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COGALOIS GROUPS OF COVERS FOR SOME QUIVERS

ABSTRACT

Torsion free covers exist for abelian groups (in fact, for modules over an integral

domain) (see Enochs (1963)). Let φ : C → A be a torsion free cover of an abelian

group A. As a dual notion of (absolute) Galois groups, the coGalois group of A was

introduced in Enochs et al. (2000) as the group of automorphisms σ : C → C such

that φσ = φ, denoted by G(φ) or G(A) (since a torsion free cover is unique up to

isomorphism). A complete characterization of abelian groups having a trivial coGalois

group was given in Enochs & Rada (2005). After, coGalois groups have been studied

for a pair of abelian groups and characterized when they are trivial in Hill (2008).

Actually, coGalois groups have been studied in the category of representations of the

quiver (i.e., a directed graph) q2 : • → • there. Because, the coGalois group is definable

for any category with a covering class, and the torsion free covers exist for the category

(qn,Z-Mod) of representations of the line quiver qn : • → • → ... → • with n − 1

arrows and n vertices (see Wesley (2005)), we define and study coGalois groups in that

category. We give some properties of torsion free covers and coGalois groups of objects

similar to those given for abelian groups, and characterize the objects in (qn,Z-Mod)

having a trivial coGalois group, in terms of trivial coGalois groups of abelian groups.

Keywords: coGalois group, torsion free cover, line quiver
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BAZI KUİVERLER İÇİN ÖRTÜLERİN COGALOIS GRUPLARI

ÖZ

Abel gruplar için (ayrıca bir bölge üzerine modüller için) burulmasız örtülerin

varlığı kanıtlandı (bkz. Enochs (1963)). Bir A abel grubunun burulmasız örtüsü,

φ : C → A olsun. Enochs et al. (2000)’de, (tam) Galois grubun bir dual kavramı

olarak, A’nın coGalois grubu, φσ = σ şartını saglayan σ : C → C

otomorfizmalarının grubu olarak tanımlandı ve G(φ) ya da G(A) olarak gösterildi

(burulmasız örtüler isomorfizmaya göre tek olduğundan). coGalois grubu sadece

birim elemandan oluşan abel gruplarının tam bir sınıflandırması Enochs & Rada

(2005)’de verildi. Sonra, Hill (2008)’de, bir abel gruplar çifti için coGalois group

çalışıldı ve ne zaman sadece birim elemandan oluştuğu sınıflandırıldı. Aslında,

q2 : • → • kuiverinin (yani, bir yönlü graf) temsil kategorisinde coGalois group

çalışılmış oldu. Örtü sınıfına sahip olduğumuz herhangi bir kategoride coGalois grup

tanımlanabilir ve n − 1 oklu ve n noktalı qn : • → • → ... → • doğru kuiverinin

temsil kategorisi olan (qn,Z-Mod)’da burulmasız örtüler her zaman var olduğundan

(bkz. Wesley (2005)), bu kategoride coGalois grubu tanımladık ve çalıştık. Abel

gruplar için verilenlere benzer şekilde, (qn,Z-Mod) kategorisndeki objeler için de

burulmasız örtülerin ve coGalois grubun bazı özelliklerini verdik ve bu kategoride

coGalois grubu sadece birim elemandan oluşan objeleri, coGalois grupları sadece

birim elemandan oluşan abel gruplarının yardımıyla sınıflandırdık.

Anahtar kelimeler: coGalois grup, burulmasız örtü, doğru kuiver
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LIST OF SYMBOLS
R an integral domain (or a commutative domain) unless

otherwise stated

a moduleM a left R-moduleM

N ≤M N is a submodule ofM

Z the ring of integers

Zp∞ the Prüfer group for the prime p

Q the field of rational numbers

R-Mod the category of modules

t(A) the torsion subgroup of an abelian group A

A(p) p-primary subgroup of an abelian group A for the

prime p

r-prime p relevant prime p of an abelian group

TFC a torsion free cover

G(A) the coGalois group of an abelian group A

C(M) the torsion free cover of a moduleM

ker f the kernel of the map f

im f the image of the map f

Hom(M,N) all module homomorphisms fromM to N

Ab the category of abelian groups

qn the line quiver • → • → ... → • with n − 1 arrows

and n vertices

(qn,R-Mod) the category of representations by modules of the line

quiver qn
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CHAPTER ONE

INTRODUCTION

Throughout this thesis, R will be an integral domain (or a commutative domain),

and by a module we mean a left R-module, unless otherwise stated. In fact, R will

mostly be the ring of integers Z, and so the modules will be abelian groups. We will

write ’TFC’ for short instead of a ’torsion free cover’ of a module.

We refer the reader to Enochs & Jenda (2011), Fuchs (1970), Kasch (1982) and

Kaplansky (1969) for any undefined notion and for further information about the

concepts studied in this thesis.

In this chapter, we will give some ideas to motivate the problem of our thesis in

Section 1.1. There are some known facts about triviality of the coGalois groups in the

categoryAb of abelian groups and in the category of representations of the quiver (i.e.,

a directed graph) q2 : • → •. Themain research topic of this thesis is to generalise them

to the category (qn,Z-Mod) of representations of the line quiver qn : • → • → ...→ •

with n− 1 arrows and n vertices. To explain our problems, we will give some needed

basic definitions and fundamental tools in Section 1.2.

1.1 Motivation

In this section, we will give the motivating ideas for our main results of this thesis.

We will see some universal concepts and related groups. See Enochs & Jenda (2011)

for the definitions and more information about ’covers and envelopes’.

1.1.1 Envelopes and Galois Groups

Let M be a module. Then M is called torsion free if rm = for r ∈ R, m ∈ M

implies that r = 0 or m = 0, while it is torsion if, for every m ∈ M , there exists a

nonzero r ∈ R such that rm = 0, that is, every element of M is trosion. The set of

1



all torsion elements ofM is a submodule ofM , called a torsion submodule ofM , and

denoted by t(M).

Note that the canonical map ρ : M → M/t(M) is universal in the sense that for

any linear map ϕ : M → F where F is a torsion free module, there is a unique linear

map f : M/t(M) → F such that fρ = ϕ, that is, the following diagram

commutatives:

M M/t(M)

F

f

ρ

ϕ

We state and prove this universal property in the following lemma, which was stated

as a well-known fact without a proof in Enochs (1963). This motivated the definition

of a torsion free cover (TFC for short) as a kind of its a dual version.

Lemma 1.1.1. Let M be a module. Then there is always a torsion free module M1

with an epimorphism ρ : M →M1 such that for any linear map ϕ : M → F where F

is torsion free, there is a unique linear map f : M1 → F such that fρ = ϕ. This

means the following diagram commutes:

M M1

F

f

ρ

ϕ

Proof. Observe that it suffices to prove the statement forM1 =M/t(M), where t(M)

is the torsion part ofM .

(Existence) Firstly, we will show thatM/t(M) is torsion free. Say r(m+ t(M)) =

t(M) where r ∈ R and m + t(M) ∈ M/t(M). Then rm ∈ t(M). Since t(M) is

torsion, there is a nonzero s ∈ R such that s(rm) = 0. SinceM is an R-module, we

have that 0 = s(rm) = (sr)m. It means that m is an torsion element. Hence m ∈

t(M), and so m + t(M) = t(M). Secondly, we show that the canonical mapping ρ :

M → M/t(M) satisfies the ’preenvelope’ condition on the statement of this lemma.

2



Define a linear map f : M/t(M) → F with m + t(M) 7→ ϕ(m). We know that f

is well-defined because t(M) ≤ kerϕ since F is torsion free, or say m + t(M) =

m′ + t(M), and so m − m′ ∈ t(M). Then, there is an element m′′ ∈ t(M) such

that m − m′ = m′′. Then, ϕ(m − m′) = ϕ(m′′) since ϕ is well-defined. Since ϕ

is a linear mapping, we have that ϕ(m′′) = ϕ(m − m′) = ϕ(m) − ϕ(m′). Then

ϕ(m) = ϕ(m′′) + ϕ(m′) = ϕ(m′′ + m′). Clearly, m + t(M) = m′ + t(M) =

m′+m′′+ t(M) = m′′+m′+ t(M) sincem′′ ∈ t(M). Then f(m+ t(M)) = ϕ(m) =

ϕ(m′′ +m′) = f(m′′ +m′ + t(M)) = f(m′ + t(M)). To check that the diagram is

commutative, i.e., fρ = ϕ. Taking m ∈ M , we get fρ(m) = f(m + t(M)) = ϕ(m).

To say that f is an linear mapping, we have that:

f(r(m+ t(M)) + s(m′ + t(M)) = f(rm+ sm′ + t(M))

= ϕ(rm+ sm′)

= rϕ(m) + sϕ(m′)

= rf(m+ t(M)) + sf(m′ + t(M)).

(Uniqueness of f ) Next, we prove the uniqueness of the linear map f . Say there is

another linear mapping g :M/t(M) → F such that the following diagram commutes:

M M/t(M)

F

g

ρ

ϕ

Takem ∈M . Then we have ϕ(m) = fρ(m) = f(m+t(M)) and ϕ(m) = gρ(m) =

g(m + t(M)). It means that for all m + t(M) ∈ M/t(M), we have f(m + t(M)) =

g(m+ t(M)), and so f = g.

(Uniqueness up to isomorphism) Let ρ′′ : M → M ′′ be another mapping that

satisfies the condition on the statement of this lemma. So we have
M M/M ′

M ′′

∃!f

ρ

ρ′′

∃!f ′

3



So fρ = ρ′′ and f ′ρ′′ = ρ. Easily, we can see that ρ = f ′ρ′′ = f ′fρ and ρ′′ =

fρ = ff ′ρ′′. It means that f ′f = idM/t(M) and ff ′ = idM ′′ are identity maps by the

uniqueness of f and f ′. HenceM/t(M) ∼= M ′′.

We recall below the definition of a famous group, the Galois group.

Definition 1.1.1. The Galois group Gal(K/F ) of a field extension K/F is the group

of all F -automorphisms of K (i.e. the automorphisms of K which fix F ) under the

operation of the composition. In other words, the Galois group contains the

automorphisms of K such that the following diagram commutes:
K

f

K

i

F i

Example 1. Gal(Q(
√
2)/Q) = {1, σ} where σ : Q(

√
2) → Q(

√
2) with σ(

√
2) =

−
√
2.

So, we have the following commutative diagram:
Q(

√
2)

σ

Q(
√
2)

i

Q i

Example 2. Gal(C/R) = {1, ρ} where ρ : C → C is the conjugation map with

ρ(a+ bi) = a− bi. And we have
C

ρ

C

i

R i

Definition 1.1.2. Let κ be a class of modules closed under isomorphisms. LetM be a

module, andX ∈ κ. A linear map φ :M → X is an κ-envelope ofM if the following

two conditions hold:

1. for any linear map φ′ :M → X ′ withX ′ ∈ κ, there is a linear map f : X → X ′

with φ′ = fφ. This means the following diagram commutes:

4



X

∃f

X ′

φ′

M
φ

2. If an endomorphism f : X → X is such that φ = fφ, then f must be an

automorphism. So, we have that f is an automorphism in the following

commutative diagram:
X

f

X

φ

M
φ

If a module satisfies the condition (1) and may not satisfy the condition (2), then

it is called an κ−preenvelope. And, κ is called an enveloping class if every module

admits an κ-envelope.

To give an example, we need the following theorem. Actually, it is entirely same to

(17.31) Corollary in Isaacs (1994).

Theorem 1.1.2. Let F be any field and letE1 andE2 be algebraic closures for F . Then

E1 and E2 are F -isomorphic, i.e., isomorphic and the isomorphism fixes F .

The following example exhibits a relationship betweenGalois groups and envelopes.

Example 3. The class κ of algebraic closed fields is an enveloping class, that is, any

field has an κ-envelope. In fact, the algebraic closure F of a field F is its κ-envelope.

Therefore, the (absolute) Galois group Gal(F/F ) is actually the group of all

automorphisms from κ-envelopes. So, the notion of an (absolute) Galois group can

be defined in any category where we have an enveloping class.

1.1.2 Covers and coGalois Groups

In this section, we will define a dual version of the envelope.

5



Definition 1.1.3. Let κ be a class of modules closed under isomorphisms. LetM be a

module and X ∈ κ. A linear map φ : X → M is an κ-cover of M , if the following

two conditions hold:

1. For every module X ′ ∈ κ and a homomorphism φ′ : X ′ → M , there is a

homomorphism f : X ′ → X such that φ′f = φ, that is, the following diagram

commutes:
X ′

f

X

φ′

M
φ

2. If an endomorphism f : X → X is such that φf = φ, then f must be an

automorphism. That is, any homomorphism f in the following commutative

diagram must be an automorphis:
X

f

X

φ

M
φ

If a module satisfies the condition (1) and may not satisfy the condition (2), then it

is called an κ−precover. And, κ is called a covering class if every module admits an

κ-cover.

Example 4. The class κ of torsion free abelian groups is an covering class, that is,

any abelian group has an κ-cover (i.e., a TFC). An equivalent definition of this cover

will be given in Definition 1.1.5.

In Example 3, we saw that the notion of (absolute) Galois groups is related to the

notion of envelopes, and it can be defined in any category where we have an enveloping

class. Motivated by this relation, as a dual notion, the coGalois group of an abelian

group was first defined in Enochs et al. (2000) as the group of all automorphisms from

the TFC of that group. However, coGalois groups can be defined in any category where

we have a covering class, not only for TFCs.

Definition 1.1.4. Let φ : X → M be an κ-cover. The group of all automorphisms

f : X → X such that φf = φ is called the coGalois group of φ (orM ), denoted by

6



G(φ) or G(M).

It is easy to see that an κ−cover is unique up to isomorphism, that is, the coGalois

group does not depend on φ. So, the coGalois group G(φ) of an κ-covering map

φ : X → M can be also denoted by G(M). More precisely, let φ1 : X → M

and φ2 : X → M be two κ−covering maps of M . Then we have the following

commutative diagram:

X

X

M

X

X

φ2

φ1

φ1

φ2f

g

h

Moreover, we know that f , hfg, hg and gh are all automorphisms, and so g and h

are both automorphisms. So we can take g−1 instead of h. So, we have an isomorphism

Φ : G(φ1) → G(φ2) with Φ(f) = f g

where f g = g−1fg and g is any automorphism such that φ1g = φ2.

We can say the coGalois group comes from the cover because every elements of the

coGalois group commutes the following diagram:
X

f

X

φ

M
φ

Clearly, it can be seen that kerφ is an invariant.

In previous section, we saw that the Galois group comes from the envelope. Now,

we see that the cover is the dual version of the envelope. Because of that, the group that

comes from the cover is named the coGalois group. It is sometimes called the absolute

coGalois group, because it is actually a dual of the absolute Galois group. See Example

3.

7



The following definition was given for modules over an integral domain in Enochs

(1963), and the motivation can be seen finding out the answer of the dual version of

Lemma 1.1.1.

Definition 1.1.5. For an abelian group A, a torsion free abelian group C is called a

torsion free cover of A, written TFC for short, if there is a homomorphism φ : C → A

such that the followings hold:

1. For every torsion free abelian groupC ′ and a homomorphism φ′ : C ′ → A there

is a homomorphism f : C ′ → A such that φ′f = φ. So we have the following

commutative diagram:
C ′

f

C

φ′

A
φ

2. If kerφ has no nonzero pure subgroup of C, where a subgroup P of C is pure in

C if nP = nC ∩ P for all integer n.

In Enochs (1963), the condition (1) was called the torsion free factor property, and

if a morphism satisfies the torsion free factor property and may not satisfy the

condition (2), then it is called a torsion free precover or a precover. It is known that

this is equivalent to the definition of the cover with the class of torsion free abelian

groups (see (Enochs, 1963, Theorem 2)).

In Enochs & Rada (2005), coGalois groups of TFCs of abelian groups have been

studied, and a classification for coGalois groups to be trivial were given. In Hill (2008),

an equivalent version of this classification were used. This version will be given in

Theorem 1.1.3 after some definitions.

Definition 1.1.6. Let M be a module. An element m ∈ M is said to be divisible by

r ∈ R, if there exists an m′ ∈ M with m = rm′. A nonzero non-unit p ∈ R is called

a prime element of R if, whenever p divides a product ab, then p divides a or p divides

b. And,M is called p-divisible for a prime element p ∈ R, if pM = M , and is called

divisible if rM =M for all nonzero r ∈ R.

Definition 1.1.7. LetA be an abelian group. ThenA is said to be p-primary or primary

8



for a prime p if all elements have order a power of p. A prime number p is called a

relevant prime of A, written ’r-prime’ for short, if there is an element of order p in A,

that is, the p-primary part A(p) of this group is nonzero.

An abelian group has no element that has a power of p if and only if it has no element

with order p. So, whenever we say that for some abelian group has no element with

order p, it means that it has no element with order a power of p, that is, the p-primary

part is zero. Note that the p-primary part A(p) of an abelian group A is a subgroup.

Theorem 1.1.3. (Enochs & Rada (2005), Theorem 2.8.) An abelian group A has a

trivial coGalois group if and only if A is p-divisible for each of its r-prime p.

It is easy to see the fact that the coGalois group of a divisible group is trivial.

However, there is abelian groups that is not divisible and has a trivial coGalois group.

See (Enochs & Rada (2005), Example 2.9).

Example 5. We are familiar to see the nonzero complex numbersC× as a multiplicative

group. Let φ : C → C× be the TFC of C×.

We will say the coGalois group ofC× is trivial with saying that the torsion subgroup

t(C×) is divisible and the quotient groupC×/t(C×) is p-divisible for every prime p such

that t(C×)(p) 6= 0 by (Enochs & Rada (2005),Theorem 2.8).

We know that the group C× is divisible and the torsion subgroup

t(C×) ∼=
(⊕

p∈P Zp∞

)
is also divisible where P is the set of all positive primes by

Theorem 1.2.1. Moreover, the torsion elements are roots of unity.

Using the fact that a direct sum of abelian groups is divisible if and only if every

summand is divisible, we get that C×/t(C×) is divisible. Hence, the coGalois group

G(C×) of C× is trivial.

So, we have that there is unique homomorphism σ such that the following diagram

commutes

9



C

σ

C

φ

C×φ

without finding the TFC C of C×.

The coGalois group is definable for any category with a covering class.

The TFCs exist for the category (qn,R-Mod) of representations of the line quiver

qn : • → • → ... → • with n − 1 arrows and n vertices (see Wesley (2005)). See

Chapter 2 for more details about this category. We also give some results of torsion

free precovers of objects in (qn,R-Mod).

In Hill (2008), coGalois groups have been studied and characterized when they are

trivial in the category (q2,Z-Mod).

Theorem 1.1.4. (Hill (2008), Theorem 5.1) The coGalois group of the objectA1
f1−→ A2

in (q2,Z-Mod) is trivial if and only if the following conditions are satisfied.

1. The coGalois group of A2 is trivial.

2. The coGalois group of ker f1 is trivial.

3. im f1 is p-divisible for each r-prime p of ker f1.

4. im f1(p) = A2(p) for each r-prime p of ker f1.

Motivated by these studies above, we consider the notion of coGalois groups in the

category (qn,Z-Mod), and we characterize the objects A1
f1−→ A2

f2−→ ...
fn−1−−→ An

in this category having a trivial coGalois group (see Chapter 3). So, our main results

generalize the above theorem from the category q2 to the category qn.

1.2 Preliminaries

In this section, we will give some fundamental tools, and an important lemma about

the pullback diagram, which will be used in Chapter 3.

10



1.2.1 Divisibility and Purity

In this subsection, we will give some facts about modules over an integral domainR.

Clearly, all of them are satisfied for abelian groups since we can see an abelian group as

a Z-module. See, for example, Fuchs (1970) or Kaplansky (1969) for the preliminary

results of abelian groups given in this section.

The following is not the usual definition of a pure submodule, it is due to Enochs

(1963).

Definition 1.2.1. A submoduleM ′ of a moduleM is called pure inM if rM ′ = rM ∩

M ′ for all r ∈ R. So, an abelian subgroup H ≤ G is pure in G if nH = nG ∩H for

every integer n.

It is easy to see that rM ′ ⊆ rM ∩M ′ is always true, so we will only need to check

that rM ′ ⊇ rM ∩M ′ for purity. This means that each element ofM ′ is divisible by

r ∈ R inM ′ whenever it is divisible by r inM .

In the following theorem, we collect some known properties of abelian groups.

Theorem 1.2.1. For an abelian group A, the followings hold:

1. Every direct summand of A is pure in A.

2. The torsion subgroup t(A) is pure in A.

3. If A is divisible, then every pure subgroup of A is divisible.

4. Every divisible subgroup of A is pure in A.

The converse of (1) in the previous theorem is not true, in other words, a pure

subgroup of an abelian group may not be a direct summand. As a counter example,

we can give an example of the torsion subgroup of an abelian group that is not a direct

summand.

The following well-known facts can be found in Kaplansky (1969). We will prove

only the first condition.
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Proposition 1.2.2. The followings hold for abelian groups:

1. A direct sum of abelian groups is divisible if and only if each component is

divisible.

2. A divisible subgroup of an abelian group is a direct summand.

3. A divisible abelian group is a direct sum of groups each isomorphic to Q or to

Zp∞ for various primes p.

Proof. (1) (⇒) Let G = H1 ⊕ H2. Take a nonzero element h ∈ H1. Since G is

divisible, there is an element g ∈ G such that h = ng for any nonzero integer n.

But we can write that g = h1 + h2 where hi ∈ Hi. Moreover, we have h = ng =

n(h1 + h2) = nh1 + nh2 So, we have nh2 ∈ H1 ∩ H2, and so nh2 = 0. Hence,

h = nh1.

(⇐) Let G = H1 ⊕H2. Take an element g ∈ G and a nonzero integer n. We have

g = h1 + h2 where hi ∈ Hi. Since every summand is divisible, we have that there is

h′i ∈ Hi such that hi = nh′i. So we can write g = h1 + h2 = nh′1 + nh′2 = n(h′1 + h′2).

The same holds for infinite direct sums.

We give the following some basic but important properties of p-divisible abelian

groups, which are needed in our study. Most of them can be found in, for example,

Kaplansky (1969), but without proof. So, we will prove them. It is a well-known fact

that an epimorphic image of a divisible group is divisible. Similar fact is also true for

p-divisible groups:

Theorem 1.2.3. Let p be a prime number. Then the followings hold for abelian groups.

1. An epimorphic image of a p-divisible group is also p-divisible.

2. LetG be a p-divisible abelian group, andH an abelian group that has no nonzero

p-divisible subgroup. Then, there is no nonzero homomorphism from G into H .

3. An abelian group is divisible if and only if it is p-divisible for every prime p.

4. A p-group is divisible if and only if it is p-divisible.

12



Proof. (1) Let G be a p-divisible group with the homomorphism φ : G→ H . We will

show that the image imφ of φ is p-divisible. Take an element h ∈ imφ, so there is

g ∈ G such that φ(g) = h. Since G is p-divisible, there is an element g′ ∈ G such that

g = pg′. So, we have h = φ(g) = φ(pg′) = pφ(g′). Clearly, φ(g′) ∈ imφ, and so h is

divisible by p in imφ.

(2) By the condition (1).

(3) (⇒) Trivial.

(⇐) LetG be a p-divisible abelian group for every prime p. Take an element g ∈ G

and a nonzero integer n. So, we can write that n = pe11 p
e2
2 ...p

ek
k where pi’s are primes by

the Fundamental Theorem of Arithmetic. We know thatG is pi-divisible for all primes

pi. Then there is an element g1 such that g = pe11 g1. Assume that g = pe11 p
e2
2 ...p

ej
j gj for

some element gj of G. But we also have gj = p
ej+1

j+1 gj+1 for some element gj+1 of G.

So, g = pe11 p
e2
2 ...p

ek
k gk = ngk for some element gk of G.

(4) (⇒) Trivial.

(⇐) Let G be a p-divisible p-group. Take a nonzero element g ∈ G and an integer

n. Let the order of g is pk since G is a p-group. Say n = pmn′ with p ∤ n′. Firstly,

we will show that g can be divided by n′. By Bézout’s Lemma, we have that there

are some integers u and v such that upk + vn′ = 1 since gcd(pk, n′) = 1. Moreover,

pk ∤ v since pk ∤ 1. So, we have g = (upk + vn′)g = upkg + vn′g = vn′g = n′(vg).

But, G is also p-divisible, so there is an element g′ in G such that vg = pmg′. Hence

g = n′(vg) = n′(pmg′) = ng′.

Definition 1.2.2. A subgroupH of an abelian groupG is p-pure inG if pH = pG∩H

for a prime p.

Lemma 1.2.4. Let G be a torsion free abelian group. A subgroupH of G is pure in G

if and only if H is p-pure in G for every prime number p.

Proof. (⇒) Clear.

13



(⇐) Take an element h ∈ H such that h = ng, where g ∈ G. We can write that

n = p1p2...pm where pi’s are prime numbers that are not necessary to be distinct. So, we

have h = p1(p2...pmg). Since H is p1-pure, we have h = p1h2, where h2 ∈ H . Since

G is torsion free, we get h2 = p2...pmg. Using the same ideas, we have hi = pi...pmg,

where hi ∈ H for all i ≤ m. Finally, we have hm = pmg. Since H is pm-pure, we

have hm = pmhm+1 where hm+1 ∈ H . Therefore, we have pmg = pmhm+1, and so

g = hm+1 since G is torsion free. Hence, we get h = p1p2...pmhm+1 = nhm+1 where

hm+1 ∈ H , as desired.

Lemma 1.2.5. LetM be a module,M ′ ≤M a submodule and p ∈ R a prime element.

IfM ′ andM/M ′ are p-divisible, thenM is also p-divisible.

Proof. Take an elementm ofM . Ifm ∈M ′, then there is nothing to prove.

Assume m ∈ M \M ′. Then m +M ′ 6= M ′, and so m +M ′ is a nonzero element of

M/M ′. SinceM/M ′ is p-divisible, there is an elementm′ +M ′ such thatm+M ′ =

p(m′+M ′) = pm′+M ′. Som−pm′ ∈M ′. SinceM ′ is p-divisible, there is an element

m′′ ∈M ′ such thatm− pm′ = pm′′. Hence,m = pm′ + pm′′ = p(m′ +m′′).

Lemma 1.2.6. Let M and K be modules and M ′ ≤ M . If Hom(M ′, K) = 0 =

Hom(M/M ′, K), then Hom(M,K) = 0.

Proof. Take a homomorphismφ :M → K. Sinceφ|M ′ ∈ Hom(M ′, K), we know that

φ|M ′ = 0 by assumption. SoM ′ ≤ kerφ. Then we can define φ̃ : M/M ′ → K with

φ̃(m +M ′) = φ(m). But φ̃ ∈ Hom(M/M ′, K). So φ̃ must be zero by assumption.

Hence φ(m) = 0 for allm ∈M . This means that φ = 0, as desired.

We give some useful features about pure submodules over an integral domain in the

following theorem.

Theorem 1.2.7. The following conditions hold for pure submodules.

1. If M is a torsion free module, then a submodule M ′ of M is pure in M if and

only ifM/M ′ is torsion free.

2. The union of a chain of pure submodules of a module is still a pure submodule.
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3. If M2 ⊂ M1, are submodules of M such that M2 is pure in M and M1/M2 is

pure inM/M2 thenM1 is pure in M.

4. If M is a torsion free R-module, M1 a submodule of M , and M2, a pure

submodule ofM thenM1 ∩M2 is a pure submodule ofM1.

5. Let M be a torsion free R-module, M1 a submodule of M , and M2 a pure

submodule ofM . IfM2 ≤M1 , thenM2 is pure inM1.

Proof. (1) (⇒) Take an elementm+M ′ ofM/M ′ and a nonzero element r of R. Say

r(m + M ′) = M ′. Then rm ∈ rM ∩ M ′. By purity, there is an element m′ such

that rm = rm′. So, we have r(m − m′) = 0. Since M is torsion free, we get that

m−m′ = 0, and som = m′. It says thatm+M ′ = m′ +M ′ =M ′, as desired.

(⇐) Take a nonzero m′ = rm ∈ rM ∩ M ′. Then r(m + M ′) = rm + M ′ =

m′ +M ′ =M ′. SinceM/M ′ is torsion free, we know thatm+M ′ =M ′. So, we get

m ∈M ′. Therefore, we concludem′ = rm ∈ rM ′, as desired.

(2) Let I be a totally ordered index set. Take a chainC = (Mi)i∈I of pure submodules

of a module M . We will show that
∪

i∈I Mi is a pure submodule of M . Take rm ∈

rM ∩
∪

i∈I Mi where m ∈ M . Since rm ∈
∪

i∈I Mi, we have that rm ∈ Mj for

some j ∈ I . By purity, there is an element mj ∈ Mj such that rm = rmj . Then,

rm = rmj ∈ rMj ⊆ r
∪

i∈I Mi.

(3) Take m1 = rm ∈ rM ∩M1. Then, m1 +M2 = rm +M2. By purity, there

is an element m′
1 +M inM1/M2 such that m1 +M2 = rm +M2 = rm′

1 +M2. So

r(m − m′
1) ∈ M2. Say r(m − m′

1) = m2. By purity, there is an element m′
2 ∈ M2

such that r(m−m′
1) = m2 = rm′

2. Then,m1 − rm′
1 = rm− rm′

1 = rm′
2. Hence, we

havem1 = r(m′
1 +m′

2) wherem′
1 +m′

2 ∈M1 +M2 =M1.

Moreover, there is an easier way to prove by using (1) with saying M/M2 and

(M/M2)/(M1/M2) ∼= M/M1 are both torsion free.

(4) Takem1 ∈M1 ∩M2 and saym1 = rm′
1, where r ∈ R andm′

1 ∈M1 ≤M . By

purity ofM2, we have that there is an element m2 ∈ M2 such that m1 = rm2. Since

15



M is torsion free, we have thatm′
1 = m2 ∈M1 ∩M2, as desired.

(5) It follows by (4).

1.2.2 Pullback and Pushout Diagrams

In category theory, a pullback (resp. a pushout) can be seen as the limit (resp.

colimit) of a diagram consisting of two morphisms f : X → Z and g : Y → Z (resp.

f : Z → X and g : Z → Y ). The pullback of two morphisms f and g may not exist.

If the pullback exists, it is uniquely determined by these two morphisms as with many

universal construction.

It is well-known fact that the pullbacks exist in the category of modules over a

fixed ring, and so in the category of abelian groups. We just use pullback diagrams for

modules over an integral domain, as we stated before in the introduction.

Definition 1.2.3. Let M , M ′ and N be modules with morphisms g : M → N and

f :M ′ → N . A module P with morphisms ρ : P →M and ρ′ : P →M ′ is called the

pullback of f and g if the following conditions are satisfied.

1. The following diagram commutes:
P

ρ

ρ′

N

g

M ′ f

M

.

2. If the following diagram commutes for a module Q and morphisms q and q′,
Q

q

q′

N

g

M ′ f

M

then there must be a unique morphism u : Q→ P such that ρu = q and ρu = q.

It can be illustrated as the following commutative diagram with emphasizing the

uniqueness of u.
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P
ρ

ρ′

N

g

M ′ f

M

Q
q

q′

u

Next lemma has too much significance for our main Theorem 3.3.6, but we put it

here because of that the pullback is a fundamental tool.

Lemma 1.2.8. Let P be the pullback of f : C ′ → A and g : C → A

P
ρ

ρ′

A

g

C ′ f

C

in a commutative diagram of abelian groups. Then,

1. im ρ = g−1(im f)

2. ker ρ ∼= ker f ;

3. For a subgroup C ′
1 of C ′, the pullback of f |C′

1
: C ′

1 → A and g : C → A is the

complete inverse image (ρ′)−1(C ′
1) of C ′

1 under ρ′ : P → C ′ with the pullback

maps are the restriction maps ρ|(ρ′)−1(C′
1)
: (ρ′)−1(C ′

1) → C and

ρ′|(ρ′)−1(C′
1)
: (ρ′)−1(C ′

1) → C ′
1.

4. For a subgroupM of ker f , the pullback of f : C ′/M → A and g : C → A is

the quotient group P/(ρ′)−1(M).

Proof. (1) Take an element c ∈ im ρ. So, there is an element (c′, c) ∈ P such that

ρ(c′, c) = c. So, f(c′) = g(c) by definition of the pullback P . However, f(c′) ∈ im f ,

and so c ∈ g−1(im f). Take an element c ∈ g−1(im f), and so for some element

f(c′) ∈ im f , we have that g(c) = f(c′). By definition of the pullback (c′, c) ∈ P , and

so ρ(c′, c) = c ∈ im ρ.

(2) We will interest in the restricted map ρ′|ker ρ : ker ρ → C ′. Clearly, this map is

an injection since ker(ρ′|ker ρ) = ker ρ ∩ ker ρ′ = 0 by the definition of pullback. So,

ker ρ ∼= im(ρ′|ker ρ). Now, we must prove im(ρ′|ker ρ) = ker f . Let c′ ∈ im(ρ′|ker ρ).
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Then, for some p ∈ ker ρ, we have that ρ′(p) = c′. And we also have ρ(p) = 0 since

p ∈ ker ρ. Since P is pullback and p ∈ P , we have that f(c′) = g(0) = 0, and so

c′ ∈ ker f. Let c′ ∈ ker f . So f(c′) = 0. Then, (c′, 0) ∈ P since f(c′) = 0 = g(0).

Clearly, ρ(c′, 0) = 0, and so (c′, 0) ∈ ker ρ. However, we have ρ′(c′, 0) = c′ ∈ ker f .

Also, we can see that

ker ρ = {(c′, 0) : c′ ∈ ker f}.

So it is easy to get the isomophism between ker ρ and ker f . From now on, we

will not notice any difference between ker ρ and ker f . For example, we will use the

isomorphism theorem as the follows. P/ ker f ∼= im ρ or we will say that P/M is a

quotient group of P whereM ≤ ker f .

(3) It is not ambiguous to notate the restriction maps with ρ, ρ′ and f |. So, we have

the following commutative diagram:

(ρ′)−1(C ′
1)

ρ

ρ′

A

g

C ′
1

f |

C

Because, for some element (c′1, c) ∈ (ρ′)−1(C ′
1) is also in P , and so we have that

ρ(c′1, c) = c and ρ′(c′1, c) = c′1 with f |(c′1) = f(c′1) = g(c). It is also easy to see that

(ρ′)−1(C ′
1) = {(c′1, c) : f |(c′1) = f(c′1) = g(c), c′1 ∈ C ′

1, c ∈ C} ≤ P

by the definition of the complete inverse image, and so it is also easy to see that

(ρ′)−1(C ′
1) is the desired pullback of f |C′

1
: C ′

1 → A and g : C → A by the definition

of the pullback for abelian groups.

(4) We know that f : C ′/M → A is well-defined with f(c′ +M) = f(c′) since

M ≤ ker f . Let π′ be the conanical surjection from C ′ into C ′/M . Then, we have the

following commutative diagram:
C ′/M

C ′ A

π′ f

f

18



It is easy to recognise that f(C ′/M) = f(C ′). By definition, we have

P/M = {(c′ +M, c) : f(c′ +M) = f(c′) = g(c)} ≤ C ′/M ⊕ C.

Define ρ : P/M → C with ρ(c′ + M, c) = c, and so ρ(P/M) = ρ(P ) since

f(C/M) = f(C). Similarly, define ρ′ : P/M → C/M with ρ′(c′ +M, c) = c′ +M .

And so, the following diagram:

P/M ρ

ρ′

A

g

C ′/M
f

C

commutes. So, P/M is the pullback of f : C ′/M → A and g : C → A by the

definition of P/M and the definition of the pullback for abelian groups.

Define the conanical surjection π from P into P/M . Then we have the following

commutative diagram:
P/M

P C

π ρ

ρ

sinceM is also in ker ρ (∼= ker f) by Condition (2). To see all in one graph,

P/M
π

π′

ρ

ρ

ρ′
ρ′

A

g

C ′/M
f

C ′

P C

f

To say the previous diagram is commutative, we only need to say the following

diagram commutes.
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P
π

ρ′

C ′/M

ρ′

C ′ π
′

P/M

But, we can easily see that

ρ′π(c, c′) = ρ′(c′ +M, c) = c′ +M = π′(c′) = π′ρ′(c′, c).

As a dual consept of a pullback, we have the following definition for a pushout.

Definition 1.2.4. Let M , M ′ and N be modules over an integral domain R with

morphisms g : N → M and f : N → M ′. An R-module P with two morphisms

i : M → P and i′ : M ′ → P is called the pushout of f and g if the following

conditions are satisfied.

1. The following diagram commutes
N

g

f

P

i

M ′ i
′

M

2. If the following diagram commutes for a moduleQ with the morphisms j and j′,
N

g

f

Q

j

M ′ j
′

M

then there must be a unique morphism v : P → Q such that vi = j and vi′ = j′.

It can be illustrated as the following commutative diagram with emphasizing the

uniqueness of v.
N

g

f

P

i

M ′ i
′

M

Q

j

j′

v
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CHAPTER TWO

TORSION FREE COVERS OF LINE QUIVERS

In this chapter, we will give our results for a torsion free precover of an object in

the category (qn,R-Mod) or just qn. M. Dunkum proved the existence of TFCs in qn,

and gave a construction for the TFC of an object in qn (see Wesley (2005)). See also

Özdemir (2011) for the existence of TFCs in the category (Q,R-Mod) for a wide class

of quivers (including line quivers) under certain conditions on the ring R.

2.1 Line Quivers

A quiver is a directed graph whose edges are called arrows. Usually, a quiver is

denoted by Q understanding that Q = (V,E) where V is the set of vertices (dots) and

E is the set of arrows. An arrow of a quiver from a vertex v1 to a vertex v2 is denoted

by a : v1 → v2 or v1
a−→ v2 .

A representation by modules of a given quiver Q is determined by giving a module

X(v) to each vertex v and a homomorphism X(a) : X(v1) → X(v2) to each arrow

a : v1 → v2 of Q. A morphism µ between two representations X and Y is a natural

transformation, so it will be a family {µv}v∈V of module homomorphisms such that

Y (a)µv1 = µv2X(a) for every arrow a : v1 → v2 of Q, that is, the following diagram

commutes for every arrow a : v1 → v2 of Q:

X(v1)
X(a)

µv1

Y (v2)

µv2

Y (v1)
Y (a)

X(v2)

Note that the representations bymodules of a quiverQ over a ringR form a (functor)

category, denoted by (Q,R-Mod). Therefore, it is an abelian category by (Stenström,

1975, Chapter IV, Proposition 7.1). So, we notice that the kernels, cokerneles, products
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and sums are constructed ’componentwise’ in this category. For the sake of simplicity,

we just say a ’representation’ or an ’object’ in this category for a representation by

modules of a quiver over a ring R. See, for example, Schiffler (2014) for more details

about quiver representations. See also Özdemir (2011) for some research on relative

homological algebra in this category for any ring R and any quiver Q (not necessarily

finite).

In this thesis, we are interested in this category only for finite line quivers. Namely,

for the quivers qn of the form

qn : v1
a1−→ v2

a2−→ · · · an−1−−−→ vn

We denote the category (qn,R-Mod) by qn for short.

Note that the objects in qn are of the form M1
f1−→ M2

f2−→ · · · fn−1−−→ Mn, where

Mi’s are modules and fj’s are module homomorphisms. So, a morphism between two

objects in this category will consist of a n-tuple of maps

(α1, α2, · · · , αn) : (M1
f1−→ M2

f2−→ · · · fn−1−−→ Mn) → (N1
g1−→ N2

g2−→ · · · gn−1−−→ Nn)

such that αi : Mi → Ni with gjαj = αj+1fj for all j ∈ {1, 2, · · · , n − 1}, that is, the

following diagram commutes:

g2 g3 gn−2 gn−1

M3

N3

f2 f3 · · ·

· · ·

fn−2 fn−1

α3 αn−1 αn

f1

g1

M1 M2 Mn−1 Mn

N1 N2 Nn−1 Nn

α2α1

2.2 Torsion Free Covers of Line Quivers

Firstly, we will define what is the torsion free precover and the TFC of an object in

the category qn, where R is an integral domain.

Definition 2.2.1. An object N1
g1−→ N2

g2−→ · · · gn−1−−→ Nn in qn is said to be a subobject

of an object M1
f1−→ M2

f2−→ · · · fn−1−−→ Mn if Ni ≤ Mi and fj|Ni
= gj for all i =
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1, 2, · · · , n and j = 1, 2, · · · , n− 1.

Definition 2.2.2. An object T1
f1−→ T2

f2−→ · · · fn−1−−→ Tn in qn is called torsion if all Ti’s

are torsion modules. And, an object F1
f1−→ F2

f2−→ · · · fn−1−−→ Fn in qn is called torsion

free if all Fi’s are torsion free modules.

Definition 2.2.3. A subobject N1
g1−→ N2

g2−→ · · · gn−1−−→ Nn ofM1
f1−→ M2

f2−→ · · · fn−1−−→

Mn in qn is said to be a pure subobject ofM1
f1−→ M2

f2−→ · · · fn−1−−→ Mn if Ni is a pure

submodule ofMi for all i = 1, 2, · · · , n. In other words, rNi = rMi∩Ni for all r ∈ R

and i = 1, 2, · · · , n.

Definition 2.2.4. If C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn is a torsion free object in qn, then the

morphism

(φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→ A2

f2−→ · · · fn−1−−→ An) is

said to be a torsion free precover of A1
f1−→ A2

f2−→ · · · fn−1−−→ An, if, for every

morphism

(ψ1, ψ2, · · · , ψn) : (F1
h1−→ F2

h2−→ · · · hn−1−−−→ Fn) → (A1
f1−→ A2

f2−→ · · · fn−1−−→ An)

where F1
h1−→ F2

h2−→ · · · hn−1−−−→ Fn is torsion free, there is a morphism

(σ1, σ2, · · · , σn) : (F1
h1−→ F2

h2−→ · · · hn−1−−−→ Fn) → (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) such

that (φ1, φ2, · · · , φn) ◦ (σ1, σ2, · · · , σn) = (ψ1, ψ2, · · · , ψn), that is, the following

diagram commutes:

σn−1 σn

FnFn−1

ψn−1 ψn

φn−1

g3 gn−2 gn−1

f3

Cn

An−1 An

fn−2 fn−1

Cn−1

φn

h3 hn−2 hn−1· · ·

· · ·

· · ·

σ1 σ2 σ3

F3F2F1

ψ1 ψ2 ψ3

φ1

g1
C1

A1

f1

C3

A2 A3

φ3

f2

C2

g2

φ2

h1 h2

Definition 2.2.5. The above morphism (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→

Cn) → (A1
f1−→ A2

f2−→ · · · fn−1−−→ An) is said to be a TFC, if the following conditions

are satisfied:

1. (φ1, φ2, · · · , φn) is the torsion free precover of A1
f1−→ A2

f2−→ · · · fn−1−−→ An, and
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2. If Pi is a pure submodule of Ci contained in kerφi, Pi+1 is a pure submodule of

Ci+1 contained in kerφi+1, and if gi(Pi) ⊆ Pi+1, then Pi = Pi+1 = 0 for all

i = 1, 2, · · · , n− 1.

Note that the second condition is equivalent to the fact that the kernel of the covering

mapping has no nonzero pure subobject where the kernel in qn is defined as

ker(φ1, φ2, · · · , φn) := kerφ1 → kerφ2 → · · · → kerφn.

Remark 1. It is known that every object in qn has a TFC when R is an integral

domain (see (Wesley, 2005, Theorem 6.5-Example 5.5)). When proving the existence

of a TFC in qn, M. Dunkum used the induction method. Indeed, to construct the cover

of the object A1
f1−→ A2

f2−→ · · · fn−1−−→ An in qn, she first assumed that the morphism

(φ2, φ3, · · · , φn) : (C2
g2−→ C3

g3−→ · · · gn−1−−→ Cn) → (A2
f2−→ A3

f3−→ · · · fn−1−−→ An) was

a TFC of A2
f2−→ A3

f3−→ · · · fn−1−−→ An in qn−1, and after that g1 : C1 → C2 and

φ1 : C1 → A1 were found out with a construction to say that

(φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→ A2

f2−→ · · · fn−1−−→ An) is

the desired TFC.

Motivated by this method of proof, we introduce a reduction of an object as follows.

Remark 2. To ‘reduce’ an object in qn to an object in qi where i ≤ n will be practical

in our study. So, from now on, by a ’reduction’ of an object

A1
f1−→ A2

f2−→ · · · fn−1−−→ An in qn to an object in qi, we mean the object

An−i+1
fn−i+1−−−−→ An−i+2

fn−i+2−−−−→ · · · fn−1−−→ An. Therefore, we can easily see that the

TFC of the reduction An−i+1
fn−i+1−−−−→ An−i+2

fn−i+2−−−−→ · · · fn−1−−→ An is the reduction of

the TFC of the object A1
f1−→ A2

f2−→ · · · fn−1−−→ An.

The following lemma will be useful in proving some of our main results.

Lemma 2.2.1. If (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→ A2

f2−→

· · · fn−1−−→ An) is a torsion free precover of A1
f1−→ A2

f2−→ · · · fn−1−−→ An in qn, then

φi : Ci → Ai is a torsion free precover of Ai in R-Mod for all i = 1, 2, · · · , n.
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Proof. By Remark 2, it is enough to prove the statement only for i = 1. Suppose that

D is any torsion free module and ψ : D → A1 is a module homomorphism. Clearly,

D
id−→ D

id−→ · · · id−→ D is a torsion free object in qn, and we have a morphism

(ψ, f1ψ, f2f1ψ, · · · , fn−2fn−3 · · · f2f1ψ, fn−1fn−2 · · · f2f1ψ) : (D
id−→ D

id−→ · · · id−→

D) → (A1
f1−→ A2

f2−→ · · · fn−1−−→ An) in qn. So we have the following commutative

diagram by assumption:

σn−1 σn

DD

fn−2 · · ·ψ fn−1 · · · f1ψ

φn−1

g3 gn−2 gn−1

f3

Cn

An−1 An

fn−2 fn−1

Cn−1

φn

id id id
· · ·

· · ·

· · ·

σ1 σ2 σ3

DDD

ψ f1ψ f2f1ψ

φ1

g1
C1

A1

f1

C3

A2 A3

φ3

f2

C2

g2

φ2

id id

Finally, we find a homomorphism σ1 which makes the following diagram is

commutative:

D

C1 A1

ψ

φ1

σ1

.

That is, φ1 : C1 → A1 is a torsion free precover of A1.

More general version of the previous lemma is also true.

Lemma 2.2.2. If (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→ A2

f2−→

· · · fn−1−−→ An) is a torsion free precover of A1
f1−→ A2

f2−→ · · · fn−1−−→ An in qn, then

(φi, · · · , φj) : (Ci
gi−→ · · · gj−1−−→ Cj) → (Ai

fj−→ · · · fj−1−−→ Aj) is a torsion free precover

of Ai
fj−→ · · · fj−1−−→ Aj in the category qj−i+1.

Proof. By Remark 2, It is enough to prove the statement for i = 1. Suppose that

D1
h1−→ · · · hj−1−−→ Dj is a torsion free object, and

25



(ψ1, · · · , ψj) : (D1
h1−→ · · · hj−1−−→ Dj) → (A1

fj−→ · · · fj−1−−→ Aj) is a morphism in qj .

Clearly, D1
h1−→ · · · hj−1−−→ Dj

id−→ Dj
id−→ · · · id−→ Dj is a torsion free object in qn, and

we have a morphism (ψ1, · · · , ψj, fjψj, fj+1fjψj, · · · , fn−1fn−2 · · · fj+1fjψj) :

(D1
h1−→ · · · hj−1−−→ Dj

id−→ Dj
id−→ · · · id−→ Dj) → (A1

f1−→ A2
f2−→ · · · fn−1−−→ An). So we

have the following commutative diagram by precover:

σ1

D1

A1

C1

g1

f1

h1
ψ1

φ1

σn−1 σn

DjDj

fn−2 · · ·ψj fn−1 · · · fjψj

φn−1

gj+1 gn−2 gn−1

fj+1

Cn

An−1 An

fn−2 fn−1

Cn−1

φn

id id id
· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

σj σj+1

DjDj

ψj fjψj

gj−1

fj−1

Cj+1

Aj Aj+1

φj+1

fj

Cj

gj

φj

hj−1 id

Hence, we get the morphism (σ1, σ2, · · · , σj) such that the following diagram

commutes:

σj−1 σj

DjDj−1

ψj−1 ψj

φj−1

g3 gj−2 gj−1

f3

Cj

Aj−1 Aj

fj−2 fj−1

Cj−1

φj

h3 hj−2 hj−1· · ·

· · ·

· · ·

σ1 σ2 σ3

D3D2D1

ψ1 ψ2 ψ3

φ1

g1
C1

A1

f1

C3

A2 A3

φ3

f2

C2

g2

φ2

h1 h2

Remark 3. Observe that we can find the corresponding torsion free precovers of the

objects (A1
f1−→ A2

f2−→ · · · fi−1−−→ Ai) and (Ai+1
fi+1−−→ Ai+2

fi+2−−→ · · · fn−1−−→ An)

in qi and qn−i, respectively if we already know a torsion free precover of the object

(A1
f1−→ A2

f2−→ · · · fn−1−−→ An) in qn. But the converse is not true in general.

More precisely, let (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→

A2
f2−→ · · · fn−1−−→ An) be a torsion free precover of A1

f1−→ A2
f2−→ · · · fn−1−−→ An in qn,

and (φ′
1, φ

′
2, · · · , φ′

m) : (C
′
1

g′1−→ C ′
2

g′2−→ · · ·
gm−1′−−−→ C ′

m) → (A′
1

f ′
1−→ A′

2

f ′
2−→ · · ·

f ′
m−1−−−→

A′
m) is a torsion free precover of A′

1

f ′
1−→ A′

2

f ′
2−→ · · ·

f ′
n−1−−→ A′

m in qm. We have an object
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(A1
f1−→ A2

f2−→ · · · fn−1−−→ An
f−→ A′

1

f ′
1−→ A′

2

f ′
2−→ · · ·

f ′
n−1−−→ A′

m) in qn+m. Because of the

zero map, we know that there is at least one homomorphism such as f : An → A′
1.

Moreover, we have a composition map fφn : Cn → A′
1, and so we have that there

is a homomorphism g : Cn → C ′
1 such that fφn = φ′

1g since φ′
1 : C ′

1 → A′
1 is a

torsion free precover by Lemma 2.2.1. So we have a morphism

(φ1, φ2, · · · , φn, φ
′
1, φ

′
2, · · · , φ′

m) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn
g−→ C ′

1

g′1−→ C ′
2

g′2−→

· · ·
gm−1′−−−→ C ′

m) → (A1
f1−→ A2

f2−→ · · · fn−1−−→ An
f−→ A′

1

f ′
1−→ A′

2

f ′
2−→ · · ·

f ′
n−1−−→ A′

m) in

qn+m. But this map does not have to be a torsion free precover of

A1
f1−→ A2

f2−→ · · · fn−1−−→ An
f−→ A′

1

f ′
1−→ A′

2

f ′
2−→ · · ·

f ′
n−1−−→ A′

m in qn+m. As a counter

example, take n = 1 andm = 1.

Lemma 2.2.3. If (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→ A2

f2−→

· · · fn−1−−→ An) is a torsion free precover of A1
f1−→ A2

f2−→ · · · fn−1−−→ An in qn, then

(φ1, φn) : (C1
gn−1gn−2···g1−−−−−−−−→ Cn) → (A1

fn−1fn−2···f1−−−−−−−−→ An) is a torsion free precover of

A1
fn−1fn−2···f1−−−−−−−−→ An) in q2.

Proof. Let B1
g−→ Bn be a torsion free object in q2 with the morphism

(ϕ1, ϕn) : (B1
g−→ Bn) → (A1

fn−1···f1−−−−−→ An). So, we have the following commutative

diagram:

B1
g

ϕ1

An

ϕn

A1
fn−1 · · · f1

Bn

So, we also have the following commutative diagram:

f2 f3 fn−2 fn−1

B1

A3

iB1 iB1 · · ·

· · ·

iB1
g

f2f1ϕ1 fn−2 · · · f1ϕ1 ϕn

iB1

f1

B1 B1 B1 Bn

A1 A2 An−1 An

f1ϕ1ϕ1

Now, using the precover of A1
f1−→ A2

f2−→ · · · fn−1−−→ An, we get the following

commutative diagaram:
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σn−1 σn

BnB1

fn−2 · · ·ϕ1 ϕn

φn−1

g3 gn−2 gn−1

f3

Cn

An−1 An

fn−2 fn−1

Cn−1

φn

iB1 iB1 g
· · ·

· · ·

· · ·

σ1 σ2 σ3

B1B1B1

ϕ1 f1ϕ1 f2f1ϕ1

φ1

g1
C1

A1

f1

C3

A2 A3

φ3

f2

C2

g2

φ2

iB1 iB1

Therefore, we have the following commutative diagram, which completes the

proof:

σ1 σn

BnB1

ϕ1 ϕn

Cn

A1 An

φn

fn−1...f1

C1

gn−1...g1

φ1

g

Note that the previous lemma is true for any pair of morphisms.

Proposition 2.2.4. If (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→

A2
f2−→ · · · fn−1−−→ An) is a torsion free precover of A1

f1−→ A2
f2−→ · · · fn−1−−→ An in qn,

then (φi, φi+k) : (Ci
gi+k−1gi+k−2···gi−−−−−−−−−−→ Ci+k) → (Ai

fi+k−1fi+k−2···fi−−−−−−−−−−→ Ai+k) is a torsion

free precover of Ai
fi+k−1fi+k−2···fi−−−−−−−−−−→ Ai+k in q2.

Proof. It is trivial by using both Lemma 2.2.2 and Lemma 2.2.3.

There is a generalisation of all we do above. We will say that a version of the

previous proposition is also true for more than one composition map. For the sake of

simplicity, it will be stated without saying composition maps.

Theorem 2.2.5. If (φ1, φ2, · · · , φn) : (C1
g1−→ C2

g2−→ · · · gn−1−−→ Cn) → (A1
f1−→

A2
f2−→ · · · fn−1−−→ An) is a torsion free precover of A1

f1−→ A2
f2−→ · · · fn−1−−→ An in
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qn, then (φi, φi+k1 , φi+k2 , · · · , φi+km) : (Ci → Ci+k1 → Ci+k2 → · · · → Ci+km) →

(Ai → Ai+k1 → Ai+k2 → · · · → Ai+km) is a torsion free precover of the object

Ai → Ai+k1 → Ai+k2 → · · · → Ai+km in qm+1.

Proof. More clearly, we want to get (φi, φi+k1 , φi+k2 , · · · , φi+km) : (Ci

gi+k1−1···gi−−−−−−→

Ci+k1

gi+k2−1···gi+k1−−−−−−−−→ Ci+k2

gi+k3−1···gi+k2−−−−−−−−→ · · ·
gi+km−1···gi+km−1−−−−−−−−−−−→ Ci+km) →

(Ai

fi+k1−1···fi−−−−−−→ Ai+k1

fi+k2−1···fi+k1−−−−−−−−→ Ai+k2

fi+k3−1···fi+k2−−−−−−−−→ · · ·
fi+km−1···fi+km−1−−−−−−−−−−−→ Ai+km)

is a torsion free precover of the object

Ai

fi+k1−1···fi−−−−−−→ Ai+k1

fi+k2−1···fi+k1−−−−−−−−→ Ai+k2

fi+k3−1···fi+k2−−−−−−−−→ · · ·
fi+km−1···fi+km−1−−−−−−−−−−−→ Ai+km)

in qm+1.

It can be proven by induction on m with using Proposition 2.2.4 as an initial case.

2.3 A Construction for Torsion Free Covers of Line Quivers

The following theorem gives a construction for TFCs in qn, and it is a foundation in

this study (see the proof of Theorem 6.5 in Wesley (2005)).

Theorem 2.3.1. Wesley (2005) Let A1
f1−→ A2

f2−→ · · · fn−2−−→ An−1
fn−1−−→ An be an

object in qn. Let φi : Ci → Ai be the TFC of Ai in R-Mod with kerφi = Ki. Then,

f1

ρ1

f2

ρ2

φ2ρ
′
2φ1ρ

′
1

ρn−2

· · ·

· · · fn−2

Cn

An−1 An

φn

fn−1

Pn−1/Mn−1

ρn−1

φn−1ρ
′
n−1

P2/M2

A2

P1/M1

A1

is a TFC of A1
f1−→ A2

f2−→ · · · fn−2−−→ An−1
fn−1−−→ An in qn, where, in the first square,

Pn−1 is the pullback of fn−1φn−1 : Cn−1 → An and φn : Cn → An, where ρ′n−1 :

Pn−1 → Cn−1 and ρn−1 : Pn−1 → Cn are the pullback maps, andMn−1 is a maximal

pure submodule of ker(fn−1φn−1) contained in Kn−1; and also, Pi is the pullback of

fiφi : Ci → Ai+1 and φi+1ρ
′
i+1 : Pi+1/Mi+1 → Ai+1, where ρ′i : Pi → Ci−1 and
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ρi : Pi → Ci are the pullback maps, andMi is a maximal pure submodule of ker(fiφi)

contained in Ki for each i = 1, 2, · · · , n− 2.

Proof. For the case n = 2, we refer (Wesley (2005), Lemma 6.1). In the general case,

this construction can be found easily by induction on n with using (Wesley (2005),

Theorem 6.5).

Lemma 2.3.2. The kernel of the covering map in the previous theorem is of the form:

n⊕
j=1

Kj/Mj
ρ1−→

n⊕
j=2

Kj/Mj
ρ2−→ · · · ρn−2−−−→ Kn−1/Mn−1 ⊕Kn

ρn−1−−−→ Kn.

Proof. By (Wesley (2005), Proposition 6.2) and (Wesley (2005), Theorem 6.4), we

know that

ker(φn−1ρ
′
n−1, φn) = Kn−1/Mn−1 ⊕Kn

ρn−1−−−→ Kn.

Assume that the kernel of the covering map (φ2ρ
′
2, · · · , φn−1ρ

′
n−1, φn) :

(P2/M2
ρ2−→ · · · ρn−2−−−→ Pn−1/Mn−1

ρn−1−−−→ Cn) → (A2
f2−→ · · · fn−2−−→ An−1

fn−1−−→ An) is

of the form

n⊕
j=2

Kj/Mj
ρ2−→ · · · ρn−2−−−→ Kn−1/Mn−1 ⊕Kn

ρn−1−−−→ Kn.

Firstly, we will show that ker(φ1ρ
′
1, φ2ρ

′
2, · · · , φn−1ρ

′
n−1, φn) of the precovering

map (φ1ρ
′
1, φ2ρ

′
2, · · · , φn−1ρ

′
n−1, φn) : (P1

ρ1−→ P2/M2
ρ2−→ · · · ρn−2−−−→

Pn−1/Mn−1
ρn−1−−−→ Cn) → (A1

f1−→ A2
f2−→ · · · fn−2−−→ An−1

fn−1−−→ An) is of the form

K1 ⊕
n⊕

j=2

Kj/Mj
ρ1−→

n⊕
j=2

Kj/Mj
ρ2−→ · · · ρn−2−−−→ Kn−1/Mn−1 ⊕Kn

ρn−1−−−→ Kn.

So, we will just show that

ker(φ1ρ
′
1) = K1 ⊕

n⊕
j=2

Kj/Mj .

Assume (k1, (k2, · · · , kn)) → (k2, · · · , kn) → · · · → kn is an element of the kernel
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ker(φ1ρ
′
1)

ρ1−→ ker(φ2ρ
′
2)

ρ2−→ · · · ρn−1−−−→ kerφn of the precovering mapping in qn. So

(k1, (k2, · · · , kn)) ∈ ker(φ1ρ
′
1). This means φ1ρ

′
1(k1, (k2, · · · , kn)) = φ1(k1) = 0,

and so k1 ∈ kerφ1 = K1. Moreover, we also have

0 = f1φ1ρ
′
1(k1, (k2, · · · , kn)) = φ2ρ

′
2ρ1(k1, (k2, · · · , kn)) = φ2ρ

′
2(k2, · · · , kn)

by using the commutativity of the diagram in Theorem 2.3.1. So, we have

(k2, · · · , kn) ∈ ker(φ2ρ
′
2) =

n⊕
j=2

Kj/Mj .

Thus, we get

(k1, (k2, · · · , kn)) ∈ K1 ⊕
n⊕

j=2

Kj/Mj .

Conversely, assume that (k1, (k2, · · · , kn)) → (k2, · · · , kn) → · · · → kn is an

element of the object K1 ⊕
n⊕

j=2

Kj/Mj
ρ1−→

n⊕
j=2

Kj/Mj
ρ2−→ · · · ρn−1−−−→ Kn in qn. Then,

we have (k1, (k2, · · · , kn)) ∈ K1 ⊕
n⊕

j=2

Kj/Mj . So, we have

φ1ρ
′
1(k1, (k2, · · · , kn)) = φ1(k1) = 0

since k1 ∈ K1 = kerφ1. Thus, (k1, (k2, · · · , kn)) ∈ ker(φ1ρ
′
1). We showed that

ker(φ1ρ
′
1 : P1 → A1) = K1 ⊕

n⊕
j=2

Kj/Mj .

Hence, it is easy to see that ker(φ1ρ
′
1 : P1/M1 → A1) = K1/M1 ⊕

n⊕
j=2

Kj/Mj =

n⊕
j=1

Kj/Mj , as desired.
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CHAPTER THREE

LINE QUIVERS HAVING A TRIVIAL COGALOIS GROUP

In Hill (2008), coGalois groups of TFCs of quiver representations have been studied

for q2 and R = Z. A classification for coGalois groups to be trivial were given in

(q2,Z-Mod). Using Hill’s ideas and results, we generalize (Hill, 2008, Theorem 5.1)

to the category (qn,Z-Mod). We will use the notations in Theorem 2.3.1 and Lemma

2.3.2, throughout this chapter. Therefore, for an object A := A1
f1−→ A2

f2−→ · · · fn−2−−→

An−1
fn−1−−→ An in qn, the map φi : Ci → Ai will be the TFC of Ai in Z-Mod with

kerφi = Ki for each i. Moreover,Mi will be maximal inKi among all pure subgroups

of ker fiφi.

3.1 coGalois Groups of Line Quivers

For the objects A := A1
f1−→ A2

f2−→ · · · fn−→ An and B := B1
g1−→ B2

g2−→ · · · gn−→ Bn

in qn, whenever the following diagram commutes,

g2 g3 gn−2 gn−1

A3

B3

f2 f3
· · ·

· · ·

fn−2 fn−1

α3 αn−1 αn

f1

g1

A1 A2 An−1 An

B1 B2 Bn−1 Bn

α2α1

we denote the morphism (α1, α2, · · · , αn) in qn from A to B shortly by α. We also

denote by Mor(A,B) the class of all morphisms between the objects A and B in qn.

From now on, let φ : C → A be a TFC of A in qn, and let K = kerφ. We know

exactly what the TFC C with a covering morphism φ and its kernel K, by Theorem

2.3.1 and Lemma 2.3.2. Note that the TFC of A is unique up to isomorphism and is

actually an κ-cover, where κ is a covering class of all torsion free objects in qn.

Since coGalois groups can be introduced in any category with a covering class, we

can define the coGalois group of A in qn (see (Enochs et al., 2000, Definition 3.1)).
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Definition 3.1.1. The coGalois group of an objectA in qn is defined as the group of all

automorphsims from the TFC of A, denoted by G(A) or G(φ). That is,

G(A) = {σ : C → C | φσ = φ}.

The following important lemma generalizes (Enochs & Rada, 2005, Lemma 2.2),

and the proof is done by a similar way.

Lemma 3.1.1. The coGalois group of A is trivial if and only if Mor(C,K) = 0.

Proof. (⇒) By assumption, we know that any morphism σ from the cover to itself,

such that φσ = φ, is the identity morphism idC. Assume that Mor(C,K) 6= 0 and

take a nonzero morphism δ : C → C with im δ ≤ K. We can easily see that φδ = 0.

Now, we have a nontrivial object δ+ idC in the coGalois group, because φ(δ+ idC) =

φδ + φidC = 0 + φ = φ and δ is nonzero. It contradicts with G(A) = 1. Thus,

Mor(C,K) = 0.

(⇐) Say G(A) 6= 1. Take a nontrivial morphism σ : C → C from G(A), and so

φσ = φ. Then we get a nonzero morphism idC − σ : C → C with im(idC − σ) ≤ K,

since we have φ(idC−σ) = φ−φσ = φ−φ = 0. Hence idC−σ is actually a nonzero

morphism from C into K. It means that Mor(C,K) 6= 0, as desired.

Lemma 3.1.2. If the coGalois group of the object A := A1
f1−→ A2

f2−→ · · · fn−→ An is

trivial, then the coGalois group of the abelian group An is trivial.

Proof. Assume that G(An) 6= 1. Then Hom(Cn, Kn) 6= 0 by Lemma 3.1.1, taking

n = 1. So, let 0 6= δn ∈ Hom(Cn, Kn). Then we have the following commutative

diagram:

ρ1

ρ1

ρ2

ρ2

δ2δ1

ρn−2· · ·

· · · ρn−2

Cn

Kn−1/Mn−1 ⊕Kn Kn

δn

ρn−1

Pn−1/Mn−1
ρn−1

δn−1

P2/M2

n⊕
i=2

Ki/Mi

P1/M1

n⊕
i=1

Ki/Mi
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where δi = δi+1ρi for all i = 1, 2, . . . , n− 1. Then (δ1, δ2, . . . , δn) is a nonzero map

from the TFC of A to the kernel of the covering map. Hence G(A) 6= 1 by Lemma

3.1.1.

With a similar proof, more general version is also true.

Lemma 3.1.3. If the coGalois group of an object A is trivial, then the coGalois group

of each reduction of A is trivial.

Proof. LetAi
fi−→ Ai+1

fi+1−−→ · · · fn−1−−→ An be the (n− i+1)th reduction of A. Assume

that G(Ai
fi−→ Ai+1

fi+1−−→ · · · fn−1−−→ An) 6= 1. So we have a nontrivial morphism

(δi, δi+1, · · · , δn) from the TFC of the reduction to the kernel of the coveringmap. Then

(δ1, δ2, . . . , δi−1, δi, . . . , δn) where δj = δj+1ρj for all j < i is a nontrivial morphism

from the TFC of A to the kernel of the covering map. Hence G(A) is not trivial, as

desired.

So, we see that if G(A1
f1−→ A2

f2−→ · · · fn−1−−→ An) = 1, then G(Ai
fi−→ · · · fn−1−−→

An) = 1 for any i from 1 to n.

Note that if G(A1
f1−→ A2

f2−→ · · · fn−1−−→ An) = 1, then for any morphism

(δi, δi+1, . . . , δn) from Mor(Pi/Mi
ρi−→ Pi+1/Mi+1

ρi+1−−→ · · · ρn−2−−−→ Pn−1/Mn−1
ρn−1−−−→

Cn,
n⊕

j=i

Kj/Mj
ρi−→

n⊕
j=i+1

Kj/Mj
ρi+1−−→ · · · ρn−2−−−→ Kn−1/Mn−1 ⊕ Kn

ρn−1−−−→ Kn), where

i ≥ 2, it is true that δi = δi+1 = · · · = δn = 0. So, we will focus to find the conditions

when δ1 = 0. To illustrate,

ρ1

ρ1

ρ2

ρ2

δ2δ1

ρn−2· · ·

· · · ρn−2

Cn

Kn−1/Mn−1 ⊕Kn Kn

δn

ρn−1

Pn−1/Mn−1
ρn−1

δn−1

P2/M2

n⊕
i=2

Ki/Mi

P1/M1

n⊕
i=1

Ki/Mi

In fact, δ1 must be actually a map from P1/M1 into K1/M1 by the commutative

diagram since δ2 = 0.
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So, we have the following result.

Theorem 3.1.4. If the coGalois group of an object A is trivial in qn, then

Hom(P1/M1, K1/M1) = 0.

Proof. We can easily find a nonzero morphism (δ, 0, · · · , 0) from Mor(P1/M1
ρ1−→

P2/M2
ρ2−→ · · · ρn−2−−−→ Pn−1/Mn−1

ρn−1−−−→ Cn,
n⊕

j=1

Kj/Mj
ρ1−→

n⊕
j=2

Kj/Mj
ρ2−→ · · · ρn−2−−−→

Kn−1/Mn−1 ⊕Kn
ρn−1−−−→ Kn) for a nonzero homomorphism δ ∈ Hom(P1/M1, K1/M1).

Thus, the statement is proved contrapositively.

Clearly, we can also get the following theorem.

Theorem 3.1.5. The coGalois group of an object A1
f1−→ A2

f2−→ · · · fn−1−−→ An is trivial

in qn if and only if the coGalois group of the object A2
f2−→ A3

f2−→ · · · fn−→ An is trivial

in qn−1 and Hom(P1/M1, K1/M1) = 0.

Lemma 3.1.6. The morphism φi : ker fiφi/Mi → ker fi is the TFC of ker fi with the

kernelKi/Mi.

Proof. We knowφi : φi
−1(ker fi) → ker fi is a precover of ker fi sinceφi : Ci → Ai is

TFC of Ai, and kerfi ≤ Ai by ( Enochs (1963), Lemma 1). Moreover,Ki = kerφi ≤

ker(fiφi) = φi
−1(ker fi), and so the kernel of precovering map of ker fi is Ki. We

know that Mi is a maximal pure subgroup of ker(fiφi) which is contained in Ki by

Theorem 2.3.1. So ker(fiφi)/Mi is the TFC of ker fi with the covering map φi and the

kernel is Ki/Mi by Definition 1.1.5.

Theorem 3.1.7. If ker fi’s are all torsion free abelian groups (in particular, if fi’s are

monic), then the coGalois group of A is trivial if and only if An has trivial coGalois

group.

Proof. (⇒) It follows by Lemma 3.1.2.

(⇐) We will show that (δ1, δ2, · · · , δn) = 0 by induction to say G(A) = 1. By

hypothesis, we have G(An) = 1. It means that Hom(Cn, Kn) = 0. Then δn = 0, and
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so we have the commutative diagram:

ρ1

ρ1

ρ2

ρ2

δ2δ1

ρn−2· · ·

· · · ρn−2

Cn

Kn−1/Mn−1 ⊕Kn Kn

δn = 0

ρn−1

Pn−1/Mn−1
ρn−1

δn−1

P2/M2

n⊕
i=2

Ki/Mi

P1/M1

n⊕
i=1

Ki/Mi

We could take the δn = 0 as a base step of induction, but we prefer to show one

more step to see it easily. Since ρn−1δn−1 = δnρn−1, we get that δn−1 must map into

Kn−1/Mn−1. We know that

ker(fn−1φn−1)/Kn−1 = ker(fn−1φn−1)/ kerφn−1
∼= ker fn−1.

Since ker fn−1 is torsion free by assumption, we have ker(fn−1φn−1)/Kn−1 is

torsion free. We also know that ker(fn−1φn−1) is torsion free since

ker(fn−1φn−1) ≤ Cn−1 and Cn−1 is torsion free. It means that Kn−1 is a pure

subgroup of ker(fn−1φn−1). Then Kn−1 = Mn−1 since Mn−1 is a maximal pure

subgroup of ker(fn−1φn−1) that is contained in Kn−1. And then

δn−1 : Pn−1/Mn−1 → Kn−1/Mn−1 is the zero map, because Kn−1/Mn−1 = 0. Now,

we assume that δi+1 = 0 for some i, then we have the following commutative

diagram:

δi

ρi
Pi/Mi

n⊕
j=i

Kj/Mj

ρi

ρi+1 · · ·

ρi+1n⊕
l=i+1

Kl/Ml

Pi+1/Mi+1

δi+1 = 0

· · ·ρi−1

ρi−1· · ·

· · ·

Similarly, since ρiδi = δi+1ρi, the morphism δi must be a map into Ki/Mi. We

also know that ker(fiφi)/Ki = ker(fiφi)/ kerφi
∼= ker fi. Since ker fi is torsion free

by assumption, we have ker(fiφi)/Ki is torsion free. We also know that ker(fiφi) is

torsion free since ker(fiφi) ≤ Ci and Ci is torsion free. It means that Ki is a pure

subgroup of ker(fiφi). Then Ki = Mi since Mi is a maximal pure subgroup of

ker(fiφi) that is contained in Ki. And then δi : Pi/Mi → Ki/Mi is the zero map
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sinceKi/Mi = 0. Hence (δ1, δ2, · · · , δn) = 0, as desired.

Corollary 3.1.7.1. If ker fi’s are all torsion free, then the kernel of the covering map

of A is the object Kn
id−→ Kn

id−→ · · · id−→ Kn in qn.

Corollary 3.1.7.2. Let ker fi’s be torsion free for all i ≤ j. Then the coGalois group

of A1
f1−→ A2

f2−→ · · · fn−→ An is trivial if and only if the coGalois group of Aj+1
fj+1−−→

Aj+2
fj+2−−→ · · · fn−1−−→ An is trivial.

Since the Prüfer groupZp∞ is divisible, its coGalois group is trivial. The following is

an example of an object in q3 with a non-trivial coGalois group, even though it consists

of abelian groups with a trivial coGalois group. See also (Hill (2008), Example).

Example 6. Let A1
f1−→ A2

f2−→ A3 be an object in q3 such that Ai = Zp∞ for each i

and that f1 = 0 = f2. Let φi : Ci → Ai be the TFCs of Ai. Then, clearly we have

C1 = C2 = C3 and K1 = K2 = K3. Therefore, we have ker(f1φ1) = C1 and

ker(f2φ2) = C2. Since there are no nonzero pure subgroups of C1 and C2 contained,

respectively, in K1 and K2, it follows that M1 = 0 = M2. And so,

P2/M2 = P2 = C2 ⊕ K3 and P1/M1 = P1 = C1 ⊕ K2 ⊕ K3. Then, we have the

commutative diagram:

idK ⊕ idK

ρ2C1 ⊕K2 ⊕K3

K1 ⊕K2 ⊕K3

ρ2

C3

K2 ⊕K3 K3

0

ρ1

C2 ⊕K3
ρ1

idK

Thus, we obtain nonzero morphisms (idK ⊕ idK , idK , 0) and (idK , 0, 0) from the

cover into the kernel of the covering map in q3. Hence G(A1
f1−→ A2

f2−→ A3) 6= 1.

Inspired by the previous example, we get in general the following results.

Proposition 3.1.8. Let A1
f1−→ A2

f2−→ A3 be an object in q3 such that f1 = 0 = f2 and

that G(A1) = G(A2) = G(A3) = 1. Then G(A1
f1−→ A2

f2−→ A3) = 1 if and only if

Hom(K3, K2) = 0 = Hom(K2 ⊕K3, K1).
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Proof. (⇒) SinceG(A1
f1−→ A2

f2−→ A3) = 1, we know that all the morphisms from the

cover to the kernel must be zero. So, we get Hom(K2⊕K3, K1) = Hom(K3, K2) = 0,

for if Hom(K2 ⊕K3, K1) 6= 0 or Hom(K3, K2) 6= 0, then we can find a nonzero map

(δ1, δ2, δ3), which can be easily seen from the previous example.

(⇐) Suppose that (δ1, δ2, δ3) is a morphism from the cover of the object to the kernel

of the covering map. We show that is zero. First, sinceG(A3) = 1 = G(A2), we know

that Hom(C3, K3) = 0 = Hom(C2, K2), and so δ3 = 0. Second, by the commutative

diagram, we have Hom(C2 ⊕ K3, K3) = 0. Moreover, since Hom(K3, K2) = 0 by

the assumption, it follows that Hom(C2 ⊕K3, K2 ⊕K3) = 0, and so δ2 = 0. Finally,

since G(A1) = 1 we know that Hom(C1, K1) = 0. By the commutative diagram, we

get Hom(C3 ⊕ K2 ⊕ K3, K2 ⊕ K3) = 0. So the only possibility to get nonzero δ1 is

a nonzero map from Hom(K2 ⊕ K3, K1). But we know that it is not possible since

the assumption says that Hom(K2 ⊕ K3, K1) = 0. Hence, δ1 = 0, and so we get

G(A1
f1−→ A2

f2−→ A3) = 1.

The next result is a more general version of the previous proposition, and it can be

proved similarly. Because, we actually said that G(A1
f1−→ A2

f2−→ A3) = 1 if and only

if Hom(K3, K2) = Hom(K3, K1) = Hom(K2, K1) = 0 if and only if Hom(K3, K2 ⊕

K1) = 0 = Hom(K2, K1) under the hypothesis of Proposition 3.1.8.

Proposition 3.1.9. Let A be an object in qn such thatG(Ai) = 1 for all i = 1, 2, . . . , n

and that fj = 0 for all j = 1, 2, . . . , n − 1. Then the coGalois group of A is trivial if

and only if Hom(Ki,
i−1⊕
j=1

Kj) = 0 for all i = 2, 3, . . . , n.

Before continuing, we need to know more about the TFCs in qn.

Lemma 3.1.10. The subgroup im(ρiρi−1 · · · ρ1 : P1/M1 → Pi+1/Mi+1) of

Pi+1/Mi+1 is the pullback of homomorphisms

fi+1|φi+1 : φ−1
i+1(im fi · · · f1)/Mi+1 → Ai+2 and φi+2ρ

′
i+2 : Pi+2/Mi+2 → Ai+2 with

the restricted pullback maps ρ′i+1 and ρi+1:
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im ρiρi−1 · · · ρ1 ρi+1

ρ′i+1

Ai+2

φi+2ρ
′
i+2

φ−1
i+1(im fi · · · f1)/Mi+1

fi+1|φi+1

Pi+2/Mi+2

where fi+1| : im(fifi−1 · · · f1) → Ai+2 is the restriction of fi+1 : Ai+1 → Ai+2 to

im(fifi−1 · · · f1 : A1 → Ai+1) for all i = 1, 2, · · · , n− 2.

So, we have im(ρiρi−1 · · · ρ1)/ ker(fi+1|φi+1) ∼= im(ρi+1ρi..ρ1).

Proof. To avoid an ambiguity, wemust remember the projectionmapφi : Ci/Mi → Ai

denoted samely with the TFCs φi : Ci → Ai of Ai.

Firstly, we must see that im f1 = im(f1φ1). Consider the following commutative

diagram:

P1/M1

ρ1

φ1ρ
′
1

im f1

φ2ρ
′
2

A1

f1

im ρ1

Moreover, we also have that:

im ρ1 = (φ2ρ
′
2)

−1(im f1)

= (ρ′2)
−1(φ−1

2 (im f1))

= (ρ′2)
−1(φ−1

2 (im f1)/M2)

= (ρ′2)
−1(φ−1

2 (im f1))/M2

by Lemma 1.2.8 and Theorem 2.3.1. So, we have the following commutative

diagram:

P1/M1

ρ1

ρ′1

im f1

φ2ρ
′
2

φ−1
1 (im f1)

f1φ1

im ρ1
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By using Lemma 1.2.8 and Theorem 2.3.1, we can get an isomorphism

(P1/M1)/(ker f1φ1/M1) ∼= P1/ ker f1φ1 = im ρ1.

Similarly, it is easy to see that (ρ′2)
−1(φ−1

2 (im f1)) is the pullback of the

composition maps f2|φ2 : φ−1
2 (im f1) → A3 and φ3ρ

′
3 : P3/M3 → A3 since

φ−1
2 (im f1) ≤ C2 by Lemma 1.2.8. So, we have the following commutative diagrams:

(ρ′2)
−1(φ−1

2 (im f1))
ρ2

ρ′2

A3

φ3ρ
′
3

φ−1
2 (im f1)

f2|φ2

P3/M3

and

(ρ′2)
−1(φ−1

2 (im f1))/M2

ρ2

ρ′2

A3

φ3ρ
′
3

φ−1
2 (im f1)/M2

f2|φ2

P3/M3

Similarly, we have

im ρ1/(ker(f2|φ2)/M2) = ((ρ′2)
−1(φ−1

2 (im f1))/M2)/(ker(f2|φ2)/M2)

∼= (ρ′2)
−1(φ−1

2 (im f1))/ ker(f2|φ2)

∼= ρ2(im ρ1)

= im(ρ2ρ1).

Now, assume for some j with 1 ≤ j < n − 2 that im(ρjρj−1 · · · ρ1) is the pullback in

the following commutative diagram:

im(ρj · · · ρ1) ρj+1

ρ′j+1

Aj+2

φj+2ρ
′
j+2

φ−1
j+1(im(fj · · · f1))/Mj+1

fj+1|φj+1

Pj+2/Mj+2
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It follows that

im(ρj · · · ρ1)/ ker(fj+1|φj+1) = ((ρ′j+1)
−1(φ−1

j+1(im(fj · · · f1)))/Mj+1)/(ker(fj+1|φj+1)/Mj+1)

∼= (ρ′j+1)
−1(φ−1

j+1(im(fj · · · f1)))/ ker(fj+1|φj+1)

∼= ρj+1(im(ρj · · · ρ1))

= im(ρj+1ρj · · · ρ1)

using the Lemma 1.2.8 and Theorem 2.3.1. We also know that

im(ρj+1ρj..ρ1) = (φj+2ρ
′
j+2)

−1(im(fj+1fj · · · f1)),

since we have im(fj+1|φj+1) = fj+1|(im(fjfj−1 · · · f1)) = im(fj+1fj · · · f1).

Since im(fj+1fj · · · f1) ≤ Aj+2, and so (φj+2)
−1(im fj+1fj · · · f1) ≤ Cj+2/Mj+2,

the complete inverse image (φj+2ρ
′
j+2)

−1(im(fj+1fj · · · f1)) = im(ρj+1ρj..ρ1) is the

pullback in the following commutative diagram:

im(ρj+1 · · · ρ1) ρj+2

ρ′j+2

Aj+3

φj+3ρ
′
j+3

φ−1
j+2(im(fj+1 · · · f1))/Mj+2

fj+2|φj+2

Pj+3/Mj+3

And so we get that:

im(ρj · · · ρ1)/ ker(fj+1|φj+1) = ((ρ′j+1)
−1(φ−1

j+1(im fj · · · f1))/Mj+1)/(ker(fj+1|φj+1/Mj+1))

∼= (ρ′j+1)
−1(φ−1

j+1(im(fjfj−1 · · · f1))/ ker(fj+1|φj+1)

∼= ρj+1(im(ρjρj−1 · · · ρ1))

= im(ρj+1 · · · ρ1)

by Lemma 1.2.8.

Under the hypothesis of the previous lemma, we have the following result.
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Proposition 3.1.11. ker(fi+1|φi+1) is pure in im(ρiρi−1 · · · ρ1).

Proof. We have im(ρi · · · ρ1)/ ker(fi+1|φi+1) ∼= im(ρi+1ρi · · · ρ1) by Lemma 3.1.10.

Moreover, we know that im(ρi · · · ρ1) and im(ρi+1ρi · · · ρ1) are torsion free since

im(ρi · · · ρ1) and im(ρi+1ρi · · · ρ1) are subgroups of the torsion free abelian groups

Pi+1/Mi+1 and Pi+2/Mi+2, respectively. Thus, it is easy to see that ker(fi+1|φi+1) is

pure in im(ρiρi−1..ρ1) by using Theorem 1.2.7.

3.2 Some Relations between coGalois Groups and p-divisibility

Before giving the classification of objects that have trivial coGalois group in qn,

we need some features about TFCs and coGalois groups in the category Ab of abelian

groups. The aim of this section is to prove that Hom(P1/M1, K1/M1) = 0 if and only

if P1/M1 is p-divisible for each r-prime p of ker f1.

A similar version of the following useful lemma were used in the proof of (Hill,

2008, Theorem 4.1) without proving. So, we will give its proof.

Lemma 3.2.1. Let φ : C → A be a TFC of an abelian group A with the kernel K. If

C is pure in a torsion free abelian group P , then any homomorphism δ : C → K can

be extended to a homomorphism δ̃ : P → K.

Proof. Consider the following commutative diagram with exact rows, which is

obtained by pushout of δ and the inclusion map i : C → P :

P/C

P/C

0

0

i

i1

PC

K

0

0 X

i2δ

ρ1

SinceC is pure inP , thenP/C is a torsion free abelian group. Therefore, the bottom

row splits by (Xu, 1996, Lemma 2.1.1) as K is the kernel of a TFC. This means that
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there exists a map ρ1 : X → K such that ρ1i1 = idK . Thus the composition map

δ̃ = ρ1i2 extends δ, as desired.

The following result were used in the proof of (Hill, 2008, Theorem 5.1) without

proving. We state it as a lemma here with a proof.

Lemma 3.2.2. Let φ : C → A be the TFC of an abelian group A with the kernel K.

Then, there is no nonzero p-divisible subgroup of C inK for every r-prime p of A.

Proof. If there is no r-prime of A, then A is torsion free, and so A is a TFC of itself

with zero kernel. In this case, there is nothing to prove.

Assume that A is not torsion free. Suppose, the contrary, that there is a nonzero p-

divisible subgroup H inK for every r-prime p of A. Then, H is p-pure in C for every

r-prime p. Observe thatK is q−pure for all non-r-prime q ofA, for if k = qc ∈ qC∩K,

then we have 0 = φ(k) = φ(qc) = qφ(c). This implies that φ(c) = 0 since A has no

nonzero element of order q, that is, c ∈ K.

Let H ′ be a subset of C defined as H ′ = {c ∈ C : qnc ∈ qC ∩ H} for all non-r-

primes q of A. Clearly, H ′ ⊆ K. We claim that H∗ =< H,H ′ > is a pure subgroup

of C that is contained in K, which will contradict the fact that K is the kernel of the

covering map. First, we will show that H∗ is p-divisible for every r-prime p, and it

suffices to show this forH ′ sinceH is already p-divisible. Taking an arbitrary element

c ∈ H ′, we have qnc ∈ qC∩H . Then qnc = ph′ for some h′ ∈ H sinceH is p-divisible,

and so qn | h′ as q ∤ p, or equivalently, h′ = qnh′′ for some h′′ ∈ C. It follows that

qnc = qn(ph′′), which implies that c = ph′′ since C is torsion free. Moreover, we

have qnh′′ = h′ ∈ qC ∩H , and so h′′ ∈ H ′. Thus, H ′ is p-divisible, and so is H∗ for

every r-prime p of A. Finally, it is clear by definition that H∗ is also r-pure for every

non-r-prime of A. Hence H∗ is p-pure in C for all primes p, and so it is pure in C by

Lemma 1.2.4, since C is torsion free.

43



The importance of the previous lemma is that if G is a p-divisible group for every

r-prime p of A, then Hom(G,K) = 0. Because a homomorphic image of a p-divisible

group is also p-divisible.

Remark 4. It is known that the TFC of a (p-) divisible group is (p-) divisible (see

(Enochs et al., 2000, Proposition 3.3)). But, the torsion free precover of a divisible

group need not be divisible. To give an example, letφ : C → A be the TFC of a divisible

groupA. LetC ′ be any torsion free group and consider the zero map 0 : C ′ → A. Then

C ⊕ C ′ is a torsion free precover of A with the torsion free precovering map φ ⊕ 0.

Moreover, the precover C ⊕ C ′ quitely depends on our choice for C ′, and we are free

to choose any torsion free group that is not divisible.

Let’s give some notations which we will use in the following two lemmas. Let

φ : C → A be a TFC of A with the kernel K, and let A′ ≤ A. Then the complete

inverse image φ−1(A′) of A′ is a torsion free precover of A′. Now, we will give some

facts about divisibility of the torsion free precover φ−1(A′). Moreover, the ideas in the

proof of (Hill (2008), Theorem 5.1) will be used.

Lemma 3.2.3. Suppose that the following conditions are satisfied, where p is a prime.

1. A has a trivial coGalois group.

2. A′ is p-divisible.

3. A′(p) = A(p).

Then φ−1(A′) is p-divisible.

Proof. SinceG(A) = 1 by (1), we also know that A is p-divisible for each its r-primes

p. This means that the torsion subgroup t(A) ofA is divisible, and so a direct summand

of A. Then, A = t(A) ⊕ F , where F is a torsion free subgroup of A. Moreover, F

is also p-divisible for each r-prime of A. By the uniqueness of the TFCs, we can get

C ∼= φ−1(t(A))⊕ F withK ≤ φ−1(t(A)).

As the first case, let A′ = 0. Since A(p) = 0 by (3), we get p is not r-prime of

A. Then, we will show that φ−1(0) = kerφ = K is p-divisible for all non-r-primes
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p of A. By the Fundamental Homomorphism Theorem, we have C/K ∼= A, and so

(C/K)(p) = A(p) = 0. So, K is p-pure in C, for if 0 = φ(k) = φ(pc) = pφ(c)

for some k ∈ K ∩ pC, then φ(c) = 0 as A(p) = 0 by (3). That is, c ∈ K and so

k = pc ∈ pK. Therefore, K is p-pure in φ−1(t(A)), and so it is p-divisible since

φ−1(t(A)) is divisible, which proves the first case.

Now, assume that A′ 6= 0. Then, using the arguments above, we write again A =

t(A) ⊕ F where t(A) is divisible and F is p-divisible for each r-prime of A or t(A).

Therefore, as a p-group, A′(p) is divisible by the condition (2), and so we have by (3)

that

A = A′(p)⊕ t(A)∗ ⊕ F,

where t(A)∗ has no nonzero element of order p. So, by the uniqueness of TFCs, we

have

C = C(A′(p))⊕ C(t(A)∗)⊕ F,

where C(A′(p)) and C(t(A)∗) are the TFCs of A′(p) and t(A)∗, respectively. Since

A′(p) and t(A)∗ are divisible, we know that C(A′(p)) and C(t(A)∗) are also divisible.

Now, if we intersect the first equality above by A′, we get A′ = A′(p) ⊕ t(A′)∗ ⊕ F ′,

where t(A′)∗ has no nonzero element of order p and F ′ is the torsion free part of A′,

and so we have C ′ = C(A′(p)) ⊕ C(t(A′)∗) ⊕ F ′, where C ′ and C(t(A′)∗) are TFCs

of A′ and t(A′)∗, respectively. Besides, if we intersect the second equality above by

φ−1(A′), we get φ−1(A′) = C ′ ⊕ L, with L ≤ K∗, where K∗ is the kernel of φ∗ :

C(t(A)∗) → t(A)∗. As a consequence, to complete the proof it is enough to show that

both C ′ and L are p-divisible. Clearly, we already know that C ′ is p-divisible since it

is a TFC of a p-divisible group A′ by (2).

Since (A/A′)(p) = 0 by the conditions (2) and (3), it follows by the following

isomorphisms that (C/φ−1(A′))(p) = 0.

A/A′ ∼= (C/K)/(φ−1(A′)/K) ∼= C/φ−1(A′).

Thus, φ−1(A′) is p-pure in C, and so C ′ and L are p-pure in C as direct summands.
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Then C(t(A′)∗) and L are p-pure in C(t(A)∗). Hence C ′ and L are p-divisible since

C(t(A)∗) is.

Lemma 3.2.4. If A is an abelian group with a trivial coGalois group, and A′ ≤ A,

then A′ is p-divisible and A′(p) = A(p) if and only if φ−1(A′) is p-divisible.

Proof. (⇒) It follows by the Lemma 3.2.3.

(⇐) As the first case, let A′ = 0. It is enough to show that A(p) = 0 when K =

kerφ is p-divisible. Suppose, the contrary, that A(p) 6= 0. Since G(A) = 1, we know

that A is p-divisible for every its r-prime. So A(p) is divisible as a p-group, and then

it contains the Prüfer group Zp∞ as a direct summand. So, by the uniqueness of TFCs,

C contains the TFC C(Zp∞) of Zp∞ as a direct summand. Then the kernel K∗ of

φ∗ : C(Zp∞) → Zp∞ is contained inK as a direct summand. Since it is known thatK∗

is not p-divisible by Lemma 3.2.2, we conclude thatK is not p-divisible, contradicting

the assumption.

Next, assume that A′ 6= 0. Since A′ is an epimorphic image of the p-divisible

group φ−1(A′), it is also p-divisible. Now, assume that A′(p) 6= A(p). Then, both of

them cannot be 0, and so A(p) 6= 0. Moreover, we already know that A is p-divisible

for every its r-prime since G(A) = 1. Then we can write A = Zp∞ ⊕ A′′, where

A′ ≤ A′′ since A(p) and A′(p) are both divisible. So, by the uniqueness of TFCs,

we get C = C(Zp∞) ⊕ C ′′ where C ′′ is the TFC of A′′. Intersecting this equation by

φ−1(A′), yields that φ−1(A′) = K∗ ⊕ (φ−1(A′)∩C ′′). SinceK∗ is not p-divisible, we

get that φ−1(A′) cannot be p-divisible, a contradiction.

Theorem 3.2.5. Let φi : Ci → Ai be the TFC of an abelian group Ai with the kernel

Ki for i = 1, 2. Assume that the coGalois group of A1 is trivial. For a subgroup A′ of

A1, if A′ is p-divisible and A′(p) = A1(p) for every r-prime p of A2, then

Hom(φ−1
1 (A′), K2) = 0.

Proof. We know that φ−1
1 (A′) is p-divisible for every r-prime of A2 by the Lemma

3.2.4. We also know that there is no nonzero p-divisible subgroup in K2 for every r-
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prime of A2 by the Lemma 3.2.2. So it is easy to see that there is no nonzero map from

φ−1
1 (A′) into K2 by the well-known fact that the homomorphic image of a p-divisible

group is also p-divisible.

Theorem 3.2.6. Let A be an abelian group that has a trivial coGalois group, and p, a

r-prime of A. Then there is a nonzero map from a torsion free abelian group G that is

not p-divisible into the kernel of the TFC of A.

Proof. Let φ : C → A be the TFC of A with the kernel K. We know that A is

p-divisible for every its r-primes since its coGalois group is trivial. So we have that A

has a direct summand that is isomorphic to Zp∞ . Since the TFC is unique upto

isomorphism, we can assume that C contains the TFC C(Zp∞) of Zp∞ as a direct

summand. So the kernel Tp of the covering mapping of Zp∞ is contained in K as a

direct summand. Let G be a torsion free abelian group that is not p-divisible. We will

show that there is nonzero map from G into Tp.

Since G is not p-divisible, the quotient group G/pG is a nonzero vector space over

Z/pZ. Similarly, Tp/pTp is a nonzero vector space over Z/pZ. Because, we know

that Tp cannot be p-divisible by Lemma 3.2.2. Now, we have a nonzero

homomorphism σ : G/pG → Tp/pTp since both of them are nonzero vector spaces

over Z/pZ. We have the facts that Tp is a direct summand of a product of copies of a

completion of localization of the ring Z at the prime p, and Tp is the TFC of Tp/pTp

with the canonical map φp, by (Xu, 1996, Proposition 4.1.6) and (Enochs et al., 2000,

Section 3). Since φp : Tp → Tp/pTp is also a torsion free precover of Tp/pTp, G is

torsion free, and there is a nonzero composition map σπ : G → Tp/pTp where

π : G → G/pG is the projection map, we know that there is a nonzero map

σ′ : G→ Tp makes the following diagram commutes:
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π

Tp/pTp

G

σ′
G/pG

σ

Tp
φp

This completes the proof.

The previous theorem have a significant importance for our main theorem, and

although it seems different from (Enochs & Rada (2005), Lemma 2.7), but the proof

of this lemma motivated the proof of the previous theorem.

Theorem 3.2.7. LetA be a torsion abelian group that has trivial coGalois group. Then

there is no nonzero homomorphism from a torsion free abelian group G into the kernel

of the TFC of A if and only if G is p-divisible for every r-prime p of A.

Proof. Let φ : C → A be the TFC with the kernel K. Since G(A) = 1 and A is

torsion, we know that A is divisible.

Since G is torsion free, we know that the identity map idG : G → G is the TFC of

G. So we have that φ⊕ idG : C⊕G→ A⊕G is the TFC of A⊕G with the kernelK.

Clearly (A⊕G)/t(A⊕G) ∼= (A⊕G)/A ∼= G. Hence, we have that Hom(G,K) = 0

if and only ifG is p-divisible for every r-prime p ofA by using (Enochs & Rada (2005),

Lemma 2.7).

Proposition 3.2.8. Let A be an abelian group that has trivial coGalois group. Then

there is no nonzero homomorphism from a torsion free abelian group G into the kernel

of the TFC of A if and only if G is p-divisible for every r-prime p of A.

Proof. Let φ : C → A be the TFC with the kernel K. We know that the torsion

subgroup t(A) of A is divisible, the homomorphism φ : φ−1(t(A)) → t(A) is the TFC
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of t(A)with the kernelK, and moreover t(A) also has a trivial coGalois group. Hence,

the proof is completed by using Theorem 3.2.7.

Theorem 3.2.9. Let φi : Ci → Ai be the TFC of an abelian group Ai with the kernel

Ki for i = 1, 2. Assume that G(A1) = 1. For a subgroup A′ of A1, A′ is p-divisible

and A′(p) = A1(p) for every r-prime of A2 if and only if Hom(φ−1
1 (A′), K2) = 0.

Proof. (⇒) By Theorem 3.2.5.

(⇐) By using Lemma 3.2.4, it is enough to show that there is a nonzero

homomorphism from φ−1
1 (A′) into K2 with assuming φ−1

1 (A′) is not p-divisible for

any r-prime p of A2. This fact comes with using Theorem 3.2.6.

The previous theorem can also be proven easily with using Theorem 3.2.5 and

Proposition 3.2.8.

3.3 The Classification of Objects in qn Having a Trivial coGalois Group

Now, we return to give necessary conditions for the coGalois group of an object A

in qn is trivial.

Theorem 3.3.1. If the coGalois group of an objectA is trivial, then the coGalois group

of an abelian group ker fi is trivial for all i’s.

Proof. Assume G(ker fi) 6= 1 for any i. We know that ker(fiφi)/Mi is the TFC of

ker fi with the covering map φi and the kernel Ki/Mi by Lemma 3.1.6. By

assumption, we have a nonzero map δi ∈ Hom(ker(fiφi)/Mi, Ki/Mi). By using

Lemma 3.2.1, δi can be extended a map from Pi/Mi to Ki/Mi. Then

(δiρi−1 · · · ρ1, · · · , δiρi−1, δi, 0, · · · , 0) is a nonzero morphism from the cover of A

into the kernel of the covering morphism. Hence G(A) 6= 1.

Proposition 3.3.2. If the coGalois group of an objectA in qn is trivial, and fi−1 · · · f1 =

0, then Hom(
n−1⊕
j=i

Kj/Mj, K1/M1) = 0.
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Proof. We must recognise that fi| : im(fi−1 · · · f1) → Ai+1 is the zero map since

im(fi−1 · · · f1) = 0. So ker(fi|φi) = Ki/Mi. Since im(ρi−1 · · · ρ1) is an epimorphic

image of P1/M1 and ker(fi|φi) is pure in im(ρi−1 · · · ρ1) by Lemma 3.1.10, we can

get Hom(Ki/Mi, K1/M1) = 0 by using Lemma 3.2.1. And fj · · · fi−1 · · · f1 = 0

since fi−1 · · · f1 = 0 where j ≥ i − 1. Because of the same reason, we have

Hom(Kj/Mj, K1/M1) = 0 for all j ≥ i− 1. Hence, Hom(
n−1⊕
j=i

Kj/Mj, K1/M1) = 0,

as desired.

Lemma 3.3.3. If the coGalois group of an object A is trivial in qn, then the following

conditions are satisfied for every r-prime p of ker f1 where i = 2, . . . , n− 1 :

1. The coGalois group of the object A2
f2−→ A3

f3−→ · · · fn−1−−→ An is trivial in qn−1.

2. The coGalois group of the abelian group ker f1 is trivial.

3. ker fi ∩ im(fi−1 · · · f1) is p-divisible.

4. (ker fi ∩ im(fi−1 · · · f1))(p) = ker fi(p).

5. im(fn−1 · · · f1) is p-divisible.

6. An(p) = im(fn−1 · · · f1)(p).

Proof. The conditions (1) and (2) are satisfied by Lemma 3.1.3 and Theorem 3.3.1,

respectively.

For the conditions (3) and (4), first remember that φi : (ker fiφi)/Mi → ker fi

is the TFC of ker fi with the kernel Ki/Mi of the covering mapping. Moreover, the

coGalois group of ker fi is trivial by Theorem 3.3.1. In particular, ker f1φ1/M1 is

the TFC of ker f1 with the kernel K1/M1, and that G(ker f1) = 1. Recognise that

fi| : im(fi−1 · · · f1) → Ai+1 is defined in Lemma 3.1.10, and we know that ker(fi|) =

ker fi ∩ im(fi−1 · · · f1) ≤ ker fi. We also have that φ−1
i (ker fi ∩ im(fi−1 · · · f1)) =

ker(fi|φi : φ−1
i (im(fi−1 · · · f1)) → Ai+1) is the complete inverse image of ker fi ∩

im(fi−1 · · · f1). Therefore, using Lemma 3.2.4, we can say that the conditions (3) and

(4) are equivalent to the fact that ker(fi|φi) is p-divisible for every r-prime p of ker f1.

Now, by Lemma 3.2.1 and Proposition 3.1.11, we can see that any nonzero map in

Hom(ker(fi|φi), K1/M1) can be extended to a nonzero map in
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Hom(im(ρi−1 · · · ρ1), K1/M1). Since im(ρi−1 · · · ρ1) is an epimorphic image of

P1/M1, we get a nonzero map from P1/M1 to K1/M1. To see it clearly, take a

nonzero homomorphism δ ∈ Hom(im(ρi−1 · · · ρ1), K1/M1), then

(δρi−1 · · · ρ1, 0, 0, . . . , 0) is a nonzero morphism from the cover of A into the kernel of

the covering map of A, which means that G(A) 6= 1, conradicting the assumption.

Thus, Hom(ker(fi|φi), K1/M1) = 0, and so ker(fi|φi) is p-divisible for every r-prime

of ker f1, using Theorem 3.2.9, as desired.

For the conditions (5) and (6), we will use similar ideas. Firstly, we must recognise

that im(ρn−1 · · · ρ1) = φ−1
n (im(fn−1 · · · f1)) is the complete inverse image of

im(fn−1 · · · f1) under the TFC φn : Cn → An. We know that G(An) = 1 by (1) and

Lemma 3.1.3. Note that ker f1φ1/M1 is the TFC of ker f1 with the kernel K1/M1,

and that G(ker f1) = 1 under the hypothesis by using Theorem 3.3.1. Therefore,

using Lemma 3.2.4, we can get that the conditions (5) and (6) are equivalent to the

fact that φ−1
n (im(fn−1 · · · f1)) is p-divisible for each r-prime p of ker f1.

Moreover, im(ρn−1 · · · ρ1) is an epimorphic image of P1/M1. This means that for

any nonzero homomorphism δ ∈ Hom(im(ρn−1 · · · ρ1), K1/M1), we have a nonzero

morphism (δρn−1 · · · ρ1, 0, 0, . . . , 0) from the cover of A into the kernel of the

covering map of A, which means that G(A) 6= 1, conradicting the assumption. Thus,

Hom(φ−1
n (im(fn−1 · · · f1)), K1/M1) = 0, and so φ−1

n (im(fn−1 · · · f1)) is p-divisible

for every r-prime of ker f1, using Theorem 3.2.9, as desired.

Proposition 3.3.4. If the coGalois group of an object A is trivial, and fn−1 · · · f1 = 0,

then Hom(Kn/Mn, K1/M1) = 0.

Proof. Since fn−1 · · · f1 = 0, we have that im(ρ1ρ2 · · · ρn−1) = Kn/Mn. This means

that Kn/Mn is an epimorphic image of P1/M1. If there is a nontrivial hoomorphism

from Hom(Kn/Mn, K1/M1), then we can get a nonzero homomorphism from

Hom(P1/M1, K1/M1).

Now we can see the following fact with using both of Proposition 3.3.2 and
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Proposition 3.3.4:

Proposition 3.3.5. If the coGalois group of an object A is trivial, and fi−1 · · · f1 = 0,

then Hom(
n⊕

j=i

Kj/Mj, K1/M1) = 0.

Now, we will give the main theorem that is the classification for line quivers that

have the trivial coGalois group.

Theorem 3.3.6. The coGalois group of an object A1
f1−→ A2

f2−→ · · · fn−1−−→ An in qn is

trivial if and only if the following conditions are satisfied for each r-prime p of ker f1,

where i = 2, . . . , n− 1 :

1. The coGalois group of the object A2
f2−→ A3

f3−→ · · · fn−1−−→ An is trivial in qn−1.

2. The coGalois group of the abelian group ker f1 is trivial.

3. ker fi ∩ im(fi−1 · · · f1) is p-divisible.

4. (ker fi ∩ im(fi−1 · · · f1))(p) = ker fi(p).

5. im(fn−1 · · · f1) is p-divisible.

6. An(p) = im(fn−1 · · · f1)(p).

Proof. (⇒) It follows by Lemma 3.1.3, Theorem 3.3.1, and Lemma 3.3.3.

(⇐) We can use Theorem 3.1.5 to say that the proof will be all about showing

Hom(P1/M1, K1/M1) = 0, but we will not use it for completeness.

It suffices to show that Mor(P1/M1
ρ1−→ P2/M2

ρ2−→ · · · ρn−2−−−→ Pn−1/Mn−1
ρn−1−−−→

Cn,
n⊕

j=1

Kj/Mj
ρ1−→

n⊕
j=2

Kj/Mj
ρ2−→ · · · ρn−2−−−→ Kn−1/Mn−1 ⊕ Kn

ρn−1−−−→ Kn) = 0, by

Lemma 3.1.1. Take a morphism (δ1, δ2, · · · , δn) from the cover of A into the kernel

K. So, the following diagram commutes:

ρ1

ρ1

ρ2

ρ2

δ2δ1

ρn−2· · ·

· · · ρn−2

Cn

Kn−1/Mn−1 ⊕Kn Kn

δn

ρn−1

Pn−1/Mn−1
ρn−1

δn−1

P2/M2

n⊕
i=2

Ki/Mi

P1/M1

n⊕
i=1

Ki/Mi

We know that (δ2, . . . , δn) ∈ Mor(P2/M2
ρ2−→ · · · ρn−2−−−→ Pn−1/Mn−1

ρn−1−−−→
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Cn,
n⊕

i=2

Ki/Mi
ρ2−→ · · · ρn−2−−−→ Kn−1/Mn−1 ⊕ Kn

ρn−1−−−→ Kn), and so it is the zero

morphism by Condition (1). So, δ1 must be a homomorphism from P1/M1 into

K1/M1 since 0 = δ2ρ1 = ρ1δ1, and so im δ1 ≤ ker ρ1 = K1/M1. We claim that

δ1 : P1/M1 → K1/M1 is the zero homomorphism. This is equivalent to show that

P1/M1 is p-divisible for every r-prime p of ker f1 by Proposition 3.2.8. Note that

ker(f1φ1)/M1 is the TFC of ker f1 with the kernel K1/M1, and that ker f1 is

p-divisible by Condition (2) for every its r-prime, and so ker(f1φ1)/M1 is p-divisible.

Thus, we have Hom(ker(f1φ1)/M1, K1/M1) = 0 by (2). Therefore,

(P1/M1)/(ker(f1φ1)/M1) ∼= P1/ ker(f1φ1) ∼= im ρ1.

So, it is enough to show that im ρ1 is p-divisible for every r-prime of ker f1.

As trivial cases, we know if im f1 = 0, then im ρ1 ∼=
n⊕

i=2

Ki/Mi. If im(fi−1 · · · f1) 6=

0 and im(fifi−1 · · · f1) = 0, then im(ρiρi−1 · · · ρ1) ∼=
⊕

Ki/Mi.

By Lemma 3.1.10, we also have

im ρ1/ ker(f2|φ2) ∼= im(ρ2ρ1)

im(ρ2ρ1)/ ker(f3|φ3) ∼= im(ρ3ρ2ρ1)

· · ·

im(ρi−1 · · · ρ1)/ ker(fi|φi) ∼= im(ρiρi−1 · · · ρ1).

· · ·

im(ρn−2 · · · ρ1)/ ker(fn−1|φn−1) ∼= im(ρn−1ρn−2 · · · ρ1).

where fi| : im(fi−1 · · · f1) → Ai+1 is a restriction map of fi : Ai → Ai+1 for all

i = 2, . . . , n − 1. So, it is enough to show that ker(fj|φj)’s and im(ρn−1ρn−2 · · · ρ1)

are all p-divisible for every r-prime p of ker f1. Moreover, we have

ker(fj| : im(fj−1 · · · f1) → Aj+1) = ker fj ∩ im(fj−1 · · · f1).

First, we know that G(ker fj) = 1 for all j = 2, . . . , n − 1 by Condition (1) and
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Lemma 3.3.1. So, by the conditions (3), (4) and Lemma 3.2.3, we have the complete

inverse image φ−1
j (ker fj|) = ker fj|φj of the subgroup ker fj| of ker fj is p-divisible

for every r-prime p of ker f1.

To be more clear, from Lemma 3.1.10, we can remember that im(ρj−1 · · · ρ1) is the

pullback in the following commutative diagram:

im(ρj−1 · · · ρ1) ρj

ρ′j

Aj+1

φj+1ρ
′
j+1

φ−1
j (im(fj · · · f1))

fj|φj

Pj+1/Mj+1

We assumed that (ker fj ∩ im(fj−1 · · · f1))(p) = ker fj(p) and

ker fj ∩ im(fj−1 · · · f1) is p-divisible for every r-prime p of ker f1 by conditions (3)

and (4). Then the complete inverse image φ−1
j (ker fj ∩ im(fi−1 · · · f1)) under the

covering mapping of ker fi is p-divisible for every r-prime p of ker f1 by Lemma

3.2.3. It also means Hom(φ−1
j (im(fj · · · f1)), K1/M1) = 0. Moreover, we also have:

im(ρj−1 · · · ρ1)/ ker(fj|φj) ∼= ρj(im(ρj−1 · · · ρ1)) = im(ρjρj−1 · · · ρ1)

by Lemma 3.1.10. So it is enough to show that

Hom(im(ρjρj−1 · · · ρ1), K1/M1) = 0. Similarly, we know that im(ρjρj−1 · · · ρ1) is

the pullback in the following commutative diagram:

im(ρjρj−1 · · · ρ1) ρj+1

ρ′j+1

Aj+2

φj+2ρ
′
j+2

φ−1
j+1(im(fj+1fj · · · f1))

fj+1|φj+1

Pj+2/Mj+2

Similarly, we get that ker(fj+1|φj+1) is p-divisible for every r-prime p of ker f1.

Next, it remains to prove that im(ρn−1 · · · ρ1) is p-divisible for every r-prime p of

ker f1. Now, we have the following commutative diagram:
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im(ρn−2 · · · ρ1) ρn−1

ρ′n−1

An

φn

φ−1
n−1(im(fn−2 · · · f1))

fn−1|φn−1

Cn

And so, ρn−1(im(ρn−2 · · · ρ1)) = im(ρn−1 · · · ρ1) = φ−1
n (im(fn−1 · · · f1))

since im(fn−1|φn−1) = im(fn−1| : im(fn−2 · · · f1) → An) = im(fn−1 · · · f1). We

assume im(fn−1 · · · f1) is p-divisible and im(fn−1 · · · f1)(p) = An(p) for every r-prime

of ker f1 by conditions (5) and (6). Clearly, we have G(An) = 1 by the condition (1)

and Lemma 3.1.2.

Hence, it follows that im(ρn−1 · · · ρ1) = φ−1
n (im(fn−1 · · · f1) is p-divisible for every

r-prime of ker f1 by Lemma 3.2.3.
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CHAPTER FOUR

CONCLUSION

A complete characterization of abelian groups having a trivial coGalois group was

given in Enochs & Rada (2005). After, coGalois groups have been studied for a pair

of abelian groups and characterized when they are trivial in Hill (2008). Actually,

coGalois groups have been studied in the category of representations of the quiver

(i.e., a directed graph) q2 : • → • there. Because, the coGalois group is definable for

any category with a covering class, and the torsion free covers exist for the category

(qn,Z-Mod) of representations of the line quiver qn : • → • → ... → • with n − 1

arrows and n vertices (see Wesley (2005)), we define and study coGalois groups in that

category. We give some properties of torsion free covers and coGalois groups of objects

similar to those given for abelian groups, and characterize the objects in (qn,Z-Mod)

having a trivial coGalois group, in terms of trivial coGalois groups of abelian groups.
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