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YENİLENEBİLİR KAPASİTE ARTIŞININ ELEKTRİK PİYASALARI 

ÜZERİNE ETKİSİ 
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Yüksek Lisans Tezi, Kasım 2024 
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ÖZET 

Elektrik piyasaları, artan yenilenebilir enerji kaynaklarının (YEK) etkisiyle önemli bir 

dönüşüm sürecindedir. Özellikle rüzgâr ve güneş gibi düşük maliyetli enerji 

kaynaklarının piyasa dinamikleri ve fiyatlandırma üzerindeki etkileri araştırılmaktadır. 

YEK kapasitesindeki artış, elektrik piyasalarında fiyatları düşürme ve piyasa gücünü 

azaltma potansiyeline sahiptir. Bu çalışma, piyasa yapılarının yeniden tasarımı ve YEK 

entegrasyonuna yönelik öneriler sunmayı amaçlamaktadır. Modelleme, yenilenebilir 

enerjinin piyasa fiyatlarına etkisini belirleyerek politika yapıcıların bilinçli kararlar 

almasına katkı sağlamaktadır. Ayrıca, piyasa gücünü azaltmak ve adil rekabeti sağlamak 

için öneriler sunulmuştur. Türkiye’deki gün öncesi elektrik piyasası için yedi regresyon 

yöntemi kullanılarak elektrik fiyatları tahmin edilmiştir. Veriler Borsa İstanbul (EXIST) 

Şeffaflık Platformu’ndan alınmış, %80 eğitim ve %20 test olarak bölünmüştür. Python 

kullanılarak geliştirilen modellerin performansları değerlendirilmiştir. SHAP analizi, 

yenilenebilir enerjinin fiyatları düşürdüğünü, fosil yakıtların ise artırdığını 

göstermektedir. Bu çalışmada, öznitelik önemi ve PCA teknikleriyle bağımsız 

değişkenlerin fiyat tahminine katkısı analiz edilmiştir. Çalışmanın sonuçları, enerji 

politikalarının ve piyasa stratejilerinin geliştirilmesi için önemli bir referans kaynak 

olarak sunulmakta ve akademik literatür ile sektör uygulamalarına değerli katkılar 

sağlamaktadır. 

Anahtar Kelimeler: Yenilenebilir Enerji, Açıklanabilir Makine Öğrenimi, Elektrik 

Piyasaları, Piyasa Takas Fiyatı, SHAP Analizi 
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ABSTRACT 

Electricity markets are undergoing a significant transformation due to the increasing 

impact of renewable energy sources (RES). The expansion of low marginal cost energy 

sources like wind and solar is being studied for its potential to lower prices and reduce 

market power in electricity markets. This study aims to offer critical recommendations 

for the redesign of market structures and the integration of RES. By modeling the impact 

of renewable energy on market prices, the study helps policymakers make informed 

decisions. Additionally, it provides suggestions to reduce market power and ensure fair 

competition. Electricity prices in Türkiye’s day-ahead market were predicted using seven 

regression methods. The data were obtained from the Transparency Platform of Energy 

Exchange Istanbul (EXIST) and split into 80% training and 20% testing sets. The models 

were developed using Python, and their performance was evaluated. SHAP analysis 

explains how various features influence the target variable, showing that renewable 

energy tends to lower prices while fossil fuels have the potential to increase them. This 

study also analyzes the contribution of independent variables to price forecasting using 

feature importance and PCA techniques. The findings serve as a valuable reference for 

the development of energy policies and market strategies, contributing significantly to 

both academic literature and industry practices. 

Keywords: Renewable Energy, Explainable Machine Learning, Electricity Markets, 

Market Clearing Price, SHAP Analysis 
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GİRİŞ 

Günümüzde, enerji kaynaklarının sürdürülebilirliği ve çevresel etkilerinin önemi giderek 

artmaktadır. Enerji sektöründe yenilenebilir enerji kaynakları kilit bir rol üstlenmektedir. 

Yenilenebilir enerji kaynakları, sürdürülebilirlik ve çevresel sorumluluk açısından önemli 

avantajlar sağlarken enerji piyasaları üzerinde de dikkate değer etkiler oluşturabilir. Bu 

çalışma, yenilenebilir enerji kapasitesindeki artışın elektrik piyasalarında özellikle fiyat 

üzerindeki etkilerini analiz etmeyi hedeflemektedir. 

Elektrik piyasası, genellikle finansal veya zorunlu değiş tokuş şeklinde satın alımlara, 

satışlara ve kısa dönemli ticaretlere olanak tanıyan bir sistemdir. Piyasada, arz ve talep 

miktarlarına ve verilen fiyat tekliflerine bağlı olarak piyasa takas fiyatı (PTF) 

oluşmaktadır. Elektrik talebini karşılamada fosil yakıt üretiminin oranı her geçen yıl 

azalmakta ve yenilenebilir enerji kaynakları giderek daha fazla değer görmektedir.  

Elektrik piyasalarının dinamikleri, özellikle yenilenebilir enerji kaynaklarının (YEK) 

hızla artan katkısıyla, son yıllarda önemli değişiklikler göstermektedir. Bu dönüşüm, 

enerji üretim ve tüketim süreçlerinde yeni fırsatlar ve zorluklar ortaya çıkarırken 

geleneksel fosil yakıtlı enerji üretim sistemlerinin yerini almaya başlayan rüzgâr ve güneş 

enerjisi gibi düşük marjinal maliyetli yenilenebilir enerji kaynakları, piyasa fiyatlandırma 

mekanizmalarını ve arz-talep dengelerini köklü bir şekilde etkilemektedir. Yenilenebilir 

enerji kaynaklarının artan kullanımı, enerji piyasalarında daha rekabetçi bir ortam 

yaratmakta ve fiyat dinamiklerini yeniden şekillendirmektedir. YEK kapasite artışı, 

piyasa fiyatlarını düşürme ve piyasa gücünün kullanımını azaltma potansiyeline sahipken 

piyasa katılımcılarının stratejik karar alma süreçlerinde de önemli değişikliklere yol 

açmaktadır. Elektrik piyasalarının bu yeni dinamiklerini anlamak ve bu değişimlere 

uygun stratejiler geliştirmek, enerji politikaları ve piyasa düzenlemeleri açısından büyük 

önem taşımaktadır. Yenilenebilir enerji kaynaklarının kesintili doğası ve düşük marjinal 

maliyetleri, piyasa oyuncularının üretim ve tüketim stratejilerini yeniden gözden 

geçirmesini gerektirmektedir. Bu tez çalışması, Türkiye’nin gün öncesi elektrik 

piyasasında piyasa takas fiyatının (PTF) tahmin edilmesi ve yenilenebilir enerji 
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kaynaklarının piyasa dinamikleri üzerindeki etkilerinin incelenmesini amaçlamaktadır. 

Bölüm 1’de, elektrik enerjisi sektöründeki yeniden yapılanma çalışmaları ve elektrik 

piyasalarının modellenmesine yönelik literatür taranmış, yenilenebilir enerji 

kaynaklarının belirsiz ve kesintili doğasının planlama süreçlerinde ortaya çıkardığı 

zorluklar vurgulanmıştır. Bölüm 2’de, EPİAŞ’ın şeffaflık platformundan elde edilen 

2018-2023 dönemi verileri kullanılarak makine öğrenimi algoritmalarıyla PTF tahmini 

yapılmış, modellerin hiperparametre optimizasyonu ve SHAP yöntemi ile model 

açıklanabilirliği artırılmıştır. Ayrıca, öznitelik önemi ve Temel Bileşen Analizi (PCA) 

teknikleri kullanılarak bağımsız değişkenlerin elektrik fiyat tahminine katkısı analiz 

edilmiştir, bu sayede model doğruluğu artırılmış ve veri boyutu azaltılmıştır. Bölüm 3’te, 

çeşitli makine öğrenimi modellerinin performansı sık kullanılan hata ölçütleriyle 

değerlendirilmiş, yenilenebilir enerji kapasitesindeki artışın elektrik fiyatları üzerindeki 

düşürücü etkisi ve fosil yakıtların fiyatlar üzerindeki etkileri analiz edilmiştir. Son olarak, 

Bölüm 4’te, enerji piyasasında yer alan aktörlere yüksek performanslı tahmin modelleri 

sunulmuş, gelecekteki araştırmalar için açık erişim veri ve kod paylaşımının önemi 

vurgulanmış ve yenilenebilir enerji kaynaklarının artan entegrasyonunun piyasa 

dinamiklerini nasıl şekillendirdiği detaylı bir şekilde ortaya konmuştur. 
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1. BÖLÜM  

GENEL BİLGİLER VE LİTERATÜR ÇALIŞMASI 

1.1. Problem Durumu 

Elektrik enerjisi sektöründe yapılan yeniden yapılanma çalışmaları son 20 yılda hız 

kazanmıştır ve buna paralel olarak akademik alandaki elektrik piyasalarının 

modellenmesi ile ilgili çalışmalar da son 10 yılda hızla artmıştır. Koltsaklis ve 

Dagoumas’un [1] ele aldığı elektrik üretim kapasite planlama modelleri üzerine yapılan 

derleme çalışmasına göre, sektörün karmaşık doğası nedeniyle geleneksel maliyet temelli 

yaklaşımların kapsamlı bir şekilde değiştirilip güncellendiği belirtilmektedir. Özellikle, 

yenilenebilir enerji kaynaklarının (YEK) belirsiz ve kesintili doğası planlama 

süreçlerinde yeni zorluklar ortaya çıkarmaktadır. Bu bağlamda, yeni modellerin YEK 

kapasitesindeki artışı dikkate alarak analizlerde bulunması önem arz etmektedir. YEK’in 

payının artması ve enerji sisteminin elektrifikasyonunun artmasıyla birlikte, uzun vadeli 

çalışmalarda kısa vadeli değişkenliklerin nasıl temsil edileceği, iklim değişikliğinin 

etkisinin nasıl dahil edileceği ve modelleme süreçlerinde açıklık ve şeffaflığın nasıl 

sağlanacağı gibi bazı zorluklara dikkat çekilmektedir. Bu zorluklardan biri de pazar 

gücünün YEK kapasitesi ile nasıl değiştiğidir. Gallo [2], piyasalara giderek daha fazla 

değişken üretimin girmesiyle birlikte piyasa katılımcılarının nasıl tepki verdiğinin ve 

uyum sağladığının araştırılması gerekliliğine işaret etmektedir. Piyasa davranışının 

genellikle yenilenebilir enerjinin şebeke entegrasyonuyla ilgili çalışmalarda ele 

alınmadığını ve bireysel piyasa katılımcılarının fiyatları etkilemek ve kârlarını artırmak 

için aldığı stratejik kararların etkisini gerekliliğini belirtmektedir. Bu noktada, piyasa 

gücünün etkilerine ve piyasa katılımcılarının piyasaları manipüle etme yeteneklerine 

yeterince dikkat edilmediği özellikle vurgulanmaktadır. Selçuklu ve Elmahi [3], pazar 

gücünün azaltılması için özgün bir model sunmuşlardır. YEK’in piyasalarda pazar gücü 

açısından etkileri incelenmiştir. 
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1.2. Elektrik Piyasaları 

Elektrik piyasaları, elektrik enerjisinin alım satımının yapıldığı ve fiyatlarının belirlendiği 

platformlardır. Bu piyasalarda, arz ve talep dengesine bağlı olarak elektrik fiyatları 

belirlenir ve enerji tedarikçileri ile tüketiciler arasında ticari ilişkiler gerçekleşir. Elektrik 

piyasaları, enerji verimliliği, sürdürülebilirlik ve rekabetçi fiyatlandırma gibi konularda 

önemli bir rol oynamaktadır [4]. 

Enerji piyasaları, alıcı ve satıcıların bir aracı piyasa işletmecisi aracılığıyla işlem yaptığı 

gün öncesi ve gün içi gibi piyasalardır [5]. Bu piyasalarda, alıcı ile satıcı birbirini tanımaz; 

işlemler aracı kurum aracılığıyla gerçekleşir ve bir takas merkezi işlemleri takas eder. 

Takas merkezi, hem alıcılar hem de satıcılar için karşı tarafı oluşturur [6]. Dolayısıyla, 

aracı kurum alıcının yerine satıcı, satıcının yerine de alıcı gibi davranır. Enerji piyasaları, 

işlemlerin gerçekleşme zamanına göre spot ve vadeli olmak üzere ikiye ayrılır. Spot 

piyasalar, takasın yapıldığı gün malın veya kıymetin el değiştirdiği piyasalar olarak 

tanımlanırken vadeli piyasalar, ileriki bir tarihte teslimatı veya nakit uzlaşması yapılmak 

üzere belirlenen fiyat ve miktardan alım satımın yapıldığı piyasalar şeklinde tanımlanır 

[7]. 

Türev piyasalar, alıcı ve satıcılar arasında bugünden yapılan anlaşma sonucu gelecekte 

belirli bir tarihte ve önceden belirlenmiş fiyat üzerinden teslim edilmek üzere alım satım 

sözleşmelerinin yapıldığı piyasalardır [8]. Elektrik ticareti yapanlar, ihtiyaçlarını uzun 

vadede ikili anlaşmalar ve vadeli işlemler piyasalarında kontratlar ile karşılayabilirler. 

Ancak elektriğin teslim tarihi yaklaştığında, spot piyasa devreye girer. Spot piyasa, 

teslimatın ve ödemenin iki iş günü içerisinde gerçekleştiği piyasadır. İki iş gününün 

üzerinde bir teslimat veya ödeme süresi mevcutsa, bu piyasalar vadeli piyasa olarak 

adlandırılır [9]. Organize toptan elektrik piyasaları (spot piyasalar), Gün Öncesi Piyasası 

(GÖP), Gün İçi Piyasası (GİP), Dengeleme Güç Piyasası (DGP) ve Yan Hizmetler 

Piyasası’dır [10]. 

GÖP, her bir piyasa katılımcısının bir sonraki günün her bir saatine ilişkin olarak alış-

satış miktar ve fiyat tekliflerini verdiği, oluşan arz-talep eğrilerinin kesiştirilmesiyle gün 

öncesi fiyatının belirlendiği piyasadır [10]. Bu fiyat, diğer piyasalar için referans fiyat 

olarak kabul edilir ve elektrik ilk kez tahmin edilen ihtiyaçlar doğrultusunda dengelenmiş 

olur, gerçek zamanlı sistem işletmesini kolaylaştırır. GİP, genellikle sürekli ticaret 
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yöntemiyle çalışan bir piyasadır. Genellikle gün öncesi piyasası kapandıktan sonra açılır 

ve ilgili saat için ticaret yapılabilir [10]. DGP ise, sistem işletmecisinin sistemi dengede 

tutmak için işlettiği piyasadır. Bu piyasada asıl amaç ticaret değil, sistemin dengelenmesi 

ve güvenliğinin sağlanmasıdır. Sistem işletmecisi (TEİAŞ), sistemin dengesini sağlamak 

için gerekli tüm işlemleri talimatlar ile yerine getirir [10]. 

1.2.1. Piyasa Takas Fiyatı 

Piyasa Takas Fiyatı (PTF), günlük elektrik piyasalarında arzı ve talebi dengelemek için 

temel bir öneme sahiptir. Toplam elektrik arzının talebi karşıladığı fiyatı yansıtan toptan 

piyasa temizlemesi yoluyla, genellikle saatlik olarak belirlenir. Üreticiler ve 

perakendeciler gibi piyasa katılımcıları, elektrik miktarlarını ve fiyatlarını detaylandıran 

teklifler sunarlar. Düşük teklifler dağıtımı sağlayarak şebekeye elektrik üretirken yüksek 

teklifler bunu yapmayabilir. PTF, üretici gelirlerini ve perakendeci/tüketici maliyetlerini 

doğrudan etkiler. Üreticiler sağladıkları elektrik için PTF’ye dayalı ödemeler alırken 

kullanıcılar tükettikleri elektrik için aynı tutarı öderler (Şekil 1). 

 

Şekil 1. Piyasa Takas Fiyatı 

PTF, arz-talep dengesini sağlayarak fiyatlandırmayı ve piyasa hareketlerini yönlendirir 

ve yatırım tercihlerini şekillendirir. Her aya, her güne ve her saate göre değişkenlik 

gösteren PTF’nin doğru tahmini, piyasada teklif vermede ve fiyatlama stratejilerinde 

başarı için kritik öneme sahiptir. Geçmiş piyasa verileri ve uygun modeller kullanılarak 

doğru PTF tahminleri yapılmalıdır. 
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Elektrik fiyatı tahmini, bilinçli karar verme, risk yönetimi, piyasa verimliliği, talep 

tepkisi, politika değerlendirmesi ve yenilenebilir enerjinin başarılı entegrasyonu için 

hayati öneme sahiptir. Bu tahminler, piyasa katılımcılarının stratejilerini optimize 

etmelerini, riskleri yönetmelerini ve fiyat sinyallerine yanıt vermelerini sağlayarak 

elektrik piyasalarının etkili ve güvenilir işleyişine katkıda bulunur. 

1.2.2. Türkiye’de Enerji Piyasası 

Türkiye’de Enerji Piyasaları İşletme Anonim Şirketi (EPİAŞ), 18 Mart 2015 tarihinde 

kurulmuştur ve enerji piyasalarının etkin, şeffaf, güvenilir ve sürdürülebilir biçimde 

işletilmesi ve geliştirilmesi için çalışmaktadır. EPİAŞ bünyesinde Gün Öncesi Piyasası 

(GÖP), Gün İçi Piyasası (GİP), Dengeleme Güç Piyasası (DGP), Spot Doğal Gaz 

Piyasası, Vadeli Elektrik Piyasası, Vadeli Doğal Gaz Piyasası ve Yenilebilir Enerji 

Kaynak Garanti Sistemi ve Piyasası bulunmaktadır. GÖP, elektriğin teslimat gününden 

bir gün öncesinde, elektrik ticareti ve dengeleme faaliyetleri için kullanılır ve bu piyasada 

elektrik enerjisi referans fiyatı yani piyasa takas fiyatı (PTF) belirlenir. İşlemler günlük 

olarak saatlik bazda gerçekleştirilir. Gün öncesi piyasası süreci Şekil 2‘de görülmektedir. 

Piyasadaki katılımcılar, piyasada beklenen referans fiyatına göre kendi portföylerini 

dengelemeyi amaçlar. 

 

Şekil 2. Gün Öncesi Piyasa Süreci 

Türkiye’nin 2022 yılında elektrik üretiminin %60.37’si termik santrallerden, %39.63’ü 

ise yenilenebilir enerji kaynaklarından elde edilmiştir. Yenilenebilir enerji kaynakları 

arasında hidroelektrik %50.49, rüzgâr enerjisi %23.14 ve güneş enerjisi %11.84 oranında 

yer almaktadır. 2023 yılında Türkiye’deki elektrik üretiminin %36.3’ü kömürden, 

%21.4’ü doğal gazdan ve %42,26’sı yenilenebilir enerji kaynaklarından sağlanmıştır. Bu 
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yenilenebilir kaynaklar arasında hidroelektrik %19.6, rüzgâr enerjisi %10.4, güneş 

enerjisi %5.7, jeotermal enerji %3.4 ve biyogaz enerjisi %2.99 oranında paya sahiptir. 

2024 yılının ilk altı ayında ise Türkiye’de fosil yakıtlı elektrik üretimi %46.76, 

yenilenebilir enerji kaynaklı üretim ise %53.53 olarak gerçekleşmiştir [11,12]. 

Türkiye Gün Öncesi Piyasası’ndaki elektrik fiyatları, saatlik, günlük ve mevsimsel 

faktörlere bağlı olarak değişmektedir. Elektrik fiyatları, yüksek talep saatlerinde artar, 

hafta sonları ve tatil günlerinde ise talep düştüğü için düşer (Şekil 3). Mevsimsel olarak, 

Şekil 4‘de görüldüğü gibi kış aylarında ısıtma ihtiyacı, yaz aylarında ise soğutma ihtiyacı 

nedeniyle fiyatlar yüksek olur. Ancak, hidroelektrik santrallerinin yüksek payı nedeniyle 

ilkbaharda fiyatlar düşer. 

 

Şekil 3. 2022 Türkiye Gün Öncesi Piyasa Elektrik Fiyatlarının Ortalaması - Hafta 

Sonları ve Resmi Tatiller 
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Şekil 4. 2022 Türkiye Gün Öncesi Piyasa Elektrik Fiyatlarının Aylık ve Mevsimsel 

Ortalamaları 

Şekil 5‘de günlük ve haftalık ortalama PTF değerlerini gösteren iki zaman serisi vardır. 

Mavi çizgi günlük ortalamaları, kırmızı çizgi ise haftalık ortalamaları temsil eder. Günlük 

verilerin daha fazla dalgalanma gösterdiği, haftalık verilerin ise bu dalgalanmaları 

yumuşattığı ve daha genel eğilimleri yansıttığı görülmektedir. 2018’den 2023’e doğru 

genel bir yükseliş eğilimi göstermektedir. Bu eğilim, gün öncesi elektrik piyasasında 

fiyatların bu dönemde arttığını göstermektedir. 

 

Şekil 5. Türkiye Gün Öncesi Piyasa Elektrik Fiyatlarının Günlük ve Haftalık 

Ortalamaları 

Şekil 6‘da zaman serisi bileşenleri, trend, mevsimsellik ve artıklar olmak üzere üç 

bileşene ayrıştırılmıştır. Trend bileşeni, verilerdeki uzun vadeli eğilimi gösterir ve bu 
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bileşende zaman içinde yavaş yavaş artan bir eğilim görülmektedir. Mevsimsellik 

bileşeni, belirgin bir yıllık desen olmasa da yıl içinde düzenli dalgalanmalar 

göstermektedir. Artıklar bileşeni ise trend ve mevsimsellik tarafından açıklanamayan 

varyasyonları gösterir. Bu varyasyonlar genellikle rastgele ve düzensizdir. 

 

Şekil 6. Orijinal, Trend, Mevsimsellik, Artık 

Son dönemde Türkiye’de uygulanan enerji politikaları, yönetmelikler ve hükümet 

destekleri gibi faktörler, yenilenebilir enerjilerdeki artışın ana sebepleri arasında yer 

almaktadır. Yenilenebilir enerjilerin artışı, düşük marjinal maliyetler ve liyakat sıralaması 

ilkesi gibi nedenlerle, spot piyasa fiyatlarında belirsizliklere ve fiyat değişkenliğine neden 

olabilmektedir. 

1.3. Elektrik Piyasasında Liyakat Sırası (Merit Order) 

Yenilenebilir enerji kaynaklarının geleneksel fosil yakıtlı enerji üretim sistemlerinin 

yerini alması, düşük marjinal maliyetleri ve kesintili doğasıyla piyasa fiyatlandırma 

mekanizmalarını ve arz-talep dengelerini etkilemektedir. Özellikle rüzgâr ve güneş 

enerjisi gibi YEK’ler, piyasa takas fiyatlarını düşürme ve piyasa gücünün kullanımını 

azaltma potansiyeline sahiptir. Liyakat Sırası Etkisi (Merit Order Effect), elektrik 

piyasasında marjinal üretim maliyeti en düşük olan kaynakların ilk olarak devreye 

alındığı bir sistemdir. Liyakat sırası etkisi, YEK’lerin sıfıra yakın marjinal maliyetleri 
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nedeniyle elektrik üretiminde öncelikli hale gelmelerini ifade eder, bu da fosil yakıtlı 

santrallerin devreye girme sıklığını azaltarak toplam üretim maliyetlerini ve dolayısıyla 

piyasa fiyatlarını düşürür. YEK’lerin artan entegrasyonu, enerji piyasalarında daha 

rekabetçi bir ortam yaratırken aynı zamanda piyasa katılımcılarının üretim ve tüketim 

stratejilerini yeniden gözden geçirmelerini gerektirir. Bu dönüşüm, enerji sektöründe yeni 

fırsatlar ve zorluklar ortaya çıkararak, gelecekteki enerji piyasalarının şekillenmesinde 

önemli bir rol oynayacaktır. 

Şekil 7‘de yenilenebilir enerjinin elektrik piyasasına girişinin fiyat üzerindeki etkisini 

göstermektedir. Grafikte, yatay eksen enerji miktarını (MWh) ve dikey eksen ise fiyatını 

($/MWh) göstermektedir. Elektrik piyasasında arz ve talep dengesi, üretim maliyetleri 

doğrultusunda belirlenmektedir. Bu grafik, arz eğrisinin (yeşil, siyah ve gri renklerle 

gösterilen) ve talep eğrisinin (turuncu) etkileşimini göstermektedir. Arz eğrisi, 

yenilenebilir enerji kaynakları (rüzgâr gücü, güneş enerji vb.), fosil yakıtlar ve diğer enerji 

kaynaklarını içermektedir. Grafik, yenilenebilir enerjilerin düşük marjinal maliyetle arz 

eğrisinde en düşük seviyede yer aldığını ve fosil yakıtların daha yüksek maliyetle arz 

eğrisinde üst sıralarda bulunduğunu göstermektedir. Bu durumda, yenilenebilir enerjide 

artan kullanımı genellikle arz eğrisini sola kaydırmakta ve bu da piyasa takas fiyatının 

düşmesine neden olmaktadır. Grafikte PTF, başlangıçta 𝑃0 seviyesinde iken rüzgâr 

enerjisinin entegrasyonu ile 𝑃1 seviyesine düşmektedir. Bu durum, Liyakat Sırası Etkisi 

olarak bilinen etkiyi yansıtmaktadır. 

 

Şekil 7. Liyakat Sırası Etkisi 
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Diğer taraftan PTF, arz-talep dengesini sağlayarak fiyatlandırmayı yönlendirir, piyasa 

hareketlerini şekillendirir ve yatırım tercihlerini belirler. PTF, her aya, her güne ve her 

saate göre değişkenlik göstermektedir. Piyasada teklif vermede ve fiyatlama 

stratejilerinde iyi sonuçlar alabilmek için geçmiş piyasa verileri ve uygun modeller 

kullanılarak doğru PTF tahminleri yapılmalıdır. 

1.4. Literatür Çalışması 

Son yıllarda elektrik sektöründe yeniden yapılanmalar sonucunda, birçok ülkede, serbest 

ve rekabete dayalı elektrik piyasaları kurulmuştur. Bir elektrik piyasasının pazar hedefi, 

tüketicilerin elektrik talebini, üretim kaynaklarının doğru miktarda yatırım yaparak 

minimum maliyetle karşılamaktır. Elektrik üretiminde verimlilik artışını sağlamak ve 

elektrik fiyatlarını düşürmek amacıyla pek çok ülkede olduğu gibi Türkiye’de de serbest 

elektrik piyasasına geçilmiştir. Hem dünyada hem de ülkemizde enerjiye olan ihtiyacın 

çoğu fosil yakıtlı enerji kaynaklarından karşılanmaktadır fakat son yıllarda fosil yakıtların 

elektrik üretimindeki payı azalmakta ve yenilenebilir kapasite hızla artmaktadır. Bu 

dönüşümün elektrik piyasaları üzerine etkisi önemli bir araştırma alanıdır. 

Yenilenebilir elektrik kaynakları üzerine yapılan çeşitli çalışmalar, metodolojileri, veri 

kaynaklarını ve hedefleri farklılık gösterse de genellikle sistem kapasite sınırlarına 

yaklaştığında özellikle maliyet sıralama etkisi aracılığıyla spot piyasa fiyatlarını 

düşürdüğünü kabul etmektedir. Liyakat Sırası Etkisinin tahmin edilmesi için kullanılan 

veri frekansının seçimi, rapor edilen sonuçları etkileyebilir. Rüzgârın elektrik fiyatları 

üzerindeki etkisi, özellikle Almanya, Hindistan, İspanya, İtalya ve Avustralya gibi yüksek 

rüzgâr penetrasyonuna sahip ülkelerde önemli rol oynamaktadır. Rüzgâr analizlerinin 

güneş çalışmalarından daha fazla olduğu göz önüne alındığında, bu çalışma, Türkiye 

elektrik piyasasının özel koşulları nedeniyle güneş, rüzgâr, jeotermal ve hidroelektrik 

üretimi alanlarına odaklanmaktadır. 

Abban ve Hasan [13], Avustralya elektrik piyasalarında yüksek güneş enerjisi girişinin 

elektrik fiyatları üzerindeki etkisini ölçmeyi amaçlamaktadır. Çalışmanın amacına 

ulaşmak için tek değişkenli ve çok değişkenli genelleştirilmiş otoregresif koşullu değişen 

varyans modeli kullanılmıştır. Artan güneş penetrasyonunun Queensland, Güney 

Avustralya ve Tazmanya’nın bölgesel elektrik piyasalarında elektrik fiyatlarını azalttığı 

görülmektedir. 
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Benhmad ve Percebois [14], liyakat sırası etkisini saatlik olarak araştırmak ve 

Almanya’da 2012- 2015 yılları arasında elektrik piyasası için saatlik geçmiş verilere 

dayalı ampirik bir analiz yapmak için Seemingly Unrelated Regression metodolojisini 

kullanmıştır. Temel bulgularda rüzgâr ve güneş üretimi arttıkça elektrik spot fiyatlarında 

keskin bir düşüş olduğu görülmektedir. 

Odeh ve Watts [15], yenilenebilir enerji kaynaklarının (güneş, rüzgâr, jeotermal, 

hidroelektrik vb.) kullanımını ve potansiyelini inceleyerek, bunların ekonomik, çevresel 

ve sosyal sürdürülebilirliğini değerlendirmektir. Çalışma, yenilenebilir enerji 

entegrasyonunu etkileyen teknik, ekonomik, politik ve sosyal faktörleri analiz etmektedir. 

Yenilenebilir enerji teknolojilerinde kayda değer ilerlemeler olmasına rağmen, güneş ve 

rüzgâr kaynaklarının yüksek değişkenliği ve sınırlı öngörülebilirliği nedeniyle 

entegrasyonları hâlâ zordur. Entegrasyonu kolaylaştırmak için coğrafi çeşitlendirme gibi 

önlemler alınabilir. Şili’deki rüzgâr ve güneş enerjisinin piyasa değeri üzerindeki 

mekansal çeşitlendirme etkilerini incelemekte ve bu çeşitlendirmenin yenilenebilir 

enerjinin piyasa değeri üzerinde olumlu etkisi olduğunu ortaya koymaktadır. Sonuçlar, 

rüzgâr ve güneş enerjisi piyasa değerinin çeşitlendirme düzeyine bağlı olarak 

artabileceğini göstermektedir. Çalışmanın bulguları, yenilenebilir enerjinin daha 

sürdürülebilir ve çevre dostu bir enerji sistemine geçiş için önemli ipuçları sunmakta ve 

enerji depolama, akıllı şebekeler ve talep yönetimi gibi teknolojilerin geliştirilmesinin 

önemini vurgulamaktadır. Enerji politikaları, teşvikler ve düzenleyici çerçeveler 

yenilenebilir enerjinin daha hızlı benimsenmesini desteklerken toplumsal farkındalık ve 

kabul de kritik öneme sahiptir. Gelecekteki araştırmalar, teknolojik yenilikler ve 

uluslararası işbirliği, yenilenebilir enerjinin sürdürülebilir bir şekilde yaygınlaşmasına 

katkı sağlayacaktır. 

Nibedita ve Irfan [16], Hindistan elektrik piyasası için yenilenebilir kaynaklardan elektrik 

üretiminin toptan elektrik fiyatları üzerindeki asimetrik etkilerini araştırmışlardır. 

Doğrusal olmayan bir eş bütünleşmenin varlığı ve yenilenebilir kaynakların toptan 

elektrik fiyatı üzerindeki asimetrik etkileri, doğrusal olmayan bir otoregresif dağıtılmış 

gecikme modelleme çerçevesi kullanarak incelemişlerdir. Çalışma, toptan elektrik fiyatı 

ile yenilenebilir kaynaklardan elektrik üretimi ve toptan elektrik fiyatı ile rüzgâr ve güneş 

kaynaklarından elektrik üretimi arasında doğrusal bir eş bütünleşme ilişkisini ortaya 
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koymaktadır. Rüzgâr ve güneş elektrik üretimindeki pozitif ve negatif etkileri nedeniyle 

toptan elektrik fiyatına verilen tepkilerin asimetrik olduğunu göstermişlerdir. 

Csereklyei vd. [17], Avustralya’da 2010-2018 yılları arasında rüzgâr ve güneş enerjisi 

üretiminin toptan elektrik fiyatları üzerindeki etkisini araştırmaktadır. Avustralya Ulusal 

Elektrik Piyasası için günlük veri setlerini kullanmaktadırlar. Rüzgâr ve güneş üretiminin 

liyakat sırası etkisini ayrıştırmak için otoregresif dağıtılmış gecikme modelleri ile tahmin 

yöntemi kullanılmıştır. Çalışmada, yenilenebilir enerji kaynaklarına yönelim arttıkça 

elektrik fiyatlarında düşüş olduğu sonucu çıkarılmaktadır. 

Cieplinski vd. [18], liberalleşmiş piyasaların düşük marjinal maliyeti dolayısıyla rüzgâr 

ve güneş enerjisine yapılan yeni yatırımların kârını düşürme eğiliminde olduğunu 

belirtmektedir. Çalışmada, İtalyan ekonomisine (2015-2040) yeni bir hibrit dinamik 

makro simülasyon modeli uygulanmaktadır. Fiyat sübvansiyon politikasının ilk on 

yıldaki (2021-2030) etkisizliğine rağmen 2040 yılına kadar değişken yenilenebilir enerji 

kaynaklarının çok yüksek nüfuzuna ulaşmak hâlâ çok önemlidir. 

Concettini vd. [19], yenilenebilir üretimdeki piyasa dengesini incelemek için İtalya’nın 

gün öncesi piyasasının saatlik fiyat-miktar dengesini simüle eden bir İtalyan Gün Öncesi 

Piyasa Çözücüsü algoritması geliştirmişlerdir. Analizlerin sonucunda yenilenebilir 

kapasitenin artışının elektrik piyasalarında fiyatları azalttığı görülmektedir. 

Coester vd. [20], Alman elektrik piyasası verilerine dayanarak yapılan bir çalışmada, 

serbest piyasa koşullarında yenilenebilir enerjinin enerji arz güvenliği üzerindeki etkileri 

incelenmiştir. Yenilenebilir enerji kapasitesinin genişleme hedefleri tarafından değil, 

ekonomik faktörler tarafından yönlendirildiği bir model kullanılarak, yenilenebilir 

enerjiyi bir yatırım seçeneği olarak dinamik olarak modellemişlerdir. Araştırma, sabit bir 

ödeme garantisi mekanizmasının, yenilenebilir enerji genişlemesini ve kesintisiz enerji 

arzını sağlamak için uygun bir araç olduğunu ortaya koymaktadırlar. Ancak, elektrik 

üretiminin dış maliyetlerini içselleştirme durumunda, konvansiyonel santraller için 

teşviklerle birlikte serbest piyasa senaryosunun, yenilenebilir enerji için en uygun 

maliyetli seçenek olduğu belirtmektedirler. 

Sánchez de la Nieta ve Contreras [21] sıfıra eşit bir marjinal maliyetle yenilenebilir enerji 

kaynaklarının dahil edilmesinin, gün öncesi elektrik piyasasının marjinal fiyatları 
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üzerinde aşağı yönlü bir etki yaratabileceğinden yola çıkarak enerji tekliflerine daha 

yüksek bir yenilenebilir enerji katılımı ile gün öncesi elektrik piyasası fiyatları üzerindeki 

aşağı yönlü etkinin sayısallaştırılması üzerine çalışma yapmışlardır. Çeşitli simülasyon 

sonuçları sunarak yenilenebilir üretim katılımının İspanyol elektrik piyasası fiyatları 

üzerindeki etkisini analiz etmek ve ölçmek için bir algoritmik model göstermişlerdir. 

Yenilenebilir üretimin marjinal maliyeti konvansiyonel üretime göre daha düşük olduğu 

ve yenilenebilir üretimin piyasaya katılımı nedeniyle piyasa fiyatı üzerinde aşağı yönlü 

bir etki yarattığı, yenilenebilir üretimin elektrik piyasasına katılımı ne kadar fazla olursa, 

fiyatlar üzerindeki aşağı yönlü etkisinin de o kadar büyük olacağı sonucu çıkarılmıştır. 

Elektrik piyasaları, teknik yapısı itibariyle diğer finansal piyasalardan oldukça farklıdır. 

Elektrik piyasalarındaki fiyat hareketliliği büyük ölçüde kısıtlamalardan etkilenmektedir. 

Arz tarafında, sistem yapısı gereği her bir noktada üretimin tüketimi karşılaması 

gereklidir. Talep tarafında ise tüketim, tedarikçilerin davranışlarından ve mevsimsellikten 

etkilenir. Elektrik tüketimi ve fiyatları aylık, günlük ve saatlik olarak değişkenlik 

göstermektedir. Elektrik piyasalarındaki bu fiyat hareketliliğini hedef alınan piyasa 

verileri doğrultusunda uygun metot ve modeller ile doğru tahminlere dayandırarak, 

piyasada teklif verme ve fiyatlama stratejilerinde optimum bir çıkar sağlanabilir. 

Bu kapsamda, elektrik piyasalarının son dönemlerdeki davranışları hakkında yapılan 

çalışmalarda çeşitli modeller önerilmektedir [22]. Gün öncesi piyasasında PTF tahmini 

yapmak, piyasada kazanç elde etmek için önemlidir. Literatürde PTF tahmini ile ilgili çok 

sayıda çalışma bulunmaktadır. Türkiye gün öncesi piyasasında yapılan PTF tahmini 

çalışmaları Tablo 1‘de verilmiştir. 

Tablo 1. Türkiye Gün Öncesi Piyasasında PTF Tahmini Yapan Çalışmalar 

YAZAR Kullanılan Metot Kullanılan Değişkenler 

Şenocak ve Kahveci [23] Yapay Sinir Ağı (YSA) Doğal Gaz üretim miktarı, 

Linyit üretim miktarı, Sıvı 

yakıtlar üretim miktarı 

Demirezen ve Çetin [24] Rassal Orman 

Regresyonu, Destek 

Vektör Regresyonu 

PTF, Bir gün önceki fiyat, 

Bir ay önceki fiyat, Hafta 

sonu ve Hafta içi günler, Bir 

saat önceki fiyat, İki saat 

önceki fiyat, Üç saat önceki 

fiyat, İşlem hacmi 
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Ertaylan vd. [25] YSA Tarih, Saat, Bir gün önceki 

fiyat, Bir hafta önceki fiyat, 

Toplam tüketim miktarı, 

Gaz referans fiyatı, Tatil 

günleri 

Akay vd. [26] Uzun Kısa Süreli Bellek 

(LSTM), Destek Vektör 

Regresyonu 

Sistem Marjinal Fiyatı 

Arslan ve Ertuğrul [27] Çoklu regresyon, YSA Enerji üretim miktarı, Talep 

miktarı 

Karatekin ve Başaran [28] Lineer Regresyon, 

Polinom Regresyon, 

YSA, Xgboost 

Gün öncesi saatlik takas 

fiyatı, Her bir elektrik 

üretim kaynağı için saatlik 

üretim 

Şirin ve Yılmaz [29] Quantile Regresyon Talep miktarı, PTF, Rüzgâr 

üretim miktarı, Nehir Hidro 

miktarı üretim, Gaz üretim 

miktarı 

Avcı vd. [30] Zaman serisi, YSA, 

Mevsimsel model 

Tahmini talep, Marj, Güne-

özgü değişken Tatil 

değişkeni 

Tayşi vd. [31] SARIMA, YSA Bir gün önceki aynı saatteki 

PTF,Bir hafta önceki aynı 

saatteki PTF,Son 24 saatteki 

ortalama PTF 

Uğurlu vd. [32] Markov zinciri, CNN, 

SARIMA, LSTM, Navie 

Bayes, Kendi kendini 

Uyaran Eşik Otoregresif 

24 saat gecikmeli fiyat, 168 

saat gecikmeli fiyat, 1 saat 

gecikmeli fiyat, 48 saat 

gecikmeli fiyat, 23 saat 

gecikmeli fiyat, 72 saat 

gecikmeli fiyat, 336 saat 

gecikmeli fiyat, Talep 

tahmini, Sıcaklık, 24 saat 

gecikme ile gerçekleşen 

talep/arz, 24 saat gecikmeli 

piyasa fiyatının 

dengelenmesi 

Özyıldırım ve Beyazıt [33] Lineer Regresyon, 

Radyal tabanlı fonksiyon 

PTF gecikme, Sıcaklık, 

Sıcaklığın karesi, Günlük, 

Aylık, Tatil değişkeni 

Kölmek ve Navruz [34] YSA, Otoregresif (AR) Tarihsel gün öncesi fiyat, 

Talep tahmini, Ortalama 

sıcaklık, Tüketim tahmini, 

İkili sözleşme tutarı, Gün 

kodu 

Avni Özözen vd. [35] SARIMA, YSA Gün öncesi saatlik PTF, 

Talep/Arz 

Arifoğlu ve Kandemir [36] Çok katmanlı Algılayıcı, 

CNN, LSTM 

Haftanın günleri ve resmi 

tatiller, Gerçek zamanlı 
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tüketim, Hidroelektrik 

elektrik üretimi, Sistem 

marjinal fiyatı, Yük tahmin 

planı, Rüzgâr hızı, Sıcaklık 

 

Türkiye’nin elektrik fiyatlarının tahmini konusunda sunulan çalışmaların başında 

Yıldırım vd. [37], Özyıldırım and Beyazıt [33], Hayfavi and Talaslı [38] vardır. Türkiye 

spot elektrik piyasa fiyat tahmini için ilk sinir ağı yaklaşımını kullanarak literatüre öncü 

bir çalışma sunan Kölmek and Navruz [34], gün öncesi fiyat tahmini için YSA ve AR 

modellerini kullanmışlardır. Farklı olarak Yıldırım vd. [37] elektrik fiyat tahmini için 

konik çok değişkenli uyarlanabilir regresyon çizgileri (CMARS), dinamik regresyon ve 

Robust CMARS yöntemlerini kullanmışlardır. Yönteme bağlı olarak veri sınırlaması 

nedeniyle sonuçların kesinliği belirsizdir. Elektrik fiyat tahmini için ortalama spot fiyatı 

kullanarak çok faktörlü bir model oluşturan Hayfavi and Talaslı [38], bu modeli 

tahminlemeye alternatif olarak önermişlerdir. Modelde kullanılan parametreler ve 

varsayımlar, Türkiye’nin piyasa dinamiklerini tam olarak ele almamaktadır. Bu nedenle, 

Türkiye’nin gün öncesi elektrik piyasası için daha spesifik ve uygun olan diğer modellerin 

kullanılması önerilmiştir. Uğurlu vd. [32], doğrusal regresyon ve radyal tabanlı fonksiyon 

kapsamında fiyat tahminlemesinde sıcaklığın karesi, sıcaklık, tatil günleri, saatlik, günlük 

ve aylık fiyatlar gibi değişkenler kullanmış ve radyal tabanlı fonksiyonun daha iyi sonuç 

verdiğini belirtmiştir. SARIMA ve YSA yöntemleri kullanarak elektrik fiyat tahmini 

yapan Avci vd. [30] değişken olarak çeşitli varyasyonlardaki PTF’yi kullanmışlardır. 

Taysi vd. [31] Türkiye Elektrik Piyasası için fiyat tahmin sistemlerinin 

değerlendirilmesini amaçlamıştır. ARIMA modeli ve ileri beslemeli yapay sinir ağı 

(YSA) olmak üzere iki farklı sistem oluşturmuşlardır. Her iki sistem de takvim bilgisi ve 

geçmiş fiyat verilerini kullanarak elektrik fiyatlarını tahmin etmektedir. Sonuçlara göre, 

her iki sistem de haftalık olarak elektrik fiyatlarını ortalama %8.5 hata oranıyla tahmin 

edebilmektedir. Ozozen vd. [35], Türkiye gün öncesi elektrik piyasası için birleşik bir 

metodoloji olan ARIMA ve YSA zaman serisi kullanmışlardır. Bu çalışma, verilerin 

eksik olabileceği ve geçmiş verilere büyük ölçüde bağımlı olunan piyasalarda zaman 

serisi tahmini için SARIMA ve geri yayılım (back-propagation) öğrenmeli YSA’dan 

oluşan yeni bir hibrit model önermektedir. Türkiye elektrik piyasasında tamamen 

serbestleşmemiş elektrik ticaretinde uyguladıkları model ile tahminindeki hataların 

ortalama %4 azaldığını ve %30’luk bir iyileşme sağladığını savunmaktadırlar [35].  
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Türkiye elektrik piyasasına ilişkin literatür incelendiğinde, araştırma makalelerinin az 

olduğu ve çalışmaların çoğunluğunun doktora tezleri veya konferans tutanakları 

düzeyinde olduğu ve birçoğunun gün öncesi piyasası kurulmadan önceki dönemi temsil 

ettiği ve bu çalışmalarda da yeterli veri setlerinin kullanılamadığı gözlemlenmiştir. 

Mevcut piyasa koşullarını ve son dönem veri zenginliğini tam yansıtan ve doğru elektrik 

fiyat tahmini yapan çalışmaların eksikliği görülmektedir. Başlıca eksikler, yenilenebilir 

enerji kaynaklarının artışından sonraki incelemelerin yetersizliği, kullanılan verilerin ve 

yöntemlerin açık kaynak olarak ulaşılamaması, elektrik fiyatına etkiyen değişken 

parametrelerin net olarak belirlenmemesi, her bir parametrenin etki düzeylerinin 

belirtilmemesi ve model açıklanabilirliğinin göz ardı edilmesi gibi hususlardır. 

Literatür taramasında görüldüğü gibi çalışmaların çoğu YEK kapasitesinin piyasadaki 

fiyatlara etkisini incelemektedir ve YEK kapasitesindeki artışların elektrik piyasalarında 

fiyatları genellikle azalttığı gözlemlenmiştir. Bu tezde, elektrik piyasasında yenilenebilir 

kapasite artışının piyasa takas fiyatı üzerindeki etkisi incelenecektir. Çalışmamız, 

literatürdeki YEK ve elektrik piyasalarında piyasa takas fiyatı tahmini ile ilgili mevcut 

boşlukları ele almayı hedeflemektedir.  

1.5. Araştırmanın Amacı 

Günümüzde artan enerji talebi ve çevresel kaygılar, sürdürülebilir ve yenilenebilir enerji 

kaynaklarına olan ilgiyi her zamankinden daha fazla artırmaktadır. Fosil yakıtların 

tükenebilir ve çevreye zarar verici özellikleri, temiz ve yenilenebilir enerji kaynaklarının 

önemini daha da pekiştirmektedir. Rüzgâr, güneş, hidroelektrik ve biyokütle gibi 

yenilenebilir enerji kaynakları, karbon ayak izini azaltmanın yanı sıra enerji arz 

güvenliğini sağlamada da büyük bir rol oynamaktadır. 

Bu çalışmanın amacı, yenilenebilir enerji kapasitesinin artışının elektrik piyasaları ve 

fiyatı üzerindeki etkilerini incelemektir. Özellikle yenilenebilir enerji kaynaklarının 

yaygınlaşmasının elektrik fiyatlarına nasıl yansıdığı ve arz güvenliği açısından ne gibi 

değişikliklere yol açtığı değerlendirilmiştir.  

Yenilenebilir enerji kapasitesinin elektrik piyasasındaki miktar ve oranının artmasının 

piyasa üzerindeki etkileri, makine öğrenmesi algoritmaları ve SHAP analizi ile 

incelenmiştir. Yenilenebilir enerji kaynaklarının, özellikle rüzgâr ve güneş enerjisi gibi 
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çok düşük marjinal maliyetlere sahip olduğu göz önünde bulundurulduğunda, elektrik 

fiyatlarının düşürülmesinde etkin bir rol oynayacağı düşünülmektedir. Çalışma 

kapsamında, yenilenebilir enerji kaynaklarının farklı türlerinin (güneş, rüzgâr, 

hidroelektrik, biyokütle, vb.) piyasa üzerindeki etkileri ayrı ayrı ele alınacak ve bu 

etkilerin genel enerji sistemine katkıları analiz edilecektir. Ayrıca, piyasa takas fiyatı 

tahmininde değişkenlerin etkilerinin de detaylı analizleri yapılmıştır.  

1.6. Araştırmanın Önemi 

Elektrik enerjisi sektöründe yaşanan yeniden yapılanma çalışmalarının hız kazanması ve 

akademik alandaki elektrik piyasalarının modellenmesi ile ilgili çalışmaların artması, 

enerji sektörünün gelecekteki yönelimleri ve kararlarının belirlenmesinde büyük önem 

taşımaktadır. Özellikle YEK kullanımının artmasıyla birlikte, enerji piyasalarında 

karşılaşılan zorluklar ve değişen dinamikler üzerine yapılan araştırmalar, sektördeki 

paydaşların daha bilinçli ve etkili stratejiler geliştirmesine yardımcı olmaktadır. Bu 

nedenle, elektrik piyasalarının modellenmesi ve yenilenebilir enerji entegrasyonu üzerine 

yapılan bu tür çalışmalar, sadece akademik bir merak değil, aynı zamanda sektördeki 

uygulayıcılar ve politika yapıcılar için de büyük önem taşımaktadır. YEK payının artması 

ve enerji sisteminin elektrifikasyonunun hızlanması gibi önemli dönüm noktaları ile karşı 

karşıya olan sektör, bu tür araştırmaların sonuçlarına dayanarak daha sürdürülebilir ve 

rekabetçi bir enerji geleceği inşa etmek için kritik kararlar alabilir. Bu çalışmaların 

sonuçları, enerji politikalarının şekillendirilmesinde ve sektördeki aktörlerin stratejik 

planlamalarında önemli bir rehberlik sağlamaktadır.  
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2. BÖLÜM  

YÖNTEM VE MATERYAL 

Makine Öğrenimi (Machine Learning, ML), bilgisayarları açıkça programlamadan 

öğrenmeye ve tahminlerde bulunmaya veya kararlar almaya yeten algoritmalar ve 

modeller geliştirmeye adanmış yapay zekâ tekniklerinin bir alt kümesidir. ML, 

algoritmaları eğitmek için veri kullanmayı içerir, böylece desenleri tanıyabilir, çıkarımlar 

yapabilir ve performanslarını artırabilirler. Temel olarak ML, deneyimden öğrenip adapte 

olabilen sistemler oluşturur, bu da onu görüntü tanıma ve doğal dil işlemeden öneri 

sistemlerine ve otonom araçlara kadar çeşitli uygulamalar için değerli kılar. ML, veriden 

öğrenme konusuna odaklanan çeşitli alt alanlardan oluşur (Şekil 8). Bu alt alanlar 

genellikle örtüşür ve birindeki ilerlemeler diğerlerine fayda sağlayabilir. Alt alan ve 

teknik seçimi, belirli bir probleme ve veri türüne bağlıdır. 
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Şekil 8. Makine Öğrenimi Modelleri 

2.1. Tezin Yöntemi 

Bu tez kapsamında, EPİAŞ platformunda bulunan Gün Öncesi Piyasası (GÖP) verileri 

kullanılarak elektrik fiyatlarının tahmin edilmesi ve fiyata etkiyen faktörlerin detaylı 

incelenmesi amacıyla çeşitli yöntemler ve modeller karşılaştırılmıştır. Çalışmada, 

EPİAŞ’ın şeffaflık platformunda1 yer alan ve 1 Ocak 2018 ile 01 Ocak 2023 tarihleri 

arasında toplanan 5 yıllık veri seti değerlendirilmiştir. Rassal orman, karar ağacı, destek 

vektör makinesi, CatBoost, XGBoost, LightGBM ve ayrıca Keras ile sıralı (sequential) 

yapay sinir ağları modelleri kullanılmıştır. Modellerin hiperparametre optimizasyonu ise 

GridSearch yöntemi ile yapılmıştır. Ayrıca, piyasa elektrik fiyatına etki eden faktörleri 

anlama ve yenilenebilir enerji kapasitesindeki artışın elektrik piyasalarına etkisini 

belirlemek için SHAP analizi yöntemi kullanılmıştır.  

 
1 https://seffaflik.epias.com.tr  

https://seffaflik.epias.com.tr/
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Bununla birlikte, elektrik fiyat tahmini sürecinde hem tüm değişkenler kullanılarak hem 

de Temel Bileşen Analizi (PCA) ile boyut indirgeme yöntemi uygulanarak modellerin 

performansları karşılaştırılmıştır. Özellikle, PCA ile veri setindeki varyansın büyük 

kısmını açıklayan bileşenler seçilmiş ve bu bileşenlerle tahmin modelleri yeniden 

oluşturulmuştur. Ek olarak, Rassal Orman modelinin öznitelik önemi (feature 

importances) yöntemi kullanılarak, modelde yer alan değişkenlerin elektrik fiyatına etkisi 

analiz edilmiştir. Bu sayede, model performansını iyileştirmek ve yorumlanabilirliği 

artırmak için hangi özelliklerin daha önemli olduğu belirlenmiştir. 

2.2. Kullanılan Makine Öğrenimi Modelleri 

Light Gradient Boosted Machine (LightGBM), gradyan artırma algoritmasının verimli ve 

etkili bir şekilde uygulanmasını sağlayan açık kaynaklı bir kütüphanedir. LightGBM, 

gradyan artırma algoritmasını daha büyük gradyanlı örnekler üzerine odaklanarak ve 

otomatik özellik seçimi ekleyerek geliştirir. Bu, eğitim sürecinde hızlı ve daha iyi tahmin 

performansı sağlayabilir [83]. 

Extreme Gradient Boosting (XGBoost), gradyan artırma algoritmasının verimli ve etkili 

bir şekilde uygulanmasını sağlayan açık kaynaklı bir kitaplıktır. XGBoost, regresyon 

modelleme için doğrudan kullanılabilir. Gradient boosting, sınıflandırma veya regresyon 

tahmine dayalı modelleme problemleri için kullanılabilen bir grup makine öğrenimi 

algoritması sınıfını ifade eder. Topluluklar, karar ağacı modellerinden oluşturulur [81]. 

XGBoost’ta son tahmin oluşturulurken rassal ormandan farklı olarak tüm ağaçların 

doğrusal toplamı alınmaktadır ve her ağacın amacı kendinden önceki ağaçların artık 

hatasını en aza indirmektir [83]. 

Derin öğrenmede yaygın olarak kullanılan Keras, yapay sinir ağları için yüksek seviye 

bir uygulama programlama arayüzüdür ve model oluşturma ve eğitim için arka planda 

TensorFlow’u kullanan bir araçtır. Keras kullanılarak ardışık katmanlardan sinir ağı 

oluşturulurken ilgili model için bir sarıcı sınıf kullanılır. Eğitim ve modeli çalıştırma 

işlemleri için kullanılan compile, fit ve evaluate gibi yöntemler Keras arayüzüne 

uygulanır. Keras’taki model yapısı, derleme aşamasında TensorFlow kütüphanesini 

kullanır. Keras ardışık sınıfı, önemli Keras ardışık modellerin bir parçası olan sınıflardan 

biridir ve büyük miktarda bilgi dizisi ile modelleri eğitmek için bir dizi algoritmayı 

kullanır. 
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Rassal Orman Regresyonu (RF), denetimli makine öğrenmesi yöntemlerinden birisidir. 

Boosting yöntemine alternatif olması için geliştirilmiştir [76,77]. RF hem regresyon hem 

de sınıflandırma problemlerine uygulanması, diğer yöntemlere göre daha hızlı eğitilmesi 

ve tahmin hızının daha yüksek olması, düzenleme parametre sayısının daha az olması, 

çok boyutlu problemlere doğrudan uygulanabilmesi gibi özelliklerinden dolayı dikkat 

çekmektedir [78]. RF, karar ağaçlarının en önemli dezavantajı olarak görülen eğitim 

verilerini aşırı öğrenme eğiliminde olması problemine bir çözüm yolu olma özelliği 

taşımaktadır [77]. 

Destek vektör makineleri (SVR), Vapnik-Chervonenkis teorisine dayanan denetimli bir 

makine öğrenmesi yöntemidir. SVR hem sınıflandırma hem de regresyon problemlerine 

uygulanabilmektedir [79]. SVR mantığı, doğrusal olmayan bir fonksiyon üzerinden girdi 

verilerinin eşlendiği daha yüksek boyutlu girdi uzayında bir doğrusal regresyon 

fonksiyonunun hesaplanmasına dayanmaktadır [80]. 

Karar Ağacı, sınıflandırma ve regresyon amacıyla kullanılan makine öğrenimi 

tekniklerinden biridir. Özellik değerleri ağaç benzeri bir modelden geçer ve dallar, if-else 

koşullarını andıran kurallarla nihai bir karara yönlendirir. Eğitim verisi işleme sürecinin 

bir sonucu olan Karar Ağacı modelinde, ID3 gibi ünlü algoritmalar birkaç aşamada 

çalışır. İlk olarak, her özelliğin entropisi hesaplanır. Entropi, çeşitlilik değeridir ve 

maksimum değeri 1’dir. Daha sonra, bilgi kazancı değeri hesaplanır ve bu değer, hangi 

özelliğin çıktıyı en çok etkilediğini gösterir. Son aşamada, ağaç her özelliğin bilgi kazancı 

ve entropi değerlerine göre düzenlenir. Model, toplanmış ve çıktıya sahip olan test verileri 

ile test edilir. Performans, test verilerinin çıktısını gerçek çıktılarla karşılaştırarak 

doğruluk üzerinden ölçülür. Karar ağacı aracılığıyla elde edilen hiyerarşik segmentasyon, 

n sayıda istatistiksel birim kümesini, optimizasyon kriterine göre homojen alt gruplara 

ayırır. Diğer modelleme tekniklerine kıyasla, Karar Ağacı modellemenin avantajı, 

sonuçların yorumlanabilirliğinin if-else karar kuralları ile basit olmasıdır [39,40].  

CatBoost, son derece etkili bir makine öğrenimi yöntemi olarak öne çıkmaktadır, çünkü 

gradient tabanlı metodolojilere getirdiği yeniliklerle dikkat çekmektedir [41]. Özellikle 

kategorik ve sıralı niteliklerin yönetiminde Bayesian tahminciler kullanarak aşırı uyumu 

azaltma yeteneği ile bilinmektedir. CatBoost içinde, özellik önceliklendirmesi ise tahmin 

değeri değişikliği veya kayıp fonksiyonu değişikliği gibi yöntemlerle gerçekleştirilir. Bu 
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regresyon modeli, Gradient Boosting Decision Tree (GBDT) yöntemini temel alarak 

sürekli bir hedef değişkenini tahmin etmek üzere tasarlanmıştır. Özellikle kategorik 

değişkenlerin yoğun olduğu veri setlerinde, kompleks ilişkileri anlama ve doğrusal 

olmayan yapıları modelleme yeteneği ön plandadır. CatBoost’un ağaç tabanlı yapısı, veri 

setindeki etkileşimleri ve değişken ilişkilerini yakalamak için optimize edilmiştir. Bu da 

büyük veri setlerinde bile yüksek doğruluk ve performans sağlamasını sağlar [42,43]. 

2.3. Temel Bileşen Analizi ve Öznitelik Önemi 

Temel bileşen analizi (Principal Component Analysis, PCA), çok boyutlu veri 

setlerindeki varyansı koruyarak boyut azaltma işlemi yapan etkili bir yöntemdir. PCA, 

yüksek boyutlu verileri daha anlaşılabilir ve yönetilebilir hale getirmek amacıyla, orijinal 

özniteliklerin doğrusal kombinasyonlarından oluşan yeni değişkenler (ana bileşenler) 

üretir. Bu ana bileşenler, veri setindeki en büyük varyansı açıklayan doğrultulara göre 

sıralanır. İlk bileşen, en yüksek varyansı temsil ederken, sonraki bileşenler daha az 

varyans açıklayarak veriyi özetler. Boyutun fazla olduğu veri setlerinde hesaplama 

maliyetleri ve analiz süreçleri zorlaşırken, PCA gereksiz boyutları ortadan kaldırarak 

daha hızlı ve verimli modellerin oluşturulmasına olanak tanır. Sonuç olarak, PCA hem 

veri analizini sadeleştirir hem de makine öğrenmesi algoritmalarının performansını 

optimize eder [44,45]. 

Öznitelik önemi (feature importance), makine öğrenimi modellerinde her bir özniteliğin 

sonuç değişkeni üzerindeki etkisini değerlendiren önemli bir yöntemdir. Bu analiz, hangi 

özniteliklerin modele daha fazla katkı sağladığını belirleyerek tahminlerin 

açıklanabilirliğini artırır ve modelin performansını iyileştirir. Ağaç tabanlı modellerde 

bilgi kazancı veya öznitelik kullanım sıklığına göre sıralamalar yapılırken, lineer 

modellerde katsayılar özniteliklerin etkisini gösterir. Ayrıca SHAP gibi daha karmaşık 

yöntemler de kullanılarak özniteliklerin katkıları analiz edilebilir. Bu sayede, hedef 

değişkene en çok katkı sağlayan öznitelikler ön plana çıkarılarak modelin optimizasyonu 

yapılabilir ve veri setinin boyutu azaltılarak daha hızlı, basit ve etkili modeller 

oluşturulabilir [46,47]. 
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2.4. Model Performans Değerlendirme Metrikleri 

Bu tez çalışmasında model performansını değerlendirmek için 5 hata ölçüsü 

kullanılmıştır. Bunlar R2, MSE, MAE, RMSE ve MAPE’dir. R-kare (R2), korelasyon 

katsayısının karesidir ve modeldeki bağımsız değişkenlere göre bağımlı değişkenin 

varyasyon oranını yani bağımlı değişkendeki değişkenliğin ne kadarının model tarafından 

açıklanabileceğini ölçer. Bağımsız değişkenle bağımlı değişken arasındaki ilişkinin 

gücünü 0-1 aralığında gösterir. R2 değeri 1 ise tam korelasyon vardır. Yani R2 değeri 1’e 

yaklaştıkça model doğruluğu artmaktadır. R2 aşırı uyum (overfitting) sorununu dikkate 

almaz. SSResidual hata karelerinin toplamı ve SSTotal ortalama farkların toplamı olmak üzere 

R2 şöyle hesaplanır: 

𝑅2  = 1 −
𝑆𝑆𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑆𝑆𝑇𝑜𝑡𝑎𝑙
 (1) 

Ortalama Kare Hatası (Mean Squared Error, MSE), bir regresyon eğrisinin bir dizi 

noktaya ne kadar yakın olduğunu gösterir. MSE, bir makine öğrenmesi modelinin 

performansını ölçer ve her zaman pozitif değerlidir. MSE değeri sıfıra yakın olan modelin 

daha iyi bir performans gösterdiği söylenebilir. Yi gerçek değerler, ŷi tahmin edilen 

değerler ve N örnek sayısı olmak üzere MSE şöyle hesaplanır: 

𝑀𝑆𝐸 =
1

𝑁
 ∑(𝑦𝑖−  𝑦̂𝑖)

2

𝑁

𝑖=1

(2) 

Ortalama Mutlak Hata (Mean Absolute Error, MAE), iki sürekli değişken arasındaki 

farkın ölçüsüdür. MAE, veri kümesinin tüm örneğinde, o örnek için gerçek değer ile 

öngörülen değer arasındaki her bir farkın mutlak değerinin ortalamasıdır. MAE, 

regresyon ve zaman serisi problemlerinde sıkça kullanılmaktadır ve şöyle hesaplanır; 

𝑀𝐴𝐸 =
1

𝑁
 ∑|𝑦𝑖−  𝑦̂𝑖|

𝑁

𝑖=1

(3) 

Kök Ortalama Kare Hata (Root Mean Square Error, RMSE), bir makine öğrenmesi 

modelinin tahmin ettiği değerler ile gerçek değerleri arasındaki uzaklığın bulunmasında 

sıklıkla kullanılan ve hatanın büyüklüğünü ölçen ikinci dereceden bir metriktir. RMSE, 

tahmin hatalarının (kalıntıların) standart sapmasıdır. Kalıntılar, regresyon hattının veri 
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noktalarından ne kadar uzakta olduğunun bir ölçüsüdür. RMSE ise bu kalıntıların ne 

kadar yayıldığının bir ölçüsüdür. Verilere en iyi uyan çizgi etrafında o verilerin ne kadar 

yoğun olduğunu söyler. RMSE değeri sıfırdan sonsuza kadar değişebilir. Düşük değerlere 

sahip tahminleyiciler daha iyi performans gösterir. RMSE değerinin sıfır olması modelin 

hiç hata yapmadığı anlamına gelir. RMSE, MSE’nin kareköküdür ve şöyle hesaplanır; 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑗−  𝑦̂𝑗)2𝑛

𝑗=1

𝑛
(4) 

Ortalama Mutlak Yüzde Hata (Mean Absolute Percentage Error, MAPE), pozitif ve 

negatif hataların birbirini götürmesini önlemek için mutlak değerleri kullanan ve zaman 

serisi modelleri arasında tahmin doğruluğunu karşılaştıran bir hata ölçüsüdür. MAPE 

değeri %10 altında olan tahmin modelleri yüksek doğruluk derecesine sahiptir. MAPE 

değeri %10 ile %20 arasında olan modeller ise doğru tahmin modelleri olarak 

sınıflanabilir. MAPE şöyle hesaplanır: 

𝑀𝐴𝑃𝐸 =  

∑
|𝑦𝑗 |
𝑦̂𝑗

𝑁
𝑗=1

𝑁
(5)

 

Bu, makine öğreniminde modellerin performansını değerlendirmek için kullanılan yaygın 

değerlendirme metrikleridir, özellikle regresyon problemleri bağlamında. Her metrik 

farklı bir amaca hizmet eder ve hangi metriğin kullanılacağı, problemimizin özel 

karakteristiklerine ve değerlendirmenin vurgusuna bağlıdır. R2, uyumun ne kadar iyi 

olduğunu anlamak için kullanılır. MSE ve RMSE, hata büyüklüğünü ölçmek için 

kullanılır; RMSE, hedef değişkenle aynı birimlerde hata ölçüsü sağlar. MAE, basit ve 

açıklanabilir bir hata ölçüsü istendiğinde, özellikle aykırı değerlere daha az duyarlıdır. 

MAPE, yüzde olarak tahmin doğruluğunu değerlendirmek için kullanılır, genellikle 

tahmin senaryolarında. Bu metriklerin hepsini uyguladık, böylece ihtiyaç duyulduğunda 

diğer çalışmalarla karşılaştırmalar yapılabilir. 

2.5. Veri Seti ve Model Uygulama 

Bu tez çalışmasında öncelikle, Türkiye Gün Öncesi Piyasası (GÖP) piyasa takas fiyatı 

(PTF) için tahmin yöntemlerinin karşılaştırılması sunulmaktadır. Algoritmalar, Enerji 

Borsası İstanbul (EXIST) Şeffaflık Platformu, Petrol Boru Hatları İşletme AŞ (BOTAŞ) 
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ve Meteoroloji Genel Müdürlüğü tarafından sağlanan verileri kullanarak her gün için 

saatlik PTF tahmini oluşturur. Veri seti, 1 Ocak 2018’ten 31 Aralık 2022’ye kadar olan 

süreyi kapsamaktadır. Tablo 2‘deki MCP özelliği, saat başı gözlemlenen PTF’yi temsil 

eder ve algoritmaların bağımlı değişkenidir. Diğer özellikler ise modellerin eğitiminde 

kullanılan bağımsız değişkenlerdir. 

Türkiye gün öncesi piyasası elektrik fiyat tahmini için 1 Ocak 2015 ile 1 Ocak 2023 yılları 

arası veri seti EPİAŞ platformundan alınmıştır. Tablo 2‘de veri setindeki değişkenlerin 

özellikleri ayrıntılı bir şekilde verilmektedir. Tablo 3‘te ise veri setine bir örnek 

gösterilmektedir. Türkiye gün öncesi piyasa fiyatını tahmininde en doğru modeli 

oluşturmak için şu prosedürler uygulanmıştır ve alt bölümlerde detayları verilecektir: 

• Hedef değişkenin ve ihtiyaç duyan modeller (SVR ve Sequential model) için girdi 

değişkenlerinin normalleştirilmesi, 

• Verilerin ön işlemeye (veri setindeki eksik veriyi tamamlama, tekrarlanan ve aykırı 

verileri kaldırma, dönüştürme, temizleme, normalleştirme ve boyut indirgeme 

işlemlerine) tabi tutularak eğitim ve test seti olmak üzere ayrılması, 

• Seçilen modellerin hiperparametre optimizasyonu, 

• Sonuçlarda hataların incelenmesi ve hataları azaltmak için en iyi modeli etkileyen 

önemli bağımsız değişkenler seçilerek incelenmesi. 

Tablo 2. Veri Seti 

Özellik Açıklama Mean Std Min Max 

MCP Piyasa Takas Fiyatı 67.44 49.87 0.000 66.63 

HOLY Haftaiçi/Haftasonu 0.69 0.462 0.000 1.000 

MCP-24 Bir gün önceki fiyat 67.38 49.81 0.000 66.305 

MCP-168 Bir hafta önceki fiyat 66.79 46.66 0.000 65.23 

MCP-672 Bir ay önceki fiyat 65.01 46.66 0.000 62.08 

PISO Fiyattan Bağımsız Satış Emri 11334.9 2856.4 3721.1 23000.6 

PIBO Fiyattan Bağımsız Teklif Emri 18811.5 4594.1 3721.3 43135.4 

SSOV Gönderilen Satış Sipariş Hacmi 29642.2 4767.8 10444.2 44737.7 

SBOV Gönderilen Teklif Sipariş Hacmi 24578.5 4623.18 10715.2 47542.8 

MO Eşleşen Teklifler Miktarı 19744.9 3776.73 9640.1 32222.5 

MB Eşleşen Teklif Miktarı 19745.1 3776.62 9640.2 32223.7 

TV Ticari Değer 1364707 1074959 0.000 6442106 

DER Günlük Döviz Kuru 8.593 4.398 3.732 18.703 
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TG Toplam Üretim 34207.7 5208.5 15333.3 51285.6 

NG Doğal Gazdan Üretim  8954.022 3999.599 496.66 19453.6 

HYD Hidro Barajdan Üretim 5727.2 2921 296.6 15891.7 

LIG Linyit Kömüründen Üretim 4953 614.35 2189.1 6984.1 

RHYD Hidro Nehirden Üretim 2217.5 1324.9 379.9 6103.5 

ICOAL İthal Kömürden Üretim 6913.3 1771.4 956.3 10138.8 

WIND Rüzgârdan Üretim 2992.83 1824.53 42.53 9327.7 

SOL Güneş Enerjisinden Üretim 114.06 245.31 -1.70 1289.82 

FUEL Fuel Oil’den Üretim 84.48 59.37 0.000 237.6 

GEO Jeotermalden Üretim 1021.9 177.328 525.11 1357.3 

ASPH Asfaltit Kömürden Üretim 246.67 84.61 0.000 368.72 

BCOAL Kara Kömürden Üretin 403.43 116.19 77.5 692.63 

BIO Biyokütleden Üretim 523.18 219.35 202.58 1011.2 

IMEX İthalat-İhracat Elektrik Hacmi -27.01 315.92 -3130 1648.5 

WAS Atık Isıdan Üretim 82.85 13.63 30.69 127.76 

GASP Doğal Gaz Fiyatı 377.06 303.5 162.85 1444.5 

ANK 
Ankara’nın saatlik ortalama 

sıcaklığı 
13.7 9.29 -13 38.6 

IST 
İstanbul’un saatlik ortalama 

sıcaklığı 
16.39 7.57 -2.6 35.9 

Tablo 3. Veri Seti Örnek 

Değişkenler - 

Endeks 
20496  69110  56528  54275  33239  

Date (MM/DD/YYYY) 05/4/2018 11/9/2022 06/3/2021 03/1/2022 1/16/2018 

Hour 12:00AM 02:00PM 08:00AM 11:00AM 11:00PM 

HOLY 1  0  0  1  1  

PTF 38.32  204.35  37.85  44.31  50.49  

PTF-24 46.11  228.28  42.96  44.47  50.15  

PTF-168 41.84  177.62  31.10  45.03  47.62  

PTF-672 40.79  188.49  41.17  40.11  47.91  

PISO 3821.1  13325.0  11511.10  11934.3 6,321.4 

PIBO 4154.5  22089.8 21836.60  26197.7  13331.0 

SSOV 24599.60  27573.5 28817.80  29369.5  26748.2  

SBOV 10887.6  27545.5 27273.20  32147.1 21645.3  

MO 9645.1 22449.9  22319.40  26441.4 13991.3  

MB 9768.4  22449.9  22319.40  26441.40  13991.3 

TV 575271.5  4830462 995033.5  1170308 724016.6  

DER 3.52  18.59  8.42  7.60  5.87  

TG 29623.56  38461.7  31989.97  39657.47  31303.91  

NG 9080.66  6632.21  14911.33  12108.81  10738.83  

HYD 6663.42  2742.24  2553.60  10652.92  3093.80  

LIG 3143.93  5571.35  4901.77  4566.95  5219.39  

RHYD 4354.49  907.82  1267.23  1622.79  692.85  

ICOAL 3401.76  10024.07  4390.8  6434.91  8049.09  

WIND 1312.45  8159.26  748.78  1440.92  1671.00  
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SOL 0.00  542.27  447.82  355.96  0.00  

FUEL 170.50  69.70  41.90  37.70  140.40  

GEO 523.10  1130.19  1173.97  1183.59  851.95  

ASPH 264.95  97.15  340.01  282.70  348.85  

BCOAL 446.5  540.12  465.35  441.66  181.50  

BIO 182.00  903.05  701.90  633.47  265.05  

IMEX 0.00  1052.24  -41.22  -196.60  0.00  

WAS 79.80  90.03  86.73  91.69  51.20  

GASP 165.87  1053.96  206.91  173.89  276.68  

ANK 12.00  18.10  21.90  7.80  16.20  

IST 14.30  20.40  22.60  6.60  18.40  

2.5.1. Veri Ön İşleme Aşaması 

Veri ön işleme, veri setlerindeki hataları veya yanlış verileri düzeltmek, eksik verileri 

doldurmak, veri normalleştirme ve veri boyutunu azaltmak için kullanılır. Ayrıca, veri 

özelliklerini ölçeklendirir ve makine öğrenimi modellerinin performansını artırır. 

Standardizasyon, verileri ortalama 0 ve standart sapması 1 olacak şekilde ölçeklendirir. 

K-en yakın komşular ve destek vektör makineleri gibi mesafe ölçümlerine dayanan 

algoritmalar için özellikle yararlıdır. Normalleştirme, verileri 0 ile 1 arasında bir aralığa 

ölçeklendirir. Bu teknik, sinir ağları ve kümeleme algoritmaları gibi ağırlığa duyarlı 

modellere dayanan algoritmalar için faydalıdır.  

Veri ölçeklendirme, makine öğrenimi modellerini eğitirken çok önemlidir. Çünkü çoğu 

algoritma hem girdi hem de çıktı verilerinin önceden hazırlanmasını gerektirir. Bu 

amaçla, veri özelliklerini ve hedef değişkenleri uygun hale getirmek için basit veri işleme 

süreçleri uygulanmıştır. Giriş verilerini düzenlemek için kullanılan "ölçekleyici" ve 

modelin tahmin ettiği değerleri düzenlemek için kullanılan "dönüştürücü" birbirinden 

farklıdır. Her iki işlev de performansı optimize etmeye yardımcı olan dört farklı 

hiperparametre seçeneği ile ayrı ayrı değerlendirilir. 

Korelasyon, veri setindeki değişkenler arasında doğrusal ilişkinin yönünü ve etkisini 

göstermektedir. Böylece veri setinde mantıksal çıkarım yaparak tahminlemeye etkisi 

olmayan değişkenler belirlenebilmektedir. Değişkenler arasındaki doğrusal ilişkiler Şekil 

9‘da verilmektedir. Piyasa kapanış fiyatını etkileyen parametrelerin pozitif ve negatif 

yönlü etkisi de Şekil 10‘ da gösterilmektedir. 
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Şekil 9. Korelasyon Isı Haritası 

 

Şekil 10. PTF’yi etkileyen bağımsız değişkenler 



30 

2.5.2. Model Uygulama 

Veri ön işleme aşamasının ardından, makine öğrenimi ve yapay sinir ağları modelleri 

oluşturulmuştur. Veri seti, %80 eğitim ve %20 test olacak şekilde ayrılmıştır. Min-Max 

ölçeklendirme yöntemiyle veri ölçeklendirme işlemi uygulanarak, modelleme süreci 

iyileştirilmiş ve özellikler arasındaki büyüklük farkları ortadan kaldırılmıştır. Bu işlem, 

özellikle SVR ve YSA modellerinde, veri değerlerini 0 ile 1 arasında normalize ederek 

gerçekleştirilmiştir. Buna karşın, RF, XGBoost, CatBoost, LightGBM ve Karar Ağaçları 

gibi ağaç tabanlı modeller, özelliklerin göreceli sıralamalarını temel alarak çalıştıkları 

için verilerin ölçeklenmesine ihtiyaç duymazlar. Bu modellerin performansı, özelliklerin 

mutlak değerleri yerine bölünme noktalarının belirlenmesiyle etkilendiğinden, özellikler 

arasındaki büyüklük farklarının bu tür modellerin karar verme süreçlerine etkisi olmaz. 

Bu durum, veri hazırlık süreçlerini sadeleştirir ve söz konusu modellerin çeşitli veri 

setlerine esnek bir şekilde uygulanabilmesine olanak tanır.  

Çalışmada 7 farklı model uygulanmıştır. Bütün modellerde, öncelikle temel (vanilla) bir 

model oluşturulmuştur. Ardından, eğitim ve test verileri üzerinde aşırı uyma (overfitting) 

olup olmadığını ve eğitim hatasını (underfitting) kontrol etmek için çapraz doğrulama 

(cross-validation) uygulanmıştır. Çapraz doğrulama, bir modelin performansını 

değerlendirmek ve genelleme yeteneğini ölçmek amacıyla veri setini belirli parçalara 

böler. Model, bu parçalardan birini test etmek ve diğerleriyle eğitmek için tekrarlanarak 

kullanılır. Bu yöntem, daha güvenilir performans ölçümleri elde etmenin yanı sıra 

overfitting veya underfitting gibi problemleri tespit etme konusunda da etkilidir.  

Hiperparametreleri optimize etmek amacıyla GridSearch gibi teknikler kullanılarak en iyi 

tahminleme modeli geliştirilmiştir. GridSearch, bir modelin hiperparametrelerini 

belirlemek için kullanılan bir optimizasyon yöntemidir. Belirli bir hiperparametre 

kombinasyon seti oluşturulur, bu kombinasyonlarla model eğitilir ve performans 

metrikleri değerlendirilir. Sistemli bir hiperparametre araştırması yaparak, en iyi 

kombinasyonu otomatik olarak bulma sürecini gerçekleştirir. 

Ek olarak, özellikler arasındaki bağımlılık ve ilişkiyi daha iyi anlayabilmek ve modelin 

daha az sayıda bileşenle yüksek performans göstermesini sağlamak amacıyla Temel 

Bileşen Analizi uygulanmıştır. PCA, veri setindeki orijinal değişkenler arasındaki 

korelasyonu azaltarak boyut indirgeme için kullanılmış ve modellerin performansları hem 
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tüm değişkenlerle hem de PCA ile elde edilen bileşenlerle karşılaştırılmıştır. Bu sayede, 

tahmin modellerinin boyut indirgeme ile nasıl iyileştirildiği incelenmiştir. 

2.5.2.1. Temel Bileşen Analizi Uygulaması 

PCA (Principal Component Analysis), veri setindeki çok boyutluluğu azaltarak, 

değişkenler arasındaki korelasyonu ortadan kaldıran ve varyansın büyük kısmını koruyan 

etkili bir yöntemdir. Bu yöntemle, orijinal değişkenlerin doğrusal birleşimlerinden oluşan 

yeni bileşenler elde edilerek, veri daha sade ve yorumlanabilir hale getirilir. PCA analizi 

sırasında, farklı varyans yüzdelerini açıklayacak bileşen sayıları incelenmiştir. Yapılan 

analizler sonucunda, %85 varyansı açıklamak için yaklaşık 10 bileşenin, %90 varyansı 

için 12 bileşenin ve %95 varyansı için ise yaklaşık 15 bileşenin yeterli olduğu 

belirlenmiştir. Bu değerlendirmeler, verideki bilgiyi en az bileşenle açıklayarak modelin 

karmaşıklığını azaltmayı ve performansını optimize etmeyi hedeflemiştir. Bu şekilde, 

PCA analizi, veri setindeki kritik bilgiyi kaybetmeden boyutluluğun düşürülmesini 

sağlamaktadır. 

Şekil 11’de, PCA ile kümülatif olarak açıklanan varyans oranı bileşen sayısına göre 

grafikte görülmektedir. Şekil 11 incelendiğinde, bileşen sayısının artmasıyla açıklanan 

varyansın hızla arttığı ve yaklaşık 12 bileşenden sonra bu artış hızının azaldığı 

görülmektedir. Bu noktada toplam varyansın %90’dan fazlası açıklanmıştır. Şekil 

üzerinde bir diz bükülme noktası (elbow point) gözlenmekte olup, bu nokta yaklaşık 

olarak 5 ila 10 bileşen arasında bulunmaktadır. Diz bükülme noktası, daha az sayıda 

bileşenle en fazla varyansın açıklanabildiği yeri temsil eder. 

Bu doğrultuda, 12 bileşen seçmek, verideki toplam varyansın %90'dan fazlasını 

açıklamak için yeterli olabilir. Bu seçim, daha az sayıda bileşenle veri setinin büyük bir 

kısmındaki varyansı açıklama amacına hizmet ederken, aynı zamanda modelin 

karmaşıklığını da kontrol altında tutar. 
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Şekil 11. PCA ile Açıklanan Varyans Oranı 

2.5.2.2. Öznitelik Önemi Uygulaması 

Öznitelik önemi, makine öğrenmesi modellerinin performansını artırmak ve bağımsız 

değişkenlerin hedef değişken üzerindeki etkilerini daha net değerlendirebilmek amacıyla 

sıklıkla kullanılan bir analiz tekniğidir. Bu çalışma kapsamında, yedi farklı makine 

öğrenmesi modeli (Random Forest, XGBoost, LightGBM, CatBoost, Decision Tree, 

Sequential Model ve SVR) kullanılarak öznitelik önemleri hesaplanmış ve modellerin 

performansını optimize etmek için Recursive Feature Elimination with Cross-Validation 

(RFECV) ve permutation_importance teknikleri uygulanmıştır. LightGBM, XGBoost, 

CatBoost, Random Forest, Decision Tree ve SVR modellerinde RFECV yöntemi 

kullanılarak her iterasyonda modelin tahmin gücüne düşük katkı sağlayan öznitelikler 

sistematik olarak elenmiş, bu şekilde modelin tahmin gücünü en üst düzeye çıkaracak alt 

öznitelik kümesi elde edilmiştir. RFECV sürecinde model, her adımda çapraz doğrulama 

katmanlarıyla test edilerek, model performansına en fazla katkıyı sağlayan özellikler 

korunmuş ve gereksiz ya da düşük önem taşıyan özellikler çıkarılmıştır. Derin öğrenme 

tabanlı Sequential Model'de ise öznitelik önemleri permutation_importance yöntemi ile 

belirlenmiş, modelin tahmin gücüne düşük katkıda bulunan öznitelikler elenerek modelin 
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daha sade, genelleştirilebilir ve aşırı öğrenmeye karşı daha dayanıklı bir yapıya 

ulaşmasını sağlamaktadır. 

2.5.3. Model Açıklanabilirliği 

SHAP (SHapley Additive Explanations) değeri, bir modelin farklı özelliklerinin bir hedef 

değişkeni üzerindeki etkisini açıklayan bir yöntemdir [48]. Makine öğrenmesi 

modellerinin karar verme süreçlerini anlamayı ve yorumlamayı kolaylaştırır. Bu sayede 

modelin karmaşıklığı ve karar verme mekanizması anlaşılabilir, özelliklerin önemi ve 

etkisi değerlendirilebilir ve modelin önyargılarını ve açıklanabilirliğini analiz etmemizi 

sağlar. 

Elektrik piyasası fiyat tahmininde kullanılan modeller karmaşık ve yorumlanması zor 

olabilir. SHAP değerleri, bu modellerin hangi özelliklere dayalı olarak fiyat tahmini 

yaptığını ve her bir özelliğin tahmindeki etkisini açıklar. Bu bilgiler, modelin 

güvenilirliğini ve açıklanabilirliğini artırır. SHAP değerleri, her bir özellik için pozitif 

veya negatif bir değer üretir. Pozitif değerler, özelliğin fiyat tahminini artırdığını, negatif 

değerler ise azalttığını gösterir.  

Bu çalışmada, model açıklanabilirliğini daha da artırmak için Rassal Orman modelinin 

öznitelik önemi (feature_importances_) yöntemi kullanılarak, her bir özelliğin elektrik 

fiyat tahminine olan katkısı analiz edilmiştir. Bu yöntem, modelin hangi özelliklere daha 

fazla ağırlık verdiğini ve bu özelliklerin elektrik fiyatları üzerindeki etkisini anlamamızı 

sağlar. Özelliklerin önem sırası belirlenerek, elektrik piyasasındaki kritik değişkenler 

tespit edilmiş ve modelin performansını artırmak amacıyla bu bilgiler kullanılmıştır. 

Ayrıca, PCA analizinden elde edilen temel bileşenler ile SHAP değerleri birleştirilerek, 

boyut indirgeme sonrası açıklanabilirliğin nasıl etkilendiği değerlendirilmiştir. 

Bu tezde, makine öğrenmesi modellerinin karar verme süreçlerini açıklamak ve 

yenilenebilir enerji kapasitesinin artışının elektrik piyasalarına etkisini daha iyi anlamak 

amacıyla SHAP yöntemi kullanılmıştır. SHAP yöntemi, yenilenebilir enerji 

kaynaklarının (rüzgâr ve güneş enerjisi gibi) elektrik fiyatları üzerindeki etkisini 

değerlendirmede kritik bir rol oynamıştır. Bu yöntem, modelin açıklanabilirliğini 

artırarak farklı özelliklerin hedef değişken üzerindeki etkisini anlamamıza olanak tanır. 

Özellikle, yenilenebilir enerji kaynaklarının marjinal maliyetlerinin düşüklüğünün piyasa 
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fiyatlarını nasıl etkilediğini ve bu kaynakların artışının piyasa dinamiklerini nasıl 

değiştirdiğini daha net bir şekilde açıklamak için SHAP değerleri kullanılmıştır. Bu 

sayede, yenilenebilir enerji kapasitesindeki artışın elektrik piyasalarındaki fiyatlandırma 

mekanizmalarına olan etkisi daha ayrıntılı ve anlaşılır bir biçimde ortaya konulmuştur. 
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3. BÖLÜM 

BULGULAR 

Bu çalışma, Türkiye’nin gün öncesi elektrik piyasalarında yenilenebilir enerji tüketiminin 

piyasası takas fiyatı (PTF) üzerindeki etkisini kapsamlı bir şekilde incelemektedir. 

EPİAŞ, Meteoroloji Genel Müdürlüğü ve BOTAŞ’tan elde edilen 2018-2023 verileri 

kullanılarak, çeşitli makine öğrenimi modelleri (RF, DT, SVR, XGBoost, CatBoost, 

LightGBM ve Sequential Model) ile Türkiye gün öncesi elektrik piyasası takas fiyatı 

tahmin edilmiştir. Bunun yanı sıra, Temel Bileşen Analizi (PCA) kullanılarak boyut 

indirgeme yöntemi uygulanmış ve verideki temel bileşenler çıkarılarak modellerin 

performansı bu bileşenler üzerinden de değerlendirilmiştir. PCA, veri setindeki 

değişkenlerin birbirleriyle olan ilişkisini azaltarak modelin daha verimli çalışmasını 

sağlamıştır. 

Ayrıca, öznitelik önemi yöntemi kullanılarak, modelin fiyat tahminlerinde hangi 

değişkenlerin daha etkili olduğu belirlenmiş ve piyasa fiyatlarına en fazla etki eden 

faktörler tespit edilmiştir. Bu analiz, modelin açıklanabilirliğini artırarak hangi 

özelliklerin daha kritik olduğunu ortaya koymuştur. SHAP değerleri ile birlikte, özellik 

önem sıralamaları ve yenilenebilir enerji üretimindeki artışın elektrik piyasalarındaki 

fiyatlandırmaya etkisini daha detaylı ve anlaşılabilir bir şekilde ortaya koymaktadır. 

3.1. Öznitelik Önemi ve Temel Bileşen Analizi Sonuçları 

Bu bölümde, elektrik fiyat tahmini için kullanılan çeşitli makine öğrenimi modellerinin 

performansları, Temel Bileşen Analizi (PCA) ve Öznitelik Önemi (Feature Importance) 

yöntemleriyle kapsamlı bir şekilde değerlendirilmiştir.  
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3.1.1. Temel Bileşen Analizi Kullanılarak Bağımsız Değişkenlerin Analizi 

Bu çalışmada, 30 bağımsız değişkenden oluşan veri setine PCA uygulanarak 

değişkenlerin bileşenlere katkıları ve açıklanan varyans oranları incelenmiştir. Analizin 

amacı, veri setinin açıklayıcı gücünü en iyi temsil eden bileşen sayısını belirlemektir. Bu 

kapsamda, verinin %85, %90 ve %95'ini açıklayan bileşen sayıları dikkate alınarak 

analizler gerçekleştirilmiş, %85 varyans oranını açıklamak için 10 bileşen, %90 varyans 

oranını açıklamak için 12 bileşen ve %95 varyans oranını açıklamak için 15 bileşen 

kullanılmıştır. 

Yapılan analizler sonucunda, %90 varyansı açıklayan 12 bileşenin verinin en anlamlı 

özetini sunarak en iyi tahmin sonuçlarını verdiği gözlemlenmiştir. Bu nedenle, 

modelleme sürecinde %90 varyansı açıklayan 12 bileşenli yapı tercih edilmiştir. Bu 

seçim, veri setindeki değişkenlerin açıklayıcı gücünü en iyi şekilde temsil ederken, aynı 

zamanda bilgi kaybını en aza indirgemeyi ve modelin sadeliğini korumayı amaçlamıştır. 

Şekil 12’de, her bir bağımsız değişkenin 12 PCA bileşeni üzerindeki yüklemeleri 

görselleştirilmiştir. Bu grafik, her bir değişkenin hangi PCA bileşenine ne ölçüde katkı 

sağladığını göstermektedir. Yüksek pozitif ve negatif yüklemelere sahip değişkenler, 

ilgili bileşenler üzerinde önemli bir açıklayıcı güce sahip olup, bu durum bileşenlerin 

yorumlanabilirliğini artırmaktadır. Örneğin, Şekil 12’de PCA-8 bileşeninin 

Haftaiçi/Haftasonu (HOLY) değişkeni üzerinde önemli bir etkiye sahip olduğu 

görülmektedir. HOLY, bu bileşende yüksek bir pozitif yükleme ile yer almakta olup, 

bileşenin varyansının büyük ölçüde bu değişken tarafından açıklandığını göstermektedir. 

Aynı şekilde, PCA-11 bileşeni üzerinde Asfaltit Kömürden Üretim (ASPH) değişkeni 

güçlü bir etkiye sahip olup, bu bileşenin varyansının önemli bir kısmı ASPH tarafından 

açıklanmaktadır. Ayrıca, PCA-12 bileşeni, İthalat-İhracat Elektrik Hacmi (IMEX) ve 

Atık Isıdan Üretim (WAS) değişkenleri arasındaki anlamlı ilişkileri ortaya koyarak, bu 

iki değişkenin PCA-12 üzerindeki açıklayıcı rolünü vurgulamaktadır. 

Aynı zamanda, negatif yüklemeler de önemli bilgi sağlamaktadır. Yüksek negatif 

yüklemeler, ilgili değişkenlerin bileşenler üzerinde ters yönlü bir etkide bulunduğunu 

göstermektedir. Örneğin, İthal Kömürden Üretim (ICOAL) ve Güneş Enerjisinden 

Üretim (SOL) değişkenleri, belirli bileşenler üzerinde negatif yönlü etkiye sahip olup, bu 

bileşenlerin varyansını azaltıcı yönde etkilemektedir. Bu tür analizler, hangi bileşenlerin 
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daha fazla açıklayıcı güce sahip olduğunu ve hangi değişkenlerin bu bileşenlere nasıl etki 

ettiğini açıkça ortaya koymaktadır. 

Bu analizler, PCA’nın veri boyutunu azaltmadaki etkinliğini göstermekte ve orijinal 

değişkenlerin çok boyutlu yapısını daha iyi anlamamıza yardımcı olmaktadır. 12 bileşenle 

yapılan analizlerde, veri setinin büyük bir kısmının anlamlı şekilde özetlenebildiği, 

dolayısıyla modelin performansının artarak karmaşıklığın kontrol altına alınabildiği 

gözlemlenmiştir. Bu bağlamda, %90 varyansı açıklayan 12 bileşen seçimi hem modelin 

açıklayıcılığını optimize etmekte hem de sadelik ile performans arasındaki dengeyi 

sağlamaktadır. 

Şekil 13'te, bağımsız değişkenlerin tüm PCA bileşenlerine olan toplam katkıları, 

yüklemelerinin karelerinin toplamı üzerinden görselleştirilmiştir. Bu grafik, hangi 

değişkenlerin PCA analizi sonucunda veri setinin toplam varyansını açıklamada en etkili 

olduğunu göstermektedir. 

Öne çıkan bulgulara göre, HOLY, ASPH ve Linyit Kömüründen Üretim (LIG) 

değişkenleri, PCA bileşenlerine en yüksek katkıyı sağlayarak, veri setindeki toplam 

varyansın büyük bir kısmını açıklamaktadır. Şekil 13'te görüldüğü üzere, HOLY 0.992, 

ASPH 0.974 ve LIG 0.865 değerleriyle en dikkat çekici katkıları sunmakta, bu da söz 

konusu değişkenlerin PCA modelinde baskın bir rol oynadığını göstermektedir. Bu 

değişkenler, modelleme sürecinde önemli bir etkiye sahip olup, verinin temel yapılarının 

PCA ile doğru bir şekilde yakalanmasına katkıda bulunur. IMEX, WAS ve Rüzgârdan 

Üretim (WIND) gibi orta düzeyde katkı sağlayan değişkenler de PCA bileşenleri üzerinde 

dikkate değer bir rol oynasa da IMEX'in 0.803 değerindeki katkısı gibi, bu etkiler HOLY, 

ASPH ve LIG ile karşılaştırıldığında daha sınırlı kalmaktadır. Bunun yanında, Bir ay 

önceki fiyat (MCP_672) ve Günlük Döviz Kuru (DER) gibi değişkenler, sırasıyla 0.150 

ve 0.138 gibi düşük katkı değerleriyle PCA'nın veri setindeki varyansı açıklamada daha 

az önem verdiği değişkenler arasında yer almakta ve bu tür değişkenler boyut azaltma 

süreçlerinde göz ardı edilebilir olarak değerlendirilmektedir. 

Yüksek katkı sağlayan değişkenler, özellikle HOLY, PCA bileşenlerinin 

oluşturulmasında veri setinin büyük bir kısmını açıklayan temel yapıları temsil 

etmektedir. Bu değişkenler, verideki toplam varyansla güçlü bir ilişki içinde olup, 

modelleme sürecinde ihmal edilmeleri durumunda modelin öngörü gücünde önemli bir 
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kayba yol açabileceği görülmektedir. HOLY gibi değişkenler, modelin performansını 

büyük ölçüde artırırken, veri setindeki yapısal bilgiyi doğru bir şekilde özetlerler. Öte 

yandan, düşük katkı sağlayan değişkenler, örneğin GASP ve DER, PCA bileşenlerinde 

daha az bilgi taşımakta ve veri setinin boyutunun azaltılması söz konusu olduğunda göz 

ardı edilebilecek unsurlar olarak değerlendirilmektedir. Bu değişkenler, PCA'nın 

açıkladığı varyansın küçük bir bölümünü temsil ettikleri için modelin genel 

performansına sınırlı katkı sağlarlar. Sonuç olarak, bu grafik, PCA'nın veri setindeki 

hangi değişkenlerin daha fazla önem taşıdığını ve veri boyutunun nasıl etkili bir şekilde 

azaltılabileceğini görselleştirir. Yüksek yüklemelere sahip değişkenler, modelin temel 

yapı taşlarını oluştururken, düşük katkıya sahip olanlar daha az önem arz etmektedir. Bu 

da modelleme süreçlerinde hangi değişkenlerin odak noktası olması gerektiğini ve hangi 

değişkenlerin veri boyutunu düşürürken göz ardı edilebileceğini anlamamıza dair önemli 

ipuçları sunmaktadır. 

 

Şekil 12. Değişkenlerin PCA Bileşenlerine Katkısı 
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Şekil 13. Bağımsız Değişkenlerin Toplam PCA Katkısı 

3.1.2. Öznitelik Önemi Kullanılarak Bağımsız Değişkenlerin Analizi 

Öznitelik önemi, makine öğrenmesi modellerinin başarımını artırmak ve modeldeki 

bağımsız değişkenlerin hedef değişkene olan etkilerini daha iyi anlamak için yaygın 

olarak kullanılan bir analiz yöntemidir. Bu çalışmada, farklı makine öğrenmesi 

algoritmaları ile öznitelik önemleri hesaplanmış ve her model için RFECV yöntemi 

uygulanmıştır. Amaç, model performansını en üst düzeye çıkarmak için en etkili bağımsız 

değişkenleri belirlemek ve düşük öneme sahip değişkenleri elemek olmuştur. RFECV, 

modelin tahmin gücüne katkı sağlamayan öznitelikleri iteratif olarak çıkararak, en iyi 

performansı sağlayacak özellik alt kümesini oluşturmayı hedefler. Özellikle geniş ve 

karmaşık veri setlerinde, bu yöntem daha sade ve genellenebilir modeller elde edilmesine 

yardımcı olmaktadır. 

Bu çalışmada, 30 bağımsız değişkenden oluşan veri setinde öznitelik önemleri 

hesaplanmış ve bu değişkenlerin hedef değişken üzerindeki etkileri detaylı bir şekilde 

analiz edilmiştir. Şekil 14’teki görselleştirmeler kullanılarak öznitelik öneminin 

değerlendirmesi yapılmış ve bağımsız değişkenlerin tahmin gücüne olan katkıları ile bu 

katkıların dereceleri analiz edilmiştir. 

Şekil 14.a’da sunulan LightGBM modeline göre, 25 bağımsız değişken seçilmiş ve bu 

değişkenlerin büyük bir kısmı modele önemli katkılar sağlamıştır. Özellikle MCP_168, 

GASP, MCP_672, DER ve MCP_24 gibi değişkenlerin model performansına en yüksek 
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katkıyı sunduğu görülmektedir. LightGBM, geniş çaplı değişken setlerini etkin bir şekilde 

işleyebilmesi ile bilinir ve burada da büyük oranda değişkenin modelin açıklayıcılığına 

önemli katkılar sağladığı gözlemlenmiştir. Diğer modellere kıyasla LightGBM’de seçilen 

değişkenlerin çoğunun öznitelik değerleri daha yüksektir, bu da modelin geniş bir 

değişken setine dayalı olarak güçlü bir tahmin performansı sunduğunu göstermektedir. 

Şekil 14.b’deki CatBoost ve Şekil 14.d’deki Sequential model için yapılan analizler de 

genel olarak bağımsız değişkenlerin yüksek katkılar sağladığını ortaya koymaktadır. Bir 

gün önceki fiyat (MCP_24) ve bir hafta önceki fiyat (MCP_168) her iki modelde de öne 

çıkarken, diğer önemli değişkenlerin de modele kayda değer katkılar sunduğu 

görülmektedir. Bu modellerde özellikle öznitelik önem dağılımının daha dengeli olduğu 

gözlemlenmiştir. CatBoost, özellikle kategorik veriler üzerinde etkili olduğu için birçok 

değişkenin model açıklayıcılığına katkıda bulunduğu fark edilirken Sequential modelde 

ise MCP_24 ve MCP_168 gibi değişkenlerin önemi daha baskın bir şekilde öne 

çıkmaktadır. Bu modellerin genel performansı, bağımsız değişkenlerin geniş bir kısmının 

modele anlamlı katkılar sunmasından kaynaklanmaktadır. 

Şekil 14.c'de sunulan XGBoost ve Şekil 14.e’de sunulan SVR modellerinde, MCP_24, 

MCP_168, Doğal Gaz Fiyatı (GASP) ve Bir ay önceki fiyat (MCP_672) gibi 

değişkenlerin öznitelik önemleri diğer değişkenlere kıyasla çok daha yüksektir. Bu 

modellerde, özellikle bu dört değişkenin model performansında merkezi bir rol oynadığı, 

diğer değişkenlerin ise daha düşük katkılar sunduğu gözlemlenmektedir. XGBoost, 

performans odaklı bir model olarak bilinir ve burada da tahmin gücünün büyük bir 

kısmının bu anahtar değişkenler tarafından sağlandığı anlaşılmaktadır. Benzer şekilde, 

SVR modeli de bu dört değişkene büyük ölçüde dayanmakta ve diğer değişkenler modelin 

performansına sınırlı katkı sunmaktadır. 

Şekil 14.f’deki RF ve Şekil 14.g’deki DT modellerinde ise MCP_24 ve MCP_168 gibi 

değişkenlerin öznitelik önemlerinin öne çıktığı görülmektedir. Bununla birlikte, diğer 

bağımsız değişkenlerin öznitelik önemleri bu iki modelde oldukça düşüktür. Özellikle, 

GASP ve MCP_672 gibi değişkenlerin öznitelik değerleri, XGBoost ve SVR modellerine 

kıyasla daha düşük seviyelerde kalmaktadır. RF ve DT modellerinde, sadece birkaç 

anahtar değişkenin modele anlamlı katkı sunduğu, geri kalan değişkenlerin ise modelin 

tahmin performansında daha az etkili olduğu anlaşılmaktadır. 
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Sonuç olarak, yapılan analizler, Bir gün önceki fiyat (MCP_24), Bir hafta önceki fiyat 

(MCP_168), Doğal Gaz Fiyatı (GASP) ve Bir ay önceki fiyat (MCP_672) gibi 

değişkenlerin modellerin performansına en büyük katkıyı sağladığını göstermektedir. Bu 

değişkenler, özellikle hedef değişkenin tahmininde merkezi bir rol oynamaktadır. 

Bununla birlikte, Fuel Oil’den Üretim (FUEL), Ankara’nın saatlik ortalama sıcaklığı 

(ANK), Asfaltit Kömürden Üretim (ASPH) ve Atık Isıdan Üretim (WAS) gibi 

değişkenler, genel olarak modellerde düşük öznitelik değerlerine sahip olup, model 

performansını iyileştirme sürecinde göz ardı edilebilir. Bu sonuçlar, veri setindeki önemli 

değişkenlerin belirlenmesi ve model sadeleştirme süreçlerinde hangi değişkenlerin 

öncelikli olarak ele alınması gerektiğine dair değerli bilgiler sunmaktadır. 
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(a) 

 
(b) 

 
(c) (d) 

 
(e) 

 
(f) 

 
(g) 

Şekil 14. Makine öğrenimi Modellerin Öznitelik Önemi Analizi: (a) LightGBM, (b) 

CatBoost, (c) XGBoost, (d) Sequential, (e) SVR, (f) RF, (g) DT 
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3.2. PCA ve Öznitelik Önemi Yöntemlerin Karşılaştırılması 

PCA, veri setinin boyutunu azaltmak ve modellerin hesaplama yükünü hafifletmek 

amacıyla kullanılmış, öznitelik önemi analizi ise modellerin tahminlerde hangi özelliklere 

öncelik verdiğini belirlemek üzerine yoğunlaşmıştır. Her iki yöntem de boyut indirgeme 

ve öznitelik seçiminin model performansı üzerindeki etkilerini incelemek için 

uygulanmıştır. Tüm tahmin modellerinin hata metriklerine göre hata oranları, test ve 

eğitim olarak Hata! Başvuru kaynağı bulunamadı. ve Hata! Başvuru kaynağı 

bulunamadı.'te verilmiştir. Şekil 15’teki grafikte, sonuçların güvenilirliğini sağlamak ve 

overfitting veya underfitting gibi durumları değerlendirmek açısından önem taşımaktadır. 

Bu tablo ve grafiklerin birlikte değerlendirilmesi, modellerin performansını kapsamlı bir 

şekilde analiz etmemize olanak tanımaktadır. 

PCA yöntemi, modellerdeki değişken sayısını azaltarak hesaplama yükünü hafifletmek 

ve modelin daha hızlı çalışmasını sağlamak amacıyla uygulanmıştır. PCA ile, veri 

setindeki değişkenlerin korelasyon yapıları incelenmiş ve verinin %90'ini açıklayan 

optimal bileşen sayısı belirlenmiştir. Aşağıda, PCA uygulanarak elde edilen model 

sonuçları ve bu sonuçların hata metrikleri verilmiştir. 

PCA sonrası en iyi model, CatBoost olmuştur. CatBoost modelinde, %90 varyansı 

açıklayan 12 bileşen ile yapılan tahminlerde R² skorları eğitim setinde 0.998, test setinde 

ise 0.947 olarak ölçülmüştür. CatBoost ve SVR modelleri, testte yüksek (R²: 0.947 ve 

0.946) doğruluk ile en iyi sonuçları sunmaktadır. LightGBM ve XGBoost modeli de aynı 

yüksek doğruluk (R²: 0.941) ve düşük hata oranları sırasıyla (MAE: 6.84, RMSE: 12.12, 

MAE: 6.48, RMSE: 12.07) ile dikkate değer bir performans sergilemektedir. Random 

Forest ve Sequential modelleri belirli metriklerde iyi sonuçlar verse de genel olarak daha 

yüksek hata oranlarına sahiptir. Karar Ağaçları modeli ise, en düşük doğruluk (R²: 0.889) 

ve en yüksek hata oranları (MAE: 9.52, RMSE: 16.71) ile diğer modellere kıyasla daha 

zayıf bir performans göstermektedir. Bu değerlendirme, CatBoost ve SVR modellerinin 

genel performans açısından en iyi seçenekler olduğunu, ancak model seçiminde 

performans metriklerinin dikkatlice analiz edilmesi gerektiğini vurgulamaktadır. 

Öznitelik önemi yöntemiyle yapılan analizlerde, modellerin hangi değişkenlere daha fazla 

ağırlık verdiği belirlenmiştir. Yapılan öznitelik önemi analizi, her bir modelin tahmin 

performansını etkileyen kritik özellikleri belirlemekte ve model optimizasyon sürecini 
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desteklemekte önemli bir rol oynamıştır. Bu analiz sonucunda, çeşitli modeller için 

önemli özellikler seçilerek gereksiz özelliklerin çıkartılması suretiyle model performansı 

iyileştirilmiştir. Özellikle LightGBM modelinde 25 önemli özellik belirlenmiş ve bu 

özelliklerle optimize edilen model, test setinde 0.953 R² değeri elde ederek en iyi 

performansı göstermiştir. CatBoost modeli ise 27 önemli özellik kullanılarak optimize 

edilmiş ve test setinde 0.952 R² değeri elde edilmiştir. Benzer şekilde, XGBoost 

modelinde 29 önemli özellik kullanılarak 0.948 R² değeri elde edilmiş, SVR modelinde 

ise 30 özellik kullanılarak 0.936 R² değerine ulaşılmıştır. Random Forest modelinde ise 

29 önemli özellik kullanılarak 0.934 R² değeri elde edilmiş, son olarak Sequence modeli 

30 özellik kullanılarak optimize edilmiş ve bu modelde 0.917 R² değeri elde edilmiştir. 

Bu bulgular, optimize edilmiş modellerin varsayılan modellere göre daha başarılı 

olduğunu ve özellikle LightGBM ve CatBoost modellerinin öznitelik seçimi sonrasında 

elde edilen önemli performans artışını ortaya koymaktadır. 

PCA ve öznitelik önemi yöntemleri sonucunda elde edilen bulgular, her iki yöntemin de 

modellerin performansını artırmada önemli katkılar sağladığını göstermektedir. PCA 

kullanılarak gerçekleştirilen boyut indirgeme sonucunda en iyi modeller CatBoost ve 

SVR modelleri olarak öne çıkarken, en düşük performansı Karar Ağacı (DT) modeli 

sergilemiştir. Benzer şekilde, öznitelik önemi yöntemiyle gerçekleştirilen analizlerde de 

en iyi sonuçlar LightGBM ve CatBoost modelleri ile elde edilmiştir; en kötü performans 

ise yine Karar Ağacı modeli tarafından gösterilmiştir. Bu bulgu, her iki yöntemde de 

CatBoost modelinin tutarlı bir şekilde en iyi performansı sergilediğini ortaya 

koymaktadır. Öznitelik önemi yönteminde elde edilen sonuçlar, PCA'ya göre daha 

yüksek doğruluk oranlarına ve daha optimize edilmiş bir model performansına işaret 

etmektedir. Öznitelik önemi yönteminin, değişkenler arası ilişkileri daha iyi analiz ederek 

modelin etkinliğini artırdığı gözlemlenmiştir.  

Sonuç olarak, CatBoost modeli hem PCA ile boyut indirgeme hem de öznitelik önemi 

yöntemleriyle optimize edilen modeller arasında tutarlı bir şekilde en iyi sonuçları 

vermiştir. Aynı zamanda LightGBM modeli de öznitelik önemi yöntemiyle yapılan 

analizlerde en iyi performans gösteren modellerden biri olmuştur. Bu durum, CatBoost 

ve LightGBM modellerinin, özellikle öznitelik seçimi ve boyut indirgeme süreçlerine 

duyarlı olarak, elektrik fiyat tahmini için en uygun modeller olarak öne çıktığını 

göstermektedir. 
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Tablo 4. PCA için Eğitim ve Test kümesi 

 Kriter 

R2 MAE MSE RMSE MAPE 

Model Eğitim Test Eğitim Test Eğitim Test Eğitim Test Eğitim Test 

RF 0.990 0.934 23.7 162.2 2.59 6.91 4.87 12.73 25.41 56.53 

SVR 0.981 0.946 2.42 5.78 47.6 134.2 6.90 11.58 13.71 24.29 

XGBT 0.999 0.941 0.74 6.48 1.05 145.7 1.02 12.07 4.23 39.89 

YSA 0.998 0.940 1.55 7.42 4.88 148.3 2.21 12.18 10.51 32.52 

CBT 0.998 0.947 1.16 6.23 2.74 130.4 1.65 11.42 6.76 31.78 

LGBM 0.998 0.941 1.51 6.84 4.63 146.9 2.15 12.12 9.16 36.99 

DT 0.941 0.889 7.37 9.52 145.60 279.2 12.06 16.71 53.45 106.7 

 

Tablo 5. Öznitelik Önemi için Eğitim ve Test kümesi 

 Kriter 

R2 MAE MSE RMSE MAPE 

Model Değişken 

Sayısı 

Eğitim Test Eğitim Test Eğitim Test Eğitim Test Eğitim Test 

RF 29 0.989 0.934 2.9 6.5 26.5 163 5.15 12.7 24.3 40 

SVR 30 0.994 0.944 3.4 6.6 14.6 138 3.82 11.7 24.4 33.9 

XGBT 29 0.988 0.948 3.7 6.2 29.1 128 5.38 11.3 25.9 32.1 

YSA 30 0.982 0.942 3.5 6.1 42.5 143 6.52 11.9 11.8 18.9 

CBT 27 0.989 0.950 3.4 6 27.2 122 5.22 11 24.1 28.6 

LGBM 25 0.990 0.953 3.3 5.8 24.5 116 4.95 10.7 14.6 33.8 

DT 28 0.938 0.896 6.3 8.4 153 257 12.38 16 57 58.8 
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Şekil 15. Modellerin Hata Metrik Performanslarının Karşılaştırılması: (a) R², (b) RMSE, 

(c) MSE, (d) MAE, (e) MAPE 

3.3. Tüm Veri Seti Kullanılarak Elde Edilen Model Sonuçları 

Bu bölümde yedi farklı modelin tahmin sonuçlarına yer verilmiştir. Tüm tahmin 

modellerinin hata metriklerine göre hata oranları test ve eğitim olarak verilmiştir. Tablo 

6 ve Şekil 16’daki grafik, sonuçların güvenilirliğini sağlamak ve overfitting veya 

underfitting gibi durumları değerlendirmek için önemlidir. 

Tablo 6 ve diğer şekillerin (Şekil 16 - Şekil 17) birlikte değerlendirilmesi, modellerin 

performansını kapsamlı bir şekilde analiz etmemizi sağlar. XGBoost ve LightGBM 

modelleri, eğitimde mükemmel (R²: 0.996) ve testte yüksek (R²: 0.93 ve 0.95) doğruluk 

ile en iyi sonuçları sunmaktadır. Random Forest modeli de yüksek doğruluk (R²: 0.93) ve 

düşük hata oranları (MAE: 6.61, RMSE: 12.9) ile dikkate değer bir performans 

sergilemektedir. Destek Vektör Regresyonu, Yapay Sinir Ağları ve CatBoost (CBT) 

modelleri belirli metriklerde iyi sonuçlar verse de genel olarak daha yüksek hata 

oranlarına sahiptir. Karar Ağaçları modeli ise, en düşük doğruluk (R²: 0.89) ve en yüksek 

hata oranları (MAE: 8.36, RMSE: 16.2) ile diğer modellere kıyasla daha zayıf bir 

performans göstermektedir. Bu değerlendirme, XGBoost ve LightGBM modellerinin 

genel performans açısından en iyi seçenekler olduğunu, ancak model seçiminde 

performans metriklerinin dikkatlice analiz edilmesi gerektiğini vurgulamaktadır. 

Modellerin tahmin hatası grafiklerinde (Şekil 16) gerçek değerler x ekseninde, modellerin 

tahmin ettiği değerler ise y ekseninde gösterilir. Yeşil noktalar, modelin her bir veri 

noktası için yaptığı tahmini temsil eder. Kırmızı çizgi, modelin mükemmel bir tahmin 

yapacağı ideal bir durumu gösterir. Siyah çizgi ise modelin eğitim verisi üzerinde en iyi 
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uyumu sağlayan eğriyi temsil eder. Siyah ve kırmızı çizgiler ne kadar yakın olursa, 

modelin tahminleri o kadar doğrudur. 

Elektrik fiyat tahmini için kullanılan farklı modellerin görsel karşılaştırmaları incelenerek 

çeşitli makine öğrenimi modellerinin performansının kapsamlı bir karşılaştırması 

yapılmıştır. Bu analizde, LightGBM modeli (Şekil 16.g), gerçek değerler ve tahminler 

arasında mükemmel bir uyum sergileyerek diğer tüm modelleri geride bırakan en iyi 

performans gösteren model olarak belirlenmiştir. XGBoost (Şekil 16.a) ve CatBoost 

(Şekil 16.f) modelleri de LightGBM’e yakın ancak biraz gerisinde yüksek 

performanslarıyla öne çıkmıştır ve elektrik fiyat tahmini için güçlü alternatifler olarak 

kabul edilebilir. Sequential model (Şekil 16.d) ve SVR (Şekil 16.cHata! Başvuru 

kaynağı bulunamadı.) ortalama performans göstermiş, yüksek performanslı modellerin 

gerisinde kalmış ancak yine de tatmin edici sonuçlar vermiştir. Ancak, Rastgele Orman 

modeli (Şekil 16.b) bu iki modelden daha düşük performans sergilemiştir. En düşük 

performans ise Karar Ağacı modeli (Şekil 16.e) tarafından gösterilmiştir. Bu sonuçlar, 

LightGBM modelinin elektrik fiyat tahmini için en uygun seçenek olduğunu, diğer 

modellerin ise çeşitli performans düzeylerine göre belirli durumlar ve ihtiyaçlar için 

değerlendirilebileceğini göstermektedir. LightGBM modelinin Şekil 16.g’de görülen 

siyah ve kırmızı çizgilerinin örtüşmesi, bu modelin elektrik fiyat tahmininde (PTF) en iyi 

performansı gösteren model olduğunu açıkça ortaya koymaktadır. Bu örtüşme, modelin 

tahminlerinin gerçek değerlerle mükemmel bir uyum içinde olduğunu ve PTF’yi en iyi 

şekilde açıklayan yöntem olduğunu gösterir. LightGBM modeli, diğer modellere kıyasla 

daha doğru tahminler yapmaktadır. Bu durum, modelin PTF’yi etkileyen faktörleri daha 

iyi yakaladığını ve daha sağlam bir tahminleme gerçekleştirdiğini gösterir. 

Tüm tahmin modellerinin R², MSE, MAE, RMSE ve MAPE metriğine göre hata oranları 

Şekil 17’de verilmiştir. DT modelinde 2018-2022 yılları arasında hata metriklerine göre 

bu modelin diğer modellere göre daha başarısız tahmin yaptığı sonucuna varılmıştır. 

Bunun yanı sıra CatBoost ve XGBoost modelleri daha iyi sonuçlar ortaya koysalar da 

Şekil 17’de hata oranları ve grafik incelemeleri sonucunda en başarılı tahminlerin 

LightGBM modeli ile yapıldığı görülmektedir. 
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Tablo 6. Eğitim ve Test Kümesi 

 Kriter 

R2 MAE MSE RMSE MAPE 

Model Eğitim Test Eğitim Test Eğitim Test Eğitim Test Eğitim Test 

RF 0.99 0.93 2.88 6.61 24.95 166 4.99 12.9 20.65 64.8 

SVR 0.956 0.94 6.08 6.92 108.7 145 10.42 12 43.63 8 

XGBT 0.996 0.93 2.23 6.45 10.74 124 3.27 11.1 13.82 6.45 

YSA 0.957 0.94 5.88 6.16 106.7 154 10.33 12.4 5.86 6.86 

CBT 0.983 0.94 4.31 6.51 41.26 131 6.42 11.4 30.21 48.7 

LGBM 0.996 0.95 2.26 5.98 10.94 126 3.31 11.2 14.62 49.6 

DT 0.950 0.89 6.36 8.36 125.3 269 11.19 16.2 16.42 97.7 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

 

(g) 

Şekil 16. Model Tahmin Hatası: (a) XGBoost, (b) RF, (c) SVR, (d) Sequential, (e) DTR, 

(f) CatBoost, (g) LightGBM 
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Şekil 17. Modellerin sonuçları 

3.4. Piyasa Takas Fiyatına Etki Eden Parametrelerin Açıklanabilirliği 

SHAP (SHapley Additive Explanations), Lloyd Shapley tarafından oyun teorisi temelli 

geliştirilen bir kavram olup her bir özelliğin model tahminlerine katkısını nicel olarak 

belirleyerek kompleks makine öğrenimi modellerinin yorumlanabilirliğini artırır [48]. 

SHAP değeri, bir modelin farklı özelliklerinin bir hedef değişkeni üzerindeki etkisini 

açıklayan bir yöntemdir. Makine öğrenmesi modellerinin karar verme süreçlerini 

anlamayı ve yorumlamayı kolaylaştırır. Bu sayede modelin karmaşıklığı ve karar verme 

mekanizması anlaşılabilir, özelliklerin önemi ve etkisi değerlendirilebilir ve modelin 

önyargılarını ve açıklanabilirliğini analiz etmemizi sağlar. 
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Elektrik piyasası fiyat tahmininde kullanılan modeller karmaşık olup, yorumlanmaları zor 

olabilir. SHAP değerleri, bu modellerin fiyat tahminlerini hangi özelliklere 

dayandırdığını ve her bir özelliğin tahmin üzerindeki etkisini açıklar. Bu bilgiler, modelin 

güvenilirliğini ve açıklanabilirliğini artırmaktadır. SHAP değerleri, her bir özellik için 

pozitif veya negatif bir değer üretir. Enerji piyasası tahmin modelinde kullanılan 

özelliklerin model çıktıları üzerindeki etkisi, SHAP özet grafiği aracılığıyla 

yorumlanabilir. SHAP değerleri, her bir özelliğin modelin karar verme sürecine katkısını 

ortaya koyarak, enerji piyasası analistlerine ve karar vericilere değerli bilgiler sağlar. Bu 

analiz, enerji piyasalarında gelecekteki fiyat dinamiklerini daha iyi anlamak ve tahmin 

etmek için kritik öneme sahiptir. 

SHAP grafiğinde (örneğin Şekil 18), x-ekseni boyunca noktaların dağılımı, her bir 

özelliğin tahmin edilen değişken (MCP) üzerindeki etkisinin büyüklüğünü ve yönünü 

nicel olarak belirleyen SHAP değerlerini yansıtır. Y-ekseni, fiyat tahminini etkileme 

açısından özelliklerin genel önemine göre sıralar. Kırmızı noktalar yüksek özellik 

değerlerini, mavi noktalar ise düşük özellik değerlerini temsil eder. Örneğin, Şekil 18'de 

MCP-24 değişkeninin en yüksek değeri olan $264, açık kırmızı bir nokta ile gösterilmiş 

olup, buna karşılık gelen SHAP değeri x ekseninde +98'dir ve bu, fiyat üzerinde önemli 

bir pozitif etkiyi ifade eder. Buna karşılık, MCP-24'ün en düşük değeri olan $0, açık mavi 

bir nokta ile gösterilmiş olup, SHAP değeri -30'dur ve bu, fiyat üzerinde belirgin bir 

negatif etkiyi belirtir. 
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Şekil 18. LightGBM Shap Değeri 

Pozitif SHAP değerlerine sahip kırmızı noktaların varlığı, ilgili özelliğin MCP 

tahminlerini artırma eğiliminde olduğunu, negatif SHAP değerlerine sahip mavi noktalar 

MCP tahminlerini düşürme eğiliminde olduğunu gösterir. Sıfır ekseni etrafındaki 

noktaların yoğunluğu, özelliğin MCP üzerinde önemsiz bir etkisi olduğunu ima eder. Bu 

görselleştirmeleri analiz ederek, girdi özellikleri ile çıktı (MCP) arasındaki karmaşık 

ilişkiler hakkında değerli içgörüler elde edebiliriz. Bu bölümde, bireysel girdi 

özelliklerinin fiyat üzerindeki etkisini açıklamak için SHAP (SHapley Additive 

Explanations) analizi kullanılmıştır. İlk olarak en etkili özellikleri önceliklendiriyor, 

ardından enerji kaynaklarının elektrik fiyatları üzerindeki etkilerini kapsamlı bir şekilde 

incelendi. Son olarak, piyasa ile ilgili ve finansal özelliklerin fiyata katkısını 

derinlemesine ele alıyoruz. Bu sistematik yaklaşım, çeşitli faktörler arasındaki karmaşık 

etkileşimlerin ve bunların elektrik piyasasındaki fiyat belirlemesine olan toplu etkilerinin 

kapsamlı bir şekilde anlaşılmasını sağlar. 
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LightGBM modeline ilişkin SHAP değerleri Şekil 18'de ve diğer modeller için Şekil 21- 

Şekil 22’de sunulmuştur. SHAP değerleri, MCP-24 değişkenini, yani bir önceki günün 

fiyatını, sonraki gün fiyat tahmininde en etkili öngörücülerden biri olarak sürekli bir 

şekilde tanımlamaktadır. SHAP analizi, MCP-24'ün düşük değerlerinin tahmin edilen 

fiyat üzerinde belirgin bir negatif etki, yüksek değerlerinin ise güçlü bir pozitif etki 

oluşturduğunu açıkça ortaya koymaktadır. İncelenen tüm özellikler arasında, MCP-24’ün 

yüksek değerleri, fiyat üzerinde en büyük pozitif etkiye sahip değişken olarak öne 

çıkmaktadır. Bu, yüksek MCP-24 değerinin ertesi gün daha yüksek bir fiyat olasılığını 

anlamlı bir şekilde artırdığını işaret etmektedir. Buna karşılık, düşük MCP-24 değeri, 

ertesi gün daha düşük bir fiyat olasılığını göstermektedir. Koyu mavi, mor veya koyu 

kırmızı noktalarla sıfır SHAP değerleri etrafında kümelenmiş ara değerler göz ardı 

edilebilir bir etkiye sahiptir. 

Benzer bulgular, sırasıyla geçen haftanın ve geçen ayın piyasa takas fiyatını temsil eden 

MCP-168 ve MCP-672 için de genişletilebilir. LightGBM modelinde MCP-24'ün etkisi 

kadar belirgin olmasa da genel eğilim tutarlılığını korumaktadır. SHAP grafiklerinde açık 

mavi noktalarla temsil edilen MCP-168 ve MCP-672'nin düşük değerleri, tahmin edilen 

fiyat üzerinde negatif bir etki yaratarak, ertesi gün daha düşük fiyatlar olasılığını işaret 

etmektedir. Buna karşın, bu değişkenlerin yüksek değerleri, daha yüksek fiyatların 

olasılığını artırmaktadır. Sıfıra yakın SHAP değerleri ile gösterilen edilen orta değerler, 

tahmin fiyatı üzerinde ihmal edilebilir bir etkiye sahiptir. Düşük değerler 

sergilediklerinde, MCP-24 ve MCP-168, gün türü (HOLY) ve kömürden enerji üretimi 

(ICOAL) ile birlikte fiyatı azaltmada en etkili değişkenler olarak öne çıkmaktadır. 

Bu sonuçlar, otokorelasyon (ACF) ve kısmi otokorelasyon (PACF) analizleri ile 

desteklenmektedir. ACF ve PACF, piyasadaki ortalama elektrik fiyatlarının zamansal 

davranışını değerlendirmektedir (Şekil 19). Bu analizler, PTF’nin geçmiş değerlerinin 

mevcut değerler üzerindeki etkisini belirlemede önemli bir rol oynamaktadır. 
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 Şekil 19. Otokorelasyon (ACF) ve Kısmi Otokorelasyon (PACF) Analizi 

ACF grafiğinin analizi, PTF verileri içindeki içsel ilişkiler hakkında önemli bilgiler 

sunmaktadır. Grafikte gözlemlenen başlangıçtaki yüksek değerler, PTF’nin kısa vadeli 

geçmiş verileri ile güçlü bir pozitif korelasyon göstererek, geçmiş değerlerin mevcut fiyat 

tahminlerinde kritik bir referans olabileceğini düşündürmektedir. Özellikle, birkaç saat 

veya bir gün öncesine ait kısa vadeli tarihsel veriler, mevcut fiyat değerlerini belirlemede 

önemli bir rol oynamaktadır.  

PACF grafiği analizi, PTF ile geçmiş değerler arasındaki kısmi korelasyonları ortaya 

koymaktadır. Grafiğin başlangıç kısmındaki belirgin yüksek değerler, kısa vadeli geçmiş 

değerlerin PTF değerleri üzerinde önemli bir etkiye sahip olduğunu göstermektedir. 

Ancak, bu yüksek değerlerin hızla azalması, geçmiş değerlerin zamanla etkisinin 

azaldığına işaret etmektedir. Özellikle, ilk birkaç gecikme için yüksek PACF değerleri, 

mevcut MCP değerlerini tahmin etmede erken gecikmelerin kritik önemini vurgulamakta 

ve yakın geçmiş değerlerle daha güçlü bir ilişki olduğunu belirtmektedir. Bu bulgu, 

tarihsel verilerin, özellikle ilk birkaç saat veya günden gelen verilerin, mevcut MCP 

değerlerini tahmin etmede daha fazla dikkate alınması gerektiğini ortaya koymaktadır. 

HOLY değişkeninin ikili (binary) yapısı, hafta içi günleri (HOLY=1) ve hafta 

sonları/tatiller (HOLY=0) temsil ederek bağımsız değerlendirme sürecini 

zorlaştırmaktadır. Bu değişkenin sınırlı değer aralığı ve model üzerindeki tutarsız etkileri, 

analiz sürecini karmaşıklaştırmaktadır. Sıfır SHAP değerlerine yakın yoğun kırmızı 

noktaların kümelenmesi, hafta içi günlerinin MCP zerinde küçük bir yukarı yönlü etki 

oluşturduğunu öne sürerken, hafta sonları/tatillerle ilişkilendirilen mavi noktaların x-

ekseni boyunca daha geniş dağılımı, daha belirgin ancak oldukça değişken bir aşağı yönlü 
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etkiyi göstermektedir. Bu durum, tüm hafta sonları ve tatillerin fiyatların düşmesine 

neden olmadığını ima etmektedir. Dolayısıyla, HOLY değişkeninin fiyat üzerindeki etkisi 

izole bir şekilde kesin olarak belirlenememektedir. Bu değişkenin etkisinin, modeldeki 

diğer değişkenlerle olan etkileşimlere bağlı olduğu ve fiyat dalgalanmalarını doğru bir 

şekilde değerlendirmek için birden çok faktörün etkileşimini dikkate alan kapsamlı bir 

analiz gerektiği anlaşılmaktadır. 

Günlük döviz kuru (DER) ile ilgili olarak, SHAP grafiğinin pozitif tarafında yoğun 

kırmızı noktaların dağılımı, yüksek DER değerleri ile fiyat artışı arasında güçlü bir pozitif 

korelasyon olduğunu ortaya koymaktadır. Bu durum, yüksek döviz kurunun ertesi gün 

elektrik fiyatlarını etkili bir şekilde artırdığını ifade etmektedir. Bu ilişki, Türkiye'nin 

elektrik üretiminin önemli bir kısmının ithal yakıtlara, özellikle doğalgaz (%22) ve 

kömüre (%17) olan büyük bağımlılığına atfedilebilir. Bu yakıtlar, toplam üretimin 

yaklaşık %40'ını oluşturmaktadır. DER arttıkça, bu yakıtların ithalat maliyeti yükselir ve 

bu da üretim maliyetlerinin artmasına ve dolayısıyla elektrik fiyatlarının yükselmesine 

neden olur. Buna karşılık, düşük DER değerlerini temsil eden mavi noktaların azlığı ve 

sıfır SHAP değerleri etrafında kümelenmeleri, düşük döviz kurlarının fiyat üzerinde 

ihmal edilebilir bir etkisi olduğunu göstermektedir. Bu durum, döviz kuru düşük 

olduğunda bile, elektrik fiyatlarını düşürmede önemli bir katkı sağlamadığını işaret 

etmektedir. Bu gözlem, yüksek döviz kurlarının fiyatlar üzerinde önemli bir yukarı yönlü 

baskı oluştururken, düşük döviz kurlarının sınırlı bir aşağı yönlü etkiye sahip olduğunu 

ve DER'in fiyat üzerindeki asimetrik etkisini vurgulamaktadır. 

Enerji üretim kaynaklarının incelenmesi hem yenilenebilir hem de fosil yakıtlardan 

üretilen elektrik miktarının fiyat üzerinde önemli bir etkisi olduğunu ortaya koymaktadır. 

Bu etkinin daha iyi anlaşılabilmesi için, bu kaynakların toplam elektrik üretimindeki 

paylarının dikkate alınması gerekmektedir. Şekil 20, 2022 yılı itibarıyla elektrik üretim 

paylarını göstermekte olup, her bir kaynağın fiyat üzerindeki etkisini yorumlamak için 

değerli bir bağlam sunmaktadır. Bu analiz, elektrik piyasasındaki fiyat dalgalanmalarını 

incelerken enerji karışımının bileşiminin dikkate alınmasının önemini vurgulamaktadır. 
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Şekil 20. Türkiye'de 2022 Yılı İtibariyle Elektrik Üretim Payları 

Beklenin aksine, SHAP analizi, yüksek hidroelektrik üretiminin (HYD) fiyat ile pozitif 

bir ilişki gösterdiğini ortaya koymaktadır; bununla birlikte, bu etkinin LightGBM 

modelinde nispeten küçük olduğu saptanmıştır. Bu gözlem, tüm modellerde tutarlı bir 

şekilde tekrarlanmakta olup, CatBoost (Şekil 21.a) ve XGBoost (Şekil 21.b) modellerinde 

benzer etki büyüklükleri gözlemlenerek bu beklenmedik bulguya daha fazla güven 

sağlamaktadır. Bu karşı sezgisel sonuç, Türkiye elektrik piyasasındaki hidroelektrik 

santrallerin belirli piyasa dinamiklerine ve operasyonel stratejilerine atfedilebilir. Yüksek 

hidroelektrik üretimi, fiyatın doğal olarak arttığı sınırlı arz için rekabetin yüksek olduğu 

talep zirvesi (pik) dönemleri ile çakışabilir. Alternatif olarak, hidroelektrik santralleri, 

yüksek fiyat dönemlerinde gelirlerini maksimize etmek için üretimlerini stratejik olarak 

ayarlayabilirler ve bu da gözlemlenen pozitif korelasyona katkıda bulunur. Hidroelektrik 

üretimi ile fiyat dinamikleri arasındaki ilişkinin altında yatan mekanizmaları tam olarak 

anlamak için daha fazla araştırma gereklidir. 
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(a) 

 

(b) 

Şekil 21. Modellerin Shap Value Analizi: (a) CatBoost, (b) XGBoost 
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Güneş enerjisi (SOL) üretiminin analizine ilişkin bulgular, MCP üzerindeki karmaşık 

etkilerini ortaya koymaktadır. Sıfır SHAP değerleri etrafında yoğunlaşan mavi noktalarla 

temsil edilen düşük güneş enerjisi üretimi, MCP üzerinde önemsiz bir etki 

göstermektedir. Ancak, güneş enerjisi üretimi arttıkça, SHAP grafiğinin negatif kısmında 

yoğunlaşan kırmızı noktalarla belirginleşen negatif bir etki ortaya çıkmaktadır. Bu durum, 

yüksek güneş enerjisi üretiminin fiyat üzerinde genellikle aşağı yönlü bir baskı 

oluşturduğunu ve artan yenilenebilir enerji arzının daha pahalı üretim kaynaklarının 

yerini alarak fiyatları düşürdüğünü göstermektedir. Bu gözlem, CatBoost, XGBoost, SVR 

(Şekil 22.a), RF (Şekil 22.c) ve DT (Şekil 22.d) gibi çeşitli modeller tarafından 

doğrulanmakta olup, yüksek güneş enerjisi üretimi ile fiyat arasında tutarlı bir negatif 

korelasyon ortaya koymaktadır. Ancak, Sequential model (Şekil 22.b), diğer modellerden 

saparak güneş enerjisi üretimini önemli bir öngörücü olarak değerlendirmemektedir. Bu 

tutarsızlık, model mimarisindeki farklılıklara atfedilebilir. Genel olarak, elde edilen 

kanıtlar, özellikle yüksek seviyelerde güneş enerjisi üretiminin elektrik fiyatını azaltmada 

anlamlı bir rol oynadığını ortaya koymaktadır. Bu bulgu, güneş enerjisinin elektrik 

fiyatlarını düşürme potansiyelini ve daha sürdürülebilir bir enerji karışımını teşvik etme 

kapasitesini vurgulamaktadır. 

 

(a) 



60 

 

(b) 

 

(c) 
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(d) 

Şekil 22. Modellerin Shap Value Analiz: (a) SVR, (b) Sequential, (c) RF, (d) DT 

Biyokütleden enerji üretiminin (BIO) analizi, düşük seviyelerdeki biyokütle üretiminin 

ertesi günün fiyatı üzerinde ihmal edilebilir bir etkiye sahip olduğunu, sıfır SHAP 

değerlerinde yoğunlaşan mavi noktalar aracılığıyla göstermektedir. Ancak, SHAP 

grafiğinde hem negatif hem de pozitif tarafta kırmızı noktalar gözlemlenmekte olup, 

pozitif tarafta daha yüksek SHAP değerleri yer almaktadır. Bu durum, yüksek biyokütle 

üretiminin fiyatı bir miktar artırabileceğini ima etmektedir. Bu gözlem, biyokütle 

enerjisinin diğer yenilenebilir enerji kaynaklarına kıyasla nispeten daha yüksek marjinal 

maliyetlerine atfedilebilir; zira daha yüksek üretim maliyetleri, elektrik piyasasında artan 

fiyatlara dönüşebilmektedir. Bu model, RF modelinin biyokütle üretimini önemli bir 

öngörücü olarak değerlendirmemesi dışında, çoğu modelde tutarlılık göstermektedir. 

Doğalgaz fiyatı (GASP), elektrik fiyatının belirlenmesinde kilit bir faktör olarak öne 

çıkmakta ve tüm modellerde güçlü bir pozitif ilişki sergilemektedir. Yüksek doğalgaz 

fiyatları, sürekli olarak elektrik fiyatında önemli bir artış öngörmekte olup, elektrik 

üretiminde temel yakıt kaynağı olarak doğalgazın kritik rolünü yansıtmaktadır. Ancak, 
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düşük doğalgaz fiyatlarının etkisi daha az belirgin olup, genellikle PTF üzerinde ihmal 

edilebilir bir aşağı yönlü etki göstermektedir. Bu asimetri, doğalgazdan enerji üretimi 

(NG) ile PTF arasındaki ilişkide de görülmektedir. Düşük NG, yüksek NG’nin 

oluşturduğu hafif yukarı yönlü baskıya kıyasla PTF üzerinde daha güçlü bir aşağı yönlü 

baskı uygulamaktadır. Bu gözlem, LightGBM, CatBoost ve XGBoost modellerinde 

tutarlı olup, elektrik üretiminde doğalgaza bağımlılığın azaltılmasının, özellikle alternatif 

kaynakların mevcut olduğu durumlarda, daha düşük fiyatlara katkıda bulunabileceğini 

göstermektedir. Ancak, bu etkinin tüm modellerde aynı olmadığını ve model spesifik 

farklılıkların olabileceğini belirtmek önemlidir. Ayrıca, analiz, doğalgaz fiyatları ve 

üretim seviyeleri arasındaki karmaşık etkileşimi ortaya koymaktadır. Yüksek doğalgaz 

fiyatları güvenilir bir şekilde yüksek PTF’yi öngörürken, düşük doğalgaz fiyatları ile 

düşük NG kombinasyonu mutlaka daha düşük bir PTF garantilememektedir. 

Nehirden hidroelektrik üretiminin (RHYD) yüksek seviyeleri, tüm modellerde tutarlı bir 

şekilde fiyat üzerinde düşürücü bir etki yaratmaktadır; ancak, düşük RHYD’nin etkisi 

önemsiz kalmaktadır. Bununla birlikte, RHYD değişkeni, tüm modellerde sürekli olarak 

önemli bir öngörücü olarak ortaya çıkmamaktadır ve hem yüksek hem de düşük üretim 

seviyeleri için SHAP değerleri önemli ölçüde değişkenlik göstermektedir. Dolayısıyla, 

RHYD ile PTF arasındaki ilişkiye dair sonuçlar güvenilir değildir ve dikkatle 

değerlendirilmelidir. 

Linyit kömürü, Türkiye'nin toplam elektrik üretiminde %15 paya sahip önemli bir enerji 

kaynağı olmasına rağmen, yalnızca LightGBM, CatBoost ve RF modelleri linyitten 

elektrik üretimini (LIG) önemli bir değişken olarak değerlendirmektedir. LightGBM ve 

CatBoost modellerine göre, yüksek LIG fiyatı güçlü bir şekilde azaltmakta, düşük üretim 

ise fiyatı artırmaktadır. Jeotermal (GEO) üretimi için de benzer değerlendirmeler 

yapılabilir, ancak PTF üzerindeki etkisi daha sınırlıdır. Yalnızca SVR modeli, jeotermal 

üretimini daha kritik bir değişken olarak değerlendirerek ters bir etki göstermektedir; 

yani, yüksek jeotermal üretimi fiyatı belirgin şekilde artırmakta, düşük üretim ise fiyatı 

düşürmektedir. 

LightGBM modeline göre ilginç ve beklenmedik bir diğer bulgu, yüksek rüzgâr (WIND) 

üretiminin fiyatı artırdığı ve düşük üretimin fiyatı azalttığı yönündedir; ancak bu etkinin 

çok büyük olmadığı vurgulanmaktadır. CatBoost, SVR ve XGBoost modelleri, WIND 
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değişkeninin etkisini dikkate almamaktadır. Sequential model, bu etkinin nedenine dair 

net bir açıklama sunmamaktadır. Sadece DT modeli, yüksek rüzgâr (WIND) üretiminin 

fiyatı azalttığını ve düşük üretimin fiyatı artırdığını öne sürmektedir. 

İthal kömürden (ICOAL) yüksek üretimin PTF üzerinde hiçbir etkisi olmazken, düşük 

üretim fiyatı belirgin bir şekilde düşürmektedir ve negatif tarafta yaklaşık -30 SHAP 

değeri ile LightGBM ve RF modellerine göre tüm parametreler arasında en etkili olanıdır. 

XGBoost modeli de düşük üretim için benzer sonuçlar sunmakta, ancak bu modele göre, 

ithal kömürden (ICOAL) yüksek üretim fiyatı düşürmektedir. CatBoost ve SVR 

modelleri, ICOAL'ı anlamlı bir değişken olarak değerlendirmemekte ve Sequential ile DT 

modelleri bu etkileri yeterince açıklamamaktadır. 

Taş kömüründen (BCOAL) üretimin PTF üzerindeki etkisinin analizi, farklı modeller 

arasında karmaşık sonuçlar ortaya koymaktadır. LightGBM modeli, fiyatı tahmin ederken 

BCOAL değişkenini önemli bir faktör olarak görmemektedir. Buna karşılık, diğer tüm 

modeller BCOAL'ı tahminlere dahil ederek, onun potansiyel önemini vurgulamaktadır. 

Ancak, etkisinin yönü ve büyüklüğü modeller arasında değişkenlik göstermektedir. 

CatBoost modeli, bu konuda en tutarlı açıklamayı sunmaktadır. Bu model, yüksek 

seviyelerde BCOAL üretiminin fiyatı önemli ölçüde azalttığını öne sürmekte olup, daha 

düşük maliyetli kaynaklardan artan arzın fiyatları düşüreceği beklentisiyle uyumludur. 

İlginç bir şekilde, bu modele göre, taş kömüründen düşük üretim senaryosu fiyat üzerinde 

kayda değer bir etki oluşturmamaktadır. 

Fuel-oilden enerji üretimi (FUEL), Türkiye'nin elektrik üretiminde çok düşük bir paya 

sahiptir (<%1), bu nedenle FUEL değişkeni çoğu modelde önemli bir faktör olarak 

değerlendirilmemektedir. LightGBM, CatBoost ve Sequential modeller bu değişkeni 

tahminlerine dahil etmemekte olup, diğer modellerde ise değişkenin etkisi dikkate değer 

değildir. 

Enerji kaynakları, tarihsel PTF ve gaz fiyatlarının yanı sıra çeşitli piyasa ve iklim 

değişkenleri de fiyat tahmininde etkili olmaktadır. Bu değişkenler arasında ticaret hacmi 

(TV), verilen satış siparişi hacmi (SSOV), verilen teklif siparişi hacmi (SBOV), eşleşen 

teklifler miktarı (MO), fiyat bağımsız satış siparişi (PISO), fiyat bağımsız teklif siparişi 

(PIBO) ve Ankara ile İstanbul'un saatlik ortalama sıcaklıkları yer almaktadır. Ancak, 

LightGBM modeli yalnızca SSOV, SBOV ve İstanbul'un saatlik ortalama sıcaklığını 
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(IST) seçici bir şekilde dahil ederken, diğer değişkenleri göz ardı etmektedir. MO 

değişkeni ise yalnızca CatBoost modeli tarafından düşük bir etki ile dikkate alınmaktadır. 

Maksimum piyasa fiyatı adımında piyasaya sunulan elektrik arzı teklif miktarını temsil 

eden Verilen Satış Siparişi Hacmi (SSOV), artan arzın genellikle daha düşük fiyatlara yol 

açması nedeniyle fiyat üzerinde aşağı yönlü bir baskı oluşturması beklenir. Bu ilişki, 

SSOV değerlerinin düşük olduğu durumlarda daha yüksek fiyat ile ilişkilendirildiğini 

sürekli olarak gösteren LightGBM, CatBoost, SVR ve Sıralı modellerin SHAP analizi ile 

doğrulanmaktadır. Ancak, yüksek SSOV’nin fiyatı önemli ölçüde düşürdüğü ters etki bu 

modeller tarafından güçlü bir şekilde desteklenmemektedir. Buna karşılık, fiyat bağımsız 

satış siparişi (PISO), piyasaya herhangi bir fiyat adımı olmaksızın sunulan elektrik arzı 

teklif miktarını temsil ederek, arz ve fiyat arasındaki ilişkiye tamamlayıcı bilgiler sunar. 

LightGBM modeline dahil edilmemiş olmasına rağmen, diğer tüm modellerin SHAP 

analizi, PISO ile fiyat arasında negatif bir korelasyon olduğunu sürekli olarak ortaya 

koymakta olup, daha yüksek PISO değerlerinin daha düşük PTF ile ilişkilendirildiğini 

göstermektedir. Dolayısıyla, PTF üzerindeki arz tarafı etkisinin kapsamlı bir analizi, hem 

SSOV hem de PISO değişkenlerinin birlikte değerlendirilmesini gerektirmektedir. 

Fiyat bağımsız teklif siparişi (PIBO) ve verilen teklif siparişi hacmi (SBOV), sırasıyla 

piyasaya herhangi bir fiyat adımı olmadan ve 0 $/MWh fiyat adımında sunulan elektrik 

talep teklif miktarını temsil ederek paralel bir analiz yapılabilir. Ancak, şaşırtıcı bir 

şekilde, bu talep tarafı değişkenlerinin fiyat üzerindeki etkisi, arz tarafı karşıtları olan 

SSOV ve PISO'nun etkisi kadar belirgin değildir. LightGBM, SVR, Sequential ve DT 

modellerinde SBOV’nin SHAP değerleri, düşük SBOV değerlerinin azalmış fiyat ile 

ilişkilendirildiğini sürekli olarak göstermekte olup, azalan talebin daha düşük fiyatlara 

yol açabileceğini düşündürmektedir. Buna karşılık, PIBO’nun etkisi daha belirsizdir, 

çünkü sadece SVR modelinde temsil edilmekte ve burada daha yüksek PIBO değerleri 

artan PTF ile ilişkilendirilmektedir. Talep tarafı değişkenlerinin gözlemlenen etkisindeki 

bu farklılık, arz tarafı değişkenlerine kıyasla daha fazla araştırmayı gerektirmektedir. 

Talebin fiyat esnekliği gibi diğer faktörlerin, talep ve fiyat arasındaki ilişkiyi 

etkileyebileceği mümkündür. 

Piyasadaki eşleşen tekliflerin saatlik toplam finansal hacmini temsil eden ticaret havmi 

(TV), LightGBM tarafından dikkate alınmamasına rağmen, birçok modelde PTF’nin 
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önemli bir öngörücüsü olarak öne çıkmaktadır. Özellikle CatBoost, XGBoost ve 

Sequential modeller, yüksek TV değerleri ile fiyat arasında güçlü bir pozitif korelasyon 

olduğunu göstermekte, artan ticaret aktivitesi ve finansal hacmin fiyatları yukarı yönlü 

etkilediğini ileri sürmektedir. Ancak, düşük TV değerlerinin fiyat üzerindeki düşüş yönlü 

etkisi bu modellerde daha az belirgindir. TV değişkeni, SVR, RF ve DT modellerine de 

dahil edilmiş, ancak etkisi daha az önemli ve daha az net bir şekilde tanımlanmıştır. 

TV'nin LightGBM modelinden çıkarılması, önceki saatin fiyatını temsil eden MCP-24 

değişkeninin yüksek etkisine bağlanabilir. Saatlik toplam finansal hacim ve PTF 

arasındaki doğal ilişki göz önüne alındığında, MCP-24 değişkeninin LightGBM 

çerçevesinde TV'nin etkisini dolaylı olarak yakaladığı düşünülebilir. 

İstanbul'un saatlik ortalama sıcaklığı (IST), CatBoost, Sequential, SVR ve RF 

modellerinde fiyatı etkileyen bir faktör olarak belirlenmiştir. Ancak, bu ilişkinin kesin 

doğası belirsizliğini korumaktadır. Özellikle, CatBoost modeli, İstanbul'daki daha düşük 

sıcaklıkların fiyatta hafif bir artış ile ilişkilendirildiği, daha yüksek sıcaklıkların ise fiyatta 

azalma ile ilişkilendirildiği bir model sunmaktadır. Bu gözlem, özellikle ısınma amaçlı 

elektrik talebindeki mevsimsel değişikliklere atfedilebilir. Daha soğuk aylarda, genellikle 

doğalgaz ile sağlanan ısınma ihtiyacının artması, elektrik talebini artırarak fiyat üzerinde 

yukarı yönlü bir baskı oluşturur. Buna karşılık, daha yüksek sıcaklıklar ısınma ihtiyacını 

azaltarak elektrik talebini ve dolayısıyla fiyatı düşürür. Ankara'nın (ANK) saatlik 

ortalama sıcaklığı ise, yalnızca SVR ve DT modellerinde nispeten düşük bir önemle yer 

alarak PTF üzerinde daha az belirgin ve tutarsız bir etki göstermektedir. 

3.5. Yenilenebilir Enerji Kaynaklarının PTF üzerindeki Etkisi 

Fosil yakıtlı üretim genellikle PTF üzerinde daha tahmin edilebilir ve güçlü etkilere 

sahiptir. Doğal gaz ve kömür gibi kaynaklar, üretim arttığında PTF fiyatlarını 

yükseltirken üretim azaldığında düşürür. Ayrıca, bu kaynakların yüksek maliyetleri de 

fiyatlar üzerinde önemli ölçüde etki yapar. Ancak, fosil yakıtlı olduğu halde, linyit (LIG) 

üretiminin PTF fiyatını düşürücü etkisi vardır. Bu durum, Türkiye’de yerli üretim olarak 

en çok kullanılan kömür çeşidinin linyit olması ve enerji ihtiyacında önemli bir rol 

oynamasından kaynaklanmaktadır. 

Yenilenebilir enerji üretimi ise PTF üzerinde daha değişken ve belirsiz etkilere sahiptir. 

Güneş enerjisi, düşük üretim durumunda fiyatları pek etkilemezken yüksek üretim 
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durumunda fiyatları düşürür. Rüzgâr enerjisi, üretim arttığında fiyatları düşürür ve üretim 

azaldığında fiyatları yükseltir. Hidroelektrik enerji, baraj tipi yüksek üretim durumunda 

fiyatları artırırken nehir tipi yüksek üretim durumunda fiyatları düşürür. Jeotermal enerji, 

yüksek üretim seviyelerinde fiyatları düşürürken düşük üretimde fiyatlara etkisi yoktur. 

Biyokütle enerjisi ise yüksek üretim durumunda fiyatları artırırken düşük üretimde etkisi 

yoktur. 

Yenilenebilir enerjinin üretim kapasitesi ve maliyetleri, fosil yakıtlara kıyasla daha düşük 

ve değişkendir. Bu durum, yenilenebilir enerjinin PTF üzerindeki etkilerini daha belirsiz 

ve dalgalı hale getirir. Bu belirsizlik, yenilenebilir enerji kaynaklarının üretimindeki 

doğal değişkenlik ve belirsizliklerden kaynaklanmaktadır. 

Genel olarak, yenilenebilir enerji üretimi Piyasa Takas Fiyatı (PTF) üzerinde düşürücü 

bir etkiye sahiptir. Güneş ve rüzgâr enerjisi gibi yenilenebilir kaynaklar, üretim arttığında 

PTF fiyatlarını düşürür. Bu durum, yenilenebilir enerji kaynaklarının marjinal 

maliyetlerinin düşük olmasından kaynaklanır. Özellikle güneş enerjisi, yüksek üretim 

dönemlerinde PTF’yi belirgin bir şekilde düşürürken rüzgâr enerjisi üretimi de benzer 

şekilde fiyatları düşürür. Hidroelektrik enerji, nehir tipi yüksek üretim durumlarında 

fiyatları düşürürken baraj tipi hidroelektrik enerji üretimi de su seviyelerine bağlı olarak 

fiyatları etkiler. 

Jeotermal enerji, sabit ve düşük maliyetli bir üretim kaynağı olarak, yüksek üretim 

dönemlerinde PTF’yi düşürür. Biyokütle enerjisi ise diğer yenilenebilir kaynaklara 

kıyasla daha maliyetli olmasına rağmen, yüksek üretim durumlarında fiyatları düşürebilir. 

Genel olarak, yenilenebilir enerji kaynaklarının artan üretimi, fosil yakıtlara olan talebi 

azaltarak PTF fiyatlarını düşürme eğilimindedir. Bu, enerji piyasasında daha 

sürdürülebilir ve maliyet etkin bir yapı oluşturmaktadır. 
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4. BÖLÜM 

TARTIŞMA, SONUÇ VE ÖNERİLER  

4.1.Tartışma 

Elektrik piyasaları serbestleştikçe ve rekabet arttıkça, farklı vadelerdeki elektrik 

fiyatlarının doğru tahmin edilmesi, ticari faaliyetlerin kârlılığı ve sürdürülebilirliği için 

kritik hale gelmektedir. Elektrik fiyatının tahmin edilmesi, enerji piyasalarında yer alan 

üreticiler, tüketiciler, toptan ve perakende ticaret şirketleri ile yerli ve yabancı potansiyel 

yatırımcılar için kritik bir öneme sahiptir. Bu nedenle, günün piyasa koşullarına uygun 

yüksek performanslı modellere ihtiyaç duyulmaktadır. 

Bu tezde öncelikle, gün öncesi piyasa takas fiyatının tahminleme çalışması yapılmıştır. 

Tahminleme çalışmasında RF, DT, SVR, XGBoost, CatBoost, LightGBM ve Sequential 

modelleri kullanılmıştır. Python programlama ile tahmin modelleri oluşturulmuştur. 

Çalışma kapsamında kullanılan/toplanan veriler, EPİAŞ Şeffaflık Platformu, Meteoroloji 

Genel Müdürlüğü ve BOTAŞ Genel Müdürlüğü sağlanmış gerçek veriler olup 2018-2023 

yılları arası gün öncesi piyasasında her saatin değerlerini kapsamaktadır. Veri seti ön 

işlemden geçirilmiş daha sonrasında eğitim ve test olmak üzere iki parçaya ayrılmıştır. 

Tüm modellerde optimum hiperparametreler kullanılarak ve modele uygun şekilde 

ayarlanarak doğrulukları önemli ölçüde artırılmıştır. Çalışmada performans kıstası olarak 

R2, MSE, MAE, RMSE ve MAPE kullanılmıştır. Modelleme ve optimizasyon 

süreçlerinin ardından, modelin hangi özelliklere daha fazla ağırlık verdiğini ve hangi 

özelliklerin tahminler üzerinde daha büyük bir etkiye sahip olduğunu belirlemek amacıyla 

SHAP kullanılmıştır. Önerilen tahmin modeli, Türkiye elektrik piyasasındaki aktörler 

tarafından kolayca kullanılabilir. 

Elektrik fiyat tahmininde kullanılan makine öğrenme modellerinin performansında, veri 

seçimi, ön işleme ve hiperparametre optimizasyonunun kritik bir rol oynadığı bu 
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çalışmada ortaya konulmuştur. Özellikle, öznitelik önemi analizi, karar ağaçları tabanlı 

modellerde fiyat tahminine etki eden en belirleyici değişkenleri saptayarak model 

doğruluğunu artırmaya yönelik önemli bilgiler sağlamıştır. Yapılan öznitelik önemi 

analizine göre, Eşleşen Teklifler Miktarı (MO), Eşleşen Teklif Miktarı (MB), Fiyattan 

Bağımsız Teklif Emri (PIBO) ve Gönderilen Satış Sipariş Hacmi (SSOV) gibi 

değişkenlerin bazı modellerde düşük öznitelik önemine sahip olmaları nedeniyle 

çıkarıldığı, Fuel Oil’den Üretim (FUEL) ve Jeotermalden Üretim (GEO) gibi 

değişkenlerin de yine düşük katkı değerleri nedeniyle bazı modellerde göz ardı edildiği 

gözlemlenmiştir. Bunun yanında, yalnızca öznitelik seçiminin değil, boyut indirgeme 

yöntemlerinin de model performansını iyileştirdiği görülmüştür. 

Özellikle PCA ile yapılan boyut indirgeme işlemi, CatBoost ve SVR modellerinde tahmin 

doğruluğunu artırmış ve modelin hızını önemli ölçüde yükseltmiştir. PCA bulgularına 

göre, Haftaiçi/Haftasonu (HOLY), Asfaltit Kömürden Üretim (ASPH) ve Linyit 

Kömüründen Üretim (LIG) değişkenleri, PCA bileşenlerine en yüksek katkıyı sağlayarak 

veri setindeki toplam varyansın büyük bir kısmını açıklamışlardır. HOLY (0.992), ASPH 

(0.974) ve LIG (0.865) değerleriyle en yüksek katkıları sunarak, PCA modelinde baskın 

bir rol oynamış ve verinin temel yapılarının doğru bir şekilde yakalanmasına katkıda 

bulunmuştur. Öte yandan, Bir ay önceki fiyat (MCP_672) ve Günlük Döviz Kuru (DER) 

gibi düşük katkı sağlayan değişkenler, PCA'nın veri setindeki varyansı açıklamada daha 

az önem verdiği ve boyut azaltma süreçlerinde göz ardı edilebilecek unsurlar olarak 

değerlendirilmiştir. Bu bulgular, PCA'nın modelleme süreçlerinde hangi değişkenlerin 

temel yapı taşlarını oluşturduğunu ve hangilerinin daha az bilgi taşıdığını ortaya 

koymaktadır. 

Öznitelik önemi analizinde ise, LightGBM, CatBoost ve Sequential modellerinde 

özellikle Bir gün önceki fiyat (MCP_24) ve Bir hafta önceki fiyat (MCP_168) gibi 

değişkenlerin yüksek katkı sağladığı ve bu değişkenlerin model performansına merkezi 

bir rol oynadığı tespit edilmiştir. Diğer yandan, Fuel Oil’den Üretim (FUEL), Ankara’nın 

saatlik ortalama sıcaklığı (ANK), Asfaltit Kömürden Üretim (ASPH) ve Atık Isıdan 

Üretim (WAS) gibi değişkenlerin daha düşük öznitelik önemine sahip olduğu ve tahmin 

gücüne sınırlı katkı sunduğu gözlemlenmiştir. Bu bulgular, öznitelik öneminin 

belirlenmesi ve boyut indirgeme tekniklerinin dikkatli bir şekilde bir arada 

kullanılmasının, elektrik fiyat tahmini gibi karmaşık problemler için model doğruluğunu 
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artırmada kritik olduğunu göstermektedir. Sonuç olarak, CatBoost ve LightGBM 

modelleri, öznitelik seçimi ve boyut indirgeme süreçlerine olan duyarlılıkları sayesinde 

elektrik fiyat tahmini için en uygun modeller olarak öne çıkmaktadır. 

Bu çalışma, gün öncesi piyasa takas fiyatlarının tahminine yönelik çeşitli yöntemlerin 

kapsamlı bir değerlendirmesini sunarak, elektrik fiyat tahminleri için etkili ve güvenilir 

modellerin geliştirilmesini amaçlamaktadır. Elde edilen bulgular, veri seçimi ve ön 

işlemenin yanı sıra hiperparametre optimizasyonunun tahmin doğruluğu üzerindeki kritik 

etkilerini açıkça ortaya koymaktadır. Ayrıca, açık erişim ve model açıklanabilirliği gibi 

temel prensiplerin araştırma süreçleri üzerindeki olumlu katkıları vurgulanmış, modelin 

güvenilirliği ve şeffaflığı açısından SHAP değerlerinin rolü detaylandırılmıştır. Bu 

bağlamda, model optimizasyon süreçlerinin zaman, maliyet ve performans dengesi 

üzerindeki etkileri de göz önünde bulundurulmuştur. Bu çalışma, elektrik fiyat 

tahmininde kullanılan yöntemlerin etkinliğini artırma ve verimliliğini sağlama amacıyla 

gerekli stratejik yönetim yaklaşımlarını önermektedir. 

Açık Erişimin Önemi: Elektrik piyasası fiyat tahmini alanında araştırmaların ilerlemesi 

için açık erişim çok önemlidir. Ne yazık ki bu alandaki araştırmalarda kullanılan birçok 

veri seti ve kodlar kamuya açık değildir. Bu durum, elektrik piyasası araştırmalarının 

tekrarlanabilirliğini ve ilerlemesini engeller. Veri eksikliği nedeniyle Elektrik Fiyatı 

Tahmini (EFT) çalışmaları tekrarlanamaz. Bu, bilimin temel ilkelerine aykırıdır ve 

araştırma bulgularının güvenilirliğini zedeler. Hangi metodolojilerin iyi çalıştığını 

belirlemek zorlaşır ve araştırmacılar daha önce değerlendirilmiş metodolojileri yeniden 

değerlendirerek zaman kaybeder, EFT araştırmalarının ilerlemesi yavaşlar. Yeni 

yöntemleri yayınlardaki yöntemlerle karşılaştırmak zorlaşır ve en son yöntemlerle 

karşılaştırmalar genellikle kaçınılır. Bu durum, EFT araştırmalarında yeniliği kısıtlar. 

Yeni yöntemler, yayınlanmış yöntemlerle aynı koşullar altında karşılaştırılamaz. Bu, 

farklı koşullar altında yapılan karşılaştırmaların orijinal yöntemlerin yanlış 

uygulanmasına ve hatalı sonuçlara yol açar. Bu nedenle, EFT araştırmalarında açık 

erişimi teşvik etmek için bu çalışmada, toplanan ve ön işleme tabi tutulan verileri ve 

geliştirilen kodları paylaşıyoruz2. 

 
2 https://github.com/TheEmgame/EPF-Turkish-Day-Ahead-Market 

https://github.com/TheEmgame/EPF-Turkish-Day-Ahead-Market
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Veri Seçimi ve Ön İşlemenin Önemi: Bu çalışmada, modelleme başlangıçta 2015-2022 

yılları arasındaki tüm veri kümesi kullanılarak gerçekleştirilmiştir. Ancak sonuçlar tatmin 

edici olmamıştır. Detaylı analizlerle PISO, PIBO, SSOV, SBOV, MO, MB, SOL, ASPH 

ve IMEX gibi değişkenlerde hatalar tespit edilmiştir. Bu hatalı veriler modelin öğrenme 

sürecini engelleyerek düşük doğruluk sonuçlarına yol açmıştır. Bu sorunu çözmek için 

veri kümesi, 2018-2022 yılları arasındaki temiz verileri içerecek şekilde 

sınırlandırılmıştır. Bu yaklaşım, hatalı verilerin etkisini ortadan kaldırarak modelin 

öğrenme kapasitesini artırmıştır. Düzeltilmiş veri kümesiyle yapılan modelleme, önceki 

modele göre önemli ölçüde daha yüksek doğruluk sağlamıştır. Bu çalışma, EPF’de veri 

seçimi ve ön işlemenin önemini vurgulamaktadır. Kusurlu veya eksik veriler, modelin 

performansını olumsuz etkileyerek hatalı sonuçlara yol açabilir. Bu nedenle, 

modellemeden önce verilerin titizlikle incelenmesi ve hataların düzeltilmesi büyük önem 

taşır. 

Hiperparametrelerin Etkisi ve Önemi: Elektrik fiyat tahmininin doğruluğunu 

artırmada, veri seçimi ve ön işlemenin yanı sıra hiperparametre optimizasyonu büyük 

önem taşır. Hiperparametreler, modelin öğrenme sürecini ve performansını etkileyen 

değişkenlerdir. Bu parametrelerin en uygun değerlerinin belirlenmesi, modelin en doğru 

tahminleri yapmasını sağlar. Farklı modeller ve parametrelerle yapılan denemeler, en iyi 

sonuçları üreten model ve parametre setini belirlemeyi amaçlar. Çeşitli model yapıları ve 

parametre kombinasyonları deneyerek, en uygun elektrik fiyatı tahmin modeline ulaşmak 

hedeflenir. Hiperparametre optimizasyonu, modelin daha doğru ve tutarlı tahminler 

yapmasını sağlar, modelin genelleme yeteneğini artırır ve modelin aşırı uyumunu önler. 

Hiperparametre optimizasyonu, elektrik fiyat tahmini ve diğer birçok makine öğrenme 

probleminde kritik öneme sahiptir. Doğru hiperparametre seçimiyle, modelin 

performansı önemli ölçüde artırılabilir ve daha doğru tahminler elde edilebilir. 

Model Açıklanabilirliğinin Önemi: Modelleme ve optimizasyondan sonra, modelin 

hangi özelliklere daha fazla vurgu yaptığını ve hangi özelliklerin tahminler üzerinde daha 

fazla etkiye sahip olduğunu anlamak amacıyla SHAP değerleri kullanılmıştır. SHAP 

değerleri, her bir özelliğin modelin tahminlerine katkısını gösteren bir dizi sayıdır. Bu 

değerler, modelin hangi özelliklere öncelik verdiğini ve tahminler üzerinde hangi 

özelliklerin daha büyük bir etkisi olduğunu görmemizi sağlar. SHAP değerlerinin analizi, 

modelin içsel çalışma prensiplerini ve karar verme süreçlerini anlamamıza olanak tanır. 
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Bu sayede, modelin güvenilirliği ve şeffaflığı artırılarak, tahminlerin dayandığı temel 

faktörler açıkça belirlenir. Elektrik fiyat tahmininde SHAP değerlerinin kullanılması, 

modelin hangi değişkenlere daha fazla önem verdiğini ve bu değişkenlerin tahmin 

sonuçları üzerindeki etkilerini kapsamlı bir şekilde değerlendirmemizi sağlar. Bu analiz, 

modelin öngörü performansını iyileştirme ve karar destek süreçlerini optimize etme 

açısından kritik öneme sahiptir. 

Zaman, Maliyet ve Performans Dengesi: Model Optimizasyon Süreçlerinin Elektrik 

Fiyat Tahminleri Üzerindeki Etkisi: Bu çalışmada, elektrik fiyat tahmininde kullanılan 

çeşitli makine öğrenme modellerinin performans ve eğitim süreleri Tablo 7‘te 

sunulmaktadır. Çalışma, model hiperparametrelerinin optimize edilmesi sürecinde 

karşılaşılan zorlukları ve zaman alıcı doğasını gözlemlemiştir. Özellikle, GridSearch gibi 

otomatik hiperparametre ayarlama yöntemlerinin bazı durumlarda günler alabilen pratik 

olmayan yönleri, manuel ayarlamanın etkinliği ve verimliliğinin önemini vurgular. Bu 

gözlemler, model optimizasyon süreçlerinde zaman, maliyet ve performans dengesinin 

stratejik yönetiminin kritik önemini ortaya koymaktadır. 

Tablo 7. GridSearch ve SHAP Analizi Çalışma Süreleri 

Modeller Shap çalışma süresi Grid Search çalışma süresi 

LightGBM 50 seconds 2 seconds 

CatBoost 7 seconds 4 seconds 

XGBoost 5 minutes 10 seconds 

Sequential 6 minutes 20 minutes 

SVR 3154 minutes 13 minutes 

RF 10 seconds 10 minutes 

DT 10 seconds 3 seconds 

Bu tezdeki analizler sadece Türkiye Gün Öncesi Piyasasına odaklanmıştır. Gelecekteki 

araştırmalar daha büyük bir veri setiyle çalışabilir ve makine öğrenimi modellerinin 

tahmin doğruluğunu ve çalışma süresini çeşitli pazarlarda karşılaştırabilir. 

Tahmin yöntemlerinin performanslarının analiz edilmesi ile diğer çalışmalara da referans 

sağlanması öngörülmüştür. Girdi değişkenleri çeşitlendirilerek, tahmin yöntemi için 

farklı zaman dönemi sınıflandırılması yapılarak ve hibrit tahmin yöntemleri uygulanarak 

ileriki çalışmalarda daha iyi performans gösteren analizler gerçekleştirilebilir. Ayrıca 

elektrik piyasa sisteminin dinamik bir yapıya sahip olması bu alanda yapılan çalışmaların 
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güncel tutulmasını gerektirmekte ve farklı araştırma fırsatlarına açık olduğunu 

göstermektedir. 

Türkiye’de rüzgâr ve güneş enerjisine dayalı santralların şebeke bağlantılarının 

artmasıyla yenilenebilir enerji profili değişecek ve toplam yenilenebilir enerji üretiminin 

belirsizliği artacaktır. Bu nedenle fiyat tahmini modellemelerinde bu etkilerin dahil 

edilmesi gerekecektir.  

Elektrik enerjisi piyasası fiyat tahmini alanındaki araştırmaların ilerlemesi için açık 

erişim büyük önem taşımaktadır. Maalesef, bu alandaki birçok araştırmada kullanılan veri 

setleri ve kodlar kamuya açık hale getirilmemektedir. Bu durum, elektrik piyasasında 

araştırmalarının tekrarlanabilirliğini ve ilerlemesini engellemektedir. Bu çalışmada, EPF 

araştırmalarında açık erişimi teşvik etmek için EPİAŞ’tan topladığımız verileri ve açık 

kaynak kodlu olarak geliştirdiğimiz kodları kamuya açık hale getiriyoruz. Ayrıca, EPF 

araştırmacılarını kodlarını ve veri setlerini paylaşmaya veya açık erişimli veri setleri 

kullanmaya teşvik ediyoruz. 

4.2. Sonuç ve Öneriler  

Bu çalışmada kullanılan hem öznitelik önemi hem de PCA yöntemleri, tahmin 

modellerinin performansını artırma amacıyla uygulanmış ve her iki yöntemin de farklı 

modellerde önemli katkılar sağladığı görülmüştür. Öznitelik önemi analizi, özellikle 

LightGBM, XGBoost ve CatBoost modellerinde, etkisi az olan değişkenlerin 

çıkarılmasıyla daha verimli ve doğru tahminler yapılmasını sağlamıştır. PCA yöntemi ise, 

modellerin daha az bileşenle benzer veya daha iyi sonuçlar üretmesini mümkün kılmıştır. 

Sonuç olarak, PCA ile en iyi performansı gösteren model CatBoost olurken, onu 

Sequential modeli takip etmiştir. Öznitelik önemine dayalı optimizasyonlarda ise en 

başarılı model LightGBM olmuş, ardından CatBoost gelmiştir. CatBoost modeli hem 

PCA hem de öznitelik seçimi yöntemleriyle genel olarak yüksek performans 

sergilemiştir. XGBoost iyi performans göstermiş olsa da LightGBM ve CatBoost’un 

gerisinde kalmıştır. Sequential ve SVM modelleri ise genel olarak daha düşük performans 

sergilemiş, ancak yine de tatmin edici sonuçlar vermiştir. Sonuç olarak, model seçiminde 

performans metriklerine ve modelin açıklanabilirliğine odaklanmak, tahmin doğruluğunu 

ve güvenilirliğini artırmak için kritik bir öneme sahiptir. LightGBM ve CatBoost 
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modelleri, özellikle karmaşık veri setlerinde yüksek performans gösteren, güçlü 

alternatifler olarak öne çıkmaktadır. 

Araştırmalarda model seçimi ve hiperparametre ayarlama süreçlerinin önemi, XGBoost, 

LightGBM ve CatBoost gibi hafif gradient boosting modellerinin hızlı ve yüksek 

performans yetenekleriyle vurgulanmaktadır. Bu modeller, büyük veri setleriyle çalışan 

araştırmacılara önemli zaman ve maliyet tasarrufları sağlar. Aynı zamanda, eğitim süresi 

ve kaynak tüketimi gibi faktörleri dikkate alarak hız ve performans arasında bir denge 

kurulmasını gerektirir. Özellikle hesaplama kaynaklarının sınırlı olduğu senaryolarda, bu 

dengeyi stratejik olarak yönetmek araştırma tasarımı ve yöntem seçimi açısından kritik 

bir rol oynar. Bu bağlamda, araştırmacıların uzun eğitim sürelerinin finansal ve zaman 

baskılarına yol açabileceği senaryoları öngörmeleri ve mümkün olduğunca paralel 

hesaplama teknikleri ve daha verimli algoritmaları tercih etmeleri önerilir. 

Elektrik fiyat tahmini için kullanılan makine öğrenme modellerinde hiperparametre 

ayarlarının ve model seçimi süreçlerinin optimizasyonu, karşılaşılan pratik zorluklara 

odaklanarak tartışılmaktadır. Bu süreçlerin maliyetler, zamanlama ve araştırmanın 

sürdürülebilirliği üzerindeki potansiyel etkilerine dair elde edilen değerli bilgiler, enerji 

piyasası tahminleri üzerinde çalışan diğer araştırmacıların model optimizasyonu ve 

seçimi süreçlerinde dikkate alması gereken önemli faktörler sunmaktadır. Bu çalışma, 

hiperparametre ayarlama ve model seçimi süreçlerinin etkin yönetiminin, enerji 

piyasasında tahminlerin doğruluğunu ve verimliliğini artırmada kritik olduğunu 

vurgulamaktadır. 

Elektrik fiyat tahmini üzerine yapılan çalışmalarda kullanılan çeşitli modellerin 

performans ve hesaplama sürelerinin değerlendirilmesi, araştırmanın kritik bir bileşeni 

olarak gözlemlenmiştir. Bu bağlamda, XGBoost regresyon, Destek Vektör Regresyonu 

(SVR), Sıralı model, Rastgele Orman Regresyonu, LightGBM regresyon ve Karar Ağacı 

Regresyonu gibi modellerin uygulanması ve SHAP değerlerinin hesaplanması, model 

yorumlama ve özelliklerin önemini anlama açısından önemli bir rol oynamaktadır. 

Özellikle, Destek Vektör Regresyonu modeli için SHAP değerlerinin hesaplanmasının 

3154 dakika sürmesi, hesaplama süresinin model seçimi ve optimizasyon süreçlerinde 

kritik bir faktör olduğunu vurgulamaktadır. 
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Araştırmacılar için tahmin doğruluğunun yanı sıra hesaplama verimliliği ve maliyet 

etkinliği de model seçiminde önemlidir. Uzun hesaplama sürelerine sahip modeller, 

büyük veri setleriyle çalışırken önemli zaman ve maliyet gereksinimleri doğurabilir, bu 

da özellikle sınırlı bütçeler veya zaman kısıtlamaları altında çalışan araştırma projeleri 

için büyük bir engel oluşturabilir. Bu nedenle, bir modelin tahmin performansının yanı 

sıra hesaplama süresi ve maliyeti de göz önünde bulundurulmalıdır. Kısa hesaplama 

sürelerine sahip modeller, zaman ve kaynakların kritik olduğu durumlarda avantaj 

sağlayabilir. Ayrıca, paralel işlem ve bulut bilişim gibi teknolojilerin kullanılması, 

araştırma sürecini hızlandırırken maliyetleri optimize edebilir. Sonuç olarak, elektrik 

fiyat tahmini gibi karmaşık problemleri modellemek için kullanılan çeşitli makine 

öğrenme teknikleri, yalnızca performans açısından değil, aynı zamanda hesaplama süresi 

ve maliyet açısından da değerlendirilmelidir. Bu yaklaşım, model seçim sürecini daha 

kapsamlı ve dengeli hale getirerek hem maliyet etkinliğini hem de araştırma verimliliğini 

artırabilir ve enerji gibi hızlı ve doğru kararların kritik olduğu sektörlerde araştırmacılara 

değerli yaklaşımlar sunabilir. 

Elektrik fiyat tahmininin doğruluğunu artırmak için veri seçiminin ve ön işlemenin 

yanında hiperparametre optimizasyonu da büyük önem taşımaktadır. Hiperparametreler, 

modelin öğrenme sürecini ve performansını etkileyen değişkenlerdir. Bu parametrelerin 

optimal değerlerinin belirlenmesi, modelin en doğru tahminleri yapmasını sağlar. Model 

hiperparametrelerinin optimize edilmesinin zaman alıcı olduğu ve GridSearch gibi 

otomatik ayarlama yöntemlerinin günler sürebildiği gözlemlenmiştir. XGBoost, 

LightGBM ve CatBoost gibi gradient boosting modelleri, büyük veri setleriyle çalışan 

araştırmacılara zaman ve maliyet tasarrufu sağlarken eğitim süresi ve kaynak tüketimi 

arasında bir denge gerektirir. Hiperparametre ayarlarının ve model seçimi süreçlerinin 

optimizasyonunda karşılaşılan zorluklar, maliyetler, zamanlama ve araştırmanın 

sürdürülebilirliği üzerindeki etkiler dikkate alınmalıdır. Bu çalışmada önerilen tahmin 

modelleri, Türkiye elektrik piyasasındaki aktörler tarafından kolayca kullanılabilir. 

Bu tezde, yenilenebilir enerji kaynakları ile fosil yakıtlı enerji üretiminin piyasa takas 

fiyatı (PTF) üzerindeki etkileri karşılaştırılmıştır. Analizler, enerji piyasasındaki fiyat 

dalgalanmalarını anlamak ve tahmin etmek için farklı enerji türlerinin PTF üzerindeki 

etkilerini ortaya koymuştur. 
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Yenilenebilir enerji kaynaklarının, özellikle güneş ve rüzgâr enerjisinin, PTF fiyatı 

üzerinde genellikle düşürücü bir etkiye sahip olduğu görülmektedir. Güneş enerjisi, 

yüksek üretim dönemlerinde PTF’yi belirgin şekilde azaltırken rüzgâr enerjisi de benzer 

şekilde fiyatları düşürmektedir. Hidroelektrik enerji, nehir tipi üretimin yüksek olduğu 

dönemlerde PTF’yi düşürürken jeotermal enerji ise sabit ve düşük maliyetli bir üretim 

kaynağı olarak bu etkiyi pekiştirmektedir. Biyokütle enerjisi, diğer yenilenebilir 

kaynaklara kıyasla daha maliyetli olmasına rağmen, yüksek üretim dönemlerinde PTF 

üzerinde düşürücü bir etki gösterebilmektedir. Buna karşın, fosil yakıtlı enerji üretimi, 

PTF üzerinde daha tahmin edilebilir ve güçlü etkilere sahiptir. Doğal gaz ve kömür gibi 

fosil yakıtlar, üretim arttığında PTF’yi yükseltirken üretim azaldığında fiyatları 

düşürmektedir. Fosil yakıtların yüksek maliyetleri enerji piyasasında belirgin fiyat 

dalgalanmalarına yol açmaktadır. Öte yandan, Türkiye’de yerli üretim olarak en çok 

kullanılan kömür çeşidi olan linyit üretiminin PTF fiyatını düşürücü bir etkisi vardır ve 

enerji ihtiyacında önemli bir rol oynamaktadır. 

Sonuç olarak, yenilenebilir enerji kaynaklarının artan üretimi, fosil yakıtlara olan talebi 

azaltarak PTF üzerinde düşürücü bir etkiye sahiptir. Bu durum, enerji piyasasında daha 

sürdürülebilir ve maliyet etkin bir yapının oluşmasına katkı sağlamaktadır. Yenilenebilir 

enerji kaynaklarının entegrasyonu ve kullanımının artırılması, enerji piyasasında fiyat 

istikrarını sağlamak ve çevresel sürdürülebilirliği desteklemek açısından büyük önem 

taşımaktadır. Gelecekte enerji politikalarının, yenilenebilir enerji üretimini teşvik edecek 

şekilde düzenlenmesi hem ekonomik hem de çevresel faydalar sağlayacaktır. Bu çalışma, 

yenilenebilir enerji kaynaklarının Türkiye elektrik piyasasında fiyatları düşürmeye 

katkıda bulunduğunu ve enerji politikalarının bu doğrultuda şekillendirilmesinin önemini 

ortaya koymaktadır. 
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