the surgical residents are collected while they 

were performing tasks that are defined in computer-simulated endoscopic surgery 
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scenarios. For this purpose, four scenarios have been used. This study is conducted 

by 28 surgical residents who are considered as intermediate or novice in their 

education. The data collected from such computer-based simulation environments 

can be grouped as performance data such as the task accuracy and the task duration 

to successfully perform each task. In addition to these metrics some behavioral data 

also can be collected from these environments. For instance, the eye-behaviors of 

participants while they are performing surgical tasks can be collected and analyzed. 

Additionally, the data about hand behaviors can also be collected. Based on the 

collected data, first an estimation of skill levels of intermediate and novice surgeons 

by using classification methods through performance metrics taken from the 

computer simulation-based surgical training environment is performed. Secondly, 

classification is performed through velocity-based hand metrics. These metrics are 

calculated by getting data from the simulation software that is developed by using the 

Unity game engine (Unity, 2017). In the literature, there is no study that gets the 

velocity-based metrics from such game engines. By using this approach, a more 

standardized and easier method is proposed for calculating velocity-based metrics. 

Besides these attempts, by adapting Binocular-Individual Threshold (BIT) algorithm, 

which is an open source eye-movement event algorithm to the hand movement data, 

new features are proposed. Using these features, the participants‟ eye and hand 

movement events are analyzed, and another classification attempt has been 

conducted. 

 

This thesis is organized as follows: Chapter 2 describes the research methodology of 

the study. Chapter 3 presents the estimation of skill levels of intermediate and novice 

surgeons by using classification methods through performance metrics. Chapter 4 

covers the results of classification through velocity-based hand metrics. Chapter 5 

presents the differences of intermediate and novice surgeons based on eye and hand 

movement events, in which new features are proposed by adapting BIT algorithm. 

Chapter 6 covers the results of classification using newly proposed hand metrics. 

Chapter 7 details the discussion and conclusion of the study, and finally limitations 

and future work is provided in Chapter 8. 
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CHAPTER 2 

 

 

METHODOLOGY 

 

  

Today, the availability of objective metrics of surgical performance is considered to 

be critical for training surgeons and evaluating their performance. In this respect, 

virtual reality simulators provide objective assessment of surgical skill levels. These 

simulators are able to measure the performance parameters of the surgeons‟ in 

surgical simulation environment providing insights about their skill levels. 

Accordingly, the aim of this study is to understand the skill differences of 

intermediate and novice surgical residents through their hand movements. The study 

is conducted with 28 surgical residents. Their performances while performing four 

scenarios of simulated surgical tasks were monitored and metrics based on their 

performance and behaviors such as eye and hand events for each hand were 

recorded. Based on the collected data, first skill levels of intermediate and novice 

surgeons are estimated by using classification methods through performance metrics. 

Later, velocity-based hand metrics were calculated using the hand movement data -

the coordinate points gathered from simulation- based system- in Unity (Unity, 

2017). These features are then used for classifying intermediate and novice surgical 

residents. Additionally, participants‟ eye and hand movements were analyzed and 

new hand features were proposed according to the level of smoothness of movement. 

In this study, an open source eye movement classification algorithm, namely BIT, is 

adapted to classify the hand movement of surgical residents. Finally, these newly 

introduced hand metrics are used to estimate the skill levels of surgical residents. The 

research procedure of this thesis is given in Figure 2.1 below.
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Figure 2. 1 Research Procedure of the Thesis 
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2.1 Participants 

A total of 28 surgical residents (21 doctors and 7 interns) from the Department of 

Neurosurgery (12 participants) or Otolaryngology (ENT) (9 participants) from the 

Hacettepe Medical School in Ankara, Turkey, participated in this study. There were 

two skill level groups of participants. Among those, 16 participants (3 female) were 

novices whose average age was 26.94 (SD = 6.57) working as research assistants in 

the neurosurgery and ENT departments. On the average, they had observed 12.69 

(SD = 16.21) and assisted in 5.75 (SD = 13.48) surgeries. On the other hand, 12 

participants (1 female) were intermediates whose average age was 30.15 (SD = 2.15). 

On the average, they had observed 56.53 (SD = 31.97) and assisted in 34.85 (SD = 

30.17) surgeries. On the average, the intermediate group had performed 16.00 (SD = 

17.69) operations as surgeons. Detailed information about the participants is given in 

Table 2.1. 

Table 2. 1 Information about Participants 

  Gender Endoscopic Surgical Expertise 

Skill Level Age F M Observed Assisted Performed 

Intermediate 30.15 1 11 56.53 34.85 16.00 

Novice 26.94 3 13 12.69 5.75 0.00 

 

In this thesis, the categorization of skill levels  is defined based on Silvennoinen et 

al.‟s study (M Silvennoinen, Mecklin, Saariluoma, & Antikainen, 2009). 

Accordingly, participants who have operated at least one endoscopic surgery are 

considered as „intermediate‟, whereas others who have observed and assisted in 

endoscopic operations, but have not performed any surgeries by themselves are 

considered as „novice‟.  

2.2 Scenarios 

Four scenarios (prepared in single-handed and both-handed versions) were used for 

the surgical training process used in the experimental study.  Two of them (Scenarios 

1 and 2) were prepared for the purpose of practicing general skills, such as learning 
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the usage of the surgical tools with an endoscope and gaining depth-perception in a 

simulated 3D environment. The other two scenarios were closer to the operational 

procedures, using the simulated anatomical model. Specifically, in the both-hands 

version of these scenarios, it is aimed to improve right- and left-hand coordination 

and eye-hand coordination skills.  

Scenario-1: Moving the Ball into the Box  

„Moving the Ball into the Box‟ scenario for single-hand and both-hands (tool and the 

light source with camera) are shown in Figure 2.2-A and B, respectively. In this 

scenario, each participant is asked to approach the red ball with the haptic device, 

catch it, and then move it into the green box. The position of the ball and the box 

changes randomly in each task. The participant must complete this process 

successfully, which includes 10 tasks within the allocated period. If the process is not 

completed within 10 seconds, the ball and the box disappear. 

 

Figure 2. 2 Moving the Ball into the Box (Scenario-1) 

Scenario 2: Catching the Balls in boxes with an Endoscope  

The layout of this scenario is prepared for single-hand and both-hand versions as 

shown in Figure 2.3-A and B, respectively. In this scenario, participants should catch 

the red balls in the cubes with the camera as the tool using their dominant hand in the 

single-hand version. Similarly, in the both-hand version, the camera is used as the 

tool controlled by their dominant-hand, whereas the light is used as the endoscope 

and controlled by the non-dominant hand. In order to catch the red balls, it is 

important to approach the ball from the right angle by using the camera within the 
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given time period of time, which is 10 seconds. In this scenario, ten balls appear one 

after another in different cubes randomly on the scene.  

 

 

Figure 2. 3 Catching the Objects in boxes with Endoscope (Scenario-2) 

Scenario-3: Clearing the Nose 

„Clearing the Nose‟ scenario for single-hand and both-hand (tool and the light source 

and camera) versions are shown in Figure 2.4-A and B, respectively. In this scenario, 

the participant must remove the green ball-like objects, which are spread through the 

nose model. In the single-hand version, the camera acts as the tool and the participant 

removes the objects. The camera is used as the light source and the cautery model as 

the tool to collect the objects in the both-hand version. In case of a collision i.e. if the 

haptic device touches the tissue, it provides a force feedback that feels like the device 

is pushed back in the hands of the user. 

 

 

Figure 2. 4 Clearing the Nose Scenario (Scenario-3) 

Scenario-4: Following the Ball with an Endoscope  
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In this scenario, the participant should move the white ball to follow a path starting 

from the yellow node until reaching the green node on the simulated anatomical nose 

model (See Figure 2.5-A: single-handed and B: both-handed) representing a higher 

fidelity. In order to move the white ball, the participant has to stay within the right 

angle and distance, which is approved by the focus area turning green as in Figure 

2.5-A.  Otherwise, the focus area remains red, indicating that the participant cannot 

move the ball in the scene until approaching it with a right angle.  

 

Figure 2. 5 Following the Ball with an Endoscope (Scenario-4) 

Specifically in both-handed version, the coordinated movement of both hands 

controlling the camera and the light source is required to complete the task 

successfully. 

2.3 Metrics in Scenarios 

All scenarios are designed and developed as ten repetitive tasks, except Scenario-4, 

which has fifteen tasks. The metrics recorded automatically by the computer for each 

scenario appeared in Table 2.2. 

Table 2. 2 Metrics Recorded for each Scenario 

 Scenario 

 I II III IV 

Metrics DH/NH BH DH/NH BH DH/NH BH DH/NH BH 

Time         

Distance         

Camera distance         

Accuracy         

Catch time         

Time in Error         

Distance in Error         

Deviation count         
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For each specific scenario, a total of eight metrics were collected while performing 

the tasks in the simulation environment. The three common metrics among all 

include; „time‟ which is the total time period in seconds for completing each task, 

„distance‟ which is total distance covered by the haptic device as the tool and 

„accuracy‟ which determines if the task is performed thoroughly in the given time 

period. As stated before, each task has to be performed successfully within the given 

time. In the both-hand scenarios, along with the tool distance, the camera distance 

covered by the haptic device as camera, is also recorded. „Catch time‟ is measured 

only for Scenario-2, which is the partial task time to catch the green ball. „Time in 

Error‟ is the duration in which the focus area remains red representing the idle time, 

„Distance in Error‟ is the distance travelled while the focus area is still red, and 

„deviation count‟ is the number of collisions with the tissue, and only measured in 

Scenario-4. 

2.4 Apparatus 

In order to control the force applied on the tissue, in theory, a surgeon would like to 

feel the force, position and other tactile information generated by the instrument 

(Westebring–Van Der Putten, Goossens, Jakimowicz, & Dankelman, 2008). In MIS, 

and in comparison to open surgery, the sense of touch is limited, hence, surgeons 

must rely more on the feeling of net forces resulting from tool-tissue interactions 

(Basdogan et al., 2004). For this reason, haptic devices can be integrated into training 

simulations for MIS procedures (Basdogan et al., 2004) in order to provide a similar 

real-world practice and realistic sense of touch. Accordingly, in this study, a mid-

range professional „Geomagic Touch‟ haptic device is used as seen in Figure 2.6. 
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Figure 2. 6 Experimental Setup through Haptic Devices 

For the present work, using this device, the authors obtained one hundred data points 

per second representing 3D coordinates of hand motion for each task in each 

scenario. Additionally, the eye-gaze data of the participants is collected with a 60 Hz 

eye-tracking device, the Eye Tribe (The Eye Tribe, 2014). This tool is used to track 

the user‟s eye movements and calculate the on-screen gaze coordinates.  

2.5 Experimental Procedure 

At the beginning of the experiment, the participants were asked to fill out a 

questionnaire including their demographic information, dominant-hand and 

experience level (i.e. years in the department, number of operations observed, 

assisted, and performed). After that, a brief instructional video was shown and oral 

explanations were given to the participants about the experimental procedure. Each 

participant was asked to perform an introductory level scenario, named “Using a 

Haptic Device”, shown in Figure 2.7, with the aim to train the participants for the use 

of the haptic device since most participants had never been involved in such 

experimental studies before. 
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Figure 2. 7 Using Haptic Device Scenario 

 

Four scenarios were developed for surgical training purposes as a part of an 

Educational Computer-based-simulation Environment (ECE) project. All of these 

scenarios were implemented in Unity 3D with C#.  Unity provides a high fidelity, 

low cost and easy to use simulation environment (Craighead, Burke, & Murphy, 

2008). Each scenario was prepared in two versions: single-handed and both-handed. 

Accordingly, each scenario was performed under three different hand conditions (i.e. 

dominant hand, non-dominant hand, and both-hands). The experimental study was 

started with single-handed tasks, after completing all the tasks of that scenario, 

continued with both-handed tasks. In order to eliminate the order effect, half of the 

participants started the experiment with their dominant hands, and the other half with 

non-dominant hands. In both-hand tasks, the surgical tool is controlled by the 

dominant hand, whereas the camera (as endoscope) is controlled by the non-

dominant hand. During the experimental study, the performance data for each task 

and the eye and hand movements of the surgical residents were collected using haptic 

devices.  

2.6 Data Analysis Methods 

In this study, all of the scenarios were implemented in Unity 3D using C#.  Through 

this computer-based simulation environment, performance and hand movement data 

of the participants‟ is collected using haptic devices. Additionally, new velocity-

based features (i.e. distance, velocity and angular velocity) were calculated using the 

3D coordinates of position and rotation vectors of both-hands in Unity 3D 
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environment. The features for classification were extracted using MATLAB 

(R2015a). The feature selection, cross validation and classification processes were 

performed within WEKA machine learning suite (Witten, Frank, Hall, & Pal, 2016).  

 

Moreover, to understand the differences between intermediate and novices a 

statistical data analysis was performed on SPSS (version 21; IBM Corporation). In 

this study, two different statistical analyses were performed using SPSS. Firstly, the 

difference between the intermediate and novice groups based on their hand 

movement metrics was analyzed using Mann-Whitney U test. This is a non-

parametric test alternative to the independent-samples t-test used when the sample 

size is lower than 30 and the normality assumptions were violated. Secondly, binary 

logistic regression analysis was performed to estimate the skill levels of surgeons 

based on their hand movement metrics.    
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CHAPTER 3 

 

 

ESTIMATING SKILL LEVELS USING CLASSIFICATION 

ALGORITHMS THROUGH PERFORMANCE METRICS 

 

 

In this section, current methods for surgical skill assessment were discussed through 

experience level definition and classifications found in the literature in order to 

provide a standard view of surgical skill levels. The results of classification on four 

scenarios based on performance metrics such as time, distance, catch time and 

accuracy were presented. 

3.1 Defining Surgical Skill Levels 

Previous studies show that there are different classifications of experience levels 

such as dividing the groups into two levels, such as beginner and experienced; three 

levels experienced, intermediate and novice; or more than three levels. Details of 

such two-level, three-level, or other classifications appear in what follows. 

2 levels (Novice and Expert) 

Aggarwal et al.‟s study (2006) aims to establish and validate a VR (virtual reality) 

simulator curriculum to provide an evidence-based approach for laparoscopic 

training program (Rajesh Aggarwal, Grantcharov, Moorthy, Hance, & Darzi, 2006). 

In that study, the minimally invasive VR simulator (MIST-VR) has 12 abstract 

laparoscopic tasks, each at 3 graduated levels of difficulty (easy, medium, and hard). 

These tasks are assigned to two different groups, twenty medical students (novices) 

and ten experienced laparoscopic surgeons (experts) in order to highlight the 

performance differences between two groups. The expert criterion was defined as 
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having performed more than 100 laparoscopic cholecystectomies. The performance 

difference between the two groups was measured by the time taken to perform the 

tasks, the path length, and the number of errors for each hand (Rajesh Aggarwal et 

al., 2006). 

3 levels (Novice, Intermediate and Expert) 

Based on the literature findings, generally the participants in such studies are divided 

into three experience levels; novice, intermediate and expert. For instance, Shetty et 

al. (2012) claims that camera handling and navigation are essential skills in 

laparoscopic surgery, and that there are no standardized VR-based camera navigation 

curricula available (Shetty et al., 2012). For this reason, in order to improve technical 

performance in the operating room, virtual reality (VR) simulation may be useful to 

develop camera skills for novices. Accordingly, an experimental study is conducted 

to understand the effect of VR simulation strategies for laparoscopic training. The 

participants are divided into three groups novice, intermediate, or advanced, based on 

the number of the surgeries they have assisted or performed: novice (performed or 

assisted in less than 10 laparoscopic surgeries), intermediate (performed or assisted 

in 10 to 100 laparoscopic surgeries) and advanced (performed more than 100 

laparoscopic surgeries) (Shetty et al., 2012). Similar to this work, Srivastava et al. 

(2004) also conducted an experimental study in the field of shoulder arthroscopy 

operations, where the participants were divided into three groups based on their 

hands-on experience, such as novice (no hands-on experience), intermediate 

(performed or assisted in 1 to 50 shoulder arthroscopies) and expert (performed or 

assisted in more than 50 shoulder arthroscopies) groups (Srivastava et al., 2004). 

Another study conducted by Schreuder et al. (2009) consists of both basic skills and 

gynecologic procedural simulations to compare the performance among three groups; 

novice (no hands-on laparoscopic experience), intermediate (performed 10 to 75 

laparoscopic procedures), and expert (performed more than 100 laparoscopic 

procedures), similarly based on the number of laparoscopic procedures performed 

(Schreuder, van Dongen, Roeleveld, Schijven, & Broeders, 2009). A similar surgical 

level classification was performed to analyze the learning rate for laparoscopic skills 

on a virtual reality training system (Grantcharov et al., 2003). In Grantcharov et al.‟s 
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(2003) study, the assessment of laparoscopic skills is carried out in terms of time, 

errors, and the economy of hand movements in the simulator with the aim to define 

the ability of the simulator to differentiate between surgeons with different 

laparoscopic experience, again based on the number of laparoscopic surgeries 

performed: beginner (fewer than 10 laparoscopic procedures), intermediate 

(performed 15 to 80 laparoscopic procedures) and master (performed more than 100 

laparoscopic procedures) (Grantcharov et al., 2003). In Korndorffer et al.‟s (2005) 

study, it is aimed to differentiate between participants at different levels of 

experience by using the completion time as the performance metric (Korndorffer et 

al., 2005). The data were collected from participants including novice (medical 

students), intermediate (post graduate 2-4 years), and advanced (expert surgeons) 

groups (Korndorffer et al., 2005). Similarly, Scott et al.‟s study (2001) documents the 

laparoscopic performance of three groups of subjects with different levels of 

experience over the curricula, based on task completion time (Scott et al., 2001). 

Additionally, the relationship between task completion time and the number of 

practice repetitions was also examined (Scott et al., 2001). 

More than 3 levels  

Balik et al.‟s study (2010) grouped surgeons into four levels where the operative 

experience was represented by the individuals‟ number of previous surgical 

procedures carried out (Balik et al., 2010). Four skill levels were determined as 

follows: Level 1: the first 60 procedures, Level 2: 61 to 120 procedures, Level 3: 121 

to 180 procedures, and Level 4: more than 180 procedures (Balik et al., 2010). 

Another study conducted by Windsor, Diener & Zoha (2008) has defined five levels: 

undergraduate tertiary students, medical students, novice surgical trainees, advanced 

surgical trainees and experienced laparoscopic surgeons (Windsor, Diener, & Zoha, 

2008). 

Similarly, Silvennoinen et al. (2009) also categorizes expertise and skill levels in 

minimal invasive surgery into five groups, namely „beginner‟ (merely has non-

specific knowledge of a domain), „novice‟ (just started to develop the elementary 

knowledge assumed in the domain), „intermediate‟ (already extended his/her 

knowledge above the beginner level), „sub expert‟ (a medical specialist being 
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capable of solving clinical problems outside their domain of expertise), and „expert‟ 

(has specialized knowledge of the subdomain) (M Silvennoinen et al., 2009). 

3.2 Assessing Surgical Skill Levels 

Recent developments in MIS have resulted in an increased interest in objective 

assessment methods for surgical skills. The observation process carried out by 

training specialists is a subjective method by nature. For this reason, certain objective 

measures have been proposed to improve the quality of assessment, such as objective 

structured assessment of technical skills (OSATS), a method for testing specific 

operative skills in surgical trainees (Cagiltay, Ozcelik, Sengul, & Berker, 2017; 

Martin et al., 1997). Van Hove et al. (2010) conducted a systematic search for studies 

addressing the validity and reliability of the methods for objective skills assessment 

within surgery and gynaecology (Van Hove, Tuijthof, Verdaasdonk, Stassen, & 

Dankelman, 2010). It is reported that OSATS and Virtual reality simulators have 

been studied most, OSATS can be accepted as a “gold standard” for objective skills 

assessment purposes (Van Hove et al., 2010). However, it is also stated that the use 

of OSATS in the actual operating theatre is not as frequent, leading to doubts 

whether it can distinguish between different levels of performance in such real 

scenarios (Van Hove et al., 2010). Moorthy et al. (2003) also reported certain 

constraints, such as resources and time to find supervising surgeons to observe and 

evaluate the performance of trainees as a drawback of OSATS assessments 

(Moorthy, Munz, Sarker, & Darzi, 2003). 

 

Based on the findings in the literature, it is seen that no standard method is defined to 

determine the experience levels of surgeons. In general, only the number of 

operations performed in a specific surgical procedure is considered as a cutoff point 

while determining skill levels. However, the number of operations performed does 

not necessarily imply that a surgeon can operate professionally without flaws (Darzi, 

Smith, & Taffinder, 1999). Also, assessment may be easier in the surgical skills 

training laboratory than in the theatre, where the tasks should be organized carefully 
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for realistic surgical practice considering the essential requirements of feasibility, 

reliability, and validity (Darzi et al., 1999).  

 

Different from OSATS, virtual reality simulators are widely used as a practice-based 

method in surgical skill assessment, such as Minimally Invasive Surgical Trainer – 

Virtual Reality (MIST-VR), a subject performs a task holding two standard 

laparoscopic instruments whose movements are electronically tracked, recorded and 

evaluated. The system provides low-level analysis of the positions, forces, and times 

recorded during training to assess surgical skill (Darzi & Mackay, 2002; Lin, 

Shafran, Yuh, & Hager, 2006) also defined as a useful objective assessment tool for 

evaluating the psychomotor skills of senior, junior, and novice laparoscopists 

(Gallagher, Richie, McClure, & McGuigan, 2001). 

 

There are other studies for objective skill level assessment using classification 

methods. For instance, Chmarra et al. (2010) conducted a research with 31 

gynecologic surgical residents, 10 were „experienced‟ who performed more than a 

hundred , 10 were „intermediate‟ who performed 10 to 100 laparoscopic surgical 

procedures, and 11 were „novice‟- medical students who had no prior experience in 

laparoscopic surgery (M. K. Chmarra, Klein, de Winter, Jansen, & Dankelman, 

2010). Considering six metrics: total time, path length, depth perception, motion 

smoothness, angular area, and volume, the study uses Linear Discriminant Analysis 

(LDA) method is used for classification, estimating the skill levels with an accuracy 

of 74.2% (M. K. Chmarra et al., 2010).  

3.3 Materials and Methods 

In order to estimate the skill levels, the performance data of the participants is 

obtained while working on four scenarios, and in three different hand conditions, 

namely dominant hand (DH), non-dominant hand (NH) and both-hand (BH). There 

were three main stages performed as the method of this chapter: feature extraction, 

feature selection and evaluating classifiers, as given in Figure 3.1. 
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Figure 3. 1 Methodology for Classification on Performance Metrics  

 

In the first stage, the features were extracted using performance metrics such as time, 

distance, camera distance, catch time, deviation count and accuracy for each 

scenario. In addition to these metrics, basic statistical functions were used to extract 

some features such as sum, min, max, mean, standard deviation and variance for each 

task in the scenarios. Number of all extracted features for all hand conditions in four 

scenarios was given in Table 3.1 below. 

Table 3. 1 Number of Features Extracted (All Features) for Scenarios 

 # of Features 

Scenarios DH NH BH 

I 55 55 72 

II 55 55 55* 

III 72 72 89 

IV 136 136 158 

 

* In Scenario-2 under both-hand condition, there occurred a machine failure problem while gathering 

hand data for the distance of tool as controlled by the dominant-hand. Hence, features related to tool 

distance cannot be included in the classification process. 

 

After this stage, feature selection methods were implemented to improve the 

performance of classifiers and the accuracy of the classification process. Three 

methods, namely reliefF- an instance-based supervised approach for ranking 

attributes (Urbanowicz, Meeker, LaCava, Olson, & Moore, 2017; Y. Zhang, Ding, & 

Li, 2008); wrapper subset evaluation, similarly a supervised method, using naïve 

Bayes classifier along with cross-validation (Witten et al., 2016) and PCA (Principle 

Component Analysis) - a well-known unsupervised approach for dimensionality 

reduction, constructing new features from the original ones (Goswami & 

Chakrabarti, 2014)- were compared in order to find the best accuracy. After 

evaluating these three methods on Scenario-1 under all hand conditions, reliefF is 
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found to be the best method which gives higher accuracy in classification results (see 

Appendix A). Number of features after the selection process was given in Table 3.2 

below. 

Table 3. 2 Number of Selected Features for Scenarios 

 # of Selected Features 

Scenarios DH NH BH 

I 6 10 19 

II 11 22 18 

III 26 14 28 

IV 30 31 54 

 

In the final stage, classifiers were trained and evaluated using 10-fold cross-

validation. The feature selection (using three different methods) and classification 

processes were performed by using WEKA workbench (Witten et al., 2016). Brief 

explanations on these methods were provided in the following section. 

3.3.1  Classification Methods and Algorithms 

Classification is an important task in data mining, which can be simply explained as 

determining the category of a given record through a classification model to 

differentiate between instances belonging to different classes (Pan-Ning Tan, 

Michael Steinbach, & Vipin Kumar, 2006). Data classification process consists of 

two stages; learning and classification. At the first stage, classification model is 

constructed by using training data set at learning stage. After that, this constructed 

model is used for predicting the class for an unseen instance at classification stage 

(Han, Pei, & Kamber, 2011). Previous studies in the literature reported the top 10 

data mining algorithms for classification process, such as SVM, kNN, AdaBoost and 

Naïve Bayes (Wu et al., 2008). Along with those, a total of 12 algorithms were used 

in this study. 

 

3.3.1.1 Naive Bayes Method 

Naive Bayes is a statistical classification method based on Bayes‟ probability 

theorem with the assumption of strong independence between the features (Murphy, 

2006). Previous studies reported that this approach is easy to construct and interpret 
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(Wu et al., 2008), and effective in  text classification and medical diagnosis (Rish, 

2001). 

3.3.1.2 Logistic / Simple Logistic Regression Models 

These classifiers are also based on statistical approaches by building linear logistic 

regression models (Agarwal, Pandey, & Tiwari, 2012). Simple regression functions 

are acted as base learners for fitting the logistic models (Landwehr, Hall, & Frank, 

2005).  

3.3.1.3 Support Vector Machines (SVM) 

The Support Vector Machine (SVM) is a popular machine leaning method for 

classification, non-parametric, supervised learning algorithm (Chang & Lin, 2011; 

Cortes & Vapnik, 1995). In WEKA environment, sequential minimal optimization 

(SMO) is implemented for training a support vector classifier (Witten et al., 2016). 

The SVM algorithm proposed a classification method which linearly classifies the 

optimal hyper-plane by mapping the input space into a high-dimensional feature 

space. This method can also perform nonlinear classification through “kernel 

trick”(Cortes & Vapnik, 1995). Three kernel functions were used in this study; 

namely polynomial, normalized polynomial and the Pearson VII universal kernel 

(PUK) functions (Üstün, Melssen, & Buydens, 2006) kernels. Based on the findings 

in the literature, several studies used SVM method to classify surgical levels based 

on hand motion patterns (Allen et al., 2010; Robert A Watson, 2014). 

3.3.1.4 K- Nearest Neighbor (KNN) 

KNN is a lazy learner algorithm, also referred as instance based learning approach 

which stores all the training data, and classify the unseen record based on a similarity 

measure. The similarity is calculated by distance metric, in this study by using 

Euclidean distance measure, and defining k closest points in order to perform 

classification (Steinbach & Tan, 2009; Wu et al., 2008). In this study, KNN is 

performed with different number of nearest neighbors, including k = (1, 3, 5, 7, 9). 

Determining the value of k is important in this method to correctly identify the class 

of an instance, where smaller k values are sensitive to the noise points and larger 

values leads to misclassification of other instances in the neighborhood.  
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3.3.1.5 Locally Weighted Learning (LWL)  

Similar to KNN approach, LWL is also an instance-based algorithm which assign 

weights to each instance, and then use these weights for the prediction (Atkeson, 

Moore, & Schaal, 1997; Frank, Hall, & Pfahringer, 2002). 

3.3.1.6 Boosting and Bagging 

Boosting (i.e. Adaboost algorithm) and Bagging methods are two well known 

classification techniques to create ensemble models. A collection of individual 

classifiers were used to obtain the ensemble model to increase the accuracy of 

classifiers by voting the decisions of each individual classifiers in the ensemble 

(Dietterich, 2000; Witten et al., 2016).  

3.3.1.7 Rule- based Algorithms  

Rule-based classification approaches used a sequence of rules extracted from the 

training set for determining the class of an unseen instance. Rule-based models are 

constructed based on if-then rules. In this study, PART (a method based on obtaining 

rules from partial decision trees) and Jrip (RIPPER) methods were used as rule-based 

classifiers (Frank & Witten, 1998; Nguyen & Choi, 2008; Witten et al., 2016). 

3.3.1.8 Decision Trees  

Decision Trees are easy to use and efficient classification models, which are 

constructed by using information gain algorithm, i.e. placing the best discriminator 

attribute at the root node. For instance, J48, a decision tree based learner, which is 

the optimized version of the most popular tree classifier C4.5 (Nguyen & Choi, 2008; 

Quinlan, 2014). Random Forest is a type of ensemble classifier that uses decision 

trees as a based classifier, which is reported as a method performing faster training 

and being more stable (Chan & Paelinckx, 2008). 

3.3.2  Cross Validation 

Cross-Validation is a statistical method of evaluating and comparing learning 

algorithms by dividing data into two parts as training and test sets (Refaeilzadeh, 

Tang, & Liu, 2009). The most common form of cross validation is k-fold cross 
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validation (Refaeilzadeh et al., 2009), where k is the number of partitions, named as 

folds. After that, k iterations of training and validation are performed by each time 

leaving out one partition as test set, and the other (k-1) partitions as training set. In 

this study, classifiers were trained and evaluated using 10-fold cross-validation. 

3.4 Results 

In this section, the results of the surgical experience level classification for all the 

four scenarios and three hand conditions are presented. The analyses are carried out 

using a total of 12 algorithms from Weka workbench (Witten et al., 2016).  In what 

follows, the best accuracy results for estimating the skill levels appear for each 

scenario, by using all feature set and selected feature set with ReliefF method and the 

algorithm used for classification as in Table 3.3.  

Table 3. 3 Best Accuracies and Related Classification Algorithm 

 All Feature Set Selected Feature Set 
Scenario DH NH BH DH NH BH 

I 67.85 

LWL 

60.71  

SVM 

PolyKernel 

71.42 

LWL 

75.00 

LWL 

75.00  

SVM 

PolyKernel 

78.57 

KNN (k=9) 

II 64.28 

Jrip 

82.14  

LWL 

75.00 

KNN 

(k=1) 

67.85 

KNN 

(k=7) 

85.71 

AdaboostM1 

SVM Puk 

75.00 

Logistic 

III 64.28 

KNN 

(k=7) 

82.14 

Simple 

Logistic 

57.14 

KNN 

(k=9) 

75.00 

KNN 

(k=3) 

85.71 

AdaboostM1 

76.92 KNN 

(k=3) 

IV 78.57 

Jrip 

64.28  

SVM 

PolyKernel 

71.42 

KNN 

(k=3) 

82.14  

SVM 

NormPoly  

75.00  

SVM 

Puk 

78.57  

SVM 

PolyKernel 

 

LWL: Locally Weighted Learning; SVM: Support Vector Machine with polynomial, normalized 

polynomial and the Pearson VII universal kernel; KNN: K- Nearest Neighbor;  Jrip: Ripper 

 

As seen from the results in Table 3.3, the best accuracy result for estimating the skill 

levels of the participants in Scenario-1 was obtained in the both-hand condition using 

the selected features with an accuracy of 78.57% (22/28) with KNN(k=9) algorithm.  

Both for dominant and non-dominant hand conditions, the skill levels of surgeons 

were estimated with an accuracy of 75% (21/28).  
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In Scenario-2, the best accuracy result for estimating the skill levels of the 

participants was obtained in the non-dominant hand condition using the selected 

features with an accuracy of 85.71% (24/28) with AdaboostM1 and SVM algorithm 

using the Pearson VII function-based universal kernel. After that, in the both-hand 

condition, the best accuracy is found as 75% (21/28). In the dominant-hand 

condition, a best accuracy of 67.85% (19/28) is obtained using the selected feature 

set.  

In Scenario-3, the best accuracy result for estimating the skill levels of the 

participants was obtained in non-dominant hand condition using the selected features 

with an accuracy of 85.71% (24/28) with AdaboostM1 algorithm. Under the 

dominant-hand condition, the accuracy skill level estimation is 75% (21/28), whereas 

an accuracy of 76.92% (20/26) was obtained in the both-hand condition. 

 

In Scenario-4, the best accuracy result for estimating the skill levels of the 

participants was obtained in dominant hand condition using selected features with an 

accuracy of 82.14% (23/28) with SVM algorithm using normalized polynomial 

kernel. Later, in the both-hand condition, the best accuracy is found as 78.57% 

(22/28). Finally, in non-dominant hand condition, a best accuracy of 75% (21/28) is 

obtained. The detailed classification results for each scenario and the information 

about features selected were given in Appendices A and B, respectively.  

 

As a result, considering all the scenarios and hand conditions, the best estimation 

result for this study is obtained in Scenario-2 and Scenario-3, both in the non-

dominant hand condition, with the accuracy of %85.71, where 24 instances were 

correctly classified out of 28 as belonging to the either novice or intermediate group. 

3.5 Discussions and Conclusions 

The results of this study show that, by using classification algorithms, through some 

features collected by computer-simulated virtual surgical training environments with 

haptic interfaces, it is possible to estimate the intermediate and novice surgical skills 

with 79-86%. The non-dominant- and both-hand skills in three scenarios (1, 2, and 3) 
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were more decisive for a better assessment of these skill levels. This study proposes 

an assessment approach by using certain features based on the performance data 

collected in computer-based endoscopic surgery training simulation environments. 

However, the proposed estimation accuracy can be even improved by developing 

additional features from more detailed data about the trainees such as hand 

behaviors, eye behaviors and their correlations.  

 

Accordingly, for specific scenarios, by pre-defined threshold values, which can be 

calculated using such classification techniques alongside experimental data, the skill 

levels of trainees can be calculated. This information may help educators to improve 

their assessment of candidates. Additionally, this information can be used to create 

more adaptive training programs by regularly assessing the skill levels of the trainees 

through different scenarios developed for specific surgical procedures. In the future, 

training scenarios can be arranged with such threshold values and assessment 

modules to guide the trainees and support educators in the field.  

 

As a conclusion, given the limited number of participants in this specific field of 

surgery, estimating the skill levels as novice and intermediate with the accuracy of 

86% can be considered as a successful result. Nevertheless such accuracy can still be 

improved by using some other data. Additionally, when other skill levels, such as 

experts and the beginners, are included in such a study with a higher number of 

participants, the accuracy can be improved yet again. Hence, in the future, by 

applying such techniques, more standardized training programs can be developed for 

skill-based surgical education.  
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CHAPTER 4 

 

 

VELOCITY- BASED HAND METRICS TO DIFFERENTIATE 

SURGICAL SKILL LEVELS 

 

 

 

Several methods were reported in previous studies to assess the skill levels of 

surgeons. Traditionally, the skill assessment of surgical trainees is done through 

observation by a number of supervised surgeons, providing verbal feedback to the 

trainees. For instance, Adrales et al. (2003) conducted a study with 27 subjects 

having various years of experience, who performed on laparoscopic simulations. A 

task-specific checklist is used to assess participants including four skills on a 5-point 

scale; respect for the tissue, economy of movement, flow of the operation and spatial 

orientation (Adrales et al., 2003). It is revealed that years of experience directly 

correlated with the ratings given to these skills, whereas it is inversely correlated 

with the time needed to complete each procedure (Adrales et al., 2003). Additionally, 

it is also indicated that speed while performing tasks and quality of performance 

increased with surgical experience (Adrales et al., 2003). 

 

With the advancements in technology in surgical domain regarding MIS procedures, 

there has been an increased interest in objective assessment methods for surgical 

skills. The observation process carried out by training specialists is a subjective 

method by nature. For this reason, certain objective measures have been proposed to 

improve the quality of assessment. For instance, „structured human grading‟ can be 

considered as an extension to the traditional observation approach, with the aim to 

standardize the evaluation by using a rated-scale checklist (Reiley, Lin, Yuh, & 
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Hager, 2011). One of the well-known example of this method is objective structured 

assessment of technical skills (OSATS), which have been introduced for testing 

specific operative skills in surgical trainees (Cagiltay et al., 2017; Martin et al., 

1997). Such methods can increase the standardization of surgical skill evaluation, 

however still some issues were reported about objectivity, time constraints and the 

need for further research on correlation between technical skill and patient outcome 

(Moorthy et al., 2003; Reiley et al., 2011). 

 

Another method for objective skill assessment is to use virtual reality simulators, 

based on gathering metrics such as time, distance covered, accuracy of the task along 

with metrics related to hand motion such as position and speed of the surgical device. 

For instance, Felsher et al. (2005) presented a study to validate the ability of the 

simulator to distinguish experienced surgeons from the beginners using metrics time 

to reach target, percentage of visualized area and time spent in clear view, 

completion rate and overall efficiency, while performing on a colonoscopy 

simulation (Felsher et al., 2005).  It is reported that experienced endoscopists reached 

the target more rapidly, visualized more of the surface with a higher proportion of 

time in clear view and in overall performance they were more efficient than novices 

(Felsher et al., 2005). Hence, the virtual simulation environments provide several 

measures to better understand the surgical performance and skill levels. However, in 

the literature, even there are some studies to better understand the hand-movement 

metrics taken from the virtual reality (VR) environments, studies attempt to use such 

metrics to classify the trainees according to their experience levels are limited. This 

study aims to focus on hand movement metrics to differentiate skill levels and to 

better understand the trainees‟ performances. The findings of the literature about 

hand metrics were summarized as below. 

4.1 Metrics based on Hand Movement 

Today, by using robotic surgical systems and medical simulators, it is possible to 

analyze surgical motion, to understand the differences in levels of technical skills in 

surgeons (Reiley et al., 2011). Reiley et al. (2011) reported the methods of tracking 
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surgical motion and the available data-collection systems. It is reported that almost 

all systems measure tool motion (e.g., position and velocity) and some additionally 

measure the force of tracked instruments, where  electromagnetic, mechanical, or 

optical systems can be used for motion tracking (M. Chmarra, Grimbergen, & 

Dankelman, 2007; Reiley et al., 2011).  For instance, wearable devices such as 

„Instrumented Gloves‟ shown in Figure 4.1, are used in hand movement analysis to 

gather hand dexterity metrics (Lemos, Hernandez, & Soto-Romero, 2017). 

 

 
 

Figure 4. 1 Hardware components of Instrumented Glove (Lemos et al., 2017) 

Using such systems, it is possible to track the motion of hands/instruments in a 3D 

environment to observe the differences among surgeons having different skill levels. 

In Bauernschmitt et al. (2006) study, force feedback is implemented into 

telemanipulated surgery using surgical instruments equipped with haptic feedback, in 

order the improve the telemanipulator systems presented in a previous study 

(Mitsuishi, Tomisaki, Yoshidome, Hashizume, & Fujiwara, 2000), where the 

feedback of force on surgical skills is evaluated dependent on different surgical 

experience (Bauernschmitt et al., 2006). Hence, another behavior difference between 

novices and experts can be reported as the applied forces on the haptic device used in 

the simulators. In that study, applied forces and speed of hand motion were recorded 

for heart surgeon participants. When the feedback of force in the dominant and non-

dominant hand on surgical skills is evaluated, it is revealed that experienced surgeons 

worked with significantly less force in the non-dominant hand than the young 

surgeons (Bauernschmitt et al., 2006). 
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In Hofstad et al., (2013)‟s study, there were three groups of surgeons; experts, 

intermediates and novices performing a labyrinth task. It is reported that motion 

analysis is a valid objective way for assessing psychomotor skills in MIS (Hofstad et 

al., 2013). Nine motion-related metrics derived from the position and the orientations 

of the instruments were collected (Hofstad et al., 2013): 

 Time to complete each task 

 Bimanual dexterity: ability to control to instruments at the same time) 

 Path length: total movement of the tip of the instrument 

 Angular length: total change in angle of the tip of the instrument 

 Depth perception: total distance travelled 

 Response orientation: total amount of instrument rotation around its axis 

 Motion smoothness: total change in acceleration of the instrument 

 Number of sub-movements  

 Average velocity of the instrument measured in mm/s. 

It is revealed that experts and intermediates performed significantly better than the 

novices in terms of time and parameters measuring the amount of instrument 

movement and experts had significantly better bimanual compared to the 

intermediates and novices as well as they have performed the task in a shorter 

instrument path length with the non-dominant hand than the intermediates (Hofstad 

et al., 2013). It is also reported that there was no difference according to the motion 

smoothness metric (M. Chmarra, Kolkman, Jansen, Grimbergen, & Dankelman, 

2007; Hofstad et al., 2013; Maithel, Villegas, Stylopoulos, Dawson, & Jones, 2005). 

Maithel et al. (2005) conducted a study with 30 surgical residents, performing on 

Computer Enhanced Laparoscopic Training System (CELTS), generating an overall 

score using six metrics: time, depth perception, path length, response orientation and 

motion smoothness (Maithel et al., 2005). The results of the study showed that the 

senior residents performed significantly better than the junior residents overall on all 

parameters, except for motion smoothness  (Maithel et al., 2005).  

 

In Chmarra et al. (2010)‟s study, it is aimed to define a method for surgical skill level 

classification, based on psychomotor laparoscopic skills alone. There were thirty one 
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surgical residents distributed as: 10 experienced, 10 intermediate, and 11 novice, 

where each participant performed four tasks: pipe cleaner, rubber band beads, and 

circles. Six assessment metrics were used in the analysis extracted from the MIS 

tools motion: total time, path length, depth, motion smoothness, angular area, and 

volume. Using these metrics, the model able to classify 23 out of 31 cases correctly 

(M. K. Chmarra et al., 2010). 

 

Pellen et al. (2009) reported that in their study, there were four groups as consultant, 

senior, junior and student among 160 participants. Motion analysis data was obtained 

using optical strips attached to the instruments and three motion related metrics were 

collected: time, path length (cumulative distance in mm. providing information about 

economy of movement) and smoothness (the cumulative number of instrument 

accelerations). The results imply that consultants outperformed students and juniors 

and seniors dissected faster, more efficiently and more accurately than juniors and 

students (Pellen, Horgan, Barton, & Attwood, 2009). 

 

As a summary, earlier studies report that metrics such as total time, distance- path 

length, depth, hand motion smoothness, angular area, speed of motion and 

force/torque were collected while the surgeons performing on virtual reality surgical 

trainers, in order to objectively assess their surgical skill levels. Hence, it is 

understood that, metrics related to the hand movements of surgeons can be used for 

assessing surgical skill levels in surgical simulation environments. 

4.2 Procedure of the Study 

The aim of this study is to understand the behavior differences between intermediate 

and novice surgeons based on their hand movement data collected while they were 

performing tasks in both-handed simulation scenarios. Time and distance metrics 

were collected during the experiment by using haptic devices, then velocity and 

angular velocity metrics were calculated for both dominant- and non-dominant hands 

controlling the tool and the camera, respectively. The procedure for this chapter is 

given in Figure 4.2. 
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Figure 4. 2 Procedure for Analysis on Velocity- based Hand Metrics 

A total of 28 surgical residents (21 doctors and 7 interns) from the Department of 

Neurosurgery (12 participants) or Otolaryngology (ENT) (9 participants) participated 

in this research. Four scenarios as described earlier were developed for surgical 

training purposes as a part of an Educational Computer-based-simulation 

Environment (ECE) project. All of these scenarios were implemented in Unity 3D 

(Unity, 2017) with C#.  Unity provides a high fidelity, low cost and easy to use 

simulation environment (Craighead et al., 2008). Each scenario was prepared in two 

versions: single-handed and both-handed. Accordingly, each scenario was performed 

under three different hand conditions (i.e. dominant hand, non-dominant hand, and 

both-hand). The experimental study was started with single-handed tasks, after 

completing all the tasks of that scenario, continued with both-handed tasks. In this 

study, we specifically concentrated on both-handed scenarios to understand the 

participants‟ hand movement under dominant- and non-dominant-hand conditions. In 

order to understand the hand movement differences between groups following 

metrics were recorded using software developed in Unity 3D. 

4.3 Hand Metrics extracted from Hand Movement Data 

The hand movement data of the participants is recorded including the timestamp and 

3D vector positions (coordinates) of both tool controlled by their dominant-hand and 

camera controlled by their non-dominant hand. A hundred data points per second 

recorded by the software as the hand coordinates for both hands with the help of the 

haptic devices. Among the collected data, the Euclidian distance formula (Formula 1) 

is used to compute the distance between the current position denoted by a 3D vector 
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A (𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎  ) and the next position denoted by a 3D vector B (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏  ) of the tool 

and camera in Unity environment. The distance is measured in mm. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴,𝐵 =   𝑥𝑎 − 𝑥𝑏 2 +  𝑦𝑎 − 𝑦𝑏 2 +  𝑧𝑎 − 𝑧𝑏 22
           (1) 

After that, the linear velocity (V) of the device (tool or camera) is measured by 

(Formula 2) in mm/s, where the change in the position is denoted by ∆𝑥: 

𝑉𝑑𝑒𝑣𝑖𝑐𝑒 =
𝑋𝑓𝑖𝑛𝑎𝑙 − 𝑋𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑡𝑖𝑚𝑒
=  

∆𝑥

𝑡
                                                 (2) 

Finally, the magnitude of angular velocity (ω) regarding the rotational speed of the 

device (change in the angle of the instrument, in the plane perpendicular to the 

instruments axis) in 3D environment is calculated by (Formula 3) where ∆ϴ 

representing angular rotation in degrees occurs in a time ∆t  (in seconds).  

                       𝜔𝑑𝑒𝑣𝑖𝑐𝑒 =  
∆ϴ

∆𝑡
                                                                      (3) 

Accordingly, performing on all four scenarios, hand metrics such as tool distance, 

tool velocity, tool angular velocity for the dominant hand; camera distance, camera 

velocity and camera angular velocity for the non-dominant hand were calculated and 

used for the analysis. 

4.4 Results 

The results of this study are provided in two sections. In the first section, the 

difference between the intermediate and novice groups based on their hand 

movement behaviors was analyzed using Mann-Whitney U test. In the second, binary 

logistic regression analysis was performed to estimate the skill levels of surgeons.    

4.4.1 Differences between Intermediate and Novices on Hand Metrics 

Since the normality assumptions were violated as assessed by Shapiro-Wilk's test    

(p < .05) for novices, and the sample size (n) was less than 30 for the groups, the 

Mann-Whitney U test was implemented as a non-parametric alternative to the 

independent-samples t-test to determine the differences between intermediate and 

novice hand movement metrics. For all scenarios, distributions of the metrics for 
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intermediate and novice groups were similar, as assessed by visual inspection. It is 

seen that, considering the medians of all metrics, there were no statistically 

significantly difference between these groups for Scenario-1 and Scenario- 4, as 

given in Table 4.1. On the other hand, camera distance and angular velocity metrics 

in Scenario-2 and the camera velocity metric in Scenario-3 were significantly 

different. In Scenario-2, there occurred a machine failure problem while gathering 

hand data for the distance of tool as the camera controlled by the dominant-hand. In 

this case, also velocity, which is based on the distance covered, cannot be calculated. 

Hence, dominant-hand condition for Scenario-2 is omitted from the analysis. 

Table 4. 1 Median values for hand metrics according to skill levels 

  Scenario 

  I II III IV 

Hand Metrics INT NVC INT NVC INT NVC INT NVC 

DH 

Tool Distance (mm.) 67.43 67.60 - - 109.41 136.39 44.96 44.66 

Tool Velocity 20.15 17.28 - - 11.16 12.99 10.31 9.63 

Tool Angular Velocity 3.77 3.86 3.83 3.79 3.92 3.84 3.68 3.79 

NH 

Camera Distance (mm.) 17.88 16.23 70.34 84.96* 63.47 53.36 56.01 59.74 

Camera Velocity 5.47 3.91 12.31 13.30 6.37 4.35* 14.54 11.67 

Camera Angular Velocity 2.98 3.50 3.68 3.81* 3.52 3.70 3.90 3.86 

           * Significance at the 0.05 level  

 

In Scenario-2, camera distance metric was statistically significantly different 

between intermediates (Mdn = 70.34) and novices (Mdn. = 84.96), U = 140, z = 

2.043, p = 0.042. Additionally, camera angular velocity metric was also statistically 

significantly different between intermediates (Mdn = 3.68) and novices (Mdn. = 

3.81), U = 139, z = 1.999, p = 0.047. These results show that, intermediates took less 

distance with camera, than that of novices. According to the angular velocity metric, 

representing the magnitude of the camera rotation is lower for intermediates 

compared to the novices. In other words, their economy of movement is better than 

that of the novices by considering the camera rotation and endoscope movements. 

In Scenario-3, there was a statistically significantly difference on the camera velocity 

metric between intermediates (Mdn = 6.37) and novices (Mdn = 4.35), U = 44, z = -

2.057, p = 0.041. The result shows that intermediates control the camera faster using 

their non-dominant hands, compared to the novices. 
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4.4.2 Estimating the Skill Levels of Surgeons 

Considering four scenarios used in this study, a binomial logistic regression was 

performed to ascertain the effects of hand metrics; distance, velocity, and angular 

velocity of both the tool and the camera on the estimation of surgical skills levels of 

surgeons. The outliers detected was omitted from the analysis, where studentized 

residuals expected to have values within ±2 range, if they have been standardized in 

binary logistic regression (Christensen, 2006). 

In this analysis, along with the overall classification accuracy (%), sensitivity, 

specificity, positive and negative predictive values were also calculated to assess the 

ability of a logistic regression model to correctly classify cases. All these measures 

were calculated based on a cut-off point of 0.5 (50%). This means that a participant 

with a predicted probability of the surgical skill expertise that is greater than or equal 

to 0.5 would be classified as an intermediate (since the positive actual state is given 

as „intermediate‟ while performing the analysis) and novice, otherwise. However, 

instead of concentrating on one cut-off point only, all possible cut-off points in the 

data can be considered, and shows how each cut-off point changes the specificity and 

sensitivity of the test. A visual representation of this can be presented in Receiver 

Operating Characteristic (ROC) curve, which is a plot of TPR (sensitivity) along the 

y-axis versus FPR (1 – specificity) in x-axis (Hilbe, 2011; Pang-Ning Tan, Michael 

Steinbach, & Vipin Kumar, 2006). A model which is more close to the upper left 

corner of the ROC curve (TPR=1, FPR=0)(Pang-Ning Tan et al., 2006), indicates a 

better discrimination. In what follows, the results of logistic regression analysis were 

presented along with visual representations, ROC curve. 

In Scenario-1, the logistic regression model was not statistically significant, χ2(7) = 

7.188, p = .41. The model explained 30.0% (Nagelkerke R
2
) of the variance in 

surgical skill levels and correctly classified 75.0% of cases (intermediates with 

66.7% and novices with 81.3%). The ROC Curve is presented for metrics regarding 

tool in Figure 4.3-A and camera in Figure 4.3-B for Scenario-1, respectively. 
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Figure 4. 3 ROC Curves for metrics regarding tool and camera in Scenario-1 

The area under the ROC curve for tool velocity was .68, 95%CI [.48, .88] and 

camera velocity was .69, 95% CI [.48, .90] as seen in Figure 3, representing a better 

discrimination compared to other measures. In Scenario-2, the logistic regression 

model was statistically significant, χ2(6) = 23.612, p < .0005. The model explained 

79.7% (Nagelkerke R
2
) of the variance in surgical skill levels and correctly classified 

88.5% of cases (intermediates with 83.3% and novices with 92.9%). The ROC Curve 

is presented for measures regarding camera given in Figure 4.4 for Scenario-2. 

 

Figure 4. 4 ROC Curves for metrics regarding camera in Scenario-2 

As seen in Figure 4.4, the area under the ROC curve for the angular velocity of 

camera was .52, 95%CI [.30, .75], representing a better discrimination compared to 

other metrics. In Scenario-3, the logistic regression model was not statistically 

A B 
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significant, χ2(6) = 7.311, p = .29. The model explained 35.1% (Nagelkerke R
2
) of 

the variance in surgical skill levels and correctly classified 75.0% of cases 

(intermediates with 72.7% and novices with 76.9%). The ROC Curve is presented for 

metrics regarding tool in Figure 4.5-A and camera in Figure 4.5-B for Scenario-3, 

respectively. 

  

Figure 4. 5 ROC Curves for metrics regarding tool and camera in Scenario-3 

The area under the ROC curve for the angular velocity of tool was .58, 95%CI [.33, 

.82] as shown in Figure 4.5-A.  The area under the ROC curve for the velocity and 

distance metrics for the camera were .74, 95% CI [.55, .93] and .70, 95% CI [.48, 

.90], respectively, which is an acceptable level of discrimination as reported by a 

previous study (Hosmer Jr, Lemeshow, & Sturdivant, 2013). 

In Scenario-4, the logistic regression model was also statistically significant, χ2(6) = 

22.434, p = .001. The model explained 81.7% (Nagelkerke R
2
) of the variance in 

surgical skill levels and correctly classified 91.7% of cases (intermediates with 

90.0% and novices with 92.9%). The ROC Curve is presented for metrics regarding 

tool in Figure 4.6-A and camera in Figure 4.6-B for Scenario-4, respectively. 

A B 
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Figure 4. 6 ROC Curves for metrics regarding tool and camera in Scenario-4 

The area under the ROC curve for the velocity of tool was .62, 95%CI [.39, .85].  

The area under the ROC curve for the velocity and distance metrics for the camera 

were .70, 95% CI [.47, .92] and, .79, 95% CI [.60, .98], respectively, which is an 

acceptable level of discrimination (Hosmer Jr et al., 2013). 

4.5 Discussions and Conclusions 

The results of this study show that hand movement metrics such as distance, velocity 

and angular velocity can potentially be used as a metric for assessing surgical skill 

levels. According to the results of Mann-Whitney U test, there were no statistically 

significantly difference between these groups for Scenario-1 and Scenario- 4. On the 

other hand, camera distance and angular velocity measures in Scenario-2 and the 

camera velocity metric in Scenario-3 were significantly different. Firstly, the result 

implies that intermediates control the camera faster using their non-dominant hands, 

compared to the novices. This finding is supportive to the Adrales et al.‟s study, 

reporting that task speed and quality of performance increased with surgical 

experience (Adrales et al., 2003). Pellen et al., (2009)‟s findings also supportive that 

senior surgeons dissected faster, more efficiently and more accurately than juniors 

and student groups (Pellen et al., 2009). 

 

A B 
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Secondly, intermediates took lower distance with camera using their non-dominant 

hands, than that of novices. Finally, angular velocity metric (the magnitude of the 

camera rotation) is lower for intermediates compared to the novices. This finding is 

also supportive to Hofstad et al., (2013)‟s study, reporting that experts and 

intermediates performed significantly better than the novices in terms of time and 

parameters measuring the amount of instrument movement and added that experts 

performed the task in a shorter instrument path length with the non-dominant hand 

than the intermediates (Hofstad et al., 2013).  The results of binary logistic regression 

analysis to estimate the skill levels of surgeons show that, for both Scenario-1 and 

Scenario-3, the model correctly classified 75.0% of cases. The classification 

accuracy of model increases in Scenario-2 and Scenario-4, where the model correctly 

classified 88.5% and 91.7% cases, respectively. These results show that the level of 

difficulty of the tasks that are defined in each scenario, the fidelity level of the 

scenario, the order of the scenarios provided in the curriculum may all be influencing 

factors for the accuracy of the estimations. However the results also show that when 

the scenarios and educational programs are appropriately designed, it is possible to 

increase the accuracy of the skill level estimation above 90% which can be 

considered as acceptable to support the training programs. 

After that, the area under the ROC curve was presented in order to visualize the 

measures in each scenario, to determine better discriminators in classification process 

compared to others (see Table 4.2). 

Table 4. 2 Summary of Area under ROC Curve (AUC) Results for Scenarios 

Hand 

Condition 

Metrics Scenarios 

I II III IV 

DH 

Tool Distance     

Tool Velocity .68   .62 

Tool Angular Velocity   .58  

NH 

Camera Distance    .70 .79 

Camera Velocity .69  .74 .70 

Camera Angular Velocity  .52   

 

As seen in Table 4.2, camera velocity is the metric, which results in a better 

discrimination in Scenarios 1, 3 and 4, followed by camera distance (Scenarios 3 and 

4) and tool velocity (Scenarios 3 and 4). Angular velocity of both camera and tool 
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were the metric also helping to differentiate between surgical skill levels in Scenarios 

2 and 3, respectively. Additionally, it can be seen from Table 4.2 that non-dominant 

hand metrics result in a better discrimination compared to the dominant-hand 

metrics. These results are supportive to the earlier studies reporting that an 

experienced MIS surgeon can be distinguished from a less experienced one by the 

higher ability to control the instrument in the non-dominant hand and the higher 

degree of simultaneous (coordinated) movements of the two instruments (Hofstad et 

al., 2013).  

As a conclusion, four main findings of this study can be summarized as below:  

 Intermediates took less distance with camera, than that of novices.  

 Angular velocity metric (the magnitude of the camera rotation) is lower for 

intermediates compared to the novices. 

In other words, their economy of movement is better than that of the novices by 

considering the camera rotation and endoscope movements. 

 Intermediates control the camera faster using their non-dominant hands, 

compared to the novices. 

 Non-dominant hand metrics (distance, velocity and angular velocity of 

camera) results in a better discrimination compared to the dominant-hand 

metrics. 
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CHAPTER 5 

 

PROPOSED HAND METRICS USING BIT ALGORITHM AND 

EYE-HAND COORDINATION ANALYSIS OF SURGEONS 

 

 

Besides its several benefits, minimal invasive surgery (MIS) education has many 

challenges. Surgeons involved in these type of operations need to develop several 

skills, such as eye-hand coordination to mention an important one (Hernandez et al., 

2004). As the location of the scene can only be observed through a monitor in MIS, 

mislocation can make it impossible for the surgeon to observe his/her hands as well 

as the operative scene simultaneously, making eye-hand coordination even more 

critical (Wentink, 2001). Since the operator is does not directly at his/her hand, but 

the monitor, in MIS the real-world depth perception tends to fade, causing mismatch 

problems in hand or tool movements in time and space (Batmaz, de Mathelin, & 

Dresp-Langley, 2017). Hence, eye-hand coordination becomes a critical issue to 

tackle for MIS purposes. Studies show that, during the training programs, surgeons 

can develop their skills to handle these problems. In order to support such programs, 

supportive technology with enhanced tools and methods is required. Tracking the 

hand movements is one of those technologies to better enhance the current training 

programs. In this respect, the analysis of operational tool trajectory has been 

suggested as an effective method for monitoring surgery training; also, several other 

hand-movement metrics have been proposed such as path length, motion 

smoothness, depth perception, response orientation and grasping (Stylopoulos & 

Vosburgh, 2007). However, detecting the location of a given object, such as the tool 

or hand, in a precise manner is important for each of these metrics (Helsen, Elliott, 

Starkes, & Ricker, 2000; Oropesa, Chmarra, et al., 2013). Tracking hand and 

instrument movements using markers, known as „motion analysis‟, has been 
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suggested by earlier studies as an alternative method in assessing the related skills by 

measuring the economy of movement (Datta, Chang, Mackay, & Darzi, 2002). 

Furthermore, it has been reported that motion analysis are useful tools to assess 

performance compared to the OSATS (Objective structured assessment of technical 

skill) and time alone (Hernandez et al., 2004). Additionally, in the literature video 

processing methods (Jiang, Zheng, & Atkins, 2015; Oropesa, Sánchez-González, et 

al., 2013) and motion tracking systems (Oropesa et al., 2011) have been proposed to 

detect the tool position in a precise way, giving rise to other practical concerns.   

 

Today, computer-based simulation environments provide for several objective 

assessment capabilities which can be attained continuously during the training period 

and without any expert supervision (Ayodeji, Schijven, Jakimowicz, & Greve, 2007). 

However, there are still some questions that need to be answered to better integrate 

these metrics into the traditional curricula (Wilson et al., 2010). Besides, the 

calculation methods for many of these metrics are implicit and within the simulators, 

making them difficult to manipulate. Despite the fact that these metrics provide some 

insight into the relationship between eye and hand and their coordination, still there 

is a need improve our understanding how hand movements are guided and controlled 

by vision (Wilson et al., 2010). 

 

Accordingly, in this chapter, some additional hand-movement metrics have been 

proposed using precise data taken from a computer-based simulation environment by 

using a haptic interface. Additionally, the surgical residents‟ eye and hand behaviors 

are analyzed considering eye-gaze and hand movement metrics.   

5.1 Metrics for Behavior Differences of Surgeons 

Effective and objective metrics are necessary in order to provide for proper feedback 

and continuous analysis of the psychomotor skills in MIS (Cagiltay et al., 2017; 

Oropesa et al., 2014). In that concern, in the literature several metrics have been 

proposed which can be grouped into two categories. The first group attempts to 

understand the performance of the trainees, focusing on task accuracy and duration. 
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Beside these performance metrics, others have also been proposed to as regards the 

behaviors of the trainees during the tasks, such as eye events (fixations and saccades) 

and hand movement metrics. The present work is mainly based on the eye-events and 

hand movement behaviors of the trainees.  

5.1.1 Metrics Based on Eye Events  

Colby and Goldberg (2000) have defined a calculation for eye events according to 

which,   „saccade‟ is the size and direction of the eye movement and a representation 

of visual space in parietal cortex to be remapped in advance of the eye movement; 

whereas „fixation duration‟ is the period through which the representation of the 

visual scene in parietal cortex is stable (Colby & Goldberg, 1992). 

5.1.2 Metrics Based on Hand Behaviors  

Idle Time: Latko et al., (1997) provide some definitions for hand movements. 

According to them, when no regular exertions are detected, the hand activity is 

considered as idle, and when there is infrequent motion, it is considered as steady 

motion. Based on the frequency of the motion, they also propose „consistent 

conspicuous‟ (long pauses or slow motions), slow steady motion, and rapid steady 

motion (Latko et al., 1997). Apart from these, one has to consider other studies 

conducted on motor behaviors in surgical skills which are based mainly on the path-

length, the amount of time to complete a procedure, and idle time which also needs 

to be considered but has remained rather neglected (D'Angelo et al., 2015). Oropesa 

et al., (2011) define idle time as lack of movement of both hands representing the 

delay in motor planning or decision making (Oropesa et al., 2011).  

Smoothness of hand function: One example of motion metrics is the smoothness of 

hand function. Oropesa et al. (2013) define motion this as  abrupt changes in 

acceleration resulting in jerky movements of the instrument (Oropesa, Chmarra, et 

al., 2013). According to Mohamadipanah et al. (2016), further research is necessary 

to better understand the role and usage of psychomotor metrics, such as smoothness, 

to assess the performance during certain  medical procedures (Mohamadipanah et al., 

2016). 
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Working Space: This is proposed as a metrics for the economy of the area and 

economy of volume efficiency in MIS (Oropesa, Chmarra, et al., 2013), and is 

defined using an electromagnetic sensor to track the participants‟ hand movements 

and the summation of distances from the sensor‟s  average spatial location 

(Mohamadipanah et al., 2016). 

5.1.3 Eye- Hand Behavior Differences among Surgeons 

In the literature, there are several studies focusing on the differences in  the visual 

attention strategies adopted by experts and novices (Eivazi et al., 2012). As a means 

of measurement, eye tracker tools are used to record the eye movements of the 

surgeons during the operations. A study proposed by Law et al. (2004) states that  

visual information is important in surgeons‟ manipulative performance, such as in 

laparoscopic surgery (Law, Atkins, Kirkpatrick, & Lomax, 2004). Hence, comparing 

the differences in the surgeons‟ eye movement behavior  in case of  expert surgeons 

and novices may shed light on what can be incorporated into  training as an 

innovative way of assessing skills (Law et al., 2004). In Law et al. (2004)‟s study,  

eye movements are compared among  5 experts and 5 novices performing a one-

handed aiming task on a computer-based laparoscopic surgery simulator , reporting 

that I experts were quicker and made  fewer errors than novices, that novices needed 

more visual feedback to complete the tasks, and that experts maintained eye gaze on 

the target while manipulating the tool whereas novices tracked the movement of the 

tool until it reached the target (Law et al., 2004). 

 

Another study for visual attention conducted by Tien et al. (2010) compares the eye 

movements of 4 experts and 4 novices performing a simulated gall bladder removal 

task on a dummy patient with heartbeat and simulated vital signs displayed on a 

secondary monitor (Tien, Atkins, Zheng, & Swindells, 2010). It is reported that 

novices had difficulty  concentrating on the surgical display in such a way that  they 

could  hardly observe the vital signs of the patient, whereas experts regularly glanced 

at the vital signs in order to observe the patient condition (Tien et al., 2010). In the 

context of visual attention, Shetty et.al (2012) report that one of the most essential 
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skills in laparoscopic surgery is  camera handling and navigation (Shetty et al., 

2012). Surgeons rely on camera operators for the purpose of visualization of the 

operative field. In that study, the behavior differences were analyzed among the 

participants‟ in three groups (novice, intermediate, and advanced) on camera 

navigation, coordination and target visualization modules of a laparoscopic 

simulation training environment  (Shetty et al., 2012), with the final outcome that I 

novices required significantly more repetitions to complete the camera navigation 

module compared to the other groups (Shetty et al., 2012). 

 

In Richstone et al.‟s (2010) study, the use of eye metrics is investigated to assess 

surgical skills objectively (Richstone et al., 2010). The study is carried out with 

twenty-one surgeons in both simulated and live operational settings. Using linear 

discriminate analysis (LDA) and nonlinear neural network analyses (NNA), they 

were able to correctly classify surgeons as expert or non-expert with 91.9% and 

92.9% accuracy, respectively, based on their complex eye and pupillary movements 

(Richstone et al., 2010). 

 

Cao, MacKenzie and Payandeh (1996) presented a task and motion analysis in 

endoscopic surgery by one expert and five novice surgeons (Cao, MacKenzie, & 

Payandeh, 1996). It is found that novices‟ movements are much slower than the 

expert, also requiring more motion attempts in total for the tasks to be completed 

(Cao et al., 1996).  

5.2 Methods and BIT Algorithm 

The aim of this research is to assess the relationship between eye-gaze and hand-

movement metrics in order to understand the behavior differences of intermediate 

and novice surgeons in a simulation-based endoscopic surgery environment. For this 

purpose, BIT algorithm is a fully automatic, velocity-based algorithm to determine 

fixations (i.e., fixation duration and fixation number) and saccades from the eye data, 

using direction-, eye-, task- and individual- specific thresholds (van der Lans, Wedel, 

& Pieters, 2011). Accordingly, in this study, BIT algorithm is used to identify the 
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fixation duration, fixation number and the saccades of the eye-gaze data.  The 

algorithm is also implemented to the hand movement data collected within a surgical 

simulation environment to develop new hand features. The source code of the 

algorithm is available on the authors‟ website  using MATLAB (van der Lans et al., 

2011).  

5.2.1 Eye Metrics 

Fixation identification is a statistical description of the monitored eye-gaze behaviors 

(Salvucci & Goldberg, 2000). In this study, using the BIT algorithm, three metrics 

namely Fixation Duration (FD), Fixation Number (FN) and Saccade Number (SN) 

are identified. These specific eye movement events, fixation and saccades, are 

defined below. 

 A fixation eye movement can be defined as the “pauses over informative 

regions of interests” (Salvucci & Goldberg, 2000). Salvucci and Goldberg 

(2000) reported that fixations are generally determined in the range of 200-

400 ms considering the duration, whereas in another study it is reported as 

260-330 ms (van der Lans et al., 2011). 

 Saccades are the “rapid eye movements between fixations” (Salvucci & 

Goldberg, 2000). Since velocity-based algorithms use velocity thresholds 

while identifying fixations and saccades, it is reported that saccades have 

higher velocities compared to fixations (Salvucci & Goldberg, 2000) and that 

they  contribute to a variety of ocular motor behaviors,  such as the reflexive 

movements towards novel stimuli or gaze shifts for any  learned tasks (Leigh 

& Kennard, 2004). 

 

In the literature, it can be seen that different algorithms include different constant 

thresholds to define fixations and saccades. In the present study, BIT algorithm is 

chosen because of its ability to automatically specify the threshold values, leading to 

a variety of thresholds depending on the task and individual. 
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5.2.2 Proposed Hand Metrics 

Based on the definition of eye movement events, a similar statement can be made for 

hand movement events. In the present work, two hand metrics are introduced to 

identify the hand movements of the participants as explained below: 

 ‘Stand Still’ metric is proposed as the period when the hand movement 

remains within a very small range and lower velocity for some time. In other 

words, the stand-still measure determines the „idle state‟ of the hand 

movement. By running the BIT algorithm, such events can be classified into 

„Stand Still Duration‟ (SSD) and „Stand Still Number‟ (SSN) for hand 

movements. 

  In this respect, the „Sudden Sharp Movement’ (SSM) metric is also proposed 

to identify very fast, sharp hand movements while performing any given task. 

5.2.3 Participants 

During the experimental study, some participants‟ eye and hand data cannot be 

recorded due to some machine failure problems. The participants without eye or hand 

data recorded should be omitted from the analysis, since the aim is to understand the 

correlation between eye and hand data as pair. Hence, a total of 15 out of 28 surgical 

residents (10 doctors and 5 interns) from the Department of Neurosurgery (6 

participants) or Otolaryngology (ENT) (4 participants) from Hacettepe Medical 

School in Ankara, Turkey considered for this study. 

 

Among these participants, 10 (1 female) were novices whose average age was 25.6 

(SD = 3.62) and worked as research assistants in the neurosurgery and ENT 

departments. On average,   they had observed around 8 (SD = 10.17) and assisted in 

1 (SD = 13.48) surgeries. In the other group, however, 5 participants (1 female) were 

intermediates whose average age was 28.40 (SD = 1.52) and who had observed 52 

(SD = 32.71) and assisted in around 40 (SD = 29.12) surgeries. On average, the 

intermediate group had performed around 24 (SD = 20.38) operations as surgeons. 
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Detailed information about these participants according to their skill level is given in 

Table 5.1. 

Table 5. 1 Information about Participants in Eye-Hand Coordination Research 

  Gender Endoscopic Surgical Expertise 

Skill Level Age F M Observed Assisted Performed 

Intermediate 28.4 1 4 52.0 39.6 23.8 

Novice 25.6 1 9 8.2 1.0 0.0 

 

5.2.4 Procedure 

In this research, the research procedure mainly consisted of two stages. First, an 

experimental study was conducted in a laboratory with the participants. Performance 

(i.e., time, distance, camera distance and accuracy), eye-gaze and the hand movement 

data of the participants were recorded while performing the tasks.  

 

After that, the recorded data is given as an input to the „simulated‟ version of these 

scenarios using Unity. In order to simulate those, scenarios using a camera and a tool 

should be considered, where we can observe the participants‟ performance through 

the camera. The procedure for this chapter is shown in Figure 5.1. 

 

Figure 5. 1 Procedure for the Analysis on Proposed Hand Metrics 

Experimental Study in Laboratory 

At the beginning of the experiment, the participants were asked to fill out a 

questionnaire including their demographic information, dominant-hand and 

experience level (i.e., years in the department, number of operations observed, 
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assisted, and performed). After that, a brief instructional video was shown and 

briefing was provided about the procedure. Each participant was asked to perform 

these scenarios, using both their dominant and non-dominant hands. Specifically in 

both-hand scenarios, it is aimed to improve eye-hand coordination skills. Along with 

the performance data, the eye-gaze data (i.e., pupil size, fixation, raw and smoothed 

X, Y coordinates of both left and right eye) and hand movement data (i.e., tool and 

camera position, tool and camera rotation as 3D vectors) were collected during 

experimental study and stored.  

Simulated Performance of Participants 

The performance of each participant in both Scenario 1 and 3 are simulated in Unity 

environment in order to observe their performances individually and with focus on 

eye-hand coordination. For such approach scenarios under both-hand conditions, 

using a tool and a camera is appropriate since the observer is watching the 

performance through the view of the camera. This is the reason of choosing these 

two scenarios out of four. With the help of this simulation, the operation is 

monitored.  A blue pointer is used – point at the end of the surgical tool - showing 

the hand movement of the participant which denotes the current location of the tool 

in 3D simulation environment and the „eye‟ icon showing the point on the screen that 

the participant currently looking (Figure 5.2). 

 

 

Figure 5. 2 Simulated Performance in Scenario-3 

Additionally, the simulated performance enables observers to identify tissue-contact, 

left-right hand coordination and the eye-hand coordination of participants. In this 
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research design, the observation data were gathered through questionnaire (see 

Appendix C - D) to understand such behavior differences between novice and 

intermediate groups. Five researchers, all of whom are graduate students in the field 

of engineering, monitor the participants‟ performances as observers in Scenario-3, 

which is an environment similar to the operational procedures. During the 

experiment, eye-gaze coordinates were gathered in a top-left oriented 2D coordinate 

system. The screen resolution is 1920 x 1080 pixels, in other words, the horizontal 

field of view (x-coordinate) is 1920 pixels, whereas the vertical field of view (y-

coordinate) is 1080 pixels. The field of view (FOV) of the camera, from the left-

perspective for Scenario-3 can be seen in Figure 5.3. 

 

Figure 5. 3 Camera‟s FOV in Simulation Environment 

However, hand movement coordinates, regarded as the position of tool and camera in 

the scenarios, were represented as 3D vectors. The origins for eye Oeye and for hand 

Ohand coordinates have been represented in a 2D scene and appear in Figure 5.4-A 

and B. 

 

Figure 5. 4 Eye-Gaze and Hand Movement Coordinates in Scenario-3 
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Hence, in the simulated version, a conversion of hand data from a 3D vector to 2D 

on-screen coordinates is needed. This conversion is done using „world point‟ to 

„screen point‟ transformation in Unity environment, where, the bottom-left of the 

screen is represented as origin (0, 0) and the right-top coordinate is (1920, 1080) in 

2D environment.  

 

Using this approach, the raw coordinates for both eye-gaze and hand movement data 

were obtained as the output of the simulated version of the scenarios, which is then 

given as input to the BIT Algorithm. Then, the classification process of the eye and 

hand movements as either fixation or saccade events were identified by running BIT 

Algorithm, separately for the eye data and the hand data. The output of the BIT 

algorithm performed on the eye data is the FD, FN and SN metrics, whereas SSD, 

SSN and SSM metrics were obtained as the outputs from the hand data. 

5.3 Results 

The results of this study are provided in three sections. In the first one, the eye-hand 

correlation results for scenario-1 and in the second section for Scenario-3 are 

presented according to the novice and intermediate participants. In the last section, 

analysis of the questionnaire data is presented. A correlation analysis is performed to 

assess the relationship between eye-gaze and hand movement metrics considering 

three pairs: the fixation duration of the eye-gaze (FD) and stand still duration of the 

hand movement (SSD), the fixation number of the eye-gaze (FN)  and stand still 

number of the hand movement (SSN), and saccade number of the eye-gaze (SN) and 

sudden-sharp movement (SSM) for the hand-movement, where the correlation 

coefficient r is calculated. The value of | r | from 0.1 to 0.3 represents a small 

correlation, from 0.3 to 0.5 represents a moderate correlation, and larger than 0.5 

shows a strong correlation as reported by Cohen (Cohen, 1988; Laerd Statistics, 

2017). 
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5.3.1 Eye- Hand Correlation Results for Scenario-1 

The results of eye-hand correlation for the two groups (intermediate and novice) of 

participants in Scenario-1 are given in Table 5.2 for both the eye metrics (FD, FN, 

and SN) and the hand metrics (SSD, SSM and SSN).  

Table 5. 2 Descriptive Statistics for Eye-Hand Measures in Scenario-1 

 

Eye-Hand Correlation for Intermediates 

A Pearson's product-moment correlation was run to assess the relationship between 

eye-gaze and hand movement metrics, (FD- SSD and FN- SSN) and saccades (SN- 

SSM) for intermediates. For all of these three pairs, the preliminary analyses showed 

the relationship to be linear with both variables normally distributed, as assessed by 

Shapiro-Wilk's test (p > .05), and there were no outliers. Also, there was a strong 

negative correlation between FD – SSD and FN- SSN metrics in intermediates, r = -

.836 and r = -.837, respectively. On the other hand, a strong positive correlation 

existed between saccade measures SN and SSM in the intermediate group, r = .755 

(Table 3). 

 

Eye-Hand Correlation for Novices 

A Pearson's product-moment correlation was run to assess the relationship between 

eye-gaze and hand movement metrics, and fixations (FD- SSD and FN- SSN) and 

saccades (SN- SSM) for novices. For the first two pairs related to fixation, 

preliminary analyses showed the relationship to be linear with both variables 

normally distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no 

outliers. There was a moderate positive correlation for both FD- SSD and FN- SSN 

metrics among the novice participants, r = .448. However, not all variables were 

normally distributed for saccade metrics SN and SSM, as assessed by Shapiro-Wilk's 

 

Skill Levels 

Eye Metrics Hand Metrics 

FD FN SN SSD SSN SSM 

M SD M SD M SD M SD M SD M SD 

Intermediate 121.53 19.05 12.15 1.91 20.80 13.46 92.99 10.25 9.30 1.02 55.80 37.48 

Novice 112.70 26.55 11.26 2.65 28.60 32.46 101.99 15.04 10.19 1.50 55.10 15.82 
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test (p < .05). Accordingly, a Spearman's rank-order correlation was run to assess the 

relationship between the saccade number of eye-gaze data and the sudden sharp 

movements of hand data. The results show a strong positive correlation for SN and 

SSM metrics, rs = .590 (Table 5.3). 

Table 5. 3 Eye- Hand Correlation Results for Scenario-1 

 Eye- Hand Metrics 

Skill Level FD - SSD FN - SSN SN - SSM 

Intermediate -.836 

Strong negative  

-.837 

Strong negative 

.755 

Strong positive 

Novice .448 

Moderate positive 

.448 

Moderate positive 

.590 

Strong positive 

5.3.2 Eye- Hand Correlation Results for Scenario-3 

In what follows, the results of eye-hand correlation are provided for the two groups 

in Scenario-3. Descriptive statistics for eye metrics (FD, FN, and SN) and hand 

metrics (SSD, SSM, SSN) also appear in Table 5.4.  

 

Table 5. 4 Descriptive Statistics for Eye- Hand metrics in Scenario-3 

 

 Eye-Hand Correlation for Intermediates 

A Spearman's rank-order correlation was run to assess the relationship between FD- 

SSD and FN- SSN metrics since not all variables were normally distributed, as 

assessed by Shapiro-Wilk's test (p < .05). There was a strong negative correlation for 

the pairs related to fixation, FD- SSD and FN- SSN metrics. In other words, an 

increase in eye fixation duration and fixation number was strongly correlated with a 

decrease in the hand stand still duration and stand still number in intermediates, rs = -

.900, p < .05 (Table 5). However, both variables of saccade metrics, SN and SSM, 

were normally distributed, as assessed by Shapiro-Wilk's test (p > .05). Pearson‟s 

 Eye Metrics Hand Metrics 

FD FN SN SSD SSN SSM 

Skill Levels M SD M SD M SD M SD M SD M SD 

Intermediate 151.25 30.48 15.12 3.04 41.40 23.58 121.37 16.60 12.15 1.65 395.00 143.63 

Novice 133.42 42.49 13.34 4.25 91.90 82.30 118.28 15.13 11.84 1.52 486.00 143.86 
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correlation was run to assess the relationship between the saccade number of eye-

gaze data and sudden sharp movements of hand data. There was also a strong 

positive correlation for SN and SSM metrics, r = .846 (Table 5). 

Eye-Hand Correlation for Novices 

A Pearson's product-moment correlation was run to assess the relationship between 

eye-gaze and hand movement metrics, the fixation (FD- SSD and FN- SSN) and 

saccades (SN- SSM) for novices. For the first two pairs related to fixation, 

preliminary analyses showed the relationship to be linear with both variables 

normally distributed, as assessed by Shapiro-Wilk's test (p > .05), and there were no 

outliers. There was a moderate negative correlation for both FD- SSD and FN- SSN 

metrics in novices, r = -.443 and -.441, respectively. However, not all variables were 

normally distributed for saccade metrics SN and SSM, as assessed by Shapiro-Wilk's 

test (p < .05). Accordingly, a Spearman's rank-order correlation was run to assess the 

relationship between the saccade number of eye-gaze data and sudden sharp 

movements of hand data. The results show a small positive correlation for SN and 

SSM metrics for novices, rs = .06 (Table 5.5). 

Table 5. 5 Eye- Hand Correlation Results for Scenario-3 

 Eye- Hand Metrics 

Skill Level FD - SSD FN – SSN SN - SSM 

Intermediate -.900* 

Strong negative  

-.900* 

Strong negative 

.846 

Strong positive 

Novice -.443 

Moderate negative 

-.441 

Moderate negative 

.06 

Small positive 

                  *correlation is significant at the 0.05 level  

5.3.3 Analyzing the Questionnaire Data 

Five researchers (1 female), all of whom are graduate students in the field of 

engineering; monitor the participants‟ performances as observers in Scenario-3 in 

order to assess the left-right hand coordination and eye-hand coordination. The items 

seen in Table 6 were asked to the participants to answer which they should choose 

one of the five alternatives (1: Strongly Disagree, 5: Strongly agree) in a likertscale-

type questionnaire. 11 out of 15 participants (3 intermediates, 8 novices) were 

evaluated using the questionnaire data. The descriptive results appear in Table 5.6. 
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Table 5. 6 Descriptive Results for Questionnaire Analysis of the Observers 

 Intermediate Novice 

Questionnaire Item M SD M SD 

Participant shows developed depth 

perception skills in a 3D environment 

3.33 .42 2.12 .34 

Participant shows developed skills on 

hand-eye coordination 

3.53 .30 1.92 .52 

A Mann-Whitney U test was run to determine if there were any differences in the 

scores for the given expressions (see Table 6) between intermediate and novice 

groups. The distributions of the scores for intermediates and novices were not similar 

among all and as assessed through visual inspection. According to the results, 

considering these expressions, the 3D depth perception and eye-hand coordination 

skills of intermediates (mean rank = 10.00) were significantly higher than novices 

(mean rank = 4.50), U=0, z= -2.461, p=.012.  

5.4 Discussions and Conclusions 

The findings of this chapter are discussed below, under three sections based on 

fixation and saccade metrics regarding to hand movements. 

Eye-hand Coordination related to Fixation Metrics in Scenario-1:  

The results of this study show that all three eye-gaze and hand movement metrics are 

strongly correlated for the intermediates, indicating that their eye-hand coordination 

skills are improved. On the other hand, fixation metrics (FD-SSD and FN-SSN) are 

moderately correlated for novices, which mean that they require eye-hand skills 

improvements. In other words, the intermediate participants‟ eye-hand coordination 

skills are better improved compared to the novices. These results also show that in 

Scenario-1, when the fixation duration (FD) and fixation number (FN) of 

intermediates increase, their stand still duration (SSD) and stand still number (SSN) 

decreases. The increase in the fixation duration can be observed because of an 

increase in their concentration while performing the tasks. In such cases, the stand 

still duration regarding the idle state of hand movements decreases, resulting in serial 

movements without discontinuation. In other words when the concentration of 
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experts‟ increases, their hand movements become smoother leading to fewer 

occurrences of stand-still. 

 

Different from intermediates, in Scenario-1, an increase in the fixation duration (FD) 

and fixation number (FN) of eye-gaze among the novice participants  correlates with 

an increase in their hand movement metrics, stand still duration (SSD) and stand still 

number (SSN). At this stage, it can be inferred that the novices‟ hand movements 

become more stable when their fixation of eye increases. This may be because of 

their eye-gaze behaviors, which is reported in the previous studies as the experts 

maintained eye gaze on the target while manipulating the tool, whereas novices 

tracked the movement of the tool until it reached the target (Law et al., 2004). 

Eye-hand Coordination related to Fixation Metrics in Scenario-3:  

In Scenario-3, a significantly strong negative correlation is found between eye 

fixations (FD and FN) and hand movements (SSN and SSD) of intermediates; 

whereas this was strong negative in Scenario-1, implying that their hand-eye 

coordination is improved in Scenario-3. This I can be because of their learning 

through the scenarios or the higher fidelity level of Scenario-3 and, as such, remains 

to be studied further.  On the other hand, novices performed better in terms of eye-

hand correlation, where the strength of the correlation remains the same as moderate, 

but the direction changes from positive to negative. This result indicates that when 

the eye fixation increases, their hand movements also become smoother. This is an 

indication that their hand-eye movement coordination is improved in Scenario-2 after 

practicing in Scenario -1. 

Eye-hand Coordination related to Saccade Metric: 

 A strong correlation occurs between SN and SSM in Scenario-1 and 3, where in 

Scenario-3 its correlation coefficient is slightly increased for both groups. This result 

shows that, when there is a saccade in their eye movements, a sudden sharp 

movement also occurs in their hand movements. However, the results show that, in 

Scenario-3, for the novice group a considerably smaller correlation exists, which 

means lower correlation between their saccade numbers (SN) and sudden sharp 
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movement (SSM). This may also show the need of their hand-eye skill 

improvements. Similarly, the results obtained based on the questionnaire data 

considering the observers‟ evaluations on the skill levels of the intermediates in 

terms of their 3D depth perception, eye- hand coordination and left-right hand 

coordination are reported as higher than that of the novices.  
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CHAPTER 6 

 

 

ESTIMATING SKILL LEVELS USING CLASSIFICATION 

ALGORITHMS THROUGH HAND MOVEMENT METRICS 

 

 

 

Recently, the use of simulation techniques in medical education is an emerging topic 

in surgical training process. During this training, assessing skill levels of trainees is a 

critical issue for better evaluation and guidance. Previous studies reported that the 

assessment methods were subjective in the field and MIS requires specific surgical 

skills to be assessed objectively (Cagiltay & Berker, 2018; M. Chmarra, Grimbergen, 

et al., 2007). Hence, there is an increasing need for cost-effective methods of 

objective evaluation of skill levels. Accordingly, several metrics have been proposed 

for objective skill assessment that can be used through box trainers or virtual reality 

simulators. Based on the categorization presented by Fried and Feldman, metrics 

have been classified into 2 groups as efficiency and quality metrics (Fried & 

Feldman, 2008; Oropesa et al., 2011). Efficiency metrics were obtained by the use of 

tracking devices, including motion-derived and force-derived metrics (Oropesa et al., 

2011). It is also reported that mostly used motion efficiency metrics were time, path 

length and economy of movement, but sometimes there is no significant difference 

observed due to the changing factors such as task difficulty (R Aggarwal et al., 2009; 

Eriksen & Grantcharov, 2005; Oropesa et al., 2011; Sánchez-Peralta et al., 2010; A. 

Zhang, Hünerbein, Dai, Schlag, & Beller, 2008). Hence, speed (Eriksen & 

Grantcharov, 2005; Yamaguchi et al., 2007; A. Zhang et al., 2008) and motion 

smoothness (Pellen et al., 2009; Sokollik, Gross, & Buess, 2004; Van Sickle, 

McClusky III, Gallagher, & Smith, 2005) metrics were also proposed as a 
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discriminator factor of such metrics (Oropesa et al., 2011). Other motion-related 

metrics are reported as depth, angular area, volume and spatial perception, which are 

rarely considered in studies due to difficult validation (Oropesa et al., 2011). These 

studies show that, by using motion analysis, an improvement during training can be 

occurred (Sokollik et al., 2004; Torkington, Smith, Rees, & Darzi, 2001). It is also 

reported that basic psychomotor skills can be assessed by motion analysis (M. 

Chmarra, Grimbergen, et al., 2007). 

6.1 Related Work 

Based on the findings in the literature, there are several studies providing solutions 

for automating the objective assessment of surgical expertise using hand-related 

metrics by performing classification. For instance, Watson (2014) hypothesized that 

machine learning approach can be used to improve prediction of surgical expertise 

using hand motion patterns of two groups with different levels of laparoscopic 

proficiency, experts and novices (Robert A Watson, 2014). It is reported that, 14 

experts and 10 surgical residents as novices participated in their study, and based on 

their hand motion patterns, using SVM method the accuracy of 83% , and Lempel–

Ziv (LZ) metric the accuracy of 70% was obtained (Lempel & Ziv, 1976; Robert A 

Watson, 2014).  Allen et al. (2010) also used SVM method to classify 4 experts and 

26 novices, based on the 3D position and orientation of the tool. Four metrics were 

gathered such as time, path length, volume and applied force while performing three 

surgical tasks. The average accuracy for these three tasks were reported as 91.6% 

(Allen et al., 2010). 

 

A previous study conducted by Overby and Watson (2014) also investigates the 

hand-motion pattern differences between Fundamentals of Laparoscopic Surgery 

(FLS) certified and non-certified surgeons, where the hand motion data collected 

through micro-electromechanical gyroscope tracking devices worn on both hands 

during a laparoscopic procedure (Overby & Watson, 2014). The results of that study 

indicates that the complexity of hand-motion patterns increased with higher surgical 

experience or grade (Overby & Watson, 2014), added that experts use simpler 
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subtask motifs in more complex and dense patterns (Overby & Watson, 2014; Robert 

Anthony Watson, 2012, 2013).  

 

Another study conducted by Chmarra et al. (2010) uses Linear Discriminant Analysis 

(LDA) method to classify residents‟ level as belonging to one of the three groups; 

experienced, intermediates and novices, based on psychomotor laparoscopic skills, 

using six motion analysis metrics: were total time, path length, depth, motion 

smoothness, angular area, and volume (M. K. Chmarra et al., 2010). The accuracy of 

74% obtained in that study (M. K. Chmarra et al., 2010). Varadarajan et al (2009) 

also uses LDA method based on Hidden Markov Models (HMM) analysis, to 

differentiate between 8 surgeons as experts, intermediates and novices using 

kinematic data with 78 motion variables (Varadarajan, Reiley, Lin, Khudanpur, & 

Hager, 2009). The results show an accuracy of 87% (Varadarajan et al., 2009). 

 

6.2 Material and Methods 

 

In this study, hand movement metrics (i.e. distance, velocity, angular velocity of tool 

and camera, presented in Chapter 4 and SSD, SSN, SSM presented in Chapter 5) in 

Scenario-1 and 3, were used in order to estimate the skill levels. The research 

procedure for this chapter is given in Figure 6.1. Three main stages of classification 

performed in the given order: feature extraction, feature selection and classifier 

evaluation to find the best accuracy. In the first stage, the features were extracted 

using hand movement metrics and, basic statistical functions were used to calculate 

some features for each task in the scenarios. Accordingly, a total of 101 features 

extracted for both scenarios using MATLAB. After that, one of a well-known feature 

selection method, ReliefF, was implemented to improve the performance of 

classifiers and the accuracy of the classification process. As a result of this process, 

34 features were selected for Scenario-1, whereas 42 features were selected for 

Scenario-3, as seen in Table 6.1.  
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Figure 6. 1 Procedure for Classification on Proposed Hand Metrics 
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Table 6. 1 Selected Hand Features Set for Scenarios 

 

Scenario Selected Feature Set 

I 

Distance_1, 3, 4, max, std, var, Camera distance_ 3, 5, 6, 9, 10,  median, 

min, Tool velocity_1, 2, 7, 10, min, Camera velocity_1, 5, 6, 9, 10, max, 

mean, median, min, sum, Camera angular velocity_max, median, 

SSD_median, sum, SSN_ median, sum 
 

III 

Dominant_hand, Distance_6,7,9, max, min, std, var, Camera 

distance_4,6,9,10,mean, median, min, sum, Tool velocity_6,7, std, var, 

Tool angular velocity_mean, Camera velocity_1, 4, 5, 6, 7, 9, 10, max, 

mean, median, min, sum, Camera angular velocity_ min, sum, SSN_ 

max, mean, median, std, var, SSM_mean 
 

 

In Table 6.1, selected features were presented with related task id‟s and statistical 

functions. For instance, „Distance_1, 3, 4, max, std, var‟ representing the features of 

tool distances regarding to the tasks 1, 3, 4, maximum tool distance, standard 

deviation and variance of the tool distances among a total of ten tasks. 

 

Finally, classifiers were trained and evaluated using 10-fold cross-validation. The 

feature selection (using three different methods) and classification processes (using a 

total of 12 algorithms) were performed by using WEKA workbench (Witten et al., 

2016). Data is collected from 28 and 26 participants (2 participants hand movement 

data cannot be recorded for both-hand condition in Scenario-3, due to a machine 

failure), while performing on Scenario-1 and 3, respectively.  

6.3 Results 

The results of this study are provided in two sections. In the first section, the 

classification results based on hand metrics for Scenario-1 and in Scenario-3 are 

presented according to the novice and intermediate participants. The detailed 

classification results for each scenario were given in Appendix E. In the second 

section, analysis of the questionnaire data is presented. 
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6.3.1 Results for Estimating Skill Levels on Hand Metrics 

In Scenario-1, the best accuracy result for estimating the skill levels of the 

participants was obtained with an accuracy of 85.71% (24/28) with KNN(k=1) 

algorithm, whereas an accuracy of 80.76% (21/ 26) was obtained in Scenario-3 with 

KNN(k=3) algorithm, as seen in Table 6.2.  

 

Table 6. 2 Classification Results based on Hand Features 

 Best Accuracy (%) 

Scenario All Features Selected Features 

I 
78.57 

AdaBoost 

85.71 

KNNk=1 

III 
76.92 

KNNk=3 

80.76 

KNNk=3 

6.3.2 Analyzing the Questionnaire Data 

Five researchers (1 female), all of whom are graduate students in the field of 

engineering, monitor the participants‟ performances as observers in Scenario-3. In 

order to assess participants‟ skill levels, their performances considering four skills, 

such as respect for the tissue, economy of movement, flow of operation and spatial 

orientation were evaluated which they should choose one of the five alternatives 

(from 0 to 4) in a questionnaire (See Appendix D, Part III). The questions were taken 

from the rating scale used in Adrales et al.‟s study (Adrales et al., 2003). In this 

study, 11 out of 28 participants (3 intermediates, 8 novices) were selected and 

evaluated using the questionnaire data. The descriptive results appear in Table 6.3. 

Table 6. 3 Descriptives for Participants‟ Skill Level Assessment in Questionnaire 

 Intermediate Novice 

Questionnaire Item M SD M SD 

Clinical Judgement- Respect for Tissue 1.53 .11 .45 .32 

Dexterity (economy of movement) 1.93 .30 .47 .32 

Serial /Simultaneous Complexity  

(Flow of operation) 

1.53 .30 .60 .40 

Spatial Orientation 1.53 .30 .35 .36 

A Mann-Whitney U test was run to determine if there were any differences in the 

scores for the given expressions (see Table 6.3) between intermediate and novice 

groups. The distributions of the scores for intermediates and novices were not similar 
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among all and as assessed through visual inspection. According to the results, 

considering the respect for tissue, economy of movement and spatial orientation 

skills, intermediates (mean rank = 10.00) performed significantly better than novices 

(mean rank = 4.50), p=.012. Similarly, for the skill „serial/ simultaneous complexity‟ 

representing the flow of operation, intermediates (mean rank = 9.83) performed 

better than novices (mean rank = 4.56), U=.5, z = -2.380, p=.017. 

6.4 Conclusions 

The results of this study show that, by using classification algorithms, through hand 

movement metrics collected by computer-simulated virtual surgical training 

environments with haptic interfaces, it is possible to estimate the intermediate and 

novice surgical skills with 81-86%.  Using these metrics, the accuracies have been 

improved when compared to the results of classification based on performance 

metrics presented in Chapter 3. Also this result slightly improved the accuracy of 

83% presented in a previous study using SVM algorithm (Robert A Watson, 2014). 

Hence, it can be concluded that metrics relying on hand behaviors of surgical 

residents can provide better insights about their skill levels in surgical education 

programs.  

Additionally, based on the observers‟ evaluations in questionnaire data analysis, 

there occurs a significant difference between the intermediate and novice surgeons‟ 

skills related to their hand movement behaviors such as respect for the tissue, 

economy of movement, flow of operation and spatial orientation. The results indicate 

that intermediates were more respectful to the tissue, with higher economy of 

movement and more serial flow of operation and spatial orientation, without getting 

lost while performing the tasks in the simulation environment compared to the 

novices. 

As a conclusion, hand movement metrics collected through simulation-based 

environments can be used for objectively assessing the skill levels of trainees in skill-

based surgical education. 
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CHAPTER 7 

 

 

DISCUSSIONS AND CONCLUSION 

 

 

In this study, in order to automatically assess the skill levels of surgical residents 

through computer-simulation software environments, new features named the “stand 

still” metric which reflects the period when the hand movement remains within a 

very small range and lower velocity for some time. This metric is calculated as 

„Stand Still Duration‟ (SSD) and „Stand Still Number‟ (SSN) for hand movements. 

Additionally, the „Sudden Sharp Movement’ (SSM) metric is also proposed to 

identify very fast, sharp hand movements while performing any given task and 

calculated through BIT algorithm. The classification of the participants as novice and 

intermediate is performed on four scenarios by using performance data, velocity 

based metrics and proposed hand metrics. The summary of the results are provided in 

Table 7.1. The calculations for the proposed hand metrics cannot be performed for 

the scenarios 2 and 4. As the design of these scenarios do not include an operation 

tool, tracking the dominant hand tool position was not possible for these scenarios. 

Additionally, the calculations are only implemented for both-hand condition for the 

proposed metrics.  

 

Table 7. 1 Summary of Classification Results in Both Hand Condition 

Scenarios Performance 

Metrics 

Velocity  

Metrics 

Velocity  and  

Proposed Hand  

Metrics 

I 78.57 75.00 85.71 

II 75.00 88.50 - 

III 76.92 75.00 80.76 

IV 78.57 91.70 - 
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As seen from Table 7.1, by including the velocity based metrics and proposed hand 

metrics the accuracy of the estimation is improved from 79 to 86 for Scenario-1 and 

from 71 to 81 for Scenario-3. These accuracies for classifying intermediate and 

novice skill levels can be considered as successful when compared to the similar 

previous studies classifying expert and novice skill levels as given in Table 7.2. 

 

Table 7. 2 Classification Results of Previous Studies 

Accuracy Reference Method # of 

Participants 

# of  

Skill Levels 

Skill Levels 

83.0 (Robert A 

Watson, 2014) 

SVM 24 2 Expert, novice 

70.0 (Robert A 

Watson, 2014) 

LZ- 

Metric 

24 2 Expert, novice 

91.6 (Allen et al., 

2010) 

SVM 30 2 Expert, novice 

80.3 (Allen et al., 

2010) 

Z-Score 

Norm. 

30 2 Expert, novice 

74.0 (M. K. Chmarra 

et al., 2010) 

LDA 31 3 Expert, intermediate, 

novice 

 

SVM: Support Vector Machine; LZ: Lempel–Ziv metric; Z-score Normalization; LDA:Linear 

Discriminant Analysis method 

 

These findings imply that, in future, by including experts in such analyses, these 

accuracies may be even improved since differentiating between experts and novices 

are easier compared to distinguish intermediate and novices. 

 

Another finding of our study is that the intermediate-level participants have a higher 

degree of eye-hand coordination skills compared to the novices. The increase in 

intermediate level participants‟ visual concentration leads to smoother hand 

movements. In similar situations, the novices‟ hand movements have become more 

stable with the increasing fixation of eye. For both intermediate and novice 

participants, when there is a saccade in their eye movements, a sudden sharp 

movement also occurs in their hand movements. Additionally, the results also imply 

that after the first round of practice, all participants‟ eye-hand coordination skills are 

improved.   
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The major contribution of this thesis is evaluating the impact of hand movement 

metrics on objective surgical skill assessment. For this purpose, new hand movement 

metrics are proposed by adapting an open source eye-movement classification BIT 

algorithm in computer-based simulation software through haptic interface. It can be 

inferred from the literature findings that hand movements of surgical residents were 

tracked by using wearable devices such as instrumented gloves including sensors. 

However, in our study, the hand movement data were gathered using haptic devices 

in a surgical simulation environment, which may lead to a more realistic practice in 

training and assessment.  

 

As a conclusion, this study show that by using the velocity-based features with the 

performance data and the proposed hand metrics, the accuracy of the classification 

can be improved. The researchers believe that by including the eye-movements 

events to these results it can be even more improved. These results are very 

promising that in the future, the computer-based simulation software can adapt the 

classification algorithms to continuously assess the skill levels of the endoscopic 

surgery trainees and adapt the content of the training material and the provided order 

according to their individual requirements. Such an approach would help the 

educators to better integrate these tools in their training programs and to get support 

on the assessment process of the trainees.   
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CHAPTER 8 

 

 

LIMITATIONS AND FUTURE WORK 

 

This study was conducted with 28 participants because, in general, the number of 

surgeons in the neurosurgery and ENT departments is very limited. However, in 

future, it may be possible to validate the results of this study by a larger number of 

participants, having different skill levels. Additionally, in this study, the number of 

scenarios used in the analysis is limited due to the requirement of considering only 

both-handed scenarios including a surgical tool and a camera. Hence, in the future, 

the experimental studies should be conducted with more scenarios, having different 

difficulty levels in a surgical training curriculum. Finally, the results of this study can 

be further validated by other additional measures such as the applied forces on the 

haptic device used in the simulators, in order to increase the classification accuracy 

of surgical skill levels. 

 

Recently, using the machine learning techniques in surgical training constitutes a 

new area of research. This current study provides a surgical simulation system 

infrastructure to gather the hand movements‟ data of experts obtained by special 

tactile devices. Accordingly, an intelligent support system can be created by 

examining the hand motion patterns of experienced surgeons to better guide novices 

in a surgical education program. In this manner, it is also possible to monitor 

trainees‟ progress in the education program individually. As a future work, by using 

these techniques, cost-efficient educational tools can be developed in order to 

improve education efficiency and patient safety. 
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APPENDICES 

APPENDIX A. CLASSIFICATION RESULTS ON PERFORMANCE MEASURES  

 

Table A.1. Classification Results of Scenario-1 – DH using All Features 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

LWL  67.85 19 0.33 0.38 0.48 77.35 97.55 0.58 0.25 0.64 0.58 0.609 

SMO Puk 57.14 16 0 0.42 0.65 86.63 131.12 0 0  0  

KNN K=3 57.14 16 0.14 0.44 0.56 86.34 112.64 0.58 0.43 0.5 0.58 0.538 

KNN K=5 57.14 16 0.16 0.49 0.52 99.64 105.52 0.66 0.5 0.5 0.66 0.571 

Regression  57.14 16 0 0.5 0.5 101.06 100.14 0 0  0  

JRip  57.14 16 0.08 0.46 0.55 93.27 110.84 0.33 0.25 0.5 0.33 0.401 

SMO Norm. 

Polykernel 

53.57 15 -0.07 0.46 0.68 93.85 136.47 0 0.06 0 0 0 

KNN K=1 53.57 15 0.08 0.46 0.65 94.36 131.54 0.58 0.5 0.46 0.58 0.519 

Bagging  53.57 15 -0.04 0.49 0.5 100.75 101.02 0.08 0.12 0.33 0.08 0.133 

PART  53.57 15 0.04 0.46 0.62 93.94 124.97 0.41 0.37 0.45 0.41 0.435 

Decision 

Tree J48 

 53.57 15 0.04 0.45 0.62 91.54 124.48 0.42 0.37 0.45 0.41 0.435 

KNN K=7 50 14 0.02 0.52 0.53 105.14 107.75 0.58 0.56 0.44 0.58 0.501 

Random 

Forest 

 50 14 0 0.52 0.23 105.09 106.61 0.5 0.5 0.42 0.5 0.462 

Naive Bayes  46.42 13 0 0.53 0.71 108.09 142.38 0.75 0.75 0.43 0.75 0.545 

Logistic  46.42 13 -0.03 0.53 0.73 108.28 146.59 0.58 0.62 0.41 0.58 0.483 

Simple 

Logistic 

 42.85 12 -0.14 0.51 0.55 103.46 111.76 0.41 0.56 0.35 0.41 0.385 

AdaBoostM1  42.85 12 -0.19 0.55 0.68 111.56 136.25 0.25 0.43 0.3 0.25 0.273 

SMO PolyKernel 35.71 10 -0.28 0.64 0.8 129.94 160.59 0.33 0.62 0.28 0.33 0.308 

KNN K=9 32.14 9 -0.34 0.53 0.54 108.22 109.33 0.33 0.68 0.26 0.33 0.296 

 

Max 

Accuracy 67.85 19 

         

0.609 
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Table A.2. Classification Results of Scenario-1 – DH using Selected Features by ReliefF Method 

 

  

Algorithm Option Accuracy 
Correctly 

Classified 

Kappa 

Statistics 
MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall 

F-

Measure 

LWL  75 21 0.47 0.34 0.45 69.75 90.52 0.58 0.12 0.78 0.58 0.667 

SMO Norm. 

Polykernel 

64.28 18 0.25 0.35 0.59 72.19 119.71 0.5 0.25 0.6 0.5 0.545 

KNN K=7 64.28 18 0.25 0.45 0.49 91.89 100.04 0.5 0.25 0.6 0.5 0.545 

AdaBoostM1  64.28 18 0.25 0.36 0.5 73.9 100.19 0.5 0.25 0.6 0.5 0.545 

Regression  64.28 18 0.25 0.47 0.51 96.91 103.24 0.5 0.25 0.6 0.5 0.545 

JRip  64.28 18 0.25 0.41 0.51 84.81 102.76 0.5 0.25 0.6 0.5 0.545 

Random 

Forest 

 64.28 18 0.27 0.43 0.5 88.84 100.27 0.58 0.31 0.58 0.58 0.583 

Bagging  60.71 17 0.18 0.44 0.48 90.29 96.71 0.5 0.31 0.54 0.5 0.522 

KNN K=3 57.14 16 0.08 0.44 0.54 89.35 109.93 0.33 0.25 0.5 0.33 0.401 

KNN K=9 57.14 16 0.08 0.48 0.51 98.68 103.54 0.33 0.25 0.5 0.33 0.401 

KNN K=1 53.57 15 0.02 0.46 0.65 94.41 131.57 0.33 0.31 0.44 0.33 0.381 

KNN K=5 53.57 15 0.04 0.45 0.52 92.54 104.63 0.42 0.37 0.45 0.41 0.435 

PART  53.57 15 0.02 0.48 0.62 97.49 125.5 0.33 0.31 0.44 0.33 0.381 

Decision 

Tree J48 

 53.57 15 0.02 0.45 0.58 91.94 117.003 0.33 0.31 0.44 0.33 0.381 

Logistic  50 14 -0.02 0.46 0.55 93.67 110.48 0.42 0.44 0.42 0.42 0.417 

Simple 

Logistic 

 50 14 -0.02 0.47 0.51 96.05 102.28 0.42 0.44 0.42 0.42 0.417 

SMO PolyKernel 50 14 -0.02 0.5 0.7 101.06 141.63 0.42 0.44 0.42 0.42 0.417 

SMO Puk 50 14 -0.04 0.5 0.7 101.06 141.63 0.33 0.37 0.4 0.33 0.364 

Naive Bayes   46.42 13 0 0.5 0.65 101.75 131.28 0.75 0.75 0.42 0.25 0.545 

 

Max 

Accuracy 75 21 

         

0.667 
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Table A.3. Classification Results of Scenario-1 – DH using Selected Features by Wrapper Method 

 

 

Algorithm Option Accuracy 
Correctly 

Classified 

Kappa 

Statistics 
MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall 

F-

Measure 

SMO Puk 64.28 18 0.25 0.35 0.59 72.19 119.7 0.67 0.43 0.53 0.67 0.593 

Decision 

Tree J48 

 64.28 18 0.27 0.37 0.54 75.15 109.06 0.58 0.31 0.58 0.58 0.583 

KNN K=3 60.71 17 0.22 0.41 0.51 84.66 101.23 0.67 0.43 0.53 0.67 0.593 

KNN K=5 57.14 16 0.16 0.48 0.52 98.22 104.71 0.67 0.5 0.5 0.67 0.571 

Simple 

Logistic 

 53.57 15 0.04 0.46 0.52 94.62 105.4 0.41 0.37 0.45 0.41 0.435 

SMO Norm. 

Polykernel 

53.57 15 0 0.46 0.68 93.85 136.47 0.25 0.25 0.43 0.25 0.316 

KNN K=1 53.57 15 0.09 0.46 0.65 94.38 131.56 0.67 0.56 0.47 0.67 0.552 

KNN K=7 53.57 15 0.09 0.46 0.49 94.95 98.78 0.67 0.56 0.47 0.67 0.552 

PART  53.57 15 0.06 0.45 0.6 92.24 120.99 0.5 0.44 0.46 0.5 0.480 

Random 

Forest 

 53.57 15 0.08 0.5 0.52 102.71 106.11 0.58 0.5 0.47 0.58 0.519 

Naive Bayes  50 14 0.05 0.49 0.66 99.07 133.58 0.75 0.68 0.45 0.75 0.563 

Logistic  50 14 0.02 0.51 0.71 102.88 141.94 0.58 0.56 0.43 0.58 0.500 

KNN K=9 46.42 13 -0.01 0.49 0.51 99.47 102.95 0.67 0.68 0.42 0.67 0.516 

AdaBoostM1  46.42 13 -0.08 0.55 0.63 111.9 126.22 0.41 0.5 0.38 0.41 0.400 

Regression  42.85 12 -0.19 0.52 0.55 104.84 110.03 0.25 0.43 0.3 0.25 0.273 

SMO PolyKernel 39.28 11 -0.22 0.61 0.77 122.72 156.07 0.33 0.56 0.31 0.33 0.320 

JRip  39.28 11 -0.33 0.56 0.59 114.33 118 0 0.31 0 0 0 

LWL  35.71 10 -0.23 0.54 0.61 110.09 122.08 0.5 0.75 0.33 0.5 0.400 

Bagging   35.71 10 -0.34 0.52 0.53 105.83 107.31 0.16 0.5 0.2 0.16 0.182 

 

Max 

Accuracy 64.28 18 

         

0.593 
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Table A.4. Classification Results of Scenario-1 – DH using Selected Features by PCA Method 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

Naive Bayes  57.14 16 0.16 0.47 0.53 94.4 105.38 0.67 0.5 0.5 0.67 0.571 

SMO PolyKernel 57.14 16 0 0.42 0.65 86.63 131.12 0 0  0  

SMO Norm. 

Polykernel 

57.14 16 0 0.42 0.65 86.63 131.12 0 0  0  

PART  57.14 16 0 0.49 0.49 99.91 100.06 0 0  0  

Decision Tree 

J48 

 57.14 16 0 0.49 0.49 99.91 100.06 0 0  0 0 

SMO Puk 53.57 15 -0.07 0.46 0.68 93.85 136.48 0 0.06 0 0 0 

KNN K=1 53.57 15 0.08 0.46 0.65 94.33 131.53 0.58 0.5 0.47 0.58 0.519 

KNN K=5 53.57 15 0.08 0.5 0.53 101.07 106.85 0.58 0.5 0.47 0.58 0.519 

KNN K=7 53.57 15 0.06 0.52 0.55 105.14 109.59 0.5 0.43 0.46 0.5 0.480 

AdaBoostM1  50 14 -0.08 0.54 0.6 109.89 120.35 0.17 0.25 0.33 0.17 0.222 

Regression  50 14 -0.13 0.51 0.51 102.29 102.61 0 0.125 0 0 0 

Logistic  46.42 13 -0.13 0.49 0.52 99.96 103.54 0.25 0.37 0.33 0.25 0.286 

KNN K=3 46.42 13 -0.06 0.51 0.59 103.41 118.19 0.5 0.56 0.4 0.5 0.444 

KNN K=9 46.42 13 -0.06 0.5 0.52 101.06 103.64 0.5 0.56 0.4 0.5 0.444 

Bagging  46.42 13 -0.129 0.52 0.54 105.99 107.93 0.25 0.37 0.33 0.25 0.286 

Random 

Forest 

 46.42 13 -0.12 0.53 0.58 108.14 116.27 0.25 0.37 0.33 0.25 0.286 

JRip  42.85 12 -0.24 0.56 0.59 113.88 118.5 0.08 0.31 0.16 0.08 0.111 

Simple 

Logistic 

 39.28 11 -0.22 0.49 0.51 100.46 101.78 0.33 0.56 0.31 0.33 0.320 

LWL   35.71 10 -0.28 0.58 0.63 117.41 126.53 0.33 0.62 0.29 0.33 0.308 

 

Max 

Accuracy 57.14 16 

         

0.571 
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Table A.5. Classification Results of Scenario-1 – NH using All Features 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

SMO PolyKernel 60.71 17 0.22 0.39 0.62 79.41 125.54 0.67 0.44 0.53 0.67 0.593 

Logistic  60.71 17 0.21 0.39 0.63 79.44 125.54 0.58 0.37 0.54 0.58 0.560 

Simple 

Logistic 

 60.71 17 0.20 0.46 0.57 93.39 113.80 0.58 0.37 0.54 0.58 0.560 

Random 

Forest 

 60.71 17 0.19 0.50 0.52 100.27 104.67 0.50 0.31 0.54 0.50 0.522 

KNN K=7 57.14 16 0.14 0.52 0.56 105.15 112.68 0.58 0.44 0.50 0.58 0.538 

Regression  57.14 16 0.00 0.50 0.50 101.06 100.15 0.00 0.00  0.00  

Bagging  53.57 15 -0.05 0.50 0.50 100.75 101.02 0.08 0.12 0.33 0.08 0.133 

KNN K=3 50 14 0.02 0.51 0.63 103.42 126.82 0.58 0.56 0.44 0.58 0.500 

KNN K=5 50 14 0.02 0.48 0.56 98.23 112.39 0.58 0.56 0.44 0.58 0.500 

SMO Norm. 

Polykernel 

50 14 -0.14 0.50 0.70 101.07 141.63 0.00 0.12 0.00 0.00 0.000 

SMO Puk 50 14 -0.14 0.50 0.70 101.07 141.63 0.00 0.12 0.00 0.00 0.000 

KNN K=9 46.42 13 -0.01 0.51 0.53 103.45 107.05 0.67 0.69 0.42 0.67 0.516 

Naive Bayes 

(NB) 

 46.42 13 -0.03 0.52 0.71 105.47 142.57 0.58 0.62 0.41 0.58 0.483 

LWL  46.42 13 -0.03 0.53 0.62 106.89 124.79 0.58 0.62 0.41 0.58 0.483 

AdaBoostM1  46.42 13 -0.10 0.52 0.65 105.01 129.81 0.33 0.44 0.36 0.33 0.348 

Jrip  46.42 13 -0.13 0.55 0.61 111.60 123.28 0.25 0.37 0.33 0.25 0.286 

KNN K=1 42.85 12 -0.12 0.57 0.73 114.46 145.92 0.50 0.62 0.37 0.50 0.429 

PART  39.28 11 -0.20 0.59 0.74 118.68 148.65 0.42 0.62 0.33 0.42 0.370 

Decision 

Tree J48 

  35.71 10 -0.28 0.61 0.75 123.54 151.11 0.33 0.62 0.28 0.33 0.308 

 

Max 

Accuracy 60.71 17 

         

0.593 

 

 



83 

 

 

Table A.6. Classification Results of Scenario-1 – NH using Selected Features by ReliefF Method 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

SMO PolyKernel 75 21 0.49 0.25 0.50 50.53 100.15 0.75 0.25 0.69 0.75 0.720 

Logistic  71.42 20 0.42 0.28 0.53 57.75 107.06 0.67 0.25 0.67 0.67 0.667 

SMO Puk 71.42 20 0.41 0.28 0.53 57.75 107.06 0.67 0.25 0.67 0.67 0.667 

Regression  71.42 20 0.41 0.35 0.42 69.99 83.97 0.67 0.25 0.67 0.67 0.667 

Simple 

Logistic 

 67.85 19 0.36 0.41 0.50 82.34 100.24 0.75 0.37 0.60 0.75 0.667 

KNN K=3 67.85 19 0.36 0.42 0.49 84.66 98.19 0.75 0.37 0.60 0.75 0.667 

KNN K=7 64.28 18 0.30 0.48 0.51 96.99 101.66 0.75 0.44 0.56 0.75 0.643 

KNN K=9 64.28 18 0.30 0.48 0.50 96.30 100.71 0.75 0.43 0.56 0.75 0.643 

Bagging  64.28 18 0.25 0.47 0.51 94.97 102.89 0.50 0.25 0.60 0.50 0.545 

KNN K=5 60.71 17 0.21 0.45 0.49 92.54 99.74 0.58 0.37 0.54 0.58 0.560 

Random 

Forest 

 60.71 17 0.2 0.42 0.50 85.25 100.59 0.58 0.37 0.53 0.58 0.560 

Naive Bayes 

(NB) 

 57.14 16 0.17 0.43 0.63 87.31 127.16 0.75 0.56 0.50 0.75 0.600 

LWL  57.14 16 0.16 0.43 0.55 88.09 110.33 0.67 0.50 0.50 0.67 0.571 

KNN K=1 57.14 16 0.14 0.43 0.63 87.70 126.42 0.58 0.44 0.50 0.58 0.538 

AdaBoostM1  57.14 16 0.12 0.41 0.55 82.34 110.59 0.50 0.37 0.50 0.50 0.500 

Jrip  53.57 15 0.06 0.49 0.56 100.13 112.62 0.50 0.44 0.46 0.50 0.480 

SMO Norm. 

Polykernel 

53.57 15 -0.04 0.46 0.68 93.85 136.48 0.08 0.12 0.33 0.08 0.133 

PART  50 14 0 0.49 0.65 100.00 130.37 0.50 0.50 0.42 0.50 0.462 

Decision 

Tree J48 

  50 14 0.00 0.48 0.63 96.92 126.70 0.50 0.50 0.43 0.50 0.462 

 

Max 

Accuracy 75 21 

         

0.720 

 

 

 



84 

 

 

 

Table A.7. Classification Results of Scenario-1 – BH using All Features 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

LWL  71.42 20 0.44 0.36 0.5 73.94 101.01 0.83 0.37 0.62 0.83 0.714 

PART  71.42 20 0.42 0.31 0.52 63.01 104.48 0.75 0.31 0.64 0.75 0.692 

Decision Tree 

J48 

 71.42 20 0.42 0.32 0.52 64.94 105.34 0.75 0.31 0.64 0.75 0.692 

KNN K=1 64.28 18 0.31 0.37 0.58 74.33 115.45 0.83 0.5 0.56 0.83 0.667 

KNN K=3 64.28 18 0.31 0.45 0.56 91.69 113.37 0.83 0.5 0.56 0.83 0.667 

Logistic  60.71 17 0.22 0.39 0.63 79.81 125.55 0.67 0.43 0.53 0.67 0.593 

SMO PolyKernel 60.71 17 0.2 0.39 0.62 79.41 125.54 0.58 0.37 0.53 0.58 0.560 

KNN K=9 60.71 17 0.2 0.5 0.52 101.07 104.81 0.58 0.37 0.53 0.58 0.560 

Jrip  60.71 17 0.18 0.44 0.56 89.3 113.12 0.5 0.31 0.54 0.5 0.522 

AdaBoostM1  60.71 17 0.15 0.34 0.51 69.38 102.39 0.33 0.19 0.57 0.33 0.421 

SMO Puk 57.14 16 0 0.42 0.65 86.63 131.12 0 0  0  

Regression  57.14 16 0 0.5 0.5 101.07 100.15 0 0  0  

KNN K=5 53.57 15 0.09 0.47 0.53 95.38 106.25 0.67 0.56 0.47 0.67 0.552 

KNN K=7 53.57 15 0.08 0.5 0.53 101.07 107.18 0.58 0.5 0.47 0.58 0.519 

Simple Logistic  53.57 15 0.04 0.44 0.55 89.22 110.31 0.42 0.37 0.45 0.42 0.435 

Random Forest  53.57 15 0.04 0.49 0.5 98.47 101.22 0.42 0.37 0.45 0.42 0.435 

SMO Norm. 

Polykernel 

53.57 15 -0.02 0.46 0.68 93.85 136.48 0.16 0.18 0.4 0.16 0.235 

Bagging  53.57 15 -0.04 0.49 0.5 100.75 101.02 0.08 0.12 0.33 0.08 0.133 

Naive Bayes 

(NB) 

  46.42 13 -0.03 0.54 0.72 109.35 144.79 0.58 0.62 0.41 0.58 0.483 

 Max 

Accuracy 

71.42 20          0.714 
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Table A.8. Classification Results of Scenario-1 – BH using Selected Features by ReliefF Method 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

KNN K=9 78.57 22 0.57 0.4 0.44 81.19 88.15 0.83 0.25 0.71 0.83 0.769 

KNN K=3 75 21 0.5 0.28 0.44 56.53 87.67 0.83 0.31 0.67 0.83 0.741 

KNN K=7 75 21 0.5 0.37 0.44 75.57 87.99 0.83 0.31 0.67 0.83 0.741 

KNN K=5 71.42 20 0.42 0.32 0.44 65.54 87.74 0.75 0.31 0.64 0.75 0.692 

SMO Norm. 

Polykernel 

71.42 20 0.41 0.28 0.53 57.75 107.06 0.67 0.25 0.67 0.67 0.667 

SMO Puk 71.42 20 0.4 0.28 0.53 57.75 107.06 0.58 0.18 0.7 0.58 0.636 

KNN K=1 67.85 19 0.36 0.33 0.54 67.63 109.53 0.75 0.37 0.6 0.75 0.667 

Logistic  67.85 19 0.35 0.31 0.56 64.3 112.43 0.67 0.31 0.61 0.67 0.640 

SMO PolyKernel 67.85 19 0.35 0.32 0.56 64.97 113.55 0.67 0.31 0.61 0.67 0.640 

Random 

Forest 

 64.28 18 0.28 0.43 0.48 86.84 96.72 0.67 0.37 0.57 0.67 0.615 

AdaBoostM1  64.28 18 0.27 0.33 0.5 67.17 100.82 0.58 0.31 0.58 0.58 0.583 

Simple 

Logistic 

 60.71 17 0.22 0.4 0.54 81.21 108.09 0.67 0.43 0.53 0.67 0.593 

Regression  60.71 17 0.22 0.44 0.54 89.21 107.42 0.67 0.44 0.53 0.67 0.593 

LWL  57.14 16 0.14 0.47 0.6 94.21 121.09 0.58 0.44 0.5 0.58 0.583 

Jrip  57.14 16 0.12 0.46 0.58 92.77 117.33 0.5 0.37 0.5 0.5 0.500 

Decision 

Tree J48 

 57.14 16 0.12 0.44 0.62 89.25 125.2 0.5 0.37 0.5 0.5 0.500 

Bagging  57.14 16 0.1 0.47 0.52 95.86 104.31 0.42 0.31 0.5 0.42 0.455 

PART  53.57 15 0.04 0.46 0.64 93.87 127.57 0.42 0.37 0.45 0.42 0.435 

Naive Bayes 

(NB) 

  50 14 0.02 0.46 0.64 93.06 127.99 0.58 0.56 0.44 0.58 0.500 

 

Max 

Accuracy 78.57 22 

         

0.769 
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Table A.9. Classification Results of Scenario-2– All Hand Conditions using All Features 

 

 

  
DH NH BH 

Algorithm Option Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

PART  64.28 18 0.444 82.14 23 0.800 67.85 19 0.640 

Jrip  64.28 18 0.500 78.57 22 0.769 53.57 15 0.435 

SVM Puk 60.71 17 0.154 82.14 23 0.737 60.71 17 0.154 

Decision Tree 

J48 

 60.71 17 0.421 82.14 23 0.800 67.85 19 0.640 

Regression  57.14 16 ? 57.14 16 ? 57.14 16 ? 

Simple Logistic  53.57 15 0.435 78.57 22 0.769 57.14 16 0.455 

KNN K=3 53.57 15 0.435 64.28 18 0.615 46.42 13 0.348 

KNN K=7 53.57 15 0.435 60.71 17 0.621 46.42 13 0.444 

KNN K=9 53.57 15 0.480 64.28 18 0.643 50 14 0.462 

Bagging  53.57 15 0.133 53.57 15 0.133 53.57 15 0.133 

SVM Normalized 

Polykernel 

50 14 0.000 57.14 16 0.400 53.57 15 0.133 

KNN K=1 50 14 0.462 71.42 20 0.667 75 21 0.720 

LWL  50 14 0.222 82.14 23 0.815 39.28 11 0.261 

AdaBoost  50 14 0.300 75 21 0.720 53.57 15 0.381 

Naive Bayes  46.42 13 0.545 71.42 20 0.692 53.57 15 0.552 

KNN K=5 46.42 13 0.400 60.71 17 0.621 42.86 12 0.385 

Random Forest  46.42 13 0.348 78.57 22 0.750 67.85 19 0.571 

Logistic  42.85 12 0.333 57.14 16 0.538 57.14 16 0.500 

SVM PolyKernel 42.85 12 0.333 64.28 18 0.615 64.28 18 0.545 

 

Max Accuracy 64.28 18 0.545 82.14 23 0.815 75 21 0.720 
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Table A.10. Classification Results of Scenario-2 – All Hand Conditions using Selected Features by ReliefF Method 

 

 
  DH NH BH 

Algorithm Option Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

KNN K=7 67.85 19 0.471 78.57 22 0.769 64.28 18 0.583 

SVM Puk 67.85 19 0.400 85.71 24 0.800 67.85 19 0.526 

KNN K=5 67.85 19 0.400 64.28 18 0.643 60.71 17 0.476 

KNN K=9 64.28 18 0.444 75 21 0.741 67.85 19 0.640 

SVM PolyKernel 60.71 17 0.560 64.28 18 0.615 71.42 20 0.714 

Simple Logistic  60.71 17 0.522 67.85 19 0.667 71.42 20 0.636 

Regression  60.71 17 0.522 78.57 22 0.769 64.28 18 0.615 

PART  60.71 17 0.522 82.14 23 0.800 67.85 19 0.640 

SVM Normalized 

Polykernel 

60.71 17 0.353 60.71 17 0.421 64.28 18 0.545 

Random Forest  57.14 16 0.538 78.57 22 0.750 67.85 19 0.609 

Bagging  57.14 16 0.500 78.57 22 0.750 75 21 0.720 

Decision Tree J48  57.14 16 0.500 82.14 23 0.800 67.85 19 0.640 

Jrip  57.14 16 0.455 67.85 19 0.609 53.57 15 0.480 

KNN K=3 57.14 16 0.250 67.85 19 0.667 60.71 17 0.476 

KNN K=1 50 14 0.417 78.57 22 0.750 71.42 20 0.667 

LWL  50 14 0.300 82.14 23 0.815 57.14 16 0.455 

Naive Bayes  46.42 13 0.483 78.57 22 0.769 64.28 18 0.643 

AdaBoost  42.85 12 0.385 85.71 24 0.833 64.28 18 0.545 

Logistic   28.57 8 0.167 60.71 17 0.621 75 21 0.720 

 Max Accuracy 67.85 19 0.560 85.71 24 0.833 75 21 0.720 
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Table A.11. Classification Results of Scenario-3 – DH using All Features 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

KNN K=7 64.28 18 0.27 0.43 0.49 86.79 98.11 0.58 0.31 0.58 0.58 0.583 

Random Forest  64.28 18 0.23 0.48 0.51 98.42 101.6 0.42 0.18 0.62 0.42 0.500 

KNN K=5 60.71 17 0.18 0.41 0.49 82.58 98.74 0.5 0.31 0.54 0.5 0.522 

KNN K=1 57.14 16 0.14 0.43 0.63 87.66 126.39 0.58 0.44 0.5 0.58 0.538 

Decision Tree 

J48 

 57.14 16 0.12 0.44 0.62 89.87 125.78 0.5 0.37 0.5 0.5 0.500 

SVM Puk 57.14 16 0 0.43 0.65 86.63 131.12 0 0  0  

Regression  57.14 16 0 0.5 0.5 101.07 100.15 0 0  0  

KNN K=3 53.57 15 0.04 0.45 0.56 91.68 112.02 0.42 0.37 0.45 0.42 0.435 

PART  53.57 15 0.04 0.47 0.66 94.76 133.35 0.42 0.37 0.45 0.42 0.435 

Naive Bayes  53.57 15 0.02 0.46 0.66 92.76 133.05 0.33 0.31 0.44 0.33 0.381 

Bagging  53.57 15 -0.04 0.49 0.5 100.75 101.02 0.08 0.12 0.33 0.08 0.133 

SVM Norm. 

Polykernel 

53.57 15 -0.07 0.46 0.68 93.85 136.48 0 0.06 0 0 0.000 

Jrip  50 14 0 0.51 0.62 104.71 124.8 0.5 0.5 0.43 0.5 0.462 

KNN K=9 50 14 -0.11 0.46 0.49 92.32 98.85 0.08 0.18 0.25 0.08 0.125 

SVM PolyKernel 46.42 13 -0.08 0.53 0.73 108.29 146.6 0.42 0.5 0.38 0.42 0.400 

AdaBoost  46.42 13 -0.08 0.53 0.67 108.39 134.74 0.42 0.5 0.38 0.42 0.400 

LWL  42.85 12 -0.14 0.53 0.64 108.05 128.74 0.42 0.56 0.35 0.42 0.385 

Simple Logistic  42.85 12 -0.16 0.56 0.65 112.55 130.73 0.33 0.5 0.33 0.33 0.333 

Logistic   39.28 11 -0.2 0.61 0.78 122.68 156.02 0.42 0.62 0.33 0.42 0.370 

 Max 

Accuracy 

64.28 18          0.583 

 

  



89 

 

 

 

Table A.12. Classification Results of Scenario-3 – DH using Selected Features by ReliefF Method 

 

 

 

 

 

Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

Naive 

Bayes 

 64.28 18 0.27 0.41 0.59 83.36 117.43 0.58 0.31 0.58 0.58 0.583 

Logistic  67.85 19 0.35 0.32 0.56 64.82 113.15 0.67 0.31 0.61 0.67 0.640 

Simple 

Logistic 

 67.85 19 0.36 0.37 0.51 74.54 101.79 0.75 0.37 0.6 0.75 0.667 

SVM PolyKernel 57.14 16 0.12 0.42 0.65 86.63 131.12 0.5 0.37 0.5 0.5 0.500 

SVM Norm. 

Polykernel 

57.14 16 0.06 0.42 0.65 86.63 131.12 0.25 0.18 0.5 0.25 0.333 

SVM Puk 57.14 16 0.08 0.42 0.65 86.63 131.12 0.33 0.25 0.5 0.33 0.400 

KNN K=1 67.85 19 0.37 0.33 0.55 67.61 109.52 0.83 0.44 0.59 0.83 0.690 

KNN K=3 75 21 0.5 0.37 0.53 75.27 106.8 0.83 0.31 0.66 0.83 0.741 

KNN K=5 71.42 20 0.44 0.41 0.5 82.58 100.96 0.83 0.37 0.62 0.83 0.714 

KNN K=7 67.85 19 0.36 0.4 0.47 81.69 94.94 0.75 0.37 0.6 0.75 0.667 

KNN K=9 50 14 -0.06 0.42 0.47 85.16 93.63 0.25 0.31 0.37 0.25 0.300 

LWL  60.71 17 0.2 0.42 0.55 85.7 110.91 0.58 0.37 0.53 0.58 0.560 

AdaBoost  46.42 13 -0.03 0.5 0.64 102.82 129.84 0.58 0.62 0.41 0.58 0.483 

Bagging  50 14 -0.02 0.49 0.52 99.5 104.93 0.42 0.44 0.42 0.42 0.417 

Regression  57.14 16 0.16 0.48 0.55 96.66 110.12 0.67 0.5 0.5 0.67 0.571 

PART  60.71 17 0.15 0.4 0.61 81.43 122.73 0.33 0.18 0.57 0.33 0.421 

Jrip  50 14 0 0.5 0.6 102.21 121.49 0.5 0.5 0.43 0.5 0.462 

Decision 

Tree J48 

 67.85 19 0.32 0.36 0.56 73.33 111.43 0.5 0.18 0.67 0.5 0.571 

Random 

Forest 

  60.71 17 0.22 0.45 0.5 91.68 101.15 0.67 0.44 0.53 0.67 0.593 

 

Max 

Accuracy 75 21 

         

0.741 
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Table A.13. Classification Results of Scenario-3 – NH using All Features 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

Simple 

Logistic 

 82.14 23 0.63 0.31 0.43 61.95 86.43 0.83 0.19 0.77 0.83 0.800 

Logistic  75 21 0.51 0.28 0.51 56.81 102.5 0.92 0.37 0.65 0.92 0.759 

PART  75 21 0.48 0.27 0.47 53.93 95.05 0.67 0.18 0.73 0.67 0.696 

Decision Tree 

J48 

 75 21 0.48 0.27 0.48 54.42 96.84 0.67 0.18 0.72 0.67 0.696 

Random 

Forest 

 75 21 0.48 0.42 0.44 85.67 89.03 0.67 0.18 0.72 0.67 0.696 

AdaBoost  75 21 0.47 0.26 0.45 52.51 91.27 0.58 0.12 0.78 0.58 0.667 

LWL  71.42 20 0.42 0.34 0.51 69.38 101.61 0.75 0.31 0.64 0.75 0.692 

Naive Bayes  64.28 18 0.3 0.36 0.59 72.98 118.68 0.75 0.43 0.56 0.75 0.643 

Jrip  64.28 18 0.25 0.39 0.55 79.97 110.53 0.5 0.25 0.6 0.5 0.545 

KNN K=1 57.14 16 0.17 0.43 0.63 87.68 126.41 0.75 0.56 0.5 0.75 0.600 

Regression  57.14 16 0 0.5 0.5 101.06 100.14 0 0  0  

KNN K=7 53.57 15 0.11 0.48 0.5 98.01 100.11 0.75 0.62 0.47 0.75 0.581 

KNN K=5 53.57 15 0.09 0.46 0.49 92.54 98.61 0.67 0.56 0.47 0.67 0.552 

KNN K=3 53.57 15 0.08 0.46 0.53 94.03 107.25 0.58 0.5 0.47 0.58 0.519 

SVM PolyKernel 53.57 15 0.06 0.46 0.68 93.85 136.48 0.5 0.44 0.46 0.5 0.480 

Bagging  53.57 15 -0.04 0.49 0.5 100.75 101.02 0.08 0.12 0.33 0.08 0.133 

SVM Puk 53.57 15 -0.07 0.46 0.68 93.85 136.48 0 0.06 0 0 0.000 

SVM Norm. 

Polykernel 

46.42 13 -0.21 0.53 0.73 108.29 146.6 0 0.19 0 0 0.000 

KNN K=9 42.85 12 -0.14 0.5 0.51 101.86 102.39 0.42 0.56 0.36 0.42 0.385 

 Max 

Accuracy 

82.14 23          0.800 
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Table A.14. Classification Results of Scenario-3 – NH using Selected Features by ReliefF Method 

 

 
Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

AdaBoost  85.71 24 0.71 0.18 0.36 37.16 73.42 0.92 0.18 0.79 0.92 0.846 

SVM PolyKernel 82.14 23 0.64 0.18 0.42 36.09 84.64 0.92 0.25 0.73 0.92 0.815 

Simple Logistic  82.14 23 0.64 0.31 0.41 62.97 82.95 0.83 0.18 0.77 0.83 0.800 

Bagging  78.57 22 0.56 0.33 0.39 67.12 78.73 0.75 0.18 0.75 0.75 0.750 

Logistic  78.57 22 0.55 0.21 0.46 44.24 92.77 0.67 0.12 0.8 0.67 0.727 

Random Forest  75 21 0.49 0.3 0.37 61.79 74.53 0.75 0.25 0.69 0.75 0.720 

PART  75 21 0.48 0.25 0.47 52.02 94.87 0.67 0.18 0.73 0.67 0.696 

Decision Tree 

J48 

 75 21 0.48 0.26 0.48 54.42 96.84 0.67 0.18 0.73 0.67 0.696 

KNN K=7 71.42 20 0.44 0.4 0.44 81.69 87.42 0.83 0.37 0.62 0.83 0.714 

LWL  71.42 20 0.43 0.34 0.51 69.67 101.36 0.75 0.31 0.64 0.75 0.692 

Jrip  71.42 20 0.41 0.34 0.51 69.59 101.61 0.67 0.25 0.67 0.67 0.667 

KNN K=1 67.85 19 0.37 0.33 0.54 67.64 109.55 0.83 0.43 0.58 0.83 0.690 

KNN K=3 67.85 19 0.37 0.31 0.43 63.56 87.01 0.83 0.44 0.59 0.83 0.690 

Naive Bayes  64.28 18 0.3 0.35 0.57 71.09 114.06 0.75 0.44 0.56 0.75 0.643 

Regression  64.28 18 0.22 0.37 0.48 76.01 95.99 0.33 0.12 0.67 0.33 0.444 

KNN K=5 60.71 17 0.22 0.4 0.46 81.17 92.02 0.67 0.43 0.53 0.67 0.593 

KNN K=9 57.14 16 0.11 0.42 0.45 85.16 90.04 0.42 0.31 0.5 0.42 0.455 

SVM Puk 57.14 16 0 0.42 0.65 86.63 131.12 0 0  0  

SVM Norm. 

Polykernel 

53.57 15 -0.02 0.46 0.68 93.85 136.48 0.16 0.18 0.4 0.167 0.235 

 Max 

Accuracy 

85.71 24          0.846 
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Table A.15. Classification Results of Scenario-3 – BH using All Features 

 

 

  

Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

KNN K=9 57.14 16 0.11 0.49 0.51 100.27 102.2 0.42 0.31 0.5 0.42 0.455 

Random Forest  57.14 16 0.11 0.49 0.51 100.2 102.81 0.42 0.31 0.5 0.42 0.455 

Simple 

Logistic 

 57.14 16 0.08 0.46 0.53 93.38 105.68 0.33 0.25 0.5 0.33 0.400 

SVM Norm 

Polykernel 

57.14 16 0.04 0.42 0.65 86.63 131.12 0.17 0.12 0.5 0.17 0.250 

SVM Puk 57.14 16 0 0.43 0.65 86.63 131.12 0 0  0  

Regression  57.14 16 0 0.5 0.5 101.07 100.15 0 0  0  

KNN K=7 53.57 15 0.04 0.51 0.52 103.11 105.32 0.42 0.37 0.45 0.42 0.435 

Bagging  53.57 15 -0.04 0.49 0.5 100.75 101.02 0.08 0.12 0.33 0.08 0.133 

KNN K=3 50 14 0.03 0.53 0.59 108.1 118.29 0.67 0.62 0.44 0.67 0.533 

Naive Bayes  50 14 -0.02 0.48 0.67 98.62 134.46 0.42 0.44 0.42 0.42 0.417 

PART  50 14 -0.02 0.52 0.67 106.87 134.52 0.42 0.44 0.42 0.42 0.417 

SVM PolyKernel 46.42 13 -0.1 0.53 0.73 108.28 146.6 0.33 0.44 0.36 0.33 0.348 

Decision Tree 

J48 

 46.42 13 -0.1 0.56 0.7 113.24 139.66 0.33 0.44 0.36 0.33 0.348 

KNN K=1 42.85 12 -0.14 0.56 0.73 114.46 145.92 0.42 0.56 0.36 0.42 0.385 

Logistic  42.85 12 -0.16 0.57 0.75 116.44 150.95 0.33 0.5 0.33 0.33 0.333 

AdaBoost  42.85 12 -0.16 0.54 0.68 109.92 137.19 0.33 0.5 0.33 0.33 0.333 

KNN K=5 35.71 10 -0.28 0.55 0.57 111.02 115.24 0.33 0.62 0.29 0.33 0.308 

LWL  35.71 10 -0.28 0.57 0.66 115.87 132.79 0.33 0.62 0.29 0.33 0.308 

Jrip   28.57 8 -0.45 0.64 0.71 128.72 142.79 0.16 0.62 0.16 0.16 0.167 

 

Max 

Accuracy 57.14 

          

0.533 
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Table A.16. Classification Results of Scenario-3 – BH using Selected Features by ReliefF Method 

 

 

 

 

 

Algorithm Option Accuracy Correctly 

Classified 

Kappa 

Statistics 

MAE RMSE RAE(%) RRSE(%) TPR FPR Precision Recall F-

Measure 

KNN K=3 71.42 20 0.4 0.35 0.47 70.59 94.68 0.58 0.18 0.7 0.58 0.636 

KNN K=5 67.85 19 0.32 0.39 0.48 78.33 96.11 0.5 0.19 0.67 0.5 0.571 

KNN K=7 67.85 19 0.32 0.46 0.5 92.91 101.33 0.5 0.19 0.67 0.5 0.571 

Naive Bayes  67.85 19 0.3 0.35 0.56 69.93 112.09 0.42 0.12 0.71 0.42 0.526 

SVM Norm. 

Polykernel 

67.85 19 0.29 0.32 0.57 64.97 113.55 0.33 0.06 0.8 0.33 0.471 

KNN K=1 64.28 18 0.27 0.37 0.57 74.33 115.45 0.58 0.31 0.58 0.58 0.583 

Random 

Forest 

 64.28 18 0.27 0.44 0.48 88.68 97.65 0.58 0.31 0.58 0.58 0.583 

KNN K=9 64.28 18 0.23 0.46 0.49 93.12 98.41 0.42 0.19 0.62 0.42 0.500 

SVM Puk 64.28 18 0.2 0.36 0.59 72.19 119.7 0.25 0.06 0.75 0.25 0.375 

Simple 

Logistic 

 60.71 17 0.15 0.47 0.57 94.75 113.56 0.33 0.18 0.57 0.33 0.421 

SVM PolyKernel 60.71 17 0.15 0.39 0.63 79.41 125.54 0.33 0.18 0.57 0.33 0.421 

AdaBoost  53.57 15 0.02 0.45 0.61 91.64 122.22 0.33 0.31 0.44 0.33 0.381 

Regression  50 14 -0.02 0.52 0.57 105.26 114.62 0.42 0.44 0.42 0.42 0.417 

Logistic  46.42 13 -0.06 0.55 0.73 110.38 146.82 0.5 0.56 0.4 0.5 0.444 

Bagging  46.42 13 -0.06 0.49 0.52 99.79 104.29 0.5 0.56 0.4 0.5 0.444 

PART  42.85 12 -0.16 0.58 0.72 117.3 143.55 0.33 0.5 0.33 0.33 0.333 

Decision Tree 

J48 

 42.85 12 -0.16 0.59 0.72 120.35 144.11 0.33 0.5 0.33 0.33 0.333 

Jrip  39.28 11 -0.25 0.57 0.66 114.69 131.41 0.25 0.5 0.27 0.25 0.261 

LWL   35.71 10 -0.31 0.56 0.66 113.14 131.73 0.25 0.56 0.25 0.25 0.250 

 Max 

Accuracy 

71.42 20          0.636 



94 

 

 

Table A.17. Classification Results of Scenario-4 – All Hand Conditions using All Features 

 

 

  
DH NH BH 

Algorithm Option Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

Jrip  78.57 22 0.700 46.42 13 0.348 53.57 15 0.316 

Decision Tree 

J48 

 71.42 20 0.600 46.42 13 0.286 57.14 16 0.538 

PART  67.85 19 0.571 42.85 12 0.273 57.14 16 0.538 

AdaBoost  64.28 18 0.444 42.85 12 0.385 46.42 13 0.286 

SVM PolyKernel 60.71 17 0.476 64.28 18 0.583 64.28 18 0.615 

Simple Logistic  57.14 16 0.400 46.42 13 0.444 60.71 17 0.560 

SVM Puk 57.14 16 ? 57.14 16 ? 57.14 16 ? 

KNN K=7 57.14 16 0.250 53.57 15 0.581 60.71 17 0.560 

LWL  57.14 16 0.143 28.57 8 0.091 35.71 10 0.308 

Regression  57.14 16 ? 57.14 16 ? 57.14 16 ? 

Random Forest  57.14 16 0.400 64.28 18 0.500 57.14 16 0.400 

Naive Bayes  53.57 15 0.552 50 14 0.563 50 14 0.500 

Logistic  53.57 15 0.519 57.14 16 0.538 57.14 16 0.571 

Bagging  53.57 15 0.133 53.57 15 0.133 53.57 15 0.133 

SVM Normalized 

Polykernel 

50 14 0.000 57.14 16 ? 53.57 15 0.235 

KNN K=1 50 14 0.500 46.42 13 0.483 60.71 17 0.621 

KNN K=9 50 14 0.125 53.57 15 0.480 60.71 17 0.522 

KNN K=3 39.28 11 0.320 50 14 0.533 71.42 20 0.733 

KNN K=5 39.28 11 0.190 42.85 12 0.500 67.85 19 0.667 

 Max Accuracy 78.57 22 0.700 64.28 18 0.583 71.42 20 0.733 
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Table A.18. Classification Results of Scenario-4 – All Hand Conditions using Selected Features by ReliefF Method 

 

 
 

  DH NH BH 

Algorithm Option Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

Accuracy Correctly 

Classified 

F-

Measure 

SVM Normalized 

Polykernel 
82.14 23 0.783 46.42 13 0.000 67.85 19 0.571 

Jrip  78.57 22 0.700 57.14 16 0.571 42.85 12 0.429 

Random 

Forest 

 78.57 22 0.700 67.85 19 0.640 64.28 18 0.500 

Logistic  75 21 0.720 67.85 19 0.640 71.42 20 0.714 

KNN K=1 71.42 20 0.692 75 21 0.720 53.57 15 0.519 

PART  71.42 20 0.636 57.14 16 0.538 57.14 16 0.538 

Decision Tree 

J48 

 71.42 20 0.636 53.57 15 0.435 53.57 15 0.519 

Bagging  67.85 19 0.571 60.71 17 0.560 50 14 0.417 

Simple 

Logistic 

 64.28 18 0.615 60.71 17 0.522 71.42 20 0.600 

SVM PolyKernel 64.28 18 0.583 71.42 20 0.667 78.57 22 0.769 

Regression  64.28 18 0.500 57.14 16 0.538 50 14 0.364 

AdaBoost  64.28 18 0.444 60.71 17 0.560 60.71 17 0.560 

LWL  64.28 18 0.375 60.71 17 0.522 39.28 11 0.320 

KNN K=3 60.71 17 0.421 67.85 19 0.690 71.42 20 0.692 

KNN K=5 60.71 17 0.421 67.85 19 0.690 71.42 20 0.692 

SVM Puk 60.71 17 0.353 75 21 0.632 60.71 17 0.267 

KNN K=9 57.14 16 0.143 53.57 15 0.581 78.57 22 0.769 

Naive Bayes  53.57 15 0.552 71.42 20 0.692 64.28 18 0.545 

KNN K=7 53.57 15 0.133 64.28 18 0.687 67.85 19 0.667 

 Max Accuracy 82.14 23 0.783 75 21 0.720 78.57 22 0.769 
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APPENDIX B. SELECTED PERFORMANCE FEATURES WITH RELIEFF METHOD 

 

Table B.1. Selected Performance Features Set for Scenario-1 

 
Hand 

Condition 

Accuracy 

(%) 
Selected Feature Set 

BH 71.42 

Time_Task2, Time_Task3, Time_Task4, Time_Task6, Time_Task10, Time_mean, Time_median, 

Time_sum, Dist_Task1, Dist_Task3, Dist_Task4, camDist_Task5, camDist_Task6, 

camDist_Task9, camDist_Task10, camDist_mean, camDist_median, camDist_min, camDist_sum  

NH 67.85 
Handedness, Time_ Task2, Time_Task4, Time_ Task10, Time_std, Time_max, Time_var,  

Dist_Task1, Dist_std, Dist_var 

DH 60.71 Gender, Handedness, Dist_Task1, Dist_Task6, Time_std, Time_var 

 

 

 

Table B.2. Selected Performance Features Set for Scenario-2 

 
Hand 

Condition 

Accuracy 

(%) 
Selected Feature Set 

NH 82.14 

Time_Task2, Time_Task4, Time_Task6, Time_max, Time_mean, Time_std, Time_sum, 

Time_var, Dist_Task1, Dist_Task3, Dist_Task4, Dist_Task5, Dist_Task7, Dist_Task8, 

Dist_Task9, Dist_Task10, Dist_max, Dist_mean, Dist_median, Dist_std, Dist_sum, 

Dist_var 

DH 64.28 

Handedness, Time_Task1, Time_Task3, Time_Task5, Time_Task9, Time_Task10, 

Time_mean, Time_median, Time_sum, Dist_Task2, Dist_Task5, Dist_Task6, 

Dist_Task10, Dist_mean, Dist_median, Dist_sum, Succ_Task4, Succ_Task6 

BH 57.14 
Time_Task1, Time_Task4, Time_Task10, Time_max, Time_median, Dist_Task1, 

Dist_Task3, Dist_Task5, Dist_Task9, Dist_max, Succ_Task6 
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Table B.3. Selected Performance Features Set for Scenario-3 

 
Hand 

Condition 

Accuracy 

(%) 
Selected Feature Set 

BH 78.57 
Time_Task2, Time_Task4, Time_max, Time_mean, Time_std, Time_sum, Dist_Task2, 

Dist_Task3, Dist_min, Catch_Task2, Catch_Task4, Catch_Task9, Succ_Task1, Succ_Task9 

NH 75 

Handedness, Time_Task3, Time_Task4, Time_Task5, Time_Task8, Dist_Task5, Dist_Task7, 

Dist_Task8, Dist_median, Dist_min, Catch_Task2, Catch_Task3, Catch_Task4, Catch_Task5, 

Catch_Task10, Catch_median, Catch_min, Succ_Task1, Succ_Task3, Succ_Task7, Succ_Task8, 

Succ_mean, Succ_min, Succ_std, Succ_sum, Succ_var 

DH 75 

Handedness, Time_Task4, Time_Task5, Time_Task6, Time_Task8, Time_mean, Time_median, 

Time_sum, Dist_Task7, Dist_Task9, Dist_max, Dist_min, Dist_std, Dist_var, camDist_Task4, 

camDist_Task9, camDist_Task10, camDist_mean, camDist_median, camDist_min, 

camDist_sum, Catch_Task6, Catch_Task9, Catch_median, Succ_Task6, Succ_mean, 

Succ_median, Succ_sum 

 

Table B.4. Selected Performance Features Set for Scenario-4 

 
Hand 

Condition 
Accuracy (%) Selected Feature Set 

NH 85.71 

Time_Task2, Time_Task10, Time_Task12, Time_Task13, Time_median, errTime_Task5, errTime_Task10, 

errTime_Task12, errTime_Task13, errTime_median, Dist_Task1, Dist_Task2, Dist_Task3, Dist_Task12, 

Dist_Task13, errDist_Task1, errDist_Task2, errDist_Task10, errDist_Task12, errDist_Task13, errDist_max, 

errDist_median, errDist_min, errDist_Taskstd, errDist_var, Devia_Task4, Devia_Task5, Devia_Task12, 

Devia_Task13, Devia_median 

DH 75 

Handedness, Time_Task1, Time_Task4, Time_Task5, Time_Task6, Time_Task7, Time_Task9, 

Time_Task10, Time_Task12, Time_Task15, Time_mean, Time_median, Time_min, Time_sum, 

errTime_Task1, errTime_Task4, errTime_Task5, errTime_Task6, errTime_Task7, errTime_Task9, 

errTime_Task10, errTime_Task15, errTime_mean, errTime_median, errTime_min, errTime_sum, 

Dist_Task7, Dist_Task15, Dist_min, errDist_Task1, errDist_Task4, errDist_Task7, errDist_Task15, 

errDist_median, errDist_min, camDist_Task3, camDist_Task4, camDist_Task5, Devia_Task2, Devia_Task4, 

Devia_Task5, Devia_Task6, Devia_Task7, Devia_Task8, Devia_Task10, Devia_Task12, Devia_Task13, 

Devia_Task15, Devia_mean, Devia_min, Devia_sum, Succ_Task3, Succ_Task10, Succ_Task14 

BH 71.42 

Handedness, Time_Task1, Time_Task3, Time_Task4, Time_Task5, Time_Task13, Time_Task14, 

Time_Taskmin, errTime_Task1, errTime_Task4, errTime_Task5, errTime_Task8, errTime_Task13, 

errTime_Task14, Dist_Task1, Dist_Task2, Dist_Task5, Dist_Task8, Dist_Task10, Dist_Task12, 

errDist_Task1, errDist_Task2, errDist_Task5, Devia_Task7, Devia_Task8, Devia_Task12, Devia_Task13, 

Devia_Task15, Devia_max, Devia_std, Devia_var 
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APPENDIX C. QUESTIONNAIRE FOR OBSERVERS 

(ORIGINAL) 

 

Değerli Katılımcı, 

Bu anket Atılım Üniversitesi Yazılım Mühendisliği Bölümü‟nde yapmakta olduğum doktora tezi 

kapsamında “Cerrahi Eğitim Süreçlerinde Cerrahların Beceri Seviyelerinin 3B Simulasyon Ortamında 

Tahmini” konulu çalışma ile ilgili bilgi toplamak amacı ile hazırlanmıştır.  

Ankette, sizden kimlik belirleyici hiçbir bilgi istenmemektedir. Cevaplarınız tamamıyla gizli tutulacak 

ve sadece araştırmacılar tarafından değerlendirilecektir; elde edilecek bilgiler bilimsel yayımlarda 

kullanılacaktır. Çalışma iki bölümden oluşmakta olup, en fazla 30 dakikanızı alacaktır. Çalışma 

hakkında daha fazla bilgi almak için araştırma görevlisi Damla Topallı (damla.topalli@atilim.edu.tr) 

ile iletişim kurabilirsiniz. 

Çalışmamıza destek verdiğiniz için teşekkür ederiz. 

 

Çalışma Prosedürü 

Bu çalışma kapsamında Hacettepe Üniversitesi Beyin Cerrahisi ve KBB Bölümlerinde Uzman ya da 

Stajer olarak görev yapan 15 katılımcının 3B ortamda geliştirilmiş bir senaryodaki performansları 

simule edilerek, el ve göz hareketleri ekran üzerinde gösterilecektir. Bu senaryoda amaç anatomik bir 

burun modeli üzerinde bulunan objeleri cerrahi alet ve kamera (endoskop) görevindeki iki dokunsal 

cihazı kullanarak toplamaktır. Bu kapsamda katılımcıların el hareketleri dokunsal cihaz kullanılarak, 

göz hareketleri de göz izleme cihazı kullanılarak kaydedilmiştir. Ekran üzerinde göreceğiniz mavi 

nokta cerrahi alet görevindeki dokunsal cihazın ekran üzerindeki yerini gösterirken, “göz” simgesi ise 

katılımcının o anda ekranda baktığı noktayı göstermektedir. İzlenen her performans için, o katılımcıya 

ait aşağıda verilen yargılardan kendinize uygun olanı seçerek kişinin performansını değerlendirmeniz 

beklenmektedir. Yapacağınız değerlendirmelerde katılımcının görevleri gerçekleştirirken dokuya 

teması, hareket tasarrufu (economy of movement), operasyonel akış, aletin 3B ortamdaki konumsal 

durumu (spatial orientation), derinlik algısı, sağ- sol el kullanım yeteneği, el-göz koordinasyonu ve 3B 

algının arttırılması gibi parametreler yer alırken, kişinin beceri seviyesini (Uzman ya da Acemi) 

tahmin etmeniz beklenmektedir. 

 

 

Değerlendirici No: 

Bölüm 1. Demografik Bilgiler 

Bu kısımda değerlendiriciye ait demografik bilgiler sorulmaktadır. 

Üniversite / Bölüm: .............................................................. 

Eğitim Durumu:  Lisans                Yüksek Lisans                    Doktora 

Cinsiyet:   Kadın  Erkek     

Değerlendirilen 

Katılımcı No. 

 



99 

 

Yaş: ......................................  

Bölüm 2. Katılımcıların Senaryodaki Performanslarının Değerlendirilmesi 

Aşağıda verilen yargılar kapsamında katılımcının performansını 1‟den 5‟e kadar puanlandırarak 

değerlendiriniz. (1: En düşük, 5: En yüksek) 

 1 2 3 4 5 

Katılımcının 3B ortamdaki derinlik algısı gelişmişti.      

Katılımcının sağ-sol el kullanma yeteneği gelişmişti.      

Katılımcının cerrahi bir alet ile birlikte endoskobu kullanabilme yetisi gelişmişti.      

Katılımcının el- göz koordinasyonu gelişmişti.      

Katılımcının göz hareketlerini incelediğimde cerrahi aletin anlık konumunu takip ediyordu.      

Katılımcının göz hareketlerini incelediğimde operasyon alanının genelini gözlemliyordu.      

Katılımcı görevleri yerine getirirken kendine güvenen ve sakin bir tutum içerisindeydi.      

Katılımcı görevleri yerine getirirken heyecanlı ve tedirgindi.      

Bölüm 3. Katılımcıların Beceri Seviyesi Değerlendirme Ölçeği 

3.1 İzlemiş olduğunuz performans ile ilgili katılımcıyı aşağıda verilen yargılardan size uygun olanı 

seçerek değerlendiriniz. 

Not: Bu bölüm Adrales ve ark. (2003) çalışmasından uyarlanmıştır. 

Beceri-1 0 1 2 3 4 

Dokuya Saygı 

(Dokuya 

Temas) 

Gereksiz 

kuvvet 

kullanarak 

sürekli temas 

eder. 

Dokuya sıklıkla 

temas eder. 

Dikkatlidir 

ancak zaman 

zaman temas 

eder. 

Oldukça 

dikkatlidir, 

dokuya temas 

çok azdır. 

Sürekli olarak 

dokuya temas 

etmeden 

görevleri 

tamamlar.  

 

Beceri-2 0 1 2 3 4 

Yetenek 

(hareket 

tasarrufu) 

Çok fazla 

gereksiz 

hareket 

Fazla gereksiz 

hareket 

Uygun 

hareketler 

ancak bazıları 

hala gereksiz 

Uygun, 

tasarruflu 

hareketler 

Hassas, 

maksimum 

hareket 

tasarrufu 

 

Beceri-3 0 1 2 3 4 

Seri / 

Eşzamanlı 

Karmaşıklık- 

Operasyonel 

Akış 

Bir sonraki 

hareketten 

emin değil 

Bazı Görevleri 

gerçekleştirirken 

seri, yine de 

hareketleri belirsiz 

Seri görevlerde 

iyi, makul 

ilerleme 

Seri görevlerde 

çok iyi, iyi 

düzeyde 

ilerleme 

Seri görevlerde 

mükemmel, 

hatasız ilerleme 

 

Beceri-4 0 1 2 3 4 

Konumsal 

Durum 

Çok düşük, 

sürekli ortamda 

kayboluyor. 

Ortalama, bir kaç 

denemeden sonra 

tekrar konumunu 

bulabiliyor. 

İyi, amacına 

yönelik 

hareketler ile 

konumunu 

belirliyor. 

Çok iyi, 

sürekli olarak 

amaca yönelik 

hareketler 

Mükemmel, 

ortamda hiç 

kaybolmuyor, 

konumu net. 

 

3.2 Performansını izlediğim katılımcının beceri seviyesinin ................... olduğunu tahmin ediyorum. 

 Acemi 

 Uzman 



100 

 

APPENDIX D. QUESTIONNAIRE FOR OBSERVERS 

 

Dear Participant, 

This questionnaire was prepared with the aim of gathering information about the study on "Estimation 

of Surgeons Skill Levels in Surgical Training Processes in 3D Simulation Environment" within the 

scope of my doctoral thesis in Atilim University Software Engineering Department. 

In the questionnaire, no identifiable/personal information is required. Your answers will be kept 

completely confidential and will only be evaluated by researchers; the information to be obtained will 

be used in scientific publications. The study consists of two parts and will take you up to 30 minutes. 

You can contact the researcher Damla Topalli (damla.topalli@atilim.edu.tr) for further information 

about the study. 

Thank you for supporting this work. 

Procedure 

In this study, hand and eye movements will be shown on the screen by simulating the performances of 

15 participants in Hacettepe University Neurosurgery and ENT Departments who are surgeons or 

interns in a scenario developed in 3D environment. In this scenario, the aim is to collect the objects on 

an anatomical nasal model using two haptic devices, the surgical instrument and the camera (as 

endoscope). In this context, hand movements of participants were recorded using tactile device and 

eye movements were recorded using eye tracking device. The blue pointer you will see on the screen 

shows the location of the tactile device on the screen, while the "eye" symbol indicates where the 

participant currently looking at the screen. For each participant, you are expected to evaluate the 

performance of the person by choosing the appropriate alternative for the given statements about their 

performance. The statements include parameters thah should be considered during the operation such 

as tissue contact, economy of movement, operational flow, spatial orientation in the 3D environment 

of the tool, depth perception, ability to use the non-dominant hand (camera control), hand-eye 

coordination and improving 3D depth perception. At the end, you are expected to predict the skill 

level of the participant, Intermediate or Novice. 

 

Observer ID: 

PART- I. Demographics 

In this section, the demographic information of the observer is asked. 

University /Department: .............................................................. 

Educational Status:  Bachelor               Masters                    Doctorate 

Gender:   Female  Male     

Age: ......................................  

Assessed 

Participant 

ID: 
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PART- II. Evaluating Participants' Performances in the Scenario 

Assess the participants‟ performance that you currently observed by choosing the appropriate 

statements in one of the five alternatives (1: Strongly Disagree, 5: Strongly agree). 

 

PART- III. Participants’ Skill Level Assessment 

3.1 Assess the participant based on his/ her performance that you currently observed. About the 

following expressions given, choose one of the five alternatives (from 0 to 4). 

      Note: This part is adapted from the rating scale in Adrales et al. (2003)’s study. 

 

 

3.2 I guess that the participants‟ skill level, which I have currently observed, is .............. . 

 Novice 

 Intermediate

 1 2 3 4 5 

Participant shows developed depth perception skills in a 3D environment      

Participant shows developed skills to use left-right hand in coordination.      

Participant shows developed skills to use endoscope with a surgical instrument in coordination.      

Participant shows developed skills on hand-eye coordination      

When I examined the participants' eye movements, they were monitoring the instant position of the tool.      

When I examined the participants' eye movements, they observed the general area of operation.      

The participant was confident and calm while performing the surgical tasks.      

The participant was excited and nervous while performing the surgical tasks.      

Skill-1 0 1 2 3 4 

Clinical 

Judgement- 

Respect for 

Tissue 

Uses 

unnecessary 

force 

Shows an 

attempt to 

respect tissue 

Careful but 

occasionally 

disrespectful 

Very Careful in 

handling Tissue 

Consistently 

handles tissue 

with care 

Skill-2 0 1 2 3 4 

Dexterity 

(economy of 

movement) 

Many gross- 

unnecessary 

movements 

Some gross- 

unnecessary 

movements 

Appropriate 

movements but 

some are still 

unnecessary 

Fine and 

economical 

movements 

Precise and 

maximum 

economy of 

movement 

Skill-3 0 1 2 3 4 

Serial 

/Simultaneous 

Complexity 

(Flow of 

operation) 

Unsure of next 

move 

Some 

knowledge of 

serial tasks but 

still uncertain 

Good 

knowledge of 

serial tasks; 

reasonable 

progression 

Very good 

knowledge of 

serial tasks; 

good 

progression 

Excellent 

knowledge of 

serial tasks; 

effortless 

progression 

Skill-4 0 1 2 3 4 

Spatial 

Orientation 

Poor spatial 

orientation, 

consistently lost 

in space. 

Moderate spatial 

orientation; able 

to adjust after 

several attempts. 

Good Spatial 

orientation; 

purposeful 

movement in 

space 

Very Good 

Spatial 

orientation; 

consistently 

purposeful 

movement 

Excellent 

Spatial 

orientation; 

precise and 

purposeful 
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APPENDIX E. CLASSIFICATION RESULTS ON HAND MEASURES 

 

Table E.1. Classification Results of Scenario-1 – BH Condition using All Features 

 

Algorithm Option Accuracy 
Correctly 

Classified 
TPR FPR Precision Recall 

F-

Measure 

AdaBoost 
 

78.57 22 0.75 0.18 0.75 0.75 0.750 

Simple Logistic 
 

64.28 18 0.58 0.31 0.58 0.58 0.583 

Decision Tree J48 
 

60.71 17 0.58 0.37 0.54 0.58 0.560 

Random Forest 
 

60.71 17 0.33 0.18 0.57 0.33 0.421 

PART 
 

60.71 17 0.5 0.31 0.54 0.500 0.522 

KNN K=1 57.14 16 0.58 0.43 0.5 0.58 0.538 

SVM Puk 57.14 16 0 0 ? 0 ? 

Regression 
 

57.14 16 0 0 ? 0 ? 

SVM Normalized Polykernel 57.14 16 0 0 ? 0 ? 

Bagging 
 

57.14 16 0 0 ? 0 ? 

LWL 
 

57.14 16 0.66 0.5 0.5 0.66 0.571 

KNN K=3 53.57 15 0.58 0.5 0.46 0.58 0.519 

KNN K=7 53.57 15 0.66 0.56 0.47 0.66 0.552 

Jrip 
 

53.57 15 0.58 0.5 0.47 0.58 0.519 

Naive Bayes 
 

53.57 15 0.58 0.5 0.46 0.58 0.519 

KNN K=5 53.57 15 0.66 0.56 0.47 0.66 0.552 

Logistic 
 

53.57 15 0.58 0.5 0.46 0.58 0.519 

KNN K=9 50 14 0.75 0.69 0.45 0.75 0.563 

SVM PolyKernel 50 14 0.58 0.56 0.44 0.58 0.500 

 

Max Accuracy 78.57 22 0.75 0.69 0.75 0.75 0.75 
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Table E.2. Classification Results of Scenario-1 – BH Condition using Selected Features 

 

 

  
Selected Features- ReliefF (34) 

Algorithm Option Accuracy 
Correctly 

Classified 
TPR FPR Precision Recall 

F-

Measure 

KNN K=1 85.71 24 0.91 0.18 0.78 0.91 0.846 

Simple Logistic 
 

75 21 0.75 0.25 0.69 0.75 0.720 

SVM Puk 75 21 0.5 0.06 0.85 0.5 0.632 

AdaBoost 
 

75 21 0.75 0.25 0.7 0.75 0.72 

KNN K=3 71.42 20 0.83 0.37 0.62 0.83 0.714 

KNN K=7 71.42 20 0.83 0.37 0.62 0.83 0.714 

KNN K=9 71.42 20 0.83 0.37 0.62 0.83 0.714 

Regression 
 

67.85 19 0.83 0.43 0.58 0.83 0.690 

Jrip 
 

67.85 19 0.5 0.19 0.66 0.5 0.571 

Naive Bayes 
 

64.28 18 0.58 0.31 0.58 0.58 0.583 

SVM PolyKernel 64.28 18 0.67 0.37 0.57 0.67 0.615 

SVM 
Normalized 

Polykernel 
64.28 18 0.67 0.37 0.57 0.67 0.615 

KNN K=5 64.28 18 0.75 0.44 0.56 0.75 0.643 

Bagging 
 

64.28 18 0.41 0.18 0.62 0.41 0.500 

Decision Tree J48 
 

64.28 18 0.58 0.31 0.58 0.58 0.583 

Random Forest 
 

64.28 18 0.5 0.25 0.6 0.5 0.545 

Logistic 
 

60.71 17 0.5 0.31 0.54 0.5 0.522 

PART 
 

57.14 16 0.58 0.43 0.5 0.58 0.538 

LWL   53.57 15 0.58 0.5 0.47 0.58 0.519 

 

Max Accuracy 85.71 24 0.91 0.5 0.85 0.91 0.846 
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Table E.3. Classification Results of Scenario-3 – BH Condition using All Features 

 

 

  
ALL Features (101) 

Algorithm Option Accuracy 
Correctly 

Classified 
TPR FPR Precision Recall 

F-

Measure 

KNN K=3 76.92 20 0.75 0.21 0.75 0.75 0.750 

SVM 
Normalized 

Polykernel 
50 13 0.08 0.14 0.33 0.08 0.133 

KNN K=5 76.92 20 0.66 0.14 0.8 0.66 0.727 

KNN K=7 61.53 16 0.33 0.14 0.66 0.33 0.444 

Naive Bayes 
 

38.46 10 0.08 0.35 0.17 0.08 0.111 

KNN K=1 53.84 14 0.5 0.42 0.5 0.5 0.500 

KNN K=9 53.84 14 0.16 0.14 0.5 0.16 0.250 

Random Forest 
 

53.84 14 0.33 0.28 0.5 0.33 0.400 

SVM PolyKernel 50 13 0.41 0.43 0.45 0.42 0.435 

SVM Puk 53.84 14 0 0 ? 0 ? 

Regression 
 

53.84 14 0 0 ? 0 ? 

PART 
 

42.31 11 0.41 0.57 0.38 0.41 0.400 

Decision Tree J48 
 

42.31 11 0.41 0.57 0.38 0.41 0.400 

Simple Logistic 
 

34.61 9 0.25 0.57 0.27 0.25 0.261 

AdaBoost 
 

38.46 10 0.25 0.5 0.3 0.25 0.273 

Logistic 
 

46.15 12 0.33 0.43 0.4 0.33 0.364 

LWL 
 

38.46 10 0.33 0.57 0.33 0.33 0.333 

Bagging 
 

50 13 0.08 0.14 0.33 0.08 0.133 

Jrip   42.31 11 0.25 0.42 0.33 0.25 0.286 

 

Max Accuracy 76.92 20 0.75 0.57 0.8 0.75 0.667 
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Table E.4. Classification Results of Scenario-3 – BH Condition using Selected Features 

 

  
Selected Features- ReliefF (42) 

Algorithm Option Accuracy 
Correctly 

Classified 
TPR FPR Precision Recall 

F-

Measure 

KNN K=3 80.76 21 0.81 0.22 0.85 0.81 0.797 

SVM Normalized Polykernel 76.92 20 0.6 0.14 0.8 0.66 0.727 

KNN K=5 73.07 19 0.5 0.07 0.857 0.5 0.632 

KNN K=7 73.07 19 0.5 0.07 0.857 0.5 0.632 

Naive Bayes 
 

69.23 18 0.58 0.21 0.7 0.58 0.636 

KNN K=1 69.23 18 0.58 0.21 0.7 0.58 0.636 

KNN K=9 69.23 18 0.5 0.14 0.75 0.5 0.600 

Random Forest 
 

69.23 18 0.67 0.28 0.66 0.66 0.667 

SVM PolyKernel 57.69 15 0.5 0.35 0.54 0.5 0.522 

SVM Puk 57.69 15 0.25 0.14 0.6 0.25 0.353 

Regression 
 

57.69 15 0.66 0.5 0.53 0.66 0.593 

PART 
 

57.69 15 0.33 0.21 0.57 0.33 0.421 

Decision Tree J48 
 

53.84 14 0.33 0.28 0.5 0.33 0.400 

Simple Logistic 
 

50 13 0.41 0.43 0.45 0.41 0.435 

AdaBoost 
 

50 13 0.58 0.57 0.46 0.58 0.519 

Logistic 
 

46.15 12 0.41 0.5 0.41 0.41 0.417 

LWL 
 

46.15 12 0.41 0.5 0.41 0.41 0.417 

Bagging 
 

46.15 12 0.41 0.5 0.41 0.41 0.417 

Jrip   38.46 10 0.16 0.42 0.25 0.16 0.200 

 
Max Accuracy 80.76 21 0.81 0.57 0.857 0.81 0.797 

 


