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ÖZET 

Bu tez çalışmasında, pertürbasyon teorisi ve etki alanı hakkında bilgi verilmiştir. 

Ayrıca singüler pertürbe problemler ve singüler pertürbe problemlerin özellikleri 

üzerinde durulmuştur. Yaklaşık çözümü yapılan sağ veya sol sınır katlarına sahip 

gecikmeli singüler pertürbe diffarensiyel denkleme sahip problemlerin çözümü, düzgün 

şebeke ile nümerik integral metodu yardımıyla sağlanmıştır. Nümerik integral metodu 

ile birlikte yamuk metodu, sonlu fark yöntemi ve Thomas algortimasından da 

faydanılmıştır. En son Thomas Algortiması yapılmasının ardından yöntemin verimli ve 

doğru çalışma durumunu gösteren tablo ve şekillerle de somuşlatırma yapılmıştır. N ve

 ’nun farklı değerleri için yaklaşık çözümler arasındaki ilişki, uygulanabilir matematik 

programıyla elde edilmiştir.   

Bu tez dört bölümden oluşmaktadır: Giriş bölümünde, çalışmamızın kaynak 

tarama bilgileri verilmiştir. Materyal ve yöntem bölümünde, tezin içeriği ile ilgili temel 

tanımlar ve teoriler sunulmuştur. Bulgular ve tartışma bölümünde gecikmeli singüler 

pertürbe  differansiyel integral sınır değerli denkleme sahip problemlerin nümerik 

integral metodu ile çözümüne yönelik  örneklerin uygulamaları yapılmıştır. Dördüncü 

bölümde ise tezin değerlendirildiği  sonuç ve önerilere yer verilmiştir. 

Anahtar Kelimeler: Singüler pertürbe differansiyel denklem, integral sınır 

durumu, lineer gecikmeli differansiyel denklemler, düzgün şebeke, nümerik inetgral 

yöntemi. 
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ABSTRACT 

In this thesis, information is provided about perturbation theory and domain of 

influence. Additionally, singular perturbation problems and the characteristics of 

singular perturbation problems are emphasized. The solution of problems with delayed 

singularly perturbed differential equations, which have boundary layers at the left or 

right, has been achieved using the numerical integration method with a uniform grid. 

Along with the numerical integration method, the trapezoidal method, finite difference 

method, and Thomas algorithm were also utilized. After the implementation of the 

Thomas algorithm, the efficiency and accuracy of the method were demonstrated with 

tables and figures. The relationship between approximate solutions for different values 

of and was obtained using an applicable mathematical program. 

This thesis consists of four chapters: In the introduction, a literature review 

related to our study is provided. In the materials and methods section, basic definitions 

and theories related to the content of the thesis are presented. In the findings and 

discussion section, applications of examples for solving problems with delayed 

singularly perturbed differential equations using the numerical integration method are 

conducted. The fourth chapter includes the evaluation of the thesis in the conclusions 

and recommendations section. 

Keywords: Singularly perturbed differentiale equation, integral boundary 

condition, linear delay differential equations, uniform grid, numerical integration 

method. 
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1. GİRİŞ 

Dünyadaki pekçok tabiat olayları, farklı değişkenlere bağlı olarak birdenbire 

(ani) değişimler gösterebilir. Özellikle fen ve matematik disiplinlerinde, birdenbire 

yaşanan bu gibi değişimler küçük sapmalar analizi (singüler ve regüler pertürbe) olarak 

adlandırılır. Bu teori, ilk olarak 1904 yılında Heidelbergde düzenlenen III. Uluslararası 

Matematik Kongresinde Prandtl'ın sunduğu sınır tabakalarının varlığına dair 

çalışmasıyla ortaya çıkmış ve Lindstedt ile Poincare'in katkılarıyla günümüze kadar 

uzanan köklü geçmişe sahiptir  (Farrel, P. A., Hegarty, A. F., Miller, J. J. H., O’Riordan, 

E., Shishkin, G. I, 2000). 

Singüler Pertürbe problemler en yüksek mertebeden türevlerin terimlerinin 

katsayılarının oldukça küçük yani sıfır ile bir arasında bir sabit parametre ( ) olma 

durumunu ifade eder. Bu tür problemlerin çözümleri, tanım kümesinin uç (sınır) katları 

olarak adlandırılan hassas geçiş olan bölgelerinde süratli ve dağınık değişiklikler 

gösterirken, diğer alanlarda  yavaş ve ritimli değişimler sergiler. Böyle bir dağınıklık 

neticesinde, çözümde sonsuz sayıda türevler meydana gelir. Bu durum, özellikle sınır 

katlarında belirgin hale gelir ve çözümün karmaşık yapısını daha da artırır. Böylece, 

singüler pertürbe özelliğine sahip problemlerin mekanizmasında çok ciddi sıkıntılar 

meydana gelir. Bu zorluklar, özellikle sınır katlarında meydana gelen ani ve düzensiz 

değişikliklerin analiz edilmesi ve bu değişikliklerin problemin genel çözümüne etkisinin 

belirlenmesi sürecinde kendini gösterir. Singüler pertürbasyon teorisi, bu karmaşık 

davranışları anlamak ve çözümlemek için özel yöntemler ve teknikler gerektirir. Bu 

nedenle, bu tür problemlerin çözümü, hem analitik hem de sayısal yaklaşımlarla 

dikkatlice ele alınmalı ve incelenmelidir. Bu karakteristikler, nümerik çözümler 

üzerinde de belirgin şekilde kendini gösterir. Şema adım uzunluğunun küçültülmesiyle 

birlikte yaklaşık çözüm, gerçek çözüme giderek daha fazla yaklaşır. Bu nedenle, 

singüler pertürbe özelliğindeki problemlerde bu karakteristikleri ifade edebilecek 

orijinal sayısal yöntemlerin geliştirilmesi çok ciddi manada önemlidir. Bilinen klasik 

sayısal yöntemler, genellikle gerçekçi çözüm yoluna mutabık netice üretemediğinden, 

tam olarak bu tarz problem çözümünde oldukça küçük yani sıfır ve bir arasında (sıfıra 

daha yakın) olan  ’a göre düzenli  yakınsayan etkili sayısal yöntemlerin kullanılması 

gerekmektedir (Nayfeh, A.H., 1993; O’ Malley, R. E. Jr., 1991). 
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Matematiksel Modelleme ve Nümerik Analiz 

Singüler pertürbasyon problemleri, matematiksel modelleme ve nümerik analiz 

alanlarında önemli araştırma konularıdır. Bu alanlarda yapılan çalışmalar, singüler 

pertürbasyonların çözüm yöntemlerini geliştirir ve bu yöntemlerin doğruluğunu ve 

etkinliğini artırır. Özellikle, tezin kapsama alanını teşkil eden nümerik yöntemler 

kullanılarak singüler pertürbasyon problemlerinin çözümü için etkili algoritmalar 

geliştirilir (Amiraliyev, G. M., Erdogan, F., 2007). 

Uygulamalı Matematik 

Uygulamalı matematik alanında, singüler pertürbasyon teorisi üzerine yapılan 

çalışmalar, bu teorinin çeşitli bilim ve mühendislik alanlarındaki uygulamalarını 

genişletir. Bu çalışmalar, teorik yaklaşımların pratik uygulamalarda nasıl kullanılacağını 

gösterir ve bu alandaki bilgi birikimini artırır (Amiraliyeva, I. G., Erdogan, F., 

Amiraliyev, G. M., 2010). 

Singüler pertürbasyon problemleri üzerine kaynak taraması yaparken, bu alanda 

önemli katkılar sağlamış klasik ve güncel literatüre odaklanmak gerekmektedir. 

Aşağıda, singüler pertürbasyon teorisi ve uygulamaları hakkında kapsamlı bilgi 

edinebileceğiniz temel kaynaklar ve önemli çalışmaların bir kısmı listelenmiştir: 

 Nayfeh (1973), genel olarak pertürbasyon yöntemlerini ifade eder ve singüler 

pertürbasyon teorisine kapsamlı bir giriş sağlar. Asimptotik yöntemler, çok ölçekli 

analiz ve sınır katman teorisi gibi konular detaylı bir şekilde ele alınmıştır. 

 Bender ve Orszag (1978), bilim insanları ve mühendisler için ileri matematiksel 

yöntemleri ifade etmişlerdir. Singüler pertürbasyon problemleri, asimptotik analiz ve 

diğer ilgili teknikler ayrıntılı olarak açıklanmıştır. 

 O'Reilly, Kokotovic ve Khalil  (1986),  kontrol teorisinde singüler pertürbasyon 

yöntemlerinin analiz ve tasarımını ele almış olup, hızlı ve yavaş dinamiklerin 

ayrıştırılması ve kontrol sistemlerinin kararlılık analizi gibi konuları detaylı bir şekilde 

incelemişlerdir. 

 O'Malley (1974), singüler pertürbasyon teorisine giriş niteliğindeki  temel 

kavramları ve yöntemleri açıklar. Özellikle mühendislik ve uygulamalı matematikte 

kullanılan tekniklere odaklanmıştır. 

Lokal olmayan sınır tipli problemleri ilk kez Bitsadze ve Samarskii bilim 

adamları tarafından incelenmiştir. Bahsedilen tarzda problemlerde, özellikle quantum  
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mekaniği, gök mekaniği ve mühendislikte dinamik sistemlerin davranışlarını anlamak 

için sıkça kullanılmıştır. 
 

Tez bölüm olarak dört kısımdan meyda gelmektedir: 

İlk kısım giriş bölümünden oluşmaktadır. Bu kısımda ayrıca literatürle 

alakalı bilgiler sunulmaktadır. 

İkinci bölümde tez ile alakalı olan  tanım, teorem ve yöntemlere yer verilmiştir. 

Üçüncü bölümde tezin asıl anlamını ifade eden nümerik integral metodu ele 

alınmıştır. 

Bundan sonraki kısımlarda ise tezde incelenen problemlere odaklanılır.
 

Gecikmeli singüler pertürbe özellikli integral sınır durumlu problemlerin nümerik 

integral yöntemi ile  çözümü ele alınmaktadır.  
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G z c sonlu sabitler

 

  

 

       

    

  





  

    

   

  

 

 

Yukarıdaki problemin denklemlerinin ( )u t  çözümü, t b  noktasında bir sınır 

değerine sahiptir. Dolayısıyla,  problemin bu parametre değeri ( ) altında tek bir 

çözümü vardır (Ma, 1997; Adzic, 2000). 

Tezin son bölümünde sonuçlar ve öneriler verilmiştir. 
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2. MATERYAL VE YÖNTEM 

Bu bölümde, nümerik integral metodu ile gecikmeli singüler pertürbe özellikli 

integral sınır değerli problemlerin yaklaşık çözümleri araştırılırken kullanılacak tanım 

ve teoremlere yer verilecektir. 

Tanım 2.1.1 Pertürbasyon Teorisi 

Pertürbasyon, denklemlerde çok küçük bir pozitif sayının (pertürbasyon 

parametresi) etkisinin incelenmesine dayanan bir teoridir. Örneğin, Dünyanın Güneşin 

etrafında  hareketi gibi bir olay, pertürbasyonla ilgili teoriyi aşağıdaki gibi  resmederek  

aklımızda çağrışım yapmasını sağlar. 

 

 

Şekil 2.1 Dünyanın Güneş yörüngesinde dolaşması durumu 

 

Şekli incelediğimiz zaman dünyanın kütlesini m  ve Dünyanın Güneşin 

yörüngesindeki hareketini ( )s s t  olarak tanımlayalım. Ünlü bilim adamı Newtonun 

ikinci yasası ile 

 

  güneşms F 
        

 

biçimindedir. Bu formül pertürbasyon olmayan bir ifadedir, yani Güneş ile Dünya 

arasındaki yörüngeye etki edecek bir dış etken yoktur. Ancak, herhangi bir kuyruklu 

yıldızın bu yörüngeye yakın olarak  geçtiğini  düşünelim. Bu durumda hareket pertürbe 

edilmiş olur ve ek bir terim olan   ile ifade edilebilir. Böylece aşağıdaki pertürbe 

denklem oluşur (Persson, 1987): 

 

güneş cometms F F  
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Bu ek terim  , Dünyanın Güneşten gelen çekim kuvveti dışında başka bir 

cismin etkisini temsil eder. Bu şekilde, pertürbasyon teorisi, başlangıçta dengede olan 

bir sistemde dış etkilerin nasıl hesaplanabileceğini ve bu etkilerin sistemin dinamiklerini 

nasıl değiştirebileceğini açıklar. 

Pertürbe özellikli problemler 0 1  için bir   değişkeni ile bağlantılı  

problemler 0   için asıl probleme indirgenmiş problemler denir. Problemin 

indirgenmiş haliyle asıl problem eş derecede olup problemlerin ikisinin de tek çözümü 

varsa, bu problem regüler pertürbasyon problemleri olarak adlandırılır; diğer türlü 

singüler pertürbasyon problemleri olarak adlandırılır (Chegis, 1988). Şimdi tek tek 

singüler ve regüler pertürbasyon problemlerini örnekle açıklayalım: 

                        

( ) ( ) 0,  0 1,
                        :

              (0) 2,

u t u t t
P

u


    


  

Regüler pertürbe problemini ifade eder. 

                        

( ) ( ) 0,  0 1,
                        :

              (0) 2,

u t u t t
P

u


     


  

 Singüler pertürbe problemini ifade eder (Kudu & Amiraliyev, 2002; Persson, 

1987).

 
Tanım 2.1.2 Başlangıç Katı ve Sınır Katı 

Başlangıç ve sınır katı varlığı problemi, bir pertürbasyonun singüler varlığını 

gösteren bir kanıttır. Singüler pertürbasyon probleminin çözümü, herhangi bir sınır veya 

başlangıç noktasının çevresinde ani ve hızlı değişebilir. Bu noktanın sınır veya 

başlangıç katına sahip olduğunu gösterir.  

Sınır katı, çözümün hassas bir şekilde değişebileceği bir bölgeyi ifade eder. Sınır 

katı dışındaki bölgelerde ise, fonksiyon değerleri genellikle küçük üstel değerlere 

sahiptir ve bu tür bir fonksiyona sınır veya başlangıç katı fonksiyon denir (Kudu, M., 

Amiraliyev, 2007). 
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Tanım 2.1.3 Sonlu Fark Yöntemi 

Sonlu fark yöntemi, türevli denklemlerin çözümü için kullanılan bir yöntemdir. 

Bu yöntemde, diferansiyel denklemlerdeki türevlere karşılık fark türevleri kullanılarak 

fark denklemi oluşturulur. Bu fark denklemi, genellikle bir lineer cebirsel denklem 

sistemi olarak ifade edilir. Bu sistemin çözümü, çözüm fonksiyonunun ayrık 

noktalardaki değerlerine ulaşmayı sağlar, bu da nümerik bir çözüm elde edilmesini 

sağlar. Yani, belirli bir ağ veya şebeke yapısındaki fonksiyonun değerleri hesaplanarak, 

sistemin davranışı anlaşılır hale getirilir (Cakir & Amiraliyev, 2005). 

Tanım 2.1.4 Şebeke ve Şebeke Fonksiyonu 

 [ , ]a b  aralığın sonlu miktarda noktanın oluşturduğu bölünmüş hali şebeke olarak 

adlandırılır. Bu, bir aralığın belirli noktalara bölünmesini ifade eder. 

                     
  

 0 1 ... ,k i Nt a t t t b       
 

bu bağımsız noktaların  kümesi elemanları kapalı bir aralık üzerinde tanımlanmış 

düzenli olmayan bir şebekeden bahsedildiğinde, bu şebekeden "düzgün olmayan 

şebeke" olarak söz edilir. Bu şebeke, belirli bir aralık üzerinde düzensiz bir şekilde 

dağılmış noktalardan oluşur. Bu noktalar genellikle "düğüm noktaları" veya "şebeke 

düğümleri" olarak adlandırılır. Yani, bu düğüm noktaları şebekenin temel yapı taşlarıdır 

ve şebekenin düzensiz dağılmış olduğu belirli bir kapalı aralığı ifade eder. 

 Şebekenin  adımları: 

1,i ih t t    

olmak üzere düğüm noktaları arasındaki aralıklar eşitse, yani düğümler aynı aralıklarla 

düzenli bir şekilde yerleştirilmişse, bu durumda oluşan şebekeden "düzgün şebeke" 

olarak bahsedilir.  

 

  
:  0,1,2,..., ,h i

b a
t a ih i N ve h

N


 
     
 

   

 

 

burada i ht  , şebekenin düğüm noktalarını temsil eden elemanları gösterir ve h  ise 

şebeke adımlarını belirtir. 

Şebekeler için tanımlanan ( )i ig g t  fonksiyonu tanımlanırken it  

düğümlerindeki şebeke fonksiyonu adını alır (Samarskii, 2001). 
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Tanım 2.1.5 

 Eğer ( )g x  fonksiyonu, [ , ]a b  aralığında düzgün bir şebekede tanımlı fonksiyonu 

için fark türevleri (Samarskii, 2001), 

     ,
b a

h
N


  

olmak üzere, 

ileri fark türevi 

      
1

, ,i i
x i

g g
g

h

 
  

geri fark türevi 

     
1

, ,i i
x i

g g
g

h


-

 

biçimindedir. 

Tanım 2.1.6 Gauss Eliminasyon Yöntemi (Thomas Algortiması ) 

 

                          

1 1

0 1 1 1 2 1 2

  ,         1,2,..., 1,

      ,         ,

i i i i i i i

N N

A y C y B y F i N

y k y y k y 

 



     

   
 

 

üç noktaya sahip fark şeması, üç şeritli bir matris sistemi oluşturmaktadır. Sınır şartları 

kullanarak aşağıda gösterilen Gauss Eliminasyon yöntemiyle  belirtilen sistemin 

çözümünü elde etmek mümkündür. 

 

                           

1 1 1

2
2

2

1 1

1 1 1 1

, 1, 2,...,0

       , (1 0)
1

,     ,   1,2,..., 1

                ,        ( 0)

i i i i

N
N N

N

i i i i
i i

i i i i i i

i i i

y y i N N

k
y k

k

B A F
i N

C A C A

k C A

 







 

 

   

  

 

    

  



   

 

   

 

biçimindedir. 

       
    1,2,..., 1   için

0i i i i i i

i N

A B D C A B

 

         

Koşulları çerçevesinde yukarıdaki algoritma kararlılık gösterir. 
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Tanım 2.1.7 Gecikmeli Differansiyel Denklem 

Bilinmeyen fonksiyon ve onun türevleri  (en yüksek mertebeden türev hariç) t  

ve t  anından önceki anlara bağlı olarak ortaya çıkan diferansiyel denklemlere gecikmeli 

diferansiyel denklem denir.  

En basit değişen (deviating)  argümanla diferansiyel denklem, 

 

  ( )   (   ( )  (   ))              
 

biçimindedir ve bu denkleme ilaveten            için tanımlı ve sürekli, 

 

 ( )   ( )  
 

başlangıç koşulu ile temel başlangıç değer problemi; 

 

  ( )   (   ( )  (   ))              
 

 ( )   ( )                 
 

biçimindedir (Elsgolts, Norkin & Casti, 1973). 

 

Tanım 2.1.8 Yamuk (Trapez) Yöntemi 

Yamuk (trapez) yöntemi, bir integrali yaklaşık olarak hesaplamak için kullanılan 

bir sayısal integrasyon tekniğidir. Bu yöntemde, integrandın grafiği altındaki alan, 

trapezler kullanılarak tahmin edilir. Yani, belirli bir aralıktaki fonksiyon değerleri 

kullanılarak trapezler oluşturulur ve bu trapezlerin alanları toplanarak toplam alanın 

yaklaşık değeri bulunur. 

Trapez yönteminde, her aralıkta ( )f t  değerleri birleştirilen fonksiyonun bir 

doğru olarak kabul edilmesi esas alınır. Bu durumda, her bir aralık trapezoid şeklinde 

düşünülür ve bu trapezoidlerin altındaki alanlar toplanarak integralin yaklaşık değeri 

elde edilir. 

( )f t  eğrisinin it  ’den 1it  ’e kadar altında kalan yaklaşık alan: 

          
1

1
[ ( ) ( )] .

2
i if t f t t          (1.1) 

Eğer ( )f t  fonksiyonu belirli bir aralıkta eşit parçaya bölündüğünde trapez yöntemi 

uygulanıyorsa, her bir trapezoidin altındaki yaklaşık alanı bulmak için aşağıdaki formül 

kullanılır 

0 1 1 2 1

1 1 1
[ ( ) ( )] [ ( ) ( )] ... [ ( ) ( )]

2 2 2
N N NF f t f t t f t f t t f t f t t           
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veya 

1

0

1

1 1
[ ( ) ( ) ( )]
2 2

N

N i N

i

F f t f t f t t




          (1.2) 

 

olarak bulunur. Trapez yönteminde, integralin boyutu sayısı "d" olsun. Bu durumda, 

kullanılan trapezoidlerin genişliği 2/dN   ile orantılı olduğundan, hata da bu genişlikle 

doğru orantılıdır. Yani, 2/dN   değeri küçüldükçe veya büyüdükçe hata da buna bağlı 

olarak azalır veya artar. Hata terimi genellikle integralin ikinci türevi ile ilgili 

olduğundan, trapez yöntemi daha fazla trapez  kullanılarak hassasiyet arttırılabilir 

(Tavukcu, 2000). 
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2.2. Nümerik İntegral Yöntemi 

Bu bölümde, üzerinde çalışılan gecikmeli singüler pertürbe özellikli integral 

sınır  değerli problemine yönelik çözüm arayışında, nümerik integral yöntemi adımları; 

sağ veya sol sınır katları ile ilgili durumları ayrı ayrı gözeterek incelenir. Yöntemin 

kararlılığı için gereken koşullar sunulur. 

2.2.1 Sağ sınır katlı problemin nümerik integral yöntemine göre çözüm 

basamakları aşağıda şu şekilde verilmiştir: 

 

1. 
                   

1

0
0

( ) ( ) ( ) ( ) ( ) ( ), 0 1, 0

, (1) (1) ( ) ( ) 1.
4

u t a t u t b t u t f t t

t
u A u u u t d t

  

 

       

   

   

   (2.1)  

 

denkleminde ( ) ,a t      sabit olma durumu mevcuttur. 1t   noktası 

civarında sağdan sınır katı vardır (Arslan, 2019). 

 

2. (2.1) denkleminde gecikme terimi yerine ( ) ( ) ( )u t u t u t      Taylor açılımı 

yazılır (Cengizci, 2017) 

 

                  

( ) ( ) ( ) ( )[ ( ) ( )] ( ),

( ) [ ( ) ( )] ( ) ( ) ( ) ( ). (2.2)

u t a t u t b t u t u t f t

u t a t b t u t b t u t f t

 

 

     

                       

   

3.  0,1  aralığı N  eşit parçaya ayrılır ve düzgün şebeke oluşur. Mevcut şebekeye 

ait noktalar;  

 

                 0 1 00 ... 1, , 1,..., ,n it t t t t ih i N             

 

biçimindedir. 

 

 

4. 1,..., 1i N   değerleri (2.2) denkleminin 1[ , ]i it t  aralığında integrali aşağıdaki 

gibi alınır. 
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            1 1

[ ( ) [ ( ) ( )] ( ) ( ) ( )] ( ) , 1,2,..., 1,
i i

i i

t t

t t

u t a t b t u t b t u t dt f t dt i N 

 

           

            ve 

1 1

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .
i i

i i

t t

i i i i i i i i

t t

u t u t a b u t a b u t b t u t dt f t dt   

 

   
          

5. Bir önceki adımda yer alan birinci türevler ( )iu t  ve  1( )iu t 
  için 

 

1
1 ,i i

i

u u
u

h





  1i i

i

u u
u

h

 
 

  
fark yaklaşımları kullanıldığında aşağıdaki gibi 

denklem elde edilir: 

 

1 1

1 1
1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) .

i i

i i

t t

i i i i
i i i i i i

t t

u u u u
a b u t a b u t b t u t dt f t dt

h h
   

 

 
  

    
         

   
    

 

6. Fark yaklaşımı kullanılarak elde edilen denklemdeki integrallere yamuk yöntemi 

uygulanır ve 

 

   1 1
1 1 1 1 1 1( ) ( ) ,

2 2

i i i i
i i i i i i i i i i i i

u u u u h h
a b u a b u bu b u f f

h h
    

     

    
           

   

 

denklemi meydana gelir. 

7. Bir önceki adımda 1 1, ,i i iu u u   göre gerekli düzenleme yapılınca 

 

      

 1
1 1 1 1 1

2
,

2 2 2

1,2,..., 1,

i i
i i i i i i i i i

b b h
u a b h u a b h u f f

h h h

i N

  
 

    

     
             

    

   

 

fark denklemi meydana gelir. 

 

 

8. Elde ettğimiz fark denklemi için sınır koşullarını da dahil edersek aşağıdaki  

problem ortaya çıkar. 
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 1

1 1 1 1 1

2
,

2 2 2

i i
i i i i i i i i i

b b h
u a b h u a b h u f f

h h h

  
 

    

     
             

    
  

                              

1

0

0

1 1
, 1. (2.3)

1 4

N

N j j

j

u A u ht u






  

                                   

 

           

Fark probleminin çözümü, aşağıda açıklanan Thomas algoritması kullanılarak sağlanır 

(Arslan, 2021). 

 1
1 1 1

2
, , , ,

2 2 2

i i
i i i i i i i i i i

b b h
A a b h B C a b h F f f

h h h

  
 

             =     

 

                    

1 1

1 1 1

, , 1,2,... 1,

, 1,...2,1,

i i i i
i i

i i i i i i

i i i i

B F A
i N

C A C A

u u i N


 

 

 

 

  


   

 

   

    

  

 

(2.1) - (2.3) problemine göre 

1 10, .A    

  
 

2.2.2 Soldan sınır katlı problemin nümerik integral yöntemine göre çözüm 

basamakları aşağıda şu şekilde verilmiştir 

(2.1) sol sınır katlı problem için ( ( ) ,a t        sabit) çözüm prosedürleri, sağ 

sınır katlı probleminkine benzerdir ancak kendine özgü  özelliklere sahip olup aşağıda 

ifade edilmiştir: 

                 0,1,..., 1i N   için (2.2) probleminde bütün terimlerin  1,i it t 
aralığında 

integrali alınır (Arslan, 2022). 

 

           

1 1

[ ( ) [ ( ) ( )] ( ) ( ) ( )] ( ) ,
i i

i i

t t

t t

u t a t b t u t b t u t dx f t dt 
 

     
 

ve 

 

1 1

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ,

1,2,..., 1,

i i

i i

t t

i i i i i i i i

t t

u t u t a b u t a b u t b t u t dt f t dt

i N

   
 

   
       

 

 
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burada   

1
1

i i
i

u u
u

h





  , 1i i

i

u u
u

h


   fark yaklaşımları kullanıldığında

 

 
1 1

1 1
1 1 1( ) ( ) ( ) ( ) ( ) ,

i i

i i

t t

i i i i
i i i i i i

t t

u u u u
a b u t a b u t b t u t dt f t dt

h h
   

 

 
  

    
              

   
 

 

denklemi elde edilir. Bu denklemde bulunan integrallere yamuk yöntemi uygulanır ve  

   1 1
1 1 1 1 1 1( ) ( ) ,

2 2

1,2,..., 1,

i i i i
i i i i i i i i i i i i

u u u u h h
a b u a b u b u bu f f

h h

i N

    
     

    
           

   

 

 

denklemi bulunur. Düzenlemeler yapılırsa 

 

             

 1
1 1 1 1 1

2
,

2 2 2

1,2,..., 1,

i i
i i i i i i i i i

b b h
u u a b h u a b h f f

h h h

i N

  
  

    

    
              

     

   

             

1

0

0

1 1
, 1.

1 4

N

N j j

j

u A u ht u






  

       (2.4) 

 

Fark problemi için çözüm, aşağıda açıklanan Thomas algortiması yöntemiyle sağlanır. 

Thomas algoritmasında ise 

      

 1
1 1 1

2
, , , ,

2 2 2

1,2,..., 1,

i i
i i i i i i i i i i

b b h
A B a b h C a b h F f f

h h h

i N

  
 

           

 

  =   

 

                           

1 1

1 1 1

, , 1,2,... 1,

, 1,...2,1,

i i i i
i i

i i i i i i

i i i i

B F A
i N

C A C A

u u i N


 

 

 

 

  


   

 

   

    

   

belirtilen adımlar takip edilerek yaklaşık çözüm bulunur (Arslan, 2023). 
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2.2.3 Kararlılık 

0, 0 ve  0,

1,  0,1,..., 1, (2.5)

i i i i i

i

A B C A B

i N

    

  

  

                                      
       

  

Thomas algoritmasının yukarıdaki şartlar doğrultusunda kararlı olduğu anlaşılmaktadır 

(Amirali, 2018). 
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3. BULGULAR VE TARTIŞMA 

Bu çalışmada nümerik integral yönteminin etkin ve işlevsel olduğunu görmek 

amacıyla aşağıdaki dört örnek üzerinde çalışma yapılmıştır. 

 

Örnek 1 :  

 

2

0

( ) 3 ( ) ( ) ( 1) 1, (0,1) (1,2),

( ) 1 [ 1,0], (2) (2) ( ) ( ) 2.
3

u t u t u t u t t

t
u t için t u u u t d t



 

       

     

  

      (3.1) 

 

 Gecikmeli singüler pertürbe özellikli integral sınır değerli  probleminin nümerik 

integral yöntemi ile çözümü (Elango & Tamilsevan, 2018): 

(3.1) probleminde yer alan gecikmeli terimine karşılık olarak 

                        ( 1) ( ) ( ),u t u t u t    

 Taylor açılımdan faydalanılırsa (Cengizci, 2017) 

 

( ) 3 ( ) ( ) ( ) ( ) 1,

( ) 4 ( ) 1,

u t u t u t u t u t

u t u t





       

     

problemi oluşur. 

2. terimin katsayısı -3<0 olması nedeniyle problem sağ sınırlı katlı problemdir ve bu 

probleme nümerik integral yöntemi uygulandığında 

 

                       1 1

( ( ) 4 ( )) 1 ,
i i

i i

t t

t t

u t u t dt dt

 

         

ve ardından 

                      1

1 1( ) ( ) 4 ( ) 4 ( ) 1 ,
i

i

t

i i i i

t

u t u t u t u t dt 



 
        

denklemi elde edilir. 

Buradaki integrale karşılık yamuk yöntemi uygulandığında ve düzenlemeler 

yapıldığında 

 

1 14 4 ,i i i iu u u u h   
     
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şeklinde denklem elde edilir. Bununla beraber 

1i i
i

u u
u

h

 
    ileri fark yaklaşımı ve 

1
1

i i
i

u u
u

h





   geri fark yaklaşımı 

uygulandığında 

1 1
14 4 , 1,2,..., 1i i i i

i i

u u u u
u u h i N

h h
  



    
         

   
   

fark denklemi oluşur ve ardından bu denklemde 

 1,iu  ,iu 1,iu   

katsayılarına göre düzenleme yapılırsa ve sınır değerleri de eklenirse 

 

 

1 1

0

1

0

2
4 4 , 1,2,..., 1,

1,

1
2, 1,2,..., 1,

(1 ) 3

i i i

N
j j

N

j

u u u h i N
h h h

u

ht u
u j N

  




 





     
            

     



 
    

  


  

  

 

 

sınır fark problemi meydana gelir. 

Fark problemi için çözüm, aşağıda açıklanan Thomas algortiması yöntemiyle sağlanır. 

Thomas algoritmasında ise

 

0 1 1 1

1 1 1 1

1 1

2
4, , 4 ,

,

1 0),

0, 1,

i i iİ
A B C ve F h

h h h

u u

u u

  

 

 

 

     

 

  

 

        

         

            (

             

 

olur. 

 Ayrıca  
2 0

h
N


   olarak ifade edilir. 

                              

1 1

1 1 1

, , 1,2,... 1,

, 1,...2,1,

i i i i
i i

i i i i i i

i i i i

B F A
i N

C A C A

u u i N


 

 

 

 

  


   

 

   

    

   

 

yukardaki algoritmaya ait basamaklar izlenerek problemin yaklaşık olarak çözümüne 

ulaşılır. 
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1 1

4

, ,
2 2

4 4 4 4

1,2,... 1.

i

i i

i i

h
hh

h h h h

i N

 

 
   

 
 

 
  
  

       
            

       

 

  

 

 

Thomas algoritmasıyla elde edilen çözüme ait şablon, uygun  matematik  

programı  aracılığıyla adım adım çözülür ve bu süreç sonucunda detaylı sayısal sonuçlar 

elde edilir.  

1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2        ve 8,16,32,64,128,256,512N   değerleri için en 

büyük hatalar elde edilir. Farklı N  ve   değerleri için yaklaşık çözüm ve hata eğrileri, 

her bir durumda detaylı olarak hesaplanarak çizilir ve bu grafikler, elde edilen 

sonuçların doğruluğunu ve hassasiyetini göstermek amacıyla kullanılır. Böylece, 

önerilen metodun gecikmeli singüler pertürbe özellikli problemler için ne kadar uygun 

olduğu sunulmuş olur. Değişik N için değerler ile    pertürbe değişkeni için elde edilen 

çözümlerin maksimum  hataları, her bir durum için ayrıntılı olarak hesaplanarak Tablo 

3.1’de sunulur (Cakir & Arslan, 2016). 

 

Çizelge 3.1 Örnek 1’in  Thomas algoritmasıyla hesaplamış  maksimum hata miktarları 

            

/ N         8                    16                   32                  64                   128                256                512 

12
   0,029115705  0,019455015  0,011364014  0,006249471  0,003303023  0,001702521  0,000865761  

22
   0,036639931  0,033876318  0,022588514  0,013954729  0,007894712  0,004223421  0,002192885 

32
   0,032271111  0,040019713  0,037397951  0,024932566  0,015584487  0,008866406  0,004756850 

42
   0,022144383  0,033746808  0,042102881  0,039441108  0,026294269  0,016478572  0,009386916 

52
   0,013102681  0,022642732  0,034609526  0,043241654  0,040531442  0,027021225  0,016944658 

62
  0,007146958  0,013248609  0,022928534  0,035072110  0,043835090  0,041093550  0,027396237 
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Şekil 3.1 N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için yaklaşık çözüm    

eğrilerinin karşılaştırılması 

 

 

   

Şekil 3.2 N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için hata değerlendirmesi 
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Örnek 2: 

 

2

2

0

( ) 5 ( ) ( 1) ( ) ( 1) , (0,1) (1,2),

( ) 1 [ 1,0], (2) (2) ( ) ( ) 2. (3.2)
3

u t u t t u t u t t t

t
u t için t u u u t d t



 

        

     

  

                            

Gecikmeli singüler pertürbe özellikli integral sınır değerli problemininin nümerik 

integral yöntemi ile çözümü (Elango & Tamilsevan, 2018): 

(3.2)  probleminde yer alan gecikmeli terimine karşılık olarak 

                 ( 1) ( ) ( ),u t u t u t    

Taylor açılımından faydalanılırsa (Cengizci, 2017) 

                              

2

2

( ) 5 ( ) ( 1) ( ) ( ) ( ) ,

( ) 6 ( ) ( ) ,

u t u t t u t u t u t t

u t u t tu t t





        

      

biçiminde olur. 

2. terimin katsayısı -5<0 olması nedeniyle problem sağ sınırlı katlı problem olur ve bu 

probleme nümerik integral yöntemi uygulandığında 

 

                 1 1

2( ( ) 6 ( ) ( )) ,
i i

i i

t t

t t

u t u t tu t dt t dt

 

     
  

ve 

                1 1

2

1 1( ) ( ) 6 ( ) 6 ( ) ( ) ,
i i

i i

t t

i i i i

t t

u t u t u t u t tu t dt t dt 

 

 
       

 

 

denklemi elde edilir. 

Buradaki integrallere karşılık yamuk yöntemi uygulandığında ve düzenlemeler 

yapıldığında 

 

                 

2 2

1 1 1 1 16 6 ( ) ( ),
2 2

i i i i i i i i i i

h h
u u u u t u t u t t      
        

 

 

şeklinde denklem elde edilir. Bununla beraber 
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1i i
i

u u
u

h

 
 

 
ileri fark yaklaşımı ve 

1
1

i i
i

u u
u

h





 

 
geri fark yaklaşımı uygulandığında 

 

            

2 21 1
1 1 1 16 6 ( ) ( ),

2 2

1,2,..., 1,

i i i i
i i i i i i i i

u u u u h h
u u t u t u t t

h h

i N

  
   

    
          

   

   

 

fark denklemi oluşur ve ardından bu denklemde 

1 1, , ,i i iu u u    

katsayılarına göre düzenleme yapılırsa ve sınır değerleri de eklenirse 

               

2 21
1 1 1

0

1

0

2
6 6 ( ,

2 2 2

1,2,..., 1,

1,

1
2, 1,2,..., 1,

(1 ) 3

i i
i i i i i

N
j j

N

j

t t h
u h u h u t t

h h h

i N

u

ht u
u j N

  





  





     
           

    

 



 
    

  


+ )

  

 

 

fark problemi meydana gelir. 

Fark problemi için çözüm, aşağıda açıklanan Thomas algortiması yöntemiyle sağlanır. 

Thomas algoritmasında ise 

 

           

2 21
1

0 1 1 1

1 1 1 1

1 1

2
6 , , 6 ( ),

2 2 2

,

1 0),

0, 1,

i i
i i i i iİ

t t h
A h B C h ve F t t

h h h

u u

u u

  

 

 

 


        

 

  

 

        

         

            (

              

olur. 

 Ayrıca  
2 0

h
N




  
olarak ifade edilir. 

 

                              

1 1

1 1 1

, , 1,2,... 1,

, 1,...2,1,

i i i i
i i

i i i i i i

i i i i

B F A
i N

C A C A

u u i N


 

 

 

 

  


   

 

   
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yukardaki algoritmaya ait basamaklar izlenerek problemin yaklaşık olarak çözümüne 

ulaşılır. 

  

2 2 1
1

1 1

1 1

( ) 6
2 2

, ,
2 2

6 6 6 6
2 2 2 2

1,2,... 1,

i
i i i

i i

i i i i
i i

th
t t h

hh
t t t t

h h h h
h h h h

i N

 

 
   

 




 

 

 
    

  
       

                
       

 

  

 

 

Thomas algoritmasıyla ve uygun matematik programı aracılığıyla sayısal 

sonuçlar elde edilir. 

1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2        ve 8,16,32,64,128,256,512N   değerleri için en 

büyük hatalar elde edilir. Böylece, önerilen metodun gecikmeli singüler pertürbe 

özellikli integral sınır değerli problemler için ne kadar uygun olduğunu göstermek 

amacıyla yapılan bu hesaplamalar ve çizilen hata eğrileri ile yaklaşık çözümler detaylı 

bir şekilde sunulmuş olur. Değişik N  için değerler ile   pertürbe değişkeni için elde 

edilen çözümlerin maksimum hataları, her bir durum için ayrıntılı olarak hesaplanarak 

Çizelge 3.2'de sunulur (Cakir & Arslan, 2016). 

 

Çizelge 3.2 Örnek 2’nin  Thomas algoritmasıyla  hesaplamış  maksimum hata miktarları 

    

/ N         8                  16                32                  64               128              256              512 

12
   0,066569330  0,053748160  0,033422743  0,020089730  0,011001772  0,005804757  0,002984293  

22
   0,065017491  0,071868807 0,058918729  0,037303821  0,022444707  0,012330564  0,006515334 

32
   0,048340065  0,067406616  0,075695996  0,062075218  0,039464134  0,023721220  0,013044803 

42
   0,030487345  0,048729189  0,069323283  0,077925542  0,063795942  0,040597643  0,024382411 

52
   0,017765271  0,029928542  0,049422838  0,070475478  0,079121723  0,064691610  0,041177405 

62
  0,010190517  0,016809905  0,030045310  0,049901332  0,071101599  0,079740461  0,065148229 
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Şekil 3.3 N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için yaklaşık çözüm 

eğrilerinin karşılaştırılması. 

 

 

 

Şekil 3.4 N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için hata değerlendirmesi 
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Örnek 3: 

               

      

2

0

( ) 3 ( ) ( 1) 0, (0,1) (1,2),

( ) 1 [ 1,0], (2) (2) ( ) ( ) 2, (3.3)
3

u t u t u t t

t
u t için t u u u t d t



 

       

     

  

              

    

 

gecikmeli singüler pertürbe integral sınır değerli problemin nümerik integral yöntemi ile 

çözümü (Elango & Tamilsevan,  2018): 

(3.3)  probleminde yer alan gecikmeli terimine karşılık olarak  

                        ( 1) ( ) ( ),u t u t u t     

Taylor açılımından faydalanılırsa (Cengizci, 2017) 

                          

( ) 3 ( ) ( ) ( ) 0,

( ) 4 ( ) ( ) 0,

u t u t u t u t

u t u t u t





     

     
 

biçiminde olur. 

2. terimin katsayısı -3<0 olması nedeniyle problem sağ sınırlı katlı problem olur ve bu 

probleme nümerik integral yöntemi uygulandığında 

 

                            1 1

( ( ) 4 ( ) ( )) 0 ,
i i

i i

t t

t t

u t u t u t dt dt

 

     
   

ve 

                           1

1 1( ) ( ) 4 ( ) 4 ( ) ( ) 0,
i

i

t

i i i i

t

u t u t u t u t u t dt 


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denklemi elde edilir. 

Buradaki integrallere karşılık yamuk yöntemi uygulandığında ve gerekli düzenlemeler 

yapıldığında 

 

                            
1 1 14 4 ( ) 0,

2
i i i i i i

h
u u u u u u    
      

 

 

şeklindeki denklem elde edilir. Bununla beraber 
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fark denklemi oluşur ve ardından bu denklemde 
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terimlerine göre düzenleme yapılırsa ve sınır değerleri de kullanılırsa 
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fark problemi meydana gelir. 

Fark problemi için çözüm, aşağıda açıklanan Thomas algortiması yöntemiyle sağlanır. 

Thomas algoritmasında ise
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Yukardaki algoritmaya ait basamaklar izlenerek problemin yaklaşık olarak çözümüne 

ulaşılır. 
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Thomas algoritmasıyla elde edilen çözüme ait şablon, uygun matematik 

programı aracılığıyla en uygun sayısal sonuçlar elde edilir. 

1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2        ve 8,16,32,64,128,256,512N   değerleri için 

maksimum hatalar elde edilir. Farklı N  ve   değerleri için yaklaşık çözüm ve hata 

eğrileri çizilir ve bu grafikler, elde edilen sonuçların doğruluğunu ve hassasiyetini 

göstermek amacıyla kullanılır. Böylece, önerilen metodun gecikmeli singüler pertürbe 

özellikli integral sınır değerli problemler için ne kadar uygun olduğunu gösterir. Değişik  

N  için değerler ile   pertürbe parametresi için elde edilen çözümlerin maksimum  

hataları, her bir durum için ayrıntılı olarak hesaplanarak Çizelge 3.3' te sunulur (Cakir & 

Arslan, 2016). 

 

Çizelge 3.3 Örnek 3’ün  Thomas algoritmasıyla  hesaplamış maksimum hata miktarları 

             

/ N       8                  16                   32               64                 128               256              512 

12
   0,014850119  0,009658528  0,005267207  0,002765439  0,001216626  0,000727571  0,000350921  

22
   0,022927348  0,020407006  0,013423958  0,008178205  0,004594929  0,002453252  0,001250950 

32
   0,022029212  0,026510654  0,024436598  0,016188238  0,010091302  0,005699793  0,003063754 

42
   0,015732385  0,023297672  0,028727485  0,026756722  0,017783607  0,011138896  0,006342512 

52
   0,009532155  0,015938433  0,024085638  0,029941295  0,027990816  0,018634440  0,011682175 

62
   0,005315485  0,009426185  0,016108075  0,024519261  0,030574372  0,028626839  0,019071201 
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Şekil 3.5. N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için yaklaşık çözüm    

eğrilerinin karşılaştırılması 

 

 

Şekil 3.6. N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için hata değerlendirmesi 
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(3.4) 

Gecikmeli singüler pertürbe integral sınır değerli problemininin nümerik integral 

yöntemi ile çözümü (Elango & Tamilsevan, 2018): 

(3.4)  probleminde yer alan gecikmeli terimine karşılık olarak 

                                     ( 1) ( ) ( ),u t u t u t     

Taylor açılımından faydalanılırsa (Cengizci, 2017) 
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yöntemi uygulandığında 
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denklemi elde edilir. 

Buradaki integrallere karşılık yamuk metodu uygulanıp ve gerekli düzenlemeler 

yapıldığında 
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şeklindeki denklem elde edilir. Bununla beraber 
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fark problemi meydana gelir. 

Fark problemi için çözüm, aşağıda açıklanan Thomas algortiması yöntemiyle sağlanır. 

Thomas algoritmasında ise
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yukardaki algoritmaya ait basamaklar izlenerek problemin yaklaşık olarak çözümüne 

ulaşılır. 
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Thomas algoritmasıyla elde edilen çözüme ait şablon, uygun matematik program 

aracılığıyla adım adım uygulanır ve bu süreç sonucunda detaylı sayısal sonuçlar elde 

edilir. 

1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2        ve 8,16,32,64,128,256,512N   değerleri için en 

büyük hatalar elde edilir. Farklı N  ve   değerleri için yaklaşık çözüm ve hata eğrileri, 

her bir durumda detaylı olarak hesaplanarak çizilir ve bu grafikler, elde edilen 

sonuçların doğruluğunu ve hassasiyetini göstermek amacıyla kullanılır. Böylece, 

önerilen metodun gecikmeli singüler pertürbe özellikli integral sınır değerli problemler 

için ne kadar uygun olduğunu göstermek amacıyla yapılan bu hesaplamalar ve çizilen 

hata eğrileri ile yaklaşık çözümler detaylı bir şekilde sunulmuş olur. Değişik  N  için 

değerler ile   pertürbe değişkeni için elde edilen çözümlerin maksimum hataları, her 

bir durum için ayrıntılı olarak hesaplanarak Çizelge 3.4'te sunulur (Cakir & Arslan, 

2016). 
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Çizelge 3.4 Örnek 4’ün  Thomas algoritmasıyla hesaplanmış  maksimum  hata miktarları  

            

/ N         8                    16                   32                  64                   128                256                512 

12
   0,018751217  0,027470616  0,025543547  0,015998149  0,009887188  0,005485597  0,002892391 

22
   0,001592335  0,019646287  0,032682998  0,031213068  0,019975315  0,012405211  0,006891194  

32
   0,017685071  0,001026192  0,020485519  0,035597664  0,034293000  0,022050464  0,013712987 

42
   0,031679018  0,021070857  0,002116293  0,021009438  0,037131888  0,035892864  0,023108617 

52
   0,040079635  0,034916938  0,022535775  0,002599621  0,021298379  0,037918173  0,036707934 

62
   0,044679694  0,043055259  0,036269986  0,023203821  0,002824911  0,021449665  0,038316612 

  

 

Şekil 3.7 N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için yaklaşık çözüm    

eğrilerinin karşılaştırılması 
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Şekil 3.8 N =128 ve 1 2 3 4 5 62 ,2 ,2 ,2 ,2 ,2       değerleri için hata değerlendirmesi 

 

 

 

 

 

 

 

 

 

 



32 

 

SONUÇ VE ÖNERİLER 

Bu çalışmada sağ sınır katı içeren singüler pertürbe özellikli gecikmeli lineer 

differansiyel denklemlere sahip problemler nümerik integral yöntemiyle incelenmiştir. 

Dört örnek uygulması ele alınmıştır. Yaklaşık çözümlere ait sonuçların biribirine 

oldukça yakınsadığını çizelge ve şekillerden de anlaşılmaktadır. Ayrıca ( 1)t   noktası 

civarında (hassas geçiş olan bölgesinde) çözümün hızlı ve düzenli olmayan değişiklikler 

gösterdiği görülmüştür. 

Sonuç olarak yapılan bu çalışmada kullanılan nümerik integral yönteminin, 

verilen örnekleri uygun bir matematik programı ile ne kadar kolay ve hızlı çözdüğü 

görülmüştür.  

Farklı tipten differansiyel, integral; kesirli mertebeden ve bulanık differansiyel 

denklemlerin nümerik integral metodu ile nümerik çözümleri araştırılabilir.  

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

KAYNAKLAR 

Adzic, N. (2000). Spectral approximation and nonlocal boundary value problems. Novi 

Sad Journal of Mathematics. 30: 1-10. 

Arslan, D. (2022). Approximate Solution of Singularly Perturbed Problems with 

Numerical Integration Method. Yüzüncü Yıl Üniversitesi Fen Bilimleri 

Enstitüsü Dergisi  27(3), 612-618. 

Arslan, D. (2019). A Numerical Solution Study on Singularly Perturbed Convection-

Diffusion Nonlocal Boundary Value Problem. Communications Faculty of 

Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2): 

1482-1491. 

Arslan, D. (2023). A Robust Numerical Approach for Singularly Perturbed Problem 

with Integral Boundary Condition. Gazi University Journal of Science, 36(4). 

Arslan, D. (2019). A Novel Hybrid Method for Singularly Perturbed Delay Differential 

Equations. Gazi University Journal of Science, 32(1). 

Arslan, D. (2020). Sayısal İntegral Metodu ile Singüler Pertürbe Multi Point Sınır Değer  

 Porblemlerin Sayısal Çözümü.  BEÜ Fen Bilimleri Dergisi 9(1):157-167. 

Amirali, G., & Amirali, I. (2018). Nümerik Analiz Teori ve Uygulamalarla. Seçkin 

Yayıncılık. 

Amiraliyev, G. M. & Çakır, M. (2002). Numerical solution of the singularly perturbed 

problem with nonlocal boundary condition. Applied Mathematics and 

Mechanics. (English Ed.) 23: 755 764. 

Amiraliyev, G. M., Amiraliyeva, I. G. & Kudu, M. (2007). A numerical treatment for 

singularly perturbed differential equations with integral boundary condition. 

Applied Mathematics and Computation. 185: 574-582. 

Amiraliyev, G. M,. & Erdoğan, F. (2007). Uniform numerical method for singularly 

perturbed delay differential equations. Computers & Mathematics 

Applications.53: 1251-1259. 

Amiraliyeva, I. G., Erdoğan, F., & Amiraliyev, G. M. (2010). A uniform numerical 

method for dealing with a singularly perturbed delay initial value problem. 

Applied Mathematics Letters. 23: 1221-1225. 



34 

 

Bender, C., & Orszag. S. (1978). Advanced Mathematical Methods for Scientists and 

Engineers:  Asymptotic Methods and Perturbation Theory.Springer. 

Bitsadze, A. V., & Samarskii, A. A. (1969). On some simpler generalization of linear 

elliptic boundary value problems. Doklady Akademii Nauk SSSR. 185: 739-740. 

Cakir, M., & Arslan, D. (2021). A new numerical approach for a singularly perturbed 

problem with two integral boundary conditions. Computational & Applied 

Mathematics, 40(6). 

Cakir, M., & Amiraliyev, G. M. (2005). A finite difference method for the singularly 

perturbed problem with nonlocal boundary condition. Applied Mathematics and 

Computation. 160: 539-549. 

Cakir, M. & Arslan, D. (2016). A numerical method for nonlinear singularly perturbed 

multi-point boundary value problem. Journal of Applied Mathematics and 

Physics, 4: 1143-1156. 

Cakir M. & Arslan D. (2016). Numerical Solution of the Nonlocal Singularly Perturbed 

Problem. International Journal of Modern Research in Engineering and 

Technology, 1 (5): 13-24. 

Cakir M. & Arslan D. (2016). Finite Difference Method for Nonlocal Singularly 

Perturbed Problem. International Journal of Modern Research in Engineering 

and Technology, 1 (5): 25-39. 

Chegis, R. (1988). The Numerical solution of problems with small parameter at 

higherderivatives and nonlocal conditions. Lietuvos Matematikos Rinkinys. (in 

Russian). 28: 144-152. 

Cengizci, S. (2017). An Asymptotic-Numerical Hybrid Method for Solving Singularly 

Perturbed Linear Delay Differential Equations. International Journal of 

Differential Equations. Article ID 7269450, 8 pages. 

Elango, S., & Tamilselvan, A. (2018). Singularly perturbed delay differential equations 

of convection–diffusion type with integral boundary condition. Journal of 

Applied Mathematics and Computing · doi: 10.1007/s12190-018-1198-4. 

Elsgolts, L. E., Norkin, S. B., & Casti, J. L. (1973). Introduction to the theory and 

application of differential equations with deviating arguments. Academic 

Press. 

Farrel, P. A., Hegarty, A. F., Miller, J. J. H., O’Riordan, E., Shishkin, G. I. (2000). 

Robust Computational Techniques for Boundary Layers. Chapman Hall/CRC. 



35 

 

Farrel, P. A., Miller, J. J. H., O’Riordan, E. & Shishkin, G. I. (1996). A uniformly 

convergent finite difference scheme for a singularly perturbed semilinear 

equation. SIAM Journal on Numerical Analysis. 33: 1135-1149. 

Herceg, D. & Surla, K. (1991). Solving a Nonlocal Singularly Perturbed Nonlocal Problem by 

Splines in Tension. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Math., 21 

(2): 119- 132. 

Kudu, M. & Amiraliyev, G. M. (2015). Finite difference method for a singularly perturbed 

differential equations with integral boundary condition. International Journal of 

Mathematics and Computation. 26: 72-79. 

Ma, R. (1997). Existence theorems for a second order m-point boundary value problem.Journal 

of Mathematical Analysis and Applications. 211: 545-555. 

Miller, J. J. H., O’Riordan, E. & Shishkin, G. I. (1996). Fitted Numerical Methods for Singular 

Perturbation Problems. World Scientific. 

Nayfeh, A. H. (1993). Introduction to Perturbation Techniques. Wiley. 

Nayfeh, A. H. (1973). Perturbation Methods. Blacksburg. 

O’Malley, R. E. Jr. (1974). Introduction to Singular Perturbations. Academic Press. 

O’Malley, R. E. Jr. (1991). Singular Perturbations Method for Ordinary Differential Equations. 

Springer-Verlag. 

Persson, L. & Logan, J.D. (1987). Applied Mathematics. A basic course in applied mathematics. 

http://staff.www.Itu.se/larsenik/applmath/chap2en/part1.html. 

Samarskii, A. A. (2001). Theory of Difference Schemes. Monographs and textbooks in pure 

and applied mathematics 240. Marcel Dekker.  

Tavukcu, D. (2000). Monte Carlo Yönteminin Sayısal İntegrallere ve Elektromanyetik Denklem 

İntegrallerine Uygulanması, [Yüksek Lisans Tezi]. İstanbul Teknik Üniversitesi. 

 

 

 

 

 

http://staff.www.itu.se/larsenik/applmath/chap2en/part1.html

