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ONSOZ
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ISARET DILI KARAKTERLERININ KARMASIK DEGERLI SINIR AGLARI iLE
TANINMASI
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Teknolojik gelismeler, sagir ve dilsiz bireylerin topluma entegrasyonunda énemli
bir rol oynamaktadir. Bu nedenle, isaret dili tanima sistemlerindeki iyilestirmeler biiyiik
onem tasimaktadir. Isaret dilleri iizerine yapilan bircok calisma gercek sayilar
kullanilarak gergeklestirilmistir. Bu ¢alismada, goriintiilerden 6znitelik ¢ikarimi ve isaret
dili alfabesi tanima islemlerini karmasik sayilar kullanarak gerceklestiren yeni bir
yaklasim sunulmaktadir. Bu baglamda Amerikan isaret dili tanimaya yonelik bir model
gelistirilmistir. Gelistirilen modelde, karakter goriintiilerinin 6znitelik vektoriinii elde
etmek i¢in karmasik Zernike momentleri kullanilmistir. Karmasik sayilardan olusan
Oznitelik vektoriinii katmanlar arasinda isleyebilen karmagsik degerli bir derin sinir ag1 da
gelistirilmistir. Model, Sign Language MNIST veri setinde %89.01, Massey Universitesi
veri setinde ise holdout teknigi ile %98.67, bir denegi disarda birakma teknigi ile %81.22
tanima oranlarina veri on isleme olmadan ulasmistir. Onerilen model aymi veri setlerini
kullanan birgok ¢alisma ile ayr1 ayr1 karsilastirilmus, iki veri seti bir arada
degerlendirildiginde en 1yi performansi gostermistir. Ayrica onerilen yontemi biinyesinde

barindiran bir akilli sistem de gelistirilmistir.

Anahtar Kelimeler: Karmagsik degerli derin sinir agi, Karmagik zernike momentleri,
Oznitelik ¢ikarimi, Isaret dili tanima modeli
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PhD. Thesis

SUMMARY

RECOGNITION OF SIGN LANGUAGE CHARACTERS USING COMPLEX-VALUED
NEURAL NETWORKS

Selda BAYRAK

Karadeniz Technical University
The Graduate School of Natural and Applied Sciences
Computer Engineering Graduate Program
Supervisor: Assoc. Prof. Vasif NABIYEV
2024, 121 Pages

Technological advancements play a significant role in the integration of deaf and mute
individuals into society. Therefore, further improvements in sign language recognition
systems are of great importance. Many studies on sign languages have been conducted using
real numbers. In this paper, a new approach is presented for performing feature extraction
from images and sign language alphabet recognition using complex numbers. In this context,
a model is developed for recognizing American sign language. In the developed model,
complex Zernike moments are used to obtain the feature vector of character images. A
complex valued deep neural network capable of processing the feature vector composed of
complex numbers across layers is also developed. The model achieves recognition rates of
89.01% on the Sign Language MNIST dataset and 98.67% for the holdout and 81.22% for
the leave-one-subject-out on the Massey University dataset, respectively, without any
preprocessing. The proposed model, which is compared separately with many studies using
the same datasets, shows the best performance when the two datasets are considered

together. An intelligent system incorporating the proposed method has also been developed.

Key Words: Complex valued deep neural network, Complex zernike moments, Feature
extraction, Sign language recognition model
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1. GENEL BiLGILER

1.1. Giris

Sagir ve dilsiz bireyler, toplumsal yasamin onemli bir kesimini olusturmaktadir.
Diinya genelinde milyonlarca insan isitme kaybi yasamakta, yalnizca isitme Yetilerini
kaybetmekle kalmayip ayni zamanda iletisim ve toplumsal katilim agisindan da Snemli
zorluklarla karsilasmaktadir. Diinya Saghk Orgiitii'niin verilerine gére diinya niifusunun
yaklasik %35'1 (430 milyon kisi) isitme kaybina sahiptir ve bu saymin 2050 yilina kadar iki
katina ¢gikacagi 6ngoriilmektedir (URLL, 2024). Bu bireylerin biiyiik bir kismi ciddi igitme
kayb1 yasamaktadir ve tamamen sagir olanlar da bu gruba dahildir. Isitme kaybi, cogunlukla
dilsizlikle iligkilendirilir ve bu durum konusma engelini dogurabilir. Dilsizlik, bazen
dogustan gelen ya da norolojik sorunlar gibi farkli faktérlerden kaynaklanabilir. Ancak,
isitme kaybi1 yasayan bireylerin biiyiik bir kisminin ayni1 zamanda konugsma engeli yasadigi
gozlemlenmektedir. Bu durum, yalnizca saglik hizmetleri agisindan degil, toplumsal katilim,
egitim, istihdam gibi bircok alanda da ciddi bir sorunu beraberinde getirmektedir. Isitme
kayb1 ve konusma engeli olan bireylerin yasam kalitesini artirmak, toplumun bu bireylerle
daha iyi bir iletisim ve etkilesim kurmasini saglamak i¢in daha fazla toplumsal farkindahiga
ve kapsayict politikalara ihtiyag vardir. Bu bireylerin ihtiyaglar1 karsilanamadiginda,
toplumdan dislanma ve yalnizlagsma gibi ciddi sosyal sorunlarla karsi karsiya kalma riskleri
de artmaktadir.

Toplumsal farkindaligin artirilmasi, sagir ve dilsiz bireylerin toplumsal yasama tam
anlamiyla katilabilmelerinin saglanmasi agisindan kritik bir dneme sahiptir. Egitim ve is
olanaklarinin saglanmasi, bu bireylerin kendi potansiyellerini gerceklestirmelerine ve
bagimsiz bir yasam siirdiirebilmelerine olanak taniyacaktir. Sagir ve dilsiz bireylerin
yasadig1 zorluklarin giderilmesi, toplumsal esitlik ve adaletin saglanmasi agisindan da biiyiik
Onem tagimaktadir.

Diinya Saglik Orgiitii'niin (URL1, 2024) verileri, isitme kaybi ve dilsizlik konusunun
giderek daha biiyiik bir toplumsal sorun haline gelecegini gdstermektedir. Bu durum,
yalnizca saglik hizmetleri ile sinirli kalmamali, ayn1 zamanda toplumsal bilinglenme ve
kapsayici politikalarla desteklenmelidir. Ayrica, isaret dili gibi alternatif iletisim araglarinin

yaygimlastirilmasi ve bu dilin herkes tarafindan 6grenilmesi tesvik edilmelidir. Isaret dili,



isitme kaybi1 ve konusma engeli olan bireyler i¢in en temel iletisim aracidir ve bu dili bilen
bireyler aracilig1yla daha kapsayici bir toplum olusturulabilir. isaret dilinin herkes tarafindan
Ogrenilmesi tesvik edilse bile, bunun istenilen basariyr tam anlamiyla saglayamayacagi
aciktir. Bu dogrultuda, sagir ve dilsiz bireylerle toplum arasinda kopri kuracak alternatif
araglarin veya uygulamalarin gelistirilmesi biiyiik fayda saglayacak ve istenen basariya

ulagmay1 miimkiin kilacaktir.

1.2. lisaret Dili

Isaret dili, genellikle isitme engelli bireylerin kendi aralarinda ya da terciimanlar
araciligiyla baskalariyla iletisim kurmak i¢in kullandigi bir yontemdir. Ancak, terciman
sayisinin sinirlt olmasi ve isaret dilinin konusma dilinden bagimsiz bir yapiya sahip olmasi
nedeniyle, isitme engelli bireyler ¢evreleriyle her zaman etkili bir sekilde iletisim kurma
firsatina sahip olamayabilirler. Bu sebeple, isaret dili tanima sistemlerinin ve teknolojilerinin
gelistirilmesi, sagir ve dilsiz bireylerin daha bagimsiz ve etkili iletisim kurabilmeleri
acisindan biiyiik bir 6nem tagimaktadir.

Sagir bireyler, kelimeleri ve harfleri ifade etmek i¢in parmak alfabesi ve jestler gibi
isaret dili yontemlerini kullanirlar. Isaret dilinin temel bilesenleri arasinda parmak alfabesi
ve cesitli jestler onemli bir rol oynar. Parmak alfabesi, her bir harf ve rakami belirli bir
isaretle temsil ederken, jestler ve akisa dayali el isaretleri kelimeleri ifade etmek icin
kullanilir. Ayrica, yiiz ifadeleri ve bas hareketleri de isaret dilinin 6nemli unsurlaridir. Bu
unsurlar, iletisimi gliglendirir ve isaret dilindeki ifadelerin daha anlamli ve anlasilir olmasini

saglar. Sekil 1, el ve mimik hareketlerinden olusan bir ifadeyi gostermektedir.

Sekil 1. Amerikan isaret dilinde lizgiinim' ifadesinin mimik ve el hareketiyle anlatilmasi



Diinyanin bir¢ok bdlgesinin kendine 6zgii isaret dili bulunmaktadir. Her iilkenin ya da
bdlgenin isaret dili, yerel kiiltiir ve dil yapisina bagli olarak farklilik gdsterebilir. Tiirk isaret
dili, Amerikan isaret dili, Ingiliz isaret dili, Alman isaret dili, italyan isaret dili, Japon isaret
dili, Fransiz isaret dili, Ispanyol isaret dili, Hint isaret dili, Rus isaret dili ve Cek isaret dili
bunlardan bazilaridir. Ornegin, Amerikan isaret dili (ASL), Amerika Birlesik Devletleri ve
Kanada'da yaygin olarak kullanilan bir isaret dilidir. ASL, 1817'de Thomas Gallaudet
tarafindan kurulan Amerikan sagir okulunda bir dil olarak ortaya ¢ikmustir. ASL, eski
Fransiz isaret dili, gesitli kOy isaret dilleri ve ev isaret sistemlerinin etkilesimi sonucunda
olugmustur.

Isaret dillerinin kendine 6zgii dil yapilar1 ve gramer kurallar1 vardir. ASL, bu baglamda
bir dil olarak, sdzdizimi (dil bilgisi), sdzclik dagarcigi ve anlamli isaretlerin birlesimi ile
ifade edilir. Ayrica, ASL'nin Ingilizce'den farkli bir gramer yapisi ve sdzciik siralamasi
vardir. Ornegin, ASL'de ciimle yapis1 genellikle nesne-yiiklem-6zne seklindedir, bu da
ingilizce'nin 6zne-yiiklem-nesne yapisindan farklidir.

Sekil 2, ASL i¢in kullanilan parmak alfabesini gdsteren Sign Language MNIST veri
setini temsil eder (Tecperson, 2023). Bu veri seti, ASL alfabesindeki her bir harfi temsil eden
isaretlerin tanimlanmasini saglar. ilgili veri seti, hem egitim hem de test verisi agisindan ¢ok

sayida goriintli igerdiginden dnemli bir kaynaktir.

YRLHUID'Y
il )N .L--z
JVRME! LJ
5 1. oyl | { i

Sekil 2. Amerikan isaret dilindeki harfleri ifade etmek i¢in kullanilan MNIST veri seti
gortintiileri (Tecperson, 2023)



Massey Universitesi tarafindan Amerikan isaret dili alfabesini ve rakamlarimi igeren
bir diger veri seti, Massey Universitesi veri seti (MUD) gelistirilmistir (Barzack vd., 2011).
MUD, kisisel farkliliklar1 da dikkate alan bir veri setidir. Sekil 3, ASL'deki harflerin ve
rakamlarin tanimlanmalarini saglayan isaretlerin yer aldigt MUD veri setini gostermektedir
(Barzack vd., 2011). ilgili veri seti Kaggle web sitesi iizerinden indirilebilir (Thakur, 2023).
Kaggle web sitesinde, MUD veri setinin gesitli 6n islemlerden gegirilerek (giiriiltii eklenerek,
dondiiriilerek ve kaydirilarak) elde edilen varyasyonlarini igeren baska veri setleri de
bulunmaktadir (Dima, 2024).

MNIST ve kisisel farkliliklar1 dikkate alarak olusturulan MUD, ASL tanima ve
analizleri i¢in 6nemli kaynaklardir. Aragtirmacilar ve gelistiriciler, bu veri setlerini ASL
tanima sistemlerini egitmek ve test etmek amaciyla kullanabilirler. Ayrica, her iki veri setini
birlestirerek gelistirilen bir tanima sisteminin, genellikle daha yiiksek bir dogruluk oranina
sahip olmasi beklenmektedir. Bu da, daha genis veri ¢esitliligi ve farkli 6zelliklerin daha iyi

bir sekilde 6grenilmesine olanak tanir.
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Sekil 3. Amerikan isaret dilindeki harfleri ve rakamlar1 ifade etmek i¢in kullanilan MUD
veri seti gortintiileri (Thakur, 2023)

Kaggle web sitesi lizerinden ¢ok farkli isaret dillerine yonelik veri setleri ve ¢esitli

varyasyonlari elde edilebilir.



1.3. Isaret Dili Tamma Sistemlerinde Kullamlan Yontemler

Isaret dili verilerini elde etmek igin cesitli yontemler kullanilmaktadir. Bunlar
arasinda, el hareketlerini ve yiiz ifadelerini ayrintili bir sekilde tespit etmek i¢in yaygin
olarak kullanilan kamera tabanli sistemler, Kinect gibi derinlik sensorleri ve sensorlerle
donatilmis eldivenler gibi giyilebilir cihazlar yer almaktadir. Kamera tabanli sistemler,
genellikle video analizi ile isaretleri tanimak i¢in kullanilir ve dogru tanima igin 151k ve ag1
gibi faktorlere duyarlidir. Derinlik sensorleri ise, 3D veriler saglayarak el ve parmak
hareketlerinin daha dogru sekilde takip edilmesini saglar. Bu sensorler, el hareketlerinin yani
sira ortamin derinligini de algilayarak, isaret tanima dogrulugunu artiran ek bir bilgi katmani
sunar. Giyilebilir sensorler ise daha dogrudan etkilesimli veri toplama saglar ve kullanicinin
elleriyle yaptig1 hareketleri yiiksek dogrulukla kaydedebilir. Bu yontemler, isaret dili tanima
sistemlerinin verimliligini ve dogrulugunu artirmak i¢in farkli avantajlar sunar.

Diinyada en yaygin kullanilan isaret dillerinden bazilari ABD, Almanya, Hindistan,
Tiirkiye, Cin, Arjantin, Kore ve Iran'a aittir. Bu alanda ise ABD, 6ne ¢ikan iilke olarak dikkat
cekmektedir. Isaret dili tanima sistemlerinde, genellikle statik goriintiiler en yaygin olarak
kullanilir. Bu tiir goriintiiler i¢in en sik tercih edilen mimariler arasinda evrisimli sinir aglari
(CNN), derin sinir aglar1 (DNN) ve kisitli Boltzmann makineleri (RBM) yer alir. Dinamik
goriintiilerin islenmesinde ise uzun kisa siireli bellek (LSTM), tekrarlayan sinir aglari (RNN)
ve 3D evrisimli sinir aglar1 (3DCNN) gibi mimariler 6ne ¢ikmaktadir. Geleneksel
siiflandirma yontemlerinde, destek vektor makineleri (SVM) ve kiimiilatif biiytikliik
histogramlar1 yaygin olarak kullanilirken, geleneksel tanimlayicilarda ise en ¢ok tercih
edilen ydntem gizli Markov modeli (HMM) olmaktadir. Isaret dili tanima siireglerinde, el,
yiz ve viicut Ozelliklerinin birlestirilmesi (6zellik fiizyonu) siklikla kullanilsa da, el
ozellikleri en yaygin veri tiirii olarak tercih edilmektedir (Rastgoo vd., 2021).

Isaret dili tanimada, rastgele orman (RF) ve ekstrem gradyan artirma (XGBoost) gibi
karar agaci tabanli topluluk yontemleri yaygin olarak kullanilmaktadir. RF, karar agaclarinin
(DT) temel tahminci olarak kullanildigi ve bootstrap drnekleme ile birlestigi popiiler bir
homojen topluluk 6rnegidir. Basit yapisina ragmen, RF, giiclii performans ile taninan bir
algoritmadir. Diger bir karar agaci tabanli topluluk yontemi olan XGBoost ise, gradyan
giiclendirme yapist kullanarak modelin dogrulugunu artirir. Bunun disinda, k-en yakin

komsu (KNN), stokastik gradyan inisi (SGD), naive Bayes Gaussian (NBQG) ve yapay sinir



aglar1 (ANN) gibi makine 6grenimi algoritmalar1 da isaret dili tanima sistemlerinde etkin bir

sekilde kullanilmaktadir (Pham vd., 2021).

1.4. Tezin Kapsam ve Amaci

Isaret dili tamma sistemleri ve goriintii isleme alanlarinda pek ¢ok uygulama
gelistirilmis olup, bu yontemler ¢esitli ¢6ziim Onerileri sunmaktadir. Ancak, bu yontemler
Olgekleme, giiriiltiiye kars1 dayaniklilik ve ayrintili 6zellik verilerinin elde edilmesi gibi
belirli smirlamalarla karsilasabilmektedir. Bu c¢alismada, s6z konusu sinirlamalarin
istesinden gelmek ve daha etkili bir 6zellik ¢ikarimi saglamak amaciyla karmasik Zernike
momentlerinin (CZM) kullanim1 6nerilmektedir. Bununla birlikte, ¢ikarilan bu karmagsik
degerli 6zellik verilerini isleyebilmek i¢in, karmagik degerli derin sinir agi (CVDNN) tabanl
bir yontemin gelistirilmesinin gerekliligi vurgulanmaktadir.

Bu ¢aligmanin temel amaci, el isareti goriintiilerinden elde edilen karmasik degerli
Oznitelik vektoriinii girdi olarak kullanan karmasik degerli derin sinir ag1 gelistirmek ve bu
ag1 kullanarak ASL'yi tamimaya yonelik bir siniflandirici model tasarlamaktir. Onerilen
model, hizli 6zellik ¢ikarimi ve diisiik kaynak tiiketimi saglamakla birlikte, ayn1 zamanda
gercek zamanli ve mobil sistemler i¢in de uyumlu olacak sekilde tasarlanmigtir. Ayrica, bu
gelistirilmis modelin, isaret dili tanima i¢in gergek zamanli bir sistemde etkin bir sekilde
kullanilabilmesi amaciyla uygulamaya alinmasi hedeflenmektedir.

Bu baglamda, calismada dncelikle CZM ile ilgili temel kavramlar ve daha 6nce yapilan
calismalar ele alinacaktir. Ardindan, CVDNN tasarim siirecine dair ayrintilar sunulacak ve
bu tasarimin gergeklestirilme adimlar1 detayli olarak incelenecektir. Bu siire¢ boyunca, her
iki konu baglig1 altinda elde edilen bulgular ve uygulamaya yonelik asamalar sistematik bir

sekilde degerlendirilecektir.

1.5. Literatiirde Isaret Dili Tamima Uzerine Gergeklestirilen Calismalar

[saret dili tanima sistemleri, isaretleri statik ve dinamik olarak iki ana kategoriye ayrir.
Statik isaretler, genellikle el sekilleri veya parmak konumlariyla ifade edilen harfler ve
semboller gibi duragan ifadeleri icerir. Bu tiir isaretler, genellikle bir anlik goriintii tizerinden
tanmir ¢iinkii hareket iceren bir akis yerine sabit bir pozisyonu temsil ederler. Ornegin,

parmak alfabesindeki harfler, ¢ogunlukla statik isaretlere dayanir ve bazi isaret dillerinde



kelimeler de statik isaretlerle ifade edilir. Dinamik isaretler ise belirli bir hareket dizisini

takip eder ve genellikle ciimleleri ya da daha karmasik kelimeleri temsil eder. Bu isaretlerin

taninmasi, hareketlerin dogru bir sekilde takip edilmesi ve analiz edilmesi gerektigi i¢in daha

zordur (Wadhawan & Kumar, 2021). Sekil 4, isaret dillerinde yaygin olarak kullanilan

isaretlerin hiyerarsik akisini gostermektedir. Ayrica, bu sekil, her iki elin kullanildig

isaretlerde baskin ve baskin olmayan el durumlarini belirtmek i¢in Tip 0 ve Tip 1

siniflandirmalarini igermektedir. Tip O, her iki elin de aktif oldugu isaretleri ifade ederken,

Tip 1, bir elin digerine gore daha fazla aktif oldugu durumlar1 belirtir.
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Sekil 4. Genel olarak isaret dillerinde kullanilan hareketlerin hiyerarsik akis1 (Wadhawan
& Kumar, 2021)

Karami ve ekibi, Iran isaret dili alfabesindeki 32 statik isaretin taninmasina yonelik bir

calisma gerceklestirmektedir. Ilgili calismada, 6zellik ¢ikarimi igin dalgacik doniisiimii

(wavelet transform) kullanilmakta, siniflandirma ise ¢cok katmanli yapay sinir aglari (MLP)



ile yapilmaktadir. Otomatik segmentasyon yerine, veriler manuel olarak secilip islenmistir.
(Karami vd., 2011). Sekil 5, gelistirdikleri modelin mimarisel tasarimini gostermektedir.
Bagka bir ¢alismada Kelly ve ekibi, Hu momentleri ve 6z uzay boyut fonksiyonunun
kombinasyonunu kullanarak statik tek elle isaret tanima i¢in SVM tabanli bir sistem
gelistirmistir (Kelly vd., 2010). Yontemlerinin, el isaretlerini kisiden bagimsiz olarak
tanimada diger c¢alismalara gore daha etkili oldugunu belirtmislerdir. Bu c¢alismada, elin

sekli, pozisyonu, yonelimi ve hareketi gibi dort temel bilesen kullanilarak el duruslar

tanimlanmakta ve bu bilesenler {izerinden el postiirleri siniflandirilmaktadir.
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Sekil 5. Karami ve arkadaslari tarafindan gelistirilen modelin mimarisi (Karami vd., 2011)

Nandy ve ekibi, Hint isaret dilinde iki elin kullanildigi dinamik isaretleri tanimaya
yonelik bir ¢alisma gergeklestirmistir. Yazarlar, Hint isaret dilinde ¢esitli isaretleri igeren bir
video veritabani olusturmus ve jest siiflandirmasi igin yonlii histogramlar, Oklid mesafesi

ve KNN gibi yenilik¢i teknikler kullanmislardir. lgili ¢alisma Hint isaret dili jestlerinin



taninmasini gelistirmeyi ve iletisimi daha erisilebilir hale getirmeyi amaglamaktadir (Nandy
vd., 2010).

Rao ve ekibi, selfie modunda elde edilen siirekli (dinamik) isaret dili verilerini
kullanarak Hint isaret dilini tamimak igin CNN tabanli bir ¢alisma ger¢eklestirmistir.
Calismanin amaci, mobil platformda galisabilecek bir sistem igin algoritmalar simiile
etmektir (Rao vd., 2018). 128x128 piksel biiyiikliigiindeki giris goriintiilerini alan sistem
aktivasyon fonksiyonu olarak RelLU, ¢ikis katmanini yorumlamak amaciyla ise Softmax
fonksiyonunu kullanmaktadir. Ozellik ¢ikarimi ve smiflandirma modiilleri de dahil olmak

tizere ilgili sistemin mimarisi Sekil 6’da gdsterilmektedir.

Konv 1 Konv 2 Konv 3 Konv 4
16x16 9x9 5x5 5x5
i : i i
| RelLu RelLu RelLu RelLu
N Y
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P
H—
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Softmax| |: Cikig
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Kitman Katmani : Siniflan

__Siniflandirma

Sekil 6. Rao ve ekibi tarafindan gelistirilen modelin mimarisi (Rao vd., 2018)

Koller ve ekibi Alman isaret dilinde siirekli isaret tanima i¢in HMM ve CNN’i
birlestiren hibrit bir model sunmustur. Bu model, CNN’lerin giiglii ayristiric1 yeteneklerini
HMM’lerin sirali veri modelleme yetenekleriyle birlestirir. Ilgili calisma, egitim ve
degerlendirme igin sirali verilerle basa ¢gikmanin 6nemini tartigmaktadir. Hibrit yaklagim,
kelime hata oraninda %20'ye kadar iyilesmeler saglamaktadir (Koller vd., 2018).

Sreemathy ve ekibi Hint isaret dilinde iki elin kullanildig1 isaretlerin otomatik

taninmasi i¢in bir yontem onermistir. Bu yontem veriler lizerinde 6n isleme, 6zellik ¢ikarimi
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ve siniflandirmay1 icermektedir. Onerilen teknoloji, 6zel gereksinimleri olan bireyler igin bir
Ogretim asistani olarak kullanilmis ve gocuklarin biligsel yeteneklerinde %60—70'lik bir artis
gOstermistir (Sreemathy vd., 2023).

Sharma ve ekibi, dinamik igaret dilini gomiilii cihazlarda tanimak i¢in bellek acisindan
verimli LSTM tabanli bir derin 6grenme mimarisi gelistirmistir. Calismada, takvim aylarini
temsil eden bir Hint Isaret Dili veri seti olusturmustur. Toplamda 480 video kayd1 toplanmis
ve bu veriler iizerinden model egitilmistir. Model boyutunu kii¢liltmek ve u¢ cihazlarda
kaynak tiiketimini azaltmak i¢in egitim sonrasi kuantizasyon uygulamislardir (Sharma vd.,

2024). Gelistirilen modelin mimarisi Sekil 7°de gosterilmistir.
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1
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]
1
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]

Verisetinin Ayriimasi

Onerilen Mimari Ug Cihaza Yerlegtirme

| RS -¥ Test Seti Modeli

Sekil 7. Sharma ve ekibi tarafindan gelistirilen modelin mimarisi (Sharma vd., 2024)
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Cui ve ekibi, Alman isaret dilinde siirekli isaret tanima icin CNN ve Bi-LSTM
kombinasyonunu kullanarak bir sistem gelistirmistir. Sira 6grenme modiilii olarak RNN
kullanarak, bu yaklasimin zaman i¢indeki bagimliliklar1 6grenmede HMM'leri gectigini
belirtmislerdir (Cui vd., 2019).

Zhou ve meslektaslari, video tabanli isaret dili anlayisin1 artirmak i¢in ¢oklu ipucu
O0grenme yaklagimini kullanmis ve gorsel tabanli sira 6grenme problemini ¢6zmek i¢in bir
mekansal-zamansal ¢oklu ipucu ag1 o6nermislerdir (Zhou vd., 2022). Biri zamansal biri
mekansal olmak {izere iki modiilden olusan ag, birden fazla ipucunun isgbirligini kesfetmeyi
amaclamaktadir.

Rastgoo ve arkadaglari tarafindan yapilan bir diger ¢alismada, RGB ve derinlik
modlarin1 kullanarak gorsel verilerden otomatik isaret dili tanima siirecinde RBM
kullanilmistir. Calismanin hedeflerinden biri, Onerinin giiriiltiiye karst dayanikliligini
degerlendirmektir (Rastgoo vd., 2018). Sekil 8, gelistirdikleri modelin mimarisini temsil

etmektedir.

Glrlital
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Derinlik Gorintisia  227X2273 | |opjing) )
Gorintiisi

Sekil 8. Rastgoo ve ekibi tarafindan gelistirilen modelin mimarisi (Rastgoo vd., 2018)

Samaan ve ekibi, dinamik isaret dili tanima sorunlarin1 ¢6zmek i¢in MediaPipe ve
RNN modellerini bir arada kullanmaktadir. MediaPipe ellerin, viicudun ve yiiziin ana
noktalarii ¢ikarmak igin kullanilir ve bu sayede konumun, sekilin ve yonelimin

belirlenmesini saglanir (Samaan vd., 2022).
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1.6. Tez Kapsaminda Kullanilacak Veri Setleri

Bir onceki boliimde isaret dili ile ilgili yapilan ¢esitli caligmalar incelenmistir. Bu
boliimde ise doktora caligmasinda kullanilan veri setleri hakkinda ayrintili bilgiler
sunulacaktir. Veri setleri tanitildiktan sonra, literatiirde bu veri setlerini kullanan bazi

caligsmalara da yer verilecektir.

1.6.1. MNIST Veri Seti

Isaret dili MNIST veri seti, ASL harflerinin el goriintiilerini igeren bir veri setidir. Bu
veri seti, isaret dili tanima sistemlerini egitmek ve test etmek amaciyla kullanilmaktadir.
CSV formatinda sunulan veri seti, Kaggle web sitesi lizerinden temin edilebilir (Tecperson,
2023). Veri seti, egitim ve test olmak {izere iki ana kisimdan olugmaktadir.

Veri seti, hareketle ifade edilen J ve Z harfleri haric, ingiliz alfabesindeki tiim harfleri
kapsayan 24 siniftan olusmaktadir. 28x28 ¢oziiniirliglindeki goriintiilerden olusan bu set,
egitim ve test verisi olarak toplamda 34.627 gri tonlama goriintii icermektedir. Bu
goriintlilerin 27.455' egitim verisi, 7.172'si ise test verisi olarak ayrilmistir. Diger bir
deyisle, veri setinin yaklasik %80'1 egitim, %20'si1 ise test verisi olarak kullanilmigtir. Egitim
ve test verilerindeki sinif basina 6rnek sayilarinda farkliliklar bulunmaktadir.

Sekil 9, MNIST egitim veri seti icindeki her bir sinifin igerdigi goriintiilerin sayisini
gostermektedir. Tlgili grafikten goriilecegi iizere, veri seti icindeki goriintiiler sinif bagina

genel olarak diizenli bir dagilim gdstermektedir.
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Sekil 9. MNIST egitim veri seti i¢indeki her bir sinifa ait goriintii sayisi
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Sekil 10 ise MNIST test veri seti igindeki her bir sinifin igerdigi goriintiilerin sayisini

gostermektedir.
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Sekil 10. MNIST test veri seti i¢indeki her bir sinifa ait goriintii sayisi

1.6.2. MUD Veri Seti

Calismalarda kullanilan bir diger veri seti ise MUD’dur (Thakur, 2023). Bu veri seti,
Ingiliz alfabesindeki harfler (A-Z) ve sayilar (0-9) dahil olmak iizere toplam 36 simf
icermektedir. Veri setinde 65 goriintii igeren T smifi hari¢ her sinif 70 goriintli icerirken,
toplamda 2.515 isaret bulunmaktadir. Goriintiiller 400x400 boyutlarinda ve RGB
formatindadir. Bes denek tarafindan olusturulan bu veri seti, hem Holdout hem de bir denegi

disarda birakma (LOSO) dogrulama teknikleri i¢in uygundur.

1.6.3. Model Dogrulama ve Degerlendirme Teknikleri

Holdout dogrulama teknigi, makine &grenimi modellerini degerlendirmek ve
dogrulamak i¢in kullanilan temel bir yontemdir (Nacar & Erdebilli, 2021). Bu teknikte, veri
seti genellikle egitim, dogrulama ve test olmak {izere iki veya ii¢ ayr1 alt kiimeye boliiniir.
Egitim alt kiimesi modelin 6grenmesi i¢in kullanilirken, test alt kiimesi modelin
performansin1 degerlendirmek i¢in ayrilir. Eger dogrulama kiimesi de kullaniliyorsa,
modelin hiperparametre ayarlarini optimize etmek amaciyla egitim ve dogrulama verileri

arasinda bir denge saglanir. Baz1 ¢aligmalar, veri setini %70 egitim ve %30 test olarak
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ayirirken, digerleri %80 egitim ve %20 test oranini tercih etmektedir. Holdout teknigi,
ozellikle biiytik veri setlerinde hizl1 ve basit bir degerlendirme yontemi sunarken, kiigiik veri
setlerinde veri israfina yol acabilir. Bu nedenle, kiigiik veri setlerinde ¢apraz dogrulama
tekniklerine kiyasla daha az giivenilir olabilir.

LOSO teknigi, 6zellikle insan tabanli veri setlerinde kullanilan bir ¢capraz dogrulama
yontemidir (Maleki vd., 2020). Bu teknikte, veri setindeki her denek sirasiyla test kiimesi
olarak ayrilirken, geri kalan deneklerin verileri egitim kiimesi olarak kullanilir. Boylece, her
denek bir kez test verisi olarak kullanilir ve model, her denek i¢in bagimsiz bir sekilde
egitilip test edilir. LOSO ¢apraz dogrulama tekniginde, veri setindeki toplam denek sayis1t K
ise, bir denegin test i¢in birakildig1 ve geri kalan (K - 1) denegin egitim i¢in kullanildig1
anlamia gelir. Bu silire¢ K kez, her denek icin bir kez tekrar edilir. Elde edilen basari
oranlarinin aritmetik ortalamasi nihai sonug¢ olarak alinir. LOSO teknigi, 6zellikle kisisel
farkliliklarin 6nemli oldugu biyometrik tanima, saglik verileri ve davranigsal analiz gibi
alanlarda kullanighdir. Kisilerarasi genellemeyi test etmek igin giiglii bir yontem sunar,
clinkii modelin her birey i¢in ne kadar iyi performans gosterdigi detayli sekilde analiz
edilebilir. Ancak bu teknik, veri seti biiylikse zaman ve islem maliyeti acisindan oldukca

yogundur.

1.7. MNIST Veri Seti Uzerinde Gergeklestirilen Literatiir Calismalar:

Cok sayida isaret dili ve bu diller i¢in mevcut olan ¢esitli veri setleri nedeniyle,
gerceklestirilen calismalarin performans testlerini karsilastirmak zorlasmaktadir. Bu
boliimde bahsedilen tiim ¢alismalar, MNIST veri setinin tamami {izerinde
gerceklestirilmistir  (Tecperson, 2023). Bu durum, ilgili ¢alismalarin birbiriyle
karsilastirilmasini kolaylagtirmaktadir.

Li ve arkadaglari, ASL'yi tanimak amaciyla MNIST veri seti lizerinde bir ¢aligma
yiriitmektedir. Caligmada, ham veriler ve baz1 6n isleme adimlar (el tespiti, arka plan
cikarma, gliriiltii azaltma vb.) uygulanarak elde edilen veriler tizerinde ¢esitli siniflandirma
algoritmalarinin performansi test edilmistir (Li. vd, 2022). Ham veriler iizerinde yapilan
calismalar sonucunda, SVM, rastgele orman siniflandiricis1 (RFC), KNN, SGD ve NBG gibi
makine Ogrenmesi ve siniflandirma algoritmalar1 kullanilarak elde edilen dogrulama
degerleri Tablo 1°de listelenmistir. Ayrica, doktora ¢alismalar1 kapsaminda gelistirilecek

modelde kullanilacak olan optimizasyon algoritmasi olan SGD igin tanima oranini %66.02
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olarak elde etmislerdir. Calismalarinda, temel bilesen analizi ve manifold algoritmasi gibi
farkli boyut indirgeme tekniklerini kullanarak, Tablo 1°deki her makine 6grenmesi ve
siniflandirma algoritmasi {lizerindeki etkilerini de incelemislerdir. Elde edilen sonuglar,
farkli boyut indirgeme tekniklerinin her algoritmada ayni sekilde sonu¢ vermedigini ve KNN
icin en uygun algoritmanin manifold, digerleri i¢in iSe temel bilesen analizi oldugunu ortaya

koymaktadir.

Tablo 1. Li ve arkadaslar1 tarafindan MNIST veri seti lizerinde gergeklestirilen
calismalarinin sonuglari

Makine Ogrenmesi veya

Siniflandirma Algoritmasi Veri Seti  Tanima Oram

SVM MNIST 84.19
RFC MNIST 81.61
KNN MNIST 78.17
SGD MNIST 66.02
NBG MNIST 38.90

Son yillarda, tanima sistemlerinde yliksek basari oranlari nedeniyle derin 6grenme
aglar1 tercih edilmektedir. Her asamada, probleme 0zgii stratejiler belirlenmekte ve
dogrulugu artirmak icin gesitli cabalar gosterilmektedir. Ornegin, CNN'ler 6n isleme ve
ozellik ¢ikarma agsamalarini otomatik olarak gergeklestirmektedir (Bhatt vd., 2021). LeNet,
basarili ilk evrisimli sinir agi modellerinden biri olarak o6ne ¢ikmaktadir. Bilgin ve
Mutludogan, LeNet-5 modelini MNIST wveri seti ilizerinde kullanmaktadir. LeNet-5
modelinin test verisi lizerindeki tanima oraninit %82.19 olarak rapor etmektedirler. Bir diger
derin 6grenme ag1 olan CapsNet'te ise MNIST veri seti iizerinde %88.93 tanima oranina
ulagmaktadirlar (Bilgin & Mutludogan, 2019). Calismalarinda, kapsiil aglarinin isaret dili
karakter tanima i¢in faydali oldugunu ve LeNet'ten daha basarili oldugunu belirtmektedirler.

Bhushan ve calisma arkadaslari, Amerikan isaret dilini tanimaya yonelik olarak
MNIST veri seti iizerinde CNN tabanli bir ¢alisma yapmislardir. Bu calismada, KNN,
stokastik gradyan inis smiflandiricisi (SGDC) ve NBG gibi ¢esitli makine 6grenmesi
algoritmalar1 incelenmekte ve karsilastirilmaktadir. Calismalarinda herhangi bir 6n isleme

yapilmadan veri seti iizerinde yapilan analizler sonucunda, CNN, RF, XGBoost, KNN,
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SGDC ve NBG gibi makine 6grenmesi algoritmalari ile elde edilen dogrulama degerleri
Tablo 2’de sunulmustur (Bhushan vd., 2022). Gergeklestirdikleri ¢alismada, SGD
algoritmasinin smiflandirma islemleri i¢in uyarlanmis bir versiyonu olan SGDC
kullanmislar ve tanima oranin1 59.80% olarak elde etmislerdir. En iyi sonuglar ise CNN ile

elde edilmistir.

Tablo 2. Bhushan ve arkadaslari tarafindan MNIST veri seti tizerinde gergeklestirilen
calismalarinin sonuglari

Makine Ogrenmesi veya

Siiflandirma Algoritmasi Veri Seti Tamima Oram

CNN MNIST 91.41
RF MNIST 84.43
XGBoost MNIST 81.35
KNN MNIST 80.46
SGDC MNIST 59.80
NBG MNIST 38.90

Kameralar araciligiyla elde edilen goriintiilerdeki birgok sorunun yaninda, 1s1k
yogunlugundaki degisim bu tiir goriintiilerden hareketlerin ¢ikarilmasini zorlastirmaktadir.
Kamera goriintiilerdeki giiriiltic gibi ekstra bilgiler, hesaplama siiresini etkilemekte ve
engellemektedir. Ayrica karmasik arka planlar, hareketlerin ¢ikarilmasini zorlastirmaktadir.
Ansar ve ekibi, ASL'yi tanimak i¢in bir CNN mimari modeli gelistirmisler ve ham veri seti
lizerinde bazi On islemler gergeklestirmislerdir. Tanima silireci bes ana asamaya
ayrilmaktadir. Ik asama, goriintiilerdeki giiriiltiiyii azaltmak ve 151k yogunlugunu
ayarlamaktir. Ikinci asama, elin tespit edilmesi ve arka planin kaldirilmasidir. Ugiincii
asama, elde edilen goriintiideki ana noktalarin (landmark tespiti) belirlenmesidir. Sonraki
asamada, Ozellik ¢ikarimi yapilir. Son asamada ise ¢ikarilan Ozellikler CNN
siiflandiricisindan gegirilir. Gelistirdikleri modeli MNIST veri seti {izerinde iki farkli
dogrulama islemine tabi tutmaktadirlar. Ilk dogrulama igin veri setinin iigte biri test i¢in
kullanilirken, geri kalan1 egitim igin kullanilmaktadir. Ikinci dogrulama igin ise veri setinin

licte ikisi egitim icin, geri kalan ise test icin kullamlmaktadir. ilk degerlendirme igin %93.2
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ve ikinci degerlendirme i¢in %91.6 dogruluk oranlarina ulagsmaktadirlar. Ancak, bu
degerlerin veri setinin ilgili boliimlerinde (tiim test verisi lizerinde degil) elde edildigini
belirtmekte fayda bulunmaktadir (Ansar vd., 2023). Bu sebeple, Ansar ve ekibinin
gergeklestirdigi ¢alismaya ait sonuglar, MNIST veri seti lizerinde gergeklestirilen diger
akademik caligmalarla ve doktora tez calismalari kapsaminda elde edilen sonuglarla
karsilastirilmayacaktir.

Tablo 3, MNIST veri seti lizerinde tanima oran1 baz alinarak gergeklestirilen akademik

calismalardan elde edilen sonuglar1 toplu olarak listelemektedir.

Tablo 3. MNIST veri seti iizerinde gergeklestirilen akademik ¢aligmalarin test verisi

uzerindeki tanima oranlari

Grup Model/Metot Tanima Oram (%)
(Li. vd, 2022) / (Bhushan vd., 2022) NBG 38.9
(Bhushan vd., 2022) SGDC 59.8

(Li. vd, 2022) SGD 66.02

(Li. vd, 2022) / (Bhushan vd., 2022) KNN / KNN 78.17 / 80.46
(Bhushan vd., 2022) XGBoost 81.35

(Li. vd, 2022) / (Bhushan vd., 2022) RFC / RF 81.61/84.43
(Bilgin & Mutludogan, 2019) LeNeT-5 82.19

(Li. vd, 2022) SVM 84.19
(Bilgin & Mutludogan, 2019) CapsNet 88.93
(Bhushan vd., 2022) CNN 91.41

1.8. MUD Veri Seti Uzerinde Gergeklestirilen Literatiir Cahsmalar

Bu boliimde, bir bagka ASL veri seti olan MUD ile ilgili ¢alismalara yer verilmektedir.
MUD veri seti, egitim ve test verilerine ayrilmadigindan, bu veri setini kullanan ¢aligsmalarda
model bagarisini degerlendirmek i¢in genellikle Holdout ve LOSO gibi dogrulama teknikleri
kullanilmaktadir.

Barbhuiya ve c¢alisma arkadaslari, CNN o6zelliklerini geleneksel Zernike moment

tabanl 6zelliklerle birlestiren yeni ve etkili bir goriintii tanima yaklagimi dnermektedir. Bu
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hibrit yaklasimin, 6zellikle benzer el duruslar arasindaki farklar1 ayirt etme kabiliyetini
artirmas1 hedeflenmektedir. Onerilen model, CNN'nin (dzellikle AlexNet) son evrisimsel
katmanindan elde edilen 6zellikleri, Zernike moment 6zellikleriyle birlestiren bir mimari
sunmaktadir.

Bu yaklasim, MUD veri setinde %98.41 tanima orani ile {istlin bir performans
gostermistir. Calismada, veri seti Holdout teknigi kullanilarak %80 egitim ve %20 test
olacak sekilde boliinmiistiir. Ancak, egitim sirasinda her adimda yapilan rastgele segimler
nedeniyle veri setindeki bazi goriintiilerin hem egitim hem de test setlerinde yer alabilecegi
belirtilmistir (Barbhuiya vd., 2022).

Bhaumik ve ekibi, el hareketlerini dogru bir sekilde tanimak amaciyla, mekansal
ozellikleri 6grenen ve ¢ok Olgekli filtreler kullanarak zengin mekansal bilgileri ¢ikaran CNN
tabanli tasimnabilir bir ag olan SpAtNet'i Oonermektedirler. SpAtNet, cevresel kosullar,
dondiirme, dlgekleme ve aydinlatma gibi zorluklari agsmak icin tasarlanmis hafif bir CNN
tabanli agdir. Model, ¢ok dlgekli dikkatli 6zellik birlestirme ve i¢ ice gegmis modiil olmak
lizere iki ana bilesenden olusmaktadir. Cok oOlcekli dikkatli modiil, 1x1, 3x3 ve 5x5
boyutlarindaki ¢ok 6lcekli filtreler kullanarak zengin mekansal bilgileri ¢ikarmaktadir.
Kiiciik filtreler, daha ince 6zellikleri; biiytik filtreler ise daha kaba 6zellikleri ¢ikarmaktadir.
I¢ ice ge¢mis modiil, dort evrisim katmaninin ardisik olarak dizilmesiyle yapilandirilmis
olup, yiiksek seviyeli baglamsal 6zelliklerin 6grenilmesi amaciyla kullanilmaktadir. MUD
veri seti iizerinde LOSO teknigi kullanarak yapilan degerlendirmede, %80.44 tanima oranina
ulagmaktadirlar (Bhaumik vd., 2024).

Chevtchenko ve ekibi, gergek zamanli el durusu tanima amaciyla, geleneksel 6zellik
¢ikaricilar birlestiren CNN mimarisi tabanli bir model gelistirirler. Model, Gabor filtreleri,
Zernike momentleri ve Hu momentleri gibi klasik 6znitelik tanimlayicilarini, CNN'ler ile
birlestirerek tanima dogrulugunu artirmayr amaglamaktadir. Modelin performansin
artirmak i¢in hiperparametrelerin se¢imi, aga¢ yapili Parzen tahminleme algoritmasi
kullanilarak gergeklestirilmistir. MUD veri seti iizerinden her iki dogrulama teknigiyle
degerlendirilen c¢alismada, Holdout yontemiyle %80 egitim ve %20 test olarak
boliindiigiinde %98.05 tanima orani, LOSO yontemiyle ise %84.02 tanima orani elde
edilmistir (Chevtchenko vd., 2018).

Barbhuiya ve ekibinin bir bagka calismasinda, SVM siniflandiricist ile el isaretlerini
tanimak i¢in modifiye edilmis VGG16 ve AlexNet modellerine dayanan evrisimli bir sinir

ag1 mimarisi gelistirilmistir. Bu modeller, 6zellik ¢ikarimi i¢in kullanilmis ve ardindan ¢ok
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siifli bir destek vektor makinesi siniflandiricist ile birlestirilmistir. Her iki model de ayni
sonuglari elde etmis ve LOSO yontemiyle %70 tanima oranina ulasmistir (Barbhuiya vd.,
2021).

Tablo 4, MUD veri seti lizerinde tanima orani baz alinarak gergeklestirilen akademik
calismalardan elde edilen sonuglari, ilgili tekniklere gore toplu olarak listelemektedir.
Holdout teknigi igin en yiiksek deger %98.41, LOSO teknigi icin ise %84.02 olarak elde

edilmistir.

Tablo 4. MUD veri seti lizerinde gergeklestirilen akademik ¢aligmalarin Holdout ve

LOSO tekniklere gore tanima oranlari

Grup Teknik Model/Metot Tamima Oram (%)
(Barbhuiya vd., 2022) Holdout Inception-v3 935
(Barbhuiya vd., 2022) Holdout Squeezenet 95.23
(Barbhuiya vd., 2022) Holdout Vggl9 96.68
(Barbhuiya vd., 2022) Holdout AlexNet 97.01
(Barbhuiya vd., 2022) /
Holdout Vggl6 97.48/92.20

(Chevtchenko vd., 2018)
(Chevtchenko vd., 2018) Holdout Hibrit 98.05
(Barbhuiya vd., 2022) Holdout Hibrit 98.41
(Chevtchenko vd., 2018) LOSO Vggl6 61.42
(Chevtchenkovd., 2018)  / )

) LOSO MobileNet 62.53/73.25
(Bhaumik vd., 2024)

) Modified
(Barbhuiya vd., 2021) LOSO 70.00

Vggl6 +SVM

) Modified AlexNet +

(Barbhuiya vd., 2021) LOSO 70.00
SVM

(Bhaumik vd., 2024) LOSO MobileNetV2 72.28
(Bhaumik vd., 2024) LOSO ResNet50 74.42
(Chevtchenko vd., 2018) LOSO CNN 73.86/ 78.51/ 79.04
(Bhaumik vd., 2024) LOSO CNN 80.44

(Chevtchenko vd., 2018) LOSO Hibrit 84.02
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1.9. Ozellik Cikarim

Ozellik ¢ikarma ve siniflandirma, makine 6grenmesi ve goriintii isleme gibi bir¢ok
alanda kritik bir adimdir. Ozellik ¢ikarma, bir veri kiimesindeki anlaml1 bilgileri secip, bu
bilgileri kullanarak siniflandirma yapmak amaciyla veri setinin daha diisiik boyutlu bir
temsiline doniistiirme islemidir. Bu sayede verinin daha iyi anlasilmasi ve modellenmesi
saglanir. Goriintli isleme gibi alanlarda bu siire¢, hem siniflandirma dogrulugunu artirmak
hem de hesaplama maliyetlerini diisiirmek i¢in hayati 6nem tagir.

Temel 6zellik ¢ikarma tekniklerinden biri, yonlii gradyanlarin histogrami (HOG) dur.
HOG, gorintiideki yerel kenar bilgilerini ¢ikarmak i¢in kullanilir ve 6zellikle nesne
tespitinde oldukga etkilidir. Goriintiideki her pikselin gradyan yonii hesaplanarak yonlii
histogramlar olusturulur. Bu yontem, ozellikle insan tespiti ve nesne tanima gibi
uygulamalarda basariyla kullanilmaktadir.

Yerel ikili desenler (LBP) ise dokusal bilgileri ¢ikarmada yaygin olarak kullanilan bir
tekniktir. Bu yontem, her pikselin komsulariyla olan iligkisini analiz ederek goriintiideki
dokular1 tanimlar. LBP, yiiz tanima ve dokusal analiz gibi alanlarda sik¢a tercih edilir.

Gelismis oOzellik ¢ikarma yontemlerinden biri, 6l¢ek-bagimsiz 6zellik dontisiimii
(SIFT)’tir. SIFT, gortintiideki 6nemli anahtar noktalari tespit eder ve bu noktalarin 6lgekten
bagimsiz ozelliklerini ¢ikarir. Boylece, farkli dlgeklerdeki veya acilardaki nesneler dogru
sekilde taninabilir.

Bir diger gelismis yontem olan momentler, goriintiideki global sekil 6zelliklerini
cikaran matematiksel bir tekniktir. Momentler, 6zellikle biyometrik tanima ve goriintii
siniflandirma gibi uygulamalarda kullanilir. Gabor filtreleri ise belirli bir frekanstaki dokusal
bilgiyi ¢ikarmak igin kullanilan dogrusal filtrelerdir. Bu filtreler, yerel frekans bilgilerini
analiz ederek dokusal bilgiyi tanir ve doku analizi ile yiiz tanima gibi alanlarda oldukca
etkilidir.

Derin 6grenme tabanli 6zellik ¢ikarma tekniklerinden en yaygin olanit CNN’dir.
CNN’ler, gorlintii isleme alaninda otomatik 6zellik ¢ikarimi yapan derin 6grenme
modelleridir. Geleneksel yontemlerden farkli olarak, 6zelliklerin manuel olarak belirlenmesi
gerekmez; CNN’ler, veriden bu 6zellikleri kendisi 6grenir. Ozellikle biiyiik veri setlerinde
ve karmasik siniflandirma problemlerinde {istiin performans sergiler. CNN’ler, goriintii

siiflandirma ve nesne algilama gibi birgok farkli alanda yaygin olarak kullanilir.



21

Ozellik ¢ikarma islemi tamamlandiktan sonra, bu 6zellikleri kullanarak siniflandirma
yapmak gerekmektedir. SVM, verileri ayirmak icin bir hiper-diizlem kullanarak
siniflandirma yapan gii¢lii bir algoritmadir ve 6zellikle yiiksek boyutlu veri setlerinde
basaril1 sonuclar elde eder. DT ise siniflandirma i¢in verileri ardisik sekilde bolerek karar
veren daha basit bir yontemdir ve anlasilabilir modeller sunar. ANN, 6zellikle ¢ok boyutlu
ve karmagsik veri setlerinde giiclii sonuclar elde edebilen daha gelismis bir siniflandirma
yontemidir. ANN’ler, biiyiik veri kiimeleri lizerinde calisirken {istiin performans saglar.

Sonug olarak, 6zellik ¢ikarma ve siniflandirma teknikleri, goriintii isleme ve makine
Ogrenmesi alanlarinda basarili modeller olusturmanin temel yapi taslaridir. Hem geleneksel
yontemler (HOG, SIFT, LBP) hem de CNN gibi derin 6grenme tabanl yontemler, farkli veri
tiplerine ve uygulama alanlarina gore etkili ¢ozlimler sunar. Dogru 6zellik ¢ikarma ve
smiflandirma yontemi, bir projenin basarisinda belirleyici bir rol oynar (Wadhawan &
Kumar, 2021).

1.9.1. Momentler

Moment kavrami fizik, istatistik ve miihendislik gibi farkli disiplinlerde cesitli
anlamlar ve uygulamalara sahiptir.

Fizikte bir kuvvetin momenti, bir cismin belirli bir nokta veya eksen etrafinda donme
egilimini 6l¢en bir biiyiikliktiir. Bu durum cismin dogrusal hareketinden (6telemesinden)
farkli olarak yalnizca donme hareketiyle ilgilidir. Bir momentin olusabilmesi i¢in kuvvetin
cismin merkezinden gegmeyecek sekilde uygulanmasi gerekir. Moment, genellikle kuvvetin
blytikligi ile kuvvetin uygulandigi noktanin dénme eksenine olan dik uzakliginin carpimi
olarak ifade edilir.

Bu dondiirme etkisi, kuvvetin dogrultusunda zit ve esit bir kuvvetin bulunmamasi
durumunda ortaya ¢ikar ve dondiirme egiliminin biiyiikliigii kuvvetin uygulama noktasina
olan dik uzaklik arttik¢a artar. Sekil 11, kuvvetlerin moment etkisini gdstermektedir. Ilgili
moment etkisi bagint1 (1) kullanilarak hesaplanir. Bagint1 (1)’de M donme etkisine, F
uygulanan kuvvete ve d kuvvetin uygulama noktasinin dénme eksenine olan uzakligina

karsilik gelir. Dolayistyla Sekil 11°de F, kuvvetinin momenti sifirdir.

M=F.d 1)
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Dénme
Ekseni

Sekil 11. Fizikte kuvvetlerin moment etkisi

Moment vektorel bir biiyiikliiktiir ve momentin yonii kuvvetin dondiirme yoniine gére
pozitif ya da negatif olabilir. Bu durum, her bir kuvvetin etkisinin hangi yonde oldugunu
belirler. Bir cisme etki eden birden fazla kuvvet oldugunda, bu kuvvetlerin her biri i¢in
hesaplanan momentler toplanarak net moment bulunabilir. Bu 6zellik, momentlerin
siiperpozisyonu olarak adlandirilir ve birden fazla kuvvetin etkisinin degerlendirilmesinde
Oonemli bir rol oynar. Fizikte moment, 6zellikle donen cisimlerin davraniglarini anlamak ve
tasarlamak icin temel bir kavramdir ve gergek hayatta birgok sistemde kullanilir. Moment
kavraminin daha iyi anlagilabilmesi i¢in farkli sistemlerden asagidaki 6rnekler verilebilir.

Kap1 agma islemi, fiziksel momentin giinliik hayatimizda nasil isledigini anlamamiza
yardimci olan iyi bir 6rnektir. Bu 6rnekte kapinin mentese noktasi, kapinin donecegi ekseni
olusturur. Kapiy1 agmak i¢in uyguladiginiz kuvvet, kapinin mentesesine olan uzakliga gore
farkli dondiirme etkileri yaratir. Kuvveti kapi kolunun yakinina uygularsaniz, kapiyr agmak
cok daha kolay olur. Ciinkii daha uzun bir mesafe, daha fazla moment iiretir. Ote yandan,
kuvveti menteseye ¢ok yakin bir noktada uygularsaniz, kapiy1 agmak zorlasir ¢linkii moment
daha diisiik olur. Ornegin 10 Newton'luk bir kuvvet kapinin kenarindan 1 metre uzakta
uygulandiginda 10 Newton-metre tork iiretilir. Ozetle moment, kapinin dénme ekseni
etrafinda ne kadar donecegini gosterir. Yiiksek bir moment kapinin daha hizli ve kolay
actlmasini saglar. Bununla birlikte siirekli yiiksek momentlere maruz kalan kap1 zamanla
mentese yerlerinde asinma ve yipranma yasayabilir. Bu nedenle kapilarin tasariminda
moment hesaplari, hem kullanim verimliligini hem de yapisal dayanikliligini saglamak igin
onemlidir.

Robotik kollar, genellikle eklem ve motorlardan olusur ve endiistriyel montaj, cerrahi
uygulamalar gibi farkli alanlarda kullanilir. Robotik kolun hareketi, uygulanan kuvvet ve kol
pargalarinin uzunluguna baglhidir. Belirli bir yiikii kaldirabilmek icin gerekli momentin
hesaplanmas1 6nemlidir. Kolun uzunlugu ve eklem yerlesimi dogru ayarlanmazsa, motorlar

yeterli kuvvet tliretemeyebilir. Agirligi ve boyutu biiyiik olan nesneler, kolun donme ekseni
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etrafinda daha biiyiik bir moment olugturur ve bu da motorlarin daha fazla gii¢ saglamasini
gerektirir. Robotik kollar sikca yliksek momentlere maruz kalir, bu yiizden miihendisler,
motorlar ve eklemler i¢in dayaniklilik artirici hesaplamalar yapar. Asirt moment, asinma ve
hasara yol agabileceginden, dogru moment hesaplari robotun giivenli ve verimli ¢calismasini
saglar. Bu hesaplamalar, robotik kol tasariminda kritik rol oynar ve daha giivenilir, uzun

Oomiirli sistemlerin gelistirilmesini saglar.

1.9.2. Uygulamah Bilimlerde Moment Kavram

Matematikte moment, genellikle bir fonksiyonun veya dagilimin sekli, yayilimi,
simetrisi gibi 6zelliklerini tanimlamak i¢in kullanilan bir kavramdir. Bu kavram, 6zellikle
analiz, istatistik ve olasilik teorisi gibi alanlarda 6nemli bir yer tutar.

Birinci moment yani ortalama, bir fonksiyonun ya da veri setinin merkezi egilimini
gosterir ve aritmetik ortalamasini temsil eder. Bu gosterge, fonksiyonun genel merkezini
belirler ve fonksiyonun degerlerinin ortalamaya olan yakinliklarini ifade eder. Matematiksel

olarak bir f(x) fonksiyonu igin birinci moment, bagint1 (2) kullanilarak elde edilir.

m=jxﬂmw @)

Ikinci moment ise varyans olarak bilinir ve veri setinin ne kadar yayildigmi &lger.
Varyans, verilerin ortalamadan ne kadar uzaklastigini gosterir. Yiiksek varyans, verilerin
birbirinden uzak oldugunu, diisiik varyans ise verilerin birbirine yakin oldugunu ifade eder.
Matematiksel olarak varyans birinci momentin karesi olarak ifade edilebilir ve baginti (3)

kullanilarak hesaplanir.

/u=02=f (x - w)? f(X)dx @3)

Ugiincii moment, bir fonksiyonun veya veri setinin carpikligmi tanimlar ve
degerlerinin ne kadar saga veya sola egilimli oldugunu gosterir. Pozitif carpiklik,
fonksiyonun veya verilerin saga dogru uzun bir kuyruga sahip oldugunu belirtirken, negatif
carpiklik ise sola dogru bir kuyruga isaret eder. Matematiksel olarak tigiincii moment, baginti
(4)’de gosterildigi gibi ifade edilir.
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M=f (x - w)® f(x)dx ()

Dordiincii moment basiklik olarak bilinir ve bir fonksiyonun veya veri setinin tepe
noktasi ile ug degerleri hakkinda bilgi verir. Yiiksek bir basiklik, fonksiyonun veya verilerin
daha keskin bir tepeye sahip oldugunu ve u¢ degerlerin daha belirgin oldugunu gosterir.

Matematiksel olarak dérdiinci moment, baginti (5)’te gosterildigi gibi hesaplanir.

po= | G-t fed ®)

Sekil 12, f(x) = e™*" fonksiyonunu ve ilgili fonksiyonun ilk dért momentinin

hesaplanmis degerlerini gostermektedir.

Gauss Dagilimi ve Momentler

1
— f(x) = e (-x"2)
=== Ortalama (mul): 0.000
—== Varyans (mu2): 0.886
Asimetri (mu3): 0.000
- Carpiklik (mu4): 1.329
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Sekil 12. f(x) =e™™* i fonksiyonu ve ilk dort momentinin hesaplanmis degerleri

Bir siirekli f(x) fonksiyonu igin n. dereceden genellestirilmis moment, baginti
(6)’daki gibi ifade edilir.

un=j (x — 1" f(X)dx (6)

Ayrik fonksiyonlar i¢in genellestirilmis momentler, siirekli dagilimlar i¢in ifade edilen
aciklamalara benzer sekilde yapilir, ancak burada integral yerine toplamlar kullanilir.
Ayrik bir f(x) fonksiyonu i¢in genellestirilmis n. dereceden moment, baginti (7)’deki gibi

tanimlanir.
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pn = z(x —W"P(x) ©)

P

Burada P (x), olasilik kiitlesi fonksiyonu olarak bilinir. Bir baska deyisle, bir rastgele
degiskenin belirli bir degeri almas1 olasiligini gosteren fonksiyondur. Sekil 13, 0-30 deger
araligindan rastgele secilen bir veri kiimesinin olasilik dagilim fonksiyonu ve bu dagilim

fonksiyonunun ilk doért momentinin hesaplanmis degerlerini gostermektedir.

Ayrik Dagilim ve Momentler
Ortatama : 147439

0074+ % | Varyans : 77.103
0.06 - I i il Carplkhi:10439.237
- Wl
il

® i n il “

il |||
| A

Degerler

Sekil 13. Bir olasilik dagilim fonksiyonu ve ilk dért momentinin degerleri

Teorik aciklamalarin ardindan, farkli uygulamalar tizerinde bu kavramlarin pratikte
nasil kullanildigini ele alabiliriz. Ornegin istatistik alaninda veri analizi yapmak amaciyla
bir egitim kurumu Ogrencilerin sinav sonuclar iizerinde cesitli istatistiksel momentleri
kullanabilir. Bu analizler, 6grencilerin basar1 seviyelerini daha iyi anlamak ve iyilestirme
stratejileri gelistirmek icin faydalidir. Oncelikle ortalama yani birinci moment, sinifin genel
basar1 seviyesini belirlemek i¢in hesaplanir. Ortalama not, tiim 6grencilerin basar1 diizeyinin
bir gostergesi olarak sinifin genel performansi hakkinda bilgi verir. Ikinci moment olan
varyans, notlarin ne kadar yayildigin1 gosterir. Elde edilen varyans degeri, egitimcilerin
Ogrenci grubu icindeki ¢esitliligi anlamalarina yardimei olur. Carpikligi temsil eden {igiincii
moment, not dagiliminin simetrik olup olmadigini inceleyerek sinif notlarmin nasil bir
dagilim gosterdigi hakkinda bilgi verir. Pozitif carpiklik, daha fazla 6grencinin diisiik notlar
aldigini, negatif carpiklik ise daha fazla Ggrencinin yiiksek notlar aldigini gosterir. Son
olarak dordiincii moment olan basiklik, sinav sonuglarindaki ug¢ degerlerin (¢ok yiiksek veya

cok diisiik notlar) sikligin1 belirler. Yiiksek basiklik sinavin zorluk seviyesinin yiiksek
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oldugunu ve ug degerlerin daha sik goriildiigiinii, diisiik basiklik notlarin daha homojen bir
sekilde dagildigini belirtir. Bu momentler, egitimde basariyr anlamak ve iyilestirmek i¢in
onemli ipuclar1 sunar.

Bir diger 6rnek olarak, bir sirketin yeni bir {iriiniiniin tiiketici memnuniyetini 6lgmek
amaciyla gerceklestirdigi cesitli istatistiksel analizler verilebilir. ilk adim olarak birinci
moment olan ortalama memnuniyet puani hesaplanarak tiiketicilerin genel memnuniyet
seviyesi belirlenir ve iiriiniin genel algis1 anlasiimaya ¢alisilir. Ikinci moment olan varyans,
tiketici memnuniyetindeki farkliliklar1 inceleyerek iriiniin farkli demografik gruplar
tizerindeki etkisinin degerlendirilmesine olanak saglar. Bu sayede, {iriiniin hangi tiiketici
gruplar arasinda daha fazla begenildigi veya daha az ilgi gordiigii anlasilabilir. Ugiincii
moment olan garpiklik, memnuniyet dagiliminin simetrik olup olmadigimi gosterir. Bu
analiz, baz1 tliketici gruplarmin iirlinden daha fazla faydalandigini veya daha fazla
memnuniyet sagladigini ortaya koyarak, sirketin hangi hedef kitleye daha fazla odaklanmasi
gerektigine yardimcei olur. Son olarak dordiincii moment olan basiklik, yiiksek ve disiik
memnuniyet puanlariin sikligin1 degerlendirerek pazarlama stratejilerini daha verimli hale
getirmeye olanak tanir. Bu analizler biitiinii, tiiketici deneyimlerini iyilestirmek i¢in dnemli
bilgiler sunar ve sirketin pazarlama yaklasimini optimize etmesine yardime1 olur.

Insaat miihendisliginde moment, yapmnin stabilitesini saglamak acisindan ¢ok
onemlidir. Yiiklerin kolonlar {izerindeki etkisinin dogru bir sekilde hesaplanmasi ve her bir
kolonun momentlere kars1 dayanikli olacak sekilde tasarlanmasi gerekmektedir. Kolonlarin
tizerine ylik bindikge, bu yiiklerin olusturdugu momentlerin yapiya etkisi artar ve bu da
yapisal sorunlara yol agabilir. Statik denge, momentlerin dogru bir sekilde hesaplanmasi ve

yiiklerin dengeli bir sekilde dagitilmasi ile saglanabilir.

1.9.3.  Yapay Zeka ve Goriintii isleme Alamnda Moment Analizi

Goriinti analizi, dijital goriintiilerden anlamli bilgiler elde etmek icin kullanilan
tekniklerin biitlintidiir. Bu siirecte momentler goriintiilerdeki nesnelerin sekil, yapt ve konum
ozelliklerini tanimlamada kritik bir rol oynar.

Momentler, bir goriintiideki piksellerin belirli bir referans noktasina gore
agirliklandirilmis toplamlari olarak tanimlanir ve bu oOzellikleriyle nesnelerin temel

karakteristiklerini etkili bir sekilde belirlemeye olanak tanir.
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Momentlerin 6nemli bir avantaji, goriintiilerdeki nesneler dondiigiinde veya boyutlari
degistiginde bile tutarli 6zellikler sunabilmesidir. Bu 6zellik, goriintiilerin farkli acilardan
ve gesitli boyutlarda etkili bir sekilde analiz edilmesine imkan saglar (Flusser vd., 2009).

Omegin yiiz tanima sistemlerinde kullanilan moment tabanli yontemler, yiiz
ozelliklerinin ¢ikarilmasini kolaylastirarak tanima oranini artirir. Ayrica otonom araglarda
cevresel nesnelerin taninmasinda, moment analizi nemli bir rol oynar ve bu sayede araglarin
cevrelerini daha iyi algilamalarina olanak tanir. T1ibbi goriintiileme alaninda ise, hastaliklarin
teshisi i¢in goriintliilerdeki yapisal Ozelliklerin  analizi momentler kullanilarak
gerceklestirilebilir. Bu yontem, hastaliklarin daha dogru bir sekilde tanimlanmasina ve

tedavi siireglerinin iyilestirilmesine katki saglar. Bu ornekler, momentlerin goriintii analizi

alanindaki genis kapsamli uygulamalarini ve sundugu avantajlari agikca ortaya koymaktadir.

1.9.4. Goruntii Momentlerinin Tanim

Goriintii isleme ve desen tanima alanlarinda, momentler bir goriintiideki sekillerin
ozelliklerini anlamak ve analiz etmek i¢in kullanilir. Moment tabanli goriintii temsilinin,
geometrik kararlilik ve doniisiime bagimsizlik gibi degerli matematiksel nitelikleri sayesinde
anlamlandirma i¢in gerekli temel sartlar1 yerine getirmede etkili oldugu vurgulanmistir (Qi
vd., 2021).

Moment tabanli goriintii temsilinde ortogonal polinomlar, goriintiilerin 6zelliklerini
cikarmak i¢in yaygin olarak kullanilan giicli matematiksel araglardir. Bu polinomlar,
goriintii lizerinde tanimlanan ve ortogonallik saglayan fonksiyonlarla ¢aligir ve boylece daha
az veriyle goriintiideki bilgileri etkili bir sekilde temsil ederler. Klasik ortogonal polinomlar
ve radyal ortogonal fonksiyonlar, matematiksel analizin farkli alanlarda kullanilan iki
onemli polinom tiiriidiir. Legendre, Chebyshev ve Jacobi polinomlar: gibi klasik ortogonal
polinomlar, genellikle dikdortgen bolgelerde tanimlanir ve ii¢ terimli yineleme iliskisiyle
ifade edilir. Bu polinomlar x ve y eksenlerinde ayr1 ayr1 ortogonallik saglar ve genellikle
gercek sayilarla calisir. Radyal ortogonal fonksiyonlar ise polar koordinat sisteminde
tanimlanir ve genellikle dairesel bolgelerde kullanilir. Bu fonksiyonlar, hem radyal bilesen
Ry (1) ile hem agisal bilesen e /™9 ile ifade edilir. Agisal bilesen, karmasik degerli iistel
bir ifade oldugundan radyal ortogonal fonksiyonlar karmasik degerli veriler icerir. Klasik

polinomlar genellikle gercek sayilarla islem yaparken, radyal fonksiyonlar dondiirmeye



28

kars1 degismezligi ve karmasik yapisi ile daha farkli matematiksel ve pratik uygulamalarda
kullanilir (Corriou, 2022).

Momentlerin 6zellikleri ve performanslarinin goriintii analizinde kapsamli bir sekilde
incelenmesi ilk olarak Teh ve Chin tarafindan gerceklestirilmistir. Bu inceleme, ortogonal
momentlerle ilgili gelecekte yapilacak tiim arastirmalar i¢in bir temel olusturmus ve bir
goriintiiyii ortogonal polinomlar kullanarak tanimlamanin etkinligini ortaya koymustur (Teh
& Chin, 1988). Teh ve Chin’in ¢alismasinin ardindan, Zernike momentleri Khotanzad ve
Hong tarafindan desen tanima uygulamalarinda kullanilmistir (Khotanzad & Hong, 1990).
Ayrica, goriintii analizi (Chen & Sun, 2010), multimedya damgalama (Kim & Lee, 2003),
tibbi goriintii analizi (Dai vd., 2010), adli bilimler (Mahdian & Saic, 2007) gibi uygulamalara
momentlerin ve moment degismezlerinin uygulanabilirliginin arttig1 gosterilmistir.

Hacim momentleri, bir goriintiideki piksel degerlerinin dogrudan kullanilmasiyla elde
edilen temel momentlerdir. Bu momentler, goriintiiniin genel o6zelliklerini belirlemede
yararlidir. Hacim momentleri, nesnenin konumu ve yogunlugu hakkinda bilgi saglar fakat
doniis ve dlgek degisikliklerine karsi hassastir. Ornegin, bir nesne déndiigiinde veya boyutu
degistiginde hacim momentlerinin degerleri de degisir. Matematiksel olarak, bir goriintiiniin
hacim momentleri bagmti (8)’de oldugu gibi ifade edilir. Ilgili bagintida M,, p ve q
derecelerindeki momenti, f(x,y) (x,y) koordinatlarindaki pikselin yogunlugunu, N ve M

ise goriintliniin boyutlarini ifade eder.
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Normalize edilmis momentler, hacim momentlerinin  merkezi momentlere
dontstiirtilmesiyle elde edilir. Bu momentler, nesnenin boyut ve pozisyon degisikliklerine
kars1 daha az hassas olup, daha tutarli sonuglar saglar. Normalize edilmis momentlerin
hesaplanmasinda, piksel degerlerinin ortalamasi ve standart sapmasi dikkate almir. Ornegin
ikinci normalize edilmis moment goriintiideki nesnelerin yayilimint 6lgerken, birinci
normalize edilmis moment nesnenin ortalama konumunu belirler. Normalize edilmis
momentler, goriintiideki sekil ve 6zelliklerin daha dogru bir sekilde analiz edilmesine olanak
tanir. Bu nedenle nesne tanima, sekil analizi ve siniflandirma gibi birgok uygulamada tercih
edilmektedir. Sonug¢ olarak normalize edilmis momentler, goriintii isleme alaninda daha

saglam ve giivenilir analizler yapilmasin1 miimkiin kilarak doniis ve 6l¢ek degisikliklerinden
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kaynaklanabilecek olumsuz etkileri en aza indirir. Matematiksel olarak, bir goriintiiniin
normalize edilmis momentleri bagmnt1 (9)’daki gibi gosterilir. Ilgili bagintida u,, p ve q
derecelerindeki normalize edilmis momenti, M,,, p ve q derecelerindeki hacim momenti,
My, ise gorlintlinlin toplam yogunlugunu ifade etmektedir.

Mpq

- a+239) 9)

MOO

Hpq

1.95. Moment Tiirleri

Geometrik momentler, bir goriintiideki sekillerin geometrik yapisini, boyutunu ve
yonelimini belirlemek i¢in kullanilir. Bu temel momentler sekillerin alanini, agirlik
merkezini ve diger temel geometrik dagilimlarini tanimlamak i¢in basit ancak etkili araglar
olarak islev goriir. Ote yandan sekiller dondiiriildiigiinde, konumu veya boyutlari
degistirildiginde tanima ve analiz islemleri daha zor hale gelebilir.

Geometrik momentler, bir goriintiideki piksel degerlerinin belirli polinomlarla ¢arpilip
toplanmasiyla hesaplanir. Ancak, kullanilan polinomlar genellikle tek terimli polinomlardir
ve bu polinomlarin birbirleriyle ortogonal olmamasi, hesaplanan momentlerin bilgi
fazlaligina yol agmasina sebep olur. Bir baska deyisle, ayn1 veriyi birden fazla momentin
temsil etmesi anlamina gelir. Iste bu noktada, Hu momentleri ve ortogonal momentler gibi
daha gelismis momentler devreye girmektedir (Mukundan & Ramakrishnan, 1998).

1962 yilinda Hu, miihendislik alaninda iki boyutlu momentleri ilk kez tanitmistir. Hu,
bir gorlintiiniin iki boyutlu geometrik momentlerini "moment degismezleri" olarak
adlandirmis ve bu yapiyi, dogrusal doniisiimlere yani ¢evirme, dondiirme, dlgekleme ve
egiklik gibi islemlere karsi degismeyen bir 6zellik olarak tanimlamistir. ilgili calismada,
cebirsel degismezler teorisine dayanan yedi ortogonal degismezi one stirmiistiir (Hu, 1962).

O tarihten itibaren yapilan arastirmalar, momentler ve moment degigsmezleri teorisinde
onemli ilerlemeler kaydetmistir. Bu teorik gelismeler, momentlerin ¢ok farkli alanlarda
kullanilmasini miimkiin kilmig ve giderek daha fazla arastirmacinin bu konuyu
calismalarinin odak noktasi haline getirmesine yol agmuistir.

Hu momentlerinin dondiirme dayanikliligi sayesinde bir nesne dondiiriildiigiinde ayni

PR

nesne olarak tanimabilir. Olgcekleme dayaniklilig1, nesnenin boyutlar: degistiginde bile boyut
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farkini1 g6z ard1 ederek nesneyi tanimaya devam eder. Yer degistirme dayaniklilig1 ise, nesne
farkli bir konuma tasindiginda bile 6zelliklerini dogru bir sekilde yakalar. Bu 6zellikleriyle
Hu momentleri, optik karakter tanima, plaka tanima ve sekil siniflandirma gibi
uygulamalarda yaygin olarak kullanilir. Ornegin, bir plakanin farkli agilardan fotografi
cekildiginde bile bu gelismis momentler sayesinde plaka {izerindeki yazilar ayni sekilde
taninabilir. Bu sayede, sekiller lizerindeki karmasik doniistim ve degisiklikler sirasinda bile
dogru analizler yapilabilir. Hu momentlerinin kullanim alanlar1 genistir; nesne tanima
siireclerinde goriintiilerdeki nesnelerin taninmasi ve siiflandirilmasi i¢in yaygin olarak
kullanilirken, miihendislik, robotik ve biyomedikal uygulamalarda nesnelerin sekil
ozelliklerini analiz etmek icin de tercih edilmektedir. Ayrica, biyolojik goriintiilemede
hiicrelerin ve dokularin analizinde Hu momentleri 6nemli bir rol oynamaktadir.

Hu momentlerinin hesaplanmasi, Once goriintiideki hacim momentlerinin
hesaplanmas1 ile baslar. Bu momentler, piksel yogunluklar1 kullanilarak belirlenir.
Akabinde, hacim momentleri normallestirilir ve merkezi momentler elde edilir. Hu
momentleri, yedi temel normalize edilmis momentten olusur ve bu momentler nesnenin
geometrik 6zelliklerini tanimlamak i¢in kullanilir. Ayrica, goriintiideki nesnelerin geometrik
bilgilerini saglamanin yan1 sira giirtiltii ve kiiglik degisikliklere karsi da oldukga saglam bir

yapiya sahiptirler. Hu momentleri, bagint1 (10)’da gosterildigi gibi hesaplanmaktadir.

b1 = poo T o2

$2 = (a0 — Hoz2)* + 4uiy

$3 = (U30 — 3M12)* + Bliz1 — Ho3)?

$a = (30 + t12)? + (a1 + Ho3)? (10)
®s = (U0 — 3t12) (30 + M12) (30 + 12)* = 321 + Ho3)?)

d6 = (20 — Mo2) (30 + H12)* = (U21 + H03)?)

¢7 = (Buz1 — Ho3) (U0 + t12) ((U30 — H12)? — (421 — Mos)z)

Ortogonal momentler, genel moment hesaplamalarina kiyasla daha yiiksek dogruluk
ve sikistirma kapasitesi saglayan momentlerdir. Bu momentlerin temel avantaji, ¢cekirdekleri
ortogonal polinomlar {izerine insa edildigi icin birbirlerinden bagimsiz bilesenler
olusturabilmesidir. Bu ortogonallik, momentlerin minimum bilgi fazlaligina sahip olmasini
saglar; yani her bir moment derecesi, goriintiiniin farkli bir yoniinii temsil eder. Diisiik
dereceli momentler, bir desenin genel seklini temsil ederken yiiksek dereceli momentler

daha ayrintil1 bilgileri sunar.
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1980 yilinda Teague tarafindan tanitilan ortogonal momentler, goriintii analizi
alaninda 6nemli bir gelisme olarak kabul edilir (Teague, 1980). Teague, Legendre ve Zernike
ortogonal momentlerini Onererek geometrik momentlerin ve Hu degismezlerinin yiiksek
bilgi fazlalig1 sorununa ¢6ziim bulmay1 amacglamistir.

Legendre momentleri, iki boyutlu goriintiilerin tanimlanmasi i¢in kullanilan bir bagka
ortonormal moment ¢esididir. Legendre momentleri, goriintii izerindeki piksel yogunluklar
baz alinarak hesaplanir ve 6zellikle hizli hesaplanabilmeleri ve diisiik bilgi kayb1 nedeniyle
tercih edilirler. Bu momentler, belirli bir goriintii tizerindeki piksel verilerini kompakt bir
bicimde temsil eder ve bu nedenle sikistirma algoritmalarinda kullanilabilir. Legendre
momentleri, kare veya dikdortgen simetrilere sahip nesneler iizerinde oldukga etkilidir ve
belirli bir simetriye sahip goriintiilerin taninmasinda kullanilir.

Legendre momentleri, goriintii yogunluk fonksiyonu f(x, y) lizerinden hesaplanir ve
Legendre polinomlar1 kullanilarak tanimlanir. Hesaplama siireci, belirli bir bolgedeki
yogunlugu temsil eden entegrasyonlar: icerir. Farkli derecelerde hesaplanabilmesi, daha
karmasik sekil bilgilerini elde etmeyi miimkiin kilarken, diigiik dereceli momentler daha
genel ve temel bilgileri saglar. Ayrica, goriintii restorasyon siireglerinde de 6nemli bir rol
oynar; burada goriintiilerin yeniden yapilandirilmasinda moment bilgisi kullanilir (Zhang

vd., 2010).

1.9.6. Zernike Momentleri

Zernike momentleri, bir goriintliiniin geometrik o6zelliklerini yiliksek hassasiyetle
yakalayabilen ve 6zel polinomlar {izerinden tanimlanan momentlerdir. Bu momentler,
Ozellikle dondiirmelere karsi olduk¢a dayaniklidir. Bir bagka deyisle, bir nesne
dondiirildiigiinde dahi Zernike momentleri nesnenin taninmasini miimkiin kilar. Bu
ozellikleri sayesinde, simetrik ya da dondiiriilmiis yapilarin analizi i¢in siklikla tercih edilir.

Zernike momentlerinin bir diger 6nemli 6zelligi, nesnenin ince geometrik yapilarimi
detayli bir sekilde yakalayabilmesidir. Bu 6zellik, onlar1 yiliksek tanimlama kabiliyetine
sahip bir ara¢ yapar. Bu sayede, Zernike momentleri 6zellikle tibbi goriintiilleme, astronomik
veri analizleri ve biyometrik tanima sistemleri gibi hassasiyet gerektiren alanlarda siklikla
kullanilir (Zernike & Stratton, 1934).

Zernike momentlerinin duyarlilig1 da dikkat ¢ekicidir. Gortintiilerdeki giiriiltiiye kars1

dayanikli olmalari, onlar1 ¢ok cesitli uygulamalarda kullanilabilir hale getirir. Ayrica,
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yiiksek dereceli Zernike momentleri, goriintiideki karmasikligi etkili bir sekilde temsil
edebilir. Bu durum, goriintiilerin daha diisiik boyutlu bir temsil ile ifade edilmesi imkani
sunarken veri boyutunun azaltilmasina da yardimei1 olur.

Tibbi goriintiileme alaninda, Zernike momentlerinin kullanimi biiyiik bir rol
oynamaktadir. Ozellikle tibbi gériintiileme gibi giiriiltiiye duyarli alanlarda, MR ve CT
taramalarinda lezyonlar ya da diger anormalliklerin tanimlanmasinda Zernike
momentlerinin katkis1 biiyliktiir. Bu 6zellikleri, goriintiilerdeki yapilari etkili bir sekilde

analiz etmeye olanak tanir (Kumar vd., 2018).

1.9.7. Zernike Momentlerinin Hesaplanmasi

Zernike momentleri ve alt gruplar1 arasinda belirgin farkliliklar bulunmaktadir; bu
farkliliklar her bir tiirtin kullanim alanini1 ve uygulama yeteneklerini etkiler. Klasik Zernike
momentleri, dondiirmeye dayanikli ve genellikle sekil tanima uygulamalarinda etkili iken,
logaritmik Zernike momentleri yiiksek dinamik araliga sahip goriintiileri analiz etmekte
kullanilir. Karmasik Zernike momentleri, hem gergek hem de sanal bilesenleri igererek iki
boyutlu sinyallerin islenmesinde fayda saglar. Siirekli Zernike momentleri, piiriizsiiz ve
stirekli yiizeylerin analizi igin tasarlanmigtir. Harmonik Zernike momentleri ise goriintiideki
harmonik bilesenleri analiz etmeye yoneliktir. Her bir tiir, belirli bir uygulama veya goriintii
ozelligine odaklanarak ¢esitli avantajlar ve dezavantajlar sunar.

Zernike momentleri, goriintiiniin yogunluk fonksiyonu f(x,y)  kullanilarak

hesaplanir. Zernike momentleri, bagint1 (11)’de belirtilen formiilii ile tanimlanir.

n+1
Zm = f f £ (6 YV (x, ) dydix (1)
xJy

T

Bagmt1 (11)’de integral, goriintiiniin dairesel alan1 boyunca hesaplanir. Bir baska
deyisle, gorilintii lizerinde belirli bir noktanin yogunluk degeri, Zernike polinomlari
Vm (x, ¥) ile carpilarak toplamsal bir deger elde edilir. Bu hesaplama, goriintiiniin farkli ag1
ve Ol¢eklerdeki ozelliklerini ortaya ¢ikarmaya yardimer olur ve 6zellikle dairesel simetrik
nesnelerin analizi i¢in idealdir.

Logaritmik Zernike momentleri, Zernike momentlerinin logaritmik modifikasyonu
sonucunda elde edilir. Logaritmik Zernike momentleri ile ilgili farkli yaklagimlar

miimkiindiir ve logaritma islemi, Zernike momentlerinin hesaplanmasinda sadece goriintii
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tizerinde degil, Zernike polinomunun kendisi lizerinde de yapilabilir. Belirtilen Logaritmik
Zernike momentlerinin Zernike momentlerine uygulanmis modifikasyonu baginti (12)’de

ifade edilmistir (Lu & Yang, 2023).

m
n

n+1 .
| | Fe o Geyddyds (12)
xJy
Logaritmik Zernike momentleri, yiiksek dinamik araliga sahip goriintiilerin analizi i¢in
0zel olarak gelistirilmis bir yontemdir. Bu momentler, goriintiilerin yogunluk dagilimlarini

daha etkili bir sekilde temsil eder ve 6zellikle zayif aydinlatma kosullarinda veya yiiksek

kontrast gerektiren durumlarda 6nemli avantajlar sunar.

1.9.8. Karmasik Sayilar

Matematiksel problemlerin ¢dzlimiinde, bazi sayr kiimeleri tek basina yeterli
olmayabilir. Bu durumda, mevcut say1 kiimelerini genigleterek daha kapsamli sistemler
olusturmak gerekebilir ve buna bagli olarak farkli say1 kiimeleri gelistirilmistir.

Dogal sayilar (0,1,2,3,...) kiimesi, matematigin temel yapi taslarindan biridir. Pozitif
tam sayilardan olusan bu sinif, giinliik yasamda sayma islemlerinde kullanilir ayn1 zamanda
matematiksel islemlerin temelini olusturur ve toplama ile ¢arpma islemleri bakimindan
kapali bir kiime olarak tanimlanir. Bir bagka ifadeyle, iki dogal sayinin toplami veya ¢arpimi
sonucunda elde edilen saymin yine bir dogal say1 oldugu anlamina gelir. Ornegin, 3+5=8 ve
4x6=24 islemleri, dogal sayilarin toplama ve ¢arpma islemlerinde kapali oldugunu gosterir.
Ancak c¢ikarma ve bolme islemlerinde farkli siniflarin tanimlanmasini gerektirir.

Tam sayilar (...,—3,-2,—-1,0,1,2,3,...), dogal sayilar1 ve negatif tam sayilar igerir.
Matematikte cikarma islemiyle iliskili olarak tanimlanan tam sayilar, dogal sayilarin
eksikliklerini giderir ve simetrik bir yap1 saglayarak temel aritmetik islemleri genisletir. Bu
yap1, hem pozitif hem de negatif degerlerin islenmesini miimkiin kilar ve bdylece
matematigin daha genis uygulama alanlarina hizmet eder.

Rasyonel sayilar, iki tam sayinin orani olarak ifade edilir ve genellikle (a/ b) formunda
yazilir; burada a ve b tam sayilar olup, b # 0 kosulu saglanir. Bu sayilarin ondalik agilimlart
ya sonlu bir degerle bitmekte ya da belirli bir oriintiiyii tekrar eden bir yapiya sahip

olmaktadir. Rasyonel sayilar, kesirlerin matematiksel ifadesini saglar ve bélme islemini
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tanimlamada kritik bir rol oynar. Ayrica, reel sayilarin 6nemli bir alt kiimesini olusturur ve
sayisal analizde temel bir yapi tagini temsil eder.

Irrasyonel sayilar, kesir olarak ifade edilemeyen ve ondalik agilimi sonsuza kadar

devam eden, ancak herhangi bir 6riintii tekrar1 gostermeyen sayilardir. Ornegin, V2,  ve
e gibi sayilar irrasyonel sayilarin klasik orneklerindendir. Bu sayilar, matematikte 6nemli
bir yere sahiptir ve 0zellikle geometrik, trigonometrik ve analitik hesaplamalarda kullanilir.
[rrasyonel sayilar, rasyonel sayilarla birlikte reel say1 kiimesini tamamlayarak matematigin
temel yap1 taglarindan birini olusturur.

Reel (gercek) sayilar, rasyonel ve irrasyonel sayilarin birlesiminden olusan ve sayi
dogrusu tiizerindeki tiim noktalar1 kapsayan bir say1 kiimesidir. Bu sinif, reel analiz,
trigonometri ve geometri gibi matematigin pek ¢ok dalinda temel bir yapi tasidir. Reel
sayilar, siirekli bir say1 dogrusu kavrami sunarak kesintisiz bir say1 sistemi saglar ve bu da
analitik hesaplamalarin gerceklestirilmesine olanak tanir. Bu 6zellikleri sayesinde reel
sayilar, hem teorik hem de uygulamali matematikte kritik bir 6neme sahiptir.

Karmagsik sayilar, gercek ve sanal bilesenlerin birlesiminden olugmakta ve genellikle
z = x + iy formunda ifade edilmektedir; burada a gercek kismi, bi ise sanal kismi temsil
eder ve i, i? = —1 6zelligine sahiptir. Bu say1 sistemi, reel sayilarin da disinda matematikte
daha genel bir yap1 saglar ve ozellikle cebir, miihendislik, fizik ve sinyallerin analizi gibi
alanlarda kullanilmaktadir. Karmagik sayilar, iki boyutlu bir diizlemde gorsellestirilebilme
ozelligi sayesinde, hem geometrik hem de analitik problemlerin ¢oziimiinde giiglii bir arag
olarak ortaya ¢ikmaktadir. Bu nedenle, matematiksel analizden diferansiyel denklemlere
kadar genis bir uygulama alaninda temel yapr tasidir. Ornegin, x2 + 1 = 0 denkleminin reel
sayilar arasinda ¢oziimii yoktur, ¢linkii hicbir reel saymin karesi negatif bir deger almaz.
Boylece x? + 1 = 0 denkleminin ¢dziimleri karmasik birim i ve —i olarak tanimlanir;
burada i sanal birim olup x? = —1 6zelligine sahiptir.

Karmagik sayilar o6zellikle dalga hareketleri, elektromanyetik alanlar, kuantum
mekanigi ve elektronik gibi alanlarda 6nemli bir rol oynamaktadir. Elektrik devrelerinde
alternatif akimin modellenmesi veya dalgalarin siniizoidal hareketi gibi olaylar, en iyi
sekilde karmasik sayilarla ifade edilir. Ayrica, donme, titresim ve salinimlar gibi olaylarin
matematiksel olarak modellenmesinde de karmasik sayilar biiyilik kolaylik saglar. Bu sayede,
karmasik sayilarin gercek diinyadaki etkileri daha net bir sekilde gdzlenmektedir. Karmagik
analiz ve Fourier doniisiimleri gibi matematiksel teknikler de karmagik sayilar kullanilarak

gelistirilmis olup, buna bagli olarak sinyal isleme ve sistem analizi gibi alanlarda 6nemli
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avantajlar saglanmistir. Sonug olarak karmasik sayilar, reel sayilar kiimesinin Gtesine
gecerek daha genis bir ¢6ziim alan1 sunar ve matematiksel denklemlerin ¢6zliimiinii daha
kapsaml1 bir sekilde miimkiin kilar.

Sekil 14 say1 kiimelerini, birbirlerini kapsama gibi aralarindaki iliskiler dahil olmak

tizere bir arada gostermektedir.

Karmasik sayilar

Reel Sayilar 8,+4i,5-3i,-2i

Rasyonel Sayilar 78.4,18/4

Tam Sayilar -4,-9,-1
y Irrasyonel Sayilar

Vv~ 2, pi, euler

Dogal Sayilar

0,1,2,3,4

Sekil 14. Say1 Kiimeleri

iki karmasik say1 u = a + ib ve v = ¢ + id olsun. Sifirdan farkli her karmasik say1,
birinci dereceden bir polinomdur. Karmasik eslenik, bir karmasik sayinin gergek kismini
ayn1 birakirken, sanal kisminin isaretini degistirerek elde edilen karmasik sayidir. u = a +
ib sayisinin eslenigi, 4 = u* = a — ib seklinde gosterilir.

Karmagik sayilarin toplami ger¢ek kisimlarin toplami ve sanal kisimlarin toplami
olarak ifade edilir. Karmagik sayilarin farki, benzer sekilde gercek kismin farki ve sanal

kismin farki olarak ifade edilir. ilgili islemler bagint: (13) gosterildigi sekilde gerceklestirilir.

ut+v=>@+ib)+(c+id)=(@a+c)+i(b+d) (13)
u—v=@+ib)—(c+id)=(a—c)+i(b—d)

Karmagik sayilarin garpmmi ise dagilim o6zelligi kullanilarak yapilmaktadir. Tlgili

islemler bagint1 (14)’de gosterilmistir.

uv = (a +ib)(c + id) = a(c + id) + ib(c + id) = ac + iad + ibc + i*bd (14)
i? = —1 oldugundan uv = ac + iad + ibc — bd = (ac — bd) + i(ad + bc)
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Nihayetinde karmasik sayilarin ¢arpimi, ger¢ek kismi (ac — bd) ve sanal kismi (ad +
bc) olan bir karmasik sayidir. Karmasik sayilarin boliimii, pay ve paydanin eslenikleri

kullanilarak gerceklestirilir. Ilgili islemler bagint1 (15)’de gdsterilmistir.

u_a+ib$(a+ib)(c—id):>ac+bd+i(bc—ad)
v c+id  (c+id)(c—id) c? +d? (15)
ac+bd bc—ad

= +i
c2+d*  c*+d?

Bir karmasik saymin biiyiikliigii, orijin ile olan uzaklik olarak tanimlanmaktadir ve
z = x + iy karmasik sayis1 icin |z| seklinde gosterilir. Tlgili biiyiikliik degeri bagimnt: (16)

kullanilarak hesaplanir.

r=|z| =x%+ y? (16)

Argiiman ise karmagik sayinin pozitif gercek eksen ile yaptigi aciy: ifade eder. Bu iki
ozellik (biiytikliik ve argiiman), karmasik sayilarin kutupsal formda gosterilmesini miimkiin
kilar ve ¢esitli miihendislik uygulamalarinda kullanilir. Bagint1 (17), argiimanin elde
edilmesine yonelik formiilii ve bir karmasik saymin kutupsal formda temsilini ifade

etmektedir.

_ —tan-1(2
0 = arg(z) = tan (x) (17)
z =r(cosf +isinB)

Karmagik degiskenli fonksiyonlar, karmagik sayilarin bir fonksiyonudur ve gergek
fonksiyonlarin karmasik say1 uzayina genisletilmis halidir. Karmasik fonksiyonlar, analitik
Ozellikleri, tiirevlenebilirlik kosullar1 ve farkli davranislari ile karmasik analizde 6nemli bir
yer tutar. Karmasik degiskenli fonksiyon genellikle eger f(2z):C— C,z =x+ iy ise
Ju, v: R? - R olmak iizere bagint1 (18)’de gosterildigi gibi ifade edilir.

fz) = foxrivy = ulx,y) +iv(x,y) (18)
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Ilgili bagintida u(x, y) fonksiyonun gergek, v(x, y) ise sanal kismina karsilik gelirken
her ikisi de x ve y’nin bir fonksiyonu olarak tanimlanir.

Karmagik analizde diferansiyel kurali, karmasik diferansiyel tanimini ifade
etmektedir. Hem karmagsik degisken z hem de z'nin karmasik eslenigi z* ile ilgili tiirevleri

iceren karmasik bir fonksiyonun diferansiyeli df, baginti (19)’da ifade edilmistir.

af of
== * 19
Of = -0z + -0z (19)

Karmagsik analizde tlirevlerin karmasik eslenikleri bagint1 (20)’de verilmistir. Bu tiir
tirev Ozellikleri, karmasik fonksiyon teorisinde, Cauchy-Riemann denklemlerinin

analizinde ve holomorfik fonksiyonlarin incelenmesinde yaygin olarak kullanilir.

G5 & 45 9% @0

Eger f(z): C — Rise tiirevlerin karmagik eslenikleri baginti (21)’deki gibi olmaktadir.

&) = - G -% 2
0z 0z* 0z* 0z

Holomorfik bir fonksiyon, bir veya daha fazla karmasik degiskene bagli olan ve tanim
kiimesinin her noktasinda karmasik tiirevlenebilir olan bir karmasik degerli fonksiyondur.
Holomorfik fonksiyonlar ayni zamanda analitik fonksiyon olarak adlandirilir ve Cauchy-
Riemann denklemleri saglanir.

f(z):C - C fonksiyonu ve Q c C agik bir alt kiimesinde karmasik tiirevi baginti
(22)’deki limitin var olmasiyla tanimlanir. Ilgili bagitida Az = Ax + iAy seklindedir ve
Az — 0 hem Ax — 0 hem de Ay — 0 olur.

f(Z + AZ) - f(Z) (22)
Az

Fo= i

Bu limitin var olabilmesi i¢in Az farkli yollarla sifira yaklagsa bile ayni sonucu
vermelidir. Yani hem gergek eksen (Ay = 0) hem de sanal eksen (Ax = 0) boyunca ayn

olmalidir.
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Gergek eksen boyunca tiirev (Ay = 0) bagint1 (23)’de verilmektedir.

0 0 0
o _ou, v (23)
0z Ox 0x
Sanal eksen boyunca tiirev (Ax = 0) bagint1 (24)’de verilir.
0 0 0
dz 0dy dy

Bu iki tiirev esitliginden Cauchy-Riemann denklemleri bagint1 (25)’de ifade edilir.

au_av au_ ov

5<m 0 mcw (25)

Bu durumda, df /0z* = 0 olmalidir. f(z) fonksiyonunun holoformik bir 6rnegi Sekil
15. (a)'da, holoformik olmayan ise Sekil 15. (b)'de gosterilmektedir.

fiz) = 22

u(x, y) = Re(f(z)) v(x, y) = Im(f(z))

(@)

flz)=22+Z
u(x, y) = Re(f(z)) Vv(x, y) = Im(f(2))

(b)

Sekil 15. (a) f(z) fonksiyonunun holoformik bir 6rnegi (b) f (z) fonksiyonunun
holoformik olmayan bir 6rnegi
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Wirtinger hesaplamasi, Wilhelm Wirtinger tarafindan 1927 yilinda ortaya atilan ve
karmagik tlirev kavramini genellestiren bir yontemdir. Wirtinger hesabi, 6zellikle karmagik
analiz, diferansiyel geometri ve sinyal isleme gibi alanlarda sik¢a kullanilir. Bu hesaplama,
karmasik fonksiyonlarin tiirevini ve gradyanin1 hesaplamak i¢in gelistirilmistir ve 6zellikle
karmasik sayilarla ¢alisan fonksiyonlarin optimizasyonunda kullanilir. Wirtinger
hesaplamasinin temel avantaji, karmasik degerli fonksiyonlarla ¢alisirken tiirev almay1 daha
sistematik ve verimli hale getirmesidir.

Wirtinger hesaplamasi, holomorfik olmayan fonksiyonlarla ¢alismayr miimkiin kilar
ve ayni zamanda gradyan hesaplamasi i¢in alternatif bir yontem sunar. Bu yontem, egitim
stirecinin kararliligin1 da artirarak daha giivenilir sonuglar elde edilmesine yardimer olur
(Fischer, 2002).

Wirtinger hesaplamasinda karmagsik fonksiyonlarmn tlirevini almak i¢in 6zel tiirev
operatorleri kullanilir. Wirtinger operatorleri olarak adlandirilan bu operatorler, karmasik
sayilarin gercek ve sanal kisimlarina baglidir. Wirtinger operatorleri bagint1 (26)’da ifade

edilmektedir.

6_1(6 _6) d _1<6+_6) (26)
9z 2\ox lay ’ dz* 2 \0x Lay

Karmagik degerli degiskenlerle calisan sinir aglarinda, optimizasyon siire¢lerinde
kullanilan 6zel bir zincir kural1 nemli bir rol oynamaktadir. Bu kural, degiskenler karmagsik
olsa bile maliyet fonksiyonunun her zaman gercek bir deger almasini saglayarak islemleri
daha verimli hale getirir. Karmasik degiskenler i¢in tiirev almay1 genellestiren bu yontem,
hem teorik hem de pratik uygulamalarda kritik bir neme sahiptir (Simon, 2014).

f(2):C—>C,z €Cve x(z2),y(z):C - R i¢in gercek ve sanal kisimlar iizerinde

karmagik zincir kurali bagint1 (27)’de ifade edilir.

o _orox ordy

=— — 27
dz 0x0dz Jdyodz 7

f,g: C— C fonksiyonlardir ve z € C bir karmasik degiskendir. Buna bagli olarak,
karmasik zincir kurali bagint1 (28)’de ifade edilmektedir. Burada f fonksiyonu g’ye, g
fonksiyonu da z’ye baghdir.
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Ohlg) _0rdg  of og’
0z dgoz dg* 0z

(28)

g(z)’nin z, z* ile tiirevi ayr1 ayr1 hesaplanir. Ayni durum g* i¢in de gegerli olmaktadir.

Igili formiiller bagint1 (29)’da verilmektedir.

ag _ dg o~ dg dgox dg dy
—=9g'(2) , === , 3, =332 3y 3z

_ - 29
3z 9z z _ 9x0z By 0z (29)

Karmasik sayilar genel olarak dikdortgensel, kutupsal (polar) ve iistel formda olmak
lizere sirastyla z = x + iy, z = r(cos 8 + i sin 8) ve z = re'? seklinde ifade edilir.

Euler formiilii, karmasik analizde hem iistel fonksiyonlarin hem de trigonometrik
fonksiyonlarin temel bir birlesimini saglayarak, bu iki 6nemli matematiksel yap1 arasinda

giiclii bir iliski kurar. {lgili formiil ve acilim1 bagint1 (30)’da ifade edilmektedir.

e® = cosO +isinb (30)

Bu formiil, karmasik sayilar diizleminde iistel fonksiyonlarin dondiirme ve biiytikliik
iligkilerini sinlis ve kosiniis fonksiyonlariyla ifade edebilecegimizi gosterir. Euler
formiiliiniin, Sekil 16. (a)’da birim ¢ember tizerindeki temsili, Sekil 16. (b)’de ise

trigonometrik gosterimi belirtilmistir.

Alm

sin(#) = 0.81

ni
€ 2|=—1

(2) (b)

Sekil 16. (a) Euler formiiliiniin birim ¢ember tizerindeki temsili (b) Euler formiiliiniin,
trigonometrik gosterimi
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Karmasik diizlem, karmasik sayilar1 gorsellestirmek ve iizerinde islem yapmak icin

kullanilan iki boyutlu bir ylizeydir. Bu diizlemde her karmagik say1 bir nokta olarak temsil

edilir ve diizlemdeki yatay eksen karmasik sayilarin gergek kismini, dikey eksen ise sanal

kismin1 gosterir. Sekil 17. (a) karmasik diizlemde verilen bes karmasik sayiyi, Sekil 17.(b)

ilgili bes karmasik saymin f(z) = z? fonksiyonuna gére doniisiimiinii géstermektedir.

Giris Noktalari (z) - Karmasik Duzlem

Cikis Noktalar f(z) = z~2 Karmasik Duzlem

= —_—
PR o il PR
/////// ¢ \\\\\\\
27 =T T~
i ; s 2 e SIS X
T 11 22 = (-1+1j A — i — = T AN
£ + g N
G oZl=(2+0j 74 = (2+0D/\ & o f(z3) = (-1+0i} f(z4) = f(z1) = Mg+ 0j)
< M- e
5 SR
8 -1 23 =(01jy  —— " z ok
’ g flz2r= 24
_2 =
_4 -
—3:3 : T T T T v ; : ‘ .
-3 =2 -1 0 1 2 3 4 5 0 > 3
Gergek Kisim (Re) Gergek Kisim (Re)
(a) (b)

Sekil 17. (a) Karmasik diizlemde verilen bes karmasik say1 (b) Ilgili bes karmasik saymnin
f(z) = z? fonksiyonuna gore doniisiimiinii

Sekil 18. (a) ayrik noktalardan olusan karesel bir gortintiiyii, Sekil 18. (b) ise ilgili

ayrik karesel goriintiiniin f(z) = z? fonksiyonuna gére doniisiimiinii belirtir.

Giris Noktalari (z) - Karmasik Duzlem

Cikis Noktalari f(z) = z~2 Karmasik Duzlem

44 oescoveSSsOOOSSEOOCSS
® L4 (11

30 A

20

10 4

Sanal Kisim (Im)

_10 .

—-20 1

-30 4

-4 =2 0 2 4
Gergek Kisim (Re)

(@)

—‘30 —éo —‘10 6 1'0 2‘0 3'0
Gercek Kisim (Re)

(b)

Sekil 18. (a) Ayrik noktalardan olusan karesel bir goriintii (b) ilgili gériintiiniin f(z) = z2
fonksiyonuna goére doniistimiinii
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Domain renklendirme yontemi, karmasik fonksiyonlarin gorsellestirilmesinde
kullanilan bir tekniktir. Bu yontem, karmasik bir fonksiyonun degerlerini karmasik
diizlemdeki her bir noktaya renk atayarak temsil eder. Boylece karmasik fonksiyonlarin
davraniglari, ozellikle genlik ve faz bilgisi acisindan daha anlagilir hale gelir. Bu
gorsellestirme yontemi, karmagik sayilarla ¢alisan fonksiyonlarin analizini kolaylastirmak
icin oldukgca etkilidir.

Sekil 19. (a) renklendirilmis (0 — 2 araliginda) karmasik diizlemde verilen dort
karmasik sayiy1, Sekil 19. (b) ise ilgili karmasik sayilarin ifade edilen diizlemde f(z) = z2

fonksiyonuna gore doniisiimiinii gdstermektedir.

z2 (Karmasik Diizlem)
I = T

Sanal (Im)

—2:0 =157 —1.0 <057 0:0: 05 L0’ 15 20 .—2.0 =150 =1.0-=0i5: 0.0: 05 1.0 45 2.0

Gergek (Re) Gergek (Re)
(@) (b)

Sekil 19. (a) Renklendirilmis karmasik diizlemde verilen dort karmasik say1 (b) 1lgili
karmasik sayilarin ifade edilen diizlemde f (z) = z? fonksiyonuna gére doniisiimiinii

Sekil 20. (a) renklendirilmis karmasik bir diizlemi, Sekil 20. (b) ise belirtilen diizlemin

f(z) = eGn@D* fonksiyonuna gore doniisiimiinii gdstermektedir. Karmagik diizlemin
tizerindeki her noktada, siniis fonksiyonu dalgalanma yaratir. Bu durum, karmasik diizlemde
cok katmanli ve tekrarli bir dalga yapisi meydana getirir. Siniis degerinin karesi,
dalgalanmanin biiyikligiinii daha da artirir ve simetrik bir yap1 olusturur. Eksponansiyel
fonksiyon ise bu dalgalanmalar1 siddetlendirir ve karmasik diizlemde renklerde yogunlasma,
simetri ve fraktal benzeri yapilar meydana getirir. Diizlemin genelinde, fonksiyonunun
etkisiyle renkler diizenli araliklarla dalgalanmis ve tekrarlayan simetrik desenler
olusturmustur. Bu durum, fonksiyonun biiyiikliik ve faz lizerinde es zamanli etkisiyle ortaya

cikmustir.
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(sin(Z))2
(=)

Domain Renklendirme (Karmasik Dizlem) Karmasik Duzlem

2.0 i s
-
15 15
1.0 1.0
0.5 0.5
E E
= 00 ® 00
c s
© 0
(%] [%2]
-0.5 -0.5
-1.0 -1.0
-1.5 =145
-2.0 2.0 AN | 77
2.0 =1:5-—10 =05 0.0 05 10 L5 2.0 =20 =1.5:=1.0 =05 0.0 ‘05 X0 15 2.0
Gergek (Re) Gergek (Re)

(@)

Sekil 20. (a) Renklendirilmis karmasik bir diizlem (b) Belirtilen diizlemin f(z) = en(=)’
fonksiyonuna gore doniistimiinii

3D gosterim, Verilerin veya fonksiyonlarin ii¢ boyutlu bir uzayda gorsellestirilmesidir.
Bu gorsellestirme, 6zellikle karmagik fonksiyonlarin, yiizeylerin veya dinamik sistemlerin
analizinde oldukga etkilidir. Ugiincii boyutun kullanimu, verilerdeki gizli desenlerin veya
ozelliklerin daha belirgin hale gelmesini saglar. Boylece 3D gdsterim, verilerin ve iligkilerin
daha ayrmtili olarak incelenmesini ve anlasilmasini kolaylastirir. Sekil 21. (a)
renklendirilmis karmasik bir diizlemin f(z) = z? fonksiyonuna gore doniisiimiinii, Sekil 21.

(b) ise ilgili diizlemin f(z) = z? fonksiyonuna gore doniisiimiinii 3D olarak gostermektedir.

222D 223D

~
3

0.0

o .

=20 =15 -1.0 -0.5 0.0 0.5 1.0 15 20
Gergek (Re)

(@) (b)

Lot - A T S

Sanal (Im)

Modiil (|2~2])
© MM Mg 3 HX Mg ofF

Sekil 21. (a) Renklendirilmis karmasik bir diizlemin f(z) = z? fonksiyonuna gére
doniisiimii (b) Ilgili diizlemin f(z) = z? fonksiyonuna gére doniisiimiiniin 3D olarak
gosterilmesi
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1.9.9. Karmasik Zernike Momentleri

Karmasik Zernike momentleri, hem gercek hem de sanal bilesenleri bir araya getirerek
iki boyutlu sinyallerin islenmesinde 6nemli avantajlar sunar. Bu momentler, geleneksel
Zernike momentlerine gére daha zengin bilgi saglar ve goriintiilerin karmasik yapisini daha
iyl yansitma kapasitesine sahiptir.

Karmasik Zernike momentlerinin gergek bileseni goriintiiniin yogunluk degerlerini
temsil ederken, sanal bilesen goriintiideki faz bilgilerini igerir. Bu iki bilesenin birlesimi,
nesnelerin sekilsel ve yapisal 6zelliklerini daha kapsamli bir sekilde degerlendirmeyi
mimkiin kilar. Bu ozellikleri sayesinde karmasik Zernike momentler, ozellikle tibbi
goriintlileme, yiiz tanima ve endiistriyel goriintii analizi gibi alanlarda, karmasik sekil ve
yapilarin incelenmesinde degerli bir ara¢ haline gelmektedir. Karmasik Zernike momentleri,
goriintlilerin daha iyi taninmasi ve smiflandirilmasina katkida bulunarak, goriintii isleme
alaninda 6nemli bir gelisme saglamaktadir.

Diger yontemlerle karsilastirildiginda, moment formiilasyonu, giiriiltitye dayanikliligs,
bilgi yogunlugu ve yeniden yapilandirma yetenegi acisindan iistiin performans gosterdigi
icin daha popiilerdir (Teh & Chin, 1988). Mevcut yontemlerin ¢ogu, tanima siirecinde
degismeyen oOzellikler olarak yalnizca momentlerin biiylikliik bilesenini kullanmaktadir.
Bununla birlikte, Singh ve ekibi, goriintii temsili i¢in faydali bilgiler sunan momentlerin faz
bilesenini vurgulamaktadir. Caligmalarinda, biiyiiklikk ve faz katsayilarinin performansini
kapsamli bir sekilde analiz etmislerdir (Singh vd., 2011). Li ve ekibi ise Zernike
momentlerinin faz bileseninin, goriintii yeniden yapilandirmasinda 6nemli bilgiler i¢erdigini
belirlemektedir. Bu nedenle, hem biiyiiklik hem de faz katsayilarini birlestirerek yeni bir
sekil betimleyicisi olugturmay1 6nermektedirler (Li vd., 2009).

Karmagik Zernike momentleri, bagint1 (31)’de oldugu gibi ifade edilir.

_n+1

Am
n i

2w 1
f f f(r, )V (r,0)rdrd6 (31)
o Jo

NxN boyutundaki bir ayrik goriintii i¢in, n (0, 1, 2, ..., o olabilir) derecesindeki ve m
(pozitif ya da negatif tam say1 olabilir) tekrarlarindaki CZM’ler bagint1 (32)’de gosterildigi
gibi hesaplanmaktadir.
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Apm =

n+ 1 N-1 V-1
z, z f o ¥ Vom (X1, v5)
T i=0 j=0

2i— (N —-1) 2j — (N = 1)
X=—n_—1 VT N—1

(32)

(32) bagmtisinda |m|<n ve n—|m| ¢ift olmaldir. f(x;y;) goriintiiniin
yogunlugunu ifade eder ve orijinal koordinatlar birim disk icine uyacak sekilde
dlgeklendirilmistir, yani x? + y]-2 < 1. Ayrica, * karmasik eslenik anlamina gelir ve Zernike

polinomu V;,,,, (x;, y;), polar koordinatlarda baginti (33)’de V,,,,, (7, 8) olarak ifade edilir.

V;”Lm(r; 0) = an(r)e—jme (33)

Bagint1 (33)'de, 0 < r < 1 ve j sanal birim olmak fiizere, ortogonal radyal polinom
R, (r) bagnt1 (34)'de gosterildigi gibi ifade edilir. Sekil 22, Zernike radyal polinomlarinin

(m =0, 1) i¢in ilk beg derecesini gostermektedir.

=a (Tl — S)! n—2s

2

RI(r)
o
o

0.0 0.2 0.4 0.6 0.8 1.0

(0.80. 0.80)g
(0.60. 0.60%

RT(r)

0.0 0.2 0.4 0.6 0.8 1.0

Sekil 22. Zernike radyal polinomlarinin (m = 0, 1) i¢in ilk bes derecesi
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Sekil 23, bagmt (33)’deki e /™ agisal bileseninin m = 2 igin siniis ve kosiniis
grafiklerini ve karmasik diizlemdeki doniislerin trigonometrik temelde nasil ifade edildigini
gosterir. Ilgili sekilde, gercek eksen (real) iizerinde kosiniis bileseni, sanal eksen (imaginary)
lizerinde ise siniis bileseni yer alir. 0 acgisinin degisimine bagli olarak kosiniis bileseni

yatayda, siniis bileseni ise dikeyde salinim gosterir.

e7/28 Fonksiyonunun Gercek ve Sanal Kisimlan

1.00 4 —— Gergek Kisim (Real)
~— Sanal Kisim (Imaginary)

0.75 4

0.50 +

0.25

Deger

0.00
-0.25 1
—0.50 \\
-0.75 4

—1.00 4

8 (radyan)
Sekil 23. Bagnt (33)’deki e ~/™? agisal bileseninin m = 2 igin siniis ve kosiniis grafikleri

Sekil 24, V,,,(r,0) Zernike polinomunun farkli n ve m degerleri i¢in hesaplanmis
halinin kutupsal formda gergek ve sanal bilesenlerini renk kodlamasi ile gostermektedir.
Boylece, Zernike polinomunun geometrik yapisi ve agisal frekanslarina bagli salinim

ozellikleri daha kolay anlagilir.

Gergek Kisim n=1 m=1 Sanal Kisim
1 1
08
¢ 9 06
05 05 ' »
-1 : -1 0.2
14 05 0 05 1 -4 05 0 05 1
Gergek Kisim n=2 m=2 Sanal Kisim ¢

o

0.5 ‘ . 0.5 04
0.5 -0.5 \ ’ 08
L -
05 0 O 1 05 0 05 1

4 5 4

Sekil 24. V;,,,,(r, 8) Zernike polinomunun farkli n ve m degerleri i¢in hesaplanmis halinin
kutupsal formda gergek ve sanal bilesenlerini renk kodlamasi
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Sekil 25. (a), V., (r,0) Zernike polinomunun (n = 2, m = 2 igin) kutupsal olarak
renklendirilmis formu iizerinde rastgele se¢ilen noktalarin sayisal karsiliklarini igerir. Sekil
25. (b) ise, ayni noktalarin ayrik bir goriintiide grid yapisinda nasil konumlandigini gosterir.
lgili grid yapisi, Zernike polinomunun her bir noktas: icin ayrik sayisal degerlerin gorsel

olarak nasil diizenlendigini daha net bir sekilde ortaya koymaktadir.

Gergek Degerler Gergek Degerler
1
1 0 !
0.8 s 0.8
0.6l | 0.6
0.5 Il 1]
0.4 0.4
005 0
015 0.2 0.2
0 0 0
042
099 0.2 0.2
-013 k 0.4
0.5 & 023 ol B ; m 0.4
) S ‘o -0.6
0.8 2
2 -0.8
1
! -1
1 0.5 0 0.5 1 -0.8-0.6-04-02 0 0.2 0.4 0.6 0.8
(a) (b)

Sekil 25. (8) V,m (1, 8) Zernike polinomunun (n = 2, m = 2 i¢in) kutupsal olarak
renklendirilmis formu (b) Ayni noktalarin ayrik bir goriintiide grid yapisinda nasil
konumlandiginin gosterilmesi

Sekil 26, Zernike polinomlarinin farkli derecelerdeki (farkli n ve m degerleri igin)

yapilarini kutupsal formda renklendirilmis sekillerle gosterir.

1(.’a K, n=0, m=0
0
-1
4 0 1
(1'5 K, n=1, m=-1 1S K, n=1, m=1
0 -
-1 -1
i 0 4 0 A
(15 K, n=2, m=-2 1GK, n=2, m=0 1SK, n=2, m=2
4 4 LN
4 0 4 q4 O A & 40 4
? K, n=3, m=-3 ? K, n=3, m=-1 1S K, n=3, m=1 1S K, n=3, m=3
-~ N p
- SN
olf | of(# ' 0 v
b, El A = E
G | 40 1 T A | 40 1
? K, n=4, m=-4 (13 K, n=4, m=-2 1SK. n=4, m=2 15 K, n=4, m=4
~ -
T = 3 & "\
ofb 1 0 (. .) 'l oy y
b 4L 4 v gL
4y @ " = T A 0 o Z; L

Sekil 26. Farkli derecelerdeki Zernike polinomlart
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CZM'yi hesaplamak i¢in, goriintii (veya ilgi bolgesi) dncelikle polar koordinatlar
kullanilarak birim diske haritalanir ve goriintiiniin merkezi birim diskin orijini olarak kabul

edilir. Bagint1 (35), normalize edilmis goriintii koordinatlarini (x;, y;) birim daire alaninda

polar koordinatlara (r, 8) dontistiiriir.

Xx; =rcosf , y; =7rsinf

= et = (B L 0y ®

6 = tan™? (&) =tan™! <(2j - (N-1)/(N - 1))
(2i-(N-1)/(N-1)

Xi

NxN boyutlu ayrik bir goriintiiniin orijinali ve birim diskin goriintii i¢ine iz
diisiiriilmiis hali Sekil 27°de gosterilmistir. Ornek bir fotograf izdiisiimii Sekil 28’de

verilmektedir.

Y ] 7
] A4 A A
sl iRREE NN 1 1
Tz s
RN | 035 \1 i 4 0511 >i
» \/ \ /
N1 -1 1
(a) (b) (©)

Sekil 27. (a) NxN boyutlu ayrik bir goriintii (b) Birim disk (c) Birim diskin normalize
edilmis goriintii i¢ine 1z diistirtilmis hali

Orjinal Fotograf Birim diskin gériintii icine
o g iz diisiiriilmiis sekli
- 2208

'C‘_

Sekil 28. Ornek bir fotograf izdiisiimii
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Zernike polinomlarinin esleniginin (Vn*m(xl-,yj)) iz diisiiriilmiis goriintitye uygulama
sonuglar1 gercek ve sanal bilesenleri sirasiyla, n = 1 ve m = 1 i¢in Sekil 29.(a)’da, n = 2

ve m = 2 i¢in Sekil 29.(b)’de, n = 9 ve m = 5 igin Sekil 29.(c)’de gosterilmistir.

(b) (©)
Sekil 29. Zernike polinomlarinin esleniginin iz diisiiriilmiis goriintiiye uygulanmasi

Bagint1 (32)’ye gore elde edilmis 6znitelik vektoriiniin karmasik 6znitelik vektorii

grafigi Sekil 30°da verilmistir.

«©10% Karmagik Ozellik Vektorii Grafigi

Sanal kisim
[=]

4 05 0 0.5 1 15 2 25 3 35
Gergek kisim %10°

Sekil 30. Karmasik 6znitelik vektorii grafigi

Bagint1 (32)’ye gore A,, -,y = Ajm oldugundan, A, ,,,’nin karmasik eslenigi A, _,,,’ye
esittir. Bu durum da genliklerin birbirine esit oldugu (|An,m| = |An,_m|) anlamina
gelmektedir. Bir baska deyisle, karmasik sayilarin eslenigi alindiginda genlik degeri

degismez. Sekil 31, dznitelik vektoriiniin genlik grafigini (|An_m|) belirtmektedir.
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£ 10° Ozellik Vektorii Genlik Grafigi

—©— Genlik (|A_m|)

Genlik Degeri |JAnm|
- N w
— o N ()] w o

o
o

0 5 10 15 20 25
Vektor Eleman Numarasi

Sekil 31. Oznitelik vektoriiniin genlik grafigi

Orijinal goriintii, ters donilisiim uygulanarak (6znitelik vektorii lizerinden) yeniden
olusturulabilir. Goriintiiniin 6znitelik vektori lizerinden yeniden olusturulmasini ifade eden

bagint1 (36)’da gosterilmistir.

Fem) =Y 3" Abhn ooy (3)
n=0 m=-n

llgili bagintida n,,,, en yiiksek moment derecesini temsil etmektedir. ikili (binary)
gorintiiler i¢in yeniden yapilandirma nispeten az sayida terimle gerceklestirilebilir. Ancak,
gri tonlamali (gray level) goriintiiler i¢in yeniden yapilandirma genellikle daha yiiksek bir
derecede yapilir. Ayrica, gri tonlamali goriintiiler i¢in Zernike momentlerinin degeri, iKili
gorlntiiler igin olanlardan daha yiiksektir. Bu durum, gri tonlama goriintiilerdeki daha fazla

bilgi ve daha fazla renk tonu nedeniyle, goriintiideki karmasikligin artmasindan kaynaklanir.

1.10. Simiflandirma

Yapay zeka, bilgisayarlarin insan benzeri diisiinme, karar verme ve problem ¢ézme
yeteneklerini kazanmasini hedefleyen bir bilim dalidir. Bilgisayarlarin yalnizca veri
islemekle siirli kalmayip oOgrenme ve akil yiirlitme gibi karmasik siirecleri de

gerceklestirebilecegi fikrine dayanir. Yapay zekanin temel amaci, insanlarin iistlendigi zorlu
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biligsel gorevleri otomatiklestirerek giinliik yasamdan endiistriye kadar genis bir alanda
kullanilabilir ¢ozimler sunmaktir.

Makine 6grenimi, yapay zekanin bir alt dali olup, bilgisayar sistemlerinin deneyim ve
verilerden Ogrenerek kendi performanslarim1  gelistirmelerini  saglar. Geleneksel
programlamadan farkli olarak, makine 6grenimi modelleri sabit kurallar ve algoritmalar
yerine, verilerden ¢ikarim yaparak ¢alisir. Ozellikle biiyiik veri miktarlarinin artis1 ve giiclii
hesaplama kaynaklarinin gelisimi, makine 6greniminin hizli bir sekilde ilerlemesine ve
yayginlagsmasina katki saglamistir. DT, SVM ve Bayes aglar1 (BN), makine 68reniminin
onemli yontemlerine 6rnek olarak gosterilebilir.

Derin 6grenme, makine 6grenmesinin bir alt kiimesi olarak, ¢ok katmanli makine
Ogrenimi ile ayni1 anda 6zellik se¢imi ve model uyumunu gerceklestiren bir 6zellige sahiptir.
Ornegin, CNN, goriintii tanima ve analizinde yaygin olarak kullanilirken; RNN, dil isleme
ve zaman serisi analizlerinde kullanilir. Derin 6grenmenin, yapay zekd ve makine

ogrenmesiyle olan iliskisi Sekil 32°de gosterilmektedir.
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Sekil 32. Derin 6grenmenin, yapay zeka ve makine 6grenmesiyle olan iligkisi

1.10.1. Makine Ogrenmesi

Makine oOgrenmesi, bilgisayarlarin ornek verilerden Ogrenerek tahminlerde

bulunmasint veya kararlar almasim1 saglayan bir yapay zeka dalidir. Geleneksel
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programlamadan farkli olarak, makine 6grenmesi sistemlerinde bilgisayara acik kurallar
yazmak yerine veriyle egitilen bir model olusturulur. Bu model, ge¢mis verilere dayanarak
gelecekteki durumlar1 tahmin edebilir veya belirli oriintiileri taniyabilir. Makine 6grenmesi;
matematik, istatistik, bilgisayar bilimi ve optimizasyon yontemlerinin birlesimi olarak ¢alisir
ve saglik, finans, tarim, tiretim gibi pek ¢ok alanda dnemli uygulamalara sahiptir.

Makine 6grenmesi algoritmalarinin temel amaci, bir hedef fonksiyonu optimize ederek
en 1yi sonugclari elde etmektir. Bu siireg, 6nce bir model olusturmayi, ardindan bu modelin
performansini artirmak i¢in uygun bir hedef fonksiyonu tanimlamayi icerir. Hedef fonksiyon
belirlendikten sonra, sayisal veya analitik optimizasyon yontemleri kullanilarak ¢6ziim
bulunur. Ornegin bir e-posta hizmeti, spam mesajlar1 ayirt etmek i¢in makine dgrenmesi
algoritmalarin1 kullanirken, bir otonom ara¢ ise gevresinden gelen verilerle hareket
stratejileri olusturabilir.

Makine 6grenmesi algoritmalari, ¢dziilmesi gereken problem tiiriine ve modelleme
amacina gore dort ana kategoriye ayrilir (Shiliang vd., 2019).

Denetimli 6grenme, modelin etiketlenmis veriler kullanilarak egitildigi bir makine
ogrenmesi yontemidir. Bu yaklasim, smiflandirma ve regresyon olarak iki ana alt gruba
ayrilir. Siniflandirma, verileri belirli kategorilere ayirmay1 amaglar. Ornegin, bir ciimleyi
uygun bir kategoriye yerlestirmek veya bir goriintiiniin igerigini siniflandirmak gibi
problemler smiflandirma kapsaminda ele alinir. Regresyon ise siirekli bir degeri tahmin
etmeye yonelik bir yaklasimdir. Ornegin, bir evin fiyatim tahmin etmek ya da bir iiriiniin
gelecekteki satig rakamlarini 6ngdrmek gibi durumlarda regresyon yontemleri kullanilir.

Yar1 denetimli 6grenme yonteminde, hem etiketli hem de etiketlenmemis veriler bir
arada kullanilir. Etiketlenmemis verilerin fazla oldugu durumlarda, model performansini
artirmak i¢in etkili bir yaklagim saglar.

Denetimsiz 6grenme, etiketli veri olmaksizin verilerdeki gizli oriintiileri ve iliskileri
kesfetmeye odaklanir. Bu yaklasim, verilerdeki yapilarin anlasilmasina ve
gruplandirilmasina olanak tanir. Denetimsiz 6grenmenin temel kullanim alanlarindan biri
kiimeleme olup, bu siiregte veriler benzer 6zelliklere gore gruplandirilir. Diger bir 6nemli
kullanim alan1 ise boyut indirgeme olup, verilerin daha az boyutta temsil edilmesini saglar.
Bu yontem, 6zellikle biiylik veri setlerinin gorsellestirilmesi ve islenmesinde énemli bir rol
oynar.

Pekistirmeli 6grenme yontemimde, bir ajan cevresinden aldigi geri bildirimlere

(odiiller ya da cezalar) gore hareket etmeyi 6grenir. Bu baglamda asil amag, uzun vadede en



53

yiikksek odiilli saglayacak stratejiyi gelistirmektir. Bu yontem, robotik sistemlerden oyun
stratejilerine kadar genis bir alanda uygulanir.

Her bir kategori, belirlenen hedef fonksiyonunu optimize etmek i¢in farkli algoritmalar
ve teknikler kullanir. Sonug¢ olarak makine 6grenmesi algoritmalari, ¢6zmek istedikleri
problem tiiriine uygun en iyi ¢oziimii liretmeyi hedefler. Genis bir kullanim alanina sahip
olan makine 6grenmesi glinlimiiz teknolojisinin temel yap1 taglarindan biri olarak hizla

gelismeye devam etmektedir.

1.10.2. Derin Ogrenme ve Mimarileri

Derin 6grenme, verilerdeki karmagik desenleri ve iliskileri anlamak i¢in ¢ok katmanli
yapay sinir aglarini kullanan bir makine 6grenmesi dalidir. Bu katmanlar, verileri hiyerarsik
olarak isler ve basit 6zelliklerden baslayarak daha karmasik yapilari ortaya ¢ikarir. Boylece,
biiyiik ve karmasik veri kiimelerinde bile etkili bir sekilde 6grenme ve tahmin yapabilme
yetenegi sunar. CNN, LSTM, RNN, RBM, iretken karsit aglar (GAN) ve derin oto-
kodlayicilar, bu mimarilere 6rnek olarak verilebilir.

CNN ilk olarak 1980'lerde onerildi (Jiuxiang vd., 2018). CNN'lerde, standart yapay
sinir aglarinda kullanilan matris ¢arpimi yerine evrisim islemi kullanilir. Bu degisiklik,
agdaki agirlik sayisini azaltarak agin karmasikligini diisiiriir. Ayrica, goriintiiler dogrudan
ham giris olarak aga verilebilir, boylece standart algoritmalardaki 6zellik ¢ikarma siirecine
gerek kalmaz. CNN'ler, hiyerarsik katmanlarin etkin egitimi sayesinde derin 6grenmede
gergek anlamda ilk basarili mimari olarak kabul edilir. CNN topolojisi, mekansal iliskileri
kullanarak agdaki parametre sayisini azaltir ve bu da geri yayilim algoritmalariyla
performansin artmasini saglar. Grafik igslemci birimi teknolojisinin gelismesiyle birlikte
Krizhevsky ve arkadaglart1 2012 yilinda ImageNet problemini ¢ézmek i¢in ekran karti
destekli bir program kullanmis ve bu durum CNN’leri tekrar popiiler hale getirmistir
(Krizhevsky vd., 2012). Derin aglarin en biiyiikk sorunlarindan biri, agdaki birgok gizli
diigiim nedeniyle egitim siiresinin uzun olmasiydi. Ancak ekran karti islemcilerinin paralel
islem kapasitesinin artmasiyla bu sorun asilmigtir. CNN'lerin basarisindaki bir diger 6nemli
faktor, veri setlerindeki artis ve biiyiikk miktarda veriyi etkili bir sekilde isleyebilme
kapasitesidir. Ayrica, transfer 6grenme yontemleri sayesinde CNN'ler, dnceden egitilmis
modeller kullanilarak farkli problemler i¢in yeniden uyarlanabilir ve bu da daha az veriyle

yiiksek dogruluk oranlari elde edilmesini saglar. Glinlimiizde CNN’ler, ses verisi analizi ve
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goriintii tanima alanlarinda oldukc¢a popiilerdir. Sekil 33, CNN’lerin genel yapisini

-
Kernel (M*N) rr Duzlesn.nne /

Ozellik Haritalar

gostermektedir.

Giris
Goriintiisi Evrisim Katmam Tam Bagh Katman  Cikis Katmam

Sekil 33. CNN’lerin genel yapis1 (Kim vd., 2020)

RNN ve LSTM, zaman serisi verilerini ve sirali verileri analiz etmek i¢in kullanilan
giiclii derin 6grenme modelleridir. Bu modeller, 6zellikle ge¢mis verilerdeki desenleri
anlamada ve gelecekteki olaylar1 tahmin etmede biiylik basar1 gostermektedir. LSTM,
RNN'nin bir uygulamasidir ve ilk olarak 1997'de Hochreiter ve arkadaslari tarafindan
onerilmistir. LSTM, daha 6nce tanimlanan ileri besleme ag yapilarindan farkl olarak, 6nceki
durumlarin bilgisini saklayabilir ve hafiza veya durum farkindali§i gerektiren isler icin
egitilebilir. LSTM, RNN'nin 6nemli bir sinirlamasini yani kaybolan gradyanlar problemini,
gradyanlarin degistirilmeden ge¢cmesine izin vererek kismen c¢ozer. LSTM'ler, kapi
mekanizmalar1 sayesinde bilgiyi secici bir sekilde giincelleyebilir ve uzun siireli
bagimliliklar1 daha iyi 6grenebilir. Bu 6zellik, 6zellikle uzun dizilerdeki iliskileri kavramak
i¢in biiyiik bir avantaj saglar. Bununla birlikte, hem LSTM hem de RNN modelleri, biiyiik
veri kiimeleri ve yiiksek islem giicli gereksinimleri nedeniyle egitim asamasinda zaman ve
kaynak ag¢isindan maliyetli olabilir. Son yillarda, ¢ift yonlii RNN ve kapi 6zyinelemeli
gecitler (GRU) gibi tiirev modeller de gelistirilmis ve farkli uygulama senaryolarinda daha
verimli sonuglar elde edilmistir. Bu sayede olusabilecek problemlerin nerede ve ne zaman
olabilecegini Ongorerek proaktif Onlemler alinmasmi saglar. RNN, genellikle dil
cevrimlerinde kullanilmakla birlikte, zaman serileri gibi sirali verilerle bir sonraki noktay1
tahmin etme islemi igin idealdir. Ornegin, finansal hareketlerin verilerini kullanarak

gelecekteki durumlar1 tahmin edebiliriz. Ayrica, climlelerde art arda gelen kelimelere gore
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bir sonraki kelimeyi tahmin etmek de RNN'lerin yaygin kullanim alanlarindandir
(Sherstinsky, 2020). RNN, LSTM ve GRU’nun genel yapist Seki 34’de gosterilmektedir.

RNN LSTM GRU

X, X, Xy
E Sigmoid Fonksiyonu Hiperbolik Tanjant Fonksiyonu @®» 1’'den (ikarma
@ nNoktasal Toplama @®  Noktasal Carpma @ Vektir Birlegtirme

Sekil 34. RNN, LSTM ve GRU’nun genel yapisi (Idrees, 2024)

RBM, etiketlenmemis verilerden dogrusal olmayan iretici modeller olusturmak i¢in
kullanilan bir yapay sinir agidir. Bu ag, denetimsiz 6grenme algoritmalarini kullanarak girig
verisi lizerinde 6zellikle Boltzmann dagilimina tabi olan bir olasilik dagilimini 6grenir ve
girigin olasiliksal olarak yeniden insa edilmesini saglar. RBM, goriiniir ve gizli olarak iki
katmadan olusan bir yapiya sahiptir. Goriiniir katmanindaki her bir birim, gizli katmandaki
tiim birimlere baglanirken, ayn1 katmandaki birimler arasinda baglantilar yoktur. Bu 6zellik,
RBM’yi kisitli bir yapi olarak tanimlar ve bu nedenle adini "Kisitli" Boltzmann makinesi alir.
Regresyon, siniflandirma, boyut indirgeme, zaman serisi modelleme ve 6zellik ¢ikarimi gibi
bir dizi uygulama alaninda etkilidir (Teh, 2000). n gizli, m goriiniir degiskenli bir RBM’nin
grafi Sekil 35°de gosterilmektedir.

Gizli Degiskenler
h, h. h, h,

(4] U, Uy Uy
Gortiniir Degiskenler

Sekil 35. RBM’nin genel yapis1 (Fischer, 2012)
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GAN/'lar, oyun teorisine dayali {iretici modelleri 6grenmek i¢in kullanilan giiglii bir
yapay zeka aracidir. GAN'lar veri dagilimint dogrudan modellemek yerine, bu verilerden
ornekler iiretmeyi hedefler ve bunu gergeklestirmek i¢in derin sinir aglarii kullanir.
Rastgele giiriiltii verisi {iretici ag tarafindan islenerek, gercek verilere benzer sahte 6rnekler
tiretir. Bu siiregte ayiric ag, tiretici agindan gelen sahte verilerle gercek verileri ayirt etmeye
calisir. Uretici ve ayirict arasindaki karsilikli etkilesim, her iki agin agirliklarini ve
sapmalarin1 giincelleyerek kayip fonksiyonlarini minimize etmelerini saglar. Boylece,
tiretici daha gergekgi veriler iiretmeye ayirici ise bu verileri daha dogru ayirt etmeye baslar.
GAN'larin egitimi, yiiksek boyutlu parametrelerle yapilan bir Nash dengeleme siireci
gerektirir (Nash, 1950). Son déonemde, GAN'larin yakinsama siirecini iyilestirmeye yonelik
tekniklerin kullanim1 artmistir. Bu teknikler, daha iyi yar1 denetimli 6grenme performansi
ve daha gercekei ornekler iretmeye imkan tanimaktadir. GAN'lar, dzellikle goriintii iretimi,
video olusturma ve ses sentezi gibi yaratici alanlarda devrim yaratmis ve fotograf
diizenleme, deepfake iiretme ve sanat iiretme gibi pek c¢ok alanda basarili bir sekilde
uygulanmistir (Goodfellow vd., 2024). Sekil 36, GAN’1n genel yapisini ifade etmektedir
(Dong vd., 2021).

Rastgele Gergek
Giiriiltii bl
3 Sahte
-

I 5

Sekil 36. GAN’1n genel yapisi (Dong vd., 2021)

Derin oto-kodlayicilar, etiketlenmemis verilerle ¢alisan ve veriyi sikistirarak boyut
indirgeme islemi gerceklestiren denetimsiz 6grenme tabanli yapay sinir aglaridir. Bu aglar,
gizli katmandaki temsiller aracilifiyla veriyi daha verimli isler ve 6zellik ¢ikarimi yapar.
Oto-kodlayicilar, giris verisini yeniden olusturmak i¢in dgrenilen bir temsili kullanir ve bu
stire¢ geri yayilim algoritmasiyla gergeklestirilir. Oto-kodlayicilar, temel bilesen analizi gibi
lineer boyut indirgeme yontemlerini genisleterek, dogrusal olmayan temsiller elde eder.

Giris katmani, gizli katman ve ¢ikis katmani olmak {izere genellikle ii¢ katmanda olusur.
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Gizli katmanda yer alan ndron sayisi, girig ve ¢ikis katmanlarindaki ndronlardan daha azdir,
bu da verinin sikigtirilmasini ve agda daha az veriyle islem yapilmasini saglar. Bu yap1, agin
daha verimli ¢alismasini ve verilerin daha etkili bir sekilde temsil edilmesini saglar. Derin
O0grenme ve transfer 6grenme gibi alanlarda 6nemli bir rol oynar ve etiketlenmemis verilerle
calisarak gii¢lii ve etkili ¢oziimler sunar (Baldi, 2011). Sekil 37, oto-kodlayicilarin genel
yapisini gosterir (Pinaya vd., 2020).

Yeniden
Giriy Olusturma

Kodlayic

Sekil 37. Oto-kodlayicilarin genel yapisi (Pinaya vd., 2020)

1.10.3. Derin Sinir Aglar:

ANN, insan beyninin ¢alisma prensiplerinden esinlenerek gelistirilmis bir hesaplama
modelidir. Bu aglar, verilerin islenmesini ve 0Ogrenilmesini saglamak ic¢in g¢esitli
katmanlardan olusur ve her bir katman, veriler {izerinde belirli bir islevi yerine getirir. ANN,
derin 6grenmenin temel yapi taslarini olusturur. ANN’lerin kdkenleri, 1940'ara dayanir. Ik
olarak, bilim insanlari, beynin noronlar arasindaki baglantilarin 6grenme ve bilgi isleme
tizerindeki etkilerini modellemeye ¢aligtilar. Bu ¢alismalarin sonucu olarak, ilk ANN’ler
ortaya cikt1.

Sinir aglarinin ¢alisma prensibi, biyolojik noronlarin isleyisine benzer sekilde
tasarlanmistir. Bir ndron, aldig1 girisleri agirlikli bir sekilde toplar. Bu agirlikli toplamlar,
ndronun giriglerine baglanan sinapslar araciligiyla yapilir ve bu siireg, sinapslarin her birine
bir agirlik degeri atanarak gercgeklestirilir. Bu agirlikli toplam, aslinda néronun aldig:
verilerin bir tiir 6l¢eklendirilmesidir. Ancak noronlar sadece bu toplami kullanarak bir ¢ikti
iretmezler. Eger sadece agirlikli toplam alinsaydi, ndronun iglemi basit bir dogrusal cebirsel

islemden farksiz olurdu. Gergek noronlar, aldiklar1 girislerin agirlikli toplamin1 dogrudan
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kullanmak yerine, bu toplam iizerinde genellikle dogrusal olmayan bir iglem uygular. Bu
dogrusal olmayan islem, néronun ¢iktisini belirler. Bir noron belirli bir esik degerini asan
girislere tepki verir ve ¢iktiy1 tiretir. Yani agirlikli toplamin kendisi sadece ham veriyi temsil
eder, ancak noronun aktif olup olmayacagina karar veren asil islem dogrusal olmayan bir
fonksiyondur. Dogrusal olmayan fonksiyonlar, sinir aglarinin gii¢lii bir 6zellik kazanmasini
saglar. Bu baglamda ilgili fonksiyonlar, karmasik ve dogrusal olmayan iliskileri grenme ve
modelleme yetenegi sunar. Eger sinir aglar1 sadece dogrusal bir fonksiyon kullanarak
caligsaydi, ag yalmizca dogrusal iliskileri Ogrenebilir ve daha karmasik problemlerin
istesinden gelemezdi.

Ogrenme agdaki agirliklarin degerlerini belirlemeyi icerir ve buna agm egitilmesi
denir. Egitim tamamlandiktan sonra, agin ¢iktisini hesaplamak igin egitim siirecinde
belirlenen agirliklar kullanilir ve bu siirec test islemi olarak adlandirilir.

Sinir aglar1 alaninda, derin 6grenme adi verilen bir alan bulunmaktadir. Bu alanda,
sinir aglar1 li¢ katmandan daha fazla katmana sahiptir, yani birden fazla gizli katman bulunur.
Boylece DNN'ler, daha karmasik ve soyut yiiksek seviyeli 6zellikleri 6grenme kapasitesine
sahiptir. Doktora galismalar1 kapsaminda, derin 6grenme alaninda kullanilan sinir aglarina

genel olarak DNN'ler denilecektir (Sze vd., 2017).

1.11. Karmasik Degerli Derin Sinir Aglar

Makine 6grenmesi ve derin 6grenme modelleri (MLP, DNN, CNN, RNN vb.),
islemlerinde karmasik sayilar yerine gergek sayilar kullanmaktadir. Bu modeller, gercek
degerli agirliklar ve gercek degerli aktivasyon fonksiyonlar1 kullanilarak standart geri
yayilim algoritmasi ile egitilmektedir. Ote yandan, karmasik degerli sinir aglari (CVNN),
karmasik degerli agirliklar, karmagik degerli aktivasyon fonksiyonlar1 ve karmagsik degerli
geri yayilim algoritmasi kullanmaktadir. CVNN, o6zellikle karmagik veri analizi ve ayrintili
bilgi gerektiren 6zel uygulamalarda tercih edilirken, gercek degerli sinir aglari daha genel
uygulamalarda yaygin olarak kullanilmaktadir.

Son yillarda, karmasik sayilar kullanarak yapay sinir aglari olusturma ve karmasik
degerli sinir aglarinin gergek degerli muadillerine kiyasla olasi avantajlarin1 kesfetme
konusunda artan bir ilgi vardir. Ayrica, CVNN'ler bir¢ok pratik sistemi verimli bir sekilde
modellemek i¢in kullanilmaktadir. Bu nedenlerle, CVNN'lere yonelik aragtirmalar artmistir

(Chanthorn vd., 2020).
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Karmasik degerli sinir aglari, bir sinir ag1 i¢in agirliklar, esikler, giris ve c¢ikis
verilerinin karmagik sayilarla temsil edilebildigi yapilardir. Boylece, karmasik degerli
veriler, agin girisine herhangi bir 6n isleme tabi tutulmadan dogrudan verilebilir (Lee vd.,
2022). CVNN'ler ozellikle telekomiinikasyon, askeri sistemler, goriintii isleme, robotik
sistemler, otonom sistemler, sinyal isleme ve radar teknolojilerinde kullanilir. Bu alanlarda
sinyaller siklikla karmagik sayilarla temsil edilir ve bu sinyallerin kompleks degerli sinir

aglar1 ile dogrudan islenmesi daha verimli sonuglar saglar (Virtue vd., 2017).

1.11.1. Optimizasyon Algoritmalari

Derin 6grenme modellerinin temel amaci, agin agirliklarini optimize ederek kayip
fonksiyonunu minimize etmektir. Bu siire¢, genellikle gradyanlara dayali bir yaklagimi
kullanir ve gradyan inisi gibi optimizasyon algoritmalarini i¢erir. Gradyan inisi algoritmast,
agirlik vektorlerinin en uygun degerlerini belirlemek i¢in 6nemli bir ydontem sunar. Ancak
bu siiregte, 6zellikle derin aglarda karsilagilan “gradyan kaybolmasi” ve “gradyan patlamas1”
gibi problemler optimizasyonun etkinligini olumsuz etkileyebilir. Gradyanlarin ¢ok kii¢iik
degerlere diigmesi Ggrenme siirecinin yavaslamasina, ¢ok biiyiikk degerlere ulagsmasi ise
agirliklarin kararsiz hale gelmesine yol agabilir. Bu problemlerin iistesinden gelmek igin
hem ileri seviye optimizasyon algoritmalar1 gelistirilmis hem de bu algoritmalara gradyan
problemlerini hafifletecek ¢oziimler entegre edilmistir.

Optimizasyon algoritmalarinin basarisi, bir probleme ait siniflar1 ayristirabilmek _igin
en uygun agirlik vektdrlerini bulma kabiliyetiyle dogrudan iliskilidir. Bu baglamda
optimizasyon algoritmalari, derin Ogrenme modellerinin etkinligi ve basarist igin
vazgecilmezdir. Bazi optimizasyon algoritmalar1 asagidaki gibi siralanabilir (Sun vd., 2020)
(Shrestha, 2019).

e QGradyan inisi algoritmasi, makine 6grenimi ve derin 6grenme algoritmalarinin
temelini olusturan bir yontemdir. Bu yontem, bir fonksiyonun minimum degerine ulagmak
i¢in tiirev veya egim bilgisini kullanir. Bu siirecte, rastgele bir baslangic noktasi secilir ve
bu noktadaki tiirevin pozitif veya negatif olmasina gore fonksiyonun degerini azaltacak
yonde ilerlenir. Burada amag fonksiyonun minimum noktasina ulasmak ve bu noktada islemi
durdurmaktir.

Bu yontem bazi zorluklar icermektedir. Soyle ki, fonksiyonun karmasik bir yapiya

sahip oldugu durumlarda, yontem yerel minimumlarda takilabilir. DNN’lerde kullanilan
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gradyan inisi yontemi, ¢ok boyutlu bir alanda uygulanir. Bu alan agdaki her agirlik i¢in bir
boyut igerir ve karmasiklik arttik¢a dogru ¢éziimii bulmak zorlasabilir.

Geriye yayilim algoritmasi, gradyan inisini kullanarak agirliklarin optimize edilmesini
saglar. Bu yontemde, agin ¢iktis1 ile beklenen ¢iktis1 arasindaki hata hesaplanir ve bu hata
agirliklar lizerinde geri yayilir. Her bir agirlik, hatayr azaltacak sekilde diizenlenir ve bu
islem veri setindeki tim Ornekler islenene kadar devam eder. Siire¢, hata daha fazla
azalamadiginda tamamlanir.

Bu yontem, her katmandaki hatanin bir sonraki katmana nasil yansiyacagini
hesaplamak icin kullanilir. Boylece her agirlik ve baglanti, sistemin genel performansini
artiracak sekilde optimize edilir.

e SGD algoritmasi, gradyan inisinin en yaygin kullanilan varyasyonlarindan biridir
ve agirliklarin gilincellenmesini daha hizli ve verimli hale getirir. Gradyan inisinde tim
egitim veri kiimesi iglendikten sonra agirliklar giincellenirken, SGD'de ise agirliklar, egitim
veri kiimesindeki kii¢iik bir 6rnek grubunun (mini-batch) islenmesinden sonra revize edilir.
Buna bagli olarak daha sik yapilan giincellemeler, modelin global minimuma daha hizli
ulagmasini saglayabilir. Ancak 6zellikle derin sinir aglarinda, gradyan kaybolmasi problemi
nedeniyle gradyanlar ¢ok kiiciik degerlere diiserek 6grenme siirecini yavaslatabilir ve
modelin yakinsamasini zorlastirabilir. Yanlhs ayarlanmis bir 6grenme orani da bu sorunu
daha da kdotiilestirebilir. Bu problemleri hafifletmek i¢in baglangig agirliklarinin
optimizasyonu ve aktivasyon fonksiyonu secimi gibi stratejiler kullanilabilir. Ornegin,
Xavier veya He baglatma yontemleriyle agirliklarin baglatilmasi, gradyanlarin daha dengeli
bir sekilde yayilmasini saglayarak gradyan kaybolma sorununu azaltabilir (Kumar, 2017).
Ayrica, ReLU gibi sabit tiirevlere sahip aktivasyon fonksiyonlari, sigmoid veya tanh gibi
gradyanlari sifira yaklastiran fonksiyonlara kiyasla daha etkili bir grenme siireci sunabilir.

e SGD yonteminde 6grenme orani, agirlik giincellemelerinin biiyiikliigiinii belirleyen
sabit bir carpan olarak kullanilir. Ancak bu yaklasim, baz1 durumlarda minimum noktay1
asan giincellemeler ve gradyanlardaki giiriiltii nedeniyle yavas bir yakinsama siireci gibi iki
temel soruna yol agabilir.

Momentum algoritmasi, bu sorunlarin iistesinden gelmek i¢in fizigin momentum
kavramindan esinlenir. Algoritma, momentum adi verilen bir degisken kullanir ve bu
degisken gradyanlarin iistel olarak azalan bir ortalamasina dayanir. Boylece, sistemin yanlis
yonlere dogru gereksiz inis yapmasi engellenir. Ogrenme oran1 ve momentum parametresi,

agirlik glincellemelerinin hem yoniinii hem de degisimini kontrol etmek icin birlikte caligir.
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Dogru sekilde ayarlanmig bir momentum faktorii, 6grenme oraninin yiikksek oldugu
durumlarda yakinsama siirecinde olusabilecek salinimlar1 azaltmada 6nemli bir rol oynar.
Ancak momentum faktoriiniin se¢imi kritik bir konudur. Faktor ¢ok kiigiik oldugunda,
algoritmanin yakinsama hizimi artirma etkisi yeterince hissedilemez. Ote yandan ¢ok biiyiik
bir faktor degeri, glincellemelerin en uygun noktayr asmasina ve dengesiz bir 6grenme
slirecine neden olabilir.

Yapilan bircok deney, momentum faktorii i¢in en uygun degerin 0.9 oldugunu
gostermistir. Bu deger, algoritmanin yakinsama hizini artirirken kararliligi koruyarak
Ogrenme siirecini optimize eder.

e SGD yonteminde Ogrenme oraninin dogru bir sekilde ayarlanmasi, modelin
etkinligini biiytik 6l¢iide etkiler. Ancak uygun bir 6grenme orani belirlemek zorlu bir siirectir
ve bu problemi ¢ozmek i¢in 6grenme oranini otomatik olarak ayarlayan ¢esitli uyarlanabilir
yontemler gelistirilmistir. Bu yontemler, parametre ayarina gerek duymadan hizli bir sekilde
yakinsama saglayarak genellikle basarili sonuglar elde eder. SGD’nin en yaygin kullanilan
lyilestirmelerinden biri olan AdaGrad algoritmasi, her agirlik i¢in farkli bir 6grenme orani
belirler ve 6grenme oranini gegmis gradyanlar1 dikkate alarak dinamik bir sekilde ayarlar.
Bu 6zellik, 6grenme oraninit manuel olarak belirleme ihtiyacini ortadan kaldirirken 6zellikle
seyrek veri yapilarinda etkili sonuglar saglar.

AdaGrad’in baz1 dezavantajlar1 da vardir. Egitim siireci ilerledikge biriken gradyanlar,
0grenme oranini sifira yaklastirarak gilincellemelerin etkisiz hale gelmesine neden olabilir.
Bu durum, 6grenme siirecini yavaslatarak modelin yeterince hizli 6grenmesini engeller.
Ayrica, AdagGrad’in 6grenme oranini siirekli olarak kiigliltmesi gradyan kaybolmasi
problemini daha da artirabilir. Bu sorunlarin {istesinden gelmek icin bazi stratejiler
gelistirilmistir. Ornegin gradyan kirpma yontemi, biiyiik gradyanlar i¢in bir esik degeri
belirleyerek gradyan patlamasi problemini kontrol altina alirken, ReLU ve tiirevleri gibi
aktivasyon fonksiyonlar1 gradyanlarin daha verimli bir sekilde yayilmasina yardimci
olabilir.

AdaGrad’in smirlamalarina ¢6ziim olarak gelistirilen RMSProp algoritmast,
gecmisteki tim gradyanlar biriktirmek yerine belirli bir zaman dilimindeki gradyanlara
odaklanir. RMSProp, iistel azalan hareketli ortalamalar kullanarak grenme oranini daha
stabil hale getirir ve sifira yaklasmasimi engeller. Bu sayede, optimizasyon siireci daha
verimli bir sekilde devam eder ve DNN’lerde karsilasilan temel problemlerden biri olan

gradyan yonetimi daha etkin bir sekilde gerceklestirilir.



62

e Adam algoritmasi, her parametre i¢in uyarlanabilir 6grenme oranlari sunan ve
momentum tabanh bir yaklasimla gradyanlarin ge¢mis degerlerini dikkate alan gelismis bir
SGD yontemidir. Bu yontem, AdaDelta ve RMSProp gibi algoritmalardan ilham alarak
gecmis gradyanlarin ve karelerinin iistel olarak azalan ortalamalarini hesaplar. Ayrica,
momentum yontemine benzer sekilde, ge¢mis gradyanlarin iistel ortalamasini da tutar. Bu
siiregte kullanilan $,-0.9, B, = 0.999 ve € = 1078 gibi standart parametreler, gradyanlarmn
dengeli bir sekilde giincellenmesini saglar ve hizl1 yakinsama ile etkili bir 6grenme siireci
sunar.

Adam algoritmasi, 06zellikle ReLU gibi aktivasyon fonksiyonlariyla birlikte
kullanildiginda iyi performans gosterir ve gradyan patlamasi gibi problemlerin yonetiminde
basarilidir. Ancak bu gibi durumlarda gradyanlarin biiytlikliigiiniin kontrol altina alinmasi
gerektiginden, Adam ile birlikte gradyan kirpilmasi gibi tekniklerin kullanilmasi 6nerilir.
Ayrica baslangic agirliklarinin Xavier veya He baglatma gibi yontemlerle optimize edilmesi,
gradyanlarin diizglin yayilmasini saglayarak gradyan kaybolmasi problemini engelleyebilir.

DNN’lerde, Adam algoritmasinin etkinligi artik baglantilar ile artirilabilir. Artik
yapilar, bir katmanin c¢iktisina Onceki katmanlarin ¢iktisini ekleyerek gradyanlarin bir
katmandan digerine daha etkili bir sekilde gegmesini saglar. Bu mekanizma, derin aglarda
O0grenme siirecini  kolaylastirir ve Adam’in  sundugu avantajlar1 tamamlayarak
optimizasyonu daha da verimli hale getirir. Adam, bu gii¢lii 6zellikleri sayesinde diger

uyarlanabilir algoritmalara kiyasla pratikte oldukca basarili sonuglar verir.

1.11.2. CVDNN Egitim Algoritmasi

CVDNN mimarisinin 6grenme siirecinde gradyan tabanli 6grenme kullanir; ileriye
dogru yayilim sirasinda hatayr hesaplar ve ardindan bu hatayr her bir nérona geri yayarak
geri yayihim sirasinda agirliklari giinceller.

Geri yayihim algoritmasi, yapay sinir aglarindaki agirlik ve yanliligi optimize etmek
icin kullanilan temel bir algoritmadir. Bu algoritma, hatayr en aza indirmede ve sinir
aglarinin egitimi sirasinda 6grenme stirecini etkili bir sekilde yiiriitmede kritik bir rol oynar.

Sekil 38, bir CVDNN'yi temsil etmektedir.
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Girig Katmani Cikis Katmani

Gizli Katmanlar

Sekil 38. Karmasik degerli derin sinir agi (CVDNN)

Derin sinir agi, 0 < | < L ile indekslenen L adet katmana sahiptir. Tlgili esitlikte [ = 0
oldugunda giris katmanini, [ = L oldugunda ise ¢ikis katmanini temsil eder. Her [ katmani,
1<n <N, ile indekslenen N, norona sahiptir. w),, parametresi, | katmanindaki n.
norondan, [ — 1 katmanindaki m. nérona olan baglantinin agirligini ifade eder. Bu nedenle,
[ katmanindaki n. néronun ¢iktist ve (I + 1) katmanindaki m. ndéronun girdisi, baginti
(37)'de gosterildigi gibi ifade edilir ve ileri beslemeli hesaplama olarak bilinir. ilgili
bagintida, b terimi n. ndronun esik degerini ve f ise kompleks aktivasyon fonksiyonunu

temsil etmektedir.

Ni_q
net!, = Z Whnxtt + bl
m=1 (37)

xp = f(nety)

0 <1 <L esitliginde | = L oldugunda, ilgili katmamn ¢iktis1 x5 aym zamanda
karmasik degerli sinir aginin da ¢iktis1 olmaktadir. Karmasik degerli sinir agimin ¢iktist Sekil
38’de gosterildigi gibi y,, olarak ifade edilir. Karmagik degerli geri yayilimda yaygin olarak
kullanilan hata fonksiyonu baginti1 (38)'de gosterilmistir. Bu denklemde, d,,(t), y,, (t) ve e*
sirasiyla beklenen c¢iktiy1, gergek ciktiyr ve t zamanindaki karmasik eslenik hatay1 temsil

eder.
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1 Ny
B =3 Zn_len@e;;(t)
) (38)

en(t) = dn(t) — yu(0)

Herhangi bir agirthgin (w,,) giincellenmesi gerektiginde, Wirtinger hesaplamasina
gore (OE/Ow),, ve 0E/0(w,)*), hata fonksiyonu E(t)'nin ilgili agirhiga gore kismi
tirevlerinin hesaplanmasi gerekir (Abdalla, 2024). Ayrica, E (t) analitik olmayan bir ger¢ek
degerli fonksiyondur; bu nedenle, E(t)'nin w},,'nin gercek ve sanal kisimlarma gore kismi
tiirevlerinin ayr ayri hesaplanmasi gerekir (Leung & Haykin, 1991). w},,'nin formiilii ve
cikis katmanmin (I = L) giincelleme kurali bagint1 (39)'da verilmistir. Ilgili bagnti, 7

O0grenme sabitini temsil eder.

erlm(t) = Wrr%m(t) + iWiiLm(t)

B 1 0E()
Wam(t +1) = Wim() =50 3o (39)
0E() _ OE(®) . OE(®)

= i
Wi (t)  OWni () OWigyy (8)

Bagint1 (39)'u takiben, zincir kurali hem gercek hem de kompleks degiskenlerle
kompleks fonksiyonlara uygulanabilir. Bagint1 (40)'da gosterilen zincir kuralinda, karmasik
degisken z = x + iy olarak verildiginde, h ve g karmasik degerli fonksiyonlart i¢in, h
fonksiyonu g'ye baglidir. Benzer sekilde g fonksiyonu da z 'ye baghdir. Bu nedenle tiim
iliskiler h(g(z)) seklinde ifade edilebilir (Abdalla, 2024).

Karmagik degerli geri yayilim ve CVDNN optimizasyonu, karmasik degerli
aktivasyon fonksiyonlarinin gergek ve sanal kisimlarina gore kismi tiirevleri hesaplayarak
uygulanabilir. Bu, dolayisiyla hem ger¢ek hem de karmasik fonksiyonlar i¢in karmasik

zincir kurali uygulamasini kolaylastirir.

oh(g) 0hdg 0h dg*
dz dgdz 0g* 0z

(40)
dh(g) 0hdg 0h dg®
dz* 0gdz* dg*oz*
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z' nin ger¢ek ve hayali kisimlarina gore, karmasik zincir kurali bagint1 (41)’de

gosterildigi sekilde elde edilir.

ag dgox dgady

299y 2
9z axoz | ayoz “41)

Karmagik zincir kurali, bagintt (39)'daki kismi tlirevleri genisletmek icgin

kullanilmistir. Ilgili formiiller bagint1 (42)'de gosterilmistir.

JE(t) B

— =
OWTym

dE(t) 9y, Onetl O0E(t) 0y, 0J(neth)*
Oyn Onety Owry — 0¥n 9(netl)” Ownhim

OE(t) 0y, onet, O9E(t) dy, d(netl)”
Oyn Onetp Ownim  0¥; 3(netl)” OWry

(42)
1 ., Of(neth) ,_ . of (netl) .
- E(dn _yn) anet,ll xin - _(d ) ( n) (x ) -
of(nety))” 1 of (neth)*

1
E(dn_yn) Onet}l Xm~ — E(dn y) a( n) (x )

= f(netl), olmak iizere net} bagint1 (37)'de E(t) ise bagint1 (38)'de verilmistir.

Gergek kisim igin bagint1 (42)'de verilen formiile benzer olarak, sanal kisma karsilik
gelen formiil baginti (43)'de verilmistir. Bagintt (42) ve (43)1n baginti (39)a
yerlestirilmesiyle, ¢ikis katmani i¢in hata fonksiyonunun tiirevinin son hali bagint1 (44)'de
gosterildigi gibi elde edilir. Benzer sekilde, bagintt (44), | < L —1 oldugunda gizli

katmanlar i¢in giincelleme kuralinda kullanilan formiilii gosterir.
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aE(t)
il
i| - —l(d* )%)L’?xm +
Zid; - )a’z( et;) (xhy — (43)
%i(dn—yn)%%w
%i(dn—yn)% X1y

erlm(t +1) = erlm(t) + 7751%(757[71_1)*
burada
8L =>

[ = L oldugunda

(44)

—(dl )Of(netn) —(dl Ly df (neth)

(ne n) a(netn)

l <L —1oldugunda

(Z (w Il{;}) 51+1) af(netn) (Z (witd) (51+1)" )Z}E(njt,;)

Karmagik gradyan inig algoritmasi i¢in bagint1 (44)'de verilen giincelleme kurallari,
hem tam hem de ayrik aktivasyon fonksiyonlar1 i¢in gecerlidir. Ilgili formiillere momentum
terimi de eklenebilir. Momentum, modelin 6grenme siirecinde 6nceki adimlardaki agirlik
degisimlerini dikkate almasin1 saglar, boylece giincellemeler daha kararl1 bir sekilde yapilir

ve hizlica optimize edilir (Sutskever vd., 2013).
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1.11.3. Derin Ogrenme Modelinde Hiperparametreler

Derin 6grenme modelinde kullanilan hiperparametreler asagidaki gibi siralanabilir.

e Derin 6grenme uygulamalarinda veri setinin biiyiikligi ve ¢esitliligi, modelin
O0grenme basarisin1 dogrudan etkileyen Onemli faktorlerdir. Genel olarak, veri seti
bliytidiikce modelin performansi da artar, ancak bu artis sonsuza kadar dogru orantili sekilde
devam etmez. Belirli bir noktadan sonra, veri seti boyutunun artirilmasi sistemin basarisina
smirli katki saglar ve hatta modelin karmasikligi yeterli degilse performans diisiisi
yasanabilir. Ayrica yalnizca veri setinin biiyiik olmasi yeterli degildir; verilerin ¢esitliligi de
en az boyut kadar Onemlidir. Cesitlilik, modelin daha genellestirilebilir o6zellikler
O0grenmesine olanak tanir ve basariy1 artirir.

Kiigiik veri setleri ile ¢alisilirken, sentetik veri iiretimiyle veri seti genisletilebilir veya
transfer 6grenme gibi yontemler kullanilarak biiyiik Olgekli veri setlerinde egitilmis
modellerden Oznitelik transferi yapilabilir. Bu yontemler, 6zellikle kaynaklarin smirh
oldugu veya yeterince paylasimin bulunmadig1 durumlarda etkili bir ¢6zliim sunar. Ancak,
gorsel veriler gibi ¢cok 6zel alanlarda her sinif i¢in binlerce 6rnek gereklidir.

Sonug olarak veri setinin biiytikliigii ve ¢esitliligi arasindaki dengeyi saglamak, egitim
stirecini etkili bir sekilde yonetmek i¢in kritik bir adimdir. Egitimin sik yapilmayacagi ve
depolama alaninin sorun olmadigi durumlarda 6grenim basaris1 oncelikli olurken, mobil
ortamlar gibi depolama alaninin problem oldugu durumlarda veri seti boyutunun daha
dikkatli degerlendirilmesi gerekir.

e Ogrenme orani, modelin her iterasyon sirasinda agirliklarda ne kadar degisiklik
yapilacagini belirleyen kritik bir hiperparametredir. Cok biiyiik bir 6grenme orant modelin
en uygun ¢odziimiinii asarak salinima neden olabilirken, ¢ok kiigiik bir deger ise egitim
slirecini yavaslatabilir ve modelin lokal optimum bir degere takilarak global optimuma
ulasamamasina yol acabilir. Bu nedenle 6grenme oraninin dogru bir sekilde ayarlanmasi,
modelin egitim basarisi i¢in biiyiik onem tasir. Genellikle varsayilan olarak 0.01 gibi bir
deger kullanilir ve belli bir egitim adimindan sonra bu deger kademeli olarak azaltilir. Bu
yontem, modelin daha genel bir ¢6ziim bulmasina yardimci olurken asir1 grenmeyi engeller
ve egitim slirecinin verimliligini artirir.

e Momentum katsayisi, gradyan inisi gibi optimizasyon yontemlerinde kullanilan
onemli bir hiperparametredir. Momentum, gradyan inigini hizlandirmak ve yerel

minimumlara takilmadan daha iyi bir global minimuma ulagmak i¢in kullanilan bir tekniktir.



68

Momentum, onceki adimlardan gelen gradyan bilgilerini kullanarak giincellemeyi
yapar. Bir baska deyisle, her iterasyonda agirliklar sadece mevcut gradyanla degil, aym
zamanda Onceki iterasyonlarda elde edilen gradyanlarla da giincellenir. Bu, modelin daha
hizl1 ve daha kararli bir sekilde 6grenmesini saglar.

Momentum katsayisi, genellikle O ile 1 arasinda bir deger alir ve 6nceki iterasyonlarin
katkisinin ne kadar olacagini belirler. Eger momentum katsayis1 0'a yakinsa, model daha
geleneksel bir gradyan inisi gibi ¢alisir ve sadece mevcut gradyan bilgisine dayanir. Eger
momentum katsayis1 1'e yakinsa, 6nceki gradyan bilgileri daha fazla dikkate alinir ve bu da
daha hizli bir 6grenme siireci saglayabilir.

Momentum katsayisinin dogru se¢ilmesi, modelin egitim siirecinin kararliligini artirir
ve daha hizli bir optimizasyon saglar. Yanlis bir momentum degeri, modelin egitimi
sirasinda salinimlar veya asir1 adimlar gibi problemlere yol acabilir. Bu ylizden, momentum
katsayisinin dogru secilmesi, 6grenme siirecinde kritik bir rol oynar.

Momentum sabiti genellikle 0.9 gibi bir degere ayarlanir, ancak bu deger problem ve
veri setine gore degistirilebilir.

e Derin 6grenme modellerinde egitim verisi, tiim veri seti olarak modele verildiginde
parametrelerin giincellenmesi siireci zaman alic1 ve maliyetli olabilir. Bu problemi ¢6zmek
icin veri seti kiiglik pargalara boliiniir. Bu pargalara mini-batch denir ve her mini-batch,
modelin parametrelerini glincellemek igin kullanilir. Bu pargalarin biiyiikligii, batch size
olarak bilinen bir hiperparametreyle belirlenir.

Egitim siirecinde, parametreler her mini-batch tizerinde yapilan geri yayilim islemiyle
giincellenir. Her iterasyonda gradyan inisi kullanilarak agirliklar degistirilir. Eger veri seti
¢ok biiyiikse, tiim veri tizerinde islem yapmak ¢ok daha fazla zaman ve kaynak gerektirir.
Bu nedenle veriler kiigiik pargalara ayrilir ve her bir parganin islenmesi sonrasinda modelin
parametreleri giincellenir.

Batch size se¢imi, egitim siirecinin verimliligini dogrudan etkiler. Batch size 1 olarak
secildiginde, model her ornekle birlikte parametrelerini glinceller ve bu siire¢ SGD olarak
adlandirilir. Ancak veriler arasindaki biiytik farklar tahmin sonuglarinda 6nemli degisimlere
yol agabilir, bu da genellikle istenmeyen bir durumdur. Ote yandan, batch size tiim veri
setinin biiylikliigii kadar secildiginde modelin giincellenmesi ¢ok daha maliyetli hale gelir.

Batch size belirlenirken veri setinin biiyiikliigii, veri dagilimi ve kullanilan makinenin

islem giicti gibi faktorler géz 6niinde bulundurulmalidir. Uygun batch size se¢imi, egitim
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stiresini kisaltarak modelin daha verimli 6grenmesini saglar ve veri setinin biiyiikliigiine
uygun sekilde ayarlanmasi egitimin basarisini artirir. (Kandel & Castelli, 2020).

e lterasyon, egitim verisinin model tarafindan bir kez islenmesi anlamma gelir.
Egitim siirecinde genellikle birden fazla iterasyonla model egitilir. Iterasyon sayisinin fazla
olmast modelin daha fazla 6grenmesine olanak tanir, ancak asir1 6grenmeye de neden
olabilir. Asir1 6grenmeyi Onlemek icin erken duraklama mekanizmalar1 veya c¢apraz
dogrulama gibi teknikler kullanilabilir. Iterasyon sayisinin uygun bir sekilde belirlenmesi,
modelin genelleme yetenegini, dogrulugunu artirir ve egitim siiresini etkileyebilir.

e Derin 6grenme aglarinda gizli katman sayis1 ve her katmandaki ndron sayisinin
artirllmasi, modelin kapasitesini yiikselterek daha karmasik problemlerin 6grenilmesine
olanak tanir. Ancak, katman sayisinin artmasiyla geri yayilimin etkisi ilk katmanlara daha
az ulasabilir ve bu durum belirli bir noktadan sonra ek katmanlarin sagladigi katkinin
azalmasina neden olabilir. Benzer sekilde, noron sayisinin fazla olmasi modelin hesaplama
zamani ve bellek ihtiyacini artirirken, 6zellikle GPU olmayan sistemlerde bu durum problem
yaratabilir. Ote yandan yetersiz ndron sayisi, modelin yetersiz uyum gdstermesine Yol
acabilir. Bu nedenle, modelin performansini optimize etmek icin gizli katmanlarin ve néron
sayisimin dikkatlice ayarlanmasi kritik &neme sahiptir. ilk katmanlarda fazla, sonraki
katmanlarda ise giderek azalan noéron sayist kullanmak gibi diizenleme teknikleri, asiri
ogrenme riskini azaltirken modelin genel basarisini artirabilir.

e Modelin baglangic agirliklart genellikle kiigiik rastgele degerlerle baslatilir.
Baslangi¢ agirliklari, modelin egitim siirecindeki kararliligi ve dogru ¢6ziimii bulma
yetenegini etkileyebilir. Bu baglamda, modelin dogru ¢éziime ulagsmasini hizlandirabilir ve

genel model performansini artirabilir.

1.11.4. Karmasik Degerli Aktivasyon Fonksiyonlari

Karmagik degerli sinir aglarinda kullanilan aktivasyon fonksiyonlari iki ana kategoriye
ayrilabilir. Bu iki aktivasyon fonksiyonu tipi, CVNN'lerin ¢alisma prensiplerini belirleyen
temel unsurlardandir (Lee vd., 2022).

[k kategori, ayrik aktivasyon fonksiyonlardir. Bu fonksiyonlar, karmagik sayilarin
gercek ve sanal bilesenlerini birbirinden bagimsiz olarak isler. Bir baska deyisle, her bilesen
ayr1 ayri islenir ve aktivasyon fonksiyonuna uygulanir. Ayrik aktivasyon fonksiyonlar: Tip-

A ve Tip-B olarak da iki alt kategoriye ayrilir. Ilgili alt kategoriler i¢in formiiller bagint:
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(45)’de ifade edilmistir. Bagint1 (45)’de f;, fp karmasik degerli fonksiyonlar, fze, fim: frs
fo ise geleneksel tiirdeki (sigmoid, tanh, ReLU gibi) ger¢ek degerli aktivasyon

fonksiyonlaridir.

Tip—A = f4(2) = fre(X) + ifim(¥)
Tip — B = fg(2) = f(Iz]) + ifp (arg(2)) (45)

z =x+ iy = |zlexp(iarg(z)) ,z € Candx,y € R

Ikinci kategori ise biitiinlesik aktivasyon fonksiyonlaridir. Bu fonksiyonlar, karmasik
sayilarin gergek ve sanal bilesenlerini tek bir biitiin olarak ele alir ve islem yaparken bu
bilesenleri ayirmaz. Bu sayede, karmasik sayilarin tam yapisindan yararlanarak daha
biitiinciil bir yaklasim sergiler.

Sigmoid aktivasyon fonksiyonu genellikle yapay sinir aglarinda kullanilan bir
aktivasyon fonksiyonudur. Matematiksel olarak sigmoid fonksiyonu bagint1 (46)’da ifade
edilmistir (Benvenuto & Piazza, 1992).

sigmoid(x) = (46)

1+e™*

llgili bagintinda x girdi degerini temsil eder. Sigmoid fonksiyonu, girdi degerini
(genellikle —oo ile +oo arasinda) 0 ile 1 arasina sikistirir. Bu 6zellikle smiflandirma
problemlerinde kullanighdir, ¢ilinkii ¢ikt1 degeri olasilik olarak yorumlanabilir.

Sigmoid fonksiyonunun dezavantajlarindan biri, bityiik girdi degerleri i¢in gradyanin
cok kiiciik olmasidir, bu da geriye yayilim siirecinde gradyanin kaybolmasina yol agabilir.
Bu nedenle, ¢cok katmanli aglarda veya derin 6grenme modellerinde tercih edilmeyebilir.

tanh aktivasyon fonksiyonu, yapay sinir aglarinda siklikla kullanilan bir bagka
aktivasyon fonksiyonudur. Fonksiyonun matematiksel karsiliklart baginti (47)’de ifade
edilmistir (Qiumei vd., 2019).

tanh() = &5 tanh(x) = —— — 1 @7)
anh(x) = ————= veya anh(x) = T———
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tanh fonksiyonu, girdi degerini -1 ile 1 arasina donistiirlir. Boylece fonksiyon sifir
merkezli bir ¢ikt1 aralig1 saglar, bu da bazi durumlarda daha hizli ve verimli 6grenmeyi
destekleyebilir. tanh fonksiyonu, biiylik pozitif veya negatif girisler i¢in gradyanlarin ¢ok
kiigtik hale gelmesine neden olabilir. Ancak sigmoid fonksiyonundan farkli olarak, tanh daha
genis bir gradyan araligina sahiptir ve sifir merkezli olmasi1 gradyanlarin daha dengeli bir
sekilde yayilmasina yardimci olabilir. Sigmoid fonksiyonunun aksine, tanh sifir merkezli bir
ciktrya sahip oldugundan 6zellikle bazi aktivasyon fonksiyonlar1 arasinda gegis yaparken
O0grenme siireglerini iyilestirebilir.

ReLU aktivasyon fonksiyonu, derin 6grenme ve yapay sinir aglarinda oldukca popiiler
bir aktivasyon fonksiyonudur. Matematiksel olarak, ReLU fonksiyonu bagint1 (48)’de
gosterildigi sekilde ifade edilir (LeCun vd., 2015).

ReLU(x) = max(0, x) (48)

llgili bagmt1, giris degeri x pozitifse x'in kendisini, negatifse 01 dondiiriir. ReLU
fonksiyonu olduk¢a basit ve hesaplamasi hizlidir, ¢linkii sadece bir karsilastirma ve
maksimum seg¢imi gerektirir. Bu durum, biiyiik aglarda hesaplama verimliligini artirabilir.
ReLU fonksiyonu, negatif bolgedeki gradyanlari sifirlar. Ancak pozitif bolgedeki gradyanlar
sabit kalir ve bu durum derin aglarda gradyanlarin daha etkili bir sekilde yayilmasina
yardimer olabilir. ReLU sifir merkezli degildir, ¢ikis degeri yalnizca sifir ya da pozitif
olabilir. Bu nedenle, ReLU genellikle derin 6grenme modellerinde tercih edilen bir
aktivasyon fonksiyonudur. ReLU'nun dezavantajlart arasinda "Olii néron" problemi
bulunmaktadir. Bazi ndronlar negatif girisler nedeniyle siirekli olarak sifir ¢ikis iretir ve bu
durum modelin 6grenme yetenegini sinirlayabilir. Bu tiir sorunlar1 asmak i¢in Leaky ReLU,

Parametric ReLU gibi varyasyonlar gelistirilmistir (Liang & Hu, 2021).

Sigmoid Tanh RelU
1.0 4 1.0 10 4

0.8 4 84
0.5 4

0.6 6 |
0.0
0.4 4

0.2 i 2

0.0 —=1.0 A 0+
T T T T T T T T T T T T T T T
-10 =5 0 5 10 -10 25 0 5 10 -10 -5 0 5 10

Sekil 39. Aktivasyon fonksiyonlar1
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1.11.5. Seyreltme Oram

Seyreltme veya dropout orani, derin 6grenme modellerinde asir1 6grenmeyi onlemek
amaciyla kullanilan etkili bir diizenleme teknigidir. Modelin sadece egitim verisine degil,
genel verilere de iyi genelleme yapmasini saglar. Bu yontem, modelin veri setini ezberlemesi
yerine genellestirme yetenegini artirarak, yeni veriler iizerinde daha iyi performans
gOstermesini saglar. Ayn1 zamanda, seyreltme oranmi dikkatli bir sekilde ayarlanmadiginda
yetersiz 6grenme riski olusturabilecegi i¢in dogru kullanimina 6zen gosterilmelidir. Yetersiz
O6grenme, modelin egitim verisindeki desenleri dogru sekilde 6grenememesi durumudur ve
modelin ¢ok basit veya yetersiz bir yapiya sahip olmasindan kaynaklanir. Sekil 40, yetersiz

Ogrenme, asir1 6grenme ve ideal 6grenmeyi temsil eden grafikleri gostermektedir.

Yetersiz Ogrenme Asim Ogrenme ideal Ggrenme

3 31 34
2 21 2
1 14 1

> 0 ™ o > 0+
=, -1 -1
-2 -2 -2

00 25 50 75 100 00 25 50 75 100 00 25 50 75 100

Sekil 40. Yetersiz 6grenme, asir1 6grenme ve ideal 6grenmeyi temsil eden grafikler

Seyreltme yontemi, her bir iterasyonda sinir agindaki bazi noronlari rastgele devre disi
birakir, bir bagka deyisle o noronlarin ¢iktilar1 sifira esitlenir. Bu islem, modelin bir alt
kiimesinin her defasinda egitilmesini saglar bu da modelin belirli 6zelliklere asir1 bagimh
olmasin1 6nler (Srivastava vd., 2014). Sekil 41, seyreltme teknigine bagli olarak devre disi
birakilan ndronlar1 ve ag yapisini gostermektedir. Gizli2 ve Gizli3 isimli néronlar egitimin
bir adiminda devre dis1 kalan néronlar ifade etmektedir.

Egitim sirasinda, teknik geregince her katmandaki néronlarin belirli bir orani rastgele
secilerek gecici olarak sifirlanir. Bu oran genellikle %20-%50 arasinda olur. Test asamasinda
ise seyreltme uygulanmaz. Bunun yerine, egitim sirasinda devre dig1 birakilan néronlarin
etkisini telafi etmek i¢in néronlarin aktivasyonlari seyreltme oranina gore 6lgeklendirilir.

Seyreltme, modelin daha fazla gesitlilikte 6grenmesine neden oldugu i¢in egitim
sliresini uzatabilir. Her bir egitim adiminda bazi néronlar devre dis1 birakildigindan, bu siire¢

sirasinda hesaplama yiikii artabilir.
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Gizli 4
Y e

Sekil 41. Seyreltme teknigine bagl olarak devre dis1 birakilan néronlar ve ag yapisi

1.11.6. Softmax Cikis Fonksiyonu

Softmax, genellikle siniflandirma problemlerinde kullanilan bir aktivasyon
fonksiyonudur. Cok simifli siniflandirmalarda, modelin her bir sinifa ait olasiligini
belirlemek icin kullanilir. Softmax fonksiyonu, giris vektoriindeki her degeri pozitif bir
olasilik degeri haline getirir ve tiim ¢iktilarin toplami 1 olacak sekilde normalize edilir.
Softmax fonksiyonu baginti (49)’da oldugu gibi ifade edilir (Kagalkar & Raghuram, 2020).
llgili bagintida x; giris vektoriindeki i. 6geyi, K smf sayismi temsil eder. e*i giris

degerlerinin iistel fonksiyonla dontistiiriilmiis halidir.

Xi

Softmax(x;) = cr——
j=1€"

(49)

Softmax, smiflandirma problemlerinde her bir siif i¢in tahmin edilen degeri olasilik
olarak yorumlamayr miimkiin kilar. Bu olasiliklar O ile 1 arasinda olur ve tiim smiflarin
olasiliklarinin toplami 1'e esittir. Softmax, genellikle sinir aginin son katmanda kullanilir ve
birden fazla sinifin bulundugu siniflandirma problemlerinde etkin bir ¢6ziim sunar. Model,
her bir sinifa ait olasilig1 iiretir ve en yiiksek olasiliga sahip sinif, tahmin edilen sinif olarak
secilir. Softmax, bliyiik giris degerleri ile kiigiik giris degerleri arasindaki farki biiyiitiir.
Yani, en biiyiik giris degeri daha yiiksek bir olasilikla temsil edilirken, diger smiflarin
olasiliklar kiigiiliir. Softmax, sinir aglar1 ve lojistik regresyon gibi algoritmalarda, birden

fazla smifa ait verilerin siniflandirilmasinda yaygin olarak kullanilir. Doktora ¢aligmalari
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kapsaminda gelistirilen modelde, Sekil 38’in son katmani olan ¢ikis katmaninda softmax

fonksiyonu kullanilmustir.

1.11.7. Karmasik Degerli XOR Problemi

Bu calismada, karmagsik degerli verilerin siniflandirilmasini saglayacak sistemin
dogrulugunu test etmek amaciyla, Nitta tarafindan tanimlanan karmagsik degerli XOR
problemi verileri kullanilmistir (Nitta, 1997). Giris verisi, karmasik degerli veri tiirli olarak
0,/,1, 1+ j seklinde deger kiimesine sahiptir. Tablo 5, iki girisli ve tek ¢ikisli kompleks bir

ag icin kompleks degerli giris verilerini ve bunlara karsilik gelen ¢ikis degerlerini listeler.

Tablo 5. Belirtilen kurallara gore karmasik degerli XOR ig¢in egitim 6rnekleri

Giris 1 Giris 2 Cikas
0 0 1
0 j j
j j 14
J 1 J
1 1 14j
J 0 0
14j 14j 1
14] j j

Cikig verisinin tretilmesinde kullanilan iki kural maddeler halinde asagida ifade
edilmistir.
e QGiris olarak alinan iki karmasik degerli veri esitse, karmagik degerli ¢ikis verisinin
gercek kismi 1, aksi takdirde O olur.
e Ikinci karmasik degerli veri girisi 1 ya da j ise, karmasik degerli ¢ikis verisinin

sanal kismu 1, aksi takdirde 0 olur.
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Standart XOR isleminde tek c¢ikisla iki sinif temsil edilebilirken Tablo 5’den
goriilecegi tizere karmasik degerli XOR tek ¢ikisla dort sinifi temsil edilebilmektedir. Bu

sayede ¢ok sayida farkli siif i¢in gereken ¢ikis sayisi oldukea azaltilabilir.



2. YAPILAN CALISMALAR

Bu boliimde doktora siireci boyunca gerceklestirilen ¢alismalar ayri ayri ele alinarak
incelenecektir. Ilgili calismalar; CZM’ler ile dzellik (karmasik degerli 6znitelik vektoriiniin
elde edilmesi) ¢ikarimi, Oznitelik vektoriinden gorintiiniin yeniden olusturulmasi, bir
CVDNN’in gelistirilmesi, XOR probleminin gelistirilen karmasik degerli derin sinir agi ile
¢oziilmesi, MNIST veri seti lizerinde gergeklestirilen ¢alismalar, MUD veri seti iizerinde
gerceklestirilen ¢alismalar ve oOnerilen yontemi igeren akilli bir sistemin gelistirilme
asamalar1 olmak tizere yedi alt baglikta incelenecektir. Gergeklestirilen ¢alismalar sirasinda
goriintiiler tizerinde herhangi bir 6nislem (el tespiti, arka plan ¢ikarimi, giiriiltii azaltma, veri
giiclendirme vs.) uygulanmamustir. Elde edilen basari oranlarinin dogrudan ham goriintiiler

tizerinden elde edildiginin vurgulanmasi gerekmektedir.

2.1. Karmasik Zernike Momentleri Kullamilarak Ozellik Cikarim

Karmagsik Zernike momentleri, 6zellik ¢ikariminda kullanilan son derece etkili
yontemlerden biridir. Oyle ki, herhangi bir gériintii igin, CZM'ler kullanilarak elde edilen
oznitelik vektdriinden goriintiiniin yeniden olusturulmasi miimkiindiir. Oznitelik vektdriiniin
boyutunu belirleyen ve goriintiiniin yeniden olusturulmasinda kullanilan iki 6nemli
parametre sirasiyla CZM'lerin derecesi n ve tekrar sayisidir m. Her iki parametrenin de
belirlenmesi gerekmektedir. Bu baglamda n derecesine bagl olarak tekrar sayis1 m
belirlenir.

Derece n, hem ¢ikarilan 6zniteliklerin sayisini1 (6znitelik vektoriiniin boyutunu) hem
de ASL tanima i¢in gelistirilen karmasik degerli derin sinir aginin performansini dogrudan
etkiler. Derece arttikca elde edilen Oznitelik vektorlinlin boyutu ve iglem siiresi orantili
olarak artar. Oznitelik ¢ikarimma fazla zaman harcamak, ger¢ek zamanl uygulamalarda
performans diisiisiine yol agabilir. Ote yandan daha fazla 6znitelige sahip olmak, goriintiiniin
yeniden olusturulmasinda olumlu bir etki yaratir.

Tekrar sayis1 m, O ile n arasinda degisir. Negatif tekrar degerleri, pozitif degerlerin
eslenikleri oldugu i¢in hesaplama yapilmadan elde edilebilir. Negatif degerler siniflandirma

modellerinde degil genellikle goriintiiniin yeniden olusturulmasinda kullanilir.
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Gelistirilen sistemde, MNIST veri setinden rastgele segilen her bir goriintii i¢in farkli
derecelerde 6zellik ¢ikarimi ve goriintii yeniden olusturma islemleri gergeklestirilerek en

uygun dereceyi belirlemek hedeflenmistir. Sekil 42, 6zellik ¢gikarimi igin islem adimlarini

gostermektedir.
‘:
'% *g y —>' —p oo°
Orijinal Goriintii Izdiiriilmiis Goriintii —

Zernike Polinomu
Ozellik Vektorii

Sekil 42. Ozellik gikarimi i¢in islem adimlari

Orijinal goriintii ile yeniden olusturulan temsiller {izerinde oncelikli olarak Ortalama
Kare Hatas1 (MSE) ve Yapisal Benzerlik indeksi (SSIM) gibi benzerlik test prosediirleri
uygulanmistir (Palubinskas, 2016). Ek kontroller saglamak amaciyla Histogram da ayrica
kullanilmistir (Bhuiyan & Khan, 2018). MNIST veri seti i¢in elde edilen sonuglarin,
genellikle diigiik derecelerde (12 ile 15 arasinda) yiiksek benzerlik oranina sahip olduklari
tespit edilmigtir. MNIST veri seti lizerindeki ¢alismalarda, her goriintii i¢in 64 6znitelik
tiretecek sekilde derece degeri 14 olarak belirlenmistir.

Ozellik ¢ikarimu siirecinde, MNIST veri seti igin ilgili CSV dosyas1 verileriyle ayni
(kayipsiz) degere sahip PNG formatinda goriintiiler olusturulmustur. n ve m degerleri
belirlendikten sonra, egitim ve test goriintiileri i¢in bagmti (32), (33), (34) ve (35)'u
kullanarak karmasik degerli verilerden (z =x +iy,z € Cve x,y € R) olusan 6znitelik
vektorlert elde edilmistir. Benzer sekilde ayni islemler MUD veri seti {izerinde
uygulanmistir. MNIST veri setindeki her bir 6ge i¢in 6zellik ¢ikariminda harcanan siire
yaklasik 0.082 saniyedir. MNIST veri setindeki goriintiilerin 28x28 piksel gibi oldukca
kiiglik boyutlarda oldugunu yeniden hatirlatmak gerekmektedir. MUD veri setindeki her bir
0ge icin ozellik ¢ikarimi ise yaklasik 2.33 saniye siirmektedir. Ayrica, MUD veri setindeki
goriintiilerin  400x400 piksel boyutunda nispeten biiyiilk oldugunu yeniden belirtmek

gerekmektedir.



78

Karmasik Zernike momentleri nesnelerin daha karmasik 6zelliklerini temsil etmek ve
ek bilgi saglamak i¢in kullanilir. CZM'ler, Zernike momentlerinin genligi kullanmaktan daha
kapsamli ve ayrintili bir 6zellik temsili sunar. Esasinda karmasik Zernike momentleri olarak
ifade edilen terim, Zernike momentlerinin biyiikligiini kullanmaktan farkli olarak
nesnelerin dairesel simetri bilgisinin yani sira ayni zamanda faz bilgisini de dikkate alarak
daha ayrintili bir analiz saglamasindan ileri gelmektedir. Bu 6zellikleri nedeniyle, yiiz
tanima gibi karmasik desen tanima gorevlerinde genellikle daha etkili olurlar. Gelistirilen
modelin (6zellik ¢ikarimi ve CVDNN ile siiflandirma) genel yapisini koruyarak gergek
sayilarla c¢alisacak sekilde (gergek degerli derin sinir ag1) yapilandirilmasiyla
karsilastirildiginda, karmasik sayilarla calismanin performans iizerinde yaklasik %20
oraninda olumlu bir etki yarattig1 gézlemlenmistir. Bu etki orani, verilerin karmasik degerli

olarak kullanilmasinin basariy1 6nemli 6l¢iide etkiledigini acikca ortaya koymaktadir.

2.2. Oznitelik Vektoriinden Gériintiiniin Yeniden Olusturulmasi

Bir goriintiiniin yeniden olusturulabilmesi i¢in dncelikle goriintiiden 6zellik ¢ikarimi
yapilmasi gerekmektedir. Bu nedenle, 6zellik ¢ikariminda kullanilacak yontem biiyiik 6nem
tasimaktadir. Karmagsik Zernike momentlerinin, goriintiiniin yeniden olusturulmasinda
oldukg¢a etkili oldugu genel bilgiler boliimiinde vurgulanmigtir. Goriintiinlin yeniden
olusturulmasindaki bu basarisi, ayn1 zamanda oldukca etkili bir ozellik ¢ikarimi
gerceklestirdigini de gostermektedir.

Simiflandirma amagli gelistirilecek bir model ile goriintiiniin yeniden iiretilmesi amagli
gelistirilecek model arasinda, 6zellik ¢ikariminda kullanilacak moment derecesinin se¢imi
konusunda bir zitlik bulunmaktadir. S6yle ki, daha once belirtildigi {izere siniflandirma
amacgh gelistirilen modelde moment derecesinin diisiik olmasi hem hiz hem de tespit
acisindan olumlu sonuglar verirken, goriintiiniin yeniden olusturulmasinda moment
derecesinin diisiik olmasi iiretilen goriintiiniin kalitesini diisiirmektedir. Bu baglamda, eger
gOriintliniin yeniden olusturulmasi birincil hedefse moment derecesi yiiksek bir deger olarak
secilmelidir. Ancak, moment derecenin artmasi zaman ve kaynak tiikketimini de
yiikseltmektedir. Goriintiiniin yeniden olusturulmasi asamasinda, negatif m tekrarlarina
bagli olarak elde edilen karmasik degerli veriler de hesaba katilmalidir.

Sekil 43, 200x200 piksel bir goriintiiyii ve farkli moment dereceleri baz alinarak
yeniden olusturulan temsillerini gostermektedir. Sekil 44 ise MNIST veri setinden rastgele
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secilen 28x28 piksel bir goriintiiyli ve ilgili goriintii i¢in dereceye bagli olarak yeniden
olusturulmus temsillerini gostermektedir. Her iki sekilden de goriilecegi lizere moment
derecesi arttikga, tretilen temsillerin kalitesi (netligi) de giderek artmaktadir. Zernike
momentler birim disk {izerinde tanmimlandig i¢in, hem oOzellik ¢ikarimi hem de
Ozniteliklerden olusturulan temsiller birim disk {izerinde ifade edilir. Bu nedenle, her iki
sekilden de goriilecegi iizere hem orijinal goriintiiler hem de temsilleri birim disk olarak
gosterilmistir. Karmasik Zernike momentlerinin goriintliniin yeniden olusturulmasindaki

basarisi, yiiz ve desen gibi detay gerektiren alanlarda rahatlikla kullanilabilecegini gosterir.

Orjinal Resim

(b)

26 34

Yeniden Olusturulmus Temsiller

Sekil 43. (a) 200x200 piksel orijinal giris goriintiisii (b) orijinal goriintii i¢in farkl
derecelerde yeniden olusturulan goriintiiler

(@)

7

Orjinal Resim

(b)
10 14 18 22 26 30

nmax
Yeniden Olusturulmus Temsiller

Sekil 44. (a) MNIST veri setinden 28x28 piksel orijinal girig goriintiisii (b) orijinal goriinti
icin farkli derecelerde yeniden olusturulan goriintiiler



80

2.3. CVDNN Mimarisi

Genel bilgiler bashiginda, karmasik Zernike momentlerle elde edilen 6znitelik
vektoriinii isleyebilecek bir sinir ag1 gelistirilmesi gerektigi belirtilmistir. Gelistirilen sinir
ag1, en az iki gizli katmana sahip oldugu i¢in karmasik degerli bir derin sinir ag1 olarak
adlandirtlir. Derin sinir aginin gelistirilmesi siirecinde, ii¢ gizli katman da denenmis ancak
iki gizli katmana kiyasla fark edilecek diizeyde bir iyilesme saglamadigi igin tercih
edilmemistir. Agin icindeki tiim katmanlar karmasik degerli verilerle ¢alisabilecek sekilde
tasarlanmstir.

Ozellik ¢ikariminda, segilen moment derecesi 14’e bagl olarak 64 uzunluklu bir
vektor elde edildigi daha 6nce belirtilmistir. Elde edilen 6znitelik vektoriine bagl olarak 64
girig alan derin sinir ag1, ilk gizli katmanda 700 noron, ikinci gizli katmanda 400 ndron
kullanmaktadir. Veri setlerine bagli olarak, ¢ikis katmaninda MNIST veri seti i¢in 25, MUD
veri seti i¢in ise 36 ¢ikis tretilmektedir. MNIST veri setinde, J hari¢ olmak tizere [A-Y]
harfleri i¢in normalde 24 ¢ikis bulunmaktadir. J ve Z harfleri ASL’de hareketli goriintii
oldugundan c¢ikis kiimesine dahil edilmezler. Veri setinde J harfi bulunmamasina ragmen,
harfler A'dan baslayarak Y'ye kadar 0'dan 24'e kadar numaralandirilmistir. Dolayisiyla,
normalde 24 sinif igin 25 ¢ikis olusturulmustur. Z harfinin ¢ikarilmasinin, J harfi gibi bir etki
yaratmayacag aciktir.

Bir CVDNN'nin en kritik bolimlerinden biri uygun aktivasyon fonksiyonunun
belirlenmesidir. Liouville teoremi, her noktada analitik ve sinirli olan bir karmagsik degerli
fonksiyonun sabit oldugunu belirtir (Hansen, 2008). CVDNN aktivasyon fonksiyonlar ayrik
ve tam olmak tiizere iki kategoriye ayrilir. Ayrik aktivasyon fonksiyonlari, karmasik
bilesenlere bagimsiz olarak gergek degerli geleneksel aktivasyon fonksiyonlarini uygular ve
sonuclar1 birlestirerek karmasik degerli bir néron ¢iktis1 {iretir. Bu nedenle, bu aktivasyon
fonksiyonlar1 sinirli olabilir ancak analitik olmayabilir. Ayrik aktivasyon fonksiyonlari, Tip-
A ve Tip-B olarak iki alt tiire ayrilir (Bassey vd., 2024). Gergeklestirilen doktora
caligmasinda, baginti (50)'de gosterilen Tip-A ayrik aktivasyon fonksiyonu
kullanilmaktadir. Tlgili bagintida, f, karmasik degerli bir fonksiyon olup fz, V€ fim gercek
degerli aktivasyon fonksiyonlaridir. Calismada, gercek degerli aktivasyon fonksiyonu olarak
ReLU kullanilmaktadir (Liang & Hu, 2021). Cikis siniflart diginda, her iki veri seti igin de
ayni CVDNN yapis1 kullanilmaktadir.
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fa(@) = fre(®) + ifim(¥) (50)

Asir1 Ogrenmeyi Onlemek amaciyla, ikinci gizli katmanda seyreltme teknigi
uygulanmaktadir (Srivastava vd., 2014). Seyreltme teknigi sabit olarak uygulanmis ve en iyi
sonuglar 0.38 degeri ile elde edilmistir. Egitim adimina bagl olarak degisen (azalarak) bir
seyreltme teknigi denenmis olsa da, dikkate deger bir etki saglamadigindan tercih
edilmemistir.

Karmagik degerli geri yayilim algoritmasi, mini-batch egitim yaklasimini kullanir.
Boylece, modelin genellestirme yeteneginin artirilmasi amaglanmaktadir. MNIST veri seti
i¢in batch size degeri 1000, MUD veri seti igin ise 100 olarak belirlenmistir.

Cikis katmanimi yorumlamak igin torch kiitiiphanesinin softmax fonksiyonu
kullanilmaktadir (URL2, 2023).

Karmagsik degerli verilerle calisabilen optimizasyon algoritmalar1 arasinda Adam,
SGD ve RMSProp bulunmaktadir (Kingma & Ba, 2024). Optimizasyon algoritmasi olarak
momentum'lu SGD (SGD with Momentum) tercih edilmistir. Diger iki optimizasyon
algoritmasi da iyi ve yakin sonuglar verse de, en iyi sonuglar momentum’lu SGD ile elde
edilmistir. Ogrenme oran1 0.01, momentum katsayist ise 0.9 olarak belirlenmistir.

MNIST veri setindeki her test maddesinin 6znitelik vektoriinden ¢ikti sinifini
belirleme siiresi yaklasik 0.002 saniyedir. Dolayisiyla, modelin bir goriintiiyii giris olarak
alip ¢ikt1 sinifin1 belirlemesi (6zellik ¢ikarimi ve siniflandirma dahil olmak {izere) toplamda
yaklasik 0.084 (0.082+0.002) saniye siirmektedir. MUD veri setinde de benzer sekilde,
oznitelik vektoriinden ¢ikt1 sinifinin belirlenmesi yaklagik 0.002 saniyedir. Boylece MUD
veri setindeki bir goriintiiyii giris olarak alip ¢ikt1 sinifin1 belirleme siiresi toplamda yaklagik
2.332 (2.33+0.002) saniye olmaktadur. Ilgili degerlerden goriilecegi iizere, modelin en fazla
zaman alan bolimi 6zellik ¢ikarim islemidir.

Modelin basarisim1 etkileyen dnemli etkenlerden biri de 6zellik ¢ikarimi sonucunda
elde edilen oznitelik vektoriiniin nasil normalize edileceginin belirlenmesidir. Standart
normalizasyon tekniklerinden biri olan verilerin O ile 1 arasina 6lgeklenmesi islemi beklenen
sonuclart vermemistir. Bu nedenle, doktora ¢aligmalar1 kapsaminda gelistirilen farkli bir
normalizasyon teknigi kullanilmustir. Tlgili teknik geregince, oncelikli olarak veri
kiimesindeki en biiyiik ve en kiigiik degerler belirlenmistir. Bu teknik geregince, tiim veriler

-5 ile +5 araligina 6lgeklenecek sekilde sabit bir sayiya boliinmiistiir.
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Mimarinin belirtilen 6zellikleri, kapsamli ve uzun bir deneysel ¢alismanin sonucunda

tespit edilmistir. Sekil 45, gelistirilen modelin mimarisini gostermektedir.

Giris ﬁ
Goruntuleri

I .

H Oznitelik Vektorii [ @

“ = N

: Gt XN

| K LN\
@

| Yeniden Olusturma

| ozsllik Cikanm

(A-Z)

MNIST igin
24 Karakter
Sinifi

MUD igin
36 Karakter ve
Rakam (A-Z 0-9)
Sinifi

Cikis

Sekil 45. Gelistirilen modelin mimarisi

2.4. Model Mimarisinin Detaylari

Bu boliimde, MNIST ve MUD veri setleri icin gelistirilen modellerin iiretim
asamalarindaki baz1 6nemli kisimlar incelenecektir. MNIST i¢in gelistirilen modelin egitimi,

veri setinin egitim kisminin (27455 goriintli) biiyiikliigline bagli olarak 300 iterasyon
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sonunda tamamlanmaktadir. Ancak egitim kiimesi batch size degeri 1000 olacak sekilde alt
kiimelere ayrildiginda, toplam iterasyon sayisi (27455/1000) * 300 = 8100 olarak
hesaplanir. MNIST veri seti {izerinden gelistirilen model igin, ilk ve son ana iterasyonlar ve
bunlarin alt kiimelerindeki iterasyonlar Sekil 46’da belirtilmistir. Ayrica, Sekil 46 her bir alt

kiime i¢in egitimin baslangicina ve bitisine dair hata oranlarini géstermektedir.

27455 1 : 3.257881
27455 % : 3.219559
27455 % : 3.247825
27455 5 1 3.267477
27455 % N3 T1223
27455 % : 3.31e87@
27455 ’ 1 3.400144
27455 : 3.511385
27455 : 3.554431
27455 : 3.565644
27455 : 3.588221
27455 1 3.742552
27455 : 3.706336
27455 : 3.758722
27455 % : 3.826790@
27455 % : 3.756641
27455 : 3.694682
27455 : 3.616764
27455 : 3.6008613
27455 : 3.645375
27455 : 3.536862
27455 : 3.569918
27455 : 3.508972
27455 : 3.4779e3
27455 : 3.456936
27455 1 3.422732
27455 : 3.429300
27455 ; : 3.379064
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Sekil 46. (a) MNIST veri seti i¢in ilk iterasyon ve alt kiime iterasyonlari (b) MNIST veri
seti i¢in son ana iterasyon ve alt kiime iterasyonlari

MUD veri setinin egitim ve test verisi olarak ayrilmadigi daha once belirtilmistir.
Benzer sekilde, MUD veri seti lizerinden gelistirilen modelde veri setinin %70’1 egitim,
%30’u test olarak ayrildigi daha 6nce ifade edilmistir. Boylece modelin egitimi, veri setinin
egitim kismmin (1762 gorilinti) biyiikliigiine bagli olarak 100 iterasyon sonunda
tamamlanmaktadir. MUD veri setinin egitim kiimesi i¢in batch size degeri 100 olarak
belirlenmistir. Bu nedenle, toplam iterasyon sayist (1762/100) * 100 = 1762 olarak
hesaplanmaktadir. MUD veri seti iizerinden gelistirilen model icin, ilk ve son ana
iterasyonlar ile bunlarin alt kiimelerindeki iterasyonlar ve egitimin baglangicina ve bitigine
dair hata oranlar1 Sekil 47°de belirtilmistir.

Sekil 48, hem MNIST hem de MUD veri setleri lizerinden egitilen modeller i¢in ayr1

ayr1 olmak iizere egitimin basindan sonuna kadar olusan hata oranlarinin grafigini gosterir.
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Loss: 4.126262 s % : ©.355284
Loss: 19.696672 : : 9.458963
Loss: 12.835375 i = % : @.3498381
Loss: 255947 : ; : 9.500410
Loss: 832349 : : 9.564292
Loss: 034908 : * : 9.604224
Loss: 237368 - % : 0.610402
Loss: 926234 - % : 9.482233
Loss: 885735 : 5 : 9.481522
Loss: 691839 : % : 8.591458
Loss: 143806 E > : 9.339178
Loss: 025784 : x : ©8.538059
Loss: 930043 : 5 : 9.529163
Loss: 119783 : % : ©.646374
Loss: 083418 H ; : 0.654236
Loss: 888967 i z : 8.627425
Loss: 128245 5 y 4 : 9.415438
Loss: 802180 i : 1 : 9.625114
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Sekil 47. (a) MUD veri seti i¢in ilk iterasyon ve alt kiime iterasyonlari (b) MUD veri seti
icin son ana iterasyon ve alt kiime iterasyonlar1

Sekil 48°de, ilgili grafiklerde belirtilen adim sayilari, yukarida belirtilen durumlardan
kaynaklanmaktadir. Her iki modelde de hata oranlarinin egitim sonunda 0’a
yakinsamamasinin nedeni, asirt dgrenmeyi engellemek amaciyla kullanilan seyreltme
teknigidir. Bu durum, seyreltme tekniginin bilingli olarak uygulanmasindan

kaynaklanmaktadir.
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Sekil 48. (a) MNIST veri seti igin hata egrisi-iterasyon grafigi (b) MUD veri seti i¢in hata
egrisi-iterasyon grafigi
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2.5. Kompleks Veriler iceren XOR Probleminin Céziimii

Gergeklestirilen doktora ¢alismasinin ana hedefinin isaret dilinin taninmasina yonelik
akill1 bir sistemin gelistirilmesi oldugu daha once ifade edilmistir. Bu hedefe ulagsmak i¢in
sistemde kullanilacak modelin gegerliligi, ¢esitli veri setleri iizerinde test edilmelidir.
Calismada bu veri setleri MNIST ve MUD olarak belirlenmisti. Ancak veri setleriyle
calisirken, “CVDNN Mimarisi” boliimiinde ifade edilen ¢esitli faktorler nedeniyle karmasik
sayilarla calismanin etkisinin yanlis yorumlanabilecegi aciktir. CVDNN, uzun siireli bir
deneysel caligmanin sonucunda nihai halini almigtir. Bu baglamda, baslangicta ag tasarimi
nedeniyle basarinin diisiik ¢ikma olasiligr g6z oniinde bulundurulmustur. Bu nedenle, veri
setleri ile ¢aligmaya gecilmeden 6nce daha basit bir CVDNN ile temel bir problemin
¢Oziimiine odaklanmak gerekmektedir. Bu dogrultuda, ilk ¢alisma giris ve cikis verileri
karmasik sayilar olacak sekilde XOR probleminin ¢oziimii tizerine gergeklestirilmistir.

XOR problemin ¢o6ziimiinde kullanilan CVDNN’in ilk prototipi, gercek degerli
aktivasyon fonksiyonu olarak sigmoid kullanmaktadir. XOR probleminin ¢dziimiinde
basarili olan bu fonksiyon, veri setleri iizerinde iyi sonuglar vermemistir.

Tablo 6, XOR problemi i¢in hem egitim hem de test verilerini igermektedir. Toplamda

16 farkli durumu kapsayan bu problem i¢in 12 durum egitim verisi olarak kullanilmistir.

Tablo 6. XOR problemi igin giris ve ¢ikislar

Veri Tiirii Giris 1 Giris 2 Cikis
Egitim 0 0 1
Egitim 0 j j
Egitim J 0 0
Egitim J J 14j
Egitim j 1 j
Egitim 1 1 14j
Egitim 14j j j
Egitim 14] 14j 1
Egitim 0 1 j
Egitim 0 1+j 0
Egitim J 1+j 0
Egitim 1 0 0

Test 1 J |
Test 1 1+j 0
Test 1+j 0 0
Test 1+j 1 J
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Sekil 49, egitim ve test verileri icin elde edilen sonuglar1 gdstermektedir. ilgili sekilde
virgiille ayrilan ilk kisimdaki veri giris 1’e, ikinci kisimdaki veri ise girig 2’ye karsilik
gelmektedir. Cikis verisi ise, karmasik say1 olarak ilgili seklin sag tarafinda yer almaktadir.
Tablo 6'daki ¢ikis verileri ile modelden elde edilen ¢ikis verilerinin eslesmesi, XOR
probleminin prototip CVDNN ile tamamen ¢oziildiigiinii ortaya koymaktadir. Bu ¢alisma,

veri setleri lizerinde ¢aligmaya gecis asamasinda 6nemli bir adim olmustur.

Test Predictions:
tensor([0.+0.7,
tensor([0.+0.7,
tensor([0.+1.7,
tensor([0.+1.],
tensor([0.+1.7,
tensor([1.+0.],
tensor([1.+1.],
tensor([1.+1.3,
tensor([0.+0.],
tensor([0.+0.3,
tensor([0.+1.7
tensor([1.40.]
tensor([1.40.7,
tensor([1.40.3,
tensor([1.+1.3,
tensor([1
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Sekil 49. Karmasik sayilar kullanan XOR probleminin ¢oziimii

2.6. Performans Analiz Metrikleri

Bu béliimde, MNIST ve MUD veri setleri izerinde gergeklestirilen ¢calismalardan elde
edilen sonuglarin analizinde kullanilan metrikler tanitilmaktadir. Bu metriklerin tamamini
biinyesinde barindiran karmasiklik matrisi (confusion matrix), bir siiflandirma modelinin
performansin1  degerlendirmede kullanilan 6nemli bir aragtir. Bu matris, modelin
tahminlerini gergek etiketlerle karsilagtirarak tanima (recognition), kesinlik (precision),
hatirlama (recall) ve F1 skoru gibi performans metriklerini hesaplamak igin temel bir yap1
saglar. Karmagiklik matrisinin temel bilesenleri maddeler halinde asagida ifade edilmistir.

e Dogru Pozitif (TP): Karmasiklik matrisinde dogru bir sekilde pozitif olarak
siiflandirilmig 6rneklerin sayist.

e Dogru Negatif (TN): Karmagiklik matrisinde dogru bir sekilde negatif olarak

siiflandirilmig 6rneklerin sayist.
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e Yanlis Pozitif (FP): Karmasiklik matrisinde yanlis bir sekilde pozitif olarak
siniflandirilmis negatif 6rneklerin sayisi.

e Yanlis Negatif (FN): Karmasiklik matrisinde yanlis bir sekilde negatif olarak
siiflandirilmig pozitif 6rneklerin sayisi.

Karmagiklik matrisi genellikle Tablo 7°de belirtildigi iizere ifade edilir.

Tablo 7. Karmasiklik matrisinin genel temsili

Gergek Pozitif  Gergek Negatif

Tahmin Pozitif TP FP

Tahmin Negatif FN TN

Bu matris, her sinif icin TP, TN, FP ve FN degerlerini igeren bir tablo olusturur. Bu
bilgiler, siniflandirma modelinin ¢esitli performans metriklerini hesaplamak icin kullanilir.
Igili metriklere ait degerler, tanima oran1 icin bagnt1 (51), kesinlik i¢in bagint: (52),

hatirlama i¢in bagint1 (53) ve F1 skoru i¢in bagint1 (54) kullanilarak hesaplanmaktadir.

Dogru Suiflandirilmis Ornek Sayist
Tanima Orant = - (51)
Toplam Ornek Sayist

Kosinlik — Dogru Pozitif (52)
S = Dogru Pozitif + Yanlis Pozitif

. ) Dogru Pozitif (53)
atirlama = Dogru Pozitif + Yanlis Negatif

oy _, (Kesinlik x Hatirlama) (54)
€OT€ = 2X (Kesinlik + Hatirlama)

llgili bagintilarda belirlenen performans metriklerine gore, dnerilen modelin MNIST

ve MUD veri setlerinde elde ettigi degerler kendi alt basliklarinda sirasiyla incelenmektedir.
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Gergeklestirilen birgok akademik ¢aligmada, bagint1 (51)'deki tanima yerine dogruluk olarak
ifade edilen farkli bir baginti kullanilmasina ragmen, doktora ¢aligmalari kapsaminda
basarty1 daha net ve gergekgi bir yaklasimla gostermek amaciyla ilgili baginti tercih

edilmistir.

2.7. Onerilen Modelin MNIST Veri Seti Uzerindeki Performansinin
Degerlendirilmesi

MNIST veri setinden elde edilen karmagik degerli verilerden olusan egitim ve test
Oznitelik vektorleri, gelistirilen CVDNN’e girig olarak verilmistir. Model, MNIST test
verilerinde %89,01 tanima orani elde etmistir. Sekil 50, karmasik degerli veriler kullanilarak
MNIST test veri setinde yapilan ¢aligmanin karmasiklik matrisini géstermektedir. Ortalama
kesinlik degeri 0.8793, ortalama hatirlama degeri 0.8856 ve ortalama F1 skoru 0.8791 olarak
hesaplanmistir; bu hesaplamalar sirasiyla baginti (52), baginti (53) ve bagmti (54)
kullanilarak yapilmistir.

Tablo 8, MNIST test verilerindeki her bir sinif (yirmi dort sinif) i¢in kesinlik, hatirlama

ve F1 skorlarini belirtmektedir.

Confusion Matrix
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Sekil 50. Onerilen modelin MNIST test veri seti igin olusturdugu karmasiklik matrisi
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Tablo 8. Onerilen modelin MNIST test veri setinin her bir simifi i¢in {irettigi performans
metrik degerleri

Karakter Smiflar1  Kesinlik Hatirlama F1 Score

0.8665 1.0 0.9285
1.0 1.0 1.0
1.0 1.0 1.0

0.9245 1.0 0.9608

0.9689 1.0 0.9842

0.992 1.0 0.996

0.8735 0.8132 0.8423
1.0 0.906 0.9507

0.8018 0.9271 0.8599
0.8447 0.7885 0.8156
0.9048 1.0 0.95
0.8234 0.8401 0.8317
0.9125 0.7526 0.8249
0.97 0.9187 0.9436
0.906 1.0 0.9507
0.6976 0.872 0.7751
0.6758 0.8542 0.7546
0.7634 0.813 0.7874
0.8387 0.7339 0.7828
0.792 0.7444 0.7674
0.96 0.8324 0.8916
0.8017 0.9029 0.8493
0.7899 0.8165 0.8029
0.9959 0.738 0.8478
Ortalama 0.8793 0.8856 0.8791

<X sl<cHdvwxnovoZZIrx—-IOMMOO®>

2.8. Onerilen Modelin MUD Veri Seti Uzerindeki Performansinin
Degerlendirilmesi

Onerilen model, MUD veri seti iizerinde Holdout ve LOSO olmak iizere iki farkli
dogrulama teknigi kullanilarak degerlendirilmistir. Ik olarak Holdout teknigine gére elde
edilen sonuglar, ardindan LOSO teknigi kullanilarak elde edilen sonuglar sunulmaktadir.

Holdout teknigi kullanilarak gergeklestirilen ¢alismada, veri seti rastgele %70 (1761
goriintii) egitim ve %30 (754 goriintii) test olarak boliinmiistiir. Literatiirdeki birgok
calismada egitim ve test verisi igin %80-%20 ayrimimin Kullanildigi disiinildiigiinde,

onerilen sistemin elde ettigi basar1 ayr1 bir anlam tasimaktadir. Onerilen model MUD veri
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setinde %98.67 tanima orani elde etmistir. Sekil 51, MUD veri setinde Holdout teknigine

gore olusturulan karmasiklik matrisini gosterir. Tablo 9, MUD test verilerindeki her bir sinif

(otuz alt1 sinif) i¢in Holdout teknigine gore kesinlik, hatirlama ve F1 skorlarini listeler.
Confusion Matrix
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Predicted Labels

Sekil 51. Onerilen modelin Holdout tekni

gine gore MUD test veri seti i¢in olusturdugu

karmagiklik matrisi

seti, el isaretlerinin kisilere goére

LOSO teknigini uygulayabilmek i¢in MUD veri

"Denek2", "Denek3", "Denek4"

ayrildig1 bes klasore donistiriilir. Bu klasorler "Denek1™

, 180 ve 360 goriintii

180

ve "Denek5" olarak adlandirilmis olup, sirasiyla 900, 895,

icermektedir. Cikis sinifi ise dosya adinda tanimlanmstir. Onerilen model, LOSO teknigini

kullanarak MUD veri setinde ortalama %81.22 tanima orani elde etmektedir. Tablo 10, ilgili

teknik kullanilarak tiim denekler i¢in hesaplanan ortalama degerleri, goriintii sayisini, dogru

tahmin sayisini, ortalama tanima oranini, ortalama kesinlik, ortalama geri ¢agirma ve her bir

denek igin ortalama F1 puanini listelemektedir. "Denek1”, "Denek2", "Denek3", "Denek4"

ve "Denek5" i¢in tiretilen karisiklik matrisleri sirastyla Sekil 52, Sekil 53, Sekil 54, Sekil 55

ve Sekil 56'de gosterilmektedir. Benzer sekilde "Denekl1”, "Denek2", "Denek3", "Denek4"
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ve "Denek5" i¢gin kesinlik, hatirlama ve F1 skorlari sirasiyla olmak {izere Tablo 11, Tablo
12, Tablo 13, Tablo 14 ve Tablo 15’de listelenmektedir.

Tablo 9. Holdout teknigine gére MUD test verisindeki her bir sinif igin 6nerilen model
tarafindan tiretilen performans metrigi degerleri

Karakter Smiflarn  Kesinlik Hatirlama  F1 Skoru

A 1.0 1.0 1.0
B 1.0 1.0 1.0
C 1.0 1.0 1.0
D 1.0 1.0 1.0
E 1.0 1.0 1.0
F 1.0 1.0 1.0
G 1.0 1.0 1.0
H 1.0 1.0 1.0

| 1.0 0.9524 0.9756
J 1.0 1.0 1.0
K 1.0 0.9048 0.95
L 1.0 1.0 1.0
M 1.0 0.9048 0.95
N 0.913 1.0 0.9545
o) 09091  0.9524 0.9302
P 1.0 1.0 1.0
Q 1.0 1.0 1.0
R 1.0 1.0 1.0
S 1.0 1.0 1.0
T 1.0 1.0 1.0
U 1.0 1.0 1.0
Y 0.9545 1.0 0.9767
W 0.9524  0.9524 0.9524
X 1.0 1.0 1.0
Y 0.9545 1.0 0.9767
Z 1.0 1.0 1.0
0 0.95 0.9048 0.9268
1 1.0 1.0 1.0
2 0.9524  0.9524 0.9524
3 1.0 1.0 1.0
4 1.0 1.0 1.0
5 1.0 1.0 1.0
6 0.9545 1.0 0.9767
7 1.0 1.0 1.0
8 1.0 1.0 1.0
9 1.0 1.0 1.0

Ortalama 0.9872 0.9868 0.9867
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Tablo 10. Onerilen model tarafindan LOSO teknigi kullanilarak MUD veri

setindeki tiim denekler i¢in hesaplanan ortalama degerler ile birlikte, her bir denek
i¢in goriintii sayisi, dogru tahmin sayisi, ortalama tanima orani, ortalama kesinlik,

ortalama geri ¢agirma ve ortalama F1 puani

Kesinlik  Hatirlama F1 Tanima Orani
Sayis1 Skoru

Goriintiic  Dogru Tahmin
Sayisi

Denek
Denek 1

0.8367
0.8547
0.8389
0.9000
0.6306
0.8122

0.8290
0.8498
0.8153
0.8915
0.6265
0.8024

0.8367
0.8547
0.8389
0.9000
0.6306
0.8122

0.8622
0.8630
0.8211
0.9295
0.6551
0.8262

753
765
151
162
227

900
895

Denek 2

180
180
360

Denek 3

Denek 4
Denek 5
Ortalama
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Sekil 52. Onerilen modelin LOSO teknigine gére MUD veri setinde Denek 1 igin

olusturdugu karmasiklik matrisi
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Tablo 11. LOSO teknigi kullanilarak MUD veri setindeki Denek 1’e gore her bir sinif i¢in
onerilen model tarafindan tiretilen performans metrik degerleri

Karakter Smiflar1  Kesinlik Hatirlama  F1 Skoru

A 0.85 0,68 0.7556
B 1.0 1.0 1.0
C 0.8065 1.0 0.929
D 1.0 1.0 1.0
E 0.9615 1.0 0.9804
F 1.0 1.0 1.0
G 0.8333 1.0 0.9091
H 1.0 1.0 1.0
I 1.0 1.0 1.0
J 1.0 1.0 1.0
K 0.6 0.96 0.7385
L 1.0 1.0 1.0
M 0.7143 0.2 0.3125
N 0.4386 1.0 0.6098
@) 0.5652 0.52 0.5417
P 1.0 0.6 0.75
Q 0.833 1.0 0.9091
R 0.7576 1.0 0.8621
S 1.0 0.24 0.3871
T 0.4412 0.6 0.5085
U 0.9091 0.8 0.8511
\Y 0.8571 0.48 0.6154
W 0.6071 0.68 0.6415
X 1.0 1.0 1.0
Y 1.0 1.0 1.0
Z 1.0 1.0 1.0
0 0.6667 0.56 0.6087
1 1.0 0.84 0.913
2 0.7222 0.52 0.6047
3 1.0 1.0 1.0
4 1.0 0.88 0.9362
5 1.0 1.0 1.0
6 0.5833 0.56 0.5714
7 0.8929 1.0 0.9434
8 1.0 1.0 1.0
9 1.0 1.0 1.0

Ortalama 0.8622 0.8367 0.829
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Confusion Matrix
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Sekil 53. Onerilen modelin LOSO teknigine gére MUD veri setinde Denek 2 igin

olusturdugu karmasiklik matrisi

Confusion Matrix

OO0 0000000000000 O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O0O~ o
000000000000000000000000000000000“00|7
OO0 000000000000 O0O0O0O0O0OOO0OOOO0OOOOIO OO~V
0000000000000000OOOOOOOOOOOOOOW%OOOLD
CO0O0 0000000000000 O0O00O0O0O0O0OOOO0O O o000 oOo-w
000 0000000000000 O0O0OOO0OOOO0O0OO0O0O0OO0OO-M
CO0O0 0000000000000 O0O0O0O0CO0O0O0O0O0O0OO0O0O0O0O0OO0O0O0O-N

OO0 000000000000 00000000000 OO0 00000~
CO00 0000000000 HOO0OO0O0O0OO0O0OCOOHIOOOO0O0O0O0O0O-O
000-000000000000000000000 oo ocoocoooo-N
CO0O0O0O0O0O0O0OOOOOCOOOOOO0OOOOlIOCOOOO0OO0OOO->
OO0 0000000000000 OO00O0O0OO OO0 O0O0 000000 O-X
OO0 O0 000000000000 O0O0O0O000O OOOOOOOOOOOOOIW
OO0 0000000000000 O0O000 000000-000000°|V
CO0O0O 000000000 OoOO0OO0O000 CO0O0O0OO0OO0O0O0OO0O0O0O0O0O-D
CO00 0000000000000 OOIOOO0O00O0O00O0O0O0O0O0O0OO-k
000000000000!00000 0000000000“00000015
CO00 000000000000 OHRIO0O000000000000000O-x
OO0 000000000000 CO0O0O0O0O0OO0O0OO0O0OO0O0O0OO0O0O~-0O
o000 00000 OoO0O0O0OO00O OO0 O0O0O0O0O0OO0O0O0O0O0O0O0O0O0O0OO-a
OO0 0000000000 cocococoocoocoocOoOoOCOOCOOOLOO-0
CO0O0 00000000 HOOOOOOOOOOOOOOO0OO OO0 O0OO00O-~-2
CO0O0O0O0O0OO0OOOHIOOO0O0 0000000000000 O-d
ocoocoo000O0OO00 0000000000100000000000“00|K
COO0O0O0OOOOMNIOO00O00O000O0O0000O0O0O00O0O0O0O0O0O00O-—

Predicted Labels

oococooooo CO0 0000000000000 O0O0O0O0 1000000 ~—
CO0COCOOMIOOOO0O00O00O0O00O0O0O0OO0OOO0O0O0O0O0O0O0O0OO-T
COCOOOQROOCOO0O000OO0000000OOOOCOOOOOCOOO-0
OCOO0COOHOO0O0000000000000000000O0O000O0O0O0O-u
COOORIO 0000000000000 O0O0O0O0O0O0O0O00O0O00O0O0O0O0O~-W
COoOOPOOOOO0O0O0O0O0O0OO0O0O0O0O0O0OOO0O0OOO0O0OO0O0O0OOO-0
OCONIO OO0 0000O0O00O0O0O0O0O0O0O0O0O0O0O0O0O00O0O00O0O0O0O0O-V
o CO 000000000000 0000000000000 O0O0O0O0O0O0O-m
OO0 0000000000000 O0OO0O0O0OO~-«

VE20349HI[ X TWNOJODYSLNAMXAZOTZELSILEBE
sjaqe ang

Sekil 54. Onerilen modelin LOSO teknigine gére MUD veri setinde Denek 3 igin

olusturdugu karmasiklik matrisi
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Tablo 12. LOSO teknigi kullanilarak MUD veri setindeki Denek 2’ye gére her bir sinif i¢in
Onerilen yontem tarafindan tiretilen performans metrik degerleri

Karakter Smiflar1  Kesinlik Hatirlama  F1 Skoru

A 0.8533 1.0 0.9091
B 0.7576 1.0 0.8621
C 0.8 0.64 0.7111
D 1.0 1.0 1.0
E 0.8276 0.96 0.8889
F 1.0 1.0 1.0
G 1.0 1.0 1.0
H 1.0 1.0 1.0

| 1.0 1.0 1.0
J 1.0 0.96 0.9796
K 1.0 0.96 0.9796
L 1.0 1.0 1.0
M 0.6316 0.48 0.5455
N 0.68 0.68 0.68
o) 0.525 0.84 0.6462
P 1.0 1.0 1.0
Q 1.0 1.0 1.0
R 1.0 1.0 1.0
S 1.0 0.36 0.5294
T 0.5862 0.85 0.6939
U 1.0 0.8 0.8889
Y, 0.6154 0.64 0.6275
W 0.5625 0.72 0.6316
X 0.8333 0.8 0.8163
Y 1.0 0.96 0.9796
Z 1.0 1.0 1.0
0 0.5556 0.4 0.4651
1 0.7812 1.0 0.8772
2 0.6522 0.6 0.625
3 1.0 1.0 1.0
4 0.9091 0.8 0.8511
5 1.0 1.0 1.0
6 0.5556 0.4 0.4651
7 1.0 0.96 0.9796
8 1.0 0.96 0.9796
9 0.9615 1.0 0.9804

Ortalama 0.863 0.8547 0.8498
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Tablo 13. LOSO teknigi kullanilarak MUD veri setindeki Denek 3’e gore her bir sinif i¢in
onerilen model tarafindan tiretilen performans metrik degerleri

Karakter Smiflar1  Kesinlik Hatirlama  F1 Skoru

A 1.0 1.0 1.0
B 1.0 1.0 1.0
C 1.0 1.0 1.0
D 1.0 0.6 0.75
E 1.0 0.8 0.8889
F 1.0 1.0 1.0
G 1.0 1.0 1.0
H 1.0 1.0 1.0

| 0.8333 1.0 0.9091
J 1.0 1.0 1.0
K 0.625 1.0 0.7692
L 1.0 1.0 1.0
M 0.25 0.4 0.3077
N 0.0 0.0 0.0
o) 1.0 0.8 0.8889
P 1.0 1.0 1.0
Q 1.0 1.0 1.0
R 1.0 1.0 1.0
S 0.4545 1.0 0.625
T 1.0 1.0 1.0
U 1.0 1.0 1.0
V; 0.4444 0.8 0.5714
W 1.0 1.0 1.0
X 1.0 1.0 1.0
Y 1.0 1.0 1.0
z 0.7143 1.0 0.8333
0 0.8333 1.0 0.9091
1 1.0 1.0 1.0
2 0.0 0.0 0.0
3 0.0 0.0 0.0
4 1.0 0.6 0.75
5 1.0 1.0 1.0
6 1.0 1.0 1.0
7 1.0 0.4 0.5714
8 0.5714 0.8 0.6667
9 0.8333 1.0 0.9091

Ortalama 0.8211 0.8389 0.8153
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Confusion Matrix

10

Sekil 55. Onerilen modelin LOSO teknigine gére MUD veri setinde Denek 4 igin

Sekil 56. Onerilen modelin LOSO teknigine gére MUD veri setinde Denek 5 igin
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Tablo 14. LOSO teknigi kullanilarak MUD veri setindeki Denek 4’¢ gore her bir sinif i¢in
onerilen model tarafindan tiretilen performans metrik degerleri

Karakter Siniflar1  Kesinlik Hatirlama  F1 Skoru
A 1.0 0.4 0.5714
B 1.0 1.0 1.0
C 1.0 1.0 1.0
D 1.0 1.0 1.0
E 1.0 1.0 1.0
F 1.0 1.0 1.0
G 0.8333 1.0 0.9091
H 1.0 1.0 1.0
| 1.0 0.4 0.5714
J 1.0 1.0 1.0
K 0.6667 0.8 0.7273
L 1.0 1.0 1.0
M 0.8333 1.0 0.9091
N 1.0 1.0 1.0
(@) 1.0 0.8 0.8889
P 1.0 1.0 1.0
Q 1.0 1.0 1.0
R 1.0 1.0 1.0
S 0.4545 1.0 0.625
T 1.0 0.2 0.3333
U 1.0 1.0 1.0
V 1.0 1.0 1.0
W 1.0 0.6 0.75
X 1.0 1.0 1.0
Y 0.7143 1.0 0.8333
Z 1.0 1.0 1.0
0 0.8333 1.0 0.9091
1 1.0 1.0 1.0
2 0.6667 0.4 0.5
3 1.0 1.0 1.0
4 1.0 0.8 0.8889
5 1.0 1.0 1.0
6 0.625 1.0 0.7692
7 0.8333 1.0 0.9091
8 1.0 1.0 1.0
9 1.0 1.0 1.0

Ortalama 0.9295 0.9 0.8915
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Tablo 15. LOSO teknigi kullanilarak MUD veri setindeki Denek 5’e gore her bir sinif i¢in
onerilen model tarafindan tiretilen performans metrik degerleri

Karakter Smiflar1  Kesinlik Hatirlama  F1 Skoru

A 0.7778 0.7 0.7368
B 0.7273 0.8 0.7619
C 1.0 0.6 0.75

D 0.3636 0.4 0.381
E 0.8333 1.0 0.9091
F 0.9 0.9 0.9

G 0.4167 0.5 0.4545
H 1.0 0.7 0.8235
| 0.75 0.9 0.8182
J 0.7143 1.0 0.8333
K 0.5714 0.4 0.4706
L 0.7273 0.8 0.7619
M 0.25 0.4 0.3077
N 0.1 0.1 0.1

@) 0.625 0.5 0.5556
P 1.0 0.6 0.75

Q 1.0 0.8 0.8889
R 0.75 0.6 0.6667
S 0.75 0.9 0.8182
T 0.8 0.8 0.8

U 0.5 0.9 0.6429
\Y 0.25 0.1 0.1429
W 0.25 0.2 0.2222
X 0.5263 1.0 0.6897
Y 1.0 0.7 0.8235
Z 0.1667 0.1 0.125
0 0.2857 0.2 0.2353
1 0.7143 0.5 0.5882
2 0.4 0.4 0.4

3 0.8182 0.9 0.8571
4 0.8571 0.6 0.7059
5 1.0 0.7 0.8235
6 0.3158 0.6 0.4138
7 0.6923 0.9 0.7826
8 0.75 0.6 0.6667
9 1.0 0.9 0.9474

Ortalama 0.6551 0.6306 0.6265
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2.9. Onerilen Modelin Kullamldigi Akilli Sistemin Gelistirilmesi

Gelistirilen akilli sistem, ASL'nin taninmasi amaciyla olusturdugumuz modeli
kullanarak gercek zamanli isaret dili tanima amaci tasimaktadir. Bu baglamda ilgili sistem
kullanicidan isaret dili goriintiilerinin gergek zamanl olarak alinmasini saglayacak bir dis
cihaza ihtiyag duymaktadir. Dis cihazin kaliteli olmasi, elde edilecek goriintiiyli ve
dolayisiyla modelin performansini dogrudan etkileyecektir. Dis cihaz olarak diziisti
bilgisayar {izerinde biitiinlesik olarak sunulan standart bir web kamerasi kullanilmstir.

Gelistirilen gercek zamanli isaret dili tanima sistemi i¢in baslangicta karsilasilan iki
temel zorluk, goriintiide elin tespit edilmesi gerekliligi ve arka plan farkliliklarma bagh
olarak o6zellik ¢ikarimi ve siniflandirmada olusabilecek hatalardir.

Web kamerasindan alinan goriintli akisinda elin tespit edilmesi amaciyla Mediapipe
kiitiiphanesi kullanilmistir (URL3, 2024). Mediapipe bir goriintiideki yiiz, poz, sol el ve sag
el bilgilerinin elde edilmesini saglayan Google tarafindan iiretilmis bir yapidir. Gelistirilen
sistem su anda Sadece el goriintiisii izerinden galistig1 i¢in sol ve sag el bilgilerinin elde
edilmesi yeterli olacaktir. Ilgili kiitiiphane, goriintii {izerindeki tespit edilen her bir el i¢in 21
adet anahtar nokta tanimlamaktadir. Sag el i¢in tespit edilen anahtar noktalar ve agiklamalari
Sekil 57°de gosterilmistir. Sol el icin de benzer sekilde olmak kaydiyla y eksenine gore

simetri durumu mevcuttur.

0.Bilek 11.Orta Parmak Ug Eklem
1.Bas Parmak En Alt Eklem 12.0rta Parmak Ucu
2.Bag Parmak Orta Eklem  13.Yiiziik Parmak En Alt Eklem
3.Bag Parmak Ug Eklem 14.Yiiziik Parmak Orta Eklem
4.Basg Parmak Ucu 15.Yuziik Parmak Ug Eklem
5.lsaret Parmagi Alt Eklem  16.Yiiziik Parmak Ucu
6.lsaret Parmagi Orta Eklem 17.Serge Parmak En Alt Eklem
7.isaret Parmagi Ug Eklem 18.Serce Parmak Orta Eklem
8.isaret Parmag Ucu 19.Serge Parmak U¢ Eklem
9.0rta Parmak Alt Eklem 20.Serge Parmak Ucu

10.0rta Parmak Orta Eklem

Sekil 57. Sag el i¢in Mediapipe tarafindan iiretilen anahtar noktalar ve agiklamalari

Gergeklestirilen tiim ¢aligmalarda goriintiilere herhangi bir 6nislem uygulanmadig:
daha Once belirtilmistir. Bu nedenle, hem MNIST hem de MUD veri setleri iizerinde
gerceklestirilen calismalarda arka planla ilgili herhangi bir islem yapilmaksizin modeller

gelistirilmistir. Baska bir deyisle, her iki veri seti i¢in gelistirilen modeller egitim siirecinde
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goriintiileri arka planlariyla birlikte analiz etmistir. MNIST veri setinin diisiik ¢oziintirlige
sahip olmasi, ayrica goriintiilerdeki arka planlarin farkli renk tonlarina ve nesne veya nesne
parcalarina sahip olmasi nedeniyle gercek zamanli sistem i¢in uygun goriilmemistir. Buna
karsilik, MUD veri seti yiiksek ¢ozliniirliige sahip olup tamamen siyah bir arka plan iizerinde
el goriintiileri icermektedir. Bu nedenle, arka plana bagl olusabilecek hatalar1 en aza
indirmek amaciyla MUD veri seti, gelistirilen modelin tanima sisteminde kullanilmstir.
Boylece sistem kullanilirken arka plan olarak siyah bir zemin olusturulup, arka plan kaynakli
hatalarin en aza indirgenmesi hedeflenmistir.

Arka plan sorunu kismen ¢oziime ulastirildigina gore, siradaki siireg¢ Mediapipe’in sag
ve sol el i¢in tirettigi anahtar noktalar1 kullanarak gelistirilecek sistem igin elin uygun sekilde
tespit edilmesidir. Zernike momentlerin birim disk iizerinde ¢alistigi daha once ifade
edilmistir. Birim disk, karesel bir goriintii lizerinde olusturabilir. Bu nedenle, anahtar
noktalar kullanilarak eli ¢erceveleyen en kiiciik kare olusturulmustur. Eli g¢erceveleyen
karesel goriintli, Oncelikle 400x400 piksele Ol¢eklenerek oOzellik ¢ikarimi asamasina
yonlendirilir. Bu dlgekleme islemi, goriintiiniin MUD veri seti lizerinde gelistirilen modelle
uyumlu olmasi amaciyla gergeklestirilir. Eger bu islem yapilmazsa sistemden beklenilen
basar1 elde edilemez. Ozellik c¢ikarimindan elde edilen oznitelik vektérii CVDNN’e
yonlendirilerek ¢ikis sinifi tespit edilir. Elde edilen siif ara yiiziin sol iist kosesinde
gosterilir. Ayrica eli gergeveleyerek elde edilen goriintii de 100x100 piksel boyutuna
Olceklenerek ara yiizilin sag iist kdsesine yerlestirilmistir.

Ozellik ¢ikarimu siireci ¢dziiniirliik yiiksek oldugundan gergek zamanli bir sistem igin
fazla zaman almaktadir. Bu sebeple her bes goriintiide (frame) bir islem yapilmaktadir. Fakat
buradaki ilk amag¢ Onerilen yontemin basarisimi test etmektir. Bu sebeple de yliksek
¢oziinlirliiklii goriintiiler tizerinden islem yapilmaktadir.

Gergek zamanli sistem, egitiminde kullanilmayan bir el iizerinden yani aslinda LOSO
teknigine gore test edilmistir. El isaretlerinin diizgiin ve dogru bir sekilde yapilabilmesi,
ayrica arka planin ve 15181n optimum ayarlanmasi sonucunda gelistirilen sistem, tanima orant
olarak %90 ile %95 arasinda bir performans degeri elde etmektedir. Sekil 58 gergek zamanli
sistemden bir Kkesiti gostermektedir.

Tablo 16 ise web kamerasindan alinan goriintii akisinda elin kare i¢ine alinmasini

saglayan kod pargacigini igermektedir.
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Sekil 58. Ger¢ek zamanli sistemden bir kesit goriintiisii

Tablo 16. Web kamerasindan alinan goriintii akisinda elin kare i¢ine alinmasini saglayan
kod parcacigi

Kod Parcacigr

import cv2

import mediapipe as mp

import numpy as np

from kostur import ozellikcikar
from progakis import sinifbelirle

mp_drawing = mp.solutions.drawing_utils
mp_drawing_styles = mp.solutions.drawing_styles
mpHands = mp.solutions.hands

cap = cv2.VideoCapture(0)
hands = mpHands.Hands()
margin = 20

frame=0

while cap.isOpened():
frame+=1
if frame%5==0:
sinifimiz=""
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with mpHands.Hands(static_image_mode=True, max_num_hands=2,
min_detection_confidence=0.5) as hands:
success, image = cap.read()
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = hands.process(image)
if results.multi_hand_landmarks:
for hand_landmarks in results.multi_hand_landmarks:

h, w, _ =1image.shape
x_coords =]
y_coords =[]

for Im in hand_landmarks.landmark:
X, y = int(Im.x * w), int(Im.y * h)
X_coords.append(x)
y_coords.append(y)

X_min, X_max = min(x_coords), max(x_coords)
y_min, y_max = min(y_coords), max(y_coords)

X_min_extended = max(x_min - margin, 0)
y_min_extended = max(y_min - margin, 0)
X_max_extended = min(x_max + margin, w)
y_max_extended = min(y_max + margin, h)

side_length = max(x_max_extended - x_min_extended, y_max_extended -
y_min_extended)

X_min_square = max(x_min_extended - (side_length - (x_max_extended -
X_min_extended)) // 2, 0)

y_min_square = max(y_min_extended - (side_length - (y_max_extended -
y_min_extended)) // 2, 0)

X_max_square = min(x_min_square + side_length, w)

y_max_square = min(y_min_square + side_length, h)

mask = np.zeros(image.shape[:2], dtype=np.uint8)
cv2.rectangle(mask, (x_min_square, y_min_square), (X_max_square,
y_max_square), 255, -1)

hand_area = cv2.bitwise_and(image, image, mask=mask)

hand_area_cropped = hand_area[y_min_square:y_max_square,
X_min_square:x_max_square]

hand_area_resized = cv2.resize(hand_area_cropped, (400, 400))

hand_area_view=cv2.resize(hand_area_cropped, (100, 100))

dosyaismi="hand_area_cropped.png"

cv2.imwrite(dosyaismi, cv2.flip(hand_area_resized, 1))




104

ozellikcikar(dosyaismi)
sinifimiz=sinifbelirle()

hand_area_height, hand_area_width = hand_area_view.shape[:2]
top_left x=0
top_left y=0

if hand_area_height > 0 and hand_area_width > 0:
image[top_left_y:top_left y + hand_area_height, top_left x:top left x +
hand_area_width] = hand_area_view

cv2.rectangle(image, (X_min_square, y_min_square), (X_max_square,
y_max_square), (0, 255, 0), 2)
frame=0
imageflip=cv2.flip(image, 1)
cv2.putText(imageflip, f'{sinifimiz}', (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow(‘HandTracker',imageflip)
if cv2.waitKey(5) & OXFF == 27:
break

cap.release()
cv2.destroyAllwWindows()




3. BULGULAR VE TARTISMA

Bu boliim, ¢aligmalar gergeklestirilirken karsilagilan zorluklarin nasil ¢oziildiigiind,
farkli sec¢eneklerin oldugu durumlarda ilgili se¢eneklerden elde edilen sonuglari, diger
caligmalarla karsilagtirmalar1 ve Onerilen yontemin etkisinin kanitlanmasini igeren gesitli

islemlerden olugsmaktadir.

3.1. Model Mimarisi ve Akill Sistem Uzerindeki Ablasyon Calismalar

Ik olarak, dzellik ¢ikarimi asamasinda moment derecesinin nasil belirlendigi daha
detayl bir sekilde incelenecektir. Moment derecesinin belirlenmesi islemi, 6ncelikli olarak
10. dereceden 30. dereceye kadar, 4'er adimlik bir ilerlemeyle (10, 14, 18, 22, 26 ve 30) elde
edilen 6znitelik vektorlerinin CVDNN'ye verilmesi ve sonuglarin analiz edilmesiyle baslar.
Elde edilen sonuglar1 incelediginde, en iyi degerlerin benzerlik algoritmalari MSE ve
SSIM’in sonuglarina bagli olarak 10. ve 14. moment derecelerinde elde edildigi tespit
edilmistir. Ayni1 islemler, 10. dereceden 15. dereceye kadar (10, 12, 13, 14 ve 15) adim adim
gerceklestirilmis ve en iyi sonucun 14. derecede oldugu belirlenmistir. Gergeklestirilen
deneyler sonucunda, dogru moment derecesinin se¢ilmesinin sistemin performansini
yaklasik %8-10 oraninda etkiledigi gézlemlenmistir.

Baslangicta, arka planin performans iizerindeki etkisini netlestirebilmek amaciyla
MNIST veri seti tizerinde ¢esitli arka plan ¢ikarim teknikleri denenmis, ancak arzu edilen
basariya ulagilamamistir. Bu noktada, veri setinin diisiik ¢oziiniirliige sahip olmasi ve
goriintiilerin net olmamas1 6nemli bir etkiye sahiptir. MNIST veri setinin baslangigta
secilmesinin nedeni, bir¢ok ¢alismanin bu veri seti lizerinde gerceklestirilmis olmasi ve
dolayisiyla karsilagtirma imkani sunmasidir. MNIST veri setinde elde edilen basariyi
takiben, MUD veri setinde saglanan sonuglar yontemin etkinligini kanitlamis ve dogrudan
akilli sistem tasarimina gegilmistir. Akilli sistemin test asamalarinda, arka planin farklh
oldugu durumlarda sonuglarin olumsuz oldugu tespit edilmistir. MUD veri setindeki tiim
gorintiilerin arka planinin tamamen siyah olmasi ve akilli sistemin de benzer bir ortam
kuruldugunda yiiksek basar1 elde edilmesi, arka planin etkisinin ne denli 6nemli oldugunu

gostermektedir. MUD veri setinde arka planin ¢ikarilmasi isleminin basarili olacagi
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rahatlikla sdylenebilir. Ayn1 sekilde, akilli sistemde de arka planin kolayca ¢ikarilabilecegi
bir ortam hazirlanarak siyah arka plan bagimliligindan kurtulmak miimkiindiir.

CVDNN modiiliinde, katman sayisini belirlemek i¢in 6ncelikle 4-5 katmanli yapilar
test edilmis ve sonuglarin benzer oldugu gozlemlenmistir. CVDNN’in karmasik girislere
sahip XOR problemini ¢6zmek amaciyla iiretilen ilk prototipinin gergek degerli aktivasyon
fonksiyonu sigmoid kullandig1 daha 6nce ifade edilmistir. Sigmoid disinda, sik¢a kullanilan
ReLU ve tanh gibi gergek degerli aktivasyon fonksiyonlart da mevcuttur. Calismalar
kapsaminda her ii¢ fonksiyon da kullanilmis ve ReLU'nun en iyi secenek oldugu tespit
edilmistir. tanh fonksiyonu da basarili sonuglar vermis olmakla birlikte, ReLU'nun
performansina ulasamamistir. ReLU fonksiyonun performansa etkisi, sigmoid’e kiyasla
yaklasik %9 ile %11 arasinda degismektedir. Seyreltme teknigi, asirt 6grenmeyi onleyerek
sistemin performansini artirmada kritik bir rol oynar. Seyreltme oraninin belirlenmesi ve
uygulanmasinin detaylar1 daha oOnce ifade edilmistir. Seyreltme tekniginin sistem
performansina etkisi yaklasik %6-8 arasinda degismektedir.

Onerilen yontemin etkinligini kanitlamak amaciyla bir baska ¢alisma daha
gerceklestirilmistir. Bu ¢alismada, karmasik verilerin gercek degerli verilere kiyasla daha iyi
sonuclar verdigini gdstermek icin, ilk ¢alisma gercek verilerle yapilmistir. Bu amagla,
karmagsik verilerin genlik |z| bilgileri kullanilarak egitim ve test Oznitelik vektorleri
olusturulmustur. Benzer sekilde, CVDNN’in yapisi ayn1 kalmak sartiyla sadece gergek
degerli verilerle ¢alisabilecek sekilde DNN’e dontistiiriilmiistiir. Sonugta elde edilen DNN,
MNIST test verilerinde %72.15 tanima orani elde etmistir. Literatiirde, benzer optimizasyon
algoritmasin1 (momentumlu SGD) kullanan sistemlerin, ger¢ek degerli veriler iizerinde
SGD’nin %66.02 ve SGDC’nin %59.80 tanima orani elde ettigi belirtilmektedir. Ayrica, en
yaygin kullanilan optimizasyon algoritmalarindan biri olan Adam'im, momentumlu SGD ile
benzer basart oranlarina sahip oldugu goézlemlenmistir (Kingma & Ba, 2024). Sonug olarak,
karmasik sayilarla ¢alismanin, modelin yapisin1 korunarak gercek sayilarla ¢alisabilecek
sekilde yapilandirilmasina kiyasla yaklasik %20 olumlu bir performans etkisi sagladigi

gozlemlenmistir.

3.2. Gelistirilen Modelin Diger Cahsmalarla Karsilastirilmasi

Bu boliimde, Onerilen yaklasimi igeren model literatiirdeki diger c¢alismalarla

karsilastirilir. Oncelikle dnerilen modelin MNIST veri setinde kullanilan diger modellerle
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karsilastirilmasi ele alinmakta, ardindan benzer bir karsilastirma MUD veri seti i¢in Holdout
ve LOSO tekniklerine bagli olarak ayr1 ayr1 yapilmaktadir.

Adil bir karsilastirma saglamak amaciyla, MNIST test veri setinin tamami iizerinde
yapilan ¢alismalara odaklanilmaktadir. Tablo 17, 6nerilen model ile MNIST test veri setinin
tamaminda gergeklestirilen ¢caligsmalarin karsilastirilmasini ifade etmektedir. Ayrica, tabloda

listelenen ¢aligsmalarin higbiri veri seti {izerinde herhangi bir 6n isleme gergeklestirmemistir.

Tablo 17. Onerilen model ile diger ¢alismalarin MNIST test veri setindeki tanima oranlar

Model/Metot Tanmma Orani (%)

NBG (Li. vd, 2022) (Bhushan vd., 2022) 38.9
SGDC (Bhushan vd., 2022) 59.8
SGD (Li. vd, 2022) 66.02

KNN (Li. vd, 2022) / KNN (Bhushan vd., 2022) 78.17 1 80.46
XGBoost (Bhushan vd., 2022) 81.35

RFC (Li. vd, 2022) / RF (Bhushan vd., 2022) 81.61/84.43
LeNeT-5 (Bilgin & Mutludogan, 2019) 82.19
SVM (Li. vd, 2022) 84.19
CapsNet (Bilgin & Mutludogan, 2019) 88.93
Onerilen Model 89.01
CNN (Bhushan vd., 2022) 91.41

Onerilen modelin MUD veri seti i¢in diger ¢alismalarla karsilastiriimasi, Holdout ve
LOSO tekniklerine gore sirasiyla Tablo 18 ve Tablo 19'da listelenmistir. Tiim ¢aligmalarin
LOSO tekniginde ayni veriler iizerinde gerceklestirildigi g6z Oniine alindiginda,

karsilastirmalar daha giivenilirdir.

Tablo 18. Holdout teknigine gore onerilen model ve diger ¢alismalarin MUD test veri
setindeki tanima oranlar1

Model/Metot Tanima Oram (%)
Inception-v3 (Barbhuiya vd., 2022) 93.50
Squeezenet (Barbhuiya vd., 2022) 95.23
Vgg19 (Barbhuiya vd., 2022) 96.68
AlexNet (Barbhuiya vd., 2022) 97.01

Vggl16 (Barbhuiya vd., 2022) / Vgg16 (Chevtchenko vd., 2018) 97.48/92.20

Chevtchenko (Chevtchenko vd., 2018) 98.05
Barbhuiya (Barbhuiya vd., 2022) 98.41

Onerilen Model 98.67
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Tablo 19. LOSO teknigine gore 6nerilen model ve diger ¢calismalarin MUD test veri
setindeki tanima oranlari

Model/Metot Tanima Orani (%)

Vgg16 (Chevtchenko vd., 2018) 61.42
MobileNet (Chevtchenko vd., 2018) / MobileNet (Bhaumik vd., 2024) 62.53/73.25

Modified VGG16 + SVM (Barbhuiya vd., 2021) 70.00
Modified AlexNet+SVM (Barbhuiya vd., 2021) 70.00
MobileNetV2 (Bhaumik vd., 2024) 72.28
ResNet50 (Bhaumik vd., 2024) 74.42

CNN (Chevtchenko vd., 2018) 73.86/78.51/79.04
SpAtNet (Bhaumik vd., 2024) 80.44
Onerilen Model 81.22
Chevtchenko (Chevtchenko vd., 2018) 84.02

Gelistirilen modelin basari durumu incelenirken, ¢ikis siniflarinda ne tiir hatalar
yapildigina dair analizler de gergeklestirilmistir. Bu analizlerin sonuglari aslinda karmagiklik
matrisi tizerinden de elde edilebilse de, ¢ok fazla ¢ikis sinifinin olmasi sebebiyle hata yapilan
cikislarin tespitini daha rahat saglamak amaciyla yapilmistir. Bu yonde yapilan ¢alismalarda,
dogru sinif ¢iktisi ile tahmini sinif ¢iktilart farkli olan 6geler listelenmistir. Sekil 59, ASL
veri setinin egitim i¢in %70, test i¢in %30 olarak ayrildigi (Holdout teknigi) durumda
Onerilen modelin test verisi iizerinden iirettigi ¢ikis siniflarinin hata analiz sonuglarinm
gostermektedir. Tlgili sekilde, bos kiimeler ilgili sinif i¢in hata olmadigim gosterirken, diger
durumlarda o sinif i¢in yapilan yanlis tahminleri ve sayisini virgiille ayrilmis sekilde simif
bazinda gostermektedir.

Sekil 60, onerilen modelin ilgili teknige gore hata yaptigi durumlarda, ayirt etmede en fazla
zorluk yasadig1 siniflara ait goriintiileri birlikte gdstermektedir. Ilgili sekilden goriilebilecegi
lizere, Onerilen model 6 ile W, 0 ile O ve 2 ile V smiflarinin bazi 6rneklerinde sorun
yasamaktadir. Bu belirtilen siniflarla ilgili olarak, ger¢cek zamanli denemelerde de sorun
yasanabilecegi gorillmiistiir ¢iinkii Sekil 60'dan anlagilacagi tizere, bu smniflar birbirine
oldukca benzemektedir. Ancak burada dikkat edilmesi gereken durum ilgili smiflarin
birbirinden ayrilmasindaki ¢ok ince detaylardir. Bu durum, gercek zamanl bir sistemde
yapilan deneylerde, ilgili kisinin isaret dilini ¢ok iyi bilmesinin énemli oldugunu ortaya
koymaktadir. Ilgili veri seti Holdout teknigine gére %80-%20 olarak ayrildiginda, énerilen

model %99.60 tanima oranina ulagmakta ve 503 goriintiide 501 dogru tahmin yapmaktadir.
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Sekil 59. ASL veri setinin %70 egitim %30 test verisi olarak ayrildig1 durumda onerilen
model tarafindan elde edilen hata analiz sonuglari
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Sekil 60. ASL veri setinde birbirine olduk¢a benzeyen ¢ikis siniflari
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Son olarak sunu ifade edebiliriz ki web kamerasindan alinan goriintiide o6zellik
cikarimi agamasinda kullandigimiz karmagik Zernike moment teknigi CNN gibi hazir sinir
aglarina kiyasla donanim bazli kaynak tiiketimini olduk¢a azaltmistir. Bu sayede model ¢ok

daha diisiik kaynak igeren sistemlerde de ¢alisabilmektedir.



4. SONUCLAR

Bu calismada, Amerikan isaret dilini tanimaya yonelik bir aragtirma
gergeklestirilmistir. Bu arastirmada, ozellik ¢ikarma asamasinda Zernike momentlerin
buiytikliikleri yerine karmasik bilesenler ve faz bilgisinin kullanilmas1 daha uygun bir yontem
olarak degerlendirilmistir. Bu sayede, elde edilen 6znitelik vektdriiniin goriintiiyli daha iyi
temsil edecegi ve dolayisiyla gelistirilen uygulamanin daha basarili sonuglar {iretecegi
Ongorilmiistiir.

Literatiirde karmasik Zernike momentler olarak adlandirilan bu teknikle, oncelikli
olarak goriintiiniin yeniden olusturulmas1 amaglanmustir. Uretilen yeniden olusturulmus
temsillerin, yiiksek moment derecelerinde orijinal goriintiiye olduk¢a benzedigi tespit
edilmis ve bu durum, yontemin 6zellik ¢ikarimindaki etkinligini kanitlamistir.

Elde edilen karmasik Oznitelik vektoriinii isleyebilecek karmasik degerli bir sinir
agimnin gelistirilmesi gerekmektedir. Bu baglamda, katmanlar {izerinde karmasik verilere ayri
ayr1 aktivasyon fonksiyonu uygulanir ve elde edilen veriler tizerinden tekrar karmasik veri
tiretilerek agin katmanlar1 boyunca karmasik verilerle ¢aligmasi saglanir.

Gorlintii analizi gibi karmasik siireglere ge¢ilmeden once, karmagik degerli sinir aginin
olusturulmas1 ve islevselligini test etmek amaciyla basit bir problemin ¢dziimiine
odaklanilmistir. Bu baglamda, karmasik giris degerlerine sahip XOR probleminin ¢dzimii
tasarlanan sinir ag1 iizerinden gerceklestirilmistir. 16 farkli durumu igin problem igin 12
durum egitim amaciyla kullanilmis ve toplam 16 durum test olarak verilmistir. Gelistirilen
ag ilk prototipi tlim durumlar1 dogru olarak tespit etmistir.

XOR problemindeki basaridan sonra, asil hedef olan isaret dili tanima sisteminin
olusturulmasina gecilmistir. Iki farkli veri seti olan MNIST ve MUD iizerinde
gerceklestirilen islemler dogrultusunda, 6zellik ¢ikarim siirecinde c¢esitli diizenlemeler
yapilmistir. Bu diizenlemelerden en 6nemlisi, moment derecesinin ayarlanmasidir. Ancak,
kapsamli bir analiz ve gelistirme siireci, bir¢ok diizenleme ile birlikte karmasik degerli sinir
ag1 modiiliinde gerceklestirilmistir. Bu diizenlemelerden bazilari; katman sayisinin ve
katmanlardaki ndron sayisinin belirlenmesi, seyreltme oraninin ve tekniginin tespit edilmesi,
Oznitelik vektorii degerlerinin normalizasyonu, karmasik aktivasyon fonksiyonun
netlestirilmesi, 6grenme adimi sirasinda verilerin hangi oranda ayrilarak kullanilacaginin

kararlastirilmasi, c¢ikis katmanmnin yorumlanmasinda ve hatanin geri yayiliminda
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kullanilacak fonksiyonlarin belirlenmesi, optimizasyon algoritmasinin saptanmasi Ve
parametrelerinin ayarlanmasi olarak ifade edilebilir. Bu diizenlemeler gergeklestirilirken
karsilasilan en Onemli problem, biitiin parametrelerin en uygun sekilde ayarlanmasi
durumunda dahi tek bir parametrenin yanlis ayarlanmasinin sonuglari ciddi sekilde olumsuz
yonde etkilemesidir.

Onerilen model MNIST ve MUD veri tabanlar {izerinde ayr1 ayr test edilmistir.
MNIST veri setinin test veri kiimesinde %89.01 tanima dogrulugu elde ederek 6nemli bir
basar1 saglamistir. Ayrica, 6nerilen model ayni1 veri seti iizerinde yapilan diger caligmalarla
karsilagtirildiginda bir¢ok bilinen ¢alisma ve modeli geride birakarak, CNN’in ardindan
ikinci olmustur.

MUD veri seti, egitim ve test kiimeleri olarak ayrilmadigindan, onerilen model
Holdout ve LOSO tekniklerine gore ayr1 ayr1 degerlendirilmistir. Holdout teknigine uygun
olarak veri seti %70 egitim, %30 test kiimesi olacak sekilde ayrildiginda, test kiimesinde
%98.67 tanima orani elde edilmistir. Ayn1 veri seti lizerinde yapilan bir¢ok caligmayla
kiyaslandiginda, 6nerilen model en yiiksek tanima oranini elde etmistir. lgili teknige gore
yapilan ¢alismalar incelendiginde, birgok calismanin veri setini %80 egitim, %20 test verisi
olarak ayirdigr goriilmiistiir. Benzer sekilde, MUD veri seti %80 egitim, %20 test verisi
olarak ayrildiginda tanima orani %99.60 seviyesine yiikselmistir. Bu degerlerin karmasiklik
matrisinden elde edilen dogruluk orani1 degil, tanima orani oldugunu tekrar hatirlatmakta
fayda bulunmaktadir.

LOSO teknigine bagl olarak MUD veri seti tlizerinde gergeklestirilen ¢alismalarda,
onerilen model %81.22 tanima orani elde etmis ve CNN tabanli bir¢cok ¢alismay1 geride
birakarak ikinci olmustur. Elde edilen sonuglar iizerinden yapilan analizlerde, Denek 5’e ait
skorun (egitimde Denek 5 yok, test kiimesinde var) diisiikk oldugu ve dolayistyla ana skoru
olumsuz etkiledigi gortilmiistiir. Literatiirdeki bazi ¢alismalarda da Denek 5’¢ ait sonuglarin
diisiik oldugu goézlemlenmis ve bu denegin diger deneklere goére zorlu ve etkili bir
degerlendirme araci oldugu, elde edilen sonuglardan da tespit edilmistir.

Gelistirilen modelin entegre edildigi bir gercek zamanli uygulama da olusturulmustur.
Bu uygulama, web kamerasindan gelen goriintii akisin1 anlik olarak isleyerek oncelikle el
tespiti ve takibini gercgeklestirir. El tespiti Onerilen modele uygun sekilde (birim disk
sebebiyle karesel) yapildiktan sonra, 6zellik ¢ikarim modiilii ile tespit edilen alanin 6znitelik
vektorii elde edilir. Bu vektor, CVDNN modiiliine yonlendirilir ve Holdout (70-30)

teknigiyle egitilen model {izerinden degerlendirilir. Ancak burada 6nemli bir hususa dikkat
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cekmek gerekir. Holdout teknigine dayali bir model kullaniliyor olmasina ragmen,
uygulamanin igleyisi aslinda LOSO teknigine benzerdir. Bunun nedeni, test sirasinda
kullanilan el goriintiilerinin, egitim verisi igerisinde yer almamasidir. Ilgili uygulama
tizerinde yapilan ¢alismalar sirasinda, 151k ve arka plan faktorlerinin oldukga etkili oldugu
gozlemlenmistir. MUD veri setinin arka planinin tamamen siyah olmasi avantajindan
yararlanarak, uygulama i¢in siyah arka planl bir ortam hazirlanarak gelistirilen Sistem test
edilmistir. Ayrica, 151k kosullar1 uygun sekilde ayarlandiginda ve el isaretlerini diizgiin bir

sekilde gergeklestirildiginde, %90’ 1n iizerinde bir tanima orani elde edilmistir.



5. ONERILER

Karmasik Zernike momentler kullanilarak Onerilen yontemle gelistirilen model,
basarili sonuglar elde etmis olsa da ger¢ek zamanli uygulamada karsilasilan bazi durumlar,
gelecekte yapilacak gelistirmeler igin yol gdsterici olmustur. Bu baglamda, 1s1k ve arka plan
problemlerinin ¢oziilmesi hedeflenmektedir. Her ne kadar iki ayr1 faktor gibi goriinseler de,
temelde bu durum biitiinlesik olarak degerlendirilebilir. Isik problemi, arka planin varligina
bagli olarak artmaktadir. Arka planin ¢ikarilabilecegi bir durumda 15181n etkisi ¢ok daha
diisiik olacaktir. Bu nedenle, gelecekteki en Onemli calismalar arasinda arka planin
¢ikarilmasi 6ne ¢ikmaktadir. Belirtilen 6n isleme adimlarini goriintiilere uygulamanin basari
oranlarint 6nemli dl¢iide artirabilecegi diistiniilmektedir.

Goriintii akiginda el tespiti gergeklestirildikten sonra veya sabit bir goriintii
kullanildiginda, o6zellik ¢ikarimi modiiliinde ilgili goriintii iizerinde birim ¢ember
olusturulmaktadir. Bu baglamda, bazi resimlerde hedeflenen verinin cemberin disinda kalma
olasilig1 oldukea yliksektir. Bu durum, hem 6grenme hem de test asamalarinda dolayli olarak
olumsuz bir etki yaratmaktadir. Bu noktada hedeflenen veriyi ¢emberin igine diisiirecek
sekilde bir karesel alanin segilmesinin olasi veri kaybini azaltarak sistemin performansini
artiracag diistiniilmektedir.

Gergek zamanh sistemin daha hizli tepki verebilmesi i¢in, makul basari (tanima)
oranlarini koruyarak daha diisiik ¢ozlintirliklii veri veya veri setleri ile egitilen modeller
kullanilmalidir. Bu dogrultuda, en uygun degere ulasilana kadar ¢esitli calismalar yapilmast
gerekmektedir.

Gergeklestirilen akilli tanima sistemi sabit goriintiiler tizerinde olduk¢a yiliksek basari
oranlar elde etmistir. Arka plan sorunlarinin ¢oziilmesinin ardindan, bir sonraki agsamada
hareketli goriintiiler (cogunlukla kelimeler) {izerinde ¢alisabilecek bir sistemin gelistirilmesi
hedeflenmektedir. Belirtilen oneriler sisteme dahil edildiginde, ilgili sistem mobil cihazlar
tizerinde calisabilecek bir yapiya sahip olacaktir. Bu sayede, bu alanda islevsel bir mobil
uygulama gelistirmek miimkiin olacaktir.

Biitiin belirtilen hedeflerin disinda, Onerilen yontem literatiirde belirtilen bazi
calismalara benzer sekilde, diger model veya yontemlerle birlestirilerek hibrit bir yaklagim

olarak da denenebilir.
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Karmasik Zernike momentleri ve karmagik degerli derin sinir aglari, goriintii tanima
(6zellik ¢ikarimi ve siniflandirma), sekil tanima (tibbi goriintiileme), biyometrik sistemler
(parmak izi ve retina tarama), goriintii restorasyonu, radar teknolojileri, sinyal isleme, askeri
sistemler, telekomiinikasyon, robotik, otonom sistemler ve makine 6grenmesi gibi genis bir
uygulama yelpazesinde kullanilmaktadir. Genellikle gerceklestirilen akademik ¢aligmalar
elektrik-elektronik ve alt bilim dallarin1 kapsadigindan, diger alanlar iizerinde gesitli

akademik ¢alismalara da yogunlasilabilir.
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