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Bu çalışma, Kronik İnflamatuvar Demiyelinizan Poliradikülonöropati (CIDP) 

teşhisinde elektromiyografi (EMG) sinyal görüntülerinin yapay zeka tabanlı derin 

öğrenme yöntemleri ile sınıflandırılmasını hedeflemektedir. CIDP, periferik sinirlerin 

demiyelinizasyonu ile karakterize edilen ve hastaların motor ve duyusal sinir 

fonksiyonlarında ciddi bozulmalara yol açan kronik bir nörolojik hastalıktır. CIDP teşhisi, 

benzer nöropatilerle semptomlarının örtüşmesi nedeniyle karmaşık bir süreçtir ve erken 

teşhis, tedavi sürecinin etkinliği açısından büyük önem taşır. Bu nedenle, EMG 

sinyallerinin sınıflandırılması, doğru teşhisin sağlanması ve benzer hastalıklarla karışma 

olasılığının azaltılması açısından kritik bir rol oynar. Çalışmada, Selçuk Üniversitesi Tıp 

Fakültesi Hastanesi'nden elde edilen EMG sinyal verilerinden oluşan bir veri seti 

kullanılmıştır. Bu veri seti, 13 CIDP hastası ve 13 sağlıklı bireyden alınan toplam 130 

EMG sinyal görüntüsünü içermektedir. Veriler, Nihon Kohden MEB-200 model cihazla 

standardize edilmiş koşullarda toplanmış olup, yüksek çözünürlük ve renk derinliğine 

sahip PNG formatında saklanmıştır. Veri seti, CIDP ve sağlıklı bireyler arasında ayrım 

yapmak amacıyla iki sınıfa ayrılmış ve çeşitli CNN mimarileri ile analiz edilmiştir. 

Çalışmada kullanılan CNN modelleri arasında GoogLeNet, ResNet-50, EfficientNet-B0 

ve DarkNet-53 gibi derin öğrenme algoritmaları yer almaktadır. Bu modeller, EMG 

sinyallerindeki ince farklılıkları yakalayarak hastalığın teşhisi için kullanılmıştır. 

Modellerin performansları doğruluk, duyarlılık, özgüllük ve F1 skoru gibi metriklerle 

değerlendirilmiş ve her bir modelin CIDP teşhisindeki başarısı analiz edilmiştir. Özellikle 

ResNet-50, EfficientNet-B0 ve DarkNet-53 modelleri, %100’e yakın doğruluk oranlarına 

ulaşarak CIDP teşhisinde yüksek bir performans sergilemiştir. GoogLeNet modeli ise 

diğer modellere kıyasla biraz daha düşük bir performans göstermiştir, ancak yine de teşhis 

sürecinde önemli katkılar sağlamıştır. Sonuç olarak, bu çalışma, derin öğrenme 

tekniklerinin CIDP gibi karmaşık nörolojik hastalıkların teşhisinde güçlü bir araç olarak 

kullanılabileceğini göstermektedir. EMG sinyallerinin derin öğrenme algoritmaları ile 

başarılı bir şekilde sınıflandırılması, klinik uygulamalarda yapay zeka tabanlı karar destek 
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sistemlerinin kullanılabilirliğini desteklemektedir. Bu sistemler, özellikle erken teşhis ve 

tedavi süreçlerinde doktorlara önemli bir rehberlik sağlayabilir. Ancak, çalışmada 

kullanılan veri setinin nispeten küçük olması, elde edilen sonuçların genellenebilirliği 

konusunda bazı sınırlamalar getirmektedir. Gelecekte daha geniş veri setleri ve farklı 

derin öğrenme tekniklerinin kullanılması, bu modellerin performansını daha kapsamlı bir 

şekilde değerlendirebilir ve CIDP teşhisinde yapay zeka uygulamalarının potansiyelini 

daha da artırabilir. Bu bağlamda, derin öğrenme modelleri nörolojik hastalıkların teşhis 

süreçlerini dönüştürebilecek güçlü bir araç olarak karşımıza çıkmaktadır. 

 

Anahtar Kelimeler: Convolutional Neural Network (CNN), Elektromiyografi 

(EMG), Derin öğrenme, Kronik İnflamatuvar Demiyelinizan Poliradikülonöropati 

(CIDP), Teşhis, Yapay zeka  
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Jury 

Doç.Dr. Adem GÖLCÜK 

Doç.Dr. Muhammet Serdar BAŞÇIL 

Dr.Öğr.Üyesi Umut ÖZKAYA 
 

This study aims to classify electromyography (EMG) signal images using 

artificial intelligence-based deep learning methods for the diagnosis of Chronic 

Inflammatory Demyelinating Polyneuropathy (CIDP). CIDP is a chronic neurological 

disease characterized by the demyelination of peripheral nerves, leading to significant 

impairments in both motor and sensory nerve functions. The diagnosis of CIDP is a 

complex process due to the overlap of its symptoms with other neuropathies, and early 

diagnosis is crucial for the effectiveness of treatment. Therefore, the classification of 

EMG signals plays a critical role in ensuring an accurate diagnosis and reducing the 

likelihood of confusion with similar diseases. In this study, a dataset of EMG signal data 

obtained from the Selçuk University Faculty of Medicine Hospital was used. This dataset 

includes a total of 130 EMG signal images, obtained from 13 CIDP patients and 13 

healthy individuals. The data were collected under standardized conditions using the 

Nihon Kohden MEB-200 model device and were stored in PNG format with high 

resolution and color depth. The dataset was divided into two classes, distinguishing 

between CIDP patients and healthy individuals, and analyzed using various CNN 

architectures. The CNN models used in the study included deep learning algorithms such 

as GoogLeNet, ResNet-50, EfficientNet-B0, and DarkNet-53. These models were 

employed to capture subtle differences in EMG signals for diagnostic purposes. The 

models’ performances were evaluated using metrics such as accuracy, sensitivity, 

specificity, and F1 score, and the success of each model in diagnosing CIDP was 

analyzed. Particularly, ResNet-50, EfficientNet-B0, and DarkNet-53 achieved high 

performance with near 100% accuracy in CIDP diagnosis. While GoogLeNet performed 

slightly lower than the other models, it still made significant contributions to the 

diagnostic process. In conclusion, this study demonstrates that deep learning techniques 

can be effectively used as a powerful tool in diagnosing complex neurological diseases 

like CIDP. The successful classification of EMG signals through deep learning algorithms 
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supports the potential use of AI-based decision support systems in clinical applications. 

These systems can provide valuable guidance to physicians, especially in early diagnosis 

and treatment processes. However, the relatively small size of the dataset used in this 

study poses some limitations on the generalizability of the results. In the future, using 

larger datasets and exploring different deep learning techniques can further evaluate the 

performance of these models and enhance the potential of AI applications in CIDP 

diagnosis. In this context, deep learning models present themselves as a powerful tool 

capable of transforming the diagnostic processes of neurological diseases. 

 
Keywords: Artificial Intelligence (AI), Chronic Inflammatory Demyelinating 

Polyneuropathy (CIDP), Convolutional Neural Network (CNN), Deep Learning, 

Diagnosis, Electromyography (EMG) 
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1. GİRİŞ 

 

Kronik İnflamatuvar Demiyelinizan Polinöropati (CIDP), periferik sinirlerin 

myelin kılıfında meydana gelen kronik inflamasyon sonucu ortaya çıkan yavaş ilerleyen 

bir nörolojik hastalıktır. CIDP, dünya genelinde nadir görülen bir hastalık olmasına 

rağmen etkilediği bireylerde ciddi nörolojik semptomlara ve fonksiyon kayıplarına neden 

olabilir. Hastalık genellikle simetrik olarak hem motor hem de duyusal sinirleri etkiler, 

bu da hastaların hem hareket yeteneklerinde hem de duyusal algılarında belirgin 

bozulmalara yol açar. CIDP'nin teşhisi bu semptomların diğer nörolojik hastalıklarla 

büyük ölçüde örtüşmesi nedeniyle oldukça karmaşıktır. Bu nedenle hastalığın erken 

dönemde doğru teşhis edilmesi tedavi sürecinin etkinliği ve hastalığın ilerlemesinin 

önlenmesi açısından kritik bir öneme sahiptir (Uncini ve Kuwabara, 2015). 

 

CIDP'nin kesin nedeni tam olarak bilinmemekle birlikte genellikle bağışıklık 

sisteminin yanlışlıkla sinirlerin myelin kılıfına saldırması sonucu ortaya çıkar. Bu 

bağışıklık yanıtı sinirlerin düzgün bir şekilde işlev görmesini engelleyerek sinyal 

iletiminde gecikmelere ve bozulmalara neden olur. CIDP'nin tetiklenmesinde bazı 

enfeksiyonlar, otoimmün hastalıklar veya genetik yatkınlık gibi faktörlerin rol oynadığı 

düşünülmektedir (Kuwabara ve ark., 2006). Ayrıca, bazı durumlarda CIDP'nin 

tetiklenmesi, vücudun bağışıklık sisteminin anormal bir şekilde tepki vermesi sonucu 

ortaya çıkabilir. Örneğin, geçirilen bir enfeksiyon sonrasında vücutta gelişen anormal 

bağışıklık yanıtları CIDP'yi tetikleyebilir (Brun ve ark., 2022). Şekil 1.1'de görüldüğü 

gibi, CIDP'de bağışıklık hücreleri tarafından myelin kılıfına saldırı sonucu sinir 

hücrelerinin hasar görmesi sinir iletiminde kesintilere yol açar. Sağlıklı bir sinir 

hücresinde sinyaller düzgün bir şekilde iletilirken, hasarlı myelin kılıfı olan sinir 

hücresinde bu iletim kesintili ve bozuk hale gelir. 

 

 

Şekil 1.1 Sinir Hücresi Gösterimi; (a) Sağlıklı Bireyin Sinir Hücresi, (b) CIDP Hastasının Sinir Hücresi 

(Panzyga, 2023) 
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CIDP'nin teşhis sürecinde karşılaşılan zorluklar, hastalığın farklı klinik formlarda 

ortaya çıkabilmesi ve benzer semptomlara sahip diğer nöropatilerle karıştırılabilmesi 

nedeniyle daha da artar. Örneğin, "atipik" CIDP vakaları, genellikle tipik CIDP belirtileri 

taşımayan, dolayısıyla teşhis edilmesi daha zor olan vakalardır. Bu tür vakalar, bazen 

distale yerleşik demiyelinizan simetrik nöropati (DADS) veya multifokal motor nöropati 

gibi diğer nöropatilerle karıştırılabilir(Chroni ve Kleopa, 2021). Şekil 1.2'de görüldüğü 

gibi, CIDP ve diğer nöropatiler arasındaki farklar, sinir iletim hızları ve klinik belirtilerle 

tanımlanabilir. Bu grafik, CIDP'nin atipik formlarının, distale yerleşik demiyelinizan 

simetrik nöropati (DADS) ve multifokal motor nöropati gibi diğer nöropatilerle 

karıştırılabileceğini görsel olarak göstermektedir. 

 

 

Şekil 1.2 Demiyanizel Hastalıkların Sinyal Gösterimi (Feldman ve ark., 2021) 

 

Yanlış teşhis konulan hastalar, genellikle gereksiz ve potansiyel olarak zararlı 

tedavilere maruz kalmakta, aynı zamanda gerçek hastalıklarının tedavisi gecikmektedir. 

ABD'de yapılan bir çalışmada, CIDP tanısı konan hastaların neredeyse yarısının aslında 

bu hastalığa sahip olmadığı tespit edilmiştir(Allen, 2020). Bu durum, hem bireysel 

düzeyde sağlık sorunlarına hem de toplumsal düzeyde önemli ekonomik yüklerin 

doğmasına neden olmaktadır. CIDP, bireyler için olduğu kadar toplumlar için de ciddi 

ekonomik yükler doğurur. Yanlış teşhis konulan vakalarda, gereksiz tıbbi müdahaleler ve 

uzun süreli tedaviler, sağlık sistemi üzerindeki maliyetleri artırırken, hastaların iş gücü 

kaybı ve yaşam kalitesindeki düşüş gibi sosyal maliyetler de dikkate değerdir. CIDP’nin 

teşhis edilmesi ve uygun tedavi stratejilerinin belirlenmesi, bu ekonomik yükü 

hafifletmek için hayati önem taşır. Özellikle sağlık sistemlerinin bu hastalığın teşhisinde 
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daha dikkatli ve titiz olması, hem bireysel hem de toplumsal sağlık maliyetlerinin 

düşürülmesine katkı sağlayacaktır (Divino ve ark., 2018). 

 

1.1. CIDP Teşhisinde Kullanılan Yöntemler 

 

CIDP teşhisinde, doğru ve erken tanı konulması için çeşitli klinik ve laboratuvar 

yöntemleri kullanılmaktadır. Bu yöntemlerin kombinasyonu, hastalığın doğru bir şekilde 

tanımlanması ve benzer semptomlara sahip diğer nöropatilerden ayırt edilmesi açısından 

büyük önem taşır. CIDP teşhisi genellikle hastanın klinik öyküsünün ayrıntılı bir şekilde 

değerlendirilmesiyle başlar. Hastalığın tipik belirtileri arasında, özellikle proksimal ve 

distal kas güçsüzlüğü, duyusal kayıplar ve reflekslerde azalma veya kaybolma yer alır. 

Ancak, bu belirtilerin varlığı tek başına yeterli olmayabilir; bu nedenle, teşhisin 

doğrulanması için daha ileri testler yapılması gerekmektedir (Eftimov ve ark., 2020). 

 

Elektrofizyolojik testler, CIDP teşhisinde en yaygın olarak kullanılan 

yöntemlerden biridir. Sinir iletim çalışmaları (NCS) ve elektromiyografi (EMG), 

periferik sinirlerin işlevselliğini değerlendirmek için kullanılır. NCS, sinirlerin elektriksel 

uyarılara verdiği yanıtı ölçerken, EMG, kasların elektriksel aktivitesini analiz eder. 

CIDP'de, NCS genellikle sinir iletim hızında belirgin bir yavaşlama ve distal latanslarda 

uzama gösterir. Bu bulgular, demiyelinizasyonun bir göstergesi olarak kabul edilir ve 

CIDP teşhisi için kritik öneme sahiptir (Eftimov ve ark., 2020).Ayrıca, sinir iletim 

çalışmaları sırasında tespit edilen temporal dispersiyon ve iletim blokları, CIDP'nin diğer 

nöropatilerden ayırt edilmesine yardımcı olabilir. Şekil 3'te, elektromiyografi (EMG) 

prosedürünün detayları gösterilmiştir. Bu test, CIDP teşhisinde sinir ve kas işlevlerinin 

değerlendirilmesinde önemli bir rol oynar. NCS, sinir iletim hızındaki yavaşlamaları ve 

distal latanslardaki uzamaları tespit ederken, EMG, kasların elektriksel aktivitesini analiz 

ederek demiyelinizasyonun varlığını doğrular.(Neligan ve ark., 2014) 
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Şekil 1.3 Elektromiyografi (EMG) Prosedürü: Sinir ve Kas Fonksiyonlarının Değerlendirilmesinde 

kullanılan Test Yöntemi (Cuesta-Vargas ve ark., 2020) 

 

Bunların yanı sıra, beyin omurilik sıvısı (BOS) analizi de CIDP teşhisinde önemli 

bir rol oynar. BOS'da yüksek protein seviyeleri, özellikle hücre sayısında artış olmaksızın 

gözlemlendiğinde, CIDP için oldukça spesifik bir bulgu olarak kabul edilir. Ancak, bu 

bulgu tek başına tanı koymak için yeterli olmayabilir ve diğer klinik ve elektrofizyolojik 

bulgularla desteklenmelidir (Eftimov ve ark., 2020). Son yıllarda, manyetik rezonans 

görüntüleme (MRI) de teşhis sürecinde kullanılmaya başlanmıştır. MRI, omurilik ve sinir 

köklerindeki anormal kalınlaşmaları veya kontrast tutulumlarını tespit edebilir, bu da 

CIDP'nin tanısında yardımcı olabilir(Tanaka ve ark., 2013)  

 

Bu yöntemlerin her biri, CIDP teşhisinin doğruluğunu artırmak için birlikte 

kullanılır ve hastalığın diğer benzer nöropatilerden ayrımını sağlamak için kritik öneme 

sahiptir. Ancak, bu yöntemlerin uygulanmasında dikkatli olunmalı ve her bir bulgunun 

klinik tablo ile uyumlu olup olmadığı titizlikle değerlendirilmelidir. Yanlış pozitif 

sonuçlar, hastaların gereksiz tedavilere maruz kalmasına neden olabileceği gibi, 

hastalığın yanlış tanınması durumunda da doğru tedavinin gecikmesine yol açabilir 

(Eftimov ve ark., 2020). 

 

Yapay zeka (AI), hastalıkların teşhisinde giderek daha fazla kullanılan güçlü bir 

araç haline gelmiştir. AI, özellikle tıbbi görüntüleme, klinik veri analizi ve hasta risk 
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değerlendirmesi gibi alanlarda büyük bir etki yaratmaktadır.(Rehman ve ark., 2022). AI 

teknolojilerinin bir alt dalı olan makine öğrenimi (ML), hastalıkların teşhis edilmesi ve 

hatta bazı durumlarda hastalıkların prognozunun tahmin edilmesi için yaygın olarak 

kullanılmaktadır. Bu teknolojiler, büyük veri kümelerini analiz ederek, karmaşık 

örüntüleri tanıyabilir ve bu sayede doktorların karar verme süreçlerine destek olabilir 

(Nguyen ve ark., 2022). 

 

AI, özellikle kanser, kalp hastalıkları ve nörolojik hastalıklar gibi karmaşık ve çok 

boyutlu hastalıkların teşhisinde etkin bir şekilde kullanılmaktadır. Örneğin, derin 

öğrenme (DL) algoritmaları, tıbbi görüntülerdeki karmaşık yapıların tanımlanmasında 

oldukça başarılıdır. Bu algoritmalar, doktorların gözden kaçırabileceği ince detayları 

tespit edebilir ve böylece teşhis doğruluğunu artırabilir(Battineni ve ark., 2020). Bir 

çalışmada, derin öğrenme tabanlı bir algoritmanın, normal sinus ritmi gösteren EKG 

kayıtlarından atriyal fibrilasyonu (AF) yüksek doğrulukla tespit edebildiği gösterilmiştir. 

Bu, AI'nın sadece mevcut hastalıkların teşhisinde değil, aynı zamanda gelecekteki 

hastalık risklerinin öngörülmesinde de önemli bir araç olabileceğini göstermektedir 

(Yuan ve ark., 2023). 

 

AI'nın sağlık alanındaki bir diğer önemli uygulama alanı, kişiselleştirilmiş tıp ve 

hasta izlem sistemleridir. AI algoritmaları, hastaların tıbbi geçmişlerini, genetik 

bilgilerini ve yaşam tarzı verilerini analiz ederek, bireye özel tedavi planları oluşturabilir. 

Bu durum, tedavi süreçlerinin daha etkili ve hedefe yönelik olmasını sağlar. Ayrıca, AI 

tabanlı sistemler, hastaların günlük aktivitelerini ve çevresel faktörleri izleyerek, özellikle 

kronik hastalıkların yönetiminde büyük faydalar sağlar. Örneğin, yapay zeka destekli 

sistemler, diyabet gibi kronik hastalıkların erken aşamalarında hastalık belirtilerini tespit 

edebilir ve bu sayede erken müdahaleye olanak tanır (Raglio ve ark., 2020). 

 

1.2. Yapay Zeka ve Nörolojik Hastalıkların Teşhisi 

 

Yapay zeka (AI), nörolojik hastalıkların teşhisinde devrim niteliğinde yenilikler 

getirmiştir. Nörolojik hastalıklar, genellikle karmaşık ve çok yönlü belirtiler gösterir, bu 

da doğru tanı konulmasını zorlaştırır. Yapay zekanın bu alandaki en önemli katkılarından 

biri, büyük veri setlerini işleme yeteneğidir. Yapay zeka, klinik veriler, genetik bilgiler 

ve beyin görüntüleme sonuçları gibi farklı veri türlerini analiz edebilir ve böylece 
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doktorların hastalığın karmaşıklıklarını anlamalarına ve doğru tanı koymalarına yardımcı 

olabilir(Nenning ve Langs, 2022). 

 

Özellikle, makine öğrenimi ve derin öğrenme algoritmaları, nörolojik 

hastalıkların teşhisinde yaygın olarak kullanılmaktadır. Bu teknolojiler, beyin 

görüntülerindeki ince yapısal değişiklikleri tespit ederek Alzheimer hastalığı gibi 

dejeneratif hastalıkların erken teşhisinde kritik bir rol oynar. Örneğin, Zhen ve 

arkadaşları, MRI görüntülerinden Alzheimer ve hafif bilişsel bozukluk (MCI) teşhisini 

gerçekleştiren derin öğrenme tabanlı bir özellik temsil algoritması geliştirmişlerdir. Bu 

algoritma, Alzheimer hastalığının erken evrelerinde bile beyin yapısındaki değişiklikleri 

tespit ederek, doğru tanı koyma oranını artırmıştır (Zhao ve ark., 2023) Benzer şekilde, 

Bron ve ekibi tarafından geliştirilen bir başka çalışmada, CADDementia adlı bilgisayar 

destekli teşhis sistemi, Alzheimer ve diğer demans türlerinin tanısında yüksek doğruluk 

oranları sunmuştur(Bron ve ark., 2015). 

 

Yapay zeka ayrıca Parkinson hastalığı gibi hareket bozukluklarının teşhisinde de 

etkili bir araçtır. Parkinson hastalığının motor semptomları, geleneksel teşhis 

yöntemleriyle kolayca gözden kaçabilir. Ancak, yapay zeka tabanlı sistemler, hastaların 

motor aktivitelerini analiz ederek, Parkinson hastalığının erken belirtilerini tespit edebilir. 

Rizvi ve ekibi, Parkinson hastalığını tespit etmek için derin öğrenme ve uzun-kısa süreli 

bellek (LSTM) ağlarını birleştirerek otomatik bir teşhis sistemi geliştirmiştir. Bu sistem, 

hastaların yürüme paternlerini ve el titremesini analiz ederek, hastalığın erken teşhis 

edilmesini sağlamıştır (Rizvi ve ark., 2020). Jo ve meslektaşları ise derin öğrenme ve 

transfer öğrenme yöntemlerini kullanarak, Parkinson hastalığının tespitinde yüksek 

doğruluk oranları elde etmişlerdir (Jo ve ark., 2019). Bu çalışmalar, Yapay zekanın 

nörolojik hastalıkların teşhisinde nasıl kullanılabileceğine dair güçlü örnekler 

sunmaktadır. 

 

Ek olarak, yapay zeka, epilepsi gibi diğer nörolojik hastalıkların teşhisinde de 

kullanılmaktadır. Örneğin, Poorani ve ekibi tarafından yapılan bir çalışmada, EEG 

sinyallerini analiz eden derin öğrenme tabanlı bir model kullanılarak epilepsi nöbetlerinin 

yüksek doğrulukla tespit edildiği gösterilmiştir. Bu sistem, epilepsi nöbetlerinin 

başlangıcını önceden tahmin ederek, hastaların nöbet geçirme olasılığını azaltmak için 

erken müdahalelere olanak tanır (Poorani ve Balasubramanie, 2023). Şekil 1.4’de 
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görüldüğü gibi EGG sinyalleri karmaşık olmakla beraber bir çok çıkarım 

yapılabilmektedir. 

 

 

Şekil 1.4 Epilepsi Hastalığını Teşhisinde Kullanılan EGG Sinyalleri (Amo ve ark., 2004) 

 

 Başka bir çalışmada, Aslam ve ekibi, derin öğrenme kullanarak multiple 

sklerozun (MS) tespitinde etkili bir sistem geliştirmiştir. Bu sistem, hastaların beyin 

görüntülerini analiz ederek, MS lezyonlarını tespit etmiş ve doğru tanı koyma oranını 

artırmıştır (Aslam ve ark., 2022). 

 

Yapay zekanın nörolojik hastalıkların teşhisinde sunduğu bu yenilikler, tıp 

alanında devrim niteliğinde değişiklikler yaratmaktadır. Yapay zeka, doktorların 

hastalıkların karmaşıklıklarını daha iyi anlamalarına ve daha doğru teşhisler koymalarına 

olanak tanıyarak, tıbbi bakımın kalitesini artırır. Örneğin, Klöppel ve ekibi tarafından 

yapılan bir çalışmada, MR görüntülerinin otomatik olarak sınıflandırılmasıyla Alzheimer 

hastalığının teşhisinde yüksek doğruluk oranları elde edilmiştir (Klöppel ve ark., 2008). 

Bu tür yenilikler, Yapay zekanın nörolojik hastalıkların teşhisinde daha da 
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yaygınlaşmasına ve bu alandaki gelişmelerin hızla artmasına neden olacaktır (Klöppel ve 

ark., 2008). 

 

Yapay zeka, özellikle derin öğrenme ve Convolutional Neural Networks (CNN) 

gibi algoritmalar, nörolojik hastalıkların teşhisinde giderek daha fazla kullanılmaktadır. 

Bu teknolojiler, nörolojik hastalıkların tanısında büyük bir potansiyele sahiptir, çünkü 

beyin görüntülerindeki karmaşık yapıları tanımlayabilir ve hastalığın erken evrelerinde 

teşhis koyabilirler(Gezer ve ark., 2021) .Örneğin, Parkinson hastalığının teşhisinde 

GoogLeNet, ResNet-50, EfficientNet-B0 ve DarkNet-53 gibi CNN modelleri başarılı bir 

şekilde kullanılmıştır. Dinlenme halindeki fMRI verilerini analiz eden bir çalışmada, 

GoogLeNet tabanlı derin öğrenme modeli, Parkinson hastalığının erken evrelerinde 

beyindeki fonksiyonel bağlantı desenlerini başarılı bir şekilde tespit etmiştir. Bu model, 

Parkinson hastalığının nörolojik etkilerini erken safhalarda belirleyebilmiş ve bu sayede 

tedaviye erken başlama imkanı sağlamıştır (Acharya ve ark., 2019). 

 

Benzer şekilde, Alzheimer hastalığının teşhisinde de CNN'ler büyük başarı 

göstermiştir. Örneğin, ResNet-50 ve EfficientNet-B0 modelleri kullanılarak Alzheimer 

hastalığının erken teşhisi için MRI verileri analiz edilmiştir. ResNet-50, özellikle derin 

ve karmaşık yapısı sayesinde, Alzheimer hastalığının erken evrelerinde beyindeki yapısal 

değişiklikleri tespit ederek hastaların doğru teşhis almasını sağlamıştır. EfficientNet-B0 

ise, optimize edilmiş mimarisiyle daha düşük hesaplama gücü gerektiren, ancak yüksek 

doğruluk oranlarına ulaşan bir model olarak öne çıkmıştır (Jain ve ark., 2020). 

 

CNN'lerin nörolojik hastalıkların teşhisinde kullanıldığı bir diğer önemli alan ise 

tümörlerin ayırt edilmesidir. Özellikle DarkNet-53, MRI verileri kullanarak beyindeki 

tümörleri sınıflandırma konusunda üstün performans göstermiştir. Bir çalışmada, 

DarkNet-53 tabanlı bir model, uzman radyologlardan daha yüksek bir doğruluk oranıyla 

tümörleri sınıflandırabilmiştir. Bu tür modeller, özellikle deneyimsiz klinisyenlere tanısal 

süreçlerde önemli bir destek sağlayarak, yanlış tanı riskini azaltabilir ve tanı süreçlerini 

hızlandırabilir (Kurian ve Juliet, 2023). 

 

Bu gelişmeler, GoogLeNet, ResNet-50, EfficientNet-B0 ve DarkNet-53 gibi CNN 

modellerinin nörolojik hastalıkların teşhisinde giderek daha kritik bir rol oynamasına yol 

açmaktadır. AI tabanlı bu yaklaşımlar, beyin görüntüleme verilerinin analizinde insan 

gözünün tespit edemeyeceği ince ayrıntıları ortaya çıkararak, hastalıkların daha erken ve 
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daha doğru teşhis edilmesine yardımcı olmaktadır. Gelecekte, bu teknolojilerin daha da 

gelişmesi ve yaygınlaşması beklenmektedir, bu da nörolojik hastalıkların tanı ve tedavi 

süreçlerini dönüştürecektir(Ahuja ve ark., 2022). 
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2. KAYNAK ARAŞTIRMASI 

 

2.1. CIDP'nin Genel Tanımı ve Klinik Özellikleri 

 

Kronik İnflamatuvar Demiyelinizan Poliradikülonöropati (CIDP), periferik 

sinirlerde demiyelinizasyon ile karakterize edilen, yavaş ilerleyen bir nörolojik 

hastalıktır. CIDP, sinirlerin myelin kılıfında kronik inflamasyonun meydana gelmesi 

sonucu ortaya çıkar ve genellikle hem motor hem de duyusal sinirleri etkiler. Hastalık, 

akut inflamatuvar demiyelinizan poliradikülonöropati (AIDP) olarak da bilinen Guillain-

Barré sendromunun kronik bir formu olarak kabul edilir. CIDP'nin tanımı, nöropatinin 

süresine, semptomların progresif doğasına ve elektrofizyolojik bulgulara dayanır 

(Bunschoten ve ark., 2019). 

 

2.1.1. Klinik Özellikler 

 

CIDP'nin klinik belirtileri, hastalığın doğası gereği oldukça geniş bir yelpazede 

ortaya çıkabilir. Genellikle, hastalar simetrik olarak distal ve proksimal kas güçsüzlüğü, 

duyusal kayıplar ve derin tendon reflekslerinde azalma veya kaybolma gibi belirtilerle 

başvurur. CIDP'nin karakteristik belirtileri, yavaş ilerleyen bir zayıflık, dengesizlik ve 

yürüyüş bozukluğu içerir. Bu semptomlar genellikle bacaklarda başlar ve zamanla kollara 

yayılabilir (Ekladious ve Jiang, 2022). 

 

Bununla birlikte, CIDP'nin klinik spektrumu oldukça geniştir ve bazı hastalar 

atipik belirtiler gösterebilir. Örneğin, hastaların bir kısmı sadece motor sinirlerde veya 

sadece duyusal sinirlerde etkilenme gösterebilir. Atipik CIDP vakalarında, hastalığın 

tanınması ve teşhis edilmesi daha zor olabilir. Multifokal motor nöropati veya distale 

yerleşik demiyelinizan nöropati gibi diğer nöropatilerle karıştırılma riski taşır. (van 

Doorn ve ark., 2024).  CIDP varyantlarının gösterimi şekil 2.1’de gösterilmiştir. 
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Şekil 2.1 CIDP Hastalığının Tipik ve Varyantlarının Gösterimi (Bjørklund ve ark., 2023) 

 

2.1.2. Patofizyoloji 

 

CIDP'nin patofizyolojisi, esas olarak otoimmün bir süreç olarak kabul edilir. 

Hastalığın gelişiminde, bağışıklık sisteminin yanlışlıkla periferik sinirlerin myelin 

kılıfına saldırdığı düşünülmektedir. Bu saldırı, myelin kılıfının hasar görmesine, sinir 

iletiminin yavaşlamasına ve sonunda sinir hücrelerinin işlevlerini kaybetmesine yol açar. 

Myelin kılıfı, sinir sinyallerinin hızlı ve verimli bir şekilde iletilmesini sağlar; bu kılıfın 

hasar görmesi durumunda sinir sinyalleri kesintiye uğrar ve motor ve duyusal işlevlerde 

bozulmalar meydana gelir (Wolbert ve ark., 2020). 

 

Hastalığın otoimmün doğası, genetik yatkınlık, enfeksiyonlar veya diğer 

tetikleyici faktörlerle birleştiğinde ortaya çıkabilir. Bazı hastalarda CIDP, enfeksiyonlar 

veya diğer otoimmün hastalıklarla ilişkilendirilmiştir. Örneğin, geçirilmiş viral 

enfeksiyonlar, bağışıklık sisteminin anormal bir şekilde tepki vermesine ve sinirlerde 

demiyelinizasyona yol açabilir. CIDP'nin patofizyolojik süreci, sinir hücrelerinin kronik 

inflamasyonu ve bunun sonucunda sinir hasarı ile karakterize edilir(Dalakas, 2011). 

 

2.1.3. Hastalığın Seyri ve Prognoz 

 

CIDP, yavaş ilerleyen bir hastalıktır ve genellikle tekrarlayan ataklarla seyreder. 

Uzuvlarda uyuşma, duyu kaybı, halsizlik sırt batın bölgelerinde ağrı ve sinir motor 



 

 

 

12 

harekelerinde kayıp gözlemlenir. Şekil 2.1’de semptomlar ilistrasyonu gösterilmiştir. Bu 

ataklar arasında belirgin iyileşme dönemleri olabilir, ancak hastalık kronik ve ilerleyici 

bir doğaya sahiptir. Tedavi edilmediğinde, CIDP hastalarında kalıcı nörolojik hasar 

gelişebilir ve bu da yaşam kalitesinde ciddi düşüşlere yol açabilir. Tedaviye yanıt, hastalar 

arasında farklılık gösterebilir; bazı hastalar immün modülatör tedavilere iyi yanıt 

verirken, diğerlerinde hastalık daha dirençli olabilir (Lehmann ve ark., 2019). 

 

 

 

Şekil 2.2 CIDP Hastalığının Semptomlarının Gösterimi (Mathey ve ark., 2015) 

 

Tedavi, genellikle bağışıklık sistemini baskılayan ilaçlar, intravenöz 

immünoglobulin (IVIg) veya plazmaferez gibi yöntemlerle yapılır. CIDP'nin erken teşhisi 

ve uygun tedavi stratejilerinin uygulanması, hastalığın ilerlemesini yavaşlatabilir ve 

semptomların kontrol altına alınmasına yardımcı olabilir. Bununla birlikte, hastalığın 

seyri bireyden bireye büyük ölçüde değişiklik gösterebilir ve tedaviye verilen yanıt, 

hastalığın uzun vadeli prognozunu belirlemede kritik bir faktördür (Hu ve ark., 2022). 

 

2.2. CIDP Teşhisinde Kullanılan Yöntemler 

CIDP'nin doğru ve erken teşhisi, hastalığın yönetimi ve tedavi sürecinin etkinliği 

açısından kritik öneme sahiptir. Bu nedenle, CIDP teşhisinde kullanılan çeşitli klinik ve 

laboratuvar yöntemlerinin bir kombinasyonu tercih edilmektedir. CIDP'nin teşhisinde en 

yaygın olarak kullanılan yöntemler arasında elektrofizyolojik testler, manyetik rezonans 
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görüntüleme (MRI), beyin omurilik sıvısı (BOS) analizi ve sinir biyopsisi yer almaktadır 

(Jongbloed ve ark., 2017). 

 

2.2.1. Elektrofizyolojik Testler 

 

Elektrofizyolojik testler, CIDP teşhisinde altın standart olarak kabul edilen 

yöntemlerden biridir. Sinir iletim çalışmaları (NCS) ve elektromiyografi (EMG), 

periferik sinirlerin elektriksel iletim özelliklerini değerlendirir. NCS, sinirlerin elektriksel 

uyarılara verdiği yanıtı ölçmektedir. Şekil 2.3. de gösterildiği gibidir. EMG, kasların 

elektriksel aktivitesini analiz eder. CIDP'de, NCS genellikle sinir iletim hızında belirgin 

bir yavaşlama, distal latanslarda uzama ve temporal dispersiyon gibi demiyelinizasyonun 

göstergelerini ortaya koyar. Ayrıca, iletim blokları da sıkça gözlemlenir ve bu bulgular 

CIDP'nin diğer nöropatilerden ayırt edilmesine yardımcı olur (Chichkova ve Katzin, 

2010). 

 

 

Şekil 2.3 NCS, Ölçüm Tekniğinin Gösterimi (Mathey ve ark., 2015) 

 

Elektrofizyolojik testlerin yanı sıra, fokal anormalliklerin tespiti için ince iğne 

EMG'si de kullanılır. Bu test, motor ünit potansiyellerini analiz ederek, sinir hasarının 

derecesini ve yaygınlığını belirlemekte etkilidir. Elektrofizyolojik bulgular, CIDP'nin 

klinik tanısının doğrulanmasında ve hastalığın ilerleme hızının değerlendirilmesinde 

önemli bir rol oynar  (Benoit ve ark., 2021). 
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2.2.2. Manyetik Rezonans Görüntüleme (MRI) 

 

Manyetik rezonans görüntüleme (MRI), CIDP teşhisinde giderek daha fazla 

kullanılan bir başka önemli yöntemdir. MRI, özellikle spinal köklerde ve periferik 

sinirlerde görülen inflamatuvar değişiklikleri ve sinir kalınlaşmalarını tespit etmekte 

etkilidir. CIDP'li hastalarda, MRI'da genellikle spinal köklerin kontrast tutulumunda artış, 

sinir kalınlaşmaları ve bazen de omurilikte anormal sinyal yoğunlukları gözlemlenir. 

MRI, ayrıca CIDP'nin diğer demiyelinizan nöropatilerden ayırt edilmesine de 

yardımcı olur. Özellikle multifokal motor nöropati (MMN) gibi CIDP ile karışabilecek 

diğer nöropatilerde farklı MRI bulguları mevcuttur. Bu nedenle, MRI, CIDP'nin doğru 

teşhisi ve ayırıcı tanısı için kritik bir görüntüleme aracıdır. Ayrıca, MRI, sinirlerin 

demiyelinizasyon ve remiyelinizasyon süreçlerini izlemek için de kullanılabilir 

(Lehmann ve ark., 2019). 

 

2.2.3. Beyin Omurilik Sıvısı (BOS) Analizi 

 

BOS analizi, CIDP'nin teşhisinde kullanılan invaziv olmayan bir diğer önemli 

yöntemdir. CIDP'de, BOS analizi genellikle hücre sayısında artış olmaksızın yüksek 

protein seviyeleri gösterir. Bu bulgu, demiyelinizasyonun varlığını gösteren bir diğer 

önemli parametredir ve genellikle CIDP'nin BOS protein seviyelerindeki artışa dayanan 

klinik tanısının doğrulanmasında kullanılır  (Van den Bergh ve ark., 2010) . 

Bununla birlikte, BOS'daki bu bulgu, tek başına CIDP teşhisini doğrulamak için 

yeterli olmayabilir ve diğer klinik ve elektrofizyolojik bulgularla desteklenmesi 

gereklidir. BOS analizi ayrıca, CIDP'nin diğer otoimmün nöropatilerden ayırt edilmesine 

yardımcı olabilir. Örneğin, Guillain-Barré sendromu gibi diğer nöropatilerde BOS'da 

hücre sayısında artış gözlemlenebilirken, CIDP'de bu genellikle görülmez (Matur ve ark., 

2013). 

 

2.2.4. Sinir Biyopsisi 

 

Sinir biyopsisi, CIDP teşhisinde nadiren kullanılan, ancak spesifik durumlarda 

başvurulan invaziv bir yöntemdir. Biyopsi, sinir dokusunda demiyelinizasyon, 

remiyelinizasyon ve inflamatuvar hücre infiltrasyonunun doğrudan gözlemlenmesini 

sağlar. Sinir biyopsisi, özellikle atipik CIDP vakalarında, klinik ve elektrofizyolojik 

bulguların yetersiz kaldığı durumlarda kullanılabilir . 
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Biyopsi ile elde edilen bulgular, CIDP'nin yanı sıra vaskülitik nöropati gibi diğer 

inflamatuvar nöropatilerin ayırıcı tanısında da yardımcı olabilir. Ancak biyopsi, sinir 

hasarına neden olabileceği için sadece gerekli durumlarda tercih edilmelidir (Nathani ve 

ark., 2021). 

 

2.2.5. Makine Öğrenimi ve Derin Öğrenme Algoritmalarının CIDP Teşhisinde              

Kullanımı 

 

Makine öğrenimi (ML) ve derin öğrenme (DL) algoritmaları, tıbbi teşhis 

süreçlerinde devrim yaratan teknolojiler arasında yer almaktadır. Özellikle Convolutional 

Neural Networks (CNN) gibi derin öğrenme modelleri, tıbbi görüntüleme verilerinin 

analizinde büyük bir potansiyele sahiptir. CIDP teşhisinde de bu teknolojilerin kullanımı 

giderek artmakta ve doğru teşhis oranlarını önemli ölçüde artırmaktadır (Chang ve ark., 

2022). 

 

2.3. CNN'lerin Temelleri ve Avantajları 

 

Convolutional Neural Networks (CNN), özellikle görsel veri analizi için 

tasarlanmış derin öğrenme modelleridir. CNN'ler, katmanlar arasında filtreler 

uygulayarak görüntülerdeki özellikleri otomatik olarak öğrenir ve sınıflandırma yapar. 

Bu özellikleri sayesinde, tıbbi görüntülerdeki ince ayrıntıları yakalayarak hastalıkların 

teşhisinde insan gözüyle kaçırılabilecek detayları tespit edebilirler (Li ve ark., 2021). 

 

CNN'lerin en büyük avantajlarından biri, büyük veri setlerinde üstün performans 

göstermeleridir. Görüntü işleme, CIDP gibi nörolojik hastalıkların teşhisinde kritik 

öneme sahiptir. Özellikle elektromiyografi (EMG) sinyal görüntüleri gibi karmaşık 

verilerde, CNN'ler hastalıkla ilişkili belirgin özellikleri otomatik olarak tespit edebilir. 

Bu, CIDP teşhisinin daha hızlı ve doğru bir şekilde yapılmasını sağlar (Aloysius ve 

Geetha, 2017). 

 

2.3.1. CIDP Teşhisinde CNN Modellerinin Kullanımı 

 

CIDP teşhisinde CNN modellerinin kullanımı, EMG sinyal verilerinin analizi ve 

sınıflandırılması üzerine odaklanmıştır. CNN'ler, EMG sinyal verilerini işleyerek, CIDP 

ile sağlıklı bireyler arasındaki farklılıkları tespit etme yeteneğine sahiptir. Bu, EMG 
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verilerinin zaman içinde nasıl değiştiğini inceleyerek, hastalığın ilerleyişini izlemek için 

de kullanılabilir (Hostin ve ark., 2023). 

 

Bir çalışmada, ResNet-50 ve GoogLeNet gibi derin öğrenme modelleri, CIDP 

teşhisinde kullanılmış ve yüksek doğruluk oranları elde edilmiştir. Bu modeller, EMG 

sinyal verilerindeki ince farklılıkları tespit ederek, hastalığın erken teşhisinde önemli bir 

rol oynamıştır. Özellikle ResNet-50, derin katman yapısı sayesinde sinyal gürültüsüne 

karşı dayanıklılık göstermiştir (Hu ve ark., 2022). 

 

Diğer bir çalışmada, EfficientNet-B0 modeli, daha düşük hesaplama maliyetiyle 

benzer doğruluk oranlarına ulaşmıştır. Bu model, parametre verimliliği sayesinde, 

özellikle büyük veri kümeleri üzerinde hızlı ve etkili bir şekilde çalışabilir. Bu tür CNN 

modellerinin kullanımı, CIDP teşhisinde geleneksel yöntemlere kıyasla daha hızlı 

sonuçlar elde edilmesini sağlayarak, klinik karar verme süreçlerini desteklemektedir 

(Larson ve ark., 2023). 

 

2.4. Yapay Zeka Tabanlı Karar Destek Sistemleri 

 

Yapay zeka (AI) tabanlı karar destek sistemleri, CIDP gibi karmaşık nörolojik 

hastalıkların teşhisinde giderek daha fazla önem kazanmaktadır. AI algoritmaları, büyük 

veri kümelerini analiz ederek, doktorlara hastalıkların teşhisi ve tedavi planlarının 

belirlenmesinde yardımcı olabilir. Bu sistemler, tıbbi görüntüleme verilerini işleyerek, 

hastalığın evrelerini belirleyebilir ve tedaviye yanıtın izlenmesine olanak tanır (Litjens ve 

ark., 2017). 

 

CNN'ler, bu tür AI tabanlı sistemlerin merkezinde yer alır. Derin öğrenme 

modelleri, tıbbi görüntülerin otomatik olarak sınıflandırılmasında kullanılır ve bu süreçte 

insan müdahalesine olan ihtiyacı azaltır. Bu, özellikle deneyimsiz klinisyenler için faydalı 

olabilir, çünkü AI tabanlı sistemler, doğru teşhis oranlarını artırabilir ve yanlış teşhis 

olasılığını azaltabilir (Shen ve ark., 2017). 

 

2.5. Gelecek Perspektifleri ve Araştırma Yönleri 

 

Gelecekte, CIDP teşhisinde kullanılan CNN modellerinin daha da gelişmesi 

beklenmektedir. Özellikle transfer öğrenme ve derinlemesine denetimsiz öğrenme gibi 

tekniklerin kullanılması, CIDP teşhisinde daha yenilikçi çözümler sunabilir. Ayrıca, 
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yapay zeka tabanlı sistemlerin klinik uygulamalarda daha yaygın hale gelmesi, 

hastalıkların teşhisinde devrim yaratabilir (Esteva ve ark., 2019). 

 

Bu bağlamda, CIDP teşhisinde kullanılan yapay zeka tabanlı algoritmaların 

sürekli olarak güncellenmesi ve geliştirilmesi, hastalıkların daha erken ve daha doğru 

teşhis edilmesini sağlayacak önemli bir adımdır. Ayrıca, bu teknolojilerin 

yaygınlaşmasıyla, sağlık hizmetlerinin kalitesi artırılabilir ve hastaların yaşam kalitesi 

iyileştirilebilir (Alam ve ark., 2022). 

 

2.6. CIDP'nin Diğer Nöropatilerle Karıştırılması ve Teşhis Zorlukları 

 

Kronik İnflamatuvar Demiyelinizan Poliradikülonöropati (CIDP), karmaşık ve 

heterojen klinik tablosu nedeniyle diğer nöropatilerle karıştırılabilir. Bu durum, CIDP'nin 

doğru ve zamanında teşhis edilmesini zorlaştırmakta ve hastaların tedavi süreçlerini 

olumsuz etkileyebilmektedir. CIDP, özellikle benzer semptomlara sahip demiyelinizan 

ve aksonal nöropatilerle sıklıkla karışır. Bu nedenle, hastalığın teşhisinde karşılaşılan 

zorluklar, hem klinik bulguların dikkatli değerlendirilmesini hem de çeşitli tanısal 

yöntemlerin etkin bir şekilde kullanılmasını gerektirir (Vallat ve ark., 2010). 

 

2.7. Atipik CIDP ve Diğer Nöropatilerle Karışma Olasılığı 

 

CIDP'nin klinik spektrumu oldukça geniştir ve hastalar arasında önemli ölçüde 

değişiklik gösterebilir. CIDP'nin atipik formları, özellikle diğer nöropatilerle karıştırılma 

olasılığını artırır. Örneğin, distale yerleşik demiyelinizan simetrik nöropati (DADS) ve 

multifokal motor nöropati (MMN) gibi nöropatiler, CIDP ile benzer klinik özellikler 

sergileyebilir. Bu hastalıklar da demiyelinizasyon ile karakterizedir, ancak patofizyolojik 

mekanizmaları ve tedaviye yanıtları farklılık gösterir (Latov, 2014). 

 

Atipik CIDP vakalarında, hastalığın yalnızca belirli sinir gruplarını 

etkileyebileceği veya yalnızca motor ya da duyusal sinirlerde semptomlar gelişebileceği 

unutulmamalıdır. Bu durum, hastalığın teşhisini daha da karmaşık hale getirebilir ve 

yanlış teşhis olasılığını artırabilir. Örneğin, MMN, CIDP'ye çok benzeyen multifokal bir 

motor nöropati olup, genellikle anti-GM1 antikorlarının varlığı ile karakterizedir, bu da 

ayırıcı tanı için önemli bir ipucu sağlar (Van Schaik ve ark., 1994). 

 

 



 

 

 

18 

2.8. Teşhis Zorlukları ve Yanlış Teşhis 

 

CIDP'nin teşhisinde karşılaşılan en büyük zorluklardan biri, hastalığın 

semptomlarının geniş bir nöropati yelpazesi ile örtüşmesidir. CIDP'nin klinik belirtileri, 

genellikle diğer demiyelinizan nöropatiler ve hatta bazı metabolik nöropatiler ile 

benzerdir. Özellikle diyabetik nöropati, CIDP ile karıştırılabilecek yaygın bir durumdur. 

Diyabetik nöropatide de distal simetrik polinöropati görülebilir, ancak bu durumun 

tedaviye yanıtı ve prognozu farklıdır (Stewart ve ark., 1996). 

 

Yanlış teşhis, hastaların gereksiz ve potansiyel olarak zararlı tedavilere maruz 

kalmasına neden olabilir. Örneğin, CIDP tanısı konan bazı hastaların aslında bu hastalığa 

sahip olmadığı ve bu durumun hastalara yanlış tedavilerin uygulanmasına yol açtığı 

bildirilmiştir. Bu tür yanlış teşhisler, hastaların yaşam kalitesini olumsuz etkileyebilir ve 

sağlık sistemleri üzerinde gereksiz maliyetler yaratabilir (Tesfaye, 2007). 

 

2.8.1. Elektrofizyolojik ve Görüntüleme Bulguları 

 

CIDP'nin diğer nöropatilerden ayırt edilmesinde elektrofizyolojik testler önemli 

bir rol oynar. Sinir iletim çalışmaları (NCS) ve elektromiyografi (EMG) bulguları, 

CIDP'nin demiyelinizan bir nöropati olduğunu gösterebilir. Ancak, bu testler, aksonal 

nöropatiler veya diğer demiyelinizan nöropatiler ile benzer bulgular verebilir. Örneğin, 

multifokal motor nöropatide, EMG genellikle CIDP'de görülen fokal iletim bloklarını ve 

temporal dispersiyonu gösterebilir (Kotan ve Alemdar, 2016). 

 

Manyetik rezonans görüntüleme (MRI), CIDP'nin teşhisinde yardımcı bir araç 

olabilir, ancak bu yöntem de diğer nöropatilerle karışıklıklara neden olabilir. Özellikle, 

spinal köklerin ve sinirlerin kalınlaşması gibi bulgular, hem CIDP'de hem de diğer 

inflamatuvar nöropatilerde görülebilir. Bu nedenle, MRI bulguları dikkatle yorumlanmalı 

ve diğer klinik ve elektrofizyolojik bulgularla birlikte değerlendirilmelidir (Pitarokoili ve 

ark., 2015). 

 

2.8.2. Klinik Değerlendirme ve Ayırıcı Tanı 

 

CIDP'nin diğer nöropatilerden ayırt edilmesinde klinik değerlendirme büyük 

önem taşır. Hastalığın seyri, semptomların başlangıç şekli ve ilerleyişi, hastanın geçmiş 

tıbbi öyküsü ve mevcut semptomları dikkatle değerlendirilmelidir. Ayırıcı tanıda, 
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hastanın yanıt verdiği tedaviler de dikkate alınmalıdır. Örneğin, immünoglobulin 

tedavisine hızlı yanıt, CIDP lehine bir bulgu olarak değerlendirilirken, bu tür bir yanıtın 

eksikliği, diğer nöropatilerin düşünülmesini gerektirebilir (Reynolds ve ark., 2016). 
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3. MATERYAL VE YÖNTEM 

 

3.1. Veri Seti Kaynağı 

 

Bu çalışmada kullanılan veri seti, Selçuk Üniversitesi Tıp Fakültesi Hastanesi 

Nöroloji Bölümü'ne başvuran hastalardan elde edilen elektromiyografi (EMG) 

cihazından elde eldilen Nihon Kohden Neuropack S1 MEB-9400K görüntülerine 

dayanmaktadır. Veriler, hastanenin arşivinde bulunan Nihon Kohden Neuropack S1 

MEB-9400K model cihaz ile toplanmıştır. Cihazın arşivinde 2008 ile 2024 yılları 

arasında kaydedilmiş toplam 14,034 hastaya ait EMG görüntüleri yer almaktadır. Bu 

geniş veri havuzundan yapılan incelemeler sonucunda, 35 hastaya CIDP tanısı konulmuş 

ancak bu hastalardan sadece 13'ünün görüntüleri, standart kaydedilme koşullarına uygun 

bulunmuştur. Bu seçili veriler, çalışmanın güvenilirliği açısından önemli bir kaynak 

oluşturmakta olup, hastalığın teşhisi ve sınıflandırılması için kritik bir rol oynamaktadır. 

Ayrıca, bu veri seti, hem hastaların EMG sinyal verilerini hem de sağlıklı bireylerden 

elde edilen kontrol verilerini içermektedir, böylece iki grup arasındaki farkların 

belirlenmesi ve CIDP'nin doğru teşhisi için sağlam bir temel sunulmaktadır. 

 

3.1.1. Katılımcılar 

 

Bu çalışmada kullanılan veri seti, 13 CIDP hastasından ve 13 sağlıklı bireyden 

elde edilen EMG görüntülerini içermektedir. CIDP hastaları, Selçuk Üniversitesi Tıp 

Fakültesi Hastanesi Nöroloji Bölümü'ne başvuran ve Nihon Kohden marka Neuropack 

S1 MEB-9400K model cihaz ile standardize koşullarda EMG görüntüleri kaydedilen 

hastalar arasından seçilmiştir. Cihazın görseli Şekil. 3.1’de gösterildiği gibidir. Sağlıklı 

bireyler ise, aynı cihaz ve protokoller kullanılarak veri toplanan kontrol grubunu 

oluşturmuştur. 

 

Şekil 3.1 Nihon Kohden Marka Neuropack S1 MEB-9400K Model EMG Cihazı 
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 Toplamda, her birey için beş adet farklı ölçüm ve farklı ölçüm tekniklerine ait  

sinyal görüntüsü kaydedilmiş ve bu doğrultuda veri seti, 65 hasta ve 65 sağlıklı birey 

görüntüsünden oluşan 130 adet EMG sinyal görüntüsünü içermektedir. Veri seti, 

hastalığın teşhis sürecinde karşılaşılan zorlukları ve sinyal verilerindeki farklılıkları 

analiz etmek için kullanılmış olup, CIDP'nin ayırıcı tanısında önemli bir rol 

oynamaktadır. 

 

3.1.2. Veri Toplama Yöntemi 

 

Veri toplama süreci, Selçuk Üniversitesi Tıp Fakültesi Hastanesi Nöroloji 

Bölümü'nde standardize edilmiş protokoller çerçevesinde gerçekleştirilmiştir. EMG 

görüntüleri, Nihon Kohden marka Neuropack S1 MEB-9400K model cihaz kullanılarak 

elde edilmiştir. Bu cihaz, spesifik formatta EMG kaydı yapabilen ve uluslararası sağlık 

standartlarını karşılayan, güvenilirliği FDA gibi kurumlardan onaylı bir yazılımdır. Her 

bir katılımcının EMG sinyal verileri, MEB-2000 yazılımı aracılığıyla toplanmış ve 

verilerin yüksek doğrulukta kaydedilmesi sağlanmıştır. Görüntüler, cihazın arayüzünden 

ekran alıntısı şeklinde alınmış olup, tüm kayıtlar aynı çözünürlük ve renk derinliği 

standartlarına uygun olarak gerçekleştirilmiştir. EMG sinyal görüntüleri, 2560x1600 

piksel çözünürlüğe ve 24 bit renk derinliğine sahip PNG formatında kaydedilmiştir. 

 

Veri toplama süreci boyunca, hastalığın teşhis edilmesi ve sınıflandırılması için 

gerekli olan tüm teknik detaylar titizlikle uygulanmış, verilerin doğruluğu ve güvenilirliği 

en üst düzeyde tutulmuştur. Ayrıca, veri toplama işlemi öncesinde Selçuk Üniversitesi 

Etik Kurulu'ndan gerekli onaylar alınmış ve tüm katılımcılardan bilgilendirilmiş onam 

formları imzalatılmıştır. 

 

3.1.3. Veri Setinin Yapısı 

 

Bu çalışmada kullanılan veri seti, iki ana sınıftan oluşmaktadır: CIDP hastaları ve 

sağlıklı bireyler. Veri seti, toplamda 130 adet EMG sinyal görüntüsünü içermekte olup, 

bu görüntülerin 65'i CIDP teşhisi konmuş hastalardan, diğer 65'i ise sağlıklı kontrol 

bireylerinden elde edilmiştir. Her bir katılımcıdan beş farklı ölçüm alınmıştır: MCS 

Median L, MCS Median R, SCS Median L, SCS Median R ve MCS Tibial L. MCS Tibial 

L ölçümü 5 ms zaman aralığında kaydedilmişken, diğer dört sinyal ölçümü 2 ms zaman 

aralığında kayıt altına alınmıştır. Veri setindeki her bir görüntü, 250x276 piksel boyutuna 
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dönüştürülmüş, 96 dpi çözünürlük ve 24 bit renk derinliğine sahip PNG formatında 

saklanmıştır. Veri seti, iki sınıf (CIDP hastaları için 0, sağlıklı bireyler için 1) olarak 

etiketlenmiştir, bu da sınıflandırma algoritmalarının performansını değerlendirmek için 

sağlam bir temel sunar. Veri setinin bu şekilde yapılandırılması, CIDP'nin sağlıklı 

bireylerden ayırt edilmesini kolaylaştırmakta ve sinyal verilerindeki farklılıkların 

belirginleştirilmesine olanak tanımaktadır. 

 

MCS Median L, MCS Median R, SCS Median L, SCS Median R ve MCS Tibial 

L şeklinde sınıflandırılmıştır. MCS Median yönteminin örneği Şekil 3.2'de, SCS Median 

yönteminin örneği ise Şekil 2'de sunulmuştur. MCS Tibial yönteminin örneği ise Şekil 

3.3'te gösterilmiştir. İlgili açıklamalar aşağıda yer almaktadır: 

 

MCS Median L: Orta sinirin sol elin medyan sinir bölgesindeki EMG sinyalini 

temsil eder. Medyan sinir elin duyusal ve motor işlevlerinde önemli rol oynar. 

 

MCS Median R:Orta sinirin sağ elin medyan sinir bölgesindeki EMG sinyalini 

temsil eder. Sağ ve sol medyan sinir sinyalleri arasındaki farklar CIDP tanısında önemli 

olabilir . 

 

 

Şekil 3.2 Motor Conduction Study (MCS) Median Ölçüm Tekniği (Yamamoto ve ark., 2017) 

 

SCS Median L:Orta sinirin sol elin medyan sinir bölgesindeki sinyalinin daha 

geniş bir analizini ifade eder. 
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SCS Median R: Orta sinirin sağ elin medyan sinir bölgesindeki sinyalinin daha 

geniş bir analizini ifade eder. Bu sinyal CIDP'nin sağ el üzerindeki etkilerini 

değerlendirmek için kullanılır.  

 

 

Şekil 3.3 Sensory Conduction Study (SCS) Median Ölçüm Tekniği (Yamamoto ve ark., 2017) 

MCS Tibial L: Tibial sinirin sol bacakta elde edilen EMG sinyalidir (Horiuchi ve 

ark., 2022). 

 

Şekil 3.4 Motor Conduction Study (MCS) Tibial Ölçüm Tekniği (Yamamoto ve ark., 2017) 

 

Yukarda belirtildiği gibi bir bireye ait 5 ayrı ölçüm yöntemi (MCS Median L, 

MCS Median R, SCS Median L, SCS Median R, MCS Tibial L) ile kayıtlanan EMG 

sinyal görüntülerine ait bir örnek (SCS Median L)   şekil 3.4’de verilmiştir. 
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Şekil 3.5 Hasta Bireye ait SCS Median L Sinyal Görüntüsü 

 

3.1.4. Veri Setinin Kullanımı 

 

Bu çalışmada, kullanılan veri seti, derin öğrenme modellerinin eğitimi, 

doğrulaması ve test edilmesi amacıyla kullanılmıştır. Veri seti, başlangıçta %50 eğitim 

ve %50 test oranında bölünmüştür. Daha sonra, modelin performansını artırmak ve genel 

doğruluğunu optimize etmek amacıyla veri seti %60 eğitim ve %40 test olarak yeniden 

bölünmüş, son olarak ise %70 eğitim ve %30 test oranında nihai bir bölünme 

gerçekleştirilmiştir. Bu aşamalı veri bölme süreci, modellerin genelleme yeteneğini 

değerlendirmek ve olası aşırı uyum (overfitting) problemlerini minimize etmek için kritik 

bir rol oynamıştır. Her bir bölünmede, veri seti, sınıflar arasında dengeli bir dağılım 

sağlanarak, hem CIDP hastalarının hem de sağlıklı bireylerin sinyal görüntülerinin eşit 

temsil edilmesine özen gösterilmiştir. Bu veri seti, derin öğrenme modellerinin eğitiminde 

kullanılan temel girdi olarak işlev görmüş ve çeşitli model performans metrikleri 

(örneğin, doğruluk, hassasiyet, özgüllük) üzerinden değerlendirilmiştir. Elde edilen 

sonuçlar, CIDP'nin teşhisinde kullanılan CNN tabanlı modellerin etkinliğini ve veri 

setinin bu modellerin performansını değerlendirmede ne denli önemli olduğunu ortaya 

koymuştur. 
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3.2. CNN MİMARİLERİ 

 

Convolutional Neural Network (CNN), özellikle görüntü tanıma, sınıflandırma ve 

nesne algılama gibi görsel verilerle ilgili görevlerde yaygın olarak kullanılan bir derin 

öğrenme modelidir. CNN, görüntülerdeki yerel özellikleri algılamak için farklı 

boyutlardaki filtreler kullanarak, verinin uzaysal hiyerarşisini öğrenir. Bu sayede, 

görüntülerdeki kenarlar, köşeler, dokular ve daha karmaşık yapılar gibi yerel özellikler 

belirlenir ve sonraki katmanlara iletilir. Her bir evrişim katmanı, önceki katmandan aldığı 

özellikleri daha soyut hale getirerek, görüntünün daha derin özelliklerini öğrenir. 

Böylece, düşük seviyeli özelliklerden başlayarak daha yüksek seviyeli kavramlara ulaşılır 

(Deng ve ark., 2022). 

 

CNN'lerin temel yapı taşları arasında evrişim (convolution) ve havuzlama 

(pooling) katmanları bulunur. Evrişim katmanları, filtreler aracılığıyla görüntü üzerindeki 

belirli örüntüleri algılarken, havuzlama katmanları, özellik haritalarının boyutlarını 

küçülterek hesaplama yükünü azaltır ve modelin genel performansını artırır. Özellikle, 

maksimum havuzlama (max-pooling) gibi yöntemler, bir bölgede en baskın özellikleri 

seçerek verinin sıkıştırılmasını sağlar. Ayrıca, fully connected (tam bağlantılı) katmanlar, 

öğrenilen bu özellikleri daha soyut düzeyde bir sınıflandırmaya dönüştürür ve modelin 

çıktı katmanında sınıf tahminleri yapılır (Chen ve Qu, 2021). 

 

CNN'ler, özellikle büyük veri kümeleri ile eğitildiklerinde yüksek doğruluk 

oranlarına ulaşabilir. Örneğin, Krizhevsky tarafından geliştirilen AlexNet, ImageNet veri 

kümesindeki milyonlarca görüntü üzerinde eğitilmiş ve bu sayede nesne tanıma 

görevlerinde devrim niteliğinde bir başarı elde etmiştir (Krizhevsky ve ark., 2012). 

CNN'ler, aynı zamanda tıbbi görüntüleme, yüz tanıma, sürücüsüz araçlar ve güvenlik 

sistemleri gibi geniş bir yelpazede kullanılır. Litjens CNN'lerin tıbbi görüntüleme 

uygulamalarında kanser teşhisi, beyin görüntüleme ve organ segmentasyonu gibi 

alanlarda önemli ilerlemeler sağladığını belirtmiştir (Litjens ve ark., 2017). Esteva da 

benzer şekilde, CNN'lerin dermatolojik görüntülerde cilt kanseri tespiti gibi zor 

görevlerde insan uzmanlarla karşılaştırılabilir sonuçlar verdiğini göstermiştir.(Esteva ve 

ark., 2017) 
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Bu özellikleri sayesinde, CNN mimarileri günümüzde biyomedikal 

uygulamalarda da geniş bir kullanım alanına sahiptir ve özellikle EMG sinyallerinin 

sınıflandırılması gibi biyomedikal verilerdeki örüntüleri belirlemek için güçlü bir araç 

olarak kullanılmaktadır. Bu çalışmada kullanılan CNN mimarileri, belirli biyomedikal 

sinyalleri sınıflandırmak için optimize edilmiş ve sinyal verisinin doğasına uygun filtreler 

ve katman yapılarıyla donatılmıştır. 

 

 

Şekil 3.6 CNN Yapısı ve Ağları 

 

Şekil 3.6’da görüldüğü gibi bu çalışmada ResNet-50, EfficientNet-B0, 

GoogleNet, DarkNet-53, DarkNet-19 uygulanmıştır. 
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3.2.1. GoogLeNet Mimarisi: Detaylı İnceleme 

 

GoogLeNet, 2014 yılında Christian Szegedy ve ekibi tarafından geliştirilmiş olan 

bir derin öğrenme modeli olup, aynı yıl ImageNet yarışmasında en iyi sonuçları elde 

etmiştir (Szegedy ve ark., 2015). GoogLeNet, derin konvolüsyonel sinir ağlarının (CNN) 

bir versiyonudur ve Inception mimarisi adı verilen yenilikçi bir yapıyı kullanır. Bu model, 

derinlikte genişlemeye odaklanarak daha az parametre ile çok daha etkili sonuçlar elde 

etmeyi hedeflemiştir (Tang ve ark., 2017). 

 

3.2.1.1. Inception Modülü 

 

GoogLeNet’in temelini oluşturan Inception modülü, farklı boyutlardaki 

konvolüsyon filtrelerini aynı anda kullanarak ağın her katmanında çeşitli uzamsal 

boyutlarda özellikleri çıkarmasını sağlar (Szegedy ve ark., 2015). Standart CNN 

mimarilerinde, tek bir konvolüsyon katmanında genellikle sabit bir filtre boyutu 

kullanılırken, Inception modülü aynı anda 1x1, 3x3 ve 5x5 gibi farklı boyutlarda filtreleri 

uygular (Iandola ve ark., 2016). Ayrıca, bu modül, hesaplama maliyetini azaltmak için 

1x1 konvolüsyonlar ile boyut indirgeme (dimensionality reduction) işlemi de kullanır . 

 

Şekil 3.5’te gösterildiği gibi Inception modülünde kullanılan bileşenler: 

1. 1x1 konvolüsyonlar: Parametre sayısını azaltırken derin özellikler çıkarır. 

2. 3x3 ve 5x5 konvolüsyonlar: Farklı boyutlardaki uzamsal özellikleri yakalamak 

için kullanılır. 

3. Max-Pooling: Daha büyük alanlardan önemli bilgileri çekerek çıktı boyutunu 

küçültür (Li ve ark., 2020). 

 

Bu çoklu konvolüsyon filtrelerinin bir araya gelmesiyle elde edilen çıktı, kanal 

yönünde birleştirilir ve bir sonraki katmana iletilir. Bu sayede, model hem düşük maliyetli 

hem de güçlü bir temsili öğrenme kapasitesine sahip olur. 
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Şekil 3.7 GoogLeNet Mimarisi (Zhou ve ark., 2021) 

 

3.2.1.2. Parametrelerin Azaltılması 

 

GoogLeNet’in en büyük avantajlarından biri, daha az parametre kullanarak çok 

derin bir ağ yapısını verimli bir şekilde eğitebilmesidir. Örneğin, 22 katmandan oluşan 

GoogLeNet, o dönem popüler olan AlexNet'ten çok daha derin olmasına rağmen yaklaşık 

12 kat daha az parametreye sahiptir (GoogLeNet’in yaklaşık 6,8 milyon parametresi 

varken AlexNet’in 60 milyondan fazla parametresi bulunur). Bu başarı, Inception 

modüllerindeki 1x1 konvolüsyonların boyut indirgeme yeteneği sayesinde elde edilmiştir 

(Szegedy ve ark., 2015). 

 

3.2.1.3. Yardımcı Sınıflandırıcılar 

 

Derin ağların eğitimi sırasında "vanishing gradient" (kaybolan gradyan) 

problemiyle karşılaşılabilir. GoogLeNet bu sorunu çözmek için ağın farklı katmanlarına 

yerleştirilen iki adet yardımcı sınıflandırıcı kullanır (Szegedy ve ark., 2015). Bu 

sınıflandırıcılar, ağın daha derin katmanlarına kadar ulaşmadan önce ara sonuçlar 

üreterek gradyan bilgisinin kaybolmasını önler. Yardımcı sınıflandırıcılar, eğitimin 

ortasında küçük kayıplar üretir ve bu sayede eğitim sürecinin stabilitesini artırır (Yang ve 

ark., 2023b). 

 

3.2.1.4. GoogLeNet’in Genel Başarı Değerlendirmesi 

 

GoogLeNet, mimarisi sayesinde çok daha az parametre ile çok daha derin bir 

yapıyı öğrenebilmiş ve ImageNet yarışmasında %6.67 hata oranı ile birinci olmuştur. Bu 

başarısı, Inception mimarisinin hem verimliliğini hem de derin öğrenme modellerindeki 

parametre verimliliğini kanıtlamıştır (Szegedy ve ark., 2015). 
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GoogleNet yapısında Konvolüsyon Katmanları: 9 * 6 + 3 (giriş) = 57 konvolüsyon 

katmanı Pooling Katmanları: 5 (Maksimum) + 2 (Ortalama) = 7 pooling katmanı bulunur. 

 

3.2.2. ResNet-50 Mimarisi Detaylı İnceleme 

 

ResNet-50, derin öğrenme modelleri arasında oldukça popüler bir konvolüsyonel 

sinir ağı (CNN) modelidir. “Residual Network” yani “Kalıntı Ağı” anlamına gelen 

ResNet'in mimarisi, derin sinir ağlarının eğitilmesi sırasında ortaya çıkan temel bir soruna 

çözüm getirmeyi amaçlar: kaybolan gradyan problemi. Ağlar derinleştikçe, eğitim 

sırasında gradyanların sıfıra yaklaşması ve modelin öğrenme yeteneğinin azalması sorunu 

ortaya çıkar. ResNet, "residual" (kalıntı) bağlantıları kullanarak bu sorunu büyük ölçüde 

çözer (Huang ve ark., 2023). 

 

3.2.2.1 Residual Bağlantılar 

 

ResNet'in en belirgin özelliği, katmanlar arasında kullanılan skip connection 

(atlama bağlantıları) ya da residual bağlantılardır. Geleneksel bir CNN'de, her katman 

girdi verisini alır, işler ve çıktıyı bir sonraki katmana iletir. Ancak ResNet'te, belirli bir 

katmandan gelen çıktı, birkaç katman sonrası iletilen çıktıyla toplanır. Bu yapı, ağın daha 

derin katmanları öğrenme sırasında daha efektif bir şekilde kullanmasını sağlar (He ve 

ark., 2016). Böylece, hem çok derin ağların performansı artar hem de gradyanların 

kaybolma olasılığı azalır (Koonce ve Koonce, 2021). 

 

3.2.2.2 ResNet-50'nin Yapısı 

 

ResNet-50, toplamda 50 katmana sahiptir ve bu nedenle "50" ismini almıştır. 

Derinliği arttırılmış bu modelde, residual bloklar kullanılmasına rağmen hesaplama 

maliyetleri minimal tutulmaya çalışılmıştır. Modelin yapısı şu şekilde özetlenebilir: 

 

Conv1 (1. Katman): 7x7 konvolüsyon filtresi, 64 adet çekirdek ve stride=2 

bulunur. Max Pooling (2. Katman): 3x3 boyutunda filtre, stride=2 bulunur. Conv2_x (3-

7. Katmanlar): 1x1, 3x3 ve 1x1 boyutlarında konvolüsyon filtreleri ve residual bağlantılar 

vardır. Conv3_x (8-16. Katmanlar): Yine 1x1, 3x3 ve 1x1 boyutlarında filtreler ile 

residual bağlantılar vardır. Conv4_x (17-31. Katmanlar): Aynı yapı, ancak filtre sayıları 

ve parametreler arttırılmıştır. Conv5_x (32-49. Katmanlar): Yine aynı yapı korunarak, 

filtre sayısı artırılır. 
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Son Katman (50. Katman): Fully connected (tam bağlı) katman ile sınıflandırma 

yapılır. 

 

Bu yapı, derinliği artırarak daha fazla özellik çıkarımı yapılmasını sağlar. Fakat 

residual bloklar sayesinde model, derin olmasına rağmen gradyanların kaybolmasını 

önler (Wen ve ark., 2020). ResNet-50 Mimarisi genel yapısı Şekil 3.6’da gösterilmiştir. 

 

 

Şekil 3.8 ResNet-50 Mimarisi (Fayaz ve ark., 2024) 

 

 

3.2.2.2. Avantajları ve Kullanım Alanları 

 

ResNet-50'nin sunduğu en önemli avantajlardan biri, çok derin bir model olmasına 

rağmen kolayca eğitilebilmesidir (He ve ark., 2016). Bu da modelin farklı görüntü işleme 

problemleri ve çeşitli makine öğrenimi uygulamalarında kullanılmasını sağlar. ResNet-

50, özellikle şu alanlarda yaygın olarak kullanılmaktadır: 

 

Görüntü Sınıflandırma: ResNet-50, ImageNet gibi büyük veri setlerinde son 

derece yüksek doğruluk oranlarına ulaşmıştır (Russakovsky ve ark., 2015). 

Nesne Tespiti: Modelin güçlü özellik çıkarma yeteneği, nesne tespiti ve tanıma 

gibi görevlerde etkili olmasını sağlar (Jongbloed ve ark., 2017). 

Segmentasyon: Görüntüdeki belirli nesnelerin bölütlenmesi, ResNet-50'nin güçlü 

yapısından faydalanılarak yapılabilir (Battineni ve ark., 2020). 

 

3.2.2.3. Performans ve Sonuçlar 

 

ResNet-50, GoogleNet ve VGG gibi önceki derin öğrenme mimarileriyle 

kıyaslandığında hem daha derin hem de daha etkili bir modeldir. ImageNet gibi devasa 

veri setlerinde yapılan testlerde, ResNet-50’nin doğruluk oranlarının çok yüksek olduğu 
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gözlenmiştir. Ayrıca residual bağlantılar sayesinde, eğitim sırasında derinliğin artmasıyla 

performans kaybı yaşanmaması büyük bir avantaj olarak öne çıkar (Russakovsky ve ark., 

2015). 

 

Resnet.50 yapısı da toplam 53 katman bulunur Konvolüsyon Katmanları: 1 (giriş) 

+ 4 (son) + 48 (16 residual blokta) = 53 konvolüsyon katmanı Pooling Katmanları: 1 

(başlangıç) + 1 (sondaki average pooling) + 4 (residual bloklar içinde) = 6 pooling 

katmanı bulunur. 

 

3.2.3. EfficientNet-B0 Mimarisi Detaylı İnceleme 

 

EfficientNet-B0, derin öğrenme modelleri arasında verimlilik ve performans 

dengesini sağlayan bir mimari olarak dikkat çeker. Bu model, CNN tabanlı görüntü 

sınıflandırma problemlerinde daha az hesaplama gücüyle yüksek doğruluk elde etmek 

için tasarlanmıştır. EfficientNet'in temel amacı, derin öğrenme modellerinin 

performansını artırırken, model boyutunu ve hesaplama maliyetlerini en aza indirmektir. 

Bu nedenle, model tasarımında "model scaling" (model ölçekleme) adı verilen yeni bir 

yaklaşım benimsenmiştir (Tan, 2019). 

 

3.2.3.1. Model Ölçekleme  

 

EfficientNet, genişlik, derinlik ve çözünürlük olmak üzere üç temel boyutta 

ölçeklendirme kullanır. Genişlik, her katmandaki filtre sayısını ifade ederken; derinlik, 

modeldeki katman sayısını belirtir. Çözünürlük ise giriş görüntüsünün boyutlarını 

tanımlar. EfficientNet-B0 modelinin ölçeklendirilmesi, bu üç parametrenin dengeli bir 

şekilde arttırılmasıyla gerçekleştirilir. EfficientNet-B0, bu parametreleri en verimli 

şekilde ayarlayarak hem daha küçük hem de daha hızlı bir model olmasına rağmen yüksek 

doğruluk sunar . 

 

EfficientNet, compound scaling (bileşik ölçekleme) adı verilen bu yaklaşımı 

kullanarak daha verimli bir şekilde ölçeklendirilen modeller oluşturur. Geleneksel 

modellerde, genellikle sadece bir parametre artırılarak performans iyileştirilir. Ancak 

EfficientNet’te, bu üç parametre optimize edilerek modelin her yönü dengeli bir şekilde 

büyütülür. Bu sayede EfficientNet-B0, çok daha büyük modellerle kıyaslanabilir 

performans sergiler (Nayak ve ark., 2022). 
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3.2.3.2. EfficientNet-B0'nin Yapısı 

 

EfficientNet-B0, MobileNetV2 temelli bir yapı üzerine inşa edilmiştir ve 

MBConv blokları kullanılarak derinleştirilmiştir (Tan ve Le, 2019). Bu bloklar, hem 

hesaplama verimliliğini artırır hem de daha az parametre kullanarak daha fazla özellik 

çıkarımını mümkün kılar. EfficientNet-B0’nin temel mimarisi şu şekildedir: 

 

MBConv Blokları: Derinlik ayrık konvolüsyonlar ve genişletme işlemleri 

kullanılarak, verimli ve düşük maliyetli hesaplama sağlar. 

 

Swish Aktivasyon Fonksiyonu: Bu aktivasyon fonksiyonu, ReLU gibi geleneksel 

fonksiyonlara kıyasla daha pürüzsüz bir doğrusal olmayanlık sunar, bu da modelin daha 

iyi performans göstermesine olanak tanır. EfficientNet-B0 Mimarisi genel akış diyagramı 

Şekil 3.7.’de gösterilmiştir.  

 

Giriş Çözünürlüğü: EfficientNet-B0, 224x224 giriş boyutunda çalışacak şekilde 

optimize edilmiştir, bu da daha büyük modellere kıyasla hafif ve hızlı bir mimari sağlar 

(Konduri ve Rao, 2024). 

 

Şekil 3. 9 EfficientNet-B0 Mimarisi (Ahmed ve Sabab, 2022) 

 

3.2.3.2. Performans ve Verimlilik 

 

EfficientNet-B0, hem doğruluk hem de verimlilik açısından dikkat çeker. 

ImageNet veri setinde, EfficientNet-B0, çok daha büyük modellerle kıyaslanabilir 

doğruluk oranlarına ulaşmıştır. Örneğin, VGG16 gibi daha büyük modellerin yaklaşık iki 

katı doğruluk sunarken, hesaplama maliyeti oldukça düşüktür(Theckedath ve Sedamkar, 

2020). Bu özellikleri, EfficientNet-B0'yi mobil cihazlarda ve düşük güç tüketimi 

gerektiren uygulamalarda ideal bir çözüm haline getirir. 
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3.2.3.3. Kullanım Alanları 

 

EfficientNet-B0, farklı alanlarda yaygın olarak kullanılmaktadır: 

 

Görüntü Sınıflandırma: Yüksek doğruluğu ve verimliliği ile çeşitli görüntü 

sınıflandırma problemlerinde sıklıkla tercih edilmektedir. 

 

Nesne Tespiti ve Segmentasyon: EfficientNet tabanlı modeller, nesne tespiti ve 

görüntü segmentasyonu gibi görevlerde başarılı sonuçlar elde etmektedir. 

 

Mobil Uygulamalar: Düşük hesaplama gücü ve yüksek performansı sayesinde, 

EfficientNet-B0, mobil ve yerleşik sistemlerde kullanılmak üzere ideal bir modeldir (Li 

ve ark., 2020). 

 

EfficientNet-B0'de konvolüsyon katmanları sayısı Konvolüsyon Katmanları: 49 

(MBConv blokları) + 1 (giriş) = 50 konvolüsyon katmanı bulunur Pooling Katmanları: 1 

adet average pooling katmanı toplamda 51 katman vardır. 

 

3.2.4. Darknet-53 Mimarisi Detaylı İnceleme 

 

Darknet-53, özellikle nesne tespiti ve görüntü işleme uygulamalarında kullanılan 

güçlü bir derin öğrenme modelidir. 53 katmandan oluşan derin bir sinir ağı yapısına sahip 

olan bu model, özellikle görüntü sınıflandırma ve nesne tespiti gibi zorlu görevlerde 

yüksek doğruluk ve hız sunmak için geliştirilmiştir. Darknet-53, hızlı ve verimli bir 

mimari olarak kabul edilmektedir (Valdez, 2020). 

 

3.2.4.1. Darknet-53'ün Yapısı 

 

Darknet-53, 53 katmandan oluşan derin bir konvolüsyonel sinir ağı (CNN) 

mimarisidir. Yapı, çoğunlukla 3x3 ve 1x1 konvolüsyon filtreleri ile oluşturulmuş 

katmanlardan meydana gelir. Bu filtreler, girdi verisinin daha derinlemesine işlenmesine 

ve özelliklerin daha yüksek doğrulukla çıkarılmasına olanak tanır (Mascarenhas ve 

Agarwal, 2021). Darknet-53 Mimarisi genel yapısı Şekil 3.8.’de gösterilmiştir.  
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Şekil 3.10 Darknet-53 Mimarisi (Xiong ve ark., 2023) 

 

Modelin en önemli özelliklerinden biri, derin katmanlarda residual bağlantıların 

kullanılmasıdır. Residual bağlantılar, katmanlar arasındaki gradyan kaybını önleyerek 

modelin eğitim sırasında daha derin katmanları da öğrenmesine yardımcı olur. Bu 

bağlantılar, derin yapıya sahip ağlarda yaygın olarak karşılaşılan kaybolan gradyan 

sorununu çözerek modelin daha etkin bir şekilde eğitilmesini sağlar. Darknet-53'ün bu 

residual yapı ile donatılması, derin katmanlardan öğrenme sürecini kolaylaştırır ve ağın 

eğitilebilirliğini artırır (Wang ve ark., 2020). 

 

3.1.4.1. Performans ve Verimlilik 

 

Darknet-53, performans ve verimlilik açısından dikkat çeken bir modeldir. 

Yapısında kullanılan residual bağlantılar sayesinde daha derin katmanlar kullanılabilir 

hale gelirken, aynı zamanda hesaplama verimliliği de korunur. Model, hem büyük veri 

setlerinde hem de gerçek zamanlı uygulamalarda yüksek performans göstermektedir 

(Gordon ve ark., 2018). 

 

Özellikle nesne tespiti gibi zaman hassasiyetine sahip görevlerde, Darknet-53 

hızlı sonuçlar verebilme kapasitesine sahiptir. Modelin yapısındaki katmanlar, 

görüntülerdeki karmaşık özellikleri tanımlamak için derin öğrenme yapılarından 

faydalanır ve hızlı hesaplama yeteneği sayesinde gerçek zamanlı uygulamalarda sıkça 

kullanılır. Modelin bu verimliliği, özellikle büyük ölçekli görüntü veri setleriyle 

çalışırken önemli bir avantaj sağlar (Yang ve ark., 2023a). 

 

3.2.4.2. Avantajları 

 

Darknet-53'ün sunduğu en büyük avantajlardan biri, derinlik ve verimlilik 

dengesidir. 53 katmanlık derin bir yapıya sahip olmasına rağmen, residual bağlantılar 
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sayesinde hesaplama yükü ve eğitim süreci optimize edilmiştir. Bu yapı, modelin yüksek 

doğruluk oranlarına ulaşırken aynı zamanda hesaplama kaynaklarını verimli kullanmasını 

sağlar. Modelin residual bloklarla donatılması, eğitimin daha hızlı ve etkili bir şekilde 

gerçekleşmesine olanak tanır (Pathak ve Raju, 2023). 

 

Modelin bir diğer önemli avantajı, özellik çıkarma kapasitesidir. Darknet-53, 

görüntülerdeki ince detayları yakalayarak daha karmaşık nesneleri bile doğru bir şekilde 

sınıflandırabilir ve tespit edebilir. Bu, özellikle karmaşık nesnelerin bulunduğu görüntü 

işleme görevlerinde büyük bir avantaj sağlar. 

 

Eğitim verimliliği de Darknet-53’ün bir diğer güçlü yönüdür. Model, residual 

bağlantılar sayesinde derin yapısına rağmen kolayca eğitilebilir. Bu, büyük veri setleri ile 

çalışırken eğitim sürecini hızlandırır ve yüksek performans sağlar (Gongguo ve Junhao, 

2021). 

 

3.2.4.2. Kullanım Alanları 

 

Darknet-53, özellikle nesne tespiti ve görüntü sınıflandırma gibi bilgisayarla görü 

uygulamalarında yaygın olarak kullanılmaktadır. Bu model, hızlı ve etkili sonuçlar 

üretebilmesi sayesinde güvenlik kameraları, otonom araçlar, medikal görüntüleme gibi 

gerçek zamanlı uygulamalarda kullanılmaktadır. Özellikle YOLOv3 (You Only Look 

Once) gibi nesne tespit sistemlerinde Darknet-53 mimarisi temel olarak kullanılır ve bu 

sayede nesnelerin hızlı bir şekilde tespit edilmesi sağlanır. 

 

Ayrıca Darknet-53, büyük veri setlerinde yüksek doğruluk gerektiren görevler 

için de idealdir. Yapay zeka tabanlı görüntü işleme ve robotik uygulamalar gibi çeşitli 

alanlarda kullanılan model, güçlü yapısı sayesinde hem akademik çalışmalarda hem de 

endüstriyel projelerde yer bulmaktadır (Jiang ve ark., 2021).  

 

Darknet-53'te 52 (residual bloklarda) + 1 (giriş) = 53 konvolüsyon katmanı 

Pooling Katmanları: Geleneksel pooling katmanı yok, stride 2 konvolüsyonlar kullanır. 
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Tüm modellere ait çıkış katmanı fonksiyonun katmanı aşağıda verildiği gibidir.  

𝑷(𝒌 = 𝒚|𝒙) =
𝒆𝒛𝒌

∑ 𝒆𝒛𝒋𝑵
𝒋=𝟏

      (3.1) 

Burada: 

 zk: k-inci sınıfa ait logit (lineer çıktı). 

 e: Euler sayısı (yaklaşık 2.718). 

 N: Toplam sınıf sayısı. 

 P(k=y│x): K-inci sınıfa ait olasılık değeridir. 
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4. ARAŞTIRMA SONUÇLARI  

 

4.1.Eğitim ve Değerlendirme 

 

CNN modelleri, Matlab kullanılarak eğitilmiş ve test edilmiştir. Hastalardan 

alınan toplam 130 EMG görüntüsü kullanılmıştır. Bu görüntülerin sırasıyla %50, %60 ve 

%70'ı eğitim amacıyla, kalan sırasıyla %30, %20 ve %10'u ise test amacıyla 

kullanılmıştır. Eğitim verisi olarak kullanılan CIDP teşhisine ait EMG görüntüleri, CNN 

mimarileri ile eğitilen modellerde sınıflandırılmış ve elde edilen doğruluk oranları 

hesaplanmıştır. Tüm modellerde öğrenme adımları 0.001 olacak şekilde elde edilmiştir. 

Aşağıdaki tabloda (Çizelge 4.1), her bir modele ait sınıflandırma sonuçları ve sırasıyla 

ilgili karışıklık matrisleri sırasıyla (Şekil 4.1, Şekil 4.2, Şekil 4.3, Şekil 4.4) verilmiştir.   

 

Çizelge 4.1 CNN modellerine Ait Doğruluk Verileri 

 

 

Performans metriklerinin hesaplamasın kullanılan formüller aşağıda verildiği 

gibidir. Doğruluk formülü 4.1, Duyarlılık 4.2, Özgünlük 4.3 ve Yanlış Keşif Oranı 4.4 

numaralı formüllerdir.  

 

 Doğruluk =
TP+TN

TP+TN+FP+FN
× 100         (4.1) 

Duyarlılık (TPR) =
TP

TP+FN
                            (4.2) 

Özgüllük (FPR) =
FP

TN+FP
                                (4.3) 

Yanlış Keşif Oranı (FNR) =  
FN

FN+TP
          (4.4) 

 

 

 

 

 

CNN Modeli 

Doğruluk (%) 

%50-50 %60-40 %70-30 

“Resnet.50 100 100 100z 

GoogleNet 90.6 100 94.7 

EfficientNet-B0 100 100 100 

Darknet-53 100 100 100 
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 True Positive (TP): Modelin pozitif olarak doğru şekilde sınıflandırdığı örneklerdir. 

 True Negative (TN): Modelin negatif olarak doğru şekilde sınıflandırdığı örneklerdir. 

 False Positive (FP): Modelin pozitif olarak yanlış şekilde sınıflandırdığı örneklerdir.  

 False Negative (FN): Modelin negatif olarak yanlış şekilde sınıflandırdığı örneklerdir.  

 True Positive Rate (TPR): Pozitif olarak doğru sınıflandırılan örneklerin, toplam 

gerçek pozitif örnekler (TP + FN) içindeki oranıdır. 

 False Positive Rate (FPR): Negatif olması gereken fakat pozitif olarak yanlış 

sınıflandırılan örneklerin, toplam negatif örnekler (TN + FP) içindeki oranıdır. 

 False Negative Rate (FNR): Pozitif olması gereken fakat negatif olarak yanlış 

sınıflandırılan örneklerin, toplam gerçek pozitif örnekler (FN + TP) içindeki oranıdır. 

  

 

Şekil 4.1 Resnet.50'ye Ait Karışıklık Matrisleri (a.%50-50, b.%60-40 c.%70-30) 
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Şekil 4.2 GoogleNET'ye Ait Karışıklık Matrisleri (a.%50-50, b.%60-40 c.%70-30) 
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Şekil 4.3 EfficientNet-B0’e Ait Karışıklık Matrisleri (a.%50-50, b.%60-40 c.%70-30) 
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Şekil 4.4 Darnet-53’de Ait Karışıklık Matrisleri (a.%50-50, b.%60-40 c.%70-30) 

 

Karışıklık matrislerinde de görüldüğü gibi a,b,c şekillerinde sınıflandırma 

doğruluklarının %100’ze ulaştığı ve dolaysıyla hata oranlarının 0 olduğunu görmek 

mümkündür. 

 

Çizelge 4.2 Resnet.50, EfficientNet-B0 ve Darnet-53 Performans Metrik Sonucu 

Model Doğruluk (%) TPR FPR FNR 

a 100 1 0 0 

b 100 1 0 0 

c 100 1 0 0 
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Çizelge 4.3 GoogleNet Performans Metrik Sonucu 

Model Accuracy (%) TPR FPR FNR 

a 90.0 0.90625 0.09375 0.09375 

b 100.0 1.0 0.0 0.0 

c 94.74 0.947 0.053 0.053 
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5. SONUÇLAR VE ÖNERİLER 

5.1. Sonuç 

Bu çalışma, Kronik İnflamatuvar Demyelinizan Poliradikülonöropati (CIDP) 

teşhisinde derin öğrenme tekniklerinin etkinliğini değerlendirmek amacıyla 

gerçekleştirilmiştir. EMG sinyal verileri kullanılarak yapılan analizler, ResNet-50, 

EfficientNet-B0 ve DarkNet-53 gibi Convolutional Neural Network (CNN) 

mimarilerinin CIDP teşhisinde yüksek doğruluk oranlarına ulaşabildiğini göstermiştir. Bu 

modellerin sağladığı sonuçlar, CIDP gibi karmaşık nörolojik hastalıkların teşhisinde 

derin öğrenme algoritmalarının güçlü birer araç olarak kullanılabileceğini ortaya 

koymaktadır. 

Elde edilen bulgular, derin öğrenme tekniklerinin klinik uygulamalarda karar 

destek sistemi olarak kullanılma potansiyelini vurgulamaktadır. Ancak, bu çalışmada 

kullanılan veri setinin sınırlı büyüklüğü ve kullanılan modellerin optimizasyon süreçleri, 

sonuçların genellenebilirliği üzerinde etkili olabileceğinden, gelecekte daha geniş veri 

setleri ve farklı algoritmalarla yapılacak araştırmalara ihtiyaç duyulmaktadır. Sonuç 

olarak, bu çalışma, derin öğrenme modellerinin CIDP teşhisinde uygulanabilirliğini ve 

klinik pratikte kullanılabilirliğini destekleyen önemli bulgular sunmaktadır. Bu alandaki 

ilerlemeler, gelecekte nörolojik hastalıkların teşhis süreçlerini dönüştürebilir ve hastaların 

tedavi süreçlerini iyileştirebilir. 

5.2. Öneri 

Bu çalışma, Kronik İnflamatuvar Demyelinizan Poliradikülonöropati (CIDP) 

teşhisinde derin öğrenme algoritmalarının kullanımına dair önemli bulgular sunmakla 

birlikte, gelecekteki araştırmalar için bazı önerilerde bulunulması gerektiğini 

göstermektedir. İlk olarak, daha geniş ve çeşitli veri setlerinin kullanılması, derin 

öğrenme modellerinin güvenilebilirliğini artırabilir ve sonuçların doğruluğunu 

pekiştirebilir. Özellikle, farklı demografik gruplardan elde edilecek veriler, modellerin 

tüm hasta grupları için geçerliliğini değerlendirmede kritik bir rol oynayabilir. 
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