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Teknolojik gelişmeler, sağır ve dilsiz bireylerin topluma entegrasyonunda önemli 

bir rol oynamaktadır. Bu nedenle, işaret dili tanıma sistemlerindeki iyileştirmeler büyük 

önem taşımaktadır. İşaret dilleri üzerine yapılan birçok çalışma gerçek sayılar 

kullanılarak gerçekleştirilmiştir. Bu çalışmada, görüntülerden öznitelik çıkarımı ve işaret 

dili alfabesi tanıma işlemlerini karmaşık sayılar kullanarak gerçekleştiren yeni bir 

yaklaşım sunulmaktadır. Bu bağlamda Amerikan işaret dili tanımaya yönelik bir model 

geliştirilmiştir. Geliştirilen modelde, karakter görüntülerinin öznitelik vektörünü elde 

etmek için karmaşık Zernike momentleri kullanılmıştır. Karmaşık sayılardan oluşan 

öznitelik vektörünü katmanlar arasında işleyebilen karmaşık değerli bir derin sinir ağı da 

geliştirilmiştir. Model, Sign Language MNIST veri setinde %89.01, Massey Üniversitesi 

veri setinde ise holdout tekniği ile %98.67, bir deneği dışarda bırakma tekniği ile %81.22 

tanıma oranlarına veri ön işleme olmadan ulaşmıştır. Önerilen model aynı veri setlerini 

kullanan birçok çalışma ile ayrı ayrı karşılaştırılmış, iki veri seti bir arada 

değerlendirildiğinde en iyi performansı göstermiştir. Ayrıca önerilen yöntemi bünyesinde 

barındıran bir akıllı sistem de geliştirilmiştir. 

 

 

Anahtar Kelimeler: Karmaşık değerli derin sinir ağı, Karmaşık zernike momentleri, 

Öznitelik çıkarımı, İşaret dili tanıma modeli 
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RECOGNITION OF SIGN LANGUAGE CHARACTERS USING COMPLEX-VALUED 

NEURAL NETWORKS 

 

Selda BAYRAK 

 

Karadeniz Technical University 

The Graduate School of Natural and Applied Sciences 
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Technological advancements play a significant role in the integration of deaf and mute 

individuals into society. Therefore, further improvements in sign language recognition 

systems are of great importance. Many studies on sign languages have been conducted using 

real numbers. In this paper, a new approach is presented for performing feature extraction 

from images and sign language alphabet recognition using complex numbers. In this context, 

a model is developed for recognizing American sign language. In the developed model, 

complex Zernike moments are used to obtain the feature vector of character images. A 

complex valued deep neural network capable of processing the feature vector composed of 

complex numbers across layers is also developed. The model achieves recognition rates of 

89.01% on the Sign Language MNIST dataset and 98.67% for the holdout and 81.22% for 

the leave-one-subject-out on the Massey University dataset, respectively, without any 

preprocessing. The proposed model, which is compared separately with many studies using 

the same datasets, shows the best performance when the two datasets are considered 

together. An intelligent system incorporating the proposed method has also been developed. 

 

 

Key Words: Complex valued deep neural network, Complex zernike moments, Feature 

extraction, Sign language recognition model 
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1. GENEL BİLGİLER 

1.1. Giriş 

Sağır ve dilsiz bireyler, toplumsal yaşamın önemli bir kesimini oluşturmaktadır. 

Dünya genelinde milyonlarca insan işitme kaybı yaşamakta, yalnızca işitme yetilerini 

kaybetmekle kalmayıp aynı zamanda iletişim ve toplumsal katılım açısından da önemli 

zorluklarla karşılaşmaktadır. Dünya Sağlık Örgütü'nün verilerine göre dünya nüfusunun 

yaklaşık %5'i (430 milyon kişi) işitme kaybına sahiptir ve bu sayının 2050 yılına kadar iki 

katına çıkacağı öngörülmektedir (URL1, 2024). Bu bireylerin büyük bir kısmı ciddi işitme 

kaybı yaşamaktadır ve tamamen sağır olanlar da bu gruba dahildir. İşitme kaybı, çoğunlukla 

dilsizlikle ilişkilendirilir ve bu durum konuşma engelini doğurabilir. Dilsizlik, bazen 

doğuştan gelen ya da nörolojik sorunlar gibi farklı faktörlerden kaynaklanabilir. Ancak, 

işitme kaybı yaşayan bireylerin büyük bir kısmının aynı zamanda konuşma engeli yaşadığı 

gözlemlenmektedir. Bu durum, yalnızca sağlık hizmetleri açısından değil, toplumsal katılım, 

eğitim, istihdam gibi birçok alanda da ciddi bir sorunu beraberinde getirmektedir. İşitme 

kaybı ve konuşma engeli olan bireylerin yaşam kalitesini artırmak, toplumun bu bireylerle 

daha iyi bir iletişim ve etkileşim kurmasını sağlamak için daha fazla toplumsal farkındalığa 

ve kapsayıcı politikalara ihtiyaç vardır. Bu bireylerin ihtiyaçları karşılanamadığında, 

toplumdan dışlanma ve yalnızlaşma gibi ciddi sosyal sorunlarla karşı karşıya kalma riskleri 

de artmaktadır. 

Toplumsal farkındalığın artırılması, sağır ve dilsiz bireylerin toplumsal yaşama tam 

anlamıyla katılabilmelerinin sağlanması açısından kritik bir öneme sahiptir. Eğitim ve iş 

olanaklarının sağlanması, bu bireylerin kendi potansiyellerini gerçekleştirmelerine ve 

bağımsız bir yaşam sürdürebilmelerine olanak tanıyacaktır. Sağır ve dilsiz bireylerin 

yaşadığı zorlukların giderilmesi, toplumsal eşitlik ve adaletin sağlanması açısından da büyük 

önem taşımaktadır. 

Dünya Sağlık Örgütü'nün (URL1, 2024) verileri, işitme kaybı ve dilsizlik konusunun 

giderek daha büyük bir toplumsal sorun haline geleceğini göstermektedir. Bu durum, 

yalnızca sağlık hizmetleri ile sınırlı kalmamalı, aynı zamanda toplumsal bilinçlenme ve 

kapsayıcı politikalarla desteklenmelidir. Ayrıca, işaret dili gibi alternatif iletişim araçlarının 

yaygınlaştırılması ve bu dilin herkes tarafından öğrenilmesi teşvik edilmelidir. İşaret dili, 
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işitme kaybı ve konuşma engeli olan bireyler için en temel iletişim aracıdır ve bu dili bilen 

bireyler aracılığıyla daha kapsayıcı bir toplum oluşturulabilir. İşaret dilinin herkes tarafından 

öğrenilmesi teşvik edilse bile, bunun istenilen başarıyı tam anlamıyla sağlayamayacağı 

açıktır. Bu doğrultuda, sağır ve dilsiz bireylerle toplum arasında köprü kuracak alternatif 

araçların veya uygulamaların geliştirilmesi büyük fayda sağlayacak ve istenen başarıya 

ulaşmayı mümkün kılacaktır. 

1.2. İşaret Dili 

İşaret dili, genellikle işitme engelli bireylerin kendi aralarında ya da tercümanlar 

aracılığıyla başkalarıyla iletişim kurmak için kullandığı bir yöntemdir. Ancak, tercüman 

sayısının sınırlı olması ve işaret dilinin konuşma dilinden bağımsız bir yapıya sahip olması 

nedeniyle, işitme engelli bireyler çevreleriyle her zaman etkili bir şekilde iletişim kurma 

fırsatına sahip olamayabilirler. Bu sebeple, işaret dili tanıma sistemlerinin ve teknolojilerinin 

geliştirilmesi, sağır ve dilsiz bireylerin daha bağımsız ve etkili iletişim kurabilmeleri 

açısından büyük bir önem taşımaktadır. 

Sağır bireyler, kelimeleri ve harfleri ifade etmek için parmak alfabesi ve jestler gibi 

işaret dili yöntemlerini kullanırlar. İşaret dilinin temel bileşenleri arasında parmak alfabesi 

ve çeşitli jestler önemli bir rol oynar. Parmak alfabesi, her bir harf ve rakamı belirli bir 

işaretle temsil ederken, jestler ve akışa dayalı el işaretleri kelimeleri ifade etmek için 

kullanılır. Ayrıca, yüz ifadeleri ve baş hareketleri de işaret dilinin önemli unsurlarıdır. Bu 

unsurlar, iletişimi güçlendirir ve işaret dilindeki ifadelerin daha anlamlı ve anlaşılır olmasını 

sağlar. Şekil 1, el ve mimik hareketlerinden oluşan bir ifadeyi göstermektedir. 

 

 

Şekil 1. Amerikan işaret dilinde 'üzgünüm' ifadesinin mimik ve el hareketiyle anlatılması 
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Dünyanın birçok bölgesinin kendine özgü işaret dili bulunmaktadır. Her ülkenin ya da 

bölgenin işaret dili, yerel kültür ve dil yapısına bağlı olarak farklılık gösterebilir. Türk işaret 

dili, Amerikan işaret dili, İngiliz işaret dili, Alman işaret dili, İtalyan işaret dili, Japon işaret 

dili, Fransız işaret dili, İspanyol işaret dili, Hint işaret dili, Rus işaret dili ve Çek işaret dili 

bunlardan bazılarıdır. Örneğin, Amerikan işaret dili (ASL), Amerika Birleşik Devletleri ve 

Kanada'da yaygın olarak kullanılan bir işaret dilidir. ASL, 1817'de Thomas Gallaudet 

tarafından kurulan Amerikan sağır okulunda bir dil olarak ortaya çıkmıştır. ASL, eski 

Fransız işaret dili, çeşitli köy işaret dilleri ve ev işaret sistemlerinin etkileşimi sonucunda 

oluşmuştur. 

İşaret dillerinin kendine özgü dil yapıları ve gramer kuralları vardır. ASL, bu bağlamda 

bir dil olarak, sözdizimi (dil bilgisi), sözcük dağarcığı ve anlamlı işaretlerin birleşimi ile 

ifade edilir. Ayrıca, ASL'nin İngilizce'den farklı bir gramer yapısı ve sözcük sıralaması 

vardır. Örneğin, ASL'de cümle yapısı genellikle nesne-yüklem-özne şeklindedir, bu da 

İngilizce'nin özne-yüklem-nesne yapısından farklıdır.  

Şekil 2, ASL için kullanılan parmak alfabesini gösteren Sign Language MNIST veri 

setini temsil eder (Tecperson, 2023). Bu veri seti, ASL alfabesindeki her bir harfi temsil eden 

işaretlerin tanımlanmasını sağlar. İlgili veri seti, hem eğitim hem de test verisi açısından çok 

sayıda görüntü içerdiğinden önemli bir kaynaktır. 

 

 

Şekil 2. Amerikan işaret dilindeki harfleri ifade etmek için kullanılan MNIST veri seti 

görüntüleri (Tecperson, 2023) 
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Massey Üniversitesi tarafından Amerikan işaret dili alfabesini ve rakamlarını içeren 

bir diğer veri seti, Massey Üniversitesi veri seti (MUD) geliştirilmiştir  (Barzack vd., 2011). 

MUD, kişisel farklılıkları da dikkate alan bir veri setidir. Şekil 3,  ASL'deki harflerin ve 

rakamların tanımlanmalarını sağlayan işaretlerin yer aldığı MUD veri setini göstermektedir 

(Barzack vd., 2011). İlgili veri seti Kaggle web sitesi üzerinden indirilebilir (Thakur, 2023). 

Kaggle web sitesinde, MUD veri setinin çeşitli ön işlemlerden geçirilerek (gürültü eklenerek, 

döndürülerek ve kaydırılarak) elde edilen varyasyonlarını içeren başka veri setleri de 

bulunmaktadır (Dima, 2024).  

MNIST ve kişisel farklılıkları dikkate alarak oluşturulan MUD, ASL tanıma ve 

analizleri için önemli kaynaklardır. Araştırmacılar ve geliştiriciler, bu veri setlerini ASL 

tanıma sistemlerini eğitmek ve test etmek amacıyla kullanabilirler. Ayrıca, her iki veri setini 

birleştirerek geliştirilen bir tanıma sisteminin, genellikle daha yüksek bir doğruluk oranına 

sahip olması beklenmektedir. Bu da, daha geniş veri çeşitliliği ve farklı özelliklerin daha iyi 

bir şekilde öğrenilmesine olanak tanır. 

 

 

Şekil 3. Amerikan işaret dilindeki harfleri ve rakamları ifade etmek için kullanılan MUD 

veri seti görüntüleri (Thakur, 2023) 

 

Kaggle web sitesi üzerinden çok farklı işaret dillerine yönelik veri setleri ve çeşitli 

varyasyonları elde edilebilir. 



5 
 

1.3. İşaret Dili Tanıma Sistemlerinde Kullanılan Yöntemler 

İşaret dili verilerini elde etmek için çeşitli yöntemler kullanılmaktadır. Bunlar 

arasında, el hareketlerini ve yüz ifadelerini ayrıntılı bir şekilde tespit etmek için yaygın 

olarak kullanılan kamera tabanlı sistemler, Kinect gibi derinlik sensörleri ve sensörlerle 

donatılmış eldivenler gibi giyilebilir cihazlar yer almaktadır. Kamera tabanlı sistemler, 

genellikle video analizi ile işaretleri tanımak için kullanılır ve doğru tanıma için ışık ve açı 

gibi faktörlere duyarlıdır. Derinlik sensörleri ise, 3D veriler sağlayarak el ve parmak 

hareketlerinin daha doğru şekilde takip edilmesini sağlar. Bu sensörler, el hareketlerinin yanı 

sıra ortamın derinliğini de algılayarak, işaret tanıma doğruluğunu artıran ek bir bilgi katmanı 

sunar. Giyilebilir sensörler ise daha doğrudan etkileşimli veri toplama sağlar ve kullanıcının 

elleriyle yaptığı hareketleri yüksek doğrulukla kaydedebilir. Bu yöntemler, işaret dili tanıma 

sistemlerinin verimliliğini ve doğruluğunu artırmak için farklı avantajlar sunar. 

Dünyada en yaygın kullanılan işaret dillerinden bazıları ABD, Almanya, Hindistan, 

Türkiye, Çin, Arjantin, Kore ve İran'a aittir. Bu alanda ise ABD, öne çıkan ülke olarak dikkat 

çekmektedir. İşaret dili tanıma sistemlerinde, genellikle statik görüntüler en yaygın olarak 

kullanılır. Bu tür görüntüler için en sık tercih edilen mimariler arasında evrişimli sinir ağları 

(CNN), derin sinir ağları (DNN) ve kısıtlı Boltzmann makineleri (RBM) yer alır. Dinamik 

görüntülerin işlenmesinde ise uzun kısa süreli bellek (LSTM), tekrarlayan sinir ağları (RNN) 

ve 3D evrişimli sinir ağları (3DCNN) gibi mimariler öne çıkmaktadır. Geleneksel 

sınıflandırma yöntemlerinde, destek vektör makineleri (SVM) ve kümülatif büyüklük 

histogramları yaygın olarak kullanılırken, geleneksel tanımlayıcılarda ise en çok tercih 

edilen yöntem gizli Markov modeli (HMM) olmaktadır. İşaret dili tanıma süreçlerinde, el, 

yüz ve vücut özelliklerinin birleştirilmesi (özellik füzyonu) sıklıkla kullanılsa da, el 

özellikleri en yaygın veri türü olarak tercih edilmektedir (Rastgoo vd., 2021). 

İşaret dili tanımada, rastgele orman (RF) ve ekstrem gradyan artırma (XGBoost) gibi 

karar ağacı tabanlı topluluk yöntemleri yaygın olarak kullanılmaktadır. RF, karar ağaçlarının 

(DT) temel tahminci olarak kullanıldığı ve bootstrap örnekleme ile birleştiği popüler bir 

homojen topluluk örneğidir. Basit yapısına rağmen, RF, güçlü performansı ile tanınan bir 

algoritmadır. Diğer bir karar ağacı tabanlı topluluk yöntemi olan XGBoost ise, gradyan 

güçlendirme yapısı kullanarak modelin doğruluğunu artırır. Bunun dışında, k-en yakın 

komşu (KNN), stokastik gradyan inişi (SGD), naive Bayes Gaussian (NBG) ve yapay sinir 
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ağları (ANN) gibi makine öğrenimi algoritmaları da işaret dili tanıma sistemlerinde etkin bir 

şekilde kullanılmaktadır (Pham vd., 2021). 

1.4. Tezin Kapsamı ve Amacı 

İşaret dili tanıma sistemleri ve görüntü işleme alanlarında pek çok uygulama 

geliştirilmiş olup, bu yöntemler çeşitli çözüm önerileri sunmaktadır. Ancak, bu yöntemler 

ölçekleme, gürültüye karşı dayanıklılık ve ayrıntılı özellik verilerinin elde edilmesi gibi 

belirli sınırlamalarla karşılaşabilmektedir. Bu çalışmada, söz konusu sınırlamaların 

üstesinden gelmek ve daha etkili bir özellik çıkarımı sağlamak amacıyla karmaşık Zernike 

momentlerinin (CZM) kullanımı önerilmektedir. Bununla birlikte, çıkarılan bu karmaşık 

değerli özellik verilerini işleyebilmek için, karmaşık değerli derin sinir ağı (CVDNN) tabanlı 

bir yöntemin geliştirilmesinin gerekliliği vurgulanmaktadır. 

Bu çalışmanın temel amacı, el işareti görüntülerinden elde edilen karmaşık değerli 

öznitelik vektörünü girdi olarak kullanan karmaşık değerli derin sinir ağı geliştirmek ve bu 

ağı kullanarak ASL'yi tanımaya yönelik bir sınıflandırıcı model tasarlamaktır. Önerilen 

model, hızlı özellik çıkarımı ve düşük kaynak tüketimi sağlamakla birlikte, aynı zamanda 

gerçek zamanlı ve mobil sistemler için de uyumlu olacak şekilde tasarlanmıştır. Ayrıca, bu 

geliştirilmiş modelin, işaret dili tanıma için gerçek zamanlı bir sistemde etkin bir şekilde 

kullanılabilmesi amacıyla uygulamaya alınması hedeflenmektedir. 

Bu bağlamda, çalışmada öncelikle CZM ile ilgili temel kavramlar ve daha önce yapılan 

çalışmalar ele alınacaktır. Ardından, CVDNN tasarım sürecine dair ayrıntılar sunulacak ve 

bu tasarımın gerçekleştirilme adımları detaylı olarak incelenecektir. Bu süreç boyunca, her 

iki konu başlığı altında elde edilen bulgular ve uygulamaya yönelik aşamalar sistematik bir 

şekilde değerlendirilecektir. 

1.5. Literatürde İşaret Dili Tanıma Üzerine Gerçekleştirilen Çalışmalar 

İşaret dili tanıma sistemleri, işaretleri statik ve dinamik olarak iki ana kategoriye ayırır. 

Statik işaretler, genellikle el şekilleri veya parmak konumlarıyla ifade edilen harfler ve 

semboller gibi durağan ifadeleri içerir. Bu tür işaretler, genellikle bir anlık görüntü üzerinden 

tanınır çünkü hareket içeren bir akış yerine sabit bir pozisyonu temsil ederler. Örneğin, 

parmak alfabesindeki harfler, çoğunlukla statik işaretlere dayanır ve bazı işaret dillerinde 
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kelimeler de statik işaretlerle ifade edilir. Dinamik işaretler ise belirli bir hareket dizisini 

takip eder ve genellikle cümleleri ya da daha karmaşık kelimeleri temsil eder. Bu işaretlerin 

tanınması, hareketlerin doğru bir şekilde takip edilmesi ve analiz edilmesi gerektiği için daha 

zordur (Wadhawan & Kumar, 2021). Şekil 4, işaret dillerinde yaygın olarak kullanılan 

işaretlerin hiyerarşik akışını göstermektedir. Ayrıca, bu şekil, her iki elin kullanıldığı 

işaretlerde baskın ve baskın olmayan el durumlarını belirtmek için Tip 0 ve Tip 1 

sınıflandırmalarını içermektedir. Tip 0, her iki elin de aktif olduğu işaretleri ifade ederken, 

Tip 1, bir elin diğerine göre daha fazla aktif olduğu durumları belirtir. 

 

 

Şekil 4. Genel olarak işaret dillerinde kullanılan hareketlerin hiyerarşik akışı (Wadhawan 

& Kumar, 2021) 

 

Karami ve ekibi, İran işaret dili alfabesindeki 32 statik işaretin tanınmasına yönelik bir 

çalışma gerçekleştirmektedir. İlgili çalışmada, özellik çıkarımı için dalgacık dönüşümü 

(wavelet transform) kullanılmakta, sınıflandırma ise çok katmanlı yapay sinir ağları (MLP) 
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ile yapılmaktadır. Otomatik segmentasyon yerine, veriler manuel olarak seçilip işlenmiştir. 

(Karami vd., 2011). Şekil 5, geliştirdikleri modelin mimarisel tasarımını göstermektedir. 

Başka bir çalışmada Kelly ve ekibi, Hu momentleri ve öz uzay boyut fonksiyonunun 

kombinasyonunu kullanarak statik tek elle işaret tanıma için SVM tabanlı bir sistem 

geliştirmiştir (Kelly vd., 2010). Yöntemlerinin, el işaretlerini kişiden bağımsız olarak 

tanımada diğer çalışmalara göre daha etkili olduğunu belirtmişlerdir.  Bu çalışmada, elin 

şekli, pozisyonu, yönelimi ve hareketi gibi dört temel bileşen kullanılarak el duruşları 

tanımlanmakta ve bu bileşenler üzerinden el postürleri sınıflandırılmaktadır. 

 

 

Şekil 5. Karami ve arkadaşları tarafından geliştirilen modelin mimarisi (Karami vd., 2011) 

 

Nandy ve ekibi, Hint işaret dilinde iki elin kullanıldığı dinamik işaretleri tanımaya 

yönelik bir çalışma gerçekleştirmiştir. Yazarlar, Hint işaret dilinde çeşitli işaretleri içeren bir 

video veritabanı oluşturmuş ve jest sınıflandırması için yönlü histogramlar, Öklid mesafesi 

ve KNN gibi yenilikçi teknikler kullanmışlardır. İlgili çalışma Hint işaret dili jestlerinin 
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tanınmasını geliştirmeyi ve iletişimi daha erişilebilir hale getirmeyi amaçlamaktadır (Nandy 

vd., 2010). 

Rao ve ekibi, selfie modunda elde edilen sürekli (dinamik) işaret dili verilerini 

kullanarak Hint işaret dilini tanımak için CNN tabanlı bir çalışma gerçekleştirmiştir. 

Çalışmanın amacı, mobil platformda çalışabilecek bir sistem için algoritmalar simüle 

etmektir (Rao vd., 2018). 128x128 piksel büyüklüğündeki giriş görüntülerini alan sistem 

aktivasyon fonksiyonu olarak ReLU, çıkış katmanını yorumlamak amacıyla ise Softmax 

fonksiyonunu kullanmaktadır. Özellik çıkarımı ve sınıflandırma modülleri de dahil olmak 

üzere ilgili sistemin mimarisi Şekil 6’da gösterilmektedir. 

 

 

Şekil 6. Rao ve ekibi tarafından geliştirilen modelin mimarisi (Rao vd., 2018) 

 

Koller ve ekibi Alman işaret dilinde sürekli işaret tanıma için HMM ve CNN’i 

birleştiren hibrit bir model sunmuştur. Bu model, CNN’lerin güçlü ayrıştırıcı yeteneklerini 

HMM’lerin sıralı veri modelleme yetenekleriyle birleştirir. İlgili çalışma, eğitim ve 

değerlendirme için sıralı verilerle başa çıkmanın önemini tartışmaktadır. Hibrit yaklaşım, 

kelime hata oranında %20'ye kadar iyileşmeler sağlamaktadır (Koller vd., 2018). 

Sreemathy ve ekibi Hint işaret dilinde iki elin kullanıldığı işaretlerin otomatik 

tanınması için bir yöntem önermiştir. Bu yöntem veriler üzerinde ön işleme, özellik çıkarımı 
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ve sınıflandırmayı içermektedir. Önerilen teknoloji, özel gereksinimleri olan bireyler için bir 

öğretim asistanı olarak kullanılmış ve çocukların bilişsel yeteneklerinde %60–70'lik bir artış 

göstermiştir (Sreemathy vd., 2023). 

Sharma ve ekibi, dinamik işaret dilini gömülü cihazlarda tanımak için bellek açısından 

verimli LSTM tabanlı bir derin öğrenme mimarisi geliştirmiştir. Çalışmada, takvim aylarını 

temsil eden bir Hint İşaret Dili veri seti oluşturmuştur. Toplamda 480 video kaydı toplanmış 

ve bu veriler üzerinden model eğitilmiştir. Model boyutunu küçültmek ve uç cihazlarda 

kaynak tüketimini azaltmak için eğitim sonrası kuantizasyon uygulamışlardır (Sharma vd., 

2024). Geliştirilen modelin mimarisi Şekil 7’de gösterilmiştir. 

 

 

Şekil 7. Sharma ve ekibi tarafından geliştirilen modelin mimarisi (Sharma vd., 2024) 
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Cui ve ekibi, Alman işaret dilinde sürekli işaret tanıma için CNN ve Bi-LSTM 

kombinasyonunu kullanarak bir sistem geliştirmiştir. Sıra öğrenme modülü olarak RNN 

kullanarak, bu yaklaşımın zaman içindeki bağımlılıkları öğrenmede HMM'leri geçtiğini 

belirtmişlerdir (Cui vd., 2019). 

Zhou ve meslektaşları, video tabanlı işaret dili anlayışını artırmak için çoklu ipucu 

öğrenme yaklaşımını kullanmış ve görsel tabanlı sıra öğrenme problemini çözmek için bir 

mekânsal-zamansal çoklu ipucu ağı önermişlerdir (Zhou vd., 2022). Biri zamansal biri 

mekânsal olmak üzere iki modülden oluşan ağ, birden fazla ipucunun işbirliğini keşfetmeyi 

amaçlamaktadır. 

Rastgoo ve arkadaşları tarafından yapılan bir diğer çalışmada, RGB ve derinlik 

modlarını kullanarak görsel verilerden otomatik işaret dili tanıma sürecinde RBM 

kullanılmıştır. Çalışmanın hedeflerinden biri, önerinin gürültüye karşı dayanıklılığını 

değerlendirmektir (Rastgoo vd., 2018). Şekil 8, geliştirdikleri modelin mimarisini temsil 

etmektedir. 

 

 

Şekil 8. Rastgoo ve ekibi tarafından geliştirilen modelin mimarisi (Rastgoo vd., 2018) 

 

Samaan ve ekibi, dinamik işaret dili tanıma sorunlarını çözmek için MediaPipe ve 

RNN modellerini bir arada kullanmaktadır. MediaPipe ellerin, vücudun ve yüzün ana 

noktalarını çıkarmak için kullanılır ve bu sayede konumun, şekilin ve yönelimin 

belirlenmesini sağlanır (Samaan vd., 2022). 
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1.6. Tez Kapsamında Kullanılacak Veri Setleri 

Bir önceki bölümde işaret dili ile ilgili yapılan çeşitli çalışmalar incelenmiştir. Bu 

bölümde ise doktora çalışmasında kullanılan veri setleri hakkında ayrıntılı bilgiler 

sunulacaktır. Veri setleri tanıtıldıktan sonra, literatürde bu veri setlerini kullanan bazı 

çalışmalara da yer verilecektir.  

1.6.1. MNIST Veri Seti 

İşaret dili MNIST veri seti, ASL harflerinin el görüntülerini içeren bir veri setidir. Bu 

veri seti, işaret dili tanıma sistemlerini eğitmek ve test etmek amacıyla kullanılmaktadır. 

CSV formatında sunulan veri seti, Kaggle web sitesi üzerinden temin edilebilir (Tecperson, 

2023). Veri seti, eğitim ve test olmak üzere iki ana kısımdan oluşmaktadır. 

Veri seti, hareketle ifade edilen J ve Z harfleri hariç, İngiliz alfabesindeki tüm harfleri 

kapsayan 24 sınıftan oluşmaktadır. 28x28 çözünürlüğündeki görüntülerden oluşan bu set, 

eğitim ve test verisi olarak toplamda 34.627 gri tonlama görüntü içermektedir. Bu 

görüntülerin 27.455'i eğitim verisi, 7.172'si ise test verisi olarak ayrılmıştır. Diğer bir 

deyişle, veri setinin yaklaşık %80'i eğitim, %20'si ise test verisi olarak kullanılmıştır. Eğitim 

ve test verilerindeki sınıf başına örnek sayılarında farklılıklar bulunmaktadır. 

Şekil 9, MNIST eğitim veri seti içindeki her bir sınıfın içerdiği görüntülerin sayısını 

göstermektedir. İlgili grafikten görüleceği üzere, veri seti içindeki görüntüler sınıf başına 

genel olarak düzenli bir dağılım göstermektedir. 

 

 

Şekil 9. MNIST eğitim veri seti içindeki her bir sınıfa ait görüntü sayısı 
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Şekil 10 ise MNIST test veri seti içindeki her bir sınıfın içerdiği görüntülerin sayısını 

göstermektedir. 

 

 

Şekil 10. MNIST test veri seti içindeki her bir sınıfa ait görüntü sayısı 

 

1.6.2. MUD Veri Seti 

Çalışmalarda kullanılan bir diğer veri seti ise MUD’dur (Thakur, 2023). Bu veri seti, 

İngiliz alfabesindeki harfler (A-Z) ve sayılar (0-9) dahil olmak üzere toplam 36 sınıf 

içermektedir. Veri setinde 65 görüntü içeren T sınıfı hariç her sınıf 70 görüntü içerirken, 

toplamda 2.515 işaret bulunmaktadır. Görüntüler 400x400 boyutlarında ve RGB 

formatındadır. Beş denek tarafından oluşturulan bu veri seti, hem Holdout hem de bir deneği 

dışarda bırakma (LOSO) doğrulama teknikleri için uygundur.  

1.6.3. Model Doğrulama ve Değerlendirme Teknikleri 

Holdout doğrulama tekniği, makine öğrenimi modellerini değerlendirmek ve 

doğrulamak için kullanılan temel bir yöntemdir (Nacar & Erdebilli, 2021). Bu teknikte, veri 

seti genellikle eğitim, doğrulama ve test olmak üzere iki veya üç ayrı alt kümeye bölünür. 

Eğitim alt kümesi modelin öğrenmesi için kullanılırken, test alt kümesi modelin 

performansını değerlendirmek için ayrılır. Eğer doğrulama kümesi de kullanılıyorsa, 

modelin hiperparametre ayarlarını optimize etmek amacıyla eğitim ve doğrulama verileri 

arasında bir denge sağlanır. Bazı çalışmalar, veri setini %70 eğitim ve %30 test olarak 
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ayırırken, diğerleri %80 eğitim ve %20 test oranını tercih etmektedir. Holdout tekniği, 

özellikle büyük veri setlerinde hızlı ve basit bir değerlendirme yöntemi sunarken, küçük veri 

setlerinde veri israfına yol açabilir. Bu nedenle, küçük veri setlerinde çapraz doğrulama 

tekniklerine kıyasla daha az güvenilir olabilir. 

LOSO tekniği, özellikle insan tabanlı veri setlerinde kullanılan bir çapraz doğrulama 

yöntemidir (Maleki vd., 2020). Bu teknikte, veri setindeki her denek sırasıyla test kümesi 

olarak ayrılırken, geri kalan deneklerin verileri eğitim kümesi olarak kullanılır. Böylece, her 

denek bir kez test verisi olarak kullanılır ve model, her denek için bağımsız bir şekilde 

eğitilip test edilir. LOSO çapraz doğrulama tekniğinde, veri setindeki toplam denek sayısı K 

ise, bir deneğin test için bırakıldığı ve geri kalan (K - 1) deneğin eğitim için kullanıldığı 

anlamına gelir. Bu süreç K kez, her denek için bir kez tekrar edilir. Elde edilen başarı 

oranlarının aritmetik ortalaması nihai sonuç olarak alınır. LOSO tekniği, özellikle kişisel 

farklılıkların önemli olduğu biyometrik tanıma, sağlık verileri ve davranışsal analiz gibi 

alanlarda kullanışlıdır. Kişilerarası genellemeyi test etmek için güçlü bir yöntem sunar, 

çünkü modelin her birey için ne kadar iyi performans gösterdiği detaylı şekilde analiz 

edilebilir. Ancak bu teknik, veri seti büyükse zaman ve işlem maliyeti açısından oldukça 

yoğundur. 

1.7. MNIST Veri Seti Üzerinde Gerçekleştirilen Literatür Çalışmaları 

Çok sayıda işaret dili ve bu diller için mevcut olan çeşitli veri setleri nedeniyle, 

gerçekleştirilen çalışmaların performans testlerini karşılaştırmak zorlaşmaktadır. Bu 

bölümde bahsedilen tüm çalışmalar, MNIST veri setinin tamamı üzerinde 

gerçekleştirilmiştir (Tecperson, 2023). Bu durum, ilgili çalışmaların birbiriyle 

karşılaştırılmasını kolaylaştırmaktadır. 

Li ve arkadaşları, ASL'yi tanımak amacıyla MNIST veri seti üzerinde bir çalışma 

yürütmektedir. Çalışmada, ham veriler ve bazı ön işleme adımları (el tespiti, arka plan 

çıkarma, gürültü azaltma vb.) uygulanarak elde edilen veriler üzerinde çeşitli sınıflandırma 

algoritmalarının performansı test edilmiştir (Li. vd, 2022). Ham veriler üzerinde yapılan 

çalışmalar sonucunda, SVM, rastgele orman sınıflandırıcısı (RFC), KNN, SGD ve NBG gibi 

makine öğrenmesi ve sınıflandırma algoritmaları kullanılarak elde edilen doğrulama 

değerleri Tablo 1’de listelenmiştir. Ayrıca, doktora çalışmaları kapsamında geliştirilecek 

modelde kullanılacak olan optimizasyon algoritması olan SGD için tanıma oranını %66.02 
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olarak elde etmişlerdir. Çalışmalarında, temel bileşen analizi ve manifold algoritması gibi 

farklı boyut indirgeme tekniklerini kullanarak, Tablo 1’deki her makine öğrenmesi ve 

sınıflandırma algoritması üzerindeki etkilerini de incelemişlerdir. Elde edilen sonuçlar, 

farklı boyut indirgeme tekniklerinin her algoritmada aynı şekilde sonuç vermediğini ve KNN 

için en uygun algoritmanın manifold, diğerleri için ise temel bileşen analizi olduğunu ortaya 

koymaktadır. 

 

Tablo 1. Li ve arkadaşları tarafından MNIST veri seti üzerinde gerçekleştirilen 

çalışmalarının sonuçları 

Makine Öğrenmesi veya 

Sınıflandırma Algoritması 
Veri Seti Tanıma Oranı 

SVM MNIST 84.19 

RFC MNIST 81.61 

KNN MNIST 78.17 

SGD MNIST 66.02 

NBG MNIST 38.90 

 

Son yıllarda, tanıma sistemlerinde yüksek başarı oranları nedeniyle derin öğrenme 

ağları tercih edilmektedir. Her aşamada, probleme özgü stratejiler belirlenmekte ve 

doğruluğu artırmak için çeşitli çabalar gösterilmektedir. Örneğin, CNN'ler ön işleme ve 

özellik çıkarma aşamalarını otomatik olarak gerçekleştirmektedir (Bhatt vd., 2021). LeNet, 

başarılı ilk evrişimli sinir ağı modellerinden biri olarak öne çıkmaktadır. Bilgin ve 

Mutludoğan, LeNet-5 modelini MNIST veri seti üzerinde kullanmaktadır. LeNet-5 

modelinin test verisi üzerindeki tanıma oranını %82.19 olarak rapor etmektedirler. Bir diğer 

derin öğrenme ağı olan CapsNet'te ise MNIST veri seti üzerinde %88.93 tanıma oranına 

ulaşmaktadırlar (Bilgin & Mutludoğan, 2019). Çalışmalarında, kapsül ağlarının işaret dili 

karakter tanıma için faydalı olduğunu ve LeNet'ten daha başarılı olduğunu belirtmektedirler. 

Bhushan ve çalışma arkadaşları, Amerikan işaret dilini tanımaya yönelik olarak 

MNIST veri seti üzerinde CNN tabanlı bir çalışma yapmışlardır. Bu çalışmada, KNN, 

stokastik gradyan iniş sınıflandırıcısı (SGDC) ve NBG gibi çeşitli makine öğrenmesi 

algoritmaları incelenmekte ve karşılaştırılmaktadır. Çalışmalarında herhangi bir ön işleme 

yapılmadan veri seti üzerinde yapılan analizler sonucunda, CNN, RF, XGBoost, KNN, 
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SGDC ve NBG gibi makine öğrenmesi algoritmaları ile elde edilen doğrulama değerleri 

Tablo 2’de sunulmuştur (Bhushan vd., 2022). Gerçekleştirdikleri çalışmada, SGD 

algoritmasının sınıflandırma işlemleri için uyarlanmış bir versiyonu olan SGDC 

kullanmışlar ve tanıma oranını 59.80% olarak elde etmişlerdir.  En iyi sonuçlar ise CNN ile 

elde edilmiştir. 

 

Tablo 2. Bhushan ve arkadaşları tarafından MNIST veri seti üzerinde gerçekleştirilen 

çalışmalarının sonuçları 

Makine Öğrenmesi veya 

Sınıflandırma Algoritması 
Veri Seti Tanıma Oranı 

CNN MNIST 91.41 

RF MNIST 84.43 

XGBoost MNIST 81.35 

KNN MNIST 80.46 

SGDC MNIST 59.80 

NBG MNIST 38.90 

 

Kameralar aracılığıyla elde edilen görüntülerdeki birçok sorunun yanında, ışık 

yoğunluğundaki değişim bu tür görüntülerden hareketlerin çıkarılmasını zorlaştırmaktadır. 

Kamera görüntülerdeki gürültü gibi ekstra bilgiler, hesaplama süresini etkilemekte ve 

engellemektedir. Ayrıca karmaşık arka planlar, hareketlerin çıkarılmasını zorlaştırmaktadır. 

Ansar ve ekibi, ASL'yi tanımak için bir CNN mimari modeli geliştirmişler ve ham veri seti 

üzerinde bazı ön işlemler gerçekleştirmişlerdir. Tanıma süreci beş ana aşamaya 

ayrılmaktadır. İlk aşama, görüntülerdeki gürültüyü azaltmak ve ışık yoğunluğunu 

ayarlamaktır. İkinci aşama, elin tespit edilmesi ve arka planın kaldırılmasıdır. Üçüncü 

aşama, elde edilen görüntüdeki ana noktaların (landmark tespiti) belirlenmesidir. Sonraki 

aşamada, özellik çıkarımı yapılır. Son aşamada ise çıkarılan özellikler CNN 

sınıflandırıcısından geçirilir. Geliştirdikleri modeli MNIST veri seti üzerinde iki farklı 

doğrulama işlemine tabi tutmaktadırlar. İlk doğrulama için veri setinin üçte biri test için 

kullanılırken, geri kalanı eğitim için kullanılmaktadır. İkinci doğrulama için ise veri setinin 

üçte ikisi eğitim için, geri kalanı ise test için kullanılmaktadır. İlk değerlendirme için %93.2 
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ve ikinci değerlendirme için %91.6 doğruluk oranlarına ulaşmaktadırlar. Ancak, bu 

değerlerin veri setinin ilgili bölümlerinde (tüm test verisi üzerinde değil) elde edildiğini 

belirtmekte fayda bulunmaktadır (Ansar vd., 2023). Bu sebeple, Ansar ve ekibinin 

gerçekleştirdiği çalışmaya ait sonuçlar, MNIST veri seti üzerinde gerçekleştirilen diğer 

akademik çalışmalarla ve doktora tez çalışmaları kapsamında elde edilen sonuçlarla 

karşılaştırılmayacaktır. 

Tablo 3, MNIST veri seti üzerinde tanıma oranı baz alınarak gerçekleştirilen akademik 

çalışmalardan elde edilen sonuçları toplu olarak listelemektedir. 

 

Tablo 3. MNIST veri seti üzerinde gerçekleştirilen akademik çalışmaların test verisi 

üzerindeki tanıma oranları 

 

Grup Model/Metot Tanıma Oranı (%) 

(Li. vd, 2022) / (Bhushan vd., 2022) NBG  38.9 

(Bhushan vd., 2022) SGDC 59.8 

(Li. vd, 2022) SGD 66.02 

(Li. vd, 2022) / (Bhushan vd., 2022) KNN / KNN 78.17 / 80.46 

(Bhushan vd., 2022) XGBoost  81.35 

(Li. vd, 2022) / (Bhushan vd., 2022) RFC / RF 81.61 / 84.43 

(Bilgin & Mutludoğan, 2019) LeNeT-5 82.19 

(Li. vd, 2022) SVM 84.19 

(Bilgin & Mutludoğan, 2019) CapsNet  88.93 

(Bhushan vd., 2022) CNN 91.41 

 

1.8. MUD Veri Seti Üzerinde Gerçekleştirilen Literatür Çalışmaları 

Bu bölümde, bir başka ASL veri seti olan MUD ile ilgili çalışmalara yer verilmektedir. 

MUD veri seti, eğitim ve test verilerine ayrılmadığından, bu veri setini kullanan çalışmalarda 

model başarısını değerlendirmek için genellikle Holdout ve LOSO gibi doğrulama teknikleri 

kullanılmaktadır. 

Barbhuiya ve çalışma arkadaşları, CNN özelliklerini geleneksel Zernike moment 

tabanlı özelliklerle birleştiren yeni ve etkili bir görüntü tanıma yaklaşımı önermektedir. Bu 



18 
 

hibrit yaklaşımın, özellikle benzer el duruşları arasındaki farkları ayırt etme kabiliyetini 

artırması hedeflenmektedir. Önerilen model, CNN'nin (özellikle AlexNet) son evrişimsel 

katmanından elde edilen özellikleri, Zernike moment özellikleriyle birleştiren bir mimari 

sunmaktadır. 

Bu yaklaşım, MUD veri setinde %98.41 tanıma oranı ile üstün bir performans 

göstermiştir. Çalışmada, veri seti Holdout tekniği kullanılarak %80 eğitim ve %20 test 

olacak şekilde bölünmüştür. Ancak, eğitim sırasında her adımda yapılan rastgele seçimler 

nedeniyle veri setindeki bazı görüntülerin hem eğitim hem de test setlerinde yer alabileceği 

belirtilmiştir (Barbhuiya vd., 2022). 

Bhaumik ve ekibi, el hareketlerini doğru bir şekilde tanımak amacıyla, mekansal 

özellikleri öğrenen ve çok ölçekli filtreler kullanarak zengin mekansal bilgileri çıkaran CNN 

tabanlı taşınabilir bir ağ olan SpAtNet'i önermektedirler. SpAtNet, çevresel koşullar, 

döndürme, ölçekleme ve aydınlatma gibi zorlukları aşmak için tasarlanmış hafif bir CNN 

tabanlı ağdır. Model, çok ölçekli dikkatli özellik birleştirme ve iç içe geçmiş modül olmak 

üzere iki ana bileşenden oluşmaktadır. Çok ölçekli dikkatli modül, 1x1, 3x3 ve 5x5 

boyutlarındaki çok ölçekli filtreler kullanarak zengin mekansal bilgileri çıkarmaktadır. 

Küçük filtreler, daha ince özellikleri; büyük filtreler ise daha kaba özellikleri çıkarmaktadır. 

İç içe geçmiş modül, dört evrişim katmanının ardışık olarak dizilmesiyle yapılandırılmış 

olup, yüksek seviyeli bağlamsal özelliklerin öğrenilmesi amacıyla kullanılmaktadır. MUD 

veri seti üzerinde LOSO tekniği kullanarak yapılan değerlendirmede, %80.44 tanıma oranına 

ulaşmaktadırlar (Bhaumik vd., 2024). 

Chevtchenko ve ekibi, gerçek zamanlı el duruşu tanıma amacıyla, geleneksel özellik 

çıkarıcıları birleştiren CNN mimarisi tabanlı bir model geliştirirler.  Model, Gabor filtreleri, 

Zernike momentleri ve Hu momentleri gibi klasik öznitelik tanımlayıcılarını, CNN'ler ile 

birleştirerek tanıma doğruluğunu artırmayı amaçlamaktadır. Modelin performansını 

artırmak için hiperparametrelerin seçimi, ağaç yapılı Parzen tahminleme algoritması 

kullanılarak gerçekleştirilmiştir. MUD veri seti üzerinden her iki doğrulama tekniğiyle 

değerlendirilen çalışmada, Holdout yöntemiyle %80 eğitim ve %20 test olarak 

bölündüğünde %98.05 tanıma oranı, LOSO yöntemiyle ise %84.02 tanıma oranı elde 

edilmiştir (Chevtchenko vd., 2018). 

Barbhuiya ve ekibinin bir başka çalışmasında, SVM sınıflandırıcısı ile el işaretlerini 

tanımak için modifiye edilmiş VGG16 ve AlexNet modellerine dayanan evrişimli bir sinir 

ağı mimarisi geliştirilmiştir. Bu modeller, özellik çıkarımı için kullanılmış ve ardından çok 
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sınıflı bir destek vektör makinesi sınıflandırıcısı ile birleştirilmiştir. Her iki model de aynı 

sonuçları elde etmiş ve LOSO yöntemiyle %70 tanıma oranına ulaşmıştır (Barbhuiya vd., 

2021). 

Tablo 4, MUD veri seti üzerinde tanıma oranı baz alınarak gerçekleştirilen akademik 

çalışmalardan elde edilen sonuçları, ilgili tekniklere göre toplu olarak listelemektedir. 

Holdout tekniği için en yüksek değer %98.41, LOSO tekniği için ise %84.02 olarak elde 

edilmiştir. 

 

Tablo 4. MUD veri seti üzerinde gerçekleştirilen akademik çalışmaların Holdout ve 

LOSO tekniklere göre tanıma oranları 

 

Grup Teknik Model/Metot Tanıma Oranı (%) 

(Barbhuiya vd., 2022) Holdout Inception-v3 93.5 

(Barbhuiya vd., 2022) Holdout Squeezenet 95.23 

(Barbhuiya vd., 2022) Holdout Vgg19 96.68 

(Barbhuiya vd., 2022) Holdout AlexNet 97.01 

(Barbhuiya vd., 2022) / 

(Chevtchenko vd., 2018) 
Holdout Vgg16 97.48 / 92.20 

(Chevtchenko vd., 2018) Holdout Hibrit 98.05 

(Barbhuiya vd., 2022) Holdout Hibrit 98.41 

(Chevtchenko vd., 2018) LOSO Vgg16 61.42 

(Chevtchenko vd., 2018)         / 

(Bhaumik vd., 2024) 
LOSO MobileNet 62.53 / 73.25 

(Barbhuiya vd., 2021) LOSO 
Modified 

Vgg16 + SVM 
70.00 

(Barbhuiya vd., 2021) LOSO 
Modified AlexNet + 

SVM 
70.00 

(Bhaumik vd., 2024) LOSO MobileNetV2 72.28 

(Bhaumik vd., 2024) LOSO ResNet50 74.42 

(Chevtchenko vd., 2018)          LOSO CNN 73.86/ 78.51 / 79.04 

(Bhaumik vd., 2024) LOSO CNN 80.44 

(Chevtchenko vd., 2018)          LOSO Hibrit 84.02 
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1.9. Özellik Çıkarımı 

Özellik çıkarma ve sınıflandırma, makine öğrenmesi ve görüntü işleme gibi birçok 

alanda kritik bir adımdır. Özellik çıkarma, bir veri kümesindeki anlamlı bilgileri seçip, bu 

bilgileri kullanarak sınıflandırma yapmak amacıyla veri setinin daha düşük boyutlu bir 

temsiline dönüştürme işlemidir. Bu sayede verinin daha iyi anlaşılması ve modellenmesi 

sağlanır. Görüntü işleme gibi alanlarda bu süreç, hem sınıflandırma doğruluğunu artırmak 

hem de hesaplama maliyetlerini düşürmek için hayati önem taşır. 

Temel özellik çıkarma tekniklerinden biri, yönlü gradyanların histogramı (HOG)’dur. 

HOG, görüntüdeki yerel kenar bilgilerini çıkarmak için kullanılır ve özellikle nesne 

tespitinde oldukça etkilidir. Görüntüdeki her pikselin gradyan yönü hesaplanarak yönlü 

histogramlar oluşturulur. Bu yöntem, özellikle insan tespiti ve nesne tanıma gibi 

uygulamalarda başarıyla kullanılmaktadır.  

Yerel ikili desenler (LBP) ise dokusal bilgileri çıkarmada yaygın olarak kullanılan bir 

tekniktir. Bu yöntem, her pikselin komşularıyla olan ilişkisini analiz ederek görüntüdeki 

dokuları tanımlar. LBP, yüz tanıma ve dokusal analiz gibi alanlarda sıkça tercih edilir. 

Gelişmiş özellik çıkarma yöntemlerinden biri, ölçek-bağımsız özellik dönüşümü 

(SIFT)’tir. SIFT, görüntüdeki önemli anahtar noktaları tespit eder ve bu noktaların ölçekten 

bağımsız özelliklerini çıkarır. Böylece, farklı ölçeklerdeki veya açılardaki nesneler doğru 

şekilde tanınabilir.  

Bir diğer gelişmiş yöntem olan momentler, görüntüdeki global şekil özelliklerini 

çıkaran matematiksel bir tekniktir. Momentler, özellikle biyometrik tanıma ve görüntü 

sınıflandırma gibi uygulamalarda kullanılır. Gabor filtreleri ise belirli bir frekanstaki dokusal 

bilgiyi çıkarmak için kullanılan doğrusal filtrelerdir. Bu filtreler, yerel frekans bilgilerini 

analiz ederek dokusal bilgiyi tanır ve doku analizi ile yüz tanıma gibi alanlarda oldukça 

etkilidir.  

Derin öğrenme tabanlı özellik çıkarma tekniklerinden en yaygın olanı CNN’dir. 

CNN’ler, görüntü işleme alanında otomatik özellik çıkarımı yapan derin öğrenme 

modelleridir. Geleneksel yöntemlerden farklı olarak, özelliklerin manuel olarak belirlenmesi 

gerekmez; CNN’ler, veriden bu özellikleri kendisi öğrenir. Özellikle büyük veri setlerinde 

ve karmaşık sınıflandırma problemlerinde üstün performans sergiler. CNN’ler, görüntü 

sınıflandırma ve nesne algılama gibi birçok farklı alanda yaygın olarak kullanılır. 



21 
 

Özellik çıkarma işlemi tamamlandıktan sonra, bu özellikleri kullanarak sınıflandırma 

yapmak gerekmektedir. SVM, verileri ayırmak için bir hiper-düzlem kullanarak 

sınıflandırma yapan güçlü bir algoritmadır ve özellikle yüksek boyutlu veri setlerinde 

başarılı sonuçlar elde eder. DT ise sınıflandırma için verileri ardışık şekilde bölerek karar 

veren daha basit bir yöntemdir ve anlaşılabilir modeller sunar. ANN, özellikle çok boyutlu 

ve karmaşık veri setlerinde güçlü sonuçlar elde edebilen daha gelişmiş bir sınıflandırma 

yöntemidir. ANN’ler, büyük veri kümeleri üzerinde çalışırken üstün performans sağlar. 

Sonuç olarak, özellik çıkarma ve sınıflandırma teknikleri, görüntü işleme ve makine 

öğrenmesi alanlarında başarılı modeller oluşturmanın temel yapı taşlarıdır. Hem geleneksel 

yöntemler (HOG, SIFT, LBP) hem de CNN gibi derin öğrenme tabanlı yöntemler, farklı veri 

tiplerine ve uygulama alanlarına göre etkili çözümler sunar. Doğru özellik çıkarma ve 

sınıflandırma yöntemi, bir projenin başarısında belirleyici bir rol oynar (Wadhawan & 

Kumar, 2021). 

1.9.1. Momentler 

Moment kavramı fizik, istatistik ve mühendislik gibi farklı disiplinlerde çeşitli 

anlamlar ve uygulamalara sahiptir. 

Fizikte bir kuvvetin momenti, bir cismin belirli bir nokta veya eksen etrafında dönme 

eğilimini ölçen bir büyüklüktür. Bu durum cismin doğrusal hareketinden (ötelemesinden) 

farklı olarak yalnızca dönme hareketiyle ilgilidir. Bir momentin oluşabilmesi için kuvvetin 

cismin merkezinden geçmeyecek şekilde uygulanması gerekir. Moment, genellikle kuvvetin 

büyüklüğü ile kuvvetin uygulandığı noktanın dönme eksenine olan dik uzaklığının çarpımı 

olarak ifade edilir. 

Bu döndürme etkisi, kuvvetin doğrultusunda zıt ve eşit bir kuvvetin bulunmaması 

durumunda ortaya çıkar ve döndürme eğiliminin büyüklüğü kuvvetin uygulama noktasına 

olan dik uzaklık arttıkça artar. Şekil 11, kuvvetlerin moment etkisini göstermektedir. İlgili 

moment etkisi bağıntı (1) kullanılarak hesaplanır. Bağıntı (1)’de 𝑀 dönme etkisine, 𝐹 

uygulanan kuvvete ve 𝑑 kuvvetin uygulama noktasının dönme eksenine olan uzaklığına 

karşılık gelir. Dolayısıyla Şekil 11’de 𝐹2 kuvvetinin momenti sıfırdır.  

 

𝑀 = 𝐹. 𝑑 (1) 
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Şekil 11. Fizikte kuvvetlerin moment etkisi 

 

Moment vektörel bir büyüklüktür ve momentin yönü kuvvetin döndürme yönüne göre 

pozitif ya da negatif olabilir. Bu durum, her bir kuvvetin etkisinin hangi yönde olduğunu 

belirler. Bir cisme etki eden birden fazla kuvvet olduğunda, bu kuvvetlerin her biri için 

hesaplanan momentler toplanarak net moment bulunabilir. Bu özellik, momentlerin 

süperpozisyonu olarak adlandırılır ve birden fazla kuvvetin etkisinin değerlendirilmesinde 

önemli bir rol oynar. Fizikte moment, özellikle dönen cisimlerin davranışlarını anlamak ve 

tasarlamak için temel bir kavramdır ve gerçek hayatta birçok sistemde kullanılır. Moment 

kavramının daha iyi anlaşılabilmesi için farklı sistemlerden aşağıdaki örnekler verilebilir. 

Kapı açma işlemi, fiziksel momentin günlük hayatımızda nasıl işlediğini anlamamıza 

yardımcı olan iyi bir örnektir. Bu örnekte kapının menteşe noktası, kapının döneceği ekseni 

oluşturur. Kapıyı açmak için uyguladığınız kuvvet, kapının menteşesine olan uzaklığa göre 

farklı döndürme etkileri yaratır. Kuvveti kapı kolunun yakınına uygularsanız, kapıyı açmak 

çok daha kolay olur. Çünkü daha uzun bir mesafe, daha fazla moment üretir. Öte yandan, 

kuvveti menteşeye çok yakın bir noktada uygularsanız, kapıyı açmak zorlaşır çünkü moment 

daha düşük olur. Örneğin 10 Newton'luk bir kuvvet kapının kenarından 1 metre uzakta 

uygulandığında 10 Newton-metre tork üretilir. Özetle moment, kapının dönme ekseni 

etrafında ne kadar döneceğini gösterir. Yüksek bir moment kapının daha hızlı ve kolay 

açılmasını sağlar. Bununla birlikte sürekli yüksek momentlere maruz kalan kapı zamanla 

menteşe yerlerinde aşınma ve yıpranma yaşayabilir. Bu nedenle kapıların tasarımında 

moment hesapları, hem kullanım verimliliğini hem de yapısal dayanıklılığını sağlamak için 

önemlidir. 

Robotik kollar, genellikle eklem ve motorlardan oluşur ve endüstriyel montaj, cerrahi 

uygulamalar gibi farklı alanlarda kullanılır. Robotik kolun hareketi, uygulanan kuvvet ve kol 

parçalarının uzunluğuna bağlıdır. Belirli bir yükü kaldırabilmek için gerekli momentin 

hesaplanması önemlidir. Kolun uzunluğu ve eklem yerleşimi doğru ayarlanmazsa, motorlar 

yeterli kuvvet üretemeyebilir. Ağırlığı ve boyutu büyük olan nesneler, kolun dönme ekseni 
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etrafında daha büyük bir moment oluşturur ve bu da motorların daha fazla güç sağlamasını 

gerektirir. Robotik kollar sıkça yüksek momentlere maruz kalır, bu yüzden mühendisler, 

motorlar ve eklemler için dayanıklılık artırıcı hesaplamalar yapar. Aşırı moment, aşınma ve 

hasara yol açabileceğinden, doğru moment hesapları robotun güvenli ve verimli çalışmasını 

sağlar. Bu hesaplamalar, robotik kol tasarımında kritik rol oynar ve daha güvenilir, uzun 

ömürlü sistemlerin geliştirilmesini sağlar.  

1.9.2. Uygulamalı Bilimlerde Moment Kavramı 

Matematikte moment, genellikle bir fonksiyonun veya dağılımın şekli, yayılımı, 

simetrisi gibi özelliklerini tanımlamak için kullanılan bir kavramdır. Bu kavram, özellikle 

analiz, istatistik ve olasılık teorisi gibi alanlarda önemli bir yer tutar. 

Birinci moment yani ortalama, bir fonksiyonun ya da veri setinin merkezi eğilimini 

gösterir ve aritmetik ortalamasını temsil eder. Bu gösterge, fonksiyonun genel merkezini 

belirler ve fonksiyonun değerlerinin ortalamaya olan yakınlıklarını ifade eder. Matematiksel 

olarak bir 𝑓(x) fonksiyonu için birinci moment, bağıntı (2) kullanılarak elde edilir. 

 

𝜇1 = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

 (2) 

 

İkinci moment ise varyans olarak bilinir ve veri setinin ne kadar yayıldığını ölçer. 

Varyans, verilerin ortalamadan ne kadar uzaklaştığını gösterir. Yüksek varyans, verilerin 

birbirinden uzak olduğunu, düşük varyans ise verilerin birbirine yakın olduğunu ifade eder. 

Matematiksel olarak varyans birinci momentin karesi olarak ifade edilebilir ve bağıntı (3) 

kullanılarak hesaplanır. 

 

𝜇2 = 𝜎2 = ∫ (𝑥 − 𝜇)2
∞

−∞

𝑓(𝑥)𝑑𝑥 (3) 

 

Üçüncü moment, bir fonksiyonun veya veri setinin çarpıklığını tanımlar ve 

değerlerinin ne kadar sağa veya sola eğilimli olduğunu gösterir. Pozitif çarpıklık, 

fonksiyonun veya verilerin sağa doğru uzun bir kuyruğa sahip olduğunu belirtirken, negatif 

çarpıklık ise sola doğru bir kuyruğa işaret eder. Matematiksel olarak üçüncü moment, bağıntı 

(4)’de gösterildiği gibi ifade edilir. 
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𝜇3 = ∫ (𝑥 − 𝜇)3
∞

−∞

𝑓(𝑥)𝑑𝑥 (4) 

 

Dördüncü moment basıklık olarak bilinir ve bir fonksiyonun veya veri setinin tepe 

noktası ile uç değerleri hakkında bilgi verir. Yüksek bir basıklık, fonksiyonun veya verilerin 

daha keskin bir tepeye sahip olduğunu ve uç değerlerin daha belirgin olduğunu gösterir. 

Matematiksel olarak dördüncü moment, bağıntı (5)’te gösterildiği gibi hesaplanır. 

 

𝜇4 = ∫ (𝑥 − 𝜇)4
∞

−∞

𝑓(𝑥)𝑑𝑥 (5) 

 

Şekil 12, 𝑓(x) = 𝑒−𝑥2
 fonksiyonunu ve ilgili fonksiyonun ilk dört momentinin 

hesaplanmış değerlerini göstermektedir. 

 

 

Şekil 12. 𝑓(x) = 𝑒−𝑥2
 fonksiyonu ve ilk dört momentinin hesaplanmış değerleri 

 

Bir sürekli 𝑓(x) fonksiyonu için n. dereceden genelleştirilmiş moment, bağıntı 

(6)’daki gibi ifade edilir. 

 

𝜇𝑛 = ∫ (𝑥 − 𝜇)𝑛
∞

−∞

𝑓(𝑥)𝑑𝑥 (6) 

 

Ayrık fonksiyonlar için genelleştirilmiş momentler, sürekli dağılımlar için ifade edilen 

açıklamalara benzer şekilde yapılır, ancak burada integral yerine toplamlar kullanılır. 

Ayrık bir 𝑓(x) fonksiyonu için genelleştirilmiş n. dereceden moment, bağıntı (7)’deki gibi 

tanımlanır. 
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𝜇𝑛 = ∑(𝑥 − 𝜇)𝑛

𝑥

𝑃(𝑥) (7) 

 

Burada 𝑃(x), olasılık kütlesi fonksiyonu olarak bilinir. Bir başka deyişle, bir rastgele 

değişkenin belirli bir değeri alması olasılığını gösteren fonksiyondur. Şekil 13, 0-30 değer 

aralığından rastgele seçilen bir veri kümesinin olasılık dağılım fonksiyonu ve bu dağılım 

fonksiyonunun ilk dört momentinin hesaplanmış değerlerini göstermektedir. 

 

 

Şekil 13. Bir olasılık dağılım fonksiyonu ve ilk dört momentinin değerleri 

 

Teorik açıklamaların ardından, farklı uygulamalar üzerinde bu kavramların pratikte 

nasıl kullanıldığını ele alabiliriz.  Örneğin istatistik alanında veri analizi yapmak amacıyla 

bir eğitim kurumu öğrencilerin sınav sonuçları üzerinde çeşitli istatistiksel momentleri 

kullanabilir. Bu analizler, öğrencilerin başarı seviyelerini daha iyi anlamak ve iyileştirme 

stratejileri geliştirmek için faydalıdır. Öncelikle ortalama yani birinci moment, sınıfın genel 

başarı seviyesini belirlemek için hesaplanır. Ortalama not, tüm öğrencilerin başarı düzeyinin 

bir göstergesi olarak sınıfın genel performansı hakkında bilgi verir. İkinci moment olan 

varyans, notların ne kadar yayıldığını gösterir. Elde edilen varyans değeri, eğitimcilerin 

öğrenci grubu içindeki çeşitliliği anlamalarına yardımcı olur. Çarpıklığı temsil eden üçüncü 

moment, not dağılımının simetrik olup olmadığını inceleyerek sınıf notlarının nasıl bir 

dağılım gösterdiği hakkında bilgi verir. Pozitif çarpıklık, daha fazla öğrencinin düşük notlar 

aldığını, negatif çarpıklık ise daha fazla öğrencinin yüksek notlar aldığını gösterir. Son 

olarak dördüncü moment olan basıklık, sınav sonuçlarındaki uç değerlerin (çok yüksek veya 

çok düşük notlar) sıklığını belirler. Yüksek basıklık sınavın zorluk seviyesinin yüksek 
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olduğunu ve uç değerlerin daha sık görüldüğünü, düşük basıklık notların daha homojen bir 

şekilde dağıldığını belirtir. Bu momentler, eğitimde başarıyı anlamak ve iyileştirmek için 

önemli ipuçları sunar. 

Bir diğer örnek olarak, bir şirketin yeni bir ürününün tüketici memnuniyetini ölçmek 

amacıyla gerçekleştirdiği çeşitli istatistiksel analizler verilebilir. İlk adım olarak birinci 

moment olan ortalama memnuniyet puanı hesaplanarak tüketicilerin genel memnuniyet 

seviyesi belirlenir ve ürünün genel algısı anlaşılmaya çalışılır. İkinci moment olan varyans, 

tüketici memnuniyetindeki farklılıkları inceleyerek ürünün farklı demografik gruplar 

üzerindeki etkisinin değerlendirilmesine olanak sağlar. Bu sayede, ürünün hangi tüketici 

grupları arasında daha fazla beğenildiği veya daha az ilgi gördüğü anlaşılabilir. Üçüncü 

moment olan çarpıklık, memnuniyet dağılımının simetrik olup olmadığını gösterir. Bu 

analiz, bazı tüketici gruplarının üründen daha fazla faydalandığını veya daha fazla 

memnuniyet sağladığını ortaya koyarak, şirketin hangi hedef kitleye daha fazla odaklanması 

gerektiğine yardımcı olur. Son olarak dördüncü moment olan basıklık, yüksek ve düşük 

memnuniyet puanlarının sıklığını değerlendirerek pazarlama stratejilerini daha verimli hale 

getirmeye olanak tanır. Bu analizler bütünü, tüketici deneyimlerini iyileştirmek için önemli 

bilgiler sunar ve şirketin pazarlama yaklaşımını optimize etmesine yardımcı olur. 

İnşaat mühendisliğinde moment, yapının stabilitesini sağlamak açısından çok 

önemlidir. Yüklerin kolonlar üzerindeki etkisinin doğru bir şekilde hesaplanması ve her bir 

kolonun momentlere karşı dayanıklı olacak şekilde tasarlanması gerekmektedir. Kolonların 

üzerine yük bindikçe, bu yüklerin oluşturduğu momentlerin yapıya etkisi artar ve bu da 

yapısal sorunlara yol açabilir. Statik denge, momentlerin doğru bir şekilde hesaplanması ve 

yüklerin dengeli bir şekilde dağıtılması ile sağlanabilir. 

1.9.3. Yapay Zeka ve Görüntü İşleme Alanında Moment Analizi 

Görüntü analizi, dijital görüntülerden anlamlı bilgiler elde etmek için kullanılan 

tekniklerin bütünüdür. Bu süreçte momentler görüntülerdeki nesnelerin şekil, yapı ve konum 

özelliklerini tanımlamada kritik bir rol oynar.  

Momentler, bir görüntüdeki piksellerin belirli bir referans noktasına göre 

ağırlıklandırılmış toplamları olarak tanımlanır ve bu özellikleriyle nesnelerin temel 

karakteristiklerini etkili bir şekilde belirlemeye olanak tanır. 
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Momentlerin önemli bir avantajı, görüntülerdeki nesneler döndüğünde veya boyutları 

değiştiğinde bile tutarlı özellikler sunabilmesidir. Bu özellik, görüntülerin farklı açılardan 

ve çeşitli boyutlarda etkili bir şekilde analiz edilmesine imkan sağlar (Flusser vd., 2009). 

Örneğin yüz tanıma sistemlerinde kullanılan moment tabanlı yöntemler, yüz 

özelliklerinin çıkarılmasını kolaylaştırarak tanıma oranını artırır. Ayrıca otonom araçlarda 

çevresel nesnelerin tanınmasında, moment analizi önemli bir rol oynar ve bu sayede araçların 

çevrelerini daha iyi algılamalarına olanak tanır. Tıbbi görüntüleme alanında ise, hastalıkların 

teşhisi için görüntülerdeki yapısal özelliklerin analizi momentler kullanılarak 

gerçekleştirilebilir. Bu yöntem, hastalıkların daha doğru bir şekilde tanımlanmasına ve 

tedavi süreçlerinin iyileştirilmesine katkı sağlar. Bu örnekler, momentlerin görüntü analizi 

alanındaki geniş kapsamlı uygulamalarını ve sunduğu avantajları açıkça ortaya koymaktadır. 

1.9.4. Görüntü Momentlerinin Tanımı 

Görüntü işleme ve desen tanıma alanlarında, momentler bir görüntüdeki şekillerin 

özelliklerini anlamak ve analiz etmek için kullanılır. Moment tabanlı görüntü temsilinin, 

geometrik kararlılık ve dönüşüme bağımsızlık gibi değerli matematiksel nitelikleri sayesinde 

anlamlandırma için gerekli temel şartları yerine getirmede etkili olduğu vurgulanmıştır (Qi 

vd., 2021). 

Moment tabanlı görüntü temsilinde ortogonal polinomlar, görüntülerin özelliklerini 

çıkarmak için yaygın olarak kullanılan güçlü matematiksel araçlardır. Bu polinomlar, 

görüntü üzerinde tanımlanan ve ortogonallik sağlayan fonksiyonlarla çalışır ve böylece daha 

az veriyle görüntüdeki bilgileri etkili bir şekilde temsil ederler. Klasik ortogonal polinomlar 

ve radyal ortogonal fonksiyonlar, matematiksel analizin farklı alanlarda kullanılan iki 

önemli polinom türüdür. Legendre, Chebyshev ve Jacobi polinomları gibi klasik ortogonal 

polinomlar, genellikle dikdörtgen bölgelerde tanımlanır ve üç terimli yineleme ilişkisiyle 

ifade edilir. Bu polinomlar x ve y eksenlerinde ayrı ayrı ortogonallik sağlar ve genellikle 

gerçek sayılarla çalışır. Radyal ortogonal fonksiyonlar ise polar koordinat sisteminde 

tanımlanır ve genellikle dairesel bölgelerde kullanılır. Bu fonksiyonlar, hem radyal bileşen 

𝑅𝑛𝑚(𝑟) ile hem açısal bileşen 𝑒−𝑗𝑚𝜃 ile ifade edilir. Açısal bileşen, karmaşık değerli üstel 

bir ifade olduğundan radyal ortogonal fonksiyonlar karmaşık değerli veriler içerir. Klasik 

polinomlar genellikle gerçek sayılarla işlem yaparken, radyal fonksiyonlar döndürmeye 
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karşı değişmezliği ve karmaşık yapısı ile daha farklı matematiksel ve pratik uygulamalarda 

kullanılır (Corriou, 2022).  

Momentlerin özellikleri ve performanslarının görüntü analizinde kapsamlı bir şekilde 

incelenmesi ilk olarak Teh ve Chin tarafından gerçekleştirilmiştir. Bu inceleme, ortogonal 

momentlerle ilgili gelecekte yapılacak tüm araştırmalar için bir temel oluşturmuş ve bir 

görüntüyü ortogonal polinomlar kullanarak tanımlamanın etkinliğini ortaya koymuştur (Teh 

& Chin, 1988). Teh ve Chin’in çalışmasının ardından, Zernike momentleri Khotanzad ve 

Hong tarafından desen tanıma uygulamalarında kullanılmıştır (Khotanzad & Hong, 1990). 

Ayrıca, görüntü analizi (Chen & Sun, 2010), multimedya damgalama (Kim & Lee, 2003), 

tıbbi görüntü analizi (Dai vd., 2010), adli bilimler (Mahdian & Saic, 2007) gibi uygulamalara 

momentlerin ve moment değişmezlerinin uygulanabilirliğinin arttığı gösterilmiştir. 

Hacim momentleri, bir görüntüdeki piksel değerlerinin doğrudan kullanılmasıyla elde 

edilen temel momentlerdir. Bu momentler, görüntünün genel özelliklerini belirlemede 

yararlıdır. Hacim momentleri, nesnenin konumu ve yoğunluğu hakkında bilgi sağlar fakat 

dönüş ve ölçek değişikliklerine karşı hassastır. Örneğin, bir nesne döndüğünde veya boyutu 

değiştiğinde hacim momentlerinin değerleri de değişir. Matematiksel olarak, bir görüntünün 

hacim momentleri bağıntı (8)’de olduğu gibi ifade edilir. İlgili bağıntıda 𝑀𝑝𝑞 𝑝 ve 𝑞 

derecelerindeki momenti, 𝑓(𝑥, 𝑦) (𝑥, 𝑦) koordinatlarındaki pikselin yoğunluğunu, 𝑁 ve 𝑀 

ise görüntünün boyutlarını ifade eder. 

 

𝑀𝑝𝑞 = ∑ ∑ 𝑓(𝑥, 𝑦)

𝑀−1

𝑦=0

𝑁−1

𝑥=0

𝑥𝑝𝑦𝑞 (8) 

 

Normalize edilmiş momentler, hacim momentlerinin merkezi momentlere 

dönüştürülmesiyle elde edilir. Bu momentler, nesnenin boyut ve pozisyon değişikliklerine 

karşı daha az hassas olup, daha tutarlı sonuçlar sağlar. Normalize edilmiş momentlerin 

hesaplanmasında, piksel değerlerinin ortalaması ve standart sapması dikkate alınır. Örneğin 

ikinci normalize edilmiş moment görüntüdeki nesnelerin yayılımını ölçerken, birinci 

normalize edilmiş moment nesnenin ortalama konumunu belirler. Normalize edilmiş 

momentler, görüntüdeki şekil ve özelliklerin daha doğru bir şekilde analiz edilmesine olanak 

tanır. Bu nedenle nesne tanıma, şekil analizi ve sınıflandırma gibi birçok uygulamada tercih 

edilmektedir. Sonuç olarak normalize edilmiş momentler, görüntü işleme alanında daha 

sağlam ve güvenilir analizler yapılmasını mümkün kılarak dönüş ve ölçek değişikliklerinden 



29 
 

kaynaklanabilecek olumsuz etkileri en aza indirir. Matematiksel olarak, bir görüntünün 

normalize edilmiş momentleri bağıntı (9)’daki gibi gösterilir. İlgili bağıntıda 𝜇𝑝𝑞 𝑝 ve 𝑞 

derecelerindeki normalize edilmiş momenti, 𝑀𝑝𝑞 𝑝 ve 𝑞 derecelerindeki hacim momenti, 

𝑀00 ise görüntünün toplam yoğunluğunu ifade etmektedir. 

 

𝜇𝑝𝑞 =
𝑀𝑝𝑞

𝑀00

(1+
𝑝+𝑞

2
)
 (9) 

 

1.9.5. Moment Türleri 

Geometrik momentler, bir görüntüdeki şekillerin geometrik yapısını, boyutunu ve 

yönelimini belirlemek için kullanılır. Bu temel momentler şekillerin alanını, ağırlık 

merkezini ve diğer temel geometrik dağılımlarını tanımlamak için basit ancak etkili araçlar 

olarak işlev görür. Öte yandan şekiller döndürüldüğünde, konumu veya boyutları 

değiştirildiğinde tanıma ve analiz işlemleri daha zor hale gelebilir.  

Geometrik momentler, bir görüntüdeki piksel değerlerinin belirli polinomlarla çarpılıp 

toplanmasıyla hesaplanır. Ancak, kullanılan polinomlar genellikle tek terimli polinomlardır 

ve bu polinomların birbirleriyle ortogonal olmaması, hesaplanan momentlerin bilgi 

fazlalığına yol açmasına sebep olur. Bir başka deyişle, aynı veriyi birden fazla momentin 

temsil etmesi anlamına gelir. İşte bu noktada, Hu momentleri ve ortogonal momentler gibi 

daha gelişmiş momentler devreye girmektedir (Mukundan & Ramakrishnan, 1998). 

1962 yılında Hu, mühendislik alanında iki boyutlu momentleri ilk kez tanıtmıştır. Hu, 

bir görüntünün iki boyutlu geometrik momentlerini "moment değişmezleri" olarak 

adlandırmış ve bu yapıyı, doğrusal dönüşümlere yani çevirme, döndürme, ölçekleme ve 

eğiklik gibi işlemlere karşı değişmeyen bir özellik olarak tanımlamıştır. İlgili çalışmada, 

cebirsel değişmezler teorisine dayanan yedi ortogonal değişmezi öne sürmüştür (Hu, 1962). 

O tarihten itibaren yapılan araştırmalar, momentler ve moment değişmezleri teorisinde 

önemli ilerlemeler kaydetmiştir. Bu teorik gelişmeler, momentlerin çok farklı alanlarda 

kullanılmasını mümkün kılmış ve giderek daha fazla araştırmacının bu konuyu 

çalışmalarının odak noktası haline getirmesine yol açmıştır. 

Hu momentlerinin döndürme dayanıklılığı sayesinde bir nesne döndürüldüğünde aynı 

nesne olarak tanınabilir. Ölçekleme dayanıklılığı, nesnenin boyutları değiştiğinde bile boyut 
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farkını göz ardı ederek nesneyi tanımaya devam eder. Yer değiştirme dayanıklılığı ise, nesne 

farklı bir konuma taşındığında bile özelliklerini doğru bir şekilde yakalar. Bu özellikleriyle 

Hu momentleri, optik karakter tanıma, plaka tanıma ve şekil sınıflandırma gibi 

uygulamalarda yaygın olarak kullanılır. Örneğin, bir plakanın farklı açılardan fotoğrafı 

çekildiğinde bile bu gelişmiş momentler sayesinde plaka üzerindeki yazılar aynı şekilde 

tanınabilir. Bu sayede, şekiller üzerindeki karmaşık dönüşüm ve değişiklikler sırasında bile 

doğru analizler yapılabilir. Hu momentlerinin kullanım alanları geniştir; nesne tanıma 

süreçlerinde görüntülerdeki nesnelerin tanınması ve sınıflandırılması için yaygın olarak 

kullanılırken, mühendislik, robotik ve biyomedikal uygulamalarda nesnelerin şekil 

özelliklerini analiz etmek için de tercih edilmektedir. Ayrıca, biyolojik görüntülemede 

hücrelerin ve dokuların analizinde Hu momentleri önemli bir rol oynamaktadır. 

Hu momentlerinin hesaplanması, önce görüntüdeki hacim momentlerinin 

hesaplanması ile başlar. Bu momentler, piksel yoğunlukları kullanılarak belirlenir. 

Akabinde, hacim momentleri normalleştirilir ve merkezi momentler elde edilir. Hu 

momentleri, yedi temel normalize edilmiş momentten oluşur ve bu momentler nesnenin 

geometrik özelliklerini tanımlamak için kullanılır. Ayrıca, görüntüdeki nesnelerin geometrik 

bilgilerini sağlamanın yanı sıra gürültü ve küçük değişikliklere karşı da oldukça sağlam bir 

yapıya sahiptirler. Hu momentleri, bağıntı (10)’da gösterildiği gibi hesaplanmaktadır. 

 

𝜙1 = 𝜇20 + 𝜇02 

𝜙2 = (𝜇20 − 𝜇02)2 + 4𝜇11
2  

𝜙3 = (𝜇30 − 3𝜇12)2 + (3𝜇21 − 𝜇03)2 

𝜙4 = (𝜇30 + 𝜇12)2 + (𝜇21 + 𝜇03)2 

𝜙5 = (𝜇30 − 3𝜇12)(𝜇30 + 𝜇12)((𝜇30 + 𝜇12)2 − 3(𝜇21 + 𝜇03)2) 

𝜙6 = (𝜇20 − 𝜇02)((𝜇30 + 𝜇12)2 − (𝜇21 + 𝜇03)2) 

𝜙7 = (3𝜇21 − 𝜇03)(𝜇30 + 𝜇12)((𝜇30 − 𝜇12)2 − (𝜇21 − 𝜇03)2) 

(10) 

 

Ortogonal momentler, genel moment hesaplamalarına kıyasla daha yüksek doğruluk 

ve sıkıştırma kapasitesi sağlayan momentlerdir. Bu momentlerin temel avantajı, çekirdekleri 

ortogonal polinomlar üzerine inşa edildiği için birbirlerinden bağımsız bileşenler 

oluşturabilmesidir. Bu ortogonallik, momentlerin minimum bilgi fazlalığına sahip olmasını 

sağlar; yani her bir moment derecesi, görüntünün farklı bir yönünü temsil eder. Düşük 

dereceli momentler, bir desenin genel şeklini temsil ederken yüksek dereceli momentler 

daha ayrıntılı bilgileri sunar. 
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1980 yılında Teague tarafından tanıtılan ortogonal momentler, görüntü analizi 

alanında önemli bir gelişme olarak kabul edilir (Teague, 1980). Teague, Legendre ve Zernike 

ortogonal momentlerini önererek geometrik momentlerin ve Hu değişmezlerinin yüksek 

bilgi fazlalığı sorununa çözüm bulmayı amaçlamıştır. 

Legendre momentleri, iki boyutlu görüntülerin tanımlanması için kullanılan bir başka 

ortonormal moment çeşididir. Legendre momentleri, görüntü üzerindeki piksel yoğunlukları 

baz alınarak hesaplanır ve özellikle hızlı hesaplanabilmeleri ve düşük bilgi kaybı nedeniyle 

tercih edilirler. Bu momentler, belirli bir görüntü üzerindeki piksel verilerini kompakt bir 

biçimde temsil eder ve bu nedenle sıkıştırma algoritmalarında kullanılabilir. Legendre 

momentleri, kare veya dikdörtgen simetrilere sahip nesneler üzerinde oldukça etkilidir ve 

belirli bir simetriye sahip görüntülerin tanınmasında kullanılır. 

Legendre momentleri, görüntü yoğunluk fonksiyonu 𝑓(𝑥, 𝑦) üzerinden hesaplanır ve 

Legendre polinomları kullanılarak tanımlanır. Hesaplama süreci, belirli bir bölgedeki 

yoğunluğu temsil eden entegrasyonları içerir. Farklı derecelerde hesaplanabilmesi, daha 

karmaşık şekil bilgilerini elde etmeyi mümkün kılarken, düşük dereceli momentler daha 

genel ve temel bilgileri sağlar. Ayrıca, görüntü restorasyon süreçlerinde de önemli bir rol 

oynar; burada görüntülerin yeniden yapılandırılmasında moment bilgisi kullanılır (Zhang 

vd., 2010). 

1.9.6. Zernike Momentleri 

Zernike momentleri, bir görüntünün geometrik özelliklerini yüksek hassasiyetle 

yakalayabilen ve özel polinomlar üzerinden tanımlanan momentlerdir. Bu momentler, 

özellikle döndürmelere karşı oldukça dayanıklıdır. Bir başka deyişle, bir nesne 

döndürüldüğünde dahi Zernike momentleri nesnenin tanınmasını mümkün kılar. Bu 

özellikleri sayesinde, simetrik ya da döndürülmüş yapıların analizi için sıklıkla tercih edilir.  

Zernike momentlerinin bir diğer önemli özelliği, nesnenin ince geometrik yapılarını 

detaylı bir şekilde yakalayabilmesidir. Bu özellik, onları yüksek tanımlama kabiliyetine 

sahip bir araç yapar. Bu sayede, Zernike momentleri özellikle tıbbi görüntüleme, astronomik 

veri analizleri ve biyometrik tanıma sistemleri gibi hassasiyet gerektiren alanlarda sıklıkla 

kullanılır (Zernike & Stratton, 1934). 

Zernike momentlerinin duyarlılığı da dikkat çekicidir. Görüntülerdeki gürültüye karşı 

dayanıklı olmaları, onları çok çeşitli uygulamalarda kullanılabilir hale getirir. Ayrıca, 
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yüksek dereceli Zernike momentleri, görüntüdeki karmaşıklığı etkili bir şekilde temsil 

edebilir. Bu durum, görüntülerin daha düşük boyutlu bir temsil ile ifade edilmesi imkanı 

sunarken veri boyutunun azaltılmasına da yardımcı olur. 

Tıbbi görüntüleme alanında, Zernike momentlerinin kullanımı büyük bir rol 

oynamaktadır. Özellikle tıbbi görüntüleme gibi gürültüye duyarlı alanlarda, MR ve CT 

taramalarında lezyonlar ya da diğer anormalliklerin tanımlanmasında Zernike 

momentlerinin katkısı büyüktür. Bu özellikleri, görüntülerdeki yapıları etkili bir şekilde 

analiz etmeye olanak tanır (Kumar vd., 2018). 

1.9.7. Zernike Momentlerinin Hesaplanması 

Zernike momentleri ve alt grupları arasında belirgin farklılıklar bulunmaktadır; bu 

farklılıklar her bir türün kullanım alanını ve uygulama yeteneklerini etkiler. Klasik Zernike 

momentleri, döndürmeye dayanıklı ve genellikle şekil tanıma uygulamalarında etkili iken, 

logaritmik Zernike momentleri yüksek dinamik aralığa sahip görüntüleri analiz etmekte 

kullanılır. Karmaşık Zernike momentleri, hem gerçek hem de sanal bileşenleri içererek iki 

boyutlu sinyallerin işlenmesinde fayda sağlar. Sürekli Zernike momentleri, pürüzsüz ve 

sürekli yüzeylerin analizi için tasarlanmıştır. Harmonik Zernike momentleri ise görüntüdeki 

harmonik bileşenleri analiz etmeye yöneliktir. Her bir tür, belirli bir uygulama veya görüntü 

özelliğine odaklanarak çeşitli avantajlar ve dezavantajlar sunar. 

Zernike momentleri, görüntünün yoğunluk fonksiyonu 𝑓(𝑥, 𝑦)  kullanılarak 

hesaplanır. Zernike momentleri, bağıntı (11)’de belirtilen formülü ile tanımlanır. 

 

𝑍𝑛
𝑚 =

𝑛 + 1

𝜋
 ∫ ∫𝑓(𝑥, 𝑦)𝑉𝑛𝑚

∗ (𝑥, 𝑦)
𝑦𝑥

𝑑𝑦𝑑𝑥 (11) 

 

Bağıntı (11)’de integral, görüntünün dairesel alanı boyunca hesaplanır. Bir başka 

deyişle, görüntü üzerinde belirli bir noktanın yoğunluk değeri, Zernike polinomları 

𝑉𝑛𝑚(𝑥, 𝑦) ile çarpılarak toplamsal bir değer elde edilir. Bu hesaplama, görüntünün farklı açı 

ve ölçeklerdeki özelliklerini ortaya çıkarmaya yardımcı olur ve özellikle dairesel simetrik 

nesnelerin analizi için idealdir. 

Logaritmik Zernike momentleri, Zernike momentlerinin logaritmik modifikasyonu 

sonucunda elde edilir. Logaritmik Zernike momentleri ile ilgili farklı yaklaşımlar 

mümkündür ve logaritma işlemi, Zernike momentlerinin hesaplanmasında sadece görüntü 
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üzerinde değil, Zernike polinomunun kendisi üzerinde de yapılabilir. Belirtilen Logaritmik 

Zernike momentlerinin Zernike momentlerine uygulanmış modifikasyonu bağıntı (12)’de 

ifade edilmiştir (Lu & Yang, 2023). 

 

𝑍𝑛
𝑚 =

𝑛 + 1

𝜋
 ∫ ∫𝑓(𝑥, 𝑦)log (𝑉𝑛𝑚

∗ (𝑥, 𝑦)
𝑦𝑥

)𝑑𝑦𝑑𝑥 (12) 

 

Logaritmik Zernike momentleri, yüksek dinamik aralığa sahip görüntülerin analizi için 

özel olarak geliştirilmiş bir yöntemdir. Bu momentler, görüntülerin yoğunluk dağılımlarını 

daha etkili bir şekilde temsil eder ve özellikle zayıf aydınlatma koşullarında veya yüksek 

kontrast gerektiren durumlarda önemli avantajlar sunar. 

1.9.8. Karmaşık Sayılar 

Matematiksel problemlerin çözümünde, bazı sayı kümeleri tek başına yeterli 

olmayabilir. Bu durumda, mevcut sayı kümelerini genişleterek daha kapsamlı sistemler 

oluşturmak gerekebilir ve buna bağlı olarak farklı sayı kümeleri geliştirilmiştir. 

Doğal sayılar (0,1,2,3,…) kümesi, matematiğin temel yapı taşlarından biridir. Pozitif 

tam sayılardan oluşan bu sınıf, günlük yaşamda sayma işlemlerinde kullanılır aynı zamanda 

matematiksel işlemlerin temelini oluşturur ve toplama ile çarpma işlemleri bakımından 

kapalı bir küme olarak tanımlanır. Bir başka ifadeyle, iki doğal sayının toplamı veya çarpımı 

sonucunda elde edilen sayının yine bir doğal sayı olduğu anlamına gelir. Örneğin, 3+5=8 ve 

4×6=24 işlemleri, doğal sayıların toplama ve çarpma işlemlerinde kapalı olduğunu gösterir. 

Ancak çıkarma ve bölme işlemlerinde farklı sınıfların tanımlanmasını gerektirir. 

Tam sayılar (…,−3,−2,−1,0,1,2,3,…), doğal sayıları ve negatif tam sayıları içerir. 

Matematikte çıkarma işlemiyle ilişkili olarak tanımlanan tam sayılar, doğal sayıların 

eksikliklerini giderir ve simetrik bir yapı sağlayarak temel aritmetik işlemleri genişletir. Bu 

yapı, hem pozitif hem de negatif değerlerin işlenmesini mümkün kılar ve böylece 

matematiğin daha geniş uygulama alanlarına hizmet eder. 

Rasyonel sayılar, iki tam sayının oranı olarak ifade edilir ve genellikle (a / b) formunda 

yazılır; burada a ve b tam sayılar olup, b ≠ 0 koşulu sağlanır. Bu sayıların ondalık açılımları 

ya sonlu bir değerle bitmekte ya da belirli bir örüntüyü tekrar eden bir yapıya sahip 

olmaktadır. Rasyonel sayılar, kesirlerin matematiksel ifadesini sağlar ve bölme işlemini 
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tanımlamada kritik bir rol oynar. Ayrıca, reel sayıların önemli bir alt kümesini oluşturur ve 

sayısal analizde temel bir yapı taşını temsil eder. 

İrrasyonel sayılar, kesir olarak ifade edilemeyen ve ondalık açılımı sonsuza kadar 

devam eden, ancak herhangi bir örüntü tekrarı göstermeyen sayılardır. Örneğin, √2, 𝜋 ve 

𝑒 gibi sayılar irrasyonel sayıların klasik örneklerindendir. Bu sayılar, matematikte önemli 

bir yere sahiptir ve özellikle geometrik, trigonometrik ve analitik hesaplamalarda kullanılır. 

İrrasyonel sayılar, rasyonel sayılarla birlikte reel sayı kümesini tamamlayarak matematiğin 

temel yapı taşlarından birini oluşturur. 

Reel (gerçek) sayılar, rasyonel ve irrasyonel sayıların birleşiminden oluşan ve sayı 

doğrusu üzerindeki tüm noktaları kapsayan bir sayı kümesidir. Bu sınıf, reel analiz, 

trigonometri ve geometri gibi matematiğin pek çok dalında temel bir yapı taşıdır. Reel 

sayılar, sürekli bir sayı doğrusu kavramı sunarak kesintisiz bir sayı sistemi sağlar ve bu da 

analitik hesaplamaların gerçekleştirilmesine olanak tanır. Bu özellikleri sayesinde reel 

sayılar, hem teorik hem de uygulamalı matematikte kritik bir öneme sahiptir. 

Karmaşık sayılar, gerçek ve sanal bileşenlerin birleşiminden oluşmakta ve genellikle 

𝑧 = 𝑥 + 𝑖𝑦 formunda ifade edilmektedir; burada 𝑎 gerçek kısmı, 𝑏𝑖 ise sanal kısmı temsil 

eder ve 𝑖, 𝑖2 = −1 özelliğine sahiptir. Bu sayı sistemi, reel sayıların da dışında matematikte 

daha genel bir yapı sağlar ve özellikle cebir, mühendislik, fizik ve sinyallerin analizi gibi 

alanlarda kullanılmaktadır. Karmaşık sayılar, iki boyutlu bir düzlemde görselleştirilebilme 

özelliği sayesinde, hem geometrik hem de analitik problemlerin çözümünde güçlü bir araç 

olarak ortaya çıkmaktadır. Bu nedenle, matematiksel analizden diferansiyel denklemlere 

kadar geniş bir uygulama alanında temel yapı taşıdır. Örneğin, 𝑥2 + 1 = 0 denkleminin reel 

sayılar arasında çözümü yoktur, çünkü hiçbir reel sayının karesi negatif bir değer almaz. 

Böylece 𝑥2 + 1 = 0 denkleminin çözümleri karmaşık birim 𝑖 ve −𝑖 olarak tanımlanır; 

burada i sanal birim olup 𝑥2 = −1 özelliğine sahiptir.  

Karmaşık sayılar özellikle dalga hareketleri, elektromanyetik alanlar, kuantum 

mekaniği ve elektronik gibi alanlarda önemli bir rol oynamaktadır. Elektrik devrelerinde 

alternatif akımın modellenmesi veya dalgaların sinüzoidal hareketi gibi olaylar, en iyi 

şekilde karmaşık sayılarla ifade edilir. Ayrıca, dönme, titreşim ve salınımlar gibi olayların 

matematiksel olarak modellenmesinde de karmaşık sayılar büyük kolaylık sağlar. Bu sayede, 

karmaşık sayıların gerçek dünyadaki etkileri daha net bir şekilde gözlenmektedir. Karmaşık 

analiz ve Fourier dönüşümleri gibi matematiksel teknikler de karmaşık sayılar kullanılarak 

geliştirilmiş olup, buna bağlı olarak sinyal işleme ve sistem analizi gibi alanlarda önemli 
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avantajlar sağlanmıştır. Sonuç olarak karmaşık sayılar, reel sayılar kümesinin ötesine 

geçerek daha geniş bir çözüm alanı sunar ve matematiksel denklemlerin çözümünü daha 

kapsamlı bir şekilde mümkün kılar. 

Şekil 14 sayı kümelerini, birbirlerini kapsama gibi aralarındaki ilişkiler dahil olmak 

üzere bir arada göstermektedir. 

 

 

Şekil 14. Sayı Kümeleri 

 

İki karmaşık sayı  𝑢 = 𝑎 + 𝑖𝑏  ve 𝑣 = 𝑐 + 𝑖𝑑  olsun. Sıfırdan farklı her karmaşık sayı, 

birinci dereceden bir polinomdur. Karmaşık eşlenik, bir karmaşık sayının gerçek kısmını 

aynı bırakırken, sanal kısmının işaretini değiştirerek elde edilen karmaşık sayıdır.  𝑢 = 𝑎 +

𝑖𝑏 sayısının eşleniği, 𝑢̅ = 𝑢∗ = 𝑎 − 𝑖𝑏  şeklinde gösterilir. 

Karmaşık sayıların toplamı gerçek kısımların toplamı ve sanal kısımların toplamı 

olarak ifade edilir. Karmaşık sayıların farkı, benzer şekilde gerçek kısmın farkı ve sanal 

kısmın farkı olarak ifade edilir. İlgili işlemler bağıntı (13) gösterildiği şekilde gerçekleştirilir. 

 

𝑢 + 𝑣 = (𝑎 + 𝑖𝑏) + (𝑐 + 𝑖𝑑) = (𝑎 + 𝑐) + 𝑖(𝑏 + 𝑑) 

𝑢 − 𝑣 = (𝑎 + 𝑖𝑏) − (𝑐 + 𝑖𝑑) = (𝑎 − 𝑐) + 𝑖(𝑏 − 𝑑) 
(13) 

 

Karmaşık sayıların çarpımı ise dağılım özelliği kullanılarak yapılmaktadır. İlgili 

işlemler bağıntı (14)’de gösterilmiştir. 

 

𝑢𝑣 = (𝑎 + 𝑖𝑏)(𝑐 + 𝑖𝑑) ⇒ 𝑎(𝑐 + 𝑖𝑑) + 𝑖𝑏(𝑐 + 𝑖𝑑) ⇒ 𝑎𝑐 + 𝑖𝑎𝑑 + 𝑖𝑏𝑐 + 𝑖2𝑏𝑑 

𝑖2 = −1 𝑜𝑙𝑑𝑢ğ𝑢𝑛𝑑𝑎𝑛 𝑢𝑣 = 𝑎𝑐 + 𝑖𝑎𝑑 + 𝑖𝑏𝑐 − 𝑏𝑑 ⇒ (𝑎𝑐 − 𝑏𝑑) + 𝑖(𝑎𝑑 + 𝑏𝑐) 
(14) 
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Nihayetinde karmaşık sayıların çarpımı, gerçek kısmı (𝑎𝑐 − 𝑏𝑑) ve sanal kısmı (𝑎𝑑 +

𝑏𝑐) olan bir karmaşık sayıdır. Karmaşık sayıların bölümü, pay ve paydanın eşlenikleri 

kullanılarak gerçekleştirilir. İlgili işlemler bağıntı (15)’de gösterilmiştir. 

 

𝑢

𝑣
=

𝑎 + 𝑖𝑏

𝑐 + 𝑖𝑑
⇒

(𝑎 + 𝑖𝑏)(𝑐 − 𝑖𝑑)

(𝑐 + 𝑖𝑑)(𝑐 − 𝑖𝑑)
⇒

𝑎𝑐 + 𝑏𝑑 + 𝑖(𝑏𝑐 − 𝑎𝑑)

𝑐2 + 𝑑2
 

⇒
𝑎𝑐 + 𝑏𝑑

𝑐2 + 𝑑2
+ 𝑖

𝑏𝑐 − 𝑎𝑑

𝑐2 + 𝑑2
 

(15) 

 

Bir karmaşık sayının büyüklüğü, orijin ile olan uzaklık olarak tanımlanmaktadır ve 

𝑧 = 𝑥 + 𝑖𝑦 karmaşık sayısı için  |𝑧| şeklinde gösterilir. İlgili büyüklük değeri bağıntı (16) 

kullanılarak hesaplanır. 

 

𝑟 = |𝑧| = √𝑥2 + 𝑦2 (16) 

 

Argüman ise karmaşık sayının pozitif gerçek eksen ile yaptığı açıyı ifade eder. Bu iki 

özellik (büyüklük ve argüman), karmaşık sayıların kutupsal formda gösterilmesini mümkün 

kılar ve çeşitli mühendislik uygulamalarında kullanılır. Bağıntı (17), argümanın elde 

edilmesine yönelik formülü ve bir karmaşık sayının kutupsal formda temsilini ifade 

etmektedir. 

 

𝜃 = arg (𝑧) = tan−1 (
𝑦

𝑥
) 

𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) 
(17) 

 

Karmaşık değişkenli fonksiyonlar, karmaşık sayıların bir fonksiyonudur ve gerçek 

fonksiyonların karmaşık sayı uzayına genişletilmiş halidir. Karmaşık fonksiyonlar, analitik 

özellikleri, türevlenebilirlik koşulları ve farklı davranışları ile karmaşık analizde önemli bir 

yer tutar. Karmaşık değişkenli fonksiyon genellikle eğer 𝑓(𝑧): ℂ → ℂ, 𝑧 = 𝑥 + 𝑖𝑦 ise 

∃𝑢, 𝑣: ℝ2 → ℝ olmak üzere bağıntı (18)’de gösterildiği gibi ifade edilir. 

 

𝑓(𝑧) = 𝑓(𝑥+𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦) (18) 
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İlgili bağıntıda 𝑢(𝑥, 𝑦) fonksiyonun gerçek, 𝑣(𝑥, 𝑦) ise sanal kısmına karşılık gelirken 

her ikisi de x ve y’nin bir fonksiyonu olarak tanımlanır. 

Karmaşık analizde diferansiyel kuralı, karmaşık diferansiyel tanımını ifade 

etmektedir. Hem karmaşık değişken 𝑧 hem de 𝑧'nin karmaşık eşleniği 𝑧∗ ile ilgili türevleri 

içeren karmaşık bir fonksiyonun diferansiyeli 𝜕𝑓, bağıntı (19)’da ifade edilmiştir. 

 

𝜕𝑓 =
𝜕𝑓

𝜕𝑧
𝜕𝑧 +

𝜕𝑓

𝜕𝑧∗
𝜕𝑧∗ (19) 

 

Karmaşık analizde türevlerin karmaşık eşlenikleri bağıntı (20)’de verilmiştir. Bu tür 

türev özellikleri, karmaşık fonksiyon teorisinde, Cauchy-Riemann denklemlerinin 

analizinde ve holomorfik fonksiyonların incelenmesinde yaygın olarak kullanılır.  

 

(
𝜕𝑓

𝜕𝑧
)

∗

=
𝜕𝑓∗

𝜕𝑧∗
              ,              (

𝜕𝑓

𝜕𝑧∗
)

∗

=
𝜕𝑓∗

𝜕𝑧
  (20) 

 

Eğer 𝑓(𝑧): ℂ → ℝ ise türevlerin karmaşık eşlenikleri bağıntı (21)’deki gibi olmaktadır. 

 

(
𝜕𝑓

𝜕𝑧
)

∗

=
𝜕𝑓

𝜕𝑧∗
              ,              (

𝜕𝑓

𝜕𝑧∗
)

∗

=
𝜕𝑓

𝜕𝑧
  (21) 

 

Holomorfik bir fonksiyon, bir veya daha fazla karmaşık değişkene bağlı olan ve tanım 

kümesinin her noktasında karmaşık türevlenebilir olan bir karmaşık değerli fonksiyondur. 

Holomorfik fonksiyonlar aynı zamanda analitik fonksiyon olarak adlandırılır ve Cauchy-

Riemann denklemleri sağlanır.  

𝑓(𝑧): ℂ → ℂ fonksiyonu ve Ω ⊂  ℂ açık bir alt kümesinde karmaşık türevi bağıntı 

(22)’deki limitin var olmasıyla tanımlanır. İlgili bağıntıda Δ𝑧 = Δ𝑥 + 𝑖Δ𝑦 şeklindedir ve 

Δ𝑧 → 0 hem Δ𝑥 → 0 hem de Δy → 0 olur. 

 

𝑓′(𝑧) = lim
Δz→0

𝑓(𝑧 + Δ𝑧) − 𝑓(𝑧)

Δ𝑧
  (22) 

 

Bu limitin var olabilmesi için Δ𝑧 farklı yollarla sıfıra yaklaşsa bile aynı sonucu 

vermelidir. Yani hem gerçek eksen (Δ𝑦 = 0) hem de sanal eksen (Δ𝑥 = 0) boyunca aynı 

olmalıdır. 
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Gerçek eksen boyunca türev (Δ𝑦 = 0) bağıntı (23)’de verilmektedir. 

 

𝜕𝑓

𝜕𝑧
=

𝜕𝑢

𝜕𝑥
+ 𝑖 

𝜕𝑣

𝜕𝑥
  (23) 

 

Sanal eksen boyunca türev (Δ𝑥 = 0) bağıntı (24)’de verilir. 

 

𝜕𝑓

𝜕𝑧
=

𝜕𝑣

𝜕𝑦
− 𝑖 

𝜕𝑢

𝜕𝑦
  (24) 

 

Bu iki türev eşitliğinden Cauchy-Riemann denklemleri bağıntı (25)’de ifade edilir.  

 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
             ,             

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
  (25) 

 

Bu durumda, 𝜕𝑓/𝜕𝑧∗ =  0 olmalıdır. 𝑓(𝑧) fonksiyonunun holoformik bir örneği Şekil 

15. (a)'da, holoformik olmayan ise Şekil 15. (b)'de gösterilmektedir. 

 

 

Şekil 15. (a) 𝑓(𝑧) fonksiyonunun holoformik bir örneği (b) 𝑓(𝑧) fonksiyonunun 

holoformik olmayan bir örneği 
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Wirtinger hesaplaması, Wilhelm Wirtinger tarafından 1927 yılında ortaya atılan ve 

karmaşık türev kavramını genelleştiren bir yöntemdir. Wirtinger hesabı, özellikle karmaşık 

analiz, diferansiyel geometri ve sinyal işleme gibi alanlarda sıkça kullanılır. Bu hesaplama, 

karmaşık fonksiyonların türevini ve gradyanını hesaplamak için geliştirilmiştir ve özellikle 

karmaşık sayılarla çalışan fonksiyonların optimizasyonunda kullanılır. Wirtinger 

hesaplamasının temel avantajı, karmaşık değerli fonksiyonlarla çalışırken türev almayı daha 

sistematik ve verimli hale getirmesidir. 

Wirtinger hesaplaması, holomorfik olmayan fonksiyonlarla çalışmayı mümkün kılar 

ve aynı zamanda gradyan hesaplaması için alternatif bir yöntem sunar. Bu yöntem, eğitim 

sürecinin kararlılığını da artırarak daha güvenilir sonuçlar elde edilmesine yardımcı olur 

(Fischer, 2002). 

Wirtinger hesaplamasında karmaşık fonksiyonların türevini almak için özel türev 

operatörleri kullanılır. Wirtinger operatörleri olarak adlandırılan bu operatörler, karmaşık 

sayıların gerçek ve sanal kısımlarına bağlıdır. Wirtinger operatörleri bağıntı (26)’da ifade 

edilmektedir. 

 

𝜕

𝜕𝑧
=

1

2
(

𝜕

𝜕𝑥
− 𝑖

𝜕

𝜕𝑦
)             ,             

𝜕

𝜕𝑧∗
=

1

2
(

𝜕

𝜕𝑥
+ 𝑖

𝜕

𝜕𝑦
)  (26) 

 

Karmaşık değerli değişkenlerle çalışan sinir ağlarında, optimizasyon süreçlerinde 

kullanılan özel bir zincir kuralı önemli bir rol oynamaktadır. Bu kural, değişkenler karmaşık 

olsa bile maliyet fonksiyonunun her zaman gerçek bir değer almasını sağlayarak işlemleri 

daha verimli hale getirir. Karmaşık değişkenler için türev almayı genelleştiren bu yöntem, 

hem teorik hem de pratik uygulamalarda kritik bir öneme sahiptir (Simon, 2014). 

𝑓(𝑧): ℂ → ℂ, 𝑧 ∈ ℂ ve 𝑥(𝑧), 𝑦(𝑧): ℂ → ℝ için gerçek ve sanal kısımlar üzerinde 

karmaşık zincir kuralı bağıntı (27)’de ifade edilir. 

 

𝜕𝑓

𝜕𝑧
=

𝜕𝑓

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑧
 (27) 

 

𝑓, 𝑔: ℂ → ℂ fonksiyonlardır ve 𝑧 ∈ ℂ bir karmaşık değişkendir. Buna bağlı olarak, 

karmaşık zincir kuralı bağıntı (28)’de ifade edilmektedir. Burada 𝑓 fonksiyonu 𝑔’ye, 𝑔 

fonksiyonu da 𝑧’ye bağlıdır. 
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𝜕ℎ(𝑔)

𝜕𝑧
=

𝜕𝑓

𝜕𝑔

𝜕𝑔

𝜕𝑧
+

𝜕𝑓

𝜕𝑔∗

𝜕𝑔∗

𝜕𝑧
 (28) 

 

𝑔(𝑧)’nin 𝑧, 𝑧∗ ile türevi ayrı ayrı hesaplanır. Aynı durum 𝑔∗ için de geçerli olmaktadır. 

İlgili formüller bağıntı (29)’da verilmektedir. 

 

𝜕𝑔

𝜕𝑧
= 𝑔′(𝑧)   ,    

𝜕𝑔

𝜕𝑧
= (𝑔∗)′(𝑧)   ,   

𝜕𝑔

𝜕𝑧
=

𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕𝑔

𝜕𝑦
 
𝜕𝑦

𝜕𝑧
 (29) 

 

Karmaşık sayılar genel olarak dikdörtgensel, kutupsal (polar) ve üstel formda olmak 

üzere sırasıyla 𝑧 = 𝑥 + 𝑖𝑦, 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) ve 𝑧 = 𝑟𝑒𝑖𝜃 şeklinde ifade edilir. 

Euler formülü, karmaşık analizde hem üstel fonksiyonların hem de trigonometrik 

fonksiyonların temel bir birleşimini sağlayarak, bu iki önemli matematiksel yapı arasında 

güçlü bir ilişki kurar. İlgili formül ve açılımı bağıntı (30)’da ifade edilmektedir. 

 

𝑒𝑖𝜃 = cos 𝜃 + 𝑖 sin 𝜃 (30) 

 

Bu formül, karmaşık sayılar düzleminde üstel fonksiyonların döndürme ve büyüklük 

ilişkilerini sinüs ve kosinüs fonksiyonlarıyla ifade edebileceğimizi gösterir. Euler 

formülünün, Şekil 16. (a)’da birim çember üzerindeki temsili, Şekil 16. (b)’de ise 

trigonometrik gösterimi belirtilmiştir. 

 

 

Şekil 16. (a) Euler formülünün birim çember üzerindeki temsili (b) Euler formülünün, 

trigonometrik gösterimi 
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Karmaşık düzlem, karmaşık sayıları görselleştirmek ve üzerinde işlem yapmak için 

kullanılan iki boyutlu bir yüzeydir. Bu düzlemde her karmaşık sayı bir nokta olarak temsil 

edilir ve düzlemdeki yatay eksen karmaşık sayıların gerçek kısmını, dikey eksen ise sanal 

kısmını gösterir. Şekil 17. (a) karmaşık düzlemde verilen beş karmaşık sayıyı, Şekil 17.(b) 

ilgili beş karmaşık sayının 𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünü göstermektedir. 

 

 

Şekil 17. (a) Karmaşık düzlemde verilen beş karmaşık sayı (b) İlgili beş karmaşık sayının 

𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünü 

 

Şekil 18. (a) ayrık noktalardan oluşan karesel bir görüntüyü, Şekil 18. (b) ise ilgili 

ayrık karesel görüntünün 𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünü belirtir. 

 

 

Şekil 18. (a) Ayrık noktalardan oluşan karesel bir görüntü (b) İlgili görüntünün 𝑓(𝑧) = 𝑧2 

fonksiyonuna göre dönüşümünü 
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Domain renklendirme yöntemi, karmaşık fonksiyonların görselleştirilmesinde 

kullanılan bir tekniktir. Bu yöntem, karmaşık bir fonksiyonun değerlerini karmaşık 

düzlemdeki her bir noktaya renk atayarak temsil eder. Böylece karmaşık fonksiyonların 

davranışları, özellikle genlik ve faz bilgisi açısından daha anlaşılır hale gelir. Bu 

görselleştirme yöntemi, karmaşık sayılarla çalışan fonksiyonların analizini kolaylaştırmak 

için oldukça etkilidir. 

Şekil 19. (a) renklendirilmiş (0 − 2𝜋 aralığında) karmaşık düzlemde verilen dört 

karmaşık sayıyı, Şekil 19. (b) ise ilgili karmaşık sayıların ifade edilen düzlemde 𝑓(𝑧) = 𝑧2 

fonksiyonuna göre dönüşümünü göstermektedir. 

 

 

Şekil 19. (a) Renklendirilmiş karmaşık düzlemde verilen dört karmaşık sayı (b) İlgili 

karmaşık sayıların ifade edilen düzlemde 𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünü 

 

Şekil 20. (a) renklendirilmiş karmaşık bir düzlemi, Şekil 20. (b) ise belirtilen düzlemin 

𝑓(𝑧) = 𝑒(sin(𝑧))2
 fonksiyonuna göre dönüşümünü göstermektedir. Karmaşık düzlemin 

üzerindeki her noktada, sinüs fonksiyonu dalgalanma yaratır. Bu durum, karmaşık düzlemde 

çok katmanlı ve tekrarlı bir dalga yapısı meydana getirir. Sinüs değerinin karesi, 

dalgalanmanın büyüklüğünü daha da artırır ve simetrik bir yapı oluşturur. Eksponansiyel 

fonksiyon ise bu dalgalanmaları şiddetlendirir ve karmaşık düzlemde renklerde yoğunlaşma, 

simetri ve fraktal benzeri yapılar meydana getirir. Düzlemin genelinde, fonksiyonunun 

etkisiyle renkler düzenli aralıklarla dalgalanmış ve tekrarlayan simetrik desenler 

oluşturmuştur. Bu durum, fonksiyonun büyüklük ve faz üzerinde eş zamanlı etkisiyle ortaya 

çıkmıştır. 
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Şekil 20. (a) Renklendirilmiş karmaşık bir düzlem (b) Belirtilen düzlemin 𝑓(𝑧) = 𝑒(sin(𝑧))2
 

fonksiyonuna göre dönüşümünü 

 

3D gösterim, verilerin veya fonksiyonların üç boyutlu bir uzayda görselleştirilmesidir. 

Bu görselleştirme, özellikle karmaşık fonksiyonların, yüzeylerin veya dinamik sistemlerin 

analizinde oldukça etkilidir. Üçüncü boyutun kullanımı, verilerdeki gizli desenlerin veya 

özelliklerin daha belirgin hale gelmesini sağlar. Böylece 3D gösterim, verilerin ve ilişkilerin 

daha ayrıntılı olarak incelenmesini ve anlaşılmasını kolaylaştırır. Şekil 21. (a) 

renklendirilmiş karmaşık bir düzlemin 𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünü, Şekil 21. 

(b) ise ilgili düzlemin 𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünü 3D olarak göstermektedir. 

 

 

Şekil 21. (a) Renklendirilmiş karmaşık bir düzlemin 𝑓(𝑧) = 𝑧2 fonksiyonuna göre 

dönüşümü (b) İlgili düzlemin 𝑓(𝑧) = 𝑧2 fonksiyonuna göre dönüşümünün 3D olarak 

gösterilmesi 
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1.9.9. Karmaşık Zernike Momentleri 

Karmaşık Zernike momentleri, hem gerçek hem de sanal bileşenleri bir araya getirerek 

iki boyutlu sinyallerin işlenmesinde önemli avantajlar sunar. Bu momentler, geleneksel 

Zernike momentlerine göre daha zengin bilgi sağlar ve görüntülerin karmaşık yapısını daha 

iyi yansıtma kapasitesine sahiptir. 

Karmaşık Zernike momentlerinin gerçek bileşeni görüntünün yoğunluk değerlerini 

temsil ederken, sanal bileşen görüntüdeki faz bilgilerini içerir. Bu iki bileşenin birleşimi, 

nesnelerin şekilsel ve yapısal özelliklerini daha kapsamlı bir şekilde değerlendirmeyi 

mümkün kılar. Bu özellikleri sayesinde karmaşık Zernike momentler, özellikle tıbbi 

görüntüleme, yüz tanıma ve endüstriyel görüntü analizi gibi alanlarda, karmaşık şekil ve 

yapıların incelenmesinde değerli bir araç haline gelmektedir. Karmaşık Zernike momentleri, 

görüntülerin daha iyi tanınması ve sınıflandırılmasına katkıda bulunarak, görüntü işleme 

alanında önemli bir gelişme sağlamaktadır. 

Diğer yöntemlerle karşılaştırıldığında, moment formülasyonu, gürültüye dayanıklılığı, 

bilgi yoğunluğu ve yeniden yapılandırma yeteneği açısından üstün performans gösterdiği 

için daha popülerdir (Teh & Chin, 1988). Mevcut yöntemlerin çoğu, tanıma sürecinde 

değişmeyen özellikler olarak yalnızca momentlerin büyüklük bileşenini kullanmaktadır. 

Bununla birlikte, Singh ve ekibi, görüntü temsili için faydalı bilgiler sunan momentlerin faz 

bileşenini vurgulamaktadır. Çalışmalarında, büyüklük ve faz katsayılarının performansını 

kapsamlı bir şekilde analiz etmişlerdir (Singh vd., 2011). Li ve ekibi ise Zernike 

momentlerinin faz bileşeninin, görüntü yeniden yapılandırmasında önemli bilgiler içerdiğini 

belirlemektedir. Bu nedenle, hem büyüklük hem de faz katsayılarını birleştirerek yeni bir 

şekil betimleyicisi oluşturmayı önermektedirler (Li vd., 2009). 

Karmaşık Zernike momentleri, bağıntı (31)’de olduğu gibi ifade edilir. 

 

𝐴𝑛
𝑚 =

𝑛 + 1

𝜋
 ∫ ∫ 𝑓(𝑟, 𝜃)𝑉𝑛𝑚

∗ (𝑟, 𝜃
1

0

2𝜋

0

)𝑟𝑑𝑟𝑑𝜃 (31) 

 

𝑁𝑥𝑁 boyutundaki bir ayrık görüntü için, 𝑛 (0, 1, 2, ..., ∞ olabilir) derecesindeki ve 𝑚 

(pozitif ya da negatif tam sayı olabilir) tekrarlarındaki CZM’ler bağıntı (32)’de gösterildiği 

gibi hesaplanmaktadır. 
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𝐴𝑛𝑚 =
𝑛 + 1

𝜋
∑ ∑ 𝑓(𝑥𝑖, 𝑦𝑗)𝑉𝑛𝑚

∗ (𝑥𝑖, 𝑦𝑗)
𝑁−1 

𝑗=0

𝑁−1 

𝑖=0
 

(32)  

𝑥𝑖 =
2𝑖 − (𝑁 − 1)

𝑁 − 1
 ,   𝑦𝑗 =

2𝑗 − (𝑁 − 1)

𝑁 − 1
 

 

(32) bağıntısında |𝑚| ≤ 𝑛 ve 𝑛 − |𝑚| çift olmalıdır. 𝑓(𝑥𝑖, 𝑦𝑗) görüntünün 

yoğunluğunu ifade eder ve orijinal koordinatlar birim disk içine uyacak şekilde 

ölçeklendirilmiştir, yani 𝑥𝑖
2 + 𝑦𝑗

2 ≤ 1. Ayrıca, * karmaşık eşlenik anlamına gelir ve Zernike 

polinomu 𝑉𝑛𝑚(𝑥𝑖, 𝑦𝑗), polar koordinatlarda bağıntı (33)’de 𝑉𝑛𝑚(𝑟, 𝜃) olarak ifade edilir. 

 

𝑉𝑛𝑚(𝑟, 𝜃) = 𝑅𝑛𝑚(𝑟)𝑒−𝑗𝑚𝜃 (33) 

 

Bağıntı (33)'de, 0 ≤ 𝑟 ≤ 1 ve 𝑗 sanal birim olmak üzere, ortogonal radyal polinom 

𝑅𝑛𝑚(𝑟) bağıntı (34)'de gösterildiği gibi ifade edilir. Şekil 22, Zernike radyal polinomlarının 

(𝑚 = 0, 1) için ilk beş derecesini göstermektedir. 

 

𝑅𝑛𝑚(𝑟) = ∑ (−1)𝑠

𝑛−|𝑚|

2

𝑠=0

(𝑛 − 𝑠)!

𝑠! (
𝑛 + |𝑚|

2
− 𝑠) ! (

𝑛 − |𝑚|
2

− 𝑠) !

𝑟𝑛−2𝑠 (34) 

 

 

 

Şekil 22. Zernike radyal polinomlarının (𝑚 = 0, 1) için ilk beş derecesi 
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Şekil 23, bağıntı (33)’deki 𝑒−𝑗𝑚𝜃 açısal bileşeninin 𝑚 = 2 için sinüs ve kosinüs 

grafiklerini ve karmaşık düzlemdeki dönüşlerin trigonometrik temelde nasıl ifade edildiğini 

gösterir. İlgili şekilde, gerçek eksen (real) üzerinde kosinüs bileşeni, sanal eksen (imaginary) 

üzerinde ise sinüs bileşeni yer alır. θ açısının değişimine bağlı olarak kosinüs bileşeni 

yatayda, sinüs bileşeni ise dikeyde salınım gösterir. 

 

 

Şekil 23. Bağıntı (33)’deki 𝑒−𝑗𝑚𝜃 açısal bileşeninin 𝑚 = 2 için sinüs ve kosinüs grafikleri 

 

Şekil 24, 𝑉𝑛𝑚(𝑟, 𝜃) Zernike polinomunun farklı 𝑛 ve 𝑚 değerleri için hesaplanmış 

halinin kutupsal formda gerçek ve sanal bileşenlerini renk kodlaması ile göstermektedir. 

Böylece, Zernike polinomunun geometrik yapısı ve açısal frekanslarına bağlı salınım 

özellikleri daha kolay anlaşılır. 

 

 

Şekil 24. 𝑉𝑛𝑚(𝑟, 𝜃) Zernike polinomunun farklı 𝑛 ve 𝑚 değerleri için hesaplanmış halinin 

kutupsal formda gerçek ve sanal bileşenlerini renk kodlaması 
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Şekil 25. (a), 𝑉𝑛𝑚(𝑟, 𝜃) Zernike polinomunun (𝑛 = 2, 𝑚 = 2 için) kutupsal olarak 

renklendirilmiş formu üzerinde rastgele seçilen noktaların sayısal karşılıklarını içerir. Şekil 

25. (b) ise, aynı noktaların ayrık bir görüntüde grid yapısında nasıl konumlandığını gösterir. 

İlgili grid yapısı, Zernike polinomunun her bir noktası için ayrık sayısal değerlerin görsel 

olarak nasıl düzenlendiğini daha net bir şekilde ortaya koymaktadır. 

 

 

Şekil 25. (a) 𝑉𝑛𝑚(𝑟, 𝜃) Zernike polinomunun (𝑛 = 2, 𝑚 = 2 için) kutupsal olarak 

renklendirilmiş formu (b) Aynı noktaların ayrık bir görüntüde grid yapısında nasıl 

konumlandığının gösterilmesi 

 

Şekil 26, Zernike polinomlarının farklı derecelerdeki (farklı 𝑛 ve 𝑚 değerleri için) 

yapılarını kutupsal formda renklendirilmiş şekillerle gösterir. 

 

 

Şekil 26. Farklı derecelerdeki Zernike polinomları 
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CZM'yi hesaplamak için, görüntü (veya ilgi bölgesi) öncelikle polar koordinatlar 

kullanılarak birim diske haritalanır ve görüntünün merkezi birim diskin orijini olarak kabul 

edilir. Bağıntı (35), normalize edilmiş görüntü koordinatlarını (𝑥𝑖, 𝑦𝑗) birim daire alanında 

polar koordinatlara (𝑟, 𝜃) dönüştürür. 

 

𝑥𝑖 = 𝑟 cos 𝜃        , 𝑦𝑗 = 𝑟 sin 𝜃 

(35) 𝑟 = √𝑥𝑖
2 + 𝑦𝑗

2 = √(
2𝑖 − (𝑁 − 1)

𝑁 − 1
)

2

+ (
2𝑗 − (𝑁 − 1)

𝑁 − 1
)

2

 

𝜃 = 𝑡𝑎𝑛−1 (
𝑦𝑗

𝑥𝑖
) = 𝑡𝑎𝑛−1 (

(2𝑗 − (𝑁 − 1))/(𝑁 − 1)

(2𝑖 − (𝑁 − 1))/ (𝑁 − 1)
) 

 

𝑁𝑥𝑁 boyutlu ayrık bir görüntünün orijinali ve birim diskin görüntü içine iz 

düşürülmüş hali Şekil 27’de gösterilmiştir. Örnek bir fotoğraf izdüşümü Şekil 28’de 

verilmektedir. 

 

 

Şekil 27. (a) 𝑁𝑥𝑁 boyutlu ayrık bir görüntü (b) Birim disk (c) Birim diskin normalize 

edilmiş görüntü içine iz düşürülmüş hali 

 

 

Şekil 28. Örnek bir fotoğraf izdüşümü 
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Zernike polinomlarının eşleniğinin (𝑉𝑛𝑚
∗ (𝑥𝑖, 𝑦𝑗)) iz düşürülmüş görüntüye uygulama 

sonuçları gerçek ve sanal bileşenleri sırasıyla, 𝑛 = 1 ve 𝑚 = 1 için Şekil 29.(a)’da, 𝑛 = 2 

ve 𝑚 = 2 için Şekil 29.(b)’de, 𝑛 = 9 ve 𝑚 = 5 için Şekil 29.(c)’de gösterilmiştir. 

 

 

Şekil 29. Zernike polinomlarının eşleniğinin iz düşürülmüş görüntüye uygulanması 

 

Bağıntı (32)’ye göre elde edilmiş öznitelik vektörünün karmaşık öznitelik vektörü 

grafiği Şekil 30’da verilmiştir. 

 

 

Şekil 30. Karmaşık öznitelik vektörü grafiği 

 

Bağıntı (32)’ye göre 𝐴𝑛,−𝑚 =  𝐴𝑛,𝑚
∗  olduğundan, 𝐴𝑛,𝑚’nin karmaşık eşleniği 𝐴𝑛,−𝑚’ye 

eşittir. Bu durum da genliklerin birbirine eşit olduğu (|𝐴𝑛,𝑚| = |𝐴𝑛,−𝑚|) anlamına 

gelmektedir. Bir başka deyişle, karmaşık sayıların eşleniği alındığında genlik değeri 

değişmez. Şekil 31, öznitelik vektörünün genlik grafiğini (|𝐴𝑛,𝑚|) belirtmektedir.  
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Şekil 31. Öznitelik vektörünün genlik grafiği 

 

Orijinal görüntü, ters dönüşüm uygulanarak (öznitelik vektörü üzerinden) yeniden 

oluşturulabilir. Görüntünün öznitelik vektörü üzerinden yeniden oluşturulmasını ifade eden 

bağıntı (36)’da gösterilmiştir. 

 

𝑓(𝑥𝑖 , 𝑦𝑗) = ∑ ∑ 𝐴𝑛𝑚𝑉𝑛𝑚(𝑥𝑖,
𝑛

𝑚=−𝑛
𝑦𝑖)

𝑛𝑚𝑎𝑥

𝑛=0
 (36) 

 

İlgili bağıntıda 𝑛𝑚𝑎𝑥 en yüksek moment derecesini temsil etmektedir. İkili (binary) 

görüntüler için yeniden yapılandırma nispeten az sayıda terimle gerçekleştirilebilir. Ancak, 

gri tonlamalı (gray level) görüntüler için yeniden yapılandırma genellikle daha yüksek bir 

derecede yapılır. Ayrıca, gri tonlamalı görüntüler için Zernike momentlerinin değeri, ikili 

görüntüler için olanlardan daha yüksektir. Bu durum, gri tonlama görüntülerdeki daha fazla 

bilgi ve daha fazla renk tonu nedeniyle, görüntüdeki karmaşıklığın artmasından kaynaklanır. 

1.10. Sınıflandırma 

Yapay zeka, bilgisayarların insan benzeri düşünme, karar verme ve problem çözme 

yeteneklerini kazanmasını hedefleyen bir bilim dalıdır. Bilgisayarların yalnızca veri 

işlemekle sınırlı kalmayıp öğrenme ve akıl yürütme gibi karmaşık süreçleri de 

gerçekleştirebileceği fikrine dayanır. Yapay zekanın temel amacı, insanların üstlendiği zorlu 
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bilişsel görevleri otomatikleştirerek günlük yaşamdan endüstriye kadar geniş bir alanda 

kullanılabilir çözümler sunmaktır. 

Makine öğrenimi, yapay zekanın bir alt dalı olup, bilgisayar sistemlerinin deneyim ve 

verilerden öğrenerek kendi performanslarını geliştirmelerini sağlar. Geleneksel 

programlamadan farklı olarak, makine öğrenimi modelleri sabit kurallar ve algoritmalar 

yerine, verilerden çıkarım yaparak çalışır. Özellikle büyük veri miktarlarının artışı ve güçlü 

hesaplama kaynaklarının gelişimi, makine öğreniminin hızlı bir şekilde ilerlemesine ve 

yaygınlaşmasına katkı sağlamıştır. DT, SVM ve Bayes ağları (BN), makine öğreniminin 

önemli yöntemlerine örnek olarak gösterilebilir. 

Derin öğrenme, makine öğrenmesinin bir alt kümesi olarak, çok katmanlı makine 

öğrenimi ile aynı anda özellik seçimi ve model uyumunu gerçekleştiren bir özelliğe sahiptir. 

Örneğin, CNN, görüntü tanıma ve analizinde yaygın olarak kullanılırken; RNN, dil işleme 

ve zaman serisi analizlerinde kullanılır. Derin öğrenmenin, yapay zekâ ve makine 

öğrenmesiyle olan ilişkisi Şekil 32’de gösterilmektedir. 

 

 

Şekil 32. Derin öğrenmenin, yapay zekâ ve makine öğrenmesiyle olan ilişkisi 

 

1.10.1. Makine Öğrenmesi 

Makine öğrenmesi, bilgisayarların örnek verilerden öğrenerek tahminlerde 

bulunmasını veya kararlar almasını sağlayan bir yapay zeka dalıdır. Geleneksel 
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programlamadan farklı olarak, makine öğrenmesi sistemlerinde bilgisayara açık kurallar 

yazmak yerine veriyle eğitilen bir model oluşturulur. Bu model, geçmiş verilere dayanarak 

gelecekteki durumları tahmin edebilir veya belirli örüntüleri tanıyabilir. Makine öğrenmesi; 

matematik, istatistik, bilgisayar bilimi ve optimizasyon yöntemlerinin birleşimi olarak çalışır 

ve sağlık, finans, tarım, üretim gibi pek çok alanda önemli uygulamalara sahiptir. 

Makine öğrenmesi algoritmalarının temel amacı, bir hedef fonksiyonu optimize ederek 

en iyi sonuçları elde etmektir. Bu süreç, önce bir model oluşturmayı, ardından bu modelin 

performansını artırmak için uygun bir hedef fonksiyonu tanımlamayı içerir. Hedef fonksiyon 

belirlendikten sonra, sayısal veya analitik optimizasyon yöntemleri kullanılarak çözüm 

bulunur. Örneğin bir e-posta hizmeti, spam mesajları ayırt etmek için makine öğrenmesi 

algoritmalarını kullanırken, bir otonom araç ise çevresinden gelen verilerle hareket 

stratejileri oluşturabilir. 

Makine öğrenmesi algoritmaları, çözülmesi gereken problem türüne ve modelleme 

amacına göre dört ana kategoriye ayrılır (Shiliang vd., 2019). 

Denetimli öğrenme, modelin etiketlenmiş veriler kullanılarak eğitildiği bir makine 

öğrenmesi yöntemidir. Bu yaklaşım, sınıflandırma ve regresyon olarak iki ana alt gruba 

ayrılır. Sınıflandırma, verileri belirli kategorilere ayırmayı amaçlar. Örneğin, bir cümleyi 

uygun bir kategoriye yerleştirmek veya bir görüntünün içeriğini sınıflandırmak gibi 

problemler sınıflandırma kapsamında ele alınır. Regresyon ise sürekli bir değeri tahmin 

etmeye yönelik bir yaklaşımdır. Örneğin, bir evin fiyatını tahmin etmek ya da bir ürünün 

gelecekteki satış rakamlarını öngörmek gibi durumlarda regresyon yöntemleri kullanılır. 

Yarı denetimli öğrenme yönteminde, hem etiketli hem de etiketlenmemiş veriler bir 

arada kullanılır. Etiketlenmemiş verilerin fazla olduğu durumlarda, model performansını 

artırmak için etkili bir yaklaşım sağlar. 

Denetimsiz öğrenme, etiketli veri olmaksızın verilerdeki gizli örüntüleri ve ilişkileri 

keşfetmeye odaklanır. Bu yaklaşım, verilerdeki yapıların anlaşılmasına ve 

gruplandırılmasına olanak tanır. Denetimsiz öğrenmenin temel kullanım alanlarından biri 

kümeleme olup, bu süreçte veriler benzer özelliklere göre gruplandırılır. Diğer bir önemli 

kullanım alanı ise boyut indirgeme olup, verilerin daha az boyutta temsil edilmesini sağlar. 

Bu yöntem, özellikle büyük veri setlerinin görselleştirilmesi ve işlenmesinde önemli bir rol 

oynar. 

Pekiştirmeli öğrenme yöntemimde, bir ajan çevresinden aldığı geri bildirimlere 

(ödüller ya da cezalar) göre hareket etmeyi öğrenir. Bu bağlamda asıl amaç, uzun vadede en 
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yüksek ödülü sağlayacak stratejiyi geliştirmektir. Bu yöntem, robotik sistemlerden oyun 

stratejilerine kadar geniş bir alanda uygulanır. 

Her bir kategori, belirlenen hedef fonksiyonunu optimize etmek için farklı algoritmalar 

ve teknikler kullanır. Sonuç olarak makine öğrenmesi algoritmaları, çözmek istedikleri 

problem türüne uygun en iyi çözümü üretmeyi hedefler. Geniş bir kullanım alanına sahip 

olan makine öğrenmesi günümüz teknolojisinin temel yapı taşlarından biri olarak hızla 

gelişmeye devam etmektedir. 

1.10.2. Derin Öğrenme ve Mimarileri 

Derin öğrenme, verilerdeki karmaşık desenleri ve ilişkileri anlamak için çok katmanlı 

yapay sinir ağlarını kullanan bir makine öğrenmesi dalıdır. Bu katmanlar, verileri hiyerarşik 

olarak işler ve basit özelliklerden başlayarak daha karmaşık yapıları ortaya çıkarır. Böylece, 

büyük ve karmaşık veri kümelerinde bile etkili bir şekilde öğrenme ve tahmin yapabilme 

yeteneği sunar. CNN, LSTM, RNN, RBM, üretken karşıt ağlar (GAN) ve derin oto-

kodlayıcılar, bu mimarilere örnek olarak verilebilir. 

CNN ilk olarak 1980'lerde önerildi (Jiuxiang vd., 2018). CNN'lerde, standart yapay 

sinir ağlarında kullanılan matris çarpımı yerine evrişim işlemi kullanılır. Bu değişiklik, 

ağdaki ağırlık sayısını azaltarak ağın karmaşıklığını düşürür. Ayrıca, görüntüler doğrudan 

ham giriş olarak ağa verilebilir, böylece standart algoritmalardaki özellik çıkarma sürecine 

gerek kalmaz. CNN'ler, hiyerarşik katmanların etkin eğitimi sayesinde derin öğrenmede 

gerçek anlamda ilk başarılı mimari olarak kabul edilir. CNN topolojisi, mekansal ilişkileri 

kullanarak ağdaki parametre sayısını azaltır ve bu da geri yayılım algoritmalarıyla 

performansın artmasını sağlar. Grafik işlemci birimi teknolojisinin gelişmesiyle birlikte 

Krizhevsky ve arkadaşları 2012 yılında ImageNet problemini çözmek için ekran kartı 

destekli bir program kullanmış ve bu durum CNN’leri tekrar popüler hale getirmiştir 

(Krizhevsky vd., 2012). Derin ağların en büyük sorunlarından biri, ağdaki birçok gizli 

düğüm nedeniyle eğitim süresinin uzun olmasıydı. Ancak ekran kartı işlemcilerinin paralel 

işlem kapasitesinin artmasıyla bu sorun aşılmıştır. CNN'lerin başarısındaki bir diğer önemli 

faktör, veri setlerindeki artış ve büyük miktarda veriyi etkili bir şekilde işleyebilme 

kapasitesidir. Ayrıca, transfer öğrenme yöntemleri sayesinde CNN'ler, önceden eğitilmiş 

modeller kullanılarak farklı problemler için yeniden uyarlanabilir ve bu da daha az veriyle 

yüksek doğruluk oranları elde edilmesini sağlar. Günümüzde CNN’ler, ses verisi analizi ve 
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görüntü tanıma alanlarında oldukça popülerdir. Şekil 33, CNN’lerin genel yapısını 

göstermektedir. 

 

 

Şekil 33. CNN’lerin genel yapısı (Kim vd., 2020) 

 

RNN ve LSTM, zaman serisi verilerini ve sıralı verileri analiz etmek için kullanılan 

güçlü derin öğrenme modelleridir. Bu modeller, özellikle geçmiş verilerdeki desenleri 

anlamada ve gelecekteki olayları tahmin etmede büyük başarı göstermektedir. LSTM, 

RNN'nin bir uygulamasıdır ve ilk olarak 1997'de Hochreiter ve arkadaşları tarafından 

önerilmiştir. LSTM, daha önce tanımlanan ileri besleme ağ yapılarından farklı olarak, önceki 

durumların bilgisini saklayabilir ve hafıza veya durum farkındalığı gerektiren işler için 

eğitilebilir. LSTM, RNN'nin önemli bir sınırlamasını yani kaybolan gradyanlar problemini, 

gradyanların değiştirilmeden geçmesine izin vererek kısmen çözer. LSTM'ler, kapı 

mekanizmaları sayesinde bilgiyi seçici bir şekilde güncelleyebilir ve uzun süreli 

bağımlılıkları daha iyi öğrenebilir. Bu özellik, özellikle uzun dizilerdeki ilişkileri kavramak 

için büyük bir avantaj sağlar. Bununla birlikte, hem LSTM hem de RNN modelleri, büyük 

veri kümeleri ve yüksek işlem gücü gereksinimleri nedeniyle eğitim aşamasında zaman ve 

kaynak açısından maliyetli olabilir. Son yıllarda, çift yönlü RNN ve kapı özyinelemeli 

geçitler (GRU) gibi türev modeller de geliştirilmiş ve farklı uygulama senaryolarında daha 

verimli sonuçlar elde edilmiştir. Bu sayede oluşabilecek problemlerin nerede ve ne zaman 

olabileceğini öngörerek proaktif önlemler alınmasını sağlar. RNN, genellikle dil 

çevrimlerinde kullanılmakla birlikte, zaman serileri gibi sıralı verilerle bir sonraki noktayı 

tahmin etme işlemi için idealdir. Örneğin, finansal hareketlerin verilerini kullanarak 

gelecekteki durumları tahmin edebiliriz. Ayrıca, cümlelerde art arda gelen kelimelere göre 
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bir sonraki kelimeyi tahmin etmek de RNN'lerin yaygın kullanım alanlarındandır 

(Sherstinsky, 2020). RNN, LSTM ve GRU’nun genel yapısı Şeki 34’de gösterilmektedir. 

 

 

Şekil 34. RNN, LSTM ve GRU’nun genel yapısı (Idrees, 2024) 

 

RBM, etiketlenmemiş verilerden doğrusal olmayan üretici modeller oluşturmak için 

kullanılan bir yapay sinir ağıdır. Bu ağ, denetimsiz öğrenme algoritmalarını kullanarak giriş 

verisi üzerinde özellikle Boltzmann dağılımına tabi olan bir olasılık dağılımını öğrenir ve 

girişin olasılıksal olarak yeniden inşa edilmesini sağlar. RBM, görünür ve gizli olarak iki 

katmadan oluşan bir yapıya sahiptir. Görünür katmanındaki her bir birim, gizli katmandaki 

tüm birimlere bağlanırken, aynı katmandaki birimler arasında bağlantılar yoktur. Bu özellik, 

RBM’yi kısıtlı bir yapı olarak tanımlar ve bu nedenle adını "kısıtlı" Boltzmann makinesi alır. 

Regresyon, sınıflandırma, boyut indirgeme, zaman serisi modelleme ve özellik çıkarımı gibi 

bir dizi uygulama alanında etkilidir (Teh, 2000). 𝑛 gizli, 𝑚 görünür değişkenli bir RBM’nin 

grafı Şekil 35’de gösterilmektedir. 

 

 

Şekil 35. RBM’nin genel yapısı (Fischer, 2012) 
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GAN'lar, oyun teorisine dayalı üretici modelleri öğrenmek için kullanılan güçlü bir 

yapay zeka aracıdır. GAN'lar veri dağılımını doğrudan modellemek yerine, bu verilerden 

örnekler üretmeyi hedefler ve bunu gerçekleştirmek için derin sinir ağlarını kullanır. 

Rastgele gürültü verisi üretici ağ tarafından işlenerek, gerçek verilere benzer sahte örnekler 

üretir. Bu süreçte ayırıcı ağ, üretici ağından gelen sahte verilerle gerçek verileri ayırt etmeye 

çalışır. Üretici ve ayırıcı arasındaki karşılıklı etkileşim, her iki ağın ağırlıklarını ve 

sapmalarını güncelleyerek kayıp fonksiyonlarını minimize etmelerini sağlar. Böylece, 

üretici daha gerçekçi veriler üretmeye ayırıcı ise bu verileri daha doğru ayırt etmeye başlar. 

GAN'ların eğitimi, yüksek boyutlu parametrelerle yapılan bir Nash dengeleme süreci 

gerektirir (Nash, 1950). Son dönemde, GAN'ların yakınsama sürecini iyileştirmeye yönelik 

tekniklerin kullanımı artmıştır. Bu teknikler, daha iyi yarı denetimli öğrenme performansı 

ve daha gerçekçi örnekler üretmeye imkan tanımaktadır. GAN'lar, özellikle görüntü üretimi, 

video oluşturma ve ses sentezi gibi yaratıcı alanlarda devrim yaratmış ve fotoğraf 

düzenleme, deepfake üretme ve sanat üretme gibi pek çok alanda başarılı bir şekilde 

uygulanmıştır (Goodfellow vd., 2024). Şekil 36, GAN’ın genel yapısını ifade etmektedir 

(Dong vd., 2021). 

 

 

Şekil 36. GAN’ın genel yapısı (Dong vd., 2021) 

 

Derin oto-kodlayıcılar, etiketlenmemiş verilerle çalışan ve veriyi sıkıştırarak boyut 

indirgeme işlemi gerçekleştiren denetimsiz öğrenme tabanlı yapay sinir ağlarıdır. Bu ağlar, 

gizli katmandaki temsiller aracılığıyla veriyi daha verimli işler ve özellik çıkarımı yapar. 

Oto-kodlayıcılar, giriş verisini yeniden oluşturmak için öğrenilen bir temsili kullanır ve bu 

süreç geri yayılım algoritmasıyla gerçekleştirilir. Oto-kodlayıcılar, temel bileşen analizi gibi 

lineer boyut indirgeme yöntemlerini genişleterek, doğrusal olmayan temsiller elde eder. 

Giriş katmanı, gizli katman ve çıkış katmanı olmak üzere genellikle üç katmanda oluşur. 
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Gizli katmanda yer alan nöron sayısı, giriş ve çıkış katmanlarındaki nöronlardan daha azdır, 

bu da verinin sıkıştırılmasını ve ağda daha az veriyle işlem yapılmasını sağlar. Bu yapı, ağın 

daha verimli çalışmasını ve verilerin daha etkili bir şekilde temsil edilmesini sağlar. Derin 

öğrenme ve transfer öğrenme gibi alanlarda önemli bir rol oynar ve etiketlenmemiş verilerle 

çalışarak güçlü ve etkili çözümler sunar (Baldi, 2011). Şekil 37, oto-kodlayıcıların genel 

yapısını gösterir (Pinaya vd., 2020). 

 

 

Şekil 37. Oto-kodlayıcıların genel yapısı (Pinaya vd., 2020) 

 

1.10.3. Derin Sinir Ağları 

ANN, insan beyninin çalışma prensiplerinden esinlenerek geliştirilmiş bir hesaplama 

modelidir. Bu ağlar, verilerin işlenmesini ve öğrenilmesini sağlamak için çeşitli 

katmanlardan oluşur ve her bir katman, veriler üzerinde belirli bir işlevi yerine getirir. ANN, 

derin öğrenmenin temel yapı taşlarını oluşturur. ANN’lerin kökenleri, 1940'lara dayanır. İlk 

olarak, bilim insanları, beynin nöronlar arasındaki bağlantıların öğrenme ve bilgi işleme 

üzerindeki etkilerini modellemeye çalıştılar. Bu çalışmaların sonucu olarak, ilk ANN’ler 

ortaya çıktı. 

Sinir ağlarının çalışma prensibi, biyolojik nöronların işleyişine benzer şekilde 

tasarlanmıştır. Bir nöron, aldığı girişleri ağırlıklı bir şekilde toplar. Bu ağırlıklı toplamlar, 

nöronun girişlerine bağlanan sinapslar aracılığıyla yapılır ve bu süreç, sinapsların her birine 

bir ağırlık değeri atanarak gerçekleştirilir. Bu ağırlıklı toplam, aslında nöronun aldığı 

verilerin bir tür ölçeklendirilmesidir. Ancak nöronlar sadece bu toplamı kullanarak bir çıktı 

üretmezler. Eğer sadece ağırlıklı toplam alınsaydı, nöronun işlemi basit bir doğrusal cebirsel 

işlemden farksız olurdu. Gerçek nöronlar, aldıkları girişlerin ağırlıklı toplamını doğrudan 
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kullanmak yerine, bu toplam üzerinde genellikle doğrusal olmayan bir işlem uygular. Bu 

doğrusal olmayan işlem, nöronun çıktısını belirler. Bir nöron belirli bir eşik değerini aşan 

girişlere tepki verir ve çıktıyı üretir. Yani ağırlıklı toplamın kendisi sadece ham veriyi temsil 

eder, ancak nöronun aktif olup olmayacağına karar veren asıl işlem doğrusal olmayan bir 

fonksiyondur. Doğrusal olmayan fonksiyonlar, sinir ağlarının güçlü bir özellik kazanmasını 

sağlar. Bu bağlamda ilgili fonksiyonlar, karmaşık ve doğrusal olmayan ilişkileri öğrenme ve 

modelleme yeteneği sunar. Eğer sinir ağları sadece doğrusal bir fonksiyon kullanarak 

çalışsaydı, ağ yalnızca doğrusal ilişkileri öğrenebilir ve daha karmaşık problemlerin 

üstesinden gelemezdi.  

Öğrenme ağdaki ağırlıkların değerlerini belirlemeyi içerir ve buna ağın eğitilmesi 

denir. Eğitim tamamlandıktan sonra, ağın çıktısını hesaplamak için eğitim sürecinde 

belirlenen ağırlıklar kullanılır ve bu süreç test işlemi olarak adlandırılır. 

Sinir ağları alanında, derin öğrenme adı verilen bir alan bulunmaktadır. Bu alanda, 

sinir ağları üç katmandan daha fazla katmana sahiptir, yani birden fazla gizli katman bulunur. 

Böylece DNN'ler, daha karmaşık ve soyut yüksek seviyeli özellikleri öğrenme kapasitesine 

sahiptir. Doktora çalışmaları kapsamında, derin öğrenme alanında kullanılan sinir ağlarına 

genel olarak DNN'ler denilecektir (Sze vd., 2017). 

1.11. Karmaşık Değerli Derin Sinir Ağları 

Makine öğrenmesi ve derin öğrenme modelleri (MLP, DNN, CNN, RNN vb.), 

işlemlerinde karmaşık sayılar yerine gerçek sayılar kullanmaktadır. Bu modeller, gerçek 

değerli ağırlıklar ve gerçek değerli aktivasyon fonksiyonları kullanılarak standart geri 

yayılım algoritması ile eğitilmektedir. Öte yandan, karmaşık değerli sinir ağları (CVNN), 

karmaşık değerli ağırlıklar, karmaşık değerli aktivasyon fonksiyonları ve karmaşık değerli 

geri yayılım algoritması kullanmaktadır. CVNN, özellikle karmaşık veri analizi ve ayrıntılı 

bilgi gerektiren özel uygulamalarda tercih edilirken, gerçek değerli sinir ağları daha genel 

uygulamalarda yaygın olarak kullanılmaktadır. 

Son yıllarda, karmaşık sayılar kullanarak yapay sinir ağları oluşturma ve karmaşık 

değerli sinir ağlarının gerçek değerli muadillerine kıyasla olası avantajlarını keşfetme 

konusunda artan bir ilgi vardır. Ayrıca, CVNN'ler birçok pratik sistemi verimli bir şekilde 

modellemek için kullanılmaktadır. Bu nedenlerle, CVNN'lere yönelik araştırmalar artmıştır 

(Chanthorn vd., 2020). 
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Karmaşık değerli sinir ağları, bir sinir ağı için ağırlıklar, eşikler, giriş ve çıkış 

verilerinin karmaşık sayılarla temsil edilebildiği yapılardır. Böylece, karmaşık değerli 

veriler, ağın girişine herhangi bir ön işleme tabi tutulmadan doğrudan verilebilir (Lee vd., 

2022). CVNN'ler özellikle telekomünikasyon, askeri sistemler, görüntü işleme, robotik 

sistemler, otonom sistemler, sinyal işleme ve radar teknolojilerinde kullanılır. Bu alanlarda 

sinyaller sıklıkla karmaşık sayılarla temsil edilir ve bu sinyallerin kompleks değerli sinir 

ağları ile doğrudan işlenmesi daha verimli sonuçlar sağlar (Virtue vd., 2017). 

1.11.1. Optimizasyon Algoritmaları 

Derin öğrenme modellerinin temel amacı, ağın ağırlıklarını optimize ederek kayıp 

fonksiyonunu minimize etmektir. Bu süreç, genellikle gradyanlara dayalı bir yaklaşımı 

kullanır ve gradyan inişi gibi optimizasyon algoritmalarını içerir. Gradyan inişi algoritması, 

ağırlık vektörlerinin en uygun değerlerini belirlemek için önemli bir yöntem sunar. Ancak 

bu süreçte, özellikle derin ağlarda karşılaşılan “gradyan kaybolması” ve “gradyan patlaması” 

gibi problemler optimizasyonun etkinliğini olumsuz etkileyebilir. Gradyanların çok küçük 

değerlere düşmesi öğrenme sürecinin yavaşlamasına, çok büyük değerlere ulaşması ise 

ağırlıkların kararsız hale gelmesine yol açabilir. Bu problemlerin üstesinden gelmek için 

hem ileri seviye optimizasyon algoritmaları geliştirilmiş hem de bu algoritmalara gradyan 

problemlerini hafifletecek çözümler entegre edilmiştir. 

Optimizasyon algoritmalarının başarısı, bir probleme ait sınıfları ayrıştırabilmek için 

en uygun ağırlık vektörlerini bulma kabiliyetiyle doğrudan ilişkilidir. Bu bağlamda 

optimizasyon algoritmaları, derin öğrenme modellerinin etkinliği ve başarısı için 

vazgeçilmezdir. Bazı optimizasyon algoritmaları aşağıdaki gibi sıralanabilir (Sun vd., 2020) 

(Shrestha, 2019). 

 Gradyan inişi algoritması, makine öğrenimi ve derin öğrenme algoritmalarının 

temelini oluşturan bir yöntemdir. Bu yöntem, bir fonksiyonun minimum değerine ulaşmak 

için türev veya eğim bilgisini kullanır. Bu süreçte, rastgele bir başlangıç noktası seçilir ve 

bu noktadaki türevin pozitif veya negatif olmasına göre fonksiyonun değerini azaltacak 

yönde ilerlenir. Burada amaç fonksiyonun minimum noktasına ulaşmak ve bu noktada işlemi 

durdurmaktır.  

Bu yöntem bazı zorluklar içermektedir. Şöyle ki, fonksiyonun karmaşık bir yapıya 

sahip olduğu durumlarda, yöntem yerel minimumlarda takılabilir. DNN’lerde kullanılan 
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gradyan inişi yöntemi, çok boyutlu bir alanda uygulanır. Bu alan ağdaki her ağırlık için bir 

boyut içerir ve karmaşıklık arttıkça doğru çözümü bulmak zorlaşabilir. 

Geriye yayılım algoritması, gradyan inişini kullanarak ağırlıkların optimize edilmesini 

sağlar. Bu yöntemde, ağın çıktısı ile beklenen çıktısı arasındaki hata hesaplanır ve bu hata 

ağırlıklar üzerinde geri yayılır. Her bir ağırlık, hatayı azaltacak şekilde düzenlenir ve bu 

işlem veri setindeki tüm örnekler işlenene kadar devam eder. Süreç, hata daha fazla 

azalamadığında tamamlanır. 

Bu yöntem, her katmandaki hatanın bir sonraki katmana nasıl yansıyacağını 

hesaplamak için kullanılır. Böylece her ağırlık ve bağlantı, sistemin genel performansını 

artıracak şekilde optimize edilir. 

 SGD algoritması, gradyan inişinin en yaygın kullanılan varyasyonlarından biridir 

ve ağırlıkların güncellenmesini daha hızlı ve verimli hale getirir. Gradyan inişinde tüm 

eğitim veri kümesi işlendikten sonra ağırlıklar güncellenirken, SGD'de ise ağırlıklar, eğitim 

veri kümesindeki küçük bir örnek grubunun (mini-batch) işlenmesinden sonra revize edilir. 

Buna bağlı olarak daha sık yapılan güncellemeler, modelin global minimuma daha hızlı 

ulaşmasını sağlayabilir. Ancak özellikle derin sinir ağlarında, gradyan kaybolması problemi 

nedeniyle gradyanlar çok küçük değerlere düşerek öğrenme sürecini yavaşlatabilir ve 

modelin yakınsamasını zorlaştırabilir. Yanlış ayarlanmış bir öğrenme oranı da bu sorunu 

daha da kötüleştirebilir. Bu problemleri hafifletmek için başlangıç ağırlıklarının 

optimizasyonu ve aktivasyon fonksiyonu seçimi gibi stratejiler kullanılabilir. Örneğin, 

Xavier veya He başlatma yöntemleriyle ağırlıkların başlatılması, gradyanların daha dengeli 

bir şekilde yayılmasını sağlayarak gradyan kaybolma sorununu azaltabilir (Kumar, 2017). 

Ayrıca, ReLU gibi sabit türevlere sahip aktivasyon fonksiyonları, sigmoid veya tanh gibi 

gradyanları sıfıra yaklaştıran fonksiyonlara kıyasla daha etkili bir öğrenme süreci sunabilir. 

 SGD yönteminde öğrenme oranı, ağırlık güncellemelerinin büyüklüğünü belirleyen 

sabit bir çarpan olarak kullanılır. Ancak bu yaklaşım, bazı durumlarda minimum noktayı 

aşan güncellemeler ve gradyanlardaki gürültü nedeniyle yavaş bir yakınsama süreci gibi iki 

temel soruna yol açabilir. 

Momentum algoritması, bu sorunların üstesinden gelmek için fiziğin momentum 

kavramından esinlenir. Algoritma, momentum adı verilen bir değişken kullanır ve bu 

değişken gradyanların üstel olarak azalan bir ortalamasına dayanır. Böylece, sistemin yanlış 

yönlere doğru gereksiz iniş yapması engellenir. Öğrenme oranı ve momentum parametresi, 

ağırlık güncellemelerinin hem yönünü hem de değişimini kontrol etmek için birlikte çalışır. 
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Doğru şekilde ayarlanmış bir momentum faktörü, öğrenme oranının yüksek olduğu 

durumlarda yakınsama sürecinde oluşabilecek salınımları azaltmada önemli bir rol oynar. 

Ancak momentum faktörünün seçimi kritik bir konudur. Faktör çok küçük olduğunda, 

algoritmanın yakınsama hızını artırma etkisi yeterince hissedilemez. Öte yandan çok büyük 

bir faktör değeri, güncellemelerin en uygun noktayı aşmasına ve dengesiz bir öğrenme 

sürecine neden olabilir. 

Yapılan birçok deney, momentum faktörü için en uygun değerin 0.9 olduğunu 

göstermiştir. Bu değer, algoritmanın yakınsama hızını artırırken kararlılığı koruyarak 

öğrenme sürecini optimize eder. 

 SGD yönteminde öğrenme oranının doğru bir şekilde ayarlanması, modelin 

etkinliğini büyük ölçüde etkiler. Ancak uygun bir öğrenme oranı belirlemek zorlu bir süreçtir 

ve bu problemi çözmek için öğrenme oranını otomatik olarak ayarlayan çeşitli uyarlanabilir 

yöntemler geliştirilmiştir. Bu yöntemler, parametre ayarına gerek duymadan hızlı bir şekilde 

yakınsama sağlayarak genellikle başarılı sonuçlar elde eder. SGD’nin en yaygın kullanılan 

iyileştirmelerinden biri olan AdaGrad algoritması, her ağırlık için farklı bir öğrenme oranı 

belirler ve öğrenme oranını geçmiş gradyanları dikkate alarak dinamik bir şekilde ayarlar. 

Bu özellik, öğrenme oranını manuel olarak belirleme ihtiyacını ortadan kaldırırken özellikle 

seyrek veri yapılarında etkili sonuçlar sağlar. 

AdaGrad’ın bazı dezavantajları da vardır. Eğitim süreci ilerledikçe biriken gradyanlar, 

öğrenme oranını sıfıra yaklaştırarak güncellemelerin etkisiz hale gelmesine neden olabilir. 

Bu durum, öğrenme sürecini yavaşlatarak modelin yeterince hızlı öğrenmesini engeller. 

Ayrıca, AdagGrad’ın öğrenme oranını sürekli olarak küçültmesi gradyan kaybolması 

problemini daha da artırabilir. Bu sorunların üstesinden gelmek için bazı stratejiler 

geliştirilmiştir. Örneğin gradyan kırpma yöntemi, büyük gradyanlar için bir eşik değeri 

belirleyerek gradyan patlaması problemini kontrol altına alırken, ReLU ve türevleri gibi 

aktivasyon fonksiyonları gradyanların daha verimli bir şekilde yayılmasına yardımcı 

olabilir. 

AdaGrad’ın sınırlamalarına çözüm olarak geliştirilen RMSProp algoritması, 

geçmişteki tüm gradyanları biriktirmek yerine belirli bir zaman dilimindeki gradyanlara 

odaklanır. RMSProp, üstel azalan hareketli ortalamalar kullanarak öğrenme oranını daha 

stabil hale getirir ve sıfıra yaklaşmasını engeller. Bu sayede, optimizasyon süreci daha 

verimli bir şekilde devam eder ve DNN’lerde karşılaşılan temel problemlerden biri olan 

gradyan yönetimi daha etkin bir şekilde gerçekleştirilir. 
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 Adam algoritması, her parametre için uyarlanabilir öğrenme oranları sunan ve 

momentum tabanlı bir yaklaşımla gradyanların geçmiş değerlerini dikkate alan gelişmiş bir 

SGD yöntemidir. Bu yöntem, AdaDelta ve RMSProp gibi algoritmalardan ilham alarak 

geçmiş gradyanların ve karelerinin üstel olarak azalan ortalamalarını hesaplar. Ayrıca, 

momentum yöntemine benzer şekilde, geçmiş gradyanların üstel ortalamasını da tutar. Bu 

süreçte kullanılan 𝛽1=0.9,  𝛽2 = 0.999 ve 𝜖 = 10−8 gibi standart parametreler, gradyanların 

dengeli bir şekilde güncellenmesini sağlar ve hızlı yakınsama ile etkili bir öğrenme süreci 

sunar. 

Adam algoritması, özellikle ReLU gibi aktivasyon fonksiyonlarıyla birlikte 

kullanıldığında iyi performans gösterir ve gradyan patlaması gibi problemlerin yönetiminde 

başarılıdır. Ancak bu gibi durumlarda gradyanların büyüklüğünün kontrol altına alınması 

gerektiğinden, Adam ile birlikte gradyan kırpılması gibi tekniklerin kullanılması önerilir. 

Ayrıca başlangıç ağırlıklarının Xavier veya He başlatma gibi yöntemlerle optimize edilmesi, 

gradyanların düzgün yayılmasını sağlayarak gradyan kaybolması problemini engelleyebilir. 

DNN’lerde, Adam algoritmasının etkinliği artık bağlantılar ile artırılabilir. Artık 

yapılar, bir katmanın çıktısına önceki katmanların çıktısını ekleyerek gradyanların bir 

katmandan diğerine daha etkili bir şekilde geçmesini sağlar. Bu mekanizma, derin ağlarda 

öğrenme sürecini kolaylaştırır ve Adam’ın sunduğu avantajları tamamlayarak 

optimizasyonu daha da verimli hale getirir. Adam, bu güçlü özellikleri sayesinde diğer 

uyarlanabilir algoritmalara kıyasla pratikte oldukça başarılı sonuçlar verir. 

1.11.2. CVDNN Eğitim Algoritması 

CVDNN mimarisinin öğrenme sürecinde gradyan tabanlı öğrenme kullanır; ileriye 

doğru yayılım sırasında hatayı hesaplar ve ardından bu hatayı her bir nörona geri yayarak 

geri yayılım sırasında ağırlıkları günceller. 

Geri yayılım algoritması, yapay sinir ağlarındaki ağırlık ve yanlılığı optimize etmek 

için kullanılan temel bir algoritmadır. Bu algoritma, hatayı en aza indirmede ve sinir 

ağlarının eğitimi sırasında öğrenme sürecini etkili bir şekilde yürütmede kritik bir rol oynar. 

Şekil 38, bir CVDNN'yi temsil etmektedir. 
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Şekil 38. Karmaşık değerli derin sinir ağı (CVDNN) 

 

Derin sinir ağı, 0 ≤ 𝑙 ≤ 𝐿 ile indekslenen 𝐿 adet katmana sahiptir. İlgili eşitlikte 𝑙 = 0 

olduğunda giriş katmanını, 𝑙 = 𝐿 olduğunda ise çıkış katmanını temsil eder. Her 𝑙 katmanı, 

1 ≤ 𝑛 ≤ 𝑁𝑙 ile indekslenen 𝑁𝑙 nörona sahiptir. 𝑤𝑛𝑚
𝑙   parametresi, 𝑙 katmanındaki 𝑛. 

nörondan, 𝑙 − 1 katmanındaki 𝑚. nörona olan bağlantının ağırlığını ifade eder. Bu nedenle, 

𝑙 katmanındaki 𝑛. nöronun çıktısı ve (𝑙 + 1) katmanındaki 𝑚. nöronun girdisi, bağıntı 

(37)'de gösterildiği gibi ifade edilir ve ileri beslemeli hesaplama olarak bilinir. İlgili 

bağıntıda, 𝑏 terimi 𝑛. nöronun eşik değerini ve 𝑓 ise kompleks aktivasyon fonksiyonunu 

temsil etmektedir. 

 

𝑛𝑒𝑡𝑛
𝑙 = ∑ 𝑤𝑛𝑚

𝑙 𝑥𝑚
𝑙−1

𝑁𝑙−1

𝑚=1
+ 𝑏𝑛

𝑙  
(37) 

𝑥𝑛
𝑙 = 𝑓(𝑛𝑒𝑡𝑛

𝑙 ) 

 

0 ≤ 𝑙 ≤ 𝐿 eşitliğinde 𝑙 = 𝐿 olduğunda,  ilgili katmanın çıktısı 𝑥𝑛
𝐿 aynı zamanda 

karmaşık değerli sinir ağının da çıktısı olmaktadır. Karmaşık değerli sinir ağının çıktısı Şekil 

38’de gösterildiği gibi 𝑦𝑛 olarak ifade edilir. Karmaşık değerli geri yayılımda yaygın olarak 

kullanılan hata fonksiyonu bağıntı (38)'de gösterilmiştir. Bu denklemde, 𝑑𝑛(𝑡), 𝑦𝑛(𝑡) ve 𝑒∗ 

sırasıyla beklenen çıktıyı, gerçek çıktıyı ve 𝑡 zamanındaki karmaşık eşlenik hatayı temsil 

eder. 

 



64 
 

𝐸(𝑡) =
1

2
 ∑ 𝑒𝑛(𝑡)𝑒𝑛

∗(𝑡)
𝑁𝐿

𝑛=1
 

 (38) 

𝑒𝑛(𝑡) = 𝑑𝑛(𝑡) − 𝑦𝑛(𝑡) 

 

Herhangi bir ağırlığın (𝑤𝑛𝑚
𝑙 ) güncellenmesi gerektiğinde, Wirtinger hesaplamasına 

göre ( 𝜕𝐸 𝜕𝑤𝑛𝑚
𝑙⁄  ve 𝜕𝐸 𝜕(𝑤𝑛𝑚

𝑙 )∗⁄ ), hata fonksiyonu 𝐸(𝑡)'nin ilgili ağırlığa göre kısmi 

türevlerinin hesaplanması gerekir (Abdalla, 2024). Ayrıca, 𝐸(𝑡) analitik olmayan bir gerçek 

değerli fonksiyondur; bu nedenle, 𝐸(𝑡)'nin 𝑤𝑛𝑚
𝑙 'nin gerçek ve sanal kısımlarına göre kısmi 

türevlerinin ayrı ayrı hesaplanması gerekir (Leung & Haykin, 1991). 𝑤𝑛𝑚
𝑙 'nin formülü ve 

çıkış katmanının (𝑙 = 𝐿) güncelleme kuralı bağıntı (39)'da verilmiştir. İlgili bağıntı, 𝜂 

öğrenme sabitini temsil eder. 

 

𝑤𝑛𝑚
𝑙 (𝑡) = 𝑤𝑟𝑛𝑚

𝑙 (𝑡) + 𝑖𝑤𝑖𝑛𝑚
𝑙 (𝑡) 

 

(39) 
𝑤𝑛𝑚

𝑙 (𝑡 + 1) = 𝑤𝑛𝑚
𝑙 (𝑡) −

1

2
𝜂

𝜕𝐸(𝑡)

𝜕𝑤𝑛𝑚
𝑙 (𝑡)

 

 
𝜕𝐸(𝑡)

𝜕𝑤𝑛𝑚
𝑙 (𝑡)

=
𝜕𝐸(𝑡)

𝜕𝑤𝑟𝑛𝑚
𝑙 (𝑡)

+ 𝑖
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑛𝑚
𝑙 (𝑡)

 

 

Bağıntı (39)'u takiben, zincir kuralı hem gerçek hem de kompleks değişkenlerle 

kompleks fonksiyonlara uygulanabilir. Bağıntı (40)'da gösterilen zincir kuralında, karmaşık 

değişken 𝑧 = 𝑥 + 𝑖𝑦 olarak verildiğinde, ℎ ve 𝑔 karmaşık değerli fonksiyonları için, ℎ 

fonksiyonu 𝑔'ye bağlıdır. Benzer şekilde 𝑔 fonksiyonu da 𝑧 'ye bağlıdır. Bu nedenle tüm 

ilişkiler ℎ(𝑔(𝑧)) şeklinde ifade edilebilir (Abdalla, 2024). 

Karmaşık değerli geri yayılım ve CVDNN optimizasyonu, karmaşık değerli 

aktivasyon fonksiyonlarının gerçek ve sanal kısımlarına göre kısmi türevleri hesaplayarak 

uygulanabilir. Bu, dolayısıyla hem gerçek hem de karmaşık fonksiyonlar için karmaşık 

zincir kuralı uygulamasını kolaylaştırır. 

 

𝜕ℎ(𝑔)

𝜕𝑧
=

𝜕ℎ

𝜕𝑔

𝜕𝑔

𝜕𝑧
+

𝜕ℎ

𝜕𝑔∗

𝜕𝑔∗

𝜕𝑧
 

 (40) 
𝜕ℎ(𝑔)

𝜕𝑧∗
=

𝜕ℎ

𝜕𝑔

𝜕𝑔

𝜕𝑧∗
+

𝜕ℎ

𝜕𝑔∗

𝜕𝑔∗

𝜕𝑧∗
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𝑧' nin gerçek ve hayali kısımlarına göre, karmaşık zincir kuralı bağıntı (41)’de 

gösterildiği şekilde elde edilir. 

 

𝜕𝑔

𝜕𝑧
=

𝜕𝑔

𝜕𝑥

𝜕𝑥

𝜕𝑧
+

𝜕𝑔

𝜕𝑦

𝜕𝑦

𝜕𝑧
 (41) 

 

Karmaşık zincir kuralı, bağıntı (39)'daki kısmi türevleri genişletmek için 

kullanılmıştır. İlgili formüller bağıntı (42)'de gösterilmiştir. 

 

𝜕𝐸(𝑡)

𝜕𝑤𝑟𝑛𝑚
𝑙 = 

 

(42) 

 
𝜕𝐸(𝑡)

𝜕𝑦𝑛

𝜕𝑦𝑛

𝜕𝑛𝑒𝑡𝑛
𝑙

𝜕𝑛𝑒𝑡𝑛
𝑙

𝜕𝑤𝑟𝑛
𝑙 +

𝜕𝐸(𝑡)

𝜕𝑦𝑛

𝜕𝑦𝑛

𝜕(𝑛𝑒𝑡𝑛
𝑙 )

∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕𝑤𝑟𝑛𝑚
𝑙 + 

 

  
𝜕𝐸(𝑡)

𝜕𝑦𝑛
∗

𝜕𝑦𝑛
∗

𝜕𝑛𝑒𝑡𝑛
𝑙

𝜕𝑛𝑒𝑡𝑛
𝑙

𝜕𝑤𝑟𝑛𝑚
𝑙 +

𝜕𝐸(𝑡)

𝜕𝑦𝑛
∗

𝜕𝑦𝑛
∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )

∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕𝑤𝑟𝑛𝑚
𝑙  

 
= 
 

− 
1

2
(𝑑𝑛

∗ − 𝑦𝑛
∗)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )

𝜕𝑛𝑒𝑡𝑛
𝑙 𝑥𝑚

𝑙−1  −  
1

2
(𝑑𝑛

∗ − 𝑦𝑛
∗)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )

𝜕(𝑛𝑒𝑡𝑛
𝑙 )∗

(𝑥𝑚
𝑙−1)∗ − 

  
 

    
1

2
(𝑑𝑛 − 𝑦𝑛)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕𝑛𝑒𝑡𝑛
𝑙 𝑥𝑚

𝑙−1 −  
1

2
(𝑑𝑛 − 𝑦𝑛)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )∗

(𝑥𝑚
𝑙−1)∗ 

 
 

𝑦𝑛 =  𝑓(𝑛𝑒𝑡𝑛
𝑙 ) , olmak üzere 𝑛𝑒𝑡𝑛

𝑙  bağıntı (37)'de 𝐸(𝑡) ise bağıntı (38)'de verilmiştir. 

 

Gerçek kısım için bağıntı (42)'de verilen formüle benzer olarak, sanal kısma karşılık 

gelen formül bağıntı (43)'de verilmiştir. Bağıntı (42) ve (43)'ün bağıntı (39)'a 

yerleştirilmesiyle, çıkış katmanı için hata fonksiyonunun türevinin son hali bağıntı (44)'de 

gösterildiği gibi elde edilir. Benzer şekilde, bağıntı (44), 𝑙 ≤ 𝐿 − 1 olduğunda gizli 

katmanlar için güncelleme kuralında kullanılan formülü gösterir. 
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𝑖
𝜕𝐸(𝑡)

𝜕𝑤𝑖𝑛𝑚
𝑙 = 

 

(43) 

𝑖 [

 
 
 
−   

1

2
𝑖(𝑑𝑛

∗ − 𝑦𝑛
∗)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )

𝜕𝑛𝑒𝑡𝑛
𝑙 𝑥𝑚

𝑙−1 + 

 

                  
1

2
𝑖(𝑑𝑛

∗ − 𝑦𝑛
∗)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )

𝜕(𝑛𝑒𝑡𝑛
𝑙 )∗

(𝑥𝑚
𝑙−1)∗ − 

 

              
1

2
𝑖(𝑑𝑛 − 𝑦𝑛)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕𝑛𝑒𝑡𝑛
𝑙 𝑥𝑚

𝑙−1 + 

 

                    
1

2
𝑖(𝑑𝑛 − 𝑦𝑛)

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )∗

(𝑥𝑚
𝑙−1)∗  

 
 
 
] 

 

 

𝑤𝑛𝑚
𝑙 (𝑡 + 1) = 𝑤𝑛𝑚

𝑙 (𝑡) + 𝜂𝛿𝑛
𝑙 (𝑥𝑚

𝑙−1)∗ 
 

(44) 

𝑏𝑢𝑟𝑎𝑑𝑎 
 

𝛿𝑛
𝑙 =>     

 

𝑙 = 𝐿 𝑜𝑙𝑑𝑢ğ𝑢𝑛𝑑𝑎 
 

 
1

2
(𝑑𝑛

𝑙 − 𝑦𝑛
𝑙 )

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )

∗ +  
1

2
(𝑑𝑛

𝑙 − 𝑦𝑛
𝑙 )∗

𝜕𝑓(𝑛𝑒𝑡𝑛
𝑙 )

𝜕(𝑛𝑒𝑡𝑛
𝑙 )

∗   

 
𝑙 ≤ 𝐿 − 1 𝑜𝑙𝑑𝑢ğ𝑢𝑛𝑑𝑎  

 

(∑ (𝑤𝑘𝑚
𝑙+1)

∗

𝑘
𝛿𝑘

𝑙+1)
𝜕𝑓(𝑛𝑒𝑡𝑛

𝑙 )∗

𝜕(𝑛𝑒𝑡𝑛
𝑙 )

∗ +  (∑ (𝑤𝑘𝑚
𝑙+1)

𝑘
(𝛿𝑘

𝑙+1)∗)
𝜕𝑓(𝑛𝑒𝑡𝑛

𝑙 )

𝜕(𝑛𝑒𝑡𝑛
𝑙 )

∗  

 

Karmaşık gradyan iniş algoritması için bağıntı (44)'de verilen güncelleme kuralları, 

hem tam hem de ayrık aktivasyon fonksiyonları için geçerlidir. İlgili formüllere momentum 

terimi de eklenebilir. Momentum, modelin öğrenme sürecinde önceki adımlardaki ağırlık 

değişimlerini dikkate almasını sağlar, böylece güncellemeler daha kararlı bir şekilde yapılır 

ve hızlıca optimize edilir (Sutskever vd., 2013). 
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1.11.3. Derin Öğrenme Modelinde Hiperparametreler 

Derin öğrenme modelinde kullanılan hiperparametreler aşağıdaki gibi sıralanabilir. 

 Derin öğrenme uygulamalarında veri setinin büyüklüğü ve çeşitliliği, modelin 

öğrenme başarısını doğrudan etkileyen önemli faktörlerdir. Genel olarak, veri seti 

büyüdükçe modelin performansı da artar, ancak bu artış sonsuza kadar doğru orantılı şekilde 

devam etmez. Belirli bir noktadan sonra, veri seti boyutunun artırılması sistemin başarısına 

sınırlı katkı sağlar ve hatta modelin karmaşıklığı yeterli değilse performans düşüşü 

yaşanabilir. Ayrıca yalnızca veri setinin büyük olması yeterli değildir; verilerin çeşitliliği de 

en az boyut kadar önemlidir. Çeşitlilik, modelin daha genelleştirilebilir özellikler 

öğrenmesine olanak tanır ve başarıyı artırır. 

Küçük veri setleri ile çalışılırken, sentetik veri üretimiyle veri seti genişletilebilir veya 

transfer öğrenme gibi yöntemler kullanılarak büyük ölçekli veri setlerinde eğitilmiş 

modellerden öznitelik transferi yapılabilir. Bu yöntemler, özellikle kaynakların sınırlı 

olduğu veya yeterince paylaşımın bulunmadığı durumlarda etkili bir çözüm sunar. Ancak, 

görsel veriler gibi çok özel alanlarda her sınıf için binlerce örnek gereklidir. 

Sonuç olarak veri setinin büyüklüğü ve çeşitliliği arasındaki dengeyi sağlamak, eğitim 

sürecini etkili bir şekilde yönetmek için kritik bir adımdır. Eğitimin sık yapılmayacağı ve 

depolama alanının sorun olmadığı durumlarda öğrenim başarısı öncelikli olurken, mobil 

ortamlar gibi depolama alanının problem olduğu durumlarda veri seti boyutunun daha 

dikkatli değerlendirilmesi gerekir. 

 Öğrenme oranı, modelin her iterasyon sırasında ağırlıklarda ne kadar değişiklik 

yapılacağını belirleyen kritik bir hiperparametredir. Çok büyük bir öğrenme oranı modelin 

en uygun çözümünü aşarak salınıma neden olabilirken, çok küçük bir değer ise eğitim 

sürecini yavaşlatabilir ve modelin lokal optimum bir değere takılarak global optimuma 

ulaşamamasına yol açabilir. Bu nedenle öğrenme oranının doğru bir şekilde ayarlanması, 

modelin eğitim başarısı için büyük önem taşır. Genellikle varsayılan olarak 0.01 gibi bir 

değer kullanılır ve belli bir eğitim adımından sonra bu değer kademeli olarak azaltılır. Bu 

yöntem, modelin daha genel bir çözüm bulmasına yardımcı olurken aşırı öğrenmeyi engeller 

ve eğitim sürecinin verimliliğini artırır. 

 Momentum katsayısı, gradyan inişi gibi optimizasyon yöntemlerinde kullanılan 

önemli bir hiperparametredir. Momentum, gradyan inişini hızlandırmak ve yerel 

minimumlara takılmadan daha iyi bir global minimuma ulaşmak için kullanılan bir tekniktir. 
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Momentum, önceki adımlardan gelen gradyan bilgilerini kullanarak güncellemeyi 

yapar. Bir başka deyişle, her iterasyonda ağırlıklar sadece mevcut gradyanla değil, aynı 

zamanda önceki iterasyonlarda elde edilen gradyanlarla da güncellenir. Bu, modelin daha 

hızlı ve daha kararlı bir şekilde öğrenmesini sağlar. 

Momentum katsayısı, genellikle 0 ile 1 arasında bir değer alır ve önceki iterasyonların 

katkısının ne kadar olacağını belirler. Eğer momentum katsayısı 0'a yakınsa, model daha 

geleneksel bir gradyan inişi gibi çalışır ve sadece mevcut gradyan bilgisine dayanır. Eğer 

momentum katsayısı 1'e yakınsa, önceki gradyan bilgileri daha fazla dikkate alınır ve bu da 

daha hızlı bir öğrenme süreci sağlayabilir. 

Momentum katsayısının doğru seçilmesi, modelin eğitim sürecinin kararlılığını artırır 

ve daha hızlı bir optimizasyon sağlar. Yanlış bir momentum değeri, modelin eğitimi 

sırasında salınımlar veya aşırı adımlar gibi problemlere yol açabilir. Bu yüzden, momentum 

katsayısının doğru seçilmesi, öğrenme sürecinde kritik bir rol oynar. 

Momentum sabiti genellikle 0.9 gibi bir değere ayarlanır, ancak bu değer problem ve 

veri setine göre değiştirilebilir. 

 Derin öğrenme modellerinde eğitim verisi, tüm veri seti olarak modele verildiğinde 

parametrelerin güncellenmesi süreci zaman alıcı ve maliyetli olabilir. Bu problemi çözmek 

için veri seti küçük parçalara bölünür. Bu parçalara mini-batch denir ve her mini-batch, 

modelin parametrelerini güncellemek için kullanılır. Bu parçaların büyüklüğü, batch size 

olarak bilinen bir hiperparametreyle belirlenir. 

Eğitim sürecinde, parametreler her mini-batch üzerinde yapılan geri yayılım işlemiyle 

güncellenir. Her iterasyonda gradyan inişi kullanılarak ağırlıklar değiştirilir. Eğer veri seti 

çok büyükse, tüm veri üzerinde işlem yapmak çok daha fazla zaman ve kaynak gerektirir. 

Bu nedenle veriler küçük parçalara ayrılır ve her bir parçanın işlenmesi sonrasında modelin 

parametreleri güncellenir. 

Batch size seçimi, eğitim sürecinin verimliliğini doğrudan etkiler. Batch size 1 olarak 

seçildiğinde, model her örnekle birlikte parametrelerini günceller ve bu süreç SGD olarak 

adlandırılır. Ancak veriler arasındaki büyük farklar tahmin sonuçlarında önemli değişimlere 

yol açabilir, bu da genellikle istenmeyen bir durumdur. Öte yandan, batch size tüm veri 

setinin büyüklüğü kadar seçildiğinde modelin güncellenmesi çok daha maliyetli hale gelir. 

Batch size belirlenirken veri setinin büyüklüğü, veri dağılımı ve kullanılan makinenin 

işlem gücü gibi faktörler göz önünde bulundurulmalıdır. Uygun batch size seçimi, eğitim 
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süresini kısaltarak modelin daha verimli öğrenmesini sağlar ve veri setinin büyüklüğüne 

uygun şekilde ayarlanması eğitimin başarısını artırır. (Kandel & Castelli, 2020). 

 İterasyon, eğitim verisinin model tarafından bir kez işlenmesi anlamına gelir. 

Eğitim sürecinde genellikle birden fazla iterasyonla model eğitilir. İterasyon sayısının fazla 

olması modelin daha fazla öğrenmesine olanak tanır, ancak aşırı öğrenmeye de neden 

olabilir. Aşırı öğrenmeyi önlemek için erken duraklama mekanizmaları veya çapraz 

doğrulama gibi teknikler kullanılabilir. İterasyon sayısının uygun bir şekilde belirlenmesi, 

modelin genelleme yeteneğini, doğruluğunu artırır ve eğitim süresini etkileyebilir. 

 Derin öğrenme ağlarında gizli katman sayısı ve her katmandaki nöron sayısının 

artırılması, modelin kapasitesini yükselterek daha karmaşık problemlerin öğrenilmesine 

olanak tanır. Ancak, katman sayısının artmasıyla geri yayılımın etkisi ilk katmanlara daha 

az ulaşabilir ve bu durum belirli bir noktadan sonra ek katmanların sağladığı katkının 

azalmasına neden olabilir. Benzer şekilde, nöron sayısının fazla olması modelin hesaplama 

zamanı ve bellek ihtiyacını artırırken, özellikle GPU olmayan sistemlerde bu durum problem 

yaratabilir. Öte yandan yetersiz nöron sayısı, modelin yetersiz uyum göstermesine yol 

açabilir. Bu nedenle, modelin performansını optimize etmek için gizli katmanların ve nöron 

sayısının dikkatlice ayarlanması kritik öneme sahiptir. İlk katmanlarda fazla, sonraki 

katmanlarda ise giderek azalan nöron sayısı kullanmak gibi düzenleme teknikleri, aşırı 

öğrenme riskini azaltırken modelin genel başarısını artırabilir. 

 Modelin başlangıç ağırlıkları genellikle küçük rastgele değerlerle başlatılır. 

Başlangıç ağırlıkları, modelin eğitim sürecindeki kararlılığı ve doğru çözümü bulma 

yeteneğini etkileyebilir. Bu bağlamda, modelin doğru çözüme ulaşmasını hızlandırabilir ve 

genel model performansını artırabilir. 

1.11.4. Karmaşık Değerli Aktivasyon Fonksiyonları 

Karmaşık değerli sinir ağlarında kullanılan aktivasyon fonksiyonları iki ana kategoriye 

ayrılabilir. Bu iki aktivasyon fonksiyonu tipi, CVNN'lerin çalışma prensiplerini belirleyen 

temel unsurlardandır (Lee vd., 2022). 

İlk kategori, ayrık aktivasyon fonksiyonlardır. Bu fonksiyonlar, karmaşık sayıların 

gerçek ve sanal bileşenlerini birbirinden bağımsız olarak işler. Bir başka deyişle, her bileşen 

ayrı ayrı işlenir ve aktivasyon fonksiyonuna uygulanır. Ayrık aktivasyon fonksiyonları Tip-

A ve Tip-B olarak da iki alt kategoriye ayrılır. İlgili alt kategoriler için formüller bağıntı 
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(45)’de ifade edilmiştir. Bağıntı (45)’de 𝑓𝐴, 𝑓𝐵 karmaşık değerli fonksiyonlar, 𝑓𝑅𝑒, 𝑓𝐼𝑚, 𝑓𝑟, 

𝑓𝜃 ise geleneksel türdeki (sigmoid, tanh, ReLU gibi) gerçek değerli aktivasyon 

fonksiyonlarıdır.  

 

𝑇𝑖𝑝 − 𝐴 ⟹  𝑓𝐴(𝑧) = 𝑓𝑅𝑒(𝑥) + 𝑖𝑓𝐼𝑚(𝑦) 

(45) 𝑇𝑖𝑝 − 𝐵 ⟹ 𝑓𝐵(𝑧) = 𝑓𝑟(|𝑧|) + 𝑖𝑓𝜃(arg (𝑧))  

𝑧 =  𝑥 +  𝑖𝑦 =  |𝑧|𝑒𝑥𝑝(𝑖 𝑎𝑟𝑔(𝑧))   , 𝑧 ∈  ℂ 𝑎𝑛𝑑 𝑥, 𝑦 ∈  ℝ 

 

İkinci kategori ise bütünleşik aktivasyon fonksiyonlarıdır. Bu fonksiyonlar, karmaşık 

sayıların gerçek ve sanal bileşenlerini tek bir bütün olarak ele alır ve işlem yaparken bu 

bileşenleri ayırmaz. Bu sayede, karmaşık sayıların tam yapısından yararlanarak daha 

bütüncül bir yaklaşım sergiler.  

Sigmoid aktivasyon fonksiyonu genellikle yapay sinir ağlarında kullanılan bir 

aktivasyon fonksiyonudur. Matematiksel olarak sigmoid fonksiyonu bağıntı (46)’da ifade 

edilmiştir (Benvenuto & Piazza, 1992).  

 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
 (46) 

 

İlgili bağıntında 𝑥 girdi değerini temsil eder. Sigmoid fonksiyonu, girdi değerini 

(genellikle –∞ ile +∞ arasında) 0 ile 1 arasına sıkıştırır. Bu özellikle sınıflandırma 

problemlerinde kullanışlıdır, çünkü çıktı değeri olasılık olarak yorumlanabilir. 

Sigmoid fonksiyonunun dezavantajlarından biri, büyük girdi değerleri için gradyanın 

çok küçük olmasıdır, bu da geriye yayılım sürecinde gradyanın kaybolmasına yol açabilir. 

Bu nedenle, çok katmanlı ağlarda veya derin öğrenme modellerinde tercih edilmeyebilir.  

tanh aktivasyon fonksiyonu, yapay sinir ağlarında sıklıkla kullanılan bir başka 

aktivasyon fonksiyonudur. Fonksiyonun matematiksel karşılıkları bağıntı (47)’de ifade 

edilmiştir (Qiumei vd., 2019). 

 

𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
          𝑣𝑒𝑦𝑎            𝑡𝑎𝑛ℎ(𝑥) =

2

1 + 𝑒−2𝑥
− 1 (47) 
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tanh fonksiyonu, girdi değerini -1 ile 1 arasına dönüştürür. Böylece fonksiyon sıfır 

merkezli bir çıktı aralığı sağlar, bu da bazı durumlarda daha hızlı ve verimli öğrenmeyi 

destekleyebilir. tanh fonksiyonu, büyük pozitif veya negatif girişler için gradyanların çok 

küçük hale gelmesine neden olabilir. Ancak sigmoid fonksiyonundan farklı olarak, tanh daha 

geniş bir gradyan aralığına sahiptir ve sıfır merkezli olması gradyanların daha dengeli bir 

şekilde yayılmasına yardımcı olabilir. Sigmoid fonksiyonunun aksine, tanh sıfır merkezli bir 

çıktıya sahip olduğundan özellikle bazı aktivasyon fonksiyonları arasında geçiş yaparken 

öğrenme süreçlerini iyileştirebilir.  

ReLU aktivasyon fonksiyonu, derin öğrenme ve yapay sinir ağlarında oldukça popüler 

bir aktivasyon fonksiyonudur. Matematiksel olarak, ReLU fonksiyonu bağıntı (48)’de 

gösterildiği şekilde ifade edilir (LeCun vd., 2015). 

 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥) (48) 

 

İlgili bağıntı, giriş değeri 𝑥 pozitifse 𝑥'in kendisini, negatifse 0'ı döndürür. ReLU 

fonksiyonu oldukça basit ve hesaplaması hızlıdır, çünkü sadece bir karşılaştırma ve 

maksimum seçimi gerektirir. Bu durum, büyük ağlarda hesaplama verimliliğini artırabilir. 

ReLU fonksiyonu, negatif bölgedeki gradyanları sıfırlar. Ancak pozitif bölgedeki gradyanlar 

sabit kalır ve bu durum derin ağlarda gradyanların daha etkili bir şekilde yayılmasına 

yardımcı olabilir. ReLU sıfır merkezli değildir, çıkış değeri yalnızca sıfır ya da pozitif 

olabilir. Bu nedenle, ReLU genellikle derin öğrenme modellerinde tercih edilen bir 

aktivasyon fonksiyonudur. ReLU'nun dezavantajları arasında "ölü nöron" problemi 

bulunmaktadır. Bazı nöronlar negatif girişler nedeniyle sürekli olarak sıfır çıkış üretir ve bu 

durum modelin öğrenme yeteneğini sınırlayabilir. Bu tür sorunları aşmak için Leaky ReLU, 

Parametric ReLU gibi varyasyonlar geliştirilmiştir (Liang & Hu, 2021).  

 

 

Şekil 39. Aktivasyon fonksiyonları 
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1.11.5. Seyreltme Oranı 

Seyreltme veya dropout oranı, derin öğrenme modellerinde aşırı öğrenmeyi önlemek 

amacıyla kullanılan etkili bir düzenleme tekniğidir. Modelin sadece eğitim verisine değil, 

genel verilere de iyi genelleme yapmasını sağlar. Bu yöntem, modelin veri setini ezberlemesi 

yerine genelleştirme yeteneğini artırarak, yeni veriler üzerinde daha iyi performans 

göstermesini sağlar. Aynı zamanda, seyreltme oranı dikkatli bir şekilde ayarlanmadığında 

yetersiz öğrenme riski oluşturabileceği için doğru kullanımına özen gösterilmelidir. Yetersiz 

öğrenme, modelin eğitim verisindeki desenleri doğru şekilde öğrenememesi durumudur ve 

modelin çok basit veya yetersiz bir yapıya sahip olmasından kaynaklanır. Şekil 40, yetersiz 

öğrenme, aşırı öğrenme ve ideal öğrenmeyi temsil eden grafikleri göstermektedir. 

 

 

Şekil 40. Yetersiz öğrenme, aşırı öğrenme ve ideal öğrenmeyi temsil eden grafikler 

 

Seyreltme yöntemi, her bir iterasyonda sinir ağındaki bazı nöronları rastgele devre dışı 

bırakır, bir başka deyişle o nöronların çıktıları sıfıra eşitlenir. Bu işlem, modelin bir alt 

kümesinin her defasında eğitilmesini sağlar bu da modelin belirli özelliklere aşırı bağımlı 

olmasını önler (Srivastava vd., 2014). Şekil 41, seyreltme tekniğine bağlı olarak devre dışı 

bırakılan nöronları ve ağ yapısını göstermektedir. Gizli2 ve Gizli3 isimli nöronlar eğitimin 

bir adımında devre dışı kalan nöronları ifade etmektedir. 

Eğitim sırasında, teknik gereğince her katmandaki nöronların belirli bir oranı rastgele 

seçilerek geçici olarak sıfırlanır. Bu oran genellikle %20-%50 arasında olur. Test aşamasında 

ise seyreltme uygulanmaz. Bunun yerine, eğitim sırasında devre dışı bırakılan nöronların 

etkisini telafi etmek için nöronların aktivasyonları seyreltme oranına göre ölçeklendirilir. 

Seyreltme, modelin daha fazla çeşitlilikte öğrenmesine neden olduğu için eğitim 

süresini uzatabilir. Her bir eğitim adımında bazı nöronlar devre dışı bırakıldığından, bu süreç 

sırasında hesaplama yükü artabilir.  
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Şekil 41. Seyreltme tekniğine bağlı olarak devre dışı bırakılan nöronlar ve ağ yapısı 

 

1.11.6. Softmax Çıkış Fonksiyonu 

Softmax, genellikle sınıflandırma problemlerinde kullanılan bir aktivasyon 

fonksiyonudur. Çok sınıflı sınıflandırmalarda, modelin her bir sınıfa ait olasılığını 

belirlemek için kullanılır. Softmax fonksiyonu, giriş vektöründeki her değeri pozitif bir 

olasılık değeri haline getirir ve tüm çıktıların toplamı 1 olacak şekilde normalize edilir. 

Softmax fonksiyonu bağıntı (49)’da olduğu gibi ifade edilir (Kagalkar & Raghuram, 2020). 

İlgili bağıntıda 𝑥𝑖 giriş vektöründeki 𝑖. öğeyi, 𝐾 sınıf sayısını temsil eder. 𝑒𝑥𝑖 giriş 

değerlerinin üstel fonksiyonla dönüştürülmüş halidir.  

 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 (49) 

 

Softmax, sınıflandırma problemlerinde her bir sınıf için tahmin edilen değeri olasılık 

olarak yorumlamayı mümkün kılar. Bu olasılıklar 0 ile 1 arasında olur ve tüm sınıfların 

olasılıklarının toplamı 1'e eşittir. Softmax, genellikle sinir ağının son katmanda kullanılır ve 

birden fazla sınıfın bulunduğu sınıflandırma problemlerinde etkin bir çözüm sunar. Model, 

her bir sınıfa ait olasılığı üretir ve en yüksek olasılığa sahip sınıf, tahmin edilen sınıf olarak 

seçilir. Softmax, büyük giriş değerleri ile küçük giriş değerleri arasındaki farkı büyütür. 

Yani, en büyük giriş değeri daha yüksek bir olasılıkla temsil edilirken, diğer sınıfların 

olasılıkları küçülür. Softmax, sinir ağları ve lojistik regresyon gibi algoritmalarda, birden 

fazla sınıfa ait verilerin sınıflandırılmasında yaygın olarak kullanılır. Doktora çalışmaları 
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kapsamında geliştirilen modelde, Şekil 38’in son katmanı olan çıkış katmanında softmax 

fonksiyonu kullanılmıştır. 

1.11.7. Karmaşık Değerli XOR Problemi 

Bu çalışmada, karmaşık değerli verilerin sınıflandırılmasını sağlayacak sistemin 

doğruluğunu test etmek amacıyla, Nitta tarafından tanımlanan karmaşık değerli XOR 

problemi verileri kullanılmıştır (Nitta, 1997). Giriş verisi, karmaşık değerli veri türü olarak 

0, 𝑗, 1, 1 + 𝑗 şeklinde değer kümesine sahiptir. Tablo 5, iki girişli ve tek çıkışlı kompleks bir 

ağ için kompleks değerli giriş verilerini ve bunlara karşılık gelen çıkış değerlerini listeler.  

 

Tablo 5. Belirtilen kurallara göre karmaşık değerli XOR için eğitim örnekleri 

Giriş 1 Giriş 2 Çıkış 

0 0 1 

0 j j 

j j 1+j 

j 1 j 

1 1 1+j 

j 0 0 

1+j 1+j 1 

1+j j j 

 

 

Çıkış verisinin üretilmesinde kullanılan iki kural maddeler halinde aşağıda ifade 

edilmiştir. 

 Giriş olarak alınan iki karmaşık değerli veri eşitse, karmaşık değerli çıkış verisinin 

gerçek kısmı 1, aksi takdirde 0 olur. 

 İkinci karmaşık değerli veri girişi 1 ya da 𝑗 ise, karmaşık değerli çıkış verisinin 

sanal kısmı 1, aksi takdirde 0 olur. 
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Standart XOR işleminde tek çıkışla iki sınıf temsil edilebilirken Tablo 5’den 

görüleceği üzere karmaşık değerli XOR tek çıkışla dört sınıfı temsil edilebilmektedir. Bu 

sayede çok sayıda farklı sınıf için gereken çıkış sayısı oldukça azaltılabilir. 

 



 

2. YAPILAN ÇALIŞMALAR 

Bu bölümde doktora süreci boyunca gerçekleştirilen çalışmalar ayrı ayrı ele alınarak 

incelenecektir. İlgili çalışmalar; CZM’ler ile özellik (karmaşık değerli öznitelik vektörünün 

elde edilmesi) çıkarımı, öznitelik vektöründen görüntünün yeniden oluşturulması, bir 

CVDNN’in geliştirilmesi, XOR probleminin geliştirilen karmaşık değerli derin sinir ağı ile 

çözülmesi, MNIST veri seti üzerinde gerçekleştirilen çalışmalar, MUD veri seti üzerinde 

gerçekleştirilen çalışmalar ve önerilen yöntemi içeren akıllı bir sistemin geliştirilme 

aşamaları olmak üzere yedi alt başlıkta incelenecektir. Gerçekleştirilen çalışmalar sırasında 

görüntüler üzerinde herhangi bir önişlem (el tespiti, arka plan çıkarımı, gürültü azaltma, veri 

güçlendirme vs.) uygulanmamıştır. Elde edilen başarı oranlarının doğrudan ham görüntüler 

üzerinden elde edildiğinin vurgulanması gerekmektedir. 

2.1. Karmaşık Zernike Momentleri Kullanılarak Özellik Çıkarımı 

Karmaşık Zernike momentleri, özellik çıkarımında kullanılan son derece etkili 

yöntemlerden biridir. Öyle ki, herhangi bir görüntü için, CZM'ler kullanılarak elde edilen 

öznitelik vektöründen görüntünün yeniden oluşturulması mümkündür. Öznitelik vektörünün 

boyutunu belirleyen ve görüntünün yeniden oluşturulmasında kullanılan iki önemli 

parametre sırasıyla CZM'lerin derecesi 𝑛 ve tekrar sayısıdır 𝑚. Her iki parametrenin de 

belirlenmesi gerekmektedir. Bu bağlamda 𝑛 derecesine bağlı olarak tekrar sayısı 𝑚 

belirlenir. 

Derece 𝑛, hem çıkarılan özniteliklerin sayısını (öznitelik vektörünün boyutunu) hem 

de ASL tanıma için geliştirilen karmaşık değerli derin sinir ağının performansını doğrudan 

etkiler. Derece arttıkça elde edilen öznitelik vektörünün boyutu ve işlem süresi orantılı 

olarak artar. Öznitelik çıkarımına fazla zaman harcamak, gerçek zamanlı uygulamalarda 

performans düşüşüne yol açabilir. Öte yandan daha fazla özniteliğe sahip olmak, görüntünün 

yeniden oluşturulmasında olumlu bir etki yaratır. 

Tekrar sayısı 𝑚, 0 ile 𝑛 arasında değişir. Negatif tekrar değerleri, pozitif değerlerin 

eşlenikleri olduğu için hesaplama yapılmadan elde edilebilir. Negatif değerler sınıflandırma 

modellerinde değil genellikle görüntünün yeniden oluşturulmasında kullanılır. 
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Geliştirilen sistemde, MNIST veri setinden rastgele seçilen her bir görüntü için farklı 

derecelerde özellik çıkarımı ve görüntü yeniden oluşturma işlemleri gerçekleştirilerek en 

uygun dereceyi belirlemek hedeflenmiştir. Şekil 42, özellik çıkarımı için işlem adımlarını 

göstermektedir. 

 

 

Şekil 42. Özellik çıkarımı için işlem adımları 

 

Orijinal görüntü ile yeniden oluşturulan temsiller üzerinde öncelikli olarak Ortalama 

Kare Hatası (MSE) ve Yapısal Benzerlik İndeksi (SSIM) gibi benzerlik test prosedürleri 

uygulanmıştır (Palubinskas, 2016). Ek kontroller sağlamak amacıyla Histogram da ayrıca 

kullanılmıştır (Bhuiyan & Khan, 2018). MNIST veri seti için elde edilen sonuçların, 

genellikle düşük derecelerde (12 ile 15 arasında) yüksek benzerlik oranına sahip oldukları 

tespit edilmiştir. MNIST veri seti üzerindeki çalışmalarda, her görüntü için 64 öznitelik 

üretecek şekilde derece değeri 14 olarak belirlenmiştir. 

Özellik çıkarımı sürecinde, MNIST veri seti için ilgili CSV dosyası verileriyle aynı 

(kayıpsız) değere sahip PNG formatında görüntüler oluşturulmuştur. 𝑛 ve 𝑚 değerleri 

belirlendikten sonra, eğitim ve test görüntüleri için bağıntı (32), (33), (34) ve (35)'ü 

kullanarak karmaşık değerli verilerden (𝑧 = 𝑥 + 𝑖𝑦, 𝑧 ∈  ℂ 𝑣𝑒 𝑥, 𝑦 ∈  ℝ) oluşan öznitelik 

vektörleri elde edilmiştir. Benzer şekilde aynı işlemler MUD veri seti üzerinde 

uygulanmıştır. MNIST veri setindeki her bir öğe için özellik çıkarımında harcanan süre 

yaklaşık 0.082 saniyedir. MNIST veri setindeki görüntülerin 28x28 piksel gibi oldukça 

küçük boyutlarda olduğunu yeniden hatırlatmak gerekmektedir. MUD veri setindeki her bir 

öğe için özellik çıkarımı ise yaklaşık 2.33 saniye sürmektedir. Ayrıca, MUD veri setindeki 

görüntülerin 400x400 piksel boyutunda nispeten büyük olduğunu yeniden belirtmek 

gerekmektedir. 
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Karmaşık Zernike momentleri nesnelerin daha karmaşık özelliklerini temsil etmek ve 

ek bilgi sağlamak için kullanılır. CZM'ler, Zernike momentlerinin genliği kullanmaktan daha 

kapsamlı ve ayrıntılı bir özellik temsili sunar. Esasında karmaşık Zernike momentleri olarak 

ifade edilen terim, Zernike momentlerinin büyüklüğünü kullanmaktan farklı olarak 

nesnelerin dairesel simetri bilgisinin yanı sıra aynı zamanda faz bilgisini de dikkate alarak 

daha ayrıntılı bir analiz sağlamasından ileri gelmektedir. Bu özellikleri nedeniyle, yüz 

tanıma gibi karmaşık desen tanıma görevlerinde genellikle daha etkili olurlar. Geliştirilen 

modelin (özellik çıkarımı ve CVDNN ile sınıflandırma) genel yapısını koruyarak gerçek 

sayılarla çalışacak şekilde (gerçek değerli derin sinir ağı) yapılandırılmasıyla 

karşılaştırıldığında, karmaşık sayılarla çalışmanın performans üzerinde yaklaşık %20 

oranında olumlu bir etki yarattığı gözlemlenmiştir. Bu etki oranı, verilerin karmaşık değerli 

olarak kullanılmasının başarıyı önemli ölçüde etkilediğini açıkça ortaya koymaktadır. 

2.2. Öznitelik Vektöründen Görüntünün Yeniden Oluşturulması 

Bir görüntünün yeniden oluşturulabilmesi için öncelikle görüntüden özellik çıkarımı 

yapılması gerekmektedir. Bu nedenle, özellik çıkarımında kullanılacak yöntem büyük önem 

taşımaktadır. Karmaşık Zernike momentlerinin, görüntünün yeniden oluşturulmasında 

oldukça etkili olduğu genel bilgiler bölümünde vurgulanmıştır. Görüntünün yeniden 

oluşturulmasındaki bu başarısı, aynı zamanda oldukça etkili bir özellik çıkarımı 

gerçekleştirdiğini de göstermektedir. 

Sınıflandırma amaçlı geliştirilecek bir model ile görüntünün yeniden üretilmesi amaçlı 

geliştirilecek model arasında, özellik çıkarımında kullanılacak moment derecesinin seçimi 

konusunda bir zıtlık bulunmaktadır. Şöyle ki, daha önce belirtildiği üzere sınıflandırma 

amaçlı geliştirilen modelde moment derecesinin düşük olması hem hız hem de tespit 

açısından olumlu sonuçlar verirken, görüntünün yeniden oluşturulmasında moment 

derecesinin düşük olması üretilen görüntünün kalitesini düşürmektedir. Bu bağlamda, eğer 

görüntünün yeniden oluşturulması birincil hedefse moment derecesi yüksek bir değer olarak 

seçilmelidir. Ancak, moment derecenin artması zaman ve kaynak tüketimini de 

yükseltmektedir. Görüntünün yeniden oluşturulması aşamasında, negatif 𝑚 tekrarlarına 

bağlı olarak elde edilen karmaşık değerli veriler de hesaba katılmalıdır. 

Şekil 43, 200x200 piksel bir görüntüyü ve farklı moment dereceleri baz alınarak 

yeniden oluşturulan temsillerini göstermektedir. Şekil 44 ise MNIST veri setinden rastgele 
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seçilen 28x28 piksel bir görüntüyü ve ilgili görüntü için dereceye bağlı olarak yeniden 

oluşturulmuş temsillerini göstermektedir. Her iki şekilden de görüleceği üzere moment 

derecesi arttıkça, üretilen temsillerin kalitesi (netliği) de giderek artmaktadır. Zernike 

momentler birim disk üzerinde tanımlandığı için, hem özellik çıkarımı hem de 

özniteliklerden oluşturulan temsiller birim disk üzerinde ifade edilir. Bu nedenle, her iki 

şekilden de görüleceği üzere hem orijinal görüntüler hem de temsilleri birim disk olarak 

gösterilmiştir. Karmaşık Zernike momentlerinin görüntünün yeniden oluşturulmasındaki 

başarısı, yüz ve desen gibi detay gerektiren alanlarda rahatlıkla kullanılabileceğini gösterir. 

 

 

Şekil 43. (a) 200x200 piksel orijinal giriş görüntüsü (b) orijinal görüntü için farklı 

derecelerde yeniden oluşturulan görüntüler 

 

 

Şekil 44. (a) MNIST veri setinden 28x28 piksel orijinal giriş görüntüsü (b) orijinal görüntü 

için farklı derecelerde yeniden oluşturulan görüntüler 
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2.3. CVDNN Mimarisi 

Genel bilgiler başlığında, karmaşık Zernike momentlerle elde edilen öznitelik 

vektörünü işleyebilecek bir sinir ağı geliştirilmesi gerektiği belirtilmiştir. Geliştirilen sinir 

ağı, en az iki gizli katmana sahip olduğu için karmaşık değerli bir derin sinir ağı olarak 

adlandırılır. Derin sinir ağının geliştirilmesi sürecinde, üç gizli katman da denenmiş ancak 

iki gizli katmana kıyasla fark edilecek düzeyde bir iyileşme sağlamadığı için tercih 

edilmemiştir. Ağın içindeki tüm katmanlar karmaşık değerli verilerle çalışabilecek şekilde 

tasarlanmıştır. 

Özellik çıkarımında, seçilen moment derecesi 14’e bağlı olarak 64 uzunluklu bir 

vektör elde edildiği daha önce belirtilmiştir. Elde edilen öznitelik vektörüne bağlı olarak 64 

giriş alan derin sinir ağı, ilk gizli katmanda 700 nöron, ikinci gizli katmanda 400 nöron 

kullanmaktadır. Veri setlerine bağlı olarak, çıkış katmanında MNIST veri seti için 25, MUD 

veri seti için ise 36 çıkış üretilmektedir. MNIST veri setinde, J hariç olmak üzere [A-Y] 

harfleri için normalde 24 çıkış bulunmaktadır. J ve Z harfleri ASL’de hareketli görüntü 

olduğundan çıkış kümesine dahil edilmezler. Veri setinde J harfi bulunmamasına rağmen, 

harfler A'dan başlayarak Y'ye kadar 0'dan 24'e kadar numaralandırılmıştır. Dolayısıyla, 

normalde 24 sınıf için 25 çıkış oluşturulmuştur. Z harfinin çıkarılmasının, J harfi gibi bir etki 

yaratmayacağı açıktır. 

Bir CVDNN'nin en kritik bölümlerinden biri uygun aktivasyon fonksiyonunun 

belirlenmesidir. Liouville teoremi, her noktada analitik ve sınırlı olan bir karmaşık değerli 

fonksiyonun sabit olduğunu belirtir (Hansen, 2008). CVDNN aktivasyon fonksiyonları ayrık 

ve tam olmak üzere iki kategoriye ayrılır. Ayrık aktivasyon fonksiyonları, karmaşık 

bileşenlere bağımsız olarak gerçek değerli geleneksel aktivasyon fonksiyonlarını uygular ve 

sonuçları birleştirerek karmaşık değerli bir nöron çıktısı üretir. Bu nedenle, bu aktivasyon 

fonksiyonları sınırlı olabilir ancak analitik olmayabilir. Ayrık aktivasyon fonksiyonları, Tip-

A ve Tip-B olarak iki alt türe ayrılır (Bassey vd., 2024). Gerçekleştirilen doktora 

çalışmasında, bağıntı (50)'de gösterilen Tip-A ayrık aktivasyon fonksiyonu 

kullanılmaktadır. İlgili bağıntıda, 𝑓𝐴 karmaşık değerli bir fonksiyon olup 𝑓𝑅𝑒 ve 𝑓𝐼𝑚 gerçek 

değerli aktivasyon fonksiyonlarıdır. Çalışmada, gerçek değerli aktivasyon fonksiyonu olarak 

ReLU kullanılmaktadır (Liang & Hu, 2021). Çıkış sınıfları dışında, her iki veri seti için de 

aynı CVDNN yapısı kullanılmaktadır.  
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𝑓𝐴(𝑧) = 𝑓𝑅𝑒(𝑥) + 𝑖𝑓𝐼𝑚(𝑦) (50) 

 

Aşırı öğrenmeyi önlemek amacıyla, ikinci gizli katmanda seyreltme tekniği 

uygulanmaktadır (Srivastava vd., 2014). Seyreltme tekniği sabit olarak uygulanmış ve en iyi 

sonuçlar 0.38 değeri ile elde edilmiştir. Eğitim adımına bağlı olarak değişen (azalarak) bir 

seyreltme tekniği denenmiş olsa da, dikkate değer bir etki sağlamadığından tercih 

edilmemiştir.  

Karmaşık değerli geri yayılım algoritması, mini-batch eğitim yaklaşımını kullanır. 

Böylece, modelin genelleştirme yeteneğinin artırılması amaçlanmaktadır. MNIST veri seti 

için batch size değeri 1000, MUD veri seti için ise 100 olarak belirlenmiştir.  

Çıkış katmanını yorumlamak için torch kütüphanesinin softmax fonksiyonu 

kullanılmaktadır (URL2, 2023).  

Karmaşık değerli verilerle çalışabilen optimizasyon algoritmaları arasında Adam, 

SGD ve RMSProp bulunmaktadır (Kingma & Ba, 2024).  Optimizasyon algoritması olarak 

momentum'lu SGD (SGD with Momentum) tercih edilmiştir. Diğer iki optimizasyon 

algoritması da iyi ve yakın sonuçlar verse de, en iyi sonuçlar momentum’lu SGD ile elde 

edilmiştir. Öğrenme oranı 0.01, momentum katsayısı ise 0.9 olarak belirlenmiştir.  

MNIST veri setindeki her test maddesinin öznitelik vektöründen çıktı sınıfını 

belirleme süresi yaklaşık 0.002 saniyedir. Dolayısıyla, modelin bir görüntüyü giriş olarak 

alıp çıktı sınıfını belirlemesi (özellik çıkarımı ve sınıflandırma dahil olmak üzere) toplamda 

yaklaşık 0.084 (0.082+0.002) saniye sürmektedir. MUD veri setinde de benzer şekilde, 

öznitelik vektöründen çıktı sınıfının belirlenmesi yaklaşık 0.002 saniyedir. Böylece MUD 

veri setindeki bir görüntüyü giriş olarak alıp çıktı sınıfını belirleme süresi toplamda yaklaşık 

2.332 (2.33+0.002) saniye olmaktadır. İlgili değerlerden görüleceği üzere, modelin en fazla 

zaman alan bölümü özellik çıkarım işlemidir. 

Modelin başarısını etkileyen önemli etkenlerden biri de özellik çıkarımı sonucunda 

elde edilen öznitelik vektörünün nasıl normalize edileceğinin belirlenmesidir. Standart 

normalizasyon tekniklerinden biri olan verilerin 0 ile 1 arasına ölçeklenmesi işlemi beklenen 

sonuçları vermemiştir. Bu nedenle, doktora çalışmaları kapsamında geliştirilen farklı bir 

normalizasyon tekniği kullanılmıştır. İlgili teknik gereğince, öncelikli olarak veri 

kümesindeki en büyük ve en küçük değerler belirlenmiştir. Bu teknik gereğince, tüm veriler 

-5 ile +5 aralığına ölçeklenecek şekilde sabit bir sayıya bölünmüştür. 
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Mimarinin belirtilen özellikleri, kapsamlı ve uzun bir deneysel çalışmanın sonucunda 

tespit edilmiştir. Şekil 45, geliştirilen modelin mimarisini göstermektedir. 

 

 

Şekil 45. Geliştirilen modelin mimarisi 

 

2.4. Model Mimarisinin Detayları 

Bu bölümde, MNIST ve MUD veri setleri için geliştirilen modellerin üretim 

aşamalarındaki bazı önemli kısımlar incelenecektir. MNIST için geliştirilen modelin eğitimi, 

veri setinin eğitim kısmının (27455 görüntü) büyüklüğüne bağlı olarak 300 iterasyon 
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sonunda tamamlanmaktadır. Ancak eğitim kümesi batch size değeri 1000 olacak şekilde alt 

kümelere ayrıldığında, toplam iterasyon sayısı (27455/1000) ∗ 300 ⇒  8100 olarak 

hesaplanır. MNIST veri seti üzerinden geliştirilen model için, ilk ve son ana iterasyonlar ve 

bunların alt kümelerindeki iterasyonlar Şekil 46’da belirtilmiştir. Ayrıca, Şekil 46 her bir alt 

küme için eğitimin başlangıcına ve bitişine dair hata oranlarını göstermektedir. 

 

 

Şekil 46. (a) MNIST veri seti için ilk iterasyon ve alt küme iterasyonları (b) MNIST veri 

seti için son ana iterasyon ve alt küme iterasyonları 

 

MUD veri setinin eğitim ve test verisi olarak ayrılmadığı daha önce belirtilmiştir. 

Benzer şekilde, MUD veri seti üzerinden geliştirilen modelde veri setinin %70’i eğitim, 

%30’u test olarak ayrıldığı daha önce ifade edilmiştir. Böylece modelin eğitimi, veri setinin 

eğitim kısmının (1762 görüntü) büyüklüğüne bağlı olarak 100 iterasyon sonunda 

tamamlanmaktadır. MUD veri setinin eğitim kümesi için batch size değeri 100 olarak 

belirlenmiştir. Bu nedenle, toplam iterasyon sayısı (1762/100) ∗ 100 ⇒ 1762 olarak 

hesaplanmaktadır. MUD veri seti üzerinden geliştirilen model için, ilk ve son ana 

iterasyonlar ile bunların alt kümelerindeki iterasyonlar ve eğitimin başlangıcına ve bitişine 

dair hata oranları Şekil 47’de belirtilmiştir. 

Şekil 48, hem MNIST hem de MUD veri setleri üzerinden eğitilen modeller için ayrı 

ayrı olmak üzere eğitimin başından sonuna kadar oluşan hata oranlarının grafiğini gösterir. 
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Şekil 47. (a) MUD veri seti için ilk iterasyon ve alt küme iterasyonları (b) MUD veri seti 

için son ana iterasyon ve alt küme iterasyonları 

 

Şekil 48’de, ilgili grafiklerde belirtilen adım sayıları, yukarıda belirtilen durumlardan 

kaynaklanmaktadır. Her iki modelde de hata oranlarının eğitim sonunda 0’a 

yakınsamamasının nedeni, aşırı öğrenmeyi engellemek amacıyla kullanılan seyreltme 

tekniğidir. Bu durum, seyreltme tekniğinin bilinçli olarak uygulanmasından 

kaynaklanmaktadır. 

 

 

Şekil 48. (a) MNIST veri seti için hata eğrisi-iterasyon grafiği (b) MUD veri seti için hata 

eğrisi-iterasyon grafiği 
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2.5. Kompleks Veriler İçeren XOR Probleminin Çözümü 

Gerçekleştirilen doktora çalışmasının ana hedefinin işaret dilinin tanınmasına yönelik 

akıllı bir sistemin geliştirilmesi olduğu daha önce ifade edilmiştir. Bu hedefe ulaşmak için 

sistemde kullanılacak modelin geçerliliği, çeşitli veri setleri üzerinde test edilmelidir. 

Çalışmada bu veri setleri MNIST ve MUD olarak belirlenmişti. Ancak veri setleriyle 

çalışırken, “CVDNN Mimarisi” bölümünde ifade edilen çeşitli faktörler nedeniyle karmaşık 

sayılarla çalışmanın etkisinin yanlış yorumlanabileceği açıktır. CVDNN, uzun süreli bir 

deneysel çalışmanın sonucunda nihai halini almıştır. Bu bağlamda, başlangıçta ağ tasarımı 

nedeniyle başarının düşük çıkma olasılığı göz önünde bulundurulmuştur. Bu nedenle, veri 

setleri ile çalışmaya geçilmeden önce daha basit bir CVDNN ile temel bir problemin 

çözümüne odaklanmak gerekmektedir. Bu doğrultuda, ilk çalışma giriş ve çıkış verileri 

karmaşık sayılar olacak şekilde XOR probleminin çözümü üzerine gerçekleştirilmiştir.  

XOR problemin çözümünde kullanılan CVDNN’in ilk prototipi, gerçek değerli 

aktivasyon fonksiyonu olarak sigmoid kullanmaktadır. XOR probleminin çözümünde 

başarılı olan bu fonksiyon, veri setleri üzerinde iyi sonuçlar vermemiştir.  

Tablo 6, XOR problemi için hem eğitim hem de test verilerini içermektedir. Toplamda 

16 farklı durumu kapsayan bu problem için 12 durum eğitim verisi olarak kullanılmıştır.  

 

Tablo 6. XOR problemi için giriş ve çıkışlar 

Veri Türü Giriş 1 Giriş 2 Çıkış 

Eğitim 0 0 1 

Eğitim 0 j j 

Eğitim j 0 0 

Eğitim j j 1+j 

Eğitim j 1 j 

Eğitim 1 1 1+j 

Eğitim 1+j j j 

Eğitim 1+j 1+j 1 

Eğitim 0 1 j 

Eğitim 0 1+j 0 

Eğitim j 1+j 0 

Eğitim 1 0 0 

Test 1 j j 

Test 1 1+j 0 

Test 1+j 0 0 

Test 1+j 1 j 
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Şekil 49, eğitim ve test verileri için elde edilen sonuçları göstermektedir. İlgili şekilde 

virgülle ayrılan ilk kısımdaki veri giriş 1’e, ikinci kısımdaki veri ise giriş 2’ye karşılık 

gelmektedir. Çıkış verisi ise, karmaşık sayı olarak ilgili şeklin sağ tarafında yer almaktadır. 

Tablo 6'daki çıkış verileri ile modelden elde edilen çıkış verilerinin eşleşmesi, XOR 

probleminin prototip CVDNN ile tamamen çözüldüğünü ortaya koymaktadır. Bu çalışma, 

veri setleri üzerinde çalışmaya geçiş aşamasında önemli bir adım olmuştur. 

 

 

Şekil 49. Karmaşık sayılar kullanan XOR probleminin çözümü 

 

2.6. Performans Analiz Metrikleri 

Bu bölümde, MNIST ve MUD veri setleri üzerinde gerçekleştirilen çalışmalardan elde 

edilen sonuçların analizinde kullanılan metrikler tanıtılmaktadır. Bu metriklerin tamamını 

bünyesinde barındıran karmaşıklık matrisi (confusion matrix), bir sınıflandırma modelinin 

performansını değerlendirmede kullanılan önemli bir araçtır. Bu matris, modelin 

tahminlerini gerçek etiketlerle karşılaştırarak tanıma (recognition), kesinlik (precision), 

hatırlama (recall) ve F1 skoru gibi performans metriklerini hesaplamak için temel bir yapı 

sağlar. Karmaşıklık matrisinin temel bileşenleri maddeler halinde aşağıda ifade edilmiştir. 

 Doğru Pozitif (TP): Karmaşıklık matrisinde doğru bir şekilde pozitif olarak 

sınıflandırılmış örneklerin sayısı. 

 Doğru Negatif (TN): Karmaşıklık matrisinde doğru bir şekilde negatif olarak 

sınıflandırılmış örneklerin sayısı. 
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 Yanlış Pozitif (FP): Karmaşıklık matrisinde yanlış bir şekilde pozitif olarak 

sınıflandırılmış negatif örneklerin sayısı. 

 Yanlış Negatif (FN): Karmaşıklık matrisinde yanlış bir şekilde negatif olarak 

sınıflandırılmış pozitif örneklerin sayısı. 

Karmaşıklık matrisi genellikle Tablo 7’de belirtildiği üzere ifade edilir. 

 

Tablo 7. Karmaşıklık matrisinin genel temsili 

 Gerçek Pozitif Gerçek Negatif 

Tahmin Pozitif TP FP 

Tahmin Negatif FN TN 

 

Bu matris, her sınıf için TP, TN, FP ve FN değerlerini içeren bir tablo oluşturur. Bu 

bilgiler, sınıflandırma modelinin çeşitli performans metriklerini hesaplamak için kullanılır. 

İlgili metriklere ait değerler, tanıma oranı için bağıntı (51), kesinlik için bağıntı (52), 

hatırlama için bağıntı (53) ve F1 skoru için bağıntı (54) kullanılarak hesaplanmaktadır. 

 

𝑇𝑎𝑛𝚤𝑚𝑎 𝑂𝑟𝑎𝑛𝚤 =
𝐷𝑜ğ𝑟𝑢 𝑆𝚤𝑛𝚤𝑓𝑙𝑎𝑛𝑑𝚤𝑟𝚤𝑙𝑚𝚤ş Ö𝑟𝑛𝑒𝑘 𝑆𝑎𝑦𝚤𝑠𝚤

𝑇𝑜𝑝𝑙𝑎𝑚 Ö𝑟𝑛𝑒𝑘 𝑆𝑎𝑦𝚤𝑠𝚤
  (51) 

 

 

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 =
𝐷𝑜ğ𝑟𝑢 𝑃𝑜𝑧𝑖𝑡𝑖𝑓

𝐷𝑜ğ𝑟𝑢 𝑃𝑜𝑧𝑖𝑡𝑖𝑓 + 𝑌𝑎𝑛𝑙𝚤ş 𝑃𝑜𝑧𝑖𝑡𝑖𝑓
  (52) 

 

 

𝐻𝑎𝑡𝚤𝑟𝑙𝑎𝑚𝑎 =
𝐷𝑜ğ𝑟𝑢 𝑃𝑜𝑧𝑖𝑡𝑖𝑓

𝐷𝑜ğ𝑟𝑢 𝑃𝑜𝑧𝑖𝑡𝑖𝑓 + 𝑌𝑎𝑛𝑙𝚤ş 𝑁𝑒𝑔𝑎𝑡𝑖𝑓
  (53) 

 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
(𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 𝑥 𝐻𝑎𝑡𝚤𝑟𝑙𝑎𝑚𝑎)

(𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘 +  𝐻𝑎𝑡𝚤𝑟𝑙𝑎𝑚𝑎)
  (54) 

 

 İlgili bağıntılarda belirlenen performans metriklerine göre, önerilen modelin MNIST 

ve MUD veri setlerinde elde ettiği değerler kendi alt başlıklarında sırasıyla incelenmektedir. 
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Gerçekleştirilen birçok akademik çalışmada, bağıntı (51)'deki tanıma yerine doğruluk olarak 

ifade edilen farklı bir bağıntı kullanılmasına rağmen, doktora çalışmaları kapsamında 

başarıyı daha net ve gerçekçi bir yaklaşımla göstermek amacıyla ilgili bağıntı tercih 

edilmiştir. 

2.7. Önerilen Modelin MNIST Veri Seti Üzerindeki Performansının 

Değerlendirilmesi 

MNIST veri setinden elde edilen karmaşık değerli verilerden oluşan eğitim ve test 

öznitelik vektörleri, geliştirilen CVDNN’e giriş olarak verilmiştir. Model, MNIST test 

verilerinde %89,01 tanıma oranı elde etmiştir. Şekil 50, karmaşık değerli veriler kullanılarak 

MNIST test veri setinde yapılan çalışmanın karmaşıklık matrisini göstermektedir. Ortalama 

kesinlik değeri 0.8793, ortalama hatırlama değeri 0.8856 ve ortalama F1 skoru 0.8791 olarak 

hesaplanmıştır; bu hesaplamalar sırasıyla bağıntı (52), bağıntı (53) ve bağıntı (54) 

kullanılarak yapılmıştır.  

Tablo 8, MNIST test verilerindeki her bir sınıf (yirmi dört sınıf) için kesinlik, hatırlama 

ve F1 skorlarını belirtmektedir. 

 

 

Şekil 50. Önerilen modelin MNIST test veri seti için oluşturduğu karmaşıklık matrisi 
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Tablo 8. Önerilen modelin MNIST test veri setinin her bir sınıfı için ürettiği performans 

metrik değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Score 

A 0.8665 1.0 0.9285 

B 1.0 1.0 1.0 

C 1.0 1.0 1.0 

D 0.9245 1.0 0.9608 

E 0.9689 1.0 0.9842 

F 0.992 1.0 0.996 

G 0.8735 0.8132 0.8423 

H 1.0 0.906 0.9507 

I 0.8018 0.9271 0.8599 

K 0.8447 0.7885 0.8156 

L 0.9048 1.0 0.95 

M 0.8234 0.8401 0.8317 

N 0.9125 0.7526 0.8249 

O 0.97 0.9187 0.9436 

P 0.906 1.0 0.9507 

Q 0.6976 0.872 0.7751 

R 0.6758 0.8542 0.7546 

S 0.7634 0.813 0.7874 

T 0.8387 0.7339 0.7828 

U 0.792 0.7444 0.7674 

V 0.96 0.8324 0.8916 

W 0.8017 0.9029 0.8493 

X 0.7899 0.8165 0.8029 

Y 0.9959 0.738 0.8478 

Ortalama 0.8793 0.8856 0.8791 

 

2.8. Önerilen Modelin MUD Veri Seti Üzerindeki Performansının 

Değerlendirilmesi 

Önerilen model, MUD veri seti üzerinde Holdout ve LOSO olmak üzere iki farklı 

doğrulama tekniği kullanılarak değerlendirilmiştir. İlk olarak Holdout tekniğine göre elde 

edilen sonuçlar, ardından LOSO tekniği kullanılarak elde edilen sonuçlar sunulmaktadır. 

Holdout tekniği kullanılarak gerçekleştirilen çalışmada, veri seti rastgele %70 (1761 

görüntü) eğitim ve %30 (754 görüntü) test olarak bölünmüştür. Literatürdeki birçok 

çalışmada eğitim ve test verisi için %80-%20 ayrımının kullanıldığı düşünüldüğünde, 

önerilen sistemin elde ettiği başarı ayrı bir anlam taşımaktadır. Önerilen model MUD veri 
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setinde %98.67 tanıma oranı elde etmiştir. Şekil 51, MUD veri setinde Holdout tekniğine 

göre oluşturulan karmaşıklık matrisini gösterir. Tablo 9, MUD test verilerindeki her bir sınıf 

(otuz altı sınıf) için Holdout tekniğine göre kesinlik, hatırlama ve F1 skorlarını listeler. 

 

 

Şekil 51. Önerilen modelin Holdout tekniğine göre MUD test veri seti için oluşturduğu 

karmaşıklık matrisi 

 

LOSO tekniğini uygulayabilmek için MUD veri seti, el işaretlerinin kişilere göre 

ayrıldığı beş klasöre dönüştürülür. Bu klasörler "Denek1", "Denek2", "Denek3", "Denek4" 

ve "Denek5" olarak adlandırılmış olup, sırasıyla 900, 895, 180, 180 ve 360 görüntü 

içermektedir. Çıkış sınıfı ise dosya adında tanımlanmıştır. Önerilen model, LOSO tekniğini 

kullanarak MUD veri setinde ortalama %81.22 tanıma oranı elde etmektedir. Tablo 10, ilgili 

teknik kullanılarak tüm denekler için hesaplanan ortalama değerleri, görüntü sayısını, doğru 

tahmin sayısını, ortalama tanıma oranını, ortalama kesinlik, ortalama geri çağırma ve her bir 

denek için ortalama F1 puanını listelemektedir. "Denek1", "Denek2", "Denek3", "Denek4" 

ve "Denek5" için üretilen karışıklık matrisleri sırasıyla Şekil 52, Şekil 53, Şekil 54, Şekil 55 

ve Şekil 56'de gösterilmektedir. Benzer şekilde "Denek1", "Denek2", "Denek3", "Denek4" 
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ve "Denek5" için kesinlik, hatırlama ve F1 skorları sırasıyla olmak üzere Tablo 11, Tablo 

12, Tablo 13, Tablo 14 ve Tablo 15’de listelenmektedir. 

 

Tablo 9. Holdout tekniğine göre MUD test verisindeki her bir sınıf için önerilen model 

tarafından üretilen performans metriği değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Skoru 

A 1.0 1.0 1.0 

B 1.0 1.0 1.0 

C 1.0 1.0 1.0 

D 1.0 1.0 1.0 

E 1.0 1.0 1.0 

F 1.0 1.0 1.0 

G 1.0 1.0 1.0 

H 1.0 1.0 1.0 

I 1.0 0.9524 0.9756 

J 1.0 1.0 1.0 

K 1.0 0.9048 0.95 

L 1.0 1.0 1.0 

M 1.0 0.9048 0.95 

N 0.913 1.0 0.9545 

O 0.9091 0.9524 0.9302 

P 1.0 1.0 1.0 

Q 1.0 1.0 1.0 

R 1.0 1.0 1.0 

S 1.0 1.0 1.0 

T 1.0 1.0 1.0 

U 1.0 1.0 1.0 

V 0.9545 1.0 0.9767 

W 0.9524 0.9524 0.9524 

X 1.0 1.0 1.0 

Y 0.9545 1.0 0.9767 

Z 1.0 1.0 1.0 

0 0.95 0.9048 0.9268 

1 1.0 1.0 1.0 

2 0.9524 0.9524 0.9524 

3 1.0 1.0 1.0 

4 1.0 1.0 1.0 

5 1.0 1.0 1.0 

6 0.9545 1.0 0.9767 

7 1.0 1.0 1.0 

8 1.0 1.0 1.0 

9 1.0 1.0 1.0 

Ortalama 0.9872 0.9868 0.9867 
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Tablo 10. Önerilen model tarafından LOSO tekniği kullanılarak MUD veri 

setindeki tüm denekler için hesaplanan ortalama değerler ile birlikte, her bir denek 

için görüntü sayısı, doğru tahmin sayısı, ortalama tanıma oranı, ortalama kesinlik, 

ortalama geri çağırma ve ortalama F1 puanı 

Denek 
Görüntü 

Sayısı 

Doğru Tahmin 

Sayısı 
Kesinlik Hatırlama 

F1 

Skoru 
Tanıma Oranı 

Denek 1 900 753 0.8622 0.8367 0.8290 0.8367 

Denek 2 895 765 0.8630 0.8547 0.8498 0.8547 

Denek 3 180 151 0.8211 0.8389 0.8153 0.8389 

Denek 4 180 162 0.9295 0.9000 0.8915 0.9000 

Denek 5 360 227 0.6551 0.6306 0.6265 0.6306 

Ortalama - - 0.8262 0.8122 0.8024 0.8122 

 

 

 

Şekil 52. Önerilen modelin LOSO tekniğine göre MUD veri setinde Denek 1 için 

oluşturduğu karmaşıklık matrisi 
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Tablo 11. LOSO tekniği kullanılarak MUD veri setindeki Denek 1’e göre her bir sınıf için 

önerilen model tarafından üretilen performans metrik değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Skoru 

A 0.85 0,68 0.7556 

B 1.0 1.0 1.0 

C 0.8065 1.0 0.929 

D 1.0 1.0 1.0 

E 0.9615 1.0 0.9804 

F 1.0 1.0 1.0 

G 0.8333 1.0 0.9091 

H 1.0 1.0 1.0 

I 1.0 1.0 1.0 

J 1.0 1.0 1.0 

K 0.6 0.96 0.7385 

L 1.0 1.0 1.0 

M 0.7143 0.2 0.3125 

N 0.4386 1.0 0.6098 

O 0.5652 0.52 0.5417 

P 1.0 0.6 0.75 

Q 0.833 1.0 0.9091 

R 0.7576 1.0 0.8621 

S 1.0 0.24 0.3871 

T 0.4412 0.6 0.5085 

U 0.9091 0.8 0.8511 

V 0.8571 0.48 0.6154 

W 0.6071 0.68 0.6415 

X 1.0 1.0 1.0 

Y 1.0 1.0 1.0 

Z 1.0 1.0 1.0 

0 0.6667 0.56 0.6087 

1 1.0 0.84 0.913 

2 0.7222 0.52 0.6047 

3 1.0 1.0 1.0 

4 1.0 0.88 0.9362 

5 1.0 1.0 1.0 

6 0.5833 0.56 0.5714 

7 0.8929 1.0 0.9434 

8 1.0 1.0 1.0 

9 1.0 1.0 1.0 

Ortalama 0.8622 0.8367 0.829 
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Şekil 53. Önerilen modelin LOSO tekniğine göre MUD veri setinde Denek 2 için 

oluşturduğu karmaşıklık matrisi 

 

 

Şekil 54. Önerilen modelin LOSO tekniğine göre MUD veri setinde Denek 3 için 

oluşturduğu karmaşıklık matrisi 
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Tablo 12. LOSO tekniği kullanılarak MUD veri setindeki Denek 2’ye göre her bir sınıf için 

önerilen yöntem tarafından üretilen performans metrik değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Skoru 

A 0.8533 1.0 0.9091 

B 0.7576 1.0 0.8621 

C 0.8 0.64 0.7111 

D 1.0 1.0 1.0 

E 0.8276 0.96 0.8889 

F 1.0 1.0 1.0 

G 1.0 1.0 1.0 

H 1.0 1.0 1.0 

I 1.0 1.0 1.0 

J 1.0 0.96 0.9796 

K 1.0 0.96 0.9796 

L 1.0 1.0 1.0 

M 0.6316 0.48 0.5455 

N 0.68 0.68 0.68 

O 0.525 0.84 0.6462 

P 1.0 1.0 1.0 

Q 1.0 1.0 1.0 

R 1.0 1.0 1.0 

S 1.0 0.36 0.5294 

T 0.5862 0.85 0.6939 

U 1.0 0.8 0.8889 

V 0.6154 0.64 0.6275 

W 0.5625 0.72 0.6316 

X 0.8333 0.8 0.8163 

Y 1.0 0.96 0.9796 

Z 1.0 1.0 1.0 

0 0.5556 0.4 0.4651 

1 0.7812 1.0 0.8772 

2 0.6522 0.6 0.625 

3 1.0 1.0 1.0 

4 0.9091 0.8 0.8511 

5 1.0 1.0 1.0 

6 0.5556 0.4 0.4651 

7 1.0 0.96 0.9796 

8 1.0 0.96 0.9796 

9 0.9615 1.0 0.9804 

Ortalama 0.863 0.8547 0.8498 
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Tablo 13. LOSO tekniği kullanılarak MUD veri setindeki Denek 3’e göre her bir sınıf için 

önerilen model tarafından üretilen performans metrik değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Skoru 

A 1.0 1.0 1.0 

B 1.0 1.0 1.0 

C 1.0 1.0 1.0 

D 1.0 0.6 0.75 

E 1.0 0.8 0.8889 

F 1.0 1.0 1.0 

G 1.0 1.0 1.0 

H 1.0 1.0 1.0 

I 0.8333 1.0 0.9091 

J 1.0 1.0 1.0 

K 0.625 1.0 0.7692 

L 1.0 1.0 1.0 

M 0.25 0.4 0.3077 

N 0.0 0.0 0.0 

O 1.0 0.8 0.8889 

P 1.0 1.0 1.0 

Q 1.0 1.0 1.0 

R 1.0 1.0 1.0 

S 0.4545 1.0 0.625 

T 1.0 1.0 1.0 

U 1.0 1.0 1.0 

V 0.4444 0.8 0.5714 

W 1.0 1.0 1.0 

X 1.0 1.0 1.0 

Y 1.0 1.0 1.0 

Z 0.7143 1.0 0.8333 

0 0.8333 1.0 0.9091 

1 1.0 1.0 1.0 

2 0.0 0.0 0.0 

3 0.0 0.0 0.0 

4 1.0 0.6 0.75 

5 1.0 1.0 1.0 

6 1.0 1.0 1.0 

7 1.0 0.4 0.5714 

8 0.5714 0.8 0.6667 

9 0.8333 1.0 0.9091 

Ortalama 0.8211 0.8389 0.8153 
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Şekil 55. Önerilen modelin LOSO tekniğine göre MUD veri setinde Denek 4 için 

oluşturduğu karmaşıklık matrisi 

 

 

Şekil 56. Önerilen modelin LOSO tekniğine göre MUD veri setinde Denek 5 için 

oluşturduğu karmaşıklık matrisi 



98 
 

Tablo 14. LOSO tekniği kullanılarak MUD veri setindeki Denek 4’e göre her bir sınıf için 

önerilen model tarafından üretilen performans metrik değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Skoru 

A 1.0 0.4 0.5714 

B 1.0 1.0 1.0 

C 1.0 1.0 1.0 

D 1.0 1.0 1.0 

E 1.0 1.0 1.0 

F 1.0 1.0 1.0 

G 0.8333 1.0 0.9091 

H 1.0 1.0 1.0 

I 1.0 0.4 0.5714 

J 1.0 1.0 1.0 

K 0.6667 0.8 0.7273 

L 1.0 1.0 1.0 

M 0.8333 1.0 0.9091 

N 1.0 1.0 1.0 

O 1.0 0.8 0.8889 

P 1.0 1.0 1.0 

Q 1.0 1.0 1.0 

R 1.0 1.0 1.0 

S 0.4545 1.0 0.625 

T 1.0 0.2 0.3333 

U 1.0 1.0 1.0 

V 1.0 1.0 1.0 

W 1.0 0.6 0.75 

X 1.0 1.0 1.0 

Y 0.7143 1.0 0.8333 

Z 1.0 1.0 1.0 

0 0.8333 1.0 0.9091 

1 1.0 1.0 1.0 

2 0.6667 0.4 0.5 

3 1.0 1.0 1.0 

4 1.0 0.8 0.8889 

5 1.0 1.0 1.0 

6 0.625 1.0 0.7692 

7 0.8333 1.0 0.9091 

8 1.0 1.0 1.0 

9 1.0 1.0 1.0 

Ortalama 0.9295 0.9 0.8915 
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Tablo 15. LOSO tekniği kullanılarak MUD veri setindeki Denek 5’e göre her bir sınıf için 

önerilen model tarafından üretilen performans metrik değerleri 

Karakter Sınıfları Kesinlik Hatırlama F1 Skoru 

A 0.7778 0.7 0.7368 

B 0.7273 0.8 0.7619 

C 1.0 0.6 0.75 

D 0.3636 0.4 0.381 

E 0.8333 1.0 0.9091 

F 0.9 0.9 0.9 

G 0.4167 0.5 0.4545 

H 1.0 0.7 0.8235 

I 0.75 0.9 0.8182 

J 0.7143 1.0 0.8333 

K 0.5714 0.4 0.4706 

L 0.7273 0.8 0.7619 

M 0.25 0.4 0.3077 

N 0.1 0.1 0.1 

O 0.625 0.5 0.5556 

P 1.0 0.6 0.75 

Q 1.0 0.8 0.8889 

R 0.75 0.6 0.6667 

S 0.75 0.9 0.8182 

T 0.8 0.8 0.8 

U 0.5 0.9 0.6429 

V 0.25 0.1 0.1429 

W 0.25 0.2 0.2222 

X 0.5263 1.0 0.6897 

Y 1.0 0.7 0.8235 

Z 0.1667 0.1 0.125 

0 0.2857 0.2 0.2353 

1 0.7143 0.5 0.5882 

2 0.4 0.4 0.4 

3 0.8182 0.9 0.8571 

4 0.8571 0.6 0.7059 

5 1.0 0.7 0.8235 

6 0.3158 0.6 0.4138 

7 0.6923 0.9 0.7826 

8 0.75 0.6 0.6667 

9 1.0 0.9 0.9474 

Ortalama 0.6551 0.6306 0.6265 
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2.9. Önerilen Modelin Kullanıldığı Akıllı Sistemin Geliştirilmesi 

Geliştirilen akıllı sistem, ASL'nin tanınması amacıyla oluşturduğumuz modeli 

kullanarak gerçek zamanlı işaret dili tanıma amacı taşımaktadır. Bu bağlamda ilgili sistem 

kullanıcıdan işaret dili görüntülerinin gerçek zamanlı olarak alınmasını sağlayacak bir dış 

cihaza ihtiyaç duymaktadır. Dış cihazın kaliteli olması, elde edilecek görüntüyü ve 

dolayısıyla modelin performansını doğrudan etkileyecektir. Dış cihaz olarak dizüstü 

bilgisayar üzerinde bütünleşik olarak sunulan standart bir web kamerası kullanılmıştır. 

Geliştirilen gerçek zamanlı işaret dili tanıma sistemi için başlangıçta karşılaşılan iki 

temel zorluk, görüntüde elin tespit edilmesi gerekliliği ve arka plan farklılıklarına bağlı 

olarak özellik çıkarımı ve sınıflandırmada oluşabilecek hatalardır.  

Web kamerasından alınan görüntü akışında elin tespit edilmesi amacıyla Mediapipe 

kütüphanesi kullanılmıştır (URL3, 2024). Mediapipe bir görüntüdeki yüz, poz, sol el ve sağ 

el bilgilerinin elde edilmesini sağlayan Google tarafından üretilmiş bir yapıdır. Geliştirilen 

sistem şu anda sadece el görüntüsü üzerinden çalıştığı için sol ve sağ el bilgilerinin elde 

edilmesi yeterli olacaktır. İlgili kütüphane, görüntü üzerindeki tespit edilen her bir el için 21 

adet anahtar nokta tanımlamaktadır. Sağ el için tespit edilen anahtar noktalar ve açıklamaları 

Şekil 57’de gösterilmiştir. Sol el için de benzer şekilde olmak kaydıyla y eksenine göre 

simetri durumu mevcuttur. 

 

 

Şekil 57. Sağ el için Mediapipe tarafından üretilen anahtar noktalar ve açıklamaları 

 

Gerçekleştirilen tüm çalışmalarda görüntülere herhangi bir önişlem uygulanmadığı 

daha önce belirtilmiştir. Bu nedenle, hem MNIST hem de MUD veri setleri üzerinde 

gerçekleştirilen çalışmalarda arka planla ilgili herhangi bir işlem yapılmaksızın modeller 

geliştirilmiştir. Başka bir deyişle, her iki veri seti için geliştirilen modeller eğitim sürecinde 
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görüntüleri arka planlarıyla birlikte analiz etmiştir. MNIST veri setinin düşük çözünürlüğe 

sahip olması, ayrıca görüntülerdeki arka planların farklı renk tonlarına ve nesne veya nesne 

parçalarına sahip olması nedeniyle gerçek zamanlı sistem için uygun görülmemiştir. Buna 

karşılık, MUD veri seti yüksek çözünürlüğe sahip olup tamamen siyah bir arka plan üzerinde 

el görüntüleri içermektedir. Bu nedenle, arka plana bağlı oluşabilecek hataları en aza 

indirmek amacıyla MUD veri seti, geliştirilen modelin tanıma sisteminde kullanılmıştır. 

Böylece sistem kullanılırken arka plan olarak siyah bir zemin oluşturulup, arka plan kaynaklı 

hataların en aza indirgenmesi hedeflenmiştir. 

Arka plan sorunu kısmen çözüme ulaştırıldığına göre, sıradaki süreç Mediapipe’ın sağ 

ve sol el için ürettiği anahtar noktaları kullanarak geliştirilecek sistem için elin uygun şekilde 

tespit edilmesidir. Zernike momentlerin birim disk üzerinde çalıştığı daha önce ifade 

edilmiştir. Birim disk, karesel bir görüntü üzerinde oluşturabilir. Bu nedenle, anahtar 

noktalar kullanılarak eli çerçeveleyen en küçük kare oluşturulmuştur. Eli çerçeveleyen 

karesel görüntü, öncelikle 400x400 piksele ölçeklenerek özellik çıkarımı aşamasına 

yönlendirilir. Bu ölçekleme işlemi, görüntünün MUD veri seti üzerinde geliştirilen modelle 

uyumlu olması amacıyla gerçekleştirilir. Eğer bu işlem yapılmazsa sistemden beklenilen 

başarı elde edilemez. Özellik çıkarımından elde edilen öznitelik vektörü CVDNN’e 

yönlendirilerek çıkış sınıfı tespit edilir. Elde edilen sınıf ara yüzün sol üst köşesinde 

gösterilir. Ayrıca eli çerçeveleyerek elde edilen görüntü de 100x100 piksel boyutuna 

ölçeklenerek ara yüzün sağ üst köşesine yerleştirilmiştir.  

Özellik çıkarımı süreci çözünürlük yüksek olduğundan gerçek zamanlı bir sistem için 

fazla zaman almaktadır. Bu sebeple her beş görüntüde (frame) bir işlem yapılmaktadır. Fakat 

buradaki ilk amaç önerilen yöntemin başarısını test etmektir. Bu sebeple de yüksek 

çözünürlüklü görüntüler üzerinden işlem yapılmaktadır.  

Gerçek zamanlı sistem, eğitiminde kullanılmayan bir el üzerinden yani aslında LOSO 

tekniğine göre test edilmiştir. El işaretlerinin düzgün ve doğru bir şekilde yapılabilmesi, 

ayrıca arka planın ve ışığın optimum ayarlanması sonucunda geliştirilen sistem, tanıma oranı 

olarak %90 ile %95 arasında bir performans değeri elde etmektedir. Şekil 58 gerçek zamanlı 

sistemden bir kesiti göstermektedir. 

Tablo 16 ise web kamerasından alınan görüntü akışında elin kare içine alınmasını 

sağlayan kod parçacığını içermektedir. 



102 
 

 

Şekil 58. Gerçek zamanlı sistemden bir kesit görüntüsü 

 

Tablo 16. Web kamerasından alınan görüntü akışında elin kare içine alınmasını sağlayan 

kod parçacığı 

Kod Parçacığı 

import cv2 

import mediapipe as mp 

import numpy as np 

from kostur import ozellikcikar 

from progakis import sinifbelirle 

 

mp_drawing = mp.solutions.drawing_utils 

mp_drawing_styles = mp.solutions.drawing_styles 

mpHands = mp.solutions.hands 

 

cap = cv2.VideoCapture(0) 

hands = mpHands.Hands() 

margin = 20 

frame=0 

 

while cap.isOpened(): 

    frame+=1 

    if frame%5==0: 

        sinifimiz="" 
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        with mpHands.Hands(static_image_mode=True, max_num_hands=2, 

min_detection_confidence=0.5) as hands: 

            success, image = cap.read() 

            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) 

            results = hands.process(image) 

            if results.multi_hand_landmarks: 

                for hand_landmarks in results.multi_hand_landmarks: 

                    h, w, _ = image.shape 

                    x_coords = [] 

                    y_coords = [] 

                     

                    for lm in hand_landmarks.landmark: 

                        x, y = int(lm.x * w), int(lm.y * h) 

                        x_coords.append(x) 

                        y_coords.append(y) 

                     

                    x_min, x_max = min(x_coords), max(x_coords) 

                    y_min, y_max = min(y_coords), max(y_coords) 

                     

                    x_min_extended = max(x_min - margin, 0) 

                    y_min_extended = max(y_min - margin, 0) 

                    x_max_extended = min(x_max + margin, w) 

                    y_max_extended = min(y_max + margin, h) 

                     

                    side_length = max(x_max_extended - x_min_extended, y_max_extended - 

y_min_extended) 

                     

                    x_min_square = max(x_min_extended - (side_length - (x_max_extended - 

x_min_extended)) // 2, 0) 

                    y_min_square = max(y_min_extended - (side_length - (y_max_extended - 

y_min_extended)) // 2, 0) 

                    x_max_square = min(x_min_square + side_length, w) 

                    y_max_square = min(y_min_square + side_length, h) 

                     

                    mask = np.zeros(image.shape[:2], dtype=np.uint8) 

                    cv2.rectangle(mask, (x_min_square, y_min_square), (x_max_square, 

y_max_square), 255, -1) 

             

                    hand_area = cv2.bitwise_and(image, image, mask=mask) 

             

                    hand_area_cropped = hand_area[y_min_square:y_max_square, 

x_min_square:x_max_square] 

                    hand_area_resized = cv2.resize(hand_area_cropped, (400, 400)) 

                    hand_area_view=cv2.resize(hand_area_cropped, (100, 100)) 

                    dosyaismi="hand_area_cropped.png" 

                    cv2.imwrite(dosyaismi, cv2.flip(hand_area_resized, 1)) 
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                    ozellikcikar(dosyaismi) 

                    sinifimiz=sinifbelirle() 

                     

                    hand_area_height, hand_area_width = hand_area_view.shape[:2] 

                    top_left_x = 0 

                    top_left_y = 0 

             

                   

                    if hand_area_height > 0 and hand_area_width > 0: 

                        image[top_left_y:top_left_y + hand_area_height, top_left_x:top_left_x + 

hand_area_width] = hand_area_view 

                                                 

                    cv2.rectangle(image, (x_min_square, y_min_square), (x_max_square, 

y_max_square), (0, 255, 0), 2) 

                    frame=0 

        imageflip=cv2.flip(image, 1) 

        cv2.putText(imageflip, f'{sinifimiz}', (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, 

(0, 255, 0), 2, cv2.LINE_AA) 

        cv2.imshow('HandTracker',imageflip) 

        if cv2.waitKey(5) & 0xFF == 27: 

            break     

 

cap.release() 

cv2.destroyAllWindows() 

 



 

3. BULGULAR VE TARTIŞMA 

Bu bölüm, çalışmalar gerçekleştirilirken karşılaşılan zorlukların nasıl çözüldüğünü, 

farklı seçeneklerin olduğu durumlarda ilgili seçeneklerden elde edilen sonuçları, diğer 

çalışmalarla karşılaştırmaları ve önerilen yöntemin etkisinin kanıtlanmasını içeren çeşitli 

işlemlerden oluşmaktadır. 

3.1. Model Mimarisi ve Akıllı Sistem Üzerindeki Ablasyon Çalışmaları 

İlk olarak, özellik çıkarımı aşamasında moment derecesinin nasıl belirlendiği daha 

detaylı bir şekilde incelenecektir. Moment derecesinin belirlenmesi işlemi, öncelikli olarak 

10. dereceden 30. dereceye kadar, 4'er adımlık bir ilerlemeyle (10, 14, 18, 22, 26 ve 30) elde 

edilen öznitelik vektörlerinin CVDNN'ye verilmesi ve sonuçların analiz edilmesiyle başlar. 

Elde edilen sonuçları incelediğinde, en iyi değerlerin benzerlik algoritmaları MSE ve 

SSIM’in sonuçlarına bağlı olarak 10. ve 14. moment derecelerinde elde edildiği tespit 

edilmiştir. Aynı işlemler, 10. dereceden 15. dereceye kadar (10, 12, 13, 14 ve 15) adım adım 

gerçekleştirilmiş ve en iyi sonucun 14. derecede olduğu belirlenmiştir. Gerçekleştirilen 

deneyler sonucunda, doğru moment derecesinin seçilmesinin sistemin performansını 

yaklaşık %8-10 oranında etkilediği gözlemlenmiştir. 

Başlangıçta, arka planın performans üzerindeki etkisini netleştirebilmek amacıyla 

MNIST veri seti üzerinde çeşitli arka plan çıkarım teknikleri denenmiş, ancak arzu edilen 

başarıya ulaşılamamıştır. Bu noktada, veri setinin düşük çözünürlüğe sahip olması ve 

görüntülerin net olmaması önemli bir etkiye sahiptir. MNIST veri setinin başlangıçta 

seçilmesinin nedeni, birçok çalışmanın bu veri seti üzerinde gerçekleştirilmiş olması ve 

dolayısıyla karşılaştırma imkanı sunmasıdır. MNIST veri setinde elde edilen başarıyı 

takiben, MUD veri setinde sağlanan sonuçlar yöntemin etkinliğini kanıtlamış ve doğrudan 

akıllı sistem tasarımına geçilmiştir. Akıllı sistemin test aşamalarında, arka planın farklı 

olduğu durumlarda sonuçların olumsuz olduğu tespit edilmiştir. MUD veri setindeki tüm 

görüntülerin arka planının tamamen siyah olması ve akıllı sistemin de benzer bir ortam 

kurulduğunda yüksek başarı elde edilmesi, arka planın etkisinin ne denli önemli olduğunu 

göstermektedir. MUD veri setinde arka planın çıkarılması işleminin başarılı olacağı 
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rahatlıkla söylenebilir. Aynı şekilde, akıllı sistemde de arka planın kolayca çıkarılabileceği 

bir ortam hazırlanarak siyah arka plan bağımlılığından kurtulmak mümkündür. 

CVDNN modülünde, katman sayısını belirlemek için öncelikle 4-5 katmanlı yapılar 

test edilmiş ve sonuçların benzer olduğu gözlemlenmiştir. CVDNN’in karmaşık girişlere 

sahip XOR problemini çözmek amacıyla üretilen ilk prototipinin gerçek değerli aktivasyon 

fonksiyonu sigmoid kullandığı daha önce ifade edilmiştir. Sigmoid dışında, sıkça kullanılan 

ReLU ve tanh gibi gerçek değerli aktivasyon fonksiyonları da mevcuttur. Çalışmalar 

kapsamında her üç fonksiyon da kullanılmış ve ReLU'nun en iyi seçenek olduğu tespit 

edilmiştir. tanh fonksiyonu da başarılı sonuçlar vermiş olmakla birlikte, ReLU'nun 

performansına ulaşamamıştır. ReLU fonksiyonun performansa etkisi, sigmoid’e kıyasla 

yaklaşık %9 ile %11 arasında değişmektedir. Seyreltme tekniği, aşırı öğrenmeyi önleyerek 

sistemin performansını artırmada kritik bir rol oynar. Seyreltme oranının belirlenmesi ve 

uygulanmasının detayları daha önce ifade edilmiştir. Seyreltme tekniğinin sistem 

performansına etkisi yaklaşık %6-8 arasında değişmektedir. 

Önerilen yöntemin etkinliğini kanıtlamak amacıyla bir başka çalışma daha 

gerçekleştirilmiştir. Bu çalışmada, karmaşık verilerin gerçek değerli verilere kıyasla daha iyi 

sonuçlar verdiğini göstermek için, ilk çalışma gerçek verilerle yapılmıştır. Bu amaçla, 

karmaşık verilerin genlik |𝑧| bilgileri kullanılarak eğitim ve test öznitelik vektörleri 

oluşturulmuştur. Benzer şekilde, CVDNN’in yapısı aynı kalmak şartıyla sadece gerçek 

değerli verilerle çalışabilecek şekilde DNN’e dönüştürülmüştür. Sonuçta elde edilen DNN, 

MNIST test verilerinde %72.15 tanıma oranı elde etmiştir. Literatürde, benzer optimizasyon 

algoritmasını (momentumlu SGD) kullanan sistemlerin, gerçek değerli veriler üzerinde 

SGD’nin %66.02 ve SGDC’nin %59.80 tanıma oranı elde ettiği belirtilmektedir. Ayrıca, en 

yaygın kullanılan optimizasyon algoritmalarından biri olan Adam'ın, momentumlu SGD ile 

benzer başarı oranlarına sahip olduğu gözlemlenmiştir (Kingma & Ba, 2024). Sonuç olarak, 

karmaşık sayılarla çalışmanın, modelin yapısını korunarak gerçek sayılarla çalışabilecek 

şekilde yapılandırılmasına kıyasla yaklaşık %20 olumlu bir performans etkisi sağladığı 

gözlemlenmiştir. 

3.2. Geliştirilen Modelin Diğer Çalışmalarla Karşılaştırılması 

Bu bölümde, önerilen yaklaşımı içeren model literatürdeki diğer çalışmalarla 

karşılaştırılır. Öncelikle önerilen modelin MNIST veri setinde kullanılan diğer modellerle 
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karşılaştırılması ele alınmakta, ardından benzer bir karşılaştırma MUD veri seti için Holdout 

ve LOSO tekniklerine bağlı olarak ayrı ayrı yapılmaktadır. 

Adil bir karşılaştırma sağlamak amacıyla, MNIST test veri setinin tamamı üzerinde 

yapılan çalışmalara odaklanılmaktadır. Tablo 17, önerilen model ile MNIST test veri setinin 

tamamında gerçekleştirilen çalışmaların karşılaştırılmasını ifade etmektedir. Ayrıca, tabloda 

listelenen çalışmaların hiçbiri veri seti üzerinde herhangi bir ön işleme gerçekleştirmemiştir. 

 

Tablo 17. Önerilen model ile diğer çalışmaların MNIST test veri setindeki tanıma oranları 

Model/Metot Tanıma Oranı (%) 

NBG (Li. vd, 2022) (Bhushan vd., 2022) 38.9 

SGDC (Bhushan vd., 2022) 59.8 

SGD (Li. vd, 2022) 66.02 

KNN (Li. vd, 2022) / KNN (Bhushan vd., 2022) 78.17 / 80.46 

XGBoost (Bhushan vd., 2022) 81.35 

RFC (Li. vd, 2022) / RF (Bhushan vd., 2022) 81.61 / 84.43 

LeNeT-5 (Bilgin & Mutludoğan, 2019) 82.19 

SVM (Li. vd, 2022) 84.19 

CapsNet (Bilgin & Mutludoğan, 2019) 88.93 

Önerilen Model 89.01 

CNN (Bhushan vd., 2022) 91.41 

 

Önerilen modelin MUD veri seti için diğer çalışmalarla karşılaştırılması, Holdout ve 

LOSO tekniklerine göre sırasıyla Tablo 18 ve Tablo 19'da listelenmiştir. Tüm çalışmaların 

LOSO tekniğinde aynı veriler üzerinde gerçekleştirildiği göz önüne alındığında, 

karşılaştırmalar daha güvenilirdir. 

 

Tablo 18. Holdout tekniğine göre önerilen model ve diğer çalışmaların MUD test veri 

setindeki tanıma oranları 

Model/Metot Tanıma Oranı (%) 

Inception-v3 (Barbhuiya vd., 2022) 93.50 

Squeezenet (Barbhuiya vd., 2022) 95.23 

Vgg19 (Barbhuiya vd., 2022) 96.68 

AlexNet (Barbhuiya vd., 2022) 97.01 

Vgg16 (Barbhuiya vd., 2022) / Vgg16 (Chevtchenko vd., 2018) 97.48 / 92.20 

Chevtchenko (Chevtchenko vd., 2018) 98.05 

Barbhuiya (Barbhuiya vd., 2022) 98.41 

Önerilen Model 98.67 
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Tablo 19. LOSO tekniğine göre önerilen model ve diğer çalışmaların MUD test veri 

setindeki tanıma oranları 

Model/Metot Tanıma Oranı (%) 

Vgg16 (Chevtchenko vd., 2018) 61.42 

MobileNet (Chevtchenko vd., 2018) / MobileNet (Bhaumik vd., 2024) 62.53 / 73.25 

Modified VGG16 + SVM (Barbhuiya vd., 2021) 70.00 

Modified AlexNet+SVM (Barbhuiya vd., 2021) 70.00 

MobileNetV2 (Bhaumik vd., 2024) 72.28 

ResNet50 (Bhaumik vd., 2024) 74.42 

CNN (Chevtchenko vd., 2018) 73.86 / 78.51 / 79.04 

SpAtNet (Bhaumik vd., 2024) 80.44 

Önerilen Model 81.22 

Chevtchenko (Chevtchenko vd., 2018) 84.02 

 

 Geliştirilen modelin başarı durumu incelenirken, çıkış sınıflarında ne tür hatalar 

yapıldığına dair analizler de gerçekleştirilmiştir. Bu analizlerin sonuçları aslında karmaşıklık 

matrisi üzerinden de elde edilebilse de, çok fazla çıkış sınıfının olması sebebiyle hata yapılan 

çıkışların tespitini daha rahat sağlamak amacıyla yapılmıştır. Bu yönde yapılan çalışmalarda, 

doğru sınıf çıktısı ile tahmini sınıf çıktıları farklı olan öğeler listelenmiştir. Şekil 59, ASL 

veri setinin eğitim için %70, test için %30 olarak ayrıldığı (Holdout tekniği) durumda 

önerilen modelin test verisi üzerinden ürettiği çıkış sınıflarının hata analiz sonuçlarını 

göstermektedir. İlgili şekilde, boş kümeler ilgili sınıf için hata olmadığını gösterirken, diğer 

durumlarda o sınıf için yapılan yanlış tahminleri ve sayısını virgülle ayrılmış şekilde sınıf 

bazında göstermektedir. 

Şekil 60, önerilen modelin ilgili tekniğe göre hata yaptığı durumlarda, ayırt etmede en fazla 

zorluk yaşadığı sınıflara ait görüntüleri birlikte göstermektedir. İlgili şekilden görülebileceği 

üzere, önerilen model 6 ile W, 0 ile O ve 2 ile V sınıflarının bazı örneklerinde sorun 

yaşamaktadır. Bu belirtilen sınıflarla ilgili olarak, gerçek zamanlı denemelerde de sorun 

yaşanabileceği görülmüştür çünkü Şekil 60'dan anlaşılacağı üzere, bu sınıflar birbirine 

oldukça benzemektedir. Ancak burada dikkat edilmesi gereken durum ilgili sınıfların 

birbirinden ayrılmasındaki çok ince detaylardır. Bu durum, gerçek zamanlı bir sistemde 

yapılan deneylerde, ilgili kişinin işaret dilini çok iyi bilmesinin önemli olduğunu ortaya 

koymaktadır. İlgili veri seti Holdout tekniğine göre %80-%20 olarak ayrıldığında, önerilen 

model %99.60 tanıma oranına ulaşmakta ve 503 görüntüde 501 doğru tahmin yapmaktadır. 
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Şekil 59. ASL veri setinin %70 eğitim %30 test verisi olarak ayrıldığı durumda önerilen 

model tarafından elde edilen hata analiz sonuçları 

 

 

Şekil 60. ASL veri setinde birbirine oldukça benzeyen çıkış sınıfları 
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Son olarak şunu ifade edebiliriz ki web kamerasından alınan görüntüde özellik 

çıkarımı aşamasında kullandığımız karmaşık Zernike moment tekniği CNN gibi hazır sinir 

ağlarına kıyasla donanım bazlı kaynak tüketimini oldukça azaltmıştır. Bu sayede model çok 

daha düşük kaynak içeren sistemlerde de çalışabilmektedir. 

 



 
 

 

4. SONUÇLAR 

 

Bu çalışmada, Amerikan işaret dilini tanımaya yönelik bir araştırma 

gerçekleştirilmiştir. Bu araştırmada, özellik çıkarma aşamasında Zernike momentlerin 

büyüklükleri yerine karmaşık bileşenler ve faz bilgisinin kullanılması daha uygun bir yöntem 

olarak değerlendirilmiştir. Bu sayede, elde edilen öznitelik vektörünün görüntüyü daha iyi 

temsil edeceği ve dolayısıyla geliştirilen uygulamanın daha başarılı sonuçlar üreteceği 

öngörülmüştür.  

Literatürde karmaşık Zernike momentler olarak adlandırılan bu teknikle, öncelikli 

olarak görüntünün yeniden oluşturulması amaçlanmıştır. Üretilen yeniden oluşturulmuş 

temsillerin, yüksek moment derecelerinde orijinal görüntüye oldukça benzediği tespit 

edilmiş ve bu durum, yöntemin özellik çıkarımındaki etkinliğini kanıtlamıştır.  

Elde edilen karmaşık öznitelik vektörünü işleyebilecek karmaşık değerli bir sinir 

ağının geliştirilmesi gerekmektedir. Bu bağlamda, katmanlar üzerinde karmaşık verilere ayrı 

ayrı aktivasyon fonksiyonu uygulanır ve elde edilen veriler üzerinden tekrar karmaşık veri 

üretilerek ağın katmanları boyunca karmaşık verilerle çalışması sağlanır. 

Görüntü analizi gibi karmaşık süreçlere geçilmeden önce, karmaşık değerli sinir ağının 

oluşturulması ve işlevselliğini test etmek amacıyla basit bir problemin çözümüne 

odaklanılmıştır. Bu bağlamda, karmaşık giriş değerlerine sahip XOR probleminin çözümü 

tasarlanan sinir ağı üzerinden gerçekleştirilmiştir. 16 farklı durumu için problem için 12 

durum eğitim amacıyla kullanılmış ve toplam 16 durum test olarak verilmiştir. Geliştirilen 

ağın ilk prototipi tüm durumları doğru olarak tespit etmiştir. 

XOR problemindeki başarıdan sonra, asıl hedef olan işaret dili tanıma sisteminin 

oluşturulmasına geçilmiştir. İki farklı veri seti olan MNIST ve MUD üzerinde 

gerçekleştirilen işlemler doğrultusunda, özellik çıkarım sürecinde çeşitli düzenlemeler 

yapılmıştır. Bu düzenlemelerden en önemlisi, moment derecesinin ayarlanmasıdır. Ancak, 

kapsamlı bir analiz ve geliştirme süreci, birçok düzenleme ile birlikte karmaşık değerli sinir 

ağı modülünde gerçekleştirilmiştir. Bu düzenlemelerden bazıları; katman sayısının ve 

katmanlardaki nöron sayısının belirlenmesi, seyreltme oranının ve tekniğinin tespit edilmesi, 

öznitelik vektörü değerlerinin normalizasyonu, karmaşık aktivasyon fonksiyonun 

netleştirilmesi, öğrenme adımı sırasında verilerin hangi oranda ayrılarak kullanılacağının 

kararlaştırılması, çıkış katmanının yorumlanmasında ve hatanın geri yayılımında 
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kullanılacak fonksiyonların belirlenmesi, optimizasyon algoritmasının saptanması ve 

parametrelerinin ayarlanması olarak ifade edilebilir. Bu düzenlemeler gerçekleştirilirken 

karşılaşılan en önemli problem, bütün parametrelerin en uygun şekilde ayarlanması 

durumunda dahi tek bir parametrenin yanlış ayarlanmasının sonuçları ciddi şekilde olumsuz 

yönde etkilemesidir. 

Önerilen model MNIST ve MUD veri tabanları üzerinde ayrı ayrı test edilmiştir. 

MNIST veri setinin test veri kümesinde %89.01 tanıma doğruluğu elde ederek önemli bir 

başarı sağlamıştır. Ayrıca, önerilen model aynı veri seti üzerinde yapılan diğer çalışmalarla 

karşılaştırıldığında birçok bilinen çalışma ve modeli geride bırakarak, CNN’in ardından 

ikinci olmuştur. 

MUD veri seti, eğitim ve test kümeleri olarak ayrılmadığından, önerilen model 

Holdout ve LOSO tekniklerine göre ayrı ayrı değerlendirilmiştir. Holdout tekniğine uygun 

olarak veri seti %70 eğitim, %30 test kümesi olacak şekilde ayrıldığında, test kümesinde 

%98.67 tanıma oranı elde edilmiştir. Aynı veri seti üzerinde yapılan birçok çalışmayla 

kıyaslandığında, önerilen model en yüksek tanıma oranını elde etmiştir. İlgili tekniğe göre 

yapılan çalışmalar incelendiğinde, birçok çalışmanın veri setini %80 eğitim, %20 test verisi 

olarak ayırdığı görülmüştür. Benzer şekilde, MUD veri seti %80 eğitim, %20 test verisi 

olarak ayrıldığında tanıma oranı %99.60 seviyesine yükselmiştir. Bu değerlerin karmaşıklık 

matrisinden elde edilen doğruluk oranı değil, tanıma oranı olduğunu tekrar hatırlatmakta 

fayda bulunmaktadır. 

LOSO tekniğine bağlı olarak MUD veri seti üzerinde gerçekleştirilen çalışmalarda, 

önerilen model %81.22 tanıma oranı elde etmiş ve CNN tabanlı birçok çalışmayı geride 

bırakarak ikinci olmuştur. Elde edilen sonuçlar üzerinden yapılan analizlerde, Denek 5’e ait 

skorun (eğitimde Denek 5 yok, test kümesinde var) düşük olduğu ve dolayısıyla ana skoru 

olumsuz etkilediği görülmüştür. Literatürdeki bazı çalışmalarda da Denek 5’e ait sonuçların 

düşük olduğu gözlemlenmiş ve bu deneğin diğer deneklere göre zorlu ve etkili bir 

değerlendirme aracı olduğu, elde edilen sonuçlardan da tespit edilmiştir. 

Geliştirilen modelin entegre edildiği bir gerçek zamanlı uygulama da oluşturulmuştur. 

Bu uygulama, web kamerasından gelen görüntü akışını anlık olarak işleyerek öncelikle el 

tespiti ve takibini gerçekleştirir. El tespiti önerilen modele uygun şekilde (birim disk 

sebebiyle karesel) yapıldıktan sonra, özellik çıkarım modülü ile tespit edilen alanın öznitelik 

vektörü elde edilir. Bu vektör, CVDNN modülüne yönlendirilir ve Holdout (70-30) 

tekniğiyle eğitilen model üzerinden değerlendirilir. Ancak burada önemli bir hususa dikkat 
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çekmek gerekir. Holdout tekniğine dayalı bir model kullanılıyor olmasına rağmen, 

uygulamanın işleyişi aslında LOSO tekniğine benzerdir. Bunun nedeni, test sırasında 

kullanılan el görüntülerinin, eğitim verisi içerisinde yer almamasıdır. İlgili uygulama 

üzerinde yapılan çalışmalar sırasında, ışık ve arka plan faktörlerinin oldukça etkili olduğu 

gözlemlenmiştir. MUD veri setinin arka planının tamamen siyah olması avantajından 

yararlanarak, uygulama için siyah arka planlı bir ortam hazırlanarak geliştirilen sistem test 

edilmiştir. Ayrıca, ışık koşulları uygun şekilde ayarlandığında ve el işaretlerini düzgün bir 

şekilde gerçekleştirildiğinde, %90’ın üzerinde bir tanıma oranı elde edilmiştir. 



 

5. ÖNERİLER 

 

Karmaşık Zernike momentler kullanılarak önerilen yöntemle geliştirilen model, 

başarılı sonuçlar elde etmiş olsa da gerçek zamanlı uygulamada karşılaşılan bazı durumlar, 

gelecekte yapılacak geliştirmeler için yol gösterici olmuştur. Bu bağlamda, ışık ve arka plan 

problemlerinin çözülmesi hedeflenmektedir. Her ne kadar iki ayrı faktör gibi görünseler de, 

temelde bu durum bütünleşik olarak değerlendirilebilir. Işık problemi, arka planın varlığına 

bağlı olarak artmaktadır. Arka planın çıkarılabileceği bir durumda ışığın etkisi çok daha 

düşük olacaktır. Bu nedenle, gelecekteki en önemli çalışmalar arasında arka planın 

çıkarılması öne çıkmaktadır. Belirtilen ön işleme adımlarını görüntülere uygulamanın başarı 

oranlarını önemli ölçüde artırabileceği düşünülmektedir. 

Görüntü akışında el tespiti gerçekleştirildikten sonra veya sabit bir görüntü 

kullanıldığında, özellik çıkarımı modülünde ilgili görüntü üzerinde birim çember 

oluşturulmaktadır. Bu bağlamda, bazı resimlerde hedeflenen verinin çemberin dışında kalma 

olasılığı oldukça yüksektir. Bu durum, hem öğrenme hem de test aşamalarında dolaylı olarak 

olumsuz bir etki yaratmaktadır. Bu noktada hedeflenen veriyi çemberin içine düşürecek 

şekilde bir karesel alanın seçilmesinin olası veri kaybını azaltarak sistemin performansını 

artıracağı düşünülmektedir. 

Gerçek zamanlı sistemin daha hızlı tepki verebilmesi için, makul başarı (tanıma) 

oranlarını koruyarak daha düşük çözünürlüklü veri veya veri setleri ile eğitilen modeller 

kullanılmalıdır. Bu doğrultuda, en uygun değere ulaşılana kadar çeşitli çalışmalar yapılması 

gerekmektedir. 

Gerçekleştirilen akıllı tanıma sistemi sabit görüntüler üzerinde oldukça yüksek başarı 

oranları elde etmiştir. Arka plan sorunlarının çözülmesinin ardından, bir sonraki aşamada 

hareketli görüntüler (çoğunlukla kelimeler) üzerinde çalışabilecek bir sistemin geliştirilmesi 

hedeflenmektedir. Belirtilen öneriler sisteme dahil edildiğinde, ilgili sistem mobil cihazlar 

üzerinde çalışabilecek bir yapıya sahip olacaktır. Bu sayede, bu alanda işlevsel bir mobil 

uygulama geliştirmek mümkün olacaktır. 

Bütün belirtilen hedeflerin dışında, önerilen yöntem literatürde belirtilen bazı 

çalışmalara benzer şekilde, diğer model veya yöntemlerle birleştirilerek hibrit bir yaklaşım 

olarak da denenebilir. 
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Karmaşık Zernike momentleri ve karmaşık değerli derin sinir ağları, görüntü tanıma 

(özellik çıkarımı ve sınıflandırma), şekil tanıma (tıbbi görüntüleme), biyometrik sistemler 

(parmak izi ve retina tarama), görüntü restorasyonu, radar teknolojileri, sinyal işleme, askeri 

sistemler, telekomünikasyon, robotik, otonom sistemler ve makine öğrenmesi gibi geniş bir 

uygulama yelpazesinde kullanılmaktadır. Genellikle gerçekleştirilen akademik çalışmalar 

elektrik-elektronik ve alt bilim dallarını kapsadığından, diğer alanlar üzerinde çeşitli 

akademik çalışmalara da yoğunlaşılabilir. 
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