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COGALOIS GROUPS OF COVERS FOR SOME QUIVERS

ABSTRACT

Torsion free covers exist for abelian groups (in fact, for modules over an integral
domain) (see Enochs (1963)). Let ¢ : C' — A be a torsion free cover of an abelian
group A. As a dual notion of (absolute) Galois groups, the coGalois group of A was
introduced in Enochs et al. (2000) as the group of automorphisms ¢ : C' — C' such
that oo = ¢, denoted by G(¢) or G(A) (since a torsion free cover is unique up to
isomorphism). A complete characterization of abelian groups having a trivial coGalois
group was given in Enochs & Rada (2005). After, coGalois groups have been studied
for a pair of abelian groups and characterized when they are trivial in Hill (2008).
Actually, coGalois groups have been studied in the category of representations of the
quiver (i.e., adirected graph) ¢» : ® — e there. Because, the coGalois group is definable
for any category with a covering class, and the torsion free covers exist for the category
(Gn, Z-Mod) of representations of the line quiver ¢, : « — & — ... — e withn — 1
arrows and n vertices (see Wesley (2005)), we define and study coGalois groups in that
category. We give some properties of torsion free covers and coGalois groups of objects
similar to those given for abelian groups, and characterize the objects in (g, Z-Mod)

having a trivial coGalois group, in terms of trivial coGalois groups of abelian groups.

Keywords: coGalois group, torsion free cover, line quiver
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BAZI KUIVERLER ICiN ORTULERIN COGALOIS GRUPLARI

0z

Abel gruplar i¢in (ayrica bir bolge {lizerine modiiller i¢in) burulmasiz ortiilerin
varlig1 kanitlandi (bkz. Enochs (1963)). Bir A abel grubunun burulmasiz ortiisii,
¢ : C — A olsun. Enochs et al. (2000)’de, (tam) Galois grubun bir dual kavrami
olarak, A’nin coGalois grubu, po = o sartimt saglayan ¢ : C — C
otomorfizmalarinin grubu olarak tanimland: ve G(p) ya da G(A) olarak gosterildi
(burulmasiz ortiiler isomorfizmaya gore tek oldugundan). coGalois grubu sadece
birim elemandan olugan abel gruplarinin tam bir siniflandirmasi Enochs & Rada
(2005)’de verildi. Sonra, Hill (2008)’de, bir abel gruplar ¢ifti icin coGalois group
calisildi ve ne zaman sadece birim elemandan olustugu smiflandirildi.  Aslinda,
g2 : ® — e kuiverinin (yani, bir yonlii graf) temsil kategorisinde coGalois group
calisilmis oldu. Ortii sinifina sahip oldugumuz herhangi bir kategoride coGalois grup
tanimlanabilir ve n — 1 oklu ve n noktali ¢, : ¢ — e — ... — e dogru kuiverinin
temsil kategorisi olan (g, Z-Mod)’da burulmasiz ortiiler her zaman var oldugundan
(bkz. Wesley (2005)), bu kategoride coGalois grubu tanimladik ve ¢alistik. Abel
gruplar i¢in verilenlere benzer sekilde, (g¢,,Z-Mod) kategorisndeki objeler igin de
burulmasiz ortiilerin ve coGalois grubun bazi 6zelliklerini verdik ve bu kategoride
coGalois grubu sadece birim elemandan olusan objeleri, coGalois gruplar1 sadece

birim elemandan olusan abel gruplarinin yardimiyla siniflandirdik.

Anahtar kelimeler: coGalois grup, burulmasiz ortii, dogru kuiver
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LIST OF SYMBOLS

R an integral domain (or a commutative domain) unless

otherwise stated

a module M a left R-module M

N<M N is a submodule of M

7 the ring of integers

Lo the Priifer group for the prime p

Q the field of rational numbers

R-Mod the category of modules

t(A) the torsion subgroup of an abelian group A

A(p) p-primary subgroup of an abelian group A for the
prime p

r-prime p relevant prime p of an abelian group

TFC a torsion free cover

G(A) the coGalois group of an abelian group A

C(M) the torsion free cover of a module M

ker f the kernel of the map f

im f the image of the map f

Hom(M, N) all module homomorphisms from M to N

Ab the category of abelian groups

Gn the line quiver ¢ — o — ... — e with n — 1 arrows

and n vertices
(¢n, R-Mod) the category of representations by modules of the line

quiver ¢,

viii



CHAPTER ONE
INTRODUCTION

Throughout this thesis, R will be an integral domain (or a commutative domain),
and by a module we mean a left R-module, unless otherwise stated. In fact, R will
mostly be the ring of integers Z, and so the modules will be abelian groups. We will

write *TFC’ for short instead of a ’torsion free cover’ of a module.

We refer the reader to Enochs & Jenda (2011), Fuchs (1970), Kasch (1982) and
Kaplansky (1969) for any undefined notion and for further information about the

concepts studied in this thesis.

In this chapter, we will give some ideas to motivate the problem of our thesis in
Section 1.1. There are some known facts about triviality of the coGalois groups in the
category .Ab of abelian groups and in the category of representations of the quiver (i.e.,
adirected graph) ¢» : @ — e. The main research topic of this thesis is to generalise them
to the category (g,, Z-Mod) of representations of the line quiver g, : @ — o — ... — @
with n — 1 arrows and n vertices. To explain our problems, we will give some needed

basic definitions and fundamental tools in Section 1.2.

1.1 Motivation

In this section, we will give the motivating ideas for our main results of this thesis.
We will see some universal concepts and related groups. See Enochs & Jenda (2011)

for the definitions and more information about ’covers and envelopes’.

1.1.1 Envelopes and Galois Groups

Let M be a module. Then M is called torsion free it rm =forr € R, m € M
implies that » = 0 or m = 0, while it is forsion if, for every m € M, there exists a

nonzero r € R such that rm = 0, that is, every element of M is trosion. The set of



all torsion elements of M is a submodule of M, called a torsion submodule of M, and

denoted by t(M).

Note that the canonical map p : M — M /t(M) is universal in the sense that for
any linear map ¢ : M — F' where F' is a torsion free module, there is a unique linear
map f : M/t(M) — F such that fp = ¢, that is, the following diagram

commutatives:

M—Ls ()

ol 4
P

We state and prove this universal property in the following lemma, which was stated
as a well-known fact without a proof in Enochs (1963). This motivated the definition

of a torsion free cover (TFC for short) as a kind of its a dual version.

Lemma 1.1.1. Let M be a module. Then there is always a torsion free module M,
with an epimorphism p : M — M such that for any linear map ¢ : M — F where F’
is torsion free, there is a unique linear map f : My — F such that fp = ¢. This

means the following diagram commutes:

M—L"s

Proof. Observe that it suffices to prove the statement for M; = M /t(M ), where t(M)

is the torsion part of M.

(Existence) Firstly, we will show that M /t(M) is torsion free. Say r(m +t(M)) =
t(M) where r € Rand m + t(M) € M/t(M). Then rm € t(M). Since t(M) is
torsion, there is a nonzero s € R such that s(rm) = 0. Since M is an R-module, we
have that 0 = s(rm) = (sr)m. It means that m is an torsion element. Hence m €
t(M), and so m + t(M) = t(M). Secondly, we show that the canonical mapping p :

M — M /t(M) satisfies the preenvelope’ condition on the statement of this lemma.



Define a linear map f : M /t(M) — F with m + t(M) — ¢(m). We know that f
is well-defined because ¢(M) < ker ¢ since F is torsion free, or say m + t(M) =
m' + t(M), and so m — m’ € t(M). Then, there is an element m” € ¢(M) such
that m — m’ = m”. Then, ¢(m — m') = ¢(m”) since ¢ is well-defined. Since ¢
is a linear mapping, we have that ¢(m”) = ¢(m —m’) = ¢(m) — ¢(m’). Then
d(m) = ¢p(m") + ¢p(m') = ¢(m” + m'). Clearly, m + t(M) = m’ + t(M) =
m' +m" +t(M) =m"+m'+t(M) sincem” € t(M). Then f(m+t(M)) = ¢p(m) =
o(m” +m') = f(m" +m/ +t(M)) = f(m' + t(M)). To check that the diagram is
commutative, i.e., fp = ¢. Taking m € M, we get fp(m) = f(m + t(M)) = ¢p(m).

To say that f is an linear mapping, we have that:

fr(m+t(M))+ s(m'+t(M)) = f(rm + sm' +t(M))
= ¢(rm + sm’)
= réo(m) + so(m’)
=rf(m+t(M)) + sf(m’ +t(M)).

(Uniqueness of f) Next, we prove the uniqueness of the linear map f. Say there is

another linear mapping g : M /t(M) — F such that the following diagram commutes:

ML npjt(M)

Take m € M. Thenwe have ¢p(m) = fp(m) = f(m+t(M))and ¢(m) = gp(m) =
g(m + t(M)). It means that for all m + t(M) € M /t(M), we have f(m +t(M)) =
g(m+t(M)),and so f = g.

(Uniqueness up to isomorphism) Let p” : M — M" be another mapping that

satisfies the condition on the statement of this lemma. So we have
M L M / M’
p/l gy
N



So fp = p’ and f'p” = p. Easily, we can see that p = f'p"" = f'fpand p’ =
fp = ffp" Itmeansthat f'f = idyjar) and ff' = idy are identity maps by the
uniqueness of f and f’. Hence M /t(M) = M". O

We recall below the definition of a famous group, the Galois group.

Definition 1.1.1. The Galois group Gal(K /F') of a field extension K | F is the group
of all F-automorphisms of K (i.e. the automorphisms of K which fix F') under the
operation of the composition. In other words, the Galois group contains the

automorphisms of K such that the following diagram commutes:
F—ts

Example 1. Gal(Q(+/2)/Q) = {1,0} where o : Q(\/2) — Q(\/2) with o(/2) =
—V2.
So, we have the following commutative diagram.:

Q——Q(v2)

’
7 ‘o
’

ys
Q(v2)

Example 2. Gal(C/R) = {1,p} where p : C — C is the conjugation map with

pla+ bi) = a — bi. And we have '
R—t>C

zl y
ya

C

Definition 1.1.2. Let s« be a class of modules closed under isomorphisms. Let M be a
module, and X € . A linear map ¢ : M — X is an »x-envelope of M if the following

two conditions hold:

1. forany linearmap ' : M — X' with X' € s, thereis a linearmap f : X — X'

with ¢’ = fo. This means the following diagram commutes.



ML>X

@ll /él
e
X/
2. If an endomorphism f : X — X is such that ¢ = fo, then f must be an
automorphism.  So, we have that f is an automorphism in the following

commutative diagram.

ML>X

ol o
l/ /
X

If a module satisfies the condition (1) and may not satisfy the condition (2), then
it is called an s»—preenvelope. And, s¢ is called an enveloping class if every module

admits an sz-envelope.

To give an example, we need the following theorem. Actually, it is entirely same to

(17.31) Corollary in Isaacs (1994).

Theorem 1.1.2. Let I be any field and let E'; and Es be algebraic closures for F'. Then

E, and Es are F-isomorphic, i.e., isomorphic and the isomorphism fixes F'.

The following example exhibits a relationship between Galois groups and envelopes.

Example 3. The class s of algebraic closed fields is an enveloping class, that is, any

field has an sc-envelope. In fact, the algebraic closure F of a field I is its s-envelope.
Therefore, the (absolute) Galois group Gal(F/F) is actually the group of all

automorphisms from s-envelopes. So, the notion of an (absolute) Galois group can

be defined in any category where we have an enveloping class.

1.1.2 Covers and coGalois Groups

In this section, we will define a dual version of the envelope.



Definition 1.1.3. Let sc be a class of modules closed under isomorphisms. Let M be a
module and X € . A linear map ¢ : X — M is an »-cover of M, if the following

two conditions hold:

1. For every module X' € 3 and a homomorphism ¢’ : X' — M, there is a
homomorphism f : X' — X such that ©' [ = o, that is, the following diagram

commutes:
Xl

X——M
2. If an endomorphism f : X — X is such that of = ¢, then f must be an
automorphism. That is, any homomorphism f in the following commutative

diagram must be an automorphis:

If a module satisfies the condition (1) and may not satisfy the condition (2), then it
is called an sc—precover. And, s is called a covering class if every module admits an

-COVCT.

Example 4. The class s of torsion free abelian groups is an covering class, that is,
any abelian group has an »-cover (i.e., a TFC). An equivalent definition of this cover

will be given in Definition 1.1.5.

In Example 3, we saw that the notion of (absolute) Galois groups is related to the
notion of envelopes, and it can be defined in any category where we have an enveloping
class. Motivated by this relation, as a dual notion, the coGalois group of an abelian
group was first defined in Enochs et al. (2000) as the group of all automorphisms from
the TFC of that group. However, coGalois groups can be defined in any category where

we have a covering class, not only for TFCs.

Definition 1.1.4. Let ¢ : X — M be an s-cover. The group of all automorphisms
f X = X such that of =  is called the coGalois group of ¢ (or M), denoted by



G(¢) or G(M).

It is easy to see that an sr—cover is unique up to isomorphism, that is, the coGalois
group does not depend on . So, the coGalois group G(y) of an s-covering map
¢ : X — M can be also denoted by G(M). More precisely, let o1 : X — M
and ¢o : X — M be two »x—covering maps of M. Then we have the following

commutative diagram:

X
g,
///
f,fX ; P2
X}/ 1
e SO\\
///
X v2 M

Moreover, we know that f, hfg, hg and gh are all automorphisms, and so g and h
are both automorphisms. So we can take g~ ! instead of /. So, we have an isomorphism

O G(p1) = G(pa) with &(f) = f9
where f9 = ¢! fg and g is any automorphism such that ¢, g = .

We can say the coGalois group comes from the cover because every elements of the

coGalois group commutes the following diagram:

f// l@
b
X—M

Clearly, it can be seen that ker ¢ is an invariant.

In previous section, we saw that the Galois group comes from the envelope. Now,
we see that the cover is the dual version of the envelope. Because of that, the group that
comes from the cover is named the coGalois group. It is sometimes called the absolute

coGalois group, because it is actually a dual of the absolute Galois group. See Example

3.



The following definition was given for modules over an integral domain in Enochs
(1963), and the motivation can be seen finding out the answer of the dual version of

Lemma 1.1.1.

Definition 1.1.5. For an abelian group A, a torsion free abelian group C'is called a
torsion free cover of A, written TFC for short, if there is a homomorphism ¢ : C' — A

such that the followings hold:

1. For every torsion free abelian group C' and a homomorphism ¢’ : C' — A there
is a homomorphism [ : C' — A such that ' f = . So we have the following

commutative diagram:
Ol

C —A

2. Ifker ¢ has no nonzero pure subgroup of C, where a subgroup P of C' is pure in
CifnP = nC N P for all integer n.

In Enochs (1963), the condition (1) was called the torsion free factor property, and
if a morphism satisfies the torsion free factor property and may not satisfy the
condition (2), then it is called a torsion free precover or a precover. It is known that
this is equivalent to the definition of the cover with the class of torsion free abelian

groups (see (Enochs, 1963, Theorem 2)).

In Enochs & Rada (2005), coGalois groups of TFCs of abelian groups have been
studied, and a classification for coGalois groups to be trivial were given. In Hill (2008),
an equivalent version of this classification were used. This version will be given in

Theorem 1.1.3 after some definitions.

Definition 1.1.6. Let M be a module. An element m € M is said to be divisible by
r € R, if there exists an m' € M with m = rm/. A nonzero non-unit p € R is called
a prime element of R if, whenever p divides a product ab, then p divides a or p divides
b. And, M is called p-divisible for a prime element p € R, if pM = M, and is called
divisible if rM = M for all nonzero r € R.

Definition 1.1.7. Let A be an abelian group. Then A is said to be p-primary or primary



for a prime p if all elements have order a power of p. A prime number p is called a
relevant prime of A, written ‘r-prime’ for short, if there is an element of order p in A,

that is, the p-primary part A(p) of this group is nonzero.

An abelian group has no element that has a power of p if and only if it has no element
with order p. So, whenever we say that for some abelian group has no element with
order p, it means that it has no element with order a power of p, that is, the p-primary

part is zero. Note that the p-primary part A(p) of an abelian group A is a subgroup.

Theorem 1.1.3. (Enochs & Rada (2005), Theorem 2.8.) An abelian group A has a

trivial coGalois group if and only if A is p-divisible for each of its r-prime p.

It is easy to see the fact that the coGalois group of a divisible group is trivial.
However, there is abelian groups that is not divisible and has a trivial coGalois group.

See (Enochs & Rada (2005), Example 2.9).

Example 5. We are familiar to see the nonzero complex numbers C* as a multiplicative

group. Let p : C' — C* be the TFC of C*.

We will say the coGalois group of C* is trivial with saying that the torsion subgroup
t(C*) is divisible and the quotient group C* /t(C*) is p-divisible for every prime p such
that t(C*)(p) # 0 by (Enochs & Rada (2005), Theorem 2.8).

We know that the group C* is divisible and the torsion subgroup
t(C*) = (EBpeP Zpoo> is also divisible where P is the set of all positive primes by

Theorem 1.2.1. Moreover, the torsion elements are roots of unity.

Using the fact that a direct sum of abelian groups is divisible if and only if every
summand is divisible, we get that C* /t(C*) is divisible. Hence, the coGalois group
G(C*) of C* is trivial.

So, we have that there is unique homomorphism o such that the following diagram

commutes



without finding the TFC C of C*.

The coGalois group is definable for any category with a covering class.

The TFCs exist for the category (g,, R-Mod) of representations of the line quiver
Gn - ® — o — ... — e with n — 1 arrows and n vertices (see Wesley (2005)). See
Chapter 2 for more details about this category. We also give some results of torsion

free precovers of objects in (g,,, R-Mod).

In Hill (2008), coGalois groups have been studied and characterized when they are

trivial in the category (go, Z-Mod).

Theorem 1.1.4. (Hill (2008), Theorem 5.1) The coGalois group of the object A, TN As

in (q2, Z-Mod) is trivial if and only if the following conditions are satisfied.

1. The coGalois group of As is trivial.

2. The coGalois group of ker f1 is trivial.

3. im f; is p-divisible for each r-prime p of ker f.
4. im f1(p) = As(p) for each r-prime p of ker f;.

Motivated by these studies above, we consider the notion of coGalois groups in the

fnfl

category (¢,,Z-Mod), and we characterize the objects A; EIN Ay EEN N A,

in this category having a trivial coGalois group (see Chapter 3). So, our main results

generalize the above theorem from the category ¢, to the category q,.

1.2 Preliminaries

In this section, we will give some fundamental tools, and an important lemma about

the pullback diagram, which will be used in Chapter 3.

10



1.2.1 Divisibility and Purity

In this subsection, we will give some facts about modules over an integral domain R.
Clearly, all of them are satisfied for abelian groups since we can see an abelian group as
a Z-module. See, for example, Fuchs (1970) or Kaplansky (1969) for the preliminary

results of abelian groups given in this section.

The following is not the usual definition of a pure submodule, it is due to Enochs

(1963).

Definition 1.2.1. 4 submodule M’ of a module M is called pure in M if rM’ = rM N
M’ for all v € R. So, an abelian subgroup H < G is pure in G if nH = nG N H for

every integer n.

It is easy to see that M’ C rM N M’ is always true, so we will only need to check
that rM'" O rM N M’ for purity. This means that each element of M’ is divisible by

r € R in M’ whenever it is divisible by r in M.

In the following theorem, we collect some known properties of abelian groups.

Theorem 1.2.1. For an abelian group A, the followings hold:

1. Every direct summand of A is pure in A.

2. The torsion subgroup t(A) is pure in A.

3. If Ais divisible, then every pure subgroup of A is divisible.
4. Every divisible subgroup of A is pure in A.

The converse of (1) in the previous theorem is not true, in other words, a pure
subgroup of an abelian group may not be a direct summand. As a counter example,
we can give an example of the torsion subgroup of an abelian group that is not a direct

summand.

The following well-known facts can be found in Kaplansky (1969). We will prove

only the first condition.

11



Proposition 1.2.2. The followings hold for abelian groups:

1. A direct sum of abelian groups is divisible if and only if each component is
divisible.

2. A divisible subgroup of an abelian group is a direct summand.

3. A divisible abelian group is a direct sum of groups each isomorphic to Q or to

Lo for various primes p.

Proof. (1) (=) Let G = H, & H,. Take a nonzero element h € H;. Since G is
divisible, there is an element ¢ € G such that h = ng for any nonzero integer n.
But we can write that ¢ = hy + hy where h; € H;. Moreover, we have h = ng =
n(hy + he) = nhy + nhy So, we have nhy € H; N Hs, and so nhy = 0. Hence,
h = nhy.

(<) Let G = Hy @ H,. Take an element g € G and a nonzero integer n. We have
g = hy + hy where h; € H;. Since every summand is divisible, we have that there is

h; € H; such that h; = nh.. So we can write g = hy + hy = nh) + nh}, = n(h} + h}).

The same holds for infinite direct sums. O]

We give the following some basic but important properties of p-divisible abelian
groups, which are needed in our study. Most of them can be found in, for example,
Kaplansky (1969), but without proof. So, we will prove them. It is a well-known fact
that an epimorphic image of a divisible group is divisible. Similar fact is also true for

p-divisible groups:

Theorem 1.2.3. Let p be a prime number. Then the followings hold for abelian groups.
1. An epimorphic image of a p-divisible group is also p-divisible.
2. Let G be a p-divisible abelian group, and H an abelian group that has no nonzero
p-divisible subgroup. Then, there is no nonzero homomorphism from G into H.
3. An abelian group is divisible if and only if it is p-divisible for every prime p.
4. A p-group is divisible if and only if it is p-divisible.
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Proof. (1) Let G be a p-divisible group with the homomorphism ¢ : G — H. We will
show that the image im ¢ of ¢ is p-divisible. Take an element A € im ¢, so there is
g € G such that ¢(g) = h. Since G is p-divisible, there is an element ¢’ € G such that

g =pg'. So,we have h = ¢(g) = p(pg') = pp(q’). Clearly, ¢(g') € imy, and so h is
divisible by p in im ¢.

(2) By the condition (1).
(3) (=) Trivial.

(<) Let G be a p-divisible abelian group for every prime p. Take an element g € G
and a nonzero integer n. So, we can write that n = p7*p3?...p;* where p;’s are primes by
the Fundamental Theorem of Arithmetic. We know that G is p;-divisible for all primes

€1 .62

pi. Then there is an element g; such that g = p{'g;. Assume that g = p]'p; ...pjj g; for

some element g; of G. But we also have g; = pjff gj+1 for some element g;; of G.

S0, g = p7'p2...p gr, = ngy for some element g, of G.
(4) (=) Trivial.

(<) Let GG be a p-divisible p-group. Take a nonzero element g € G and an integer
n. Let the order of g is p* since G is a p-group. Say n = p™n’ with p { n’. Firstly,
we will show that g can be divided by n’. By Bézout’s Lemma, we have that there
are some integers u and v such that up® + vn’ = 1 since ged(p*,n') = 1. Moreover,
p* 1 v since p* 1 1. So, we have g = (up® + vn')g = up*g +vn'g = vn'g = n'(vg).
But, G is also p-divisible, so there is an element ¢’ in G such that vg = p™g’. Hence

g=n'(vg) =n'(p™g') = ng’. O

Definition 1.2.2. 4 subgroup H of an abelian group G is p-pure in G if pH = pGNH

for a prime p.

Lemma 1.2.4. Let G be a torsion free abelian group. A subgroup H of G is pure in G
if and only if H is p-pure in G for every prime number p.

Proof. (=) Clear.
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(<) Take an element h € H such that h = ng, where g € G. We can write that
n = pips...pm Where p;’s are prime numbers that are not necessary to be distinct. So, we
have h = p;(pa...pmg). Since H is py-pure, we have h = p1ho, where hy € H. Since
G is torsion free, we get hy = ps...p,g. Using the same ideas, we have h; = p;...p;9,
where h; € H for all © < m. Finally, we have h,, = p,,g. Since H is p,,-pure, we
have h,, = pmhme1 where h,,.1 € H. Therefore, we have p,,g = phmi1, and so
g = h;,aq since G is torsion free. Hence, we get h = pips...pphms1 = nhy,q Where

hm+1 € H, as desired. O

Lemma 1.2.5. Let M be a module, M’ < M a submodule and p € R a prime element.
If M" and M /M’ are p-divisible, then M is also p-divisible.

Proof. Take an element m of M. If m € M’, then there is nothing to prove.

Assume m € M \ M’'. Then m + M’ # M’, and so m + M’ is a nonzero element of
M /M'. Since M /M’ is p-divisible, there is an element m' + M’ such that m + M’ =
p(m'+M') = pm’+M’'. Som—pm' € M'. Since M’ is p-divisible, there is an element

m” € M’ such that m — pm/ = pm”. Hence, m = pm/ + pm” = p(m/ + m”). ]

Lemma 1.2.6. Let M and K be modules and M' < M. If Hom(M'/K) = 0 =
Hom(M /M, K), then Hom(M, K) = 0.

Proof. Take ahomomorphism ¢ : M — K. Since |y € Hom(M', K), we know that
©|m = 0 by assumption. So M’ < ker¢. Then we can define ¢ : M /M’ — K with
o(m+ M'") = p(m). But ¢ € Hom(M /M', K). So ¢ must be zero by assumption.
Hence ¢(m) = 0 for all m € M. This means that ¢ = 0, as desired. O

We give some useful features about pure submodules over an integral domain in the

following theorem.

Theorem 1.2.7. The following conditions hold for pure submodules.

1. If M is a torsion free module, then a submodule M' of M is pure in M if and
only if M/ M'" is torsion free.

2. The union of a chain of pure submodules of a module is still a pure submodule.
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3. If My C M, are submodules of M such that My is pure in M and My /M is
pure in M /My then M is pure in M.

4. If M is a torsion free R-module, M, a submodule of M, and M, a pure
submodule of M then M, N My is a pure submodule of M;.

5. Let M be a torsion free R-module, M, a submodule of M, and My a pure
submodule of M. If My < M, , then M, is pure in M;.

Proof. (1) (=) Take an element m -+ M’ of M /M’ and a nonzero element r of R. Say
r(m+ M') = M'. Then rm € rM N M’'. By purity, there is an element m’ such
that rm = rm’. So, we have r(m — m’) = 0. Since M is torsion free, we get that

m —m’ =0, and so m = m/. It says that m + M’ =m’ + M’ = M’, as desired.

(<) Take a nonzero m’ = rm € rM N M'. Then r(m + M') = rm + M’ =
m' + M' = M. Since M /M’ is torsion free, we know that m + M’ = M’. So, we get

m € M'. Therefore, we conclude m’ = rm € rM’, as desired.

(2) LetI be a totally ordered index set. Take a chain € = (M), of pure submodules
of a module M. We will show that J
rM N Y

.e1 M; is a pure submodule of M. Take rm €

M; where m € M. Since rm € |J,.; M;, we have that rm & M for

iel iel
some j € I. By purity, there is an element m; € M; such that rm = rm;. Then,

rm =rm; € rM; CrlJ;c; M;.

(3) Take my = rm € rM N M;. Then, m; + My = rm + M. By purity, there
is an element m} + M in M; /M, such that my + My = rm + My = rm) + Ms. So
r(m —m}) € M. Say r(m — m)) = my. By purity, there is an element m/, € M,
such that (m — m}) = my = rm),. Then, my — rm} = rm — rm/ = rm),. Hence, we

have m; = r(m) + m}) where m| + m/, € My + My = M,.

Moreover, there is an easier way to prove by using (1) with saying M /M, and

(M /Ms)/(My/My) = M /M, are both torsion free.

(4) Take m; € My N M, and say my; = rm/, where r € Rand m) € M; < M. By

purity of M, we have that there is an element my € M, such that m; = rms. Since
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M is torsion free, we have that m} = msy € M; N M, as desired.

(5) It follows by (4). [

1.2.2 Pullback and Pushout Diagrams

In category theory, a pullback (resp. a pushout) can be seen as the limit (resp.
colimit) of a diagram consisting of two morphisms f : X — Zand g : Y — Z (resp.
f:Z — Xandg: Z — Y). The pullback of two morphisms f and g may not exist.
If the pullback exists, it is uniquely determined by these two morphisms as with many

universal construction.

It is well-known fact that the pullbacks exist in the category of modules over a
fixed ring, and so in the category of abelian groups. We just use pullback diagrams for

modules over an integral domain, as we stated before in the introduction.

Definition 1.2.3. Let M, M’ and N be modules with morphisms g : M — N and
f: M — N. A module P with morphisms p: P — M and p/ : P — M’ is called the
pullback of f and g if the following conditions are satisfied.

1. The following diagram commutes:

P'O%M

1,0

2. If the following diagram commutes for a module () and morphisms q and ¢/,
Q NV

4,0

M ’f% N
then there must be a unique morphism u : () — P such that pu = q and pu = q.
It can be illustrated as the following commutative diagram with emphasizing the

uniqueness of u.
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Next lemma has too much significance for our main Theorem 3.3.6, but we put it

here because of that the pullback is a fundamental tool.

Lemma 1.2.8. Let P be the pullbackof f : C' — Aand g : C — A
p-r s

10

C'——= A

in a commutative diagram of abelian groups. Then,

1. imp = g !(im f)

2. kerp = ker f;

3. For a subgroup C1 of C', the pullback of f|c; : C1 — Aand g : C — Alis the
complete inverse image (p')~*(C}) of C; under p' : P — C' with the pullback
maps are the restriction maps pl -1y : (o)~ (C}) = C and
Pl = (0)HET) — O

4. For a subgroup M of ker f, the pullback of f : C'"/M — Aandg: C — Ais
the quotient group P/(p")~(M).

Proof. (1) Take an element ¢ € im p. So, there is an element (¢/,¢) € P such that
p(c,c) =c. So, f(c') = g(c) by definition of the pullback P. However, f(¢') € im f,
and so ¢ € g '(im f). Take an element ¢ € g '(im f), and so for some element
f(d) € im f, we have that g(c¢) = f(c’). By definition of the pullback (¢, ¢) € P, and

so p(c/,c) =c € imp.

(2) We will interest in the restricted map p/|ker, : kerp — C'. Clearly, this map is
an injection since ker(p'|kerp) = ker p Nkerp’ = 0 by the definition of pullback. So,

Y

kerp = im(p'|ker,). Now, we must prove im(p/|xerp) = ker f. Let ¢ € im(p/|ker,)-
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Then, for some p € ker p, we have that p'(p) = ¢’. And we also have p(p) = 0 since
p € kerp. Since P is pullback and p € P, we have that f(¢’) = ¢(0) = 0, and so
d ekerf. Letc € ker f. So f(c/) = 0. Then, (¢,0) € P since f(¢) = 0 = g(0).
Clearly, p(¢/,0) = 0, and so (¢, 0) € ker p. However, we have p/(¢/,0) = ¢’ € ker f.
Also, we can see that

kerp = {(c,0) : ¢ € ker f}.

So it is easy to get the isomophism between ker p and ker f. From now on, we
will not notice any difference between ker p and ker f. For example, we will use the
isomorphism theorem as the follows. P/ker f = im p or we will say that P/M is a

quotient group of P where M < ker f.

3) It is not ambiguous to notate the restriction maps with p, ¢’ and f|. So, we have
g p P> P

the following commutative diagram:

o sy

Because, for some element (¢}, c) € (p/)~!(C}) is also in P, and so we have that
p(cy,c) = cand p'(c}, c) = ¢) with f|(c}) = f(c}) = g(c). Tt is also easy to see that
(P)7HC) ={(ch. o) flch) = f(c) = gle), ¢} €Cl,ceCE <P

by the definition of the complete inverse image, and so it is also easy to see that
(p')~1(C1) is the desired pullback of f|cs : C7 — Aand g : C' — A by the definition
of the pullback for abelian groups.

(4) We know that f : C'/M — A is well-defined with f(¢ + M) = f(¢) since
M < ker f. Let ' be the conanical surjection from C’ into C’/M. Then, we have the

following commutative diagram:
C'/M

i
C’ 7 A
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It is easy to recognise that f(C’/M) = f(C"). By definition, we have
P/M ={(¢+M,c): f(d+ M) =f(c)=g(c)} <C'/M&C.

Define p : P/M — C with p(¢’ + M,c) = ¢, and so p(P/M) = p(P) since
f(C/M) = f(C). Similarly, define p' : P/M — C'/M with p'(¢' + M,c) = ¢ + M.

And so, the following diagram:

P/Mp%C

L

C'/M—— A

commutes. So, P/M is the pullback of f : C'"/M — Aandg : C — A by the
definition of P/M and the definition of the pullback for abelian groups.

Define the conanical surjection 7 from P into P/M. Then we have the following

commutative diagram:
P/M

since M is also in ker p (= ker f) by Condition (2). To see all in one graph,

P/M
el K
P C
0
P p g
C'/M

C A

To say the previous diagram is commutative, we only need to say the following

diagram commutes.
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PbP/M

b, ¥

Cle,/M

But, we can easily see that

pr(c,d)=p(d+M,c)=c + M= ()=n"p'(c,c).

As a dual consept of a pullback, we have the following definition for a pushout.

Definition 1.2.4. Let M, M’ and N be modules over an integral domain R with
morphisms g : N — M and f : N — M'. An R-module P with two morphisms
i: M — Pandi : M' — P is called the pushout of [ and g if the following

conditions are satisfied.

1. The following diagram commutes
NI M

|,

2. Ifthe following diagram commutes for a module Q) with the morphisms j and j’,
NI >N

fJ/ lj
j/
M—— (@
then there must be a unique morphism v : P — @ such that vi = j and vi’ = j'.
It can be illustrated as the following commutative diagram with emphasizing the

uniqueness of v.
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CHAPTER TWO
TORSION FREE COVERS OF LINE QUIVERS

In this chapter, we will give our results for a torsion free precover of an object in
the category (¢,,, R-Mod) or just ¢,. M. Dunkum proved the existence of TFCs in ¢,
and gave a construction for the TFC of an object in ¢, (see Wesley (2005)). See also
Ozdemir (2011) for the existence of TFCs in the category (Q, R-Mod) for a wide class

of quivers (including line quivers) under certain conditions on the ring R.

2.1 Line Quivers

A quiver is a directed graph whose edges are called arrows. Usually, a quiver is
denoted by ) understanding that () = (V, E') where V is the set of vertices (dots) and
E is the set of arrows. An arrow of a quiver from a vertex v; to a vertex vy is denoted

a
by a: v, — vyorv, — vy .

A representation by modules of a given quiver () is determined by giving a module
X (v) to each vertex v and a homomorphism X (a) : X (v;) — X(vg) to each arrow
a : vy — vy of Q. A morphism p between two representations X and Y is a natural
transformation, so it will be a family {, },c1 of module homomorphisms such that
Y(a) iy, = py,X(a) for every arrow a : v; — vy of @, that is, the following diagram

commutes for every arrow a : v; — vy of Q):

Note that the representations by modules of a quiver () over a ring R form a (functor)
category, denoted by (), R-Mod). Therefore, it is an abelian category by (Stenstrom,

1975, Chapter IV, Proposition 7.1). So, we notice that the kernels, cokerneles, products
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and sums are constructed ’componentwise’ in this category. For the sake of simplicity,
we just say a ’'representation’ or an ’object’ in this category for a representation by
modules of a quiver over a ring R. See, for example, Schiffler (2014) for more details
about quiver representations. See also Ozdemir (2011) for some research on relative
homological algebra in this category for any ring R and any quiver () (not necessarily

finite).

In this thesis, we are interested in this category only for finite line quivers. Namely,

for the quivers g, of the form
a1 az Gn—1
Qn V] —> Vg —> -+ — Uy

We denote the category (g, R-Mod) by ¢,, for short.

Note that the objects in g, are of the form M; f—1> M, f—2> e Q M,,, where
M;’s are modules and f;’s are module homomorphisms. So, a morphism between two
objects in this category will consist of a n-tuple of maps
(o0, o) s (M 25 My 2 25 Ay (N B N, Bl )
such that o; : M; — N; with g;a; = a4 f; forall j € {1,2,--- ,n — 1}, that is, the

following diagram commutes:

M=>M5—>M; =M M,
l&l laz lOés Op—1 lan
N g1 Ny g2 N g3 gnfz\Nn_glfl\Nn

2.2 Torsion Free Covers of Line Quivers

Firstly, we will define what is the torsion free precover and the TFC of an object in

the category ¢,,, where R is an integral domain.
Definition 2.2.1. 4An object N, SN, B Inty N, in q,, is said to be a subobject

of an object M, EN M, EENE N M, if N; < M; and f;

N, = gj foralli =
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,2,--- . nandj=1,2,--- ,n—1

Definition 2.2.2. An object T} f—1> T f—2> e b T, in q, is called torsion if all T} s

are torsion modules. And, an object F f—1> F f—2> e h) F,, in q, is called torsion

free if all F; s are torsion free modules.

Definition 2.2.3. A subobject N, 25 Ny 2 .. &% N of My, 25 My 25 .00 Iy

M, in q, is said to be a pure subobject of M, f—1> M, f—2> e f"—_1> M, if N; is a pure
submodule of M, foralli = 1,2,---  n. In other words, rN; = rM; N\ N, forallr € R

andi=1,2,--- ,n.

Definition 2.2.4. If C} EANYO - ELEN C, is a torsion free object in q,, then the
morphism

(gOl,QOQ,"' ,QOn) . (Cl g_1> CQ & gn—_1> Cn) — (Al f—1> A2 f—2> fn—_1> An> is
said to be a torsion free precover of A, ELN As By Dy A, if, for every
morphism

hi1 ha hn—1 f1 f2 frn—1
(Y1, 02, )+ (B = F = - == F) = (A = Ay = -0 7= Ay)
B ) : : :
where F} LN F, b, A " F,, is torsion free, there is a morphism
h h hn— n—

(01,09, ,00) : (FI =5 Fy = .. 5 F) — (Cy 25 Cy L - 225 C) such

that (o1, 02, ,pn) 0 (01,09, ,0,) = (Y1,%2,--+ ,Uy), that is, the following

diagram commutes:

A L N o N . N e o N = 6N
A A A
/ l%Ol ,/’fls@ ,4’ lcpg [Pl on
/ / / /
/ /
D 0V I 0 WU A R R §
oy 109 /103 Op1 Ol
/ / / / /
/U //% K 3 ,’%—1 r Sy
F h Fy h Fy hs o Fn_lh";% F,
Definition 2.2.5. The above morphism (p1, o, ,¢n) = (Cy S0, B Inty

Ch) — (44 TN A EENSNNE N Ay,) is said to be a TFC, if the following conditions

are satisfied:

1. (@1,02,- -+ ,n) is the torsion free precover of A; N Ay EENSNE N A, and
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2. If P; is a pure submodule of C; contained in ker @;, P;.1 is a pure submodule of
Ci+1 contained in ker ;11, and if g;(P;) C Piyq, then P, = P,y = 0 for all
1=1,2,--- ,n—1

Note that the second condition is equivalent to the fact that the kernel of the covering

mapping has no nonzero pure subobject where the kernel in g, is defined as

ker(p1, o, -+, 0n) 1= kerp; — kergg — -+ — ker gy,

Remark 1. [t is known that every object in q, has a TFC when R is an integral
domain (see (Wesley, 2005, Theorem 6.5-Example 5.5)). When proving the existence

of a TFC in q,, M. Dunkum used the induction method. Indeed, to construct the cover

of the object A, e As gy, = A, in qy, she first assumed that the morphism
(2,03, on) 1 (Cy 5 C3 & ... 2220, C) — (A, f—2>A3 EEN E>An)was
a TFC of As f—2> As f—3> f"—_1> A, in q,_1, and after that g, : C; — Cy and
p1  Cy  — Ay were found out with a construction to say that
(P12 on) 1 (C1 B Gy B 2 0y o (A B 4, B I Ay s
the desired TFC.

Motivated by this method of proof, we introduce a reduction of an object as follows.

Remark 2. 7o ‘reduce’ an object in q, to an object in q; where i < n will be practical

in our study. So, from now omn, by a ‘reduction’ of an object
Ay f—1> As f—2> f"—_1> A, in q, to an object in q;, we mean the object
An_it1 ELELIN Ap_ito EL e N LN A,,. Therefore, we can easily see that the

TFC of the reduction A, _; 1 ————>fn7i+1 An_iso foiva o foot A, is the reduction of
the TFC of the object A, TN A, o I A

The following lemma will be useful in proving some of our main results.

Lemma 2.2.1. If (1,00, ,n) - (Cr 25 Oy & o 2225, C) — (A LENGEEN
LN A,) is a torsion free precover of Ay ELN Aoy EENE N A, in gy, then

w; : C; — A, is a torsion free precover of A; in R-Mod forall i =1,2,--- n.
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Proof. By Remark 2, it is enough to prove the statement only for © = 1. Suppose that

D is any torsion free module and ¢/ : D — A; is a module homomorphism. Clearly,

DY DX ... Dis a torsion free object in ¢,, and we have a morphism

id id id
(¢7f1¢7f2f1¢7 e 7fn—2fn—3 e f2f17vb7 fn—lfn—? e f2f1¢) : (D - D= =
D) — (44 ELN A, EN f"—_1> A,) in g,. So we have the following commutative

diagram by assumption:

oL sy oS I o I o
4 4 4
/ l% f”lm ,/’1 lwg / l%l / iwn
/ / / / /
/ / /
/ 1 fl’/ As f%/ As f2 fniQ’ Anflfnil’; n
o1/ 109 103 On—1/ (%
/ / / / /
YL /'%/)/’ fafrb : ,’%,—2"'7# frn—1--- i
D id D id D id id i id D

Finally, we find a homomorphism o; which makes the following diagram is

commutative:

O—l’//ld]
A

o, ©1 A

That is, ¢, : C; — Aj is a torsion free precover of Aj.

O

More general version of the previous lemma is also true.
Lemma 2.2.2. ]f(ng,(,Dg,"' 790n> . (Cl g_1> 02 g_2> %;) Cn) — (Al i) A2 f—2>
LN A,) is a torsion free precover of A, EN Aoy EENE N A, in q,, then
(@i, p5) 1 (Ci L - LN Cj) = (4 LIRS RN A;) is a torsion free precover

of A; EENNE/ N A; in the category q;j_i 1.

Proof. By Remark 2, It is enough to prove the statement for © = 1. Suppose that

h hj—1 . . .
Dy = 4 D; is a torsion free object, and
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(1, 5) = (Dy LN bD‘j) — (A EENS bAj) is a morphism in g;.

Clearly, D, LINSLEN D; SN D; NN D; 1s a torsion free object in ¢, and
we have a morphism (Y1, 05, fi105, fjafiy, oo facifaa - fiva fits)

have the following commutative diagram by precover:

oL | Ydle Yo S It o Il o
A A A
/ lgﬁ ,41 l@j ,/A l%’ﬂ / l/spn—l / l@n
/ / / / /
/ . . . _of 1/
) f]. L f?/LLA] f?// A]+=f17+]\ . fn ,L An_lf # An
UV Uj’/ U"’/ U”‘}'/ o
/ /
/ / . / A s / A IR Y
' hifl hi1 7 z’? y {Zi J id " f%Q by I
Dy D; i . D; D;
Hence, we get the morphism (oy,09,--,0;) such that the following diagram
commutes:
C ) Cy 92 Cs g3 9j—2 O gj-1 C,
A A A
// 1 /41 lg}? ///1 lspii / l/gp]l / l@j
/ / /
/ . / /
, fl// Az fl2’ Ay f3 f772, Ajfl fyfll ;
JV 109 103 Jj_lll 0]//
L e 1 S ’/‘-1 '/
/ h / h / h h]ia / hy'i / J
Dy D, Ds D;_—=> D;

Remark 3. Observe that we can find the corresponding torsion free precovers of the

objects (A, f—1> A, f_2> f’;l> Ay) and (Aisq Jit1 Asio five,  fama A)

in q; and q,_;, respectively if we already know a torsion free precover of the object

(A4 ELN Aoy EENSUNEEN A,) in q,. But the converse is not true in general.

More precisely, let (1,00, ,¢p) = (C1 5 Cy L5 .0 255 C) — (A LR

Aoy EENSUE LN A,) be a torsion free precover of A; ELN Ay EENSNEN A, in qp,

’ /
m—1

. . f1 f3 e . .
Al Y is a torsion fiee precover of A} = Ay = ... 5 A in q,,. We have an object
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!

fn—l

(Ay EEN/ N —>Ani>A’1 £>A’2 ELN % ALY in Guym. Because of the

zero map, we know that there is at least one homomorphism such as f : A, — Aj.

Moreover, we have a composition map f, : C,, — A}, and so we have that there

is @ homomorphism g : C, — C] such that fp, = g since | : C] — Al isa

torsion free precover by Lemma 2.2.1. So we have a morphism
(P1,P2, - P D1 Ph -5 0) 1 (O 2 Cp B - 25 O 5 O 2 Gy 5

Gm—1/ e ! ) n— .
o/ W O PR LN W N e Ny S NV N VA N L T
Gntm- But this map does not have to be a torsion free precover of
Ay N Aoy EENE SN A, ER Al f—1> Al f—2> oo 2 A in quam. As a counter

example, taken = 1 and m = 1.

Lemma 2.2.3. ]f‘(gpl,@g,"' ,gOn) . (Cl g_1> Cg £2—> %;) Cn) — (Al ﬁ) A2 f—2>
LN A,) is a torsion free precover of A; N Ao EENE SN A, in gy, then

(g1, 0n) ¢ (Cy 222290 ) — (A T -l A,,) is a torsion free precover of

Al fnflfn72"'f1 An) l}’l q2

Proof. Let By < B, be a torsion free object in ¢ with the morphism
(61.60) + (B % By) — (4, 120

diagram:

A,). So, we have the following commutative

So, we also have the following commutative diagram:

B> —tep = g g
l1 lf1¢1 lf2f1¢1 fn—z"'f1¢¢ lﬁbn
G (0 IV TR Sy SN |
Now, using the precover of A; f—l> Ao f—2> h) A,, we get the following

commutative diagaram:



2 g3 In—2 9n—1

C C J Cnfl Cn
/
2/ f3 Jn i Jnl
/ A 3 te n—1 4 n
01/ Un 1 Onl
/
/1 ' f1¢ %fﬁbl , ,%—2"'9’1 ®n
1 1 7
pliey g tm W e im0

Therefore, we have the following commutative diagram, which completes the

proof:

an 1- glCn
4\1/901 4\1/9%
’ fn V-
01/ /Un

BléB

Note that the previous lemma is true for any pair of morphisms.

Proposition 2.2.4. If (1,00, - ,on) : (C1 &5 Cy & -0 225 ) — (A EEN

Ao N L N ) 1s a torsion free precover of A; N Ao EEN Jno L A, in gy,

then (@i»@i—&-k) : (Cz Gitk—19i+k—2"Gi Ci+l<:) N (Az fivk—1fivk—2fi Ai+k) is a torsion

fitk—1fitk—2-Ffi
LA L

free precover of A; Ay in qo.

Proof. 1t is trivial by using both Lemma 2.2.2 and Lemma 2.2.3. [

There is a generalisation of all we do above. We will say that a version of the
previous proposition is also true for more than one composition map. For the sake of

simplicity, it will be stated without saying composition maps.

Theorem 2.2.5. If (01, 02, n) = (C1 25 Cy & o0 254, €)= (4 EEN

Ao EEN SN ) s a torsion free precover of A, EN Ao EENE SN A, in
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Qns then (©i, iy, Pivkos > Pitkm) * (Ci = Cigny = Cigiy = -+ = Cigp,,) —
(A; = Ak, = Aigky, — -+ — Aiy,,) is a torsion free precover of the object

Ai — Ai+k1 — Ai-l—kz — s = Ai—l—km in Qm+1-

Proof. More clearly, we want to get (¢, Qitkys Citkys " > Pithm) © (Ci S
Cippy —lenliih, o, Zestmh, o B TR, Ci) o
(A; fommh Aitry M Aitky mksilmmh/ fHkm_lmmkmﬂr Aitk,)
is a torsion free precover of the object

A fithy—1fi Ain, fithg—1"Jithy Air, Jirkg—1fithy fi+km71"'fi+km—1/ Asir)
in dm+1-

It can be proven by induction on m with using Proposition 2.2.4 as an initial case.

]

2.3 A Construction for Torsion Free Covers of Line Quivers

The following theorem gives a construction for TFCs in ¢, and it is a foundation in

this study (see the proof of Theorem 6.5 in Wesley (2005)).

Theorem 2.3.1. Wesley (2005) Let A, 25 Ay 25 .. 1% A "% A be an

object in q,,. Let p; : C; — A; be the TFC of A; in R-Mod with ker p; = K. Then,

P/ 2> Py, 2> 2% b, 0
lwlp’l iwzp’z ison_lp;_l l‘ﬁn
Al fl A2 f2 . fn72 An,1 fnfl An

isa TFC of Ay f—1> A, f—2> e M A, E> A, in q,, where, in the first square,
P, _1 is the pullback of f,—1pn—1 : Choy — A, and ¢, = C, — A, where p,_, :
P,1—C,q1and p,_1: P,_1 — C, are the pullback maps, and M, _, is a maximal
pure submodule of ker(f,_1p,_1) contained in K,_1,; and also, P; is the pullback of
fipi + Ci — Aijp1 and 90i+1p§+1 0 Py /My — Ay, where p : P — Ci_y and
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pi » P; — C; are the pullback maps, and M; is a maximal pure submodule of ker( f; ;)

contained in K; foreachi =1,2,--- 'n — 2.

Proof. For the case n = 2, we refer (Wesley (2005), Lemma 6.1). In the general case,
this construction can be found easily by induction on n with using (Wesley (2005),

Theorem 6.5). O

Lemma 2.3.2. The kernel of the covering map in the previous theorem is of the form:

DK /M2 K /M; 2 2K, M, @ K, P K
j=1 i=2

Proof. By (Wesley (2005), Proposition 6.2) and (Wesley (2005), Theorem 6.4), we

know that
ker(@n—lp;—b_la Son) - Kn—l/Mn—l S Kn W;l> Kn
Assume that the kernel of the covering map (woph, -, ©n 10, _1,%¥n)

(PQ/MQ g s _>Pn—2 Pn—l/Mn—l —>Pn—1 Cn) — (AQ E) s —>fn_2 An—l —>fn_1 An) 1S

of the form

DK /M;Z K, M, K, B K,
j=2

Firstly, we will show that ker(y1p), @205, -+, Yn_1p,_1,¢n) of the precovering

map (Q1p), @aphs - On1f 1on) (P2 PyM, B0 22

Pn—l/Mn—l p—n;1—> Cn) — (Al i) A2 f—2> cee ﬂ An—l E) An) is of the form

Ko PK/M™ K /M2 "5 K, /M, & K, 25 K,
j=2 j=2

So, we will just show that

ker(pipy) = K1 @ € K/ M;.

J

Assume (ky, (ko, -+ ,kn)) = (kay -+ ,kn) — - -+ — ky, is an element of the kernel
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ker(g1p)) 2 ker(paph) 25 -+ £ ker g, of the precovering mapping in ¢,. So

(k’l,(kg,"' ,kn)) - ker(gplp’l) This means 9010/1(]{317(]{327"' ,k’n)) = (,01(]{?1) = 0,

and so k; € ker p; = K. Moreover, we also have

0= f1§01pl1(k?17 (k27 ce 7kn)) = 902plzp1(/€1, (k27 T an)) = 902P/2(k27 T 7kn)

by using the commutativity of the diagram in Theorem 2.3.1. So, we have

(k27 e 7kn> € ker<¢2pé> - QK]/M]
j=

Thus, we get
(kl) (k27 T 7kn)) S K1 ® @ KJ/MJ
j=2
Conversely, assume that (ky, (k2, -+ ,k,)) — (koy < ,ky) — -+ — k, is an

element of the object Ky & @ K,;/M; 2% @ K,;/M; 2 ... 25 K, in g,. Then,
=2 =2

we have (ky, (ka, -+ ,ky)) € K1 @ @ K;/M,. So, we have
j=2

Splpll(kla (k% e 7kn)) = 301(]{:1) =0
since ky € Ky = kerg;. Thus, (kq, (ko, -, ky)) € ker(p1p)). We showed that
ker(gplp’l P — Al) =K & @ K]/M]
=2
Hence, it is easy to see that ker(p1p) : P1/My — A1) = K1 /My & @ K;/M; =
j=2

@D K,/ Mj, as desired. O
j=1
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CHAPTER THREE
LINE QUIVERS HAVING A TRIVIAL COGALOIS GROUP

In Hill (2008), coGalois groups of TFCs of quiver representations have been studied
for ¢o and R = 7Z. A classification for coGalois groups to be trivial were given in
(g2, Z-Mod). Using Hill’s ideas and results, we generalize (Hill, 2008, Theorem 5.1)
to the category (¢,, Z-Mod). We will use the notations in Theorem 2.3.1 and Lemma

2.3.2, throughout this chapter. Therefore, for an object A := A, f—1> As f—2> ce f"—72>

A1 f"%l A, in g,, the map ¢; : C; — A; will be the TFC of A; in Z-Mod with
ker p; = K for each i. Moreover, M; will be maximal in K; among all pure subgroups

of ker fz T

3.1 coGalois Groups of Line Quivers

For the objects A := A f—1>A2f—2>~~f—”>AnandIB§;: B, B % ... B,

in g,, whenever the following diagram commutes,

/ J J: Jn— fn
A Ay A T T
lOél lOéQ lOés \Lanl lOén
g1 g2 g3 In—2 In—1
B B, Bs . B, B,
we denote the morphism (aq, as, - - - , @) in g, from A to B shortly by a. We also

denote by Mor(A, B) the class of all morphisms between the objects A and B in g,,.

From now on, let ¢ : C — A be a TFC of A in ¢,, and let K = ker . We know
exactly what the TFC C with a covering morphism ¢ and its kernel K, by Theorem
2.3.1 and Lemma 2.3.2. Note that the TFC of A is unique up to isomorphism and is

actually an sc-cover, where s is a covering class of all torsion free objects in g,,.

Since coGalois groups can be introduced in any category with a covering class, we

can define the coGalois group of A in ¢, (see (Enochs et al., 2000, Definition 3.1)).
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Definition 3.1.1. The coGalois group of an object A in q, is defined as the group of all
automorphsims from the TFC of A, denoted by G(A) or G(p). That is,

GA)={0:C—C|po=p}

The following important lemma generalizes (Enochs & Rada, 2005, Lemma 2.2),

and the proof is done by a similar way.

Lemma 3.1.1. The coGalois group of A is trivial if and only if Mor(C,K) = 0.

Proof. (=) By assumption, we know that any morphism o from the cover to itself,
such that o = ¢, is the identity morphism idc. Assume that Mor(C,K) # 0 and
take a nonzero morphism ¢ : C — C with imd < K. We can easily see that pd = 0.
Now, we have a nontrivial object ¢ + id¢ in the coGalois group, because ¢ (0 + idc) =
©d + pidc = 0+ ¢ = ¢ and ¢ is nonzero. It contradicts with G(A) = 1. Thus,
Mor(C, K) = 0.

(<) Say G(A) # 1. Take a nontrivial morphism ¢ : C — C from G(A), and so
wo = . Then we get a nonzero morphism idc — o : C — C with im(id¢c — 0) < K,
since we have p(idc — o) = ¢ —po = ¢ —p = 0. Hence idc — o is actually a nonzero

morphism from C into K. It means that Mor(C, K) # 0, as desired. I

Lemma 3.1.2. [f'the coGalois group of the object A = A, LN A EENNELN A, is

trivial, then the coGalois group of the abelian group A, is trivial.

Proof. Assume that G(A,) # 1. Then Hom(C,,, K,,) # 0 by Lemma 3.1.1, taking

n = 1. So, let 0 # 6, € Hom(C,, K,,). Then we have the following commutative

diagram:
p/M, > pyM, L2 o B2 poy, o P22l
l51 l52 \Lén_l lén
@ KZ/MZ_%® KZ/MZ P2 ... Pn=2 K”*I/Mn71 @ Kﬁ% Kn
i=1 i=2
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where §; = §;41p; foralli = 1,2,...,n— 1. Then (01, 0, . .., d,) is a nonzero map
from the TFC of A to the kernel of the covering map. Hence G(A) # 1 by Lemma
3.1.1. L]

With a similar proof, more general version is also true.

Lemma 3.1.3. If'the coGalois group of an object A is trivial, then the coGalois group

of each reduction of A is trivial.

Proof. Let A; R A Jg Iy A, be the (n — i+ 1)th reduction of A. Assume
that G(A; FiN Aia ELENE (N A,) # 1. So we have a nontrivial morphism
(0iy0it1, -+, 0,) from the TFC of the reduction to the kernel of the covering map. Then
(01,02, ...,0,-1,0i,...,0,) Where 6; = 0,41p; for all j < 7 is a nontrivial morphism

from the TFC of A to the kernel of the covering map. Hence G/(A) is not trivial, as

desired. ]
= fl f2 fnfl fz fn,1

So, we see that if G(A; — Ay = .-+ —— A,) = 1, then G(4; = - —

A,,) = 1 for any i from 1 to n.

Note that if G(A; N Ay EENE N A,) = 1, then for any morphism
(0iy 0i41, - -+ 6,) from Mor(Py/M; 25 Pryy/Miy =5 -+ 225 Py /M,y &=

Pn—1

C,r“ @K]/M] ﬁ} @ KJ/MJ Pirt,  , Pn2 K”’_l/Mn—l P Kn —_ Kn)’ where
Jj=t j=i+1
1 > 2, itis true that 9; = 6.1 = --- = 0, = 0. So, we will focus to find the conditions

when 0; = 0. To illustrate,
p/M, B> Py, L2 P2y poy Pl

N o

@ K /M@ Ky o B 0 K
i=1 i=2

In fact, 6; must be actually a map from P, /M, into K;/M; by the commutative

diagram since 05 = 0.
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So, we have the following result.

Theorem 3.1.4. If the coGalois group of an object A is trivial in q,, then

Hom(Pl/Ml, Kl/Ml) =0.

Proof. We can easily find a nonzero morphism (4,0, --- ,0) from Mor(P,/M; 2

Py /My 2 o 22 P M, 2N L D KM DKM S
=1 j=2

Kno1/ar, , @ K, 2% K,) for a nonzero homomorphism & € Hom(Py /My, K, /M,).

Thus, the statement is proved contrapositively. [

Clearly, we can also get the following theorem.

Theorem 3.1.5. The coGalois group of an object A, ELN Ag EENSNE N A, is trivial

in q, if and only if the coGalois group of the object A EEN As EENSRE N A, is trivial
in qn—1 and Hom(Pl/Ml, Kl/Ml) = 0.

Lemma 3.1.6. The morphism @; : ker f;p;/M; — ker f; is the TFC of ker f; with the
kernel K;/M,.

Proof. Weknow ¢; : ¢;~(ker f;) — ker f; is a precover of ker f; since ¢; : C; — A; is
TFC of A;, and ker f; < A; by ( Enochs (1963), Lemma 1). Moreover, K; = kery; <
ker(fip;) = @i '(ker f;), and so the kernel of precovering map of ker f; is K;. We
know that M/; is a maximal pure subgroup of ker( f;,;) which is contained in K; by
Theorem 2.3.1. So ker( f;p;)/M; is the TEC of ker f; with the covering map ¢; and the
kernel is K;/M; by Definition 1.1.5. ]

Theorem 3.1.7. Ifker f; 5 are all torsion free abelian groups (in particular, if f; s are

monic), then the coGalois group of A is trivial if and only if A, has trivial coGalois

group.

Proof. (=) It follows by Lemma 3.1.2.

(<) We will show that (41,09, ,0,) = 0 by induction to say G(A) = 1. By
hypothesis, we have G(A,) = 1. It means that Hom(C,,, K,,) = 0. Then ¢,, = 0, and
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so we have the commutative diagram:

p/M B> py M, 2> Pn2e pooyag o Pl o

N NS

é KZ/MZ_&)é Kz/Mz_&) e S VYA K Ky
i=1 i=2

We could take the §,, = 0 as a base step of induction, but we prefer to show one
more step to see it easily. Since p,_16,_1 = d,pn_1, We get that §,,_; must map into

K,_1/M,_1. We know that

ker(fnflgonfl)/anl — ker(fnflﬂonfl)/ker Pn—1 = ker fnfl-

Since ker f,,_; is torsion free by assumption, we have ker(f,_1¢,_1)/K,_1 is
torsion free. We also know that ker(f, 1p,-1) is torsion free since
ker(fn_1¢n-1) < C,_1 and C,_; is torsion free. It means that K, ; is a pure
subgroup of ker(f,_1¢,-1). Then K, 1 = M, 4 since M, _; is a maximal pure
subgroup of ker(f,_1¢,—1) that is contained in K, ;. And then
Opn-1: Po1/M,_1 — K,_1/M,_ is the zero map, because K,_1/M,_1 = 0. Now,
we assume that 9;,; = 0 for some i, then we have the following commutative

diagram:

o Licly P/ M, —Lis Py M LES
0; 0it1 =10

e G G

l=i+1

Similarly, since p;0; = 0;.1p;, the morphism ¢; must be a map into K;/M,;. We
also know that ker(f;p;)/K; = ker(fip;)/ kerg; = ker f;. Since ker f; is torsion free
by assumption, we have ker(f;p;)/K; is torsion free. We also know that ker( f;p;) is
torsion free since ker(f;pp;) < C; and C; is torsion free. It means that K; is a pure
subgroup of ker(f;p;). Then K; = M, since M; is a maximal pure subgroup of
ker(f;p;) that is contained in K;. And then ¢; : P;/M; — K;/M; is the zero map
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since K;/M; = 0. Hence (01,02, -+ ,0,) = 0, as desired. O

Corollary 3.1.7.1. Ifker f; 5 are all torsion free, then the kernel of the covering map

of A is the object K, d, K, LN K, in q,.

Corollary 3.1.7.2. Let ker f; § be torsion free for all v < j. Then the coGalois group
of Ay LN Ag EENE N A, is trivial if and only if the coGalois group of A; 1 fJ—H>

f' fn— . ..
Ajyo 2N A s trivial,

Since the Priifer group Z, is divisible, its coGalois group is trivial. The following is
an example of an object in g3 with a non-trivial coGalois group, even though it consists

of abelian groups with a trivial coGalois group. See also (Hill (2008), Example).

Example 6. Let A, TN As EEN As be an object in q3 such that A; = Z,~ for each i
and that f; = 0 = f5. Let p; : C; — A; be the TFCs of A;. Then, clearly we have
C, = Cy = C3and K1 = Ky = K. Therefore, we have ker(f1p1) = Cy and
ker(fos) = Cs. Since there are no nonzero pure subgroups of Cy and Cy contained,
respectively, in K, and K,, it follows that M, = 0 = M.  And so,
Py/My = Py = Cy @ Kz and P /M, = P, = C1 & Ky ® Ks. Then, we have the

commutative diagram:

C&Gﬁffz@}l(gpﬁ2 OQ@K?)IO%OS

/dK @ idg /dK lo

K6 Ko K2 K ¢KkL>K,

Thus, we obtain nonzero morphisms (idx @ idg,idg,0) and (idg,0,0) from the

cover into the kernel of the covering map in q3. Hence G(A; TN Ag EEN Az) # 1.

Inspired by the previous example, we get in general the following results.

Proposition 3.1.8. Ler A f—1> Ao f—2> As be an object in q3 such that f; =0 = f, and
that G(A;) = G(As) = G(A3) = 1. Then G(A, L Ay & A3) = 1 ifand only if
HOIl'l(.[(?,7 KQ) =0= H0m(K2 (&) Kg, K1>
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Proof. (=) Since G(A; LENIEEN % A3z) = 1, we know that all the morphisms from the
cover to the kernel must be zero. So, we get Hom(K, @ K3, K1) = Hom(K3, Ks) = 0,
for if Hom(K, @& K3, K1) # 0 or Hom(K3, K3) # 0, then we can find a nonzero map

(01, 02, 03), which can be easily seen from the previous example.

(<=) Suppose that (01, d2, d3) is a morphism from the cover of the object to the kernel
of the covering map. We show that is zero. First, since G(A3) = 1 = G(A3), we know
that Hom(Cj3, K3) = 0 = Hom(Cy, K3), and so d3 = 0. Second, by the commutative
diagram, we have Hom(Cy & K3, K3) = 0. Moreover, since Hom(K3, K3) = 0 by
the assumption, it follows that Hom(Cy & K3, Ko & K3) = 0, and so d, = 0. Finally,
since G(A;) = 1 we know that Hom(C4, K;) = 0. By the commutative diagram, we
get Hom(C3 @& Ky @ K3, Ky @ K3) = 0. So the only possibility to get nonzero 0; is
a nonzero map from Hom(K> & K3, K;). But we know that it is not possible since
the assumption says that Hom(K, & K3, K;) = 0. Hence, 0; = 0, and so we get
G(A1 ELNG/IEEN 2 Az) = 1. O

The next result is a more general version of the previous proposition and it can be
proved similarly. Because, we actually said that G(A; TN A2 = A3) = 1ifand only
if Hom( K3, K3) = Hom(K3, K;) = Hom(K3, K7) = 0 if and only if Hom(K3, Ky &
K;) = 0 = Hom(K5, K7) under the hypothesis of Proposition 3.1.8.

Proposition 3.1.9. Let A be an object in q,, such that G(A;) = 1 foralli =1,2,.
and that f; = 0 for all ] =1,2,...,n — 1. Then the coGalois group of A is trivial if
and only if Hom(K;, @ K;)=0foralli=2,3,...,n

Before continuing, we need to know more about the TFCs in g¢,,.

Lemma 3.1.10. The subgroup im(p;p;—1---p1 : Pi/My — P1/Myq) of
P/ My is the pullback of homomorphisms

firtl@iv - oy (im fi - 1)/ Misr — Aiyo and @iiapl o - Prya/Mivs — Aiyo with
the restricted pullback maps p;_ | and p;;1:
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impipi1--pr P Py /My
/ /
\LP»L'H Pi+2Pi42

. firalpin
801‘_431(lmfi"'f1)/Mz‘+1 — A

where fii 1| im(fifi_1 -+ f1) — Aiyo is the restriction of fi11 @ Aiy1 — Ao to

im(fifiii--fi: Ay — Agq) foralli=1,2,--- n—2.

So, we have im(pip;— - - - p1)/ ker( fiz1|@ir1) = im(pis1p;i..p1).

Proof. To avoid an ambiguity, we must remember the projection map ; : C;/M; — A;

denoted samely with the TFCs ; : C; — A; of A;.

Firstly, we must see that im f; = im(f;¢1). Consider the following commutative

diagram:

Pl/MlL im py
10 2%
fi

Al —>1im f1

Moreover, we also have that:

by Lemma 1.2.8 and Theorem 2.3.1. So, we have the following commutative

diagram:
P _ .
Py /M;——> im p;
a Paph

@7 (im fl)% im f;
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By using Lemma 1.2.8 and Theorem 2.3.1, we can get an isomorphism

(Py/My)/(ker fip1/My) = P/ ker fipr = impy.

Similarly, it is easy to see that (py)~'(p,'(im fi)) is the pullback of the
composition maps fo|ps : @y (im f) — Az and @3ph : P3/Ms — Aj since

@y H(im f1) < Cy by Lemma 1.2.8. So, we have the following commutative diagrams:

N1/ —1 P2
(PQ) 1(g021(1mf1)) > P/ M;
P P34
oy (im f1) f2!<ﬂ>2 As

and

1. P2
(P/z)_l(S%l(lmfl))/Mz = Ps/M3
P a0}

o7 (im i)/ My <22 4,

Similarly, we have

((ph) (g ' (im f1))/ My) [ (ker(f2]2)/ Ms)
(ph) (3 ' (im f1))/ ker( fa|g2)

= pa(impy)

im py / (ker(f2]p2)/ Mo)

I

= lm(pgpl)

Now, assume for some j with 1 < j < n — 2 that im(p;p;_1 - - - p1) is the pullback in

the following commutative diagram:

im(p; - - - p1) Pitls Priy/Mjis
l/p;ﬂrl Pjr2P i
fj+1|90j+1

‘P;h(im(fj s 1)) My > Ay
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It follows that

im(p; - -+ 1)/ ker(fialej1) = (K1) (o (m(f; -+ f1)))/ M)/ (ker(fial@jan)/ M)
= (ph) ey (im(f5 -+ f1)))/ ker(fial@je1)
= pjyi(im(pj - p1))

= im(pj105 - p1)

using the Lemma 1.2.8 and Theorem 2.3.1. We also know that

im(pj1p5..p1) = (Spj+2,0;‘+2)71(im(fj+1fj o f1)s
since we have im(fj11|@j41) = fi|(im(f;fi—1--- f1)) = im(fj f;5- - fr).

Since im(fj1fj--- f1) < Ajyo, and 50 (pj40) ' (im fio1 fj -~ f1) < Cjia/ Mo,

the complete inverse image (p;j420,5) " (iM(fjp1f;--- f1)) = im(pj41p;..01) is the

pullback in the following commutative diagram:

im(pj1-opr) L2 Py /M,

/ /
Pj+2 Pj+3Pj43

L. fj+2|§0j+2
Qi (m(fip1 - f1))/Mjsa—> A3

And so we get that:
im(p; -+ 1)/ ker(fialeje1) = ((Ph1) oy (m f -+ f1)) /M) / (ker(fi1|@je1/Mjsr))
= (p0) " s (m(fifia -+ 1))/ Ker(fialejen)

= pia(im(pjpj1---p1))

=1im(pj41---p1)

by Lemma 1.2.8.

Under the hypothesis of the previous lemma, we have the following result.
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Proposition 3.1.11. ker(f;1|@ii1) is pure in im(p;p;—1 - - - p1)-

Proof. We have im(p; - - - p1)/ ker(fiv1|@iv1) = im(pip1p;- - p1) by Lemma 3.1.10.
Moreover, we know that im(p; - -- p1) and im(p;11p;--- p1) are torsion free since
im(p; -+ p1) and im(p;1p; - - - p1) are subgroups of the torsion free abelian groups
Pii1/ My and Py o/ M, o, respectively. Thus, it is easy to see that ker(fi11|pi+1) is
pure in im(p;p;_1..p1) by using Theorem 1.2.7. O

3.2 Some Relations between coGalois Groups and p-divisibility

Before giving the classification of objects that have trivial coGalois group in ¢,
we need some features about TFCs and coGalois groups in the category .Ab of abelian
groups. The aim of this section is to prove that Hom(P, /M;, K /M;) = 0 if and only
if P, /M, is p-divisible for each r-prime p of ker f;.

A similar version of the following useful lemma were used in the proof of (Hill,

2008, Theorem 4.1) without proving. So, we will give its proof.

Lemma 3.2.1. Let p : C' — A be a TFC of an abelian group A with the kernel K. If
C'is pure in a torsion free abelian group P, then any homomorphism ¢ : C' — K can

be extended to a homomorphism 6: P> K.

Proof. Consider the following commutative diagram with exact rows, which is

obtained by pushout of § and the inclusion map i : C' — P:

0 C P P/C 0
bt
i
0 K<___X P/C 0
P1

Since C'is pure in P, then P/C'is a torsion free abelian group. Therefore, the bottom

row splits by (Xu, 1996, Lemma 2.1.1) as K is the kernel of a TFC. This means that

42



there exists a map p; : X — K such that pyi; = idgx. Thus the composition map

5 = p1ie extends o, as desired.

The following result were used in the proof of (Hill, 2008, Theorem 5.1) without

proving. We state it as a lemma here with a proof.

Lemma 3.2.2. Let ¢ : C' — A be the TFC of an abelian group A with the kernel K.
Then, there is no nonzero p-divisible subgroup of C' in K for every r-prime p of A.

Proof. If there is no r-prime of A, then A is torsion free, and so A is a TFC of itself

with zero kernel. In this case, there is nothing to prove.

Assume that A is not torsion free. Suppose, the contrary, that there is a nonzero p-
divisible subgroup H in K for every r-prime p of A. Then, H is p-pure in C for every
r-prime p. Observe that K is ¢g—pure for all non-r-prime q of A, forifk = gqc € ¢qCNK,
then we have 0 = ¢(k) = ¢(qc) = ge(c). This implies that p(c) = 0 since A has no

nonzero element of order ¢, that is, ¢ € K.

Let H' be a subset of C' defined as H' = {c € C' : ¢"c € ¢qC N H} for all non-r-
primes ¢ of A. Clearly, H' C K. We claim that H* =< H, H' > is a pure subgroup
of C' that is contained in K, which will contradict the fact that K is the kernel of the
covering map. First, we will show that H* is p-divisible for every r-prime p, and it
suffices to show this for H' since H is already p-divisible. Taking an arbitrary element
¢ € H',wehave ¢"c € qCNH. Then ¢"c = ph’ forsome h' € H since H is p-divisible,
and so ¢" | h' as q t p, or equivalently, h’ = ¢"h” for some h” € C. It follows that
q"c = ¢"(ph”), which implies that ¢ = ph” since C' is torsion free. Moreover, we
have ¢"h" = h' € ¢qC N H,and so " € H'. Thus, H' is p-divisible, and so is H* for
every r-prime p of A. Finally, it is clear by definition that H* is also r-pure for every
non-r-prime of A. Hence H* is p-pure in C' for all primes p, and so it is pure in C' by

Lemma 1.2.4, since C'is torsion free. ]
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The importance of the previous lemma is that if G is a p-divisible group for every
r-prime p of A, then Hom(G, K') = 0. Because a homomorphic image of a p-divisible

group is also p-divisible.

Remark 4. It is known that the TFC of a (p-) divisible group is (p-) divisible (see
(Enochs et al., 2000, Proposition 3.3)). But, the torsion free precover of a divisible
group need not be divisible. To give an example, let p : C' — A be the TFC of a divisible
group A. Let C' be any torsion free group and consider the zeromap 0 : C' — A. Then
C @ (' is a torsion free precover of A with the torsion free precovering map ¢ @ 0.
Moreover, the precover C & C' quitely depends on our choice for C', and we are free

to choose any torsion free group that is not divisible.

Let’s give some notations which we will use in the following two lemmas. Let
¢ : C — Abea TFC of A with the kernel K, and let A’ < A. Then the complete
inverse image ¢~ !(A’) of A’ is a torsion free precover of A’. Now, we will give some
facts about divisibility of the torsion free precover ! (A’). Moreover, the ideas in the

proof of (Hill (2008), Theorem 5.1) will be used.

Lemma 3.2.3. Suppose that the following conditions are satisfied, where p is a prime.
1. A has a trivial coGalois group.
2. A is p-divisible.
3. Al(p) = Alp).

Then o~ Y(A’) is p-divisible.

Proof. Since G(A) = 1by (1), we also know that A is p-divisible for each its r-primes
p. This means that the torsion subgroup #(A) of A is divisible, and so a direct summand
of A. Then, A = t(A) ® F, where F' is a torsion free subgroup of A. Moreover, F’
is also p-divisible for each r-prime of A. By the uniqueness of the TFCs, we can get

C = o (HA) @ F with K < o~ (t(A)).

As the first case, let A’ = 0. Since A(p) = 0 by (3), we get p is not r-prime of
A. Then, we will show that ¢~!(0) = kerp = K is p-divisible for all non-r-primes
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p of A. By the Fundamental Homomorphism Theorem, we have C'/K = A, and so
(C/K)(p) = A(p) = 0. So, K is p-pure in C, for if 0 = (k) = ¢(pc) = py(c)
for some £ € K N pC, then ¢(c) = 0 as A(p) = 0 by (3). Thatis, ¢ € K and so
k = pc € pK. Therefore, K is p-pure in ¢ 1(t(A)), and so it is p-divisible since
o~ 1(t(A)) is divisible, which proves the first case.

Now, assume that A" # 0. Then, using the arguments above, we write again A =
t(A) & F where t(A) is divisible and F is p-divisible for each r-prime of A or t(A).
Therefore, as a p-group, A’(p) is divisible by the condition (2), and so we have by (3)
that

A=A (p) dt(A) @ F,

where t(A)* has no nonzero element of order p. So, by the uniqueness of TFCs, we
have

C=C(A(p) @ CHA)) @ F,

where C'(A'(p)) and C(t(A)*) are the TFCs of A’'(p) and t(A)*, respectively. Since
A'(p) and t(A)* are divisible, we know that C'(A’(p)) and C(t(A)*) are also divisible.
Now, if we intersect the first equality above by A’, we get A" = A'(p) & t(A')* & F,
where ¢(A’)* has no nonzero element of order p and F” is the torsion free part of A’,
and so we have C' = C(A'(p)) & C(t(A")*) & F', where C" and C(t(A’)*) are TFCs
of A" and t(A’)*, respectively. Besides, if we intersect the second equality above by
0 LA, we get o 1(A') = C'" @ L, with L < K*, where K* is the kernel of ©* :
C(t(A)*) — t(A)*. As a consequence, to complete the proof it is enough to show that
both C” and L are p-divisible. Clearly, we already know that C’ is p-divisible since it
is a TFC of a p-divisible group A’ by (2).

Since (A/A")(p) = 0 by the conditions (2) and (3), it follows by the following
isomorphisms that (C'/¢~1(A’))(p) = 0.

AJA = (C/K)/ (7 (A)/K) = Ce H(A).

Thus, ¢~ *(A’) is p-pure in C, and so C’ and L are p-pure in C' as direct summands.
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Then C(t(A’)*) and L are p-pure in C'(t(A)*). Hence C’ and L are p-divisible since
C(t(A)*) is. O

Lemma 3.2.4. If A is an abelian group with a trivial coGalois group, and A’ < A,
then A’ is p-divisible and A'(p) = A(p) if and only if o~ (A’) is p-divisible.

Proof. (=) It follows by the Lemma 3.2.3.

(<=) As the first case, let A" = 0. It is enough to show that A(p) = 0 when K =
ker ¢ is p-divisible. Suppose, the contrary, that A(p) # 0. Since G(A) = 1, we know
that A is p-divisible for every its r-prime. So A(p) is divisible as a p-group, and then
it contains the Priifer group Z,~ as a direct summand. So, by the uniqueness of TFCs,
C' contains the TFC C(Zy) of Zy~ as a direct summand. Then the kernel K* of
©* : C(Zy) — Zy is contained in K as a direct summand. Since it is known that /*
is not p-divisible by Lemma 3.2.2, we conclude that K is not p-divisible, contradicting

the assumption.

Next, assume that A" # 0. Since A’ is an epimorphic image of the p-divisible
group ¢~ (A), it is also p-divisible. Now, assume that A’(p) # A(p). Then, both of
them cannot be 0, and so A(p) # 0. Moreover, we already know that A is p-divisible
for every its r-prime since G(A) = 1. Then we can write A = Z,~ & A", where
A" < A” since A(p) and A'(p) are both divisible. So, by the uniqueness of TFCs,
we get C' = C(Zy~) & C" where C" is the TFC of A”. Intersecting this equation by
@ (A, yields that p~1(A") = K* @ (¢ ' (A") N C"). Since K* is not p-divisible, we

get that ¢~ 1(A’) cannot be p-divisible, a contradiction. O

Theorem 3.2.5. Let ; : C; — A; be the TFC of an abelian group A; with the kernel
K; fori = 1,2. Assume that the coGalois group of Ay is trivial. For a subgroup A’ of
Ay, if A" is p-divisible and A'(p) = Ai(p) for every r-prime p of As, then
Hom(yp; H(A'), Ky) = 0.

Proof: We know that ;'(A’) is p-divisible for every r-prime of A, by the Lemma

3.2.4. We also know that there is no nonzero p-divisible subgroup in K5 for every r-
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prime of A, by the Lemma 3.2.2. So it is easy to see that there is no nonzero map from
©1 ' (A') into K by the well-known fact that the homomorphic image of a p-divisible
group is also p-divisible. [

Theorem 3.2.6. Let A be an abelian group that has a trivial coGalois group, and p, a
r-prime of A. Then there is a nonzero map from a torsion free abelian group G that is

not p-divisible into the kernel of the TFC of A.

Proof. Let ¢ : C' — A be the TFC of A with the kernel K. We know that A is
p-divisible for every its r-primes since its coGalois group is trivial. So we have that A
has a direct summand that is isomorphic to Z,~. Since the TFC is unique upto
isomorphism, we can assume that C' contains the TFC C(Z,~) of Z,~ as a direct
summand. So the kernel 7, of the covering mapping of Z,~ is contained in K as a
direct summand. Let G be a torsion free abelian group that is not p-divisible. We will

show that there is nonzero map from G into 7,.

Since G is not p-divisible, the quotient group G/pG is a nonzero vector space over
Z/pZ. Similarly, T,,/pT, is a nonzero vector space over Z/pZ. Because, we know
that 7}, cannot be p-divisible by Lemma 3.2.2. Now, we have a nonzero
homomorphism o : G/pG — T,/pT, since both of them are nonzero vector spaces
over Z/pZ. We have the facts that T, is a direct summand of a product of copies of a
completion of localization of the ring Z at the prime p, and 7), is the TFC of T,,/pT,
with the canonical map ¢,, by (Xu, 1996, Proposition 4.1.6) and (Enochs et al., 2000,
Section 3). Since ¢, : T, — 1,/pT, is also a torsion free precover of 7, /pT,, G is
torsion free, and there is a nonzero composition map o : G — 1,/pT,, where
7 : G — G/pG is the projection map, we know that there is a nonzero map

o' : G — T, makes the following diagram commutes:
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This completes the proof. O

The previous theorem have a significant importance for our main theorem, and
although it seems different from (Enochs & Rada (2005), Lemma 2.7), but the proof

of this lemma motivated the proof of the previous theorem.

Theorem 3.2.7. Let A be a torsion abelian group that has trivial coGalois group. Then

there is no nonzero homomorphism from a torsion free abelian group G into the kernel

of the TFC of A if and only if G is p-divisible for every r-prime p of A.

Proof. Let ¢ : C' — A be the TFC with the kernel K. Since G(A) = 1 and A is

torsion, we know that A is divisible.

Since G is torsion free, we know that the identity map idg : G — G is the TFC of
G. So we have that p B idg : C DG — AD G is the TFC of A ® G with the kernel K.

Clearly (A®G)/t(A®G) = (A®G)/A = G. Hence, we have that Hom(G, K) = 0
if and only if G is p-divisible for every r-prime p of A by using (Enochs & Rada (2005),
Lemma 2.7). [

Proposition 3.2.8. Let A be an abelian group that has trivial coGalois group. Then

there is no nonzero homomorphism from a torsion free abelian group G into the kernel

of the TFC of A if and only if G is p-divisible for every r-prime p of A.

Proof. Let ¢ : C — A be the TFC with the kernel K. We know that the torsion
subgroup t(A) of A is divisible, the homomorphism ¢ : o1 (¢(A)) — t(A) is the TFC
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of t(A) with the kernel K, and moreover ¢(A) also has a trivial coGalois group. Hence,

the proof is completed by using Theorem 3.2.7. [

Theorem 3.2.9. Let ; : C; — A; be the TFC of an abelian group A; with the kernel
K; fori = 1,2. Assume that G(A,) = 1. For a subgroup A" of Ay, A is p-divisible
and A'(p) = A\ (p) for every r-prime of Ay if and only if Hom(p; '(A’), Ky) = 0.

Proof. (=) By Theorem 3.2.5.

(<) By using Lemma 3.2.4, it is enough to show that there is a nonzero
homomorphism from ¢, *(A4’) into Ky with assuming ¢; ' (A’) is not p-divisible for

any r-prime p of As. This fact comes with using Theorem 3.2.6. [

The previous theorem can also be proven easily with using Theorem 3.2.5 and

Proposition 3.2.8.

3.3 The Classification of Objects in ¢, Having a Trivial coGalois Group

Now, we return to give necessary conditions for the coGalois group of an object A

in q, is trivial.

Theorem 3.3.1. [fthe coGalois group of an object A is trivial, then the coGalois group

of an abelian group ker f; is trivial for all i 5.

Proof. Assume G(ker f;) # 1 for any i. We know that ker(f;p;)/M; is the TFC of
ker f; with the covering map ¢; and the kernel K;/M; by Lemma 3.1.6. By
assumption, we have a nonzero map §; € Hom(ker(fip;)/M;, K;/M;). By using
Lemma 3.2.1, §; can be extended a map from P,/M; to K;/M,. Then
(6ipic1-+-p1,- -+ ,0ipi—1,0;,0,---  0) is a nonzero morphism from the cover of A

into the kernel of the covering morphism. Hence G(A) # 1. O

Proposition 3.3.2. Ifthe coGalois group of an object A in q,, is trivial, and f; 1 --- f; =
n—1
O, then HOIn(@ KJ/MJ, Kl/Ml) =0.

j=i
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Proof. We must recognise that f;| : im(f;_1--- fi) — A1 is the zero map since
im(f;_1--- f1) = 0. So ker(f;|¢;) = K;/M;. Since im(p;_1 - - p1) is an epimorphic
image of P, /M and ker(f;|¢;) is pure in im(p;_1 - - - p1) by Lemma 3.1.10, we can
get Hom(K;/M;, K1/M;) = 0 by using Lemma 3.2.1. And f;---fi_1---f1 = 0

since f;_1---f1 = 0 where j > i — 1. Because of the same reason, we have
n—1

Hom(K;/M;, K1/M,;) =0 forall j > i — 1. Hence, Hom( @ K,;/M;, K1/M;) =0,
j=i

as desired. O

Lemma 3.3.3. Ifthe coGalois group of an object A is trivial in q,, then the following
conditions are satisfied for every r-prime p of ker f; wherei =2,...,n—1:
1. The coGalois group of the object A,y EEN Az LS LN A, is trivial in q,_1.
2. The coGalois group of the abelian group ker f; is trivial.
3. ker fy nim(fi_y - - - f1) is p-divisible.
4. (ker fynim(fi—1--- f1))(p) = ker fi(p).
5. im(f_q -+ f1) is p-divisible.

6. Ay(p) =1im(fr_1--- f1)(p).

Proof. The conditions (1) and (2) are satisfied by Lemma 3.1.3 and Theorem 3.3.1,

respectively.

For the conditions (3) and (4), first remember that ¢; : (ker fip;)/M; — ker f;
is the TFC of ker f; with the kernel K;/M; of the covering mapping. Moreover, the
coGalois group of ker f; is trivial by Theorem 3.3.1. In particular, ker fip1/M; is
the TFC of ker f; with the kernel K; /M, and that G(ker f;) = 1. Recognise that
fil -im(fi_1 -+ fi) = A4 is defined in Lemma 3.1.10, and we know that ker(f;|) =
ker f; Nim(f;_1--- f1) < ker f;. We also have that ;' (ker f; Nim(fi_1--- f1)) =
ker(fi|lgi © @ {(im(fiy--- f1)) — Asp1) is the complete inverse image of ker f; N
im(f;_1--- f1). Therefore, using Lemma 3.2.4, we can say that the conditions (3) and

(4) are equivalent to the fact that ker( f;|p;) is p-divisible for every r-prime p of ker f;.

Now, by Lemma 3.2.1 and Proposition 3.1.11, we can see that any nonzero map in

Hom(ker(fi|¢;), K1/M;) can be extended to a nonzero map in

50



Hom(im(p;—y - - p1), K1/M;y). Since im(p;—;---p1) is an epimorphic image of
Py /M, we get a nonzero map from P;/M; to K;/M;. To see it clearly, take a
nonzero homomorphism ¢ € Hom(im(p;—1 -+ p1), K1/M;),  then
(0pi—1 -+ p1,0,0,...,0) is a nonzero morphism from the cover of A into the kernel of
the covering map of A, which means that G(A) # 1, conradicting the assumption.
Thus, Hom(ker( f;|¢;), K1/M;) = 0, and so ker( f;|p;) is p-divisible for every r-prime

of ker f1, using Theorem 3.2.9, as desired.

For the conditions (5) and (6), we will use similar ideas. Firstly, we must recognise
that im(p,_1---p1) = @, (im(f,_1---f1)) is the complete inverse image of
im(f,_1 -+ f1) under the TFC ¢, : C,, — A,. We know that G(A,,) = 1 by (1) and
Lemma 3.1.3. Note that ker f;,1/M; is the TFC of ker f; with the kernel K;/M;,
and that G(ker f;) = 1 under the hypothesis by using Theorem 3.3.1. Therefore,
using Lemma 3.2.4, we can get that the conditions (5) and (6) are equivalent to the

fact that o, ' (im(f,,_; - - - f1)) is p-divisible for each r-prime p of ker f;.

Moreover, im(p,_1 - - - p1) is an epimorphic image of P, /M;. This means that for
any nonzero homomorphism § € Hom(im(p,_1 - - p1), K1/M;), we have a nonzero
morphism (6p,_1---p1,0,0,...,0) from the cover of A into the kernel of the
covering map of A, which means that G(A) # 1, conradicting the assumption. Thus,
Hom(p, '(im(f_1--- f1)), K1/M;) = 0, and so ¢, ' (im(f,_1--- f1)) is p-divisible

for every r-prime of ker f, using Theorem 3.2.9, as desired. O

Proposition 3.3.4. [f the coGalois group of an object A is trivial, and f,—1 --- f1 =0,
then Hom(Kn/Mn, Kl/Ml) = 0.

Proof. Since f,_1--- fi = 0, we have that im(pyps - - - pp—1) = K,/ M,,. This means
that K,/ M,, is an epimorphic image of P, /M. If there is a nontrivial hoomorphism
from Hom(K,,/M,, K1/M;), then we can get a nonzero homomorphism from

HOm(Pl/M17K1/M1). U]

Now we can see the following fact with using both of Proposition 3.3.2 and
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Proposition 3.3.4:

Proposition 3.3.5. If the coGalois group of an object A is trivial, and f;_1--- f1 = 0,
then HOH](@K/ Kl/Ml) = 0.
7=t
Now, we will give the main theorem that is the classification for line quivers that

have the trivial coGalois group.

Theorem 3.3.6. The coGalois group of an object A, ELN Ay = NN UN Ay in gy is

trivial if and only if the following conditions are satisfied for each r-prime p of ker f1,

where1=2,...,n—1:
1. The coGalois group of the object A gy Az LN LN A, is trivial in g, 1.
2. The coGalois group of the abelian group ker fi is trivial.
3. ker fynim(f;_y -+ - f1) is p-divisible.
4. (ker fy nim(fi—1 - f1))(p) = ker fi(p).
5. im(f,_q -+ f1) is p-divisible.
6. An(p) = im(fuy--- f1)(p).

Proof. (=) It follows by Lemma 3.1.3, Theorem 3.3.1, and Lemma 3.3.3.

(«<=) We can use Theorem 3.1.5 to say that the proof will be all about showing
Hom(P, /M, K,/ M) = 0, but we will not use it for completeness.

It suffices to show that Mor(Pl/Ml o, Py /M, B2 po 1/ M4 LN
cn,eBKj/M o eBK/M o B Ky, @ K, B K,) = 0, by
Lemma 3.1.1. Take a rnorphlsm (61,02, ,0,) from the cover of A into the kernel

K. So, the following diagram commutes:

Pl/Ml_% PQ/MQ_% pn%Q Pn—l/Mn—l ,On%lcfn

. S

é KZ/MZ_%® Kl/Ml_% . %anl/Mn—l P Kn_% Kn
i=1 =2

We know that (J,...,d,) € Mor(Ps/M, NN P, 1/M, 4 LN
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Cn,éKi/Mi LN N Kn1/m, . & K, LN K,), and so it is the zero
mor;):hzism by Condition (1). So, d; must be a homomorphism from P;/M; into
Ky /M since 0 = d2p1 = p161, and so imd; < kerp; = K;/M;. We claim that
0 : Pi/M; — K;/M; is the zero homomorphism. This is equivalent to show that
Py /M is p-divisible for every r-prime p of ker f; by Proposition 3.2.8. Note that
ker(fip1)/M; is the TFC of ker f; with the kernel Ki/M;, and that ker f; is
p-divisible by Condition (2) for every its r-prime, and so ker(fi¢1)/M; is p-divisible.
Thus, we have Hom(ker(f11)/ M, K1/M;) = 0 by (2). Therefore,

(P/My)/(ker(fip1)/ M) = P/ ker(fipr) = imp;.

So, it is enough to show that im p, is p-divisible for every r-prime of ker f;.

As trivial cases, we know if im f; = 0, thenim p; = @ K;/M;. Ifim(f;_1--- f1) #
=2
0 and 1m(f,fz_1 °oog fl) = O, then 1m(pzpz_1 < pl) S @ KZ/M,

By Lemma 3.1.10, we also have

im p1 / ker( fa|p2) = im(p2p1)
im(pap1)/ ker(fs|ps) = im(pzp2p1)

im(p;_1--- p1)/ ker(filos) = im(pipi—1--- p1).

im(p,—o- - p1)/ker(fr—1|n—1) = im(pp_1pn—2 - p1).

where f;| : im(f;_1--- fi) — Ay is a restriction map of f; : A; — A; 4 forall
i =2,...,n— 1. So, it is enough to show that ker(f;|p,)’s and im(p,—1p5—2 - - - p1)

are all p-divisible for every r-prime p of ker f;. Moreover, we have

ker(f;| 1 im(fj—1--- f1) = Ajy1) = ker f; nim(fj1 -+ f1).

First, we know that G/(ker f;) = 1 forall j = 2,...,n — 1 by Condition (1) and

53



Lemma 3.3.1. So, by the conditions (3), (4) and Lemma 3.2.3, we have the complete
inverse image goj’l(ker fil) = ker f;|p; of the subgroup ker f;| of ker f; is p-divisible
for every r-prime p of ker f;.

To be more clear, from Lemma 3.1.10, we can remember that im(p;_; - - - p1) is the

pullback in the following commutative diagram:

im(pj_1 - p1) —LLs Py /M
ip; ©jt1011

o im(f, - )% A

We assumed that (kerf; N im(fj_1---f1))(p) = ker f;(p) and
ker f; Nim(f;_1 - -- f1) is p-divisible for every r-prime p of ker f; by conditions (3)
and (4). Then the complete inverse image <pj’1(ker fi nim(fi—1--- f1)) under the
covering mapping of ker f; is p-divisible for every r-prime p of ker f; by Lemma

3.2.3. Tt also means Hom(gpj_l(im(fj -+ f1)), K1/Mj) = 0. Moreover, we also have:

im(p;_1 -+ p1)/ ker(filp;) = pi(im(pj—1 -+ p1)) = im(pjp;j -1 p1)

by Lemma 3.1.10. So it is enough to show that
Hom(im(p;p;_1---p1), K1/M;) = 0. Similarly, we know that im(p;p,;_1--- p1) is

the pullback in the following commutative diagram:

im(pjpj1---p) P Pro/ Mo
P Pjr2Pio

L fiv1lej
e (im(fieafs-- f) = Ajta

Similarly, we get that ker(f;1|p;41) is p-divisible for every r-prime p of ker f;.

Next, it remains to prove that im(p,,_1 - - - p1) is p-divisible for every r-prime p of

ker f;. Now, we have the following commutative diagram:
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im(p,—g--p) P Gy

\Lp;l_l l/gpn
fnfl |S0n71

P (im(foz - 1)) —> Ay

And 50, pn—1 (im(pp—2 -+ p1)) = im(pp_1 - p1) = @, (IM(fro1 -+ f1))
since im(f—1|pn—1) = im(fr_1| : IM(fr—2---fi) = A,) = im(fr_1--- f1). We
assume im(f,,_y - - - f1) is p-divisible and im(f,,—; - - - f1)(p) = A,(p) for every r-prime
of ker f; by conditions (5) and (6). Clearly, we have G(A,,) = 1 by the condition (1)

and Lemma 3.1.2.

Hence, it follows that im(p,,_1 - - - p1) = @, *(im(f,_1 - - - f1) is p-divisible for every

r-prime of ker f; by Lemma 3.2.3. [
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CHAPTER FOUR
CONCLUSION

A complete characterization of abelian groups having a trivial coGalois group was
given in Enochs & Rada (2005). After, coGalois groups have been studied for a pair
of abelian groups and characterized when they are trivial in Hill (2008). Actually,
coGalois groups have been studied in the category of representations of the quiver
(i.e., a directed graph) ¢, : @ — e there. Because, the coGalois group is definable for
any category with a covering class, and the torsion free covers exist for the category
(Gn, Z-Mod) of representations of the line quiver ¢, : « — & — ... — e withn — 1
arrows and n vertices (see Wesley (2005)), we define and study coGalois groups in that
category. We give some properties of torsion free covers and coGalois groups of objects
similar to those given for abelian groups, and characterize the objects in (g, Z-Mod)

having a trivial coGalois group, in terms of trivial coGalois groups of abelian groups.
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