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ABSTRACT

INCORPORATING TRAJECTORY INFORMATION IN RANDOM MATRIX
ELLIPTICAL EXTENDED TARGET TRACKING

Sahin, Kurtulus Kerem
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Emre Ozkan

September 2024, [71] pages

This thesis focuses on Extended Target Tracking (ETT) using Random Matrix Meth-
ods (RMM), which provide enhanced estimations of target size and movement in
tracking systems. Traditional methods often miss crucial trajectory details, which, if

considered, could improve tracking performance.

To address this issue, we have developed two new RMM-based models. The first,
the trajectory-aligned model is designed for targets moving in a consistent direction,
ensuring that the orientation aligns with the trajectory. The second, the drifting model
is for targets whose orientation deviates from their heading direction. Utilizing the
variational Bayes (VB) method, we obtain posterior densities by performing analyti-
cal and iterative steps for both models. This methodological choice ensures that our
models not only deliver precise tracking results but also operate efficiently in real-

time applications.

Extensive testing on both simulated and real-world data has proven that our mod-
els effectively outperform current methods in handling drifting and trajectory-aligned

targets. These tests confirm the flexibility and efficiency of our models under diverse



conditions. The demonstrated success of our models in both simulated and real en-
vironments underscores their potential to significantly enhance current standards in

extended target tracking.

Keywords: Extended Target Tracking, Random Matrix, Maneuvering Motion Mod-

els, Variational Bayes, Automotive Radars
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RASLANTISAL MATRIS TABANLI ELiPTiK GENISLETILMIS HEDEF
TAKIBI YONTEMLERINE YORUNGE BILGISI EKLENMESI

Sahin, Kurtulug Kerem
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii

Tez Yoneticisi: Doc. Dr. Emre Ozkan

Eyliil 2024 ,[71] sayfa

Bu tezde, Genisletilmis Hedef Takibi (GHT) iizerine odaklanmaktadir ve hedef ta-
kip sistemlerinde hedef boyutu ve hareketinin gelismis tahminleri Raslantisal Matris
Yontemleri (RMY) kullanilarak saglanmaktadir. Geleneksel yontemler genellikle kri-
tik yoriinge detaylarini goz ardi ederken; bu detaylar dikkate alindiginda, hedef takip

performansi artirilabilir.

Bu sorunu ele almak igin iki yeni RMY tabanli model gelistirilmistir. 11k olarak ge-
listirilen yoriingeye hizali model, hedefler siirekli bir yonde hareket ettirildiginde yo-
riinge ile yonelim agisinin uyumlu olmasini saglamak iizere tasarlanmustir. Ikinci ola-
rak gelistirilen yoriingeden sapma modeli, yonelimi baglangi¢c dogrultusundan sapma
gosteren hedefler icin uygundur. Varyasyonel Bayes (VB) yontemi kullanilarak her
iki model i¢in analitik ve yinelemeli adimlar gerceklestirilerek sonrasal olasilik yo-
gunluklar1 elde edilmektedir. Bu metodolojik se¢cim, modellerin sadece kesin izleme
sonuclart sunmakla kalmayip ayni zamanda gercek zamanli uygulamalarda etkin bir

sekilde ¢calismasini saglamaktadir.
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Hem benzetimli hem de gercek diinya verileri iizerinde yapilan kapsamli testlerle,
modellerin mevcut yontemleri sapma ve yoriingeye hizali davraniglar gosteren he-
deflerin takibinde etkili bir sekilde astig1 kanitlanmigstir. Bu testler, modellerin ¢esitli
kosullar altinda esneklik ve verimliligini teyit etmektedir. Modellerin hem benzetimli
hem de gercek ortamlarda gosterdigi basari, mevcut genisletilmis hedef takip stan-

dartlarin1 6nemli Slgiide gelistirme potansiyelini vurgulamaktadir.

Anahtar Kelimeler: Genisletilmis Hedef Takibi, Raslantisal Matris, Manevrali Hare-
ket Modelleri, Varyasyonel Bayes, Otomotiv Radarlar
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Extended Target Tracking (ETT) has become increasingly critical in modern tracking
applications due to advancements in sensor technologies that allow for the detection
of complex object shapes and their dynamic behavior. Traditional tracking methods
often assume that an object is represented as a single point. Still, this assumption
falls short in scenarios where the object’s spatial extent influences its movement and
interaction with the environment. ETT addresses this by estimating not only the posi-
tion and velocity of a target but also its size, shape, and orientation, providing a more

comprehensive understanding of the target’s behavior.

Despite the progress in ETT, a significant limitation in the current literature is treat-
ing the rotation information of the target’s extent as uncorrelated from its dynamic
behavior. This simplifying assumption neglects the potential insights gained from
correlating the target’s kinematic state, such as velocity and heading, with its rota-
tional dynamics. If this correlation were accounted for, the tracker could potentially
achieve more accurate predictions of the target’s future state, especially in scenar-
ios where the target exhibits continuous angular velocity dynamics. For instance, in
cases where a target’s heading direction is aligned with its extent, such as in vehicles
or commercial aircraft, maintaining this correlation could enhance the tracker’s abil-
ity to predict sharp maneuvers and changes in direction. This raises the question of
whether incorporating the correlation between the target’s heading and the orientation

of its spatial extent could yield better tracking performance.



1.2 Target Tracking

In traditional tracking methods, known as single point target tracking, an object is as-
sumed to generate at most one measurement per time frame or scan. This assumption
holds in scenarios where the object is distant from the sensor, such as radar-based air

surveillance, where the object is treated as a point due to sensor resolution limitations.

Various methods have been developed under this assumption. Single model-based
methods include the Kalman Filter, Extended Kalman Filter (EKF) [1]], and Un-
scented Kalman Filter (UKF) [2]]. For scenarios involving multiple motion models,
Generalized Pseudo-Bayesian Filters (GPB-I and GPB-II) [3]] and Interacting Multi-
ple Model IMM) [3]] filters are used. In more complex or nonlinear scenarios, Particle
Filtering [4] and Markov Chain Monte Carlo (MCMC) techniques [5] are used. These
methods effectively handle non-linearities and non-Gaussian processes, making them

suitable for more challenging tracking environments.

However, as sensor technologies have advanced, the assumption that an object gener-
ates only a single measurement per scan has become increasingly limiting. In many
modern applications, such as autonomous driving or robotics, objects often occupy
several sensor resolution cells, generating multiple measurements. This has led to
the development of Extended Target Tracking methods, where the goal is to estimate
not only the object’s position and velocity but also its size and shape, which may

vary over time [6-8]]. A comparison of two target tracking paradigms is illustrated in

Figure[I.1]

1.3 Extended Target Tracking

Various approaches have been proposed thus far to address the ETT problem in learn-
ing the underlying shape of targets in simple mathematical forms. The complexity of
shape modeling directly impacts the tracking method’s accuracy and computational

demands [7, 8]].

Extended target tracking methods can be classified based on how they represent the

object’s shape. The most straightforward approach to shape representation assumes
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(a) Point target tracking (b) Extended target tracking

Figure 1.1: Comparison between point target tracking and extended target tracking.
In (a), the aircraft is represented as a single point (xj), with sensor measurements
shown as crosshairs (). In (b), the aircraft is treated as an extended object, with its
outline represented in red (X} ). The distributed sensor measurements (@) across the

target’s surface capture the extended nature of the tracking scenario.

that the object can be modeled as a fundamental geometric shape, such as a circle,
ellipse, or rectangle. These methods are computationally efficient and are often suf-
ficient when tracking objects like vehicles or pedestrians, where the shape can be

approximated with a simple geometric form.

e Ellipse Models: A common example is the Random Matrix Approach [9-25]
where the object’s extent is modeled as a covariance matrix or deterministic
approaches [26L27] which uses semi-axes lengths of an ellipse. This method is
particularly effective in scenarios where the object’s shape is roughly elliptical,

such as pedestrian or marine vessel tracking.

e Multiellipsoidal Models: In scenarios where a single ellipse cannot adequately
represent the target’s shape, multiellipsoidal models are employed. These mod-
els represent the target extent using multiple ellipses, each corresponding to
a different part of the target’s surface. This approach provides a more de-
tailed and accurate representation, especially in complex tracking environments

where the target might have an irregular shape or consists of multiple distinct



parts [17,[20,28].

e Rectangle Models: When tracking vehicles, a rectangle may represent the ob-
ject’s extent. This is a good approximation for many practical applications like

car tracking using LIDAR [29,30].

More advanced shape models are used for more complex objects whose shapes cannot
be accurately captured by simple geometric forms. These models allow for arbitrary
shape representation and are often employed when the object’s shape is irregular or

requires high accuracy. Figure[I.2] presents some examples of extent representations.

e Random Hypersurface Models: These models represent the object’s shape as a
parametric curve, allowing for the tracking of objects with complex and vary-
ing boundaries [31,32]. These extents can also be modeled using Gaussian pro-
cesses to handle the spatial correlation between different parts of the object’s
boundary. Symmetry constraints can be easily enforced wherever needed [33--

35].

e Spline Models: Using spline representations in target tracking allows for mod-
eling object contours with high precision and flexibility. This method has
proven particularly useful in tracking elongated or deformable objects in aerial

and ground-based sensor data [36-38].

1.4 RM-based ETT

RM-based methods assume an elliptical shape for the target extent. These methods
represent an extended target with a Gaussian kinematic state vector and a symmetric
positive definite extent matrix. The kinematic state vector mostly holds information
about the target position and velocity, while the extent matrix describes the target
shape as an ellipse. While earlier methods define an inverse-Wishart (IW) prior for
the extent matrix [9-14]], some recent studies use inverse-Gamma (IG) priors together
with a rotation matrix [19]. The rich literature on RM-based ETT is initiated by the
seminal work of Koch [9], where the author proposed the first solution for the RM-

based ETT problem under zero additive sensor noise assumption. Later, Feldmann

4



-=- (b) Rectangular shape representa-

(a) Linear shape representation tion

(d) Arbitrary shape representation

(c) Elliptical shape representation (Gaussian Process)

Figure 1.2: Different styles of shape representation in ETT. The black dashed line
represents the ground truth object, while the red solid lines with red dots depict the

extent models and their center locations.



et al. [10] provided a solution that can take additive Gaussian sensor noise into ac-
count. To incorporate evolving extent dynamics into the additive Gaussian sensor
noise model, [[12,/13]] proposed approximating the predicted densities using moment
matching, Kullback-Leibler (K L) divergence minimization, and numerical optimiza-
tion techniques with approximate transition densities. The authors of [[15,21] later
proposed an analytical model for predicted densities with artificial transition models
using non-central Inverse Wishart probability densities. Optimization-based methods
proposed by [[11,|{19] suggest utilizing the Variational Bayesian (VB) optimization

method to improve the accuracy of the correction step of the estimation process.

Even with these advancements in RM-based ETT, a significant gap in the existing
research is the common practice of treating the rotation information of the target’s
extent as separate from its dynamic behavior. Building upon the foundation laid by
these RM-based methods, our work addresses this overlooked aspect, specifically
integrating the rotation information of the target’s extent with its dynamic behavior.
In the following section, we outline the key contributions of our approach and how it

advances the current state of elliptical ETT.

1.5 Contributions

In this thesis, we propose two models that are frequently observed in tracking prob-
lems but have been largely overlooked in the literature to differentiate the dependence
between the kinematic state and the extent orientation. The first model covers the tar-
gets that have their motion direction mostly parallel to their extent heading directions,
such as cars, bikes, and trains [39-41]]. We denote targets that satisfy this property
as "trajectory-aligned" targets. The second model is tailored for targets that have
mostly independent motion directions and extent headings, such as maritime ves-
sels, unmanned aerial vehicles, insects, and microscopic life forms [19, 20,142, 43]].
These targets tend to exhibit extent rotations that are weakly coupled with their state
dynamics. We categorize these targets as "drifting" targets. This notably apparent
difference necessitates two separate models, each of which can exploit these depen-
dencies and achieve higher accuracy by performing adequate updates. In our deriva-

tions, we perform variational inference and obtain approximate posteriors via com-

6



putationally efficient, analytical, iterative steps. Our derivations for each target type
incorporate orientation dynamics and account for relevant correlation structures. This
approach not only enhances the accuracy of inferring the proposed models but also
poses greater challenges compared to previous variational methods that ignore this

dependence [11}/19].

We also show that ignoring the correlation between the target trajectory and shape, as
in [19], will result in poor performance, especially for fast-maneuvering targets. Our
simulated and real data experiments involving video and radar tracking applications
validate such performance losses and demonstrate significant performance gains of

our methods over state of the art.

1.6 Organization of the Thesis

This thesis is organized in the following structure: Chapter [2] delves into the foun-
dational concepts and mathematical frameworks essential to understanding extended
target tracking. This includes discussions on Bayesian inference, state space models,
Kalman filtering, and an introduction to variational Bayesian methods that form the
basis of the proposed models. Chapter |3| presents a detailed mathematical derivation
of two innovative algorithms designed to track trajectory-aligned and drifting targets
accurately. This chapter covers each model’s underlying assumptions, algorithmic
steps, and theoretical justifications. Chapter {4 outlines the experimental setup, uti-
lizing both simulated and real datasets for validation. It offers a critical analysis of
the performance of the proposed models compared to existing methods, highlighting
improvements in tracking accuracy through various metrics and scenarios. Chap-
ter [5] emphasizes significant advancements in tracking technologies. It summarizes
key results, discusses their implications for the field, and reflects on the strengths
and limitations of the work presented. This chapter also explores potential ways to

enhance further the methodologies introduced in this study.






CHAPTER 2

THEORETICAL BACKGROUND

2.1 Bayesian Inference

Bayesian inference is a statistical method that uses Bayes’ rule to update the proba-
bility estimate for a hypothesis as more evidence becomes available [44]. This ap-
proach is particularly useful in dynamic systems, where we aim to estimate states that
evolve in time. Bayesian inference provides a powerful framework for combining
prior knowledge with new observations to make informed predictions of the systems’

states.

Bayesian inference revolves around updating our beliefs based on new data [45]]. The
key formula at the heart of Bayesian inference is Bayes’ rule, which is stated as

follows

p(yr|zr)p()

2.1
() @

p(xrlyr) =

where

p(xx|yr) is the posterior probability density function (pdf),

p(yx|xy) is the likelihood of the observation y, given the state xy,

p(xy) is the prior probability of the state, and

p(yx) is the marginal likelihood, a normalizing constant.

9



2.1.1 State-Space Models

A state-space model allows us to describe a system using latent state variables and

observations. The model is typically composed of two equations.

e State Transition Equation: Describes the evolution of the state vector as
Tiy1 = f(@p, w). (2.2)

e Measurement Equation: Describes the relation of observations with the state

variables as

Y = h(in,I/k), (23)

where x;, is the state at time k, w;, represents the process noise, yy is the obser-

vation at time k and v, denotes the measurement noise.

2.1.2 Recursive Bayesian Estimation

Recursive Bayesian estimation is a key technique used for state estimation in dynamic

systems. It involves two steps:

1. The time update step involves using the state transition equation to predict the
next state based on the current state estimate utilizing the Chapman-Kolmogorov

equation as
p($k+1|}’1;k) = /p(wk+1|wk)]?(33kb’1;k) dxy. (2.4)

2. Measurement update step refines this prediction based on the new observation

using Bayes’ rule given by

P(Yk‘mk)P(ka |V1k-1)

2.5
p(}’kb’l;k—l) 23)

p(xklyrk) =

These steps are repeated at each time step to provide a continuous estimate of the

state as new observations are made.

10



Bayesian inference and state-space models form a framework for understanding and
predicting the behavior of dynamic systems. Through recursive Bayesian estimation,
we can continuously update our understanding of a system’s state, making it indis-

pensable in fields such as robotics, economics, and beyond.

2.2 Kalman Filtering

Kalman filtering is a specific case of Bayesian inference applied to linear state-space
models with Gaussian noise. It provides optimal and efficient computational means

for recursive Bayesian estimation under linearity and Gaussianity assumptions.

2.2.1 Linear State-Space Model

The following equations define the linear state-space model:

o State Transition Equation:

Ty = Fop + Gy, wy, “'N(0,Q), (2.6)

e Measurement Equation:

yi = Hzp + Lvy, v, “'N(0,R), 2.7)

e Initial Probability Distribution:
o ~ N (f,Uo, "f:()a PO) ) (28)

where x;, € R" is the state at time k&, yr € R is the measurement at time £,
wy € R? is the zero mean i.i.d process noise with multivariate normal distribu-
tion with covariance Q € R***, v, € R! is the zero mean i.i.d measurement
(sensor) noise with multivariate normal distribution with covariance R € R**¢,
F € R™ " is the state transition matrix, G € R**" is the process noise matrix,
H <€ R™™ is the measurement matrix, and L € R™™ is the measurement

noise matrix.

11



2.2.2 Kalman Filter Algorithm

The Kalman filter performs the recursive estimation in two main steps: time update

and measurement update.

2.2.2.1 Time Update Step

Given p(y_1|yr—1) = N (Cllk_l; Th—1jk—1, Pk_l‘k_l), the posterior density at time
k — 1, the prediction consists of calculating the sufficient statistics of the prior density

at k as

Thjk—1 = FTp_qjp—1, (2.9)

Pyy—1 = FP_ ;1 F" + GQG", (2.10)

where Zy;_ is the predicted state estimate, Py is the predicted error covariance,

and @ is the process noise covariance.

2.2.2.2 Measurement Update Step

In the measurement update step, the predicted state mean and covariance are corrected

using the new observation yy as

Tijp = Tijp—1 + Ki(yr — HETppp-1), (2.11)
Py = Py — Ki S KL (2.12)

where S, is the innovation covariance and K is the Kalman gain, which are calcu-

lated as

S, =HP,;_1H" + LRL", and, (2.13)
K, =Py H"S, ", (2.14)

respectively. @, is the updated state estimate, Py, is the updated state covariance,

and R is the observation noise covariance.
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2.3 Extended Kalman Filtering

The extended Kalman filter (EKF) is an extension of the Kalman filter that handles
nonlinear state-space models. In the EKF, the state transition and observation models

are linearized using Taylor series expansions around the current state estimate.

2.3.1 Nonlinear State Space Model

The following equations define the nonlinear state-space model:

e State Transition Equation:

Tp = flap,wy) wp ~N(0,Q), (2.15)

e Measurement Equation:
yi = h(zp,vr) v XN (0,R), (2.16)

where f is the nonlinear state transition function, h is the nonlinear measure-

ment function.

2.3.2 Taylor Series Expansion

While using the EKF, we linearize the nonlinear functions fand h using their first-
order Taylor series expansions around the previous posterior mean &;_y;—; for the

prediction step and around the predicted mean &y, for the update step.

2.3.2.1 State Transition Function Linearization

The state transition function f(x;) is expanded around (xy, wy) = (2, 0):
f(xp, wi) = f(Zijp, 0) + Fi(xr — Tppp) + Grwr, (2.17)

where F}, is the Jacobian matrix with respect to the state x; of f evaluated at o}, =

Tk, Wi, = 0 and G, is the Jacobian matrix with respect to the process noise wy, of f
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evaluated at xj, = Ty, wi = 0, that are given as

F, = <a—f> L, Gh= (8—f) o (2.18)
8(13k TR=Tp|k 8wk T=T|k

wr=0 wr=0
2.3.2.2 Measurement Function Linearization

The measurement function h(x;) is expanded around (xx, vi,) = (Tkp—1,0):
h(xy,v) = h(Zgp-1,0) + Hp(xp — Tpp—1) + Liy, (2.19)

where H), is the Jacobian matrix of h with respect to the state x; evaluated at x;, =
Tyk—1, Vx = 0 and L, is the Jacobian matrix of h with respect to the measurement

noise v, evaluated at &, = &y;—1, V; = 0 that are given as

H, = (8—”) o, L= (a—h) L (2.20)
8wk Tp=Tk|k—1 al/k T=Tg|k—1

v=0 v=0
2.3.3 Extended Kalman Filter Algorithm

The EKF follows the same prediction and update steps as the Kalman filter but uses

linearized models where necessary.

2.3.3.1 Time Update Step

The predicted mean and covariance are computed as

Zpk—1 = f(Tp—1jx-1,0), (2.21)
Py = F 1P 11 FL + G QG (2.22)

respectively.

2.3.3.2 Measurement Update Step

The predicted state is corrected using the new observation:
Lk = Tpp—1 + Ki(yr — h(Tgr—1,0)), (2.23)
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Py = Py-1 — KiSiKj, (224)
where the innovation covariance and Kalman gain are

S, = H, Py H! + LyRL], (2.25)
K, = Pk:\k;—ngSk_la (2.26)

respectively.

2.4 Variational Inference

Variational Bayesian (VB) inference is a technique used to approximate complex pos-
terior distributions in Bayesian statistics. The key idea behind VB is to transform the
problem of computing a difficult-to-compute posterior distribution into an optimiza-
tion problem [46, Chapter 10]. This is achieved by approximating the true posterior
distribution p(X|)) with a simpler variational distribution ¢(X) and minimizing the

Kullback-Leibler (KL) divergence between them.

The KL divergence between the true posterior p(X|)) and the variational distribution

q(X) is given by

KL(X) [ p(X19) = [ 4(X)1og 1005 ax. )

Minimizing this KL divergence is equivalent to maximizing the evidence lower bound

(ELBO), which is defined as
L(q) £ E, logp(Y, X)] — E, [log ¢(X)] . (2.28)

where ) are the observed data, X are the latent variables, p()), X) is the joint dis-
tribution of the data, and latent variables, and ¢(X) is the variational distribution

approximating the posterior.

This equivalence can be seen from the following manipulations

KL | p(X19) = [ a(X)1og | A2 ax, (229
— [ 4(X) (log 4(X)) - log [p(XIY)]) 0, (229b)
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— / ¢(X) (log [q(X)] - log [p(p)(c_j}g))

~ [ aX)1og 4(X)) X~ [ 4(X)log p(X.7)] dX

} ) dX, (2.29¢)

+ / q(X)log [p(Y)] dX, (2.29d)

= E, [log ¢(X)] — E, [log p(V, X)] + E, [log p(Y)],  (2.29%)
= —L(q) +logp()). (2.291)

The goal of VB inference is to maximize the ELBO with respect to the variational

distribution ¢(X), making ¢(X) a good approximation to the true posterior p(X|)).

2.4.1 Mean-Field Approximation

Factorized distributions, also known as mean-field approximations, are crucial in vari-
ational inference for simplifying the calculations of posterior distributions in Bayesian

statistics.

A factorized distribution assumes that the variational distribution ¢(X) decomposes

into a product of independent distributions for disjoint subsets of variables:

N
¢(X) = [ [ as(=), (2.30)

i=1
where X = (x1, @, ..., xy) represents the set of random variables, and each ¢;(x;)

is an independent distribution specific to the random variable x;.

By assuming independence among the components of X, factorized distributions
transform the complex task of estimating a joint distribution into several simpler
marginal distributions. This approach reduces the computational complexity, avoid-

ing the curse of dimensionality typical in high-dimensional spaces.

Furthermore, the factorization allows for analytical solutions in the update steps of
the variational inference algorithms. For each factor ¢;(x;), the update rules can often
be derived in closed forms, turning the problem of finding the density ¢(X) into an

iterative optimization process.
The independence assumption implies that each distribution ¢;(;) can be optimized
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independently of others. This property enhances the scalability of variational infer-
ence algorithms, making them applicable to high-dimensional (large-scale) Bayesian

models.

2.4.2 Functional Derivative of ELBO and Gradient Ascend Method

After establishing the mean-field approximation to simplify the problem, we now
focus on deriving the update rules for the variational distributions by considering the
functional derivative of the ELBO. This approach allows us to iteratively refine our

approximation by using the gradient ascent method.

To derive the update rule for a specific factor ¢;(x;), we need to maximize the ELBO
for g;(x;) while holding the other factors fixed. First, we express the ELBO in a form

that explicitly shows the dependence on g;(x;).

£(q) = By, |y, logp(¥, X)]| - By, [log g;(@;)] + consty,  (2.31)
~ [ (@) (Ba, lozp(v. X)) de;
— /qj(zcj) log g;(;) dx; + const;. (2.32)

Consider a small perturbation dg;(x;) in ¢;(x,)
q5(®;) = q;(2;) + €dg;(x;), (2.33)
which can be substituted into the ELBO
L(q + €dq;) = / [q(x) + €0q;(x;)] By, [log p(YV, X)] dz;,
- / [4j(x;) + €dq;(x;)] log [¢;(x;) + €dq;(x;)] d; + const;. (2.34)
To obtain the functional derivative of the ELBO, with the definition presented in Ap-

pendix [A| we need derivatives of the perturbed ELBO with respect to ¢, eavaluated at
e=0.

The derivative of the first integral is

0
o [ @) + @) B, lospy X e @35
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e=0

0
- &/qj(wj)Eqv log p(Y, X)] da;

0
+ ae/dqj(wj)Eq\j [log p(V, X)] dx; L (2.35b)
= /6qj(wj)Eq\j log p(Y, X)] dz;. (2.35¢)
Similarly, the second integral can be differentiated with respect to € as
0
o [Tt + ey os ) + )] day |
0
= 5 /(qj(fﬁj) +€5Qj(wj))(10g [q;(;)]
dg;(x;) 2 ) ‘
- “43(@;) + €0g;(x;) T ) dagl (2362
0
b /Qj(mg‘) log [q;(x;)] + edg;(w;) log l¢;(w;)] dzj|
9 [ qj(x;)edg;(x;) 2\ 1o
+ e / 4 (x;) + edq; () + O(€) da; — (2.36b)
0
= 5 /Qj(wj)log [q; ()] + €0q;(;) log [g;(x;)]
edg;(®;)(g;(;) + edg;(z5)) + O(€) 2N o
+ 1:(®;) + <34, (@) + O(e”) de; L (2.36¢)
0
= 5 /C]j(wj)log laj ()] dj|
0 0
+ 56/5%(%‘) (log [g; ()] +1) dwj| _ + ag/@(l)d%‘ K
(2.36d)
— [ oy(a;) G @) + 1) d. (2.360)

Combining the terms, we get

oL
——0q;(x;) dr;
/5%’(33]’) J( J) J

:/5%(%)Eq\j log p(Y, X)] daz; —/5%(%)(108; [gj(x;)] + 1) dx;, (2.37)
_ / Say(;) (B, oz p(Y, X)] ~log [g; ;)] — 1) d; (2.38)

The final result for the functional derivative is

oL

Sy Eq,, [log p(Y, X)] — log g;(z;) — 1. (2.39)
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By [47, Chapter 1, Section 3, Theorem 2], the distribution maximizing the ELBO has
a vanishing functional derivative. We can set the functional derivative to zero to find

the maximizing distribution.
Eq,, log p(Y,X)] —loggj(x;) —1 =0, (2.40)
which we can solve for ¢;(z;) to obtain

log gj(zx;) = By, [logp(Y, X)] — 1. (2.41)

Exponentiating both sides and ensuring normalization gives the solution for ¢;(x;) as

() o exp (B, log p(V. X)) (242)
exp (Eq\j [log p(Y, X)])
J exp (B, , logp(y, X)) de;

qj(x;) = (2.43)

This rule is iteratively applied for each factor until convergence, updating g;(x;)
while keeping the other factors fixed. This ensures that the ELBO is maximized

over iterations, leading to a good approximation of the true posterior distribution.
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CHAPTER 3

MODELS AND INFERENCE

3.1 Problem Formulation

Consider a target that generates multiple measurements within a single scan with mea-
surements spread throughout the target’s body. In RM-based elliptical ETT frame-

works, the measurement likelihood can be expressed as,
Pyl | T, X1) = N(yl; Hay, sXi + Ry), (3.1)

where,

. yi € R™ denotes the ;M measurement obtained at time k

x;, € R" is the kinematic state vector

X € SS‘r + 1s the d dimensional geometric extent state

H < R™*" is a matrix that selects the Cartesian position of the kinematic

state

s € R, is a scaling parameter determined by the measurement distribution on

the target extent [[10]].

The representation of the extent state may vary across various approaches. We de-
fine the extent state as a pair (I'y, T}) which consists of a diagonal matrix I'y, whose
entries correspond to the axis lengths of the represented ellipsoid and an orthonor-
mal matrix 7T}, representing the orientation of the underlying extent with fixed axis

directions [|19]. The extent matrix X, can be defined as

X = T,I, T/, (3.2)
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—
v TOLTT + Ry
Iy

Figure 3.1: Spatial region in which the measurements are assumed to be generated
in terms of rotation matrix 7}, diagonal positive definite matrix I';, and measurement

noise covariance R,

where ', = diag(vi,72,...,77) where each element is a positive real number dis-
tributed with IG distribution, i.e., v ~ ZG (at, 8). This extent matrix definition is
well-defined and conforms to the symmetric positive definite random matrix defini-
tion, as established by the principal axis theorem [48]]. The spatial regions defined by

this representation are illustrated in Figure [3.1]

We aim to estimate the kinematic and extent states using the measurements obtained
until time k. We employ Bayesian filtering and state estimation frameworks to utilize
the recursive solution of the Chapman-Kolmogorov and Bayes’ equations for predic-

tion and correction updates [7]] respectively

(& Vik—1) = /p(§k|§k—1)l)(fk—1|y1:k—1) d&k—1, (3.3a)

— pOhl&r) p(&k|Vrk—1)
PEeIVie) = I p(Vil&k) p(&|Vrn—1) A& (3.3b)

where we define &, = (xx, X}) as the state variable.
For a set of measurements ), = {yi };”:’“1 obtained at time k, we define the measure-
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ment likelihood as

Pk | &) = [ [l | &), (3.4)

and for each conditionally independent measurement yi the likelihood is obtained by

substituting (3.2)) in (3.1)
p(yl | &) = N (yi; Hay, sTDT + Ry). (3.5)

In the following, we introduce two distinct target models characterized by variations
in their kinematic state definitions and the relationship between the target trajectory
and orientation. We provide formulations for their measurement updates, followed by

the presentation of the time update equations for our models.

3.2 Trajectory-Aligned Model

Objects that mostly move in the direction of their heading, such as cars, bicycles,
or trains, exhibit tightly dependent kinematic and extent state motion characteristics.
The trajectory-aligned model aims to exploit this dependence to improve tracking
performance. Within this model, the dependence of the extent orientation and the
kinematic state is maintained using the correlation structure of the joint state. In this

section, we will derive the update equations for this model.

3.2.1 Measurement Update for the Trajectory-Aligned Model

Consider the prior joint density

2

p(@0, To) = N (a00; o, Po) x [ [ ZG (46 by, 55), (3.6)

i=1
where the Gaussian factor and the IG factors correspond to the kinematic state and
the extent variables, respectively. Starting with the prior (3.6), our aim is to propa-
gate the joint density in time, perform variational inference, and obtain approximate

posteriors.
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T, T

Figure 3.2: An illustration of the state variables used in trajectory-aligned model,
T

where p;, = [pi pﬂ the cartesian position of the ellipse center, vy, is the speed, ¢

is the heading angle, I’ is the diagonal extent matrix and T}, = T'(ipy) is the rotation

matrix.

Assume that at time &, we have a set of measurements ), and the following predicted

density

2
p(@r, Ti|Vik-1) = N (@p; Trjp—1, Pejp—1) ¥ HIQ(’Y;Z;;@akfpﬁzi\kq)? 3.7

=1
where @1 and Py ;_; are the mean and covariance of the predicted kinematic state,
and for each diagonal element 7, of the extent state I'y, oy, , is the shape and 3},
is the scale parameter of the IG distribution. The posterior density can be obtained in

the measurement update by applying the Bayes’ rule

P(Vklxr, Ti)p(xk, T Vie—1)
T 1) = . 3.8
p(wk’ k‘yl'k) p(yk|y1:k71) (3:8)

The kinematic state ax; contains Cartesian position of the centroid and the heading

angle of the motion. The measurement likelihood in (3.4) becomes

mg

p(Vilay, Tx) = [ [N (yl; Haoy, sTiTWT + Ry), (3.9)

j=1
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where H and H,, are the matrices selecting the Cartesian position and the heading
angle from the kinematic state vector, respectively, and T, = T'(H. T ¢) is the rotation

matrix.

With the measurement likelihood (3.9), an exact solution of (3.8) is unattainable [[10].
Therefore, we aim to find an approximate solution using the variational Bayes (VB)
method [46, Chapter 10]. Within the VB framework, we approximate the true poste-

rior as factorized distributions

p(xk, Tk, 26| V1) = gz(@r)qr(Tr)qz(2k), (3.10)

where Z;. denotes the set of noise-free measurements at time k. The noise-free mea-
surements are introduced to address the absence of conjugacy caused by the measure-
ment noise covariance Ry, [11,/19]. The joint density of the noise-free measurement

zi and the measurement yi is defined as
p(yl, zl|ek, Ty) = N(yl; 21, Ry) N(z); Hay, sT,T TY). (3.11)
Marginalizing this joint density yields the measurement likelihood (3.5)),

(il Ty) = / p(Yilz)p(zi |2, Tr) dz. (3.12)
The approximate posterior (3.10) can be found by minimizing the cost function

x> qr, 4z £ argmin KL(Qm(CBk)QF(Fk)QZ(Zk) | |P(33k, L'y, 2 D’Lk)) (3.13)

qx,qr,9Z

Solution for each factor can be obtained after fixed point iterations [46, Chapter 10],

in the form

lOg (ja(ak) :E\U [logp(mka Fk7 Zk7 yk|y1:k71):| + Co, (314)

where notation \o denotes exclusion of ¢ which is a placeholder for variables x,
I'x, Zx, and ¢, denotes a constant expression with respect to 0. Approximate den-
sities ¢, in (3.13)) are calculated recursively by iterating (3.14)) for each variable
o € {xy, 'y, Zi} until certain stopping criteria are met. Alternatively, as is com-
monly practiced in the literature, a fixed number of iterations can be performed [46,
Chapter 10], [11}[19,20]. To provide clarity for calculations, the joint density in (3.14))
is expressed explicitly in terms of and (3.T7)) as follows

p(m/m Fk) Zka yk:|y1:k—1)
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=p(xk, Dr|Vrik—1) p(Vk| 2k) p( 2|2k, L), (3.15a)
2

=N (xp; Thjp—1, Prjp—1) HIQ(%@; pih1s Bhjp1)

=1
mi
x [ [N (yl; 2, Re) N (21; Hay,, sSTLTTY). (3.15b)
j=1

The iterations are performed by updating each factor in (3.10) one by one while keep-

ing the others fixed. We start with the initial distributions with sufficient statistics;

P = Py, (3.16a) &) = a1, (3.16b)
C(;c|(lg) = ak\k 1 (3-160) ﬁ]i](]?) = ﬁ;idk_l, (316(1)
22’(0) = Eq(rm [sTy], (3.16g) zAi’(O) =yl (3.16h)

sﬁk\k 1 Sﬁk\k 1

and proceed with fixed-point itera-

—17 o2

where E o) [(sT')] = diag (
dr k|k 1 klk—1"
tions. The derivations of update equations for each factorized distribution at an inter-

mediate step ((¢ 4 1)* iteration) are detailed in the following.

3.2.1.1 Update of ¢ ™ ( )

Using the joint density and applying the update rule in (3.14) the update rule

(z+1)( )

for ¢ is obtained.

log q(€+1)( k) = Eig, [logp(mk, Ly, Z, yk|y1:k;—1)] + Cays (3.17a)
1 : -
= =5 > B [(s - Hoy) " Ti(sT) T ()
j=1

+ log N'(x; Zjk—1, Prjp—1) + Cay- (3.17b)

The quadratic form in involves nonlinearities with respect to x; due to the
rotation matrix Tj. To obtain an update resulting in a multivariate Gaussian density

we use the following approximate quadratic form
E\z, [(aj — bjwk)T(SFk)_l(aj — bjwk)} ) (3.18)

Thus, a first-order Taylor series approximation of &, (x) £ T (2] — Hzx},) at point
:i:f:& in the form of a; — b;x; will be used instead of the nonlinear function /;
hi(ay) = hy(&)) + VA (£4)) (@ — &), (3.19a)
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a; £ hy(@)) — VI (@), (3.19b)
b & —Vh] (@) (3.19¢)

The first-order Taylor expansion of the function h;(xy) = TT( — Hx;,) around the

point aéfjgg in the form of a; — b;a;, The gradient of VA, (! y k) is required.

Vh(ay)) = HL (2] — Ha\)) T, — HT;. (3.20)
Using the definitions of the constants a; and b; we get

o L
a; = T{y(=) — Ha\)) - (ng(zi ~H&{))H, - T, €H> 2. (32l

by = —T,(z — Ha}) ) H, + T}, H, (3.21b)

where we define Tk’g £ T(H 29

Y ,.) as the derivative of the rotation matrix. Varia-

tional update of x,
¢ (k) = N (e 2 Y, PGY), (3.22)

is obtained by the product rule of two multivariate Normal densities,

Pk(\gl:rl (Pk|k1 1+ @),17 (3.23a)
@,Ej;j” F, k(fl: (P 1 Eklk—1 + ), (3.23b)
v e Zqu) BB o [(sTW) ']y (3.23¢)

j=1

my
U2 3 E o [bTEw [(sT0) " ] (3.23d)

j=1

Closed forms of the expectations in (3.23c) and (3.23d) are as followns;

E o [b]T B, [(sTw)™"] b] H'T, (sTy,) T}, H (3.24)

+ HZ Tr <<2Z’e + (zi — Hz&,(ﬂc)()T> Tk,e(srk)_lTkT,tz> H,

_ (HTTk7g(sI‘k)_1T,§:Z(zi—HA%L)H 4 () ) (3.25)

—(2] — Hilii(g\k)TTk,K(SI‘k)_ngZHi%H
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+ H™T} (sTy) (TkTé(zk Ha!))

(¢ ~ (0)
—(H, wk&g)Tk oz Hsck‘k) + T ,Hz ,ilk> (3.26)
where,
E olz]] = = = 2]}, (3.27)
© 200
(0% Q
E o[(sTy) '] = (sTy) " = diag | —& ’“"“ . (3.28)
ar 51(3 5
k|k k|

3.2.1.2  Update of ¢\'™(.)

Using the joint density (3.15b) and applying the update rule in (3.14) the update rule

for q(éjL )( ) is obtained.
log q(p””(l“k) = Er, [log p(@s, Tr, Zi, Vi Vir—1)] + cry (3.29a)
- E\Fk [logp(zkn |wk7 Fk)]
2
+ 3 108 TG (3 @y, i) + em (3.29)
i=1

1 . .
= 5> By [(5] - Ha) Tu(sTy) T (2] — Hay)]
j=1
2
+ ) 108 TG (Vi b1, Bi—1) + (3.29¢)
=1
1 & , )
= =5 > T(Evr, [T (2] — Hay)() T (sT) )
=1
2

+ ) 108 ZG (Vi Ayt Bip-r) + eny (3.29d)

=1

The updated extent density

(£+1) HIQ % k\lfﬂ Bkl (6+1) )’ (3.30)

is found after calculating (3.29d) with the inverse-Gamma density parameters,

i,(¢ i mg
ak\(k+1) = Al + 5 (3.31a)
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5k| il 5k|k 1+ ZE\H T, (2] — Hzy)() Tk}“ (3.31b)

The analytic form of the expectatlon in (3.31b) can be obtained using the law of

iterated expectations [49];

Evr, [T/ (2, — Hzy) () T =E o [Tk Eo o (21 — Hay)(-)"] Tk} (3.32)

9(1
—T

[T (55 4+ 20 2 )Tkl
+E,0 [Tk, HMlﬂTTk] +E,0 [gkakT IE[MQIEITTR}

+E o [W%TkTI:IM3I:ITTk} —(Ew [TgﬁleTk} +()")

~ (B0 [¢TTHMET] + (V7). (3.33)

where H is a matrix that selects the Cartesian position from the reduced state  which

is the state without the heading angle, where we partition the density ¢, as

T z| |x P, P
m p— ~J N , N 5 ® . (3 .34)
P ol 19| |Pox b

By exploiting the Gaussian conditioning rules, the matrices M can be obtained as;

M, =((¢ Ekw)/méilmf = 1P (Pa i) )7
— ({0 el @y (PL )™+ [17)

+ P:I(z ()k|k) + (53Ei)|k))()T, (3.35a)
M, =<P@§2k>>‘1<[a%52 (P, (km +117)

N 2¢Ezk (P, <P(k:|k: ) (( &,0,( k\k))( "), (3.35b)
M —(Rpg?\k))_2 <(Px( 30 (k\k))( )T) ’ (3.35¢)
My = (igi)"f) (wgi)wc)/ngi)\m)Pg;,(m)) Z_iTa (3.35d)
M; = ((P( k|k))/PwEf;|k ) _jT- (3.35¢)

The exact expressions for the terms in (3.33) can be obtained using the Lemma [I]

with [50];

mir Moo (maa + may)

~ ~ 1 |ma1 —m —mi; +m
vee(T,MTy,) = Mt oy == | (Fmutma)| (3.362)
20 myy —myy (—mag+may) |

Moz My —(mag + map) |



Where M = {m}w is a 2 X 2 matrix which can be any of the M, with proper
multiplications with H, as an example M, = HM, H” as in (3.33));

T
t, = [1 +cos(2¢) 1 —cos(2¢) sin(2¢)| (3.37)

and VeC(Eq(z) [TkT MZTk]) - M Eq<e> [t¢(2) | . Note that the expression gives the
<P (k[k)

%)
terms of the expectation as a vector, and they are reordered as a 2 X 2 matrix for their

use. The terms containing additional ¢ or ? terms can be similarly obtained.

Lemma 1. Let ¢ ~ N (¢; ¢, P,) and define the vector

t, = [1 + cos(2¢) 1 —cos(2¢) sin(2y) T. (3.38)

Then the expectations E [t,), E [pt,] and E [¢t,| are analytically calculated as

1+ e 2F% cos(2¢9)
Elt,] = [1—e2% COS(ZQ)} , (3.39a)
e 2P sin(2¢)
@+ e 2P (
20)) | (3.39b)
)

2P (B[] — 4P2)sin(29) + 4P, cos(29))

where E[p?] = $* + P,.

3213 Update of ¢)(-)

Using the joint density (3.15b) and applying the update rule in (3.14) the update rule

for quH) (+) is obtained.

log q(ZZ—l—l) (Zk') = E\Zk Uogp<wk7 Fk7 Zk; yk’yl:kflﬂ + CZk7 (3403)

mp
= E\z, [log p(Zx, [zx, T)] + > _log N'(y; 21, Ry) + cz,, (3.40b)
j=1

1 & , ,
j=1
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mg

+) log N(yl; 21, Ry) + cz,. (3.40c)
j=1

1 &

=5 ]Zl ((zi)Tqu) [Tqu(Ff) [(sT%) ] TkT] (7)

_ 2(zi)TEqé£) [Tqug) [(Srk)—l} TkTHwki|>

k
+ Y log N (yl; 21, Ri) + cz,. (3.40d)
j=1

After calculating expectations in (3.40d) a quadratic form in terms of z] is obtained

by adding appropriate constants to cz, term. The variational update for the final
distribution of noise-free measurements

HN £+1 (e+1))

: (3.41)
is obtained by the following equations,
-1
n2 = (R,;l +E [T]Eq(ra [(sT%) '] TTD : (3.42a)
2 — yah) (R Yy, +E o [TIE#) [(sT%) ] TTHka. (3.42b)
The closed-form expressions of the expectations are as follows;
E [Tk]Eq(re> [(sTw) Y] T ] =E, [Tk(sI‘k)_lTkT } , (3.43)
E [Tk]E o [(sTe) ] T Hmk] _
qx qr
-1 - (0 A (0) ) (0
Eo [Tk(sI‘k) Tﬂ H (f’f(mk) (2 \ 0/ Potiiiy) P (k|k)>
+]qu> |:90ka<SFk)_1TkT] H (( k\k) a(c (k\k)> (3.44)

In (3.44) Lemma I|can be used with ¢ = —@E?' ) With the state partitioning given in
(3.34).

A pseudocode of the trajectory-aligned model’s measurement update is presented in
Algorithm
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Algorithm 1: Measurement Update for Trajectory-Aligned Model

Illpllt: Ima;r, yk’ and p(ibk, Fk|yl:k—1) as in "
Initialization:

Set initial densities:
w;E;O) ~ gV = N(wk; ZTrk—1, Prjp-1),

0
F( )~ qr HIQ Vies Qgre—1> Bif—1);

i=1

mg,
z" ~ ) = [[N (=l Ew [sTW)
j=1
Setl =0

while ¢/ < I,,,,. do

Update state density qw ) asin (3.22):

Update Pk(f,:r D (3:234)

Update w,(e‘ " 2 (3.23Db))

Update extent density qg ) as in (3.30):

for each dimension i do
Update ai"(,fﬂ) (3.31a)
Update ﬁkl (e+1) @D
end
Update noise-free density q z ) as in (3.41):

Update 3" (3:42a)

for each measurement y3, do

Update 2/ (3.426)

end

Increase ¢
end

Output: p(xy, Tr|Vix) = C]:Sf) (wk)qg)(F;@)
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3.3 Drift Model

Targets like maritime vessels, UAVs, insects, and microscopic creatures often exhibit
motion characteristics where their movements are relatively independent of their ex-
tent orientations. Due to its constraints on the heading angle, the trajectory-aligned
model cannot capture such motion characteristics. In contrast, the proposed drift
model treats the extent orientation and kinematic state separately, resulting in better

tracking accuracy for targets with holonomic motions.

3.3.1 Measurement Update for the Drift Model

Consider the prior density

2
p(x0, To,90) = N (x0; 20, Po) ¥ HIQ(%;aéaﬁé)

i=1

x N (99; 99, @), (3.45)

where the last factor represents the orientation state and its kinematics. In the follow-
ing, we derive analytical update equations to perform variational inference and obtain

approximate posteriors.

Assume that we have the prior density at time £ as

p(flfk, Iy, 191:’3’1:1:—1) = N($k§ ik\kq, Pk|k71)-/\/‘("9kz; ng|k71> @k|k71)

2
< [TZG(vis g1 B 1)- (3.46)
=1

The joint density of the measurements with the noise-free measurements zi is defined

as
(Y 2w, Tr 95) = N (gl 21, Re) N (z]; Hay, sTTWTY), (3.47)

where T}, denotes the rotation matrix T'(Hyv}.), H and Hy are the matrices selecting
the Cartesian position from the kinematic state and the heading angle from the ori-

entation state, respectively. Unlike the trajectory-aligned model, the joint likelihood
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T, T TL

Figure 3.3: An illustration of the state variables used in drift model, where p;, =
T

[pi pZ} the cartesian position of the ellipse center, vy, is the speed, ¢y, is the heading

angle, ;. is the extent orientation angle, I' is the diagonal extent matrix and T}, =

T(0y) is the rotation matrix.

depends on the independent orientation state 9. Within the VB framework, we seek

the posterior density in a factorized form,

p(k, Ti, Ok, Z6| Vi) = qz(r)qr(Tr) g9 (Fr) gz (Zk). (3.43)

The joint density p(xg, Ty, 9%, 2k, Vi | V1.x—1) for the drift model is

mg
p(xp, Tk, O, 2, Vi | Vik—1) ZH/\/'(yi; 2], RYN (2]; Hxy, s, T, T})
=1
2

XN (k; Tijr—1, Prjg—1) H ZG (s 0‘2\1@—17 B/ﬁ;m—l)

i=1

XN (Fy; 1§k|k—17 Opji—1)- (3.49)

Similar to the trajectory-aligned model, we perform fixed point iterations for each

factorized density in (3.48) one at a time. We start with the initial distributions with
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sufficient statistics;

Pl = Py, (3.502) @&y, =1, (3.50b)
oyl = hypy, (3.50¢) By = Biy .y, (3.50d)
O} = O, (3.50e) O =Dy,  (3.50f)
»20 = =E,o0 [sTW, (3.50g) 20— ol (3.50h)
where E o)[(sT;)] = diag ( ik - Bk"“ 11)and proceed with fixed-point itera-
4r k|k 1 O‘k\k 1

tions. The (¢ + 1)* iterations for the densities are given in the following subsections.

3.3.1.1 Update of ¢ (")

Using the joint density and applying the update rule in the update rule
for ¢4 )( -) is obtained.
log ¢V (@) = Ena, [log p(2k, i, 9 2k, Vel Vik-1)] + oy (3.51a)
_ —% g;Tr (& - Hz) (V' E o o0 [T ™)
+ log N (@kjk; Zrp—1, Prip—1) + Cay- (3.51b)

By utilizing the product rule, iterations for the mean and covariance are obtained as

Pk(fljl) (Pk|kl 1T mkHT]qu)yq? [(STkI‘kaT)_ID_l , (3.52a)
i’i‘]Z” = Pk(\g;:rl) (Pk|kl—1"i3kk—1 + HTEq(ra,qg) [(sTkI‘kT ] (mz Zk))
_ (3.52b)
Where,
E,0 .0 [(sTkI‘kaT )‘1} E,o [Tk(sI‘k) T ] . (3.53)

In (3.53), Lemmacan be used with ¢ = —Hm?k

3.3.1.2  Update of ¢\ " (.)

Using the joint density (3.49) and applying the update rule in (3.14) the update rule

for ¢ A(ZJF )( ) is obtained.
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log gi ™V (T) = Eur, [log p(x, T, Ok, Zk, Vil Vik1)] + cry (3.54a)

1 & , .
D) ZE\Fk (2] — Hay,) Ty (sTk) "I} (25, — Hay,))
j=1
2
+ Y108 TG (7 iy, Bigp) + cr. (3.54b)

i=1

The updated extent density

¢ (e (e
(T HIg k‘k+1 ﬁkl 1)y (3.55)
is found after calculating (3.29d)) with the inverse-Gamma density parameters
i, i m
ak|(lf+1) = Q-1 T £ (3.56a)

2
me By, | T (] — Hay) ()T

Bt = Bl + ; # (3.56b)
where,
E o ol(@ — Hxp) ()] = (2 — Hx)()T =
=i+ HPHT + () - HY(,) (+)") (3.57)

The rest of the expectations can be calculated as in (3.53). Lemma(I|can be used with

¢ = Hy9}"

3.3.1.3 Update of ¢™(.)

Using the joint density (3.49) and applying the update rule in (3.14)) the update rule
for G4 (-) is obtained,

log q(€+ )(Zk) = E\Zk [lng(:Dk, Ly, 9%, 25, yk‘ylzkfl)] + cr, (3.582)
1 o o |
=5 LT (e~ HE (B 0 [Tl ] )
j:
mi . '
+ ) log N(yl; 21, Ri) + cz,. (3.58b)
J=1
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The variational update for the final distribution of noise-free measurements

HN— z+1 (£+1)) (3.59)
is obtained by the equations;
11y -1
no ) _ (R‘ +E0 0 [(sTkI‘kaT ) 1}) , (3.60a)
2i,(e+1) _Zk (£41) (R y +E O g0 [(sTkI‘kaT)*l] H@) (3.60b)

The necessary expectations are as follows;

E [TkIEq(re) [(sTy) ] T } =E [Tk(sI‘k)_lTkT ] . 3.61)

E [Tk]Eq(e> [(sTw) Y] T H:ck] .
z T

r ~ (20 £)
Eo [Tk(sI‘k) 1Tﬂ H <‘E(k|k) (0 k\k)/P klk))Pa(:so(klk)>

—1
E 0 [ T(sTw) T | H ((Polily) P ) (3.62)

In (3.62) Lemmacan be used with ¢ = —Hm?,(f).

3.3.1.4 Update of q”l()

Using the joint density (3.49) and applying the update rule in (3.14) the update rule

for ¢ A(“ )( ) is obtained.
log ¢y " (9y) = Eyg, log p(ay, T, O, Zie, Vel Viot)] + cop, (3.630)
S J = T T\~ 1
= =32 B, [Ir (= - HZ) () (TLT) )|
=1
+ log N (D i; 1§l/<;|/<;—1, Opji—1) + Co,. (3.63b)

To obtain a quadratic form in terms of 1) similar to the trajectory-aligned model a
first-order Taylor Series approximation is used for the function g;(9;) = TT(z,i —

Hx,,) around 19,(€|k

9;(Ok) ~ 9; wk’\k) + ng ("9k\k)(‘9k - ﬂkﬁg) (3.64a)
£ g(9))) — Vol (D})950 (3.64b)
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dj & —Vgl (9})),). (3.64¢)

The expectation in can be approximated as

Evo, [(¢; — d;9%)" (sT) " (c; — d;9y)] - (3.65)
=T, (z, — Hz},) Hﬂﬁ e + Tie (21 — Hy) (3.66)
dj =T, (2] — Hxy), (3.67)

where T}, = T(Hm? k) ) with the definition as in and Tkj = T(Hg'z‘}gi)'k ). The

approximate update for the orientation state is obtained as

gy (O) = N9y, 017), (3.68)
where

oy = (05, +A) ", (3.692)
Iy =04 (O Ouir +9), (3.69b)

myg
ALY R o [dEw [(sT) "] 4], (3.69¢)

j=1

my
623 Ey o [dE 0 [(sTw) "] ¢ (3.69d)

j=1

Where the expectations can be obtained as follows;

B0 [£8,0 o007 4] -

H T ((sTy) T, (2], — ka)(.)TT@ H,, (3.70)

E.wo, [d E o [(sT) "] cj} =

H Tr ((sT0) B (2 — Hxi) (. )TTM> Hyd),,

— Hj T ((sT) T (o] ka)(.)TTk,Z) . 3.71)

A pseudocode of the drift model’s measurement update is presented in Algorithm 2]
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Algorithm 2: Measurement Update for Drift Model

Illpllt: Imaa:a yk: andp(mka Fk7 ﬁk’lyl:k—l) as in @D
Initialization:

Set initial densities:
wl(c[]) ~ g = N(wk; Zpejk—1, Prjp—1),
F(U) ~ QF HIQ ’Yk7041<;|k: 1a5k|k 1)
9 ~ ¢y —N(ﬂk,ﬂk\k 15, Okji—1),
2 ~qf = HN(zi? yi- o [sTh])
j=1

Set/ =0

while ( < [,,,,. do
Update state density g

Update Pk(fk+ Y (3324)
Update 2, (3:525)

Update extent density q§? ) as in (3.53):

(L1,

for each dimension i do
Update akleﬂ) (3.56a)
Update ﬁkl () @D
end

Update orientation state density qff L,

Update 9,:;;:1 (3.69a)
Update ﬁljzl (3.69b)
Update noise-free density ¢
Update X7 (1) (3:60a)

(€+1)

for each measurement y; do

Update 2)“"") (3.60B)

end

Increase ¢
end

Output: p(xy, T, 94| Vi) = ¢ (@) gt (Th) gy (95,)
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3.4 Time Update

We present a common time update framework for the proposed models involving the

calculation of (3.3a) for the state and extent variables at time &,
p(@r, X | Vik-1) = /p(ﬂ’/’k,Xk | @1, Xi—1)
Xp(ilfkq, X1 | yl:kfl) dey_ dX;_1. (3.72)

To calculate (3.72) analytically, we make use of the assumptions that are commonly
used in the ETT literature [7]],

P(wk,Xk \ wkflanfl) = p(wk ’ -'kal)p<Xk \ kal), (3.73)
p(wk,Xk \ yl:kfl) = P(ivk \ y1:k71)P(Xk ’ y1:k71)- (3.74)

With these assumptions (3.72)) is written as a product of two distributions,
p(@r, X | V1) = p(@r | Vig—1)p( X | Yrige-1) (3.75)
4 /p(fl?k | Tr—1)P(Tk—1 | Vip-1) dgs

X /P(Xk | Xi—1)p( Xkt | Vig—1) dX s (3.76)

Assume we have the following kinematic state transition model
Tp = f(Th) + vk Ve~ N(0,Qz), (3.77)

A Gaussian approximation A/ (Tk|k—1, Prje—1) to the predicted density for the kine-
matic state p(axy | V1.x—1) can be obtained by linearization. The resulting sufficient

statistics of the prediction density are

Zpk—1 = [(Tr—1jp—1) (3.78)
Pyi-1 = FuPy a1 Fy + Qu, (3.79)

where Fy, = V T (&y,_1)4-1).

To calculate the predicted density of the extent state p(Xy | V1.x—1), we employ a

maximum entropy update which is suitable for unknown dynamics [51, Theorem 1].
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The sufficient statistics for the predicted extent parameters 712| w1~ IG (a};‘ 1 5,1‘ v1)

are calculated as,
Qpk—1 = T _1k—15 Bhpp—1 = TBh—1k—1> (3.80)
fori = 1,2 where 0 < 7 < 1 is a forgetting factor.

The time update of the drift model is conducted similarly to the trajectory-aligned
model, with differences caused by the additional orientation state 1. Thus, the time

update equations can be given as follows for the sufficient statistics of the extended

state;
Zpe-1 = f(Tr-1p-1), (3.81a)
Py = Fu Py F + Qu, (3.81b)
Iyr—1 = Fo(Dr_1pm), (3.81c)
Opji—1 = Fﬁek—uk—ng + Qy, (3.81d)
Qo1 = T 11, (3.81e)
5li|k—1 = Tﬁli—uk—p (3.81f)
where
1 = flxg) v, v ~N(0,Qy), (3.82a)
D1 = Fo(O) +uy, up ~N(0,Qy), (3.82b)

and F, = VfT("ik—Hk—l), Fy = Vfg(ﬁk—uk—l)-
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CHAPTER 4

EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the proposed methods in both simu-
lated scenarios and real-world tracking tasks involving various sensor modalities. We
present two simulated experiments and two experiments with real data in Sections
4.2) and 4.3] respectively. Before presenting the experimental results, we define the

evaluation metrics in Section

4.1 Performance Metrics

For performance evaluation, we consider the commonly used Gaussian-Wasserstein
(GW) distance metric [52] for extent estimates and root-mean-square error (RMSE)
for orientation angle estimates. We perform multiple Monte Carlo (MC) runs and

report the average errors for each time instant.
The squared GW distance between a pair of estimated and true ellipses is defined as
GW%eé,e, X, X) 2 |lc—elP+Tr(X + X —2(X2XX2)2), (4.1

where (¢, X) and (¢, X) represent estimated and true center-extent pairs, respec-

tively. The GW distance for k™ time instant averaged over N MC runs is

N
1 NS
GW = ) \/ GW2(éi, i, X1, X}), (4.2)

i=1
and the RMSE of the estimated orientation angle for £™ time instant over N MC runs

1s defined as

N

1/2
1 , )
RMSEIZ = (N Z(etzrue,k - 92)2> ) (43)

=1
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7

where the superscript ¢ denotes the index of the MC run, 6,

. denotes the ground

truth orientation angle, and ¢ denotes the estimated orientation angle.

4.2 Simulations

Two simulated examples involving trajectory-aligned and drifting targets are studied
in this section. We denote the Aligned and Drift models as P1 and P2, respectively.
The alternative methods [19], [22], [21]], [15]] and [27] are denoted as Al, A2, A3,
A4, and AS respectively. In all experiments, including simulations and real data, we

selected a fixed number of iterations /,,,,, = 10 in the variational updates.

4.2.1 Trajectory-aligned Scenario

This scenario draws inspiration from a ground vehicle navigating through an urban
road layout characterized by various bends and twists where we consider the trajec-
tory followed by the elliptical target in Figure .1} The trajectory consists of 60 time
instants, during which the target alternates between constant velocity and constant
turn motions. The target is initially at the origin, and its velocity vector is aligned with
its major axis throughout the scenario. For this illustrative example, P1 (Trajectory-
Aligned Model), A1 [19]], A2 [22], A3 [21] and A4 [15] are compared. For P1 and
Al, the forgetting factor parameter is set as 7 = 0.95, and a maximum of 10 vari-
ational iterations are performed. For P1, the coordinated turn model with polar ve-
locity as in Appendixis chosen, with process noise covariance Q = diag(5, 1072).
For Al, the constant velocity model in [19, (44a)] with process covariance matrix
of Q = blkdiag(5 x Q., ® I,,0.5) is selected. The constant velocity model given
in [22] is chosen for A2, with process noise covariance matrices for kinematics and
shape vectors C’ = 5 x Q., ® I; and C = diag(0.25,0.01,0.01), respectively.
For A3, the coordinated turn model with Cartesian velocity model [53]] is used with
process noise covariance Q = blkdiag(5 x I5,0.1). For A4, the constant velocity
model with process noise covariance matrix Q = 5 x Q., ® [, is selected and the
rotation matrix is set as My = T'(wy), where wy, is the ground truth yaw rate of the

ground truth object. The extent parameters for A3 and A4, Q.1 = %V}Jkl and vy
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are chosen according to [21, Eq. 23].

Time-averaged GW and RMSE values are reported in Table and errors through-
out the scenario are shown in Figure 4.2] P1 achieves the lowest GW distance values
throughout the scenario, illustrating its robustness to sharp turn maneuvers. P1 also
demonstrates the ability to accurately capture the ground truth orientation, compared
to the alternatives, including A1, which fails to accurately estimate both the orienta-
tion and extent of the target in this trajectory-aligned scenario. Note that since A3
and A4 do not explicitly estimate the extent orientation angle, we only compare ori-

entation angle estimations of P1, A1, and A2.

Table 4.1: Time-averaged errors for the aligned scenario

P1  A1[19] A2[22] A3[21] A4[15]

GW,, (m) 0.88 117 111  1.14 1.0
RMSE? (degrees) 4.4 1059  106.5 - -

4.2.2 Drifting Scenario

This illustrative example is motivated by rapid maneuvering behavior exhibited by
marine vessels such as speedboats, where we consider the trajectory followed by the
elliptical target in Figure[d.3] The trajectory consists of 60 time instants, during which
the target exhibits a drifting behavior. In this example P2 (Drift Model), A1 [19],
A2 [22], A3 [21]] and A4 [15] are compared. For P2, constant velocity models of
the kinematic state and orientation angle vectors with state transition matrices, F}, =
F.,®I, and Fy = F,, are chosen respectively. The process noise covariance matrices
for state and orientation angle transition models are selected as Q, = 10 x Q., ® I,
and Qg = 0.03 x Q., respectively. For A1, the constant velocity model as in Section
With the process noise covariance matrix @ = blkdiag(10x Q.,®1Iy,3x1072) is
used. For A2, the state-space model as in Section with noise covariance matrices
Cy =10 X Qe ® I and C¥ = diag(3 x 107%,0.01,0.01) is employed. For A3, the
coordinated turn model with Cartesian velocity model [S3] is used with process noise

covariance @ = blkdiag(10 x Iy, 3 x 10~2). For A4, the constant velocity model with
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(a) Comparison of GW distances of P1, Al, A2, A3, A4 to the ground truth state in the trajectory
given in Figure E}
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(b) Comparison of orientation angle estimations of P1, A1, and A2 to the ground truth orientation for

the trajectory given in Figure@

Figure 4.2: GW distance errors (a) and orientation estimates (b) averaged over 103

MC runs for the simulated experiment in Section @
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Table 4.2: Time-averaged errors for the drift scenario

P2 AL[19] A2[22] A3[21] A4[15]

GWy, (m) 1.35 1.57 1.57 1.82 1.56
RMSE? (degrees) 8.5  14.1 12.3 - -

process noise covariance matrix @ = 10 x Q., ® [, is selected. The extent transition

parameters Q.1 = V;C"kl, V41 are chosen according to [15, Eq. 37] for both A3

1
3
and A4, and the rotation matrix is set as M}, = T'(wy,) for A4, where wy, is the ground

truth yaw rate of the ground truth object.

Time-averaged GW and RMSE values are reported in Table 4.2 and GW values
throughout the scenario are plotted in Figure .4 P2 achieves the minimum aver-
age RMSE and GW results compared to Al, A2, and A4. Note that GW values tend
to increase at the beginning of turn maneuvers for all methods; P2 can estimate the
target turn rate relatively quickly and recover its performance. We only compare
orientation angle estimations of P2, Al, and A2 since A3 and A4 do not explicitly

estimate the extent of orientation angle.

4.2.3 Effect of Measurement Noise Covariance and Number of Iterations

In this section, we investigate how the performance of the proposed methods de-
pends on the measurement noise covariance and the maximum number of iterations
allowed in the variational updates. For this purpose, we repeated the experiment in
4.2.1| while varying the measurement noise covariance as R = o2 x I, where
o2 € {0.01,1,5,10,20,30,50}. For each of these cases, we run the algorithm
P1 (Trajectory-Aligned Model) with the number of variational iterations /,,,, €

{10,25,50}. The remaining parameters are kept the same. No additional tuning

is performed to improve the performance. 100 MC runs are simulated for each case.

The GW and RMSE performance metrics are presented in Tables {.3]and [4.4] respec-
tively. As expected, the algorithm’s performance degrades with increasing noise lev-

els. When the sensor noise standard deviation exceeds 4 times the minor axis length
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Figure 4.4: Comparison of GW distances of P2, A1, A2, A3, A4 to the ground truth
for the trajectory given in Figure [4.3|averaged over 10° MC runs.

Table 4.3: Time-averaged GW (m) distances under different sensor noise levels

[ma:r \ R 0.01 x ]IQ 1x ]IQ 5 X ]IQ 10 x ]IQ 20 x ]IQ 30 X ]IQ 50 x ]IQ

10 0.412 0.885 1.601 2493  6.227 1242 21.88
25 0.412 0.885 1.528 1.944  3.038 4723  9.639
20 0.412 0.885 1.514 1.884 2796  3.787  7.742

Table 4.4: Time-averaged RM S Ey (degrees) under different sensor noise levels

Ipaz \R 001 xI, 1xI 5xI 10xI, 20xI, 30xI, 50xI,

10 2.8 4.5 7.8 12.9 26.8 73.2 92.6
25 2.8 4.3 7.0 9.7 14.8 19.8 46.8
50 2.8 4.3 6.8 9.0 14.3 17.1 343
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of the extent, the orientation performance of P1 becomes unsatisfactory. Such a case
is illustrated in Figure 4.5] where the measurements carry much less information re-
garding the target’s orientation due to high noise covariance. Further increases in
noise levels would drift the simulations away from realistic sensor models commonly

encountered in ETT applications, such as automotive radar and lidar sensors.

Increasing the number of variational iterations proved effective in maintaining the
performance up to a certain noise level. This is illustrated in Figure 4.6] where it
can be observed that allowing the algorithm to perform 50 iterations provided better

orientation angle tracking performance.

The drift model exhibits similar behavior. However, unlike the trajectory-aligned
model, the drift model cannot extract additional information from the trajectory. As
a result, performance degradation on the orientation angle tracking begins at lower
noise levels. Again, increasing the number of iterations can help mitigate this prob-

lem.

ol * Measurements
Ground Truth
15 |—P1

10

Vertical Distance [m]
o ol
*
%
*
()
*
* %
*
*!
*
*
*

* * *
5¢ * *
-10 * *
-15
1 1 1 1 1 1 1 1
-5 0 5 10 15 20 25 30

Horizontal Distance [m]|

Figure 4.5: The measurement realizations for the first three frames of the high mea-

surement noise covariance scenario, where R = 20 x I.
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Figure 4.6: Comparison of orientation angle estimations of P1 to the ground truth

orientation for different numbers of variational iterations.

4.3 Real Data Experiments

This section presents two real data experiments involving an automotive radar dataset
[54]] and a video tracking example [55]]. We report the time-averaged GW and RMSE
values of these experiments in Table {.5| and [4.6| respectively.

4.3.1 Automotive Radar Data Experiment

This experiment considers automotive radar data and ground truth bounding boxes
of a vehicle in the nuScenes dataset [54]]. The vehicle takes a 90° turn at a junc-
tion in 33 time frames with 0.5 seconds sampling time. P1 (Trajectory-Aligned
Model), Al [19], A2 [22], A3 [21]], and AS [27] are compared in this real-data
experiment. Parameters for this experiment are the same as in Section [4.2.1] ex-
cept for the process noise covariance matrices. Process noise for P1 is selected as
Q = diag(5 x 1072,107%). Process noise covariance for Al is chosen as Q =

blkdiag(5 x 1072 X Qg ® I, 0.5). Process noise covariance matrices of A2 are
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Figure 4.7: Eight frames of algorithm results for the Automotive Radar Experiment.

The dashed arrow indicates the direction of motion.

Cy =5x107 x Q¢ ® I and Cy = diag(0.25,107%,10~%) for kinematics and
shape vectors, respectively. For A3, @ = blkdiag(5 x 107% x I, 10_3) are chosen as
the process noise covariance of the state dynamics. Finally parameters for A5 follow-
ing the notation in [27] are set to 0y = 1075, jrae = 10,7, = 0.05, Q. = 5 X Qo @15
and Q, = diag(0.1%,0.12).

Figure 4.7] depicts the resulting algorithm estimations with 8 equally spaced frames
for visual clarity and readability. P1 exhibits a comparatively high accuracy in es-
timating the orientation, leading to its superior tracking performance. This can be
attributed to the aligned model’s better utilization of the correlation between the ex-

tent orientation and the trajectory of the maneuvering vehicle.
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Table 4.5: Time-averaged errors for the Automotive Radar Experiment

Pl Al A2 || A3 || A5

GWy, (m) 1.56 1.58 2.09 2.38 1.66
RMSE? (degrees) 6.8  103.2 99.7 - 18.2

4.3.2 Drifting Dinghy Experiment

» Measurements
—Ground Truth
—P2
—-A1 [19]
—-A2 [22]
A3 [21]
—-A4 [15]
—-A5 [27]

Figure 4.8: Four sample frames of algorithm results for the drifting dinghy experi-

ment. Frames 24, 29, 41, and 45 are shown in the (a), (b), (c), and (d) order.

In this experiment, we consider the aerial view video data of a drifting dinghy [55].
The dinghy takes about a 180° turn in 50 frames with a sampling time of 2.0 seconds.
We generated measurements by taking random samples from the white pixels of each
frame where the number of measurements generated from the target is set as a Poisson
distributed random variable with rate A = 15. Ground truth ellipses and orientation
angles of this scenario are extracted manually. P2 (Drift Model), A1 [19], A2 [22]],
A3 [21], A4 [15] and A5 are compared in this experiment. Parameters for this

experiment are the same as in Section [4.2.2] except for the process noise covariance
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Table 4.6: Time-averaged errors for the Drifting Dinghy Experiment

P2 AL[19] A2[22] A3[21] A4[15] AS [27]

GW,, (m) 0.97 1.52 2.1 1.21 1.68 1.03
RMSE? (degrees) 9.6  87.6 14.2 - - 10.8

matrices. Process noise covariances for P2 are selected as Q. = 2.5 X Q., ® I, and
Qo = 1073 x Q.. Process noise covariance for Al is chosen as Q = blkdiag(0.25 x
Q., ®15,107?). Process noise covariance matrices of A2 are C* = 0.25 x Q, ® I,
and C¥ = diag(10*,1072,102) for kinematics and shape vectors, respectively.
Q = blkdiag(0.25 x Q., ® I5,1073), for A3 Q = blkdiag(0.25 x Q., ® I5,1073)
for A4, Q = 0.25 x Q., ® I, is chosen as the process noise covariance of the state
dynamics. Finally parameters for A5 are set to dg = 1076, Imaz = 10, v = 0.05,
Q. =0.05 x Q., ® 5 and Q, = diag(0.05, 0.05).

Estimates of the algorithms are depicted in Figured.8] We show 4 frames out of 50 in
the figure for visual clarity. It can be seen that P2 represents the drifting behavior of
the dinghy relatively well while capturing both orientation and trajectory information

simultaneously.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have successfully developed and implemented novel random matrix-
based methodologies for elliptical extended target tracking, specifically addressing
the unique motion patterns of trajectory-aligned and drifting targets. Our approach,
which distinguishes between the correlation of kinematic states and extent orienta-
tion, provides a critical improvement over traditional tracking methods that often ne-

glect these distinctions.

Extended target tracking (ETT) has seen substantial advancements in recent years,
primarily focusing on improving the accuracy and efficiency of tracking systems in
diverse applications. Traditional approaches often assume simple, static models for
target extent and kinematics, which can lead to significant limitations, especially in
dynamic environments. Prior research has explored various methods, and while they
are robust in many scenarios, they frequently overlook the crucial dynamics between
the target’s kinematic state and its orientation. Our research builds upon this foun-
dation by introducing novel random matrix-based models that explicitly account for
the correlation between kinematic states and extent orientation. This differentiation
is crucial for dealing with real-world tracking scenarios where targets such as ground
vehicles and UAVs exhibit complex motion patterns. By addressing these previously
neglected dynamics, our models enhance the predictive capabilities of ETT systems,
offering a significant contribution to the literature and extending the applicability of

tracking technologies in practical settings.

For trajectory-aligned targets, such as cars, trains, and bicycles, our model leverages
the strong correlation between kinematic state and extent orientation, resulting in sig-

nificantly enhanced tracking accuracy. This model is particularly effective when tar-
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gets exhibit predictable, aligned movement patterns. Conversely, our drifting model
is optimized for maritime vessels and UAVs, where kinematic state and orientation
are less correlated. By adapting to the independent nature of these parameters, this
model offers improved accuracy for tracking targets with more unpredictable and au-

tonomous movements.

Through rigorous testing on both simulated and real-world datasets, our models demon-
strated superior performance compared to existing state-of-the-art methods. The ex-
periments highlighted our models’ ability to achieve lower estimation errors in orien-
tation and extent states, particularly in scenarios characterized by high maneuverabil-
ity and substantial environmental noise. These findings underscore the importance of
our novel approach in enhancing the capabilities of extended target tracking systems,

paving the way for more accurate and reliable tracking in complex scenarios.

This thesis confirms the efficacy of distinguishing between different types of target
motions in tracking applications. It enhances the overall understanding and devel-
opment of tracking technologies in automotive radars and maritime surveillance sys-

tems.

5.1 Future Work

Looking forward, several enhancements can be made to refine the RM-based ETT
models introduced in this thesis further. First, the variational Bayesian (VB) iteration
steps could be adapted based on convergence rates to optimize the computational effi-
ciency and accuracy of the models. Implementing a dynamic adjustment mechanism
for VB iterations while setting a maximum iteration limit would allow the algorithms
to adapt to different scenarios and potentially lead to faster and more accurate con-

vergence.

Additionally, extending the measurement model to include other types of measure-
ments, such as Doppler and polar measurements, could significantly enhance the ap-
plicability and versatility of the proposed methods. Incorporating these measurement
sources would allow the models to be applied in a broader range of environments and

increase their utility in practical scenarios.
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Moreover, developing a 3D extension of the proposed models would address the needs
of applications where targets occupy three-dimensional space, such as aerial tracking

or space surveillance.

Also, extending the models to handle multi-target scenarios would be a significant
advancement. This extension would involve adapting the existing algorithms to track
multiple distinct targets simultaneously, improving the models’ capability in complex

environments with numerous targets.

For scenarios where targets exhibit combined behaviors, such as a vehicle displaying
both trajectory-aligned and drifting behaviors, a multimodel approach, such as the In-
teracting Multiple Model (IMM) algorithm, could be employed. This approach would
allow for switching between different motion models, making the system adaptable

to varying target dynamics.

Lastly, creating multiellipsoidal versions of the proposed models would enable track-
ing multiple overlapping targets more effectively. This development would be partic-
ularly beneficial in group tracking scenarios or objects with shapes better represented

by unions of multiple elliptical regions.
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APPENDICES

A Definition of Functional Derivatives

Given a functional F|f] that depends on a function f(x), the functional derivative of

F[f] with respect to f(x) is defined such that:

_ [ OFS]
5}"[f]—/5f(x)5f(:v)dx. (A.1)
Here, 5';:([;:)] is the functional derivative of F with respect to f(x) [47, Chapter 1].

This expression indicates how small changes in the function f(x) affect the value of

the functional F[f].

For small € and 6 f (z);

SFIf] =lim ~ (FIf +e5f] ~ FIf)), (A2)
iy (I 5S4 e FI bS]+ 0) - FUL (A
- (%}" [f + e f])e:o' (A.4)

So a way to compute the derivative of a functional is given as:
(%f If + eaf]>€:0 - / gf—([g& () dz. (A.5)

B Coordinated Turn with Polar Velocity Model

In our experiments with the Aligned Model, we employ the discretized state space
equations presented in [S3] to propagate the kinematic state to the subsequent time

step. These equations are given as
T = f(xr) +vr, v~ N(0,Qy). (B.1)

67



Here, the state vector @, = [p§ py vk ¢r )7 encompasses the Cartesian positions,
magnitude of the Cartesian velocity, heading angle, and turn rate. The state transition

function f(.) is expressed explicitly as,

-p}’;” + %fsm(%) cos(px + %)-
Py + %sm(%) sin(py + %)
f(®ry1) = Uk . (B.2)
ok + oiT
! P ]

Here, T'is the sampling time. The process noise vy, is modeled with a state dependent

function g(x),

Vi = g<wk)wk7 Wy Zfl\“d N(O, Q); Q S S2++7 (B.3)
T
T2 T2 .
S cos(pr) S-sin(pr) T 0 0
glzy) = | ° Z o ; (B.4)
0 0 0 5 T

2

C Proof of Lemmall]

Proof. Given ¢ ~ N (¢, P,), the characteristic function of ¢ is [49]:

¢u(t) =E, [¢/¥] = exp (j@t — % g0152) (C.1
Expectation of sin(2¢)
E, [sin(2¢)] = 3 (05(2)) (C2)
$o(2) = exp (j2¢ — 2F,) (C.3)
E,, [sin(2¢)] = sin(2¢) exp(—2F,) (C4)

Expectation of cos(2¢p)

Eq, [cos(2¢)] = R (¢,(2)) (C.5)
$o(2) = exp (j2¢ — 2F,) (C.6)
E, [cos(2¢)] = cos(2¢) exp(—2P,) (C.7)
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Expectation of ¢ sin(2¢)

poy 4 O
P (t) = g” <exp (JW 5 Dot )) (C.8)
1

— exp (j@t — §P¢t2> (jp — P,t) (C.9)
¢,(2) = exp (j2¢ — 2P,) (j¢ — 2P,) (C.10)
E, [psin(2p)] = S (j¢,(2)) (C.11)
= S (exp (j2¢ — 2P,) (¢ — 24 F,)) (C.12)
= (¢sin(2¢) + 2P, cos(2¢)) exp(—2P,) (C.13)

Expectation of ¢ cos(2¢)
E, [0 cos(2¢)] = R (j¢,,(2)) (C.14)
= R (exp (j2¢ — 2P,) (¢ — 24 F,)) (C.15)
= (pcos(2¢) — 2P, sin(2¢)) exp(—2P,) (C.16)

Expectation of ¢? sin(2¢)
”t—dQ ot L t2 C.17
%()—@ exp | jot = 5Py (C.17)

1

— exp (j@t -3 ﬁ) ((jp — Pt)> — P,) (C.18)
¢7(2) = exp (j2¢ — 2P,) ((j¢ — 2P,)* — P,) (C.19)
E, [¢*sin(2¢)] = S (—¢1(2)) (C.20)

S (—exp (j2¢ — 2P,) (—¢* —4jpP, —4P2 — P,)) (C.21)
@? sin(2p) exp(—2P,) + 49 P, cos(2p) exp(—2P,)

— 4P sin(2¢) exp(—2P,) + P,sin(2¢) exp(—2P,) (C.22)

So,

E, [¢*sin(2¢)] = ((¢* — 4P% 4 P,)sin(2¢) 4 4pP, cos(2¢)) exp(—2P,)
(C.23)

Expectation of ©? cos(2¢)
E, [¢* cos(2¢)] = R (—¢(2)) (C.24)
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=R (—exp (j2¢ — 2P,) (—¢* —4joP, —4P2 — P,)) (C.25)
= p? cos(29) exp(—2P,) — 4¢P, sin(2¢) exp(—2P,)
— 4P2 cos(2¢) exp(—2P,) 4+ P, cos(2¢) exp(—2P,) (C.26)

So,

E, [¢? cos(2¢)] = (($° — 4P% + P,) cos(2¢) — 44 P, sin(2¢)) exp(—2P,)
(C.27)

1 + cos(2¢)
1 — cos(2¢p) | -

A

We define the vector £,
sin(2¢p)
The expectations E [t,], E [pt,], and E [¢?t,] can be analytically calculated as fol-

lows:

Expectation of £:

1+ cos(2¢p) 1+ E, [cos(2¢)] 1+ e 2P cos2¢
Eft,)=E ||1—-cos(2p)|| = [1—E,[cos(2p)]| = |1 — e 2P cos2¢
sin(2) E, [sin(2,)] e sin 2
(C.28)

Expectation of ¢t,:

1 4 cos(2¢) E, [p(1 + cos(2¢))]
Elpt,) =E |¢ [1—cos(2p)| | = |E,[p(1 — cos(2¢))] (C.29)
sin(2¢) E, [psin(2¢)]
[E, [¢] + E, [io cos(2)
= |Ey [¢] — Ey [pcos(2¢)] (C.30)

2 (2¢)
= | ¢ — (pcos(2¢) — 2P, sin(2p)) e 2% (C.31)
)e




Expectation of ¢*t,:

E [902t<p]

Thus, the expectations are:

where E[p?] =

1+ cos(2¢) [E, [0*(1 + cos(2¢))]
E |¢® |1 —cos(2¢)| | = |E,[*(1 — cos(2¢))] (C.32)
sin(2¢p) E, [¢* sin(2¢)]
E, [¢?] + E,, [¢? cos(2¢)]
E, [¢%] — E, [¢* cos(2¢)] (C.33)
E, [¢? sin(2¢)]
@+ P, + ((¢* + P, — 4P?2) cos(2p) — 4¢P, sin(2¢)) e~2F
@* + P, — ((¢* + P, — 4P2) cos(2¢) — 40P, sin(2p)) e 2"
((¢* + P, — 4P2)sin(2¢) + 4¢P, cos(2¢)) e~ 2"+
(C.34)
1+ e2Pe cos 2
1 —e 2P cos2¢p]| , (C.35a)
i e 2P sin 25
-35 + e 2% (pcos2p — 2P, sin 29)
¢ —e e (peos2¢ — 2P, sin29) | (C.35b)
| e % (2P, cos 29 + ¢sin 29)
[E[p%] + e 2P ((E[p?] — 4P2) cos 2 — 4P,¢sin 20)
E[p?] — e 2% ((E[p?] — 4P2) cos2¢ — 4P,psin2¢) |, (C.35¢)
i e 2P ((E[gpz] - 4P£) sin 2¢ + 4P, cos 235)
@¢* + P,
[
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