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ABSTRACT

INCORPORATING TRAJECTORY INFORMATION IN RANDOM MATRIX
ELLIPTICAL EXTENDED TARGET TRACKING

Şahı̇n, Kurtuluş Kerem

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Emre Özkan

September 2024, 71 pages

This thesis focuses on Extended Target Tracking (ETT) using Random Matrix Meth-

ods (RMM), which provide enhanced estimations of target size and movement in

tracking systems. Traditional methods often miss crucial trajectory details, which, if

considered, could improve tracking performance.

To address this issue, we have developed two new RMM-based models. The first,

the trajectory-aligned model is designed for targets moving in a consistent direction,

ensuring that the orientation aligns with the trajectory. The second, the drifting model

is for targets whose orientation deviates from their heading direction. Utilizing the

variational Bayes (VB) method, we obtain posterior densities by performing analyti-

cal and iterative steps for both models. This methodological choice ensures that our

models not only deliver precise tracking results but also operate efficiently in real-

time applications.

Extensive testing on both simulated and real-world data has proven that our mod-

els effectively outperform current methods in handling drifting and trajectory-aligned

targets. These tests confirm the flexibility and efficiency of our models under diverse
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conditions. The demonstrated success of our models in both simulated and real en-

vironments underscores their potential to significantly enhance current standards in

extended target tracking.

Keywords: Extended Target Tracking, Random Matrix, Maneuvering Motion Mod-

els, Variational Bayes, Automotive Radars
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ÖZ

RASLANTISAL MATRİS TABANLI ELİPTİK GENİŞLETİLMİŞ HEDEF
TAKİBİ YÖNTEMLERİNE YÖRÜNGE BİLGİSİ EKLENMESİ

Şahı̇n, Kurtuluş Kerem

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Emre Özkan

Eylül 2024 , 71 sayfa

Bu tezde, Genişletilmiş Hedef Takibi (GHT) üzerine odaklanmaktadır ve hedef ta-

kip sistemlerinde hedef boyutu ve hareketinin gelişmiş tahminleri Raslantısal Matris

Yöntemleri (RMY) kullanılarak sağlanmaktadır. Geleneksel yöntemler genellikle kri-

tik yörünge detaylarını göz ardı ederken; bu detaylar dikkate alındığında, hedef takip

performansı artırılabilir.

Bu sorunu ele almak için iki yeni RMY tabanlı model geliştirilmiştir. İlk olarak ge-

liştirilen yörüngeye hizalı model, hedefler sürekli bir yönde hareket ettirildiğinde yö-

rünge ile yönelim açısının uyumlu olmasını sağlamak üzere tasarlanmıştır. İkinci ola-

rak geliştirilen yörüngeden sapma modeli, yönelimi başlangıç doğrultusundan sapma

gösteren hedefler için uygundur. Varyasyonel Bayes (VB) yöntemi kullanılarak her

iki model için analitik ve yinelemeli adımlar gerçekleştirilerek sonrasal olasılık yo-

ğunlukları elde edilmektedir. Bu metodolojik seçim, modellerin sadece kesin izleme

sonuçları sunmakla kalmayıp aynı zamanda gerçek zamanlı uygulamalarda etkin bir

şekilde çalışmasını sağlamaktadır.
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Hem benzetimli hem de gerçek dünya verileri üzerinde yapılan kapsamlı testlerle,

modellerin mevcut yöntemleri sapma ve yörüngeye hizalı davranışlar gösteren he-

deflerin takibinde etkili bir şekilde aştığı kanıtlanmıştır. Bu testler, modellerin çeşitli

koşullar altında esneklik ve verimliliğini teyit etmektedir. Modellerin hem benzetimli

hem de gerçek ortamlarda gösterdiği başarı, mevcut genişletilmiş hedef takip stan-

dartlarını önemli ölçüde geliştirme potansiyelini vurgulamaktadır.

Anahtar Kelimeler: Genişletilmiş Hedef Takibi, Raslantısal Matris, Manevralı Hare-

ket Modelleri, Varyasyonel Bayes, Otomotiv Radarlar
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Extended Target Tracking (ETT) has become increasingly critical in modern tracking

applications due to advancements in sensor technologies that allow for the detection

of complex object shapes and their dynamic behavior. Traditional tracking methods

often assume that an object is represented as a single point. Still, this assumption

falls short in scenarios where the object’s spatial extent influences its movement and

interaction with the environment. ETT addresses this by estimating not only the posi-

tion and velocity of a target but also its size, shape, and orientation, providing a more

comprehensive understanding of the target’s behavior.

Despite the progress in ETT, a significant limitation in the current literature is treat-

ing the rotation information of the target’s extent as uncorrelated from its dynamic

behavior. This simplifying assumption neglects the potential insights gained from

correlating the target’s kinematic state, such as velocity and heading, with its rota-

tional dynamics. If this correlation were accounted for, the tracker could potentially

achieve more accurate predictions of the target’s future state, especially in scenar-

ios where the target exhibits continuous angular velocity dynamics. For instance, in

cases where a target’s heading direction is aligned with its extent, such as in vehicles

or commercial aircraft, maintaining this correlation could enhance the tracker’s abil-

ity to predict sharp maneuvers and changes in direction. This raises the question of

whether incorporating the correlation between the target’s heading and the orientation

of its spatial extent could yield better tracking performance.
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1.2 Target Tracking

In traditional tracking methods, known as single point target tracking, an object is as-

sumed to generate at most one measurement per time frame or scan. This assumption

holds in scenarios where the object is distant from the sensor, such as radar-based air

surveillance, where the object is treated as a point due to sensor resolution limitations.

Various methods have been developed under this assumption. Single model-based

methods include the Kalman Filter, Extended Kalman Filter (EKF) [1], and Un-

scented Kalman Filter (UKF) [2]. For scenarios involving multiple motion models,

Generalized Pseudo-Bayesian Filters (GPB-I and GPB-II) [3] and Interacting Multi-

ple Model (IMM) [3] filters are used. In more complex or nonlinear scenarios, Particle

Filtering [4] and Markov Chain Monte Carlo (MCMC) techniques [5] are used. These

methods effectively handle non-linearities and non-Gaussian processes, making them

suitable for more challenging tracking environments.

However, as sensor technologies have advanced, the assumption that an object gener-

ates only a single measurement per scan has become increasingly limiting. In many

modern applications, such as autonomous driving or robotics, objects often occupy

several sensor resolution cells, generating multiple measurements. This has led to

the development of Extended Target Tracking methods, where the goal is to estimate

not only the object’s position and velocity but also its size and shape, which may

vary over time [6–8]. A comparison of two target tracking paradigms is illustrated in

Figure 1.1.

1.3 Extended Target Tracking

Various approaches have been proposed thus far to address the ETT problem in learn-

ing the underlying shape of targets in simple mathematical forms. The complexity of

shape modeling directly impacts the tracking method’s accuracy and computational

demands [7, 8].

Extended target tracking methods can be classified based on how they represent the

object’s shape. The most straightforward approach to shape representation assumes

2



(a) Point target tracking (b) Extended target tracking

Figure 1.1: Comparison between point target tracking and extended target tracking.

In (a), the aircraft is represented as a single point (xk), with sensor measurements

shown as crosshairs (⊕). In (b), the aircraft is treated as an extended object, with its

outline represented in red (Xk). The distributed sensor measurements (⊕) across the

target’s surface capture the extended nature of the tracking scenario.

that the object can be modeled as a fundamental geometric shape, such as a circle,

ellipse, or rectangle. These methods are computationally efficient and are often suf-

ficient when tracking objects like vehicles or pedestrians, where the shape can be

approximated with a simple geometric form.

• Ellipse Models: A common example is the Random Matrix Approach [9–25]

where the object’s extent is modeled as a covariance matrix or deterministic

approaches [26, 27] which uses semi-axes lengths of an ellipse. This method is

particularly effective in scenarios where the object’s shape is roughly elliptical,

such as pedestrian or marine vessel tracking.

• Multiellipsoidal Models: In scenarios where a single ellipse cannot adequately

represent the target’s shape, multiellipsoidal models are employed. These mod-

els represent the target extent using multiple ellipses, each corresponding to

a different part of the target’s surface. This approach provides a more de-

tailed and accurate representation, especially in complex tracking environments

where the target might have an irregular shape or consists of multiple distinct

3



parts [17, 20, 28].

• Rectangle Models: When tracking vehicles, a rectangle may represent the ob-

ject’s extent. This is a good approximation for many practical applications like

car tracking using LIDAR [29, 30].

More advanced shape models are used for more complex objects whose shapes cannot

be accurately captured by simple geometric forms. These models allow for arbitrary

shape representation and are often employed when the object’s shape is irregular or

requires high accuracy. Figure 1.2 presents some examples of extent representations.

• Random Hypersurface Models: These models represent the object’s shape as a

parametric curve, allowing for the tracking of objects with complex and vary-

ing boundaries [31,32]. These extents can also be modeled using Gaussian pro-

cesses to handle the spatial correlation between different parts of the object’s

boundary. Symmetry constraints can be easily enforced wherever needed [33–

35].

• Spline Models: Using spline representations in target tracking allows for mod-

eling object contours with high precision and flexibility. This method has

proven particularly useful in tracking elongated or deformable objects in aerial

and ground-based sensor data [36–38].

1.4 RM-based ETT

RM-based methods assume an elliptical shape for the target extent. These methods

represent an extended target with a Gaussian kinematic state vector and a symmetric

positive definite extent matrix. The kinematic state vector mostly holds information

about the target position and velocity, while the extent matrix describes the target

shape as an ellipse. While earlier methods define an inverse-Wishart (IW) prior for

the extent matrix [9–14], some recent studies use inverse-Gamma (IG) priors together

with a rotation matrix [19]. The rich literature on RM-based ETT is initiated by the

seminal work of Koch [9], where the author proposed the first solution for the RM-

based ETT problem under zero additive sensor noise assumption. Later, Feldmann
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(a) Linear shape representation

(b) Rectangular shape representa-

tion

(c) Elliptical shape representation

(d) Arbitrary shape representation

(Gaussian Process)

Figure 1.2: Different styles of shape representation in ETT. The black dashed line

represents the ground truth object, while the red solid lines with red dots depict the

extent models and their center locations.
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et al. [10] provided a solution that can take additive Gaussian sensor noise into ac-

count. To incorporate evolving extent dynamics into the additive Gaussian sensor

noise model, [12, 13] proposed approximating the predicted densities using moment

matching, Kullback-Leibler (KL) divergence minimization, and numerical optimiza-

tion techniques with approximate transition densities. The authors of [15, 21] later

proposed an analytical model for predicted densities with artificial transition models

using non-central Inverse Wishart probability densities. Optimization-based methods

proposed by [11, 19] suggest utilizing the Variational Bayesian (VB) optimization

method to improve the accuracy of the correction step of the estimation process.

Even with these advancements in RM-based ETT, a significant gap in the existing

research is the common practice of treating the rotation information of the target’s

extent as separate from its dynamic behavior. Building upon the foundation laid by

these RM-based methods, our work addresses this overlooked aspect, specifically

integrating the rotation information of the target’s extent with its dynamic behavior.

In the following section, we outline the key contributions of our approach and how it

advances the current state of elliptical ETT.

1.5 Contributions

In this thesis, we propose two models that are frequently observed in tracking prob-

lems but have been largely overlooked in the literature to differentiate the dependence

between the kinematic state and the extent orientation. The first model covers the tar-

gets that have their motion direction mostly parallel to their extent heading directions,

such as cars, bikes, and trains [39–41]. We denote targets that satisfy this property

as "trajectory-aligned" targets. The second model is tailored for targets that have

mostly independent motion directions and extent headings, such as maritime ves-

sels, unmanned aerial vehicles, insects, and microscopic life forms [19, 20, 42, 43].

These targets tend to exhibit extent rotations that are weakly coupled with their state

dynamics. We categorize these targets as "drifting" targets. This notably apparent

difference necessitates two separate models, each of which can exploit these depen-

dencies and achieve higher accuracy by performing adequate updates. In our deriva-

tions, we perform variational inference and obtain approximate posteriors via com-
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putationally efficient, analytical, iterative steps. Our derivations for each target type

incorporate orientation dynamics and account for relevant correlation structures. This

approach not only enhances the accuracy of inferring the proposed models but also

poses greater challenges compared to previous variational methods that ignore this

dependence [11, 19].

We also show that ignoring the correlation between the target trajectory and shape, as

in [19], will result in poor performance, especially for fast-maneuvering targets. Our

simulated and real data experiments involving video and radar tracking applications

validate such performance losses and demonstrate significant performance gains of

our methods over state of the art.

1.6 Organization of the Thesis

This thesis is organized in the following structure: Chapter 2 delves into the foun-

dational concepts and mathematical frameworks essential to understanding extended

target tracking. This includes discussions on Bayesian inference, state space models,

Kalman filtering, and an introduction to variational Bayesian methods that form the

basis of the proposed models. Chapter 3 presents a detailed mathematical derivation

of two innovative algorithms designed to track trajectory-aligned and drifting targets

accurately. This chapter covers each model’s underlying assumptions, algorithmic

steps, and theoretical justifications. Chapter 4 outlines the experimental setup, uti-

lizing both simulated and real datasets for validation. It offers a critical analysis of

the performance of the proposed models compared to existing methods, highlighting

improvements in tracking accuracy through various metrics and scenarios. Chap-

ter 5 emphasizes significant advancements in tracking technologies. It summarizes

key results, discusses their implications for the field, and reflects on the strengths

and limitations of the work presented. This chapter also explores potential ways to

enhance further the methodologies introduced in this study.
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CHAPTER 2

THEORETICAL BACKGROUND

2.1 Bayesian Inference

Bayesian inference is a statistical method that uses Bayes’ rule to update the proba-

bility estimate for a hypothesis as more evidence becomes available [44]. This ap-

proach is particularly useful in dynamic systems, where we aim to estimate states that

evolve in time. Bayesian inference provides a powerful framework for combining

prior knowledge with new observations to make informed predictions of the systems’

states.

Bayesian inference revolves around updating our beliefs based on new data [45]. The

key formula at the heart of Bayesian inference is Bayes’ rule, which is stated as

follows

p(xk|yk) =
p(yk|xk)p(xk)

p(yk)
, (2.1)

where

• p(xk|yk) is the posterior probability density function (pdf),

• p(yk|xk) is the likelihood of the observation yk given the state xk,

• p(xk) is the prior probability of the state, and

• p(yk) is the marginal likelihood, a normalizing constant.
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2.1.1 State-Space Models

A state-space model allows us to describe a system using latent state variables and

observations. The model is typically composed of two equations.

• State Transition Equation: Describes the evolution of the state vector as

xk+1 = f(xk,ωk). (2.2)

• Measurement Equation: Describes the relation of observations with the state

variables as

yk = h(xk,νk), (2.3)

where xk is the state at time k, ωk represents the process noise, yk is the obser-

vation at time k and νk denotes the measurement noise.

2.1.2 Recursive Bayesian Estimation

Recursive Bayesian estimation is a key technique used for state estimation in dynamic

systems. It involves two steps:

1. The time update step involves using the state transition equation to predict the

next state based on the current state estimate utilizing the Chapman-Kolmogorov

equation as

p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk|y1:k) dxk. (2.4)

2. Measurement update step refines this prediction based on the new observation

using Bayes’ rule given by

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
. (2.5)

These steps are repeated at each time step to provide a continuous estimate of the

state as new observations are made.
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Bayesian inference and state-space models form a framework for understanding and

predicting the behavior of dynamic systems. Through recursive Bayesian estimation,

we can continuously update our understanding of a system’s state, making it indis-

pensable in fields such as robotics, economics, and beyond.

2.2 Kalman Filtering

Kalman filtering is a specific case of Bayesian inference applied to linear state-space

models with Gaussian noise. It provides optimal and efficient computational means

for recursive Bayesian estimation under linearity and Gaussianity assumptions.

2.2.1 Linear State-Space Model

The following equations define the linear state-space model:

• State Transition Equation:

xk+1 = Fxk +Gωk, ωk
i.i.d∼ N (0,Q) , (2.6)

• Measurement Equation:

yk = Hxk +Lνk, νk
i.i.d∼ N (0,R) , (2.7)

• Initial Probability Distribution:

x0 ∼ N (x0; x̂0,P0) , (2.8)

where xk ∈ Rn is the state at time k, yk ∈ Rm is the measurement at time k,

ωk ∈ Rs is the zero mean i.i.d process noise with multivariate normal distribu-

tion with covariance Q ∈ Rs×s, νk ∈ Rt is the zero mean i.i.d measurement

(sensor) noise with multivariate normal distribution with covariance R ∈ Rt×t,

F ∈ Rn×n is the state transition matrix, G ∈ Rs×n is the process noise matrix,

H ∈ Rn×m is the measurement matrix, and L ∈ Rt×m is the measurement

noise matrix.
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2.2.2 Kalman Filter Algorithm

The Kalman filter performs the recursive estimation in two main steps: time update

and measurement update.

2.2.2.1 Time Update Step

Given p(xk−1|yk−1) = N
(
xk−1; x̂k−1|k−1,Pk−1|k−1

)
, the posterior density at time

k−1, the prediction consists of calculating the sufficient statistics of the prior density

at k as

x̂k|k−1 = F x̂k−1|k−1, (2.9)

Pk|k−1 = FPk−1|k−1F
T +GQGT , (2.10)

where x̂k|k−1 is the predicted state estimate, Pk|k−1 is the predicted error covariance,

and Q is the process noise covariance.

2.2.2.2 Measurement Update Step

In the measurement update step, the predicted state mean and covariance are corrected

using the new observation yk as

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1), (2.11)

Pk|k = Pk|k−1 −KkSkK
T
k , (2.12)

where Sk is the innovation covariance and Kk is the Kalman gain, which are calcu-

lated as

Sk = HPk|k−1H
T +LRLT , and, (2.13)

Kk = Pk|k−1H
TSk

−1, (2.14)

respectively. x̂k|k is the updated state estimate, Pk|k is the updated state covariance,

and R is the observation noise covariance.
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2.3 Extended Kalman Filtering

The extended Kalman filter (EKF) is an extension of the Kalman filter that handles

nonlinear state-space models. In the EKF, the state transition and observation models

are linearized using Taylor series expansions around the current state estimate.

2.3.1 Nonlinear State Space Model

The following equations define the nonlinear state-space model:

• State Transition Equation:

xk+1 = f(xk,ωk) ωk
i.i.d∼ N (0,Q) , (2.15)

• Measurement Equation:

yk = h(xk,νk) νk
i.i.d∼ N (0,R) , (2.16)

where f is the nonlinear state transition function, h is the nonlinear measure-

ment function.

2.3.2 Taylor Series Expansion

While using the EKF, we linearize the nonlinear functions fand h using their first-

order Taylor series expansions around the previous posterior mean x̂k−1|k−1 for the

prediction step and around the predicted mean x̂k|k−1 for the update step.

2.3.2.1 State Transition Function Linearization

The state transition function f(xk) is expanded around (xk,ωk) = (x̂k|k,0):

f(xk,ωk) ≈ f(x̂k|k,0) + Fk(xk − x̂k|k) +Gkωk, (2.17)

where Fk is the Jacobian matrix with respect to the state xk of f evaluated at xk =

x̂k|k, ωk = 0 and Gk is the Jacobian matrix with respect to the process noise ωk of f
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evaluated at xk = x̂k|k, ωk = 0, that are given as

Fk =

(
∂f

∂xk

)
xk=x̂k|k
ωk=0

, Gk =

(
∂f

∂ωk

)
x=x̂k|k
ωk=0

. (2.18)

2.3.2.2 Measurement Function Linearization

The measurement function h(xk) is expanded around (xk,νk) = (x̂k|k−1,0):

h(xk,νk) ≈ h(x̂k|k−1,0) +Hk(xk − x̂k|k−1) +Lkνk, (2.19)

where Hk is the Jacobian matrix of h with respect to the state xk evaluated at xk =

x̂k|k−1, νk = 0 and Lk is the Jacobian matrix of h with respect to the measurement

noise νk evaluated at xk = x̂k|k−1, νk = 0 that are given as

Hk =

(
∂h

∂xk

)
xk=x̂k|k−1

νk=0

, Lk =

(
∂h

∂νk

)
x=x̂k|k−1

νk=0

. (2.20)

2.3.3 Extended Kalman Filter Algorithm

The EKF follows the same prediction and update steps as the Kalman filter but uses

linearized models where necessary.

2.3.3.1 Time Update Step

The predicted mean and covariance are computed as

x̂k|k−1 = f(x̂k−1|k−1,0), (2.21)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Gk−1QGT

k−1, (2.22)

respectively.

2.3.3.2 Measurement Update Step

The predicted state is corrected using the new observation:

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1,0)), (2.23)
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Pk|k = Pk|k−1 −KkSkK
T
k , (2.24)

where the innovation covariance and Kalman gain are

Sk = HkPk|k−1H
T
k +LkRLT

k , (2.25)

Kk = Pk|k−1H
T
k Sk

−1, (2.26)

respectively.

2.4 Variational Inference

Variational Bayesian (VB) inference is a technique used to approximate complex pos-

terior distributions in Bayesian statistics. The key idea behind VB is to transform the

problem of computing a difficult-to-compute posterior distribution into an optimiza-

tion problem [46, Chapter 10]. This is achieved by approximating the true posterior

distribution p(X|Y) with a simpler variational distribution q(X) and minimizing the

Kullback-Leibler (KL) divergence between them.

The KL divergence between the true posterior p(X|Y) and the variational distribution

q(X) is given by

KL(q(X) ∥ p(X|Y)) =

∫
q(X) log

q(X)

p(X|Y)
dX. (2.27)

Minimizing this KL divergence is equivalent to maximizing the evidence lower bound

(ELBO), which is defined as

L(q) ≜ Eq [log p(Y ,X)]− Eq [log q(X)] . (2.28)

where Y are the observed data, X are the latent variables, p(Y ,X) is the joint dis-

tribution of the data, and latent variables, and q(X) is the variational distribution

approximating the posterior.

This equivalence can be seen from the following manipulations

KL(q(X) ∥ p(X|Y)) =

∫
q(X) log

[
q(X)

p(X|Y)

]
dX, (2.29a)

=

∫
q(X) (log [q(X)]− log [p(X|Y)]) dX, (2.29b)
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=

∫
q(X)

(
log [q(X)]− log

[
p(X,Y)

p(Y)

])
dX, (2.29c)

=

∫
q(X) log [q(X)] dX−

∫
q(X) log [p(X,Y)] dX

+

∫
q(X) log [p(Y)] dX, (2.29d)

= Eq [log q(X)]− Eq [log p(Y ,X)] + Eq [log p(Y)] , (2.29e)

= −L(q) + log p(Y). (2.29f)

The goal of VB inference is to maximize the ELBO with respect to the variational

distribution q(X), making q(X) a good approximation to the true posterior p(X|Y).

2.4.1 Mean-Field Approximation

Factorized distributions, also known as mean-field approximations, are crucial in vari-

ational inference for simplifying the calculations of posterior distributions in Bayesian

statistics.

A factorized distribution assumes that the variational distribution q(X) decomposes

into a product of independent distributions for disjoint subsets of variables:

q(X) =
N∏
i=1

qi(xi), (2.30)

where X = (x1,x2, . . . ,xN) represents the set of random variables, and each qi(xi)

is an independent distribution specific to the random variable xi.

By assuming independence among the components of X, factorized distributions

transform the complex task of estimating a joint distribution into several simpler

marginal distributions. This approach reduces the computational complexity, avoid-

ing the curse of dimensionality typical in high-dimensional spaces.

Furthermore, the factorization allows for analytical solutions in the update steps of

the variational inference algorithms. For each factor qi(xi), the update rules can often

be derived in closed forms, turning the problem of finding the density q(X) into an

iterative optimization process.

The independence assumption implies that each distribution qi(xi) can be optimized
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independently of others. This property enhances the scalability of variational infer-

ence algorithms, making them applicable to high-dimensional (large-scale) Bayesian

models.

2.4.2 Functional Derivative of ELBO and Gradient Ascend Method

After establishing the mean-field approximation to simplify the problem, we now

focus on deriving the update rules for the variational distributions by considering the

functional derivative of the ELBO. This approach allows us to iteratively refine our

approximation by using the gradient ascent method.

To derive the update rule for a specific factor qj(xj), we need to maximize the ELBO

for qj(xj) while holding the other factors fixed. First, we express the ELBO in a form

that explicitly shows the dependence on qj(xj).

L(q) = Eqj

[
Eq\j [log p(Y ,X)]

]
− Eqj [log qj(xj)] + constj, (2.31)

=

∫
qj(xj)

(
Eq\j [log p(Y ,X)]

)
dxj

−
∫
qj(xj) log qj(xj) dxj + constj. (2.32)

Consider a small perturbation δqj(xj) in qj(xj)

qj(xj) → qj(xj) + ϵδqj(xj), (2.33)

which can be substituted into the ELBO

L(q + ϵδqj) =

∫
[qj(xj) + ϵδqj(xj)]Eq\j [log p(Y ,X)] dxj,

−
∫

[qj(xj) + ϵδqj(xj)] log [qj(xj) + ϵδqj(xj)] dxj + constj. (2.34)

To obtain the functional derivative of the ELBO, with the definition presented in Ap-

pendix A we need derivatives of the perturbed ELBO with respect to ϵ, eavaluated at

ϵ = 0.

The derivative of the first integral is

∂

∂ϵ

∫
(qj(xj) + ϵδqj(xj))Eq\j [log p(Y ,X)] dxj

∣∣∣
ϵ=0
, (2.35a)
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=
∂

∂ϵ

∫
qj(xj)Eq\j [log p(Y ,X)] dxj

∣∣∣
ϵ=0

+
∂

∂ϵ
ϵ

∫
δqj(xj)Eq\j [log p(Y ,X)] dxj

∣∣∣
ϵ=0
, (2.35b)

=

∫
δqj(xj)Eq\j [log p(Y ,X)] dxj. (2.35c)

Similarly, the second integral can be differentiated with respect to ϵ as

∂

∂ϵ

∫
[qj(xj) + ϵδqj(xj)] log [qj(xj) + ϵδqj(xj)] dxj

∣∣∣
ϵ=0
,

=
∂

∂ϵ

∫
(qj(xj) + ϵδqj(xj))

(
log [qj(xj)]

+ ϵ
δqj(xj)

qj(xj) + ϵδqj(xj)
+O(ϵ2)

)
dxj

∣∣∣
ϵ=0
, (2.36a)

=
∂

∂ϵ

∫
qj(xj) log [qj(xj)] + ϵδqj(xj) log [qj(xj)] dxj

∣∣∣
ϵ=0

+
∂

∂ϵ

∫
qj(xj)ϵδqj(xj)

qj(xj) + ϵδqj(xj)
+O(ϵ2) dxj

∣∣∣
ϵ=0
, (2.36b)

=
∂

∂ϵ

∫
qj(xj) log [qj(xj)] + ϵδqj(xj) log [qj(xj)]

+
ϵδqj(xj)(qj(xj) + ϵδqj(xj)) +O(ϵ2)

qj(xj) + ϵδqj(xj)
+O(ϵ2) dxj

∣∣∣
ϵ=0
, (2.36c)

=
∂

∂ϵ

∫
qj(xj) log [qj(xj)] dxj

∣∣∣
ϵ=0

+
∂

∂ϵ
ϵ

∫
δqj(xj) (log [qj(xj)] + 1) dxj

∣∣∣
ϵ=0

+
∂

∂ϵ
ϵ2
∫

O(1) dxj

∣∣∣
ϵ=0
,

(2.36d)

=

∫
δqj(xj) (log [qj(xj)] + 1) dxj. (2.36e)

Combining the terms, we get∫
δL

δqj(xj)
δqj(xj) dxj

=

∫
δqj(xj)Eq\j [log p(Y ,X)] dxj −

∫
δqj(xj) (log [qj(xj)] + 1) dxj, (2.37)

=

∫
δqj(xj)

(
Eq\j [log p(Y ,X)]− log [qj(xj)]− 1

)
dxj. (2.38)

The final result for the functional derivative is

δL
δqj(xj)

= Eq\j [log p(Y ,X)]− log qj(xj)− 1. (2.39)
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By [47, Chapter 1, Section 3, Theorem 2], the distribution maximizing the ELBO has

a vanishing functional derivative. We can set the functional derivative to zero to find

the maximizing distribution.

Eq\j [log p(Y ,X)]− log qj(xj)− 1 = 0, (2.40)

which we can solve for qj(xj) to obtain

log qj(xj) = Eq\j [log p(Y ,X)]− 1. (2.41)

Exponentiating both sides and ensuring normalization gives the solution for qj(xj) as

qj(xj) ∝ exp
(
Eq\j [log p(Y ,X)]

)
, (2.42)

qj(xj) =
exp

(
Eq\j [log p(Y ,X)]

)
∫
exp

(
Eq\j [log p(Y ,X)]

)
dxj

. (2.43)

This rule is iteratively applied for each factor until convergence, updating qj(xj)

while keeping the other factors fixed. This ensures that the ELBO is maximized

over iterations, leading to a good approximation of the true posterior distribution.
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CHAPTER 3

MODELS AND INFERENCE

3.1 Problem Formulation

Consider a target that generates multiple measurements within a single scan with mea-

surements spread throughout the target’s body. In RM-based elliptical ETT frame-

works, the measurement likelihood can be expressed as,

p(yj
k | xk,Xk) = N (yj

k; Hxk, sXk +Rk), (3.1)

where,

• yj
k ∈ Rny denotes the j th measurement obtained at time k

• xk ∈ Rnx is the kinematic state vector

• Xk ∈ Sd
++ is the d dimensional geometric extent state

• H ∈ Rny×nx is a matrix that selects the Cartesian position of the kinematic

state

• s ∈ R+ is a scaling parameter determined by the measurement distribution on

the target extent [10].

The representation of the extent state may vary across various approaches. We de-

fine the extent state as a pair (Γk,Tk) which consists of a diagonal matrix Γk, whose

entries correspond to the axis lengths of the represented ellipsoid and an orthonor-

mal matrix Tk representing the orientation of the underlying extent with fixed axis

directions [19]. The extent matrix Xk can be defined as

Xk ≜ TkΓkT
T
k , (3.2)
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Figure 3.1: Spatial region in which the measurements are assumed to be generated

in terms of rotation matrix Tk, diagonal positive definite matrix Γk and measurement

noise covariance Rk

where Γk ≜ diag(γ1k, γ
2
k, . . . , γ

d
k) where each element is a positive real number dis-

tributed with IG distribution, i.e., γik ∼ IG (αi
k, β

i
k). This extent matrix definition is

well-defined and conforms to the symmetric positive definite random matrix defini-

tion, as established by the principal axis theorem [48]. The spatial regions defined by

this representation are illustrated in Figure 3.1.

We aim to estimate the kinematic and extent states using the measurements obtained

until time k. We employ Bayesian filtering and state estimation frameworks to utilize

the recursive solution of the Chapman-Kolmogorov and Bayes’ equations for predic-

tion and correction updates [7] respectively

p(ξk|Y1:k−1) =

∫
p(ξk|ξk−1)p(ξk−1|Y1:k−1) dξk−1, (3.3a)

p(ξk|Y1:k) =
p(Yk|ξk) p(ξk|Y1:k−1)∫
p(Yk|ξk) p(ξk|Y1:k−1) dξk

, (3.3b)

where we define ξk ≜ (xk,Xk) as the state variable.

For a set of measurements Yk = {yj
k}

mk
j=1 obtained at time k, we define the measure-
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ment likelihood as

p(Yk | ξk) =
mk∏
j=1

p(yj
k | ξk), (3.4)

and for each conditionally independent measurement yj
k the likelihood is obtained by

substituting (3.2) in (3.1)

p(yj
k | ξk) = N (yj

k;Hxk, sTkΓkT
T
k +Rk). (3.5)

In the following, we introduce two distinct target models characterized by variations

in their kinematic state definitions and the relationship between the target trajectory

and orientation. We provide formulations for their measurement updates, followed by

the presentation of the time update equations for our models.

3.2 Trajectory-Aligned Model

Objects that mostly move in the direction of their heading, such as cars, bicycles,

or trains, exhibit tightly dependent kinematic and extent state motion characteristics.

The trajectory-aligned model aims to exploit this dependence to improve tracking

performance. Within this model, the dependence of the extent orientation and the

kinematic state is maintained using the correlation structure of the joint state. In this

section, we will derive the update equations for this model.

3.2.1 Measurement Update for the Trajectory-Aligned Model

Consider the prior joint density

p(x0,Γ0) = N (x0; x̂0,P0)×
2∏

i=1

IG(γi0;αi
0, β

i
0), (3.6)

where the Gaussian factor and the IG factors correspond to the kinematic state and

the extent variables, respectively. Starting with the prior (3.6), our aim is to propa-

gate the joint density in time, perform variational inference, and obtain approximate

posteriors.
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Figure 3.2: An illustration of the state variables used in trajectory-aligned model,

where pk =
[
pxk pyk

]T
the cartesian position of the ellipse center, vk is the speed, φk

is the heading angle, Γk is the diagonal extent matrix and Tk = T (φk) is the rotation

matrix.

Assume that at time k, we have a set of measurements Yk and the following predicted

density

p(xk,Γk|Y1:k−1) = N
(
xk; x̂k|k−1,Pk|k−1

)
×

2∏
i=1

IG(γik;αi
k|k−1, β

i
k|k−1), (3.7)

where x̂k|k−1 and Pk|k−1 are the mean and covariance of the predicted kinematic state,

and for each diagonal element γik of the extent state Γk, αi
k|k−1 is the shape and βi

k|k−1

is the scale parameter of the IG distribution. The posterior density can be obtained in

the measurement update by applying the Bayes’ rule

p(xk,Γk|Y1:k) =
p(Yk|xk,Γk)p(xk,Γk|Y1:k−1)

p(Yk|Y1:k−1)
. (3.8)

The kinematic state xk contains Cartesian position of the centroid and the heading

angle of the motion. The measurement likelihood in (3.4) becomes

p(Yk|xk,Γk) =

mk∏
j=1

N (yj
k;Hxk, sTkΓkT

T
k +Rk), (3.9)
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where H and Hφ are the matrices selecting the Cartesian position and the heading

angle from the kinematic state vector, respectively, and Tk = T (Hφxk) is the rotation

matrix.

With the measurement likelihood (3.9), an exact solution of (3.8) is unattainable [10].

Therefore, we aim to find an approximate solution using the variational Bayes (VB)

method [46, Chapter 10]. Within the VB framework, we approximate the true poste-

rior as factorized distributions

p(xk,Γk,Zk|Y1:k) ≈ qx(xk)qΓ(Γk)qZ(Zk), (3.10)

where Zk denotes the set of noise-free measurements at time k. The noise-free mea-

surements are introduced to address the absence of conjugacy caused by the measure-

ment noise covariance Rk [11, 19]. The joint density of the noise-free measurement

zj
k and the measurement yj

k is defined as

p(yj
k, z

j
k|xk,Γk) = N (yj

k; z
j
k,Rk)N (zj

k;Hxk, sTkΓkT
T
k ). (3.11)

Marginalizing this joint density yields the measurement likelihood (3.5),

p(yj
k|xk,Γk) =

∫
p(yj

k|z
j
k)p(z

j
k|xk,Γk) dz

j
k. (3.12)

The approximate posterior (3.10) can be found by minimizing the cost function

q̂x, q̂Γ, q̂Z ≜ argmin
qx,qΓ,qZ

KL(qx(xk)qΓ(Γk)qZ(Zk)||p(xk,Γk,Zk|Y1:k)). (3.13)

Solution for each factor can be obtained after fixed point iterations [46, Chapter 10],

in the form

log q̂σ(σk) =E\σ
[
log p(xk,Γk,Zk,Yk|Y1:k−1)

]
+ cσ, (3.14)

where notation \σ denotes exclusion of σ which is a placeholder for variables xk,

Γk, Zk, and cσ denotes a constant expression with respect to σ. Approximate den-

sities q̂σ in (3.13) are calculated recursively by iterating (3.14) for each variable

σ ∈ {xk,Γk,Zk} until certain stopping criteria are met. Alternatively, as is com-

monly practiced in the literature, a fixed number of iterations can be performed [46,

Chapter 10], [11,19,20]. To provide clarity for calculations, the joint density in (3.14)

is expressed explicitly in terms of (3.7) and (3.11) as follows

p(xk,Γk,Zk,Yk|Y1:k−1)
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= p(xk,Γk|Y1:k−1) p(Yk|Zk) p(Zk|xk,Γk), (3.15a)

=N (xk; x̂k|k−1,Pk|k−1)
2∏

i=1

IG(γik;αi
k|k−1, β

i
k|k−1)

×
mk∏
j=1

N (yj
k; z

j
k,Rk)N (zj

k;Hxk, sTkΓkT
T
k ). (3.15b)

The iterations are performed by updating each factor in (3.10) one by one while keep-

ing the others fixed. We start with the initial distributions with sufficient statistics;

P
(0)
k|k = Pk|k−1, (3.16a) x̂

(0)
k|k = x̂k|k−1, (3.16b)

α
i,(0)
k|k = αi

k|k−1, (3.16c) β
i,(0)
k|k = βi

k|k−1, (3.16d)

Σ
z,(0)
k = E

q
(0)
Γ

[sΓk] , (3.16g) ẑ
j,(0)
k = yj

k. (3.16h)

where E
q
(0)
Γ
[(sΓk)] = diag

(
sβ1

k|k−1

α1
k|k−1

−1
,

sβ2
k|k−1

α2
k|k−1

−1

)
and proceed with fixed-point itera-

tions. The derivations of update equations for each factorized distribution at an inter-

mediate step ((ℓ+ 1)st iteration) are detailed in the following.

3.2.1.1 Update of q̂(ℓ+1)
x (·)

Using the joint density (3.15b) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
x (·) is obtained.

log q(ℓ+1)
x (xk) = E\xk

[
log p(xk,Γk,Zk,Yk|Y1:k−1)

]
+ cxk

, (3.17a)

= −1

2

mk∑
j=1

E\xk

[
(zj

k −Hxk)
TTk(sΓk)

−1T T
k (·)

]
+ logN (xk; x̂k|k−1,Pk|k−1) + cxk

. (3.17b)

The quadratic form in (3.17b) involves nonlinearities with respect to xk due to the

rotation matrix Tk. To obtain an update resulting in a multivariate Gaussian density

we use the following approximate quadratic form

E\xk

[
(aj − bjxk)

T (sΓk)
−1(aj − bjxk)

]
. (3.18)

Thus, a first-order Taylor series approximation of hj(xk) ≜ T T
k (zj

k −Hxk) at point

x̂
(ℓ)
k|k in the form of aj − bjxk will be used instead of the nonlinear function hj

hj(xk) ≈ hj(x̂
(ℓ)
k|k) +∇hTj (x̂

(ℓ)
k|k)(xk − x̂

(ℓ)
k|k), (3.19a)
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aj ≜ hj(x̂
(ℓ)
k|k)−∇hTj (x̂

(ℓ)
k|k)x̂

(ℓ)
k|k, (3.19b)

bj ≜ −∇hTj (x̂
(ℓ)
k|k). (3.19c)

The first-order Taylor expansion of the function hj(xk) = T T
k (zjk−Hxk) around the

point x̂(ℓ)
k|k in the form of aj − bjxk The gradient of ∇hj(x̂(ℓ)

k|k) is required.

∇hj(x̂(ℓ)
k|k) = HT

φ (z
j
k −Hx̂

(ℓ)
k|k)

T Ṫk −HTTk. (3.20)

Using the definitions of the constants aj and bj we get

aj = T T
k,ℓ(z

j
k −Hx̂

(ℓ)
k|k)−

(
Ṫ T
k,ℓ(z

j
k −Hx̂

(ℓ)
k|k)Hφ − T T

k,ℓH
)
x̂
(ℓ)
k|k, (3.21a)

bj = −Ṫ T
k,ℓ(z

j
k −Hx̂

(ℓ)
k|k)Hφ + T T

k,ℓH , (3.21b)

where we define Ṫk,ℓ ≜ Ṫ (Hφx̂
(ℓ)
k|k) as the derivative of the rotation matrix. Varia-

tional update of xk

q(ℓ+1)
x (xk) = N (xk; x̂

(ℓ+1)
k|k ,P

(ℓ+1)
k|k ), (3.22)

is obtained by the product rule of two multivariate Normal densities,

P
(ℓ+1)
k|k = (P−1

k|k−1 +Ψ)−1, (3.23a)

x̂
(ℓ+1)
k|k = P

(ℓ+1)
k|k (P−1

k|k−1x̂k|k−1 + ψ), (3.23b)

Ψ ≜
mk∑
j=1

E
q
(ℓ)
Z

[
bTj Eq

(ℓ)
Γ

[
(sΓk)

−1] bj] , (3.23c)

ψ ≜
mk∑
j=1

E
q
(ℓ)
Z

[
bTj Eq

(ℓ)
Γ

[
(sΓk)

−1] aj] . (3.23d)

Closed forms of the expectations in (3.23c) and (3.23d) are as followns;

E
q
(ℓ)
Z

[
bTj Eq

(ℓ)
Γ

[
(sΓk)

−1] bj] = HTTk,ℓ(sΓk)
−1T T

k,ℓH (3.24)

+HT
φ Tr

((
Σz,ℓ

k + (zjk −Hx̂
(ℓ)
k|k)(·)

T
)
Ṫk,ℓ(sΓk)

−1Ṫ T
k,ℓ

)
Hφ

−
(
HTTk,ℓ(sΓk)

−1Ṫ T
k,ℓ(z

j
k −Hx̂

(ℓ)
k|k)Hφ + (·)T

)
. (3.25)

E
q
(ℓ)
Z

[
bTj Eq

(ℓ)
Γ

[
(sΓk)

−1] aj] =
HT

φ

[
Tr
((

Σz,ℓ
k + (zjk −Hx̂

(ℓ)
k|k)(·)

T
)
Ṫk,ℓ(sΓk)

−1

×
(
(Hφx̂

(ℓ)
k|k)Ṫ

T
k,ℓ − T T

k,ℓ

))
−(zjk −Hx̂

(ℓ)
k|k)

T Ṫk,ℓ(sΓk)
−1T T

k,ℓHx̂
(ℓ)
k|k

]
27



+HTTk,ℓ(sΓk)
−1
(
T T
k,ℓ(z

j
k −Hx̂

(ℓ)
k|k)

−(Hφx̂
(ℓ)
k|k)Ṫ

T
k,ℓ(z

j
k −Hx̂

(ℓ)
k|k) + T T

k,ℓHx̂
(ℓ)
k|k

)
. (3.26)

where,

E
q
(ℓ)
Z
[zjk] = zjk = ẑ

j,(ℓ)
k|k . (3.27)

E
q
(ℓ)
Γ
[(sΓk)

−1] = (sΓk)
−1 = diag

(
α
1(ℓ)
k|k

sβ
1(ℓ)
k|k

,
α
2(ℓ)
k|k

sβ
2(ℓ)
k|k

)
. (3.28)

3.2.1.2 Update of q̂(ℓ+1)
Γ (·)

Using the joint density (3.15b) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
Γ (·) is obtained.

log q
(ℓ+1)
Γ (Γk) = E\Γk

[
log p(xk,Γk,Zk,Yk|Y1:k−1)

]
+ cΓk

(3.29a)

= E\Γk
[log p(Zk, |xk,Γk)]

+
2∑

i=1

log IG(γik;αi
k|k−1, β

i
k|k−1) + cΓk

(3.29b)

= −1

2

mk∑
j=1

E\Γk

[
(zj

k −Hxk)
TTk(sΓk)

−1T T
k (zj

k −Hxk)
]

+
2∑

i=1

log IG(γik;αi
k|k−1, β

i
k|k−1) + cΓk

(3.29c)

= −1

2

mk∑
j=1

Tr
(
E\Γk

[
T T
k (zj

k −Hxk)(·)TTk

]
(sΓk)

−1
)

+
2∑

i=1

log IG(γik;αi
k|k−1, β

i
k|k−1) + cΓk

(3.29d)

The updated extent density

q
(ℓ+1)
Γ (Γk) =

2∏
i=1

IG(γik;α
i,(ℓ+1)
k|k , β

i,(ℓ+1)
k|k ), (3.30)

is found after calculating (3.29d) with the inverse-Gamma density parameters,

α
i,(ℓ+1)
k|k = αi

k|k−1 +
mk

2
, (3.31a)
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β
i,(ℓ+1)
k|k = βi

k|k−1 +
1

2s

mk∑
j=1

E\Γk

[
T T
k (zj

k −Hxk)(·)TTk

]
ii
. (3.31b)

The analytic form of the expectation in (3.31b) can be obtained using the law of

iterated expectations [49];

E\Γk

[
T T
k (zj

k −Hxk)(·)TTk

]
= E

q
(ℓ)
φ

[
T T
k E

q
(ℓ)
x̃|φ,q

(ℓ)
Z

[
(zj

k −Hxk)(·)T
]
Tk

]
(3.32)

= E
q
(ℓ)
φ

[
T T
k (Σz,ℓ

k + zjk z
j
k

T

)Tk

]
+ E

q
(ℓ)
φ

[
T T
k H̃M1H̃

TTk

]
+ E

q
(ℓ)
φ

[
φkT

T
k H̃M2H̃

TTk

]
+ E

q
(ℓ)
φ

[
φ2
kT

T
k H̃M3H̃

TTk

]
− (E

q
(ℓ)
φ

[
T T
k H̃M4Tk

]
+ (·)T )

− (E
q
(ℓ)
φ

[
φT T

k H̃M5Tk

]
+ (·)T ). (3.33)

where H̃ is a matrix that selects the Cartesian position from the reduced state x̃ which

is the state without the heading angle, where we partition the density qx as

x =

x̃
φ

 ∼ N

x̃
φ

 ;

 ˆ̃x
φ̂

 ,
 Px̃ Px̃,φ

Pφ,x Pφ

 . (3.34)

By exploiting the Gaussian conditioning rules, the matrices Mi can be obtained as;

M1 =((φ̂
(ℓ)
(k|k)/Pφ

(ℓ)
(k|k))

2 − 1/Pφ
(ℓ)
(k|k))((P

(ℓ)
x̃,φ,(k|k))(·)

T )

− (φ̂
(ℓ)
(k|k)/Pφ

(ℓ)
(k|k))([

ˆ̃x
(ℓ)

(k|k)(P
(ℓ)
x̃,φ,(k|k))

T ] + [·]T )

+ P
(ℓ)
x̃,(k|k) + (ˆ̃x

(ℓ)

(k|k))(·)T , (3.35a)

M2 =(Pφ
(ℓ)
(k|k))

−1
([ˆ̃x

(ℓ)

(k|k)(P
(ℓ)
x̃,φ,(k|k))

T ] + [·]T )

− 2φ̂
(ℓ)
(k|k)(Pφ

(ℓ)
(k|k))

−2((P
(ℓ)
x̃,φ,(k|k))(·)

T ), (3.35b)

M3 =(Pφ
(ℓ)
(k|k))

−2
(
(P

(ℓ)
x̃,φ,(k|k))(·)

T
)
, (3.35c)

M4 =
(
ˆ̃x
(ℓ)

(k|k) − (φ̂
(ℓ)
(k|k)/Pφ

(ℓ)
(k|k))P

(ℓ)
x̃,φ,(k|k)

)
zjk

T

, (3.35d)

M5 =
(
(P

(ℓ)
x̃,φ,(k|k))/Pφ

(ℓ)
(k|k)

)
zjk

T

. (3.35e)

The exact expressions for the terms in (3.33) can be obtained using the Lemma 1

with [50];

vec(T T
k,ℓM̃Tk,ℓ) = M̂t

φ̂
(ℓ)
k

=
1

2


m11 m22 (m12 +m21)

m21 −m12 (−m11 +m22)

m12 −m21 (−m11 +m22)

m22 m11 −(m12 +m21)

 t
φ̂
(ℓ)
k
. (3.36a)
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Where M̃ = {m}ij is a 2 × 2 matrix which can be any of the Mi with proper

multiplications with H̃ , as an example M̃1 = H̃M1H̃
T as in (3.33);

tφ ≜
[
1 + cos(2φ) 1− cos(2φ) sin(2φ)

]T
, (3.37)

and vec(E
q
(ℓ)
φ

[
T T
k M̃iTk

]
) = M̂E

q
(ℓ)
φ
[t

φ̂
(ℓ)
(k|k)

] . Note that the expression gives the

terms of the expectation as a vector, and they are reordered as a 2× 2 matrix for their

use. The terms containing additional φ or φ2 terms can be similarly obtained.

Lemma 1. Let φ ∼ N (φ; φ̂, Pφ) and define the vector

tφ ≜
[
1 + cos(2φ) 1− cos(2φ) sin(2φ)

]T
. (3.38)

Then the expectations E [tφ], E [φtφ] and E [φ2tφ] are analytically calculated as

E [tφ] =


1 + e−2Pφ cos(2φ̂)

1− e−2Pφ cos(2φ̂)

e−2Pφ sin(2φ̂)

 , (3.39a)

E [φtφ] =


φ̂+ e−2Pφ (φ̂ cos(2φ̂)− 2Pφ sin(2φ̂))

φ̂− e−2Pφ (φ̂ cos(2φ̂)− 2Pφ sin(2φ̂))

e−2Pφ (2Pφ cos(2φ̂) + φ̂ sin(2φ̂))

 , (3.39b)

E
[
φ2tφ

]
=


E[φ2] + e−2Pφ

(
(E[φ2]− 4P 2

φ) cos(2φ̂)− 4Pφφ̂ sin(2φ̂)
)

E[φ2]− e−2Pφ
(
(E[φ2]− 4P 2

φ) cos(2φ̂)− 4Pφφ̂ sin(2φ̂)
)

e−2Pφ
(
(E[φ2]− 4P 2

φ) sin(2φ̂) + 4Pφφ̂ cos(2φ̂)
)

 , (3.39c)

where E[φ2] = φ̂2 + Pφ.

3.2.1.3 Update of q̂(ℓ+1)
Z (·)

Using the joint density (3.15b) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
Z (·) is obtained.

log q
(ℓ+1)
Z (Zk) = E\Zk

[log p(xk,Γk,Zk,Yk|Y1:k−1)] + cZk
, (3.40a)

= E\Zk
[log p(Zk, |xk,Γk)] +

mk∑
j=1

logN (yj
k; z

j
k,Rk) + cZk

, (3.40b)

= −1

2

mk∑
j=1

E\Zk

[
(zj

k −Hxk)
TTk(sΓk)

−1T T
k (zj

k −Hxk)
]
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+

mk∑
j=1

logN (yj
k; z

j
k,Rk) + cZk

, (3.40c)

= −1

2

mk∑
j=1

(
(zj

k)
TE

q
(ℓ)
x

[
TkEq

(ℓ)
Γ

[
(sΓk)

−1
]
T T
k

]
(zj

k)

− 2(zj
k)

TE
q
(ℓ)
x

[
TkEq

(ℓ)
Γ

[
(sΓk)

−1
]
T T
k Hxk

])
+

mk∑
j=1

logN (yj
k; z

j
k,Rk) + cZk

. (3.40d)

After calculating expectations in (3.40d) a quadratic form in terms of zj
k is obtained

by adding appropriate constants to cZk
term. The variational update for the final

distribution of noise-free measurements

q
(ℓ+1)
Z =

mk∏
j=1

N (zj
k; ẑ

j,(ℓ+1)
k ,Σ

z,(ℓ+1)
k ), (3.41)

is obtained by the following equations,

Σ
z,(ℓ+1)
k =

(
R−1

k + E
q
(ℓ)
x

[
TE

q
(ℓ)
Γ

[
(sΓk)

−1
]
T T
])−1

, (3.42a)

ẑ
j,(ℓ+1)
k = Σ

z,(ℓ+1)
k

(
R−1

k yj
k + E

q
(ℓ)
x

[
TE

q
(ℓ)
Γ

[
(sΓk)

−1
]
T THxk

])
. (3.42b)

The closed-form expressions of the expectations are as follows;

E
q
(ℓ)
x

[
TkEq

(ℓ)
Γ

[
(sΓk)

−1
]
T T
k

]
= E

q
(ℓ)
φ

[
Tk(sΓk)

−1T T
k

]
, (3.43)

E
q
(ℓ)
x

[
TkEq

(ℓ)
Γ

[
(sΓk)

−1]T T
k Hxk

]
=

E
q
(ℓ)
φ

[
Tk(sΓk)

−1T T
k

]
H̃
(
ˆ̃x
(ℓ)

(k|k) − (φ̂
(ℓ)
(k|k)/Pφ

(ℓ)
(k|k))P

(ℓ)
x̃,φ,(k|k)

)
+E

q
(ℓ)
φ

[
φkTk(sΓk)

−1T T
k

]
H̃
(
(Pφ

(ℓ)
(k|k))

−1
P

(ℓ)
x̃,φ,(k|k)

)
. (3.44)

In (3.44) Lemma 1 can be used with φ = −φ(ℓ)
(k|k) with the state partitioning given in

(3.34).

A pseudocode of the trajectory-aligned model’s measurement update is presented in

Algorithm 1.
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Algorithm 1: Measurement Update for Trajectory-Aligned Model
Input: Imax, Yk, and p(xk,Γk|Y1:k−1) as in (3.7)

Initialization:

Set initial densities:

x
(0)
k ∼ q(0)x = N (xk; x̂k|k−1,Pk|k−1),

Γ
(0)
k ∼ q

(0)
Γ =

2∏
i=1

IG(γik;αi
k|k−1, β

i
k|k−1),

Z(0)
k ∼ q

(0)
Z =

mk∏
j=1

N (zj
k;y

j
k,Eq

(0)
Γ

[sΓk])

Set ℓ = 0

while ℓ < Imax do
Update state density q(ℓ+1)

x as in (3.22):

Update P
(ℓ+1)
k|k (3.23a)

Update x̂
(ℓ+1)
k|k (3.23b)

Update extent density q(ℓ+1)
Γ as in (3.30):

for each dimension i do
Update αi,(ℓ+1)

k|k (3.31a)

Update βi,(ℓ+1)
k|k (3.31b)

end

Update noise-free density q(ℓ+1)
Z as in (3.41):

Update Σ
z,(ℓ+1)
k (3.42a)

for each measurement yj
k do

Update ẑ
j,(ℓ+1)
k (3.42b)

end

Increase ℓ
end

Output: p(xk,Γk|Y1:k) ≈ q
(ℓ)
x (xk)q

(ℓ)
Γ (Γk)
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3.3 Drift Model

Targets like maritime vessels, UAVs, insects, and microscopic creatures often exhibit

motion characteristics where their movements are relatively independent of their ex-

tent orientations. Due to its constraints on the heading angle, the trajectory-aligned

model cannot capture such motion characteristics. In contrast, the proposed drift

model treats the extent orientation and kinematic state separately, resulting in better

tracking accuracy for targets with holonomic motions.

3.3.1 Measurement Update for the Drift Model

Consider the prior density

p(x0,Γ0,ϑ0) = N (x0; x̂0,P0)×
2∏

i=1

IG(γi0;αi
0, β

i
0)

×N (ϑ0; ϑ̂0,Θ0), (3.45)

where the last factor represents the orientation state and its kinematics. In the follow-

ing, we derive analytical update equations to perform variational inference and obtain

approximate posteriors.

Assume that we have the prior density at time k as

p(xk,Γk,ϑk|Y1:k−1) = N (xk; x̂k|k−1,Pk|k−1)N (ϑk; ϑ̂k|k−1,Θk|k−1)

×
2∏

i=1

IG(γik;αi
k|k−1, β

i
k|k−1). (3.46)

The joint density of the measurements with the noise-free measurements zjk is defined

as

p(yj
k, z

j
k|xk,Γk,ϑk) = N (yj

k; z
j
k,Rk)N (zj

k;Hxk, sTkΓkTk), (3.47)

where Tk denotes the rotation matrix T (Hθϑk), H and Hθ are the matrices selecting

the Cartesian position from the kinematic state and the heading angle from the ori-

entation state, respectively. Unlike the trajectory-aligned model, the joint likelihood
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Figure 3.3: An illustration of the state variables used in drift model, where pk =[
pxk pyk

]T
the cartesian position of the ellipse center, vk is the speed, φk is the heading

angle, θk is the extent orientation angle, Γk is the diagonal extent matrix and Tk =

T (θk) is the rotation matrix.

depends on the independent orientation state ϑk. Within the VB framework, we seek

the posterior density in a factorized form,

p(xk,Γk,ϑk,Zk|Y1:k) ≈ qx(xk)qΓ(Γk)qϑ(ϑk)qZ(Zk). (3.48)

The joint density p(xk,Γk,ϑk,Zk,Yk | Y1:k−1) for the drift model is

p(xk,Γk,ϑk,Zk,Yk | Y1:k−1) =

mk∏
j=1

N (yj
k; z

j
k,R)N (zjk;Hxk, sTkΓkT

T
k )

×N (xk; x̂k|k−1,Pk|k−1)
2∏

i=1

IG(γik;αi
k|k−1, β

i
k|k−1)

×N (ϑk; ϑ̂k|k−1,Θk|k−1). (3.49)

Similar to the trajectory-aligned model, we perform fixed point iterations for each

factorized density in (3.48) one at a time. We start with the initial distributions with
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sufficient statistics;

P
(0)
k|k = Pk|k−1, (3.50a) x̂

(0)
k|k = x̂k|k−1, (3.50b)

α
i,(0)
k|k = αi

k|k−1, (3.50c) β
i,(0)
k|k = βi

k|k−1, (3.50d)

Θ
(0)
k|k = Θk|k−1, (3.50e) ϑ̂

(0)
k|k = ϑ̂k|k, (3.50f)

Σ
z,(0)
k = E

q
(0)
Γ

[sΓk] , (3.50g) ẑ
j,(0)
k = yj

k. (3.50h)

where E
q
(0)
Γ
[(sΓk)] = diag

(
sβ1

k|k−1

α1
k|k−1

−1
,

sβ2
k|k−1

α2
k|k−1

−1

)
and proceed with fixed-point itera-

tions. The (ℓ+ 1)st iterations for the densities are given in the following subsections.

3.3.1.1 Update of q̂(ℓ+1)
x (·)

Using the joint density (3.49) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
x (·) is obtained.

log q(ℓ+1)
x (xk) = E\xk

[log p(xk,Γk,ϑkZk,Yk|Y1:k−1)] + cxk
, (3.51a)

= −1

2

mk∑
j=1

Tr
(
(zj

k −Hxk)(·)TEq
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
])

+ logN (xk|k; x̂k|k−1,Pk|k−1) + cxk
. (3.51b)

By utilizing the product rule, iterations for the mean and covariance are obtained as

P
(ℓ+1)
k|k =

(
P−1

k|k−1 +mkH
TE

q
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
])−1

, (3.52a)

x̂
(ℓ+1)
k|k = P

(ℓ+1)
k|k

(
P−1

k|k−1x̂k|k−1 +HTE
q
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
]( mk∑

j=1

zj
k

))
.

(3.52b)

Where,

E
q
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
]
= E

q
(ℓ)
ϑ

[
Tk(sΓk)

−1T T
k

]
. (3.53)

In (3.53), Lemma 1 can be used with φ = −Hϑϑ
(ℓ)
k .

3.3.1.2 Update of q̂(ℓ+1)
Γ (·)

Using the joint density (3.49) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
Γ (·) is obtained.
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log q
(ℓ+1)
Γ (Γk) =E\Γk

[log p(xk,Γk,ϑk,Zk,Yk|Y1:k−1)] + cΓk
, (3.54a)

=− 1

2

mk∑
j=1

E\Γk

[
(zj

k −Hxk)
TTk(sΓk)

−1T T
k (zj

k −Hxk)
]

+
2∑

i=1

log IG(γik;αi
k|k−1, β

i
k|k−1) + cΓk

. (3.54b)

The updated extent density

q
(ℓ+1)
Γ (Γk) =

2∏
i=1

IG(γik;α
i,(ℓ+1)
k|k , β

i,(ℓ+1)
k|k ), (3.55)

is found after calculating (3.29d) with the inverse-Gamma density parameters

α
i,(ℓ+1)
k|k = αi

k|k−1 +
mk

2
, (3.56a)

β
i,(ℓ+1)
k|k = βi

k|k−1 +

mk∑
j=1

Eqϑ

[
T T
k (zjk −Hxk)(·)TTk

]
ii

2s
. (3.56b)

where,

E
q
(ℓ)
Z ,q

(ℓ)
x
[(zjk −Hxk)(.)

T ] = (zjk −Hxk)(.)T =

Σz,ℓ
k +HP

(ℓ)
k|kH

T +
(
ẑ
j,(ℓ)
k|k −Hx̂

(ℓ)
k|k

) (
·
)T
. (3.57)

The rest of the expectations can be calculated as in (3.53). Lemma 1 can be used with

φ = Hϑϑ
(ℓ)
k .

3.3.1.3 Update of q̂(ℓ+1)
Z (·)

Using the joint density (3.49) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
Z (·) is obtained.

log q
(ℓ+1)
Z (Zk) = E\Zk

[log p(xk,Γk,ϑk,Zk,Yk|Y1:k−1)] + cΓk
, (3.58a)

= −1

2

mk∑
j=1

Tr
(
(zj

k −Hxk)(·)TEq
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
])

+

mk∑
j=1

logN (yj
k; z

j
k,Rk) + cZk

. (3.58b)
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The variational update for the final distribution of noise-free measurements

q
(ℓ+1)
Z =

mk∏
j=1

N (zj
k; ẑ

j,(ℓ+1)
k ,Σ

z,(ℓ+1)
k ), (3.59)

is obtained by the equations;

Σ
z,(ℓ+1)
k =

(
R−1

k + E
q
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
])−1

, (3.60a)

ẑ
j,(ℓ+1)
k =Σ

z,(ℓ+1)
k

(
R−1

k yj
k + E

q
(ℓ)
Γ ,q

(ℓ)
ϑ

[
(sTkΓkT

T
k )

−1
]
Hxk

)
. (3.60b)

The necessary expectations are as follows;

E
q
(ℓ)
x

[
TkEq

(ℓ)
Γ

[
(sΓk)

−1
]
T T
k

]
= E

q
(ℓ)
φ

[
Tk(sΓk)

−1T T
k

]
. (3.61)

E
q
(ℓ)
x

[
TkEq

(ℓ)
Γ

[
(sΓk)

−1]T T
k Hxk

]
=

E
q
(ℓ)
φ

[
Tk(sΓk)

−1T T
k

]
H̃
(
ˆ̃x
(ℓ)

(k|k) − (φ̂
(ℓ)
(k|k)/Pφ

(ℓ)
(k|k))P

(ℓ)
x̃,φ,(k|k)

)
+E

q
(ℓ)
φ

[
φkTk(sΓk)

−1T T
k

]
H̃
(
(Pφ

(ℓ)
(k|k))

−1
P

(ℓ)
x̃,φ,(k|k)

)
. (3.62)

In (3.62) Lemma 1 can be used with φ = −Hϑϑ
(ℓ)
k .

3.3.1.4 Update of q̂(ℓ+1)
ϑ (·)

Using the joint density (3.49) and applying the update rule in (3.14) the update rule

for q̂(ℓ+1)
ϑ (·) is obtained.

log q
(ℓ+1)
ϑ (ϑk) = E\ϑk

[log p(xk,Γk,ϑk,Zk,Yk|Y1:k−1)] + cϑk
, (3.63a)

= −1

2

mk∑
j=1

E\ϑk

[
Tr
(
(zj

k −Hxk)(·)T (sTkΓkT
T
k )

−1
)]

+ logN (ϑk|k; ϑ̂k|k−1,Θk|k−1) + cϑk
. (3.63b)

To obtain a quadratic form in terms of ϑk similar to the trajectory-aligned model a

first-order Taylor Series approximation is used for the function gj(ϑk) ≜ T T (zj
k −

Hxk) around ϑ̂
(ℓ)
k|k.

gj(ϑk) ≈ gj(ϑ̂
(ℓ)
k|k) +∇gTj (ϑ̂

(ℓ)
k|k)(ϑk − ϑ̂

(ℓ)
k|k), (3.64a)

cj ≜ g(ϑ̂
(ℓ)
k|k)−∇gTj (ϑ̂

(ℓ)
k|k)ϑ̂

(ℓ)
k|k, (3.64b)

37



dj ≜ −∇gTj (ϑ̂
(ℓ)
k|k). (3.64c)

The expectation in (3.63b) can be approximated as

E\ϑk

[
(cj − djϑk)

T (sΓk)
−1(cj − djϑk)

]
. (3.65)

cj =Ṫ T
k,ℓ

(
zj
k −Hxk

)
Hϑϑ̂

(ℓ)
(k|k) + T T

k,ℓ

(
zj
k −Hxk

)
, (3.66)

dj =− Ṫ T
k,ℓ

(
zj
k −Hxk

)
, (3.67)

where Tk,ℓ = T (Hϑϑ̂
(ℓ)
(k|k)) with the definition as in and Ṫk,ℓ = Ṫ (Hϑϑ̂

(ℓ)
(k|k)). The

approximate update for the orientation state is obtained as

q
(ℓ+1)
ϑ (ϑk) = N (ϑk; ϑ̂

(ℓ+1)
k|k ,Θ

(ℓ+1)
k|k ), (3.68)

where

Θ
(ℓ+1)
k|k =

(
Θ−1

k|k−1 +∆
)−1

, (3.69a)

ϑ̂
(ℓ+1)
k|k = Θ

(ℓ+1)
k|k

(
Θ−1

k|k−1ϑ̂k|k−1 + δ
)
, (3.69b)

∆ ≜
mk∑
j=1

E
q
(ℓ)
x ,q

(ℓ)
Z

[
dTj Eq

(ℓ)
Γ

[
(sΓk)

−1
]
dj

]
, (3.69c)

δ ≜
mk∑
j=1

E
q
(ℓ)
x ,q

(ℓ)
Z

[
dTj Eq

(ℓ)
Γ

[
(sΓk)

−1
]
cj

]
. (3.69d)

Where the expectations can be obtained as follows;

E
q
(ℓ)
x ,q

(ℓ)
Z

[
dTj Eq

(ℓ)
Γ

[
(sΓk)

−1
]
dj

]
=

HT
ϑ Tr

(
(sΓk)

−1Ṫ T
k,ℓ(z

j
k −Hxk)(.)T Ṫk,ℓ

)
Hϑ, (3.70)

E
q
(ℓ)
x ,q

(ℓ)
Z

[
dTj Eq

(ℓ)
Γ

[
(sΓk)

−1
]
cj

]
=

HT
ϑ Tr

(
(sΓk)

−1Ṫ T
k,ℓ(z

j
k −Hxk)(.)T Ṫk,ℓ

)
Hϑϑ̂

(ℓ)
(k|k)

−HT
ϑ Tr

(
(sΓk)

−1T T
k,ℓ(z

j
k −Hxk)(.)T Ṫk,ℓ

)
. (3.71)

A pseudocode of the drift model’s measurement update is presented in Algorithm 2.
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Algorithm 2: Measurement Update for Drift Model
Input: Imax, Yk and p(xk,Γk,ϑk|Y1:k−1) as in (3.46)

Initialization:

Set initial densities:

x
(0)
k ∼ q(0)x = N (xk; x̂k|k−1,Pk|k−1),

Γ
(0)
k ∼ q

(0)
Γ =

2∏
i=1

IG(γik;αi
k|k−1, β

i
k|k−1),

ϑ
(0)
k ∼ q

(0)
ϑ = N (ϑk; ϑ̂k|k−1,Θk|k−1),

Z(0)
k ∼ q

(0)
Z =

mk∏
j=1

N (zj
k;y

j
k,Eq

(0)
Γ

[sΓk])

Set ℓ = 0

while ℓ < Imax do
Update state density q(ℓ+1)

x :

Update P
(ℓ+1)
k|k (3.52a)

Update x̂
(ℓ+1)
k|k (3.52b)

Update extent density q(ℓ+1)
Γ as in (3.55):

for each dimension i do
Update αi,(ℓ+1)

k|k (3.56a)

Update βi,(ℓ+1)
k|k (3.56b)

end

Update orientation state density q(ℓ+1)
ϑ :

Update Θ
(ℓ+1)
k|k (3.69a)

Update ϑ̂
(ℓ+1)
k|k (3.69b)

Update noise-free density q(ℓ+1)
Z :

Update Σ
z,(ℓ+1)
k (3.60a)

for each measurement yj
k do

Update ẑ
j,(ℓ+1)
k (3.60b)

end

Increase ℓ
end

Output: p(xk,Γk,ϑk|Y1:k) ≈ q
(ℓ)
x (xk)q

(ℓ)
Γ (Γk)q

(ℓ)
ϑ (ϑk)
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3.4 Time Update

We present a common time update framework for the proposed models involving the

calculation of (3.3a) for the state and extent variables at time k,

p(xk,Xk | Y1:k−1) =

∫
p(xk,Xk | xk−1,Xk−1)

×p(xk−1,Xk−1 | Y1:k−1) dxk−1 dXk−1. (3.72)

To calculate (3.72) analytically, we make use of the assumptions that are commonly

used in the ETT literature [7],

p(xk,Xk | xk−1,Xk−1) = p(xk | xk−1)p(Xk | Xk−1), (3.73)

p(xk,Xk | Y1:k−1) = p(xk | Y1:k−1)p(Xk | Y1:k−1). (3.74)

With these assumptions (3.72) is written as a product of two distributions,

p(xk,Xk | Y1:k−1) = p(xk | Y1:k−1)p(Xk | Y1:k−1) (3.75)

=

∫
p(xk | xk−1)p(xk−1 | Y1:k−1) dxk−1

×
∫
p(Xk | Xk−1)p(Xk−1 | Y1:k−1) dXk−1. (3.76)

Assume we have the following kinematic state transition model

xk+1 = f(xk) + νk, νk ∼ N (0,Qx), (3.77)

A Gaussian approximation N (x̂k|k−1,Pk|k−1) to the predicted density for the kine-

matic state p(xk | Y1:k−1) can be obtained by linearization. The resulting sufficient

statistics of the prediction density are

x̂k|k−1 = f(x̂k−1|k−1) (3.78)

Pk|k−1 = FxPk−1|k−1F
T
x +Qx, (3.79)

where Fx = ∇fT (x̂k−1|k−1).

To calculate the predicted density of the extent state p(Xk | Y1:k−1), we employ a

maximum entropy update which is suitable for unknown dynamics [51, Theorem 1].
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The sufficient statistics for the predicted extent parameters γik|k−1 ∼ IG(αi
k|k−1, β

i
k|k−1)

are calculated as,

αi
k|k−1 = ταi

k−1|k−1, βi
k|k−1 = τβi

k−1|k−1, (3.80)

for i = 1, 2 where 0 < τ < 1 is a forgetting factor.

The time update of the drift model is conducted similarly to the trajectory-aligned

model, with differences caused by the additional orientation state ϑk. Thus, the time

update equations can be given as follows for the sufficient statistics of the extended

state;

x̂k|k−1 = f(x̂k−1|k−1), (3.81a)

Pk|k−1 = FxPk−1|k−1F
T
x +Qx, (3.81b)

ϑ̂k|k−1 = fϑ(ϑ̂k−1|k−1), (3.81c)

Θk|k−1 = FϑΘk−1|k−1F
T
ϑ +Qϑ, (3.81d)

αi
k|k−1 = ταi

k−1|k−1, (3.81e)

βi
k|k−1 = τβi

k−1|k−1, (3.81f)

where

xk+1 = f(xk) + νk, νk ∼ N (0,Qx), (3.82a)

ϑk+1 = fϑ(ϑk) + uk, uk ∼ N (0,Qϑ), (3.82b)

and Fx = ∇fT (x̂k−1|k−1), Fϑ = ∇fT
ϑ (ϑ̂k−1|k−1).
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CHAPTER 4

EXPERIMENTAL RESULTS

In this section, we evaluate the performances of the proposed methods in both simu-

lated scenarios and real-world tracking tasks involving various sensor modalities. We

present two simulated experiments and two experiments with real data in Sections

4.2 and 4.3, respectively. Before presenting the experimental results, we define the

evaluation metrics in Section 4.1.

4.1 Performance Metrics

For performance evaluation, we consider the commonly used Gaussian-Wasserstein

(GW) distance metric [52] for extent estimates and root-mean-square error (RMSE)

for orientation angle estimates. We perform multiple Monte Carlo (MC) runs and

report the average errors for each time instant.

The squared GW distance between a pair of estimated and true ellipses is defined as

GW 2(ĉ, c, X̂,X) ≜ ||c− ĉ||22 + Tr(X̂ +X − 2(X̂
1
2XX̂

1
2 )

1
2 ), (4.1)

where (ĉ, X̂) and (c,X) represent estimated and true center-extent pairs, respec-

tively. The GW distance for kth time instant averaged over N MC runs is

GWk ≜
1

N

N∑
i=1

√
GW 2(ĉik, c

i
k, X̂

i
k,X

i
k), (4.2)

and the RMSE of the estimated orientation angle for kth time instant over N MC runs

is defined as

RMSEθ
k ≜

(
1

N

N∑
i=1

(θitrue,k − θik)
2

)1/2

, (4.3)
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where the superscript i denotes the index of the MC run, θitrue,k denotes the ground

truth orientation angle, and θik denotes the estimated orientation angle.

4.2 Simulations

Two simulated examples involving trajectory-aligned and drifting targets are studied

in this section. We denote the Aligned and Drift models as P1 and P2, respectively.

The alternative methods [19], [22], [21], [15] and [27] are denoted as A1, A2, A3,

A4, and A5 respectively. In all experiments, including simulations and real data, we

selected a fixed number of iterations Imax = 10 in the variational updates.

4.2.1 Trajectory-aligned Scenario

This scenario draws inspiration from a ground vehicle navigating through an urban

road layout characterized by various bends and twists where we consider the trajec-

tory followed by the elliptical target in Figure 4.1. The trajectory consists of 60 time

instants, during which the target alternates between constant velocity and constant

turn motions. The target is initially at the origin, and its velocity vector is aligned with

its major axis throughout the scenario. For this illustrative example, P1 (Trajectory-

Aligned Model), A1 [19], A2 [22], A3 [21] and A4 [15] are compared. For P1 and

A1, the forgetting factor parameter is set as τ = 0.95, and a maximum of 10 vari-

ational iterations are performed. For P1, the coordinated turn model with polar ve-

locity as in Appendix B is chosen, with process noise covariance Q = diag(5, 10−2).

For A1, the constant velocity model in [19, (44a)] with process covariance matrix

of Q = blkdiag(5 × Qcv ⊗ I2, 0.5) is selected. The constant velocity model given

in [22] is chosen for A2, with process noise covariance matrices for kinematics and

shape vectors Cω
r = 5 × Qcv ⊗ I2 and Cω

p = diag(0.25, 0.01, 0.01), respectively.

For A3, the coordinated turn model with Cartesian velocity model [53] is used with

process noise covariance Q = blkdiag(5 × I2, 0.1). For A4, the constant velocity

model with process noise covariance matrix Q = 5 × Qcv ⊗ I2 is selected and the

rotation matrix is set as Mk = T (ωk), where ωk is the ground truth yaw rate of the

ground truth object. The extent parameters for A3 and A4, Qk+1 = 1
3
V −1

k|k and vk+1
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are chosen according to [21, Eq. 23].

Time-averaged GW and RMSE values are reported in Table 4.1, and errors through-

out the scenario are shown in Figure 4.2. P1 achieves the lowest GW distance values

throughout the scenario, illustrating its robustness to sharp turn maneuvers. P1 also

demonstrates the ability to accurately capture the ground truth orientation, compared

to the alternatives, including A1, which fails to accurately estimate both the orienta-

tion and extent of the target in this trajectory-aligned scenario. Note that since A3

and A4 do not explicitly estimate the extent orientation angle, we only compare ori-

entation angle estimations of P1, A1, and A2.

Table 4.1: Time-averaged errors for the aligned scenario

P1 A1 [19] A2 [22] A3 [21] A4 [15]

GWav (m) 0.88 1.17 1.11 1.14 1.0

RMSEθ
av (degrees) 4.4 105.9 106.5 - -

4.2.2 Drifting Scenario

This illustrative example is motivated by rapid maneuvering behavior exhibited by

marine vessels such as speedboats, where we consider the trajectory followed by the

elliptical target in Figure 4.3. The trajectory consists of 60 time instants, during which

the target exhibits a drifting behavior. In this example P2 (Drift Model), A1 [19],

A2 [22], A3 [21] and A4 [15] are compared. For P2, constant velocity models of

the kinematic state and orientation angle vectors with state transition matrices, Fx =

Fcv⊗I2 and Fθ = Fcv, are chosen respectively. The process noise covariance matrices

for state and orientation angle transition models are selected as Qx = 10×Qcv ⊗ I2
and Qθ = 0.03×Qcv respectively. For A1, the constant velocity model as in Section

4.2.1 with the process noise covariance matrix Q = blkdiag(10×Qcv⊗I2, 3×10−2) is

used. For A2, the state-space model as in Section 4.2.1 with noise covariance matrices

Cω
r = 10×Qcv ⊗ I2 and Cω

p = diag(3× 10−2, 0.01, 0.01) is employed. For A3, the

coordinated turn model with Cartesian velocity model [53] is used with process noise

covariance Q = blkdiag(10× I2, 3×10−2). For A4, the constant velocity model with
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(a) Comparison of GW distances of P1, A1, A2, A3, A4 to the ground truth state in the trajectory

given in Figure 4.1.
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(b) Comparison of orientation angle estimations of P1, A1, and A2 to the ground truth orientation for

the trajectory given in Figure 4.1.

Figure 4.2: GW distance errors (a) and orientation estimates (b) averaged over 103

MC runs for the simulated experiment in Section 4.2.1.
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Table 4.2: Time-averaged errors for the drift scenario

P2 A1 [19] A2 [22] A3 [21] A4 [15]

GWav (m) 1.35 1.57 1.57 1.82 1.56

RMSEθ
av (degrees) 8.5 14.1 12.3 - -

process noise covariance matrix Q = 10×Qcv ⊗ I2 is selected. The extent transition

parameters Qk+1 = 1
3
V −1

k|k , vk+1 are chosen according to [15, Eq. 37] for both A3

and A4, and the rotation matrix is set as Mk = T (ωk) for A4, where ωk is the ground

truth yaw rate of the ground truth object.

Time-averaged GW and RMSE values are reported in Table 4.2, and GW values

throughout the scenario are plotted in Figure 4.4. P2 achieves the minimum aver-

age RMSE and GW results compared to A1, A2, and A4. Note that GW values tend

to increase at the beginning of turn maneuvers for all methods; P2 can estimate the

target turn rate relatively quickly and recover its performance. We only compare

orientation angle estimations of P2, A1, and A2 since A3 and A4 do not explicitly

estimate the extent of orientation angle.

4.2.3 Effect of Measurement Noise Covariance and Number of Iterations

In this section, we investigate how the performance of the proposed methods de-

pends on the measurement noise covariance and the maximum number of iterations

allowed in the variational updates. For this purpose, we repeated the experiment in

4.2.1 while varying the measurement noise covariance as R = σ2
r × I2, where

σ2
r ∈ {0.01, 1, 5, 10, 20, 30, 50}. For each of these cases, we run the algorithm

P1 (Trajectory-Aligned Model) with the number of variational iterations Imax ∈
{10, 25, 50}. The remaining parameters are kept the same. No additional tuning

is performed to improve the performance. 100 MC runs are simulated for each case.

The GW and RMSE performance metrics are presented in Tables 4.3 and 4.4, respec-

tively. As expected, the algorithm’s performance degrades with increasing noise lev-

els. When the sensor noise standard deviation exceeds 4 times the minor axis length
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Figure 4.4: Comparison of GW distances of P2, A1, A2, A3, A4 to the ground truth

for the trajectory given in Figure 4.3 averaged over 103 MC runs.

Table 4.3: Time-averaged GW (m) distances under different sensor noise levels

Imax \ R 0.01× I2 1× I2 5× I2 10× I2 20× I2 30× I2 50× I2

10 0.412 0.885 1.601 2.493 6.227 12.42 21.88

25 0.412 0.885 1.528 1.944 3.038 4.723 9.639

50 0.412 0.885 1.514 1.884 2.796 3.787 7.742

Table 4.4: Time-averaged RMSEθ (degrees) under different sensor noise levels

Imax \ R 0.01× I2 1× I2 5× I2 10× I2 20× I2 30× I2 50× I2

10 2.8 4.5 7.8 12.9 26.8 73.2 92.6

25 2.8 4.3 7.0 9.7 14.8 19.8 46.8

50 2.8 4.3 6.8 9.0 14.3 17.1 34.3
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of the extent, the orientation performance of P1 becomes unsatisfactory. Such a case

is illustrated in Figure 4.5, where the measurements carry much less information re-

garding the target’s orientation due to high noise covariance. Further increases in

noise levels would drift the simulations away from realistic sensor models commonly

encountered in ETT applications, such as automotive radar and lidar sensors.

Increasing the number of variational iterations proved effective in maintaining the

performance up to a certain noise level. This is illustrated in Figure 4.6, where it

can be observed that allowing the algorithm to perform 50 iterations provided better

orientation angle tracking performance.

The drift model exhibits similar behavior. However, unlike the trajectory-aligned

model, the drift model cannot extract additional information from the trajectory. As

a result, performance degradation on the orientation angle tracking begins at lower

noise levels. Again, increasing the number of iterations can help mitigate this prob-

lem.
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Figure 4.5: The measurement realizations for the first three frames of the high mea-

surement noise covariance scenario, where R = 20× I2.
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Figure 4.6: Comparison of orientation angle estimations of P1 to the ground truth

orientation for different numbers of variational iterations.

4.3 Real Data Experiments

This section presents two real data experiments involving an automotive radar dataset

[54] and a video tracking example [55]. We report the time-averaged GW and RMSE

values of these experiments in Table 4.5 and 4.6 respectively.

4.3.1 Automotive Radar Data Experiment

This experiment considers automotive radar data and ground truth bounding boxes

of a vehicle in the nuScenes dataset [54]. The vehicle takes a 90◦ turn at a junc-

tion in 33 time frames with 0.5 seconds sampling time. P1 (Trajectory-Aligned

Model), A1 [19], A2 [22], A3 [21], and A5 [27] are compared in this real-data

experiment. Parameters for this experiment are the same as in Section 4.2.1 ex-

cept for the process noise covariance matrices. Process noise for P1 is selected as

Q = diag(5 × 10−2, 10−2). Process noise covariance for A1 is chosen as Q =

blkdiag(5 × 10−2 × Qcv ⊗ I2, 0.5). Process noise covariance matrices of A2 are
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Figure 4.7: Eight frames of algorithm results for the Automotive Radar Experiment.

The dashed arrow indicates the direction of motion.

Cω
r = 5 × 10−2 × Qcv ⊗ I2 and Cω

p = diag(0.25, 10−3, 10−3) for kinematics and

shape vectors, respectively. For A3, Q = blkdiag(5× 10−4 × I2, 10−3) are chosen as

the process noise covariance of the state dynamics. Finally parameters for A5 follow-

ing the notation in [27] are set to δQ = 10−6, jmax = 10, γk = 0.05, Qc = 5×Qcv⊗I2
and Qs = diag(0.12, 0.12).

Figure 4.7 depicts the resulting algorithm estimations with 8 equally spaced frames

for visual clarity and readability. P1 exhibits a comparatively high accuracy in es-

timating the orientation, leading to its superior tracking performance. This can be

attributed to the aligned model’s better utilization of the correlation between the ex-

tent orientation and the trajectory of the maneuvering vehicle.
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Table 4.5: Time-averaged errors for the Automotive Radar Experiment

P1 A1 [19] A2 [22] A3 [21] A5 [27]

GWav (m) 1.56 1.58 2.09 2.38 1.66

RMSEθ
av (degrees) 6.8 103.2 99.7 - 18.2

4.3.2 Drifting Dinghy Experiment

Figure 4.8: Four sample frames of algorithm results for the drifting dinghy experi-

ment. Frames 24, 29, 41, and 45 are shown in the (a), (b), (c), and (d) order.

In this experiment, we consider the aerial view video data of a drifting dinghy [55].

The dinghy takes about a 180◦ turn in 50 frames with a sampling time of 2.0 seconds.

We generated measurements by taking random samples from the white pixels of each

frame where the number of measurements generated from the target is set as a Poisson

distributed random variable with rate λ = 15. Ground truth ellipses and orientation

angles of this scenario are extracted manually. P2 (Drift Model), A1 [19], A2 [22],

A3 [21], A4 [15] and A5 [27] are compared in this experiment. Parameters for this

experiment are the same as in Section 4.2.2 except for the process noise covariance
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Table 4.6: Time-averaged errors for the Drifting Dinghy Experiment

P2 A1 [19] A2 [22] A3 [21] A4 [15] A5 [27]

GWav (m) 0.97 1.52 2.1 1.21 1.68 1.03

RMSEθ
av (degrees) 9.6 87.6 14.2 - - 10.8

matrices. Process noise covariances for P2 are selected as Qx = 2.5×Qcv ⊗ I2 and

Qθ = 10−3 ×Qcv. Process noise covariance for A1 is chosen as Q = blkdiag(0.25×
Qcv ⊗ I2, 10−3). Process noise covariance matrices of A2 are Cω

r = 0.25×Qcv ⊗ I2
and Cω

p = diag(10−3, 10−2, 10−2) for kinematics and shape vectors, respectively.

Q = blkdiag(0.25 × Qcv ⊗ I2, 10−3), for A3 Q = blkdiag(0.25 × Qcv ⊗ I2, 10−3)

for A4, Q = 0.25 × Qcv ⊗ I2 is chosen as the process noise covariance of the state

dynamics. Finally parameters for A5 are set to δQ = 10−6, jmax = 10, γk = 0.05,

Qc = 0.05×Qcv ⊗ I2 and Qs = diag(0.05, 0.05).

Estimates of the algorithms are depicted in Figure 4.8. We show 4 frames out of 50 in

the figure for visual clarity. It can be seen that P2 represents the drifting behavior of

the dinghy relatively well while capturing both orientation and trajectory information

simultaneously.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have successfully developed and implemented novel random matrix-

based methodologies for elliptical extended target tracking, specifically addressing

the unique motion patterns of trajectory-aligned and drifting targets. Our approach,

which distinguishes between the correlation of kinematic states and extent orienta-

tion, provides a critical improvement over traditional tracking methods that often ne-

glect these distinctions.

Extended target tracking (ETT) has seen substantial advancements in recent years,

primarily focusing on improving the accuracy and efficiency of tracking systems in

diverse applications. Traditional approaches often assume simple, static models for

target extent and kinematics, which can lead to significant limitations, especially in

dynamic environments. Prior research has explored various methods, and while they

are robust in many scenarios, they frequently overlook the crucial dynamics between

the target’s kinematic state and its orientation. Our research builds upon this foun-

dation by introducing novel random matrix-based models that explicitly account for

the correlation between kinematic states and extent orientation. This differentiation

is crucial for dealing with real-world tracking scenarios where targets such as ground

vehicles and UAVs exhibit complex motion patterns. By addressing these previously

neglected dynamics, our models enhance the predictive capabilities of ETT systems,

offering a significant contribution to the literature and extending the applicability of

tracking technologies in practical settings.

For trajectory-aligned targets, such as cars, trains, and bicycles, our model leverages

the strong correlation between kinematic state and extent orientation, resulting in sig-

nificantly enhanced tracking accuracy. This model is particularly effective when tar-
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gets exhibit predictable, aligned movement patterns. Conversely, our drifting model

is optimized for maritime vessels and UAVs, where kinematic state and orientation

are less correlated. By adapting to the independent nature of these parameters, this

model offers improved accuracy for tracking targets with more unpredictable and au-

tonomous movements.

Through rigorous testing on both simulated and real-world datasets, our models demon-

strated superior performance compared to existing state-of-the-art methods. The ex-

periments highlighted our models’ ability to achieve lower estimation errors in orien-

tation and extent states, particularly in scenarios characterized by high maneuverabil-

ity and substantial environmental noise. These findings underscore the importance of

our novel approach in enhancing the capabilities of extended target tracking systems,

paving the way for more accurate and reliable tracking in complex scenarios.

This thesis confirms the efficacy of distinguishing between different types of target

motions in tracking applications. It enhances the overall understanding and devel-

opment of tracking technologies in automotive radars and maritime surveillance sys-

tems.

5.1 Future Work

Looking forward, several enhancements can be made to refine the RM-based ETT

models introduced in this thesis further. First, the variational Bayesian (VB) iteration

steps could be adapted based on convergence rates to optimize the computational effi-

ciency and accuracy of the models. Implementing a dynamic adjustment mechanism

for VB iterations while setting a maximum iteration limit would allow the algorithms

to adapt to different scenarios and potentially lead to faster and more accurate con-

vergence.

Additionally, extending the measurement model to include other types of measure-

ments, such as Doppler and polar measurements, could significantly enhance the ap-

plicability and versatility of the proposed methods. Incorporating these measurement

sources would allow the models to be applied in a broader range of environments and

increase their utility in practical scenarios.
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Moreover, developing a 3D extension of the proposed models would address the needs

of applications where targets occupy three-dimensional space, such as aerial tracking

or space surveillance.

Also, extending the models to handle multi-target scenarios would be a significant

advancement. This extension would involve adapting the existing algorithms to track

multiple distinct targets simultaneously, improving the models’ capability in complex

environments with numerous targets.

For scenarios where targets exhibit combined behaviors, such as a vehicle displaying

both trajectory-aligned and drifting behaviors, a multimodel approach, such as the In-

teracting Multiple Model (IMM) algorithm, could be employed. This approach would

allow for switching between different motion models, making the system adaptable

to varying target dynamics.

Lastly, creating multiellipsoidal versions of the proposed models would enable track-

ing multiple overlapping targets more effectively. This development would be partic-

ularly beneficial in group tracking scenarios or objects with shapes better represented

by unions of multiple elliptical regions.
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APPENDICES

A Definition of Functional Derivatives

Given a functional F [f ] that depends on a function f(x), the functional derivative of

F [f ] with respect to f(x) is defined such that:

δF [f ] =

∫
δF [f ]

δf(x)
δf(x) dx. (A.1)

Here,
δF [f ]

δf(x)
is the functional derivative of F with respect to f(x) [47, Chapter 1].

This expression indicates how small changes in the function f(x) affect the value of

the functional F [f ].

For small ϵ and δf(x);

δF [f ] = lim
ϵ→0

1

ϵ
(F [f + ϵδf ]−F [f ]) , (A.2)

= lim
ϵ→0

1

ϵ

(
F [f + ϵδf ] + ϵ

∂

∂ϵ
F [f + ϵδf ]

∣∣∣
ϵ=0

+O(ϵ2)

)
−F [f ], (A.3)

=

(
∂

∂ϵ
F [f + ϵδf ]

)
ϵ=0

. (A.4)

So a way to compute the derivative of a functional is given as;(
∂

∂ϵ
F [f + ϵδf ]

)
ϵ=0

=

∫
δF [f ]

δf(x)
δf(x) dx. (A.5)

B Coordinated Turn with Polar Velocity Model

In our experiments with the Aligned Model, we employ the discretized state space

equations presented in [53] to propagate the kinematic state to the subsequent time

step. These equations are given as

xk+1 = f(xk) + νk, νk ∼ N (0,Qx). (B.1)
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Here, the state vector xk = [pxk p
y
k vk φk φ̇k]

T encompasses the Cartesian positions,

magnitude of the Cartesian velocity, heading angle, and turn rate. The state transition

function f(.) is expressed explicitly as,

f(xk+1) =



pxk +
2vk
φ̇k
sin( φ̇kT

2
) cos(φk +

φ̇kT
2
)

pyk +
2vk
φ̇k
sin( φ̇kT

2
) sin(φk +

φ̇kT
2
)

vk

φk + φ̇kT

φ̇k


. (B.2)

Here, T is the sampling time. The process noise νk, is modeled with a state dependent

function g(x),

νk = g(xk)wk, wk
i.i.d∼ N (0,Q), Q ∈ S2

++, (B.3)

g(xk) =

T 2

2
cos(φk)

T 2

2
sin(φk) T 0 0

0 0 0 T 2

2
T

T

. (B.4)

C Proof of Lemma 1

Proof. Given φ ∼ N (φ̂, Pφ), the characteristic function of φ is [49]:

ϕφ(t) = Eφ

[
ejtφ
]
= exp

(
jφ̂t− 1

2
Pφt

2

)
(C.1)

Expectation of sin(2φ)

Eφ [sin(2φ)] = ℑ (ϕφ(2)) (C.2)

ϕφ(2) = exp (j2φ̂− 2Pφ) (C.3)

Eφ [sin(2φ)] = sin(2φ̂) exp(−2Pφ) (C.4)

Expectation of cos(2φ)

Eφ [cos(2φ)] = ℜ (ϕφ(2)) (C.5)

ϕφ(2) = exp (j2φ̂− 2Pφ) (C.6)

Eφ [cos(2φ)] = cos(2φ̂) exp(−2Pφ) (C.7)
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Expectation of φ sin(2φ)

ϕ′
φ(t) =

d

dt

(
exp

(
jφ̂t− 1

2
Pφt

2

))
(C.8)

= exp

(
jφ̂t− 1

2
Pφt

2

)
(jφ̂− Pφt) (C.9)

ϕ′
φ(2) = exp (j2φ̂− 2Pφ) (jφ̂− 2Pφ) (C.10)

Eφ [φ sin(2φ)] = ℑ
(
jϕ′

φ(2)
)

(C.11)

= ℑ (exp (j2φ̂− 2Pφ) (φ̂− 2jPφ)) (C.12)

= (φ̂ sin(2φ̂) + 2Pφ cos(2φ̂)) exp(−2Pφ) (C.13)

Expectation of φ cos(2φ)

Eφ [φ cos(2φ)] = ℜ
(
jϕ′

φ(2)
)

(C.14)

= ℜ (exp (j2φ̂− 2Pφ) (φ̂− 2jPφ)) (C.15)

= (φ̂ cos(2φ̂)− 2Pφ sin(2φ̂)) exp(−2Pφ) (C.16)

Expectation of φ2 sin(2φ)

ϕ′′
φ(t) =

d2

dt2

(
exp

(
jφ̂t− 1

2
Pφt

2

))
(C.17)

= exp

(
jφ̂t− 1

2
Pφt

2

)(
(jφ̂− Pφt)

2 − Pφ

)
(C.18)

ϕ′′
φ(2) = exp (j2φ̂− 2Pφ)

(
(jφ̂− 2Pφ)

2 − Pφ

)
(C.19)

Eφ

[
φ2 sin(2φ)

]
= ℑ

(
−ϕ′′

φ(2)
)

(C.20)

= ℑ
(
− exp (j2φ̂− 2Pφ)

(
−φ̂2 − 4jφ̂Pφ − 4P 2

φ − Pφ

))
(C.21)

= φ̂2 sin(2φ̂) exp(−2Pφ) + 4φ̂Pφ cos(2φ̂) exp(−2Pφ)

− 4P 2
φ sin(2φ̂) exp(−2Pφ) + Pφ sin(2φ̂) exp(−2Pφ) (C.22)

So,

Eφ

[
φ2 sin(2φ)

]
=
(
(φ̂2 − 4P 2

φ + Pφ) sin(2φ̂) + 4φ̂Pφ cos(2φ̂)
)
exp(−2Pφ)

(C.23)

Expectation of φ2 cos(2φ)

Eφ

[
φ2 cos(2φ)

]
= ℜ

(
−ϕ′′

φ(2)
)

(C.24)
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= ℜ
(
− exp (j2φ̂− 2Pφ)

(
−φ̂2 − 4jφ̂Pφ − 4P 2

φ − Pφ

))
(C.25)

= φ̂2 cos(2φ̂) exp(−2Pφ)− 4φ̂Pφ sin(2φ̂) exp(−2Pφ)

− 4P 2
φ cos(2φ̂) exp(−2Pφ) + Pφ cos(2φ̂) exp(−2Pφ) (C.26)

So,

Eφ

[
φ2 cos(2φ)

]
=
(
(φ̂2 − 4P 2

φ + Pφ) cos(2φ̂)− 4φ̂Pφ sin(2φ̂)
)
exp(−2Pφ)

(C.27)

We define the vector tφ ≜


1 + cos(2φ)

1− cos(2φ)

sin(2φ)

.

The expectations E [tφ], E [φtφ], and E [φ2tφ] can be analytically calculated as fol-

lows:

Expectation of tφ:

E [tφ] = E



1 + cos(2φ)

1− cos(2φ)

sin(2φ)


 =


1 + Eφ [cos(2φ)]

1− Eφ [cos(2φ)]

Eφ [sin(2φ)]

 =


1 + e−2Pφ cos 2φ̂

1− e−2Pφ cos 2φ̂

e−2Pφ sin 2φ̂


(C.28)

Expectation of φtφ:

E [φtφ] = E

φ

1 + cos(2φ)

1− cos(2φ)

sin(2φ)


 =


Eφ [φ(1 + cos(2φ))]

Eφ [φ(1− cos(2φ))]

Eφ [φ sin(2φ)]

 (C.29)

=


Eφ [φ] + Eφ [φ cos(2φ)]

Eφ [φ]− Eφ [φ cos(2φ)]

Eφ [φ sin(2φ)]

 (C.30)

=


φ̂+ (φ̂ cos(2φ̂)− 2Pφ sin(2φ̂)) e

−2Pφ

φ̂− (φ̂ cos(2φ̂)− 2Pφ sin(2φ̂)) e
−2Pφ

(2Pφ cos(2φ̂) + φ̂ sin(2φ̂)) e−2Pφ

 (C.31)
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Expectation of φ2tφ:

E
[
φ2tφ

]
= E

φ2


1 + cos(2φ)

1− cos(2φ)

sin(2φ)


 =


Eφ [φ

2(1 + cos(2φ))]

Eφ [φ
2(1− cos(2φ))]

Eφ [φ
2 sin(2φ)]

 (C.32)

=


Eφ [φ

2] + Eφ [φ
2 cos(2φ)]

Eφ [φ
2]− Eφ [φ

2 cos(2φ)]

Eφ [φ
2 sin(2φ)]

 (C.33)

=


φ̂2 + Pφ +

(
(φ̂2 + Pφ − 4P 2

φ) cos(2φ̂)− 4φ̂Pφ sin(2φ̂)
)
e−2Pφ

φ̂2 + Pφ −
(
(φ̂2 + Pφ − 4P 2

φ) cos(2φ̂)− 4φ̂Pφ sin(2φ̂)
)
e−2Pφ(

(φ̂2 + Pφ − 4P 2
φ) sin(2φ̂) + 4φ̂Pφ cos(2φ̂)

)
e−2Pφ


(C.34)

Thus, the expectations are:

E [tφ] =


1 + e−2Pφ cos 2φ̂

1− e−2Pφ cos 2φ̂

e−2Pφ sin 2φ̂

 , (C.35a)

E [φtφ] =


φ̂+ e−2Pφ (φ̂ cos 2φ̂− 2Pφ sin 2φ̂)

φ̂− e−2Pφ (φ̂ cos 2φ̂− 2Pφ sin 2φ̂)

e−2Pφ (2Pφ cos 2φ̂+ φ̂ sin 2φ̂)

 , (C.35b)

E
[
φ2tφ

]
=


E[φ2] + e−2Pφ

(
(E[φ2]− 4P 2

φ) cos 2φ̂− 4Pφφ̂ sin 2φ̂
)

E[φ2]− e−2Pφ
(
(E[φ2]− 4P 2

φ) cos 2φ̂− 4Pφφ̂ sin 2φ̂
)

e−2Pφ
(
(E[φ2]− 4P 2

φ) sin 2φ̂+ 4Pφφ̂ cos 2φ̂
)

 , (C.35c)

where E[φ2] = φ̂2 + Pφ.
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