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Bu c¢alisma, Kronik Inflamatuvar Demiyelinizan Poliradikiilondropati (CIDP)
teshisinde elektromiyografi (EMG) sinyal goriintiilerinin yapay zeka tabanli derin
O0grenme yontemleri ile siniflandirilmasini hedeflemektedir. CIDP, periferik sinirlerin
demiyelinizasyonu ile karakterize edilen ve hastalarin motor ve duyusal sinir
fonksiyonlarinda ciddi bozulmalara yol agan kronik bir nérolojik hastaliktir. CIDP teshisi,
benzer noropatilerle semptomlarinin ortiismesi nedeniyle karmasik bir siirectir ve erken
teshis, tedavi silirecinin etkinligi agisindan biiyilk 6nem tasir. Bu nedenle, EMG
sinyallerinin siniflandirilmasi, dogru teshisin saglanmasi ve benzer hastaliklarla karigma
olasiligmin azaltilmasi agisindan kritik bir rol oynar. Calismada, Selguk Universitesi Tip
Fakiiltesi Hastanesi'nden elde edilen EMG sinyal verilerinden olusan bir veri seti
kullanilmistir. Bu veri seti, 13 CIDP hastas1 ve 13 saglikli bireyden alinan toplam 130
EMG sinyal goriintiisiinii igermektedir. Veriler, Nihon Kohden MEB-200 model cihazla
standardize edilmis kosullarda toplanmis olup, yiiksek ¢oziintirliikk ve renk derinligine
sahip PNG formatinda saklanmistir. Veri seti, CIDP ve saglikli bireyler arasinda ayrim
yapmak amaciyla iki sinifa ayrilmis ve g¢esitli CNN mimarileri ile analiz edilmistir.
Calismada kullanilan CNN modelleri arasinda GoogLeNet, ResNet-50, EfficientNet-B0
ve DarkNet-53 gibi derin 6grenme algoritmalari yer almaktadir. Bu modeller, EMG
sinyallerindeki ince farkliliklar1 yakalayarak hastaligin teshisi i¢in kullanilmistir.
Modellerin performanslart dogruluk, duyarlilik, 6zgiillik ve F1 skoru gibi metriklerle
degerlendirilmis ve her bir modelin CIDP teshisindeki basarisi analiz edilmistir. Ozellikle
ResNet-50, EfficientNet-BO0 ve DarkNet-53 modelleri, %100’e yakin dogruluk oranlarina
ulagarak CIDP teshisinde yliksek bir performans sergilemistir. GoogLeNet modeli ise
diger modellere kiyasla biraz daha diistik bir performans gostermistir, ancak yine de teshis
siirecinde Onemli katkilar saglamistir. Sonug¢ olarak, bu calisma, derin O6grenme
tekniklerinin CIDP gibi karmasik norolojik hastaliklarin teshisinde gii¢lii bir arag olarak
kullanilabilecegini gostermektedir. EMG sinyallerinin derin 6grenme algoritmalari ile
basaril bir sekilde siniflandirilmasi, klinik uygulamalarda yapay zeka tabanli karar destek



sistemlerinin kullanilabilirligini desteklemektedir. Bu sistemler, 6zellikle erken teshis ve
tedavi siireglerinde doktorlara onemli bir rehberlik saglayabilir. Ancak, c¢aligmada
kullanilan veri setinin nispeten kii¢iik olmasi, elde edilen sonuclarin genellenebilirligi
konusunda bazi siirlamalar getirmektedir. Gelecekte daha genis veri setleri ve farkl
derin 6grenme tekniklerinin kullanilmasi, bu modellerin performansin1 daha kapsamli bir
sekilde degerlendirebilir ve CIDP teshisinde yapay zeka uygulamalarinin potansiyelini
daha da artirabilir. Bu baglamda, derin 6grenme modelleri nérolojik hastaliklarin teshis
stireglerini dontistiirebilecek giiclii bir arag olarak karsimiza ¢ikmaktadir.

Anahtar Kelimeler: Convolutional Neural Network (CNN), Elektromiyografi

(EMG), Derin 6grenme, Kronik Inflamatuvar Demiyelinizan Poliradikiilondropati
(CIDP), Teshis, Yapay zeka
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This study aims to classify electromyography (EMG) signal images using
artificial intelligence-based deep learning methods for the diagnosis of Chronic
Inflammatory Demyelinating Polyneuropathy (CIDP). CIDP is a chronic neurological
disease characterized by the demyelination of peripheral nerves, leading to significant
impairments in both motor and sensory nerve functions. The diagnosis of CIDP is a
complex process due to the overlap of its symptoms with other neuropathies, and early
diagnosis is crucial for the effectiveness of treatment. Therefore, the classification of
EMG signals plays a critical role in ensuring an accurate diagnosis and reducing the
likelihood of confusion with similar diseases. In this study, a dataset of EMG signal data
obtained from the Selcuk University Faculty of Medicine Hospital was used. This dataset
includes a total of 130 EMG signal images, obtained from 13 CIDP patients and 13
healthy individuals. The data were collected under standardized conditions using the
Nihon Kohden MEB-200 model device and were stored in PNG format with high
resolution and color depth. The dataset was divided into two classes, distinguishing
between CIDP patients and healthy individuals, and analyzed using various CNN
architectures. The CNN models used in the study included deep learning algorithms such
as GooglLeNet, ResNet-50, EfficientNet-BO, and DarkNet-53. These models were
employed to capture subtle differences in EMG signals for diagnostic purposes. The
models’ performances were evaluated using metrics such as accuracy, sensitivity,
specificity, and F1 score, and the success of each model in diagnosing CIDP was
analyzed. Particularly, ResNet-50, EfficientNet-BO, and DarkNet-53 achieved high
performance with near 100% accuracy in CIDP diagnosis. While GoogLeNet performed
slightly lower than the other models, it still made significant contributions to the
diagnostic process. In conclusion, this study demonstrates that deep learning techniques
can be effectively used as a powerful tool in diagnosing complex neurological diseases
like CIDP. The successful classification of EMG signals through deep learning algorithms

Vi



supports the potential use of Al-based decision support systems in clinical applications.
These systems can provide valuable guidance to physicians, especially in early diagnosis
and treatment processes. However, the relatively small size of the dataset used in this
study poses some limitations on the generalizability of the results. In the future, using
larger datasets and exploring different deep learning techniques can further evaluate the
performance of these models and enhance the potential of Al applications in CIDP
diagnosis. In this context, deep learning models present themselves as a powerful tool
capable of transforming the diagnostic processes of neurological diseases.

Keywords: Artificial Intelligence (Al), Chronic Inflammatory Demyelinating
Polyneuropathy (CIDP), Convolutional Neural Network (CNN), Deep Learning,
Diagnosis, Electromyography (EMG)
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1. GIRIS

Kronik Inflamatuvar Demiyelinizan Polindropati (CIDP), periferik sinirlerin
myelin kilifinda meydana gelen kronik inflamasyon sonucu ortaya ¢ikan yavas ilerleyen
bir norolojik hastaliktir. CIDP, diinya genelinde nadir goriilen bir hastalik olmasina
ragmen etkiledigi bireylerde ciddi norolojik semptomlara ve fonksiyon kayiplarina neden
olabilir. Hastalik genellikle simetrik olarak hem motor hem de duyusal sinirleri etkiler,
bu da hastalarin hem hareket yeteneklerinde hem de duyusal algilarinda belirgin
bozulmalara yol agar. CIDP'min teshisi bu semptomlarin diger norolojik hastaliklarla
bliyiik ol¢iide oOrtiismesi nedeniyle olduk¢a karmasiktir. Bu nedenle hastaligin erken
dénemde dogru teshis edilmesi tedavi siirecinin etkinligi ve hastaligin ilerlemesinin

onlenmesi agisindan kritik bir 6neme sahiptir (Uncini ve Kuwabara, 2015).

CIDP'nin kesin nedeni tam olarak bilinmemekle birlikte genellikle bagisiklik
sisteminin yanliglikla sinirlerin myelin kilifina saldirmasi sonucu ortaya c¢ikar. Bu
bagisiklik yaniti sinirlerin diizglin bir sekilde islev gdrmesini engelleyerek sinyal
iletiminde gecikmelere ve bozulmalara neden olur. CIDP'nin tetiklenmesinde bazi
enfeksiyonlar, otoimmiin hastaliklar veya genetik yatkinlik gibi faktérlerin rol oynadig
diistinilmektedir (Kuwabara ve ark., 2006). Ayrica, bazi durumlarda CIDP'nin
tetiklenmesi, viicudun bagisiklik sisteminin anormal bir sekilde tepki vermesi sonucu
ortaya ¢ikabilir. Ornegin, gegirilen bir enfeksiyon sonrasinda viicutta gelisen anormal
bagisiklik yanitlari CIDP'yi tetikleyebilir (Brun ve ark., 2022). Sekil 1.1'de gorildiigi
gibi, CIDP'de bagisiklik hiicreleri tarafindan myelin kilifina saldir1 sonucu sinir
hiicrelerinin hasar gdérmesi sinir iletiminde kesintilere yol agar. Saglikli bir sinir
hiicresinde sinyaller diizgiin bir sekilde iletilirken, hasarli myelin kilifi olan sinir

hiicresinde bu iletim kesintili ve bozuk hale gelir.

Bagigiklik Hicreleri
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Sekil 1.1 Sinir Hiicresi Gosterimi; (a) Saglikli Bireyin Sinir Hiicresi, (b) CIDP Hastasinin Sinir Hiicresi
(Panzyga, 2023)



CIDP'nin teshis siirecinde karsilasilan zorluklar, hastaligin farkli klinik formlarda
ortaya cikabilmesi ve benzer semptomlara sahip diger noropatilerle karigtirilabilmesi
nedeniyle daha da artar. Ornegin, "atipik" CIDP vakalar1, genellikle tipik CIDP belirtileri
tasimayan, dolayisiyla teshis edilmesi daha zor olan vakalardir. Bu tiir vakalar, bazen
distale yerlesik demiyelinizan simetrik ndropati (DADS) veya multifokal motor ndropati
gibi diger noropatilerle karigtirtlabilir(Chroni ve Kleopa, 2021). Sekil 1.2'de gorildiigii
gibi, CIDP ve diger ndropatiler arasindaki farklar, sinir iletim hizlar1 ve klinik belirtilerle
tanimlanabilir. Bu grafik, CIDP'nin atipik formlarinin, distale yerlesik demiyelinizan
simetrik noéropati (DADS) ve multifokal motor noéropati gibi diger noéropatilerle

karistirilabilecegini gorsel olarak gostermektedir.

M
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CIDP DADS CIDP CIDP/CISP  CANOMAD
W'“ = " l
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Demiyelinizasyon ~ Artmus fletim Normal Duyusal Normal Motor  Anormal
dmL Blogu NCV NVC Duyusal NCV

Sekil 1.2 Demiyanizel Hastaliklarin Sinyal Gosterimi (Feldman ve ark., 2021)

Yanlis teshis konulan hastalar, genellikle gereksiz ve potansiyel olarak zararli
tedavilere maruz kalmakta, ayn1 zamanda ger¢ek hastaliklarinin tedavisi gecikmektedir.
ABD'de yapilan bir ¢caligmada, CIDP tanis1 konan hastalarin neredeyse yarisinin aslinda
bu hastaliga sahip olmadigi tespit edilmistir(Allen, 2020). Bu durum, hem bireysel
diizeyde saglik sorunlarina hem de toplumsal diizeyde 6nemli ekonomik yiiklerin
dogmasina neden olmaktadir. CIDP, bireyler i¢in oldugu kadar toplumlar i¢in de ciddi
ekonomik yiikler dogurur. Yanlis teshis konulan vakalarda, gereksiz tibbi miidahaleler ve
uzun siireli tedaviler, saglik sistemi iizerindeki maliyetleri artirirken, hastalarin is giicii
kayb1 ve yasam kalitesindeki diisiis gibi sosyal maliyetler de dikkate degerdir. CIDP’nin
teshis edilmesi ve uygun tedavi stratejilerinin belirlenmesi, bu ekonomik yiikii

hafifletmek igin hayati énem tasir. Ozellikle saglik sistemlerinin bu hastaligin teshisinde



daha dikkatli ve titiz olmasi, hem bireysel hem de toplumsal saglik maliyetlerinin

diistiriilmesine katki saglayacaktir (Divino ve ark., 2018).

1.1. CIDP Teshisinde Kullanilan Yontemler

CIDP teshisinde, dogru ve erken tan1 konulmasi i¢in ¢esitli klinik ve laboratuvar
yontemleri kullanilmaktadir. Bu yontemlerin kombinasyonu, hastaligin dogru bir sekilde
tanimlanmasi ve benzer semptomlara sahip diger néropatilerden ayirt edilmesi agisindan
bliylik 6nem tasir. CIDP teshisi genellikle hastanin klinik dykiisiiniin ayrintili bir sekilde
degerlendirilmesiyle baglar. Hastaligin tipik belirtileri arasinda, 6zellikle proksimal ve
distal kas gii¢siizliigli, duyusal kayiplar ve reflekslerde azalma veya kaybolma yer alir.
Ancak, bu belirtilerin varligi tek basina yeterli olmayabilir; bu nedenle, teshisin

dogrulanmasi i¢in daha ileri testler yapilmasi gerekmektedir (Eftimov ve ark., 2020).

Elektrofizyolojik testler, CIDP teshisinde en yaygin olarak kullanilan
yontemlerden biridir. Sinir iletim caligmalar1 (NCS) ve elektromiyografi (EMGQ),
periferik sinirlerin islevselligini degerlendirmek i¢in kullanilir. NCS, sinirlerin elektriksel
uyarilara verdigi yaniti 6l¢erken, EMG, kaslarin elektriksel aktivitesini analiz eder.
CIDP'de, NCS genellikle sinir iletim hizinda belirgin bir yavaslama ve distal latanslarda
uzama gosterir. Bu bulgular, demiyelinizasyonun bir gostergesi olarak kabul edilir ve
CIDP teshisi i¢in kritik 6neme sahiptir (Eftimov ve ark., 2020).Ayrica, sinir iletim
calismalari sirasinda tespit edilen temporal dispersiyon ve iletim bloklari, CIDP'nin diger
noropatilerden ayirt edilmesine yardimci olabilir. Sekil 3'te, elektromiyografi (EMGQ)
prosediiriiniin detaylar1 gosterilmistir. Bu test, CIDP teshisinde sinir ve kas islevlerinin
degerlendirilmesinde 6nemli bir rol oynar. NCS, sinir iletim hizindaki yavaslamalar1 ve
distal latanslardaki uzamalar tespit ederken, EMG, kaslarin elektriksel aktivitesini analiz

ederek demiyelinizasyonun varligin1 dogrular.(Neligan ve ark., 2014)
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Sekil 1.3 Elektromiyografi (EMG) Prosediirii: Sinir ve Kas Fonksiyonlarinin Degerlendirilmesinde
kullanilan Test Yontemi (Cuesta-Vargas ve ark., 2020)

Bunlarin yani sira, beyin omurilik s1vist (BOS) analizi de CIDP teshisinde 6nemli
bir rol oynar. BOS'da yiiksek protein seviyeleri, 6zellikle hiicre sayisinda artis olmaksizin
gozlemlendiginde, CIDP i¢in oldukga spesifik bir bulgu olarak kabul edilir. Ancak, bu
bulgu tek basina tan1 koymak igin yeterli olmayabilir ve diger klinik ve elektrofizyolojik
bulgularla desteklenmelidir (Eftimov ve ark., 2020). Son yillarda, manyetik rezonans
goriintiileme (MRI) de teshis siirecinde kullanilmaya baglanmistir. MRI, omurilik ve sinir
koklerindeki anormal kalinlasmalar1 veya kontrast tutulumlarini tespit edebilir, bu da

CIDP'nin tanisinda yardimei olabilir(Tanaka ve ark., 2013)

Bu yontemlerin her biri, CIDP teshisinin dogrulugunu artirmak i¢in birlikte
kullanilir ve hastaligin diger benzer néropatilerden ayrimimi saglamak icin kritik dneme
sahiptir. Ancak, bu yontemlerin uygulanmasinda dikkatli olunmali ve her bir bulgunun
klinik tablo ile uyumlu olup olmadig: titizlikle degerlendirilmelidir. Yanlis pozitif
sonuclar, hastalarin gereksiz tedavilere maruz kalmasina neden olabilecegi gibi,
hastaligin yanlis taninmasi durumunda da dogru tedavinin gecikmesine yol agabilir

(Eftimov ve ark., 2020).

Yapay zeka (Al), hastaliklarin teshisinde giderek daha fazla kullanilan giiclii bir

ara¢ haline gelmistir. Al, 6zellikle tibbi goriintiileme, klinik veri analizi ve hasta risk



degerlendirmesi gibi alanlarda biiyiik bir etki yaratmaktadir.(Rehman ve ark., 2022). Al
teknolojilerinin bir alt dali olan makine 6grenimi (ML), hastaliklarin teshis edilmesi ve
hatta bazi durumlarda hastaliklarin prognozunun tahmin edilmesi i¢in yaygin olarak
kullanilmaktadir. Bu teknolojiler, bliyiik veri kiimelerini analiz ederek, karmasik
oOrtintiileri taniyabilir ve bu sayede doktorlarin karar verme siireglerine destek olabilir

(Nguyen ve ark., 2022).

Al, ozellikle kanser, kalp hastaliklar1 ve norolojik hastaliklar gibi karmasik ve cok
boyutlu hastaliklarin teshisinde etkin bir sekilde kullanmilmaktadir. Ornegin, derin
o0grenme (DL) algoritmalari, tibbi goriintiilerdeki karmagik yapilarin tanimlanmasinda
oldukg¢a basarilidir. Bu algoritmalar, doktorlarin gézden kagirabilecegi ince detaylari
tespit edebilir ve boylece teshis dogrulugunu artirabilir(Battineni ve ark., 2020). Bir
calismada, derin 6grenme tabanli bir algoritmanin, normal sinus ritmi gosteren EKG
kayitlarindan atriyal fibrilasyonu (AF) yiiksek dogrulukla tespit edebildigi gosterilmistir.
Bu, AI'nin sadece mevcut hastaliklarin teshisinde degil, ayni zamanda gelecekteki
hastalik risklerinin O6ngdriilmesinde de onemli bir arac¢ olabilecegini gostermektedir

(Yuan ve ark., 2023).

Al'nin saglik alanindaki bir diger 6nemli uygulama alani, kisisellestirilmis tip ve
hasta izlem sistemleridir. Al algoritmalari, hastalarin tibbi ge¢mislerini, genetik
bilgilerini ve yasam tarzi verilerini analiz ederek, bireye 6zel tedavi planlar olusturabilir.
Bu durum, tedavi siireglerinin daha etkili ve hedefe yonelik olmasini saglar. Ayrica, Al
tabanli sistemler, hastalarin giinliik aktivitelerini ve ¢evresel faktorleri izleyerek, 6zellikle
kronik hastaliklarin ydnetiminde biiyiik faydalar saglar. Ornegin, yapay zeka destekli
sistemler, diyabet gibi kronik hastaliklarin erken asamalarinda hastalik belirtilerini tespit

edebilir ve bu sayede erken miidahaleye olanak tanir (Raglio ve ark., 2020).
1.2. Yapay Zeka ve Norolojik Hastahiklarin Teshisi

Yapay zeka (Al), norolojik hastaliklarin teshisinde devrim niteliginde yenilikler
getirmistir. Norolojik hastaliklar, genellikle karmasik ve ¢ok yonlii belirtiler gosterir, bu
da dogru tan1 konulmasini zorlastirir. Yapay zekanin bu alandaki en 6nemli katkilarindan
biri, biiyiik veri setlerini isleme yetenegidir. Yapay zeka, klinik veriler, genetik bilgiler

ve beyin goriintiilleme sonuglar1 gibi farkli veri tiirlerini analiz edebilir ve bdylece



doktorlarin hastaligin karmasikliklarini anlamalarina ve dogru tan1 koymalarina yardime1

olabilir(Nenning ve Langs, 2022).

Ozellikle, makine ogrenimi ve derin Ogrenme algoritmalari, ndrolojik
hastaliklarin teshisinde yaygin olarak kullanilmaktadir. Bu teknolojiler, beyin
gorlntiilerindeki ince yapisal degisiklikleri tespit ederek Alzheimer hastaligr gibi
dejeneratif hastaliklarin erken teshisinde kritik bir rol oynar. Ornegin, Zhen ve
arkadaslari, MRI goriintiilerinden Alzheimer ve hafif biligsel bozukluk (MCI) teshisini
gerceklestiren derin 6grenme tabanli bir 6zellik temsil algoritmasi gelistirmislerdir. Bu
algoritma, Alzheimer hastaliginin erken evrelerinde bile beyin yapisindaki degisiklikleri
tespit ederek, dogru tan1 koyma oranini artirmigtir (Zhao ve ark., 2023) Benzer sekilde,
Bron ve ekibi tarafindan gelistirilen bir baska ¢alismada, CADDementia adli bilgisayar
destekli teshis sistemi, Alzheimer ve diger demans tiirlerinin tanisinda yiiksek dogruluk

oranlar1 sunmustur(Bron ve ark., 2015).

Yapay zeka ayrica Parkinson hastalig1 gibi hareket bozukluklarinin teshisinde de
etkili bir aragtir. Parkinson hastaliginin motor semptomlari, geleneksel teshis
yontemleriyle kolayca gézden kagabilir. Ancak, yapay zeka tabanli sistemler, hastalarin
motor aktivitelerini analiz ederek, Parkinson hastaliginin erken belirtilerini tespit edebilir.
Rizvi ve ekibi, Parkinson hastaligini tespit etmek i¢in derin 6grenme ve uzun-kisa siireli
bellek (LSTM) aglarini birlestirerek otomatik bir teshis sistemi gelistirmistir. Bu sistem,
hastalarin yiirlime paternlerini ve el titremesini analiz ederek, hastalifin erken teshis
edilmesini saglamistir (Rizvi ve ark., 2020). Jo ve meslektaslari ise derin 6grenme ve
transfer 6grenme yontemlerini kullanarak, Parkinson hastaliginin tespitinde yiiksek
dogruluk oranlar1 elde etmislerdir (Jo ve ark., 2019). Bu c¢alismalar, Yapay zekanin
norolojik hastaliklarin  teshisinde nasil kullanilabilecegine dair giiglii Ornekler

sunmaktadir.

Ek olarak, yapay zeka, epilepsi gibi diger norolojik hastaliklarin teshisinde de
kullanilmaktadir. Ornegin, Poorani ve ekibi tarafindan yapilan bir ¢alismada, EEG
sinyallerini analiz eden derin 6grenme tabanli bir model kullanilarak epilepsi nobetlerinin
yiiksek dogrulukla tespit edildigi gosterilmistir. Bu sistem, epilepsi nobetlerinin
baslangicin1 6nceden tahmin ederek, hastalarin ndbet gecirme olasiligint azaltmak i¢in

erken miidahalelere olanak tanir (Poorani ve Balasubramanie, 2023). Sekil 1.4’de



goriildiigli gibi EGG sinyalleri karmasik olmakla beraber bir ¢ok ¢ikarim
yapilabilmektedir.
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Sekil 1.4 Epilepsi Hastaligim1 Teshisinde Kullanilan EGG Sinyalleri (Amo ve ark., 2004)

Bagka bir c¢alismada, Aslam ve ekibi, derin 6grenme kullanarak multiple
sklerozun (MS) tespitinde etkili bir sistem gelistirmistir. Bu sistem, hastalarin beyin
goriintiilerini analiz ederek, MS lezyonlarini tespit etmis ve dogru tani1 koyma oranini

artirmustir (Aslam ve ark., 2022).

Yapay zekanmn norolojik hastaliklarin teshisinde sundugu bu yenilikler, tip
alaninda devrim niteliginde degisiklikler yaratmaktadir. Yapay zeka, doktorlarin
hastaliklarin karmagikliklarini1 daha iyi anlamalarina ve daha dogru teshisler koymalarina
olanak taniyarak, tibbi bakimin kalitesini artirir. Ornegin, Kldppel ve ekibi tarafindan
yapilan bir ¢alismada, MR goriintiilerinin otomatik olarak siniflandirilmasiyla Alzheimer
hastaliginin teshisinde yiiksek dogruluk oranlar1 elde edilmistir (K1oppel ve ark., 2008).
Bu tiir yenilikler, Yapay zekanin norolojik hastaliklarin teshisinde daha da



yayginlagsmasina ve bu alandaki gelismelerin hizla artmasina neden olacaktir (Kloppel ve

ark., 2008).

Yapay zeka, 6zellikle derin 6grenme ve Convolutional Neural Networks (CNN)
gibi algoritmalar, norolojik hastaliklarin teshisinde giderek daha fazla kullaniimaktadir.
Bu teknolojiler, norolojik hastaliklarin tanisinda biiyiik bir potansiyele sahiptir, ¢iinkii
beyin goriintiilerindeki karmasik yapilar1 tanimlayabilir ve hastaligin erken evrelerinde
teshis koyabilirler(Gezer ve ark., 2021) .Ornegin, Parkinson hastaliginin teshisinde
GoogLeNet, ResNet-50, EfficientNet-BO ve DarkNet-53 gibi CNN modelleri basarili bir
sekilde kullanilmistir. Dinlenme halindeki fMRI verilerini analiz eden bir ¢alismada,
GoogLeNet tabanli derin 6grenme modeli, Parkinson hastaliginin erken evrelerinde
beyindeki fonksiyonel baglanti desenlerini basarili bir sekilde tespit etmistir. Bu model,
Parkinson hastaliginin norolojik etkilerini erken safhalarda belirleyebilmis ve bu sayede

tedaviye erken baslama imkan1 saglamistir (Acharya ve ark., 2019).

Benzer sekilde, Alzheimer hastaliginin teshisinde de CNN'ler biiyiik basari
gdstermistir. Ornegin, ResNet-50 ve EfficientNet-BO modelleri kullanilarak Alzheimer
hastaliginin erken teshisi icin MRI verileri analiz edilmistir. ResNet-50, 6zellikle derin
ve karmasik yapisi sayesinde, Alzheimer hastaliginin erken evrelerinde beyindeki yapisal
degisiklikleri tespit ederek hastalarin dogru teshis almasini saglamistir. EfficientNet-B0
ise, optimize edilmis mimarisiyle daha diisiik hesaplama giicii gerektiren, ancak yiiksek

dogruluk oranlarina ulasan bir model olarak 6ne ¢ikmistir (Jain ve ark., 2020).

CNN'lerin ndrolojik hastaliklarin teshisinde kullanildig: bir diger 6nemli alan ise
tiimorlerin ayirt edilmesidir. Ozellikle DarkNet-53, MRI verileri kullanarak beyindeki
timdrleri siniflandirma konusunda istiin performans gostermistir. Bir g¢alismada,
DarkNet-53 tabanli bir model, uzman radyologlardan daha yiiksek bir dogruluk oraniyla
tiimorleri siniflandirabilmistir. Bu tiir modeller, 6zellikle deneyimsiz klinisyenlere tanisal

stireclerde 6nemli bir destek saglayarak, yanlis tan1 riskini azaltabilir ve tan1 siireglerini

hizlandirabilir (Kurian ve Juliet, 2023).

Bu gelismeler, GooglLeNet, ResNet-50, EfficientNet-B0 ve DarkNet-53 gibi CNN
modellerinin noérolojik hastaliklarin teshisinde giderek daha kritik bir rol oynamasina yol
acmaktadir. Al tabanli bu yaklasimlar, beyin goriintiileme verilerinin analizinde insan

gbziiniin tespit edemeyecegi ince ayrintilari ortaya ¢ikararak, hastaliklarin daha erken ve



daha dogru teshis edilmesine yardimci olmaktadir. Gelecekte, bu teknolojilerin daha da
gelismesi ve yayginlagsmasi beklenmektedir, bu da ndrolojik hastaliklarin tani ve tedavi

stireclerini dontstiirecektir(Ahuja ve ark., 2022).
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2. KAYNAK ARASTIRMASI
2.1. CIDP'nin Genel Tanim ve Klinik Ozellikleri

Kronik Inflamatuvar Demiyelinizan Poliradikiilondropati (CIDP), periferik
sinirlerde demiyelinizasyon ile karakterize edilen, yavas ilerleyen bir norolojik
hastaliktir. CIDP, sinirlerin myelin kilifinda kronik inflamasyonun meydana gelmesi
sonucu ortaya ¢ikar ve genellikle hem motor hem de duyusal sinirleri etkiler. Hastalik,
akut inflamatuvar demiyelinizan poliradikiilondropati (AIDP) olarak da bilinen Guillain-
Barré sendromunun kronik bir formu olarak kabul edilir. CIDP'nin tanimi, néropatinin
stiresine, semptomlarin progresif dogasina ve elektrofizyolojik bulgulara dayanir

(Bunschoten ve ark., 2019).
2.1.1. Klinik Ozellikler

CIDP'nin Klinik belirtileri, hastaligin dogasi geregi oldukca genis bir yelpazede
ortaya ¢ikabilir. Genellikle, hastalar simetrik olarak distal ve proksimal kas gii¢siizIiigi,
duyusal kayiplar ve derin tendon reflekslerinde azalma veya kaybolma gibi belirtilerle
bagvurur. CIDP'in karakteristik belirtileri, yavas ilerleyen bir zayiflik, dengesizlik ve
yiirliylis bozuklugu igerir. Bu semptomlar genellikle bacaklarda baslar ve zamanla kollara

yayilabilir (Ekladious ve Jiang, 2022).

Bununla birlikte, CIDP'in klinik spektrumu olduk¢a genistir ve bazi hastalar
atipik belirtiler gosterebilir. Ornegin, hastalarin bir kismi sadece motor sinirlerde veya
sadece duyusal sinirlerde etkilenme gdsterebilir. Atipik CIDP vakalarinda, hastaligin
taninmas1 ve teshis edilmesi daha zor olabilir. Multifokal motor noropati veya distale
yerlesik demiyelinizan noropati gibi diger noropatilerle karistirilma riski tagir. (van

Doorn ve ark., 2024). CIDP varyantlarinin gosterimi sekil 2.1’de gosterilmistir.
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4 CIDP )
Tipik CIDP CIDP Varyantlan

Tipik CIDP Distal CIDP Multifokal/Fokal CIDP Motor CIDP Duyusal CIDP
%,
Motor + Duyusal Duyusal + Motor Motor + Duyusal Multifokal/Fokal Motor Baskin Duyusal Baskin
Simetrik Distal Alt Ekstremitelerde Genellikle Motor Semptomlar Duyusal Semptomlar
proksimal + distal Baskin Asimetrik Anormal Anormal

Ust Ekstremitelerde Baskin

Sekil 2.1 CIDP Hastaliginin Tipik ve Varyantlarinin Gosterimi (Bjerklund ve ark., 2023)

2.1.2. Patofizyoloji

CIDPnin patofizyolojisi, esas olarak otoimmiin bir siire¢ olarak kabul edilir.
Hastaligin gelisiminde, bagisiklik sisteminin yanliglikla periferik sinirlerin myelin
kilifina saldirdig1 diisiiniilmektedir. Bu saldir1, myelin kilifinin hasar gérmesine, sinir
iletiminin yavaslamasina ve sonunda sinir hiicrelerinin islevlerini kaybetmesine yol agar.
Mpyelin kilifi, sinir sinyallerinin hizli ve verimli bir sekilde iletilmesini saglar; bu kilifin
hasar gormesi durumunda sinir sinyalleri kesintiye ugrar ve motor ve duyusal islevlerde

bozulmalar meydana gelir (Wolbert ve ark., 2020).

Hastaligin otoimmiin dogasi, genetik yatkinlik, enfeksiyonlar veya diger
tetikleyici faktorlerle birlestiginde ortaya ¢ikabilir. Bazi hastalarda CIDP, enfeksiyonlar
veya diger otoimmiin hastaliklarla iligkilendirilmistir. Ornegin, gegcirilmis viral
enfeksiyonlar, bagisiklik sisteminin anormal bir sekilde tepki vermesine ve sinirlerde
demiyelinizasyona yol agabilir. CIDPin patofizyolojik siireci, sinir hiicrelerinin kronik

inflamasyonu ve bunun sonucunda sinir hasari ile karakterize edilir(Dalakas, 2011).
2.1.3. Hastaligin Seyri ve Prognoz

CIDP, yavas ilerleyen bir hastaliktir ve genellikle tekrarlayan ataklarla seyreder.

Uzuvlarda uyusma, duyu kaybi, halsizlik sirt batin bolgelerinde agr1 ve sinir motor
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harekelerinde kayip gézlemlenir. Sekil 2.1°de semptomlar ilistrasyonu gdsterilmistir. Bu
ataklar arasinda belirgin iyilesme donemleri olabilir, ancak hastalik kronik ve ilerleyici
bir dogaya sahiptir. Tedavi edilmediginde, CIDP hastalarinda kalic1 norolojik hasar
gelisebilir ve bu da yasam kalitesinde ciddi diisiislere yol acabilir. Tedaviye yanit, hastalar
arasinda farklilik gosterebilir; bazi hastalar immiin modiilatér tedavilere iyi yanit

verirken, digerlerinde hastalik daha direngli olabilir (Lehmann ve ark., 2019).

Sekil 2.2 CIDP Hastaliginin Semptomlarinin Gosterimi (Mathey ve ark., 2015)

Tedavi, genellikle bagisiklik sistemini baskilayan ilaglar, intravenoz
immiinoglobulin (IVIg) veya plazmaferez gibi yontemlerle yapilir. CIDP'nin erken teshisi
ve uygun tedavi stratejilerinin uygulanmasi, hastaligin ilerlemesini yavaslatabilir ve
semptomlarin kontrol altina alinmasma yardimci olabilir. Bununla birlikte, hastaligin
seyri bireyden bireye biiyiik Ol¢lide degisiklik gosterebilir ve tedaviye verilen yanit,
hastaligin uzun vadeli prognozunu belirlemede kritik bir faktordiir (Hu ve ark., 2022).

2.2. CIDP Teshisinde Kullanilan Yontemler

CIDP'nin dogru ve erken teshisi, hastaligin yonetimi ve tedavi siirecinin etkinligi
acisindan kritik 6neme sahiptir. Bu nedenle, CIDP teshisinde kullanilan ¢esitli klinik ve
laboratuvar yontemlerinin bir kombinasyonu tercih edilmektedir. CIDP'nin teshisinde en

yaygin olarak kullanilan yontemler arasinda elektrofizyolojik testler, manyetik rezonans
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goriintiileme (MRI), beyin omurilik sivis1 (BOS) analizi ve sinir biyopsisi yer almaktadir
(Jongbloed ve ark., 2017).

2.2.1. Elektrofizyolojik Testler

Elektrofizyolojik testler, CIDP teshisinde altin standart olarak kabul edilen
yontemlerden biridir. Sinir iletim caligmalar1 (NCS) ve elektromiyografi (EMGQ),
periferik sinirlerin elektriksel iletim 6zelliklerini degerlendirir. NCS, sinirlerin elektriksel
uyarilara verdigi yanit1 6lgmektedir. Sekil 2.3. de gosterildigi gibidir. EMG, kaslarin
elektriksel aktivitesini analiz eder. CIDP'de, NCS genellikle sinir iletim hizinda belirgin
bir yavaslama, distal latanslarda uzama ve temporal dispersiyon gibi demiyelinizasyonun
gostergelerini ortaya koyar. Ayrica, iletim bloklar1 da sik¢a gozlemlenir ve bu bulgular
CIDP'nin diger noropatilerden ayirt edilmesine yardimci olur (Chichkova ve Katzin,
2010).

Sekil 2.3 NCS, Olgiim Tekniginin Gésterimi (Mathey ve ark., 2015)

Elektrofizyolojik testlerin yani sira, fokal anormalliklerin tespiti i¢in ince igne
EMG'si de kullanilir. Bu test, motor iinit potansiyellerini analiz ederek, sinir hasarinin
derecesini ve yayginhgim belirlemekte etkilidir. Elektrofizyolojik bulgular, CIDP'nin
klinik tanisinin dogrulanmasinda ve hastaligin ilerleme hizinin degerlendirilmesinde

onemli bir rol oynar (Benoit ve ark., 2021).
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2.2.2. Manyetik Rezonans Gériintiileme (MRI)

Manyetik rezonans goriintiileme (MRI), CIDP teshisinde giderek daha fazla
kullanilan bir bagka 6nemli yontemdir. MRI, 6zellikle spinal koklerde ve periferik
sinirlerde goriilen inflamatuvar degisiklikleri ve sinir kalinlagmalarini tespit etmekte
etkilidir. CIDP'li hastalarda, MRI'da genellikle spinal koklerin kontrast tutulumunda artis,
sinir kalinlagsmalar1 ve bazen de omurilikte anormal sinyal yogunluklar1 gozlemlenir.

MRI, ayrica CIDP'nin diger demiyelinizan noropatilerden ayirt edilmesine de
yardimci olur. Ozellikle multifokal motor ndropati (MMN) gibi CIDP ile karigabilecek
diger noropatilerde farkli MRI bulgulart mevcuttur. Bu nedenle, MRI, CIDP'nin dogru
teshisi ve ayirict tanisi igin kritik bir goriintiilleme aracidir. Ayrica, MRIL, sinirlerin
demiyelinizasyon ve remiyelinizasyon siireglerini izlemek i¢in de kullanilabilir

(Lehmann ve ark., 2019).
2.2.3. Beyin Omurilik Sivis1 (BOS) Analizi

BOS analizi, CIDP'nin teshisinde kullanilan invaziv olmayan bir diger dnemli
yontemdir. CIDP'de, BOS analizi genellikle hiicre sayisinda artig olmaksizin yiiksek
protein seviyeleri gosterir. Bu bulgu, demiyelinizasyonun varligini gosteren bir diger
onemli parametredir ve genellikle CIDP'nin BOS protein seviyelerindeki artisa dayanan
klinik tanisinin dogrulanmasinda kullanilir (Van den Bergh ve ark., 2010) .

Bununla birlikte, BOS'daki bu bulgu, tek basina CIDP teshisini dogrulamak i¢in
yeterli olmayabilir ve diger klinik ve elektrofizyolojik bulgularla desteklenmesi
gereklidir. BOS analizi ayrica, CIDP'nin diger otoimmiin noropatilerden ayirt edilmesine
yardimci olabilir. Ornegin, Guillain-Barré sendromu gibi diger néropatilerde BOS'da
hiicre sayisinda artis gézlemlenebilirken, CIDP'de bu genellikle goriillmez (Matur ve ark.,
2013).

2.2.4. Sinir Biyopsisi

Sinir biyopsisi, CIDP teshisinde nadiren kullanilan, ancak spesifik durumlarda
bagvurulan invaziv bir yoOntemdir. Biyopsi, sinir dokusunda demiyelinizasyon,
remiyelinizasyon ve inflamatuvar hiicre infiltrasyonunun dogrudan gézlemlenmesini
saglar. Sinir biyopsisi, Ozellikle atipik CIDP vakalarinda, klinik ve elektrofizyolojik

bulgularin yetersiz kaldig1 durumlarda kullanilabilir .
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Biyopsi ile elde edilen bulgular, CIDP'in yan1 sira vaskiilitik ndropati gibi diger
inflamatuvar ndropatilerin ayirici tanisinda da yardimci olabilir. Ancak biyopsi, sinir
hasarma neden olabilecegi igin sadece gerekli durumlarda tercih edilmelidir (Nathani ve

ark., 2021).

2.2.5. Makine Ogrenimi ve Derin Ogrenme Algoritmalarinin CIDP Teshisinde

Kullanim

Makine 6grenimi (ML) ve derin 68renme (DL) algoritmalari, tibbi teshis
siireglerinde devrim yaratan teknolojiler arasinda yer almaktadir. Ozellikle Convolutional
Neural Networks (CNN) gibi derin 6grenme modelleri, tibbi goriintiileme verilerinin
analizinde biiylik bir potansiyele sahiptir. CIDP teshisinde de bu teknolojilerin kullanimi
giderek artmakta ve dogru teshis oranlarini 6nemli 6lgiide artirmaktadir (Chang ve ark.,
2022).

2.3. CNN'lerin Temelleri ve Avantajlari

Convolutional Neural Networks (CNN), ozellikle gorsel veri analizi igin
tasarlanmis derin Ogrenme modelleridir. CNN'ler, katmanlar arasinda filtreler
uygulayarak goriintiilerdeki 6zellikleri otomatik olarak 6grenir ve siniflandirma yapar.
Bu ozellikleri sayesinde, tibbi goriintiilerdeki ince ayrintilar1 yakalayarak hastaliklarin

teshisinde insan goziiyle kagirilabilecek detaylar tespit edebilirler (Li ve ark., 2021).

CNN'lerin en biiyiik avantajlarindan biri, biiylik veri setlerinde {istiin performans
gostermeleridir. Goriintii isleme, CIDP gibi norolojik hastaliklarin teshisinde kritik
oneme sahiptir. Ozellikle elektromiyografi (EMG) sinyal goriintiileri gibi karmagik
verilerde, CNN'ler hastalikla iliskili belirgin 6zellikleri otomatik olarak tespit edebilir.
Bu, CIDP teshisinin daha hizli ve dogru bir sekilde yapilmasimni saglar (Aloysius ve
Geetha, 2017).

2.3.1. CIDP Teshisinde CNN Modellerinin Kullanimi

CIDP teshisinde CNN modellerinin kullanimi, EMG sinyal verilerinin analizi ve
siiflandirilmas tizerine odaklanmigtir. CNN'ler, EMG sinyal verilerini isleyerek, CIDP

ile saglikli bireyler arasindaki farkliliklar1 tespit etme yetenegine sahiptir. Bu, EMG
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verilerinin zaman i¢inde nasil degistigini inceleyerek, hastaligin ilerleyisini izlemek igin

de kullanilabilir (Hostin ve ark., 2023).

Bir ¢alismada, ResNet-50 ve GooglLeNet gibi derin 6grenme modelleri, CIDP
teshisinde kullanilmig ve yliksek dogruluk oranlari elde edilmistir. Bu modeller, EMG
sinyal verilerindeki ince farkliliklar tespit ederek, hastaligin erken teshisinde 6nemli bir
rol oynamistir. Ozellikle ResNet-50, derin katman yapisi sayesinde sinyal giiriiltiisiine

kars1 dayaniklilik gostermistir (Hu ve ark., 2022).

Diger bir ¢alismada, EfficientNet-B0 modeli, daha diisiik hesaplama maliyetiyle
benzer dogruluk oranlarina ulasmistir. Bu model, parametre verimliligi sayesinde,
ozellikle bliyilik veri kiimeleri lizerinde hizli ve etkili bir sekilde ¢alisabilir. Bu tiir CNN
modellerinin kullanimi, CIDP teshisinde geleneksel yontemlere kiyasla daha hizli

sonuclar elde edilmesini saglayarak, klinik karar verme siireclerini desteklemektedir

(Larson ve ark., 2023).
2.4. Yapay Zeka Tabanh Karar Destek Sistemleri

Yapay zeka (Al) tabanl karar destek sistemleri, CIDP gibi karmasik norolojik
hastaliklarin teshisinde giderek daha fazla 6nem kazanmaktadir. Al algoritmalari, biiyiik
veri kiimelerini analiz ederek, doktorlara hastaliklarin teshisi ve tedavi planlarinin
belirlenmesinde yardimci olabilir. Bu sistemler, tibbi goriintiileme verilerini isleyerek,

hastaligin evrelerini belirleyebilir ve tedaviye yanitin izlenmesine olanak tanir (Litjens ve
ark., 2017).

CNN'ler, bu tiir Al tabanli sistemlerin merkezinde yer alir. Derin 6grenme
modelleri, tibbi goriintiilerin otomatik olarak siniflandirilmasinda kullanilir ve bu siirecte
insan miidahalesine olan ihtiyaci azaltir. Bu, 6zellikle deneyimsiz klinisyenler i¢in faydali
olabilir, ¢linkii Al tabanli sistemler, dogru teshis oranlarini artirabilir ve yanlis teshis

olasiligin1 azaltabilir (Shen ve ark., 2017).
2.5. Gelecek Perspektifleri ve Arastirma Yonleri

Gelecekte, CIDP teshisinde kullanilan CNN modellerinin daha da geligsmesi
beklenmektedir. Ozellikle transfer 6grenme ve derinlemesine denetimsiz dgrenme gibi

tekniklerin kullanilmasi, CIDP teshisinde daha yenilik¢i ¢ozlimler sunabilir. Ayrica,
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yapay zeka tabanli sistemlerin klinik uygulamalarda daha yaygmn hale gelmesi,

hastaliklarin teshisinde devrim yaratabilir (Esteva ve ark., 2019).

Bu baglamda, CIDP teshisinde kullanilan yapay zeka tabanli algoritmalarin
stirekli olarak giincellenmesi ve gelistirilmesi, hastaliklarin daha erken ve daha dogru
teshis edilmesini saglayacak o©nemli bir adimdir. Ayrica, bu teknolojilerin
yayginlagmasiyla, saglik hizmetlerinin kalitesi artirilabilir ve hastalarin yasam kalitesi

iyilestirilebilir (Alam ve ark., 2022).
2.6. CIDP'nin Diger Noropatilerle Karistirilmasi ve Teshis Zorluklari

Kronik Inflamatuvar Demiyelinizan Poliradikiilondropati (CIDP), karmasik ve
heterojen Klinik tablosu nedeniyle diger noropatilerle karistirilabilir. Bu durum, CIDP'nin
dogru ve zamaninda teshis edilmesini zorlastirmakta ve hastalarin tedavi siireclerini
olumsuz etkileyebilmektedir. CIDP, 6zellikle benzer semptomlara sahip demiyelinizan
ve aksonal noropatilerle siklikla karisir. Bu nedenle, hastaligin teshisinde karsilasilan
zorluklar, hem klinik bulgularin dikkatli degerlendirilmesini hem de cesitli tanisal

yontemlerin etkin bir sekilde kullanilmasini gerektirir (Vallat ve ark., 2010).
2.7. Atipik CIDP ve Diger Noropatilerle Karisma Olasihgi

CIDP'nin klinik spektrumu oldukga genistir ve hastalar arasinda 6nemli 6lgiide
degisiklik gosterebilir. CIDP'nin atipik formlari, 6zellikle diger ndropatilerle karistiriima
olasiligin1 artirir. Ornegin, distale yerlesik demiyelinizan simetrik ndropati (DADS) ve
multifokal motor ndéropati (MMN) gibi noropatiler, CIDP ile benzer klinik 6zellikler
sergileyebilir. Bu hastaliklar da demiyelinizasyon ile karakterizedir, ancak patofizyolojik

mekanizmalar1 ve tedaviye yanitlari farklilik gosterir (Latov, 2014).

Atipik  CIDP vakalarinda, hastaligin  yalnizca belirli sinir  gruplarimi
etkileyebilecegi veya yalnizca motor ya da duyusal sinirlerde semptomlar gelisebilecegi
unutulmamalidir. Bu durum, hastaligin teshisini daha da karmasik hale getirebilir ve
yanlis teshis olasiligin1 artirabilir. Ornegin, MMN, CIDP'ye ¢ok benzeyen multifokal bir
motor ndropati olup, genellikle anti-GM1 antikorlarinin varlig: ile karakterizedir, bu da

ayirici tant i¢in 6nemli bir ipucu saglar (Van Schaik ve ark., 1994).
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2.8. Teshis Zorluklari ve Yanhs Teshis

CIDP'nin teshisinde karsilasilan en biiyiik zorluklardan biri, hastalifin
semptomlarinin genis bir ndropati yelpazesi ile ortiismesidir. CIDP'nin klinik belirtileri,
genellikle diger demiyelinizan noropatiler ve hatta bazi metabolik ndropatiler ile
benzerdir. Ozellikle diyabetik ndropati, CIDP ile karistirilabilecek yaygin bir durumdur.
Diyabetik noropatide de distal simetrik polinéropati goriilebilir, ancak bu durumun

tedaviye yaniti ve prognozu farklidir (Stewart ve ark., 1996).

Yanlis teshis, hastalarin gereksiz ve potansiyel olarak zararli tedavilere maruz
kalmasina neden olabilir. Ornegin, CIDP tanis1 konan bazi hastalarin aslinda bu hastaliga
sahip olmadigr ve bu durumun hastalara yanlis tedavilerin uygulanmasina yol actig1
bildirilmistir. Bu tiir yanlis teshisler, hastalarin yasam kalitesini olumsuz etkileyebilir ve

saglik sistemleri tizerinde gereksiz maliyetler yaratabilir (Tesfaye, 2007).
2.8.1. Elektrofizyolojik ve Goriintiileme Bulgular:

CIDP'nin diger noropatilerden ayirt edilmesinde elektrofizyolojik testler 6nemli
bir rol oynar. Sinir iletim c¢aligmalar1 (NCS) ve elektromiyografi (EMG) bulgulari,
CIDP'nin demiyelinizan bir ndropati oldugunu gosterebilir. Ancak, bu testler, aksonal
ndropatiler veya diger demiyelinizan noropatiler ile benzer bulgular verebilir. Ornegin,
multifokal motor néropatide, EMG genellikle CIDP'de goriilen fokal iletim bloklarini ve

temporal dispersiyonu gosterebilir (Kotan ve Alemdar, 2016).

Manyetik rezonans goriintiileme (MRI), CIDP'nin teshisinde yardimci bir arag
olabilir, ancak bu yontem de diger ndropatilerle karisikliklara neden olabilir. Ozellikle,
spinal koklerin ve sinirlerin kalinlagmasi gibi bulgular, hem CIDP'de hem de diger
inflamatuvar ndropatilerde goriilebilir. Bu nedenle, MRI bulgular1 dikkatle yorumlanmali
ve diger klinik ve elektrofizyolojik bulgularla birlikte degerlendirilmelidir (Pitarokoili ve
ark., 2015).

2.8.2. Klinik Degerlendirme ve Ayiricit Tam

CIDP'nin diger ndropatilerden ayirt edilmesinde klinik degerlendirme biiyiik
Onem tasir. Hastaligin seyri, semptomlarin baslangi¢ sekli ve ilerleyisi, hastanin gegmis

tibbi Oykiisii ve mevcut semptomlart dikkatle degerlendirilmelidir. Ayirict tamida,
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hastanin yanit verdigi tedaviler de dikkate almmalidir. Ornegin, immiinoglobulin
tedavisine hizl1 yanit, CIDP lehine bir bulgu olarak degerlendirilirken, bu tiir bir yanitin

eksikligi, diger noropatilerin diisiiniilmesini gerektirebilir (Reynolds ve ark., 2016).



20
3. MATERYAL VE YONTEM
3.1. Veri Seti Kaynag

Bu ¢alismada kullanilan veri seti, Selcuk Universitesi Tip Fakiiltesi Hastanesi
Noroloji Boliimii'ne basvuran hastalardan elde edilen elektromiyografi (EMG)
cihazindan elde eldilen Nihon Kohden Neuropack S1 MEB-9400K goriintiilerine
dayanmaktadir. Veriler, hastanenin arsivinde bulunan Nihon Kohden Neuropack S1
MEB-9400K model cihaz ile toplanmistir. Cihazin arsivinde 2008 ile 2024 yillar
arasinda kaydedilmis toplam 14,034 hastaya ait EMG gorintiileri yer almaktadir. Bu
genis veri havuzundan yapilan incelemeler sonucunda, 35 hastaya CIDP tanist konulmus
ancak bu hastalardan sadece 13'liniin goriintiileri, standart kaydedilme kosullarina uygun
bulunmustur. Bu segili veriler, calismanin giivenilirligi acisindan 6nemli bir kaynak
olusturmakta olup, hastaligin teshisi ve siniflandirilmasi i¢in kritik bir rol oynamaktadir.
Ayrica, bu veri seti, hem hastalarin EMG sinyal verilerini hem de saglikli bireylerden
elde edilen kontrol verilerini icermektedir, bdylece iki grup arasindaki farklarin

belirlenmesi ve CIDP'nin dogru teshisi i¢in saglam bir temel sunulmaktadir.
3.1.1. Katilmcilar

Bu calismada kullanilan veri seti, 13 CIDP hastasindan ve 13 saglikli bireyden
elde edilen EMG goriintiilerini igermektedir. CIDP hastalar1, Selcuk Universitesi Tip
Fakiiltesi Hastanesi Noroloji Boliimii'ne basvuran ve Nihon Kohden marka Neuropack
S1 MEB-9400K model cihaz ile standardize kosullarda EMG goriintiileri kaydedilen
hastalar arasindan se¢ilmistir. Cihazin gorseli Sekil. 3.1°de gosterildigi gibidir. Saglikl
bireyler ise, aym1 cihaz ve protokoller kullanilarak veri toplanan kontrol grubunu

olusturmustur.

Sekil 3.1 Nihon Kohden Marka Neuropack S1 MEB-9400K Model EMG Cihazi
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Toplamda, her birey icin bes adet farkli 6l¢iim ve farkli 6lgiim tekniklerine ait
sinyal goriintiisii kaydedilmis ve bu dogrultuda veri seti, 65 hasta ve 65 saglikli birey
gorlintiisiinden olusan 130 adet EMG sinyal goriintiisiinii icermektedir. Veri seti,
hastaligin teshis siirecinde karsilasilan zorluklar1 ve sinyal verilerindeki farkliliklart
analiz etmek i¢in kullanilmis olup, CIDP'nin ayirict tanisinda Onemli bir rol

oynamaktadir.
3.1.2. Veri Toplama Yontemi

Veri toplama siireci, Selguk Universitesi Tip Fakiiltesi Hastanesi Noroloji
Boliimii'nde standardize edilmis protokoller g¢ercevesinde gergeklestirilmistir. EMG
goriintiileri, Nihon Kohden marka Neuropack S1 MEB-9400K model cihaz kullanilarak
elde edilmistir. Bu cihaz, spesifik formatta EMG kaydi yapabilen ve uluslararasi saglik
standartlarin1 karsilayan, glivenilirligi FDA gibi kurumlardan onayli bir yazilimdir. Her
bir katilimcinin EMG sinyal verileri, MEB-2000 yazilimi aracilifiyla toplanmig ve
verilerin yiiksek dogrulukta kaydedilmesi saglanmistir. Goriintiiler, cihazin arayiiziinden
ekran alintist seklinde alinmis olup, tiim kayitlar ayni ¢oziiniirlik ve renk derinligi
standartlarina uygun olarak gergeklestirilmistir. EMG sinyal goriintiileri, 2560x1600
piksel ¢oziiniirliige ve 24 bit renk derinligine sahip PNG formatinda kaydedilmistir.

Veri toplama siireci boyunca, hastaligin teshis edilmesi ve simiflandirilmasi igin
gerekli olan tiim teknik detaylar titizlikle uygulanmais, verilerin dogrulugu ve giivenilirligi
en iist diizeyde tutulmustur. Ayrica, veri toplama islemi dncesinde Selcuk Universitesi
Etik Kurulu'ndan gerekli onaylar alinmig ve tiim katilimcilardan bilgilendirilmis onam

formlar1 imzalatilmistir.
3.1.3. Veri Setinin Yapis1

Bu caligmada kullanilan veri seti, iki ana siniftan olusmaktadir: CIDP hastalar1 ve
saglikli bireyler. Veri seti, toplamda 130 adet EMG sinyal goriintiisiinii icermekte olup,
bu goriintiilerin 65't CIDP teshisi konmus hastalardan, diger 65'1 ise saglikli kontrol
bireylerinden elde edilmistir. Her bir katilimcidan bes farkli 6lgiim alinmistir: MCS
Median L, MCS Median R, SCS Median L, SCS Median R ve MCS Tibial L. MCS Tibial
L 6l¢timii 5 ms zaman araliginda kaydedilmisken, diger dort sinyal 6l¢timii 2 ms zaman

araliginda kayit altina alinmistir. Veri setindeki her bir goriintii, 250x276 piksel boyutuna
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dontistiiriilmiis, 96 dpi ¢oziiniirlik ve 24 bit renk derinligine sahip PNG formatinda
saklanmistir. Veri seti, iki sinif (CIDP hastalar i¢in 0, saglikli bireyler i¢in 1) olarak
etiketlenmistir, bu da simiflandirma algoritmalarinin performansini degerlendirmek i¢in
saglam bir temel sunar. Veri setinin bu sekilde yapilandirilmasi, CIDP'in saglikli
bireylerden ayirt edilmesini kolaylastirmakta ve sinyal verilerindeki farkliliklarin

belirginlestirilmesine olanak tanimaktadir.

MCS Median L, MCS Median R, SCS Median L, SCS Median R ve MCS Tibial
L seklinde siniflandirilmistir. MCS Median yonteminin 6rnegi Sekil 3.2'de, SCS Median
yonteminin 6rnegi ise Sekil 2'de sunulmustur. MCS Tibial yonteminin 6rnegi ise Sekil

3.3'te gosterilmistir. lgili agiklamalar asagida yer almaktadir:

MCS Median L: Orta sinirin sol elin medyan sinir bolgesindeki EMG sinyalini

temsil eder. Medyan sinir elin duyusal ve motor islevlerinde dnemli rol oynar.

MCS Median R:Orta sinirin sag elin medyan sinir bolgesindeki EMG sinyalini
temsil eder. Sag ve sol medyan sinir sinyalleri arasindaki farklar CIDP tanisinda 6nemli

olabilir .

i |1.84ms

2.7ms

O Referans
© Topraklama

—— Motor Sinir
Duyusal Sinir

Sekil 3.2 Motor Conduction Study (MCS) Median Ol¢iim Teknigi (Yamamoto ve ark., 2017)

SCS Median L:Orta sinirin sol elin medyan sinir bdlgesindeki sinyalinin daha

genis bir analizini ifade eder.
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SCS Median R: Orta sinirin sag elin medyan sinir bolgesindeki sinyalinin daha
genis bir analizini ifade eder. Bu sinyal CIDP'nin sag el iizerindeki etkilerini

degerlendirmek i¢in kullanilir.

Uyarim

Koltuk Alts Bilek

Dirsek

/o

Median Sinir
Proksimal Distal

Sekil 3.3 Sensory Conduction Study (SCS) Median Olgiim Teknigi (Yamamoto ve ark., 2017)

MCS Tibial L: Tibial sinirin sol bacakta elde edilen EMG sinyalidir (Horiuchi ve
ark., 2022).

49.7rmvs
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Sekil 3.4 Motor Conduction Study (MCS) Tibial Olgiim Teknigi (Yamamoto ve ark., 2017)

Yukarda belirtildigi gibi bir bireye ait 5 ayr1 olgiim yontemi (MCS Median L,
MCS Median R, SCS Median L, SCS Median R, MCS Tibial L) ile kayitlanan EMG
sinyal goriintiilerine ait bir 6rnek (SCS Median L) sekil 3.4’de verilmistir.
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Sekil 3.5 Hasta Bireye ait SCS Median L Sinyal Goriintiisii

3.1.4. Veri Setinin Kullanimi

Bu c¢alismada, kullanilan veri seti, derin Ogrenme modellerinin egitimi,
dogrulamasi ve test edilmesi amaciyla kullanilmistir. Veri seti, baslangigta %50 egitim
ve %50 test oraninda boliinmiistiir. Daha sonra, modelin performansini artirmak ve genel
dogrulugunu optimize etmek amaciyla veri seti %60 egitim ve %40 test olarak yeniden
boliinmiis, son olarak ise %70 egitim ve %30 test oraninda nihai bir boliinme
gerceklestirilmistir. Bu asamali veri bolme siireci, modellerin genelleme yetenegini
degerlendirmek ve olas1 asir1 uyum (overfitting) problemlerini minimize etmek i¢in kritik
bir rol oynamistir. Her bir bdliinmede, veri seti, siniflar arasinda dengeli bir dagilim
saglanarak, hem CIDP hastalarinin hem de saglikli bireylerin sinyal goriintiilerinin esit
temsil edilmesine 6zen gosterilmistir. Bu veri seti, derin §grenme modellerinin egitiminde
kullanilan temel girdi olarak islev gérmiis ve g¢esitli model performans metrikleri
(6rnegin, dogruluk, hassasiyet, 0zgiilliik) ilizerinden degerlendirilmistir. Elde edilen
sonuglar, CIDP'nin teshisinde kullanilan CNN tabanli modellerin etkinligini ve veri
setinin bu modellerin performansini degerlendirmede ne denli 6nemli oldugunu ortaya

koymustur.
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3.2. CNN MIMARILERIi

Convolutional Neural Network (CNN), 6zellikle goriintii tanima, siniflandirma ve
nesne algilama gibi gorsel verilerle ilgili gorevlerde yaygin olarak kullanilan bir derin
o0grenme modelidir. CNN, goriintiilerdeki yerel oOzellikleri algilamak i¢in farkl
boyutlardaki filtreler kullanarak, verinin uzaysal hiyerarsisini Ogrenir. Bu sayede,
goriintiilerdeki kenarlar, koseler, dokular ve daha karmagik yapilar gibi yerel 6zellikler
belirlenir ve sonraki katmanlara iletilir. Her bir evrisim katmani, 6nceki katmandan aldig
Ozellikleri daha soyut hale getirerek, goriintiinlin daha derin ozelliklerini Ogrenir.
Boylece, diisiik seviyeli 6zelliklerden baslayarak daha yiiksek seviyeli kavramlara ulasilir

(Deng ve ark., 2022).

CNN'lerin temel yapi taslar1 arasinda evrisim (convolution) ve havuzlama
(pooling) katmanlari bulunur. Evrigim katmanlart, filtreler araciligiyla goriintii tizerindeki
belirli Oriintiileri algilarken, havuzlama katmanlari, 6zellik haritalarinin boyutlarini
kiigiilterek hesaplama yiikiinii azaltir ve modelin genel performansini artirir. Ozellikle,
maksimum havuzlama (max-pooling) gibi yontemler, bir bolgede en baskin 6zellikleri
secerek verinin sikistirilmasini saglar. Ayrica, fully connected (tam baglantili) katmanlar,
Ogrenilen bu o6zellikleri daha soyut diizeyde bir siniflandirmaya doniistiirir ve modelin

¢ikt1 katmaninda siif tahminleri yapilir (Chen ve Qu, 2021).

CNN'ler, ozellikle biiyiik veri kiimeleri ile egitildiklerinde yiiksek dogruluk
oranlarma ulasabilir. Ornegin, Krizhevsky tarafindan gelistirilen AlexNet, ImageNet veri
kiimesindeki milyonlarca goriintii lizerinde egitilmis ve bu sayede nesne tanima
gorevlerinde devrim niteliginde bir basar1 elde etmistir (Krizhevsky ve ark., 2012).
CNN'ler, ayn1 zamanda tibbi goriintiileme, yiiz tanima, siirticlisliz araclar ve giivenlik
sistemleri gibi genis bir yelpazede kullanilir. Litjens CNN'lerin tibbi goriintiileme
uygulamalarinda kanser teshisi, beyin goriintiileme ve organ segmentasyonu gibi
alanlarda onemli ilerlemeler sagladigini belirtmistir (Litjens ve ark., 2017). Esteva da
benzer sekilde, CNN'lerin dermatolojik goriintiilerde cilt kanseri tespiti gibi zor
gorevlerde insan uzmanlarla karsilagtirilabilir sonuglar verdigini gostermistir.(ESteva ve

ark., 2017)
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Bu Ozellikleri sayesinde, CNN mimarileri giinlimiizde biyomedikal
uygulamalarda da genis bir kullanim alanina sahiptir ve 6zellikle EMG sinyallerinin
siniflandirilmasi gibi biyomedikal verilerdeki oriintiileri belirlemek igin giiglii bir arag
olarak kullanilmaktadir. Bu ¢alismada kullanilan CNN mimarileri, belirli biyomedikal
sinyalleri siniflandirmak i¢in optimize edilmis ve sinyal verisinin dogasina uygun filtreler

ve katman yapilariyla donatilmistir.
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Sekil 3.6 CNN Yapist ve Aglari

Sekil 3.6’da gorildigii gibi bu c¢alismada ResNet-50, EfficientNet-BO,
GoogleNet, DarkNet-53, DarkNet-19 uygulanmustir.
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3.2.1. GoogLeNet Mimarisi: Detayh Inceleme

GoogLeNet, 2014 yilinda Christian Szegedy ve ekibi tarafindan gelistirilmis olan
bir derin 6grenme modeli olup, ayn1 yi1l ImageNet yarigsmasinda en iyi sonuglar elde
etmistir (Szegedy ve ark., 2015). GoogLeNet, derin konvoliisyonel sinir aglarinin (CNN)
bir versiyonudur ve Inception mimarisi ad1 verilen yenilik¢i bir yapiy1 kullanir. Bu model,
derinlikte genislemeye odaklanarak daha az parametre ile ¢ok daha etkili sonuglar elde

etmeyi hedeflemistir (Tang ve ark., 2017).

3.2.1.1. Inception Modiilii

GoogLeNet’in temelini olusturan Inception modiilii, farkli boyutlardaki
konvoliisyon filtrelerini ayni anda kullanarak agin her katmaninda gesitli uzamsal
boyutlarda 6zellikleri ¢ikarmasini saglar (Szegedy ve ark., 2015). Standart CNN
mimarilerinde, tek bir konvoliisyon katmaninda genellikle sabit bir filtre boyutu
kullanilirken, Inception modiilii ayni anda 1x1, 3x3 ve 5x5 gibi farkli boyutlarda filtreleri
uygular (Iandola ve ark., 2016). Ayrica, bu modiil, hesaplama maliyetini azaltmak igin

1x1 konvoliisyonlar ile boyut indirgeme (dimensionality reduction) islemi de kullanir .

Sekil 3.5’te gosterildigi gibi Inception modiiliinde kullanilan bilesenler:

1. 1x1 konvoliisyonlar: Parametre sayisini azaltirken derin 6zellikler ¢ikarir.

2. 3x3 ve 5x5 konvoliisyonlar: Farkli boyutlardaki uzamsal 6zellikleri yakalamak
icin kullanilir.

3. Max-Pooling: Daha biiyiik alanlardan 6nemli bilgileri ¢ekerek ¢ikti boyutunu
kiicilttir (Li ve ark., 2020).

Bu ¢oklu konvoliisyon filtrelerinin bir araya gelmesiyle elde edilen ¢ikti, kanal
yoniinde birlestirilir ve bir sonraki katmana iletilir. Bu sayede, model hem diisiik maliyetli

hem de giiclii bir temsili 6grenme kapasitesine sahip olur.
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Sekil 3.7 GoogLeNet Mimarisi (Zhou ve ark., 2021)

3.2.1.2. Parametrelerin Azaltilmasi

GoogLeNet’in en biiylik avantajlarindan biri, daha az parametre kullanarak ¢ok
derin bir ag yapisim verimli bir sekilde egitebilmesidir. Ornegin, 22 katmandan olusan
GoogLeNet, o donem popiiler olan AlexNet'ten ¢ok daha derin olmasina ragmen yaklasik
12 kat daha az parametreye sahiptir (GoogLeNet’in yaklasik 6,8 milyon parametresi
varken AlexNet’in 60 milyondan fazla parametresi bulunur). Bu basari, Inception
modiillerindeki 1x1 konvoliisyonlarin boyut indirgeme yetenegi sayesinde elde edilmistir

(Szegedy ve ark., 2015).

3.2.1.3. Yardime1 Stmiflandiricilar

Derin aglarin egitimi sirasinda "vanishing gradient" (kaybolan gradyan)
problemiyle karsilasilabilir. GoogLeNet bu sorunu ¢dzmek icin agin farkli katmanlarina
yerlestirilen iki adet yardimei smiflandirict kullanir (Szegedy ve ark., 2015). Bu
siniflandiricilar, agin daha derin katmanlarina kadar ulagsmadan Once ara sonuglar
iireterek gradyan bilgisinin kaybolmasini onler. Yardimci siniflandiricilar, egitimin
ortasinda kiiglik kayiplar tiretir ve bu sayede egitim siirecinin stabilitesini artirir (Yang ve
ark., 2023b).

3.2.1.4. GoogLeNet’in Genel Basar1 Degerlendirmesi

GoogLeNet, mimarisi sayesinde ¢ok daha az parametre ile ¢ok daha derin bir
yapiy1 6grenebilmis ve ImageNet yarigsmasinda %6.67 hata orani ile birinci olmustur. Bu
basarisi, Inception mimarisinin hem verimliligini hem de derin 6grenme modellerindeki

parametre verimliligini kanitlamistir (Szegedy ve ark., 2015).
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GoogleNet yapisinda Konvoliisyon Katmanlari: 9 * 6 + 3 (giris) = 57 konvoliisyon

katmani Pooling Katmanlari: 5 (Maksimum) + 2 (Ortalama) = 7 pooling katman1 bulunur.
3.2.2. ResNet-50 Mimarisi Detayli inceleme

ResNet-50, derin 6grenme modelleri arasinda oldukga popiiler bir konvoliisyonel
sinir ag1 (CNN) modelidir. “Residual Network” yani “Kalinti Ag1” anlamina gelen
ResNet'in mimarisi, derin sinir aglarinin egitilmesi sirasinda ortaya ¢ikan temel bir soruna
¢Ozlim getirmeyi amaglar: kaybolan gradyan problemi. Aglar derinlestikge, egitim
sirasinda gradyanlarin sifira yaklagsmasi ve modelin 6grenme yeteneginin azalmasi sorunu
ortaya ¢ikar. ResNet, "residual" (kalint1) baglantilar1 kullanarak bu sorunu biiyiik dl¢iide
¢ozer (Huang ve ark., 2023).

3.2.2.1 Residual Baglantilar

ResNet'in en belirgin 6zelligi, katmanlar arasinda kullanilan skip connection
(atlama baglantilar) ya da residual baglantilardir. Geleneksel bir CNN'de, her katman
girdi verisini alir, isler ve ¢iktiyr bir sonraki katmana iletir. Ancak ResNet'te, belirli bir
katmandan gelen ¢ikt1, birka¢ katman sonrasi iletilen ¢iktiyla toplanir. Bu yapi, agin daha
derin katmanlar1 6grenme sirasinda daha efektif bir sekilde kullanmasini saglar (He ve
ark., 2016). Boylece, hem c¢ok derin aglarin performans: artar hem de gradyanlarin

kaybolma olasilig1 azalir (Koonce ve Koonce, 2021).
3.2.2.2 ResNet-50'nin Yapisi

ResNet-50, toplamda 50 katmana sahiptir ve bu nedenle "50" ismini almistir.
Derinligi arttirilmis bu modelde, residual bloklar kullanilmasina ragmen hesaplama

maliyetleri minimal tutulmaya calisilmistir. Modelin yapisi su sekilde 6zetlenebilir:

Convl (1. Katman): 7x7 konvoliisyon filtresi, 64 adet c¢ekirdek ve stride=2
bulunur. Max Pooling (2. Katman): 3x3 boyutunda filtre, stride=2 bulunur. Conv2_x (3-
7. Katmanlar): 1x1, 3x3 ve 1x1 boyutlarinda konvoliisyon filtreleri ve residual baglantilar
vardir. Conv3 _x (8-16. Katmanlar): Yine 1x1, 3x3 ve Ix1 boyutlarinda filtreler ile
residual baglantilar vardir. Conv4_x (17-31. Katmanlar): Ayni yapi, ancak filtre sayilari
ve parametreler arttirllmistir. ConvS_x (32-49. Katmanlar): Yine ayni yap1 korunarak,

filtre sayis1 artirilir.
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Son Katman (50. Katman): Fully connected (tam bagli) katman ile siniflandirma

yapilir.

Bu yap1, derinligi artirarak daha fazla 6zellik ¢ikarimi yapilmasini saglar. Fakat
residual bloklar sayesinde model, derin olmasina ragmen gradyanlarin kaybolmasini

onler (Wen ve ark., 2020). ResNet-50 Mimarisi genel yapisi Sekil 3.6’da gosterilmistir.

_ Resnet50 MimarAisi

Cikis

Avg Pool
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FC
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Sekil 3.8 ResNet-50 Mimarisi (Fayaz ve ark., 2024)

3.2.2.2. Avantajlar1 ve Kullanim Alanlari

ResNet-50"nin sundugu en 6nemli avantajlardan biri, ¢ok derin bir model olmasina
ragmen kolayca egitilebilmesidir (He ve ark., 2016). Bu da modelin farkli goriintii isleme
problemleri ve ¢esitli makine 6grenimi uygulamalarinda kullanilmasini saglar. ResNet-

50, ozellikle su alanlarda yaygin olarak kullanilmaktadir:

Gorlintii Siniflandirma: ResNet-50, ImageNet gibi biiylik veri setlerinde son
derece yiiksek dogruluk oranlarina ulagsmistir (Russakovsky ve ark., 2015).

Nesne Tespiti: Modelin gii¢lii 6zellik ¢ikarma yetenegi, nesne tespiti ve tanima
gibi gorevlerde etkili olmasini saglar (Jongbloed ve ark., 2017).

Segmentasyon: Goriintiideki belirli nesnelerin boliitlenmesi, ResNet-50"nin giiclii

yapisindan faydalanilarak yapilabilir (Battineni ve ark., 2020).

3.2.2.3. Performans ve Sonuclar

ResNet-50, GoogleNet ve VGG gibi Onceki derin 6grenme mimarileriyle
kiyaslandiginda hem daha derin hem de daha etkili bir modeldir. ImageNet gibi devasa
veri setlerinde yapilan testlerde, ResNet-50nin dogruluk oranlarinin ¢ok yiiksek oldugu
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gozlenmistir. Ayrica residual baglantilar sayesinde, egitim sirasinda derinligin artmasiyla
performans kaybi yasanmamasi biiyiik bir avantaj olarak 6ne ¢ikar (Russakovsky ve ark.,
2015).

Resnet.50 yapist da toplam 53 katman bulunur Konvoliisyon Katmanlari: 1 (giris)
+ 4 (son) + 48 (16 residual blokta) = 53 konvoliisyon katmani Pooling Katmanlar1: 1
(baglangi¢) + 1 (sondaki average pooling) + 4 (residual bloklar i¢cinde) = 6 pooling

katman1 bulunur.
3.2.3. EfficientNet-B0 Mimarisi Detayh Inceleme

EfficientNet-B0, derin 6grenme modelleri arasinda verimlilik ve performans
dengesini saglayan bir mimari olarak dikkat ¢eker. Bu model, CNN tabanli goriintii
siiflandirma problemlerinde daha az hesaplama giiciiyle yiiksek dogruluk elde etmek
icin tasarlanmistir.  EfficientNet'in temel amaci, derin 0grenme modellerinin
performansini artirirken, model boyutunu ve hesaplama maliyetlerini en aza indirmektir.
Bu nedenle, model tasariminda "model scaling" (model dl¢cekleme) adi verilen yeni bir

yaklagim benimsenmistir (Tan, 2019).

3.2.3.1. Model Ol¢ekleme

EfficientNet, genislik, derinlik ve ¢oziiniirliik olmak {izere ii¢c temel boyutta
Olceklendirme kullanir. Genislik, her katmandaki filtre sayisini ifade ederken; derinlik,
modeldeki katman sayisini belirtir. Coziiniirlik ise giris gorlintiisiiniin boyutlarini
tanimlar. EfficientNet-BO modelinin 6lgeklendirilmesi, bu ii¢ parametrenin dengeli bir
sekilde arttirllmasiyla gergeklestirilir. EfficientNet-BO, bu parametreleri en verimli
sekilde ayarlayarak hem daha kii¢lik hem de daha hizli bir model olmasina ragmen yiiksek

dogruluk sunar .

EfficientNet, compound scaling (bilesik 6lgekleme) adi verilen bu yaklagimi
kullanarak daha verimli bir sekilde Olgeklendirilen modeller olusturur. Geleneksel
modellerde, genellikle sadece bir parametre artirilarak performans iyilestirilir. Ancak
EfficientNet’te, bu li¢ parametre optimize edilerek modelin her yonii dengeli bir sekilde
biyiitiiliir. Bu sayede EfficientNet-B0O, cok daha biiyilk modellerle kiyaslanabilir
performans sergiler (Nayak ve ark., 2022).
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3.2.3.2. EfficientNet-B0'nin Yapisi

EfficientNet-B0O, MobileNetV2 temelli bir yapi iizerine insa edilmistir ve
MBConv bloklar1 kullanilarak derinlestirilmistir (Tan ve Le, 2019). Bu bloklar, hem
hesaplama verimliligini artirir hem de daha az parametre kullanarak daha fazla 6zellik

¢ikarimini miimkiin kilar. EfficientNet-B0’nin temel mimarisi su sekildedir:

MBConv Bloklari: Derinlik ayrik konvoliisyonlar ve genisletme islemleri

kullanilarak, verimli ve diisiik maliyetli hesaplama saglar.

Swish Aktivasyon Fonksiyonu: Bu aktivasyon fonksiyonu, ReLU gibi geleneksel
fonksiyonlara kiyasla daha piiriizsiiz bir dogrusal olmayanlik sunar, bu da modelin daha
iyi performans gostermesine olanak tanir. EfficientNet-BO Mimarisi genel akis diyagrami

Sekil 3.7.”de gosterilmistir.

Giris Cozintrliigii: EfficientNet-B0, 224x224 giris boyutunda ¢alisacak sekilde
optimize edilmistir, bu da daha biiylik modellere kiyasla hafif ve hizli bir mimari saglar

(Konduri ve Rao, 2024).
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Sekil 3. 9 EfficientNet-BO Mimarisi (Ahmed ve Sabab, 2022)

3.2.3.2. Performans ve Verimlilik

EfficientNet-BO, hem dogruluk hem de verimlilik agisindan dikkat ceker.
ImageNet veri setinde, EfficientNet-B0, ¢ok daha biiyiik modellerle kiyaslanabilir
dogruluk oranlarma ulagmistir. Ornegin, VGG16 gibi daha biiyiik modellerin yaklasik iki
kat1 dogruluk sunarken, hesaplama maliyeti oldukca diistiktiir(Theckedath ve Sedamkar,
2020). Bu ozellikleri, EfficientNet-B0'yi mobil cihazlarda ve disiik gili¢ tiiketimi

gerektiren uygulamalarda ideal bir ¢6ziim haline getirir.
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3.2.3.3. Kullanim Alanlar:

EfficientNet-BO0, farkl1 alanlarda yaygin olarak kullanilmaktadir:

Gortntii Siniflandirma:  Yiiksek dogrulugu ve verimliligi ile cesitli goriintii

siniflandirma problemlerinde siklikla tercih edilmektedir.

Nesne Tespiti ve Segmentasyon: EfficientNet tabanli modeller, nesne tespiti ve

goriintii segmentasyonu gibi gorevlerde basarili sonuglar elde etmektedir.

Mobil Uygulamalar: Diisiik hesaplama giicli ve yiiksek performansi sayesinde,
EfficientNet-B0, mobil ve yerlesik sistemlerde kullanilmak tizere ideal bir modeldir (Li
ve ark., 2020).

EfficientNet-B0'de konvoliisyon katmanlar1 sayis1t Konvoliisyon Katmanlari: 49
(MBConv bloklar1) + 1 (giris) = 50 konvoliisyon katmani bulunur Pooling Katmanlar: 1

adet average pooling katmani1 toplamda 51 katman vardir.
3.2.4. Darknet-53 Mimarisi Detayh Inceleme

Darknet-53, 6zellikle nesne tespiti ve goriintii isleme uygulamalarinda kullanilan
giiclii bir derin 6grenme modelidir. 53 katmandan olugan derin bir sinir ag1 yapisina sahip
olan bu model, 6zellikle goriintii siniflandirma ve nesne tespiti gibi zorlu gorevlerde
yiiksek dogruluk ve hiz sunmak i¢in gelistirilmistir. Darknet-53, hizli ve verimli bir

mimari olarak kabul edilmektedir (VValdez, 2020).

3.2.4.1. Darknet-53'iin Yapisi

Darknet-53, 53 katmandan olusan derin bir konvoliisyonel sinir agi (CNN)
mimarisidir. Yapi, ¢ogunlukla 3x3 ve 1x1 konvoliisyon filtreleri ile olusturulmus
katmanlardan meydana gelir. Bu filtreler, girdi verisinin daha derinlemesine islenmesine
ve Ozelliklerin daha yiiksek dogrulukla ¢ikarilmasina olanak tanir (Mascarenhas ve
Agarwal, 2021). Darknet-53 Mimarisi genel yapisi Sekil 3.8.’de gosterilmistir.
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Sekil 3.10 Darknet-53 Mimarisi (Xiong ve ark., 2023)

Modelin en 6nemli 6zelliklerinden biri, derin katmanlarda residual baglantilarin
kullanilmasidir. Residual baglantilar, katmanlar arasindaki gradyan kaybini onleyerek
modelin egitim sirasinda daha derin katmanlari da 6grenmesine yardimci olur. Bu
baglantilar, derin yapiya sahip aglarda yaygin olarak karsilasilan kaybolan gradyan
sorununu ¢dzerek modelin daha etkin bir sekilde egitilmesini saglar. Darknet-53"tin bu
residual yapi ile donatilmasi, derin katmanlardan 6grenme siirecini kolaylastirir ve agin

egitilebilirligini artirir (Wang ve ark., 2020).

3.1.4.1. Performans ve Verimlilik

Darknet-53, performans ve verimlilik agisindan dikkat ¢eken bir modeldir.
Yapisinda kullanilan residual baglantilar sayesinde daha derin katmanlar kullanilabilir
hale gelirken, ayni zamanda hesaplama verimliligi de korunur. Model, hem biiyiik veri
setlerinde hem de ger¢ek zamanli uygulamalarda yiiksek performans gostermektedir

(Gordon ve ark., 2018).

Ozellikle nesne tespiti gibi zaman hassasiyetine sahip gdrevlerde, Darknet-53
hizli sonuglar verebilme kapasitesine sahiptir. Modelin yapisindaki katmanlar,
goriintiilerdeki karmagik ozellikleri tanimlamak i¢in derin &grenme yapilarindan
faydalanir ve hizli hesaplama yetenegi sayesinde ger¢ek zamanli uygulamalarda sik¢a
kullanilir. Modelin bu verimliligi, 6zellikle biliylik 6lgekli goriintii veri setleriyle

calisirken 6nemli bir avantaj saglar (Yang ve ark., 2023a).

3.2.4.2. Avantajlan

Darknet-53'in sundugu en biiyiikk avantajlardan biri, derinlik ve verimlilik

dengesidir. 53 katmanlik derin bir yapiya sahip olmasina ragmen, residual baglantilar
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sayesinde hesaplama yiikii ve egitim siireci optimize edilmistir. Bu yap1, modelin yiiksek
dogruluk oranlarina ulasirken ayn1 zamanda hesaplama kaynaklarini verimli kullanmasini
saglar. Modelin residual bloklarla donatilmasi, egitimin daha hizli ve etkili bir sekilde

gerceklesmesine olanak tanir (Pathak ve Raju, 2023).

Modelin bir diger onemli avantaji, 6zellik ¢ikarma kapasitesidir. Darknet-53,
gorlntiilerdeki ince detaylar yakalayarak daha karmasik nesneleri bile dogru bir sekilde
siiflandirabilir ve tespit edebilir. Bu, 6zellikle karmagik nesnelerin bulundugu goriintii

isleme gorevlerinde biiylik bir avantaj saglar.

Egitim verimliligi de Darknet-53’lin bir diger gii¢lii yoniidiir. Model, residual
baglantilar sayesinde derin yapisina ragmen kolayca egitilebilir. Bu, biiyiik veri setleri ile

calisirken egitim siirecini hizlandirir ve yiiksek performans saglar (Gongguo ve Junhao,
2021).

3.2.4.2. Kullanim Alanlar:

Darknet-53, 6zellikle nesne tespiti ve gortintii siniflandirma gibi bilgisayarla gori
uygulamalarinda yaygin olarak kullanilmaktadir. Bu model, hizli ve etkili sonuglar
tiretebilmesi sayesinde giivenlik kameralari, otonom araclar, medikal goriintiileme gibi
gercek zamanli uygulamalarda kullamlmaktadir. Ozellikle YOLOvV3 (You Only Look
Once) gibi nesne tespit sistemlerinde Darknet-53 mimarisi temel olarak kullanilir ve bu

sayede nesnelerin hizl1 bir sekilde tespit edilmesi saglanir.

Ayrica Darknet-53, biiyiik veri setlerinde yliksek dogruluk gerektiren gorevler
icin de idealdir. Yapay zeka tabanli goriintii isleme ve robotik uygulamalar gibi ¢esitli
alanlarda kullanilan model, gii¢lii yapisi sayesinde hem akademik ¢aligmalarda hem de

endiistriyel projelerde yer bulmaktadir (Jiang ve ark., 2021).

Darknet-53'te 52 (residual bloklarda) + 1 (giris) = 53 konvoliisyon katmani

Pooling Katmanlari: Geleneksel pooling katmani yok, stride 2 konvoliisyonlar kullanir.
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Tiim modellere ait ¢ikis katmani fonksiyonun katmani agagida verildigi gibidir.

ezk

Pk =ylx) = 55—; 3.1)

SN e

Burada:
e zk: Kk-inci sinifa ait logit (lineer ¢ikt1).
e e: Euler sayisi (yaklasik 2.718).
e N: Toplam siif sayisi.

o P(k=y | X): K-inci sinifa ait olasilik degeridir.
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4. ARASTIRMA SONUCLARI

4.1.Egitim ve Degerlendirme

CNN modelleri, Matlab kullanilarak egitilmis ve test edilmistir. Hastalardan
alinan toplam 130 EMG goriintiisii kullanilmigtir. Bu goriintiilerin sirasiyla %50, %60 ve
%701 egitim amaciyla, kalan sirastyla %30, %20 ve %I10'n ise test amaciyla
kullanilmistir. Egitim verisi olarak kullanilan CIDP teshisine ait EMG goriintiileri, CNN
mimarileri ile egitilen modellerde smiflandirilmis ve elde edilen dogruluk oranlari
hesaplanmistir. Tiim modellerde 6grenme adimlar1 0.001 olacak sekilde elde edilmistir.
Asagidaki tabloda (Cizelge 4.1), her bir modele ait siniflandirma sonuglar1 ve sirastyla

ilgili karigiklik matrisleri sirastyla (Sekil 4.1, Sekil 4.2, Sekil 4.3, Sekil 4.4) verilmistir.

Cizelge 4.1 CNN modellerine Ait Dogruluk Verileri

Dogruluk (%)
CNN Modeli
%350-50 %060-40 %70-30
“Resnet.50 100 100 100z
GoogleNet 90.6 100 94.7
EfficientNet-BO 100 100 100
Darknet-53 100 100 100

Performans metriklerinin hesaplamasin kullanilan formiiller asagida verildigi
gibidir. Dogruluk formiilii 4.1, Duyarlilik 4.2, Ozgiinliik 4.3 ve Yanlis Kesif Oram 4.4

numarali formullerdir.

TP+TN

Dogruluk = ——————x 100 4.2)
TP+TN+FP+FN

Duyarlilik (TPR) = TPITN 4.2)

Ozgiilliik (FPR) = TNFpr (4.3)

Yanlis Kesif Orani1 (FNR) = N (4.4

FN+TP
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True Positive (TP): Modelin pozitif olarak dogru sekilde siniflandirdig1 6rneklerdir.
True Negative (TN): Modelin negatif olarak dogru sekilde siniflandirdig1 6rneklerdir.
False Positive (FP): Modelin pozitif olarak yanlis sekilde siniflandirdigi 6rneklerdir.
False Negative (FN): Modelin negatif olarak yanlis sekilde siniflandirdig1 6rneklerdir.
True Positive Rate (TPR): Pozitif olarak dogru siniflandirilan 6rneklerin, toplam
gercek pozitif 6rnekler (TP + FN) i¢indeki oranidir.

False Positive Rate (FPR): Negatif olmasi gereken fakat pozitif olarak yanlis
siiflandirilan 6rneklerin, toplam negatif 6rnekler (TN + FP) i¢indeki oranidir.

False Negative Rate (FNR): Pozitif olmasi gereken fakat negatif olarak yanlis

siiflandirilan 6rneklerin, toplam gercek pozitif 6rnekler (FN + TP) i¢indeki oranidir.

a. Confusion Matrix for Validation Data (Trial 1, Resultl Expriment1)
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a. Confuslon Matrix for Validation Data (Trial 1. Resultl Expriment1)
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a Confusion Matrix for Validation Data (Trial 1, Resultl Expriment1)
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Sekil 4.4 Darnet-53’de Ait Karisiklik Matrisleri (a.%50-50, b.%60-40 ¢.%70-30)

Kangiklik  matrislerinde de goriildiigii gibi ab,c sekillerinde simiflandirma
dogruluklarinin %100°ze ulastigt ve dolaysiyla hata oranlariin 0 oldugunu gérmek

miumkindiir.

Cizelge 4.2 Resnet.50, EfficientNet-B0 ve Darnet-53 Performans Metrik Sonucu

Model Dogruluk (%) TPR FPR FNR
a 100 1 0 0
b 100 1 0 0

(o 100 1 0 0



Cizelge 4.3 GoogleNet Performans Metrik Sonucu

42

Model Accuracy (%)  TPR FPR FNR

a 90.0 0.90625 0.09375 0.09375
b 100.0 1.0 0.0 0.0

C 94.74 0.947 0.053 0.053
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5. SONUCLAR VE ONERILER
5.1. Sonug¢

Bu calisma, Kronik Inflamatuvar Demyelinizan Poliradikiilondropati (CIDP)
teshisinde derin O68renme tekniklerinin etkinligini degerlendirmek amaciyla
gerceklestirilmistir. EMG sinyal verileri kullanilarak yapilan analizler, ResNet-50,
EfficientNet-BO ve DarkNet-53 gibi Convolutional Neural Network (CNN)
mimarilerinin CIDP teshisinde yiiksek dogruluk oranlarina ulasabildigini gostermistir. Bu
modellerin sagladig1r sonuglar, CIDP gibi karmasik norolojik hastaliklarin teshisinde
derin Ogrenme algoritmalarinin gii¢lii birer ara¢ olarak kullanilabilecegini ortaya

koymaktadir.

Elde edilen bulgular, derin 6grenme tekniklerinin klinik uygulamalarda karar
destek sistemi olarak kullanilma potansiyelini vurgulamaktadir. Ancak, bu ¢aligmada
kullanilan veri setinin sinirli biiyiikliigii ve kullanilan modellerin optimizasyon siiregleri,
sonuclarin genellenebilirligi iizerinde etkili olabileceginden, gelecekte daha genis veri
setleri ve farkli algoritmalarla yapilacak arastirmalara ihtiya¢ duyulmaktadir. Sonug
olarak, bu c¢alisma, derin 6grenme modellerinin CIDP teshisinde uygulanabilirligini ve
Klinik pratikte kullanilabilirligini destekleyen 6nemli bulgular sunmaktadir. Bu alandaki
ilerlemeler, gelecekte norolojik hastaliklarin teshis siireclerini doniistiirebilir ve hastalarin

tedavi siire¢lerini iyilestirebilir.

5.2. Oneri

Bu ¢alisma, Kronik Inflamatuvar Demyelinizan Poliradikiilondropati (CIDP)
teshisinde derin 6grenme algoritmalarinin kullanimina dair 6nemli bulgular sunmakla
birlikte, gelecekteki arastirmalar ig¢in bazi Onerilerde bulunulmas: gerektigini
gostermektedir. Ilk olarak, daha genis ve cesitli veri setlerinin kullanilmasi, derin
ogrenme modellerinin gilivenilebilirligini  artirabilir ve sonuglarin  dogrulugunu
pekistirebilir. Ozellikle, farkli demografik gruplardan elde edilecek veriler, modellerin

tiim hasta gruplari i¢in gegerliligini degerlendirmede kritik bir rol oynayabilir.



44

KAYNAKLAR

Acharya, U. R., Fernandes, S. L., WeiKoh, J. E., Ciaccio, E. J., Fabell, M. K. M., Tanik,
U. J,, Rajinikanth, V. ve Yeong, C. H., 2019, Automated Detection of
Alzheimer's Disease Using Brain MRI Images- A Study with Various Feature
Extraction Techniques, J Med Syst, 43 (9), 302.

Ahmed, T. ve Sabab, N., 2022, Classification and Understanding of Cloud Structures
via Satellite Images with EfficientUNet, SN Computer Science, 3.

Ahuja, S., Panigrahi, B. K. ve Gandhi, T. K., 2022, Enhanced performance of Dark-
Nets for brain tumor classification and segmentation using colormap-based
superpixel techniques, Machine Learning with Applications, 7, 100212,

Alam, U., Anson, M., Meng, Y., Preston, F., Kirthi, V., Jackson, T. L., Nderitu, P.,
Cuthbertson, D. J., Malik, R. A. ve Zheng, Y., 2022, Artificial intelligence and
corneal confocal microscopy: the start of a beautiful relationship, Journal of
Clinical Medicine, 11 (20), 6199.

Allen, J. A., 2020, The Misdiagnosis of CIDP: A Review, Neurology and Therapy, 9
(1), 43-54.

Aloysius, N. ve Geetha, M., 2017, A review on deep convolutional neural networks,
2017 international conference on communication and signal processing
(ICCSP), 0588-0592.

Amo, C., Santiuste, M., Maestu, F., Egatz, R., Gonzalez-Hidalgo, M., Saldafia, C., Saiz,
A. ve Ortiz, T., 2004, Temporal lobe seizure recorded by
magnetoencephalography: Case report, Arquivos de neuro-psiquiatria, 62, 737-
740.

Aslam, N., Khan, I. U., Bashamakh, A., Alghool, F. A., Aboulnour, M., Alsuwayan, N.
M., Alturaif, R. a. K., Brahimi, S., Aljameel, S. S. ve Al Ghamdi, K., 2022,
Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning:
Challenges and Opportunities, Sensors, 22 (20), 7856.

Battineni, G., Sagaro, G. G., Chinatalapudi, N. ve Amenta, F., 2020. Applications of
Machine Learning Predictive Models in the Chronic Disease Diagnosis. Journal
of Personalized Medicine 10, 2. Erisim Adresi.

Benoit, C., Svahn, J., Debs, R., Vandendries, C., Lenglet, T., Zyss, J., Maisonobe, T. ve
Viala, K., 2021, Focal chronic inflammatory demyelinating
polyradiculoneuropathy: Onset, course, and distinct features, Journal of the
Peripheral Nervous System, 26 (2), 193-201.

Bjerklund, G., Bordevi¢, A. B., Hamdan, H., Wallace, D. R. ve Peana, M., 2023, Metal-
induced autoimmunity in neurological disorders: A review of current
understanding and future directions, Autoimmunity Reviews, 1035009.

Bron, E. E., Smits, M., van der Flier, W. M., Vrenken, H., Barkhof, F., Scheltens, P.,
Papma, J. M., Steketee, R. M. E., Méndez Orellana, C., Meijboom, R., Pinto,
M., Meireles, J. R., Garrett, C., Bastos-Leite, A. J., Abdulkadir, A.,
Ronneberger, O., Amoroso, N., Bellotti, R., Cardenas-Pefia, D., Alvarez-Meza,
A. M., Dolph, C. V., Iftekharuddin, K. M., Eskildsen, S. F., Coupé, P., Fonov,
V. S., Franke, K., Gaser, C., Ledig, C., Guerrero, R., Tong, T., Gray, K. R.,
Moradi, E., Tohka, J., Routier, A., Durrleman, S., Sarica, A., Di Fatta, G., Sensi,
F., Chincarini, A., Smith, G. M., Stoyanov, Z. V., Serensen, L., Nielsen, M.,
Tangaro, S., Inglese, P., Wachinger, C., Reuter, M., van Swieten, J. C., Niessen,
W. J. ve Klein, S., 2015, Standardized evaluation of algorithms for computer-
aided diagnosis of dementia based on structural MRI: The CADDementia
challenge, Neurolmage, 111, 562-579.



45

Brun, S., de Séze, J. ve Muller, S., 2022, CIDP: Current Treatments and Identification
of Targets for Future Specific Therapeutic Intervention, Immuno, 2 (1), 118-131.

Bunschoten, C., Jacobs, B. C., Van den Bergh, P. Y. K., Cornblath, D. R. ve van Doorn,
P. A., 2019, Progress in diagnosis and treatment of chronic inflammatory
demyelinating polyradiculoneuropathy, The Lancet Neurology, 18 (8), 784-794.

Chang, C. W., Ro, L. S,, Lyuy, R. K., Kuo, H. C,, Liao, M. F., Wu, Y. R., Chen, C. M.,
Chang, H. S., Weng, Y. C. ve Huang, C. C., 2022, Establishment of a new
classification system for chronic inflammatory demyelinating polyneuropathy
based on unsupervised machine learning, Muscle & Nerve, 66 (5), 603-611.

Chen, Y. ve Qu, R., 2021, Study on infringement identification of art works based on
CNN image recognition technology, Journal of Physics: Conference Series,
032084.

Chichkova, R. I. ve Katzin, L., 2010, EMG and nerve conduction studies in clinical
practice, Pract Neurol, 2010 (1), 32-38.

Chroni, E. ve Kleopa, K. A., 2021, Editorial: Update on the Diagnosis and Management
of CIDP Variants, Frontiers in Neurology, 12.

Cuesta-Vargas, A., Martin-Martin, J., Pérez-Cruzado, D., Cano-Herrera, C. L.,
Rodriguez, J. G., Merchan-Baeza, J. A. ve Gonzalez-Sanchez, M., 2020, Muscle
Activation and Distribution during Four Test/Functional Tasks: A Comparison
between Dry-Land and Aquatic Environments for Healthy Older and Young
Adults, Int J Environ Res Public Health, 17 (13).

Dalakas, M. C., 2011, Advances in the diagnosis, pathogenesis and treatment of CIDP,
Nat Rev Neurol, 7 (9), 507-517.

Deng, Y., Chen, H., Liu, H. ve Li, Y., 2022, A voxel graph cnn for object classification
with event cameras, Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 1172-1181.

Divino, V., Mallick, R., DeKoven, M. ve Krishnarajah, G., 2018, The economic burden
of CIDP in the United States: A case-control study, PLOS ONE, 13 (10),
€0206205.

Eftimov, F., Lucke, I. M., Querol, L. A., Rajabally, Y. A. ve Verhamme, C., 2020,
Diagnostic challenges in chronic inflammatory demyelinating
polyradiculoneuropathy, Brain, 143 (11), 3214-3224.

Ekladious, A. ve Jiang, B., 2022, Motor neuron disease: to identify the mimics and
chameleons at the early stage, Int J Biomed Res Pract, 2 (2).

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M. ve Thrun, S.,
2017, Dermatologist-level classification of skin cancer with deep neural
networks, nature, 542 (7639), 115-118.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., Cui,
C., Corrado, G., Thrun, S. ve Dean, J., 2019, A guide to deep learning in
healthcare, Nature Medicine, 25 (1), 24-29.

Fayaz, M., Nam, J., Dang, L. M., Song, H.-K. ve Moon, H., 2024, Land-Cover
Classification Using Deep Learning with High-Resolution Remote-Sensing
Imagery, Applied Sciences, 14 (5), 1844.

Feldman, E. L., Russell, J. W., Loscher, W. N., Grisold, W. ve Meng, S., 2021,
Polyneuropathies, In: Atlas of Neuromuscular Diseases: A Practical Guideline,
Eds: Feldman, E. L., Russell, J. W., Loscher, W. N., Grisold, W. ve Meng, S.,
Cham: Springer International Publishing, p. 215-261.

Gezer, M., Darici, M. ve Yildirim, $., 2021, Brain Age Estimation from MRI Images
using 2D-CNN instead of 3D-CNN, ACTA INFOLOGICA, 5 (2).



46

Gongguo, Z. ve Junhao, W., 2021, An improved small target detection method based on
Yolo V3, 2021 International Conference on Electronics, Circuits and
Information Engineering (ECIE), 220-223.

Gordon, D., Kembhavi, A., Rastegari, M., Redmon, J., Fox, D. ve Farhadi, A., 2018,
Iga: Visual question answering in interactive environments, Proceedings of the
IEEE conference on computer vision and pattern recognition, 4089-4098.

He, K., Zhang, X., Ren, S. ve Sun, J., 2016, Deep residual learning for image
recognition, Proceedings of the IEEE conference on computer vision and pattern
recognition, 770-778.

Horiuchi, M., Hongo, Y., Yamazaki, K., Komuta, Y., Kadoya, M., Takazaki, H.,
Furuya, Y., Matsui, T., Sakamoto, N. ve Ikewaki, K., 2022, An atypical
phenotype of chronic inflammatory demyelinating polyradiculoneuropathy
associated with ocular palsy, IgM-anti ganglioside antibody, and fever-induced
recurrence, Internal Medicine, 61 (8), 1247-1252.

Hostin, M. A., Ogier, A. C., Michel, C. P., Le Fur, Y., Guye, M., Attarian, S., Fortanier,
E., Bellemare, M. E. ve Bendahan, D., 2023, The impact of fatty infiltration on
MRI segmentation of lower limb muscles in neuromuscular diseases: A
comparative study of deep learning approaches, Journal of Magnetic Resonance
Imaging, 58 (6), 1826-1835.

Hu, J., Sun, C., Lu, J., Zhao, C. ve Lin, J., 2022, Efficacy of rituximab treatment in
chronic inflammatory demyelinating polyradiculoneuropathy: a systematic
review and meta-analysis, Journal of neurology, 269 (3), 1250-1263.

Huang, Y., Lin, L., Cheng, P., Lyu, J., Tam, R. ve Tang, X., 2023, Identifying the key
components in resnet-50 for diabetic retinopathy grading from fundus images: a
systematic investigation, Diagnostics, 13 (10), 1664.

Jain, M. C., Nadaraja, A. V., Vizcaino, B. M., Roberts, D. J. ve Zarifi, M. H., 2020,
Differential Microwave Resonator Sensor Reveals Glucose-Dependent Growth
Profile of E. coli on Solid Agar, IEEE Microwave and Wireless Components
Letters, 30 (5), 531-534.

Jiang, X., Gao, T., Zhu, Z. ve Zhao, Y., 2021, Real-time face mask detection method
based on YOLOV3, Electronics, 10 (7), 837.

Jo, T., Nho, K. ve Saykin, A. J., 2019, Deep Learning in Alzheimer's Disease:
Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data,
Frontiers in Aging Neuroscience, 11.

Jongbloed, B. A., Bos, J. W., Rutgers, D., van der Pol, W. L. ve van den Berg, L. H.,
2017, Brachial plexus magnetic resonance imaging differentiates between
inflammatory neuropathies and does not predict disease course, Brain and
Behavior, 7 (5), e00632.

Kloppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D.,
Fox, N. C., Jack, C. R., Jr., Ashburner, J. ve Frackowiak, R. S. J., 2008,
Automatic classification of MR scans in Alzheimer's disease, Brain, 131 (3),
681-6809.

Konduri, P. S. R. ve Rao, G. S. N., 2024, A transfer learning coupled framework for
distortion classification in laparoscopic videos, Multimedia Tools and
Applications, 83 (15), 45947-45968.

Koonce, B. ve Koonce, B., 2021, ResNet 50, Convolutional neural networks with swift
for tensorflow: image recognition and dataset categorization, 63-72.

Kotan, D. ve Alemdar, M., 2016, Kronik inflamatuar demiyelinizan ndropati ve meme
kanseri: Ender bir birliktelik, Uludag Universitesi Tip Fakiiltesi Dergisi, 42 (2,
3), 99-101.



47

Krizhevsky, A., Sutskever, I. ve Hinton, G. E., 2012, Imagenet classification with deep
convolutional neural networks, Advances in neural information processing
systems, 25.

Kurian, S. M. ve Juliet, S., 2023, An automatic and intelligent brain tumor detection
using Lee sigma filtered histogram segmentation model, Soft Computing, 27
(18), 13305-133109.

Kuwabara, S., Misawa, S., Mori, M., Tamura, N., Kubota, M. ve Hattori, T., 2006,
Long term prognosis of chronic inflammatory demyelinating polyneuropathy: a
five year follow up of 38 cases, J Neurol Neurosurg Psychiatry, 77 (1), 66-70.

Larson, S., Lim, G. ve Leach, K., 2023, On evaluation of document classification with
rvl-cdip, Proceedings of the 17th Conference of the European Chapter of the
Association for Computational Linguistics, 2665-2678.

Latov, N., 2014, Diagnosis and treatment of chronic acquired demyelinating
polyneuropathies, Nature Reviews Neurology, 10 (8), 435-446.

Lehmann, H. C., Burke, D. ve Kuwabara, S., 2019, Chronic inflammatory
demyelinating polyneuropathy: update on diagnosis, immunopathogenesis and
treatment, J Neurol Neurosurg Psychiatry, 90 (9), 981-987.

Li, S., Han, K., Costain, T. W., Howard-Jenkins, H. ve Prisacariu, V., 2020,
Correspondence networks with adaptive neighbourhood consensus, Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
10196-10205.

Li, Z., Liu, F., Yang, W., Peng, S. ve Zhou, J., 2021, A survey of convolutional neural
networks: analysis, applications, and prospects, IEEE transactions on neural
networks and learning systems, 33 (12), 6999-7019.

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., van
der Laak, J. A. W. M., van Ginneken, B. ve Sanchez, C. 1., 2017, A survey on
deep learning in medical image analysis, Medical Image Analysis, 42, 60-88.

Mascarenhas, S. ve Agarwal, M., 2021, A comparison between VGG16, VGG19 and
ResNet50 architecture frameworks for Image Classification, 2021 International
conference on disruptive technologies for multi-disciplinary research and
applications (CENTCON), 96-99.

Mathey, E. K., Park, S. B., Hughes, R. A., Pollard, J. D., Armati, P. J., Barnett, M. H.,
Taylor, B. V., Dyck, P. J., Kiernan, M. C. ve Lin, C. S., 2015, Chronic
inflammatory demyelinating polyradiculoneuropathy: from pathology to
phenotype, J Neurol Neurosurg Psychiatry, 86 (9), 973-985.

Matur, Z., Kaymaz, A., Altunrende, B., Tunger, S., Giingdr-Tunger, O., Demir-Akman,
G. ve Oge, E., 2013, “Human immunodeficiency virus” infeksiyonu ile iliskili
kronik inflamatuvar demiyelinizan poliradikiilondropati: Farkl klinik 6zellikler
ve tani sorunlari.

Nathani, D., Spies, J., Barnett, M. H., Pollard, J., Wang, M. X., Sommer, C. ve Kiernan,
M. C., 2021, Nerve biopsy: Current indications and decision tools, Muscle &
Nerve, 64 (2), 125-1309.

Nayak, D. R., Padhy, N., Mallick, P. K., Zymbler, M. ve Kumar, S., 2022, Brain tumor
classification using dense efficient-net, Axioms, 11 (1), 34.

Neligan, A., Reilly, M. M. ve Lunn, M. P., 2014, CIDP: mimics and chameleons,
Practical Neurology, 14 (6), 399-408.

Nenning, K.-H. ve Langs, G., 2022, Machine learning in neuroimaging: from research
to clinical practice, Die Radiologie, 62 (1), 1-10.

Nguyen, N. H., Picetti, D., Dulai, P. S., Jairath, V., Sandborn, W. J., Ohno-Machado, L.,
Chen, P. L. ve Singh, S., 2022, Machine Learning-based Prediction Models for



48

Diagnosis and Prognosis in Inflammatory Bowel Diseases: A Systematic
Review, Journal of Crohn's and Colitis, 16 (3), 398-413.

Pathak, D. ve Raju, U., 2023, Shuffled-Xception-DarkNet-53: A content-based image
retrieval model based on deep learning algorithm, Computers and Electrical
Engineering, 107, 108647.

Pitarokoili, K., Schlamann, M., Kerasnoudis, A., Gold, R. ve Yoon, M.-S., 2015,
Comparison of clinical, electrophysiological, sonographic and MRI features in
CIDP, Journal of the Neurological Sciences, 357 (1-2), 198-203.

Poorani, S. ve Balasubramanie, P., 2023, Deep learning based epileptic seizure
detection with EEG data, International Journal of System Assurance
Engineering and Management.

Raglio, A., Imbriani, M., Imbriani, C., Baiardi, P., Manzoni, S., Gianotti, M., Castelli,
M., Vanneschi, L., Vico, F. ve Manzoni, L., 2020, Machine learning techniques
to predict the effectiveness of music therapy: A randomized controlled trial,
Computer Methods and Programs in Biomedicine, 185, 105160.

Rehman, A., Naz, S. ve Razzak, I., 2022, Leveraging big data analytics in healthcare
enhancement: trends, challenges and opportunities, Multimedia Systems, 28 (4),
1339-1371.

Reynolds, J., George Sachs, M. ve Stavros, K., 2016, Chronic inflammatory
demyelinating polyradiculoneuropathy (CIDP): clinical features, diagnosis, and
current treatment strategies, Rhode Island medical journal, 99 (12), 32.

Rizvi, D., Nissar, I., Masood, S., Ahmed, M. ve Ahmad, 2020, An LSTM based Deep
learning model for voice-based detection of Parkinson's disease, 29, 337-343.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C. ve Fei-Fei, L., 2015,
ImageNet Large Scale Visual Recognition Challenge, International Journal of
Computer Vision, 115 (3), 211-252.

Shen, D., Wu, G. ve Suk, H.-1., 2017, Deep Learning in Medical Image Analysis,
Annual Review of Biomedical Engineering, 19 (Volume 19, 2017), 221-248.

Stewart, J. D., McKelvey, R., Durcan, L., Carpenter, S. ve Karpati, G., 1996, Chronic
inflammatory demyelinating polyneuropathy (CIDP) in diabetics, Journal of the
Neurological Sciences, 142 (1-2), 59-64.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V. ve Rabinovich, A., 2015, Going deeper with convolutions,
Proceedings of the IEEE conference on computer vision and pattern
recognition, 1-9.

Tan, M., 2019, Efficientnet: Rethinking model scaling for convolutional neural
networks, arXiv preprint arXiv:1905.11946.

Tanaka, K., Mori, N., Yokota, Y. ve Suenaga, T., 2013, MRI of the cervical nerve roots
in the diagnosis of chronic inflammatory demyelinating polyradiculoneuropathy:
a single-institution, retrospective case—control study, BMJ Open, 3 (8), e003443.

Tang, P., Wang, H. ve Kwong, S., 2017, G-MS2F: GoogLeNet based multi-stage
feature fusion of deep CNN for scene recognition, Neurocomputing, 225, 188-
197.

Tesfaye, S., 2007, Clinical features of diabetic polyneuropathy, Diabetic neuropathy:
clinical management, 243-257.

Theckedath, D. ve Sedamkar, R., 2020, Detecting affect states using VGG16, ResNet50
and SE-ResNet50 networks, SN Computer Science, 1 (2), 79.

Uncini, A. ve Kuwabara, S., 2015, Nodopathies of the peripheral nerve: an emerging
concept, J Neurol Neurosurg Psychiatry, 86 (11), 1186-1195.



49

Valdez, P., 2020, Apple defect detection using deep learning based object detection for
better post harvest handling, arXiv preprint arXiv:2005.06089.

Vallat, J.-M., Sommer, C. ve Magy, L., 2010, Chronic inflammatory demyelinating
polyradiculoneuropathy: diagnostic and therapeutic challenges for a treatable
condition, The Lancet Neurology, 9 (4), 402-412.

Van den Bergh, P. Y. K., Hadden, R. D. M., Bouche, P., Cornblath, D. R., Hahn, A.,
Illa, I., Koski, C. L., Léger, J. M., Nobile-Orazio, E., Pollard, J., Sommer, C.,
Van Doorn, P. A. ve Van Schaik, I. N., 2010, European Federation of
Neurological Societies/Peripheral Nerve Society Guideline on management of
chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint
task force of the European Federation of Neurological Societies and the
Peripheral Nerve Society — First Revision, European Journal of Neurology, 17
(3), 356-363.

van Doorn, I. N., Eftimov, F., Wieske, L., van Schaik, I. N. ve Verhamme, C., 2024,
Challenges in the Early Diagnosis and Treatment of Chronic Inflammatory
Demyelinating Polyradiculoneuropathy in Adults: Current Perspectives,
Therapeutics and Clinical Risk Management, 20 (null), 111-126.

Van Schaik, 1., Vermeulen, M., Van Doorn, P. ve Brand, A., 1994, Anti-GM1
antibodies in patients with chronic inflammatory demyelinating polyneuropathy
(CIDP) treated with intravenous immunoglobulin (1VV1g), Journal of
neuroimmunology, 54 (1-2), 109-115.

Wang, H., Zhang, F. ve Wang, L., 2020, Fruit classification model based on improved
Darknet53 convolutional neural network, 2020 International Conference on
Intelligent Transportation, Big Data & Smart City (ICITBS), 881-884.

Wen, L., Li, X. ve Gao, L., 2020, A transfer convolutional neural network for fault
diagnosis based on ResNet-50, Neural Computing and Applications, 32 (10),
6111-6124.

Wolbert, J., Cheng, M. I., Meyer zu Horste, G. ve Su, M. A., 2020, Deciphering
immune mechanisms in chronic inflammatory demyelinating polyneuropathies,
JCI Insight, 5 (3).

Xiong, Z., Wang, L., Zhao, Y. ve Lan, Y., 2023, Precision Detection of Dense Litchi
Fruit in UAV Images Based on Improved YOLOvV5 Model, Remote Sensing, 15,
4017.

Yamamoto, T., Watanabe, M., Obuchi, T., Kobayashi, K., Oshima, H., Fukaya, C. ve
Yoshino, A., 2017, Spinal Cord Stimulation for Vegetative State and Minimally
Conscious State: Changes in Consciousness Level and Motor Function, Trends
in Reconstructive Neurosurgery, Cham, 37-42.

Yang, L., Chen, G. ve Ci, W., 2023a, Multiclass objects detection algorithm using
DarkNet-53 and DenseNet for intelligent vehicles, EURASIP Journal on
Advances in Signal Processing, 2023 (1), 85.

Yang, L., Yu, X., Zhang, S., Long, H., Zhang, H., Xu, S. ve Liao, Y., 2023b,
GoogLeNet based on residual network and attention mechanism identification of
rice leaf diseases, Computers and Electronics in Agriculture, 204, 107543.

Yuan, N., Duffy, G., Dhruva, S. S., Oesterle, A., Pellegrini, C. N., Theurer, J., Vali, M.,
Heidenreich, P. A., Keyhani, S. ve Ouyang, D., 2023, Deep Learning of
Electrocardiograms in Sinus Rhythm From US Veterans to Predict Atrial
Fibrillation, JAMA Cardiology, 8 (12), 1131-11309.

Zhao, Z., Chuah, J. H., Lai, K. W., Chow, C. O., Gochoo, M., Dhanalakshmi, S., Wang,
N., Bao, W. ve Wu, X., 2023, Conventional machine learning and deep learning



50

in Alzheimer's disease diagnosis using neuroimaging: A review, Front Comput
Neurosci, 17, 1038636.

Zhou, F., Ma, Y., Wang, B. ve Lin, G., 2021, Dual-channel convolutional neural
network for power edge image recognition, Journal of Cloud Computing, 10.



51

EKLER

EK-1 Kullanilan EMG Cihazinin Ag¢iklama Rehberi

Neuropack S5
EMG/EP Measuring
System

MEB-9600

e P NIHON KOHDEN




EK-1 (Devami)

About This Manual
i corder oo wse this produzt saldy and llly edemmnd dl iw fections, soud tis sl Befors wing e
ezl

Koy Mt ol fusd e ik ruisesil oF & The feach of the opeiaber s el i il whensver the dpehilian o
i,

Appompanying Docsmentiation -
The MEE-300 EMG/EF siciniinf fydlesh Sehics wilh he Illowing mimek Rofer n e masos]
dspmiding @ yoor sesds. Some ol the mseils srecoly piovidad in FDF femae. We recosmand prmling
& enjry ol the clecmmenis ik fae refeience in caee of ansipency. 1Myon pequine prisd versaoes of e
inaradl, contael yow Mikon Kohdoi iepaeatalive.

Hs Manmal

Deseitibest U ot and somn g of e MEB-S00 EMGEP sicaunityg syitem. Read this mamis]
belie: .

Diesiesilesi bdwy Ly piegees, casriing aid handle dits iy EMGEF setuemenl.
Service Mangal
For guilifiad ssve pessomme]. Descrbed mrmaion on iervicnj the fy@cn

Cialy qualifisd sesvice perannnz] 2an pomvics the fyilem.

Trademark
The compuny e ind pide] aene e Falosr ks snd regmiened radeairi of cach osingainy.

= i

The saik priied on the S0 cand thee ol ih thel insFehe @ & ealomink

Copyright Natice
The stiliig sonlesils of this miies] sse soparighiel By Nilos Eoladen. All ights die ssheread b pan of this
decumsent mery be repimdusal, sloral, of stemimed in say foem of by asy recars (elecioic, meclestical,
pliteaopied, feconded, of ollerwise) withoidl e priod e pormsdon of Nikon Kehded

This priduc] sleies peruinl palicnl nfvmaton Mmsge the mhrnilion dppnopisely.

Flicsl risticd on the wreen il il feionding damgles b Ok ool dre Setion] ] ary secihnee 1o
vy perwimn liveg of dead & puirely ool

Theconlenls of (hii minesl w2 Silges o chimge withaul aoliss

I pow have sy ooinmsenls of Sugpssliond oo this memesl, plesss coalacl w o
hitps=*warani honkofden com!

The CF sk apples i U MEE-TE00 O Mo (05 ahd 0003 EMUHEF ity @y dong sily.

66 B

52



EK-2 Selguk Universitesi Tip Fakiiltesi Hastanesi Dekanlig1 Yerel Etik Kurul Karar




EK-2 (Devam)




55

OZGECMIS
KIiSISEL BIiLGILER
Ad1 Soyada . Hiiseyin AKBUDAK
Uyrugu . T.C.
EGITIM
Derece Okul Adive Bitirme Yili flce - 11
Boliim
Konya M.T.A.L
Lise Biyomedikal C. 2016 Meram - Konya
Teknolojileri Alani
Ankara

Universitesi Gama

Universite MY O Biyomedikal | 2018 Kegioren - Ankara
C. Teknolojileri
Bolimii
Afyon Kocatepe
.o Universitesi Merkez -
Universite 2 Biyomedikal e Afyonkarahisar
Miihendisligi
IS DENEYIMLERI
Yil Kurum Adi Gorev ve Pozisyon
i Aser Biyomedikal Biyomedikal Kalibrasyon
2017-2019 Kalibrasyon LTD. STIL Personeli
i Yapilcan Saglik Geregleri | Tibbi Cihaz Aplikasyon
2020-Halen LTD. STI. Egitim Satis Personeli

UZMANLIK ALANI

Ultrason
EMG/EGG

YABANCI DiLLER

Bilgisayar Bakim Onarim
Tibbi Cihaz Bakim Onarim
Grafik Tasarim

Tibbi Bilisim Organizasyon

BELIRTMEK iSTEGIiNiZ DiGER OZELLIKLER
Biyomedikal Oryantasyon Dernegi Kurucu Yo6netim Kurulu Bagkani




